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Abstract
When monitoring spatial phenomena with wireless sensor networks, selecting the best sensor placements is a funda-
mental task. Not only should the sensors be informative, but they should also be able to communicate efficiently. In this
paper, we present a data-driven approach that addresses the three central aspects of this problem: measuring the predic-
tive quality of a set of sensor locations (regardless of whether sensors are ever placed at these locations), predicting the
communication cost involved with these placements, and designing an algorithm with provable quality guarantees that
optimizes the NP-hard tradeoff. Specifically, we use data from a pilot deployment to build non-parametric probabilis-
tic models calledGaussian Processes(GPs) both for the spatial phenomena of interest and for the spatial variability
of link qualities, which allows us to estimate predictive power and communication cost of unsensed locations. Sur-
prisingly, uncertainty in the representation of link qualities plays an important role in estimating communication costs.
Using these models, we present a novel, polynomial-time, data-driven algorithm,pSPIEL, which selects Sensor Place-
ments at Informative and cost-Effective Locations. Our approach exploits two important properties of this problem:
submodularity, formalizing the intuition that adding a node to a small deployment can help more than adding a node
to a large deployment; andlocality, under which nodes that are far from each other providealmostindependent in-
formation. Exploiting these properties, we prove strong approximation guarantees for ourpSPIELapproach. We also
provide extensive experimental validation of this practical approach on several real-world placement problems, and
built a complete system implementation on 46 Tmote Sky motes, demonstrating significant advantages over existing
methods.



Keywords: Gaussian Processes; Sensor Networks; Link Quality; Information Theory; Approximation Algorithms



1 Introduction

Networks of small, wireless sensors are becoming increasingly popular for monitoring spatial phenomena, such as
the temperature distribution in a building [1]. Since only a limited number of sensors can be placed, it is important to
deploy them at most informative locations. Moreover, due to the nature of wireless communication, poor link qualities,
such as those between sensors which are too far apart, or even nearby nodes that are obstructed by obstacles such as
walls or radiation from appliances, require a large number of retransmissions in order to collect the data effectively.
Such retransmissions can consume battery power drastically, and hence decrease the overall deployment lifetime of
the sensor network. This suggests that the communication cost is a fundamental constraint which must be taken into
account when placing wireless sensors.

Existing work on sensor placement under communication constraints [2, 3, 4] has considered the problem mainly
from a geometric perspective: Sensors have a fixedsensing region, such as a disc with a certain radius, and can only
communicate with other sensors which are at most a specified distance apart. These assumptions are problematic for
two reasons. Firstly, the notion of asensing regionimplies that sensors can perfectly observe everything within the
region, but nothing outside, which is unrealistic: e.g., the temperature can be highly correlated in some areas of a
building but very uncorrelated in others (c.f.,Fig. 2(a)). Moreover, sensor readings are usually noisy, and one wants to
make predictions utilizing the measurements of multiple sensors, making it unrealistic to assume that a single sensor is
entirely responsible for a given sensing region. Secondly, the assumption that two sensors at fixed locations can either
perfectly communicate (i.e., they are “connected”) or not communicate at all (and are “disconnected”) is unreasonable,
as it does not take into account variabilities in the link quality due to moving obstacles (e.g., doors), interference with
other radio transmissions, and packet loss due to reflections [5].

In order to avoid thesensing regionassumption, previous work [6] establishedprobabilistic modelsas an appropri-
ate framework for predicting sensing quality by modeling correlation between sensor locations. In [7] we presented
a method for selecting informative sensor placements, based on ourmutual informationcriterion. We showed that
this criterion led to intuitive placements with superior prediction accuracy compared to existing methods. Further-
more, we provided an efficient algorithm for computing near-optimal placements with strong theoretical performance
guarantees; however, this algorithm does not take communication costs into account.

In this paper, we address the general problem of selecting sensor placements that are simultaneously informative, and
achieve low communication cost. Note that this problem cannot be solved merely by first finding the most informative
locations, and then connecting them up with the least cost—indeed, it is easy to construct examples where such a
two-phase strategy performs very poorly. We also avoid theconnectednessassumption (sensors are “connected” iff
they can perfectly communicate): in this paper, we use theexpected number of retransmissionsas a cost metric on the
communication between two sensors. This cost metric directly translates to the deployment lifetime of the wireless
sensor network. We propose to use the probabilistic framework ofGaussian Processesnot only to model the monitored
phenomena, but also to predict communication costs.

Balancing informativeness of sensor placements with the need to communicate efficiently can be formalized as a novel
discrete optimization problem; it generalizes several well-studied problems, and thus appears to be a fundamental ques-
tion in its own. We present a novel algorithm for this placement problem in wireless sensor networks; the algorithm
selects sensor placements achieving a specified amount of certainty, with approximately minimal communication cost.
More specifically, our main contributions are:

• A unified method for learning a probabilistic model of the underlying phenomenon and for the expected com-
munication cost between any two locations from a small, short-term initial deployment. These models, based
onGaussian Processes, allow to avoid strong assumptions previously made in the literature.

• A novel and efficient algorithm for Sensor Placements at Informative and cost-Effective Locations (pSPIEL).
Exploiting the concept ofsubmodularity, this algorithm is guaranteed to provide near-optimal placements for
this hard problem.

• Extensive evaluations of our proposed methods on temperature and light prediction tasks, using data from real-
world sensor network deployments, as well as on a precipitation prediction task in the Pacific Northwest.

• A complete solution for collecting data, learning models, optimizing and analyzing sensor placements, realized
on Tmote Sky motes, which combines all our proposed methods.
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(a) Example placement
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(b) Real link quality – node 41
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(c) GP link quality – node 41
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Figure 1:(a) Indoor deployment of 54 nodes and an example placement of six sensors (squares) and three relay nodes (diamonds); (b) measured
trasmission link qualities for node 41; (c) GP fit of link quality for the same node and (d) shows variance of this GP estimate.
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(a) Real temp. covariances –
node 41
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(b) GP temp. covariances – node
41
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(c) GP prediction of temp. sur-
face
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Figure 2:(a) Measured temperature covariance between node 41 and other nodes in the deployment; (b) predicted covariance using non-stationary
GP; (c) predicted temperatures for sensor readings taken at noon on February 28th 2004, and (d) shows the variance of this prediction.

