
Programmable Self-Adjusting Computation

Ruy Ley-Wild

CMU-CS-10-146

October 11 2010

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Guy Blelloch, Chair

Stephen Brookes
Robert Harper

Umut Acar, Max-Planck Institute for Software Systems

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2010 Ruy Ley-Wild

This research was sponsored by a Bell Labs Graduate Research Fellowship from Alcatel-Lucent Technolo-
gies, by the National Science Foundation under grant number CCF-0429505, by an IBM Open Collabora-
tive Faculty award, and by donations from Intel Corporation. The views and conclusions contained in this
document are those of the author and should not be interpreted as representing the official policies, either
expressed or implied, of any sponsoring institution, the U.S. government or any other entity.

Keywords: self-adjusting computation, adaptivity, memoization, change-propagation,
continuation-passing style, typed compilation, cost semantics, trace distance, traceable
data type

Self-Adjusting Computation is the center of the mandala.

iv

Abstract

Self-adjusting computation is a paradigm for programming incremental
computations that efficiently respond to input changes by updating the out-
put in time proportional to the changes in the structure of the computation.
This dissertation defends the thesis that high-level programming abstractions
improve the experience of reading, writing, and reasoning about and the effi-
ciency of self-adjusting programs.

We show that high-level language constructs are suitable for writing read-
able self-adjusting programs and can be compiled into low-level primitives.
In particular, language constructs such as ML-style modifiable references and
memoizing functions provide orthogonal mechanisms for identifying stale com-
putation to re-execute and opportunities for computation reuse. An adaptive
continuation-passing style (ACPS) transformation compiles the high-level
primitives into a continuation-passing language with explicit support for in-
crementality.

We show that a high-level cost semantics captures the performance of
a self-adjusting program and a theory of trace distance suffices for formal
reasoning about the efficiency of self-adjusting programs. The formal ap-
proach enables generalizing results from concrete runs to asymptotic bounds
and compositional reasoning when combining self-adjusting programs.

We raise the level of abstraction for dependence-tracking from modifiable
references to traceable data types, which can exploit problem-specific struc-
ture to identify stale computation. We consider in-order memoization that
efficiently reuses work from previous runs in the same execution order and
out-of-order memoization that allows previous work to be reordered at an ad-
ditional expense.

The compilation approach is realized in the ∆ML language, an extension
to SML, and implemented as an extension to MLton with compiler and run-
time support. Experimental evaluation of ∆ML shows that applications with
modifiable references are competitive with previous approaches. Moreover,
traceable data types enable an asymptotic improvement in time and space us-
age relative to modifiable references.

vi

Acknowledgments

This dissertation culminates my research apprenticeship under my “official” advisor Guy
Blelloch and my “unofficial” advisor Umut Acar. I’m grateful to Umut for introducing
me to self-adjusting computation and for his persistent involvement in my academic de-
velopment. I’m grateful to Guy for taking me on as a graduate student and guiding me to
complete this work. Without Guy and Umut’s continuous support and mentorship I would
not have been able to complete this work nor learned so much about research.

I thank Steve Brookes and Bob Harper for reading this dissertation and providing valu-
able feedback that improved the presentation.

I’m indebted to Matthew Fluet, Kanat Tangwongsan, and Duru Turkoglu for their valu-
able collaboration. Matthew’s involvement was crucial for the formal setup and meta-
theoretical development, as well as the original ∆ML implementation and evaluation.
Kanat’s expertise in self-adjusting computation was essential for the implementation and
evaluation of traceable data types. Duru’s work on motion simulation provided important
feedback on ∆ML to improve its usefulness.

I’m enormously grateful to Steve Brookes, John Reynolds, Frank Pfenning for their
patient research advising when I was still getting my bearings. Steve was especially kind
in supervising my early graduate studies and gracious when I turned my focus towards
self-adjusting computation. My education was enriched by the POP group through the
excellent courses taught by Steve Brookes, Karl Crary, Bob Harper, Frank Pfenning, and
John Reynolds, as well as the countless extramural conversations with POP students.

I thank Alan Jeffrey for being my Alcatel-Lucent Bell Labs Graduate Fellowship men-
tor.

I thank Sharon Burks, Deb Cavlovich, Catherine Copetas, and Denny Marous for ex-
pediently handling many official matters.

Last but not least, I thank my family and friends for their enduring moral support. I
would never have gotten here without my parents’ support and unconditional love.

vii

viii

Contents

1 Introduction 1

1.1 Thesis . 1

1.2 Structure of the Dissertation . 3

2 Overview 5

2.1 Compilation . 5

2.1.1 Background . 5

2.1.2 Foreground . 6

2.1.3 Presentation . 12

2.2 Formal Reasoning: Cost Semantics and Trace Distance 12

2.2.1 Background . 12

2.2.2 Foreground . 13

2.2.3 Presentation . 20

2.3 Extensible Adaptivity: Traceable Data Types 21

2.3.1 Background . 21

2.3.2 Foreground . 26

2.3.3 Concrete TDTs . 29

2.3.4 Presentation . 36

2.4 Extensible Computation Memoization: In-Order and Out-of-Order 37

2.4.1 Background . 37

2.4.2 Foreground . 38

ix

2.4.3 Presentation . 38

3 The Src∗ Languages 39

3.1 Overview . 39

3.2 Syntax . 40

3.3 Static Semantics . 41

3.4 Dynamic and Cost Semantics . 43

3.4.1 Derivation Size and Cost . 47

3.5 Trace Distance . 49

3.5.1 Local Trace Distance . 50

3.5.2 Global Trace Distance . 54

3.5.3 Trace Contexts . 54

3.5.4 Precise Local Trace Distance . 56

3.6 SrcLazy . 64

4 The Tgt∗ Languages 73

4.1 Overview . 73

4.2 Syntax . 74

4.3 Static Semantics . 75

4.4 Dynamic and Cost Semantics . 77

4.4.1 Evaluation . 79

4.4.2 Computation Memoization . 82

4.4.3 Change-Propagation . 84

4.4.4 Meta-Theory . 87

4.5 Trace Distance . 91

4.5.1 Local Trace Distance . 91

4.5.2 Global Trace Distance . 92

4.5.3 Meta-Theory . 92

5 Translation 97

x

5.1 Overview . 97

5.2 Program Translation . 98

5.2.1 Meta-Theory . 102

5.3 Trace Translation . 105

5.3.1 Meta-Theory . 107

5.3.2 Discussion . 109

6 Implementation 111

6.1 Overview . 111

6.2 Language Extensions . 112

6.3 Library Interface . 112

6.4 Compiler Modifications . 116

6.5 Self-Adjusting Computation Library . 118

6.5.1 Traces and Time Stamps . 118

6.5.2 Change Propagation . 119

6.5.3 Implementing Traceable Data Types 124

6.5.4 Integrating Traceable Data Types 126

7 Evaluation 129

7.1 Overview . 129

7.2 ∆ML with Modifiable References . 130

7.2.1 Synthetic Benchmarks . 130

7.2.2 Input Generation . 130

7.2.3 Measurements . 130

7.2.4 Results . 131

7.2.5 Raytracer application . 133

7.3 ∆ML with Traceable Data Types . 134

7.3.1 Benchmarks . 134

7.3.2 Modref-based Data Structures 135

xi

7.3.3 Input Generation . 135

7.3.4 Metrics and Measurements . 136

7.3.5 Modref-based Programs vs. Traceable Programs 139

7.3.6 Traceable Programs vs. Static Programs 139

7.3.7 Graph Algorithms . 140

7.3.8 Sorting and Convex Hulls . 141

7.3.9 Trace Size and Stability . 142

7.4 Cost Semantics with In-Order Memoization 143

7.4.1 Map . 147

7.4.2 Reduce . 148

7.4.3 Merge Sort . 149

7.4.4 Filter . 150

7.5 Cost Semantics with Out-of-Order Memoization 151

7.5.1 Quicksort . 152

7.5.2 Depth-First Search on Graphs 153

7.5.3 Incremental Parsing and Evaluation 155

8 Conclusion 157
8.1 Related Work . 157

8.1.1 Dynamic and Kinetic Algorithms and Data Structures 157

8.1.2 Incremental Computation . 158

8.1.3 Self-Adjusting Computation . 160

8.1.4 Evaluation . 164

8.1.5 Retroactive Data Structures and Traceable Data Types 165

8.2 Future Work . 167

8.2.1 Self-Adjusting Computation . 167

8.2.2 Functional Reactive Programming 169

Bibliography 171

xii

List of Figures

2.1 The relation between pure, self-adjusting, and impure host mutator programs. 7

2.2 The partition function: ordinary (left), compilation-based self-adjusting
(center), and monadic-based self-adjusting (right) versions. 9

2.3 The partition function compiled. 11

2.4 The left diagram illustrates the correspondence between the source and
target from-scratch runs and the consistency of change-propagation in the
target. The right diagram illustrates the correspondence between distance
in the source and target, and the time for change-propagation in the target. 14

2.5 Two pairs of traces of a hypothetical program P at the level of queue oper-
ations and comparisons (top) and at the level of abstract queue operations
(bottom). Each pair corresponds to a run of P with inputs [a, 1, 2, . . . , n]
and [b, 1, 2, . . . , n]. 22

2.6 Code for heapsort in ∆ML. 34

2.7 Code for Dijkstra’s algorithm in ∆ML. 35

3.1 Src∗ typing Σ; Γ `δ e : τ . 42

3.2 The relation between normal (pure) and self-adjusting programs. 42

3.3 Src∗ evaluation σ; e ⇓ σ′; v′ (dynamic) and E ; σ; e ⇓ σ′; v′ ;T ′; c′(cost). 44

3.4 Src∗ decomposition for traces S � S ′, S
′

and actions B � B′, S
′
. . . . 50

3.5 Src∗ local search distance S1�S2 = d and synchronization distance S1	
S2 = d. 51

3.6 Additional rules for Src distance with explicit failure. 57

3.7 Src∗ (simple and precise) search distance T1 � T2 = d; df , bo, do (top)
(fragment) and synchronization distance T1 	 T2 = d; df , bo, do (bottom). 59

xiii

3.8 SrcLazy typing Σ; Γ `δ e : τ for suspensions. 65

3.9 SrcLazy evaluation E ; σ; e ⇓ σ′; v′ ;T ; c (cost) for suspensions. 66

3.10 Translation from SrcLazy to SrcImp (fragment). 67

4.1 Tgt typing Σ; Γ ` e : τ . 76

4.2 Reduction e ⇓ v (top) and evaluation S;σ; e ⇓E T
′;σ′; v′; d′ and S;σ;κ ⇓K

T ′;σ′; v′; d′ (bottom). 78

4.3 Trace reparation S ; Ṫ
rep `Z⇒ Ṫ ′ (top) and invocation vmk; Ṫ

mk `Z⇒ S ′; Ṫ ′ and
S ; varg; Ṫ

op `Z⇒ S ′; vres; Ṫ
′ (bottom). 82

4.4 In-order memoization with TDTs σ;T ; e
m
; •;Te; c

′ 83

4.5 Out-of-order memoization with modrefs ;S; e
m
; S ′;S ′e; c

′ (top) and ;S; e
m
;

S
′
;S ′e; c

′ (bottom). 84

4.6 Change-propagation S;S;σ y T ′;σ′; v′; d′. 85

4.7 The consistency of change-propagation in the target. 88

4.8 Tgt local search distance U1 � U2 = d and synchronization distance
U1 	 U2 = d. 90

4.9 The correspondence between distance and the time for change-propagation
in the target. 93

5.1 ACPS type translation Jτ srcK = τ tgt (top) and term translations JesrcK[=

etgt (middle) and JesrcK$ vtgt
k = etgt (bottom). 99

5.2 Execution of partition on lists [1,3] (left) and [1,2,3] (right). . 101

5.3 The correspondence between the source and target from-scratch runs. . . 102

5.4 The correspondence between distance in the source and target. 107

6.1 Signature for the Adaptive library. 113

6.2 The change-propagation algorithm. 120

6.3 CPA constructing new trace from old trace. 123

7.1 Selected measurements for quick-hull. 132

7.2 Ray-tracer output. 133

xiv

7.3 Measurements for from-scratch runs (left) and updates (right) with our
graph benchmarks; timing (vertical axis in ms) as input size (horizonal
axis) varies. 140

7.4 Detailed measurements for the sorting and graham-scan experiments: tim-
ing (vertical axis in ms) as input size (horizontal axis in thousands of ele-
ments) is varied. 140

7.5 Trace size (in thousands of trace elements) and average trace difference
(in trace elements on a log scale) of sorting benchmarks as input size is
varied: trace size of traceable heapsort (left), trace size of quicksort and
modref-based heapsort as normalized by the trace size of traceable heap-
sort (center), and average trace difference (right). 141

7.6 Time per kinetic event (left), speedup for an update (center), and total
simulation time (seconds) with time-slicing (right). 142

7.7 Code for the examples. 145

7.8 Trace distance between mapA $ [1,2,3] and mapA $ [1,3]. . . . 146

7.9 Deleting the key m swaps the order in which quicksort performs a large
number of subcomputations shown with triangles. 152

7.10 Deleting edge (a, b1) swaps the order in which a DFS visits components
B and C. 154

7.11 Evaluation with (i,x,y) bound to (true,n,m) (top), (true,m,n)
(middle), (false,m,n) (bottom). 155

xv

xvi

List of Tables

7.1 Summary of benchmark timings. 132

7.2 Summary of raytracer timings. 137

7.3 Summary of data types used in our benchmarks. Every self-adjusting pro-
gram also uses the modref data type. 137

7.4 Traceable vs. modref-based implementations: Ti (in ms) is the from-
scratch execution time, Tu (in µs) is the average time per update, and S
(in MB) is the maximum space usage as measured at garbage collection. . 138

7.5 Traceable SAC versus static: Ti (in ms) is the from-scratch execution time,
and Tu (in µs) is the average time per update. 138

xvii

xviii

Chapter 1

Introduction

1.1 Thesis

Self-adjusting computation is a paradigm for programming incremental computations that
efficiently respond to input changes by updating the output in time proportional to the
changes in the structure of the computation. Running a self-adjusting program constructs
a trace of the execution that captures the data and control dependencies of the computa-
tion and identifies opportunities for computation reuse. To adjust the program to different
inputs, a change-propagation mechanism edits the trace with a combination of adaptiv-
ity and computation memoization. Adaptivity uses the data dependencies of the trace to
find and re-execute subcomputations that are inconsistent relative to the input changes.
Dually, computation memoization suspends re-execution upon encountering a reuse point
and change-propagation can fast forward to the next inconsistency in the trace, thus reusing
the unaffected portions of the computation from the previous run. Therefore, updating the
computation takes time proportional to the changes in the structure of the trace.

Previous work on self-adjusting computation identified adaptivity [Acar et al., 2006c]
and computation memoization [Acar et al., 2003] as complementary mechanisms for change-
propagation in a general-purpose language, developed efficient implementation techniques
for change-propagation based on traces (a.k.a. memoized dynamic dependence graphs) [Acar
et al., 2006b], proposed modal and monadic language constructs for writing self-adjusting
programs, devised a notion of trace stability to identify the applicability of self-adjusting
computation [Acar, 2005]. Self-adjusting computation has been empirically validated in
a number of application domains, including hardware verification [Santambrogio et al.,
2007], invariant checking [Shankar and Bodik, 2007], motion simulation [Acar et al.,

1

2006d, 2008b], and machine learning [Acar et al., 2007c, 2008c], and other algorithmic
problems [Acar et al., 2004, 2005, 2009]. This dissertation builds upon the preceding
foundations to defend the following:

Thesis Statement. High-level programming abstractions improve the experi-
ence of reading and writing, enable reasoning about the performance of, and op-
timize the efficiency of self-adjusting programs.

We substantiate this claim with the following work.

Compilation. We show that high-level language constructs are suitable for writing read-
able self-adjusting programs and can be compiled into low-level primitives. In particu-
lar, language constructs such as ML-style modifiable references and memoizing functions
provide orthogonal, direct style mechanisms for identifying adaptivity and computation
memoization. An adaptive continuation-passing style (ACPS) transformation compiles
the direct style language constructs into a continuation-passing language with explicit sup-
port for change-propagation. In contrast to previous modal and monadic languages [Acar
et al., 2006c, 2003, 2006b] for self-adjusting computation, high-level direct style con-
structs enable a natural programming style and compilation avoid the need to manually
rewrite programs. This compilation approach is realized in the ∆ML language—an ex-
tension to SML—and implemented as an extension to MLton with compiler and run-time
support. ∆ML is experimentally shown to be competitive with previous approaches to
self-adjusting computation.

Formal Reasoning. We show that a high-level cost semantics captures the performance
of a self-adjusting program and a theory of trace distance suffices for formal reasoning
about the efficiency of change-propagation. The formal approach enables generalizing
results from concrete runs to asymptotic bounds and compositional reasoning when com-
bining self-adjusting programs. Formal reasoning complements empirical studies that are
limited to particular input sizes and the analytical approach of trace stability that requires
whole-program analysis.

Extensibility. Finally, we show that parameterizing the language by traceable data types
(TDTs) and different forms of memoization broadens the class of programs amenable to
self-adjusting computation.

Traceable data types generalize dependence-tracking from the level of references to
a user-controlled level of granularity that can exploit problem-specific structure and thus
improve the performance of change-propagation. In addition to single- and multi-write

2

references, we consider traceable data types for accumulating values from a commutative
group, partitioning a totally-ordered (possibly-continuous) domain into intervals, queues,
priority queues, and dictionaries.

We also consider in-order and out-of-order computation memoization as alternative
mechanisms for reusing computation during change-propagation. In-order computation
memoization only allows change-propagation to reuse subcomputations that occur in the
same relative order across runs, whereas out-of-order computation memoization avoids
this restriction. Out-of-order memoization broadens and simplifies the applicability of
self-adjusting computation to various classes of programs, including lazy (call-by-need)
computation with its unpredictable order of evaluation. Previous work on self-adjusting
computation considered the efficient implementation of in-order computation memoiza-
tion for modal and monadic languages [Acar et al., 2006c, 2003, 2006b], here we consider
both in-order and out-of-order computation memoization for a continuation-passing style
language and its interaction with traceable data types.

1.2 Structure of the Dissertation

In Chapter 2, we motivate the need for high-level programming abstractions for self-
adjusting computation. We consider previous language proposals for self-adjusting com-
putation and the need for compilation support. We give a high-level description of the cost
semantics and trace distance as a means to formally reason about self-adjusting programs,
in complement to empirical and analytic approaches. We describe the limitations of data
dependence-tracking at the level of memory cells and argue for the usefulness of traceable
data types. Finally, we compare in-order and out-of-order computation memoization as
alternative means of obtaining efficient self-adjusting programs.

In Chapter 3, we present a family of λ-calculus source languages Src∗ with memoiz-
ing functions and parameterized by any number of traceable data types with direct style
operations. The dynamic and cost semantics of Src∗ yields from-scratch evaluation of
programs, and produces a tree-shaped trace of a program’s execution with an associated
cost of evaluation. A formal theory of trace distance quantifies the difference between two
runs, which is asymptotically equivalent to the cost of change-propagation. A local trace
distance, which corresponds to in-order computation memoization, yields the edit distance
between traces. A global trace distance, which corresponds to out-of-order computation
memoization, decomposes each run into trace slices (traces with holes) representing sub-
computations which can be reordered and compared with local trace distance. Trace dis-
tance can be used to derive asymptotic bounds on the performance of change-propagation

3

and to reason compositionally about the combination of self-adjusting programs.

In Chapter 4, we present a family of λ-calculus target languages Tgt∗ with a low-level
memoization construct and parameterized by any number of traceable data types with
continuation-passing operations. The dynamic and cost semantics of Tgt∗ includes from-
scratch evaluation as well as change-propagation for adjusting a previous run to different
inputs, and produces list-shaped traces due to the continuation-passing discipline with an
associated cost of evaluation. The Tgt∗ languages are parameterized by either in-order
or out-of-order computation memoization, the former reuses tail segments of a previous
run thus limiting reuse to the same execution order, while the latter reuses arbitrary trace
segments of a previous run thus allowing reordering. Analogous to the Src∗ languages,
a formal theory of trace distance quantifies the difference between two runs, with local
and global trace distance corresponding to in-order and out-of-order memoization, respec-
tively. We show that change-propagating a Tgt execution has a cost proportional to trace
distance and produces a result consistent with a from-scratch execution.

In Chapter 5, we give an adaptive continuation-passing style translation from Src∗ to
Tgt∗ parameterized by any number of TDTs which preserves the static semantics, and
asymptotically preserves the dynamic and cost semantics and trace distance.

In Chapter 6, we discuss the ∆ML language as an implementation of the compilation-
based approach with compiler and run-time support. In Chapter 7, we present experimental
evaluation of the compilation with modifiable references and other traceable data types,
and revisit the examples of Chapter 2 with applications of the cost semantics and trace
distance with in-order and out-of-order memoization.

In Chapter 8, we conclude with related and future work.

4

Chapter 2

Overview

In this chapter, we discuss previous work and motivate the need for high-level program-
ming abstractions for self-adjusting computation. The overarching goal is to improve the
programmability of self-adjusting computation, which we achieve through (1) the design
a high-level source language for writing self-adjusting programs that respond efficiently
to input changes and with syntax and semantics similar to a conventional language, (2)
a formal cost semantics for the user to reason about the responsiveness of the program
under input changes, and (3) an extensible language with support for dependence-tracking
of different data types and alternative forms of memoization.

2.1 Compilation

2.1.1 Background

An ordinary program can be converted into a self-adjusting version by manually integrat-
ing the change-propagation mechanism into the program. Since this can be very difficult,
previous work proposed languages with a general-purpose change-propagation mecha-
nism and specialized language constructs to identify data dependencies and opportuni-
ties for computation reuse. The proposed language constructs follow modal [Acar et al.,
2006c, 2003] or monadic [Acar et al., 2006b,a] typing disciplines that stratify the program
to distinguish data as stable or changeable—i.e., whether it can change across runs—and
make the distinction explicit to the control structure. The languages were implemented
as libraries in SML [Acar et al., 2006b] and Haskell [Carlsson, 2002], which required the
programmer to obey a monadic discipline, explicitly delimit the scope of reads, program in

5

a destination-passing style, and apply memoization by manually declaring and hashing all
free variables of memoized expressions. Thus an ordinary program can be systematically
rewritten into a self-adjusting version using these languages, but the process is difficult and
error-prone due to code restructuring imposed by the typing discipline and proper-usage
restrictions of the implementation, some of which cannot be enforced statically. After
some attempts at specifying a simple, safe, systematic interface through library support,
previous work points out that direct language and compiler support is essential for writ-
ing self-adjusting programs, but leaves the nature of such language and compiler support
unspecified [Acar et al., 2006a].

2.1.2 Foreground

The aforementioned library-based languages use modal and monadic constructs that make
data dependencies explicit in the structure of the self-adjusting program. We propose a
natural, high-level source language with annotations, which eliminates the burden of re-
structuring a program for self-adjusting computation, and employ a compilation-based
approach that forgoes the manually-identified dependencies and instead automatically in-
fers an approximation from the annotations. We formalize the compilation as a translation
(Chapter 5) from a source language Src (Chapter 3) with direct style primitives to a self-
adjusting target language Tgt (Chapter 4) with continuation-passing style (CPS) Appel
[1991] primitives.

The Src language is a direct style λ-calculus with ML-style references (and other trace-
able data types described in Section 2.1) to identify changeable data and memoizing func-
tions to identify opportunities for computation reuse. These constructs suffice to anno-
tate an existing direct style program without code restructuring, which can be compiled
into an equivalent self-adjusting Tgt version. The language is general-purpose (Turing-
complete) and expressive: it allows writing both structured programs (e.g., iterative divide-
and-conquer list algorithms) as well as unstructured programs (e.g., graph algorithms).

The target of compilation is the Tgt language, a λ-calculus with continuation-passing
ML-style references and a memoization primitive for computation reuse across runs. The
language is self-adjusting: its semantics includes evaluation and change-propagation that
can be used to reduce expressions to values and adapt computations to input changes.

The compilation scheme consists of an adaptive continuation-passing style (ACPS)
translation that infers the dependencies between changeable data and inserts memoiza-
tion points at function call and return sites. The ACPS translation uses continuations to
approximate the scope of use of changeable data, which, in the modal and monadic ap-

6

pure

self-adjusting

meta-level host mutator

Figure 2.1: The relation between pure, self-adjusting, and impure host mutator programs.

proaches, was made explicit through programmer-supplied, fine-grained dependence in-
formation. Since a continuation represents the entire rest of a computation, the approach
can cause change-propagation to re-execute code unnecessarily—continuations are coarse
approximations of actual dependencies. To avoid unnecessary recomputation, the transla-
tion produces memoizing CPS functions as well as memoizing continuations. Memoizing
a CPS function directly on its data and continuation arguments does not suffice because
it prevents the result of a function call from being reused when the continuation differs,
even if the data arguments are the same. We solve this problem by treating continuations
themselves as changeable data. When a memoizing CPS function encounters previously-
seen data but a different continuation, it can immediately pass the memoized result to the
(new) continuation without having to re-execute the body of the function.

Writing Self-Adjusting Programs

In typical usage, a host mutator program contains a self-adjusting subprogram that manip-
ulates changeable data, i.e., data that can be changed by external factors across runs. The
host mutator creates the initial changeable input data, runs a self-adjusting program, and
observes the output. Then, it can change the input data (via side-effecting operations) and
force change-propagation to update the output of the self-adjusting program.

We present examples in ∆ML, an SML extension for self-adjusting programs based
on the compilation approach. A self-adjusting program consists of normal (pure, non-
adaptive) functions and adaptive functions of type τ -$> τ declared with the afun and

7

mfun keywords; the latter declares a memoizing adaptive function. The infix $ keyword
is used for adaptive application; an adaptive application may only appear in the body of
an adaptive function (and may not appear in the body of a normal function). Each self-
adjusting program has a single entry point which itself is an adaptive function. Note that
dropping the underlined code yields a non-self-adjusting SML version.

The distinction between adaptive functions and normal functions serves both language
design and implementation purposes. From the design perspective, the distinction prevents
self-adjusting computation primitives from being used outside of a self-adjusting compu-
tation. From the implementation perspective, the distinction improves the efficiency of
our compilation strategy and the resulting self-adjusting programs. In particular, only the
adaptive functions need to be compiled into continuation-passing style.

Changeable data is manipulated through the modifiable references (abbreviated mod-
ref), which are ML-style references of type τ modref with support for adaptivity. Mod-
ifiables are manipulated with the direct style primitives:

put: α -$> α modref,
get: α modref -$> α,
set: α modref * α -$> unit.

The put primitive places a value into a modref, the get primitive returns the contents of
a modref, and the set primitive updates the contents of a modref. Since the primitives
have adaptive function types, they may only be used within a self-adjusting computation.
In Section 2.3, we present other traceable data types for representing changeable data.

The host mutator may create, modify, and inspect changeable data via a collection
of meta-level primitives, which we treat informally in this section. Figure 2.1 shows the
relation between pure programs, self-adjusting programs, and meta-level host mutator pro-
grams.

Example 1
Figure 2.2 shows the ordinary (left), compilation-based self-adjusting (center), and monadic-
based self-adjusting (right) [Acar et al., 2006b,a] versions of a function for partitioning a
list with a predicate. The function takes a predicate p and a list l and returns two lists
consisting of the elements of l for which p returns true and false, respectively.

In the ordinary version, lists are defined by the usual recursive datatype and the func-
tion traverses the list and constructs the output from tail to head, applying the predicate to
each element of the list.

The compilation-based self-adjusting version is obtained by the following modifica-
tions. First, we make the list type changeable by placing the tail element in a modref,

8

datatype ’a list =
nil | :: of ’a * ’a list

fun partition p l = let
fun loop l =
case l of

nil =>
(nil,nil)

| h::t => let
val (a,b) = loop t
in
if p h then
(h::a,b)
else
(a,h::b)

end
in loop l end

datatype ’a cell =
nil | :: of ’a * ’a list
withtype ’a list =
’a cell modref

afun partition p l = let
mfun loop l =
case get $ l of

nil =>
(put $ nil,put $ nil)

| h::t => let
val (a,b) = loop $ t
in
if p h then
(put $ (h::a),b)
else
(a,put $ (h::b))

end
in loop $ l end

datatype ’a cell =
nil | :: of ’a * ’a list
withtype ’a list =
’a cell modref

fun partition p l = let
fun loop l = read(l, fn l =>
case l of
nil =>
write(mod(write(nil),mod(write(nil))

| h::t => memo (h,t) (fn () => let
val ab = mod(loop t)
in read(ab, fn (a,b) =>
if p h then
write(mod(write(h::a),b)
else
write(a,mod(write(h::b)))

end))
in loop l end

Figure 2.2: The partition function: ordinary (left), compilation-based self-adjusting (cen-
ter), and monadic-based self-adjusting (right) versions.

which allows the mutator to modify lists by inserting/deleting elements. Second, we
change the partition function to operate on modref-based lists by inserting a get
operation when destructing a list and inserting a put operation when constructing a list.
Third, since the auxiliary function part is recursive, we memoize it by declaring it with
mfun. Note that the self-adjusting syntax and primitives (underlined) do not require sig-
nificant changes to the code: simply deleting them yields the ordinary implementation of
partition.

The monadic-based self-adjusting version is obtained by using the following primi-
tives. Due to a destination-passing discipline, modrefs are allocated with the mod prim-
itive before they are initialized with write. Moreover, all changeable data should be
dereferenced with the monadic read, which explicitly delimits the scope of the operation
and must end in a write. The memo construct requires all free variables of memoized
expressions to be manually identified and hashed. Note that the monadic type discipline
requires significantly more code restructuring, even for this simple function. The signifi-
cance of the changes is best measured by considering the differences in the abstract syntax
trees, not the differences in the lexical tokens.

9

Compiling Self-Adjusting Programs

Compilation translates a Src self-adjusting program into an intermediate language that
generalizes the previously proposed monadic primitives. The adaptive continuation-passing
style (ACPS) transformation serves to automatically infer a conservative approximation
of the dynamic data dependencies. To prevent the inferred, approximate dependencies
from degrading the performance of change-propagation, we generate memoizing versions
of CPS functions that can reuse previous work even when they are invoked with differ-
ent continuations. The approach offers a natural programming style that requires mini-
mal changes to existing code, while statically enforcing the invariants required by self-
adjusting computation.

To compile a Src self-adjusting program, we translate adaptive functions into equiva-
lent CPS functions and memoize them if so indicated by the mfun keyword. Note that,
for self-adjusting programs, memoization during change-propagation attempts to match
function calls from the previous run of the program; there is no attempt to match calls
within a run of the program. Since the arguments of a CPS function include its con-
tinuation and memoizing a function requires that the current arguments must match the
arguments of a previous call, memoizing functions in CPS requires some care. Memo-
izing on the continuation decreases the effectiveness of memoization because a function
call cannot match when the continuations differ. We address this problem by translating
memoizing adaptive functions to CPS functions that treat their continuations as change-
able data. This allows the memoizing function to match when the modifiable (containing
the continuation) matches a previous call, ignoring the contents of the modifiable. Since
the continuation is changeable data, if it differs in the current run from the previous run,
then change-propagation will re-execute any invocation of the continuation, but without
having to re-execute the body of the matched function. We memoize functions and con-
tinuations with a target-level primitive memo : (α -> res) -> α -> res. Ef-
fectively, memo (f x) checks whether f x (for the same f and x) was executed in the
previous run. If so, there is a memoization hit; if not, f is invoked with x. In either case,
the fact that memo (f x) was executed is recorded for the next run.

The intermediate target language provides modifiable references τ modref with
continuation-passing primitives:

putk: α -> α modref cont,
getk: α modref -> α cont,
setk: α modref * α -> unit cont,

where τ cont is (τ -> res) -> res for some abstract result type res. The putk

10

datatype ’a cell = nil | :: of ’a * ’a list
withtype ’a list = ’a cell modref

fun partition p ml k = let
fun loop (ml, k) = getk ml (fn l =>

case l of
nil => putk nil (fn ma =>

putk nil (fn mb => k (ma, mb)))
| h::mt => let

val k’ = fn (a,b) =>
if p h then
putk (h::a) (fn ma => k (ma,b))

else
putk (cons(h,b)) (fn mb => k (a,mb))

in loop memo mt k’ end)
and loop memo ml k = let

val k memo = fn r => memo k r
in
putk k memo (fn mk => let

val k’ = fn r => getk mk (fn k => k r)
in memo loop (ml, k’) end)

end
in loop memo ml k end

Figure 2.3: The partition function compiled.

primitive initializes a new modifiable with a value and passes the reference to the contin-
uation; this primitive can reuse modifiables written in the previous run of the program,
which is essential for efficient change-propagation. The getk primitive dereferences a
modifiable and passes the contents to the continuation. The setk primitive updates the
modifiable and passes a unit value to the continuation. Src-level modrefs are compiled into
Tgt-level modrefs by structurally translating the modref type and each put, get, and
set primitive to the corresponding continuation-passing version.

Example 2
Figure 2.3 shows the compiled code for partition. To obtain this code, we trans-
late the functions partition and loop and adaptive applications into CPS, CPS-
convert put/get into putk/getk with an explicit continuation, and memoize loop as
loop memo. To do so, loop memo memoizes its continuation and writes it into a mod-
ifiable. It then calls loop with a continuation that, when invoked, reads and invokes the
original continuation. Since the application of loop is memoizing, it will match when
it is called with the same modifiable list and the continuation k is written into the same
modifiable. This can be ensured by memoizing the continuation modifiable chosen for
each argument modref-based list.

11

Implementation

We validate the feasibility of the compilation-based approach proposal with the ∆ML lan-
guage and its implementation. The ∆ML extends Standard ML with the Src-level prim-
itives for self-adjusting computation. The implementation is realized as a transformation
pass in the whole-program optimizing compiler MLton [MLt] together with a run-time
library that provides Tgt-level functionality for self-adjusting computation.

We perform an experimental analysis by compiling self-adjusting versions of a num-
ber of (annotated) benchmarks. Our experiments indicate that the compiled self-adjusting
programs can be slower by a constant factor than their non-self-adjusting counterparts
when run from scratch. When responding to input changes, however, self-adjusting pro-
grams can be orders of magnitude faster than recomputing from scratch (as compared to
the non-adaptive versions). The experiments indicate that the compilation approach is
asymptotically comparable to the previous evaluation of self-adjusting computation based
on manual rewriting using a monadic library [Acar et al., 2006b,a].

2.1.3 Presentation

We present the Src language in Chapter 3, the Tgt language in Chapter 4, and the for-
mal ACPS translation in Chapter 5. We present the ∆ML language implementation in
Chapter 6 and an experimental evaluation in Chapter 7.

2.2 Formal Reasoning: Cost Semantics and Trace Dis-
tance

2.2.1 Background

The applicability of self-adjusting computation has been demonstrated through experi-
ments [Acar et al., 2006b] and semi-formal algorithmic [Acar et al., 2006c, 2003, Acar,
2005] analysis of the modal and monadic approaches. Previous applications of the ap-
proach often only give experimental results to illustrate performance gains [Acar et al.,
2006b,d, 2008b]. Giving asymptotic bounds requires integrating change-propagation into
the algorithm by considering a low-level machine model akin to the RAM model [Acar
et al., 2004], thus the bounds derived only apply indirectly to the code as written. Source-
level reasoning about the overhead of self-adjusting programs and the efficiency of change-

12

propagation is difficult due to the complex semantics of change-propagation and the indi-
rect nature of previously proposed language techniques [Acar et al., 2006b].

To see the first difficulty, consider executing program with some input and later chang-
ing the input. As a self-adjusting program executes, information about the execution
(such as data and control dependencies) is recorded. After the input is changed, change-
propagation updates the output by using the recorded dependence information to find the
parts of the computation affected by the change and updating stale computation by re-
executing code. When re-executing code, change-propagation may reuse previous com-
putations with a form of computation memoization. Since change-propagation selectively
re-executes parts of the code snippets under a new program state but reuses other parts of
the execution, it is hard to reason about its complexity. In particular, the user may need to
reason about the contexts in which sub-expressions are evaluated to distinguish changed
and unchanged data, which can be difficult even with limited forms of computation reuse
techniques such as lazy evaluation [Wadler and Hughes, 1987, Sands, 1990a,b].

The second difficulty arises from the nature of the modal and monadic primitives.
These approaches require the programmer to explicitly allocate locations for changeable
data prior to initialization and identify their data dependencies, delimit the static scope
of the operation that reads changeable data and identify their control dependencies, and
apply memoization by carefully considering whether the data dependencies are local or
non-local [Acar et al., 2006b]. Depending on the choice of the scope for the primitives and
the use of memoization, the programmer may observe drastically different performance by
even a slight change to the code.

2.2.2 Foreground

We propose formal reasoning for compilation-based self-adjusting programs by means
of a cost semantics that captures an abstract cost of evaluation of from-scratch runs and
change-propagation for updating runs, and a formal theory of trace distance that quan-
tifies the dissimilarities between two runs under (possibly) different stores and coincides
with the cost of change-propagation. By defining a cost semantics and trace distance for
both the Src and Tgt languages and showing they are related by the ACPS translation, we
provide realistic source-level reasoning techniques that guarantee performance. In partic-
ular, we show that the translation (1) preserves the extensional (result) semantics of the
source programs and intensional (cost) semantics of from-scratch runs, and (2) ensures
that change-propagation between two evaluations takes time bounded by their relative dis-
tance.

13

σsrc; esrc vsrc;T src

σtgt; etgt vtgt;T tgt

σtgt;T tgt
0 vtgt;T tgt

⇓src

csrc

translation translation

⇓tgt

ctgt ∈ O(csrc)

consistency

ytgt

T src
1 T src

2

T tgt
1 T tgt

2

T tgt
1 T tgt

2

	src

dsrc

translation translation

	tgt

dtgt ∈ O(dsrc)

ytgt

dtgt

Figure 2.4: The left diagram illustrates the correspondence between the source and tar-
get from-scratch runs and the consistency of change-propagation in the target. The right
diagram illustrates the correspondence between distance in the source and target, and the
time for change-propagation in the target.

Unlike previous techniques, this semantics-based approach enables composing and
generalizing the results from concrete evaluations to asymptotic bounds. We develop a
notion of trace contexts, which are traces with holes that can be filled with other traces.
We prove that, under certain conditions, distance is additive under substitution: the dis-
tance between traces obtained via substitution into two contexts is the same as the distance
between the substituted traces plus the distance between the contexts. In particular, the
approach enables programmer to quantify how effective change-propagation can be with
a given input for a given change. Trace contexts allow bounds on concrete evaluations
to be generalized to asymptotic bounds for any input. Furthermore, trace contexts en-
able compositional reasoning such that bounds for complex programs can be obtained by
combining the bounds for its individual components.

Figure 2.4 illustrates our approach. The dynamic and cost semantics evaluates a Src
expression (esrc) in the context of a store (σsrc) and yields a value (vsrc), a trace of the
evaluation (T src), and a step count (csrc). We quantify the dissimilarity between evalua-
tions of Src programs with a trace distance (T src

1 	src T src
2 = dsrc states that the distance

between the traces T src
1 and T src

2 is dsrc). Intuitively, the trace distance measures the edit
distance between evaluations. To give an effective distance, we show that it suffices to
record function calls and store operations in the trace. We don’t record complete stores
or evaluation contexts. We use evaluation contexts, which describe how results are used,
to prove our meta-theoretic results, but they are not necessary for source-level reasoning.

14

Since our language is stateful, recording complete stores would lead to a distance mea-
sure that overestimates distance significantly; requiring evaluation contexts would make
reasoning cumbersome.

Evaluation of a Tgt expression (etgt) takes place in the context of a store (σtgt) and
yields a value (vtgt), a trace (T tgt), and a step count (csrc). The semantics includes a change-
propagation mechanism (ytgt) that can replay a trace from a previous run (e.g., T tgt

0) in a
store (σtgt) to produce a value and a trace that are consistent with a from-scratch execution,
while reusing the work from the initial trace (T tgt

0). We give a cost semantics for the Tgt
language that counts steps of evaluation, but not steps of change-propagation. As in Src,
we define a Tgt distance for traces (tgt) and bound the time for change-propagation by
the distance between the computation traces before and after propagation.

We prove the following properties of the translation (cf., Figure 2.4).

• Extensional semantics. The translation preserves the evaluation of Src programs
(top left square). If esrc evaluates to vsrc in store σsrc, then the translated expression
etgt evaluates to the translated value vtgt in the translated store σtgt.

• Intensional semantics. The translation preserves the asymptotic cost of from-
scratch runs (top left square). If evaluation takes c steps in Src, then running the
translated expressions takes O(c) steps in Tgt.

• Consistency of change-propagation. Change-propagation in Tgt preserves the ex-
tensional semantics of from-scratch runs (bottom left square). If T tgt is the trace
from evaluating a Tgt expression in some store (i.e., σ0; e ⇓tgt v0;T0), then change-
propagating the trace T0 under another store σ yields the same value and trace as
running e from-scratch in σ.

• Trace distance. Translated programs have asymptotically the same trace distance
as their source (top right square). If two Src derivations have distance d, then the
distance between their Tgt translations is O(d).

• Change-propagation time. Time for change-propagation in Tgt coincides asymp-
totically with Src trace distance (right diagram).

To prove the first two properties, we generalize a folklore theorem about CPS to show
that an ACPS-compiled program preserves the evaluation and asymptotic complexity of
a Src program. The ACPS translation is more complicated than the standard translation
because it threads continuations through the store. We give a simple, structural proof of
the consistency of change-propagation by casting it as a full replay mechanism. We prove

15

the fourth property by establishing a relation between the traces of Src and Tgt programs.
This property also bounds the time for change-propagation (the last property) by showing
that change-propagation in Tgt takes time proportional to the Tgt distance.

Trace Distance

We develop techniques for reasoning about the effectiveness of change-propagation by
means of trace distance. A trace represents the execution of a program and is an abstrac-
tion of the program’s evaluation derivation restricted to memoizing function applications
and store operations. Here, we discuss trace distance in terms of the dissimilarities be-
tween evaluation derivations to explain which parts of the derivation are essential. The
idea is to compare the evaluation derivations of a program with two different, typically
similar, inputs and compute the edit distance between these derivations. Our results guar-
antee that compiled programs can respond to a change in time proportional to the distance
between the corresponding traces.

Example 3
Consider the following standard implementation of a mapA function that applies a func-
tion i2c pointwise to map integers to alphabet characters. As a compilation-based self-
adjusting program, we define linked lists with modifiable reference pointers and memoize
the mapA function by declaring it with mfun.

datatype ’a cell = nil | :: of ’a * ’a list
withtype ’a list = ’a cell modref

mfun mapA l =
case get $ l of
nil => put $ nil

| h::t =>
let t’ = mapA $ t
in put $ ((i2c h)::t’) end

Running mapA with initial input [1,3] produces the result [a,c] in linear time in
the length of the list. The input can be changed to [1,2,3] by splicing a new cons cell
into the first tail pointer. After this change, we can run change change-propagation to
update the output to [a,b,c]. Self-adjusting computation tracks dependence informa-
tion that enables change-propagation to update the initial execution and output of mapA
efficiently. Intuitively, change-propagation could translate the new integer into a letter

16

and insert the new element in the right position in the output in constant time. Trace dis-
tance facilitates source-level formal reasoning about the efficiency of change-propagation
in terms of the similarities between the two runs, instead of target-level reasoning about
the compiled program and its operational behavior.

Distance between pure runs. A first cut at trace distance is to compare the two runs
of a purely functional program, i.e., without the use of references. Since a purely func-
tional program explicitly passes data through the program, any changes to the input as
well as subsequent updates to the output become apparent in the evaluation derivation.
This prevents the computation change from beihng localized at the point where the in-
put change affects its dependencies. Therefore, the two runs would differ wherever the
input changes and any subsequent changes are passed through the program, which is an
overly pessimistic approximation and would be problematic for compositional reasoning
to obtain asymptotic results.

