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Abstract

This thesis develops online algorithms that can be used to solve a wide
variety of NP-hard problems more efficiently in practice. The common ap-
proach taken by all our online algorithms is to improve the performance of
one or more existing algorithms for a specific NP-hard problem by adapting
the algorithms to the sequence of problem instance(s) they are run on.

We begin by presenting an algorithm for solving a specific class of online
resource allocation problems. Our online algorithm can be applied in envi-
ronments where abstract jobs arrive one at a time, and one can complete the
jobs by investing time in a number of abstract activities. Provided the jobs and
activities satisfy certain technical conditions, our online algorithm is guaran-
teed to perform almost as well as any fixed schedule for investing time in
the various activities, according to two natural measures of performance: (i)
the average time required to complete each job, and (ii) the number of jobs
completed within time T , for some fixed deadline T > 0.

In particular, our online algorithm’s guarantees apply if the job can be
written as a monotone, submodular function of a set of pairs of the form (v, τ),
where τ is the time invested in activity v. Under the first objective, the offline
version of this problem generalizes MIN-SUM SET COVER and the related
PIPELINED SET COVER problem. Under the second objective, the offline
version of this problem generalizes the problem of maximizing a monotone,
submodular set function subject to a knapsack constraint. Our online algo-
rithm has potential applications in a number of areas, including the design of
algorithm portfolios, database query processing, and sensor placement.

We apply this online algorithm to the following problem. We are given
k algorithms, and are fed, one at a time, a sequence of problem instances to
solve. We may solve each instance using any of the k algorithms, we may
interleave the execution of the algorithms, and, if the algorithms are random-
ized, we may periodically restart them with a fresh random seed. Our goal is
to minimize the total CPU time required to solve all the instances. Using data
from eight recent solver competitions, we show that our online algorithm and
its offline counterpart can be used to improve the performance of state-of-the-
art solvers in a number of problem domains, including Boolean satisfiability,
zero-one integer programming, constraint satisfaction, and theorem proving.



We next present an online algorithm that can be used to improve the perfor-
mance of algorithms that solve an optimization problem by making a sequence
of calls to a decision procedure that answers questions of the form “Is there a
solution of cost at most k?” We present an adaptive strategy for determining
the sequence of questions to ask, along with bounds on the maximum time to
spend waiting for an answer to each question. Under the assumption that the
time required by the decision procedure to return an answer increases as k gets
closer to the optimal solution cost, our strategy’s performance is near-optimal
when measured in terms of a natural competitive ratio. Experimentally, we
show that applying our strategy to recent algorithms for A.I. planning and job
shop scheduling allows the algorithms to find approximately optimal solutions
more quickly.

Lastly, we develop algorithms for solving the max k-armed bandit prob-
lem, a variant of the classical k-armed bandit problem in which one seeks to
maximize the highest payoff received on any single trial, rather than the cu-
mulative payoff. A strategy for solving the max k-armed bandit problem can
be used to allocate trials among multi-start optimization heuristics. Motivated
by results in extreme value theory, we present a no-regret strategy for the spe-
cial case in which each arm returns payoffs drawn from a generalized extreme
value distribution. We also present a heuristic strategy that solves the max k-
armed bandit problem using a strategy for the classical k-armed bandit prob-
lem as a subroutine. Experimentally, we show that our max k-armed bandit
strategy can be used to effectively allocate trials among multi-start heuristics
for the RCPSP/max, a difficult real-world scheduling problem.
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Chapter 1

Introduction

This thesis is about solving NP-hard computational problems more efficiently in practice.

Although conjectured to be worst-case intractable, NP-hard problems arise frequently
in the real world. Solving them efficiently is a central concern in fields such as operations
research, computational biology, artificial intelligence, and formal verification.

Looking over the past few decades of computer science research, we may distinguish
several high-level approaches to dealing with NP-hard problems:

1. Problem-specific theoretical analysis. Instances of this approach include the devel-
opment of constant factor approximation algorithms for a wide variety of NP-hard
optimization problems [87], improved exponential-time algorithms [88], and analy-
ses of algorithms for random and semi-random problems [25].

2. Problem-specific engineering. Examples of this approach include the ongoing quest
for efficient Boolean satisfiability solvers [91], and algorithms for solving specific
operations research problems such as job shop scheduling [39].

3. Black-box optimization. A number of algorithms have been developed that aim to
solve a wide variety of optimization problems, given only black-box access to the to-
be-optimized function. Example of such algorithms include the simulated annealing
algorithm [50], genetic algorithms [32], and genetic programming [53, 54].

Each of these approaches represents an active area of research unto itself, with entire
conferences and hundreds of papers published every year.

This thesis advances an approach that is different from, orthogonal to, and comple-
mentary to each of the approaches just mentioned. At a high level, the goal of this thesis

1



is to improve the performance of existing heuristics for NP-hard problems by adapting the
heuristics to the problem instance(s) they are run on. In relationship to the three techniques
just discussed, the approach taken in this thesis lies at a level of abstraction somewhere in
between the problem-specific engineering approaches and the black-box approaches.

A distinguishing feature of this work is that the adaptation can be performed on-the-fly,
while solving a sequence of problem instances. Our online algorithms come with rigorous
performance guarantees, stated either as regret bounds or as a competitive ratio.

In addition to proving theoretical guarantees, we evaluate our algorithms experimen-
tally using state-of-the-art solvers in a wide array of real-world problem domains. In many
cases, our algorithms are able to automatically produce new solvers that significantly out-
perform the existing ones.

1.1 Summary

This thesis is organized into six chapters.

• Chapter 1 is the introduction.

• Chapter 2, “Online Algorithms for Maximizing Submodular Functions”, develops
algorithms for solving an online resource allocation problem that generalizes several
previously-studied online problems. The algorithms developed in Chapter 2 form
the basis for many of the experimental and theoretical results in Chapter 3.

• Chapter 3, “Combining Multiple Heuristics Online”, presents techniques for com-
bining multiple problem-solving algorithms into an improved algorithm by inter-
leaving the execution of the algorithms and, if the algorithms are randomized, pe-
riodically restarting them with a fresh random seed. An important feature of the
work presented in this chapter is that a schedule for interleaving and restarting the
algorithms can be learned on-the-fly while solving a sequence of problems.

• Chapter 4, “Using Decision Procedures Efficiently for Optimization”, presents tech-
niques for improving the performance of algorithms that solve an optimization prob-
lem by making a sequence of calls to an algorithm for the corresponding decision
problem.

• Chapter 5, “The Max k-Armed Bandit Problem”, studies a variant of the classical
multi-armed bandit problem in which the goal is to maximize the maximum payoff

2



received, rather than the sum of the payoffs. Algorithms for solving the max k-
armed bandit problem can be used to improve the performance of multi-start heuris-
tics, which obtain a solution to an optimization problem by performing a number of
independent runs of a randomized heuristic and returning the best solution obtained.

• Chapter 6 is the conclusion.

In the subsections that follow we formally define the problems considered in chapters
2 through 5, discuss the motivation for studying each problem, and summarize the main
theoretical and experimental results. Some of the text in these subsections is duplicated in
the introductory sections of the corresponding chapters.

The results in this thesis are based in part on five conference papers [78, 79, 80, 82, 83]
and a working paper [76].

1.1.1 Online algorithms for maximizing submodular functions

In this chapter we develop algorithms for solving a class of online resource allocation
problems, which can be described formally as follows. We are given as input a set V of
activities. A pair (v, τ) ∈ V × R>0 is called an action, and specifies that time τ is to be
invested in activity v. A schedule is a sequence of actions. We denote by S the set of
all schedules. A job is a function f : S → [0, 1], where for any S ∈ S, f(S) equals
the proportion of some task that is accomplished after performing the sequence of actions
S. We require that a job f satisfy the following conditions (here ⊕ is the concatenation
operator):

1. (monotonicity) for any schedules S1, S2 ∈ S, we have f(S1) ≤ f(S1 ⊕ S2) and
f(S2) ≤ f(S1 ⊕ S2).

2. (submodularity) for any schedules S1, S2 ∈ S and any action a ∈ A,

f(S1 ⊕ S2 ⊕ 〈a〉)− f(S1 ⊕ S2) ≤ f(S1 ⊕ 〈a〉)− f(S1) . (1.1)

We will evaluate schedules in terms of two objectives. The first objective is to minimize

c (f, S) =

∫ ∞
t=0

1− f
(
S〈t〉
)
dt (1.2)

where S〈t〉 is the schedule that results from truncating schedule S at time t. For example
if S = 〈(h1, 3), (h2, 3)〉 then S〈5〉 = 〈(h1, 3), (h2, 2)〉. We refer to c (f, S) as the cost of S.

3



The second objective is to maximize f
(
S〈T 〉

)
for some fixed T > 0. We refer to f

(
S〈T 〉

)
as the coverage of S at time T .

In the online setting, an arbitrary sequence 〈f1, f2, . . . , fn〉 of jobs arrive one at a time,
and we must finish each job (via some schedule) before moving on to the next job. When
selecting a schedule Si to use to finish job fi, we have knowledge of the previous jobs
f1, f2, . . . , fi−1 but we have no knowledge of fi itself or of any subsequent jobs. In this
setting we develop schedule-selection strategies that minimize regret, which is a measure
of the difference between the average cost (or average coverage) of the schedules produced
by our online algorithm and that of the best single schedule (in hindsight) for the given
sequence of jobs.

To understand the rationale for studying these two problems, consider the following
example. Let each activity v represent a randomized algorithm for solving some decision
problem, and let the action (v, τ) represent running the algorithm (with a fresh random
seed) for time τ . Fix some particular instance of the decision problem, and for any sched-
ule S, let f(S) be the probability that one (or more) of the runs in the sequence S yields
a solution to the instance. We show in §2.1.4 that f satisfies the conditions required of a
job. Then f(S〈T 〉) is (by definition) the probability that performing the runs in schedule
S yields a solution to the problem instance in time ≤ T . For any non-negative random
variable X , we have E [X] =

∫∞
t=0

P [X > t] dt. Thus c (f, S) is the expected time that
elapses before a solution is obtained.

Under each of the two objectives just defined, the problem introduced in this chapter
generalizes a number of previously-studied problems. The problem of minimizing c (f, S)
generalizes MIN-SUM SET COVER [26], PIPELINED SET COVER [44, 64], the problem of
constructing efficient sequences of trials [22], the problem of constructing task-switching
schedules [73, 78], and the problem of constructing restart schedules [35, 61, 79]. The
problem of maximizing f(S〈T 〉) for some fixed T > 0 generalizes the problem of maximiz-
ing a monotone submodular set function subject to a knapsack constraint [56, 84], which in
turns generalizes BUDGETED MAXIMUM COVERAGE [49] and MAX k-COVERAGE [65].
Prior to our work, many of these problems had only been considered in an offline set-
ting. For the problems that had been considered in an online setting, the online algorithms
presented in this chapter provide new and stronger guarantees.

We now summarize the main technical contributions of this chapter.

We first consider the problem of computing an optimal schedule in an offline setting,
given black-box access to the job f . As immediate corollaries of existing results [24, 26],
we obtain that for any ε > 0, (i) achieving an approximation ratio of 4−ε for the problem of
minimizing c (f, S) is NP-hard and (ii) achieving an approximation ratio of 1− 1

e
+ε for the
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problem of maximizing f(S〈T 〉) is NP-hard. Building on and generalizing previous work
[26, 84], we then present an offline greedy approximation algorithm that simultaneously
achieves the optimal approximation ratios (of 4 and 1 − 1

e
, respectively) for each of these

two problems.

We then consider the online setting. In this setting we provide an online algorithm
whose worst-case performance approaches that of the offline greedy algorithm asymptot-
ically (as the number of jobs approaches infinity). Assuming P 6= NP, this guarantee is
essentially the best possible among online algorithms that make decisions in polynomial
time.

Our online algorithms can be used in several different feedback settings. We first
consider the feedback setting in which, after using schedule Si to complete job fi, we
receive complete access to fi. We then consider more limited feedback settings in which:
(i) to receive access to fi we must pay a price C, which is added to the regret, (ii) we only
observe fi

(
Si〈t〉

)
for each t ≥ 0, and (iii) we only observe fi (Si). These limited feedback

settings arise naturally in the applications discussed in the next chapter.

1.1.2 Combining multiple heuristics online

Many important computational problems are NP-hard and thus seem unlikely to admit
algorithms with provably good worst-case performance, yet must be solved as a matter
of practical necessity. For many of these problems, heuristics have been developed that
perform much better in practice than a worst-case analysis would guarantee. Nevertheless,
the behavior of a heuristic on a previously unseen problem instance can be difficult to
predict in advance. The running time of a heuristic may vary by orders of magnitude across
seemingly similar problem instances or, if the heuristic is randomized, across multiple runs
on a single instance that use different random seeds [33, 38]. For this reason, after running
a heuristic unsuccessfully for some time one might decide to suspend the execution of
that heuristic and start running a different heuristic (or the same heuristic with a different
random seed).

In this chapter we consider the problem of allocating CPU time to various heuristics
so as to minimize the time required to solve one or more instances of a decision problem.
We consider the problem of selecting an appropriate schedule in three settings: offline,
learning-theoretic, and online. The results in this chapter significantly generalize and
extend previous work on algorithm portfolios [33, 38, 68, 73, 90] and restart schedules
[31, 35, 61].

The problem considered in this chapter can be described formally as follows. We are
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given as input a set H of (randomized) algorithms for solving some decision problem.
Given a problem instance, each h ∈ H is capable of returning a provably correct “yes” or
“no” answer to the problem, but the time required for a given h ∈ H to return an answer
depends both on the problem instance and on the random seed (and may be infinite). We
solve each problem instance by interleaving the execution of the heuristics according to
some schedule. Consistent with the framework of Chapter 2, we consider schedules of the
form

S = 〈(h1, τ1), (h2, τ2), . . .〉

where each pair (hi, τi) specifies that time τi is to be invested in heuristic hi.

We allow each heuristic h to be executed in one of two models. If h is executed in
the restart model, then each action (h, τ) represents an independent run of h with a fresh
random seed. If h is executed in the suspend-and-resume model, then each action (h, τ)
represents continuing a single run of h for an additional τ time units.

This class of schedules includes both task-switching schedules [73] and restart sched-
ules [61] as special cases. A task-switching schedule is a schedule that executes all heuris-
tics in the suspend-and-resume model. A restart schedule is a schedule for a single ran-
domized heuristic (i.e., |H| = 1), executed in the restart model.

Motivations

To appreciate the power of task-switching schedules, consider Table 1.1, which shows the
behavior of the top two solvers from the industrial track of the 2007 SAT competition on
three of the competition benchmarks.

Table 1.1: Behavior of two solvers on instances from the 2007 SAT competition.

Instance Rsat picosat
CPU (s) CPU (s)

industrial/anbulagan/medium-sat/dated-10-13-s.cnf 45 28
industrial/babic/dspam/dspam dump vc1081.cnf 3 ≥ 10000
industrial/grieu/vmpc 31.cnf ≥ 10000 238

On these benchmarks, interleaving the execution of the solvers according to an appro-
priate schedule can dramatically improve average-case running time. Indeed, in this case
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simply running the two solvers in parallel (e.g., at equal strength on a single processor)
would reduce the average-case running time by orders of magnitude.

To appreciate the power of restart schedules, consider Figure 1, which depicts the run
length distribution of the SAT solver satz-rand on a Boolean formula derived from a
logistics planning benchmark. When run on this formula, satz-rand exhibits a heavy-
tailed run length distribution. There is about a 20% chance of solving the problem after
running for 2 seconds, but also a 20% chance that a run will not terminate after having run
for 1000 seconds. Restarting the solver every 2 seconds reduces the mean running time by
more than an order of magnitude.

satz-rand running on logistics.d (length 14)
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Figure 1.1: Run length distribution of satz-rand on a formula derived from a logistics
planning benchmark.

Results

We now summarize the main technical results of this chapter. As already mentioned,
this chapter considers the schedule-selection problem in three settings: offline, learning-
theoretic, and online.

In the offline setting we are given as input the run length distribution of each h ∈ H for
each problem instance in a set of instances, and wish to compute a schedule with minimum
average (expected) running time over the instances in the set. In this setting, the greedy
algorithm from Chapter 2 gives a 4 approximation to the optimal schedule and, for any ε >
0, computing an 4 − ε approximation is NP-hard. We also give exact and approximation
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algorithms based on shortest paths that are able to compute an α-approximation to the
optimal schedule for any α ≥ 1, but whose running time is exponential as a function of
|H|.

In the learning-theoretic setting, we draw training instances from a fixed distribution,
compute an (approximately) optimal schedule for the training instances, and then use that
schedule to solve additional test instances drawn from the same distribution. In this setting,
we give bounds on the number of training instances required to learn a schedule that is
probably approximately correct.

In the online setting we are fed a sequence of problem instances one at a time and
must obtain a solution to each instance before moving on to the next. In this setting we
show that the online greedy algorithm from Chapter 2 converges to a 4 approximation
to the best fixed schedule for the instance sequence, and requires decision-making time
polynomial in |H|. We also present online shortest paths algorithms that, for any α ≥ 1,
can be guaranteed to converge to an α-approximation to the best fixed schedule, but these
online algorithms require decision-making time exponential in |H|.

Our results in each of these three settings can be extended in two ways. First, our
algorithms can be applied in an interesting way to heuristics for optimization rather than
decision problems. Second, quickly-computable features of problem instances can be ex-
ploited in a principled way to improve the schedule selection process.

This chapter concludes with an experimental evaluation of the techniques developed
for both the offline and online settings. The main results of our experimental evaluation
can be summarized as follows.

1. Using data from recent solver competitions, we show that schedules computed by
our algorithms can be used improve the performance of state-of-the-art solvers in
several problem domains, including Boolean satisfiability, A.I. planning, constraint
satisfaction, and theorem proving.

2. We apply our algorithms to optimization problems (as opposed to decision prob-
lems), and demonstrate that they can be used to improve the performance of state-of-
the-art algorithms for pseudo-Boolean optimization (also known as zero-one integer
programming).

3. We show that additional performance improvements can be obtained by using instance-
specific features to tailor the choice of schedule to a particular problem instance.

4. We use our offline algorithms to construct a restart schedule for the SAT solver
satz-rand that improves its performance on an ensemble of problem instances
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derived from logistics planning benchmarks.

1.1.3 Using decision procedures efficiently for optimization

Optimization problems are often solved by making repeated calls to a decision procedure
that answers questions of the form “Does there exist a solution with cost at most k?”. Each
query to the decision procedure can be represented as a pair 〈k, t〉, where t is a bound on
the CPU time the decision procedure may consume in answering the question. The result
of a query is either a (provably correct) “yes” or “no” answer or a timeout. A query strategy
is a rule for determining the next query 〈k, t〉 as a function of the responses to previous
queries.
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Figure 1.2: Behavior of the SAT solver siege running on formulae generated by
SATPLAN to solve instance p17 from the pathways domain of the 2006 International
Planning Competition.

One optimization algorithm of this form is SATPLAN, a state-of-the-art algorithm for
classical planning. SATPLAN finds a minimum-length plan by making a series of calls to
a SAT solver, where each call determines whether there exists a feasible plan of makespan
≤ k (where the value of k varies across calls). The original version of SATPLAN uses the
ramp-up query strategy, which simply executes the queries 〈1,∞〉, 〈2,∞〉, 〈3,∞〉, . . . in
sequence (stopping as soon as a “yes” answer is obtained).
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The motivation for the work in this chapter is that the choice of query strategy often
has a dramatic effect on the time required to obtain a (provably) approximately optimal
solution. As an example, consider Figure 1.2, which shows the CPU time required by the
query 〈k,∞〉 as a function of k, on a particular planning benchmark instance. On this
instance, using the ramp-up query strategy requires one to invest over 100 hours of CPU
time before obtaining a feasible plan. On the other hand, executing the queries 〈18,∞〉
and 〈23,∞〉 takes less than two minutes and yields a plan whose makespan is provably at
most 23

18+1
≈ 1.21 times optimal.

This chapter presents both a theoretical and an experimental study of query strategies.
We consider the problem of devising query strategies in two settings. In the single-instance
setting, we are confronted with a single optimization problem, and wish to obtain an (ap-
proximately) optimal solution as quickly as possible. In the multiple-instance setting, we
use the same decision procedure to solve a number of optimization problems, and our goal
is to learn from experience in order to improve performance.

In the single-instance setting, we are interested in minimizing the CPU time required
to obtain a given upper or lower bound on OPT, where OPT is the minimum cost of any
solution. Fix a problem instance, and let τ(k) denote the CPU time required by the deci-
sion procedure when run on input k. We define the competitive ratio of a query strategy
(on that instance) as the maximum, over all k, of the time required by the query strategy
to determine what side of OPT that k is on (either by obtaining a “yes” answer for some
k′ ≤ k, or by obtaining a “no” answer for some k′ ≥ k), divided by τ(k). We analyze
query strategies in terms of their competitive ratio on the worst-case instance within some
well-defined class of instances.

The competitive ratio of our query strategies will depend on the behavior of the func-
tion τ (as just mentioned, τ(k) is the CPU time required by the decision procedure when
run on input k). For most decision procedures used in practice, we expect τ(k) to be an
increasing function for k ≤ OPT and a decreasing function for k ≥ OPT (e.g., see Figure
1.2), and our query strategies are designed to take advantage of this behavior. More specif-
ically, our query strategies are designed to work well when τ is close to its hull, which is
the function

hull(k) = min

{
max
k0≤k

τ(k0),max
k1≥k

τ(k1)

}
.

Figure 4.2 gives an example of a function τ (gray bars) and its hull (dots). Note that
τ and hull are identical if τ is monotonically increasing (or monotonically decreasing), or
if there exists a K such that τ is monotonically increasing for k ≤ K and monotonically
decreasing for k > K.
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Figure 1.3: A function τ (gray bars) and its hull (dots).

We measure the discrepancy between τ and its hull in terms of the quantity

∆ = max
k

hull(k)

τ(k)

which we refer to as the stretch of τ . The instance depicted in Figure 4.2 has a stretch of 2
because τ(2) = 1 while hull(2) = 2.

In the single-instance setting, our main result is a query strategy S2 whose worst-case
competitive ratio is O (∆ logU), where U is the difference between the initial upper and
lower bounds on OPT. S2 makes use of a form of guessing-and-doubling in combination
with a two-sided binary search. We prove a matching lower bound, showing that any query
strategy has a competitive ratio Ω (∆ logU) on some instance. We also show that, in the
absence of any assumptions about ∆, a trivial query strategy S1 based on guessing-and-
doubling obtains a worst-case competitive ratio that is O (U), and we prove a matching
Ω (U) lower bound.

In the multiple-instance setting, we prove that computing an optimal query strategy is
NP-hard, and discuss how algorithms from machine learning theory can be used to learn
an appropriate query on-the-fly while solving a sequence of problems.

In the experimental section of this chapter, we use the query strategy S2 to create a
modified version of SATPLAN that finds (provably) approximately optimal plans more
quickly than the original version of SATPLAN (which uses the ramp-up query strategy).
We also create a modified version of a branch and bound algorithm for job shop scheduling
that yields improved upper and lower bounds relative to the original algorithm. In the
course of the latter experiments we develop a simple method for applying query strategies
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to branch and bound algorithms, which seems likely to be useful in other domains besides
job shop scheduling.

1.1.4 The max k-armed bandit problem

The max k-armed bandit problem [19, 21] can be described as follows. Imagine that you
find yourself in the following unusual casino. The casino contains k slot machines. Each
machine has an arm that, when pulled, yields a payoff drawn from a fixed (but unknown)
distribution. You are given n tokens to use in playing the machines, and you may decide
how to spend these tokens adaptively based on the payoffs you receive from playing the
various machines. The catch is that, when you leave the casino, you only get to keep the
maximum of the payoffs you received on any individual pull. The max k-armed bandit
problem differs from the well-studied classical k-armed bandit problem in that one seeks
to optimize the maximum payoff received, rather than the sum of the payoffs.

Our motivation for studying this problem is to boost the performance of multi-start
heuristics, which obtain a solution to an optimization problem by performing a number
of independent runs of a randomized heuristic and returning the best solution obtained.
Despite their simplicity, multi-start heuristics are used widely in practice, and represent
the state of the art in a number of domains [14, 20, 27]. A max k-armed bandit strategy
can be used to distribute trials among different multi-start heuristics or among different
parameter settings for the same multi-start heuristic. Previous work has demonstrated the
effectiveness of such an approach on the RCPSP/max, a difficult real-world scheduling
problem [19, 21, 82].

In this chapter our goal is to develop strategies for the max k-armed bandit problem
that minimize regret, which we define to be the difference between the (expected) maxi-
mum payoff our strategy receives and that of the best pure strategy, where a pure strategy is
one that plays the same arm every time. It is not difficult to show that regret-minimization
is hopeless in the absence of any assumptions about the payoff distributions. As a simple
example, imagine that all payoffs are either 0 or 1, that k − 1 of the arms always return a
payoff of 0, and that one randomly-selected “good” arm returns a payoff of 1 with proba-
bility 1

n
. In this case, we show that one cannot obtain an expected maximum payoff larger

than 1
k

after n pulls, whereas the pure strategy that invests all n pulls on the “good” arm
obtains expected maximum payoff 1− (1− 1

n
)n ≈ 1− 1

e
.

We present two strategies for solving the max k-armed bandit problem. The first strat-
egy, Threshold Ascent, is designed to work well when the payoff distributions have certain
characteristics which we expect to be present in cases of practical interest. Roughly speak-
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ing, Threshold Ascent will work best when the following two criteria are satisfied.

1. There is a (relatively low) threshold tcritical such that, for all t > tcritical, the arm
that is most likely to yield a payoff > t is the same as the arm most likely to yield a
payoff > tcritical. Call this arm i∗.

2. As t increases beyond tcritical, there is a growing gap between the probability that
arm i∗ yields a payoff > t and the corresponding probability for other arms. Specif-
ically, if we let pi(t) denote the probability that the ith arm returns a payoff > t, the
ratio pi∗ (t)

pi(t)
should increase as a function of t for t > tcritical, for any i 6= i∗.

Figure 1.4 illustrates a set of two payoff distributions that satisfy these assumptions.
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Figure 1.4: A max k-armed bandit instance on which Threshold Ascent should perform
well.

The idea of Threshold Ascent is very simple. Threshold Ascent attempts to maximize
the number of payoffs > T that it receives, where T is a threshold that is gradually in-
creased over time. For any fixed T , this goal is accomplished by mapping payoffs > T
to 1 and mapping payoffs ≤ T to zero, then treating the problem as an instance of the
classical k-armed bandit problem (where the goal is to maximize the sum of the payoffs
received).

As T increases, non-zero payoffs become increasingly rare, and thus we would like to
have an algorithm for solving the classical k-armed bandit problem that works well when
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the mean payoff of each arm is very small. Toward this end, we design and analyze a new
algorithm for the classical k-armed bandit problem called Chernoff Interval Estimation,
which yields improved regret bounds when each arm has a small mean payoff.

In the experimental section of this chapter, we demonstrate the effectiveness of Thresh-
old Ascent by using it to select among multi-start heuristics for the RCPSP/max, a diffi-
cult real-world scheduling problem. We find that Threshold Ascent (i) performs better
than any of the multi-start heuristics performs in isolation, and (ii) outperforms the recent
QD-BEACON max k-armed bandit algorithm of Cicirello and Smith [19, 21].

Following the lead of Cicirello and Smith [19, 21], we also consider the special case
where each payoff distribution is a generalized extreme value (GEV) distribution. The mo-
tivation for studying this special case is the Extremal Types Theorem [23], which singles
out the GEV as the limiting distribution of the maximum of a large number of indepen-
dent identically distributed (i.i.d.) random variables. Roughly speaking, one can think of
the Extremal Types Theorem as an analogue of the Central Limit Theorem. Just as the
Central Limit Theorem states that the average of a large number of i.i.d. random variables
converges in distribution to a Gaussian, the Extremal Types Theorem states that the maxi-
mum of a large number of i.i.d. random variables converges in distribution to a GEV. We
provide a no-regret strategy for this special case, generalizing and improving upon earlier
theoretical work by Cicirello & Smith [19, 21].
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Chapter 2

Online Algorithms for Maximizing
Submodular Functions

2.1 Introduction

In this chapter we present algorithms for solving a specific class of online resource alloca-
tion problems. Our online algorithms can be applied in environments where abstract jobs
arrive one at a time, and one can complete the jobs by investing time in a number of ab-
stract activities. Provided that the jobs and activities satisfy certain technical conditions,
our online algorithm is guaranteed to perform almost as well as any fixed schedule for
investing time in the various activities, according to two natural measures of performance.
As we discuss further in §2.1.5, our problem formulation captures a number of previously-
studied problems, including selection of algorithm portfolios [33, 38], selection of restart
schedules [35, 61], and database query optimization [9, 64]. Additionally, this online al-
gorithm forms the basis for many of the theoretical and experimental results in Chapter 3,
“Combining Multiple Heuristics Online”.

2.1.1 Formal setup

The problem considered in this chapter can be defined as follows. We are given as input
a finite set V of activities. A pair (v, τ) ∈ V × R>0 is called an action, and represents
spending time τ performing activity v. A schedule is a sequence of actions. We use S to
denote the set of all schedules. A job is a function f : S → [0, 1], where for any schedule
S ∈ S, f(S) represents the proportion of some task that is accomplished by performing
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the sequence of actions S. We require that a job f satisfy the following conditions (here
⊕ is the concatenation operator):

1. (monotonicity) for any schedules S1, S2 ∈ S, we have f(S1) ≤ f(S1 ⊕ S2) and
f(S2) ≤ f(S1 ⊕ S2).

2. (submodularity) for any schedules S1, S2 ∈ S and any action a ∈ V × R>0,

f(S1 ⊕ S2 ⊕ 〈a〉)− f(S1 ⊕ S2) ≤ f(S1 ⊕ 〈a〉)− f(S1) . (2.1)

We will evaluate schedules in terms of two objectives. The first objective is to maxi-
mize f (S) subject to the constraint ` (S) ≤ T , for some fixed T > 0, where ` (S) equals
the sum of the durations of the actions in S. For example if S = 〈(v1, 3), (v2, 3)〉, then
`(S) = 6. We refer to this problem as BUDGETED MAXIMUM SUBMODULAR COVER-
AGE (the origin of this terminology is explained in §2.2).

The second objective is to minimize the cost of a schedule, which we define as

c (f, S) =

∫ ∞
t=0

1− f
(
S〈t〉
)
dt (2.2)

where S〈t〉 is the schedule that results from truncating schedule S at time t. For example
if S = 〈(v1, 3), (v2, 3)〉 then S〈5〉 = 〈(v1, 3), (v2, 2)〉.1 One way to interpret this objective
is to imagine that f(S) is the probability that some desired event occurs as a result of
performing the actions in S. For any non-negative random variable X , we have E [X] =∫∞
t=0

P [X > t] dt. Thus c (f, S) is the expected time we must wait before the event occurs
if we execute actions according to the schedule S. We refer to the problem of computing
a schedule that minimizes c (f, S) as MIN-SUM SUBMODULAR COVER.

In the online setting, an arbitrary sequence 〈f1, f2, . . . , fn〉 of jobs arrive one at a time,
and we must finish each job (via some schedule) before moving on to the next job. When
selecting a schedule Si to use to finish job fi, we have knowledge of the previous jobs
f1, f2, . . . , fi−1 but we have no knowledge of fi itself or of any subsequent jobs. In this
setting our goal is to develop schedule-selection strategies that minimize regret, which is a
measure of the difference between the average cost (or average coverage) of the schedules
produced by our online algorithm and that of the best single schedule (in hindsight) for the
given sequence of jobs.

The following example illustrates these definitions.
1More formally, if S = 〈a1, a2, . . .〉, where ai = (vi, τi), then S〈t〉 = 〈a1, a2, . . . , ak−1, ak, (vk+1, τ

′)〉,
where k is the largest integer such that

∑k
i=1 τi < t and τ ′ = t−

∑k
i=1 τi.
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Example 1. Let each activity v represent a randomized algorithm for solving some deci-
sion problem, and let the action (v, τ) represent running the algorithm (with a fresh random
seed) for time τ . Fix some particular instance of the decision problem, and for any sched-
ule S, let f(S) be the probability that one (or more) of the runs in the sequence S yields a
solution to that instance. So f(S〈T 〉) is (by definition) the probability that performing the
runs in schedule S yields a solution to the problem instance in time ≤ T , while c (f, S) is
the expected time that elapses before a solution is obtained. It is clear that f(S) satisfies
the monotonicity condition required of a job, because adding runs to the sequence S can
only increase the probability that one of the runs is successful. The fact that f is submod-
ular can be seen as follows. For any schedule S and action a, f(S ⊕ 〈a〉) − f(S) equals
the probability that action a succeeds after every action in S has failed, which can also be
written as (1− f(S)) · f(〈a〉). This, together with the monotonicity of f , implies that for
any schedules S1, S2 and any action a, we have

f(S1 ⊕ S2 ⊕ 〈a〉)− f(S1 ⊕ S2) = (1− f(S1 ⊕ S2)) · f(〈a〉)
≤ (1− f(S1)) · f(〈a〉)
= f(S1 ⊕ 〈a〉)− f(S1)

so f is submodular.

2.1.2 Sufficient conditions

In some cases of practical interest, f will not satisfy the submodularity condition but will
still satisfy weaker conditions that are sufficient for our results to carry through.

In the offline setting, our results will hold for any function f that satisfies the mono-
tonicity condition and, additionally, satisfies the following condition (we prove in §2.3 that
any submodular function satisfies this weaker condition).
Condition 1. For any S1, S ∈ S,

f(S1 ⊕ S)− f(S1)

` (S)
≤ max

(v,τ)∈V×R>0

{
f(S1 ⊕ 〈(v, τ)〉)− f(S1)

τ

}
.

Recall that ` (S) equals the sum of the durations of the actions in S. Informally, Con-
dition 1 says that the increase in f per unit time that results from performing a sequence
of actions S is always bounded by the maximum, over all actions (v, τ), of the increase in
f per unit time that results from performing that action.

In the online setting, our results will apply if each function fi in the sequence 〈f1,
f2, . . . , fn〉 satisfies the monotonicity condition and, additionally, the sequence as a whole
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satisfies the following condition (we prove in §2.4 that if each fi is a job, then this condition
is satisfied).

Condition 2. For any sequence S1, S2, . . . , Sn of schedules and any schedule S,∑n
i=1 fi(Si ⊕ S)− fi(Si)

` (S)
≤ max

(v,τ)∈V×R>0

{∑n
i=1 fi(Si ⊕ 〈(v, τ)〉)− fi(Si)

τ

}
.

As we discuss further in Chapter 3, this generality allows us to handle jobs similar to
the job defined in Example 1, but where an action (v, τ) may represent continuing a run of
algorithm v for an additional τ time units (rather than running v with a fresh random seed).
Note that the function f defined in Example 1 is no longer submodular when actions of
this form are allowed.

2.1.3 Summary of results

We first consider the offline problems BUDGETED MAXIMUM SUBMODULAR COVER-
AGE and MIN-SUM SUBMODULAR COVER. As immediate consequences of existing re-
sults [24, 26], we find that, for any ε > 0, (i) achieving an approximation ratio of 4− ε for
MIN-SUM SUBMODULAR COVER is NP-hard and (ii) achieving an approximation ratio
of 1 − 1

e
+ ε for BUDGETED MAXIMUM SUBMODULAR COVERAGE is NP-hard. We

then present a greedy approximation algorithm that simultaneously achieves the optimal
approximation ratio of 4 for MIN-SUM SUBMODULAR COVER and the optimal approx-
imation ratio of 1 − 1

e
for BUDGETED MAXIMUM SUBMODULAR COVERAGE, building

on and generalizing previous work on special cases of these two problems [26, 84].

The main contribution of this chapter, however, is to address the online setting. In
this setting we provide an online algorithm whose worst-case performance approaches
that of the offline greedy approximation algorithm asymptotically (as the number of jobs
approaches infinity). More specifically, we analyze the online algorithm’s performance
in terms of “α-regret”. For the cost-minimization objective, α-regret is defined as the
difference between the average cost of the schedules selected by the online algorithm and
α times the average cost of the optimal schedule for the given sequence of jobs. For the
coverage-maximization objective, α-regret is the difference between α times the average
coverage of the optimal fixed schedule and the average coverage of the schedules selected
by the online algorithm. For the objective of minimizing cost, the online algorithm’s 4-
regret approaches zero as n→∞, while for the objective of maximizing coverage, its 1− 1

e

regret approaches zero as n→∞. Assuming P 6= NP, these guarantees are essentially the
best possible among online algorithms that make decisions in polynomial time.
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Our online algorithms can be used in several different feedback settings. We first
consider the feedback setting in which, after using schedule Si to complete job fi, we
receive complete access to fi. We then consider more limited feedback settings in which:
(i) to receive access to fi we must pay a price C, which is added to the regret, (ii) we only
observe fi

(
Si〈t〉

)
for each t ≥ 0, and (iii) we only observe fi (Si).

We also prove tight information-theoretic lower bounds on 1-regret, and discuss ex-
ponential time online algorithms whose regret matches the lower bounds to within loga-
rithmic factors. Interestingly, these lower bounds also match the upper bounds from our
online greedy approximation algorithm up to logarithmic factors, although the latter apply
to α-regret (for α = 4 or α = 1− 1

e
) rather than 1-regret.

The results in this chapter are based on a working paper [76].

2.1.4 Problems that fit into this framework

We now discuss how a number of previously-studied problems fit into the framework of
this chapter.

Special cases of BUDGETED MAXIMUM SUBMODULAR COVERAGE

The BUDGETED MAXIMUM SUBMODULAR COVERAGE problem introduced in this chap-
ter is a slight generalization of the problem of maximizing a monotone submodular set
function subject to a knapsack constraint [56, 84]. The only difference between the two
problems is that, in the latter problem, f(S) may only depend on the set of actions in the
sequence S, and not on the order in which the actions appear. The problem of maximizing
a monotone submodular set function subject to a knapsack constraint in turn generalizes
BUDGETED MAXIMUM COVERAGE [49], which generalizes MAX k-COVERAGE [65].

Special cases of MIN-SUM SUBMODULAR COVER

The MIN-SUM SUBMODULAR COVER problem introduced in this chapter generalizes
several previously-studied problems, including MIN-SUM SET COVER [26], PIPELINED

SET COVER [44, 64], the problem of constructing efficient sequences of trials [22], and
the problem of constructing restart schedules [35, 61, 79]. Specifically, these problems

19



can be represented in our framework by jobs of the form

f (〈(v1, τ1), (v2, τ2), . . . , (vL, τL)〉) =
1

n

n∑
i=1

(
1−

L∏
l=1

(1− pi(vl, τl))

)
. (2.3)

This expression can be interpreted as follows: the job f consists of n subtasks, and pi(v, τ)
is the probability that investing time τ in activity v completes the ith subtask. Thus, f(S) is
the expected fraction of subtasks that are finished after performing the sequence of actions
in S. Assuming pi(v, τ) is a non-decreasing function of τ for all i and v, it can be shown
that any function f of this form satisfies the monotonicity and submodularity properties
required of a job. In the special case n = 1, this follows from Example 1. In the general
case n > 1, this follows from the fact (which follows immediately from the definitions)
that any convex combination of jobs is a job.

The problem of computing restart schedules places no further restrictions on pi(v, τ).
PIPELINED SET COVER is the special case in which for each activity v there is an asso-
ciated time τv, and pi(v, τ) = 1 if τ ≥ τv and pi(v, τ) = 0 otherwise. MIN-SUM SET

COVER is the special case in which, additionally, τv = 1 or τv = ∞ for all v ∈ V . The
problem of constructing efficient sequences of trials corresponds to the case in which we
are given a matrix q, and pi(v, τ) = qv,i if τ ≥ 1 and pi(v, τ) = 0 otherwise.

2.1.5 Applications

We now discuss applications of the results presented in this chapter. The first applica-
tion, “Combining multiple heuristics online”, is evaluated experimentally in Chapter 3.
Evaluating the remaining applications is an interesting area of future work.

Combining multiple heuristics online

An algorithm portfolio [38] is a schedule for interleaving the execution of multiple (ran-
domized) algorithms and periodically restarting them with a fresh random seed. Previous
work has shown that combining multiple heuristics for NP-hard problems into a portfolio
can dramatically reduce average-case running time [33, 38, 78]. In particular, algorithms
based on chronological backtracking often exhibit heavy-tailed run length distributions,
and periodically restarting them with a fresh random seed can reduce the mean running
time by orders of magnitude [34]. Our algorithms can be used to learn an effective algo-
rithm portfolio online, in the course of solving a sequence of problem instances. Chapter
3 considers this application in detail and presents an experimental evaluation.
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Database query optimization

In database query processing, one must extract all the records in a database that satisfy
every predicate in a list of one or more predicates (the conjunction of predicates comprises
the query). To process the query, each record is evaluated against the predicates one at a
time until the record either fails to satisfy some predicate (in which case it does not match
the query) or all predicates have been examined. The order in which the predicates are
examined affects the time required to process the query. Munagala et al. [64] introduced
and studied a problem called PIPELINED SET COVER, which entails finding an evaluation
order for the predicates that minimizes the average time required to process a record. As
discussed in §2.1.4, PIPELINED SET COVER is a special case of MIN-SUM SUBMODU-
LAR COVER. In the online version of PIPELINED SET COVER, records arrive one at a time
and one may select a different evaluation order for each record. In our terms, the records
are jobs and predicates are activities.

Sensor placement

Sensor placement is the task of assigning locations to a set of sensors so as to maximize
the value of the information obtained (e.g., to maximize the number of intrusions that
are detected by the sensors). Many sensor placement problems can be optimally solved by
maximizing a monotone submodular set function subject to a knapsack constraint [55]. As
discussed in §2.1.4, this problem is a special case of BUDGETED MAXIMUM SUBMODU-
LAR COVERAGE. Our online algorithms could be used to select sensor placements when
the same set of sensors is repeatedly deployed in an unknown or adversarial environment.

Viral marketing

Viral marketing infects a set of agents (e.g., individuals or groups) with an advertisement
which they may pass on to other potential customers. Under a standard model of social
network dynamics, the total number of potential customers that are influenced by the ad-
vertisement is a submodular function of the set of agents that are initially infected [48].
Previous work [48] gave an algorithm for selecting a set of agents to initially infect so as to
maximize the influence of an advertisement, assuming the dynamics of the social network
are known. In theory, our online algorithms could be used to adapt a marketing campaign
to unknown or time-varying social network dynamics.
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2.2 Related Work

As discussed in §2.1.4, the MIN-SUM SUBMODULAR COVER problem introduced in
this chapter generalizes several previously-studied problems, including MIN-SUM SET

COVER [26], PIPELINED SET COVER [44, 64], the problem of constructing efficient se-
quences of trials [22], and the problem of constructing restart schedules [61, 35, 79].

Several of these problems have been considered in the online setting. Munagala et
al. [64] gave an online algorithm for PIPELINED SET COVER whose O (log |V|)-regret is
o (n), where n is the number of records (jobs). Babu et al. [9] and Kaplan et al. [44] gave
online algorithms for PIPELINED SET COVER whose 4-regret is o (n), but these bounds
hold only in the special case where the jobs are drawn independently at random from a
fixed probability distribution. The online setting in this chapter, where the sequence of
jobs may be arbitrary, is more challenging from a technical point of view.

