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Abstract

The U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research

is interested in developing approaches towards analyzing digital instrumentation and

control (I&C) systems for nuclear power plant system upgrades. (Arndt 2002) These

approaches are directed towards analyzing the changes in risk involved with using digital

systems, which include software and hardware concerns. The purpose of this document is

to outline possible techniques to use in a possible analysis methodology and to briefly

describe how these techniques are used. This document suggests that a descriptive visual

model be created using many of Unified Modeling Language’s (UML) numerous

artifacts. UML’s widespread acceptance and comprehension, along with the possibility

that UML documents have already been written for the system in question, make it an

obvious choice for this application. In addition, a formal specification should be written

in Z and analyzed with the help of the Z/EVES software package. Formal specification

and analysis of that specification would ensure that the system is complete and that

predetermined conditions hold throughout the operation of the software system. Finally,

dynamic fault tree analysis should be performed on the system to analyze each hazard or

failure event. Fault tree analysis is a technique that the NRC is very familiar with and

adept at performing.
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Introduction

The U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research

is interested in developing approaches towards analyzing digital instrumentation and

control (I&C) systems for nuclear power plant system upgrades. These approaches are

directed towards analyzing the change in risk involved with using digital systems, which

include software and hardware concerns.

The purpose of this document is to compile a list of strategies and techniques for a

possible risk analysis methodology that will include qualitative and quantitative modeling

of the system, as per the NRC’s requests, formal specification, and fault tree analysis. It

will not go into detail as to the actual implementation techniques but will only briefly

summarize the techniques suggested and provide some example scenarios.

Methodology Requirements Overview

In numerous meetings, papers, and discussions, the NRC has come up with several key

requirements of a PRA methodology. At a high level, the requirements for the

methodology are that it must:

a) Qualitatively model the digital I&C portions of identified accident scenarios

with sufficient detail and completeness such that subsequent (non-I&C)

portions of the scenario may be properly analyzed and practical decisions may

be formulated and analyzed.

b) Quantitatively identify the likelihood of system failure in a credible manner.
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It is worth noting that qualitative modeling should not be confused with qualitative

analysis of a software system. Qualitative analysis is an analysis of a software system

with respect to quality attributes and the tradeoffs between them. Quality attributes are

attributes of a system such as reliability, performance, and maintainability; in system

analysis quality attributes are used to assess design tradeoffs and help make decisions

based on attribute priority. Qualitative modeling requirements in this case do not refer to

those attributes.

Qualitative Modeling Requirements

Qualitative modeling techniques are commonly used when the information about the

system component internals are only partially known. With software systems, it is not

possible for every fault to be correctly and completely identified, and thus in this manner

there is information about the system that is unknown. By employing qualitative

modeling techniques in conjunction with credible qualitative techniques, an analyst is

therefore able to make informed decisions and analysis on a particular system. In this

regard, the requirements on a qualitative model identified by the NRC are that it contains

sufficient detail and completeness in the information it provides such that analysis can be

performed.

The methodology must be compatible with the prevailing risk analysis method employed

with nuclear power plant (NPP) probability risk analysis’s (PRA), event tree/fault tree

analysis. The methodology need not employ event tree/fault tree analysis but it must be

compatible with them.
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1. Input data compatibility – It must not requirement highly time-dependent,

continuous plant state information.

2. Output data compatibility – Discrete system states, which will subsequently be

related directly to component performance and/or operator actions dependent on

the I&C systems, must be provided for analysis.

3. Internal model constraints – varying levels of system degradation must be

modeled, no other constraint is set.

Quantitative Modeling Requirements

While qualitative models may be used to analyze systems where all the information is not

entirely known, quantitative models must also be used because these models will be used

in conjunction with qualitative models. While they rely on partial, incomplete

information, it is the duty of the analyst to develop credible models and prove their

credibility with regard to the provided information. The methodology must be accurate,

complete, credible, and be able to alleviate concerns about its own uncertainty.

1. Accuracy – The NRC raises major concerns for covering common cause failure

events and being able to explain them by;

a. Directly quantifying the likelihood of basic events in a minimal cut set.

b. and/or, adding basic events representing the different common cause

failure events.

2. Completeness - The NRC asserts that proving a method’s completeness is

impossibility and only requires that a “good enough” method be developed.
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3. Credibility – the methodology must be credible to the technical community and it

must use alternative source of information such as data from private industry and

applications and expert judgment.