Example 4
The evaluation derivations of a purely functional version of mapA with inputs [1,3] and
[1,2,3] are shown below, using the notation e ⇓ v′ for evaluating an expression e to
value v′. The similar computations are the conversion of the integers 1 and 3 to characters
and the application of mapA to the suffix list [3]. The differences between the runs are
highlighted. The obvious difference is the conversion of the new element 2. However,
due to the purely functional evaluation, the new element shows up in any list that contains
the new element. In this example, the application mapA $ [1,2,3] also differs. If the
list had a longer prefix, say [n1,...,nk,1,2,3], then all prefix applications mapA
$ [n1,...,nk,1,2,3], mapA $ [n2,...,nk,1,2,3], . . . , mapA $ [nk,1,2,3]
would also differ. Therefore the difference between runs would be linear in the length of
the list—far larger than the constant that we expect.

i2c(1) ⇓ a
i2c(3) ⇓ c mapA$nil ⇓ nil

mapA$[3] ⇓ [c]
mapA$[1,3] ⇓ [a,c]

i2c(1) ⇓ a

i2c(2) ⇓ b
i2c(3) ⇓ c mapA$nil ⇓ nil

mapA$[3] ⇓ [c]

mapA$[2,3] ⇓ [b,c]

mapA$[1,2,3] ⇓ [a,b,c]

17

Distance between impure runs with stores. To make the data and computation differ-
ences between runs only appear locally, self-adjusting computation requires changeable
data to be manipulated via modifiable references. However, directly comparing evaluation
derivations with explicit stores yields a distance that is too coarse. Since inputs are repre-
sented in the store and the store is threaded through the derivation, stores won’t match and
all derivation steps differ.

Example 5
The evaluation derivations of mapA with explicit use of references are shown below, using
the notation σ ; e ⇓ σ′ ; v′ for the evaluation of expression e under store σ to value v′
under updated store σ′. For brevity, we show the mapA function applications, but omit
reference operations and i2c applications. All derivation steps differ between the runs
for [1,3] and [1,2,3] because they all contain different highlighted stores. Therefore
the difference between runs would again be linear in the size of the input.

σ13 ;mapA$` ⇓ σ13 [`′ = nil]; `′

σ13 ;mapA$`3 ⇓ σ13 [`′ = nil][`c = c::`′]; `c

σ13 ;mapA$`1 ⇓ σ13 [`′ = nil][`c = c::`′] [`a = a::`c] ; `a

σ123 ;mapA$` ⇓ σ123 [`′ = nil]; `′

σ123 ;mapA$`3 ⇓ σ123 [`′ = nil][`c = c::`′]; `c

σ123;mapA$`2 ⇓ σ123[`′ = nil][`c = c::`′][`b = b::`c]; `b

σ123 ;mapA$`1 ⇓ σ123 [`′ = nil][`c = c::`′] [`b = b::`c][`a = a::`b] ; `a

Distance between impure runs with store operations. To recognize the similarity be-
tween the derivations and restrict the dissimilarities to computation changes, we exclude
the store from the derivations and include the store operations instead. Of course, it is
possible to make the “distance” between derivations arbitrarily small when we suppress
arbitrary parts of the derivation. We prove that this distance is in fact realistic by showing
that the translation preserves distance asymptotically between the Src and Tgt languages,
and that the Tgt language has provably efficient change-propagation, i.e., that change-
propagation takes time proportional to the distance.

Example 6
The evaluation derivations of mapA with store operations are shown below, omitting the

store and representing store operations explicitly. The notation `
get→ v represents fetching

18

value v from location `, and `
put← v represents allocating and initializing ` with value

v. The only differences between the derivations (highlighted) are the operations on the
new element 2. Note that the difference remains the same even if we add more elements
to these lists (e.g., [. . .,0,1,3,4,. . .] and [. . .,0,1,2,3,4,. . .]). Later, we show
that the difference between two evaluations of mapA that differ by one element remains
the same as shown in this figure regardless of the input size.

`1
get→ 1::`3

`3
get→ 3::`

`
get→ nil `′

put← nil

mapA$` ⇓ `′ `3
put← c::`′

mapA$`3 ⇓ `c `a
put← a::`c

mapA$`1 ⇓ `a

`1
get→ 1::`2

`2
get→ 2::`3

`3
get→ 3::`

`
get→ nil `′

put← nil

mapA$` ⇓ `′ `c
put← c::`′

mapA$`3 ⇓ `c `b
put← b::`c

mapA$`2 ⇓ `b `a
put← a::`b

mapA$`1 ⇓ `a

There are several properties of trace distance that we would like to note. First, trace
distance is defined relationally, which allows the approach to apply to any concrete im-
plementation technique consistent with the semantics: our main theorems state that our
translation can match any Src distance computed relationally. Second, trace distance is
sensitive to the choice of locations because trace distance compares concrete evaluations.
Previous implementations of self-adjusting computations can often choose locations to
minimize the trace distance. Since our theorems can match any distance computed, they
apply to existing implementations. The problem of whether an implementation can effi-
ciently achieve the minimum possible distance is not well understood: this is undecidable
in general but these impossibility results typically involve programs that don’t arise in
practice.

Trace Contexts

To reason about the asymptotic complexity bounds for distance, and hence change-
propagation, we need to compute distance for all input sizes under a particular class of
changes. This is difficult with the distance described above because it requires two con-
crete executions. To facilitate asymptotic analysis, we use trace contexts (i.e., traces with

19

holes). As with trace distance, we use derivations and derivation contexts (i.e., contexts
with holes) to explain the main ideas. We write

`e⇓v for a context hole that expects an
evaluation of e ⇓ v. We can obtain a derivation from a derivation context by substituting a
derivation for a hole.

Let D1[O] and D2[O] be derivation contexts and let D1 and D2 be derivations. We
prove that the distance between D1[D1] and D2[D2] is the sum of the distances between
D1[O] and D2[O] and between D1 and D2, for suitably-shaped contexts. Note that not all
substitutions yield well-formed derivations; in particular, the choice of locations needs to
be consistent. This result enables generalizing concrete distances to arbitrary inputs and
deriving asymptotic complexity bounds, which is generally difficult with concrete cost
semantics [Sands, 1990a,b, Sansom and Jones, 1995, Blelloch and Greiner, 1995, 1996,
Spoonhower et al., 2008].

Example 7
Consider the evaluation derivation of mapA, shown below, applied to the integer list
[n1, . . . , nk]@2 where 2 represents an unspecified list. In the derivation `i (resp. `′i)
denotes the reference to the cons cell containing input ni (resp. output for ci), and each
ni is mapped to ci. Given this derivation context, we can substitute the list [1,3] for 2

and obtain the derivation for that input by substituting the derivation of [1,3] in place
of the hole. Generalizing and combining the above two analyses we can show that the
distance between derivations of mapA with any pair of inputs that differ by one element is
constant.

`1
get→ n1::`2

`k
get→ nk::`2

mapA$`2⇓`′2h
`′k

put← ck::`′2
...

mapA$`2 ⇓ `′2 `′1
put← c1::`′2

mapA$`1 ⇓ `′1

2.2.3 Presentation

In Chapters 3 and 4, we present cost semantics and trace distance for the Src and Tgt
languages, respectively, and show the consistency of change-propagation. In Chapter 5,
we relate the Src and Tgt semantics and trace distance.

20

2.3 Extensible Adaptivity: Traceable Data Types

2.3.1 Background

Modifiable references (introduced in Section 2.1) are sufficient to capture data and control
dependencies, and allow the mutator to modify the inputs and force change-propagation to
update a computation. Single-write modrefs [Acar et al., 2006c] can be created by either
the core- or meta-level program but can only be overwritten by the meta-level mutator;
the single-write restriction suffices to make purely functional programs self-adjusting by
storing program data in modrefs. Multi-write modrefs [Acar et al., 2008a] further allow
the core-level program to overwrite the contents of a modref.

Intuitively, creating a modref with contents v and then dereferencing the modref mul-
tiple times yields a trace of the form `

put← v · ` get→ v · · · ` get→ v. If the mutator changes the
modref with a different initial value v′, the creation action becomes `

put← v′ and the sub-
sequent dereferences correspond to the computation that must be re-executed, so change-
propagation adjusts the trace to `

put← v′ · ` get→ v′ · · · ` get→ v′. Similarly, if an update action
`

set← v changes to ` set← v′, the subsequent dereferences must be adjusted to reflect the
different contents of the location.

Tracking the computation at the granularity of single- or multi-write reference oper-
ations is fine-grained enough to express any purely functional or imperative program as
a self-adjusting version. Tracking individual reference operations, however, can be too
fine-grained because it limits the time and space efficiency of change-propagation:

• there is a considerable time overhead for tracking every memory operation in a from-
scratch run and maintaining the fine-grained dependence information during change-
propagation,

• the size of the trace is proportional to the number of memory operations and their
fine-grained dependence information, limiting the scalability to large inputs,

• implementing a data type with modifiable references can have asymptotically subop-
timal change-propagation time because it cannot take advantage of problem-specific
structure: updates can cause many changes to the internal data type implementation
even when the changes that propagate beyond the interface are small—i.e., a com-
putation can be stable with respect to operations of the data type, but not stable with
respect to individual cell accesses.

21

[new ()⇒ Q] [a→ Q] [1→ Q] 1
?
< a [Q→ 1] · · · [i→ Q] i

?
< a [Q→ i] · · · [n→ Q] n

?
< a [Q→ n]

! % ! % ! · · · ! % ! · · · ! % !

[new ()⇒ Q] [b→ Q] [1→ Q] 1
?
< b [Q→ 1] · · · [i→ Q] i

?
< b [Q→ i] · · · [n→ Q] n

?
< b [Q→ n]

[new ()⇒ Q] [a→ Q] [1→ Q] [Q→ 1] · · · [i→ Q] [Q→ i] · · · [n→ Q] [Q→ n]

! % ! ! · · · ! ! · · · ! !

[new ()⇒ Q] [b→ Q] [1→ Q] [Q→ 1] · · · [i→ Q] [Q→ i] · · · [n→ Q] [Q→ n]

Figure 2.5: Two pairs of traces of a hypothetical program P at the level of queue operations
and comparisons (top) and at the level of abstract queue operations (bottom). Each pair
corresponds to a run of P with inputs [a, 1, 2, . . . , n] and [b, 1, 2, . . . , n].

Example 8 (Priority Queue)
Consider a self-adjusting priority queue with the following signature:

signature PRIORITY QUEUE = sig
type (’k,’v) t
val new: (’k * ’k -> order) -$> (’k,’v) t
val insert: (’k,’v) t * ’k * ’v -$> unit
val delMin: (’k,’v) t -$> (’k * ’v) option

end

The new operation takes a comparison function on keys and returns an empty priority
queue, an operation to insert a key and a value into a priority queue, and a delMin
operation to remove the element with the least priority. An ordinary heap or treap im-
plementation can be instrumented with modifiable references to obtain a self-adjusting
priority queue. In particular, a self-adjusting heap structure PQ Modifiable of sig-
nature PRIORITY QUEUE can be obtained by using modifiable references for the child
pointers of each heap node. In such a modifiable-based implementation, the trace records
every child pointer access and the associated comparison between priorities, which leads
to a large trace overhead for from-scratch runs and suboptimal change-propagation perfor-
mance due to fine-grained dependence-tracking.

We present a worst-case example where the modifiable-based implementation yields
inefficient change-propagation. Consider a self-adjusting program P that takes as input

22

an integer list, creates an empty queue and inserts the first element of the list into the
priority queue. Starting with the second element, the program then inserts each element
into the priority queue using the element both as a priority and as a value and removes the
minimum element with delMin.

Consider two runs of P with inputs [a, 1, 2, . . . , n] and [b, 1, 2, . . . , n], where a, b > n
and a 6= b. Figure 2.5 (top) shows traces, represented abstractly, for an execution of
P with a modifiable-based priority queue that must track every comparison. We write
[new ()⇒ Q] for creating an empty queue Q, [i→ Q] for the operation insert(Q, i, i),

[Q → i] for the operation delMin(Q) that returns i as the minimum priority, and i
?
< j

for a comparison of the keys i and j in the priority queue. In the figure, we use! and%
to indicate the operations of the trace that match and that do not match, respectively.

Every comparison in the first (resp. second) trace has the form i
?
< a (resp. i

?
< b)

for 1 ≤ i ≤ n. Therefore no pair of comparisons match between the two runs and the
difference between the two traces is Θ(n). Consequently, starting with the first input
running the program P , changing the input by replacing a by b, and performing change-
propagation would require at least linear time to update the output.

This argument extends to any priority queue implementation based on modifiable ref-
erences, because every time a new key i is inserted, the priority queue contains only the
element with the largest key (either a or b) and thus a comparison with imust be performed
to determine the minimum priority required by the next operation. It is thus not possible
to use change-propagation based on self-adjusting computation with modifiable references
to update the output in less than linear time.

If the trace only recorded the priority queue operations but not the internal compar-
isons, the traces would be very similar as shown in Figure 2.5 (bottom) and only differ by
the initial insertion. This example shows that recording dependencies at the level of prior-
ity queue operations, instead of the internal comparisons performed by the priority queue
operations, yields smaller traces and results in fewer changes for change-propagation to
handle.

23

Example 9 (Accumulator)
Suppose we want to add the elements of a list [v1, . . . , vn] using a multi-write modref to
accumulate the prefix sums. We can initialize a modref with 0 then traverse the list and
add each member of the list to the accumulator. Adding a value v to the accumulator is
the composite operation of dereferencing the current accumulator value vacc followed by
storing the updated sum v′acc = vacc + v. Extensionally, adding to the accumulator only
requires the modref ` and value v to be added, but the intensional implementation using
modrefs makes the addition operation sensitive to the intermediate accumulator value vacc.
Finally, the total sum is obtained by dereferencing the modifiable. If we replace the first
element of the list v1 with a different value v′1, then the inconsistent actions of trace must
be updated.

Comparing the two traces restricted the trace to the accumulator actions:

`
put← 0

· ` get→ 0 · ` set← v1

· ` get→ v1 · `
set← (v1 +

∑
2..2 vi)

· · ·

· ` get→ (v1 +
∑

2..n−1 vi) · `
set← (v1 +

∑
2..n vi)

· ` get→ (v1 +
∑

2..n vi)

`
put← 0

· ` get→ 0 · ` set← v′1

· ` get→ v′1 · `
set← (v′1 +

∑
2..2 vi)

· · ·

· ` get→ (v′1 +
∑

2..n−1 vi) · `
set← (v′1 +

∑
2..n vi)

· ` get→ (v′1 +
∑

2..n vi)

Since v1 and v′1 are different, each intermediate value of the accumulator v′1 +
∑
vi also

differs from v1 +
∑
vi in the previous run, so change-propagation takes linear time to

update the trace.

In the case of integer addition—and more generally for any commutative group—we
can achieve constant-time change-propagation by taking advantage of the inverse oper-
ation. We can replace the use of a multi-write modref with a specialized accumulator
modref that has operations (an associated trace actions) to create an empty accumulator
(` acc← v), add a value to the accumulator (` add← v) that is not sensitive to the intermediate

24

sums, and read the total (` total→ v). The two runs yield the similar traces:

`
acc← 0

· ` add← v1

·` add← v2

· · ·
·` add← vn

· ` total→ (v1 +
∑

2..n vi)

`
acc← 0

· ` add← v′1

·` add← v2

· · ·
·` add← vn

· ` total→ (v′1 +
∑

2..n vi)

Since the traces differ in the second action (` add← v1 and ` add← v′1), change-propagation has
to adjust the subsequent actions. Fortunately, the monolithic addition operation isn’t sen-
sitive to the current value, which eliminates the spurious dependence on the intermediate
values of the accumulator. Only the last action is affected: the new total can be obtained by
subtracting the old value v1 and adding the new value v′1, thus giving the correct new total
(v1+

∑
2..n vi)−v1+v′1 = v′1+

∑
2..n vi. Therefore change-propagation can update the total

in constant time by replacing the last action ` total→ v1 +
∑

2..n vi with ` total→ v′1 +
∑

2..n vi

by using the group’s inverse operation, without affecting the intervening additions ` add← vi
(i 6= 1) in the trace.

Example 10 (Kinetic Motion Simulation)
A kinetic motion simulator models a set of moving points and can compute some prop-
erty (e.g., the convex hull) of the system. An existing implementation of a kinetic motion
simulator in self-adjusting computation [Acar et al., 2008b] takes the points as inputs and
dynamically compares points to compute the convex hull. The comparisons are intermedi-
ate data of the program, but achieving efficient change-propagation requires allowing the
mutator to modify the results of comparisons, which violates the proper-usage guidelines
for the mutator. Moreover, even though the moving points are functions of time, time itself
isn’t an adaptively-tracked input. The design choices of the existing motion simulator fail
to make a clear distinction between the core- and meta-level computations, so the program
is intrinsically tied to the implementation of the change-propagation mechanism.

Self-adjusting computation can be extended with a modular modifiable reference that
discretizes a continuous value according to some partition, thus limiting recomputation to
when the value crosses a partition boundary. By making time an explicit input and com-
puting the comparisons with modular modrefs, we can recover the efficiency of the above
motion simulator without sacrificing the safety features of the language. In particular, the
mutator wouldn’t have to explicitly manipulate the self-adjusting program’s intermediate
data, thus preserving the core-/meta-level distinction.

25

2.3.2 Foreground

We raise the level of abstraction of dependence-tracking by generalizing from individ-
ual memory operations to work at the granularity of the query and update operations of
arbitrary abstract data types. Coarser-grained dependence-tracking reduces the number
of operations and dependencies tracked by self-adjusting computation, which yields the
following benefits:

• it can asymptotically reduce the time and space overhead for from-scratch runs,

• it can exploit the problem-specific structure of many problems and make them more
stable, yielding asymptotically faster change-propagation relative to self-adjusting
computation with modifiable references alone,

• it can greatly simplify the analysis of stability since the user only needs to consider
the operations on the data type instead of all the memory accesses inside of it.

We make the Src and Tgt languages open-ended to extension by any data type that
conforms to a traceable data type (TDT) interface. A traceable version of a data type [De-
maine et al., 2004, Acar et al., 2007a] provides the same extensional functionality of an
ordinary data type (i.e., update and query operations); additionally, it maintains an inten-
sional trace history of operations for each instance and allows retroactively revising the
operations of the trace. A TDT allows invoking or revoking an operation at any point in
the trace history, which in turn reports the earliest subsequent query made inconsistent
(i.e., that depends on and whose return value is affected) by the revision. By tracking op-
erations at the desired level of granularity, change-propagation can update a computation
more efficiently than an extensionally-equivalent modref-based implementation.

The uniform interface for TDTs enables the change-propagation mechanism to remain
agnostic about the implementation details of each data type. Since each TDT provides
a self-contained mechanism for trace revisions, any number of TDTs can be integrated
orthogonally into the self-adjusting language and implementations of TDTs do not need
to be aware of the change-propagation algorithm beyond the interface.

Abstract Data Types

We define an (conventional) abstract data type D as a quadruple (τ tdt, S ,mk, {op i})
consisting of:

• a type constructor τ tdt,

26

• a state constructor S ,

• a creation operation mk : τmk → τ tdt to initialize an instance, and

• a set of query and update operations op : τarg → τres to manipulate the state and
compute some result.

The extensional behavior of a data type is specified by a state-transformation function
for each operation. The state-transformation v mk7→ S0 for creating a TDT maps a value
v to an initial state S0. The state-transformation S ; varg

op7→ S ′; vres for an operation op
maps a state S and argument value varg to another state S ′ and result value vres. Any data
type, however complex, can be specified in this way by coming up with an appropriate
representation for the state and by specifying the state-transformation function.

Traceable Data Types

A traceable data type (TDT) provides the extensional behavior of an abstract data type
for from-scratch runs; additionally, it allows retroactively changing its history of oper-
ations, which enables change-propagation to update a run according to input changes.
To talk about a sequence of operations, we let Time denote a totally-ordered set of time
stamps. We define a operation trace H for a data type as an initial state S0 and a sequence
〈(ti, oi, vi)〉i∈1..n, where the ti ∈ Time, ti < ti+1, and each oi is an operation of the form
op k v′i that takes some v′i as an argument to return vi.

Let eval(H, t) be the value returned by performing the sequence of operations
(o1, o2, . . .) in H up to time t, inclusive. We say that an element (ti, oi, vi) ∈ H of the
operation trace is inconsistent if eval(H, ti) 6= vi. We say that an operation trace is incon-
sistent if any element is inconsistent, and consistent otherwise.

For an abstract data type D, the traceable version Tr(D) abstractly maintains an oper-
ation trace H for each instance and allows revisions to update the sequence of operations.
The abstract data type D’s creation operation mk of type τmk → τ tdt induces an analo-
gous version mk for the traceable version that returns a new operation trace H with initial
state S0 (where v mk7→ S0) and empty operation sequence.

For each manipulation operation op of type τarg → τres, the traceable version pro-
vides invoke and revoke analogues associated with each instance H . The invoke ana-
logue invoke op : ts * τarg -> ts option * τres takes an argument value
varg and time stamp t, updates the operation trace H by inserting (t,op varg), and re-
turns vres = eval(H, t). The revoke analogue revoke op : ts -> ts option

27

removes the operation with time t from H (if any). Both the invoke and revoke opera-
tions return an optional time stamp corresponding to the next operation, if any, that has
been made inconsistent (e.g., its return value changes) by the revision. Note that type ts
classifies time stamps Time.

We refer to invoke and revoke (meta-)operations as revisions and require them to
be applied as part of a revision sequence—a sequence of revisions on an initially consistent
operation trace such that (1) the times of the revisions are increasing, and (2) for each
revision at time t, all operation at times before t are consistent. Multiple revision sequences
can be applied to an operation trace sequentially, each returning the operation trace to a
consistent state before the next starts.

In previous semantics for self-adjusting computation with modrefs [Ley-Wild et al.,
2008a, 2009], change-propagation would replay an action when possible or fall back to
evaluation either nondeterministically or because the action couldn’t be replayed. The
novelty of TDTs lies in that the consistency of each TDT action in a trace is explicitly
identified—i.e., whether the action can be replayed or not. Therefore change-propagation
necessarily replays a TDT action iff it is consistent; the nondeterminism of memoization,
however, is not eliminated. The replayability of a TDT action is determined by the state
transformation semantics of the TDT operations. When a TDT operation is invoked by
evaluation, in addition to performing the state transformation, the reuse trace is scanned
to identify the next inconsistent action—i.e., the next action whose result differs because
there is a new intervening TDT operation. Dually, when memoization matches the tail of
a reuse trace, the prefix of the trace is discarded and those actions are explicitly revoked
by scanning the rest of the trace to update the consistency of the remaining actions.

Language Integration. The proposed interface with invoke and revoke operations is sig-
nificantly more cumbersome to use than the standard operations. Fortunately, the standard
interface can be presented in the Src language, while the traceable version is integrated into
the Tgt language. A TDT is integrated into each language by adding a type constructor
for the data structure together with a primitive for each operation.

A self-adjusting Src program uses the same direct style update and query operations
of the abstract data type. The only necessary change to a Src program is to replace the
modref-based implementation by a traceable version with the same interface.

The continuation-based Tgt language generalizes traces to record each TDT operation
(instead of only modref operations) and its associated continuation, which needs to be
rerun if the operation becomes inconsistent. Creating a TDT instance extends the store
with a location bound to a freshly initialized TDT state. The from-scratch semantics

28

of a TDT manipulation invokes the operation, which performs the corresponding state
transformation and records a trace action indicating the operation with its argument and
result values. The change-propagation semantics for a TDT action is to replay it when
possible and falls back to evaluation if it cannot be replayed. The change-propagation
implementation uses a time-ordered priority queue of inconsistent queries, but instead of
tracking all inconsistencies for all TDT instances, it only keeps the earliest inconsistency
for each instance, which is critical for efficiently handling certain usage patterns. When
a segment of the trace is discarded, change-propagation uses the revoke operation of each
action to notify its operation trace and update the priority queue of inconsistent queries.

Remark. It may seem odd that revisions only return the earliest inconsistent operation
as opposed to all of them. In fact, this suffices because revision sequences require that the
earliest inconsistency be fixed (revoked and possibly reinvoked) before proceeding to the
next one. Fixing the first inconsistency will then return the next inconsistent operation, if
any. This ability to return inconsistent operations lazily is critical for efficiency because
otherwise we would have to maintain a potentially large sequence of inconsistent opera-
tions as some become consistent or others become inconsistent, and we would not be able
to take advantage of subsequent revisions fixing inconsistencies.

For example imagine invoking an additional insert operation on a priority queue
inserting an element with higher priority than all the others. This will cause all the rest
of operations to become inconsistent. Invoking another deleteMin operation subse-
quently, however, would make all operations consistent by removing the newly inserted
element.

2.3.3 Concrete TDTs

We present the formal abstract data type specifications of the following TDTs:

TDT Description
Pure immutable (single-write) modifiable reference
Imp mutable (multi-write) modifiable reference
Acc accumulator modref for a commutative group
Mod modular modref for discretizing a total order

Queue first-in-first-out queue
PQueue priority queue

Dict dictionary

29

For the presentation of these TDTs, we assume some standard types such as products,
sums, and recursive types.

Immutable and Mutable Modifiable References. A modifiable reference (abbreviated
modref) provides the functionality an ML-style reference with type constructor τ modref
and state constructor modref v where v is a value of type τ . The signature types and state-
transformations are:

operation : type state-transformation

put : τ → τ modref v
put7→ modref v

get : unit→ τ modref v; ()
get7→ modref v; v

set : τ → unit modref v; v′ set7→ modref v′; ()

The put operation creates a fresh modref and get dereferences its contents. Mutable
modrefs additionally provide the set operation to update the contents of a modref. Intu-
itively, creating a modifiable with contents v and then dereferencing the modifiable mul-
tiple times yields an operation trace with initial state modref v and operation sequence
[(t1,get (), v), . . . , (tn,get (), v)]. If we change the initial value to v′ then the initial state
becomes modref v′ and the time stamp t1 identifies the earliest inconsistent operation.
Change-propagation can successively reinvoke each revision to obtain the consistent se-
quence [(t1,get (), v′), . . . , (tn,get (), v′)].

Modular Modifiables. In some applications, the domain of data may be continuous even
when the computation produces a discrete result—e.g., a program computing the convex
hull of a set of moving points represented combinatorially. In such a case, using modifi-
ables makes change-propagation sensitive to any change, thus forcing recomputation even
if the result is the same. In many of these cases, we partition the continuous domain into
some discrete number of sets and consider values equal if they fall into the same set. For
example, we may care only about the sign of a real number. A motion simulation would
use modular modifiables to store the time variable.

A modular modifiable allows discretizing a totally-ordered (possibly continuous) set
to avoid recomputation when modifications don’t affect the discrete outcome. The type
of modular modifiables is τ mod and the state constructor is acc (vc, v), where vc is
a comparison function of type τ cmp (= τ × τ → order) where order is the SML
order datatype) and v is the value of the modifiable. The signature types and state-
transformations are:

30

operation : type state-transformation

mod : τ cmp× τ (vc, v) mod7→ mod (vc, v)

mget : (τ, τ ′) dis→ τ ′ mod (vc, v); vb
mget7→ mod (vc, v); v′

Modular modifiables are created by the mod operation and manipulated by the modular
dereferencing operation mget. A modular dereference takes a discretization argument vd
of type (τ, τ ′) dis which is a (finite) partition of the (continuous) type τ together with an
assignment of values from the (discrete) type τ ′ to each equivalence class. Formally, the
discretization is represented by a list [c1, . . . , cn] that partitions τ into intervals and the
assignment is a list [d0, . . . , dn] of τ ′ elements. The result of such a dereference is v′ = di
where the current value of the modular modifiable is ci ≤ v < ci+1. Due to the structure
of the partition, the outcome of a modular dereference only changes when the value of
the modular modifiable changes equivalence classes; this enables operating efficiently on
continuously-varying values such as time.

Accumulator Modifiables. An accumulator modifiable exploits the structure of a com-
mutative group to provide the high-level operations of adding to and querying the total
value of an accumulator. An accumulator modifiable has type constructor τ acc and state
constructor acc (v, vadd, vsub) where v is a value of type τ and vadd, vsub are mutually-
inverse binary operators of type τ bop(= τ × τ → τ). The signature types and state-
transformation semantics are:

operation : type state-transformation
acc : τ × τ bop× τ bop→ τ acc (vu, va, vs)

acc7→ acc (vu, va, vs)

add : τ → unit acc (v, va, vs); vx
add7→ acc (v′, va, vs); ()

total : unit→ τ acc (v, va, vs); () total7→ acc (v, va, vs); v

where vu is the initial value of the accumulator (for the acc operation) and where v′ =
va(v, vx) (for add). The creation operation acc initializes an accumulator with the group
operations, the add operation updates the accumulator, total queries the current total.

Queues. A queue has type τ q and state constructor qQ where Q is a sequence of
values 〈vi〉 that represent the contents of the queue. Queue commands include the creation
operation q and manipulation operations push for pushing onto the queue and pop for
popping from the queue:

operation : type state-transformation
q : unit ()

q7→ q 〈〉
push : τ → unit q Q ; v

push7→ q (Q + v); ()
pop : unit→ τ q Q ; v

pop7→ q (Q − v1); v1

31

where Q + v adds v to the end of the queue, and Q − v1 removes the first element v1 from
the queue.

Priority Queues. A priority queue with τk priorities and τv values has type (τk, τv) pq.
The state constructor is pq PQ where PQ is a sequence of pairs 〈(vki, vvi)〉 where entry
vvi has priority vki. Priority queue commands include the creation operation pq and ma-
nipulation operation inspri for inserting an element vv with priority vk and delmin for
deleting the element with lowest priority:

operation : type state-transformation
pq : unit ()

pq7→ pq 〈〉
inspri : τk × τv → unit pq PQ ; (vk, vv)

inspri7→ pq (PQ + (vk, vv)); ()

delmin : unit→ τk × τv pq PQ ; () delmin7→ pq (PQ − (vk, vv)); (vk, vv)

where PQ + (vk, vv) adds the element vv with priority vk, and PQ − (vk, vv) removes the
element vv with highest priority vk.

Dictionaries. A dictionary (τk, τv) dict maps τk keys to τv values. The state constructor
is dictM where M is a mapping {vki 7→ vvi} that binds each key vki to value vvi. Priority
queue commands include the creation operation dict and manipulation operation inspri
for inserting an element vv with priority vk and delmin for deleting the element with
lowest priority:

operation : type state-transformation

dict : unit () dict7→ dict {}
ins : τk × τv → unit dict M ; (vk, vv) ins7→ dict (M + vk 7→ vv); ()

rem : τk → τv dict M ; vk
rem7→ dict (M − vk 7→ vv); vv

lookup : τk → τv dict M ; vki
lookup7→ dict M ; vvi

where M + vk 7→ vv represents the map M extended with key vk bound to value vv, and
M − vk 7→ vv represents the map M without the binding for key vk.

32

Example 11
The traceable version of the priority queue signature PRIORITY QUEUE is:

signature PRIORITY QUEUE TRACEABLE = sig
type (’k,’v) t
val new: (’k * ’k -> order) -> (’k,’v) t
val invoke insert: ts * ((’k,’v) t * ’k * ’v) -> ts option * unit
val revoke insert: ts -> ts option
val invoke delMin: ts * (’k,’v) t -> ts option * (’k * ’v) option
val revoke delMin: ts -> ts option

end

A traceable priority queue implementation PQTraceable that matches this signature
can be integrated into the ∆ML compiler to produce a user-level structure PQ Traced
with the same signature PRIORITY QUEUE as the modifiable-based PQ Modifiable.

Suppose we insert the numbers 3, 2, 1 and then remove three elements from a priority
queue Q:

[3→ Q] [2→ Q] [2→ Q] [Q→ 1] [Q→ 2] [Q→ 3]

The delMin operations return the values 1, 2, 3 in sorted order. If we now revoke insert
(pq,1), then all delMin operations are inconsistent and the revision will return then the
first delMin operation because it is the earliest affected operation. Change-propagation
will rerun the continuation of the first inconsistent operation until it encounters a mem-
oization point, and thereafter rerun any subsequent priority queue operations that remain
inconsistent.

33

structure PQ : PRIORITY QUEUE = PQTraced
afun heapsort (compare, l) =
let
val heap = PQ.new $ compare
afun insert x = PQ.insert $ (heap, x, ())
mfun loop m =
case m of
NONE => put $ nil

| SOME (k, ()) =>
let val t = loop $ (PQ.deleteMin $ heap)
in put $ (k::t) end

in
(List.app insert $ l;
loop $ (PQ.deleteMin $ heap))

end

Figure 2.6: Code for heapsort in ∆ML.

Example 12 (Heapsort)
Consider a ∆ML implementation of heapsort that uses a traceable priority queue, as shown
in Figure 2.6. The algorithm first allocates an empty priority queue and inserts all the keys
in its input to the priority queue (with unit payload). It then constructs the sorted output list
by repeatedly removing the minimum element until the queue is empty and accumulating
it in a list. The self-adjusting version uses a traceable priority queue PQTraced, linked
lists, and adaptive functions; loop is memoizing because it performs non-constant work.

This algorithm has has an optimal O(n log n) from-scratch running time. Moreover,
it is highly stable under small modifications to its input when operations are tracked at
the granularity of priority queue operations. Thus, with a traceable priority queue, we can
obtain an efficient self-adjusting sorter.

34

structure Dict : DICTIONARY = struct ... end
structure PQ : PRIORITY QUEUE = PQTraced
structure List : LIST = struct ... end
type node = ...
type dist = ...
type graph = (node, (node * dist) List.t) Dict.t
afun dijkstra (root: node, graph: graph) =
let
val dict sp: (node, dist) Dict.t = Dict.new $ ()
val pq v: (dist * node) PQ.t = PQ.new $ ()
afun visit (u, d:dist) =
let afun ins (v,w) = PQ.insert $ (pq v, (d + w, v))
in case Dict.lookup $ (graph, u) of

NONE => ()
| SOME ns => List.app ins $ ns

end

mfun loop (u:node, d:dist) =
(if (Dict.lookup $ (dict sp, u)) = NONE then
(Dict.insert $ (dict sp, u, d); visit (u,d))
else ();
case PQ.deleteMin $ pq v of

NONE => dict sp
| SOME (d, v) => loop $ (v,d))

in loop $ (root, 0) end

Figure 2.7: Code for Dijkstra’s algorithm in ∆ML.

Example 13 (Dijkstra’s algorithm)
Consider Dijkstra’s algorithm for computing single-source shortest-paths, whose ∆ML
code is shown in Figure 2.7. We omit some details to focus attention on the aspects relevant
to our interest here. Dijkstra’s algorithm takes a graph and a root node and finds the
shortest-path distance from the root to every node in the graph. We represent the input
graph as a dictionary of nodes (t graph), mapping each node to the list of its neighbors
along with the edge weights. Similarly, we represent the output as a dictionary of nodes
(dict sp), mapping each node to its distance to the root. The key idea in the algorithm
is to maintain a set of explored vertices and their distances to the root and expand this set
iteratively. For this purpose, we maintain a priority queue (pq v) of visited vertices and
their current distances.

The algorithm inserts the root into the priority queue with distance 0, and then loop
iteratively visits the vertices in the order of their current distance. Given a vertex u and its
current distance d, the function loop checks if u is already visited. If so, then it continues
by removing the next vertex from the priority queue. Otherwise, the exact distance for u
is found and inserted in the output (dict sp), and the node is visited. Visiting vertex u

35

traverses each outgoing edge (u, v) and inserts the neighbor v into the priority queue with
an updated distance.

Implementation

To assess the effectiveness of the approach, we extend the ∆ML implementation to sup-
port TDTs and implement traceable versions of several data types. We note that we do
not expect that new data types would be implemented very often; various traceable data
types were designed by Acar et al. [2007a]. The ∆ML implementation provides a Src-level
interface to TDTs query and update operations, which are compiled to use the correspond-
ing invoke and revoke operations and integrated with change-propagation. The compiler
generates the necessary code for tracking the invoke and revoke operations and for finding
and re-executing them when necessary during change-propagation.

Furthermore, we perform an experimental evaluation between TDT and modifiable-
based implementations with benchmarks drawn from many application areas. The bench-
marks include heapsort, Dijkstra’s shortest path algorithm, breadth-first search on graphs,
Huffman coding, and interval stabbing (Section 7.3). The experiments show space and
time improvements in the asymptotic performance and implementation overhead, some-
times by as much as two orders of magnitude. Even on moderate input sizes, the improve-
ments range between a factor of 3 and 20 reduction in from-scratch running time, between
a factor of 4 and 50 reduction in space, and between a factor of 4 and 5, 000 reduction in
update time compared to the version using only modifiable references.

2.3.4 Presentation

In Chapter 3, we present the Src-level TDT interface with update and query operations. In
Chapter 4, we present the Tgt-level TDT usage in terms of invoke and revoke operations.
In Subsections 6.5.3 and 6.5.4, we present how to implement efficient TDTs and integrate
them into the ∆ML library. We present an experimental evaluation in Section 7.3.

36

2.4 Extensible Computation Memoization: In-Order and
Out-of-Order

2.4.1 Background

Given an input change, change-propagation traverses the trace in execution order with an
edit cursor to update the computation. Adaptivity reruns the inconsistent subcomputations
affected by the input change, insert the corresponding new subtraces, delete subtraces that
are made obsolete by the change. Computation memoization reuses portions of the trace
from the previous run if they are unaffected by the changes. In previous versions of self-
adjusting computation [Acar et al., 2006b], computation memoization implicitly reuses
work by moving the cursor forward past unaffected computation. Since computation is
reused in execution order, it is referred to as in-order computation memoization.

Updating the trace with insertions and deletions means that, intuitively, change-
propagation takes time proportional to the edit distance between the two traces. For the
monotone class of computations, in which changes don’t affect the order of computation,
change-propagation takes time roughly proportional to the minimum edit distance between
traces. Existing implementations employ a greedy reuse heuristic that eagerly reuses work
from the previous run by deleting all intervening work between the cursor and the matching
computation. Greedy in-order reuse is optimal for monotone computations Acar [2005]
because it achieves minimum edit distance. Experience has shown that some programs
can be made monotone by subtle code annotations that prevent certain subcomputations
from matching and enabling efficient change-propagation with in-order reuse, albeit at the
expense of a more complicated program.

In-order reuse, however, is grossly inefficient for changes that directly reorder the input
or indirectly reorder the computation. For example, change-propagating from an initial run
f(x); g(y) to updated run g(y); f(x) would greedily discard the original f call so that it
can reuse the g call, and thus have to rerun the f call afresh. The inefficiency is particularly
problematic when f and g are both expensive because one of the two must be discarded;
if chunks of computation could be reordered, change-propagation would only incur the
cost of swapping them. More generally, certain classes of programs, such as lazy (call-by-
need) computation with its unpredictable order of evaluation, are inherently incompatible
with in-order reuse.

37

2.4.2 Foreground

We abstract computation memoization from change-propagation and consider an alterna-
tive form of out-of-order computation memoization, which allows for the efficient reorder-
ing of large chunks of the computation. Out-of-order reuse moves a matching computation
backward in the trace past the edit cursor without deleting the intervening computation,
effectively reordering the trace.

Out-of-order reuse broadens and simplifies the applicability of self-adjusting computa-
tion. Several classes of programs benefit asymptotically from out-of-order reuse because
more computations are available for reuse during change-propagation: some pure pro-
grams no longer need to be restructured or annotated to be monotone, some imperative
programs that operate on unstructured data (e.g., graphs) are no longer sensitive to cer-
tain input changes, lazy programs can reuse computation in spite of inherent reordering.
Greedy out-of-order reuse is asymptotically optimal for computations with unique func-
tion calls, which is broader than the monotone class.

2.4.3 Presentation

In Chapter 3, we give an extension of the Src language with primitives for lazy computation
which can be implemented with mutable modrefs. In Chapter 3 and Chapter 4, we give
local and global notions of trace distance (see Section 2.2) to account for in-order and
out-of-order reuse. Local trace distance quantifies the dissimilarity between two runs in
execution order, while global trace distance quantifies the dissimilarity between two runs
modulo reordering. In Chapter 6, we discuss the implementation overhead for supporting
in-order and out-of-order memoization. In Chapter 7, we give examples where change-
propagation requires out-of-order memoization to achieve an asymptotic speedup relative
to from-scratch evaluation.

38

Chapter 3

The Src∗ Languages

This chapter is based on work on a direct style language for self-adjusting computation
with single-write modrefs [Ley-Wild et al., 2008b], a cost semantics and trace distance for
a language with multi-write modrefs [Ley-Wild et al., 2009], and extensibility to traceable
data types [Acar et al., 2010a].

3.1 Overview

The schematic Src(T) language is a simply-typed, call-by-value λ-calculus that serves to
write direct style programs. The language is parameterized by a traceable data type T
(possibly several) to represent changeable data. In addition to Src(−) with TDTs, we
present the SrcLazy language with suspensions for lazy (call-by-need) evaluation. We use
Src∗ to refer collectively to these languages, and Src to refer to a representative one.

Src has a standard static and dynamic semantics, as well as a cost semantics. The dy-
namic semantics determines the extensional meaning of a program as the result of evalua-
tion while the cost semantics determines the intensional meaning as the number of evalua-
tion steps. Although Src has no operational support for self-adjusting computation—i.e., a
mechanism for updating a computation under input changes—, its dynamic and cost se-
mantics produces an execution trace, which is an abstract representation of the evaluation
derivation.

A theory of trace distance quantifies dissimilarities between runs: global trace distance
permit computation reordering, which corresponds to out-of-order computation reuse,
while local trace distance does not, which corresponds to in-order computation reuse.

39

Src programs can be compiled into equivalent self-adjusting Tgt programs (see Chapters
4 and 5), whose semantics include a change-propagation judgement that realizes updates
and asymptotically matches Src distance.

3.2 Syntax

The syntax of Src(T) for some is given by the following grammar, which defines types τ ,
expressions e, and values v, using metavariables f and x for identifiers and ` for locations.
We assume the schematic TDT T has a type constructor tdt, creation operation mk vmk,
and manipulation operation op vl varg.

types τ ::= nat | τx → τ | τx
$→ τ | τ tdt

expressions e ::= v | caseN vn ez x .es | ef ex | ef $ ex |mk vmk | op vl varg

values v ::= x | zero | succ v | fun f .x .e | afun f .x .e |mfun f .x .e | `

In Section 3.6, we extend the syntax to support lazy computation.

Src(−) (as well as the Tgt(−) language of Chapter 4 and the translation from the
former to the latter) includes natural numbers for didactic purposes and can easily be
extended with products, sums, recursive types, etc.; we omit their formalization as they
provide no additional insight, but assume them for the presentation of some TDTs. Natural
numbers are introduced by the constructors zero and succ v, while the caseN primitive
case-analyzes a natural number vn and branches to ez or es according to whether it is zero
or a successor number. Note that the argument of succ and the scrutinee of caseN are
restricted to value forms for technical simplicity.

The language includes normal (non-adaptive) functions for ordinary computation, and
adaptive functions that demarcate self-adjusting computation subject to input changes.
Normal (non-adaptive) functions are classified by the τx → τ type, introduced with the
fun keyword, and eliminated by juxtaposition. Adaptive functions are classified by the
τx

$→ τ type, introduced by the afun and mfun keywords, and eliminated by the infix
$ keyword. In addition to demarcating self-adjusting computation, the memoizing adap-
tive function mfun identifies opportunities for computation similarities across runs and
indicates that the function should use memoization when compiled.

The Src∗ language is open-ended to extension by any number of traceable data types.
Here we describe TDTs schematically; concrete TDTs are presented in Section 2.3. A
TDT signature ∆ specifies a type constructor τ tdt to classify instances of the data type,
a state constructor S to represent the abstract state of the TDT, and (one or more) creation
and manipulation operations.

40

A creation operation mk vmk initializes a TDT instance with seed value vmk. A manip-
ulation (i.e., query or update) operation op vl varg takes a reference vl to a TDT instance
and an argument value varg. The static semantics of TDT operations is specified by type
assignments mk : τmk → τ tdt and op : τarg → τres in the TDT signature; we assume
the types in the signature are also representable by types in Src∗ (and Tgt∗). The dy-
namic semantics of a TDT operations is specified by its state-transformation judgement:
vmk

mk→ S ′ defines how a mk command initializes a state constructor S ′ with seed data
vmk, and S ; varg

op→ S ′; vres defines how an op command with argument varg transforms
the state from S to S ′ and yields result vres. As with naturals, the arguments to TDT com-
mands are restricted to value forms for technical simplicity. This restriction can be avoided
with syntactic sugar: for example, the unrestricted creation form mk emk can be defined
as (mfun f.x.mk x)$emk.

We take a Src(−) store σ to be a finite map from locations ` to TDT state construc-
tors S ; the notation σ[` 7→ S] denotes the store σ updated with ` mapped to S . Contexts Γ
and Σ are maps from variables and locations to types, respectively.

