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Abstract

Uncovering the haplotypes of single nucleotide polymorphisms and their population demogra-
phy is essential for many biological and medical applications. Methods for haplotype inference
developed thus far –including those based on approximate coalescence, finite mixtures, and max-
imal parsimony– often bypass issues such as unknown complexity of haplotype-space and demo-
graphic structures underlying multi-population genotype data. In this paper, we propose a new
class of haplotype inference models based on a nonparametric Bayesian formalism built on the
Dirichlet process, which represents a tractable surrogate to the coalescent process underlying pop-
ulation haplotypes and offers a well-founded statistical framework to tackle the aforementioned
issues. Our proposed model, known as a hierarchical Dirichlet process mixture, is exchangeable,
unbounded, and capable of coupling demographic information of different populations for pos-
terior inference of individual haplotypes, the size and configuration of haplotype ancestor pools,
and other parameters of interest given genotype data. The resulting haplotype inference program,
Haploi, is readily applicable to genotype sequences with thousands of SNPs, at a time-cost often
two-orders of magnitude less than that of the state-of-the-art PHASE program, with competitive
and sometimes superior performance. Haploi also significantly outperforms several other extant
algorithms on both simulated and realistic data.
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1 Introduction
Recent experimental advances have led to an explosion of data which document genetic variation at
the DNA level within and between populations. For example, the international SNP map working
group Group1 has reported the identification and mapping of 1.4 million single nucleotide poly-
morphisms (SNPs) from the genomes of 4 different human populations in the world. These kinds
of data lead to challenging inference problems whose solutions could lead to greater understanding
of the genetic basis of disease propensities and other complex traits2,3.

SNPs represent the largest class of individual differences in DNA. A SNP refers to the exis-
tence of two specific nucleotides chosen from {A, C,G, T} at a single chromosomal locus in a
population; each variant is called an allele. A haplotype refers the joint allelic identities of a list of
SNPs at contiguous sites in a local region of a single chromosome. Assuming no recombination in
this local region, a haplotype is inherited as a unit. For diploid organisms (such as humans), each
individual has two physical copies of each chromosome (except for the Y chromosome) in his/her
somatic cells; one copy is inherited from the mother, and the other from the father. Thus during
each generation of inheritance when chromosomes come in pairs, two haplotypes, for example,
h1 ≡ (1, 1, 0, 0) and h2 ≡ (0, 0, 1, 1) of a 4-loci region, go together to make up a genotype, which
is the list of unordered pairs of alleles in the attendant region, e.g., g ≡ (1/0, 1/0, 1/0, 1/0) in case
of the aforementioned two haplotypes. That is, a genotype is obtained from a pair of haplotypes
by omitting the specification of the association of each allele with one of the two chromosomes—
its phase. Indeed, phase is in general ambiguous when only the genotypes of a SNPs sequence
are given4,5. For example, in the above example, given the g, an alternative configuration of the
haplotypes, h′1 ≡ (1, 1, 1, 1) and h′2 ≡ (0, 0, 0, 0), is also consistent with the genotype; but ob-
serving multiple genotypes in a population can help to bias the phase reconstruction toward the
true haplotypes. The problem of inferring SNP haplotypes from genotypes is essential for the
understanding of genetic variations and linkage disequilibrium patterns in a population. For exam-
ple, accurate inferences concerning population structures or quantitative trait locus maps usually
demand the analysis of the genetic states of possibly non-recombinant segments of the subject’s
chromosome(s)6. Thus, it is advantageous to study haplotypes, which consist of several closely
spaced (hence linked) phase-known SNPs and often prove to be more powerful discriminators of
genetic variations within and among populations.

Common biological methods for assaying genotypes typically do not provide phase informa-
tion for individuals with heterozygous genotypes at multiple autosomal loci; phase can be obtained
at a considerably higher cost via molecular haplotyping7. In addition to being costly, these meth-
ods are subject to experimental error and are low-throughput. Alternatively, phase can also be
inferred from the genotypes of a subject’s close relatives5. But this approach is often hampered by
the fact that typing family members increases the cost and does not guarantee full informativeness.
It is desirable to develop automatic and robust in silico methods for reconstructing haplotypes from
genotypes and possibly other data sources (e.g., pedigrees).

Key to the inference of individual haplotypes based on a given genotype sample, is the formula-
tion and tractability of the marginal probability of the haplotypes of a study population. Consider
the set of haplotypes, denoted as H = {h1, h2, . . . , h2n} (where hi ∈ PT , P denotes the allele
space of the polymorphic markers and T denotes the length of the marker sequence), of a random
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sample of 2n chromosomes of n individuals taken from a population at stationarity of some in-
heritance process, e.g., an infinitely-many-allele (IMA) mutation model. Under common genetic
arguments, the ancestral relationships amongst the sample back to its most recent common ancestor
(MRCA) can be described by a genealogical tree, and computing p(H) involves a marginalization
over all possible genealogical trees consistent with the sample, which is widely known to be in-
tractable. As discussed in Stephens and Donnelly8, write P (H) as a product of conditionals based
on the chain rule, i.e.,

P (h1, h2, . . . , h2n) = P (h1)P (h2|h1) . . . P (h2n|h1 . . . h2n−1), (1)

then the generation of a haplotype sample H can be viewed as a sequential process that draw
one haplotype at a time conditioning on all the previously drawn haplotypes, e.g., by introduc-
ing random mutations to the latter. (This is equivalent to sampling from a genealogy evolving
in non-overlapping generations.) Therefore, one can develop tractable approximation to P (H)
by appropriately approximating the conditionals in Eq. (1). Stephens and Donnelly8 suggested
an approximation to P (hi|h1 . . . hi−1) that captures, among several desirable genetic properties,
the parental-dependent-mutation (PAM) property∗, by modeling hi as the progeny of a randomly-
chosen existing haplotype through a geometric-distributed number of mutations. This model, re-
ferred to as the PAC (for Product of Approximate Conditionals) model, forms the basis of the
PHASE program9, which has set the state-of-the-art benchmarks in haplotype inference.

However, one caveat of the PAC model, as acknowledged in Li and Stephens10, is that it implic-
itly assumes existence of an ordering in the haplotype sample, therefore the resulting likelihood
does not enjoy the property of exchangeability that we would expect to be satisfied by the true
p(H). Although empirically this pitfall appears to be inconsequential after some heuristic averag-
ing over a moderate number of random orderings, it is difficult to associate this approximation to an
explicit assumption about the population demography and genealogy underlying the sample. For
example, the genealogy of haplotypes with possibly common ancestry is replaced by asymmetric
pairwise relationships (induced by the conditional mutation model) between the haplotypes. The
resulting “flattening” of the latent genealogical history makes it difficult to use the PAC method to
discover and exploit latent demographic structures such as estimating the number and pattern of
prototypical haplotypes (i.e., founders), which may be indicative of genetic bottlenecks and diver-
gence time of the study population, or to make use of the ethnic identities of the sample to improve
haplotyping accuracy in multi-population haplotype inference.

The finite mixture models adopted by programs such as HAPLOTYPER represent another
class of haplotype models that rely very little on demographic and genetic assumptions of the
sample11–14. Under such a model, haplotypes are treated as latent variables associated with specific
frequencies, and the probability of a genotype is given by:

p(g) =
∑

h1,h2∈H

p(h1, h2)f(g |h1, h2), (2)

∗The parental-dependent-mutation posit that, in a sequential generation process of haplotypes, if the next haplotype
does not match exactly with an existing haplotype, it will tend to differ by a small number of mutations from an existing
one, rather than be completely different.
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where f(g|h1, h2) is a noisy channel relating the observed genotype to the unobserved true un-
derlying haplotypes†, and H denote the set of all possible haplotypes of a given region. Under the
assumption of Hardy-Weinberg equilibrium (HWE), an assumption that is standard in the literature
and will also be made here, the mixing proportion p(h1, h2) is assumed to factor as p(h1)p(h2).
Given this basic statistical structure, the haplotype inference problem can be viewed a missing
value inference and parameter estimation problem. Numerous statistical models and statistical
inference approaches have been developed for this problem, such as the maximum likelihood ap-
proaches via the EM algorithm11,15–17, and a number of parametric Bayesian inference methods
based on Markov Chain Monte Carlo (MCMC) techniques12,14.