As already mentioned, BUDGETED MAXIMUM SUBMODULAR COVERAGE general-
izes the problem of maximizing a monotone submodular set function subject to a knapsack
constraint. Previous work gave offline greedy approximation algorithms for this problem
[56, 84], which generalized earlier algorithms for BUDGETED MAXIMUM COVERAGE

[49] and MAX k-COVERAGE [65]. To our knowledge, none of these three problems have
previously been studied in an online setting.

It is worth pointing out that the online problems we consider here are quite different
from online set cover problems that require one to construct a single collection of sets that
cover each element in a sequence of elements that arrive online [1, 7]. Likewise, our work
is orthogonal to work on online facility location problems [62].

The main technical contribution of this chapter is to convert some specific greedy ap-
proximation algorithms into online algorithms. Recently, Kakade et al. [41] gave a generic
procedure for converting an α-approximation algorithm for a linear problem into an on-
line algorithm whose α-regret is o (n), and this procedure could be applied to the problems
considered in this chapter. However, both the running time of their algorithm and the re-
sulting regret bounds depend on the dimension of the linear problem, and a straightforward
application of their algorithm leads to running time and regret bounds that are exponential
in |V|.
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2.3 Offline Algorithms

In this section we consider the offline problems BUDGETED MAXIMUM SUBMODULAR

COVERAGE and MIN-SUM SUBMODULAR COVER. In the offline setting, we are given
as input a job f : S → [0, 1]. Our goal is to compute a schedule S that achieves one
of two objectives: for BUDGETED MAXIMUM SUBMODULAR COVERAGE, we wish to
maximize f(S) subject to the constraint ` (S) ≤ T (for some fixed T > 0), while for
MIN-SUM SUBMODULAR COVER, we wish to minimize the cost c (f, S).

The offline algorithms presented in this section will serve as the basis for the online
algorithms we develop in the next section.

Note that we have defined the offline problem in terms of optimizing a single job.
However, given a set {f1, f2, . . . , fn}, we can optimize average schedule cost (or coverage)
by applying our offline algorithm to the job f = 1

n

∑n
i=1 fi (as already mentioned, any

convex combination of jobs is a job).

2.3.1 Computational complexity

Both of the offline problems considered in this chapter are NP-hard even to approximate.
As discussed in §2.1.4, MIN-SUM SUBMODULAR COVER generalizes MIN-SUM SET

COVER, and BUDGETED MAXIMUM SUBMODULAR COVERAGE generalizes MAX k-
COVERAGE. In a classic paper, Feige proved that for any ε > 0, acheiving an approxima-
tion ratio of 1 − 1

e
+ ε for MAX k-COVERAGE is NP-hard [24]. Recently, Feige, Lovász,

and Tetali [26] introduced MIN-SUM SET COVER and proved that for any ε > 0, achiev-
ing a 4−ε approximation ratio for MIN-SUM SET COVER is NP-hard. These observations
immediately yield the following theorems.

Theorem 1. For any ε > 0, achieving a 1 − 1
e

+ ε approximation ratio for BUDGETED

MAXIMUM SUBMODULAR COVERAGE is NP-hard.

Theorem 2. For any ε > 0, achieving a 4 − ε approximation ratio for MIN-SUM SUB-
MODULAR COVER is NP-hard.

2.3.2 Greedy approximation algorithm

In this section we present a greedy approximation algorithm that can be used to achieve
a 4 approximation for MIN-SUM SUBMODULAR COVER and a 1 − 1

e
approximation for
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BUDGETED MAXIMUM SUBMODULAR COVERAGE. By Theorems 1 and 2, achieving a
better approximation ratio for either problem is NP-hard.

Consider the schedule defined by the following simple greedy rule. LetG = 〈g1, g2, . . .〉
be the schedule defined inductively as follows: G1 = 〈〉,Gj = 〈g1, g2, . . . , gj−1〉 for j > 1,
and

gj = arg max
(v,τ)∈V×R>0

{
f (Gj ⊕ 〈(v, τ)〉)− f (Gj)

τ

}
. (2.4)

That is, G is constructed by greedily appending an action (v, τ) to the schedule so as to
maximize the resulting increase in f per unit time.

Once we reach a j such that f(Gj) = 1, we may stop adding actions to the schedule. In
general, however,Gmay contain an infinite number of actions. For example, if each action
(v, τ) represents running a Las Vegas algorithm v for time τ and f(S) is the probability
that any of the runs in S return a solution to some problem instance (see Example 1), it
is possible that f(S) < 1 for any finite schedule S. The best way of dealing with this
is application-dependent. In the case of Example 1, we might stop computing G when
f(Gj) ≥ 1− δ for some small δ > 0.

The time required to compute G is also application-dependent. In the applications
of interest to us, evaluating the arg max in (2.4) will only require us to consider a finite
number of actions (v, τ). In some cases, the evaluation of the arg max in (2.4) can be sped
up using application-specific data structures. In Chapter 3, we discuss the time required to
compute G for various applications of interest.

As mentioned in §2.1.2, our analysis of the greedy approximation algorithm will only
require that f is monotone and that f satisfies Condition 1. The following lemma shows
that if f is a job, then f also satisfies these conditions.

Lemma 1. If f satisfies (2.1), then f satisfies Condition 1. That is, for any schedules
S1, S ∈ S, we have

f(S1 ⊕ S)− f(S1)

` (S)
≤ max

(v,τ)∈V×R>0

{
f(S1 ⊕ 〈(v, τ)〉)− f(S1)

τ

}
.

Proof. Let r denote the right hand side of the inequality. Let S = 〈a1, a2, . . . , aL〉, where
al = (vl, τl). Let

∆l = f(S1 ⊕ 〈a1, a2, . . . , al〉)− f(S1 ⊕ 〈a1, a2, . . . , al−1〉) .
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We have

f(S1 ⊕ S) = f(S1) +
L∑
l=1

∆l (telescoping series)

≤ f(S1) +
L∑
l=1

(f(S1 ⊕ 〈al〉)− f(S1)) (submodularity)

≤ f(S1) +
L∑
l=1

r · τl (definition of r)

= f(S1) + r · ` (S) .

Rearranging this inequality gives f(S1⊕S)−f(S1)
`(S)

≤ r, as claimed.

The key to the analysis of the greedy approximation algorithm is the following fact,
which is the only property of G that we will use in our analysis.

Fact 1. For any schedule S, any positive integer j, and any t > 0, we have

f(S〈t〉) ≤ f(Gj) + t · sj

where sj is the jth value of the maximum in (2.4).

Fact 1 holds because f(S〈t〉) ≤ f(Gj ⊕ S〈t〉) by monotonicity, while f(Gj ⊕ S〈t〉) ≤
f(Gj) + t · sj by Condition 1 and the definition of sj .

Maximizing coverage

We first analyze the performance of the greedy algorithm on the BUDGETED MAXIMUM

SUBMODULAR COVERAGE problem. The following theorem shows that, for certain val-
ues of T , the greedy schedule achieves the optimal approximation ratio of 1 − 1

e
for this

problem. The proof of the theorem is similar to arguments in [56, 84].

Theorem 3. Let L be a positive integer, and let T =
∑L

j=1 τj , where gj = (vj, τj). Then
f
(
G〈T 〉

)
>
(
1− 1

e

)
maxS∈S

{
f
(
S〈T 〉

)}
.

Proof. LetC∗ = maxS∈S
{
f
(
S〈T 〉

)}
, and for any positive integer j, let ∆j = C∗−f (Gj).

By Fact 1, C∗ ≤ f (Gj) + Tsj . Thus

∆j ≤ Tsj = T

(
∆j −∆j+1

τj

)
.
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Rearranging this inequality gives ∆j+1 ≤ ∆j

(
1− τj

T

)
. Unrolling this inequality, we get

∆L+1 ≤ ∆1

(
L∏
j=1

1− τj
T

)
.

Subject to the constraint
∑L

j=1 τj = T , the product series is maximized when τj = T
L

for
all j. Thus we have

C∗ − f (GL+1) = ∆L+1 ≤ ∆1

(
1− 1

L

)L
< ∆1

1

e
≤ C∗

1

e
.

Thus f (GL+1) > (1− 1
e
)C∗, as claimed.

Theorem 3 shows that G gives a 1 − 1
e

approximation to the problem of maximizing
coverage at time T , provided that T equals the sum of the durations of the actions in Gj

for some positive integer j. Under the assumption that f is a job (as opposed to the weaker
assumption that f satisfies Condition 1), the greedy algorithm can be combined with the
partial enumeration approach of Khuller et al. [49] to achieve a 1− 1

e
approximation ratio

for any fixed T . The idea of this approach is to guess a sequence Y = 〈a1, a2, a3〉 of three
actions, and then run the greedy algorithm on the job f ′(S) = f (Y ⊕ S) − f (Y ) with
budget T − T0, where T0 is the total time consumed by the actions in Y . The arguments
of [49, 84] show that, for some choice of Y , this yields a

(
1− 1

e

)
-approximation. In order

for this approach to be feasible, actions must have discrete durations, so that the number
of possible choices of Y is finite.

Minimizing cost

We next analyze the performance of the greedy algorithm on the MIN-SUM SUBMODU-
LAR COVER problem. The following theorem uses the proof technique of [26] to show
that the greedy scheduleG has cost at most 4 times that of the optimal schedule, generaliz-
ing results of [26, 44, 64, 78, 79]. As already mentioned, achieving a better approximation
ratio is NP-hard.

Theorem 4. c (f,G) ≤ 4
∫∞
t=0

1−maxS∈S
{
f
(
S〈t〉
)}

dt ≤ 4 minS∈S c (f, S).

Proof. LetRj = 1−f (Gj); let xj =
Rj
2sj

; let yj =
Rj
2

; and let h(x) = 1−maxS
{
f
(
S〈x〉

)}
.

By Fact 1,

max
S

{
f(S〈xj〉)

}
≤ f (Gj) + xjsj = f (Gj) +

Rj

2
.
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Thus h(xj) ≥ Rj − Rj
2

= yj . The monotonicity of f implies that h(x) is non-increasing
and also that the sequence 〈y1, y2, . . .〉 is non-increasing. As illustrated in Figure 2.1, these
facts imply that

∫∞
x=0

h(x) dx ≥
∑

j≥1 xj (yj − yj+1). Thus we have∫ ∞
t=0

1−max
S∈S

{
f
(
S〈t〉
)}

dt =

∫ ∞
x=0

h(x) dx

≥
∑
j≥1

xj (yj − yj+1) (Figure 2.1)

=
1

4

∑
j≥1

Rj
(Rj −Rj+1)

sj

=
1

4

∑
j≥1

Rjτj

≥ 1

4
c (f,G) (monotonicity of f )

which proves the theorem.

y1
x1

y2
x2

y3
x3

y4
x4

y5

x5

x

h(x)

Figure 2.1: An illustration of the inequality
∫∞
x=0

h(x) dx ≥
∑

j≥1 xj (yj − yj+1). The left
hand side is the area under the curve, whereas the right hand side is the sum of the areas
of the shaded rectangles.

A refined greedy approximation algorithm

A drawback of G is that it greedily chooses an action gj = (v, τ) that maximizes the
marginal increase in f divided by τ , whereas the contribution of (v, τ) to the cost of G is
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not τ but rather ∫ τ

t=0

1− f (Gj ⊕ 〈(v, t)〉) dt .

This can lead G to perform suboptimally even in seemingly easy cases. To see this, let
V = {v1, v2}, let S1

t = 〈(v1, t)〉, and let S2
t = 〈(v2, t)〉. Let f be a job defined by

f(S1
t ) =

{
1 if t ≥ 1
0 otherwise

whereas
f(S2

t ) = min {1, t} .

For any schedule S = 〈a1, a2, . . . , aL〉 containing more than one action, let f(S) =
maxLl=1 f(〈al〉). It is straightforward to check that f satisfies the monotonicity and sub-
modularity conditions required of a job.

Here the optimal schedule is S∗ = 〈(v2, 1)〉, with cost c (f, S∗) =
∫ 1

t=0
1− t dt = 1

2
.

However, if ties in the evaluation of the arg max in (2.4) are broken appropriately, the
greedy algorithm will choose the schedule G = 〈(v1, 1)〉, with cost c (f,G) = 1.

To improve performance in cases such as this, it is natural to consider the schedule
G′ = 〈g′1, g′2, . . .〉 defined inductively as follows: G′j =

{
g′1, g

′
2, . . . , g

′
j−1

}
and

g′j = arg max
(v,τ)∈V×R>0

{
f
(
G′j ⊕ 〈(v, τ)〉

)
− f

(
G′j
)∫ τ

t=0
1− f

(
G′j ⊕ 〈(v, t)〉

)
dt

}
. (2.5)

Theorem 5 shows that G′ achieves the same approximation ratio as G. The proof is
similar to the proof of Theorem 4, and is given in Appendix A.

Theorem 5. c (f,G′) ≤ 4
∫∞
t=0

1−maxS∈S
{
f
(
S〈t〉
)}

dt ≤ 4 minS∈S {c (f, S)}.

Furthermore, we prove in Chapter 3 (see Theorem 18) that, in contrast to G, G′ is
optimal in the important special case when V = {v}, action (v, τ) represents running a Las
Vegas algorithm v (with a fresh random seed) for time τ , and f(S) equals the probability
that at least one of the runs in S returns a solution to some particular problem instance (as
described in Example 1).

Handling non-uniform additive error

We now consider the case in which the jth decision made by the greedy algorithm is
performed with some additive error εj . This case is of interest for two reasons. First, in
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some cases it may not be practical to evaluate the arg max in (2.4) exactly. Second, and
more importantly, we will end up viewing our online algorithm as a version of the offline
greedy algorithm in which each decision is made with some additive error. In this section
we analyze the original greedy scheduleG as opposed to the refined scheduleG′ described
in the previous section, because it is the original schedule G that will form the basis of our
online algorithm (as we discuss further in §2.5, devising an online algorithm based on G′

is an interesting open problem).

We denote by Ḡ = 〈ḡ1, ḡ2, . . .〉 a variant of the schedule G in which the jth arg max
in (2.4) is evaluated with additive error εj . More formally, Ḡ is a schedule that, for any
j ≥ 1, satisfies

f
(
Ḡj ⊕ ḡj

)
− f

(
Ḡj

)
τ̄j

≥ max
(v,τ)∈V×R>0

{
f
(
Ḡj ⊕ 〈(v, τ)〉

)
− f

(
Ḡj

)
τ

}
− εj (2.6)

where Ḡ0 = 〈〉, Ḡj = 〈ḡ1, ḡ2, . . . , ḡj−1〉 for j > 1, and ḡj = (v̄j, τ̄j).

The following two theorems summarize the performance of Ḡ. The proofs are given
in Appendix A, and are along the same lines as that those of theorems 3 and 4.

Theorem 6. Let L be a positive integer, and let T =
∑L

j=1 τ̄j , where ḡj = (v̄j, τ̄j). Then

f
(
Ḡ〈T 〉

)
>

(
1− 1

e

)
max
S∈S

{
f
(
S〈T 〉

)}
−

L∑
j=1

εj τ̄j .

Theorem 7. Let L be a positive integer, and let T =
∑L

j=1 τ̄j , where ḡj = (v̄j, τ̄j). For

any schedule S, define cT (f, S) ≡
∫ T
t=0

1− f
(
S〈t〉
)
dt. Then

cT
(
f, Ḡ

)
≤ 4

∫ ∞
t=0

1−max
S∈S

{
f
(
S〈t〉
)}

dt+
L∑
j=1

Ej τ̄j .

where Ej =
∑

l<j εlτ̄l.

2.4 Online Algorithms

In this section we consider the online versions of BUDGETED MAXIMUM SUBMODULAR

COVERAGE and MIN-SUM SUBMODULAR COVER. In the online setting we are fed,
one at a time, a sequence 〈f1, f2, . . . , fn〉 of jobs. Prior to receiving job fi, we must
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specify a schedule Si. We then receive complete access to the function fi. We measure
the performance of our online algorithm using two different notions of regret. For the cost
objective, our goal is to minimize the 4-regret

Rcost ≡
n∑
i=1

cT (Si, fi)− 4 ·min
S∈S

{
n∑
i=1

c (S, fi)

}

for some fixed T > 0. Here, for any schedule S and job f , we define cT (S, f) =∫ T
t=0

1− f
(
S〈t〉
)
dt to be the value of c (S, f) when the integral is truncated at time T .

Some form of truncation is necessary because c (Si, fi) could be infinite, and without
bounding it we could not prove any finite bound on regret (our regret bounds will be stated
as a function of T ).

For the objective of maximizing the coverage at time T , our goal is to minimize the
(1− 1

e
)-regret

Rcoverage ≡
(

1− 1

e

)
max
S∈S

{
n∑
i=1

fi
(
S〈T 〉

)}
−

n∑
i=1

fi (Si)

where we require that E [` (Si)] = T , in expectation over the online algorithm’s random
bits. In other words, we allow the online algorithm to treat T as a budget in expectation,
rather than a hard budget.

Our goal is to bound the expected values of Rcost (resp. Rcoverage) on the worst-case
sequence of n jobs. We consider the so-called oblivious adversary model, in which the
sequence of jobs is fixed in advance and does not change in response to the decisions
made by our online algorithm, although we believe our results can be readily extended
to the case of adaptive adversaries. Note that the constant of 4 in the definition of Rcost

and the constant of 1 − 1
e

in the definition of Rcoverage stem from the NP-hardness of the
corresponding offline problems, as discussed in §2.3.1.

For the purposes of the results in this section, we confine our attention to schedules that
consist of actions that come from some finite set A, and we assume that the actions in A
have integer durations (i.e. A ⊆ V×Z>0). Note that this is not a serious limitation, because
real-valued action durations can always be discretized at whatever level of granularity is
desired.

As mentioned in §2.1.2, our results in the online setting will hold for any sequence
〈f1, f2, . . . , fn〉 of functions that satisfies Condition 2. The following lemma shows that
any sequence of jobs satisfies this condition. The proof follows along the same lines as the
proof of Lemma 1, and is given in Appendix A.
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Lemma 2. Any sequence 〈f1, f2, . . . , fn〉 of jobs satisfies Condition 2. That is, for any
sequence S1, S2, . . . , Sn of schedules and any schedule S,∑n

i=1 fi(Si ⊕ S)− fi(Si)
` (S)

≤ max
(v,τ)∈V×R>0

{∑n
i=1 fi(Si ⊕ 〈(v, τ)〉)− fi(Si)

τ

}
.

2.4.1 Background: the experts problem

In the experts problem, one has access to a set of k experts, each of whom gives out a piece
of advice every day. On each day i, one must select an expert ei whose advice to follow.
Following the advice of expert j on day i yields a reward xij . At the end of day i, the value
of the reward xij for each expert j is made public, and can be used as the basis for making
choices on subsequent days. One’s regret at the end of n days is equal to

max
1≤j≤k

{
n∑
i=1

xij

}
−

n∑
i=1

xiei .

Note that the historical performance of an expert does not imply any guarantees about its
future performance. Remarkably, randomized decision-making algorithms nevertheless
exist whose regret grows sub-linearly in the number of days. By picking experts using
such an algorithm, one can guarantee to obtain (asymptotically as n → ∞) an average
reward that is as large as the maximum reward that could have been obtained by following
the advice of any fixed expert for all n days.

In particular, for any fixed value of Gmax, where Gmax = max1≤j≤k
{∑n

i=1 x
i
j

}
, the

randomized weighted majority algorithm (WMR) [60] can be used to achieve worst-case
regret O

(√
Gmax ln k

)
. If Gmax is not known in advance, a putative value can be guessed

and doubled to achieve the same guarantee up to a constant factor.

2.4.2 Unit-cost actions

In the special case in which each action takes unit time (i.e., A ⊆ V × {1}), our online
algorithm OGunit is very simple. OGunit runs T experts algorithms:2 E1, E2, . . . , ET ,
where T is the number of time steps for which our schedule is defined. The set of experts is
A. Just before job fi arrives, each experts algorithm Et selects an action ait. The schedule
used by OGunit on job fi is Si = 〈ai1, ai2, . . . , aiT 〉. The payoff that Et associates with
action a is fi

(
Si〈t−1〉 ⊕ a

)
− fi

(
Si〈t−1〉

)
.

2In general, E1, E2, . . . , ET will be T distinct copies of a single experts algorithm, such as randomized
weighted majority.
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Algorithm OGunit

Input: integer T , experts algorithms E1, E2, . . . , ET .

For i from 1 to n:
1. For each t, 1 ≤ t ≤ T , use Et to select an action ait.

2. Select the schedule Si = 〈ai1, ai2, . . . , aiT 〉.

3. Receive the job fi.

4. For each t, 1 ≤ t ≤ T , and each action a ∈ A, feed back
fi
(
Si〈t−1〉 ⊕ a

)
− fi

(
Si〈t−1〉

)
as the payoff Et would have received

by choosing action a.

Let rt be the regret experienced by experts algorithm Et when running OGunit, and let
R =

∑T
t=1 rt. The key to the analysis of OGunit is the following lemma, which relates the

regret experienced by the experts algorithms to the regret on the original online problem.

Lemma 3. Rcoverage ≤ R and Rcost ≤ TR.

Proof. We will view OGunit as producing an approximate version of the offline greedy
schedule for the function f = 1

n

∑n
i=1 fi. First, view the sequence of actions selected by Et

as a single “meta-action” ãt, and extend the domain of each fi to include the meta-actions
by defining fi(S ⊕ ãt) = fi(S ⊕ ait) for all S ∈ S. Thus, the online algorithm produces a
single schedule Si = S̃ = 〈ã1, ã2, . . . , ãT 〉 for all i. By construction,

rt
n

= max
a∈A

{
f
(
S̃〈t−1〉 ⊕ a

)
− f

(
S̃〈t−1〉

)}
−
(
f
(
S̃〈t−1〉 ⊕ ãt

)
− f

(
S̃〈t−1〉

))
.

Thus OGunit behaves exactly like the greedy schedule Ḡ for the function f , where the tth

decision is made with additive error rt
n

.

Furthermore, the fact that the sequence 〈f1, f2, . . . , fn〉 satisfies Condition 2 implies
that for any integer t (1 ≤ t ≤ T ) and any schedule S, we have

f(S̃〈t−1〉 ⊕ S)− f(S̃〈t−1〉)

` (S)
≤ max

(v,τ)∈V×R>0

{
f(S̃〈t−1〉 ⊕ 〈(v, τ)〉)− f(S̃〈t−1〉)

τ

}
.

Thus the function f satisfies Condition 1, so the analysis of the greedy approximation
algorithm in §2.3.2 applies to the schedule S̃. In particular, Theorem 6 implies that
Rcoverage ≤

∑T
t=1 rt = R. Similarly, Theorem 7 implies that Rcost ≤ TR.
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To complete the analysis, it remains to bound E [R]. First, note that the payoffs to each
experts algorithm Et depend on the choices made by experts algorithms E1, E2, . . . , Et−1,
but not on the choices made by Et itself. Thus, from the point of view of Et, the payoffs
are generated by a non-adaptive adversary. Suppose that randomized weighted majority
(WMR) is used as the subroutine experts algorithm. Because each payoff is at most 1 and
there are n rounds, E [rt] = O

(√
Gmax ln |A|

)
= O

(√
n ln |A|

)
, so a trivial bound is

E [R] = O
(
T
√
n ln |A|

)
. In fact, we can show that the worst case is whenGmax = Θ

(
n
T

)
for all T experts algorithms, leading to the following improved bound. The proof is given
in Appendix A.

Lemma 4. Algorithm OGunit, run with WMR as the subroutine experts algorithm, has
E [R] = O

(√
Tn ln |A|

)
in the worst case.

Combining Lemmas 3 and 4 yields the following theorem.

Theorem 8. Algorithm OGunit, run with WMR as the subroutine experts algorithm, has
E [Rcoverage] = O

(√
Tn ln |A|

)
and E [Rcost] = O

(
T
√
Tn ln |A|

)
in the worst case.

2.4.3 From unit-cost actions to arbitrary actions

In this section we generalize the online greedy algorithm presented in the previous section
to accommodate actions with arbitrary durations. Like OGunit, our generalized algorithm
OG makes use of a series of experts algorithms E1, E2, . . . , EL (for L to be determined).
On each round i, OG constructs a schedule Si as follows: for t = 1, 2, . . . , L, it uses Et to
choose an action ait = (v, τ) ∈ A, and appends this action to Si with probability 1

τ
. The

payoff that Et associates with action a equals 1
τ

times the increase in f that would have
resulted from appending a to the schedule-under-construction.
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Algorithm OG
Input: integer L, experts algorithms E1, E2, . . . , EL.

For i from 1 to n:
1. Let Si,0 = 〈〉 be the empty schedule.

2. For each t, 1 ≤ t ≤ L,

(a) Use Et to choose an action ait = (v, τ) ∈ A.

(b) With probability 1
τ
, set Si,t = Si,t−1⊕〈a〉; else set Si,t = Si,t−1.

3. Select the schedule Si = Si,L.

4. Receive the job fi.

5. For each t, 1 ≤ t ≤ L, and each action a ∈ A, feed back

xit,a =
1

τ
(fi (Si,t−1 ⊕ a)− fi (Si,t−1))

as the payoff Et would have received by choosing action a.

Our analysis of OG follows along the same lines as the analysis of OGunit in the
previous section. As in the previous section, we will view each experts algorithm Et as
selecting a single “meta-action” ãt. We extend the domain of each fi to include the meta-
actions by defining

fi(S ⊕ ãt) =

{
fi(S ⊕ ait) if ait was appended to Si
fi(S) otherwise.

Thus, the online algorithm produces a single schedule Si = S̃ = 〈ã1, ã2, . . . , ãL〉 for all i.

For the purposes of analysis, we will imagine that each meta-action ãt always takes
unit time (whereas in fact, ãt takes unit time per job in expectation). We show later that
this assumption does not invalidate any of our arguments.

Let f = 1
n

∑n
i=1 fi, and let S̃t = 〈ã1, ã2, . . . , ãt〉. As in the previous section, the fact

that the sequence 〈f1, f2, . . . , fn〉 satisfies Condition 2 implies that f satisfies Condition 1
(even if the schedule S1 in the statement of Condition 1 contains meta-actions). Thus S̃
can be viewed as a version of the greedy schedule in which the tth decision is made with
additive error (by definition) equal to

εt = max
(v,τ)∈A

{
1

τ

(
f(S̃t−1 ⊕ a)− f(S̃t−1)

)}
−
(
f(S̃t−1 ⊕ ãt)− f(S̃t−1)

)
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(where we have used the assumption that ãt takes unit time).

As in the previous section, let rt be the regret experienced by Et. In general, rt
n
6= εt.

However, we claim that E [εt] = E
[
rt
n

]
. To see this, fix some integer t (1 ≤ t ≤ L), let

At = 〈a1
t , a

2
t , . . . , a

n
t 〉 be the sequence of actions selected by Et, and let yit be the payoff

received by Et on round i (i.e., yit = xi
t,ait

). By construction,

yit = E
[
fi(S̃t−1 ⊕ ãt)− fi(S̃t−1)|At, S̃t−1

]
.

Thus,

rt
n

= max
(v,τ)∈A

{
1

τ

(
f(S̃t−1 ⊕ a)− f(S̃t−1)

)}
− E

[
f(S̃t−1 ⊕ ãt)− f(S̃t−1)|At, S̃t−1

]
.

Taking the expectation of both sides of the equations for εt and rt then shows that E [εt] =
E
[
rt
n

]
, as claimed.

We now prove a bound on E [Rcoverage]. As already mentioned, f satisfies Condition 1,
so the greedy schedule’s approximation guarantees apply to f . In particular, by Theorem
6, we have Rcoverage ≤

∑T
t=1 rt. Thus E [Rcoverage] ≤ E [R], where R =

∑T
t=1 rt.

To bound E [Rcoverage], it remains to justify the assumption that each meta-action ãt
always takes unit time. Regardless of what actions are chosen by each experts algorithm,
the schedule is defined for L time steps in expectation. Thus if we set L = T , the sched-
ules Si returned by OG satisfy the budget in expectation, as required in the definition of
Rcoverage. Thus, as far as Rcoverage is concerned, the meta-actions may as well take unit
time (in which case ` (Si) = T with probability 1). Combining the bound on E [R] stated
in Lemma 4 with the fact that E [Rcoverage] ≤ E [R] yields the following theorem.

Theorem 9. Algorithm OG, run with input L = T , has E [Rcoverage] ≤ E [R]. If WMR is

used as the subroutine experts algorithm, then E [R] = O
(√

Tn ln |A|
)

.

The argument bounding E [Rcost] is similar, although somewhat more involved, and is
given in Appendix A. Relative to the case of unit-cost actions addressed in the previous
section, the additional complication here is that ` (Si) is now a random variable, whereas
in the definition of Rcost the cost of a schedule is always calculated up to time T . This
complication can be overcome by making the probability that ` (Si) < T sufficiently small,
which can be accomplished by setting L � T and applying concentration inequalities.
However, E [R] grows as a function of L, so we do not want to make L too large. It turns
out that the (approximately) best bound is obtained by setting L = T lnn.
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Theorem 10. Algorithm OG, run with input L = T lnn, has E [Rcost] = O(T lnn · E [R]

+ T
√
n). In particular, E [Rcost] = O

(
(lnn)

3
2T
√
Tn ln |A|

)
if WMR is used as the

subroutine experts algorithm.

2.4.4 Dealing with limited feedback

Thus far we have assumed that, after specifying a schedule Si, the online algorithm re-
ceives complete access to the job fi. We now consider three more limited feedback settings
that may arise in practice:

1. In the priced feedback model, to receive access to fi we must pay a price C. Each
time we do so, C is added to the regretRcoverage, and TC is added to the regretRcost.

2. In the partially transparent feedback model, we only observe fi
(
Si〈t〉

)
for each

t > 0.

3. In the opaque feedback model, we only observe fi (Si).

The priced and partially transparent feedback models arise naturally in the case where
action (v, τ) represents running a deterministic algorithm v for τ (additional) time units in
order to solve some decision problem. Assuming we halt once some v returns an answer,
we obtain exactly the information that is revealed in the partially transparent model. Al-
ternatively, running each v until it terminates would completely reveal the function fi, but
incurs a computational cost.

Algorithm OG can be adapted to work in each of these three feedback settings. In all
cases, the high-level idea is to replace the unknown quantities used by OG with (unbi-
ased) estimates of those quantities. This technique has been used in a number of online
algorithms (e.g., see [5, 8, 17]).

Specifically, for each day i and expert j, let x̂ij ∈ [0, 1] be an estimate of xij , such that

E
[
x̂ij
]

= γxij + δi

for some constant δi (which is independent of j). In order words, we require that 1
γ

(
x̂ij − δi

)
is an unbiased estimate of xij . Furthermore, let x̂ij be independent of the choices made by
the experts algorithm.

Let E be an experts algorithm, and let E ′ be the experts algorithm that results from
feeding back x̂ij to E (in place of xij) as the payoff E would have received by selecting
expert j on day i. The following lemma relates the performance of E ′ to that of E .
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Lemma 5. The worst-case expected regret that E ′ can incur over a sequence of n days is
at most R

γ
, where R is the worst-case expected regret that E can incur over a sequence of

n days.

Proof. Let x̂ = 〈x̂1, x̂2, . . . , x̂n〉 be the sequence of estimated payoffs. Because the esti-
mates x̂ij are independent of the choices made by E ′, we may imagine for the purposes of
analysis that x̂ is fixed in advance. Fix some expert j. By definition of R,

E

[
n∑
i=1

x̂iei |x̂

]
≥

(
n∑
i=1

x̂ij

)
−R .

Taking the expectation of both sides with respect to the choice of x̂ then yields

E

[
n∑
i=1

(
γxiei + δi

)]
≥

n∑
i=1

(
γxij + δi

)
−R

or rearranging,

E

[
n∑
i=1

xiei

]
≥

(
n∑
i=1

xij

)
− R

γ
.

Because j was arbitrary, it follows that E ′ has worst-case expected regret R
γ

.

The priced feedback model

In the priced feedback model, we use a technique similar to that of [17]. With probabiltiy
γ, we will pay cost C in order to reveal fi, and then feed the usual payoffs back to each
experts algorithm Et. Otherwise, with probability 1 − γ, we feed back zero payoffs to
each Et (note that without paying cost C, we receive no information whatsoever about fi,
and thus we have no basis for assigning different payoffs to different actions). We refer to
this algorithm as OGp. By Lemma 5, E [rt] is bounded by 1

γ
times the worst-case regret

of Et. By bounding E [Rcoverage] and E [Rcost] as a function of γ and then optimizing γ
to minimize the bounds, we obtain the following theorem, a complete proof of which is
given in Appendix A.

Theorem 11. Algorithm OGp, run with WMR as the subroutine experts algorithm, has
E [Rcoverage] = O

(
(C ln |A|) 1

3 (Tn)
2
3

)
(when run with input L = T ) and has E [Rcost] =

O
(

(T lnn)
5
3 (C ln |A|) 1

3 (n)
2
3

)
(when run with input L = T lnn) in the priced feedback

model.
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The partially transparent feedback model

In the partially transparent feedback model, each Et will run a copy of the Exp3 algorithm
[5], which is a randomized experts algorithm that only requires as feedback the payoff
of the expert it actually selects. In the partially transparent feedback model, if Et selects
action ait = (v, τ) on round i, it will receive feedback fi (Si,t−1 ⊕ ait) − fi (Si,t−1) if ait is
appended to the schedule (with probability 1

τ
), and will receive zero payoff otherwise. Ob-

serve that the information necessary to compute these payoffs is revealed in the partially
transparent feedback model. Furthermore, the expected payoff that Et receives if it selects
action a is xit,a, and the payoff that Et receives from choosing action a on round i is inde-
pendent from the choices made by Et on previous rounds. Thus, by Lemma 5, the worst-
case expected regret bounds of Exp3 can be applied to the true payoffs xit,a. The worst-

case expected regret of Exp3 is O
(√

n |A| ln |A|
)

, so E [R] = O
(
L
√
n |A| ln |A|

)
.

This bound, combined with Theorems 9 and 10, establishes the following theorem.

Theorem 12. Algorithm OG, run with Exp3 as the subroutine experts algorithm, has
E [Rcoverage] = O

(
T
√
n |A| ln |A|

)
(when run with input L = T ) and has E [Rcost] =

O
(

(T lnn)2
√
n |A| ln |A|

)
(when run with input L = T lnn) in the partially transparent

feedback model.

The opaque feedback model

In the opaque feedback model, our algorithm and its analysis are similar to those of OGp.
With probability 1− γ, we feed back zero payoffs to each Et. Otherwise, with probability
γ, we explore as follows. Pick t uniformly at random from {1, 2, . . . , L}, and pick an
action a = (v, τ) uniformly at random from A. Select the schedule Si = Si,t−1 ⊕ a.
Observe fi(Si), and feed 1

τ
times this value back to Et as the payoff associated with action

a. Finally, feed back zero for all other payoffs.

We refer to this algorithm as OGo. The key to its analysis is the following observation.
Letting x̂it,a denote the payoff to experts algorithm Et for choosing action a = (v, τ) on
round i, we have

E
[
x̂it,a
]

= γ · 1

L
· 1

|A|
· 1

τ
· f(Si,t−1 ⊕ a) =

γ

L |A|
xit,a + δi

where xit,a = 1
τ

(f(Si,t−1 ⊕ a)− f(Si,t−1)) and δi = γ
L|A|τ f(Si,t−1). Thus, x̂it,a is a biased

estimate of the correct payoff, and Lemma 5 implies that E [rt] is at most L|A|
γ

times the
worst-case expected regret of Et.
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The performance of OGo is summarized in the following theorem, which we prove in
Appendix A.

Theorem 13. Algorithm OGo, run with WMR as the subroutine experts algorithm, has
E [Rcoverage] = O

(
T (|A| ln |A|) 1

3n
2
3

)
(when run with input L = T ) and has E [Rcost] =

O
(

(T lnn)2(|A| ln |A|) 1
3n

2
3

)
(when run with input L = T lnn) in the opaque feedback

model.

2.4.5 Lower bounds on regret

In Appendix A we prove the following lower bounds on regret. The lower bounds apply to
the online versions of two set-covering problems: MAX k-COVERAGE and MIN-SUM SET

COVER. The offline versions of these two problems were defined in §2.1.4. The online ver-
sions are special cases of the online versions of BUDGETED MAXIMUM SUBMODULAR

COVERAGE and MIN-SUM SUBMODULAR COVER, respectively. For a formal descrip-
tion of the online set covering problems, see the text leading up to the proofs of Theorems
14 and 15 in Appendix A.

It is worth pointing out that the lower bounds hold even in a distributional online
setting in which the jobs f1, f2, . . . , fn are drawn independently at random from a fixed
distribution.

Theorem 14. Any algorithm for online MAX k-COVERAGE has worst-case expected 1-

regret Ω

(√
Tn ln |V|

T

)
, where V is the collection of sets and T = k is the number of sets

selected by the online algorithm on each round.

Theorem 15. Any algorithm for online MIN-SUM SET COVER has worst-case expected

1-regret Ω

(
T
√
Tn ln |V|

T

)
, where V is a collection of sets and T is the number of sets

selected by the online algorithm on each round.

In Appendix A we show that there exist exponential-time online algorithms for these
online set covering problems whose regret matches the lower bounds in Theorem 14 (resp.
Theorem 15) up to constant (resp. logarithmic) factors.

Note that the upper bounds in Theorem 8 match the lower bounds in Theorems 14 and
15 up to logarithmic factors, although the former apply to (1− 1

e
)-regret and 4-regret rather

than 1-regret.
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2.4.6 Refining the online greedy algorithm

We now discuss two simple modifications to OG that do not improve its worst-case guar-
antees, but that often improve its performance in practice (we make use of both of these
modifications in our experiments in Chapter 3).

Avoiding duplicate actions

In many practical applications, it is never worthwhile to perform the same action twice.
As an example, suppose that an action a = (v, τ) represents performing a run of length τ
of a deterministic algorithm v (and then removing the run from memory), and f(S) = 1
if performing the actions in S yields a solution to a problem instance, and f(S) = 0
otherwise. Clearly, performing a twice can never increase the value of f . In cases such as
this, the online algorithm OG as currently defined may never “figure out” that it should
avoid performing the same action twice, as the following example illustrates.

Example 2. Let A = {a1, a2, . . . , aT} be a set of T actions that each take unit time,
and for all i, let fi(S) equal 1

T
times the number of distinct actions that appear in S.

Thus, the schedule S∗ = 〈a1, a2, . . . , aT 〉 has fi(S∗) = 1 for all i, and is optimal in
terms of coverage. Suppose we run OG on the sequence of jobs 〈f1, f2, . . . , fn〉. All
actions yield equal payoff to E1. If E1 is a standard experts algorithm such as randomized
weighted majority, it will choose actions uniformly at random. Given that E1 chooses
actions uniformly at random, E2 will (asymptotically) choose actions uniformly at random
as well. Inductively, all actions will be chosen at random. If so, the probability that any
particular experts algorithm selects a unique action is 1 − (1 − 1

T
)T (which approaches

1 − 1
e

as T → ∞). By linearity of expectation, the expected fraction of actions that are
unique is exactly this quantity.

To improve performance on examples such as this one, we may force the online algo-
rithm to return a schedule with no duplicate actions as follows. Just before job fi arrives,
obtain from each experts algorithm Et a distribution over A (for experts algorithms such
as randomized weighted majority, it is straightforward to obtain this distribution explic-
itly). We then sample from these distributions as follows. We first sample from E1 to
obtain an action ai1. To obtain action ait for t > 1, we repeatedly sample from the distri-
bution returned by Et until we obtain an action not in the set

{
ai1, a

i
2, . . . , a

i
t−1

}
(given the

distribution, we can simulate this step without actually performing repeated sampling).

With this modification, OG always achieves coverage 1 for the job f described in
example 2. Furthermore, this modification preserves the worst-case guarantees of the
original version of OG (under the assumption performing the same action twice never
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increases the value of any function fi). Informally, this follows from the fact that the
expected payoff received by sampling from the modified distribution can never be smaller
than the expected payoff received by sampling from the original distribution (because the
payoffs associated with the experts corresponding to actions already in the schedule are
all zero). For this reason, this modification never increases the worst-case regret of the
experts algorithms, and our previous analysis carries through unchanged.

Independent versus dependent probabilities

Recall that in the case of arbitrary-cost actions, when an experts algorithm selects an action
(v, τ) we add this action to the schedule independently with probability 1

τ
. The fact that

this addition is performed independently of the actions that are already in the schedule can
lead to undesirable behavior, as the following example illustrates.

Example 3. Let V = {v} consist of a single activity, let f(S) = 1 if S contains the action
(v, T ), and let f(S) = 0 otherwise. Thus, the schedule S∗ = 〈(v, T )〉 maximizes f(S〈T 〉).
However, E [f(S)] ≤ 1 − (1 − 1

T
)T if S is a schedule returned by OG. This is true

because at most T experts algorithms can select the action (v, T ), but in each case the
action is only added to the schedule with probability 1

T
, so the probability that (v, T ) is

added to the schedule is at most 1− (1− 1
T

)T , which approaches 1− 1
e

as T →∞.

We can fix this problem as follows. When experts algorithm Et selects an action at =
(v, τ), we increase the probability that the action is in the schedule by 1

τ
. In other words,

if at has been picked by k experts algorithms so far but has still not been added to the
schedule, then we add it to the schedule with probability 1

τ−k . Thus, if τ consecutive
experts algorithms select the same action (v, τ), it will always be added to the schedule
exactly once.

The schedules produced by this modified online algorithm still consume T time steps
in expectation, and our previous analysis carries through to give same regret bounds on
Rcoverage that were stated in Theorem 9. Unfortunately, the analysis for the bounds onRcost

stated in Theorem 10 depends critically on the use of independent probabilities, and does
not carry through after having made this modification. Nevertheless, in our experiments in
Chapter 3 we found that this modification was helpful in practice.

2.5 Open Problems

The results presented in this chapter suggest several open problems:
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1. Avoiding discretization. As currently defined, our online algorithm can only handle
finite set of actionsA. Thus, to apply this online algorithm to a problem in which the
actions have real-valued durations between 0 and 1, one might discretize the dura-
tions to be in the set

{
1
T
, 2
T
, . . . , 1

}
. To achieve the best performance, one would like

to set T as large as possible, but the time and space required by the online algorithm
grow linearly with T . It would be desirable to avoid discretization altogether, per-
haps after making additional smoothness assumptions about the jobs fi. A possible
approach would be to consider the limiting behavior of our algorithm as T → ∞,
for some particular choice of subroutine experts algorithm.

2. Lower bounds on 4-regret and 1 − 1
e

regret. The lower bounds proved in §2.4.5
apply only to 1-regret, whereas our online algorithms optimize either 4 regret (in
the case of Rcost) or 1 − 1

e
regret (in the case of Rcoverage). It would be interesting

to prove lower bounds on Rcost and Rcoverage. Such lower bounds would hold for
online algorithms that make decisions in polynomial time, under the assumption that
P 6= NP.

