
Symbolic Model Checking without BDDs

Armin Biere1 Alessandro Cimatti2 Edmund Clarke1

Yunshan Zhu1

January 4, 1999

CMU-CS-99-101

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Submitted for TACAS’99

1Computer Science Department, Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA15213, U.S.A
fArmin.Biere,Edmund.Clarke,Yunshan.Zhu g@cs.cmu.edu

2Istituto per la Ricerca Scientifica e Tecnologica (IRST)
via Sommarive 18, 38055 Povo (TN), Italy
cimatti@irst.itc.it

This research is sponsored by the Semiconductor Research Corporation (SRC) under Contract
No. 97-DJ-294 and the National Science Foundation (NSF) under Grant No. CCR-9505472.
Any opinions, findings and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of SRC, NSF, or the United States
Government.
The U. S. Government is authorized to reproduce and distribute reprints for Government pur-
poses notwithstanding any copyright notation thereon. This manuscript is submitted for pub-
lication with the understanding that the U. S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes.

Keywords: out-of-order execution, automatic verification, temporal logic, symbolic
model checking, boolean satisfiability

Abstract

Symbolic Model Checking [3, 14] has proven to be a powerful technique for the verification of
reactive systems. BDDs [2] have traditionally been used as a symbolic representation of the sys-
tem. In this paper we show how boolean decision procedures, like St˚almarck’s Method [16] or the
Davis & Putnam Procedure [7], can replace BDDs. This new technique avoids the space blow up
of BDDs, generates counterexamples much faster, and sometimes speeds up the verification. In
addition, it produces counterexamples of minimal length. We introduce abounded model check-
ingprocedure for LTL which reduces model checking to propositional satisfiability. We show that
bounded LTL model checking can be done without a tableau construction. We have implemented
a model checkerBMC , based on bounded model checking, and preliminary results are presented.

1 Introduction

Model checking [4] is a powerful technique for verifying reactive systems. Able to find
subtle errors in real commercial designs, it is gaining wide industrialacceptance. Com-
pared to other formal verification techniques (e.g. theorem proving) model checking is
largely automatic.

In model checking, the specification is expressed in temporal logic and the sys-
tem is modeled as a finite state machine. For realistic designs, the number of states of
the system can be very large and the explicit traversal of the state space becomes in-
feasible. Symbolic model checking [3, 14], with boolean encoding of the finite state
machine, can handle more than 1020 states. BDDs [2], a canonical form for boolean
expressions, have traditionally been used as the underlying representation for symbolic
model checkers [14]. Model checkers based on BDDs are usually able to handle sys-
tems with hundreds of state variables. However, for larger systems the BDDs generated
during model checking become too large for currently available computers. In addition,
selecting the right ordering of BDD variables is very important. The generation of a
variable ordering that results in small BDDs is often time consuming or needs manual
intervention. For many examples no space efficient variable ordering exists.

Propositional decision procedures (SAT) [7] also operate on boolean expressions
but do not use canonical forms. They do not suffer from the potential space explosion
of BDDs and can handle propositional satisfiability problems with thousands of vari-
ables. SAT based techniques have been successfully applied in various domains, such
as hardware verification [17], modal logics [9], formal verification of railway control
systems [1], and AI planning systems [11]. A number of efficient implementations are
available. Some notable examples are the PROVE tool [1] based on St˚almarck’s Method
[16], and SATO [18] based on the Davis & Putnam Procedure [7].

In this paper we present a symbolic model checking technique based on SAT pro-
cedures. The basic idea is to consider counterexamples of a particular lengthk and
generate a propositional formula that is satisfiable iff such a counterexample exists. In
particular, we introduce the notion ofbounded model checking, where the bound is the
maximal length of a counterexample. We show that bounded model checking for lin-
ear temporal logic (LTL) can be reduced to propositional satisfiability in polynomial
time. To prove the correctness and completeness of our technique, we establish a cor-
respondence between bounded model checking and model checking in general. Unlike
previous approaches to LTL model checking, our method does not require a tableau or
automaton construction.

The main advantages of our technique are the following. First, bounded model
checking finds counterexamples very fast. This is due to the depth first nature of SAT
search procedures. Finding counterexamples is arguably the most important feature of
model checking. Second, it finds counterexamples of minimal length. This feature helps
the user to understand a counterexample more easily. Third, bounded model check-
ing uses much less space than BDD based approaches. Finally, unlike BDD based ap-
proaches, bounded model checking does not need a manually selected variable order or
time consuming dynamic reordering. Default splitting heuristics are usually sufficient.

To evaluate our ideas we have implemented a toolBMC based on bounded model
checking. We give examples in which SAT based model checking significantly out-

performs BDD based model checking. In some cases bounded model checking detects
errors instantly, while the BDDs for the initial state cannot be built.

The paper is organized as follows. In the following section we explain the basic
idea of bounded model checking with an example. In Section 3 we give the semantics
for bounded model checking. Section 4 explains the translation of a bounded model
checking problem into a propositional satisfiability problem. In Section 5 we discuss
bounds on the length of counterexamples. In Section 6 our experimental results are
presented, and Section 7 describes some directions for future research.

