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Abstract

Selective offloading of resource-intensive execution from a mobile device to the cloud can extend battery
life and broaden the range of supported applications. Unfortunately, the success of this approach is critically
dependent on a reliable end-to-end network. This dependence is a serious vulnerability in hostile environ-
ments, especially those involving wireless components in their long-haul network segments. We describe
an architectural approach to reducing this vulnerability. Using a hierarchical cloud structure, offload is per-
formed on stateless elements that are typically one wireless hop away from a mobile device. The proximity
of offload reduces synchronous dependence on vulnerable long-haul network segments. We present experi-
mental results that reflect on key design tradeoffs from a prototype implementation of this architecture.





1 Introduction
Offloading resource-intensive computation from a mobile device to the cloud in order to extend
battery life or to speed up execution has been the subject of many recent papers [12, 13, 17, 32].
These papers are rooted in work stretching back over a decade on the theme of cyber foraging [5,
6, 7, 18, 21, 22, 25, 29, 44, 51]. Commercial applications that use cloud offload now exist: Apple’s
Siri for speech recognition on the iPhone is a good example [4]. An ongoing convergence of mobile
computing and cloud computing is clearly under way.

Implicit in this convergence is the assumption that the cloud is easily accessible. In other
words, there is good end-to-end network quality, and there are few network or cloud failures to
disrupt offloading. While this a reasonable assumption in most of today’s use cases, it is untenable
in several important contexts that we collectively refer to as hostile environments. Foremost among
these are theaters of military operations. Another example is an area where disaster recovery
is in progress. Even the public Internet may become a hostile environment under conditions of
cyber attack. The recent day-long outage of Siri [48, 55] offered a foretaste of the inconvenience
and frustration that will be experienced by mobile users when a cloud offload service becomes
unavailable.

The U.S. Department of Defense (DoD) has long been a proponent of the use of mobile com-
puting by foot soldiers, with prototype systems such as Land Warrior dating back to the mid-
1990s [70]. Issues of battery life and the weight of spare batteries have been a nagging concern for
the military for many years [15, 16]. Every gram of battery weight subtracts from the ammunition
or body armor that a foot soldier can carry. At the same time, the potential mission assistance from
resource-intensive technologies such as speech recognition, natural language translation, and face
recognition on mobile devices is simply too high to ignore. Reducing energy usage by offload-
ing to the cloud would be an attractive design choice. Unfortunately, the network connection to a
distant cloud is vulnerable to wireless jamming or other modes of denial of service (DoS).

After a catastrophic event such as an earthquake, tsunami, hurricane, or terrorist attack, Internet
access to the cloud may be compromised for days or weeks. Although limited Internet connectivity
may be re-established soon, there will be very high demand on this scarce resource. Yet, within
the disaster area, the ability to use resource-intensive applications on mobile devices would be
invaluable.

Under conditions of cyber attack, normally well-connected regions of the Internet may be de-
nied access to cloud services. The volume of cyber attacks in the past few years confirms that this
is not just a hypothetical possibility [1, 9, 50]. There is growing concern that cyber attacks may
soon become major weapons of organized crime as well as instruments of national policy [3, 8, 11].
This puts all of cloud computing at risk, including cloud offload of mobile devices. If the direst of
these predictions comes true, we may have no choice but to view the entire wide-area Internet as a
hostile environment in the future. Hence, although we focus on military settings in this paper, its
results may be of much broader relevance in the future.
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2 Background
2.1 Hungry Mobile Applications
Beyond today’s familiar desktop, laptop and smartphone applications is a new genre of soft-
ware to seamlessly augment human perception and cognition. Consider Watson, IBM’s question-
answering technology that publicly demonstrated its prowess in 2011 [64]. Imagine such a tool
being available anywhere and anytime to rapidly respond to urgent questions posed by an attention-
challenged mobile user under stressful conditions such as combat. Such a vision boggles the mind
today, but it may be within reach in the next decade. Free-form speech recognition, natural lan-
guage translation, face recognition, object recognition, dynamic action interpretation from video,
and body language interpretation are other examples of this genre of futuristic applications. Com-
bined, they offer enormous potential to enhance the situational awareness of a mobile user and to
improve the speed and quality of his responses.

At first glance, it may appear that today’s smartphones are already powerful enough to sup-
port this genre of applications without need for cloud offload. Android has supported built-in
face detection functionality for some time now. The APIs have been extended in Android 4.0 to
support tracking of multiple faces and to give detailed information about the location of eyes and
mouth [46]. Google’s “Voice Actions for Android” performs voice recognition to allow hands-free
control of a smartphone [24]. Many computer vision applications that run on resource-limited
mobile devices are described in the survey by Lowe [37].

However, upon closer examination, the situation is much more complex and subtle. Consider
computer vision, for example. Its computational requirements vary drastically depending on the
operational conditions. For example, it is possible to develop (near) frame-rate object recognition
(including face recognition [47]) operating on mobile computers if we assume restricted opera-
tional conditions such as a small number of models (e.g., small number of identities for person
recognition), and limited variability in observation conditions (e.g., frontal faces only). The com-
putational demands rapidly outstrip the capabilities of mobile computers as the generality of the
problem formulation increases. For example, just two simple changes make a huge difference: in-
creasing the number of possible faces from just a few close acquaintances to the entire set of people
known to have entered a building, and reducing the constraints on the observation conditions by
allowing faces to be at arbitrary viewpoints from the observer.

Similar tradeoffs apply across the board to virtually all applications of this genre, not only in
terms of computational demands but also in terms of dataset sizes. In continuous use under the
widest possible range of operating conditions, providing near real-time responses, and tuned for
very low error rates, these applications have ravenous appetites for processing, memory and energy
resources. Cloud offload is the only hope for meeting this resource demand on a lightweight mobile
computer with extended battery life.