3. An online version of the refined greedy approximation algorithm G′. Recall that in
§2.3.2 we showed that the offline greedy approximation algorithm is sub-optimal
for a simple job involving two activities, and then considered an alternative greedy
approximation algorithm that produces an optimal schedule for this job. The online
algorithm presented in §2.4 is based on the original greedy approximation algorithm,
and thus it also performs sub-optimally on this simple example. Although it appears
non-trivial to do so, it would be interesting to develop an online version of the alter-
native greedy approximation algorithm that performed optimally on such examples.

2.6 Conclusions

This chapter considered an online resource allocation problem that generalizes several
previously-studied online problems, and that has applications to algorithm portfolio de-
sign and the optimization of query processing in databases. The main contribution of this
chapter was an online version of a greedy approximation algorithm whose worst-case per-
formance guarantees in the offline setting are the best possible assuming P 6= NP. In
the next chapter we evaluate the online greedy algorithm experimentally by using it to
combine multiple problem-solving heuristics in an online setting.
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Chapter 3

Combining Multiple Heuristics Online

3.1 Introduction

In this chapter we present black-box techniques that can be used to combine multiple
problem-solving heuristics into a new heuristic with (potentially) improved average-case
running time. In our model, a user is given a set of heuristics whose only observable behav-
ior is their running time. Each heuristic can compute a solution to any problem instance,
but its running time varies across instances. The user solves each instance by interleaving
runs of the heuristics according to some schedule. If the heuristics are randomized, the
user may also periodically restart them with a fresh random seed.

Building on the results of chapter 2, we present

1. exact and approximation algorithms for computing an optimal schedule offline,

2. sample complexity bounds for learning a schedule from training data, and

3. no-regret algorithms for learning a schedule on-the-fly while solving a sequence of
problems.

In our experimental evaluation, we use data from recent solver competitions to show
that these algorithms can be used to create improved versions of state-of-the-art solvers in
a number of problem domains.
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3.1.1 Motivations

Many important computational problems seem unlikely to admit algorithms with prov-
ably good worst-case performance, yet must be solved as a matter of practical necessity.
Examples of such problems include Boolean satisfiability, A.I. planning, integer program-
ming, and numerous scheduling and resource allocation problems. In each of these prob-
lem domains, heuristics1 have been developed that perform much better in practice than a
worst-case analysis would guarantee, and there is an active research community working
to develop improved heuristics. Indeed, entire conferences are devoted to the study of
particular problem domains (e.g., Boolean satisfiability, A.I. planning), and annual com-
petitions are held in order to assess the state of the art and to promote the development of
better heuristics.

A major drawback of using heuristics is that the behavior of a heuristic on a previ-
ously unseen problem instance can be difficult to predict in advance. The running time of
a heuristic may vary by orders of magnitude across seemingly similar problem instances
or, if the heuristic is randomized, across multiple runs on a single instance that use dif-
ferent random seeds [33, 38]. For this reason, after running a heuristic unsuccessfully for
some time one might decide to suspend the execution of that heuristic and start running a
different heuristic (or the same heuristic with a different random seed).

Previous work has shown that combining multiple heuristics into a portfolio can dra-
matically improve average-case running time [33, 38]. Table 3.1 illustrates a situation in
which this is the case. The table shows the behavior of the top two solvers from the in-
dustrial track of the 2007 SAT competition on three of the competition benchmarks. On
these three instances, simply running the two solvers in parallel (e.g., at equal strength on
a single processor) would reduce the average-case running time by orders of magnitude.

Table 3.1: Behavior of two solvers on instances from the 2007 SAT competition.

Instance Rsat picosat
CPU (s) CPU (s)

industrial/anbulagan/medium-sat/dated-10-13-s.cnf 45 28
industrial/babic/dspam/dspam dump vc1081.cnf 3 ≥ 10000
industrial/grieu/vmpc 31.cnf ≥ 10000 238

1A heuristic is simply an algorithm. We use the term “heuristic” only to suggest worst-case exponential
running time.
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If the heuristics are randomized, additional performance improvements may be achieved
by periodically restarting them with a fresh random seed. In particular, solvers based on
chronological backtracking often exhibit heavy-tailed run length distributions, and restarts
can yield order-of-magnitude improvements in performance [34, 35].
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Figure 3.1: Run length distribution of satz-rand on two formulae created by SATPLAN
in solving the logistics planning instance logistics.d. Each curve was estimated
using 150 independent runs, and run lengths were capped at 1000 seconds.

Figure 1 shows the run length distribution of the SAT solver satz-rand on two
Boolean formulae created by running a state-of-the-art planning algorithm, SATPLAN,
on a logistics planning benchmark. To find a provably minimum-length plan, SATPLAN
creates a sequence of Boolean formulae 〈σ1, σ2, . . .〉, where σi is satisfiable if and only
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if there exists a feasible plan of length ≤ i. In this case the minimum plan length is
14. When run on the (satisfiable) formula σ14, satz-rand exhibits a heavy-tailed run
length distribution. There is about a 20% chance of solving the problem after running
for 2 seconds, but also a 20% chance that a run will not terminate after having run for
1000 seconds. By restarting the solver every 2 seconds until it yields a solution, one can
reduce the expected time required to find a solution by more than an order of magnitude.
In contrast, when satz-rand is run on the (unsatisfiable) instance σ13, over 99% of the
runs take at least 19 seconds, so the same restart policy would be ineffective. Restarts are
still beneficial on this instance, however; restarting every 45 seconds reduces the mean
run length by at least a factor of 1.5. Of course, when using a randomized SAT solver
to solve a given formula for the first time one does not know its run length distribution
on that formula, and thus one must select a restart schedule based on experience with
previously-solved formulae.

3.1.2 Formal setup

In our model, we are given a set H of heuristics, with |H| = k, and a set X of instances
of some decision problem. Heuristic h, when run on instance x, runs for T (h, x) time
units before returning a (provably correct) “yes” or “no” answer. In general, the heuristic
h will be randomized, and T (h, x) will be a random variable whose outcome depends on
the sequence of random bits supplied as input to h.

As in Chapter 2, we consider schedules that are sequences of actions of the form
(h, τ) ∈ H × R>0. We use S to denote the set of schedules. In our setting, an action
(h, τ) represents running heuristic h for (additional) time τ . We require that each heuristic
h ∈ H be executed in one of two models: the suspend-and-resume model or the restart
model (the choice of model need not be the same for all h ∈ H).

• If h is executed in the suspend-and-resume model, then an action (h, τ) represents
continuing a run of heuristic h for an additional τ time units. When the action is
completed, the run of h is temporarily suspended and kept resident in memory, to be
potentially resumed by a later action.

• If h is executed in the restart model, then an action (h, τ) represents running h from
scratch for time τ , and then deleting the run from memory. If h is randomized, the
run is performed with a fresh random seed.

As an example, suppose that h1 is executed in the suspend-and-resume model and h2
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is executed in the restart model. Then the schedule

S = 〈(h1, 5), (h2, 5), (h1, 10), (h2, 10)〉

is interpreted as follows: “run h1 for 5 time units; then suspend the run of h1 and run h2

for 5 time units; then discard the run of h2 and continue the run of h1 for an additional 10
time units; then suspend the run of h1 and run h2 from scratch (with a fresh random seed)
for 10 time units.”

This class of schedules includes restart-schedules [61] and task-switching schedules
[73] as special cases.

• A restart schedule is a schedule for a setH that contains a single heuristic, executed
in the restart model. A restart schedule can be written more concisely as a sequence
S = 〈τ1, τ2, . . .〉 of positive integers, whose meaning is “run h for τ1 time units; if
this does not yield a solution then restart h with a fresh sequence of random bits and
run it for τ2 time units, . . . ”. When executing a restart schedule, only a single run
needs to be kept in memory.

• A task-switching schedule is a schedule that runs all heuristics in the suspend-and-
resume model. If all heuristics in H are deterministic, then the optimal schedule
must be a task-switching schedule (assuming there is no overhead associated with
keeping multiple runs in memory). When executing a task-switching schedule, up
to k runs need to be kept in memory simultaneously.

We use Srs and Sts to denote the set of restart schedules and the set of task-switching
schedules, respectively.

We measure the performance of a schedule S on a problem instance x in terms of the
expected time required to solve x using S (where the expectation is over the random bits
used in the runs that S performs). For any schedule S, let px(S) denote the probability
that performing the sequence of actions in S yields a solution to x. For example, if S =
〈(h1, τ1), (h2, τ2), . . . , (hL, τL)〉, and all heuristics are executed in the restart model, then

px(S) = 1−
L∏
l=1

P [T (hl, x) > τl] .

In §3.3.1 we formally define px(S) in the general case, when one or more heuristics may
be executed in the suspend-and-resume model.
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Overloading notation, let T (S, x) denote the time required to solve instance x using
schedule S. For any non-negative random variable X , we have E [X] =

∫∞
t=0

P [X > t] dt.
Thus the expected time required to solve x using S can be written as

E [T (S, x)] =

∫ ∞
t=0

1− px(S〈t〉) dt ≡ c (px, S) (3.1)

where, as in chapter 2, S〈t〉 is the schedule that results from truncating schedule S at time t.
For example if S = 〈(h1, 3), (h2, 3)〉 then S〈5〉 = 〈(h1, 3), (h2, 2)〉 (for a formal definition
of S〈t〉, see §2.1.1).

In the special case when all heuristics are executed in the restart model, it can be
shown that px(S) satisfies the conditions required of a job, as defined in Chapter 2. How-
ever, when one or more heuristics are executed in the suspend-and-resume model, px is
no longer submodular. Nevertheless, we show in §3.1.4 that the sufficient conditions de-
scribed in Chapter 2 are satisfied even when some heuristics are executed in the suspend-
and-resume model, so the results from Chapter 2 still apply.

By definition, the right hand side of (3.1) equals the cost c (px, S) of the schedule S
for the job px. This implies that the offline and online greedy approximation algorithms
presented in Chapter 2 can be used to select schedules of the form considered in this
chapter, so as to minimize E [T (S, x)].

As in Chapter 2, we use ` (S) to denote the sum of the durations of the actions in S.
For example if S = 〈(v1, 3), (v2, 3)〉, then `(S) = 6.

3.1.3 Summary of results

We first consider the schedule selection problem in an offline setting. In the offline setting
we are given a set of instances X , and are given as input the distribution of T (h, x) for
all h ∈ H and x ∈ X . Our goal is to compute the schedule with minimum total expected
running time over the instances in X , namely S∗ = arg minS∈S

∑
x∈X E [T (S, x)]. In

this setting, the greedy algorithm for MIN-SUM SUBMODULAR COVER from Chapter 2
gives a 4-approximation to the optimal schedule. We also show that, even in the special
case where all heuristics are deterministic, this offline problem generalizes MIN-SUM SET

COVER [26], implying that for any ε > 0, computing an 4− ε approximation is NP-hard.
We also give exact and approximation algorithms based on shortest path computations,
whose running time is exponential as a function of k (where k = |H|) but is polynomial
for any fixed k.

We next consider a learning-theoretic setting in which we draw training instances in-
dependently at random from a distribution, compute an optimal schedule for the training
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instances, and then use that schedule to solve additional test instances drawn from the
same distribution. In this setting, we give bounds on the number of instances required to
learn a schedule that is probably approximately correct [86].

We then consider an online setting in which we are fed a sequenceX = 〈x1, x2, . . . , xn〉
of problem instances one at a time and must obtain a solution to each instance (via some
schedule) before moving on to the next instance. When selecting a schedule Si to use to
solve instance xi, we have knowledge of the previous instances x1, x2, . . . , xi−1 but we
have no knowledge of xi itself or of any subsequent instances. In this setting, the online
greedy algorithm for MIN-SUM SUBMODULAR COVER (from Chapter 2) converges to a
4-approximation to the best schedule, and requires decision-making time polynomial in
k. We also present online shortest paths algorithms that converge to an α-approximation
to the best schedule (for some desired α > 1), but which requires decision-making time
exponential in k.

We then discuss how our results in these three settings can be extended in two ways.
First, we show that our algorithms can be applied in an interesting way to heuristics for
optimization rather than decision problems. Second, we discuss how quickly-computable
features of problem instances can be used to improve the schedule selection process.

Experimentally, we use data from recent solver competitions to show that task-switching
schedules computed by our greedy approximation algorithm can be used to improve the
performance of state-of-the-art solvers in several problem domains. Our experimental
evaluation considers both optimization and decision problems, and makes use of instance
features to improve the schedule selection process. We also show that that the greedy
approximation algorithm can be used to construct a restart schedule that improves the
performance of a randomized SAT solver on a set of logistics planning benchmarks.

The results in this chapter are based in part on two conference papers [78, 79].

3.1.4 Relationship to the framework of Chapter 2

Before moving on, we show how the problem considered in this chapter can be put into
the framework of Chapter 2. As already mentioned, this fact allows us to apply the offline
greedy approximation algorithm from Chapter 2, as well as its online counterpart, to the
problem considered in this chapter.

As mentioned in §3.1.2, given an instance x, we will be interested in selecting a sched-
ule S so as to minimize the expected running time c (px, S) =

∫∞
t=0

1− px(S) dt =
E [T (S, x)]. In the online setting, a sequence 〈x1, x2, . . . , xn〉 of instances arrive online.
The following lemma shows that the sequence 〈px1 , px2 , . . . , pxn〉 satisfies Condition 2
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(defined in §2.1.2). As we discuss further in §3.6.3, this implies that the online greedy
algorithm from Chapter 2 can be used to select schedules in such a way that the average
running time of the schedules selected by the online algorithm is (asymptotically) at most
4 times that of the optimal fixed schedule for the given sequence of instances.

Lemma 6. Let 〈x1, x2, . . . , xn〉 be a sequence of n problem instances, and let pi = pxi .
Then the sequence 〈p1, p2, . . . , pn〉 satisfies Condition 2 from §2.1.2. That is, for any se-
quence S1, S2, . . . , Sn of schedules and any schedule S,∑n

i=1 pi(Si ⊕ S)− pi(Si)
` (S)

≤ max
(v,τ)∈V×R>0

{∑n
i=1 pi(Si ⊕ 〈(v, τ)〉)− pi(Si)

τ

}
. (3.2)

Proof. Any schedule S can be rewritten as S = 〈a1, a2, . . . , aL〉, where each action al runs
a different heuristic, without changing the value of p(S) (i.e., multiple runs of a heuristic
executed in the suspend-and-resume model can be consolidated into a single run). Fix
some instance xi, and let p′i(S) = pi(Si ⊕ S)− pi(Si). Thus, p′i(S) is the probability that
at least one action in S solves xi after all actions in Si have failed to solve xi. Using the
union bound, we have

p′i(S) ≤
L∑
l=1

p′i(〈al〉) .

Let al = (hl, τl), and let r be the maximum in the right hand side of (3.2). Summing the
inequality over all x ∈ X yields

n∑
i=1

pi(Si ⊕ S) ≤
L∑
l=1

n∑
i=1

p(Si ⊕ 〈al〉) ≤
L∑
l=1

r · τl = r · ` (S)

which proves the lemma.

In the offline setting, we are given a set of instances X = {x1, x2, . . . , xn}, and wish
to select a schedule S that minimizes 1

n

∑n
i=1 E [T (S, xi)]. Using equation (3.1), this is

the same as minimizing 1
n

∑n
i=1 c (pxi , S) = c (p, S), where p(S) = 1

n

∑n
i=1 pxi(S). The

following corollary of Lemma 6 shows that the function p satisfies Condition 1 (defined
in §2.1.2). As we discuss further in §3.4.2, this implies that the greedy approximation
algorithm from Chapter 2 can be used to obtain a 4-approximation to the optimal schedule.

Corollary 1. Let X = {x1, x2, . . . , xn} be a set of problem instances, and let p(S) =
1
n

∑n
i=1 pxi(S). Then p satisfies Condition 1 from §2.1.2. That is, for any S1, S ∈ S , we

have
p(S1 ⊕ S)− p(S1)

` (S)
≤ max

(v,τ)∈V×R>0

{
p(S1 ⊕ 〈(v, τ)〉)− p(S1)

τ

}
.
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3.2 Related Work

In this section we discuss two areas of related work: algorithm portfolios and restart
schedules.

3.2.1 Algorithm portfolios

The work presented in this chapter is closely related to, and shares the same goals as,
previous work on algorithm portfolios [33, 38]. An algorithm portfolio is a schedule for
combining runs of various heuristics. The schedules considered in the original papers on
algorithm portfolios simply run each heuristic in parallel at equal strength and assign each
heuristic a fixed restart threshold. Gomes et al. [33] addressed the problem of constructing
an optimal algorithm portfolio offline given knowledge of the run length distribution of
each algorithm, under the assumption that each algorithm has the same run length distri-
bution on all problem instances. Earlier work [43] considered the problem of devising a
schedule for combining multiple heuristics that achieves an optimal competitive ratio on a
single problem instance.

A recent paper by Sayag et al. [73] considered the problems of selecting task-switching
schedules and resource-sharing schedules for multiple heuristics, both in the offline and
learning-theoretic settings. A resource-sharing schedule S : H → [0, 1] specifies that all
heuristics in H are to be run in parallel, with each h ∈ H receiving a proportion S(h)
of the CPU time. The primary contribution of their paper was an offline algorithm that
computes an optimal resource-sharing schedule in O(nk−1) time. They also discuss an
O(nk+1) algorithm for computing optimal task-switching schedules offline. As proved by
Sayag et al. (Lemma 1 of [73]), an optimal task-switching schedule always performs as
well or better than an optimal resource-sharing schedule.

Independently, Petrik [67] and Petrik and Zilberstein [68] gave exact and approxi-
mation algorithms for computing optimal task-switching schedules and optimal resource-
sharing schedules. Their algorithms are based on dynamic programming, and the running
time is exponential in k.

The term algorithm portfolio has also been used to describe approaches that use fea-
tures of instances to attempt to predict which algorithm will run the fastest on a given
instance, and then simply run that algorithm exclusively [59, 90]. Note that in this ap-
proach there is no notion of a schedule per se. As already mentioned, we show how
instance-specific features can be incorporated into our framework later in this chapter.

The works just described consider the problem of learning an algorithm portfolio from

51



training data. Recently, Gagliolo and Schmidhuber [30] presented an algorithm that, like
our online algorithms, can be used to select algorithm portfolios on-the-fly while solving
a sequence of problem instances. Their algorithm produces resource-sharing schedules,
and uses one of a number of rules to select resource-sharing schedules based on statistical
models of the behavior of the heuristics.

3.2.2 Restart schedules

There has been a considerable amount of work on devising restart schedules for Las Vegas
algorithms. Letting A denote an arbitrary Las Vegas algorithm, such a schedule can be
represented as a sequence 〈t1, t2, . . .〉 of positive real numbers, whose meaning is “run A
for t1 time units; if this does not yield a solution then restart and run for t2 time units, . . . ”.

In the early 1990s, at least two papers studied the problem of selecting a restart sched-
ule to use in solving a single problem instance, given no prior knowledge of the algorithm’s
run length distribution on that instance. The main results are summarized in the following
theorem proved by Luby et al. [61].

Theorem 16 (Luby et al. , 1993).

1. For any instance x, the schedule S that minimizes E [T (S, x)] is a uniform restart
schedule of the form 〈t∗, t∗, . . . , t∗〉.

2. Let ` = minS∈Srs E [T (S, x)]. The universal restart schedule2

Suniv = 〈1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, . . .〉

has E [T (Suniv, x)] = O(` log `).

3. For any schedule S, it is possible to define a distribution of T (A, x) such that
E [T (S, x)] ≥ 1

8
` log2 ` (i.e., the worst-case performance of Suniv is optimal to

within constant factors).

Luby [61] also showed that other classes of restart schedules, for example suspend-
and-resume and probabilistic schedules, are no more powerful than ordinary restart sched-
ules (assuming the restart schedule’s performance is measured on a single problem in-
stance). Alt et al. [3] gave related results, with a focus on minimizing tail probabilities
rather than expected running time.

2The universal schedule can be described as follows. All run lengths are powers of two, and as soon as
two runs of the same length have been completed, a run of twice that length is immediately performed.
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In the late 1990s, there was a renewed interest in restart schedules due to a paper by
Gomes et al. [35], which demonstrated that (then) state-of-the-art solvers for Boolean sat-
isfiability and constraint satisfaction could be dramatically improved by randomizing the
solver’s decision-making heuristics and running the randomized solver with an appropri-
ate restart schedule. In one experiment, their paper took a deterministic SAT solver called
satz and created a version called satz-rand with a randomized heuristic for selecting
which variable to branch on at each node in the search tree. They found that, on certain
problem instances, satz-rand exhibited a heavy-tailed run length distribution. By peri-
odically restarting it they obtained order-of-magnitude improvements in running time over
both satz-rand (without restarts) and satz, the original deterministic solver. Their
paper also demonstrated the benefit of randomization and restart for a then state-of-the-art
constraint solver.

One limitation of Theorem 16 is that it is “all or nothing”: it either assumes complete
knowledge of the run length distribution (in which case a uniform restart schedule is op-
timal) or no knowledge at all (in which case the universal schedule is optimal to within
constant factors). Several papers have considered the case in which partial but not com-
plete knowledge of the run length distribution is available. Ruan et al. [71] consider the
case in which each run length distribution is one of m known distributions, and give a
dynamic programming algorithm for computing an optimal restart schedule. The running
time of their algorithm is exponential in m, and thus it is practical only when m is small
(in the paper the algorithm is described for m = 2). Kautz et al. [45] considered the case
in which, after running for some fixed amount of time, one observes a feature that gives
the distribution of that run’s length.

A paper by Gagliolo & Schmidhuber [31] considered the problem of selecting restart
schedules online in order to solve a sequence of problem instances as quickly as possible.
Their paper treats the schedule selection problem as a 2-armed bandit problem, where one
of the arms runs Luby’s universal schedule and the other arm runs a schedule designed
to exploit the empirical run length distribution of the instances encountered so far. Their
strategy was designed to work well in the case where each instance has a similar run length
distribution.

3.2.3 Contributions of this chapter

The results in this chapter advance the state of the art in algorithm portfolio design in four
important ways:

1. We consider a powerful class of schedules that generalizes both task-switching
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schedules and restart schedules.

2. We provide polynomial-time approximation algorithms for computing schedules of
this form, and state hardness-of-approximation results showing that no polynomial-
time algorithm can provide better worst-guarantees assuming P 6= NP. Note that no
polynomial-time approximation algorithms were previously known for computing
task-switching schedules or for computing restart schedules (in the general case of
multiple problem instances with heterogeneous run length distributions).

3. We provide online algorithms with strong theoretical guarantees, which can be used
to learn an appropriate schedule on-the-fly while solving a sequence of problems.
The worst-case performance of our online algorithms is the same as that of the corre-
sponding offline approximation algorithm, asymptotically as the number of problem
instances goes to infinity.

4. We show how features of problem instances can be exploited by our online al-
gorithms in a natural way, thus unifying the benefits of two previous approaches
[38, 59] to algorithm portfolio design.

3.3 State Space Representation of Schedules

In this section we introduce a state-space representation of schedules that will be used
extensively in later sections. We first discuss profiles and states, which provide a canonical
way of representing the work done by a particular schedule at a particular time. We then
discuss how the problem of computing an optimal schedule can be solved as a shortest
path problem in a graph whose vertices are states. We use this shortest path formulation
in §3.4 to obtain offline algorithms, then use it again in §3.5 to obtain sample complexity
bounds for learning a schedule from training data. Lastly, we discuss α-regularity, which
provides a way to drastically reduce the size of the state space at the cost of a constant
factor performance degradation, leading in §3.4 to offline approximation algorithms and
in §3.5 to additional sample complexity bounds.

3.3.1 Profiles and states

A profile P = 〈τ1, τ2, . . . , τL〉 is a non-increasing sequence of positive real numbers. For
any heuristic h, we use P (S, h) to denote a profile that lists, in non-decreasing order, the
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total lengths each run of h performed by S. If h is being executed in the suspend-and-
resume model, then P (S, h) always contains a single number. If h is being executed in
the restart model, then the number of values in P (S, h) equals the number of actions in S
that refer to h. The size of a profile P = 〈τ1, τ2, . . . , τL〉 is defined to be

∑L
l=1 τl.

As an example, let

S = 〈(h1, 1), (h2, 2), (h1, 3), (h2, 4)〉 .

If h1 is being executed in the suspend-and-resume model, then P (S, h1) = 〈4〉; otherwise
P (S, h1) = 〈3, 1〉. Similarly, if h2 is being executed in the suspend-and-resume model,
then P (S, h2) = 〈6〉; otherwise P (S, h2) = 〈4, 2〉.

A state Y = 〈P1, P2, . . . , Pk〉 is a k-tuple of profiles, where k = |H|. We define the
size of a state to be the sum of the sizes of the k profiles it contains. For any schedule S,
we define a corresponding state

Y(S) = 〈P (S, h1) ,P (S, h2) , . . . ,P (S, hk)〉

whereH = {h1, h2, . . . , hk}. We use Y ∅ = 〈〈〉, 〈〉, . . . , 〈〉〉 to denote the empty state.

For any instance x, the value of px(S) (the probability that performing the runs in S
yields a solution to x) can be written as follows. Let Y(S) = 〈P1, P2, . . . , Pk〉, where
Pj = 〈τ j1 , τ

j
2 , . . . , τ

j
Lj
〉. Then

px(S) = 1−
k∏
j=1

Lj∏
l=1

P
[
T (hj, x) > τ jl

]
. (3.3)

The key property of states is given by the following lemma, which follows immediately
from the definitions.

Lemma 7. Let S1 and S2 be schedules such that Y(S1) = Y(S2). Then

1. for any instance x, px(S1) = px(S2), and

2. for any schedule S, Y(S1 ⊕ S) = Y(S2 ⊕ S).

Proof. The first statement is immediate from (3.3). To prove the second statement, assume
for contradication thatP (S1 ⊕ S, h) 6= P (S2 ⊕ S, h), for some heuristic h. First, suppose
h is executed in the suspend-and-resume model. Then P (S1, h) = P (S2, h) = 〈τ〉, and
P (S, h) = 〈τ ′〉. It follows that P (S1 ⊕ S, h) = P (S2 ⊕ S, h) = 〈τ + τ ′〉.
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Now suppose h is executed in the restart model. Let P (S1, h) = P (S2, h) = 〈τ1,
τ2, . . . , τL〉, and let P (S, h) = 〈τ ′1, τ ′2, . . . , τ ′M〉. Then P (S1 ⊕ S, h) simply contains the
L + M values in P (S1, h) and P (S, h), listed in non-decreasing order, and the same is
true of P (S2 ⊕ S, h).

3.3.2 State space graphs

A state space graph is a triple G = 〈V,E, Se〉, where 〈V,E〉 is a directed acyclic graph
whose vertices are states, and Se : E → S is a function that labels each edge e ∈ E with
a schedule Se(e). We require that a state-space graph satisfy the following conditions.

1. V contains the empty state Y ∅, as well as a distinguished vertex v∗ (v∗ is not a state),

2. for every state Y ∈ V , there is a path from Y to v∗, and

3. if the edges e1, e2, . . . , eL form a path from Y ∅ to some state Y , then

Y(Se(e1)⊕ Se(e2)⊕ . . .⊕ Se(eL)) = Y .

We use SG to denote the set of schedules that correspond to paths from Y ∅ to v∗ in G. In
other words, S ∈ SG if any only if there exists a path e1, e2, . . . , eL from Y ∅ to v∗ such
that S = Se(e1)⊕ Se(e2)⊕ . . .⊕ Se(eL).

We now describe how to assign weights to the edges of a state-space graph in such a
way that an optimal schedule within the set SG can be found by computing a shortest path
from Y ∅ to v∗. Let e = 〈Y1, Y2〉 be a directed edge in the state space graph. Let S1 be any
schedule such that Y(S1) = Y1, and let S = Se(e). For any instance x, define the weight
w(e, x) as

w(e, x) =

∫ `(S1⊕S)

t=`(S1)

1− px
(

(S1 ⊕ S)〈t〉

)
dt . (3.4)

Note that by Lemma 7, the value of the right hand side does not depend on the choice of
S1.

Let the edges e1, e2, . . . , eL form a path from Y ∅ to v∗ in the state space graph. Let
S = Se(e1)⊕ Se(e2)⊕ . . .⊕ Se(eL). By construction, the weight of the path is exactly

L∑
i=1

w(ei, x) =

∫ `(S)

t=0

1− px(S〈t〉) dt = E [min {` (S) , T (S, x)}] .

Thus we have the following lemma.
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Lemma 8. Given a state space graph G and a set of instances X , the schedule

S∗ = arg min
S∈SG

∑
x∈X

E [min {` (S) , T (S, x)}]

may be found by computing a shortest path from the empty state Y ∅ to v∗ in G, where each
edge e is assigned weight

∑
x∈X w(e, x), where w(e, x) is defined in equation (3.4).

Note that this lemma provides a way to optimize E [min {` (S) , T (S, x)}], whereas in
general we will be interested in optimizing E [T (S, x)]. When making use of this lemma,
we will set up our state space graph G so that T (S, x) ≤ ` (S) for all x ∈ X and for all
S ∈ SG, either with certainty or with high probability.

3.3.3 α-Regularity

In this section we discuss α-regularity, which provides a way to reduce the number of
states that must be considered when using the shortest path formulation described in the
previous section, at the cost of a constant factor performance degradation.

Special case: suspend-and-resume only

In the special case in which all heuristics are executed in the suspend-and-resume model,
the definition of an α-regular schedule is simple: a schedule S is α-regular if, whenever
S stops running a heuristic h and starts running a different heuristic instead, the total time
invested so far in h is a power of α (i.e., it equals αi for some integer i). For example, the
schedule

S = 〈(h1, 2), (h2, 1), (h1, 14), (h2, 3)〉

is 2-regular. However, the schedule S = 〈(h1, 14), (h2, 1), (h1, 2), (h2, 3)〉 is not.

When all heuristics are executed in the suspend-and-resume model, it is not difficult to
show that for any schedule S, there is an α-regular schedule Sα whose expected running
time on any instance is at most α times that of S (see Lemma 9).

General case

In the general case, the definition of α-regularity takes into account both the lengths of the
runs of each heuristic, as well as the number of runs of each particular length that have
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been performed. Additionally, the performance overhead increases from a factor of α to a
factor of α2.

For any α > 1, we say that a profile P = 〈τ1, τ2, . . . , τL〉 is α-regular if, for all l
(1 ≤ l ≤ L),

1. τl is a power of α (i.e., τl = αi for some integer i), and

2. the number of occurrences of the value τl in P is the floor of a power of α (i.e.,
|{l′ : τl′ = τl}| = bαic for some integer i).

For example, the profiles 〈4, 1, 1〉 and 〈4, 2, 1, 1, 1, 1〉 are 2-regular, but the profile 〈3, 1〉
is not (because 3 is not a power of 2), and the profile 〈2, 1, 1, 1〉 is not (because there are
three runs of length 1).

A state Y = 〈P1, P2, . . . , Pk〉 is α-regular if each profile Pj is α-regular. A schedule S
is α-regular if it can be written as S = S1 ⊕ S2 ⊕ . . .⊕ SL, where

1. for any l, all actions in Sl are identical

2. for any l, Y(S1 ⊕ S2 ⊕ . . .⊕ Sl) is an α-regular state.

The following example illustrates these definitions.

Example 4. Let aτ = (h, τ). Then the geometric restart schedule S = 〈a1, a2, a4, a8〉 is
2-regular, as can be seen by writing it as S = 〈a1〉 ⊕ 〈a2〉 ⊕ 〈a4〉 ⊕ 〈a8〉. However, the
restart schedule

S = 〈a1, a2, a1, a2, a1, a2, a1, a2, . . .〉

is not 2-regular. This is because, if we write the schedule as S = 〈a1〉 ⊕ 〈a2〉 ⊕ 〈a1〉 ⊕
〈a2〉 ⊕ . . ., then the state

Y(〈a1〉 ⊕ 〈a2〉 ⊕ 〈a1〉 ⊕ 〈a2〉 ⊕ 〈a1〉 ⊕ 〈a2〉) = 〈〈2, 2, 2, 1, 1, 1〉〉

is not 2-regular. However, by permuting the order of the runs in S, we can obtain a
schedule

S ′ = 〈a1, a2, a1, a2, a1, a1, a2, a2, a1, a1, a1, a1, a2, a2, a2, a2, . . .〉

that is again 2-regular.
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The key property of α-regular schedules is given by the following lemma, which shows
that an arbitrary schedule can be “rounded up” to an α-regular schedule while introducing
at most a factor α2 performance overhead (in the special case where all heuristics are
executed in the suspend-and-resume model, there is only a factor α overhead). The proof
is given in Appendix A.

Lemma 9. For any schedule S and any α > 1, there exists an α-regular schedule Sα such
that, for any instance x, E [T (Sα, x)] ≤ α2 · E [T (S, x)]. In the special case where all
heuristics are executed in the suspend-and-resume model, E [T (Sα, x)] ≤ α ·E [T (S, x)].

3.4 Offline Algorithms

In the offline setting we are given as input a set of instances X = {x1, x2, . . . , xn}, and
are given the distribution of T (h, x) for all h ∈ H and x ∈ X . Our goal is to compute the
schedule

S∗ = arg min
S∈S

n∑
i=1

E [T (S, xi)] .

This offline problem is of interest for two reasons. First, in the learning-theoretic setting
one must solve the offline problem in order to compute an optimal schedule for the set of
training instances. Second, the algorithms we develop for solving the offline problem will
serve as a basis for our online algorithms.

3.4.1 Computational complexity

If |H| is arbitrary, it is NP-hard to compute even an approximately optimal schedule. This
is true even in the special case in which each heuristic in H is deterministic (so that we
only need to consider task-switching schedules).

To see this, consider the special case in which all heuristics are deterministic and,
for each instance x ∈ X and each heuristic h ∈ H, T (h, x) ∈ {1,∞}. In this case,
an optimal task-switching schedule can be represented simply as a permutation of the k
heuristics (where the permutation corresponds to a schedule that runs each heuristic for
one unit of time, in the order specified by the permutation). If we identify each heuristic h
with the set of instances {x ∈ X : T (h, x) = 1}, then our goal is to order these sets from
left to right so as to minimize the sum, over all x ∈ X , of the position of the leftmost
set that contains x. This is exactly the MIN-SUM SET COVER problem introduced by
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Feige, Lovász, and Tetali [26], who proved that for any ε > 0, achieving a 4 − ε ratio for
MIN-SUM SET COVER is NP-hard. Thus we have the following theorem.

Theorem 17. For any ε > 0, obtaining a 4 − ε approximation to the optimal schedule
is NP-hard, even in the special case when each heuristic h ∈ H is deterministic and
T (h, x) ∈ {1,∞} for all h ∈ H and all x ∈ X .

In light of previous work on restart schedules, it is natural to ask what happens in the
special case whenH contains a single randomized heuristic h. If, additionally, X contains
a single problem instance (or if the distribution of T (h, x) is the same for all x ∈ X )
then the problem of computing an optimal schedule is trivial, as shown in Theorem 16.
However, in the general case in which T (h, x) may have a different distribution for each
x ∈ X , the problem appears to be more complex. Although we have not been able to
determine whether the offline optimization problem is NP-hard in this special case, we do
believe that designing an algorithm to solve it is non-trivial. One simple idea that does not
work is to compute an optimal restart schedule for the single distribution that results from
averaging the distribution of T (h, x) for each x ∈ X . To see the flaw in this idea, consider
the following example with two instances, x1 and x2: T (h, x1) equals 1 with probability
1
2

and equals 1000 with probability 1
2
, while T (h, x2) = 1000 with probability 1. The

optimal restart schedule for the averaged distribution is the uniform schedule 〈1, 1, 1, . . .〉,
however this schedule never solves x2.

3.4.2 Greedy approximation algorithm

We first consider the greedy approximation algorithm from Chapter 2. As mentioned in
§3.1.4, equation (3.1) shows that minimizing

∑n
i=1 E [T (S, xi)] is equivalent to minimiz-

ing c (p, S), where p(S) = 1
n

∑n
i=1 pxi(S).

For our purposes, the greedy schedule G = 〈g1, g2, . . .〉 can be defined inductively as
follows: G1 = 〈〉, Gj = 〈g1, g2, . . . , gj−1〉 for j > 1, and

gj = arg max
(h,τ)∈H×R>0

{
p (Gj ⊕ 〈(h, τ)〉)− p (Gj)

τ

}
. (3.5)

We may stop adding actions to G once we reach a j such that p(Gj) = 1 (or once we
reach a j such that p(Gj) ≥ 1 − δ for some small δ > 0). The time required to compute
each action gj is not prohibitive in general. If all heuristics are deterministic and there are
only n instances, then for each heuristic h we need to consider at most n action durations
on each iteration of the greedy algorithm (because there are at most n values of τ where
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p (Gj ⊕ 〈(h, τ)〉) changes). Alternatively, it is not hard to show that requiring τ to be a
power of some α > 1 can increase the cost by at most a factor of α. If we restrict our
attention to action durations that are powers of α between τmin and τmax, then at most
k
(

1 + logα
τmax
τmin

)
evaluations of p are necessary.

We showed in §3.1.4 that p satisfies conditions sufficient for the greedy algorithm’s ap-
proximation guarantees to apply. Thus, we obtain the following as a corollary of Theorem
4.

Corollary 2. ∑
x∈X

E [T (G, x)] ≤ 4 min
S∈S

∑
x∈X

E [T (S, x)] .

Remark 1. Corollary 2 and the definition of G imply that, from the point of view of worst-
case approximation guarantees, the suspend-and-resume model provides no advantage
over the restart model. To see this, imagine thatH contains two copies of each underlying
heuristic: one executed in the suspend-and-resume model, and one executed in the restart
model. If ties are broken appropriately, the action g1 could use a heuristic executed in the
restart model (because the choice of model does not affect p(〈a〉) for any single action a).
Inductively, the entire schedule G could only use heuristics executed in the restart model,
and still provide a 4 approximation. As shown in §3.4.1, achieving a 4− ε approximation
(for any ε > 0) is NP-hard, even when all heuristics are deterministic, and regardless of
what model the heuristics are executed in. Thus, in terms of the worst-case approximation
ratio, there is no penalty associated with keeping only a single run in memory at a time.

Recall from Chapter 2 that the greedy schedule also (approximately) maximizes p(S〈T 〉),
for certain values of T . In particular, we obtain the following as a corollary of Theorem
3. The corollary shows that, in addition to approximately minimizing average expected
running time, the greedy schedule approximately maximizes the expected fraction of in-
stances solved in time ≤ T , for certain values of T .

Corollary 3. Fix an integer L, and let T =
∑L

j=1 τj , where gj = (hj, τj). Then

p
(
G〈T 〉

)
≥
(

1− 1

e

)
max
S∈S

{
p(S〈T 〉)

}
.

Also recall from Chapter 2 that we defined an improved greedy schedule G′, which
has the same approximation guarantees as G in terms of minimizing cost. In the special
case where H contains a single (possibly randomized) heuristic and X contains a single
instance, the greedy schedule G′ is optimal, as the following theorem shows. The proof is
given in Appendix A.
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Theorem 18. If H contains a single (randomized) heuristic and X = {x} contains a
single instance, then

E [T (G, x)] = min
S∈S

E [T (S, x)] .

3.4.3 Shortest path algorithms

Although the problem of computing an optimal schedule is NP-hard when k = |H| is
part of the input, we might hope to find an algorithm that runs in polynomial time for
any fixed k. As shown in §3.3.2, the optimal schedule within a restricted set of schedules
can be found by computing a shortest path in an appropriate state-space graph. In this
section we use this idea to obtain approximation algorithms for computing task-switching
schedules and restart schedules. For the case of task-switching schedules, similar (though
not identical) dynamic programming algorithms were given independently by Petrik [67]
and by Sayag et al. [73].

Task-switching schedules

We first describe how to compute (approximately) optimal task-switching schedules. Re-
call that a task-switching schedule is a schedule for a set of deterministic heuristics H,
where each heuristic is executed in the suspend-and-resume model.

Let B be an artificial bound on the amount of time we are allowed to run any heuristic.
We require that, for each instance x ∈ X , there is always some h ∈ H such that T (h, x) ≤
B. Also, we assume without loss of generality that T (h, x) ≥ 1 for all x ∈ X and all
h ∈ H.

Fix some desired approximation ratio α > 1. Define a state-space graph Gts
α,B =

〈V,E, Se〉 inductively as follows. The vertex set contains the empty state Y ∅. Let Y =
〈〈τ1〉, 〈τ2〉, . . . , 〈τk〉〉 ∈ V be a state in the vertex set. For each j such that τj < B,
the vertex contains the state Y ′ = 〈〈τ1〉, 〈τ2〉, . . . , 〈τj−1〉, 〈τ ′j〉, 〈τj+1〉, . . . , 〈τk〉〉, where
τ ′j = max {1, ατj}. Additionally, the edge set contains the edge e = 〈Y, Y ′〉, where Se(e)
is the schedule containing the single action (hj, τ

′
j − τj). Finally, if τj ≥ B for all j, then

there is an edge from Y to v∗, labeled with the empty schedule.

By construction, any α-regular task-switching schedule that runs each heuristic for
time at most B corresponds to a path from Y ∅ to v∗ through this graph, and the weight of
the path is

∑
x∈X T (S, x) (where the weights are assigned according to equation (3.4)).

Thus, by Lemmas 8 and 9, an α-approximation to the optimal task-switching schedule can
be obtained by computing a shortest path from Y ∅ to v∗ in the graph Gts

α,B.
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To bound the time complexity, first note that there are at most 2 + dlogαBe choices3

for each value τj in a state Y = 〈〈τ1〉, 〈τ2〉, . . . , 〈τk〉〉 that appears in the vertex set, so
|V | ≤ (2 + dlogαBe)k. Because each vertex has at most k outgoing edges, |E| ≤ k |V |.
The time required to compute a shortest path is dominated by the time required to assign
weights to the edges. Each edge weight is a sum of |X | per-instance weights, each of
which can be computed in time O (1). Thus we have proved the following theorem.

Theorem 19. For any approximation ratio α > 1 and any budget B, an α-approximation
to the optimal task-switching schedule for a set of instances X can be found by computing
a shortest path in the state space graph Gts

α,B = 〈V,E, Se〉, where |V | ≤ (2 + dlogαBe)k
and |E| ≤ k |V |. The overall time complexity is O

(
nk(2 + dlogαBe)k

)
, where n = |X |.

We now consider the problem of computing an optimal task-switching schedule. Given
a set of instances X , an optimal task-switching schedule can be found by computing a
shortest path in a state-space graphGX similar to the one just described. In the construction
just described, a state whose jth profile is 〈τj〉 had an edge to a state that was identical
except that the jth profile is 〈τ ′j〉, where τ ′j is the is the next largest power of α above τj . In
GX , τ ′j will instead be the next largest member of the set {0}∪{T (hj, x) : x ∈ X}. The set
SGX thus contains all schedules that will only stop running heuristic hj if the time invested
on hj so far equals T (hj, x) for some instance x. Using an interchange argument, it can
be shown that an optimal schedule must satisfy this condition. This fact, combined with
the arguments leading up to the statement of Theorem 19, proves the following theorem,
which was proved independently by Sayag et al. [73].

