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ApsTrACT. Communicating systems are ubiquitous, and they bring human lives inestimable value.
Despite this, they often go wrong, sometimes with severe consequences. They are hard to get
right or reason about because of their inherent complexity. To tame this complexity, we can use
various formalisms and semantic techniques to model, implement, and reason about communicat-
ing systems. Notable among these are session-typed programming languages and process calculi.
Session types [Hong3}[HVK98| are a typing discipline for communicating systems. They encode
communication protocols to specify communications, analogously to how data types specify values
in functional programs. Importantly, session-typed programming languages guarantee various
desirable properties of communicating systems.

Many techniques exist for reasoning about session-typed programming languages and their
programs. These include linear logical relations [Pér+14;|Tonis], game semantics [CY19], denota-
tional semantics [Atkiz; | KMP1g|], bisimulations [KPY17], and run-time monitoring [GJP18|]. Few
prior approaches have treated inductive and co-inductive session types [Tonis;|LM16}; DP19| or
general recursive types [KPY1y|], or considered higher-order languages that integrate functional
features and code transmission. Moreover, many prior techniques are not compositional.

In this dissertation, we present novel semantics and reasoning techniques for Polarized
SILL [TCP13;/PGis], a higher-order session-typed programming language. Polarized SILL coherently
integrates functional programming with asynchronous session-typed message-passing concurrency.
It supports recursive communication protocols, value transmission (including code transmission),
choices (a form of branching), and synchronization. Our contributions are unified by their commit-
ment to the process abstraction: communication is the only phenomenon of processes. As a result,
our semantics define the meaning of processes in terms of their communications. Together, they
support the following thesis:

Communication-based semantics elucidate the structure of session-typed languages and

allow us to reason about programs written in these languages.
Concretely, we give Polarized SILL three communication-based semantics: an observed communi-
cations semantics, a communication-based framework for testing equivalences, and a denotational
semantics.

Our observed communication semantics defines the meaning of processes to be the communi-
cations we observe during their executions. Ours is the first to support rich protocols like recursion,
code transmission, and synchronization.

We use our observed communication semantics to define extensional notions of program
equivalence. They are given by a testing equivalences framework. Testing equivalence is a technique
for defining process equivalence. It deems processes to be equivalent whenever they are indistin-
guishable through experimentation. Classical approaches to testing equivalences [DH84} Hen83;|De
85] define experiment outcomes in terms of states. In contrast, we define experiment outcomes in
terms of observed communications. We show that one of the testing equivalences captured by our
framework coincides with barbed congruence, the canonical notion of process equivalence.

Our denotational semantics defines the meaning of communicating processes to be stable
continuous functions between dI-domains of session-typed communications. Importantly, our de-
notational semantics is compositional, and we can reason modularly about programs. Our semantics
is an instance of CYO semantics, a novel kind of semantics that adapts ideas from Kahn semantics for
dataflow networks [Kah74] to handle bidirectional communications. Our denotational semantics is
sound relative to barbed congruence.

To support our work, we make two contributions to the mathematical foundations of pro-
gramming languages semantics. First, we introduce the first notions of fairness for substructural
operational semantics and multiset rewriting systems, and we study their properties. These fairness
results are essential to ensuring that our observed communications semantics is well-defined in
the presence of non-terminating processes. Second, we introduce techniques for reasoning about
parametrized fixed points of functors, and we study their 2-categorical properties. These results
underlie our denotational interpretation of recursive session types.
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CHAPTER 1

Introduction

Communicating systems are ubiquitous: we find them in everything from the cars we drive, to
the smartphones in our pockets, to the computers on our desks. In all likelihood, this very document
has been conveyed to you through a sequence of dozens of computer systems, each communicating
with the next. Not only are communicating systems ubiquitous, but their importance to our lives
cannot be understated. They allow us to communicate with loved ones across great distances and
to access troves of information that would have unimaginable mere generations ago, and they
support modern commerce. Despite their importance, communicating systems often go wrong,
sometimes with severe consequences. For example, routing errors led to a large portion of the
internet to be inaccessible for hours in the Northeastern United States on July 24, 2019 [Strig]. In
2015, the Heartbleed vulnerability allowed attackers to access private data on an estimated 24-55%
of websites [Dur+14], and early estimates put its cost to industry at $500 million [Keri4]. It was
due to an incorrect implementation of a communication protocol.

Communicating systems are hard to get right because of their inherent complexity. We can
tame this complexity by abstracting away inessential details. The two fundamental abstractions
of communicating systems are processes and communication. A process is a computational agent
(broadly construed) that interacts with its environment solely through communication. In particu-
lar, the only phenomenon of processes is their communications: we cannot observe their internal
states or workings. Communication is a sequence of atomic observable events (“messages”), each
caused by a process and potentially observed by one or more other processes. A communicating
system is then a collection of processes that interact through communication. To describe the
inner workings of communicating systems, we need a third abstraction: protocols. A protocol is a
specification of permitted communications.

To concretize these abstractions, consider the communicating system formed by a vending
machine and an office worker. These two processes interact through communication: the office
worker can insert a coin or push a button, and the vending machine can dispense a snack. Various
protocols are possible. For example, we could allow the worker to arbitrarily insert coins or push
buttons, but require that the vending machine dispense a snack whenever the office worker inserts
a coin and then pushes a button. If we felt generous, we could instead insist that the vending
machine dispense a snack whenever a button is pushed, regardless of whether a coin was inserted.

We can make these abstractions mathematically rigorous by appealing to various formalisms.
Process formalisms describe the operational behaviour of processes. Examples include Milner’s [Mil8o]
Calculus of Communicating Systems, Hoare’s [Hoa85] Communicating Sequential Processes, and the
n-calculi of Milner, Parrow, and Walker [MPWg2a;[IMPWg2b] and Sangiorgi [Sang2]. Similarly,
various protocol formalisms have been used to specify protocols. These include state transition
models [Boc78] and Petri nets [CAA84]. Though these two lines of research were long disconnected,
they are united by session-typed programming languages and process calculi. Session types [Hong3;
HVKo8| specify protocols and classify communications, analogously to how data types classify
values. Importantly, programs written in session-typed programming languages are guaranteed to
respect the communication protocols specified by their session types.

Syntactic formalisms may describe and specify communicating systems, but they are not
enough. For a formalism to be meaningful, it must be endowed with a semantics. We also need
techniques to reason about formalized systems that are sound relative to their intended semantics.
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In this dissertation, we study the semantics of session-typed programming languages and their
associated reasoning techniques. In particular, we investigate semantics and reasoning techniques
for the language Polarized SILL [TCP13} PGus|.

Polarized SILL provides an ideal setting in which to study these topics: its feature set is
sufficiently rich to study interactions between many desirable real-world features, while being
sufficiently restricted to remain tractable. It coherently integrates functional programming with
session-typed message-passing concurrency. Its functional programming layer is the simply-
typed A-calculus with a fixed-point operator, and it includes quoted processes as a base type.
Its process layer is based on a proofs-as-processes correspondence between intuitionistic linear
logic and the session-typed 7m-calculus. Protocols supported by Polarized SILL include value
transmission (including quoted processes), choices (a form of branching), and synchronization
(its communication layer is asynchronous). Importantly, it supports general recursive protocols.
Recursive protocols are essential for modelling real-world systems, but in contrast to inductively
and coinductively defined protocols, their semantics has been largely unstudied.

At the core of many techniques for reasoning about programs is the question of program
equivalence. It asks: when are two programs in some sense “equivalent”? The answer to this question
has many real-world applications, including compiler correctness and program verification. Indeed,
“program equivalence is arguably one of the most interesting and at the same time important
problems in formal verification” [Lah+18]]. Program equivalence is an inherently semantic question:
its answer depends on the semantics of our language. We answer it for Polarized SILL using two
broad classes of semantic approaches, namely, operational and denotational semantics, and we
relate the notions of equivalence that they induce.

Operational semantics describe the operational or run-time behaviour of programs. Polarized
SILLs operational behaviour is specified by a substructural operational semantics [Sim12], a form of
multiset rewriting with strong logical underpinnings [CSog]. Alone, this substructural operational
semantics is insufficient for defining an extensional notion of equivalence, i.e., an equivalence
where programs are equivalent if we cannot distinguish them through experimentation. To define
such an equivalence, we must first define notions of observation and of experimentation. We take
seriously the premise that we can only interact with processes through communication, and that
communication is their sole phenomenon. This leads us to define an observed communication
semantics [Atki7] for Polarized SILL, where the meaning of a process is the collection of communica-
tions we observe during its execution. To define experiments on processes, we adapt classical ideas
on testing equivalences [DH84;|Hen83} De 85] to the setting of observed communication semantics.
We deem processes equivalent if we cannot differentiate them through communication. We relate
testing equivalence to the canonical notion of process equivalence: barbed congruence [MSg2].

Denotational semantics abstract away the concrete operational behaviour of programs and
define the meaning of a program to be an object in a mathematical universe. This object is
called the program’s denotation, and programs are equivalent if they denote the same object. A
defining characteristic of denotational semantics is that denotations are defined by induction
on the program’s structure. As a result, denotational semantics are automatically compositional.
Advantageously, this means that we can reason modularly about programs instead of having to
reason about whole programs at a time. We give Polarized SILL a denotational semantics where
processes denote continuous functions between complete partial orders of communications. It
is an instance of a novel style of semantics called CYO semantics[| By construction, it guarantees
various desirable computational properties of processes. Subject to mild simplifying assumptions,
our denotational equivalence implies barbed congruence and testing equivalence.

Our semantics are all designed to be faithful to the process abstraction: they are defined in
terms of a process’s communications. Together, they support the following thesis statement:

Communication-based semantics elucidate the structure of session-typed
languages and allow us to reason about programs written in these languages.

In reference to the Choose Your Own Adventure book series.
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To help further situate our communication-centric approach, we briefly contrast it with pre-
existing approaches for reasoning about session-typed languages. Atkey [Atkiy] gave a denotational
semantics for Classical Processes [Wadis||, a proofs-as-processes interpretation of classical linear
logic with synchronous communication. Atkey’s semantics coincides with the relational semantics
of proofs in classical linear logic [Barogi]. In it, session types denote sets of communications and
processes denote relations over these. It does not treat recursion or value transmission. In contrast,
we draw inspiration from Kahn’s work [Kahy4|] and use complete partial orders and continuous
functions because they provide an ideal setting for investigating Polarized SILLs recursive protocols
and processes. They also let us capture properties like continuity that we deem essential for a
semantics for programs working with infinite data. Castellan and Yoshida [CY19|] introduced a
game semantics interpretation of the session 7-calculus with recursion. Session types denote event
structures that encode games, and processes denote continuous maps that describe strategies. Their
semantics supports recursion and it is fully abstract relative to barbed congruence, i.e., it fully
characterizes barbed congruence. However, it does not consider desirable language features like
value transmission or functional programming. Kokke, Montesi, and Peressotti [KMP19| gave
a denotational semantics using Brzozowski derivatives to a proofs-as-processes interpretation
between classical linear logic and the 7-calculus. It does not handle recursion or the transmission
of functional values. Pérez et al. [Pér+12;Pér+14|] gave a theory of logical relations for session-typed
processes. In the broader setting of semantics for processes or communicating systems, Kahn
[Kahy4] gave a denotational semantics for dataflow networks. Communication in dataflow networks
consists of unidirectional streams of values of a fixed simple type. In contrast, our semantics handle
bidirectional communication and rich communication protocols. De Nicola and Hennessy [DH84],
Hennessy [Hen83], and De Nicola [De 85] introduced testing equivalences, where programs
are equivalent if they reach success states under all experiments. In our communication-based
approach, programs are equivalent if they produce the same communications under all experiments.

1.1. Outline of Dissertation

Part[1] (chapters 2] to[4) is dedicated to the mathematical structures that underlie our work
on Polarized SILL. It contains both an overview of the structures we use to study of Polarized
SILL, as well as required contributions to the mathematical foundations of programming languages
semantics.

Chapter 2| provides a brief survey of the mathematical concepts used in this dissertation. Its
contents are mostly standard. Its primary purposes are to define our notation, and to present
known results (or mild generalizations thereof) that will be used repeatedly in later chapters.

Chapter [3] contains the first study of fairness for multiset rewriting systems. As mentioned
above, Polarized SILLs operational behaviour is defined using a multiset rewriting system. Rewrite
rules in multiset rewriting systems can be applied non-deterministically: we may use a given
rule whenever its conditions of use are satisfied. This non-determinism unfortunately means
that a process in a communicating system might never make progress, even if it is able to do
so. These “unfair” executions are undesirable in practice, and they make it difficult to give well-
defined program equivalences. Accordingly, we restrict our attention to fair executions [Par8of of
communicating systems. To do so, we introduce and study fairness for multiset rewriting systems.
We discover that there are several reasonable and independent notions of fairness. We construct
a fair scheduler, we give sufficient conditions for traces to be fair, and we study the effects of
permutations on traces. We also introduce a novel notion of trace equivalence that will be essential
to the observed communication semantics in chapter[6] This chapter builds on work presented at
EXPRESS/SOS 2020 [Kav2oal.

Chapter[4]studies fixed points of functors, and its results underlie our denotational account
of recursive session types. In particular, we study the 2-categorical properties of fixed points of
functors. We generalize existing techniques for computing and reasoning about parametrized fixed
points of functors. In the process, we define a dagger operation [BEgs; BE96] on a suitable category
of categories, and we show that it satisfies the (cartesian) Conway identities. These identities imply
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many other identities [BEg6, § 3.3] useful for semantic reasoning, such as Beki¢’s rule, and they are
also independent interest. This chapter builds on work presented at MFPS XXXVT [Kav2ob].

We turn our attention to Polarized SILL in part[2](chapters[s|to[9). It is here that we present
our various semantics for Polarized SILL and their associated reasoning techniques. We start by
presenting Polarized SILL, its statics, and its dynamics in chapter s} The remaining chapters are
our contributions. Each features an introductory section that gives a more detailed overview of the
problems it seeks to solve and their associated challenges.

In chapter[6] we introduce our observed communication semantics. Given a process execution,
it defines the meaning of the process to be the communications observed on its free channels. Our
observed communication semantics is the first to handle recursive processes and protocols, and
code transmission. We define a notion of equivalence on observed communications. To do so, we
must address various challenges caused by code transmission. This communication equivalence is
used in chapter[7|to define process equivalence. A key observation is that we observe the same
communications across all fair executions of a given process. This faithfully captures the confluence
property enjoyed by Polarized SILL and by other session-typed languages. This chapter builds on
work presented at EXPRESS/SOS 2020 [Kav2oa].

Chapter[7lintroduces our testing equivalence framework. Testing equivalence frameworks [DH84;
Hen83;|De 85] use experiments to determine if processes are equivalent. Classical experiments can
end in “success” states, and two processes are equivalent if they succeed the same experiments. In
our setting, we cannot observe process states: we can only observe process communications. Our
experiments communicate with tested processes, and we deem two processes to be equivalent if
they produce equivalent communications under each experiment. There is a certain latitude in
deciding which communication channels to observe during experimentation. One possibility is
to observe the channels between an experiment and a process, leading to “internal” notions of
equivalence a la Darondeau [Dar82] and Atkey [Atki7|]. A second possibility is to imagine that
an experiment uses some of its free channels to communicate with processes, and that it reports
its findings on its remaining free channels. Observing these remaining free channels leads to an
“external” notion of equivalence, and we show that this equivalence is a congruence. We also use
our framework to define observational preorders and precongruences. We relate our observational
equivalences to each other and to barbed congruence.

Our denotational semantics is given in chapter[8] It is inspired by “wave”-style geometry of
interaction constructions [AJ94;/Abrg6, § 4.4] and the ideas underlying Kahn’s [Kahy74] semantics
for dataflow networks, and it significantly generalizes the latter. Dataflow networks consist of
processes communicating along unidirectional channels (lines or wires carrying messages in only
one direction), and communications are sequences of values. In Kahn’s semantics, processes denote
continuous functions between complete partial orders of sequences of values. We generalize this
to account for bidirectional communications and for the richer collection of protocols enjoyed by
Polarized SILL. In particular, we introduce CYO semantics, a novel style of denotational semantics
for systems with bidirectional communication. In CYO semantics, protocols denote partial orders
of communications related by an embedding[| Concretely, they denote a complete partial order
(cpo) of complete (bidirectional) communications permitted by the protocol and two cpos of unidi-
rectional communications (one for each direction), and the embedding specifies the decomposition
of complete communications into pairs of unidirectional communications. A process denotes a
continuous function from the unidirectional input on its channels to the whole communications
obtained by filling in the gaps in its input with its output. Subject to some simplifying assumptions,
our denotational semantics is sound relative to barbed congruence and external testing equivalence,
i.e., denotational equivalence implies barbed congruence and external testing equivalence.

Finally, in chapter g} we illustrate our techniques with various case studies. In particular, we
show that the forwarding process (the computational of the identity rule of intuitionistic linear
logic) and the process interpretation of the identity expansion theorem for intuitionistic linear

2Embeddings are injective monotone functions with nice order-theoretic properties.
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logic are equivalent. We also study processes on bit streams and binary representations of natural
numbers. These results illustrate our semantics ability to reason about recursive processes and
session types.

A reader who is primarily interested in operational notions of equivalence may prefer to
take the following path through the dissertation: section 3.1.2Jand chapters[s|to[7} while referring
back to chapter [3]and sections and [2.5] as needed. A reader primarily interested in
our denotational semantics could read chapters|s|and|[8} while referring back to chapters|and[4]
as needed. For convenience, all typing rules for Polarized SILL are collected in section [5.A} all
multiset rewriting rules for Polarized SILL are collected in section[5.B} and all semantic clauses
of the denotational semantics are collected in section We have also included a glossary of
symbols, and an index with major definitions and results.

Notational Conventions

When pattern matching against tuples, we often care only about certain components. To reduce
the cognitive burden caused by unneeded names, we adopt a convention found in programming
languages like Standard ML, Prolog, and Coq, where we notate irrelevant values as underscores “_"
For example, instead of writing “the frobnication of n is (n, p, g,2 * n) for some p and g” when p
and q are not used below, we write “the frobnication of n is (n, _, _,2 * n)”. Similarly, instead of
writing f(w, x, y,2z) = x + y, we may write f(_,x,y,_) =x + y.

When an expression is too long to fit on a single line, we typically break it at an operator or
relation symbol, and we follow the Oxford custom [[CBBs54} pp. 37-38] of repeating this symbol on
the following linef| For example, we write

fily -
when the domain and codomain of a function declaration cannot both fit onto a single line.
We often define terms inline to avoid breaking the flow of text. We use various typographical
conventions to make definitions easier to locate definitions and to indicate their importance. The

definitions of core concepts and objects are given in numbered environments. Important terms are
given in bold sans serif, while less important terms appear in emphasis.

3This convention is also found in many ex-Soviet republics. It serves to connect two parts of expression, and it makes
clear that the expression is incomplete.
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CHAPTER 2

Mathematical Preliminaries

For ease of reference, we define various mathematical concepts that will be used throughout
this thesis.

Section[2.1/gives an account of various category-theoretic notions that underlie our denotational
semantics. We use these notions to reason about our semantics itself in chapter[8] but also when
using our semantics reason about processes in chapter E} Virtually all concepts appearing in
section [2.1|are standard. Our denotational semantics makes extensive use of order theory and
fixed-point operators, which we survey in sections|2.2]and 2.3} Their contents are standard, apart
from a few technical lemmas in section These lemmas will be useful for reasoning about
recursive processes.

In 22, I give an account general binding trees. These extend abstract syntax trees and abstract
binding trees [|[Chu4o}Har16] to handle bound symbols. We use general binding trees to formally
processes in part[2] In particular, we use their generalized binding structure to capture the fact that
bound channel names appearing in processes can be freely renamed.

Finally, in section|2.5]we discuss inductively and coinductively defined judgments. In particular,
we examine parametric judgments, which capture the structural properties of symbols appearing
in judgments. Parametric judgments will be important part[2} where we use symbols to represent
the names of communication channels appearing in process typing judgments.

2.1. Category Theory

There are a number of excellent introductory (and not so introductory) texts on category
theory [AL91;[BW9g; Macg8; Rie16], of which Riehl’s [Rie16] stands out. Our purpose here is not
to give a primer on category theory, so much as to fix our definitions and notation. Especially in
chapters[qland[8]and section 2.2} we expect the reader to be familiar with the following notions:
category, functor, natural transformation, product, and colimit.

We generally use upright boldface for categories. For example, we write Set for the category of
sets and functions. We write C°P for the opposite category of C. We write ob(C) for the collection
of objects in C and mor(C) for its collection of morphisms. A category is small if its objects and
morphisms both form a set. It is locally small if its morphisms form a set. We write Cat for the
category of small categories, and CAT for the category of locally small categories.

Remark 2.1.1. Many categories of interest are not small, so they are not objects in Cat. We can work
around size issues by using a hierarchy of universes [[Schy2} § 3] to treat them as small categories.

A subcategory C of D is full if for each pair of objects in C, C contains all morphisms that are
between them in D. It is wide if it contains all of the objects in D.

Definition 2.1.2. Let F,G : C — D be functors. A natural transformation  : F = G : C - D,
usually written # : F = G, is a family of morphisms (#7x : FX - GX)x indexed by objects of C
such that for all morphisms f : X - Y of C, the following diagram commutes:

FX -, Gx

oo

Yy - Gy <

9
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If D is a locally small category, then we write D(—, —) : D°? x D — Set for the hom functor.
Given objects D and E of D, D(D, E) is the set of morphisms from D to E. If a category E has an
internal hom, then we write E[— — —] or just [~ — —] for it. Given small categories C and D, write
diag. : D - CAT [C — D] for the diagonal functor. Concretely, diag. D is the constant functor
onto the object D.

Definition 2.1.3. A diagram of shape J in a category C is a functor F : J - C. If C is an object of
C, then a cone on F with summit C is a natural transformation A : diag; C = F. Concretely, this
is a ob(J)-indexed family of morphisms A; : C — Fi such that for all f : i - j in J, the following

diagram commutes:
C
gy

Fi——1 L, Fj.
Dually, a cocone on F with nadir C is a natural transformation « : F = diag; C. <

The initial object of a category C, if it exists, is an object L¢ such that for every object X of C,
there exists a unique morphism L¢ - X in C. We often write L for L. We also write L for the
unique cone L¢ = idc witnessing the initiality of L¢. The terminal objects T¢ of a category C is
dually defined.

If C has a terminal object isomorphic to its initial object, we call the initial object the zero object
oc. C has zero morphisms if for all objects A and D there exists a fixed morphism osp : A - D,
and if this family of morphisms satisfies ogp © f = 04p = g 0 04¢ for all morphisms f : A — B and
g: C — D. Chas zero morphisms whenever it has a zero object: 045 = A - 0 - B.

Definition 2.1.4. Given a functor F : C — Set, the category of elements f F has as objects pairs
(x,X) such that X is an object of C and x € FX. Morphisms f : (x, X) — (y, Y) are morphisms
f:X - Y in Csuch that F(f)(x) = y. «

Given a small category J, a locally small category C, and a functor F : J — C, the cocone
functor [Rie16} Definition 3.1.5] Cone(F,-) : C — Set takes objects C of C to the set of cocones
on F with summit C. Given a morphism f : C — C’ and a cocone (1 : F = C) € Cone(F, C),
Cone(F, f)(A) = f o A. Given a diagram F : J — C, the category of cocones on F is the category
of elements [ Cone(F,-). Its objects are pairs (a, A) where a € Cone(F, A). Morphisms f :
(e, A) > (B, B) are morphisms f : C - D in C such that Cone(F, f)(a) = f, i.e., such that
f o a = B. The colimit [Rie16}, Definition 3.1.6] of F is the initial object of [ Cone(F,~). Cone
functors Cone(—, F) : C°? — Set, the category of cones on F, and limits are dually defined.

An adjunction F < G is a pair of functors F : C — D and G : D — C equipped with an
isomorphism D(F(C), D) = C(C, G(D)) natural in C and D. Equivalently, an adjunction is a
pair of functors F : C - D and G : D — C equipped with natural transformations # : id = GF
and € : FG = id satisfying the triangle indentities:

Fy nG
F —— FGF G =—— GFG
\ ﬂe‘: \ HGE
id id
F G

We call F the left adjoint, G the right adjoint, # the unit, and ¢ the counit.
A two-variable adjunction [Rie16, Definition 4.3.7] is given by a triple of functors F : AxB — C,
G:A°® xC,and H : B°? x C — A equipped with a natural isomorphism

C(F(A,B),C) 2 B(B,G(A,C)) = A(A, H(B, C)).

We call G and H the left and right closures of F. We say that F is closed whenever G and H are
naturally isomorphic.
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A category is discrete if every morphism is an identity. A product is the limit of a diagram
whose shape is a discrete category. We say that a product is finite if this discrete category has finitely
many objects. A category is cartesian if it has all finite products. If C has binary products, then
the product bifunctor x : C x C — C assigns to pairs (4, B) of objects of C their product in C. A
cartesian category C is cartesian closed if its product bifunctor is closed. Its left and right closures
define the exponential objects of C.

It is often useful to have notation to identify the components of a product. Consider a discrete
category with objects d,, ..., d, and a diagram F(d;) = D;. We write (d, : D,) x ---x (d, : D,) or
[14, D; forlimit of F: it is the d;-indexed product of the D;. Given morphisms f; : C — D;, we write
(di: fis....dy: fy) for the mediating morphism C — [, D;. Given an indexed product [T;; D;
and a subset J € I, we write 71} or 71y for the projection [];¢; D; — [Tje) Dj- If 14, D; is an object
in a category of sets with structure and §; € D; for 1 < i < n, then we write (d, : 8,,...,d, : §,,) for
the corresponding element of this product.

Coproducts are dually defined to products. We write (d, : D,) & --- @ (d,, : D,,) or @, D; for
the coproduct of the D; indexed by the d;. We write 4Dy > @, D; for the injection of D; into
the coproduct.

Morphisms @;c; A; — [l Bj from coproducts to products are uniquely determined by
morphisms f; ;y for each (i, j) € I x J. This means that such morphisms can be conveniently
represented by matrices whose (i, j)-th component is f{; ;y [Rie16} pp. 82f.]. When a category has
zero morphisms and I = J, a collection of maps f; : A; — B; for i € I determines a morphism
diag(fi)ier : @ie; Ai = Il;er Bi- It is represented by the matrix whose (i, i)-th component is f;
and whose (i, j)-th components for i # j is the corresponding zero morphism.

Applications to semantics motivate functor algebras. Given a functor F : C - C, an F-algebra
isa pair (A, a) where A and a are respectively an object and a morphism FA - A in C. A morphism
f:(A,a) - (B,b) of F-algebras is a morphism f : A - Bin Csuch that foa=bo Ff. Sucha
morphism is called an F-algebra homomorphism. These objects and morphisms form a category C*
of F-algebras.

2.1.1. 2-Category Theory. Chapter[4]builds heavily on 2-category theory. Readers unfamiliar
with 2-category theory may replace the words “2-category”, “2-functor”, and “2-natural transforma-
tion” by “category’, “functor’, and “natural transformation” throughout to obtain weaker forms of
our results. Fiore [Fiog4, Chapter 2] and Kelly and Street [KS74] give surveys of 2-category theory.

A 2-category C has objects A, B, ..., arrows (horizontal morphisms) f : A — B, and 2-cells

(vertical morphisms) « : f = g: A - B drawn as:

Objects and arrows form a category C, called the underlying category of C; we write o for its
composition. Each pair of objects A and B gives rise to a category C(A, B) whose objects are
arrows A — B and whose morphisms are 2-cells between them; we call its composition operator “”
vertical composition. Objects and 2-cells form a category Cellc; we call its composition operator

+”. Vertical and horizontal composition satisfy the middle four interchange and identity laws:
whenever

f g
/m /P P P
A—— B ——C and A lidy B lid, C
U \f) ~

we have (8-p) * (B-a) = (6% fB)-(y*a)andid, +idy = idg, respectively. Thanks to the identity
law, we can adopt the convention of writing f for the identity 2-cell ids: f = f: A — B.

The prototypical 2-category is Cat, the category of small categories, where objects are small
categories, horizontal morphisms are functors, and vertical morphisms are natural transformations.
Given 2-cellse: F= G: C— Dand #: H= I:D — E in Cat, their horizontal composition
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n € : HF = IG is given by the equal natural transformations Ie o yF = G o He. Given a
morphism f : K - L in C, we abuse notation and write # * f : FK — GL for the naturality square

F G
FK 2L L 6L = F S 6r s Gk

Let C and D be 2-categories. A 2-functor F : C — D sends objects of C to objects of D, arrows
of C to arrows of D, and 2-cells of C to 2-cells of D while preserving all identities, compositions,
domains, and codomains. A 2-natural transformation # : F = G : C — D is a natural transformation
n : F = G that is 2-natural, i.e., such that for each 2-cell « : f = g: A - B in C, we have the
following equality in D:

Ff Gf
— ’75 VIA 4
FA |Fo FB—— GB=FA—— GA |Ga GB.
~—_ " ~_
Fg Gg

A modification p : « - 3 : F = G : C - D is a morphism of 2-natural transformations. It assigns
to each object A of Ca2-cell p4 : @s = B4 such that for all f : A — B we have the following
equality in D:

oA ap
4 Gf Ff 4
FA |ps GA—"- GB=FA——FB |ps GB.
~_ ~_
Ba B

Various constructions give new 2-categories from old. The opposite 2-category C°P of a 2-
category C is determined by C°P(A, B) = C(B, A), where arrows are reversed but not 2-cells
between them. The product 2-category C x D is given by the usual product-category construction,
where objects are pairs (C, D) of objects C of C and D of D, and all morphisms, compositions,
and identities are given component-wise.

Every 2-category C is equipped with a hom 2-functor C(—,—) : C° x C — CAT]| where
CAT is the 2-category of locally small categories. It takes objects (A, B) to categories C(A, B),
arrows (f,g) : (A,B) - (A’,B’) to functors go — o f : C(A,B) - C(A’,B’), and 2-cells
(e, B): (fg) = (f'.¢") : (A,B) > (A’, B') to natural transformations a * id_ * §: go—o f =
g' o— of’ :C(A,B) - C(A",B).

A 2-category C is 2-cartesian closed if Cellc is cartesian closed [BE9s, p. 97]. In elementary
terms [Fio94} p. 24], this means that C has a terminal object, binary 2-products, and 2-exponentials,
where

e the terminal object of C is an object 1 of C with a 2-natural isomorphism C(—,1) = A1,
where 1 is the terminal category;

e the 2-product of objects A and B of C is an object A x B of C with a 2-natural isomorphism
C(-,A) xC(-,B) 2 C(-,A x B);

e the 2-exponential of objects A and B of C is an object C[A — B] of C with a 2-natural
isomorphism C(- x A, B) 2 C(-,C[A - B]).

We can generalize functor algebras to algebras of horizontal morphisms in arbitrary 2-cartesian
categories. Given a horizontal morphism f : Ax B — Bin a 2-cartesian category, an f-algebra [BE9s,
Definition 2.3] is a pair (g, u) where g : A - B is a horizontal morphism and u : f o (ids, g) = ¢
is vertical. An f-algebra homomorphism (g, u) — (h,v) is a vertical morphism w : ¢ = h such that
wou=vo(fx*(ids,w)). These f-algebras and f-algebra homomorphisms form a category.

2.1.2. Monoidal Categories.

Definition 2.1.5. A monoidal category is a sextuple (M, ®, I, A, p, a) satisfying the axioms of fig.
where

e Mis a category
e ®: M x M — M is a bifunctor (called a tensor) on M

Tt will be clear from context whether C(—, —) is the hom 2-functor into CAT or the usual hom functor into Set.
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A® (I®B) Lt (A®I)®B
A®B

(a) The triangle axiom

A® (B®(C®D))

A®oc3,c,/ wwpb

A® ((B®C)®D) (A®B)®(C®D)

aA,B@c,DJ( J{“A@B,C,D

(A® (B®C)) oD —2®Y , (A®B)®C)®D

(8) The pentagon axiom

FIGURE 2.1. Axioms for monoidal categories

Al — ™ L IgA

B ab y B® A
k A \ /

A®B

(a) Symmetry (B) Preservation of identity

A®(B®C) — 2, (A®B)®C

A®UB,CJ J{%@Bc

A® (C®B) C®(A®B)

O‘A,C,BJ J(O‘C,A,B

(A®C)®B —roer (C®A)®B
(c) Interaction with associativity

FIGURE 2.2. Axioms for symmetric monoidal categories

I is the unit of the tensor

A :I® A= Ais anatural isomorphism witnessing that I is the left unit

p:A®I = Aisanatural isomorphism witnessing that I is the right unit

a:(A®B)® C= A® (B® C) is a natural isomorphism witnessing the associativity of
the tensor ®.

A monoidal category is symmetric if it is additionally equipped with a natural isomorphism
0: A® B = B® A satisfying the axioms of fig.[2.2] «

For more details on monoidal and symmetric monoidal categories, we refer the reader to the
expositions by Etingof et al. [Eti+15} chap. 2], Barr and Wells [BWgg, chap. 16], and Riehl [Rie16}
§ E.2].

Example 2.1.6. Every Cartesian category is symmetric monoidal. The tensor product is given by
the Cartesian product, and the terminal object T is the unit. <

String diagrams provide a convenient graphical notation for reasoning about monoidal cate-
gories. Instead of reasoning about morphisms through algebraic manipulations, we can reason
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A A (empty)
(a) An object A (B) The identity morphism id4 (c) The unit I
A B A B C

f f g

(p) Amorphism f: A - B () The composition go fof f: A—> Bandg:B— C

C D
B g
A A B
_ f
(r) The tensor A® B
(G) The tensor f ® g
A, B,
B A

A, f B A><B

(1) Symmetry o4,

(1) A morphism f: A, ® - ® A, > B,® - ® By,

FIGURE 2.3. String diagram notation for (symmetric) monoidal categories

about them by manipulating diagrams made up of boxes and wires. We refer the reader to [Sel11;
JSV 965 JSo1;|Mal10} § 2.8] for more detailed expositions of this style of graphical language.

The graphical notation used herein is found in [Sel11; Malio, § 2.8]. It depicts objects as wires,
morphisms as boxes, identity morphisms as wires, and composition as connecting wires. The
tensor operation is represented by juxtaposition, while the unit object I is the empty diagram.
Symmetry is represented by crossing wires. We adopt the convention that diagrams flow from left
to right: wires entering a box from the left denote inputs to a morphism, while wires exiting a box
on the right denote outputs of a morphism. These are summarized by fig.

THEOREM 2.1.7 ([Sel11, Theorem 3]). A well-formed equation between morphism terms in the
language of monoidal categories follows from the axioms of monoidal categories if and only if it holds,
up to planar isotopy[]in the graphical language.

THEOREM 2.1.8 ([Sel11, Theorem 7]). A well-formed equation between morphisms in the language
of symmetric monoidal categories follows from the axioms of symmetric monoidal categories if and
only if it holds, up to isomorphism of diagramsf|in the graphical language.

2.1.3. Multicategories, Polycategories, And Pluricategories. Multicategories generalize cat-
egories to allow for morphisms with multiple inputs. The following definition is for the original
presentation of multicategory due to Lambek [Lamé6g, pp. 103ff.]. It differs from modern presenta-
tions, e.g., [Leio4], by allowing only two morphisms to be composed together, instead of requiring
that all inputs receive a composition partner.

Given a set X, we write X* for the free monoid on X, and ¢ for its unit. We write its elements
as lists and composition as concatenation. We use capital Greek letters to range over these. If
O =x,,,x, € X*, then we write @; for the i-th element x; in the concatenation.

Definition 2.1.9. A multicategory M consists of the following data:

2Informally, planar isotopy means equivalence up to continuous deformation without allowing any boxes or wires to
cross each other or be detached.
3 An isomorphism of diagrams is a bijection between wires and boxes that preserves the structure of the graph.
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a class ob(M) of objects;

a class mor(M) of multimaps or morphisms;

a function dom : mor(M) — ob(M)*;

a function cod : mor(M) — ob(M));

a substitution or composition operator subst : (1#,,cy mor(M) x, mor(M)) — mor(M)
that is the unique morphism out of the disjoint union determined by a family of compo-
sition operators

subst, : mor(M) x,, mor(M) - mor(M),
where

mor(M) x, mor(M) = {(g, f) € mor(M) x mor(M) | cod(f) = (dom(g)),}

We write f : A,,...,A, - Bwhendom(f) = A,,...,A, and cod(f) = B. We write g o; f for
subst; (g, f). It is convenient to write compositions in tree-form, with morphism names above the

arrows:

vl AL AL A 5B

A oW A

These data must satisfy the following axioms:
() iff:¥—>A;andg:A,,...,A, > B, thengo,; f: A,,...,¥,...,A, = B;
(2) for all objects A, there exists an identity morphism id4 : A — A;
(3) the identity morphism is the left unit, i.e., the following multimap is equal to f:

A A o avlB

O,AY —B

(4) the identity morphism is the right unit, i.e., the following multimap is equal to g:
ASA A A
A
(5) composition is associative, i.e., the following multimaps are equal:
A—A OAY—B
(D)A)\II—)B F,B,A—>C
I[LO,A, A — C
®,A,‘P—>B r,B,A—>C
A— A I[LO,AY,A—C
ILO,A,,A—C
(6) composition is partially commutative, i.e., the following multimaps are equal:
A—D O,C,0,D,¥Y —B
r —C D,C,0,A\,Y — B
O,I,0,A,¥Y — C
r—Cc 9,,06,D,¥Y — B
A— D o,I,0,D,Y — B
O, I,0,A¥ —C <

Polycategories [Sza7s|] generalize multicategories to allow for morphisms with multiple outputs.

Definition 2.1.10 ([Szays]). A polycategory P is given by the following data:

e aclass ob(M) of objects;
e a class mor(M) of polymaps or morphisms;
e functions dom, cod : mor(M) — ob(M)*;
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e a substitution or composition operator
subst : ( [+ mor(M) x,, mor(M)) — mor(M)
n,meN
that is the unique morphism out of the disjoint union determined by a family of compo-
sition operators
subst,, ,; : mor(M) x,, ,, mor(M) — mor(M),

where

mor(M) x,,,, mor(M) = {(g, ) € mor(M) x mor(M) | (cod(f)),, = (dom(g)),}-

We write f : A,,...,A, = B,,..., B, when dom(f) = A,,...,A, and cod(f) = B,,...,Bp.
We write g o, ,, f for subst, (g, f). It is convenient to write compositions in tree-form, with
morphism names above the arrows:

vhAaAD TAASE

L ALl A5 o

These data must satisfy the following axioms:
Wiff:¥ > AAY, ¢g:T,AA > B (cod(f)), = A, and (dom(g)), = A, then
gon,mf:r’\llaA - A)E)(D;
(2) for all objects A, there exists an identity morphism id, : A — A;
(3) the identity morphism is the left unit, i.e., the following morphism is equal to f:

A 4 o avlE
O,AY &

(4) the identity morphism is the right unit, i.e., the following morphism is equal to g:

AST, AN A A

AS AN

(5) composition is associative, i.e., the following morphisms are equal:

rl LI‘Z)A’I‘3 AliA)AZE)A}’B’A“
An r1>A2 - FZ,A3,B,A4,F3 q)l’B’(DZ L(D3
(Dl) Al) I‘l) Aza (D?. - Fz> Aga (Dga A47 rg
. AL A D, 5 A, BA, ©,B0,%5 0,

I > 1,,AT D,,ALA A, 0, — A, D, A,
D,A,LTLA, 0, —T,,A,,0;,A,, T,
(6) composition is partially commutative, i.e., the following morphisms are equal whenever

at least one of A,, I, and one of A,, T is empty:

I LI, AT, ®,A0,B0, %0,

Al i Aza B) A3 (Dl) r1> q)za B> q)3 - Fz: (D4; r3
q)l) Fl) (Dza Al) q)3 - Az) rz: q)47 r33 A3

A5 ALB A, ®,A 0, B0, 5,
L, AT, — 0,A0,A,0, —T,0,T,
(Dlr rv q)z) Al’ (D3 - Azx Fz; (D4; r3> Ag
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and the following morphisms are equal whenever at least one of @,, A,, and one of ®,, A,,

is empty:
h f
T, > T, AT, BT, ALAA, A,
AT, A, — T, ATy, B, T, ®,,B,0, > 0,

®,ALTLA,, O, — T, A3) r3: (Dgy r4

L5 T,ATBT, 0,80, % 0,
CDla ru q)z - rz’ A, rp q)3’ r4 A1> A’ Az i) A3
(DI) Al’ Fl) Az: (D2 - rz) A3: r33 (D3) 1—‘4 <

Every polycategory contains a maximal multicategory.

Pluricategorieg’ generalize polycategories to allow for composition along multiple objects. Its
axioms associativity and partial commutativity axioms generalize those of polycategories in the
obvious manner, where we replace single objects by a sequence of adjacent objects.

Definition 2.1.11. A pluricategory P is given by the following data:

e aclass ob(M) of objects;

e a class mor(M) of plurimaps or morphisms;
e functions dom, cod : mor(M) — ob(M)*;
e a substitution or composition operator

subst : ( [+ mor(M) x, i mor(M)) — mor(M)
n,m,keN

that is the unique morphism out of the disjoint union determined by a family of compo-
sition operators

subst, .k : mor(M) x, ,, x mor(M) - mor(M),
where
mor(M) x,, ,, x mor(M)
={(g f) e mor(M) x mor(M) | Yo <i < k.(cod(f))m+i = (dom(g))n+i}-

We write f: A,,...,A, = B,,...,B,, whendom(f) = A,,...,A, and cod(f) = B,,..., By,. We
write g o, ,, x f for subst, ., x(g, f). It is convenient to write compositions in tree-form, with
morphism names above the arrows:

vhrme AmASE

A AL s g

These data must satisfy the following axioms:
()iff:A,...,A, >C,....,Ch,g:By,...,By, > D,,..., Dy, then
dom(gor,s,tf) = Bl" . '>Br—1)A1>- ”)Am;Br.H-H,.. ’BP
Cod(g O",S,tf) = Cl,. . .,Cs_l,Dl,. ..,Dq, C5+z+1,...,cq;

(2) for all lists of objects objects A, there exists an identity morphism ids : A — A;
(3) identity morphisms commute with concatenation, i.e., the following composition is equal

tOidA’\y:
A A iy
ALY — ALY

4Introduced here as a convenient notation for representing compositions in symmetric monoidal categories. In
particular, they simplify semantic reasoning by omitting the need to include extraneous identity morphisms when composing
pairs of morphisms.
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(4) the identity morphism is the left unit, i.e., the following morphism is equal to f:

A A o AavhE

O,AY —E

(5) the identity morphism is the right unit, i.e., the following morphism is equal to g:

AST AN A A

AS A A

(6) composition is associative, i.e., the following morphisms are equal:

Lo, L, ALILA, S 4,04,

h
Al)rlaAz_)r2>A3)®)A4)r3 (D1,®,d)2—>(1)3
D,ALTLLA,, O, — T, A3a (D3> A4) r3

ALTLA, 5 A,,0,4, ©,0,0,5 0,
LLr, LT, — ®,AL LA, ®, — A, d; 4,
(Du Ap r1> Az’ q)z - rz, A3> q)3’ A4) r3

(7) composition is partially commutative, i.e., the following morphisms are equal whenever
at least one of A,,T,, and one of A,, T} is empty:

nlron 0.1,0,00,%0,
Al i Az; ®; Ag; (Dn r1> (D,_, ®7 (D3 - Fz; (D4) r3
(Db rl) (D2> Al’ (D3 - Az: rz) (D4) F3, A3

A5 A,,0,4, OLILD, 00,50,
I, LI‘Z,H,I} O,ILD,, A, 0, — 1,,0,,T;
D, L, Dy, A, @y — A, L, D, T, A,
and the following morphisms are equal whenever at least one of ®,, A,, and one of ®,, A,,

is empty:
h f
F1 — r;_, H, r3a @, r4 AI)H’ A2 - A3
Al,rl,Az —)rz, A3,r31®1 r4 (D1,®,(D2 iq):‘?

(Dh Ap rl) Aza CD?. - r2> A3) r_?,; (D3a r4

LALILL,OTr, ©,0,0,%5 o,
0,10, S>0,ILL,0,T,  ALILA, L4,
DQ,ALTLA, O, — T, Ag,) r3) CD3: r4 <

We can extract a maximal polycategory P from each pluricategory Q. The objects of P are
those of Q, and the morphisms of P are those whose codomain consists of a single object.

Example 2.1.12. Every symmetric monoidal category induces a pluricategory by interpreting
morphisms f : A, ® - ® A, > B, ® --- ® B, as morphisms f : A,,...,A, = B,,...,Bp,. <

2.2. Order Theory

Partial orders have long been applied to the semantics of programming languages. We briefly
review the key definitions that we will use in this thesis, building primarily on [AJ9s;|Gie+o3]]. For
a deeper introduction, we refer the reader to the wealth of expository works on order theory and
domain theory, and on applications of domain theory to the semantics of programming languages:
[AJ o5} |Gie+80;|Gie+03} (GM89} |(Gung2; [Tengs|.

Definition 2.2.1. A partially ordered set or poset (P, <) is a set P equipped with a relation c that is:
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(1) reflexive: forallx € P, p € p;
(2) transitive: for all x, y,z € P, x € y and y € z implies x C z;
(3) antisymmetric: for all x, y,z € P, x € y and y € x implies x = y. <

As usual in mathematics, we usually leave the structure on a set implicit, i.e., we write P for
the poset (P,c).

Definition 2.2.2. A function f : P - Q between posets is monotone if for all x, y € A, if x € y,

then f(x) € f(y). <«

Partially ordered sets and monotone functions between them form a category Poset.

Example 2.2.3. Let P and Q be posets. The poset Poset [P — Q] has as elements monotone
functions f : P — Q. Its ordering is given pointwise, i.e., f C g if and only if f(x) & g(x) for all
xeP. <

Definition 2.2.4 ([A]9s, Definition 2.1.3]). Let P be a poset and A a subset of P.

(1) The subset A is an upper set if x € A implies y € A for all y 3 x. We write 1A for the least
upper set containing A, and tx for t{x}.

(2) An element x € P is an upper bound of A if g © x for all a € A.

(3) The subset A is a lower set if x € A implies y € A for all y € x. We write | A for the least
upper set containing A, and |x for | {x}.

(4) Anelement x € P is a lower bound of Aif x € g for all a € A.

(5) The least upper bound of A, if it exists, is variously called the lub, supremum, or join of A.
We write |_| A for this element when it exists.

(6) The least element of P, if it exists, is called its bottom element and is denoted by L. In this
case, we say that P is a pointed poset.

(7) The greatest lower bound of A, if it exists, is variously called the glb, infimum, or meet of
A. We write [] A for this element when it exists.

(8) The greatest element of P, if it exists, is called its top element and is denoted by T.

(9) If every pair of elements in P has a supremum and an infimum, then P is called a lattice.
A complete lattice is a lattice with a supremum and an infimum for each of its subsets. <

Definition 2.2.5. A function F : P — Q of pointed posets is strict if (L) = L. «

Given a category P of partially ordered sets, we write P, for the full subcategory of P whose
objects are pointed posets. We write P, for the wide subcategory of P, whose morphisms are
strict.

Definition 2.2.6. Let P be a posetand f : P — P a function. An element x € P is called a fixed
point of f if f(x) = x, a pre-fixed point of f if f(x) £ x, and a post-fixed point of f if x = f(x). The
least and greatest fixed points of f, if they exist, are respectively denoted Ifp(f) and gfp(f). <«

The fixed points of a monotone function on a complete lattices form a complete lattice. In
particular, monotone functions on complete lattices enjoy least and greatest fixed points:

THEOREM 2.2.7 (Knaster-Tarski [Tarss|). Let L be a complete lattice, f : L — L be a monotone
function, and P the set of all fixed points of f. Then P is non-empty, a complete lattice, and

MP=[x | () =),
LJP = x| x = ().

We can explicitly construct fixed points of w-(co)continuous functions on complete lattices
using the Kleene fixed-point theorem:
Definition 2.2.8. Let L be a complete lattice. We say that a function f : L — L is

(1) w-continuous if f(|ljen ;) = Llien f(x;) for all increasing sequences x, E x, € --- of
points in L;
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(2) w-cocontinuous if f([M;eny Xi) = [Mien f(x;) for all decreasing sequences -+ E x, £ x, of
points in L. <

THEOREM 2.2.9 (Kleene Fixed-Point [[Sani2, Theorem 2.8.5]). Let L be a complete lattice and
f: L — L a function. If f is w-continuous, then
Ifp(f) =L f(L).
neN
If f is w-cocontinuous, then

gfp(f) = I_I\Lf”(T)-

In chapter [4} we will generalize the above results from w-cocontinuous functions on lattices to
w-cocontinuous functors on categories.

The definition of lattice is too strong for many applications, and functions on sets with less
structure still have pleasant fixed-point properties.

Definition 2.2.10 ([A]g5), Definition 2.1.8]). A subset A of a poset P is directed if it is non-empty
and each pair of elements of A has an upper bound in A. We write | |' A for the supremum of a
directed subset A, if it exists, and call it a directed supremum. <

The following proposition is useful for simplifying calculations involving directed suprema:

PROPOSITION 2.2.11 ([A]9s5}, Proposition 2.12.2]). Let I be a directed poset and let o : I x I - P
be a monotone function into a poset P. If the following directed suprema exist, then they are equal:
L a(ij) = LI L el ) = UL i ) = L (o i)

i,jel iel jel jeI  iel iel
Definition 2.2.12. A directed-complete partial order or dcpo is a poset whose every directed subset
has a supremum. <«

Remark 2.2.13. Some authors [Mitgo, p. 394] require that dcpos be pointed, i.e., that they have a
bottom element. Following Abramsky and Jung [|AJ9s]], we do not require dcpos to be pointed.

Definition 2.2.14. Let C and D be dcpos. A function f : C — D is (Scott-)continuous if for all
directed subsets A of C, f (LI'A) = LU f(A). <

PROPOSITION 2.2.15 ([AJ9s, Exercise 2.3.9(12)]). A function f : C — D between dcpos is
continuous if and only if it is monotone and f ( I_ITA) = " f(A) for all directed subsets A of C.

Dcpos and continuous functions between them form a category DCPO.
One important feature of continuous functions on pointed dcpos is that they admit fixed
points. The following proposition gives two explicit characterizations of these:

PROPOSITION 2.2.16. Let D be a pointed dcpo, and let f : D — D be a continuous function. Then
the fixed points of f form a pointed dcpo. In particular, f has a least fixed point lfp(f) € D, and it is
equivalently constructed:

(1) using the Kleene fixed-point theorem, with Ifp(f) = [U',en " (1p);
(2) using a variant of the Knaster-Tarski theorem, withifp(f) =M{x € D| f(x) c x}.

Proof. The proofs are standard. We begin by showing the formulation given by the Kleene fixed-
point theorem. Observe first that 1 © f(1p), and induction on n shows that f"(Lp) € f"**(1p)
for all n. It follows that { /" (1p) | n € N} is a directed subset of D, so it has a directed supremum
by definition of dcpo. Observe that this directed supremum is a fixed point of f:

f(I_IRIf”(LD)) = |_|N1f”+l(lD) = |_£f”(lD)-
To see that it is the least fixed point, let d be any other fixed point of f. Then Lp = d = f(d), and

by induction on n, we have " (1p) E d for all #. So d is also an upper bound of { f"(Lp) | n € N}.
It follows that ||",cy f"(1p) € d, i.e., that ||",cy f"(Lp) is truly the least upper bound of f.
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Next, we show the Knaster-Tarski formulation. Set F = {x € D | f(x) c x}. Observe that
Ifp(f) € F, so it is sufficient to show that Ifp(f) is the least element of F. Let x € F be arbitrary.
Then 1 C x. By monotonicity of f and the definition of F, f(1) © f(x) € x. By induction on #,
we get f"(1p) E x for all n, so Ifp(f) © x. It follows that Ifp(f) is the least element of f, so the
infimum [ F exists and is equal to lfp( f).

We know by the existence of Ifp( f) that the fixed points of f form a pointed poset. It remains
to show that this pointed poset is directed complete. Let X be any directed subset. We must show
that f([I'X) = ' X. But this is immediate by continuity of f, and the fact that the elements of X

are fixed points of f:
f(Ux) = fx) = ' x o

A key idea underlying category theory is that objects are best studied through the lens of their
morphisms. Order theory enjoys a wide variety of morphisms with special properties, and we
consider these here.

Definition 2.2.17. Let P and Q be posets. We say that monotone functions [ : P & Q : u form an
adjunction (/,u) ifforall x € Pand y € Q, I(x) & y if and only if x © u(y). In this case, we write
I 4 u, and we call I the lower adjoint and u the upper adjoint. <

Remark 2.2.18. The order of | and u in an adjunction (I, u) varies in the literature. We follow
[[AJos]l, who place the lower adjoint on the left, while [Gie+o3] write (u, 1) for the same adjunction.
We generally prefer the categorical notation / < u to eliminate any ambiguity.

In the literature, adjunctions are also called Galois connections. When the posets P and Q are
viewed as categories, we recognize the adjoint functions / 4 u as adjoint functors. Consequently,
facts about adjoint functors, e.g., that adjoints uniquely determine each other, also apply to adjoint
functions between posets. The following equivalent definitions of adjunctions are well known:

PRrOPOSITION 2.2.19 ([Gie+03, Theorem O-3.6;|AJ9s5}, Propositions 3.1.10 and 3.1.12]). Let P and
Q be posets, and assume that | : P < Q : u are monotone. The following are equivalent:
(1) | < u is an adjunction;
(2) loucidgandidpEuol;
(3) VxeP, I(x)=min(u"(1x));
(4) VyeQ u(y) = max(I"*(1y)).
These conditions imply:
(5) l=louolandu=uolou;
(6) 1 ouandu ol areidempotent;
(7) 1is injective if and only ifu o I = idp if and only if u is surjective;
(8) 1is surjective if and only if | o u = idq if and only if u is injective;
(9) 1 preserves existing suprema, and u preserves existing infima.

The following class of adjunctions is particularly useful in applications to semantics:

Definition 2.2.20. Let P and Q be posets. Monotone functions e : P & Q : p form an embedding-

projection pair or e-p-pair (e, p) if po e = id and e o p C id. We say e is an embedding and p is a

projection. As adjoints, the functions e and p uniquely determine each other. Given an e-p-pair

(f, g), we may write f? for g and g° for f. «
We will frequently silently use the following proposition:

PROPOSITION 2.2.21. Lower adjoints (including embeddings) are strict whenever their domains
are pointed. Surjective upper adjoints (including projections) are also strict whenever their domains
are pointed.

Proof. If | is a lower adjoint, then by proposition|[2.2.19}
(L) =1(]2)=]2=1.
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FIGURE 2.4. Elements a, b, ¢, L are compact but not prime

If u is a surjective upper adjoint, then its lower adjoint [ is injective by proposition By
definition of adjunction, (I ou)(1) € L. This implies (lou)(L) = L. ButI(1) = L and ] is injective,
sou(L)=L1. O

The ordering in dcpos provides a notion of convergence. We are also interested in a second
ordering on dcpos, which specifies which elements can be used to “approximate” other elements.

Definition 2.2.22. We say that x approximates y (or that x is way-below y) in a dcpo D if for all
directed subsets A of D, y c | |" A implies x € a for some a € A. In this case, we write x << y. We
say that x is compact if x <« x. Write (D) = {x € D | x < x} for the set of compact elements of
D. «

Remark 2.2.23. The terminology “approximation order” is due Abramsky and Jung [[AJos]. It is
traditionally called the “way-below relation”
Remark 2.2.24. Compact elements are often called “finite” elements. This is because the compact
elements in the complete lattice induced by a power set are exactly its finite sets.

The approximation and convergence orders are related as follows:

PROPOSITION 2.2.25 ([|AJ95, Proposition 2.2.2]). Let D be a dcpo. Then for all x,x', y, y" € D,
(1) if x <y, thenx € y;
(2) if X cx<ycy thenx' <y
Definition 2.2.26. A basis B of a dcpo D is a subset B € D such that for all x € D, the set {b € B |
b « x} contains a directed subset with supremum x. <«

A domain is a depo equipped with a notion of approximation:

Definition 2.2.27. A dcpo D is an algebraic domain if it has a basis of compact elements. It is an
w-algebraic domain if (D) is a countable basis of D. <«

Prime elements are a special subclass of compact elements:

Definition 2.2.28. Let D be a dcpo. An element p is prime if for all bounded subsets B of D,
p E LB implies p £ b for some b € B. Write | D| for the set of prime elements of D. We say that D
is prime-algebraic if every element of D is the supremum of its prime elements. <

Though every prime element is compact, not every compact element is prime. For example,
the bottom element is never prime in non-trivial dcpos. More generally, every element in the Hasse
diagram of fig. [2.4|is compact, but only the top element is prime.

There are several important classes of domains in semantics.

Definition 2.2.29 (|[Gung2, p. 151]). A non-empty dcpo D is bounded-complete if every bounded
subset M ¢ D hasaleast upper bound | | M € D. We write BC for the category of bounded-complete
dcpos and continuous morphisms between them. <

We say that a pair of elements x, y € D is consistent, written x 1 y, if they are bounded.

PRrOPOSITION 2.2.30 ([Gung2} Theorem 5.5]). A dcpo D is bounded-complete if and only if every
consistent pair x 1 y in D has a least upper bound.
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An important result about bounded complete domains is:

PROPOSITION 2.2.31 ([Gung2, Lemma 5.10;/AJ 95} Exercise 4.3.11(2)]). If D is a bounded-complete
domain, then N : D x D — D is continuous.

Remark 2.2.32. Proposition is not true in general for bounded-complete dcpos [Gung2,
Exercise 5.16].

Definition 2.2.33. A bounded-complete dcpo satisfies the d-property if xr(yuz) = (xny)u(xnz)
whenever y 1 z (equivalently, whenever x 1 y and x 1 z). <

The bounded-complete dcpo of fig. 2.4]does not satisfy the d-property.

Definition 2.2.34. An algebraic domain satisfies the I-property if every compact element has a
finite number of lower bounds. <

The domain {1 £+ £ 3 £ 2 C 1} does not satisfy the I-property [Zhagi, p. 140].

Definition 2.2.35. A dI-domain is a bounded-complete w-algebraic domain satisfying properties d
and L. <«

THEOREM 2.2.36 ([Zha91, Theorem 6.2]). If D is a bounded-complete w-algebraic domain
satisfying the I-property, then D is prime algebraic if and only if it is a dI-domain.

We can characterize the prime elements of dI-domains. Say that x is immediately below y if
xS yandforallxczc y,eitherx=zorz=y.

PROPOSITION 2.2.37 ([Zhag1, Lemma 6.1]). The prime elements of a dI-domain D are the compact
elements with a unique element immediately below them.

We give Polarized SILLs functional layer a denotational semantics using dI-domains and
continuous functions in section[8.3} Defining this semantics requires a cartesian-closed category of
dI-domains. To construct such a category; it is well known that we must restrict our attention from
continuous functions to stable functions.

Definition 2.2.38. A continuous function f : D — I between dI-domains is stable if for all x 1 y
in D, f(xny) = f(x)n f(y)- <«
Example 2.2.39. All upper adjoints are stable by proposition[2.2.19] «

Intuitively, a stable function is one where each finite (compact) piece of output is determined
by a unique finite piece of input. Proposition makes this fact explicit. It adapts [Gir86}
Theorem 1.3] from qualitative domains to dI-domains.

PROPOSITION 2.2.40 (Normal Form Theorem). Let f : X — Y be a stable function of dI-domains
and a € X. If g € Y is prime and such that q ¢ f(a), then:

(1) there exists a k € K(X) such that k © a and q € f(k), and
(2) if such a k' is chosen to be minimal, then k' is unique.

Proof. To see the first condition, observe first that a = | |'X(X), by algebraicity. By continuity,
f(a) = ' f(K(X)),. But q is compact, so there exists a k € K(X), such that g  f(k).

Assume now that k' € IC(X) is chosen to be minimal with k' c a and q € f (k). Then k and
k' are compatible, so f(knk") = f(k)n f(k’) by stability. But then g © f(knk’),so k' = knk’ by
minimality, whence k' © k. Because k was arbitrary, it follows that k' is the unique minimum. [J

Warning 2.2.41. Proposition [2.2.40|does not state that the minimal k’ is globally minimum such
that g © f(k'). It only states that if kK’ C a is chosen minimal such that g © f(k’), then it is unique.
This k' is sometimes called the modulus of stability M (f, x, q) of f, x, and g [Abroz, p. 42].

Definition 2.2.42. Let f : X — Y be a stable function of dI-domains. Its skeleton is the set
sk(f) ={(k,q) € K(X) x|Y| | k minimal with q = f(k)}. <«
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Skeletons are frequently called traces in the literature. To avoid confusion with the trace
operators of section[2.3} we adopt the terminology of Girard [Giro6} Définition 2.8.2.16].

The skeleton of a stable function is well-defined by proposition Proposition
adapts |Gir86} Theorem 1.4] from qualitative domains to dI-domains. Its proof can be found in
[Zhagi, Lemma 6.2].

PROPOSITION 2.2.43 (Representation Theorem). If f : X — Y is a stable function between
dl-domains, then it is entirely determined by its skeleton: for all x € X,

f(x) =1U{q | 3k = x.(k, q) € sk(f)}.
Definition 2.2.44. If f, g : X — Y are stable functions between dI-domains, then f is stably less
than g, written f ¢, g, ifforallx € y, f(x) = f(y) N g(x). «
Viewing f and g as functors between X and Y, this is exactly the statement that £, is a cartesian
natural transformation ¢ : f = g.
The stable ordering on functions is equivalent to the inclusion ordering on their skeletons:

PROPOSITION 2.2.45. Let f, g: X — Y be stable functions between dI-domains. Then f &, g if
and only if sk(f) c sk(g).
Proof. Sufficiency is given by [Zhag1, Lemma 6.3]. To see necessity, let x © y be arbitrary. By

proposition [2.2.43]and the assumption that sk(f) ¢ sk(g):
f)ng(x) = (LHg | 3k e x.(k,q) esk()}) n(L{q | Ik = y.(k.q) € sk(g)})
=L ({q [ Fkex.(k q) esk(f)} 1 {q | Ik y.(k q) e sk(g)})
=({q | 3k = x.(k.q) esk(f)} 1 {q | 3k y.(k,q) e sk(f)})
= Ha | k= x(k q) esk(f)}
= f(x). O
DI-domains and stable functions form a cartesian-closed category Stab. Its product is inherited
from DCPO. The exponential Stab [ X — Y] is the dI-domain of stably ordered stable functions

from X to Y. We refer the reader to [Gung2, § 5.2] for a proof that Stab is cartesian closed. For
convenience, we present several useful facts related to its proof.

PROPOSITION 2.2.46 ([Zhag1, Lemma 6.4; |Gung2, Lemma 5.17]). If F € Stab[D — E] is
bounded, then its supremum is computed point-wise:
| JF=2Ax.| ]| f(x).
feF
THEOREM 2.2.47 ([Gung2| Theorem 5.21]). If D and E are dI-domains, then so is Stab [D — E].

To make a function f : [];,;A; — B strict in a component j € I, we use the continuous
function strict; : [[];c; A; - B] = [[1;; Ai = B]:

1B ifa]' = J-Aj
f((a,')id) otherwise.

2.2.1. Constructions On Partially Ordered Sets. We present various functorial constructions
used to form new posets, dcpos, domains, etc., from old.

The lifting P, of a poset P is the poset obtained by adjoining a new bottom element to P.
Explicitly, its elements are given by the set {L} U {[p] | p € P}. Asusual, 1 € pforall p € P,
and [p] € [¢] if and only if p € g in P. Lifting sends morphisms f : P — Q to strict morphisms
fL: P, — Q suchthat f, ([x]) = [f(x)]. In particular, the diagram

strict; () ((ai);e) = { (1)

PL>PL

fl J fo (2)

Q - qQ
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commutes in Poset for all morphisms f : P - Q.

The (categorical) product P x Q of posets P and Q is given by the cartesian product of the
underlying sets of P and Q, and the ordering is given component-wise. Given pointed posets
P fori e I'and a j € I, we write t; : P; — [];; P; for the map that sends p € P; to the tuple
(L,...,L,p,L,..., 1) whose j-th component is p, and whose other components are all L. The
smash product P ® Q of pointed posets P and Q identifies all elements of the form (1, q) or (p, L)
of P x Q. Explicitly,

PeQ={(pq)ePxQ|p*Lrg=1ju{(L, 1)}

and the ordering is given component-wise. We use the same notation for projections out of smash
products as we do for projections out of products. We warn the reader that smash products do not
in general play the role of categorical products in categories of dcpos. This is because the mediating
morphism required by universality may not exist.

The disjoint union P, w P, of posets P, and P, is the poset whose underlying set is the disjoint
union of P, and P,, and whose ordering is given by (i,x) c (j, y) ifand only if i = jand x C y in
P;. The coalesced sum P, @ P, of pointed posets P, and P, identifies all labelled bottom elements of
the disjoint union P, w P,. Explicitly,

PoP,={1}u{(i,p) |1<i<2ApeP;Ap#*1l}
The ordering is given by x € yif x = 1, orifx = (i,x") and y = (i, y") and x’ = ¥’ in P;.

PROPOSITION 2.2.48. Where defined, the lifting, product, smash product, disjoint union, or
coalesced sum of a poset, dcpo, or (bc-,dI-)domain is again a poset, dcpo, or (bc-,dI-)domain.

Products play the categorical role of product in the various categories. Coalesced sums play
the role of coproducts in the various subcategories of pointed posets with strict morphisms. We
refer the reader to [AJ9s, § 3.2] for further properties of the aforementioned constructions. Given
a functor F into a category of posets closed under lifting, we often abbreviate (=), o Fas F,.

Lemmas2.2.49|and 2.2.50| describe embedding-projection pairs involving the above construc-
tions. They will frequently be used in the denotational semantics of Polarized SILL.

LEMMA 2.2.49.IfI; : A; > Ly and r; : A; - R; are such that (l;,r;) : A; > L; x R; is an
embedding for 1< i < n, then

(H z,,,Hr,) 114, > (HLi) » (HR,-)
is an embedding with associated projection

(ﬁLi) * (ﬁRi) = ﬁLi X R; M dbn ) ﬁAi-

i=1

LEMMA 2.2.50. Let F,G : C — Poset,; be functors, where Poset,, is the category of pointed
posets and strict monotone maps. The natural transformation § : ((=),F) x G = (=), (F x G)
given by

L ifx=1
dc(x,y) = ;
[((z )] ifx=[z].

is a natural family of projection. The associated family of embeddings

ey J(L1) ifx=1
(8¢)" (x) {([a],b) ifx=[(a,b)]

is natural, and each component is stable.
If (¢,y) : H=F x G : C > Poset, is natural, then

((=)1¢,down x y) =60 (=) (¢, y) : (-).H = (-).F xG.
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Proof. Straightforward computation shows that both families are natural, and that they form an
e-p-pair. It is also clear that each component (8¢ )¢ is stable. A calculation shows the equality of
natural transformations. O

2.2.1.1. w-Colimits. 'The category DCPO is closed under colimits of a class of diagrams called
“expanding sequences” [[AJgs, Definition 3.3.6 and Theorem 3.3.7]. We specialize these results to
diagrams of shape w.

Definition 2.2.51. Let w be the category induced by the poset N under the usual ordering. Explicitly,
its objects are natural numbers, and there exists a unique map m — m + k for all m, k > o. <«

Definition 2.2.52. An w-chain is a diagram of shape w. <«

Colimits of expanding sequences in DCPO follow the usual pattern of colimits in categories of
sets with structure (cf. [Rie16} §3.2, § 3.5]. Theoremis a special case of [AJ9s, Theorem 3.3.7].

THEOREM 2.2.53 (Limit-Colimit Coincidence). Let (e, : Dy = Dpy)n<m be an w-chain
in DCPO such that each e, is an embedding, and write p,,, for el D, — D,. Define:

D={(xn)nen € [[ D | VN < m.xy = pum(xm)}s
neN

Pim((Xn)nen) =% : D > Dy, form e N,

em(x):( L[ (p,,koekm)(x)) : Dy, > D formeN.
neN

k>n,m

Then

(1) The maps (e, pm) form e-p-pairs, and | 1!,y e, 0 p, = idp.

(2) The cone (pm : D = D) men is limiting. Given any other cone (g : C = Dy ) men, the
unique mediating morphism of cones is ||",c €n © gn-

(3) The cocone (e, : Dy, — D) e is colimiting. Given any other cocone (f : Dy = E) mens
the unique mediating morphism of cocones is | |, fu © pa-

Let the canonical representatives of colimits of w-chains of embeddings be given by theo-

rem
Though the category Stab of dI-domains and stable maps is not closed under w-colimits of

embeddings, it is closed under w-colimits of “rigid” embeddings:

Definition 2.2.54 ([KPg3, Definition 9.3]). An embedding-projection pair e : D & E : p is rigid if
it additionally satisfies

VxeDVyeEyce(x)oy=(eop)(y). «

Intuitively, an embedding is rigid if its image is downward-closed. Rigid embeddings are exactly
the embeddings given when homsets are ordered stably instead of point-wise:

PROPOSITION 2.2.55 ([CGW88, Lemma 2;|Zhag2, p. 168]). Consider an embedding-projection
pair e : D 5 E : p between algebraic domains D and E, with e and p continuous. Then (e, p) is
rigid if and only if e o p E; id.

PROPOSITION 2.2.56 ([Berg4l p. 34; CGW88, p. 350]). The category Stab™ of dI-domains and
rigid embeddings is closed under w-colimits.

Corollary[2.2.64} below, shows that the w-colimits of proposition [2.2.56| coincide with those
given by theorem
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2.2.2. Order-Enriched Category Theory. We refer the reader to [Gung2, Chapter 10;/SP82}
Fiog4, § 2.3] for additional background on order-enriched categories and O-categories.

Definition 2.2.57. An O-category [SP82} Definition 5] (or DCPO-enriched category) is a category
K where every hom-set K(C, D) is a dcpo, and where composition of morphisms is continuous
with respect to the partial ordering on morphisms. <

Example 2.2.58. The category DCPO is an O-category. Functor categories Cat[C — D] are
O-categories whenever D is an O-category. <

Example 2.2.59. Full subcategories of O-category are again O-categories. <

Remark 2.2.60. Any given subcategory of DCPO may induce distinct O-categories. For example,
the category Stab of dI-domains and stable functions induces the O-category whose homsets are
stably ordered, as well as the O-category whose homsets are pointwise ordered. This subtlety
has critical implications when solving domain equations. Indeed, the category of dI-domains
whose morphisms are embeddings under the stable ordering is closed under w-colimits, while the
category of dI-domains whose morphisms are embeddings under the pointwise ordering is not.

Definition 2.2.61. A functor F : D — E between O-categories is locally continuous if the maps
f+~ F(f):D(D,,D,) = E(F(D,), F(D,)) are continuous for all objects D,, D, of D. <«

Small O-categories form a 2-cartesian closed category O, where horizontal morphisms are
locally continuous functors and vertical morphisms are natural transformations.

Example 2.2.62. The functors defining lifting, products, smash products, disjoint unions, and
coalesced sums are all locally continuous relative to the pointwise and stable ordering. <

When K is an O-category, we write K° for the subcategory of K whose morphisms are em-
beddings. The category K° is not in general an O-category under the induced ordering [SP82}
p. 768].

A cocone k : ] = Ain K is an O-colimit [SP82} Definition 7] if (x, Kﬁ)n is an ascending chain
inK(A,A)and ',y x, okl =id4. Kis O-cocomplete if every w-chain in K® has an O-colimit in K.
Our interest in O-colimits is due to proposition [2.2.63} which appears as [SP82}, Propositions A
and D] and as part of the proof of [SP82, Proposition A]. It characterizes the colimits that will be
used to construct the denotations of recursive session types. Parts of proposition [2.2.63 can also be
found in the proof of [Gung2, Theorem 10.4] or specialized to DCPO as [A]Jgs, Theorem 3.3.7].
This result gives us an explicit characterization of colimits in O-categories. We invite the reader to

compare it to theorem 2.2.53]

PROPOSITION 2.2.63 ([SP82} Propositions A and D]). Let K be an O-category, ® an w-chain in
K¢ and o : ® = A a cocone in K.
(1) If B: ® = B is a cocone in K¢, then (a, o Bh) nen is an ascending chain in K(B, A) and
the morphism 0 = ||",cn &, 0 B is mediating from B to a.
(2) If B : ® = Bis an O-colimit and « lies in K*, then 0 is an embedding.
(3) If a is an O-colimit, then a is colimiting in both K and K°.
(4) If a is colimiting in K, then « lies in K® and is an O-colimit.

COROLLARY 2.2.64. Let Stab be the O-category of dI-domains and stable maps, where homsets are
stably ordered. Then Stab® is the category of dI-domains and rigid embeddings. Let ® be an w-chain
in Stab®, and let x : ® = A be colimiting in Stab. Then x : ® = A is also colimiting in DCPO.

Proof. The first part is exactly proposition If « : ® = Ais colimiting in Stab, then it is
colimiting in Stab®. It follows that x is an O-colimit relative to the stable ordering. The stable
ordering implies the pointwise ordering, and directed suprema in Stab [A — A] are computed
point-wise by proposition It follows that | |',ey %, 0 k5 = id4 in DCPO[A — A], so k is an
O-colimit in DCPO, where homsets are ordered pointwise. We conclude that « is colimiting in
DCPO. O
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2.3. Properties of Parametrized Fixed-Point and Trace Operators

We saw in section [2.2]that the category DCPO is equipped with a fixed-point operator. It and
many other categories of interest in semantics are also equipped with a parametrized fixed-point
operator. Particularly nice parametrized fixed-point operators are called Conway operators [BE96].

Definition 2.3.1 ([SPool Definitions 2.2 and 2.4]). A parametrized fixed-point operator on a cartesian
category M is a family of morphisms ()" : M[X x A > A] = M[X — A] satisfying:
(1) Naturality: forany g: X — Yand f: Y x A — A,
flog=(fo(gxida))': X - A.
(2) The parametrized fixed-point property: forany f : X x A — A,
folidx, ffY=f1:X - A.
It is a Conway operator if it additionally satisfies:

(3) Parameterized dinaturality: forany f: X x B~ Aand g: X x A - B,
foidx, (go (mx, /)') = (fo{m.g)' : X — A
(4) The diagonal property: forany f: X x Ax A — A,
(folidyxA)) = (f)': X > 4,
where A : A - A x A is the diagonal map. <
PROPOSITION 2.3.2. The operator (-)" : DCPO, [X x A - A] = DCPO, [X — A] given by
fi(x) =lfp(Aa € A.f(x,a))
is a Conway operator.
Using proposition we can characterize this Conway operator in two ways:

COROLLARY 2.3.3. Let X be a dcpo, A a pointed dcpo, and f : X x A — A a continuous function.
The parametrized fixed-point f' is equivalently constructed:

(1) using the Kleene fixed-point theorem, with f'(x) = ",ex(Aa € A.f(x,a))"(La);
(2) using a variant of the Knaster-Tarski theorem, with f(x) =[{a € A| f(x,a) € a}.

Traces are a third kind of fixed-point operator. Traces were first discovered by Cézanescu and
Stefanescu [|[CS90} § 4.3] and then independently rediscovered by Joyal, Street, and Verity [JSV96]
in the setting of balanced monoidal categories.

Definition 2.3.4 ([BHo3, Definition 2.4]). Let (M, ®,1, A, p, «, 0) be a symmetric monoidal cate-
gory. A trace on M is a family of functions

Try 5 :M(A® U,B® U) > M(A, B)

satisfying the following conditions:
(1) Naturality in A (left tightening): if f: A’ ® U > B® U and g: A — A’, then

T, (fo (g@idy)) = Trl 5(f) o g: A~ B.

(2) Naturality in B (right tightening): if f : A® U - B’ ® U and g : B’ > B, then
T, (g®@idu) o f) = go Tl g (f) : A > B.

(3) Dinaturality (sliding): if f: A® U - B® Vand g: V - U, then

T, ((ids ®.g) o f) = Trl s (f o (ids ©.8)) : A > B.
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(4) Action (vanishing): if f : A - B, then
Ty (™ o fop) = f: A~ B,
andif f: A®(U®V) > B®(U® V), then
Trg’%v(f) = TTX,B (TrX®U,B®U (a7"o fo 0‘)) .
(5) Superposingf|if f: A® U » B® U, then
Tty con (a7 0 (idc ® ) 0 @) = ide ©TY 5 (f) : Co A~ COB,
(6) Yanking: forall U,
Try y (ou,w) =idy: U - U.

In this case, we call M a symmetric traced categoryE] <

Example 2.3.5. The following defines a trace on the category DCPO, [AHSo2} § 5.6]:

TrX,B(f) =npXofo (idA, (né’}xx o f)T> . <

For conciseness and clarity, we will often elide the subscripts on the trace operator when they
are clear from context.

We can reason about traces using string diagrams, where the trace operator is captured by
looping the output of a function back into the corresponding input. We adopt the graphical notation
of [Sel11;|Malio} § 2.8]. Figure[2.5| presents the trace axioms in this graphical notation.

THEOREM 2.3.6 ([Malio, Theorem 2.8.1]). A well-formed equation between morphism terms in
the language of traced symmetric monoidal categories follows from the axioms of traced symmetric
monoidal categories if and only if it holds, up to isomorphism of diagrams, in the graphical language.

Hasegawa [Hasgg, Theorem 7.1] and Hyland [BHo3, p. 281] independently discovered that a
cartesian category has a trace if and only if it has a Conway operator. The following is a special case
of the proof of the Hasegawa-Hyland theorem.

PROPOSITION 2.3.7. Forall f : Ax X — B x X, we have f o (id, (n¥* o £)T) = (f o n§5*4)7.
Consequently, Tr)y 5 (f) = n5* o (f o nB5*4)" when Tr is defined as in example

COROLLARY 2.3.8. Let A be a dcpo, let B and X be pointed dcpos, and let f : Ax X — B x X be
a continuous function. Then the trace Tr)y 5 (f) is equivalently constructed:

(1) using the Kleene fixed-point theorem, with

T (f)(a) = ﬂgxx( L' (A (b, %) .f (a,x))" (lB>J—X));
neN
(2) using a variant of the Knaster-Tarski theorem, with

T (f)(a) = my ™ ([1{(b,x) € Bx X | f(a,x) € (b,x)}).

The following corollary gives a collection of identities that will be useful for reasoning about
traces.

COROLLARY 2.3.9. Let A be a dcpo, let B and X be pointed dcpos, and let f : Ax X — B x X be
a continuous function. Let a € A be arbitrary, and set

P={(b,x)eBxX| f(a,x)c(b,x)},
(B0 =T1P.
>This axiom is sometimes replaced by the “strength” axiom [Seli1j|Malio|: if f : A® X > B® X and g: C > D, then

Tré® Ao (@ ®(g®f)oa)=¢g® Trﬁ, 5 (f). Both collections of axioms give equivalent definitions.
This categorical nomenclature is due to Selinger [Sel11].
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FIGURE 2.5. String diagram notation for traced categories

Then (B, x) € P, and the following identities hold:

(fomik™) (@) = (B2, T (f)(a) = B,

fla,x) = (B x) min{b | 3x € X.f(a,x) € (b,x)} = B.
Proof. We begin by showing that (f o 45X )Jr (a) =(B,x)- By corollary we have

(fonfk™) ()
=[1{(b,x) e Bx X | (f o mix¥*) (b,a,x) & (b,x)}
(b € Bx X | fa,x) € (b,x)}
= |_|p
=B 0-
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By the parametrized fixed-point property (definition [2.3.1),
fla,x) = (foﬂﬁif}xx)(a B x)
XDX H XDX T
= ((Fomt®) o (ida, (f o E)')) (a)

=(fo ﬂﬁif}“) (a)
= (B, x)-

So (B, x) € P. By corollary Tr*(f)(a) = np(MP) = B. Finally, the infimimum [P is the
least element of P because [P € P. Infima of products are computed component-wise, so:

min{b | Ix € X.f(a,x) = (b,x)}
= g (min{(b, x) | f(a,x) & (b,x)})

=np ([]P)
= B. O

2.4. Generalized Abstract Binding Trees

Processes in Polarized SILL feature two kinds of place-holders. The first kind is variables,
which stand for unknown values, and whose meaning is given by substitution. The second kind is
symbols or names, which do not stand for anything, and whose meaning is given by their structural
role as identifiers. Both variables and symbols can appear in free and bound positions in processes.
To make the important distinction between variables and symbols precise, we generalize abstract
binding trees [Har16, § 1.2] to allow for bound symbols. We also generalize abstract binding trees
to allow for infinite trees. Abstract binding trees find their roots in the work of Church, and their
theory was developed by Harper. Our exposition closely follows Harper’s.

2.4.1. Abstract Binding Trees. Abstract binding trees, or abts, generalize abstract syntax
trees to account for binding and scoping. Fix a finite set S of sorts. A sort s € S is an identifier for a
sort, type, kind, or variety of tree. Abstract binding trees are constructed from operators, which
combine zero or more arguments of given sorts to form new trees of a given sort. Importantly,
each argument can use zero or more bound variables.

Valencies specify the number of bound variables in each argument. A valency is a syntactic
expressionss,, ..., s,.s (abbreviated s.s) with s, ...,s,,s € Sand n > o. It specifies that an argument
has sort s, and that it has #n bound variables representing trees of sort s;. An arity is a syntactic
expression (v, ..., v,)s that specifies that an operator of sort s takes n > o arguments of valency
Vis- .., Vy. Operators are elements of an arity-indexed family of sets O = {O, }.