2 Example

Consider the following simple state machineM that consists of a three bit shift register
x with the individual bits denoted byx[0];x[1], andx[2]. The predicateT(x;x0) denotes
the transition relation between current state valuesx and next state valuesx0 and is
equivalent to:

(x0[0] = x[1])^ (x0[1] = x[2])^ (x0[2] = 1)

In the initial state the content of the registerx can be arbitrary. The predicateI(x) that
denotes the set of initial states istrue.

This shift register is meant to be empty (all bits set to zero) after three consecu-
tive shifts. But we introduced an error in the transition relation for the next state value
of x[2], where an incorrect value 1 is used instead of 0. Therefore, the property, that
eventually the register will be empty (written asx= 0) after a sufficiently large number
of steps is not valid. This property can be formulated as the LTL formulaF(x = 0).
We translate the “universal” model checking problemAF(x = 0) into the “existential”
model checking problemEG(x 6= 0) by negating the formula. Then, we check if there
is an execution sequence that fulfillsG(x 6= 0). Instead of searching for an arbitrary
path, we restrict ourselves to paths that have at mostk+1 states, for instance we choose
k= 2. Call the first three states of this pathx0, x1 andx2 and letx0 be the initial state (see
Figure 1). Since the initial content ofx can be arbitrary, we do not have any restriction

x
0

x

x

x
0

0

0

[0]

[1]

[2]

x

x

x

x [0]

[1]

[2]

1

1

1

1
x

x

x

x [0]

[1]

[2]

2

2

2

2

L0
L1

L2

Fig. 1.Unrolling the transition relation twice and adding a back loop.

on x0. We unroll the transition relation twice and derive the propositional formulafm
defined asI(x0)^T(x0;x1)^T(x1;x2). We expand the definition ofT andI , and get the

following formula.

(x1[0] = x0[1]) ^ (x1[1] = x0[2]) ^ (x1[2] = 1) ^ 1st step

(x2[0] = x1[1]) ^ (x2[1] = x1[2]) ^ (x2[2] = 1) 2nd step

Any path with three states that is a “witness” forG(x 6= 0) must contain a loop. Thus,
we require that there is a transition fromx2 back to the initial state, to the second state,
or to itself (see also Figure 1). We represent this transition asLi defined asT(x2;xi)
which is equivalent to the following formula.

(xi [0] = x2[1]) ^ (xi [1] = x2[2]) ^ (xi [2] = 1)

Finally, we have to make sure that this path will fulfill the constraints imposed by the
formulaG(x 6= 0). In this case the propertySi defined asxi 6= 0 has to hold at each state.
Si is equivalent to the following formula.

(xi [0] = 1)_ (xi[1] = 1)_ (xi [2] = 1)

Putting this all together we derive the following propositional formula.

fM ^
2_

i=0

Li ^

2̂

i=0

Si (1)

This formula is satisfiable iff there is a counterexample of length 2 for the original
formulaF(x = 0). In our example we find a satisfying assignment for(1) by setting
xi [j] := 1 for all i; j = 0;1;2.

3 Semantics

ACTL* is defined as the subset of formulas of CTL* [8] that are in negation normal
form and contain only universal path quantifiers. A formula is innegation normal
form (NNF) if negations only occur in front of atomic propositions. ECTL* is de-
fined in the same way, but only existential path quantifiers are allowed. We consider
thenext timeoperator ‘X’, the eventualityoperator ‘F’, the globallyoperator ‘G’, and
theuntil operator ‘U’. We assume that formulas are in NNF. We can always transform
a formula in NNF without increasing its size by including thereleaseoperator ‘R’
(f R g iff :(: f U :g)). In an LTL formula no path quantifiers (E or A) are allowed. In
this paper we concentrate on LTL model checking. Our technique can be extended to
handle full ACTL* (resp. ECTL*).

Definition 1. A Kripke structureis a tuple M= (S; I ;T; `) with a finite set of states S,
the set of initial states I� S, a transition relation between states T� S�S, and the
labeling of the states̀:S! P (A) with atomic propositionsA .

We use Kripke structures as models in order to give the semantics of the logic. For
the rest of the paper we consider only Kripke structures for which we have aboolean en-
coding. We require thatS= f0;1gn, and that each state can be represented by a vector of

state variabless= (s(1); : : :;s(n)) wheres(i) for i = 1; : : :;n are propositional variables.
We define propositional formulasfI (s), fT(s; t) and fp(s) as: fI (s) iff s2 I , fT(s; t) iff
(s; t)2 T, and fp(s) iff p2 `(s). For the rest of the paper we simply useT(s; t) instead
of fT(s; t) etc. In addition, we require that every state has a successor state. That is, for
all s2Sthere is at 2Swith (s; t)2 T. For(s; t)2 T we also writes! t. For an infinite
sequence of statesπ = (s0;s1; : : :) we defineπ(i) = si andπi = (si ;si+1; : : :) for i 2 IN.
An infinite sequence of statesπ is apathif π(i)! π(i +1) for all i 2 IN.