The finite mixture model defines an exchangeable P (H). But since such models are data-driven
rather than genetically motivated, they offer no insight of the genealogical history underlying the
sample. Furthermore, these methodologies have rather severe computational requirements in that
a probability distribution must be maintained on a (large) set of possible haplotypes. Indeed, the
size of the haplotype pool, which reflects the diversity of the genome and its evolutionary history,
is unknown for any given population data; thus we have a mixture model problem in which a key
aspect of the inferential problem involves inference over the number of mixture components, i.e.,
the haplotypes. There is a plethora of combinatorial algorithms based on various deterministic hy-
pothesis such as the “parsimony” principles that offer control over the complexity of the inference
problem4,18–20, and these methods have demonstrated effectiveness in certain settings and provided
important insights to the problem (see Gusfield21 for an excellent survey). But compared to the
statistical approaches, they offer less flexibility and/or scalability in handling missing value, typing
error, evolution modeling and more complex scenarios on the horizon in haplotype modeling (e.g.,
recombinations, genetic mapping, etc.). Most current statistical methods for haplotype inference
bypass the issue of ancestral-space uncertainty via an ad hoc specification of the number of haplo-
types needed to account for the given genotypes. Although certain coalescent-based models14 or
model-selections methods can partially address these issues.

Besides the ancestral-space uncertainty issue discussed above, the haplotype models developed
so far are still limited in their flexibility and are inadequate for addressing many realistic problems.
Consider for example a genetic demography study, in which one seeks to uncover ethnic- and/or
geographic-specific genetic patterns based on a sparse census of multiple populations. In particular,
suppose that we are given a sample that can be divided into a set of subpopulations; e.g., African,
Asian and European. We may not only want to discover the sets of haplotypes within each subpop-
ulation, but we may also wish to discover which haplotypes are shared between subpopulations,
and what are their frequencies. Empirical and theoretical evidence suggests that an early split of
an ancestral population following a populational bottleneck (e.g., due to sudden migration or envi-
ronmental changes) may lead to ethnic-group-specific populational diversity, which features both
ancient haplotypes (that have high variability) shared among different ethnic groups, and modern
haplotypes (that are more strictly conserved) uniquely present in different ethnic groups22. This
structure is analogous to a hierarchical clustering setting in which different groups comprising

†A prevalent form of f in the literature is f ≡ I(h1 ⊕ h2 = g), which is a deterministic indicator function of the
event that haplotypes h1 and h2 are consistent with g. More desirable forms of f would model errors in the genotyping
or data recording process, a point we will return to later in the paper.
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multiple clusters may share clusters with common centroids.
In this paper, we describe a new class of haplotype inference models based on a nonparametric

Bayesian formalism built on the Dirichlet process (DP)23,24, which offers a well-founded statistical
framework to tackle the problems discussed above more efficiently and accurately. As we discuss
in the sequel, the Dirichlet process can induce a partition of an unbounded population in a way
that is closely related to the Ewens sampling formula25, thus it can be viewed as an exchangeable
approximation to the joint distribution of population haplotypes under a coalescent process. On
the other hand, in the setting of mixture models, the Dirichlet process is able to capture uncer-
tainty about the number of mixture components26. A hierarchical extension of DP also leads to
an elegant model that couples the demographic information in different populations for solving
multi-population haplotype inference problems.

Our model differs from the extant models in the following important ways: 1) Instead of resort-
ing to ad hoc parametric assumptions or model selection over the number of population haplotypes,
as in many parametric Bayesian models, we introduce a nonparametric prior over haplotypes an-
cestors, which facilitates posterior inference of the haplotypes (and other genetic properties of in-
terest) in an “open” state space that can accommodate arbitrary sample size. 2) Our model captures
similar genetic features as those emphasized in Stephens et al.9, including the parent-dependent-
mutation property, but with an exchangeable likelihood function rather than an order-dependent
one as in the PAC model. 3) The hierarchical Bayesian framework of our model explicitly captures
ancestral/population structures and incorporates demographic/genetic parameters so that they can
be inferred or estimated along with the haplotype phase based on given genotype data. 4) Our
model can explicitly exploit the ethnic labels, and potentially latent sub-population structures of
the sample, to improve haplotyping accuracy. Some fragments of the technical aspects of the pro-
posed model was announced before in conferences in the machine learning community27,28, but to
our knowledge the full statistical model and its population genetic interpretations are new to the
genetics community, and a computer program based on this model for haplotype reconstruction
from large genotype data is not yet available. In this paper, we describe this new nonparamet-
ric Bayesian approach for haplotype modeling in detail, and we present an efficient Monte Carlo
algorithm, Haploi, for haplotype inference based on the proposed model, which is readily appli-
cable to genotype sequences with thousands of SNPs, at a time-cost often at least two-orders of
magnitude less than that of the state-of-the-art PHASE program, with competitive and sometimes
superior performance (mostly in long sequences). We also show that Haploi significantly outper-
forms several other extant haplotype inference algorithms on both simulated and realistic data. A
C++ implementation of Haploi can be obtained from the authors via email request, and will be
soon made public on world wide web once interface and GUI development are completed.

2 The Statistical Model
As motivated in the introduction, it is desirable to explicitly explore the demographic character-
istics such as population structure and ethnic label, and the genetic scenarios such as coalescence
and mutation, underlying the study populations, while performing haplotype inference on complex
population samples. In the following, we present two novel nonparametric Bayesian models for
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haplotype inference that facilitate this desire. We begin with a basic model for the simplest de-
mographic and genetic scenario, in which we ignore individual ethnic labels in the sample (as in
most extant haplotyping methods), and assume absence of recombination in the sample. Then we
generalize this model to a multi-population scenario. Finally we deal with long genotypes with
recombinations with an algorithmic approach motivated by the partition-ligation scheme12.

2.1 A Dirichlet process mixture model for haplotypes
2.1.1 Dirichlet process mixture

Given a sample of n chromosomes, under neutrality and random-mating assumptions, the distribu-
tion of the genealogy trees of the sample can be approximated by that of a random tree known as
the n-coalescent29. Additionally, on each lineage there is a point process of mutation events. The
best understood, and also the simplest instances of such mutation processes is the infinitely-many-
alleles (IMA) model, in which each mutation in the lineage produces a novel type, independent
of the parental allele. IMA can be understood as an independent Poisson process with rate, say,
α/2, which is determined by the size of the evolving population N (usually N >> n) and the per-
generation mutation rate µ (i.e., α = 4Nµ). Although easy to analyze, IMA is unrealistic because
it fails to capture dependencies among haplotypes. On the other hand, to date no closed-form ex-
pression of P (H) is known for the more realistic parent-dependent mutation (PDM) model under
the n-coalescent; approximations such as the PAC model has been used as a tractable surrogate.

In the sequel, we describe an alternative approach for modeling P (H) based on a nonpara-
metric Bayesian formalism known as the Dirichlet process, which leads to a new class of models
for haplotype distribution that approximately captures major properties that would result from a
coalescent-with-PDM model.

We begin with a brief genetic motivation of the proposed approach. Rather than focusing
on a complete random genealogy up to the MRCA, we instead consider a sample of n individ-
uals from a population characterized by an unknown set of founding haplotypes, with unknown
founder frequencies. For now we focus attention on a small chromosomal region within which the
possibility of recombination over relevant time-scales is negligible. As a consequence, we postu-
late that each individual’s genotype is formed by drawing two random haplotype founders from an
ancestral pool, one for each of the two actual haplotypes of this individual, which can be mutated
version of their corresponding founders. We further assume that we are given noisy observations
of the resulting genotypes. Below we show how this setting relates to the coalescent-with-IMA and
coalescent-with-PDM models.

Under Kingman’s coalescent-with-IMA model, one can treat a haplotype from a modern in-
dividual as a descendent of a most resent common ancestor with unknown haplotype via random
mutations that alter the allelic states of some SNPs29. Hoppe30 observed that a coalescent pro-
cess in an infinite population leads to a partition of the population at every generation that can be
succinctly captured by the following Pólya urn scheme.