Theorem 20. An optimal task-switching schedule for a set of instances X can be found by
computing a shortest path in the state space graphGX = 〈V,E, Se〉, where |V | ≤ (n+1)k

and |E| ≤ k |V |, where n = |X |. The overall time complexity is O
(
nk(n+ 1)k

)
.

Restart schedules

Lastly, we consider the case where H contains one or more (randomized) heuristics, each
of which is executed in the restart model. In the special case |H| = 1, the results in this
section provide a way to compute approximately optimal restart schedules, however we
allow |H| to be arbitrary.

As in the previous section, we assume T (h, x) ≥ 1 (with probability 1) for all h ∈ H
and all x ∈ X , and we require an artificial bound B on the total time that any single
heuristic can be run (note that this time may be spread across multiple runs). When using

3For example, if α = 2 and B = 4, the possible choices are 0, 1, 2, and 4.
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randomized heuristics, it may not be possible to solve a problem instance with certainty
in any finite time. We will confine our attention to schedules that, for any x ∈ X , solve x
with probability at least 1− δ, for some δ ∈ (0, 1). Letting Sδ denote the set of schedules
that have this property, our goal is to compute (an approximation to) the schedule

S∗ = arg min
S∈Sδ

∑
x∈X

E [minBk, T (S, x)] .

(In other words, we charge a schedule timeBk for instances it does not solve after running
each heuristic for time B.)

In this setting, we obtain a quasi-polynomial time approximation scheme by combining
Lemmas 8 and 9. Specifically, we obtain an α2-approximation to the optimal restart sched-
ule by computing a shortest path in a state space graph Grs

α,B whose vertex set contains all
the α-regular states in which each heuristic is run for time at most B. The construction is
similar to the one described in the previous section, and is detailed in the proof of The-
orem 21 in Appendix A. One difference from the construction in the previous section is
that, to ensure that only schedules in Sδ can form a shortest path from Y ∅ to v∗, edges of
the form 〈Y, v∗〉 are assigned infinite weight if performing the runs in Y does not solve
each instance with probability at least 1− δ.

The key to bounding the time complexity is to show that |V |, which equals the number
of α-regular states in which each heuristic has been run for time at most B, is at most
BO(k logα logαB), and that |E| = O (logαB |V |). We then show that, using precomputation,
edge weights can be assigned in time O (n) per edge.

Theorem 21. Fix an approximation ratio α > 1, a budget B, and an error tolerance
δ > 0. Then an α2 approximation to schedule S∗ may be found by computing a shortest
path in a state-space graph Grs

α,B = 〈V,E, Se〉, where |V | = O
(
BO(k logα logαB)

)
and

|E| = O (logαB |V |). The overall running time is O
(
n(logαB)BO(k logα logαB)

)
, where

n = |X |.

3.5 Generalization Bounds

To apply the offline algorithms just discussed, we might collect a set of problem instances
to use as training data, compute an (approximately) optimal schedule for the training in-
stances, and then use this schedule to solve additional test instances. Under the assumption
that the training and test instances are drawn (independently) from a fixed probability dis-
tribution, we would then like to know how much training data is required so that (with
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high probability) our schedule performs nearly as well on test data as it did on the training
data. In our setting two distinct questions arise:

1. How many training instances do we need?

2. How many runs of each randomized heuristic h must we perform on each training
instance x in order to estimate the distribution of T (h, x) to sufficient accuracy?

We deal with each question separately in the following subsections.

In this section, we will confine our attention to schedules in the set SG, for some state-
space graph G = 〈V,E, Se〉 (although we will not necessarily find an optimal schedule for
the training instances by computing a shortest path in G).

3.5.1 How many instances?

We first consider how many training instances are required to learn a schedule that is
probably approximately correct, under the assumption that the run length distribution of
each heuristic on each of the training instances is known exactly. In the next section, we
show that, by running each heuristic on each training instance for a surprisingly small
amount of time, we can obtain estimates of the length distribution that allow us to obtain
the same guarantees as if we knew the run length distributions exactly.

Let {x1, x2, . . . , xm} be a set of m training instances drawn independently at random
from some distribution. For any edge e ∈ E in the state-space graph G = 〈V,E, Se〉,
let w(e, x) be defined as in equation (3.4), and let µ̄(e) = 1

m

∑m
i=1w(e, xi) be the sample

mean value of w(e, x) over the instances in the training set. Let µ(e) = E [w(e, x)] be the
expected edge weight for a random test instance x.

Recall from §3.3.2 that any schedule S ∈ SG corresponds to a path e1, e2, . . . , eL from
Y ∅ to v∗ in G, such that for any instance x,

E [min {` (S) , T (S, x)}] = W (S, x) ≡
L∑
l=1

w(el, x) .

For any schedule S, let µ̄(S) =
∑m

i=1W (S, xi) be the sample mean weight of the path
corresponding to S and let µ(S) = E [W (S, x)] be the expected value for a random test
instance x.

The following lemma bounds errors in the estimates of µ(S) in terms of errors in the
estimates of µ(e).

65



Lemma 10.
max
S∈SG

{
µ̄(S)− µ(S)

`(S)

}
≤ max

e∈E

{
|µ̄(e)− µ(e)|
`(Se(e))

}
.

Proof. Fix an arbitrary schedule S ∈ SG, and let e1, e2, . . . , eL be the corresponding path
from Y ∅ to v∗. Then µ̄(S) =

∑L
l=1 µ̄(el) by construction, while µ(S) =

∑L
l=1 µ(el) by

linearity of expectation. Thus, letting r denote the maximum value of |µ̄(e)−µ(e)|
`(Se(e))

, we have

|µ̄(S)− µ(S)| ≤
L∑
l=1

|µ̄(el)− µ(el)| ≤
L∑
l=1

r · `(Se(el)) = r · `(S)

so |µ̄(S)−µ(S)|
`(S)

≤ r, as claimed.

We now bound the probability that there exists an edge e such that |µ̄(e)−µ(e)|
`(Se(e))

> ε,
for some ε > 0. For any edge e ∈ E, µ̄(e) is the average of m independent identically
distributed random variables, each of which has range [0, ` (Se(e))] and expected value
µ(e). Thus by Hoeffding’s inequality,

P
[
|µ̄(e)− µ(e)|
` (Se(e))

≥ ε

]
≤ 2 exp

(
−2mε2

)
.

It follows that for any δ′ > 0, m = O( 1
ε2

ln 1
δ′

) training instances are required to ensure

P
[
|µ̄(e)−µ(e)|
`(Se(e))

≥ ε
]
< δ′. Setting δ′ = 1

|E| and applying the union bound proves the follow-
ing theorem.

Theorem 22. Let G = 〈V,E, Se〉 be a state-space graph. If the number of training in-
stances m satisfies the inequality

m ≥ m0(ε, δ, G) = O

(
1

ε2
ln
|E|
δ

)
(3.6)

then the inequality

max
S∈SG

∣∣∣∣ µ̄(S)− µ(S)

` (S)

∣∣∣∣ ≤ ε

holds with probability at least 1− δ.

Fix some ε̄ > 0, and let `max = maxS∈SG ` (S). Plugging ε = ε̄
`max

into Theorem

22 shows that O
(
`2max
ε̄2

ln |E|
δ

)
training instances suffice so that, with probability at least
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1 − δ, every schedule’s estimated expected cost is within ε̄ of its true mean. In particular,
with probability at least 1− δ, the schedule in SG that performs optimally on the training
instances will have true expected cost at most 2ε̄ worse than optimal.

Using Theorem 22, we can now obtain sample complexity bounds for any state-space
graph of interest. In particular, putting Theorem 19 together with Theorem 22 yields the
following corollary.

Corollary 4. Let the function m0(ε, δ, G) be defined as in Theorem 22. Then

m0(ε, δ, Gts
B,α) = O

(
1

ε2

(
ln

1

δ
+ k log logαB

))
.

Similarly, putting Theorem 21 together with Theorem 22 yields the following corol-
lary.

Corollary 5. Let the function m0(ε, δ, G) be defined as in Theorem 22. Then

m0(ε, δ, Gts
B,α) = O

(
1

ε2

(
ln

1

δ
+ k logB logα logαB

))
.

Corollaries 4 and 5 and Lemma 9 suggest the following procedure: compute an (ap-
proximately) optimal schedule for them training instances (using any algorithm or heuris-
tic whatsoever) then round the schedule up to an α-regular schedule, where α is chosen
so that Corollary 4 or Corollary 5 applies for some desired ε and δ. The rounding step
prevents overfitting, and introduces only a constant factor performance overhead (in par-
ticular, Lemma 9 shows that the rounding introduces at most a factor α overhead if all
heuristics are executed in the suspend-and-resume model, and at most a factor α2 over-
head otherwise).

3.5.2 How many runs per instance?

We now consider how many runs of each heuristic h must be performed on each training
instance x in order to estimate the distribution of the random variable T (h, x) to sufficient
accuracy. LetB denote the maximum time invested in any single heuristic by any schedule
S ∈ SG. If h is deterministic, the distribution of T (h, x) can be determined by performing
a single run (for our purposes, this run can be performed with a time limit of B). Thus,
our interest is in the case when h is randomized. Surprisingly, it will turn out that we need
only to run each randomized heuristic for time O (B logB) in order to obtain sufficiently
accurate estimates.
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Given a training instance x, we will describe how to obtain a function w̄ : E × X →
R≥0 such that, for any edge e in the state space graph, E [w̄(e, x)|x] = w(e, x). Note that
because x is chosen at random, this implies

E [w̄(e, x)] = E [E [w̄(e, x)|x]] = E [w(e, x)] = µ(e)

where µ(e) was defined in the previous section. Thus, for the purposes of proving Theorem
22, the estimates w̄(e, x) are as good as the true values w(e, x).

We obtain the desired function w̄ in two steps. First, we obtain unbiased estimates of
the failure probability associated with each profile and heuristic. We then use the estimates
of failure probabilities to obtain the desired estimates of edge weights.

For the purposes of this section, we will assume T (h, x) ≥ 1 (with probability 1) for
any heuristic h and any training instance x.

Estimating failure probabilities

Fix a training instance x and a heuristic h. Define the failure probability of a profile
P = 〈τ1, τ2, . . . , τL〉 with respect to heuristic h as the probability that performing runs of
lengths τ1, τ2, . . . , τL of heuristic h does not yield a solution to x:

qh(P ) =
L∏
l=1

P [T (h, x) > τl] .

Let PB denote the set of profiles of size < B, where each run is of length ≥ 1 (note
that there can be at most B runs in such a profile). In this section our goal is to spend
as little time as possible running h on x so as to obtain a function q̄h : PB → [0, 1] with
the following property: for any profile P , E [q̄h(P )] = qh(P ) (i.e., q̄h(P ) is an unbiased
estimate of qh(P ) for all P ∈ PB).

To obtain such a function, we perform B independent runs of h on x, where the ith run
is performed with a time limit of B

i
. Note that the total time required for all runs of h is at

most
∑B

i=1
B
i

= O(B logB). Let Ti be the time the ith run would have taken if it had been
performed with no time limit (whereas we only have knowledge of min

{
Ti,

B
i

}
), and call

the tuple T = 〈T1, T2, . . . , TB〉 a trace. For any profile P = 〈τ1, τ2, . . . , τL〉, we say that
T encloses P if Ti > τi for all i, 1 ≤ i ≤ L (see Figure 3.2). Our estimate is

q̄(P ) =

{
1 if T encloses P
0 otherwise.
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Figure 3.2: An illustration of our estimation procedure. The profile P = 〈τ1, τ2〉 (dots) is
enclosed by the trace 〈T1, T2, T3, T4, T5, T6〉.

The estimate is unbiased (for profiles of size < B) because E [q̄(P )] = P [q̄(P ) = 1] =∏B
i=1 P [T (h, x) > τi] = q(P ). Furthermore, the estimate can be computed given only

knowledge of min{Ti, Bi }. This is true because if P = 〈τ1, τ2, . . . , τL〉 is a profile with
size < B, then for each i we have τi < B

i
(recall that the sequence 〈τ1, τ2, . . . , τL〉 is

non-increasing by definition).

Thus we have proved the following lemma.

Lemma 11. Given an instance x and a heuristic h, after running h for time O (B logB)
(or time at most B, if h is deterministic), we can obtain a function q̄h such that for any
profile P , E [q̄h(P )] = qh(P ).

Estimating schedule running times

Given the ability to obtain unbiased estimates of failure probabilities, we can readily obtain
unbiased estimates of the running time of any schedule. Fix a training instance x. For any
state Y = 〈P1, P2, . . . , Pk〉, let Q(Y ) be the probability that none of the runs in Y yield a
solution to x:

Q(Y ) =
k∏
j=1

qhj(Pj) . (3.7)
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We can obtain an unbiased estimate ofQ as follows. For each h ∈ H, let q̄h be an unbiased
estimate of qh, obtained (for example) using the procedure just described. Let Q̄ be the
function obtained by plugging q̄hj in for qhj in equation (3.7), for all j (1 ≤ j ≤ k). Given
the instance x, the functions q̄1, q̄2, . . . , q̄k are independent. For any independent random
variables A and B, E [AB] = E [A] · E [B]. Thus, for any state Y = 〈P1, P2, . . . , Pk〉, we
have

E
[
Q̄(Y )

]
=

k∏
j=1

E
[
q̄hj(P )

]
=

k∏
j=1

qhj(P ) = Q(Y ) . (3.8)

Now fix an edge e = (Y1, Y2). Let S1 be a schedule such that Y(S1) = Y1. Let
S = Se(e), let t1 = ` (S1), and let t2 = ` (S1 ⊕ S). As defined in equation (3.4),

w(e, x) =

∫ t2

t=t1

1− px((S1 ⊕ S)〈t〉) dt =

∫ t2

t=t1

Q(Y((S1 ⊕ S)〈t〉)) dt .

Let w̄(e, x) be the estimate of w(e, x) obtained by using Q̄ in place of Q in this equation.
We have

E [w̄(e, x)] = E
[∫ t2

t=t1

Q̄(Y(S1 ⊕ S〈t〉)) dt
]

=

∫ t2

t=t1

E
[
Q̄(Y(S1 ⊕ S〈t〉))

]
dt (linearity of expectation)

=

∫ t2

t=t1

Q(Y(S1 ⊕ S〈t〉)) dt (equation (3.8))

= w(e, x) .

Thus, given an arbitrary instance x, after running each deterministic heuristic for time
at most B and running each randomized heuristic for time at most O (B logB), we can
obtain an unbiased estimate of w(e, x) for any edge e the state space graph.

Finally, if S is a schedule corresponding to the path e1, e2, . . . , eL, then W̄ (S, x) =∑L
l=1 w̄(el, x) is an unbiased estimate of W (S, x) by linearity of expectation. Thus, if we

redefine µ̄(S) =
∑m

i=1 W̄ (S, x) to be the average estimated weight assigned to S over the
m training instances, the following theorem follows by the same argument used to prove
Theorem 22.

Theorem 23. After running each deterministic heuristic for time at most B per training
instance, and running each randomized heuristic for time at mostO (B logB) per training
instance, we can obtain a function µ̄(S) for which Theorem 22 holds. That is, if G =
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〈V,E, Se〉 is a state-space graph and the number of training instances m satisfies the
inequality

m ≥ m0(ε, δ, G) = O

(
1

ε2
ln
|E|
δ

)
(3.9)

then the inequality

max
S∈SG

∣∣∣∣ µ̄(S)− µ(S)

` (S)

∣∣∣∣ ≤ ε

holds with probability at least 1− δ.

Theorem 23 is significant for two reasons. First, it implies that if we optimize over the
training instances in order to find a schedule with minimum estimated average expected
running time on the training instances, we will obtain the same guarantees as if we had
(somehow) found a schedule with minimum actual average expected running time on the
training instances. Second, and perhaps more importantly, being able to obtain unbiased
estimates of schedules’ running times will be critical for making our algorithms work in
the online setting.

Refining the estimation procedure

Although the procedure for estimating failure probabilities described in Lemma 11 is suffi-
cient to obtain all our theoretical results, the estimate is somewhat crude in that the estimate
of q(P ) (which is a probability) is always 0 or 1. The following lemma (proved in Ap-
pendix A) gives a more refined unbiased estimate which we will use in our experimental
evaluation. As before, computing the estimate only requires knowledge of min

{
Ti,

B
i

}
for each i.

Lemma 12. For any profile P = 〈τ1, τ2, . . . , τK〉 of size < B, define Li(P ) = {i′ : 1 ≤
i′ ≤ B, B

i′
> τi}. Then the quantity

q̄h(P ) =
K∏
i=1

|{i′ ∈ Li(P ) : Ti′ > τi}| − i+ 1

|Li(P )| − i+ 1

is an unbiased estimate of qh(P ) (i.e., E [q̄h(P )] = qh(P )).

3.6 Online Algorithms

One weakness of the results of §3.5 is that they assume we can draw training (and test)
instances independently at random from a fixed probability distribution. In practice, the
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distribution might change over time and successive instances might not be independent.
For example, a SAT solver might be used to solve a set of problem instances derived
from a particular application domain, and then be used to solve another set of instances
from a different domain. To further illustrate this point, consider again the example from
§3.1.1 of selecting a restart schedule for the SAT solver used by SATPLAN to solve one
or more planning problems. To solve a particular planning problem, SATPLAN generates
a sequence 〈σ1, σ2, . . .〉 of Boolean formulae that are not at all independent. To optimize
SATPLAN’s performance, we would like to learn a restart schedule for the underlying SAT
solver on-the-fly, without making strong assumptions about the sequence of formulae that
are fed to it.

In this section we consider the problem of selecting schedules in a worst-case online
setting. In this setting we are fed, one at a time, a sequence 〈x1, x2, . . . , xn〉 of problem
instances to solve. Prior to receiving instance xi, we must select a schedule Si ∈ S. As
in previous sections, we confine our attention to schedules that run each heuristic for time
at most B, for some budget B > 0. We then use Si to solve xi and incur cost Ci equal
to the CPU time we spend running the heuristics in H on xi, where the running time is
artificially truncated at time Bk,so

E [Ci] = E [minBk, T (Si, xi)] .

As in Chapter 2, some form of truncation is necessary, for otherwise our algorithm might
be forced to spend an arbitrarily large amount of time on one particular instance and we
could not prove any meaningful bounds on its performance. After solving Si we know
the CPU time that was required, but nothing more (in particular, we do not know the
distribution of T (h, xi) for each h ∈ H). Our α-regret4 after having received n instances
is equal to

E

[
n∑
i=1

Ci

]
− α · min

S∈S0

{
n∑
i=1

E [T (S, xi)]

}
(3.10)

where S0 ⊆ S is some set of schedules, and where the expectation is over two sources of
randomness: the random bits supplied to the heuristics inH, but also any random bits used
by our schedule-selection strategy. A strategy’s worst-case regret is the maximum value
of (3.10) over all instance sequences of length n.

4α-regret is unrelated to α-regularity.
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3.6.1 Handling a small pool of schedules

Assume for the moment that we are given a set S0 of schedules to select from, where |S0|
is small enough that we would not mind using O(|S0|) time or space for decision making.
In this case one option is to treat our online problem as an instance of the “nonstochastic
multiarmed bandit problem” and use the Exp3 algorithm of Auer et al. [5] to obtain regret

O
(
Bk
√

1
n
|S0|
)

.

To obtain regret bounds with a better dependence on |S0|, we use a version of the
“label-efficient forecaster” of Cesa-Bianchi et al. [17]. Applied to our online problem,
this strategy behaves as follows. Given an instance x, with probability γ the strategy
explores by computing an unbiased estimate of E [min {Bk, T (S, x)}] for each S ∈ S0,
using the estimation procedure described in §3.5.2. Recall that this estimation procedure
requires us to spend time at most B running each deterministic heuristic, and time at most∑B

l=1
B
l

= O (B logB) running each randomized heuristic. We denote by F the total
(maximum) running time over all h ∈ H.

With probability 1 − γ, the strategy exploits by selecting a schedule at random from
a distribution in which schedule S is assigned probability proportional to exp(−ηc̄(S)),
where c̄(S) is an unbiased estimate of

∑i−1
l=1 E [min {Bk, T (S, xl)}] (obtained by sum-

ming the estimates from each exploration round, and multiplying by 1
γ

) and η is a learning
rate parameter. By Theorem 1 of Cesa-Bianchi et al. [17], the regret is at most

Bk

(
ln |S0|
η

+
η · n
2γ

)
+ γnF .

Optimizing γ and η yields the following theorem.

Theorem 24. The label-efficient forecaster with learning rate η =
(

ln |S0|
n

√
2F
Bk

)2/3

and

exploration probability γ =
√

ηBk
2F

has 1-regret at most 2Bkn
2
3

(
2 ln |S0| FBk

)1/3.

3.6.2 Online shortest path algorithms

In the previous section we described how the label-efficient forecaster of Cesa-Bianchi et
al. [17] can be used to converge to an optimal schedule within a set S0, but the time and
space required for decision-making were both O (|S0|). In this section, we describe how
the label-efficient forecaster can be implemented more efficiently for certain sets S0 by
exploiting the shortest path formulation discussed in §3.3.2.
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Let G = 〈V,E, Se〉 be a state-space graph, and let S0 = SG. Using the dynamic
programming approach described by György et al. [36], we can maintain the distribution
over schedules (i.e., paths) used by the label-efficient forecaster implicitly, by maintaining
a weight for each edge in our graph. The space required, as well as the time required for
each exploitation step, then become O (|E|) rather than O (|S0|), a potentially dramatic
improvement.

The total decision-making time required by this approach is O (n |E|). By using a
“lazy” implementation of the exploitation steps, we can reduce the total decision-making
time to O (m|E|), where m is the number of exploration rounds (note that this is com-
parable to the amount of time required to solve the offline shortest path problem on the
m training instances). The idea of this approach is to only resample a schedule whenever
the distribution over schedules changes (i.e., sample once after each exploration step). On
any particular round, this variant of the algorithm has the same expected behavior as the
original version, and thus by linearity of expectation the overall worst-case regret bounds
are unchanged. This approach has been used in other online algorithms (e.g., see [42]).

3.6.3 Online greedy algorithm

In §3.1.4 we showed that the online problem considered in this chapter satisfies the suf-
ficient conditions required by the online greedy algorithm for MIN-SUM SUBMODULAR

COVER from Chapter 2. In this section we flesh out the guarantees that the online greedy
algorithm provides for the online problem considered in this chapter.

We will confine our attention to schedules in which each action duration is an integer
between 1 and B, and in which each heuristic is run for total time at most B (where this
time may be spread across multiple runs). We use SB to denote the set of such schedules.

We first consider the online greedy algorithm OGp, defined in §2.4.4. Recall that this
algorithm OGp can be run in a priced feedback model in which, to receive access to the
function px after solving instance x, we must pay a price that is then added to the regret.
If all heuristics are deterministic, then after running each heuristic on instance x with a
time limit of B, we are able to the determine value of px(S) for any S ∈ SB. If one
or more heuristics are randomized, then after running each randomized heuristic for time
O (B logB), we can obtain an unbiased estimate of px(S) for any S ∈ SB, as described
in §3.5.2. As far as the analysis of OGp is concerned, unbiased estimates of px(S) are as
good as the true values. Thus, we obtain the following bound as a corollary of Theorem 11.
Here, as in §3.6.1, we use F to denote the maximum CPU time required by the estimation
procedure described in §3.5.2.
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Corollary 6. Algorithm OGp, run with WMR as the subroutine experts algorithm, has
4-regret O

(
(Bk lnn)

5
3 ( F

Bk
ln |A|) 1

3 (n)
2
3

)
with respect to the set S0 = SB.

We next consider the partially transparent feedback model. Recall that in this model,
after selecting a schedule Si to use on instance xi, one learns the value of pxi(Si〈t〉) for
all t > 0. If all heuristics are deterministic, then the information revealed in this model is
always available: pxi(Si〈t〉) equals 1 if t ≥ T (Si, xi), and equals 0 otherwise. If some
heuristics are randomized, then knowing T (Si, xi) does not reveal the exact value of
pxi(Si〈t〉), but for any t > 0 it provides an unbiased estimate. Again, for the purposes
of the analysis given in §2.4.4 for the partially transparent feedback model, these unbi-
ased estimates are as good as the true values. Thus, we obtain the following bound as a
corollary of Theorem 12.

Corollary 7. Algorithm OG, run with Exp3 as the subroutine experts algorithm, has
4-regret O

(
(Bk lnn)2

√
nBk lnBk

)
with respect to the set S0 = SB.

Given these two corollaries, it is natural to consider hybrid algorithms that always
make use of the feedback provided in the partially transparent model, and occasionally
pay the exploration cost F in order to obtain the information made available in the priced
feedback model. We have analyzed such algorithms and consider them promising from
a practical point of view. However, they do not yield regret bounds that improve on the
minimum of the two bounds just stated (as a function of n, k, B, and F ) by more than a
constant factor.

3.7 Handling Optimization Problems

In this section we describe how the results of this chapter can be applied to optimization
problems, as opposed to decision problems. In this context, we will assume that instead
of simply returning a “yes” or ”no” answer, our heuristics are anytime algorithms that
return solutions of increasing quality over time. When constructing a schedule to use in
combining such heuristics, the “cost” of a schedule should depend on how solution quality
changes as a function of time (and should not, for example, depend only on the time
required to find a provably optimal solution).

To better understand the motivation for the results in this section, consider Figure 3.3,
which depicts the behavior of four solvers on an instance from the 2006 pseudo-Boolean
evaluation (pseudo-Boolean optimization is another name for zero-one integer program-
ming). On this instance, bsolo is the first solver to generate a feasible solution, while
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MiniSat 1.14 is the first to find an optimal solution and also the first to prove optimal-
ity. On the other hand, SAT4J Heur. generates a near-optimal solution very quickly but
is unable to prove optimality (within the half hour time limit). By combining such heuris-
tics using a task-switching schedule, we might hope to take advantage of their different
strengths.
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Figure 3.3: Behavior of four solvers on instance “normalized-mps-v2-20-10-lseu.opb”
from the 2006 pseudo-Boolean evaluation.

We now describe a simple way to extend the results of this chapter to cost functions that
account for solution quality. Let us define, for each instance, a set of objectives to achieve.
For example, we might want to find a feasible solution to an optimization problem, and
also to find a (provably) optimal solution. Then, for each instance x ∈ X , we create a new
set of fictitious instances x̃1, x̃2, . . . , x̃k, one for each of the k objectives. For each heuristic
h ∈ H, we define T (h, x̃i) to be the time that h requires to achieve the ith objective. Thus,
the average time a schedule or heuristic takes to “solve” the fictitious instances is simply
the average time it takes to achieve each of the k objectives on the original instances.
If some objectives are more important than others, we can assign different weights to the
fictitious instances corresponding to each different objective. All the results of this chapter
readily extend to weighted sets of instances.

We evaluate this approach experimentally in §3.9.5.
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3.8 Exploiting Features of Instances

So far in this chapter we have imagined that we must select a schedule to use in solving
instance x based only on our experience with previously-encountered instances, and not
on any properties of the instance x itself. In practice, there may be quickly-computable
features that distinguish one instance from another and suggest the use of different heuris-
tics.

In this section, we describe how existing techniques for solving the so-called sleeping
experts problem can be used to exploit features of instances in an attractive way. We
will suppose that each problem instance is labeled with the values of M Boolean features.
Given an instance, we may examine the values of the features (at zero cost) before selecting
a schedule. Roughly speaking, the sleeping experts algorithms allow us to create variants
of our online algorithms such that, even if regret is calculated using only the instances
for which a particular feature is true, our online algorithm’s usual regret bounds will still
hold (this is true simultaneously for all features). For example, if each instance is labeled
as either “random” or “industrial” and also labeled as either “small” or “large”, then our
online algorithm’s usual regret bounds will hold, and they will also hold even if, when
calculating regret, we only consider the “random” instances or only consider the “large”
instances.

Background: the sleeping experts problem

The problem of combining different sources of expert advice was discussed in §2.4. Recall
that in this problem, one has access to a set of M experts, each of whom gives out a piece
of advice every day. On each day i, one must select an expert ei whose advice to follow.
Following the advice of expert j on day i yields a reward rij . At the end of day i, the value
of the reward rij for each expert j is made public, and can be used as the basis for making
choices on subsequent days. One’s regret at the end of n days is equal to

max
1≤j≤M

{
n∑
i=1

rij

}
−

n∑
i=1

riei . (3.11)

Note that the rewards assigned to an expert on the first i − 1 days do not necessarily
imply anything about its reward on day i. Nevertheless, the randomized weighted majority
algorithm [60] can be used to achieve worst-case regret O

(√
n lnM

)
. Thus, as n→∞,

the randomized weighted majority algorithm’s average reward approaches (or exceeds) the
maximum reward that could be received by following the advice of a single expert on all
n days.
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Now suppose that, on any particular day i, a given expert j may abstain from making a
prediction (in this case rij = 0). When choosing an expert on day i, one must pick an expert
that made a prediction on that day (assume that at least one expert makes a prediction every
day). Let wij = 1 if expert j makes a prediction on day i; otherwise let wij = 0. Define
the “j regret” of an experts algorithm at the end of n days in analogy to (3.11), but only
considering the days on which expert j made a prediction:

max
1≤l≤M

{
n∑
i=1

wijr
i
l

}
−

n∑
i=1

wijr
i
ei

. (3.12)

Generalizing previous work by Freund et al. [29], Blum and Mansour [12] presented an
algorithm for selecting experts in this setting whose j regret is O

(√
n logM + logM

)
,

simultaneously for each j. In fact, the algorithm of Blum and Mansour is more general
in that it allows for real-valued weights wij ∈ [0, 1], as opposed to the binary weights
wij ∈ {0, 1} allowed in the original sleeping experts setting.

Exploiting features when selecting schedules

Our online schedule-selection algorithms can be combined with sleeping experts algo-
rithms in a natural way. For each feature j, we create a copy Aj of the online schedule-
selection algorithm that is only used for instances where feature j is true. We then treat
each Aj as a sleeping expert whose loss equals the cost of the schedule that Aj selects
(note that the sleeping experts problem can be defined equally well in terms of minimizing
loss, rather than maximizing reward).

The code for algorithm SE illustrates this approach, which is well-known. As defined
in this code, SE can only be run in the full-information feedback model, where after
solving instance xi we receive complete knowledge of the function pxi . However, as we
discuss later in this section, SE can be modified to run in the priced feedback model (where
receiving access to pxi entails paying a cost).
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Algorithm SE
Input: sleeping experts algorithm E , online schedule-selection algorithms
A1,A2, . . . ,AM .

For i from 1 to n:
1. For each feature j that is true for instance xi, use Aj to select a

schedule Si,j .

2. Use E to select a sleeping expert j, and select the schedule Si = Si,j .

3. Receive access to the function pxi .

4. For each feature j that is true for instance xi:

(a) feed back the function pxi to Aj , and

(b) feed back the cost of schedule Si,j to E as the loss it would
have incurred had it selected sleeping expert j.

The performance of SE is summarized by the following fact, which follows immedi-
ately from the definition of α-regret together with the regret bound of the sleeping experts
algorithm of Blum and Mansour [12].

Fact 2. Consider running SE with the sleeping experts algorithm of Blum and Mansour
[12] as input, and with a set of subroutine schedule-selection algorithms that each have
worst-case expected α-regret ∆ on a sequence of n instances. Then, simultaneously for
each feature j, it holds that SE has worst-case α-regret at most ∆+O

(√
n logM + logM

)
if regret is calculated using only the instances for which feature j is true.

As defined, SE receives complete knowledge of the function pxi after selecting sched-
ule Si, and then uses this function to give feedback to each Aj . Alternatively, SE can be
run in the priced feedback model by only performing this step with some small exploration
probability γ, as described in §3.6.3. In this setting, Fact 2 can be used in conjunction with
Corollary 6 and Lemma 5 to obtain bounds on 4-regret that hold (simultaneously for all j)
when regret is calculated using only the instances that have feature j.

79



Table 3.2: Solver competitions.

Competition Venue Domain
CASC-J3 CADE 2007 theorem proving
SMT-COMP’07 CAV’07 satisfiability modulo theories
SAT 2007 SAT 2007 Boolean satisfiability
MaxSAT-2007 SAT 2007 maximum satisfiability
PB’07 SAT 2007 zero-one integer programming
QBFEVAL’07 SAT 2007 quantified Boolean formulae
CPAI’06 CP 2006 constraint satisfaction
IPC-5 ICAPS 2006 A.I. planning

3.9 Experimental Evaluation

In this section we present an experimental evaluation of the offline and online algorithms
described in this chapter. The bulk of our experimental evaluation consists of using data
from recent solver competitions to determine how task-switching schedules constructed by
our offline and online algorithms would have fared had they been entered in the competi-
tions. In these experiments we consider both optimization and decision problems, and we
exploit features of problem instances in order to improve performance. At the end of this
section, we present experiments in which we construct restart schedules for a randomized
heuristic.

3.9.1 Solver competitions

Each year, various computer science conferences hold solver competitions designed to
assess the state of the art in some problem domain. In these competitions, each submitted
solver is run on a sequence of problem instances, subject to some per-instance time limit.
Solvers are awarded points based on the instances they solve, and prizes are awarded to
the highest-scoring solvers. Many competitions are divided into tracks corresponding to
different categories of instances.

In this section we describe experiments performed using data from the eight solver
competitions listed in Table 3.2. Each of these competitions is held either annually or
bi-annually, and the competitions listed in Table 3.2 are the most recent competitions that
had taken place at the time of writing. We now provide a brief description of each of the
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competitions and problem domains.

1. CASC-J3. Theorem proving is the task of finding a proof that a given theorem
follows from a given set of axioms, or refuting the theorem. The annual CASC the-
orem prover competition evaluates the performance of theorem provers over various
logics.

2. SMT-COMP’07. Satisfiability modulo theories is the task of determining whether
a logical formula is true with respect to a background theory expressed in classical
first-order logic with equality. SMT solvers are generally used to solve hardware
and software verification problems, where typical background theories include the
theories of real and integer arithmetic, and the theories of various data structures
such as arrays and fixed size bit vectors.

3. SAT 2007. Boolean satisfiability is the task of determining whether there exists an
assignment of truth values to a set of Boolean variables that satisfies each clause
(disjunction) in set of clauses. SAT solvers are used as subroutines in state-of-the-
art algorithms for hardware and software verification and A.I. planning. The SAT
2007 competition included industrial, random, and hand-crafted benchmarks.

4. Max-SAT 2007. Maximum satisfiability is the optimization problem of finding an
assignment of truth values to a set of Boolean variables that maximizes the num-
ber of satisfied clauses in a given set of clauses. The 2007 Max-SAT evaluation
contained weighted and unweighted Max-SAT instances that encoded various opti-
mization problems, including graph-theoretic problems and constraint satisfaction
problems.

5. PB’07. Pseudo-Boolean optimization is the task of minimizing a function of zero-
one variables subject to algebraic constraints, also known as zero-one integer pro-
gramming. On many benchmarks, pseudo-Boolean optimizers (which are usually
based on SAT solvers) outperform general integer programming packages such as
CPLEX [2]. The PB’07 evaluation included both optimization and decision (feasi-
bility) problems from a large number of domains, including formal verification and
logic synthesis, as well as various numerical and graph-theoretic problems.

6. QBFEVAL’07. Determining whether a quantified Boolean formula (QBF) is true or
false is the canonical PSPACE-complete problem. The 2007 QBF solver evaluation
included instances derived from A.I. planning and formal verification problems, as
well as various other problems.
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7. CPAI’06. Constraint satisfaction problems entail finding an assignment of values to
a set of discrete variables so as to satisfy a set of arbitrary discrete constraints. In the
decision version of the problem, the goal is to determine whether there exists an as-
signment that satisfies all the constraints, whereas in the optimization version of the
problem, the goal is to find an assignment that satisfies as many constraints as pos-
sible. The CPAI’06 competition included both decision and optimization problems,
the bulk of which were generated randomly from various distributions.

8. IPC-5. A.I. planning is the problem of finding a sequence of actions (called a plan)
that leads from a starting state to a desired goal state, according to some formally-
specified model of how actions affect the state of the world. The makespan of a
plan is the number of steps in the plan, treating actions that can be performed si-
multaneously as a single step. In the optimal planning track of IPC-5, the model
of the world is specified in the STRIPS language and the goal is to find a plan with
(provably) minimum makespan. The optimal planning benchmarks of IPC-5 require
solving tasks such as finding a sequence of biochemical reactions that produce a
desired set of substances, moving packages between locations subject to time and
spatial constraints, and scheduling manufacturing operations.

3.9.2 Experimental procedures

Our experiments for each solver competition followed a common procedure:

1. We determined the value of T (h, x) for each heuristic h and benchmark instance
x using data available on the competition web site (we did not actually run any of
the solvers). Note that the solvers considered in these competitions are deterministic
(or randomized, but run with a fixed random seed), so T (h, x) is simply a single
numeric value. For optimization problems, we define T (h, x) to be the time required
to obtain a provably optimal solution (or to prove that the problem is infeasible). If
a solver did not finish within the competition time limit, then T (h, x) is undefined.

2. We discarded any instances that none of the solvers could solve within the time limit.
(Clearly, no task-switching schedule could solve any such instance within the time
limit either.)

Given a schedule S and instance x, we will not generally be able to determine the true
value of T (S, x), due to the fact that T (h, x) is undefined for some heuristics h ∈ H.
Instead, we will measure the performance of S on x in terms of upper and lower bounds
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on the true value of T (S, x), computed as follows. The lower bound is simply the value

min {B, T (S, x)}

where B is the competition time limit. Given knowledge of min {B, T (h, x)} for each
h ∈ H, we can determine the value of min {B, T (S, x)} exactly. The upper bound is the
value of T (S, x), computed after artificially setting T (h, x) = ∞ for heuristics that did
not solve x within the competition time limit.

When evaluating offline schedule selection algorithms such as the greedy approxi-
mation algorithm from §3.4, we are concerned about the possibility of overfitting the
solver competition data. To address this possibility, we use leave-one-out cross-validation.
Leave-one-out cross-validation is performed as follows: for each instance x, we remove
x from the data set and then run the offline algorithm on the remaining data to obtain a
schedule to use in solving x. We then measure the average performance of these schedules
over all x ∈ X .

In these experiments, we consider schedules that execute all heuristics in the suspend-
and-resume model, as well as schedules that execute all heuristics in the restart model
(when the model is not mentioned explicitly, we use the suspend-and-resume model). Note
that even if all available heuristics are deterministic, the restart model may be useful due
to memory limitations. Recall from §3.4.2 that the greedy approximation algorithm can be
used to produce a schedule optimized for execution under either model. Also recall that,
by Remark 1, there is no loss associated with the restart model from the point of view of
worst-case approximation guarantees.

3.9.3 Experiments with the shortest path algorithm

In this section we present experiments in which the number of heuristics is small enough
that we can compute an optimal task-switching schedule using the shortest path algorithm
described in Theorem 20 of §3.4.3. This allows us to evaluate the potential benefits of task-
switching schedules, and also to determine how close the schedules returned by the greedy
approximation algorithm are to optimality. The experiments described in this section use
the data from the SAT 2005 competition. We used the 2005 data because the data from the
SAT 2007 competition was not yet available at the time these experiments were performed
(the SAT competition was not held in 2006).

For each of the three instance categories from the SAT 2005 competition (industrial,
random, and hand-crafted), we computed an optimal task-switching schedule for the two
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solvers that won first prize in the satisfiable and unsatisfiable subsets of that category.5 We
use only the top two solvers, because we found that computing an optimal task-switching
schedule for three or more solvers was too computationally expensive to be practical (for
the sets of benchmark instances considered here). When evaluating the top two solvers
within each category we consider only the instances that belong to that category, and, as
already mentioned, we discarded instances that neither of the solvers could solve within
the time limit.6

Table 3.3: Results for the SAT 2005 competition.

Category (#Instances) Solver Avg. CPU (s) Num. solved
[lower,upper]

Industrial (268) Optimal schedule [793,793] 268
Greedy schedule [794,794] 268
Greedy schedule (CV) [810,810] 268
SatELiteGTI [958,∞] 267
Parallel schedule [1222,1264] 265
MiniSat 1.13 [1759,∞] 250

Random (284) Optimal schedule [1015,1173] 261
Greedy schedule [1015,1173] 261
Greedy schedule (CV) [1050,1221] 260
Parallel schedule [1081,1325] 257
ranov [2026,∞] 209
kcnfs-2004 [2874,∞] 167

Hand-crafted (403) Optimal schedule [483,538] 391
Greedy schedule [483,540] 391
Parallel schedule [542,643] 388
Greedy schedule (CV) [585,655] 386
Vallst [1095,∞] 343
SatELiteGTI [1214,∞] 350

5In the industrial category, the solver SatELiteGTI won first prize for both the satisfiable and unsat-
isfiable subsets, so we instead combined it with one of the second-place solvers.

6The time limit for the second stage of the SAT 2005 competition was 200 minutes for industrial instances
and 100 minutes for random and hand-crafted instances.
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Table 3.3 displays the upper and lower bounds on average CPU time, as well as the
number of instances solved within the competition time limit, for various solvers: the top
two solvers in each category, a schedule that simply runs these solvers in parallel, the
optimal task-switching schedule, and the task-switching schedule returned by the greedy
approximation algorithm. (As described in §3.9.2, we cannot determine the average CPU
time required by each solver and schedule exactly, but we can compute upper and lower
bounds.)

In all three categories, the optimal schedule improves on the original solvers in terms
of average CPU time and in terms of the number of instances solved within the time limit.
In terms of the upper bound on average CPU time, the improvement is unbounded. In
terms of the lower bound on average CPU time, the improvement is by factors of 1.21,
2.00, and 2.27 for the industrial, random, and hand-crafted categories, respectively. The
optimal schedule also improves on the naı̈ve parallel schedule, both in terms of average
CPU time and in terms of the number of instances solved within the time limit. Another
interesting feature of Table 3.3 is that the schedules returned by the greedy approximation
algorithm are very close to optimal (the average CPU time is within 0.2% of optimal in all
three cases).

Some of these performance improvements are not surprising. In the random category,
one of the two solvers (kcnfs-2004) is a complete solver, whereas the other (ranov)
is based on local search and can only solve satisfiable formulae (in the other two cat-
egories, both solvers are complete). It thus seems natural that hybridizing ranov and
kcnfs-2004 could yield improved performance on a mixture of satisfiable and unsat-
isfiable instances. What is perhaps surprising is that the performance can be improved
simply by interleaving the execution of the two solvers according to an appropriate sched-
ule.

kcnfs-2004

ranov

time (s)

1 10 100 1000 10000

Figure 3.4: The optimal task-switching schedule for interleaving kcnfs-2004 and
ranov, the top two solvers in the random instance category.

Figure 3.4 illustrates the optimal task-switching schedule for interleaving the top two
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solvers in the random instance category. As illustrated in the figure, the optimal schedule
first runs ranov for about 10 seconds, then runs kcnfs-2004 for about 7 seconds (note
logarithmic scale), and so on.