2 Problem statement

In this section, we briefly introduce the two fundamental quantities involved in optimizing sensor placements. Asensor
placementis a finite subset of locationsA from a ground setV. Any possible placement is assigned asensing quality
F (A) ≥ 0, and acommunication costc(A) ≥ 0, where the functionsF andc will be defined presently. We will use a
temperature prediction task as a running example: In this example, our goal is to deploy a network of wireless sensors
in a building in order to monitor the temperature distribution, e.g., to actuate the air conditioning or heating system.
Here, the sensing quality refers to our temperature prediction accuracy, and the communication cost depends on how
efficiently the sensors communicate with each other, directly relating to the deployment lifetime of the network. More
generally, we investigate the problem of solving optimization problems of the form

min
A⊆V

c(A) subject toF (A) ≥ Q (1)

for somequotaQ > 0, which denotes the required amount of certainty achieved by any sensor placement. This
optimization problem aims at finding the minimum cost placement that provides a specified amount of certaintyQ,
and is called thecovering problem. We also address the dual problem of solving

max
A⊆V

F (A) subject toc(A) ≤ B (2)

for somebudgetB > 0. This optimization problems aims at finding the most informative placement subject to a budget
on the communication cost, and is called themaximization problem. In this paper, we present efficient approximation
algorithms for both the covering and maximization problems.

2.1 What is sensing quality?

In order to quantify how informative a sensor placement is, we have to establish a notion of uncertainty. We associate
a random variableXs ∈ XV with each locations ∈ V of interest; for a subsetA ⊆ V, letXA denote the set of random
variables associated with the locationsA. In our temperature measurement example,V ⊂ R2 describes the subset of
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coordinates in the building where sensors can be placed. Our probabilistic model will describe a joint probability distri-
bution over all these random variables. In order to make predictions at a locations, we will consider conditional distri-
butionsP (Xs = xs | XA = xA), where we condition on all observationsxA made by all sensorsA in our placement.
We use the conditional entropy of these distributions,H(Xs | XA) = −

∫
xs,xA

P (xs,xA) log P (xs | xA)dxsdxA to
assess the uncertainty in predictingXs. Intuitively, this quantity expresses how “peaked” the conditional distribution
of Xs givenXA is around the most likely value, averaging over all possible observationsXA = xA the placed sensors
can make. To quantify how informative a sensor placementA is, we use the criterion ofmutual information:

F (A) = I(XA;XV\A) = H(XV\A)−H(XV\A | XA). (3)

This criterion expresses the expected reduction of entropy of all locationsV \ A where we did not place sensors, after
taking into account the measurements of our placed sensors. We first proposed this criterion in [7], and showed that it
leads to intuitive placements with superior prediction accuracy over existing approaches. Sec. 3 will explain how we
model and learn a joint distribution over all locationsV and how to efficiently compute the mutual information.

2.2 What is communication cost?

Since each transmission drains battery of the deployed sensors, we have to ensure that our sensor placements have
reliable communication links, and the number of unnecessary retransmissions is minimized. If the probability for
a successful transmission between two sensor locationss and t is θs,t, the expected number of retransmissions is
1/θs,t. Since we have to predict the success probability between any two locationss, t ∈ V, we will in general only
have a distributionP (θs,t) with densityp(θs,t) instead of a fixed value forθs,t. Surprisingly, this uncertainty has a
fundamental effect on the expected number of retransmissions. For a simple example, assume that with probability1

2

we predict that our transmission success rate is3
4 , and with probability1

2 , it is 1
4 . Then, the mean transmission rate

would be 1
2 , leading us to assume that the expected number of retransmissions might be2. In expectation over the

success rate however, our expected number of retransmissions becomes1
2 · 4 + 1

2 ·
4
3 = 2 + 2

3 > 2. More generally,
the expected number is ∫

θ

1
θs,t

p(θs,t)dθs,t. (4)

Using this formula, we can compute the expected number of retransmissions for any pair of locations. IfV is finite,
we can model all locations inV as nodes in a graph, with the edges labeled by their communication costs. We call
this graph thecommunication graphof V. In general, we assume that we can also placerelay nodes, which do not
sense but only aid communication. For any sensor placementA ⊆ V, we define its cost by the minimum cost treeT ,
A ⊆ T ⊆ V, connecting all sensorsA in the communication graph forV. Finding this minimum cost tree to evaluate
this cost function is called theSteiner treeproblem; it isNP-complete, but there exist very good approximations which
we use. Our algorithm,pSPIEL, will however not just find an informative placement and then simply add relay nodes,
since the resulting cost may be exorbitant. Instead, itsimultaneouslyoptimizes sensing quality and communication
cost.

2.3 Overview of our approach

Having established the notions of sensing quality and communication cost, we now present an outline of our proposed
approach.

1. We collect sensor and link quality data from an initial deployment of sensors. From this data, we learn proba-
bilistic models for the sensor data and the communication cost. Alternatively, we can use expert knowledge to
design such models.

2. These models allow us to predict the sensing qualityF (A) and communication costc(A) for any candidate
placementA ⊆ V.

3. UsingpSPIEL, our proposed algorithm, we then find highly informative placements which (approximately)
minimize communication cost. We can approximately solve both the covering and maximization problems.
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4. After deploying the sensors, we then possibly add sensors or redeploy the existing sensors, by restarting from
Step 2), until we achieve a satisfactory placement. (This step is optional.)

Consider our temperature prediction example. Here, in step 1), we would place a set of motes throughout the building,
based on geometrical or other intuitive criteria. After collecting training data consisting of temperature measurements
and packet transmission logs, in step 2), we learn probabilistic models from the data. This process is explained in the
following Sections. Fig. 2(c) and Fig. 2(d) present examples of the mean and variance of our model learned during
this step. As expected, the variance is high in areas where no sensors are located. In step 3), we would then explore the
sensing quality tradeoff for different placements proposed bypSPIEL, and select an appropriate one. This placement
automatically suggests if relay nodes should be deployed. After deployment, we can collect more data, and, if the
placement is not satisfactory, iterate step 2).

3 Predicting sensing quality

In order to achieve highly informative sensor placements, we have to be able to predict the uncertainty in sensor values
at a locations ∈ V, given the sensor valuesxA at some candidate placementA. This is an extension of the well-
known regression problem [8], where we use the measured sensor data to predict values at locations where no sensors
are placed. The difference is that in the placement problem, we have to be able to predict not just sensor values at
uninstrumented locations, but ratherprobability distributionsover sensor values.Gaussian Processesare a powerful
formalism for making such predictions. To introduce this concept, first consider the special case of the multivariate
normal distribution over a setXU of random variables associated withn locationsU :

P (XU = xU ) =
1

(2π)n/2|Σ|
e−

1
2 (xU−µ)T Σ−1(xU−µ).