In the signature, the state-transformation semantics represents the extensional behav-
ior of an operation on a data type. In Src(−), a TDT operation also provides a level of
indirection through the store. Creating a TDT instance allocates a location in the store and
any subsequent uses of the TDT must read from the store, making dependencies explicit
for any changeable data. Therefore, evaluation presupposes that neither the initial expres-
sion nor store have free variables, but the initial expression may have free locations that
are present in the initial store; these locations represent the program’s changeable input.

3.3 Static Semantics

The typing judgement Σ; Γ `δ e : τ ascribes the type τ to the expression e at the mode
δ (either normal [or adaptive $) in the store and variable typing contexts Σ and Γ. The
mode component of the typing judgement precludes adaptive applications and the TDT
primitives from the body of normal functions, but allows normal applications, adaptive
applications, and the TDT primitives in the body of adaptive functions. As noted earlier,
in the context of our implementation, these requirements prevent self-adjusting primitives
from being used outside of a self-adjusting computation. While these requirements could
be expressed by a more complicated set of expression subgrammars, expressing them using
a mode component of the typing judgement scales easily to additional language features
and is more consistent with our implementation. The normal vs. adaptive distinction
may also be interpreted as a simple effect system [Henglein et al., 2005] that syntactically

41

x : τ ∈ Γ

Σ; Γ `δ x : τ
var

Σ; Γ `δ zero : nat
zero

Σ; Γ `δ v : nat

Σ; Γ `δ succ v : nat
succ

Σ; Γ, f : τx → τ, x : τx `[e : τ

Σ; Γ `δ fun f .x .e : τx → τ
fun

Σ; Γ, f : τx
$→ τ, x : τx `$ e : τ

Σ; Γ `δ afun f .x .e : τx
$→ τ

afun

Σ; Γ, f : τx
$→ τ, x : τx `$ e : τ

Σ; Γ `δ mfun f .x .e : τx
$→ τ

mfun ` : τ ∈ Σ

Σ; Γ `δ ` : τ
loc

Σ; Γ `δ vn : nat Σ; Γ `δ ez : τ Σ; Γ, x : nat `δ es : τ

Σ; Γ `δ caseN vn ez x .es : τ
caseN

Σ; Γ `δ ef : τx → τ Σ; Γ `δ ex : τx
Σ; Γ `δ ef ex : τ

app
Σ; Γ `$ ef : τx

$→ τ Σ; Γ `$ ex : τx
Σ; Γ `$ ef $ ex : τ

aapp

mk : τmk → τ tdt ∈ ∆tdt

Σ; Γ `$ vmk : τmk

Σ; Γ `$ mk vmk : τ tdt
mk

op : τarg → τres ∈ ∆tdt

Σ; Γ `$ vl : τ tdt
Σ; Γ `$ varg : τarg

Σ; Γ `$ op vl varg : τres
op

Figure 3.1: Src∗ typing Σ; Γ `δ e : τ .

`[

`$

Figure 3.2: The relation between normal (pure) and self-adjusting programs.

42

distinguishes effectful and non-effectful functions and applications.

The type of a variable (resp. location) is determined by the variable (resp. store) typing
context, independent of the mode.

The type of natural number values is determined structurally under either mode. A
case-analysis must have a natural number scrutinee and both branches must agree on the
type, independent of the mode.

A normal (resp. adaptive) function has a normal function type under any mode if the
body of the function has the correct result type at the normal (resp. adaptive) mode by
extending the context with the function and argument variables. A normal (resp. adaptive)
application has the function expression’s result type if the function expression has a normal
(resp. adaptive) function type and the argument expression matches the argument type;
the function and argument must be well-typed at the same mode as the application. A
normal application may typecheck under either mode, but an adaptive application can
only typecheck under the adaptive mode.

A TDT creation operation has the TDT type if the argument that matches the type
prescribed by the TDT signature. A TDT manipulation operation has the result type pre-
scribed by the TDT signature if the first argument is the location of a TDT and the second
argument matches the TDT signature. Both TDT creation and manipulation operations,
as well as their arguments, must typecheck under the adaptive mode.

3.4 Dynamic and Cost Semantics

The dynamic semantics of Src∗ is defined by the large-step evaluation relation
σ; e ⇓ σ′; v′ to reduce expression e in store σ to value v′ in updated

store σ′. The cost semantics is defined by the extended large-step evaluation relation
E ; σ; e ⇓ σ′; v′ ;T ′; c′that additionally yields an execution trace T ′ and a cost c′, and
records the evaluation context E . The dynamic semantics is defined for all Src∗ programs,
while the cost semantics is only defined for the sublanguage with memoizing recursive
functions, but without normal or adaptive recursive functions. The dynamic semantics is
given in Figure 3.3, the cost semantics is given simultaneously for the sublanguage on
which it is defined.

The trace internalizes the shape of an evaluation derivation based on the use of mem-
oizing functions and TDT operations, and serves to identify the dissimilarities between
computations. The cost internalizes the size of a trace, and serves to relate the constant
slowdown due to compiling Src programs to Tgt programs. The highlighted evaluation

43

E ; σ; v ⇓ σ; v ; ε; 0
val

E ; σ; ez ⇓ σ′; v′ ;T ′; c′

E ; σ; caseNzero ez x .es ⇓ σ′; v′ ;T ′; c′
case/zero

E ; σ; [vn / x] es ⇓ σ′; v′ ;T ′; c′

E ; σ; caseN (succ vn) ez x .es ⇓ σ′; v′ ;T ′; c′
case/succ

σ; ef ⇓ σf ; fun f .x .e
σf ; ex ⇓ σx; vx

σx; [fun f .x .e / f] [vx / x] e ⇓ σ′; v′

σ; ef ex ⇓ σ′; v′
fun

σ; ef ⇓ σf ; afun f .x .e
σf ; ex ⇓ σx; vx

σx; [afun f .x .e / f] [vx / x] e ⇓ σ′; v′

σ; ef $ ex ⇓ σ′; v′
afun

E [2 ex]; σ; ef ⇓ σf ; mfun f .x .e ;Tf ; cf
E [(mfun f .x .e′) 2]; σf ; ex ⇓ σx; vx ;Tx; cx

E ; σx; [mfun f .x .e / f] [vx / x] e ⇓ σ′; v′ ;T ′; c′

E ; σ; ef $ ex ⇓ σ′; v′ ;Tf ·Tx·(app(mfun f .x .e)$vx⇓v′

E (T ′)·ε); cf + cx + 1 + c′
mfun

` /∈ domσ

varg
mk→ S

σ′ = σ[` 7→ S]

E ; σ; mk varg ⇓ σ′; ` ; mkvarg↑`E ·ε; 1
mk

` ∈ domσ
σ(`) = S

S ; varg
op→ S ′; vres

σ′ = σ[` 7→ S ′]

E ; σ; op ` varg ⇓ σ′; vres ; op`,varg↓vresE ·ε; 1
op

Figure 3.3: Src∗ evaluation σ; e ⇓ σ′; v′ (dynamic) and E ; σ; e ⇓ σ′; v′ ;T ′; c′(cost).

44

context E component is not necessary for reasoning about Src distance and can be ignored
for the present time; it is revisited in Subsection 3.5.4 to give a more precise cost semantics
and in Section 5.3 to relate Src and Tgt distances.

Active and Passive Computation. We distinguish active computation as work that may
be used to identify similarities and differences in computation across runs. Evaluation of
TDT operations and application of memoizing functions yield active computation. Case-
analysis and (in the presence of products, sums, etc.) other forms of β-reduction are
considered passive computation. Since normal and (non-memoizing) adaptive recursive
functions can perform an arbitrary amount of computation between active computation,
we omit them from the cost semantics; non-recursive normal and adaptive functions could
be allowed because they perform a bounded amount of computation. This allows us to
keep the cost semantics simple: we do not explicitly quantify passive work because it is
always bounded by a constant multiple of active work. Intuitively, since a Src program
can only perform a bounded amount of computation between function calls, memoiz-
ing functions suffice to account for all passive work. Including actions for passive work
(e.g., case-analysis) would give a more accurate measure but isn’t necessary for calculating
asymptotic time complexity or distance. This property is formalized in Subsection 3.4.1.

Traces. A trace T is an interleaving of actions that internalizes the shape of an evalua-
tion derivation:

traces T ::= ε | A·T
actions A ::= L |M(T)

local actions L ::= mkvmk↑`
E | op`,varg↓vresE

memoizing actions M ::= appvf$vx⇓vE

Actions A serve as markers for active work and consist of local and memoizing actions.
Local actions L include an action mk for each TDT creation command mk labeled with the
seed data vmk and the location, and an action op for each TDT manipulation command op
labeled with the location `, argument varg and result vres values involved in each operation.
Memoization actions M include memoizing function application appvf$vx⇓v(T) labeled
with a function vf , argument vx, and result v. A memo action identifies computation
similarities by labeling the delimited trace T with the computation it represents (e.g., the
function application), and isolates the surrounding trace (e.g., the value returned to the
caller) from any recomputation that may occur in the body. Actions are labeled with a
highlighted evaluation context E that can be can be ignored for Src∗-level reasoning; it
is assigned by the cost semantics and is used by the translation to Tgt∗ (Chapter 5). In
Section 3.6, we extend local and memo actions to support lazy computation.

45

Traces facilitate identifying the similarities and differences between different runs of
a program. More specifically, since store mutation is the only kind of observable side
effect in Src, TDT operations uniquely determine the control flow of a closed program.
Thus, by recording local actions in the trace, we can identify where program runs differ.
Since memo actions identify explicitly similar computations (e.g., by matching arguments
to and return values from function calls) and delimit the trace of the computation, they can
be used to identify where program runs perform similar computations. Therefore traces are
necessary and sufficient to isolate the similarities and differences between program runs,
without having to capture pure computation (e.g., case-analysis) because it is determined
by the rest of the trace.

Dynamic and Cost Semantics. Returning to the dynamic and cost semantics (Figure 3.3),
evaluation extends the trace and increments the cost counter according to the kind of re-
duction. Cost grows in lock-step with the trace and could be defined as the size of the trace,
but we keep it explicit to relate the intensional semantics of the Src and Tgt languages.

A value reduces to itself, produces an empty trace, and has no cost. A case-analysis
reduces according to the branch prescribed by the scrutinee; the trace and cost are un-
changed, because, as noted above, case-analysis only incurs passive work.

A function application—whether normal or adaptive—reduces the function ef and ar-
gument ex to values and then evaluates the redex. The cost semantics does not include nor-
mal or non-memoizing adaptive functions because they can generate an arbitrary amount
of computation between active work. The cost semantics for a memoizing adaptive func-
tion application concatenates the function, argument, and redex traces to represent the
sequencing of work; the redex trace is delimited by the memoizing function action to
identify the scope of the function call; the cost of the traces are added and incremented by
a unit of work for the β-reduction.

The Src semantics of TDT commands are induced by the TDT’s standalone state-
transformation semantics. The Src creation operation mk extends the store with a fresh
location bound to the state specified by the operation’s TDT initialization semantics, and
returns the location. The Src manipulation operation op updates the location’s state and
returns the result value specified by the operation’s TDT state-transformation semantics.
In each case, the trace is the singleton action corresponding to the operation, and incurs a
cost of 1 for the current run.

Note that a creation command has the side-effect of extending the store, but a ma-
nipulation command only has a side-effect if the state-transformation actually mutates the
state. Therefore, immutable (resp. mutable) modrefs contribute no computational power to

46

the language for from-scratch runs, but suffice to turn an ordinary pure (resp. imperative)
program into a self-adjusting version.

3.4.1 Derivation Size and Cost

In this section, we show that the cost of an evaluation derivation, which quantifies active
work, also bounds passive work. Formally, we show that cost bounds the size of a deriva-
tion, which includes both active and passive work, by a multiplicative factor that depends
on the program and store.

We inductively define the size of a Src evaluation derivation D with evaluation sub-
derivations D1, . . . , Dn to be |D| = 1 +

∑
i∈1..n |Di|. Furthermore, we define the spread

of an expression to capture the amount of work done up to a function application. We
inductively define the local spread 〈e〉 of a Src evaluation expression e to be the longest
path from the root of an expression to a leaf expression or function application.

〈v〉 = 1

〈caseN vn ez x .es〉 = 1 + max{〈ez〉, 〈es〉}
〈ef $ ex〉 = 1

〈mk 〉 = 1

〈op 〉 = 1

We define the global spread 〈〈e〉〉 := maxe′�e〈e〉 of a Src evaluation expression e to be the
maximum local spread of the subexpressions e′ of e (e′ � e). We extend the definition
to a store and expression as 〈〈σ, e〉〉 = maxe′∈rng σ,e〈〈e′〉〉 and to an evaluation derivation as
〈〈E ; σ; e ⇓ σ′; v′ ;T ; c〉〉 = 〈〈σ, e〉〉. Next, we establish several lemmas and show the size
of a derivation is bounded by its cost times the global spread of a derivation.

Lemma 14
For any e, 〈[v / x] e〉 = 〈e〉,

Proof: By straightforward induction on the expression e. �

Lemma 15
If D :: E ; σ; e ⇓ σ′; v′ ;T ; c, then 〈〈σ′, v′〉〉 ≤ 〈〈σ, e〉〉.

Proof: By straightforward induction on the derivation D. �

47

Lemma 16
If D :: E ; σ; e ⇓ σ′; v′ ;T ; c with evaluation subderivations Di (i ∈ 1..n), then 〈〈Di〉〉 ≤
〈〈D〉〉 (i ∈ 1..n).

Proof: By straightforward induction on the derivation D. �

Theorem 17
Fix D :: E ; σ; e ⇓ σ′; v′ ;T ; c, then |D| ≤ 〈e〉+ 3 · c〈〈D〉〉.

Proof: By induction on the derivation D.

Case value.

D :: ; σ; v ⇓ σ; v ; ε; 0 derivation
|D| = 1 ≤ 1 = 〈v〉+ 3 · 0〈〈D〉〉 arithmetic

Case caseZ (caseS is analogous).

D :: E ; σ; caseNzero ez x .es ⇓ σ′; v′ ;T ; c derivation
D′ :: E ; σ; ez ⇓ σ′; v′ ;T ; c subderivation
|D′| ≤ 〈ez〉+ 3 · c〈〈D′〉〉 i.h.
〈〈D′〉〉 ≤ 〈〈D〉〉 Lemma 16
|D| = 1 + |D′| ≤ 1 + 〈ez〉+ 3 · c〈〈D′〉〉 ≤ 〈caseN vn ez x .es〉+ 3 · c〈〈D〉〉 arithmetic

Case app.

D :: E ; σ; ef $ ex ⇓ σ′; v′ ;Tf ·Tx·(app(mfun f .x .e)$vx⇓v′

E(`) (T)·ε); cf + cx + 1 + c derivation
Df :: E [2 ex]; σ; ef ⇓ σf ; mfun f .x .e ;Tf ; cf subderivation
Dx :: E [(mfun f .x .e′) 2]; σf ; ex ⇓ σx; vx ;Tx; cx subderivation
D′ :: E ; σx; [vx / x] [mfun f .x .e / f] e ⇓ σ′; v′ ;T ; c subderivation
|Df | ≤ 〈ef〉+ 3 · cf〈〈Df〉〉 i.h.
|Dx| ≤ 〈ex〉+ 3 · cx〈〈Dx〉〉 i.h.
|D′| ≤ 〈[vx / x] [mfun f .x .e / f] e〉+ 3 · c′〈〈D′〉〉 i.h.
〈〈Df〉〉, 〈〈Dx〉〉, 〈〈D′〉〉 ≤ 〈〈D〉〉 Lemma 16
〈ef〉, 〈ex〉, 〈[vx / x] [mfun f .x .e / f] e〉 ≤ 〈〈D〉〉 consequence
|D| = 1 + |Df |+ |Dx|+ |D′|

≤ 1 + (〈ef〉+ 3 · cf〈〈Df〉〉) + (〈ex〉+ 3 · cx〈〈Dx〉〉)

48

+(〈[vx / x] [mfun f .x .e / f] e〉+ 3 · c′〈〈D′〉〉)
≤ 1 + 3(cf + cx + 1 + c′)〈〈D〉〉
= 〈ef $ ex〉+ 3(cf + cx + 1 + c′)〈〈D〉〉 arithmetic

Case put (get and set are analogous).

D :: E ; σ; put v ⇓ σ′; ` ; putv↑`E ·ε; 1 derivation
|D| = 1 ≤ 〈put v〉+ 3(1)〈〈D〉〉 arithmetic

�

Corollary 18
Fix D :: E ; σ; e ⇓ σ′; v′ ;T ; c, then |D| ≤ (1 + 3 · c)〈〈D〉〉.

Proof: Immediate from 〈e〉 ≤ 〈〈D〉〉 and Theorem 17. �

3.5 Trace Distance

Traces can be used for high-level reasoning about the effectiveness of self-adjusting com-
putation with modrefs by means of a trace distance that quantifies the dissimilarities be-
tween two runs. Adaptivity, which identifies inconsistencies between runs, is reflected in
the trace distance by accounting for differences between traces. Computation memoiza-
tion, which identifies matching work between runs, is reflected in the trace distance by
aligning similar traces.

In Tgt, computation memoization comes in two flavors: in-order for programs in
which the order of subcomputations is preserved, and out-of-order in which the subcom-
putations may be reordered. Src trace distance comes in two corresponding flavors: local
trace distance to compare two runs in execution order, which intuitively corresponds to
an edit distance, and global trace distance which compares two runs modulo reordering,
which intuitively corresponds to a hybrid of set difference and edit distance. Global trace
distance decomposes runs into fragments and adds the local trace distance of the frag-
ments. As a consequence, both local and global distance are defined for trace slices—
intuitively, segments of an execution.

49

L� L, •
S � S′, S

′

M(S)�M(S′), S′
S � S′, S

′

M(S)�M(◦),M(S′)·ε, S′ M(◦)�M(◦), •

ε� ε, •
B � B′, S

′
1 S � S′, S

′
2

B·S � B′·S′, S′1, S
′
2

Figure 3.4: Src∗ decomposition for traces S � S ′, S
′

and actions B � B′, S
′
.

Trace Slices. Actions slices B and trace slices S are the analogues of actions and traces,
except that memo actions delimit an optional trace slice Ṡ, which, if absent, corresponds
to computation that has been reordered.

B ::= L |M(Ṡ) S ::= ε | B·S Ṡ ::= ◦ | S

Note that a trace is also a trace slice with no holes. The notation S denotes a list of slices
and the metavariable U ranges over non-empty lists of traces. A memo action M(T) can
be decomposed into a (skeleton) action slice with a hole M(◦) and an extracted trace T .
Figure 3.4 extends this operation to the slicing judgement S � S ′, S

′
to structurally tra-

verse the slice S and decompose it into a (skeleton) slice S ′ with (nondeterministically)
extracted slices S

′
. Note that all slices in S

′
are of the form M(Ṡ)·ε, representing a sub-

computation of M extracted from S.

3.5.1 Local Trace Distance

Under in-order reuse, the traces produced by the dynamic and cost semantics are compared
in execution order and thus trace distance intuitively captures their edit distance. Consider
running a single program under two different stores: intuitively, the executions will be
identical up to the first differing TDT operation, after which the traces may correspond to
different subprograms (e.g., because a TDT creation allocated different locations or a TDT
query produced a different result). In terms of traces, they will have a common prefix up to
the first differing TDT action. Conservatively, the only similarity between two runs would
be the common prefix. Memo actions, however, enable recognizing similar computations
that occur after two runs have diverged because they identify the trace of the same function
application or same first forcing of a suspension. Nevertheless, two runs of the same
expression may have different traces and return different results due to interactions with
the store.

50

ε� ε = 〈0, 0〉

S1 � S2 = d

L·S1 � S2 = 〈1, 0〉+ d
search/l/L

S1 � S2 = d

S1 � L·S2 = 〈0, 1〉+ d
search/l/R

S1·S′1 � S2 = d

M(S1)·S′1 � S2 = 〈1, 0〉+ d
search/m/L

S1 � S2·S′2 = d

S1 �M(S2)·S′2 = 〈0, 1〉+ d
search/m/R

S′1 � S2 = d

M(◦)·S′1 � S2 = 〈1, 0〉+ d
search/none/L

S1 � S
′
2 = d

S1 �M(◦)·S′2 = 〈0, 1〉+ d
search/none/R

M1 ≈M2 S1 	 S2 = d S′1 � S
′
2 = d′

M1(S1)·S′1 �M2(S2)·S′2 = 〈1, 1〉+ d+ d′
search/synch

ε	 ε = 〈0, 0〉
S1 	 S2 = d

L·S1 	 L·S2 = d
synch/l

S1 	 S2 = d S′1 	 S′2 = d′

M(S1)·S′1 	M(S2)·S′2 = d+ d′
synch/m

S1 � S2 = d

S1 	 S2 = d
synch/search

Figure 3.5: Src∗ local search distance S1�S2 = d and synchronization distance S1	S2 =
d.

51

Example 19
Two runs of a map function on [. . .,0,1,3,4,. . .] and [. . .,0,1,2,3,4,. . .] agree
on the prefix . . .,0,1 because they aren’t sensitive to the new element 2. Furthermore,
even though new computation must be performed for the new element 2, the two runs
agree again on the suffix 3,4,. . ..

More generally, comparing two traces alternates between searching for a point where
traces align (i.e., memo action) and synchronizing the two similar traces until they again
differ (i.e., local actions). These two complementary ways of scanning traces suggest two
corresponding ways for quantifying the distance of two runs. The synchronization distance
optimistically assumes the two runs are identical and have distance zero. The search dis-
tance pessimistically assumes the two runs are distinct and have distance proportional to
the size of both runs. Since the work common to both runs may be interspersed throughout
the two traces, intuitively, the distance between two runs alternates between the synchro-
nization distance of the common work and the search distance of the leftover work.

Local distance is formally captured by the search distance S1 � S2 = d and synchro-
nization distance S1 	 S2 = d judgements (given in Figure 3.5), defined by structural
induction on the two trace slices. The search mode can switch to synchronization if it
encounters similar program fragments (as identified by memo actions), and the synchro-
nization mode must switch to search mode if the trace actions differ at some point. Intu-
itively, the trace distance measures the symmetric difference between two traces (i.e., the
size of trace segments that don’t occur in both traces). Concretely, we quantify distance
d = 〈c1, c2〉 between traces S1 and S2 as a pair of costs, where c1 is the amount of work in
S1 that isn’t shared with S2 and c2 is the amount of work in S2 that isn’t shared with S1.
We let d+ d′ denote pointwise addition for distance.

Since traces approximate the shape of an evaluation derivation, trace distance approx-
imates a higher-order distance judgement on evaluation derivations that quantifies the
dis/similarities of active work between two runs, modulo the stores. The dynamic seman-
tics of Tgt has nondeterministic allocation and memoization in order to avoid committing
to an implementation. Consequently, the definition of Src trace distance is a relation be-
cause the allocation depends on the particular trace chosen and memoization depends on
the synchronization chosen in the local distance. We can show that any distance derivable
for Src programs is preserved in Tgt (Theorem 40).

Search Distance. The search distance S1�S2 = d accounts for traces that don’t match,
but switches to synchronization mode if it can align memoization actions. The search
distance between empty traces is zero. Upon simultaneously encountering similar memo

52

actions M1(S1)·S ′1 and M2(S2)·S ′2 (search/synch rule), the search distance can switch
to synchronizing the bodies S1 and S2, while separately searching for further synchro-
nization of the tails S ′1 and S ′2. Two memo actions are similar M1 ≈ M2 if they rep-
resent the same computation even if the return values need not coincide. In the case
of a memoizing application, both actions must have the same function and argument:
appvf$vx⇓v1 ≈ appvf$vx⇓v2 . The cost of the synchronization and search are added to the
cost of 1 for the memoization match in each trace.

Finally, skipping an action in search mode incurs a cost of 1 in addition to the distance
between the tail of the trace (search/memo rules and search/store rules).

Synchronization Distance. Turning to the synchronization distance, the S1 	 S2 = d
judgement attempts to structurally match the two traces. Identical work in both traces
incurs no cost, but synchronization returns to search mode when work cannot be reused
because traces don’t match or nondeterministically otherwise. Synchronization mode is
only meant to be used on traces generated by the evaluation of the same expression under
(possibly) different stores.

The synchronization distance between empty traces is zero. Encountering identical
store actions allows distance to remain in synchronization mode without cost (synch/l
rule). Synchronizing memo actions (synch/m rule) requires the actions to be identical;
this allows the bodies as well as the tails to be synchronized separately and their distance
compounded. Note that even if the bodies don’t match completely and return to search
mode, memoizing functions provide a degree of isolation because tails can be matched
independently. Synchronization falls back to search mode (synch/search rule) necessarily
when the actions are distinct (e.g., because local or memo actions don’t match) or nonde-
terministically otherwise.

Observe that the definition of synchronization distance is quasi-symmetric: S1	S2 =
〈c1, c2〉 iff S2 	 S1 = 〈c2, c1〉, and similarly for search distance. Furthermore, note that
local distance of Src programs is defined by induction on the two traces: both judge-
ments traverse traces left-to-right either matching work or accounting for skipping it. This
means that common work consists of a subsequence of actions that appears in both traces,
which precludes reordering work under local distance. For example, comparing runs
appf$x⇓a()·appg$y⇓b()· and appg$y⇓b()·appf$x⇓a()· can only synchronize one of the
calls, the other call must be skipped. This restriction avoids having to search for permuta-
tions for matching computations and simplifies the implementation requirements of Tgt;
however, this limitation obviously hinders the efficiency of self-adjusting computation for
certain classes of computations.

53

3.5.2 Global Trace Distance

Under out-of-order reuse, trace distance accounts for reordering and thus trace distance is a
hybrid of set difference and edit distance. Intuitively, the difference between two runs can
be obtained by globally decomposing each run into a set of subcomputations and locally
comparing subcomputations pairwise under some matching. More specifically, globally
decomposing a computation slices a trace into a set of traces with holes, and pairwise
compares locally traces

The global distance S1 �� S2 = d between two slices S1 and S2 is obtained by
decomposing each slice into the same number of slices, matching slices from each set ,
and adding up the local distance between each pair of slices:

S1 � 〈S′1i〉i∈1..n S2 � 〈S′2j〉j∈1..n B ∈ Perm(n) (∀(i, j) ∈ B.S′1i � S
′
2j = dij) d =

∑
(i,j)∈B

dij

S1 �
� S2 = d

Each Sk (k ∈ 1..2) is sliced into n slices 〈Ski〉, which are chosen nondeterministically
by the slicing judgement. Next, a bijection B on n elements (i.e., from the set Perm(n)
of permutations on n elements) is chosen nondeterministically. Then for each pair of
indices related by the bijection ((i, j) ∈ B), the local distance (dij) is calculated for the
corresponding trace slices (S1i and S2j). Finally the global distance between the slices is
the total of the local trace distances (d =

∑
(i,j)∈B dij). Observe that global distance is

a relation because of the nondeterminism of slicing the trace slices, choosing a bijection,
and due to the nondeterminism of local distance itself.

3.5.3 Trace Contexts

To reason compositionally about local distance and obtain asymptotic results, distance is
generalized to trace contexts T , which are traces with holes.

T ::= 2 | A·T |M(T)·T |M(T)·T

Trace context distances T1 � T2 = d and T1 	 T2 = d are obtained by lifting distance
on traces to trace contexts, extended with the following rules for holes (in the multi-hole
analogue, holes are uniquely labeled from left-to-right and labels must also coincide):

2�2 = 〈0, 0〉 2	2 = 〈0, 0〉

By requiring holes to coincide when comparing trace contexts, we can reason sepa-
rately about trace contexts and traces, and then combine the results. Intuitively, the iden-

54

tity theorem for traces means a common suffix subcomputation incurs no cost. The iden-
tity theorem for trace contexts and the substitution theorem show that a common prefix
computation does not affect distance either: provided the hole in both trace contexts is
immediately bounded by a memoization action of the same function and argument, con-
text and trace distance can be combined additively. The identity theorems are proved by
induction on the subject trace T or trace context T . The generalization to multi-holed
contexts requires holes to be uniquely labeled in left-to-right order and to line up between
two trace contexts.

Theorem 20 (Identity for Traces)
For any trace T , T 	 T = 〈0, 0〉.

Proof: By straightforward induction on the trace T .

Case ε. Immediate by search distance rule for ε.

Case L·T . By the i.h. and synch/l rule.

Case M(T ′)·T . By the i.h.’s and the synch/m.

�

Theorem 21 (Identity for Trace Contexts)
For any trace context T ,
T [M(2)·T]	T [M(2)·T] = 〈0, 0〉.

Proof: By induction on the trace context T .

Case 2. By the the identity theorem for T and the synch/m rule.

The remaining cases appeal to the identity theorem for traces and the i.h..

�

Theorem 22 (Substitution)
Assume M1 ≈M2 and T ′1 	 T ′2 = d′.
If T1[M1(2)·T1]�T2[M2(2)·T2] = d
then T1[M1(T

′
1)·T1]�T2[M2(T

′
2)·T2] = d+ d′.

If T1[M1(2)·T1]	T2[M2(2)·T2] = d
then T1[M1(T

′
1)·T1]	T2[M2(T

′
2)·T2] = d+ d′.

55

Proof: By simultaneous induction on the first derivation of each statement.

Case 2�2 = d. By assumption T ′1 	 T ′2 = d′.

Case L·T1[2]�T2[2] = 〈1, 0〉+ d.

T1[2]�T2[2] = d subderivation
T1[T1]�T2[T2] = d+ d′ i.h.
L·T1[T1]�T2[T2] = d+ d′ rule

The remaining cases are analogous, they appeal to the i.h. and replay the distance rule
used by the trace contexts.

�

3.5.4 Precise Local Trace Distance

The rules of Figure 3.5 are useful for high level reasoning, but aren’t rich enough to demon-
strate a correspondence with Tgt trace distance. We introduce failure actions to explicitly
indicate where synchronization mode must switch back to search mode after memoization.
Next, we give a alternate rule system for precise local Src trace distance that subsumes the
above system and serves as an intermediary for proving the preservation of distance under
compilation. Precise local distance is exactly matched by Tgt trace distance and asymp-
totically equivalent to the (simple) local Src trace distance presented above. Finally, we
present evaluation contexts that label help the translation determine a trace’s continuation.

Failure Actions. Recall that the search/synch rule (given in Figure 3.5) separately syn-
chronizes the bodies and searches the tails when it encounters matching memoization ac-
tions. While this rule is useful, it precludes memoization between one body and another
tail; for example, it doesn’t allow splitting T1 as T11·T12 and synchronizing T11 with a
prefix of T2 and searching T12 against the rest of T2. The naı̈ve rule:

T1·T ′1 	 T2·T ′2 = d

appvf$vx⇓v1E1 (T1)·T ′1 � appvf$vx⇓v2E2 (T2)·T ′2 = 〈1, 1〉+ d
memo/naive

would allow splitting both traces, but it is unsound because it may fully synchronize
T1·T ′1 with T2·T ′2, even though the trace concatenation may not have been generated by

56

S1·fail⇓vE(`)·S
′
1 � S2 = d

ME(`)(S1)·S′1 � S2 = 〈1, 0〉+ d
search/m/L’

S1 � S2·fail⇓vE(`)·S
′
2 = d

S1 �ME(`)(S2)·S′2 = 〈0, 1〉+ d
search/m/R’

S1 � S2 = d

fail⇓vE(`)·S1 � S2 = d
search/fail/L

S1 � S2 = d

S1 � fail⇓vE(`)·S2 = d
search/fail/R

S1·fail⇓v1E1(`1)·S
′
1 	 S2·fail⇓v2E2(`2)·S

′
2 = d

appvf$vx⇓v1E1(`1) (S1)·S′1 � appvf$vx⇓v2E2(`2) (S2)·S′2 = 〈1, 1〉+ d
search/synch’

Figure 3.6: Additional rules for Src distance with explicit failure.

the same expression, violating the well-formedness condition of synchronization distance.
We remedy this by introducing the local action for failure to explicitly force the synchro-
nization mode to switch back to search mode.

L ::= · · · | fail⇓vE(`)
The failure action is labeled by a result v, an evaluation context E expecting the result, and
location `. We also label the memoization action by a location `. The evaluation context
and location of memoization and failure actions can be ignored when reasoning about
Src distance; the evaluation contexts is needed to reify the calling context of an action
as a continuation and the location is needed to thread the continuation through the store.
Since the compilation of Src memoizing functions inserts Tgt memo primitives before and
after the function body, failure actions also serve a technical purpose for establishing the
correspondence between Src and Tgt traces.

The revised system is obtained by removing the search/synch and search/m/* rules
from Figure 3.5 and adding the rules in Figure 3.6.

The new search/m/*’ rules insert an explicit failure action between the body and tail
of a memoization action, and still incur a cost of 1 for failing to match. The search/fail
rules allow search to skip a failure action without cost. Observe that, in Figure 3.5, a
trace is subjected to synchronization if it is delimited by a memoization action and failure
actions never occur in the scope of a memoization action, so failure actions never appear
in synchronization mode. Therefore the search/memo’ and search/fail rules subsume
the (replaced) search/memo rules: any distance derivable from the failure-free deductive
system is also derivable from the system with explicit failure.

The search/synch’ rule identifies matching memoization actions and switches to syn-

57

chronizing the concatenation of the body, failure action, and tail. Since there are no new
synchronization distance rules, leading failure actions force synchronization to switch to
search (only the synch/search rule applies). Therefore the search/synch’ rule enables
synchronizing part of T1 with T2 and then searching the remainder of T1 against T ′2 (after
encountering the failure action between T2 and T ′2). The search/synch’ rule subsumes the
(replaced) search/synch rule.

Precise Distance. Since Src actions are translated into multiple Tgt actions (Chapter 5),
the simple Src distance presented above uses amortization to avoid exact accounting and to
simplify reasoning. We define a variant of Src’s distance relation with precise accounting
for memoization at function call and return points.

The original Src distance and the new precise Src distance are presented simulta-
neously in Figure 3.7; the latter extends the former with additional data to exactly ac-
count for failure actions and the alternation between search and synchronization. The
T1 � T2 = d; df , bo, do and T1 	 T2 = d; df , bo, do judgements include the simple dis-
tance d, and the precise distance do with an auxiliary distance df that counts the number of
failure actions in each trace and a Boolean flag bo indicating if synchronization ran to com-
pletion. The traces T1, T2 and the auxiliary distance df can be read as inputs to the distance
judgements, while the simple distance d, flag bo, and precise distance do are outputs.

Note that Src traces initially do not contain failure actions, and the number of fail-
ure actions introduced by trace distance is bounded by the original distance (cf. rules
search/memo’ and search/synch/flat). Therefore the following theorem shows that the
original Src distance bounds the precise Src distance by a constant factor. The precise
Src distance will be related to Tgt distance, thus showing that the original Src distance is
preserved in Tgt.

Lemma 23
If T1 	 T2 = 〈0, 0〉; 〈0, 0〉, bo, ,
then T1 	 T2 = 〈0, 0〉; 〈0, 0〉, true, .

Proof: By induction on the distance derivation.

Case ε	 ε = 〈0, 0〉; 〈0, 0〉, true, 〈0, 0〉. Immediate.

Cases synch/l and synch/m. By the i.h. on the respective subderivations.

Case synch/search. The only possible subderivation is ε� ε = 〈0, 0〉; 〈0, 0〉, false, 〈0, 0〉
which can be turned into ε	 ε = 〈0, 0〉; 〈0, 0〉, true, 〈0, 0〉.

58

ε� ε = 〈0, 0〉; 〈0, 0〉, false, 〈0, 0〉

S1 � S2 = d; df , bo, do

L·S1 � S2 = 〈1, 0〉+ d; df , bo, 〈1, 0〉+ do
search/l/L

S1·fail⇓vE(`)·S
′
1 � S2 = d; df + 〈2, 0〉, bo, do

appvf$vx⇓vE(`) (S1)·S′1 � S2 = 〈1, 0〉+ d; df , bo, 〈2, 0〉+ do

search/m/L

S′1 � S2 = d; df , bo, do

M(◦)·S′1 � S2 = 〈1, 0〉+ d; df , bo, 〈4, 0〉+ do
search/none/L

S1 � S2 = d; df , bo, do

fail⇓vE(`)·S1 � S2 = d; df + 〈1, 0〉, bo, 〈2, 0〉+ do

search/fail/L

S1 	 S2 = d; 〈0, 0〉, , do S′1 � S
′
2 = d′; d′f , b

′
o, d
′
o

appvf$vx⇓v1E1(`) (S1)·S′1 � appvf$vx⇓v2E2(`) (S2)·S′2 = 〈1, 1〉+ d+ d′; d′f , b
′
o, 〈4, 4〉+ do + d′o

search/synch

S1·fail⇓v1E1(`1)·S
′
1 	 S2·fail⇓v2E2(`2)·S

′
2 = d; df + 〈2, 2〉, bo, do

appvf$vx⇓v1E1(`1) (S1)·S′1 � appvf$vx⇓v2E2(`2) (S2)·S′2 = 〈1, 1〉+ d; df , bo, 〈2, 2〉+ do

search/synch’

ε	 ε = 〈0, 0〉; 〈0, 0〉, true, 〈0, 0〉
S1 	 S2 = d; df , bo, do

L·S1 	 L·S2 = d; df , bo, do
synch/l

S1 	 S2 = d; 〈0, 0〉, bo, do S′1 	 S′2 = d′; d′f , b
′
o, d
′
o

M(S1)·S′1 	M(S2)·S′2 = d+ d′; d′f , b
′
o, do + (if bo then 〈0, 0〉 else 〈2, 2〉) + d′o

synch/m

S1 � S2 = d; df , bo, do

S1 	 S2 = d; df , bo, do
synch/search

Figure 3.7: Src∗ (simple and precise) search distance T1 � T2 = d; df , bo, do (top) (frag-
ment) and synchronization distance T1 	 T2 = d; df , bo, do (bottom).

59

�

Theorem 24 (Src simple/precise soundness)
1. Assume T1 � T2 = d; df , bo, do.

If d = 〈0, 0〉,
then df = do,
else (6 · d+ df) ≥ (do + if bo then 〈0, 0〉 else 〈2, 2〉) and do ≥ d.

2. Assume T1 	 T2 = d; df , bo, do,
If d = 〈0, 0〉,
then df = do,
else (6 · d+ df) ≥ (do + if bo then 〈0, 0〉 else 〈2, 2〉) and do ≥ d.

Proof: By simultaneous induction on the distance derivation of each statement.

We show the cases for search/synch, search/synch’, search/m/L’, and synch/m. The
remaining cases follow by straightforward induction and arithmetic.

Case search/synch.

Subcase d, d′ = 〈0, 0〉.

do = 〈0, 0〉 i.h.(2) on D1

d′o = d′f i.h.(1) on D2

6 · (〈1, 1〉+ d+ d′) + d′f ≥ (〈4, 4〉+ do + d′o) + if b′o then 〈0, 0〉 else 〈2, 2〉 arithmetic

Subcase d = 〈0, 0〉 6= d′.

do = 〈0, 0〉 i.h.(2) on D1

6 · d′ + d′f ≥ d′o + if b′o then 〈0, 0〉 else 〈2, 2〉 i.h.(1) on D2

6 · (〈1, 1〉+ d+ d′) + d′f = 〈6, 6〉+ (6 · d′ + d′f)
≥ 〈4, 4〉+ d′o + if b′o then 〈0, 0〉 else 〈2, 2〉
= (〈4, 4〉+ do + d′o) + if b′o then 〈0, 0〉 else 〈2, 2〉 arithmetic

Subcase d 6= 〈0, 0〉 = d′.

60

6 · d+ 〈0, 0〉 ≥ do + if bo then 〈0, 0〉 else 〈2, 2〉 i.h.(2) on D1

d′o = d′f i.h.(1) on D2

6 · (〈1, 1〉+ d+ d′) + d′f = 〈6, 6〉+ (6 · d) + d′f
≥ 〈4, 4〉+ (do + if bo then 〈0, 0〉 else 〈2, 2〉) + d′f
= (〈4, 4〉+ do + d′o) + if b′o then 〈0, 0〉 else 〈2, 2〉 arithmetic

Subcase d, d′ 6= 〈0, 0〉.

6 · d+ 〈0, 0〉 ≥ do + if bo then 〈0, 0〉 else 〈2, 2〉 i.h.(2) on D1

6 · d′ + d′f ≥ d′o + if b′o then 〈0, 0〉 else 〈2, 2〉 i.h.(1) on D2

6 · (〈1, 1〉+ d+ d′) + d′f = 〈6, 6〉+ (6 · d) + (6 · d′ + d′f)
≥ 〈4, 4〉+ (do + if bo then 〈0, 0〉 else 〈2, 2〉) + (d′o + if b′o then 〈0, 0〉 else 〈2, 2〉)
≥ (〈4, 4〉+ do + d′o) + if b′o then 〈0, 0〉 else 〈2, 2〉 arithmetic

All subcases.

do ≥ d i.h.(2) on D1

d′o ≥ d′ i.h.(1) on D2

〈4, 4〉+ do + d′o ≥ 〈1, 1〉+ d+ d′ arithmetic

Case search/synch’.

Subcase d = 〈0, 0〉.

df + 〈2, 2〉 = do i.h.(2) on D1

6 · 〈1, 1〉+ d+ df = 〈4, 4〉+ (df + 〈2, 2〉))
≥ (〈2, 2〉+ do) + if bo then 〈0, 0〉 else 〈2, 2〉 arithmetic

Subcase d 6= 〈0, 0〉.

6 · d+ (df + 〈2, 2〉) ≥ do + if bo then 〈0, 0〉 else 〈2, 2〉 i.h.(2) on D1

6 · (〈1, 1〉+ d) + df = 〈4, 4〉+ (6 · d+ (df + 〈2, 2〉))
≥ (〈2, 2〉+ do) + if bo then 〈0, 0〉 else 〈2, 2〉 arithmetic

61

All subcases.

do ≥ d i.h.
〈2, 2〉+ do ≥ 〈1, 1〉+ d arithmetic

Case search/m/L’ (search/m/R’ is symmetric).

Subcase d = 〈0, 0〉.

df + 〈0, 2〉 = do i.h.(2) on D1

6 · 〈1, 0〉+ d+ df = 〈4, 0〉+ (df + 〈0, 2〉)
≥ (〈2, 0〉+ do) + if bo then 〈0, 0〉 else 〈2, 2〉 arithmetic

Subcase d 6= 〈0, 0〉.

6 · d+ (df + 〈2, 0〉) ≥ do + if bo then 〈0, 0〉 else 〈2, 2〉 i.h.
6 · (〈1, 0〉+ d) + df = 〈4, 0〉+ (6 · d+ df + 〈2, 0〉)

≥ (〈2, 0〉+ do) + if bo then 〈0, 0〉 else 〈2, 2〉 arithmetic

All subcases.

do ≥ d i.h.
〈2, 0〉+ do ≥ 〈1, 0〉+ d arithmetic

Case synch/m.

Subcase d, d′ = 〈0, 0〉.

〈0, 0〉 = do i.h.(2) on D1

d′f = d′o i.h.(2) on D2

bo = true wlog by Lemma 23 on D1

b′o = true wlog by Lemma 23 on D2

d′f = (do + (if bo then 〈0, 0〉 else 〈2, 2〉) + d′o) + if b′o then 〈0, 0〉 else 〈2, 2〉 arithmetic

Subcase d = 〈0, 0〉 6= d′.

62

〈0, 0〉 = do i.h.(2) on D1

6 · d′ + d′f ≥ d′o + if b′o then 〈0, 0〉 else 〈2, 2〉 i.h.(2) on D2

bo = true wlog by Lemma 23 on D1

6 · (d+ d′) + d′f = 6 · d′ + d′f
≥ d′o + if b′o then 〈0, 0〉 else 〈2, 2〉
≥ (do + if bo then 〈0, 0〉 else 〈2, 2〉+ d′o) + if b′o then 〈0, 0〉 else 〈2, 2〉 arithmetic

Subcase d 6= 〈0, 0〉 = d′.

6 · d+ 〈0, 0〉 ≥ do + if bo then 〈0, 0〉 else 〈2, 2〉 i.h.(2) on D1

d′f = d′o i.h.(2) on D2

b′o = true wlog by Lemma 23 on D2

6 · (d+ d′) + d′f ≥ (do + if bo then 〈0, 0〉 else 〈2, 2〉) + d′f
≥ (do + if bo then 〈0, 0〉 else 〈2, 2〉+ d′o) + if b′o then 〈0, 0〉 else 〈2, 2〉 arithmetic

Subcase d, d′ 6= 〈0, 0〉.