To address the possibility of overfitting, we repeated the experiments with the greedy
approximation algorithm using leave-one-out cross-validation, as described in §3.9.2. Un-
der cross-validation, the lower bound on greedy schedule’s average CPU time increased
by about 2% in the industrial category, and by about 3.5% and 21% in the random and
hand-crafted categories, respectively.

3.9.4 Experiments with a larger number of heuristics

In the previous section we saw that the performance of the greedy approximation algo-
rithm was very close to optimal when using it to combine the top two solvers from the
industrial, random, and hand-crafted tracks of the SAT 2005 competition. In this section,
we present experiments involving a larger number of heuristics, using data from the IPC-5
A.I. planning competition.

Six planners were entered in the optimal planning track of the Fifth International Plan-
ning Competition (IPC-5). Each planner was run on 240 instances, with a time limit of 30
minutes per instance. On 110 of the instances, at least one of the six planners was able to
find a (provably) optimal plan. As described in §3.9.2, we used the greedy algorithm to
construct an approximately optimal task-switching schedule, given as input the completion
times of each of the six planners on each of these 110 instances.

Table 3.4: Results for the optimal planning track of IPC-5.

Solver Avg. CPU Num. solved
[lower,upper]

Greedy schedule [307,358] 98
Greedy schedule (CV) [315,434] 97
Greedy schedule (restart) [332,426] 96
Greedy schedule (restart, CV) [368,551] 95
Parallel schedule [456,1244] 89
SATPLAN [507,∞] 83
Parallel schedule (restart) [527,2145] 89
Maxplan [641,∞] 88
continued on next page. . .
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Table 3.4 (continued from previous page)

Solver Avg. CPU Num. solved
[lower,upper]

MIPS-BDD [946,∞] 54
CPT2 [969,∞] 53
FDP [1079,∞] 46
IPPLAN-1SC [1437,∞] 23

Table 3.4 presents the results. In this table, the schedules marked with “(restart)”
indicate schedules executed in the restart model, and the schedules marked with “(CV)”
indicate the results of leave-one-out cross-validation. The schedule “Parallel (restart)”
indicates a schedule that runs each of the k heuristics for T time units each, starting with
T = 1 and repeatedly doubling T .

As Table 3.4 shows, the greedy schedules outperform the naı̈ve parallel schedule (which
simply runs all six planners in parallel) as well as each of the six individual planners, both
in terms of (lower and upper bounds on) average CPU time and in terms of the number of
instances solved within the 30 minute time limit. Note that, in contrast to the experiments
in the previous section, the greedy schedules now outperform the naı̈ve parallel schedule
by a substantial factor, particularly in terms of the upper bound on average CPU time: the
upper bound on the parallel schedule’s average CPU time is about 3.5 times that of the
greedy schedule in the suspend-and-resume model, and about 5 times that of the greedy
schedule in the restart model.

SATPLAN

Maxplan

MIPS-BDD

CPT2

FDP

time (s)

1 10 100 10000.1

Figure 3.5: Greedy task-switching schedule for interleaving solvers from IPC-5.
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Figure 3.5 shows the task-switching schedule constructed by the greedy approxima-
tion algorithm (the solver IPPLAN-1SC is not shown because it did not appear in the
schedule). As indicated in the figure, the greedy schedule spends the majority of its time
running SATPLAN, the solver that performed best in the competition. However, the first
two solvers that the greedy schedule runs are CPT2 and FDP. Although these solvers did
not perform as well as SATPLAN in the competition, there are some instances that they
are able to solve very quickly, making it beneficial to perform short runs of these solvers
initially.
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Figure 3.6: Number of benchmark instances from the IPC-5 A.I. planning competition
solved by various solvers and schedules, as a function of time.

Figure 3.6 shows the number of instances solved by various solvers as a function of
time: the six individual solvers, as well as the greedy and parallel schedules, executed in
the suspend-and-resume model. As indicated in the figure, the greedy schedule not only
outperforms the other schedules and solvers in terms of average CPU time, but outperforms
them in terms of the number of instances solved within time T , for almost all choices of
T .
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3.9.5 Experiments with optimization heuristics

As described in §3.7, the results of this chapter can be applied to optimization as well as
decision problems. Recall from §3.7 that the idea of this approach was to redefine the
“cost” of a schedule to reflect how solution quality changes as a function of time, and that
all our results carry over to this more general notion of schedule cost.

In this section, we demonstrate the power of this idea using data from the optimization
tracks of the 2007 pseudo-Boolean evaluation and the CPAI’06 constraint programming
competition.7 Our experimental procedure is identical to the one used in the previous
section, except that we now define the “cost” of a schedule to be the average of three
quantities:

1. the time the schedule takes to find a feasible solution,

2. the time the schedule takes to find an optimal solution, and

3. the time the schedules takes to prove optimality (or to prove that the problem is
infeasible).8

As discussed in §3.9.2, we discarded instances where none of the solvers were able to find
a provably optimal solution (for these instances, we would not be able to evaluate the last
two of the three quantities just listed).

We present detailed results for instances in the “small integers, linear constraints” cat-
egory of the PB’07 evaluation, then summarize the results for the other categories and
competitions. In many cases, our experiments yield schedules that outperform each of the
solvers entered in the competition simultaneously in terms of each of the three objectives
just discussed.

Table 3.5 shows the behavior of various solvers in terms of each of these three ob-
jectives, for instances in the “small integers, linear constraints” category of the PB’07
evaluation. As indicated in the table, no one solver is the best in terms of all three ob-
jectives: bsolo3.0.17 is best in terms of the average time required to find an optimal
solution and the average time to prove optimality, while sat4jPseudoCP is about 1.5
times slower at proving optimality but is about 1.6 times faster at finding a feasible solu-
tion.

7We do not consider optimization problems from the Max-SAT evaluation because the necessary data
showing solver solution quality as a function of time was not collected as part of the Max-SAT evaluation.

8The time required to find a provably optimal solution is equal to the time required to find an optimal
solution plus the time required to prove that no better solution exists. Note that the time required to prove
optimality is often substantially larger than the time required to simply discover an optimal solution.
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Table 3.5: Results for PB’07, optimization problems with
small integers and linear constraints.

Solver Avg. CPU (s) to
prove optimality
(or infeasibility)

Avg. CPU (s) to
find optimal so-
lution

Avg. CPU (s) to
find feasible so-
lution

Greedy [218,345] [164,243] [32.54,65.09]
Greedy (CV) [251,738] [200,491] [44.73,187]
Greedy (restart) [262,506] [190,326] [38.79,79.00]
Greedy (restart, CV) [295,1234] [236,783] [53.34,340]
Parallel [381,1360] [288,949] [56.94,275]
Parallel (restart) [474,2537] [369,1749] [87.29,517]
bsolo3.0.17 [629,∞] [577,∞] [270,∞]
bsolo3.0.16 [664,∞] [608,∞] [270,∞]
minisat+1.14 [756,∞] [714,∞] [250,∞]
Pueblo1.4 [890,∞] [816,∞] [229,∞]
sat4jPseudoCP [961,∞] [842,∞] [164,∞]
sat4jPseudoCPCls. [971,∞] [856,∞] [167,∞]
sat4jPseudoRes. [972,∞] [880,∞] [270,∞]
glpPB0.2 [735,∞] [735,∞] [735,∞]
PBS4 v2 [1086,∞] [974,∞] [280,∞]
PBS4 [1086,∞] [975,∞] [281,∞]
PB-clasp04-10 [1025,∞] [931,∞] [410,∞]
PB-clasp03-23 [1168,∞] [1117,∞] [633,∞]
oree0.1.2 alpha [1431,∞] [1360,∞] [614,∞]
absconPseudo102 [1399,∞] [1281,∞] [812,∞]
wildcat-skc [1795,∞] [1109,∞] [593,∞]
wildcat-rnp [1795,∞] [1210,∞] [702,∞]

As shown in Table 3.5, the greedy schedule significantly outperforms each of the
solvers entered in the competition, simultaneously in terms of all three objectives. In
fairness, we should also note that simply running all the solvers in parallel also outper-
forms each of the original solvers in terms of all three objectives, although by a smaller
margin. However, the parallel schedule is inefficient, in part because many of the solvers
have very similar behavior (e.g., the two versions of bsolo and sat4JPseudoCP). Ac-
cordingly, the performance of the parallel schedule is significantly worse than that of the
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greedy schedule (even when evaluated under leave-one-out cross-validation) in terms of
all three objectives, particularly in terms of the upper bounds on average CPU time.

Table 3.6 summarizes the results of all our optimization experiments. For each set
of instances and for each of the three objectives, we define a speedup factor equal to the
(lower bound on) average CPU time required by the fastest individual solver to achieve that
objective, divided by the corresponding quantity for the greedy schedule, where the per-
formance of the greedy schedule is evaluated under leave-one-out cross-validation. Note
that in general, the three different speedup factors listed for each competition represent a
comparison against three different solvers.

Table 3.6: Speedup factors for experiments with optimization heuristics.

Competition Category Speedup fac-
tor (proving
optimality)

Speedup
factor (find-
ing optimal
solution)

Speedup
factor (find-
ing feasible
solution)

PB’07 Opt. small inte-
gers

2.50 2.89 3.67

Opt. small inte-
gers, non-linear

1.60 1.30 1.44

Opt. big integers 1.18 1.47 1.36
CPAI’06 Opt. binary con-

straints in exten-
sion

1.60 3.31 0.96

Opt. n-ary con-
straints in exten-
sion

1.13 1.33 0.98

As the table shows, our strongest results were for the PB’07 evaluation: in all three
categories, we were able to generate a schedule that simultaneously outperformed each
of the original solvers in terms of each of the three objectives we considered: average
time to find a feasible solution, average time to find an optimal solution, and average time
required to prove optimality. Our results for the optimization tracks of the CPAI’06 com-
petition are qualitatively similar, though not quite as strong. In each of the two categories
considered in these experiments, we obtain a schedule that simultaneously outperforms
each of the original solvers in terms of the time required to find an optimal solution and
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the time required to prove optimality, and simultaneously performs almost as well as the
best individual solver in terms of the time required to find a feasible solution.

3.9.6 Experiments with online algorithms

In this section we compare the performance of various online schedule-selection algo-
rithms by using them to combine solvers from the three tracks of the 2007 SAT competi-
tion: industrial, random, and hand-crafted. Within each instance category, we compared
the performance of the online algorithms to the offline greedy schedule, to the individual
solver with the lowest (lower bound on) average CPU Time, and to a schedule that ran
each solver in parallel at equal strength. All the schedules considered in these experiments
are executed in the suspend-and-resume model.

We compare the performance of four online algorithms:

1. Online greedy (WMR): the online greedy algorithm OG from Chapter 2, run in the
full-information feedback model (i.e., after solving an instance, the times required
by all solvers are revealed). When running in the full-information feedback model,
we use the self-tuning randomized weighted majority algorithm of Auer & Gentille
[6] as the subroutine experts algorithm used by OG.

2. Online greedy (Exp3): the online greedy algorithm OG, run in the opaque feedback
model (i.e., after using a schedule to solve an instance, we only learn the CPU time
required by that schedule to solve that instance). When running in this feedback
model, we use a self-tuning version of the Exp3 algorithm [5] as the subroutine
experts algorithm used by OG. Recall from §3.6.3 that, when all heuristics are de-
terministic, the opaque feedback model and the partially transparent feedback model
are equivalent, and thus the information needed to compute the payoffs to Exp3 is
available.

3. WMR: An online algorithm that uses the self-tuning randomized weighted majority
algorithm of Auer & Gentille [6] to select a single heuristic to use in solving each
problem instance. Specifically, we treat each heuristic as an expert whose loss (neg-
ative payoff) equals the time required by the heuristic to solve that instance (capped
at the competition time limit).

4. Exp3: An online algorithm identical to the one just described, except that the self-
tuning version of Exp3 is used as the experts algorithm.
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We ran the online greedy algorithm with parameter L = 25. The time units used by the
online greedy algorithm are the competition time limit divided by L. In implementing the
algorithm, we made use of the two modifications described in §2.4.6, namely (i) ruling out
actions that have already been performed when sampling from the distribution returned
by each experts algorithm and (ii) using dependent rather than independent probabilities
when converting the experts algorithms’ choices into a schedule.

Tables 3.7 summarizes the results of these experiments. The rows labeled Online
greedy w/features and Offline greedy w/features (CV) refer to experiments described in
the next section in which we make use of instance features.

In each category, the offline greedy schedule (evaluated under leave-one-out cross-
validation) outperforms each individual solver as well as the naı̈ve parallel schedule, both
in terms of the number of instances solved within the time limit and in terms of (upper and
lower bounds on) average CPU time. The same is true of the online greedy schedule in the
full information setting. Under the opaque feedback model, the performance of the online
greedy algorithm is not as strong. In some cases it does not outperform the best individual
solver, while in other cases it does not outperform the naı̈ve parallel schedule. In the
section that follows, we evaluate how the various online algorithms behave asymptotically,
as the number of instances grows large.

Table 3.7: Results for the SAT 2007 competition.

Category Solver Avg. CPU (s) Num. solved
(#Instances) [lower,upper]
Industrial (166) Offline greedy w/features (CV) [1872,3180] 151

Online greedy w/features [2014,4336] 149
Online greedy (WMR) [2215,4196] 149
Fastest solver [2438,∞] 139
Offline greedy (CV) [2464,4271] 148
WMR [2617,∞] 139
Online greedy (Exp3) [2765,6858] 134
Parallel [3176,7003] 132
Exp3 [3574,∞] 120

Random (411) Offline greedy w/features (CV) [963,2204] 380
Online greedy w/features [1044,3262] 365
Online greedy (WMR) [1304,4261] 347
Offline greedy (CV) [1337,3252] 344

continued on next page. . .
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Table 3.7 (continued from previous page)

Category Solver Avg. CPU (s) Num. solved
(#Instances) [lower,upper]

Parallel [1775,7571] 302
Online greedy (Exp3) [2050,8127] 294
Fastest solver [2157,∞] 252
WMR [2184,∞] 255
Exp3 [2835,∞] 191

Hand-crafted (129) Offline greedy w/features (CV) [1237,2518] 113
Offline greedy (CV) [1344,2715] 110
Online greedy w/features [1430,2947] 108
Online greedy (WMR) [1513,3452] 107
Fastest solver [1847,∞] 98
Parallel [1855,4866] 95
WMR [1903,∞] 96
Exp3 [2012,∞] 96
Online greedy (Exp3) [2041,5148] 92

Asymptotic behavior of online algorithms

To more thoroughly evaluate the behavior of the online algorithms in the limited-feedback
setting, we performed experiments involving a much larger number of benchmark in-
stances. To do so, we sampled 100,000 benchmark instances independently (with re-
placement) from the set of 411 benchmarks from the random category of the SAT 2007
competition. We then ran each of the online algorithms on this sequence of 100,000 bench-
marks.

It is worth pointing out that, if we knew that each instance in the sequence was being
drawn independently from a fixed distribution (as is the case in these experiments), we
could design simpler algorithms and achieve better performance (e.g., by using the first m
instances as training data, for some appropriate value of m, and then using the schedule
that performs best on the training instances to solve the remaining instances). However,
the intent of these experiments it to evaluate the behavior of the online algorithms on long
sequences of instances, which will not in general have this property.

In addition to evaluating the online algorithms considered in the previous section, we
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evaluated the variant of the online greedy algorithm designed for operation in the priced
feedback model, as described in §3.6.3. Recall that this model works as follows: when
given an instance, the online algorithm may either select a schedule, or may choose to ex-
plore by running all the solvers until they find a solution (or until the competition time limit
expires). As described in §3.6.3, the online greedy algorithm OGp can be applied in this
setting, and simply explores with a fixed probability on each instance. We experimented
with three values of the exploration probability: 0.1, 0.01, and 0.001.
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Figure 3.7: Performance of various online algorithms on instances drawn at random from
the set of SAT 2007 benchmarks instances in the random category.

Figure 3.7 shows the (running) average CPU time for various online algorithms and
offline schedules as a function of the number of instances encountered. The algorithms
labeled “Online greedy (p = γ)” refer to the online greedy algorithm, run with exploration
probability γ. For each of the three values of γ we display two curves: one for the average
CPU time on the non-exploration rounds, and the other (marked “Online greedy (p = γ)
+ exploration cost”) the overall average CPU time, including the time required to run each
solver on the exploration rounds.

95



As Figure 3.7 shows, all the online greedy algorithms eventually outperform both the
best individual solver and the parallel schedule in terms of average CPU time. In the full-
information setting, this happens after a few dozen instances, while in the limited feedback
settings it takes longer. In the limited feedback settings, each of the online greedy algo-
rithms outperforms the best individual solver after less than 1000 instances, while the num-
ber of instances required to overtake the parallel schedule ranges from about 700 (when
the exploration probability is 0.1, and exploration costs are ignored) to 35,000 (when the
exploration probability is 0.001).

Not surprisingly, the online algorithms that select a single solver to run on each in-
stance do not outperform the best individual solver, although they approach its perfor-
mance as the number of instances grows large.

3.9.7 Experiments with instance features

In §3.8, we discussed how instance-specific features may be exploited to make a better
choice of schedule to use in solving a particular instance. In this section, we present
experiments that demonstrate the additional speedups that can be obtained using this ap-
proach.

Recall from §3.8 that in this approach we create, for each feature, a separate copy of
our online schedule-selection algorithm that is only run on instances that have that feature.
We then use a “sleeping experts algorithm” to select among the schedules returned by the
various copies. We use OGse to denote the online algorithm that results from composing
the sleeping experts algorithm of Blum and Mansour [12] with the online greedy algorithm
OG in this way. In other words, OGse is the algorithm SE from §3.8, where the algorithm
of Blum and Mansour [12] is the subroutine sleeping experts algorithm and OG is the
subroutine online schedule selection algorithm.

Features used

Selecting a set of informative features for each of the eight problem domains considered in
this chapter would be a challenging research project in itself. For this reason, take a very
simple and domain-independent approach to feature selection. We made use of two types
of features:

1. Features based on competition benchmark directory structure. We compute a num-
ber of features of each instance x based on the directory in which x is stored. Specif-
ically, for each directory we create a Boolean feature that is true if and only if the
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instance resides somewhere within that directory’s subtree (so if x is stored d lev-
els deep there will be d features that evaluate to true for x). Note that these fea-
tures are potentially quite useful; for example the instances stored in the directory
GRAPHS/WMAXCUT/SPINGLASS seem likely to have common features which
some heuristic might be able to exploit. In an attempt to make our experiments
fair, we manually removed any directory names that we felt would give away too
much information (e.g., we would remove a directory called HARD INSTANCES).

2. Features based on instance annotations. In some cases, the instances contained
specific annotations that described the problem. Specifically, the instances used in
the CASC-J3 theorem proving competition specified the field of mathematics that
the theorem came from (e.g., general algebra, geometry, theory of computation).

Additionally, we include a Boolean feature that evaluates to true for all instances. This
ensures that the online algorithm OGse maintains regret bounds that hold for all instances,
in addition to its per-feature regret bounds.

Note that in general there will be many Boolean features that are true for a particular
instance, and so the online algorithm must discover which features to pay attention to.

Cross-validation

In addition to evaluating the online algorithm OGse, we perform experiments in which we
evaluate the use of features under leave-one-out cross-validation. Unlike in our previous
experiments, it is not immediately obvious how to perform leave-one-out cross-validation
in the presence of features. One possible approach would be the following: when leaving
out each instance x, run a copy of OGse on the instances one at a time, with instance x pre-
sented last. Unfortunately, the computation time required by this approach is prohibitive
for some solver competitions (some of which have thousands of instances within a single
category). Instead, we adopt a simpler approach that is designed to achieve roughly the
same effect.

Our approach is as follows. For each instance x, we remove x from the set of instances
and use the remaining instances as training data. For each feature j, we use the subset of
training instances that have feature j as input to the offline greedy approximation algo-
rithm, producing a schedule Sj . Then, for each feature j, we create a “sleeping expert”
that recommends schedule Sj on instances that have feature j. We then run the sleeping
experts algorithm of Blum and Mansour [12] on all n instances, with x presented last, to
obtain a schedule to use in solving x. Note that in the degenerate case where we have only
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a single feature and it is true for all instances, this cross-validation procedure is identical
to the one used in previous sections.

Results

Table 3.7 (in the previous section) summarizes the results of our experiments for the indus-
trial, random, and hand-crafted categories of the SAT 2007 competition. The rows labeled
Online greedy w/features refer to the online algorithm OGse. The rows labeled Offline
greedy w/features (CV) refer to the cross-validation procedure just described. As the table
shows, the use of features consistently improves performance, both in the online setting
and under leave-one-out cross-validation. In the random category, for example, using fea-
tures improves (the lower bound on) the average CPU time of the offline greedy algorithm
(evaluated under leave-one-out cross-validation) by a factor of 1.43, and improves the av-
erage CPU time of the online greedy algorithm by a factor of 1.25.

Table 3.8: Average CPU time (lower bounds) required by different schedules and heuris-
tics to solve instances from the random category of the 2007 SAT competition. Bold
numbers indicate the (strictly) smallest value in a row.

Feature (#Instances) Best heuristic Greedy (CV) Greedy (CV)
for feature w/features

2+p (105) 1100 (March KS) 918 885
2+p/p0.7 (36) 1607 (SATzilla) 1286 1368
2+p/p0.8 (36) 847 (March KS) 850 728
2+p/p0.9 (33) 678 (March KS) 590 531
LargeSize (130) 2276 (adaptg2wsat+) 2641 1571
LargeSize/3SAT (42) 1016 (gnovelty+) 2588 1016
LargeSize/5SAT (57) 921 (adaptg2wsat+) 2215 1164
LargeSize/7SAT (31) 2532 (ranov) 3496 3069
OnThreshold (176) 764 (SATzilla) 625 435
OnThreshold/3SAT (55) 404 (SATzilla) 606 397
OnThreshold/5SAT (60) 601 (SATzilla) 624 523
OnThreshold/7SAT (61) 1034 (March KS) 643 382

Table 3.8 illustrates in greater detail the power of using features on instances from the
random category. The first column lists the feature along with the number of instances for
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which the feature was true. The second column lists, for each feature, the minimum aver-
age CPU time required by any single heuristic, where the average is computed only over
instances that have that feature. The third and fourth columns list the average CPU time
for the greedy schedule (evaluated under cross-validation), with and without the benefit
of features, respectively. Bold numbers indicate the minimum average CPU time within
a row. As the table shows, the use of features substantially improves the performance of
the greedy schedule in many cases. In nine of the twelve cases, the greedy schedule with
features outperforms the best solver for instances that had that feature. In contrast, for
the greedy schedule constructed without the use of features, this is only true in five out of
twelve cases.

3.9.8 Summary of experimental evaluation

In this section we summarize our experimental results for the eight solver competitions
described in §3.9.1. For each category of each competition, we compare the performance
of the offline greedy schedule (evaluated under leave-one-out cross-validation) to that of
the solver that performed best in terms of average CPU time. We quantify the performance
improvement achieved by the greedy schedule by calculating two “speedup factors”: the
first equals the ratio of (a lower bound on) the average CPU time of the best individual
solver to that of the schedule produced by the greedy algorithm, while the second equals
the ratio of the median CPU time of the best individual solver to that of the greedy schedule
(both speedup factors compare the greedy schedule to the same individual solver, namely
the one that performed best in terms of average CPU time). We run the greedy algorithm
both with and without the use of features, as described in §3.9.7. All CPU times for
the offline greedy algorithm are calculated using leave-one-out cross-validation, to avoid
results that are misleading due to overfitting.

Table 3.9 shows the results. In 30 out of 44 cases, the greedy schedule (evaluated un-
der cross-validation) outperforms the best individual solver in terms of average CPU time,
while in 14 cases, the greedy schedule performs worse than the best individual solver, due
to overfitting. Generally speaking, overfitting occurs for categories in which the number
of instances is relatively small. In terms of average CPU time, the performance improve-
ments are less than a factor of 10 in all but one case. In terms of median CPU time, the
performance improvements are more dramatic: the greedy schedule outperforms the best
individual solver by more than a factor of 10 in several cases. This difference is not all that
surprising, given that the “best” individual solver was defined as the one with minimum
average CPU time, and not the one with minimum median CPU time.

The use of features usually but not always improved performance. In 30 of the 44 cases
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listed in Table 3.9, the use of features led to a larger speedup in average CPU time; in 10
cases it was harmful; and in 4 cases it had no effect. In cases where the use of features
is harmful, the harm is again due to overfitting. Again, overfitting occurs primarily in
cases where the number of instances is relatively small. Again, note that the performance
improvement in terms of median CPU time is generally larger than the performance in
terms of average CPU time, and is larger than a factor of 10 in several cases.

Table 3.9: Speedup factors for various solver competitions.

Competition Category (#Instances) Speedup Speedup
w/features

Mean Median Mean Median
CASC-21 CNF (191) 1.24 0.97 1.45 1.46

EPR (98) 0.58 1.00 0.56 0.98
FNT (100) 3.78 2.94 3.47 2.94
FOF (295) 2.06 90.0 2.15 90.0
SAT (100) 4.83 0.98 5.49 0.98
UEQ (93) 0.99 1.00 0.99 1.00

CPAI’06 Binary ext. (1140) 1.39 1.06 1.37 1.00
Binary int. (698) 3.03 2.36 1.97 1.66
Global (127) 0.28 1.00 0.28 0.94
Opt. binary ext. (619) 2.06 1.36 1.57 1.11
Opt. n-ary ext. (97) 1.55 1.64 1.23 0.94
N-ary ext. (312) 1.36 18.6 1.19 18.6
N-ary int. (736) 2.60 41.8 2.10 29.5

IPC-5 Optimal planning (110) 1.78 2.89 1.61 2.50
MaxSAT-2007 Max-SAT (790) 0.99 0.97 0.98 1.00

Partial Max-SAT (647) 1.68 0.89 1.31 0.94
Weighted Max-SAT (308) 1.15 1.55 0.82 1.76
Weighted Partial (702) 1.49 1.58 1.15 0.81

PB’07 Opt. big ints. (124) 1.11 1.04 1.05 0.95
Opt. small ints. (396) 3.09 6.77 2.71 4.08
Opt. small ints. non-lin. (280) 2.32 1.01 2.10 0.96
Pure satisfiability (88) 1.24 1.09 0.98 0.97
Small ints. (216) 3.19 69.2 2.56 36.7

QBFEVAL’07 Formal verification (728) 1.91 3.04 1.52 2.36
Horn clause formulas (287) 1.06 1.00 1.06 1.00

continued on next page. . .
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Table 3.9 (continued from previous page)

Competition Category (#Instances) Speedup Speedup
w/features

Mean Median Mean Median
Miscellanea (67) 2.19 3.72 2.19 3.72
Non prenex non cnf (81) 0.81 0.76 0.81 0.79
Planning (80) 1.37 0.92 1.28 1.00

SAT 2007 And-Inverter Graphs (263) 1.26 1.00 1.11 1.00
Hand-crafted (129) 1.49 3.24 1.37 3.24
Industrial (166) 1.30 1.42 0.99 1.18
Random (411) 2.24 7.27 1.61 5.31

SMT-COMP’07 AUFLIA (192) 2.62 1.00 2.64 0.99
AUFLIRA (193) 15.1 1.00 15.1 1.00
QF AUFBV (187) 1.00 1.00 1.00 1.00
QF AUFLIA (206) 1.32 1.00 1.05 1.00
QF BV (200) 1.94 1.00 1.97 1.00
QF IDL (186) 1.01 1.00 1.00 0.98
QF LIA (186) 0.33 10.0 0.95 10.0
QF LRA (202) 0.92 1.00 0.82 1.00
QF RDL (168) 0.90 1.00 0.70 1.00
QF UF (199) 2.17 1.98 2.29 1.98
QF UFIDL (201) 0.85 0.98 0.85 0.98
QF UFLIA (110) 0.25 1.00 0.25 1.00

3.9.9 Experiments with restart schedules

In our experiments so far, we have only considered deterministic heuristics. In this section
we consider randomized heuristics. Specifically, we consider the problem of constructing
a single restart schedule to use to solve a set of problem instances via a single Las Vegas
algorithm.

Following Gagliolo & Schmidhuber [31], we evaluate our algorithm for constructing
restart schedules using the SAT solver satz-rand. We note that satz-rand is at this
point a relatively old SAT solver. However it has the following key feature: successive
runs of satz-rand on the same problem instance are independent, as required by our
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theoretical results. More modern solvers (e.g., MiniSat) also make use of restarts but
maintain a repository of conflict clauses that is shared among successive runs on the same
instance, violating this independence assumption.

To generate a set of benchmark formulae, we use the instance generator supplied with
blackbox [46] to generate 80 random logistics planning problems, using the same param-
eters that were used to generate the instance logistics.d from the paper by Gomes
et al. [35].9 We then used SATPLAN to find an optimal plan for each instance, and saved
the Boolean formulae it generated. This yielded a total of 242 Boolean formulae.10 We
then performed B = 1000 runs of satz-rand on each formula, where the ith run was
performed with a time limit of B

i
as per the discussion in §3.5.2.

We evaluated several different restart schedules:

1. the schedule returned by the offline greedy approximation algorithm,

2. uniform schedules of the form 〈t, t, t, . . .〉 for each t ∈ {1, 2, . . . , B},

3. geometric restart schedules of the form 〈β0, β1, β2, . . .〉 for each β ∈ {1.1k : 1 ≤
k ≤ dlog1.1Be}, and

4. Luby’s universal restart schedule.

We estimated the expected CPU time required by each schedule using the “refined estima-
tion procedure” described in §3.5.2.

Table 3.10 gives the average CPU time required by each of the schedules we evaluated.
Because run lengths were capped at 1000 seconds, the values in this table are lower bounds
on the (estimated) expected running time of a schedule on problem instances drawn from
the distribution used in these experiments. In terms of these lower bounds, the schedule
returned by the greedy approximation algorithm had the smallest mean running time. The
greedy schedule was 1.7 times faster than Luby’s universal schedule, 1.5 times faster than
the best uniform schedule (which used threshold t = 85), and 1.1 times faster than the
best geometric schedule (which set β ≈ 1.6). The average CPU time for a schedule that
performed no restarts was about 3.4 times that of the greedy schedule in terms of the lower
bounds on average CPU time, but is likely to be much worse in terms of actual expected
running time (it is likely that some runs would take much longer than 1000 seconds if all
the runs were allowed to finish).

9The parameters are: 9 packages, 5 cities, 2 planes, 3 locations per city, 1 truck per city, and 9 goals.
10The number of generated formulae is less than the sum of the minimum plan lengths, because SATPLAN

can trivially reject some plan lengths without invoking a SAT solver.
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Table 3.10: Performance of various restart schedules for running satz-rand on a set of
Boolean formulae derived from random logistics planning benchmarks.

Restart schedule Avg. CPU (s)
Greedy schedule 21.9
Greedy schedule (CV) 22.8
Best geometric schedule 23.9
Best uniform schedule 33.9
Luby’s universal schedule 37.2
No restarts 74.1

Examining Table 3.10, one may be concerned that the greedy approximation algorithm
was run using the same estimated run length distributions that were later used to estimate
its expected CPU time. To address the possibility of overfitting, we also evaluated the
greedy algorithm using leave-one-out cross-validation. The estimated average CPU time
increased by about 4% under leave-one-out cross-validation.

3.9.10 Ways to improve our experimental results

The results of the experiments presented in this chapter could potentially be improved in
at least two ways:

1. Sharing information among heuristics. In the experiments performed in this chapter,
each heuristic executes independently. In practice, during the process of solving an
instance, one heuristic may discover information that could be useful to share with
other heuristics. For example, when solving optimization problems, the heuristics
could share upper and lower bounds on the optimal objective function value. When
solving decision problems such as Boolean satisfiability or constraint satisfaction,
the runs could maintain a common repository of learned conflict clauses.

2. Monitoring progress of heuristics. The schedules considered in this chapter simply
run a heuristic for a certain amount of time, without monitoring the heuristic to see
whether it appears to be close to producing an answer. In practice, it may be pos-
sible to predict a heuristic’s remaining running time based on its current state. For
example, if the heuristic makes use of chronological backtracking one could exam-
ine how much of the search tree has already been pruned. One could also leverage
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existing techniques for deliberation control (e.g., [58, 72]). Exploiting information
of this sort is an interesting prospect, both from an experimental and a theoretical
point of view.

3.10 Conclusions

This chapter presented algorithms for combining multiple heuristics in offline and online
settings. Experimentally, we used data from recent solver competitions to show that, by
combining heuristics, we can improve the performance of state-of-the-art solvers in several
problem domains. Our experimental evaluation considered heuristics for optimization as
well as decision problems, as well as a randomized heuristic, and showed that instance-
specific features can be exploited to obtain additional performance improvements.
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Chapter 4

Using Decision Procedures Efficiently
for Optimization

4.1 Introduction

Optimization problems are often solved by making repeated calls to a decision procedure
that answers questions of the form “Does there exist a solution with cost at most k?”. Each
query to the decision procedure can be represented as a pair 〈k, t〉, where t is a bound on
the CPU time the decision procedure may consume in answering the question. The result
of a query is either a (provably correct) “yes” or “no” answer or a timeout. A query strategy
is a rule for determining the next query 〈k, t〉 as a function of the responses to previous
queries.

The performance of a query strategy can be measured in several ways. Given a fixed
query strategy and a fixed minimization problem, let u(T ) denote the upper bound (i.e., the
smallest k that elicited a “yes” response) obtained by running the query strategy for a total
of T time units; and let l(T ) be the corresponding lower bound. A natural goal is for u(T )
to decrease as quickly as possible. Alternatively, we might want to achieve u(T ) ≤ α·l(T )
in the minimum possible time for some desired approximation ratio α ≥ 1.

In this chapter we study the problem of designing query strategies. Our goal is to
devise strategies that do well with respect to natural performance criteria such as the ones
just described, when applied to decision procedures whose behavior (i.e., how the required
CPU time varies as a function of k) is typical of the procedures used in practice.

The results in this chapter are based on a conference paper [83].
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4.1.1 Motivations

A.I. planning is the problem of finding a sequence of actions (called a plan) that leads from
a starting state to a desired goal state, according to some formally-specified model of how
actions affect the state of the world. The makespan of a plan is the number of steps in the
plan, treating actions that can be performed simultaneously as a single step. In optimal
planning, the goal is to find a plan with (provably) minimum makespan.

The two winners from the optimal track of last year’s International Planning Compe-
tition were SATPLAN [47] and Maxplan [89]. Both planners find a minimum-makespan
plan by making a series of calls to a SAT solver, where each call determines whether there
exists a feasible plan of makespan ≤ k (where the value of k varies across calls). One of
the differences between the two planners is that SATPLAN uses the ramp-up query strat-
egy (in which the ith query is 〈i,∞〉), whereas Maxplan uses the ramp-down strategy (in
which the ith query is 〈U − i,∞〉, where U is an upper bound obtained using heuristics).

0

600

1200

1 6 11 16 21 26

Makespan bound (k)

C
P
U

 t
im

e
 (

s
e
c
o
n

d
s
) no

yes

> 100 hours

timeout

Figure 4.1: Behavior of the SAT solver siege running on formulae generated by
SATPLAN to solve instance p17 from the pathways domain of the 2006 International
Planning Competition.

To appreciate the importance of query strategies, consider Figure 4.1, which shows the
CPU time required by siege (the SAT solver used by SATPLAN) as a function of the
makespan bound k, on a benchmark instance from the competition. For most values of
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k, the solver terminates in under one minute; for k = 19 and k = 21, the solver requires
10-20 minutes; and for k = 20, the solver was run for over 100 hours without returning
an answer. Because only the queries with k ≥ 21 return a “yes” answer, the ramp-up
query strategy (used by SATPLAN) does not find a feasible plan after running for 100
hours, while the ramp-down strategy returns a feasible plan but does not yield any non-
trivial lower bounds on the optimum makespan. In this example, the time required by
any query strategy to obtain a provably optimal plan is dominated by the time required to
run the decision procedure with input k = 20. On the other hand, executing the queries
〈18,∞〉 and 〈23,∞〉 takes less than two minutes and yields a plan whose makespan is
provably at most 23

18+1
≈ 1.21 times optimal. Thus, the choice of query strategy has a

dramatic effect on the time required to obtain a provably approximately optimal solution.
For planning problems where provably optimal plans are currently out of reach, obtaining
provably approximately optimal plans quickly is a natural goal.

4.1.2 Summary of results

In this chapter we consider the problem of devising query strategies in two settings. In the
single-instance setting, we are confronted with a single optimization problem, and wish
to obtain an (approximately) optimal solution as quickly as possible. In this setting we
provide a simple query strategy S2, and analyze its performance in terms of a parameter
that is intended to capture the unpredictability of the decision procedure’s behavior. We
then show that our performance guarantee is optimal up to a constant factor.

In the multiple-instance setting, we use the same decision procedure to solve a number
of optimization problems, and our goal is to learn from experience in order to improve
performance. In this setting, we prove that computing an optimal query strategy is NP-
hard, and discuss how algorithms from machine learning theory can be used to learn a
good query strategy on-the-fly while solving a sequence of optimization problems.

In the experimental section of this chapter, we demonstrate that query strategy S2 can
be used to create improved versions of state-of-the-art algorithms for planning and job
shop scheduling. In the course of the latter experiments we develop a simple method for
applying query strategies to branch and bound algorithms, which seems likely to be useful
in other domains besides job shop scheduling.
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4.1.3 Related work

The ramp-up strategy was used in the original GraphPlan algorithm [13] for A.I. planning,
and is conceptually similar to iterative deepening [52].

In the A.I. planning community, alternatives to the ramp-up strategy were investigated
by Rintanen [69], who proposed two algorithms. Algorithm A runs the decision procedure
on the first n decision problems in parallel, each at equal strength, where n is a parameter.
Algorithm B runs the decision procedure on all decision problems simultaneously, with the
ith problem receiving a fraction of the CPU time proportional to γi, where γ ∈ (0, 1) is a
parameter. Rintanen showed that Algorithm B yields dramatic performance improvements
over the ramp-up strategy on a variety of A.I. planning benchmarks.

Our query strategy S2 exploits binary search and is quite different from the three strate-
gies just discussed. In the experimental section of this chapter, we compare S2 to the
ramp-up strategy and to a geometric strategy based on a Rintanen’s Algorithm B.

4.2 Preliminaries

In this chapter we are interested in solving minimization problems of the form

OPT = min
x∈X

c(x)

where X is an arbitrary set and c : X → Z+ is a function assigning a positive integer cost
to each x ∈ X . We will solve such a minimization problem by making a series of calls to
a decision procedure that, given as input an integer k, determines whether there exists an
x ∈ X with c(x) ≤ k. When given input k, the decision procedure runs for τ(k) time units
before returning a (provably correct) “yes” or “no” answer. Thus from our point of view,
a minimization problem is completely specified by the integer OPT and the function τ .

Definition (instance). An instance of a minimization problem is a pair 〈OPT, τ〉, where
OPT is the smallest input for which the decision procedure answers “yes” and τ(k) is the
CPU time required by the decision procedure when it is run with input k.

A query is a pair 〈k, t〉. To execute this query, one runs the decision procedure with
input k subject to a time limit t. Executing query q = 〈k, t〉 on instance I = 〈OPT, τ〉
requires CPU time min {t, τ(k)} and elicits the response

response(I, q) =


yes if t ≥ τ(k) and k ≥ OPT
no if t ≥ τ(k) and k < OPT
timeout if t < τ(k) .
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We say that a query q eliminates an integer k if executing q determines what side of
OPT that k is on.

Definition (elimination). A query q = 〈k0, t〉 eliminates a value k if the response to q is
“yes” and k ≥ k0, or if the response is “no” and k ≤ k0.

Definition (query strategy). A query strategy S is a function that takes as input the se-
quence 〈r1, r2, . . . , ri〉 of responses to the first i queries, and returns as output a new query
〈k, t〉.

When executing queries according to some query strategy, we maintain upper and
lower bounds on OPT . Initially l = 1 and u = ∞. If query 〈k, t〉 elicits a “no” response
we set l ← k + 1; and if it elicits a “yes” reponse we set u ← k. Thus, any k /∈ [l, u− 1]
has been eliminated by the query strategy.

4.2.1 Performance of query strategies

In the single-instance setting, we will evaluate a query strategy according to the following
competitive ratio.

Definition (competitive ratio). The competitive ratio of a query strategy S on an instance
I = 〈OPT, τ〉 is defined by

ratio(S, I) = max
k

{
Telim(S, k)

τ(k)

}
.

where Telim(S, k) is CPU time required to eliminate k when executing queries according
to strategy S.

As an example, consider running the ramp-up query strategy on the instance I =
〈OPT, τ〉, where τ(k) = 2k−1 for all k. The ramp-up strategy must be run for CPU time
1 + 2 + 4 + 8 + . . . + 2OPT−1 = 2OPT − 1 in order to eliminate the value OPT , and
OPT is the last k value to be eliminated. The the ramp-up strategy has competitive ratio
2OPT−1
2OPT−1 < 2 on the instance I .

4.2.2 Behavior of τ

The performance of our query strategies will depend on the behavior of the function τ . For
most decision procedures used in practice, we expect τ(k) to be an increasing function
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for k ≤ OPT and a decreasing function for k ≥ OPT . Previous work [75, 85] has
shown that this behavior is prevalent in planning domains (e.g., see the behavior of siege
illustrated in Figure 4.1), and our query strategies are designed to take advantage of it.
More specifically, our query strategies are designed to work well when τ is close to its
hull.

Definition (hull). The hull of τ is the function

hullτ (k) = min

{
max
k0≤k

τ(k0),max
k1≥k

τ(k1)

}
.

Figure 4.2 gives an example of a function τ (gray bars) and its hull (dots). Note that the
region under the curve hullτ (k) is not (in general) the convex hull of the points (k, τ(k)).
Also note that the functions τ and hullτ are identical if τ is monotonically increasing (or
monotonically decreasing), or if there exists an x such that τ is monotonically increasing
for k ≤ x and monotonically decreasing for k > x.
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Figure 4.2: A function τ (gray bars) and its hull (dots).

We measure the discrepancy between τ and its hull in terms of the stretch of an in-
stance.

Definition (stretch). The stretch of an instance I = 〈OPT, τ〉 is defined by

stretch(I) = max
k

hullτ (k)

τ(k)
.

The instance depicted in Figure 4.2 has a stretch of 2 because τ(2) = 1 while hullτ (2) =
2.
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4.3 The Single-Instance Setting

We first consider the case in which we wish to design a query strategy for use in solving
a single instance I = 〈OPT, τ〉 (where OPT and τ are of course unknown to us). Our
goal is to devise a query strategy that minimizes the value of ratio(S, I) for the worst
case instance I . We assume OPT ∈ {1, 2, . . . , U} for some known upper bound U . For
simplicity, we also assume τ(k) ≥ 1 for all k.

4.3.1 Arbitrary instances

In the case where the function τ is arbitrary, the following simple query strategy S1

achieves a competitive ratio that is optimal (to within constant factors). S1 and its analysis
are similar to those of Algorithm A of Rintanen [69]. We do not advocate the use of S1.
Rather, its analysis indicates the limits imposed by making no assumptions about τ .