Definition 2 (Semantics).Let M be a Kripke structure,π be a path in M and f be an
LTL formula. Thenπ j= f (f is valid alongπ) is defined as follows.

π j= p iff p2 `(π(0)) π j= :p iff p 62 `(π(0))

π j= f ^g iff π j= f andπ j= g π j= f _g iff π j= f or π j= g

π j= G f iff 8i: πi j= f π j= F f iff 9i: πi j= f

π j= X f iff π1 j= f

π j= f U g iff 9i [πi j= g and 8 j ; j < i: π j j= f]

π j= f R g iff 8i [πi j= g or 9 j ; j < i: π j j= f]

Definition 3 (Validity). An LTL formula f isuniversally validin a Kripke structure M
(in symbols Mj= A f) iff π j= f for all pathsπ in M with π(0) 2 I. An LTL formula f is
existentially validin a Kripke structure M (in symbols Mj= E f) iff there exists a path
π in M with π j= f andπ(0) 2 I.

Determining whether an LTL formulaf is existentially (resp. universally) valid in a
given Kripke structure is called anexistential(resp.universal) model checking problem.

In conformance to the semantics of CTL* [8], it is clear that an LTL formulaf is
universally valid in a Kripke structureM iff : f is not existentially valid. In order to
solve the universal model checking problem, we negate the formula and show that the
existential model checking problem for the negated formula has no solution. Intuitively,
we are trying to find a counterexample, and if we do not succeed then the formula
is universally valid. Therefore, in the theory part of the paper we only consider the
existential model checking problem.

The basic idea ofbounded model checkingis to consider only afinite prefixof a path
that may be a solution to an existential model checking problem. We restrict the length
of the prefix by a certain boundk. In practice we progressively increase the bound,
looking for longer and longer possible counterexamples.

A crucial observation is that, though the prefix of a path is finite, it still might repre-
sent an infinite path if there is aback loopfrom the last state of the prefix to any of the
previous states (see Figure 2(b)). If there is no such back loop (see Figure 2(a)), then
the prefix does not say anything about the infinite behavior of the path. For instance,
only a prefix with a back loop can represent a witness forGp. Even if p holds along all
the states froms0 to sk, but there is no back loop fromsk to a previous state, then we
cannot conclude that we have found a witness forGp, sincep might not hold atsk+1.

Definition 4. For l � k we call a pathπ a (k; l)-loop if π(k)! π(l) andπ = u�vω with
u= (π(0); : : :;π(l � 1)) and v= (π(l); : : :;π(k)). We callπ simply a k-loop if there is
an l 2 IN with l � k for whichπ is a (k; l)-loop.

SkSi SkSiSl

(a) no loop (b) (k; l)-loop

Fig. 2.The two cases for aboundedpath.

We give aboundedsemantics that is an approximation to the unbounded semantics
of Definition 2. It allows us to define the bounded model checking problem and in the
next section we will give a translation of a bounded model checking problem into a
satisfiability problem.

In the bounded semantics we only consider a finite prefix of a path. In particular,
we only use the firstk+ 1 states (s0; : : :;sk) of a path to determine the validity of a
formula along that path. If a path is ak-loop then we simply maintain the original LTL
semantics, since all the information about this (infinite) path is contained in the prefix
of lengthk.

Definition 5 (Bounded Semantics for a Loop).Let k2 IN andπ be a k-loop. Then an
LTL formula f isvalid along the pathπ with boundk (in symbolsπ j=k f) iff π j= f .

Assume thatπ is not ak-loop. Then the formulaf := Fp is valid alongπ in the
unbounded semantics if we can find an indexi 2 IN such thatp is valid along the suffix
πi of π. In the bounded semantics the(k+ 1)-th stateπ(k) does not have a successor.
Therefore, we cannot define the bounded semantics recursively oversuffixes(e.g.πi) of
π. We keep the originalπ instead but add a parameteri in the definition of the bounded
semantics and use the notationj=i

k. The parameteri is the current position in the prefix
of π. In Lemma 7 we will show thatπ j=i

k f impliesπi j= f .

Definition 6 (Bounded Semantics without a Loop).Let k2 IN, and letπ be a path
that isnot a k-loop. Then an LTL formula f isvalid alongπ with boundk (in symbols
π j=k f) iff π j=0

k f where

π j=i
k p iff p2 `(π(i)) π j=i

k :p iff p 62 `(π(i))

π j=i
k f ^g iff π j=i

k f andπ j=i
k g π j=i

k f _g iff π j=i
k f or π j=i

k g

π j=i
k G f is always false π j=i

k F f iff 9 j ; i � j � k: π j= j
k f

π j=i
k X f iff i < k andπ j=i+1

k f

π j=i
k f U g iff 9 j ; i � j � k [π j= j

k g and 8n; i � n< j : π j=n
k f]

π j=i
k f R g iff 9 j ; i � j � k [π j= j

k f and 8n; i � n� j : π j=n
k g]

Note that ifπ is not ak-loop, then we say thatG f is not valid alongπ in the bounded
semantics with boundk since f might not hold alongπk+1. Similarly, the case forf R g
whereg always holds andf is never fulfilled has to be excluded. These constraints

imply that for the bounded semantics the duality ofG andF (:F f � G: f) and the
duality ofR andU (:(f U g)� (: f) R (:g)) no longer hold.

