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Abstract

The logic of equality with uninterpreted functions (EUF) provides a means of abstracting the ma-
nipulation of data by a processor when verifying the correctness of its control logic. By reducing
formulas in this logic to propositional formulas, we can apply Boolean methods such as Ordered
Binary Decision Diagrams (BDDs) and Boolean satisfiability checkers to perform the verification.
We can exploit characteristics of the formulas describing the verification conditions to greatly
simplify the propositional formulas generated. We identify a class of terms we call “p-terms” for
which equality comparisons can only be used in monotonically positive formulas. By applying
suitable abstractions to the hardware model, we can express the functionality of data values and
instruction addresses flowing through an instruction pipeline with p-terms. A decision procedure
can exploit the restricted uses of p-terms by considering only “maximally diverse” interpretations
of the associated function symbols, where every function application yields a different value except
when constrained by functional consistency.
We present two methods to translate formulas in EUF into propositional logic. The first interprets
the formula over a domain of fixed-length bit vectors and uses vectors of propositional variables
to encode domain variables. The second generates formulas encoding the conditions under which
pairs of terms have equal valuations, introducing propositional variables to encode the equality
relations between pairs of terms. Both of these approaches can exploit maximal diversity to greatly
reduce the number of propositional variables that need to be introduced and to reduce the overall
formula sizes.
We present experimental results demonstrating the efficiency of this approach when verifying
pipelined processors using the method proposed by Burch and Dill. Exploiting positive equal-
ity allows us to overcome the exponential blow-up experienced previously [VB98] when verifying
microprocessors with load, store, and branch instructions.





1 Introduction

For automatically reasoning about pipelined processors, Burch and Dill demonstrated the value
of using propositional logic, extended with uninterpreted functions, uninterpreted predicates, and
the testing of equality [BD94]. Their approach involves abstracting the data path as a collection
of registers and memories storing data, units such as ALUs operating on the data, and various
connections and multiplexors providing methods for data to be transferred and selected. The initial
state of each register is represented by a domain variable indicating an arbitrary data value. The
operation of units that transform data is abstracted as blocks computing functions with no specified
properties other than functional consistency, i.e., that applications of a function to equal arguments
yield equal results:x = y ) f(x) = f(y). The state of a register at any point in the computation
can be represented by a symbolic term, an expression consisting of a combination of domain
variables, function and predicate applications, and Boolean operations. Verifying that a pipelined
processor has behavior matching that of an unpipelined instruction set reference model can be
performed by constructing a formula in this logic that compares for equality the terms describing
the results produced by the two models and then proving the validity of this formula.

In their 1994 paper, Burch and Dill also described the implementation of a decision procedure
for this logic based on theorem proving search methods. Their procedure builds on ones originally
described by Shostak [Sho79] and by Nelson and Oppen [NO80], using combinatorial search
coupled with algorithms for maintaining a partitioning of the terms into equivalence classes based
on the equalities that hold at a given step of the search. More details of their decision procedure
are given in [BDL96].

Burch and Dill’s work has generated considerable interest in the use of uninterpreted functions
to abstract data operations in processor verification. A common theme has been to adopt Boolean
methods, either to allow integration of uninterpreted functions into symbolic model checkers
[DPR98, BBCZ98], or to allow the use of Binary Decision Diagrams (BDDs) [Bry86] in the
decision procedure [HKGB97, GSZAS98, VB98]. Boolean methods allow a more direct mod-
eling of the control logic of hardware designs and thus can be applied to actual processor designs
rather than highly abstracted models. In addition to BDD-based decision procedures, Boolean
methods could use some of the recently developed satisfiability procedures for propositional logic.
In principle, Boolean methods could outperform decision procedures based on theorem proving
search methods, especially when verifying processors with more complex control logic, e.g., due
to superscalar or out-of-order operation.

Boolean methods can be used to decide the validity of a formula containing terms and unin-
terpreted functions by interpreting the formula over a domain of fixed-length bit vectors. Such an
approach exploits the property that a given formula contains a limited number of function appli-
cations and therefore can be proved to be universally valid by considering its interpretation over
a sufficiently large, but finite domain [Ack54]. If a formula contains a total ofm function appli-
cations, then the set of all bit vectors of lengthk forms an adequate domain fork � log2m. The
formula to be verified can be translated into one in propositional logic, using vectors of proposi-
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tional variables to encode the possible values generated by function applications [HKGB97]. Our
implementation of such an approach [VB98] as part of a BDD-based symbolic simulation system
was successful at verifying simple pipelined data paths. We found, however, that the computa-
tional resources grew exponentially as we increased the pipeline depth. Modeling the interactions
between successive instructions flowing through the pipeline, as well as the functional consis-
tency of the ALU results, precludes having an ordering of the variables encoding term values that
yields compact BDDs. Similarly, we found that extending the data path to a complete proces-
sor by adding either load and store instructions or instruction fetch logic supporting jumps and
conditional branches led to impossible BDD variable ordering requirements.

Goelet al. [GSZAS98] present an alternate approach to using BDDs to decide the validity of
formulas in the logic of equality with uninterpreted functions. In their formulation they introduce
a propositional variableei;j for each pair of function application termsTi andTj, expressing the
conditions under which the two terms are equal. They add constraints expressing both functional
consistency and the transitivity of equality among the terms. Their experimental results were
also somewhat disappointing. For all previous methods of reducing EUF to propositional logic,
Boolean methods have not lived up to their promise of outperforming ones based on theorem
proving search.

In this paper, we show that the characteristics of the formulas generated when modeling pro-
cessor pipelines can be exploited to greatly reduce the number of propositional variables that are
introduced when translating the formula into propositional logic. We distinguish a class of terms
we call p-termsfor which equality comparisons can only be used in monotonically positive for-
mulas. Such formulas are suitable for describing the top-level correctness condition, but not for
modeling any control decisions in the hardware. By applying suitable abstractions to the hardware
model, we can express the functionality of data values and instruction addresses with p-terms.

A decision procedure can exploit the restricted uses of p-terms by considering only “maximally
diverse” interpretations of the associated “p-function” symbols, where every function application
yields a different value except when constrained by functional consistency. We present a method
of transforming a formula containing function applications into one containing only domain vari-
ables that differs from the commonly-used method described by Ackermann [Ack54]. Our method
allows a translation into propositional logic that uses vectors with fixed bit patterns rather than
propositional variables to encode domain variables introduced while eliminating p-function ap-
plications. This reduction in propositional variables greatly simplifies the BDDs generated when
checking tautology, often avoiding the exponential blow-up experienced by other procedures. Al-
ternatively, we can use a encoding scheme similar to Goelet al. [GSZAS98], but with many of the
ei;j values set tofalse rather than to Boolean variables.

Others have recognized the value of restricting the testing of equality when modeling the flow
of data in pipelines. Berezinet al. [BBCZ98] generate a model of an execution unit suitable
for symbolic model checking in which the data values and operations are kept abstract. In our
terminology, their functional terms are all p-terms. They use fixed bit patterns to represent the
initial states of registers, much as we replace p-term domain variables by fixed bit patterns. To
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model the outcome of each program operation, they generate an entry in a “reference file” and
refer to the result by a pointer to this file. These pointers are similar to the bit patterns we generate
to denote the p-function application outcomes. This paper provides an alternate, and somewhat
more general view of the efficiency gains allowed by p-terms.

Dammet al.consider an even more restricted logic such that in the terms describing the com-
puted result, no function symbol is applied to a term that already contains the same symbol. As a
consequence, they can guarantee that an equality between two terms holds universally if it holds
holds over the domainf0; 1g and with function symbols having four possible interpretations: con-
stant functions 0 or 1, and projection functions selecting the first or second argument. They can
therefore argue that verifying an execution unit in which the data path width is reduced to a single
bit and in which the functional units implement only four functions suffices to prove its correct-
ness for all possible widths and functionalities. Their work imposes far greater restrictions than
we place on p-terms, but it allows them to bound the domain that must be considered to determine
universal validity independently from the formula size.

In comparison to both of these other efforts, we maintain the full generality of the unrestricted
terms of Burch and Dill while exploiting the efficiency gains possible with p-terms. In our proces-
sor model, we can abstract register identifiers as unrestricted terms, while modeling program data
and instruction data as p-terms. As a result, our verifications cover designs with arbitrarily many
registers. In contrast, both [BBCZ98] and [DPR98] used bit encodings of register identifiers and
were unable to scale their verifications to a realistic number of registers.

In a recent paper, Pnueli,et al. [PRSS99] also propose a method to exploit the polarity of the
equations in a formula containing uninterpreted functions with equality. They describe an algo-
rithm to generate a small domain for each domain variable such that the universal validity of the
formula can be determined by considering only interpretations in which the variables range over
their restricted domains. A key difference of their work is that they examine the equation structure
after replacing all function application terms with domain variables and introducing functional
consistency constraints as described by Ackermann [Ack54]. These consistency constraints typi-
cally contain large numbers of equations—far more than occur in the original formula—that mask
the original p-term structure. As an example, comparing the top and bottom parts of Figure 6 illus-
trates the large number of equations that may be generated when applying Ackermann’s method.
By contrast, our method is based on the original formula structure. In addition, we use a new
method of replacing function application terms with domain variables. Our scheme allows us
to exploit maximal diversity by assigning fixed values to the domain variables generated while
expanding p-function application terms.

The remainder of the paper is organized as follows. We define the syntax and semantics of
our logic by extending that of Burch and Dill’s. We prove our central result concerning the need
to consider only maximally diverse interpretations when deciding the validity of formulas in our
logic. As a first step in transforming our logic into propositional logic, we describe a new method
of eliminating function application terms in a formula. Building on this, we describe two meth-
ods of translating formulas into propositional logic and show how these methods can exploit the
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term ::= ITE(formula; term; term)

j function-symbol(term; : : : ; term)

formula ::= true j false j :formula

j (formula^ formula) j (formula_ formula)

j (term= term)

j predicate-symbol(term; : : : ; term)

Figure 1: Syntax Rules for the Logic of Equality with Uninterpreted Functions (EUF)

properties of p-terms. We discuss the abstractions required to model processor pipelines in our
logic. Finally, we present experimental results showing our ability to verify a simple, but complete
pipelined processor.

2 Logic of Equality with Uninterpreted Functions (EUF)

The logic of Equality with Uninterpreted Functions (EUF) presented by Burch and Dill [BD94]
can be expressed by the syntax given in Figure 1. In this logic,formulashave truth values while
termshave values from some arbitrary domain. Terms are formed by application of uninterpreted
function symbols and by applications of theITE (for “if-then-else”) operator. TheITE operator
chooses between two terms based on a Boolean control value, i.e.,ITE(true; x1; x2) yieldsx1
while ITE(false; x1; x2) yieldsx2. Formulas are formed by comparing two terms with equality,
by applying an uninterpreted predicate symbol to a list of terms, and by combining formulas using
Boolean connectives. A formula expressing equality between two terms is called anequation. We
useexpressionto refer to either a term or a formula.

Every function symbolf has an associatedorder, denotedord(f), indicating the number of
terms it takes as arguments. Function symbols of order zero are referred to asdomain variables.
We use the shortened formv rather thanv() to denote an instance of a domain variable. Simi-
larly, every predicatep has an associated orderord(p). Predicates of order zero are referred to as
propositional variables, and can be writtena rather thana().

The truth of a formula is defined relative to a nonempty domainD of values and an interpreta-
tion I of the function and predicate symbols. InterpretationI assigns to each function symbol of
orderk a function fromDk to D, and to each predicate symbol of orderk a function fromDk to
ftrue; falseg. For the special case of order 0 symbols, i.e., domain (respectively, propositional)
variables, the interpretation assigns an element ofD (resp.,ftrue; falseg.) Given an interpreta-
tion I of the function and predicate symbols and an expressionE, we can define thevaluationof
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FormE ValuationI[E]

true true
false false
:F :I[F ]

F1 ^ F2 I[F1] ^ I[F2]

p(T1; : : : ; Tk) I(p)(I[T1]; : : : ; I[Tk])

T1=T2 I[T1]=I[T2]

ITE(F; T1; T2) ITE(I[F ]; I[T1]; I[T2])

f(T1; : : : ; Tk) I(f)(I[T1]; : : : ; I[Tk])

Table 1: Evaluation of EUF Formulas and Terms

E underI, denotedI[E], according to its syntactic structure. The valuation is defined recursively,
as shown in Table 1.I[E] will be an element of the domain whenE is a term, and a truth value
whenE is a formula.