To specify the sorts of variables that appear in abstract binding trees, we assume a sort-indexed
family of variables X = { X }cs. We say that x is a variable of sort s if x € X;. We say that x is fresh
for X if x ¢ X, for all s. Given a family & of variables, a variable x fresh for X, and a sort s, we
write X', x for the family of variables obtained by extending X with x; context will disambiguate
the sort of x in X, x. More generally, given a family X of fresh variables for X', we write X', X’ for
the family obtained by extending X with X7

Abstract binding trees form sort-indexed families B[X'] = {B[X]; }ses over sort-indexed
families of variables X'. Fresh renamings account for the free renaming of bound variables in abts.
Given variables )V and fresh variables )’ (relative to X), a fresh renaming is a bijection p: Y < )'.
Given an abt a € B[X, V], replacing each y € Y in a by its counterpart in )’ gives a new abt
[p]a e B[X, V']

Definition 2.4.1 ([Har16} p. 8]). The family of abstract binding trees is the least sort-indexed family
B[X] = {B[X];}ses of sets closed under the following conditions:
(1) ifx € X, then x € B[X];
(2) foreach operator o of arity (§,.s,, . . .,5,.5,)s, if foreach1 < i < nand each fresh renaming
piiX; < X, wehave [p;]a; € B[X,x!], then o(X,.a,,...,%,.a,) € B[X]s. «
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Remark 2.4.2. The family X of variables in the above definition is not fixed, but varies according to
the variables introduced by operators’ abstraction operations.
We always identify abstract binding trees up to a-equivalence:

Definition 2.4.3 ([Har16} p. 9]). a-Equivalence on abstract binding trees is the strongest congruence
=, such that
(1) x =, x for all variables x;
(2) o(¥y.ay,...,Xy.a,) =4 0(X].al,...,X,.a;) ifforevery1< i <n, [p;la; =4 [p}i]a’ forall
fresh renamings p;: X; < Z; and p}: X} < Z;. «
Example 2.4.4. The family of abstract binding trees for the unityped] A-calculus is generated by
the following data:
o the family S = {¢} of sorts;
o the sort-indexed family O where all sets are empty except for
O(t.t)t = {A}’
Oy = {app}.
The set of abstract binding trees over X; = {x, y} is:

B[X]; = {x, y,app(x, y),app(y, x), A(x.x), A(x.y), app(x, A(x.x)),... }.
The result of substituting app(x, y) for x in app(x, A(x.x)) is
[app(x, y)/x] (app(x, A(x.x))) = app(app(x; y), A(x.x)). <

As described above, the meaning of variables is given by capture-avoiding substitution, where
a variable x of sort s stands for an unknown abstract binding tree of sort s. Capture-avoiding
substitution is formally defined as follows:

Definition 2.4.5. A morphism of abts g: B[ X'] ~ B[] is a choice o(x) € B[)] for each variable
x € X such that if x € X, then o(x) € B[X]; is of the same sort. <«

Definition 2.4.6. Given a morphism o: B[X'] ~ B[Y] and an abt a € B[X], the abt [¢]a € B[]
is given by simultaneous capture-avoiding substitution of g (x) for x in a, a procedure recursively
defined on the structure of a by:

(1) [o]x =0(x);

(2) [o](o(%:-as5-..,%y.a,)) =0 (%,.[0]a,, ..., %,.[0]a,) where we assume without loss of
generality that ¥ nx; =g forall1<i < n. <
As a special case, we write [b,,...,b,/x,,. .., x,] for the morphism that substitutes b; for x;

and fixes all other variables.

2.4.2. General Binding Trees. Just as abts extended abstract syntax trees to account for
bound variables, general binding trees, or gbts, extend abstract binding trees to account for bound
symbols. The development of gbts closely the development of abts, except that we also take symbols
into account. A sort s € S is an identifier for a sort, type, kind, or variety of tree. A valency is a

syntactic eXpression s, ..., Su,.s,,...,s,.s, where s;, s%, s € S are sorts. The sorts s,, . . ., s, describe
the sorts of bound symbols; the sorts s/, .. ., s/, describe the sorts of bound variables. Arities are
again syntactic expressions (v,, ..., v,)s, where the v; are valencies. Operators are again given by

arity-indexed families of sets.

In addition to the sort-indexed family of variables X, we assume a sort-indexed family U =
{Us} ses of disjoint sets of symbols. The terminology and notation for variables from above carries
over to symbols. We assume that the sets of variables and of symbols are disjoint from each other.

We extend fresh renamings to account for the renaming of bound symbols. Given symbols V
and variables ), and fresh symbols V' and fresh variables )’ (relative to U and X, respectively),

7The “untyped” A-calculus is really “unityped” or “monotyped”.
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a fresh renaming is a bijection p:V;) < V';)’ that sends symbols to symbols and variables
to variables. Replacing symbols by symbols and variables by variables according to p in a tree
aeB[U,V; X, Y], gives a new tree [pla € B{U,V'; X, V']

Definition 2.4.7. The family of general binding trees is the largest sort-indexed family B[U; X'] =
{B[U; X]s}ses of sets closed under the following conditions:
(1) if x € X, then x € B[U; X]s;
(2) ifu €U, then u € B[U; X ]
(3) if 0(1y.%,.0y, .. ., Uy Xy.0,) € B[U; X]s and p;: i3 %; < )5 %] is a fresh renaming for
each1< i< n,then [p;la; € B{U,ul; X, %] «

Remark 2.4.8. The families U of symbols and & of variables in the above definition are not fixed,
but vary according to the symbols and variables introduced by operators’ abstraction operations.
Remark 2.4.9. The coinductive (greatest fixed point) definition of general binding tree diverges
from the inductive (least fixed point) definition of abstract binding trees to allow for infinite trees.
This change lets us form judgments about infinite objects below. We can recover an inductive
definition by using least families and by replacing condition [3|of definition [2.4.7]with

(3") for each operator o of arity (8,.57.51, ..., 5,.5,.5,)s, if [pi]a; € B[U, ii%; X, %] forall 1 <

i < n and fresh renamings p;: ii;; %; < i}; X!, then o(4,.%,.a,, ..., 6,.Xy.a,) € B{U; X];.

Though we do not pursue it here, it would be interesting to see how to combine sorts whose trees
can be inductively or coinductively defined.

Every abstract binding tree can be seen as a general binding tree with no symbols. We always
identify general binding trees up to a-equivalence:

Definition 2.4.10. a-Equivalence on general binding trees is the strongest congruence =, such that

(1) x =, x for all variables x;
(2) u =4 u for all symbols u;
(3) o(#y.%,-Gy5 ..., lip.Xy.ay) =q 0(d.X.al, ..., ul,.%].a) if forevery1< i < n, [p;]la; =,
[p}]al for all fresh renamings p;:ii;, X; < w;,Z; and pl: i}, X} & w;, Z;. «
Definition 2.4.11. A morphism of gbts o: B[U; X | ~ B[V; V] is:
(1) achoice o(x) € B[V; Y] for each variable x € X such thatif x € X, then o (x) € B[V; X];,
is of the same sort; and
(2) achoice o(u) €V for each symbol u € U such that if u € U, then o(u) € V is of the
same sort. <

Definition 2.4.12. Given a morphism o: B[U; X] ~ B[V;)] and a gbt a € B[U; X], the gbt
[o]a € B[V; Y] is given by simultaneous capture-avoiding substitution of o (x) for x in a, a procedure
recursively defined on the structure of a by:
(1) [0]x = o(x) for variables x;
(2) [o]u = a(u) for symbols u;
(3) [o](o(thy %015 - s tip.Xy.ay)) = o(i,.%.[0]ay,...,U,.%,.[0]a,) where we assume
without loss of generality that ¥ N X; = gandU nu; =@ forall1 < i < . <

2.5. Inductively and Coinductively Defined Judgments

We introduce substructural parametric generic judgments on general binding trees. This
work closely follows and synthesizes Harper [Har16, chap. 3] and Sangiorgi [San12, chap. 2] with
two important differences. First, we take a substructural approach to derivation instead of a
structural approach. This allows for clearer explanations of various constructions that appear later
in this dissertation. Moreover, we lose nothing by taking a substructural approach: the structural
approach is a special case. Second, instead of forming judgments about abstract binding trees,
we form judgments about general binding trees. Generic judgments are families of hypothetical
judgments that are closed under substitutions, while parametric judgments are families closed
under renamings of symbols.
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2.5.1. Judgments, Generally. A judgment is an object of knowledge [Marg6]], and we say that
ajudgment holds if we deem it to be true. We range over judgments using the metavariable J. In this
thesis, we will only concern ourselves with knowledge about general binding trees. For example, if
we consider general binding trees for A-terms given by example[2.4.4} then judgments we might
want to consider include M : 7 (term M has type 1), M val (term M is a value), or M — M’ (term
M steps to term M"). We call these kinds of judgments—judgments that are not composed of other
judgments—basic judgments, and we let K and L range over them in this section. Formally:

Definition 2.5.1. Fix some family of gbts B[Uf; X']. Basic judgments over B[U; X' | are gbts of sort b
in a family of gbts obtained by extending B[Uf; X'| with a new sort b such that whenever o is an
operator of arity (v,,...,v,)b, the valencies v; do not mention b and have no bound variables or
symbols. <

Example 2.5.2. We encode the basic judgments M val and M — M’ by modifying S and O
of example |2.4.4] as follows. We first extend the family S with a new sort b of basic judgments:
S = {t,b}. Next, we extend the sort-indexed family O to have the following unary and binary
judgment formers:

O(r)b = {val},
O(t,t)b = {step},
where we treat M val and M — M’ as concrete syntax for the gdts val(M) and step(M, M"). The

basic judgments about the terms of example 2.4.4)are general binding trees of sort b, i.e., elements
of B[U; X],. <

2.5.2. Inductive and Coinductive Definitions. In our setting, we are interested in judgments
whose truth is inductively or coinductively defined by a collection of inference rules. Inference
rules specify sufficient conditions for a judgment to hold, and they are often schematically depicted

as follows:
Lo Tk
J
The (ordered) judgments J,, ..., Ji are called the premisses of the rule, while ] is its conclusion.
Intuitively, the premisses of a rule are sufficient conditions for its conclusion: if J,, ..., Jx hold,

then we can infer J also holds. A rule with no premisses is called an axiom. For ease of reference,
we often give rules a name, which we put to the right of the rule in brackets, e.g.,

Lo Tk
J

Formally, an inference rule over some set of judgments 7 is the set of all ground rules satisfying
its schemata. A ground rule is a pair (P, C) where P C J is a set of basic judgments that are the
premisses of the ground rule, and C € J is its conclusion. Given a collection R of inference rules,
we pun and also write R for the union of its inference rules viewed as sets of ground rules.

We say that a set T of judgments is closed under a set of rules R if for all (P,C) e R,if PC T,
then C € T. We say that a set of judgments is inductively defined by a set of rules R if it is the
least collection of judgments closed under R. To make this precise, we observe that each set R
of ground rules defines a monotone rule functional @ on the complete lattice £(7) of sets of
judgments:

(ExAMPLERULE)

Or(T)={C|3(P,C)eR.PCT}.
We say that a family of judgments is inductively defined by the set R of rules if it is the least
fixed point lfp(®x ) of the functional R, and that it is coinductively defined if it is the greatest
fixed point gfp(®r ). These least and greatest fixed points exist by the Knaster-Tarski theorem
(theorem . The functional @ is w-continuous by [San12, Exercise 2.9.2], so the least fixed
point can be constructed by theorem.2.9] If the set {P | (P, C) € R} is finite for all C, then @ is
w-cocontinuous by [Sani2| Theorem 2.9.4] and the greatest fixed point can also be constructed by

theorem
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Example 2.5.3. Consider the following reduction rule for the A-calculus:
M->M

MN - M'N
Formally, this reduction rule stands for the following inference rule schemata, where the terms M,
M’, and N are implicitly universally quantified meta-variables:

step(M, M")

step(app(M, N),app(M’, N))
The corresponding inference rule is:
{({step(M, M)}, step(app(M, N),app(M’, N))) | M, M, N € B[t; X1}

Alone, this inference rule inductively defines an empty set of judgments (consider the action of the
induced functional on the bottom element @ of #(.7) and apply theorem2.2.9). <

2.5.3. Derivations. A derivation of ajudgment J using a collection of rules R is a well-founded
tree (usually assumed to be finite) constructed by composing rules from R, with J at the bottom
and axioms at its leaves. For example, if D, .. ., Dy are derivations of J,, . .., Jx, then the following
tree is a derivation of J using (EXxAMPLERULE):

D, - Dy
J

We say that a judgment is derivable if it has a derivation. We write »%X J to mean that J is derivable
using R, and that it is a gbt using symbols ¢/ and variables X. By [Sani2} Theorem 2.11.2], a
collection of judgments is inductively defined by R if and only if each judgment has a finite
derivation built from rules in R.

2.5.3.1. Hypothetical Derivations. In practice, we would like to study derivability while assum-
ing certain hypotheses, instead of requiring that all leaves in a derivation be axioms. A hypothetical
derivation is a derivation where leaves are also allowed to be judgments. Assuming some ordered
collection of judgments ., ..., Ji, we write J;, ..., Jx >Z’7§X J if there exists a derivation of J where all
leaves are axioms, except for ], . .., Jx, which appear as leaves (from left-to-right) in the derivation.
We often abbreviate collections of hypotheses, called contexts, using I or other capital Greek letters.
The judgment T %;X ] is called hypothetical derivability.

Hypothetical derivability satisfies the following structural properties by definition:

(1) reflexivity: each judgment is a consequence of itself: J »%X J for each judgment J;
(2) transitivity: we can compose derivations: if T »%X J'and A, ], > »%X 7
then A, T, X2 »%X J.
Example 2.5.4. Consider judgments a, b, ¢, d governed by the rules
a_c d ¢ c b
b a d c
Then the following hypothetical derivation justifies ¢, b, ¢ » b:
c b
d ¢
a c

b
We remark that it does not justify c,c, b » b, or ¢, b » b, or anything else. <

This treatment of derivation is extremely restrictive, and often we would like to let hypotheses
go unused or let them be used repeatedly. Conditions on the usage of hypotheses are called structural
properties and they include:

(1) exchange: hypotheses can be used in any order: if T, J;, J,, I’ »17/%{;2( 7,
thenT, J,, J,, I %% J;
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(2) weakening: hypotheses can go unused: if I, I" »{5% J, then T, J', " »{6% J;
(3) contraction: hypotheses can be used arbitrarily often: if T, J', J', T’ »%X 7,
then T, J/, " »4% J.
We say that hypothetical derivability is structural if it satisfies exchange, weakening, and contraction,
and that it is substructural otherwise. We say that it is linear if it allows exchange, but not weakening
or contraction. Linearity ensures that each hypotheses is used exactly once.
2.5.3.2. Generic Derivations. The meaning of variables is given by substitution, and we would

like derivations to respect this. In particular, if we designate certain variables ) as generic, then a
generic derivation is a derivation that is invariant under renaming or substitution for these variables.
Explicitly, generic derivability J | I' »%™ J is defined to hold if and only if I' »%*Y ], and the
rules R are interpreted such that generic derivability enjoys the following structural properties:

(1) proliferation: closure under the expansion of the universe: if ) | T »%{;X J,and ) is fresh
for X,Y,then Y, Y’ | I »5* J;

(2) renaming: closure under renaming: if Y | T %;X J,and p: Y <> )’ is a fresh renaming,
then V" | [p]T »%&% [p]J;

(3) substitution: closure under substitution: if ) | T »%X Jand o:U; X, Y ~ U;) isa
morphism fixingf and X, then Y’ | T »%X [o]].

We remark that renaming is a special case of substitution.

2.5.3.3. Parametric Derivations. Just as generic derivations are stable under renaming or
substitution of generic variables, parametric derivations are stable under renaming of symbols
deemed parametric. Explicitly, parametric derivability V || T »%X ] is defined to hold if and only if
r »%V;X J, and the rules R are interpreted such that parametric derivability enjoys the following
properties:

(1) proliferation: closure under the expansion of the universe: if i/ || T »%X J,and V" is fresh
fortd,V,then V, V' || T »%X I;

(2) renaming: closure under renaming: if V || T >Z7’QX J,and p:V < V' is a fresh renaming,
then V' || [p]T »%% [p]].

Remark 2.5.5. Judgments can be both generic and parametric. These parametric generic judgments
are notated by “stacking” the syntax for generic and parametric judgments: V || )V | J. We
will revisit these parametric generic judgments in section 2.5.7lwhen we discuss type systems for
programs that use both variables and symbols.

2.5.4. Hypothetical Judgments. Hypothetical judgments internalize the notion of hypothet-
ical derivability, and they let us inductively define judgments that are subject to hypotheses. A
hypothetical judgment K, ..., K; ~ L means that we can derive the basic judgment L assuming
the ordered collection of basic judgments K, . .., K. It is the formal analog of the hypothetical
derivability judgment K, ..., K »%{;X L. As with hypothetical derivability, structural properties
govern the use of hypotheses in contexts in hypothetical judgments:

(1) exchange: hypotheses can be used in any order: if I, K, K',I" + L, then I, K/, K, T’ + L;
(2) weakening: hypotheses can go unused: if I, " + L, then I, K, I + L;
(3) contraction: hypotheses can be used arbitrarily often: if T, K, K,I'" + L, then T, K, ' + L.

We say that a context in a hypothetical judgment is structural if it satisfies exchange, weakening,
and contraction, and that it is substructural otherwise. We say that it is linear if it allows exchange,
but not weakening or contraction.

Sometimes, we would like to have multiple contexts of hypotheses, each governed by its
own structural properties. For example, in part [2| we will encounter a hypothetical judgment
V¥ ; A+ P:c: Afor typing processes, where the context ¥ of “functional variables” is structural
and the context A of “channel names” is linear. The reader is referred to [Walos| for more details
on structural properties and on substructural type systems.
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As with basic judgments, we often want to inductively define a collection of hypothetical
judgments. We do so by a collection R of hypothetical rules schematically depicted as
[T, K, - [T+ K
I'-L

where T contains global hypotheses and the T'; contain local hypotheses. Hypothetical rules refine
inference rules to ensure that the hypothetical judgments they define faithfully capture the notion
of derivation under hypotheses. In particular, hypothetical rules are uniform, i.e., their contexts
of global hypotheses I' are implicitly universally quantified. We also require that collections of
inductively defined hypothetical judgments satisty the following structural properties:

(1) reflexivity: each judgment is a consequence of itself: K - K for each judgment K;
(2) transitivity: we can compose derivations: if ' - K and A,K, X + L, then A, T, X+ L.

These two structural properties and the three properties governing the use of contexts respectively
correspond to the following uniform inference rules:
'K AKZ+L ILK,K,T'+L IL,T'+L ILK,KI'+-L
K+K AT, Z+L ILK,K',T'+L ILK,T'+L ILK,T'+L

We say that a collection of hypothetical judgments I' - L is inductively defined by R if it is the least
collection of hypothetical judgments closed under R, the rules for the two structural properties,
and the rules for the desired structural properties governing I'. The above definitions extends
straightforwardly to hypothetical judgments I'; . . .; T, + L with multiple contexts.

2.5.5. Generic Judgments. Just as hypothetical judgments internalize hypothetical derivabil-
ity, generic judgments internalize generic derivability. A formal generic judgment ) | ] specifies
a family of judgments closed under substitution for the variables ). Generic judgments ) | J
are identified up-to-renaming of the variables )/, so that we identify ' | Jand )’ | [p]] for any
renaming p: ) <> )’ For a generic judgment ) | J to be well formed, we assume that the variables
in Y are pairwise distinct. The judgment J can refer both to variables in )V and others.

Generic judgments can be inductively defined using generic rules. Generic rules are of the
form:

YW YVl Tk
Y]
The variables ) are the global variables, while the )); are the local variables. A collection of generic
judgments is inductively defined by a collection R of rules if it is the least collection of judgments
closed under R and the following structural rules capturing proliferation and substitution:

YIT+]

VY ITH] (3)
YIi]

YV'ile]] (4)

The substitution rule (4) encodes both the renaming and substitution structural properties. It is
universally quantified over all gbt morphisms o fixing all symbols and fixing all variables save those

in ).

2.5.6. Parametric Judgments. We repeat the same development for parametric judgments,
which internalize parametric derivations. A formal parametric judgment V' || J specifies a family
of judgments parametrized by the variables V. Parametric judgments V' || J are identified up-to-
renaming of the symbols V, so that we identify V' || Jand V' || [p]] for any renaming p: V < V"
For a parametric judgment V || J to be well formed, we assume that the symbols in V are pairwise
distinct. The judgment J can refer both to symbols in V and others. Unlike generic judgments,
which are closed under substitution, parametric judgments are only closed under renamings of
symbols.
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Parametric judgments can be inductively defined using parametric rules. Parametric rules are
of the form:

VVI ” ]1 VVk ” ]k
VI
The symbols V are called global symbols, while the V; are called local symbols. A collection of
parametric judgments is inductively defined by a collection R of rules if it is the least collection of
judgments closed under R and the following structural rules capturing proliferation and renaming:

V|[T+]
VYV IITH] (5)
VT
Vi [pl) (6)

The renaming rule (6) is universally quantified over all renamings p:V < V',

Remark 2.5.6. The interactions between coinductively defined derivations, and hypothetical, generic,
or parametric judgments are far from clear. Though we will make extensive use of coinductively
defined judgments in chapter|[6} at no point will we use coinductively defined hypothetical, generic,
or parametric judgments.

2.5.7. Encoding Type Systems. Typing judgments e : 7 specify that an expression e has type
7. Type systems are often inductively defined using hypothetical judgments I - e : 7, where the

context I'is a list of hypotheses x, : 7,,...,x, : T, for variables x; and types ;. For a type system
to be well-behaved, these hypothetical judgments must in fact be interpreted as generic hypothetical
judgments x,,...,x, | T = e:7inB[x,,...,x,]. This ensures both that the particular choice of

variable names does not matter, and that type systems are closed under substitution.
Later in part[2] we will see type systems that are encoded using parametric generic hypothetical

judgments co, ...y Cp || Xise s X | X0 Tr e 3 Xm T 3 €61 Ay e Gy i Ay - Pt gy 1 Ao There,
the symbols c,, ..., c, correspond to channel names, and we interpret the judgment as a para-
metric judgment to ensure that these channel names can be freely varied. The variabes x;, ..., X,

correspond to usual variables in a functional language, and we interpret the judgment as generic
in these to ensure that the judgments respect substitution. Again, we assume that the only free
symbols and variables appearing in these parametric typing judgments are those in which the
judgment is parametric or generic, respectively.

In practice, we elide the sequences of parametric symbols and generic variables in typing
judgments. Despite this elision, typing judgments should always be interpreted as generic in their
free variables and parametric in their free symbols.

Type systems of this form enjoy a typed notion of substitution, called a “context morphism”,
which refines morphisms of abts or gbts:

Definition 2.5.7. Fix typing contexts T = y, : 7,,..., ¥,y : Tpand IV = x, : 7/,...,x, : 7. A
context morphism ¢ : I ~ I' is a morphism of (g)abts o: B[{U; xy, ..., %, | ~ B[Us 5. ., Ym] such
that yp,...,¥m | THo(x;):7;forall1<i<n.

A context morphism ¢ : I' ~ I’ acts on typing judgments over I by substitution: if

X|T"+e:7,theny | T+ [o]e: . <

2.5.8. Modes of Use. Judgments can be thought of as n-ary relations over gbts. It is often
useful to think as some components as inputs and others as outputs of the judgment. We indicate
these modes of use using colours, where we designate inputs in blue and outputs in red.

Example 2.5.8. Bidirectional type-checking [PToo; DK19] is given by two judgments: I' - e <= 7
means that e checks agains the type 7 under the context I', while I' - e = 7 means that e synthesizes
the type 7 under I'. These two judgments are inductively defined, and they describe mutually
recursive functions whose modes correspond to the inputs and outputs of the functions. <



CHAPTER 3

Fairness for Multiset Rewriting Systems

Session-typed languages are often defined using multiset rewriting systems (MRS). In chapter|6}
we give an observed communications semantics for Polarized SILL. To ensure that it is well-defined
in the presence of non-termination, we require that process executions be fair. Intuitively, fairness
ensures that if a process can make progress, then it eventually does so. To this end, we introduce
and study fairness for multiset rewriting systems.

We begin by reviewing multiset rewriting systems and their relation to linear logic in section[3.1]
In section 3.2 we introduce three different varieties of fairness, each of which subdivides along the
axis of weak and strong fairness. We study properties of fair traces in section 3.3} In particular, we
construct a scheduler, we give sufficient conditions for traces to be fair, and we study the effects
of permutations on traces. We also introduce a novel notion of trace equivalence, called union
equivalence, that will be essential to the development of the observed communication semantics of

chapter|d]
This chapter builds on work presented at EXPRESS/SOS 2020 [Kav2oa].

3.1. Multiset Rewriting Systems

In this section, we review (first-order) multiset rewriting systems. For expository reasons,
we start with the simpler formalism MSR, of Cervesato and Scedrov [CSog] in section We
extend it in section3.1.2]to handle the persistency features of the multiset rewriting system MSR of
[Cer+os]. These first sections are expository, and they serve solely to give a uniform presentation
to pre-existing work. Our contribution comes in section[3.1.4] where we extend parallel multiset
rewriting [[Cero1, §§ 5.3-5.4] to support persistency.

Definition 3.1.1. A multiset M is a pair (S, m) where S is a set (the underlying set) and m : S > N
is a function. It is finite if Y° s m(s) is finite. We say s is an element of M, s € M, if m(s) > o. The
support of M is the set supp(M) = {s € S|se M}. «

Remark 3.1.2. A multiset with a finite underlying set is always finite. The converse is false: the
multiset (N, Ax € N.o) is finite, but the underlying set N is infinite.

When considering several multisets at once, we assume without loss of generality that they
have equal underlying sets.

Definition 3.1.3. Multisets M, = (S, m,) and M, = (S, m,) are equipped with the following
operations and relations:
(1) the sum of M, and M, is the multiset M,, M, = (S, As € S.m,(s) + m,(s));
(2) the union of M, and M, is the multiset M, U M, = (S, As € S. max(m, (s), m,(s)));
(3) the intersection of M, and M, is the multiset M; N M, = (S, As € S. min(m, (s), m,(s)));
(4) thedifference of M, and M, is the multiset M, \ M, = (S, As € S. max(o, m,(s)-m,(s)));
(5) M, isincluded in M,, written M, € M,, if m,(s) < m,(s) foralls € S. <

We abuse terminology and call multisets (S, m) sets if m(s) < 1forall s € S. We write & for
empty multisets, i.e., for multisets (S, m) such that m(s) = o forall s € S.

Example 3.1.4. A finite string s over an alphabet X describes a multiset (Z, m), where m( o) is the
multiplicity of ¢ in s. <

39
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3.1.1. First-Order Multiset Rewriting. Consider finite multisets of first-order atomic for-
mulas over some fixed initial signature ¥,. We call formulas facts. We write M (%) to mean that
the facts in the multiset M draw their variables from x, where X = x,, ..., x,,, for some m. Given
M (%) and some choice of terms f for ¥, we write M(f) for the simultaneous substitution [£/X]M

Multiset rewrite rules describe localized changes to multisets of facts. A multiset rewrite rule r
is a pair of multisets F(X) and G(X, #), and it is schematically represented by:

r:Vx.F(X) —» 3n.G(%, 1).
Informally, we interpret the variables X as being universally quantified in F and G, and the variables
7 as being existentially quantified in G. In particular, we treat X and 7 as bound variables, and
assume that they can be freely a-varied. We will make these intuitions precise below when we
relate multiset rewriting systems to linear logic. A multiset rewriting system (MRS) is a set R of
multiset rewrite rules.

Givenarule r: VX.F(X) —» 37.G(X, 1) in R and some choice of constants f for ¥, we say that
the instantiation r(t) : F(t) — 31.G(f, 1) is applicable to a multiset M if there exists a multiset
M’ such that M = F(f), M’. The rule r is applicable to M if r() is applicable to M for some ¢.
In these cases, the result of applying r(f) to M is the multiset G(7, d), M’, where d is a choice of
pairwise-distinct fresh constants. In particular, we assume that the constants d do not appear in M
or in R. We call 6 = [#/%] the matching substitution and & = [d/7] the fresh-constant substitution.
Intuitively, the matching substitution specifies to which portion of M the rule r is applied. The
instantiating substitution for r relative to M is the composite substitution & = (8, £). We capture
this relation using the syntax

F(t),M —= G(t d), M’
For conciseness, we often abuse notation and write r(6), F(6), and G(6, &) for r(f), F(f), and
G(f,d). We call F(f) the active multiset and M’ the stationary multiset.

Definition 3.1.5. Given an MRS R and a multiset M,, a trace from M, is a countable sequence of
steps

(r136,) (7:30,) (73305)
M, M, M, (7)

such that, where &; = (0, {;), the constants in M; and &; are disjoint for all i < j.
The notation (M,, (r;;8;);cr) abbreviates the trace (7), where I always ranges over N or
n={1,...,n} for some n € N. An execution is a maximally long trace. <

Let the support supp(T) of a trace T = (M,; (r;,0;)1) be the set supp(T) = U;so supp(M;).

0
Write M - M’ if M 0, M’ for some (r, ), and let —* be the reflexive, transitive closure of —.

Example 3.1.6. We model computations with queues. Let the fact queue(q, $) mean that q is the
empty queue, and let queue(q, v ~ q') mean that the queue q has value v at its head and that its
tail is the queue q’. Then the multiset Q = queue(q, 0 ~ q'), queue(q’, $) describes a one-element
queue containing o. The following two rules capture enqueuing values on empty and non-empty
queues, respectively, where the fact enq(q, v) is used to enqueue v onto the queue g:

e, : Vx, y.enq(x, ¥),queue(x, $) — Jz.queue(x, y ~ z),queue(z, $),
e,:Vx,y,z,w.enq(x, y),queue(x,z ~ w) - queue(x,z ~ w),enq(w, y).
The following execution from Q, enq(q,1) captures enqueuing 1 on the queue g:

) (ex5([9:1,0,9"/%,y,2,w].9))

Q,enq(g,1 Q,enq(q’,1)

(e;([q"1/x,y].[a/z])) queue(q,o ~ q'),queue(q',l ~ a),queue(a,$). <

The substructural operational semantics of Polarized SILL is given by a multiset rewriting
system, and it uses queues of messages to ensure that messages sent by processes arrive in order.
These message queues are captured by a variant of example[3.1.6]
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Example 3.1.7. We define addition on unary natural numbers. The MRS uses the facts add(m, n, 1)
and val(l,v), where val(l,v) represents a memory cell / with value v, and add(m, n, I) causes the
sum of m and # to be stored in cell [. It is given by the following rules:

a,:Vn,l.add(z,n,1) - val(l,n) (8)
as :Vm,n,l.add(s(m),n,1) - add(m, s(n),1) (9)

Write 3 for the unary representation s(s(s(z))) of three. The following execution stores the sum
of two and three in I:

add(s(s(z)),3,1) — add(s(z),s(3),]) — add(z,s(s(3)), 1) — val(l,s(s(3))).
The first two rules in this execution are instances of as, while the last rule is an instance of a,. <«

Example 3.1.8. We build on example[3.1.7]to recursively compute the n-th Fibonacci number. The
fact fib(n, I) causes the n-th Fibonacci number to be stored in cell I. The MRS is given by a., as,
and the following new rules:

fo : YI1.fib(z,1) - val(l,s(2)) (10)

fi:V1fib(s(z),1) - val(l,s(z)) (11)

f Vil nfib(s(s(n)), 1) —» 3", 1" .cont(1,I',1"),fib(s(n), 1), fib(n,1") (12)
c: VLI 1" myn.cont(L, 1, 1"),val(l',m),val(1"”,n) - add(m, n, 1) (13)

Rules f, and f; directly calculate the zeroth and first Fibonacci numbers. The rule f makes two
“recursive calls” that will store their results in fresh locations I’ and I”. It uses the continuation
fact cont(1,1’,1") to signal that the values in locations I’ and I”’ need to be added and stored in
location I. Once values m and » are available in locations I’ and [”, the rule ¢ causes m and # to
be added and stored in location /.

We remark that this implementation builds in garbage collection. Indeed, because we represent
memory locations val(l, n) using ephemeral facts, these locations are discarded as soon as they
are no longer needed by future computation. However, this implementation is not very efficient:
it repeatedly recomputes the same n-th Fibonacci number and requires exponential time. In
example 3.1.11} we will use persistent facts to implement a memoized version of this algorithm. <

Remark 3.1.9. The order in which rewrite rules are applied is non-deterministic and is outside of
the control of a multiset rewriting system. For example, when computing fib(2, 1), a scheduler
could non-deterministically choose to apply rule f, or f, after applying f,. Moreover, multiset
rewriting systems need not satisfy any confluence properties. This means that, in general, finite
executions from a given multiset need not result in the same final multiset. In example[3.1.11} we
illustrate design considerations for multiset rewrite systems that force a scheduler to order certain
rule applications. In section 3.3} we present a condition on MRSs called “interference-freedom”
Intuitively, it states that the order in which rules are applied does not matter, because rules do not
interfere with or disable each other.

Though the above presentation of multiset rewriting due to Cervesato et al. [Cer+os] is
relatively concise, its implicit treatment of eigenvariables and signatures introduces some ambiguity.
For greater clarity and to more easily relate multiset rewriting to linear logic, we sometimes adopt
an equivalent presentation due to Cervesato and Scedrov [CSog]. In this presentation, multiset
rewriting systems rewrite multisets-in-context. A multiset-in-context is a pair X ; M where the
term-level symbols used by M appear in the signature X, and X contains the initial signature %;.
We write £ + ¢ to mean that the term t is valid over the signature ¥, and = + f for the obvious
extension to collections of terms £.

Consider a rule r : VX.F(X) —» 37.G(X, 11). Given a signature %, an instantiation r(f) of r is a
rule of the form () : F(f) — 3#.G(, 11) for some f with = + £. This instantiation is applicable to
a multiset-in-context ¥ ; M if M = F(), M’ for some M’. The result of applying the instantiation
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FIGURE 3.1. LV°Ps sequent presentation of intuitionistic linear logic [CSog, Fig. 3]

r(f) to T ; M is the multiset-in-context %, 71 ; G(£), M’, where we extend the signature ¥ with the
globally fresh symbolg]7 (modulo a-renaming). We can represent this transition schematically as:

z; F(E)’M, —R,rVE.F(F)—37.G(F.7) 2o n; G(f),M' if 21

Here, R lists the other rules in the multiset rewriting system, and the substitution [/X] applied to
F and G corresponds to the matching substitution. Extending the signature ¥ with 7 captures the
fresh-constant substitution [7/#].

Given an MRS R and a multiset-in-context >, ; M,, a trace from X, ; M, is a countable
sequence of applications £, ; M, —r 20,2, 3 My —Rr 26,2,,2, 3 M, — -+, Again, an
execution is a maximally long trace.

3.1.1.1. Relation to Linear Logic. We relate first-order multiset rewriting to the LV°P* fragment
of intuitionistic linear logic of Cervesato and Scedrov [|[CSog]. This fragment is equivalent to a
fragment of the intuitionistic version of Pfenning’s [Pfegs|| sequent calculus presentation LV of
linear logic. The fragment LV°% uses sequents of the form I' ; A —y C. Here T is a structural
context of reusable assumptions, A is a linear context of assumptions, and C is the goal formula. The
term-level symbols appearing in I, A, and C are listed in the signature X. The rules are reproduced
in ﬁg. Where A is a context, we use the syntax 3Z.A to mean 3%. ® A, where

®() =1, R(AA) =48 (QA),
3().C=C, I(x,%).C=3x.3%.C.
This sequent calculus enjoys cut-elimination, i.e., the rules (Cut) and (CuT!) are both admissible
[CSog, Lemmas 2.13 and 2.14] and every derivable sequent in LV°Ps has a cut-free derivation in
LV°bs [CSog) Theorem 2.15].
We interpret multiset rewriting into LV°®* using the following homomorphic mapping " that
takes multisets and rules to logical formulas:
r®‘| — 1
"M,s'="M'®s
"VX.F(%) - 34.G(%,n)" =VX.'"F' — 34."G’
We extend the homomorphism to map multiset rewriting systems to contexts of formulas, where
"' =-and "R,r'="R",r.
The following result specializes [CSog, Properties 3.3 and 3.4] and the surrounding discussion
to our setting:

PROPOSITION 3.1.10. For all signatures 2, 2, multisets M, M', and multiset rewriting system R,
the sequent "R ; "M —5 3%'."M"" is derivable in LV°™ if and only if * ; M —% (2,%') ; M.

'In particular, we expect the constants to be disjoint from M and from those appearing in any other rule.
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3.1.2. First-Order Multiset Rewriting with Persistence. Facts in multisets represent pieces
of knowledge. In section[3.1.1} these facts were ephemeral: they could be consumed or destroyed
by applying multiset rewrite rules. Often times, we would like some facts to be persistent, i.e., for
some facts to be reusable and preserved by all rules. To this end, we partition facts as persistent
(indicated by bold face, p) and ephemeral (indicated by sans serif face, p). We then extend the
multiset rewriting system of the previous section to support persistence. In doing so, we diverge
slightly from Cervesato et al. [Cer+o5] to allow for the set of persistent facts to grow across time.

Persistent facts are reusable, so we do not care about their multiplicities in multisets. For
simplicity, we assume throughout that they form a set. We also separate persistent facts from
ephemeral facts and write a generic multiset as IT, M, where the set IT contains the persistent facts
and the multiset M contains the ephemeral facts. A multiset-in-context is now a triple  ; IT, M. As
before, all term-level symbols appearing in IT and M are contained in the signature X.

A multiset rewrite rule is now schematically represented by

r:Vx.m(x), F(X) - 3n.a' (1), G(X, 1),

where F and G are as before, and 7 and 7’ are sets of persistent facts.

Asbefore, multiset rewrite rules describe localized changes to multisets. Fix a multiset rewriting
system R. Given a rule r : VX.#(X),F(X) — 3n.a'(x,7),G(%,7) in R and some choice of
constants £ for X, we say that the instantiation r(f) : #(f), F(f) - 3n.7'(f, 1), G(f, 1) is applicable
to a multiset IT, M if there exists a multiset M’ such that M = F(t), M’ and if #(f) ¢ II. The rule r
is applicable to M if r(f) is applicable to M for some . In these cases, the result of applying r()
to IT, M is the multiset (TT U 7’ (¥, J)) ,G(f,d), M, where d is a choice of fresh constants. Again,

we assume that the constants d do not appear in M or in R. Because IT and 7/ (7, d) were both
assumed to be sets, the multiset IT U 7/ (7, d) in the result is again a set.

Multiset rewrite rules again equivalently describe localized changes to multisets-in-context.
Consideraruler: VX.m(X), F(%¥) — 3n.n' (¥, #), G(X, #) in a multiset rewriting system R. Given
a signature 2, an instantiation () of r is a rule of the form r(?) : n(f), F(t) - 3n.7'(f, 1), G(, )
for some f with = + 7. This instantiation is applicable to a multiset-in-context ¥ ; IT, M if there exists
a multiset M’ such that M = F(f), M’ and if 7(#) ¢ II. The result of applying the instantiation
3 ; I, M is the multiset-in-context £, 7 ; (ILu 7'(f) ) , G(¥), M’, where we extend the signature
> with the globally fresh symbols # (module a-renaming). We can represent this transition
schematically as:

5 a(6), IV, F(£), M' — R (v n(3),F(2) 377" (67,6 (5))
i (r(H)ull’ua'(§)),G(), M ifXrf,

where R lists the other rules in the multiset rewriting system. The active multiset is (7, F) (), while
the stationary multiset is I1’, M’.
The definitions of trace and execution are as before.

Example 3.1.11. We use memoization to improve the time complexity of example which
computed the #n-th Fibonacci number. Memoization uses a persistent fact memo(#, m) that means
“m is the n-th Fibonacci number”. Care is often needed when designing multiset rewriting systems
to counter the effects of non-deterministic rule application. Indeed, in the case of memoization,
the scheduler could chose to ignore available memoized values. To see how, consider a naive
implementation of memoization, where extend example[3.1.8| with the rule

Smemo : V1, n, m.fib(n, 1), memo(n, m) — val(l, m).

The scheduler could apply the rule f to the multiset fib(s(s(z)), ), memo(s(s(z)),2) instead
of finemo> even though a memoized value is available.

We can force the scheduler’s hand by disabling rules after one use. We do so by making them
depend on an ephemeral fact that is never replaced. Concretely, we use an ephemeral fact notyet(n)
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that is consumed on the first invocation of fib(1, 1):
fo : V1.fib(z,1), notyet(z) - memo(z,s(z)),val(l,s(z)) (14)
fi: V1fib(s(z),1), notyet(s(z)) — memo(s(z),s(z)),val(l,s(z)) (15)

f: VI, nfib(s(s(n)),1),notyet(s(s(n))) —

- 3, 1" fibcont(s(s(n)), 1", 1"),fib(s(n), "), fib(n, 1)
The rule f uses the modified continuation fact fibcont(k, I,1’,1""). As with the continuation fact
cont(1,1’,1") of example[3.1.8} it means that the values in locations I” and I”" should be added and
stored in I. We also use it to mean that this sum should be memoized as the value of the k-th

Fibonacci number. Because the fact notyet(n) gets consumed, subsequent attempts to compute
fib(n,1") are forced to used the memoized value. Using the memoized value is captured by:

(16)

r: V1, n,m.memo(n, m),fib(n,1) - val(l, m) (17)

We split the rule ¢ of examplein two. The first rule ¢ waits until values n and m are available
in the locations 1" and [”. It then causes them to be added and stored in location I. It also creates a
continuation fact addcont(k, I). This fact is used by the rule ¢, to memoize the value in ] as the
value of the k-th Fibonacci number:

cp VLU, 1", k,m,nfibcont(k,1,1',1"),val(l', n),val(I", m) -
— addcont(k,1),add(l,n + m)
¢q : V1, k, m.addcont(k, 1), val(l,m) — memo(k, m),val(l, m) (19)

(18)

To compute the n-th Fibonacci number, take an arbitrary execution from the multiset
notyet(z), notyet(s(z)),...,notyet(n),fib(n,1I).

We can show that this execution is finite. Its final multiset will contain a fact val(l, m), where m is
the desired value. <

Sometimes matching substitutions can make a pair of rules indistinguishable:

Definition 3.1.12. Two rule instantiations ,(6,) and r,(6,) are equivalent, r,(0,) = r,(6,), if they
are applicable to the same multisets, and if whenever they are applicable to some multiset M, then
the result of applying either to M is the same (up to choice of fresh constants). Otherwise, they are
distinct. <

We will use instantiation equivalence in section[3.3)to study the relationship between various
forms of fairness and properties of fair traces. We can characterize it as follows:

PROPOSITION 3.1.13. Consider rules r; : VX;.mi(X;), Fi(X;) — 3n,.m (X, 11;), Gi(X;, 1i;) and
matching substitutions 0; for i = 1,2. The instantiations r,(60,) and r,(0,) are equivalent if and only
if

(1) ﬂ1(61)> Fl(el) = 7[2(92): Fz(ez);
(2) 31,.G,(6,,1,) = 31,.G,(0,, ii,) (up to renaming of bound variables); and
(3) 3n,.m,(6,) v Al (0,,4,) = In,.m,(0,) Um,(0,,7,) (up to renaming of bound variables).

Proof. We start with sufficiency. Assume that r,(6,) and r,(6,) are equivalent. Then they are both
applicable to the multiset 7, (6,), F,(6,), so we deduce (7,(0,), F,(6,)) < (m,(6,),F.(60,)). A
symmetric observation gives the opposite inclusion, so we deduce that the multisets are equal.
Next, the result of applying either to M = m,(0,), F,(0,) is the same, so

In,. (m(0,) v m,(6,,1,)),G,(0,,1,) = In,. (m2(0,) UM, (0,,1,)),G,(0,,7,)

up to renaming of bound variables. Recall that the collections of ephemeral and persistent facts are
disjoint, so this implies the remaining two conditions.

Next, we show necessity. The first condition implies that r,(6,) and r,(6,) are applicable to
the same multisets. The last two conditions imply that the result of applying either rule to a given
multiset is the same. We deduce that the two rule instantiations are equivalent. O
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Example 3.1.14. Consider the rules

r:Vx, y.A(x,y) > In.B(x, n),
. Vx.A(x,x) > In.B(x,n)

and matching substitutions 0, = [a,a/x, y] and 0, = [a/x]. Then r,(6,) = r,(0,):

r(6,) : A(a,a) » In.B(a, n),
1,(6,) : A(a,a) - In.B(a, n).

Moreover, applying either r,(6,) or r,(6,) to the multiset A(a, a), C(b, b) gives B(a,a’), C(b,b)
for some fresh constant a’. <

3.1.2.1. Relation to Linear Logic. We conjecturally relate first-order multiset rewriting with

persistence to the sequent calculus LV, of Cervesato and Scedrov [CSog, § 2.6]. It is given by

the rules of fig.[3.1} except that the rule (OBs) is replaced by the observation rule

OBS’
r>r,;A—>z)zr 32’.(!F,A) ( )

where we write ! T for the linear context obtained by prefixing each fact in I’ with the bang operator
1. Cut elimination does not hold in LVngS;”: the rule (Curt) is admissible, but (CuT!) is not [CSog}
p. 1056].

We adapt the homomorphic mapping of section [3.1.1.1)to handle persistent facts. In positive
positions, we prefix persistent facts with the bang operator; in negative positions, we translate them
as though they were ephemeral. Where M ranges over arbitrary multisets potentially including
both ephemeral and persistent facts:

r®1:1 rM)S1:rM1®S I'M’p1:rM'|®p
2,=1 Ms;= M®s Mp,=M®!p

Vi.(%), F(Z) > 3.’ (5, 7), G(5, i) = V& 1, F' — 3. 7', G

We extend the homomorphism to multiset rewriting systems, where "@” =-and "R,r" = "R", 'r".
The following conjecture generalizes proposition [3.1.10]to the setting with persistence. We will
not use this conjecture, but state it for the sake of analogy with first-order multiset rewriting.

CONJECTURE 3.1.15. For all signatures ¥, ¥/, multisets I, M and II', M, and multiset rewriting
system R, the sequent "R’ ; T, M" —y 3%'."I, M"] is derivable in LV°%,, if and only if T ;
LM —% (5,3); I, M.

3.1.3. Semantic Irrelevance of Fresh Constants. The constants in fresh-constant substitu-
tions are, by construction, not semantically meaningful. Indeed, they are arbitrarily chosen globally
fresh constants.

In the absence of persistence, this semantic irrelevance is made precise by appealing to propo-
sition [3.1.10] Indeed, consider some sequence of rewriting steps £ ; M —3% (Z,%'); M. By
proposition @and an induction on the rules, the fresh constants £’ must have been obtained by
extending the signature X using the rule (31). In each case, the signature is extended using some
symbol x that was previously a bound variable in the goal formula. In particular, the new symbol
x could freely be a-varied prior to being used to extend the signature X. If conjecture 3.1.15|holds,
then an analogous observation can be made for multiset rewriting with persistence.

As a result of these observations, we identify traces up to refreshing substitutions. A refreshing
substitution for a trace T = (M,, (r;;(0;,&;));) is a collection of fresh-constant substitutions
n = (n;); such that [#]T = (Mo, (r;;(6;,7:));) is also a trace. Explicitly, we identify traces T and
T’ if there exists a refreshing substitution # such that T = [5]T.
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3.1.4. Parallel Rule Applications. We have so far only considered sequential rule application.
However, we are interested in modelling parallel computation, and to do so, we would expect
parallel (or simultaneous) rule application to be required. To this end, we briefly discuss parallel
multiset rewriting systems. We show that we can emulate parallel rule application using sequential
rule application and vice-versa. As a result, it will be sufficient to consider only sequential rule
applications.

We define an operator * on rules that combines them for parallel application. Given rules
ri s VXmi(Xi), Fi(Xi) = 3n,.m(%, 1), Gi (X5, 71;) for i =1, 2, let the rule 7, * r, be given by:

ry* 1y VR, X (m (X)) U, (%)), Fi(%,), By (%,) -
- Hﬁl» ﬁl'(n:(il) ﬁl) U n;()zza Flz))) Gl(;él) ﬁl)) Gz(iza ﬁz)

The multiset rewrite rule r, * r, captures applying r, and r, in parallel. Intuitively, every application
of this rule splits the ephemeral portion of a multiset in two, applies each of the rules separately,
and then recombines the results at the end. It is clear that * is an associative and commutative
operator with identity 1, : @ - @.

Given a multiset rewriting system R, let the parallel multiset rewriting system R* be the
multiset rewriting system given by:

R ={r**r, | neN,r;e R}.

The following proposition shows that parallel rewriting can be emulated by sequential rewriting.
At a high level, its proof replaces each rule r, * --- * r,, appearing in a trace M —%. M’ by the
sequence of rules ry, ..., r,. We can make this replacement because, by definition of x, the rule
ry %% 1, describes making the localized changes described by each r; to a disjoint portion (modulo
persistence) of the multiset. Because each r; rewrites a disjoint portion of the multiset, the rules
1. .., 1y do not disable or otherwise interfere with each other, so applying each r; sequentially
gives the same result.

PROPOSITION 3.1.16. For all multiset rewriting systems R and multisets M and M', M —3, M’
if and only if M —%,. M.

Proof. Sufficiency is clear: every trace over R is a trace over R*. Conversely, assume that M —7,..
M’. We proceed by induction on the number of steps taken. If no steps were taken, i.e., if
M —%,. M' by reflexivity, then we are done. Now assume that m + 1 steps were taken, i.e., that
M -+ M" —%. M’ for some M". Assume that the first step is given by the rule

k
rok ek 1t VX, ., X (Uﬂi(fi)) JE (X)), ... Fr(%) —
i=1

k
— 3711, ey ﬁk. (U 71’2(3?,‘, ﬁ,)) N Gl(fcl, ﬁl), ey Gk()_ék, ﬁk)
i=1
for some rules r; € R and k > 1, with matching substitution 8 and fresh-constant substitution &.

Let 0; and &; be the obvious restrictions of 6 and & to X; and #;, respectively. By definition of rule
application, it follows that

M= (C)r:,(@)) L', F(0),...,F(0),N

k
Uﬂi(ei)),l'l',Fl(Gl),...,Fk(Gk),N, (20)

=

(0, s))),cl(e, £ G0, 6N

1

(mo) oo
(o) oo

=1

ﬂ,i(ei) fz))) )Gl(el) fl)) cee aGk(ek, fk))N- (21)

1
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We claim that, where M, = M, the following is a trace for some multisets M, ..., M., and
that My,, = M"":
HCRS H{JS
M, (r3(61,8.)) M, = - — My (ris(8:8x)) M. (22)

This claim implies that M —7 M"'. By the induction hypothesis, M"" —7, M'. Because —7, is
transitive, we can then conclude M —3, M.
We show that is a trace. To do so, we proceed by induction on j, 0 < j < k +1, to show that

M; = (LkJ m(Gi)) ulIl'u (lj ﬂ'i(ei’fz‘))>
Gl(Ol,fl),...,Gj(Gj, Ej)aFj+1(9j+1)>-”)Fk(ek)’N'

It will then follow that r; is applicable to M for all o < j < k, i.e., that is a trace. It will also be
immediate by that My, = M".

The case k = o is immediate by eq. (20). Assume the result for some j, then by definition of
rule application, we have

k j+1
M;j,, = (U 71'1‘(61')) ull'u (U ﬂ'i(enfz‘))’
Gl(el,fl);---aGj+1(9j+1)€j+1)aFj+2(9j+2)>-"’Fk(ek)’N'

This is exactly what we wanted to show. We conclude the result. O

Parallel rule applications for multiset rewriting systems are discussed by Cervesato [Cero1,
§§ 5.3-5.4]. Our approach is inspired by Cervesatos: we both decompose a multiset into disjoint
pieces, apply rules in parallel, and recombining multisets. However, we diverge in the details from
Cervesato's approach by defining a new MRS R* that captures parallel execution, instead of using
an inductively defined parallel rewriting judgment. Our approach also allows for persistent facts.

3.2. Three Varieties of Fairness

Intuitively, fairness properties provide progress guarantees for components in computational
systems. Countless varieties of fairness were introduced in the 1980s, and they were classified
according to various taxonomies by Francez [Fra86] and Kwiatkowska [Kwi89[]. A common
classification is along the axis of strength. Weak fairness ensures that components that are almost
always able to make progress do make progress infinitely often. In contrast, strong fairness ensures
that components that are able to make progress infinitely often do make progress infinitely often.

We introduce three varieties of fairness for multiset rewriting systems—rule fairness, fact
fairness, and instantiation fairness—and we give a weak and a strong formulation for each. We
motivate each variety of fairness by an example. In section 3.2.4} we show that these three varieties
are independent.

3.2.1. Rule Fairness. We motivate rule fairness using an encoding of Petri nets as multiset
rewriting systems. Petri nets [Pet80o; |Pety7|] are structures used to model concurrency. A Petri
net is given by two sets—a set P of places and a set T of transitions—and a pair of functions
I,0: T — RP(P) specifying the inputs and outputs of the transitions in T.

Informally, one executes a Petri net by placing tokens in places and observing how the tokens
move through the net. An assignment y : P — N of tokens to places is called a marking. A marked
Petri net (P, T, I, O, u) is conveniently depicted as a directed graph, where circles represent places,
solid dots represent tokens, thick lines represent transitions, and arrows represent input/output. For
example, fig.[3.2(a)|depicts the marked Petrinet given by P = {p, p, p;}, T = {t,}, I(t,) = {p1, p>}>
O(t) ={t;},and po = (p1 = 2, p> = 1, p; = 0).

A transition is enabled if all of its inputs have at least one token. In this case, it fires by taking
one token from each of its input places and adding one token to each of its output places; this
changes the marking of the Petri net. A Petri net executes by repeatedly firing enabled transitions.
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(a) Marking y, () Marking p,

FIGURE 3.2. Two markings of the same Petri net

An execution is then a sequence o, i, ... of markings, each obtained from its predecessor by
firing an enabled transition. For example, in the Petri net of fig. the transition ¢, is enabled,
and the result of firing ¢, is the Petri net of fig. When considering executions from a given
marked Petri net, it is often more convenient to notate executions by their firing sequence, i.e., by
the sequence of transitions that fired, than by the sequence of markings. The firing sequence for
the execution y,, g, is t,.

Transitions fire non-deterministically. Consider, for example, the marked Petri net in fig.[3.3(a)}
It could fire t, first to obtain the marking y, of fig. From here, it can fire #; to return to the
marking y,. Alternatively, it could have fired the transition t, to get the marking y, of fig.
No transitions are enabled in this marking, so an execution ends as soon as it reaches this marking.
It follows that all executions from y, are given by the firing sequence ty, (821,)%°, or (t,8,)* 85,

t, t t
P1 ; — pz Pl ; — pz P1 ; — p2
-0 -0 oY
t3 ts ts
(a) Marking po () Marking p, (c) Marking p,

FIGURE 3.3. Markings reachable from fig.|3.3(a)} illustrating non-deterministic
firings.

In applications, it is often desirable to rule out so-called “unfair” executions. For example, we
could deem the execution (t,t,)* to be unfair because, though the transition ¢, is enabled infinitely
often, it never fires. To this end, we recall the definitions of weak and strong fairness for Petri
nets [Leu+88]. We say that an execution (y;);e; of a Petri net is

o weakly fair if it is finite, or if it is infinite and for all transitions ¢ € T, if ¢ is enabled on all
but finitely many markings y;, then there exist infinitely many i € I such that y;,, was
obtained from y; by firing t;

o strongly fair if it is finite, or if it is infinite and for all transitions ¢ € T, if t is enabled on
infinitely many markings y;, then there exist infinitely many i € I such that y;,, was
obtained from y; by firing ¢.

Weak and strong fairness rule out different executions. For example, the firing sequence
(t,t,)* describes a weakly fair execution from p,: the execution alternates between the markings
Uo and y,, so no transitions are enabled on all but finitely many markings. The execution is not
strongly fair: the transition ¢, is enabled infinitely often, but it never fires. The only strongly fair
executions from y, are given by the finite firing sequences t, and (,t,)*¢;.

2We adopt notation from w-regular languages, where =* and Z* respectively denote finite and infinite words over
the alphabet ¥, and £ = Z* u 2¢.



3.2. THREE VARIETIES OF FAIRNESS 49

We can encode a Petri net (P, T, I, O) as a multiset rewriting system[| Each transition ¢ € T
induces a rule
Fiifyevesim = Opyenny0p
where I(t) = {i),...,im} and O(t) = {0,...,0,}. A marking specifies a multiset containing
p(p) many facts p for each place p € P. Firing a transition ¢ corresponds to applying the rule ¢.
Observe that a transition is enabled if and only if the rule is applicable.

Example 3.2.1. The Petri net of fig. induces the single rule t, : p,, p, = p;. The marking y,
corresponds to the multiset p,, p,, p,. Firing the transition t,, i.e., applying the rule t,, results in
the multiset p,, p,. <

Weak and strong fairness for Petri nets exactly correspond to the concepts of weak and strong
rule-fairness for multiset rewriting systems. Consider an MRS R.. A trace T = (Mo, (13 0;)ier) is:
o weakly rule-fair if it is finite, or if it is infinite and for all rules r € R, if r is applicable to all
but finitely many M;, then there exist infinitely many i € I such that r; = r;
e strongly rule-fair if it is finite, or if it is infinite and for all r € R, if r is applicable to infinitely
many M;, then there exist infinitely many i € I such that r; = r.

3.2.2. Fact Fairness. Rule fairness alone is insufficient for an intuitively reasonable notion of
fairness. We illustrate this fact by means of an MRS that grows and shrinks trees of finite height.
Consider a collection of formulas B, (a,s) capturing branches in a tree. Here, n € N denotes
some amount of “growth potential’, a is the branch’s ancestor, and s is a globally unique symbol
identifying the branch. The root of a tree is given by a formula B, (g, a). We can depict trees-
as-multisets graphically, using dots to represent growth potential. For example, fig. 3.4/ depicts
multiset B,(a, a),B,(a,b),B.(a,c),B;(c,d).

&

a c d

FIGURE 3.4. Visualization of the multiset B, (a,a), B,(a,b),B,(a,c),B;(c,d)
as a tree

A branch can sprout a new branch if it has positive growth potential. Branching is given by a
family of rules, where we have a “branching rule” b; j for all n > 0 and j, k > o such that j + k = n:

bjk:Vxy.B,(x,y) - 3z.Bj(x, ), Br(y,2).

It takes a branch y with potential #, and creates a new descendent z with potential k, leaving y
with potential j.
Consider the following execution starting from a root a, with two units of growth potential:

B. (a0, 40)
ﬂ) Bl(ao, ao): Bl(a03 al)

EJL) Bl(a0)ao)> BO(QO)a1)7Bl(a17a2) (23)

224, B, (a0, a0 ), Bo(do, @), Bo (s @), o, By (s s

3This encoding is very similar to the one used to encode Petri nets in Concurrent LF [Cer+o3} § 5.3.1].
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FIGURE 3.5. Graphical depiction of the multisets in execution

It is graphically depicted by the sequence of trees in fig.[3.5} This execution grows the tree forever by
applying b, , to the right-most branch in the tree. It is both weakly and strongly rule-fair. Indeed,
the only rule that is applicable infinitely often is b, ,, and it is applied infinitely often. However, the
execution could be deemed “unfair” to the branch a,. Indeed, though a, has a unit of potential left,
it never gets to use it to grow a second branch. This motivates the notion of fact fairness, which
ensures that facts that could be used to take a step are not ignored.

Consider an MRS R. We say that a fact ] € M is enabled in M if there exists an instantiation
r(8) : F(0) —» 31.G(0,#) of arule r € R such that J € F(6). A trace T = (M, (73 6;) 1) is:

o weakly fact-fair if it is finite, or if it is infinite and for all facts J € supp(T), if J is enabled
in all but finitely many M;, then there exist infinitely many i € I such that J is in the active
multiset of ;(0;);

e strongly fact-fair if it is finite, or if it is infinite and for all facts J € supp(T), if J is enabled
in infinitely many M;, then there exist infinitely many i € I such that J is in the active
multiset of r;(0;).

3.2.3. Instantiation Fairness. To illustrate a final variety of fairness, we suspend disbelief
and assume that we can water individual branches. Watering a branch gives it a unit of potential:

Wy Vxy.B,(x,y) = Bun(x, y).

Intuitively, fairness should ensure that no branch in the tree is left unwatered forever. Rule-fairness
and fact-fairness are insufficient to ensure this in general. To illustrate this, we make the simplifying
assumption that we only have the rule w, plus a family of rules that redistribute potential:

n ' Vxyz.Byii (%, ), Bu(y,2) = Bu(x, ¥), By (3, 2).

Consider the execution starting from the multiset B, (a, a), Bo(a, ), B, (b, ¢) given by the se-
quence of rule instantiations

wo(a),ro,0(a,a,b),10,0(a,b,c),
wo(a),ro,0(a,a,b),10:(a,b,c),
wol(a),re0(a,a,b),14(a,b,c),....

After the 3n-th rule, the multiset is Bo(a, a), Bo(a, b), B, (b, ¢). This execution is strongly rule-fair:
the only rules applicable infinitely often are w, and r, ,, and they are both applied infinitely often.
It is strongly fact-fair: the only facts enabled infinitely often are B,(a, a), B,(a, a), B,(a, b), and
B, (a, b). Each of these appears in the active multisets of infinitely many rule applications. However,
the instantiation is still intuitively unfair because though the branch b could be watered infinitely
often, it never gets watered. Explicitly, the rule instantiation w, (a, b) is applicable infinitely often,
but it is never applied. To address this, we introduce instantiation fairness.
Recall the definition of equivalent instantiations r,(6,) = r,(6,) from deﬁnition Con-
sider an MRS R. A trace T = (Mo, (7;;8:)ier) is:
o weakly instantiation-fair if it is finite, or if it is infinite and for all rules r € R and 6, if r(8)
is applicable to all but finitely many M;, then there exist infinitely many i € I such that
ri(0:) = (6);
e strongly instantiation-fair if it is finite, or if it is infinite and for all € R and 0, if r(0)
is applicable to infinitely many M;, then there exist infinitely many i € I such that

ri(0) =r(6).
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3.2.4. Comparing Varieties of Fairness. We have a proliferation of varieties of fairness, and
it raises the question: are they all useful and independent from each other? The first question is
normative and implicitly presupposes an answer to the question: useful to what end? We motivated
each kind of fairness by an application, but it is up to the practitioner to decide whether or not a
particular kind of fairness is useful or desirable in a particular setting. We can, however, answer
the second question. We show that rule, fact, and instantiation fairness are independent notions,
no two of which imply the other. To do so, we construct traces that satisfy two of the forms of
fairness, but not the third.

Consider the MRS given by the following rules:

a:Vx.A(x) - A(x)
b:Vx.A(x),B - A(x),B.

Consider the multiset M, = A(c), A(d), B. The trace given by alternating applications of a(c) and
b(d) is strongly fact-fair and strongly-rule fair, but it is not weakly or strongly instantiation fair.
Indeed, though the instantiation b(c) is always applicable, it never gets applied.

Now consider the MRS given by the following rule:

r:Vxy.A(x), B(y) - 3z.A(x), B(2).

Consider the multiset M, = A(a), A(a’), B(b,). Assume that we generate the fresh constants

by, b,, . ... Then the trace given by r(a, b, ), r(a, b,),r(a, b,), . .. is strongly instantiation-fair and

strongly rule-fair, but it is not weakly or strongly fact-fair. Indeed, the only rule r is applied infinitely

often, so the trace is strongly rule-fair, and all instantiations of  are globally unique, so the trace is

instantiation-fair. It is not fact fair because, though the fact A(a’) is always enabled (it is in the

active multiset of r(a’, b,,) for each n), it is never in the active multiset of a rule in the trace.
Finally, consider the MRS given by the following rules:

a:Vx.A(x) - 3y.A(y)
b:Vx.B(x) - 3y.B(y)
i:Vx,y.A(x),B(y) = A(x),B(y).

Consider the multiset A(a, ), B(b,). Consider the trace given by alternating applications of a and
b:

A(a,),B(bo) — A(a,)B(b,) ~ A(a,), B(b,) ~ A(a,), B(b,) — A(a,), B(b,) — -

It is strongly fact-fair: each fact appears at most twice in the trace. It is strongly instantiation-fair:
each rule instantiation is applicable at most twice in the trace. However, it is not weakly or strongly
rule-fair: the rule i never gets applied.

3.2.5. Weak, Strong, and Uber Fairness. We say that a trace is weakly fair if it is weakly
rule-, fact-, and instantiation-fair, and strongly fair if it is strongly rule-, fact-, and instantiation-fair.
Surprisingly, a much stronger notion of fairness arises naturally in applications of multiset rewriting
systems. We say that a trace (M, (73 8;);er) is Uber fair if it is finite, or if for all i € I, r € R, and 6,
whenever r(0) is applicable to M;, there exists a j > i such that r;(0;) = r(8). Given an tiber fair
trace T, we write vr(i, r, 0) for the least such j if it exists. Every tiber fair trace is also strongly fair,
and every strongly fair is also weakly fair.

3.3. Properties of Fair Traces

We study sufficient conditions for multiset rewriting systems to have fair traces. One of these,
“interference-freedom’, implies that all fair traces are permutations of each other. We also study the
effects of permuting steps in traces.

The fair tail property is immediate from the definitions of fairness:

PRrOPOSITION 3.3.1 (Fair Tail Property). Let “fair” range over the nine notions of fairness consid-
ered in section If (Mo, (t:50:)ie1) is fair, then so is (M, (¢35 8: ) n<i.ic1) foralln € I.
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Most notions of fairness are closed under concatenation with finite prefixes:

PRroOPOSITION 3.3.2 (Fair Concatenation Property). Let “fair” range over weak and strong rule,
fact, and instantiation fairness. If M, —* My, and T is a fair trace from M,, then M, —* M,
followed by T is a fair trace from M,. If T is finite, then the result also holds for iiber fairness.

Interference-freedom roughly means that at any given point, the order in which we apply
applicable rules does not matter. Write S; for the group of bijections on I; its elements are called
permutations. A permutation ¢ € Sy acts on a trace T = (M,, (t;30;);e1) to produce a sequence
0T = (Mo, (te(i); 0o(iy)ier). This sequence o - T is a permutation of T whenever it is also a trace.
We adopt group-theoretic notation for cyclic permutations and write (x, o(x), o(o(x)),...) for
a cyclic permutation o : I — I; implicit is that all elements not in the orbit of x are fixed by ¢. For
example, let T be given by the sequence of rule instances t,, t,, t;, t,, ts. Then (4,3,2) - T is the
sequence t,, ty, t,, t;, ts. Cyclic permutations of length two are called transpositions.

Consider an MRS R and let ,(6,), ..., 7,(8,) enumerate all distinct instantiations of rules
in R applicable to M,. We say that R commutes on M, or is interference-free on M, if for all
corresponding pairwise-disjoint fresh-constant substitutions &;, the following diagram commutes
for all permutations ¢ € Sy, and both paths around it are traces:

(723(6,8,)) (rn-13(0n-1,6n-1))

(rs(6,6)) M, M-, w

M, M,

(13 (000 Ear (ra(z);(ea(z)’fn(z))) (ra(n—l);(go(n—x))Eu(n—]))) (rt7 " ;(9” o Eoin ))
(103 (00()280())) M M OHCEORTO)
We note that interference-freedom is only defined if the enumeration of distinct applicable in-
stantiations is finite. The following proposition is an immediate consequence of the definition of
commuting rules:

PROPOSITION 3.3.3. Let R commute on M,, and let r;(0;) with1 < i < n be the distinct

15(01,8,
instantiations applicable on M. If M, (@8],

commute on M,.

M,, then,(6,),...,r,(0,) are applicable to and

Interference-freedom implies the existence of iber fair executions. To prove this, we construct
a scheduler that enqueues all applicable rules and applies them one by one. Interference freedom
ensures that a rule is still applicable once it reaches the front of the queue.

Given an MRS R and a property P of multisets, we say P holds from M, if for all traces
(Mo, (ri36)ier), P holds for M, and for M; forall i € I.

PROPOSITION 3.3.4 (Fair Scheduler). If R is interference-free from M,, then there exists an iiber
fair execution from M.

Proof. We define an iiber fair execution (r;; (0;, £;);) from M, by induction on n.
Let Qo = 701(001)5 -+ > Ton (8o, ) be an enumeration of the distinct instantiations of rules from
R applicable to M,. The enumeration is finite because R commutes on M,. We maintain for all n
the following invariants:
o all distinct rules instantiations applicable to M, appear in Q,;
e all rules in Q, are applicable to M, and are distinct instantiations of rules in R.
Let Q,, be given; we construct 7,41, 0415 £y Mysy and Qyoy. If Q,, is empty, then no rules are
applicable to M,, and (M, (r:;(0;, &;);)) is maximal. Otherwise, let 7,,1,(60,,1,) be first element
in Q, so that Q,, = r,4,(0,+.), Q;, for some Q. Pick a suitably fresh &,,,,. Take

(7n+1§(9n+nfn+1))
Mn — Mn+1-

By assumption, all rules in Q, are applicable to M,, and these are all instantiations of rules
in R. By interference-freedom, R commutes on M, so all rules in Q), are applicable to M,
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by proposition Let Qu4; = QJ, Ny, where N, is an enumeration of the distinct rule
instantiations applicable to M,,,, not already in Qj,. It is finite because R commutes on M,,,. The
invariants hold by construction.

The resulting trace is clearly {iber fair: for all j, if r is applicable to M}, then it appears at some
finite depth d in Q, and will appear in the trace after d steps. O

Though interference-freedom simplifies fair scheduling, it is primarily of interest for reasoning
about executions. For example, it is useful for showing confluence properties. It also lets us
safely permute certain steps in a trace without affecting observations for session-typed processes
(see chapter[6). This can simplify process equivalence proofs, because it lets us assume that related
steps in an execution happen one after another.

Interference-freedom is a strong property, but it holds for many multiset rewriting systems of
interest. This is because many systems can be captured using rules whose active multisets do not
intersect, and rules with disjoint active multisets commute. In fact, even if their active multisets
intersect, rules do not disable each other so long as they preserve these intersections. Because
persistent facts are always preserved, it is sufficient to consider only ephemeral facts.

To make this intuition explicit, consider multisets M; € M for 1 < i < n. Their overlap in M
is Qp(M,,...,M,) =M,,...,M, ~ M. Consider an MRS R and let r;(6;) : m;(6;), F:(6;) —
31;.7m(0;), Gi(0;,7;), 1< i < n, enumerate all distinct instantiations of rules in R applicable to
M. We say that R is non-overlapping on M if for all 1 < i < n and fresh-constant substitutions &;,
Fi(0;)nQu(F.(6,),...,F.(6,)) € Gi(8;, &), ie., if each rule instantiation preserves its portion
of the overlap.

Example 3.3.5. The overlap of A, Band B, Cin A, B, C is Q4 5,c((A, B), (B, C)) = B. The overlap
of A,Band B, C in A, B, B, C is the empty multiset Q4 5 5,c((A, B), (B, C)) = @. The overlap of
A,Band B,C,and C,Ain A,B,Cis Q4,5c((A,B),(B,C),(C,A)) =A,B,C. «

Example 3.3.6. The MRS given by example[3.1.6]is non-overlapping from any multiset of the form
Q, E where Q is a queue rooted at ¢, and E contains at most one fact of the form enq(q,v). <

Proposition[.3.7]characterizes the application of non-overlapping rules, while proposition[3.3.9|
characterizes the relationship between commuting and non-overlapping rules. Because persistent
facts pose no difficulty (multiset union is a commutative operation), we elide them from these
results for clarity.

PROPOSITION 3.3.7. Let R be non-overlapping on M, and let r;(0;) : F;(0;) — 31;.G(6;,1i;)

50,6,
with 1 < i < n be the distinct instantiations applicable to M,. If M, M M,andr,,...,r, are

non-overlapping on M., then r,(6,),...,r,(0,) are applicable to and non-overlapping on M,.

In particular, abbreviate F;(0;) and G;(0;, &;) by F; and G, respectively, and let O be the overlap
O = Qu, (F,, ..., F,) nF,. There exist F| and G| be such that F, = O, F! and G, = O, G., and there
exists an M such that M, = O, F/, M and M, = O, G, M. The instantiations r,(6,),...,r,(0,) are
all applicable to O, M € M,.

Proof. Where M = (S, m) is a multiset and s € S, we abuse notation and write M (s) for m(s).
Let O = Qu, (F,, ..., F,) N F,. By assumption, O € G, s0 F, = O,F, and G, = O, G| for
some F/ and G!. It follows that M, = O, F/,M and M, = O, G/, M for some M. We show that
r2(0,),...,7,(0,) are all applicable to O, M. Without loss of generality, we show that r,(0,) is
applicable to O, M. This requires that we show that F, € O, M, i.e., that F,(s) < O(s) + M(s) for
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all s. We compute:

(Qum, (Fis... . Fy))(s) = max(o,(

M=

F,-(S)) _Mo(s))

1

M=

:max(o,(' Fi(s))—M(s)), (24)

0(s) :min(Fl(s),max(o,(Zn:Fi(s)) —M(s))). (25)

Because r,(0,) is applicable to M,, we have F, € M,, i.e., F,(s) < M, (s) = O(s) + F/(s) + M(s)
for all s. If F/(s) = o, then we are done. Assume now that F/(s) > o. From this it follows that
F,(s) = F/(s) + O(s) > O(s). We consider three cases for the value of O(s), based on the three
possibilities in eq. (25):

Case O(s) = F,(s): Impossible, for it contradicts F,(s) > O(s).

Case O(s) = 0: Then F,(s) = o or max (0, (X1, Fi(s)) = M(s)) = o. The case F,(s) = o is
impossible because F,(s) > O(s) =0.So0 2 (X}, Fi(s)) — M(s),so M(s) > Xi, F;(s). Because
the F; are all non-negative, M(s) > F,(s), so we are done.

Case O(s) = (X7, Fi(s)) = M(s): Then O(s) + M(s) = X}, Fi(s) > F,(s), so we are done.
We conclude that r,(0,) is applicable to M,.

Next, we show that r,(6,),...,7,(0,) is non-overlapping on M,. In particular, we must show
that for all i, Qp, (F,, ..., F,) N F; € G;. By assumption,

Q. (Fir.. ' F) N F € G
for all 4, so it is sufficient to show that
Qum, (Fay ..o, Fy) € Qup (Fy ..., Fy).
To do so, we show that for all s,

(O, (Fas ..o, F)) (s) < (Qpi, (Fis - -5 Fy)) (5).
Let M, = O, G/, M as before. We compute:

(Qum,(F,, ..., Fy))(s) = max (o, (

i

Because all values involved are non-negative,

(2500061 w0 < (S 1)) - w0
i=2 i=2
Recall that max is monotone and recall eq. (24). It follows that

(Qpm, (Fyye oo F)) (s) < (Qum, (Frs .., Fn)) (s)
as desired. We conclude that ,(6,), ..., r,(6,) are non-overlapping on M,. O

M=

Fl-(s)) - Ml(s))

2

M=

Fl-<s>) ~0(s) - Gl(s) —M(s>).

2

LEMMA 3.3.8. Consider distinct instantiations r;(0;) : F;(0;) - 34,.G;(0;, ;) that are appli-
cable to M, for i = 1, 2. If they are non-overlapping on M, then they commute on M,.

Proof. We must show that for all disjoint fresh-constant substitutions &, and ¢,, the following
diagram commutes and both paths around it are traces:

MO (rl;(al)fl)) M1
(rz;((%,fz))J' J'(rz;(ﬂz,fz))
(r5(0:,6,))

M DR M

1
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Fix some such substitutions and abbreviate F;(0;) and G;(0;, £;) by F; and G;, respectively. Both
paths around the square are traces by proposition[3.3.7} we show that it commutes.

Let O = F;n Qy, (F,, F,), Oy, = O] 0 05, and O; = O} \ Oy,. By assumption, O! ¢ G;, so
for some F; and G} we have F;(0;) = O}, F! = O,,, O}, F/ and G; = O}, G} = O,,, O}, G/. Because
F; € M, for i =1, 2, it follows that M, = O,,, O,, O,, F/, F., M. Then the two paths are

(rl;(el’gl)) (r2§(92>52))
o ————— _—

M OIZ) Ol’ozaGiaFi)M Oll) Ols OZ)Gia G;)M

(rz§(02)£2))

13(01,8,
Mo — O12: Ola OzyFlla G;_)M M’

0.,,0,,0,,G;,G,, M.

We conclude that the diagram commutes. O

In [Kav2o0a, Proposition 5], we claimed that the converse of proposition was false. The
counter-example used does not support this claim.

PROPOSITION 3.3.9. An MRS commutes on M, if it is non-overlapping on M,.

Proof. Assume that the rules are non-overlapping on M,. Let r;(0;) : F;(0;) - 31;.G(0;,#;)
enumerate the distinct instantiations that are applicable to M, with 1 < i < n. Consider pairwise-
disjoint fresh-constant substitutions &; for 1 < i < n. We must show that (Mo, (r:;(8:,&:))1<i<n)
is a trace and that permuting its steps does not change the last multiset.

We proceed by induction on 7 to show that it is a trace. Informally, proposition [3.3.7] will
ensure that no matter which instance we apply to get to the next multiset, the remaining instances
will be applicable to and non-overlapping on that multiset. The result is immediate when n = o.
Assume that the result holds for some k, and assume that n = k + 1. By the induction hypothesis,
the following sequence of k steps is a trace:

(r:5(6,,¢,)) (723(02,8,)) ((PEH R {Y)) M

HEPS
M, M, (ri3(0x:88)) M

k-

k—1

We proceed by induction on o < j < k to show that 7,,(0j41), . .., k41 (Ok+ ) are all applicable
and non-overlapping on M;.

CASE j = 0: Immediate from the assumption that the rules are non-overlapping on M,.

Cask j = j' + 1 with j' < k: The instances 7;(0;), ..., k4 (0k+,) are all applicable to M; by
the induction hypothesis on j'. By proposition the instances 7,1 (0j41)5 . . . > k41 (Ok4 ) are
all applicable and non-overlapping on Mj,,.

This completes the nested induction on j, and we conclude that ry,, (6, ) is applicable to M.
Pairwise-disjointness of the &; guarantees that the resulting sequence of k + 1 steps is a trace. This
completes the induction on 7.

Next, we observe that any permutation of the above trace is a trace. Indeed, the numbering
of the r;(6;) : F;(0;) — 31,;.G(6;, 1i;) was arbitrary, and the proof that (Mo, (r;;(8;,&;))1<i<n)
was a trace did not depend in any way on the numbering of the rules or on the individual rules
themselves.

Finally, we show that all permutations of the trace have the same final multiset. Concretely, fix
some o and let (N, (74(i); (0o(iys §o(i)))ien)) = 0 (Mo, (755 (055 &) ) icn). We show that M, = N,,.
The permutation ¢ factors as a product of transpositions of adjacent steps by the proof of [Huny4,
Corollary I.6.5]. By the previous paragraph, each of these transpositions preserves the property
of being a trace. By lemma3.3.8] each transposition preserves the multisets at its endpoints. In
particular, each transposition preserves M,,. An induction on the number of transpositions in the
factorization of ¢ gives that M, = N,,. O

Weak, strong, and tiber fairness coincide in the presence of interference-freedom:

PROPOSITION 3.3.10. If R is interference-free from M, and T is a trace from M,, then the
following are equivalent: T is weakly instantiation-fair, T is strongly instantiation-fair, T is iiber fair.
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Proof. It is clear that iiber fairness implies both forms of instantiation-fairness, and that strong
instantiation-fairness implies weak instantiation-fairness. It is sufficient to show that if T' is weakly
instantiation-fair, then it is iiber fair.

Assume that T is weakly instantiation-fair. If T is finite, then we are done, so assume that
T = (My; (14, 8;);) is infinite. Consider some arbitrary M;, and assume that r(0) is applicable to
M;. We must show that there exists some k > 1 such that r;,4(6;,x) = r(6). By induction on k > 1
with proposition we know that if 7, (6;,x) # r(0), then r(0) is applicable to M;,,,. This
implies that 7;,;(0;.x) = r(0) for some k > 1 or that r(8) is applicable to all but finitely many M
(i.e., at most the first i multisets). In the first case, we are done. In the latter case, we know that
r(0) is applied infinitely often by weak instantiation-fairness. We conclude that T is tiber fair. [

COROLLARY 3.3.11 (Fair Concatenation for Uber Fairness). If R is interference-free from Mo,
M, —=* My, and T is an iiber fair trace from M,, then M, —* M, followed by T is an iiber fair
trace from M,.

Proof. Immediate by propositions and O

In light of proposition|[3.3.10} we hereinafter use the words “fair trace” to equivalently mean
“weakly fair trace”, “strongly fair trace”, or “liber fair trace” when assuming interference-freedom.
Assumption 3.3.12. For the remainder of this section, we assume that if (M,, (r;;8;);) is a fair trace,
then its MRS is interference-free from M,.

In the remainder of this section, we study the effects of permutations on fair traces. We first
show that fairness is invariant under permutation. Then, we show that all fair executions are
permutations of each other.

Interference-freedom implies the ability to safely permute finitely many steps that do not
depend on each other. However, it is not obvious that finite permutations, let alone infinite
permutations, preserve fairness. We begin by showing that finite permutations preserve fairness.
Our proof relies on the fact that finite permutations factor as products of cycles, which themselves
factor as products of transpositions. We begin by showing that transpositions of adjacent steps
preserve fairness.

LEMMA 3.3.13. Let R be interference-free from M, and let T = (Mo, (i3 (64, &) ) icr) be a trace,
an execution, or a fair trace. For all transpositions (m +1,m) € Sy, if 4,(O ) is applicable to
M,,,, then (m +1,m) - T is respectively a trace, an execution, or a fair trace.

Proof. Consider some transpositions (m + 1, m) € Sy such that 4, (6,,4,) is applicable to M,,_,.
By non-interference, it follows that (m + 1,m) - T = (M,, (r}; (0}, £));) is also a trace. Observe
that for all j, if j # m, then M} = M;, and if j < mor j > m +1, then (r}; (0}, £7)) = (r;:(0;,&))).

Assume that T is an execution. We must show that (m + 1,m) - T is also maximal. If it is
infinite, then we are done. If it ends at some Mj,, then M|, = M, by the above observation because
m < m +1< n. Because T is maximal, no rules are applicable to M,, so no rules are applicable to
M. We conclude that (m +1,m) - T is maximal.