This model has been successfully used for example to model temperature distributions [1], where, every location inU
corresponds to one particular sensor placed in the building. The multivariate normal distribution is fully specified by
providing a mean vectorµ and a covariance matrixΣ. If we know the values of some of the sensorsB ⊆ U , we find
that fors ∈ U \ B the conditional distributionP (Xs = xs | XB = xB) is a normal distribution, where meanµs|B and
varianceσ2

s|B are given by

µs|B = µs + ΣsBΣ−1
BB(xB − µB), (5)

σ2
s|B = σ2

s − ΣsBΣ−1
BBΣBs. (6)

Hereby,ΣsB = ΣT
Bs is a row vector of the covariances ofXs with all variables inXB. Similarly,ΣBB is the submatrix

of Σ, only containing the entries relevant toXB, andσ2
s is the variance ofXs. µB andµs are the means ofXB andXs

respectively. Hence the covariance matrixΣ and the mean vectorµ contain all the information needed to compute the
conditional distributions ofXs givenXB. From (6) we learn that the posterior varianceσ2

s|B after making observations

is never larger than the prior varianceσ2
s of Xs. The goal of an optimal placement will intuitively be to select the

observations such that the posterior variance (6) for all variables becomes uniformly small. If we can make a set of
measurements(xU )t of all sensorsU , we can estimateΣ andµ, and use it to compute predictive distributions for
any subsets of variables. However, in the sensor placement problem, we must reason about the predictive quality of
locations where we do not yet have sensors, and thus need to compute predictive distributions, conditional on variables
for which we do not have sample data.

Gaussian Processes are a solution for this dilemma. Technically, a Gaussian Process (GP) is a joint distribution over
a (possibly infinite) set of random variables, such that the marginal distribution over any finite subset of variables is
multivariate Gaussian. In our temperature measurement example, we would associate a random variableX(s) with
each points in the building, which can be modeled as a subsetV ⊂ R2. The GPX(·), which we will refer to as
thesensor data process, is fully specified by amean functionM(·) and a symmetric positive definiteKernel function
K(·, ·), generalizing the mean vector and covariance matrix in the multivariate normal distribution in the following
way: For any random variableX(s) ∈ X , M(s) will correspond to the mean ofX(s), and for any two random
variablesX(s), X(t) ∈ X , K(s, t) will be the covariance ofX(s) andX(t). This implies, that for any finite subset
B = {s1, s2, . . . , sm}, B ⊆ V of locations variables, the covariance matrixΣBB of the variablesXB is obtained
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by

ΣBB =


K(s1, s1) K(s1, s2) . . . K(s1, sm)
K(s2, s1) K(s2, s2) . . . K(s2, sm)

...
...

...
K(sm, s1) K(sm, s2) . . . K(sm, sm)

 ,

and its mean isµB = (M(s1),M(s2), . . . ,M(sm)). Using formulas (5) and (6), the problem of computing predictive
distributions is reduced to finding the mean and covariance functionsM andK for the phenomena of interest. In
general, this is a difficult problem – we want to estimate these infinite objects from a finite amount of sample data.
Consequently, in practice, often strongly limiting assumptions are made: it is assumed that the covariance of any two
random variables is only a function of their distance (isotropy), and independent of their location (stationarity). A
kernel function often used is the Gaussian kernel

K(s, t) = exp
(
−‖s− t‖22

h2

)
. (7)

These isotropy and stationarity assumptions lead to similar problems as encountered in the approach using geometric
sensing regions, as spatial inhomogeneities such as walls, windows, reflections etc. are not taken into account. These
inhomogeneities are however dominantly encountered in real data sets, as indicated in Fig. 2(a).

In this paper, we donot make these limiting assumptions. We use an approach to estimate nonstationarity proposed
in [9]. Their method estimates a collection of stationary GPs with kernel functions of the form (7), each providing a
local description of the nonstationary process around a set of reference points. These reference points are chosen on
a grid or near the likely sources of nonstationary behavior. The stationary GPs are combined into a nonstationary GP,
whose covariance function interpolates the empirical covariance matrix estimated from the initial sensor deployment,
and near the reference points behaves similarly to the corresponding stationary process. Fig. 2(b) shows a learned
non-stationary GP for our temperature data. Due to space restrictions, we refer to [9] for details.

Once we have obtained estimates for the mean and covariance functions, we can use these functions to evaluate our
mutual information criterion. In order to evaluate Eq. (3), we need to compute conditional entropiesH(Xs | XA),
which involve integrals over all possible assignments to the placed sensorsxA. Fortunately, there is a closed form
solution: We find that

H(XV\A | XA) =
1
2

log((2πe)n det ΣX\A|A),

hence it only depends on the determinant of the predictive covariance matrixΣV\A|A. For details on efficient compu-
tationc.f., [7].

4 Predicting communication cost

As discussed in Sec. 2.2, an appropriate cost measure to estimate communication cost is the expected number of
retransmissions. If we have a probability distributionP (θs,t) over transmission success probabilitiesθs,t, Eq. (4) can
be used in a Bayesian approach to compute the expected number of retransmissions. The problem of determining such
predictive distributions for transmission success probabilities is very similar to the problem of estimating predictive
distributions for the sensor values as discussed in Sec. 3, suggesting the use of GPs for predicting link qualities. A
closer look however shows several qualitative differences: When learning a model for sensor values, samples from
the actual values can be obtained. In the link quality case however, we can only determine whether certain messages
between nodes where successfully transmitted or not. Additionally, transmission success probabilities are constrained
to be between 0 and 1. Fortunately, GPs can be extended to handle this case as well. Whereas in Sec. 3 we used GPs
for regression, it is also possible to use GPs for classification[10]. In thisclassificationsetting, the predictions of the
GP are transformed by the sigmoid functionf(x) = 1

1+exp(−x) . For large positive values ofx, f(x) is close to1, for

large negative values it is close to0 andf(0) = 1
2 .