Query strategy S1

1. Initialize T ← 1, l← 1, and u← U .

2. While l < u:

(a) For each k ∈ {l, l + 1, . . . , u − 1}, execute the query 〈k, T 〉,
and update l and u appropriately (if the response is “yes” then
set u← k, and if the response is “no” then set l← k + 1).

(b) Set T ← 2T .

The analysis of S1 is straightforward. Consider some fixed k, and let Tk = 2dlog2 τ(k)e

be the smallest power of two that is ≥ τ(k). Each iteration of the loop consumes time at
most TU , and on the iteration where T = Tk, k will be eliminated. Thus the total time it
takes to eliminate k is at most

U + 2U + 4U + . . .+ TkU < 2TkU < 4τ(k)U .

Because k we arbitrary, it follows that ratio(S1, I) ≤ 4U .

To obtain a matching lower bound, suppose that τ(k) = 1 if k = k∗, and τ(k) = ∞
otherwise. For any query strategy S, there is some choice of k∗ that forces S to consume
time at least U before executing a successful query1, which implies ratio(S, I) ≥ U .

1We are only considering deterministic query strategies. For randomized query strategies, there must be
some choice of k∗ that forces S to consume expected time at least U

2 before executing a successful query.
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These observations are summarized in the following theorem.

Theorem 25. For any instance I , ratio(S1, I) = O(U). Furthermore, for any strategy S,
there exists an instance I such that ratio(S, I) = Ω(U).

4.3.2 Instances with low stretch

In practice we do not expect τ to be as pathological as the function used to prove the lower
bound in Theorem 25. Indeed, as already mentioned, in practice we expect instances to
have low stretch, whereas the instance used to prove the lower bound has infinite stretch.
We now describe a query strategy S2 whose competitive ratio is O(stretch(I) · logU), a
dramatic improvement over Theorem 25 for instances with low stretch.

Like S1, strategy S2 maintains an interval [l, u] that is guaranteed to contain OPT , and
maintains a value T that is periodically doubled. S2 also maintains a “timeout interval”
[tl, tu] with the property that the queries 〈tl, T 〉 and 〈tu, T 〉 have both been executed and
returned a timeout response.

Query strategy S2

1. Initialize T ← 2, l← 1, u← U , tl ←∞, and tu ← −∞.

2. While l < u:

(a) If tl 6=∞ and [l, u−1] ⊆ [tl, tu] then set T ← 2T , set tl ←∞,
and set tu ← −∞.

(b) Let u′ = u− 1. Define

k =



⌊
l+u′

2

⌋
if [l, u′] and [tl, tu] are
disjoint or tl =∞⌊

l+tl−1
2

⌋
if [l, u′] and [tl, tu] intersect
and tl − l > u′ − tu⌊

tu+1+u′

2

⌋
otherwise.

(c) Execute the query 〈k, T 〉. If the result is “yes” set u ← k; if
the result is “no” set l ← k + 1; and if the result is “timeout”
set tl ← min{tl, k} and set tu ← max{tu, k}.

Each query executed by S2 is of the form 〈k, T 〉, where k ∈ [l, u−1] but k /∈ [tl, tu]. We
say that such a k value is eligible. The queries are selected in such a way that the number
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of eligible k values decreases exponentially. This is accomplished using what could be
described as a “two-sided” binary search. Once there are no more eligible k values, T is
doubled and [tl, tu] is reset to the empty interval (so each k ∈ [l, u − 1] becomes eligible
again).

To analyze S2, we first bound the number of queries that can be executed in between
updates to T . As already mentioned, the k value defined in step 2(b) belongs to the interval
[l, u−1] but not to the interval [tl, tu]. By examining each case, we find that the number of
k values that have this property goes down by a factor of at least 1

4
every query, except for

the very first query that causes a timeout. It follows that the number of queries in between
updates to T is O(logU).

To complete the analysis, first note that whenever tl 6= ∞ and tu 6= −∞, it holds that
τ(tl) > T and τ(tu) > T . For any k ∈ [tl, tu], this implies hullτ (k) > T (by definition of
hull) and thus τ(k) > T

stretch(I)
(by definition of stretch). Now consider some arbitrary k.

Once T ≥ stretch(I) · τ(k) it cannot be that k ∈ [tl, tu], so we must have k /∈ [l, u − 1]
before T can be doubled again. Because there can be at most O(logU) queries in between
updates to T , it follows that we have to wait O(stretch(I) · τ(k) · logU) time before k /∈
[l, u− 1]. Because this holds for all k, it follows that ratio(S1, I) = O(stretch(I) · logU).

We now use a simple information-theoretic argument to prove a matching lower bound.
Fix some query strategy S. Let τ(k) = 1 for all k (clearly, stretch(I) = 1). Assume
without loss of generality that S only executes queries of the form 〈k, 1〉. For eachOPT ∈
{1, 2, . . . , U}, S must elicit a unique sequence of “yes” or “no” answers, one of which
must have length ≥ blog2 Uc. Thus for some choice of OPT , ratio(S, I) ≥ blog2 Uc

2
=

Ω(stretch(I) · logU). Thus we have proved the following theorem.

Theorem 26. For any instance I , ratio(S2, I) = O(stretch(I) · logU). For any strategy
S, there exists an instance I such that ratio(S, I) = Ω(stretch(I) · logU).

4.3.3 Generalizing S2

Although the performance of query strategy S2 (as summarized in Theorem 26) is optimal
to within constant factors, in practice one might want to adjust the behavior of S2 so as to
obtain better performance on a particular set of optimization problems. Toward this end,
we generalize S2 by introducing three parameters: β controls the value of k; γ controls
the rate at which the time limit T is increased; and ρ controls the balance between the time
the strategy spends working to improve its lower bound versus the time it spends working
to improve the upper bound. Each parameter takes on a value between 0 and 1. The
parameters were chosen so as to include several natural query strategies in the parameter
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space. The original strategy S2 is recovered by setting β = γ = ρ = 1
2
. When β = γ = 0

and ρ = 0, S3 is equivalent to the ramp-up query strategy (in which the ith query is 〈i,∞〉).
When β = γ = 0 and ρ = 1, S3 is equivalent to the ramp-down query strategy (in which
the ith query is 〈U − i,∞〉).

The analysis of S3 follows along exactly the same lines as that of S2. Retracing the
argument leading up to Theorem 26 and working out the appropriate constant factors yields
the following theorem, which shows that the class S3(β, γ, ρ) includes a wide variety of
query strategies with performance guarantees similar to that of S2 (note that the theorem
provides no guarantees when β = 0 or γ = 0, as in the ramp-up and ramp-down strategies).

Theorem 27. Let S = S3(β, γ, ρ), where 0 < β ≤ 1
2
, 0 < γ < 1, and 0 < ρ < 1. Then

for any instance I , ratio(S, I) = O( 1
βγ
· stretch(I) · logU).

Query strategy S3(β, γ, ρ)

1. Initialize T ← 1
γ

, l← 1, u← U , tl ←∞, and tu ← −∞.

2. While l < u:

(a) If tl 6=∞ and [l, u− 1] ⊆ [tl, tu] then set T ← T
γ

, set tl ←∞,
and set tu ← −∞.

(b) Let u′ = u − 1. If [l, u′] and [tl, tu] are disjoint (or tl = ∞)
then define

k =

{
b(1− β)l + βu′c if (1− ρ)l > ρ(U − u′)
bβl + (1− β)u′c otherwise;

else define

k =


b(1− β)l + β(tl − 1)c if (1− ρ)(tl − l)

> ρ(u′ − tu)
b(1− β)u′ + β(tu + 1)c otherwise.

(c) Execute the query 〈k, T 〉. If the result is “yes” set u ← k; if
the result is “no” set l ← k + 1; and if the result is “timeout”
set tl ← min{tl, k} and set tu ← max{tu, k}.

114



4.4 The Multiple-Instance Setting

We now consider the case in which the same decision procedure is used to solve a sequence
〈x1, x2, . . . , xn〉 of instances of some optimization problem. In this case, it is natural to
attempt to learn something about the instance sequence and select query strategies accord-
ingly.

Let S be some set of query strategies, and for any S ∈ S, let ci(S) denote the CPU time
required to obtain an acceptable solution to instance xi = 〈OPTi, τi〉 using query strategy
S (e.g., ci(S) could be the time required to obtain a solution whose cost is provably at
most a factor α times optimal, for some α ≥ 1). We consider the problem of selecting
query strategies in two settings: offline and online.

4.4.1 Computing an optimal query strategy offline

In the offline setting we are given as input the values of τi(k) for all i and k, and wish to
compute the query strategy

S∗ = arg min
S∈S

n∑
i=1

ci(S) .

This offline optimization problem arises in practice when the instances 〈x1, x2, . . . , xn〉
have been collected for use as training data, and we wish to compute the strategy S∗ that
performs optimally on the training data.

Unfortunately, if S contains all possible query strategies then computing S∗ is NP-
hard. To see this, suppose that our goal is to obtain an approximation ratio α = U − 1.
To obtain this ratio, we simply need to execute a single query that returns a non-timeout
response. Consider the special case that τi(k) ∈ {1,∞} for all i and k, and without loss
of generality consider only query strategies that issue queries of the form 〈k, 1〉. For our
purposes, such a query strategy is just a permutation of the k values in the set {1, 2, . . . , U}.
For each k, let Ak = {xi : τi(k) = 1}. To find an optimal query strategy, we must order
the sets A1, A2, . . . , AU from left to right so as to minimize the sum, over all instances xi,
of the position of the leftmost set that contains xi. This is exactly MIN-SUM SET COVER.
For any ε > 0, obtaining a 4−ε approximation to MIN-SUM SET COVER is NP-hard [26].
Thus we have the following theorem.

Theorem 28. For any ε > 0, obtaining a 4−ε approximation to the optimal query strategy
is NP-hard.
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Certain special cases of the offline problem are tractable. For example, suppose all
queries take the same time, say τi(k) = t for all i and k. In this case we need only con-
sider queries of the form 〈k, t〉, and any such query elicits a non-timeout response. A query
strategy can then be specified as a binary search tree over the key set {1, 2, . . . , U}. The
optimal query strategy is simply the optimum binary search tree for the access sequence
〈OPT1, OPT2, . . . , OPTn〉, which can be computed in O(U2) time using dynamic pro-
gramming [51]. Similarly, if we consider arbitrary τi but restrict ourselves to queries of
the form 〈k,∞〉 (so that again all queries succeed), dynamic programming can be used to
compute an optimal query strategy. Finally, the offline problem is tractable if S is small
enough for us to search through it by brute force. Based on the results of the previous
section, a natural choice would be for S to include S3(β, γ, ρ) for various values of the
three parameters.

As discussed in Chapter 2, a simple greedy algorithm achieves the optimal approxima-
tion ratio of 4 for MIN-SUM SET COVER, and it is natural to wonder whether this greedy
algorithm can be generalized to obtain a 4-approximation to the optimal query strategy.
We are not aware of any straightforward way of accomplishing this. Note that in general,
the optimal query strategy will adapt its choice of later queries based on the results of
earlier queries, whereas the natural generalization of the greedy algorithm for MIN-SUM

SET COVER would produce a static list of queries.

4.4.2 Selecting query strategies online

We now consider the problem of selecting query strategies in an online setting, assuming
that |S| is small enough that we would not mind using O(|S|) time or space for decision-
making. In the online setting we are fed, one at a time, a sequence 〈x1, x2, . . . , xn〉 of
problem instances to solve. Prior to receiving instance xi, we must select a query strategy
Si ∈ S. We then use Si to solve xi and incur cost ci(Si). Our regret at the end of n rounds
is equal to

1

n
·

(
E

[
n∑
i=1

ci(Si)

]
−min

S∈S

n∑
i=1

ci(S)

)
(4.1)

where the expectation is over any random bits used by our strategy-selection algorithm.
That is, regret is 1

n
times the difference between the expected total cost incurred by our on-

line algorithm and that of the optimal query strategy for the (unknown) set of n instances.
An online algorithm’s worst-case regret is the maximum value of (4.1) over all instance se-
quences of length n. A no-regret algorithm has worst-case regret that is o(1) as a function
of n.
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We now describe how two existing algorithms can be applied to the problem of se-
lecting query strategies. Let M be an upper bound on ci(S), and let T be an upper
bound on τi(k). Viewing our online problem as an instance of the “nonstochastic mul-
tiarmed bandit problem” and using the Exp3 algorithm of Auer et al. [5] yields regret

O
(
M
√

1
n
|S|
)

= o(1). The second algorithm makes use of the fact that on any partic-
ular instance xi, we can obtain enough information to determine the value of ci(S) for
all S ∈ S by executing the query 〈k, T 〉 for each k ∈ {1, 2, . . . , U}. This requires CPU
time at most TU . We can then use the “label-efficient forecaster” of Cesa-Bianchi et al.
[17] to select query strategies. Theorem 1 of that paper shows that the regret is at most
M
(

ln |S|
η

+ n η
2ε

)
+ εnTU , where η and ε are parameters. Optimizing η and ε yields re-

gret O
(
M
(
TU ln |S|
Mn

) 1
3

)
= o(1). Given n as input, one can choose whichever of the two

algorithms yields the smaller regret bound.

4.5 Experimental Evaluation

In this section we evaluate query strategy S2 experimentally by using it to create modified
versions of state-of-the-art solvers in two domains: classical A.I. planning and job shop
scheduling. In both of these domains, we found that the number of standard benchmark
instances was too small for the online algorithms discussed in the previous section to be
effective. Accordingly, our experimental evaluation focuses on the techniques developed
for the single-instance setting.

4.5.1 Planning

The planners entered in the 2006 International Planning Competition were divided into
two categories: optimal planners always return a plan of provably minimum makespan,
whereas satisficing planners simply return a feasible plan quickly. In this section we pursue
a different goal: obtaining a provably near-optimal plan as quickly as possible.

As already mentioned, SATPLAN finds a minimum-makespan plan by making a se-
quence of calls to a SAT solver that answers questions of the form “Does there exist a
plan of makespan≤ k?”. The original version of SATPLAN tries k values in an increasing
sequence starting from k = 1, stopping as soon as it obtains a “yes” answer. We compare
the original version to a modified version that instead uses query strategy S2. When using
S2 we do not share any work (e.g., intermediate result files) among queries with the same
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k value, although doing so could improve performance.

We ran each of these two versions of SATPLAN on benchmark instances from the
2006 International Planning Competition, with a one hour time limit per instance, and
recorded the upper and lower bounds we obtained. To obtain an initial upper bound, we
ran the satisficing planner SGPlan [37] with a one minute time limit. We chose SGPlan
because it won first prize in the satisficing planning track of last year’s competition. If
SGPlan found a feasible plan within the one minute time limit, we used the number of
actions in that plan as an upper bound on the optimum makespan; otherwise we artificially
set the upper bound to 100.

Table 4.1: Performance of two query strategies on bench-
mark instances from the pathways domain of the 2006
International Planning Competition. Bold numbers indicate
the (strictly) best upper/lower bound we obtained.

Instance SATPLAN (S2) SATPLAN (Sg) SATPLAN (original)
[lower,upper] [lower,upper] [lower,upper]

p01 [5,5] [5,5] [5,5]
p02 [7,7] [7,7] [7,7]
p03 [8,8] [8,8] [8,8]
p04 [8,8] [8,8] [8,8]
p05 [9,9] [9,9] [9,9]
p06 [12,12] [12,12] [12,12]
p07 [13,13] [13,13] [13,13]
p08 [15,17] [16,17] [16,∞]
p09 [15,17] [15,17] [15,∞]
p10 [15,15] [15,15] [15,15]
p11 [16,17] [16,17] [16,∞]
p12 [16,19] [17,19] [17,∞]
p13 [16,18] [17,18] [17,∞]
p14 [14,20] [15,19] [15,∞]
p15 [18,18] [18,18] [18,18]
p16 [17,21] [19,22] [19,∞]
p17 [19,21] [20,22] [20,∞]
p18 [19,22] [19,23] [19,∞]
p19 [17,22] [18,24] [18,∞]
continued on next page. . .
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Table 4.1 (continued from previous page)

Instance SATPLAN (S2) SATPLAN (Sg) SATPLAN (original)
[lower,upper] [lower,upper] [lower,upper]

p20 [17,28] [18,27] [19,∞]
p21 [20,25] [21,25] [22,∞]
p22 [17,23] [18,26] [19,∞]
p23 [17,25] [17,25] [18,∞]
p24 [21,27] [21,28] [22,∞]
p25 [20,27] [20,∞] [21,∞]
p26 [19,27] [20,31] [21,∞]
p27 [19,34] [20,31] [20,∞]
p28 [19,27] [20,∞] [21,∞]
p29 [19,29] [18,29] [18,∞]
p30 [20,60] [21,∞] [21,∞]

Table 4.1 presents our results for 30 instances from the pathways domain. Numbers
in bold indicate an upper or lower bound obtained by one query strategy that was strictly
better than the bound obtained by any other query strategy. Not surprisingly, S2 always
obtains upper bounds that are as good or better than those obtained by the ramp-up strategy.
Interestingly, the lower bounds obtained by S2 are only slightly worse, differing by at most
two parallel steps from the lower bound obtained by the ramp-up strategy. Examining the
ratio of the upper and lower bounds obtained by S2, we see that for 26 out of the 30
instances it finds a plan whose makespan is (provably) at most 1.5 times optimal, and for
all but one instance it obtains a plan whose makespan is at most two times optimal. In
contrast, the ramp-up strategy does not find a feasible plan for 21 of the 30 instances.
Thus on the pathways domain, the modified version of SATPLAN using query strategy
S2 gives behavior that is in many ways better than that of the original.

To better understand the performance of S2, we also compared it to a geometric query
strategy Sg inspired by Algorithm B of Rintanen [69]. This query strategy behaves as
follows. It initializes T to 1. If l and u are the initial lower and upper bounds, it then
executes the queries 〈k, Tγk−l〉 for each k = {l, l + 1, . . . , u − 1}, where γ ∈ (0, 1)
is a parameter. It then updates l and u, doubles T , and repeats. Based on the results
of Rintanen [69] we set γ = 0.8. We do not compare to Rintanen’s Algorithm B directly
because it requires many runs of the SAT solver to be performed in parallel, which requires
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an impractically large amount of memory for some of the benchmark instances considered
in our evaluation.

The results for Sg are shown in the second column of Table 4.1. Like S2, Sg always ob-
tains upper bounds that are as good or better than those of the ramp-up strategy. Compared
to S2, Sg generally obtains slightly better lower bounds and slightly worse upper bounds.
Unlike S2, Sg does not obtain any non-trivial upper bound for three of the 30 instances.

Similar tables for the remaining six problem domains are available online at http:
//www.cs.cmu.edu/˜matts/icaps07/appendixA.pdf. For the storage,
rovers, and trucks domains, our results are similar to the ones presented in Table
4.1: S2 achieved significantly better upper bounds than ramp-up and slightly worse lower
bounds, while Sg achieved slightly better lower bounds than S2 and slightly worse up-
per bounds. For the openstacks, TPP, and pipesworld domains, our results were
qualitatively different: most instances in these domains were either easy enough that all
three query strategies found a provably optimal plan, or so difficult that no strategy found
a feasible plan, with the ramp-up strategy yielding the best lower bounds.

To gain more insight into these results, we plotted the function τ(k) for various in-
stances. Broadly speaking, we encountered two types of behavior: either τ(k) increased
as a function of k for k < OPT but decreased as a function of k for k ≥ OPT , or τ(k)
increased as a function of k for all k. Figure 4.3 (A) and (B) give prototypical examples
of these two behaviors. The gross behavior of τ on a particular instance was largely deter-
mined by the problem domain. For instances from the pathways, storage, trucks,
and rovers domains τ tended to be increasing-then-decreasing, while for instances from
the TPP and pipesworld domain τ tended to be monotonically increasing, explaining
the qualitative difference between our results in these two sets of domains. For most in-
stances in the openstacks domain we found no k values that elicited a “yes” answer in
reasonable time; hence we cannot characterize the typical behavior of τ .

4.5.2 Job shop scheduling

In this section, we use query strategy S2 to create a modified version of a branch and bound
algorithm for job shop scheduling. We chose the algorithm of Brucker et al. [15] (hence-
forth referred to as Brucker) because it is one of the state-of-the-art branch and bound
algorithms for job shop scheduling, and because code for it is freely available online.

Given a branch and bound algorithm, one can always create a decision procedure that
answers the question “Does there exist a solution with cost at most k?” as follows: ini-
tialize the global upper bound to k + 1 (here we are assuming the objective function is
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Figure 4.3: Behavior of the SAT solver siege running on formulae generated by
SATPLAN to solve (A) instance p7 from the trucks domain and (B) instance p21 from
the pipesworld domain of the 2006 International Planning Competition.

integer-valued), and run the algorithm until either a solution with cost ≤ k is discovered
(in which case the result of the query is “yes”) or the algorithm terminates without finding
such a solution (in which case the result is “no”). Note that the decision procedure returns
the correct answer independent of whether k + 1 is a valid upper bound. A query strategy
can be used in conjunction with this decision procedure to find optimal or approximately
optimal solutions to the original minimization problem.

We evaluate two versions of Brucker: the original and a modified version that uses
S2. We ran both versions on the instances in the OR library [10] with a one hour time
limit per instance, and recorded the upper and lower bounds obtained. We do not evaluate
the ramp-up strategy or Sg in this context, because they were not intended to work well
on problems such as job shop scheduling, where the number of possible k values is very
large.

On 50 of the benchmark instances, both query strategies found a (provably) optimal
solution within the time limit. Table 4.2 presents the results for the remaining instances.
As in Table 4.1, bold numbers indicate an upper or lower bound that was strictly better
than the one obtained by the competing algorithm.

With the exception of just one instance (la25), the modified algorithm using query
strategy S2 obtains better lower bounds than the original branch and bound algorithm.
This is not surprising, because the lower bound obtained by running the original branch
and bound algorithm is simply the value obtained by solving the relaxed subproblem at
the root node of the search tree, and is not updated as the search progresses. What is
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Table 4.2: Performance of two query strategies on benchmark instances from the OR
library. Bold numbers indicate the (strictly) best upper/lower bound we obtained.

Instance Brucker (S2) Brucker (original)
[lower,upper] [lower,upper]

abz7 [650,712] [650,726]
abz8 [622,725] [597,767]
abz9 [644,728] [616,820]
ft20 [1165,1165] [1164,1179]
la21 [1038,1070] [995,1057]
la25 [971,979] [977,977]
la26 [1218,1227] [1218,1218]
la27 [1235,1270] [1235,1270]
la28 [1216,1221] [1216,1273]
la29 [1118,1228] [1114,1202]
la38 [1176,1232] [1077,1228]
la40 [1211,1243] [1170,1226]
swv01 [1391,1531] [1366,1588]
swv02 [1475,1479] [1475,1719]
swv03 [1373,1629] [1328,1617]
swv04 [1410,1632] [1393,1734]
swv05 [1414,1554] [1411,1733]
swv06 [1572,1943] [1513,2043]
swv07 [1432,1877] [1394,1932]
swv08 [1614,2120] [1586,2307]
swv09 [1594,1899] [1594,2013]
swv10 [1603,2096] [1560,2104]
swv11 [2983,3407] [2983,3731]
swv12 [2971,3455] [2955,3565]
swv13 [3104,3503] [3104,3893]
swv14 [2968,3350] [2968,3487]
swv15 [2885,3279] [2885,3583]
yn1 [813,987] [763,992]
yn2 [835,1004] [795,1037]
yn3 [812,982] [793,1013]
yn4 [899,1158] [871,1178]
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Figure 4.4: Behavior of Brucker running on OR library instance ft10.

more surprising is that the upper bounds obtained by S2 are also, in the majority of cases,
substantially better than those obtained by the original algorithm. This indicates that the
speculative upper bounds created by S2’s queries are effective in pruning away irrelevant
regions of the search space and forcing the branch and bound algorithm to find low-cost
schedules more quickly. These results are especially promising given that the technique
used to obtain them is domain-independent and could be applied to other branch and bound
algorithms. In related work, Streeter & Smith [81] improved the performance of Brucker
by using an iterated local search algorithm for job shop scheduling to obtain valid upper
bounds and also to refine the branch ordering heuristic.

To better understand these results, we manually examined the function τ(k) for a num-
ber of instances from the OR library. In all cases, we found that τ(k) increased smoothly
up to a point and then rapidly decreased in a jagged fashion. Figure 4.4 illustrates this be-
havior. The smooth increase of τ(k) as a function of k for k < OPT reflects the fact that
proving that no schedule of makespan ≤ k exists becomes more difficult as k gets closer
to OPT . The jaggedness of τ(k) for k ≥ OPT can be seen as an interaction between
two factors: for k ≥ OPT , increasing k leads to less pruning (increasing τ(k)) but also
to a weaker termination criterion (reducing it). In spite of this, the curve has low stretch
overall, and thus its shape can be exploited by query strategies such as S2.
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4.6 Conclusions

Optimization problems are often solved using an algorithm for the corresponding decision
problem as a subroutine. In this chapter, we considered the problem of choosing which
queries to submit to the decision procedure so as to obtain an (approximately) optimal
solution as quickly as possible. Our main contribution was a new query strategy S2 that has
attractive theoretical guarantees and appears to perform well in practice. Experimentally,
we showed that S2 can be used to create improved versions of state-of-the-art algorithms
for classical A.I. planning and job shop scheduling. Given the success of our experiments
with a branch and bound algorithm for job shop scheduling, an interesting direction for
future work would be to apply S2 in other domains where branch and bound algorithms
work well, for example integer programming or resource-constrained project scheduling.
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Chapter 5

The Max k-Armed Bandit Problem

5.1 Introduction

In the classical k-armed bandit problem one is faced with a set of k slot machines, each
of which has an arm that, when pulled, yields a payoff drawn independently at random
from a fixed (but unknown) distribution. The goal is to allocate trials to the arms so as
to maximize the cumulative payoff received over a series of n trials. Solving the problem
entails striking a balance between exploration (determining which arm yields the highest
mean payoff) and exploitation (repeatedly pulling this arm).

In the max variant of the k-armed bandit problem, the goal is to maximize the maxi-
mum (rather than cumulative) payoff. This version of the problem arises in practice when
tackling combinatorial optimization problems for which a number of randomized search
heuristics exist: given k heuristics, each yielding a stochastic outcome when applied to
some particular problem instance, we wish to allocate trials to the heuristics so as to maxi-
mize the maximum payoff (e.g., the maximum number of clauses satisfied by any sampled
variable assignment, the maximum quality of any sampled schedule). Cicirello and Smith
[21] show that a max k-armed bandit approach yields good performance on the resource-
constrained project scheduling problem with maximal time lags (RCPSP/max), a difficult
real-world scheduling problem.

Formally, an instance I = 〈G1, G2, . . . , Gk〉 of the max k-armed bandit problem is a
k-tuple of probability distributions, each thought of as an arm on a slot machine. The ith

arm, when pulled, returns a payoff drawn independently at random from distribution Gi.
A strategy S is a rule for determining which arm to pull next, as a function of the results
of previous pulls. For any strategy S, instance I , and positive integer n, let M(I,S, n)
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denote the maximum payoff obtained by following strategy S on instance I for n pulls.
The regret of strategy S on instance I after n pulls is equal to

max
1≤i≤k

{
E
[
M i

n

]}
− E [M(I,S, n)] (5.1)

where M i
n denotes maximum of n independent draws from Gi (i.e., the maximum payoff

obtained by pulling arm i every time). Note that, in contrast to the classical k-armed
bandit problem (where the goal is to maximize cumulative payoff), the optimal strategy
for a particular instance I does not necessarily consist of pulling a single arm for all n
pulls.1 Thus, it is possible for a strategy to have negative regret on some instances.

The worst-case regret of strategy S is the maximum value of (5.1) as a function of
k and n. We say that S is a no-regret strategy if, for any fixed k, the worst-case regret
is o(1) as a function of n. Note that this is stronger than simply requiring that, for any
particular instance, the regret approaches zero as n → ∞. Indeed, as long as payoffs are
bounded then simply sampling the arms in round-robin order meets the latter requirement.
However, as Theorem 29 in the next section shows, round-robin sampling is not a no-regret
strategy.

In this chapter, we present two strategies for the max k-armed bandit problem. We
first discuss a simple strategy called Threshold Ascent which is designed to work well for
a wide variety of payoff distributions encountered in practice (Theorem 29 shows that no
strategy can be expected to work well for all payoff distributions). We then discuss a sec-
ond strategy that has strong theoretical guarantees in the special case where each payoff
distribution is a generalized extreme value (GEV) distribution (defined in §5.3.1). The mo-
tivation for studying this special case is the Extremal Types Theorem [23], which singles
out the GEV as the limiting distribution of the maximum of a large number of independent
identically distributed (i.i.d.) random variables. Roughly speaking, one can think of the
Extremal Types Theorem as an analogue of the Central Limit Theorem. Just as the Central
Limit Theorem states that the sum of a large number of i.i.d. random variables converges
in distribution to a Gaussian, the Extremal Types Theorem states that the maximum of a
large number of i.i.d. random variables converges in distribution to a GEV.

The results presented in this chapter are based on two conference papers [80, 82].

1As an example, suppose there are two arms. ArmA always returns payoff 1
2 , while armB returns payoff

1 with probability 0.01 and payoff zero otherwise. For large n, the optimal strategy is to pull arm A once
and then pull arm B the remaining n− 1 times.
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5.1.1 Related work

The classical k-armed bandit problem was first studied by Robbins [70] and has since
been the subject of numerous papers; see Berry and Fristedt [11] and Kaelbling [40] for
overviews.

The max variant of the k-armed bandit problem was introduced by Cicirello and Smith
[19, 21], whose experiments with randomized priority dispatching rules for the RCPSP/max
form the basis of our experimental evaluation in §5.4. Cicirello and Smith show that their
max k-armed bandit strategy yields performance on the RCPSP/max that is competitive
with the state of the art. The design of Cicirello and Smith’s strategy is motivated by an
analysis of the special case in which each arm’s payoff distribution is a GEV distribution
with shape parameter ξ = 0.

5.1.2 A negative result for arbitrary payoff distributions

Ideally, we would like to come up with a no-regret strategy for the max k-armed bandit
problem that requires as few distributional assumptions as possible. As a first step, it seems
reasonable to require that all payoffs come from a bounded interval (this will be true in all
the applications we intend to consider). In fact, a no-regret strategy does not exist even
under the stronger assumption that all payoffs are either 0 or 1, as the following theorem
shows.

Theorem 29. For any max k-armed bandit strategy S and any positive integer n, there
exists a max k-armed bandit instance on which S has regret at least 1 − 1

k
− 1

e
after n

pulls.

Proof. Let Ij = 〈G1, G2, . . . , Gk〉 denote a max k-armed bandit instance in which distri-
bution Gi always returns payoff 0 for i 6= j, while distribution Gj returns payoff 1 with
probability 1

n
and returns payoff 0 otherwise. Thus, pulling arm Gj for all n pulls yields

expected maximum payoff

1−
(

1− 1

n

)n
≥ 1− 1

e
.

It suffices to show that for some choice of j, S receives expected maximum payoff at
most 1

k
. To see this, assume without loss of generality that the behavior of S is unaffected

by the payoffs it receives. This is without loss of generality because all payoffs are in
{0, 1}, and once S receives a payoff of 1 its subsequent choices have no effect on the
maximum payoff that it receives. Under this assumption, there must be some arm j whose
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expected number of pulls is ≤ n
k

. Thus on instance Ij , the expected total payoff that S
receives is ≤ 1

k
, which implies that the expected maximum payoff is ≤ 1

k
.

5.2 A Simple, Distribution-Free Approach

In this section, we do not assume that the payoff distributions belong to any specific para-
metric family. In fact, we will not make any formal assumptions at all about the payoff
distributions, although (as Theorem 29 shows) our approach cannot be expected to work
well if the distributions are chosen adversarially. Roughly speaking, our approach will
work best when the following two criteria are satisfied.

1. There is a (relatively low) threshold tcritical such that, for all t > tcritical, the arm
that is most likely to yield a payoff > t is the same as the arm most likely to yield a
payoff > tcritical. Call this arm i∗.

2. As t increases beyond tcritical, there is a growing gap between the probability that
arm i∗ yields a payoff > t and the corresponding probability for other arms. Specif-
ically, if we let pi(t) denote the probability that the ith arm returns a payoff > t, the
ratio pi∗ (t)

pi(t)
should increase as a function of t for t > tcritical, for any i 6= i∗.

Figure 5.1 illustrates a set of two payoff distributions that satisfy these assumptions.

In this section we present a new algorithm, Chernoff Interval Estimation, for the clas-
sical k-armed bandit problem and prove a bound on its regret. Our algorithm is simple and
has performance guarantees competitive with the state of the art. Building on Chernoff
Interval Estimation, we develop a new algorithm, Threshold Ascent, for solving the max
k-armed bandit problem. Our algorithm is designed to work well as long as the two mild
distributional assumptions just described are satisfied. In §5.4 we evaluate Threshold As-
cent experimentally by using it to select among randomized priority dispatching rules for
the RCPSP/max. We find that Threshold Ascent (i) performs better than any of the prior-
ity rules perform in isolation, and (ii) outperforms the recent QD-BEACON max k-armed
bandit algorithm of Cicirello and Smith [19, 21].

5.2.1 Chernoff Interval Estimation

In this section we present and analyze a simple algorithm, Chernoff Interval Estimation,
for the classical k-armed bandit problem. In §5.2.2 we use this algorithm as subroutine in
Threshold Ascent, an algorithm for the max k-armed bandit problem.
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Figure 5.1: A max k-armed bandit instance on which Threshold Ascent should perform
well.

In the classical k-armed bandit problem one is faced with a set of k arms. The ith arm,
when pulled, returns a payoff drawn independently at random from a fixed (but unknown)
distribution. All payoffs are real numbers between 0 and 1. We denote by µi the expected
payoff obtained from a single pull of arm i, and define µ∗ = max1≤i≤k µi. We consider
the finite-time version of the problem, in which our goal is to maximize the cumulative
payoff received using a fixed budget of n pulls. The regret of an algorithm (on a partic-
ular instance of the classical k-armed bandit problem) is the difference between µ∗n (the
expected cumulative payoff the algorithm would have received by pulling the single best
arm n times) and the expected cumulative payoff the algorithm receives on the instance.

Chernoff Interval Estimation is simply the well-known interval estimation algorithm
[40, 57] with confidence intervals derived using Chernoff’s inequality. Although various
interval estimation algorithms have been analyzed in the literature and a variety of guaran-
tees have been proved, both (i) our use of Chernoff’s inequality in an interval estimation
algorithm and (ii) our analysis appear to be novel. In particular, when the mean payoff
returned by each arm is small (relative to the maximum possible payoff) our algorithm has
much better performance than the recent algorithm of Auer et al. [4], which is identical
to our algorithm except that confidence intervals are derived using Hoeffding’s inequality.
We give further discussion of related work later in this section.
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Classical k-armed bandit strategy Chernoff Interval Estimation
Input: positive integer n, real number δ ∈ (0, 1)

1. Initialize xi ← 0, ni ← 0 ∀i ∈ {1, 2, . . . , k}.

2. Repeat n times:

(a) î← arg maxi U(µ̄i, ni), where µ̄i = xi
ni

and

U(µ, n0) =

{
µ+

α+
√

2n0µα+α2

n0
if n0 > 0

∞ otherwise

where α = ln
(

2nk
δ

)
.

(b) Pull arm î, receive payoff R, set xî ← xî + R, and set nî ←
nî + 1.

We now bound the expected regret of Chernoff Interval Estimation. Our analysis pro-
ceeds as follows. Lemma 13 shows that (with a certain minimum probability) the value
U(µ̄i, ni) is always an upper bound on µi. Lemma 14 then places a bound on the number
of times the algorithm will sample an arm whose mean payoff is suboptimal. Theorem 30
puts these results together to obtain a bound on Chernoff Interval Estimation’s worst-case
regret.

We will make use of the following well-known Chernoff bound, which we simply refer
to as “Chernoff’s inequality”.

Chernoff’s inequality. Let X =
∑n

i=1 Xi be the sum of n independent identically dis-
tributed random variables with Xi ∈ [0, 1] and µ = E [Xi]. Then for β > 0,

P
[
X

n
< (1− β)µ

]
< exp

(
−nµβ

2

2

)
and

P
[
X

n
> (1 + β)µ

]
< exp

(
−nµβ

2

3

)
.

We will also use the following algebraic fact, which holds by construction.

Fact 3. If z = U(µ, n0) then

zn0

(
1− µ

z

)2

= 2α .
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Lemma 13. During a run of Chernoff Interval Estimation(n, δ) it holds with probability
at least 1 − δ

2
that for all arms i ∈ {1, 2, . . . , k} and for all n repetitions of the loop,

U(µ̄i, ni) ≥ µi.

Proof. It suffices to show that for any arm i and any particular repetition of the loop,
P [U(µ̄i, ni) < µi] <

δ
2nk

. Consider some particular fixed values of µi, α, and ni, and let
µc be the largest solution to the equation

U(µc, ni) = µi (5.2)

By inspection, U(µc, ni) is strictly increasing as a function of µc. Thus U(µ̄i, ni) < µi if
and only if µ̄i < µc, so P [U(µ̄i, ni) < µi] = P [µ̄i < µc]. Thus

P [U(µ̄i, ni) < µi] = P [µ̄i < µc]

= P
[
µ̄i < µi

(
1−

(
1− µc

µi

))]
< exp

(
−µini

2

(
1− µc

µi

)2
)

(Chernoff’s inequality)

= exp (−α) (Fact 3 and equation 5.2)

=
δ

2nk
.

Lemma 14. During a run of Chernoff Interval Estimation(n, δ) it holds with probability
at least 1− δ that each suboptimal arm i (i.e., each arm i with µi < µ∗) is pulled at most
3α
µ∗

1
(1−√yi)2 times, where yi = µi

µ∗
.

Proof. Let i∗ be some optimal arm (i.e., µi∗ = µ∗) and assume that U(µ̄i∗ , ni∗) ≥ µ∗

for all n repetitions of the loop. By Lemma 13, this assumption is valid with probability
at least 1 − δ

2
. Consider some particular suboptimal arm i. By inspection, we will stop

sampling arm i once U(µ̄i, ni) < µ∗. So it suffices to show that if

ni ≥
3α

µ∗
1

(1−√yi)2
(5.3)

then U(µ̄i, ni) < µ∗ with probability at least 1 − δ
2k

(then the probability that any of our
assumptions fail is at most δ

2
+ k δ

2k
= δ).
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To show this, it suffices to show that (5.3) implies two things. First, with probability at
least 1− δ

2k
, we have µ̄i ≤

√
y−1
i µi. Second, if µ̄i ≤

√
y−1
i µi, then U(µ̄i, ni) < µ∗.

We first show that (5.3) implies that with probability at least 1 − δ
2k

, µ̄i ≤
√
y−1
i µi.

This is true because

P
[
µ̄i >

√
y−1
i µi

]
= P

[
µ̄i >

(
1 +

1−√yi√
yi

)
µi

]
< exp

(
−niµi

3

(1−√yi)2

yi

)
(Chernoff’s inequality)

= exp

(
−niµ

∗

3
(1−√yi)2

)
< exp (−α) (equation 5.3)

=
δ

2nk
<

δ

2k
.

To complete the proof, we show that (5.3) implies that if µ̄i ≤
√
y−1
i µi, thenU(µ̄i, ni) <

µ∗. To see this, let Ui = U(µ̄i, ni), and suppose for contradiction that Ui ≥ µ∗. By Fact 3,

ni =
2α

Ui

(
1− µ̄i

Ui

)−2

.

The right hand side increases as a function of µ̄i (assuming µ̄i < Ui, which is true by
definition). So if µ̄i ≤

√
y−1
i µi then replacing µ̄i with

√
y−1
i µi only increases the value

of the right hand side. Similarly, the right hand side decreases as a function of Ui, so if
Ui ≥ µ∗ then replacing replacing Ui with µ∗ only increases the value of the right hand
side. Thus

ni ≤
2α

µ∗

(
1−

√
y−1
i µi
µ∗

)−2

=
2α

µ∗
(1−√yi)−2

which contradicts (5.3).

The following theorem shows that when n is large (and the parameter δ is small), the
total payoff obtained by Chernoff Interval Estimation over n trials is almost as high as
what would be obtained by pulling the single best arm for all n trials.

Theorem 30. The regret incurred by Chernoff Interval Estimation(n, δ) is at most

2
√

3µ∗n(k − 1)α + δµ∗n

where α = ln
(

2nk
δ

)
.
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Proof. First, assume that k ≥ 2 (for k = 1 the theorem holds trivially).

The conclusion of Lemma 14 fails to hold with probability at most δ. Because regret
cannot exceed µ∗n, this scenario contributes at most δµ∗n to overall regret. Thus it remains
to show that, conditioned on the event that the conclusion of Lemma 2 holds, regret is at
most 2

√
3µ∗n(k − 1)α.

Consider some arm i with µi < µ∗. Let y = µi
µ∗

, and let ni be the number of times arm
i is pulled. By Lemma 14, ni ≤ 3α

µ∗
1

(1−√y)2
. Each pull of arm i adds µ∗ − µi = µ∗(1− y)

to the regret. Thus, letting Ri be the total regret incurred due to pulling arm i, we have

Ri = niµ
∗(1− y) ≤ 3α(1− y)

(1−√y)2
.

Using the fact that y < 1, we have

1− y
(1−√y)2

=
1− y

(1−√y)2
·

(1 +
√
y)2

(1 +
√
y)2

=
(1 +

√
y)2

1− y

<
4

1− y
.

Thus

Ri ≤ min

{
niµ

∗(1− y),
12α

1− y

}
.

For any fixed ni, this expression is maximized when 1 − y = 2
√

3α
niµ∗

. Thus Ri ≤
2
√

3niµ∗α.

Assume without loss of generality that arm 1 is optimal (i.e., µ1 = µ∗). Then the total
regret is at most

∑k
i=2 Ri ≤

∑k
i=2 2
√

3niµ∗α. Subject to the constraint
∑k

i=2 ni ≤ n, this
expression is maximized when ni = n

k−1
for all i (2 ≤ i ≤ k). Thus the total regret is at

most 2
√

3µ∗n(k − 1)α, as claimed.

We now compare Theorem 30 to previous regret bounds for the classical k-armed
bandit problem.

Types of Regret Bounds

In comparing the regret bound of Theorem 30 to previous work, we must distinguish be-
tween two different types of regret bounds. The first type of bound describes the asymp-
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totic behavior of regret (as n→∞) on a fixed problem instance (i.e., with all k payoff dis-
tributions held constant). In this framework, a lower bound of Ω(ln(n)) has been proved,
and algorithms exist that achieve regret O(ln(n)) [4]. Though we do not prove it here,
Chernoff Interval Estimation also achieves O(ln(n)) regret in this framework when δ is
set appropriately.

The second type of bound concerns the maximum, over all possible instances, of the
regret incurred by the algorithm when run on that instance for n pulls. In this setting, a
lower bound of Ω(

√
kn) has been proved [5]. It is this second form of bound that Theorem

30 provides. In what follows, we will only consider bounds of this second form.