6 · d+ 〈0, 0〉 ≥ do + if bo then 〈0, 0〉 else 〈2, 2〉 i.h.(2) on D1

6 · d′ + d′f ≥ d′o + if b′o then 〈0, 0〉 else 〈2, 2〉 i.h.(2) on D2

6 · (d+ d′) + d′f ≥ (do + if bo then 〈0, 0〉 else 〈2, 2〉) + (d′o + if b′o then 〈0, 0〉 else 〈2, 2〉)
≥ (do + if bo then 〈0, 0〉 else 〈2, 2〉+ d′o) + if b′o then 〈0, 0〉 else 〈2, 2〉 arithmetic

All subcases.

do ≥ d i.h.
d′o ≥ d′ i.h.
do + if bo then 〈0, 0〉 else 〈2, 2〉+ d′o ≥ d+ d′ arithmetic

�

63

Evaluation Contexts. The evaluation contexts E in Src evaluation and traces are nec-
essary for relating Src and Tgt traces in Chapter 5, but can be ignored when reasoning
about Src evaluation and distance (in the deductive systems with and without failure). An
evaluation context is built up throughout evaluation (Figure 3.3) to capture the shape of
the surrounding evaluation derivation, up to the nearest memoizing function application:

E ::= 2 | E ex | vf E

The language restriction on the occurrence of expressions avoids explicit forms for case-
analysis or TDT manipulation. The evaluation of a memoizing function application ex-
tends the context for evaluating the function and argument expressions, but resets the con-
text for evaluating the redex; passive β-reduction (e.g., case-analysis) passes the context
unchanged. The accumulated context is used to label the actions with the current context
and is used by the ACPS trace translation to reify the continuation.

Intuitively, contexts help identify whether computation after a memoizing function
application can be reused. The search/synch rule ignores the contexts of each trace,
the search/m/* rules pass the context and result to the failure action. The synch/l and
synch/m rules formally require the contexts to be identical. Since synchronization begins
at memo actions app

vf$vx⇓v1
E1 (T1) and app

vf$vx⇓v2
E2 (T2) (cf., search/synch), the bodies T1

and T2 result from the evaluation of the same expression in the same reset context (cf., ap-
plication evaluation) but under (possibly) different stores. Synchronization distance in-
ductively preserves the property that the two traces being compared result from the same
expression in the same context. In particular, the evaluation contexts and results match in
the synch/memo rule, so the property holds for the tails justifying why they can be syn-
chronized independently of the bodies. Therefore, contexts in synchronization mode are
necessarily equal, and can be ignored when reasoning about Src distance.

3.6 SrcLazy

The SrcLazy language extends Src(−) with suspensions for lazy (call-by-need) evaluation,
which combines delayed evaluation and result memoization. A suspended expression de-
lays its evaluation until it is forced; the first time a suspension is forced, the expression
is evaluated and the result is cached; on subsequent forces, the cached result is retrieved.
Since the evaluation of suspensions relies on both adaptivity and computation memoiza-
tion, they constitute active computation (cf. Section 3.4) and cannot be formulated as a
TDT, which only provides adaptivity. We show how to implement SrcLazy suspensions in
terms of SrcImp modrefs and memoizing functions.

64

Σ; Γ `$ e : τ

Σ; Γ `$ delay e : τ susp

Σ; Γ, x : τ susp `$ e : τ

Σ; Γ `$ recdelay x .e : τ susp

Σ; Γ `$ vl : τ susp

Σ; Γ `$ force vl : τ

Figure 3.8: SrcLazy typing Σ; Γ `δ e : τ for suspensions.

Lazy programming assumes that the result of a suspension is independent of order
of evaluation, which therefore requires the absence of effects for referential transparency
(e.g., the result of forcing a suspension shouldn’t be sensitive to when it is forced). There-
fore, while the suspensions of SrcLazy are orthogonal to TDTs, the language should not
be instantiated with any effectful TDTs.

Syntax. SrcLazy extends Src(−) syntax with a type for suspensions, constructors to cre-
ate normal (non-recursive) and recursively-defined suspensions, and a primitive to force a
suspension.

types τ ::= · · · | τ susp
expressions e ::= · · · | delay e | recdelay x .e | force vl

State constructors are extended with suspended expressions, cached result values, and a
black hole to indicate a suspension is in the middle of being forced.

state constructors S ::= · · · | susp e | cache v | blackhole

Static Semantics. Figure 3.8 gives the static semantics for suspensions. A suspension
of type τ susp is introduced by delay xe and delay x.e if e is an expression of type τ , in
the latter case x has the type of the suspension, and eliminated by force vl.

Traces. SrcLazy traces extend Src(−) traces with local and memo actions for suspen-
sions. Suspension actions include creation (delay and recdelay) labeled by the sus-
pended expression and location of the suspension, forcing (force) labeled by the loca-
tion, expression, and result, and cached-result lookup (cache) labeled by the location and
result.

local actions L ::= · · · | delaye↑`E | recdelay
x .e↑`
E | cache`↓vE

memoizing actions M ::= · · · | force`,e⇓vE

For the purposes of trace distance, two first forces are similar if they operate on the same lo-
cation and expression, even if they don’t return the same result: force`,e⇓v1 ≈ force`,e⇓v2 .

65

` /∈ domσ σ′ = σ[` 7→ susp e]

E ; σ; delay e ⇓ σ′; ` ; delaye↑`E ·ε; 1
delay

` /∈ domσ σ′ = σ[` 7→ susp ([` / x] e)]

E ; σ; recdelay x .e ⇓ σ′; ` ; recdelayx .e↑`
E ·ε; 1

recdelay

` ∈ domσ σ(`) = susp e
σh = σ[` 7→ blackhole] E ; σh; e ⇓ σ′h; v ;T ′; c′ σ′ = σ′h[` 7→ cache v]

E ; σ; force ` ⇓ σ′; v ; force`,e⇓vE (T ′)·ε; 1 + c′
force/miss

` ∈ domσ
σ(`) = cache v

E ; σ; force ` ⇓ σ; v ; cache`↓vE ·ε; 1
force/hit

Figure 3.9: SrcLazy evaluation E ; σ; e ⇓ σ′; v′ ;T ; c (cost) for suspensions.

Dynamic Semantics. Figure 3.9 gives the dynamic and cost semantics for suspensions.
A suspension can be created by delay e and delay x.e to extend the store with a fresh
location initialized with the delayed expression e, in the latter case the suspension is re-
cursively bound to variable x for cyclical data structures.

Laziness is extensionally pure because forcing a suspension always returns the same
result, but it is intensionally effectful—as captured in the trace—because forcing the first
time performs the computation and stores the cached result, while subsequent forces only
fetch the cached result. Forcing a suspension for the first time finds an unevaluated ex-
pression susp e in the store, which is reset to contain a blackhole state, the expression is
evaluated, and the location is updated with the cached result cache v state. Forcing an
already-evaluated suspension returns the cached result v from the state cache v. Forcing
an in-evaluation suspension, however, finds a blackhole state and has undefined behavior;
a precise specification could define it to diverge or yield an error. In each case, the trace
is the action corresponding to the primitive and the work is 1, except for forcing the first
time which delimits the trace of evaluating the suspended expression and includes its cost.

Translation. The suspension primitives of SrcLazy are useful for lazy programming
and high-level reasoning about trace distance, but for technical convenience we give a
semantics- and trace distance-preserving translation from SrcLazy to SrcImp. To translate

66

Jτ suspKs = JτKs dsusp modref

Jdelay eKs = put (susp (mfun yf .yu. JeKs))
Jrecdelay x .eKs =

let x = putblackhole
= set x (susp (mfun yf .yu. JeKs))

in x
Jforce vsKs =

let xs = get JvsKs

in caseS xs

|blackhole⇒ diverge
| susp xf ⇒

let = set JvsKs blackhole
x = xf ()

= set JvsKs (cache x)
in x
| cache xres ⇒ xres

r
delaye↑`E ·S

zs
= put

susp (mfun yf .yu.JeKs)↑`
E · JSKs

r
recdelayx .e↑`

E ·S
zs

= putblackhole↑`
E ·set`←vfE · JSKs

r
force`,e⇓vE (Se)·S

zs
= get`↓susp vf

E ·set`←blackhole
E

·appvf$()⇓JvKs
E (JSeKs)·set`←cache JvKs

E · JSKs

where vf = mfun yf .yu. JeKsr
cache`↓vE ·S

zs
= get

`↓cache JvKs

E · JSKs

Figure 3.10: Translation from SrcLazy to SrcImp (fragment).

67

from SrcLazy to SrcImp, the latter must be extended with a unit type and a datatype for
suspensions, which yield passive computation.

types τ ::= · · · | unit | τ dsusp
expressions e ::= · · · | caseS v ebh (xd.ed) (xc.ec)

values v ::= · · · | () | susp v | cache v | blackhole

Intuitively, the datatype constructors simulate states for suspensions. The τ dsusp datatype
has constructors susp v for a thunk v of type unit

$→ τ of an unevaluated suspension, and
cache v for the cached value v of type τ of an evaluated suspension, and blackhole to
indicate a suspension is being evaluated and thus identify a circular dependency if it is
evaluated a second time. The caseS elimination form analyzes a value v of type τ dsusp
and dispatches to the branch prescribed by the scrutinee. The static, dynamic and cost
semantics are straightforward.

Figure 3.10 shows the translation J−Ks from SrcLazy to SrcImp for types
q
τ lazy

ys
=

τ imp, expressions
q
elazy

ys
= eimp, and trace slices

q
S lazy

y
= S imp, using ML-style let-

binding and pattern-matching syntactic sugar, and metavariable y for identifiers introduced
by the translation. The omitted cases of the translation are structural.

A suspension type is translated to reference containing a datatype. A (non-recursive)
suspension creates a reference with a thunk for the expression. A recursive suspension
creates a reference with a black hole, then updates it with a thunk for the expression with
the variable substituted with the reference, and returns the reference. Forcing a suspension
case-analyzes the contents of the reference: a black hole leads to divergence, consistent
with the undefined behavior in the semantics; finding a thunk replaces the reference with
a black hole, runs the thunk, updates the reference with the cached result, and returns the
result; finding a cached result returns the result. The type translation is extended pointwise
to SrcLazy store and variable typing contexts Σ and Γ; the value translation is extended
pointwise to SrcLazy stores σ. The trace translation

q
S lazy

y
= S imp is uniquely determined

by the expression translation.

Meta-Theory. The translation preserves the static semantics, asymptotically the dy-
namic and cost semantics, and asymptotically the trace distance. The correctness of the
translation crucially depends on the use of a thunk in the translation of delaying an ex-
pression: forcing the thunk produces a memoizing action for function application that
corresponds to the one for forcing.

Theorem 25 (Suspension Typing Soundness)
If Σ; Γ `δ e : τ , then JΣKs ; JΓKs `δ JeKs : JτKs.

68

Proof: By induction on the typing derivation.

Case Σ; Γ `$ force vs : τ , subcase susp e.

Σ; Γ `$ vl : τ susp subderivation
JΣKs ; JΓKs `$ JvsK

s : JτKs dsusp modref i.h.
JΣKs ; JΓKs `$ get JvsK

s : JτKs dsusp typing
JΣKs ; JΓKs `$ set JvsK

s blackhole : unit typing

JΣKs ; JΓKs , xf : unit
$→ JτKs `$ xf $ () : JτKs typing

JΣKs ; JΓKs , x : JτKs `$ set JvsK
s (cache x) : unit typing

JΣKs ; JΓKs , x : JτKs `$ x : JτKs typing
JΣKs ; JΓKs `$ Jforce vsK

s : JτKs typing

The force ` subcases cache v and blackhole, and the delay e and recdelay x .e cases are
analogous.

The remaining cases follow immediately by the induction hypothesis.

�

Theorem 26 (Suspension Evaluation Soundness)
If E ; σ; e ⇓ σ′; v′ ;T ; c,
then E ; JσKs ; JeKs ⇓ Jσ′Ks ; Jv′Ks ; JT Ks ; c′

and c ≤ c′ ≤ 4 · c, whence c′ ∈ Θ(c).

Proof: By induction on the evaluation derivation.

Case E ; σ; force ` ⇓ σ′; v ; force`,e⇓vE (T ′)·ε; 1 + ch, subcase susp e.

` ∈ domσ subderivation
σ(`) = susp e subderivation
JσKs (`) = susp (mfun yf .yu. JeK

s) translation
E ; JσKs ; get ` ⇓ σ; susp (mfun yf .yu. JeK

s) ; get
`↓susp (mfun yf .yu.JeKs)
E ·ε; 1

evaluation
σh = σ[` 7→ blackhole] subderivation
E ; JσKs ; set `blackhole ⇓ JσhK

s ; () ; set
`,blackhole↓()
E ·ε; 1 evaluation

69

E ; σh; e ⇓ σ′h; v ;T ′; c′ subderivation
E ; JσhK

s ; JeKs ⇓ Jσ′hK
s ; JvKs ; JT ′Ks ; c′h i.h.

ch ≤ c′h ≤ 4 · ch i.h.
E ; JσhK

s ; (mfun yf .yu. JeK
s) $ () ⇓ Jσ′hK

s ; JvKs ; app
vf$()⇓JvKs
E (JT ′Ks)·ε; 1 + c′h

evaluation
σ′ = σ′h[` 7→ cache v] subderivation
E ; Jσ′hK

s ; set ` JvKs ⇓ Jσ′Ks ; () ; set
`,JvKs↓()
E ·ε; 1 evaluation

E ; JσKs ; Jforce `Ks ⇓ Jσ′Ks ; JvKs ;
r
force

`,e⇓v
E (T ′)·ε

zs

; 4 + ch evaluation
1 + ch ≤ 4 + c′h ≤ 4 · (1 + ch) arithmetic

The force ` subcases cache v and blackhole, and the delay e and recdelay x .e cases
are analogous, each incurs an additional cost of 1 or 2 depending on the number of
modref operations in their translation.

The remaining cases follow immediately by the induction hypothesis.

�

Theorem 27 (Suspension Local Distance Soundness)
If S1 � S2 = d, then JS1K

s � JS2K
s = d′ and d ≤ d′ ≤ 4 · d, whence d′ ∈ Θ(d).

If S1 	 S2 = d, then JS1K
s 	 JS2K

s = d′ and d ≤ d′ ≤ 4 · d, whence d′ ∈ Θ(d).

Proof: By simultaneous induction on the local distance derivation of each statement.

Cases search/l/*, search/m/*, and search/none/* involving suspension actions. The
translation of a suspension action increments the cost by 1, 2, or 4 depending on
the number of actions in its translation.

Case search/synch with similar force actions. The translation incurs a cost of 3 for the
search discarding the get and two set actions of each trace slice, plus a cost of 1
for the synchronization of the memoized application; the distance for the translated
body and tail slices are asymptotically the same by the i.h..

Cases synch/l and synch/m. The translation uses the same rules multiple times for the
actions of the translation; the distance for the translated body and tail slices are
asymptotically the same by the i.h..

The remaining cases follow immediately by the induction hypothesis.

70

�

Theorem 28
If S1 �� S2 = d, then JS1K

s �� JS2K
s = d′ and d ≤ d′ ≤ 4 · d, whence d′ ∈ Θ(d).

Proof: By induction on the global distance derivation. We choose the analogous slicing
for the translated trace slices and appeal to the translation result for local distance. �

71

72

Chapter 4

The Tgt∗ Languages

This chapter is based on work on a CPS language for self-adjusting computation with
single-write modrefs [Ley-Wild et al., 2008b], a cost semantics and trace distance for a
language with multi-write modrefs [Ley-Wild et al., 2009], and extensibility to traceable
data types [Acar et al., 2010a].

4.1 Overview

The schematic Tgt(T) language is a simply-typed, call-by-value λ-calculus that enforces
a continuation-passing style (CPS) Appel [1991] discipline to help identify opportunities
for reuse and computations for re-execution. The language is parameterized by a traceable
data type T (possibly several) specified by a signature. A TDT induces continuation-
passing TDT operations in the Tgt language that use an indirection through the store to
make dynamic data dependencies explicit and help identify which parts of an execution
may be reused or must be recomputed. The language also includes a computation memo-
ization primitive to identify opportunities for computation reuse across runs. We use Tgt∗
to refer collectively to Tgt(−) with TDTs, and Tgt to refer to a representative one.

Tgt∗ is self-adjusting: its semantics includes evaluation and change-propagation
judgements that can be used to reduce expressions to values and adapt computations to
input changes. To update a program’s output in response to changes in its input, the
change-propagation mechanism re-executes the portions of the computation affected by
the changes and reuses the unaffected portions. The dynamic and cost semantics produces
an execution trace for change-propagating one evaluation into another, and also serves to
quantify the abstract cost of change-propagation as a trace distance between runs.

73

The language supports both in-order computation memoization with TDTs and out-of-
order computation memoization with mutable modrefs. In-order reuse requires segments
of a previous computation to be used in the same execution order, which is captured by
local trace distance. Out-of-order computation reuse allows the trace of a previous run can
be sliced into subcomputations and reused with reordering, which is captured by global
trace distance.

Chapter 5 shows how Src programs are compiled into self-adjusting Tgt programs by
a CPS transformation that uses Src annotations to insert primitives for self-adjusting com-
putation. The CPS transform sequentializes computations and names intermediate values,
which isolate where TDTs should be created and used. The transform also reifies control
flow as a continuation that represents the rest of the computation, this gives a conservative
approximation to the scope of a modifiable dereference and allows memoizing the tail of
a computation.

4.2 Syntax

The syntax of Tgt(T) is given by the following grammar, which defines types τ , expres-
sions e, values v, and commands κ, using metavariables f and x for identifiers and ` for
locations.

types τ ::= res | nat | τx → τ | τ tdt
expressions e ::= v | caseN vn ez (x .es) | ef ex

values v ::= x | zero | succ v | fun f .x .e | ` | κ
commands κ ::= halt v |memo e |mk k vmk vk | op k vl varg vk

λx .e def= fun f .x .e with f /∈ FV(e)

Tgt enforces a continuation-passing style (CPS) discipline to help identify opportunities
for reuse and computations for re-execution.

The CPS discipline allows pure computations (e.g., natural numbers and recursive
functions) to be introduced by values and eliminated by expressions, with the caseN
scrutinee. The caseN primitive case-analyzes a natural number vn and branches to ez
or es according to whether it is zero or a successor number. Functions are classified by
the τx → τ type, introduced with the fun keyword, and eliminated by juxtaposition. In
contrast to Src with normal and adaptive functions, Tgt only has one form of functions
because adaptivity is directly handled by commands. Function application allows both the
function and argument to be expressions. Self-adjusting programs, however, restrict the
argument to be a value (cf. Chapter 5) to respect the CPS discipline.

74

Commands κ follow a continuation-passing discipline that linearizes the computation
and explicitly identifies adaptivity and computation memoization. The type res is an
opaque answer type, while halt is a continuation that injects a final value into the res
type. The dynamic semantics identifies opportunities for computation reuse at memo
commands, which enable replaying the trace of a previous run.

Since adaptivity identifies the need for recomputation, Tgt programs use an indirection
through the store to manipulate TDTs and isolate the differences between computations.
TDT commands in Tgt are formulated in CPS with an explicit continuation vk identifying
the computation that follows the command and use an indirection through the store to
isolate data dependencies. A creation command mk k vmk vk initializes a TDT instance
with seed value vmk, and a manipulation (i.e., query or update) command op k vl varg vk
takes a reference vl to a TDT instance in the store and an argument value varg. The
invoke and revoke operations of TDTs are used by the semantics of the Tgt language to
identify which parts of a computation—i.e., which actions of the trace—are affected by
input changes.

As in Src, we take a store σ to be a finite map of locations to TDT state constructors S ;
the notation σ[` 7→ S] denotes the store σ updated with ` mapped to S . Contexts Γ and Σ
are maps from variables and locations to types, respectively.

4.3 Static Semantics

Figure 4.1 gives the static semantics of Tgt. The typing judgement Σ; Γ ` e : τ ascribes
the type τ to the expression e in the store and variable typing contexts Σ and Γ.

The type of a variable (resp. location) is determined by the variable (resp. store) typing
context, independent of the mode.

The type of natural number values is determined structurally. A case-analysis must
have a natural number scrutinee and both branches must agree on the type.

A function is well-typed if the body of the function has the correct result type by
extending the context with the function and argument variables. An application has the
function expression’s result type if the function expression has a function type and the
argument expression matches the argument type.

Commands have answer type res if their arguments have the correct type. A halt
command injects any well-typed value into the res type. A memo command preserves
the res type of any expression. An adaptive TDT command requires the arguments to
match the types prescribed by the TDT signature. A creation command mk must have

75

x : τ ∈ Γ
Σ; Γ ` x : τ Σ; Γ ` zero : nat

Σ; Γ ` v : nat

Σ; Γ ` succ v : nat

Σ; Γ, f : τx → τ, x : τx ` e : τ
Σ; Γ ` fun f .x .e : τ

` : τ ∈ Σ
Σ; Γ ` ` : τ

Σ; Γ ` vn : nat Σ; Γ ` ez : τ Σ; Γ, x : nat ` es : τ
Σ; Γ ` caseN vn ez (x .es) : τ

Σ; Γ ` ef : τx → τ Σ; Γ ` ex : τx
Σ; Γ ` ef ex : τ

Σ; Γ ` v : τ
Σ; Γ ` halt v : res

Σ; Γ ` e : res

Σ; Γ `memo e : res

mk : τmk → τ tdt ∈ ∆tdt

Σ; Γ ` vmk : τmk

Σ; Γ ` vk : τ tdt→ res

Σ; Γ `mk k vmk vk : res

op : τarg → τres ∈ ∆tdt

Σ; Γ ` vl : τ tdt
Σ; Γ ` varg : τarg

Σ; Γ ` vk : τres → res

Σ; Γ ` op k vl varg vk : res

Figure 4.1: Tgt typing Σ; Γ ` e : τ .

76

an argument that matches the seed type and a continuation that expects a TDT. A manip-
ulation command op must have a location argument of the TDT type, an argument and
continuation matching the types specified by the signature.

4.4 Dynamic and Cost Semantics

The dynamic semantics includes both an evaluation judgement for executing a program
from scratch (Subsection 4.4.1) and a change-propagation judgement for replaying a com-
putation under a (possibly) different store (Subsection 4.4.3); each produces a value in an
updated store as well a trace and cost. The semantics of the Tgt language uses traces to
capture the structure of the computation, and are sufficient to update a run under different
inputs through a combination of evaluation and change-propagation. Adaptivity identi-
fies when change-propagation must revert to evaluation to re-execute the portions of the
computation that differ, while computation memoization (Subsection 4.4.2) switches from
evaluation to change-propagation to reuse the unaffected portions of the computation.

Traces. A Tgt trace T is a sequence of memo and TDT actions A, ending in a halt
action. A trace slice S is a trace segment; it may end in a halt action or a hole marker
holee that indicates the rest of the trace (corresponding to the run of e) was stolen for
out-of-order reuse. Note that trace actions correspond to Tgt commands, and a trace is
also a sliced trace with no holes.

traces T ::= haltv | A·T
trace slices S ::= H | A·S

slice final actions H ::= haltv | holee

actions A ::= memoe | mkvmk↑`
vk | op`,varg↓vresvk○

checkmarks ○ ::= ! |%

Since continuations capture the rest of the computation, a memo action memoe has no
explicit return point, so it is an atomic action instead of delimiting the trace of its body—as
done by Src memo actions.

A creation action mkvmk↑`vk
records the argument, result, and continuation of a TDT

creation command. A manipulation action op
`,varg↓vres
vk○

records the location accessed, the
argument, result, and continuation of a TDT manipulation command; the action is addi-
tionally labeled by a checkmark ○ to indicate whether the action can be replayed during
change-propagation (i.e., the result of the operation is consistent with the current store).
The dynamic semantics maintains consistency of the reuse trace, i.e., the prefix trace of

77

v ⇓ v
ez ⇓ v

caseNzero ez (x .es) ⇓ v
[vn/x]es ⇓ v

caseN (succ vn) ez (x .es) ⇓ v

ef ⇓ fun f .x .e ev ⇓ vx [vx/x][fun f .x .e/f]e ⇓ v
ef ex ⇓ v

e ⇓ κ S;σ;κ ⇓K T ′;σ′; v′; d′

S;σ; e ⇓E T
′;σ′; v′; d′

|S| = c

S;σ; halt v ⇓K haltv;σ; v; 〈c, 1〉

S;σ; e ⇓E T
′;σ′; v′; d′

S;σ; memo e ⇓K memoe·T ′;σ′; v′; 〈0, 1〉+ d′
memo/miss

σ;S; e m
; S

′;Se; c S
′;Se;σ y T ′;σ′; v′; d′

S;σ; memo e ⇓K memoe·T ′;σ′; v′; 〈1, 1〉+ d′
memo/hit

` /∈ domσ vmk;S mk `Z⇒ S ′;Smk

σl = σ[` 7→ S ′] Smk;σl; vk ` ⇓E T
′;σ′; v′; d′

S;σ; mk k vmk vk ⇓K mkvmk↑`
vk

·T ′;σ′; v′; 〈0, 1〉+ d′
mk

` ∈ domσ σ(`) = S S ; varg;S
op `Z⇒ S ′; vres;Sop

σl = σ[` 7→ S ′] Sop;σl; vk vres ⇓E T
′;σ′; v′; d′

S;σ; op k ` varg vk ⇓K op
`,varg↓vres
vk!

·T ′;σ′; v′; 〈0, 1〉+ d′
op

Figure 4.2: Reduction e ⇓ v (top) and evaluation S;σ; e ⇓E T ′;σ′; v′; d′ and S;σ;κ ⇓K

T ′;σ′; v′; d′ (bottom).

78

actions with a valid checkmark ! are consistent with the store and thus replayable by
change-propagation, and the earliest (if any) inconsistent manipulation action has an in-
valid checkmark% and must be re-executed by change-propagation.

The metavariables Ṫ and Ṡ range over optional traces and trace slices. The metavari-
able S ranges over •-terminated, comma-separated lists of trace slices. The metavari-
able U ranges over non-empty lists of slices; concatenation extends to the first slice:
A·(S, S) = (A·S, S), we omit the parentheses when they are clear from context.

optional trace Ṫ ::= ◦ | T
optional slice Ṡ ::= ◦ | S

slice list S ::= • | S, S
non-empty slice list U ::= S, S

4.4.1 Evaluation

Overview. Figure 4.2 gives the large-step evaluation relation S;σ; e ⇓E T
′;σ′; v′; d′ (resp.

S;σ;κ ⇓K T ′;σ′; v′; d′) reduces the expression e (resp. the command κ) under the store σ,
yielding the value v′ and the updated store σ′. Evaluation also takes a list of trace slices
S for reuse, and produces an execution trace T ′ for the current run and a pair of costs
d′ = 〈c, c′〉 for work c discarded from the reuse trace slices and new work c′ performed for
the current run. The auxiliary evaluation relation e ⇓ v′ reduces an expression e to a value
v′; such evaluation is pure and independent of the store. Note that unlike the dynamic
semantics of Src, where the computation trace and cost proceeded in lock-step, Tgt traces
do not subsume the cost of the current run because the latter only accounts for new work
that wasn’t taken from the reuse trace.

The three evaluation relations model the execution of a self-adjusting program as the
interleaving of pure computations and commands. As in Src, evaluation presupposes that
neither the initial expression nor store have free variables, but the initial expression may
have free locations that are present in the initial store and represent the program’s change-
able input.

The trace slices S represent segments of computation from a previous evaluation. A
memo-match during evaluation can pick a trace slice and supply it to change-propagation
to reuse the computation. Evaluation with an empty list corresponds to a from-scratch run
without the possibility of reuse from a previous run. In the presence of a non-empty list
of reuse slices, we can combine in-order reuse with any TDT and out-of-order reuse with
single- and multi-write modrefs.

79

In-Order Reuse with TDTs. In-order computation memoization reuses work from the
previous run in execution order; thus S is either empty because it is a from-scratch run or
a singleton trace T that corresponds to a tail of the previous run. A TDT is compatible
with in-order memoization because it is straightforward to maintain the consistency of the
tail trace T .

Out-of-Order Reuse with Modrefs. Out-of-order computation memoization can reuse
work from the previous in any order; thus S can be several trace slices from the previous
run. As presented here, TDTs are not compatible with out-of-order memoization because
there isn’t an immediate way to maintain the consistency of multiple trace slices. Out-of-
order reuse can be combined with single- and multi-write modrefs, however, by explicitly
checking which actions can be replayed instead of relying on a consistency invariant. In
Chapter 8, we discuss how the semantics may be generalized to combine out-of-order
reuse with arbitrary TDTs.

Evaluation Rules. The halt v command yields a computation’s final value, with a cost
of 1 for the current run and a cost of |S| = c for discarding the reuse trace slices S. The
cost of a trace slice |S| = c is the number of actions (except holes, which don’t represent
previous work) in the trace:

|holee| = 0
|haltv| = 1
|A·T | = |A|+ |T |

The cost of a list of trace slices |S| = c sums the cost of each trace slice:

| • | = 0
|S, S| = |S|+ |S|

A memoized expression memo e in Tgt has no special behavior when evaluated from
scratch (memo/miss rule): in the absence of a memo match, it evaluates the body e and
extends the trace with a memo action memoe to identify the rest of the trace T ′ as the evalu-
ation of e, incurring a cost of 1 for the current run. Memoization enables the reuse of com-
putations across runs during change-propagation. The memo/hit rule exploits the reuse
trace from the previous evaluation and switches to change-propagation (Subsection 4.4.3)
if the same expression was memoized and evaluated in the previous run. In self-adjusting
computation, memoization enables a single reuse of a computation between runs, whereas
classical memoization Michie [1968] permits sharing the result of a computation multiple
times within a single run of a program.

80

The Tgt semantics of TDT commands are determined by the TDT’s standalone state-
transformation semantics. A mk k vmk vk creation command (mk) generates a TDT state
S ′ of type τ tdt with seed value vmk according to the state-transformation semantics, ex-
tends the store σ with a fresh location ` bound to S ′, and delivers ` to the continuation
vk. Note that the choice of location ` is independent of the reuse trace slices S. It is
acceptable—and, indeed, often desirable—for the location ` to appear in a creation ac-
tion mkvmk↑`vk

in the reuse trace; we say that such a location is (implicitly) stolen from the
reuse trace. An op k ` varg vk manipulation command (op) fetches the TDT state S from
the store σ at `, performs the corresponding state-transformation, updates the store with `
bound to the new state S ′, and delivers the result vres to the continuation vk. TDT manipu-
lation (specifically, query) actions in a computation trace identify computations that must
be re-executed by change-propagation if they become inconsistent with the store due to in-
put changes. In each case, the trace is the singleton action corresponding to the primitive
labeled by the relevant arguments and results, and the command incurs a cost of 1 for the
current run. The vmk;S

mk `Z⇒ S ′;S
′
and S ; varg;S

op `Z⇒ S ′; vres;S
′
judgements may intuitively

be read as the state-transformation judgements vmk
mk7→ S and S ; varg

op7→ S ′; vres from the
TDT signature. For in-order memoization with TDTs, the list trace slices is either a single
trace or empty—e.g., S = Ṫ and S

′
= Ṫ ′—and the mkZ⇒ and

opZ⇒ judgements additionally
maintain the consistency of the trace (see below). For out-of-order memoization with mod-
refs, the mkZ⇒ and

opZ⇒ judgements should only be read as the state-transformation judgements
for modrefs leaving the trace slices unchanged—e.g. S

′
= S.

Trace Reparation and Operation Invocation. The trace reparation and operation in-
vocation judgements (Figure 4.3) use the state-transformation rules to maintain trace con-
sistency.

The trace reparation judgement S ; Ṫ
rep `Z⇒ Ṫ ′ takes a TDT state S at location ` and

an optional reuse trace Ṫ (with possible inconsistencies in actions that manipulate `) to
produce the consistent optional trace Ṫ ′. Intuitively, trace reparation identifies the earliest
inconsistent action that manipulates ` and marks it with an invalid checkmark.

A halt action isn’t subject to any repair. Any action that does not manipulate location
` is preserved and the tail of the trace is recursively repaired (rep/indep). For any action
that manipulates `, the state-transformation is simulated on the TDT state S . If the state-
transformation produces the same answer, the action receives a valid checkmark ! and
the tail of the trace is recursively repaired with the simulated new TDT state S ′ (rep/!).
Otherwise the action receives an invalid checkmark% and the resulting trace is consistent
(rep/%).

81

S ; ◦ rep `
Z⇒ ◦

rep/none
S ; haltv

rep `
Z⇒ haltv

rep/halt
A 6= op`, ↓ S ;T

rep `
Z⇒ T ′

S ;A·T rep `
Z⇒ A·T ′

rep/indep

S ; varg
op7→ S ′; vres S ′;T

rep `
Z⇒ T ′

S ; op`,varg↓vresvk○ ·T rep `
Z⇒ op

`,varg↓vres
vk!

·T ′
rep/!

S ; varg
op7→ S ′; v′res

S ; op`,varg↓vresvk○ ·T rep `
Z⇒ op

`,varg↓vres
vk%

·T
rep/%

vmk
mk7→ S ′ S ′; Ṫ

rep `
Z⇒ Ṫ ′

vmk; Ṫ mk `Z⇒ S ′; Ṫ ′
mk/invoke

S ; varg
op7→ S ′; vres S ′; Ṫ

rep `
Z⇒ Ṫ ′

S ; varg; Ṫ
op `Z⇒ S ′; vres; Ṫ ′

op/invoke

Figure 4.3: Trace reparation S ; Ṫ
rep `Z⇒ Ṫ ′ (top) and invocation vmk; Ṫ

mk `Z⇒ S ′; Ṫ ′ and
S ; varg; Ṫ

op `Z⇒ S ′; vres; Ṫ
′ (bottom).

The invocation judgements vmk; Ṫ
mk `Z⇒ S ′; Ṫ ′ and S ; varg; Ṫ

op `Z⇒ S ′; vres; Ṫ
′ use

the corresponding state-transformation judgements for creating and manipulating a TDT
state. Furthermore, since invoking the operation may affect the consistency of actions in
the reuse trace Ṫ (if any) that manipulate location `, the trace reparation judgement is used
to maintain the consistency of the reuse trace (mk/invoke and op/invoke).

Hence, the mk and op evaluation rules use the invocation judgements to perform the
state-transformation and preserve trace consistency; moreover the manipulation action is
labeled by a valid checkmark because it is consistent with the rest of the execution trace.

4.4.2 Computation Memoization

Overview. Computation memoization acts as the interface between evaluation and
change-propagation. When evaluation encounters a memo e expression, it can search
the reuse traces for a previous run of e and adapt it to the current store with change-
propagation. More precisely, if memoization finds a trace Se that is preceded by the mem-
oization action memoe, then it corresponds to a previous run of e under a (possibly) different
store. Hence, the memo/hit evaluation rule switches to change-propagating Te under the
current store in order to correct any inconsistent TDT operations. This can be more effi-
cient than fully evaluating e because any work that isn’t affected by the input changes can
be reused.

82

σ; memoe·T ; e m
; •;T ; 1

hit
σ;T ; e m

; •;Te; c

σ; memoe
′ ·T ; e m

; •;Te; 1 + c

σ;T ; e m
; •;Te; c

σ; mkvmk↑`
vk

·T ; e m
; •;Te; 1 + c

` /∈ domσ

σ;T ; e m
; •;Te; c

σ; op`,varg↓vresvk○ ·T ; e m
; •;Te; 1 + c

σ(`) = S

S ;T
rep `
Z⇒ T ′ σ;T ′; e m

; •;Te; c

σ; op`,varg↓vresvk○ ·T ; e m
; •;Te; 1 + c

op/rev

Figure 4.4: In-order memoization with TDTs σ;T ; e
m
; •;Te; c

′ .

In-order memoization reuses work from the previous run in execution order, whereas
out-of-order memoization allows segments of computation to be reused out of order. We
use the judgement σ;S; e

m
; S

′
;S ′e; c

′ for (in-order and out-of-order) memoization to
search among reuse traces S for a trace S ′e that corresponds to an evaluation of e, and
leftover reuse traces S

′
; the cost of the search is c′. For in-order reuse with TDTs, there is

a single reuse trace S = T and the store σ is used to produce a consistent trace S ′e = T ′e—
i.e., a tail execution—, but there are no leftover reuse traces S

′
= • because the prefix

of T preceding S ′e is discarded and accounted for by the cost. For out-of-order reuse
with modrefs, S

′
are any slices that remain in S besides S ′e, but ignores the store σ and

consistency of S ′e.

In-Order Computation Memoization with TDTs. The in-order memoization with
TDTs judgement σ;T ; e

m
; •;Te; c

′ (given in Figure 4.4) is a refinement of the mem-
oization judgement that requires the list of reuse slices S to be a single reuse trace T ,
returns an empty list of leftover reuse slices and a trace Te for expression e. The store σ is
used to preserve the consistency of the trace by updating the checkmarks of trace actions
according to which prefix actions are discarded.

This form of memoization searches the reuse trace T for a suffix trace Te that follows
a memoization action memoe. A matching memo action (hit) returns the tail of the trace
for change-propagation.

Note that a memoization hit (evaluation rule memo/hit and memoization rule hit) re-
quires the expression being evaluated to be identical (α-equivalent) to the expression in the
memo action. This equivalence requires the location names appearing in the expressions
to be syntactically equal. This, in turn, motivates the implicit stealing of locations by the
mk evaluation rule: (re-)executing a TDT creation, using a location that appears in the

83

;S; e m
; S′;S′e; c

;A·S; e m
; A·S′;S′e; c ; memoe·Se; e

m
; holee;Se; 1

hit

;S; e m
; S

′;S′e; c

;S, S; e m
; S, S

′;S′e; c

;S; e m
; S′;S′e; c

;S, S; e m
; S′, S;S′e; c

Figure 4.5: Out-of-order memoization with modrefs ;S; e
m
; S ′;S ′e; c

′ (top) and ;S; e
m
;

S
′
;S ′e; c

′ (bottom).

reuse trace, may allow a subsequent memoization action to match in the reuse trace.

Memo and TDT actions can be discarded by proceeding to match the tail of the trace.
Discarding a memo does not affect the consistency of the trace because it does not touch
the store. Discarding a creation action of location ` or a manipulation action on a location
` that is not in the store does not affect the consistency of the trace because the location
ceases to be in the store; if the location is later re-allocated during evaluation (mk), then the
reuse trace will be made consistent by the invocation judgement. A manipulation action
op

`,varg↓vres
vk○

on a location ` that is in the store (op/rev) must be explicitly revoked because
it will no longer be performed, thus the tail of the trace must be repaired relative to the
current state S = σ(`).

Out-of-Order Computation Memoization with Modrefs. Out-of-order memoization
;S; e

m
; S ′;S ′e; c

′ (given in Figure 4.5) splits the reuse trace S into a suffix trace slice
S ′e that corresponds to a (partial) previous run of e under a (possibly) different store, and
a prefix trace S ′ of the work preceding S ′e with an explicit holee end marker to indicate
the stolen tail. The memoization judgment extends to slice lists ;S; e

m
; S

′
;S ′e; c

′ by
memo-matching one trace from the list. Note that while the expression e may have free
locations, out-of-order memoization is independent of the store.

4.4.3 Change-Propagation

Overview. The change-propagation relation S;S;σ y T ′;σ′; v′; d′ (given in Figure 4.6)
replays the execution trace S under the store σ, yielding the value v′ and the updated store
σ′, with an updated execution trace T ′ and a pair of costs d′ = 〈c, c′〉 for work c discarded

84

|S| = c

S; haltv;σ y haltv;σ; v; 〈c, 0〉
halt/reuse

S;S;σ y T ′;σ′; v′; d′

S; memoe·S;σ y memoe·T ′;σ′; v′; d′
memo/reuse

` /∈ domσ vmk
mk7→ S ′

σl = σ[` 7→ S ′] S;S;σl y T ′;σ′; v′; d′

S; mkvmk↑`
vk

·S;σ y mkvmk↑`
vk

·T ′;σ′; v′; d′
mk/reuse

σ(`) = S S ; varg
op7→ S ′; vres

σl = σ[` 7→ S ′] S;S;σl y T ′;σ′; v′; d′

S; op`,varg↓vres
vk!

·S;σ y op
`,varg↓vres
vk!

·T ′;σ′; v′; d′
op/reuse

dSe = κ S, S;σ;κ ⇓K T ′;σ′; v′; d′

S;S;σ y T ′;σ′; v′; d′
change

Figure 4.6: Change-propagation S;S;σ y T ′;σ′; v′; d′.

85

from S and S, and new work c′ performed for T ′. The additional reuse traces S are other
computation from the previous run; it may be reused if change-propagation returns to
evaluation and memo-matches on it.

Change-Propagation Rules. A halt action can be replayed to obtain the (unchanged)
computation result, incurring the cost of discarding the leftover reuse traces.

An action can be replayed without cost if the action is consistent with the current store
(reuse rules), the tail of the trace can be recursively change-propagated and then extended
with the same action. Thus, replaying a memoization action or a consistent TDT action
recursively change-propagates the tail of the trace, and the updated computation trace is
extended with the appropriate action.

A creation operation mkvmk↑`vk
is consistent with the current store if ` /∈ domσ and can

thus be replayed (mk/reuse) by regenerating the TDT state S ′ with seed vmk, extending
the store with ` bound to S ′, and recursively change-propagating the tail of the trace.
A manipulation operation op

`,varg↓vres
vk○

is replayed (op/reuse) by re-executing the state-
transformation to yield the same result vres, updating the store with ` bound to the new
state S ′, and recursively change-propagating the tail of the trace. For in-order memoization
with TDTs, the consistency invariant of the trace guarantees that if the action has a valid
checkmark! then replaying the action will produce the same result vres. For out-of-order
memoization with modrefs, the consistency of the trace slices aren’t preserved and the
checkmark should be ignored.

Change-propagation falls back to evaluation either nondeterministically or because the
head action is inconsistent with the current store and thus not replayable. A TDT creation
is inconsistent with the current store if the location is already in the store, which thus
forces the allocation of a fresh location to be initialized by a new TDT instance. A TDT
manipulation is inconsistent with the current store if the state-transformation produces a
different result as labeled by an invalid checkmark%, which thus forces the the operation
to be re-executed.

Since actions capture their continuation, a sliced trace S can be reified back into a
command dSe = κ that represents the rest of the computation:

dhaltve = halt v
dholeee = memo e
dmemoe·Se = memo e
dmkvmk↑`

vk ·Se = mk k vmk vk

dop`,varg↓vresvk○ ·Se = op k ` varg vk

86

Thus, change-propagation can reify and re-evaluate an inconsistent trace S (change rule),
while keeping the trace S for possible reuse later. Note that the reified mk (resp. op)
command forgets the (stale) location (resp. result value).

The change rule does not, however, require the head action to be inconsistent. The
rules are intentionally nondeterministic to avoid committing to particular allocation and
memoization policies. Thus the mk evaluation rule may allocate locations in the reuse
trace and the memoization judgement may match computations in the reuse trace It is pos-
sible to consider the rules as being guided by an oracle that decides when to steal locations
and when to match memoizations. Since making such choices optimally is undecidable
in general, the adaptive library described in Section 6.5 provides mechanisms that restrict
when locations may be stolen and when memoization may match.

Note that change-propagation copies the prefix of the computation trace up to the first
action (i.e., TDT creation or manipulation) that triggers re-execution. If there were no
memo/hit evaluation rule, then re-execution would never return to change-propagation and
the entire tail of the computation would be re-executed by the evaluation judgement, which
may be no better (asymptotically) than evaluating from scratch. Hence, memoization is
crucial for efficient change-propagation.

4.4.4 Meta-Theory

We can now sketch the use of change-propagation by a host program that (re-)evaluates a
self-adjusting computation. The following applies to Tgt with either in-order memoization
with TDTs or out-of-order memoization with modrefs. Suppose we have a Tgt program
e such that Σ; · ` e : res and an initial store σ1 such that ` σ1 : Σ] Σ1. Thus, we can
initially evaluate e under the store σ1 without any reuse traces, yielding the (initial) result
v′1 and a computation trace T ′1: •;σ1; e ⇓E T ′1;σ

′
1; v
′
1; 〈0, c1〉. Now, suppose we have a

modified store σ2 such that ` σ2 : Σ] Σ2. We are interested in the result v′2 yielded by
(re-)evaluating e under σ2. To obtain v′2, we may change-propagate the trace T ′1 under the
store σ2: •;T ′1;σ2 y T ′2;σ

′
2; v
′
2; 〈c′1, c′2〉. Change-propagation may reuse some work from

the previous run, therefore c′1 only accounts for work discarded from T ′1 (c′1 ≤ c1) and c′2
only accounts for new work in T ′2 (c′2 ≤ c2).