A formulaF is said to betrue under interpretationI whenI[F ] = true. It is said to bevalid
over domainD when it is true over domainD for all interpretations of the symbols inF . F is said
to beuniversally validwhen it is valid over all domains. A basic property of validity is that a given
formula is valid over a domainD iff it is valid over all domains having the same cardinality asD.
This follows from the fact that a given formula has the same truth value in any two isomorphic
interpretations of the symbols in the formula. Another property of the logic, which can be readily
shown, is that ifF is valid over a suitably large domain, then it is universally valid [Ack54]. In
particular, it suffices to have a domain as large as the number of syntactically distinct function
application terms occurring inF . We are interested in decision procedures that determine whether
or not a formula is universally valid; we will show how to do this by dynamically constructing a
sufficiently large domain as the formula is being analyzed.

3 Positive Equality with Uninterpreted Functions (PEUF)

We can improve the efficiency of validity checking by treating positive and negative equations
differently when reducing EUF to propositional logic. Informally, an equation is positive if it does
not appear negated in a formula. In particular, a positive equation cannot appear as the formula
that controls the value of anITE term; such formulas are considered to appear both positively and
negatively.
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g-term ::= ITE(formula;g-term;g-term)

j g-function-symbol(p-term; : : : ;p-term)

p-term ::= g-term

j ITE(formula;p-term;p-term)

j p-function-symbol(p-term; : : : ;p-term)

formula ::= true j false j :formula

j (formula^ formula) j (formula_ formula)

j (g-term=g-term)

j predicate-symbol(p-term; : : : ;p-term)

p-formula ::= formula

j (p-formula^ p-formula) j (p-formula_ p-formula)

j (p-term=p-term)

Figure 2: Syntax Rules for the Logic of Positive Equality with Uninterpreted Functions (PEUF)
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3.1 Syntax

PEUF is an extended logic based on EUF; its syntax is shown in Figure 2. The main idea is
that there are two disjoint classes of function symbols, called p-function symbols and g-function
symbols, and two classes of terms.

General terms, org-terms, correspond to terms in EUF. Syntactically, a g-term is a g-function
application or anITE term in which the two result terms are hereditarily built from g-function
applications andITEs.

The new class of terms is called positive terms, orp-terms. P-terms may not appear in negated
equations, i.e., equations within the scope of a logical negation. Since p-terms can contain p-
function symbols, the syntax is restricted in a way that prevents p-terms from appearing in negative
equations. When two p-terms are compared for equality, the result is a special, restricted kind of
formula called ap-formula.

Note that our syntax allows any g-term to be “promoted” to a p-term. Throughout the syntax
definition, we require function and predicate symbols to take p-terms as arguments. However,
since g-terms can be promoted, the requirement to use p-terms as arguments does not restrict the
use of g-function symbols or g-terms. In essence, g-function symbols may be used as freely in our
logic as in EUF, but the p-function symbols are restricted. To maintain the restriction on p-function
symbols, the syntax does not permit a p-term to be promoted to a g-term.

A formulaof the extended logic is a Boolean combination of equations on g-terms and appli-
cations of predicate symbols. Formulas in our logic serve as Boolean control expressions inITE
terms. A formula can contain negation, andITE implicitly negates its Boolean control, so only
g-terms are allowed in equations in formulas. Since a predicate formulap(T1; : : : ; Tk), wherep
is a predicate symbol and theTi are terms, is not an equation, we allow the terms in predicate
formulas to be chosen from the largest class of terms, namely the p-terms.

Finally, the syntactic classp-formulais the class for which we develop validity checking meth-
ods. P-formulas are built up using only the monotonically positive Boolean operations^ and_.
P-formulas may not be placed under a negation sign, and cannot be used as the control for anITE
operation. As described in later sections, our validity checking methods will take advantage of the
assumption that in p-formulas, the p-terms cannot appear in negative equations.

Observe that PEUF does not extend the expressive power of EUF—we could translate any
PEUF expression into EUF by considering the g-terms and p-terms to be terms and the p-formulas
to be formulas. Instead, the benefit of PEUF is that by distinguishing some portion of a formula as
satisfying a restricted set of properties, we can radically reduce the number of different interpreta-
tions we must consider when proving that a p-formula is universally valid.

As a running example for this paper, we consider the formulax = y ) h(g(x); g(g(x))) =

h(g(y); g(g(x))), which would be transformed into a p-formulaFeg by eliminating the implication:

Feg = :(x=y) _ h(g(x); g(g(x)))=h(g(y); g(g(x))) (1)
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Figure 3: Schematic Representation ofFeg. Domain values are shown as solid lines, while truth
values are shown as dashed lines.

Domain variablesx andy must be g-function symbols so that we can consider the equationx=y

to be a formula, and hence it can be negated to give formula:(x = y). We can promote the g-
termsx andy to p-terms, and we can consider function symbolsg andh to be p-function symbols,
giving p-termsg(x), g(y), g(g(x)), h(g(x); g(g(x))), andh(g(y); g(g(x))). Thus, the equation
h(g(x); g(g(x))) = h(g(y); g(g(x))) is a p-formula. We form the disjunction of this p-formula
with the p-formula obtained by promoting:(x=y) giving p-formulaFeg.

Figure 3 shows a schematic representation ofFeg, using drawing conventions similar to those
found in hardware designs. That is, we view domain variables as inputs (shown along bottom) to
a network of operators. Domain values are denoted with solid lines, while truth values are denoted
with dashed lines. The top-level formula then becomes the network output, shown on the right.
The operators in the network are shared whenever possible. This representation is isomorphic to
the traditional directed acyclic graph (DAG) representation of an expression, with maximal sharing
of common subexpressions.

3.2 Diverse Interpretations

Let T be a set of terms, where a term may be either a g-term or a p-term. We consider two terms to
be distinct only if they differ syntactically. An expression may therefore contain multiple instances
of a single term. We classify terms as either p-function applications, g-function applications, or
ITE terms, according to their top-level operation. The first two categories are collectively referred
to as function application terms. For any formula or p-formulaF , defineT (F ) as the set of all
function application terms occurring inF .

An interpretationI partitions a term setT into a set of equivalence classes, where termsT1

andT2 are equivalent underI, writtenT1 �I T2 whenI[T1] = I[T2]. InterpretationI 0 is said to be
a refinementof I for term setT whenT1 �I 0 T2 ) T1 �I T2 for every pair of termsT1 andT2

in T . I 0 is aproper refinement ofI for T when it is a refinement and there is at least one pair of
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I1 fx; yg; fg1gfg2g; fg3g; fh1g; fh2g Inconsistent
I2 fxg; fyg; fg1; g2g; fg3g; fh1g; fh2g Inconsistent
C1 fxg; fyg; fg1; g2g; fg3g; fh1; h2g Diverse w.r.t.x,y,h
C2 fx; g3g; fyg; fg1g; fg2g; fh1g; fh2g Diverse w.r.t.y, h
D1 fxg; fyg; fg1g; fg2g; fg3g; fh1g; fh2g Diverse w.r.t.x, y, g, h
D2 fx; yg; fg1; g2g; fg3g; fh1; h2g Diverse w.r.t.g, h

Table 2: Example Partitionings of Termsx, y, g1
:
= g(x), g2

:
= g(y), g3

:
= g(g(x)), h1

:
=

h(g(x); g(g(x))), andh2
:
= h(g(y); g(g(x))).

termsT1; T2 2 T such thatT1 �I T2, butT1 6�I 0 T2.

Let � denote a subset of the function symbols in formulaF . An interpretationI is said to be
diversefor F with respect to� when it provides a maximal partitioning of the function application
terms inT (F ) having a top-level function symbol from� relative to each other and to the other
function application terms, but subject to the constraints of functional consistency. That is, forT1

of the formf(T1;1; : : : ; T1;k), wheref 2 �, an interpretationI is diverse with respect to� if I has
T1 �I T2 only in the case whereT2 is also a term of the formf(T2;1; : : : ; T2;k), andT1;i �I T2;i

for all i such that1 � i � k. If we let �p(F ) denote the set of all p-function symbols inF , then
interpretationI is said to bemaximally diversewhen it is diverse with respect to�p(F ). Note that
this property requires the p-function application terms to be in separate equivalence classes from
the g-function application terms.

As an example, consider the p-formulaFeg given in Equation 1. There are seven distinct
function application terms identified as follows:

x y g1 g2 g3 h1 h2
x y g(x) g(y) g(g(x)) h(g(x); g(g(x))) h(g(y); g(g(x)))

Table 2 shows 6 of the 877 different ways to partition seven objects into equivalence classes. Many
of these violate functional consistency. For example, the partitioning I1 describes a case wherex

andy are equal, butg(x) andg(y) are not. Similarly, partitioning I2 describes a case whereg(x)

andg(y) are equal, buth(g(x); g(g(x))) andh(g(y); g(g(x))) are not.

Eliminating the inconsistent cases gives 384 partitionings. Many of these do not arise from
maximally diverse interpretations, however. For example, partitioning C1 arises from an inter-
pretation that is not diverse with respect tog, while partitioning C2 arises from an interpretation
that is not diverse with respect toh. In fact, there are only two partitionings: D1 and D2 that
arise from maximally diverse interpretations. Partition D1 corresponds to an interpretation that
is diverse with respect to all of its function symbols. Partition D2 is diverse with respect to both
g andh, even though termsg1 and g2 are in the same class, as areh1 andh2. Both of these
groupings are forced by functional consistency: havingx = y forcesg(x) = g(y), which in turn
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forcesh(g(x); g(g(x))) = h(g(y); g(g(x))). Sinceg andh are the only p-function symbols, D2 is
maximally diverse.

Theorem 1 A p-formulaF is universally valid if and only if it is true in all maximally diverse
interpretations.

First, it is clear that ifF is universally valid,F is true in all maximally diverse interpretations.
We prove via the following two lemmas that ifF is true in all maximally diverse interpretations it
is universally valid.

Lemma 1 If interpretationJ is not maximally diverse for p-formulaF , then there is an interpre-
tationJ 0 that is a proper refinement ofJ such thatJ 0[F ]) J [F ].

Proof: Let T1 be a term occurring inF of the formf1(T1;1; : : : ; T1;k1), wheref1 is a p-function
symbol. LetT2 be a term occurring inF of the formf2(T2;1; : : : ; T2;k2), wheref2 may be either a
p-function or a g-function symbol. Assume furthermore thatJ [T1] andJ [T2] both equalz, but that
either symbolsf1 andf2 differ, orJ [T1;i] 6= J [T2;i] for some value ofi.

Let z0 be a value not inD, and define a new domainD0 := D[fz0g. Our strategy is to construct
an interpretationJ 0 overD0 that partitions the terms inT (F ) in the same way asJ , except that it
splits the class containing termsT1 andT2 into two parts—one containingT1 and evaluating toz0,
and the other containingT2 and evaluating toz.

Define functionh:D0 ! D to map elements ofD0 back to their counterparts inD, i.e.,h(z0) =
z, while all other values ofx giveh(x) equal tox.

For p-function symbolf1, defineJ 0(f1) as:

J 0(f1)(x1; : : : ; xk1)
:
=

(
z0; h(xi) = J [T1;i]; 1 � i � k1
J(f1)(h(x1); : : : ; h(xk1)); otherwise

For other function and predicate symbols,J 0 is defined to preserve the functionality of interpre-
tationJ , while also treating argument values ofz0 the same asz. That is,J 0(f) for function symbol
f havingord(f) equal tok is defined such thatJ 0(f)(x1; : : : ; xk) = J(f)(h(x1); : : : ; h(xk)). Sim-
ilarly, J 0(p) for predicate symbolp havingord(p) equal tok is defined such thatJ 0(p)(x1; : : : ; xk) =
J(p)(h(x1); : : : ; h(xk)).

