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Abstract
Software reverse engineering is the problem of understanding the behavior of

a program without access to its source code. Since there is no source code, ana-
lysts must use the binary directly. A primary tool used by reverse engineers is the
decompiler, which attempts to reverse the process of compilation. Although de-
compilers generate abstractions that improve code readability, the act of compilation
irreversibly destroys information contained in the source code including comments,
control flow abstractions, user-defined types, and identifier names, all of which are
provably impossible to reconstruct.

However, software is natural: programmers tend to write the same code to per-
form the same tasks. While it is technically impossible to generate the original code,
it is possible to train a model to automatically generate more meaningful identifier
names and types. Treating code augmentation as an instance of translation allows
the application of tools and techniques originally developed for natural language
translation to the problem of identifier renaming and retyping.

The goal of the work presented in this thesis is to automatically augment the
output of decompilers with more meaningful names and user-defined types under
the hypothesis that this will decrease the cognitive burden of reasoning about their
generated code. We hope that this will have several advantages: first, we believe that
this will save reverse engineers valuable time that could be spent reasoning about the
higher-level functionality of the code, second, we believe it will flatten the learning
curve, allowing more novices to enter the field.

My core thesis statement is: Exploiting structure inherent in code, together with
its naturalness, enables the application of machine translation techniques to useful
transformations of decompiled code. These techniques can be used to meaningfully
rename and retype variables in decompiled code.

To support this thesis I present two automated techniques for automatically re-
naming and retyping decompiled code. I demonstrate how these techniques are ef-
fective at making decompiled code more approachable through metrics developed as
a proxy for human understanding and through a user study designed to measure the
performance of the techniques in real-world applications.
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Chapter 1

Introduction

Software reverse engineering is the problem of understanding the behavior of a program without
having access to its source code. Reverse engineering is often used to predict the behavior of
malware [48, 177, 178], discover vulnerabilities [146, 159, 177], and patch bugs in legacy soft-
ware [146, 159]. For malware and malicious botnets, reverse engineering enables understanding
and response, and helps identify and patch infection vectors. For example, by reverse engineer-
ing the Torbig botnet (which caused 180K infections and collected 70GB of credit card/bank
account information), responders were able to predict future domain names that bots would con-
tact, and redirect the bots to servers under the responders’ control [155]. Reverse engineering
can also help identify who created a piece of malware, as was done for the Uroburos rootkit [1]
(which captured files and network traffic while propagating over networks of companies and
public authorities), and estimate the extent of infection [140].

Since there is no source code, analysis is often performed at the binary level. This can
be challenging: compilers (and instruction sets in general) optimize for execution speed or bi-
nary size, not readability. One of the main tools reverse engineers use to inspect programs
is the disassembler—a tool that translates a binary to low-level assembly code. Disassem-
blers range from simple tools like GNU Binutils’ objdump [18], to more advanced tools like
IDA [80], which can be used interactively and have more sophisticated features. However, rea-
soning at the assembly level requires considerable cognitive effort even with these advanced
features [146, 159, 178]. More recently, reverse engineers are employing decompilers such as
Hex-Rays [71] and Ghidra [61], which reverse compilation by translating the output of disas-
semblers into code that resembles high-level languages such as C. These state-of-the-art tools
are able to use program analysis and heuristics to reconstruct structural information about a pro-
gram’s variables, types, functions, and control flow structure.

The Problem. Although decompilers generate abstractions that improve code readability and
are widely used by reverse engineers in practice, they rarely fully reconstruct the original
developer-written code [145], since the process of compilation irrevocably destroys some in-
formation. This means that useful pieces of information, such as comments, identifier names,
and user-defined types, all of which are known to meaningfully contribute to program compre-
hension [59, 92], are typically absent from decompiler output.

Using a decompiler still has a high cognitive burden and a steep learning curve. A real-world

1



1 data_unset *array_extract_element_klen(array * const a, const char *key, const uint32_t klen
) {

2 const int32_t ipos = array_get_index(a, key, klen);
3 if (ipos < 0) return NULL;
4
5 /* remove entry from a->sorted: move everything after pos one step left */
6 data_unset * const entry = a->sorted[ipos];

7 const uint32_t last_ndx = --a->used ;
8 if (last_ndx != (uint32_t)ipos) {
9 data_unset ** const d = a->sorted + ipos;
10 memmove(d, d+1, (last_ndx - (uint32_t)ipos) * sizeof(*d));
11 }
12
13 if (entry != a->data[last_ndx]) {
14 /* walk a->data[] to find data ptr */
15 /* (not checking (ndx <= last_ndx) since entry must be in a->data[]) */
16 uint32_t ndx = 0;
17 while (entry != a->data[ndx]) ++ndx;
18 a->data[ndx] = a->data[last_ndx]; /* swap with last element */
19 }
20 a->data[last_ndx] = NULL;
21 return entry;
22 }

(a) Original source code.

1 __int64 __fastcall array_extract_element_klen(__int64 a1, __int64 a2, unsigned int a3)
2 {
3 unsigned int i; // [rsp+24h] [rbp-1Ch]
4 int index; // [rsp+28h] [rbp-18h]
5 unsigned int v6; // [rsp+2Ch] [rbp-14h]
6 __int64 v7; // [rsp+30h] [rbp-10h]
7
8 index = array_get_index(a1, a2, a3);
9 if ( index < 0 )
10 return 0LL;
11 v7 = *(_QWORD *)(8LL * index + *(_QWORD *)(a1 + 8));

12 v6 = --*(_DWORD *)(a1 + 16) ;

13 if ( v6 != index )
14 memmove(
15 (void *)(8LL * index + *(_QWORD *)(a1 + 8)),
16 (const void *)(8LL * index + *(_QWORD *)(a1 + 8) + 8),
17 8LL * (v6 - index));
18 if ( v7 != *(_QWORD *)(8LL * v6 + *(_QWORD *)a1) )
19 {
20 for ( i = 0; v7 != *(_QWORD *)(8LL * i + *(_QWORD *)a1); ++i )
21 ;
22 *(_QWORD *)(*(_QWORD *)a1 + 8LL * i) = *(_QWORD *)(*(_QWORD *)a1 + 8LL * v6);
23 }
24 *(_QWORD *)(8LL * v6 + *(_QWORD *)a1) = 0LL;
25 return v7;
26 }

(b) Hex-Rays decompilation.

Figure 1.1: Typical output of the Hex-Rays decompiler. Line 7 in (a) corresponds to line 12 in
(b). Notice how the meaningful --a->used has been turned into the semantically equivalent but
less idiomatic --*(_DWORD *)(a1 + 16).

2



example of typical output of the Hex-Rays decompiler is shown in Figure 1.1. Even a seasoned
programmer would have difficulty understanding the meaning of v6 = --*(_DWORD *)(a1 +

16); on line 12 in Figure 1.1b. It takes practice to understand that a1 is a pointer to a structure
passed into a function, and this operation decrements one of its fields. In the original code,
shown in Figure 1.1a, this line has the much more natural form const uint32_t last_ndx =

--a->used;. Recognizing patterns like these is large part of the job: reverse engineers spend
much of their time manually changing the output of decompilers to add more meaningful names
and types allowing them to reason about the code [163]. It would be useful if the decompiler
itself could recognize these cases, but in his Ph.D. thesis, Van Emmerik observed: “Certainly, the
original names are not recoverable, assuming the debug symbols are not present. [. . . ] Unless
some advanced artificial intelligence techniques become feasible, these aspects will never be
satisfactorily generated without manual intervention” [159].

Goal of this Work. The goal of the work presented in this thesis is to automatically augment
the output of decompilers with more meaningful variable names and types under the hypothesis
that this will decrease the cognitive burden of reasoning about code. I hope that this will have
several advantages: first, I believe that it will save experienced reverse engineers valuable time
that could be spent reasoning about the higher-level functionality of the code, second, I believe
it will flatten the learning curve, lowering the barrier of entry so that the required knowledge is
closer to what is needed for software development.

Overall, this thesis identifies difficulties experienced by users of decompilers and proposes
approaches to automatically augment their output. It also identifies the challenges of automati-
cally evaluating the effectiveness of these models and motivates future research. I hope that the
techniques proposed here can lower the difficulty of interacting with decompilers to allow current
reverse engineers to use their time more productively and also enable more computer scientists
to become reverse engineers.

Specific Challenges. While it is technically impossible to exactly generate the same code orig-
inally written by a developer, it is possible to generate useful information about the original code
lost during compilation. Intuitively, humans tend to write the same code to perform the same
tasks (e.g., there are very few ways to compute the distance between two points in 2D space).
This naturalness property is well-studied [8, 43, 72], and can be exploited to generate names and
types that humans used in similar code, even when the information is not included in the binary.

The task of transforming code without meaningful variable names and types to code with
meaningful names and types can be viewed as an instance of translation between code without
meaningful names and types to code with them. Treating the problem as an instance of translation
allows us to adapt machine learning algorithms from the field of natural language processing
(NLP). NLP is an extremely mature field, and the idea of automatic natural language translation
is older than the computer itself [79]. Supervised machine-learning translation systems need
input/output pairs of aligned sentences in two languages. For natural language these pairs can
be extracted from sources such as bilingual newspapers, for programming languages these can
be automatically generated directly from open-source code on GITHUB. I discuss the challenges
associated with generating the training corpus and creating the system more in Chapter 3.

3



Renaming variables is a conceptually simple task: excluding edge cases such as keywords or
aliasing, developers are free to choose any name they want for a variable. While being able to
choose an arbitrary name for a variable makes the task much more tractable, the open vocabulary
makes it much more difficult to predict the “correct” one. Comparatively, types should be much
easier to predict correctly since they come with natural constraints on their uses. For example,
a char type can almost never be replaced with a float type.1 By conditioning predictions on
the size of the data represented by a specific variable, the accuracy should increase. While this
is not always the case, memory layout does improve the performance of retyping. I discuss the
implementation of this system and challenges encountered further in Chapter 4.

Effectiveness. I measured the effectiveness of these techniques in two different ways. First, un-
der the hypothesis that the original programmer chose meaningful names and types, I measured
what percentage of the outputs generated the techniques that exactly match what the original de-
veloper used. Second, I performed a human study designed to measure the difficulty of reasoning
about code treated with our techniques. I discuss specifics of both further in Section 1.2.

1.1 Thesis Statement

Exploiting structure inherent in code, together with its naturalness, enables the application of
machine translation techniques to useful transformations of decompiled code. These techniques
can be used to meaningfully rename and retype variables in decompiled code.

1.2 Scope and Evaluation Metrics

The techniques in this dissertation are intended to be applied to the output of real-world decom-
pilers with the ultimate goal of easing the cognitive burden on end-users. Specifically, I address
the inability of existing decompilers to algorithmically choose variable names and types that
communicate their purpose to a human. At least one recent study observing reverse engineers
has called for reverse engineering tools that minimize the difficulty of renaming variables [163].
While the problem of assigning meaningful names to identifiers is not unique to decompiled
code, our approaches target it specifically. The primary reasons are that (a) it is particularly im-
portant that decompiled code is understandable since reverse engineering is primarily a reading
task rather than a writing task and (b) decompiled code is automatically generated from a set of
rules, which put it in a canonical form that should be easier to reason about.

We use two techniques to measure how meaningful the generated types and names are. First,
since we are trying to train a supervised machine learning model, we need a fitness function that
can be automatically run very quickly. For this, I directly compared the output of the model to the
name or type chosen by the original programmer and considered a prediction to be correct if they
exactly matched. I view this metric as reasonable because when a developer writes code they

1The use of almost never here is deliberate. According to the C standard this is implementation-defined, but for
the purposes of this dissertation I will be assume type sizes for a standard Linux kernel targeting x86-64.
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tend to use types and names that convey the intended use of variables. This has the advantage of
being very easy to implement and run.

However, this metric does have some shortcomings. First, it misses cases where there are
many semantically equivalent names, e.g., len and length. Second, it cannot measure the con-
sequences of a model predicting a name or type of a variable is exactly the most misleading. For
example, if a variable is supposed to be named speed, but is instead named size, this might lead
a reverse engineer in the wrong direction.

Alternative metrics originally designed for benchmarking natural language translation tech-
niques, such as BLEU [133], make assumptions about the structure of the natural language that
are inapplicable to code. For example, BLEU is designed to work with natural language, which
has a relatively high tolerance for ambiguity. Comparatively code is specifically designed to have
minimal ambiguity, and changing the order of tokens can have a massive effect on its meaning.
Other techniques for automatically evaluating the output of code synthesis models have been de-
veloped [31, 139], but the actual, real-world relationship between a high score on these metrics
and users’ ability to use the generated code is still unknown.

To evaluate the real-world performance, I performed a human study based on prior works that
measured the impact of automatically-generated code on human understanding [55], and mea-
sured the output of usability-optimized decompilers [178]. The study presented professional and
amateur reverse engineers with snippets of code from the Hex-Rays decompiler with and without
access to our techniques and compared their performance on tasks that required reasoning about
the code. This study collected both quantitative (i.e., correctness and timing) and qualitative
(i.e., subjective opinions about the examples) data. In this study I observed that while these aug-
mentations are useful for solving many problems, there are others where engineers’ performance
decreases when they are inaccurate. I discuss this study further in Chapter 5.

1.3 Contributions
This thesis contains both qualitative and quantitative studies, where I conceptualized and con-
structed actual tools for annotating decompiled code with meaningful variable names and types.
In addition, I conducted a human study asking students, professors, and real-world professional
reverse engineers to reason about the modified code.

This thesis contributes in the following ways:

1. It demonstrates that viewing the problem of postprocessing decompiler output as an in-
stance of translation allows the effective application of techniques from the domain of
natural language translation.

2. It introduces a novel technique for generating input/output examples suitable for training
natural language translation models on decompiled code.

3. It presents a technique that automatically renames variables in decompiled code by lever-
aging the naturalness of code.

4. It presents a black-box technique for postprocessing decompiled code with a Transformer-
based neural network to recommend user-created variable types.

5. It produces two datasets suitable for training and evaluating models of decompiled code.
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6. It identifies specific challenges with automated fitness functions for measuring the effec-
tiveness of these techniques.

7. It provides a human study protocol for measuring the impact of decompiler augmentations
on user performance.

8. It describes the results of a human study testing the effectiveness of both techniques.

Parts of this thesis have been published in peer reviewed venues:
• DIRE: A Neural Approach to Decompiled Identifier Naming, Jeremy Lacomis,

Pengcheng Yin, Edward J. Schwartz, Miltiadis Allamanis, Claire Le Goues, Graham Neu-
big, and Bogdan Vasilescu, in International Conference on Automated Software Engineer-
ing (ASE), 2019 [88].

• DIRE and its Data: Neural Decompiled Variable Renamings with respect to Software
Class, Luke Dramko, Jeremy Lacomis, Pengcheng Yin, Edward J. Schwartz, Miltiadis
Allamanis, Graham Neubig, Bogdan Vasilescu, and Claire Le Goues, in Transactions on
Software Engineering and Methodology, 2022 [47].

• Augmenting Decompiler Output with Learned Variable Names and Types, Qibin
Chen, Jeremy Lacomis, Edward J. Schwartz, Claire Le Goues, Graham Neubig, and Bog-
dan Vasilescu, in USENIX Security Symposium, 2022 [30].

1.4 Outline
The structure of this document is as follows. Chapter 2 presents an overview of the literature and
a the background knowledge needed to follow the rest of the document. In Chapter 3 I describe
the design and implementation of an automatic technique for renaming variables in decompiled
code. In Chapter 4 I present a similar automated technique for annotating decompiled code
with meaningful user-generated types. In Chapter 5 I discuss an empirical human study on the
effectiveness of renamings and retypings. Finally, in Chapter 6 I conclude the thesis.
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Chapter 2

Background and Review of Literature

This chapter will summarize the background information and related work for this thesis.

2.1 Background

2.1.1 Software Reverse Engineering

Software reverse engineering is the task of understanding the behavior of a program without
use of its source code. Reverse engineering is commonly used to understand malware [48,
177, 178], and discover vulnerabilities in existing software [146, 159, 177], and legacy soft-
ware [146, 159]. Reverse engineering malware can be used to prevent damage, for example, by
reverse-engineering the Torbig botnet, which stole 70GB of credit card/bank account informa-
tion, responders were able to predict future domain names that bots would contact, and redirect
the bots to controlled servers [155]. Reverse engineering can also identify the provenance of a
piece of malware [1], or measure the extent of infection [140].

One of the most important tools used to investigate binary programs is the disassembler.
Disassemblers translate binary code to a listing of assembly instructions run on a CPU. Disas-
semblers themselves have to deal with many challenges. One of the biggest is identifying which
sections of a binary are code and which sections are data. Unlike Java bytecode, x86 allows code
and data to be mixed and uses variable length instructions that do not need to be aligned. In
practice, disassembly is usually reliant on patterns commonly used by compilers, but in general
the distinction between data and code on x86 is undecidable. That is, bytes are code only if
they are reachable when the program is run. The next issue in disassembly is identifying bound-
aries between functions. Typically these are identified with explicit call and ret instructions,
but advanced compiler optimizations are allowed to ignore Application Binary Interface (ABI)
conventions and generate code that performs the same function as the input.

Disassemblers range from the relatively simple (e.g., objdump [18], which prints the in-
structions to the standard output), to advanced (e.g., IDA [80] and Ghidra [61], which can be used
interactively). IDA and Ghidra offer quite advanced features, including control-flow graphs, call
graphs, displaying entropy to identify encrypted sections of binaries, integration with debuggers,
scripting, and more. However, even with these advanced features it is still very difficult to reason
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Figure 2.1: Stages of a typical compiler (a) and decompiler (b). The ovals represent stages, the
rectangles represent the input to each stage, and the circles represent output.

about disassembled code directly [146, 159, 178].

2.1.2 Decompilation
Decompilers are designed to alleviate the problem of reasoning about assembly code. A decom-
piler attempts to fully reverse the compilation process; taking the output of a disassembler and
generating code in a high-level language. The decompiler is not much younger than the compiler:
while the first compilers appeared in the 1950s, the first decompilers were used in the 1960s to
assist developers when porting programs between machines [67].

At a high level, a compiler generates binaries from source using a pipeline of processing
stages, and decompilers try to reverse this pipeline using various techniques [38, 83]. A compar-
ison of the two techniques is shown in Figure 2.1. Typically, a binary is first passed through a
platform-specific disassembler. Next, assembly code is typically lifted to a platform-independent
intermediate representation (IR) using a binary-to-IR lifter. The next stage is the heart of the
decompiler, and is where a number of program analyses are used to recover variables, types,
functions and control flow abstractions, which are ultimately combined to reconstruct an abstract
syntax tree (AST) corresponding to an idiomatic program. Finally, a code generator converts
the AST to the decompiled output. The separation of the compiler and decompiler into stages
allows them to be developed independently and the use of an IR allows cross-platform compati-
bility. Hex-Rays [71] and Ghidra [61] are two examples whose output resembles ANSI C. These
decompilers use advanced program analyses to reconstruct the variables, types, functions, and
control flow structure used by the original programmer.

Although this output is more understandable than assembly, decompilation is imperfect. The
act of compilation almost always discards source-level information that cannot be recomputed
such as comments, variable names, types, and structure to minimize binary size and execution
time. Although existing studies have shown that the quality of this type of information is essen-
tial for program comprehension [59, 92], decompilers are rarely able to do more than generate
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1 int i;
2 for (i=0; i<10; i++)
3 {
4 z+=i;
5 }

1 int n=0;
2 while (n<10) {
3 x+=n;
4 n++;
5 }

487: var1 = dword ptr -8
487: var2 = dword ptr -4

;...
492: mov [rbp+var2], 0
499: jmp loc_4A5
49B: loc_49B:
49B: mov eax, [rbp+var2]
49E: add [rbp+var1], eax
4A1: add [rbp+var2], 1
4A5: loc_4A5:
4A5: cmp [rbp+var2], 9
4A9: jle loc_49B

Figure 2.2: Two different C loops that compile to the same assembly code.

placeholders (e.g., v1 and v2) for variable names.
For example, the lexing/parsing stage of the compiler does not propagate code comments to

the AST. Similarly, converting from the AST to IR can lose additional information. This loss
of information allows multiple distinct source code programs to compile to the same assembly
code. For example, the two loops in Figure 2.2 are reduced to the same assembly instructions.
The decompiler cannot know which source code was the original, but it does try to generate code
that is idiomatic, using heuristics to increase code readability. For example, high-level control
flow structures such as while loops are preferred over goto statements.

The choice of which code to generate is largely heuristic, but can be informed by the inclusion
of DWARF debugging information [49]. This debugging information, which can optionally be
generated at compile-time, greatly assists the decompiler by identifying function offsets, types
of variables, identifier names, and user-defined structures and unions.

Academic decompiler research has a long history. The earliest decompilers in the 1960s and
1970s were primarily focused on the translation of code between different machines [13, 15, 67,
143] and documentation [74]. Cifuentes gives a comprehensive history of the early history of
decompilers between 1960 and 1994 in her Ph.D. dissertation [38]. The decompiler she presents
as a large portion of her dissertation, dcc, is considered to be the first to represent decompiled
code using an Intermediate Representation (IR), which allows for portability (additional archi-
tectures can be supported with new machine code to IR lifters), and allows the simple addition
of new analyses to output better high-level code.

Identifier Names

Identifier naming is well-known to contribute to understanding, but decompilers typically only
make a cursory attempt to assign meaningful names to identifiers. This task is quite difficult
since, with very few exceptions, developers are free to assign any name they like to an identifier.
There are some exceptions: IDA, for example, uses a technique called Fast Library Identifica-
tion and Recognition Technology (FLIRT)1 to identify standard library functions generated by
supported compilers and assign names (and types) based on their known signatures. However in
other cases it falls back to a standard technique of generating placeholder dummy names such

1https://hex-rays.com/products/ida/tech/flirt/
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as v1 and a4 variables and arguments, and some simple heuristics such as using i and j for
loop guards. Ghidra2 has a slightly more advanced heuristic: instead of v and a, it also assigns
arguments and variables a prefix that depends on their computed type. Beyond this, assigning
identifiers meaningful names typically requires the use of a machine learning technique, I discuss
these further in Section 2.2.1.

Types

Much more research effort has been focused on the recovery of types in decompilers. This is
understandable: even more than names, the type of a variable provides information about the
semantics of a program. For example, it is more important to know if a variable represents a
floating-point number or a boolean than a reasonable name for it. Caballero et al. compiled a
survey of work on type recovery that is quite thorough [22].