The existential and universal bounded model checking problems are defined in the
same manner as in Definition 3. Now we describe how the existential model checking
problem (M j= E f) can be reduced to aboundedexistential model checking problem
(M j=k E f).

Lemma 7. Let h be an LTL formula andπ a path, thenπ j=k h) π j= h

Proof. If π is ak-loop then the conclusion follows by definition. In the other case we
assume thatπ is not a loop. Then we prove by induction over the structure off and
i � k the stronger propertyπ j=i

k h) πi j= h. We only consider the most complicated
caseh= f R g.

π j=i
k f R g , 9 j ; i � j � k [π j= j

k f and 8n; i � n� j : π j=n
k g]

) 9 j ; i � j � k [π j j= f and 8n; i � n� j : πn j= g]

) 9 j ; i � j [π j j= f and 8n; i � n� j : πn j= g]

Let j 0 = j � i andn0 = n� i

) 9 j 0 [πi+ j 0 j= f and 8n0; n0 � j 0: πi+n0

j= g]

) 9 j [(πi) j j= f and 8n; n� j : (πi)n j= g]

) 8n [(πi)n j= g or 9 j ; j < n: (πi) j j= f]

) πi j= f R g

In the next-to-last step we used the following fact:

9m [πm
j= f and8l ; l �m: πl

j= g]) 8n [πn
j= g or 9 j ; j < n: π j

j= f]

Assume thatm is the smallest number such thatπm j= f andπl j= g for all l with l �m.
In the first case we considern> m. Based on the assumption, there existsj < n such
thatπ j j= f (choosej = m). The second case isn�m. Becauseπl j= g for all l �mwe
haveπn j= g for all n� m. Thus, for alln we have proven that the disjunction on the
right hand side is fulfilled. ut

Lemma 8. Let f be an LTL formula f and M a Kripke structure. If Mj= E f then there
exists k2 IN with M j=k E f

Proof. In [3, 5, 12] it is shown that an existential model checking problem for an LTL
formula f can be reduced to FairCTL model checking of the formulaEGtrue in a
certain product Kripke structure. This Kripke structure is the product of the original
Kripke structure and a “tableau” that is exponential in the size of the formulaf in the
worst case. If the LTL formulaf is existentially valid inM then there exists a path
in the product structure that starts with an initial state and ends with a cycle in the
strongly connected component of fair states. This path can be chosen to be ak-loop
with k bounded byjSj �2j f j which is the size of the product structure. If we project this
path onto its first component, the original Kripke structure, then we get a pathπ that is
ak-loop and in addition fulfillsπ j= f . By definition of the bounded semantics this also
impliesπ j=k f . ut

The main theorem of this section states that, if we take all possible bounds into
account, then the bounded and unbounded semantics are equivalent.

Theorem 9. Let f be an LTL formula, M a Kripke structure. Then Mj= E f iff there
exists k2 IN with M j=k E f .

4 Translation

In the previous section, we defined the semantics for bounded model checking. We now
reduce bounded model checking to propositional satisfiability. This reduction enables
us to use efficient propositional decision procedures to perform model checking.

Given a Kripke structureM, an LTL formula f and a boundk, we will construct a
propositional formula[[M; f]]k. The variabless0; : : :;sk in [[M; f]]k denote a finite se-
quence of states on a pathπ. Eachsi is a vector of state variables. The formula[[M; f]]k
essentially represents constraints ons0; : : :;sk such that[[M; f]]k is satisfiable iff f is
valid alongπ.

The size of[[M; f]]k is polynomial in the size off if common subformulas are
shared (as in our toolBMC). It is quadratic ink and linear in the size of the propositional
formulas forT, I and thep 2 A . Thus, existential bounded model checking can be
reduced in polynomial time to propositional satisfiability.

To construct[[M; f]]k, we first define a propositional formula[[M]]k that constrains
s0; : : :;sk to be on a valid pathπ in M. Second, we give the translation of an LTL formula
f to a propositional formula that constrainsπ to satisfy f .

Definition 10 (Unfolding the Transition Relation). For a Kripke structure M, k2 IN

[[M]]k := I(s0)^
k�1̂

i=0

T(si ;si+1)

Depending on whether a path is ak-loop or not (see Figure 2), we have two different
translations of the temporal formulaf . In Definition 11 we describe the translation if
the path is not a loop (“[[�]]ik”). The more technical translation where the path is a loop
(“ l [[�]]

i
k”) is given in Definition 13.