The consistency of change-propagation asserts that the result v′2, store σ′2, and trace
T ′2 obtained via the change-propagation relation are identical to those obtained from a
from-scratch evaluation (i.e., without any reuse traces): •;σ2; e ⇓E T

′
2;σ

′
2; v
′
2; 〈0, c2〉. This

correspondence is intuitively captured in Figure 4.7. Hence, change-propagation suffices
to determine the output of a program on changed inputs. We prove this consistency prop-

87

σtgt; etgt vtgt;T tgt

σtgt;T tgt
0 vtgt;T tgt

⇓tgt

ctgt ∈ O(csrc)

consistency

ytgt

Figure 4.7: The consistency of change-propagation in the target.

erty for Tgt by giving a simple structural proof.

According to the form of computation memoization, change-propagation will reuse the
previous run T ′1 in different ways. In-order reuse will only keep a suffix of T ′1 throughout
change-propagation and evaluation. Out-of-order reuse may split T ′1 into slices corre-
sponding to segments of computation that are reused and other fragments that are leftover.

The following theorem formalizes the consistency of change-propagation for Tgt with
either in-order memoization with TDTs or out-of-order memoization with modrefs. We
introduce the auxiliary judgements S wfwrt e to mean S results from slicing a from-
scratch execution of e (•; ; e ⇓E T ′; ; ; and σ;T ′; e

m
; S;S ′e;), and S wf to mean

S wfwrt e for some e. Since the reuse trace may be sliced by out-of-order memoization,
the statement requires the well-formedness of multiple trace slices S. Consistency follows
as a corollary by instantiating S as the empty list and S ′1 as T ′1. The cost of change-
propagation is related to trace distance in Section 4.5.

Lemma 29 (Trace Splitting)
If S1 wfwrt e1 and ;S1; e2

m
; S ′1;S

′
2;

then S ′1 wfwrt e1 and S ′2 wfwrt e2.

Proof: By induction on the second derivation (memo-matching).

Case hit. By memo/miss.

The remaining cases follow by the i.h..

�

Theorem 30 (Consistency of change-propagation)
If S wf, S ′1 wfwrt e, and S;S ′1;σ2 y T ′2;σ

′
2; v
′
2; ,

then •;σ2; e ⇓E T
′
2;σ

′
2; v
′
2; .

88

If S wf and S;σ2; e ⇓E T
′
2;σ

′
2; v
′
2; ,

then •;σ2; e ⇓E T
′
2;σ

′
2; v
′
2; .

If S wf, S ′1 wfwrt κ, and S;S ′1;σ2 y T ′2;σ
′
2; v
′
2; ,

then •;σ2;κ ⇓K T ′2;σ
′
2; v
′
2; .

If S wf and S;σ2;κ ⇓K T ′2;σ
′
2; v
′
2; ,

then •;σ2;κ ⇓K T ′2;σ
′
2; v
′
2; .

Proof: By simultaneous induction on the last derivation (evaluation or change-propagation)
of each statement.

Case ⇓Ey.

Subcase y halt (y memo, y put, y get, y set are analogous). By i.h.(3), and
rule ⇓K⇓E.

Subcase y change. By i.h.(4).

Case ⇓E. By i.h.(4).

Case ⇓Ky.

Subcase y halt. By rule ⇓K halt.

Subcase y memo (y put, y get, y set are analogous). By inversion, i.h.(1),
and rule ⇓K memo/miss.

Subcase y change. By i.h.(4).

Case ⇓K.

Subcase ⇓K halt. By rule ⇓K halt.

Subcases ⇓K memo/miss (⇓K put, ⇓K get, ⇓K set are analogous). By i.h.(2), and
rule ⇓K memo/miss.

Subcase ⇓K memo/hit. By Lemma 29, i.h.(1), and rule ⇓K memo/miss.

�

89

|H1| = c1 |H2| = c2

H1, •�H2, • = 〈c1, c2〉

|H1| = c1 S1, S1 � U2 = d

H1, S1, S1 � U2 = 〈c1, 0〉+ d
search/h/L

|H2| = c2 U1 � S2, S2 = d

U1 �H2, S2, S2 = 〈0, c2〉+ d
search/h/R

S1, S1 � U2 = d

A·S1, S1 � U2 = 〈1, 0〉+ d
search/a/L

U1 � S2, S2 = d

U1 �A·S2, S2 = 〈0, 1〉+ d
search/a/R

S1, S1 	 S2, S2 = d

memoe·S1, S1 � memoe·S2, S2 = 〈1, 1〉+ d
search/synch

haltv, • 	 haltv, • = 〈0, 0〉
synch/h

S1, S1 	 S2, S2 = d

A·S1, S1 	A·S2, S2 = d
synch/a

U1 � U2 = d

U1 	 U2 = d
synch/search

Figure 4.8: Tgt local search distance U1�U2 = d and synchronization distance U1	U2 =
d.

90

4.5 Trace Distance

Reasoning about the efficiency of by change-propagation is difficult because the dynamic
and cost semantics include too many details. In particular, stores permeate the evaluation
and change-propagation rules, so input changes appear throughout derivations. In this sec-
tion, we introduce a theory of trace distance and show that the cost of change-propagation
in the presence of modrefs is bounded by the distance between the input trace and updated
trace. In Chapter 5, we show that Tgt distance is they are asymptotically the same as
high-level Src distance. We present a theory of local trace distance (Subsection 4.5.1) that
captures the cost of change-propagation with in-order memoization as an edit distance.
We also present a theory of global trace distance (Subsection 4.5.2) that captures the cost
of change-propagation with out-of-order memoization by decomposing traces into slices
and comparing segments of computation pairwise.

4.5.1 Local Trace Distance

Since global distance accounts for computation reordering, the local search distance U1�
U2 = d accounts for differences between traces in order until it finds matching memoiza-
tion actions. At that point, it can use the local synchronization distance U1 	 U2 = d to
account for reuse between traces until they differ, at which point it must return to search
distance. The distance d = 〈c1, c2〉 quantifies the cost c1 of work in U1 that isn’t shared
with U2 and the cost c2 of work in U2 that isn’t shared with U1.

Search Distance. The search distance (given in Figure 4.8) between halt or hole actions
is the length of each action irrespective of the payload value or expression. Two identical
memo actions incur a cost of 1 each, but afford the possibility of switching from search to
synchronization mode. Skipping an action incurs a cost of 1 for the corresponding trace
and requires distance to remain in search mode (h/* and a/* rules).

Two identical memo actions incur a cost of 1 each and enable switching from search
to synchronization mode because the tail traces belong to the evaluation of the same
expression—under possibly different stores. Note that the a/* rules allow memo actions
to remain in search mode; identical memo actions are never forced to synchronize.

Synchronization Distance. Although a synchronization distance is defined between any
two traces, it is only meant to be used on traces generated by the evaluation of the same
expression under (possibly) different stores. The synchronization distance between halt

91

actions is 〈0, 0〉 (synch/h) and requires that both actions return the same value. Identical
actions match without cost and allow distance to continue synchronizing the tail (synch/a).
Synchronization may return to search mode (synch/search), either nondeterministically
or because actions don’t match. Just as Src distance, Tgt distance judgements are quasi-
symmetric and induce a ternary relation due to the nondeterminism of memo matching.

4.5.2 Global Trace Distance

The global (search) distance between two traces decomposes each trace into a list of slices,
pairs slices between the two runs, and sums the pairwise local search distance of slices.

Trace Decomposition. A Tgt trace slice S can be decomposed into a non-empty list of
slices U ′ with the S � U ′ judgement by (non-deterministically) replacing memo actions
with holes.

H � H, •
S � S′, S

′

A·S � A·S′, S′
S � S′, S

′

memoe·S � holee, memoe·S′, S′

The judgement extends to decomposing lists of slices U � U ′ by appending the decom-
position of each slice in the list. The judgement U

perm
; U ′ means U ′ is a permutation of

U .

The global distance U1 �� U2 = d between two lists of slices U1 and U2 is formally
obtained by slicing each Ui into U ′i , permuting it into U ′′i , and finally taking the local search
distance of each (non-empty) list.

U1 � U ′1 U ′1
perm
; U ′′1 U2 � U ′2 U ′2

perm
; U ′′2 U ′′1 � U

′′
2 = d

U1 �
� U2 = d

The global distance between two traces T1 and T2 is thus T1, •�� T2, • = d.

4.5.3 Meta-Theory

Trace Distance and Dynamic Semantics. In light of the dynamic semantics, trace dis-
tance can be given an asymmetrical operational interpretation: distance is the amount of
work that must be discarded from one run and executed to produce the other run. More
precisely, a distance 〈c1, c2〉 between traces T1 and T2 intuitively means there is cost c1 for
discarding unusable work from the reuse trace T1 and cost c2 for performing new work

92

T tgt
1 T tgt

2

T tgt
1 T tgt

2

	tgt

dtgt ∈ O(dsrc)

ytgt

dtgt

Figure 4.9: The correspondence between distance and the time for change-propagation in
the target.

for T2, but any common work that can be reused is free. Intuitively, the asymmetry arises
from the fact that discarding work, while not free, is cheaper than performing work.

Search distance has an operational analogue realized by evaluation, while synchroniza-
tion distance is realized by change-propagation. The following theorems relate distance to
the dynamic semantics: the distance between a program’s trace T and some traces S coin-
cides with the cost of evaluating the program with reuse traces S. This correspondence is
intuitively captured in Figure 4.9.

First, we introduce an auxiliary asymmetric global search S �perm T = d and synchro-
nization S 	perm T = d distance (in the latter case S must be non-empty) that slices both
sides but only permutes the left-hand side before comparing the two with local distance:

〈Si � U ′i 〉i∈1..n T � U ′ 〈U ′i 〉i∈1..n
perm
; U ′′ U ′′ � U ′ = d

〈Si〉i∈1..n �
perm T = d

〈Si � U ′i 〉i∈1..n U ′1 = S′11, 〈S′1j〉j∈1..n1 〈S′1j〉j∈1..n1 , 〈U ′i 〉i∈2..n
perm
; U ′′

T � U ′ S′11, U
′′ 	 U ′ = d

〈Si〉i∈1..n 	perm T = d

Lemma 31 (Dynamic semantics coincides with auxiliary local distance)
If 〈S ′i wfwrt ei〉i∈1..n, and •;σ; e ⇓E T

′;σ′; v′; ,
then 〈S ′i〉i∈1..n �perm T ′ = d iff 〈S ′i〉i∈1..n;σ; e ⇓E T

′;σ′; v′; d.
If 〈S ′i wfwrt ei〉i∈1..n (where e1 = e), and •;σ; e ⇓E T

′;σ′; v′; ,
then 〈S ′i〉i∈1..n 	perm T ′ = d iff 〈S ′i〉i∈2..n;S ′1;σ y T ′;σ′; v′; d (i > 1).
If 〈S ′i wfwrt ei〉i∈1..n, and •;σ;κ ⇓K T ′;σ′; v′; ,
then 〈S ′i〉i∈1..n �perm T ′ = d iff S

′
i;σ;κ ⇓K T ′;σ′; v′; d.

If 〈S ′i wfwrt ei〉i∈1..n (where e1 = κ), and •;σ;κ ⇓K T ′;σ′; v′; ,
then 〈S ′i〉i∈1..n 	perm T ′ = d iff 〈S ′i〉i∈2..n;S ′1;σ y T ′;σ′; v′; d (i > 1).

93

Proof: By simultaneous induction on the second derivation of each statement.

Case ⇓E⇓E.

Subcase ⇓K⇓E. By i.h.(3).

Case ⇓Ey.

Subcase ⇓K⇓E. By i.h.(3).

Case ⇓K⇓K.

Subcase ⇓K halt.
(⇒) By rule ⇓K halt.
(⇐) 〈S ′i〉i∈1..n �perm haltv = 〈c, 1〉.

Subcase ⇓K memo/miss.
(⇒)

Subsubcase search/memo/R.By i.h.(1) and rule ⇓K memo/miss.
Subsubcase synch/search.By i.h.(2) and rule ⇓K memo/hit.

(⇐)

Subsubcase ⇓K memo/miss. By i.h.(1) and rule search/memo/R.
Subsubcase ⇓K memo/hit. By i.h.(2), Lemma 29, and rule synch/search.

Subcase ⇓K put (⇓K get, ⇓K set are analogous).
(⇒) By i.h.(1) and rule ⇓K put.
(⇐) By i.h.(1) and rule search/a/R.

Case ⇓Ky.

Subcase ⇓K halt.
(⇒)

Subsubcase synch/h.By rule y halt.
Subsubcase search/synch.By i.h.(3) and rule y change.

(⇐)

Subsubcase y halt. By rule synch/h.
Subsubcase y change. By i.h.(3) and rule search/synch.

Subcase ⇓K memo/miss.
(⇒)

94

Subsubcase synch/a.By i.h.(4) and rule y memo.
Subsubcase search/synch.By i.h.(3) and rule y change.

(⇐)

Subsubcase y memo. By i.h.(4) and rule synch/a.
Subsubcase y change. By i.h.(3) and rule search/synch.

Subcase ⇓K put (⇓K get, ⇓K set are analogous).
(⇒)

Subsubcase synch/a.By i.h.(4) and rule y put.
Subsubcase search/synch.By i.h.(3) and rule y change.

(⇐)

Subsubcase y put. By i.h.(4) and rule synch/a.
Subsubcase y change. By i.h.(3) and rule search/synch.

�

Theorem 32 (Dynamic semantics coincides with local distance)
If •;σ1; e1 ⇓E T

′
1;σ

′
1; v
′
1; and •;σ2; e2 ⇓E T

′
2;σ

′
2; v
′
2; ,

then T ′1 � T
′
2 = d iff T ′1;σ2; e2 ⇓E T

′
2;σ

′
2; v
′
2; d.

If •;σ1; e ⇓E T
′
1;σ

′
1; v
′
1; and •;σ2; e ⇓E T

′
2;σ

′
2; v
′
2; ,

then T ′1 	 T ′2 = d iff •;T ′1;σ2 y T ′2;σ
′
2; v
′
2; d.

Proof: By Lemma 31, choosing T ′1 and T ′2 to be sliced into themselves. �

Theorem 33 (Dynamic semantics coincides with global distance)
If S wf, and •;σ; e ⇓E T

′;σ′; v′; ,
then S �� T ′ = d iff S;σ; e ⇓E T

′;σ′; v′; d.

Proof: By Lemma 31, noting that permuting both sides in global distance is equivalent
to permuting only the left-hand side in asymmetric global distance. �

95

96

Chapter 5

Translation

This chapter is based on work on a translation from a direct style Src language to a CPS-
based Tgt language for self-adjusting computation [Ley-Wild et al., 2008b] and the preser-
vation of cost semantics and trace distance for in-order reuse [Ley-Wild et al., 2009].

5.1 Overview

In this chapter, we present the adaptive continuation-passing style (ACPS) translation
from Src(T) to Tgt(T,Pure). The translation uses Src-level TDTs and memoizing func-
tions to produce Tgt-level self-adjusting programs with equivalent static semantics, and
asymptotically equivalent dynamic and cost semantics and distance. Src-level direct style
TDTs are translated to Tgt-level TDTs with a continuation-passing discipline. Src-level
memoizing functions are translated to continuation-passing Tgt-level functions with ex-
plicit memoization at the function call and return points. Furthermore, the continuation is
threaded through the store using Pure single-write modrefs to enable a function to memo-
match on the argument even if the continuation—i.e., calling context—is different.

In Section 5.2, we give the ACPS program translation and show that it preserves the
static semantics and dynamic and cost semantics of Src programs with TDTs. In Sec-
tion 5.3, we extend the translation to trace slices and show that it preserves the global and
local trace distance of Src programs with single- and multi-write modrefs.

97

5.2 Program Translation

The adaptive primitives of Src programs are used to guide an adaptive continuation-
passing style (ACPS) transformation into equivalent Tgt programs (given in Figure 5.1).
The ACPS transformation (given in Figure 5.1) uses the continuation to identify the scope
of a TDT operation, so change-propagating an inconsistent TDT action will re-execute
the tail of the trace. The translation is a selective CPS transformation [Danvy and Hat-
cliff, 1993a,b, Nielsen, 2001, Kim and Yi, 2001] that CPS-converts adaptive code—i.e.,
code that typechecks at mode $—but keeps non-adaptive code in direct style—i.e., code
that typechecks at mode [. Thus only adaptive functions and their bodies take an explicit
continuation argument. The Src TDT operations are converted into equivalent Tgt TDT
operations with explicit continuations. The translation of memoizing adaptive functions
inserts explicit memo commands at the function call and return points and threads the
continuation through the store, which are crucial for efficient change-propagation.

The type translation Jτ srcK = τ tgt converts the adaptive function type to take a contin-
uation argument and is the straightforward structural translation for other types—e.g., it
recursively translates the normal function type without introducing continuations. There
are two term translations: JesrcK[= etgt translates values and expressions appearing as
the body of normal Src functions, and JesrcK$ vtgt

k = etgt translates expressions appearing
as the body of adaptive Src functions using the Tgt value vtgt

k as the explicit continua-
tion term. The metavariables y and k are used to distinguish identifiers introduced by the
translation.

The JeK[translation recursively translates sub-expressions and appropriately translates
the body of normal and adaptive functions, introducing continuation arguments for adap-
tive functions; the translation of mfun is explained in more detail below. Note that JeK[

is not defined for adaptive applications or TDT primitives, as these expressions may not
appear in the body of a well-typed normal function. For Src expressions translated to Tgt
expressions that are evaluated in direct style (e.g., e1 e2), the translation delivers the result
to the continuation vk. The type translation is extended pointwise to Src store and variable
typing contexts Σ and Γ; the value translation is extended pointwise to Src stores σ.

The expression translation JesrcK$ vtgt
k = etgt takes an explicit Tgt value vtgt

k continua-
tion. It is a standard CPS conversion except that each Src TDT primitive is converted into
an equivalent Tgt version with an explicit continuation vk, and the memoizing adaptive
functions is translated to use Tgt-level memoization and single-write modrefs.

The halt expression is not in the image of the translation, but it can be used as an
initial identity continuation id = λx.halt x for evaluating a CPS-converted program.

98

JnatK = natr
τx

$→ τ
z

= JτxK→ (JτK→ res)→ res

Jτ tdtK = JτK tdt

JxK[= x
JzeroK[= zero

Jsucc vK[= succ JvK[

J`K[= `

Jfun f .x .eK[= fun f .x .(JeK[)
Jafun f .x .eK[= fun f .x .λk .(JeK$ k)

Jmfun f .x .eK[=
fun f.x.λk1.

1

let k2 = λyr.memo (k1 yr) in 2

put k k2 (λyk.
3

let k′ = λyr.get k yk (λk3.k3 yr) in 4

memo (JeK$ k ′)) 5

JcaseN vn ez x .esK[= caseN JvnK[(JezK[) (x . JesK[)
Jef exK[= JefK[JexK[

JvK$ vk = vk JvK[

JcaseN vn ez x .esK$ vk = caseN JvnK[(JezK$ vk) (x . JesK$ vk)
Jef exK$ vk = JefK$ (λyf . JexK$ (λyx.vk (yf yx)))

Jef $ exK$ vk = JefK$ (λyf . JexK$ (λyx.(yf yx) vk))
Jmk vK$ vk = mk k JvK[vk

Jop vl vargK$ vk = op k JvlK[JvargK[vk

Figure 5.1: ACPS type translation Jτ srcK = τ tgt (top) and term translations JesrcK[= etgt

(middle) and JesrcK$ vtgt
k = etgt (bottom).

99

The CPS discipline in Tgt facilitates identifying the scope of an adaptive store action
as the rest of the computation, so change-propagating an inconsistent store action will re-
execute the tail of the trace. The translation of memoizing functions (mfun) is central to
producing effective self-adjusting programs through compilation. Memoizing a function,
however, in the presence of (possibly different) continuations and store mutation is subtle
and crucially relies on two ideas: threading continuations through the store with single-
write modrefs, and using explicit Tgt-level memo operations before and after the function
body, which serves to isolate a function call from the rest of the computation. Note that a
naı̈ve translation:

Jmfun f .x .eK[= fun f .x .λk .memo (JeK$ k)

is ineffective, because memo (JeK$ k) will only result in a memoization hit when both
the argument x and continuation k are the same as in the previous run, despite the fact
that the computation of e depends only on x and not on the calling context (now explicit
in the continuation k). Ideally, a memoizing function (in CPS) should maintain a map
from arguments to results; if the function is called with a previously-seen argument, then
the (possibly different) continuation is invoked with the memoized result immediately.
The compilation of a memoizing adaptive Src function into a Tgt function consists of two
parts, which we explain by referring to the line numbers in the translation of mfun. The
translation inserts memo commands at the function call and return points in an attempt
to isolate reuse of the function body separately from reuse of the rest of the computation.
Note that, unlike the translation of a non-memoizing adaptive function (afun), a memoiz-
ing adaptive function modifies its continuation before executing the function body.

First, memoizing on the argument alone is achieved by treating the continuation as
changeable data and placing it in a modifiable reference (lines 3-5, putk in the function
body and getk in the continuation). Therefore, if change-propagation starts re-executing
due to an inconsistent operation before a call to a memoizing function, then re-executing
the function call with the same argument can result in a memoization hit even if the contin-
uation differs. By shifting the continuation to the store in a modifiable bound to yk (line 3),
the function is memoized on the argument x and the reference yk (line 5). Provided write
allocation stores the new continuation at the same location, the function is effectively
memoized on the argument alone. After the function body is change-propagated without
cost, the continuation k′ wrapper will resume the (new) continuation by reading it from
the store and passing it the memoized result. This is achieved by reading the continuation
back from the modifiable into k3 and invoking it with the result yr (line 4).

Second, if change-propagation encounters an inconsistent operation during the execu-
tion of a memoizing function, then it is necessary to re-execute the function body but it
may be possible to avoid invoking the function’s continuation. When an inconsistent read

100

R : read
W : write
P(,) : call to part
ki() : call to ki

W P(l1,mk1) R W P(l3,mk3) R P(l4,mk4)W R W R k3(o4) R k1(o3) W R k0(o1)W

l1 l3 l4 o4 o3 o1

mk4

mk3

mk1

1::l3 3::l4 nil 3::o4 1::o3

W P(l1,mk1) W P(l3,mk3) R P(l4,mk4)W R W R k3(o4) R k1(o2)W R k0(o1)W

l1 l3 l4 o4 o3 o1

mk4

mk2

mk1

1::l2 3::l4 nil 3::o4 1::o2

RW

2::l3l2

P(l2,mk2)

mk3

R k2'(o3)W

o22::o3

Legend

R

Figure 5.2: Execution of partition on lists [1,3] (left) and [1,2,3] (right).

or write occurs during the execution of the body of a memoizing function, the function’s
continuation k1 will be the same as on the previous run. If the function body yields the
same result value during re-execution as during the previous run, then it is desirable to
reuse the previous computation, rather than invoking (the same) k1 with (the same) result.
This can be achieved by wrapping continuation k1 with the memo operation (line 2).

Although Tgt memoization can match whenever identical expressions are evaluated,
we do not implement this semantics because it would require comparing arbitrary expres-
sions and maintaining a global memoization table. Memoizing a function enables using
local memo tables indexed by the function’s argument and is sufficient for making change-
propagation work well in practice.

Example 34
To illustrate how translated programs execute, recall the partition function (Figure 2.2)
and its translation (Figure 2.3). Consider executing partition with the constant true
predicate on the modifiable list [1,3] and then updating the input list to [1,2,3] by
inserting an element. Figure 5.2 shows a pictorial representation of the traces from the two
executions. A trace consists of read and write actions, and memoized calls to part and
continuations. The differences between the two runs are highlighted on the right.

The continuation passed to partition (and thus to the first call to part memo)
is named k0. Each recursive call to part memo memoizes and writes its continuation
into a modifiable (lines 15 and 17) and makes a memoized call to part (line 19), which
reads the next modifiable in the list (line 3), makes a continuation that ultimately writes
an element to the output (lines 8-12), and calls part memo. Modifiables containing the
continuations are labeled mki. To insert 2 into the input and update the output, we allocate
a new modifiable l2, change the modifiable l1, and run change-propagation.

Change-propagation starts re-executing the read of l1, which writes the same contin-
uation k1 as before to mk2 and calls part with l2 and mk2. After l2 is read, a new
continuation k2’ is written to mk3—stealing allows the write to reuse mk3—and part
is called with l3 and mk3. This call is in the reuse trace, so there is a memoization hit,

101

σsrc; esrc vsrc;T src

σtgt; etgt vtgt;T tgt

⇓src

csrc

translation translation

⇓tgt

ctgt ∈ O(csrc)

Figure 5.3: The correspondence between the source and target from-scratch runs.

which completes the execution of the first read. Since the continuation written to mk3 is
new, change-propagation starts re-executing the read of mk3, which calls the continuation
k2’ with o3. The continuation k2’ writes to o2, reads mk2, and calls the continuation
k1. The continuation k1 writes to o1—again, stealing allows the write to reuse o1—,
reads mk1, and calls k0 with o1. This call is in the reuse trace, so there is a memoization
hit, which completes the execution of the second read and, as there are no more inconsis-
tent reads, change-propagation completes. Change-propagation performs the work for the
element before the insertion point and at the insertion point only; regardless of the input
size, the result is updated by performing a small, constant amount of work.

5.2.1 Meta-Theory

The correctness and efficiency of the translation is captured by the fact that well-typed Src
programs are compiled into statically-, dynamically-, and cost-equivalent well-typed Tgt
programs with the same asymptotic complexity for from-scratch runs—i.e., Tgt evaluation
with an empty reuse trace. The type preservation result is standard from type-directed
compilation. More importantly, the evaluation and asymptotic cost of from-scratch runs
of Src programs is preserved by compilation. This correspondence is intuitively captured
in Figure 5.3.

Theorem 35 (Static preservation)
If Σ; Γ `[e : τ ,
then JΣK ; JΓK ` JeK[: JτK.
If Σ; Γ `[v : τ ,
then JΣK ; JΓK ` JvK[: JτK.
If Σ; Γ `$ e : τ
and JΣK ; JΓK ,Γ′ ` vk : JτK→ res,
then JΣK ; JΓK ,Γ′ ` JeK$ vk : res.

102

Proof: By simultaneous induction on the first derivation.

Case mfun f .x .e.

JΣK ; JΓK , f :
r
τx

$→ τ
z
, x : JτK , k1 : JτK→ res ` λyr.memo (k1 yr) : JτK→ res

typing
JΣK ; JΓK , yk : (JτK→ res) modref ` λyr.get k yk (λk3.k3 yr) : JτK→ res typing

JΣK ; JΓK , f :
r
τx

$→ τ
z
, x : JτK , k ′ : JτK→ res ` JeK$ k ′ : JτK i.h.

JΣK ; JΓK , f :
r
τx

$→ τ
z
, x : JτK , k ′ : JτK→ res `memo (JeK$ k ′) : res typing

JΣK ; JΓK , f :
r
τx

$→ τ
z
, x : JτK , k2 : JτK→ res ` put k k2 (. . .) : res typing

JΣK ; JΓK ` Jmfun f .x .eK[:
r
τx

$→ τ
z

typing

The remaining cases are analogous.

�

Theorem 36 (Dynamic and cost preservation)
If E ; σ0; e0 ⇓ σ1; v1 ;T ; c0,
and •; Jσ1K] σk; vk Jv1K

[⇓E Tk;σ2; v2; 〈 , c1〉,
then •; Jσ0K] σk; Je0K

$ vk ⇓E T
′;σ2] σe; v2; 〈 , c2〉

and c0 + c1 ≤ c2 ≤ 4 · c0 + c1 whence c2 ∈ Θ(c0 + c1).

Proof: By induction on the first derivation.

The cost bounds are elided in the proof, they can be obtained by inspecting the trace
translation. We show the interesting case of app, the remaining cases are straightforward.

Case D1 is app.

D1 :: ; σ0; e1 $ e2 ⇓ σ′′′0 ; v ; ; assumption
v1 := mfun f .x .e abbreviation
e′ := [v1 / f] [v2 / x] e abbreviation
D11 :: ; σ0; e1 ⇓ σ′0; v1 ; ; subderivation
D12 :: ; σ′0; e2 ⇓ σ′′0 ; v2 ; ; subderivation

103

D13 :: ; σ′′0 ; e′ ⇓ σ′′′0 ; v ; ; subderivation
D2 :: •;σk] Jσ′′′0 K ; vk JvK[⇓E ;σ′; v′; assumption
D` :: ` /∈ domσ′ ⊇ domσk] Jσ′′′0 K fresh location, lemma
k′w := λyr.memo (vk yr) abbreviation
σl := [` 7→ k′w] abbreviation
D′2 :: •; (σk] Jσ′′′0 K)] σl; vk JvK[⇓E ;σ′] σl; v

′; frame lemma on D2, D`

k′r := λyr.get k ` (λk3.k3 yr) abbreviation
D′′2 :: •; (σk] σl)] Jσ′′′0 K ; kr JvK[⇓E ;σ′] σl; v

′; rules getk, memo on D′2
E3 :: •; (σk] σl)] Jσ′′0K ; Je′K$ k ′r ⇓E ; (σ′] σl)] σe; v; i.h. on D13, D′′2
kw := λyr.memo (k1 yr) abbreviation
kr := λyr.get k yk (λk3.k3 yr) abbreviation
E ′3 :: •;σk] Jσ′′0K ; put k k ′w (λyk.memo (Je′K$ kr)) ⇓K ;σ′] (σl] σe); v

′;
rules putk, memo on E3

k′2 := λyx.(Jv1K
[yx) vk abbreviation

E ′′3 :: •;σk] Jσ′′0K ; k ′2 Jv2K
[⇓E ;σ′] (σl] σe); v

′; rule red on E ′3
E2 :: •;σk] Jσ′0K ; Je2K

$ k ′2 ⇓E ;σ′] (σl] σe)] σ2; v
′; i.h. on D12, E ′′3

k2 := λyx.(yf yx) vk abbreviation
k1 := λyf . Je2K

$ k2 abbreviation
E ′2 :: •;σk] Jσ′0K ; k1 Jv1K

[⇓E ;σ′] (σl] σe] σ2); v
′; rule red on E2

E1 :: •;σk] Jσ0K ; Je1K
$ k1 ⇓E ;σ′] (σl] σe] σ2] σ1); v

′; i.h. on D11, E ′2
E ′1 :: •;σk] Jσ0K ; JeK$ vk ⇓E ;σ′] (σl] σe] σ2] σ1); v

′; rule red on E1

�

The store σk accounts for locations free in the continuation vk, while the store σe ac-
counts for locations allocated for (the continuations of) memoizing functions. Instantiating
this theorem with the identity continuation vk = id, we have that evaluation of a Src pro-
gram coincides with (from-scratch) Tgt evaluation of its ACPS-translation. Furthermore,
the adaptive work c2 ∈ Θ(c0) in Tgt is proportional to the active work c0 in Src, because
the work of the identity continuation is constant. This means that the translation preserves
the asymptotic complexity of from-scratch runs.

104

5.3 Trace Translation

The Tgt trace of an ACPS-compiled Src program is richer than its Src counterpart because
Tgt traces have explicit continuations and the ACPS translation introduces administrative
redices, threads continuations through the store, and inserts memoization at function call
and return points. Trace translation is syntax-directed, except for the choice of locations
for continuations of memoizing functions; below we specify how these locations are cho-
sen.

Context Translation. Trace translation requires annotating Src actions with an evalua-
tion context E ::= 2 | E ex | vf E and instrumenting the dynamic semantics to determine
the evaluation context of each action. The Src dynamic semantics and distance, however,
are sufficiently instrumented to translate Src traces into equivalent Tgt traces. An explicit
Src evaluation context E is sufficient to reify the current continuation JEK vtgt

k relative to
an initial Tgt continuation vtgt

k :

J2K vk = vk
JE exK vk = JEK (λyf . JexK$ (λyx.(yf yx) vk))
Jvf EK vk = JEK (λyx.(JvfK[yx) vk)

Local Trace Translation. Moreover, since active Src actions are instrumented with their
local evaluation context, we can give a trace slice translation

q
S imp

y
vtgt
k U tgt

k = U tgt of
a Src trace slice S imp using vtgt

k as an initial continuation (to extend the local context E
of actions) and suffix slice list U tgt

k to produce a Tgt slice list U tgt corresponding to the
original computation (with explicit holes). The trace slice translation also induces a trace
translation

q
T imp

y
vtgt
k (T tgt

k , •) = (T tgt, •).

The translation of the empty trace and TDT actions is straightforward:

JεK vk Uk = Ukr
mkv↑`E ·S

z
vk Uk = mk

JvK[↑`
JEK vk ·(JSK vk Uk)

r
op

`,varg↓vres
E ·S

z
vk Uk = op

`,JvargK[↓JvresK[

JEK vk!
·(JSK vk Uk)

Note that the Src evaluation context E is used to extend the continuation vk in the Tgt
trace.

Since a failure action is inserted at a function’s return point, it is translated to the trace

105

that follows the evaluation of a function body (cf., ACPS function translation):
r
fail⇓vE(`)·S

′
z
vk Uk = get`↓kw

ka!
·memo((JEK vk) JvK[)·(JS′K vk Uk)

where kw = λyr.memo ((JEK vk) yr)
ka = λyk.yk JvK[

Note that kw is the memoizing version of the original continuation that was written to the
store before the evaluation of the body and ka is the continuation of the getk command
that fetches the memoizing version of original continuation.

The translation of a memoizing function action must account for writing the memoiz-
ing version of the original continuation to the store before memoizing on the evaluation of
the body:

r
app

(mfun f .x .e)$vx⇓v
E(`) (S)·S′

z
vk Uk = putkw↑`

km
·memo(Je′K$ kr)·(JSK kr Ur)

where kw = λyr.memo ((JEK vk) yr)
km = λyl.memo (Je′K$ (λyr.get k yl (λyk.yk yr)))
e′ = [mfun f .x .e / f] [vx / x] e
kr = λyr.get k ` (λyk.yk yr)
Ur =

r
fail⇓vE(`)·S

′
z
vk Uk

Memoizing function actions are instrumented with a location to indicate where the
continuation is threaded through the store, and their translation accounts for memoizing at
the function call and return points. If the trace of the function body is present, a memoiza-
tion action precedes the trace; otherwise a hole marker indicates the body was removed by
slicing.

r
app

(mfun f .x .e)$vx⇓v
E(`) (Ṡ)·S′

z
vk Uk =

{
putkw↑`

km
·memo(Je′K$ kr)·(JSK kr (get`↓kw

ka
·Ut)) if Ṡ = S

putkw↑`
km
·hole(Je′K$ kr), Ut if Ṡ = ◦

where kw = λyr.memo ((JEK vk) yr)
km = λyl.memo (Je′K$ (λyr.get k yl (λyk.yk yr)))
e′ = [mfun f .x .e / f] [vx / x] e
kr = λyr.get k ` (λyk.yk yr)
Ut = memo((JEK vk) JvK[)·(JS′K vk Uk)
ka = λyk.yk JvK[

Note that kr is the continuation that fetches and invokes the memoizing version of the
original continuation; this is the continuation that is passed to the body. The body of the
memoizing function action is translated with respect to kr and Tr, which is the translation
of a failure action.

106

T src
1 T src

2

T tgt
1 T tgt

2

	src

dsrc

translation translation

	tgt

dtgt ∈ O(dsrc)

Figure 5.4: The correspondence between distance in the source and target.

Global Trace Translation. The extracted trace translation 〈〈S imp〉〉 = U tgt translates a
slice S imp of the form app

(mfun f .x .e)$vx⇓v
E(`) (S)·ε extracted from a larger computation. The

translation shares the auxiliary definitions of the memoizing function translation, it begins
with the memoized evaluation of the application and ends in a hole marker returning to the
continuation:

〈〈app(mfun f .x .e)$vx⇓v
E(`) (S)·ε〉〉 = memo(Je′K$ kr)·(JSK kr (get`↓kw

ka
·hole((JEK vk) JvK[), •))

Note that the translations JM(◦)·S ′K vk Tk and 〈〈M(S)〉〉 are equivalent (modulo permuta-
tion) to slicing the translation JM(S)·S ′K vk Tk at the function call and return points.

Finally, the translation
q
U imp

y
vtgt
k U tgt

k = U tgt of a non-empty Src∗ slice list concate-
nates the translation of the skeleton and the extracted translation of the subcomputations:

JS, 〈Si〉i∈1..nK vk Uk = (JSK vk Uk), 〈〈〈Si〉〉〉i∈1..n

Given the trace translation, Theorem 36 can be strengthened to show that the if the
continuation vk is of the form JEK v′k, then the Tgt evaluation trace T ′ is related to
JT K vk (Tk, •) = (T ′, •).

5.3.1 Meta-Theory

Finally, Src distance may be related to Tgt distance by trace translation. This correspon-
dence is intuitively captured in Figure 5.4.

Theorem 37 (Translation preserves Src precise/Tgt local distance)
Assume Uk1 � Uk2 = 〈 , c′1〉 and Uk1 	 Uk2 = 〈 , c′2〉.
If S1 � S2 = , b, 〈 , c〉 (precise),
then (JS1K vk1 Uk1)� (JS2K vk2 Uk2) = 〈 , c′′〉
and c′′ = c+ if b then c′1 else c′2.

107

If S1 	 S2 = , b, 〈 , c〉 (precise),
then (JS1K vk1 Uk1)	 (JS2K vk2 Uk2) = 〈 , c′′〉
and c′′ = c+ if b then c′1 else c′2.

Proof: We preprocess the precise Src distance derivation by assigning matching fresh
locations to memoization actions that synchronize, these are used by the trace translation
for continuations (this is always possible because stores and traces are finite). Next, we
proceed by induction on the (instrumented) precise Src distance derivation, using the trace
translation to build an equivalent Tgt distance derivation. �

Corollary 38 (Translation preserves Src simple/Tgt local distance)
Assume Uk1 � Uk2 = 〈 , c′1〉 and Uk1 	 Uk2 = 〈 , c′2〉.
If S1 � S2 = 〈 , c〉 (simple),
then (JS1K vk1 Uk1)� (JS2K vk2 Uk2) = 〈 , c′′〉
and c ≤ c′′ ≤ 6 · c+ max{c′1, c′2}.
If S1 	 S2 = 〈 , c〉 (simple),
then (JS1K vk1 Uk1)	 (JS2K vk2 Uk2) = 〈 , c′′〉
and c ≤ c′′ ≤ 6 · c+ max{c′1, c′2}.

Proof: By Theorems 24 and 37. �

Corollary 39 (Src/Tgt local distance soundness)
Let Uidi be the identity continuation trace for Si (i ∈ {1, 2}).
If S1 � S2 = 〈 , c〉 (simple),
then (JS1K vk1 Uid1)� (JS2K vk2 Uid2) = 〈 , c′′〉 and c′′ ∈ Θ(c).
If S1 	 S2 = 〈 , c〉 (simple),
then (JS1K vk1 Uid1)	 (JS2K vk2 Uid2) = 〈 , c′′〉 and c′′ ∈ Θ(c).

Proof: The search distance T tgt
id1�T

tgt
id2 and synchronization distance T tgt

id1	T
tgt
id2 between

the identity continuation traces are constant, therefore the asymptotic bound c′′ ∈ Θ(c)
follows by Corollary 38. �

Theorem 40 (Translation preserves Src/Tgt global distance)
Assume Uk1 � Uk2 = 〈 , c′1〉 and Uk1 	 Uk2 = 〈 , c′2〉.
If S1 �� S2 = 〈 , c〉,
then JS1K vk1 Uk1 �� JS2K vk2 Uk2 = 〈 , c′′〉,
and c ≤ c′′ ≤ 6 · c+ max{c′1, c′2}.

108

Proof: We define an equivalent variant of �� for SrcImp and Tgt that decomposes
both traces but only permutes the left-hand trace slices. By induction on the subderiva-
tion S2 � U2 of ��, there is a permutation of JUiK vki Uki (which itself is a slicing of
JSiK vki Uki) into Upi (i ∈ 1, 2), such that Up1 � Up2 = 〈 , c′′〉 using Corollary 38. �

Corollary 41 (Src/Tgt global distance soundness)
Let Uidi be the identity continuation trace for Si (i ∈ {1, 2}).
If S1 �� S2 = 〈 , c〉,
then JS1K id1 Uid1 �� JS2K id2 Uid2 = 〈 , c′′〉
and c′′ ∈ Θ(c).

Proof: The search distance T tgt
id1�T

tgt
id2 and synchronization distance T tgt

id1	T
tgt
id2 between

the identity continuation traces are constant, therefore the asymptotic bound c′′ ∈ Θ(c)
follows by Theorem 40. �

Note that since Src and Tgt distance are quasi-symmetric, analogous results hold of the
left component of distance. This means that change-propagation has the same asymptotic
time-complexity as trace distance. The converse of the theorem does not hold: a distance
may be derivable of Tgt traces which does not correspond to any derivable Src distance.
This incompleteness is to be expected because memoization of a function call and return
in Tgt need not match in lock-step, whereas the synch/memo (resp. synch/search) Src
rule requires both (resp. neither) to match in lock-step.

5.3.2 Discussion

We briefly remark on some limitations of our approach.

Incompleteness. Soundness of the translation guarantees that any distance derivable in
Src is also (up to a constant factor) derivable in Tgt. However, the Tgt proof system
exhibits more possible distances: in Src, memoization requires matching both the function
call and return points, while the ACPS translation into Tgt distinguishes memoization
at the call and the return. Therefore, there are more opportunities for switching between
search and synchronization in Tgt and there may be more distance values derivable in
Tgt than in Src. For example, in Tgt a function call memoization can miss (i.e., remain
in search mode) while the return can match (i.e., switch from search to synchronization
mode), which is not possible in Src. Consequently, any upper bound found using Src

109

distance is preserved by compilation, but lower bound arguments on a Src program are not
necessarily lower bounds on the Tgt distance. In particular, there may be a lower bound
using Src distance, but an asymptotically smaller Tgt distance may be derivable for the
ACPS-translated program.

Nondeterminism. The dynamic semantics and distance of Src and Tgt programs are
nondeterministic due to the freedom in choosing locations as well as deciding when mem-
oization matches. This avoids having to commit to a particular implementation, but also
means that any upper bound derived using the nondeterministic semantics may not be re-
alized by a particular implementation. In order for an implementation to realize an upper
bound on distance, the allocation and memoization policies used in deriving the distance
must coincide with those of the implementation. In previous work Ley-Wild et al. [2008b],
we proposed both user-specified and compiler-generated mechanisms for defining alloca-
tion and memoization policies, which suffice for realizing the bounds derived in our ex-
amples. Ultimately, it would be useful to develop compilation and run-time techniques to
automatically minimize the distance between the computations by considering all possible
policies.

The analysis of our examples required manually computing distance and picking al-
location and memoization policies that minimize distance. It would be useful to have
automatic support for computing distance according to particular allocation and memoiza-
tion policies as well as for automatically minimizing distance by considering all possible
policies. Such a mechanism could be used to find the distance for concrete executions un-
der particular inputs, as well as for reasoning abstractly about distance relative to a class
of input changes.

110

Chapter 6

Implementation

This chapter is based on work on the implementation of the ∆ML language and com-
piler [Ley-Wild et al., 2008b] and its extension to support traceable data types [Acar et al.,
2010a].

6.1 Overview

To validate the compilation-based approach to self-adjusting computation, we developed
the ∆ML language and compiler with modifiable references and extensibility by trace-
able data types. The ∆ML language extends Standard ML [Milner et al., 1997] with the
Src language features for direct self-adjusting programming. A user interested in writ-
ing self-adjusting programs only needs to be familiar with the language extensions (Sec-
tion 6.2) and the library interface for adaptive and meta-level operations (Section 6.3).
The associated compiler is a modification the MLton[MLt] compiler with syntactic and
static typing support (Section 6.4), together with a runtime library (Section 6.5) for self-
adjusting computation that provides change-propagation based on adaptive dependence
tracking and computation memoization (Subsection 6.5.2). This integration yields direct
linguistic support for self-adjusting programming, which has been suggested to be neces-
sary for scaling to large programs and for enforcing the numerous invariants required for
self-adjusting computation to work correctly Acar et al. [2006a]. We briefly discuss the
implementation of TDTs (Subsection 6.5.3) and their integration into the ∆ML compiler
(Subsection 6.5.4).