Since we want to predict link qualities for everypair of locations inV, we define a random processΘ(s, t) =
f(W (s, t)), whereW (s, t) is a GP over(s, t) ∈ V2. We call Θ(s, t) the link quality process. This process can
be learned the following way. In our initial deployment, we let each sensor broadcast a message once every epoch,
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Input : Covariance matrixΣVV , locationsC ⊆ V
Output : Greedy sequence(Gj)j

begin
C0 ← ∅;
for j = 1 to |C| do

Gj ← argmax
G∈C\Cj−1:

Ā=V\(A∪G)

σ2
G − ΣGAΣ−1

AAΣAG

σ2
G − ΣGĀΣ−1

ĀĀΣĀG

;

Cj ← Cj−1 ∪Gj ;
end

end
Algorithm 1 : Greedy algorithm for maximizing mutual information.

containing its identification number. Each sensor also records, from which other sensors it has received messages this
epoch. This leads to a collection of samples of the form(si,k, sj,k, θk(si, sj))i,j,k, wherei, j range over the deployed
sensors,k ranges over the epochs of data collection, andθk(si, sj) is 1 if nodei received the message from nodej in
epochk, and0 otherwise. We will interpretθk(si, sj) as samples from the link quality processΘ(·, ·). Using these
samples, we want to compute predictive distributions similar to those described in Eqs. (5) and (6). Unfortunately,
in the classification setting, the predictive distributions cannot be computed in closed form anymore, but one can re-
sort to approximate techniques [10]. Using these techniques, we infer the link qualities by modeling the underlying
GP W (s, t). Intuitively, the binary observations will be converted to imaginary observations ofW (s, t), such that
Θ(s, t) = f(W (s, t)) will correspond to the empirical transmission probabilities between locationss andt. We now
can use Eqs. (5) and (6) to compute the predictive distributionsW (s, t) for anypair of locations(s, t) ∈ V2. Applying
the sigmoid transform will then result in a probability distribution over transmission success probabilities. In our im-
plementation, instead of parameterizingW (s, t) by pairs of coordinates, we rather use the parametrizationW (t−s, s).
The first component of this parametrization is the displacement the successful or unsuccessful message has traveled,
and the second component is the actual set of physical coordinates of the transmitting sensor. This parametrization
tends to exhibit better generalization behavior, since even though the link qualities differ at different locations, the
distance to the receiver (component 1) is the dominating feature. Fig. 1(c) shows an example of the predicted link
qualities using a GP for our indoors deployment, and Fig. 1(d) shows the variance in this estimate.

What is left to do is to compute the expected number of retransmissions, as described in formula (4). Assuming the
predictive distribution forW (s, t) is normal with meanµ and varianceσ2, we compute∫

1
f(x)

N (x;µ, σ2)dx =
∫

(1 + exp(−x))N (x;µ, σ2)dx

= 1 + exp(−µ + σ2),

whereN (·;µ, σ2) is the normal density with meanµ and varianceσ2. Hence we have a closed form solution for this
integral. If σ2 = 0, we simply retain that the expected number of retransmissions is the inverse of the transmission
success probability. Ifσ2 is very large however, the expected number of retransmission drastically increases. This
implies that even if we predict the transmission success probability to be reasonably high, e.g.2/3, if we do not
have enough samples to back up this prediction and hence our predictive varianceσ2 is very large, we necessarily
have to expect the worst for the number of retransmissions. So, using this GP model, we may determine that it is
better to select a link with success probability1/3, about which we are very certain, to a link with a higher success
probability, but about which we are very uncertain. Enabling this tradeoff is a great strength of using GPs for predicting
communication costs!

5 Problem structure in sensor placement optimization

We now address the covering and maximization problems described in Sec. 2. We will consider a discretization of
the space into finitely many pointsV, for example lying on a grid. For each pair of locations inV, we define the
edge cost as the expected number of retransmissions required to send a message between these nodes (since link
qualities are asymmetric, we use the worse direction as the cost). The set of edges that have finite cost is denoted
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by E. The challenge in solving the optimization problems (1) and (2) is that the search space—the possible subsets
A ⊆ V—is exponential; more concretely, the problem is easily seen to beNP-hard as a corollary to the hardness of
the unconstrained optimization problem [7, 3]. Given this, we seek an efficient approximation algorithm with strong
performance guarantees. In Sec. 6, we present such an algorithm. The key to finding good approximate solutions is an
understanding and exploitation of the problem structure.

Intuitively, the sensor placement problem satisfies the following diminishing returns property: The more sensors
already placed, the less the addition of a new sensor helps us. This intuition is formalized by the concept ofsubmodu-
larity: A set functionF defined on subsets ofV is calledsubmodular, if

F (A ∪ {s})− F (A) ≥ F (B ∪ {s})− F (B), (8)

for all A ⊆ B ⊆ V ands ∈ V \ B. The functionF is monotonicif F (A) ≤ F (B) for all A ⊆ B ⊆ V. With any
such set functionF , we can associate the following greedy algorithm: start with the empty set, and at each iteration
add to the current setA′ the elements which maximizes thegreedy improvementF (A′ ∪{s})−F (A′), and continue
until A′ has the specified size ofk elements. Perhaps surprisingly, ifAG is the set selected by the greedy algorithm
(with |AG| = k) and if F is monotonic submodular withF (∅) = 0, thenF (AG) ≥ (1 − 1/e) maxA:|A|=k F (A),
i.e.,AG is at most a constant factor(1− 1/e) worse than the optimal solution [11]. In [7], we proved that our mutual
information criterion is submodular andapproximatelymonotonic: For anyε > 0, if we choose the discretization fine
enough (polynomially-large in1/ε), then the solution obtained by the greedy algorithm is at most(1− 1/e)OPT − ε.
Algorithm 1 presents the greedy algorithm for mutual information; for details we refer the reader to [7]. However, this
result only holds when we do not take communication cost into account, and does not generalize to the covering and
maximization problems (1) and (2) we study in this paper. Indeed, since the greedy algorithm does not take distances
into account, it would prefer to place two highly informative sensors very far apart (in order to achieve the quotaQ),
whereas a cheaper solution may select three sensors which are slightly less informative (but still satisfying the quota),
but which are closer together. In Sec. 7 we show that even a modified version of the greedy algorithm naturally taking
into account communication cost can provide very poor solutions.

In addition tosubmodularity, the mutual information criterion empirically exhibits another importantlocality property:
Sensors which are very far apart are approximately independent. This implies that if we consider placing a subset of
sensorsA1 in one area of the building, andA2 in another area, thenF (A1 ∪ A2) ≈ F (A1) + F (A2). Here, we will
abstract out this property to assume that there are constantsr > 0 and0 < γ ≤ 1, such that for any subsets of nodes
A1 andA2 which are at least distancer apart,F (A1 ∪A2) ≥ F (A1) + γF (A2). Such a submodular functionF will
be called(r, γ)-local.

6 Approximation algorithm

In this Section, we propose an efficient approximation algorithm for selecting Padded Sensor Placements at Informative
and cost-Effective Locations (pSPIEL). Our algorithm will exploit the problem structure via both the properties of
submodularityandlocality from Sec. 5. Before presenting our results and performance guarantees, here is an overview
of our algorithm.