The Classical k-Armed Bandit Problem

We are not aware of any work on the classical k-armed bandit problem that offers a bet-
ter regret bound (of the second form) than the one proved in Theorem 30. Auer et al.
[4] analyze an algorithm that is identical to ours except that the confidence intervals are
derived from Hoeffding’s inequality rather than Chernoff’s inequality. An analysis anal-
ogous to the one given in this chapter shows that their algorithm has worst-case regret
O(
√
nk ln(n)) when the instance is chosen adversarially as a function of n. Plugging

δ = 1
n2 into Theorem 30 gives a bound of O(

√
nµ∗k ln(n)), which is never any worse

than the latter bound (because µ∗ ≤ 1) and is much better when µ∗ is small.

The Nonstochastic Multiarmed Bandit Problem

In a different paper, Auer et al. [5] consider a variant of the classical k-armed bandit
problem in which the sequence of payoffs returned by each arm is determined adversarially
in advance. For this more difficult problem, they present an algorithm called Exp3.1 with
expected regret

8
√

(e− 1)Gmaxk ln(k) + 8(e− 1)k + 2k ln(k)

where Gmax is the maximum, over all k arms, of the total payoff that would be obtained
by pulling that arm for all n trials. If we plug in Gmax = µ∗n, this bound is sometimes
better than the one given by Theorem 30 and sometimes not, depending on the values of
n, k, and µ∗, as well as the choice of the parameter δ.
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5.2.2 Threshold Ascent

To solve the max k-armed bandit problem, we use Chernoff Interval Estimation to maxi-
mize the number of payoffs that exceed a threshold T that varies over time. Initially, we
set T to zero. Whenever s or more payoffs> T have been received so far, we increment T .
We refer to the resulting algorithm as Threshold Ascent. To ease explanation, we assume
that all payoffs are integer multiples of some known constant ∆ when presenting the code
for Threshold Ascent.

Max k-armed bandit strategy Threshold Ascent
Input: positive integers n and s, real number δ ∈ (0, 1).

1. Initialize T ← 0 and nRi = 0, ∀i ∈ {1, 2, . . . , k}, R ∈
{0,∆, 2∆, . . . , 1−∆, 1}.

2. Repeat n times:

(a) While
∑k

i=1 Si(T ) ≥ s do:

T ← T + ∆

where Si(t) =
∑

R>t n
R
i is the number of payoffs > t received

so far from arm i.

(b) î← arg maxi U
(
Si(T )
ni

, ni

)
, where ni =

∑
R n

R
i is the number

of times arm i has been pulled and

U(µ, n0) =

{
µ+

α+
√

2n0µα+α2

n0
if n0 > 0

∞ otherwise

where α = ln
(

2nk
δ

)
.

(c) Pull arm î, receive payoff R, and set nR
î
← nR

î
+ 1.

The parameter s controls the tradeoff between exploration and exploitation. To under-
stand this tradeoff, it is helpful to consider two extreme cases.

Case s = 1. Threshold Ascent(1, n, δ) is equivalent to round-robin sampling. When
s = 1, the threshold T is incremented whenever a payoff > T is obtained. Thus the value
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Si(T )
ni

calculated in 2 (b) is always 0, so the value of U
(
Si(T )
ni

, ni

)
is determined strictly by

ni. Because U is a decreasing function of ni, the algorithm simply samples whatever arm
has been sampled the smallest number of times so far.

Case s = ∞. Threshold Ascent(∞, n, δ) is equivalent to Chernoff Interval Estimation
(n, δ) running on a k-armed bandit instance where payoffs > T are mapped to 1 and pay-
offs ≤ T are mapped to 0.

5.3 A No-Regret Algorithm for GEV Payoff Distributions

In this section we consider a restricted version of the max k-armed bandit problem in
which each arm yields payoff drawn from a generalized extreme value (GEV) distribu-
tion (defined in §5.3.1). This section presents the first provably asymptotically optimal
algorithm for this problem.

Roughly speaking, the reason for assuming a GEV distribution is the Extremal Types
Theorem (stated in §5.3.1), which states that the distribution of the sample maximum of
n independent identically distributed random variables approaches a GEV distribution as
n → ∞. In fact, there are two arguments for assuming that each arm is a GEV distri-
bution. First, in practice the distribution of payoffs returned by a strong heuristic may
be approximately GEV, even if the conditions of the Extremal Types Theorem are not
formally satisfied [19].

A second argument runs as follows. Suppose I = 〈G1, G2, . . . , Gk〉 is an instance
of the max k-armed bandit problem in which each distribution Gi satisfies the conditions
required by the Extremal Types Theorem. Consider the instance Ī = 〈Ḡ1, Ḡ2, . . . , Ḡk〉,
where Ḡi returns the maximum ofm samples fromGi. Effectively, Ī is a restricted version
of I in which the arms must be pulled in batches of size m, rather than in any arbitrary
order. For m sufficiently large, the Extremal Types Theorem guarantees that for each i,
Ḡi is approximately equal to a GEV, call it G′i. Thus, the instance I ′ = 〈G′1, G′2, . . . , G′k〉
is approximately equivalent to the original instance I , and satisfies our distributional as-
sumptions.

The form our algorithm is very simple. Initially, the algorithm pulls each arm a fixed
number of times. Based on the observed payoffs, the algorithm then estimates, for each
arm, the (expected) maximum payoff that would be obtained by pulling that arm for all
remaining trials. The arm with the highest estimate is then used for all remaining trials.
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An algorithm of this form has previously been analyzed for the classical k-armed bandit
problem [28]. As it turns out, the analysis in the case of the max k-armed bandit problem
is considerably more technical.

For reasons that will become clear, the nature of our results depends on the shape
parameter (ξ) of the GEV distributions. Assuming all arms have ξ ≤ 0, we obtain a
strategy whose regret is o (1). In the exotic case where one or more arms have ξ > 0, the
expected maximum payoff obtained by pulling the best arm n times grows without bound,
and grows too fast for us to be able to obtain additive regret that is o (1). In this case, we
obtain expected maximum payoff within a factor 1− o (1) of that of the best arm.

We should note up front that the results presented in this section are primarily of theo-
retical interest, and are quite a bit more technical than the results presented in the previous
section. In our experimental evaluation, we found that Threshold Ascent performed much
better than the no-regret strategy for GEV payoff distributions described in this section.

5.3.1 Background: extreme value theory

This section provides a self-contained overview of results in extreme value theory that are
relevant to this work. Our presentation is based on the text by Coles [23].

The central result of extreme value theory is an analogue of the Central Limit Theorem
that applies to extremely rare events. Recall that the Central Limit Theorem states that
(under certain regularity conditions) the distribution of the sum of n independent, identi-
cally distributed (i.i.d) random variables converges to a normal distribution as n → ∞.
The Extremal Types Theorem states that (under certain regularity conditions) the distribu-
tion of the maximum of n i.i.d random variables converges to a generalized extreme value
(GEV) distribution.

Definition (GEV distribution). A random variable Z has a generalized extreme value
distribution if, for constants µ, σ > 0, and ξ, P [Z ≤ z] = GEV(µ,σ,ξ)(z), where

GEV(µ,σ,ξ)(z) = exp

(
−
(

1 +
ξ(z − µ)

σ

)− 1
ξ

)

for z such that 1 + ξ(z − µ)σ−1 > 0, and GEV(µ,σ,ξ)(z) = 1 otherwise. The case ξ = 0 is
interpreted as the limit

lim
ξ′→0

GEV(µ,σ,ξ′)(z) = exp

(
− exp

(
µ− z
σ

))
.
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The following three propositions establish properties of the GEV distribution.

Proposition 1. Let Z be a random variable with P [Z ≤ z] = GEV(µ,σ,ξ)(z). Then

E [Z] =


µ+ σ

ξ
(Γ(1− ξ)− 1) if ξ < 1, ξ 6= 0

µ+ σγ if ξ = 0
∞ if ξ ≥ 1

where
Γ(z) =

∫ ∞
0

tz−1 exp(−t) dt

is the complete gamma function and

γ = lim
n→∞

(
n∑
k=1

1

k
− ln(n)

)

is Euler’s constant.

We now introduce some additional notation. Let G = GEV(µ,σ,ξ) be a GEV distribu-
tion, and let the random variable Mn equal the maximum of n independent samples from
G.

Proposition 2. Mn has distribution GEV(µ′,σ′,ξ′), where

µ′ =

{
µ+ σ

ξ
(nξ − 1) if ξ 6= 0

µ+ σ ln(n) otherwise,
σ′ = σnξ, and
ξ′ = ξ .

Substituting the parameters of Mn given by Proposition 2 into Proposition 1 gives an
expression for E [Mn].

Proposition 3. Let G = GEV(µ,σ,ξ) where ξ < 1. Then

E [Mn] =

{
µ+ σ

ξ

(
nξΓ(1− ξ)− 1

)
if ξ 6= 0

µ+ σγ + σ ln(n) otherwise.

It follows that

• for ξ > 0, E [Mn] is Θ(nξ);
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Figure 5.2: The effect of the shape parameter (ξ) on the expected maximum of n indepen-
dent draws from a GEV distribution.

• for ξ = 0, E [Mn] is Θ(ln(n)); and

• for ξ < 0, E [Mn] = µ− σ
ξ
−Θ(nξ) .

In the analysis that follows in later sections, it will be useful to have a visual picture
of what Proposition 3 means. Figure 1 plots E [Mn] as a function of lnn for three GEV
distributions with µ = 0, σ = 1, and ξ ∈ {0.1, 0,−0.1}. When the shape parameter ξ is
negative, the expected maximum payoff approaches an asymptote as n→∞; when ξ = 0,
the expected maximum payoff grows linearly as a function of lnn; and when ξ > 0, the
expected maximum payoff grows super-linearly as a function of lnn.

The central result of extreme value theory is the following theorem.

The Extremal Types Theorem. Let G be an arbitrary cumulative distribution function,
and suppose there exist sequences of constants {an > 0} and {bn} such that

lim
n→∞

P
[
MG

n − bn
an

≤ z

]
= G∗(z) (5.4)

for any continuity point z ofG∗, whereG∗ is a not a point mass. Then there exist constants
µ, σ > 0, and ξ such that G∗(z) = GEV(µ,σ,ξ)(z) ∀z. Furthermore,

lim
n→∞

P [Mn ≤ z] = GEV(µan+bn,σan,ξ)(z) .
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Condition (5.4) holds for a variety of distributions including the normal, lognormal,
uniform, and Cauchy distributions.

5.3.2 A no-regret algorithm

In this section we will analyze the max k-armed bandit strategy SGEV shown below. Here,
and throughout this section, we useM i

n to denote the maximum payoff obtained by pulling
the ith arm n times, and we define

mi
n = E

[
M i

n

]
.

Max k-armed bandit strategy SGEV
Input: real numbers ε > 0, δ ∈ (0, 1)

1. (Exploration) For each arm Gi ∈ G:

Using t = O
(

ln(1
δ
) ln(n)2

ε2

)
samples of Gi, obtain an estimate m̄i

n

of mi
n. Assuming that arm Gi has shape parameter ξi ≤ 0, our

estimate will have the property that

P
[∣∣m̄i

n −mi
n

∣∣ < ε
]
≥ 1− δ .

2. (Exploitation) Set î = arg max1≤i≤k m̄
i
n, and pull arm Gî for the

remaining n− tk trials.

If an armGi has shape parameter ξi > 0, the estimate obtained in step 1 (a) will instead
have the property that P

[
1

1+ε
< m̄n−α1

mn−α1
< 1 + ε

]
≥ 1 − δ for constant α1 independent of

n.

Assumptions

We require that each armGi have finite, bounded mean and variance. To ensure this, it suf-
fices to assume that each arm Gi = GEV(µi,σi,ξi) is a GEV distribution whose parameters
satisfy

1. |µi| ≤ µu
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2. 0 < σ` ≤ σi ≤ σu

3. ξ` ≤ ξi ≤ ξu <
1
2

for known constants µu, σ`, σu, ξ`, and ξu.

Analysis

The following theorem shows that with appropriate settings of ε and δ, strategy SGEV is
asymptotically optimal when each arm has shape parameter ξi ≤ 0. In Appendix A, we
establish a similar guarantee (using the same parameter settings) when one or more arms
have ξi > 0.

Theorem 31. Let I = 〈G1, G2, . . . , Gk〉 be an instance of the max k-armed bandit prob-
lem, where Gi = GEV(µi,σi,ξi), and ξi ≤ 0 for all i. Then strategy SGEV , run on instance

I with parameters ε = 3

√
k
n

and δ = 1
kn2 , has regret O

(
ln(nk) ln(n)2 3

√
k
n

)
.

Proof (sketch). There are three potential sources of regret. We will show that the contri-

bution from each source is O (∆), where ∆ = ln(nk) ln(n)2 3

√
k
n

.

First, with probability at most kδ = 1
n2 , one of the estimates obtained during the

exploration phase will be more than ε away from its true value. However, if all arms
have ξi ≤ 0 then by Proposition 3, the maximum regret is O (lnn). Thus, this possibility
contributes O

(
lnn
n2

)
= o (∆) to regret.

The second source of regret is that, even if all estimates are within ε of their true
values, the expected maximum payoff from n pulls of the arm î selected at the end of the
exploration phase could be up to 2ε smaller than that of some other arm. This possibility
contributes at most 2ε to regret, and ε = O (∆).

The final source of regret is that, due to the time spent on the exploration phase, the
presumed best arm î will only be pulled n − t(k − 1) times, rather than n times. To
complete the proof, we show in Appendix A that for any arm i,

mi
n −mi

n−t(k−1) = O

(
tk

n

)
= O (∆) .

Theorem 31 completes our analysis of the performance of SGEV . It remains only to
describe how the estimates in step 1 (a) are obtained.
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Obtaining the required estimates

We now describe how to obtain accurate estimates of the expected maximum of n inde-
pendent draws from a GEV distribution. Although the estimation procedure itself is not
complicated, the proofs that the estimates have the required properties are quite techni-
cal. In this section, we provide only sketches of these proofs, deferring the full proofs to
Appendix A.

We adopt the following notation:

• Let G = GEV(µ,σ,ξ) denote a GEV distribution with (unknown) parameters µ, σ,
and ξ satisfying the conditions stated in §5.3.1, and

• let mj be the expected maximum of j samples from G.

Our procedure for estimating mn is as follows. First, we obtain an accurate estimate
of ξ. Then

1. if ξ ≈ 0 (so that the growth of mn as a function of lnn is linear), we estimate mn by
first estimating m1 and m2, then performing a linear interpolation;

2. otherwise we estimate mn by first estimating m1, m2, and m4, then performing a
nonlinear interpolation.

Our estimation procedure will take a different form depending on the GEV distribution
is estimated to have shape parameter ξ < 0, ξ = 0, or ξ > 0. Although we will analyze
all three cases, it is worth noting that the case ξ < 0 is really the only one that can
arise in practice. This is true because in any real combinatorial optimization problem the
maximum payoff is bounded from above, which (by Proposition 3) can only happen when
ξ < 0.

For the purpose of the proofs presented in this section, we will make an additional mi-
nor assumption concerning an arm’s shape parameter ξi: we assume that for some known
constant ξ∗ > 0,

|ξi| < ξ∗ ⇒ ξi = 0 .

Removing this assumption does not fundamentally change the results, but it makes the
proofs more complicated.

We will repeatedly make use of the following lemma, which shows how to accurately
estimate mj when j is small (the required number of samples grows linearly with j). The
proof is given in Appendix A, and uses a standard probabilistic trick called the “median of
means” method.
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Lemma 15. Let j be a positive integer and let ε > 0 and δ ∈ (0, 1) be real numbers. Then
O
(
ln
(

1
δ

)
j
ε2

)
draws from G suffice to obtain an estimate m̄j of mj such that

P [|m̄j −mj| < ε] ≥ 1− δ .

Our first lemma proves a bound on the number of samples needed to accurately esti-
mate ξ.

Lemma 16. For real numbers ε > 0 and δ ∈ (0, 1), O
(
ln(1

δ
) 1
ε2

)
draws from G suffice to

obtain an estimate ξ̄ of ξ such that

P
[∣∣ξ̄ − ξ∣∣ < ε

]
≥ 1− δ .

Proof (sketch). Using Proposition 3, it is straightforward to check that for any ξ < 1,

ξ = log2

(
m4 −m2

m2 −m1

)
. (5.5)

Let m̄1, m̄2, and m̄4 be estimates of m1, m2, and m4, respectively, and let ξ̄ be the
estimate of ξ obtained by plugging m̄1, m̄2, and m̄4 into (5.5).

It can be shown (see the full proof in Appendix A) that

|ξ̄ − ξ| = O

 ∑
j∈{1,2,4}

|m̄j −mj|

 .

Thus to guarantee P
[∣∣ξ̄ − ξ∣∣ < ε

]
≥ 1− δ, it suffices that

P [|m̄j −mj| ≤ Ω(ε)] ≥ 1− δ

3

for all j ∈ {1, 2, 4}. By Lemma 15, this requires O
(
ln(1

δ
) 1
ε2

)
draws from G.

Having just shown how to accurately estimate ξ, it remains to describe how to estimate
mn given knowledge of ξ. Lemmas 17, 18 and 19 show how to efficiently estimate mn

in the cases ξ = 0, ξ < 0 and ξ > 0, respectively. The case ξ = 0 is by far the most
straightforward.

Lemma 17. Assume G has shape parameter ξ = 0. Let n be a positive integer and let
ε > 0 and δ ∈ (0, 1) be real numbers. Then O

(
ln(1

δ
) ln(n)2

ε2

)
draws from G suffice to

obtain an estimate m̄n of mn such that

P [|m̄n −mn| < ε] ≥ 1− δ .
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Proof. By Proposition 3, mj = µ+ σγ + σ ln(j). Thus

mn = m1 + (m2 −m1) log2(n) . (5.6)

Let m̄1 and m̄2 be estimates of m1 and m2, respectively, and let m̄n be the estimate of mn

obtained by plugging m̄1 and m̄2 into (5.6). Define ∆j = |m̄j − mj| for j ∈ {1, 2, n}.
Then

∆n ≤ (1 + log2(n))(∆1 + ∆2) .

Thus to guarantee P [∆n < ε] ≥ 1 − δ, it suffices that P
[
∆j ≤ ε

2(1+log2(n))

]
≥ 1 − δ

2
for

all j ∈ {1, 2}. By Lemma 15, this requires O
(

ln(1
δ
) (lnn)2

ε2

)
draws from G.

Lemma 18. Assume G has shape parameter ξ ≤ −ξ∗. Let n be a positive integer and let
ε > 0 and δ ∈ (0, 1) be real numbers. Then O

(
ln(1

δ
) 1
ε2

)
draws from G suffice to obtain an

estimate m̄n of mn such that

P [|m̄n −mn| < ε] ≥ 1− δ .

Proof (sketch). By Proposition 3,

mj = µ+
σ

ξ

(
jξΓ(1− ξ)− 1

)
.

Define
α1 = µ− σξ−1

α2 = σξ−1Γ(1− ξ)
α3 = 2ξ

so that
mj = α1 + α2α

log2(j)
3 . (5.7)

Plugging in the values j = 1, j = 2, and j = 4 into (5.7) yields a system of three quadratic
equations. Solving this system for α1, α2, and α3 yields

α1 = (m1m4 −m2
2)(m1 − 2m2 +m4)−1

α2 = (−2m1m2 +m2
1 +m2

2)(m1 − 2m2 +m4)−1

α3 = (m4 −m2)(m2 −m1)−1 .

Let m̄1, m̄2, and m̄4 be estimates of m1, m2, and m4, respectively. Plugging m̄1, m̄2,
and m̄4 into the above equations yields estimates, say ᾱ1, ᾱ2, and ᾱ3, of α1, α2, and α3,
respectively.
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With no small amount of algebraic effort, it can be shown (see the full proof in Ap-
pendix A) that

|m̄n −mn| = O

 ∑
i∈{1,2,4}

|m̄j −mj|

 .

Thus to guarantee P [|m̄n −mn| < ε] ≥ 1− δ, it suffices that

P [|m̄j −mj| < Ω(ε)] ≥ 1− δ

3

for all j ∈ {1, 2, 4}. By Lemma 15, this requires O(ln(1
δ
) 1
ε2

) draws from G.

Lemma 19. Assume G has shape parameter ξ ≥ ξ∗. Let n be a positive integer and let
ε > 0 and δ ∈ (0, 1) be real numbers. Then O

(
ln(1

δ
) ln(n)2

ε2

)
draws from G suffice to

obtain an estimate m̄n of mn such that

P
[

1

1 + ε
<
m̄n − α1

mn − α1

< (1 + ε)

]
≥ 1− δ

where α1 = µ− σ
ξ
.

Proof. See Appendix A.

Putting the results of lemmas 16, 17, 18, and 19 together, we obtain the following
theorem.

Theorem 32. Let n be a positive integer and let ε > 0 and δ ∈ (0, 1) be real numbers.
Then O

(
ln(1

δ
) ln(n)2

ε2

)
draws from G suffice to obtain an estimate m̄n of mn such that with

probability at least 1− δ, one of the following holds:

• ξ ≤ 0 and |m̄n −mn| < ε, or

• ξ > 0 and 1
1+ε

< m̄n−α1

mn−α1
< 1 + ε, where α1 = µ− σ

ξ
.

Proof. First, invoke Lemma 16 with parameters ξ∗

3
and δ

2
. Then invoke one of Lemmas

17, 18, or 19 (depending on the estimate ξ̄ obtained from Lemma 16) with parameters ε
and δ

2
.

Theorem 32 shows that step 1 (a) of strategy SGEV can be performed as described,
completing our analysis of SGEV .
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5.4 Experimental Evaluation

Following Cicirello and Smith [19, 21], we evaluate our algorithm for the max k-armed
bandit problem by using it to select among randomized priority dispatching rules for the
resource-constrained project scheduling problem with maximal time lags (RCPSP/max).
Cicirello and Smith’s work showed that a max k-armed bandit approach yields good per-
formance on benchmark instances of this problem.

Briefly, in the RCPSP/max one must assign start times to each of a number of ac-
tivities in such a way that certain temporal and resource constraints are satisfied. Such
an assignment of start times is called a feasible schedule. The goal is to find a feasible
schedule whose makespan is as small as possible, where the makespan of a schedule is the
maximum completion time of any activity.

Even without maximal time lags (which make the problem more difficult), the resource-
constrained project scheduling problem is NP-hard and is “one of the most intractable
problems in operations research” [63]. When maximal time lags are included, even the
feasibility problem (i.e., deciding whether a feasible schedule exists) is NP-hard.

Our experimental evaluation focuses on Threshold Ascent. In these experiments, we
found that the number of trials is small enough that SGEV never makes it past the initial
exploration phase, and thus performs similarly to round-robin sampling.

5.4.1 Experimental setup

In this section we define the RCPSP/max and discuss the heuristics and benchmark in-
stances used in our experiments.

The RCPSP/max

Formally, an instance of the RCPSP/max is a tuple I = (A, R, T ), where A is a set of
activities, R is a vector of resource capacities, and T is a list of temporal constraints.
Each activity ai ∈ A has a processing time pi, and a resource demand ri,k for each k ∈
{1, 2, . . . , |R|}. Each temporal constraint T ∈ T is a triple T = (i, j, δ), where i and j are
activity indices and δ is an integer. The constraint T = (i, j, δ) indicates that activity aj
cannot start until δ time units after activity ai has started.

A schedule S assigns a start time S(a) to each activity a ∈ A. S is feasible if

S(aj)− S(ai) ≥ δ ∀(i, j, δ) ∈ T
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(i.e., all temporal constraints are satisfied), and∑
ai∈A(S,t)

ri,k ≤ Rk ∀ t ≥ 0, k ∈ {1, 2, . . . , |R|}

whereA(S, t) = {ai ∈ A | S(ai) ≤ t < S(ai)+pi} the set of activities that are in progress
at time t. The latter equation ensures that no resource capacity is ever exceeded.

Randomized priority dispatching rules

A priority dispatching rule for the RCPSP/max is a procedure that assigns start times to
activities one at a time, in a greedy fashion. The order in which start times are assigned
is determined by a rule that assigns priorities to each activity. As noted above, it is NP-
hard to generate a feasible schedule for the RCPSP/max, and a simple priority rule will
often fail to find a feasible schedule in practice. Priority dispatching rules are therefore
augmented to perform a limited amount of backtracking in order to increase the odds of
producing a feasible schedule. For more details, see [66].

Cicirello and Smith describe experiments with randomized priority dispatching rules,
in which the next activity to schedule is chosen from a probability distribution, with the
probability assigned to an activity being proportional to its priority. Cicirello and Smith
consider the five randomized priority dispatching rules in the set

H = {LPF, LST, MST, MTS, RSM} .

See Cicirello and Smith [19, 21] for a description of these heuristics. We use the same
five heuristics as Cicirello and Smith, with two modifications. First, we added a form
of conflict-driven backtracking to the procedure of [66] in order to increase the odds of
generating a feasible schedule. We found that this modification improved performance in
practice. Second, we modified the RSM heuristic to improve its performance.

Instances

We evaluate our approach on a set of 169 RCPSP/max instances from the ProGen/max
library [74]. These instances were selected as follows. We first ran the heuristic LPF (the
heuristic identified by Cicirello and Smith as having the best performance) 10,000 times
on all 540 instances from the TESTSETC data set of the ProGen/max library. For many
of these instances, LPF found a (provably) optimal schedule on a large proportion of the
runs. We considered any instance in which the best makespan found by LPF was found
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with frequency > 0.01 to be “easy” and discarded it from the data set. What remained was
a set of 169 “hard” RCPSP/max instances.

For each “hard” RCPSP/max instance, we ran each heuristic h ∈ H 10,000 times,
storing the results in a file. Using this data, we created a set K of 169 five-armed bandit
problems (each of the five heuristics h ∈ H represents an arm). After the data were
collected, makespans were converted to payoffs by multiplying each makespan by −1 and
scaling them to lie in the interval [0, 1].

5.4.2 Payoff distributions in the RCPSP/max

To better understand the potential advantages and disadvantages of approximating pay-
off distributions by GEV distributions, we examined the payoff distributions generated by
randomized priority dispatching rules for the RCPSP/max. For a number of instances,
we plotted the payoff distribution functions for each heuristic h ∈ H. For each distribu-
tion, we fitted a GEV to the empirical data using maximum likelihood estimation of the
parameters µ, σ, and ξ, as recommended by Coles [23].

Our experience was that the GEV sometimes provides a good fit to the empirical cu-
mulative distribution function but sometimes provides a very poor fit. Figure 2 shows
the empirical distribution and the GEV fit to the payoff distribution of LPF on instances
PSP129 and PSP121. For the instance PSP129, the GEV accurately models the en-
tire distribution, including the right tail. For the instance PSP121, however, the GEV fit
severely overestimates the probability mass in the right tail. Indeed, the distribution in
Figure 2 (B) is so erratic that no parametric family of distributions can be expected to be a
good model of its behavior. In such cases a distribution-free approach is preferable.

5.4.3 An illustrative run

Before presenting our results, we illustrate the typical behavior of Threshold Ascent by
showing how it performs on the instance PSP124. For this and all subsequent experi-
ments, we run Threshold Ascent with parameters n = 10, 000, s = 100, and δ = 0.01.

Figure 3 (A) depicts the payoff distributions for each of the five arms. As can be seen,
LPF has the best performance on PSP124. MST has zero probability of generating a
payoff> 0.8, while LST and RMS have zero probability of generating a payoff> 0.9. MTS
gives competitive performance up to a payoff of t ≈ 0.9, at which point the probability of
obtaining a payoff > t suddenly drops to zero.
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(A) Instance PSP129
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(B) Instance PSP121
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Figure 5.3: Empirical cumulative distribution function of the LPF heuristic for two
RCPSP/max instances. (A) depicts an instance for which the GEV provides a good fit;
(B) depicts an instance for which the GEV provides a poor fit.
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(A) Payoff Distributions
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(B) Behavior of Threshold Ascent
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Figure 5.4: Behavior of Threshold Ascent on instance PSP124. (A) shows the payoff
distributions; (B) shows the number of pulls allocated to each arm.
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Table 5.1: Performance of eight max k-armed bandit strategies on 169 RCPSP/max in-
stances.

Strategy Σ Regret P [Regret = 0] Num. Feasible
Threshold Ascent 188 0.722 166
Round-robin sampling 345 0.556 166
LPF 355 0.675 164
MTS 402 0.657 166
QD-BEACON 609 0.538 165
RSM 2130 0.166 155
LST 3199 0.095 164
MST 4509 0.107 164

Figure 3 (B) shows the number of pulls allocated by Threshold Ascent to each of the
five arms as a function of the number of pulls performed so far. As can be seen, Threshold
Ascent is a somewhat conservative strategy, allocating a fair number of pulls to heuristics
that might seem “obviously” suboptimal to a human observer. Nevertheless, Threshold
Ascent spends the majority of its time sampling the single best heuristic (LPF).

5.4.4 Results

For each instance K ∈ K, we ran three max k-armed bandit algorithms, each with a bud-
get of n = 10, 000 pulls: Threshold Ascent with parameters n = 10, 000, s = 100, and
δ = 0.01, the QD-BEACON algorithm of Cicirello and Smith [21], and an algorithm that
simply sampled the arms in a round-robin fashion. Cicirello and Smith describe three ver-
sions of QD-BEACON; we use the one based on the GEV distribution. For each instance
K ∈ K, we define the regret of an algorithm as the difference between the minimum
makespan (which corresponds to the maximum payoff) sampled by the algorithm and the
minimum makespan sampled by any of the five heuristics (on any of the 10, 000 stored
runs of each of the five heuristics). For each of the three algorithms, we also recorded
the number of instances for which the algorithm generated a feasible schedule. Table 1
summarizes the performance of these three algorithms, as well as the performance of each
of the five heuristics in isolation.

Of the eight max k-armed bandit strategies we evaluated (Threshold Ascent, QD-
BEACON, round-robin sampling, and the five pure strategies), Threshold Ascent has the
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least regret and achieves zero regret on the largest number of instances. Additionally,
Threshold Ascent generated a feasible schedule for the 166 (out of 169) instances for
which any of the five heuristics was able to generate a feasible schedule (for three in-
stances, none of the five randomized priority rules generated a feasible schedule after
10,000 runs).

5.4.5 Discussion

Two of the findings summarized in Table 1 may be surprising: the fact that round-robin
sampling performs better than any single heuristic, and the fact that QD-BEACON per-
forms worse than round-robin. We now examine each of these findings in more detail.

Why Round-Robin Sampling Performs Well

In the classical k-armed bandit problem, round-robin sampling can never outperform the
best pure strategy (where a pure strategy is one that samples the same arm the entire time),
either on a single instance or across multiple instances. In the max k-armed bandit prob-
lem, however, the situation is different, as the following example illustrates.

Example 5. Suppose we have 2 heuristics, and we run them each for n trials on a set of
m instances. On half the instances, heuristic A returns payoff 0 with probability 0.9 and
returns payoff 1 with probability 0.1, while heuristic B returns payoff 0 with probability
1. On the other half of the instances, the roles of heuristics A and B are reversed.

If n is large, round-robin sampling will yield total regret ≈ 0, while either of the two
heuristics will have regret ≈ 1

2
m. By allocating pulls equally to each arm, round-robin

sampling is guaranteed to sample the best heuristic at least n
k

times, and if n is large this
number of samples may be enough to exploit the tail behavior of the best heuristic.

Understanding QD-BEACON

QD-BEACON is designed to converge to a single arm at a doubly-exponential rate. That is,
the number of pulls allocated to the (presumed) optimal arm increases doubly-exponentially
relative to the number of pulls allocated to presumed suboptimal arms. In our experience,
QD-BEACON usually converges to a single arm after at most 10-20 pulls from each arm.
This rapid convergence can lead to large regret if the presumed best arm is actually sub-
optimal.
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5.5 Conclusions

The max k-armed bandit problem is a variant of the classical k-armed bandit problem with
practical applications to combinatorial optimization.

We presented an algorithm, Chernoff Interval Estimation, for solving the classical k-
armed bandit problem, and proved that it has good performance guarantees when the mean
payoff returned by each arm is small relative to the maximum possible payoff. Building
on Chernoff Interval Estimation we presented an algorithm, Threshold Ascent, that solves
the max k-armed bandit problem without making strong assumptions about the payoff
distributions. We demonstrated the effectiveness of Threshold Ascent experimentally on
the problem of selecting among randomized priority dispatching rules for the RCPSP/max.

Motivated by extreme value theory, we then studied a restricted version of this problem
in which each arm yields payoff drawn from a GEV distribution. We derived bounds on
the number of samples required to accurately estimate the expected maximum of n draws
from a GEV distribution. Using these bounds, we showed that a simple algorithm for the
max k-armed bandit problem is asymptotically optimal. Ours is the first algorithm for this
problem with rigorous asymptotic performance guarantees.
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Chapter 6

Conclusions

In this thesis, we developed techniques for solving hard computational problems more
efficiently. Toward this end, we introduced several new online optimization problems, and
developed online algorithms for solving these problems. Our online algorithms come with
rigorous performance guarantees, stated either as regret bounds or as a competitive ratio.
Experimentally, we showed that these techniques can be used to improve the performance
of state-of-the-art algorithms in a wide variety of problem domains.

Interpreted narrowly, the contributions of this thesis consist of new theoretical and ex-
perimental results for three previously-studied problems: algorithm portfolio design, using
decision procedures efficiently for optimization, and the max k-armed bandit problem. In
each case, our results provide new ways to improve the performance of certain classes of
algorithms.

Interpreted more broadly, this thesis presents three successful examples of a high-level
strategy for solving NP-hard problems: namely, to leverage the power of existing heuristics
in a principled way. This strategy seems under-exploited at the moment, and we hope our
work will encourage more people to pursue it.
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Appendix A

Additional Proofs

A.1 Online Algorithms for Maximizing Submodular Func-
tions

Theorem 5. c (f,G′) ≤ 4
∫∞
t=0

1−maxS∈S
{
f
(
S〈t〉
)}

dt ≤ 4 minS∈S {c (f, S)}.

Proof. Recall that G′ = 〈g′1, g′2, . . .〉, where G′j = 〈g′1, g′2, . . . , g′j−1〉 and

g′j = arg max
(v,τ)∈V×R>0

f
(
G′j ⊕ (v, τ)

)
− f

(
G′j
)∫ τ

t′=0
1− f

(
G′j + (v, t′)

)
dt′

. (A.1)

Let s′j equal the jth value of the arg max in (A.1), multiplied by the quantity 1 − f(G′j).
We will make use of the following claim.
Claim 1. For any schedule S, any positive integer j, and any t ≥ 0, f

(
S〈t〉
)
≤ f

(
G′j
)

+
ts′j .

Proof. Fix an action a = (v, τ). By monotonicity of f , we have
∫ τ
t′=0

1− f
(
G′j ⊕ 〈(v, τ)〉

)
dt′ ≤

τ(1− f
(
G′j
)
), or equivalently,

1

τ
≤

1− f
(
G′j
)∫ τ

t′=0
1− f

(
G′j + (v, τ)

)
dt′

.

This and the definition of s′j imply

f
(
G′j ⊕ 〈a〉

)
− f

(
G′j
)

τ
≤
(
1− f

(
G′j
))
·

f
(
G′j ⊕ 〈a〉

)
− f

(
G′j
)∫ τ

t′=0
1− f

(
G′j ⊕ 〈(v, t′)〉

)
dt′
≤ s′j .

157



The claim then follows by exactly the same argument that was used to prove Fact 1.

The remainder of the proof parallels the proof of Theorem 4. Using Claim 1 and the
argument in the proof of Theorem 4, we get that∫ ∞

t=0

1−max
S∈S

{
f
(
S〈t〉
)}

dt ≥
∑
j≥1

xj(yj − yj+1)

where xj =
Rj
2s′j

, yj =
Rj
2

, and Rj = 1− f
(
G′j
)
. Letting g′j = (vj, τj), we have

∑
j≥1

xj(yj − yj+1) =
1

4

∑
j≥1

∫ τj

t′=0

1− f
(
G′j ⊕ 〈(vj, t′)〉

)
dt′ =

1

4
c (f,G′) .

which proves the theorem.

We now prove the theorems concerning the performance of the greedy schedule Ḡ, in
which the jth evaluation of the arg max in (2.4) is performed with additive error εj . To
ease notation, let Ḡ = 〈g1, g2, . . .〉, where gj = (vj, τj). Let sj =

f(Ḡj+1)−f(Ḡj)

τj
. To prove

Theorems 6 and 7, we will make use of the following fact, which can be proved in exactly
the same way as Fact 1.

Fact 4. For any schedule S, any positive integer j, and any t > 0, we have f(S〈t〉) ≤
f(Ḡj) + t · (sj + εj).

Theorem 6. Let L be a positive integer, and let T =
∑L

j=1 τj , where gj = (vj, τj). Then

f
(
Ḡ〈T 〉

)
>

(
1− 1

e

)
max
S∈S

{
f
(
S〈T 〉

)}
−

L∑
j=1

εjτj .

Proof. LetC∗ = maxS∈S
{
f
(
S〈T 〉

)}
, and for any positive integer j, let ∆j = C∗−f (Gj).

By Fact 4, C∗ ≤ f
(
Ḡj

)
+ T (sj + εj). Thus

∆j ≤ T (sj + εj) = T

(
∆j −∆j+1

τj
+ εj

)
.
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Rearranging this inequality gives ∆j+1 ≤ ∆j

(
1− τj

T

)
+ τjεj . Unrolling this inequality

(and using the fact that 1− τj
T
< 1 for all j), we get

∆L+1 ≤ ∆1

(
L∏
j=1

1− τj
T

)
+

L∑
j=1

τjεj .

Let E =
∑L

j=1 τjεj . Subject to the constraint
∑L

j=1 τj = T , the product series is maxi-
mized when τj = T

L
for all j. Thus we have

C∗ − f
(
ḠL+1

)
= ∆L+1 ≤ ∆1

(
1− 1

L

)L
+ E < ∆1

1

e
+ E ≤ C∗

1

e
+ E .

Thus f
(
ḠL+1

)
> (1− 1

e
)C∗ − E, as claimed.

Theorem 7. Let L be a positive integer, and let T =
∑L

j=1 τj , where gj = (vj, τj). For

any schedule S, define cT (f, S) ≡
∫ T
t=0

1− f
(
S〈t〉
)
dt. Then

cT
(
f, Ḡ

)
≤ 4

∫ ∞
t=0

1−max
S∈S

{
f
(
S〈t〉
)}

dt+
L∑
j=1

Ejτj .

where Ej =
∑

l<j εlτl.

Proof. Let Rj = 1 − f (Gj), let R′j = Rj − Ej . Assume for the moment that RL ≥ EL,
so that R′j is non-negative for j ≤ L. Let s′j = sj + εj . By construction,

R′j −R′j+1 = f
(
Ḡj+1

)
− f

(
Ḡj

)
+ εjτj = τjs

′
j . (A.2)

Let xj =
R′j
2s′j

; let yj =
R′j
2

; and let h(x) = 1−maxS
{
f
(
S〈x〉

)}
. By Fact 4,

max
S

{
f(S〈xj〉)

}
≤ f (Gj) + xjs

′
j = f (Gj) +

R′j
2

.

Thus h(xj) ≥ Rj −
R′j
2

=
Rj+Ej

2
≥ yj . The monotonicity of f implies that h(x) is non-

increasing and (together with the fact that Ej is non-decreasing as a function of j) implies
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that the sequence 〈y1, y2, . . .〉 is non-increasing. As illustrated in Figure 2.1, these facts
imply that

∫∞
x=0

h(x) dx ≥
∑L

j=1 xj (yj − yj+1). Thus we have∫ ∞
t=0

1−max
S∈S

{
f
(
S〈t〉
)}

dt =

∫ ∞
x=0

h(x) dx

≥
L∑
j=1

xj (yj − yj+1) (Figure 2.1)

=
1

4

L∑
j=1

R′j

(
R′j −R′j+1

)
s′j

=
1

4

L∑
j=1

R′jτj (equation (A.2))

=
1

4

(
L∑
j=1

Rjτj −
∑
j≥1

Ejτj

)

≥ 1

4
cT (f,G)− 1

4

L∑
j=1

Ejτj (monotonicity of f )

which proves the theorem, subject to the assumption that RL ≥ EL.

Now suppose RL < EL. Let K be the largest integer such that RK ≥ EK , and let
TK =

∑K
j=1 τj . By the argument just given,

cTK (f,G) ≤ 4

∫ ∞
t=0

1−max
S∈S

{
f
(
S〈t〉
)}

dt+
K∑
j=1

Ejτj .

Thus to prove the theorem, it suffices to show that cT (f,G) ≤ cTK (f,G)+
∑L

j=K+1Ejτj .
This holds because

cT (f,G)− cTK (f,G) =

∫ T

t=TK

1− f
(
Ḡ〈t〉

)
dt

≤ (T − TK)(1− f(Ḡ〈TK〉))

= (T − TK)RK+1

< (T − TK)EK+1

≤
L∑

j=K+1

Ejτj .
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Lemma 2. Any sequence 〈f1, f2, . . . , fn〉 of jobs satisfies Condition 2. That is, for any
sequence S1, S2, . . . , Sn of schedules and any schedule S,∑n

i=1 fi(Si ⊕ S)− fi(Si)
` (S)

≤ max
(v,τ)∈V×R>0

{∑n
i=1 fi(Si ⊕ 〈(v, τ)〉)− fi(Si)

τ

}
.

Proof. Let r denote the right hand side of the inequality. Let S = 〈a1, a2, . . . , aL〉, where
al = (vl, τl). Let

∆i,l = fi(Si ⊕ 〈a1, a2, . . . , al〉)− f(Si ⊕ 〈a1, a2, . . . , al−1〉) .

We have

n∑
i=1

fi(Si ⊕ S) =
n∑
i=1

(
fi(Si) +

L∑
l=1

∆i,l

)
(telescoping series)

≤
n∑
i=1

(
fi(Si) +

L∑
l=1

(fi(Si ⊕ 〈al〉)− f(Si))

)
(submodularity)

=
n∑
i=1

fi(Si) +
L∑
l=1

n∑
i=1

(fi(Si ⊕ 〈al〉)− f(Si))

≤
n∑
i=1

fi(Si) +
L∑
l=1

r · τl (definition of r)

=
n∑
i=1

fi(Si) + r · ` (S) .

Rearranging this inequality gives
Pn
i=1 fi(Si⊕S)−fi(Si)

`(S)
≤ r, as claimed.

Lemma 4. Algorithm OGunit with randomized weighted majority as the subroutine ex-
perts algorithm has E [R] = O

(√
Tn ln |A|

)
in the worst case.
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Proof. Let k = |A|. Let xt be the total payoff received by Et, and let gt = xt + rt be the
total payoff that could have been received by Et in hindsight (had it been forced to choose
a fixed expert each day). Because

∑T
t=1 xt ≤ n, we have

∑T
t=1 gt ≤ n+R. Using WMR,

E [rt] = O
(√

gt ln k
)
. Using WMR, the actual value of rt will be tightly concentrated

about its expectation, as can be shown using Azuma’s inequality. In particular, because
gt ≤ n, the probability that R > n is exponentially small. Assuming R ≤ n, we have∑T

t=1 gt ≤ 2n. Subject to this constraint,
∑T

t=1

√
gt is maximized when gt = 2n

T
for all t.