It is important to note that there are different kinds of type recovery. The first, which I
will refer to as syntactic recovery, attempts to recover the memory layout of a variable, such as
struct {float; float}, but not the name of a structure or its fields. The other, which I will
call semantic recovery, also attempts to recover these names. The majority of research focuses
on syntactic recovery, which can be done statically [29, 80, 124], dynamically [152, 154, 183],
or both [23, 96]. The techniques used in these analyses vary greatly. Value-based inference
techniques directly examine the contents of memory [40, 154], while flow-based type inference
constrain types based on the operations performed on variables (e.g., values returned from calls
to functions in known libraries can be assigned a type) [64, 137].

Semantic recovery is a more recent development, with REWARDS [109] being one of the
first in 2010. REWARDS dynamically runs a binary, tagging memory locations accessed by a
program and propagating information until it hits a “type sink” (e.g., a call to a standard library
with known types). While this is useful for reconstructing structures composed of primitive
types, it is limited in its generation of types to those that reach predefined type sinks. Other
semantic recovery typically relies on machine learning, which I discuss further in Section 2.2.2.

2.1.3 Machine Learning
Neural Networks. A Neural Network (NN) is a collection of nodes called neurons that is
used to perform some computation. An example of a feed-forward neural network is shown in
Figure 2.3. The first layer is called the input layer, which takes an input xi ∈ Rn; in Figure 2.3,
xi ∈ R3, so there are three nodes in the input layer. Similarly, the output layer is a vector of
real numbers yj ∈ Rn. In between the input and output layers are hidden layers, where each has
some fixed number of nodes. Each neuron is of the form:

f(Wx+ b) (2.1)

Where x is the vector of inputs from the previous layer, W is a vector of weights for each of
the inputs, b is a bias to apply to each neuron, and f is a nonlinear and differentiable activation
function. The values of W and b are adjusted in a process called training. Supervised training

2https://ghidra-sre.org
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Figure 2.3: An illustration of a 3-4-4-2 feed-forward neural network architecture. The inputs are
on the left represented by xn, hidden layers are in the middle represented as h(l)n , and the outputs
are on the right, represented as ŷn.

uses input/output examples and adjusts the weights to minimize the difference between the actual
output and the expected output.

Encoder-Decoders. Our task consists of generating variable types and names as output given
decompiled code as input. Unlike a traditional classification problem with a fixed number of
classes, both our input and output are sequences of variable length: input code can have arbitrar-
ily many variables, and each requires a type and name prediction. This prohibits the direct use of
traditional feed-forward neural network architectures, which have a fixed size input and output.

Encoder-Decoder architectures [36], commonly used for sequence-to-sequence transforma-
tions, were designed to address the problem of variable-sized inputs and/or outputs. More specif-
ically, the encoder takes the variable-length input and encodes it in an abstract numerical repre-
sentation. This encoding is then passed to the decoder, which converts it into a variable-length
output sequence. This architecture, further enhanced through the attention mechanism [12], has
been shown to be effective in many tasks such as machine translation, text summarization [126],
and image captioning [176]. There are several ways to implement an encoder-decoder. The ap-
proaches I use rely on three advances in statistical models for representing source code: recurrent
neural networks (RNNs), gated-graph neural networks (GGNNs), and Transformers.

Recurrent Neural Networks. RNNs are networks where connections between nodes form a
sequence [142], one of them is shown in Figure 2.4. In this diagram, inputs are at the bottom,
outputs are at the top, and the network is in the middle. Note that the output of the network
is connected back to itself. At each timestep t, a token is vectorized and input to the network,
together with a previous state. RNNs are typically used to process sequences of inputs by reading
in one element at a time, making them well-suited to sequences, such as source code tokens. In
this thesis, I use long short-term memory (LSTM) models [73], a variant of RNNs widely used
in text processing. An LSTM has a specific structure that enables it to maintain both long-term
and short-term information. I will discuss the details of LSTMs more in Chapter 3.

11



A A A A=A

Y0

X0

Y1

X1

Y2

X2

Yt

Xt

Yt

Xt . . .
Figure 2.4: An illustration of a Recurrent Neural Network (RNN). The left-hand side of the dia-
gram is an overview of the network, where the inputs and outputs (bottom and top, respectively)
are represented as a vector. The blue circle in the is an arbitrary network, but with a connection
back to its input. The unrolled diagram on the right represents a sequence of inputs at distinct
timesteps t.

Gated-Graph Neural Networks. While LSTMs are useful for modeling sequences, they do
not capture additional structural information. Within the decompilation task, structured informa-
tion provided by the AST is a natural information source about choice of variable names. For this
purpose, I also employ structural encoding of the code using GGNNs, a class of neural models
that map graphs to outputs [106, 144]. At a high level, GGNNs are neural networks over directed
graphs. Initially, each vertex is associated with a learned or computed hidden state containing
information about the vertex. GGNNs compute representations for each node based on the initial
node information and the graph structure. These will also be discussed further in Chapter 3.

Transformers. Transformer-based models [19, 54, 136, 180], build on the original Trans-
former architecture [161], and have been shown to outperform LSTMs. They are considered
to be the state-of-the-art for a wide range of natural language processing tasks, including ma-
chine translation [19], question answering and abstractive summarization [44, 97], and dialog
systems [2]. Transformer-based models have also been shown to outperform convolutional neu-
ral networks (CNNs) such as ResNet [69] on image recognition tasks [46]. Transformers will be
discussed more in Chapter 4.

2.2 Related Work

2.2.1 Variable Names
There is existing work on predicting variable names directly from source code [10]. The most
closely related examples of this type of prediction to this thesis target minimized or obfuscated
JavaScript [17, 138, 160]. Although this problem is similar to the problem of choosing variable
names in decompiled code, it is much easier to generate training data for obfuscated JavaScript
than for decompiler output.

Other work targets renaming variables and generating debug information directly from exe-
cutables [41, 68]. The generated debug information can be passed to the decompiler, which can
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use it to fill in information such as variable names. However, these approaches make predictions
based only on the contents of the binary. In contrast, this thesis integrates with the decompiler,
leveraging its advanced analyses to make more accurate predictions.

2.2.2 Type Recovery

Program analysis-based work on type recovery for decompilation such as REWARDS [109],
TIE [96], and CATI [29] compute constraints to generate types. These do not use types mined
from the real world, and are are either limited to only predicting the syntactic type (i.e., the base
types of fields of a struct, but not their names), or predicting one of a small set of hand-written
types. Additionally these techniques predict information directly from stripped binaries without
the use of a decompiler. Other approaches work directly on assembly [56, 83, 84], and learn code
structure generation instead of aiming to recover developer-specified variable types or names.

There are projects that use machine learning to predict types, but do not target decompilation.
For example, DEEPTYPER [70] learns type inference for JavaScript while OPTTYPER [132],
LAMBDANET [172], and R-GNNNS-CTX [179] target TypeScript. Note that these techniques tar-
get dynamically-typed languages where type information is optional. This makes the generation
of training data simple, since a parallel corpus can be generated by simply deleting type an-
notations from typed code. Generating a training dataset for decompiled code is much more
challenging; this is described more in Chapter 3.

TypeMiner [119] and Escalada et al. [52], which recover types from binaries compiled from
C, are the most directly related to the work in Chapter 4. However, both of these approaches
are limited to the prediction of a small number of types (17 and 10, respectively). Both meth-
ods use relatively simple machine learning classifiers trained on small datasets. Other projects
related to type recovery for decompilation are REWARDS [109], TIE [96], Retypd [130], and
OSPREY [185]. Unlike my approaches, they use program analyses to compute constraints on
types. Additionally, they are either limited to only predicting the syntactic type (TIE, Retypd,
OSPREY), or only predicting one of a small set of hand-written types (150 for REWARDS).

2.2.3 Statistical Modeling for Source Code

A wide variety of statistical models for representing source code have been proposed based on the
naturalness of software [43, 72]. This key property states that source code is highly repetitive
given context, and is therefore predictable. Statistical models capture the implicit knowledge
hidden within code, and apply it to build new software development tools and program analyses,
e.g., for code completion, documentation generation, and automated type annotation [8].

Predicting variable names is no exception. Work has shown that statistical models trained on
source code corpora can predict descriptive names for variables in a previously-unseen program,
given the contextual features of the code the variable is used in. These naming models can
help to distill coding conventions [5] or analyze obfuscated code [138, 160]. Several classes of
statistical models have been used for renaming, including n-grams [5, 160], conditional random
fields (CRFs) [138], and deep learning models [6, 9, 11].
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Software Development. Statistical modeling techniques have been used for many aspects of
software development. Machine learning has not only been used to automatically generate code
comments [39, 50, 63, 75, 108, 116, 171, 194], and code completion [57, 99, 110, 128], but to
generate source code itself [14, 20, 32, 33, 65, 131, 150, 156, 169, 170, 181, 184]. Code gen-
eration has spanned from using generative Transformers to create syntactically correct code in
multiple programming languages [156], to referencing documentation for generation [193], to
code optimization [118]. Code summarization [7, 94, 95, 99, 165] and method name genera-
tion [58, 129] have also been targets of techniques originally used to generate natural language.

Software Design. Statistical techniques can also aid software designers. A key issue when
adding a design to an existing project is the detection of existing design patterns, which can
be aided with machine learning [28, 157]. One technique works by extracting subtrees from
an abstract semantic graph to generate a feature map that a trained model uses to identify design
patterns. Other techniques have been used for GUI modeling [27], including an ML-based search
engine to detect Android UI designs [123].

Testing. Testing is a key problem in software engineering, and machine learning has been used
extensively for tasks such as bug detection [16, 42, 45, 98, 104, 105, 111, 115, 164, 168, 174,
191, 192], and localization [26, 34, 53, 66, 76, 77, 78, 89, 175, 182, 186, 188, 190]. These tech-
niques can be general, for example using ML to predict aging-related cross-project bugs [164], or
quite specific, for example Textout [168] which was developed specifically to detect bugs related
to text layout in mobile applications. Bug localization is another problem that is particularly
amenable to ML: CNN-FL [186] localizes suspicious statements in source code by training with
test cases and outputting suspiciousness scores. Test case generation is another frequent target
of ML [86, 93, 107, 112, 113, 114, 141, 189]. DeepSQLi [112], for example, produces test cases
for detecting SQL injection attacks using sequence to sequence models that capture the semantic
knowledge of attacks and transforms user inputs into new test cases.

Requirements Engineering. Machine learning can be used to assist requirements engineers.
ML-based natural language processing has been used for extracting requirements directly from
natural-language documentation [3, 100, 101, 102, 103, 135, 149]. Convolutional Neural Net-
works (CNNs) have been used to predict which verification techniques are best to use for ex-
isting requirements [173]. Machine learning has also been used to resolve ambiguity in natural
language to improve the performance of information retrieval methods used to automatically
generate requirements traces [167].
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Chapter 3

A Neural Approach to Decompiled
Identifier Naming

In this chapter, I will present the Decompiled Identifier Renaming Engine (DIRE), a novel neural
network approach for assigning meaningful names to variables in decompiled code. To build
DIRE, I relied on two key insights. First, software is natural, i.e., programmers tend to write
similar code and use the same variable names in similar contexts [43, 72]. Therefore, because
of this repetitiveness, if given a large enough training corpus one can learn appropriate variable
names for a particular context.

Prior approaches exist to predict natural variable names from both source code [10, 17, 138,
160] and compiled executables [68, 81]. However, approaches to predict variable names either
operate directly on the binary semantics [41, 68], or on the lexical output of the decompiler [81].
The former ignores the rich abstractions that modern decompilers are able to recover. The latter
is an improvement, but a lexical program representation is by its very nature sequential, and lacks
rich structural information that could be used to improve predictions. In contrast, DIRE uses the
extended context provided by the decompiler’s internal abstract syntax tree (AST) representation
of the decompiled binary, which encodes additional structural information.

To train such models, one needs training data that specifies what names are natural in what
contexts. The second key insight is that unlike other domains, where creating training data often
requires manual curation (e.g., machine translation [85]), it is possible to automatically generate
large amounts of training data for identifier name prediction, To that end, we mine open-source
C code from GITHUB, compile it with debugging information such that the binaries preserve the
original names, and decompile those binaries so that the output contains the original names. We
then strip the debug symbols, decompile the binary again, and identify the alignment between
the identifiers in the two versions of the decompiler outputs. While this is conceptually straight-
forward, the two outputs are not simply α-renamings (i.e., identical except for the choice of
variable names), making the process of calculating these alignments far from trivial. In prior
work, we identified alignments based entirely on heuristics [81]. In contrast, here we observe
that the set of instruction addresses that access each variable uniquely identifies that variable,
and this can be used to generate accurate alignments, discussed further in Section 3.2.

With these insights we train and evaluate Decompiled Identifier Renaming Engine on a large
dataset of C code mined from GITHUB, showing that we can predict variable names identical to
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those in the original code up to 74.3% of the time. In short, the contributions of this chapter are:
• The Decompiled Identifier Renaming Engine (DIRE), a technique for assigning meaning-

ful names to decompiled variables that outperforms previous approaches.
• A novel technique for generating corpora suitable for training both lexical and graph-based

probabilistic models of variable names in decompiled code.
• A dataset of 3,195,962 decompiled x86-64 functions and parse trees annotated with gold-

standard variable names.

3.1 The DIRE Architecture

I will start with a high-level overview of DIRE, then examine the details of each component.

3.1.1 Overview

DIRE is designed to work on top of a decompiler as a plugin that can automatically suggest more
informative variable names. We use Hex-Rays, a state-of-the-art industry decompiler, though our
approach is not fundamentally coupled to Hex-Rays and can be adapted to other decompilers.

Figure 3.1 gives a high-level overview of our workflow. First, a binary is passed to a de-
compiler, which decompiles each function in the binary. For each function, our plugin traverses
the AST, inserting placeholders at variable nodes. This produces two outputs: the AST and the
tokenized code. These outputs are provided as input to our neural network model, DIRE, which
generates unique variable names for each each placeholder in the input. The decompiler output
can then be rewritten to include the suggested variable names.

Figure 3.2 gives an overview of the neural architecture. DIRE follows an encoder-decoder
architecture: An encoder neural network (Section 3.1.2) first encodes the decompiler’s output—
both the sequence of decompiled code tokens and its internal AST—and computes distributed
representations (i.e., real-valued vectors, or embeddings) for each identifier and code element.
These encoded representations are then consumed by a decoder neural network (Section 3.1.3)
that predicts meaningful names for each identifier based on the contexts in which it is used.

The key takeaway is that DIRE uses both lexical information obtained from the tokenized
code as well as structural information obtained from the corresponding ASTs. This is achieved by
using two encoders—a lexical encoder (Section 3.1.2) and a structural encoder (Section 3.1.2)—
to separately capture the lexical and structural signals in the decompiled code. As I will show,
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Figure 3.2: Overview of DIRE’s neural architecture. For clarity, we omit the data-flow links in
the AST in the structural encoder.

this combination of lexical and structural information allows DIRE to outperform techniques that
rely on lexical information alone [81].

3.1.2 The Encoder Network
Each encoder network in DIRE outputs two sets of representations:

• A code element representation for each element in the decompiler’s output. Depending on
the type of the encoder, a code element will either be a token in the surface code (for the
lexical encoder), or a node in the decompiler’s internal AST (for the structural encoder).

• An identifier representation for each unique identifier defined in the input binary, which is
a real-valued vector that represents the identifier in the neural network.

The lexical and structural representations are then merged to generate a unified encoding of the
input binary (dashed boxes in Figure 3.2). By computing separate representations for code ele-
ments and identifiers, the DIRE decoder can better incorporate the contextual information in the
encodings of individual code elements to improve name predictions for the different identifiers;
I will discuss this further in Section 3.1.3.

Lexical Code Encoder

The lexical encoder sequentially encodes the tokenized decompiled code, projecting each token
xi into a fixed-length vector encoding xi. Specifically, the lexical encoder uses the sub-tokenized
code as the input, where a complex code token (e.g., the function name mystrcopy) is automat-
ically broken down into sub-pieces (e.g., my, str, and copy) using SentencePiece [87], based
on sub-token frequency statistics. Sub-tokenization reduces the size of the encoder’s vocabulary
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(and thus its training time), while also mitigating the problem of rare or unknown tokens by de-
composing them into more common subtokens. We treat the placeholder and reserved variable
names (e.g., VAR1, VAR2, and the decompiler-inferred name result) in the decompiler’s output
as special tokens that should not be sub-tokenized.

DIRE implements the lexical encoder using LSTMs. Formally, an LSTM has the follow-
ing structure: given a sequence of tokens {xi}ni=1, an LSTM

−→
f LSTM processes them in order,

maintaining a hidden state
−→
hi for each subsequence up to token xi using the recurrent func-

tion
−→
hi =

−→
f LSTM(emb(xi),

−→
hi−1), where emb(·) is an embedding function mapping xi into a

learnable vector of real numbers.
We use a bidirectional LSTM: The forward network

−→
f LSTM processes the tokenized code

{xi}ni=1 sequentially. The backward LSTM processes the input tokenized code in backward
order, producing a hidden state

←−
hi for each token xi. Intuitively, a bidirectional LSTM captures

informative context around a particular variable both before and after its sequential location.

Element Representations. We encode a token xi by concatenating its asssociated state vec-
tors, i.e., xi = [

−→
hi :

←−
hi], a common strategy in source code representations using LSTMs [8].

For a particular token xi we compute the forward (resp. backward) representation using both
its embedding and the hidden states of its preceding (resp. succeeding) tokens. This is impor-
tant because the resulting encoding xi captures both the local and contextual information of the
current token and its surrounding code.

To compute the identifier representation v for each unique identifier v, we collect the set of
subtoken representations Hv of v, and perform an element-wise mean over Hv to get a fixed-
length representation: v = MeanPool(Hv).

Structural Code Encoder

The lexical encoder only captures sequential information in code tokens. To also learn from the
rich structural information available in the decompiler AST, DIRE employs a gated-graph neural
network (GGNN) structural encoder over the AST. As described in Chapter 2, LSTMs are useful
for modeling sequences, they do not capture additional sequential information.

A GGNN is defined as follows. Formally, let G = 〈V,E〉 be a directed graph describing our
problem, where V = {vi} is the set of vertices and E = {(vi 7→ vj, T )} is the set of typed edges.
Let NT (vi) denote the set of vertices adjacent to vi with edge type T . In a GGNN, each vertex
vi is associated with a state hg

i,t indexed by a time step t. At each time step t, the GGNN updates
the state of all nodes in V via neural message passing (NMP) [62]. Concurrently for each node
vi at time t, NMP is performed as follows: First, for each vj ∈ NT (vi) we compute a message
vector mvj 7→vi

T = WT ·hg
j,t−1, where WT is a type-specific weight matrix. Then, all mv∗ 7→vi

∗ are
aggregated, and summarized into a single vector xg

i via element-wise mean (pooling):

xg
i = MeanPool({mvj 7→vi

T : vj ∈ NT (vi),∀T }). (3.1)

Finally, the state of every node vi is updated using a nonlinear activation function f : hg
i,t =

f(xg
i ,h

g
i,t−1). GGNNs use a Gated Recurrent Unit (GRU) update function, fGRU(·), introduced
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by Cho et al. [36]. By repeatedly applying NMP for T steps, each node’s state gradually rep-
resents information about that node and its context within the graph. The computed states can
then be used by a decoder, similarly to the LSTM-based decoder architectures. As in LSTMs, all
GGNN parameters (parameters of fGRU(·) and the WT s) are optimized together simultaneously.

A GGNN requires a mechanism to compute initial node states, as well as design choices
deciding which AST edges should be considered in the node encodings:

Initial Node States. The initial state of a node vi, h
g
i,t=0 is computed from three separate em-

bedding vectors, each capturing different types of information of vi:
1. An embedding of the node’s syntactic type (e.g., the root note in the AST in Figure 3.2 has

the syntactic type block).

2. For a node that represents data (e.g., variables, constants) or an operation on data (e.g.,
mathematical operators, type casts, function calls), an embedding of its data type, com-
puted by averaging the embeddings of its subtokenized type. For instance, the variable
node VAR1 in Figure 3.2 has the data type char *; its embedding is computed by averag-
ing the embeddings of the type subtokens char and *.

3. For named nodes, an embedding of the node’s name (e.g., the root node in Figure 3.2 has
a name mystrcopy), computed by averaging the embeddings of its content subtokens. The
initial state hg

v,t=0 is then derived from a linear projection of the concatenation of the three
separate embedding vectors. For nodes without a data type or name, we use a zero-valued
vector as the respective embedding.

Graph Edges. The structural encoder uses different types of edges to capture different types
of information in the AST. Besides the simple parent-child edges (solid arrows in the AST in
Figure 3.2) in the original AST, we also augment it with additional edges [9]:

• We add an edge from the root block node containing the function name to each identi-
fier node. The function name can inform names of identifiers in its body. In our running
example the two arguments VAR1 and VAR2 defined in the mystrcopy function might indi-
cate the source and destination of the copy. This type of link (“Function name to args” in
Figure 3.2) captures these naming dependencies.

• To capture the dependency between neighboring code, we add an edge from each terminal
node to its lexical successor (“Successor terminal”).

• To propagate information among all mentions of an identifier, we add a virtual “supernode”
(rectangular node labeled VAR1) for each unique identifier vi, and edges from mentions of
vi to the supernode (“Super node link”) [62].

• Finally, we add a reverse edge for all edge types defined above, modeling bidirectional
information flow.

Representations. For the element representation, we use the final state of the GGNN for node
ni, h

g
i,T , as its representation: ni = hg

i,T (the recurrent process unrolls T times; T = 8 for all
our experiments). For the identifier representation for each unique identifier vi, its representation
vi is defined as the final state of its supernode as the encoding of vi. Since the supernode has
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bidirectional connections to all the mentions of vi, its state is computed using the states of all its
mentions. Therefore, vi captures information about the usage of vi in different occurrences.

Combining Outputs of Lexical and Structural Encoders

The lexical and the structural encoders output a set of representations for each identifier and
code element. In the final phase of encoding, we combine the two sets of outputs. Code elements
are combined by unioning the lexical set (of code tokens) and structural set (of AST nodes) of
element representations as the final encoding of each input code element; identifiers are com-
bined by merging the lexical and structural representations of each identifier v using a linear
transformation as its representation.