1. We randomly select a decomposition of the possible locationsV into clusters using Algorithm 2 (c.f., Sec. 6.1,
[12]), as in Fig. 3(a). All nodes close to the “boundary” of their clusters are stripped away and hence the
remaining clusters are “well-separated”. (We prove that not too many nodes are stripped away; furthermore, the
well-separatedness and the locality property ofF ensures that each cluster is approximately independent of the
other clusters, and hence very informative.)

2. Use the greedy algorithm (Algorithm 1) within each clusteri to get an orderGi,1, Gi,2, . . . Gi,ni
on the nodes

in this cluster. Create a chain for this cluster by connecting the vertices in this order, with suitably chosen costs
for each edge(Gi,j , Gi,j+1), as in Fig. 3(b). The submodularity ofF ensures that the firstk nodes in this chain
are almost as informative as the best subset ofk nodes in the cluster.

3. Create a “modular approximation graph”G′ from G by taking all these chains, and creating a fully connected
graph onG1,1, G2,1, . . . , Gm,1, the first nodes of each chain. The edge costs(Gi,1, Gi′,1) correspond to the
shortest path distances betweenGi,1 andGi′,1, as in Fig. 3(c).
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(d) Quota-MST solution on MAG

G4,1

G4,2

G2,2

G2,1

G3,1

G3,2

C1

C2

C3
C4

G3,3
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Figure 3:Illustration of our algorithm: (a) presents a padded decomposition into four clusters; (b) displays the chain in the modular approximation
graph associated with cluster 1; (c) shows the modular approximation graph with chains induced by greedy algorithm and the complete “core”; (d)
the solution of the Quota-MST problem on the modular approximation graph; and(e) is the final solution after expanding the Quota-MST edges
representing shortest paths.

4. We now need to decide how to distribute the desired quota to the clusters. Hence, we approximately solve the
Quota-MST problem (for the covering version) or the Budget-MST problem (for the maximization problem) on
G′ [13, 14], as in Fig. 3(d).

5. Expand the chosen edges ofG′ in terms of the shortest paths they represent inG, as in Fig. 3(e).

Supposen = |V| is the number of nodes inV, andA∗ denotes the optimal set (for the covering or maximization
problem), with cost̀ ∗. Finally, let dim(V, E) be thedoubling dimensionof the data, which is constant for many
graphs (and for costs that can be embedded in low-dimensional spaces), and isO(log n) for arbitrary graphs (c.f., [12]
for details). We prove the following guarantee:
Theorem 1. Given any graphG = (V, E), and any(r, γ)-local monotone submodular functionF , we can find a tree
T with costO(r dim(V, E)) × `∗, which spans a setA with F (A) ≥ Ω(γ) × F (A∗). The algorithm is randomized
and runs in polynomial-time.

In other words, Theorem 1 shows that we can solve the covering and maximization problems (1) and (2) to provide a
sensor placement for which the communication cost is at most a small factor (at worst logarithmic factor) larger, and
for which the sensing quality is at most a constant factor worse than the optimal solution.1 The proof can be found
in our technical report [15]. In the rest of this section, we flesh out the details of the algorithm, giving more technical
details and intuition about the performance of the algorithm.

6.1 Padded decompositions

To exploit the locality property, we would like to decompose our space into “well-separated” clusters; loosely, an
r-padded decomposition is a way to do this so that most vertices ofV lie in clustersCi that are at leastr apart.
Intuitively, padded decompositionsallow us to split the original placement problem into approximately independent
placement problems, one for each clusterCi. This padding and the locality property of the objective functionF

1While the actual guarantee of our algorithm holds in expectation, running the algorithm a small (polynomial) number of times will lead to
appropriate solutions with arbitrarily high probability.
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Input : Graph(V, E), shortest path distanced(·, ·), r > 0, α ≥ 64 dim(V, E)
Output : (α, r)-padded decompositionC = {Cu : u ∈ U}
begin

repeat
C ← ∅;
r′ ← αr

4 ;
U ← {a random element inV};
while ∃v ∈ V ∀u ∈ U : d(u, v) > r′ do
U ← U ∪ {v}

end
π ← random permutation onU ;
R← uniform at random in(r′, 2r′];
foreachu ∈ U according toπ do
Cu ← {v ∈ V : d(u, v) < R, and∀u′ ∈ U appearing earlier thatu in π , d(u′, v) ≥ R};

end
until at least12 nodesr-padded;

end
Algorithm 2 : Algorithm for computing padded decompositions.

guarantee that, if we compute selectionsA1, . . .Am for each of them clusters separately, then it holds thatF (A1 ∪
· · · ∪ Am) ≥ γ

∑
i F (Ai), i.e., we only lose a constant factor. An example of a padded decomposition is presented in

Fig. 3(a).

If we put all nodes into a single cluster, we obtain a padded decomposition that is not very useful. Intuitively, to exploit
our locality property, we want clusters of size aboutr that are at leastr apart. It is difficult to obtain separated clusters
that are exactlyr in size, but padded decompositions exist for arbitrary graphs for clusters sizes about a constantα
larger, whereα is Ω(dim(V, E)) [12].

Formally, an(α, r)-padded decomposition is a probability distribution over partitions ofV into clustersC1, . . . , Cm,
such that:

(i) Every clusterCi in the partition is guaranteed to have bounded diameter, i.e.,diam(Ci) ≤ αr.

(ii) Each nodes ∈ V is r-padded in the partition with probability at leastρ. (We say a nodes is r-paddedif all
nodest at distance at mostr from s are contained in the same cluster ass.)

The parameterρ can be chosen as a constant (in our implementation,ρ = 1
2 ). In this paper, we use the term padded de-

composition to refer both to the distribution, as well as samples from the distribution, which can be obtained efficiently
using Algorithm 2 [12].

In pSPIEL, for a fixed value of the locality parameterr, we gradually increaseα, stopping when we achieve a partition,
in which, after a small number of trials, at least half the nodes arer-padded. In expectation, the running time of this
rejection sampling algorithm is polynomial. This rejection sampling is the only randomized part of our algorithm.
How do we assure that, by stripping away all nodes which are notr-padded, we do not lose the most informative
candidate locations? The following Lemma proves that this does not happen in expectation.
Lemma 2. Consider a submodular functionF (·) on a ground setV, a setB ⊆ V, and a probability distribution
over subsetsA of B with the property that, for some constantρ, we havePr [X ∈ A] ≥ ρ for all X ∈ B. Then
E[F (A)] ≥ ρF (B).

Let B be the optimal solution for the covering or maximization problem, and letA denote the subset ofr-padded
nodes withinB. Then Lemma 2 proves that in expectation, there is a subset of nodes (with cost bounded by the cost
of B), which is at most a constant factorρ worse thanB.