4. Uncertainty – The methodology must mitigate uncertainties in its parameter

values and with the model itself.

Fulfilling Qualitative and Quantitative Requirements

The qualitative requirements that state a model of the digital I&C portions of an accident

scenario must be complete and should be satisfied by a sufficiently detailed fault tree

analysis and UML artifacts. Proof of completeness is impossible because complete

knowledge about all faults isn’t possible, the team must model the faults that they do

know about sufficiently in order to satisfy these modified completeness constraints.

(Meshkat 2002) For example, if an analysis team wishes to investigate the consequences

of a particular fault or hazard, they should examine every fault tree that contains the

original fault as an internal node. The original fault themselves would be in their own

fault trees, perhaps embedded in the current tree being analyzed, which would in turn be

analyzed when investigating a failure. If the fault is related to a specific module, the team

can then also examine UML artifacts such as the class diagram or sequence diagram to

investigate the ramifications of the original fault.

As for the quantitative requirements, the same methods could be used to assign a

quantitative value to the probability of a fault. In a fault tree analysis, the probability of a

fault occurring is related to the failures in its leaf nodes.
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For example, in the following above simple fault tree, if the probability of Basic Event B

occurring is 0.5 and the probability of Basic Event c is 0.5, then the probability of TOP

Event A occurring is 0.25. If the relationship were an OR (instead of an AND), the

probability of the TOP Event A occurring would be 0.75. These values are calculated

using mathematical probability rules.

Assigning probabilities to the two basic software events in the above example is

subjective and depends greatly on the expertise of the analysis team. While there are

methods for assigning probabilities to events, and the severity of failures, it still remains a

difficult science. In some cases, historic, or even simulated, data on which to calculate

failure probabilities is not available. Also, almost as important as the probability of

failure, severity of failure is difficult to calculate for the same reasons.
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Modeling

The first step in analyzing a system is to model that system. The system should be

modeled in two ways. The first is a descriptive model that employs diagrams and figures

to help visually explain how the system functions. These models will describe,

qualitatively, the modules, and their interfaces, involved in the operation of the system

and help clarify how the system operates. The second model should be a formal

specification of the system in a language that can be analyzed with the use of a computer

processor. Through these two methods, the system will be diagrammed visually for

personnel use and specified electronically so analytical tests may be performed. UML is

the suggested method for creating the descriptive model and Z, using EVES for analysis,

is the suggested method for creating the formal specification, and subsequently analyzing

that specification.

UML

The Unified Modeling Language (UML) is a methodology commonly used in private

industry for modeling a software system. Developed, in part from prior work by others;

and codified by James Rumbaugh, Grady Booch, and Ivar Jacobson (the “three amigos”),

UML is a means of visualizing, specifying, constructing, and documenting artifacts for a

software system. (Rumbaugh 1998) UML is the language of choice in many development

processes, one of the most popular of which is Rational Unified Process (RUP) which is

usually associated with the “three amigos,” for the very reasons it should be employed in

modeling this system.
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Usually, a collection of UML artifacts are created for a software system prior to its

implementation in the software lifecycle and it is possible that these artifacts already exist

for the system. These artifacts include, but are not limited to, class diagrams, use case

diagrams, component diagrams, object diagrams, state-chart diagrams, and sequence

diagrams. A brief description of each of the above named artifacts is located in Appendix

A as well as an in-depth example of a use case diagram and a sequence diagram.

Figure 1: Instance Sequence Diagram

Figure 1 is an example sequence diagram written in UML. It illustrates the sequence of

events when someone purchases a can of soda from a soda machine, but in general terms

so that it could cover any vending machine. Figure 1 is called an instance sequence

diagram, as opposed to a regular sequence diagram, because it describes only one
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possible sequence of events and is related to one use case. A particular system will have

multiple use cases and multiple sequence diagrams (such as the sequence for a customer

that doesn’t insert enough money and subsequently wants their money back would be

very different). In that situation a typical sequence diagram would describe a more

general use case. Sequence diagrams are only one of the many UML artifacts at a

developer’s disposal in describing a system. In conjunction with other artifacts, these

diagrams are very powerful.

The one of the advantages of using UML is that it is widely used and has a very shallow

learning curve, as in the above examples about the vending machine. A developer

unfamiliar with UML can understand UML artifacts with very little time because it uses

very comprehensible language and diagrams in its basic form. In the example sequence

diagrams, the user was depicted as a stick figure. UML is very useful in diagramming

object-oriented systems, as it was designed for that purpose, and its many artifacts leave

little of the system not explained. Another advantage is that because its wide usage, it is

possible that the development firm that created the system also has UML documents with

the necessary artifacts.