3.1.3 The Decoder Network
The decoder network predicts names for identifiers using the representations given by the en-
coder. As shown in Figure 3.2, the decoder predicts names based on both the representations
of identifiers, and contextual information in the encodings of code elements. Specifically, as
with the encoder, we assume an identifier name is composed of a sequence of sub-tokens (e.g.,
destAddr 7→ dest, Addr; see Section 3.1.2).

The decoder factorizes the task of predicting idiomatic names to a sequence of time-indexed
decisions, where at each time step, it predicts a sub-token in the idiomatic name of an identifier.
For instance, the idiomatic name for VAR1, destAddr, is predicted in three time steps (s1 through
s3) using sub-tokens dest, Addr, and </i>, (the special token </i> denoting the end of the token
prediction process). Once a full identifier name is generated, the decoder continues to predict
other names following a pre-order traversal of the AST. As we will elaborate in Section 3.2,
not all identifiers in the decompiled code will be labeled with corresponding “ground-truth”
idiomatic names, since the decompiler often generates variables not present in the original code.
DIRE therefore allows an identifier’s decompiler-assigned name to be preserved by predicting a
special </identity> token.

The probability of generating a name is therefore factorized as the product of probabilities of
each local decision while generating a sub-token yt:

p(Y |X) =
T∏
t=1

p(yt|y<t, X), (3.2)

where X denotes the input code, and Y is the full sequence of sub-tokens for all identifiers, and
y<t denotes the sequence of sub-tokens before time step t.

We model p(yt|y<t, X) using an LSTM decoder, following the parameterization established
in previous work [117]. Specifically, to predict each sub-token yt, at each time step t, the decoder
LSTM maintains an internal state st defined by

st = fLSTM([yt−1 : vt : ct], st−1), (3.3)

where [:] denotes vector concatenation. The input to the decoder consists of two representations:
the embedding vector of the previously predicted name, yt−1; and the encoder’s representation
of the current identifier to be predicted, vt.
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Our decoder also uses attention [37] to compute a context vector ct, generated by aggregating
contextual information from representations of relevant code elements. ct is computed by taking
the weighted average over encodings of AST nodes and surface code tokens, for each current
sub-tokenized name yt. The decoder’s hidden state is then updated using the context vector,
incorporating the contextual information into the decoder’s state s̃t = W · [st : ct], where W is
a weight matrix. Then, the probability of generating a sub-token (yt) is:

p(yt|·) =
exp

(
yᵀ
t s̃t
)∑

y′ exp
(
y′ᵀs̃t

) (3.4)

3.1.4 Training the Neural Network
Since DIRE is constructed from neural networks, training data is required to learn the weights
for each neural component. Our training corpus is a set D = {〈Xi, Yi〉}, consisting of pairs
of code X and sub-token sequences Y , denoting the decoder-predicted sequence of identifier
names. DIRE is optimized by maximizing the log-likelihood of predicting the gold sub-token
sequence Yi for each training example Xi:∑

〈Xi,Yi〉

log p(Yi|Xi) =
∑
〈Xi,Yi〉

|Yi|∑
t=1

wt · log p(yi,t|Xi), (3.5)

where Yi,t denotes the t-th sub-token in the decoder’s prediction sequence Yi. As discussed
in Section 3.1.3, there are intermediate variables in the decompiled code. To ensure the decoder
network will not be biased towards predicting </identity> for other identifiers, we use a tuning
weight wi set to 0.1 for sub-tokens that correspond to intermediate variables (and 1.0 otherwise).

3.2 Generation of Training Data
Training DIRE requires a large corpus of annotated data. Fortunately, it is possible to create this
corpus automatically, starting from a large repository of existing C source code. At a high level,
each entry in our corpus corresponds to a source code function, and consists of the information
necessary to train our model. An entry in the training corpus is illustrated in Figure 3.3. Each
entry contains three elements: (a) the tokenized code, with variables replaced by an ID that
uniquely identifies the variable in the function; (b) the decompiler’s AST modified to contain the
same unique variable IDs; and (c) a lookup table mapping variable IDs to both the decompiler-
and developer-assigned names. It is important to assign a unique variable name to each variable
to disambiguate any shadowed variable definitions. The tokenized code and AST representations
are used in both the model’s input and output. The input representation uses the decompiler-
assigned names, while the output uses the developer-assigned names.

Generating the placeholders and decompiler-chosen names is relatively straightforward. First,
a binary is compiled normally and passed to the decompiler. Next, for each function, we traverse
its AST and replace each variable reference with a unique placeholder token. Finally, we instruct
the decompiler to generate decompiled C code from the modified AST, tokenizing the output.
Thus, we have tokenized code, an AST, and a table mapping IDs to decompiler-chosen names.
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for ( VAR1 = ... VAR2 += VAR3 ; ...

(a) Tokenized decompiled code with variable placeholders.

VAR1 VAR2 VAR4

VAR2 VAR3

VAR1

(b) AST with placeholders.

ID Decompiler Developer

1 v1 ans
2 v2 size
3 i i
4 ptr head

(c) Variable lookup table.

Figure 3.3: Entry in the training corpus. Each corresponds to a function and contains (a) tok-
enized code (b) the AST, both with variables replaced with unique IDs, and (c) a lookup table
containing decompiler- and developer-assigned names.

The remaining step, mapping developer-chosen names to variable IDs, is the core challenge
in automatic corpus generation. Following our previous approach [81], we leverage the de-
compiler’s ability to incorporate developer-chosen identifier names into decompiled code when
DWARF debugging symbols [49] are present. However, this alone is not sufficient to identify
which developer-chosen name maps to a particular variable ID generated in the first step.

Specifically, challenges arise because decompilers use debugging information to enrich the
decompiler output in a variety of ways, such as improving type information. Recall from Sec-
tion 2.1.2 that decompilers often make choices between semantically-identical structures: the
addition of debugging information can change which structure is used. Unfortunately, this means
that the difference between code generated with and without debugging symbols is not always an
α-renaming. In practice, the format and structure of the code can greatly differ between the two
cases. An example is illustrated in Figure 3.4. In this example, the first pass of the decompiler
is run without debugging information, and the decompiler generates an AST for a while loop
with two automatically-generated variables named v1 and v2. Next, the decompiler is passed
DWARF debugging symbols and run a second time, generating the AST on the right. While
the decompiler is able to use the developer-selected variable names i and z, it generates a very
different AST corresponding to a for loop.

An additional challenge is that there is not always a complete mapping between the variables
in code generated with and without debugging information. Decompilers often generate more
variables than were used in the original code. For example, return (x + 5); is commonly
decompiled to int v1; v1 = x + 5; return v1;. The decompiled code introduces a tempo-
rary variable v1 that does not correspond to any variable in the original source code. In this case,
there is no developer-assigned name for v1, since it does not exist in the original code. The use
of debugging information can change how many of these additional variables are generated.

One solution to these problems proposed by prior work is to post-process the decompiler out-
put using heuristics to align decompiler-assigned and developer-assigned names [81]. However,
this technique can only correctly align 72.8% of variable names, therefore limiting the overall
accuracy of any subsequent model trained on this data. Instead, we developed a technique that di-
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1 int i;
2 for (i=0; i<10; i++)
3 {
4 z+=i;
5 }

1 int n=0;
2 while (n<10) {
3 x+=n;
4 n++;
5 }

487: var1 = dword ptr -8
487: var2 = dword ptr -4

;...
492: mov [rbp+var2], 0
499: jmp loc_4A5
49B: loc_49B:
49B: mov eax, [rbp+var2]
49E: add [rbp+var1], eax
4A1: add [rbp+var2], 1
4A5: loc_4A5:
4A5: cmp [rbp+var2], 9
4A9: jle loc_49B

(a) Two different C loops that compile to the same assembly code.

492:
block

49B:
while

49E:
block

4A9:
sle

4A5:
num 9

4A5:
v1

4A1:
preinc

4A1:
v1

492:
asg

492:
v1

492:
num 0

49E:
expr

49E:
asgadd

49E:
v2

49E:
v1

(b) AST without DWARF.

492:
for

49E:
block

4A9:
sle

4A1:
preinc

4A1:
i

492:
asg

492:
i

492:
num 0

49E:
expr

49E:
asgadd

49E:
z

49E:
i

4A5:
num 9

4A5:
i

(c) AST with DWARF.

Figure 3.4: Decompiler ASTs for the code shown in (a). Hexadecimal numbers indicate the
location of the disassembled instruction used to generate the node. While the ASTs are different,
operations on variables and their offsets are the same, enabling mapping between variables, i.e.,
v17→i (green box) and v27→z.
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rectly integrates with the decompiler to generate an accurate alignment without using heuristics.
Our key insight is that while the AST and code generated by the decompiler may change when
debugging information is used, instruction offsets and operations on variables do not change.
As a result, each variable can be uniquely identified by the set of instruction offsets that access
that variable.

For example, in Figure 3.4, although there is not an obvious mapping between the nodes in
the trees, the addresses of the variable nodes in the trees have not changed. This enables us to
uniquely identify each variable by creating a signature consisting of the set of all offsets where it
occurs. The variables v1 and i have the signature {492,49E,4A1,4A5}, while v2 and z have
the signature {49E}. Note that some uses of variables overlap, e.g., v1 (i) is summed with v2

(z) in the instruction at offset 49E. This necessitates collecting the full set of variable uses to
disambiguate these instances.1

In summary, to generate our corpus we:
1. Decompile binaries containing debugging information.

2. Collect signatures and developer-assigned names for each variable in each function.

3. Strip debugging information and decompile the stripped binaries.

4. Identify variables by their signature, and rename them in the AST, encoding both the
decompiler- and developer-assigned names.

5. Generate decompiled code from the updated AST.

6. Post-process the updated AST and generated code to create a corpus entry.
The final output is a per-binary file containing each function’s AST and decompiled code with
corresponding variable renamings.

3.3 Evaluation

We ask the following research questions:
• RQ1: How effective is DIRE at assigning names to variables in decompiled code?
• RQ2: How does each component of DIRE contribute to its efficacy?
• RQ3: How does provenance and quantity of data influence the efficacy of DIRE?
• RQ4: Is DIRE more effective than prior approaches?

Data Preprocessing. To answer our first two research questions, we trained DIRE on 3,195,962
decompiled functions extracted from 164,632 binaries mined from GITHUB. First, we automat-
ically scraped GITHUB for projects written in C. Next, we modified project build scripts to
include debug information when compiling the project, and collected all successfully generated
64-bit x86 binary files. We then hashed each binary to remove any duplicates. We then passed
these binaries through our automated corpus generation system.

1While it is possible for two variable signatures to be identical, we found these collisions to occur very rarely in
practice. In these cases we do not attempt to assign names to variables.
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Finally, we filtered out any functions that did not have any renamed variables and, for prac-
tical reasons, any functions with more than 300 AST nodes. After filtering, 1,259,935 functions
with an average AST size of 77 nodes remained. These functions were randomly split per-binary
into training, development and testing sets with a ratio of 80:10:10. Splitting the sets per-binary
ensures that binary-specific identifiers are not included in both the training and test sets.

Evaluation Methodology. After training, we ran DIRE to generate name suggestions on the
test data. We evaluate the accuracy of these predictions, comparing the predicted variable names
to names used in the original code (i.e., names contained in the debugging information) counting
a successful prediction as one exactly matching the original name. However, there can be mul-
tiple, equally acceptable names (e.g., file_name, fname, filename) for a given identifier. An
accuracy metric based on exact match cannot detect these cases. We therefore use character error
rate (CER), a metric that calculates the edit distance between the original and predicted names,
then normalizes by the length of the original name [166], assigning partial credit to near misses.

Recall from Section 3.2 that there are often many more variables in the decompiled code than
in the original source; these variables will not have a corresponding original name. Although
DIRE generates predictions for these variables, we do not evaluate them. We do this because
it is not necessarily incorrect for a renaming system to assign names to variables not present in
the original source code. Recall the example where return (x + 5); is decompiled to int v1

; v1 = x + 5; return v1;. The name sum is likely more informative than v1, and it would
be unhelpful to penalize a system that suggests this renaming. However, although renaming in
these cases could be helpful, we do not want to overapproximate the effectiveness of our system
by claiming any renaming of these variables as correct: it is also possible to assign variables a
misleading name that decreases the readability of code by obfuscating the purpose of a variable
(something that will be demonstrated in Chapter 5). For example, suggesting the name filename
to replace v1 in the above code would likely be misleading.

Neural Network Configuration. For our experiments we replicate the neural network con-
figuration of Allamanis et al. [9]. We set the size of word embedding layers to be 128. The
dimensionality of the hidden states for the recurrent neural networks used in the encoders is 128,
while the hidden size for the decoder LSTM is 256. For both the sequential and structural en-
coders, we use two layers of recurrent computation, adding another identical recurrent network
to process the decompiled code using the output hidden states of the first layer. For both DIRE
and the baseline neural systems, we train each model for 60 epochs. At testing time, we use
beam search to predict the sequence of sub-tokenized names for each identifier (Section 3.1.3),
with a beam size of 5.

3.3.1 RQ1: Overall Effectiveness

The experimental results are summarized in Table 3.1. The “Overall” row shows the performance
of our technique on the full test set and the leftmost column shows the accuracy of DIRE. From
this, we can see that DIRE can recover 74.3% of the original variable names in decompiled code,
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Table 3.1: Evaluation of DIRE. Values are percentages, higher accuracy and lower character
error rate (CER) are better.

DIRE Lexical Encoder Structural Encoder
Accuracy CER Accuracy CER Accuracy CER

Overall 74.3 28.3 72.9 28.5 64.6 37.5
Body in Train 85.5 16.1 84.3 16.3 75.7 25.5
Body not in Train 35.3 67.2 33.5 67.7 26.3 76.1

1 void *file_mmap(int V1, int V2)
2 {
3 void *V3;
4 V3 = mmap(0, V2, 1, 2, V1, 0);
5 if (V3 == (void *) -1) {
6 perror("mmap");
7 exit(1);
8 }
9 return V3;
10 }

DIRE Developer

V1 fd fd

V2 size size

V3 buf ret

Figure 3.5: Decompiled function (simplified for presentation), DIRE variable names, and
developer-assigned names.

demonstrating that it is effective in assigning contextually meaningful names to identifiers in
decompiled code.

Figure 3.5 shows an example renaming generated by DIRE. Here, DIRE generates the vari-
able names shown in the “DIRE” column of the table. The developer-chosen names are shown in
the “Developer” column. Two of three names suggested by DIRE exactly match those chosen by
the developer. Though DIRE suggests buf instead of ret as the replacement for V3, the name is
not entirely misleading: mmap returns a pointer to a mapped area of memory that can be written
to or read from.

Work has shown that large code corpora may contain near-duplicate code across training
and testing sets, which can cause evaluation metrics to be artificially inflated [4]. Though our
corpus contains no duplicate binaries, splitting test and training sets per-binary still results in
functions appearing in both. A common cause of duplicate functions in different binaries is the
use of libraries. We argue that it is reasonable to allow such duplication since reverse-engineering
binaries that link against known (e.g., open source) libraries is a realistic use case.

Nevertheless, to better understand the performance of our system, we partition the test exam-
ples into two sub-categories: Body in Train and Body not in Train. The Body in Train partition
includes all functions whose entire body matches at least one function in the training set; simi-
larly, the Body not in Train set includes only functions whose body does not appear in the training
set. The last two rows in Table 3.1 show the performance on these partitions. DIRE performs
well on the Body in Train test partition (85.5%). This indicates that DIRE is particularly accurate
at name prediction when code has appeared in its training set (e.g., libraries, or code copied from
another project). DIRE is still able to exactly match 35.3% of variable names in the Body not in
Train set, indicating that it still generalizes to unseen functions.
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Table 3.2: Example identifiers from the Body not in Train testing partition and DIRE’s top-5
most frequent predictions.

len value new_node bytes_read

len (60%) value (28%) node (48%) size (38%)
n (6%) data (7%) child (31%) bytes_read (13%)
size (5%) val (3%) treea (0.3%) len (13%)
length (1%) name (3%) tree (0.3%) cmd_code (13%)
l (1%) key (2%) root (0.3%) read (13%)

1 file *f_open(char **V1, char *V2, int V3) {
2 int fd;
3 if (!V3)
4 return fopen(*V1, V2);
5 if (*V2 != 119)
6 assert_fail("fopen");
7 fd = open(*V1, 577, 384);
8 if (fd >= 0)
9 return fdopen(fd, V2);
10 else
11 return 0;
12 }

Lex. Struct. DIRE Developer

V1 file fname filename filename

V2 name oname mode mode

V3 mode flags create is_private

Figure 3.6: Decompiled function (simplified for presentation), suggested names, and developer-
assigned names. The lexical and structural models are unable to correctly predict the name mode
for V2, but DIRE can by combining them.

Table 3.2 contains example identifiers from the Body not in Train test set, along with DIRE’s
most frequent predictions. We observe that inexact suggested names are often semantically sim-
ilar to the original names. DIRE also performs best on simple identifiers such as len and value.
This is because it is difficult to predict the exact name for complex identifiers with compositional
names. However, DIRE is still often outputs semantically relevant names (e.g., node, child).

RQ1 Answer: We find that DIRE is able to suggest variable names identical to those
chosen by the original developer 74.3% of the time.

3.3.2 RQ2: Component Contributions
Table 3.1 also shows the results for models that only used our lexical or structural encoders. We
find that the lexical encoder is able to correctly predict 72.9% of the original variable names,
while a model using the structural encoder is able to correctly predict 64.6% of the original
variable names. These simpler models still perform well, but by combining them in DIRE we
are able to achieve even better performance.

Figure 3.6 illustrates how DIRE can effectively combine these models to improve sugges-
tions. Here, the placeholders V1, V2, and V3 are variables which should be assigned names. The
“Lex.”, “Struct.”, and “DIRE” columns show the predictions from each model, and the “Devel-
oper” column shows the name originally assigned by the developer. In this example, the lexical
and the structural models are unable to predict any of the original variable names, while DIRE is
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(b) Accuracy of each neural model on the Body not
in Train partition.

Figure 3.7: The impact of training corpus size on the performance of DIRE. Figure (a) shows
how increasing the amount of training data improves the performance of DIRE; (b) shows the
performance of each of the submodel as training size changes.

able to correctly predict two of the three names.
This example also shows the contributions from each of the submodels. For example, for

V1, the lexical model predicts file while the structural model predicts fname. Combining the
predicted subtokens generates filename, the same name chosen by the developer. For V2, the
lexical and structural models both fail to predict mode, but note that the lexical model does predict
mode for V3. By combining the models, DIRE instead correctly predicts mode for V2.

RQ2 Answer: Each component of DIRE contributes uniquely to its overall accuracy.

3.3.3 RQ3: Effect of Data

To answer RQ3, we varied the size of the training data and measured the change in performance
of our models. Training data was subsampled at rates of 1%, 3%, 10%, 20%, and 40%. The
results of these experiments are shown in Figure 3.7.

Figure 3.7a shows the change in accuracy of DIRE. The size of the training data is plotted on
the x-axis, while accuracy is plotted on the y-axis. While DIRE has low accuracy on the Body not
in Train set at the lowest sampling rates, at a 1% sampling rate it is still able to correctly select
names over 40% of the time for the Body in Train test set, suggesting that it is possible to use
much less data to train a model if the target application is reverse engineering of libraries rather
than binaries in general. At a sampling rate of 40%, DIRE comes quite close to the performance
of the model trained on the full training set, with an overall accuracy of 68.2% (vs. 74.2%).

Figure 3.7b shows the effect of training set size on the performance of DIRE and its compo-
nent neural models on the Body not in Train test set. Note how at sampling rates at or below 10%
the models have similar performance. In cases where there is little training data, training time
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1 long gray(unsigned a1, int a2) {
2 unsigned v3, v4;
3 int v5;
4 if (a2 >= 0)
5 return a1 ^ (a1 >> 1);
6 v5 = 1;
7 v4 = a1;
8 while (1) {
9 v3 = v4 >> v5;
10 v4 ^= v4 >> v5;
11 if (v3 <= 1 ||
12 v5 == 16)
13 break;
14 v5 *= 2;
15 }
16 return v4;
17 }

(a) Hex-Rays.

1 void gray() {
2 unsigned v0;
3 int v1;
4 unsigned i, v3;
5 int x;
6 if (v1 < 0) {
7 x = 1;
8 v3 = v0;
9 while (1) {
10 i = v3 >> x;
11 v3 ^= v3 >> x;
12 if (i <= 1 ||
13 x == 16)
14 break;
15 x *= 2;
16 }
17 }
18 }

(b) Hex-Rays w/ DEBIN.

Figure 3.8: Effects of incorrect debugging information on decompiler output. The gray function
computes the Gray code of a1 in a2 bytes [134]. On the left, (a) is the output of Hex-Rays
without debugging symbols; it is able to correctly identify the arguments and return type. On the
right, (b) is the output with incorrect DWARF information generated by DEBIN: note missing
arguments, return statements, and incorrect type.

can be further reduced by using only one of the two submodels.

RQ3 Answer: DIRE is data-efficient, performing competitively using only 40% of the
training data. DIRE is also robust, outperforming the lexical and structural models in
most sub-sampling cases.

3.3.4 RQ4: Comparison to Prior Work
To answer RQ4, we compare to our prior work [81] and to DEBIN [68], the state-of-the-art

technique for predicting debug information directly from binaries.
In our earlier work, which used a purely-lexical model based on statistical machine trans-

lation (SMT), we were able to exactly recover 12.7% of the original variable names chosen by
developers. In contrast, DIRE is able to suggest identical variable names 74.3% of the time. We
attribute this improvement to two factors: 1) the improved accuracy of our corpus generation
technique, and 2) the use of a model that incorporates both lexical and structural information.

To better understand the performance of DIRE, we also compare to DEBIN, a different ap-
proach to generating more understandable decompiler output. DEBIN uses CRFs to learn models
of binaries and directy generate DWARF debugging information for a binary, which can be used
by a decompiler such as Hex-Rays.

The debugging information generated by DEBIN contains predicted identifiers, types, and
names. To choose a variable name, DEBIN proceeds in two stages: it predicts which memory
locations correspond to function-local arguments and variables, then predicts names for them. In
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Table 3.3: Comparison of DIRE and DEBIN trained on 1% and 3% of our full corpus of 164,632
binaries. All accuracy values are percentages, higher accuracy is better. Note that DIRE is able
to achieve much higher accuracy than DEBIN at all sampling sizes.