111

6.2 Language Extensions

We extend Standard ML [Milner et al., 1997] with the Src feature for self-adjusting com-
putation. We introduce an adaptive function type, written “ty -$> ty”. An adaptive
function is introduced via either the expression form “afn match” or the declaration
forms “afun tyvarseq fvalbind” and “mfun tyvarseq fvalbind”. All of
these forms simply change the introductory keyword of existing Standard ML forms for
function introduction (e.g., fn and fun). Hence, adaptive functions enjoy the same syn-
tactic support for mutually recursive function definitions, clausal function definitions, and
pattern matching as (normal) functions. An adaptive function is eliminated via the expres-
sion form “exp $ exp”; as in Src, adaptive applications may only appear within the
body of an adaptive function.

Note that while these language extensions introduce a new type, they do not (signif-
icantly) change the type system of Standard ML. Technically, we must introduce new
typing rules for adaptive functions and adaptive applications, but they are identical to the
typing rules for normal functions and normal applications except for the use of the adaptive
function type. Similarly, as in Src, a mode component in the typing rules is used to pre-
clude adaptive applications from the body of normal functions. Hence, all of the familiar
features of Standard ML (parametric polymorphism, type inference, etc.) are immediately
available to adaptive functions. Furthermore, these extensions are easily integrated into a
Standard ML compiler, since their treatment by the front-end is entirely analogous to the
treatment of normal functions.

6.3 Library Interface

Figure 6.1 gives the interface of the Adaptive library. Controlling the nondeterministic
stealing of locations, adaptive identification of invalid work, and computation memoiza-
tion during change-propagation relies on equality and hashing functions. This is the most
complex and subtle aspect of using the adaptive library, although these mechanisms are
only necessary to improve the efficiency of change-propagation, not to enforce its correct-
ness. Immutable modifiable references are the basic primitive for adaptivity to identify
data and control dependencies. Memoizing functions identify opportunities for compu-
tation memoization at function call and return points. Meta-level primitives serve create
a program’s initial inputs, perform an initial from-scratch execution, and inspect the out-
put. Furthermore, they also serve to change the inputs and propagate them through the
computation to obtain an updated output.

112

signature EQ HASH = sig
type ’a eq = ’a * ’a -> bool
val eqDflt : ’a eq
type ’a hash = ’a -> word
val hashDflt : ’a hash
type ’a key = ’a eq * ’a hash
end

signature MODREF = sig
type ’a modref
val put : ’a -$> ’a modref
val get : ’a modref -$> ’a

(** Stealing and Reuse **)
val mkPutEq : ’k key * ’a eq -$> (’k * ’a -$> ’a modref)
val mkPut : unit -$> (’k * ’a -$> ’a modref)
val putTh : (unit -$> ’a) -$> ’a modref

(** Meta operations **)
structure Meta : sig
val new : ’a eq * ’a -> ’a modref
val change : ’a modref * ’a -> unit
val deref : ’a modref -> ’a
end
end

signature ADAPTIVE = sig
structure EqHash : EQ HASH = ...
structure Modref : MODREF = ...
(** Memoization **)
val memoFix : (’a key * ’r eq *

((’a -$> ’r) -> (’a -$> ’r)))
-> (’a -$> ’r)

val memoCont : (’r eq * (’a -$> ’r))
-> (’a -$> ’r)

(** Meta operations **)
datatype ’a res = Value of ’a | Exn of exn
val call : (’a -$> ’r) * ’a -> ’r res ref
val propagate : unit -> unit
end
structure Adaptive :> ADAPTIVE = ...

Figure 6.1: Signature for the Adaptive library.

113

Equality and Hashing. The functions for controlling nondeterminism require equality
predicates and hash functions; the key type is an abbreviation for a tuple consisting of
an equality predicate and a hash function. The default equality predicate and hash func-
tion use MLton extensions that provide a polymorphic structural equality predicate and a
polymorphic structural hash function. In contrast to Standard ML’s polymorphic equal-
ity, which may only be instantiated at equality types, the MLton-generated equality and
hashing functions may be instantiated at any type; on values of function type, they operate
on the structure of the function closure. The default versions make it easy to migrate an
ordinary program to a self-adjusting version and avoid the need for awkward tagged values
used in previous work [Acar et al., 2006a].

Modifiable References. The immutable modifiable reference is realized by the modref1

type with the get and put adaptive functions.

To control allocation nondeterminism, the adaptive library provides keyed allocation
to associate each location with a key. During change-propagation, an allocation with a
matching key can steal the corresponding location used in the previous run. The mkPutEq
operation takes a key and an equality predicate and returns an allocator, a function for
allocating modrefs. The allocator records the locations that were allocated for individual
writes during an execution. When those writes are re-executed during change-propagation,
the library attempts to reuse the locations allocated in the previous execution by matching
the supplied key element. A hash table is used to map key elements to locations, which
motivates the components of the key. The mechanism is robust in the presence of repeated
key elements: collisions may degrade the efficiency of change-propagation, but not its
correctness.

When the location of a modref is reused, the equality predicate determines whether
the contents of the modref have changed. This is the implementation realization of the
op/reuse rule of Figure 4.6 when the result of the operation hasn’t changed. Since there is
a degree of nondeterminism between the op/reuse and change rules, the equality predicate
need only be conservative.

The mkPut operation is a special case of mkPutEq that uses the default equality
predicate and hash function:

afun mkPut () =
mkPutEq $ ((eqDflt, hashDflt), eqDflt)

1Due to historic reasons, the type is called box in the implementation.

114

The putTh operations corresponds to a common scenario, where the allocating function
returned by mkPut is used exactly once:

afun putTh th =
let val putM = mkPut $ ()
in putM $ ((), th $ ()) end

If change-propagation begins re-executing within the body of the adaptive thunk, then the
result will be stored at the same location that was allocated during the previous execution.

Computation Memoization. The next group of types and values are mechanisms to
control the nondeterministic memoization that appears in the dynamic semantics of Chap-
ter 4.

Although Tgt memoization can match whenever identical expressions are evaluated,
this semantics is hard to implement because it would require comparing arbitrary expres-
sions and maintaining a global memoization table. Previous work has shown how to use
local memo tables indexed by a function’s argument, which corresponds to the memo ac-
tions of source traces.

The memoFix operation is a fixed-point combinator used to create recursive memo-
izing functions. The operation takes a key tuple on the argument, an equality predicate
on the result, and the function to memoize using open recursion. Recall the translation of
mfun from Figure 4.6. In order to reuse the location returned by put k k2 (λyk. · · ·) at
line 3, the equality predicate and hash function on the function argument are used to match
the corresponding put k k2 (λyk. · · ·) in the previous execution. The equality predicate
and hash function on the function argument are also used to effect the memo (JeK$ k′) at
line 5.2 The equality predicate on the result is used to implement the memo (k1 yr) at
line 2.

A subtlety of memoFix is that it memoizes only the recursive calls: re-executing the
call of a function memoizing by memoFix will only attempt to match calls of the function
in the previous execution that are nested within the same root call of the function as is
the re-executing call. Despite this apparent limitation, memoFix suffices for most self-
adjusting computations, since change-propagation typically begins re-execution within a
nested call of a recursive function.

In practice, though, the adaptive library provides additional operations with different
memoization properties. For example, the memoCont operation implements only the

2As before, a hash table is used to map arguments to continuation locations.

115

memo (k1 yr) at line 2 and only for non-recursive calls of the memoizing function.

Meta Operations. The meta operations are used by a host mutator program to control
a self-adjusting computation. The meta-level operations for modrefs are used by the host
mutator program to create and modify inputs for and inspect outputs of a self-adjusting
computation. They include the new, change, and deref operations for creating, updat-
ing, and dereferencing modrefs. Other TDTs provide meta-level operations according to
their functionality.

The call operation is used to perform the initial from-scratch execution of a self-
adjusting program. Note, that the call operation is the only means of “applying” an
adaptive function outside the body of another adaptive function. The result of the call
operation is a mutable reference cell containing the output (distinguishing between normal
and exceptional termination) of the self-adjusting computation. After changing the inputs,
the propagate operation is used to perform change-propagation; the updated output
may be observed as the updated contents of the mutable cell. Correctness demands that
self-adjusting computations not perform any computation with untracked effects because
otherwise change-propagation may not produce an execution equivalent to a from-scratch
run. Since the meta operations are effectful but not tracked by the self-adjusting library,
they should not be used within adaptive functions.

6.4 Compiler Modifications

To implement ∆ML, we modified the MLton compiler (version 20070826) to support the
language extensions for adaptive functions and to perform a CPS-transformation pass that
converts adaptive functions into continuation-passing style. Both the language extensions
and the compiler modifications that we describe below are agnostic to the fact that they
have been introduced to support self-adjusting computation. Indeed, the compiler provides
no direct support for tracking the dynamic data dependencies of self-adjusting computa-
tions or for re-executing computations during change-propagation. That support comes
from the self-adjusting-computation libraries (Section 6.5). This approach minimizes the
necessary compiler modifications.

In total, we added or modified 1600 lines of code in the MLton compiler, of which 760
correspond to the CPS-transformation pass, and wrote 2800 lines of code for the libraries.

116

Front-end. As suggested above, the language extensions are easily integrated into ML-
ton, since their treatment by the front-end is entirely analogous to the treatment of normal
functions. Most changes simply generalize the existing function introduction and function
application forms to adaptive functions in a small number of the compiler intermediate
languages.

To support the mfun keyword, the front-end desugars mfun declarations to adaptive
functions whose bodies are memoizing with (generalizations of) the memoFix operation.
The desugaring uses the default equality predicate and hash function and supports mutually
recursive mfun declarations.

Adaptive CPS Transformation. The CPS-transformation pass is implemented as an
SXML-program to SXML-program transformation; SXML is the name of a simply-typed,
higher-order, A-normal-form intermediate language in the compiler. This is the most sig-
nificant change to the compiler. Each of the ILs prior to and including the SXML IL were
extended with adaptive function and adaptive application forms and the optimizations on
and transformations between these ILs were extended to handle the new forms. The CPS-
transformation pass eliminates all adaptive functions and adaptive applications in the input
SXML program. The output SXML program (having no adaptive forms) corresponds to
an SXML program in the unmodified compiler; hence, no subsequent ILs, optimizations,
or transformations in the compiler require any changes.

The actual CPS transformation is entirely straightforward; indeed, the fact that the
input program is in A-normal form makes the transformation even simpler than the one
presented in Chapter 5. The only additional notable features of the transformation is the
treatment of exceptions. Since the SXML IL has explicit raise and handle constructs
for exceptions, we use a double-barrelled continuation-passing style transformation [Kim
et al., 1998, Thielecke, 2002], where each adaptive function is translated to take two con-
tinuations: a return continuation and an exception-handler continuation. When transform-
ing the body of an adaptive function, raises are translated to invocations of the exception
continuation and handles are translated to pass a local handler continuation to the body.
This treatment of exceptions allows adaptive functions to freely raise and handle excep-
tions, just like normal functions. Indeed, an adaptive function may handle an exception
raised by a normal application appearing in its body.

Primitives. Bridging the gap between the compiler and the self-adjusting-computation
libraries are two primitives that witness the implementation of adaptive functions in
continuation-passing style:

117

type ’a cont = ’a -> unit
type (’a, ’b) xfn = (’b cont * exn cont * ’a) cont
val afn to xfn : (’a -$> ’b) -> (’a, ’b) xfn
val xfn to afn : (’a, ’b) xfn -> (’a -$> ’b)

These primitives are not exposed to the user, as they could be used to violate invariants
expected by the self-adjusting computation libraries described below. The primitives are
eliminated by the CPS-transformation pass, where they are implemented as the identity
function.

6.5 Self-Adjusting Computation Library

Overview. The high-level Adaptive library (Section 6.5) is implemented as a wrap-
per around a low-level library for self-adjusting computation. The low-level library ef-
fectively implements the semantics of Tgt, providing operations for creating and manip-
ulating TDTs (Subsection 6.5.3), for memoizing functions, and for performing change-
propagation (Subsection 6.5.2). Since the high-level library uses the adaptive functions
from the language extensions while the low-level library uses explicit continuation-passing
style, we use the compiler’s afn to xfn and xfn to afn primitives to convert between
the two representations. The implementation is based on the previously proposed monadic
libraries [Acar et al., 2006b,a] adapted for CPS, which simplifies some key internal data
structures and algorithms.

6.5.1 Traces and Time Stamps

We represent a trace as a time line data structure TDS where each action—i.e., TDT oper-
ations and memoization—is represented by a time stamp. Since change-propagation may
identify work for reuse, discard trace segments of stale work and produce new trace seg-
ments for re-executed work, the time line must support efficient time stamp comparison,
disposal of time stamp intervals, and insertion of new time stamps between existing time
stamps.

Simple data structures such as integers and fixed-precision floating-point numbers do
not work because they do not allow insertions of new time stamps between two adjacent
numbers; arbitrary precision real numbers would work but are not efficient. Instead, we
represent time stamps with an order-maintenance data structure [Dietz and Sleator, 1987]

118

for total orders. We assume all time stamps are taken from the interval [tstart, tend] where
tstart is the beginning and tend is the end of time.

During a from-scratch execution and when re-running invalidated computation, the
adaptive and memoization actions generate new time stamps for the new work. During
change-propagation, stale trace segments are discarded and existing trace segments that
can be reused are spliced into the trace for the updated run. In any case, the insertion or
deletion of an action at some point in the trace must identify any subsequent work in the
trace—i.e., with later time stamps—that becomes inconsistent.

Traceable Data Types. Each TDT instance maintains a local time line to record the time
stamp of every action associated with that instance. Each query operation (e.g., modref
dereferences) also records its continuation in case it needs to be rerun if the operation
becomes inconsistent.

Allocation and Memoization. Each keyed allocator and memoizing function (cf. Sec-
tion 6.3) maintains a hash table to map keys (e.g., allocation key or argument hash) to the
relevant resource (e.g., location or memoized computation) together with its associated
time stamp.

Remark. The monadic approach requires two time stamps to delimit the beginning and
end of each read operation and memoized computation. By taking advantage of the fact
that continuations are explicit in the compilation-based approach, the representation of
an action only requires one time stamp. Furthermore, change-propagation becomes a
standalone iterative process that re-executes the continuation of inconsistent operations,
whereas the monadic approach required a mutual recursion between change-propagation
and memoization.

Out-of-Order Memoization. To support out-of-order memoization, trace segments may
be reordered. Therefore, the time line needs to allow extraction and insertion of chunks of
trace. As discussed below, this can be implemented reasonably efficiently.

6.5.2 Change Propagation

The semantics of change-propagation in the Tgt language (Chapter 4) explicitly traverses
the trace replaying every consistent action and falls back to evaluation when it encounters

119

Algorithm CPA (S1, T2, Q, tnow)
let

tinc = find the next element in Q greater than tnow
Tr = S1 [tnow,tinc)

in if tinc is tend
then return T2 ++ Tr
else let

S1’ = S1 \ Tr
(tmemo, Qn, Tn) = run continuation of tinc until memo match in S1’

tmemo is the time stamp of the memo match
Tn is the new trace for [tinc,tmemo)
Qn is Q extended with inconsistencies from running Tn

T2’ = T2 ++ Tr ++ Tn
–for in-order reuse, revoke unusable trace and update propagation queue:
Tstale = S1’ [tinc,tmemo)
S1’ updated with Tstale removed
Qn updated with Tstale revoked

in if tmemo is tend
then return T2’
else return CPA (S1’, T2’, Qn, tmemo)

end
end

Figure 6.2: The change-propagation algorithm.

120

an inconsistent action. Here we describe a concrete algorithm CPA and associated data
structures to implement the abstract change-propagation semantics of Tgt. This goes into
a level more detail than the Tgt semantics allowing an analysis of runtime.

The main idea of CPA is to traverse the trace of the previous run in execution order
while identifying the parts of the trace that need to be rerun (the change rule transitions
from y to ⇓ in Figure 4.2) and the parts that can be reused (the memo/hit rule transitions
from ⇓ to y in Figure 4.6). In particular, it is important to skip over the part that can
be reused without incurring any cost. An important aspect, therefore, is to identify the
next inconsistent time stamp following a memo match. Once this is identified, the CPA
also can splice the trace segment between the memo match and the inconsistency from the
previous time line and append it to the new time line. Moreover, the CPA must insert a
fresh trace segment for the computation that must be rerun because it wasn’t available for
reuse from the previous run.

Figure 6.2 gives the pseudo-code for CPA(S1, T2, Q, tnow) that takes an input trace S1

of the previous run and builds an accumulator trace T2 for the updated run; the algorithm
also maintains a propagation queue Q of inconsistent time stamps and a finger (position)
tnow in the reuse trace S1 that indicate where computation reuse from S1 begins. T2 corre-
sponds to the output trace in the change-propagation judgement of Tgt and the input trace
S1 corresponds to the list of trace slices S—here we leave the fragmentation into trace
segments implicit—from which computation can be reused by memoization. In the actual
implementation, T2 is produced by editing S1 in place, but here we distinguish the old and
new trace for clarity.

Propagation Queue. The CPA algorithm maintains a propagation queue Q of time
stamps for inconsistent actions that must be replayed. The queue is ordered by time for
the algorithm to efficiently find the next inconsistent computation (e.g., TDT query) that
must be rerun.

Under in-order memoization, work from the previous run must be reused in execution
order so the reuse trace S1 is an integral trace—i.e., without fragmentation. Therefore
the propagation queue only contains inconsistent queries with time stamps greater than
tnow. In a simple implementation with only modrefs, the propagation queue contains time
stamps for every inconsistent get action—i.e., for which the contents of the reference has
changed with respect to the previous run. In a more sophisticated implementation with
TDTs, the propagation queue only contains the time stamp of the next earliest inconsistent
query (instead of all inconsistent queries) of each TDT instance—i.e., for which the result
of the operation has changed. In the latter case, the propagation queue must include sup-
port for a TDT instance’s time stamp to be updated according to the time stamp returned

121

by each invoke and revoke operation.

Under out-of-order memoization, the reuse trace S1 may contain holes due to stolen
work. Therefore the propagation queue contains entries that occur anywhere in the trace—
i.e., with time stamps between tstart and tend—that correspond to inconsistent queries as
well as holes where trace segments have been stolen. For out-of-order memoization with
pure TDTs (e.g., immutable modrefs), the propagation queue contains time stamps for
every inconsistent action. This identification is correct since the only way a get of a pure
modref from the source language can become inconsistent (read a different value) is if
the original put has changed. This relies on the fact that any reordering among the reads
does not affect the values read and the initialization write always precedes the read actions.
For mutable modrefs (and other effectful TDTs), reads and writes may be interleaved and
reordering traces can swap the relative order between a read and write. Below we discuss
how to extend CPA to support out-of-order memoization with effectful TDTs.

Initial Call. CPA is initially called with CPA(T1, ε, Q0, tstart) where T1 is the full (un-
fragmented) trace of the previous run and ε is an empty trace to be built into the trace T2

of the updated run. The propagation queue Q0 is initialized to include all the TDT query
actions that are immediately inconsistent due to input changes—e.g., get actions of input
modrefs that have changed. The finger tnow initially points to the beginning of the time
line tstart.

Reusing Work. At each step, CPA uses the propagation queue to find the next inconsis-
tent query tinc following tnow. If there are no more inconsistencies, then tinc is tend and the
algorithm only needs to append the trace Tr—from the finger tnow to the end of time tend
in S1—to the end of the accumulator trace T2. If there is an inconsistent query at time tinc,
CPA extracts the trace segment Tr—from the finger tnow to the inconsistency at tinc in the
previous run S1—that isn’t affected by input changes and can thus be reused by simply
appending it to the output trace. This corresponds to the y reuse rules that fast-forward
past the consistent actions that do not need to be replayed. Since the trace is a reified
representation of the computation, this segment is removed from the input trace—because
it can’t be reused multiple times—and transferred to the output trace.

New Work. Change-propagation fast-forwards to the next inconsistent operation at tinc
and reruns the continuation for that operation. For modrefs, the operation is a get that
fetches a different value from the store compared to the previous run. More generally, for
TDTs, the operation is a query that returns a different result.

122

[] [

[[[

tnow tinc tmemo

tnow tinc tmemo

previous run S1

new run T2 Tr Tn

steal
steal

steal

Figure 6.3: CPA constructing new trace from old trace.

While the continuation runs, it looks for a memo match in S1 and stops when it finds
one. While the continuation runs, whenever a change is made to a TDT that existed in the
previous run (e.g., updating a modref with a different value), the inconsistent time stamps
affected by that operation are added to Q’. For in-order memoization, the memo match
time tmemo must occur after tnow; therefore memo matching discards a prefix of the trace
(from tinc to tmemo) by explicitly revoking the corresponding actions. For out-of-order
memoization, tmemo may occur before tnow earlier in the trace—i.e., earlier than a memo
match from an earlier iteration of CPA.

Thus when the fresh rerun Tn is done, all inconsistent reads caused by the run are
properly marked in Q’. Also while running all memoizing function calls are placed in
the memo table for future reference. The rerun returns the time stamp tmemo of the memo
match, as well as the modified queueQ’ and the new trace segment Tn for the computation
that has just run. Now CPA can extend the original output trace T2 with the reused segment
Tr and the new segment Tn. Thus on every step (except perhaps the last), the algorithm
adds one reused chunk of trace and one new chunk of trace to the output trace. Only the
new chunks require work.

Figure 6.3 gives a pictorial representation of CPA constructing the time line T2 for the
updated run from chunks of the time line S1 from the previous run. In one iteration of
the algorithm, the trace chunk Tr from the interval [tnow, tinc) is stolen from the previous
run, and the new trace chunk Tn is executed in the interval [tinc, tmemo), and reusable
computation is found at tmemo for the next iteration. Under out-of-order reuse, reused
computation in T2 may come from earlier than tnow or later than tinc.

123

Runtime. Now lets consider the runtime of CPA. Certainly all new computation needs
to be run but this is accounted for in the trace distance. The other costs of the algorithm
include the time for extracting and appending chunks of the trace, the cost for the queue
operations, and the cost for memo lookup and associated insertion into the memo table.
We use Tsplice to indicate the time to append or extract a chunk of trace for a trace of size
n. Using balanced trees this can easily be implemented in O(log n) time, and with some
work comparisons between time stamps in the trace can be made to work inO(1) time. We
use Tqueue(n) to indicate the time to insert or delete in the queue of size n. This is easy to
implement inO(log n) time per operation as long as the comparison of time stamps isO(1)
time. We assume the memo lookup uses standard hash tables and therefore takes constant
expected time per operation (either lookup or insertion). Consider a computation in which
the total new computation in c, the total number of recursive calls of the CPA is l, the
total trace distance just counting reads is r, and the maximum of the sizes of the input and
output traces is n. The runtime is then O(c+ lTsplice(n) + (r+ l)Tqueue(n)). Relating this
to the trace distance measured by the semantics, change-propagation for two traces S1 and
S2 such that S1	�S2 = 〈c1, c2〉will run in timeO((c1+c2)(1+Tsplice(n)+Tqueue(n))) =
O((c1 + c2) log n).

Out-of-Order Memoization with Effectful TDTs. To make the CPA work with out-of-
order memoization and effectful TDTs (e.g., mutable modrefs) requires some modifica-
tion. The problem, as mentioned above, is that reordering of the operations on an mutable
reference can change the value on any read even though no write has occurred. For exam-
ple, suppose an initial run has a set with value v1, a set with value v2 followed by a get
with value v2. Next, suppose that in the updated run the get moves ahead in the trace and
now is between both set actions, so that its value should be v1. We call a move of a get

that changes its value an inversion. Since we only update Q on updates (e.g., put s and
set s), and since we allow reordering, the queue will not contain all inconsistencies. To
modify the algorithm we need to change the line that finds tinc so that it not only looks for
the first element in Q but also scans the trace from tnow looking for any inversions. This
can be implemented in time proportional to the number of queries (e.g., get actions) in
that trace segment by simply keeping a linked list of queries.

6.5.3 Implementing Traceable Data Types

We describe how to implement the traceable version of various data types that conform to
the invoke/revoke interface (such as PRIORITY QUEUE TRACEABLE from Section 2.3).
A more complete description of the data types and how to implement others can be found

124

elsewhere [Acar et al., 2007a]. The basic idea behind the implementations is to keep an
augmented version of the operation trace T . In particular, most of our TDTs maintain
a data structure for the trace that is ordered by time stamps and supports insert(T, v, t)
(insert v at time t), delete(T, t) (delete the element at time t), findPrev(T, t) (returns the
greatest element in T that is less that t) and findNext(T, t). For a trace with n entries, all
these can be implemented in O(log n) time using balanced trees. Some of our traceable
data types also maintain balanced trees ordered by keys (e.g., modular modifiables and
priority queues).

Modifiable References. The traceable implementation of a modifiable reference main-
tains a time-ordered sequence of operations. Each operation is tagged with the value it has
read or written. To invoke a get (read) or put (write) at time t, we insert the operation
into the trace data structure at t. If the operation is a get, then we also use findPrev(T, t)
to access the value returned by the read—the previous element in the trace might either
be a get or put, but both types of operation are stored with values. Note that a revision
sequence requires that all operations before time t are consistent; therefore, the value of
this previous element contains the correct value for time t. To revoke a get or put at time
t, we simply delete the operation from the trace. For all revisions (invokes or revokes) we
can use findNext(T, t) to return the earliest inconsistent operation, if any. In particular, if
the next operation is a get and has a different value, then it is inconsistent and is returned,
otherwise nothing is returned. All operations on a trace with n elements take O(log n)
time.

Accumulator Modrefs. An accumulator modifiable is implemented simply by “adding”
to the sum using the commutative operator on an invoke and subtracting from the sum on
a revoke. For any value other than the identity, this will return the next read as the earliest
inconsistent operation.

Modular Modrefs. A modular modifiable is implemented by keeping all the boundary
elements ci for all mget operations on a modular modifiable m in a data structure Sm
sorted by their ordering. Invoking or revoking a mget operation on m corresponds to
inserting or deleting the partitioning elements from Sm. Changing the initial value will
identify all partitions that are crossed by the change of value and return the earliest as
inconsistent.

125

Queues and Priority Queues. The implementation of queues and priority queues is
beyond the scope of this work. We note that a priority queue can be done with two balanced
trees one ordered by time for the trace and the other by key. In addition, during an update
sequence, the implementation maintains two additional balanced trees, one for insertions
invoked during the current update sequence and the other for insertions revoked during the
sequence. All operations take O(log n) time.

Dictionaries. The implementation of dictionaries is based on modifiables. Basically, we
create a standard hash table, where each entry in the table is a modifiable with its own trace.
The first time an operation is invoked on a particular key k, we create a new modifiable
mk for that key with its own trace. Any insert of a key-value pair (k, v) into the dictionary
at time t will correspond to a put of value v into mk at t. Any delete of a key k from the
dictionary at time t will correspond to a put of value NONE intomk at t, where NONE
is a special value indicating that the dictionary has no entry at that key. Any search of a
key k at time t corresponds to a get mk at t. Finally, if a revoke of an operation on key k
removes the last operation from the trace ofmk, then we can deletemk from the dictionary
(this avoids a memory leak).

6.5.4 Integrating Traceable Data Types

Invoking and revoking TDT operations in the semantics uses trace reparation as a uniform
mechanism to find and mark the next inconsistent operation. Each TDT is implemented
as a standalone Standard ML module that maintains a local time line of operations on that
instance. The implementation of a TDT operation op : τarg → τres must provide functions

invoke op : ts * τarg -> τres * ts option
revoke op : ts -> ts˜option

where invoke op takes an argument value and the time stamp at which the operation is
invoked and returns the result and the time stamp of the next inconsistent operation, and
revoke op takes the time stamp at which the operation was invoked and returns the time
stamp of the next inconsistent operation. Each TDT supports efficient change-propagation
by taking advantage of problem-specific structure so that each invoke or revoke operation
can quickly identify the next inconsistent operation in the trace without having to perform
a linear traversal of the trace.

In order to integrate the operation into the change-propagation implementation, we
generate boilerplate code to invoke and revoke the operation and maintain an entry in the

126

propagation queue with the earliest inconsistent operation. For each invoke operation,
the boilerplate code creates a new time stamp for the operation invokes the TDT opera-
tion, and passes the result to the continuation. Moreover, it sets suitable hooks up in the
time line for the operation to be reinvoked if the action needs to be re-executed (i.e., if
change-propagation re-runs it) and for the operation to be revoked (i.e., when memoiza-
tion discards it). Therefore, if the change-propagation algorithm deletes a time stamp, we
revoke the operation that is associated with that time stamp.

During change-propagation, trace elements that need re-evaluation are stored in the
propagation queue prioritized by their time stamps, including the inconsistent operations
of all TDTs. Since the set of inconsistent operations dynamically changes over time as
a result of invokes and revokes, we adjust the priority queue dynamically to maintain the
correct set of inconsistent operations.

127

128

Chapter 7

Evaluation

This chapter is based on the experimental evaluation of the ∆ML compiler with modifi-
able references [Ley-Wild et al., 2008b] and traceable data types [Acar et al., 2010a], and
formal analysis of self-adjusting computation [Ley-Wild et al., 2009].

7.1 Overview

We describe an experimental evaluation of the ∆ML compiler with modifiable references
(Section 7.2) and modref-based data structures against traceable data types (Section 7.3).
The experiments for modref applications indicate that compiling self-adjusting programs
is consistent with the previously reported asymptotic bounds and experimental evalua-
tions [Acar et al., 2006b] of the monadic libraries [Acar et al., 2006a] for self-adjusting
computation.

Furthermore, we use a set of diverse benchmarks to compare the space usage and time
performance of programs using TDTs to that of programs using standard, modref-based
implementations. The results show that traceable data structures significantly help improve
speed and reduce memory consumption. To understand the source of this performance
improvement, we study how tracking at the granularity of data type operations affects the
trace size and stability. Our findings suggest that tracking operations on data structures
helps reduce the trace size and improve stability by asymptotic factors.

Finally, we use the cost semantics to formally reason about the efficiency of change-
propagation with respect to the semantics with in-order reuse (Section 7.4) and out-of-
order reuse (Section 7.5).

129

7.2 ∆ML with Modifiable References

7.2.1 Synthetic Benchmarks

We implemented self-adjusting versions of the following algorithms, which are used in
previous evaluations.

• filter, map, reverse, fold: The standard list functions.

• merge-sort, quick-sort: The merge-sort and quick-sort algorithms for list sorting.

• diameter: An algorithm [Preparata and Shamos, 1985] for computing diameter (ex-
tent) of a planar point set.

• quick-hull: The quick-hull [Barber et al., 1996] algorithm for the convex-hull of a
planar point set.

These algorithms utilize a number of computing paradigms including simple iteration
(filter, map), accumulator passing (reverse, quick-sort), random sampling
(fold), and divide-and-conquer (merge-sort, quick-sort, quick-hull).

Our benchmarks are specific instances of the algorithms. All list benchmarks operate
on integer lists. The filter benchmark keeps the even elements in an integer list. The
map benchmark adds a fixed value to each element in an integer list. Both minimum and
sum are instances of the fold algorithm. The sorting benchmarks (qsort, msort) sort
integer lists. The computational-geometry benchmarks (diameter, quick-hull)
operate on lists of points in two dimensions.

7.2.2 Input Generation

The input to our experiments is randomly generated. To generate a list of n integers,
we choose a random permutation of the integers from 1 to n. To generate points in two
dimensions, we choose random points uniformly from within a disc of radius 10n.

7.2.3 Measurements

To understand the effects of the CPS-transformation on the ordinary (non-self-adjusting)
version of our benchmarks, we consider two instances of each ordinary benchmark. The
CPS instance of an ordinary benchmark is written using adaptive functions and adaptive

130

applications, but does not use the adaptive library; the compiler transforms these adaptive
functions and adaptive applications into CPS. The direct style instance is written using
normal functions and normal applications (and does not use the adaptive library); these
functions and applications are unchanged by the CPS-transformation pass. Our results
show that there is a slight performance difference between directly-style instance and the
CPS instances: direct style is often slightly faster, but not always. This confirms that
our selective CPS translation is effective in reducing the overheads of continuations. We
therefore use the direct style instance of the ordinary version for comparing ordinary and
self-adjusting versions. We measure the following quantities:

• Time for from-scratch execution: The time for the from-scratch execution of the
ordinary or self-adjusting version.

• Average propagation time for a single insertion/deletion: For each element in the
input list, we delete the element, run change-propagation, insert the element (at the
same point), and run change-propagation. The average is taken over all propaga-
tions.

• Overhead: This is the ratio of the time for the from-scratch execution of the self-
adjusting version to the time for the from-scratch execution of the ordinary version
with the same input.

• Speedup: This is the ratio of the time for the from-scratch run of the ordinary
version to the average time for propagating a single insertion/deletion.

In our measurements, we isolate the quantity of interest; that is, we exclude the time to
create the initial input and, in change-propagation timings, we exclude the time to perform
the initial run.

Technical Setup. Our experiments were performed on a desktop computer (two single-
core 2GHz AMD Opteron processors; 8GB physical memory; Linux 2.6.23 operating
system (Fedora 7)). Benchmarks were executed with the “gc-summary” runtime option,
which reports GC statistics (e.g., GC time). In this evaluation, we do not report GC times.

7.2.4 Results

Table 7.1 gives summaries for the benchmarks at fixed input sizes. Each columns show the
measurements for the quantities described above. The overheads range between 3 and 33.
The integer benchmarks have higher overheads because the perform trivial work between

131

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 20000 40000 60000 80000 100000

Quick Hull (Time (s) for from-scratch execution)

Self-Adjusting
Ordinary (CPS)

Ordinary (Direct)

 0.00026

 0.00028

 0.0003

 0.00032

 0.00034

 0.00036

 0.00038

 0.0004

 0 20000 40000 60000 80000 100000

Quick Hull (Average propagation time (s) for a single insertion/deletion)

Propagation Time

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 20000 40000 60000 80000 100000

Quick Hull (Speedup)

Speedup (vs. CPS)
Speedup (vs. Direct)

(a) Time (s) for from-scratch execution (b) Average propagation time (s) (c) Speedup

Figure 7.1: Selected measurements for quick-hull.

Application Ord. Self-Adj. Self-Adj. Avg. Overhead Speedup

(Input size) Exec. (s) Exec. (s) Propagate (s)

filter (106) 0.22 4.00 0.000007 18.2 33170

map (106) 0.32 9.53 0.000018 30.0 17427

reverse (106) 0.20 4.83 0.000014 24.3 14410

minimum (106) 0.12 2.80 0.000020 23.5 5877

sum (106) 0.12 2.94 0.000155 25.6 740

msort (105) 0.56 17.96 0.001442 32.3 386

qsort (105) 0.35 11.16 0.000949 32.3 365

diameter (105) 1.25 3.54 0.000343 2.8 3628

quick-hull (105) 1.08 3.52 0.000325 3.3 3313

Table 7.1: Summary of benchmark timings.

self-adjusting computation primitives. Computational geometry benchmarks have less
overheads because the geometry operations are more expensive (relative to self-adjusting
computation primitives). Change-propagation leads to orders of magnitude speedups over
from-scratch executions. This is because there is often a near-linear time asymptotic gap
between executing from scratch and performing change-propagation.

Figure 7.1(a) compares the from-scratch executions of the ordinary and self-adjusting
versions of quick-hull. The figure shows that there is a small difference between
the CPS and the direct style instance of the ordinary version. Figure 7.1(b) shows the
average change-propagation time for a single insertion/deletion. As the figure shows, the
time remains nearly constant. Intuitively, this is because many of the input changes do not

132

change the output, which change-propagation can take advantage of to update the output
quickly. Figure 7.1(c) shows the average speedup, which increases linearly with the input
size to exceed three orders of magnitude.

7.2.5 Raytracer application

For a less synthetic benchmark, we implemented a self-adjusting raytracer. This ap-
plication would have been quite cumbersome to write using the previous monadic li-
braries [Acar et al., 2006a], but was straightforward using this work. The raytracer sup-
ports point and directional lights, sphere and plane objects, and diffuse, specular, trans-
parent, and reflective surface properties. The surface properties of objects are changeable
data; thus, for a fixed input scene (lights and objects) and output image size, we can render
multiple images (via change-propagation) that vary the surface properties of objects in the
scene. Note that this application is not always well suited to self-adjusting computation
because making a small change to the input can affect a large portion of the output.

Figure 7.2: Ray-tracer
output.

For experiments, we render an input scene (shown on the
right) of 3 light sources and 19 objects with an output image size
of 512× 512 and then repeatedly change the surface properties of
a single surface (which may be shared by multiple objects in the
scene). A ·D change indicates that the surface was toggled with a
diffuse (non-reflective) surface, while an ·M change indicates that
the surface was toggled with a mirror surface. We measure the
time for from-scratch execution for both the ordinary and self-
adjusting versions, and the average propagation time for a single
toggle of the surface. For each change to the input, we also mea-
sure the change in the output image as a fraction of pixes.

Table 7.2 shows that self-adjusting raytracer is about three
times slower than the ordinary version. Change-propagation
yields speedups of 1.6 to 18.0 when less than 10% of the output image changes. If the
output changes more significantly (surfaces A and E), then the change-propagation can be
slower than the ordinary version. This is expected because the amount of work change-
propagation performs is roughly proportional to the fraction of change in the output (e.g.,
updating half the output requires half the work of a from-scratch execution). Changes
that makes a surface reflective (the ·M changes), are more expensive, because they require
casting new rays in addition to updating existing rays.

133

7.3 ∆ML with Traceable Data Types

7.3.1 Benchmarks

We developed a set of benchmark to study the performance characteristics of the ∆ML
with traceable data types. Each benchmark is specified by a static algorithm’s descrip-
tion. Based on this description, we implemented three versions: (1) a static program
(“static”), (2) a self-adjusting program that does not utilize TDTs (“modref-based”), and
(3) a self-adjusting program that makes use of TDTs whenever appropriate (“traceable”).
In developing the test suite, we first implemented the static program and transformed it
into a self-adjusting program by inserting modrefs. The traceable version is identical to
the modref-based version, except the traceable version makes calls to traceable data struc-
tures whereas the modref-based version makes calls to modref-based implementations of
data structures. In Table 7.3.1, we summarize the data types used in each benchmark.

• heapsort (hsort-int): sort an integer list using the standard heapsort algorithm.

• Dot product (dot-product): compute the dot product of two real-number vectors
represented as a list of ordered pairs, by first computing the product for each com-
ponent and using an accumulator to compute the sum.

• List intersection (intersection): compute the intersection of lists `1 and `2, by
inserting the elements of `1 into a dictionary and selecting the elements of `2 that
are present in the dictionary.

• Huffman code (huffman): construct a Huffman tree for a list of keys and frequen-
cies using the standard Huffman algorithm.

• Interval stabbing (stabbing): take as input a list of intervals I = {[ai, bi)}ni=1 and
a list of queries Q = {qj}mj=1, and report for each query qj how many intervals this
query “stabs” (i.e., the size of the set {(ai, bi) ∈ I : ai ≤ qj < bi}). We present
a plane-sweep algorithm: First, insert into a priority queue the endpoints of all the
intervals and the query values, known as events, and set initialize a counter c to 0.
Then, to answer queries, consider the events in an increasing order of their values,
incrementing the counter on a left endpoint, decrementing it on a right endpoint, and
outputting the counter value on a query.

• Graham Scan (graham-scan): compute the convex hull of a set of points in 2D
using the Graham’s scan algorithm (more in Section 7.3.8).

134

• Dijkstra (dijkstra): compute the shortest-path distances in a weighted graph from
a specified source node using Dijkstra’s algorithm and output a dictionary mapping
each node to its distance to the source.

• Breadth-First Search (bfs): perform a breadth-first search, which computes the
shortest paths in an unweighted graph from a specified source node and outputs a
dictionary mapping each node to its distance to the source.

7.3.2 Modref-based Data Structures

We implemented modref-based data structures for every data type used in the benchmarks.
These implementations may not be the best one can obtain using modifiables alone, but
they are reasonable baselines because we believe they are representative of what a pro-
grammer with significant background in self-adjusting computation would produce after
some optimization. The accumulator data structure is implemented by maintaining a mod-
ifiable list and running a self-adjusting fold operation to obtain the solution. Both the
dictionary and priority queue data structures are implemented using the treap data struc-
ture. For priority queues, we found that treaps are more stable than common alternatives
(e.g., leftist heaps or binary heaps). The queue data structure is obtained by essentially
transforming a standard purely functional implementation of a queue that maintains two
lists; however, we are especially careful about when the front list is reserved to enhance
stability.

7.3.3 Input Generation

We use randomly generated data sets for all the experiments. Let n be the target input
size. For the sorting benchmarks, we generate a random permutation of the integers from
1 to n. For dot-product, we generate random vectors by picking floating-point numbers
uniformly at random from [0.0, 10.0] (with 5 significant digits). For intersection, We
generate a pair of lists of lengths n and m by picking integers uniformly at random from
the set {0, . . . , t}, where t = 1

4
min{n,m}; this choice of t ensures that the two lists

have a common element with high probability. For huffman, the alphabets are simply the
numbers 1 to n, and the frequencies are random integers drawn from the range [1, 10n].
For stabbing, the endpoints and query values are random numbers in the range [0, n/10]
chosen uniformly at random. For convex hulls, we generate inputs by drawing points
uniformly from the circumference of a unit-radius circle. This arrangement is known to
be a challenging pattern for many convex-hull algorithms. For our graph benchmarks,

135

we generate random, connected graphs with approximately
√
n-separators, mimicking the

fact that many real-world graphs have small separators (e.g., n1−ε).

7.3.4 Metrics and Measurements

The metrics for this study are (1) the time to run a program from scratch, denoted by
Ti (2) the average update time after a modification, denoted by Tu, and (3) the space
consumption, denoted by S. To measure the second metric, for example, in list-based
experiments, we apply a delete-propagate-insert-propagate step to each element (i.e., in
each step, delete an element, run change-propagation, insert the element back, and run
change-propagation) and divide the end-to-end time by 2n, where n is the list’s length.
This quantity represents the expected running time of change-propagation if a random
update to the input is performed. We can use this measurement in graph experiments,
where here the delete-propagate-insert-propagate is applied to each edge in turn.

Technical Setup. Our experiments were conducted on a 2.0Ghz Intel Xeon E5405 with
32 GB of memory running Ubuntu 8.04 (kernel 2.6.24-19). Programs were compiled using
the ∆ML compiler with the options “-runtime ram-slop 0.9 gc-summary”,
which direct the runtime system to make 90% of the physical memory available to the
benchmark and report garbage collection (GC) statistics.

We measure the space consumption by noting the maximum amount of live data as
reported by ∆ML’s garbage collector. This is an approximation of the actual space usage
because garbage collection may miss the high-water mark.

When measuring time, we carefully break down the execution time into application
time and garbage collection (GC) time. In these experiments, we have found that GC is
at most 20% of the execution time. For this reason, we only report the application time to
isolate the GC effects and highlight the asymptotic performance.

136

Image Size Self-Adj. Exec. (s) Ord. Exec. (s)

512× 512 7.643 2.563

Surface Image Diff. Self-Adj. Avg. Ord. Avg.

Changed (% pixels) Propagate (s) From-Scratch (s)

AD 57.22% 3.430 2.805

AM 57.22% 11.277 3.637

BD 8.43% 0.731 2.817

BM 8.43% 1.471 2.781

CD 9.20% 0.855 2.810

CM 9.20% 1.616 2.785

DD 1.85% 0.142 2.599

DM 1.85% 0.217 2.731

ED 19.47% 2.242 2.154

EM 19.47% 4.484 2.237

Table 7.2: Summary of raytracer timings.

Benchmark Data Types Used

hsort-int priority queue
dot-product accumulator
intersection dictionary
huffman priority queue
stabbing priority queue, counter
graham-scan priority queue
dijkstra priority queue, dictionary
bfs queue, dictionary
Motion Simulation modular modref

Table 7.3: Summary of data types used in our benchmarks. Every self-adjusting program
also uses the modref data type.

137

E
xp

er
im

en
t

S
iz

e
Tr

ac
ea

bl
e

M
od

re
f-

ba
se

d
M

od
re

f-
ba

se
d
÷

Tr
ac

ea
bl

e

N
T
i

(m
s)

T
u

(µ
s)

S
(M

B
)

T
i

(m
s)

T
u

(µ
s)

S
(M

B
)

T
i

T
u

S

hs
or

t-i
nt

10
3

7.
50

35
.0

0
0.