Consider the formulah := p U q and a pathπ that is not ak-loop for a givenk2 IN
(see Figure 2(a)). Starting atπi for i 2 IN with i � k the formulah is valid alongπi with
respect to the bounded semantics iff there is a positionj with i � j � k andq holds
at π(j). In addition, for all statesπ(n) with n 2 IN starting atπ(i) up to π(j � 1) the
propositionp has to be fulfilled. Therefore the translation is simply a disjunction over
all possible positionsj at whichq eventually might hold. For each of these positions
a conjunction is added that ensures thatp holds along the path fromπ(i) to π(j � 1).
Similar reasoning leads to the translation of the other temporal operators.

The translation “[[�]]ik” maps an LTL formula into a propositional formula. The
parameterk is the length of the prefix of the path that we consider andi is the current
position in this prefix (see Figure 2(a)). When we recursively process subformulas,i
changes butk stays the same. Note that we define the translation of any formulaG f as
false. This translation is consistent with the bounded semantics.

Definition 11 (Translation of an LTL Formula without a Loop). For an LTL formula
f and k; i 2 IN, with i� k

[[p]]ik := p(si) [[:p]]ik := :p(si)

[[f ^g]]ik := [[f]]ik^ [[g]]ik [[f _g]]ik := [[f]]ik_ [[g]]ik

[[G f]]ik := false [[F f]]ik :=
Wk

j=i[[f]] j
k

[[X f]]ik := if i < k then [[f]]i+1
k else false

[[f U g]]ik :=
Wk

j=i

�
[[g]] j

k ^
V j�1

n=i [[f]]nk

�
[[f R g]]ik :=

Wk
j=i

�
[[f]] j

k ^
V j

n=i [[g]]nk

�
Now we consider the case where the path is ak-loop. The translation “l [[�]]

i
k” of an

LTL formula depends on the current positioni and on the length of the prefixk. It also
depends on the position where the loop starts (see Figure 2(b)). This position is denoted
by l for loop.

Definition 12 (Successor in a Loop).Let k; l ; i 2 IN, with l; i � k. Define the successor
succ(i) of i in a (k; l)-loop assucc(i) := i +1 for i < k andsucc(i) := l for i = k.

Definition 13 (Translation of an LTL Formula for a Loop). Let f be an LTL formula,
k; l ; i 2 IN, with l; i � k.

l [[p]]ik := p(si) l [[:p]]ik := :p(si)

l [[f ^g]]ik := l [[f]]ik ^ l [[g]]ik l [[f _g]]ik := l [[f]]ik _ l [[g]]ik

l [[G f]]ik :=
Vk

j=min(i;l) l [[f]] j
k l [[F f]]ik :=

Wk
j=min(i;l) l [[f]] j

k

l [[X f]]ik := l [[f]]succ(i)
k

l [[f U g]]ik :=
Wk

j=i

�
l [[g]] j

k ^
V j�1

n=i l [[f]]nk

�
_

Wi�1
j=l

�
l [[g]] j

k ^
Vk

n=i l [[f]]nk ^
V j�1

n=l l [[f]]nk

�
l [[f R g]]ik :=

Vk
j=min(i;l) l [[g]] j

k _

Wk
j=i

�
l [[f]] j

k ^
V j

n=i l [[g]]nk

�
_

Wi�1
j=l

�
l [[f]] j

k ^
Vk

n=i l [[g]]nk ^
V j

n=l l [[g]]nk

�
The translation of the formula depends on the shape of the path (whether it is a loop

or not). We now define a loop condition to distinguish these cases.

Definition 14 (Loop Condition). For k; l 2 IN, let l Lk := T(sk;sl); Lk :=
Wk

l=0 l Lk

Definition 15 (General Translation).Let f be an LTL formula, M a Kripke structure
and k2 IN

[[M; f]]k := [[M]]k^

 �
:Lk^ [[f]]0k

�
_

k_

l=0

�
l Lk^ l [[f]]0k

�!

The left side of the disjunction is the case where there is no back loop and the
translation without a loop is used. On the right side all possible startsl of a loop are
tried and the translation for a(k; l)-loop is conjuncted with the correspondingl Lk loop
condition.

Theorem 16. [[M; f]]k is satisfiable iff Mj=k E f .

Corollary 17. M j= A: f iff [[M; f]]k is unsatisfiable for all k2 IN.

5 Determining the bound

In Section 3 we have shown that the unbounded semantics is equivalent to the bounded
semantics if we consider all possible bounds. This equivalence leads to a straightfor-
ward LTL model checking procedure. To check whetherM j= E f , the procedure checks
M j=k E f for k = 0;1;2; : : :. If M j=k E f , then the procedure proves thatM j= E f and
produces a witness of lengthk. If M 6j= E f , we have to increment the value ofk indefi-
nitely, and the procedure does not terminate. In this section we establish several bounds
onk. If M 6j=k E f for all k within the bound, we conclude thatM 6j= E f .

5.1 ECTL

ECTL is a subset of ECTL* where each temporal operator is preceded by one existential
path quantifier. We have extended bounded model checking to handle ECTL formulas.
Semantics and translation for ECTL formulas can be found in the full version of this
paper. In general, better bounds can be derived for ECTL formulas than for LTL formu-
las. The intersection of the two sets of formulas includes many temporal properties of
practical interest (e.g.EFp andEGp). Therefore, we include the discussion of bounds
for ECTL formulas in this section.