1% of Corpus 3% of Corpus
DIRE DEBIN DIRE DEBIN

Training Time (hours) 1.8 13.3 6.1 17.2

Accuracy – Overall 32.2 2.4 38.4 3.9
Accuracy – Body in Train 40.0 3.0 47.2 4.8
Accuracy – Body not in Train 5.3 0.6 8.6 0.7

contrast, DIRE leverages the decompiler to identify function offsets and local variables.
Building on top of the decompiler helps DIRE maintain the quality of pseudocode output. To

demonstrate why this is important, refer to the example shown in Figure 3.8, which contains a C
function for converting between a number a1 and its Gray code representation in a2 bits [134].
Figure 3.8a shows the output of Hex-Rays when passed a binary with no debug information.
Although these variables do not have meaningful names, it is clear that gray is a function that
takes two arguments and returns a long.

Figure 3.8b shows the output of Hex-Rays using debugging information generated using
DEBIN’s bundled model.2 We observe that DEBIN does not accurately recover variable names in
this case, perhaps since its model was trained on a different set of code.

However, this example also surfaces a fundamental limitation of the DEBIN approach: both
the inferred structure and the types of the variables in the program have changed. This occurs
because Hex-Rays prioritizes debugging information over its own analyses and heuristics. In
this case, the debugging information generated by DEBIN does not indicate a return value of the
gray function nor any arguments, misleading the decompiler. By starting at the point shown in
Figure 3.8a, DIRE maintains structure and typing even in the presence of incorrect predictions.

To evaluate our performance compared to DEBIN, we trained it on binaries in our dataset.
Due to time restrictions, we found it impractical to train DEBIN on the full dataset. For a fair
comparison, we instead subsampled our training set at 1% and 3% and trained both DEBIN and
DIRE on these sets. Although this might seem small, we note that the 3% subsampling we used
corresponds to 30,238 binaries, a full order of magnitude more than the 3,000 binaries used to
train DEBIN in their original paper [68]. After training, we ran DEBIN on binaries in our test set,
extracted names using our corpus generation pipeline, and measured the accuracy of predictions.
Our results are shown in Table 3.3.

We find that DIRE is able to outperform DEBIN at all sampling sizes. When trained on 1% of
the corpus DIRE is able to exactly recover 32.2% of all identifiers, while DEBIN recovers 2.4%.
On the 3% partition, DIRE is able to recover 38.4% of names, while DEBIN is able to recover
3.9%. The lower performance of DEBIN we observed could be attributed to compound error: in
addition to variable names themselves, DEBIN must predict what memory locations correspond
to variables. If a memory location is not predicted to be a variable, DEBIN cannot assign it a

2https://files.sri.inf.ethz.ch/debin_models.tar.gz, accessed April 10, 2019
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name.
We also note that we were able to train DIRE much faster than DEBIN, although DIRE is

GPU-accelerated, while DEBIN as distributed is limited to execution on the CPU.

RQ4 Answer: DIRE is a more accurate and more scalable technique for variable name
selection than other state-of-the-art approaches.

3.4 Threats To Validity
When collecting code and binaries to generate our corpus, we did no filtering of the repositories
beyond ensuring that they were written in C and able to be compiled. It is possible that the
code we collected does not accurately represent the types of binaries that are typically targets of
reverse-engineering effort.

Additionally, we did not experiment with binaries compiled with optimization enabled, nor
did we experiment with intentionally obfuscated code. It is possible that DIRE does not perform
as well on these binaries. However, reverse engineering of these binaries is a general challenge
for decompilers, and we do not believe that our technique applies exclusively to the test code we
experimented with.

Although we have found that it is possible to uniquely identify variables in Hex-Rays based
on the code offsets where it is accessed, we have found that other decompilers do not have
this property. In particular, our approach did not work well with the Ghidra decompiler [61].
One of the primary causes is the way that Hex-Rays and Ghidra utilize debug symbols to name
variables. Hex-Rays uses debug symbols in a very straight-forward manner, and generally does
not propagate local names outside of their function. Ghidra, however, will actually propagate
variable names at some function calls. For example, if an unnamed variable is passed as an
argument to a function whose parameter has a name, in some cases Ghidra will rename the
variable to match the parameter’s name. This behavior is problematic for corpus generation
because it does not reflect the developer’s intended names.

A new approach for corpus generation would be required for compatibility with Ghidra, but
Ghidra’s open-source nature (as opposed to Hex-Rays’ closed model) allows potential modifi-
cation of the decompiler, including disabling the problematic propagation of names at function
calls. We leave Ghidra integration to future work.

3.5 Conclusion
The focus of this thesis is on the augmentation of decompiled code with both variable names
and types. In this chapter, I described the Decompiled Identifier Renaming Engine (DIRE), a
novel, probabilistic technique for variable name recovery which uses both lexical and structural
information. I also presented a technique for generating corpora suitable for training DIRE and
other recovery techniques, which was used to generate a corpus from 164,632 unique x86-64
binaries. The experiments presented show that DIRE is able to predict variable names identical to
the names used in the original source code up to 74.3% of the time. I also demonstrated how the
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technique is scalable to more or less data, depending on the training time and resources available.
I also demonstrated that DIRE is more accurate and scalable than other existing techniques.

Given these results, several questions still remain. First, is this technique also applicable to
the recovery of variable types? Second, the name of a variable is obviously dependent on its type
(e.g., a point type variable would be much more likely to be named pnt than size), does the
inclusion of types improve the performance of renaming? In the next chapter, I will discuss the
answers to these questions and describe specific challenges that arise when creating a model for
the task of retyping.

32



Chapter 4

Augmenting Decompiler Output with
Learned Types

In this chapter I will focus on the closely related problem of recovering meaningful variable
types, an important additional layer of code documentation that can help improve readability
and understandability [52, 145, 158]. Figure 4.1 shows an example of a simple function and its
decompilation. The author of the original code in Figure 4.1a has defined a pnt structure that
contains two float members used to refer to the X and Y coordinates of a point. This makes it
possible to define a new point and refer to its members by name (e.g., p1.x and p1.y). Because
the decompiler does not know about the pnt structure, it creates two float arrays instead of
generating a struct (Figure 4.1b). This can harm understandability. First, it is not clear that v1
and v2 represent points. Second, even if better names were chosen, such as point1 and point2,
and a reverse engineer concluded that they represent 2D points, it is not clear which array index
refers to which coordinate, or even that the coordinates are Cartesian (instead of polar).

Unlike names, types are constrained by memory layouts, and thus theoretically should be
easier to recover (only types that fit that memory layout should be considered as candidates).
In fact, decompilers already narrow down possible type choices using the fact that base types
targeting a specific platform can only be assigned to variables with a specific memory layout

1 typedef struct point {
2 float x;
3 float y;
4 } pnt;
5
6 void fun() {
7 pnt p1, p2;
8 p1.x = 1.5;
9 p1.y = 2.3;

10 // ...
11 use_pts(&p1, &p2);
12 }

(a) Original code

1 void fun() {
2 float v1[2], v2[2];
3 v1[0] = 1.5;
4 v1[1] = 2.3;
5 // ...
6 use_pts(v1, v2);
7 }

(b) Decompiled fun

Figure 4.1: A function with a struct and its decompilation.
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1 void fun() {
2 // stack layout:
3 // [xxx][p][yyyy]
4 char x[3];
5 int y;
6 // ...
7 }

(a) Original code

1 void fun() {
2 // stack layout:
3 // [xxxx][yyyy]
4 char x[4];
5 int y;
6 // ...
7 }

(b) Decompiled fun

Figure 4.2: A function illustrating the data layout problem in decompilation. In the stack layout
the characters x, y, and p represent a single byte assigned to the variables x and y, or padding data
respectively. The decompiler cannot recognize that the inserted padding data does not belong to
the x array.

(e.g., on most platforms an int variable can never be retyped to a char because they require
different amounts of memory). This already makes it possible for decompilers to infer base
types and a small set of commonly-used typedefs.

On the other hand, despite performing a battery of complex binary analyses, the data layout
inferred by the decompiler is often incorrect, which makes the problem harder. For example,
consider the program shown in Figure 4.2. Two top-level variables are declared, x: a three-byte
char array, and y: a four-byte int. During compilation, the compiler inserts a single byte of
padding after the x array for alignment. When this function is decompiled, the decompiler can
tell where x and y begin, but it cannot tell if x is a three-byte array followed by a single byte of
padding, or a four-byte array whose last element is never used.

Prior work on reconstructing types falls into two groups. The first, such as TIE [96], attempt
to recover syntactic types, e.g., struct {float; float}, but not the names of the structures
or fields. The second, such as REWARDS [109], attempt to also recover the type name (i.e.,
semantic types). However, these systems typically only support a small set of manually-defined
types and well-known library calls. Neither address the padding issue above described.

In contrast, our system, the DecompIled variable ReTYper (DIRTY) recovers both semantic
and syntactic types, handles padding, and is not limited to a small set of manually-defined types.
Instead, DIRTY supports 48,888 possible types encountered “in the wild” in open-source C code
(compared to the 150 different type names in 84 standard library calls supported by REWARDS).
At a high level, DIRTY is a Transformer-based [161] neural network model to recommend types
in a particular context, which operates as a postprocessing step to decompilation. DIRTY takes
a decompiled function as input, and outputs probable names and types for all of its variables.

To build DIRTY, we start by mining open-source C code from GITHUB, and then use a
decompiler’s typical ability to import variable names and types from DWARF debugging infor-
mation to create a parallel corpus of decompiled functions with and without their corresponding
original names and types. As a side effect of this large-scale mining effort, we also automatically
compile a library of types encountered across our open-source corpus. We then train DIRTY on
this data, introducing two task-specific innovations. First, we use a data layout encoder to in-
corporate memory layout information into DIRTY’s predictions and simultaneously address a
fundamental limitation of decompilers caused by padding. Second, we address both the variable
renaming and retyping tasks simultaneously with a joint Multi-Task architecture, enabling them
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to benefit from each other.
We show that DIRTY can assign variable types that agree with those written by developers

up to 75.8% of the time, and DIRTY also outperforms prior work on variable names.
Note that even though we implement DIRTY on top of the Hex-Rays1 decompiler because

of its positive reputation and its programmatic access to decompiler internals, our approach is
not fundamentally specific to Hex-Rays, and should conceptually work with any decompiler that
names variables using DWARF debug symbols.

In summary, the contributions of this chapter are:
• DIRT—the Dataset for Idiomatic ReTyping—a large-scale public dataset of C code for

training models to retype or rename decompiled code, consisting of nearly 1 million unique
functions and 368 million code tokens.

• DIRTY—the DecompIler variable ReTYper—an open-source Transformer-based neural
network model to recover syntactic and semantic types in decompiled variables. DIRTY
uses the data layout of variables to improve retyping accuracy, and is able to simultane-
ously retype and rename variables in decompiled code.

4.1 Model Design
In this section, we describe our machine learning model and design decisions, starting with
relevant background. Our model is a neural network with an encoder-decoder architecture.

4.1.1 The Encoder-Decoder Architecture
Our task consists of generating variable types (and names) as output given individual functions in
decompiled code as input. This means that unlike a traditional classification problem with a fixed
number of classes, both our input and output are sequences of variable length: input functions
(e.g., fed into the network as a sequence of tokens) can have arbitrarily many variables, each
requiring a type (and name) prediction.

Therefore, we adopt an encoder-decoder architecture [36], commonly used for sequence-to-
sequence transformations, as opposed to the traditional feed-forward neural network architecture
used in classification problems with a fixed-length input vector and prediction target. More
specifically, the encoder takes the variable-length input and encodes it as a fixed-length vector.
Then, this fixed-length encoding is passed to the decoder, which converts the fixed-length vector
into a variable-length output sequence. This architecture, further enhanced through the attention
mechanism [12], has been shown to be effective in many tasks such as machine translation, text
summarization [126], and image captioning [176].

4.1.2 Transformers
There are several ways to implement an encoder-decoder. Until recently, the standard implemen-
tation used a particular type of recurrent neural network (RNN) with specialized neurons called

1https://www.hex-rays.com/products/decompiler/
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long short-term memory units; these neurons and networks constructed from them are commonly
referred to as LSTMs [73]. More recently, Transformer-based models [19, 54, 136, 180], build-
ing on the original Transformer architecture [161], have been shown to outperform LSTMs and
are considered to be the state-of-the-art for a wide range of natural language processing tasks,
including machine translation [19], question answering and abstractive summarization [44, 97],
and dialog systems [2]. Transformer-based models have also been shown to outperform convo-
lutional neural networks such as ResNet [69] on image recognition tasks [46].

Transformers have several properties that make them a particularly good fit for our type pre-
diction task. First, they capture long-range dependencies, which commonly occur in program
code, more effectively than RNNs. For example, a variable declared at the beginning of a func-
tion may not be used until much later; an ideal model captures information about all uses of a
variable. Second, transformers can perform more computations in parallel on typical GPUs than
LSTMs. As a result, training is faster, and a Transformer can train on more data in the same
amount of time. In our case, this enables us to train on our large-scale, real-world dataset, which
consists of 368 million decompiled code tokens.

Although there have been a number of advances in neural machine translation since the orig-
inal Transformer model [161], most recent advances focus on improvements on other factors,
such as training data and objectives [19, 44, 97, 136], dealing with longer sequences [180], effi-
ciency [35], and scaling [54], rather than changing the fundamental architecture. Moreover, most
of these improvements are tailored for the natural language domain, making them less general-
izable than the original model and inapplicable to our task. Instead, we keep our model simple,
which allows different, better architectures or implementations to be used out-of-the-box in the
future. For example, the recent Vision Transformer (ViT) [46], which also intentionally follows
the original Transformer architecture “as closely as possible” when adapting Transformers to
computer vision tasks.

I omit the technical details of Transformers, including multi-headed self-attention, positional
encoding, and the specifics of training as they are beyond the scope of this thesis.

4.1.3 DIRTY’s Architecture
In DIRTY, we cast the retyping problem as a transformation from a sequence of tokens repre-
senting the decompiled code to a sequence of types, one for each variable in the source code.
This section details DIRTY’s architecture. Figure 4.3 shows an overview of the architecture.

Code Encoder. The encoder converts the sequence of code tokens of the decompiled function
(lower-left of Figure 4.3), x = (x1, x2, . . . , xn), into a sequence of representations,

H = (h1,h2, . . . ,hn) , (4.1)
where each continuous vector hi ∈ Rd_model is the contextualized representation for the i-th token
xi. During training, the encoder learns to encode the information in the decompiled function x
relevant to solving the task into H. For example, for a code token xi = v1, useful information
about v1 in the context of x (e.g., operations using v1) is automatically learned and stored in hi.

Specifically, we denote the encoding procedure as
H = fen (x; θen) , (4.2)
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Figure 4.3: Overview of DIRTY’s neural model architecture for predicting types. Decompiled
code is sequentially fed into the Code Encoder. When the input of the code encoder corresponds
to a specific variable (e.g., VAR1), it is pooled with other instances of the same variable to generate
a single encoding for that variable. Each pooled encoding is then passed into the Type Decoder,
which outputs a vector of the log-odds (logits) for predicted types. This vector is masked with
a vector generated by the data layout encoder and the most probable type is chosen from the
masked logits.

where the input x = (x1, x2, . . . , xn) is the code token sequence of the decompiled function
and the output H = (h1,h2, . . . ,hn) is the sequence of deep contextualized representations. In
this equation, fen denotes the encoder, implemented with neural networks, and θen denotes the
model’s learnable parameters.

The ultimate goal of DIRTY is to make type predictions about each variable that appears
in the decompiled function. However, the encoder produces hidden representations for every
code token (e.g., “v1”, “:”, “=”, “v1”, “+”, “1” are all tokens). Because a variable can appear
multiple times in the code tokens of a function, we need a way to summarize all appearances
of a variable. We achieve this through pooling, where the representation for the t-th variable2 is
computed based on all of its appearances in the code tokens, At, using average pooling [88]

vt = AveragePoolxi∈At
hi, t = 1, . . . ,m (4.3)

wherem is the number of variables in the function. This solution removes the burden of gathering
all information about a variable throughout the function into a single token representation. The
representation for the first variable, VAR1, is shown in the upper-left of Figure 4.3.

Type Decoder. Given the encoding of the decompiled tokens, the decoder predicts the most
probable (i.e., idiomatic) types for all variables in the function. The decoder takes the encoded
representations of the code tokens (H) and identifiers (vt) as input and predicts the original types
ŷ = (ŷ1, ŷ2, . . . , ŷm) for all m variables in the function. Unlike the encoder, the decoder predicts

2t is commonly used in RNN literature because it refers to a “timestep”.
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the output step-by-step using former predictions as input for later ones.3

At each time step t, the decoder tries to predict the type for the t-th variable as follows:

1. The decoder takes the code representations H and variable representation vt from the
encoder, and also previous predictions ŷ1, ŷ2, . . . , ŷt−1 from itself, to compute a hidden
representation zt ∈ Rd_model

zt = fde(ŷ1, ŷ2, . . . , ŷt−1,vt,H; θde) (4.4)
where fde, θde denotes the decoder and its parameters. The hidden representation zt is then
used for prediction.

2. The output layer of the decoder then uses its learnable weight matrix W and bias vector b
to transform the hidden representation zt to the logits for prediction

st = Wzt + b, (4.5)
where st ∈ R|T |, W ∈ R|T |×d_model, b ∈ R|T |, and |T | is the number of types in the
type library. The logits st is the unnormalized probability predicted by the model, or the
model’s scores on all types.

3. The softmax function computes a probability distribution over all possible types from st
Pr(ŷt|ŷ1, ŷ2, . . . , ŷt−1, x) = softmax st (4.6)

Note that the type library T is fixed, meaning DIRTY can only predict types that it has
seen during training. We discuss this limitation, its implications, and potential mitigations in
Section 4.3. However, DIRTY can recover structure types as well as normal types, as both are
simply entries in T .

The goal of the decoder is to find the optimal set of type predictions for all variables in a
given function (i.e., the predictions with the highest combined probability): argmaxŷ Pr(ŷ|x).
This probability can be factorized as the product of probabilities at each step:

Pr(ŷ | x) =
m∏
t=1

Pr (ŷt | ŷ1, ŷ2, . . . ŷt−1, x) . (4.7)

We can compute Pr (ŷt | ŷ1, ŷ2, . . . ŷt−1, x), but finding the optimal ŷ = (ŷ1, ŷ2, . . . , ŷm) is not an
easy task, because each variable can have |T | possible predictions, and each prediction affects
subsequent predictions. The time complexity of exhaustive search is O(|T |m). Therefore, find-
ing the optimal prediction is often computationally infeasible for large functions. A simple ap-
proach is greedy decoding, selecting the most promising prediction at every step based on the pre-
viously selected predictions, i.e., taking the max ŷt = argmaxyt Pr (ŷt = i | ŷ1, ŷ2, . . . , ŷt−1, x).
Greedy decoding is fast, but it often finds subpar predictions.

We use beam search [127], a compromise between greedy decoding and an exhaustive search.
Rather than only taking the most promising prediction (greedy), beam search considers a config-
urable number of most promising predictions at each step. In practice, it is usually able to find
good (but not optimal) predictions, but is significantly faster than an exhaustive search.

3This is known as an autoregressive model.
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Figure 4.4: The data layout encoder of DIRTY. The data layout for a specific variable, including
its location, size, and offsets of its members is passed into the layout encoder (top), generating a
mask (bottom).

4.1.4 Data Layout Encoder

The model described so far only uses information encoded into the code tokens of the decompiled
representation. But to actually create such an output, decompilers typically perform a battery
of complex binary analyses. Some decompilers allow the user to programmatically access the
interim results from some of these analyses. In particular, Hex-Rays provides information about
the storage location (e.g., register or stack offset), size, nested data types (e.g., if the variable is a
struct), and offsets of its members, if any (e.g., offsets in an array or of fields in a struct), for
each variable in a function. Intuitively, this information can help DIRTY rule out bad predictions.
For instance, a variable that is 4 bytes long could not be a char type because it would not fit.

A naïve approach would be to use this information as a hard constraint on the decoder’s
predictions, i.e., a mask which sets the probability of any “incompatible” types to 0. However,
this runs into a problem when the decompiler incorrectly reconstructs the data layout (see Fig-
ure 4.2). To mitigate this, DIRTY learns a soft mask, reducing probabilities without setting them
to 0. For example, DIRTY can learn based on many observations that a decompiled char[4]

should be typed as a char[3] 5% of the time and char[4] 80%, and adjust the predictions of
the type decoder accordingly. This allows the model to learn how best to incorporate the data
layout information from the decompiler, including when the information is likely to be incorrect.
Figure 4.3 illustrates where the data layout encoder fits into the overall architecture.

To implement the soft mask encoder, we jointly train another Transformer encoder to use data
layout information to generate a mask. Figure 4.4 shows the internals of the data layout encoder.
First, variable data layout is passed to the encoder. There are three parts to the data layout for a
specific variable, each of which is simply converted to a token:
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• Location. A variable can be located either in registers (tokenized as [Loc_<Register
Name>]) or on the stack ([Loc_S<Offset>]). E.g., a variable stored 28 bytes below
the stack pointer is tokenized as [Loc_S0x1c].

• Size. Measured in bytes and tokenized as [Size_<Size>].
• Internal Offsets. The offsets of members of the type (either array elements or struct

fields), in bytes. E.g., the type int[2] would have the offsets {0, 4}, while a struct

with two char fields would have the offsets {0, 1}. These are tokenized as a sequence of
[Offset_<Offset>]. For consistency, we also use [Offset_0] for types without
substructure (i.e., scalar types like int).

The tokenized data layout information is concatenated into a sequence denoted Mt and then
encoded as

mt = flayout (Mt; θlayout) , (4.8)
where mt is the hidden representation of data layout information. Inspired by Michel and Neu-
big [121], we adjust the output type distribution with data layout information. Formally, we
modify Equation (4.5) to fuse the data layout representation mt into the final output layer:

s̃t = st +Wmmt = Wzt +Wmmt + b, (4.9)
where st is the logits predicted by the Type Decoder, Wmmt is the “soft mask” produced by the
data layout encoder, and s̃t is the new masked logits. Wm ∈ R|T |×d_model denotes the learnable
weight matrix in the final layer of data layout encoder for transforming the data layout represen-
tation mt ∈ Rd_model to the mask ∈ R|T |. This implements a soft filter for type prediction using
data layout information.