2.2 Example Use Cases
How could the kinds of applications described in the previous section help a mobile user in a
hostile environment? We give a few example use cases below. While the specific scenarios are
hypothetical, they are representative of capabilities that the DoD seeks.
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A group of soldiers has just captured a person and needs to confirm his identity. His picture
is taken and compared with a continuously updated remote image database. Based on a match
with a key enemy officer, the captive is sent to an interrogation center.
(Source: although the details remain classified, a CNN video interview [14] reports that face recog-
nition technology played a pivotal role in helping Navy SEALs establish positive verification of
Osama bin Laden’s identity prior to taking action in Abbottabad, Pakistan.)

A forward unit has been alerted to possible chemical or biological attack. A soldier takes an
air sample using a portable sensor that includes a mass spectrometer. Compute-intensive analysis
of its output reveals the presence of a known chemical agent. While its concentration is still
below the threshold of hazard, a repeat measurement indicates rising concentration. With timely
warning, the unit evacuates to safety.
(Source: Sullivan et al [63] give a good overview of field detection of chemical and biological
agents. Examples of commercial portable mass spectrometers can be found at the vendor web site
of KD Analytical [28].)

A soldier is trying to gather information from residents of a remote area that was recently
under attack. The soldier knows that these residents speak Pashto rather than Dari or Arabic.
With the appropriate settings on his smartphone, the soldier hears translated English from Pashto.
His responses generate real-time translations in spoken Pashto.
(Source: Rattner [49] describes current efforts on language translation in the field in Afghanistan.)

Non-military hostile environments can also benefit from resource-intensive mobile applica-
tions. Consider the following disaster recovery scenario: After the destruction from a massive
9.1 earthquake and resulting tsunami, disaster relief is painfully slow. First responders are guided
by now-obsolete maps, surveys, photographs, and building floor plans. Major highways on their
maps are no longer usable. Bridges, buildings, and landmarks have collapsed.

In desperation, the rescue effort turns to an emerging technology: camera-based GigaPan
sensing. Using off-the-shelf consumer-grade cameras in smartphones, local citizens take hundreds
of close-up images of disaster scenes. These crowd-sourced images are stitched together into a
zoomable panorama using compute-intensive vision algorithms. As new maps and topographical
overlays are constructed, rescue efforts speed up and become more effective.
(Source: The article by Frenkel [23] gives a good overview of GigaPan applications.)

2.3 Hostile Environments
Short-term large-magnitude uncertainty is the dominant attribute of hostile environments. This
contrasts with the well-conditioned, low-uncertainty environment that is experienced by most In-
ternet users today. Note that minor failures and some burstiness of resource demands are already
factored into the design of today’s Internet applications. For example, TCP retransmission and
adaptive windowing masks packet loss and network congestion. Elastic computing mechanisms
within a cloud dynamically allocate virtual and physical machine resources based on current work-
load demands. RAID storage masks unpredictable disk failures and permits online repair. These
mechanisms were conceived for benign Internet environments in which failures and overloads are
random events rather than the deliberate actions of clever adversaries. By definition, a hostile envi-
ronment is one that overwhelms engineering practices that are adequate for coping with everyday
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uncertainties.
It is important to note that a hostile environment may have extended periods during which

everything appears normal. For example, an adversary may remain quiet to induce a false sense
of security, and then disrupt network communications at a critical moment. Design for a hostile
environment therefore has to be based on worst-case assumptions rather than the average-case
assumptions that drive the design choices and economic models of typical Internet applications.

Threats and defenses coevolve continuously in a hostile environment. For example, crypto-
graphic mechanisms that are adequate today may be easily broken tomorrow. Conversely, major
threats today may have adequate defenses tomorrow. We assume that current best practices in cy-
ber defenses are rapidly adopted and rigorously enforced at all times. For example, we assume that
well-known techniques for end-to-end security are incorporated into mobile clients and into cloud
services. These include the use of secure communication tunnels based on end-to-end encryption
(using a mechanism such as ipsec) and robust mutual authentication technology. We also assume
that the strength of these defenses (such as encryption algorithms and key lengths) are regularly
upgraded to reflect current best practices. Finally, we assume that physical capture of a mobile
device or of the cloud computing infrastructure is rapidly detected. Destruction of these end points
is, of course, also a real possibility in combat. With these assumptions in place, we can be confi-
dent of the integrity and privacy of computations that are offloaded from mobile devices. The main
vulnerability that remains is DoS attacks through disruption of network communication.

Unfortunately, the DoS threat cannot be completely eliminated when most communication is
through wireless channels. Jamming of wireless signals continues to be a threat today, in spite
of mechanisms such as spread-spectrum transmission, frequency-hopping and other defenses. Re-
cently, “surgical” jamming of wireless signals has been explored as a defense against triggering of
improvised explosive devices (IEDs) [68]. This leads to the possibility of inadvertent jamming of
communication for cloud offload.

Figure 1 illustrates typical wireless communication links in a modern battlespace [56]. While
the operational characteristics of many wireless technologies remain classified, certain broad prin-
ciples can be identified from the viewpoint of DoS attacks. The wide-area links based on satellite
and air support are the most vulnerable to wireless jamming attacks from a distance. The time to
repair these links after asset destruction is large, relative to a typical cloud offload operation. It
may take many days to launch a replacement satellite or to move an existing one into a new orbit.
Time scales of tens of minutes to a few hours are more typical for replacement of lost air assets.