We claim the following properties for the different forms of subexpressions occurring inF :

1. For every formulaG: J 0[G] = J [G]

2. For every g-termT : J 0[T ] = J [T ]

3. For every p-termT : h(J 0[T ]) = J [T ]
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4. For every p-formulaG: J 0[G]) J [G]

5. J 0[T1] = z0 andJ 0[T2] = z.

These properties can be proved by induction on the expression depths. Informally, interpreta-
tion J 0 maintains the values of all g-terms and formulas as occur under interpretationJ . It also
maintains the values of all p-terms, except those in the class containing termsT1 andT2. These
p-terms are split into some having valuationz and others having valuationz0. With respect to p-
formulas, consider first an equation of the formS1=S2 whereS1 andS2 are p-terms. The equation
will yield the same value under both interpretations except under the condition thatS1 andS2 are
split into different parts of the class that originally evaluated toz, in which case the equation will
yield true underJ , but false underJ 0. Thus, although this equation can yield different values
under the two interpretations, we always have thatJ 0[S1 = S2] ) J [S1 = S2]. This implication
relation is preserved by conjunctions and disjunctions of p-formulas, due to the monotonicity of
these operations.

We will now present this argument formally. We define the depth of an expressionE, depth(E),
in the familiar way:

1. depth(true) = depth(false) = 0.

2. depth(v) = 0, for domain variablev.

3. depth(a) = 0, for propositional variablea.

4. For any other expressionE, depth(E) is given by1 plus the maximum depth of a subex-
pression inE.

We prove hypotheses 1 to 4 above by simultaneous induction on the depth of expressions:

For the base case of the induction, we have:

1. Formula:J 0[true] = J [true], J 0[false] = J [false], andJ 0[a] = J [a] for any propositional
variablea.

2. G-term: Ifv a g-function symbol of zero order, thenJ 0(v) = J(v).

3. P-term: Ifv is a p-function symbol of zero order, then by the definition ofJ 0, h(J 0(v)) =

J(v).

4. P-formula: same as formula.

For the induction case, we assume that the inductive hypotheses 1 through 4 hold for all ex-
pressions of depth� n, and show that the hypotheses hold for expressions of depthn+ 1.
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1. Formula: There are several cases, depending on the form ofG.

(a) SupposeG has one of the forms:G1,G1^G2,G1_G2, whereG1 andG2 are formulas.
By the inductive hypothesis,J 0[G1] = J [G1], andJ 0[G2] = J [G2]. It follows that
J 0[:G1] = J [:G1], J 0[G1 ^G2] = J [G1 ^G2], andJ 0[G1 _G2] = J [G1 _G2].

(b) SupposeG has the formS1=S2, whereS1; S2 are g-terms. By the inductive hypothesis
on g-terms,J 0[S1] = J [S1], andJ 0[S2] = J [S2]. It follows thatJ 0[S1=S2] = J [S1=

S2].

(c) The remaining case is thatG is a predicate application of the formp(S1; : : : ; Sk), where
p is a predicate symbol of orderk, andS1; : : : ; Sk, are p-terms. By the inductive
hypothesis for p-terms, we haveh(J 0[Si]) = J [Si], for i = 1 : : : k. By the definition of
J 0,

J 0[p(S1; : : : ; Sk)] = J 0(p)(J 0[S1]; : : : ; J
0[Sk])

= J(p)(h(J 0[S1]); : : : ; h(J
0[Sk]))

= J(p)(J [S1]; : : : ; J [Sk])

= J [p(S1; : : : ; Sk)]:

2. G-term: There are two cases.

(a) SupposeT has the formITE(G;S1; S2), whereG is a formula, andS1 andS2 are
g-terms. By the inductive hypothesis, we haveJ 0[G] = J [G], J 0[S1] = J [S1], and
J 0[S2] = J [S2]. ThenJ 0[ITE(G;S1; S2)] = J [ITE(G;S1; S2)].

(b) SupposeT has the formf(S1; : : : ; Sk), wheref is a g-function symbol of orderk
andS1; : : : ; Sk are p-terms. By the inductive hypothesis,h(J 0[Si]) = J [Si], for i =

1; : : : ; k. Then we have,

J 0[f(S1; : : : ; Sk)] = J 0(f)(J 0[S1]; : : : ; J
0[Sk])

= J(f)(h(J 0[S1]); : : : ; h(J
0[Sk]))

= J(f)(J [S1]; : : : ; J [Sk])

= J [f(S1; : : : ; Sk)]:

3. P-term: There are three cases.

(a) SupposeT is a g-term. By the inductive hypothesis,J 0[T ] = J [T ]. SinceJ [T ] cannot
be equal toz0, it must be the case thath(J 0[T ]) = J [T ].

(b) SupposeT has the formITE(G;S1; S2), whereG is a formula, andS1 andS2 are p-
terms. By the inductive hypothesis,J 0[G] = J [G], h(J 0[S1]) = J [S1], andh(J 0[S2] =

J [S2]). It follows that

h(J 0[ITE(G;S1; S2)]) = if J 0[G] then h(J 0[S1]) else h(J
0[S2])

= if J [G] then J [S1] else J [S2]

= J [ITE(G;S1; S2)]:

12



(c) Suppose thatT has the formf(S1; : : : ; Sk), wheref is a p-function symbol of orderk
andS1; : : : ; Sk are p-terms. Here, we have to consider two cases. The first case is that
the following two conditions hold: (1)f is the function symbolf1, i.e., the function
symbol of the termT1 mentioned at the beginning of the proof of this lemma, and (2)
h(Si) = J [T1;i], for 1 � i � k. If these two conditions hold, then by the definition of
J 0, J 0[f1(S1; : : : ; Sk)] = z0, while J [f1(S1; : : : ; Sk)] = z. Sinceh(z0) = z, we have
h(J 0[f1(S1; : : : ; Sk)]) = J [f1(S1; : : : ; Sk)].

Now we consider the case that one of the two conditions mentioned above does not
hold. The proof of this case is identical to the proof of case 2(b) above.

4. P-formula: There are three cases.

(a) If the p-formulaG is a formula, then by the inductive hypothesis,J 0[G] = J [G], so
J 0[G]) J [G].

(b) SupposeG has one of the formsG1 ^ G2, orG1 _ G2, whereG1; G2 are p-formulas.
By the inductive hypothesis,J 0[G1]) J [G1], andJ 0[G2]) J [G2]. Thus we have

J 0[G1 ^ G2] = J 0[G1] ^ J
0[G2]

) J [G1] ^ J [G2]

= J [G1 ^G2];

soJ 0[G1 ^G2]) J [G1 ^G2]. The proof forG1 _G2 is the same.

(c) Finally, we consider the case thatG is a p-formula of the formS1 = S2, whereS1

andS2, are p-terms. By the inductive hypothesis, we have that ifJ 0[Si] = z0, then
J [Si] = z, for i = 1; 2. Also, by the definition ofh, we have that ifJ 0[Si] does not
equalz0, thenJ 0[Si] = J [Si]. Now, we consider cases depending on whetherJ 0[S1]

or J 0[S2] are equal toz0. If both terms are equal toz0 in J 0, then bothJ [S1] andJ [S2]

must be equal toz, so the equation is true in bothJ 0 andJ . If neitherJ 0[S1] norJ 0[S2]

is equal toz0, thenJ 0[S1] = J [S1] andJ 0[S2] = J [S2], so the equation has the same
truth value inJ 0 andJ . The last case is that exactly one of the p-terms is equal toz0 in
J 0. In this case, the equation is false inJ 0, so we haveJ 0[G]) J [G]. This completes
the inductive proof.

Property 5 above, which implies thatJ 0 is a proper refinement, is a consequence of the defi-
nition of J 0 and the inductive properties 2 and 3. First, we show thatJ 0[T1] = z0. By definition,
J 0[T1] = J 0(f1)(J

0[T1;1]; : : : ; J
0[T1;k1]). By property 3 on p-terms, we can assumeh(J 0[T1;i]) =

J [T1;i], for all i in the range1 � i � k1. By the definition ofJ 0(f1), we haveJ 0(f1)(J 0[T1;1]; : : : ; J
0[T1;k1]) =

z0.

The proof thatJ 0[T2] = z is in two cases, depending on whetherT1 andT2 are applications of
the same function symbol.
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1. First, consider the case thatT1 = f1(T1;1; : : : ; T1;k1) andT2 = f2(T2;1; : : : ; T2;k2), wheref1
andf2 are different function symbols. In this case,

J 0[T2] = J 0(f2)(J
0[T2;1]; : : : ; J

0[T2;k2])

= J(f2)(h(J
0[T2;1]); : : : ; h(J

0[T2;k2]));by the definition ofJ 0(f2)
= J(f2)(J [T2;1]; : : : ; J [T2;k2]);by the inductive hypothesis
= J [f2(T2;1; : : : ; T2;k2)]

= z:

2. Finally, we have the case thatf1 andf2 are the same function symbol, and there is some
value ofl with 1 � l � k1, such thatJ [T1;l] does not equalJ [T2;l]. Here, we have:

J 0[f1(T2;1; : : : ; T2;k2)] = J 0(f1)(J
0[T2;1]; : : : ; J

0[T2;k2])

By property 3,h(J 0[T2;i]) = J [T2;i], for all i such that1 � i � k1. SinceJ [T1;l] does not
equalJ [T2;l], the value of the above application ofJ 0(f1) is:

J 0(f1)(J
0[T2;1]; : : : ; J

0[T2;k2]) = J(f1)(h(J
0[T2;1]); : : : ; h(J

0[T2;k2]))

= J(f1)(J [T2;1]; : : : ; J [T2;k2])

= J [f1(T2;1; : : : ; T2;k2)]

= z

2

Lemma 2 For any interpretationI and p-formulaF , there is a maximally diverse interpretation
I� for F such thatI�[F ]) I[F ].

Proof: Starting with interpretationI0 equal toI, we define a sequence of interpretations
I0; I1; : : : by repeatedly applying the construction of Lemma 1. That is, we derive each inter-
pretationIi+1 from its predecessorIi by letting J = Ii and lettingIi+1 = J 0. Interpretation
Ii+1 is a proper refinement of its predecessorIi such thatIi+1[F ] ) Ii[F ]. At some stepn, we
must reach a maximally diverse interpretationIn, because our setT (F ) is finite and therefore
can only be properly refined a finite number of times. We then letI� be In. We can see that
I�[F ] = In[F ]) � � � ) I0[F ] = I[F ], and henceI�[F ]) I[F ]. 2

The completion of the proof of Theorem 1 follows directly from Lemma 2. That is, if we start
with any interpretationI for p-formulaF , we can construct a maximally diverse interpretationI�

such thatI�[F ] ) I[F ]. AssumingF is true under all maximally diverse interpretations,I�[F ]

must hold, and sinceI�[F ]) I[F ], I[F ] must hold as well.

14



3.3 Exploiting Positive Equality in a Decision Procedure

A decision procedure for PEUF must determine whether a given p-formula is universally valid.
The procedure can significantly reduce the range of possible interpretations it must consider by
exploiting the maximal diversity property. Theorem 1 shows that we can consider only interpreta-
tions in which the values produced by the application of any p-function symbol differ from those
produced by the applications of any other p-function or g-function symbol. We can therefore con-
sider the different p-function symbols to yield values over domains disjoint with one another and
with the domain of g-function values. In addition, we can consider each application of a p-function
symbol to yield a distinct value, except when its arguments match those of some other application.

4 Eliminating Function Applications

Most work on transforming EUF into propositional logic has used the method described by Ack-
ermann to eliminate applications of functions of nonzero order [Ack54]. In this scheme, each
function application term is replaced by a new domain variable and constraints are added to the
formula expressing functional consistency. Our approach also introduces new domain variables,
but it replaces each function application term with a nestedITE structure that directly captures the
effects of functional consistency. As we will show, our approach can readily exploit the maximal
diversity property, while Ackermann’s cannot.