As with all modeling methods, there are disadvantages to using UML but many other

methods suffer from the same disadvantages. UML artifacts are cumbersome to build and

maintain for very complex systems. The only solution is the use of compartmentalization

where components are contained within another in diagrams. Another is the existence of

some redundant, useless, or arcane conventions and symbols that may lead to confusion.
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In general, however, many of the artifacts use simple language and require little

explanation.

Actual documentation using UML can be as simple or as complex as necessary. There are

numerous software packages for writing UML specifications and some are as complex as

Rational Rose, by Rational Software, and others are as simple as WithClass, by

MicroGOLD software. The complexity of your documents depends on the complexity of

the system and the level specificity you wish to reach in documenting the system. A

single class diagram could completely specify your entire system but it gives no

information about events and the flow of the system. To illustrate flow, sequence

diagrams and use cases scenarios would be necessary. More complex software packages

such as Rational Rose can develop diagrams from other diagrams and interconnect

objects between diagrams. An object represented by a class in a class diagram could be

linked to a object in a sequence diagram and vice versa.

Z

Z, pronounced “Zed,” is a formal specification language based on formal set theory and

originally developed at Oxford by J. R. Abrial in 1979. Its basis in formal set theory is

quite evident in the language and it does require a bit of training for someone to

understand and use the language. While its rich history in academia has led to many

implementations in that area, private industry has used it with success at companies such

as IBM and Tektronics on safety critical projects. The purpose of Z is to produce

schemas, the basic building blocks of the model, which represent entities or operations in
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the system; and build the entire system out of these. Z abstractly models parts of the

system, such as pre- and post-conditions in a schema, and then performs analysis in the

form of proving certain cases do or do not exist, such as deadlocks.

Schemas are quite simply to build and are represented by three parts. Each schema has a

name, a data section, and an assertion section. The data section contains parameters for

functions, subcomponents, and data such as variables or constants. The assertions section

contains the invariants, pre- and post-conditions for the function or entity. Due to its set

nature, schemas can be built from other schemas and usually are. This keeps schemas

from becoming too cluttered but to the novice this may appear very confusing. The

following is an example of a sample Z specification:

The above schema states that there is a Stack object in the space that contains two data

items: its own size, as a natural number, and a sequence of natural numbers. Its size is

defined as the number of elements in that sequence.

The above schema represents the Stack initialization function, StackInit. It resets Stack

(denoted by the prime notation) by setting s, the element holding the sequence of

Naturals, to the empty sequence. StackInit contains all of the data and assertions of Stack
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but that component is represented by Stack’. This is the shorthand mentioned earlier that

may be confusing.

 

The above schema represents the Push and Pop functions for the stack. They differ in that

Push takes an element as input (denoted by the ?) and Pop returns an element as output

(denoted by the !). The delta ahead of the Stack indicates that the Stack object is being

changed by this function. In push an element is added to the stack, s, and in pop an

element is removed.

This final schema is a function that returns the size of the stack. Remember, the X Stack

indicates that the original Stack schema is present but only read-only.

One critically important extension to Z was the additional of Schema Calculus by Spivey.

This allowed the construction of larger schemas from smaller schemas. For example, in

the above Pop function, there is no error detection or correction in the event that the stack

was empty. A solution, using schema calculus, would be to create schemas for situations

where the stack was empty and construct a new schema, RobustPop, for such situations.
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RobustPop  (Pop IsNotEmpty)  IsEmpty

This would mean that RobustPop would either Pop an element or not pop an element,

because the stack is empty; it would however, not, crash because of an empty stack. The

IsNotEmpty schema is not necessary and was added for readability.

Z is more suited for systems that are state-orientated, as opposed to event-orientated, and

allows for automated analysis with the use of software. There are other advantages to

using Z that include its precision. Using software, one could perform automated analysis

of the system with respect to it holding certain conditions. Using first order predicate

logic, an assertion can be made about the system and using software, it can be shown

whether that assertion holds true for the entire run of the system. While the complexity of

the system and the complexity of the assertion affect how long the analysis runs, it can be

done using software.