At the tactical level, wireless communication is typically through ad hoc multi-hop networks,
as shown in Figure 1. In addition to jamming, these are also vulnerable to unique routing-based
attacks [31]. Examples include wormholes, in which two rogue nodes create a link with artificially
good performance and then drop packets once they are adopted as a good route, and rushing, in
which an attacker fabricates route requests that result in the network being unable to find routes
longer than two hops. Depending on the wireless technology, hop distance can vary from a meter
or less to a few tens of kilometers. As a broad generalization, wireless technologies with short
range tend to support higher bandwidths, are less vulnerable to jamming from a distance, are less
detectable from a distance, and consume less power.
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Figure 1: Example Combat Network (Source: [56])

3 Architecture and Prototype
Can a cloud offload mechanism be designed to withstand DoS attacks? We assume, as mentioned
in Section 2.3, that due diligence is applied at all times to incorporate current best practices in
link-level and end-to-end security measures. These can ensure the integrity and privacy of cloud
offload operations, but they cannot protect against all DoS attacks. Jamming of long-haul wireless
networks, for example, is an ever-present threat in hostile environments. At a mission-critical
moment, the cloud may be inaccessible for offload.

There is no silver bullet for this problem: cloud offload is inherently vulnerable to DoS attacks.
What is achievable is a system design that imposes a high work factor [57] for a successful DoS
attack. We describe such an architecture in the following sections. We have implemented a proof-
of-concept prototype of this architecture, and include its salient aspects below.

3.1 Proximity
Range and directionality of wireless transmissions are the primary levers of control available to
a mobile device in trying to reduce its DoS attack surface. Physical layer mechanisms such as
frequency hopping and spread-spectrum transmissions are also relevant. Wise choice of these
parameters can greatly increase the work factor needed for a successful DoS attack.

If the offload site can be located very close to the mobile device (ideally one wireless hop
away) and ultra-short-range wireless technology is used, then a very high work factor is needed
for a successful DoS attack. In that case, jamming attacks from a distance will fail; only attacks
from jamming sources that are physically close to the mobile device continue to be threats. If an
area larger than the jamming radius can be physically secured around the mobile device, jamming
will no longer be a threat. Directional transmissions can further shrink this area. By using only
a single wireless hop, threats unique to multi-hop networks can also be avoided. In other words,
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placing the offload site close to its mobile device transforms the difficult and poorly-understood
problem of DoS attacks into the more tractable and well-understood problem of physical security.
In the limit, the work factor for a successful DoS attack is increased to that of physical capture of
the mobile device.

An unplanned benefit of placing offload sites close to mobile devices is that it reduces leakage
of information for traffic analysis. Inferring an imminent operation merely from recent changes
in wireless traffic volumes and traffic patterns (even without access to data content) is a capability
of long-standing military importance. Restricting the range of end-to-end offload communication
denies that traffic information to distant snoopers.

3.2 Hierarchy
This line of reasoning in favor of proximity runs counter to the current ethos of cloud computing.
Cloud infrastructure is typically located far from the end-points it serves. For example, Amazon’s
world-wide public EC2 infrastructure is concentrated in just six sites: US East (N. Virginia), US
West (Oregon and N. California), EU (Ireland), Asia Pacific (Singapore and Tokyo). If one of
these sites had to be reached from a mobile device located in a forward area (i.e., combat zone)
of Figure 1, its end-to-end path would include many network segments that are vulnerable to DoS
attacks. More generally, a device’s DoS attack surface is greatly increased when its cloud offload
site is located far away. Another way to look at this is that increasing the offload distance decreases
the work factor for successful DoS attacks.

What accounts for this large difference in strategies between cloud computing today (central-
ization) and cloud offload in hostile networks (decentralization)? The answer lies in the very
different design requirements in the two cases. DoS attacks are considered a rare hazard in cloud
computing today. Of far greater importance is the need to reduce the total cost of ownership of
computing infrastructure by reducing the complexity of system administration. This is achieved
by centralization, which provides economies of scale in system administration. In contrast, surviv-
ability and high availability of offload sites are the attributes of greatest concern to mobile devices
in hostile environments. Decentralization strengthens these attributes, as discussed in the study by
Anderson et al [2].

Of course, things are not quite so black and white. Some day, DoS attacks may grow in fre-
quency and impact to the point where cloud computing has to rethink its strategy. The decen-
tralized approach advocated by this paper may then become relevant to cloud computing at large.
Conversely, the complexity of system administration cannot be ignored in hostile environments.
An approach that can simplify system administration while preserving high availability would be
highly desirable. This can be achieved through a system design that appears centralized for system
administration, but decentralized for cloud offload.

Figure 2 illustrates such an architecture in which cloud offload infrastructure is organized as a
two-level hierarchy. At the heart of this architecture is a large centralized core which is the focus of
system administration. This could be implemented as one of Amazon’s data centers, and is located
in a stable and secure environment, far from physical threats. At the edges of this architecture are
offload elements for mobile devices. These elements are dispersed and each is located close to the
mobile devices that it serves. Mapping Figure 2 to Figure 1, the offload elements would be located
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Figure 2: Hierarchical Cloud Offload Infrastructure

at the edges of the tactical mobile networks at the bottom right; the central core would be located
far to the top left, reachable only via the satellite link.

A key attribute of this architecture is that the offload elements are stateless. They may cache
state persistently on their local storage, but the provisioning of the cache is done from the central
core. Adding a new offload element or replacing an existing one involves very little setup or
configuration effort. After installation, an offload element self-provisions from the central core.
A final step of provisioning can occur just before use by a mobile device. Section 3.3 discusses
mechanisms for rapid and precise provisioning of offload elements.