Consider an urn that at the outset contains a ball of a single color. At each step we either
draw a ball from the urn and replace it with two balls of the same color, or we are given a ball
of a new color which we place in the urn. One can see that such a scheme leads to a partition of
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the balls according to their color. Mapping each ball to a haploid individual and each color to a
possible haplotype, this partition is equivalent to the one resulted from the coalescence-with-IMA
process30, and the probability distribution of the resulting allele spectrum—the numbers of colors
(i.e., haplotypes) with every possible number of representative balls (i.e., decedents)—is captured
by the well-known Ewens’ sampling formula25.

Letting parameter α define the probabilities of the two types of draws in the aforementioned
Pólya urn scheme, and viewing each (distinct) color as a sample from Q0, and each ball as a sam-
ple from Q, Blackwell and MacQueen24 showed that this Pólya urn model yields samples whose
distributions are those of Q0 the marginal probabilities under the Dirichlet process23. Formally,
a random probability measure Q is generated by a DP if for any measurable partition A1, . . . , Ak

of the sample space (e.g., the partition of an unbounded haploid population according to com-
mon haplotype patterns), the vector of random probabilities Q(Ai) follows a Dirichlet distribution:
(Q(A1), . . . , Q(Ak)) ∼ Dir(αQ0(A1), . . . , αQ0(Ak)), where α denotes a scaling parameter and
Q0 denotes a base measure. The Pólya urn construction of DP makes explicit an order-independent
sequential sampling scheme to draw samples from a DP. Specifically, having observed n samples
with values (φ1, . . . , φn) from a Dirichlet process DP (α, Q0), the distribution of the value of the
(n + 1)th sample is given by:

φn+1|φ1, . . . , φn, α, Q0 ∼
K∑

k=1

nk

n + α
δφ∗k

(·) +
α

n + α
Q0(·), (3)

where δφ∗k
(·) denotes a point mass at a unique value φ∗

k, nk denotes the number of samples with
value φ∗

k, and K denotes the number of unique values in the n samples drawn so far. This con-
ditional distribution is useful for implementing Monte Carlo algorithms for haplotype inference
under DP-based models. We will return to this point in the Appendix.

Under a DP distribution described above, the sampled haplotypes follow an IMA model, mean-
ing that all different haplotypes (i.e., ball colors) are independent. How can we take into consid-
eration the fact that, in a real haplotype sample one would expect that some haplotypes differ only
slightly (i.e., at a few SNP loci) whereas some differ much more significantly—a phenomenon
caused by possibly parent-dependent mutations. Now we describe a DP mixture (DPM) model
that approximate this effect.

In the context of mixture models, one can associate common data centroids, i.e., haplotype
founders rather than all distinct haplotypes, with colors drawn from the Pólya urn model and
thereby define a “clustering” of the (possibly noisy) data {hi} (e.g., modern haplotypes that are
“recognizable” variants of their corresponding founders) via likelihood function p(hi|φi). As ob-
vious from Eq. (3), the samples (i.e., ball-draws) {φi} from a DP (i.e., the urn) tend to concentrate
themselves around some unique values {φ∗

k} (i.e., colors); thus conditioning on each such unique
value φ∗

k, we have a mixture component p(hi|φ∗
k) for the data. Such a mixture model is known

as the DP mixture26,31. Note that a DP mixture requires no prior specification of the number of
components, which is typically unknown in genetic demography problems. It is important to em-
phasize that here DP is used as a prior distribution of mixture components. Multiplying this prior
by a likelihood that relates the mixture components to the actual data yields a posterior distribu-
tion of the mixture components, and the design of the likelihood function is completely up to the
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modeler based on specific problems. This nonparametric Bayesian formalism forms the technical
foundation of the haplotype modeling and inference algorithms to be developed in this paper.

2.1.2 DPM for haplotype inference

Now we briefly recapitulate the basic DPM for haplotypes first proposed in Xing et al.27. In the next
section we generalize this model to multi-population haplotypes, and describe specific Bayesian
treatments of all relevant model parameters.

Write Hie = [Hie,1, . . . , Hie,T ], where the sub-subscript e ∈ {0, 1} denotes the two possible
parental origins (i.e., paternal and maternal), for a haplotype over T contiguous SNPs from indi-
vidual i; and let Gi = [Gi,1, . . . , Gi,T ] denote the genotype these SNPs of individual i. For diploid
organisms such as human, we denote the two alleles of a SNP by 0 and 1; thus each Gi,t can take on
one of four values: 0 or 1, indicating a homozygous site; 2, indicating a heterozygous site; and ’?’,
indicating missing data. (A generalization to polymorphisms with k-ary alleles is straightforward,
but omitted here for simplicity.) Let Ak = [Ak,1, . . . , Ak,T ] denote an ancestor haplotype (indexed
by k) and θk denote the mutation rate of ancestor k; and let Ci denote an inheritance variable that
specifies the ancestor of haplotype Hi. We write Ph(H|A) for the inheritance model according
to which individual haplotypes are derived from a founder, and Pg(G|H0, H1) for the genotyping
model via which noisy observations of the genotypes are related to the true haplotypes. Under a
DP mixture, we have the following Pólya urn scheme for sampling the genotypes, Gi, i = 1, . . . , n,
of a sample with n individuals:

• Draw first haplotype:

a1, θ1 |DP(τ,Q0) ∼ Q0(·), sample the 1st founder (and its associated mutation rate);

h1 ∼ Ph(·|a1, θ1),
sample the 1st haplotype from an inheritance model defined on the 1st
founder;

• for subsequent haplotypes:

– sample the founder indicator for the ith haplotype:

ci|DP(τ,Q0) ∼

 p(ci = cj for some j < i|c1, . . ., ci−1) =
ncj

i−1+α

p(ci 6= cj for all j < i|c1, . . ., ci−1) = α
i−1+α

where nci is the occupancy number of class ci—the number of previous samples generated
from founder aci .

– sample the founder of haplotype i (indexed by ci):

φci |DP(τ,Q0)


= {acj , θcj}

if ci = cj for some j < i (i.e., ci refers to an inherited
founder)

∼ Q0(a, θ) if ci 6= cj for all j < i (i.e., ci refers to a new founder)
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– sample the haplotype according to its founder:

hi | ci ∼ Ph(·|aci , θci).

• sample all genotypes (according to a one-to-one mapping between haplotype index i and allele index
ie):

gi |hi0 , hi1 ∼ Pg(·|hi0 , hi1).

Under appropriate parameterizations of the base measure Q0, the inheritance model Ph, and the
genotyping model Pg, which will be described in detail shortly, the problem of phasing individual
haplotypes and estimating the size and configuration of the latent ancestral pool under a DPM
model can be solved via posterior inference given the genotypes from a (presumably ethnically
homogeneous) population descending from a single pool of ancestors, using, for example, a Gibbs
sampler as we will outline in the Appendix.

As mentioned earlier, treating haplotype distribution as a mixture model, where the set of
mixture components correspond to the pool of ancestral haplotypes, or founders, of the population,
can be justified by straightforward statistical genetics arguments. Crucially, however, the size of
this pool is unknown; indeed, knowing the size of the pool would correspond to knowing something
significant about the genome and its history. In most practical population genetic problems, usually
the detailed genealogical structure of a population (as provided by the coalescent trees) is of less
importance than the population-level features such as pattern of common ancestor alleles (i.e.,
founders) in a population bottleneck, the age of such alleles, etc. In this case, the DP mixture offers
a principled approach to generalize the finite mixture model for haplotypes to an infinite mixture
model that models uncertainty regarding the size of the ancestor haplotype pool, and at the same
time it provides a reasonable approximation to the coalescence-with-PDM model by utilizing the
partition structure resulted thereof, but allowing further mutations within each partite to introduce
further diversity among descents of the same founder.

2.2 A Hierarchical DP mixture model for multi-population haplotypes
Now we consider the case in which there exist multiple sample populations (e.g., ethnic groups),
each modeled by a distinct DP mixture. Note that now we have multiple ancestor pools, one for
each attendant population; instead of modeling these populations independently, we place all the
population-specific DPMs under a common prior, so that the ancestors (i.e., mixture components)
in any of the population-specific mixtures can be shared across all the mixtures, but the weight of
an ancestral haplotype in each mixture is unique. Genetically, this means that for every possible
ancestral haplotype, it can either be a founder in only one of the populations, or be a founder shared
in some or all attendant populations; in the latter case, the frequencies of this haplotype founder
being inherited are different in different populations.