Assume now that T is fair. We show that (m + 1,m) - T is also fair. Consider some r(6)
applicable to M}. We proceed by case analysis on j < m, j = m, and j > m to show that r(6)
appears as some 7 (6}) with k > j.

Cask j < m: By the above observations, M’ = M;. Because T is fair, there exists a k" > j such
that ry (0y/) = r(6). Because j < m and j < k, it follows that k = (m + 1, m) (k") > j. So r(0)
appears as r; (0} ) after M as desired.

CASE j = m: By proposition r(0) is applicable to M,,.,. Because T is fair, there exists a
k > m +1such that r((8y) = 7(0). So r (8}) = ri(0k) = (1, 0).

CASE j > m: Because T is fair, there exists a k > j such that r;(6y ) = r(0). Because k > j > m,
k>m+1,s07,(0,) =ri(0k) = (r,0).

We conclude that (m + 1, m) - T is fair whenever T is fair. O
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PROPOSITION 3.3.14. Let R be interference-free from M, and let T = (Mo, (i3 (61, &;))ier) bea
trace, an execution, or a fair trace. For all cycles (m+k, ..., m+1,m) € Sywith k > 1, if (1) (O k)
is applicable to M,,_,, then (m + k,...,m +1,m) - T is respectively a trace, an execution, or a fair
trace. It is equal to T after the (m + k)-th step.

Proof. By induction on k. If k = 1, then we are done by lemma|3.3.13and non-interference. Assume
the result for some k’, and consider the case k = kK’ + 1. Because R is interference-free from M,,
it follows that if 7(,,.)(6,u4+x) is applicable to M,,_,, then it is also applicable to M,,. By the
induction hypothesis, T’ = (m + k,...,m +1) - T is respectively a trace, an execution, or a fair
trace. By lemma sois T" = (m,m +1) - T', for the (m +1)-th step in T" is 7( k) (O m+k)>
and it is assumed to be applicable to M,,_,. The transposition (m + 1, m) does not alter T’ beyond
the (m + k)-th step, so T" still agrees with T after the (m + k)-th step. Observe that

T"=(m+1,m)-T' =((m+k,m)o(m+k,....m+1))-T=(m+k,....m+1,m)-T,

so we are done. We note that the second equality in the above sequence is subtle: the transposition
(m +1,m) is relative to the ordering of rules in T’. It becomes (m + k, m) on the right of the
equality because the (m + 1)-th step in T” is the (m + k)-th step of T. O

We conclude that finite permutations preserve fairness:

PROPOSITION 3.3.15. Let R be interference-free from M, and let T = (M,, (7:5(0:,&;))ier) be
a trace. Let 0 € Sy be a finite permutation, i.e., assume that there exists an n € I such that o (i) = i
for all i > n. Further assume that o - T is a trace. If T is an execution or a fair trace, then o - T is
respectively an execution or a fair trace. The traces o - T and T are equal after n-th step.

Proof. Informally, the approach is to decompose ¢ into a finite composition of cyclic permutations
of the form (o(m), ..., m +1,m). Proposition 3.3.14 ensures that each of these cycles preserves
the desired properties.

Let m be minimal in I such that o(m) # m; if no such m exists, i.e., if o is the identity, then
set m = n. We proceed by strong inductionon d = n —m. If d = o, then ¢ - T = T and we are done.
Assume the result for some d’, and consider the case d = d’ + 1. By minimality of m, the traces
T and o - T are equal up until the multiset M,,_,. By the assumption that T and o - T are both
traces, it follows that 7., (6, ) and 74(,u) (05(m) ) are both applicable to M,,_,. By minimality, it also
follows that m < a(m). By proposmon“ =(o(m),...,m+1,m)- T is also respectively a
trace, an execution, or a fair trace. By the same proposition, it also agrees with T on all multisets
after the o(m)-th. Since o(m) < n, it follows that T" and T are equal after the n-th step. The trace
T’ agrees with o - T on at least the first m steps. This decreases d by at least one. We conclude the
result by the strong induction hypothesis on (¢(m),...,m+1,m)-Tand o - T. O

Next, we show that infinite permutations preserve fairness. To do so, we use the following
lemma to reduce arguments about infinite permutations to arguments about finite permutations.
Intuitively, it decomposes any infinite permutation ¢ on N into the composition of a permutation
7 that only permutes natural numbers less than some y, (), and of an infinite permutation p that
only permutes natural numbers greater than y, (7). The mechanics of the decomposition are best
understood by means of a picture. We refer the reader to fig. [3.6|for an illustration, where we note
that y,(0) =1and y,(1) = 2.

LEMMA 3.3.16. For all n € N and permutations 0 : N > N, set y,(n) = maxg<, 07' (k). Then
there exist permutations T,, p, : N = N such that ¢ = p, o 1, T,(k) = k for all k > x,(n), and
pn(k) =k forall k < n.

Proof. Lets, < -+ < s, be the elements of {0,1,..., x,(n)} N 67 ({o, ..., n}). Explicitly, these
are the natural numbers less than y,(#) whose image under ¢ is greater than n.
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4—4 4——4—— 4 4——4——4
3 3 3——3 3 3—3 3
2 2 22— 2 2 2 2 >< 2
1 1 1 1 1 1 1——1
o o} o 0o——o0 o) 0——0
(A) A permutation ¢ (B) Its decomposition with n = o (c) Its decomposition with n =1

FIGURE 3.6. An illustration of decompositions of ¢ given by lemma

Let 7 be given by
o(k) o(k)<n
(k)={n+j k=s;
k k> ys(n).
Intuitively, T acts as 0 on elements whose image is less than #; it then “stacks” the remaining elements
less than y,(n) in order on top of n (we refer the reader to fig.[3.6|for this spatial intuition); and it
fixes elements greater than y,(n).
Let p be given by
k k<n
p(k)=30(sk-n) n<k<ys(n)
a(k) k> xq(n).
Intuitively, p takes the “stacked” elements and recovers their original value before applying o; it
directly applies ¢ to those greater than y,(n).
We show that 0 = p o 7. Let k € N be arbitrary. We proceed by case analysis:
Casg (k) < n: Then p(7(k)) = p(o(k))) = a(k).
Case k =s;: Then p(7(k)) = p(n+ j) = 0(S(nsj)-n) = 0(sj) = 0 (k).
CaSE k > y,(n): Then p(z(k)) = p(k) = o (k).
The function 7 is clearly total and an isomorphism. Because ¢ is an isomorphism and ¢ = p o 7,
it follows that p is also an isomorphism. So 7 and p are two permutations with the desired
property. O

LEMMA 3.3.17. Assume that R is interference-free from M, that T is a fair trace from M,, and
that o - T is a permutation of T. For all n, 7, - T is a fair trace, where ¢ = p, o T, is the decomposition

given by lemmal3.3.16]

Proof. This proof is analogous to the proof of proposition 3.3.15} Informally, we decompose 7,, as a
potentially empty composition of cyclic permutations such that each successive cyclic permutation
increases the length of the prefix of the trace that agrees with 7, - T and preserves the relative
ordering of the s; described in the proof of lemmal3.3.16}

Let m be minimal such that 7,(m) # m; if no such m exists, then 7, - T = T and we are done.
Otherwise, the o(m)-th step 74(,)(85(my) of T is applicable to M,,_,. Indeed, o(m) = 7,(m),
and ¢ - T is a trace by assumption. By proposition[3.3.14 T = (0(m),...,m +1,m) - T is a fair
trace. The trace T’ agrees with 7,, - T on at least the first m steps. Moreover, the relative ordering of
the s; in T’ is the same as in T.

Iterating this procedure results in a trace T" that agrees with 7,, - T on the first n steps. Indeed,
this procedure terminates because after each iteration, the number of steps in the first #n that
disagree decreases by one. The resulting trace T" also agrees with 7, - T on all steps after the
(x0(n))-th. Indeed, for each cycle (o(m),...,m +1,m), a(m) < y,(n). Because both 7, and
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the above procedure preserves the relative ordering of the s;, and both result in permutations, it
follows that their images agree on all of the steps between the n-th and the y,(#n)-th. So T" and
7, - T are equal. Because T" is fair, we conclude that 7, - T is fair. O

COROLLARY 3.3.18. Fairness is invariant under permutation, that is, if R is interference-free from
M, T is a fair trace from M,, and £ = o - T is a permutation of T, then X is also fair.

(ts(1)38s(1)) (ts(2)300(2))
Proof. Let T = (M,,(t;;6;);), and let T be the trace M, = Z, N
Consider some rule r € R and 6 such that r(6) is applicable to ;. We must show that there exists
a jsuch that o(j) > (i), ts(j)(0s(;)) = r(0).

Let the factorization ¢ = p o T be given by lemmalf3.3.16|for n = o(i). The trace 7 - T is fair
by lemma3.3.17] By construction of 7, 7- T and X agree on the first n steps and # + 1 multisets.
By fairness, there exists a k > o(i) such that the k-th step in 7- T is r(8). By construction of p,
p(k) > a(i), so this step appears after ¥; in T as desired. We conclude that X is fair. O

It is not the case that every permutation of the steps of a fair trace is a fair trace: it could fail to
be a trace. Corollary[3.3.18|simply states that if the result of permuting the steps of a fair trace is a
trace, then that trace is fair.

Corollary[3.3.18|established that permutations preserve fairness. Relatedly, all fair traces from
a given multiset are permutations of each other. To show this, we construct a potentially infinite
sequence of permutations. We use the following lemma to compose them:

LEMMA 3.3.19. Let (0,,) we1 be a family of bijections on I such that for all m < n,

(opo0--00,)(m)=(0po0-00,)(m).

Let o : 1 — I be given by a(m) = (0, 0 +-- 0 0,)(m). Then o is injective, but need not be surjective.

Proof. Let m, n € I be arbitrary such that o(m) = (n). Assume without loss of generality that
m < n. Observe that

o(m) =(ono-00,)(m)= (0,0 0040 007)(m)

and
g(n) = (gﬂ 0++ 00, 00 O'O)(Tl).
Because 0, . .., 0, are all bijections, so is their composition. It follows that m = #, so ¢ is injective.
To see that o need not be surjective, consider the family o, = (0, n) for n > 1. Then o (n) = n+1
for all n. It follows that o is not in the image of . O

Recall from section|[3.2.5| that, given an iiber fair trace T and an instantiation #(7) applicable
to its i-th multiset, v7(i, ¢, 7) is the least j > i such that the j-th step of T is equivalent to ¢(7).
The following lemma is a special case of proposition

LEMMA 3.3.20. Let R be interference-free from M, and T a fair execution from M. If t(7) is
applicable to M, then (vr(0,t,7),...,0) - T is a permutation of T with t(7) as its first step, and it
is a fair execution.

PROPOSITION 3.3.21. If R is interference-free from M, then all fair executions from M, are
permutations of each other.

Proof. Consider traces R = (Ro, (7i; (0i, &) )ier) and T = (T, (¢ (7}, (;)) jey) where R, = M, =
T,. We construct a sequence of permutations oy, 0, . . ., where @, = R and the step 4, = 0,,1,- D,
is given by lemmasuch that @,,.., agrees with T on the first # + 1 steps. We then assemble
these permutations o, into an injection ¢ using lemma fairness ensures that it is a surjection.
We have T = o - R by construction.

The construction is as follows. We write 2, = R horizontally, and then down from R, we write
T. Let T4, be the fair trace obtained by applying lemmato 2, and (£ (T G ) )s itisa
permutation of X,,. Without loss of generality, we assume that the fresh constant substitutions (.,
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and the corresponding & in 2, ..., %, are equal; refreshing both S and T makes this possible.
Let £,,4, be the tail of T, starting at T),.,; we write it horizontally to the right of T,,.,. We get the
following picture:

(Vn;(gnfn))) R (723(02,8,)) R (73;(93)53)1 R (r43(04,84)) .

R, =T, : . ; ~ Z=R
(t3(1,41))
T )3 > X1 215 N
(t25(72,42))
T, DI PN » 2o 2,
(t3;(T3’(3))V
T 23 23 Z3; Z,

(r‘.;(r‘.,g»l

Set @, = X,, and for each n > o, let ®,, be the trace given by the trace T, — --- - T}, followed
by the trace Z,,. Each of the permutations y, : £, = I';4, determines a permutation ¢, from ®,,
to @, that fixes the first n steps. The family of these permutations satisfies the hypothesis of
lemma and gives us an injection ¢ : I — J. It is a surjection by construction: t,(7,) appears
as some 7 (0 ) by fairness, and o (k) = n. To see that ¢ - R = T, it is sufficient to observe that for
all n, 0 - R and T agree on the first n steps. O

Definition 3.3.22. Two traces T = (M,; (r;,8;)1) and T’ are union-equivalent if T’ can be refreshed
to a trace [#] T’ such that supp(T) = supp([#]T’). «

LEMMA 3.3.23. If T is a permutation of S, then T and S are union-equivalent.

Proof. Consider a trace (M,, (r;;0;);). For all n, each fact in M,, appears either in M, or in the
result of some rule r; with i < n. Traces T and S start from the same multiset and have the same
rule instantiations. It follows that they are union-equivalent. O

Corollary will be key to showing in chapter 6] that processes have unique observations.

COROLLARY 3.3.24. If R is interference-free from M, then all fair executions from M are union-
equivalent.

3.4. Related Work

Multiset rewriting systems with existential quantification were first introduced by Cervesato
etal. [Cer+99]. They were used to study security protocols and were identified as the first-order
Horn fragment of linear logic. Since, MRSs have modelled other security protocols, and strand
spaces [[Cer+o00}|Cer+os5]. Cervesato and Scedrov [|CSog| studied the relationship between MRSs
and linear logic. These works do not explore fairness.

Substructural operational semantics [Sim12] based on multiset rewriting are widely used to
specify the operational behaviour of session-typed languages arising from proofs-as-processes
interpretations of linear logic and adjoint logic. Examples include functional languages with
session-typed concurrency [TCP13]], languages with run-time monitoring [GJP18|], message-passing
interpretations of adjoint logic [PP19al], and session-typed languages with sharing [BP17].

Fairness finds its roots in work of Lamport [Lamy7] and Park [Par8of. Lamport [Lamy7]
studied the correctness of multiprocessor programs. He described fairness constraints on schedulers
using clocks, where process clocks were assumed to advance a certain amount in every period of
real time. Instead of using clocks, Park [Par8o] defined fairness using a “fair merge” operator on
traces. Early work [LPS81;|Par80] on fairness was concerned with fair termination. Francez [Fra86]
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gave a comprehensive analysis of fair termination. Weak and strong fairness were introduced
by Apt and Olderog [AO82] and Park [Par82] in the context of do-od languages. Fairness was
subsequently adapted to process calculi, e.g., by Grumberg, Francez, and Katz [GFK84|| for CSP-like
languages and by Costa and Stirling [CS87|] for Milner’s CCS. Hennessy [Hen87| studied fairness
in the setting of asynchronous communicating processes. Leu et al. [Leu+88| introduced fairness
for Petri nets. Kwiatkowska [Kwi89] surveys these notions and others, and gives a taxonomy of
varieties of fairness. Bounded fairness [DJPo3|] places bounds on how long we must wait before an
event occurs.

Fair scheduling algorithms are an active research area in the programming languages and
systems communities. For example, Sistla [Sis83]] studied the complexity of fair scheduling algo-
rithms. Henry [Hen84] gave a fair scheduler for processes on UNIX systems. Muller, Westrick,
and Acar [MWA19] and Muller, Acar, and Harper [MAH:18]| studied fair scheduling for interactive
computation and in the presence of priorities. Lahav et al. [Lah+20] gave an account of process
fairness under weak memory models.






CHAPTER 4

Fixed Points of Functors

Recursive types are ubiquitous in functional languages. For example, in Standard ML we can
define the type of (unary) natural numbers as:

datatype nat = Zero | Succ of nat

This declaration specifies that a nat is either zero or the successor of some natural number. Seman-
tically, we can think of nat as a domain D satisfying the domain equation

D = (Zero: {1})w (Succ: D),

where w forms the labelled disjoint union of domains. Equivalently, we can think of D as a fixed
point of the functor Fpat (X) = (Zero: {1}) w (Succ : X) on a category of domains.

Mutually-recursive data types give rise to a similar interpretation. Consider, for example, the
types of even and odd natural numbers:

datatype even = Zero | E of odd
and odd = 0 of even
This declaration specifies that an even number is either zero or the successor of an odd number,

and that an odd number is the successor of an even one. The types even and odd respectively
denote solutions D, and D, to the system of domain equations:

D, = (Zero:{1})w(E:D,) and D,z (0:D,).
These are solutions to the system of equations:
Xe 2 Feven(Xe, Xo) (26)
Xo & Foaa(Xe» Xo) (27)

where Feyen and Foqq are the functors Feyen(Xe, Xo) = (Zero : {1})w(E: X, ) and Fogq(Xe, Xo) =
(0: X,). We can use Beki¢s rule [Bek84, § 2] to solve this system of equations. To do so, we think
of eq. as a family of equations parametrized by X,. If we could solve for X, then we would get
a parametrized family of solutions F . (X, ) such that:

F:ven(XO) = Feven(F;rven(XO)’XO) (28)
for all domains X,. Substituting this for X, in eq. gives the domain equation
Xo 2 FOdd(F;rven(XO)’ XO)'

Solving for X, gives the solution D,. Substituting D, for X, in eq. , we see that D, = F! _ (D,)
is the other part of the solution.

The above example motivates techniques for solving parametrized domain equations. These
techniques are well understood. For example, given a suitable functor F : D x E — E on suitable
categories of domains, [AJ9s, Proposition 5.2.7] gives a recipe for constructing a functor F' : D — E
such that for all objects D of D, F'D = F(D, F' D). Is the mapping F ~ F' functorial? Semantically,
substitution is typically interpreted as composition [Crog3} § 3.4]. If the interpretations of recursive
types are to respect substitution, then the mapping F + F' must be natural in D. Is it? What other
properties does it satisfy?

Families of parametric fixed points arise elsewhere in mathematics. An external dagger op-
eration [BE9s, Definition 2.6; BE96, p. 7] on a cartesian closed category C is a family 45 :

63
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C(A x B, B) — C(A, B) of set-theoretic functions for each pair of objects A and B in C. Of partic-
ular interest are dagger operations that satisfy the (cartesian) Conway identities These identities
imply many other identities [BE96} § 3.3] useful for semantic reasoning, such as Beki¢’s rule. They
are also of independent interest. Indeed, they axiomatize a decidable theory [BEg8], and dagger
operations that satisfy them are closely related to the trace operator [JSV96; Hasgg, Theorem 7.1;
BHos3), p. 281]. Does the above dagger operation satisfy the Conway identities?

In this chapter, we present dagger operators in two different categorical settings. In sections[4.2]
to[4.4} we work with w-cocontinuous functors between categories with sufficiently many w-colimits.
In section[4.5} we work with locally continuous functors between O-categories. O-categories [SP82]
generalize categories of domains to provide just the structure required to compute fixed points of
functors and to show the limit-colimit coincidence theorem (theorem[2.2.53). In both cases, these
dagger operators will enjoy a 2-categorical structure that will imply the Conway identities. As an
application, in chapter[8|we see that properties of our dagger operation are essential for defining
and reasoning about semantics of session-typed languages with recursion.

4.1. Background

Recall from section [2.2.1.1)that w is the category with natural numbers as objects and with
at most one arrow between each pair of objects, where n — m if and only if n < m. An w-chain
in a category K is a diagram ] : w - K. An w-category [Lehy6a, Definition 5] is a category with
all colimits of w-diagrams. We warn the reader that the definition of w-category varies in the
literature. Some [[LS81, Definition 2.4] additionally require the existence of an initial object; we
call such categories IFP-categories. This name stems from the fact that IFP-categories have the
structure required for w-functors to have initial fixed points (see corollary[4.2.14] below). An w-
functor [LS81, Definition 2.5] is an w-cocontinuous functor, i.e., a functor that preserves all existing
colimits of w-diagrams. Small w-categories and w-functors between them form a 2-cartesian-
closed subcategory w-Cat of Cat. Small IFP-categories and w-functors between them form a
2-cartesian-closed subcategory IFP of w-Cat. A parameterized w-functor is a functor F : CxD — E
such that F(C,-) : D — E is an w-functor for all objects C of C.

4.2. Functoriality of Fixed Points

We show that constructing fixed points of w-functors is itself a functorial operation. The
initial fixed point of an w-functor F on an w-category is given by the colimit of the w-chain
L - Fl - F?1 - ---. Other fixed points can be constructed using a different “first link’, i.e., by
taking the colimit of a chain K - FK — F>K — - generated by alink k : K - FK.

Recall that, given natural transformations : F = G: C > Dand¢: H=1:D - E,
their horizontal composition is the natural transformation # * ¢ : FH = GI : C — E. Given a
morphism f : K - L in C, we abuse notation and write # * f : FK — GL for the naturality square

FK 2L pL ™ 6L = F 2 6ok S Gk

Definition 4.2.1. Fix an w-category K. Links form a category Linksg where

e objects are triples (K, k, F) called “links”, where K is an object of K, F : K - K is an
w-functor, and k : K — FK is a morphism in K;

e morphisms (K, k,F) - (L, I, G) are pairs (f, ) where f : K — L is a morphism of K,
n : F = G is a natural transformation, and f and # satisfy I o f = ( * f) o k : K > GL;

e composition is given component-wise: (g, p) o (f,7) = (go f,po ). «

The condition on morphisms between links provide the structure required to define morphisms
between the w-chains they generate.

PROPOSITION 4.2.2. If K has an initial object, then the link (1, 1, A1) is the initial link in Linksg.



4.2. FUNCTORIALITY OF FIXED POINTS 65

Proof. 'The object 1 is initial in K, and the constant functor AL is initial in IFP [K — K]. It follows
that for every (L, 1, G), there is at most one morphism (L, 1,AL) - (L,I,G). We check that
(Lr, Lg) is such a morphism. For every (L, I, G), initiality implies

commutes. We conclude that (17, 1) is a morphism in Linksg, and that (L, 1, A1) isinitial. O

The category Links is w-cocomplete, and proposition[4.2.4|below characterizes its w-colimits.
We first prove the following lemma. It extends [LS81, Lemma 4.3] to also specify the action of
mediating morphisms of cocones:

’ <
o 1

LEMMA 4.2.3. Let C be a category and let T = F, 2 F 2 and T' = F/ = F = .- be

w-chains in the functor category Cat[C — C|. Assume they have colimit cocones 0 : T = Fo, and

o' : T' = F!_, respectively. Then the w-chain T" = F.F, SN F/F, Z22 .. has the colimit cocone
o' *0:T" = F_F,.

Lety: T = Gandy' : T' = G’ be arbitrary cocones, and let ¢ : (0,F) - (y,G) and
¢ : (o', FL,) = (y', G") be the unique mediating morphisms of cocones. Then their horizontal
composition ¢' + ¢ : (0' * 0, FL Foo) = (y' * v, G', G) is the unique mediating morphism of cocones
onT".

Proof. See [LS81, Lemma 4.3] for the proof of the first paragraph. The second paragraph is an
obvious corollary of the first. O

Let 2 be the category (e — o).

PROPOSITION 4.2.4. Let | = (Ky, ko, Fo ) M (Ky, k,, F,) Yom).. be an w-chain in Links.

Let (x, Ko ) be the colimit of the w-chain K = K, L, K, b, . inK. Let (¢, Foo ) be the colimit of

the w-chain ® = Fo > F, > - in w-Cat [K — K]. Then there exists a koo : Koo = Foo Koo such
that (k,9) : ] = (Koo, koo, Foo ) is colimiting in Linksk.

kn
Proof. We can recognize each link (K, k,,, F,;) as a 2-diagram AK,, = F, o (AK,,) in the category

w-Cat [K — K]. Furthermore, we can recognize J as a diagram J : w — Cat [2 - w-Cat[K - K]]:

AKO A:fo> AK] A AKZ Af,
ﬂko ﬂlﬁ ﬂkz
Fyo (8Ko) 22288 o (ak) 280 p o (aK,) 2208,

Colimits in w-Cat[K — K] are determined component-wise, so the top row has colimit
(Ak, AKo). By lemma[4.2.3] the bottom row has colimit (¢ * «, Feo © (AKoo)). Let k = (ky, :
AK, — F, o (AK,)) be the natural transformation from the top row to the bottom row. Then
((¢p * k) ok, Foo 0 (AK)) is @ cocone on the top row, so there exists a unique cocone morphism
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koo : (A, AKoo) = ((¢p * k) 0 k, Foo 0 (AK)):

Afo Afy Af,

AK, AK, AK, =—=2 - .. AK.,
I I I i
'
Fo 0 (AK,) ox(8fo) F, o (AK,) Mx(8h) F, o (AK,) (8, Foo 0 (AKo)

¢r%(Ak,)

(p,*(AK,)

In particular, ko : AKoo = Foo © (AKs) is a natural transformation between two constant
functors, so is given by a single morphism Ko, — Foo Ko in K. We conclude that (Keo, koo, Foo ) is
an object of Linksg. It is immediate from the above diagram that (x, ¢) : ] = (Ko, koo, Foo ) is @
cocone in Linksg.

We show that this cocone is colimiting in Linksk. Let («, 8) : ] = (A, ¢, B) be any other co-
cone in Linksg. We begin by showing that there exists a cocone morphism (4, b) : (Koo, koo, Foo ) =
(A, c, B). Observe that («, ) determines a cocone « : K = A in K, so a unique cocone mor-
phism a : (x,Ke) — (@, A). It also determines a cocone § : ® = B in w-Cat[K — K], so
a unique cocone morphism b : (¢,Fs) — (8, B). Of course, («, ) also induces a cocone

(Aa, B+ Ax) : f = (AA = Bo (AA)). By lemmals.2.3) the components of unique mediating

J-cocone morphism are given by the top and bottom row of the following diagram:

AK,, ———2% . AA
I- !
bx(Aa)

Foo 0 (AKs) === Bo AA

These obviously induce a morphism (a, b) : (Keo, keo> Foo) = (A, ¢, B) in Linksg.

To see uniqueness, consider any other cocone morphism (a’, ") : ((x, ¢), (Koo, koo» Foo)) —
((a,B),(A,c,B)). Then a’ : (x, Koo ) = (&, A) is a cocone morphism in the category of cocones
[ Cone(K,-), so a’ = a. Analogously, b’ : (¢,Fw) — (f8,B) is a cocone morphism in the
category of cocones [ Cone(®,-), so b’ = b. We conclude that (a’,b") = (a,b), i.e., uniqueness
of mediating morphism.

We conclude that (k, ¢) : ] = (Koo, koo, Foo ) is colimiting. O

k k
There exists a functor ) : Linksx - w-Cat[w — K] that produces the w-chain K — FK LA

K 25 . fromalink (K, k, F). Its action on morphisms uses the horizontal iteration of natural
transformations. Consider functors H, G : C - C and a natural transformation # : H = G. We
define the family of horizontal iterates #() : H' = G, i € N, by recursion on i. When i = o,
H° = G° = id¢ and we define 7(°) to be the identity natural transformation on id¢. Given 5", we
set () = 5 (),
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We define the functor Q : Linksx — w-Cat[w — K]. The action of Q(K, k, F) on morphisms
n — n + k is defined by induction on k.

Q(K,k,F)(n) =F"K (29)
Q(K,k,F)(n - n) =idpig (30)
Q(K, k, F)(n - n+k+1) = F"*ko Q(K, k,F)(n - n +k) (31)
Q(f:K->Ly:F=G)y=n" « f: F'"K - G"L (32)

Proposition [4.2.7]generalizes the functor S : w-Cat [C -~ C] - w-Cat [w — C] of [LS77} § 3;
LS81, Lemma 4.2] to form chains with an arbitrary initial link in an w-cocontinuous manner. Its
existence depends on the following sequence of lemmas:

LEMMA 4.2.5. Let K be a category and F, G, H : K — K functors. Let n: F = Gandp: G = H
be natural transformations. Then for all n > o, (p o )" = p(") o (") . F = H".

Proof. Let K be an object of K. We proceed by induction on # to show that (p o 11) = (p™ o
7))k : F*K - H"K. When n = o, F°K = K = H°K and (p o ’7)1< = idg = (p® o 5.
Assume the result for some #, and consider the case # + 1. By the induction hypothesis and the
middle four interchange law,

(pomt™
=(pon)*(pom)™
= (P°’7) *(p o (”))
=(p*p™) o (n*n™)
= p(r) o (),
We conclude the result by induction. O

LEMMA 4.2.6. Equations (29) to (32) define a functor Q : Linksg — w-Cat[w — K].

Proof. In this proof we show that:
(1) Q(K,k,F) is a well-defined functor w — K for all links (K, k, F);
(2) Q(K,k,F) is an w-functor for all links (K, k, F);
(3) Q(f,n) is natural;
(4) Q respects composition.

Let (K, k, F) be an arbitrary link and abbreviate Q(K, k, F) by J. We must show that Jis a
well-defined functor w — K°. It preserves identities by eq. (30). We must show that it respects
composition. Let | - [+mand [+m — [+m+nbearbitrary, and note that | — l+m+n = (I+m —
l+m+n)o(l > 1+m). Wemust show that J(I > l+m+n) = J(l+m - l+m+n)o]J(l > 1+m).
We proceed by nested strong induction on 7. Assume first # = o, then by eq. (30),

J(l—>1l+m+n)

=J(I > 1+m)
=idpmg o J(I = 1+ m)
=J(l+m->1l+m)oJ(l—>1+m)

=J(l+m->1l+m+n)oJ(l—>1+m).
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Now assume the result for some 7, then by eq. (31),

Jl—=>1l+m+(n+1))

= F*™ ko J(1 > 1+ m+n)

=Fm ko (JU+m—>1+m+n)oJ(l - 1+m))
= (F"™ ko J(1+m—1+m+n))oJ(l > 1+m)
=J(+m->Il+m+(n+1))oJ(l - 1+m).

We conclude the result by induction.
We know that Q(K, k, F) is w-cocontinuous for all links (K, k, F) by proposition[4.A.16]
Next, we must show that Q) is well-defined on morphisms. Let (f, %) : (K, k, F) - (L,1,G) be
arbitrary. We must show that Q(f, %) : Q(K, k, F) = Q(L, I, G) is a natural transformation. Let
n — n + m be an arbitrary morphism of w. We must show that the following diagram commutes:

Q(f>1)n
_

F"K G"L
Q(K,F,k)(n—»n#—m)l Q(L.G.1) (n—n+m) (33)
Frmg QU sm)nem Grmy,

We proceed by induction on m. Assume first that m = o, then diagram [33|becomes

g 2 g

] J

g 2 g

and clearly commutes. Assume the result for some m, and consider the case m + 1. We must show
that the following diagram commutes:

Q(fom)n

F"K G"L
Q(K,F,k)(n%n+m+1)l J{Q(L,G,l)(n—m+m+1)
Fn+m+1K Q(f’r’)”“““ Gn+m+1L

By eq. (31), this diagram is equal to the outer rectangle of the following diagram:

prg — 2 g
Q(K,F,k)(n—m-*—m)J' J'Q(L,G>l)(n—>n+m)
Frtmp Q1) nm GrmL (34)
- [
Frtmiige Q1) e Grm+g

The top square commutes by the induction hypothesis. The middle horizontal morphism is
Qfs ) pem = ™ % f = G"" f o ngﬁm). Horizontal composition is associative, and the
bottom morphism is Q(f, 1) pemss = 4D % f = 5w M) s f = y(Hm) & 4 £ The bottom
square of diagram [34]is equal to the outer rectangle of the following diagram:

(n+m) Gn+Mf
Frtmi K;} Gn+mK S N Gn+mL

Fn+mkl J{ermk J{erml (35)
(n+m)

Fn+m+1K 3s Gn+mFK GHm(”*f) Gn+m+1L
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The left square of diagramcommutes by naturality of #("*™). The right square commutes because
lof = (n*f) ok, which holds because (f,#) is a morphism. So diagram [35] commutes. We
conclude that diagram 34) commutes.

Next, we must show that Q respects composition. Let (f,7) : (K, k,F) - (L,1,G) and
(g,p) : (L,1,G) —» (M, m, H) be arbitrary morphisms. We must show that Q(go f,po#) =
Q(g,p) o Q(f,n). This entails showing for all n € N that Q(go f,pon)n = Q(g p)n o Q(f>7)n
We proceed by induction on n. When n = 0, Q(go f,pon)o = gof = Q(g, p)ooQ(f,7)o. Assume
the result for some 7, and consider the case 7 +1. Then Q(go f,pon)ys = (pon)"™ % (go f)is
the diagonal of the following commuting square:

(pom) "™

Fn+1K HrH—lK
Fren| SGeteemi [HGen
Fn+1M 4\* Hn+1M.

(pon) ™

By lemma (p o)) = pn+1) o y(11) We recognize the above diagram as the perimeter
and diagonal of the following commuting diagram:

(n+1) (n+1)

Fn+1K K—) Gn+1K K;} Hn+1K
~<_ . ~_
F”“J‘J( QM) ns G f Qfop)nir JH"*‘f
-~ - -~
=~ =i
Fn+1L r]inﬂ) Gn+1L pl(-rH»]) Hn+1L
S~ 1 S~<
F"“gJ( Qg1 n G""'g Q(g:p) s J{H"“f
~~ v S~

That is, we have Q(go f,po#)pw = (Q(g p) © Q(f, 7)) n+1. We conclude by induction that
Q(gofipon) =Q(gp) o Qf. 1), B

PROPOSITION 4.2.7. Equations (29) to define an w-functor Q) : Linksg — w-Cat [w — K].

Proof. The proof loosely follows [LS81, Theorem 4.1]. We know by lemma that egs.
to define a functor Q : Linksy - w-Cat[w — K]. We show that it preserves w-colimits.
Let J : w — Linksk be arbitrary. Let Jm = (K., kyy, Fy) and J(m - m +1) = (o> Hm) -
(K> kms Fu) = (Kins1> k(1) Fms1); the purpose of the zeros in the subscript will be made
clear shortly. We can visualize )] as a commuting grid in K, with the m-axis pointing down and
the n-axis pointing to the right. Indeed, by uncurrying QJ : w - Cat[w — Linksk |, we get a
functor G : w x w — Cat[w — Linksg ] where G(m,n) = Q(Jm)n = F},K,,. The m-th row is
given by the functor H,, = G(m, —) : w — Linksg, while the n-th column is given by the functor
V, = G(-,n) : w - Linksg. We use the following abbreviations in the grid:

jm=Q(J(m > m+1)): Hy = Hypeos
jmn=G(m—>m+1,n):G(m,n) > G(m+1,n)
=1 % o EpKon = F Ko,
" =G(m,n—>n+1):G(m,n) > G(m,n+1)
=F)km: Fl Ky = F) 7' Koy,
i"={j"":G(m,n) > G(m,n+1)} ey : Vo= V(n +1).
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Then QJ and G determine the grid:

Vo

F°K, —— F'K, —— FK,

H,: >
ﬂjo J joo J jon JJ
.10 11 ;12

H: F°K, —— F'K, —— F’K, ——
[ T
H,: F°K, —— FK, -~ F’K, ——

Ja J{]‘zo J{ju J{ju

Assume that J has a colimit (x,¢) : ] = (Ko, koo, Foo ). We must show that the cocone
(Q(x,¢), Q(Koos koos Foo)) is a colimit of QJ : w - w-Cat[w — K]. By proposition [4.2.4} « :

Vo = Ko and ¢ : @ = F, are colimiting, where @ = F, N F, 2, ... We can see each V,asa
diagram V,,

F" o (AKy) 22 F' o (AK,) 2>

in w-Cat[K — K]. By lemma its colimit is @) x Ak : V,, = FZ o (AKo). It follows that the
cocone ¢ % i : V,, = F. Ko, is colimiting in K. Recall that colimits in w-Cat [w — K] are com-
puted component-wise, and observe that Q(x, ¢), = ¢(") % k and F. Koy = Q(Keo, koo Foo ) (11).

To show that Q(x, ¢) : Q] = Q(Kw, koo, Feo ) is indeed colimiting, it remains to show that
for each n, FlL ko, is a mediating morphism of cocones, i.e., that the following diagram commutes
for all n:

-1

J
Vn ———————— Vn+1

(p(")*xﬂ ﬂqﬁ(”“)*x (36)
" koo
Fl Ko — ==, prog

Observe that the following diagram commutes for all m:

(o8”),

F'K,, " L F'K,, F" Koo
F:’nka' " F;ka( lp; koo (37)
(¢ )Fme FL (¢m*Km)

F*'K, ———"— F! F,K, ——————— F"'Ko

Indeed, the left square commutes by naturality of ¢§;’> : F}, = Fl.. To see that the right square
commutes, recall that by definition of colimit in Linksk, the following square commutes:

K#*M
ok
K, Koo.

F,, — Fy
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Functors (including F..) preserve commuting diagrams, so the right square commutes. We recog-
nize the perimeter of diagram 37]as:

¢(") *
V,m % F" Koo

jan' (5 J{F’; Koo

m n+1
Vot ————" FIHK

Because this square commutes for all 7, we conclude that diagram [36|commutes. So Fl. ko is a
mediating morphism of cocones.
It follows that Q(x, ¢) : QJ = Q(Keo, koo, Foo ) is colimiting, i.e., that Q is an w-functor. [

4.2.1. General Fixed Points. We define a generalized-fixed-point w-functor, i.e., an w-functor
GFIX : Linksg — K such that for each link (K, k, F), there is an isomorphism GFIX(K, k, F) =
F(GFIX(K, k, F)). We assume that whenever K is an w-category, an w-colimit has been chosen
for each w-chain. This choice determines an w-colimit functor colim,, : w-Cat[w — K] — K, itself
an w-functor. The following result generalizes [LS81, Theorem 4.1]:

PROPOSITION 4.2.8. Let K be an w-category. The following composition defines an w-functor:
GFIX = colim, o Q : Linksg — K.

Proof. 'The functor ) is w-cocontinuous by proposition [4.2.7] The colimit functor is a left ad-
joint [Rie16} Proposition 4.5.1], and left adjoints preserve colimits [Rie16, Theorem 4.5.3]. The result
then immediately follows from the fact that w-functors are closed under composition. O

We claim that the isomorphism GFIX(K, k,F) = F(GFIX(K, k, F)) is natural in the link
(K, k, F). To show this, we begin by defining an “unfolding” functor:

PROPOSITION 4.2.9. Let K be an w-category. The following defines an w-functor UNF : Linksg —

K:
e On objects: UNF(K, k, F) = F(GFIX(K, k, F)),
o on morphisms: UNF(f, ) = n * GFIX(f, ).
Proof. 1t clearly defines a functor. We show that it is w-cocontinuous. Let ] = (Ko, ko, Fo) M

(Ky, ki, Fy) Yem), . be an arbitrary w-chain in Linksk. Let ((%, ¢), (Koo, koo» Foo ) ) be colimiting

for J. We must show that UNF(x, ¢) : UNFJ = UNF (K, koo, Foo ) is colimiting in K i.e., that
the following diagram is colimiting:

10 *GFIX(fo,10) 1+ GFIX( fi,11) 1+ GFIX(furrta)

Fo(GFIX(Ko, ko, Fo)) F.(GFIX(K,, ky, F,)) F,(GFIX(K,, k,, F,))

x J{tp‘*Gle(x,,fp,) / (38)
$o*GFIX (0, 60) Foo (GFIX(Koos ko> Foo ) $>#GFIX(K5,9,)

We can recognize the above cocone as the image of an w-colimit under an w-functor. Define
the w-chain W : w - w-Cat [K - K] x w-Cat [1 - K] by:
Wn = (F,, A(GFIX(K,, ky, Fr))),
W(n = n+1) = (1, AGGFIX(fu, 714))),
where A : K — w-Cat[1 — K] is the constant-diagram functor. Colimits in product categories are
computed component-wise. By proposition [4.2.4} (¢, F ) is colimiting in the first component.
Because GFIX is an w-functor, and (A(GFIX(x, ¢)), A(GFIX(Keco, koo> Foo))) is colimiting in the

second component. So ((¢, A(GFIX(x,9))), (Foo, A(GFIX(Koo, koo> Feo )))) is colimiting for W.
The composition functor o : w-Cat [K - K] x w-Cat [1 - K] - w-Cat [1 - K] is w-cocontinuous
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by proposition The evaluation functor w-Cat[1 - K] x 1 —» K is w-cocontinuous by
lemmal4.A.8} so ev, : w-Cat [1 - K] — K is w-cocontinuous. The image of W and its colimiting
cocone under the composition ev, o (o) is exactly diagram [38| Because the composition is w-
cocontinuous, we conclude that diagram [38]is colimiting. O

We now construct a natural isomorphism GFIX 2 UNF. Each of its components is a mediating
morphism of cocones induced by “shifting” the w-chain the link generates. When J : w — K,
write »J for the w-chain induced by shifting J by one, i.e., by taking »J(n) = J(n +1). Observe
that inclusion determines a natural transformation >; : ] = »J, and every cocone (y,G) on »J
induces a cocone (y o I>;, G) on J. Also observe that »Q(K, k, F) = FQ(K, k, F). Building on
these observations, we get the desired natural isomorphism:

PROPOSITION 4.2.10. Let K be an w-category. There exists a natural isomorphism unfold :
GFIX = UNF with inverse fold : UNF = GFIX. Where x : Q(K,k,F) = GFIX(K,k,F))
is colimiting, the (K, k, F)-component of unfold is the unique morphism (x, GFIX(K, k,F)) —
(Fx o Da(k.kry> F(GFIX(K, k, F))) in [ Cone(Q(K, k, F), -).

Proof. We begin by showing that the components are all isomorphisms. Fix some arbitrary link
(K, k, F). Then Q(K, k, F) generates the w-chain at the bottom of the following diagram:

unfold(Kyk,g

fold (x k. r
GFIX(K, k, F) Yk B(GFIX(K, k, F))
R
K k FK Fk F2K F*k 3K Fk

The colimit cocone (x, GFIX(K, k,F)) is in red on the left. Because F is an w-functor, the
blue cocone (Fx, F(GFIX(K, k, F))) on the right is again colimiting. It defines a cocone (Fx o
>a(x.kF)» F(GFIX(K, k, F))) on Q(K, k, F) through composition. Let x* be the restriction of x
to FQ(K, k, F), i.e, k) = k4.
Consider the following mediating cocone morphisms
unfoldx k,r) : (x, GFIX(K, k, F)) = (Fx o Dok k) F(GFIX(K, k, F)))

fold ki, : (Fx, F(GFIX(K, k, F))) = (x*, GFIX(K, k, F))
in [ Cone(Q(K,k,F),-) and [ Cone(FQ(K,k, F),-), respectively. We show that these two
morphisms are mutual inverses in K.

We begin by showing that fold g x ry © unfold(k k) = idgrix(k.k,r)- To do so, we show
that fold k x,r) © unfold k k) is a cocone morphism (x, GFIX(K, k, F)) — («, GFIX(K, k, F)).
Because (x, GFIX(K, k, F)) is initial in | Cone(Q(K, k, F), -), it will inmediately follow that the
morphism must be equal to the identity morphism. We must show for all n that x,, = (fold(k x r) ©
unfold(k k,r)) © k,. We compute:

(fold (k. k,r) © unfold(k k.ry) © &»

= fold (k. x,ry © (unfold (x k,ry © %)

= fold(k k) © (FK ° DQ(K,k,F))n

= fold(x k,r) © (FK)n 0 Q(K, k, F)(n — n+1)
=x, o Q(K,k,F)(n—>n+1)

=Ky 0o UK, k, F)(n > n+1)

= Ky.

We conclude that fold k i, ) o unfold(k .y = idGrix(k,k,F)-
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Next, we show that unfold g x r) o fold(k x ry = idp(GFIX(k k,F)) Using an analogous argument.
We compute:
(unfold k k,Fy © fold(k k,ry) © (FK),
= unfold x,r) © (fold(x x, 7y © (FK)x)
= unfold x k) © &,
= unfold(g x,F) © Kn+
= (FK) s,
= (Fx)y.
We conclude that each of unfold is an isomorphism.

Next, we show that unfold is natural. Let (f,#) : (K,k,F) — (L,l,G) be an arbitrary
morphism of Linksy. Let (x, GFIX(K, k, F)) and (A, GFIX(L, I, G)) respectively be the colimiting
cocones of Q(K, k, F) and Q(L, I, G). We show that the following diagram commutes in K:

>
Q(K, k, F) e FQ(K, k, F)

\ %
“nf°|d(K,k,F)
—_—>

GFIX(K, k, F) F(GFIX(K, k, F))
(i) GFIX(I,H)J JUNF(f,n)ﬂv*GFIX(f,n) pea(fn) (39)
unfold
GFIX(L,1,G) &9, G(GFIX(L,1,G))
Q(L,1,G) Pawto) GQ(L,1,G)

The top, left, and bottom trapezoids commute by definition of unfold and GFIX. To see that the
right trapezoid commutes, observe that the following diagram commutes by definition of GFIX:

GFIX(K,k, F) <————= Q(K,k,F)

GFIX(f,r])J' ﬂﬂ(f,n)
GFIX(L,1,G) —2—— Q(L,1,G)

commutes by definition of GFIX. Its image under F is the top rectangle in the following diagram;
the bottom rectangle commutes by naturality of #:

FGFIX(K, k, F) —2—— FQ(K, k, F)

FGFIX(f,n)J( HFQ(M)
FGFIX(L,1,G) ——— FQ(L,1,G)
ﬂFcHx(L,t,c)J( ﬂnQ(L,l,G)

GGFIX(L,1,G) «—2— GQ(L,1,G)

The outer perimeter of this rectangle is exactly the right trapezoid of diagram[3g] To see that the

outer perimeter of diagram [39]commutes, we must show that it commutes at each component 7.
Observe that for arbitrary n,

2=Q(K,k,F —
Q(K,k,F)(H) _ Pk (Do kr )n=( Y(n—n+1) FQ(K,k,F)(n) — FF"k

agsn. | |aragan—agm..
2=Q(L,1,G)(n—>n+1
O(L,1,G)(n) = G, — 2awtol20CLOC=D -0 11 GV () = GGIL
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is exactly the square given by the functoriality of Q. So we conclude that the outer perimeter
of diagram 39| commutes. It follows that the two paths around the outer perimeter define equal
cocones:

(GAo (n*Q(f. 1)) o Dakr)> G(GFIX(L,1,G)))
= (GAo Baig) © O(f, 1), G(GFIX(L, 1, G))).

The inner rectangle of diagram 39]then describes two cocone morphisms
(1, GFIX(K, k, F)) = (GA o D>or1,6) © Q(f>n), G(GFIX(L, [,G)))

in [ Cone(Q(K, k, F),-). Because (x, GFIX(K, k, F)) is initial, these two cocone morphisms
must be equal, i.e., the inner rectangle commutes. We conclude that unfold is natural. O

We can specialize the above constructions to produce initial functor algebras. Indeed, given
an IFP-category K, the category IFP [K — K] embeds fully and faithfully into Linksk via the
functor that maps objects F : K — K to the link (1, 1, F) and natural transformations 7 : F = G
to the morphism (id, , ). We define the initial-fixed-point functor FIX : IFP [K — K] — K as the

composition IFP [K — K] - Linksk STX K. The following proposition is standard:

PROPOSITION 4.2.11 ([LS81, Theorem 4.1]). The initial-fixed-point functor FIX : IFP [K — K] —
K is an w-functor.

PROPOSITION 4.2.12. Let K be an w-category. Let I : IFP [K — K] — Linksk be the functor
given by I(F) = (L, 1, F) and I(n) = (id,, n). Then I is a full and faithful w-functor.

Proof. The mapping I is clearly functorial. Let 7, p : F = G be two morphisms in IFP [K — K]
and assume I(7) = I(p). Then (id,, ) = (id,, p). It follows that % = p, so I is faithful.

Let F,G : K — K be two w-functors. Let (f,#) : I(F) - I(G) be a morphism in Linksg.
Then (f,%) : (L, 1, F) - (L, L, G). This implies that f : 1 — 1. But Ls is the initial object, and
there exists a unique morphism 1 — 1, namely, id, . It follows that ( f, ) = I(#). We conclude that
I'is full.

Consider some diagram J : w — IFP [K — K] with colimit « : ] = F.,. Then (I, IF.,) is
colimiting for I] by proposition[4.2.4] We conclude that I is w-cocontinuous. O

We use the close relationship between cocones and functor algebras to show that FIX does
indeed produce initial fixed points. Write F* : w — K for Q(1, L, F). The following proposition
tells us that every F-algebra induces a cocone on F®. This construction of cocones from algebras is
not new: it appears in the proofs of [SP82, Lemma 2;]/AMM:18, Theorem 3.5]. However, to the best
of our knowledge, the fact that this action on objects extends to a full and faithful functor, and the
initiality result are new. These facts will be used repeatedly in proofs below.

PROPOSITION 4.2.13. Let K be a category with an initial object, and let F : K — K be a functor.
The following defines a full and faithful functor Cone” : K¥ — [ Cone(F®, -) from the category K*
of F-algebras to the category [ Cone(F“,—-) of cocones on F*:
e on objects: Cone” (A, a) = (a, A) where « : F® = A is inductively defined by ao = 15 and
Oy =aoFay,
e on morphisms: Cone’ f = f.

IfF is an w-functor and K is an IFP-category, then Cone® (FIX(F), fold(L,L)p)) is initial.

Proof. We begin by checking that the functor is well-defined on objects. Let (A, a) be an F-
algebra. We show that « is a cocone on Q(1, 1, F) with nadir A. We must show that for all n,
®n = 0piy 0 Q(L, L, F)(n — n+1). We do so by induction on n. When # = o, we have by initiality
that

ao=Llg=aoFlsolp =a;0Q(L, 1, F)(o—1).
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Assume the result for some n, then

ny=aoF(ay)
=aoF (ay;0Q(L L, F)(n—>n+1))
=aoF(ap,)oF(Q(L, L, F)(n—>n+1))
=aoF(ap,)oQ(L, L, F)(n+1—>n+2)
=0p,0Q(L, LF)(n+1—>n+2).

We conclude that « is a cocone.

The action of Cone’ on morphisms is clearly functorial. Let (A, @) and (B, b) be F-algebras
and let (&, A) and (B, B) be their respective images under Cone”. We must show that if f :
(A,a) — (B, b) is an F-algebra homomorphism, then it is a morphism of cocones. In particular,
we must show that forall n € N, f o, = ,,. We do so by induction on n. When n = o, we
have by initiality that f o &, = L = 5. Assume the result for some n. Because f is an F-algebra
homomorphism, f o a = b o Ff. It follows that:

foany, =foaoFa,=boFfoFa,=boF(foa,)=boFB,=Lnu.

We conclude the result by induction.

The functor is clearly faithful. We show that it is full. Let (A, a) and (B, b) be arbitrary F-
algebras, and let f : Cone” (A, a) - Cone’ (B, b) be arbitrary. We claim that f : (A, a) — (B, b) is
an F-algebra homomorphism. We must show that f o a = b o Ff. Consider the following diagram:

A+2— FA

T m]

f J_i*FJ_ Ff

o o

B« FB

The top and bottom squares commute by definition of Cone’ (A, a) and Cone” (B, b). The left
circular segment commutes by initiality, while the right circular segment commutes because
functors preserve commuting diagrams. So the whole diagram commutes. We conclude that
f:(A,a) - (B,b) is an F-algebra homomorphism. It follows that Cone” is full.

Assume F is an w-functor and let k : F¥ = FIX(F) be colimiting. Then (x, FIX(F)) is initial
in [ Cone(F“,-). We show that ConeF(FIX(F),fold(l,l,F)) = (x,FIX(F)). Set (¢, FIX(F)) =
Cone’ (FIX(F), fold(,,, r)). We show by induction that x,, = ¢,, for all n. When n = o, the result is
immediate by initiality: ko, = Lrix(r) = ¢o. Now assume the result for some n. Recall that fold(, , r)
is by definition (proposition the unique cocone morphism (Fx o >ro, F(FIX(F))) —
(%, FIX(F)). This implies that perimeter of the following diagram commutes for all n:

fold(,,1,r
FIX(F) S F(FIX(F))
F"1 Frig,

(D>pw)n=F*(n—>n+1)

The bottom triangle commutes by definition of x. We show that the top triangle commutes. Recall
that F is an w-functor, so Fx : FF* = F(FIX(F)) is colimiting. Observe that ("), = K4, :
FF® = FIX(F) is a cocone. It follows that there exists a unique morphism (Fx, F(FIX(F)) —
(x*,FIX(F)) in [ Cone(FF“,-),ie.,aunique f : F(FIX(F)) — FIX(F) in K such that

foFx, =%y, : F"" L - FIX(F)
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for all n. We claim that f = fold(, , r). To see that this is so, observe that the following diagram
commutes for all n:

f

FIX(F) F(FIX(F))
F"p (\lel'

(Do) n=F(n—>n+1)

Indeed, the top triangle commutes by definition of f, while the bottom triangle commutes by
definition of k. The perimeter of this diagram implies that f is a cocone morphism (Fx o
>po, F(FIX(F))) — (x,FIX(F)). But fold(, , py is the unique such morphism, so we have
f = fold(y,.,F). It follows that the top triangle of diagram commutes, so the entire diagram
commutes.

We are now ready to show that ¢,,,, = x,,1,. Recall that ¢,,, = fold(, , ) o F¢, by definition.
By the induction hypothesis, ¢,, = k4, $0 ¢4, = fold(, | ) o Fx,. By diagram it follows that
Gnsr = Kns1. We conclude by induction that ¢ = «. It follows that Cone” (FIX(F), fold(,,,,r)) =
(x, FIX(F)) is initial. O

The following corollary is again standard, but its proof is new and its statement clarifies the
nature of the mediating F-algebra homomorphism:

COROLLARY 4.2.14 ([SP82, Lemma 2;|AMM18, Theorem 3.5]). Let K be an IFP-category. The
initial algebra of an w-functor F : K — Kis (FIX(F),fold(, , r)). Given any other F-algebra (A, a),
the unique F-algebra homomorphism (FIX(F),fold(, | ry) — (A, a) is the unique cocone morphism
ConeF(FIX(F),fold(u,F)) — Conef' (4, a).

Proof. The cocone Cone” (FIX(F), fold(, , r)) is initial in | Cone(F,-) by proposition
Recall that initial objects are given by the limit of the identity functor [Rie16, Lemma 3.7.1], and that
full and faithful functors reflect any limits that are present in its codomain [Rie16, Lemma 3.3.5].
Because Cone” is full and faithful, it follows that (FIX(F),fold(, , ry) is initial and that the unique
morphism is as described. O

4.3. 2-Categorical Structure of Parametrized Fixed Points

In this section, we explore the 2-categorical properties of the parametrized-fixed-point functor
given by Lehmann and Smyth [LS77, § 3]. This 2-categorical structure is, to the best of our
knowledge, new. From these properties, we deduce that the parametrized-fixed-point functor
defines a dagger operation that satisfies the Conway identities.

We begin by observing that their parametrized-fixed-point functor is a 2-natural transforma-
tion. This answers the first question of the introduction: the definition of (-)" : IFP[D x E - E] —
IFP [D — E] is natural in D. In fact, naturality does not require D to be an w-category. Given a
category D and an IFP-category E, let Cat[D x E —, E] be the category of parametrized w-functors
F:D x E - E, i.e, functors such that F(D, -) : E - E is an w-functor for all objects D of D.

PROPOSITION 4.3.1. Let E be an w-category. The following family of functors forms a 2-natural
transformation (-)" : Cat[- x E >, E] = Cat[- — E] : Cat®® - Cat:
()}, = Cat[idp — FIX]o A : Cat[D x E -, E] » Cat[D - E].
It restricts to a 2-natural transformation (-)" : IFP [~ x E » E] = IFP [~ - E] : IFP°? — IFP.
Proof. We begin by showing naturality. We must show for all G : C — D that the following diagram

commutes:
Y
Cat[D xE -, E] b, Cat [D - E]
Cat[GxE—»wE]J' JCat[G—»E]

Ry
Cat[Cx E ., E] ¢ Cat[C - E]
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We first show that the two functors defined by the two paths around the square agree on objects.
Let F : D x E -, E be arbitrary and abbreviate Fg = Cat[G x E —, E](F) = Fo (G x idg). By
naturality of A:

AFg =A(Fo(Gxidg)) = (AF)oG.
Then by definition of (+)T,

(Fe)¢
- ([ide ~ FIX] 0 A)(F)
= [idc = FIX](AF o G)
=FIXo AFo Goidc
=FIXoAFoidpo G
= [idp — FIX](AF) o G
= FIT) oG.
Now let 77 : F = F’ be an arbitrary natural transformation. We compute:
(()LoCat[GxE—,E])y
= (1% (G xide))¢
= [idc = FIX] (A (7 + (G xidg)))
= [id¢ = FIX] (A * G)
=FIX % (A * G) *idc
=FIX* An *idp * G
= (An)p * G.
We conclude that the two paths around the diagram define equal functors, i.e., that ()" is natural.

We show that it is 2-natural. Let & : G = G’ : C — D be an arbitrary 2-cell in Cat. We must
show that the two following 2-cells (i.e., natural transformations) are equal in Cat:

Cat[GXE—,E]
— T Nt
CatDxE -, E] |Catfa xE—>,E] Cat[CxE -, E] Ve, Cat [C—E],
\/}

Cat[G'xE—,E]

Cat[G—E]
Cat[D x E >, E] -, Cat[D - E] _ |Cat[a - E]  Cat[C - E].
\Cat[G_,_>E:|/7
For an arbitrary component F : D x E -, E, we compute:
(()E * Cat[a x E -, E])F
:(F*(ocxidE):Fo(GxidE)jFo(G'xidE))TC
= ([idc > FIX]o A) (F* (a xidg): Fo (G xidg) = Fo (G’ xidg))
= [idc = FIX] (AF * « : FG = FG')
=FIX* AF * «
=FIX* AF *idp *
= FIT) * o
= (Cat[a — E] ()L)F

We conclude 2-naturality.
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We show that ()" restricts to a 2-natural transformation IFP [~ x E - E] = IFP[- —» E] :
IFP°? — IFP. To do so, we note that each D-component restricts to an w-functor

IFP [idp — FIX] o A : IFP [~ x E — E] = IFP [~ — E] : IFP°® — IFP.
by lemma and propositions[4.A.10]and [4.2.11] The same argument as above shows that it is

2-natural. O

Explicitly, given an F : D x E -, E and an object D of D, F,D = FIX(F(D,-)). Propo-
sition implies that (-)" defines an external dagger operation on horizontal morphisms in
IFP:

Definition 4.3.2. Let Cbe a cartesian category. An external dagger operation in product form [BEg6|
§ 3.1;[BE9s, Definition 2.6] is a family of set-theoretic functions + = (14 5) indexed by pairs of
objects A, Bin C, where 14,5 : C(Ax B, A) - C(B, A) is a function of hom-sets. Given an external
dagger operation 4,5 : C(A x B, B) — C(A, B) and a morphism f : A x B — B, we write f' for
Ta(f)- h

We will show that (-)" produces parametrized fixed points. To do so, we begin by defining a
family of functors that gives their unrollings:

PROPOSITION 4.3.3. Let E be an w-category. The following family of functors forms a 2-natural
transformation UNR(-) : Cat[- x E -, E] = Cat[- — E] : Cat°* — Cat, where D ranges over
small categories:

UNRp(F) = Fo (idp, F)
UNRp () = 1  (idp, ")
It restricts to a 2-natural transformation UNR(-) : IFP[- x E > E] = IFP [~ — E] : IFP°? — IFP.

Proof. Each component is a well-defined functor. We first show that the components assemble into
a natural transformation. Let G : C — D be arbitrary. We must show that the following diagram

commutes:
UNRp

Cat[D xE —, E] Cat[D — E]
Cat[GxE—n‘,E]J J{Cat[GaE]
Cat[CxE >, E] —2R¢_, Cat[C - E].

We show that the two paths around the diagram agree on objects. Let F : D x E —, E be arbitrary,
then

(Cat[G — E] o UNRp) (F)
= UNRp(F) 0 G
=Fo(idp,F') oG
= Fo(idp o G,F' 0 G)
=Fo(Goidc,idg o F' 0 G)
= (Fo (G xidg)) o {idc, F' o G)
which by proposition
= (Fo (G xidg)) o (ide, (Fo (G x idg))')
= UNR¢(F o (G x idg))
= (UNRc¢ o Cat[G x E >, E]) (F).

An almost identical derivation gives that the two paths around the diagram agree on morphisms.
We conclude naturality.
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We now show 2-naturality. Let « : G = G’ : C — D be an arbitrary 2-cell in Cat. We must
show that the following 2-cells (i.e., natural transformations) are equal in Cat:

Cat[GxE—,E]

—_— T UNR(-
Cat[DxE—,E]  |CatlaxE—oE]  Cat[CxE -, E] e,
\//)

Cat[G'xE—,E]

Cat[C - E],

Cat[G—E]

UNR(- .
_ONROb  cat[D > E] T |Cat[a > E]  Cat[C— E].
\—/

Cat[D x E >, E]
Cat[G'—~E]
For an arbitrary component F : D x E -, E, we compute:
(UNR(:)c * Cat[a x E —, E])
= UNR(F * (a xidg))c
= Fx* (axidg) * (idc, (F * (a xidg))")
=F#{a,F' + a)
= F(idp, F') » a
=UNR(F)p * «
= (Cat[a - E] o UNR(-)p) . -

We conclude 2-naturality.

To show that 2-natural transformation restricts to UNR(-) : IFP[- x E - E] = IFP [- — E] :
IFP®? — IFP, we show that each component is an w-functor. But this is obvious by proposi-
tion[4.2.11} The proof of 2-naturality carries over unchanged.

We usually expect a dagger operations to satisfy the fixed-point identity [BEg6), p. 7]. It states
that T = fo(ida, f7) forall f : A x B — B, i.e., that a dagger operation gives parametrized fixed
points. The fixed-point identity does not hold in general for dagger operations on functors: F' and
F o (id, F') need not be equal on the nose. However, it holds up to natural isomorphism, giving an
analog of proposition [4.2.10|for solutions to parametrized equations. Proposition [4.3.4|gives a new
2-categorical formulation of the fixed-point identity. Not only do we have a natural isomorphism
F" = Fo (id, F) for each F, but these natural isomorphisms assemble to form a modification, i.e.,
a morphism between the 2-natural transformations (-)" and UNR.

PROPOSITION 4.3.4 (Fixed-Point Identity). Let E be an IFP-category. There is a modification
Unfold : (-)" - UNR: Cat[- x E —, E] = Cat[- - E] : Cat°® - Cat

that is an isomorphism; we call its inverse Fold. For each category D, parametrized w-functor
F:D x E -, E, and object D of D, the corresponding component is the isomorphism

(Unfoldpy)p = unfold(, , r(p,-y) : F'D - F(D, F'D)

given by proposition|4.2.10}
Unfold restricts to a modificative isomorphism (-)" - UNR : IFP [- x E - E] = IFP[- — E] :
IFP°? — IFP.

Proof (sketch). We must show that for each small category D, we have a 2-cell
Unfoldp : (-){, = UNRp : Cat[D x E >, E] - Cat[D — E]
such that for all G : C — D, the two following 2-cells are equal:
Ol
T
Cat[D xE -, E] |Unfoldp Cat[D — E]
[

UNRp

Cl6>E | Cat[C - E]
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Cat[CxE -, E] |Unfoldc Cat[C— E].
R
C

It follows easily from proposition [4.2.10]that Unfoldp is a 2-cell. To see that it satisfies the desired
equality, consider some arbitrary F : D x E -, E and object C of C. Then the F, C-component of
the top 2-cell is

Cat[D x E —, E] —L0xE=eE]

(Unfold},G) .
= (Unf0|dg)Gc
= unfOld(l’l,F(GC,—))

= unf0|d(l)l,(Fo(G><idE))(C,*))
- (Unfold?(GXidE))C,

which we recognize as the F, C-component of the bottom 2-cell. Because F, C, and G were chosen
arbitrarily, we conclude the desired equality and that Unfold is a modification. It is clearly an
isomorphism, and the restriction clearly has the desired properties. O

Proof. We begin by showing that Unfold is a modification. We must show that for each small
category D, we have a 2-cell

Unfoldp : (-)§, = UNRp : Cat[D x E -, E] - Cat[D — E]

such that for all G : C — D, the two following 2-cells are equal:

b
T at[G—
Cat[D xE >, E] |Unfoldp ~ Cat[D - E] — 1", cat[c > E],
-
UNRp
(e
at[GxE—,, -
Cat[D xE >, E] Cat[GE~o Bl Cat[CxE —, E] |Unfoldc Cat[C— E].
R 4
UNRc
In particular, we must show that forall F: D x E —, E,
Unfoldf,G = Unfoldf (@) (41)

define equal natural transformations from F' o G to F' o (idp, F') o G.
We begin by showing that Unfoldp is a 2-cell, i.e., that Unfold}) is natural in F, i.e., that for
any natural transformation # : F = G : D x E -, E, the following square commutes:

Unfold},
F —=== Fo(id, F')

f *(id, 5"
”ﬂ Unfold$ ﬂ” e
G' 2 Go (id, GT)

This square commutes if and only if every component does, i.e., if and only if for every object D of
D, the following square commutes:

(Unfoldf,)D .
F'D ———2 (Fo(id, F'))D

(WT)DJ' J{(V/*(idﬂ*))p
i (Unfold), L
G'D ——= (Go(id,G"))D.
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It is exactly the following square:

unfold(LLFD)

GFIX(L, 1, Fp) UNF(L, 1, Fp)
GFIX(id,(An)D)JV JUNF(id»(An)D)
unfold, |
GFIX(L, L,Gp) &%), UNF(L, L, Gp).

It commutes by proposition[4.2.10} Because F and D were arbitrary, we conclude that Unfoldp, is a
2-cell.
We now show that Consider some arbitrary object C of C. Then the C-component is

(UnfoldpG)..

= (Um‘oldg)GC

= UnfO'd(l’LF(GC,—))

= Unfold(l)l,(Fo(GXid}:))(C>’))

= (Unfoldfzo(GXidE) )c

Because F and C were chose arbitrarily, we conclude eq. (41). Because G was chose arbitrarily, we
conclude that Unfold is a modification.

The modification Unfold is clearly an isomorphism: for each D, the component Unfoldp :
()}, = UNRp is an isomorphism. Indeed, each F-component Unfoldy, is an isomorphism, for
each of its D-components (Unfoldg) p, is an isomorphism by proposition

The modification Unfold clearly restricts to

()" > UNR: IFP [~ x E - E] = IFP [~ — E] : IFP®* - IFP,
all while remaining a modification and an isomorphism. O

Proposition abstracts considerable information. We unpack its definitions to get several
corollaries. The first corollary is a special case of [LMZ19, Theorem 4.4.8] when N and M are
identity functors. It will be key to defining the interpretations of recursive session types in chapter|s]

COROLLARY 4.3.5. Let D be a small category. Then Unfoldfy and Foldf, are natural in F, i.e.,
given any natural transformation n : F = G : D x E — E, the two following squares commute:

Unfold}, Fold}

F’ Fo(id,F") Fo(id,F") F?
’Trﬂ ﬂﬂ*(id”f) ﬂ*(id,fﬁﬂ ﬂ’f
Unfold§ Fold$
G’ 2 Go (id, G*) G o (id, G*) 2 G7

Corollary gives identities that will be useful in chapter [8] Equations (42) to are
immediate from the definitions of 2-natural transformation and proposition[4.3.1] Equations
and are immediate from the definition of modification and proposition|[4.3.4]

COROLLARY 4.3.6 (Parameter Identity). Let C and D be small categories and let E be an IFP-
category. Let F,H : D x E — E be parametrized w-functors and let G,1: C — D be functors. Set
Fg =Fo(Gxidg) : Cx E - E, and analogously for Hy. Let ¢ : F = H and y : G = I be natural
transformations. Then

F.=F' oG:C~E, (42)

Fg o (idc, Fl) = Fo (idp, F') 0o G: C > E, (43)
(¢ (yxide)) = ¢"+y: F, = H], (44)
Foldf¢ = FoldhG : Fg o (idc, F},) = FL, (45)

Unfold® = UnfoldpG : F, = Fg o (idc, FL). (46)
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Proposition [4.3.7/generalizes corollary[4.2.14|to parametrized fixed points. Given a horizontal
morphism f : A x B > B in a 2-cartesian category, an f-algebra [BEgs, Definition 2.3] is a pair
(g, u) where g : A — B is a horizontal morphism and u : f = (id,, g) = g is vertical. An f-algebra
homomorphism (g, u) — (h,v) is a vertical morphism w : g = h such that w-u = v (f * (id4, w)).
These f-algebras and f-algebra homomorphisms form a category. If we restrict our attention to
the 2-cartesian category Cat, we get the parametrized F-algebras of [Fiog4, Definition 6.1.8]. By
additionally requiring A = 1, we recover the usual notion of F-algebras.

PROPOSITION 4.3.7. Let D be a category and E be an IFP-category. Let F : D x E —,, E be
a parametrized w-functor. The initial F-algebra is (Ff, FoIdFD). Given any other F-algebra (G, y),
the mediating morphism ¢ : F' — G is a natural transformation. The component ¢ is the unique

F(D, -)-algebra homomorphism (FfD, (FoIdS)D) — (GD, yp) given by corollary

Proof. Let (G,y) be an arbitrary F-algebra. We begin by showing that there exists an F-algebra
homomorphism ¢ : (F T Foldg) — (G, y). Given an object D of D, write Fp, for the partial appli-
cation F(D, —). For every object D, (F 'D, (Foldg) D) is the initial Fp-algebra by corollary
This implies that there exists a unique Fp-homomorphism ¢p : F'D — GD making the following
square commute:

Foldf
Fp (D) B2 iy

FD¢DJ Jvfﬁv

Fp(GD) —2 GD.

We claim that these morphisms ¢ assemble into a natural transformation ¢ : FT — G. It will
immediately follow that ¢ is an F-algebra homomorphism from (F*, Fold) to (G, y).

To show that ¢ is natural, let f : A — B be an arbitrary morphism in D. We must show that
the following square commutes:

Fra -, Ga

ol o

F'B -, GB.

Recall that, given an L : E — E, we write L* for the functor Q(1, L,L). Leta : F{ = F'A and
B : F§ — F'B be colimiting. Let

(vA,GA) = Cone("F4)(GA,y4),
(v®,GB) = Cone("F)(GB, y3)

be cocones on F§ and Fy, respectively, induced by proposition [4.2.13] By this same proposition,
¢4 and ¢y are cocone morphisms

¢a:(a, FFA) > (vA,GA) in f Cone(F¥,-),

5 (B.F'B) > (v},GB) in [ Cone(F¥, ).
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Write Fy for the natural transformation AF f : F4 = Fp. We then have the following diagram in E:
FiA——*  GaA

N, A

F'f HF}J Gf (47)

/\

Fp—— % . GB.

We show that ¢ o F' f and Gf o ¢4 are both mediating morphisms from the colimiting cone « to
the cocone v® o F%. Tt will then follow by uniqueness of mediating morphisms that they are equal
and that ¢ is natural.

We begin with ¢ o F' f. By definition of F' f, F' f is a mediating morphism from « to 8 o FY.
By the remarks above, ¢ is a mediating morphism from f to v, so it is also a mediating morphism
from o F{to vBo FY. So going around the left and bottom sides of diagram we get a mediating
morphism ¢p o F' f from a to v® o F¥.

We next show that Gf o ¢4 is a mediating morphism. By definition, ¢, is a mediating
morphism from « to v4. We must now show that G f is a mediating morphism from v# to v& o F%,
i.e., we must show that for all n,

Gfov’::v50(F}”)n:FXJ_—>GB (48)
are equal morphisms. We do so by induction on n. When n = o, initiality gives us
GfO VOA =1gB = Vf o (F}H)o .

Assume the result for some 7. To show the result for # + 1 we must show that the outer rectangle of
diagram[49|commutes:

Gf

GA » GB
x %
e F,.GA 299 bR o (49)
/F,«:ﬁ) Fm
FzﬂlE FEHJ_E

(#7)...

The upper trapezoid commutes by definition of F-algebra and the assumptlon that (G, y) was

an F-algebra. The two triangles of diagram E commute by definition of v4, and vZ, (see
proposition [4.2.13). The bottom trapezoid is equal to the perimeter of diagram 5o}
Fr).
F,GA D p g Ma | poop
mv‘:ﬂ mvfﬁ %(vfﬁ) (50)

FX-HJ_E _— FAFnJ_E P Ee— FEHJ_E.

n((F),) T (g,
Indeed, the top morphism of diagram [5olis exactly F(f,Gf):
F(f,Gf) = F(f,idgs) o F(ida, Gf) = (Fy) ;, © Fa(Gf).
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The bottom morphisms are equal by definition of F}" (eq. ):

(7).

= Q(ldb F;J)n-#l
= F}nﬂ) *id,

= (7).,

= (Fr+F)

= (Ff)pg“g o Fy ((ngn))l,z)
= (), oFA((F}”)n).

To see that diagram [50| commutes, we note that the left square commutes by applying F4 to the
square given by the induction hypothesis. The right square commutes by naturality of F. By pasting,
the perimeter commutes. So we conclude that the bottom trapezoid of diagram [49] commutes.

By pasting the two trapezoids and two triangles, we get that diagram |[49[commutes. Equa-
tion then holds by induction, so G f is a mediating morphism from v* to v® oFY¢. By composing

around the top and right sides of diagram ‘ we get a mediating morphism from « to v® o Fy.

By the remarks following diagram we conclude that ¢ is a natural transformation from F*
to G.

We show that ¢ is unique. Consider any F-algebra homomorphism o : (FT, Foldg) = (G,y),
and let D be an arbitrary object of D. By definition of F-algebra homomorphism, the following
square then commutes:

Foldf
FD(FTD) % F'D

FDD(DJ J'zxp

Fp(GD) — > GD.

This implies that ap : (FTD, (Foldf,)D) — (GD, yp) is an Fp-algebra homomorphism. But ¢
is the unique such morphism, so ap = ¢p. Because D was an arbitrary component, we conclude
a=¢.

Having established that there exists a unique morphism ¢ : (F T Foldg) = (G, y) for all
F-algebras (G, y), we conclude that (F T, Foldg) is the initial F-algebra. O

Proposition|[4.3.7]presents the converse of a class of external daggers on horizontal morphisms
considered in [BE9s, § 2.2]. Given a horizontal morphism f : A x B — B in a 2-cartesian cat-
egory, they define f' = g where (g,v) is the initial f-algebra. They do not consider the action
of this dagger on vertical morphisms. In contrast, we gave a dagger operation that determines
initial f-algebras. It induces an action on both horizontal and vertical morphisms. By proposi-
tion[4.3.4/and corollary[4.3.6} its action on vertical morphisms coheres with its action on horizontal
morphisms.

4.4. Conway Identities

Semantics of programming languages should, ultimately, help users reason about programs.
To this end, it is useful to have an arsenal of identities for the mathematical objects used to define
the semantics. In our case, the semantics of recursive types motivated the definition of a dagger
operation in section [4.3] In that section, we studied its 2-categorical properties. We now show how
these 2-categorical properties imply a large class of identities useful for reasoning about recursive
types. In particular, we show that they imply the Conway identities [BE9s; BE96|] up to isomorphism.
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The Conway identities in turn imply a class of identities useful in the semantics of programming
languages.

The Conway identities are also of independent interest. For example, the (cartesian) Conway
identities together with an additional identity axiomatize the class of iteration theories [BE96, Re-
mark 3.4]. Moreover, Hasegawa [Hasgg), Theorem 7.1] and Hyland independently discovered [BHo3,
p. 281] that a cartesian category has a trace operator [JSV96] if and only if it has an external dagger
operator satisfying the (cartesian) Conway identities.

We begin by presenting the Conway identities. The identities’ names vary in the literature. We
give those of Bloom and Esik [BE9s; BE96] and of Simpson and Plotkin [SPool Definitions 2.2
and 2.4]. An external dagger T satisfies:

(1) the parameter identity or naturality if forall f : BxC - Cand g: A — B, (fo(gxid¢c))" =
ffog.

(2) the composition identity or parametrized dinaturality if forall f : PxA - Band g: PxB —
A, (go(mp™™, )T = go(idp, (f o (5%, g))").

(3) the double dagger identity or diagonal property if for all f : Ax Bx B — B, (f7) =
(f o (IdA X <id3, Id)g)))wL

(4) the abstraction identity if the following diagram commutes:

[idax(mp,evp,c)—idc]

[AxBxC—C] [Ax[B—C]xB-C]

TAxB,Cl s ) lA
[AxB—C] —% [A—>[B~C]] «““% [Ax[B~C] - [B~C]]

(5) the power identities if forall f : Ax B— Band n >1, (f")" = fT, where f": Ax B~ B
is inductively defined by f° = 73*% and f"** = f o (n4*E, f").
An external dagger satisfies the cartesian Conway identities if it satisfies properties[ito[g] It satisfies
Conway identities if it additionally satisfies property[4] Theorem [4.4.1]]answers the last question of
this chapter’s introduction:

THEOREM 4.4.1. The external dagger operation of proposition[4.3.1] satisfies the Conway identities
and the power identities up to isomorphism.

Proof. The category IFP is 2-cartesian closed. By proposition[4.3.7} each w-functor F : D x E - E
in IFP has an initial F-algebra (F T, Fold g) By corollary these initial algebras are related such
that (FJr oG, Foldf,G) is the initial (F o (G x idg))-algebra for each G : C — D. It then follows
by [BEgs, Theorem 7.1] that the external dagger operator induced by proposition satisfies the
Conway identities and the power identities up to isomorphism. O

The Conway identities imply the pairing identity, sometimes called Beki¢’s identity [BEg6, p. 10],
which relates the two main approaches for solving systems of simultaneous equations. Consider
such a system

B=F(A,B,C)

C=G(A,B,C).
We can solve it by pairing F and G, and solving the single equation (B, C) 2 (F,G)(A, B, C).
Alternatively, we can use a Gaussian-elimination-style approach, e.g., as we did in the introduction

for the functors defining data types even and odd. The pairing identity tells us that these two
approaches yield isomorphic solutions:
COROLLARY 4.4.2 (Pairing Identity). Let A, B, and C be small IFP-categories, and let F :
ida,G’
AxBxC—BandG:AxBxC - Cbe w-functors. SetH:AxBﬂAxBxCiB. Then

(F,G) = (G" o (ids,H"),H") : A - B x C.
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The Conway identities also imply the left zero identity [BE96, p. 10]. Semantically, it describes
the interplay between weakening and the formation of recursive types.

COROLLARY 4.4.3 (Left Zero Identity). Let A and B be small IFP-categories, and let F : B — A
be an w-functor. Then

4.5. Canonical and Parametrized Fixed Points for O-Categories

In this section, we consider an order-theoretic variation of sections[4.2and [4.3] We do so in
the setting of O-categories and locally continuous functors introduced in section|o.2.2] This setting
generalizes categories of domains to provide just the amount of order-theoretic structure required
for taking fixed points of functors. O-categories are more concrete than w-categories, and their
order-theoretic characterization of w-colimits and of w-functors is useful in applications. They
also have enough structure to have canonical fixed points.

4.5.1. Local Continuity and w-Continuity. Locally continuous functors preserve O-colimits.
Every locally continuous functor F : D — E restricts to a functor F¢ : D¢ — E° [SP82} Lemma 4].
When D is O-cocomplete, F¢ is an w-functor [SP82, Theorem 3] and D¢ is an w-category by
proposition[2.2.63] These observations raise the question: why not use Links. and the results of
sections|4.2|and |4.3|to study fixed points of locally continuous functors?

The reason is that such an approach does not handle all natural transformations between
locally continuous functors, but only those between functors on K¢. This is because natural
transformations # : F = G do not in general restrict to natural transformations F* = G°. By
adapting the techniques of the previous sections to O-categories and locally continuous functors,
we get fixed-point operators defined on all natural transformations between locally continuous
functors. The fixed-point operators are also themselves locally continuous.

4.5.2. Canonical Fixed Points. By slightly modifying our category of links, we can construct
canonical fixed points. Given a functor F : K — K, we say that a fixed point f : FX = X is canonical
if (X, f) is an initial F-algebra and (X, f™) is a terminal F-coalgebra. Given an O-category K, let
OLinksk be the category where

e objects are triples (K, k, F) called “links”, where K is an object of K, F : K - K is locally
continuous, and k : K — FK is an embedding;
e morphisms and composition are defined as before.

PROPOSITION 4.5.1. Equations (29)) to define a locally continuous functor Q : OLinksg —
O[w — K]. For all links (K, k, F), Q(K, k, F) : w — K°. The natural transformation Q(f, ) lies
in K® whenever f and y do.

Let O[w — K¢ = K] be the subcategory of O[ w — K] whose objects are functors w — K¢ and
whose morphisms are natural transformations in K. It is an O-category.

PROPOSITION 4.5.2. Let K be an O-cocomplete O-category. A choice of O-colimit in K for each
diagram w — K° = K defines the action on objects of a locally continuous functor colim,, : [w —
K¢ < K] — K. The morphism colim,, # lies in K¢ whenever 1 does.

Proof (sketch). The action of colim,, on morphisms follows immediately from proposition
Indeed, where ¢ : ® = colim, ® and y : T = colim,, I are the chosen O-colimits in K, a natural
transformation 7 : ® = T induces a cocone y o 7 : ® = colim,, I'. By proposition [2.2.63} the
unique mediating morphism of cocones is then:

colim,(n: ®=T) = | ['y,0n,0¢h.
neN

This action on morphisms is easily seen to be locally continuous. O
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Remark 4.5.3. The reader may ask: why do we specify in proposition and elsewhere that
“the morphism Fr lies in K® whenever # does™? If F is locally continuous and locally continuous
functors take embeddings to embeddings, is it not an immediate F# is an embedding whenever 7
is an embedding? Indeed, it is. But our statement is more general. One must distinguish between
“natural families of embeddings” (natural transformations whose every component is an embedding)
and “natural embeddings” (a natural transformation that is an embedding in the corresponding
functor category). Though every natural embedding is a natural family of embeddings, the converse
is false: the corresponding family of projections need not be natural.