The major disadvantage of using Z is learning the language itself. It is based on set theory

and thus if the user is not familiar with set theory then he or she must learn it in order to

be successful with Z. This disadvantage is overcome once basic set theory is learned

since the syntax of the language is straightforward. Another disadvantage of using Z is

the same problem that hinders UML and practically any method of specifying or

diagramming a system, complexity. In addition to the difficulty of building and



19

maintaining the schemas for complex systems, as the complexity increases the running

time of the condition checks when using software increases as well. Since software

packages build trees representing states and events, as the schemas become more

complex, the trees grow exponentially. While there is pruning and rebuilding of the tree

to improve efficiency, the running time of these packages is still quite slow and

cumbersome at times.

Analysis

Z/EVES

Z/EVES, as it is commonly called, is a software package that can be used to perform

general theorem proving, type checking, and various other interesting functions on a Z

specification. It is a powerful tool that can be used to do the sort of automated analysis

mentioned earlier.
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Figure 2: Screenshot of Z/EVES

Figure 2 is a sample screenshot of Z/EVES with a system specified in Z. As you can see

it automatically does syntax checking as you create the specification that is very helpful

for Z novices.

Analysis in Z using Z/EVES takes the form of developing conditions and then using the

software to verify that a condition holds on a system. A condition is stated using first

order predicate logic using constructs such as the universal and existential quantifiers.

For example,

" x: S • P(x) – states that for all states of x in the system S, P(x) holds true.

$ x: S • Q(x) – states that for all states of x in the system S, there exists a state in which

Q(x) is true.



21

A typical analysis would be to state a system invariant using the universal quantifier (")

and then using the software to verify that it holds true for all states. There are many more

quantifiers and many intriguing ways in which they may be connected to state different

conditions.

The advantages of using Z/EVES are that it provides automated analysis of the

specification along with automatic syntax checking and other convenient features. A

steep learning curve is one of the major reasons why the Z/EVES system, and many other

academically developed formal methods, has not been used in private industry. Z/EVES

itself requires time to learn and when coupled with the learning curve of the Z

specification language, it is understandable why one would be hesitant to invest the time

required to successfully use those tools.

Fault Tree Analysis

Developed in the early 1960’s, fault tree analysis has become a widely adopted method of

performing reliability and risk analysis in a wide range of industries. They provide a

compact graphical visualization of the interaction of failures and events within a system

and contain a logical flow to these events. Its hierarchical structure, with basic events at

the bottom and identified hazards or failure modes at the top, lends itself to quick analysis

with the use of logic symbol connectors. Through analysis, the probability of a particular

failure occurring may be calculated from the probabilities of its events that cause it. In

addition to being able to visually identify relationships and dependencies, many software

packages are able to analyze fault trees.
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The fault tree model presents a logical method for analyzing failure characteristics of a

system and, equally importantly, shows that failure scenarios have been identified and

which ones have not. After an analysis, high-risk areas, such as failure scenarios with

high occurrence probabilities or high severity ratings, are identified and preventative

measures may be employed to decrease the occurrence probability or the severity rating.

Dynamic Fault Trees

Fault tree analysis begins with the identification of all possible hazards or failure modes.

Each possible hazards and failure mode will be further developed into its own individual

fault tree through the use of Boolean logic gates and basic events. Dynamic fault trees

differ from static fault trees in that they incorporate the notion of failure sequence.

(Meshkat 2002) Traditional static fault trees cannot model failures in which the order of

component failure is important as well as dynamic fault trees. An example of a sequential

dependence is provided below:

Primary

Spare

Switch

Figure 3: Sequential Dependence Example

In the above system, there are two components in a system; the spare is the backup to the

primary component. If the primary component fails, the switch will “switch” to the spare
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component as a backup and operation of the system will continue. In the first failure

situation, the primary fails before the switch fails. In this case, system operation

continues since the switch may bring the spare component online. In the second case, the

switch fails before the primary fails. The system is no longer operational, with respect to

this component, because with the switch failing first, there is no way to bring the spare

component online. In this case, the sequence of failure is important.

In the above situation, component failure would be modeled as:

Figure 4: Priority-AND (PAND) gate

The priority-AND gate, modeled has a triangle within the regular AND gate, states that

the above state only occurs if the first event happens before the second. The switch must

fail before the primary fails before component failure occurs. While this situation can be

modeled using static fault trees, it can be done more gracefully in dynamic fault trees

using the PAND gates.
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There are several difficulties with using fault tree analysis. It is assumed that every

hazard and every failure mode will not be completely identified but proof of the best

effort must be provided. In other words, completeness is not guaranteed and it is not

possible to guarantee it. Possible methods of providing such proof include identifying

that the risk contribution of any non-identified failure is small in magnitude both in

probability of its occurrence and its severity. If a failure’s possibility of occurring is very

small or its impact on the system should it fail is very small, then the failure’s

significance is adjusted accordingly.