To tie population-specific DP mixtures together in this way, we use a hierarchical DP mixture
model32, in which the base measure associated with each population-specific DP mixture is itself
drawn from a higher-level Dirichlet process DP(γ, F ). Since a draw from this higher-level DP
is a discrete measure with probability 1, atoms drawn by different population-specific DPs from
DP(γ, F )—the haplotype founders and its mutation rate φk ≡ {Ak, θk}, which are used as the
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mixture components in each of the population-specific DP mixtures—are not going to be all dis-
tinct (i.e., the same (Ak, θk) can be drawn by two different population-specific DPMs). This allows
sharing of components across different mixture models.

2.2.1 Hierarchical Dirichlet Process

Before presenting the HDP mixture for haplotypes, we digress with a brief description of the HDP
formalism. As with the DP, it is useful to describe the marginals induced with an HDP using the
more concrete representation of Pólya urn models. Imagine we set up a single “stock” urn at the
top level, which contains balls of colors that are represented by at least one ball in one or multiple
urns at the bottom level. At the bottom level, we have a set of distinct urns which are used to
define the DP mixture for each population. Now let’s suppose that upon drawing the mj-th ball for
urn j at the bottom, the stock urn contains n balls of K distinct colors indexed by an integer set
C = {1, 2, . . . , K}. Now we either draw a ball randomly from urn j, and place back two balls both
of that color, or with some probability we return to the top level. From the stock urn, we can either
draw a ball randomly and put back two balls of that color in the stock urn and one in j, or obtain a
ball of a new color K + 1 with probability γ

n−1+γ
and put back a ball of this color in both the stock

urn and urn j of the lower level. Essentially, we have a master DP (the top urn) that serves as a
source of atoms for J child DPs (bottom urns).

Associating each color k with a random variable φk whose values are drawn from the base
measure F , and recalling our discussion in the previous section, we know that draws from the
stock urn can be viewed as marginals from a random measure distributed as a Dirichlet Process
Q0 with parameter (γ, F ). From Eq. (3), for n random draws φ = {φ1, . . . , φn} from Q0, the
conditional prior for (φn|φ−n), where the subscript “−n” denotes the index set of all but the n-th
ball, is

φn|φ−n ∼
K∑

k=1

nk

n− 1 + γ
δφ∗k

(φn) +
γ

n− 1 + γ
F (φi), (4)

where φ∗
k, k = 1, . . . , K denote the K distinct values (i.e., colors) of φ (i.e., all the balls in the

stock urn), and nk denote the number of balls of color k in the top urn.
Conditioning on Q0 (i.e., using Q0 as an atomic base measure of each of the DPs corresponding

to the bottom-level urns), the mj-th draws from the jth bottom-level urn are also distributed as
marginals under a Dirichlet measure:

φmj
|φ−mj

∼
K∑

k=1

mj,k + τ nk

n−1+γ

mj − 1 + τ
δφ∗k

(φmj
) +

τ

mj − 1 + τ

γ

n− 1 + γ
F (φmj

)

=
K∑

k=1

πj,kδφ∗k
(φmj

) + πj,K+1F (φmj
), (5)

where πj,k :=
mj,k+τ

nk
n−1+γ

mj−1+τ
, πj,K+1 = τ

mj−1+τ
γ

n−1+γ
, and mj,k denotes the number of balls of color

k in the j-th bottom urn. In our case, πj = (πj,1, πj,2, . . .) gives the a priori frequencies (i.e.,
mixture weighs) of haplotype founders in population j.
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2.2.2 HDPM for multi-population haplotype inference

Using the HDP construction described above, we now define an HDP mixture model for the geno-
types in J populations. Elaborating on the notational scheme used earlier, let G(j)

i = [G
(j)
i,1 , . . . , G

(j)
i,T ]

denote the genotype of T contiguous SNPs of individual i from ethnic group j; and let H
(j)
ie

=

[H
(j)
ie,1, . . . , H

(j)
ie,T ] denote a haplotype of individual i from ethnic group j. The basic generative

structure of multi-population genotypes under an HDPM is as follows, which is also illustrated
graphically in Figure 1.

Q0(φ1, φ2, . . .)|γ, F ∼ DP(γ, F ), sample a DP of founders for all populations;

Qj(φ
(j)
1 , φ

(j)
2 , . . .)|τ,Q0 ∼ DP(τ,Q0), sample the DP of founders for each population;

φ
(j)
ie
|Qj ∼ Qj ,

sample the founder of haplotype ie in population
j;

h
(j)
ie
|φ(j)

ie
∼ Ph(·|φ(j)

ie
), sample haplotype ie in population j;

g
(j)
i |h(j)

i0
, h

(j)
i1
∼ Pg(·|h(j)

i0
, h

(j)
i1

), sample genotype i in population j,

where in practice the first three sampling steps follow the nested Pólya urn scheme described above.
Note that in the HDP the base measure of each lower-level DP is a draw from the root DP(γ, F ).
From this description, it is apparent that the totality of all atomic samples, i.e., all instantiated
haplotype founders and their associated mutation rates, from the base measure F form the common
support (i.e., candidate founder patterns) of both the root DP and all the population-specific DPs.
The child DPs place different mass distributions, i.e., a priori frequencies of haplotype founders,
on this common support, in a population-specific fashion.

Recall that the base measure F in the above generative process is defined as a distribution from
which haplotype founders φk := {Ak, θk} are drawn. Thus it is a joint measure on both A and
θ. We let F (A, θ) = p(A)p(θ), where p(A) is uniform over all possible haplotypes and p(θ) is a
beta distribution introducing a prior belief of low PDM mutation rate. For generality, we assume
each Ak,t (and also each Hi,t) takes its value from an allele set P . For other building blocks of the
HDPM model, we propose the following specifications.

Haplotype inheritance model: Omitting all but the locus index t, we can define our inheritance
model to be a single-locus mutation model as follows27:

Ph(ht|at, θ) = θI(ht 6=at)

(
1− θ

|P| − 1

)I(ht=at)

(6)

where I(·) is the indicator function. This model corresponds to a star genealogy resulting from
infrequent mutations over a shared ancestor, and is widely used as an approximation to a full
coalescent genealogy starting from the shared ancestor (e.g., Liu et al.33).

Given this inheritance model, it can be shown that the marginal conditional distribution of a
haplotype sample h = {hie : e ∈ {0, 1}, i ∈ {1, 2, ..., I}} takes the following form resulted from
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an integration of θ in the joint conditional:

p(h|a, c) =
K∏

k=1

R(αh, βh)
Γ(αh + lk)Γ(βh + l′k)

Γ(αh + βh + lk + l′k)

(
1

|P| − 1

)l′k

, (7)

where R(αh, βh) = Γ(αh+βh)
Γ(αh)Γ(βh)

, lk =
∑

i,e,t I(hie,t = ak,t)I(cie = k) is the number of alleles which
are identical to the ancestral alleles, and l′k =

∑
i,e,t I(hie 6= ak,t)I(cie = k) is the total number of

mutated alleles.

Genotype observation model: Next, we assume that the observed genotype at a locus is deter-
mined by the paternal and maternal alleles of this site via the following genotyping model27:

Pg(g |hi0 ,t , hi1 ,t , τ) = ξI(h=g)[µ1 (1 − ξ)]I(h 6=
1 g)[µ2 (1 − ξ)]I(h 6=

2 g) (8)

where h , hi0 ,t ⊕ hi0 ,t denotes the unordered pair of two actual SNP allele instances at locus
t; “ 6=1 ” denotes set difference by exactly one element; “ 6=2 ” denotes set difference of both
elements, and µ1 and µ2 are appropriately defined normalizing constants. Again we place a beta
prior Beta(αg, βg) on ξ for smoothing. Under the above model specifications, it is standard to
derive the posterior distribution of each haplotype Hie given all other haplotypes and all genotypes,
and the posterior of any missing genotypes, by integrating out parameters θ or ξ and resorting to
the Bayes theorem, which enable collapsed Gibbs sampling step where necessary. For simplicity,
we omit details.