61
85
.0

0
27

69
5.

00
14
.0

4
11
.3

3
79

1.
28

23
.0

2
do

t-p
ro

du
ct

10
5

28
0.

00
6.

75
52
.8

8
87

2.
50

12
1.

55
22

3.
80

3.
11

18
.0

0
4.

23
in

te
rs

ec
tio

n
10

5
13

72
.5

0
82
.0

0
38

2.
78

11
20

7.
50

19
48
.4

5
15

09
.1

7
8.

16
23
.5

3
3.

94
hu

ffm
an

10
4

15
7.

50
49

2.
00

22
.1

3
25

75
.0

0
25

30
00

0.
00

70
7.

61
16
.3

4
51

42
.2

8
31
.9

8
st

ab
bi

ng
10

3
17
.5

0
11

5.
00

1.
92

24
0.

00
98

19
5.

00
23
.5

6
13
.7

1
85

3.
87

12
.2

7
gr

ah
am

-s
ca

n
10

4
37

5.
00

26
5.

50
24
.9

0
15

42
.5

0
11

05
.5

0
27

7.
24

4.
11

4.
16

11
.1

3
bf

s
10

3
37
.5

0
84

5.
56

2.
74

71
7.

50
23

78
4.

07
13

9.
39

19
.1

3
28
.1

2
50
.8

2
di

jk
st

ra
10

3
42
.5

0
11

60
.0

3
2.

74
72

5.
00

34
52

8.
30

72
.4

1
17
.0

5
29
.7

6
26
.4

2

Ta
bl

e
7.

4:
Tr

ac
ea

bl
e

vs
.m

od
re

f-
ba

se
d

im
pl

em
en

ta
tio

ns
:
T
i

(i
n

m
s)

is
th

e
fr

om
-s

cr
at

ch
ex

ec
ut

io
n

tim
e,
T
u

(i
n
µ
s)

is
th

e
av

er
ag

e
tim

e
pe

ru
pd

at
e,

an
d
S

(i
n

M
B

)i
s

th
e

m
ax

im
um

sp
ac

e
us

ag
e

as
m

ea
su

re
d

at
ga

rb
ag

e
co

lle
ct

io
n.

E
xp

er
im

en
t

S
iz

e
Tr

ac
ea

bl
e

S
ta

tic
O

ve
rh

ea
d

S
pe

ed
up

N
T
i

(m
s)

T
u

(µ
s)

S
(G

B
)

T
i

(m
s)

(S
A

C
T
i)
/(

st
at

ic
T
i)

(s
ta

tic
T
i)
/(

SA
C
T
u
)

hs
or

t-i
nt

10
6

14
39

0.
00

59
.0

2
1.

75
25

99
.7

5
5.

5
4.

4
×

10
4

do
t-p

ro
du

ct
10

6
27

87
.5

0
7.

45
0.

44
10

0.
25

27
.8

0
1.

3
×

10
4

in
te

rs
ec

tio
n

10
6

12
82

0.
00

74
.9

1
2.

19
10

91
.5

0
11
.7

4
1.

5
×

10
4

hu
ffm

an
10

6
22

97
5.

00
10

21
.0

4
1.

08
64

47
.2

5
3.

56
6.

3
×

10
3

st
ab

bi
ng

10
6

38
83

2.
50

20
2.

11
1.

70
10

60
9.

75
3.

60
5.

2
×

10
4

gr
ah

am
-s

ca
n

10
5

43
07
.5

0
29

7.
30

0.
70

54
7.

75
7.

86
1.

8
×

10
3

bf
s

10
4

44
5.

00
13

10
.5

9
0.

12
47
.5

0
9.

36
36
.2

di
jk

st
ra

10
4

49
0.

00
17

83
.6

8
0.

12
52
.5

0
9.

33
29
.4

Ta
bl

e
7.

5:
Tr

ac
ea

bl
e

SA
C

ve
rs

us
st

at
ic

:
T
i

(i
n

m
s)

is
th

e
fr

om
-s

cr
at

ch
ex

ec
ut

io
n

tim
e,

an
d
T
u

(i
n
µ

s)
is

th
e

av
er

ag
e

tim
e

pe
ru

pd
at

e.

138

7.3.5 Modref-based Programs vs. Traceable Programs

The first set of experiments studies how TDTs provide the performance benefits over tra-
ditional, modref-based implementations. Recall that Ti is the time to run a program from
scratch and Tu is the average time that change propagation takes to perform an update. Ta-
ble 7.4 shows the performance of our benchmark programs, comparing the traceable ver-
sions to their modref-based counterparts. Note that for graham-scan, the modref-based
program uses merge sort whereas the traceable program uses heapsort; the modref-based
version of heap sort is too slow except for extremely small inputs. We explore this in more
detail in Sections 7.3.8 and 7.3.9.

We find that compared to the modref-based programs, the traceable versions are 3–20
times faster to run from scratch and 4–5000 times faster to perform an update. Moreover,
traceable versions consume 4–50 times less space than the modref-based ones. We remark
that these experiments involve relatively small input sizes because with larger inputs our
experiments with some modref-based applications require too much time to complete.

7.3.6 Traceable Programs vs. Static Programs

Our second set of experiments, shown in Table 7.5, draws a comparison between traceable
programs and static programs, quantifying the effectiveness of the approach in more abso-
lute terms. First, consider the overhead column, calculated as the ratio of the from-scratch
run of the traceable implementation to that of the static implementation. This quantity
represents the overhead due to dependence tracking and the runtime system. We find the
overhead to relatively small: the traceable versions are about a factor of 10 slower than
their static counterparts, except for dot-product, which is about 30 times slower. We be-
lieve this is because the benchmark dot-product is relatively lightweight computationally.

Second, consider the speedup column, calculated as the ratio of the static from-scratch
run time to the update time. Results show that the traceable versions can perform updates
many orders of magnitude faster. One exception is our graph algorithms, which are output-
sensitive and may need to update the results at many nodes even after a small modification,
e.g., deleting a single edge can change the shortest distance of many nodes. We discuss
this in greater depth next.

139

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000

From-Scratch Run: Time (in ms)

dijkstra (modref-based)
bfs (modref-based)
dijkstra (traceable)

bfs (traceable)

 0

 10

 20

 30

 40

 50

 0 200 400 600 800 1000

Comparing Avg. Update Time (in ms)

dijkstra (modref-based)
bfs (modref-based)
dijkstra (traceable)

bfs (traceable)

Figure 7.3: Measurements for from-scratch runs (left) and updates (right) with our graph
benchmarks; timing (vertical axis in ms) as input size (horizonal axis) varies.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5 10 15 20

From-Scratch Run: Time (in ms)

merge-sort
quick-sort

hsort-int traceable

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20

Comparing Avg. Update Time (in ms)

merge-sort
quick-sort

hsort-int traceable

 0

 0.5

 1

 1.5

 2

 0 5 10 15 20

Comparing Avg. Update Time (in ms)

quick-hull
graham-scan: merge-sort
graham-scan: quick-sort

graham-scan: hsort traceable

Figure 7.4: Detailed measurements for the sorting and graham-scan experiments: timing
(vertical axis in ms) as input size (horizontal axis in thousands of elements) is varied.

7.3.7 Graph Algorithms

Self-adjusting computation with modrefs works well for problems with structured data
(e.g., lists and trees). Computations involving unstructured data (e.g., graphs), however,
often require dynamic data structures whose traditional self-adjusting versions can require
the tracking and updating of large amount of dependencies. Traceable data types address
this problem by reducing the amount of required tracking and exploiting problem-specific
structures, thereby dramatically decreasing the update time.

We consider two algorithms: the Dijkstra’s single-source shortest path algorithm
(dijkstra) and the classic breath-first-search algorithm (bfs). Our implementations fol-
low the standard textbook descriptions (Figure 2.7 shows the pseudo-code for dijkstra).
Both algorithms use a dictionary to represent a graph.

Figure 7.3 contrasts the performance of traceable versions of shortest-path algorithms
with that of the traditional, modref-based versions. The left side shows from-scratch exe-
cution times of dijkstra and bfs. Both perform similarly, and their traceable versions are

140

 0

 2

 4

 6

 8

 10

 12

 14

 0 200 400 600 800 1000

Trace Size (in thousands): hsort traceable

 0

 5

 10

 15

 20

 0 200 400 600 800 1000

Trace Size (Normalized by hsort traceable)

hsort modref-based
quick-sort

hsort traceable

100

101

102

103

104

105

106

107

 0 200 400 600 800 1000

Avg. Trace Difference (log scale)

hsort modref-based
quick-sort

hsort traceable

Figure 7.5: Trace size (in thousands of trace elements) and average trace difference (in
trace elements on a log scale) of sorting benchmarks as input size is varied: trace size of
traceable heapsort (left), trace size of quicksort and modref-based heapsort as normalized
by the trace size of traceable heapsort (center), and average trace difference (right).

significantly faster than their traditional versions, by more than an order of magnitude at
peak. The right side shows the average update times for an edge deletion/insertion. Again,
both benchmarks perform similarly and the traceable versions are significantly faster than
the traditional, by approximately an order of magnitude at N = 1, 000.

We note that both dijkstra and bfs are highly output sensitive algorithms. Since insert-
ing/deleting an edge can change the shortest-path distances on a large number of nodes,
these benchmarks are highly output sensitive. Specifically, if the shortest-path distances
change on t nodes, both benchmarks will need to update all t nodes, requiring at least Ω(t)
time.

7.3.8 Sorting and Convex Hulls

Another noteworthy feature of the TDT framework is modularity, specifically the fact that
we can often enjoy substantial performance improvements by simply replacing the modref-
based implementations of data structures with the compatible traceable versions. As an
example, consider the problem of computing the convex hull of 2D data points. Given a
set of 2D points, Graham’s scan algorithm first orders the points by the x coordinates and
computes the convex hull by scanning the sorted points. Here we compare the traceable
version of heapsort (hsort) and graham-scan benchmarks against other modref-based
algorithms. The fastest version turns out to be identical to the old graham-scan code,
except the sort routine is now a traceable heapsort.

As shown in Figure 7.4 (left and center plots), traceable heapsort outperforms the
quick-sort and merge-sort algorithms by nearly an order of magnitude for both from-
scratch runs and updates. Since graham-scan uses sorting as a substep, it shows the

141

 1

 2

 3

 4

 5

 6

 0 3000 6000 9000 12000 15000

Event-based simulation with up to 15000 points

Update time per event (in ms)
 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 3000 6000 9000 12000 15000

Speedup: From Scratch Run / Update

Speedup

 300

 400

 500

 600

 700

 0 25 50 75 100

Kinetic simulation with 5000 points

total time (in s) for delta time-step

Figure 7.6: Time per kinetic event (left), speedup for an update (center), and total simula-
tion time (seconds) with time-slicing (right).

same performance trends (rightmost plot). Compared to the modref-based implementa-
tion of the quick-hull algorithm [Barber et al., 1996], graham-scan is extremely fast.

7.3.9 Trace Size and Stability

Our empirical measurements thus far illustrate the performance benefits of TDTs, both in
running time and space consumption. Here we investigate the question of whether these
improvements are related to potential constant factor improvements in the run-time sys-
tems or to the benefits of TDTs as we expect them to be. Our measurements suggest the
latter and indicate asymptotic improvements in performance. To this end we consider two
abstract measurements: trace size and trace stability. Trace size measures the size of the
memory consumed. Trace stability measures how much the trace changes as a result of
an input modification—this ultimately determines how fast the program can respond to
modifications. In our experiments, we measure the trace size by the number of trace el-
ements, and the trace stability by counting the average number of trace elements created
and deleted during change propagation after a single insertion/deletion. These measures
are independent of the specifics of the hardware as well as the specifics of the data struc-
tures used for change propagation—they only depend on the abstract representation of the
trace. They are, however, specific to the particular self-adjusting program and the class of
input changes considered. As an example, we consider here sorting with integers, specif-
ically hsort-int, with traceable and modref-based priority queues, and a self-adjusting
implementation of quicksort.

Figure 7.5 (leftmost) shows the trace size for traceable heapsort as the input size in-
creases. Regression analysis shows a perfect fit with 10n + 12 (n is the input size), pro-
viding strong evidence that the trace size of traceable heapsort is O(n). This is consistent
with a simple analytical reasoning on traces: since we record dependencies at the level of

142

priority-queue operations and since heap-sort performs linear number of such operations,
the trace has linear size.

Figure 7.5 (center) shows the trace size of hsort-int using both traceable and modref-
based priority queues normalized to the trace size of the traceable heapsort. The figure
suggests that the traces of traceable heapsort are by a factor of Θ(log n) smaller than those
of the modref-based. This explains why traceable heapsort has a significantly smaller
memory footprint than the modref-based counterpart.

Figure 7.5 (right) shows our measurements of average trace difference on a vertical
log scale for a single insertion/deletion. Trace difference is constant for traceable heap-
sort, because a single insertion/deletion requires inserting/deleting a single priority queue
operation from the trace. The modref-based implementation heapsort appears to have
super-logarithmically larger trace difference. The reason for this is the internal compar-
isons traced by the modref-based priority queues. This finding explains the difference in
the runtime performance between the two implementations of heapsort.

Figure 7.5 also compares the traceable heapsort to our self-adjusting quicksort imple-
mentation, which, until now, has been the most efficient self-adjusting sorter. Traceable
heapsort appears faster by at least a moderate constant factor.

7.4 Cost Semantics with In-Order Memoization

We consider several examples to show how trace distance can be used to analyze the
sensitivity of programs to small changes in their input. We say that a program is O(f(n))-
sensitive or O(f(n))-stable for an input change if the distance between the traces of that
program is O(f(n)) for inputs related by that change. In our analysis, we consider two
kinds of changes: insertions/deletions that relate lists that differ by the existence of an
element (e.g., [1,3] and [1,2,3]) and replacements that relate inputs that differ by
the value of one element (e.g., [1,2,3] and [1,7,3]). When convenient, we visualize
traces as derivations and analyze their relative distance under a replacement.

In our analysis, we consider two kinds of bounds: upper bounds and lower bounds. Our
upper bounds state that the distance between the traces of a program with inputs related by
some change can be asymptotically bounded by some function of the input size under the
assumption that locations allocated in the computation (or mentioned in the trace) can be
chosen to match nicely. Without the ability to match locations, it is not possible to prove
interesting upper bounds, because two runs of the program can differ by as much as the
size of the traces if their locations are chosen from disjoint sets. An implementation can

143

often match locations, sometimes with programmer guidance. Our lower bounds state that
the distance between traces of a program with inputs related by some change cannot be
asymptotically smaller than a function of input size regardless of how we choose locations.
Such lower bounds suggest but do not prove a lower bound on the running time for change-
propagation.

Our analyses fit into one of the following patterns. Sometimes, we start with two
concrete inputs and show a bound on the distance between traces with these inputs. We
then generalize this bound to arbitrary inputs using the identity and substitution theorems
(Theorems 20 and 22). Other times, using the identity and the substitution theorems, we
write a recursive relation for the distance between the traces of the program with inputs
related by some change, and solve this relation to establish the bound. When analyzing
our examples and using the identity and the substitution theorems, we ignore contexts,
because, as noted in Chapter 3, they are not needed for analysis. We use the distance
and the composition theorems in the informal style of traditional algorithmic analysis,
because we have no meta-logical framework for reasoning about asymptotic properties of
self-adjusting programs (Section 8.2).

Figure 7.7 shows the code for map, list reduction, and merge sort. The list reduce
and merge sort implementations use several helper functions, whose code we omit for
brevity. The lenLT $ (l,i) function returns a modref containing true iff the length
of the list l is less than the integer i. The partition function evenly splits a list into
two and merge combines two sorted lists. All of these functions are O(1)-sensitive to
replacements on average (for merge, we need to average over all permutations of the
input to obtain this bound). To focus on the main ideas, we omit the analysis of these
utility functions here, which are similar to that of the map function discussed below.

144

datatype ’a cell = nil | :: of ’a * ’a list
withtype ’a list = ’a cell modref

mfun mapA l =
case get $ l of

nil => put $ nil
| h::t =>

let val t’ = mapA $ t
in put $ ((i2c h)::t’) end

afun reduce f id l =
let mfun red r l =

case get $ l of
nil => put $ r

| h::t => red (f(h,r)) $ t
in red id $ l end

afun reducePair f id l =
let mfun comp l =

case get $ l of
nil => put $ nil

| a::t => case get $ t of
nil => put $ (a::put $ nil)

| b::u => put $ (f(a,b)::(comp $ u))

mfun rec l =
if get $ (lenLT $ (l,2))
then
case get $ l of
nil => id

| h:: => h
else rec $ (comp $ l)

in rec l end

mfun msort l =
if get $ (lenLT $ (l,2)) then l
else let val (a,b) = partition l

val sa = msort a
val sb = msort b

in merge (sa,sb) end

mfun filter f l =
case get $ l of
nil => put $ nil

| h::t => if (f h) then h::(filter f $ t)
else filter f $ t

Figure 7.7: Code for the examples.

145

T
0
	
T

0
=

0
` b

p
u
t
←

b
::`
c
·`
a
p
u
t
←

a
::`
b
�
` a

p
u
t
←

a
::`
b

=
〈2
,1
〉

M
` 3
⇓`
c
(T

0
)·`

b
p
u
t
←

b
::`
c
·`
a
p
u
t
←

a
::`
b
�
M
` 3
⇓`
c
(T

0
)·`

a
p
u
t
←

a
::`
c

=
〈3
,2
〉

` 2
g
e
t
→

2
::`

3
·2
⇓
b
·M
` 3
⇓`
c
(T

0
)·`

b
p
u
t
←

b
::`
c
·`
a
p
u
t
←

a
::`
b
�
M
` 3
⇓`
c
(T

0
)·`

a
p
u
t
←

a
::`
c

=
〈5
,2
〉

M
` 2
⇓`
b
(`

2
g
e
t
→

2
::`

3
·2
⇓
b
·M
` 3
⇓`
c
(T

0
)·`

b
p
u
t
←

b
::`
c
)·`

a
p
u
t
←

a
::`
b
�
M
` 3
⇓`
c
(T

0
)·`

a
p
u
t
←

a
::`
c

=
〈7
,3
〉

` 1
g
e
t
→

1
::`

2
·1
⇓
a
·M
` 2
⇓`
b
(`

2
g
e
t
→

2
::`

3
·2
⇓
b
·M
` 3
⇓`
c
(T

0
)·`

b
p
u
t
←

b
::`
c
)·`

a
p
u
t
←

a
::`
b
	
` 1

g
e
t
→

1
::`

3
·1
⇓
a
·M
` 3
⇓`
c
(T

0
)·`

a
p
u
t
←

a
::`
c

=
〈8
,4
〉

M
` 1
⇓`
a
(`

1
g
e
t
→

1
::`

2
·1
⇓
a
·M
` 2
⇓`
b
(`

2
g
e
t
→

2
::`

3
·2
⇓
b
·M
` 3
⇓`
c
(T

0
)·`

b
p
u
t
←

b
::`
c
)·`

a
p
u
t
←

a
::`
b
)
�
M
` 1
⇓`
a
(`

1
g
e
t
→

1
::`

3
·1
⇓
a
·M
` 3
⇓`
c
(T

0
)·`

a
p
u
t
←

a
::`
c
)

=
〈9
,5
〉

Fi
gu

re
7.

8:
Tr

ac
e

di
st

an
ce

be
tw

ee
n
m
a
p
A

$
[
1
,
2
,
3
]

an
d
m
a
p
A

$
[
1
,
3
]

.

146

7.4.1 Map

We analyze the sensitivity of the mapA—for mapping a list of integers to a list of
characters—to an insertion/deletion more precisely by using trace distance. Figure 7.8
shows the derivation of the trace distance for mapA with inputs [1,2,3] and [1,3].
We consider derivations where the input locations are `1, `2, `3, `4 and the output loca-
tions are `a, `b, `c, `n. In the derivations we use the notation M`⇓`

′
(T) as a shorthand for

the memoization action MmapA$`⇓`′(T). Similarly we write x ⇓ y as a shorthand for the
memoization action Mi2c$x⇓y() of the function i2c mapping integer x to letter y, whose
subtrace (body) we leave unspecified and assume to be of length constant (it contributes
one to the distance). We define the tail trace T0 common to both executions as:

`3
get→ 3 :: `4·3⇓c·M`4⇓`n(`4

get→ nil·`n
put← nil)·`c

put← c :: `d.

When deriving the distance, we combine consecutive applications of the same rule and use
the fact that the synchronization distance between a trace and itself is 〈0, 0〉.

Having derived a constant bound for this example, we can generalize the result to
obtain an asymptotic bound for a change in one element in the middle of an arbitrary list.
Consider the traces T1 and T2 for mapA $ L1 and mapA $ L2 where L1 is [x] and L2

is nil. The distance between them is trivially constant for any x. We will now use the
substitution theorem to generalize this result to arbitrary lists by showing how to extend
the inputs lists with identical prefixes and suffixes without affecting the constant bound.

We consider extending the input with the same suffix. We start by replacing each of
the sub-traces of the form M ⇓ () for the rightmost call to mapA in T1 and T2 with a hole
to obtain the trace contexts T1 and T2. Let L3 be any list and let T3 be the trace for mapA
$ L3. Note that the traces T1[T3] and T2[T3] are the traces for mapA $ (L1@L3) and
mapA $ (L2@L3). By the identity theorem, the distance between T3 and itself is 〈0, 0〉.
Since T3 starts with memoization action of the form M`i⇓`α(. . .), we can apply the sub-
stitution theorem, so the distance between T1[T3] and T2[T3] is equal to the distance be-
tween T1[M

`i⇓`α(2)] and T3[M
`i⇓`α(2)], which is constant. Thus, we are able to append

any suffix to L1 and L2 without increasing their distance.

Symmetrically, we can extend these lists with the same prefix. To see this, let L0 be a
list and consider its trace T0 with mapA. Now define the trace context T0 as the context
obtained by replacing the rightmost sub-trace in T0 of the form M ⇓ () with a hole. Now,
substitute into this trace the traces T1[T3] and T2[T3] (i.e., T0[T1[T3]] and T0[T2[T3]]).
By the identity and the substitution theorems, the distance is equal to distance between of
T1[T3] and T2[T3], which is constant.

147

Thus, we can generalize concrete examples to other lists by prepending and appending
arbitrary lists, essentially obtaining any two lists related by an insertion/deletion. We
conclude that mapA is constant sensitive for an insertion into/deletion from its input.

7.4.2 Reduce

The reduce function reduces a list to a value by applying a given binary operator with
a specified identity element to the elements of the list. The standard accumulator-based
implementation,

reduce: (’a * ’a -> ’a) -> ’a -> ’a list -> ’a modref

shown in Figure 7.7, is not amenable to self-adjusting computation, because the distance
can be as large as linear. To see this, note that all intermediate updates of the accumulator
depend on the previously-seen elements. Thus replacing the first element will prevent all
derivation steps from matching, causing the distance to be linear in the size of the input
(in the worst case).

Figure 7.7 shows another implementation for list-reduce, called reducePair. This
implementation applies the function comp repeatedly until the list is reduced to contain
at most one element. Function comp pairs the elements of the input list from left to right
and applies f to each pair reducing the size of the input list by half. Thus, comp is called
a logarithmic number of times. Using the shorthand chk$` ⇓ v for derivations of the
form lenLT$` ⇓ b·b get→ v, the derivations for reducePair can be represented with the
following derivation context.

chk$` ⇓ false
comp$`⇓`1h rec$`1⇓r1h

rec$` ⇓ r1
reducePair$(f, id, `) ⇓ r1

To analyze the sensitivity of reducePair for a replacement operation, consider eval-
uating reducePair with two lists related by a replacement. The recursive case for the
derivations both fit the derivation context given above. Note that the derivations for comp
are related by a replacement. Since a replacement in the input causes the output of comp
to change by a replacement as well, the recursive calls to rec are related by a replacement
as well. Furthermore, since the derivation for comp and rec both start with memoizing
functions, we can apply the substitution theorem assuming that the comp returns its output

148

in the same location. More precisely, we can write the sensitivity of rec to a replacement
for an input size of n as:

∆rec(n) =

{
∆rec(n/2) + ∆comp(n/2) if n > 1

1 otherwise

Since comp uses one element of the input to produce one element of the output, it
is relatively easy to show that is is O(1)-sensitive to replacement when f is O(1)—
i.e., ∆comp(m) ∈ O(1) for any m. By straightforward arithmetic, we conclude
that ∆rec(n) ∈ O(log n). Since reducePair simply calls rec, this implies that
reducePair has logarithmic sensitivity to a replacement.

7.4.3 Merge Sort

We analyze the sensitivity of the merge sort algorithm to replacement operations. The
recursive case for the derivations of msort with inputs that differ in one element, fit the
following derivation context.

chk(`) ⇓ false
partition$`⇓(`a,`b)h msort$`a⇓`ch msort$`b⇓`dh merge$(`c,`d)⇓`′h

ms$(`) ⇓ `′

The derivation starts with a check for the length of the list being greater than one. In the
recursive case, the list has more than one element so the lenLT function returns false.
Thus, we partition the input lists into two lists `a and `b of half the length, sort them
to obtain `c and `d, and merge the sorted lists. Since both evaluations can be derived from
this context, the distance between the derivations is the distance between the derivations
substituted for the holes in the context.

Consider the derivations substituted for each hole. Since lenLT and part are called
with the input, the derivations for lenLT$`1 (and part$`1) are related by replacement.
As a result, one of `a or `b are also related by replacement. Thus only one of the deriva-
tions ms$`a or ms$`b are related by replacement and the other pair is identical. Conse-
quently mg$(`c, `d) derivations are related by replacement. Since all contexts belong to
memoized function calls, we can apply the substitution theorem by assuming that all re-
lated and identical functions calls in both evaluations return their results in the same loca-
tions. Thus, we can write the sensitivity of msort as ∆msort(n) = 2∆msort(n/2) +
∆partition(n) + ∆merge(n). It is easy to show that partition and lenLT func-
tions are O(1) sensitive to replacements. Similarly, we can show that merge is O(1)

149

sensitive to replacements on average, if we take the average over all permutations of the
input list. Thus, we obtain

∆msort(n) =

{
∆msort(n/2) + 1 if n > 1
1 otherwise

This recurrence trivially is bounded by 1+4c log n, so we conclude that msort isO(log n)-
sensitive to replacement operations.

7.4.4 Filter

As an example of another program that is not naturally stable we consider a standard
list filter function filter, whose code is shown in Figure 7.7, for which we prove that
there are inputs whose traces are separated by a linear distance in the size of the inputs
regardless of the choice of locations. In other words, we will prove a lower bound for the
sensitivity of filter. The reason for which filter is not stable is similar to that of
the conventional implementation of reduce (Subsection 7.4.2), but more subtle because
it is primarily determined by the choice of locations rather than the computation being
performed.

To see why filter can be highly sensitive, it suffices to consider a specialization,
which we call filter0, that only keeps the nonzero elements. For example, with input
lists L = [0,0,0] and L′ = [0,0,1], filter0 returns nil and [1], respectively.
Since we are interested in proving a lower bound only, we can summarize traces by in-
cluding function calls and put operations only—the omitted parts of the trace will affect
the bound by a constant factor assuming that the filtering functions takes constant time. In
particular, using the shorthand M`⇓`

′
(T) for the memoization action Mfilter0$`⇓`′(T), the

traces for filter with L and L′ are respectively:

M`1⇓`n(M`2⇓`n(M`3⇓`n(M`4⇓`n(`n
put← nil)))), and

M`1⇓`a(M`2⇓`a(M`3⇓`a(M`4⇓`n(`n
put← nil)·`a

put← 1::`n))).

Note that the distance between these two traces is greater than 3—the length of the input—
because in the second trace three memoization actions return the location `a holding [1],
whereas in the first trace `n is returned. Since these locations are different, the memoiza-
tion actions do not match and contribute to the distance. This example does not lead to a
lower bound, however, because we can give two traces for the considered inputs for which
the distance is one, e.g.,:

M`1⇓`n(M`2⇓`n(M`3⇓`n(M`4⇓`n(`n
put← nil)))), and

150

M`1⇓`n(M`2⇓`n(M`3⇓`n(M`4⇓`
′
n(`′n

put← nil)·`n
put← 1::`′n))).

The idea is to choose the locations in such a way that the traces overlap maximally. It is
not difficult to generalize this example for arbitrary lists of the form [0,. . .,0,0] and
[0,. . .,0,1].

We obtain the worst-case inputs by modifying this example to prevent location choices
from reducing the distance arbitrarily. Consider parameterized lists of the form L1(n) =
[(0)n,0,(0)n] and L2(n) = [(0)n,1,(0)n], where (0)n denotes n repeated 0’s.
We will show that the distance between traces for any two such inputs is at least n+ 1 and
thus linear in the size of the input, 2n + 1. For example, the traces for L1(1)= [0,0,0]
and L2(1) = [0,1,0] have the form:

M`1⇓`n(M`2⇓`n(M`3⇓`n(M`4⇓`n(`n
put← nil)))), and

M`1⇓`a(M`2⇓`a(M`3⇓`n(M`4⇓`n(`n
put← nil))·`a

put← 1::`n)).

These traces have distance greater than 2. Regardless of how we change the locations
this distance will not decrease because the return locations of n memoization actions be-
fore and after the occurrence of 1 will have to differ. Thus, regardless of which location
the other trace chooses to store the empty list, at least half the calls will have a differing
location. We can generalize this example with n = 3 to arbitrary lists by using our iden-
tity and substitution theorems as we did for the mapA example. Thus, we conclude that
filter is Ω(n)-sensitive to a replacement.

This example implies that a self-adjusting computation can do poorly with this imple-
mentation of filter. As with reduce, however, we can give a stable implementation
of filter by using a compress function similar to comp of reducePair that applies
the filter function to half of the remaining unfiltered elements. We can show that this
implementation of filter is O(log n) sensitive under suitable choice of locations.

7.5 Cost Semantics with Out-of-Order Memoization

We give several examples where a simple change to the input causes a reordering in the
computation. For these applications, in-order computation reuse is asymptotically no more
effective than re-computing from scratch but out-of-order reuse enables efficient change-
propagation.

We consider a purely functional implementation of quicksort, an imperative depth-
first search algorithm, and an incremental parser and evaluator for a lazy language. In

151

m

l1

L1

l2

L2

lk

Lk

g1

g2

gk

Gk

G2

G1

l1

L1

g1

l2

L2

g2

lk

Lk

gk

Gk

G2

G1

Figure 7.9: Deleting the keym swaps the order in which quicksort performs a large number
of subcomputations shown with triangles.

the various examples a non-invasive change can cause reordering in the computation. We
compare how in-order and out-of-order computation reuse affect change-propagation in
each case.

7.5.1 Quicksort

Consider a purely functional implementation of the standard, deterministic quicksort al-
gorithm. The algorithm uses the first element p of the input I as pivot to partition I into
sublists I< and I>, consisting of the keys less than and greater than p respectively. It then
sorts I> followed by I< recursively supplying the sorted greater-than sublist an accumula-
tor to each recursive call, which returns the accumulator when the input list is empty.

As an example how a single insertion/deletion of a key can invert computation order,
consider the partially specified input lists

[m, . . . , l1, . . . , g1, . . . , l2, . . . , g2, . . . , lk, . . . , gk, . . .]
and [. . . , l1, . . . , g1, . . . , l2, . . . , g2, . . . , lk, . . . , gk, . . .],

152

that differ by the key m only. Assume that the elements are ordered as:

L1 < l1 < · · · < Lk < lk < m < gk < Gk < · · · < g1 < G1

Figure 7.9 illustrates the executions of the quicksort algorithm with both inputs. Each
circle shows a recursive call and is labeled with the pivot for that call. Each triangle,
represents an unspecified part of the computation; triangles labeled with the same letter
represent the same computation. Note that the trees look similar: the second tree can be
obtained from the first by “zipping” the leftmost spine of the right subtree of the root and
the rightmost spine of the left subtree of the root.

To see the problem with in-order reuse, let’s consider the traces, which can be viewed
as a pre-order, right-to-left traversal of the trees shown in Figure 7.9 that visits the right
subtree before the left:

m · g1 · G1 · g2 · G2 · · · · gk · Gk · l1 · l2 · · · lk · Lk · · · L2 · L1

and
l1 · g1 · G1 · l2 · g2 · G2 · · · · lk · gk · Gk · Lk · · · L2 · L1

Since l1 is visited earlier in the second run, greedy in-order reuse discards the interven-
ing computation (g1 ·G1 · · · gk ·Gk) which must then be recomputed. Thus in-order reuse
can make trace distance O(n log n), which asymptotically the same as recomputing from
scratch (e.g., when the two subtree of the root are (approximately) the same size). Under
out-of-order reuse, the initial trace can be reordered into the second trace by decomposing
it into subtrees of computation (L1, L2, etc.) which can be reused in their entirety and
only performing the computation for the nodes (l1, l2, etc.) afresh. Therefore the distance
between the two runs is linear in the height of the tree which is a O(log n) speedup on
average over all insertions and deletions. Some bounds can be achieved using in-order
computation reuse by using extra annotations to prevent reuse. This requires a relatively
detailed understanding of algorithmic properties of quicksort.

7.5.2 Depth-First Search on Graphs

Depth-first search (DFS) is a fundamental graph algorithm that constitutes the substep of
many other algorithms (e.g., topological sorting). Starting at a specified node, depth-first
search visits a node u of the graph by visiting the targets of the outgoing edges of u,
backtracking after all outgoing edges are visited. An implementation of DFS typically
maintains a visited flag set when a node is first visited. As an example consider the graph
shown in Figure 7.10 consisting of a root a linked with two connected components (sub-
graphs)B and C; here edges are ordered from left to right. Starting at root a, DFS visits b1

153

a

b1

bn

B

c1

cm

C

Figure 7.10: Deleting edge (a, b1) swaps the order in which a DFS visits components B
and C.

and the component B, followed by c1 and the component C. Before completing C, DFS
visits the edge (cm, b1) backtracking to a after finding b1 is visited because its visited flag
is set.

Consider now deleting the edge (a, b1) and performing a DFS. DFS will now visit c1
and the component C, then take the edge (cm, b1) and find b1 is unvisited this time. It
will then visit b1 and the component B, then return to c1 and a. We can visualize the self-
adjusting-computation traces for DFS on the graph before and after the deletion of (a, b1)
respectively as follows:

visit(a) · visit(b1) · · · visit(bn) · visit(c1) · · · visit(cm)

and

visit(a) · visit(c1) · · · visit(cm) · visit(b1) · · · visit(bn)

Here the boxed subtraces show the subtraces for components B and C respectively, which
appear in opposite order in the two traces. The edit distance between two traces can
therefore be asymptotically the same as the size of the whole trace. Since reordering the
two subtraces easily yields one trace from the other, under out-of-order reuse their distance
reduces to O(1) since change-propagation only has to account for the reordering.

154

x ⇓ n ⇓ v y ⇓ m ⇓ u x ⇓ v x ⇓ v

x ⇓ m ⇓ u y ⇓ n ⇓ v x ⇓ u x ⇓ u

y ⇓ n ⇓ v x ⇓ m ⇓ u x ⇓ u

force force cache

cache

cache

cache

Figure 7.11: Evaluation with (i,x,y) bound to (true,n,m) (top), (true,m,n)
(middle), (false,m,n) (bottom).

7.5.3 Incremental Parsing and Evaluation

Interactive program development can be done through incremental parsing and evaluation
of a source program. Self-adjusting computation is a natural way to write an incremental
parser and evaluator. A packrat parser is a top-down parser that uses laziness to cache
intermediate parses and avoid unnecessary work [Ford, 2002], which can be implemented
using the suspensions for laziness of the SrcLazy language (see Chapter 3). Moreover,
the resulting abstract syntax tree from the parser can be fed to an evaluator. Reordering
fragments of code, however, is problematic for incremental parsing and evaluation because
in-order memoization prevents reuse of the work done on both blocks of rearranged code,
and incremental evaluation of a lazy (call-by-need) language can be inefficient because of
the order of evaluation is sensitive to the surrounding context.

Consider parsing and evaluating the following program, assuming short-circuiting eval-
uation of Boolean expressions and lazy evaluation of the bound variables. Note that x and
y are bound to expressions n and m, and their order of evaluation depends on i.

let val (i,x,y) = (true,n,m)
in (i andalso x) ... y ... x ... x end

Packrat parsing creates a trace traversing the string in left-to-right order and evaluation
traverses the corresponding abstract syntax tree. Figure 7.11 compares three runs of the
evaluator with different bindings for (i,x,y) and shows that the order of computation

155

depends on the value of the inputs. Under the initial binding (true,n,m), x first eval-
uates n to v, next y evaluates m to u, and finally, due to the lazy evaluation semantics,
the second and third mentions of x use the cached result v (indicated by the dashed arrow
back to the first evaluation).

Swapping the expressions n and m forces the re-parsing of the expression (true,m,n).
Under in-order reuse, the parse and evaluation of m may be reused at the expense of dis-
carding the parse and evaluation of n, which must then be re-computed. Thus change-
propagation takes time at least proportional to re-parsing and re-evaluating the expression
m. Under out-of-order reuse, the parsing and evaluation of m and n can be swapped, so
the trace distance between the two runs is constant and change-propagation takes O(1).
Under both in-order and out-of-order reuse, the second and third mentions of x must be
updated with the new cached result u, and the rest of the evaluation may also need to be
updated according to the new values of x and y.

Changing the binding of i from true to false doesn’t cause a reordering that affects
the parser, but the evaluation is affected due to short-circuiting evaluation of Booleans
and laziness. Since the andalso short-circuits evaluation, the first mention of x isn’t
demanded and the evaluation of n and m is swapped relative to the previous run. Therefore
y evaluates m to u before the second mention of x evaluates n to v; the third mention of
x still uses the cached value of u but now references the evaluation of the second (instead
of the first) mention of x. In-order reuse would discard the evaluation of m to reuse the
previous evaluation of n, and thus the distance between the two runs as well as the time for
update would be proportional to the evaluation to m. On the other hand, out-of-order reuse
allows reusing both evaluations and update only needs to deal with the possibly different
result of evaluating i andalso x.

156

Chapter 8

Conclusion

In this chapter, we discuss related work and directions for future work.

The problem of having computation respond to input changes has been studied in
the algorithms community under the name of dynamic and kinetic algorithms and in the
programming languages community under the name of incremental computation. Self-
adjusting computation generalizes and extends these earlier approaches to improve their
effectiveness.

8.1 Related Work

8.1.1 Dynamic and Kinetic Algorithms and Data Structures

Algorithms researchers devise dynamic and kinetic algorithms and data structures with
an explicit mechanism for updating the computation optimized for particular classes of
small discrete or continuous changes. Dynamic algorithms and data structures have been
developed for trees [Sleator and Tarjan, 1985], graphs [Eppstein et al., 1999], and com-
putational geometry applications [Chiang and Tamassia, 1992, Guibas and Russel, 2004].
For motion simulation, kinetic algorithms and data structures maintain some property of
geometric objects undergoing continuous motion by tracking the discrete events that affect
the property [Agarwal et al., 2002, Guibas, 2004, Basch et al., 1999, Russel et al., 2007,
Russel, 2007].

Since discrete or continuous changes to data often cause small changes to the output in
these applications, it is often possible to update the computation and output faster—often

157

asymptotically—than re-computing from scratch. By taking advantage of the structure
of the particular problem being considered, the algorithmic approach facilitates designing
efficient, often optimal algorithms.

Designing and analyzing these algorithms, however, can be quite difficult even for
problems that are simple in the absence of data changes, such as many of the simple graph
and computational geometry algorithms. Since these algorithms are specialized to support
a particular class of changes, an algorithm may be efficient for some changes but not
others, and difficult to adapt to a slightly different problem or compose into larger a larger
algorithm. Furthermore, due to their inherent complexity, it can be difficult to implement
and use such algorithms in practice. Kinetic algorithms pose additional implementation
challenges due to difficulties with motion modeling and handling of numerical errors.

8.1.2 Incremental Computation

Programming languages researchers have developed general-purpose compile- and run-
time techniques to transform static programs into an incremental versions that can respond
to input changes [Ramalingam and Reps, 1993]. The common idea is to maintain informa-
tion about the computation that can be used to efficiently update the output after changes
to the input. The most effective incremental computation techniques are based on depen-
dence graphs [Demers et al., 1981], memoization [Pugh and Teitelbaum, 1989], and partial
evaluation [Field and Teitelbaum, 1990].

Dependence Graphs

Dependence graph techniques record the dependencies between data in a computation,
so that a change-propagation algorithm can update the computation when the input is
changed. Demers et al. [1981] introduced static dependence graphs for incremental eval-
uation of attribute grammars, and Reps [1982] showed an optimal change-propagation
algorithm. Hoover [1987] generalized the approach beyond the domain of attribute gram-
mars. Yellin and Strom’s INC language [Yellin and Strom, 1991] applies dependence
graph techniques to a purely functional language with bags but without recursion. The
fixed nature of static dependence graphs prevents the change-propagation algorithm from
updating the dependence structure, thus significantly restricting the class of computations
that can be incrementalized.

158

Memoization

Memoization (a.k.a. function caching) [Bellman, 1957, McCarthy, 1963, Michie, 1968]
is a classical optimization technique for pure programs to cache the result of a subcom-
putation (e.g., a function call) that may be performed multiple times during a single run.
When a subcomputation is invoked for the first time, its result is recorded; thereafter when
the same subcomputation is invoked, the recorded result is immediately available without
having to execute the body of the subcomputation. This technique is sometimes coupled
with a lookup table that maps keys to cached answers

Pugh and Teitelbaum [Pugh, 1988, Pugh and Teitelbaum, 1989] were the first to ap-
ply memoization to incremental computation. Since their work, others have investigated
applications of various forms of memoization to incremental computation [Abadi et al.,
1996, Liu et al., 1998, Heydon et al., 2000, Acar et al., 2003].

Memoization can improve the efficiency of incremental computation when executions
of a program with similar inputs perform similar function calls. Unfortunately, a small
input change can cause some function call to receive modified arguments, which in turn
causes all ancestors in the call tree to be re-executed thus preventing their reuse via mem-
oization.

In self-adjusting computation, computation memoization uses the trace of a program’s
execution to identify and reuse of work across runs subject to the restriction that a trace
fragment is reused at most once during change-propagation. Since changeable data is ex-
plicitly handled with an indirection through the store, only the computation that is affected
by input changes must be re-executed. Furthermore, SrcLazy suspensions combine the
features of multi-write modrefs and out-of-order computation memoization to provide the
functionality of classical memoization in the context of self-adjusting computation.

Partial Evaluation

Sundaresh and Hudak [Sundaresh and Hudak, 1991] use partial evaluation to optimize in-
cremental evaluation. This approach requires the user to specify a subset of the inputs to
be fixed and the program is then partially evaluated with respect to the fixed inputs. An
incremental evaluation can then process input changes faster by evaluating the remainder
of the specialized program. The main limitation of this approach is that it only allows
input changes within the predetermined subset. Field and Teitelbaum [Field, 1991, Field
and Teitelbaum, 1990] present techniques for incremental computation in the context of
lambda calculus. Their approach is similar to Hudak and Sundaresh’s, but they present for-
mal reduction systems that optimally use partially evaluated results. The main limitation

159

of the partial evaluation approach is that input changes are restricted to a predetermined
partition.

8.1.3 Self-Adjusting Computation

Adaptivity and Computation Memoization. Self-adjusting computation aims to bridge
the gap between algorithmic approaches—which tend to be difficult to use in practice—
and programming language techniques—which tend to be inefficient—with a general-
purpose language and a generic change-propagation mechanism to respond to input changes
efficiently.

Acar, Blelloch, and Harper [Acar et al., 2006c] proposed Adaptive Functional Pro-
gramming (AFP) with the modal language AFL to stratify self-adjusting programs accord-
ing to whether the data and computation are stable or changeable—i.e., whether they are
affected by input changes. That work introduced dynamic dependence graphs (DDGs) as a
means for adaptivity to represent data and control dependencies. The execution of an AFL
program builds a DDG of the computation. After the inputs change, a change-propagation
algorithm updates both the structure of the DDG—by inserting and deleting dependencies
as necessary—and the output by re-executing the parts of the computation affected by the
changes as necessary. Change-propagating and AFL program conservatively deletes the
parts of the DDG that might have a control dependence on changed data, and constructs re-
placements by executing code as necessary. This can cause change-propagation to perform
more work than optimal.