In addition to the question of uncertainty is the issue of complexity. As the system

becomes more and more complex, the solution time of the analysis will increases

exponentially. These are the same problems that any sort of automated system analysis

technique must tackle and academia has been focused on increasing the efficiency of

these types of software packages.

One such software package is Galileo developed by the University of Virginia. It uses

DIF trees, or dynamic innovative fault trees, which uses binary decision diagrams

(BDDs). BDDs are regarded as the best static fault tree solution technique (Anderson

1999) and it is what Z/EVES uses in its analysis. To improve efficiency with using DIF

trees, sub-trees are divided up and solved prior to an analysis when possible. Galileo is a

research prototype designed for use in personal computers and is the product of two

professors at the University of Virginia, Prof. Joanne Bechta Dugan and Professor Kevin
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Sullivan. One of the benefits of using Galileo is that it interfaces with Microsoft Word

and Microsoft Visio quite gracefully.

Figure 5: Reduced Binary Decision Diagram for (x1 ¤ y1) Ÿ (x2 ¤ y2)

Figure 5 is a decision diagram for a logical expression, (x1 ¤ y1) Ÿ (x2 ¤ y2), and

through the use of software, it can be analyzed for its resultant value based on the values

of the components. The efficiency of analysis depends on the manner in which the tree is

constructed. The ordering in this case was x1, x2, y1, y3 and is written as x1 < x2 < y1 < y2.

The tree itself contains nine nodes and cannot be simplified any further.
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Figure 6: Another Binary Decision Diagram for (x1 ¤ y1) Ÿ (x2 ¤ y2)

This ordering of variables, x1 < y1 < x1 < y2, produces a tree with only six nodes. It is

clear that representing the same expression, (x1 ¤ y1) Ÿ (x2 ¤ y2), using three fewer

nodes, approximately a third fewer, would greatly improve the efficiency of any

algorithm.

Galileo’s developers indicate that Galileo is a research prototype and thus is not as robust

as would be necessary for safety critical systems such as those in the nuclear or medical

field. This only indicates that Galileo should not be used alone when analyzing systems

but when used in conjunction with other analysis methods such as those indicated earlier,

Galileo is still very valuable as a tool.
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Summary

There are various techniques for modeling and analyzing software systems and the

requirements of the analysis team should be used in deciding which technique to use for

each application. The system itself should also be used in deciding which techniques to

use as well because in certain cases a particular type of system is modeled better using

one technique instead of another. For example, Z is state based so a system with a

significant number of events or a system centered on events would be more adequately

modeled by another technique such as Petri Nets. The techniques outlined in this

document serve only as a suggestion based on the requirements of the NRC.
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Appendix A: Sample UML Diagrams

This appendix will elaborate on two of the many types of UML artifacts commonly used
in describing software systems. There are many UML artifacts in use today and some

books, such as Ambler’s Elements of UML Style, go into depth about the guideliens for

more than eight such artifacts.

The sample diagrams will follow the theme of modeling a very simple soda machine

where a soda costs seventy five cents and the user may make one of two selections (Pepsi
or Coke). This simple example will be enough to illustrate the benefits of UML.

Use Case Diagrams

Use case diagrams are used to illustrate how the system can be used. It is important to
identify both internal and external aspects of the system such as which actors are

involved in which processes. With the help of other diagrams, the different system flows
can be illustrated easily using graphical means and prose.

Use Case 1: User inserts money and makes a valid selection.
This is probably the most common use case of the system, where the user inserts a

sufficient amount of money for a soda and selects one in which the inventory is able to
fulfill.

1. User inserts money into the machine.

2. The money is transferred to the temporary register.
3. The user makes a selection.

4. The machine validates that the temporary register contains sufficient money to
make a purchase.

5. The machine indicates the user has inserted the sufficient amount.

6. The machine checks if the inventory is able to fulfill the selection.
7. The machine indicates the inventory is able to fulfill the selection.

8. Seventy-five cents is withdrawn from the temporary register.

9. The machine dispenses the selection.
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10. Excess money is returned to the user via the change slot.

Error case 1: The user has not inserted enough money to make a purchase.