This architecture is resilient to wide-area network failures. A mobile device does not need
to communicate with the core during an offload operation; it only needs to communicate with
its offload element. The mobile device can continue offloading operations even when its offload
element is totally disconnected from the core. Communication with the core is only needed during
provisioning. Once an offload element is provisioned, its connection to the core can be disrupted
without affecting offload service to mobile clients. Further, some of the mechanisms described in
Section 3.3 support provisioning even when the core is inaccessible.

Physical motion of a mobile device may take it much closer to an offload element different
from the one with which it is currently associated. In that case, a mechanism similar to wireless
access point handoff can be executed. A mobile device can thus travel along the periphery of the
network, triggering handoffs but never needing to contact the core.

The two-level architecture of Figure 2 bears some resemblance to the concept of a hybrid cloud
that is gaining traction in enterprises today. A hybrid cloud is a combination of a public cloud (such
as Amazon’s EC2) and a private cloud that may use the same technology as the public cloud but
is located within the enterprise and solely dedicated to it. Highly sensitive data is only stored
on the private cloud. The public cloud is used for elastic compute capacity and for storing less
sensitive data. In our architecture, the central core plays the same architectural role as a public
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Figure 3: Micro Data Centers (Source: [41])

cloud in the hybrid model. However, our offload elements are deployed in the field and are very
different from private clouds in both implementation and usage model. A private cloud is a full-
fledged data center and its contents are primal, not merely a cache of a public cloud. Closer to our
view of offload elements is the concept of a micro data center created by Myoonet for developing
countries [41]. Figure 3 shows two examples of micro data centers.

Closest in spirit to our view of offload elements is the concept of a cloudlet that has been
proposed for offloading latency-sensitive applications [53]. Our motivation for a two-level archi-
tecture is, of course, completely different: DoS attacks are a threat to all applications, whether
latency-sensitive or not. In spite of this fundamental difference, an important point of similarity
between cloudlets and the offload elements of Figure 2 is that both are stateless: any persistent
state on them is merely a cache of cloud state.

For brevity and ease of exposition, we use the terms “cloudlet” and “cloud” rather than “of-
fload element” and “central core” in the rest of this paper. Keep in mind however, that our use
of “cloudlet” is broader and subsumes the original motivation for this architectural element. A
cloudlet may be implemented in many forms, with possibilities ranging from the micro data cen-
ters of Figure 3 to small self-contained appliances that are installed in motorized elements of an
infantry unit. It is not the form factor but the architectural role and statelessness of a cloudlet that
is its defining feature.

In theory, the two-level architecture of Figure 2 could be extended to multiple levels. The
intermediate nodes of such a hierarchical system could be stateless or stateful, depending on their
position in the hierarchy and the role they play. However, while this makes for a more complete and
satisfying conceptual picture, we do not see a practical need for more than two levels at present.

3.3 Rapid Provisioning
3.3.1 Use of Virtual Machines
Optimal partitioning of an application for offload is the subject of ongoing investigation by many
researchers. At one extreme is thin client execution in which the entire application is offloaded
and only the GUI is retained on the mobile device. At the other extreme is executing the entire
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application on the mobile device (i.e., no offload). In between these extremes are many possi-
ble ways to partition an application, based on runtime conditions, data content, and application
characteristics. Tools and techniques to help with this partitioning span a wide range. Some are
language-specific [17], while others require operating system support or other low-level system
support [5, 6, 7, 12, 13, 21, 22, 32, 42]. Process models may also vary widely, ranging from a sin-
gle process to a collection of processes (e.g., for a MapReduce offload). At any given time, many
mobile devices may be using a cloudlet. Sometimes a single mobile device may have multiple
concurrent applications offloaded on the same cloudlet. The offload support for some applications
may require a specific Linux environment, while others require a specific Windows environment.
No single “grand unified approach” for cloud offload exists today, and none is likely to emerge
in the foreseeable future. So the ability to support offload via a wide range of operating systems,
programming languages, and process models is essential. In addition, good isolation between
offloaded executions is advisable for safety and robustness.

How should the software environment on a cloudlet be organized to support this full range of
possibilities today, and to remain open-ended for future innovations? In many ways, this problem
closely resembles the challenge faced by a cloud provider like Amazon who wishes to service the
widest possible range of customers with minimal constraints and good isolation. We believe that
the same solution, hardware virtual machines (VMs), will also work in our context. A separate
VM encapsulates the offloaded execution of each mobile device in our prototype. This could be
extended to allow multiple VMs per mobile device using a rapid cloning mechanism such as that
described by Lagar-Cavilla et al [36]. It would also be relatively simple to support a distinct VM
for each application from a mobile device.

The use of VMs on cloudlets enables clean separation of concerns. The complex and messy
problem of dynamically configuring software on a cloudlet to service a mobile device is avoided.
Instead, the problem is transformed into the simpler problem of rapidly delivering a precisely pre-
configured VM to the cloudlet. A VM cleanly encapsulates and separates a transient guest software
environment from the permanent host software environment of the cloudlet infrastructure. The
interface between the host and guest environments is narrow, stable, and ubiquitous. This ensures
the longevity of cloudlet investments and greatly increases the chances of compatibility between
a mobile device and a cloudlet. The malleable software interfaces of the offloaded components
of a mobile application are encapsulated within the guest environment. As a result, a VM-based
approach is less brittle than alternatives such as process migration or software virtualization. It is
also less restrictive and more general than language-based virtualization approaches that require
applications to be written in a specific language such as Java or C#.