Separate work by Acar, Blelloch, and Harper [Acar et al., 2003] proposed selective
memoization with the modal language MFL to identify data and control dependencies the
input and result of memoizing functions. Subsequent work by Acar et al. [Acar, 2005,
Acar et al., 2009] combined the complementary features of adaptivity and computation
memoization in the modal language SLf for self-adjusting computation. That approach
employs memoized DDGs to identify data and control dependencies as well as opportuni-
ties for reusing subgraphs of deleted DDGs. The dynamic semantics combines a standard
evaluation relation for from-scratch runs as well as a change-propagation relation for up-
dating a previous run to different inputs. Adaptivity re-executes the parts of the program
affected by input changes while computation memoization reuses the unaffected parts of
a previous run.

Previous Languages. Self-adjusting computation has been realized through several for-
mal languages with corresponding implementations. The modal languages AFL, MFL,

160

and SLf were implemented as Standard ML libraries, although the modal type discipline
was only simulated through a monadic interface with explicit destination-passing. The
monadic discipline required all changeable data to be threaded through the monad and
made the scope of reads explicit, thus identifying data and control dependencies. The li-
brary imposed certain proper-usage guidelines such as ending a sequence of reads with a
write, only writing once into a destination, and not having any reads after a write. Those
restrictions, however, could only be enforced manually without changing the Standard
ML’s type system to support the modal type discipline.

Carlsson [Carlsson, 2002] recast the modal language as a monadic interface in Haskell
that statically enforced the proper-usage guidelines of the SML library for AFL. By using
monads, the Haskell library ensures some correct-usage properties that the AFP library
did not enforce. A later version of the SML library for SLf applied a techniques similar
to Carlsson’s to ensure safe usage of certain primitives [Acar et al., 2006a]. Safe usage of
memoization primitives, however, could not be enforced statically in the library setting.

The proposed monadic approaches required the programmer to substantially rewrite
the source program to obtain a self-adjusting version. Furthermore, they could not guar-
antee safety of memoization primitives, which are crucial to the effectiveness of the ap-
proach, making it difficult to write correct self-adjusting programs. Compilation support
was thus suggested as necessary for scaling to large programs and for enforcing the nu-
merous invariants required for self-adjusting computation to work correctly [Acar et al.,
2006a].

Our Languages. Our work [Ley-Wild et al., 2008b] proposed a considerably simpler
and safe interface that offers a more natural programming model for self-adjusting com-
putation. An ordinary program can be instrumented with simple annotations in the direct
style Src language with first-class modifiable references and memoizing functions. These
primitives can be inserted anywhere in the code subject to some simple typing constraints,
which can be statically checked using simple extensions to a ML-style type system.

Whereas the monadic approach included a lift primitive that conflated keyed allo-
cation from memoization, the Src primitives provide orthogonal means for adaptivity and
memoization. Since modifiable references are ML-style references, their allocation and
initialization are combined, which avoids the safety problems of the destination-passing
discipline. Since modrefs identify changeable data directly, programs don’t need to be
explicitly stratified into stable and changeable modes. The compiler-generated equality
and hashing functions guarantee the safety of memoization. Thus well-typed programs
are guaranteed to respond to changes correctly via change-propagation.

161

The adaptive continuation-passing style (ACPS) transformation compiles Src pro-
grams into equivalent self-adjusting versions in the CPS Tgt language, which subsumes
the need to rewrite a program into a modal or monadic language The translation identifies
sufficient information about the program to employ the CPS primitives inspired by the
monadic primitives. In particular, the translation uses continuations as a coarse approx-
imation to programmer-supplied fine-grain dependencies in the modal/monadic setting.
Since modref operations are in CPS, a write can explicitly reuse an allocation from a
previous run during change-propagation to maximize computation reuse. To ensure that
change-propagation remains efficient with the compiler-inferred dependencies, the trans-
lation generates memoizing CPS functions that may be reused even when their continua-
tions differ. This is achieved by memoizing continuations and by treating continuations as
changeable data by threading them through the store in modrefs indexed by the function’s
arguments.

The ∆ML language and compiler shows that the proposal is realistic by extending
the SML language and the MLton optimizing compiler. The experimental evaluation of
∆ML indicates that the approach is consistent with the previous proposal based on manual
re-writing in terms of practical performance and asymptotic complexity.

Laziness and Out-of-Order Computation Memoization. Existing designs for self-
adjusting computation focus on strict languages with call-by-value functions that eagerly
evaluate function arguments and none of them supported efficient reordering. In non-strict
languages with call-by-name functions use normal-order evaluation to postpone evaluation
of arguments until actually needed. Lazy languages refine call-by-name with call-by-need
functions that delay evaluation of a suspended computation until it is actually needed and
thereafter keep a cached version of the result for subsequent uses in the classical sense
memoization [Michie, 1968]. Although laziness is a standard optimization for non-strict
languages, it can also be added as an orthogonal construct to strict languages, as done in
our SrcLazy language.

Laziness improves the expressivity of a language by giving the user control over the
amount of computation performed and enabling the finite representation of infinite data
structures. Furthermore, it improves performance by avoiding unnecessary computation
of unused values and preventing redundant computation of values that are used multiple
times. Vuillemin [1974] proposed call-by-name evaluation with a delay rule that avoids re-
dundant computation through caching—essentially call-by-need evaluation—and proved
its optimality. Friedman and Wise [1976] designed a LISP evaluator with a lazy list con-
structor that affords fine-grained laziness. The crucial characteristic of their language
is that the cons constructor delays evaluation of its contents until they are needed and

162

thereafter caches their value. A similar LISP language with a lazy cons was studied by
Henderson and Jr. [1976], although they gave a Scott-Strachey semantics. Hughes [1985]
proposed lazy memo-functions that explicitly integrate memoization into a call-by-name
language, considered various applications, and discussed practical implementation issues.
The formal semantics of a call-by-need λ-calculus was formulated by Ariola et al. [1995]
using evaluation contexts, whereas our SrcLazy language explicitly uses state to record the
suspended thunk and cached value.

Although Carlsson [Carlsson, 2002] targets Haskell—a non-strict language with lazy
evaluation—, the use of monads forces the eager evaluation of the self-adjusting com-
putation primitives. Since the first use of a lazy computation depends dynamically and
non-locally on the surrounding program, the ordering of computation in lazy programs
isn’t stable under data changes and therefore laziness is problematic for self-adjusting
computation with in-order memoization. Since previous approaches maintain a time line
with insertions and deletions, they do not work well when swapping the order of opera-
tions. Out-of-order memoization allows large changes in the ordering of computations, and
therefore SrcLazy can provide suspensions with call-by-need behavior in a self-adjusting
language.

Other Languages. Hammer et al. retargeted self-adjusting computation for a low-level
imperative C-like language CEAL. That work extends change-propagation to support effi-
cient garbage collection [Hammer and Acar, 2008] and provides a compiler for C [Ham-
mer et al., 2009].

Consistency of Change-Propagation. The work of Acar et al. on the modal languages
AFL [Acar et al., 2006c], MFL [Acar et al., 2003], and SLf [Acar, 2005] showed the
consistency of change-propagation—i.e., that change-propagation is extensionally equiv-
alent to a from-scratch run. Acar, Blume, and Donham [Acar et al., 2007b] formalized
the consistency of the pure language AML with single-write modrefs and memoization in
Twelf [Pfenning and Schürmann, 1999]. Acar, Ahmed, and Blume [Acar et al., 2008a]
proved the consistency of the monadic language language with multi-write modrefs and
memoization SAIL. In their formulation of the semantics, change-propagation could not
re-allocate locations allocated in a previous run. This limited their proof to show that the
results obtained by change-propagation and evaluation are isomorphic and required using
step-indexed logical relations.

In our formulation of self-adjusting computation, we support arbitrary TDTs as well as
in-order and out-of-order memoization. Our proof of consistency [Ley-Wild et al., 2009]

163

is a straightforward structural induction, which is made possible by formulating change-
propagation as a full replay mechanism that can re-allocate locations. Furthermore, we
prove that the ACPS translation preserves the intensional and extensional semantics from
Src to Tgt.

Applications. Self-adjusting computation has been shown to be effective for a reason-
ably broad range of problems including hardware verification [Santambrogio et al., 2007],
machine learning [Acar et al., 2007c, 2008c], motion simulation [Acar et al., 2006d,
2008b], and other algorithmic problems [Acar et al., 2004, 2005, 2009].

Self-adjusting computation techniques have served to make progress on open problems
in computational geometry: practically efficient motion simulation of convex hulls in three
dimensions [Acar et al., 2008b] and dynamic maintenance of well-spaced point sets [Acar
et al., 2010b].

Shankar and Bodik [Shankar and Bodik, 2007] applied self-adjusting computation
techniques specialized for incremental invariant checking in Java. That work restricts the
control flow of invariant checks to prevent return values from functions calls to affect loop
conditionals or other function calls.

8.1.4 Evaluation

Previous evaluations of self-adjusting computation relied on empirical and algorithmic
analysis techniques. Earlier work [Acar et al., 2004] analyzed the performance of change-
propagation for the tree contraction problem. Most applications of self-adjusting computa-
tion, however, evaluated its effectiveness experimentally [Acar et al., 2005, 2009]. Those
evaluations have experimentally observed that updating a computation is faster than com-
puting from scratch, sometimes with an apparently asymptotic speedup. While empirical
nature of those studies demonstrated the practical advantages of self-adjusting computa-
tion, they do not establish formal results relating the time for update and from-scratch
evaluation.

Cost Semantics. The complexity of the semantics in modal/monadic approaches made it
difficult to reason directly about the effectiveness of self-adjusting computation. Our work
on cost semantics [Ley-Wild et al., 2009] provides a formal theory for reasoning about the
running time of programs and determining how much work must be done to update one
run into another. The semantics produces traces to capture the essential of structure of
the computation consisting of function calls and individual store operations. The user can

164

determine the responsiveness of compiled self-adjusting programs by calculating an edit
distance between traces of source programs, without having to reason about evaluation
contexts or global state. These results are made possible by (1) a compilation mechanism
that can translate ordinary program into a self-adjusting version while preserving its from-
scratch efficiency, and (2) by techniques for matching evaluation contexts appropriately
without exposing them to the user for source-level reasoning.

This work is inspired on previous work [Sands, 1990a, Rosendahl, 1989]. on profil-
ing or cost semantics for reasoning about resource requirements of programs. The idea
of instrumenting evaluations to generate cost information has been particularly important
in high-level languages such as lazy [Sands, 1990a,b, Sansom and Jones, 1995] and par-
allel languages [Blelloch and Greiner, 1995, 1996, Spoonhower et al., 2008] where it is
particularly difficult to relate execution time to the source code. The idea of having a cost
semantics construct a trace resembles the techniques used for reasoning about resource-
consumption in (pure) parallel programs, although we allow store effects and compare
different runs with distance. In the context of incremental computation, we know of no
other work that offers a source-level cost semantics for reasoning about effectiveness of
incremental update mechanisms.

Asymptotics. A common limitation of cost semantics-based approaches to performance
analysis is that they usually only apply to concrete evaluations. We show that this need not
be the case by providing techniques for generalizing the trace distances of concrete evalua-
tions to arbitrary inputs, composing trace distances, and reasoning with trace contexts. For
illustrative purposes, we derive asymptotic bounds for several examples. We expect these
results to lead to a more formal and precise reasoning of effectiveness of self-adjusting
programs as well as profiling tools that can infer concrete and perhaps asymptotic com-
plexity bounds.

8.1.5 Retroactive Data Structures and Traceable Data Types

The initial work on self-adjusting computation provided single-write modrefs to manip-
ulate changeable data in purely functional programs. Subsequent work by Acar, Ahmed,
and Blume [Acar et al., 2008a] extended the semantics to support multi-write modifiable
references in imperative self-adjusting programs. Other work [Acar et al., 2008b] shows
that self-adjusting computation can be effective in simulation of motion in three dimen-
sions, but relies on unsafe modifications to the change-propagation mechanism to support
efficient adaptivity for continuous data. We generalize self-adjusting computation to sup-
port traceable data types as containers for changeable data, which subsume modrefs and

165

provide a safe way to operate on continuously-changing values.

Demaine, Iacono, and Langerman [Demaine et al., 2004] developed retroactive data
structures that maintain a time-ordered history of update operations (but not query opera-
tions) and allow changing (invoking or revoking) the history of operations while making
subsequent operations consistent with the revised history. Since that work did not main-
tain the history of queries, the data structures would only work with update operations that
were oblivious in the sense that they do not depend on earlier queries. Acar, Blelloch,
and Tangwongsan [Acar et al., 2007a] developed non-oblivious retroactive data structures
(a.k.a. traceable data types) that maintain a history of both updates and queries and thus
support update operations that do depend on earlier queries. They designed several data
structures with efficient algorithmic techniques to identify the next inconsistent action fol-
lowing an invocation and revocation.

Traceable Data Types in Self-Adjusting Computation. We support abstract data types
operations in self-adjusting computation by generalizing trace actions to represent high-
level TDT operations instead of individual modref operations. We show how to integrate
the invoke/revoke TDT operations into change-propagation for programs to respond auto-
matically to input changes, while the user has access to the standard data type operations.
Since the number of accesses to an abstract data type can be asymptotically less than the
number of memory accesses in a data structure implementation, our approach can asymp-
totically reduce the number of dependencies to be tracked. For self-adjusting computation,
these techniques result in dramatic time and space improvements. Furthermore, in some
cases the trace can be stable with respect to the data type operations even if it isn’t at the
level of memory cell operations.

FrTime and Flapjax. Cooper and Krishnamurthi [Cooper and Krishnamurthi, 2004,
2006] developed FrTime as an extension of Scheme with dynamic dataflow for writing
interactive programs. In their setting, data can depend on time as a continuously-changing
input and all dependencies are implicitly tracked by signals, which are akin to modrefs
in self-adjusting computation. Any operation that depends on time—i.e., manipulates a
signal—must return the result in a signal to register the dependence. Since automatic
dependence-tracking creates redundant signals to to store intermediate values, in subse-
quent work [Burchett et al., 2007], they propose a static optimization technique to elimi-
nate this redundancy. The Flapjax language [Meyerovich et al., 2009] adapts these ideas
for writing web applications.

By contrast, self-adjusting computation provides primitives for controlling the gran-

166

ularity of dependence-tracking. Both self-adjusting computation and FrTime construct a
dynamic dependence graph and use it to update the computation by a change-propagation
algorithm. Self-adjusting computation represents DDGs using order-maintenance data
structure and updates the computation in topological order. FrTime updates the com-
putation using height information, which complicates the dynamic maintenance of the
DDG and requires the programmer to use explicit delay statements to handle cyclic
dependencies—which arise naturally in their setting. This can also be inefficient because
deleting a DDG node can change the height of all other nodes, requiring linear time in the
size of the DDG.

8.2 Future Work

8.2.1 Self-Adjusting Computation

Out-of-Order Memoization. The Tgt language gives a formal semantics for out-of-
order memoization and the CPA algorithm accounts for handling mutable and immutable
modrefs in the presence of reordering, but the ∆ML implementation only supports in-order
memoization. To make TDTs compatible with out-of-order memoization, the semantics
would have to maintain consistency of multiple trace slices. To support out-of-order mem-
oization in the ∆ML implementation, the order-maintenance time line would have to be
replaced with a version that supports reordering time segments.

Trace Distance for TDTs. The Src and Tgt trace distance only account for the cost of
mutable and immutable modrefs. To account for the cost of TDTs, the semantics would
have to include the cost of invoking and revoking operations as well as finding inversions
(cf. Subsection 6.5.2).

Meta-Logic for Cost Semantics. Our proof system for trace distance applies to concrete
traces and trace contexts, while in our examples we use it to reason schematically over
classes of contexts and input changes. To fully formalize the examples, we would need a
meta-logic that permits quantification over contexts and classes of input changes, and can
express asymptotic bounds. Such a meta-logic could be extended with theorem-proving
capabilities to help automate finding bounds on distance.

167

Garbage Collection. In self-adjusting computation, traces make up a large percentage
of the memory footprint, have a long lifespan, and old parts of the trace can point to
new data. This contravenes the assumptions of generational garbage collectors. Empirical
studies have observed that garbage collection contributes significantly to the degradation
of performance when trace data become large relative to available memory. A special-
ized garbage collector for self-adjusting computation could take advantage of the change-
propagation semantics because it explicitly determines when a trace segment becomes
garbage—i.e., when it’s discarded.

Annotation Inference. The direct style Src primitives provide a more natural program-
ming style than the modal and monadic primitives of previous work, but still require the
programmer to instrument an ordinary program to obtain a self-adjusting version. Heuris-
tics for adaptivity and computation memoization could be used to infer which data should
be marked as changeable and which functions should be memoizing, thus automating the
instrumentation of ordinary programs.

Metalanguage. A self-adjusting program can be regarded as a core-level computation,
while a meta-level host mutator program examines the outputs, changes the inputs, and
drives change-propagation. Existing proposals for self-adjusting computation give the
dynamic semantics in terms of adjusting a previous execution with a different set of inputs
to produce an updated execution. The associated implementations provide separate core-
and meta-level primitives for manipulating data, and the mutator can additionally invoke
change-propagation. Due to the lack of a formal semantics for the mutator, the behavior
and usage guidelines of the mutator’s primitives have only been described informally.

To formally capture the possible interactions between the meta- and core-levels, we
need to develop a formal metalanguage that specifies the behavior of the host mutator
and how it can manipulate changeable data. The design of the metalanguage should be
informed by the restrictions imposed by the implementation, so that the informal proper-
usage guidelines are statically enforced by the metalanguage. In particular, the efficient
implementation of self-adjusting computation allows the mutator to change a self-adjusting
program’s inputs but not any intermediate data created during the run. Moreover, the muta-
tor can inspect the result of a self-adjusting program and use it to determine how to change
inputs. However, due to invariants of the implementation, the mutator cannot hold on to
output data across runs or feed back the output data of one run as the input of a subsequent
run. We believe it is possible to devise a type system that uses permissions to statically
distinguish input and runtime data in order to identify how the mutator can manipulate that
data.

168

8.2.2 Functional Reactive Programming

Functional Reactive Programming (FRP) is a declarative and compositional approach to
describing hybrid continuous- and discrete-time systems. FRP programs are based on a
primitive notion of (continuous) time and functions of time called signals. Signals that are
continuously-varying behaviors or discretely-occurring events. An FRP language usually
provides combinators to build networks of computation nodes that communicate through
signals.

Elliott and Hudak [Elliott and Hudak, 1997] introduced FRP for describing animations,
and it has since been applied to sound synthesis, robotics, and computer vision. The initial
work on FRP [Elliott and Hudak, 1997, Wan and Hudak, 2000] gives a denotational seman-
tics, making it difficult to establish time and space bounds. Elliott discusses some of the
difficulties with providing an efficient implementation for FRP [Elliott, 1998]. Follow-up
work gave an operational semantics for a strict subset of FRP, called Real-Time FRP [Wan
et al., 2001]. Existing implementations typically simulate the evolution in time of an FRP
network by periodically evaluating the entire network relative to the current values of the
input signals. This sampling approach can be inefficient because the current inputs may
only differ slightly (or not at all) from the previous inputs, so the current evaluation of the
network may not differ much from the previous evaluation.

FRP remains largely orthogonal to incremental computation, except for Cooper and
Krishnamurthi’s FrTime [Cooper and Krishnamurthi, 2004] extends a functional language
with a primitive notion of time and support for incrementality. Since computations per-
formed at consecutive time steps are generally similar, FRP may benefit from incremental
update techniques. Self-adjusting computation may be applied to FRP by representing
the network as a syntax tree and running a self-adjusting evaluator program to sample
the value of the network and evolve the network according to the combinator semantics.
Change-propagating the evaluator program could reuse previous evaluations of the net-
work and thus only perform the necessary computation to re-sample the value under input
changes and update the structure of the network as necessary.

A self-adjusting approach presents several challenges which we believe can be re-
solved with new general-purpose primitives. First, an FRP network changes over time. By
representing the network as changeable data, the evaluator would update the network in
place and thus the updated network would have to become the input for the next sampling
cycle. Existing self-adjusting computation implementations, however, only allow the in-
puts to be changed and disallow the outputs to be fed back as inputs for subsequent runs.
We would remedy this by introducing a notion of persistent data that allows data (e.g., the
FRP network) to be modified in place and have the updated value fed back as the initial
value for the next run.

169

Second, FRP allows a signal to be used in multiple parts of the network. According to
the semantics of FRP, a signal should only be evaluated once per sampling but the result
can be used in multiple parts of the network. This presents another challenge in terms
of how to correctly and efficiently only perform a computation once during the run of a
self-adjusting program, but still allow the result to be used multiple times. We believe
that our work on out-of-order memoization and suspensions provides a suitable form of
classical memoization that can be used to evaluate a network once and cache the result for
subsequent uses in the same run.

170

Bibliography

MLton. http://mlton.org/. 2.1.2, 6.1

Martı́n Abadi, Butler W. Lampson, and Jean-Jacques Lévy. Analysis and Caching of
Dependencies. In Proceedings of the International Conference on Functional Program-
ming, pages 83–91, 1996. 8.1.2

Umut A. Acar. Self-Adjusting Computation. PhD thesis, Department of Computer Science,
Carnegie Mellon University, May 2005. 1.1, 2.2.1, 2.4.1, 8.1.3, 8.1.3

Umut A. Acar, Guy E. Blelloch, and Robert Harper. Selective Memoization. In Proceed-
ings of the 30th Annual ACM Symposium on Principles of Programming Languages,
2003. 1.1, 1.1, 1.1, 2.1.1, 2.2.1, 8.1.2, 8.1.3, 8.1.3

Umut A. Acar, Guy E. Blelloch, Robert Harper, Jorge L. Vittes, and Maverick Woo. Dy-
namizing Static Algorithms with Applications to Dynamic Trees and History Indepen-
dence. In ACM-SIAM Symposium on Discrete Algorithms, pages 531–540, 2004. 1.1,
2.2.1, 8.1.3, 8.1.4

Umut A. Acar, Guy E. Blelloch, and Jorge L. Vittes. An experimental analysis of change
propagation in dynamic trees. In Workshop on Algorithm Engineering and Experimen-
tation, 2005. 1.1, 8.1.3, 8.1.4

Umut A. Acar, Guy E. Blelloch, Matthias Blume, Robert Harper, and Kanat Tangwongsan.
A Library for Self-Adjusting Computation. Electronic Notes in Theoretical Computer
Science, 148(2), 2006a. 2.1.1, 1, 2.1.2, 6.1, 6.3, 6.5, 7.1, 7.2.5, 8.1.3

Umut A. Acar, Guy E. Blelloch, Matthias Blume, and Kanat Tangwongsan. An Experi-
mental Analysis of Self-Adjusting Computation. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation, 2006b. 1.1, 1.1,
1.1, 2.1.1, 1, 2.1.2, 2.2.1, 2.4.1, 6.5, 7.1

171

Umut A. Acar, Guy E. Blelloch, and Robert Harper. Adaptive Functional Programming.
ACM Transactions on Programming Languages and Systems, 28(6):990–1034, 2006c.
1.1, 1.1, 1.1, 2.1.1, 2.2.1, 2.3.1, 8.1.3, 8.1.3

Umut A. Acar, Guy E. Blelloch, Kanat Tangwongsan, and Jorge L. Vittes. Kinetic Algo-
rithms via Self-Adjusting Computation. In Proceedings of the 14th Annual European
Symposium on Algorithms, pages 636–647, September 2006d. 1.1, 2.2.1, 8.1.3

Umut A. Acar, Guy E. Blelloch, and Kanat Tangwongsan. Non-oblivious Retroactive
Data Structures. Technical report, Carnegie Mellon University, 2007a. 2.3.2, 2.3.3,
6.5.3, 8.1.5

Umut A. Acar, Matthias Blume, and Jacob Donham. A Consistent Semantics of Self-
Adjusting Computation. In Proceedings of the 16th Annual European Symposium on
Programming (ESOP), 2007b. 8.1.3

Umut A. Acar, Alexander Ihler, Ramgopal Mettu, and Özgür Sümer. Adaptive Bayesian
Inference. In Neural Information Processing Systems (NIPS), 2007c. 1.1, 8.1.3

Umut A. Acar, Amal Ahmed, and Matthias Blume. Imperative Self-Adjusting Computa-
tion. In Proceedings of the 25th Annual ACM Symposium on Principles of Programming
Languages, 2008a. 2.3.1, 8.1.3, 8.1.5

Umut A. Acar, Guy E. Blelloch, Kanat Tangwongsan, and Duru Türkoğlu. Robust Ki-
netic Convex Hulls in 3D. In Proceedings of the 16th Annual European Symposium on
Algorithms, September 2008b. 1.1, 2.2.1, 10, 8.1.3, 8.1.5

Umut A. Acar, Alexander Ihler, Ramgopal Mettu, and Özgür Sümer. Adaptive Inference
on General Graphical Models. In Uncertainty in Artificial Intelligence (UAI), 2008c.
1.1, 8.1.3

Umut A. Acar, Guy E. Blelloch, Matthias Blume, Robert Harper, and Kanat Tangwongsan.
An Experimental Analysis of Self-Adjusting Computation. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), 32(1):3:1–3:53, 2009. 1.1, 8.1.3, 8.1.3,
8.1.4

Umut A. Acar, Guy E. Blelloch, Ruy Ley-Wild, Kanat Tangwongsan, and Duru Türkoğlu.
Traceable Data Types for Self-Adjusting Computation. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI),
2010a. 3, 4, 6, 7

172

Umut A. Acar, Andrew Cotter, Benoit Hudson, and Duru Türkoğlu. Dynamic Well-Spaced
Point Sets. In SCG ’10: Proceedings of the 26th Annual Symposium on Computational
Geometry, 2010b. 8.1.3

Pankaj K. Agarwal, Leonidas J. Guibas, Herbert Edelsbrunner, Jeff Erickson, Michael
Isard, Sariel Har-Peled, John Hershberger, Christian Jensen, Lydia Kavraki, Patrice
Koehl, Ming Lin, Dinesh Manocha, Dimitris Metaxas, Brian Mirtich, David Mount,
S. Muthukrishnan, Dinesh Pai, Elisha Sacks, Jack Snoeyink, Subhash Suri, and Ouri
Wolefson. Algorithmic Issues in Modeling Motion. ACM Comput. Surv., 34(4):550–
572, 2002. ISSN 0360-0300. 8.1.1

Andrew W. Appel. Compiling with Continuations. Cambridge University Press, 1991.
2.1.2, 4.1

Zena M. Ariola, Matthias Felleisen, John Maraist, Martin Odersky, and Philip Wadler.
The Call-by-Need Lambda Calculus. In Principles of Programming Languages, pages
233–246, 1995. 8.1.3

C. Bradford Barber, David P. Dobkin, and Hannu Huhdanpaa. The Quickhull Algorithm
for Convex Hulls. ACM Trans. Math. Softw., 22(4):469–483, 1996. 7.2.1, 7.3.8

Julien Basch, Leonidas J. Guibas, and John Hershberger. Data structures for mobile data.
Journal of Algorithms, 31(1):1–28, 1999. 8.1.1

Richard Bellman. Dynamic Programming. Princeton University Press, 1957. 8.1.2

Guy Blelloch and John Greiner. Parallelism in Sequential Functional Languages. In FPCA
’95: Proceedings of the seventh international conference on Functional programming
languages and computer architecture, pages 226–237, 1995. ISBN 0-89791-719-7.
2.2.2, 8.1.4

Guy E. Blelloch and John Greiner. A Provable Time and Space Efficient Implementa-
tion of NESL. In Proceedings of the first ACM SIGPLAN international conference on
Functional programming, pages 213–225. ACM, 1996. 2.2.2, 8.1.4

Kimberley Burchett, Gregory H. Cooper, and Shriram Krishnamurthi. Lowering: A Static
Optimization Technique for Transparent Functional Reactivity. In PEPM ’07: Proceed-
ings of the 2007 ACM SIGPLAN symposium on Partial evaluation and semantics-based
program manipulation, pages 71–80. ACM, 2007. 8.1.5

173

Magnus Carlsson. Monads for Incremental Computing. In Proceedings of the 7th ACM
SIGPLAN International Conference on Functional programming, pages 26–35. ACM
Press, 2002. 2.1.1, 8.1.3, 8.1.3

Y.-J. Chiang and R. Tamassia. Dynamic Algorithms in Computational Geometry. Pro-
ceedings of the IEEE, 80(9):1412–1434, 1992. 8.1.1

Gregory H. Cooper and Shriram Krishnamurthi. FrTime: Functional Reactive Program-
ming in PLT Scheme. Technical Report CS-03-20, Department of Computer Science,
Brown University, April 2004. 8.1.5, 8.2.2

Gregory H. Cooper and Shriram Krishnamurthi. Embedding Dynamic Dataflow in a Call-
by-Value Language. In Proceedings of the 15th Annual European Symposium on Pro-
gramming (ESOP), 2006. 8.1.5

Olivier Danvy and John Hatcliff. CPS Transformation after Strictness Analysis. Letters
on Programming Languages and Systems (LOPLS), 1(3):195–212, 1993a. 5.2

Olivier Danvy and John Hatcliff. On the Transformation between Direct and Continuation
Semantics. In Proceedings of the Ninth Conference on Mathematical Foundations of
Programming Semantics (MFPS), pages 627–648, 1993b. 5.2

Erik D. Demaine, John Iacono, and Stefan Langerman. Retroactive data structures. In Pro-
ceedings of the fifteenth annual ACM-SIAM symposium on Discrete algorithms, pages
281–290, Philadelphia, PA, USA, 2004. Society for Industrial and Applied Mathemat-
ics. ISBN 0-89871-558-X. 2.3.2, 8.1.5

Alan Demers, Thomas Reps, and Tim Teitelbaum. Incremental Evaluation of Attribute
Grammars with Application to Syntax-directed Editors. In Proceedings of the 8th An-
nual ACM Symposium on Principles of Programming Languages, pages 105–116, 1981.
8.1.2, 8.1.2

P. F. Dietz and D. D. Sleator. Two algorithms for maintaining order in a list. In Proceedings
of the 19th ACM Symposium on Theory of Computing, pages 365–372, 1987. 6.5.1

Conal Elliott. Functional Implementations of Continuous Modeled Animation. Lecture
Notes in Computer Science, 1490:284–299, 1998. 8.2.2

Conal Elliott and Paul Hudak. Functional Reactive Animation. In Proceedings of the
second ACM SIGPLAN International Conference on Functional Programming, pages
263–273. ACM, 1997. 8.2.2

174

David Eppstein, Zvi Galil, and Giuseppe F. Italiano. Dynamic Graph Algorithms. In
Mikhail J. Atallah, editor, Algorithms and Theory of Computation Handbook, chapter 8.
CRC Press, 1999. 8.1.1

J. Field and T. Teitelbaum. Incremental reduction in the lambda calculus. In Proceedings
of the ACM ’90 Conference on LISP and Functional Programming, pages 307–322,
June 1990. 8.1.2, 8.1.2

John Field. Incremental Reduction in the Lambda Calculus and Related Reduction Sys-
tems. PhD thesis, Department of Computer Science, Cornell University, November
1991. 8.1.2

Bryan Ford. Packrat Parsing: Simple, Powerful, Lazy, Linear Time. In ICFP, pages 36–47,
2002. 7.5.3

Daniel P. Friedman and David S. Wise. CONS Should Not Evaluate its Arguments. In
ICALP, pages 257–284, 1976. 8.1.3

L. Guibas. Modeling motion. In J. Goodman and J. O’Rourke, editors, Handbook of
Discrete and Computational Geometry, pages 1117–1134. Chapman and Hall/CRC, 2nd
edition, 2004. 8.1.1

Leonidas Guibas and Daniel Russel. An empirical comparison of techniques for updating
Delaunay triangulations. In SCG ’04: Proceedings of the twentieth annual symposium
on Computational geometry, pages 170–179, New York, NY, USA, 2004. ACM Press.
8.1.1

Matthew A. Hammer and Umut A. Acar. Memory Management for Self-Adjusting Com-
putation. In ISMM ’08: Proceedings of the 7th international symposium on Memory
management, pages 51–60, 2008. ISBN 978-1-60558-134-7. 8.1.3

Matthew A. Hammer, Umut A. Acar, and Yan Chen. CEAL: A C-based language for
self-adjusting computation. In Proceedings of the 2009 ACM SIGPLAN Conference on
Programming Language Design and Implementation, June 2009. 8.1.3

Peter Henderson and James H. Morris Jr. A Lazy Evaluator. In POPL, pages 95–103,
1976. 8.1.3

Fritz Henglein, Henning Makholm, and Henning Niss. Effect Types and Region-based
Memory Management. In Benjamin Pierce, editor, Advanced Topics in Types and Pro-
gramming Languages, chapter 3, pages 87–135. MIT Press, Cambridge, MA, 2005. 3.3

175

Allan Heydon, Roy Levin, and Yuan Yu. Caching Function Calls Using Precise Depen-
dencies. In Proceedings of the 2000 ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, pages 311–320, 2000. 8.1.2

Roger Hoover. Incremental Graph Evaluation. PhD thesis, Department of Computer
Science, Cornell University, May 1987. 8.1.2

R. J. M. Hughes. Lazy memo-functions. In Proceedings 1985 Conference on Functional
Programming Languages and Computer Architecture, 1985. 8.1.3

Jung-taek Kim and Kwangkeun Yi. Interconnecting Between CPS Terms and Non-CPS
Terms. In Proceedings of the Third ACM SIGPLAN Workshop on Continuations (CW),
pages 7–16, 2001. 5.2

Jung-taek Kim, Kwangkeun Yi, and Olivier Danvy. Assessing the Overhead of ML Excep-
tions. In Proceedings of the ACM SIGPLAN Workshop on ML, pages 112–119, 1998.
6.4

Ruy Ley-Wild, Umut A. Acar, and Matthew Fluet. A Cost Semantics for Self-Adjusting
Computation. Technical Report CMU-CS-08-141, Department of Computer Science,
Carnegie Mellon University, July 2008a. 2.3.2

Ruy Ley-Wild, Matthew Fluet, and Umut A. Acar. Compiling Self-Adjusting Programs
with Continuations. In Proceedings of the International Conference on Functional Pro-
gramming, 2008b. 3, 4, 5, 5.3.2, 6, 7, 8.1.3

Ruy Ley-Wild, Umut A. Acar, and Matthew Fluet. A cost semantics for self-adjusting
computation. In Proceedings of the 26th Annual ACM Symposium on Principles of
Programming Languages, 2009. 2.3.2, 3, 4, 5, 7, 8.1.3, 8.1.4

Yanhong A. Liu, Scott Stoller, and Tim Teitelbaum. Static Caching for Incremental Com-
putation. ACM Transactions on Programming Languages and Systems, 20(3):546–585,
1998. 8.1.2

John McCarthy. A Basis for a Mathematical Theory of Computation. In P. Braffort
and D. Hirschberg, editors, Computer Programming and Formal Systems, pages 33–
70. North-Holland, Amsterdam, 1963. 8.1.2

Leo A. Meyerovich, Arjun Guha, Jacob P. Baskin, Gregory H. Cooper, Michael Greenberg,
Aleks Bromfield, and Shriram Krishnamurthi. Flapjax: a Programming Language for
Ajax Applications. In OOPSLA, pages 1–20, 2009. 8.1.5

176

D. Michie. ”Memo” Functions and Machine Learning. Nature, 218:19–22, 1968. 4.4.1,
8.1.2, 8.1.3

Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition of Stan-
dard ML (revised). The MIT Press, 1997. 6.1, 6.2

Lasse Nielsen. A Selective CPS Transformation. In Proceedings of the Seventeenth
Conference on the Mathematical Foundations of Programming Semantics (MFPS), vol-
ume 45 of Electronic Notes in Theoretical Computer Science (ENTCS), pages 311–331.
Elsevier, November 2001. 5.2

Frank Pfenning and Carsten Schürmann. System description: Twelf — a meta-logical
framework for deductive systems. In H. Ganzinger, editor, Proceedings of the 16th
International Conference on Automated Deduction (CADE-16), pages 202–206, Trento,
Italy, July 1999. Springer-Verlag LNAI 1632. 8.1.3

F. P. Preparata and M. I. Shamos. Computational Geometry. Springer-Verlag Inc., 1985.
7.2.1

William Pugh. Incremental Computation via Function Caching. PhD thesis, Department
of Computer Science, Cornell University, August 1988. 8.1.2

William Pugh and Tim Teitelbaum. Incremental Computation via Function Caching. In
Proceedings of the 16th Annual ACM Symposium on Principles of Programming Lan-
guages, pages 315–328, 1989. 8.1.2, 8.1.2

G. Ramalingam and T. Reps. A Categorized Bibliography on Incremental Computation.
In Proceedings of the 20th Annual ACM Symposium on Principles of Programming
Languages, pages 502–510, 1993. 8.1.2

Thomas Reps. Optimal-time Incremental Semantic Analysis for Syntax-directed Editors.
In Proceedings of the 9th Annual Symposium on Principles of Programming Languages,
pages 169–176, 1982. 8.1.2

Mads Rosendahl. Automatic complexity analysis. In FPCA ’89: Proceedings of the
fourth international conference on Functional programming languages and computer
architecture, pages 144–156, New York, NY, USA, 1989. ACM. 8.1.4

Daniel Russel. Kinetic Data Structures in Practice. PhD thesis, Department of Computer
Science, Stanford University, March 2007. 8.1.1

177

Daniel Russel, Menelaos I. Karavelas, and Leonidas J. Guibas. A package for Exact
Kinetic Data Structures and Sweepline Algorithms. Comput. Geom. Theory Appl., 38
(1-2):111–127, 2007. ISSN 0925-7721. 8.1.1

David Sands. Calculi for Time Analysis of Functional Programs. PhD thesis, University
of London, Imperial College, September 1990a. 2.2.1, 2.2.2, 8.1.4

David Sands. Complexity Analysis for a Lazy Higher-Order Language. In ESOP ’90:
Proceedings of the 3rd European Symposium on Programming, pages 361–376, Lon-
don, UK, 1990b. Springer-Verlag. 2.2.1, 2.2.2, 8.1.4

Patrick M. Sansom and Simon L. Peyton Jones. Time and Space Profiling for Non-
strict, Higher-order Functional Languages. In Proceedings of the 22nd ACM SIGPLAN-
SIGACT Symposium on Principles of programming languages, pages 355–366, 1995.
2.2.2, 8.1.4

Marco D Santambrogio, Vincenzo Rana, Seda Ogrenci Memik, Umut A. Acar, and Do-
natella Sciuto. A novel SoC design methodology for combined adaptive software de-
scripton and reconfigurable hardware. In IEEE/ACM International Conference on Com-
puter Aided Design (ICCAD), 2007. 1.1, 8.1.3

Ajeet Shankar and Rastislav Bodik. DITTO: Automatic Incrementalization of Data Struc-
ture Invariant Checks (in Java). In Proceedings of the ACM SIGPLAN 2007 Conference
on Programming language Design and Implementation, 2007. 1.1, 8.1.3

Daniel Dominic Sleator and Robert Endre Tarjan. Self-Adjusting Binary Search Trees.
Journal of the ACM, 32(3):652–686, 1985. 8.1.1

Daniel Spoonhower, Guy E. Blelloch, Robert Harper, and Phillip B. Gibbons. Space Pro-
filing for Parallel Functional Programs. In Proceedings of the International Conference
on Functional Programming, 2008. 2.2.2, 8.1.4

R. S. Sundaresh and Paul Hudak. Incremental Compilation via Partial Evaluation. In
Conference Record of the 18th Annual ACM Symposium on Principles of Programming
Languages, pages 1–13, 1991. 8.1.2

Hayo Thielecke. Comparing Control Constructs by Double-barrelled CPS. Higher-Order
and Symbolic Computation, 15(2/3):367–412, 2002. 6.4

Jean Vuillemin. Correct and Optimal Implementations of Recursion in a Simple Program-
ming Language. J. Comput. Syst. Sci., 9(3):332–354, 1974. 8.1.3

178

Philip Wadler and R. J. M. Hughes. Projections for strictness analysis. In Proc. of a
conference on Functional programming languages and computer architecture, pages
385–407, London, UK, 1987. Springer-Verlag. 2.2.1

Zhanyong Wan and Paul Hudak. Functional Reactive Programming from First Princi-
ples. In Proceedings of the ACM SIGPLAN 2000 conference on Programming language
design and implementation, pages 242–252. ACM, 2000. 8.2.2

Zhanyong Wan, Walid Taha, and Paul Hudak. Real-time FRP. SIGPLAN Not., 36(10):
146–156, 2001. ISSN 0362-1340. 8.2.2

D. M. Yellin and R. E. Strom. INC: A Language for Incremental Computations. ACM
Transactions on Programming Languages and Systems, 13(2):211–236, April 1991.
8.1.2

179

	1 Introduction
	1.1 Thesis
	1.2 Structure of the Dissertation

	2 Overview
	2.1 Compilation
	2.1.1 Background
	2.1.2 Foreground
	2.1.3 Presentation

	2.2 Formal Reasoning: Cost Semantics and Trace Distance
	2.2.1 Background
	2.2.2 Foreground
	2.2.3 Presentation

	2.3 Extensible Adaptivity: Traceable Data Types
	2.3.1 Background
	2.3.2 Foreground
	2.3.3 Concrete TDTs
	2.3.4 Presentation

	2.4 Extensible Computation Memoization: In-Order and Out-of-Order
	2.4.1 Background
	2.4.2 Foreground
	2.4.3 Presentation

	3 The Src* Languages
	3.1 Overview
	3.2 Syntax
	3.3 Static Semantics
	3.4 Dynamic and Cost Semantics
	3.4.1 Derivation Size and Cost

	3.5 Trace Distance
	3.5.1 Local Trace Distance
	3.5.2 Global Trace Distance
	3.5.3 Trace Contexts
	3.5.4 Precise Local Trace Distance

	3.6 SrcLazy

	4 The Tgt* Languages
	4.1 Overview
	4.2 Syntax
	4.3 Static Semantics
	4.4 Dynamic and Cost Semantics
	4.4.1 Evaluation
	4.4.2 Computation Memoization
	4.4.3 Change-Propagation
	4.4.4 Meta-Theory

	4.5 Trace Distance
	4.5.1 Local Trace Distance
	4.5.2 Global Trace Distance
	4.5.3 Meta-Theory

	5 Translation
	5.1 Overview
	5.2 Program Translation
	5.2.1 Meta-Theory

	5.3 Trace Translation
	5.3.1 Meta-Theory
	5.3.2 Discussion

	6 Implementation
	6.1 Overview
	6.2 Language Extensions
	6.3 Library Interface
	6.4 Compiler Modifications
	6.5 Self-Adjusting Computation Library
	6.5.1 Traces and Time Stamps
	6.5.2 Change Propagation
	6.5.3 Implementing Traceable Data Types
	6.5.4 Integrating Traceable Data Types

	7 Evaluation
	7.1 Overview
	7.2 ML with Modifiable References
	7.2.1 Synthetic Benchmarks
	7.2.2 Input Generation
	7.2.3 Measurements
	7.2.4 Results
	7.2.5 Raytracer application

	7.3 ML with Traceable Data Types
	7.3.1 Benchmarks
	7.3.2 Modref-based Data Structures
	7.3.3 Input Generation
	7.3.4 Metrics and Measurements
	7.3.5 Modref-based Programs vs. Traceable Programs
	7.3.6 Traceable Programs vs. Static Programs
	7.3.7 Graph Algorithms
	7.3.8 Sorting and Convex Hulls
	7.3.9 Trace Size and Stability

	7.4 Cost Semantics with In-Order Memoization
	7.4.1 Map
	7.4.2 Reduce
	7.4.3 Merge Sort
	7.4.4 Filter

	7.5 Cost Semantics with Out-of-Order Memoization
	7.5.1 Quicksort
	7.5.2 Depth-First Search on Graphs
	7.5.3 Incremental Parsing and Evaluation

	8 Conclusion
	8.1 Related Work
	8.1.1 Dynamic and Kinetic Algorithms and Data Structures
	8.1.2 Incremental Computation
	8.1.3 Self-Adjusting Computation
	8.1.4 Evaluation
	8.1.5 Retroactive Data Structures and Traceable Data Types

	8.2 Future Work
	8.2.1 Self-Adjusting Computation
	8.2.2 Functional Reactive Programming

	Bibliography