4.1.5 Multi-Task

Many variable names are indicative of their type. For example, i and j are often used to represent
integers, s and str are often used to represent strings, etc. Intuitively, there is some connection
between a variable’s name and its type. Indeed, measuring the adjusted mutual information [162]
between variable names and types in our dataset, we find a moderate association (0.41 on the
scale [0, 1]). Since variable names can often be recovered from decompiled code using neural
models [88], this may help us learn to predict variable types as well (and vice versa).

To test this, we extend DIRTY to also predict names with a single, integrated multi-task
model. That is, we also predict a variable name for each variable in the function

ẑ = (ẑ1, ẑ2, . . . , ẑm) (4.10)
where ẑt denotes the predicted name for the t-th variable.

DIRTY’s decoder outputs are interleaved to predict names and types in parallel (Figure 4.5).
The first time the decoder is invoked on the t-th variable, it outputs the predicted type (ŷt) and
the second time it outputs a predicted name (ẑt).

The training and prediction procedures remain almost the same, with two notable exceptions.
First, to improve performance, the data layout encoder is not activated when the decoder is pre-
dicting a variable’s name. This is unnecessary because name prediction depends on the predicted
type, which has already incorporated the data layout information. Preliminary experiments con-
firmed no improvement in accuracy when using the data layout encoder for name prediction.
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Figure 4.5: The multi-task decoder for DIRTY, which predicts both variable types and names.
The encoder architecture is the same as in Figure 4.3. Each variable is passed to the decoder
twice, the first time a type is predicted (yi), and the second time a name is predicted (zi). Note
that the data layout encoding of a variable is only used to weight type predictions.

Second, there are two ways to interleave the predictions of types and names: types first or
names first. In theory, this does not matter because they are equivalent if the learned model and
the decoding algorithm are ideal. In practice, we chose to predict types first because we believe
the type prediction task should be easier (since there is more information) and it better reflects
how developers define variables.

4.2 Evaluation
Our evaluation was structured to answer the following research questions:

• RQ1: How effective is DIRTY at idiomatic retyping?
• RQ2: How does DIRTY compare to existing work on other decompilation benchmarks?
• RQ3: How does each component of DIRTY contribute to its performance?
• RQ4: How does compiler optimization affect DIRTY’s prediction accuracy?

4.2.1 Experimental Setup
First, we introduce the DIRT dataset we used for training DIRTY, and experimental setup details.

Dataset for Idiomatic ReTyping (DIRT). To create DIRT, we queried a 2017 version of the
GHTORRENT4 database, compiling a list of public GITHUB repositories predominantly written

4https://ghtorrent.org
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in C. We then cloned these repositories locally using an open-source tool, GHCC,5 to automat-
ically build them. GHCC identifies build instructions (e.g., Makefiles) in repositories, creates a
Docker container with the requisite libraries, and attempts to build the project. We used GCC
version 9.2.0. For most experiments, we explicitly disable optimizations using the -O0 com-
piler flag. We also evaluated DIRTY at higher optimization levels in Section 4.2.5. This process
resulted in 4,346,134 automatically compiled 64-bit x86 binaries. After compilation, we then de-
compiled each binary using Hex-Rays and filtered out any functions that did not have variables
requiring renaming or retyping. Following our earlier work in DIRE Chapter 3, we compiled each
binary again with debugging information to align decompiler-assigned variable names (e.g., v1)
and developer-assigned variable names (e.g., picture) to form training examples.

Since DIRE was only concerned with renaming, the previous dataset did not include vari-
ables which did not correspond to a named variable in the original source code. Many such
variables are actually caused by mistakes in the decompiler during type recovery, for instance
decompiling a structure to multiple scalar variables instead. Since the goal of DIRT is to enable
type recovery and fix such mistakes, we label these instances as <Component> to denote that they
are components of a variable in the source code. This allows the model to combine them with
other variables into an array or a struct.

The final DIRT dataset consists of 75,656 binaries randomly sampled from the full set of
4,346,134 binaries to yield a dataset that we could fully process based on the computational
resources we had available. We split the dataset per-binary as opposed to per-function, which
ensures that different functions from the same binary cannot be in both the test and training sets.
The training dataset consists of 997,632 decompiled functions, and a total number of 48,888
different types. We also preprocess the decompiled code with byte-pair encoding (BPE) [148],
a widely adopted technique in NLP tasks to represent rare words with limited vocabulary by
tokenizing them into subword units. After this step, the DIRT dataset consists of 368 million
decompiled code tokens, and an average of 220.3 tokens per function.

Metrics. We evaluate DIRTY using two metrics:

• Name Match: We consider a variable name prediction correct if it exactly string matches
the name assigned by the original developer. We compute the prediction accuracy as the
average percentage of correct predictions across all functions in the test set.

• Type Match: A type prediction is considered correct only if the predicted type fully matches
the ground truth type, including data layout, and the type and name of any fields if appli-
cable. We serialize types to strings and use string matching to determine type matching.

Note that both metrics are conservative. Predictions may still be meaningful, even if not
identical to the original names. A human study evaluating the quality of predicted types and
names is described in Chapter 5.

Meaningful Subsets of the Test Data. We introduce several subsets of the DIRT test set to
better interpret the results:

5https://github.com/huzecong/ghcc
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Table 4.1: DIRTY has higher retyping accuracy than Frequency By Size (FSize) and Hex-Rays
(HR) on the DIRT dataset, both for all types (All) and on structural types alone (Struct).

Overall In Train Not in Train
Method All Struct All Struct All Struct

FSize 23.6 9.7 23.5 9.1 23.8 10.4
HR 37.9 28.7 39.0 28.7 36.4 28.7
DIRTY 75.8 68.6 89.9 79.2 56.4 54.6

• Function in training vs Function not in training: As in our previous work, Function in
training consists of the functions in the test set that also appear in the training set, which
are mainly library functions. Allowing this duplication simulates the realistic use case of
analyzing a new binary that uses well-known libraries. We also separately measure the
cases where the function is not known during training (i.e., Function not in training) to
measure the model’s generalizability.

• Structure types: Only 1.8% of variables in DIRT have structure types. Because of this low
percentage, examining overall accuracy may not reflect DIRTY’s accuracy when predicting
structure types, which we have found anecdotally to be more challenging. To mitigate this,
we separately measure DIRTY’s accuracy on structures in addition to its overall accuracy.

4.2.2 RQ1: Overall Effectiveness
We evaluate DIRTY on the retyping task and report its accuracy compared to several baselines.

Baselines. We measure accuracy with respect to two baselines for predicting variable types:
• Frequency by Size: The number of bytes a variable occupies is the most basic information

for a type. For this technique, we predict the most common developer-assigned type for
a given size (as reported by the decompiler). E.g., int is the most common 4-byte type,
and __int64 is the most common 8-byte type; this baseline simply assigns these types to
variables of the respective size.

• Hex-Rays [71]: During decompilation, Hex-Rays predicts a type for each variable: we use
these predictions as a baseline. However, Hex-Rays cannot predict developer-generated
types without prior knowledge of them, e.g., Hex-Rays assigns unsigned __int16 instead
of the more common uint16_t, which puts it at an unfair disadvantage. For this baseline,
we reassign the type chosen by Hex-Rays to the most common developer-chosen name
associated with it (e.g., we replace every unsigned __int16 with uint16_t.

Results. As shown in Table 4.1, DIRTY can correctly recover 75.8% of the original (developer-
written) types from the decompiled code. In contrast, Hex-Rays, the highest scoring baseline,
can only recover 37.9% of the original types.

As expected, DIRTY performs even better when it has seen a particular function before (In
Train), generating the same type as the developer 89.9% of the time. This indicates that DIRTY
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Table 4.2: Example variable types from the Function not in training testing partition. The top
rows are the developer-assigned types and the columns show DIRTY’s top-5 most frequent pre-
dictions. <Component> represents a prediction that the variable in the decompiled code does not
correspond to a variable in the source code (e.g., because it corresponds to a member of a struct).

int char * class std::string

int 88.8% char * 60.3% class std::string 47.5%
unsigned int 4.3% const char * 11.4% char[32] 24.2%
<Component> 2.7% <Component> 4.4% char[47] 14.6%
uint32_t 0.8% __int64 4.1% class std::__cxx11::basic_string 6.1%
u_int32_t 0.3% size_t 1.8% char[40] 3.5%

works particularly well on common code such as libraries. Even when a function has never been
seen (Not in Train), DIRTY predicts the correct type 56.4% of the time.

Table 4.1 also shows the performance of DIRTY on structure types alone. Correctly predict-
ing structure types is more difficult than predicting scalar types, and all models show a drop in
performance. Despite this drop, DIRTY still achieves 68.6% accuracy overall, and 54.6% accu-
racy on the Function not in training category. Frequency By Size struggles on structures with
only 9.7% accuracy; this is expected since structures of a given size can have many possible
types. Hex-Rays is slightly more accurate at 28.7%, as the decompiler is able to analyze the
layout of structures.

Table 4.2 shows several examples of retyping predictions from the Function not in training
partition. These examples show that accuracy is not the full story; even when DIRTY is unable
to predict the correct type, the differences are often minor (e.g., unsigned int v. int, and
const char * v. char *). The bottom half of Table 4.2 shows prediction examples of structure
types. DIRTY is able to recover the actual structure much of the time. At other times, DIRTY
also produces some semantically reasonable but syntactically unacceptable predictions, like char
[32] for class std::string.

RQ1 Answer: We find that DIRTY is effective at idiomatic retyping, correctly recover-
ing 75.8% of the original types in decompiled code. When DIRTY has seen a particular
function before, this performance raises to 89.9%.

4.2.3 RQ2: Comparison with Prior Work
We further compare DIRTY with recent work on type recovery [185] and our previous work on
variable name recovery.

Type Recovery. While there is prior work on type recovery (see also Chapter 2), none of the ex-
isting approaches, TIE [96], Howard [152], Retypd [130], TypeMiner [119] and OSPREY [185],
are publicly available. We are grateful to Zhang et al. [185], the authors of OSPREY, for kindly
sharing their evaluation material so we could compare results.
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Table 4.3: Accuracy comparison on the Coreutils benchmark.

Coreutils
Model All Visited Non-Visited Struct

OSPREY 71.6 83.8 32.4 26.6
DIRTY 76.8 79.1 69.6 15.7
DIRTYLight 80.1 80.1 80.1 27.7

OSPREY is a recently proposed probabilistic technique for variable and structure recov-
ery that outperforms existing work including Howard [152], Angr [151], Hex-Rays [71] and
Ghidra [185]. The OSPREY authors provided us with the GNU coreutils6 executables they used
in their evaluation, which were compiled with -O0 to disable optimization. We ran DIRTY on
these executables, but only evaluated on stack and heap variables, since OSPREY does not re-
cover register variables. This benchmark consists of 101 binaries and 17,089 variables. We also
define two subsets of the dataset:

• Visited. A subset of 13,020 variables that are covered by BDA [187], a binary abstract
interpretation tool that OSPREY relies on. OSPREY is expected to perform better on these
covered functions than uncovered functions, which we also report as Non-Visited.7 How-
ever, DIRTY is not subject to this limitation.

• Struct. A subset of 3,061 variables related to structure types. Following OSPREY, we
include structs allocated on the stack, pointers to structs on the heap, and arrays of structs.
These variables do not have to be in the Visited subset.

Because DIRTY can predict up to 48,888 different types, each including the full syntactic
and semantic information, we convert its predictions in a post-hoc manner to make it comparable
with OSPREY.8

Table 4.3 compares the accuracies of both systems. On the overall coreutils benchmark,
DIRTY slightly outperforms OSPREY (76.8% vs 71.6%). OSPREY outperforms DIRTY on the
Visited subset, but as expected, performs worse on the Non-Visited functions. Meanwhile,
DIRTY is more consistent on Visited and Non-Visited. When only looking at structure types,
OSPREY outperforms DIRTY (26.6% vs 15.7%).

However, this comparison puts DIRTY at a disadvantage, since OSPREY was designed for
this task of recovering syntactic types, while DIRTY was trained to recover variable and type/-
field names, and much of this information is thrown out for this evaluation. To address this, we
trained a new model, DIRTYLight, on DIRT, but tailored the training to OSPREY’s simplified task.
The accuracy of this model is also reported in Table 4.3. As expected, the DIRTYLight model out-
performs the off-the-shelf DIRTY model, since it is trained specifically for this task. DIRTYLight

6https://www.gnu.org/software/coreutils/
7A majority of uncovered functions are unreachable from the entry point of the binary, and others are indirect

call targets which BDA fails to analyze.
8Specifically, we discard type names and field names. For example, bool and char are both converted to

Primitive_1, which stands for a primitive type occupying 1 byte of memory, const char * and char *
are converted to Pointer<Primitive_1>, and struct ImVec2 {float x; float y;} converted to
Struct<Primitive_4, Primitive_4>.
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Figure 4.6: Accuracy of DIRTY and OSPREY on 101 individual programs in the coreutils bench-
mark with different number of variables. The two methods are competitive on large binaries,
while DIRTY performs much better on small binaries.

greatly improves prediction accuracy on the Struct subset, even outperforming OSPREY.
To further get a fine-grained comparison with OSPREY, we calculate accuracy on 101 core-

utils binaries individually, and show the prediction accuracies of DIRTY and OSPREY with re-
spect to the number of variables in the programs in Figure 4.6.

We observe that DIRTY is competitive compared with OSPREY. Interestingly, while the
results on large binaries are close, DIRTY performs better on small binaries. This suggests
our learning-based method trained on GITHUB data might generalize better on rare patterns
compared to empirical methods that might have been developed based on observations on a
limited number of common and relatively larger programs.

In addition, DIRTY is also much faster and scalable. On average, OSPREY takes around 10
minutes to analyze one binary in coreutils, while it takes 75 seconds for DIRTYLight to finish
inference on the whole coreutils benchmark.

Overall, we believe both methods are valuable. Since at this point DIRTY is using Hex-Rays
recovered data layout as input to its data layout encoder, we believe a promising future direction
is to combine these two methods—using OSPREY’s results as the input to DIRTY’s, and the
combined approach can potentially achieve even better results.

Name Recovery. At the time of these experiments, Decompiled Identifier Renaming Engine
(DIRE) was the state-of-the-art neural approach for decompiled variable name recovery. Recall
that the DIRE model consists of both a lexical encoder and a structural encoder, utilizing both to-
kenized decompiled code and the reconstructed abstract syntax tree (AST). In contrast, DIRTY’s
simpler encoder only uses the tokenized decompiled code.

To fairly compare with DIRE, we trained DIRTY on the DIRE dataset and also trained DIRE
on the DIRT dataset. Note that since DIRE is focused on variable renaming, there is no type
information collected in the DIRE dataset and we cannot use the data layout encoder for these
experiments. Instead, we only use our Code Encoder and Renaming Decoder. The accuracy of
both systems is shown in Table 4.4. DIRTY significantly outperforms DIRE in overall accuracy
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Table 4.4: Accuracy comparison of DIRE and DIRTY on the DIRE and DIRT datasets. Accuracy
is reported overall (All), when functions are in the training set (FIT), and when functions are not
in the training set (FNIT).

DIRE Dataset DIRT Dataset
Model All FIT FNIT All FIT FNIT

DIRE 72.8 84.1 33.5 57.5 75.6 31.8
DIRTY 81.4 92.6 42.8 66.4 87.1 36.9

Table 4.5: Effect of model size. The accuracy columns show the overall and struct type accuracy.

Accuracy
Model Overall Struct

DIRTYS 74.5 65.4
DIRTY 75.8 68.6

on both the DIRE (81.4% vs. 72.8%), and DIRT datasets (66.4% vs. 57.5%). DIRTY also
generalizes better than DIRE: when functions are not in the training set, DIRTY outperforms
DIRE on both the DIRE (42.8% vs. 33.5%) and the DIRT datasets (36.9% vs. 31.8%).

DIRTY outperforms DIRE in spite of the fact that it only leverages the decompiled code,
whereas DIRE leverages both the decompiled code and the reconstructed AST from Hex-Rays.
Since the primary difference between DIRTY without type prediction and DIRE is that it uses
Transformer as its encoder and decoder network, we attribute this improvement to the power of
Transformers, which allow modeling interactions between any pair of tokens, unrestricted to a
sequential or tree structure as in DIRE.

DIRTY also trains faster than DIRE. We found that DIRTY surpassed DIRE in accuracy after
training for 30 GPU hours, compared to the 200 GPU hours required to train DIRE on the full
DIRT dataset, which we again attribute to the efficiency of the Transformer architecture.

RQ2 Answer: DIRTY is effective at recovering structural types, slightly outperforming
OSPREY when its output is converted into a comparable form. DIRTY also outperforms
DIRE on renaming tasks, leveraging the additional information encoded in types.

4.2.4 RQ3: Ablation Study

To understand how each component of DIRTY contributes to its overall performance, we perform
an ablation study.

Model Size. Transformers have the merit of scaling easily to larger representational power by
stacking more layers, increasing the number of hidden units and attention heads per layer [44,
161]. We compare DIRTY to a modified, smaller version DIRTYS . DIRTY contains 167M
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Figure 4.7: Effect of training data size. With 100% of the data, the accuracies of All, In train, and
Not in train are 75.8%, 89.9%, and 56.4% respectively. With 20%, these drop to 67.9%, 82.3%,
and 48.0% respectively.

parameters, while DIRTYS only 40M.
Table 4.5 shows overall DIRTY is 75.8% accurate vs. 74.5% for DIRTYS’s. This indicates

increasing the model size has a positive effect on retyping performance. The gain from increased
model capacity is notably larger when comparing performance on structures. This improvement
suggests that complex types are more challenging and require a model with larger representa-
tional capacity. We are not able to train a larger model due to limits on computation power.

Dataset Size. We examine the impact of training data size on prediction accuracy. As a data-
driven approach, DIRTY relies on a large-scale code dataset; studying the impact of data size
gives us insight into the amount of data to collect. We trained DIRTY on 20%, 40%, 60%, 80%
and 100% portion of the full training partition and report the results in Figure 4.7.

Figure 4.7 shows the change in accuracy with respect to the percentage of training data.
Increasing the size of training data has a significant effect on the accuracy. Between 20% and
100% of the full size the accuracy increases from 67.9% to 75.8%, a relative gain of 11.6%.

Notably, accuracy on Function not in training has a relative gain of 17.5% much larger than
on the Function in training partition. This is likely because the Function in training partition
contains common library functions shared by programs both in the training and test set, and even
a smaller dataset will have programs that use these functions. In contrast, the Function not in
training part is open-ended and diverse.

It is also worth noting that the accuracy drops sharply when the training set size is decreased
from 40% to 20%, justifying the necessity for using a large-scale dataset.

Data Layout Encoder. We explore the impact of the data layout encoder on DIRTY’s perfor-
mance. We experiment with a new model with no data layout encoder, DIRTYNDL.

Table 4.6 shows the accuracy results overall and on the Function in training and Function not
in training partitions. The inclusion of the data layout encoder improves overall accuracy from
72.2% to 75.8%, indicating that the data layout encoder is effective. The results are even more
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Table 4.6: Effect of the data layout encoder on the accuracy of DIRTY. Accuracy is reported for
the model with (DIRTY) and without (DIRTYNDL) the encoder.

Model Overall In train Not in train

DIRTYNDL 72.2 88.4 49.9
DIRTY 75.8 89.9 56.4

Table 4.7: Comparative examples from DIRTY with and without data layout encoder from the
Function not in training partition. Predictions inside a gray box have a different data layout than
the ground truth type. DIRTY effectively suppresses these, which helps guide the model to a
correct prediction. The structure’s full type is struct __m128d {double[2] m128d_f64;}.

DIRTY DIRTYNDL

__int64 struct __m128d __int64 struct __m128d

__int64 74.3% struct __m128d 78.7% __int64 67.0% double 33.1%
<Component> 5.7% <Component> 15.4% int 6.3% <Component> 27.2%
void * 1.7% void 2.9% <Component> 6.0% __int64 10.3%
char * 1.7% __int128 2.2% unsigned int 1.5% struct __m128d 5.9%
const char * 1.6% double 0.7% char * 1.2% int 3.7%

interesting when the results are broken into the two partitions. The relative gain on the Function
in not training partition is 13% (49.9% to 56.4%), compared to 1.7% on the Function in training
partition (88.8% to 89.9%). This suggests the data layout encoder greatly improves DIRTY’s
generalization ability.

Table 4.7 compares example predictions from DIRTY and DIRTYNDL on the same types
from the Function not in training partition. For the __int64 example, the type predictions from
DIRTY mostly have the correct size of 8 bytes. DIRTYNDL, however, often incorrectly predicts
int and unsigned int. This is understandable because in situations where the value doesn’t
exceed the 32-bit integer, __int64 can be safely interchanged with int, these situations can be
identified in some decompiled code. However, apart from the correctness of the retyped program,
accuracy to the original binary, (i.e., allocating 8 bytes instead of 4), is also important. DIRTY
achieves this better than DIRTYNDL.

In the second example, the struct __m128d type occupies 16 bytes, and has two members at
offset 0 and 8. DIRTYNDL mainly mistakes this structure as a double, which might make sense
semantically but is unacceptable syntactically. With the data layout encoder, DIRTY effectively
reduces these errors. This demonstrates this component achieves the soft masking effect on type
prediction as intended in Section 4.1.4.

Multi-Task Decoder. In this section we study the effectiveness of the Multi-Task decoder when
compared to decoders designed for only retyping or only renaming. Inspecting the accuracy num-
bers reported in Table 4.8, the Multi-Task decoder has similar, but slightly lower overall accuracy
on both tasks as the two specialized models (-0.8% for retyping and -1.3% for renaming). One
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Table 4.8: Performance comparison of the Retyping-only, Renaming-only, and Multi-Task de-
coders. Overall performance is shown, in addition to performance on retyping when the name is
correct (XName) and performance on renaming when the type is correct (XType).

Retyping Renaming
Model Overall XName Overall XType

Retyping 75.8 90.6 - -
Renaming - - 66.4 82.6
Multi-Task 74.9 92.3 65.1 84.6

possible reason is that the Multi-Task model has twice the length of decoding lengths than a
specialized model, which makes greedy decoding harder.

Despite the small decrease in performance, the unified model has advantages. These are
illustrated in the XName and XType columns of Table 4.8. XName and XType stand for the
subsets of the full dataset where the Multi-Task decoder makes correct renaming predictions
and correct retyping predictions, and we evaluate the retyping and renaming performance on
them, respectively.9 The Multi-Task decoder outperforms the specialized models by 1.9% and
2.4% relatively on these metrics, in spite of the longer decoding length. This means the type
and name predictions from the Multi-Task decoder are more consistent with each other than
from specialized models. In other words, making a correct prediction on one task increases the
probability of success on the other task.