4.1 Function Application Elimination Example

We demonstrate our technique for replacing function applications by domain variables using
p-formulaFeg (Equation 1) as an example, as illustrated in Figure 4. First consider the three
applications of function symbolg: g(x), g(y), andg(g(x)), which we identify as termsT1, T2, and
T3, respectively. Letvg1, vg2, andvg3 be new domain variables. We generate new termsU1, U2,
andU3 as follows:

U1
:
= vg1 (2)

U2
:
= ITE(y=x; vg1; vg2)

U3
:
= ITE(vg1=x; vg1; ITE(vg1=y; vg2; vg 3))

Observe that we use variablevg1, the translation ofg(x), to represent the argument to the outer
application of function symbolg in the termg(g(x)). In general, we must always process nested
applications of a given function symbol working from the innermost to the outermost. Given
termsU1, U2, andU3, we eliminate the function applications by replacing each instance ofTi in
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Figure 4: Removing Function Applications fromFeg.
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�I I�[U1] I�[U2] I�[U3]

fxg; fyg; fg(x)g 1 2 3

fx; yg; fg(x)g 1 1 3

fxg; fy; g(x)g 1 2 2

fx; g(x)g; fyg 1 2 1

fx; y; g(x)g 1 1 1

Table 3: Possible valuations of terms in Equation 2 when each variablevg i is assigned valuei.

the formula byUi for 1 � i � 3, as shown in the middle part of Figure 4. We use multiplexors in
our schematic diagrams to representITE operations.

Observe that as we consider interpretations with different values for variablesvg1, vg2, andvg3

in Equation 2, we implicitly cover all values that an interpretation of function symbolg in formula
Feg may yield for the three arguments. The nestedITE structure shown in Equation 2 enforces
functional consistency. For example, Table 3 shows the possible valuations of the three terms of
Equation 2 for an interpretationI� assigning values1, 2, and3 to domain variablesvg1, vg 2, and
vg3, respectively. For each possible partitioning byI� of argumentsx, y, andg(x) into equivalence
classes, we get matching valuations precisely for equivalent arguments.

We remove the two applications of function symbolh by a similar process. That is, we intro-
duce two new domain variablesvh1 andvh2. We replace the first application ofh by vh1 and the
second by anITE term that compares the arguments of the two function applications, yieldingvh1
if they are equal andvh2 if they are not. The final form is illustrated in the bottom part of Figure
4. The translation of predicate applications is similar, introducing a new propositional variable for
each application. After removing all applications of function and predicate symbols of nonzero
order, we are left with a formulaF �

eg containing only domain and propositional variables.

4.2 Algorithm for Eliminating Function and Predicate Applications

The general translation procedure follows the form shown for our example. It iterates through the
function and predicate symbols of nonzero order. On each iteration it eliminates all occurrences of
a given symbol. At the end we are left with a formula containing only domain and propositional
variables.

The following is a detailed description of the process required to eliminate all instances of a
single function symbolf having orderk > 0 from a formulaG. We use the variant of formula
Feg shown schematically at the top of Figure 5. In this variant, we have replaced function symbol
g with f . In the sequel, ifE is an expression andT andU are terms, we will writeE[T  U ]

for the result of substitutingU for each instance ofT in E. LetT1; : : : ; Tn denote the syntactically
distinct terms occurring in formulaG having the application off as the top level operation. We
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refer to these as “f -application” terms. Let the arguments tof in f -application termTi be the terms
Si;1; : : : ; Si;k, so thatTi has the formf(Si;1; : : : ; Si;k). Assume the termsT1; : : : ; Tn are ordered
such that ifTi occurs as a subexpression ofTj theni < j. In our example thef -application terms
are:T1

:
= f(x), T2

:
= f(y) andT3

:
= f(f(x)). These terms have arguments:S1;1

:
= x, S2;1

:
= y,

andS3;1
:
= f(x).

The translation processes thef -application terms in order, such that on stepi it replaces all
occurrences of theith application of function symbolf by a nestedITE term. Letvf 1; : : : ; vf n
be a new set of domain variables not occurring inF . We use these to encode the possible values
returned by thef -application terms.

For any subexpressionE in G define its integer-valuedf -order, denotedof (E), as the highest
indexi of anf -application termTi occurring inE. If no f -application terms occur inE, itsf -order
is defined to be 0. By our ordering of thef -application terms, any argumentSi;l to f -application
termTi must haveof (Si;l) < of (Ti), and thereforeof (Ti) = i. For example, the contour lines
shown in Figure 5 partition the operators according to theirf -order values.

The transformations performed in replacing applications of function symbolf can be expressed
by defining the following recurrence for any subexpressionE of G:

E(0) :
= E

E(i) :
= E(i�1)[T

(i�1)

i  Ui]; 1 � i � n

Ê
:
= E(m); wherem = of (E)

(3)

In this equation, termT (i�1)

i is the form of theith f -application termTi after all but the topmost
application off have been eliminated. TermUi is a nestedITE structure encoding the possible
values returned byTi while enforcing its consistency with earlier applications.Ui does not contain
any applications of function symbolf . For a subexpressionE with of (E) = m, its formE(m)

will contain no applications of function symbolf . We denote this form aŝE. Observe that for any
i > of (E), termT

(i�1)

i does not occur inE(i), and henceE(i) = Ê for all i � of (E). Observe
also that forf -application termTi, we haveT̂i = T

(i)

i = Ui.

Ui is defined in terms of a recursively-defined termVi;j as follows:

Vi;i
:
= vf i; 1 � i � n

Vi;j
:
= ITE(Ci;j; vf j; Vi;j+1); 1 � j < i � n

Ui
:
= Vi;1; 1 � i � n

(4)

where for eachj < i, formulaCi;j is true iff the (transformed) arguments to the top-level applica-
tion of f in the termsTi andTj have the same values:

Ci;j
:
=

^
1�l�k

Ŝi;l= Ŝj;l (5)

Observe that the recurrence of Equation 4 is well-defined, since for all argument terms of the form
Sj;l for 1 � j � i and1 � l � k, we haveof (Sj;l) < i, and hence terms of the form̂Sj;l andŜi;l,
as well as termVi;j+1 are available when we defineVi;j .
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The lower part of Figure 5 shows the result of removing the three applications off from our
example formula. First, we haveU1

:
= vf 1, giving translated function arguments:̂S1;1

:
= x,

Ŝ2;1
:
= y, andŜ3;1

:
= vf 1. The comparison formulas are then:C2;1

:
= (y= x), C3;1

:
= (vf 1 = x),

andC3;2
:
= (vf 1=y). From these we get translated terms:

U2
:
= ITE(y=x; vf 1; vf 2)

U3
:
= ITE(vf 1=x; vf 1; ITE(vf 1=y; vf 2; vf 3))

We can see that formulâG :
= G(n) will no longer contain any applications of function symbol

f . We will show thatĜ is universally valid if and only ifG is.

In the following correctness proofs, we will use a fundamental principle relating syntactic
substitution and expression evaluation:

Proposition 1 For any expressionE, pair of termsT ,U , and interpretationI of all of the symbols
in E, T , andU , if I[T ] = I[U ] thenI[E[T  U ]] = I[E].

We will also use the following characterization of Equation 4. For valuei such that1 �
i � n and for interpretationI of the symbols inUi, we define theleast matching valueof i
under interpretationI, denotedlmI(i), as the minimum valuej in the range1 � j � i such that
I[Ŝj;l] = I[Ŝi;l] for all l in the range1 � l � k. Observe that this value is well defined, sincei

forms a feasible value forj in any case.

Lemma 3 For any interpretationI, I[Ui] = I(vf j), wherej = lmI(i).

Proof: For valuem in the range1 � m � i definelmI(m; i) as the minimum value ofj in the
rangem � j � i such thatI[Ŝj;l] = I[Ŝi;l] for all l in the range1 � l � k. By this definition
lmI(i) = lm I(1; i). Observe also that ifj = lm I(m; i) thenI[Ci;j] = true. In addition, for any
valuem0 in the rangem � m0 � i, if lmI(m; i) � m0, thenlmI(m; i) = lmI(m

0; i).

We prove by induction onm that I[Vi;m] = I(vf j), wherej = lmI(m; i). The base case of
m = i is trivial, sincelmI(i; i) = i, andVi;i = vf i.

Assuming the property holds form+1, we consider two possibilities. First, iflmI(m; i) = m,
we haveI[Ci;m] = true, and hence the top-levelITE operation inVi;m (Equation 4) will select its
first term argumentvf m, giving I[Vi;m] = I(vf m). On the other hand, iflmI(m; i) > m, we must
haveI[Ci;m] = false, and hence the top-levelITE operation inVi;m will select its second term
argumentVi;m+1, giving I[Vi;m] = I[Vi;m+1], which by the inductive hypothesis equalsI(vf j) for
j = lmI(m+ 1; i). SincelmI(m; i) � m+ 1, we must also havelmI(m; i) = lmI(m+ 1; i), and
henceI[Vi;m] = I(vf j), wherej = lmI(m; i).

SinceUi is defined asVi;1, our induction argument proves thatI[Ui] = I(vf j) for j =

lmI(1; i) = lmI(i). 2

20



Lemma 4 Any interpretationJ of the symbols inG can be extended to an interpretation̂J of the
symbols in bothG andĜ such that for every subexpressionE ofG, Ĵ [Ê] = Ĵ[E] = J [E].

Proof: We provide a somewhat more general construction ofĴ than is required for the proof
of this lemma in anticipation of using this construction in the proof of Lemma 6. GivenJ defined
over domainD, we defineĴ over a domainD̂ such thatD̂ � D.

We defineĴ for the function and predicate symbols occurring inG based on their definitions in
J . For any function symbolf in G havingord(f) = k, and any argument valuesx1; : : : ; xk 2 D,
we defineĴ(f)(x1; : : : ; xk)

:
= J(f)(x1; : : : ; xk). For argument valuesx1; : : : ; xk 2 D̂ such that

for somei, xi 62 D, we letĴ(f)(x1; : : : ; xk) be an arbitrary domain value. Similarly, for predicate
symbolp, we defineĴ(p) to yield the same value asJ(p) for arguments inD and to yield an
arbitrary truth value when at least one argument is not inD.

One can readily see that̂J [E] = J [E] for every subexpressionE of G. This takes care of
the second equality in the statement of the lemma, and hence we can concentrate on the relation
betweenĴ [Ê] andĴ [E] for the remainder of the proof.

Recall thatvf 1; : : : ; vf n are the domain variables introduced when generating the nestedITE
termsU1; : : :Un. Our strategy is to define interpretations of these variables such that eachUi

mimics the behavior of the originalf -application termTi in G.

We consider two cases. For the case wherelm Ĵ(i) = i, we defineĴ(vf i) = Ĵ [Ti], i.e., the
value of theith f -application term inG underJ . Otherwise, we let̂J(vf i) be an arbitrary domain
value—we will show that its value does not affect the valuation of any expressionÊ in Ĝ having a
counterpartE in G.

We argue by induction oni that Ĵ [E(i)] = Ĵ[E] for any subexpressionE of G. For the case
whereof (E) � i, this hypothesis implies that̂J [Ê] = Ĵ [E]. The base case ofi = 0 is trivial, since
E(0) is defined to beE.

Suppose that for everyj in the range1 � j < i and every subexpressionD of G, we have
Ĵ [D(j)] = Ĵ[D], and consequently that̂J[D̂] = Ĵ[D] for the case whereof (D) < i. We must
show that for every subexpressionE of G, we haveĴ [E(i)] = Ĵ [E].

We first focus our attention on termTi in G and its counterpartUi in Ĝ, showing thatĴ[Ui] =

Ĵ [Ti]. Thef -application terms for allj such thatj < i haveof (Tj) = j < i, and hence we can
assume that̂J[Uj] = Ĵ [Tj] for these values ofj. Furthermore, any argumentSj;l to anf -application
term forj � i and1 � l � k hasof (Sj;l) < j � i, and hence we can assumeĴ [Ŝj;l] = Ĵ[Sj;l].