PROPOSITION 4.5.4. Let K be an O-cocomplete O-category. The functor GFIX = colim,, o Q :
OLinksg — K is locally continuous. The morphism GFIX(f, 1) lies in K® whenever f and y do.

The recipe given by proposition [4.2.9|gives a locally continuous functor UNF : OLinksg — K.
Again, UNF(f, ) lies in K® whenever f and # do. The functors GFIX and UNF are related by the
same natural isomorphism as proposition [4.2.10]

We say that an O-category K has strict morphisms if it has zero morphisms and 045 is the least
element of K(A, B) for all objects A and B. We say that K supports canonical fixed points if it has
an initial object, strict morphisms, and is O-cocomplete. Let CFP be the full subcategory of O
whose objects are O-categories that support canonical fixed points. It is also known as Kind [[Fiog4}
§ 7.3.2]. It is 2-cartesian closed [Fio94, Theorem 7.3.11].

Assume K supports canonical fixed points. Then 1 is also the initial object of K¢, and we
can fully and faithfully embed O [K — K] into Linksk using the same approach as before. This
embedding is locally continuous. We define the locally continuous canonical-fixed-point functor

CFIX : CAT [CFP - K] K - K as the composition CAT [CFP —» K] K > Linksg ——» K. The
following result is standard:

PROPOSITION 4.5.5. If K supports canonical fixed points and F is a locally continuous functor on
K, then fold : F(CFIX(F)) — FIX(F) is a canonical fixed point.

We can mimic the results of sections[4.3)and[4.4} generally replacing FIX by CFIX, w-Cat by
O, IFP by CFP, and w-functor by locally continuous functor. In particular, the parametrized fixed
point functor (-) is locally continuous and again satisfies the Conway identities up to isomorphism.
It also produces canonical parametrized families of fixed points:

PROPOSITION 4.5.6. Let D and E be O-categories, and assume E supports canonical fixed points.
Let F : D x E — E be a locally continuous functor. Then (E', Fold) and (F’, Unfold) are respectively
the initial F-algebra and terminal F-coalgebra.

(1) Given any other F-algebra (G, y), the mediating morphism ¢ : F' — G is a natural family
of embeddings whenever y is an embedding. The component ¢, is the unique Fp-algebra
homomorphism (F'D,Foldp) — (GD, yp).

(2) Given any other F-coalgebra (T, y), the mediating morphism p : T — F' is a natural family
of projections whenever y is a projection. The component pp is the unique Fp-coalgebra
homomorphism (GD, yp) — (F'D, Unfoldp).

Proof (Sketch). The key new result relative to proposition is that ¢ is a natural family of
embeddings whenever y is an embedding. By corollary[4.2.14] ¢ is a mediating morphism from
an O-colimit to the cocone induced by the F-algebra (G, y). This cocone is in E* whenever y is an
embedding. In this case, ¢p is an embedding by proposition 2.2.63} O

4.6. Related Work

Scott [Scoz2] introduced inverse limit constructions to construct fixed points of functors. In
particular, Scott used an inverse limit of a chain of projections to construct a continuous lattice
D = [D — D], so that D is isomorphic to the lattice of continuous functions from D to D. Until
this point, the only tools for constructing fixed points were variations on Tarski’s least fixed-point
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theorem [Leh76b, p. 9]. Lehmann [Leh76b] generalized these ideas to find fixed points of w-
cocontinuous functors on w-cocomplete categories. These ideas were further explored by Lehmann
and Smyth [LS77;[LS81] to give semantics to data types. We built on these ideas to define a general
fixed-point functor GFIX. Using GFIX, we were able to show that a functor’s fixed points assemble
into a natural isomorphism. Their fixed-point functor is exactly FIX, while their parametrized
fixed-point functor is our (-)*.

Wand [Wany7|] introduced the definitions of O-categories and locally continuous functors.
Smyth and Plotkin [SP77; SP82] introduced O-(co)limits and generalized Scott’s limit-colimit
coincidence theorem to O-categories. O-categories generalize categories of domains to provide
just the structure required to solve recursive domain equations in a categorical setting. Smyth and
Plotkin’s “basic lemma” [[SP82, Lemma 2] gives a recipe for constructing fixed points of covariant
locally continuous functors on O-categories.

Some took the existence of fixed points of functors as their starting point. Freyd [Freg1] studied
algebraically complete categories, that is, categories C where every covariant functor T : C - C has
an initial T-algebras. Freyd also studied properties of functors on algebraically complete categories.
Freyd [Fregz| extended this analysis to algebraically compact categories, i.e., algebraically complete
categories where initial algebra and terminal co-algebras are canonically isomorphic.

Fiore [Fiog4] investigated axiomatic categorical domain theory for application to the deno-
tational semantics of deterministic programming languages. In chapter 6, Fiore used initiality
to define a dagger operation on functors between certain algebraically complete O-categories.
Under certain conditions, this dagger operation is functorial. It satisfies the parameter identity on
functors, i.e., it satisfies eq. above. Our category CFP appears as the category Kind [Fiog4}
Definition 7.3.11].

Dagger operation and the Conway identities arose in a separate line of research. Iteration
theories [BE93] were introduced to study the syntax and semantics of flowchart algorithms, and
they are defined in terms of a dagger operation. Bloom and Esik [BEg6]| studied external dagger
operations on cartesian closed categories and showed that for many of the categories used in
semantics, the least fixed point operator induces a dagger operation satisfying the Conway identities.
They generalized this work to 2-cartesian closed categories in [BEgs] and gave sufficient conditions
for a dagger on horizontal morphisms to satisfy the Conway identities. They did not explore the
2-cartesian structure of daggers or the action of daggers on vertical morphisms.

Simpson and Plotkin [SPoo| gave an axiomatic treatment of dagger operations satisfying
Conway identities. They gave a purely syntactic account of free iteration theories. They give a
precise characterization of the circumstances in which the iteration theory axioms are complete
for categories with an iteration operator.

Linear logic enjoys other proofs-as-programs interpretations. Benton [Bengs; Beng4] intro-
duced the LNL calculus, a mixed linear and non-linear calculus. It is interpreted by an “LNL” or
“adjoint” model: a symmetric monoidal closed category and a cartesian closed category related by a
pair of adjoint functors. Benton and Wadler [BW96] used this model to relate translation of the
A-calculus in Moggi’s computational metalanguage [Mogo1] and translations of intuitionistic logic
into intuitionistic linear logic. Lindenhovius, Mislove, and Zamdzhiev [LMZ1g] introduced the
“linear/non-linear fixpoint calculus” (LNL-FPC), a type system with mixed linear and non-linear
recursive types. They use the dagger operator of [[LS81] to model arbitrary recursive types in a
linear category and non-linear recursive types in a cartesian category. These two interpretations
are strongly related by suitable mediating functors and natural isomorphisms, which allow them to
define substructural operations on non-linear types. To give fixed points to contravariant functors,
they used standard order-theoretic techniques [[LS81, Theorem 3] to reduce contravariant functors
to covariant functors.

4.A. General Results on w-Categories

In this section, we present various results on w-categories and IFP-categories. Many of these
results are standard and we present them only for ease of reference.
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Recall that the category IFP of small IFP-categories is a subcategory of w-Cat, which is itself
a subcategory of the category Cat of small categories.

PROPOSITION 4.A.1. The categories w-Cat and IFP inherit their terminal objects from Cat.

Proof. The one-object category 1 is the terminal object of Cat and is clearly an w-category and
an IFP-category. Given any other category C, the functor C — 1 witnessing terminality in Cat is
clearly an w-functor, so it lies in w-Cat and IFP as well. Uniqueness is inherited from Cat. [

LEMMA 4.A.2. If A and B are categories with initial objects 15 and 1p, then (La, Lp) is the
initial object of the product category A x B.

Proof. Immediate from the definition of morphism in A x B. O

LEMMA 4.A.3. Let A be a small category, and let A, B, and C be locally small categories.

(1) Given diagrams Jo : A - A and Jg : A - B, and colimiting cocones ka : Ja = A and
kp : Jg = B, the cocone (xa,xB) : (Ja,J) = (A, B) is colimiting in A x B.

(2) If A and B have all A-colimits, then so does the product category A x B.

(3) The projection functors s : A x B — A and mg : A x B — B preserve A-colimits.

(4) If A: C - A and B : C - B preserve A-colimits, then so does their pairing (A, B) : C —
A x B, where (A, B)C = (AC,BC) and (A,B)(f : C - C') = (Af,Bf) : (AC,BC) —
(AC', BC').

(5) Let A-Cat be the 2-category of small A-cocomplete categories. If A and B are small and
A-cocomplete, then there is a 2-natural isomorphism

(-,-) : A-Cat(-,A) x A-Cat(—,B) = A-Cat(—, A x B) : A-Cat®® - CAT

inherited from Cat.
(6) Assuming the axiom of choice, if the product category A x B is non-empty and has all
A-colimits, then so do A and B.

Proof. LetJo : A - Aand Jp : A — B be arbitrary diagrams of shape A, and assume they have
colimiting cocones x5 : Ja = A and «p : Jp = B. We claim that (x4, xp) : (Ja,/s) = (A, B)
is colimiting in A x B. Let (&, 8) : (Ja,Js) = (A, B) be any other cocone in A x B. There exist
unique cocone morphisms a : (ka,A) > (a,A) and b : (xp, B) — (8, B). They assemble to
form the unique cocone morphism (a, b) : ((xa,xs), (A, B)) = ((a,8), (A, B)). This means
that ((xa,xs), (A, B)) isinitial in [ Cone({Ja,JB),—), i.e., it is the colimit of (J4, Jg) in A x B.

Now assume that A and B have all A-colimits; we show that the product category A x B has
all A-colimits. Let J : A - A x B be an arbitrary diagram of shape A. It determines two diagrams
of shape A:

Ja=mao]: A=A, (51)
Jg=ngoJ:A—B. (52)

By hypothesis, the colimiting cocones x4 : Ja = colimy Ja and kg : Jg = colim, Jp exist in A and
B, respectively. By the above, they form a colimiting cocone (ka, kg ) : ] = (colimp J4, colimy Jp).
Because ] was arbitrary, we conclude that A x B has all A-colimits.

We now show that the projection functors preserve A-colimits. Let ] : A - A x B be an
arbitrary diagram of shape A. It determines two diagrams of shape A:

Ja=mao]: A—A, (53)
Js=mpoJ:A—B. (54)
Let x : ] = colimy J be its colimiting cocone in A x B. By definition of A x B, colim, J = (A, B)
for some objects A in A and B in B. Moreover, « is given by a pair of cocones (xa, k) : (Ja,J) =
(A, B). Weshow that max = k4 : Ja = Ais colimiting in A; the result for B will follow by symmetry.

Leta: Jo = A’ beany other cocone in A. Then («, kg ) : ] = (A’, B) isa cocone in A x B and there
exists a unique cocone morphism ((a,b) : ((xa,xs), (A, B)) = ((«, %), (A’, B)). In particular,
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this implies there exists a unique cocone morphism a : (ka, A) > (a, A"). So ok : maA] = A is
colimiting. We conclude that 75 preserves A-colimits.

Assume A : C - A and B : C — B preserve A-colimits. We show that (A,B) : C -~ A x B
preserves A-colimits. Let J : A - C be an arbitrary diagram of shape A, and assume thatx : ] = C
is colimiting. Then Ak : A] = AC and Bk : B] = BC are colimiting in A and B, respectively. By
the above, the cocone (Ax, Bx) : (A], BJ) = (AC, BC) is colimiting in A x B. But this cocone is
exactly (A, B)x : (A, B)] = (A, B)C, so we conclude that (A, B) preserves A-colimits.

Now let A and B be small A-cocomplete categories. There exists a 2-natural isomorphism

(-,-) : Cat(-,A) x Cat(—,B) = Cat(—, A x B) : Cat®® -~ CAT
whose action on functors is the above-described pairing. Its inverse is given by the above-described
projections:
(s, mp) : Cat(—, A x B) = Cat(—, A) x Cat(—, B) : Cat®? — CAT.
We show that these 2-natural isomorphisms restrict to form a 2-natural isomorphism
A-Cat(—,A) x A-Cat(—,B) = A-Cat(—, A x B) : A-Cat’® — CAT.

2-naturality is inherited from Cat, so it is sufficient to show that they give an isomorphism of
categories. Let C be an arbitrary small A-cocomplete category. We show that

(—,—)c: A-Cat(C, A) x A-Cat(C,B) = A-Cat(C, A x B)

and

(s, p) : A-Cat(C, A x B) = A-Cat(C, A) x A-Cat(C,B) : A-Cat®? — CAT.
form an isomorphism of categories. We begin by checking that their domains and codomains are
well defined. Leta : A= A": C > Aand §: B= B’ : C > B be arbitrary 2-cells in A-Cat. By the
above result on pairing, (A, B) : C > A x Band (A", B’) : C > A x B both preserve A-colimits, so
they are arrows in A-Cat (and objects in A-Cat(C, A x B)). It follows that the 2-cell

(o, B)c : (A,B)c = (A,B)c:C—~>AxB

is a morphism in A-Cat(C, A x B). In the opposite direction, let § : C = C’ : C > A x Bbe an
arbitrary 2-cell in A-Cat. By the above result on projections, 746 : 14C = m,C’: C > A and
ngd : mpC = mpC’ : C — B are again 2-cells in A-Cat, so

(A, )0 < {ma, mp)C = (7, mp)C’

is a morphism in A-Cat(C, A) x A-Cat(C, B). So the domains and codomains are all well defined.
A routine check gives that they remain mutual inverses, i.e., that they form an isomorphism of
categories.

Now assume the axiom of choice and that the product category A x B has all A-colimits;
we show that A and B have all A-colimits. In particular, we show that A has all A-colimits; B
will follow by symmetry. Let J : A - A be an arbitrary diagram of shape A. Because A x B is
non-empty, so is B. Choose an object B of B and let KB : A — B be the constant functor onto it.
Then (J, KB) : A > A x B is a diagram of shape A in A x B. It has a colimit, which is preserved by
the projection functor 74 : A x B - A. We conclude that J has a colimit in A. O

PROPOSITION 4.A.4. The category w-Cat inherits its 2-product structure from Cat.

Proof. The 2-product structure in Cat is given by the product category structure. To show that
w-Cat inherits this structure, we must show that if A and B are small w-categories, then:
(1) sois A x B;
(2) the 2-natural isomorphism
w-Cat(—, A) x w-Cat(—, B) = w-Cat(—, A x B) : w-Cat®® - CAT

from Cat is also a 2-natural isomorphism in w-Cat.
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The category A x B is an w-category by lemma4.A.3] The 2-natural isomorphism is inherited by
lemmal4.A.3 [

COROLLARY 4.A.5. The category IFP inherits its 2-product structure from w-Cat.

Proof. Immediate from lemma 4.A.2]and proposition[4.A.4] O
LEMMA 4.A.6 ([Leh76al Lemma IV.2]). If A and B are w-categories, then so is w-Cat(A,B).
LEMMA 4.A.7. If A and B are IFP-categories, then so is IFP(A, B).

Proof. Recall that limits and colimits in functor-categories are computed pointwise [Macg8} Theo-
rem V.3.1]. It follows that category IFP(A, B) has all w-colimits (it also follows by lemma|4.A.6).
To see that it also has an initial object, note that initial objects are given by the limit of the identity
functor. O

LEMMA 4.A.8 ([Lehy6a, Lemmas IV.5 and IV.6]). Let A, B, and C be small w-categories. The
evaluation functor

evap : w-Cat(A,B) xA > B
and the abstraction functor
Aa : w-Cat(A x B,C) - w-Cat(A, IFP(B, C))
are both w-functors.
COROLLARY 4.A.9. Let A, B, and C be small IFP-categories. The evaluation functor
evap:IFP(A,B)xA > B
and the abstraction functor
An : IFP(A x B,C) - IFP(A, IFP(B, C))

are both w-functors.

PROPOSITION 4.A.10. The 2-exponential w-Cat[ A — B] of categories A and B in w-Cat is given
by w-Cat(A, B).

Proof. Let A, B and C be arbitrary small w-categories. By lemmal[s.A.7} w-Cat(B, C) is an w-Cat,
and we write w-Cat[B — C] for it. We claim that the abstraction functor A defines a 2-natural
isomorphism
w-Cat(- x B, C) - w-Cat(—, w-Cat[B - C]). (55)
A routine check confirms that it defines a family of isomorphisms of categories. To verify
naturality, let F : D — A be an arbitrary w-functor. We must check that the following diagram
commutes in CAT:

w-Cat(A x B,C) —2 w-Cat(A, w-Cat[B — C])
w—Cat(FxB,C)J' J'w-Cat(F,w-Cat[B—»C]) (56)
w-Cat(D x B,C) —2 ©-Cat(D, w-Cat[B - C]).

We begin by showing that both paths around the square agree on objects. Let K: A x B - C
be an arbitrary w-functor. Going around the top and the right, we get (A4 K) o F. Going around
the left and bottom, we get Ap(K o (F x idg)). We must show that these are equal functors
D — w-Cat[B — C]. Let D and B be arbitrary objects in D and B, respectively, then

((AAK)oF)DB = (ApK)(FD)B = K(FD,B) = (Ko(Fxidg))(D,B) = (Ap(Ko(Fxidg)))DB.

An analogous check gives that the functors agree on morphisms. So the two functors are equal.
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Next, we show that both paths around the square agree on morphisms. Letow : K = L : AxB —
C be arbitrary in w-Cat. Going around the top and the right, we get the natural transformation

(w-Cat(F, w-Cat[B - C]) o Ay) («) (57)
= w-Cat(F, w-Cat[B — C])(Apa : AA\K = ApL: A - w-Cat[B - C] (58)
= (Aaa)F: (AaAK) o F = (ApK) o F: D - w-Cat[B - C]. (59)
Going around the left and the bottom, we get the natural transformation
(Ap o w-Cat(F xB,C)) (a) (60)

= Ap(a(F xidp)): Ap(Ko (F xidg)) = Ap(Lo (F xidg)) : D > w-Cat[B -~ C].  (61)

By the above, they both have equal domains and codomains. To check that they are equal natural
transformations, we must show that they have equal components. Let D and B be arbitrary objects
of D and B, respectively. We must show that

(((Aaa)F)p)p = ((Ap(a(F xids)))p)p -
We compute that
(((Aa@)F)p) = a(rp,5) = &(Fxidy)(D.8) = ((Ap(a(F xidp)))p) -
So we conclude naturality.

We now show that the isomorphism (53)) is 2-natural. Let p : F = F’ : D — A be an arbitrary
2-cell in w-Cat. We must show that the two following 2-cells (natural transformations) are equal:

w-Cat(FxB,C)
w-Cat(A xB,C) m w-Cat(D x B, C) L EN w-Cat(D, w-Cat[B — C]),
w-Cat(F,w-Cat[B—C])
w-Cat(A x B,C) —— w-Cat(A, w-Cat[B - c]m-ca(n, w-Cat[B - C]).
v

w-Cat(F',w-Cat[B—C])
Consider an arbitrary component G : A x B — B. The G-component of the top natural transforma-
tion is
(Ap * w-Cat(p x B,C))
= Ap(G * (p xidp)) : Ap(G(F xidg)) = Ap(G(F' xidg)) : D - w-Cat[B - C].
Let D be an arbitrary object in D, then the D-component is:
(Ap(G * (p xidp)))p, : Ap(G(F x idg))D = Ap(G(F’ xidg))D
= G(pp,idp) : G(FD,idg) = G(F'D, idg)
= ((AAG) * p)p : (AAG)F = (AAG)F': D - w-Cat[B — C],

which is we recognize as the G, D-component of the bottom 2-cell. Because the G and D were
arbitrary components, we conclude that the two 2-cells are equal, and we conclude 2-naturality. []

COROLLARY 4.A.11. The 2-exponential IFP[A — B] of categories A and B in IFP is given by
IFP(A,B).

Proof. Immediate by lemmal4.A.7} corollary[4.A.9] and proposition [4.A.10] O

COROLLARY 4.A.12. The category w-Cat is 2-cartesian closed.

Proof. Immediate by propositions|4.A.1}[4.A.4/and [4.A.10] O

COROLLARY 4.A.13. The category IFP is 2-cartesian closed.

Proof. Immediate by proposition and corollaries and O
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PROPOSITION 4.A.14 ([Lehy6a, Lemma V1.4]). The composition functor o : w-Cat[B — C] x
w-Cat[A - B] - w-Cat[A — C] is an w-functor.

LEMMA 4.A.15. If ] : w — w has an colimit, then there exists a least n € N such that for all k > n,
Jk = Jn. The colimit of ] is the cocone (j, Jn) where ji, = J(k - n) : Jk > Jn for k < nand ji = idj,
fork >n.

Proof. A functor ] : w - w is a monotone map on the poset w, and the colimit of J is the least
upper bound of its image. Every set of integers bounded above has a maximum element, and
this maximum element is its least upper bound. So | ] is in the image of J. By the well-ordering
principle, the J-preimage of | | ] has a least element n. Then for all k > n, wehave Jn < Jk < ||] = J,.
It follows that Jk = Jn for all k > n.

The characterization of the cocone j in the statement follows readily from the definition of w
as a poset. O

PROPOSITION 4.A.16. Every functor F : w — K preserves w-colimits.

Proof. Let ] : w - w be arbitrary and assume it has a colimit. By lemma[4.A.15} it is of the form
(j, Jn) for the least n such that Jk = Jn for all k > n. We must show that (Fj, F/n) is an w-colimit
of F]: w - K.

Let (a, A) be any other cocone on FJ. We must show that there exists a unique cocone
morphisma : (Fj, FJn) - (a, A). In particular, we must show that there exists a unique morphism
a: FJn - Ain Ksuch that for all k, &y = a o Fji : FJk — A.

We begin with existence. Set a = a,,. Then for all k < n,

o =a,0FJ(k—n)=a,0Fj;=aoPFj.
For all k > n, observe that
ar = agoidpx = agoidpy, = ag o FJ(n - k) = a, = a,

s0

ar =a=aoidpy, = aoFidj, = ao Fjj.
This establishes that a = «,, is a cocone morphism.

Next, we show uniqueness. Let b : (Fj, FJn) — (a, A) be any other cocone morphism. Then

forall k, ax = b o Fji : FJk — A. In particular,

&, = bOan = bOFid]n = boidpjn =b.
This uniquely characterizes the morphism and establishes uniqueness.

We conclude that (Fj, FJn) is the w-colimit of FJ : w — K. Because ] was arbitrary, we
conclude that F preserves w-colimits. O
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CHAPTER 5

Statics and Dynamics

The Polarized SILL programming language [TCP13; PG15] cohesively integrates functional
computation and message-passing concurrent computation. Its concurrent computation layer
arises from a proofs-as-processes correspondence between intuitionistic linear logic and the session-
typed 7-calculus [CP10]. We give an overview of its statics and dynamics in sections[s.1and 5.2]
before presenting the language in section In section 5.7, we describe general properties of
relations on its programs.

5.1. Overview of Statics

Processes are computational agents that interact with their environment solely through com-
munication. In Polarized SILL, communication happens over named channels, which we can
intuitively think of as wires that carry messages. Moreover, communication on channels is bidirec-
tional: in general, a process can both send and receive communications along the same channel.
Each channel has an associated session type A. Session types [THK94; Hong3| specify communica-
tion protocols, i.e., rules for communicating along channels. Equivalently, we can think of session
types as classifying communications, analogously to how data types classify values. A channel’s
session type then specifies which communications are permitted on that channel. The type system
for processes ensures that communication on a channel of type A respects the protocol specified
by the session type A.

Processes in Polarized SILL are organized according to a client-server architecture, and we
can think of session types as describing services provided or used along channels. A process P
always provides or is a server for a service A on a channel ¢, and it uses or is a client of zero or
more services A; on channels ¢;. We write ¢ : A to mean that the channel ¢ has type A. The used
services form a linear context A = ¢; : A,,...,¢, : A,. The process P can use values from the
functional layer. These are abstracted by a structural context ¥ of functional variables. These data
are captured by the inductively defined judgment W ; A + P :: ¢ : A. We say that the process P is
closed if it does not depend on any free variables, i.e., if - ; A + P :: ¢ : A. This judgment is both
generic and parametric (see sectionfz.s): it is closed under renaming of channel names in A, ¢ : A,
and it is closed under renaming and substitution of functional variables in .

At any given point in a computation, communication flows in a single direction on a chan-
nel ¢ : A. The direction of communication is determined by the polarity of the type A, where session
types are partitioned as positive or negative [PGis]. Consider a process judgment ¥ ; A = P :: ¢, : A,.
Communication on positively typed channels flows from left-to-right in this judgment: if A, is
positive, then P can only send output on ¢,, while if A; is positive for 1 < i < n, then P can
only receive input on ¢;. Symmetrically, communication on negatively typed channels flows from
right-to-left in the judgment. Bidirectional communication arises from the fact that the type of
a channel evolves over the course of a computation, sometimes becoming positive, sometimes
becoming negative. We write B typel to mean B is positive and B type; to mean B is negative.
Most session types have a polar-dual session type, where the direction of the communication is
reversed.

Open session types are given by the inductively defined judgment E - A type?, where E is
a structural context of polarized type variables «; typel’ and p, p; € {—, +}. We abbreviate the
judgment as 2 + A type, when the polarity is unambiguous. The session type A is closed if it does
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MAx:tM Nlw [w/x]M |v

Ax:t.M | Ax: .M (EV-Fux) MN | v (EV-Arp)
[fixx.M/x]M | v
o {(Prleclcoe (P eq; (EV-Proc) Fox M [ v (EV-Fix)

FIGURE 5.1. Big-step semantics underlying Polarized SILLs functional layer

not depend on any free variables, i.e., if - - A type,. We explicitly treat the inductive definition of
open session types for two reasons. First, it is useful for expository purposes because it lets us make
polarities explicit. Second, the denotation of a session type Z + A type, is recursively defined on its
derivation, and an explicit definition of this judgment simplifies the definition of its denotations.

The functional layer is the simply-typed A-calculus with a fixed-point operator and a call-by-
value evaluation semantics. A judgment ¥ I+ M : 7 means the functional term M has functional
type 7 under the structural context ¥ of functional variables x; : 7;. This judgment’s inductive
definition is standard. We say that the term M is closed if it does not depend on any free variables,
ie,if- I+ M : 7. We use the judgment E - 7 type;?? to mean that 7 is a functional type depending
on polarized type variables a; type!’. The type 7 is closed if it does not depend on any free variables.
New is the base type {a : A < a; : A;} of quoted processes, where we abbreviate ordered lists using
an overline.

We draw attention to the fundamental difference between variables and channel names. A
functional variable x : 7 in a context ¥ stands for a value of type 7. A channel namein A,c: A
is a symbol: it stands not for a value, but for a channel of typed bidirectional communications.
In particular, channel names can only be renamed; unlike functional variables, nothing can be
substituted for a channel name.

5.2. Overview of Dynamics

The operational behaviour of processes in Polarized SILL is defined by a substructural opera-
tional semantics [Sim12] in the form of a multiset rewriting system. This multiset rewriting system
uses three different kinds of facts. The two most commonly encountered facts involve processes
and messages. The fact proc(c, P) means that the closed process P provides a channel c. The fact
msg( ¢, m) means that the message process m provides a channel c. Message processes represent
single messages or pieces of data sent on a channel, and they are closed processes written in a
restricted fragment of the process language. Process communication is asynchronous: processes
send messages without synchronizing with recipients. Messages sent on a given channel are re-
ceived in order. However, there is no global ordering on sent messages: messages sent on different
channels can be received out of order.

The behaviour of the functional layer is specified by the set F of persistent facts eval(M, v),
where eval(M, v) if and only if the closed term M evaluates to the value v under the standard
call-by-value semantics. Explicitly, eval(M,v) if and only if M || v, where M || v is the usual
evaluation semantics. It is inductively defined in fig.|5.1] We write v val if v is a value, i.e., if v || v.
The fact eval (M, v) captures an evaluation relation instead of a transition relation because we only
ever observe the process layer, and we never need to observe individual steps in the functional layer.
For conciseness, we do not mention this set of facts in our multisets and instead treat it implicitly.

For consistency with the literature, we call a multiset-in-context in a process trace a configura-
tion. A process trace is a trace from the initial configuration of a process. The initial configuration of
36t ALt Ay H Piicy i Ay is the multiset-in-context

Cos--+sCn 3 Proc(co, P),
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where the multiset F of eval(M, v) facts is implicitly present. A fair executionof - ; A+ P c: Ais
a weakly fair execution from its initial configuration. By propositions[3.3.10/and [5.9.9} all weakly
fair executions are also strongly fair and {iber fair.

The substructural operational semantics maintains several invariants that we consider in detail
in section 5.9} Chief among these is a preservation-style property (proposition|[5.9.1), where each
configuration appearing in a trace is well-typed, and where each multiset rewrite rule preserves
the type of the configuration. Concretely, we introduce a type system for configurations inspired
by one due to Gommerstadt, Jia, and Pfenning [|GJP18} § 4.4]. It assigns a session type to each
free channel appearing in a configuration. The preservation property states that the types of
channels not free in the active multiset of a rule remain unchanged in the result, and that the
types of external channels remain unchanged. This approach is in contrast to the one taken by
Kavanagh [Kav2oa], which conservatively extended the underlying substructural operational
semantics to track typing information at runtime. Advantageously, our approach preserves the
distinction between operational rules and typing concerns, and it requires no changes to the
original substructural operational semantics.

The typing judgment X || T' | I+ C :: A means that the configuration X ; C uses the channels
in I, provides the channels in A, and has internal channels I. Here, I = y, : A,,..., ¥, : Ay,
A=6,:B,,...,0, :By,and I =14, : C,,..., 1 : Cy are linear contexts of session-typed channel
names, with 7, k > o and m > 1. Write I for the list y,, ..., y, of channel names appearing in T
The ]udgment 2 || T 1 I+ C = Ais well-formed only if the channel names in T, A, I are pairwise
distinct and T, A, T ¢ 2. This judgment is parametric in Z, i.e., it enjoys the “proliferation” and
“renaming” structural properties for channel names in 3 (see section [2.5.6|for details). For brevity,
we usually leave ¥ implicit and write T 1 I+ C :: Afor 2 || T 1 I+ C :: A. We also often write
F+C=AifT 1 I+ C = Afor some I. We call the pair (T, A) the interface of C. In contrast
to processes, configurations can provide multiple channels. This is to allow for applications like
run-time monitoring [GJP18]. We remark that the multiset F of eval(M, v) facts is implicitly
contained in C in every judgment X || T 1 I+ C = A.

The above judgment is inductively defined by the rules (ConNr-M), (ConEe-P), and (CoNE-C):

s AFmac: A 3A-Puc: A
(ConNE-M)
S|AT-+msg(e,m):(c:A) S| AT -+proc(c,P):(c:A)

(Cones-P)

ST L-C:®I ILY |TIA 1 L ~Dx
$,ILE || TA 1 LIIL + C,D = ®E

(CONF Q)

The rules (CoNE-M) and (ConE-P) lift closed messages and processes to message and process
facts, while preserving their used and provided channels. In (CONE-M), we assume that m ranges
over “message processes m™ and m,, . These message processes are a restricted class of processes
defined in eqs. (62) and (63). The composition rule (CoNg-C) is a “parallel composition plus hiding”
operation (cf. [M1180 pp- 20f.]). It composes two configurations C and D so that they communicate
along some common (but potentially empty) collection of channels IT. These channels are then
hidden from external view: they do not appear in the interface (TA, ®E), but instead appear
in the composition’s context I,I11, of internal channels. Without loss of generality, we assume
that 2N X’ = @ (so I, n I, = @) when composing C and D. This requirement ensures that the
internal channels in C do not interfere with those in D, and vice-versa. Because the hypotheses are
parametric in ¥ and ', we can always rename those channels to ensure that this is the case.

We can recognize (CoNE-C) as a composition operator in a pluricategory[| Indeed, consider
the pluricategory whose objects are session-typed channels, and think of a typed configuration
I'+C : Aasamorphism I' = A. Then the rule (ConF-C) is a special case of the corresponding

!Pluricategories were defined in deﬁnition
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pluricategorical composition rule
SHU|T 1 LFC:0NY ILY |ADA I L-D:=8
3, 1LY || ATA 1 LIIL, + C, D = BV

where ¥ and A are both empty. The rule (CoNr-C) determines an associative and partially com-
mutative partial composition operator. We study these properties and others in section 5.9}

5.3. Typing and Multiset-Rewriting Rules

In this section, we give the typing rules that inductively define well-typed functional terms and
processes. In each case, we also give the associated multiset rewriting rules. With a few exceptions
and for brevity, we only give the rules for processes that provide positive session types. All rules
can be found in section|s.B]

5.3.1. Manipulating Channels. The forwarding process b — a forwards all messages between
channels a and b of the same positive type. The process b « a is the dual for channels of negative
type. We remark that the syntax reflects the direction in which messages flow. Though some
presentations use a single forwarding process for both polarities, it is useful for practical and
semantic concerns to syntactically differentiate between forwarding positive communications and
forwarding negative communications.

-+ Atypel
Y;a:Ara—->bub:A

-+ Atype,
Y;a:Ara<b:b:A

(Fwp™)

(Fwp™)

These processes act on messages m" and m, _ travelling in the positive and negative directions.
These messages are respectively message processes given by egs. and (63). Their meaning will
be explained below. The letters a, b, ¢, and d range over channel names, [ ranges over labels, and v
ranges over functional values.

m* = _ < outputav; d > a|sendashift; d< ala.l;d >a|sendab; d > a
| send a unfold; d — a | close a (62)
my . w=_ < outputbv; b < c|send bshift; b > c|a.l; a<c|sendab; a«<c

| send a unfold; a « ¢ (63)

The subscripts on m, _serve to indicate which channel names appear in the message fact, and they
ensure that rule is only applicable when the process fact and the message fact have a common
channel. The operational behaviour is given by rules and (65). Properly speaking, there is an
instance of these rules for each different kind of message m™ and m, .. We implicitly universally
quantify on the channel names appearing in these multiset rewriting rules:

msg(a, m*), proc(b,a - b) — msg(b, [b/a]m™) (64)
proc(b,a < b), msg(c,m;, .) - msg(c, [a/b]m; ) (65)

Process composition a < P; Q captures Milner’s “parallel composition plus hiding” op-
eration [Mil8o| pp. 20f.]. It spawns processes P and Q that communicate over a shared private
channel a of type A. Those familiar with the 7r-calculus may like to think of this syntax as analogous
to the 7-calculus process (va)(P | Q).

VY;AFP:a:A VY;a:AAN+-Quc:C
Y;AL,A,-ra<P;Q:uc:C
VA,,A,,c.proc(c,a < P; Q) — 3b.proc(b, [b/a]P),proc(c, [b/a]Q) (66)

(Cur)

We remark that in we do not quantify over the channel name a. This is because the channel
name a is a bound in processes P and Q, and processes denote general binding trees (see section 2.4)
whose bound names can freely be varied.
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Processes can close channels of type 1. To do so, the process close a sends a “close message”
over the channel a and terminates. The process wait a; P blocks on a until it receives the close
message and then continues as P.

Y;A+-P:uc:C
— (C1 R : - L
B+ 1type; (C1) V;-Fclosea:a:1 (R) Yi;Aa:1+-waita; Pzc:C (L)
VYA, a, c.msg(a,close a), proc(c, wait a; P) — proc(c, P) (67)
Va.proc(a, close a) — msg(a,close a) (68)

The positive type 1 does not have a negative dual. It would require a detached process with no
client.

Example 5.3.1. The following process is, informally speaking, equivalent to the forwarding process
-3a:1+ a— b b:1for channels of type 1:

“;a:1-waita; closeb b1
Indeed, if no close message arrives on a, then neither process does anything. If a close message
arrives on g, then both processes send a close message on b and terminate:
msg(a, close a), proc(b,a — b) — msg(b, close b)
msg(a, close a), proc(b, wait a; close b) —* msg(b, close b)

We will revisit this example when we discuss the computational interpretation of the identity
expansion theorem of intuitionistic linear logic in section[9.4] <

Processes can send and receive channels over channels. The protocol B ® A prescribes trans-
mitting a channel of type B followed by communication of type A. The process send a b; P sends
the channel b over the channel a and continues as P. The process b < recv a; P receives a channel
over g, binds it to the name b, and continues as P.

E+ Atypel Er Btype!
E+ A® Btype!

(Ce)
Y;A-Pua:A VY;A,a:Ab:B-Puc:C
Y;Ab:Brsendab; P:a:B® A Y;AN,a:B®A+b<«recva; P:c:C
VA, b, a.proc(a,send a b; P) - 3d.proc(d, [d/a]P),msg(a,senda b; d - a)  (69)
Va,e,d, A, c.msg(a,send a e; d — a),proc(c, b < recv a; P) — proc(c, [e,d/b,a]P) (70)

(®R)

(®L)

Example 5.3.2. The following closed process P sends a channel a : 1 over b : 1® 1, and closes b:
-;a:1+~sendba;closeb:b:1®1

The following closed process Q receives a channel of type 1 on b and binds it to the name d. Then
it receives a close message on b and forwards d over c:

3b:1®1+-d<«recvb; waith; d »cucin
Their composition
sa:1+b < (sendba; close b); (d < recv b; waitb; d > ¢) =c:1
spawns P and Q and eventually forwards the channel a over c:

proc(c,b < P; Q)
— proc(b,,send b, a; close b,), proc(c,d < recv by; wait by; d — ¢)
—* proc(b,, close b,), proc(c, wait b,; a — ¢)

—* proc(c,a — ¢). <«
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The negative dual B — A of B ® A is subtle: for linear-logical reasons, the polarities of A and
B differ. Indeed, though B — A and A are negative, B must be positive:

E+ Btype! Er+ Atype;

(C—)
Y;Ab:B-P:za:A Y;Aa:Ar-Puc:C
Y;Ar-b<«recva; P:a:B— A Y;A,b:B,a:B—A+sendab; P:c:C
Va,e,d,A, c.proc(a,b < recv a; P), msg(d,send a e; a « d) — proc(d, [e,d/b,a]P) (71)
VA,b,a,c.proc(c,send a b; P) - 3d.msg(d,send a b; a < d), proc(c, [d/a]P) (72)

E+ B — Atype,

(—L)

(—R)

5.3.2. Functional Programming and Value Transmission. The only base types in the func-
tional layer are the types {a, : Ao < a,: A,,...,a, : A, } of quoted processes These types are
formed by the rule (T{}). The functional layer also supports function types T — ¢. These are formed
by the rule (T—). We assume that types are closed whenever they appear in a typing judgment for
terms or processes.

Er-A;type, (0<i<n) B+ Ttypes E - o types

(T{}) (T-)

Er{ac:As<a,:A,...,a,: A} types E+ 17— 0 types

Most of the introduction and elimination rules for functional terms are standard. New is the
introduction rule (I-{}) for quoted processes. It encapsulates a process P as a value a « {P} < a;
of quoted process type, where we abbreviate ordered lists using an overline. Again, functional
terms are not associated with any multiset rewriting rules: their operational behaviour is captured
by the relation eval(M, v).

Yx:t-M:1
— (F-V. ———  (F-F
Yx:TlFx:T (F-Var) Yikfixx.M: T (F-Frx)
Y.x:1-M:o Yy -M:1t>0 YIFN:7
F-F -
‘I’II—/\x:T.M:T—MI( uN) Y- MN:o (E-Are)

VYi;a;:A;-Pua:A
Yira<«{Pl«<a;:{a:A<a;:A;}

(-4

The elimination form for quoted process terms M is the process a < {M} < a;. Operationally,
this form evaluates the quoted process term M to a value v, and then spawns the associated quoted
process. By the canonical forms lemma (proposition 5.8.2)), v will always be a value of the form
a < {P} « aj, i.e., a quoted process.

Yi-M:{a:A<a;:A;}
Via;:Aira<~{M}<a;:a:A

(E-{})

Va,a;.eval(M,a < {P} < a;),proc(a,a < {M} < a;) — proc(a, P) (73)

The elimination rule (E-{}) differs from the original elimination rule given by Toninho, Caires,

and Pfenning [TCP13} p. 354]. There, the elimination rule was a monadic bind similar to the

(Cut) rule below, where a quoted process could only be unquoted if it was composed with a

continuation process. Though the original rule has the advantage of enforcing a monadic discipline

on the interaction between the functional and process layers, it complicates writing and reasoning

about recursive processes. Indeed, one cannot directly make a recursive tail call, but must instead

always compose the recursive call with a continuation process. We lose nothing by not requiring a

continuation process: the original rule is a derived rule in our setting, and our rule can be defined
as syntactic sugar in the original version of SILL.

2Polarized SILL can straightforwardly be extended to support other base types. We extend it with natural numbers in
chapter
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Example 5.3.3. Recursive processes are implemented using the functional layer’s fixed point
operator. An important recursive process is the divergent process ¥ ; A - Q) :: ¢ : A, which exists for
all W and A, ¢ : A. Let Q' be the term given by ¥ I- fix w.c < {c « {0} < A} « A: {c: A« A}.
Observe that eval(Q/, ¢ < {c < {Q'} « A} < A). The process Q is given by:

Yi;AFc{Q}<Azc:A
By rule (73), proc(c, Q) — proc(c, Q). <

Remark 5.3.4. Example[s.3.3]illustrates the subtle interplay between recursion and linearity. Though
the linearity of channel contexts ensures that no channels are discarded, linearity cannot guar-
antee that all channels are used in the presence of recursion. Indeed, the divergent process Q)
communicates on none of its channels.

Functional values can be sent over channels of type 7 A A. This positive protocol, formed by
the rule (CA), specifies that the sent value has type 7 and that subsequent communication has type
A. The process _ < output a M; P evaluates the term M to a value v, sends v over the channel 4,
and continues as P. The process x < input a; Q receives a value v on a, binds it to the variable
x, and continues as Q. These behaviours are captured by multiset rewrite rules and (73). In
these rules, we use A as a shorthand for the list of channel names that appears in the context A.
To ensure a queue-like structure for messages on a, we generate a fresh channel name d for the
“continuation channel” that will carry subsequent communications. Operationally, we rename a in
P to the continuation channel d carrying the remainder of the communications.

Er Ttypes E+ Atype!

(CA)
Yx:17;A,a:ArPuc:C

E+ 7AAtype!
Yi-M:1 Y;Ar-Pua:A

VY;Ar+_<«outputaM; P:a:1TAA (AR) VY;Aa:TAA+x<«<inputa; P:c:C (AL)
Va, A.eval(M,v), proc(a, _ < output a M; P) —

— 3d.proc(d,[d/a]P), msg(a,_ < output av; d > a) (74)

VA, a,d,c.msg(a, _ < outputav; d > a), proc(c, x < input a; P) — Gs)

— proc(c, [d,v/a, x]P)

Example 5.3.5. The following process sends values v, : 7,, v, : T,, and v, : 7, on the channel 4,
before divergently providing a service of type A:

3k _<outputav,; _ < outputav,; _ < outputavy; Qua:t A(T, A (T3 AA)).

The queue-like structure of message processes _ < output a v; d — a is analogous to the queues
to example[3.1.6] Combined with rule (73), it ensures that messages are received in order. Indeed,
consider the following trace of the above process:

proc(a, _ < output a v;; _ < output a v,; _ < output a v;; Q)

— proc(b, _ < output a v,; _ < output a v5; Q), msg(a, _ < output avy;; b > a)

— (proc(c, _ < output ¢ v5; Q), msg(b,_ < output b v,; ¢ > b),
msg(a, _ < output av,; b > a))
— (proc(d, Q), msg(c, _ < output ¢ v;; d — ¢), msg(b, _ < output b v,; ¢ - b),
msg(a, _ < outputav,; b - a)).
Though multisets do not impose an order on their elements, any process P using the channel a
will receive the values v,, v,, and v, in that order. This is because P cannot know the name of the
continuation channel b carrying v, until it has received the value v,. Similarly, it cannot know the
name of the continuation channel ¢ carrying v, until it has received the value v,. <
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Example 5.3.6. The following closed process P receives a function f of type 7 — ¢ and a value x
of type 7 on the channel a. It evaluates f(x) and sends the corresponding value of type o on b,
before forwarding a to b.

sa:(t—>0)A(TAA) - f < inputa; x < inputa; _ < outputh f(x); a—>bzb:orA
If we take 7 = 0 = (§ — &) for some type 9, then the following execution shows that sending P the
process the values Ax : 7.x and Ax : §.x on a causes it to send the value Ax : §.x on b:
(msg(c, _ < output b (Ax: 8.x); d - b),
msg(a, _ < output a (Ax : 7.x); ¢ = a), proc(b, P))
— (msg(c, _ < output b (Ax : 8.x); d = b),
proc(b, x < input ¢; _ < output b (Ax : 7.x)x; ¢ > b))
— proc(b, _ < output b (Ax : 7.x)(Ax : §.x); d > D)
— proc(e,d — e), msg(b, _ < output ¢ (Ax:8.x); e = ¢) <
Example 5.3.7. The following process receives a quoted process p of type {c: C < a : B} overa

channel a. After receipt of p, the channel a has type B. The continuation process unquotes p to
provide a channel ¢ of type C using the channel a:

V;a:{c:C«<a:B}AB+p<inputa; c< {p}«<azc:C. «

The protocol 7 > A is the negative dual of 7 A A. Recall that polar-dual session types prescribe
the same kind of communications, but in opposite directions. In this case, where a provider of type
T A A sends a value of type 7, a provider of type 7 > A receives a value of type 7. The session type
72 A is formed by the rule (Co). The inference rules forming processes and the multiset rewrite
rules describing their behaviour are the obvious duals of those for 7 A A:

ErTtype; E+ Atype,

= = (C2)
B+ 72 Atype,

Y -M:7 Y;Aa:A-P:c:C
Y;Aa:T5A+_<«outputaM; P:c:C

V,x:17;A-Pza:A
VY;A+x<«inputa; P:a:70A

(°R)

(oL)
VA, a,d,c.proc(a,x < input a; P),msg(d, _ < outputav; a < d) —»
— proc(d, [d,v/a, x]P)
Va,A.eval(M,v), proc(c, _ < output a M; P) —
— 3d.msg(d, _ < output av; a < d), proc(c, [d/a]P)

(76)

(77)

5.3.3. Choices. Processes can choose between services. An internal choice type ®{] : A; }jcr
prescribes a choice between session types {A; } 1 (L finite). The process a.k; P chooses to provide
the service Ay by sending the label k on a, and then continues as P. The process case a {I = P}, ;
blocks until it receives a label k on a and then continues as Py.

Er Ajtype; (Viel) (Co) Y;Ar-Pu:a:Ay (kel)
Er@{l: A}, typel VYi;Araks Pra:e{l:A},,
VY;Aa:Aj+Pzc:C (Viel)
(eL)
ViAa:ef{l: A}, ~casea {I=P}, ;=c:C
VA, a.proc(a, a.k; P) — 3d.proc(d, [d/a]P), msg(a,a.k; d - a) (78)
Va,d,A,cmsg(a,a.k; d - a),proc(c,case a {l = P;},.;) — proc(c, [d]/a]Py) (79)

(eR)

The polar dual of the internal choice type ®{I : A;} ¢, is the external choice type &{I: A;}jc;.

Example 5.3.8. The following process P diverges if it receives the label div on a, and it forwards a
to b if it receives the label fwd:

sa:@®{div:A,fwd: B} rcasea {div=Q|fwd=a—> b} = b:B.
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Indeed, if a carries the label div, then:
msg(a, a.div; c¢), proc(b, P) — proc(b, Q).
If a carries the label fwd, then:
msg(a, a.fwd; c¢), proc(b, P) — proc(b,c = b). «

5.3.4. Shifts in Polarity. Process communication is asynchronous. Synchronization on a
channel is encoded using “polarity shifts” [PGis]. The positive protocol | A prescribes a synchro-
nization (a shift message) followed by communication satisfying the negative type A. The process
send a shift; P signals that it is ready to receive on a by sending a “shift message” on 4, and con-
tinues as P. The process shift < recv a; P blocks until it receives the shift message and continues
as P.

E+ Atype;

E+ |Atype! ()
‘P;AD—P:.:a:A (IR) ‘I’;A,a:.AI—P::c:C (11)
¥ ;A+sendashift; P:a: A Y;Aa:]Arshift<recva; P:c:C
YA, a.proc(a,send a shift; P) — 3d.proc(d, [d/a]P), msg(a,send a shift; d < a)  (80)
VA, a,d,c.msg(a,send a shift; d < a), proc(c, shift < recv a; P) — proc(c, [d/a]P) (81)

The dual of the positive type | A is the negative type tA.

At first glance, polarity shifts may appear to be special cases of choice types. The key difference
is that the direction of communication does not change with choice types: the label and subsequent
communications travel in the same direction. In contrast, the shift message and subsequent
communications travel in opposite directions.

5.3.5. Recursive Types. The recursive type pa.A prescribes an “unfold” message followed
by communication of type [pa.A/a]A. To ensure that unfolding a recursive type is well-defined,
we require that the type variable « have the same polarity as the recursive type. The process
send a unfold; P sends an unfold message and continues as P. The process unfold « recv a; P
receives an unfold message and continues as P.

B, a typel - Atype!

(CVaRr)
g, a typef - a type? E+ pa.Atype!

VY;ArPua:[pa.Ala]A -+ pa.Atypel |
Y ; A+ send aunfold; P:a:pa.A (p"R)
¥Y;Aa:[pa.Ala]A-P:c:C -+ paAtypel |

VA a:pa.Arunfold«<recva; P:uc:C (p7L)
VA, a.proc(a,send a unfold; P) — 3d.proc(d, [d/a]P), msg(a,send a unfold; d - a) (82)
VYA, a,d.msg(a,send a unfold; d — a), proc(c, unfold < recv a; P) — proc(c,[d/a]P) (83)

(Cp*)

Example 5.3.9. The set of conatural numbers is given by N U {w}, where N is the usual set of
natural numbers, and w corresponds to a countably infinite stack of successors s(s(s(:--))). The
protocol conat = pa. @ {z : 1,5 : a} encodes conatural numbers. Indeed, a communication is
either an infinite sequence of successor labels s, or some finite number of s labels followed by the
zero label z and termination. The following recursive process outputs w on o:

-3+ + fix w.send o unfold; s.0; w :: 0: conat.

It has an infinite fair execution where for n > 1, the (3n — 2)-th, (3n — 1)-th, and 3u-th rules are
respectively instantiations of rules (70), (82), and (69). «
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Example 5.3.10. Consider the type bits = pS. @ {0: 8,1 : B} of bit streams. Its communications
consist of potentially infinite sequences of unfold messages interleaved with labels 0 and 1. The
following process receives a bit stream on i, flips its bits, and outputs the result on o:

W¥;i:bitsk o« {fix f.o < {unfold « recv i;
send o unfold;
casei {0 =010« {f} <i
|1=0.0; 0« {f} < i}
}<i}<xu0:bits <«

We refer the reader to [TCP13] for further example processes.

5.4. Static Properties of Session Types

Session types are closed under substitution. Substitutions are context morphisms (defini-
tion . Concretely, a context morphism 0 :s ® ~ a, type_f‘, 0y typef” for session types is
a list o of session types A, ..., A, such that ® - A; type:' for1 < i< n.

PROPOSITION 5.4.1 (Syntactic Substitution of Session Types). Let 0 :s @ ~ E be an arbitrary
context morphism. If & - A typel, then © - [0]A typel.

5.5. Static Properties of Terms and Processes

We review several static properties about terms and processes. Though mundane, they will be
used frequently and implicitly. The key ideas from this section are that terms and processes are
closed under substitution, and that we can partition the free channels of a process as input channels
and output channels.

5.5.1. Substitution. Typing for SILL terms and processes is closed under substitution, and
the typing judgment is parametric. A context morphism o :t ® ~ x, : 7y,...,%, : T, isalist o of
terms N, ..., N, satisfying @ I- N; : 7; forall1 < i < .

PROPOSITION 5.5.1 (Syntactic Substitution of Terms). Let 0 :¢ ® ~ ¥ be arbitrary.
(1) f YI-FN:7,then® I+ [0]N: 7.
(2) f Y;A-P:c:C, then®; A+ [o]Pc: C.
Proof. By induction on the derivationof ¥ - M: 7and ¥ ; A+ P a: A. O
5.5.2. Free and Bound Channel Names. We begin by defining the free and bound channel

names in a process. Given a well-typed process P, let the set fc(P) of free channel names in P be
inductively defined on the structure of P by the following collection of equations:

fe(a < P; Q) = (fe(P) ufe(Q)) ~ {a} fe(a < {M} < @) = {a,a;}

fc(a - b) ={a,b} fc(a < b) ={a, b}
fc(close a) = {a} fc(wait a; P) = {a} ufc(P)
fc(send a by P) ={a,b} ufc(P) fc(b < recv a; P) = {a} ufc(P) \ {b}
fc(a.k; P) ={a} ufc(P) fc(casea {I = P;}ier) =au|Jfe(Py)
leL
fc(_ < output a M; P) = {a} ufc(P) fc(x < input a; P) = {a} ufc(P)
fc(send a unfold; P) = {a} ufc(P) fc(unfold < recv a; P) = {a} ufc(P)

All other channel names in P are bound and can freely be a-varied.
PROPOSITION 5.5.2. I[f ¥ 5 ¢, : Ay, ... cn i Ay F Piico t Ao, then fc(P) = {co, ..., Cn )

Proof. By induction on the derivation of ¥ ; ¢; : Ay,...,cn: Ay =Pyt Ao O
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5.5.3. Input and Output. We partition SILL processes as sending, receiving, and structural.
Structural processes are processes of the form a < P; Q,a — b,a <« b,and a « {M} < a;.
Sending and receiving processes are respectively those in the left and right columns:

close a wait a; P

send a b; P b < recva; P

a.k; P casea (I = P))jet

_ < outputa M; P X < inputa; P
send a unfold; P unfold < recv a; P

We say that the processes in the left column send on a, while the processes in the right column
block or receive on a.

Using polarity, we can statically partition free channels into the sets oc(P) of output channel
names and ic(P) of input channel names. Intuitively, ¢ € oc(P) if the next time P communicates on
¢, it sends a message on c; the meaning of ¢ € ic(P) is symmetric. Explicitly:

Definition 5.5.3. Assume W ;¢ : A,,...,c,: Ay - Piico: Ay Let oc(P) and ic(P) be the least
subsets of fc(P) such that:

(1) ¢, € oc(P) if and only if A, is positive;

(2) ¢, €ic(P) if and only if A, is negative;

(3) for1<i<n,c; €oc(P)ifand only if A; is negative;

(4) for1<i<n,c; eic(P) ifand only if A; is positive. <

Remark 5.5.4. That ¢ € oc(P) does not imply that P will necessarily send a message on c. It only
implies that if P eventually communicates on c, then the first such communication will be output.
We will show for every channel name in a configuration appears as the output channel of at most
one process or message, and as the input channel of at most one process or message. This fact will
be useful in defining the observed communication semantics of chapter 6} for it will let us show
that there is at most one message judgment associated to each channel.

If we took an extrinsic view of type theory, then we might want to statically determine whether
a channel ¢ € fc(P) is an output channel or an output channel, without reference to typing rules or
to the dynamics. Unfortunately, this is impossible due to the interplay between the functional and
the process layers. Indeed, there is no way of determining on which channels a quoted process
a < {M} < a; will send or receive, short of evaluating M to a value a < {P} « a;, or looking at
the polarities of the types appearing in the typing judgment. Despite this, we can in all other cases
statically determine the input and output channel names appearing in a process purely from its
syntax. Let ocs(P) < fc(P) be the subset of static output channel names inductively defined by:

ocs(a < P; Q) = (ocs(P) uocs(Q)) ~ {a}
ocs(a < {P} «a;) =0

ocs(a - b) ={b} ocs(a < b) ={a}
ocs(close a) = {a} ocs(wait a; P) = ocs(P)
ocs(send a b; P) = {a} uocs(P) ocs(b « recv a; P) = ocs(P) \ {a,b}
ocs(a.k; P) ={a}uocs(P) ocs(casea (I = P;)jr) = ( Uocs(Pl)) ~A{a}
leL
ocs(_ < output a M; P) = {a} uocs(P) ocs(x < input a; P) = ocs(P) \ {a}

ocs(send a unfold; P) = {a} Uocs(P) ocs(unfold « recv a; P) = ocs(P) \ {a}



108 5. STATICS AND DYNAMICS

Symmetrically, the subset ics(P) ¢ fc(P) of static input channel names is inductively defined by:

ics(a < P; Q) = (ics(P) vics(Q)) ™ {a}
ics(a < {P} <ai) =02

ics(a > b) ={a} ics(a < b) ={b}
ics(close a) =@ ics(wait a; P) = {a} Uics(P)
ics(send a b; P) =ics(P) \ {a} ics(b < recv a; P) = {a} uics(P) \ {b}
ics(a.k; P) =ics(P)~{a} ics(casea (I = P;)jr)={a}u ( U ics(Pl))
leL
ics(_ < output a M; P) =ics(P) \ {a} ics(x < input a; P) = {a} uics(P)

ics(send a unfold; P) =ics(P) \ {a} ics(unfold < recv a; P) = {a} uics(P)
This static view of input and output is consistent with the one given by polarity:

PROPOSITION 5.5.5. If ¥ ; A+ P :: ¢ : A, then ocs(P) € oc(P) and ics(P) < ic(P). If (E-{})
does not appear the derivation of ¥ ; A + P :: ¢ : A, then the above inclusions are equalities.

Proof. By induction on the derivation of ¥ ; A+ P c: A. O

PROPOSITION 5.5.6. Free channels of well-typed processes partition as input and output channels,
ie,if ¥5AFP:uc: A thenfc(P) =ic(P) uoc(P) andic(P)noc(P) = @.

Proof. By induction on the derivation of ¥ ; A+ P :: ¢ : A. O

Using definition|s.5.3} we can deduce that composed processes do not both send or both receive
on the private channel linking them, but instead one sends while the other receives:

COROLLARY 5.5.7. If IT; A+ b < P; Q¢ : A, thenfc(P)nfc(Q) = {b}, oc(P)noc(Q) =@
andic(P) nic(Q) = @.

Proof. The last rule used to form IT ; A - b < P; Q = ¢: A must have been (Cut). By well-
formedness of (Curt), fc(P) nfc(Q) = {b}. By proposition both of the intersections in
the statement must be subsets of {b}. If b € oc(P) noc(Q) or b € ic(P) nic(Q), then it is
simultaneously positive and negative by definition[s.5.3} a contradiction. So the two intersections
are empty. 0

5.6. Static Properties of Typed Configurations

In this section, we study various static properties of facts proc(c, P) and msg(c, m) and of the
typing judgment X || T 1 I+ C = @. In section[5.6.1) we define various sets of channel names and
show how they interact with the typing judgment. We explain how the rule (ConNg-C) determines
an associative and partially commutative composition operator in section In sectionwe
study various structural properties for the typing judgment. We finish by proving various technical
lemmas that will be useful for proving the preservation property in section 5.9}

5.6.1. Sets of Channel Names. We lift the definitions of free and bound channel names to
configurations in the obvious way:

fc(C) = ( U fc(P))U( U fc(m)).

proc(c,P)eC msg(c,m)eC
Lifting input and output channels to configurations is a direct adaptation of definition
Definition 5.6.1. Assumec, : C,,...,¢, : C, | I +-C 2 ay : Ag,....a, + A,,. Let the output
channels oc(C) and input channels ic(C) of C be the least subsets of fc(C) such that:

(1) foro<i<m,a;€oc(C)ifand only if A; is positive;
(2) foro<i<m,a;e€ic(C)ifand only if A; is negative;
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(3) for1<i<n,c; €oc(C)ifand only if C; is negative;
(4) for1<i<n,¢; €ic(C) if and only if C; is positive. <

Remark 5.6.2. Unlike the free channels of processes, the free channels of typed configurations are
not partitioned as input and output channels, but as input, output, and internal channels. Recall
that the internal channels of I' | I+ C :: A are those in I.

It is also useful to specify the channel on which a message was sent—its “carrier channel”—as
well as its continuation channel.

Definition 5.6.3. The carrier channel of a message fact is:

cc(msg(a, close a)

cc(msg(a,send a b; d — a)

cc(msg(d,send a b; a < d)

cc(msg(a,a.k; d — a)

cc(msg(d,a.k; a < d)

cc(msg(a, _ < outputav; d » a)

cc(msg(d, _ < output av; a « d)

cc(msg(a, send a shift; d < a)

cc(msg(d, send a shift; a - d)

— O — — — — — — — —

a
a
a
a
a
a
a
a
a
cc(msg(a,send a unfold; d > a)) =a
a

cc(msg(d, send a unfold; a « d)) = <
Definition 5.6.4. The continuation channel of a message fact, if defined, is:
kc(msg(a,senda b; d > a)) =d
kc(msg(d,senda b; a<«d)) =d
ke(msg(a,a.k; d > a))=d
ke(msg(d,a.k; a < d))=d
kc(msg(a, _ < outputav; d > a))=d
kc(msg(d, _ < outputav; a<d))=d
kc(msg(a,send a shift; d < a)) =d
kc(msg(d,send a shift; a > d)) =d
kc(msg(a,send a unfold; d > a)) =d
kc(msg(d,send a unfold; a < d)) =d
In particular, we remark that kc(msg(a, close a)) is undefined. <

Remark 5.6.5. The carrier channel of a message fact is always an output channel, but the converse
need not be true. Consider for example the message fact msg(a, send a shift; d < a). Its carrier
channel is a, but its output channels are a and its continuation channel d.

5.6.2. Associativity and Partial Commutativity. The composition notation C, D for configu-
rations does not specify along which channels two configurations C and D were composed. Indeed,
given configurations I' + C =: @, I1,, 1, and I, I1,, I1, + D :: E, one could conceivably compose C
and D along IT, or along IT,, giving composites C, D with different interfaces and internal channels.
Propositionstates that no such choice exists, and that if the composition C, D exists, then its
type is uniquely determined by the types of C and D. Put differently, the rule (ConF-C) determines
a partial function from pairs of configuration typing judgments to configuration judgments:
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PROPOSITION 5.6.6. Consider two judgmentsT; 1 1; = C; = ®; for i = 1,2. Ifthey can be composed
in a certain order using (CONE-C), then the type of their composition is uniquely determined. Explicitly,
if the two following instantiations of (CONE-C) are valid, then their conclusions are equal:

LI L+Cu®, L1 L+C, D, LI L+CaD, L1 LeC,:0,
T I+C,C,: @ I'  I'+~C,C, =@ (84)
If ®, NT, is non-empty and the composition on the left is valid, then the one on the right is not:
LI L+Cu®, L1 L+C, D, LI LEC,:2®, L1 LrC:d,
T I+C,C,: @ I'  I'+~C,,Cu @ (85)
If ©,NT, and ©, N T, are both empty, then the left composition in is valid if and only if the right

one is.

Proof. Consider the two compositions in (84), and let I1, and IT, respectively be the channels along
which C, and C, are composed. It is sufficient to show that IT, = IT,. Let ¢ : A € II, be arbitrary.
Because it appears in @, and I, it must also appear in II,. Otherwise, ¢ : A would appear in both
I'" and @’, resulting in a judgment that is not well-formed. So IT, ¢ II,. A symmetric argument
gives the opposite inclusion, whence the desired equality.

Assume IT = @, N T, is non-empty and that the composition on the left of is valid. Let
c : A € II be arbitrary. Suppose to the contrary that the composition on the right is valid. Thenc: A
appears in both I and @, resulting in a judgment that is not well-formed. So the composition on
the right is not valid.

Assume @, N T, and @, N T, are both empty and that the left composition in is valid.
Then the channel names appearing in the left conclusion are all pairwise distinct. So the right
composition is a valid instance of (CoNE-C), where IT is empty. A symmetric argument gives that
if the right composition is valid, then so is the left composition. O

As in a pluricategory, composition of configurations is associative, that is to say, for all deriva-
tions D; for 1 < i < 3, we identify the compositions

Dz D3
D, S0 Iy | TIaly 1+ L -Gy 2 ByIl,, Iy, 3, || Il 1 L -G, = B,
oIl | L1 L -G BT, 5,2, I, 25 || TTLLL | LL -Gy, Cy i BLE,
2,10, 25,10y, 25 || LT | LI, LI, L, - Gy, Gy, Cy = B, B, B,
and
D, D,
SoIl, [Tt L -G =B, 2,00, || LT, 1 L -G, 8,115, D,
3,11, 20, I, || TILGLIL, 1 LI, -Gy, Cy = E,8,11L, L, 2, || TLy 1 I - Cy 2 B,y

zl) ley Z,_, Hz3a 23 ” 1—‘11—‘9_1—‘3 I I11_112 I21—17.3 13 = Cp Cza C3 i E:15253
It is not immediately obvious that we can always reassociate compositions. Indeed, reassociat-
ing a composition could plausibly result in a different conclusion, or result in conclusions that are
not well-formed. Fortunately, compositions can always be reassociated. We rely on proposition
to construct the intermediary conclusions in the following statement:
PROPOSITION 5.6.7. The composition
LI L+-C=E, L1 L+-Cyx
LI L+C =5 Iy 1 Ly -Gy, Gy By
r1+¢,C,,Cy =

[84]

[84]

is valid if and only if
L[ -C=8 L1 L+C,uE,
1 I,+C,C = By, L LGy
' IrC,C,,C B

1
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is valid.

Proof. Assume that the first composition is valid. Then we recognize the right branch of the

derivation as
L LeC gL, ILIy 1 ;=GB

LI7 | 1n231 - C,,C, B,
for some II,;. This IT,; and the conclusion are unique by proposition SetIl, =&, nT, and
I, = E, nT}. Let E] be such that &, = ], I1,, IT;, and let T, = I, \ II,, and T}’ = T} \ IT,. Then we
recognize the first composition as

Lot LG e EIOLI, TILIYL 1 LI, L -Gy, Gy B
LI LILIGLIL, I -Gy, G, Cy 1 E]

In particular, we remark that the channel names appearing in the contexts in the conclusion are all
pairwise distinct. We show that the second composition is valid. We begin by showing that
I LeC =8 T, I—C t B,
r12 I I12 = Cla Cz =]

is valid. Relying on proposition5.6.6} we recognize it as the composition:
L LeC=EILI, DI, 1 LG, B,
0T, 1 LILL - C,,C, = BIBITLL, I,

By the above remark that channel names are all pairwise distinct, the conclusion is well-formed.
Next, we recognize the second composition as the composition:

LI 1 LILL =G, C, = BIELL,IL, T ILTY 1 -G, = By
LT 1| LILLIL,ILL, - C,,C,,Cy = ELE

-
=
fa

’
2=3

Again, the conclusion is well-formed, and it is identical to the conclusion of the first derivation.
Conversely, assume the second composition is valid. We repeat an analogous argument to
show that the first composition is valid. We recognize the left branch of the derivation as
LWL +C =8, H,[J1 L+C,:E,
W HuI -C,C, = E'E,

where I1,, is the interface along which C, and C, are composed, and I, and E are its complement
in T, and E,, respectively. Again, this IT,, and the conclusion are unique. Set IT, = 2/ n T and
I, = B, NT;. Let 8 = ] N [T, and &), = &, \ II,, and let T, be such that I; = I}, IT,, IT,. Then we
recognize the second composition as
LT LIT,1, -Gy, G, BVTLEL, ILILT, 10 -Gy B
LT 1 LI, LILILL, - C,,C,,C, = BY BLE,

w

Because it is well-formed, the channel names appearing in its conclusion are all pairwise distinct.
We show that the first composition is valid. Its right branch is the following uniquely determined
composition:

I,0 1 L, +-C, = B, ILILL 1 LG, B,

IL,C0LT, 1 LILL - C,, G ELE,
Remark that &, = E!'IL,I1,,. Then we recognize the first composition as
L1 LeC=E/ILIT, IL,DILT 1 LILL FC,,C;
LIT, | LILIL,LILL ~ C,C,,C, = E/E.E,

[1]
[1]

Its conclusion is well-formed because the channel names are known to be pairwise distinct, so the
first derivation is valid. We recognize its conclusion as the conclusion of the second composition.
We conclude the result. O
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Composition is also, as in a pluricategory, partially commutativd] Given respective derivations

D; for the judgments
(1) Zl,H I, 1 I, +-C, = B0y,
(2) 22,1:12 ||Vl"2 I I, - C,  BE,IL,,
() 2y, I0,10, | ILILT, 1 I - Gy = B,

we identify the compositions

D, D,
D, SLIL | =Gy BoIL, 210,10 || TLILG 1 -Gy By
=, 10, |IT,1 I,-C, = B II 22,23,H1,H2 | ILLT, 1 LILL - C,,Cy = B, B,

21,22,23, 2||1"1"1" I LILLIL L +C,C,,Cy = BB, B,

and
D, D,
D, SOIL | Tt I -G = BT, 2, I, 00, || ILILT, 1 L -G, = B,
SLIL || T LG, s 8,10, 25 2 11,11, || LILL, | LILL -G, C, = E,8,

21,22,23, IL || LG 1 LILLILI - C,, Gy, Cy 2 By BLE,

Given respective derivations D; for the judgments
O I T, T [ T 1 L - € BT,
(2) 22,1:12 | LI, 1 I,-C, = E
(3) 1L | LI 1 -Gy = B

2>

>

o)

we identify the compositions

D, D,
SLILIL || Tt L -G = B ILI, 3,11 || LIL 1 L-C, =8, D,
252, IL, 10, | LT, 1 LILL -G, C, == 8,8,11, 3,04 || LI, | I -G, = B,
30,25, 23 I, 11, || LT, 1 LILLILL, -G, G, Cy = B,8, 8,
and
v v Dl v D3
SLIL, I || Ty 1 1+ Gy BT, 23,H3||FH3|II—C3::E3 D,
2,2 IL, 00, | LT, 1| LILL, - Gy, Cy = 8,11, 8, S IL | LIL 1 LG, = 8,

20,50, 20, 1L, I, | LT 1 LILLILL -G, Gy, Cy = B,8,E,

We remark that the types associated to channels remain identical after reassociation and after
commutation. This obvious fact will be repeatedly used without mention.

We conjecture that a graphical language similar to ones for monoidal categories (see sec-
tion [2.1.2) could be adapted to pluricategories: conceivably, the sole change required would be to
allow multlple wires to be joined between boxes. Such a graphical language would significantly
simplify reasoning about our composition operator. Indeed, many proofs below involve tediously
reassociating and commuting compositions, while graphically, this simply corresponds to continu-
ously deforming diagrams. Unfortunately, developing sound graphical languages is a non-trivial
task whose subtleties have ensnared many who have attempted it (cf. [JSo1, p. 57]) and we leave
such a graphical language for future work.

3The following statement of partial commutativity is simpler than in a general pluricategory because we are considering
objects drawn from a free commutative monoid, instead of the usual case of a free monoid.
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5.6.3. Structural Properties. We prove several properties about the typing judgments for
multisets-in-context. Though largely technical, these structural properties will be indispensable
to showing our preservation theorem, and to relating congruence relations on configurations to
congruence relations on processes. We start by showing the subformula property and an inversion-
style principle.

PROPOSITION 5.6.8 (Subformula Property). If I’ 1 I = & == A" appears in the derivation of
TiI-FuAthenT'cTL T c1,and A c IA.
Proof. By induction on the derivation of I' 1 I+ F :: A,
CasE (Cone-M): ThenTI” 1 I + £ :: A’ is the conclusion of the rule and the result is immediate.
CasE (CoNe-P): ThenI’ 1 I’ + £ :: A’ is the conclusion of the rule and the result is immediate.
CasE (CoNEe-C):
S,I|T 1 LFC:®I ILE|[TIAI L,-D:E
v (ConE-C)
3, ILS | TA 1 LIIL, +~ C,D :: ®E

We consider three subcases:
(1) if T/ 1 I' = & = A is the conclusion of the rule, the result is immediate.
(2) if I’ 1 I' + & :: A appears in the derivation of the left premise, then the result follows by the

induction hypothesis.
(3) if I" 1 I’ + & = A’ appears in the derivation of the right premise, then the result follows by the
induction hypothesis. O

The following proposition specifies an inversion principle (cf. [Har16, Lemma 8.2]) for message
facts. It also states the relationship between free channels in configuration typing judgments and
process typing judgments.

PROPOSITION 5.6.9 (Inversion Principle). If T 1 I+ C :: A, and msg(c,, P) € C or proc(c,, P) €
C,then-; A P :c,:Afor some A € Tland c, : A € IA. Concretely, if proc(c,,P) € C or
msg(c,, P) € C, then

(1) ¢, € fc(P);
(2) forallc; € fc(P), then c; : A; € T1A for some A;; and
(3) wherefc(P) = {co>...,cm}, wehave ;¢ Ay, ..,cm: Ay Piic,: A,

Ifmsg(co,m) €C, then-; A+ m ¢, : Ais given by:

e ifm=closec, then-; -+ closec:c:y

e ifm=cljid—cthen-;d:Ajr-clyd—cuc: @l Ai}iefor some A; with i, j € I;

e ifm=cljcd then-;c: &{li: Ai}ier - cljs c < dd: Ajforsome A; with i, j € I;

o ifm=sendca; b—>c then-;a:Ab:Brsendca; b - c:c:AQ®B for some A
and B;

e ifm=sendca; c < b, then-;a:A,c:A—B+sendca; c < b:b:B forsome A
and B;

e ifm=_<«outputcv;d—c,then-;d: A+ _<«<outputcv; d - c:c: 1A Aforsome

Aand v such that - - v : 7

o ifm=_<«outputcv; c<d, then-;c: 72 Ar _ < outputcv; c < d:d:Aforsome
Aand T such that - - v : 1;

e if m = send c unfold; d — ¢, then - ; d : [pa.Al/a]A + send c unfold; d - ¢ c: pa.A
for some a +— A type!; and

e if m = send c unfold; ¢ « d, then - ; c: pa.A + send c unfold; ¢ < d = d : [pa.Ala]A
for some o +— A type;.

Proof. By inductionon T | I+ C :: A. In the cases (CoNE-M) and (CoNE-P), the result follows
by inversion on the typing judgment for the process that is the rule hypothesis. Proposition|s.6.8|
gives the result in the case of (Cong-C). O
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Typing judgments assign a type to every free channel appearing in a configuration:
PROPOSITION 5.6.10. If £ || T 1 I+ C = A, thenfc(C) ¢ I, I, Ac 3.
Proof. Immediate by propositions|s.5.2|and[5.6.9] O

The following lemma states that shared channels in well-typed multisets are always internal
channels:

LEMMA 5.6 If ¥ | [+ E,F = © and ¢ € fc(E) nfc(F), then c € 1.

Proof. By induction on the derivation of ¥ | I+ &, F = ©.
Cask (Cone-M): This case is impossible, for there are at least two elements in the multiset,
but the conclusion of the rule only has one element.
Cask (CoNr-P): Analogous to case (CONE-M).
Cast (ConEe-C):
SHU|T 1 LFC:®I ILE |[TIAI L-D:E
- (Conr-C)
SILE || TA 1 LI +C,D = ©F

We consider three subcases:
(1) if ¢ € fc(C) N fc(D), then by the side-condition £ N £’ = & on (CoNe-C), it must be that
cell. But 1= 1L,IIL, so c € I as desired.
(2) if ¢ € fc(C) but ¢ ¢ fc(D), then £ and F must both intersect with C. Applying the induction
hypothesis to the left premise of the rule, we get that ¢ € I,. It follows that ¢ € 1.
(3) if ¢ € fc(D) but ¢ ¢ fc(C): this subcase is symmetric to the previous one. O

The following lemma specifies that message or process facts in multisets do not have shared
input channels, and that they do not have shared output channels. It will repeatedly be used in
the proof that Polarized SILLs multiset rewriting system is non-overlapping on initial process
configurations.

LEMMA 5.6.12. Let ] € {msg(c, P), proc(c, P)} and K € {msg(d, Q), proc(d, Q)} be arbitrary,
and assume J + K. If T 1 1+ &,],K :: ® with £ potentially empty, then oc(]) noc(K) = @ and
ic(J) nic(K) = @.

Proof. By induction on the derivation of I' 1 I+C, J,K = ®.

Cast (Conr-M): This case is impossible, for its conclusion contains a single fact.
Cast (Conr-P): This case is impossible, for its conclusion contains a single fact.
CASE (CoNEe-C): Recall the rule:

SI|T1LFC=®O ILY |IAI L+D:8
3 (Conr-C)
%, IL3 || TA 1 LI, + C,D = ®F

We proceed by case analysis on where J and K are located. If they are both located in the same
branch, then we are done by the induction hypothesis. Assume without loss of generality that ]
is in the left branch and that K is in the right branch. Suppose to the contrary that there exists
some ¢’ € (oc(J) noc(K)) u (ic(J) nic(K)). By lemmals.6.11} we have ¢’ : A € II for some A. By
propositionwe have - ; A+ P:u¢’:Aand-;A',¢’: A+ Q::d: Bforsome A, A, and B. By
definition [5.5.3} this implies that A is simultaneously positive and negative, a contradiction. So the
intersections are empty. O

In particular, lemma|5.6.12]implies that if a channel c is already carrying a message, then no
other process in the configuration will output on c.

LEMMA 5.6.13. If T 1 I+ C :: A and msg(c, m) € C, then cc(msg(c, m)) ¢ oc(K) for all other
K eC.

Proof. Immediate by the observation that cc(msg(c, m)) € oc(msg(c, m) and lemmals.6.12] [



5.6. STATIC PROPERTIES OF TYPED CONFIGURATIONS 115

Because processes are not uniquely typed, configurations do not in general have unique types.
The following lemma shows that if a subset of a well-typed configuration can be assigned a type,
then it can be assigned a type that agrees with the type of the configuration that contains it.

LEMMA 5.6.14. If ¥ 1 I+ E 2@ and F  Eissuch that T' 1 I+ F = A’ for some I, U, and A,
then there exist I ¢ W1, 1" ¢ I, and A" € 10 such that T 1 1" + F = A"
Proof. By induction on the derivation of I" 1 I + F :: A’
Cast (CoNE-M):
sAFmuc: A
E|lAT-+msg(c,m):(c:A)

(ConNE-M)

Then F is msg(c, m) € €. Apply proposition[5.6.9/and (CONE-M) to get the result.
Cask (CoNE-P): Analogous to (CONF-M).
Cast (ConNEe-C):
SHU|T 1 LFC:®I ILY |[TIAI L -D:E
< (Cone-C)
$,ILY | TA 1 LIIL, + C, D :: ®F

By the induction hypotheses, I’ | I, - C =: @'II" and [T A’ 1 I, - D :: ' with

I'cvl, Im"A c¥I,
Icl, I cl
T c 16, g c I0.

By lemma I = 11" ¢ 1. Because I uniquely assigns types to channel names, it must be
that IT" = TI”. So by (coNe-c), I'A" | III'T, + F :: ®'E’. The above inclusions imply I'A’ ¢ V1,
I'T) ¢ I,and ®'E’ c 10, as desired. O

To show preservation in proposition[s.9.1} we will need to show that replacing a subset matched
by a rewriting rule with a multiset having the same interface does not affect the interface of the
whole multiset. To do so, we will need to reason about intersecting multisets, and reassociate
and commute compositions so that all elements in an intersection appear together. The following
proposition shows us that we can group elements in the intersection of two consistent multisets
together in the typing derivation. In its proof, we use three dots “--” to elide the unique conclusion
given by functionality of composition (proposition [5.6.6).

PROPOSITION 5.6.15 (Intersection Property). Assume that Ty, | I = L @ and that Tg 1 Ig +
R :: Op. Also assume that M = L N'R is non-empty. Assume that the two typing judgments agree
on their intersection, i.e., that for all c € fc(M), c: Ae [ 1, @y if and only if c : A € TrIgDp. Set

Ty=Trn(TLuly) I; =T, \ Ty Tp=(Tr N (TLUI))u (P, nIR)
Iy=1InIx Ii:IL\(rRUIR) I;Q:IR\(ILU(DL)
M=LnTR, L' =L\ M, R =R\ M,

(DMZCDLO(IRUCDR) (D’L:(CDL\(IRU(DR))U(ILOI‘R) (D%Z(DR\(DL
Then each of the following rules is a valid instance of (CONE-C) if its premisses are both non-empty:
rilIiFﬂlllq)i erlMl—MZZ(DM Ty Iy M=y r}QlI%I—R,ZZ@%
FLIILI—EI:CI)L rRllRI—RZZ(DR

If there exist derivations Dy, and Dy for I, + I = L = @p and T 1 Ig = R = Oy, respec-
tively, then there exist derivations D7, Dy, and Dy for T} 1 I; = L' = @), Tr 1 Iy = M :: Op, and
Ig 1 Ii = R’ Qp, respectively, whenever the respective multiset is non-empty.
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Proof. We first show the result for £. If M = L, then the result is immediate. Assume now that
M = L, or equivalently, that £’ is non-empty. We begin by checking that
rilIll—EIIZCDIL rMIIMl—M::q)M
M I-C:0

is a valid instance of (CoNE-C). In particular, we observe that the channel names appearing in
[ 1; @' are all pairwise-distinct, as are those appearing in [y 1,/® ). We also observe that the
channel names in @} I'y; not in the intersection @} N I are all pairwise distinct. Indeed, if ¢ : A is
not in the intersection but ¢ : A € @}, then if ¢ : B € I'y; for some B, then by hypothesis we have
bothc: AeT I, ®pand c: B eI I;®;. Then A = B because the judgment for £ is well formed.
So ¢ : A s in the intersection @} N Iy, a contradiction. An identical argument covers the case
when ¢ : A is not in the intersection but ¢ : A € T,.
Next, we check that the conclusion is I', 1 I} + £ :: @ . We compute:

Ty~ @) = (Trn (TLul))\ @)
=((TrnT)N®) U ((Trn I ) N DY)
because [x N I} € Of:
=(TrxnTp) N @
because I} NnI; =TI} n®; = &
= ([rnTy).
T =T, U (Ty~®))
= ([ ~Tr)uU (TrnTy)
=1I7.
O Ty = (P~ (IrudR))u(IpnTR)) N (Trn (T uly))
= (LN (IrUDR))U(ILNTR))N((TrNTL)U(Trn 1))
= (DN (IRUDR))N(TrNTL)) U ((PL N (IrUDR))N(TrN 1)) U
U((IpnTr)n(TrnT))u((IrnTr)n(Trn 1))
because ®; NIy =1; NI = @:
= (@~ (IrU®@r)) N (TrNTL)) U (I NTR)
by De Morgan’s law:
= (@ N IR) N (DL N D) NTrNT) U (I NTR)
because ®; N T} = @
=1I; nTg.
I=1,u(D),NnTy)uly
= N (Trulp)u (I nTR)u (I nIR)
= N (Trulp)u (I n(TrulR))
=1;.
c=L'M
=L\~ M,M
=L.
Dy NTyr = (PN (Iru@r)) U (I, nTR)) N (Trn (T U 1L))
= (O N (IRuOR)) N (Trn (TLuly))
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because @y N (T u 1) = @:
= (DL N (IR @] q)R)
q):(DMU(q)i\FM)
= ((DL n (IR U q)R)) ud;p N (IR Uq)R)
= .
We conclude that the conclusion is indeed I; 1 I} + L :: @;.
Next, assume that there exists a derivation Dy for I, | Iy + L :: ;. We show that there exist
derivations D; and D) such that
Dy Dy
i -Le® Tyt Iy My
Ip Ip - L: (DL

(Conr-C)

is a valid derivation. To do so, we proceed by induction on Dy . Because we assumed that M # L,
the last rule in Dy is an instance of (CONE-C):
Dr Dg
Tp it Ip-F o Dp rcllgl—gllq)(;
Ip Ip - L (DL

(Conr-C)

We proceed by case analysis on the relationship between its hypotheses and M:

(1) If F = £" and G = M, then we are done by the subformula property: take D] = Dy and
Dy =Dg.