Our prototype uses KVM, a Type 2 VMM, embedded in an Ubuntu Linux host. This choice was
made primarily for ease of implementation. The rich host environment simplifies implementation
of supporting software for functionality such as resilient data access (Section 3.4) and cloudlet
discovery (Section 3.5). A production-quality implementation of a cloudlet would likely use a
Type 1 VMM such as Xen or VMware ESX. In that case, supporting functionality would likely be
implemented as VMs themselves.
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3.3.2 VM Delivery Strategies
We envision the guest contents of an offload VM being created and tested offline. An instance of
that VM is then booted up and brought to a state where it is ready to service requests from a mobile
device. At that point it is suspended. The suspended VM instance typically has distinct representa-
tions of its persistent state (i.e., its virtual disks) and its volatile state (i.e. memory, registers, etc.).
We refer to these as the disk image and memory snapshot respectively, and to the combination as
the VM image. If the VM instance is shut down rather than suspended, there is no memory snap-
shot saved. Resuming such a VM instance is equivalent to powering up hardware, resulting in a
fresh boot of the guest operating system. Since startup delay is an important performance metric
when using cloud offload, we expect that most VM instances will be resumed rather than rebooted.
A cold boot may be needed in rare instances, such as when a unique local hardware device on a
cloudlet has to be detected and configured into the guest OS.

A typical VM image is many gigabytes in size, possibly tens of gigabytes. In the context of
a hostile network, efficient dissemination of VM images to cloudlets is a major challenge. In the
rest of this section, we examine a range of approaches that together define a complex tradeoff
space. We quantify these tradeoffs through experimental results in Section 4. Once a cloudlet has
acquired a copy of a VM, it can treat it as a persistent cache copy and retain it until the space has
to be reclaimed. Persistent caching of VMs takes advantage of temporal locality (the same mobile
device may be associated with the cloudlet again in the future) as well as communal locality (many
mobile devices may use the same VM image for offload).

Bulk Transfer from Cloud (Bcloud): The simplest way to deliver a VM image to a cloudlet is to
download it in its entirety from the cloud. If the end-to-end bandwidth between cloudlet and cloud
approaches 10 Mbps (typical for well-connected Internet sites today), the transfer of a 10 GB VM
will take over two hours. This is clearly unacceptable in time-critical situations, but it may be
acceptable for routine software upgrades of cloudlets because they can be done in the background.
DoS attacks may disrupt the transfer many times, but eventual completion is possible if standard
mechanisms to continue transfers after interruption are used. Mechanisms such as rsync may be
useful if the VM to be transferred has significant content similar to an existing VM at a cloudlet.
More sophisticated deduplication mechanisms [65, 66, 67] may further reduce the number of bytes
transferred. No energy is consumed on the mobile device with this approach. Upon successful
completion, the entire VM image is available on the cloudlet.

Bulk Transfer from Mobile (Bmobile): A mobile device may have adequate local storage to hold
copies of all the critical VMs that it needs for offload. If it associates with a cloudlet that is missing
a VM, the mobile device can directly transfer it over the one-hop wireless link. This is likely to be
much faster than a cloud-cloudlet transfer. For example, a 10 GB VM will take about 13 minutes
at 100 Mbps. Although this is likely to be unacceptably long for a mission-critical situation, it may
be one of the few options available if the cloudlet is disconnected due to DoS attacks. The energy
drain on the mobile device is likely to be high. A hybrid approach would transfer data from the
cloud when possible, but would continue the transfer from the mobile device during periods when
the cloudlet is disconnected. This would save energy on the device, yet complete transfer of the
VM.
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Figure 4: Demand Paging of VM Images on Cloudlets

Demand-page from Cloud (Dcloud): Rather than waiting for an entire VM image to be fetched
from the cloud, there may be situations where rapid launch of the VM is desirable. This would only
require the initial working set of the VM to be fetched and then the VM could be launched. Missing
parts of the VM image could then be fetched on demand as execution proceeds. If bandwidth
permits, VM execution could overlap prefetching.

While demand paging of VM images has the benefit of fast VM launch, there are some draw-
backs. If the cloud cannot be accessed to service a demand miss, offload execution will stall. Also,
transferring a VM image through a streaming bulk transfer is likely to be more efficient than a
series of short data transfers in response to demand misses. On the other hand, much of a VM
image may never be accessed during execution if it has been sloppily constructed. Demand paging
only fetches those parts of a VM image that are actually used.

Figure 4 shows how demand paging of VM images is implemented in our prototype. The VM
disk image is mapped to a file in the FUSE file system on the host. Disk I/O from a VM is routed
by FUSE to a user-level agent that we have implemented to perform miss handling and prefetching.
Standard HTTP GET requests are used to service demand misses. A web server in the cloud can
service these GET requests. A limitation of all current VMMs (including KVM) is that they require
the entire memory snapshot to be present before a VM can be resumed. Our experimental results
in Section 4 therefore reflect this limitation. We are extending KVM to support demand paging
of memory snapshots, just as we currently support demand paging of disk images. When this
extension is complete, the user-level agent in Figure 4 will handle requests for missing regions of
both memory snapshots and disk images. We are also extending this agent to accept external hints
and to use them in prefetching memory and disk images.

Demand-page from Mobile (Dmobile): The implementation of VM demand paging shown in Fig-
ure 4 is agnostic regarding where the full VM image is located and which entity handles miss
traffic. If the cloud is inaccessible, the mobile device could handle demand misses. This will re-
quire sufficient persistent storage on the device to hold all the VMs that are likely to be needed
for offload. Note that these VMs are never executed on the mobile device, so this approach can be
used even when the device and cloudlet are of different hardware architectures (e.g., ARM mobile
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device and x86 cloudlet). A number of web servers are available for Android mobile devices. Our
prototype uses kWS.