In practice, this offers additional flexibility and opens the opportunity for more applications.
For example, consider a cooperative setting where a human decompilation expert uses DIRTY
as an analysis tool. The human expert may be unsatisfied with the model’s top prediction and
want to switch to another one in the top-k candidates list. With a Multi-Task decoder, the model
adjusts the name prediction for that variable, which is impossible with the specialized decoders.

RQ4 Answer: We find that each component of DIRTY contributes to its accuracy. The
addition of the data layout encoder improves overall accuracy from 72.2% to 75.8%. Ad-
ditionally, the Multi-Task Decoder enables the simultaneous prediction of both names and
types for variables in decompiled code.

4.2.5 RQ4: Compiler Optimization Levels
We study the impact of compiler optimizations on DIRTY’s accuracy. In keeping with the spirit
of the OSPREY evaluation on coreutils compiled with -O3, we choose coreutils as our evaluation
dataset. However, since we did not have access to the original dataset used by OSPREY except
-O0, we recompiled GNU coreutils 3.2 ourselves using optimization levels -O0, -O1, -O2, and
-O3. Table 4.9 shows how accurately DIRTY is able to recover the full type (including type
and field names) informaition at each optimization level. As expected, DIRTY does best at -O0,

9The probability of success on the other task also increases by chance, because success on one task implies it is
easier than average. We have eliminated this influence by, e.g., comparing 92.3 to 90.6, instead of 74.9.
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Table 4.9: Accuracy comparison of DIRTY on the GNU coreutils benchmark compiled with
-O0, -O1, -O2, and -O3 optimization levels.

GNU coreutils
Model -O0 -O1 -O2 -O3

DIRTY 48.20 46.01 46.04 46.00

since DIRTY is trained on -O0 code and we believe -O0 code to be simpler. Going from -O0
to -O1, DIRTY’s accuracy drops from 48.2% to 46.0%. However, there is little difference in
performance between -O1, -O2, and -O3. This suggests that DIRTY does slightly better on
the optimization level of code it was trained on, but that the effect of optimizations is small.
We believe this is because Hex-Rays recognizes and will “undo” some optimizations so that
the decompiled code will be very similar. For example, unoptimized code will often reference
stack variables using a frame pointer, but optimized code will reference such variables using the
stack pointer, or even maintain them in a register. But both implementations will look similar
in the decompiled code, since the mechanism used to reference the variable is not important at
the C level. Since DIRTY operates on the decompiled code, the decompiler effectively insulates
DIRTY from these optimizations.

RQ4 Answer: We find that different optimization levels have a minimal impact on the
accuracy of DIRTY: the reduction in performance between binaries compiled at -O0 and
-O3 is only 2.2%.

4.2.6 Illustration

To gain more qualitative insights into DIRTY’s predictions, consider the example in Fig-
ure 4.8. The code shown is the Hex-Rays output, cleaned for presentation. Here, we would like
to rename and retype the arguments a1, a2, and a3, in addition to the variable v1. The table in
Figure 4.8 shows the developer’s chosen types and names together with DIRTY’s suggestions.
DIRTY suggests the same types and names as the developer for a3 and v1, and the same type but
a different name for a2. Although the names disagree for a2, we note that pic is an abbreviation
for picture, so the disagreement is minor. We also observe that Picture_0 *, the type of a2
itself carries a lot of semantic information; even if DIRTY was unable to suggest a meaningful
name, Picture_0 *a2 is still helpful for reverse engineering.

The developer and DIRTY disagree on both the name and the type of a1. In this case, the
name chosen by DIRTY (s) would probably not be considered a very useful improvement over
a1. However, the type suggested by DIRTY (MpegEncContext_0 *) could still be quite useful
to a reverse engineer, even if it is inaccurate. It suggests that this argument is a “context”, and
hints that this function is used for video.
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1 int find_unused_picture(int a1, int a2, int a3) {
2 int i, j, v1;
3 if (a3) {
4 for (i = <Num>;; ++i) {
5 if (i > <Num>)
6 goto LABEL_13;
7 if (!*(*(<Num> * i + a2) + <Num>))
8 break;
9 }

10 v1 = i;
11 } else {
12 for (j = <Num>;; ++j) {
13 if (j > <Num>) {
14 LABEL_13:
15 av_log(a1, <Num>, <Str>);
16 abort();
17 }
18 if (pic_is_unused(<Num> * j + a2))
19 break;
20 }
21 v1 = j;
22 }
23 return v1;
24 }

ID Developer DIRTY

a1 AVCodecContext_0 *avctx MpegEncContext_0 *s

a2 Picture_0 *picture Picture_0 *pic

a3 int shared int shared

v1 int result int result

Figure 4.8: Simplified Hex-Rays output. <Num> and <Str> are placeholder tokens for constant
numbers and strings respectively. The table summarizes the original developer names and types
along with the names and types predicted by DIRTY.
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4.3 Discussion

In this chapter I presented DIRTY, a novel deep learning-based technique for predicting variable
types and names in decompiled code. Still, DIRTY is limited in several ways that provide key
opportunities for future improvements.

Alternative Decompilers to Hex-Rays. We implement DIRTY on top of the Hex-Rays de-
compiler because of its positive reputation and the programmatic access it affords to decompiler
internals. However, DIRTY is not fundamentally specific to Hex-Rays, and the technique should
conceptually work with any decompiler that names variables using DWARF debug symbols.
Note that, due to its recent popularity and promise, we attempted to evaluate our techniques us-
ing the newer, open-source Ghidra decompiler. Unfortunately, it is currently infeasible, because
Ghidra routinely failed to accurately name stack variables based on DWARF. This appears to be
a combination of specific issues10 and the general design of the decompiler. Ghidra’s decompiler
consists of many passes which modify and augment the current decompilation. Some of these
passes combine variables, but in doing so may combine a DWARF-named variable with others.
Since the combined variable no longer corresponds directly with the DWARF variable informa-
tion, Ghidra discards the name. We are optimistic, however, that when the above-mentioned
issues are addressed, Ghidra may again be a reasonable target for our approach.

Generalizing to Unseen Types. A limitation of DIRTY’s current decoder is that it can only
predict types seen during training. Fortunately, there appears, empirically, to be sufficient redun-
dancy across large corpora that DIRTY is still frequently able to successfully recover structural
types. This lends credence to the hypothesis that code is natural, an observation that has been
explored in several domains [43, 72]. It moreover appears that data layout is of particular im-
portance here: layout information recovered from the decompiler impose key constraints on the
overall prediction problem. Indeed, our results in Section 4.2.4 corroborate the intuition that the
data layout encoder is especially important for succeeding on previously unseen code.

We envision meaningful future opportunities to more directly expand DIRTY’s capabilities
to predict unseen structures. This problem is analogous machine translation models that must
deal with rare or compound words (e.g., xenophobia) that are not present in their dictionary.
Byte Pair Encoding [148] (BPE) is the most frequently used technique to tackle this problem in
the natural language domain. It automatically splits words into multiple tokens that are present
in the dictionary (e.g., xeno and ##phobia). (The ## indicates the word is still part of the cur-
rent word, instead of a new word next to it.) This technique greatly increases the number of
words a model can handle despite a limited dictionary size, and enables the composition of new
words that were not seen during training. This suggests that we can similarly extend DIRTY’s
decoder to predict previously unseen types by decomposing structure types into multiple pieces
with BPE. For example, a structure type struct timeval {time_t tv_sec; suseconds_t

tv_usec;} is split into four separate tokens, which are 1) struct timeval, 2) time_t tv_vec

;, 3) suseconds_t tv_usec;, and 4) <end_of_struct>.

10https://github.com/NationalSecurityAgency/ghidra/issues/2322
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However, unfortunately, our preliminary experiments suggested that this hurts overall predic-
tion accuracy. It also significantly slows down prediction, since it drastically increases the num-
ber of decoding steps. It moreover requires finer-grained accuracy metrics, like tree distance,
to allow us to measure and credit partially correct predictions. Based on these observations, we
believe unseen structure types should be handled specially with a tailored model, a problem we
leave to future work.

Supporting Non-C Languages. A benefit of decompiling to C is that as a relatively low-level
language, it can express the behavior of executables beyond those written in C. Although we
designed DIRTY to be used with C programs and types, DIRTY can run on non-C programs,
and will try to identify the C type that best captures the way in which that variable is being used.
Thus, DIRTY provides value to analysts seeking to understand non-C programs, similar to how
C decompilers such as Hex-Rays help analysts to understand C++ programs.

However, many compiled programming languages have type systems far richer than C’s, and
expressing these types in terms of C types may be confusing. For example, in C++, virtual
functions are often implemented by reading an address out of a virtual function table [51, 147].
Although techniques like DIRTY can recognize such tables as structs or arrays of code pointers,
it does not reveal the connection to the higher-level C++ behavior of virtual functions.

Extending DIRTY to support higher-level languages such as C++ is an interesting open prob-
lem. To some degree, as long as the decompiler is able to import the higher-level type information
from debug symbols into the decompiler output, it should be possible to train DIRTY to recognize
non-C types. For instance, 6% of the programs in DIRT are written in C++, and our evaluation
measures DIRTY’s ability to predict common C++ class types such as std::string. But recov-
ering higher level properties of these types, especially for those never seen during training, is a
challenging problem and is likely to require language-specific adaptations [51, 147].

Limited Input Length. As common with Transformers, we truncate the decompiled function
if the length n exceeds some upper limit max_seq_length, which makes training more efficient.
In our experiments we setmax_seq_length to 512 for two reasons. First, 512 is the default value
formax_seq_length in many Transformer models [44, 161]. Second, in DIRT, the average num-
ber of tokens in a function is 220.3, and only 8.8% of the functions have more than 512 tokens,
i.e., we exclude relatively few of the possible inputs encountered in the wild. Still, if enough
computational resources are available, we recommend using efficient Transformer implementa-
tions such as Big Bird [180] instead. These can deal with much larger max_seq_length and can
be used out-of-the-box to replace our implementation.

4.4 Conclusion
In this chapter I addressed the problem of assigning decompiled variables meaningful names and
types by statistically modeling how developers write code. While decompilers attempt to reverse
compilation by transforming binaries into high-level languages, generating the same types origi-
nally written by the developer is impossible. However, in this chapter I presented the DecompIled
variable ReTYper (DIRTY), a novel technique for improving the quality of decompiler output
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that uses machine learning to automatically generate meaningful variable names and types. Em-
pirical evaluation of DIRTY on a novel dataset of C code mined from GitHub shows that DIRTY
outperforms prior work approaches by a sizable margin, recovering the original names written
by developers 66.4% of the time and the original types 75.8% of the time.

The evaluations used in this chapter and Chapter 3 have been useful for training machine
learning models, but are only a proxy for real-world understandability. In the next chapter I will
present a human study that I designed and ran to measure the actual impact of renaming and
retyping on the performance of reverse engineers.
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Chapter 5

A Human Study of Automatically
Generated Decompiler Annotations

The experiments presented in Chapters 3 and 4 relied on exact comparisons to the names and
types written by the original developer. This evaluation has the advantage that it is easy to auto-
mate and allows iterative improvement of techniques during their development and rapid training
of machine learning algorithms. However, this metric also has disadvantages. First, it makes the
assumption that the original developers’ choices of variable names and types are objectively cor-
rect. Not only is this assumption not guaranteed to hold, is it sometimes completely incorrect:
there have been instances of developers naming variables after famous athletes [153], and Star
Wars characters [91]. Accurately predicting 75% of variable names and types that a developer
chose might not be ideal if many of them were already poor or completely unrelated to their
function in the code.

A second disadvantage is that it does not allow for abbreviations or synonyms. For exam-
ple, such an evaluation does not consider str and string, size and length, or even xpoint

and xPoint to be equivalent. It is possible to create heuristic methods to match these (e.g.,
manually creating a list of pairs to consider equivalent, using a word embedding technique
like word2vec [122] to measure their difference, or creating a model specifically for variable
names [31]), but it is not immediately clear how to adapt these to apply to user-defined types.
An example is shown in Figure 5.1. A user-defined type for a node in a linked list is shown in
Figure 5.1a, this structure has three fields: data stores the data in the current node, next is a
pointer to the next node in the list, and head is a pointer to the head of the list. Two replacements

1 struct node {
2 int data;
3 struct node *next;
4 struct node *head;
5 }

(a) Original type

1 struct node {
2 int data;
3 struct node *next;
4 }

(b) First replacement

1 struct node {
2 int contents;
3 struct node *following;
4 struct node *first;
5 }

(c) Second replacement

Figure 5.1: A user-defined type to represent a node in a linked list, and two candidate replace-
ments. A replacement score would depend on the context of the type being used.
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are shown in Figures 5.1b and 5.1c. The first is identical to the original type but missing the head
pointer, while the second has all of the same information, but the fields are renamed to contents,
following, and first respectively. In this case, the replacement score should strongly depend
on the context in which the type is used. For example, in a function that takes a pointer to the
head of the list and searches for a data item, the head pointer might never be used and the first
replacement would essentially be identical to the original type. However, in a different function
that required access to the head pointer the second type, which does include a field for the head
pointer, would need to be scored much higher.

Yet another disadvantage is that this metric does not consider how misleading the names and
types are when a prediction is graded as incorrect. There is a large difference between replacing
str with string and point with size. Similarly, the replacement type shown in Figure 5.1c is
much different than the compatible type struct person {int age; struct person *father

; struct person *mother;}, but this is not captured by the metric used in Chapter 4.

An ideal metric is a proxy for what we would actually like to measure: the impact of annota-
tions on the understandability of the code. We would like to measure how these renamings and
retypings impact the performance of actual person using a decompiler. Does it make it easier to
understand the code? Do they get the same answers more quickly? Does it cause them to get
more questions correct?

To gain more insight into the real-world usefulness of a model trained using the naïve “exact
match” metric, my collaborators and I developed a human study. This study was in the form
of an online survey, which was presented to professional and amateur reverse engineers. Par-
ticipants were asked to reason about real-world examples of decompiled code, with and without
annotations from the DecompIled variable ReTYper (DIRTY) tool described in Chapter 4. We
collected both qualitative and quantitative information about users’ performance designed to an-
swer these questions. This chapter describes the results of this study. In short, the contributions
of this chapter are:

• A human study protocol for measuring the effectiveness of renamings and retypings of
variables in decompiled code.

• The results of a human study of 30 students, 9 full-time employees, and 1 unemployed
person, all of whom do some amount software reverse engineering.

While we were unable to find statistical evidence that DIRTY has an overall meaningful
impact on users’ correctness or completion time, the study did have interesting results. First,
while there are instances where participants presented with DIRTY’s annotations are able to
answer questions more correctly, there are others where DIRTY annotations actually reduce
the correctness of answers. Second, DIRTY can lead more users to the correct answer in the
same amount of time, but when names are particularly confusing it can cause users to take more
time to reach the correct answer. Third, we found that users usually prefer types and universally
prefer names that were automatically generated by DIRTY over those generated by the Hex-Rays
decompiler. Finally, we found that users’ perceptions of the usefulness of DIRTY’s annotations
do not always align with their performance on reverse engineering tasks.
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5.1 Problem Overview

The goal of this chapter is to understand if the addition of automatically-generated variable names
and types to decompiler output using a machine learning model trained with a naïve metric
impacts humans’ ability to reason about it. It is well known that code readability is essential
for humans to understand the functionality of source code [21], but it is currently unclear how
applicable this is to decompiler output. Decompilers tend to use standardized names for loop
iterators (i.e., i and j), pull in names and types from standard library calls,1 use ret for variables
that are used for return types, and prepend the type of a variable to its name.2 Votipka et al. have
recently shown that renaming variables and reconstructing types are some of the most common
tasks performed by reverse engineers [163]. However, there have been no recent human studies
measuring the actual impact of renamings and retypings on the workflow of a reverse engineer.

We would like to answer the following research questions:
• RQ1: Do renamings and retypings allow reverse engineers to correctly answer more ques-

tions about decompiled code?
• RQ2: Do renamings and retypings allow reverse engineers to answer questions about de-

compiled code more quickly?
• RQ3: Do users of DIRTY perceive its renamings and retypings as improving their under-

standing?
• RQ4: Do users’ perceptions of DIRTY’s helpfulness always align with their performance?

These questions motivate our task selection and study design. We would like to represent tasks
that closely resemble those performed on a day-to-day basis by a reverse engineer, rather than
focusing purely on code readability.

5.2 Study Design

Our study is inspired by two existing works: one that measured the maintainability of patches
automatically generated by computers [55], and another that measured the effectiveness of a
research decompiler [178]. In these studies, participants were presented with snippets of code
and asked to answer questions about them. Similarly, we presented participants with snippets of
decompiled code generated by Hex-Rays v8.2 [71] and asked participants to analyze them and
answer a number of questions about their functionality.

To measure the participants’ opinion of the code, we also asked participants for feedback
about the quality of the types and names, and asked them how much they agreed with general
statements about their opinion of the code in general. Each participant was randomly given a
code snippet that was either taken directly from the decompiler, or additionally augmented with
the output of DIRTY.

1https://hex-rays.com/products/ida/tech/flirt/
2https://ghidra-sre.org/

59

https://hex-rays.com/products/ida/tech/flirt/
https://ghidra-sre.org/


5.2.1 Code Selection and Question Formulation

Our study design constrained the specific code snippets that we could use. First, since we were
targeting a single hour for the study, and to avoid issues with scrolling, the snippets needed to
be short enough to fit on a single screen together with the questions. This imposed a 50-line
limit to the length of each code snippet. Second, the snippets needed to be “interesting” enough
to be able to measure if there is a performance difference between groups. This requirement
was addressed by requiring a nesting depth of at least 2 of either branching constructs like if, or
control flow constructs like for. Third, the code snippet had to be entirely self-contained: it must
be possible to ask a question about a snippet without requiring information about the behavior of
called functions. Fourth, since we are interested in the impact of renaming and retyping tools on
performance, each snippet must have at least three variables that are renamed or retyped.

We sourced our code from lighttpd, coreutils, and openssl. These projects were
chosen because they represent common functionality that are often used by malware authors, like
networking, encryption, and file access. To ensure that the questions were realistic, a professional
reverse engineer was consulted. The selected snippets were the following:

1. array_extract_element_klen This function came from lighttpd. It is designed to
find an element of a custom array type given a key, maintaining metadata inside it.

2. buffer_append_path_len This function also came from lighttpd. It is designed to
take two file paths and concatenate them, ensuring that there is a maximum of one path
divider between them (i.e., if two char * variables contain "usr/" and "/bin", calling
buffer_append_path_len() on them will return "usr/bin").

3. postorder This function came from coreutils. It takes three arguments, a binary tree,
a function pointer to call at every node, and auxiliary information to maintain. It calls the
function in the function pointer at every node in the binary tree in postorder.

4. twos_complement This function came from openssl. It is designed to take an input
buffer, an output buffer, a length, and copies the input buffer to the output buffer. If the
padding argument is 0xff, it also converts the input buffer into its two’s complement form
before copying.

Question Formulation

To measure the effectiveness of our technique on the reverse engineering process, we require
questions that are similar to those that would be asked by reverse engineers during the process of
reversing a binary. We asked questions of the following form:

• If the function is called with arguments X what will the value of Y be at line number Z?
• What is the purpose of the code on lines X through Y ?
• What are the possible return values of this function?
• Which argument of this function corresponds to functionality X?

These questions are based on those asked in an earlier study [55], and were formulated together
with a professional reverse engineer to ensure their realism. Using this formulation, we created
2 questions for each snippet, for a total of 8 questions. The code and questions asked about each
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of these snippets is contained in Appendix A.

5.2.2 Methodology

We conducted a between-subjects experiment where participants were asked to analyze code
snippets either decompiled with Hex-Rays or decompiled with Hex-Rays and augmented with
the output of DIRTY (cf. Chapter 4). The study was performed online with the LimeSurvey
platform.3 To begin, we provided each participant with a detailed explanation of the study and
the experimental procedure. Participants were not allowed to use the Internet during the study,
since our goal was to remove any variables other than the code quality itself.

Each participant was presented with a code snippet and asked a sequence of questions
about it. All four snippets of code were shown to all participants, and the treatment
was randomized per-snippet (i.e., a single participant could see the Hex-Rays version of
buffer_append_path_len and the DIRTY version of postorder). We found that this type of
randomization gave us more flexibility as a single participant not completing the survey would
not remove a participant from an entire treatment group for all questions. We collected both
timing and correctness statistics for each participant.

Variables and Conditions

In our experiment, we have two independent variables:
1. Treatment. Each code snippet was generated by the Hex-Rays decompiler, which is widely

used by malware analysts. We tested with Hex-Rays version 8.2.230124, which was the
latest version of Hex-Rays at the time of writing. We tested the output of the decompiler
against the same output but augmented with annotations from DIRTY.

2. Questions. Each question has its own unique difficulty level, so must be considered indi-
vidually.

User Perception

After finishing the two questions for each snippet, participants were shown a brief questionnaire.
First, they were asked to rate how the type of each argument and the name of each argument
affected their understanding on a 1-5 point scale. Second, they were asked to optionally suggest
better types and names for each argument. Finally, they were asked on a 5-point scale to rate how
much they agreed with statements about their subjective opinions about the code as a whole. The
full list of these statements is contained in Appendix A.

5.3 User Study

In this section I will discuss the recruitment process for the study and results we collected.

3https://limesurvey.org
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5.3.1 Participants
Since we aim to measure the impact of our tool on actual reverse engineering, we directly
recruited participants based on prior knowledge of their reverse engineering ability. We sent
personalized emails to professional reverse engineers at the Carnegie Mellon University Soft-
ware Engineering Institute, engineers at GrammaTech, professors who teach reverse engineering
courses, and members of capture-the-flag teams. Each participant was sent a slightly modified
version of the following email:

Hi, my name is Jeremy Lacomis and I’m a Ph.D. student at CMU. I’m currently
working on a human study trying to measure the performance of our tool, DIRTY,
that augments decompiled code with human-written names and types. I’ve been
reaching out to people who have some experience with reverse engineering. I’d
really appreciate it if you could take the survey and/or pass it along to other people
you think might be a good fit.

You can find the survey here [LINK]. It involves reasoning about decompiled
code and is designed to take about an hour.