(2) If M g G, then by the induction hypothesis applied to D we have derivations D, and
Dy such that

Dg Dy
L1 Ie-G =0r Tyt Iy-M:=Opy
FGIIGl—g::(DG

(Conr-C)

Replacing D¢ in D by this derivation and reassociating gives the derivation
Dy Dg
Tp 1 [p-Fu®p TG IGHG =0 Das
l"i'l IILII—[,,ZZ(Dg Ty Iy M0y
TL | IL L q)L

(Conr-C)

By the subformula property, we deduce that I} 1 I}/ = L' = @] isT] 1 I} + L' = @]. Let
Dj be the derivation for the left branch of this derivation tree.
(3) If M g F, then by the induction hypothesis on Dy, we get a derivation

Dg D
r;;lI;;l—f’:lCD;; erle—le(DM DG
Ip 1 Ip+F = Dp Ig1 Ig-G Qg
FL|IL|—£::®L

We reassociate to get the derivation

Dum Dg
'D% Ty ' Iy Mu®y T IgrG:dg
Lpt Ip-F a0 M, G-
FL | IL L CDL

By proposition we can swap the two premisses in the right tree because @, N I'g
and I'y; N @ are both empty. Indeed, they are disjoint because they have no channel
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names in common. Reassociating gives the derivation

Dp D¢
Tp1 Ip-Fa®y T Ig-Gu@g Dy
I I - L) Tyt Iy = M@y
I I =L

We recognize that I} 1 Ij + £ @7 isTp 1 I = £ 2 @ by the subformula property. Let
D; be the derivation of the left branch, and D) be as given.

(4) UMp=MnF =RnFand Mg = MnG =RnG has a non-empty intersection with
both branches of the derivation, then we assume first 7 ~ Mg and G \ M are both
non-empty. We apply the induction hypothesis to both branches to get a derivation

Dk Dur Do Dag
Tp1 Ip-Fa®y Typt Iypr Mpa@pp TE 1 I G 20 Ty | Iug - Mg = @ug
FFI IFI—]:Z:q)F FG | IGI—g::(DG

FL [ LF LD L
Reassociating twice gives the derivation:

Dur Dg
Tvp ' Iypr Mp i @pyp T I -G @F Duc
D, - Mp, G Tve ' Ing = Mg = @G
Lpt I Fa@f G, Mg
I 1 Iy =L@

By propositionwe can swap the two premisses in the middle tree because @y N T
and [yp N @, are both empty. Indeed,
Opyp=DOpn (IRudyp)
I =Tg Iz
Tyr=Trn (TrulE)
O = (P~ (IruPr)) U (Ig NTR)

and the two intersections are empty because
@FOFGZFFOCDG: Ipﬂq)G = IGOIF:@.
Swapping the premisses gives:

Dg Dur
LL1 I -G @ Typt Iyp - Mp = Opyp Duc
D, Mg, G Tve ' Ing = Mg = Opg
Iy 1= F a0 G, Mp--
I Ip-L:dp

Finally, reassociating twice gives the derivation:

Dp Dg Dr D
ot g Fra®p To 1 Ig=G 206G Typ o Iyp - Mp s ®@up Ty | Iy - Mg = Oug
L FLG Mg, Mg
FL | IL L (DL
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Applying the subformula property and observing that M = Mg, Mg and L' = F', G,
we recognize the above derivation as:

D Dg D D
/ / / / / ’ / / ME MG
Ip 1 Ip = Fa @ I I HG ore Tvr ' Ivp - Mea@ypr Tag ) Iy = Mg Qg
r£ | I’LI—,C’ o (D,L FM | IMI—M:Z (DM
FL | IL L q)L

Let D; and D,y respectively be the left and right derivations. If one of \ Mp or G\ Mg
is empty, then applying the induction hypothesis to the other branch and reassociating
gives the result. If both are empty, then M = L, a contradiction.

This completes the proof for the rule on the left of the statement.
We now consider the rule on the right of the statement. The same argument as for the rule on
left gives that
Ty Iy MOy 1"1'z I I;2|—7?,'::(1);2
rI-Ru=®

is a valid instance of (CoNE-C). Next, we check that its conclusion is T | Ix - R :: @p. But this is
follows by symmetry with the previous rule, noticing that the derivations are identical, except that
we exchange every appearance of a @ and a I', and every L and R. For example, the derivation to
check that I' = Ty in this rule is identical to the derivation to check that ® = @ in the previous
rule:

TN @y = ((TrN (TLul))u(®pnig)) N (O n(Igudg))
=(TrN (TLu 1)) N (O N (IguDp))
because g N (Qr U 1) = @:
=Tr~ (I uTy).
T =Ty U (Th~ D)

= (TR N (FL U IL)) U (FR AN (IL U FL))
= T%.

The check that I = I and @ = @y, is analogous. The construction of the desired derivations is also
an analogously straightforward adaptation of the construction for the previous rule. O

There are two remaining ingredients to showing that we can replace subsets of well-typed
configurations without affecting the interface of the whole configuration, provided the replaced
multiset and replacement multiset share the same interface. The first involves showing that given a
hypothetical derivation, we can freely replace the hypothesis, provided that the new hypothesis has
the same interface and that its internal channels do not conflict with those in the conclusion. It is
given by lemma|5.6.16] The second involves showing that we can always reassociate a configuration
so that a well-typed multiset appears as a conclusion in the configuration’s typing derivation, i.e.,
showing that we can a always reassociate a configuration so that we can apply lemma to
replace the multiset of interest. We do so using “LMR derivations’, introduced below.

LEMMA 5.6.16. Assume I’ | Ip - F 2@ » T 1 Iglp m E,F =@ If T 1 Ig - G @ s
well-formed and Igis disjoint from T, 15,0, thenT | Ig-G=0 » T 1 Iglg-E,G = 0.

Proof. Byinduction on the hypothetical derivationI’ | Ip - F = @' » T 1 Iglp + &, F = @, where
we replace the hypothesis I' | Iz - F :: @ with the hypothesis I’ | Ig -G = @'. O

It is often useful to reassociate a typing derivation such that a given subset appears as a
conclusion in the derivation. Assume ¥ | I-E M = ZandIT’ | Ijy - M :: A'/AwithT C VP,
[’, Iy, A’ € I,and A € E. An LMR derivation (left-middle-right derivation) of W I Ig Iy + E, M = E
for M isaderivation of ¥ 1 Ig Iy + &€, M :: E that decomposes £ into (potentially empty) multisets
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L and R such that £ and R do not share any channels, and all channels that £ provides are used
by M. Explicitly,
(1) if T’ is non-empty and A # E, then £ and R are both non-empty and the LMR derivation
is of the form:
A LT T'TEM:=AN
AT - L, M AN
Vi Ilgly+-EM:E
(2) if I is non-empty and A = B, then £ is non-empty, R is empty, and the LMR derivation
is of the form:

(Conr-C)

PAN+-R:=®

(Cone-C)

A-L:T TI'-M:A
Vi lgly I—S,M HEC)
(3) if " is empty and A # E, then £ is empty, R is non-empty, and the LMR derivation is of
the form:

(Conr-C)

I'-M:AAN PAN-R:O
Y IEIM l—g,M t B
(4) IfT" is empty and A = E, then £ is empty, so so are £ and R, and the LMR derivation is
IT 1 Iy = M AA.

PROPOSITION 5.6.17. Assume ¥ | T+ EM = BandTI’' 1 Ijy - M = NNAwithT c ¥,
I, Ip, A" € 1, and A € B. There exists an LMR derivation of ¥ 1 I+ E, M = E for TT' | Iy = M =
A'A.

(Conr-C)

Proof. We proceed by induction on the derivationof ¥ 1 I+~ &, M = E.
Cast (ConNe-M): Then € must be empty, and the LMR derivation is IT” 1 I - M =z A’A.
Cask (Conr-P): Analogous to the case (CONE-M).
Cast (ConEe-C): Recall the rule schema:

SI|T1LFC=0I ILY |[IIA1 L, +-D:8
- (Conr-C)
SILE | TA 1 LIL +C,D = ®F

Assume first that M is contained in the left premise. By the induction hypothesis, there is an LMR
derivation of that premise for TT” 1 Ij; - M = A’A. If £ and R are both empty, then we are done,
for the left premise is [T 1 Iy = M :: A’A. If £ is non-empty but R is empty, then we are done,
for we have an LMR derivation. If £ is empty and R is non-empty, then we are in the situation
M, R R
YIiI-EM:E

where we use three dots “--” to elide the unique conclusion given by functionality of composition
(proposition [5.6.6). We can rotate this derivation counter-clockwise to get the desired LMR
derivation:

«

Vi CRLR
YII-EM:E
If £ and R are both non-empty, then we are in the situation
L M- R
LM, R R

Then we can rotate this derivation counter-clockwise to get the desired LMR derivation:

YIiI-EM:E
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Assume next that M is contained in the right premise. By the induction hypothesis, there is an
LMR derivation of that premise for I'T” | Ij; - M :: A’A. The analysis is analogous, except in the
case when £ and R given by the induction hypothesis are both non-empty: in this case, we will
need two clockwise rotations.

Composing that hypothetical derivation with (CONE-c) and the other premise gives the desired
hypothetical derivation.

Assume first that M has a non-empty intersection with both premises. Call the intersections
with the left and right premises M and My respectively (so M = M, Mp), and let their
respective complements in C and D be £ and R. Assume that £ and R are both non-empty. Then
by proposition there exists a hypothetical derivation

wiLove My e Mpee R

Cor D
YII-EM:E
By proposition|[5.6.7} we can twice rotate this derivation to get the following derivation.
My Mg
L, M- R
YII-EM=E

We know that the interface for M in the derivation remains I'T’ I I; - M :: A’A by the subformula
property (proposition[5.6.8). This gives the desired LMR derivation. If either £ or R is empty, then
applying the induction hypothesis to the other branch and rotating the tree will give the result. If
both are empty, then the LMR derivation is just the derivation of M. O

The following proposition, combined with lemma|s.6.16} shows that we can replace any subset
of a multiset with one that has the same interface:

PROPOSITION 5.6.18 (Replacement Property). Assume F is non-empty. If T | Iglp - E,F = ©
and T’ | Ip = F = @' with T' € T1g and ®' C IO, then there exists a hypothetical derivation
' LEGz@ » T Igl - E,G 0O forall G and 1, for which the conclusion is well-formed.

Proof. If € is empty, then T 1 Iglp - E,F = @is I’ | Ip + F = @ and I, is empty, and we are
done by the fact that hypothetical derivability is reflexive. Assume now that £ is not empty.

By proposition there exists an LMR derivation for I’ 1 Ip = F = @ inT 1 Iglp - &, F =
©. Pruning the LMR derivation at I'" | I - F :: @’ gives the hypothetical derivation. The result

follows by lemma O

Every configuration can be decomposed as the composition of independent “simply branched”
configurations with no common channels. The absence of common channels implies that these
simply branched subconfigurations do not interact during executions. We will use this fact to
reduce proofs about arbitrary configurations to proofs about simply branched configurations.

Definition 5.6.19. A configuration I' | I+ C :: A is simply branched if it has a derivation in which
every instance of the rule

SI|T1LFC=®I ILY |[TIA 1 L+~D:

@3]

- (ConE-C)
3, ILS | TA 1 LIIL, +~ C, D :: ®E
has exactly one channel in the context II. <
PROPOSITION 5.6.20. Every configuration I' + C = do : Do,...,d, : D, is the composition

Iooos Iy 1 Inyoo s Iy = Coy .. osCpy 2 dy ¢ Do, ... dy + Dy of simply-branched configurations
T I+~ C; ::di:D,-forOSiSn.

Proof. We proceed by induction on the derivation of I' -~ C :: d,, : D, ...,d, : Dy.
CAsE (CoNE-M): Immediate.
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CasE (CoNF-P): Immediate.
Cask (Conr-C): By assumption, both branches of the rule

SIT1LrC=0I ILY [[A1L+D
3, ILS | TA 1 LIIL, +~ C,D :: ®E

can be decomposed into the composition of simply-branched configurations. Iterating the compo-
sition using an induction on the number of channels in the intersection II gives the result. Indeed,
if there are no channels in the intersection II, then we are done. Assume the result for some n, and
assume IT has n + 1 channels. Leave one of the configurations of the left branch’s decomposition
out. By the induction hypothesis, the composition of the remainder can be given the desired
decomposition. Applying (CoNE-C) to the branch left-out and the decomposition given by the
induction hypothesis gives the result. O

s (Conr-C)

Finally, we can characterize simply branched configurations by looking at their provided
channels:

PROPOSITION 5.6.21. A configuration I' 1+ 1+ C = A is simply branched if and only if A contains
exactly one channel.

Proof. Assume first that T' | I+ C :: A is simply branched. We proceed by induction on one of its
simply-branched derivations to show that A contains exactly one channel.

CAsE (CoNF-M): Immediate.

CasE (CoNF-P): Immediate.

Cask (Conr-C): By assumption, both branches of the rule

SI|T1LFC=0I ILE |[IIA1 L, +-D:8
% (Cone-C)
SILE | TA 1 LIL +C,D = ®F

are simply branched. By the induction hypothesis, this means that ®II contains exactly one
channel, and by assumption, that channel must be contained in IT. So @ is empty. By the induction
hypothesis, we also have that 2 contains exactly one channel. Because A = ®E, we conclude that A
also contains exactly one channel.

The converse is given by proposition|s.6.20} O

5.7. Type-Indexed Relations

Our ultimate goal is to relate programs that are equivalent or that somehow approximate each
other. We define various desirable properties for relations on programs and configurations.

Polarized SILL and its configurations do not have unicity of typing, and processes could
be equivalent at one type but not at another. Accordingly, we would like our relations to be
type-indexed:

Definition 5.7.1. Type-indexed (binary) relations are families of relations indexed by typing sequents.
Explicitly:
(1) A type-indexed relation R on configurations is a family of relations (Ra-¢)a,¢ Where
(C,D) e Rarg onlyif A+ C:: @ and A+ D : ©. In this case, we write A - C R D == D.
(2) A type-indexed relation R on processes is a family of relations (PRw;ac:4)w,a,c:4 Where
(P,Q) e Ryarcaonlyif ¥;A-Puc:Aand ¥ ;5 A Q = ¢ : A. In this case, we write
Y;ArPRQ:uc:A.
(3) A type-indexed relation R on terms is a family of relations (JRy, )y, where (M, N) €
Ry onlyif ¥ I- M : Tand ¥ I N : 7. In this case, we write ¥ IF M A N : 7.
Type-indexed relations are assumed to satisfy the exchange, renaming, and weakening struc-
tural properties whenever their underlying judgments do. The renaming property for type-indexed
relations on configurations is subtle because we elided internal channels. Explicitly, it is the
property:
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e UITHFCRD=ATIL+C=:AandT 1 LDz Aando:TA & T'A,0,: 1, « I/, and
0,: I, « I are renamings, then I'' + [0, 6, ]C R [0, 0,]D = A'. «
We will study the effects of running “equivalent programs” in various program contexts.
Contexts are programs with holes:
Definition 5.7.2. A (typed) term context W I C[-] : 7 is a term formed by the rules of sectionm
plus one instance of the axiom (F-HOLE):
———— (F-Hotre
T[]0 ( )
Given a term context ¥ I~ C[-]} : rand aterm T I+ M : o, the result of “plugging” M into the
hole is the term W I~ C[M]L : 7 obtained by replacing the axiom (F-HoLE) by the derivation of
'-M:o. <

Definition 5.7.3. A (typed) process context ¥ ; A~ C []Zé\ i a : Ais a process formed by the rules
of section[5.A.2|plus one instance of the axiom (P-HOLE):

(P-HoLE)

T;A-[]h=b:B
21‘; 2 a:AandaprocessI'; A+~ P = b: B, the result of
“plugging” P into the hole is the term ¥ ; A + C[P];’2 :: a : A obtained by replacing the axiom
(P-HotLE) by the derivation of I'; A+~ P b : B. <«

Given a process context ¥ ; A + C[-]

We most often work only with closed terms and processes, and listing empty functional contexts
becomes tiresome. Consequently, we write C[-]#, and C[-], for C[];}2 and C[-],, respectively.

Definition 5.7.4. A (typed) configuration context I' | T+ C[-]4

rules of section [5.2] plus one instance of the axiom (CoNr-H):

A+ []i\ R (Cone-H)

i A is a configuration formed by the

Consider a configuration context T' | T+ C[-]2 = A and a configuration A | I D =z E such that
i'is disjoint from I', T, A. The result of “plugging” D into the hole is the configuration T 1 T, I’ -
C[D]% = A given by lemma where we replace the axiom (CoNE-H) by the derivation of
A 1 I'+ D :: E and thread the added internal channels I’ through the derivation. <

Remark 5.7.5. We can always plug a configuration in a hole with a matching interface in defini-
tion[5.7.4| by suitably renaming the internal channel names in I'.
Definition 5.7.6. A type-indexed relation is contextual if it is closed under contexts. Explicitly:
(1) A type-indexed relation 93 on configurations is contextual if A + C 2R D :: E implies that
T'-E[CIARE[D]S = AforallT - E[]4 = A
(2) A type-indexed relation R on processes is contextual if ¥ ; A - PR Q :: ¢ : A implies
that ¥ ; A" = C[P]¥2 M C[Q]¥2 = b: Bforall W' ; A"+ C[-]¥2 = b: B.
(3) A type-indexed relation R on terms is contextual if ¥ I M %R N : 7 implies that

Y- C[M]Y RC[N]Y : 7 forall ¥/ i+ C[-]¥ : 7. «
Definition 5.7.7. The contextual interior 93¢ of a type-indexed relation A is the greatest contextual
type-indexed relation contained in A. <

LEMMA 5.7.8. Taking the contextual interior of a relation is a monotone operation, and it preserves
arbitrary intersections.

Simply branched configuration contexts closely mirror the “observation contexts” used to
observe processes in section[7.5} The concept of a simply branched context is subtle: given a simply
branched configuration context, we would like the result of filling its hole to again be simply
branched. However, this need not always be the case: the context ]!, A.p:p Satisfies deﬁnition
but proposition Iml implies that for no C is [C]},., .5 simply branched. Instead, we use the
characterization of proposition[s.6.21]to define simply branched configuration contexts:
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Definition 5.7.9. A configuration context A B[]} :: E is simply branched if E contains exactly
one channel. «

Definition 5.7.10. A typed relation R on configurations is simply branched contextual if I' - C R D ::
A implies that @ + B[C]\ % B[D]} = ¢ : C for all simply branched contexts ® + B[-]} = c: C. <

Definition 5.7.11. The simply branched contextual interior R’ of a typed relation 94 on configurations
is the greatest simply branched contextual typed relation contained in fR. <

For most of the relations 93 considered below, 93¢ and 9¢ coincide. This fact, reminiscent of
Milner’s context lemma [Mily7]], reduces our proof burden when showing that configurations are
related by contextual preorders: we only need to quantify over simply branched contexts instead of
over all contexts. Contextual preorders are called precongruences:

Definition 5.7.12. A typed relation 93 on configurations is a precongruence if:

(1) each relation in the family is a preorder; and
(2) the relation respects composition: if [' - C 8 C' :: ®Z and ZA + D R D’ :: B, then
TA-C,DRC', D' :: OE.

It is a congruence if it is also an equivalence relation. <

Congruence relations are desirable because they let us “replace equals by equals”. The following
proposition is standard:

PROPOSITION 5.7.13. A typed equivalence relation R on configurations is a precongruence if and
only if it is a contextual preorder.

Proof. 1t is obvious that every precongruence is contextual. To show that every contextual preorder
is a precongruence, assume I' - C R C’ :: ®F and ZA + D R D’ :: E. By contextuality, TA +
C,DRC,D=:@EandTA+C',DRC', D' :: OF. By transitivity, TA - C, DR C', D' : ©E. O

We can use contextual interiors and proposition to extract precongruences from preorders
(cf. [Mil80} Theorem 7.5]). Proposition and the definitions of precongruence and congruence
translate from configurations to processes and terms in the obvious way.

5.8. Dynamic Properties of Terms

The following preservation result for the functional layer and its proof are standard:
PROPOSITION 5.8.1 (Preservation). If - - M : Tand M || v, then - 1+ M : v.

PROPOSITION 5.8.2 (Canonical Forms). If M val, then

(1) if -+ M:7— 7, then M is Ax : .M’ for some term M’';
(2) if - M:{co: A, < c;:A;}, then M is ¢, < {P} <« ¢; for some process P.

Proof. By case analysis on M val and inversion on the typing judgment. O

5.9. Dynamic Properties of Typed Configurations

In this section, we prove two important properties about Polarized SILL. The first, in sec-
tion[s.9.1} is that the substructural operational semantics for Polarized SILL enjoys a type preserva-
tion property. The second, in section|[s.9.2} is that all well-typed processes and configurations have
fair executions.



5.9. DYNAMIC PROPERTIES OF TYPED CONFIGURATIONS 125

5.9.1. Preservation. Let P be MRS for Polarized SILL, i.e., the MRS given by the rules of
section[5.B] We prove various invariants maintained by process traces and traces from well-typed
configurations. Our first goal is to show that the substructural operational semantics preserves
interfaces, and that it does not change the types of internal channel names. To do so, we use the
fact that multiset rewriting only makes local changes to a multiset, and these local changes do not
affect the type of a multiset. In particular, we show that whenever a rule replaces the active multiset
with a new multiset, then the new multiset has the same interface as the active multiset. Moreover,
the type of the stationary multiset remains unchanged.

We formulate our preservation result in terms of configuration contexts. In particular, our
formulation makes explicit the fact that the type of the stationary multiset (seen as a configuration
context) does not change, and the fact that the active multiset and its replacement have the same
interface.

PROPOSITION 5.9.1 (Preservation). Assume X || T 1 I-C = A If2;C — 2’ ;C’ by some rule
instance £ — &', then there exist ¥ € T1, I} € 1, and ©® € 1A such that
(1) V1 I -E:0,
(2) ¥ 1 Ig &' O for some I whose channel names are disjoint from those in TIL A,
(3) Cisgivenby X || T 1 I, + D[E]§ = A for some configuration context T 1 '+ D[]& = A
and some I, and
(4) C'isgivenby Z,1x || T 1 IxT' D[E'g=Aand3 =%, Ix.

Proof. We will proceed by case analysis on the rule below. By lemmals.6.14] there exist ¥ ¢ I'],
I € Land © ¢ IAsuchthat W 1 I; & = ©. By proposition|5.6.18 ¥ 1 I, - £ = ©» T1 [T - C :: A.
Replacing the hypothesis ¥ 1 I - £ : @ by the axiom (Conr-H) gives a configuration context
I I'-D[]g=AsuchthatT || T 1 I.I'+ D[E]S : A, where C = D[E]§. In each case below, we
show that there exists an Iz such that ¥ | Iz ~ £’ :: @, and its channel names are the fresh channel
names generated by the rule instance. The action of the multiset rewrite rule £ — &’ replaces £ by
&' in C to give the multiset C’ = D[£']¥. In particular, this implies =, Tz || T 1 IxI' = D[E']E = A
and 3’ = 3, I;.

We proceed by case analysis on the rule used to make the step. In each case, we freely use the
fact that parametric hypothetical derivations are closed under renaming of channel names. We
omit cases that follow by analogy with others.

CasE (64): The rule is:
msg(a, m*), proc(b,a - b) - msg(b,[b/a]m™)

The typing judgment for the left-hand side is, by inversion:

g b a 5. A (Fwp?)
s A-m ..f.A (CONF—M) sa:A-a—-bxzb: A (CONF—P)
A-+-msg(a,m*)za:A a:Al-+-a—->bzb:A
(Conr-C)
Ata:Armsg(a,m”),proc(b,a—->b)=b:A
The right-hand side is:
sAr[blalm* :b: A
CoNE-M
At -+~msg(b,[blalm*)=b: A (Conr-M)
Both sides share the same interface, so this completes the case.
Cask (65): The rule is:
proc(b,a < b), msg(c, m; ) ~ msg(c. [a/b]m; )
The typing judgment for the left-hand side is, by inversion:
. 5z (Fwp?) 3biArmy uc:C
-,a.AI—a<—b..b.A (CONF-P) b,c . (CONF-M)
a:Al-+proc(b,a<b)=b:A b:A1-+msg(c,m, )=c:C

ConEe-C
a:A1b:Avrproc(b,a < b),msg(c,m, )=c:C (Conr-C)
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The right-hand side is:

sarAvrfafblm, =c:C
a: A -+msg(c[alblmy ):c

e (Cone-M)
Both sides share the same interface, so this completes the case.
Cask (66): The rule is:
VA,,A,,c.proc(c,a < P; Q) — 3b.proc(b, [b/a]P),proc(c, [b/a]Q)
The typing judgment for the left-hand side is, by inversion:

sAFPuza:A -;a:AANFQuc:C
3 ALA,Fa< P Quc:C (CUT)
(Cone-P)
AA, 1 -Fproc(c,a< P; Q) uc:C

By substitution, the right-hand side is:
“sA +[bla]lP=b: A

A, 1 -+ proc(b,[bja]P)=b: A

AA, 1 b A proc(b,[ba]P),proc(c, [b/a]Q) =c: C

Both sides share the same interface, so this completes the case.
Cask (73): The rule is:

Va,a;.eval(M,a < {P} < a;),proc(a,a < {M} < a;) — proc(a, P)

5b:A A, - [b/a]Qic:C — (ConE-P)

b:AA, 1 -+ proc(c,[b/a]Q) :c:C (Cone-C)

(ConE-P)

The typing judgment for the left-hand side is, by inversion:
FM:{a:A<a;:A;}
saiiAira«{M}<aza:A
a;:A;1-+proc(a,a <« {M} «<a;)za:A

Byproposition~ IFa< {P}<a;:{a: A< a;:A;} Byinversion,-;a;: A; - P a: A. The
right-hand side is:

(E-{})
(Cone-P)

sa;tAj-PratA

a;:A; 1 -+proc(a,P)za: A

(ConE-P)

Both sides share the same interface, so this completes the case.
Cask (68): The rule is:
Va.proc(a, close a) - msg(a,close a)

The typing judgment for the left-hand side is, by inversion:

-3-+closeaza:1 (1R)
. (Cones-P)
-1 -+ proc(a,close a) ::a:1
The right-hand side is:
-5-+closeaza:1 (1R)
. (Cone-M)

-1 -+ msg(a,closea) =a:1
Both sides share the same interface, so this completes the case.
Caske (80): The rule is:
VA, a.proc(a,send a shift; P) — 3d.proc(d, [d/a]P), msg(a, send a shift; d < a)
The typing judgment for the left-hand side is, by inversion:
3A+-P:ua:A
-3 A +send ashift; P:a: A (IR)
A1 -+ proc(a,send a shift; P) a: A

(Cone-P)
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The right-hand side is:

sd:Ard<aza: A (Fwp™)
sAr[dfalP=d: A ;d:Arsendashift; d<a=za: A (IR)
A1 -+ proc(d,[d/A]P) =d: A d:A1 -+ msg(a,send ashift; d < a)=a:|A
A1 d: A proc(d,[d/a]P), msg(a,send ashift; d < a) =a: |A

(ConE-P) (Cone-M)

(ConE-C)

Both sides share the same interface, so this completes the case.
Cask (81): The rule is:

YA, a,d,c.msg(a,send a shift; d < a), proc(c, shift < recv a; P) — proc(c, [d/a]P)
The typing judgment for the left-hand side is, by inversion:

sd:Ard<«aza: A (Fwp™)
-;d:Arsendashift; d<aza: A (R)
d:A -+ msg(a,send ashift; d < a):a:]A
A,d:A 1 a:|Ar msg(a,send ashift; d < a), proc(c, shift < recva; P) =a: A

The right-hand side is:

sA,a:A+-Puc:C (lL)
-sA,a:JArshift < recva; Puc:C (Con-P)
A,a:lA 1 -+ proc(c,shift < recva; P):c:C

(Cone-C)

(Cone-M)

sA,d:Ar[dfa]lP=c:C
A,d:A -+ proc(c,[d]a]P):c:

C (Cone-P)

Both sides share the same interface, so this completes the case.
Cask (5.B): The rule is:
VA, a.proc(a, shift < recv a; P), msg(d,send a shift; a > d) — proc(d, [d/a]P)

The typing judgment for the left-hand side is, by inversion:

sarAra—->d:zd:A (Fwp?)
-;a:tArsendashift; a>d:=d: A (1)
a:tA 1 -+ msg(d,send ashift; a >d)=d: A
A1 a:1A+ proc(a,shift < recv a; P), msg(d,send a shift; a > d) =d: A

The right-hand side is:

sA-Pua:A
-3 Arshift<recva; Pi:a: 1A (1R)
A | -+ proc(a, shift < recv a; P) = a: 1A

(ConE-P)

(Cone-M)
(Cone-C)

sAv[dfalP=d: A
A -+ proc(d,[d]a]P) :d: A

(Coner-P)
Both sides share the same interface, so this completes the case.
CasE (5.B): The rule is:
VA, a, c.proc(c,send a shift; P) - 3d.msg(d, send a shift; a - d), proc(c,[d/a]P)

The typing judgment for the left-hand side is, by inversion:
3N a:A-Puc:C
-3 A,a:TArsend ashift; P:c: C
A,a:1A 1 -+ proc(c,send a shift; P) :: c:

The right-hand side is:

(1L)
C (Cone-P)

N
sa:Ara—->d=d:A (Fwp 2TL)
;a:tArsendashift; a->d=d: A sA,d:Av[d]alP:c:C (Conr-P)
a:tA 1 -+ msg(a,send ashift; a>d):d: A A,d:A 1 -+proc(d,[d/A]P) =c: C
- (Cone-C)
A,a:1A 1 d: A+ msg(d,send a shift; a — d), proc(c,[d/a]P) :c: C

(Cone-M)

Both sides share the same interface, so this completes the case.
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Cask (78): The rule is:
VA, a.proc(a, a.k; P) — 3d.proc(d, [d/a]P), msg(a,a.k; d - a)
The typing judgment for the left-hand side is, by inversion:
s Ar-Pra:Ag
sArak;Praze{l: A},
At -rproc(a,ak; P)=a:e{l: A},
The right-hand side is:

(eR)
(Cone-P)

+
sdiAr-d—>aza:Ag (Fwp )(EBR)
sAv[dfa]P:d: Ay sdiAxrakid-oazaze{l: A},
(ConE-P) (Coxne-M)
A -+ proc(d,[dfa]P) = d: Ay d:Ag1-+msg(a,ak;d—a)za:e{l: A},
(Cone-C)

Avd:Agrproc(d,[d/a]P),msg(d,a.k;d > a)=a:e{l: A},

Both sides share the same interface, so this completes the case.
Caskt (79): The rule is:

Va,d, A, cmsg(a,a.k; d - a),proc(c,case a {I = P;},,) — proc(c, [d/a]Py)
The typing judgment for the left-hand side is, by inversion:

(Fwp™)

sd:Agrd—aza:Ag sAa:AjFPzc:C (Viel)

sdiArrak;d—oazaze{l: A}, (@R) A aie{l: A}, Feasea {I= P} nc:C (eL)
(CoNE-M) (Cone-P)
d:Ax 1 -msg(a,ak;d—a)za:e{l: A}, Aa:e{l: A}, 1 -+proc(c,casea {I =P}, )=c:C
Ad:Agva:e{l:A}, - msg(a,ak; d— a),proc(c,casea {I =P}, )=c:C (Conr-C)
The right-hand side is:
A d:Ac+[dlalPec:C
k ~[d]a]P (Cox-P)
A,d:Ap 1 - proc(c,[dfa]Py) zc:C
Both sides share the same interface, so this completes the case.
Case (69): The rule is:
VA, b,a.proc(a,send a b; P) — 3d.proc(d,[d/a]P), msg(a,send a b; d - a)
The typing judgment for the left-hand side is, by inversion:
-3 A-P:ua:A
®R
3Ab:Brsendab; P:a:B®A (&R)
(Cone-P)
A,b:B1-+proc(a,sendab; P):a:B®A
The right-hand side is:
+
sd:Ard—aza:A (Fwp™) (&R)
sAr[dfalP:d: A (Conr-P) 3b:B,d:Arsendab;d >aza:B®A (Cone-M)
A1 -+ proc(d,[d/a]P) = d: A b:B,d:A-+msg(a,sendab;d—>a):a:B®A
(Cone-C)

A,b:B i1 d: A proc(d,[d/a]P),msg(a,sendab; d > a):a:B®A

Both sides share the same interface, so this completes the case.
Cask (7o]): The rule is:

Va,e,d,A, c.msg(a,send a e; d - a),proc(c, b < recv a; P) — proc(c, [e,d /b, a]P)
The typing judgment for the left-hand side is, by inversion:

P ———— F +
sd:Avd-aza:A (Fwp™) 3Aa:Ab:Brb<recva; Puc:C

;e:B,d:Arsendae;d—>aza:B®A 3A,a:B®Arb<recva; Puc:C
e:B,d:A-+msg(a,sendae;d—a):a:B®A A,a:B®A 1 -+ proc(c,b < recva; P):c:C

A,d:Ae:Bia:B®Ar msg(a,sendae; d— a),proc(c,b < recva; P):c:C

(®R)
(CoNE-M)

(eL)
(Cone-P)
(Conr-C)
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The right-hand side is:
3sA,d:A,e:Br e, d/b,a]P:c:C
A,d:A,e:B 1 -+ proc(c,b<recva; P):c:C

(ConE-P)

Both sides share the same interface, so this completes the case.
CasE (74): The rule is:

Va,A.eval(M,v), proc(a, _ < output a M; P) -
— 3d.proc(d, [d/a]P), msg(a, _ < outputav; d - a)
The typing judgment for the left-hand side is, by inversion:

‘FM:1 -;A-Pua:A
-3 A+ _<«outputaM; P:a:1TAA

(AR)

(ConE-P)
Al -+ proc(a,_<outputaM; P)za:TAA

By proposition[5.8.1} - I v : 7. The right-hand side is:

(Fwp™)

(AR)
(Cone-M)
(Cone-C)

“kvit 3d:Ard—aza:A
3d: A+ _<outputavid—-aza:tAA

A+ [d/a]P:=d: A
A1 -+ proc(d,[dfa]P)=d: A
A d:Avr proc(d,[d]a]P),msg(a,_ < outputav;d—a):a:TAA

Cone-P
( ) d:A1-+msg(a,_<outputavid—a):a:TnA

Both sides share the same interface, so this completes the case.
Cask (73): The rule is:
VA, a,d,c.msg(a, _ < output a v; d - a), proc(c, x < input a; P) —
— proc(c, [d,v/a, x]P)

The typing judgment for the left-hand side is, by inversion:

(Fwp™)
(AR)
(Cone-M)

“kv:t -;d:Ard->aza:A
3d:Ar_<«outputavid >aza:tAA

x:T7;Aa:A-Puc:C
sAa:TAARXx <« inputa; Puc:C
Aya:TAA -+ proc(c,x < inputa; P):c:C

(AL)

(Cone-P)

d:A1-+msg(a,_<outputavid—>a):a:TAA (Cone-C)

Ad:A1a:tAAF msg(a,_ < outputav; d —> a),proc(c,x < inputa; P)::c: C
The right-hand side is:

sAd:Av[d,vfa,x]P:c:C
A,d:A -+ proc(c,[d,v/a,x]P):c:C

(Coner-P)
Both sides share the same interface, so this completes the case.

Cask (82): The rule is:

VA, a.proc(a,send a unfold; P) — 3d.proc(d, [d/a]P), msg(a,send a unfold; d - a)
The typing judgment for the left-hand side is, by inversion:

sArPua:[paAla]A -+ pa.Atypel
;A +send aunfold; P:a:pa.A

(°R)
(ConE-P)

A 1 -+ proc(a,send a unfold; P) :: a: pa.A
The right-hand side is:

3d:[pa.Ala]Ard—>aza:[pa.Ala]A (Fwp™)

5d:[pa.Al/a]Ar send aunfold; d > a:a:pa.A

-+ pa.Atypel

(P*R)
(CoNE-M)
(Cong-C)

sAr[dfalP:d: [pa.Ala]A
A1 -+ proc(d,[d]a]P) = d: [pa.Ala]A d:[pa.Ala]A 1 -+ msg(a,send a unfold; d - a) = a:pa.A
A1 d:[pa.Ala]A v proc(d,[d/a]P), msg(a,send a unfold; d - a) = a: pa.A

(ConE-P)

Both sides share the same interface, so this completes the case.
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Cask (83): The rule is:
VA, a,d.msg(a,send a unfold; d — a), proc(c, unfold < recv a; P) — proc(c,[d/a]P)
The typing judgment for the left-hand side is, by inversion:

Fwp*
di[pa.Ala]Ard—>aza:[pa.Ala]A ( ) - pa.Atypel 3 Ava:[paAla]A-Pic:C -+ pa.Atyped

-5d: [pa.A/a]AFsend aunfold; d > aza:pa.A (p7R) -5A,a:pa.Arunfold < recva; P:c:C (p'L)
(ConE-M) (ConE-P)
d:[pa.Ala]A 1 -+ msg(a,send a unfold; d - a) = a: pa.A A,a:pa.A -+ proc(c,unfold < recv a; P) ::c: c o
A,d:[pa.Ala]A 1 a:pa.A+ msg(a,send a unfold; d — a), proc(c, unfold « recv a; P) ::c: C (Cone-
The right-hand side is:
A d: [pa.Ala]Ar-[dfa]lPuc:C
(ConeE-P)
A,d:[pa.Ala]A 1 -+ proc(c,[dfa]P)=c:C
Both sides share the same interface, so this completes the case. O

As a corollary of proposition we know that in a trace T = (M,, (r;;8;);) from a well-
typed X || T 1 I, - M, == A, we have for all i some 2; and I; such that X; || T' 1 I; - M; == A. Indeed,
%; and I; are given by induction on #, where each step is given by an application of proposition[5.9.1]
We also know that every channel appearing in a process trace has an associated session type, a
fact that we will use repeatedly when reasoning about process traces. Definition 5.9.2] captures this
relationship between traces, channels, and types:

Definition 5.9.2. Consider a trace T = (M,, (r;;6;);) from X || T 1 I, - M, = A. We write
T+ ¢ : Atomean that ¢ : A appearsin T, A, or I; for some i. <

By proposition[5.6.10} T+ ¢ : A is an entire relation from free channel names appearing in
U; fc(M;) to session types. In fact, it is a total function:

COROLLARY 5.9.3. Let T = (Mo, (r;36;);) bea trace fromZ || T 1 I, - M, = A. Forallc, if
Trc:Aand T+ c: A, then A=A’

Proof. 1t is sufficient to show thatif c: Aisin T, I,,Aand ¢: A’ isin T, I, A for some k < n, then
A = A’. We do so by induction on n.

Case n = o: Then o < k < n implies that k = o. The result is immediate by well-formedness
of Z||T 1 I+ M,:A.

Case n = n’ + 1: Assume the result for n’. If k = n, then A = A’ by well-formedness of
2| T 11, ~ M, : A Otherwise k < n, so in particular, k < n’. By proposition[s.9.]} ¢ : A is in
I, Ir, A (preservation implies that a channel cannot reappear in a trace after having disappeared).
By the induction hypothesis, A = A’ as desired. O

The following proposition further confirms that the types assigned by T + ¢ : A are consistent
with those for message and process facts appearing in the trace T:

PROPOSITION 5.9.4. Let T = (M, (r;58;);) be a trace from 2, || T 1 1o = M, = A, and let 3;
and 1; be given by recursion on n and proposition[s.9.1} For all n, if proc(c,, P) € M,,, then
(1) ¢, € fc(P);
(2) forallc; € fc(P), then T + ¢; : A; for some A;; and
(3) wherefc(P) ={co,....cm}» wehave-;¢,: A,....cm i Ap - Piicy: A,
If msg(c,, m) € M, then
o ifm=closec, then T+ c:y
e ifm=clid—c thenTrc:®{l;: Ai}icforsome A; (i€l), and T+ d: A; for some
jel;
{fm =cljced then T c:&{l;: A} forsome A (i €1),and T+ d : Aj for some
jel;
{fm:sendca; b—octhenTr-c:A®B, Tra:A and T+ b: B for some A and B;
ifm=sendca; c< b thenTr~c:A—B, Tra:A and T+ b: B for some A and B;
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o ifm=_<«outputcv;d > c thenTv+c:1AnAand T+ d: A for some A and 1 such
that - \-v:1;

o ifm=_<outputcv; c<d, then T+c:12>Aand T+ d: A for some A and T such
that-\-v: 1

e if m = send c unfold; d — ¢, then T + ¢ : pa.Aand T + d : [pa.A/a]A for some
o - Atypel; and

e ifm = send c unfold; ¢ « d, then T + ¢ : pa.Aand T + d : [pa.A/a]A for some
o+ Atype,.

Proof. By assumption, wehave ; | A 1 I; - M; :: (c: A) for all i. Assume proc(c,,P) € M,, or
msg(c, m) € M,. Then the result is immediate by proposition5.6.9|and inversion on the typing
judgment for processes. O

5.9.2. Fairness. We show that every well-typed configuration has a fair execution, and that
its fair executions are all union-equivalent (recall definition [3.3.22). These two facts will follow
easily from the fact that the MRS P is non-overlapping on well-typed configurations. The proof of
non-overlapping property depends on the following sequence of technical results.

The first technical lemma characterizes the input and output channel names for facts appearing
in rules.

LEMMA 5.9.5. IfF(I;) ka),

(1) if msg(c, m) € F(k), then
(a) F(k) = msg(c, m), proc(d, P) for some d and P,
(b) cc(msg(c,m)) € ics(proc(d, P)), and
(c) cc(msg(c, m)) ¢ fc(G(k, @));
(2) if F(k) = proc(c, P), then
(a) G(k,d) =msg(d,m),proc(e, Q) for some d, m, e, and Q, and
(b) cc(msg(d, m)) € ocs(proc(c, P));
() ifG(k,d) = msg(c, m), then
(a) proc(d, P) € F(k) for some d and P, and
(b) cc(msg(c,m)) € ocs(proc(d, P));
(1) if G(k, @) = msg(c, m), proc(d, P), then
(a) proc(e,Q) € F(I;)for some e and Q,
(b) ocs(proc(d, P)) < ocs(proc(e, Q)) u d,
(c) ke(msg(c,m)) € 4,
(d) kec(msg(c, m)) € fc(proc(d, P)),
(e) cc(msg(c, m)) € ocs(proc(d, P)), and
(f) cc(msg(c, m)) ¢ fe(proc(d, P));
(5) if G(k,a) = proc(c, P), proc(d, Q), then
(a) risﬁ,
(b) F(k) =proc(d, c < P; Q), where without loss of generality, d = c, and
(c) ocs(G(k,@)) € ocs(F(k)) U {c}.

The above enumeration of cases for G(k, d) is exhaustive.

G(k,d) by aruler e P, then

Proof. Immediate by a case analysis on the rules, using proposition to simplify reasoning. [

Remark 5.9.6. We avoided the question of configurations being well-typed in lemma by using
static input and output channel names, which lift to facts in the obvious way.

Corollary shows that a configuration never consumes a message that it sends on its
interface:

COROLLARY 5.9.7. If T 1 I+ C = Aand C — C’, then for all msg(c, m) € C, if cc(msg(c, m)) €
I, A, then msg(c, m) € C'.
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Proof. Let msg(c,m) € C with cc(msg(c,m)) €T, A be arbitrary. The only way for msg(c, m) € C
but msg(c, m) ¢ C' is for the step to be by a rule with msg(c, m) in its active multiset F(k).
By lemma | this implies that there exists some proc(d, P) € F(k) with cc(msg(c, m)) €
ics(proc(d, P)) By proposition|s.5.5} this implies that cc(msg(c, m)) € |c(proc(d P)). But then
by lemma L cc(msg(c,m)) € I Thls implies that cc(msg(c, m)) ¢ I, A, a contradiction. [

As a second corollary, each channel in a trace appears as the carrier channel of at most one
message judgment:

COROLLARY 5.9.8. Let T = (Mo, (r;;6;);) be a trace from T 1 1, + M, :: A,. Forall j < k, if
msg(cj, m;) € M; and K € My, then cc(msg(cj, m;)) ¢ oc(K) or K = msg(cj, m;).

Proof. We proceed by induction on k to show that if K € My, thenforallo < j < k, if msg(c;j, m;) €
M, then cc(msg(cj, m;)) ¢ oc(K) or K = msg(c;, m;).

CASE k = 0: The base case is given by lemmals.6.13}

CASE k = k' + 1: Assume the result for some k’. Assume that My — Mj by some rule

- J(h,d -
instantiation F(h) L), G(h,d). Let msg(cj,mj) € M;and K € M be arbitrary, where

0 < j<k.IfK = msg(cj, m;), then we are done. Now assume that K # msg(c;, m;). We proceed
by case analysis j < k:

SUBCASE j = k: Then cc(msg(cj, m;)) ¢ oc(K) by lemmals.6.12]and proposition

SUBCASE j < k: If K is in the stationary subset, then K € M} and we are done by the induction
hypothesis. Otherwise, K € G(h, @). We proceed by case analysis on the fact K:

SuBsuBCASE K = proc(c, Py): By lemma [5.9.5} oc(proc(ck, Px)) € ocs(proc(d, P)) u a for
some proc(d, P) € My . By the induction hypothesis, cc(msg(c;j, m;)) ¢ oc(proc(d, P)). By
proposition ocs(proc(d, P)) < oc(proc(d,P)). So cc(msg(cj,m;j)) ¢ ocs(proc(d,P)).
By freshness, cc(msg(cj,m;)) ¢ d. So cc(msg(cj,m;)) ¢ ocs(proc(d,P)) u d. It follows that
cc(msg(cj,m;)) ¢ oc(proc(ck, Py)) as desired.

SuBSUBCASE K = msg(ck, mg): By lemmals.9.5) cc(msg(ck, mi)) € ocs(proc(d, P)) for some
proc(d, P) € My:. By the induction hypothesis, cc(msg(cj, m;)) ¢ oc(proc(d, P)). By proposi-
tion[5.5.5} ocs(proc(d, P)) € oc(proc(d, P)). It follows that cc(msg(cx, m)) ¢ oc(msg(c;j, m;))
as desired. O

Next, we use our technical results to show the that the multiset rewriting system for Polarized
SILL is non-overlapping on well-typed configurations:

PROPOSITION 5.9.9. If I | 1+ C :: A, then the MRS P is non-overlapping on C.

Proof. It is sufficient to show that if s, (¢,) and s,(¢, ) are distinct instantiations applicable to C,
then F,(¢,) and F,(¢,) are disjoint multisets: F, (¢,) N F,(¢,) = @. Indeed, if this is the case and
$1(¢1), ..., sk(¢x) are the distinct rule instantiations applications to M, then F,(¢,), ..., Fx(¢x)
are all pairwise-disjoint multisets. It follows that F,(¢,), ..., Fx(¢x) S M,, so the overlap in C is
empty: Q¢ (F,(¢:),..., Fr(¢x)) = 2.

We proceed by case analysis on the possible judgments in F, (¢,) N F,(¢,).

Case msg(d, m): Bylemmals.9.5} there exist proc(d;, P;) € F;(¢;) with cc(msg(d,m)) €
ic(P;) for i =1,2. If P, = P,, then an 1nspect10n of the rules reveals that s, = s, and ¢, = ¢,, so
we are done. Suppose to the contrary that P, # P,. So cc(msg(d, m)) € ic(P,) nic(P,). Thisisa
contradiction by lemmal5.6.12]

Cask proc(e, P): Thens, =s, by a case analysis on the rules. We show that ¢, = ¢,. If s, is
one of (5.B), (66) to (69), (72), @3] 77)- (78] (8a), (82), (87) and (B, then ¢, = ¢, because all
constants matched by ¢, and ¢, appear in proc(e P).Ifs, is one of (5.B), (64), (63), (7o), 1), (7).
81), (33), (36) and (88), then for i = 1,2, the multiset F; (¢;) contaln a fact msg(d;, m;) where

there is a channel name e; € m; that appears in ¢;, but not in proc(c, P) (explicitly, e; is the name
of the continuation channel). If m, = m,, then we are done, for an inspection of the rules reveals
that ¢, = ¢,. Suppose to the contrary that m, # m,. By lemmals.6.14} - ; A} = m; :: d; : D; for some
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A’ and d; : D;. Inspection of the rules reveals that cc(msg(d,, m,)) = cc(msg(d,, m,)) € ic(P).
This is a contradiction by lemmals.6.12] O

COROLLARY 5.9.10. Every configuration T | 1+ C :: A has a fair execution. Its fair executions
are all permutations of each other and they are all union-equivalent.

Proof. By propositions and|[5.9.9} P is non-overlapping from C. By proposition [3.3.9} this
implies that it commutes from C, so a fair execution exists by proposition All of its fair

executions are permutations of each other by proposition They are union-equivalent by

corollary O

COROLLARY 5.9.11. Every process - ; A + P :: ¢ : A has a fair execution. Its fair executions are all
permutations of each other and they are all union-equivalent.

Proof. Immediate by corollary[s.9.10| with the initial configuration A 1 -+ proc(c,P) : c: A. O

5.10. Related Work

Honda [Hongs3|| and Takeuchi, Honda, and Kubo [THKo4] introduced session types to describe
sessions of interaction. Caires and Pfenning [CP10] observed a proofs-as-programs correspondence
between the session-typed 7-calculus and intuitionistic linear logic, where the (CuT) rule captures
process communication. Toninho, Caires, and Pfenning [TCP13] built on this correspondence
and introduced SILLs monadic integration between functional and synchronous message-passing
programming. They specified SILLs operational behaviour using a substructural operational
semantics (SSOS). Gay and Vasconcelos [|[GV10|| introduced asynchronous communication for
session-typed languages. They used an operational semantics and buffers to model asynchronicity.
Pfenning and Griffith [PGi5] observed that the polarity of a type determines the direction of
communication along a channel. They observed that synchronous communication can be encoded
in an asynchronous setting using explicit shift operators. They gave a computational interpretation
to polarized adjoint logic. In this interpretation, linear propositions, affine propositions, and
unrestricted propositions correspond to different modes in which resources can be used.

There are several process calculi and session-typed programming languages that are closely
related to Polarized SILL, and to which we conjecture our techniques could be extended. Wadler
[Wadi4] introduced “Classical Processes” (CP), a proofs-as-programs interpretation of classical
linear logic that builds on the ideas of Caires and Pfenning [CP1of|. CP supports replication but
not recursion. Though CP does not natively support functional programming, Wadler gives a
translation for GV, a linear functional language with pairs but no recursion, into CP. In contrast,
Polarized SILL uniformly integrates functional programming and message-passing concurrency.
CP has a synchronous communication semantics and does not have an explicit treatment of
polarities. Polarized SILL has an asynchronous communication semantics, and synchronous
communication is encoded using polarity shifts, even though we do not detail this construction
here.

Kokke, Montesi, and Peressotti [KMP1g] introduced “hypersequent classical processes” (HCP).
HCP is a revised proofs-as-processes interpretation between classical linear logic and the n-calculus.
Building on Atkey’s [Atki7] semantics for CP, they gave HCP a denotational semantics using
Brzozowski derivatives [Brz64]]. HCP does not include recursion, shifts, or functional value
transmission.

Gommerstadt, Jia, and Pfenning [GJP18|] introduced run-time monitors for a dependent
version of Polarized SILL. Our type system for configurations is inspired by theirs [GJP18, p. 786].

Pruiksma and Pfenning [PP21] gave a message passing interpretation to adjoint logic. It
supports richer communication topologies than Polarized SILL. For example, it supports multicast,
replicable services, and cancellation. Its operational semantics is specified by a multiset rewriting
system. It enjoys session-fidelity and deadlock-freedom.
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5.A. Complete Listing of Typing Rules for Polarized SILL
For ease of reference, we collect all of the rules for Polarized SILL in this appendix.
5.A.1. Rules for Term Formation.

VY;a;:A;j-Pza:A

— — (I-{})
VYiFa<«{P}<a:{a:A<a;:A;}
Yx:tT-M:1
‘I’,x:TII—x:T(F_VAR) ‘I’Il—fixx.M:T(F_FIX)
Y.x:1I-M:o Y-FM:1T>0 YIFN:71
E-F F-A
\I’II—/\x:T.M:T—wf( uN) Y- MN:o (E-Are)
5.A.2. Rules for Process Formation.
-+ Atypel -+ Atype;
F + S F —
‘P;a:Al—a—>b::b:A(WD) ‘P;a:Al—a<—b::b:A(WD)
Y;AA+-Pz2a:A VY;a:AA+Q:uc:C
Yi;ALA,Fa«<P;Quc:C (Cur)
Yi-M:{a:A«<a;: A,
M )
V;a;:Aira<{M}<a;=za:A
VY;A-P:uc:C
\I’;'n—closea::azl(lR) ‘I’;A,a:u—waita;P::c:C(lL)
VY;Ar-P:a:A (IR) VY;Aa:Ar-P:zc:C (1L)
¥ ; A+ sendashift; P:a: A YA a:]Arshift<recva; P:c:C
‘I_’;Al—P::a: (1R) ‘I’;A,a:Al—P::_c:C (L)
¥ ; A+ shift<recva; P:a: 1A ¥;Aa:1A+send ashift; P:c:C
V;A+-P:ua:Ap (kel) (©R) VY;Aa:A P zc:C (Viel) (L)
VYi;Araks Pra:e{l: A}, YiAa:e{l: A}, Fcasea {I=P}, ;=c:C
VY;A+Pza:A; (Vlel) (&R) ¥Y;Aa:Ay+Puc:C (kel) (&L)
VYi;Arcasea {I =P},  wa:&{1: A}, ViAa:&{l: A}, Fak;Puc:C
¥Y;A+-P:x:a:A Y;ANa:Ab:B-P:x:c:C
R L
WY;A,b:Brsendab; P:a:B®A (€R) Y;A,a:B®A+b<«recva; P:c:C (eL)
Y;Ab:B+-P:u:a:A (—R) VY;Aa:A-P:c:C (L)
Y;A+-b<«recva; P:a:B—oA Y;A,b:B,a:B—-Arsendab; P:c:C
Ye-M:7 Y;A+-P:a:A V.x:17;A,a:A-P:c:C

AR - AL
‘P;A»—_<—outputaM;P::a:TAA( ) ‘I’;A,a:r/\Al—xemputa;P::c:C( )

Y,x:1;A-Pza:A (5R) YiEM:1 Y;A,a:A-Puc:C (oL)
VY;Arx<«inputa; Pza:7120A Y;Aa:120A+_<«outputaM; P:c:C
Y;A+P:a:[pa.Ala]A -+ pa.Atypel R

¥ ; A+ send aunfold; P:a:pa.A (p"R)

¥;Aa:[pa.AJa]A-P:c:C -+ pa.Atypel (r'L)
Y; A a:pa.Arunfold«recva; P:c:C P

VY;ArPza:[pa.Ala]A -+ pa.Atype;

(" R) ¥;Aa:[pa.AJa]A-P:c:C -+ pa.Atype;
¥ ; A+ unfold < recva; P:a:pa.A

¥Y;A,a:pa.Arsendaunfold; P:c:C (p7L)

5.A.3. Rules for Type Formation.
(C1)

m—— 5 (CVaR)
2, o types + a types

B, a type; - Atype; _
o — (Cp) ——— — (Cp)
E+ pa.Atype; E+ pa.Atype;

B 1typel

B, a typel - A typel
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B+ Atypef
C C
E+ |Atype! (Ch) E + 1A type; (€
ErAjtypel (Viel) (Co) BrAjtype; (Viel)
Ero{l: A}, typel Er&{l: A}, types

B+ Atype! E+ Btype!

E+ Atype;

(C&)

B+ Btype! Er Atype;

C® C—o
E+ A® Btype! (Ce) E+ B — Atype; (C=)
B+ Ttype; E+ Atypel B+ Ttype; E+ Atype]
Hypf +yps (Ch) Hypf 7yps (Co)
B+ 1AAtype,] E+ 72 Atype,
E+ A;type, (0<i<n) Er Ttype; E+ 0type
T PR . (T{h) L f(T-)
Er{ac:Ao<a,:A,....a,:A,} types E+ 17— 0types

The following two rules are not part of Polarized SILL proper, and they will only be used in
chapter 8]as technical tools to define the denotations of recursion. There is an instance of each rule
for each n e N:

B, a typel - A typel

(Cpy) (Cpy)

B, a type, + Atype,

B+ p"a.Atypel Fp"a.Atype;

5.B. Complete Listing of Multiset-Rewriting Rules for Polarized SILL

msg(a, m*), proc(b,a - b) - msg(b,[b/a]m™)

2l )

proc(b,a < b), msg(c,m;, .) - msg(c, [a/b]m, )
VA,, A,,c.proc(c,a < P; Q) » Ib.proc(b, [b/a]P), proc(c,[b/a]Q)
Va,a;.eval(M,a < {P} < a;),proc(a,a « {M} < a;) — proc(a, P)
Va.proc(a,close a) — msg(a,close a)
VA, a, c.msg(a,close a), proc(c, wait a; P) — proc(c, P)
VA, a.proc(a,send a shift; P) — 3d.proc(d, [d/a]P), msg(a, send a shift; d < a)
YA, a,d,c.msg(a,send a shift; d < a), proc(c, shift < recv a; P) — proc(c, [d/a]P)
YA, a.proc(a, shift < recv a; P), msg(d,send a shift; a — d) — proc(d, [d/a]P)
VA, a, c.proc(c, send a shift; P) — 3d.msg(d, send a shift; a — d), proc(c, [d/a]P)
VA, a.proc(a, a.k; P) — 3d.proc(d, [d/a]P), msg(a,a.k; d - a) 78]
Va,d,A,cmsg(a,a.k; d - a),proc(c,case a {l = P;},.;) — proc(c, [d]/a]Py)
Va,d,A.proc(a,case a {I = P}, ), msg(d,a.k; a < d) — proc(d, [d/a]P,) (86
YA, a,c.proc(c,a.k; P) - 3d.msg(d, a.k; a < d), proc(c, [d/a]P)
VA, b, a.proc(a,send a b; P) - 3d.proc(d, [d/a]P), msg(a,send a b; d - a)
Ya,e,d, A, c.msg(a,send a e; d — a), proc(c, b < recv a; P) — proc(c, [e,d /b, a]P)

BEREQE

g8

Va,e,d, A, c.proc(a,b < recv a; P), msg(d,send a e; a < d) — proc(d, [e,d/b,a]P)
VA, b,a,c.proc(c,send a b; P) - 3d.msg(d,send a b; a < d), proc(c, [d/a]P)
Va, A.eval(M,v), proc(a, _ < output a M; P) -
— 3d.proc(d,[d/a]P), msg(a,_ < output av; d > a)

Pr— N Gy
8 SQREZ

VA, a,d,c.msg(a, _ < outputav; d > a), proc(c, x < input a; P) >

~ proc(c, [d, v/a, x]P) (zs)
VA, a,d,c.proc(a,x < input a; P),msg(d, _ < outputav; a < d) —» 9
/

— proc(d, [d,v/a,x]P)
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Va, A.eval(M,v), proc(c, _ < output a M; P) —>
— 3d.msg(d, _ < output a v; a < d),proc(c, [d/a]P) (2)
VA, a.proc(a,send a unfold; P) - 3d.proc(d, [d/a]P), msg(a,send a unfold; d — a)
VA, a,d.msg(a,send a unfold; d — a), proc(c, unfold < recv a; P) — proc(c, [d/a]P)
VA, a,d.proc(a, unfold < recv a; P), msg(d,send a unfold; a < d) — proc(d, [d/a]P) (88)
VA, a, c.proc(c,send a unfold; P) - 3d.msg(d,send a unfold; a < d), proc(c, [d/a]P) (89)



CHAPTER 6

Observed Communication Semantics

A longstanding idea in concurrency theory is that processes can only interact with their
environments through communication, and that we can only observe systems by communicating
with them. Indeed, as far back as 1980, Milner [Mil8o, p. 2] wrote “we suppose that the only way to
observe a [concurrent] system is to communicate with it”.

In this chapter, we make the above intuitions mathematically rigorous by giving Polarized
SILL an observed communication semantics. Observed communication semantics, introduced by
Atkey [Atkiy|], define the meaning of a process to be the communications observed on its channels.

In section[6.1]] we make the notion of a session-typed communication explicit. We endow
session-typed communications with a notion of approximation. This approximation will be used
later to relate various notions of equivalence. We also characterize infinite communications by
their finite approximations.

In section[6.2] we show how to observe communications on free channels of configurations.
We first do so using a coinductively defined judgment that observes communications on fair
executions. We show that the choice of fair trace does not matter. We also show that we can instead
consider only finite prefixes of fair executions. The communications observed on the finite prefixes
approximate and determine those observed on the complete fair execution.

We generalize from single channels to sets of channels in section|6.3}

6.1. Session-Typed Communications qua Communications

We begin by defining session-typed communications. Let a communication v be a (potentially
infinite) tree generated by the following grammar, where k ranges over labels and f ranges over
functional values such that - I+ f : 7 for some 7. We explain these communications v below when
we associate them with session types.

v,v =1 empty communication
| close close message
| (unfold, v) unfolding message
| (k,v) choice message
| (v,v") channel message
| (shift,v) shift message
| (val f,v) functional value message

137
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The judgment v ¢ A means that the syntactic communication v has closed type A. It is
coinductively defined by the following rules:

-+ Atype, ve[pa.Ala]A
TP el _ (C- C-
LeA (C-1) close €1 (C1) (unfold,v) € pa.A (Cp)
Vi € Ay (kEL) Vi € Ay (kEL)
C-o C-&
(k,Vk)S@{llAl}lEL ( ) (k,Vk)S&{ZIAl}leL ( )
veA v eB veA v eB
vea VED (o veaA VED (c
(v,2v')eA®B (C-®) (v,v')eA—B ( )
veA (C—l) veA (C-T)

(shift,v) e lA (shift,v) e tA
‘=-fiT veA ‘-frT veA

(val f,v)eTn A (C-) (val f,v)ero A (€-2)

Every closed session type A has an empty communication L representing the absence of commu-
nication of that type. The communication close represents the close message. A communication
of type @{l : A;}jep or &{I: A;}jc; is alabel k € L followed by a communication v, of type Ay,
whence the communication (k, v ). Though by itself the communication (k, v¢) does not capture
the direction in which the label k travelled, this poses no problem to our development: we almost
never consider communications without an associated session type, and the polarity of the type
specifies the direction in which k travels. We cannot directly observe channels, but we can observe
communications over channels. Consequently, we observe a communication of type A ® B or
A — Basapair (v,v") of communications v of type A and v’ of type B. This is analogous to the
semantics of A ® B in the “folklore” relational semantics of classical linear logic proofs [Atkiy;
Bargi]. A communication of type pa.A is an unfold message followed by a communication of
type [pa.A/a]A. A communication of type T A A or T o A is a value f of type 7 followed by a
communication of type A.

We will consider various relations on communications, and we expect these to be “type-
indexed™:

Definition 6.1.1. A type-indexed relation YR on communications is a family of relations (94) 4 in-
dexed by session types A, where (v,w) € R, onlyif v ¢ Aand w ¢ A. In this case, we write
vRweA. <

Given some relation < on terms, we can endow session-typed communications with a notion of
simulation €/<. Intuitively, u </< w means that u approximates w, or that w carries at least as much
information as u. Functional values aside, it suggests that u is a potentially incomplete version of w.
In this regard, it is analogous to the ordering on domains of lazy natural numbers [Frego; Escg3].
Though we intend for < to be a preorder, it is not required to be one. This relaxation is for purely
technical reasons: it simplifies the task of relating </ to other relations on communications.

Definition 6.1.2. Let < be a type-indexed relation on terms. Communication simulation < modulo <
is the largest type-indexed family <€/ of relations (<4) 4 on session-typed communications defined
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by the following rules. When < is clear from context, we write < for </<.

vewe [pa.Ala]A

Tered O Tomraoeer (O (o) = (unfoldw) e pad ()
vi<wreAr (kel) (Cs-®) vi <wpeAr (kel) (5.8
(k,vi) < (k,wi) e@{l: Artier (kyvi) € (k,wi) e &{1: A}
< I« ! : o
ropeA vow el (g wowed Yowed (oo
(Shiftﬂ)vs(ﬂs/h?féw) elA (C5-1) (Shift,v;s(th?féw) etA (Cs-1)
- f<fir veweA (CS-A) <l vEweA (C5-2)

(val f,v) < (val f,w)eTn A (val f,v) < (val f,w)ero A

Remark 6.1.3. We do not ask for < to be a partial order. This is because antisymmetry forces com-
munication equivalence for communications of type 7 A A to hold only when the transmitted values
are equal on the nose. This is too fine of an equivalence: we would like to allow communications of
type T A A to be “equivalence” whenever the values of type 7 are in some sense “equivalent”, without
insisting that that equivalence be syntactic equality.

PROPOSITION 6.1.4. The function </(-) is monotone, w-continuous, and w-cocontinuous. The
relation </ is respectively reflexive or transitive whenever < is reflexive or transitive. It is a type-
indexed relation.

Proof. We begin by showing that the function is well-defined. Let R be the complete lattice of all
type-indexed relations on session-typed communications, and let F be the complete lattice of all
type-indexed relations on functional terms. For each § € F, the above rules define a rule functional
D(F,-) : R > R. Itis w-cocontinuous by [Sani2, Theorem 2.9.4]. It extends to a monotone
function @ : F x R — R. We observe that </(-) is given by ((d)ol’)T)OP : F - R. Indeed, the
greatest fixed point of ®(g, —) is the initial fixed point (®°?)" (F) of ®P(F,-) : RP — R°P,
where @ : F°P x R°P — R°P, and (®°P)" : F°P — R is given by proposition By the
same proposition, </(-) is monotone, w-continuous, and w-cocontinuous.

We use the coinduction proof principle to show that < is reflexive. Let A be the identity relation
on session-typed communications. A case analysis on the rules shows that A € ®(<, A). Because
</« is the greatest post-fixed point of @(K, —), we conclude that it contains A, i.e., that it is reflexive.

Assume now that < is a preorder. We use the same technique to show that </ is a preorder.
Now let <* be the transitive closure of €/<. Recall that the transitive closure R* of a relation R
can be calculated by

R =R,

where R" is the n-fold composition of 9% with itself. The functional ®(, -) is w-continuous by
[San12, Exercise 2.9.2]. In particular, this implies that

CI)(S)%+) = U (D(S) 9%n)-

Thus, to show that R* € (<, R™"), it is sufficient to show that R" ¢ @ (<, R") for all n. Recall
that < is the greatest post-fixed point of ®(<, R"). This means that to show that < is transitive, i.e.,
<* ¢ 4, it is sufficient to show that < ¢ ®(, <*). We proceed by case analysis on 7 to show that
<" € O(<, €"). The case n = 1is immediate by definition of < as the greatest fixed point of ®(, —).
We now show the case # = m + 1. Assume that u <" w ¢ Abecause u <v e Aandv <" w e A. We
show that u ®(<, <") w &€ A. We proceed by case analysis on the rule that formed u < v ¢ A, giving
several illustrative cases:
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CASE (CS-1): Thenu = 1, and w ¢ A because we assumed that < was a type-indexed relation
on session-typed communications. So u (<, <") w ¢ A thanks to (CS-1).

CASE (CS-@): Then A = ®{l : A;}ier, u = (k,u’), and v = (k,v") for some u’ and v'. By
hypothesis, u” < v' ¢ A;. And induction on m reveals that w = (k, w") for some v/ <" w’ ¢ A;. So
u' <" w' e Ay. By (CS-@), we then get u O(<, <") w ¢ A as desired.

CASE (CS-A): Then A =7 AB,u = (val f,u"),and v = (val g,v") for some f, g, u’, and v'.
By hypothesis, #’ <v' ¢ Band - I f < g : 7. And induction on m reveals that w = (val h, w") for
somev' <" w' eBand I+ g<"™ h:7.So- I f <h:7tandu’ <" w' e B. By (CS-A), we then get
u ®(<,€") w e Aas desired. O

Definition 6.1.5. Let = be a type-indexed relation on terms. Communication equivalence = modulo
=, written =/=, is given by v =/= w ¢ Aif and only if both v €/=w ¢ Aand w </= v ¢ A. When =
is clear from context, we write = for =/=. <

PROPOSITION 6.1.6. Communication equivalence =|= is a type-indexed relation. It is an equiva-
lence relation whenever = is a preorder.

Proof. It follows from proposition[6.1.4]that it is type-indexed. Assume now that = is a preorder.
By proposition[6.1.4} </= is a preorder. Then by definition, =/= is the intersection of a preorder
and its opposite. But in general < n <°P is an equivalence relation whenever < is a preorder. We
conclude that =/= is an equivalence relation. O

Communication equivalence modulo = holds if and only if two communications are equal on
the nose:

PROPOSITION 6.1.7. Forall A, u =/=v ¢ Aif and only ifu = v.

Proof. Necessity is immediate by reflexivity of =/=. Sufficiency comes from recognizing =/=
as the notion of bisimulation given by the coinductive definition of w ¢ A, and that by [JR12}
Theorem 2.7.2], bisimilar elements of the terminal coalgebra are equal. O

PROPOSITION 6.1.8. “Communication simulation modulo” and ‘communication equivalence
modulo” are related by the identity (</<n (£/<)F) = (£/(<n <°P)).

Proof. Let @ be the functional defining €/(-), and set I = < n <°P. Observe for all relations X, ),
3that ®(Xn9),3) = O(X,3) N D(Q, 3). We compute, where we use the syntax vX.F(X) for
the greatest fixed point of F, that:

=/1
=(¢/Dn (<D™
= (vU.0(1,)) n (v8.9(1,0))?
= (v0.0(1,)) nv¥.(O(1,0))"
= 1v0.0(<, W) N (<P, V) N (O(<, V)P N (D(<°P, V),
and analogously,
(¢/<n (/™)
= v0.0(<, W) N (O(<, V).
To show that the fixed points are equal, it is sufficient to show that they have the same post-fixed
points. Set
L(V) = O(, V) n (<P, V) n (O(<, D)) n (O(<P,0))F,
R(D) = ©(<,0) n (O(<,0))*.
Clearly every post-fixed point of L is a post-fixed point of R: L(0) ¢ R(Q) for all 2J. Conversely,

assume that U is a post-fixed point of R, i.e., U € R(U). We show that ¥ is a post-fixed point
of L by showing that R(0) ¢ L(0). Assume that v R(U) w ¢ A. Thenv O(<,U) w ¢ A. A case
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analysis then reveals that v (®(<,2))°" w & A by the same rule. The result follows by case analysis
on this rule. We give a few illustrative cases.

Cask (CS-1): Thenv =w = 1, and a straightforward check gives 1 L(0) 1 ¢ A.

CASE (CS-@): Thenv = (k,v'),w = (k,w'),v' T w' ¢ Ay, and w' U v" € Ay. A straightfor-
ward check again gives v L(U) w ¢ A.

CaSE (CS-A): Then A=7AB,v=(val f,v'),w=(valg,w'), f<g g<f,v"Uw' ¢B,and
w' U v' ¢ B. A straightforward check gives that v L(0) w ¢ A. O

We now show that communications are uniquely determined by their finite approximations.
This opens the door to reasoning about </< using inductive techniques.

Definition 6.1.9. The height 7 approximation | w |, of a communication w is defined by induction
on 7 and recursion on w:

LWJO =1 L Jn+1 1
|close|,, = close L(val £,v)|ne: = (val f,[v]4)
Lk v) Jna = (s [v]n) L(w,v) Jna = (Lut]ns [V]0)
| (shift, v) | 4: = (shift, [v],) | (unfold, v) |4, = (unfold, [v],) «

PROPOSITION 6.1.10. If w € A, then |w|, € A for all n.

Proof. By induction on . The base case is immediate. The inductive step follows by a case analysis
on the rule used to form w ¢ A. O

PROPOSITION 6.1.11. For all reflexive <, all n, and allw ¢ A, |w], /< |w ] € A

Proof. By induction on n. The base case is given by (CS-L1). The inductive step is given by case
analysis on w ¢ A. Reflexivity of < is required for the cases A=7ABand A= 7> B. O

PROPOSITION 6.1.12. Forallw € Aandu ¢ A, u </<w € Aifand onlyif, foralln, [u], </<w ¢ A.

Proof. We proceed by induction on 7 to show that for all n € N and for all w ¢ A and u ¢ A,
u </<we Aimplies |u], $/< w ¢ A. The base case is immediate by (CS-1). Assume the result for
some 7. We show that | u,,+, /< w € A by case analysis on the rule used to form u </< w ¢ A. We
give two illustrative cases; the rest follow by analogy.

CASE (CS-1): Then u = 1 and | ]+, = L. We are done by (CS-1).

CaSE (CS-A): Then A = 1A B, u = (val f,u'),and w = (val g,w’) with - I+ f < ¢g: T and
u’ £/<w' ¢ B. By definition, |u|,4, = (val f,|u’],). By the induction hypothesis, |1’ |, </<w' ¢
B. By (CS-A), (val f,|u'],) €/< (val g, w') € A as desired.

To show the converse, let T be the set of triples {(u, w,A) | Vu e N. |u|, /< w e A}. We
want to show that if (u, w, A) € T, then u /< w ¢ A. By the coinduction proof principle [Sani2,
p- 49], it is sufficient to show that T is “closed backwards” under the rules defining </<. Let
(u,v,A) € T be arbitrary. We proceed by case analysis on u and A to show that there is a rule
whose conclusion is (u, v, A) and whose premises are in T. If u = 1, then we are done by (CS-1),
so assume that u # 1. We proceed by case analysis on A. We show two cases; the rest follow by
analogy.

CASE A = 1: The only possible value for u and v is u = v = close. So (u, w,1) € T by (CS-1).

CASE A = 7 A B: Then u = (val f,u’) for some value - I f : 7 and some ©’ ¢ B,and v =
(val g,v") for some value - I g : 7and some v’ & B. By assumption, | (val f,u") |, </< (val g,v') ¢
A for all n. By inversion, for all n = m + 1 > 1, the last rule in the derivation must have been (CS-A)
with |u],, €/<v" € B and with its side condition - I+ f < g : 7 satisfied. So (¢/,w’, B) € T. Then
(u,w, A) € T by (CS-A) with the premise (u,w’, B) € T and the side condition - I+ f < g: 7. O

Definition 6.1.13. Where < is a type-indexed preorder on functional values, let { A)< be the set of
communications w ¢ A ordered by the preorder </<. <«
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COROLLARY 6.1.14. If < is a preorder, then for all w ¢ A, w is least upper bound of (|w],) .y
in the preorder {A)«<.

6.2. Session-Typed Communications on Single Channels

In this section, we show how to observe session-typed communications v € A on a single
channel ¢ in a trace T. We capture these observations using a coinductively defined judgment
T ~ v e A [ c. This judgment defines a total function from free channel names in T to session-
typed communications v ¢ A. We show that the type of the observed communications agrees
with the type of the channel, i.e., that T ~ v ¢ A / c implies T + ¢ : A We will also show that
the communication observed on c is independent of the choice of trace T, provided that T is fair.
Finally, we show that the communications observed from finite prefixes of T both approximate
and determine the observations on the entirety of T.

Given a trace T = (Mo, (r;;(6;,&;)):), we write T for the support of T, that is, x € T if and
only if x € M; for some i. The judgment T'~ v ¢ A / ¢ is coinductively defined by the following
rules, i.e., it is the largest set of triples (v, ¢, A) closed under the following rules.

We observe no communications on a channel ¢ if and only if ¢ carried no message. Subject to
the side condition that ¢ # cc(msg(d, m)) for all msg(d, m) € T, we have the rule

Trc:A

O-
T leAfc (O-1) whenever Ymsg(d, m) € T. ¢ # cc(msg(d, m)).

We observe a close message on ¢ if and only if the close message was sent on c:

msg(c,closec) € T

T ~closee1/c (0)

We observe label transmission as labelling communications on the continuation channel. We rely
on the judgment T+ ¢ : ®{] : A;}jcp or T+ ¢ : &{I: A}, to determine the type of c:
msg(c,clsd—c)eT T~veA []d Trc:a{l:A}
T~ (Lv)eo{l: A} [ c
msg(d,cl; c«<d)eT T~veA ]d Trc:&{l:A}
T~ (Lv)e&{l:Aj}ier [ ¢

el (O-@)

(0-&)

As described above, we observe channel transmission as pairing of communications:
msg(c,sendca; d >c)eT T~ueAla T~veB/d

T~ (u,v)eA®B/c
msg(d,sendca; c«d)eT T~ueAl/a T~veB/d

(0-9)

T~ (u,v)eA—B/c (0-—)
We observe the unfold and shift messages directly:
msg(c,send cunfold; d > c)eT T ~velpa.Ala]A/d .
T ~ (unfold,v) e pa.A [ c (©-p7)
msg(d,send cunfold; c «d)eT T ~vel[pa.Ala]A[/d ~
T ~ (unfold,v) € pa.A [ ¢ (©-7)
msg(c,send cshift; d «c)eT T~veAld 0-1)
T ~ (shift,v) e JA [ ¢
msg(d,send cshift; c >d)eT T~veAld (0-1)

T ~ (shift,v) e tA [ ¢

'In contrast to least upper bounds in partial orders, least upper bounds in preorders are not necessarily unique.
?Recall definition



6.2. SESSION-TYPED COMMUNICATIONS ON SINGLE CHANNELS 143

Finally, we observe functional values:
msg(c,_ < outputc f;d—>c)eT T~veAld Trc:TtnA
T~ (val f,v)etnAfc
msg(d,_ < outputc f; c«<d)eT T~veAld Trc:TAA
T~ (val f,v)eroAfc

(0-1)

(0-)

We set out to show that for any process trace T, the judgment T ~ v ¢ A [ ¢ defines a total
function from channel names ¢ in T to session-typed communications v € A.

We begin by showing that if T~ v € A / ¢, then this session-typed communication v ¢ A is
unique. We use a bisimulation approach and follow standard techniques to define bisimulations
for T ~ v & A | c. We interpret the premises the rules defining T ~ v ¢ A / ¢ that are not of the
form T ~ w ¢ B | d as side conditions, giving an instance of the rule for each such premise. For
example, the rule (O-®) should be seen as a family of rules (O-@®-c-d-I), where we have a rule

T~veA [d
T~ (Lv)ea{l: A} /c

(O-@-c-d-1)

for each msg(c,c.l; ¢ < d) € T suchthat T+ c: @{] : A} },c;. A symmetric binary relation 9% on
observed communications in T is a bisimulation if:

e if(T~1eA/c,T~weA [c)eRand T ~ L e A [ cby the instance of (O-1) for
Trc:Athenw=1and A" = 4

o if (T ~closeeg1/c,T~weA/c)eR, thenw =closeand A =1;

o if (T~ (lL,v)ead{l:Aj}jep [, T~weAlc)eRand T ~ (I,v) e®{l:Aj}er [ c
by the instance of (O-®) for msg(c,c.l; d — ¢) € T, then w = (I,v") for some v/,
A=a{l: A}, and (T ~veA; [d, T~weA [d)eR;

o if (T~ (I,v)e&{l:A}jer /e, T~weAlc)eRand T ~ (I,v) e &{l:A;}jer [ ¢
by the instance of (O-&) for msg(c,c.l; ¢ < d) € T, thenw = (I,v") for some v/,
A=&{l: Aj}iep,and (T~veA; [d,T~weA; [d)eR;

o if (T~ (u,v) e AQB [ ¢, T~weC/[c)eRand T ~ (u,v) ¢ A®B [ c was
formed by the instance of (O-®) for msg(c,send c a; d — ¢) € T, thenv = (u',v") and
C=A"®B forsomeu',v',A',B',and (T ~ueA/a,T~u e¢A | a)eRand
(T~veAld, T~veA|d)eR

o if (T~ (u,v)eA—B/c,T~weC/[/c)eRand T ~ (u,v) e A— B[ cwas
formed by the instance of (O-—) for msg(c,send ¢ a; ¢ < d) € T, thenv = (¢/,v') and
C=A" — B forsomeu,v',A",B',and (T ~ue A/ a,T~u eA [a)eRand
(T~veAld,T~veA|d)eR

e if (T ~ (unfold,v) e pa.A [ c, T ~weB/[c)eRand T ~ (unfold,v) e pa.A [ ¢
was formed by the instance of (O-p*) for msg(c,send ¢ unfold; d — ¢) € T, then
w = (unfold,v") for some v’ and pa’.A” such that (T ~ v ¢ [pa.A/a]A [ d, T ~ v ¢
[pa’ A'Ja’ A" [ d) € R

o if (T~ (unfold,v) e pa.A [ c, T ~weB/[c)eRand T ~ (unfold,v) e pa.A [ ¢
was formed by the instance of (O-p~) for msg(c,send c unfold; ¢ < d) € T, then
w = (unfold, v") for some v and pa’. A’ such that (T ~ v ¢ [pa.AJa]A [ d, T ~v' ¢
[pa’ A"[a"|A" [ d) € R;

o if (T ~ (shift,v)elA/c,T~weB/[c)eRand T ~ (shift,v) e |A [ c was formed
by the instance of (O-|) for msg(c, send ¢ shift; d < ¢) € T, then w = (shift,v’) and
B =|B' for some v’ and B’ such that (T ~ve A’ [d, T~ v eB' [ d)eR;

o if (T ~ (shift,v)elA/c,T~weB/[c)eRand T ~ (shift,v) e 1A [ c was formed
by the instance of (O-1) for msg(c, send ¢ shift; ¢ » d) € T, then w = (shift,v) and
B =1B' for some v’ and B’ such that (T ~v e A" [ d, T ~v' e B' [ d) e R;

o if (T~ (valf,v)etnA/c,T~weB/c)eRand T ~ (val f,v) e TAA [ ¢
was formed by the instance of (O-A) for msg(c, _ < output ¢ f; d — ¢) € T, then
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w = (val f,v") and B = 7 A B’ for some v' and B’ such that (T ~v e A" [/ d, T ~ ' ¢
B [ d)eR;

o if (T~ (valf,v)etoA/c,T~weB/c)eRandT ~ (val f,v) etoA [ ¢
was formed by the instance of (O-2) for msg(c, _ « output ¢ f; ¢ < d) € T, then
w = (val f,v') and B = 7 o B’ for some v/ and B such that (T ~v e A" [ d, T ~ ' ¢
B[ d)efR.