If after step 4, the user hasn’t inserted enough money to make a purchase, a
message is displayed indicated that there isn’t sufficient funds to make a

purchase. The user is then directed to insert more money or press the change

return button to retrieve their money.

Error case 2: The user has made a selection that is out of stock.
If after step 6, the machine may not have the selection in inventory. It indicates to

the user that the machine is out of stock and the user is directed to make another

selection or press the change return button to retrieve their money.

Figure 1: Simple Use Case Diagram

The above figure is quite a simple representation of the system but it is a valid UML
diagram. It indicates that the User is outside the system and that no other actors are

involved in the purchase of a soda.
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Figure 2: Use Case Diagram

The above figure is a little more descriptive than the first Use Case diagram and it
indicates which objects within the system are used. You can see that in purchasing a

soda, the change register and the inventory objects are used. In referencing the prose, you
can see that the change register is used to validate enough money ahs been inserted and

the inventory is used to validate that the selection is in stock.

Sequence Diagrams

Sequence diagrams are typically used to illustrate flow within a system. A sequence
diagram will identify, in a specific sequence, which objects communicate with which

other, and how, and in what order these communications must occur. The use case
diagram itemized a list of events that occur in a particular scenario, the successful

purchase scenario. It did not identify certain key factors such as how the objects

communicated, this information is generally supplied by a sequence diagram.
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Figure 2: Sequence Diagram

This sequence diagram is similar to the one included in the body of the original document
except it is not as specific as the example in the original document. The flow of the

operations is still evident except exact function calls, and the attributes they require, are

not included. The reason for this is because this is designed to be more general and more
of an abstract look at the system. The objects (Temporary Register, Total Register,

Inventory) do not correspond to classes, whereas in the more specific example they did,

and the lines do not correspond to functions. As the first iteration of a sequence diagram,
it is quite descriptive. Further iterations of the sequence diagram, along with the other

diagrams, will elaborate the system.

There are many other artifacts used by UML practitioners such as class diagrams,

component diagrams, and deployment diagrams. While there are many others, these are
probably few of the most important diagrams and cover the greatest range of use within
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the software lifecycle for describing the system. Each diagram has a specific purpose and

each one has its descriptive strengths and weaknesses. Below, each will be described in
further detail and their strengths and weaknesses identified.

Use Case Diagrams:
Use case diagrams are the first diagrams discussed in this appendix but its strengths and

weaknesses were not addressed. Use Case diagrams are very valuable in describing, in
general terms, how the system operates. The prose component lists order of operations,

from a high level, as well as possible fault conditions, when applicable, and system
responses to those faults. The graphical diagrams are useful in building an overall view of

system operation from an actor standpoint. Different conceptual components, such as a

distributed cluster of computer processors, are treated as a single actor in the system,
making the diagrams easy to understand and not cluttered.

The weakness is in the fact that it is a high level description of the system. It does not

specify any components but it is a precursor and almost necessary artifact prior to the
proper creation of other artifacts such as class diagrams.

Class Diagrams
Class diagrams are diagrams in which individual object classes are drawn and connecting

using relational connectors. They resemble are a type of entity-relationship diagram with
each class represented as an entity. Class diagrams are useful in that they give specific

implementation descriptions of each class and their relationships to each other. A single
class will describe the classes’ attributes and interfaces, public and private.

The strength is in its specificity of the various objects in the system. A developer can take

a class diagram and know almost exactly what he is building. More importantly, a
developer can take the class diagram of a component and reuse that component based on

the interfaces the diagram describes.
The weakness is that the class diagram assumes an object-oriented approach, the objects

being the classes. If the system is not object oriented, if all functionality resided in one

class, then a class diagram would not be as valuable. Also, the relationships themselves
are not very descriptive other than indicating basic relationships such as “uses” or
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“contains.” How does class A “use” class B in a particular diagram? For that, further

artifacts (such as a sequence diagram) would be necessary. Also, how is each function
within the class implemented and how is each attribute used? For that, a system

specification is needed.

Component Diagrams

In general, classes within a system can be grouped together to form discrete components.

With any system, components may consist of one class or many classes. In many cases,

the components are reusable if only their interfaces were known and easily managed. The
component diagram artifact exists for this very purpose. Whereas a class diagram

indicates relationships between classes, a component diagram indicates relationships
between components.

Component diagrams are useful because they allow developers to use a component from

one system with that of another, as long as they have a component diagram that describes
the components various interfaces within the original system. Component diagrams are

also useful because they act as the bridge between understanding a use case diagram and
a class diagram. A class diagram is a very low level artifact and a use case diagram is a

very high level artifact, a component diagram is between the two.