Thus in the worst case, E [R] = O
(√

Tn ln k
)

.

In order to prove Theorem 10, we first prove the following lemma. The lemma relates
the expected cost of the schedule Si (selected by OG on round i) to the expected cost
Si would incur if, hypothetically, each of the “meta-actions” selected by each experts
algorithm Et consumed unit time on every job (require that this assumption was made in
the analysis in the main text).

Lemma 20. Fix a sequence of jobs 〈f1, f2, . . . , fn〉 and an integer i (1 ≤ i ≤ n). Let Si be
the schedule produced by OG to use on job fi, and let Si,t−1 denote the partial schedule
that exists after the first t− 1 experts algorithms has selected actions. Then

E
[
c`(Si) (fi, Si)

]
≤ E

[
L∑
t=1

(1− fi(Si,t−1))

]
.

Proof. Fix some t. Let ait = (v, τ) be the action selected by Et on round i, and define

cit =

{ ∫ τ
t′=0

1− fi(Si,t−1 ⊕ 〈(v, t′)〉) dt′ if ait is appended to Si
0 otherwise.

By construction, c`(Si) (fi, Si) =
∑L

t=1 c
i
t. Because ait is appended to Si with probability

1
τ
, and because fi is monotone, we have

E
[
cit|Si,t−1

]
=

1

τ

∫ τ

t′=0

1− fi(Si,t−1 ⊕ 〈(v, t′)〉) dt′ ≤ 1− fi(Si,t−1) .

Taking the expectation of both sides yields E [cit] ≤ E [1− fi(Si,t−1)]. Then by linearity
of expectation,

E
[
c`(Si) (fi, Si)

]
= E

[
L∑
t=1

cit

]
≤ E

[
L∑
t=1

(1− fi(Si,t−1))

]
.
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Theorem 10. Algorithm OG, run with input L = T lnn, has E [Rcost] = O(T lnn · E [R]

+ T
√
n). In particular, E [Rcost] = O

(
(lnn)

3
2T
√
Tn ln |A|

)
if WMR is used as the

subroutine experts algorithm.

Proof. The arguments in the main text showed that OG can be viewed as a version of the
greedy schedule for the function f = 1

n

∑n
i=1 fi, in which the tth decision is made with

additive error εt, under the assumption that all “meta-actions” ãit require unit time on every
job. Thus by Theorem 7, we have

n∑
i=1

L∑
t=1

(1− fi(Si,t−1)) ≤ 4 ·min
S∈S

{
n∑
i=1

c (fi, S)

}
+ nL

L∑
t=1

εt . (A.3)

Also recall from the main text that E [εt] = E
[
rt
n

]
, where rt is the regret experienced by

Et, and that we define R =
∑L

t=1 rt. Thus, we have

E

[
n∑
i=1

c`(Si) (fi, Si)

]
≤ E

[
n∑
i=1

L∑
t=1

(1− fi(Si,t−1))

]
(Lemma 20)

≤ 4 ·min
S∈S

{
n∑
i=1

c (fi, S)

}
+ L · E [R] . (equation A.3)

If it was always the case that ` (Si) ≥ T , then we would have cT (fi, Si) ≤ c`(Si) (fi, Si),
and this inequality would imply E [Rcost] ≤ L ·E [R]. In order to bound E [Rcost], we now
address the possibility that ` (Si) < T . Letting pi = P [`(Si) < T ], we have

E
[
cT (Si, fi)

]
= (1− pi) · E

[
cT (Si, fi) |`(Si) ≥ T

]
+ pi · E

[
cT (Si, fi) |`(Si) < T

]
≤ E

[
c`(Si) (fi, Si)

]
+ pi · T .

Putting these inequalities together yields

E [Rcost] ≤ L · E [R] + T
n∑
i=1

pi . (A.4)

We now bound pi. As already mentioned, E [` (Si)] = L regardless of which actions
are selected by the various experts algorithms. If L � T , then ` (Si) will be sharply
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concentrated about its mean, as we can prove using standard concentration inequalities
(e.g., Theorem 5 of [18]). In particular, for any λ > 0, we have

P [` (Si) ≤ L− λ] <= exp

(
− λ2

2LT

)
.

Setting λ = L − T and simplifying yields pi ≤ exp
(
− L

2T
+ 1
)
. Setting L = T lnn

then yields pi ≤ e√
n

, so the right hand side of (A.4) is O (T
√
n). Thus E [Rcost] =

O (T lnn · E [R] + T
√
n), as claimed. Substituting the bound on E [R] stated in Lemma 4

then proves the claim about WMR.

Theorem 11. Algorithm OGp, run with WMR as the subroutine experts algorithm, has
E [Rcoverage] = O

(
(C ln |A|) 1

3 (Tn)
2
3

)
(when run with input L = T ) and has E [Rcost] =

O
(

(T lnn)
5
3 (C ln |A|) 1

3 (n)
2
3

)
(when run with input L = T lnn) in the priced feedback

model.

Proof. Let M be the number of exploration rounds (so E [M ] = γn). The maximum
payoff to any single expert cannot exceed M . Thus, by Lemma 5 and the regret bound of
WMR, we have E [rt|M ] = O

(
1
γ

√
M ln |A|

)
. Using the fact that E

[√
X
]
≤
√

E [X]

for any random variable X , this implies

E [rt] = E [E [rt|M ]] = O

(
1

γ

√
E [M ] ln |A|

)
= O

(√
n

γ
ln |A|

)
.

By Theorem 9, we have E [Rcoverage] ≤ E [R] +Cγn = O
(
L
√

n
γ

ln |A|
)

+Cγn. Setting

γ =

(
L
C

√
ln|A|
n

) 2
3

then yields E [Rcoverage] = O
(

(C ln |A|) 1
3 (Ln)

2
3

)
, as claimed.

Similarly, by Theorem 10, we have E [Rcost] ≤ L · E [R] + T
√
n + TCγn = L ·

O
(
L
√

n
γ

ln |A|+ Cγn
)

, so the same setting of γ yields E [Rcost] =O
(
L

5
3 (C ln |A|) 1

3n
2
3

)
.

Theorem 13. Algorithm OGo, run with WMR as the subroutine experts algorithm, has
E [Rcoverage] = O

(
T (|A| ln |A|) 1

3n
2
3

)
(when run with input L = T ) and has E [Rcost] =

O
(

(T lnn)2(|A| ln |A|) 1
3n

2
3

)
(when run with input L = T lnn) in the opaque feedback

model.
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Proof. We showed in the main text that E
[
x̂it,a
]

= γ
L|A|x

i
t,a + δi, where x̂it,a is the es-

timated payoff fed back by OGo and xit,a is the true payoff. Thus by Lemma 5, E [rt]

is bounded by |A|L
γ

times the worst-case regret of Et. Using the same argument we used

in the proof of Theorem 11, we get E [R] = O
(
L
√

n
γ′

ln |A|
)

, where γ′ = γ
|A|L . By

Theorem 9, we have E [Rcoverage] ≤ E [R] + γn = O
(
L
√

n
γ′

ln |A|
)

+ Cγ′n, where

C = L |A|. As in the proof of Theorem 9, setting γ′ =

(
L
C

√
ln|A|
n

) 2
3

then yields

E [Rcoverage] = O
(

(C ln |A|) 1
3 (Ln)

2
3

)
= O

(
T (|A| ln |A|) 1

3n
2
3

)
, and the same setting

of γ′ yields E [Rcost] = O
(
L

5
3 (C ln |A|) 1

3n
2
3

)
= O

(
(T lnn)2(|A| ln |A|) 1

3n
2
3

)
.

We now prove lower bounds on regret. As mentioned in the main text, our lower
bounds will hold for the online versions of MAX k-COVERAGE and MIN-SUM SET

COVER.

We consider the following online version of MAX k-COVERAGE. One is given a col-
lection C of sets, where each set in C is a subset of a universe E = {e1, e2, . . . , en}. One
cannot examine the sets (or even determine their cardinalities) directly. On round i of the
game, one must specify a subcollection C ⊂ C, with |C| = k. One then receives a re-
ward of 1 if element ei belongs to some set in the collection, and receives a reward of zero
otherwise. One then learns as feedback which sets ei belonged to.

This problem is a special case of the online version of BUDGETED MAXIMUM SUB-
MODULAR COVERAGE. To see this, let V = C be the set of activities, and think of the
action (v, τ) as including the set v in the collection assuming τ ≥ 1, and having no effect
otherwise. For any schedule S, let fi(S) = 1 if one of the sets added to the collection by
S contains ei, and let fi(S) = 0 otherwise. Then BUDGETED MAXIMUM SUBMODULAR

COVERAGE on the sequence of jobs 〈f1, f2, . . . , fn〉, with time limit T = k, is exactly the
problem just described.

The online version of MIN-SUM SET COVER is similar, except that instead of speci-
fying a subcollection of cardinality k, one specifies a sequence of k sets from C. One then
incurs a loss equal to the number of sets one must look through in the sequence in order
to find ei, or a loss of k if ei does not appear in the sequence at all. By the arguments just
given, this is equivalent to online MIN-SUM SUBMODULAR COVER on the sequence of
jobs 〈f1, f2, . . . , fn〉, where T = k is the time at which schedule costs are truncated.

To prove lower bounds on regret, we will require the following technical lemma. The
proof is a straightforward generalization of the proof of Lemma 3.2.1 of [16], which con-
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sidered the special case p = 1
2
.

Lemma 21 ([16]). Let X1, X2, . . . , Xs be s independent random variables, where Xi

equals the number of heads in n flips of a coin with bias p. Let µ = np and let σ =√
np(1− p). Then

E [max {X1, X2, . . . , Xs}] = µ+ Ω
(
σ
√

ln s
)

.

Theorem 14. Any algorithm for online MAX k-COVERAGE has worst-case expected 1-

regret Ω

(√
Tn ln |V|

T

)
, where V is the collection of sets and T = k is the number of sets

selected by the online algorithm on each round.

Proof. Let V be a collection of sets. On each round of the online game, whether or not a
given set covers the element will be determined by flipping a coin of bias p = 1

2T
. Thus,

regardless of which T sets are selected by the online algorithm, the probability that it
covers the element is q = 1−

(
1− 1

2T

)T ∈ [1
2
, 1√

e
], and the expected number of elements

the online algorithm covers is nq.

We now consider the number of elements that could have been covered in hindsight.

Let R =
√

n
T

ln |V|
T

. Partition V into T bins, each of size s = |V|
T

. Let S∗i denote the set in
the ith bin which covers the largest number of elements, and letC∗ = {S∗1 , S∗2 , . . . , S∗T}. To
prove the theorem, it suffices to show that C∗ covers nq+Ω (TR) elements in expectation.

Let a collection C = {S1, S2, . . . , ST} consist of a random set drawn from each bin.
In expectation C covers nq elements. Let xi := |S∗i | − |Si| and note that xi ≥ 0 and
E [xi] = Ω (R) by Lemma 21. Randomly mark xi elements of S∗i and let Mi and Ui
denote the marked and unmarked elements of S∗i , respectively. Note that the collection
{Ui : 1 ≤ i ≤ T} covers nq elements in expectation. Let X denote the (random) number
of additional elements covered by the collection {Mi : 1 ≤ i ≤ T} (i.e., X = | ∪i Mi −
∪iUi|). We claim that E [X] = Ω (TR). To prove this, define ξ to be the event “for all
S ∈ C, |S| ≤ n/T ” and let Y be the number of marked elements covered exactly once in
C∗. We will show that E [Y | ξ] P [ξ] = Ω (TR). Since E [Y | ξ] · P [ξ] ≤ E [Y ] ≤ E [X],
this is sufficient to complete the proof.

Fix i and any element e ∈Mi. Then P [e uniquely covered | ξ] =
∏

j 6=i
(
1− |S∗j |/n

)
≥

(1 − 1/T )T−1 ≥ 1/e. This implies E [Y | ξ] ≥ 1
e
E [
∑

i |Mi|] = 1
e
Ω (TR), since, as men-

tioned, E [|Mi|] = Ω (R) for all i. Finally, the Chernoff bound easily yields P [ξ] ≥
(1− |V| · exp {−n/8T}) = 1− o(1), and so E [Y | ξ] · P [ξ] = Ω (TR) as claimed.
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The lower bound in Theorem 14 is optimal up to constant factors. To see this, observe
that running randomized weighted majority with one expert for each of the

(|V|
T

)
possi-

ble collections of T sets yields worst-case regret O
(√

n ln
(|V|
T

))
= O

(√
nT ln |V|

T

)
for online MAX k-COVERAGE, using the fact that

(|V|
T

)
≤
(
|V|e
T

)T
. Similarly, using a

separate expert for each of the O
(
|V|T

)
possible permutations of T sets yields regret

O
(
T
√
Tn ln |V|

)
for online MIN-SUM SET COVER, which shows that the lower bound

in Theorem 15 is optimal up to logarithmic factors.

Theorem 15. Any algorithm for online MIN-SUM SET COVER has worst-case expected

1-regret Ω

(
T
√
Tn ln |V|

T

)
, where V is a collection of sets and T is the number of sets

selected by the online algorithm on each round.

Proof. We use the same construction as in the proof of Theorem 14. Define the coverage
time of a schedule Si = 〈Si1, Si2, . . . , SiT 〉 to be the smallest t such that Sit covers the ith

element, or T if no such t exists. As in the proof of Theorem 14, the probability that the
online algorithm covers any particular element is q. Given that the online algorithm covers
an element, the expected coverage time is zT for some z < 1

2
. Thus, any online algorithm

has expected coverage time t̄ = qzT + (1− q)T for each element.

Now consider the schedule S∗ = 〈S∗1 , S∗2 , . . . , S∗T 〉, where S∗i = Ui∪Mi was defined in
the proof of Theorem 14, and let the sets be indexed in random order. The schedule U =
〈U1, U2, . . . , UT 〉 is statistically equivalent to a random schedule, and thus has expected
coverage time t̄ per element. Using S∗ in place of U causes X additional elements to be

covered, where E [X] = Ω

(√
Tn ln |V|

T

)
. Because the sets in S∗ are ordered randomly,

the expected coverage time for each of the X additional elements is at most T
2

. Thus,
the total expected coverage time of S∗ is smaller than that of U by at least T

2
E [X] =

Ω

(
T
√
Tn ln |V|

T

)
.

A.2 Combining Multiple Heuristics Online

Lemma 9. For any schedule S and any α > 1, there exists an α-regular schedule Sα such
that, for any instance x, E [T (Sα, x)] ≤ α2 · E [T (S, x)]. In the special case where all
heuristics are executed in the suspend-and-resume model, E [T (Sα, x)] ≤ α ·E [T (S, x)].
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Proof. For any profile P = 〈τ1, τ2, . . . , τL〉, let dP e be the α-regular profile obtained as
follows: we first round each τi up to the nearest power of α. Then, we round the number
of runs of each length up to the nearest floor of a power of α (i.e., the nearest member of
{bαic : i ∈ Z}). For example if α = 2 and P = 〈4, 3, 3, 2〉, then dP e = 〈4, 4, 4, 4, 2〉.
Note that the size of dP e is at most α2 times the size of P (recall that the size of a profile
P = 〈τ1, τ2, . . . , τL〉 equals

∑L
i=1 τi).

For any state Y = 〈P1, P2, . . . , Pk〉, define

dY e = 〈dP1e , dP2e , . . . , dPke〉

Again, note that the size of dY e is at most α2 times the size of Y .

Fix some schedule S, and consider the set of states
{
Y(S〈t〉) : t ≥ 0

}
. Let 〈Y1, Y2, . . .〉

be a list of the elements of this set, arranged in increasing order of size. As a simple
example, if |H| = 2, S = 〈(h1, 3), (h2, 1)〉, and α = 2, then the set contains five elements:
Y1 = 〈〈〉, 〈〉〉, Y2 = 〈〈1〉, 〈〉〉, Y3 = 〈〈2〉, 〈〉〉, Y4 = 〈〈4〉, 〈〉〉, and Y5 = 〈〈4〉, 〈1〉〉.

There is a unique α-regular schedule that passes through the sequence of profiles
〈Y1, Y2, . . .〉. Call this schedule Sα. We claim that for any time t,

P [T (S, x) ≤ t] ≤ P
[
T (Sα, x) ≤ α2t

]
. (A.5)

This follows from the fact that Sα passes through the profile
⌈
Y(S〈t〉)

⌉
, which has size at

most α2t. Thus by time α2t, Sα has done all the work that S has done at time t and more.
The fact that (A.5) holds for all t implies E [T (Sα, x)] ≤ α2 · E [T (S, x)].

In the special case when all heuristics are executed in the suspend-and-resume model,
the argument is exactly the same, except that now each profile P of interest contains only
a single number. This means that the size of dP e is at most α times the size of P , and thus
for any state Y of interest, the size of dY e is at most α times the size of Y .

Theorem 21. Fix an approximation ratio α > 1, a budget B, and an error tolerance
δ > 0. Then an α2 approximation to schedule

S∗ = arg min
S∈Sδ

∑
x∈X

E [min {Bk, T (S, x)}]

may be found by computing a shortest path in a state-space graph Grs
α,B = 〈V,E, Se〉,

where |V | = O
(
BO(k logα logαB)

)
and |E| = O (logαB |V |). The overall running time is

O
(
n(logαB)BO(k logα logαB)

)
, where n = |X |.
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Proof. The graph Grs
α,B = 〈V,E, Se〉 may be defined inductively as follows. The vertex

set contains the empty profile Y ∅. Let Y = 〈P1, P2, . . . , Pk〉 be a state in the vertex set.
Let Pj be a profile with size < B (assuming one exists). Let r be a power of α between 1
and B, and let nr be the number of runs of length r in Pj . Let P ′ be the profile obtained by
increasing the number of runs of length r to n′r, where n′r is the smallest integer > nr that
is the floor of a power of α (i.e., n′r = bαic for some integer i). As an example, if α = 2,
Pj = 〈2, 2, 1, 1〉, and r = 2, then P ′ = 〈2, 2, 2, 2, 1, 1〉. The vertex set contains the state
Y ′ = 〈P1, P2, . . . , Pj−1, P

′, Pj+1, . . . Pk〉. The edge set contains the edge e = 〈Y, Y ′〉,
where Se(e) contains n′r − nr copies of the action (hj, r). Finally, if no profile of size
< B, exists, then there is an edge from Y to v∗, labeled with the empty schedule.

By construction, any α-regular schedule that runs each heuristic for time at most B
corresponds to a path from Y ∅ to v∗ in the graph. To make the weight of this path equal
the value of the objective function, we must modify the weights in two ways. First, any
edge from Y to v∗, where performing the runs in Y does not yield a solution to each
instance with probability at least 1 − δ, is assigned infinite weight. Thus, only paths
corresponding to schedules in Sδ have finite weight. Second, the schedules Se(e) must
be truncated appropriately so that every schedule in SGrsα,B has length Bk. With these
modifications, computing a shortest path from Y ∅ to v∗ yields the α-regular schedule in
Sδ that minimizes the value of the objective function. By Lemma 9, this yields an α2

approximation to S∗ (the fact that running time is truncated at Bk only helps, as far as the
proof of that lemma is concerned).

We now bound |V | and |E|. Assume for simplicity that B is a power of α. First, note
that the number of distinct run lengths that can appear in an α-regular profile equals the
number of powers of α between 1 and B, which is 1 + logαB. In an α-regular profile,
the number of runs of each particular length is either 0 or a power of α between 1 and B.
Thus the number of α-regular profiles of size at most B is at most (1 + logαB)2+logαB =
BO(logα logαB). Because each vertex is a k-tuple of α-regular profiles of size at most B, it
follows that, |V | ≤ BO(k logα logαB). Lastly, because each edge represents increasing the
number of runs of length r, where r is a power of α between 1 and B, each vertex has at
most 1 + logαB outgoing edges, so |E| ≤ (1 + logαB) |V |.

To complete the proof, it suffices to show that edge weights can be computed in time
O (n) per edge. Consider the special case n = 1, and let x be the single problem instance
in X . Consider an edge e = 〈Y, Y ′〉, and let S = Se(e). The weight assigned to edge e
can be written as

w(e, x) = Q(Y ) ·
∫ `(S)

t=0

1− px
(
S〈t〉
)
dt

where Q(Y ) is the probability that performing the runs in state Y does not yield a solution
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to x (this definition of w(e, x) is consistent with equation (3.4)). Suppose the value of
Q(Y ) is stored at the vertex Y . Also, suppose that the value of

∫ `(S)

t=0
1− px

(
S〈t〉
)
dt has

been precomputed in advance, for all choices of S = Se(e) (the number of choices is at
most k(1 + logαB)2, so the time required for the precomputation step does not contribute
to the overall time complexity). Then the time required to compute w(e, x) isO (1). Given
the value of Q(Y ), the value of Q(Y ′) = Q(Y )(1− px(S)) can also be computed in O (1)
time and stored at vertex Y ′ for future use, assuming that we precompute px(S) for all
possible choices of S (again, this does not affect overall time complexity). Finally, in the
general case n > 1, the weights obtained in this way can simply be summed across all n
instances.

Theorem 18. If H contains a single (randomized) heuristic and X = {x} contains a
single instance, then

E [T (G, x)] = min
S∈S

E [T (S, x)] .

Proof. Luby et al. [61] proved that, when running a single randomized heuristic on a single
problem instance, the optimal schedule is a uniform restart schedule of the form

Sτ = 〈(h, τ), (h, τ), (h, τ), . . .〉 .

Let p(τ) denote the probability that performing the action (h, τ) yields a solution to x.
E [T (Sτ , x)] satisfies the recurrence E [T (Sτ , x)] =

∫ τ
t′=0

1− p(t′) dt′ + (1− p(τ))Tτ , or
rearranging,

E [T (Sτ , x)] =
1

p(τ)

(∫ τ

t′=0

1− p(t′) dt′
)

.

To complete the proof, we show that G′ = Sτ∗ , where τ ∗ = arg minτ>0 E [T (Sτ , x)]
(we assume for the moment that τ ∗ is unique). Inductively, suppose G′j is of this form,
and consider the quantity that is maximized when choosing g′j . Let f(S) = px(S). For
any action (h, τ), f

(
G′j ⊕ 〈(h, τ)〉

)
−f

(
G′j
)

is the probability that action (h, τ) solves the
problem after every action inG′j has failed, which can also be written as (1−f(G′j)) ·p(τ).
Thus g′j = (h, τ) is selected so as to maximize the quantity

f
(
G′j ⊕ 〈(h, τ)〉

)
− f

(
G′j
)∫ τ

t′=0
1− f

(
G′j ⊕ 〈(h, t′)〉

)
dt′

=
(1− f(G′j)) · p(τ)

(1− f(G′j)) ·
∫ τ
t′=0

1− p(t′) dt′
=

1

E [T (Sτ , x)]
.
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By definition, this quantity is maximized by setting τ = τ ∗. Thus, we have G′ = Sτ∗ , so
G′ is optimal as claimed.

Finally, note that even if τ ∗ is not unique, G′ will be a uniform schedule as long as ties
are broken in a consistent manner (e.g., in favor of the smallest value of τ ), and thus G′

will be optimal by the arguments just given.

Lemma 12. For any profile P = 〈τ1, τ2, . . . , τK〉 of size < B, define Li(P ) = {i′ : 1 ≤
i′ ≤ B, B

i′
> τi}. Then the quantity

q̄h(P ) =
K∏
i=1

|{i′ ∈ Li(P ) : Ti′ > τi}| − i+ 1

|Li(P )| − i+ 1

is an unbiased estimate of qh(P ) (i.e., E [q̄h(P )] = qh(P )).

Proof. Given the trace T = 〈T1, T2, . . . , TB〉, suppose we construct a new trace T ′ by
randomly permuting the elements of T using the following procedure (the procedure is
well-defined assuming |Li(P )| ≥ i for each i, which follows from the fact that B

i
> τi if

P has size < B):

1. For i from 1 to K:

• Choose li uniformly at random from Li(P ) \ {l1, l2, . . . , li−1}.

2. Set T ′ ← {Tl1 , Tl2 , . . . TlK}.

Because the indices are arbitrary, P [T ′ encloses P ] = P [T encloses P ] = qh(P ).

On the other hand, it is not difficult to show that the product series q̄h(P ) equals the
conditional probability P [T ′ encloses P | T ] (by construction, the ith factor in the product
series is the probability that Tli > τi, conditioned on the fact that Tlg > τg for all g < i).

Thus we have

E [q̄h(P )] = E [P [T ′ encloses P | T ]]

= P [T ′ encloses P ]

= qh(P ) .
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A.3 The Max k-Armed Bandit Problem

In the proofs that follow, we make use of the notation introduced in §5.3.2. In particular,
we use G to denote a GEV distribution satisfying the conditions described in §5.3.2, and
we use mj to denote the expected maximum of j independent samples from G.

Theorem 31. Let I = 〈G1, G2, . . . , Gk〉 be an instance of the max k-armed bandit prob-
lem, where Gi = GEV(µi,σi,ξi), and ξi ≤ 0 for all i. Then strategy SGEV , run on instance

I with parameters ε = 3

√
k
n

and δ = 1
kn2 , has regret O

(
ln(nk) ln(n)2 3

√
k
n

)
.

Proof. Building on the proof sketch given in the main text, it remains only to show that
for any arm i,

mi
n −mi

n−t(k−1) = O

(
tk

n

)
To ease notation, let k′ = k − 1; and let µ = µi, σ = σi, and ξ = ξi be the parameters of
arm i. Suppose ξ = 0. Then by Proposition 3, mi

n −mi
n−tk′ = σ (ln(n)− ln(n− tk′)).

Thus for n sufficiently large,

mi
n −mi

n−tk′ = σ (ln(n)− ln(n− tk′))

= −σ ln

(
n− tk′

n

)
= −σ ln

(
1− tk′

n

)
< 2σ

tk′

n

= O

(
tk′

n

)
where on the fourth line we have used the fact that for n sufficiently large, tk

′

n
< 1

2
, and for

0 < x < 1
2
, ln(1− x) > −2x.

Now suppose ξ < 0. By Proposition 3, mi
n −mi

n−tk′ = σ
ξ
Γ(1− ξ)(nξ − (n− tk′)ξ) =

O((n−tk′)ξ−nξ) where we have used the fact that σ
ξ
Γ(1−ξ) is negative and has bounded

absolute value. Expanding (n− tk′)ξ in powers of t about t = 0 gives

(n− tk′)ξ = nξ − ξnξ−1tk′ +O
(
(tk′)2nξ−2

)
.

Because ξ ≤ 0 and |ξ| is bounded, it follows that (n− tk′)ξ − nξ is O( tk
′

n
).
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In order to prove Lemma 15, we first prove the following lemma.

Lemma 22. For any fixed positive integer j, O
(
j
ε2

)
draws from G suffice to obtain an

estimate m̄j of mj such that

P [|m̄j −mj| < ε] ≥ 3

4
.

Proof. First consider the special case j = 1. Let X denote the sum of t draws from G, for
some to-be-specified positive integer t. Then E [X] = m1t and V ar[X] = σ̃2t, where σ̃ is
the (unknown) standard deviation of G (σ̃ is proportional to, but not the same as, the scale
parameter σ of the GEV distribution G). We take m̄1 = X

t
as our estimate of m1. Then

P [|m̄1 −m1| ≥ ε] = P [|tm̄1 − tm1| ≥ tε]

= P
[
|X − E [X]| ≥

√
tε

σ̃

√
V ar[X]

]
≤ σ̃2

tε2

where the last inequality is Chebyshev’s. Thus to guarantee P [|m̄1 −m1| ≥ ε] ≤ 1
4

we
must set t = 4σ̃2

ε2
= O

(
1
ε2

)
(note that due to the assumptions in §5.3.2, σ̃ is O(1)).

In the general case j > 1, we let X be the sum of t block maxima (each the maximum
of j independent draws from G). Because the standard deviation of Mj and j itself are
both O(1), the lemma follows by exactly the same argument.

To boost the probability that |m̄j −mj| < ε from 3
4

to 1 − δ, we use the “median of
means” method.

Lemma 15. Let j be a positive integer and let ε > 0 and δ ∈ (0, 1) be real numbers. Then
O
(
ln
(

1
δ

)
j
ε2

)
draws from G suffice to obtain an estimate m̄j of mj such that

P [|m̄j −mj| < ε] ≥ 1− δ .

Proof. We invoke Lemma 22 r times (for r to be determined), yielding a set

E =
{
m̄

(1)
j , m̄

(2)
j , . . . , m̄

(r)
j

}
of estimates ofmj . Let m̄j be the median element ofE. LetA = {m̄ ∈ E : |m̄−mj| < ε}
be the set of “accurate” estimates of mj; and let A = |A|. Then |m̄j −mj| ≥ ε implies
A ≤ r

2
, while E [A] ≥ 3

4
r. Using Chernoff’s inequality, we have

P [|m̄j −mj| ≥ ε] ≤ P
[
A ≤ r

2

]
≤ exp

(
− r
C

)
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for constant C > 0. Thus r = O
(
ln(1

δ
)
)

repetitions suffice to ensure P [|m̄j −mj| > ε] ≤
δ.

In order to prove Lemma 16, we must first prove the following lemma. Again, we use
mj to denote the expected maximum of j samples from a GEV distribution G satisfying
the assumptions described in §5.3.2.

Lemma 23.
m4 −m2 ≥ 1

4
σ and

m2 −m1 ≥ 1
8
σ .

Proof. If ξ = 0, then by Proposition 3, m4 −m2 = m2 −m1 = ln(2)σ and we are done.
Otherwise,

m4 −m2 = σ(2ξ − 1)ξ−1Γ(1− ξ) and
m2 −m1 = σ(4ξ − 2ξ)ξ−1Γ(1− ξ) .

It thus suffices to prove that

min
ξ< 1

2

{
2ξ − 1

ξ
Γ(1− ξ)

}
≥ 1

4

and

min
ξ< 1

2

{
4ξ − 2ξ

ξ
Γ(1− ξ)

}
≥ 1

8
.

To do so, we first state without proof the following properties of the Γ function:

Γ(z) ≥ bzc! ∀z ≥ 2
Γ(z) ≥ 1

2
∀z > 0

Making the change of variable y = −ξ, it suffices to show

min
y>− 1

2

{
1− 2−y

y
Γ(1 + y)

}
≥ 1

4
, and (A.6)

min
y>− 1

2

{
2−y(1− 2−y)

y
Γ(1 + y)

}
≥ 1

8
. (A.7)

(A.6) holds because for −1
2
< y ≤ 1,

1− 2−y

y
Γ(1 + y) ≥ 1

2
Γ(1 + y) ≥ 1

4
,
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while for y > 1,
1− 2−y

y
Γ(1 + y) ≥ by + 1c!

2y
≥ 1

2
.

Similarly, (A.7) holds because for −1
2
< y ≤ 1,

2−y(1− 2−y)

y
Γ(1 + y) ≥ 1

8
,

while for y > 1,
2−y(1− 2−y)

y
Γ(1 + y) ≥ by + 1c!

2y(2y)
≥ 1

8
.

We are now ready to prove Lemma 16.

Lemma 16. For real numbers ε > 0 and δ ∈ (0, 1), O
(
ln(1

δ
) 1
ε2

)
draws from G suffice to

obtain an estimate ξ̄ of ξ such that

P
[
|ξ̄ − ξ| < ε

]
≥ 1− δ .

Proof. In the proof sketch in the main text, we showed that.

ξ = log2

(
m4 −m2

m2 −m1

)
. (A.8)

Let m̄1, m̄2, and m̄4 be estimates of m1, m2, and m4, respectively, and let ξ̄ be the
estimate of ξ obtained by plugging m̄1, m̄2, and m̄4 into this equation. Define ∆m =
maxj∈{1,2,4} |m̄j −mj| and define ∆ξ = |ξ̄ − ξ|. Building on the proof sketch in the main
text, it remains only to show that ∆ξ = O (∆m).

In the proof of Theorem 31 we showed that | ln(x + β) − ln(x)| ≤ 2β
x

for β ≤ x
2
.

Letting N = m4 − m2 and D = m2 − m1, and noting that ξ = log2(N) − log2(D) =
1

ln 2
(ln(N)− ln(D)), it follows that

∆ξ ≤
1

ln(2)

(
2(2∆m)

N
+

2(2∆m)

D

)
for ∆m < 1

2
min(N,D). Thus by Lemma 23 and the assumption that σ ≥ σ`, ∆ξ is

O(∆m), as claimed.
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Lemma 18. Assume G has shape parameter ξ ≤ −ξ∗. Let n be a positive integer and let
ε > 0 and δ ∈ (0, 1) be real numbers. Then O

(
ln(1

δ
) 1
ε2

)
draws from G suffice to obtain an

estimate m̄n of mn such that

P [|m̄n −mn| < ε] ≥ 1− δ .

Proof. In the proof sketch in the main text, we showed that

mj = α1 + α2α
log2(j)
3

where
α1 = (m1m4 −m2

2)(m1 − 2m2 +m4)−1

α2 = (−2m1m2 +m2
1 +m2

2)(m1 − 2m2 +m4)−1

α3 = (m4 −m2)(m2 −m1)−1 .

Let m̄1, m̄2, and m̄4 be estimates of m1, m2, and m4, respectively. Plugging m̄1, m̄2,
and m̄4 into the above equations yields estimates, say ᾱ1, ᾱ2, and ᾱ3, of α1, α2, and α3,
respectively. Define ∆m = maxj∈{1,2,4} |m̄j −mj| and ∆α = maxj∈{1,2,3} |ᾱi − αi|. To
complete the proof, it remains to show that

|m̄n −mn| = O(∆m) .

The argument consists of two parts: in claims 1 through 3 we show that ∆α is O(∆m),
then in Claim 4 we show that |m̄n −mn| is O(∆α).

Claim 1. Each of the numerators in the expressions for α1, α2, and α3 has absolute value
bounded from above, while each of the denominators has absolute value bounded from
below. (The bounds are independent of the unknown parameters of G.)

Proof of claim 1. The numerators will have bounded absolute value as long as m1, m2,
and m3 are bounded. Upper bounds on m1, m2, and m3 follow from the restrictions on the
parameters µ, σ, and ξ. As for the denominators, by Lemma 23 we have

|m1 − 2m2 +m4| = |(m2 −m1)(α3 − 1)|
≥ 1

8
σ`|2−ξ

∗ − 1| .

Claim 2. Let N and D be fixed real numbers, and let βN and βD be real numbers with
|βD| < |D|

2
. Then |N+βN

D+βD
− N

D
| is O(|βN |+ |βD|).
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Proof of claim 2. First, using the Taylor series expansion of N
D+βD

,∣∣∣∣ N

D + βD
− N

D

∣∣∣∣ =

∣∣∣∣∣NβDD2

∞∑
i=0

(−1)i+1

(
βD
D

)i∣∣∣∣∣
≤
∣∣∣∣ NβD
D2(1− βDD−1)

∣∣∣∣
= O (|βD|) .

Then ∣∣∣∣N + βN
D + βD

− N

D

∣∣∣∣ ≤ ∣∣∣∣ N

D + βD
− N

D

∣∣∣∣+

∣∣∣∣ βN
D + βD

∣∣∣∣
= O (|βN |+ |βD|) .

Claim 3. ∆α is O(∆m).

Proof of claim 3. We show that |ᾱ1−α1| isO(∆m). Similar arguments show that |ᾱ2−α2|
and |ᾱ4 − α4| are O(∆m), which proves the claim. To see that |ᾱ1 − α1| is O(∆m), let
N = m1m4 −m2

2, and let D = m1 − 2m2 +m4, so that α1 = N
D

. Define N̄ and D̄ in the
natural way so that ᾱ1 = N̄

D̄
. Because m1,m2, and m3 are all O(1) (by Claim 1), it follows

that both |N̄ − N | and |D̄ −D| are O(∆m). That |ᾱ1 − α1| is O(∆m) follows by Claim
2.

Claim 4. |m̄n −mn| is O (∆α).

Proof of claim 4. Because ξ` ≤ ξ ≤ −ξ∗ it must be that 0 < 2ξ` < α3 < 2−ξ
∗
< 1. So for

∆α sufficiently small, 0 < ᾱ3 < 1.

||m̄n −mn| =
∣∣∣(ᾱ1 + ᾱ2ᾱ

log2(n)
3

)
−
(
α1 + α2α

log2(n)
3

)∣∣∣
≤ |ᾱ1 − α1|+

∣∣∣ᾱ2ᾱ
log2(n)
3 − ᾱ2α

log2(n)
3

∣∣∣
+
∣∣∣ᾱ2α

log2(n)
3 − α2α

log2(n)
3

∣∣∣
≤ |ᾱ1 − α1|+ |ᾱ2| |ᾱ3 − α3|+ |ᾱ2 − α2|
= O (∆α)

where on the third line we have used the fact that both α3 and ᾱ3 are between 0 and 1, and
in the last line we have used the fact that |ᾱ2| is O(1).
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Lemma 19. Assume G has shape parameter ξ ≥ ξ∗. Let n be a positive integer and let
ε > 0 and δ ∈ (0, 1) be real numbers. Then O

(
ln(1

δ
) ln(n)2

ε2

)
draws from G suffice to

obtain an estimate m̄n of mn such that

P
[

1

1 + ε
<
m̄n − α1

mn − α1

< (1 + ε)

]
≥ 1− δ

where α1 = µ− σ
ξ
.

Proof. We use the same estimation procedure as in the proof of Lemma 18. Let α1, α2,
α3, ∆α, and ∆m be defined as they were in that proof.

The inequality 1
1+ε

< m̄n−α1

mn−α1
< 1 + ε is the same as | ln( m̄n−α1

mn−α1
)| < ln(1 + ε). For

ε < 1
2
, ln(1 + ε) ≥ 7

8
ε, so it suffices to guarantee that

| ln(m̄n − α1)− ln(mn − α1)| < 7

8
ε .

Claim 1. | ln(m̄n − α1)− ln(mn − α1)| is O(ln(n)∆α).

Proof of claim 1. Because | ln(m̄n−α1)− ln(m̄n− ᾱ1)| is O(∆α), it suffices to show that
| ln(m̄n − ᾱ1)− ln(mn − α1)| is O(ln(n)∆α). This is true because

ln(m̄n − ᾱ1) = ln
(
ᾱ2ᾱ

log2(n)
3

)
= log2(n) ln(ᾱ3) + ln(ᾱ2)

= log2(n) ln(α3) + ln(α2)±O (ln(n)∆α)

= ln
(
α2α

log2(n)
3

)
±O (ln(n)∆α)

= ln(mn − α1)±O (ln(n)∆α) .

Setting ∆α < Ω (ln(n)−1ε) then guarantees | ln(m̄n) − ln(mn)| < 7
8
ε. By Claim

3 of the proof of Lemma 18 (which did not depend on the assumption ξ < 0), ∆α is
O (∆m), so we require P [∆m < Ω (ln(n)−1ε)] ≥ 1 − δ. Define ∆j = |m̄j −mj|, so that
∆m = maxj∈{1,2,4}∆j . It suffices that P [∆j < Ω (ln(n)−1ε)] ≥ 1 − δ

3
for j ∈ {1, 2, 4}.

By Lemma 15, ensuring this requires O
(

ln(1
δ
) ln(n)2

ε2

)
draws from G.
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Lastly, the following theorem complements Theorem 31 by describing the behavior of
SGEV when some arms have shape parameter ξ > 0.

Theorem 33. Let I = 〈G1, G2, . . . , Gk〉 be an instance of the max k-armed bandit prob-
lem, where Gi = GEV(µi,σi,ξi), where ξi > 0 for some i. Let S denote the strategy SGEV ,

run with parameters ε = 3

√
k
n

and δ = 1
kn2 . Then

E [M(I, S, n)]− α1

m∗n − α1

= 1−O

(
ln(nk) ln(n)2 3

√
k

n

)

where m∗n = max1≤i≤km
i
n, and α1 = max1≤i≤k αi, where αi = µi − σi

ξi
.

Proof. For the moment, let us assume that all arms have shape parameter ξi > 0. Let A
be the event (which occurs with probability at least 1 − kδ) that all estimates obtained in
step 1 (a) satisfy the inequality in Theorem 32.

To ease notation, let ∆ = ln(nk) ln(n)2 3

√
k
n

, and let m̂j = mî
j denote the expected

maximum of j draws from the arm î selected for exploitation.

Claim 1. To prove the theorem, it suffices to show that A implies m∗n−α1

m̂n−tk−α1
= 1 +O(∆).

Proof of claim 1. Because M(I, S, n) ≥ m̂n−tk and the event A occurs with probability
at least 1− kδ, it suffices to show that A implies

(1− δk)m̂n−tk − α1

m∗n − α1

= 1−O(∆) .

Because δk(m̂n−tk)

m∗n−α1
is O

(
1
n2

)
= o(∆), it suffices to show that A implies

m̂n−tk − α1

m∗n − α1

= 1−O(∆) .

This can be rewritten as m∗n−α1 = (m̂n−tk−α1) 1
1−O(∆)

= (m̂n−tk−α1)(1 +O(∆)) (we
can replace 1

1−O(∆)
with 1 +O(∆) because for r < 1

2
, 1

1−r = 1 + r
1−r < 1 + 2r).

Claim 2. m̂n−α̂1

m̂n−tk−α̂1
= 1 +O(∆).
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Proof of claim 2. Using Proposition 3,

ln

(
m̂n − α̂1

m̂n−tk − α̂1

)
= ln

(
nξ

(n− t)ξ

)
= ξ (ln(n)− ln(n− tk))

= O(
tk

n
)

= O(∆) .

The claim follows from the fact that exp(β) < 1 + 3
2
β for β < 1

2
, so that exp(O(∆)) =

1 +O(∆).

Claim 3. A implies that for all i,

m̄i
n − α1

mi
n − α1

< 1 + ε .

Proof of claim 3. By definition, α1 = αi1−β for some β ≥ 0. The claim follows from the
fact that for positive N and D and β ≥ 0, N

D
< 1 + ε implies N+β

D+β
< 1 + ε.

Claim 4. A implies m∗n−α1

m̂n−tk−α1
= 1 +O(∆).

Proof of claim 4.

m∗n − α1

mî
n−tk − α1

=
m∗n − α1

m̄∗n − α1

· m̄
∗
n − α1

m̄î
n − α1

· m̄
î
n − α1

mî
n − α1

· mî
n − α1

mî
n−tk − α1

≤ (1 + ε) · 1 · (1 + ε) · (1 +O(∆))

= 1 +O(∆)

where in the second step we have used claims 2 and 3.

Putting claims 1 and 4 together completes the proof. To remove the assumption that
all arms have ξi > 0, we need to show that A implies that for n sufficiently large, the
arms î and i∗ (the only arms that play a role in the proof) will have shape parameters > 0.
This follows from the fact that if ξi ≤ 0, mi

n is O(ln(n)), while if ξi > ξ∗ > 0, mi
n is

Ω(nξi).
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