PROPOSITION 6.2.1. If T is a trace from a well-typed configuration, then forall ¢, if T ~ve A [ ¢
and T ~ w e B [ ¢, thenv = w and A = B. Moreover, if T ~ v € A [ c, then its derivation is unique.

Proof. Fix some trace T and let {R be the relation
R={(T~veAlc,T~weB[c)|v,w,c,ABT~veA[]cAT~weB]/c}.

We show that it is a bisimulation. Let (T ~v e A [/ ¢, T ~ w & B [ ¢) € R be arbitrary. It follows
from corollaries[5.9.3]and [5.9.8] that at most one rule is applicable to form a judgment of the form
T ~ & [ c(withcfixed),so T ~ve A/ cand T ~ w ¢ B | c were both formed by the same
rule. We proceed by case analysis on this rule. We only give a few illustrative cases; the rest will
follow by analogy.

Cask (O-1): The conclusions are equal, so we are done.

Cask (O-®) for msg(c,send ¢ a; d — ¢): Then there exist r, ', u, u’, C, C’, D, D' such that
v=(r,u),w=("u'),A=C®D,B=C'®D', T~reCla,T~reC [a,T~ueD]/d,
and T ~u' eD' [d.But (T ~reC/a,T~reC [a)eRand(T ~ueD/[dT~u' e
D" [ d) € R, so we are done.

CasEe (O-A) for msg(c, _ < output ¢ f; d — ¢): Then there exist v/, w’, A", B such that
v=(val f,v),w=(val f,w),A=7AA,B=1AB, T~v eA" [d,and T ~w' ¢ B’ [ d. But
(T~v'eA [d,T~weB [d)eNR, soweare done.

It follows that fR is a bisimulation.

Consider arbitrary T ~ v ¢ A [ cand T ~ w ¢ B /| c. They are related by ‘R, so they are
bisimilar. By [JR12} Theorem 2.7.2], bisimilar elements of the terminal coalgebra are equal. It follows
that v = w and A = B as desired.

To see that the derivation of T ~ v € A [ ¢ is unique, recall from above that at most one rule
is applicable to form a judgment of the form T ~ - ¢ - / ¢ (with c fixed). Because each rule has only
judgments of this form as its hypotheses, it follows that at each step in the derivation, exactly one
rule instance can be applied to justify a given hypothesis. So the derivation is unique. O

Next, we set out to show that an observed communication exists for every channel appearing
in a trace. This involves explicitly constructing a potentially infinite proof tree. The following
definition of a tree in terms of its rooted paths is useful for doing so:

Definition 6.2.2 ([San12, Remark 2.11.1]). A tree over aset X isa set T of non-empty finite sequences
of elements of X such that

(1) there is only one sequence of length one (corresponding to the root of the tree); and

(2) if the sequence X, ..., Xy4, isin T, then so is x,, . .., Xy. <

We generalize it to allow us to order branches, e.g., to talk about “left” and “right” branches.

Definition 6.2.3. An ordered tree over a set X is a tree over N x X such that

(1) there is only one sequence of length one;

(2) if the sequence (10,%0), .- (Mm—1>Xm-1)> (i + 1, %) is in T (m > o), then so is
(10,%0)5 > (Mm—1> Xy )> (M, x) for some x. <
Definition 6.2.4. Let T be a tree over a set X. The subtree rooted at x,, . .., X, is the tree

{xn)--~>xn+m|x0)---3xn:---:xn+m€X}' <
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Next, we characterize communications v € A as trees. Let L be the set of labels that can be sent
in communications. The set of communication tags is given by:

CommTags = {1, close, pair, unfold, shift} u {val f | fvalA37.(- I f:7)} UL

Communications represent ordered trees, e.g., the communications (v, v") and (v, v) are distinct
whenever v v/,

LEMMA 6.2.5. Assume all labels are drawn from some set L. The following corecursive function
v is well-defined and it injectively maps set of communications into the set A of ordered trees over
CommTags:

{(o, 1)} v=1
{(o,close) } v = close
Uocici{(0, pair), (i,1), 0 [ (1), 0) e y(vi)} v = (vo,m)
y(v) =4 {(o,unfold),x | x e w(v')} v = (unfold,v")
{(o,shift),x | x e y(v')} v = (shift,v")
{(o,val f),x |xey(v')} v =(val f,v")
{(o, 1), x| x ey(v')} v=(Lv)
If T is a subtree rooted at some X, ..., x, in y(v), then it is the image of some communication w

that is a subphrase of v.

Proof. This function is clearly injective. Indeed, the only point of subtlety is ensuring that (v,, v,)
and (v,,v,) do not map to the same tree, but this is ensured by the left branch with | and the right
branch with r. O

PROPOSITION 6.2.6. If T is a trace from I' 1 1 ~ C = A, then forall ¢, if T + ¢ : A, then
T ~veA/[cforsomev.

Proof. We explicitly construct the proof tree as an ordered tree over the set of rules forming
T~veAlec.

Assume first that T + ¢ : A but that ¢ = cc(msg(a,, m,)) for no msg(a,, m,) € 7. In this
case, T ~ 1 ¢ A [ ¢ by (O-1) and we are done.

Otherwise, assume that T + ¢ : A and that ¢ = cc(msg(a,, m,)) for some msg(a,, m,) €
T. The proof is subtle, for we must show that the potentially infinite communication v ¢ A
exists, and then construct a potentially infinite proof tree whose conclusion already contains this
communication. We proceed as follows:

(1) We describe how the message facts in 7 describe a tree M in message facts rooted at
msg(ae, Mo ).

(2) We convert this tree M into an ordered tree S over the set CommTags x (7 u Chans),
where Chans is the set of free channel names appearing in 7. This tree S will act as a sort
of “skeleton” or “outline” for the proof that T ~ v ¢ A / ¢ for some v.

(3) We use lemma to extract a communication v’ from the first component of the
elements in the paths in S.

(4) We use S to construct a proof tree that T ~ v' ¢ A / c.

We begin by describing the tree M over 7 rooted at msg(ao, m,). By corollary[5.9.8) 7
contains at most one fact msg(d,, m,) such that ¢ = cc(msg(d,, m,)) for all ¢ . The sequence
msg(a,, m,) of length one exists by assumption. The sequences X, . . ., X+, in M are given by all
sequences msg(do, Mo ), - . ., MSE(Ay4y, Mp,.) Where for o < i < i+1<n+1,both

(1) cc(msg(ajr, Misy)) € fc(msg(a;, m;)), and

(2) msg(a;s,, miy,) = msg(a;, m;).
Observe that a sequence x,, . .., x, € M is maximally long in M if and only if one of the following
two conditions holds:
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(1) x, = msg(a,,close a,) is the close message, or
(2) x, = msg(a,,m,) and there is no other message fact in ¢ whose carrier channel appears
free in msg(a,, m,).
Next, we translate the tree M into an ordered tred]S over CommTags x (‘7 U Chans) as follows:

(1) ifx,,...,x, € M,then y,,...,y, €S, where for1< i < n, y; is given by:

((t,close),x;)  x; = msg(a;,close a;)

(t, pair), x;) x; = msg(a;,send a; b;; d;i —> a;)

(t, pair), x;) x; = msg(a;,send a; b;; d; > a;)

(t, pair), x;) x; = msg(d;,send a; b;; a; < d;)
(t,unfold),x;) x; = msg(a;,send a; unfold; d; — a;)
(t,unfold), x;) x; = msg(d;,send a; unfold; a; « d;)
(t,shift),x;)
(t,shift), x;)
(t,val f),x;)  x; =msg(a;,_ < output a; f; d; - a;)
(t,val f),x;)  x; =msg(d;, _ < output a; f; a; < d;)

msg(a;,send a; shift; d; < a;)
msg(d;, send a; shift; a; - d;)

=
I

(t,l),x,-) xi:msg(ai,ai.l; di—>a,‘)
(&,1),xi)

where the tag ¢ is given by

(
(
(
(
(
al
(
(
(
(
(

msg(d;,a;.l; a; < d;)

Ral
I

1 i=j+1Axj=msg(ajsenda;jbj; dj - a;)Acc(x;) = {d;}
t=41 i=j+1Ax;=msg(djsenda;jbj; a; < d;) Acc(x;) = {d;}
0 otherwise

(2) ifx,,...,x, € M and x,, + msg(a,,close a,) and there exists a d € fc(x,) such that
d + cc(msg(e,m)) for all msg(e,m) € T, then y,,..., ¥, Yu4: € S wherefor1<i < n,
where y; is given by the recipe above for 1 < i < n, and y,+, = ((¢,1),d) where t = 0 or
t = 1is determined from x,, as above.

Taking the first projection of each element in each sequence in S gives a tree M’ over the
set CommTags. It is clearly in the image of the set of communications under the injection from
lemmal6.2.5] Taking the preimage of M’, we get a communication v.

Next, we show that T~ v ¢ A / c. By [San12| Theorem 2.12.5], it is sufficient to give a winning
strategy to the verifier for the coinductive game induced by the rules defining T ~ v € ¢ / A [Sani2,
§ 2.12]. The refuter makes the first move, playing x, = T ~ v € ¢ / A. The verifier must provide a
set J, such that T ~ v ¢ ¢ / A is the conclusion of some rule with hypotheses J,,. The refuter then
chooses an x, € J,,, to which the verifier must provide a set J; such that x, is the conclusion of some
rule with hypotheses J,. The game proceeds in this way, producing a sequence Xo, Jo, - - > X, Jus -« - -
The verifier wins if this sequence is infinite, or if ], = @ for some n.

At the outset, we observe that:

(1) T+ c: Aby hypothesis,
(2) v is the preimage of the subtree S, = S rooted at the root s, of S.

For all i > o, the verifier chooses J; satisfying the following conditions:

(1) x; is the conclusion of a rule with hypotheses J;;

(2) foral T~dew [A€];,
(@) T+d:A,
(b) w is the preimage of a subtree S,, of S rooted at s,,, and s; is a prefix of s,,,,
(c) if w = L, then the root of S,, is ((_, 1), ¢),

3We reassociated the parentheses of elements in this tree for convenience.



6.2. SESSION-TYPED COMMUNICATIONS ON SINGLE CHANNELS 147

(d) if w # 1, then the root of S, is (_, msg(e, m)) for some msg(e, m) with d =
cc(msg(e, m)), and
(e) where (_, msg(e,m)) is the last elemenofsi, d € fc(msg(e, m)).
Given a choice x;4, € J; by the verifier, let the sequence s;., be given by the corresponding s,,
guaranteed by item [2b}
Givenan x; = T ~ w ¢ ¢ | B chosen by the refuter, the verifier’s choice of J; is given by case
analysis on w. We give the illustrative cases:

CASE L: We proceed by case analysis on i:
SUBCASE i = o: This case is impossible by the assumption made at the beginning of this proof.
SUBCASE i = j+1: Then L is the preimage of ((_, 1), c) by lemmal6.2.5]and item od We choose
Ji=@.Then T ~ 1 ¢ ¢ | Bby (O-1). We check that the rule is in fact applicable:
(1) THc:Bbecause T ~wec/Be] i»and J; satisfies assumption itemby construction.
(2) ¢ # cc(msg(d,m)) for all msg(d,m) € T. Indeed, by assumption item [2d} the root of
sy is ((Z, 1), ¢). By construction of S, ((_, 1), ¢) appears in a sequence if and only if ¢ #
cc(msg(d,m)) for all msg(d,m) € T.
We conclude that the rule is applicable. Because J; is empty, the conditions stipulated by item
hold vacuously.
Cask close: By construction and by lemmal6.2.5} the root of S,, is ((_, close), msg(e, close e)).
By item [2d} ¢ = cc(msg(e, close €)) = e, so ¢ = e. By proposition[5.9.4f T + ¢ : 1. By item |2a)}
T+ d : B, so by corollary[s.9.3} B = 1. Pick J; = @. Then T ~ close ¢ ¢ / 1 by (O-1).
Cask (u,u’): By construction and by lemmal6.2.5} the root of S, is ((_, pair), msg(g, m)).
By item[2d} the carrier channel of msg(g, m) is c. By construction of S, msg(g, m) must be one of
the following:
SuBcase msg(c,send c e; d — ¢): By proposition[s.9.4f T+ c:E® D, T+e:E,and T +d : D.
PickJ; ={T ~uee/E,T~u"e¢d[D}. ThenT ~ (u,u’) ¢ E® D | c by (O-®).
SuBcase msg(d, send c e; ¢ < d): By propositions.9.4f T+ c:E— D, T+e:E,and T+~d:D.
PickJ; ={T ~uee[/E,T~u"e¢d/D}. ThenT ~ (u,u’) e E— D [ c by (O-—).
We show this choice of J; satisfies the invariant. We show that T+ e : E satisfies item the analysis
for T + d : D is analogous. By the above case analysis, we have T ¢ : E, satisfying item 23] By
assumption, (u, ") is the preimage of a subtree S,, rooted at s,,. By lemmal6.2.5} u is the preimage
of a subtree S, rooted at s, = s, ((I,_),_) for some ((I,_),_). By construction of S, the root
((1,2),_) of S, satisfies items[2dand 2d] Item2¢]is also satisfied by construction of S.
Cask (unfold, u): By construction and by lemmal6.2.5 the root of S,, is ((_, unfold), msg(g, m)).
By item[2d] the carrier channel of msg(g, m) is c. By construction of S, msg(g, m) must be one of
the following:
SuBcase msg(c,send ¢ unfold; d — ¢): By proposition Trc:pdDand T + d :
[p8.D/8]D. Pick J; ={T ~ued[[pd.D/S]D}. Then T ~ u ¢ [p6.D/8]D [ d by (O-p*).
Suscase msg(d,send ¢ unfold; ¢ < d): By proposition Trc:pdDand T + d :
[p6.D/8]D. Pick J; ={T ~ued [ [pd.D/5]D}. Then T ~ u ¢ [pd.D/5]D [ d by (O-p~).
We show this choice of J; satisfies the invariant. Item [2ais satisfied by the above case analysis.
By assumption, (unfold, u) is the preimage of a subtree S,, rooted at s,,. By lemmal6.2.5}  is the
preimage of a subtree S, rooted at s, = s,,, ((u,_), _) for some ((u, _), _). By construction of S,
the root ((u, _), _) of S, satisfies items[2/and [od] Item |2€]is also satisfied by construction of S.

The above describes a winning strategy for the verifier, for in each case the verifier can always make
amove. 0

The converse of proposition|[6.2.6|also holds:

COROLLARY 6.2.7. If T is a trace from T | 1+ C :: A, then forall ¢, if T ~ v € A | c, then
Trc:A

4We can assume that it is of this form and not (L, a) because we are giving the verifier a winning strategy, and the
verifier would lose were it not the case.
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Proof. Assume T ~ v ¢ A [ c. The judgment T ~ v ¢ A | c is only defined for channel names
that appear free in T. Because T + ¢ : (+) is a total function from these channel to types, there
exists a B such that '+ ¢ : B. By proposition there exists a w such that T~ w ¢ B [ c. By
proposition[6.21] A= B,so T + ¢ : A. O

So far, we have checked that T ~ v ¢ A / ¢ defines a function from free channels ¢ to
communications v and types A. We now check that these communications are actually session-
typed communications:

PROPOSITION 6.2.8. If T ~v e A [ c, thenv ¢ A.

Proof. By coinduction on the rules definingv ¢ A. Set P={ve A|3c.T ~v e A [ c}. We must
show that for all v € A € P, there exists a rule with conclusion v ¢ A and hypotheses H € P. Let
v € A € P be arbitrary. We proceed by case analysis on v € A, giving only the illustrative cases:

CASE L ¢ A: Note that T ~ v ¢ A / ¢ is only defined when - -~ A type,. So - - A type, by
definition of P and because 1 ¢ A € P. So we are done by (C-1).

CasE close ¢ 1: Immediate by (C-1).

Caskg (I,v) e ®{l : A;} 1+ This case arises because T ~ (I,v) e ®{l: A;},c; [ ¢ for some c.
But T~ (I,v) e ®{l: A;};c; [ ¢ must have been formed by (O-®) appliedto T ~ v ¢ A; / d for
some d. This implies v ¢ A; € P. So we are done by (C-®).

Caske (val f,v) e T A A: Then (val f,v) e T A Abecause T ~ (val f,v) e T A A/ ¢ for some
c. This last judgment must have been formed by (O-A) applied to some T ~ v ¢ d / A. This implies
v &€ A € P. We are done by (C-A) if - I f : 7. Because (O-A) formed T ~ (val f,v) etn A/ ¢,
we know that T+ ¢ : 7 A A and that msg(c, _ < output ¢ f; d — ¢) € T. By proposition 5.9.4]
and corollary[5.9.3 we deduce - I f : 7 as desired. O

Combining propositions|6.2.1}[6.2.6|and [6.2.8] we get:

COROLLARY 6.2.9. The judgment T ~ v ¢ A [ ¢ defines a total function from channel names ¢
appearing free in T to session-typed communications v € A.

The following theorem is an immediate consequence of corollary[6.2.9}

THEOREM 6.2.10. Let T be a fair execution of T |+ I+ C :: A. Forallc: A €T, 1, A, there exist
unique v such thatv e Aand T ~v e A [ c.

Proof. By assumption, T+ ¢ : Aforall c: A €T, 1, A. Then by proposition|[6.2.6] there exists a v
suchthat T ~ve A/ c,andv e Aby proposition By proposition each such v is unique
determined. O

The following theorem captures the confluence property typically enjoyed by SILL-style lan-
guages:

THEOREM 6.2.11. Let T and T’ be a fair executions of T 1 1+ C = A, Forallc: Ae T, LA, if
T~veAlcand T ~weA/c, thenv =w.

Proof. Assume T ~ v ¢ A [ cand T' ~ w ¢ A | c. By corollary[5.9.11} traces T and T’ are
union-equivalent, i.e., 7 = 7. It easily follows that T’ ~ w ¢ A / cifand onlyif T ~ w e A / c.

So v = w by theorem[6.2.10] O

Theorem crucially depends on fairness. Indeed, without fairness a process can have
infinitely many observations. To see this, let Q) be the divergent process given by example and
let B be given by

s a:1+fix p.send b unfold; b.l; p:b:pB.@ {1:f}

Rule is the first step of any execution of their composition- ;- +a < Q; Bz b:pf. @ {l: f}. It
spawns Q) and B as separate processes. Without fairness, an execution could then consist exclusively
of applications of rule to Q. This would give the observed communication 1 on b. Alternatively,
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B could take finitely many steps, leading to observations where b is a tree of correspondingly finite
height. Fairness ensures that B and Q both take infinitely many steps, leading to the unique
observation (unfold, (I, (unfold,...))) on b.

This notion of observed communication scales to support language extensions. Indeed, for
each new session type one first defines its corresponding session-typed communications. Then,
one specifies how to observe message judgments msg(c, m) in a trace as communications.

So far, our approaches for observing communications on channels have had a strictly coin-
ductive flavour. We now show how we can construct them as the least upper bounds of sequences
of approximations. Recall from definition|[6.1.13] that (A))- is the set of communications of type
A ordered by £/=. Given some trace T, we let T" be its prefix of # steps. Then, where v,, is given
by T" ~ v, ¢ A [ c for each n,and v is given by T ~ v ¢ A | ¢, we show that v is the least upper
bound of the ascending chain of v, in {A)-.

We begin by showing that the v,, form an ascending chain, i.e., that observing communications
is monotone in the length of a trace.

PROPOSITION 6.2.12. For all n and all channels ¢, if T" ~ v, ¢ A [ cand T"" ~ v, e A ¢,
thenv, <[=v,, € A

Proof. All communications observed from a finite prefix are finite. We proceed by strong induction
on the size of the derivation of T" ~ v, ¢ A / c. The base cases for v,, ¢ A are given by the axioms:
Cask (O-1): Then v, = L. We are done by (CS-1).
CASE (O-1): Then v, = close. Extending the trace by a single step does not affect the observed
communication on ¢, s0 v, = close as well. We are done by (CS-1).

Now we proceed to the inductive step. We show several illustrative cases; the remainder are
analogous.

Cask (O-®): Then T" ~ (u,,w,) ¢ A® B [ c because msg(c,send c a; d — ¢) appears in
T",and T" ~ u, e A/ aand T" ~ w, € B [ d. Letu,4, and w,, be givenby T"*" ~ u,,, e A [ a
and T"*' ~ w,,, ¢ B [ d. By the induction hypothesis, u,, </= u,,, e Aand w, £/= w,,, ¢ B. By
(0-®), T"*" ~ (i1, Wi, ) € A® B [ c. We are done by (CS-®).

CaSE (O-A): Then T" ~ (val f,w,) e TA A | c because msg(c, . < output ¢ f; d — ¢)
appears in T", and 7" ~ w, ¢ A | d. Let w,,, be given by T"** ~ w,,, ¢ A [ d. By the
induction hypothesis, w, </= w,., € A. By (O-A), T"** ~ (val f,w,.,) e TA A [ c. We are done
by (CS-A). O

PROPOSITION 6.2.13. Let T be a trace, and let v be given by T ~ v ¢ A | c. For each n, let T" be
the prefix of length n of T, and let v,, be given by T" ~ v, e A | c. Thenv = |, v, in {A)-.

Proof. It is sufficient to show that:

(1) for all I, there exists an m such that |v]; €/=v,,; and
(2) for all m, there exists an u such that v,, </=|v],.

Indeed, itemimplies that every upper bound of the v,, is an upper bound of the | v |,,,, while item
implies that every upper bound of the | v | ,, is an upper bound of the v,,,. So [I",,,| V], =/= L', v €
A. By proposition this is an equality. By corollary U'lv]m =v. Sov =", v, as
desired.

We begin with item 1] Consider some [, and let m be any m such that all of the messages
appearing in the derivation of |v|; appear in T™. For item consider some m, and let u be height
of vy, plus one. O

We now state a few basic properties of observations on single channels.

Definition 6.2.14. Let T be a trace of some configuration C. A message fact msg(a, m) is observable
from c in T if appears in the derivation of T ~ v e A / c. <

The following proposition captures the intuitive fact that observed communications on ¢
are entirely determined by the set of message facts observable from c. Recall from section
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that a refreshing substitution for a trace T = (M,, (r;;(0;, £;));) is a collection of fresh-constant
substitutions 7 = (#;); such that [#]T = (Mo, (r:;(6:,7:)):) is also a trace.

PROPOSITION 6.2.15. Let T and T’ be fair traces of C and C’, respectively. For all ¢, let v and v’
begivenby T ~veA[cand T' ~v' e A [ c. If T can be refreshed to T" such that T" and T’ have
the same sets of observable message facts from ¢, thenv = v'.

Proof. Immediate from the fact that T ~ v ¢ A / ¢ is entirely determined by the set of messages
observable from c, and that it is invariant under refreshing of channel names. O

Configurations with no common channels do not interfere with each other:

PROPOSITION 6.2.16. Consider multisets T~ C = A and ® + D = E with disjoint sets of free
channels, i.e., such that T® + C, D :: AE is well formed. Then for all fair traces T of C, D and T' of C
andallc efc(C), T~veA/cifandonlyif T' ~ve A/ c.

Proof. We claim that every fair trace T of C, D induces a fair trace T” of C. Explicitly, we use
preservation (proposition[5.9.1) to show that

(1) every multiset in T is of the form T® + C', D’ :: AE forsome '+ C' = Aand ® + D’ :: E;

(2) every step in T is of the form C'[D']§ — C'[D"]% or D'[C']} — D'[C"]}.
It is sufficient to show that these properties hold for every finite prefix of T. We do so by induction
on the number 7 of steps in the prefix. The result is immediate when n = 0. Assume the result
for some #, then the last multiset is of the form IT'® | I+ C',D’ :: AE for some I + C’ :: A and
@ + D' :: B. Assume some rule instance r(8) is applicable to C’, D’. If its active multiset intersects
with both C" and D’, then a case analysis on the rules reveals that it contains a message fact. By
lemmals.9.5} this implies that C’ and D’ have a free channel in common, a contradiction. So the
active multiset of 7(0) is contained in C’ or in D’. We are done by preservation.

Taking the subsequence of steps of the form D'[C’]} — D'[C"']}, gives a trace T" of C. It is
fair because T is fair. Let ¢ € fc(C) be arbitrary. Every message fact observable from ¢ in T is
observable from ¢ in T”, and vice-versa. It follows that T ~ v ¢ A [ cifand only if 7" ~v e A [ c.
The choice of trace T’ for C does not matter by theorem|6.2.11] O

6.3. Observed Communications of Configurations

We use theorems and to define observations on channels in a configuration,
independently of the trace:

Definition 6.3.1. Given ¥ C T, I, A, the observed communicationon ¥ of T' 1 I+ C :: A is the tuple
(T1IFC=A)y=(c:ve), ey

of observed communications, where T ~ v. ¢ A [ ¢ for ¢ : A € ¥ for some fair execution T of
T I+C: A Ifc e, then we occasionally write (T | T+ C :: A)y(c) for the communication v,
observed on c. <

Definition [6.3.1]is well-defined. Indeed, a fair execution T exists by corollary[s.9.11} and the
observed communications do not depend on the choice of T by theorem[6.2.11] The v such that
T ~ v & A [ c exist and are unique by theorem

Definition[6.3.1)is simplified by the fact that the multiset rewriting rules defining Polarized
SILL are non-overlapping, so its fair traces are union-equivalent. Indeed, it was this fact that was
used in the proof of theorem [6.2.11]to show that the communication on a channel was independent
of the fair trace. In language extensions that do not satisfy this property, observed communications
will be sets of tuples, instead of single tuples, but we conjecture that this should pose no significant
difficulty to the theory.

Generally, we deem internal channels to be private and unobservable, and we only interact with
configurations over their interfaces. However, definition|[6.3.1]allows us to observe communications
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on a configuration’s internal channels. This lets us observe communications between configurations
and experiments when defining “internal” observational equivalence in chapter[7]

Observed communications do not take into account the order in which a process sends on
channels. For example, the following configurations have the same observed communications
(a:(1,1),b:(r,1)) on a and b, even though they send on a and on b in different orders:

a:&{l:1}+proc(b,a.l; b.r;a—b)=b:e{r:1}

a:&{l:1}+proc(b,b.r; a.l; a—>b)=b:&{r:1}.
The order in which channels are used is not reflected in observations for several reasons. First,
messages are only ordered on a per-channel basis, and messages sent on different channels can arrive
out of order. Second, each channel has a unique pair of endpoints, and the (ConNg-C) rule organizes
processes in a forest-like structure (cf. proposition[5.6.20). This means that two configurations
communicating with a configuration C at the same time cannot directly communicate with each
other to compare the order in which C sent them messages. In other words, the ordering of messages
on different channels cannot be distinguished by configurations.

We lift the notion of communication simulation and equivalence to tuples of communications
component-wise:

(C : Vc)c:CGF S/< (C : Wc)c:Cél" < Vc:Cel. Ve S/S We € G,

(c:ve)ecer =/= (c:w)ecer < Ve:CeT . v, =/=w. e C.






CHAPTER 7

Observational Preorders and Equivalences

We adopt an extensional view of process equivalence, where we say that two processes are
equivalent if we cannot differentiate them through experimentation. Recall that communication
is our sole means of interacting with processes, and that we can only observe communications.
This suggests that processes should be deemed equivalent if, whenever we subject them to “com-
municating experiments”, we observe equivalent communications. Because our substructural
operational semantics and observed communication semantics are defined on configurations and
not on processes, it is more natural to define observational equivalence on configurations instead
of on processes. We will later show how to restrict our observational equivalences to processes.

We follow Milner [Mil80, chap. 2] and Hoare [Hoa8s, p. 65] in identifying experimenting
agents with processes themselves (strictly speaking, with configuration contexts). We also build on
the “testing equivalences” framework introduced by De Nicola and Hennessy [DH84; Hen83; De 8s]].
Roughly speaking, this framework subjected processes to experiments that could potentially suc-
ceed, and it deemed two processes to be equivalent if they succeeded the same experiments. Their
notion of experimental success was based on observing a “success” state. Instead of determining the
success of experiments from process states, we determine it by observing communications. The fol-
lowing definition adapts Hennessy’s state-based “computational systems” ([Hen83} Definition 2.1.1])
to our communication-based setting:

Definition 7.0.1. An observation system S on configurations is a pair (X, <), where
o X = (Xrea)r,a is a type-indexed family of sets, where AT, 5 is a set of pairs (€, C), where
A1 T+ E[]Y = Eisacontextand C € A, I, E is a subset of the channels free in £[-]%;
e <isa type-indexed relation on terms.
We assume that X is closed under exchange: if I” and A’ are permutations of I' and A, respectively,
then Xr/ar = Xra. We also assume that &’ is closed under renaming. <

Intuitively, AT is a set of experiments £ and observation channels C on configurations with
interface (T, A). In our development, we assume that the experiments £ of observation systems
are configuration contexts written in the same language as the configurations on which we are
experimenting. However, this is not a necessary assumption: experiments could be written in
any language, so long as its multiset rewriting semantics does not interfere with the hypotheses
underlying the observed communication semantics of chapter|6]

Definition 7.0.2. Let S = (X, <) be an observation system and < a preorder. Observational S-
simulation is the type-indexed relation <s on configurations such that I' - C <s D = A if and only
if forall (A+ &[]\ = &, ¥) € Xrpa,

(A E[C]y+ E)y </< (A E[D]} = E)y.

In this case, we say that C and D are observationally S-similar. We call (<s)° observational S-
precongruence. <

Observational S-simulation is a preorder by proposition We define observational S-
equivalence analogously:

Definition 7.0.3. Let S = (X, <) be an observation system and < a preorder. Observational S-
equivalence is the type-indexed relation =5 on configurations such thatI' + C =5 D :: A if and only

153
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ifforall (A + &[]} = E,C) € Apen,
(AE[C] = B)e 2/< (A FE[D]] = B)c.

In this case, we say that C and D are observationally S-equivalent. We call (=5)“ observational
S-congruence. <

Observational S-equivalence is an equivalence relation by proposition|[6.1.6] Apart from in-
stances in which we want to emphasize the symmetry of a result, we will not consider observational
S-equivalence. This does not restrict the applicability of our results in light of proposition|[7.0.4]
and the general fact that < n <°P is an equivalence relation whenever < is a preorder.

PROPOSITION 7.0.4. Let S = (X, <) be an observation system. S-simulation and S-equivalence
and their (pre)congruences are related as follows:
(1) TFC=sD:=EBifandonlyif T -C<s D= EandT+D <sC = E;
(2) THC(25) D=Eifandonlyif T +C (<s) D= EandT + D (s5)  C = E.

Though S-simulation and S-equivalence are defined using contexts, it is important to note
that, unlike contextual-equivalence-style relations, they are stable under language extension. In-
deed, extending the process language with new language constructs does not affect A’s ability
to discriminate between pre-existing programs. However, S-precongruence and S-congruence
need not be stable under language extension. This is because subjecting previously precongruent
configurations to new language constructs could have effects that are discernible by X'.

There are three naturaﬂ families of observation systems, and each reflects a different outlook on
program testing. The first is an “external” notion of experimentation, where we imagine experiments
as black boxes into which we place configurations, and where the result of the experiment is reported
on its exterior channels. Because values in Polarized SILL are unobservable (they are all of function
or quoted process type), we do not differentiate between values observed on experiments’ exterior
channels. This gives:

Definition 7.0.5. The external observation system E is given by (X E 1), where il is the universal
relation and X'* is the family

Xiia = {(E[]0AE) | ArEL]y = E}. «

Alternatively, we could adopt an “internal” view of experimentation, where experiments
question their subjects, and we observe their answers. This approach is reminiscent of the process
equivalence Darondeau [Dar82|] gave to a calculus inspired by CCS. This internal view is well-suited
to synchronous settings like Classical Processes [Wadi4], where processes cannot communicate
unless we give them communication partners. Accordingly, it is the approach Atkey [Atki7] took
when defining process equivalence for CP.

Definition 7.0.6. The internal observation system I is given by (X, {l), where  is the universal
relation and X is the family

Xy = {(E[15TA) | A+ E[ ] = B} «

The final approach takes a “total” view on experimentation, where we observe communications
on all channels in the experimental context. We use it strictly as a technical tool for relating
observation systems. We will see that total observational simulation implies both internal and
external observational simulations.

Definition 7.0.7. The (strict) total observation system T is given by (X T =), where X T is the family

XL = {(E[T5 AIE) | A1 T+ E[]L = E). <

We use “natural” in the same sense as in “natural transformation’, where the choice of observed channels C is uniform
across all contexts.
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We respectively call <g, <;, and < external, internal, and total observational simulation.

Our observation system framework lets us prove general properties that hold for simulations
induced by the above observation systems. For example, we can use the fact that experiments are
written in the same language as configurations to give an easy check that observational simulations
are precogruences. We say that an experiment set X’ is closed under composition with contexts if
for all contexts A + C[-]} = E and all experiments (£[-]4, C) € X, there exists a C’' 2 C such that
(E[C[T4]E.C) e X

PROPOSITION 7.0.8. Let S = (X, <) be an observation system. If X is closed under composition
with contexts, then <s is a precongruence, i.e., T+ C <s D = Aifand only if T + C (<5)° D = A.

Proof. Assume thatT + C <s D = A. Let A | F[-]} + E = be an arbitrary context and let
(D + &[] = ¥, C) € X be an arbitrary experiment. We must show that

(@ F E[FICLL]E = ¥)e </< (@ E[F[DIL]E = ¥)c.
By closure under composition with contexts, (® + E[F[-]1]4 = ¥, C’) € X for some C’ 2 C. This
implies

(© - E[FICIA)z # W)er /< (@ - E[F[D]L]z = ¥)o.
The result is immediate from the fact that C' 2 C. O

[ >

COROLLARY 7.0.9. Total observational simulation <t and external observational simulation <g
are precongruences.

Recall simply branched contexts from definition It is sometimes sufficient to consider
only simply branched experiments, i.e., experiments where the context is simply branched. This
result is reminiscent of Milner’s “context lemma” [Mily7]. We begin with the following lemma:

LEMMA 7.0.10. Let (A 1 T+ E[-]} = B, C) be an arbitrary experiment. There exists a simply
branched context A | 1,E + B[]} : a : 1 such that for all T + C =: A,

{A I LE+ B[C]g tac: l}c = {A T+ E[C]g : E}C,

(A LE-B[Cly=a:1),=(a:1).
Proof. Recall from example that there exists a divergent process - ; E + Q = c:1. Let
A1 LE+ B[]} == a:1be given by the composition £[-]}, proc(c, Q). Let T + C :: A be arbitrary.
Let T be an arbitrary fair trace of A | T+ E[C]} = E. Let T be the traceof A | LE + B[C]} = a:1
given by interleaving each step of T with an application of rule to proc(c, Q). It is fair. The

two traces are union equivalent, so they have the same observed communications on all channels.
In particular, no message is senton a,so T’ ~ae1/ L. O

PROPOSITION 7.0.11. Let S = (X, <) range over observation systems I and T. Let Sp = (X5,<)
be its restriction to simply branched contexts, where X® = {(£,C) € X | £ is simply branched}.
ThenT +C <s D= Aifandonly if T+ C <5, D = A

Proof. Sufficiency is immediate for both properties: every simply branched experiment is an
experiment. To see necessity, assume that T+ C <5, D = A. Let (A + E[-]} = E,C) € X be an
arbitrary experiment. We must show that
(ArE[C]L = B)e €/< (A E[D]] = B)c.
By lemma there exists a simply branched experiment (A + B[]} : a :1, D) € X with C c D.
In either case,
(A-B[C]Y = a:1)p /< (A B[D]y =a:1)p
by assumption. Because C € D,
(A+ B[C]g taii)e S/ (A B['D]g ta:)e.
By the lemma,
{Al—g[C]g::E}C </< {Al—g['D]g::E}c. O]
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Recall simply branched contextual interiors from definition Our first “context lemma”
(cf. [Mil77, pp. 6-7]) states that, in the cases of external and total simulations, it is sufficient to
quantify over simply branched contexts to show that configurations are S-precongruent:

PROPOSITION 7.0.12. Let S = (X, <) range over observation systems E and T. ThenT + C (<s)°
D::a:Aifandonlyzfl"l—C(ﬁg)bD::a:A.
Proof. Sufficiency is immediate: every simply branched context is a context. To see necessity,
assume that T + C (<5)b D:a:A,ie,that
(A + E[BICaalys = Ebe </< A+ E[B[Dealyp = E)c (90)
for all simply branched contexts @ + B[]}, = b : B and experiments (A - E[-]7; : E,C) € X.

Let ® 1 Ip + F[-]L., = ¥ be an arbitrary context, and let (A 1| Iy + E[-]§ = E,C) € X be an
arbitrary experiment. We must show that

(A= E[F[Cal? = B)e /< (A - E[F[DIaaly 5} (o1)
The context E[F[-]L. , 19 appears as the experiments (E[F[-]L., 19, AE) € XF and (E[F[]L. 419, AIRIEE) €
XT. Instantiating (90) with B =[], gives the result. O

In this dissertation, we focus on external observational simulation. It is better behaved than
internal observational simulation (it is a precongruence). It is also, in some sense, easier to work
with. This is because we can use the fact that we never observe input on external channels. As a
result, the observed communications are simpler: they are never bidirectional.

In section[7.1, we show that total observational equivalence is closed under execution. We
show in section [7.2 that internal observational precongruence implies external observational
precongruence. In section[7.3} we develop external observational simulation. We relate it to weak
barbed precongruence. Figure[z.1|of section[7.4summarizes the relationships between these different
relations on configurations. We show in section[7.5/how to relate relations on configurations and
relations on processes. This will give certain precongruences for processes.

7.1. Total Observations for Configurations

Total observational equivalence is useful for showing properties that hold of all observational
S-simulations and S-equivalences. This is because total observational equivalence is the finest
notion of equivalence based on observed communications:

PROPOSITION 7.1.1. Let S; = (X;,<;) for i = 1,2 be observation systems. Then T + C <5, D = A
impliesT + C <gs, D :: A whenever both:
(1) forall (A1 1+ E[-]} = E,C) € &, there exists C' 2 C such that (A1 1+ &[]} = E,C) €
Xl, and
(2) G €<

Proof. AssumethatT +C <5, D= A. Let (A 1 T+ E[-]} = B, C) € &, be arbitrary. We must show
that

(A E[CLL = B)c §/<, (A E[D]} = E)e.
By assumption, (A | T+ E[-]} = E,C’) € X, for some C’ 2 C. This implies that
(AFE[CT) = B)er §/<, (A E[D]} = B)or,
Because C ¢ C/,
(A+E[CTL = B)e €<, (A E[D]} = B)c.
By monotonicity (proposition[6.1.4)),
(ArE[CTL = B)c §/<, (A+ E[D]} = E)c. O

COROLLARY 7.1.2. Let T = (X7, =) be given by definition For all observation systems
S=(X,%),
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o fI —-C<rDuAthenT -C<s DA
o fT-C<xryDuA thenTHC<s DA

Total observational equivalence is closed under multiset rewriting:
ProrosiTionN 7.1.3. If T 1 C+ AzandC — C', thenT + C =7 C' :: A

Proof. Consider an arbitrary experiment (® | T+ E[-]} = A, ®IA), and let T be a fair trace of
E[C]}. By fairness and preservation, we can assume without loss of generality that the first step of
Tis E[C]L — E[C]}. If every message fact in C appears in C’, then we are done. Indeed, the tail
T’ of T is a fair trace of £[C’]}, by the fair tail property (proposition. Both T and T’ have the
same sets of message facts, so they induce the same observations for each channel in @, I, A.

Now assume that C — C’ consumes a message fact, i.e., that there is some message fact
msg(c, m) € C that is not in C’. We must show that it is not observable from any channel d in
®,1,Ain T, i.e., that it does not appear in any derivation of T~ u ¢ A / d for d in @, I, A.

A case analysis on the rules defining T ~ u ¢ A / d shows thatif T ~ v € B / a appears as a
premise of a rule, then

(1) the rule is due to a msg(b, m) with a € fc(msg(b, m)), and
(2) the conclusion of the rule is of the form T ~ w & C / ¢, where ¢ = cc(msg(b, m)).

Suppose to the contrary that msg(c, m) is observable from some d in @, [, A in T. We
proceed by induction on the height & of msg(c, m) in the derivation of observed communication.
Set a = cc(msg(c, m)).

CasE h = 1: Then msg(c, m) is observable because cc(msg(c,m)) = d isin ©, [, A. We
have msg(c,m) ¢ C’ only if msg(c, m) was in the active portion of the rule used to make the
step. However, by lemmals.9.5} this implies that d ¢ ics(proc(b, P)) for some proc(b, P) € C. This
implies that d is an internal channel of C by lemma|s.6.11} which in turn implies that d is not in
@, L,T, A, A. This is a contradiction.

CaSE h = h'+1: Assume the result for h’. Then msg(c, m) appears at height / in the derivation,
and there is a msg(b, m’) at height &’ in the derivation such that a € fc(msg(b, m")). Because
msg(c, m) € C but msg(c, m) ¢ C’, we know that msg(c, m) was in the active multiset of the rule
used to make the step C — C’. By lemmals.9.5} a was an internal channel and it does not appear
free on the right side of the rule. By preservation, it follows that a is not free in E[C’]%. It follows
that a cannot appear free in msg(b, m’), a contradiction.

To see that a cannot appear free in msg(b, m'), we consider two cases:

SuBcase msg(b,m’) € C: A case analysis on the rules shows that we also have msg(b,m’) € C’, a

contradiction of a ¢ fc(E[C']}).

Suscase msg(b, m’) ¢ C: Then msg(b, m’) must appear in some C”’ such that £[C']}, —* C”. But

each free channel in msg(b, m’) € C” is either already in £[C’]}, or it is freshly generated, so not

in £[C]} or £[C']}. Both of these possibilities contradict the assumption that a € fc(msg(b, m")).
O

The following proposition shows that forwarding has no observable effect on communications,
and that it acts only to rename channels:

PROPOSITION 7.1.4. ForallT = C :: A,c: CandT,c: A+ A:: A, respectively,
(1) if Cis positive, then T + [d/c]C =1 C,proc(d,c — d) = A,d : C;
(2) if Ais positive, then T, d : A+ [d[c]A =7 proc(c,d — ¢), A= A;
(3) if A is negative, then T, d : A+ [d/c]A =7 proc(c,d < ¢), A= A;
(4) if C is negative, then T + [d/c]C =1 C, proc(d,c < d) = A,d : C.
Proof. Assume first that I+ C :: A, ¢ : C and that C is positive. Let ([-]} ..c, D) be an arbitrary
experiment. Then E[C]} .. —* £'[msg(c, m)]gl,)mc for some £ if and only if

([d/)€) [[d/c]CTy ac = ([d[1€") [msg(d, [d/c]m)]y ac
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and an induction shows that this holds if and only if
([d/c)€) [C,proc(d, ¢ > d)]} g.c =" ([d/c]€") [msg(c, m), proc(d, ¢ > d)] gc-
But this last multiset in turn steps to ([d/c]E")[msg(d, [d/c]m)]gr,’dzc by rule :

([d/c1€") [msg(c,m), proc(d, ¢ > d)]h g — ([d/c]€ ) [msg(d, [d/c]m)]y sc-

So if this collection of logical equivalences hold, we are done by proposition[z.1.3]and the fact that
=71 is reflexive.

If msg(c, m) appears in no fair trace of £[C]}, _.c.» then an induction shows that every trace of
E[C] c.c is atrace of ([d/c]E) [C, proc(d, ¢ — d)]} ;. (modulo the presence of the forwarding
process), and that they have the same sets of message facts. So they induce the same observations
on all channels and we are done.

The remaining cases are analogous. O

7.2. Internal Observations for Configurations

Atkey [Atki7, p. 79] states without proof that his internal-style observational equivalence is
a congruence. Internal observational equivalence is not a congruence in our setting because of
value transmission, and our choice to compare functional values using the universal relation 4l. As
described above, we use 4l because of philosophical objections to inspecting values of function
type. Unfortunately, it is these values of function type that cause observational equivalence to not
be a congruence. We conjecture that replacing 41 by a suitable refinement would cause internal
observational equivalence to be a congruence.

PROPOSITION 7.2.1. Internal observational simulation (equivalence) is not a precongruence (con-
gruence).

Proof. We construct an explicit counter-example. Let the processes P and Q respectively be:
;- F_<outputc (Ax:7.x); closec:c: (7> 1) A1,
3+ F_<output ¢ (Ax : T.fix y.y); closec:c: (1> 1) A L.
N 1
ci(r=>1)A1 T C) eX,

{A - 5[proc(c, P)]c:(‘rﬂf)/\l " E}C

= (c: (val Ax : 7.x, close))

Then for all experiments (A + &[]

=/¢( (c: (val Ax : 7.fix y.y, close))
= (A Eproc(c, Q)] ii(rorym = Ebe-

So - + proc(c,P) =1 proc(c,Q) = ¢ : (T = 1) A1 By proposition [f.0.4} - + proc(c,P) <
proc(c, Q) = ¢: (t > 7) A1. Take 7 to be p — p for some p, and consider the process R given by

e (T=>T)A1Ex < inputc _ < outputb (x(Az:p.z));c>bubiTAL
SetCl ] . (roryar = [:(rmryan Proc(bs; R). Then the experiment ([-],,,,,, ) € X can differentiate
Clproc(c, P)]: and C[proc(c, Q)] Intuitively, this is because (Ax : 7.x)(Az : p.z)

c:(t—1)A1 c:(1->T)AL”

will converge in the first case, but (Ax : 7.fix y.y)(Az : p.z) will diverge in the second. Explicitly,
(-+Clproc(e, P)(rmryns 01 T ALY
= (b: (val (Az: p.z),close))
£/4(b: L)
= {-+Clproc(c; Q)] ii(rorpps 7 b T AL

So < is not a precongruence. It follows from proposition [.0.4|that =] is not a congruence. O
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PROPOSITION 7.2.2. Let XT and X T be given by deﬁnitionand deﬁnition respectively.
Then for all <, if T+ C (é(xr,s))c D:A thenT+C (S(XT,g))C DA

Proof. Let A + F[-]} = E be an arbitrary context and (® | T+ &£[]4 = ¥, ®T¥) € X7 an arbitrary
experiment. We must show that

(0 - E[FICINIE = ¥) y,y /< (@ - ELF[DIL]E = W)

o1y’
This is the case if and only ifforallc: Ce @, I, &,

(@ F E[FICIAE # ¥) 1y (0) << (@ - E[F[DIL]E = ¥) 1 (0)- (92)

Fix some arbitrary such ¢ : C. Induction on ® | I + &[]4 = ¥ gives a decomposition of £

as a composition of contexts £[-]4 = £'[E"[-]2]A, such that ¢ : C € A/,E’. Observe that the

composition £”[F[]5 ]2 is again a context, and that (£'[]4/, A’E’) € X Then by assumption,

(0 EUETFICINNE =¥) _ s/< {0+ EUETFIDIE)IE = ¥) .

Because ¢ : C € A’, &, this implies and we are done. O

Combining proposition|[7.2.2Jand corollary[7.1.2] we conclude:
COROLLARY 7.2.3. IfC+ D ($1) A, then T+ C (sg)" D = A

A'E!

7.3. External Observations for Configurations

We show that external observational precongruence coincides with weak barbed precongru-
ence. We first show some general properties about observations on external channels.

PROPOSITION 7.3.1. Assume that T + C :: A. We observe no communication on its input channels,

ie, (T +C = A)(c)=1Lforallceic(C).

Proof. Let ¢ € ic(C) be arbitrary, let T be a fair trace, and let 7 be the union of all facts appearing
in T. Suppose to the contrary that some msg(d, m) € T has c as its carrier channel. Then by
remark [5.6.5} ¢ is an output channel of msg(d, m). By preservation, the subformula property
(proposition5.6.8) and definition[5.6.1 ¢ must also be an output channel of T - C :: A. But the sets
of input and output channels are disjoint, so this is a contradiction. It follows that 7 has c as its

carrier, so v, = L by (O-1). O]

Definition 7.3.2. Assume I' - C :: A, and consider a trace T of C. A message fact msg(a, m) is
externally observable in T if it is observable from some c € I, Ain T. <

Definition 7.3.3. Two configurations T + C :: Aand T + C’ :: A have the same externally observable
message facts if for some fair traces T and T’ of C and C’, respectively, for all channels ¢ € T, A, the
sets of messages observable from c in T and in T” are equal. <

PROPOSITION 7.3.4. If T = C :: A and T + D :: A have the same sets of externally observable
message facts, then (T +C :: A) = (T + D = A).

Proof. This is an immediate corollary of proposition|[6.2.15] O

7.3.1. Barbed Simulation and Precongruence. Barbed bisimulations and congruences [MSg2}
Sang2| are the canonical notion of equivalence for process calculi. A barb is an observation predicate
| defined on terms in a calculus that specifies the most basic behavioural observable: the ability to
perform an observable action. When defining the barb predicate,

the global observer [...] can also recognize the production of an observable
action, but in this case he cannot see neither the identity of the action produced
nor the state reached. [MS92 p. 691]
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Concretely, we follow Sangiorgi [[Sang2, § 3.2] and define barbs on a per-channel basis: the predicate
() 4, specifies the ability to perform an observable action on channel a.

This minimalist approach to defining barbs contrasts with some recent approaches [YHBoz;
Ton1s; KMP19g|] whose barbs distinguish between different kinds of actions. For example, Yoshida,
Honda, and Berger [YHBo7| found it necessary to observe which label was sent to ensure that
barbed bisimulation was a congruence. By using a different barb for each kind of typed commu-
nication, Toninho [Tonis} § 6.2] was able to give a binary logical relation that was consistent by
construction with barbed equivalence.

We prefer the minimalist approach for its conceptual simplicity and generality: it is calculus
agnostic. Instead of modifying the concept of a barb to ensure that barbed bisimulation is a
congruence, we follow the original approach and extract “barbed congruences” from barbed
bisimulations using contextual interiors (cf. [MSg92, Definition 8;(Sang2, Definition 3.2.6]).

Definition 7.3.5. A barb is the channel-indexed predicate (-) |, on processes and configurations
inductively defined by:

close a |;

a.k; Plgs

send a shift; P |,;

_ < outputa M; P, if M |} v for some v;

sendab; Pl,;

send a unfold; P |,;

proc(c, P) |, whenever P | ;;

msg(a, m) |, whenever m | ;

(proc(b,a < b),msg(c,m;, .)) |, and (msg(a, m™), proc(b,a — b)) |;; and
(C[D]%) |, whenever D |,.

A weak barb is the channel-indexed predicate (-) |}, on configurations defined by the composition
of relations —* (-) |,. We write (-) {, for the negation of (-) |} ,. <«

Write —" for the reflexive closure of —.

PROPOSITION 7.3.6. For all configurations C, C |, if and only if C —" C’, msg(c, m) for some
msg(c, m) with cc(msg(c,m)) = a.

Proof. Sufficiency follows by a case analysis on why C |,. To see necessity, assume first that
msg(c, m) € C. Then a case analysis on m gives the result. If msg(c, m) ¢ C, then a case analysis
on the (non-reflexive) step gives the result. O

COROLLARY 7.3.7. For allT + C :: A and a € fc(C), C ||, ifand only if (T + C :: A),(a) # L.

The barbed simulation game requires the simulating configuration to match the simulated
configuration’s barbs:

Definition 7.3.8. A typed relation R on configurations is a (weak) barbed simulation if A - C R
D = ¥ implies

(1) ifC = C',then D —* D' with A+ C' R D’ = ¥; and

(2) forall channelsa: AeA,¥,ifC |, thenD .
(Weak) barbed similarity, 3, is the largest barbed simulation. Two configurations A - C :: ¥ and
A+ D :: V¥ are (weak) barbed similar, A C 3D = ¥,if A~ C R D :: ¥ for some barbed simulation
R. <

We can define barbed bisimulation from barbed simulation in the usual manner:

Definition 7.3.9. A typed relation R on configurations is a (weak) barbed bisimulation if both &
and PR™" are barbed simulations. (Weak) barbed bisimilarity, =, is the largest barbed bisimulation.
Two configurations A + C = W and A + D :: ¥ are (weak) barbed bisimilar, A - C » D = V¥, if
A+ CR D : VY for some barbed bisimulation R. <
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Barbed bisimulation is an equivalence relation. We do not develop its theory any further.

Example 7.3.10. The following two configurations are barbed bisimilar:

-+ proc(b, a « close a; (wait a; close b)) : b :1 (93)
-+ proc(b,close b) b :1 (94)
The unique execution of (93) is:

proc(b, a < close a; (wait a; close b)) (95)
— proc(a, close a), proc(b, wait a; close b) (96)
— msg(a, close a), proc(b, wait a; close b) (97)
— proc(b, close b) (98)
— msg(b, close b), (99)

while the unique execution of (94) is:
proc(b, close b) (100)
— msg(b, close b). (101)

Where the numbers refer to the configurations in the above executions, the following relation is a
barbed bisimulation:

R = {((3), (29)), (8D, (o0)), (62D, (o0)), ((8), (oD), ((og), (o))}
Indeed, it ensures that the two configurations remain related throughout the stepping game. It
also satisfies the requirement that related configurations have the same barbs for channels in their

interfaces: in each pair, both configurations satisfy the weak barb (-) ||, <«
LEMMA 7311 IfT + C :: A and C — C', then for all ¢ € T, A, we have C || if and only if C' |},
Proof. This is a consequence of proposition|[7.1.3and corollary[7.3.7 O

We can characterize barbed similarity using proposition|[.3.12]

PROPOSITION 7.3.12. Two configurations are barbed similar, A~ C 3D ==Y, if and only if for all
ce AV, ifC|l,, then D,

Proof. Sufficiency is obvious. To see necessity, let R be the relation given by {(C’',D") | C —*
C' A'D —* D'}. 1t is a barbed bisimulation. Indeed, it is closed under stepping by construction.
Moreover, if ' /R D’ and C’ |}, for some ¢ € A, ¥, then D’ .. To see that this is so, observe that if
C" |, thenC ||, so D ||, by assumption. Then D’ || by lemmaly.3.11} O
PROPOSITION 7.3.13. Barbed similarity not a precongruence relation on configurations.

Proof. Recall the process Q) from example[5.3.3] Consider the processes P, Q, and R respectively
given by:

sa:@®{l:,r:1}Fcasea {l = waita; closec|r=Q}:c:1,
sa:e{l:y,r:1}rcasea {l=Q|r=waita; closec}:c:1,
sorad;closeaza:e{l:1,r:1}.
We have the following pairs of barbed bisimilar configurations:
a:@®{l:1,r:1} + proc(c, P) ~ proc(c,Q) :c:1
-+ proc(a, R) ~ proc(a,R) = (a:@®{l:1,7r:1})
However, barbed similarity is not contextual (so not a congruence relation), for
-+ proc(a, R), proc(c, P) % proc(a,R), proc(c,Q) =c:1.

Indeed, the left side steps to the configuration proc(c, close ¢) which satisfies the barb (-) ||, while
right side cannot step to a configuration satisfying this barb. O
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Definition 7.3.14. (Weak) barbed precongruence 5° is the contextual interior of barbed similarity,
ie,T+C% D:=Eifandonlyifif A - E[C]L 5 E[C]L = A for all contexts A + E[-]L = A. «

B R

7.3.2. Relating Barbed Simulations and External-style Observational Simulations. We
relate barbed simulation § and external observational simulation <g. In fact, we show a more
general result. Let E = (XF,4l) be given by deﬁnition and let < be a preorder such that
(X%, <) is an observation system. We relate 5 and S(xt,<)- The result for < follows as a special
case.

PROPOSITION 7.3.15. If T = C S(xr ) D A, thenT =C 3D = A

Proof. Assume thatI'+-C <y ¢) D= A Letce I, A be arbitrary. By corollary C |, ifand
only if (T + C : E)(c) # L. In this case, (I - D :: A)(c) # L, which holds if and only if D |}.. We
conclude that I' + C § D :: A by proposition[7.3.12] O

COROLLARY 73.16. If ' - C (g(xf’g))c DA thenT-C5 DA

The converse of proposition[7.3.15)is false. This is because barbs do not distinguish between
sent messages, but only identify that a message was sent. Concretely,
-+ proc(c, ¢.0; close ¢) § proc(c,c.1; closec) = c: @{0:1,1:1},
but
(- + proc(c,c.0; close ¢) = c:@{0:1,1:1})
=(c:(0,close))

£/< (c: (1,close))
= {-+ proc(c,c.1; closec) = c: @®{0:1,1:1}).

Despite this, the converse of corollary[7.3.16lholds under certain reasonable hypotheses. Assume
that ' = C 3° D :: E. We must show that A + C (g(xﬁys))c D : B. By proposition it is
sufficient to show that A - C <y <) D == E. We reduce this problem to the following:

Problem 7.3.17. Consider an observed communications (T + C :: A) = (¢ : v.).. Can we construct
an experiment contex T+ &[]} = A (for some T and A determined from I and A) such that for
allT + D = A, E[D]} |-forall¢: AeT,Aifand onlyif T + C Sxe) D A? «

Indeed, given a solution to problem we can show that A + C < yr <) D = E as follows.
By reflexivity, A - C <y <) C = E. By construction, E[C]} |- forall T: A €T, A. By assumption,
TrECIL 5 E[D]L =E. So byproposition E[D]L I-forallc: AcT,A. ThenT - C (X
D :: A by construction of £[-]}.

The answer to problem[7.3.17)is “no, but almost”. A finite number of experiment contexts is
insufficient in the presence of recursion and channel transmission (cf. [Hen83} p. 38]). We will
instead construct a families of contexts, one for each height n approximation of the communications
in (¢ : v¢)c. The general result will then follow by proposition|[6.1.12}

For brevity, we write < for €/< in the remainder of this section.

Before giving the full construction of experiment contexts, we illustrate the approach by a
sequence of examples. In these examples, we only consider configurations of the form - +C 2 a : A.
Given a channel name a, let @ be a globally fresh channel name. Let Y* be the “positive answer
type” @{y : o*}, where o" is the positive empty type ®{}. We will construct non-empty sets
E(n,v ¢ A) of processes of type - ; a: A - E :: @: Y*. They will satisfy the following weakened
form of proposition

PROPOSITION. Fix some v ¢ A. Let-+ C :: a : A be arbitrary, and setw = (-~ C :: a : A)(a). For
all n, |v |, S w e Aifand only if for all E € E(n,v € A), {-+ C,proc(a, E) =a: Y*)(@) = (v, 1).

2Though they serve similar purposes, these should not be confused with the experiments of observation systems.



7.3. EXTERNAL OBSERVATIONS FOR CONFIGURATIONS 163

In particular, by proposition (- + C,proc(a,E) = a: Y*)(a) = (y, 1) if and only if
(C,proc(a,E)) | ThesetE(n,v e A) checks that |v],,, <w e Ainstead of [v], < w ¢ Abecause
it is always the case that [w |, < v € A, and doing so simplifies the definition. These sets of processes
induce sets of experiment contexts in the obvious way. Let Y, be the process c.y; Q, where Q is

given at each type by example[5.3.3}
Example 7.3.18. Setv = (k,close) and A=@{k:1,1:1}.Setw=(+C=a:@®{k:1,1:1})(a)
for some configuration C.

Recall that |v|, = (k, 1), and observe that | (k,close) |, < w ¢ A if and only if C sent the label
k on a, so if and only if

(- C,proc(@,case a {k = Yz | _ = Q}) =a: Y")(@) = (y, 1).

Take E(o,v ¢ A) ={casea {k = Y=| _ = Q}}.
Now observe that |v|, < w ¢ A if and only if

(- C,proc(a,case a {k = waitc; Y=| _ = Q}) =a: Y )(@) = (v, 1).

Take £(1,v ¢ A) = {case a {k = wait a; Yz | _ = Q}}. Because |v], = |v], for n > 2, take
E(n,veA)=E(Q,veA)foralln>1 <

Next, we illustrate why £(n, v ¢ A) must be a set.

Example 7.3.19. Setv = ((1,close),(r, L)) and A= (&{1:1})® (®&{r:1}).Setw=(-C:a:
A)(a) for some configuration C. Clearly, [v|, = (1, 1) < w ¢ A ifand only if

(- C,proc(a,a < recvc; Yo) = a: YY) (@) = (v, 1).
Our task becomes harder when we consider |v], = ((1, 1), (r, L)): we must somehow inspect the
communications on 4 and also those on ¢, and return a result on @ : Y*. We do so by using two

experiment contexts. Indeed, |v |, < w ¢ A if and only if both

(- C,proc(a@,a < recvc casec {1 = Yz}) = a: Y')(a) = (y,1),

(- C,proc(a,a < recvc; casea {r = Yz}) = a@: Y')(a) = (y, 1).
Accordingly, we take
E(LveA)={a<recvc casec {1 = Yz},a < recv c; case a {r = Y3} } <«

Having illustrated the approach, we define the family Er (1, i, r, v € A) of experiment processes
by induction on n and recursion on v ¢ A, where i is the “input channel” whose communications we
are examining (a in the above examples), and r is the “results channel” (@' in the above examples).
We can lift these experiment processes to testing contexts in the obvious manner. The family
Er(n,i,r,v ¢ A) checks that communications w on i satisfy [v|,+, < w € A.

We maintain the invariant that if E € Eg(n,i,7,v € A),then-;i: A+ E = r:Y"* and E can be
weakened|to - ; A,i: A+ E::r:Y* forall A not mentioning i or r. In particular, the processes
in Eg(n,i,r,v € A) always listen from left and report results on the right; we will consider the
symmetric case £ (n,i,r,v ¢ A) later. We also maintain the invariant that E € Eg(n, i,7,v € A) if

3Though the type system is linear, the present of unbounded recursion allows us to ignore channels in non-terminating
processes.
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and only if [i'/i]E € Er(n,i’,r,v e A) fori + rand i’ + r.
Er(n,i,r,Le A) ={Y,}
Er(n,i,r,close 1) = {wait i; Y, }
Er(o,i,r, (k,_)ed{l:A}1p) ={casei{k=Y,|_=Q}}
Er(n+v,i,r,(k,v)e®{l:Aj}ep)={casei{k=>E|_= Q}|Ec&(n,i,r,veA;)}
Er(o,i,r, (unfold, _) € pa.A) = {unfold < recv i; Y,}
Er(n+1,i,1, (unfold,v) € pa.A) = {unfold « recv i; E | E € Er(n,i,r,v e [pa.A/a]A)}
Er(o, 1,7, (shift,_) e 1A) = {shift < recv i; Y, }
Er(n+1,i,1,(shift,v) e tA) = {shift « recv i; E | E € Eg(n,i,r,v e A)}
Er(o,i,r,(_,_) e A®B) ={_ < recvi; Y,}
Er(n+1,i,r,(u,v) e A®B)={_<«recvi; E|Eec&(n,i,r,veB)}uU
u{a<recvi; E|E€&r(n,a,r,ueA)}
Conspicuously absent are negative protocols. Because any provided channel with a negative
protocol is an input channel, we can only observe L on that channel by proposition[7.3.1} Accordingly,
we define:
{v,} v=1
{Q} v=#1
Also absent are sets of experiment processes for the protocol 7 A A. We use an oracle process
to check if two transmitted values are related by <.

Er(n,i,r,veA) :{

Definition 7.3.20. Let P be a predicate on functional values of type 7. An oracle process for P is a
process ;- O :c: 721 @ {tt:1,£f :1} that receives a functional value w and a shift messagd|
over ¢, and sends tt if P(w), and ££ otherwise; and closes the channel in both cases. Explicitly,

proc(c, O), msg(d, _ < output c w; ¢ < d), msg(e,send d shift; d > e) =~

“5f msg( f,close f), msg(e,e.tt; f >e) P(w)
" | msg(f,close f), msg(e, e.ff; f —>e) otherwise

<

Assumption 7.3.21. Assume that for all 7 and values - I v : 7, there is an oracle O, for the predicate
Fv<(-)T
Using the oracle, we define:
Er(o,i,r,(val f,_) e 1A A) = {c < Oy x < input i _ < output ¢ x; send c shift;
case c {tt = wait¢; Y, | £f = Q}}
Er(n+1,i,r,(val f,u) e T A A) ={c<+ Oy x < input i _ < output ¢ x; send c shift;
case c {tt = waitc; E|ff = Q} | E€&r(n,i,r,ucA)}
PROPOSITION 7.3.22. Let T+ C :: a : Aand v € A be arbitrary. Setw = (T +C = A,a: A)(a)
and let @ be globally fresh. Then for all n, |v|,., <w ¢ Aif and only if for all E € Er(n, a,a,v € A),
(T+C,proc(@,E) = A,a:Y*)(a) = (v, L).
Proof. By induction on n. Assume first that # = 0. Then we proceed by case analysis on v ¢ A. We
give the representative cases; the rest will follow by analogy.

Cask L ¢ A: The result is immediate.

Casev e A: Thenw = L by proposition[73.1] If v = 1, then the result is immediate. If v # L,
then it is not the case that v < w ¢ A, and the result also follows from the definition of the divergent
process Q).

“4Because types are polarized, the up shift is required to ensure that the type is well-formed.
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CasE close € 1: Then |close|, = close. By inversion, close < w ¢ A if and only if w = close.
This is the case if and only if msg(a, close a) appears in a fair trace of C. The only element of
Er(n,a,a,close € 1) is {wait a; Yz}. The fact msg(a, close a) appears in a fair trace of C if and
only if every fair trace of C, proc(@, wait a; Yz) has an instantiation

msg(a, close a), proc(a, wait a; Yz) — proc(a, Yz)

of rule (67). By fairness, Yz produces the observation (y, L) on @. So msg(a, close a) appears in a
fair trace of C if and only if (T + C, proc(@, wait a; Yz) = @: Y*)(@) = (y, L). This gives the result.

Cask (k,u) e ®{l: A}t Then | (k,u)|, = (k, L). By inversion, (k, L) < w ¢ A if and only
ifw = (k,w") for some w’. This is the case if and only if msg(a, a.k; _ — a) appears in a fair trace
of C. The only element of Ex(0,a,d, (k,u) ¢ Aiscase a {k = Yz | _ = Q}. The aforementioned
fact appears in a fair trace of C if and only if every fair trace of C, proc(@, case a {k = Yz | _ = Q})
has an instantiation

msg(a, a.k; _ — a),proc(a,case a {k = Yz | _ = Q}) — proc(qd, Yz)

of rule (79). The remainder is analogous to the previous case.

Cask (val f,u) e T A A: Then |(val f,u)|, = (val f, L). By inversion, (val f, 1) <weTAB
ifand only if w = (val g, w') for some g and w’ and - I+ f < g : 7. This is the case if and only if
msg(a,_ < output a g; _ — a) appears in a fair trace of C with g satisfying the above relation.
The only element of Eg (0, a,a, (val f,u) € A) is

¢ < Op.p; x < input a; _ < output ¢ x; send ¢ shift; case c {tt = wait¢; Y, | ff = Q}.
Every fair trace of C has an instantiation
proc(@, ¢ < O3 x < input a;
_ < output ¢ x; send ¢ shift; case ¢ {tt = wait¢; Y, | ff = Q}) —
— proc(c’, [¢'/c]Oy.;), proc(@, x < input a;
_ < output ¢’ x; send ¢’ shift; case ¢’ {tt = waitc; Y, | £ff = Q})

of rule (66). The aforementioned message fact appears in a fair trace of C if and only if the trace
contains the following instantiation of rule (75):

(msg(a,_ < output a g; _ — a),proc(a, x < input a;

_ < output ¢’ x; send ¢’ shift; case ¢’ {tt = wait¢’; Y, | ff = Q})) —
— (proc(a@, _ < output ¢’ g; send ¢’ shift; case ¢’ {tt = wait ¢’; Y, | £f = Q})),
and of rules and (not necessarily in immediate succession of each other):
(proc(@, _ < output ¢’ g; send ¢’ shift; case ¢’ {tt = waitc’; Y, | £ff = Q})) -
—* (msg(d, _ < output ¢’ g; ¢’ < d), msg(e, send d shift; d — e),
proc(a,case e {tt = waite; Y, | £f = Q})).

By fairness and the definition of the oracle, the above hold if and only if the oracle takes the steps
(proc(c’, [¢'/c]Oy.r), msg(d, _ < output ¢’ g; ¢’ < d), msg(e,send d shift; d > ¢)) —*
—* msg(h,close h), msg(c’, c'.tt; h — ¢').

From here, the proof is analogous to the previous cases.

Now assume that the result holds for some n. We show the inductive step n + 1, again by case
analysis on v € A. We give the representative case; the rest follow by analogy with this case or with
base cases.

Cask (k,u) e ®{l: A;}jcr: The elements of Er(n +1,a, 4, (k,u) ¢ ®{l: A;} 1) are of the
formcasea {k = E|_= Q}forE € Ex(n,a,a,u e Ay). Recall that | (k, u) |42 = (k, |¢t]n41)-
By inversion, (k, [u|,+,) <w e @{]: A} ifand only if w = (k,w') and |u],4, < w' € Ay. But
w = (k,w") if and only if there is an observable message msg(a, a.k; d — a) in a fair trace of C
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for some channel d with T ~ w’ ¢ A, / d. There is a message msg(a, a.k; d — a) in a fair trace
of C if and only if there is such a message in a fair trace of C, proc(d,case a {k = E | _ = Q}).
Fairness implies that a fair trace of C, proc(@, case a {k = E | _ = Q}) has an instantiation

msg(a, a.k; d — a),proc(a,case a {k = E | _ = Q}) — proc(a,[d/a]E)
of rule if and only if msg(a, a.k; d — a) appears in the trace. If this is the case, then we apply
the induction hypothesis: T ~ (y, 1) ¢ Y* [ aforall [d/a]E € Er(n,d,a, u ¢ Ay) if and only if
[t] 4, €W € Ay, where we recall that w’ is given by T ~ w’ ¢ A, [ d. It follows that
{C, proc(@, T))(@) = (v, 1),
for all processes T € Er(n +1,a,a, (k,u) € ®{l: A} if and only if both w = (k,w’) and
|0 €W € Ay, ie, ifand onlyif | (k,u)|,.) s we®{l: A1} O

Let 0~ be the negative empty type &{} and let Y~ be the “negative answer type” &{y : 0~ }.
We can dualize the definition of £ to get a family £ of processes that listens on the right and
reports on the left. In fact, the processes carry over unchangedf]

Er(n,i,r, L e A)=Er(n,i,r,LeA)
Er(n,i,r, (k,v) e&{l:A1}ier) =Er(nyi,r, (k,v) e d{l: A}er)
Er(n,i,r, (unfold,v) € pa.A) = Eg(n, i, 7, (unfold, v) € par. A)
Er(n,i,r, (shift,v) € lA) = Er(n, i,r, (shift,v) € 1A)
E(n,i,r,(u,v) e A— B) =Er(n,r,(u,v) e A® B)

E(n,i,r,ve AT) =Er(n,i,r,veB)

Er(n,i,r,(val f,u) et nA) =Er(n,i,r,(val f,u) e 72 A).

The proof of the following proposition is analogous to the proof of proposition [7.3.22}

PROPOSITION 7.3.23. Let I',a: A+ C = A and v € A be arbitrary. Set w = (T,a: A+ C :: A)(a)
and let @ be globally fresh. Then for all n, |v|,,, < w e Aif and only if for all E € £, (n, a,a@,w ¢ A),

(T,a:Y + proc(a,E),C :: A)(a) = (y, L).
We combine propositions|;.3.22|and [7.3.23| to build families of experiment contexts. Given

n observations v; ¢ A;/a; and m observations w; e C;/c; with n > o and m > 1, define the set of
configuration contexts:

& (”,Vi eAifai,wje CJ/CJ)

={proc(a,,L,),...,proc(ay, L,), [[]%41 broc(;, Ry), - . . » proc(Toms R ) |

b
¢j:Cj

|Li €& (n,ai,ai,vieA;),Rj €& (n,cj,f},wj £ C]-) }

PROPOSITION 7.3.24. Let T+ C : A and T + D :: A be arbitrary. If T A A is a subphrase of a type
in A or T > Ais a subphrase of a type in T, then for each value - I v : T assume the existence of an
oracle process O3, satisfying assumption Let v; and w; be given by:

(THC=A)r=(ai:vi)asaers
{r C A}A = (CJ : Wj)CjZCjEA'

Then
(THC=A)raS/<(THD:A)ra

if and only if for all n and F[-]} € E(n,v; € Aifai, wj € Cj/c;),
(@Y~ F[D]} =G Y*)(b) = (y, L)

forallb € a@,c;.

SHere, we are taking an extrinsic [Rey98} § 15.4] or “Curry-style” view of process typing.
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FIGURE 7.1. Relationship between relations of section

Proof. By definition,

{F FC: A}F,A S/g {F D A}I‘,A

if and only if

(@i Vi i Wj)apa,er,c;cien S/<AT =D A a.

By proposition[6.1.12} this is the case if and only if for all n,

(@it [vilnscj i [Wiln)apaer,ciciea S/<AT =D A a.

The result then follows by fairness and propositions and O
Proposition and the analysis following problem imply:

COROLLARY 7.3.25. For each value - I+ v : T assume the existence of an oracle process O,
satisfying assumption fT=CR DA thenT +C Sy q) D A

COROLLARY 7.3.26. If T -C 3 D A, then T+ C < D = A
Proof. By corollary The oracle O, assumed by corollaryis given by:

5+ _ < input ¢; shift < recvc; c.tt; closec:c: ot @ {tt:1,£f 1}, O

Combining corollary[z.3.26|and proposition gives:
THEOREM 7.3.27. ForallT = C : AandT - D = AT+ C 5° D = Aifand only if T+ C < D = A.

7.4. Summary of Relations

Figure[71)summarizes the main results for relations on configurations. Double arrows denote
implications. Dashed arrows denote conjectured implications. Missing arrows (when not implied
by transitivity) indicate falsehoods. We recall that:

—* is the reflexive, transitive closure of —;

<7 is internal observational simulation;

(<;)° is internal observational precongruence;
=1 is total observational equivalence;

<r is total observational simulation;

(<7) ¢ is total observational precongruence;

<p is external observational simulation;

(<g)‘ is external observational precongruence;
% is barbed simulation;

3¢ is barbed precongruence.
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7.5. Precongruences for Processes

In this section, we relate relations on configurations to relations on processes. Recall that to
show that two configurations are total or external precongruent, it is sufficient by proposition 7.0.12
to consider only simply branched contexts. In section[.5.1} we show that simply branched configu-
ration contexts closely mirror “observation contexts” for processes. In section|[7.5.2} we show how
to lift relations from configurations to processes.

7.5.1. Relating Simply Branched Contexts and Observation Contexts. Observation contexts
characterize the idea of processes experimenting on processes through communication:

Definition 7.5.1. An observation context is a typed context derived using exactly one instance of
the axiom (P-HoLE), plus zero or more instances of the derived rules (HoLE-CuT-L) and (HOLE-
Curt-R),
A +O[)3,=2b:B A, b:BrPuc:C
3ALA b« O[]5,; Puc:C
A, -Pzb:B -;b:B,A, O[5, ¢
-3 AL, A, -b < P OHaA:A zc:C

(HoLrg-Cut-L)

:C
(Horge-Cut-R)

such that the context satisfies the grammar:
O[']aA:A w= [']ﬁ:A | b« O[']?:A; p | b« P O[']aA:A' «

Recall from definition the definition of a contextual relation on processes. “Observational
contextuality” weakens this notion from arbitrary contexts to observation contexts:

Definition 7.5.2. A typed-indexed relation PR on processes is an observationally contextual if
AP Q:ua:Aimplies - ; A - O[P]2, R O[Q]4, = b: B for all observation contexts
3A+O[]5,=b:B. «

Definition 7.5.3. The observationally contextual interior of a typed relation 2R on processes is the
greatest observationally contextual typed relation R© contained in R. <

There is an obvious translation from observation contexts to configuration contexts, where we
inductively map (P-HoLE) to (Conr-H), and (HoLe-Cut-L) and (HoLe-CuT-R) to (ConE-C):

PROPOSITION 7.5.4. Let - 3 A + O[-]5, = c: C be an observation context. There exists a
configuration context A 1 1+ O[-]5., == ¢ : C such that proc(c, 0[Q]5.,) —* O[proc(a, Q)54
for all processes - ; A+ Q a: A

Proof. By induction on the derivation of the observation context.

Cask (P-HoLg): Let O be given by (CoNE-H). The step is given by reflexivity.
Casg (HoLe-CuT-L): The observation contextis-; A, A, - b « O[~]§:A; P:c:C,anditis
formed by:
A FO[)545b:B 3A,b:BrPuc:C
SALAFD < O[o]aA:A; P:c:C

(Hore-Cut-L)
By the induction hypothesis, there exists a configuration context A, 1 ' = O'[-]4, :: b : B such
that proc(b, O[Q]4.,) =* O'[proc(a, Q)]4. 4. This implies that

proc(c, b < O[Q]5.4; P)

— proc(b, O[Q]45.4)s proc(c, P)

—* O'[proc(a, Q)24 proc(c, P).
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Let O be given by:
3A,,b:Br-P:uc:C
AU FO[J54:b:B A,b:Bi-+proc(c,P):=c:C
ALA, 1 T, b:B- O[5, proc(c,P) = c: C
Plugging proc(a, Q) into O gives the configuration
Ay A, 1 T, b B O'[proc(a, Q)]5.4, proc(c, P) c: C
that we recognize as the result of the above sequence of rewrite steps. We conclude that
proc(c, b < O[Q]5.4; P) —=* O[proc(a, Q)]5.4.
Cask (HoLe-Cut-R): This case is symmetric to the previous case. 0

(Cone-P)
(Cone-C)

The translation in the opposite direction is more subtle. To translate configuration contexts to
observation contexts, one must be able to translate configurations to processes. Naively, one would
hope that:

FaLsEHOOD. IfI' 1 1+ C = ¢ : C, then there exists a process - ; T +~ P = c¢: C such that
proc(c, P) —=* C.

This is often impossible when configurations contain message facts. Consider, for example,
the configuration d : A | -+ msg(c,send c k; d — ¢) = ¢ : @{k : A}. The only plausible solutions
are variations on the theme - ; d: A+ c.k; d > c=:d : c: ®{k : A}. However,

proc(c, c.k; d = ¢) — proc(d’,d — d’),msg(c,send c k; d' — ¢)
and there is no way to get rid of the forwarding process fact. Instead, we settle for:

PROPOSITION 7.5.5. If A = P =2 ¢ : A, then there exists a process - ; A — P ¢: A such that
A+ P =rproc(a,P):c: A
Proof. By proposition[5.6.213 A ~ P = ¢ : A has a simply-branched derivation. We proceed by
induction on this derivation. We give only the illustrative cases.