Overall we received responses from 31 students, 10 full-time employees, and 1 unemployed
person. Participants were anonymous and were not offered any compensation. We did not require
a response to every question. Since it is possible for someone to rapidly go through the survey
while entering meaningless information, we ensured that the time spent on a snippet was at least
as long as it took for the author to read the first question fully. This criterion was used to discard
every answer from 1 student and 1 full-time employee, so they were removed from the study
completely. Figure 5.2 shows the age, gender, and education breakdown of our participants.

5.3.2 RQ1: Correctness
The first research question asks if DIRTY’s annotations allow users to answer more questions
correctly. Recall that each participant is randomly assigned to a treatment group for each of 4
snippets (i.e., a snippet with DIRTY annotations, or a snippet without DIRTY annotations). For
each snippet we ask the participant 2 questions, for a total of 8 questions per participant.

The key idea behind the analysis is to compare the distributions of variables between tasks
completed in the treatment and control conditions. However there are some difficulties. First,
each participant will have answered multiple questions over the course of the study. Second,
not all tasks are of the same difficulty and more difficult tasks are likely to have fewer correct
answers. Finally, the participants themselves have varying levels of experience with respect to
computer science education and reverse engineering.

Therefore, instead of the common fixed-effects regression model, we used a mixed-effects
regression [60]. Fixed-effects models assume that residuals are identically distributed, which is
not the case in this study. For example, it is likely that a more experienced reverse engineer is
able to answer all of the tasks more quickly and more correctly than less experienced reverse
engineers. Unlike fixed-effects models, mixed-effects models group residuals by random effects.

Since we expect the correctness to vary per-user and per-question, we choose these as our
random effects. Our hypothesis is that DIRTY leads to more users correctly answering the ques-
tion, so we use this as one of our fixed effects. At the end of the study, we also asked users to
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Figure 5.2: Age, gender, and education breakdown of out participants.
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Table 5.1: GLMER Correctness Performance Model

Dependent variable:

Correctness

Uses DIRTY −0.074
(0.227)

General Coding 0.056∗

(0.030)
Reverse Engineering −0.024

(0.044)
Constant 0.563

(0.513)

Observations 273
Num Users 36
Num Questions 8
σ(Users) 0.85
σ(Questions) 1.14
R2

m 0.041
R2

c 0.405
Akaike Inf. Crit. 313.091
Bayesian Inf. Crit. 334.747

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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self-report their years of experience with reverse engineering and general coding; we hypothesize
that these also have an effect on the correctness of responses so also use these as fixed effects.
Thus, in R syntax, we estimate the model:

correctness = uses_DIRTY+ Exp_Coding+ Exp_RE+ (1|user) + (1|question) (5.1)
Correctness is a binary score, which means that we must use a logistic regression. We use

the glmer function in R to estimate this model. For this test, we use the standard level of p
< 0.05 for statistical significance of coefficients. Additionally, as indicators of goodness of fit,
we report a marginal (R2

m) and conditional (R2
c) coefficient of determination. The marginal R2

considers only the variance of the fixed effects, without the random effects, while the conditional
R2 considers both the fixed and random effects. For the generalized linear mixed model that
we use for this experiment, we compute R2 using the r.squaredGLMM function in R, which
implements the algorithm described by Nakagawa et. al [125].

Table 5.1 summarizes the results of our model. This model fits our data reasonably well, with
an R2

c of 40.5%. We found no statistically significant difference when participants use DIRTY
and do not have sufficient evidence to conclude DIRTY users answer more questions correctly.

However, Figure 5.3 shows the correctness of answers to the questions asked during
the survey. From this, we can observe that the use of DIRTY allows increased correct-
ness on array_extract_element_klen question 1, both buffer_append_path_len questions,
postorder question 1, and twos_complement question 2. Although the data does not allow us
to make a strong claim about its effect (a Fisher’s exact test for count data on these five examples
has a p-value of 0.1576), there does appear to be a clear correlation between the two. More data
will need to be collected in future work to further explore this hypothesis. From this we can
speculate that while DIRTY might not improve correctness on tasks in general, there might be
specific instances where it is helpful.

DIRTY can be misleading. Occasionally, DIRTY can be misleading. An example is shown
in Figure 5.4. In this question, postorder question 2, we told the participants that the three
arguments represented a pointer to a tree structure, a function pointer to call on each node, and
auxiliary information to maintain as the tree was being traversed and asked them to match the
arguments to their description. The body of the code example makes it fairly clear that the first
argument is the tree structure, meaning participants must reason more about the function pointer
and auxiliary information. Figure 5.4a shows the original Hex-Rays version of the code, which
strongly suggests that the second argument is the function pointer, however Figure 5.4b shows
DIRTY’s suggestions. DIRTY’s suggestions are seemingly quite good; it correctly identifies
that two of the arguments correspond to a tree and a comparison function. However, it reverses
the order of the last two suggestions. Figure 5.3 shows that while almost every person who
received only the Hex-Rays output answered this question correctly, nearly half of participants
who received the DIRTY annotations answered this question incorrectly (a Fisher’s exact test on
this data confirms this confusion, p = 0.01059).

Anticipating this, we also asked participants to justify their answers by answering the ques-
tion “Informally, how did you reach your conclusion?”. For qualitative analysis we used the
standard grounded theory approach of open coding [25]. Each response was individually coded,
then these codes were synthesized and used to identify themes. Two main themes were identified
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Figure 5.3: Answers to questions grouped by treatment. “Yes” means the answer was correct,
“No” means incorrect.
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1 __int64 __fastcall postorder(
2 _QWORD *a1,
3 __int64 (__fastcall *a2)(__int64, _QWORD *),
4 __int64 a3) {
5 // ...
6 v5 = a2(a3, a1);
7 // ...
8 }

(a) Hex-Rays

1 __int64 __fastcall postorder(
2 tree234 *t,
3 void *e,
4 cmpfn234 cmp) {
5 // ...
6 ret = (e)(cmp, t);
7 // ...
8 }

(b) DIRTY

Figure 5.4: postorder question 2, an example where DIRTY recommends reasonable types
and names, but applies them to the wrong arguments. Participants were asked to match each
argument to its purpose. In the code in (a), a1 is a pointer to a tree structure, a2 is a function
pointer, and a3 is auxiliary information. Note how in (b) DIRTY correctly identifies that there is
a tree type and a function, but incorrectly reverses the meanings of a2 and a3. Figure 5.3f shows
that almost half of the participants who received the DIRTY suggestions answered incorrectly.

in answers from the users who received the DIRTY version of the code, which were directly
correlated with correctness of their answer.

Among participants who received the DIRTY code and answered correctly, we identified the
theme: The usage of the variables inside the code demonstrate their purpose (P5, P6, P7,
P8, P9, P11, P14, P15, P16, P17, P18, P19). These participants indicated that they considered
not just the names and types of the variables, but also their usage in the code. These participants
summarize this thought process well:

“Line [6] shows the actual function call; that requires e to be the function and cmp to be an argument
to it, at odds with the type information in the arguments” (P8)

“Similar to the previous answer – I ignored the types and looked at the use. The only actual call
through a function pointer is on line [6], so e is the visit/comparison function. It is passed in cmp
(which is never changed, despite being confusingly named the same as the ->cmp field), so the cmp
argument is the additional information [...]” (P11)

Participants who answered the question incorrectly reached their conclusion for a different
reason: The variable names and types themselves indicate their intended usage (P1, P2, P3,
P4, P6, P10, P12, P13). These participants took the types and names at face-value and did not
consider their usage in the code. Indicative responses are:

“The variable names were very intuitive. For the tree, the type and its usage in the code was really
helpful.” (P1)

“The main giveaway is the naming. Also I see that cmpfn234 is defined as a function pointer. The
naming are very descriptive and helped in identifying what each component does.” (P13)

Notice how participants who referenced the code itself and were skeptical of the types sug-
gested by DIRTY got the answer correct, while participants who got the answer incorrect trusted
the types it suggested. The pattern of accepting DIRTY’s annotations at face value was not
unique to the postorder example. For users who received DIRTY annotations, we compared
groups based on their correctness by the Likert opinions participants assigned to the types DIRTY
suggested using a Wilcoxon rank sum test with continuity correction. We found that participants
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Table 5.2: LMER Timing Performance Model

Dependent variable:

Completion Time

Uses DIRTY 26.296
(16.865)

General Coding 4.488∗

(2.620)
Reverse Engineering −5.647

(3.948)
Constant 192.658∗∗∗

(54.308)

Observations 296
Num Users 37
Num Questions 8
σ(Users) 94.77
σ(Questions) 130.96
R2

m 0.025
R2

c 0.431
Akaike Inf. Crit. 4, 026.521
Bayesian Inf. Crit. 4, 052.354

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

who answered incorrectly tended to trust DIRTY’s suggestions more than participants who an-
swered correctly across the board (p = 0.02477). This suggests that it is important to train users
to remain skeptical while reverse engineering, even with the types suggested by DIRTY. DIRTY
is still inherently a machine learning process and its output is not guaranteed to be correct.

RQ1 Answer: We did not find statistical evidence that using tools like DIRTY allows for
more users to reach a correct conclusion. However, there is some anecdotal evidence that
DIRTY might help for specific tasks. We also observed one case where users were misled
by DIRTY’s incorrect predictions that appeared to be correct.

5.3.3 RQ2: Timing
Research question 2 asks if the DIRTY plugin has an impact on the timing of participants’ an-
swers. Similarly to correctness, we fit a mixed-effects model of the equation:

timing = uses_DIRTY+ Exp_Coding+ Exp_RE+ (1|user) + (1|question) (5.2)
Unlike the binary “correctness” results, timings are continuous and we can use a standard linear
mixed-effects model provided by the lmer function in R. Our results are shown in Table 5.2.

First, the model does fit our data reasonably well, with an R2
c of 43.1%. As with the correct-

68



// Original
void buffer_append_path_len(buffer * restrict b, const char * restrict a, size_t alen)
// Hex-Rays
void *__fastcall buffer_append_path_len(__int64 a1, _BYTE *a2, size_t a3)
// DIRTY
void *__fastcall buffer_append_path_len(SSL *s, const char *str, size_t n)

(a) Function signature

BAPLQ2

BAPLQ1

0 5 10
Time (m)

DIRTY Hex−Rays

Figure 5.5: Signatures and completion time for both buffer_append_path_len tasks, per group.

ness results, none of our coefficients were statistically significant. We did not find statistically
significant evidence to conclude that users of DIRTY were able to answer questions more quickly.

DIRTY can allow more participants to reach the correct conclusion without taking
more time. Figure 5.3 shows a correlation between correctness and the use of DIRTY on
buffer_append_path_len tasks. Figure 5.5 shows the completion times for both groups. There
does not appear to be a statistically significant difference in the completion time between these
groups (the Hex-Rays group has a mean of 256 seconds and a standard deviation of 145, while
the DIRTY group has a mean of 242 seconds and a standard deviation of 202), but DIRTY does
have some impact on reasoning ability. For example, notice how the signatures shown in Fig-
ure 5.5 indicate that DIRTY’s choice of the type and name of the second argument suggest that
is used as an input string.

Sometimes DIRTY can lead to people taking longer to reach the correct con-
clusion. Figure 5.6 shows the amount of time it took people to correctly answer
array_extract_element_klen question 2. It took just over three and a half minutes longer
for users who were shown the DIRTY output to reach a correct conclusion than users without it.
From our experience, we suspect that this is for multiple reasons: First, DIRTY assigns the name
ret to a variable that is never used for a return value, therefore users need to carefully scan and
make sure they have spotted every return statement in the code. Second, the previously con-
fusing statement on line 9 has become even more confusing. For a practiced reverse engineer,
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1 __int64 __fastcall array_extract_element_klen(__int64 a1, __int64 a2, unsigned int a3) {
2 //...
3 //...
4 int index;
5 __int64 v7;
6 //...
7 if ( index < 0 )
8 return 0LL;
9 v7 = *(_QWORD *)(8LL * index + *(_QWORD *)(a1 + 8));
10 //...
11 return v7;
12 }

(a) Hex-Rays output

1 char *__fastcall array_extract_element_klen(array_t_0 *array, void *key, int index) {
2 //...
3 int indexa;
4 int ret;
5 char *next;
6 //...
7 if ( indexa < 0 )
8 return 0LL;
9 next = *(char **)(8LL * indexa + *(_QWORD *)&array->size);
10 //...
11 return next;
12 }

(b) DIRTY output

AEEKQ2

0 5 10
Time (m)

DIRTY Hex−Rays

Figure 5.6: Completion time for correct answers to the array_extract_element_klen question
“What does this function return?”. DIRTY’s answers take a statistically significantly longer time
(Student’s T-test, p=0.03309). This is likely due to DIRTY suggesting the name ret for a non-
return variable and the even more confusing decompilation on line 9.
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Figure 5.7: Participants’ overall opinions of how the types (top) and names (bottom) of Hex-
Rays and DIRTY output impacted their understanding.

the pattern 8 * index + *(a1 + 8) indicates an access of an element of an array contained in
a struct pointer (cf. the Chapter 1 example). DIRTY’s annotation does not make this clearer,
in fact it muddies the water. Although the type DIRTY predicts is in some sense “correct” (it
predicts the type array_t_0 *, while the original code used the type array *), the layouts of
these types are different. The size field of array_t_0 should instead be a pointer to an array.

RQ2 Answer: We were unable to find statistically significant evidence that DIRTY re-
duces the time that users spend on reaching a correct conclusion. However, we find that in
some cases DIRTY can lead more users to the correct answer in the same amount of time.
We also find that particularly confusing names can lead users to take more time to reach
the correct conclusion.

5.3.4 RQ3: Opinions

The third research question asks about users’ perception of the usefulness of the renamings and
retypings provided by DIRTY. To answer this, for each argument in a snippet, we asked partici-
pants to fill in the blank in the statement “The type and name of this argument _____ understand-
ing:” with “Prevented”, “Hindered”, “Did not affect”, “Improved”, or “Provided immediate”.

Figure 5.7 shows the participants’ overall opinion of how the types and names from both
DIRTY and Hex-Rays impacted their understanding of the code. We performed a Wilcoxon
rank sum test with continuity correction on these results and found that in general, users prefer
when variables are at least given some name, even if it does not agree with the actual use of the
variable (p = 5.072e-14, difference in location = 0.9999579). This result is not surprising: the
names generated by Hex-Rays in this study are themselves rarely indicative of the purpose of the
variable, except in cases like ret for a return variable or src and dest for source and destination
variables. DIRTY is better at assigning names that carry more nuanced semantic meaning.

There is an inability to make a overall statistical claim about users’ opinions about types, but
with the twos_complement snippet, DIRTY’s suggestions are considered quite poor by users. I
will discuss this specific example later, but by excluding it the Wilcoxon rank sum test does show
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1 __int64 __fastcall twos_complement(
2 __int64 a1,
3 __int64 a2,
4 __int64 a3,
5 char a4){
6 // ...
7 *(&savedregs - 3) = a1;
8 *(&savedregs - 4) = a2;
9 *(&savedregs - 5) = a3;
10 *((_BYTE *)&savedregs - 44) = a4;
11 *((_DWORD *)&savedregs - 1) = *((_BYTE *)&

savedregs - 44) & 1;
12 if ( *(&savedregs - 5) )
13 // ...
14 }

(a) Hex-Rays

1 __int64 __fastcall twos_complement(
2 void *p1,
3 void *p2,
4 void *data,
5 int i2) {
6 // ...
7 i = (__int64)p1;
8 j = (__int64)p2;
9 k = (__int64)data;

10 v8 = i2 & 1;
11 if ( data )
12
13 // ...
14
15 }

(b) DIRTY

TCQ2
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(c) Timing for correct answers.

type
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Hex−Rays

Percentage

(d) Likert scores of types for correct answers.

Figure 5.8: twos_complement, an example where DIRTY recommends reasonable types and
names, but users disliked the types. Red bars represent DIRTY, while blue bars represent Hex-
Rays. Notice that Figure 5.3 shows that approximately the same proportion of users answered
correctly, but DIRTY users took less time (c), despite disliking the types (d).

statistical significance, with a p-value of 0.01158. We take this as a suggestion that DIRTY’s
types are usually considered helpful by users.

RQ3 Answer: We find that users universally prefer the names provided by DIRTY to be
more helpful than the names provided by Hex-Rays. We also find that, in most cases, users
perceive that the types provided by DIRTY are more helpful than the default types.

5.3.5 RQ4: Users’ perception vs. performance
Sometimes it is the case that users do not prefer the DIRTY-suggested types, despite them

being helpful. In Figures 5.8a and 5.8b, we can see snippets of code without augmentation, and
with augmentation, respectfully. Notice in Figure 5.3 that the proportion of users who correctly
answered two questions about these snippets is approximately the same, however Figure 5.8c
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shows that users who had the DIRTY augmentations reached the correct answers more quickly
than users without them. Despite this, Figure 5.8d shows that the opinions of the types assigned
by DIRTY in this example were lower than the types originally assigned by Hex-Rays.

The original signature of this function was static void twos_complement(unsigned

char *dst, const unsigned char *src, size_t len, unsigned char pad). When
asked for suggestions about types, two participants suggested that DIRTY’s suggestion of void
*data for the third argument was incorrect, and should instead be size_t size and indicated

that the type and name of this argument “Hindered” and “Prevented” their understanding respec-
tively. Note that Hex-Rays’ suggestion was __int64 a3, and no participants indicated that any
type “Hindered” or “Prevented” their understanding. This suggests that users have a higher
expectation of a system that suggests type information, even when it actively improves their
performance on a task.

RQ4 Answer: We find that users perceptions of the usefulness of DIRTY’s annotations
do not always align with their actual performance on reverse engineering tasks.

5.3.6 Generative Large Language Models

At the time of this dissertation, Generative Large Language Models (LLMs) such as ChatGPT4

have been exploding in popularity. These models are able to receive input text from a user (e.g.,
a natural language question such as “Can you generate some reasonable acronyms to use as the
name of my new technique?”) and generate highly probable text based on training data. While
it is still an open question if these models would be useful for reverse engineers, there have
been several plugins developed for decompilers such as Ghidra that are designed to explain the
purpose of decompiled functions.5

With this in mind, we additionally performed an experiment where we presented ChatGPT
with the entire text of the reasoning questions we asked participants in this study (for both treat-
ment groups). We were surprised to find that ChatGPT gave very thorough correct answers for
all of the questions, except one. The only question it answered incorrectly was when DIRTY
incorrectly labeled the arguments of a function and it took the names and types at face value (this
also fooled half of our participants, see “DIRTY can be misleading” in Section 5.3.2).

While this seems promising, ChatGPT is not perfect. For example, in response to one of the
questions, it said “This appears to be a function written in x86-64 assembly language”, despite
the code having features such as if statements and while loops that are not a part of x86-64
assembly. This is an instance of a common problem with generative language models called
“hallucination”, where text that is either nonsensical or unrelated to the input is generated [82].
These issues are not minor and have come up in the real world, with ChatGPT summarizing
non-existent New York Times articles,6 or more seriously, completely fabricating cases in legal

4https://chat.openai.com/chat
5https://github.com/evyatar9/GptHidra
6https://en.wikipedia.org/wiki/Hallucination_(artificial_intelligence)#/

media/File:ChatGPT_hallucination.png
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research presented in court filings.7 It remains an open question if LLMs are a reasonable choice
for the task of reverse engineering.

5.4 Discussion and Future Work

As the demand for reverse engineers increases the tools that we provide to them must also be-
come more advanced. This chapter shows that there are at least two distinct problems with the
development of new decompiler techniques. First, as decompiler output becomes more read-
able, people put more trust in it and make mistakes that they would not have given lower-level
output. Second, there is indeed a need for a more nuanced metric for measuring the output of
augmentation techniques.

This study demonstrates that users of decompilers will believe the information they are given,
even when they know that the output is unreliable. Users occasionally misinterpreted the anno-
tations or relied on them too heavily, leading them to incorrect answers. This highlights the need
for caution when using annotations as a crutch, and the importance of developing an understand-
ing of the decompiled code itself. While these annotations could be a valuable tool for reverse
engineers, they should be used in conjunction with other strategies for code comprehension. A
shortcoming of this study was that it was not interactive; as one participant noted:

I find RE difficult if the process is isolated to one type of technique. In my experiences the RE process
requires jumping between both static and dynamic analysis to get a complete picture. It’d be nice if
the decompilers better fit into the RE process from this standpoint.

The inability of participants to actually run the code that we presented to them, use a debugger,
or be able to annotate the code that they were examining likely led to some incorrect answers.
Future studies should add these features to gain more insight into the specific needs of engineers.

There is indeed a need for a more nuanced metric for understandability than direct compar-
ison to the original code. This metric should be able to capture not only the relationship of the
name itself to its original name, but also capture details about the process by which a reverse
engineer reaches a conclusion about code, and the relative “importance” of a specific variable.
It is likely much better to get a single type/name correct that is used often on a critical path of
reasoning than to correctly assign types and names to variables that lie off of these paths. I have
personally developed a technique called VarCLR [31] that uses contrastive learning to minimize
the distance between variable name tokens in an embedding space. While this technique does
work well, further research is needed for it to be extended to types as well.

To avoid the confusion caused by DIRTY guessing correct labels but assigning them to the
wrong variable, a future technique could instead suggest a set of types and names that a user
could reference when reasoning about code. Another alternative would be to suggest types and
names to users, but indicate when it is reasonable to exchange them. The postorder example
demonstrates the need for a metric to measure how confusing specific annotations are. Future
techniques should also investigate optimal levels of annotation, for example by tuning a confi-
dence boundary below which annotations are not produced at all.

7https://apnews.com/article/artificial-intelligence-chatgpt-courts-
e15023d7e6fdf4f099aa122437dbb59b
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In Section 5.3.3, I observed that there are times when DIRTY’s typing information can be
helpful while being distrusted by users. While skepticism is healthy, it can also be counterpro-
ductive. Future work might investigate ways to modulate users’ trust in machine learning, for
example by allowing the user to switch between the original version and the augmented version
of the code to sanity-check their own intuition.

5.5 Threats to Validity
A threat to validity of this study was that our technique was only tested on open-source snippets
of software. This software is (ideally) specifically designed to be laid out as sensibly as possi-
ble. This is rarely the case with real-world malware, however. Obfuscating control flow, fully
stripping function names, using self-modifying code, even hand-writing assembly that cannot be
generated by a compiler, are all ways that malware authors attempt to hide the purpose of their
binaries. Additionally, our method of sampling from GITHUB naturally biased our dataset to
projects that are well-known.