Hyperprior for coalescent rate: Lastly, to capture uncertainty over the scaling parameters γ
(or α in the single-layer DPM model), which is twice the mutation rate in the coalescent over the
haplotype founders, we use a vague inverse Gamma prior:

p(γ−1) ∼ G(1, 1) ⇒ p(γ) ∝ γ−2 exp(−1/γ)). (9)

Under this prior, the posterior distribution of γ depends only on the number of instances n, and the
number of components K, but not on how the samples are distributed among the components:

p(γ|k, n) ∝ γk−2 exp(1/γ)Γ(γ)

Γ(n + γ)
. (10)

The distribution p(log(γ)|k, n) is log-concave, so we may efficiently generate independent samples
from this distribution using adaptive rejection sampling34.

It is noteworthy that in an HDPM we need to define vague inverse Gamma priors also for the
scaling parameters τ of population-specific DPs at the bottom level. We use a single concentration
parameter τ for these DPs; it is also possible to allow separate concentration parameters for each
of the lower-level DPs, possibly tied distributionally via a common hyperparameter.

11



Putting everything together, we have constructed a HDPM model for multi-population haplo-
types. The two-level nested Pólya urn schemes described above motivates an efficient and easy-
to-implement MCMC algorithm to sample from the posterior associated with HDPM, which is
similar to the MCMC algorithms developed for DPM. We will give details of this algorithms in an
Appendix that is available in the electronic version of this article.

3 Partition-ligation and the Haploi program
As for most of the haplotype inference models proposed in the literature, the state space of the pro-
posed HDPM model scales exponentially with the length of the genotype sequence, and therefore
it can not be directly applied to genotype data containing hundreds or thousands of SNPs. To deal
with haplotypes with a large number of linked SNPs, Niu et al.12 proposed a divide-and-conquer
heuristic known as Partition-Ligation (PL), which was adopted by a number of haplotype inference
algorithms including PL-EM35, PHASE9,36, and CHB14. We equipped our haplotype inference al-
gorithm based on the HDPM model with a variant of the PL heuristic, and present a new tool,
Haploi, for haplotype inference of either single or multiple population genotype data containing
thousands of SNPs.

Unlike the original PL-scheme in Niu et al.12, which works on disjoint blocks and then recur-
sively ligate the phased blocks into larger (non-overlapping) haplotypes via Gibbs sampling in the
product space of all the “atomistic haplotypes” of every attendant pair of blocks to be ligated, un-
der a fixed-dimensional Dirichlet prior of the frequencies of the ligated haplotype ; our PL-scheme
generate partially overlapping intermediate blocks from smaller blocks phased at the lower level,
and the pairs of overlapping blocks are recursively merged into larger ones by leveraging the re-
dundancy of information from overlapping regions, as well as an overall parsimonious criteria.
Empirically we found that these strategy can lead to a significant reduction of the size of the haplo-
type search space for long genotypes such as those with thousands of SNPs, and therefore facilitate
a more efficient inference algorithm.

Figure 2 outlines the PL-procedure adopted by our program Haploi. We begin by partition-
ing given genotype sequences into L short blocks of length T (e.g., T ≤ 10 as suggested in Niu
et al.12). Then we determine the “atomistic haplotypes” of each block using HDPM. In the first lig-
ation step, we ligate every neighboring pairs of nonoverlapping blocks, B1&B2, B2&B3, . . . , BL−1&BL,
into L − 1 overlapping blocks {B′

j : j = 1 : L − 1}, each of length 2T , using the Gibbs sam-
pling method used in Niu et al.12. To compensate the obviously ill-ligated blocks, we do additional
HDPM inference for those blocks whose entropy of haplotype distribution is above some threshold.
This is computationally affordable since the length of the ligated block at this stage is not yet too
big and we can start with better initialization than random assignment. For subsequent ligations of
partially overlapping blocks, when the overlapping regions of a pair of atomistic haplotypes in the
attendant (adjacent) SNP genotype blocks are consistent, ligation to a longer haplotype is trivially
a merging of the overlapping haplotypes. Only when the overlapping regions are inconsistent, we
grow the haplotype space of the ligated blocks by including the ”product” of the two inconsistent
“atomistic haplotypes”, i.e., all possible ligations consistent with either of the atomistic haplotypes
and the overall genotype. Specifically, suppose there are discrepancies in an estimated individual
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haplotype on the overlapping region between B′
i and B′

i+1. We do not discard any estimated hap-
lotypes from B′

i and B′
i+1, but instead add all possible haplotypes consistent with the genotype

formed by combining the segment in B′
i on positions 1, . . . , (T + τ) and the segment in B′

i+1 on
positions (τ + 1),. . . ,(2T ) where T + τ represents the location of discrepancy. When the overlap-
ping regions are homozygous, then there would not be any discrepancy, but we cannot resolve the
phase of the legated blocks. In this case we again include into our haplotype space for the ligated
blocks all possible combinations of haplotype pairs from B′

i and B′
i+1. This heuristic would typ-

ically result in a haplotype space for an ligated-block of length 3T that is much smaller than the
trivial product-space of nonoverlapping lower-level blocks. Then we apply a Gibbs sampler as in
Niu et al.12 to determine all individual haplotypes of the ligated-block under a fixed-dimensional
Dirichlet prior of the haplotype frequencies in the trimmed haplotype space. Since each time we
only employ overlapping regions of size T , the number of steps needed to complete the ligation
of a long sequence is roughly the same as needed in the original hierarchical PL-scheme in Niu
et al.12.

4 Results
In this section, we present a comparison of Haploi, with PHASE 2.1.19,36, fastPHASE37, HAPLO-
TYPER 1.012, and CHB 1.014.

We run each program using its default parameter settings. Three different error measures were
used for evaluation: errs, the ratio of incorrectly phased SNP sites over all non-trivial heterozy-
gous SNPs (excluding individuals with a single heterozygous SNP), and erri, the ratio of incor-
rectly phased individuals over all non-trivial heterogeneous individuals (i.e., those with at least two
heterogeneous SNPs), and dw, the switch distance, which is the number of phase flips required to
correct the predicted haplotypes over all non-trivial heterogeneous SNPs. Both short (∼ 10 SNPs)
and long (102 ∼ 103) sequences were tested when the program permits‡. For short SNP sequences,
we primarily use errs and erri; whereas for long sequences we compare dw according to common
practice, since it is regarded as a more sensible indicator of performance for longer SNP sequences.
On short SNPs, we test on a large number of samples and report summary statistics of errors over
all samples; whereas for long SNPs, we present error over each of samples (of different lengths)
we tested due to heavy computational cost.

We have also estimated other population genetic metrics of interest, such as the haplotype
frequencies, the mutation rates θ, and the number of reconstructed haplotype founders K, under
the HDP and DP models. We will present some of these results to illustrate consistency of our
model (on simulation), and the characteristics of some real data set being studied.

‡Specifically, we applied fastPHASE only on long SNP sequences since it is tailored for fast processing of long
sequences at the cost of reduced accuracy; and we applied both HAPLOTYPER 1.0 and CHB 1.0 only on short SNP
sequences since they can not reach convergence within acceptable test time (> 40 hours) on samples with more than
200 SNPs.
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4.1 Simulated Multi-Population SNP Data
For simulation-based tests, we used a pool of haplotypes taking from the coalescent-based syn-
thetic dataset in Stephens et al.9, each containing 10 SNPs, as the hypothetical founders; and we
drew each individual’s haplotypes and genotype by randomly choosing two ancestors from these
founders and applying the mutation and noisy genotyping models described in the methodology
section §. For each of our synthetic multi-population data set, we simulated 100 individuals con-
sisting of five populations, each with 20 individuals. Each population is derived from 5 founders,
two of which are shared among all populations, and the other three are population-specific. Thus
overall the total number of founders across the five populations is 17. We test our algorithm on
two data sets with different degree of sequence diversity. In the conserved data set, we assume
the mutation rate θ to be 0.01 for all populations and all loci; in the diverse data set, θ is set to be
0.05. All populations and loci are assumed to have the same genotyping error rate. Fifty random
samples were drawn from both the conserved and the diverse data sets.