Demand paging from the mobile device is likely to be faster than demand paging from the
cloud because of the higher mobile-cloudlet bandwidth. However, it will shorten battery life on
the device. A hybrid approach could treat the mobile device as a failover site for handling demand
misses when the cloud is inaccessible. This will lengthen the average delay for servicing a miss,
since the cloudlet has to first try the cloud, timeout, and then redirect the miss to the mobile device.
On the other hand, device energy use is likely to be small if most misses are handled by the cloud.

Synthesis from Mobile (Smobile): Any of the four approaches above can be combined with block-
level deduplication to take advantage of cached VM state at a cloudlet. This would reduce the
volume of data that has to be fetched from the cloud or mobile device. Previous work has shown
that block-level deduplication can be effective on VMs [43, 65]. However, the benefit is mod-
est relative to the implementation effort involved. We have therefore developed a higher-level
approach to deduplication that is more effective. This approach, called dynamic VM synthesis,
exploits knowledge of the process by which VMs are typically created.

In this technique, we refer to a VM used for offloading as a launch VM. A launch VM is
typically created by installing relevant software into a base VM in which a minimally-configured
guest OS has been installed. There are no constraints on the guest OS; our prototype works with
both Linux and Windows. The binary difference between the base VM image and the launch VM
image is called a VM overlay. We anticipate that a relatively small number of base VMs will be
popular on cloudlets at any given time. To increase the chances of success, a mobile device can
carry overlays for multiple base VMs and discover the best one to use through negotiation with
the cloudlet. As in the case of demand paging, the cloudlet and mobile device can have different
hardware architectures: the mobile device is merely serving as transport for the VM overlay.

In our prototype, the overlay is created using the xdelta binary differencing tool. Our experi-
ence has been that xdelta generates smaller overlays than the native VM differencing mechanism
provided by KVM. The VM overlay is then compressed using the Lempel-Ziv-Markov algorithm,
which is optimized for fast decompression at the price of relatively slow compression [69]. This
is an appropriate tradeoff because decompression takes place in the critical path of execution at
runtime and contributes to user-perceived delay. Further, compression is only done once offline
but decompression occurs each time VM synthesis is performed.

As Figure 5 shows, dynamic VM synthesis reverses the process of overlay creation. A mobile
device delivers the VM overlay to a cloudlet that already possesses the base VM from which
this overlay was derived. The cloudlet decompresses the overlay and applies it to the base to
derive the launch VM. Normally, each offloading session starts with a pristine instance of the
launch VM. However, there are some use cases where modified state in the launch VM needs to
be preserved for future offloads. For example, the launch VM may incorporate a machine learning
model that adapts to a specific user over time. Each offload session then generates training data for
an improved model that needs to be incorporated into the VM overlay for future offload sessions.
This is achieved in Figure 5 by generating a VM residue on the cloudlet that can be sent back to
the mobile device and incorporated into its overlay.

Demand paging and VM synthesis are contrasting approaches to efficient delivery of VM state.
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Figure 5: Dynamic VM Synthesis from Mobile Device

Both work even if the cloud is inaccessible. Synthesis requires the base VM to be available on
the cloudlet. In contrast, demand paging from mobile works even for a freshly-created VM that
has no ancestral state on the cloudlet. Synthesis can use efficient streaming to transmit the overlay,
while demand paging incurs the overhead of many small data transfers. However, some of the state
that is proactively transferred in an overlay may be wasted if the launch VM includes substantial
state that is not accessed. Synthesis incurs a longer startup delay before VM launch. However,
once launched, the VM incurs no stalls. This may be of value for offloads of soft real-time mobile
applications such as augmented reality.

Synthesis from Cloud (Scloud): Rather than transmitting the overlay, a mobile device can direct
the cloudlet to obtain it from the cloud. This reduces energy use on the mobile device, but is
vulnerable to cloud-cloudlet network disruptions during overlay transfer. In other respects, the
contrast between demand paging and VM synthesis discussed earlier applies here too.

3.4 Cloud-Wide Resilient Data Access
A large external corpus of data is an important part of many applications that are relevant to this
paper. For example, a face recognition application typically requires a collection of facial images
of persons of interest. This collection may grow and shrink over a period of time, as faces of
interest are added and removed. These updates may be performed in the field at many different
locations. VMs running the face recognition application will need access to relevant parts of this
data collection.

These types of applications need cloud-wide distributed data access that is resilient to network
disruptions. Our prototype uses a cloud-based distributed file system with a persistent cache of file
data on each cloudlet: release 6.9.5 of the Coda File System [10, 52].

As Figure 6 illustrates, the cloud-wide file namespace associated with a cloudlet’s Coda cache
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Figure 6: VM Access to Shared Data

is exported as a file share through Samba [19] to each offload VM executing on that cloudlet. Thus,
regardless of guest operating system type, offload application code within a VM sees a Samba file
share that represents its external data corpus. The Samba daemon, smbd, maps this to a region of
the cloud-wide shared namespace.

Since Coda has been described extensively in the literature, we only provide a brief summary
here. Coda is cloud-centric and its key architectural features are inherited from AFS [26]. These
include aggressive client caching on local disks, callback-based cache coherence, location trans-
parency, organization of the file name space into logical volumes to facilitate system administra-
tion, and file protection based on access control lists. Some of the specific aspects of Coda that
make it well suited for cloudlet use include:

Frugal Bandwidth Use (efficient logging and adaptive replay) [40]: Updates are appended to
a persistent operation log that is kept as short as possible through log optimizations. Transfers of
large files occur as a series of fragments and are resumable after network failures.