We consider two cases:lm Ĵ(i) = i, andlm Ĵ (i) < i. In the former case, we have by Lemma 3
that Ĵ[Ui] = Ĵ(vf i). Our definition ofĴ(vf i) givesĴ[Ui] = Ĵ(vf i) = Ĵ[Ti]. Otherwise, suppose
that lm Ĵ(i) = j < i. Lemma 3 shows that̂J[Ui] = Ĵ(vf j). We can see thatlm Ĵ (j) = j,
and henceĴ(vf j) is defined to beĴ[Tj]. By the definition oflm we haveĴ [Ŝj;l] = Ĵ [Ŝi;l] for

1 � l � k. By the induction hypothesis we havêJ [Ŝj;l] = Ĵ[Sj;l], sinceof (Sj;l) < i, and similarly
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thatĴ[Ŝi;l] = Ĵ [Si;l]. By transitivity we haveĴ[Sj;l] = Ĵ [Si;l] for all l such that1 � l � k, i.e., the
arguments tof -application termsTj andTi have equal valuations underJ . Function consistency
requires thatĴ [Tj] = Ĵ [Ti]. From this we can conclude that̂J [Ui] = Ĵ [Uj] = Ĵ [Tj] = Ĵ [Ti].
Combining these cases givesĴ[Ui] = Ĵ [Ti].

For any subexpressionE its formE(i) differs fromE(i�1) only in that all instances of term
T

(i�1)

i have been replaced byUi. We have just argued that̂J [Ui] = Ĵ [Ti], and by the induction
hypothesis we have that̂J [T (i�1)

i ] = Ĵ[Ti], giving by transitivity thatĴ [T (i�1)

i ] = Ĵ[Ui]. Proposi-
tion 1 implies thatĴ[E(i)] = Ĵ [E(i�1)], and our induction hypothesis giveŝJ [E(i�1)] = Ĵ [E]. By
transitivity we haveĴ [E(i)] = Ĵ [E].

To complete the proof, we observe that our induction argument implies that for any subexpres-
sionE of G, Ĵ [E(m)] = Ĵ [E], including for the case wherem = of (E), giving Ĵ [Ê] = Ĵ[E(m)] =

Ĵ [E]. 2

Lemma 5 Any interpretationĴ of the symbols in̂G can be extended to an interpretationJ of the
symbols in botĥG andG such that for every subexpressionE ofG, J [E] = J [Ê] = Ĵ[Ê] .

Proof: We defineJ to be identical toĴ for any symbol occurring in̂G. This implies that
J [Ê] = Ĵ[Ê] for every subexpressionE of G. This takes care of the second equality in the
statement of the lemma, and hence we can concentrate on the relation betweenJ [E] andJ [Ê] for
the remainder of the proof.

For function symbolf , we defineJ(f)(x1; : : : ; xk) for domain elementsx1; : : : ; xk as follows.
Suppose there is some valuej such thatxl = J [Ŝj;l] for all l such that1 � l � k, and such that
j = lm Ĵ (j). Then we defineJ(f)(x1; : : : ; xk) to beJ(vf j). If no such value ofj exists, we let
J(f)(x1; : : : ; xk) be some arbitrary domain value.

We argue by induction oni thatJ [E] = J [E(i)] for any subexpressionE of G. For the case
whereof (E) � i, this hypothesis implies thatJ [E] = J [Ê]. The base case ofi = 0 is trivial, since
E(0) is defined to beE.

Suppose that for everyj in the range1 � j < i and every subexpressionD of G, we have
J [D] = J [D(i)], and consequently thatJ [D] = J [D̂] for the case whereof (D) < i. We must show
that for every subexpressionE of G, we haveJ [E] = J [E(i)].

We focus initially on termTi in G and its counterpartUi in Ĝ, showing thatJ [Ti] = J [Ui]. Any
f -application termTj for j < i hasof (Tj) = j < i, and hence we can assume thatJ [Tj] = J [T̂j].
Furthermore, any argumentSj;l to anf -application term forj � i and1 � l � k hasof (Sj;l) <
j � i, and hence we can assume thatJ [Sj;l] = J [Ŝj;l].

We consider two cases:lm Ĵ (i) = i, andlm Ĵ (i) < i. In the former case, we have by Lemma
3 thatJ [Ui] = J(vf i). In addition,J(f) is defined such thatJ [Ti] = J(f)(J [Si;1]; : : : ; J [Si;k]) =

J(f)(J [Ŝi;1]; : : : ; J [Ŝi;k]) = J(vf i), giving J [Ti] = J(vf i) = J [Ui]. Otherwise, suppose that
lmJ(i) = j < i. Lemma 3 shows thatJ [Ui] = J(vf j). We can see thatlm Ĵ(j) = j, and hence

22



J(f) is defined such thatJ(f)(J [Ŝj;1]; : : : ; J [Ŝj;k]) = J(vf j). For anyl such that1 � l � k,

we also have by the definition oflm thatJ [Ŝj;l] = J [Ŝi;l]. By the induction hypothesis we have
J [Sj;l] = J [Ŝj;l], sinceof (Sj;l) < i, and similarly thatJ [Si;l] = J [Ŝi;l]. By transitivity we have
J [Sj;l] = J [Si;l], i.e., the arguments tof -application termsTj andTi have equal valuations under
J . Functional consistency requires thatJ [Tj] = J [Ti]. Putting this together givesJ [Ti] = J [Tj] =

J(f)(J [Sj;1]; : : : ; J [Sj;k]) = J(f)(J [Ŝj;1]; : : : ; J [Ŝj;k]) = J(vf j) = J [Ui].

For any subexpressionE its formE(i) differs fromE(i�1) only in that all instances of term
T

(i�1)

i have been replaced byUi. We have just argued thatJ [Ti] = J [Ui], and by the induction
hypothesis we have thatJ [Ti] = J [T

(i�1)

i ], giving by transitivity thatJ [T (i�1)

i ] = J [Ui]. Proposi-
tion 1 implies thatJ [E(i�1)] = J [E(i)], and our induction hypothesis givesJ [E] = J [E(i�1)]. By
transitivity we haveJ [E] = J [E(i)].

To complete the proof, we observe that our induction argument implies that for any subexpres-
sionE of G, J [E] = J [E(m)], including for the case wherem = of (E), givingJ [E] = J [E(m)] =

J [Ê]. 2

An application of a predicate symbol having nonzero order can be removed by a similar pro-
cess, using newly generated propositional variables to encode the possible values returned by the
predicate applications. By an argument similar to that made in Lemma 4, we can extend an in-
terpretation to include interpretations of the propositional variables such that the original and the
transformed formulas have identical valuations. Conversely, by an argument similar to that made
in Lemma 5, we can extend an interpretation to include an interpretation of the original predicate
symbol such that the original and the transformed formulas have identical valuations.

Suppose formulaF contains applicationsm different function and predicate symbols of nonzero
order. Starting withF0

:
= F , we can generate a sequence of formulasF0; F1; : : : ; Fm. Each for-

mulaFi is generated from its predecessorFi�1 by lettingG = Fi andFi+1 = Ĝ in our technique
to eliminate all instances of theith function or predicate symbol. LetF � :

= Fm denote the formula
that will result once we have eliminated all applications of function and predicate symbols having
nonzero order.

Theorem 2 For EUF formulaF , the transformation process described above yields a formulaF �

such thatF is universally valid if and only ifF � is universally valid.

Proof: This theorem follows by simply inducting on the number of function and predicate
symbols inF having nonzero order. That is, for any interpretationI of the function and predicate
symbols ofF , we construct a sequence of interpretationsI = I0; I1; : : : ; Im. Each interpretation
Ii is generated by extending its predecessorIi�1 by lettingJ = Ii�1 andIi = Ĵ in Lemma 4 or a
similar one for predicate applications. The effect is to include inIi interpretations of the domain
or propositional variables introduced when eliminating theith function or predicate symbol. We
then define interpretationI� to be identical toIm for every variable appearing inF �. By induction,
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we haveI�[F �] = I[F ]. If F � is universally valid, we haveI[F ] = I�[F �] = true. Since this
construction can be performed for any interpretationI, F must also be universally valid.

Conversely, starting with an interpretationI� of the domain and propositional variables ofF �,
we can define a sequence of interpretationsI� = Im; Im�1; : : : ; I0, using the construction in the
proof of Lemma 5 (or a similar one for predicate applications) to generate an interpretation of
each function or predicate symbol inF . We then define interpretationI to be identical toI0 for
every function or predicate symbol appearing inF . By induction, we haveI[F ] = I�[F �]. If F is
universally valid, we haveI�[F �] = I[F ] = true. Since this construction can be performed for
any interpretationI�, F � must also be universally valid.2

4.3 Assigning Distinct Values to Variables Representing P-Function Appli-
cations

We can exploit the maximal diversity property by considering only interpretations that assign dis-
tinct values to the domain variables generated when replacing p-function applications by nested
ITE terms.

For example, by using an interpretationI� that assigns distinct values1, 2, and3 to variables
vf 1, vf 2, andvf 3 in Equation 2, we generate distinct values for the termsU1, U2, andU3, except
when there are matches between the argumentsx1, x2, andx3. On the other hand, our encoding
still considers the possibility that the arguments to the different applications off may match under
some interpretations, in which case the function results should match as well.

To show this formally, consider the effect of replacing all instances of a function symbolf

in a formulaG by nestedITE terms, as described earlier, yielding a formulaĜ with new domain
variablesvf 1; : : : ; vf n. We first show that when we generate these variables while eliminating
p-function applications, we can assume they have a diverse interpretation.

Lemma 6 Let� be a subset of the symbols inG, and letĜ be the result of eliminating function
symbolf from G by introducing new domain variablesvf 1; : : : ; vf n. If f 2 �, then for any
interpretationJ that is diverse forG with respect to�, there is an interpretation̂J that is diverse
for Ĝ with respect to� � ffg [ fvf 1; : : : ; vf ng such thatĴ[Ĝ] = J [G].

Proof: Given interpretationJ defined over domainD, we define interpretation̂J over a domain
D̂

:
= D [ fz1; : : : ; zng. Eachzi is a unique value, i.e.,zi 6= zj for anyi 6= j, andzi 62 D.

The proof of this lemma is based on a refinement of the proof of Lemma 4. Whereas the
construction in the earlier proof assigned arbitrary values to the new domain variables in some
cases, we select an assignment that is diverse in these variables. As in the construction in the proof
of Lemma 4, we definêJ for any function or predicate symbol inG to be identical to that ofJ
when the arguments are all elements ofD. When some argument is not inD, we let the function
(respectively, predicate) application yield an arbitrary domain (resp., truth) value.
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For domain variablevf i introduced when generating termUi, we consider two cases. For the
case wherelm Ĵ (i) = i, we defineĴ(vf i) = Ĵ [Ti], i.e., the value of theith f -application term inG
underJ . For the case wherelm Ĵ(i) < i, we defineĴ(vf i) = zi. We saw in the proof of Lemma
4 that we could assign arbitrary values in this latter case and still haveĴ [Ĝ] = J [G]. In fact, for
every subexpressionE of G, we have that its counterpart̂E in Ĝ satisfiesĴ [Ê] = J [E].

We must show that̂J is diverse forĜ with respect to� � ffg [ fvf 1; : : : ; vf ng. We first
observe that̂J is identical toJ for all function application terms inG, and hencêJ must be diverse
with respect to� for G. We also observe that̂J assigns to each variablevf i either a unique value
zi or the value yielded byf -application termTi in G underĴ.

Suppose there were distinct variablesvf i andvf j such thatĴ [vf i] = Ĵ [vf j ]. This could only

occur for the case that̂J(vf i) = Ĵ [Ti] = Ĵ[Tj] = Ĵ(vf j), but this would imply thatlm Ĵ (i) =

lm Ĵ(j). We cannot have bothlm Ĵ (i) = i andlm Ĵ(j) = j, and hence eithervf i or vf j would have

been assigned unique valuezi or zj, respectively. Thus, we can conclude thatĴ[vf i] 6= Ĵ[vf j] for
distinct variablesvf i andvf j.

In addition, we must show that interpretation̂J does not create any matches between a new
variablevf i and a function application termT in G that does not havef as the topmost function
symbol. SinceĴ is diverse with respect to� for G andf 2 �, any function application termT
in G that does not have function symbolf as its topmost symbol must havêJ [T ] 6= Ĵ[Ti] for all
1 � i � n. In addition, we havêJ [T ] 6= zi for all 1 � i � n. Hence, we must havêJ [T ] 6= J(vf i).
2

We must also show that the variables introduced when eliminating g-function applications do
not adversely affect the diversity of the other symbols.