4.1.1 Haplotype Accuracy

We compare Haploi, implemented either based on a DPM model or an HDPM model (dubbed
as Haploi-HDP and Haploi-DP, respectively, when distinction is needed; otherwise, we simply
use Haploi for Haploi-HDP), with extant phasing methods applied in two modes on the synthetic
data sets. As mentioned in the introduction, given multi-population genotype data, to use an ex-
tant method, one can either adopt mode-I—pool all populations together and jointly solve a single
haplotype inference problem that ignore the population label of each individual; or follow mode-
II—apply the algorithm to each population and solve multiple haplotype inference problems sepa-
rately. Haploi-HDP takes a different approach, by making explicit use of the population labels (if
available) and jointly solve multiple coupled haplotype inference problems. (Note that when only
a single population is concerned, or no population label is available, Haploi-HDP is still valid,
and is equivalent to a baseline Haploi-DP with one more layer of DP hyper-prior). We apply our
method to the simulated multi-population data, and compare its overall performance on the whole
data with the outcomes of other algorithms run in mode-I, and compare the score of our method
on each population with the outcome of extant methods run in mode-II.

Figure 3 summarizes the overall performance of Haploi on 50 conserved simulated samples
and 50 diverse simulated samples, along with those of the reference algorithms run in mode-I. On
the conserved samples, which are presumably easier to phase, Haploi-HDP outperforms all the
other algorithms appreciably. On the diverse samples, which are more challenging to phase (due to
more severe inconsistencies among individual haplotypes in the samples caused by high mutation
rate), Haploi-HDP outperforms all other algorithms with a significant margin.

§Here our simulation scheme assumes a star-genealogy with uniform mutation rate for each sub-population. This
simulation scheme is simple to implement under our multi-population scenario for testing the bias/variance of a number
of estimators of interest, and it reasonably approximates the genetic demography of samples under an IMA model on
a coalescent tree. We have tested an early version of Haploi, which employed an DPM (rather than HDPM) without
partition-ligation, on the single-population, coalescent-based simulated data used in Stephens et al.9 in comparison
with PHASE (see Xing et al.27), and the results were similar.
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Haploi-HDP also dominates other methods when the latter are run in mode-II on the simulated
data. Table 1 shows a comparison of the accuracy of Haploi-HDP on each sub-population (directly
extracted from results obtained in a single run of Haploi-HDP on all populations) in a simulated
data set with results from separate runs of the other algorithms on each sub-population of geno-
types. Note that, here K is expected to be 5 for each group, and the estimation by Haploi-HDP is
quite close to this value. On the conserved data set, CHB shows the best result while all algorithms
performed comparably. On the more difficult diverse dataset, the HDP approach outperformed
other algorithms and inferred the founders of each group more robustly than the group-specific
runs using the baseline Haploi-DP (which employ independent DPs for each sub-population).

4.1.2 MCMC and parameter estimation

Typically, the Pólya urn Gibbs sampler for Haploi converges within 1000 iteration (figure not
shown) on the synthetic data. This contracts sampling algorithms used in some of the other hap-
lotype inference algorithms, which typically needs tens of thousands of samples to reach conver-
gence. The fast convergence is possibly due to Haploi’s ability to quickly infer the correct number
of founding haplotypes underlying the genotypes samples, which leads to a model significantly
more compact (i.e., parsimonious) than that derived from other algorithms. In Figure 4 (a) and
(b), we show the histogram of the estimated K— the number of recovered ancestors, across the 50
datasets via both of our algorithms. Recall that we expect K to be 17, and the estimated K under
both the DP and HDP models turns out to be very close to this number on the conserved datasets
(i.e., those with a small mutation rate); from the diverse data sets, Haploi-HDP can still offer a
good estimate of the number of ancestors, whereas Haploi-DP recovered more ancestors (around
25 on average) than the true one. This is not surprising since a haplotype which appears in more
than one population can have different frequencies in different populations, the baseline Haploi-DP
can not capture such sub-population structure, and the higher divergence due to both mutation and
population diversification can make it generate more templates to describe the given dataset. Note
also that the parametric methods (PHASE, HAPLOTYPER and CHB) cannot provide an estimate
of K. Here we report K’, the number of distinct haplotypes present in the population for these
algorithms: for the conserved data sets, the average number of distinct haplotypes across different
data sets is 30.24, 29.86, 30.8 for PHASE, HAPLOTYPER and CHB, respectively; and for the
diverse data sets, the averages were 63.28, 54.68, 56.38, respectively. Since for these methods
the assignment of plausible haplotypes for a new sample must be made among all these candi-
dates (rather than based on a smaller number of prototypes represented by the founders), the large
magnitude of K ′ may partially explain the much higher sampling cost incurred by these methods.

Our Gibbs sampler also provides reasonable estimates of the mutation rates underlying the
sample. Figure 4 (c) and (d) show the histograms of the estimated θ across the 50 datasets by
Haploi-HDP and Haploi-DP for both the conserved and diverse cases. We observe that for the
conserved data sets, Haploi-HDP yields highly consistent and low variance estimations of θ, and
the quality of the estimates due to Haploi-DP is slightly worse. For the diverse data sets both
algorithms tend to slightly underestimate the mutation rates, and variance is also higher. It is
noteworthy that in principal, high haplotype diversity of a population can be explained by two
competing sources: high mutation rate from ancestors to descendants, and large number of an-
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cestors. So in fact K and θ can not be independently determined, possibly following a similar
argument of the un-identifiability of the evolution time and population size under IAM model.
But empirically, Haploi-HDP appears to struck a reasonable balance between K and θ, and offer
plausible estimates of both.

Finally, we compare the accuracies of population haplotype frequencies estimated by each al-
gorithm (Fig. 5). The discrepancy between the true frequencies and estimated ones is measure
by two distance measures commonly used in the literature: the L1-norm D1(p, q) =

∑
x |p(x) −

q(x)|/2, as used in Stephens et al.9, Excoffier and Slatkin11; and the KL-Divergence DKL(p||q) =∑
x p(x) log p(x)

q(x)
. The left column of Figure 5a reports the D1 and DKL computed on ALL haplo-

types frequencies estimated by different algorithms from the conserved data sets. As shown there,
Haploi-HDP achieves the lowest discrepancy by a significant margin over all other algorithms
been compared. The runner-up, PHASE, beats the baseline Haploi-DP (in the third place) by a
small margin. When measured only on the frequent haplotypes (i.e., with frequencies ≥ 0.05,
shown in the right column of Figure 5a), the discrepancies decrease significantly, but the relative
ordering of all the compared algorithms remain the same, except that now PHASE and Haploi-DP
are almost tied at the second lowest. For the more difficult diverse data sets, the same tendency can
be observed (Fig 5b).

4.2 The HapMap Data
We test our algorithms on both short SNP segments (i.e., ∼ 10 SNPs), and long SNP sequences
(i.e., ∼ 102 − 103 SNPs) available from the International HapMap Project. This data contains
SNP genotypes from four populations: CEPH (Utah residents with ancestry from northern and
western Europe, CEU), Yoruba in Ibadan, Nigeria (YRI), Han Chinese in Beijing (CHB) and
Japanese in Tokyo (JPT), with 60, 60, 45, and 44 unrelated individuals, respectively. Although
haplotype inference can be (and in some cases, is) performed on all populations, we evaluate the
phasing outcome from all algorithms on only the CEPHs and Yorubas since their true haplotypes
can be (almost) unambiguously deduced from trios. The loci that can not be unambiguously phased
from the trios were excluded from our evaluation. We selected 10 ENCODE regions ranging
each spanning roughly 500 Kb from the HapMap DB. Since each population may have SNPs in
different chromosomal positions, we extracted the common SNPs across all the populations for
our experiments, the resulting segments each contain from 254 to 972 SNPs (Table 2).