6.2 The greedy algorithm

After having sampled a padded decomposition, we run the greedy algorithm as presented in Algorithm 1 on ther-
padded nodes in each clusterCi, with k set toni, the number of padded elements in clusterCi. Let us label the nodes
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asGi,1, Gi,2, . . . ,Gini
in the order they are chosen by the greedy algorithm, and letCi,j = {Gi,1, . . . , Gi,j} denote

the greedy set after iterationj. From [11] we know that each setCi,j is at most a factor(1 − 1/e) worse than the
optimal set ofj padded elements in that cluster. Furthermore, from(r, γ)-locality and using the fact that the nodes are
r-padded, we can prove that

F (C1,j1 ∪ · · · ∪ Cm,jm) ≥ γ
∑m

k=1 F (Ck,jk
) ≥ γ

(
1− 1

e

) ∑m
k=1 F (C∗k,jk

)

for any collection of indicesj1, . . . ,jm, whereC∗k,jk
denotes the optimal selection ofjk nodes within clusterk.

6.3 The modular approximation graphG ′

In step 3),pSPIELcreates the auxiliarymodular approximation graph(MAG) G′ from G, whose nodes are the greedy
setsCi,j . The greedy sets for clusteri are arranged in a chain with edgeei,j connectingCi,j andCi,j+1 for every
i andj. For a set of nodesB, if cMST (B) is the cost of a minimum spanning tree (MST) connecting the nodes in
B by their shortest paths, the weight ofei,j in G′ is the difference in costs of the MSTs ofCi,j andCi,j+1 (or 0 if
this difference becomes negative), i.e.,c(ei,j) = max [cMST (Ci,j+1)− cMST (Ci,j), 0] . We also associate a “reward”

reward(Ci,j) = F (Ci,j) − F (Ci,j−1) with each node, whereF (Ci,0)
4
= 0. Note that the total reward of the firstk

elements in chaini is F (Ci,k), and the total cost of the edges connecting them iscMST (Ci,k), which is at most 2
times the the cost of a minimum Steiner tree connecting the nodes inCi,k in the original graphG. By property (i) of
the padded decomposition,cMST (Ci,k) ≤ α r k. Fig. 3(b) presents an example of a chain associated with cluster
1 in Fig. 3(a). Additionally, we connect every pair of nodesCi,1, Cj,1 with an edge with cost being the shortest path
distance betweenGi,1 andGj,1 in G. This fully connected subgraph is called thecore of G′. Fig. 3(c) presents the
modular approximation graph associated with the padded decomposition of Fig. 3(a).

6.4 Solving the covering and maximization problems inG ′

The modular approximation graphG′ reduces the problem of optimizing a submodular set function inG to one of
optimizing amodularset function (where the value of a set is the sum of rewards of its elements) inG′ to minimize
communication costs. This is a well studied problem has constant factor approximation algorithms have been found
for the covering and maximization problems. The (rooted)Quota-MSTproblem asks for a minimum weight treeT
(with a specified root), in which the sum of rewards exceeds the specified quota. Conversely, theBudget-MSTproblem
desires a tree of maximum weight, subject to the constraint that the sum of edge costs is bounded by a budget. The
best known approximation factors for these problems is2 [13] for rooted Quota-MST, and3 + ε (for any ε > 0)
for unrooted Budget-MST [16]. We can use these algorithms to get an approximate solution for the covering and
maximization problems inG′. From Sec. 6.3, we know that it suffices to decide which chains to connect, and how
deep to descend into each chain; any such choice will give a subtree ofG′. To find this tree, we consider allCi,1
for eachi as possible roots, and choose the best tree as an approximate solution. (For the Budget-MST problem,
we only have an unrooted algorithm, but we can use the structure of our modular approximation graph to get an
approximately optimal solution.) We omit all details here due to space limitations. Fig. 3(d) presents an example of
such a Quota-MST solution.

6.5 Transferring the solution from G ′ back to G

The Quota- or Budget-MST algorithms select a treeT ′ in G′, which is at most a constant factor worse than the optimal
such tree. We use this solutionT ′ obtained forG′ to select a treeT ⊆ G thus: For every clusteri, if Ci,j ∈ T ′ we
markGi,1, . . . ,Gi,j in G. We then selectT to be an approximately optimal Steiner tree connecting all marked nodes
in G. E.g., we can compute an MST for the fully connected graph with all marked vertices, where the cost of an edge
betweens andt is the shortest path distance betweens andt in G. This treeT is the approximate solution promised
in Theorem 1. (Fig. 3(e) presents the expansion of the Quota-MST from Fig. 3(d).)
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(a) Placements

Metric M20 pS19 pS12
RMS 413.5 127.0 162.2
MAD 202.6 71.1 102.5

Pred. c. 24.4 19.9 15.3
Real c. 22.9 21.8 15.0

(b) Costs and prediction qualities
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(c) Cost-benefit for light data
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(d) RMS error for light data
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(e) Small temperature data set
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(f) Cost-benefit for temperature
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(g) Cost-benefit for precipitation
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Figure 4:Experimental results. (a) shows the expert placement (top) and a placement proposed bypSPIEL. (b) presents root-mean-squares and
mean-absolute-deviation prediction errors for the manual placement and two placements frompSPIEL. (c) compares the cost-benefit tradeoff curves
for the light data GP on a 187 points grid. (d) compares the root-mean-squares error for the light data. (e) compares trade-off curves for a small
subset of the temperature data. (f) shows tradeoff curves for the temperature GPs on a 10x10 grid. (g) compares tradeoffs for precipitation data
from 167 weather stations. (h) compares the locality parameterr and the lossγ incurred by the modular approximation for the temperature GPs.

6.6 Additional implementation details

pSPIEL relies heavily on the monotonic submodularity and locality assumptions. In practice, since we may not
know the constantsr andγ, we run the algorithm multiple times with different choice forr. Since the algorithm is
randomized, we repear it several times to achieve a good solution with high probability. Finally, since we do not know
γ, we cannot directly specify the desired quota when solving the covering problem. To alleviate all these intricacies,
we use the following strategy to select a good placement: For a fixed number of iterations, randomly sample anr
between0 and the diameter ofG. Also sample a quotaQ between0 andQmax, the maximum submodular function
value achieved by the unconstrained greedy algorithm. RunpSPIELwith these parametersr andQ, and record the
actual placement, as well as the communication cost and sensing quality achieved by the proposed placement. After
N iterations, these values result in a cost-benefit curve, which can be used to identify a good cost-benefit tradeoff as
done in Sec. 7.

7 Experiments

In order to evaluate our proposed method, we computed sensor placements for three real-world problems: Indoor
illumination measurement, the temperature prediction task as described in our running example, and precipitation
prediction in the Pacific Northwest.