Lemma 7 Let� be a subset of the symbols inG, and letĜ be the result of eliminating function
symbolf from G by introducing new domain variablesvf 1; : : : ; vf n. If f 62 �, then for any
interpretationJ that is diverse forG with respect to�, there is an interpretation̂J that is diverse
for Ĝ with respect to� such thatĴ [Ĝ] = J [G].

Proof: The proof of this lemma is based on a refinement of the proof of Lemma 4. Whereas the
construction in the earlier proof assigned arbitrary values to some of the new domain variables, we
select an assignment such that we do not inadvertently violate the diversity of the other function
symbols.

We defineĴ to be identical toJ for any symbol occurring inG. For each domain variablevf i
introduced when generating termUi, we defineĴ(vf i) = Ĵ[Ti]. This differs from the interpretation
defined in the proof of Lemma 4 only in that give fixed interpretations of domain variables that
could otherwise be arbitrary, and hence we have haveĴ [Ĝ] = J [G]. In fact, for every subexpres-
sionE of G, we have that its counterpart̂E in Ĝ satisfiesĴ [Ê] = J [E].

We must show that̂J is diverse forĜ with respect to�. We first observe that̂J is identical
to J for all function application terms inG, and hencêJ must be diverse forG with respect to
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�. We also observe that̂J assigns to each variablevf i the value off -application termTi. For
termT having the application of function symbolg 2 � as the topmost operation, we must have
Ĵ [T̂ ] = Ĵ[T ] 6= Ĵ [Ti] = J [vf i]. Hence, we are assured that the values assigned to the new variables
underĴ do not violate the diversity of the interpretations of the symbols in�. 2

Suppose we apply the transformation process of Theorem 2 to a p-formulaF to generate a
formulaF �, and that in this process, we introduce a set of new domain variablesV to replace the
applications of the p-function symbols. Let��

p(F ) be the union of the set of domain variables in
�p(F ) andV . That is,��

p(F ) consists of those domain variables in the original formulaF that were
p-function symbols as well as the domain variables generated when replacing applications of p-
function symbols. Let��

g(F ) be the domain variables inF � that are not in��
p(F ). These variables

were either g-function symbols inF or were generated when replacing g-function applications.

We observe that we can generate all maximally diverse interpretations ofF by considering
only interpretations of the variables inF � that assign distinct values to the variables in��

p(F ):

Theorem 3 PEUF formulaF is universally valid if and only if its translationF � is true for every
interpretationI� that is diverse over��

p(F ).

Proof: By Theorem 2, the universal validity ofF implies that ofF �. The theorem follows
by inducting on the number of function and predicate symbols inF having nonzero order. For
the induction step we use Lemma 6 when eliminating all applications of a p-function symbol, and
Lemma 7 when eliminating all applications of a g-function symbol. When eliminating a predicate
symbol, we do not introduce any new domain variables.2

4.3.1 Discussion

Ackermann also describes a scheme for replacing function application terms by domain variables
[Ack54]. His scheme simply replaces each instance of a function application by a newly-generated
domain variable and then introduces constraints expressing functional consistency as antecedents
to the modified formula. As an illustration, Figure 6 shows the result of applying his method to
formulaFeg of Equation 1. First, we replace the three applications of function symbolg with new
domain variablesvg1, vg2, andvg3. To maintain functional consistency we add constraints

(x=y) vg1=vg2) ^ (x=vg1) vg1=vg3) ^ (y=vg1) vg2=vg3)

as an antecedent to the modified formula. The result is shown in the middle of Figure 6, using
Boolean connectiveŝ, _, and: rather than). In this diagram, the three constraints listed above
form the middle three arguments of the final disjunction. A similar process is used to replace the
applications of function symbolh, adding a fourth constraintvg1= vg2 ^ vg3= vg3 ) vh1= vh2.
The result is shown at the bottom of Figure 6.

There is no clear way to exploit the maximal diversity with this translated form. For example,
if we consider only diverse interpretations of variablesvg1, vg2, andvg3, we will fail to consider
interpretations of the original formula for whichx equalsy.
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Figure 6: Ackermann’s Method for Replacing Function Applications inFeg.
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4.4 Using Fixed Interpretations of the Variables in��

p
(F )

We can further simplify the task of determining universal validity by choosing particular domains
of sufficient size and assigning fixed interpretations to the variables in��

p(F ). The next result
follows from Theorem 3.

Corollary 1 LetDp andDg be disjoint subsets of domainD such thatjDpj � j�
�
p(F )j andjDgj �

j��
g(F )j. Let � be any 1–1 mapping�: ��

p(F ) ! Dp. PEUF formulaF is universally valid if
and only if its translationF � is true for every interpretationI� such thatI�(vp) = �(vp) for every
variablevp 2 ��

p(F ), andI�(vg) 2 Dg for every variablevg 2 ��
g(F ).

Proof: Consider any interpretationJ� of the variables in��
p(F ) [ ��

g(F ) that is diverse over
��
p(F ). We show that we can construct an isomorphic interpretationI� that satisfies the restrictions

of the corollary.

LetD0p (respectively,D0g) be the range ofJ� considering only variables in��
p(F ) (resp.,��

g(F )).
The functionJ�: ��

p(F )! D0p must be a bijection and hence have an inverseJ��1:D0p ! ��
p(F ).

Furthermore, we must havejD0gj � j�
�
g(F )j � jDgj. Let �p be the 1–1 mapping�p:D0p ! Dp

defined for anyz inD0p, as�p(z) = �(J��1(z)). Let�g be an arbitrary 1–1 mapping�g:D0g ! Dg.
We now defineI� such that for any variablev in ��

p(F ) (respectively,��
g(F )) we haveI�(v) equal

to�p(J�(v)) (resp.,�g(J�(v))). Finally, for any propositional variablea, we letI�(a) equalJ�(a).

For any EUF formula, isomorphic interpretations will always yield identical valuations, giving
I�[F �] = J�[F �]. Hence the set of interpretations satisfying the restrictions of the corollary form
a sufficient set to prove the universal validity ofF �. 2

5 Reductions to Propositional Logic

We present two different methods of translating a PEUF formula into a propositional formula
that is tautological if and only if the original formula is universally valid. Both use the function
and predicate elimination method described in the previous section so that the translation can be
applied to a formulaF � containing only domain and predicate variables. In addition, we assume
that a subset of the domain variables��

p(F ) has been identified such that we only need to encode
interpretations that are diverse over these variables.

5.1 Translation Based on Bit Vector Interpretations

A formula such asF � containing only domain and propositional variables can readily be translated
into one in propositional logic, using the set of bit vectors of some lengthk greater than or equal
to log2m as the domain of interpretation for a formula containingm domain variables [VB98].
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Domain variables are represented with vectors of propositional variables. In this formulation, we
represent a domain variable as a vector of propositional variables, where truth valuefalse encodes
bit value 0, and truth valuetrue encodes bit value 1. In [VB98] we described an encoding scheme
in which theith domain variable is encoded as a bit vector of the formh0; : : : ; 0; ai;k�1; : : : ; ai;0i

wherek = dlog2 ie, and eachai;j is a propositional variable. This scheme can be viewed as
encoding interpretations of the domain variables over the integers where theith domain variable
ranges over the setf0; : : : ; i � 1g [PRSS99]. That is, it may equal any of its predecessors, or it
may be distinct.

We then recursively translateF � using vectors of propositional formulas to represent terms.
By this means we then reduceF � to a propositional formula that is tautological if and only ifF �,
and consequently the original EUF formulaF , is universally valid.

We can exploit positive equality by using fixed bit vectors, rather than vectors of propositional
variables when encoding variables in��

p(F ). Furthermore, we can construct our bit encodings
such that the vectors encoding variables in��

g(F ) never match the bit patterns encoding variables
in ��

p(F ). As an illustration, consider formulaFeg given by Equation 1 translated into formulaF �
eg

as diagrammed at the bottom of Figure 4. We need only encode interpretations of the variablesx,
y, vg1, vg2, vg 3, vh1, andvh2 that are diverse respect to the last five variables. Therefore, we can
assign 3-bit encodings to the seven variables as follows:

x h0; 0; 0i

y h0; 0; a1;0i

vg1 h0; 1; 0i

vg2 h0; 1; 1i

vg3 h1; 0; 0i

vh1 h1; 0; 1i

vh2 h1; 1; 0i

wherea1;0 is a propositional variable. This encoding uses the same scheme as [VB98] for the
variables in��

g(F ) but uses fixed bit patterns for the variables in��
p(F ). As a consequence, we

require just a single propositional variable to encode formulaF �
eg.

As a further refinement, we could apply methods devised by Pnueliet al. to reduce the size of
the domains associated with each variable in��

g(F ) [PRSS99]. This will in turn allow us to reduce
the number of propositional variables required to encode each domain variable in��

g(F ).

5.2 Translation Based on Pairwise Encodings of Term Equality

Goel et al. [GSZAS98] describe a method for generating a propositional formula from an EUF
formula, such that the propositional formula will be a tautology if and only if the EUF formula is
universally valid. They first use Ackermann’s method to eliminate function applications of nonzero

29



order [Ack54]. Then they introduce a propositional variableei;j for each pair of domain variables
vi andvj encoding the conditions under which the two variables have matching values. Finally,
they generate a propositional formula in terms of theei;j variables.

The propositional formula they generate does not enforce constraints among theei;j variables
due to the transitivity of equality, i.e., constraints of the formei;j ^ ej;k ) ei;k. As a result, in
attempting to prove the formula is a tautology, they may generate false “counterexamples.” They
express the set of potential counterexamples as a BDD and then systematically eliminate those that
contain transitivity violations.

We provide a modified formulation of their approach that exploits the properties of p-formulas
to encode only valuations under maximally diverse interpretations. As a consequence, we require
ei;j variables only to express equality among those domain variables that represent g-term values
in the original formula.

We describe a method of expressing the transitivity constraints in our formulas that exploits the
sparse structure of theei;j variables. In practice, we have actually found that our processor models
can be verified without enforcing any transitivity constraints. Apparently the transitivity conditions
that caused problems for Goelet al. correspond to p-terms in our verifications and hence do not
require any propositional variables.

5.2.1 Construction of Propositional Formula

Starting with p-formulaF , we apply our method of eliminating function applications to give a
formulaF � containing only domain and propositional variables. The domain variables inF � are
partitioned into sets��

p(F ), corresponding to p-function applications inF , and��
g(F ) correspond-

ing to g-function applications inF . Let us identify the variables in��
g(F ) asfv1; : : : ; vNg, and the

variables in��
p(F ) asfvN+1; : : : ; vN+Mg. We need only encode interpretations that are diverse in

this latter set of variables.

For values ofi andj such that1 � i < j � N , define propositional variablesei;j encoding
the equality relation between variablesvi andvj. We require these propositional variables only
for indices less than or equal toN . Higher indices correspond to variables in��

p(F ), and we can
assume for any such variablevi that it will equal variablevj only wheni = j.