Theorem 18. Given an ECTL formula f and a Kripke structure M. LetjMj be the
number of states in M, then Mj= E f iff there exists k� jMjwith M j=k E f .

In symbolic model checking, the number of states in a Kripke structure is bounded
by 2n, wheren is the number of boolean variables to encode the Kripke structure.
Typical model checking problems involve Kripke structures with tens or hundreds of
boolean variables. The bound given in Theorem 18 is often too large for practical prob-
lems.

Definition 19 (Diameter).Given a Kripke structure M, thediameterof M is the mini-
mal number d2 IN with the following property. For every sequence of states s0; : : :;sd+1
with (si ;si+1) 2 T for i� d, there exists a sequence of states t0; : : :; tl where l� d such
that t0 = s0, tl = sd+1 and(t j; t j+1)2 T for j < l. In other words, if a state v is reachable
from a state u, then v is reachable from u via a path of length d or less.

Theorem 20. Given an ECTL formula f:= EFp and a Kripke structure M with diam-
eter d, Mj= EFp iff there exists k� d with M j=k EFp.

Theorem 21. Given a Kripke structure M, its diameter d is the minimal number that
satisfies the following formula.

8s0; : : :;sd+1: 9t0; : : :; td:
d̂

i=0

T(si ;si+1)! (t0 = s0^

d�1̂

i=0

T(ti; ti+1)^
d_

i=0

ti = sd+1)

For a Kripke structure with explicit state representation, well-known graph algo-
rithms can be used to determine its diameter. For a Kripke structureM with a boolean
encoding, one may verify thatd is indeed a diameter ofM by evaluating a quantified
boolean formula (QBF), shown in Theorem 21. We conjecture that a quantified boolean
formula is necessary to express the property thatd is the diameter ofM. Unfortunately,
we do not know of an efficient decision procedure for QBF.

Definition 22 (Recurrence Diameter).Given a Kripke structure M, itsrecurrence di-
ameteris the minimal number d2 IN with the following property. For every sequence
of states s0; : : :;sd+1 with (si ;si+1)2 T for i� d, there exists j� d such that sd+1 = sj .

Theorem 23. Given an ECTL formula f and a Kripke structure M with recurrence
diameter d, Mj= E f iff there exists k� d with M j=k E f .

Theorem 24. Given any Kripke structure M, its recurrence diameter d is the minimal
number that satisfies the following formula

8s0; : : :;sd+1:

d̂

i=0

T(si ;si+1)!
d_

i=0

si = sd+1

The recurrence diameter in Definition 22 is a bound onk for bounded model check-
ing that is applicable for all ECTL formulas. The property of a recurrence diameter can
be expressed as a propositional formula as shown in Theorem 24. We may use a propo-
sitional decision procedure to determine whether a numberd is the recurrence diameter
of a Kripke structure. The bound based on recurrence diameter is not as tight as that
based on the diameter. For example, in a fully connected Kripke structure, the graph
diameter is 1 while the recurrence diameter equals the number of states.

5.2 LTL

LTL model checking is known to be PSPACE-complete [15]. In section 4, we reduced
bounded LTL model checking to propositional satisfiability and thus showed that it is in
NP. Therefore, a polynomial bound onk with respect to the size ofM and f for which
M j=k E f , M j= E f is unlikely to be found. Otherwise, there would be a polyno-
mial reduction of LTL model checking problems to propositional satisfiability and thus
PSPACE = NP.

Theorem 25. Given an LTL formula f and a Kripke structure M, letjMj be the number
of states in M, then Mj= E f iff there exists k� jMj�2j f j with M j=k E f .

For the subset of LTL formulas that involves only temporal operatorsF andG, LTL
model checking is NP-complete [15]. For this subset of LTL formulas, it can be shown
that there exists a bound onk linear in the number of states and the size of the formula.

Definition 26 (Loop Diameter).We say a Kripke structure M islasso shapedif every
path p starting from an initial state is of the form upvω

p , where up and vp are finite
sequences of length less or equal to u and v, respectively. We define theloop diameter
of M as(u;v).

Theorem 27. Given an LTL formula f and a lasso-shaped Kripke structure M, let the
loop diameter of M be(u;v), then Mj= E f iff there exists k� u+v with M j=k E f .

Theorem 27 shows that for a restricted class of Kripke structures, small bounds on
k exist. In particular, if a Kripke structure is lasso shaped,k is bounded byu+v, where
(u;v) is the loop diameter ofM.

6 Experimental Results

We have implemented a model checkerBMC based on bounded model checking. Its
input language is a subset of the SMV language [14]. It outputs a SMV program or
a propositional formula. For the propositional output mode, two different formats are
supported. The first format is the DIMACS format [10] for satisfiability problems. The
SATO tool [18] is a very efficient implementation of the Davis & Putnam Procedure [7]
and it uses the DIMACS format. We also support the input format of the PROVE Tool
[1] which is based on St˚almarck’s Method [16].