4.2.1 Short SNP sequences

Phasing short SNPs is the basic operation of large-scale haplotype inference problems which rely
either on a partition-ligation heuristics, or on a model-based methods such as recombination pro-
cess, to integrate short phased haplotype segments into long haplotypes. Figure 6 shows a compar-
ison of the phasing accuracy on all 7-SNP segments (following a recommendation in Niu et al.12

on the optimal size-range of basic units for subsequent ligation) from the ten ENCODE regions by
5 algorithms. Overall, in all ten regions, with significant margins, Haploi-HDP exhibits the low-
est median error rates, and the smallest performance variance (as can be assessed from the range
spanned by the upper and lower quartiles).
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Recall that Haploi-HDP can exploit the population structure when available to form more re-
liable estimates of the haplotype founders, and thereby more accurate inference of the individual
haplotypes. This is confirmed in our empirical experiment summarized in Figure 6a (left) and
b (right). In Fig 6a, all algorithms were applied to genotype data from two populations, CEPH
and Yoruba, whose true phase are known from trios. In Fig 6b, all algorithms were applied to
genotype data from all 4 populations, although the outcomes were only validated only on CEPH
and Yoruba. Thus in the second scenario we solve a bigger haplotype inference problem, on data
that contain richer population information. Comparing the left and right panels of Figure 6, on
the four-population phasing task, Haploi-HDP achieved lower median error rates in 7 out of the
10 ENCODE regions than on the two-population phasing task. On the contrary, the three para-
metric methods PHASE, HAPLOTYPER, and CHB, all appear not able to benefit from increased
population diversity, and performed significantly worse in the four-population scenario than in the
two-population scenario. This means that in reality, if the genotype data are collected from a highly
heterogeneous population, these methods may offer compromised results.

Interestingly, although the baseline Haploi-DP is not doing well in the two population scenario,
its performance is not compromised by the increased population diversity, and even improved in 4
of the 10 regions. As a result, it emerged as the second best method in the four-population phase
task, dominating over all the three parametric methods. While Haploi-DP does not explicitly use
sub-population structure, it is possibly that its underlying DP model are less confounded by the
increased population diversity due to its parsimonious nature (i.e., maintaining a compact set of
founders that explains the observations), and can exploit the increased abundance of data to obtain
better estimates of the population metrics such founder types and haplotype frequencies.

4.2.2 Long SNP sequences

Figure 7 shows a comparison of haplotype reconstruction quality on the entire ENCODE regions
described in Table 2, using PHASE, fastPHASE, and Haploi equipped with the PL heuristic¶; and
as in the last section, we performed haplotype inference using each method under both a two-
population scenario, and a four-population scenario. The lengths of these regions range from 254
to 972 SNPs, and as a result for three of the 20 experiments (10 regions and two scenarios) we
could not get the output from PHASE after a 31-day run, so we omit the corresponding results in
our summary figure.

Overall, with its sophisticated recombination model suitable in particular for long sequences,
PHASE dominates Haploi with a small margin under the two-population scenario when it con-
verges; and Haploi dominates fastPhase in most cases under the two-population scenario, also
with a small margin (Fig. 7a). But in terms of computational cost, fastPhase was the fastest, it
mostly took less than 1 hour for each task; Haploi took from 1-10 hours, depending on the length
of the sequence; whereas PHASE took one to two orders of magnitude longer, and was indeed
impractical for phasing very long sequence (Fig. 8a). Under the four-population scenario, Hap-
loi outperformed or virtually tied with PHASE in 6 of the 10 regions, and lost to PHASE in the

¶We could not get output of Haplotyper and CHB for these long sequences. Instead we included fastPhase result,
which is said to be much faster than PHASE with a slight performance degradation37.
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remaining cases by small margins; but it outperformed fastPhase in almost all cases significantly
(Fig. 7b). Time-wise, all methods took longer, but the overall trend is the same as in the two-
population scenario (Fig. 8b).

In summary, our results shows that Haploi is competent and robust for phasing very long SNP
sequences from diverse genetic origins at reasonable time cost, even though it has not yet employed
any sophisticated way for processing long sequences, such as the recombination process, which
was used by both PHASE and fastPhase. Since Haploi appeared to dominate these two methods
over short SNPs, we believe that an upgrade that incorporates explicit recombination models in
conjunction with the HDP model for long SNPs are likely to lead to more accurate haplotype
reconstructions, as we will discuss in the Discussion section.

4.2.3 Mutation rates and population diversity underlying the HapMap data

As for the simulated data, we estimated the mutation rates at all different sites and different EN-
CODE regions with respect to their corresponding haplotype founders inferred under the proposed
HDPM model. Figure 9 shows the histograms of these estimations for each of the four popula-
tions. We estimated the mean mutation rate for each population by fitting the histograms with
an exponential distribution. Interestingly, the estimated mutation rate of the Yoruba population
with African ancestry, which is around 0.010, is significantly higher than those of the other three
populations, which are similar to each other (i.e., around 0.005). The Yoruba population also ex-
hibits the highest ancestral diversity among all four population, reflected by the average number of
haplotype founders uncovered for all 7-SNP segments of the ENCODE regions, whereas the Han
Chinese and the Japanese populations are equally much less diverse (Fig 9e-h). Overall, although
each population on average has only 4-6 founder for a DNA segment spanned by 7 SNPs, the total
number of founders for regions of the same size across all population is over 10 (Fig 9i), indicat-
ing that on average 2 founder of each population are unique, while 3 are shared across all four
populations. Of course, we would like to point out that such estimates should not be taken as the
actual bottle-neck sizes of the attendant populations; they are merely the statistically inferred most
parsimonious hypothesis based on all short chromosome regions (i.e., 7-SNP segments), which
can statistically explain the observed genotype data.

5 Discussion

5.1 Demographic and statistical properties of DP and HDP mixtures
We have proposed a new Bayesian approach to haplotype inference for single and multiple popula-
tions using a hierarchical Dirichlet process mixture. By incorporating an HDP prior which couples
multiple heterogeneous populations and facilitates sharing of mixture components (i.e., haplotype
founders) across multiple Dirichlet process mixtures, the proposed method can infer the true haplo-
types in a multi-ethnic group with an accuracy superior to the state-of-the-art haplotype inference
algorithms.
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As in the PAC model10, the generative process of a haplotype sample from a haplotype distri-
bution P (H) under the Dirichlet process mixture can be viewed as a sequential process that draw
one haplotype at a time conditioning on all the previously drawn haplotypes; and our model also
achieves the following four desirable properties‖ captured in PAC, albeit in a very different way:

(1) the next haplotype is more likely to match a previously drawn haplotype;

(2) the probability of seeing a novel haplotype in the new draw increases as the rate of mutation
increases;

(3) the probability of seeing a novel haplotype in the new draw decreases as the number of
distinct haplotypes increases in the previous draws;

(4) if the next haplotype does not match exactly with an existing haplotype, it will tend to differ
by a small number of mutations from an existing one, rather than be completely different.

The first three properties are obvious from the Pólya urn construction of DP. To see the fourth
property, note that when a next haplotype is to be sampled, we pick an ancestor (with probability
proportional to the number of progenies it has) of some previous drawn haplotypes, and apply a
mutation process to the ANCESTOR (rather than to one of the previously drawn haplotypes as in
PAC). This operation implicitly results in a PDM effect amongst haplotypes, by relating them to
their corresponding ancestor (aka, haplotype founder) via a tractable star genealogy equipt with
a common mutation process Ph(|founder). A new haplotype generated from this process will
bear mutations on top of its corresponding founders rather than been completely random, thereby
achieve the PDM effect. Above these founders, we model their genealogy and type history by a
coalescent-with-IMA model, whose resulting marginal (of the ancestors) is equivalent to that of
the Dirichlet process. Here a new founder can be sampled independent of the type-history in the
coalescent (rather according to a PDM) from the base measure, with probability proportional to
the IAM mutation rate. Putting everything together, the DP mixture model essentially implements
a combination of IMA and PDM: it models the genealogy and type history of hypothetical an-
cestors presumably corresponding to a bottleneck with a coalescent-with-IAM model (i.e., a DP);
below the bottleneck, it uses multiple (indeed, can be countably infinite many) star genealogies
rooted at the ancestors present in the bottleneck and equipt with ancestor-dependent Poisson mu-
tation process, to approximate the coalescent-with-PAM model for haplotype samples. The time
of the bottleneck depends on the value of the scaling parameter α of the DP (which is twice the
value of the IAM mutation rate). One can introduce a prior to this parameter (as described in our
methodology section) so that it can be estimated a posteriori from data.