Our study only measured the output of the Hex-Rays decompiler, and did not consider al-
ternatives such as Ghidra [61]. This was primarily because DIRTY was tailored specifically to
Hex-Rays’ representation of a binary (recall from Chapter 4 that one of the inputs to DIRTY is
a binary’s memory layout). It is possible that other decompilers’ output is easier to understand
and would not be improved as much as Hex-Rays.

Our code snippets are not indicative of the entire process of reverse-engineering, only a small
portion of it. The requirement that all of our code be self-contained on a single page is particu-
larly restrictive. Integrating directly with a decompiler would likely improve results.

5.6 Conclusion
In this chapter, I described a novel human study to measure the impact of the DecompIled vari-
able ReTYper (DIRTY) on the performance of reverse engineering tasks. In this study, I asked
professional and amateur reverse engineers to answer questions designed to simulate real-world
reverse engineering tasks. I recorded correctness and timing information, and collected qual-
itative data asking users’ opinions about the quality of the renamings, retypings, and overall
structure of the code.

Even though the experiments in this chapter have been limited to a single decompiler and
renaming/retyping technique, the methodology here can be applied to measure the effectiveness
of other techniques. Additionally, this methodology can be built on, for example by allowing
navigation between code snippets, in-place editing of code, or even execution of the code itself.
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Chapter 6

Conclusions and Final Remarks

In summary, this thesis contains techniques for automatically augmenting the output of decom-
pilers with more meaningful variable names and types under the hypothesis that this will decrease
the cognitive burden of reasoning about source code. I believe that the techniques presented here
will save reverse engineers valuable time that could be instead spent reasoning about the higher-
level functionality of code. I also believe that these techniques can flatten the learning curve,
allowing more novices to enter the field of reverse engineering.

The human study I presented in Chapter 5 provides some evidence that is might be the case.
The names and types annotated by DIRTY were found to be perceived as helpful to users’ under-
standing and often allowed more users to reach correct conclusions. There were also cases where
the annotations were found to increase the number of users who answered questions incorrectly,
together, these observations provide evidence that the choice of names and types has a real-world
impact on the understandability of decompiler output.

Meaningful variable names and types are not nearly the only problem that affects the read-
ability of decompiler output. In fact, my coauthors and I have a taxonomy of comprehension
issues that are induced by decompilers under submission to USENIX now. This taxonomy in-
cludes issues such as decompilers not generating code that should be generated, generation of
incorrect code, and obfuscated control flow (e.g., converting a switch statement into a sequence
of if statements). A simple example, and one that was represented in the study in Chapter 5 is
the representation of literals. In the buffer_append_path_len code example, the number 47 is
used in place of the character ’/’, which is used to determine if a path begins with a forward
slash. This example shows how reverse engineers need to reason about even the smallest details.

Reverse engineers are in high demand. At the time of writing, AV-ATLAS1 reported that
4,914,123 new instances of malware were detected in the past 14 days, while the United States
Cybersecurity & Infrastructure Security Agency has 2,758 employees [120]. There are more
malware threats detected every day than there are employees at the agency responsible for ensur-
ing the cybersecurity of the United States. Additionally, the applications of reverse engineering
are not limited to malware. Reverse engineering can be used for “clean room” design to avoid
copyright infringement. One famous example is Phoenix Technologies using reverse engineer-
ing to create a version of the previously IBM-proprietary BIOS [90], which was required to

1https://portal.av-atlas.org, Accessed May 10, 2023
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develop their own IBM-compatible PCs. Engineers at Phoenix examined IBM’s Technical Ref-
erence manual, writing a set of specifications without including examples of actual code. These
specifications were then passed to a single programmer who had never worked on an 8086 mi-
croprocessor before, which allowed Phoenix Technologies to defend itself from IBM lawsuits.
As the number of tasks that demand reverse engineers increase, tools must improve to keep up.

A shortcoming of the techniques presented here is their scalability. Machine learning is pow-
erful, but the resources required to train and deploy them are quite high. Even after the collection
of data, which took 2 months, and post-processing, which took another 2 weeks, training the
DIRTY model to simultaneously predict names and types took 5 days of time on NVIDIA Tesla
V100 GPUs, and not everyone has access to expensive hardware. Future name and type predic-
tion techniques will require engineering advances to enable models that can be trained and run
on less expensive hardware.

One of the core challenges with using supervised machine learning techniques to augment
decompiler output is the need for training data. The techniques presented in this paper were
successful, but the generation of the training data took multiple months and required scraping
a large amount of source code. This is a well-known problem in the machine learning world in
general, and research into ways to automatically generate more training data is ongoing. Another
solution to this problem is to use unsupervised machine learning, which requires no or very
little training data, but these techniques are almost universally less performant than supervised
techniques.

Training data is important not only for improving model performance, but also for adapting
models to different tasks. There is nothing about the tools developed for this thesis is specific to a
particular decompiler, but the training data is decompiler-specific. Our technique for generating
training data only relies on a decompiler’s ability to import DWARF debugging information.
Since the publication of DIRTY, other researchers have been able to adapt it to Ghidra [24].
Similarly, our technique is not inherently language-specific (i.e., it is not restricted to C-like
languages). Future research might focus on extending DIRTY to output suggestions for other
languages such as Go or Haskell.

The techniques described here must be run post-hoc on the output of the decompiler, and are
not integrated directly. Direct integration with a decompiler could enable some other interesting
features. For example, a user could individually chose a suggested type and the system could use
this information to refine the suggestions for other surrounding types.

DIRTY and DIRE both assume knowledge of function names and use this information when
assigning types and names. This is a reasonable assumption when using a decompiler in a non-
adversarial situation such as updating the functionality of a binary without its source code. How-
ever in malware, where obfuscation is extremely common, function names are almost always
stripped. The name of a function is usually quite a strong indicator of likely types and names in
a function, for example a function called read_from_buf will probably take buffer and size

as arguments. Future researchers should investigate ways to lift this assumption.
This thesis contributes in the following ways:

1. It demonstrates that viewing the problem of postprocessing decompiler output as an in-
stance of translation allows the effective application of techniques from the domain of
natural language translation.

78



2. It introduces a novel technique for generating input/output examples suitable for training
natural language translation models on decompiled code.

3. It presents a technique that automatically renames variables in decompiled code by lever-
aging the naturalness of code.

4. It presents a black-box technique for postprocessing decompiled code with a Transformer-
based neural network to recommend user-created variable types.

5. It produces two datasets suitable for training and evaluating models of decompiled code.

6. It identifies specific challenges with automated fitness functions for measuring the effec-
tiveness of these techniques.

7. It provides a human study protocol for measuring the impact of decompiler augmentations
on user performance.

8. It describes the results of a human study testing the effectiveness of both techniques.

Overall, this thesis identifies difficulties experienced by users of decompilers and proposes
approaches to automatically augment their output. It also identifies the challenges of automati-
cally evaluating the effectiveness of these models and motivates future research. I hope that the
techniques proposed here can lower the difficulty of interacting with decompilers to allow current
reverse engineers to use their time more productively and also enable more computer scientists
to become reverse engineers.
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Appendix A

User Study

A.1 array_extract_element_klen

A.1.1 Hex-Rays

For this task, users were asked the following questions:
1. If a1 + 8 points to an array and the array_get_index call on line 8 returns an index,

what is the purpose of the if and memmove on lines 13-17?

2. Under the same assumptions (a1 + 8 points to an array and the array_get_index call on
line 8 returns an index) what does this function return?

1 __int64 __fastcall array_extract_element_klen(__int64 a1, __int64 a2,
unsigned int a3)

2 {
3 unsigned int i; // [rsp+24h] [rbp-1Ch]
4 int index; // [rsp+28h] [rbp-18h]
5 unsigned int v6; // [rsp+2Ch] [rbp-14h]
6 __int64 v7; // [rsp+30h] [rbp-10h]
7
8 index = array_get_index(a1, a2, a3);
9 if ( index < 0 )
10 return 0LL;
11 v7 = *(_QWORD *)(8LL * index + *(_QWORD *)(a1 + 8));
12 v6 = --*(_DWORD *)(a1 + 16);
13 if ( v6 != index )
14 memmove(
15 (void *)(8LL * index + *(_QWORD *)(a1 + 8)),
16 (const void *)(8LL * index + *(_QWORD *)(a1 + 8) + 8),
17 8LL * (v6 - index));
18 if ( v7 != *(_QWORD *)(8LL * v6 + *(_QWORD *)a1) )
19 {
20 for ( i = 0; v7 != *(_QWORD *)(8LL * i + *(_QWORD *)a1); ++i )
21 ;
22 *(_QWORD *)(*(_QWORD *)a1 + 8LL * i) = *(_QWORD *)(*(_QWORD *)a1 + 8LL

* v6);
23 }
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24 *(_QWORD *)(8LL * v6 + *(_QWORD *)a1) = 0LL;
25 return v7;
26 }

A.1.2 DIRTY

For this task, users were provided with the definition of the array_t_0 type:

1 struct array_t_0 {
2 char *pointer;
3 unsigned int size;
4 unsigned int next;
5 unsigned int item_size;
6 }

and asked the following questions:
1. If array->size points to an array and the array_get_index call on line 8 returns an

index, what is the purpose of the if and memmove on lines 13-17?

2. Under the same assumptions (array->size points to an array and the array_get_index

call on line 8 returns an index) what does this function return?

1 char *__fastcall array_extract_element_klen(array_t_0 *array, void *key,
int index)

2 {
3 unsigned int i; // [rsp+24h] [rbp-1Ch]
4 int indexa; // [rsp+28h] [rbp-18h]
5 int ret; // [rsp+2Ch] [rbp-14h]
6 char *next; // [rsp+30h] [rbp-10h]
7
8 indexa = array_get_index((__int64)array, (__int64)key, index);
9 if ( indexa < 0 )
10 return 0LL;
11 next = *(char **)(8LL * indexa + *(_QWORD *)&array->size);
12 ret = --array->item_size;
13 if ( ret != indexa )
14 memmove(
15 (void *)(8LL * indexa + *(_QWORD *)&array->size),
16 (const void *)(8LL * indexa + *(_QWORD *)&array->size + 8),
17 8LL * (unsigned int)(ret - indexa));
18 if ( next != *(char **)&array->pointer[8 * ret] )
19 {
20 for ( i = 0; next != *(char **)&array->pointer[8 * i]; ++i )
21 ;
22 *(_QWORD *)&array->pointer[8 * i] = *(_QWORD *)&array->pointer[8 * ret

];
23 }
24 *(_QWORD *)&array->pointer[8 * ret] = 0LL;
25 return next;
26 }

82



A.2 buffer_append_path_len

A.2.1 Hex-Rays
For this task, users were asked the following questions:

1. If this function is called in the following way, what will the value of v3 be at the end of
this function?
1 /* "GNU" is equivalent to:
2 * {0x47, 0x4E, 0x55, 0x00}
3 * or
4 * {71, 78, 85, 0}
5 */
6 const char *str = "GNU";
7 buffer_append_path_len(a1, str, a2);

You can make the following assumptions:
• a1 is properly initialized.
• The call to buffer_string_prepare_append on line 11 has no side effects and re-

turns successfully.
• The value pointed to at (dest - 1) after the call on line 11 is 20.
• The value pointed to at (a1 + 8) is 1.

2. If this function is called in the following way, what value will src point to in the memcpy

on line 34? Note: this is different than the call in the previous question:
1 /* "/usr/bin" is equivalent to:
2 * {0x2F, 0x75, 0x73, 0x72, 0x2F, 0x62, 0x69, 0x6E, 0x00}
3 * or
4 * {47, 117, 115, 114, 47, 98, 105, 110, 0}
5 */
6 const char *str = "/usr/bin";
7 buffer_append_path_len(a1, str, 5);

You can make the following assumptions:
• a1 is properly initialized.
• The call to buffer_string_prepare_append on line 11 has no side effects and re-

turns successfully.
• The value pointed to at (dest - 1) after the call on line 11 is 20.
• The value pointed to at (a1 + 8) is 2.

1 void *__fastcall buffer_append_path_len(__int64 a1, _BYTE *a2, size_t a3)
2 {
3 _BOOL4 v3; // eax
4 char *v4; // rax
5 size_t n; // [rsp+8h] [rbp-28h]
6 void *src; // [rsp+10h] [rbp-20h]
7 char *dest; // [rsp+28h] [rbp-8h]
8
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9 src = a2;
10 n = a3;
11 dest = (char *)buffer_string_prepare_append(a1, a3 + 1);
12 v3 = n && *a2 == 47;
13 if ( *(_DWORD *)(a1 + 8) > 1u && *(dest - 1) == 47 )
14 {
15 if ( v3 )
16 {
17 src = a2 + 1;
18 --n;
19 }
20 }
21 else
22 {
23 if ( !*(_DWORD *)(a1 + 8) )
24 *(_DWORD *)(a1 + 8) = 1;
25 if ( !v3 )
26 {
27 v4 = dest++;
28 *v4 = 47;
29 ++*(_DWORD *)(a1 + 8);
30 }
31 }
32 *(_DWORD *)(a1 + 8) += n;
33 dest[n] = 0;
34 return memcpy(dest, src, n);
35 }

A.2.2 DIRTY
For this task, users were presented with the definition of the SSL type:

1 typedef SSL {
2 int version;
3 int type;
4 const SSL_METHOD *method;
5 // ...
6 }

and asked the following questions:
1. If this function is called in the following way, what will the value of v3 be at the end of

this function?

1 /* "GNU" is equivalent to:
2 * {0x47, 0x4E, 0x55, 0x00}
3 * or
4 * {71, 78, 85, 0}
5 */
6 const char *str = "GNU";
7 buffer_append_path_len(a1, str, a2);

You can make the following assumptions:
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• s is properly initialized.
• The call to buffer_string_prepare_append on line 11 has no side effects and re-

turns successfully.
• The value pointed to at (p - 1) after the call on line 11 is 20.
• The value of s->method is 1.

2. If this function is called in the following way, what value will stra point to in the memcpy

on line 34? Note: this is different than the call in the previous question:
1 /* "/usr/bin" is equivalent to:
2 * {0x2F, 0x75, 0x73, 0x72, 0x2F, 0x62, 0x69, 0x6E, 0x00}
3 * or
4 * {47, 117, 115, 114, 47, 98, 105, 110, 0}
5 */
6 const char *str = "/usr/bin";
7 buffer_append_path_len(a1, str, 5);

You can make the following assumptions:
• s is properly initialized.
• The call to buffer_string_prepare_append on line 11 has no side effects and re-

turns successfully.
• The value pointed to at (p - 1) after the call on line 11 is 20.
• The value of s->method is 2.

1 void *__fastcall buffer_append_path_len(SSL *s, const char *str, size_t n)
2 {
3 _BOOL4 v3; // eax
4 char *v4; // rax
5 size_t l; // [rsp+8h] [rbp-28h]
6 const char *stra; // [rsp+10h] [rbp-20h]
7 char *p; // [rsp+28h] [rbp-8h]
8
9 stra = str;
10 l = n;
11 p = (char *)buffer_string_prepare_append(s, n + 1);
12 v3 = l && *str == 47;
13 if ( s->method > 1u && *(p - 1) == 47 )
14 {
15 if ( v3 )
16 {
17 stra = str + 1;
18 --l;
19 }
20 }
21 else
22 {
23 if ( !s->method )
24 s->method = 1;
25 if ( !v3 )
26 {
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27 v4 = p++;
28 *v4 = 47;
29 ++s->method;
30 }
31 }
32 s->method += l;
33 p[l] = 0;
34 return memcpy(p, stra, l);
35 }

A.3 postorder

A.3.1 Hex-Rays
For this example, users were asked the following questions

1. After the loop on lines 7-13, what does a1 point to?

2. This function traverses a tree and applies a function at each node, passing additional infor-
mation for the function to use. Which argument corresponds to each?

Tree Comparison function Additional information
_QWORD *a1 ◦ ◦ ◦
__int64(__fastcall *a2)

(__int64, _QWORD *)
◦ ◦ ◦

__int64 a3 ◦ ◦ ◦

3. (Optional) Informally, how did you reach your conclusion?

1 __int64 __fastcall postorder(_QWORD *a1, __int64 (__fastcall *a2)(__int64,
_QWORD *), __int64 a3)

2 {
3 unsigned int v5; // [rsp+2Ch] [rbp-14h]
4 _QWORD *v7; // [rsp+38h] [rbp-8h]
5
6 LABEL_5:
7 while ( a1[1] || a1[2] )
8 {
9 if ( a1[1] )
10 a1 = a1[1];
11 else
12 a1 = a1[2];
13 }
14 while ( 1 )
15 {
16 v5 = a2(a3, a1);
17 if ( v5 )
18 return v5;
19 if ( !*a1 )
20 return 0LL;

86



21 v7 = a1;
22 a1 = *a1;
23 if ( v7 != a1[2] && a1[2] )
24 {
25 a1 = a1[2];
26 goto LABEL_5;
27 }
28 }
29 }

A.3.2 DIRTY
For this example, users were asked the following questions

1. After the loop on lines 7-13, what does t point to? For reference, tree234 and cmpfn234

are:

1 typedef int (*cmpfn234) (void *, void *);
2
3 typedef struct tree234 {
4 node234 *root;
5 cmpfn234 cmp;
6 }

2. This function traverses a tree and applies a function at each node, passing additional infor-
mation for the function to use. Which argument corresponds to each?

Tree Comparison function Additional information
cmpfn234 cmp ◦ ◦ ◦
void *e ◦ ◦ ◦
tree234 *t ◦ ◦ ◦

3. (Optional) Informally, how did you reach your conclusion?

1 __int64 __fastcall postorder(tree234 *t, void *e, cmpfn234 cmp)
2 {
3 int ret; // [rsp+2Ch] [rbp-14h]
4 node234 *n; // [rsp+38h] [rbp-8h]
5
6 LABEL_5:
7 while ( t->cmp || t[1].root )
8 {
9 if ( t->cmp )
10 t = t->cmp;
11 else
12 t = t[1].root;
13 }
14 while ( 1 )
15 {
16 ret = (e)(cmp, t);
17 if ( ret )
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18 return ret;
19 if ( !t->root )
20 return 0LL;
21 n = t;
22 t = t->root;
23 if ( n != t[1].root && t[1].root )
24 {
25 t = t[1].root;
26 goto LABEL_5;
27 }
28 }
29 }

A.4 twos_complement

A.4.1 Hex-Rays
For this example, users were asked the following questions:

1. Which argument of this function controls when the loop on lines 16-25 terminates?

2. If a4 is passed the value 0xFF, what will the value of (savedregs - 1) be when execution
reaches line 16 for the first time?

1 __int64 __fastcall twos_complement(__int64 a1, __int64 a2, __int64 a3,
char a4)

2 {
3 __int64 result; // rax
4 __int64 savedregs; // [rsp+0h] [rbp+0h]
5
6 *(&savedregs - 3) = a1;
7 *(&savedregs - 4) = a2;
8 *(&savedregs - 5) = a3;
9 *((_BYTE *)&savedregs - 44) = a4;
10 *((_DWORD *)&savedregs - 1) = *((_BYTE *)&savedregs - 44) & 1;
11 if ( *(&savedregs - 5) )
12 {
13 *(&savedregs - 3) += *(&savedregs - 5);
14 *(&savedregs - 4) += *(&savedregs - 5);
15 }
16 while ( 1 )
17 {
18 result = *(&savedregs - 5);
19 *(&savedregs - 5) = result - 1;
20 if ( !result )
21 break;
22 *((_DWORD *)&savedregs - 1) += (unsigned __int8)(*((_BYTE *)&savedregs

- 44) ^ *(_BYTE *)--*(&savedregs - 4));
23 *(_BYTE *)--*(&savedregs - 3) = *((_DWORD *)&savedregs - 1);
24 *((_DWORD *)&savedregs - 1) >>= 8;
25 }
26 return result;
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27 }

A.4.2 DIRTY
For this example, users were asked the following questions:

1. Which argument of this function controls when the loop on lines 18-23 terminates?

2. If i2 is passed the value 0xFF, what will the value of v8 be when execution reaches line 18
for the first time?

1 void __fastcall twos_complement(void *p1, void *p2, void *data, int i2)
2 {
3 __int64 k; // [rsp+4h] [rbp-28h]
4 __int64 j; // [rsp+Ch] [rbp-20h]
5 __int64 i; // [rsp+14h] [rbp-18h]
6 int v8; // [rsp+28h] [rbp-4h]
7 unsigned int v9; // [rsp+28h] [rbp-4h]
8
9 i = (__int64)p1;
10 j = (__int64)p2;
11 k = (__int64)data;
12 v8 = i2 & 1;
13 if ( data )
14 {
15 i = (__int64)p1 + (_QWORD)data;
16 j = (__int64)p2 + (_QWORD)data;
17 }
18 while ( k-- )
19 {
20 v9 = (unsigned __int8)(i2 ^ *(_BYTE *)--j) + v8;
21 *(_BYTE *)--i = v9;
22 v8 = v9 >> 8;
23 }
24 }

A.5 General Questions About the Code
In addition to the above questions, participants were also asked the following questions about
each example:

1. For each type and name of each argument in an example, they were asked to rate: “The
type and name of each argument _____ understanding:”

• Prevented
• Hindered
• Did not affect
• Improved
• Provided immediate
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2. For each entire example, they were asked to rate their feelings about the following state-
ments on a 5 point scale ranging from Strongly Disagree to Strongly Agree:

• The code was easily readable.
• It was easy to understand what this code did.
• This code looks similar to the way I write code.
• This code is well structured.
• I am sure that I correctly understood what this code does.
• It was easy to understand what the variables mean.
• I trust that the decompiled code is correct.
• I would rather analyze this code than the assembly code.

A.6 Exit Interview
At the end of the study, we asked the following questions in an exit interview:

• What is your age?
• What is your gender?
• What is your highest level of education?
• What is your current employment status?
• How many years of computer-science education do you have?
• How many years of general coding experience do you have?
• How many years of C coding experience do you have?
• How many years of professional coding experience do you have?
• How many years of (professional and amateur) reverse engineering experience do you

have?
• How many years of experience do you have using decompilers?
• Is there other information about your experience with decompilers, reverse engineering, or

the questions in this survey that you would like to share with us?
• Do you have any general comments or feedback about the survey?
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