For each termT in F �, and eachvi with 1 � i � N + M , we generate formulas of the form
enct i(T ) for 1 � i � N +M to encode the conditions under which the control formulas in the
ITEs in termT will be set so that value ofT becomes that of domain variablevi. In addition, for
each formulaG we define a propositional formulaencf (G) giving the encoded form ofG. These
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formulas are defined by mutual recursion. The base cases are:

encf (true)
:
= true

encf (false)
:
= false

encf (a)
:
= a; a is a propositional variable

enct i(vi)
:
= true

enct j(vi)
:
= false; For i 6= j

For the logical connectives, we defineencf in the obvious way:

encf (:G1)
:
= :encf (G1)

encf (G1 ^G2)
:
= encf (G1) ^ encf (G2)

encf (G1 _G2)
:
= encf (G1) _ encf (G2)

For ITE terms, we defineenct as:

enct i(ITE(G;T1; T2))
:
= encf (G) ^ enct i(T1) _ :encf (G) ^ enct i(T2)

For equations, we defineencf (T1=T2) to be

encf (T1=T2)
:
=

_
1�i;j�N

enct i(T1) ^ e[i;j] ^ enct j(T2) _
_

N+1�i�N+M

enct i(T1) ^ enct i(T2)

(6)

wheree[i;j] is defined for1 � i; j � N as:

e[i;j]
:
=

8><
>:

true i = j

ei;j i < j

ej;i i > j

Informally, Equation 6 expresses the property that there are two ways for a pair of terms to be
equal in an interpretation. The first way is if the two terms evaluate to the same variable, i.e.,
we have bothenct i(T1) andenct i(T2) hold for some variablevi. For 1 � i � N , the left hand
part of Equation 6 will hold sincee[i;i] = true. ForN + 1 � i � N , the right hand part of
Equation 6 will hold. The second way is that two terms will be equal under some interpretation
when they evaluate to two different variablesvi andvj that have the same value. In this case we
will have enct i(T1), enct j(T2), ande[i;j] hold, where1 � i; j � N . Observe that Equation 6
encodes only interpretations that are diverse overfvN+1; : : : ; vN+Mg. It makes use of the fact that
whenN + 1 � i � N +M , variablevi will only equal variablevj only if i = j.

As an example, Figure 7 shows an encoding of formulaF � given in Figure 4, which was
derived from the original formulaF shown in Figure 3. The variables in��

g(F
�) arex andy.

These are renamed asv1 andv2, givingN = 2. The variables in��
p(F

�) arevg1, vg2, vg3, vh1, and
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Figure 7: Encoding Example Formula in Propositional Logic. Each termT is represented as a list
giving the non-false values ofenct i(T ).

vh2. These are relabeled asv3 throughv7, givingM = 5. Each formula in the figure is annotated
by a (simplified) propositional formula, while each termT is annotated by a list with entries of the
form i: enct i(T ), for those entries such thatenct i(T ) 6= false. We use the shorthand notation “T”
for true and “F” for false. Our encoding introduces a single propositional variablee1;2. It can
be seen that our method encodes only the interpretations forF � labeled as D1 and D2 in Table 2.
Whene1;2 is false, we encode interpretation D2, in whichx 6= y and every function application
term yields a distinct value. Whene1;2 is true, we encode interpretation D1, in whichx = y and
hence we haveg(x) = g(y) andh(g(x); g(g(x))) = h(g(y); g(g(y))).

In general, the final result of the recursive translation will be a propositional formulaencf (F �).
The variables in this formula consist of the propositional variables that occur inF � as well as
a subset of the variables of the formei;j. Nothing in this formula enforces the transitivity of
equality. We will discuss in the next section how to impose transitivity constraints in a way that
exploits the sparse structure of the equations. Other than transitivity, we claim that the translation
encf (F �) captures validity ofF �, and consequently the original p-formulaF . For an interpretation
J over a set of propositional variables, including variables of the formei;j for 1 � i < j � N ,
we say thatJ obeys transitivitywhen for all i, j, andk such that1 � i; j; k � N we have
J [e[i;j]] ^ J [e[j;k]]) J [e[i;k]].

To formalize the intuition behind the encoding, letI� be an interpretation of the variables in
the translated formulaF �. For interpretationI�, definesel I�(T ) to be a function mapping each
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termT in F � to the index of the unique domain variable selected by the values of theITE control
formulas inT . That is,sel I�(vi)

:
= i, while sel I�(ITE(G;T1; T2)) is defined assel I�(T1) when

I�[G] = true and assel I�(T2) whenI�[G] = false.

Proposition 2 For all interpretationsI� of the variables inF � and any termT occurring inF �, if
sel I�(T ) = i, thenI�[T ] = I�(vi).

Lemma 8 For any interpretationI� of the variables inF � that is diverse for��
p(F ), there is an

interpretationJ of the variables inencf (F �) that obeys transitivity and such thatJ [encf (F �)] =

I�[F �].

Proof: For each propositional variablea occurring inF �, we defineJ(a) :
= I�(a). For each

pair of variablesvi andvj such that1 � i < j � N , we defineJ(ei;j) to betrue iff I�(vi) =

I�(vj). We can see thatJ must obey transitivity, because it is defined in terms of a transitive
relation inI�.

We prove the following hypothesis by induction on the expression depths:

1. For every formulaG in F �: J [encf (G)] = I�[G].

2. For every termT in F � and all i such that1 � i � N + M : J [enct i(T )] = true iff
sel I�(T ) = i.

The base cases hold as follows:

1. Formulas of the formtrue, false, anda haveencf (G) = G andJ [G] = I�[G].

2. Termvj hasJ [enct i(vj)] = true iff j = i, andsel I�(vj) = i iff j = i.

Assuming the induction hypothesis holds for formulasG1 andG2, one can readily see that it
will hold for formulas:G1, G1 ^G2, andG1 _G2, by the definition ofencf

Assuming the induction hypothesis holds for formulaG and for termsT1 andT2, consider term
T of the formITE(G;T1; T2). For the case whereI�[G] = true, we haveI�[T ] = I�[T1], and also
sel I�(T ) = sel I�(T1). The induction hypotheses forT1 givesJ [enct i(T1)] = true iff sel I�(T1) =

i. The induction hypothesis forG givesJ [encf (G)] = I�[G] = true, and henceJ [enct i(T )] =

J [enct i(T1)]. From all this, we can conclude thatJ [enct i(T )] = true iff sel I�(T ) = i. A similar
argument holds whenI�[G] = false, but based on the induction hypothesis forT2.

Finally, assuming the induction hypothesis holds for termsT1 andT2, consider the equation
T1 = T2. Suppose thatsel I�(T1) = i andsel I�(T2) = j. Our induction hypothesis forT1 andT2

give J [enct i(T1)] = J [enct j(T2)] = true. Suppose eitheri > N or j > N . Then we will have
I�(vi) = I�(vj) iff i = j. In addition, the right hand part of Equation 6 will hold underJ iff i = j.
Otherwise, suppose that1 � i; j � N . We will haveI�(vi) = I�(vj) iff J [e[i;j]] = true. In
addition, the left hand part of Equation 6 will hold underJ iff J [e[i;j]] = true 2
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Figure 8: Case Analysis for Part 3b of Proof of Lemma 9. Solid lines denote equalities, while
dashed lines denote inequalities.

Lemma 9 For every interpretationJ of the variables inencf (F �) that obeys transitivity, there is
an interpretationI� of the variables inF � such thatI[F �] = J [encf (F �)].

Proof: We define interpretationI� over the domain of integersf1; : : : ; N +Mg. For proposi-
tional variablea, we defineI�(a) = J(a). For1 � j � N we letI�(vj) be the minimum value ofi
such thatJ [e[i;j]] = true. ForN < j � N +M we letI�(vj) = j. Observe that this interpretation
givesI�(vj) � j for all j � N , sincee[j;j] = true, andI�(vj) = j for j > N .

We claim that fori � N , if I�(vj) = i, then we must haveI�(vi) = i as well. If instead we
hadI�(vi) = k < i, then we must haveJ [e[k;i]] = true. Combining this withJ [e[i;j]] = true, the
transitivity requirement would giveJ [e[k;j]] = true, but this would imply thatI�(vj) = k 6= i.

We prove the following hypothesis by induction on the expression depths:

1. For every formulaG in F �: I�[G] = J [encf (G)].

2. For every termT in F � and alli such that1 � i � N +M : sel I�(T ) = i iff J [enct i(T )] =

true.

The base cases hold as follows:

1. Formulas of the formtrue, false, anda haveG = encf (G) andI�[G] = J [G].

2. Termvj hassel I�(vj) = i iff j = i andJ [enct i(vj)] = true iff j = i.

Assuming the induction hypothesis holds for formulaG and for termsT1 andT2, consider term
T of the formITE(G;T1; T2). For the case whereJ [encf (G)] = true, we haveJ [enct i(T )] =

J [enct i(T1)]. The induction hypothesis forT1 givessel I�(T1) = i iff J [enct i(T1)] = true. The
induction hypothesis forG givesI�[G] = J [encf (G)] = true, giving I�[T ] = I�[T1], and also
sel I�(T ) = sel I�(T1). Combining all his givessel I�(T ) = i iff J [enct i(T )] = true. A similar
argument can be made whenJ [encf (G)] = false, but based on the induction hypothesis forT2.

Finally, assuming the induction hypothesis holds for termsT1 andT2, consider the equation
T1 = T2. Let i = sel I�(T1) andj = sel I�(T2). In addition, letk = I�(vi) and l = I�(vj). Our
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induction hypothesis givesJ [enct i(T1)] = true, andJ [enct j(T2)] = true. Proposition 2 gives
I�[T1] = k andI�[T2] = l. By our earlier argument, we must also haveI�(vk) = k andI�(vl) = l.
We consider different cases for the values ofi, j, k, andl.

1. Supposei > N . Then we must havek = I�(vi) = i. EquationT1 = T2 will hold underI�

iff I�(vj) = l = k, and this will hold iff j = l = k = i. In addition, the right hand part of
Equation 6 will hold underJ iff i = j.

2. Supposej > N . By an argument similar to the previous one, we will have equationT1=T2

holding under interpretationI� and Equation 6 holding under interpretationJ iff i = j.

3. Suppose1 � i; j � N . SinceI�(vi) = k = I�(vk) we must haveJ [e[k;i]] = true. Similarly,
sinceI�(vj) = l = I�(vl) we must haveJ [e[l;j]] = true.

(a) Supposek = l, and henceT1=T2 holds underI�. Then we haveJ [e[i;k]] = J [e[k;j]] =

true. Our transitivity requirement then givesJ [e[i;j]] = true, and hence the left hand
part of Equation 6 will hold underJ .

(b) Supposek 6= l, and henceT1 = T2 does not hold underI�. We must haveJ [e[k;l]] =
false. This condition is illustrated in the left hand diagram of Figure 8. In this figure
we use solid lines to denote equalities and dashed lines to denote inequalities. We argue
that we must also haveJ [e[i;j]] = false by the following case analysis fore[k;j]:

i. For J [e[k;j]] = true, we get the case diagrammed in the middle of Figure 8 where
the diagonal line creates a triangle with just one dashed line (inequality). This
represents a violation of our transitivity requirement, since it indicatesJ [e[k;j]] =

J [e[j;l]] = true, butJ [e[k;l]] = false.

ii. For J [e[k;j]] = false andJ [e[i;j]] = true, we have the case diagrammed on the
right side of Figure 8. Again we have a triangle with just one dashed line indicating
a violation of our transitivity requirement, withJ [e[k;i]] = J [e[i;j]] = true, but
J [e[k;j]] = false.

With J [e[i;j]] = false, Equation 6 will not hold underJ .

From this case analysis we see thatT1=T2 holds underI� iff Equation 6 holds underJ . 2

5.2.2 Transitivity Constraints

We may need to constrain our top level formula to only consider interpretations of the variables
of the formei;j that preserve the transitivity of equality. For example, if we have variablese1;2,
e2;3, ande1;3, we want to avoid interpretations that assign valuestrue to two of these variables,
but false to the third. On the other hand, there is no need add transitivity constraints for cases
where the equality of two subexpressions has no bearing on the truth of our top-level formula.
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Figure 9: Case Analysis for Proof of Lemma 10. Solid lines denote black edges (equalities), while
dashed lines denote red edges (inequalities).

We therefore propose a method of enforcing transitivity that exploits the sparse structure of the
equality comparisons. We view this task as one of generating a set of constraintsTrans, where
each constraint is a formula over theei;j variables. Our final verification condition is then expressed
as the formula[

V
G2Trans G]) encf (F �).

Let X denote the set of all variables of the formei;j occurring inencf (F �). Create an undi-
rected graph having a vertex for everyi such that1 � i � N , and an edge(i; j) for every variable
of the formei;j in X. For an interpretationJ of the variables inX, color edge(i; j) red when
J(xi;j) is false and color it black whenJ(xi;j) is true. One can see that this interpretation will
violate transitivity if and only if there is some cycle in the graph containing exactly one red edge.
This generalizes the case for triangles we saw in Figure 8, where red edges are denoted with dashed
lines. We must add constraints toTrans that eliminate such interpretations.