As benchmarks we chose examples where BDDs are known to behave badly. First
we investigated a sequential multiplier, the sequential shift and add multiplier of [6].
We formulated asmodel checkingproblem the following property: when the sequential
multiplier is finished its output is the same as the output of a combinational multiplier
(the C6288 circuit from the ISCAS’85 benchmarks) applied to the same input words.
These multipliers are 16x16 bit multipliers but we only allowed 16 output bits as in [6]
together with an overflow bit. We proved the property for each output bit individually
and the results are shown in Table 1. For SATO we conducted two experiments to study
the effect of the ‘-g’ parameter that controls the maximal size of cached clauses. We
picked a very small value (‘-g 5’) and a very large value (‘-g 50’). Note that the overflow
bit depends on all the bits of the sequential multiplier and occurs in the specification.
Thus, cone of influence reduction could not remove anything.

In the columnSMV1 of Table 1 the official version of the CMU model checker
SMV was used.SMV2 is a version by Bwolen Yang from CMU with improved support
for conjunctive partitioning. We used a manually chosen variable ordering where the
bits of registers are interleaved. Dynamic reordering failed to find a considerably better
ordering in a reasonable amount of time.

We used a barrel shifter as another example. It rotates the contents of a register file
b with each step by one position. The model also contains another register filer that is
related tob in the following way. If a register inr and one inb have the same contents
then their neighbors also have the same contents. This property holds in the initial state
of the model, and we proved that it is valid in all successor states. The results of this
experiment can be found in Table 2. The width of the registers is chosen to bedlog2 jrje
wherejrj is the number of registers in the register filer. In this case we were also able

SMV1 SMV2 SATO -g5 SATO -g50 PROVE
bit sec MB sec MB sec MB sec MB sec MB
0 919 13 25 79 0 0 0 1 0 1
1 1978 13 25 79 0 0 0 1 0 1
2 2916 13 26 80 0 0 0 2 0 1
3 4744 13 27 82 0 0 0 3 1 2
4 6580 15 33 92 2 0 3 4 1 2
5 10803 25 67 102 12 0 36 7 1 2
6 43983 73 258 172 55 0 208 10 2 2
7 >17h 1741 492 209 0 642 13 7 3
8 >1GB 473 0 1198 16 29 3
9 856 1 2413 20 58 3
10 1837 1 2055 20 91 3
11 2367 1 1667 19 125 3
12 3830 1 976 17 156 4
13 5128 1 4363 25 186 4
14 4752 1 2170 23 226 4
15 4449 1 6847 31 183 5

sum 71923 2202 23970 22578 1066

Table 1.16x16 bit sequential shift and add multiplier with overflow flag and 16 output bits (sec
= seconds, MB = Mega Byte).

to prove the recurrence diameter (see Definition 22) to bejrj. This took only very little
time compared to the total verification time and is shown in the column “diameter”.

In [13] an asynchronous circuit for distributed mutual exclusion is described. It con-
sists ofn cells forn users that want to have exclusive access to a shared resource. We
proved the liveness property that a request for using the resource will eventually be
acknowledged. This liveness property is only true if each asynchronous gate does not
delay execution indefinitely. We model this assumption by a fairness constraint for each
individualgate. Each cell has exactly 18 gates and therefore the model hasn�18 fairness
constraints wheren is the number of cells. Since we do not have a bound for the max-
imal length of a counterexample for the verification of this circuit we could not verify
the liveness property completely. We only showed that there are no counterexamples of
particular lengthk. To illustrate the performance of bounded model checking we have
chosenk = 5;10. The results can be found in Table 3.

We repeated the experiment with a buggy design. For the liveness property we sim-
ply removed several fairness constraints. Both PROVE and SATO generate a counterex-
ample (a 2-loop) instantly (see Table 4).

7 Conclusion

This work is the first step in applying SAT procedures to symbolic model checking.
We believe that our technique has the potential to handle much larger designs than
what is currently possible. Towards this goal, we propose several promising directions

of research. We would like to investigate how to use domain knowledge to guide the
search in SAT procedures. New techniques are needed to determine the diameter of a
system. In particular, it would be interesting to study efficient decision procedures for
QBF. Combining bounded model checking with other state space reduction techniques
presents another interesting problem.

SMV2 SATO -g100 SATO -g20 PROVE PROVE
diameter diameter

jr j sec MB sec MB sec MB sec MB sec MB
3 1 49 0 1 0 0 0 1 0 1
4 1 49 0 1 0 1 0 1 0 1
5 13 83 0 2 60 2 0 1 1 2
6 509 447 1 4 364 4 0 1 2 3
7 >1GB 3 6 1252 6 0 2 2 4
8 5 8 2160 9 0 2 7 5
9 25 14 >21h 0 3 16 9
10 42 19 1 4 55 11

Table 2.Barrel shifter (jr j = number of registers, sec = seconds, MB = Mega Bytes).