Cask (CoNF-M): We proceed by case analysis on the particular message fact in

3ArFmuct A
S| A1 -Fmsg(c,m):(c:A)
SuBCASE m = close ¢: Take P = close ¢ and apply rule and proposition[7.1.3}
SUBCASE m = c.k; d — ¢: Take P = m and apply rule and proposition[z.1.3|to get:

(ConE-M)

d: Ay v+ proc(c,c.k; d - ¢) =7 proc(e,d — e),msg(c,c.k; e > ¢c) zc:@{l: A }er.
By proposition
d:Ax+-msg(c,c.k; d —c) =1 proc(e,d — e),msg(c,c.ks e > ¢) c:@{l: A}ier-

We conclude the result by transitivity and symmetry.
Caskt (CoNF-P): Immediate.
Cask (ConEr-C): By assumption, both branches of the rule

SI|T1LFC=0O ILY |[IA 1 L,+-D:8
- (Conr-C)
SILY || TA 1 LI, +C,D = ®E

are simply branched, and IT = b : B contains a single channel. By the induction hypothesis, there
exist processes C and D such that

I'+C =7 proc(b,C)=b:B
b:B,A+D=rproc(c,D)=c: A
Take the process - ; TA + b « C; D c: A. Then
proc(a, b < D; C) — proc(b, C), proc(c, D),




170 7. OBSERVATIONAL PREORDERS AND EQUIVALENCES

so TA + proc(a, b < C; D) =1 proc(b, C), proc(c, D) :: ¢ : A by proposition[7.1.3} Because =1 isa
congruence,
TA +proc(a, b« C; D)2rC,D=c: A
as desired. O
Proposition [7.5.6|extends proposition [7.5.4]to give the correspondence between observation
contexts for processes and simply branched configuration contexts.
PROPOSITION 7.5.6.
(1) For all configuration contexts A + O[-]2, = ¢ : C, there exists an observation context
3A+O[]5, c:Csuchthatforall-; A+ Q:a: A,
A+ Olproc(a, Q)]g.a =1 proc(c, 0[Qlg.4) 3 ¢ : C.
(2) For all observation contexts - ; A +~ O[-]5., = ¢ : C, there exists a configuration context
A+ O[5, c:Csuchthatforall-; A+ Q:a: A,
A+ Ofproc(a, Q)] .4 =1 proc(c, O[Q]5.4) s ¢ : C.
Proof. We show the first part of the proposition. Let A + O[-]4, = ¢ : C be arbitrary. By

proposition[5.6.21] it has a simply-branched derivation. We proceed by induction on this derivation
to construct - ; A + O[-]4., = ¢ : C. The possible cases are:

CasEt (Conr-H): If O isahole, thenlet O = [-]5 .
Cask (CoNEr-C): Then the context is formed by an instance of

ST I LFC=0 LY |TA I L-Dx=E
- (ConE-C)
S, ILE || TA 1 LIIL +C,D :: ®F

By simple-branching, IT = b : B contains a single channel. If the hole is in the left branch, i.e.,
if C = O’[]5,, then by the induction hypothesis, there exists an observation context - ; A
O'[]54 = b:Bsuchthatforall-; A+ Q:a: A,

A+ O'[proc(a, Q)]5.4 =1 proc(c, 0'[Q]5.4) = b : B.
Let D be given for D by proposition [7.5.5| such that b : B, A + D = proc(c, D) = ¢ : A. Take
3A+O[]%,:c: Ctobegivenby b < O'[-]5,; D. Thenforall-; A+ Q= a: A,

proc(c, O[Q]3.4) — proc(b, 0'[Q]3.4). proc(c, D),
so by proposition|7.1.3}

A+ proc(c,0[Q]5.4) =1 proc(b, 0'[Q]5.4), proc(c, D) = ¢ : C.
But =7 is a congruence, so
A+ proc(c, 0[Q2,4) =1 O'[proc(a, Q)] D ¢ C,

ie, A+ proc(c,0[Q]5.4) =1 O[proc(a, Q)]4.4 = ¢ : C. The result follows by symmetry. The case
for when the hole is in the right branch is analogous.

The second part of the proposition is immediate by propositions[z.1.3}and O

7.5.2. Relating Precongruences on Configurations and Processes. We show how to lift
relations < on configurations to relations on open processes. We frequently assume that =1 C <.
Recall from fig. [7.1]that this assumption is satisfied by all observational preorders < that we have
considered thus far.

Definition 7.5.7. A closing substitution is a substitution (a context morphism) o :f - ~ ¥ such that
o(x)valforallx:7eW¥. «

We lift type-indexed relations on configurations to type-indexed relations on open processes
using an approach reminiscent of Howe’s “open extensions” [Howg6} Definition 2.2]:
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Definition 7.5.8. Let R be a type-indexed relation on configurations. Write ¥ ; A+ P [R] Q =
c: Cif A+ proc(c,[o]P) R proc(c, [0]Q) == ¢ : C for all closing substitutions ¢ :f - ~ V. <«

Recall the definition of simply branched contextual interior 2R® of a relation from defini-
tion[5.711} The simply branched contextual interior and observationally contextual interiors coin-
cide:

PROPOSITION 7.5.9. Let < be a transitive type-indexed relation on configurations such that =1 C <.
The following are equivalent:

(1) ‘I’;AI—P[$b]Q::c:C;
2) ¥;A-P[<]°Q:c:C.
Proof. Remark that, because =1 is a congruence, =1 < < implies =1 € <”. Observe that ¥ ; A -
P [$]O Q = c: Cifand only if both
(i) Y;A+P[<]Q:=c:Csand
(ii) -; T+ O[[0]P]2c [<] O[[0]Q]4¢ = b : B for all closing substitutions ¢ 3¢ - ~ ¥ and all
observation contexts - ; T~ O[-]4. = b : B.

To see that itemimplies item assume that ¥ ; A + P [sb] Q = c: C. This implies that
-3 A+ [o]P [$b] [6]Q :c:Cforallg -~ W. Let-; T + O[] = b: B be an arbitrary
observation context, and let 0 it - ~ ¥ be an arbitrary closing substitution. We must show that

T O[[0]P)2¢ [<] O[[0]Q]Ac = b+ B. (102)

By proposition there exists a simply branched context T + O[-]%. = b : B such that

T+ O[proc(c, [0]P)]5¢ =1 proc(b, O[[c]P]2¢) = b: B,

T+ O[proc(c, [0]Q)]%¢ =1 proc(b, O[[0]Q]5¢) = b : B.
Because ¥ ; A+ P [ﬁb] Q = ¢ : C and <’ is simply branched contextual,

I - O[proc(c, [0]P)]2¢ <¥ O[proc(c, [0]Q)]%¢ = b B.
By assumption, the symmetric relation =7 is contained in <. By transitivity of <,

I + proc(b, O[[c]P]%) <¥ proc(b, O[[0]Q]%¢) = b : B.

But <’ ¢ £, so we conclude eq. .

To see that item [2| implies item assume that ¥ ; A + P [S]O Q=c:CandletT +
O[] = b : Band ¢ i - ~ ¥ be arbitrary. We must show that T +~ O[proc(c, [¢]P)]2; <
Olproc(c,[0]Q)]4¢ = b: B. By proposition there exists an observation context I' ~ O[-]%. =
b : B such that

T+ O[proc(c, [0]P)]5¢ =1 proc(b, O[[c]P]2¢) = b: B,
I+ O[proc(c, [0]Q)]5¢ =1 proc(b, O[[0]Q])5¢) = b : B.
The symmetric relation =1 is contained in <, so
I+ O[proc(c, [a]P)]2¢ < proc(b, O[[c]P]2¢) = b B,
T+ proc(b, O[[0]Q]4¢) < O[proc(c, [0]Q)]2¢c = b : B.

By assumption, ' - proc(b, O[[a]P]%.) < proc(b, O[[6]Q]5%¢) == b : B. We are done by transitiv-
ity of <. O

We would like to strengthen the correspondence to give a full precongruence:

CONJECTURE 7.5.10. Let < be a transitive type-indexed relation on configurations such that =7 C <.
Then\I’;Ai—P[ﬁ]O Q:ua:Aifandonlyif ¥ ;A+P[<]°Qua: A
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A proof of conjecture[7.5.10]is elusive because of the subtle interplay between the process and
functional layers. We have made preliminary attempts to generalize Howe’s method [Howog6] to
prove this result, but do not present these attempts here. This generalization is non-trivial because
a single relation on processes is insufficient: we also need a relation on terms. We must show that
these two relations agree with each other, and that all constructions in Howe’s method preserve
this agreement.

Despite these difficulties, we can still significantly generalize proposition to handle
contexts whose hole does not cross the boundary between processes and functional programs. We
call these contexts “pure process contexts”:

Definition 7.5.11. A pure process context ¥ ; A + Cp[-]lr)jg i a: Ais aprocess context with exactly
one hole such that its instance of (P-HoLE) does not appear in a subderivation of (E-{}). <

Definition 7.5.12. A typed-indexed relation R on processes is an purely process contextual if
¥;A+-PRQ:a: Aimplies®; A+ C,[P]"8 | C,[Q]4, == b: B for all pure process contexts
®; A+ Cy[-]58 = b : B. The purely process contextual interior of a typed relation 9 on processes
is the greatest purely process contextual typed relation 9R* contained in fR. <

THEOREM 7.5.13. Let < be a transitive type-indexed relation on configurations such that =r C <.
Then\I’;A»—P[ﬁ]O Qua:Aifandonlyif ¥ ; A+-P[<]’ Qua: A,

Proof. Necessity is immediate, so we show sufficiency. Assume that ¥ ; A + P [<]° Q: c: C. By
proposition this implies for all simply branched contexts A - B[-]%. :: b : B and all closing
substitutions o : - ~ @ that

A+ B[proc(c, [¢]P)]2¢ < B[proc(c, [0]Q)]5¢ = b : B.
We show the stronger property that ¥ ; A ~ P [sb ]P Q = a: A. This means that we must show for
all pure process contexts T'; @ - C[-]*2 = b: Bandall o ;¢ - ~ T that
@ + proc(b, [0](C[P]2L)) <b proc(b, [0](C[Q1E)) = b: B.
This in turn requires that we show for all simply branched contexts A ~ B[]}, :: d : D that:
A+ Blproc(b, [0](C[P1zx )os < Blproc(b, [0](CIQIA )]pp  d = D
Let A + B[-]?; = d : D be an arbitrary simply branched context. We proceed by induction on
3@+ C[]¥2 = b : B, and give only the illustrative cases.
Cask (P-HoLg): The result is immediate by assumption.

Case (Fwp*): This case is impossible because there is no hole.

Cask (Cut): Then C is either e < C'[-]¥8%; Rore « L; C'[-]5:¢ for some C" and L or R.

Assume that we fall in the first case. Let e’ be globally fresh. Then by rule (66,
Blproc(b, [0]C[P1;) 1vs —
— Blproc(e', [¢'/e] ([o1(C'[P5ix))) proc(b, [¢'/e] ([0]R)) 1yis-
By proposition
A+ Blproc(b, [0]C[P150) s
=1 Blproc(e',[¢'e] ([a] (C'[P1%))). proc(b, [¢'/e] ([o1R) s : D.

We recognize the right side as B'[proc(e’, [¢’/e](C'[P]5.4))] where B’ is the simply branched
context B[[]5.4, proc(b, [¢’/e]R)]{ ;. Analogously,

A+ Blproc(b, [0]C[Q1EMNms =1 B'[proc(e’, [¢'/e] ([¢](C'[Q1%4)))] = d : D.
By the induction hypothesis and the fact that < is type-indexed, so closed under renamings of
channels,

A+ B'[proc(e’,[e'/e] ([a](C'[P]:}fAA)))] < B'[proc(e’, [€'/e] ([0](C’[Q]Zf)))] =d:D.
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We are done by transitivity, the assumption that =y C <, and symmetry of =r. The case of
e < L; C'[-]2 for some C’ and L is analogous.

Cask (®L): Then C is of the form case e {I = P;},.; where P = C’[-]z;AA for some unique
k € L. We observe that

Blproc(b, [o](C[P]¥2)) ]85 — B [msg(e, e.l; ¢’ — e),proc(b, [¢](C[P]¥4))] D,
if and only if

Blproc(b [o](CLQ1Y2))]Es — Bmsg(e.e.ls ¢’ — e).,proc(b,[o](C[Q1Y2))] %)
If this is the case and [ # k, then both

Blproc(b, [o](CIP1¥)) 185 — B'[proc(b, [¢'fe] ([o]P))],
Blproc(b, [)(CLQLL ) its — B'[proc(bs [¢'/e] ([a1P)) 1.
We are done by proposition [7.1.3} transitivity, and the inclusion =7 ¢ <. If = k, then

Blproc(b, [a](CLP1 )18y — B'[proc(b, [¢'/e] ([o](C' [P
Blproc(b, [o](CLQIY2)) 185 — B'[proc(b [¢'fe] ([o](C'TQIY2)))] %

By the induction hypothesis and the fact that < is type-indexed, so closed under renamings of
channels,

A+ B'[proc(b, [¢'[e] ([o)(C'[PTX2) )]s < B'[proc(b, [¢'fe] ([01(C'[QYi ) ))]ivg = d : D.

We are done by proposition [7.1.3} transitivity, the assumption that =1 ¢ <, and symmetry of 7.

Finally, assume that in no fair trace do we get a message fact msg(e, e.l; e’ — e). Then by case
analysis on the rules, no rule ever applies to proc(b, [¢](C[P]}:1)) or proc(b, [o](C[P]Y:1)). It
follows that B[proc(b, [¢](C[P]}:4))] %, and B[proc(b, [6](C[Q]Y:))]E 5 have the same traces
(modulo the unused process fact), so the same observable messages and observed communications.
This completes the case.

Caske (AL): Then C is of the form x < input e; C'[- ] . We observe that

(
(

B[ proc(b, [a](C[P]Zf))]ZD:B — B'[msg(e, _ < outputev; e’ — e), proc(b, [a](C[P];ﬁf))]gf'B
if and only if
B[proc(b, [0](C[P]:':f))]g):3 — B'[msg(e, _ < outputev; e’ — e), proc(b, [a](C[Q]zf))]%.
If this is the case, then both
Blproc(b, [o](C[P1%:8)) 155 — B'[proc(b, [¢/,v/e,x] ([01(C'[P1%)) s (103)
Blproc(b, [01(CQ1Y2))]E5 — B'[proc(b, ¢/ v/e, ] ([)(CTQIES)DIEs.  (104)

We remark that the composition [v/x] o ¢ determines a closing substitution ¢’ :¢ - ~ T, x : T for
C'[-]¥:2. So the right sides of (103) and (104) are respectively equal to:

B'[proc(b, [¢'/e] ([o"1(C'TPIE)) s
B'[proc(b, [¢'/e] ([0'1(C'TQI%M))) -

By the induction hypothesis and the fact that < is type-indexed, so closed under renamings of
channels,

A+ B'[proc(b, [¢'/e] ([0 }(C'P13)))]8 < BTproc(b,[¢'/fe] ([o')(C'TQI%S)) s = D.

We are done by proposition transitivity, the assumption that 1 C <, and symmetry of =r.
Finally, assume that in no fair trace do we get a message fact msg(e, _ < output e v; d — e). Then
the analysis is the same as in the previous case.
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All other cases are analogous to the above. Explicitly, (Fwp™), (1R), and (E-{}) are analogous to
(Fwp™). All of the cases in which the hole sends a message are analogous to (CuTt). All of the cases
in which the hole receives a message are analogous to (®&L) or (AL), depending on whether or not
the message carries a functional value. O

We summarize our results for the precongruences of fig.

COROLLARY 7.5.14. Let < be a transitive, type-indexed precongruence on configurations such that
=1 C <. The following are equivalent:

(1) Y;A-P[<]Q:ua:A;

(2) ‘{/;AI—P[ﬁ]OQ:zb:B;

(B3) Y;A+P[<]PQ:=b:B

b
Proof. Observe that (<)C) <¢. The result follows from propositionand theorem O



CHAPTER 8

Denotational Approaches to Equivalence

From the outset, denotational semantics are a promising approach for reasoning about Po-
larized SILL and its programs. Indeed, denotational semantics are compositional by construction.
This means that we can reason about parts of a program at a time, instead of having to reason about
whole programs at once. They also induce a semantic equivalence, and as described in chapter[}
program equivalences underlie many techniques for reasoning about programs. Moreover, Polar-
ized SILL has a functional layer and recursive types and programs, and denotational semantics have
historically excelled at reasoning about these features in a variety of settings. Finally, a recurring
observation in programming languages research is that beautiful and elegant techniques work
best, and it is our opinion that denotational semantics are a mathematically elegant approach to
programming languages semantics.

There are several challenges in giving Polarized SILL a denotational semantics. We illustrate
these using the bit flipping process £1ip from example[s.3.10} Fair executions ensure that processes
have deterministic input-output behaviour. This suggests that f1ip denotes a function [£1ip]
from bit streams on b to bit streams on £. This processes-as-functions interpretation raises many
questions. The process providing the bit stream on b could get stuck and only send a finite prefix of
this bit stream. How should [£1ip] handle these finite prefixes? Computationally, [£1ip] should
be monotone: a longer input prefix should result in no less output. It should also be continuous:
[£1ip] should not be able to observe an entire infinitely-long bit stream before sending output.
This suggests that [£1ip] denotes a continuous function between dcpos of bit streams. These
questions and answers have been known for close to fifty years: Kahn [Kahy4] answered them
when giving a semantics to dataflow networks.

Real challenges arise when we realize that bit streams and £1ip are not representative of many
SILL protocols and processes: they do not involve bidirectional communication. The questions are
then: if monotonicity and continuity capture important computational properties, can we use still
continuous functions to model processes with bidirectional communications? If so, what should be
the functions’ domains and codomains? A natural idea is to decompose bidirectional session-typed
communications into pairs of unidirectional communications, and then to define functions on
these decomposed communications. But how do we decompose bidirectional communications
in a principled way, so that we do not lose any information? And how do we ensure that the
denotations of processes respect this decomposition, i.e., that they do not produce output that,
according to the decomposition, is inconsistent with their input? Finally, what does it mean to
compose communicating processes in this setting?

We show that a domain-theoretic denotational semantics elucidates the structure of higher-
order session-typed languages with recursion. We make the following contributions:

(1) A new style of denotational semantics called CYO semantics. CYO semantics are a
general denotational framework for processes and bidirectional communication. In CYO
semantics, communication protocols denote decompositions of bidirectional commu-
nications into unidirectional communications. Processes denote continuous functions
from unidirectional communications (their inputs) to completed bidirectional communi-
cations. The semantic framework is designed such that processes and communication
decompositions form a coherent whole. We give an overview of CYO semantics in
section[8.1} and we give the details in section|8.2]
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(2) An order-theoretic analysis of polarized session types. The decomposition of bidirec-
tional communication into “inputs” and “outputs” is linked to polarity. We show that this
decomposition is given by a natural family of embeddings.

(3) A denotational semantics for Polarized SILL. We give Polarized SILL a CYO semantics
in section We interpret session types as dI-domains, and processes and terms as
stable functions. These interpretations validate expected equivalences. We show that the
semantics is well-defined in section[8.4} that it satisfies expected semantic properties in
section[8.5] and that it is sound in section 8.6}

We hope this work will help bridge the gap between two research communities and bodies
of work. For readers familiar with session types, we hope they can take away the high-level ideas
of their semantic interpretation in the presence of (nonlinear) functions and arbitrary recursion
and how it might be used to reason about process equivalence. A particular phenomenon not
usually addressed is that processes may fail to communicate along a given channel in the presence of
recursively defined types and processes. This phenomenon is easily addressed domain-theoretically:
because processes denote continuous (so monotone) functions, they uniformly treat complete and
incomplete communications.

For readers familiar with denotational semantics, we hope they can take away the ideas behind
its application to bidirectional, session-typed communication in the presence of recursion. The
key insights here, when compared to the denotational semantics of functional languages, are that
(session) types denote decompositions of complete communications into pairs of unidirectional
communications instead of denoting domains of values, and that program (process) composition
is given by a trace operator instead of by function composition.

8.1. Overview of the Semantics

We first give an overview of our semantics for processes. We do so through a sequence of false
starts, where each successive attempt will capture an essential feature of our semantics. Then, we
give an overview of our semantics for the functional layer.

Our starting point is Kahn'’s semantics [Kah74] for dataflow networks. In dataflow networks,
processes are computational agents that communicated over unidirectional channels. These chan-
nels carry sequences (streams) of values, e.g., natural numbers. It is assumed that these channels
are the only means processes have to communicate. It is also assumed that if a message is sent,
then it is transmitted within an unpredictable but finite amount of time. In Kahn’s semantics,
communication channels denote dcpos of prefix-ordered sequences of values. Processes denote
continuous functions on the dcpos of input channels to the dcpos of output channels. Kahn used a
least fixed point construction to capture process composition.

This approach guarantees several desirable semantic properties. First, processes are monotone:
giving a process more input will result in no less output. Second, continuity ensures that processes
cannot wait until they have received all of their input before they start computing.

In contrast to processes in dataflow networks, session-typed processes communicate on
bidirectional channels. At first glance, this poses no difficulty: we can imagine each bidirectional
channel as being a pair of bidirectional channels, with one channel for each direction. Using the
terminology of section 5.1 one of the channels carries communications in the positive direction,
while the other carries communications in the negative direction. If we write [A]* and [A]" for the
pointed]|dcpos of communications that respectively flow in the positive and negative direction on a
channel of type A, a process ¥ ; a, 1 A,,...,a,: Ay, + P a, : A, denotes a continuous functiorﬂ

[¥;a,:Ay...ray: Ay Piiag: A (ﬁ[{Ai}r) x[Ao]” — (ﬁ[[Ai}]‘) % [A,]*. (105)

The bottom element represents the absence of communication.
*We ignore the presence of ¥ and of the functional layer for the time being.
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In this setting, process composition is exactly as it was in Kahn’s semantics. Indeed, we can
interpret (CurT) as:

[¥;A,A,-a« P Q::C:C}]((S+ 8 67)2(6;’627’6+)

12025
where 8;,8;,a", a*, and c¢* form the least solutionf) to the equations
(67,a")=[¥Y;A, ~P=a:A)(8,a7),
(8,,a,c")=[¥Y;a:A A +Q:uc:C](85,a",c).
We recognize this fixed point as the trace of the interpretations of P and Q:
[V;A,A, Fa<P; Q:uc:C]
=Tr % ([¥5A FPua:Alx[¥sa: A A, FQ:c:C]).

%4 fixes and then hides the internal communications between

Informally, the trace operator T
PandQon [a: A]" x[a: A]".

We remark that the process interpretation exists within a “wave”-style [Abro6|] ge-
ometry of interaction (Gol) construction [AHSo02, Definition 2.6]. Indeed, the objects of the
Gol construction G(DCPO, ) are pairs (A", A™) of objects A* and A~ of DCPO, . Morphisms
f:(A*,A") > (B*,B") of G(DCPO, ) are morphisms f : A* x B~ - A~ x B* of DCPO,. Given
a morphism g : (B*,B”) — (C*, C™), the composition g o f is defined by Trﬁ:,ilg_,A_X@ (& f).
The interpretation of process composition is then exactly the composition [¥; a: A, A, - Q =
c:Cluo[¥;A, ~P:a:AJuin G(DCPO,).

Though this approach seems promising and intuitive reasonable, it raises several questions.
We address these in turn.

Question 8.1.1. What does it mean to decompose communications satisfying A into their positive
and negative “aspects’, i.e., into dcpos [A]* and [A]~, and to do so in a principled way? <

To answer question|8.1.1} we define a third pointed dcpo, [A], of bidirectional communications
satisfying A. Informally, we treat this dcpo as the ground truth of what it means to be a communi-
cation satisfying A. A decomposition of A into its polarized aspects is then given by a (continuous)
embedding (A) : [A] — [A]* x [A]". This embedding ensures that there exists a faithful copy of
the bidirectional communications [ A] in the dcpo of decomposed communications [A]" x [A]".
Its projection associates to each (a*,a”) € [A]* x [A]~ the largest bidirectional communication
a € [A] whose decomposition (A)(a) is consistent with (a*, a™).

To help build intuition for this semantics of processes and communication decompositions,
we make an analogy between communications and interactive surveys. Interactive surveys are
questionnaires that may, based on an answer to a given question, instruct you to skip certain
questions. Imagine that a session type A specifies an interactive survey, and let [A] be the dcpo
of partially or fully completed surveys under a prefix-ordering. The embedding (A) : [A] —
[A]" x [A]~ decomposes surveys a € [A] into pairs (a*,a”), where a” is the collection of
questions answered and a* is the collection of answers[{| Consider a process ¥ ; - + P :: s: A
that completes a survey over the channel s. It denotes a continuous function [A]™ - [A]* from
sequences of survey questions to survey answers.

Question 8.1.2. Consider a sequence of survey questions a~, and set a* = [¥ ;- + P=s: A](a”).
How do we semantically ensure that P’s answers a* correspond to the questions a™ it received? «

We cannot insist that (A)(a) = (a*, a~) for some g, for the process P may not have answered
all the questions. Indeed, the process P could have gotten stuck in an infinite loop and only
consumed part of its input a~. However, it is semantically reasonable to require that there be a least

3By the Kleene fixed-point characterization of traces, corollary we can think of this least solution as the limit of
a sequence of finite approximations, where each approximation represents one additional exchange between processes.
4The choice to treat questions as negative and answers as positive was arbitrary. The symmetric choice is equally valid.
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a; Ca suchthat[¥; -+ P:s:A](a;) =a*: this a; corresponds to the prefix of the questions
a~ that P actually answered. Moreover, it is semantically reasonable to require that there exist
an a, € [A] such that (A)(a,) = (a*, ay): it is the partially completed survey consisting of the
questions a that P answered, along with P’s answers a™.

Our answer to question|[8.1.2]comes in two parts: first, a change to the semantics, and second,
a property we call junk-freedom.

We start by revising our semantics so that processes denote continuous functions from partial
communications to bidirectional communications. Explicitly, a process ¥ ; a, : A,,...,a, : A, +
P:a,: A, now denotes a continuous function of type

[Psa,:A,,...,a,: Ay - Pag:A,]: (ﬁ[[Ai]+) x[A,] — ﬁ[[Ai]. (106)

We can recover our previous semantics, (105), by composing this new denotation with the
appropriate embeddings and projections. As before, process composition is defined using a trace
operator, i.e., it is given by a least fixed point.

Next, we require that processes denote junk-free functions. To make this rigorous, set (A)~ =
mo(A):[A] - [A] andp=[¥;-+P:us:A]:[A]™ —» [A]. Write f | A for the restriction of
fafunction f : A - Btoasubset A’ € A, and write f° : A - im(f) for the corestriction of f to its
image. We say that a function p : [A]™ — [A] is junk-free (relative to {A)) if ((A)~ | im(p), p°)
is an e-p-pair of monotone maps[| Junk-freedom captures several desirable semantic facts:

(1) Bidirectional communications in the image of p agree with the input p used to generate
them, or alternatively, the questions in a survey completed by p are a prefix of the ones p
received as input. Indeed, if a~ is a sequence of questions, then the questions completed
by parea; = ({A)” o p)(a’)E]and the definition of e-p-pair ensures that a_j c a™.

(2) Bidirectional communications in the image of p are uniquely determined by a minimal
piece of input. This property follows from the fact that projection preserve existing infima
by proposition and that, as we will see, dcpos of communications will be bounded
complete.

By using functions of type (106]), we can also easily state another desirable semantic property:
completeness. Completeness means that if p(a™) = a and (A)*(a) = a*, then (A)?(a*,a7) = a.
Intuitively, this means that a contains the first question that p left unanswered, if it exists. In
particular, it means that if p answers no questions, a contains the first question in a~. This lets us
differentiate between settings where p could have answered a question had it been presented with
one, and settings where p could not have answered such a question.

Before going any further in our analysis of denotations of processes, we must investigate the
dcpos on which they are defined, i.e., the denotations of session-types:

Question 8.1.3. Which variety of dcpo best reflects semantic properties of session-typed commu-
nications? “

We claim that pointed dI-domains (definition [2.2.35) are an ideal choice for our semantics.
First, the interpretation of (CVAR) forces us to use bounded-complete domains[] Second, we believe
it important for domains of communications to satisfy the I-property. Indeed, a compact communi-
cation, which we can intuit as a finite prefix of a communication, should be approximated by only
finitely many other compact communications. Third, if we retain our intuition from section[6.1]that
session-typed communications are trees of messages, then elements in domains of communications
should satisfy the d-property. To illustrate this fact, consider complete communications x, y, z
such that y 1 z, i.e,, such that y and z are consistent. Under the prefix ordering, the infimum of
trees is given by their intersection (their largest common prefix), while their supremum is given by

5We do not require that they form an e-p-pair of continuous morphisms. We also remark that, though the image
im(f) of f need not be a dcpo, it is a poset.

5Observe also that p(a; ) = p(a”) by proposition
7We refer the reader to section for a discussion of this fact.
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their union (the least tree of which they are all a prefix). The assumption y 1 z implies that y and z
are both prefixes of some larger tree, and by bounded-completeness, their union y u z exists. The
tree x M (y U z) is then the largest prefix of both x and y U z. This prefix is given by the union of
the largest prefixes x M y of x and y and x Mz of x and z. Thatis,x N (yuz) = (xny)u(xNz).
Finally, we require our domains to be pointed to allow for empty communications and to ensure
the existence of least fixed points.

Question 8.1.4. Which semantic universe or categorical structures best capture Polarized SILLs
processes and configurations? <

Processes compose in a tree-like structure. Semantically, we expect process composition to
be associative and partially commutative. To make these facts semantically explicit, we interpret
processes as morphisms in a multicategory. This multicategory is contained in a CYO pluricate-
gor CYO(Stab, ) over the category Stab, of pointed dI-domains and stable maps. The objects of
CYO(Stab, ) are embeddings a : A - A* x A™ between dI-domains. These embeddings are subject
to an additional condition—being “well-woven”—that is necessary and sufficient for it to have an
identity morphism in CYO(Stab, ). Given objects a; : A; > A x A} and b; : B; > B} x B}, a
morphism a,,...,a, = b,,...,b,, in CYO(Stab, ) is a function

(ﬁA}')x I_m[B]T »(lﬁ[A,»)x ﬁBj (107)
i=1 j=1 i=1 j=1

in Stab, closed under composition with the identity morphisms of CYO(Stab, ). Composition is

given by a trace operator. Processes ¥ ; a, : A,,...,a,: A, - P a,: A, now denote junk-free,
complete, fruga[|morphisms
[Wsa,:A,,...,an: Ay FPag Ao i {A)s ..., (An) = (A) (108)

in CYO(Stab, ), where (A;) : [A;] = [A;]* x[A;] is the denotation of the closed session type A;.
In general, we write (g, : A,,...,a, : A,) for the object (A,),...,{A,).

Until this point, we have only considered the denotations of closed session types. To be able
to define the semantics of recursive session types, we must also give a semantic account of open
session types £ - A type,. To do so, we generalize from a single embedding to a natural family of
well-woven embeddingg"

(E+ Atype) : [E+ Atype,] = [E+ Atype,]" x [E+ Atype,]” : [E] — Stab,,,

where [E] =[],z Stab,;. We abuse notation and write (E + A type,)? for the corresponding fam-
ily of projections. This family will not, in general, be natural. The family (E + A type,) determines

a 2-cell in the 2-category CFP defined in section4.5.2] In particular, the functors [2 - A type,]

(giving bidirectional communications), [E + A type,]* (giving positive communications), and
[E + Atype,]” (giving negative communications) are locally continuous. In particular, whenever
A is closed, the family contains a single well-woven embedding

(4): [A] - [A]" < [A],

and this embedding is an object of CYO(Stab ).

The semantics of the functional layer follows the standard approach [Cro93;|Gung2; Rey98;
Sto77; [Tengs]. In particular, terms denote continuous functions between pointed dcpos. The
semantics of value transmission implies that these dcpos should be dI-domains, and that terms

8CYO pluricategories are named in honour of Choose Your Own Adventure book series, a kind of interactive fiction
similar to the interactive surveys described above. They are studied in section

9We use pluricategories so that we can interpret processes and configurations in the same semantic universe.

1OFrugality is discussed in section Jointly, frugality, junk-freedom, and completeness are sufficient conditions for
functions of type eq. to be morphisms in a CYO pluricategory.

"These embeddings are not rigid, i.e., they are embeddings relative to the pointwise order. This poses no difficulties in
the treatment of recursive types. Indeed, though recursive session types are constructed using w-colimits, these non-rigid
embeddings are not links of the corresponding w-chain.
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should denote stable functions. However, the open status of conjecture [8.2.25| complicates this
otherwise pleasant account. In particular, it is unknown whether dcpos of junk-free, complete,
frugal functions are dI-domains. This in turn means that it is unknown whether the dcpo of quoted
processes—the denotation of (T{})—is a dI-domain. We escape this issue by assuming that we do
not transmit quoted processes, an assumption further justified in section[8.1.1] Even though we
cannot send or receive quoted processes, we must nevertheless be able to work with them in the
functional layer. This leads to two denotational semantics of the functional layer, where the first is
a special case of the second. For convenience and conciseness, we call types and terms that do not
use the functional layer purely functional:

Definition 8.1.5. A functional type E - 7 type, is purely functional if its derivation does not use
(T{}); it is impure otherwise. A functional term W I+ 7 : is purely functional if all types appearing in
its derivation are purely functional. <

The first semantics is for purely functional types and terms. In this case, a type E + 7 type,
denotes a constant functor [E + 7 type,] : [E] — Stab,,. We use constant functions because we
assume as a simplifying assumption that functional types are closed (see assumption|[8.1.7). A term
V¥ I- M : 7 denotes a stable continuous function

[YFM:7]:[¥] - [7]

-

where [¥] = [1,.;ep[7]. Otherwise, E + 7 type, denotes a constant functor [E + 7 type.] :
[T, DCPO, - DCPO,, and [¥ I+ M : 7] is only assumed to be continuous.

Remark 8.1.6. If we allow session-typed communications to denote pointed dcpos instead of pointed
dI-domains, then we could drop the above bifurcation of our semantics. Indeed, we could interpret
the entire functional layer in DCPO,, and the process layer in CYO(DCPO, ). Unfortunately,
in doing so, we lose the semantic properties captured by dI-domains that we described following
question[8.1.3

The final iteration of our process semantics addresses the process layer’s use of contexts of
functional variables. It is given by analogy with the semantics of the functional layer: a process
WV ; A+ P:a: Adenotes a continuous function

[P5A-P:za:A]:[¥Y] = JEC[{A) - (A)]
where JFC[(A) — (A}] is the pointed dcpo of junk-free, continuous, frugal functions from (A) to

{A) in CYO(Stab, ), stably ordered.
Finally, a configuration I' - C :: A denotes a junk-free, complete, and frugal morphism

[T+C:=A]:(T) > (A)

in CYO(Stab).
To summarize the above development:

e An open session type E + A type, denotes a natural family of well-woven embeddings
(E+ Atype)) : [E+ Atype,] = [E+ Atype,]" x [E+ Atype,]” : [E] — Stab,,.

It is a 2-cell in the 2-category CFP defined in section [4.5.2]
o A purely functional type E - 7 type, denotes a constant functor.

[E+ Ttype.] : [E] — Staby,.
e An impure functional type E + 7 type, denotes a constant functor

g+ rtype,] : [ [ DCPO, — DCPO,.

o€l

o A configuration I' - C :: A denotes a junk-free, complete, frugal morphism
[THC=A]AT) > {4)
in CYO(Stab, ).
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e Aprocess ¥; A+ P:a: Adenotes a continuous function
[V;AFP:za:A]:[¥Y] = JEC[(A) = (A)].
In particular, for all u € [¥],
[V;AFPza:Alu:(A) - (A)

is a junk-free, continuous, frugal morphism in CYO(Stab, ).
e A functional term ¥ I+ M : 7 denotes a continuous function

[Yi-M:7]:[¥] - [7]
where [¥] = [1,.;ew [ 7]- Its denotation is stable if ¥ I+ M : 7 is purely functional.

8.1.1. Simplifying Assumptions. Our semantics makes two simplifying assumptions.
Assumption 8.1.7. All types in the functional layer are closed, i.e., that whenever E + 7 type,, then
7 has no free variables.

Assumption avoids complexities caused by mixed-variant functors, especially when it
comes to interpreting recursive types. Techniques for solving domain equations involving mixed-
variant functors are well known [[AJgs} § 5.3.3], and we conjecture that extending our semantics to
handle open functional types will pose no significant technical difficulty.

Assumption 8.1.8. The rule (T{}) never appears in a derivation of (CA) or (C2), i.e., all functional
types appearing in a derivation of (CA) or (C>) are purely functional.

Assumption[8.1.8]is due to the open status of conjecture[8.2.25] Concretely, dcpos of session-
typed communications are assumed to be dI-domains, but it remains unknown whether the
denotations of processes form dI-domains. As a result, processes cannot (yet) be included in
session-typed communications.

Our two use-dependent interpretations of the functional layer do not pose any semantic
difficulties. This is because one interpretation is a special case of the other. Indeed, dI-domains are
special cases of dcpos, and strict stable continuous functions are special cases of strict continuous
functions. This means that we can use the more specialized interpretation in all settings where the
more relaxed interpretation is allowed.

To avoid trivializing the functional layer, we extend Polarized SILL with eager natural numbers
as a base type:

Y I- M : nat
— (T - (F cEMinal (g
E + nat type; (T-N) ¥ I+ o : nat (F-2) ¥ I+ s(M) : nat (E-5)
M|v
- —Q——F (EV-S§
oTo (EV-ZERO) SO U s() ( ucc)

This provides us with suitable base type when we cannot use (T{}). In general, we expect the
functional layer to be extended with whichever base types the user desires.

8.2. Choose Your Own Categories

Remark 8.2.1. Recall that a collection d; : D; - D x D7, 1< i < n, of embeddings determines an
embedding (d,,...,d,) : [T\, Di = (T1{-, D}) x (T1}~, D; ) by lemmaz.2.49]
Definition 8.2.2. Let C be a traced cartesian O-category. The CYO pluricategory CYO(C) is the
pluricategory given by the following data:

e Objects are embeddings a = (a*,a”) : A > A" x A such that

Trh X4 ((aP,a" 0 a?) x (a” 0 a”,a?)) = (a?, a?).

We often abuse notation and write A, A*, A~, and A? for a, a*, a~, and a?, respectively.
Object lists are ranged over by capital Greek letters.



182 8. DENOTATIONAL APPROACHES TO EQUIVALENCE

e Morphisms f: A,,..., A, = B,,..., By, with n, m > o are morphisms

f14)-(719) - (12)- (1)

of C that are closed under composition with the identity morphisms of CYO(C).
e The identity morphism fora: A - A* x A isid, = (af, a?).
e The composition go f: A, ®,E > T,8,Aof f: ® - T,II,Aand g: A, 11,2 > Eif”|

Tt < (((idoxrxa x IT7) o f) x ((TI” xidaxzxz) © g)) - )

Remark 8.2.3. The object corresponding to the empty list of CYO(C) is determined by the terminal
object TofC:e: T = T xT.

PROPOSITION 8.2.4. The data of definition 8.2.2| determines a pluricategory.

Proof. By straightforward string diagram manipulations in the underlying category, using proper-
ties of traces.

Given a list A of objects in CYO(C), we abuse notation and write A, A?, A*, and A~ for the
associated embedding and projection given by remark[8.2.1} and their associated projections.
Remark 8.2.5. Every object A > A* x A” in CYO(C) determines a dual object (A - A* x A7) =
(A~ A*xA™ 2 A"xA"). Asaresult, every morphism f : I' - A can equivalentlybe thought of as
amorphism f : ¢ > T,Aor f: T, A — e. We will use this observation below to simplify calculations
below. In particular, it will be sufficient to consider only compositions of the form go f: ® - T
for f: ® - A and g: A - TI. This is because morphisms f : & - ®,,II,®, and g: I}, II,T, » T
can be thought of as morphisms ®, ®,,®, — [T and [T - T, T, T,, respectively. The resulting
composition O, 0,0, > I,T,,T, is equal to the composition go f : I}, @, I, - &,, T, &, modulo
the required symmetry isomorphisms.

8.2.1. CYO Categories Over Categories of Pointed DCPOs. We study sufficient conditions
for embeddings and morphisms of DCPO, to be objects and morphisms of CYO(DCPO, ).
Several of these were semantically motivated in section[8.1} Whenever we speak of functions of
the form p: A* > Aorp: " x A~ — I x A, we assume that embeddings A - A* x A™ and
I' > I'* x I'” have been fixed.

We use corollaryto explicitly characterize sequential composition in CYO(DCPO,).
Consider morphisms p: A - Tand g: T — ¥, and let (6*,y™) € A* x ¥~ be arbitrary. Then
(qop)(8*,v7) = (8, w) where (8,y", 9™, ¥) are minimum satisfying

p(8%y7) = (8,7p), () ey’
9y y7) = (vg ) T(rg) =y
In this case, we say that (p*, y~) witness the composition g o p.

8.2.1.1. Objects in CYO(DCPO, ). We characterize the embeddings that determine objects of
CYO(DCPO, ), and we study their properties.

Definition 8.2.6. An embeddinge: A — A" x A” is well-woven if for all (a*,a™) € A" x A7, if
(a*,a7) € A* x A™ are chosen minimal such that both

(etoef)(at,a")cat

(e7oef)(a"a)Ea,
then e?(a*,a™) = e (a*, a™). We call the above system of inequalities the weaving equations for

eand (a*,a7). <

12\We leave the symmetry isomorphisms implicit in the trace for legibility, both here and throughout.
13Strictly speaking, there are implicit symmetry isomorphisms permuting the products, but we safely ignore these to
avoid drowning in a sea of notation and pedantry.
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PROPOSITION 8.2.7. Let e : A - A* x A™ be well-woven and let (a*,a™) € A™ x A~ be arbitrary.
If (a*,a7) € A* x A™ is minimal such that for some a, and a,,
ef(a*,a7) = ay, e"(a)ca’,
e’(a*,a7) = ay, e (a,)E0a,
thena, = a, and e? (a*,a”) = e (a*,a”) = a,. In particular, e(a,) = (a«™, ™).
Proof. It is immediate by the definition of well-woven embedding that a; = «,. Using proposi-
tion we recognize (a*, a”) as the least fixed point of the function
Axt,x7).((eFoef)(a,x7), (e oef)(x*,a7)).

We deduce that e(a;) = (a*, a7). It follows by monotonicity and properties of projections that
(a*,a7)c (a*,a7).
Projections preserve existing infima by proposition [2.2.19} so
e’ (a,a7)=ef(a*nat,a na ) =ef(a*,a)nef(a"a”)=a,Na, = a,.
By continuity,
e’(a*,a )=el(a*ua*,a ua)=ef(at,a )uel(a™a)=a, L, = a,. O
COROLLARY 8.2.8. An embedding e : A — A" x A~ determines an object of CYO(DCPO, ) if
and only if it is well-woven.

Proof. Necessity is an immediate corollary of proposition[8.2.7jand corollary[2.3.8] To see sufficiency,
assume that e is an object of CYO(DCPO, ) and let (a*, a”) € A" x A™ be arbitrary. By assumption,

Ted 4 ((ef,e" o) x (e o e?,el)) = (e, e). (100)
Let (a*,a”) € A* x A~ be minimal such that for some «, and «,,
ef(a*,a7) =, ef(a)ca’
e’(a*,a)=a, e (a,)Ea .
By corollary
Trd 1% ((ef,e” o) x (e o ef,e))(a%,a™) = (o, a).

By eq. (r09),
ef(at,a)=a,=¢ef(a",a ) =a,=¢e(a*,a").
We conclude that e is well-woven. O

The following technical lemma generalizes proposition[8.2.7} It will be essential to showing
that processes sending and receiving channels are morphisms in our semantic domain.

LEMMA 8.2.9. Let e : A > A* x A™ be well-woven and let (a*,a™) € A* x A™ be arbitrary. The
minimum solution (af, o), a7, a;) € A* x A* x A™ x A™ such that for some a,, a,, and a,

a, =ef(a’,a)) A" (ap) Eaf
a, =ef(a,a) A" () S a) A () Ea;
a, =ef(af,a”) A (a,) Eaf

is(a*,at,a”,a”) where (eoe?)(a*,a™) = (a*,a”).

Proof. Observe first that a solution exists: take the solution from the statement. Now consider any
minimal solution («;, af, a], &; ). Looking at the system as two systems of four equations, we
deduce that a, = &, = a, by proposition|[8.2.7} By the same result and monotonicity, e? (a*, a; ) =
el(af,a”) =a, s0

ef(a*,a)=eP(a"ua,aua)=ef(a*,a ) )uel(a,a)=a, U, = a,.
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By the same result, (], a; ) = e(ao) = e(a;) = (aF, a; ). This implies that the minimal solution
has the desired form. Because it is entirely determined by the above sequence of equalities, it is
minimum. O

8.2.1.2. Morphisms in CYO(DCPO, ). We formally define the notions of junk-freedom and
completeness that were motivated in section They jointly with a third condition, frugality,
will be sufficient conditions for a morphism p : A* - A of DCPO, to be a morphism A — ¢ of
CYO(DCPO,).
Definition 8.2.10. Let A - A* x A~ be an embedding. A function p: A* - A in DCPO, is:
e junk-free if (A* | im(p), p°) is an e-p-pair, where p° : A* — im(p) is the corestriction
of p to its image;
e complete if A? o (id, A" o p) = p;
e frugal if for all §7 € A*, (Ao p)(87) is the least solution (8%, §7) to the “frugality system”
(AT o AP)(8,,87) =06
(A0 p)(8%) .
A function p : AT x ¥~ — A x ¥ is junk-free, complete, or frugal if p : A* x ¥* — A x ¥ is
respectively junk-free, complete, or frugal. A morphism p : A - ¥ in CYO(DCPO, ) is junk-free,

complete, or frugal if its underlying morphism is respectively junk-free, complete, or frugal. We
say that a function is jfc if it is junk-free, complete, and frugal. <

We already know examples of junk-free, complete, and frugal morphisms:

PROPOSITION 8.2.11. If a: A — A" x A™ is an object of CYO(DCPO,), then id,, is junk-free,
complete, and frugal.

Proof. By definition, id, : A - A is junk-free if and only if id, : A* x A~ - A x A is junk-free,
and this is the case if and only if id, : A* x A*™ - A x A is junk-free. So we must show that
((a* xa™*) I im(id,),id,) is an e-p-pair. Observe that im(id,) = {(a,a) | « € A}. Fixing an
arbitrary element («, «) of this image, we compute

(a*xa")(a,a) = (a"(a),a (a)) = a(a),
so by definition of e-p-pair,
(ida o (axa@)*)(@a) = ((a”,a) o a) (a) = (o, 0).
Conversely, if (a*,a”) € A" x A*, then
((axa) oidy)(a™,a7) = ((a"0a”)(a",a7),(a” 0 a?)(a",a7)) € (a’,a")

by definition of e-p-pair. We conclude that id, is junk-free.
To see that it is complete, we must show that

(a® x a?) o (idnuns (a” x a*) o {a?, a?)) = (aP, aP).

Then:

(a? x af) o (idaxa, (a” x a™) o (af,al))

= (a? x af) o (idgxa,a o a®)

= (af,af oaoa?),
which by proposition

- (a?,a?)

-id,.

We conclude that id, is complete.
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To show that it is frugal means to show for all &} € A* x A, that ((a,a)? oid,)(a;) is the
least solution a™, a™) to the system

((@@)" o (@.0)") (e ) = a’
((a,a) oidy)(a™)ca”.
If some af = (af,a;),andleta’ = (af,a7) e A* x AT and a™ = (a;, &} ) € A~ x A~ be the least
o o o 1 1 2 2
solution to the above system. The above system is equivalent to the system
(a* 0a?) (a5, a;) €
(a0 a?)(at,a;) o
(a”oa’)(af,07) Ea;
(a* o a?)(a},a;) € a.
This statement has the same form as the system in the statement of lemma(8.2.9] By lemma(8.2.9}
its least solution (o, &, af, a7 ) is given by (o], ;) = (o, ;) = (a 0 aP)(ag, ay). Frugality
requires that we show

(aca)(ag,a;) = (o, a,),

(@ca’)(ag,a;) = (a;, a7),
and this is now immediate. O
Composition in CYO categories is defined using a trace operator, which hides the “complete”
communications on the channels on which processes or configurations communicate. Proposi-

tion 8.2.12]states that both processes induce the same complete communications on those hidden
channels.

PROPOSITION 8.2.12. Let p : A* x ¥~ > AxVand q: ¥ x I~ — V¥ x T be junk-free, and
let (6%, y™) € A* x I~ be arbitrary. If (y*,y~) is minimum such that for some (8, v, g, y)s

p(8%,y7) = (8,vp), Y (y,) ey,
ay"y7) = (v 9), (v =y,
then v, = y,.

Proof. We deduce that ¥*(y,) = y* and ¥~ (y,) = y~ by corollary[2.3.9] By junk-freedom, we
also deduce that ¥~ (y,) = y~ and ¥*(y,) = y*. It follows that ¥(y,) = ¥(y,). But ¥ is an
embedding and embeddings are injective, so v, = v,. O

We now turn our attention to showing that junk-free, frugal, complete functions are morphisms
in CYO(DCPO, ). We begin with a pair of results characterizing witnesses for compositions of
morphisms and identity morphisms in CYO(DCPO, ).

LEMMA 8.2.13. Let A - A* x A™ be well-woven. Let p : A* — A and let §7 € A* be arbitrary.
Consider the least solution (87, 8, ) such that for some 8, and §,,

AP(8%,87) =6, AT(8,)c 6
p(67) =6, A (8) = 6.
If p is complete, then 8, = 8, and A(8,) = (87,85). If p is also frugal, then p(87) = p(57).

Proof. We recognize the above system as defining the trace of a function. By corollary[2.3.9} we
know that they are equalities:

AP(88,87) =6, A*(8,) =67
p(61+) =0, A_(SZ) :62_-
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Assume first that p is complete. We show that 8, = §,. Consider the least solution (a;, a; ) to the
following system:

AP(8%,a)) =a, At(a)Ea
AP(af,8]) =a, A (a,)ca;.
The embedding A — A* x A™ is well woven, so by proposition[8.2.7} a, = a, = A?(8},6;) and
A(a,) = (af,a;).So a, = a, = §,. We recognize the system as:
AP(87,a5) =6, A*(8,) 8
AP(85,87) =6, A (8,)cEa;.
But p was complete, so
AP(85,85) = 6,.
It follows that §, = 8, and a; = §;. It follows that A(J,) = (87, 9;).
Next, we show that p(8%) = p(87) when p is also frugal. By frugality, (A~ o p)(87) = J;. By
completeness and this equality,
p(55)
= AP(87, (A 2 p)(87))
= AP(85,96;)
= AP(85, (A7 0 p)(8))
= p(8))- O
PROPOSITION 8.2.14. Let A - A" x A™ and ¥ — V" x ¥~ be well-woven embeddings. Let
p i AT x ¥ > AxVWbejfc, and (87,v,) € A x ¥~ be arbitrary. If p(8.,v;) = (8, v),
A(8)=(8%,07), and ¥ (v) = (y*,y"), then
(1) AP(85,07) =8 and ¥P(y*,y,) =y
(2) (8%, 087) is the minimum solution (x*, x™) such that for some x, and x,,

AP(85,x7) = x,, A*(x,) €,
p(x"y5) = (%25, A (x,)Ex.
() (y*,y") is the minimum solution (x*,x~) such that for some x, and x,,
p(83,x7) = (Lox),s ¥ (x,) €,
Y (x",y5) = X, ¥ (x,) S x

Proof. Item|i)is immediate by completeness of p. Indeed, completeness is exactly the claim that

(A, ¥)P((65,95), (87,97)) = (8, 9).

We show that (8%, ™) is the minimum solution (x*, x™) such that for some x, and x,,

AP(8%,x7) = x,, At (x)ExT,
p(x" o) = (%25 ) A (x)Ex.
By lemma [8.2.13} we know that
(8, ¥)P((85,¥5), (87,97)) = (8, v), (A ¥) (8,9) = (8% v"),
P85 y7) = (8. y), (A,¥) (8,9) = (87.y"),
p(85,v5) = (8,y), (8% y7) £ (85, v)-

We deduce by monotonicity that p(8*, ;) = (8, v). By projecting out the desired components
from four of these seven (in)equalities, we deduce that (6, ™) is a solution (x*, x7) to the system

AP(8%,x7) = x,, A" (x,) Ex7,
p(xt,vwy) = (x,, ), A (x,)Ex". (110)
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Consider any other solution (x*,x7) £ (8%,87) to this system. Monotonicity implies that
((x*,y7), (x7,y*)) is a solution to the frugality system

((AF) 0 (AF))((85,95), (x5 y™)) & (x7y7) (111)

(A F) o p)(x",y7) () (12)

for p: A* x ¥+ - A x ¥. Indeed, eq. follows by properties of products. To see eq. ,
observe that by eq. and monotonicity:

(A ¥) o p)(x™y7) = ((A,¥) 0 p)(x"yg) & (37, ).

By the above system of six (in)equalities, x™ £ §* and monotonicity:

(A F) 0 p)(x"y7) £ ((AF) 0 p)(87,y7) £ (67, y).

Butx™ c 67, s0eq. follows from these two sequences of inequalities. So ((x*,y7), (x7,¢"))
is indeed a solution to the frugality system. Recall that its least solution is ((6*,y™), (67, y")), so
(x*,x7) =(8%,87). We conclude that (8%, §7) is the minimum solution.

The third claim, concerning (v, y~), follows by symmetry. O

COROLLARY 8.2.15. If § : A — A* x A™ is an object of CYO(DCPO,) and p : A* — Ais
continuous, complete, and frugal, then p : A — ¢ is a morphism of CYO(DCPO, ).

Proof. The embedding & is well-woven by corollary[8.2.8} It follows from proposmonmthat p
is closed under composition with identity morphisms.

The following proposition captures the intuition given in section[8.1]that the image of complete
morphisms always includes the “the unanswered questions”. Indeed, if we take 87 to be the questions
asked to p, then AP (87, 1) is the survey given by answering none of those questions. The statement
says that p(87) is at least as big as that survey.

PROPOSITION 8.2.16. If p: A* — A is complete and p(8}) = 8, then AP (8}, 1) € 4.

Proof. Immediate by the completeness condition and monotonicity. O

We now consider properties of collections of morphisms in CYO(DCPO, ). In particular, we
show that jfc morphisms between bounded-complete dcpos form a depo.

PROPOSITION 8.2.17. Junk-free continuous functions A* — A, ordered pointwise, form a dcpo.
This dcpo is bounded-complete when A is bounded-complete and A — A* x A~ is an embedding.

Proof. We start by showing that junk-free continuous functions are closed under directed suprema.
Let M be a directed subset of DCPO, [A* — A] of junk-free functions, and set F = ||' M. We
must show that

(A" 1'im(F), F)

is an e-p-pair.
We begin by showing that (A* } im(F)) o F £ id:

(A" tim(F))oF=A"oF=| |'A*ofc | |'id=id
feM feM
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Next, we show that id = Fo A* | im(F). Let §* € A* be arbitrary, and set § = F(6*). Then
8 = U'fen f(87). We compute using proposition
(FoA™)(0)

= LJ'(foa")(9)

feM

= (fI_ITfoA*) (I_ITg(S*))
eM geM
= L['(foa" o f)(8")

feM

=J[J];f(5+)
- F(8").

Because 8" was arbitrary, this establishes the result.

Next, assume that A is bounded-complete. We show that the collection of junk-free continuous
functions A* — A is bounded complete. Let p, p,, p, : A" — A be junk-free with p, © p and
P» € p. We must show that p, U p, : A* — A exists. It follows easily from bounded-completeness
of A that the supremum exists in DCPO, [A* — A] and that (p, U p,)(6%) = p,(8%) u p,(6).
We show that p, L p, is junk-free. We start by showing that A* o (p, L p,) € id. But this follows by
monotonicity and the fact that p is junk-free:

A" o(p,up,)cATopcid.
Next, we show that id = (p, U p,) o A* when restricted to the image of p, U p,, i.e., that
(prups)oA™o(piup,)=piup,.

Observe first that A* preserves suprema. Indeed, e : A > A* x A™ isan embedding so a lower
adjoint, and lower adjoints preserve suprema. But suprema in products, including A* x A7, are
computed component-wise, so A* = 7, o e also preserves supremal[”| This implies that

Ao (prups) =(ATep)u(ATop,).
We deduce that
(prup) oA o (piups)
=(proA"ep)u(pioATop)u(poATop)u(paoATop,)
but p, and p, are junk-free, so:
=pu(pedtop)u(paedtop)up,.
Recall that A* o p; cid for i = 1,2, so
(prodTopa)u(paoAtop)Epiup..
We deduce that
pru(pioATop)u(paoATop)up, =piuips.
The result follows by transitivity. O

COROLLARY 8.2.18. Fix an embedding A — A* x A~ between dI-domains. Stable junk-free
continuous functions A* — A, stably ordered, form a bounded-complete dcpo.

14Warning; this does not imply that 7, o e : A — A" is an embedding.
5We find ourselves in the unfortunate position of punning on A* as a dcpo and A* as a morphism in the same
sentence.
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Proof. Consider a directed subset M of Stab [A™ — A], and assume that every function in M is
junk-free. Its directed supremum | |" M exists in Stab [A* — A] because Stab [A* — A] is a dcpo.
The stable ordering implies the pointwise ordering, so M is also directed in DCPO, [A* — A].
The directed supremum ||' M in Stab[A*™ — A] is computed pointwise, i.e., it coincides with
the directed supremum of M in DCPO, [A* — A]. We conclude that it is junk-free by proposi-
tion

Now consider stable junk-free continuous functions p, p,, p, : A* — A such that p; &, p
for i = 1,2. The upper bound p, U p, exists in Stab [A* — A] because Stab [A* — A] is bounded-
complete. The same argument as the previous paragraph gives that it is junk-free. O

PROPOSITION 8.2.19. Fix an embedding A — A* x A~. Complete continuous functions A* — A,
ordered pointwise, form a dcpo.

Proof. An easy consequence of continuity. Let M be a directed subset of DCPO, [A* — A] of
complete functions, and set F = LI" M. We must show that

AP o (id, A" o F) = F.
Let 87 be arbitrary. We compute:
AP(85, (A7 0 F)(85))
= 'A% (85, (A7 0 p)(85))

peM

which by the assumption that p is complete:
= LI'p(87)
peM
= F(57)
= 4.
We conclude that F is complete. O

COROLLARY 8.2.20. Fix an embedding A — A* x A~ between dI-domains. Stable complete
functions A" — A, stably ordered, form a dcpo.

Proof. Analogous to the proof of corollary/[8.2.18] O

PROPOSITION 8.2.21. Frugal continuous functions, ordered pointwise, are closed under directed
suprema.

Proof. Let M be a directed subset of DCPO, [A* — A] of complete functions, and set F = | |' M.
Let &, be arbitrary. We must show that if

(AP o F)(8%) =(6%.67),
then (8%, §7) is the least solution (x*, x™) such that
(AT o AP)(8%,x7)ExT
(A"oF)(x")cx™.
We recognize (8%, 87) as [190, where
M= {(87,07) | (A" o AP)(87,8,) €8] A (AT 0 F)(67) £ 67}
We know that [901 exists by proposition [2.2.16] Where p € M, set
Tp ={(87,6;) [ (AT0 AP)(65,67) £ 67 A (A7 0 p)(8]) E 6, ).
We know by frugality that for each p € M,
1%, = (A0 p)(8).
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Observe that by continuity
(8%,67) = (Ao F)(83) = LU'(ae f)(85) = LI'TT%,
feM feM
This implies that, to show that (8%, §7) is the least solution, it is sufficient to show that
LI,
feM

To do so, it is sufficient to show that [1T, c [ for all f € M. It is in turn sufficient to show that
M c Ty forall fe M. Wedoso. Let f € M and (d*,d”) € M be arbitrary. By monotonicity of
composition and the definition of I, we observe:

(A o f)(d*) e (A0 F)(d*) = d .

It is immediate by the definition of 9 that (A* o A?)(85,d™) € d”. It follows that (d*,d™) € T
as desired. We conclude that F is frugal. O

COROLLARY 8.2.22. Fix an embedding A — A* x A~ between dI-domains. Stable frugal functions
A" — A, stably ordered, form a dcpo.

Proof. Analogous to the proof of corollary[8.2.18] O

Recall that junk-free functions are, by virtue of being upper-adjoints, always stable. Proposi-
tions|8.2.17}(8.2.19|and [8.2.21]and corollaries|8.2.18} [8.2.20and [8.2.22| then imply:

COROLLARY 8.2.23. The collection of junk-free, complete, frugal functions A - ¥ in CYO(BC, )
forms a dcpo under the pointwise ordering. The collection of junk-free, complete, frugal, stable
functions A - ¥ in CYO(Stab, ) forms a dcpo JFC [A — V] under the stable ordering.

PROPOSITION 8.2.24. The dcpo JFC[A — V] is pointed. Its bottom element is
A8, y7) e AT x PTL(AP(S8F, 1), YP (L, y7)).
Proof. Let b be the function from the statement, and let p € JFC[A — V] be arbitrary. We must
show that b is an element of JFC[A — ¥] and that b ¢, p.
We show that it is junk-free. We start by showing that
bo(A"x¥ )ob=0.
Let (8%, y™) be arbitrary in its domain. We analyze the A and ¥ components separately. By

proposition [2.2.19}
(870 Ao A7)(8%, 1) = AP(8", 1).

It follows that
AP(AT(AP(87,1)),1) = AP(67,1).
A similar analysis for ¥ gives the result. Next, we show that
(A" x¥ )obcid.

But this is immediate from the definition of b and the fact that A and ¥ are embeddings.

Next, we show that it is complete. Again, we analyze only the A component, and observe that
the ¥ component will follow by symmetry. Let (6*, ¢~ ) be arbitrary in the domain of b. We must
show that

AP(8, (A" o AP(87,1))) = AP(8%, L).
Observe that, by definition of e-p-pair, (A~ o AP(8*, 1)) = L. The result is now obvious.

We turn to frugality. Let (6%, ™) be arbitrary in the domain of b. Consider the frugality
system:

AP(8%,87) =, A*(8,) € 8" A (8,)E 8]
Y2 (y,.v) = Y (y) ey, Y (v.) Y,
b(8, v, ) = ()
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The solution (8;,8;, v, v}) = (A*(4,), L, ¥~ (y,), 1) is minimum, and it is the one required for
b to be frugal. So b is frugal.
Finally, we show that b =; p. We must show that for all (67,v;) ¢ (67, v;),

b(87,yy) = b(8;,v,) mp(85,y7).
Setting (8,,v,) = p(8], v ), this means that we must show that:

AP(87,1) =AP(8],1)Nd,

YA(Lyy) =Y (Lyy) Ny
Observe that A? is stable and that (8}, L) and (8;,A™(J,)) are consistent. By completeness,
8, = AP(87,A7(8,)). It follows that

AP(87,1)n 4,

= AP(8;7, 1) mAP(8],A7(8p))

=AP(6;no7,LnA(8,))

=AP(6F,1).

The proof for the ¥ component is analogous. 0

The following conjecture has important consequences for our semantics of Polarized SILL.
Indeed, if conjecture[8.2.23)is true, then we can drop assumption[8.1.8 The first difficulty in proving
conjecture8.2.25]is showing that complete and frugal functions are bounded-complete. It is also
unclear that this collection of morphisms has a compact basis.

CONJECTURE 8.2.25. The dcpo JEC[A — Y] is a dI-domain.

8.3. Semantic Clauses

We define the denotations of judgments by induction on their derivation.

8.3.1. Manipulating channels. The forwarding processes forward communications as-is.
Accordingly, they denote the identity morphisms for (A) composed with the appropriate labelling
for channel names:

[P;a:A-a—bzb:Alu={(a: (A, b:(A)?P) (113)
[P;a:Ara<«bub:Alu={(a:(A)?, b:(A)?P) (114)

We will see proposition that the only effect of composing an arbitrary process with a forwarding
process is to rename the forwarded channel.
Process composition is given by the obvious composition in the semantic universe:

[¥;A,A,ka<P; Quc:Clu=[¥Y;a:AAFQ:c:Cluc, [Y;A,+rPxza:AJu (115)

Consequently, we can deduce that cut is an associative and partially commutative operation “for
free”.

Processes can close channels of type 1. The close message is the only communication possible
on a channel of type 1. As a result, whole communications of type 1 are elements of the two element
domain {1 E close}. All communication on a channel of type 1 is positive. As a result, its positive
aspect is equal to its canonical interpretation. Its negative aspect is the constant functor onto the
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one-element terminal object.

E F1type] ] = diagpg; {1 % close} (116)
[E - 1type]]" = diagz{L  close} (117)
[E+1typel] = diag[m] Tstab (118)
(Er1typel)* =id (119)
(Er1typel) =T (120)
(Er1typel)? =m, (121)

In our asynchronous setting, close a does not wait for a client before sending the close message.
We interpret (1R) as the constant function that sends the close message:

[¥; +closea:a:1]ul =close (122)

The process wait a; P blocks until it receives the close message. All other communication is
handled by P. We interpret (1L) by:

[¥;A,a:1+-waita; P=c:Clu(6,a",¢7)

~ (8, close, ¢) ifa®™ = close
| ((A)P (8%, 1), L,{C)?(L,¢7)) otherwise
where (8,¢) =[¥; A+ Puc: Clu(8*,¢c7)

(123)

Our treatment of A ® B is analogous to the one from chapter|[6] We treat communications of
type A ® B as a pair of communications: one for the sent channel and one for the continuation
channel. We account for the potential absence of communication by lifting.

[E-A®Btype,] = ([E+ Atype]] x [E+ Btype]), (124)
ErA®Btypel|" = ([E+ Atypel]" x [E+ Btypel]"), (125)
E-A®Btypel ] =[E+ Atypel]” x [E+ Btypel]” (126)
(ErA®Btype])" = (). ((Er Atype])" x (E+ Btype])") (127)
(E+ A® Btypel)” =down * ({E + Atypel)” x (E+ Btypel)) (128)

The associated family of projections is:
(ErAe®Btypel){([(a",07)],(a™,b7))
=[({(E+ Atype)i(a”,a™), (E - Btype] )7 (b",b7))] (129)

We abuse notation to pattern match in eq. . This family is strict in the positive component.

Recall that the process send a b; P sends the channel b over the channel a and continues as P.
The complete communications of type B that we observe are the greatest communications consistent
with the positive and negative input of type B that the process receives. This behaviour is analogous
to the behaviour of (Fwp™) in eq. . The continuation P handles all other communication.

[¥;A,b:Brsendab; P:a:B® Alu(8*,b, (ag,ay))
[¥;A+Pza:Alu(d,a;)=(8,a)

(B) (5", a3) = b 5

=(8,b,[(b,a)]) where {

The client b < recv a; Q blocks until it receives a channel on a. When it receives a positive
communication [ (b}, a})] on g, it unpacks it into the two positive communications a} and b}
expected by Q. It then combines the communication Q produces on a : A,b : B into a single
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communication on a : B ® A.

[Y;Aa:BRA-b<recva; Puc:Clu(d,a",¢c7)

_ {(a, [(b.a)].c) ifa” = [(b7a7)]
({A)P(67, 1), L,{C)P(1,c7)) otherwise

where [¥;A,a: A,b:B+P:c:Clu(d%,al,b),c7)=(8,a,b,¢)

Example 8.3.1. The process below blocks until it receives a channel a of type 1 over the channel
b, at which point the type of b becomes 1. Then, the process waits for the close messages on a
and b before closing c. The element [(close, close)] € [1® 1]* = ([1]* x [1]*)_ corresponds to
receiving the channel a, the close message on a, and the close message on b. The element [ (L, 1)]
corresponds to receiving a but no close messages, while the elements [ (close, 1)] and [(L, close)]
correspond to receiving a and one close message. The element | means that a is never received. It
is clear from the denotation that the process only closes ¢ in the first case:

(131)

[-5b:1®1+ a < recv b; wait a; wait b; close ¢ c:1]L(b": B, ¢ : 1)

(b : [(close, close)], ¢ : close) if B =[(close, close)]

(b:[(close, 1)],c: 1) if B =[(close, 1)]
(b [(1,close)],c: 1) if =[(L,close)]
(b:l,c:1) iff=1 <«

8.3.2. Functional Programming and Value Transmission. The functional layer is the simply-
typed A-calculus with a call-by-value semantics and a fixed-point operator. Arrow types are
interpreted as strict function spaces to enforce a call-by-value semantics. We lift these function
spaces to be able to detect divergence, e.g., to be able to denotationally differentiate the terms
FiFAx:tfixy.y:t—7and T I-fixx.x: 17— T If 2+ 7 — 0 types is purely functional, then

[E+ 7~ o type] = diagy ((Stab,, [[E - 7 types] — [E + o typec]]),)- (132)
Otherwise,
[E+ 7 otype] = diag4 ((DCPOH [[EF ttypes] = [EF o typef}]])l). (133)

The call-by-value semantics is adapted from [Gung2| chap. 6] to use dI-domains and stable functions.
We let u range over [¥] = [1,.,c¢[7]. The environment [u | x — v] € [¥, x : 7] maps x to v and y
to u(y) for all y € ¥. The fixed-point operator (F-Fix) is interpreted using the fixed-point operator
defined in section

¥, x

[Vx:tx:t]u=mn"u (134)
[YiFAx:T.M:7— 0]u=up(strict(Av e [7].[¥x:TI- M:a][u]|x~v])) (135)
[P MN:oJu=down ([¥I-M:7— o]u) ([¥ I N:1]u) (136)
[¥i-fixx.M:t]u=[¥x:ti-M:1]'u (137)

These denotations are morphisms in Stab, whenever the term is purely functional. Otherwise,
they are morphisms in DCPO .

We interpret (T-N) as the constant functor onto the flat domain of natural numbers. We
interpret natural numbers as the corresponding element.

[E + nat type¢] = diagg,,,, N, (138)
[¥I-o:nat]u=o0 (139)
L if[¥iFM:nat]u=1

140
n+1 if[¥i-M:natju=n (140)

[¥ - s(M):nat]u = {

161 we did not lift the function spaces in eqs. (132) and (133) and also left eqs. (135) and (137) unchanged, then these

two terms would have the same denotation, even though one of them is a value and the other diverges.
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We interpret quoted processes as elements of stably ordered dcpo of stable, junk-free, complete,
and frugal continuous functions between the corresponding objects in CYO(Stab, ). We lift this
dcpo to account for non-termination when evaluating terms of this type: as typical in semantics
for functional languages, the bottom element L represents non-termination[”]

[EF{ao:Ac<a,: A, ....a,:A,} types]
= (=), odiagz) JFC[(E - A, type)is.... (E - An typeg), ~ (E - Ao typeg)])  (141)
We take the component for the initial object 1 as the representative of each family (E + A; type,).
This choice is arbitrary and not semantically meaningful thanks to the simplifying assumption
that the types appearing in (T{}) are all closed. Indeed, in this case, (E - A; type,) are constant
families of morphisms/’
The (I-{}) and (E-{}) introduction and elimination rules respectively quote and unquote
processes. Their denotations are:
[Yira<{P}<a;:{a:A<a;:A;}]=upo[¥;a;,:A;+P:a:A] (142)
[V;a;:Ajra<{M}<a;z2a:A]l=downo[¥YI-M:{a: A<« a;:A;}] (143)
Because these denotations involve quoted processes, we only know that they lie in DCPO. In

eq. (142), we lift the image of [¥ ; a;: A; + P = a: A] to differentiate the bottom element
of JFC [ai tAj—>a: A] (the least junk-free, frugal, complete continuous function of that type)

from the bottom element of [ + {a : A « a;: A;} types] (the denotation of non-terminating
computations).
A communication of type 7 A A is one of the following:

(1) avaluev € [7], followed by a communication a of satisfying A;
(2) avaluev # L, followed by no further communication;
(3) the empty communication.

They respectively correspond to elements (v, [a]), (v,[L]), and 1 of the smash product [7] ® [A],.
We use the smash product instead of the cartesian product to rule out communications of the form
(L, a). These communications are problematic, because sequentially executed processes should
not be able to communicate while evaluating a divergent term[”| We lift the communications of
type A to allow for the possibility that no communications follow the value of type 7. The value
travels in the positive direction, so it only appears in the positive aspect.

[E+TAAtypel]=[Er Ttyper] ® [E - Atypel], (144)
[E-TAAtypel]" = [Er ttypes| ® [E - Atype]] (145)
[ErTtAAtypel ] =[E+ Atypel]” (146)
(ErtAAtypel) = id[z rtype,] ® (-)L(E - Atype])” (147)
(E+-1AAtypel)” =down * m, x (E+ Atypel)” (148)

(ErraAtypel)i((v,[a]),a7) = (v.[(E - Atypel)i(a*,a7)]) (149)

We abuse notation to pattern match in eq. (149). This family is strict in the positive component.
The process _ < output a M; P sends a functional value on a4 and continues as P. To send the
term M on a, we evaluate it under the current environment u to get an element [¥ I+ M : 7]u € [7].
Divergence is represented by L[,; the other elements represent values of type 7. If [¥ I M : 7]u
represents a value, then we pair it with the communications of the continuation process P on a.

17This is in contrast to role played by bottom elements in domains of communications, where 1 represents the absence
of communication.

8That is, the components of each family are pairwise equal.

9Recall that 1 is the denotation of divergent functional terms.
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Otherwise, the process transmits nothing. The resulting complete communications are the least
ones compatible with the input.
[¥;A+_<«outputaM; Pza:tAAJu(8*,a”)
(8, (v, [a])) if[YIFM:ztu=v+1
(AP (8%, L), (tAA)P(L,a7)) H[YI-M:7]u=1L
where [V ; A+ P:a:Alu(8*,a”) = (4,a)

(150)

The process x < input a; P blocks until it receives a communication on the channel a. If a
communication (v, [a*]) arrives on a*, then the process binds v to x in the environment and
continues as P with the remaining communication a* on a*. If it receives no message, then
we observe no communications on a, and the minimal consistent communications on the other
channels.

[¥;A,a:TAArx<inputa; P:c:Clu(6%,a",c7)

_ {(a, (v,[a]), ) ifa* = (v,[a]]) s
({A)? (6%, 1), L,{C)?(1,c™)) otherwise

where [¥,x:7;A,a: A+ Pzc:Cllu|x—>v](6",al,c7)=(8,a,c)

0>

8.3.3. Shifts in Polarity. Recall that a communication of type | A is a shift message followed
by a communication of type A. By analogy with (C&), we could model complete communications
of type | A using a unary coalesced sum

[1Al= @D [Al.
le{shift}
whose elements are 1 and (shift, [a]) for a € [A]. This domain is isomorphic to [A],, so we omit
the coalesced sum for clarity. “Downshifting” A to | A introduces only positive communication
(the “shift” message), so the negative aspect of | A is the same as the negative aspect of A.

[E+ lAtypel] = [E+ Atype] ], (152)
[E+|Atypel]" = [E+ Atype] ]} (153)
[E+ lAtypel]” = [E+ Atype;]” (154)
(ErlAtype])" = (-)(E+ Atype;)* (155)
(E+ lAtypel)” =down * (B + Atype])~ (156)
(Er lAtypel)? = (<) (EF Atype;)P -6 (157)

In our asynchronous setting, the process send a shift; P always sends the shift message on a.
This corresponds to lifting the output of P on the a component. We interpret ({R) as:

[¥;Arsendashift; Pra:|AJu=(idx(a:up))o[¥;A+Pua:Alu (158)
The client shift < recv a; P blocks until it receives the shift message on a*. We lower

[LA] = [A]] to [A]" to extract the positive communication expected by P, and then lift the output
of P on a to capture that we did, indeed, receive the shift message:

[¥;A,a:lArshift<recva; Puc: Clu(6%,a%,¢c7)
_ {(5, [a]. ) ifa* = [a]]

((A)P(8*, 1), 1,{C)?(L,c7)) otherwise (159)
Where (6, a,C) = H:\I] 5 A’ a: A ~ P nC: Cﬂu(8+, a;, Ci)

Example 8.3.2. Upshifts are the polar duals of downshifts. The following process waits for its client

to synchronize with it before closing the channel. The protocol 11 has denotations [11]~ = [1]] =
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{1}, and [11]" = [1]" = {L 2 close}. The element [ L] € [11]~ captures the synchronizing shift
message. The process closes a if and only if it receives the shift message:

(a:1) ifa=1
(a:[+]) ifa=[1] «

8.3.4. Making Choices. A communication of type ®{I : A;} ¢, is a label k € L sent in the
positive direction followed by a communication satisfying Ay. Denotationally, this corresponds
to tagging a communication ay € [Ay] with the label k. Tagged communications (k, ay ) are the
elements of the disjoint union [#;c; [A;]. To account for the potential lack of communication, we
lift this disjoint union. This lifted disjoint union is isomorphic to the coalesced sum @, [A;]..
Coalesced sums are coproducts in Stab, ;, and we define the interpretation using a coalesced sum
to make this structure evident. Explicitly, its elements are 1 and (k, [ax]) for k € L and ay € [A¢].
The provider sends the label on the positive aspect of the channel, justifying eq. (161). The client
does not know a priori which branch it will take: it must be ready to send negative information for
each possible branch. This justifies eq. (162).

[;-+shift < recva; closea:a:ti]i(a :a) = {

[Erof{l:A}, typel ] = BIE + A typel ], (160)
leL
[Er®{l: A}, typel]" =EBIE+ A typel ]| (161)
leL
Ero{l: A}, typel ] =[JIE+ A typel]™ (162)
leL
(Er-o{l: A1}, typel) =B (-).(EF A typel)* (163)
leL
(Ero{l: A}, typel)” =diag(down x (E+ A typel) ), (164)
(Ero{l: A}y typed )y (k. [ag]), (a7 )ier) = (K, [{E + Ak type] )] (ar, ar)]) (165)

The category Stab , has zero morphisms and we use matrix notationf™|for morphisms from co-
products to products in eq. (164). Explicitly, each component of (2 - &{1: A;},, typel)~ is the
strict morphism whose action on non-bottom elements is

(8 F ©{1: A}, typed)s (K [ax]) = 1(( - Ay typel ) (ar)).

We abuse notation to pattern match in eq. (165)). This family is strict in the positive component.
To interpret (®R), we extract from a~ the negative information a;_ required by the continuation
process P. Afterwards, we tag P’s output on a with the label k.

[¥;A-ak Pua:o{l: A}, Ju(d"(a)),) = (6, (k [ak])) (166)
where [V ;A Pa: AgJu (8%, a;) = (6, ax)

The interpretation of (&L) is analogous. If the client a label, then the case statement selects the
corresponding branch, and we observe the received label.

YA a:e{l:A Fcasea {Il = P sc:Clu(8,a", ¢
[ {I: A1} { leL

_ {(5, (1, [ar]). c) ifa* = (1, [af]) 6
({A)P (6%, 1), L,{C)(1,c7)) otherwise

where [¥;A,a: Aj - Puc:Clu(6%,a7,¢) =(8,a;,¢)
Example 8.3.3. We build on example[8.3.2} External choices &{I : A;};c; are the polar duals of
internal choices. Let A = &{j : 11,k : 11}. A provider of A receives a label and a synchronizing

shift before closing the channel. The elements (I, [[L]]) € [A]~ correspond to receiving the label /
over a followed by a shift, while the elements (I, [1]) correspond to receiving I but no shift. In the

20Tt is defined in section
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first case, the denotation makes clear that the channel gets closed. In the second case, we see that
no close message is sent:

[-5-+casea {I = shift < recva; close a},(; = a: A]L(a” : a)

(a:(3,[[close]])) ifea=(3,[[1]])
(a:(k [[close]])) ifa=(x [[1]])
=1(a: (3, [L]) ifa = (3,[L])
(a:(k[L])) if a = (k, [1])

(a:1) ifa=1 <

8.3.5. Recursive Types. The substitution property (proposition[8.5.3) determines the deno-
tation of the variable rule (CVAR). Indeed, it forces eqs. (168) to to be projection functors
and egs. and to be given by the identity natural transformation. These interpretations
uniquely determine eq. (173). It is because of eq. (173), proposition [2.2.31 and remark2.2.32| that

dcpos of session-typed communications must be bounded-complete domains.

[E, a typel - a typel] = n2* (168)
[E, a typel - a typel |* = m5° (169)
[E, atypel - atypel]™ = m5® (170)
(B, a typel - a typel)* =id (171)
(2, a typel + a typel)™ =id (172)
(B, a typel + a typel)? =n (173)

As a step towards defining the denotations of general recursive types, we introduce bounded
recursive types p” a.A formed by:

B, a typel + Atype!

(Cpy)

B+ p'a.Atypel

There are no communications of type p°a.A, while a communication of type p"**a.A consists of an
unfold message followed by a communication of type [p”a.A/a]A. Their denotations are defined
by induction on #. As in the denotations of (C|), we use lifting to capture that an unfold message
was sent, instead of an explicit unfold label. We use the following helper functor for convenience,
which specializes the functor Q from proposition|[4.5.1}
iter, : CAT [Stab,, — Stab,,] — Stab,
iter, F = (Q(L,L1,F))(n)=F"1
iter,(7: F = G) = (Q(L, L,F)), = (n"), : F"L - G"L.

We also use the abstraction functor A

[E+ p"a.Atype] = iter, » (A ((-).[E, a types - Atypel])) (174)
[Erp a.Atypel]" =iter, » (A ((-).[E, a types - Atypel]™)) (175)
[E+ pa.Atypel]” =iter, x (A[E, a typel + Atypel]7) (176)
(Er p"a.Atypel)" =iter, x (A ((-).(E, a type] - Atype])")) (177)
(E+ p"a.Atypel)” =iter, * (A (down * (E, a typel + A typel)7)) (178)

21Explicitly, if # : F = G : A x B —» C s a natural transformation, then Ay : AF = AG : A — CAT[B — CJ is
given by ((An)a)p = 11(a,B)-
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[E+ pa.A t}\/peﬂ]f
//) T \\\\ \

L=[p°] —— [p'){ ———— [p’)¢ — [p?]§

J{(P"}s J'(P’)s J{(szs J{(ﬂs

L[p?]*8 — [p']1%¢ < [P’ —— [P’ ——
\; [E+ pa.A tpre:}]if /

FIGURE 8.1. Colimit diagram defining the components of (E - pa.A type]) as
mediating morphisms of cocones

We interpret recursive types by parametrized solutions of recursive domain equations. We use
the parametrized fixed point operator of section[4.5.2|to define the domains of communications.

[E+ pa.Atypel] = ((-).[E, a type! - Atypel])’ (179)
[E+ pa.Atypel]* = ((-).[E, a type! - Atype! ")’ (180)
[E~ pa.Atypel ] = ([B, o typel — Atypel]™) (181)
(E+ pa.Atypel)" = ((-).(E, atypel - Atypel)*)' (182)
(E - pa.Atypel)” = (down * (B, a type! — A typel)™)' (183)

Informally, we can think of [E + pa.A type! [& as “lim, . [E F p"a.A type! | Indeed, the
techniques of chapter [4] defines it to be the colimiting object in the following diagram, where we
abbreviate 2 - p"a.A type, by p™:

[+ pa.Atypel €
P N

L=[p°)¢ [p*1€ » [p?) ——— [P ——

The elements of [E + pa.A type] | € are elements (x,, ) ,en of the infinite product [T,,y[p" € such
that, where e, is the embedding [p"] — [p™] in the above w-chain, e}, (x,,) = x,,. The details
are given by theorem|o.2.53] The interpretations [Z + pa.A typel |* and [E + pa.A typel | are
similarly constructed.