7.1 Proof-of-concept study

Based on the TinyOS Surge application, we built a system for multi-hop collection of light data and message trans-
mission logs, and combined it with our implementation ofpSPIEL. As a proof-of-concept experiment, we deployed
a network of 46 Tmote Sky motes in the Intelligent Workplace at CMU. As a baseline deployment, we selected 20
locations that seemed to capture the overall variation in light intensity. After collecting the total solar radiation data
for 20 hours, we learned GP models, and usedpSPIELto propose a placement of 19 motes. Fig. 4(a) shows the 20 and
19 motes deployments. After deploying the competing placements, we collected data for 6 hours starting at 12 PM
and compared the prediction accuracy for all placements. Fig. 4(b) presents the results. Interestingly, the proposed
placement (pS19) drastically reduces the prediction error to about a third. Our explanation for this result is, that our
baseline deployment placed most sensors near the windows, which seemed to have mislead the prediction. Also, the
prediction of the manual placement is even worse than simply predicting the mean light intensity, so a bad placement
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can be worse than no placement at all. Furthermore,pSPIELdecided not to explore the large western area. The reason
is that this part of the lab was not occupied during the night, hence there was little fluctuation with indoor lighting –
the variation in sunlight could be predicted from the deployment in the eastern part. We repeated the analysis for a
12 motes subsample (pS12), also proposed bypSPIEL. We also compared the predicted communication cost using the
GPs with the measured communication cost. Fig. 4(b) shows that the prediction matches well to the measurement.
Figs. 4(c) and 4(d) show thatpSPIELoutperforms the Greedy heuristic explained below, both in the sensing quality
and communication cost tradeoff, and also on the predictive RMS error.

7.2 Indoor temperature measurements

In our second set of experiments, we used an existing deployment (c.f., Fig. 1(a)) of 52 wireless sensor motes to
learn a model for predicting temperature and communication cost in a building. After learning the GP models from
five days of data, we usedpSPIELto propose improved sensor placements. We comparedpSPIELto two heuristics,
and—for small problems—with the optimal algorithm which exhaustively searches through all possible deployments.
The first heuristic,Greedy-Connect, runs the unconstrained greedy algorithm (Algorithm 1), and then connects the
selected sensors using a Steiner tree approximation. The second heuristic,Distance-weighted Greedy, is inspired
from an algorithm which provides near-optimal solutions to the Quota-MST problem [17]. It initially starts with all
nodes in separate clusters, and iteratively merges – using the shortest path – clusters maximizing the following greedy
criterion:

gain(C1, C2) =
mini∈1,2(F (C1 ∪ C2)− F (Ci))

dist(C1, C2)
.

The intuition for this greedy rule is that it tries to maximize the benefit-cost ratio for merging two clusters. Since it
works near-optimally in the modular case, we would hope it performs well in the submodular case also. The algorithm
stops after sufficiently large components are generated (c.f., [17]).

Fig. 4(e) compares the performance ofpSPIELwith the other algorithms on a small problem with only 16 candidate
locations. We used the empirical covariance and link qualities measured from 16 selected sensors. In this small prob-
lem, we could explicitly compute the optimal solution by exhaustive search. Fig. 4(e) indicates that the performance
of pSPIELis significantly closer to the optimal solution than any of the two heuristics. Fig. 4(f) presents a comparison
of the algorithms for selecting placements on a10 × 10 grid. We used our GP models to predict the covariance and
communication cost for this discretization. From Fig. 4(f) we can see that for very low quotas (less than25% of the
maximum), the algorithms performed very similarly. Also, for very large quotas (greater than80%), pSPIELperforms
not much better thanGreedy-Connect. This is due to fact, that for large quotas, too many nodes are ignored in step
1) of the algorithm, since they are not padded. Hence,pSPIELwill increase the locality constantr, until r is large
enough that all nodes are padded. In this case,pSPIELessentially reverts back to theGreedy-Connectalgorithm. Also,
the more nodes are placed, the less will communication cost be an issue. In the important region between25% and
80% however,pSPIELclearly outperforms the heuristics. Also, our results indicates that in this region the steepest
drop in out-of-sample root mean squares (RMS) prediction accuracy occurs. This region corresponds to placements
of approximately10− 20 sensors, an appropriate number for the target deployment Fig. 1(a).

In order to study the effect of the locality parameterr, we generated padded decompositions for increasing values
of r. For random subsets of the padded nodes, and for placements frompSPIEL, we then compared the modular
approximation, i.e. the sum of the local objective values per cluster, with the mutual information for the entire set of
selected nodes. Asr increases to values close to2, the approximation factorγ drastically increases from.3 to .7 and
then flattens asr encompasses the the entire graphG, suggesting that the valuer = 2 is an appropriate choice for
the locality parameter, since it only incurs a small approximation loss, but guarantees small diameters of the padded
clusters, thereby keeping communication cost small. For placements, the approximation factor is even higher.

7.3 Precipitation data

In our third application, our goal was to place sensors for predicting precipitation in the Pacific North-West. Our data
set consisted of daily precipitation data collected from 167 regions during the years 1949–1994[18]. We followed
the preprocessing from [7]. Since we did not have communication costs for this data set, we assumed that the link
quality decayed as the inverse square of the distance, based on physical considerations. Fig. 4(g) compares the sensing
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quality – communication cost tradeoff curves for selecting placements from all 167 locations.pSPIELoutperforms
the heuristics up to very large quotas.

8 Conclusions

We proposed a unified approach for placing networks of wireless sensors. Our approach uses Gaussian Processes,
which can be chosen from expert knowledge or learned from an initial deployment. We propose to use GPs not
only to model the monitored phenomena, but also for predicting communication costs. We presented a polynomial
time algorithm –pSPIEL– selecting Sensor Placements at Informative and cost-Effective Locations. Our algorithm
provides strong theoretical performance guarantees. We built a complete implementation on Tmote Sky motes and
extensively evaluated our approach on real-world placement problems. Our empirical evaluation shows thatpSPIEL
significantly outperforms existing methods.

Acknowledgements: We would like to thank Adrian Perrig for providing us with motes and Vipul Singhvi for
helping with the sensors. This work was supported by NSF Grant No. CNS-0509383 and a gift from Intel Corpora-
tion.
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9 Appendix

Proof of Lemma 2.Given a collection of weightsP = {pS : S ⊆ B}, we writeE(P) =
∑

S⊆B pS · F (S). Note that
E[F (A)] = E(P0) for P0 = {Pr [A = S] : S ⊆ B}.