It is well-known that under Kingman’s n-coalescent, a dominant portion of the depth of the co-
alescent tree is spent waiting for the earliest few lineages to coalesce to the MRCA and the majority
of lineages of even a very large population can actually coalesce very rapidly into a few ancestors,
which means that the net mutation rates from each of these ancestors to their descendants in a

‖Indeed Li and Stephens10 listed five desirable properties in any approximation to an intractable coalescent model
of haplotypes, but the last one is for recombinant samples, a scenario not explicitly modeled here, but we will discuss
both heuristic and principled treatment of this issue later in the paper.
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modern haplotype sample do not vary dramatically among the descendants. Thus qualitatively a
star genealogy provides a reasonable approximation to the actual (heavily time-compressed) ge-
nealogy of a modern haplotype sample up to these ancestors. As a reward of such approximation,
a well-known property of DP mixture is that, it defines an exchangeable distribution of the sam-
ples. Furthermore the Pólya urn construction of DP enables simple and efficient Monte Carlo for
posterior inference of haplotypes and other parameters of interest, and the DPM formalism offers
a convenient path for extensions that capture more complex demographic and genetic scenarios of
the sample, such as the multi-population haplotype distribution as we explore in this paper.

5.2 Extensions
Unlike the models underlying PHASE and fastPhase, the HDP model underlying the Haploi pro-
gram does not explicitly model the recombination process that shape the LD patterns of long SNP
sequences. Since Haploi appeared to dominate PHASE and fastPhase over short SNPs (as shown
in Figure 6), we believe that an upgrade that incorporates explicit recombination models in con-
junction with the HDP model for long SNPs is likely to lead to more accurate haplotype recon-
structions. The hidden Markov Dirichlet process recently developed by us to model recombination
in open ancestral space offers a promising path for such an upgrade38.

Under the proposed statistical framework for modeling haplotype and genotype distribution, it
is also straightforward to handle various missing value problems in a principled way. For exam-
ple, given incomplete genotype data, one can define the unobserved genotypes as hidden variables,
and process with the same Gibbs sampling algorithm given in the Appendix for haplotype infer-
ence with the addition of one more sampling step that imputes values for these hidden variables
based on a proposal defined by the conditional distribution of genotypes given relevant haplotypes.
In another possible extension, although in the present study we have assumed that the popula-
tion structure—the ethnic labels of individuals—are known, it is straightforward to generalize our
method to situations in which the ethnic group labels are unknown and to be inferred. This opens
the door to applications of our method to large-scale genetic studies involving joint inference over
markers and demography.
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Table 1: Comparison of Haploi and other algorithms run in mode-II on the synthetic multi-
population data.

Haploi-HDP Haploi-DP PHASE HAPLOTYPER CHB
θ pop errs erri K errs erri K errs erri errs erri errs erri

0.01

(1) 0.0159 0.0556 5 0.0159 0.0556 5 0.0000 0.0000 0.0159 0.0556 0.0238 0.0714
(2) 0.0000 0.0000 5 0.0175 0.0590 5 0.0000 0.0000 0.0526 0.0588 0.0152 0.0625
(3) 0.0141 0.0625 4 0.0000 0.0000 5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
(4) 0.0366 0.1765 4 0.0244 0.0590 5 0.0366 0.1765 0.0244 0.1176 0.0448 0.2143
(5) 0.0000 0.0000 5 0.0244 0.0710 7 0.0488 0.0714 0.0732 0.1429 0.0000 0.0000
avg 0.0133 0.0589 0.0164 0.0489 0.0171 0.0496 0.0332 0.0749 0.0167 0.0696

0.05

(1) 0.0758 0.2780 5 0.0758 0.3330 6 0.1970 0.6111 0.0758 0.2222 0.1429 0.4118
(2) 0.1640 0.5000 5 0.1640 0.5560 8 0.1148 0.3333 0.1967 0.4444 0.1250 0.3529
(3) 0.0886 0.4120 5 0.1140 0.5290 5 0.1013 0.4706 0.1139 0.5294 0.0877 0.3333
(4) 0.0455 0.2110 5 0.0568 0.3680 10 0.1705 0.6316 0.1136 0.4737 0.1167 0.4000
(5) 0.1640 0.4120 7 0.2180 0.4120 6 0.1818 0.4706 0.1273 0.4118 0.0921 0.3125
avg 0.1076 0.3626 0.1257 0.4396 0.1531 0.5034 0.1255 0.4163 0.1129 0.3621

Table 2: A summary of the 10 HapMap ENCODE regions used in this study.

Region name #SNPs Chrs. start–end (Mb) length (Kb)
1 ENm010 254 7 26.7 – 27.2 497
2 ENr232 379 9 127.1 – 127.6 496
3 ENr123 391 12 38.6 – 39.1 499
4 ENr321 495 8 118.8 – 119.3 498
5 ENm013 548 7 89.4 – 89.9 494
6 ENr213 565 18 23.7 – 24.2 565
7 ENm014 694 7 126.1 – 126.6 497
8 ENr112 728 2 51.6 – 52.1 498
9 ENr131 857 2 234.8 – 235.3 499

10 ENr113 972 4 118.7 – 119.2 498
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Figure 1: The haplotype-genotype generative process under HDPM, illustrated by an example

concerning three populations. At the first level, all haplotype founders from different populations

are drawn from a common pool via a Pólya urn scheme, which leads to the following effects: 1)

the same founder can be drawn by either multiple populations (e.g., the red founder in population

1 and 2, and the blue one in population 1 and 3), or only a single population (e.g., the grey founder

in population 1); 2) shared founders can have different frequencies of being inherited. Then at the

second level, individual haplotypes were drawn from a population-specific founder pool also via

a Pólya urn scheme, but this time through an inheritance models Ph(·|ak) that allows mutations

with respect to the founders, as indicated by the underscores at the mutated loci in the individual

haplotypes. Finally, the genotype observations are related to the haplotype pairs of every individual

via a noisy channel Pg(·|·).

Figure 2: A hierarchical partition-ligation scheme used in Haploi.

Figure 3: Performance on simulated datasets. Two kinds of datasets with different mutation rates

θ were tested. Each dataset includes 100 individuals from 5 groups (20 from each). The sequence

length was fixed to 10. The performance of each algorithm is represented in terms of errs, erri

and dw. Each bar represents the average error rate across 50 different datasets where the standard

deviation is shown as a vertical line.
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Figure 4: Top row: Histograms of the number of recovered ancestors, K, across the 50 conserved

data sets (panel (a)), and across the 50 diverse data sets (panel (b)). Bottom row: Histograms of

the estimated mutation rates over the 50 conserved data sets ( panel (c)), and over the 50 diverse

data sets (panel (b)). The left graph in each panel shows the result from HDP, and right one shows

that from DP.

Figure 5: A comparison of the accuracies of haplotype frequencies estimated by five algorithms.

(a) Box-plots of D1’s (top) and DKL’s (bottom) estimated from the conserved data sets. Left

column shows measurements on all haplotypes, right column shows measurements on only the

frequent haplotypes. (b) Same measurements on the diverse datasets.

Figure 6: A comparison of haplotyping accuracies of all 7-SNP segments from 10 ENCODE

regions. (a) Box-plots of error rates when data only from the CEPH and Yoruba population are

used. (b) Error rates under the four-population scenario. The top row shows the summary statistics

of errs, and the bottom row shows that of erri.

Figure 7: Performance on the full sequences of the selected ten ENCODE regions. (a) Under

the two-population scenario. (b) Under the four-population scenario. For cases of which the com-

putation did not finish within a tolerable duration (i.e., 800 hours), we cap the bar with a “≈” to

indicate that the results are not available (NA).

Figure 8: Time complexity on the full sequences of the selected ENCODE regions. (a) Under the

two-population scenario. (b) Under the four-population scenario. We cap the bars corresponding

to not-completed (NC) cases with a “≈”.
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Figure 9: Histograms of the estimated mutation rates over all SNP loci (top row, (a)-(d)) and

the number of founders of all 7-SNP segments (bottom row, (e)-(h)) of the 10 ENCODE region

analyzed in §5.2.1 in each of the four attended populations. In panel (e) we show a histogram of

the number of founders over all population.
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