Hoarding (user-guided prefetching for disconnected operation) [30]: To prepare for unex-
pected disconnection, Coda uses hoarding to ensure that critical objects are cached. This is im-
plemented by combining implicit and explicit sources of information into a priority-based cache
management algorithm. Guidance for hoarding can be obtained manually or through third-party
tools.

Intermittent Networks (rapid cache validation) [40]: Coda clients track server state at two
levels of granularity: on individual objects and on entire volumes. This improves the speed of
cache revalidation at the cost of precision of invalidation. This is a good tradeoff when network
disruption is frequent.

Update Conflict Resolution [33, 34, 35]: Coda provides mechanisms to detect and transpar-
ently resolve update conflicts on directories and files. For directories, it uses a set of built-in
heuristics for resolution. For files, it provides a plugin interface for application-specific resolvers
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to be installed and dynamically executed.
Portable and Minimally-Invasive Implementation [61]: Most complexity is encapsulated into

a user-level cache manager. Only a tiny loadable module for redirecting file system calls resides in
the kernel. This kernel module is part of Linux.

Data consistency is clearly an important issue in this context. The implementation shown in
Figure 6 offers different levels of consistency within and across cloudlets. Within a cloudlet, near-
POSIX semantics apply to all files accessed via Samba shares even if they are in different VMs.
This is because all the Samba shares map to a single Coda cache in the host environment of the
cloudlet, and that cache is composed of local Linux files. This allows correct functioning of of-
fload operations that, for example, use a collection of VMs on a many-core cloudlet to implement
a MapReduce task. Across cloudlets, the consistency offered is the classic Coda consistency guar-
antee: one-copy semantics at open-close granularity at all connected sites and eventual consistency
at all currently-inaccessible sites.

3.5 Cloudlet Discovery
The ability to rapidly discover nearby cloudlets, to make an optimal selection, and to securely as-
sociate are important capabilities in a cloud offload. There are many well-known service discovery
mechanisms such as UPnP, Bluetooth Service Discovery, and Jini. These are typically imple-
mented at Layer-3 of the network stack. A Layer-2 protocol for faster service discovery has been
described by Sud et al [62]. Our prototype currently has a minimal implementation of cloudlet
discovery based on Avahi, an implementation of ZeroConf. We plan to expand this to a complete
implementation of cloudlet discovery in the future.

4 Evaluation
To quantify and better understand the VM delivery approaches discussed in Section 3.3.2, we have
conducted a number of experiments on our prototype. Since bulk transfer is straightforward, we
focus on demand paging and synthesis. We ask two questions in each experiment:

• What is the total time and breakdown to deliver a VM, launch it, and perform an offload
operation?

• How does energy consumption on the mobile device differ across approaches?

4.1 Applications & Experimental Setup
We offloaded four applications on a cloudlet:

OBJECT: Linux C++ application based on the CMU MOPED object recognition libraries [39]. It
returns the identities of recognized objects in an input image.

FACE: Windows XP C++ application based on the OpenCV library [45]. It returns the coordinates
and identities of recognized faces in an input image.

SPEECH: Windows XP Java application based on the CMU Sphinx-4 speech recognition toolkit [60].
It returns a text transcription of a WAV input file.
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Figure 7: Experimental Setup

NULL: Empty application to serve as a baseline.
All experiments were conducted using the configuration shown in Figure 7. The mobile device

is a Samsung Galaxy S2 smartphone running Android 2.3.5. It connects to the cloudlet via 802.11n
Wi-Fi at 5 GHz. The cloudlet is connected to the cloud via a 1 Gbps Ethernet and a network
emulator that can throttle bandwidth to emulate a WAN. We measured energy usage with a Power
Monitor from Monsoon Solutions Inc. and the corresponding Power Tool software [38]. To ensure
good experimental control, we scripted all interactive inputs. Three runs of each experiment were
done. Since observed standard deviations were low (less than 4% for time and less than 5% for
energy) they are not explicitly shown in our results.

4.2 Benchmarks and Metrics
We established four benchmarks that map to the demand paging and synthesis strategies presented
in Section 3.3.2. In each of these cases the VM launch is initiated by the mobile device.

Demand Page from Cloud (Dcloud): The cloudlet retrieves the VM memory snapshot and VM
disk image metadata from the cloud and launches the VM using only the memory snapshot. The
VM disk image remains on the cloud and pages are retrieved on demand.

Demand Page from Mobile (Dmobile): Similar to the previous benchmark with the difference that
the VM memory snapshot and VM disk image metadata are retrieved from the mobile device and
the VM disk image remains on the mobile device.

Synthesis from Cloud (Scloud): The cloudlet contains the base VM disk image and the base VM
memory snapshot. It retrieves the VM disk overlay and the VM memory snapshot overlay from the
cloud and applies them to the base disk image and base memory snapshot. After that, the cloudlet
launches the VM.

Synthesis from Mobile (Smobile): Similar to the previous benchmark with the difference that the
VM disk image overlay and VM memory snapshot overlay are retrieved from the mobile device
instead of the cloud.

Table 1 and Table 2 show VM information for the demand paging and synthesis cases. The
metrics captured during the experiments were end-to-end VM launch time, first run time, and
energy consumption on the mobile device. In the demand paging cases, VM launch time is the
sum of memory snapshot transfer time, disk image metadata transfer time, snapshot decompression
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VM Disk Compr
App VM Disk Image VM Mem
Size Image Metadata Snapshot

App (MB) (GB) (MB) (MB)
OBJECT 27.50 2.48 5.45 136

FACE 17.65 1.57 5.45 121
SPEECH 51.04 1.57 5.45 189

NULL 0.00 2.48 5.45 65

Table 1: VM Information for Demand Paging Experiments

Compr Compr
Base Base Disk Mem

App Disk Mem Image Snap
Size Image Snap Ovlay Ovlay

App (MB) (GB) (MB) (MB) (MB)
OBJECT 27.5 2.50 474.49 30.27 134.55

FACE 17.65 1.61 357.69 50.54 44.13
SPEECH 51.04 1.61 357.69 96.60 89.23

NULL 0.00 2.50 474.49 0.01 0.12

Table 2: VM Information for Synthesis Experiments

time and VM resume time. In the synthesis cases VM launch time is the sum of VM disk image
overlay transfer time, VM memory snapshot overlay transfer time, overlay decompression time,
VM synthesis time and VM resume time.