Starting with the set of weightsP0, we iteratively apply the following “uncrossing” procedure. As long as there is a pair
of setsS, T ⊆ B such that neither ofS or T is contained in the other, andpS , pT > 0, we subtractx = min(pS , pT )
from bothpS andpT , and we addx to bothpS∩T andpS∪T . Note the following properties of this procedure.

(i) The quantity
∑

S⊆B pS remains constant over all iterations.

(ii) For each elementX ∈ B, the quantity
∑

S⊆B:X∈S pS remains constant over all iterations,

(iii) The quantity
∑

S⊆B pS |S|2 strictly increases with each iteration.

(iv) By the submodularity ofF , the quantityE(P) is non-increasing over the iterations.

By (i) and (iii), this sequence of iterations, starting fromP0, must terminate at a set of weightsP∗. At termination, the
setsS on whichpS > 0 must be totally ordered with respect to inclusion, and by (ii) it follows thatpB ≥ ρ. Finally,
by (iv), we have

E [F (A)] = E(P0) ≥ E(P∗) ≥ ρF (B), (9)

as required.

In order to prove Theorem 1, let us consider the subsetA∗ spanned by the optimal tree, and letA∗ ⊆ A∗ denote its
r-padded nodes with respect to a random partition drawn from the padded decomposition. (Recall that each node is
r-padded with probability at leastρ.) Now Lemma 2 implies thatF (A∗), the expected value of the nodes inA that
arer-padded, is at leastρF (A∗). The algorithm is based on the idea of trying to build a tree that recoups a reasonable
fraction of this “padded value”.

The following lemma will be useful in converting subtrees ofG′ back to solutions of our original problem.
Proposition 3. Given any subtreeT ′ of G′ with weightW , it is possible to find a subtreeT ⊆ G spanning the same
verticesA′, with a total length no more thaǹ(T ′), and withF (A′) ≥ γ W .

Proof. Each edge ofG′ (and hence ofT ′) corresponds to some shortest path inG, and we can add all these paths
together to form a connected subgraph. LetT be any spanning tree of this subgraph; clearly, its length is no more than
`(T ′). If Vi ⊆ Pi is the subpath ofPi contained inT ′, then the weight of these verticesV (P ′

i ) is exactly the total
submodular valueF (V (P ′

i )), just by the definition the weights. Furthermore, since each pair of distinct paths are at
distance at leastr from each other, the locality property assures that the value of their union is at leastγ W .

Proposition 4. If the graphG contains a subtree of length̀∗ and valueF (A∗), then there is a subtreeT ′ of the graph
G′ that has length at most

`∗ × (α(r + 2) + 2) (10)

and whose expected weight is at least

F (A∗)× (1− e−1)× ρ (11)
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Proof. Let a clusterCi be calledoccupiedif A∗ ∩ Ci 6= ∅; w.l.o.g., let thes clustersC1, C2, . . . , Cs be occupied. We
start buildingT ′ by adding a spanning tree on the centers of the clusters that are occupied.

Let us bound the length of this center-spanning tree. SinceA∗ contains a point (sayai) from eachCi, the padding
condition ensures that ther-ballsBr(ai) must be disjoint, and hence the length ofT ∗ is at leastrs. Now, to attachai

to zi, we can add paths of length at mostαr to T ∗; thus causing the resulting tree to have length`∗+αrs ≤ (α+1)`∗.
Since this is a Steiner tree on the centers, we can get a spanning tree of at most twice the cost; hence the cost of the
edges connecting the spanning centers is at most

2(α + 1) `∗. (12)

Now consider an occupied clusterCi, and let|A∗ ∩ Ci| = ni be the number of padded nodes inCi. We now add
to T ′ the subpath ofPi containing firstni nodes; i.e., the vertices{Zi = Gi,1, Gi,2, . . . , Gi,ni

}. Firstly, note that
the length of edges added for clusterCi is at mostαrni; summing over all occupied clusters gives a total length of
αr

∑
i ni ≤ αr|A∗| ≤ αr`∗, since each edge inT ∗ has at least unit length. Adding this to (12) gives us the claim on

the length ofT ′.

The Weight. Finally, let us calculate the weight of the treeT ′: by the properties of the greedy algorithm used in the
construction ofG′, theweightof the setSini

added in clusterCi is at least

(1− e−1)F (A∗ ∩ Ci) (13)

Summing this over occupied clusters, we get that the total weight is at least(1− e−1)F (A∗), whose expected value is
at least(1− e−1)ρF (A∗).

Combining these results, we now prove a slightly more detailed statement of Theorem 1:
Theorem 5. For the covering problem(1), pSPIELwill find a solutionT , with cost at most

κQuota `∗ (α(r + 2) + 2) (14)

and whose expected weight is at least

(1− e−1) γρF (A∗), (15)

where`∗ is the weight of the optimum treeA∗. For the maximization problem(2), pSPIELwill find a solutionT with
cost at most

`∗ (α(r + 2) + 2) (16)

and whose expected weight is at least

κ−1
Budget(1− e−1) γρF (A∗), (17)

whereκQuota andκBudget denote the approximation guarantees for approximately solving Quota- and Budget-MST
problems (currently,κQuota = 2 andκBudget = 3 + ε, for ε > 0, are the best known such guarantees [13, 14]).

Proof. Proposition 4 proves the existence of a treeT ′ in the graphG′, for which both cost and weight are close to
the optimal treeT in G. The construction in the proof also guarantees that the treeT ′ contains at least one cluster
centerGi,1 for somei (or is empty, in which caseT is empty). Proposition 3 handles the transfer of the solution to the
original graphG. Hence, in order to solve the covering problem (1) or optimization problem (2) inG, we need to solve
the respective covering and maximization problem in the modular approximation graphG′, rooted in one of the cluster
centers. AnyκQuota approximate algorithm to the Quota-MST problem can be used for the covering problem, using
a quota ofQ = (1 − e−1)ρ F (A∗). While for the unrooted version of the Budget-MST problem, there is a constant
factorκBudget = 3 + ε approximation algorithm, unfortunately, there is no known constant-factor guarantee known
for the rooted version. We can however exploit the structure of the MAG to still get an approximation guarantee and
prove Theorem 1. We simply need to prune all nodes inG′ which are further thanB = `∗ (α(r + 2) + 2) away from
the core ofG′, and then run the unrooted approximation algorithm [14] onG′. If this algorithm, started with budget
B = `∗ (α(r+2)+2) selects nodes from sub-chaini, not including centerGi,1, we instead select the entirei-th chain.
By construction, this procedure is guaranteed not to violate the budget, and the submodular function value can only
increase.
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