Rather than enumerating all of the cycles in the graph, we augment the setX with additional
variables of the formei;j such that the resulting graph becomeschordal. [Rose70]. That is, the
graph has the property that for every cycle of length greater than 3, there is an edge (called achord
of the cycle) connecting two vertices that are not adjacent in the cycle. Such graphs have been
studied extensively in the context of sparse Gaussian elimination. In fact, the problem of finding
a minimum set of additional variables to add to our set is identical to the problem of finding an
elimination ordering for Gaussian elimination that minimizes the amount of fill-in. Although this
problem is NP-complete [Yan81], there are good heuristic solutions.

Lemma 10 If a chordal graph contains no triangle having exactly one red edge, then it contains
no cycles containing exactly one red edge.

Proof: The proof proceeds by induction on the cycle length, with cycles of length 3 forming the
trivial base case. Assume some cycleC of lengthk greater than 3 contains exactly one red edge,
but no smaller cycles have this property. CycleC must have a chord splitting it into two cyclesC1

andC2, both of which are smaller thank, and both containing the chord. Assume without loss of
generality that the red edge ofC is in C1. Consider the two cases illustrated in Figure 9. If the
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chord is colored red (left), this would be the only red edge in cycleC2. If the chord is colored black
(right), then cycleC1 would contain the only red edge that occurs inC. In either case, we have
found a cycle of length less thank containing exactly one red edge, contradicting our assumption
aboutC. 2

Assume this augmentation yields a set of variablesX 0. Then for every value ofi, j, andk,
such thati < j andj < k, and such that there are variablesei;j, ei;k, andej;k in X 0, we add three
transitivity constraints toTrans: ei;j ^ ej;k ) ei;k, ei;k ^ ej;k ) ei;j, andei;j ^ ei;k ) ej;k. These
constraints guarantee that any interpretation of the variables inX 0 gives an edge coloring that has
no cycle of length 3 containing exactly one red edge. By Lemma 10 this property guarantees that
no larger cycle can have exactly one red edge, either, and hence the interpretation must satisfy
transitivity.

Theorem 4 P-formulaF is universally valid iff the propositional formula[
V
G2Trans G]) encf (F �)

is a tautology.

Proof: This theorem follows directly from Lemmas 6, 7, and 10.2

As mentioned earlier, we have found in practice that we can verify our microprocessor designs
without enforcing any transitivity constraints. The soundness of this optimization can be expressed
as follows:

Corollary 2 If propositional formula[
V
G2Trans0 G]) encf (F �) is a tautology for someTrans 0 �

Trans, then p-formulaF is universally valid.

5.2.3 Discussion

In the formulation by Goelet al., a propositional variable would be required for every pair of
function applications occurring in the original formula. In our case, we need only introduce these
variables for a subset of the pairs of g-function applications. For example, their method would
require 8 variables to encode the transformed version of formulaFeg shown in Figure 6, whereas
we require only 1 using either of our two encoding schemes. In addition, they found that adding
transitivity constraints to the propositional formula directly caused a blow-up of the BDDs when
evaluating the formula. In our case, we have far fewer variables, and we have proposed an approach
to add only a minimal number of additional variables and transitivity constraints.

6 Modeling Microprocessors in PEUF

Our interest is in verifying pipelined microprocessors, proving their equivalence to an unpipelined
instruction set architecture model. We use the approach pioneered by Burch and Dill [BD94] in
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which the abstraction function from pipeline state to architectural state is computed by symboli-
cally simulating a flushing of the pipeline state and then projecting away the state of all but the
architectural state elements, such as the register file, program counter, and data memory. Opera-
tionally, we construct two sets of p-terms describing the final values of the state elements resulting
from two different symbolic simulation sequences—one from the pipeline model and one from
the instruction set model. The correctness condition is represented by a p-formula expressing the
equality of these two sets of p-terms.

Our approach starts with an RTL or gate-level model of the microprocessor and performs a
series of abstractions to create a model of the data path using terms that satisfy the restrictions
of PEUF. Examining the structure of a pipelined processor, we find that the signals we wish to
abstract as terms can be classified as follows:

Program Data: Values generated by the ALU and stored in registers and data memory. These
are also used as addresses for the data memory.

Register Identifiers: Used to index the register file

Instruction Addresses: Used to designate which instructions to fetch

Control values: Status flags, opcodes, and other signals modeled at the bit level.

By proper construction of the data path model, both program data and instruction addresses can
be represented as p-terms. Register identifiers, on the other hand, must be modeled as g-terms,
because their comparisons control the stall and bypass logic. The remaining control logic is kept
at the bit level.

In order to generate such a model, we must abstract the operation of some of the processor
units. For example, the data path ALU is abstracted as an uninterpreted p-function, generating
a data value given its data and control inputs. Formally, this requires extending the syntax for
function applications to allow both formula and term inputs. We model the PC incrementer and
the branch target logic as uninterpreted functions generating instruction addresses. We model the
branch decision logic as an uninterpreted predicate indicating whether or not to take the branch
based on data and control inputs. This allows us to abstract away the data equality test used by the
branch-on-equal instruction.

To model the register file, we use the memory model described by Burch and Dill [BD94],
creating a nestedITE structure to encode the effect of a read operation based on the history of
writes to the memory. That is, suppose at some point we have performedk write operations with
addresses given by termsA1; : : : ; Ak and data given by termsD1; : : : ;Dk. Then the effect of a
read with address termA is a the term:

ITE(A=Ak;Dk; ITE(A=Ak�1;Dk�1; � � � ITE(A=A1;D1; fI(A)) � � �)) (7)

wherefI is an uninterpreted function expressing the initial memory state. Note that the presence
of these comparison andITE operations requires register identifiers to be modeled with g-terms.
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Since we view the instruction memory as being read-only, we can model the instruction mem-
ory as a collection of uninterpreted functions and predicates—each generating a different portion
of the instruction field. Some of these will be p-functions (for generating immediate data), some
will be g-functions (for generating register identifiers), and some will be predicates (for gener-
ating the different bits of the opcode). In practice, the interpretation of different portions of an
instruction word depends on the instruction type, essentially forming a “tagged union” data type.
Extracting and interpreting the different instruction fields during processor verification is an inter-
esting research problem, but it lies outside the scope of this paper.

The data memory provides a greater modeling challenge. Since the memory addresses are
generated by the ALU, they are considered program data, which we would like to model as p-terms.
However, using a memory model similar to that used for the register file requires comparisons
between addresses andITE operations having the comparison results as control. Instead, we must
create a more abstract memory model that weakens the semantics of a true memory to satisfy the
restrictions of PEUF. Our abstraction models a memory as a generic state machine, computing a
new state for each write operation based on the input data, address, and current state. Rather than
Equation 7, we would express the effect of a read with address termA after k write operations
asfr(Sk; A), wherefr is an uninterpreted “memory read” function, andSk is a term representing
the state of the memory after thek write operations. This term is defined recursively asS0 = s0,
wheres0 is a domain variable representing the initial state, andSi = fu(Si�1; Ai;Di) for i � 1,
wherefu is an uninterpreted “memory update” function. In essence, we view write operations as
making arbitrary changes to the entire memory state.

This model removes some of the correlations guaranteed by the read operations of an actual
memory. For example, although it will yield identical operations for two successive read operations
to the same address, it will indicate that possibly different result could be returned if these two reads
are separated by a write, even to a different address. In addition, if we write dataD to addressA and
then immediately read from this address, our model will not indicate that the resulting value must
beD. Nonetheless, it can readily be seen that this abstraction is a conservative approximation of
an actual memory. As long as the pipelined processor performs only the write operations indicated
by the program, that it performs writes in program order, and that the ordering of reads relative to
writes matches the program order, the two simulations will produce equal terms representing the
final memory states.

The remaining parts of the data path include comparators comparing for matching register
identifiers to determine bypass and stall conditions, and multiplexors, modeled asITE operations
selecting between alternate data and instruction address sources. Since register identifiers are
modeled as g-terms, these comparison and control combinations obey the restrictions of PEUF.
Finally, such operations as instruction decoding and pipeline control are modeled at the bit level
using Boolean operations.

39



7 Experimental Results

In [VB98], we described the implementation of a symbolic simulator for verifying pipelined sys-
tems using vectors of Boolean variables to encode domain variables, effectively treating all terms
as g-terms. This simulation is performed directly on a modified gate-level representation of the
processor. In this modified version, we replace all state holding elements (registers, memories,
and latches) with behavioral models we call Efficient Memory Models (EMMs). In addition all
data-transformation elements (e.g., ALUs, shifters, PC incrementers) are replaced by read-only
EMMs, which effectively implement the transformation of function applications into nestedITE
expressions described in Section 4.2. One interesting feature of this implementation is that our
decision procedure is executed directly as part of the symbolic simulation. Whereas other im-
plementations, including Burch and Dill’s, first generate a formula and then decide its validity,
our implementation generates and manipulates bit-vector representations of terms as the symbolic
simulation proceeds. Modifying this program to exploit positive equality simply involves having
the EMMs generate expressions containing fixed bit patterns rather than vectors of Boolean vari-
ables. All performance results presented here were measured on a 125 MHz Sun Microsystems
SPARC-20.

We constructed several simple pipeline processor design based on the MIPS instruction set
[KH92]. We abstract register identifiers as g-terms, and hence our verification covers all possible
numbers of program registers including the 32 of the MIPS instruction set. The simplest version
of the pipeline implements ten different Register-Register and Register-Immediate instructions.
Our program could verify this design in 48 seconds of CPU time and just 7 MB of memory using
vectors of Boolean variables to encode domain variables. Using fixed bit patterns reduces the
complexity of the verification to 6 seconds and 2 MB.

We then added a memory stage to implement load and store instructions. An interlock stalls
the processor one cycle when a load instruction is followed by an instruction requiring the loaded
result. Treating all terms as g-terms and using vectors of Boolean variables to encode domain
variables, we could not verify even a 4-bit version of this data path (effectively reducingjDj to
16), despite running for over 2000 seconds. The fact that both addresses and data for the memory
come from the register file induces a circular constraint on the ordering of BDD variables encoding
the terms. On the other hand, exploiting positive equality by using fixed bit patterns for register
values eliminates these variable ordering concerns. As a consequence, we could verify this design
in just 12 CPU seconds using 1.8 MB.

Finally, we verified a complete CPU, with a 5-stage pipeline implementing 10 ALU instruc-
tions, load and store, and MIPS instructionsj (jump with target computed from instruction word),
jr (jump using register value as target), andbeq (branch on equal). This design is comparable
to the DLX design [HP96] verified by Burch and Dill in [BD94], although our version contains
more of the implementation details. We were unable to verify this processor using the scheme of
[VB98]. Having instruction addresses dependent on instruction or data values leads to exponential
BDD growth when modeling the instruction memory. Modeling instruction addresses as p-terms,
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on the other hand, makes this verification tractable. We can verify the full, 32-bit version of the
processor using 169 CPU seconds and 7.5 MB.

8 Conclusions

Eliminating Boolean variables in the encoding of terms representing program data and instruction
addresses has given us a major breakthrough in our ability to verify pipelined processors. Our BDD
variables now only encode control conditions and register identifiers. For classic RISC pipelines,
the resulting state space is small and regular enough to be handled readily with BDDs.

We believe that there are many optimizations that will yield further improvements in the per-
formance of Boolean methods for deciding formulas involving uninterpreted functions. We have
found that relaxing functional consistency constraints to allow independent functionality of dif-
ferent instructions, as was done in [DPR98], can dramatically improve both memory and time
performance. We look forward to testing our scheme for generating a propositional formula using
Boolean variables to encode the relations between terms. Our method exploits positive equality
to greatly reduce the number of propositional variables in the generated formula, as well as the
number of functional consistency and transitivity constraints. We are also considering the use of
satisfiability checkers rather than BDDs for performing our tautology checking

We consider pipelined processor verification to be a “grand challenge” problem for formal
verification. We have found that complexity grows rapidly as we move to more complex pipelines,
including ones with out-of-order execution and register renaming. Further breakthroughs will be
required before we can handle complete models of state-of-the art processors.
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