4.3 Results and Discussion
End-to-End VM Launch Time: Figure 8 shows benchmark results for the different VM delivery
strategies for each application. The graph shows that data transfer is the largest component of end-
to-end VM launch time and that it is greater for the VM delivery strategies from the cloud. This
is expected because the bandwidth is smaller for cloud-cloudlet communication (10 Mbps). The
mobile device used in our experiments supports 32–38 Mbps. Data transfer times should be even
smaller with other shorter-range, higher-bandwidth networks.

The graph also shows the effect of VM image size. The synthesis strategies transfer only
the overlays for the VM image which contain the parts that are specific to the application being
offloaded. As shown in Tables 1 and 2 the overlays for the most part are much smaller in size
compared to the full VM image size. For the FACE application, for example, the disk overlay is
3.2% of the disk image and the memory overlay is 36% of the memory snapshot. Because overlays
are smaller, end-to-end VM launch time for synthesis is expected to be smaller than for demand
paging even if both the VM image and memory snapshot overlays have to be transferred before
the VM can be launched. However, if the application requires a lot of disk space or memory then
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the sum of the sizes of the two overlays could be greater than the size of the memory snapshot
required for demand paging. This is the case with OBJECT, where the disk overlay is 1.2% of the
disk image but the memory overlay is 98% of the memory snapshot, which explains the greater
end-to-end VM launch times for the synthesis strategies.

Application Execution Time: Figure 8 shows that first run time is very similar between the
demand paging and synthesis strategies for all applications. The only one that shows a slight
difference is SPEECH (demand paging takes 9 more seconds than synthesis). This is contrary to
our intuition because we expected demand paging to have greater first run times. The rationale is
that although demand paging can generate the launch VM faster because it only requires the VM
memory snapshot, it requires disk page fetching during the first run because it has no disk image
data. SPEECH is the most data-intensive application because it reads large language model files.
This explains why it shows a slight difference in first run times.

To further understand the effects of demand paging on data-intensive applications we modified
OBJECT so that it would load the object-modeling files (25MB) upon client request instead of
having them pre-loaded in memory, which would make them part of the VM memory snapshot.
Figure 9 shows the original SPEECH data along with the results of modified OBJECT. In both
cases, we can clearly see that the synthesis strategy has a smaller first run time but a larger first
launch time which is consistent with our intuition. This difference does not appear to be significant
because data transfer time is still the dominant part of end-to-end VM launch time. However, the
effect of demand paging will increase linearly as the size of the files increases over time due to
additional training or object-modeling files.

Energy : Energy consumption in all the experiments is measured from the moment that the mo-
bile device initiates VM launch until the first run ends. Figure 10 shows that Dmobile and Smobile
consume more energy than Dcloud and Scloud respectively. The average energy savings is 14.3%
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for demand paging cases and 9.6% for synthesis cases. These savings seem small. However, data
transfer from the cloud takes approximately twice as long as from the mobile device (see Figure 8)
and during this time the mobile device is in the idle state waiting for a response. Our experiments
show that average power in the idle state is 430.44 mW, which is significant and contributes to this
lower than expected savings.

5 Related Work
To the best of our knowledge, this work is the first to investigate the challenges of cloud offload
in hostile environments and to propose an architectural solution to the problem. All previous work
has assumed that acceptable networking conditions prevail between a mobile device and its offload
site. Although the bandwidth and latency of this connectivity may vary, a universal assumption in
previous work has been that connectivity is “good enough.” The performance impact of network
bandwidth on cloud offload, including its impact on application partitioning strategy and energy
usage on a mobile device, has been studied by a number of researchers [17, 21, 22, 32]. Previous
research has investigated the challenges of hostile environments from many viewpoints other than
cloud offload. Examples include access to shared files in the face of network failures [30], sup-
porting delay-tolerant networks [20], detection of DoS attacks [27, 54], and rapid deployment in
service-oriented architectures [58]. The use of “data mules” in sensor networks to transport data
through physical mobility [59] resembles our use of a mobile device to deliver a VM to a cloudlet.

6 Conclusion
Today, there is substantial consensus in the research community that cloud offload of resource-
intensive application execution is a core technique in mobile computing. In this paper, we have
explored the unique challenges of using this technique in hostile environments. We have described
a decentralized two-level architecture that cleanly separates the concerns of offloading execution
and precisely provisioning the offload sites. A difficult problem exposed by this architecture is
rapid delivery of large VMs to offload sites. We have developed a number of different approaches
to accomplish this task, with performance and availability tradeoffs across them. We have imple-
mented a proof-of-concept prototype of our proposed architecture. Experimental results from this
prototype quantify the tradeoffs of different VM delivery approaches with respect to VM launch
time, application execution time, and energy consumption on the mobile device.

If cyber attacks become more prevalent on the public Internet, cloud offload of mobile devices
will become increasingly unreliable. Some day, the entire public Internet may have to viewed as a
hostile environment. The issues explored in this paper in the context of military settings will then
be of much broader relevance.
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