SMV1 SMV2 SATO PROVE SATO PROVE
k= 5 k= 5 k= 10 k= 10

cells sec MB sec MB sec MB sec MB sec MB sec MB
4 846 11 159 217 0 3 1 3 3 6 54 5
5 2166 15 530 703 0 4 2 3 9 8 95 5
6 4857 18 1762 703 0 4 3 3 7 9 149 6
7 9985 24 6563 833 0 5 4 4 15 10 224 8
8 19595 31 >1GB 1 6 6 5 16 12 323 8
9 >10h 1 6 9 5 24 13 444 9
10 1 7 10 5 36 15 614 10
11 1 8 13 6 38 16 820 11
12 1 9 16 6 40 18 1044 11
13 1 9 19 8 107 19 1317 12
14 1 10 22 8 70 21 1634 14
15 1 11 27 8 168 22 1992 15

Table 3.Liveness for one user in the DME (sec = seconds, MB = Mega Bytes).

SMV1 SMV2 SATO PROVE
cells sec MB sec MB sec MB sec MB

4 799 11 14 44 0 1 0 2
5 1661 14 24 57 0 1 0 2
6 3155 21 40 76 0 1 0 2
7 5622 38 74 137 0 1 0 2
8 9449 73 118 217 0 1 0 2
9 segmentation172 220 0 1 1 2
10 fault 244 702 0 1 0 3
11 413 702 0 1 0 3
12 719 702 0 2 1 3
13 843 702 0 2 1 3
14 1060 702 0 2 1 3
15 1429 702 0 2 1 3

Table 4.Counterexample for liveness in a buggy DME (sec = seconds, MB = Mega Bytes).

References

[1] Arne Borälv. The industrial success of verification tools based on St˚almarck’s Method.
In Orna Grumberg, editor,International Conference on Computer-Aided Verification
(CAV’97), number 1254 in LNCS. Springer-Verlag, 1997.

[2] R. E. Bryant. Graph-based algorithms for boolean function manipulation.IEEE Transac-
tions on Computers, 35(8):677–691, 1986.

[3] J. R. Burch, E. M. Clarke, and K. L. McMillan. Symbolic model checking: 1020 states and
beyond.Information and Computation, 98:142–170, 1992.

[4] E. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons using
branching time temporal logic. InProceedings of the IBM Workshop on Logics of Pro-
grams, volume 131 ofLNCS, pages 52–71. Springer-Verlag, 1981.

[5] E. Clarke, O. Grumberg, and K. Hamaguchi. Another look at LTL model checking. In
David L. Dill, editor,Computer Aided Verification, 6th International Conference (CAV’94),
volume 818 ofLNCS, pages 415–427. Springer-Verlag, June 1994.

[6] Edmund M. Clarke, Orna Grumberg, and David E. Long. Model checking and abstraction.
ACM Transactions on Programming Languages and Systems, 16(5):1512–1542, 1994.

[7] M. Davis and H. Putnam. A computing procedure for quantification theory.Journal of the
Association for Computing Machinery, 7:201–215, 1960.

[8] E. A. Emerson and C.-L. Lei. Modalities for model checking: Branching time strikes back.
Science of Computer Programming, 8:275–306, 1986.

[9] F. Giunchiglia and R. Sebastiani. Building decision procedures for modal logics from
propositional decision procedures - the case study of modal K. InProc. of the 13th Con-
ference on Automated Deduction, Lecture Notes in Artificial Intelligence. Springer-Verlag,
1996.

[10] D. S. Johnson and M. A. Trick, editors.The second DIMACS implementation challenge,
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 1993. (see
http://dimacs.rutgers.edu/Challenges/).

[11] H. Kautz and B. Selman. Pushing the envelope: planning, propositional logic, and stochas-
tic search. InProc. AAAI’96, Portland, OR, 1996.

[12] O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs satisfy their
linear specification. InPoceedings of the Twelfth Annual ACM Symposium on Principles of
Programming Languages, pages 97–107, 1985.

[13] A. J. Martin. The design of a self-timed circuit for distributed mutual exclusion. In
H. Fuchs, editor,Proceedings of the 1985 Chapel Hill Conference on Very Large Scale
Integration, 1985.

[14] K. L. McMillan. Symbolic Model Checking: An Approach to the State Explosion Problem.
Kluwer Academic Publishers, 1993.

[15] A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal logics.
Journal of Assoc. Comput. Mach., 32(3):733–749, 1985.

[16] G. Stålmarck and M. S¨aflund. Modeling and verifying systems and software in propo-
sitional logic. In B. K. Daniels, editor,Safety of Computer Control Systems (SAFE-
COMP’90), pages 31–36. Pergamon Press, 1990.

[17] P. R. Stephan, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. Combinational test gener-
ation using satisfiability. Technical Report M92/112, Departement of Electrical Engineer-
ing and Computer Science, University of California at Berkley, October 1992.

[18] H. Zhang. SATO: An efficient propositional prover. InInternational Conference on Au-
tomated Deduction (CADE’97), number 1249 in LNAI, pages 272–275. Springer-Verlag,
1997.