Its weakness is that it cannot standalone as a description of the system. It is not general
enough and it is not specific enough to work with, it helps bridge the gap between class

and use case diagrams when thinking of the system conceptually.

Deployment Diagrams

Deployment diagrams describe how a system is to be installed and deployed in a

particular environment. For example, a deployment diagram for an http server (a software
application that processes requests and serves text, images, and other assorted data types)

would describe how the software would be installed on a single web server or a cluster of

distributed web servers. Deployment diagrams are important because they indicate how
the system is to be installed, used, and possibly maintained. Deployment diagrams also

help in design decisions because, for the http server for example, a piece of software

designed for one server is built differently than one designed for multiple inter-
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communicating servers. Outside of these purposes, deployment diagrams are not as

helpful.
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Appendix B: Z Specification

Introduction

Z is pronounced “Zed” and in common use it is written as either Z or Zed. The following
is a Zed specification for the vending machine example. Zed is powerful as a
specification, especially if you are familiar with logic and set theory, but it requires that
prose explain the schemas in order to be complete and easily understood. No Zed
specification is complete without the explanatory prose, which is found in bold below the
schema.

Z/EVES uses the LaTeX language when specifying the schemas. The reason for using is
because of LaTeX’s widespread use in academia and because the language lends itself to
the way Zed is written (it contains the useful symbols and constructs used in Zed). In this
example we will specify each schema in its original LaTeX form and in a graphical form
that many may be used to seeing in print. The graphical form is not the graphical LaTeX
output but is very similar to it. You will find that the graphical form is much more
readable than the LaTeX form, especially if you are unfamiliar with LaTeX.

[ITEM, MSG, MONEY]

This system has three collections, ITEM, MSG, and MONEY.

ITEM ::= Nothing | Coke | Pepsi
MSG ::= “Dispensing…” | “Insert more money please” | “Out of Stock” |

  “Money accepted” | “Money not accepted”
MONEY ::= 5 | 10 | 25 | 50 | 100

The set of ITEM consists of Coke and Pepsi, corresponding to the possible dispensable items of

the system. The Nothing item represents the case where nothing is dispensed from the machine.

The set of MSG consists of the there messages that could be displayed by the machine.

“Dispensing…” indicates the machine is dispensing an item, “Insert more money please”

indicates that there is insufficient funds in the temporary register, “Out of Stock” indicates that

the item the user selected is out of stock, “Money accepted” indicates that the inserted money is

acceptable, and “Money not accepted” indicates that the inserted money is not acceptable. The set

of MONEY represents the different denominations of money that may be entered into the

machine, corresponding to the cent value of each. A nickel is 5, a dime is 10, a quarter is 25, a

fifty-cent piece of 50, and a dollar is 100.



38

\begin{schema} VendingMachine
register_total : int
temp_register_total : int
num_coke : int
num_pepsi : int
\where
\end{schema}

The vending machine has two registers, one for the amount it’s collected in its main register and

one in its temporary register. The temporary register is where money is stored prior to a patron

purchasing a soda. An int is used to record the number of cents in either register. Num_coke and

num_pepsi store the number of Coca-Cola and Pepsi cans remaining in the vending machine.

There are several assumptions made for this system. The first is that the system transparently

takes care of different coin denominations. It is also assumed that the registers are somehow

connected so that when change needs to be dispensed, it can draw the necessary coins in the

necessary denominations from either register. For example, if a dollar is inserted, a quarter must

be returned but technically the temporary register doesn’t have a quarter, it has a single unit

which is the dollar. The quarter is thus drawn from the total register.

Another assumption is that currency not recognized by the machine, that is it is not in the set of

MONEY, can be represented by an int and is treated as one with respect to when it is returned to

the user.

\begin{schema} InitVendingMachine
VendingMachine
\where
register_total = 1000
temp_register_total = 0
num_coke = 20
num_pepsi = 20
\end{schema}
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VendingMachine initialization is what occurs every time the machine is reloaded and cashed out.

Ten dollars are left in the machine, in a set combination of three coin denominations (nickel,

dime, quarter), in order to produce change.

\begin{schema} DispenseItem
\Delta VendingMachine
selection? : ITEM
change! : int
dispensing_item! : ITEM
message! : MSG
\where
(temp_register_total \geq 75) \land

(((selection? = Coke \land num_coke > 0)
\land (num_coke’ = num_coke – 1))
\lor ((selection? = Pepsi \land num_pepsi > 0)
\land (num_pepsi’ = num_pepsi - 1)))
\land (dispensing_item! = selection?)
\land (change! = temp_register_total – 75)
\land (temp_register_total’ = 0)
\land (register_total’ = register_total + 75)
\land (message! = “Dispensing…”)

\lor
(temp_register_total \geq 75) \land

((selection? = Coke \land num_coke = 0)
\lor (selection? = Pepsi Ÿ num_pepsi = 0))
\land (temp_register_total’ = temp_register_total)
\land (register_total’ = register_total)

 \land (change! = 0) \land (dispensing_item! = Nothing)
\land (message! = “Out of Stock”)

\lor
(temp_register_total \leq 75) \land

(temp_register_total’ = temp_register_total)
\land (register_total’ = register_total)
\land (change! = 0) \land (dispensing_item! = Nothing)
\land (message! = “Insert more money please”)

\end{schema}

DispenseItem is a function called when the patron selects what soda they wish to purchase. If the

temporary register contains enough money, seventy-five cents, the function performs a series of

steps to dispense the soda. First it checks to see what the user selected, then it checks the

inventory to ensure the item is still in stock. If it is in stock, then the system dispenses the

selection, adjusts the temporary and total registers, dispenses any necessary change, and displays

a helpful message to the user. If the item is not in stock, then it displays a helpful message (“Out

of Stock”) and maintains the original value for each of the attributes. Finally, if the amount the
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patron has put into the machine is not sufficient (under seventy five cents), all attributes are

maintained and a message is displayed (“Insert more money please”).

\begin{schema} InsertChange
\Delta VendingMachine
amount_inserted? : int
msg! : MSG
return! : int
\where
((amount_inserted? \in MONEY

\land temp_ register_total’ = temp_register_total +
amount_inserted?

\land msg! = “Money accepted”)
\lor
(amount_inserted? \notin MONEY

\land register_total’ = temp_register_total
\land msg! = “Money not accepted”
\land return! = amount_inserted?))

register_total’ = register_total
num_coke’ = num_coke
num_pepsi’ = num_pepsi
\end{schema}

InsertChange is a function called when the patron inserts money into the machine. If the money

inputted is valid currency, the amount is added to the temporary register. If it is not valid currency

then it is not accepted. All other attributes are unaffected.

\begin{schema} ReturnChange
\Delta VendingMachine
change! : int
\where
register_total’ = register_total
temp_ register_total’ = 0
num_coke’ = num_coke
num_pepsi’ = num_pepsi
change! = temp_register_total
\end{schema}

ReturnChange is a function called when the patron presses the return change button on the

machine. Change is dispensed from the temporary register, thus setting it to zero. All other

attributes are unaffected.

A Zed specification allows you to check whether certain contraints are ever violated. It
can only tell you where the system can fail by design, not by some external causes. An
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example of an external cause would be if the power failed, the Zed specification does not
cover that because it is not a design issue.

While this is a simplistic example, we are still able to create some constraints and check
them against the system. Using first order predicate logic, we can specify constraints and
check them against the model.

The first constraint we will state is that at no point in the operation of the vending
machine shall it dispense an item when the temporary register holds fewer than seventy-
five cents. This is stated as in FOPL (and LaTeX):

AG ((temp_register_total < 75) \land
((dispensing_item = Coke) \lor (dispensing_item = Pepsi))

and as this in plain English:

In all states of the vending machine system, the system should not dispense Coke or Pepsi
when the temporary register contains fewer than seventy five cents.

If put through analysis software, the software will indicate whether this constraint holds
for the system. If it holds, it means that the system will not allow a Coke or Pepsi to be
dispensed when there are not sufficient funds in the temporary register. It will no indicate
if an error has occurred, though violation of this constraint could indicate an error had
occurred, and itself is constrainted by the specification of the system. If the system is
specified incorrectly or incompletely, the analysis could be incorrect.

In the event of a constraint violation, a trace would be provided as to the order of events
that led to the failure.
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Appendix C: MSIT Core Courses

The following is a matrix that indicates which modeling techniques are used in which
MSIT core curriculum courses.

17-651 Models of Software Systems UML

17-652 Methods of Software Development Z

17-653 Managing Software Development EVES

17-654 Analysis of Software Artifacts Fault Trees

17-655 Architectures for Software Systems