Given a type forming judgment 7, abbreviate [ 7 ]* x [J]~ by [J]*. We recognize the
components of natural transformation (E + pa.A type!) as the mediating morphism of the
cocones of ﬁg. By construction, each component {p" ) is an embedding, so by proposition
the mediating morphism [E + pa.A typel |§ - [E + pa.A typel ]*¢ is an embedding. These
embeddings assemble into a natural transformation (E + pa.A typel) : [E + pa.A typel] =
[E+ pa.Atypel]*.

By proposition|[4.3.4} there exists a canonical isomorphism

Unfold : [ + pa. A type. ] = (=), o [+ Atype,] o [ + pa.A type,].
Using the substitution property (proposition|[8.5.3), we recognize it as the isomorphism
Unfold : [ + pa.Atype.] = (=), [+ [pa.A/a]A type,]. (184)

Its inverse is Fold. Similar canonical isomorphisms existfor [ + pa.Atype ]* and [ + pa.Atype,]~.
We draw attention to the fact that, in contrast to usual presentations of isorecursive types
(see, e.g., [Pieo2, § 20.2]), isorecursive session types are not isomorphic to their unfolding! Indeed,
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eq. specifies that a recursive type is semantically equivalent to the lifting of its unfolding. This
is because isorecursive session types contain one additional message compared to their unfolding:
the “unfold” message captured by lifting. In contrast, had we used equirecursive session types, then
processes would not have needed to exchange “unfold” messages, and the denotation of a recursive
session type would have been equivalent to that of its unfolding.

We can express (pa.A) in terms of ([pa.A/«]A), Fold, and Unfold. The following diagram’|

commutes by propositions and|8.5.3}

[pa.A] toteld (-).[[pa.A/a]A]
(pwﬂ J((—m[pa.A/«x]Ar,down*([pa.A/aJAr) (185)
[pa.Al* x [pa.A]~ SROlU, () [[pa.Afa]A]* x [[pa.Afa]A]”

We recognize the right morphism as the following composition, where &° is given by lemma|2.2.50}

(=) ([pa-Afa]A)", down « ([pa.Aa]A)7) = 6% o (=) ([per.A/a]A).
Combining these facts, we derive eq. (186). It will be useful when reasoning about recursive types.

{pa.A) = (Fold x Fold) 0 §° o (=), {[pa.A/a]A} o Unfold. (186)
Taking projections throughout, we deduce:
(B+ pa.Atypel)? = Fold o ([pa.A/a]A)? o § o (Unfold x Unfold) (187)

Processes unfold recursive types by transmitting unfold messages. Semantically, the unfold
messages is captured by lifting subsequent communications. Unfolding and folding recursive types
is given by pre- and post-composition with the corresponding canonical isomorphisms Fold and
Unfold. We interpret (p*R) and (p*L) by:

[¥;Arsend aunfold; P:a:pa.Alu
=(idx (a:Foldoup))o[¥;A+P:a:[pa.Ala]A]uoc (id x (a” : Unfold)) (188)
[¥Y;A a:pa.Arunfold < recva; P:c: Clu(é%,a",c7)
) {(5, Fold([a]), c) if a* = Fold([a3])
({A)? (6%, 1), L,{C)?(1,c™)) otherwise
where (8,a,¢c) =[¥; A, a:[pa.Aja]A+P:c: Clu(6%,al,c7)

(189)

8.4. Well-Definedness of Interpretations

The details are all included, but as usual
they are tedious and not too instructive.

Larry C. Eggan [Egg21]

We show that the denotations of section|[8.3]are well-defined. A general principle in the design
of denotational semantics is given by the following slogan:

The sound categorical interpretation of notion of term formation amounts to
requiring that certain naturality conditions hold in the categorical model. [Cro93}
p- 165]
These naturality conditions will let us easily deduce that our semantics satisfies the desired structural
properties enjoyed by the language’s judgments.
Recall that denotational semantics are defined compositionally, i.e., the denotation of a term is
a function of the denotations of its subphrases. When working with open terms, the aforementioned
naturality condition states that this function must be natural in the structural contexts appearing
in the judgment.

221t is given for positive pa.A. An analogous diagram commutes when pa.A in negative.
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We illustrate this principle using interpretations of functional terms. Recall that judgments
¥ I+ M : 7 involving processes denote stable functions [¥] — [7] in DCPO,. Consider a
term-forming rule
YV ;AP ¢, :C, - VY, ;A,+P,:¢,:C,, Y, V). b-M,:7, - VY VYpum-M,:1,
Yi-F(P,....,P,,M,,....,M,):T

Assume that its interpretation is given by
[W;A+F(P,....,P,,My,...,.M,,) :¢c: C]
=[Flpep ([B¥ 58, - Pruc Gl oo, [ B Wa s Ay - Pyt Gy, (190)
[V, Wi - My 2Ty sy [ Wom I+ Moy T ])

where [F] is a family of (set-theoretic) morphisms

[Flper : (ﬁ DCPO_ ([, ¥i],JEC[(A;) — {Ciﬂ)) x

i=1

m
x (H DCPO, ([, ¥,.+i]> [[T,])) - DCPO([¥],[z]). (191)
We say that interpretation is natural in its environment if the family is natural in [¥].
In this case, we call [F] a natural interpretation of the rule. The general principle requires that all
interpretations be natural in their environments.

8.4.1. Semantic Results for Types. Recall that if E is a context of type variables, then we
write [E] for the product [] .5 Stab,;.
We start by showing that the interpretations of types in the functional layer are well defined.

PROPOSITION 8.4.1. If B + 7 types is purely functional, then the interpretation [E + 7 type] is
a constant and locally continuous functor from [E] to Stab,,. If E + 7 type; is impurely functional,
then the interpretation [ E + 1 typeg] is a constant and locally continuous functor from [] .z DCPO
to DCPO,,.

Proof. By induction on the derivation of 5 ~ 7 type;. We silently use the fact that Stab,, is a
subcategory of DCPO, ;. Constant functors are locally continuous, so local continuity will follow
automatically.

Cask (T-N): Recall eq. . The flat domain of natural numbers is a dI-domain, and the
functor is by definition constant.

Cask (T{}): Recall eq. (141). This functor is by definition constant, and its image is a dcpo by
corollary([8.2.23]

Cask (T—): Recall egs. and (133). By the induction hypothesis, [E ~ 7 type;] and
[E + o type;] are both constant, so [E + 7 — ¢ type;] is constant. In all cases, the image of
[E + 7 > otypes] isadcpo. If E + 7 — o type; is purely functional, then by the induction
hypothesis, [E + 7 types] and [E + o types] are both functors into Stab,,. It follows that
[E + 7 — o types] is also a functor into Stab . O

Recall that we interpret judgments E ~ A type, as 2-cells
(E+ Atype) : [E+ Atype,] = [E+ Atype ]  x[E+ Atype,]* : [E] — Stab,,

in the 2-category CFP defined in section[4.5.2]
We begin by showing that the functors interpreting types are locally continuous.

PROPOSITION 8.4.2 (Functorial Interpretations are Well-Defined). If E + A type,, then the
interpretations [B + Atype.], [E + Atype,]|”, and [E + A type,]" are functors from [E] to Stab .
They are locally continuous relative to the stable ordering.
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Proof. By induction on the derivations of & ~ A type,. By the simplifying assumptions of sec-
tion the interpretations [ E + 7 type;] are constant functors, so they are automatically locally
continuous.

Cask (C1): Recall egs. (116) to (117). Constant functors are locally continuous. Their images
are obviously dI-domains.

Cask (CVAR): Recall egs. (168) to (169). The projection functors are locally continuous, and
their codomains are assumed to be dI-domains.

Caske (Cp}): Recall egs. to (176). By the induction hypothesis, local continuity of A, the
obvious specialization of proposition[4.5.1 and the fact that locally continuous functors are closed
under composition.

Case (Cp*): Recall egs. (179) to (181). The category Stab,, is a CFP category: its initial object
is {1}, its morphisms are strict, and it is O-cocomplete. Parametrized fixed points of locally
continuous functors are then locally continuous by the results of section

Cask (CA): Recall egs. (144) to (145). By proposition[8.4.1and the simplifying assumptions
of section E + 7 typey is a locally continuous functor from [E] to Stab,,. The result follows
from the fact that locally continuous functors are closed under composition.

Local continuity in the remaining cases follow either by analogy with one of the above cases,
or from the observation that they are compositions of locally continuous functors and that local
continuity is closed under composition. The fact that their codomain is Stab, follows from the
fact that Stab, is closed under lifting, coalesced products, and coalesced sums. O

Next, we show that the 2-cells {(E + A type,) are families of stable maps, and that each
component is an embedding relative to the pointwise ordering.

PRrROPOSITION 8.4.3 (Types Denote 2-Cells). If E + A type,, then
(E+ Atype)) : [E+ Atype,] = [E+ Atype, ]t x[E+ Atype,]” : [E] — Stab,,
is a natural transformation.

Proof. By induction on the derivation of & ~ A type,. We omit cases that follow by analogy from
others. We sometimes abuse notation and write # « p for the component-wise composition of
families # and p, even when they are not natural transformations.

The majority of cases, naturality follows from the induction hypothesis and the following three
facts:

¢ natural transformations are closed under composition,
e functors preserve natural transformations, and
e the pairing of two natural transformations is a natural transformation.
Stability follows from the induction hypothesis and the fact that Stab,, is closed under lifting,
products, pairing, coalesced sums, and smash products. We omit these cases.
Cask (C1): Recall egs. and (120). The constant family (£ + 1 type,) of morphisms
between constant functors is clearly natural, and constant functions are stable.
Cask (CVAR): Recall egs. and . The family (E, « typel ~ a typel) is clearly natural,
and each component is clearly stable.
Cask (Cp}): Recall egs. and (178). By the induction hypothesis and the fact that functors
preserve commuting diagrams.
Case (Cp*): Recall egs. and (183). To see that (£ - par.A type) is natural, observe that

(B+ pa.Atypel) = ((E+ pa.Atypel)', (E + pa.Atypel)7),
and that (E - pa.A type})* and (E - pa.A type])~ are natural by proposition[4.3.1] O
The proof that {2 - A type,) is a family of embeddings is most easily shown using a substitution
property. This substitution property relies on the fact that these 2-cells satisfy the appropriate

naturality conditions. We adapt the overview given at the start of section[8.4]to the setting of type
interpretations, on account of their complexity in this setting. Recall that for every 2-category C,
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there exists a category Cellc whose objects are the objects of C, whose morphisms are the 2-cells
of C, and whose composition is the horizontal composition of C. Consider a type-forming rule

E,B A type, -+ E,B,r A, type,
B+ F(A,...,A,) type,

Assume that its interpretation is given by
(E+ F(Ay, ..., Ap) type,)

. o o (192)
="F'iz1 ((E, B, - As typeg), ..., (B, B = Ay typey)) .
where "F’ is a [E]-indexed family of morphisms
"Flg): (H Cellcrp([E, Ei}],Stabl!)) — Cellcgp([E], Staby,). (193)
i=1

Equation (192) is natural in its environment if the family "F [z is natural in [E], i.e., if for all 2-cells
0:06 = ¢: C— D, the following diagram commutes in Set:

H?zl Cellcpp (D X [Ei]a Stabﬂ) # Cellcpp(D, Stabl!)
I_I;l:l Cellcgp (UX [[E,J],Stabﬂ )J' J{Cellcpp (O',Stabﬂ)
e

H?=1 CellCFp(C X [E,],Stablg) —_— Cellcpp(c, Stabﬂ)

Concretely, this means that for all #n-tuples of 2-cells («; : &; = &; : D — Staby1),<i<y»
"Flc((ai* (0 x[Ei]) s &;o (6 x[E]) = &0 (6 x[Ei]))icicn) = "F'p ((€i)icicn) * 0
PROPOSITION 8.4.4. If E + A type,, then the interpretations
(E+ Atype)" : [E+ Atype,] = [E + Atype,]" : [E] — Stab,,
(E+ Atype,)” : [E+ Atype,] = [E+ Atype,]” : [E] — Stab,
are natural in their environment.
Proof. By case analysis on the last rule in the derivation of E + A type,. We omit cases that

follow easily by duality. In most cases, the given natural transformations are clearly the desired
interpretations.

Cask (C1): Recall egs. (116) to (120). We show the positive case; the negative case is analogous.
The rule has no hypotheses, so we must show that there exists a family of morphisms

fc : diageg.,, Tset = Cellcrp(C, Stab )
natural in C such that
(E - 1type)" = npap(*)
The family we seek is the constant family
ne(*) = id,

and this family is obviously natural.

Cask (CVaR): Recall egs. (119)), and (168) to (170). We show the positive case; the

negative case is identical. The rule has no hypotheses, so we must show that there exists a family of
morphisms

fc: diagCeHCFP(Tset) = Cellcpp(C x [«], Stab ;)
natural in C such that
(B, atypel - atypel)™ = npap(+).
The obvious choice is
ne(*) =id : my = 74

and it is obviously natural.
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Caske (Cp;): Recall egs. to (178). We show the positive case. We must show that there

exists a natural interpretation
n" : Cellcpp(— x [«], Stab,;) = Cellcgp(—, Stab, )
such that
i) ((E, a type] - Atype])™) = (E+ p"a.Atype])".
Take
n¢(0: F=G:Cx [a] > Stab,,) = iter, * (A((-),0)).
To show the naturality of #*, we must show that for all 2-cellsv: H=1:D - C,
iter, + (A((=). (0 * (v id)))) = (iter, = (A((-),0))) * .
But this is immediate by naturality of A. The natural interpretation in the negative case is analogous.
Explicitly, it is the natural transformation

7~ : Cellgpp(— x [«], Stab,,) = Cellcgp (-, Stab,;)

given by
#c(o: F= G:Cx [a] — Stab,,) =iter, » (A (down * ¢)).

Cask (Cp™): Recall egs. (179) to (283). We start with the positive case. We must show that
there exists a natural interpretation

7" : Cellcpp(— x [«], Stab,,) = Cellcgp(—, Stab ;)
such that
iz ((E, a type] + Atypel)") = (E - pa.A type )"
Take
ne(o:F=G:Cx [a] > Staby)) = ((-)10)": ((-).F)" = ((-).G)" : C > Stab,,.
To show the naturality of #*, we must show that for all 2-cellsv: H=1:D - C,
(((9)10) * (vxid))": (((-).F) o (H xid))" = (((-).G) o (I xid))" : D - Stab,
= ((_)la)T *vi ((_)LF)Jr H= ((_)lG)Jr I:D — Stab,,.

This is exactly the parameter identity given by corollary The negative case is analogous. The
natural interpretation is

ne(0:F= G:Cx [a] - Stab,,) = (down % 0)" : ((-) . F)" = G": C - Stab,.
Naturality means that we must show that for all 2-cells v: H = I1: D - C,

((down * o) * (vxid))": (((=).F) o (Hxid))" = (Go (Ixid))": D — Stab,,

= (down*0)" *v: ((-).F)"H= G'I:D - Stab,,.

It too follows from corollary|4.3.6
Caskt (Cl): Recall egs. (152) to (156). We must show that there exist natural transformations

n*, n—: Cellcpp (-, Stab,,) = Cellcpp (-, Stab )

that are the respective natural interpretations. Take
fc(o0:F=G:C— Staby,) =down *x 0 : (-), F = G: C - Stab,,
Ne(o0 :F=G:C—Stab,)) = (-),0:(-),F= (-),G:C — Stab,

To show the naturality of 4~ and #*, we must show for all 2-cells v: H = I : D — C that
fip(c*v:FH = GI:D — Stab,,) =nc(0: F = G:C— Stab,,) x v
np(o*v:FH= GI:D — Stab,,) = n{(0: F = G: C - Stab,) * v.
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In the negative case, we have by associativity of composition:

#ip(o*v:FH = GI:D — Stab,;)
=down * (0 *v): (=), (FH) = GI : D - Stab,,
= (downx* o) *v:((-).,F)H= GI:D — Stab,
=nc(0:F=G:C— Stab,;) = v.

In the positive case,

(o *v:FH = GI:D - Stab,)

=(-)(c*v): (=) (FH) = (-).(GI) : D — Stab,,
=((-)0)*v:((-).F)H= ((-).G)I: D — Stab,,
=ne(0:F= G:C— Stab,) * v.

Cask (Co): Recall egs. (160) to (164). We must show that there exist natural transformations
o (H Cellcgp (-, Stabﬂ)) = Cellcpp(—, Stab, )
leL

that are the respective natural interpretations. Take
e ((al :F=G:C— StabL;)leL)

= diag (down * 01);; : €@D(=) . F; = [] G/ : C - Stab,
leL leL
n&((o1: F1 = G, : C > Staby),;)

= ZGB(—)NI P (-).Fi = @P(-).G,: C— Stab,,.

leL leL

The family #* is natural by associativity of composition. To show that # is natural, we must show
that for any 2-cellv: H=1:D - C,

diag (down * g; * v),.; : P(-) (F,H) = [[(G/I) : C - Stab,,
leL leL

= diag (down % 07),, * v (@(—)lFZ)H = (H G;)I:C — Stab,.

leL leL

The sources and targets of these vertical morphisms are equal by associativity of functorial compo-
sition. We show that the families are equal. Let D be arbitrary in D, then

(diag (down = ;% v),; ), : P (=) (FLH)D = [](G,I)D
leL leL
is the mediating morphism in Stab,, given by the coproduct:

( ) FHD (downx*ay*v)
-).F

G/ID
[ )

(diag(downxay*v),.; ) [ (194)
@leL(_)LFlHD 777777777777777777 > [Tjer G1ID o4

I Jm

(_)J_FZHD o when I#k

GyID

Expanding the definition of horizontal composition in the top morphism of diagram[194] we get
the top morphism of diagram 195} below. By definition of zero morphism, the bottom morphisms
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of the two diagrams are also equal. So their perimeters are equal.

(downxay) (Giv)p

(_)J_FIHD G[HD —_—> GIID
J: Tﬂl Tﬂz
diag(downx01),¢; ), . (Gv
@11 (). FiHD - ey Gp T Gup 099
I J'Tfk Jﬂk
(=), E/HD o when Ik GyHD — &, G, ID

We recognize the composition of the mediating morphisms in the centre of diagram r95]as

(H(GIV)D) o (diag (down * Ul)leL)HD

leL

(H Gl(VD)) o (diag (down * Ul)leL)HD

leL

= (H Gl) vp o (diag (down * Ol)leL)HD

leL
= (diag (down * 67),.; * V)

b-
These are both mediating morphisms making the same coproduct diagram commute. By uniqueness
of mediating morphisms, we conclude that they must be equal. Because D was an arbitrary
component, we conclude that diag(down * g; * v) ¢, and diag(down * ;)¢ * v are equal natural
transformations, i.e., that #~ is a natural transformation.

Cask (C®): Recall egs. (124) to (128). We must show that there exist natural transformations

77,1 : Cellcgp(—, Stab,,) x Cellcgp(—, Stab,,) = Cellcgp (-, Stab,)
that are the respective natural interpretations. Take
e(a:A=C,f:B=D)=downx* (axf):(AxB), = CxD:C— Stab,
ne(a:A=C,f:B=D)=(axp), :(AxB), = (Cx D), :C— Stab,,.

We use the definition of products in Cellgtap,, and associativity of composition to show naturality.
Then:

c(a:A=C,f:B=>D)xv
=down * (a x f3) *v

— down + ((a+ v) x (B + 7))
=npla*v:AH = CI,f*v: BH = DI).

We conclude that 7™ is natural. A similar argument gives that #™ is natural.
Cask (CA): Recall egs. (144) to (148)). We must show that there exist natural transformations

7,1 : Cellggap,, (—, Stab ;) = Cellgeap,, (—, Stab, ;)
that are the respective natural interpretations. Take
fic(o: F= G) =down *m, * ¢ : ([r] x F), = F: C - Stab,,
Me(o:F = G) = ([f] x0)., : ([¥] x F), = ([r] x G), : C - Stab,,

These are natural by the associativity of composition of functors. O

The proof of proposition[8.4.6|relies on the substitution property, which is given by proposi-

tion below. Proposition is an easy corollary of proposition|8.4.6} and no circularity is
introduced between these three results. In the interest in a thematic presentation of our results,
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we hope the reader will forgive our use of forward references. We encapsulate our use of the
substitution property in the following lemma:

LEMMA 8.4.5. If B+ p" . A type!, then
(& P A type! | = (=), (8 - [p"a.A/alA typel ),
(B p"a.Atypel)” =down x (E+ [p"a.A/a]A typel)~.
The result is symmetric when B + p"*a. A type;.
Proof. By induction on n. Recall egs. and (178).

CASe n = 0: We show the positive case. Observe that (iter,(#) = id, forally : F = G :
Stab,, — Stab,,. Assume that & = «, type,,..., &, type,, and consider some arbitrary component

£=(&,...,&,) € [E]. We compute using egs. and (177):

(E+ p'a.Atypey);

— (iter, » (A (=)o {8 @ type - A type! )

= (=)u(E atype] - Atypel)i,

= ((-) (B, atype] = Atype])" * (mas- . 7a,, [E - p A type])),

= ((-) (B, a type] ~ Atypel)* =

* ((E+ a; typeg) ', ... (B - o typeg) ", (E - p°a A typeg) ),

which by proposition [8.5.3}

= ((5)L(E - [ai, p°a.Afai, a] A typey))

= ((-)(E+ [p°a.Ala]A type)), .
The negative case is analogous.

Cask n = k +1: Assume the result holds for k. We show the positive case. Consider some
arbitrary component &:

(Er p* " a.Atype)}
= (itergy, * (A ((-)L(E, a type] - Atype])")));
- (k+1)
= ((A((-) (B, a typed - Atypel)™)),) |
k
~ (A ()2, type - Atype ) x (A (). (. type - A typed)))) )
1
_ = + +\+
= ((A((-)o{B e typeg = Atypel) ))e) o, iaa type e ©

= (k)
o ((A((-)1{E, a type] - Atypel)™)))|
= o ok
= (_)L{:" o type;— HA type:)g,[[ﬁ»—pk(x./% typeJ]*E o {‘: = P A. types};
which by an argument using eq. and proposition 8.5.3]similar to the one in the base case:
= (=) (EF [E+ p"A. type,/a]A type,):.
Again, the negative case is analogous. O
PROPOSITION 8.4.6 (Natural Family of Embeddings). If E - A type,, then
(E+ Atype,) : [E+ Atype] = [E+ Atype]" x [E+ Atype,]” : [E] — Stab,,
is a family of continuous embeddings relative to the pointwise order.

Proof. Tt is sufficient to show that (E + A type,) is a family of embeddings: lower adjoints are
continuous by [A]9s, Proposition 3.1.14].

We use a well-founded induction on the set of open session types, ordered by a relation that
captures their recursive structure. In the general recursive case, this will let us use a lemma that
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holds for the related bounded recursive types. We remark that an induction on the derivation
would not permit us to use this lemma, because bounded recursive types are not structurally
smaller than general recursive types. Additionally, we highlight the fact that care must be taken
in constructing the binary relation that orders session types, so as to not introduce any infinite
descending chains.

Concretely, consider the set T of well-formed open session types E + A type,, ordered by the
least transitive relation generated by the following rules:

(1) whenever E, - A, type, is a premise to a rule with conclusion E, + A, type,,

(El = Al types) < (E‘Z = A2 types)
(2) for all n,

(E+p"a.Atype,) < (E - pa.Atype,)
(3) forall n,

(Er[p"a.Ala]Atype,) < (E + p"*a.A type,)
This ordering has no infinite descending chains, so it is well-founded by the axiom of dependent
choice.

We proceed by well-founded induction on T. We omit cases that follow by analogy from
others. We show that there exists a corresponding family|of projections (& i A type,)? such that
(ErA types}‘; o (B + Atype,); = id[zra type ¢

and
{E A typeS}S o {E A typesblg c id([EFA type, ]+ x[E-A type,]~)&

for all components . We sometimes abuse notation and write # - p for the component-wise
composition of families 7 and p, even when they are not natural transformations. Where it
improves legibility, we may abbreviate E - A type, by A and use the abbreviation:

[E+ Atype]* =[E+ Atype]" x [E+ Atype,]”.

Case (C1): Recall egs. (119) to (121). The constant family (E + 1type,) of morphisms between
constant functors is clearly natural. Because [E + 1 type! | = [E - 1 type] |*, we compute:

(Er1typel)? - (B 1typel) = 7, - (id, T) = id.
Next consider some arbitrary component & and element
(x7,x") € [E F 1type]*¢,
then
({E F1typel)go (B 1type:}§) (x7,x") = (1) (x") = (Lx") e (27, x").

The components are all clearly stable and strict.

Caske (CVAR): Recall egs. to . The family (8, « typef - a typef ) is clearly natural,
and each component is clearly stable. The components of eq. (173)) are continuous by proposi-

tion[2.2.31} To show that they are stable, it is sufficient to show that they are projections.
It is obvious that

(2, a typel + a typel ) - (B, a typel + a typel) = id
and

(2, a typel + a typel) - (&, a type? + a typel)? cid.

23This family need not be natural.



208 8. DENOTATIONAL APPROACHES TO EQUIVALENCE

Cask (Cl): Recall egs. to (157). By the induction hypothesis, (E - A type; ) is a natural
family of stable embeddings, with associated projections (2 + A type; )?. Itis sufficient to recognize
(E + JAtypel) as §° - (E - A type]), recall that e-p-pairs and stable morphisms are closed under
composition, and that the lifting functor is locally continuous. Indeed,

(E+ |Atypel)? - (E + |Atype])
= (=) (E+ Atype])-6-0°-(E+ Atype])

= (=) ((E+ Atypeg) - (E - Atype]))
= id.

The proof that (B + | A typel) - (E + |A type])? c id is analogous.
CasE (Cpj): Recall egs. and (178)). We proceed by case analysis on n. If n = o, then
(B pa.Atypey)(L) = (L, 1) is a constant family of constant functions. For each component,

the domain and codomain each contain exactly one element, so each component is clearly an
embedding. If # = k + 1, then by lemma(8.4.|

(Erp"a.Atypel)" = (=) (E F [P a.Ala]A typel)T,
(B pFa.Atypel)™ = down % (E - [p*a.A/a]A typel)~.

Observe that

(Er [pra.Ala]Atypel) < (B + pFa.Atypel),
so by the well-founded induction hypothesis, (E + [pFa.A/a]A type?) is a natural family of
embeddings. The remainder of the case is identical to the case for (CJ).

CasE (Cp*): Recall egs. and (183). The morphism (2 + pa.A type]); is given by the
mediating morphism of cocones in fig. [8.1]. The top w-chain lies in Stab ,° (relative to the stable
ordering) by proposition and the top cocone is colimiting by definition. By corollary[2.2.64} it
is also colimiting in DCPO. The bottom w-chain is the product of two w-chains and also lies in
Stab,°. The cocone on the bottom w-chain is colimiting because because left-adjoints preserve
colimits [Rie16, Theorem 4.5.3; Macg8, p. 119], so it too lies in Stab,°. The natural transformation
between the two w-chains is a family of embeddings by the induction hypothesis. The lower cocone
on the top w-chain then lies in DCPO’. It follows that the mediating morphism is an embedding
(relative to the pointwise ordering) by proposition2.2.63 By proposition[2.2.63} it is the directed
supremum of compositions of stable maps, so it is stable. To see that (& + pa.A type!) is natural,
observe that

(E+ pa.Atypel) = ((E - pa.Atypel )", (E + pa.Atypel) ™),

and that (E + pa.A typel)* and (E - pa.A type})~ are natural by proposition [4.3.1]

CasE (C®): Recall egs. to (165). We first show that (E - @{l : A;},; type]) is a natural
transformation in DCPO,,. To do so, it is sufficient to show that (& - &{l: A;},.; typel)*
and (E + @{l: A}, typel)” are natural. The case (E ~ &{l: A}, typel)* follows by the
induction hypothesis and the fact that functors preserve commuting diagrams. The case (E +
®{l: A}, typel)~ follows by the induction hypothesis and an easy computation.

Next, we show that the components of (E + @{I : A,;},.; type]) are stable. Consider some
arbitrary component &, and assume that x 1 yin [E + @{l: A;},; typel €. We must show that
(Erof{l: A typel)e(xny) = (Ero{l: Ar}) g typel)e(x)T(E - o{l: At} typel)e(y).
Three cases are possible. The first, that x = y, is immediate. The second is that, without loss of
generality, x = L. In this case, the result follows easily from the fact that embeddings are strict

(proposition.2.21). The final is that x = (, [x;]) and y = (I, [y;]). Then:
(Er@fl: A1} types)e(x M y)
=(Ero{l: A}y typeg)e(L [xinyi])

((LUE - Artypeg) " (xr i y)])s i ({E = As typed) ™ (xi M y1))),
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which by the induction hypothesis:
= ((LUE - A type]) " (x1) M{E = A; typel )" (1)),
n({E - Aptypel)™(x1) N (E - Ay typel )~ (1)),
= ((LUE - Ay typed) " (x)]), u((E = As typel)™(x1))) 1
N ((LIE - A typel ) (y)]), u((E - As typel)™(31)))
=(Ero{l: A1} typel)e(x) M (EF @{l: A1} typel)e(y).
Finally, we show that the components of (£ ~ &{l: A;},.; type]) are embeddings. Con-

sider some component ¢, and let (1, [a;]) € [E + ®{l: A;},, type!]¢ be arbitrary[¥| Then, by
computation and the induction hypothesis:

({E Fa{l: A}, type:}g o(Breaf{l: A}, type:)g) (I, [ar])
=(Ero{l: At} typel )} (LIE - A typel)fai]), u((E - A type] ) ar))
= (LUE - Artyped ) E((E - Ay typel) an, (8 - Ay typed)gan)])

= (L{ar]).
The proof that

(18- @l A} typel)eo (B @{1: AL}, typed)? ) € id
is similar.

Cask (C®): Recall egs. (127) to (129). It follows from the induction hypothesis and general
categorical properties that (E - A ® B type?) is natural. To show that its components are stable,
it is sufficient to show that (E - A ® B typel)* and (E - A ® B type})~ are stable. Stability of
(E - A® Btypel)* follows from the induction hypothesis and the fact that Stab, is closed under
lifting and products. Stability of (E - A® B type} )~ follows from the induction hypothesis, the fact
that Stab,, is closed under products, and the fact down is stable. Finally, it follows easily from the
induction hypothesis and lemma/2.2.50|that the components of {E - A ® B type_ ) are embeddings.

Caskt (CA): Recall egs. 149)). It follows from the induction hypothesis that (Z +
T A A type!) is natural. Stability follows from the induction hypothesis and the fact that Stab,
is closed under smash products. An uninteresting computation reveals that the components of
(E - 7 A Atype}) are embeddings. O

LEMMA 8.4.7. Let a : A > A" x A™ be a well-woven embedding, and let §° : (A* x A7), —
AT x A” be given by lemmalz.2.50] Then 8° 0 a, : A| — AY x A” is a well-woven embedding.

Proof. It is clearly an embedding, for embeddings are closed under composition. Set w = §¢ o a,,
and let (a*,a”) € AT x A™ be arbitrary in its codomain. If a* = 1, then the minimum solution
(a*, a™) to the weaving equations

(wrowf)(a",a7)Ea”
(wowP)(a*,a7)ca”
is (a*,a™) = (1, L), and in this case,
wl(a",a7)=1=wf(a",a")
as desired. If a* = [aZ ], then let (87, ) be the minimum solution to the weaving equations
(a*eoal)(ag,B7) B’
(a”oa?)(B"a”)Ep.
Then ([8*], B~ is the least solution to the weaving equations for w*, and

wP(a",7) =[a(ag, B7)] = [a(B",a" )] =wP([B"]. a").

24Because morphisms in Stab  are strict, it is sufficient to consider only non-bottom elements.
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We conclude that w is well-woven. O
PROPOSITION 8.4.8. If E + A type,, then each component of (E + A type,) is well-woven.

Proof. By well-founded induction on the set of open session types, using the order defined in the
proof of proposition|[8.4.6]
CasEe (C1): Recall:
(E+1typel ) =m, (21
Consider some arbitrary component &, and let (a*, a™) be arbitrary in its domain. A case analysis
a* =1 ora* = close gives the result. In both cases, (a*, a™) is the minimal solution.
CASE (CVAR): Recall:
(B, a typel - a typel)? =n (173
Consider some arbitrary component &, and let (a*, a™) be arbitrary in its domain. Then (1, L) is
the minimal solution to the weaving equations, and it is clear that
(B, atypel +a typeé’)fg((f’,i) =1=(E,atypel -a typeﬁ}?(L,a‘).

CasE (Cp}): We proceed by case analysis on #n. The case n = o is obvious: the domain and
codomain of (€ + p°a.A type,); are one-element domains. Assume now that n = k + 1. By

lemmal[8.4.5
(B p*a.Atypel)" = (). (E - [p*a.Ala]Atypel),
(B pFa.Atypel)™ = down % (E - [p*a.A/a]A typel)~.
We recognize (E - p¥*'a.A type?) as
(B p*a.Atypel) = 6°- (B [p*a.A/a]A typel),
where 8¢ is given by lemma 2.2.50] By the induction hypothesis, each component of
(E+ [p*a.Ala]A type])

is well-woven. We are done by lemmal8.4.7]
Caskt (Cp™*): Fix some component & We want to show that (2 - pa.A type]); is well-woven.
Abbreviate E - pa.A type] by p. By corollary[8.2.8] it is sufficient to show that

Y.{p) o{p) )< {{p) " o{p) . (p)")

e (11" = o < [pT" = [p)

[p] x [p]" x[p]” x [p] ——=[p] = [p]” x [p]" x [[Pﬂ) = (e, (p)F), (196)

where o is the obvious product-permuting isomorphism. We recognize the right hand side as the
mediating morphism of cocones

R e — > [p]x [p]

menmﬂ ™) Ap™) ) ﬂcmxcm
1™ x ([T Y SLLLDL ([, ([0,

where the bottom left corner of the diagram is the bottom w-chain of fig. (8.1} the bottom right
corner is the product of the top w-chain of fig. [8.1] with itself, the bottom morphism is the obvious
pairing of morphisms from the same figure, and the two vertical families of morphisms are the
corresponding colimits. In particular, p,, n,,, ¢, are the legs of the canonical colimiting cones of

fig.

cm: [B, atypes - Atypel]E — [E - pa.Atype ],
pm: [E,atypel - Atypel "8 > [E - pa. A typel]7,
nm : [E, atypel - Atypel] 7§~ [E+ pa.Atypel] <.
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We begin with a few simplifying computations. By proposition [2.2.63}
I_lT(Pm X 1) 0 (p™) o chs

meN

p = I_lT (Pm X ”m) (197)

meN

s0 using proposition [2.2.11]and continuity, we calculate that:

(p)" o {p)?

:71+o(|_|T(pmxnm)o{ ocm) (l_lT o(pmxnm))
meN meN

= LI'me o (o x ) o ") o h 00 (07} (ol )

= LI'pwom o p") o ") o (phx )

and symmetrically, that

(p) o () = L' mw om0 (p") 0 (™) o (phy x ).

meN

The left-hand side of eq. is then equal to:
Tr ((id x o xid) o ({({p)", ()" o (p)?) x {p)™ 2 {p)", {p}")))
= UéTr((id x o xid) o ({em o (p")! o (Pl x n}u)s p om0 (™) o (p™)F 0 (phy x 17y))

X (1 0,0 (p™) 0 (p™ )7 o (phy x b)) c o (p™) o (phy x n5))))
= L' T ((id x 0 xid) o (e © (") pun o 1m0 (p™) 0 (™))

meN
(o 0 (o) o (o) e o (o)) o (ply = iy % ply % ).

which by naturality of trace operators:

= ! (em x cm) 0 Te ((id x 0 xid) 0 ({{p")? pon o 7, 0 (p) o (™)7)

meN
x (1m0 1y 0 (p™) 0 ("), {p™)F)) 0 (id x my, x pf xid)) o (pr x 7).
which by dinaturality of trace operators:
= L Cem x ) o T ((id x nh x phy xid) o (id x 0 xd) 0 ({{p" ), pru om0 {p") o o)) x
meN

X (r 0 13 0 (p™) 0 ("), {p™)F))) 0 (P x 1)
= L (em x cm) OTr((id x 0 xid)o (id X Pl X 1y X id) o (((p™)Fs pm om0 (p™) o {p™)F) x

meN
x (w00 (p") o ("), (p")F))) o (i x 1)
= " (em x cm) o Tr ((id x 0 x id) o ({{p™), m 0 {p™) o (p™)?)

meN
x(m o {p™) o {p™) 2 {p™ ) ))) © (Pl x 17)
= LI (em x em) o Tr ((id x 0 xid) o ({(p™ 7, (p™) " o {

meN
x((p") o (p™ ¥, (p™)P))) 0 (P x i)
which by the induction hypothesis:
= [ (em x cm) o ({p™5 (p™)) o (Pl x 1)

meN

= [ em o 4p™) o (ph x 1) s cm o (™) o (P x m1ha)),

meN

p" ) x
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which by continuity of pairing and eq. (197):
= ()7, (p)).
CAsE (C®): Recall:
(Ero{l: A}y typed )P ((k [ai]), (a7)ier) = (k. [(E + Ax typeg ) (ag, ar)]) (@63

Consider some arbitrary component &, and let (a*, (a; )1 ) be arbitrary in its domain. If a* = 1,
then (L, 1) is the minimal solution to the weaving equations. In this case,

(Bre{l: A1}, typeS}?(i,L) =1=(Ero{l: A1}, type:}lg(i,a’).
Otherwise, a* = (k,[a}]). Observe that the least solution to the weaving equations for (2 ~
e{l: A1}, typeg’}g((k, [a;]),(a} )ier) and (a*, a7 ) is ((k, [a*]), (k:a™,1 # k: 1);), where

(a*, a7) is the least solution to the weaving equations for (E + Ay typesbg and (ajf,a; ). By the
induction hypothesis, it follows that:

(Ero{l: At} typed P (ks [ag]), (ar)ie) (ks [ag]), (ks a™s L% k= 1))
(K [{2 + A type,)?(a, )]
= (k,[{E - Ax type )} (a”, ap)])
={Er o{l: A}y typed )y (ks [ag])s (a7 )ier) (ks [a™]), (@) e )
CASE (CA): Recall:
(B+ T/\Atype:}i;((v, [a*]),a”)=(v,[(E+ Atypei}?(a*, a’)]) (149)

Consider some arbitrary component &, and let (a*, a™) be arbitrary in its domain. If a* = 1, then
(1, 1) is the minimal solution to the weaving equations. Otherwise, a* is of the form (v, [aZ]).
Observe that the least solution to the weaving equations for (E + 7 A A type:}g((v, [a]),a”)

and (a},a”)is ((v,[a*]),a”), where (a*, a™) is the least solution to the weaving equations for
(Er1 typef}‘g and (a;, a™). By the induction hypothesis, it follows that:

(Er 1A Atypel){((v,[a']),a ) (v, [a]),a")
~ (1, (2 + rtypeg)(at,a))
~ (1, (2 - Ttyper (o a7))
=(ErtAAtypel ) ((v,[a"]),a ) (v, [a]),a7).
The remaining cases follow easily by symmetry or analogy with the above cases. O
8.4.2. Semantic Results for Terms and Processes. We show that the denotations of terms and
processes are well-defined. Because the definitions of terms and processes are mutually recursive,
the proofs of properties of terms and processes will be intertwined.
We start by showing that processes denote junk-free morphisms in CYO(Stab, ). This entails
showing that the processes and terms denote continuous functions, and that processes are junk-free,

complete, and frugal. Afterwards, we show that the denotations of processes and terms satisty the
appropriate naturality conditions.

PROPOSITION 8.4.9. If ¥ ; A+ P a: A then [Y; A+ P a: A]u is junk-free for all u € [¥].

Proof. By induction on the derivation ¥ ; A + P :: a : A. Recall the definition of junk-freedom
from definition[8.2.10] We omit cases that follow easily by symmetry or by analogy with other cases.
Where u € [¥] is arbitrary and p = [¥ ; A + P :: a : AJu, we must show that

(((A)" x (a:A)7) tim(p), p)

is an e-p-pair.
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Caskt (Fwp*): Recall eq. (113). We compute:
{A)" x{(A) ) o[¥sa:Ara—b=b:Alu
= ({A)" x (A)7) o ((A)7, {A)?)
E id
by definition of e-p-pair. Let (a,a) e im([¥;a: A+ a — b b: Alu) be arbitrary, then:
([¥Y;a:Ara—>b=b:Aluoc ({A)* x{A)7))(a,a) =(a,a)

by definition of e-p-pair.

Cask (Cut): Recall eq. (115). We first show that the two functions form an adjunction. We
use one of the alternate characterizations of proposition[2.2.19} I = u if and only if for all x, u(x) =
max(I7(}x)). Let (8}, 87, c™) be arbitrary in the domain of [¥ ; Aj,A, - a < P; Q = ¢: Clu,
and let (a*, a~) be minimum such that

[¥;A, +P:a:AJu(8f,a”) = (8., a,) (A)*(a,)Ea”
[¥;a:A0,+Q:c:Clu(ér,a*,¢”)=(8,,a,c) (A)(a,)ca.

Then

[¥;AL,A Fa<«P; Quc:Clu(d/,87,¢7)=(6,,6,,¢).
By the induction hypothesis,

(81 a1) = max (({A,)" x (4)7) (L(67,a7)))
(820 20 ) = max (({A,, A4) x (C)) (80", €7)).
The ordering of products is determined point-wise, so it immediately follows that
(81,05, ¢) = max (({A;, A,)" x(C)7) 1(67,07,¢7))

as desired.
Next, we show that

([¥5A,A, -a<« P; Quc:Cluo({A,A)T x{C)7))(6,,8,,¢) =(8,,8,,¢).
By the induction hypothesis,
([¥s;A,FPua:Aluo ({A) x{A)7) (0 ar) = (81, a1),
([¥sa:A,A -Q:uc:Cluo({A,,a:A) x(C)7)) (8, as,¢) = (8, a,,¢).

But by corollary[2.3.9]

([¥5;A,A, -a< P; Quc:Cluo({A,A) x(C)7))(8,,8,,¢)

=(manco([YsA FPza:Alux[¥Ys;a:AAFQ:=c:Clu)o

o({A,a:AA,) x{a:A,c:C)7))(8,, a0, a,,¢)
=7ta,a,,c(01, 01,0, a5, C)
=(8,,0,,¢).

Cask (1R): Recall eq. . It only has one element in its domain, so it is immediate that
(1) o[¥;-+closea:a:1]u=id.
It only has one element in its image, so it is immediate that
[V;-+closea:a:1]uo(1)” =id.
Cask (1L): Recall egs. and (123). We show that
({A,a:1)" x(C))o[¥;A,a:1+waita; P:c:Clucid.
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Let (0%, a", c”) be arbitrary in its domain. Assume first that a* = close. All components except
for the channel a are immediate by the induction hypothesis. The a component is immediate from
the fact that

(({A,a:1)"x(C) )o[¥;A,a:1+waita; P:c:Clu) (8%, close,c™) = (_,close, _).

If a* = L, then we calculate
(({A,a:1)" < {C))o[¥;Aa:1+waita; P:c:Clu) (6%, L,¢7)
= ((Bya 1) % (C)) (AP(8%, 1), 1, (C)(1,¢))
c (6%, 1,¢7)

by definition of e-p-pair.
Conversely, we show that

id=[¥;A,a:1+waita; P:c:Cluo ((A,a:1)" x(C)7)

when restricted to the image of [¥ ; A,a : 1+ wait a; P :: ¢ : C]. Let (6, a, ¢) be arbitrary in this
image. We consider two cases. First, assume that it is the image of (8%, close, ¢7). All components
except the one for the channel a are immediate by the induction hypothesis. The a component is
immediate from the fact that

([¥;A,a:1-waita; P:c:Cluo ((A,a:1)" x(C)7)) (8, close, c) = (_,close, _).

Next, assume that it is the image of (8%, L,¢”). We show the inequality for the § component;
the ¢ component is analogous. By assumption, § = (A)?(8™, 1), so by definition of e-p-pair,
(A)(8) = (8%, 1) for some &7. It follows, again by definition of e-p-pair, that (A)? (87, L) = §. We
deduce that

([¥5;A,a:1-waita; Pzc:Cluo ({A,a:1)* x(C)7)) (3, L,¢c) =(d, L,c¢).
Cask (®R): Recall egs. and (166). We show that
(A" x(@{l: A}ier) ) o [¥Y5A+ak; Pra:e{l: A}, Jucid
Let (8%, (a; )icr) be arbitrary in its domain. Observe that
((a) < {@{l:Ahia) ) o [¥s A aks Prazo{l: A Ju) (8% (a7 i) = (8%, (d5))
where
((A) < (Ax) ) o [¥sAF Pa: AJu) (87, a;) = (8%, 45).

By the induction hypothesis, (4, dy) € (8%, a;). It follows that (6", 1e(ay)) (8%, (ay)ier) as
desired.
Conversely, we show that

id=[¥Y;A+ak; Pra:e{l: A}, Juo((A)" x(@{l:A;}ieL)”)

when restricted to the image of [W ; A - a.k; P a:@{l: A;},; Ju. Let (6%, (a] )11 ) bearbitrary
in the domain of [¥; A+ a.k; P a: &{l: A}, Ju, and set

[YsArak; Pra:eo{l: A}, u(d,(a;)ier) = (8, (k, [ak])).
Set
(8,a1) = ([¥5A-Pa:AcJuo ({A) x (Ax)7))(8, ar).
By the induction hypothesis, (8, ax) = (8, d ). But a computation reveals that
([¥:arak Prazo{l: A} Jue ((A) < (@{1: Arhier) )8, (k. [ax])) = (8, (K, [a4])).

The result is now obvious.
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CasE (&R): Recall egs. and (230). We begin by showing that
((A)" x (&{I: A}ier) ) o[¥YsArcasea {I=P},  ma:&{l: A}, Jucid.

Let (6%, a™) be arbitrary in the domain of [¥ ; A+ case a {I = P}, = a: &{l: A}, Ju. If
a” = 1, then the proof is identical to the case (1L). If a~ = (I, [a; ]), then set

(8,a7) = (({A) x (A) ) o [¥;5A,a: A - Przc: Clu) (6%, a7).
By the induction hypothesis, (4, d;) € (6%, a; ). By computation,
((A)" < (&{l: At}ier) ) o [¥s Arcasea {I = P}y =a:&{1: A}y Ju) (87, (L [ar]))
= (6% (L& ]))-

It is immediate that (6%, (1,[4;])) € (6%, (I, [a]])).
Conversely, we show that

id=[¥Y;A+casea {I =P},  a:&{1: A}, Juo((A)" x(&{l:A;}ier)7).

Let (8%, a”) be arbitrary in the domain of [¥; A+ casea {I = P}, = a:&{l: A}, ]Ju,and
set

(8,a)=[¥Y;A+casea {I =P},  a:&{1: A}, u(6,a").
We consider two cases. If a= = 1, then a = 1, and the proof is identical to the case (aL). If
a” =(1,[a;]), then a = (I, [a;]) for some a,. Set

(6,a1) = ([¥5A-Praz AJuo ({A) < (A)7)(8,a).
By the induction hypothesis, (8, a;) = (8, 4;). We compute that
([¥;Arcasea {l= P ma:&{1: Ay Juo ((A)" > (&{1: Ar}ier) )0, (L [ai]))
= (&, (1. [an).
The result is now obvious.
Caskt (AR): Recall egs. and . The result follows by the induction hypothesis when

[Yi-M:7]u+ 1. When [¥ I+ M : T]u is L, then the proof is identical to the case (1L).
Cast (oR): Recall egs. and (242). We start by showing that

(({A)" x (12 A) )o[¥;A+x < inputa; P:a:7>Alu)cid.

Let (6%, a”) be arbitrary in its domain. If a~ = 1, then the proof is identical to the case (1L). If
a” = (v,[a;]), then set
(8%,a7) = ((A) x(A) ) o [¥x:7;AF Pa: Al[u|x —~v])(6%, a7).
By the induction hypothesis (8*,47) € (8%, a7 ). By computation,
(((A) x (12 A) ) o[¥;Arx<inputa; Pza:7>AJu)(8%,a7) = (8%, (v,[45])).

The result is now obvious.
Conversely, we show that

id=[¥;Arx<inputa; P:a:1>AJuo ((A)" x(r>A)")

when restricted to the image of [¥ ; A+ x < input a; P a: 7> AJu. Let (8%, a™) be arbitrary
in the domain of [¥; A+ x < input a; P::a: 72 Afu, and set

(0,a)=[¥Y;A+x<«inputa; Pza:12AJu(8%,a”).
If a~ = 1, then the proof is identical to the case (1L). If a~ = (v, [a; ], then set
(8,d0) = ([¥ox:1;A+Pa:Aluo ((A)" x (4)7))(6,a).

25The induction hypothesis quantifies over all environments u, including [u | x — v].
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By the induction hypothesis, (8, a) = (8, 4, ). By computation,
([¥;A+x<inputa; Pza:1oAluoc ((A) x (12 A4)7))(8,a) = (8, (v,[d0])).

The result is now obvious.
CasE ({R): Recall egs. (156) and (158). The result is immediate from the induction hypothesis,
and the fact that adjoints are closed under composition.

Caskt (1R): Recall egs. and (224). We begin by showing that
({A)" x (tA) ) o[¥; A+ shift < recva; P:a:tAJucid.

Let (8%, a™) be arbitrary in its domain. If a~ = 1, then the proof is identical to the case (1L). If
a” = [ag ], then set

(8%,a5) = ({A)* < {A) ) o [¥ 3 A+ P axu)(8",a).
By the induction hypothesis, (8%, 4;) € (8, a]). By computation,
(8%,1451) = (({A)* x (1A)7) o [¥; A - shift < recv a; P a: 1AJu)(8%,a7).

The result is now obvious.
Conversely, we show that

id=[¥;Arshift < recva; Pza:tAJuo ((A)* x (14)7)

when restricted to the image of [¥ ; A & shift < recv a; P :: a: tA]u. Let (8%, a™) be arbitrary in
the domain of [¥ ; A + shift < recv a; P a:1A]Ju. If a~ = 1, then the proof is identical to the
case (1L). If a~ = [a_ ], then set

(8,[a0]) =[¥;Arshift < recva; P:a:1AJu(d%,a”).

Set
(8,40) = ([¥;3A+FP:a:Juo({A) x{A)7))(, a0).

By the induction hypothesis, (8, ao) = (8, 4o ). By computation,
(8,[do]) = ([¥; A+ shift < recva; Pa:1AJuo ((A)* x (1A)7)) (6, [a0])-

The result is now obvious.
CasE (®R): Recall egs. and (130). We begin by showing that

((A)* x(B®A) )o[¥;A,b:Brsendab; P:a:B® AJucid.
Let (6*,b*, (a3, a,) be arbitrary in its domain. Set
(8%,473) = ((A) x(A) ) o[¥;Ab:Brsendab; P:a:B® Alu)(8",a3).
By the induction hypothesis, (6%, 4;) € (8%, a;). By computation,
(({A)*x(B®A) )o[¥;A,b:Brsendab; P:a:B® AJu)(8*,b%, (a3, a3))
- (8,5 (a3 7))
where (b*, 43) = ((B) o (B)?)(b*, aj). By definition of e-p-pair, (b*, d3) € (b*, aj). The result

is now obvious.
Conversely, we show that

id=[¥;A,b:Brsendab; P:a:B®AJuo ((A)" x(B® A)7)

when restricted to the image of [¥ ; A,b: B+senda b; P a:B® Alu. Let (6%, b, (agz,4a}))
be arbitrary in the domain of [¥ ; A,b: B+senda b; P:: a: B® A]u, and set

(8,b,[(b,a)])=[¥;A,b:Brsendab; P:a:B® AJu(d",b", (a3, ay)).

Set
(8,&) =([¥;A+Pza:AJuo ({A)" x{A)7))(4,a).
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By the induction hypothesis, (8, a) = (8, 4). By computation,
([¥sA+rPza:Aluo ((A)" x (B A)7))(8,b,[(b,a)]) = (8,6, [(b,4)])

where b = (B)?((B)*(b), (B)~(b)). But b was in the image of (B)?, so b = b. The result is now
obvious.
CasE (—R): Recall egs. and (236). We show that

((A)" x(B—=A) )o[¥;A+b<recva; P:a:B— Alucid.

Let (8%, a”) be arbitrary in the domain. If a~ = L, then the proof is identical to the case (1L). If
a” = [(bg, a5 )], then the result follows easily from the induction hypothesis.
Conversely, we show that

id=[¥;Arb<«recva; P:a:B— AJuo ({A)" x (B — A)7)

when restricted to the image of [¥ ; A+ b < recva; P:a: B — Alu. Let (8%, a”) be arbitrary
in the domain of [¥ ; A+ b < recva; P:a: B — AJu, and set

(80,a)=[¥Y;A+b<recva; P:a:B— AJu(d*,a”).
If a= = 1, then a = I and the proof is identical to the case (1L). If a= = [(b},a;)], then a =
[(bo,ao)]- Set
(8,b,4) = ([¥;Ab:BrPxa:Aluo ((AB) x{A)7))(8,bsa,).
By the induction hypothesis, (8, b, a) = (8, b, 4). By computation,
([¥5A-b<recva; Pa:B— Aluo ((A) x (B — A)7))(8,a) = (8,[(b,a)]).

The result is now obvious.

Cask (p*R): Recall egs. and (188). By corollary[4.3.5} we recognize (& + pa.A type! )~
as

Fold o {[pa.A/a]A)™ o Unfold o down
We compute:
((A)* x (pa.A)") o [¥; A+ send a unfold; P::a: pa.Alu
= ((A)* x (Fold o ([pa.A/a]A)™ o Unfold o down)) o
o(idx (a:upoFold))o[¥;A+P:a:[pa.Ala]A]uo (id x (a” : Unfold))
= ((A)* x (Fold o {[pa.A/a]A)7)) 0
o[¥;ArFP:a:[pa.Ala]A]uoc (idx (a” : Unfold))
which by the induction hypothesis,
e (id x (Fold o Unfold))
=id.
We use a similar approach to show that
id=[¥; A+ send aunfold; P:a:pa.Aluo ({A)" x {pa.A)7)

when restricted to the image of [¥ ; A + send a unfold; P :: a : pa.A]u. Let (8%, a™) be arbitrary
in the domain of [¥ ; A + send a unfold; P :: a : pa.AJu, and set

8,[Fold(a)]) =[¥; A+ send a unfold; P::a: pa.Alu(d%,a™).
(6, [Fold(a)]) = pa.Alu(

Observe that (8, [Fold(a)]) is in the image of [¥ ; A + send a unfold; P :: a : pa.A]u if and only
if (8, a) is in the image of [¥ ; A+ P a: [pa.A/a]A]u. We compute using the above identities
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and the induction hypothesis:
([¥;Arsendaunfold; P:a:pa.Aluo ({A)" x (pa.A)7))(4, [Fold(a)])
= (id x (a: up o Fold)) (6, a)
= (6, [Fold(a)]).
Case (E-{}): Recall eq. . The result is then immediate from the fact that down o [V I

M:{a:A <« a;:A,;}]uis (by definition and construction) an element of a dcpo of junk-free
functions. O

PROPOSITION 8.4.10. If W ; A+ P a: A then[¥ ; A+ P a: Alu is complete for all u € [\V].

Proof. By induction on the derivation ¥ ; A - P :: a : A. Recall the definition of completeness
from definition [8.2.10] In each case, we must show that two functions between products are equal.
To do so, we show that both functions agree in each component of their image. In the majority of
cases, agreement in all but one of the components (typically the provided channel) will be given by
the induction hypothesis. The remaining component will follow by a computation. We omit cases
that follow easily by symmetry or by analogy with other cases.

Case (Fwp*): Recall eq. . We must show that:
(A, A)P o (id, (A, A)” o ((A), {A)7)) = ((4)7, (A)").

For all (a*, a™) in their domain,

((A,A) o (A, A))(a*,a",a ,a")

€ (id, (A, A)” o ((A),{A)"))(a",a")

c(a*,a",a",a")
by definition e-p-pair and monotonicity. By proposition [2.2.19}

{A) o (A) o (A)P = (A)".

By monotonicity, it follows that if f is such that {A) o (A)? © f c id, then (A)? o f = (A)?. The result
follows easily from this observation instantiated with the above inequalities, and a component-wise
analysis.

Cask (CuT): Recall:

[P;A,A,Fa<P;Quc:Clu=[¥;a:A A +Qu=c:Cluo, [¥;A, +-Pza:Alu

Let (87,87, ¢7) be arbitrary in its domain, and let (a*, a™) be the witnesses for the above compo-
sition at (87, 87,¢7). Then

[¥;A,A, Fa<«P; Q:=c:Clu(d],087,¢7)=(8,,6,¢)

1

where
[P;A, -Pxa:AJu(8f,a™)=(8,,_)
[¥sa: A0 +Q:xzc:Clu(df,a™,c™)=(68,_,c).

The result follows by the induction hypothesis.

Case (1R): Recall eq. (122). The only element in its domain is 1. Completeness follows from
the fact that (1)?(close, 1) = close.

Cask (1L): Recall eq. (123). Let (8*,a*, ¢”) be arbitrary in its domain. We proceed by case
analysis on a*.
SuBCASE a” = close: The A and ¢ components are immediate by the induction hypothesis. The a
component of [¥; A,a:1+waita; P:c: Clu(é*,a*,c”) is close. Completeness follows from
the observation that (1)(a) = (close, 1) and (1)?(close, 1) = close.
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SuBcase a* = I: The interpretation is complete in the a component: (1)(1) = (1, 1), and
(1)?(L, 1) = L. The other two components are complete by monotonicity and the definition
of e-p-pair. Taking the A component as a concrete example, let §~ = ((A)”™ o (A)?)(57, L).
Then §~ = L by monotonicity and properties of e-p-pairs. The result then follows by reflexivity:
(A)P(87,67) = (A)P(8%, 1).
Cask (®R): Recall egs. (163), and (166). Let (8%, (a; ) ez ) be arbitrary in the domain of
eq. (166)). Set
(8,ar)=[¥Y;A+Pza:AJu(%, ar),
(07, ar) = ((A)” x {Ak) ") (8, ar).
By the induction hypothesis,
(A)P(8%,87) = o,
$0 eq. is complete in the A component. As for the a component,
(Ak)? (ag, ap) = ax
by the induction hypothesis. By definition,

(@{l: At} )k [ar]) = (K, [af]).

It follows that:

(@{1: Ai}iar)? (k. [a7]), (ar)ier) = (k [(Ax) (ag> ap)]) = (K, [ak]).
Completeness is now immediate.

Cask (&R): Recall egs. (206), and (231). Let (8*,a") be arbitrary in the domain of
eq. . As in case (1L), we proceed by case analysis on a™. If a~ = (I, [a,’]), then set

(8,a;)=[¥Y;A+Prza:Au(d", ay).
Completeness of eq. in the A component follows by the induction hypothesis. By definition,

(&{1: At}ier)" (L [ai]) = u(ar)
where aj = (A;)*(a;). By the induction hypothesis, (A;)? (a},a;) = a;. It follows that

(&{1: Athier)? (u(ap), (L[ar]) = (LU(A (a7, ap)]) = (1 [ar]).

Completeness in the a component is now immediate. When a~ = L, the proof is analogous to case
(1L).

CASE (AR): Recall egs. (148) to (150). The result follows easily by the induction hypothesis
when [¥ I M : 7]u # L. When [¥ I+ M : 7]u = 1, the proof is analogous to case (1L).

Cask (9R): Recall egs. (211), and (243). Let (8%, a") be arbitrary in the domain of
eq. (2u). If a~ = L, then the proof is analogous to case (1L). If a~ = (v,[a;]), then the result
follows by the induction hypothesis.

Case (JR): Recall egs. (156) to (158). The result follows easily from the induction hypothesis.

Caskt (1R): Recall egs. (204), and (225). Let (6", a") be arbitrary in the domain of
eq. (204). If a~ = L, then the proof is analogous to case (1L). If a~ = [a ], then set

(0,[a0]) =[¥; A+ shift —«recva; P:a:tAJu(8%,a7),
a” ={A)"(ao).

Completeness in the A component is immediate by the induction hypothesis. Completeness in the a
component also follows straightforwardly from the induction hypothesis. Indeed, (A)? (a*, a;) =
a, by the induction hypothesis, so (1A)?(a*, [ag]) = [a,] as desired.

Cask (®R): Recall egs. to (130). Let (8%, b*, (ap, a)) be arbitrary in the domain of
eq. (130). Completeness in the A component and the A portion of the a component follows by the
induction hypothesis. We must show completeness in the b : B component and the B portion of
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the a component. In particular, where b = (B)? (b*, ag) and (a},b™) = (B)(b), it is sufficient to
show that:

(B)P(b*,b7) = b,
(B)? (ag, a) = b.

Both of these equations hold by the definition of e-p-pair, monotonicity, antisymmetry. In the first
case:

b= (B)f(ap,b") = (B)?(b",b7) = (B)? (b7, ap) = b.
In the second case:
b= (B)f(ap,b") = (B)(ag, ap) = (B)! (b7, ap) = b.

Cask (—R): Recall egs. (208), and (237). Let (8%, a") be arbitrary in the domain of
eq. (208). If a™ = 1, then the proof is analogous to case (1L). If a~ = [(b}, a;)], then the result
follows easily by the induction hypothesis.

Cask (p*R): Recall egs. and (188). Let (8", a™) be arbitrary in the domain of eq. (188),
and set

(8,a)=[¥;A+P:=a:[pa.Ala]A]u(d", Unfold(a™)).
Then
[¥;A+sendaunfold; P:a:pa.Alu(d*,a”) = (8,Fold([a])).
Completeness in the A component follows by the induction hypothesis. To show that it is complete
in the a component, we must show that

(pa.A)? ((pa.A)* (Fold([a]),a”) = Fold([a]).
By the induction hypothesis,
([pa-A/a]A)P ({[pa.Ala]A)" (a),Unfold(a™)) = a.
By proposition and corollary[4.3.6]
(pa.A)" (Fold([a])) = Fold ([{[pe.A/a]4)" (a)]).
By eq. (186),
(pa.A)? = Fold o (=) ([pa.A/a]A)? o & o (Unfold x Unfold).
We compute, using the above identities:
(pa.AY({pa.A)" (Fold([a]), a")
= (pa.A)? (Fold([([par.A/a]A)"(a)]),a")
= (Fold o (=), {[pa.A/a]A)f o § o (Unfold x Unfold)) (Fold([{[pa.A/a]A)" (a)]),a")
- (Fold o (-).{[pa.A/a]4)?) ([({[pa-A/a] )" (a), Unfold(a"))])
= Fold([{[pa.A/a]A)* ({[pa.Ala]A)"(a), Unfold(a™))])
= Fold([a]).

Cask (p~R): Recall egs. and (217). We proceed by case analysis on a™: it is either L
or Fold([ag]) for some aj € [[pa.A/a]A]". If a~ = 1, then the proof is analogous to case (1L).
If a~ = Fold([ag]), the proof is analogous to the case (p*R). Indeed, completeness in the A
components follows by the induction hypothesis. To see completeness in the a component, set

(8,a)=[¥Y;A+P:a:[pa.Ala]A]u(s", ay)
and observe that by the induction hypothesis,
([pa.A/a)A) (([pa.Ala) A} (a), a3) = a.
We must show that

{pa.A)? ({pa.A)* (Fold([a])), Fold([a;])) = Fold([a]).



8.4. WELL-DEFINEDNESS OF INTERPRETATIONS 221

By proposition and corollary[4.3.6]
{pa.A)"(Fold([a])) = Fold({[pa.A/a]A)" (a)).
By the negative analog of eq. (186,
(pa.A)? = Fold o (=) ([pa.A/a]A) o § o (Unfold x Unfold).
We now compute using the above identities:
{pa.A)? ({pa.A)* (Fold([a])), Fold([a, 1))
{pa.A)? (Fold({[pa.A/a]A)"(a)), Fold([a,]))
= (Fold o (=) ([pa-A/a]A) 0 &) ({[per.A/x]A)" (a), [a,])
= Fold ([([pa.A/a]A) ({[pa.Ala]A)" (a), a;)])
=Fold ([a]) .

Cask (E-{}): Recalleq. . The result follows from the fact that forallu € [¥],[¥; a; : A; +
a<« {M} < a;:a: Aluis defined to be an element of a dcpo of complete functions. O

LEMMA 8.4.11. Let f : A* — A be frugal relative to o : A — A* x A™. Then, where f3, f*, and 3~
are isomorphisms, B~ o f o (%)™ : B* — B is frugal relative to

BEAS At a2 gt B

Proof. Let b} € B* be arbitrary. The frugality system for 7 o f o ()™ and b is:
((Broa*op)o((Brxp)oacp)’)(bs,b7)cb
((Beaop)o(Bofo(B) ")) (") b
We must show that its least solution (b*, b™) is given by
(B xp)oaop)o(pofo(B)))(b3).

Cancelling out inverses, we observe that minimizing (b*, b™) in this system is equivalent to
minimizing it in the system

(B oatoal o (B x 7)) (b3, b7) € b
(/3_ oa” ofo ((ﬂ*’)ﬂ)p) (b+) cEb.

The functions f3, B, and 8~ are isomorphisms, so (b*, b™) is the least solution to the above system
ifand only if (a*,a”) = (B* x 7)™ (b™, b™) is the least solution to the system

(" 0a?) ((B) " (b]).a") s a”
(o f)(a)Ea.

But f is frugal, so the least solution to this system is (a*,a~) = (a o f) ((B*)™" (b?)). It follows
that:

(b5,07) = ((B*x B )eao f)((B) (7))
=((B"x B )oaoBopofo(f))(b).
This is what we wanted to show. O

Recall the notation given in remark|[8.2.1/for combining embeddings  : A - A* x A™ and
B: B — B* x B™ to form an embedding (&, ) : Ax B— (A* x B¥) x (A” x B7).
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LEMMA 8.4.12. Consider embeddings o : A > A" x A" and$: B> B* xB". If f: A* xB* -
A x B is frugal relative to («, ), then the function F given by

(idxup)o f: A" xB" > Ax B,
is frugal relative to the embedding y given by

AxBi——>(A+><A) (B x B~ )lﬁ(AJ’xA) (B*xB])2 (A" xB")x (A" xB])

where 8¢ is given by lemmalz.2.50]

Proof. Let (a},b}) € A* x B* be arbitrary. We show that the least solution ((a*,b"), (a”,b7))
to the frugality system

(y"oy?) ((ag,bg), (a™,b7)) € (a™,b")
(y"oF)(a"b") e (a”,b7)

isgiven by (yo F)(aZ, b}). For convenience, we start by expanding and simplifying the expressions
in this system. Observe that

(y" o) ((ag,b5),(a7,b7)) = ((a" 0 af)(ag,a”), (down o B} o B 0 8)(bs,b7))
and that if ((«, )" o f)(a™,b*) = (a7, b]), then
(y"oF)(a",b") = (a;,[b7]).

We claim that the least solution to the above frugality system is ((a;, b)), (a7, [b;])), where
((af,b}), (a7, b])) is the least solution to the frugality system

(@ B)" o (a, B)7) ((ag, bg), (a,, b)) & (a;’, b))
(@ B) o f) (af,b7) € (a7, b7).

Indeed, by the above, it is a solution:

(" oy") ((ag, b5), (a,,[6,1))
= ((a” 0 a?)(ag,a;), (down o B} o B 0 8)(by, [b;]))
((a” o a’)(ag,a,),down([(B" o p7)(bg, b,)]))
((a"oa’)(ag,a,), (B o pF)(bg, b))
E (a7, b))

and (y~ o F)(af,b}) = (a7,[b;]). Itis also least: any smaller solution would induce a smaller
solution to the frugality system for f, contradicting the minimality of ((a;, b}), (a7, b])).
We check that it is given by (y o F)(a?, b} ). By assumption,

(a7, b)), (a;, 7)) = ((a, B) © f)(ag, bs).-
In particular, where (a,,b,) = f(al,b?),
a(a,) = (a), a;), B(bo) = (b7, b;).
Finally, observe that
(yoF)(ag,bg) =y(ao, [bo]) = ((af,b7), (a7, [b7])).

This is what we wanted to show. O

LEMMA 8.4.13. Consider embeddingsa: A -~ A* x A and : B— B* xB™. If f: A* x B* -
A x B is frugal relative to (a, f3), then the function F : A* x B} — A x B, given by

N ICAL)) ifo" = [b¢]
F(a™,b") = {(“p(a 1),1) ifbt=1
where (a,b) = f(a*, b))
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is frugal relative to the embedding y given by

AxBL&(AJ'XA_)><(B+><B_)lﬁ(A+><A_)x(BIxB_)E(A+xBI)x(A_><B_)

where 8¢ is given by lemmal.2.50]

Proof. An arbitrary element of A* x B is either of the form (a?, 1) or of the form (a?,[b}]) for
some (al,bl) € A* x B*. We proceed by case analysis on these two possibilities. In each case, the
frugality system is
(v oy?)((ag, 1), (a7,b7)) € (a”,b7)
(y o F)(a®b") e (a”,b7).

CasE (af, 1): We must show the least solution ((a*,b*), (a7, b7)) to the frugality system is
givenby (yoF)(a?, L). Observethat (yoF)(al, 1) = ((af, 1), (L, L) wherea; = (a*oaf)(al, 1).
We check that it is a solution:

(y"ey?) ((ag, 1), (L, 1))
=y (e’ (ag, 1), 1)
= (a),1)
and
(y o F)(a/, 1)
=y (a(a/,1),1)
= ((a”0af)(a/’, 1), 1)
=(1,1).
It is also clearly minimum. This gives the result.

Cask (a?,[b%]): We must show the least solution ((a*, b*), (a=, b™)) to the frugality system
is given by (y o F)(a}, [bZ]). By the first inequality in the frugality system, if ((a*, "), (a7, b7))
is the least solution, then b* = [b] ] for some b7 . It follows that minimizing ((a*, "), (a7, b7))
in the frugality system is equivalent to minimizing ((a;, b)), (a7, b;)) in the system

(@ B)" o (B)?) (a3, b2, (a7, b7)) € (a7 bY)
(. B)" o f)(a/,b7) & (a,,b;)
and taking ((a*,b%),(a",b7)) = ((a},[b]]), (a;,b])). But f was assumed to be frugal, so the
least solution to this second system is
((a,00), (a,,67)) = ((a, B) © f)(ag, bg).
We check that
((al,[67]): (a,, b)) = (y o F)(ag, [bg]).
Set (a,,b,) = f(al,b}). We compute:
(yo F)(ag[bg])
=y (a0, [bo])
= ((a,[67]), (a7, b))

This is what we wanted to show. O
PROPOSITION 8.4.14. If ¥ ; A= P a: A, then [¥; A+ P = a: Alu is frugal for all u € [¥].

Proof. By induction on the derivation ¥ ; A + P :: a : A. Recall the definition of frugality from
definition[8.2.10] In each case, we must characterize the least solution to a system of inequalities
on elements of products. Elements of products are ordered component-wise, so it is sufficient to
characterize the least solution on a component-by-component basis. Most components (typically
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the used channels) will follow immediately from the induction hypothesis, while some (typically
the provided channel) will follow by a straightforward computation.

For convenience, we will often name intermediate values in the frugality system. In particular,
to show that p : A* — A is frugal relative to A - A* x A~ given some &7 € A*, we will minimize
(6%,07) in the system

AP(85,07) =0, AT(8,)E 06"
p(8*) =9, A™(8,)E 6.
It is obvious that doing so is equivalent to minimizing (6%, ) in the system given by defini-

tion
We omit cases that follow easily by symmetry or by analogy with other cases.

Caske (Fwp*): Recall eq. . It is immediate from the definitions that every well-woven
embedding is frugal. By proposition|[8.4.8] {A) is well-woven. The result is now clear.
CasE (CuT): Recall eq. (u3):
[P;A,A,Fa<P;Quc:Clu=[¥;a:AAM+Quc:Cluo, [¥;A+-P:ua:Alu
Let (87,87, ¢7) be arbitrary in its domain, and let (a*, a~) be the witnesses for the above compo-
sition at (87,87, ¢”). Then
[¥;A,A, F-a<«P; Q:=c:Clu(d],087,¢7)=(6,,6,¢)
where
[¥;A FP:a:Alu(éf,a”)=(d,,_)
[¥ia:A,A, - Quc:Clu(8f,a",¢7)=(6,_,¢).
The result follows by the induction hypothesis.

Cask (1R): Recall eq. (122). The only element in its domain is L. Frugality is given by the fact
that (close, 1) is the minimum solution to (x*, x™) to the syste

{I)P(x+>l) = X1 {1}_(.7(31) cx,
[¥; +closea:a:1]ux = x,, (1) (x,) =x".
Indeed, x, = close, so x* = close, so x, = close and x™ = L.
Caskt (1L): Recall eq. (123). Let (8", a*, ¢7) be arbitrary in its domain. We proceed by case
analysis on a*. If a* = close, then the least solution ((3;, a}, c]), (8, a;, cs) to the system
(A,a:1)P((8%,a"),(0;,a7)) = (6,,a1) (A, a:1)7 (8, a) € (8], a7)
(C)f(cl ) =a (C) ()
[¥;A,a:1+-waita; Puc: Clu(d],a],¢7)=(8,,a,¢,) (Aa:1)7(8,,a,)c(6;,a;)
(O () e
is ((87,close, c;), (85, L,ct)), where ((8,¢;),(8;,c))) is the least solution to the system of
equations for (6%, ¢ ) and [¥ ; A + P :: ¢ : C|lu. To see this, it is sufficient to note that a* = close im-
plies that a, = close and a; = close, and then expanding the definition of [¥ ; A, a : 1 + wait g; P ::
¢ : CJu. Frugality in the components A and ¢ : C follows by the induction hypothesis. Frugality

in the component a : 1 follows from the fact that [¥ ; A,a: 1+ waita; P c: Clu(d*,a",¢c7) =
(_,close, _) and that {1)(close) = (close, 1) is the minimal (a;, a; ) satisfying the above system.

Ifa* = I, thena, = 1,47 = Land a, = 1,508, = (A)?(8],1) and ¢, = (C)?(L,c]) by
eq. . By properties of e-p-pair, the minimal §; and ¢ satisfying the equations are then both 1,
and so 6, = (A)?(8*, 1) and ¢, = (C)? (1, ¢™). The elements §; = (A)*(8,) and ¢; = (C) (c,) are
clearly the minimal elements satisfying the system. The result is now immediate from inspection

of eq. (122).

26Note that polarities have appropriately been swapped relative to deﬂnition
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As an aside, we remark that the case a* = 1 alternatively follows straightforwardly from

propositions and|8.4.10]
CAsE (®R): Recall eqs (163) to (166). Fix some arbitrary (87, a; ) in the domain of eq. (166).
The least solution ((8*,a7), (87, a*)) to frugality system

(A)P(8,,07) =0, (A)*(8,) € 8*
(o{l: Arhier)?(a",a5) = & (e{l: Arher) (@) 2 a”
[Yi;Arak Pra:e{l: A}, Ju(6",a7)=(0,a,) (A)=(8,) =68

(&{l:A1}1eL) (ar)Ea”

is ((8%,1x(ay)), (67, (k,[a;]))), where we take ((6%,a;),(07,a;)) to be the least solution
((6%,a7),(87,a")) to the frugality system

(A)P(83,687) =6, (A)*(8,) € &

(Ad)P(a", mi(ag)) = a, (Ak) () Ea”
[¥;A-Pa:AJu(d,a™) = (0, a,) (A)(8,)E 6
(Ar)"(a,) 2 a”.

By the induction hypothesis, where [¥; A+ P a: A Ju(8), mi(ag)) = (6, ao),
(8)(8o) = (8%,67),
(Ak)(ao) = (ag, ay).
It is then easy to check that, where [¥; A - a.k; Pra:@{l: A}, Ju(d;,a5) = (8o, (k,[as])),
(8)(8o) = (8%,67),
(o{l: Atk ) ((k, [a0])) = (k. [ag]), ke (ar)).

This is what we wanted to show.
Cask (&R): Recall egs. (206)) and (229) to . Let (8%, a") be arbitrary in the domain
of eq. - Whena™ = 1, the proof is analogous to case (1L). If a~ = (l [a;]), then the least

solution to the frugality system is ( (8%, (1, [a7])), (6~ ,tl(a;r)))where((8+ d;),(67,a)))isthe
least solution to the frugality system for [¥ ; A + P; :: a: A;Ju and (87, a; ). By the induction
hypothesis, where [V ; A+ Py a: A;u(8%,a7) = (8, a1),
{A)(8) = (8, 0),
(Ai)(ar) = (a, a7).
It is then easy to check, where [¥ ; A - casea {I = P}, = a: &{l: A}, Ju(d,a7) =
(8,(1,[ar])), that
(A)(8) = (8*,87),
(&{1: Ar}ier) (L [ar])) = (u(ap), (1, [47])).

This is what we wanted to show
Cask (®R): Recall egs. to (130). Let (8%, b*, (aj,a})) be arbitrary in the domain of
eq. (130). The frugality system is:

(Ab:B,a:BeA)((87,67)),(8,,6,)) = (81, by)
(a:B® AV (ar, (a3, a3)) =
[¥;A,b:Bsendab; P:a:B®Alu(8;,b;, (a5 a54)) = (85,05, [(b1,a,)])
(A b:B)"(0:,b,) & (87, b7) (B®A) (a,) € (a5, a,4)
{A,b:B) (0, b2) £ (5,b,) (B®A)' ([(bra:)])Ea
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We deduce from the definition of (B ® A)* that a} = [(a},a;)] for some a}, and a7. It follows
that

a, = [({B)? (ap, ap), (A)’ (a}, ax))].
We recognize the equations involving (B) as an instance of the system given in lemma
Accordingly, the least solution ((8;, b7, (a,3,a,4)), (87, b;,[(ag,a})])) to the system is
(65,87 (B~ a7)), (8., 87, [(B™, a")]))
where ({B) o (B)?)(b*,a3) = (B, 87), and where ((8F, ™), (8;, ")) is the least solution to the
frugality system for [¥; A+ P a: Aluand (87, a;). We compute that
({A,b:B,a:B®A)o[¥;A,b:Brsendab; P:a:B® Alu)(6%,b%,(ag,ay;))
= (8% [(B",a)]), (877 (B d2)))
where
((Aya:A)o[¥sAP=a:AJu)(8%,a;) = ((8%,a%),(87,43)).
By the induction hypothesis,
((Aa:A)o[¥;ArPza:Alu)(6%,ay) =((61,a"), (8 ,a7)).

Taking the collection of these equations, we conclude the result.

Case (—R): Recall egs. and to (237). Let (8%, a~) be arbitrary in the domain. If
a” = 1, then the proof is analogous to case (1L). If a~ = [(b?, a; )], then the result follows easily
by the induction hypothesis.

Cask (oR): Recall egs. and to (243). The result follows straightforwardly from the
induction hypothesis. We illustrate the case nevertheless. Let (8}, a7 ) be arbitrary in the domain.
If a; = L, then the proof is analogous to case (1L). If (a; = (v, [a~]), then the completeness system
is:

(a5 AP (85, a;), (87, a)) = (8, a)
[¥;A+x<inputa; P:a:12Alu(d,a;) = (6,,4a,)
(A)7(8,) 6" (12A) (a)Ea;
(A)(8,)=8 (12A)"(a,)ca’.
We seek to minimize (67, a%*,d;,a;), and show that this solution is appropriately related to
([Y;A+Fx < inputa; P:a:1>oA]u).(8),a;). Expanding the definitions of (A, a : 7 2 A)?
and [¥; A+ x < input a; P a: 7> A]u, we see that minimizing (67, a*, 87, ay) is equivalent
to minimizing (67, a*, 8, a; ) in
(Bva: A ((83,07), (6,a%)) = (8,0a,)
[W,x:7;AFPua:Allulx—v](d),[a;]) = (8,,a,)
{A}Jr(‘sl) cd" {A}f(a3) Ea,
(A)=(8,) =6 (A)"(a,)ca™.
Indeed, given a minimum solution (67, a*, ', a; ) to the second system, the minimum solution

to the first system is (8%, a*, &, (v, [a; ])). By the induction hypothesis, this minimum solution
satisfies

(Wx:t;AFPua:Al[u|x—v]).(8;,a ) =(((8,a;),(67,a")),_).
But
(95 A+ x < inputas Psas 5 AJu). (83, 3) = (81, (v [4 ), (67a)), ).

This is exactly what we wanted to show.
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Cask (p*R): Recall egs. (182), (183) and (188). By applying lemma[8.4.12] to the induction
hypothesis, we deduce that
(idxup)o[¥;A+P:ua:[pa.Ala]A]u

is frugal relative to the embedding

{A), (8% 0 (=) u(lpa-Afa]A)) - [A] x (=), [[pa-Afa]A] -
= ([A]" = (=) .[[pa-A/a]AT") x ([A]” < [[pa-A/a]A]").
By lemma|8.4.11}
(idx (a:Foldoup))o[¥;A+P:a:[pa.Ala]A]uo (id x (a” : Unfold))
is frugal relative to the embedding

[A] x [pac.A] 2 [A] x (<), [[pa.Afa]A]

(8), (8% (=) ([pa-A/a]A)) ([A] x (=), [[pa.Ala]A]Y) x ([A] x [[pa.AJa]A]7)
{FADFID, ([A]* x [pa.A]*) x ([A] x [pa.A]).

We recognize this embedding as ({A), {(pa.A)) by eq. (186).

Cask (p™R): Recall egs. (212), and (218). By applying lemma 8.4.13) to the induction
hypothesis, we deduce that

vy _ J(8[a]) ifa” = [a.]
F(ohar) - {({A}P(8+,J_),J_) otherwise

where (8,a) =[¥;A+P:a:[pa.Ala]Alu(d8*, ay)
is sound relative to the embedding
(8), (0% o () L{lpa-Ala]A)) : [A] x (=).[[pa-Ala]A] >
- ([A]" x [[pa.Ala]A]") x ([A]" < (). [[pa.Ala]A]7).
By lemma|[8.4.11}
{(5, Fold([a]))  ifa™ = Fold([aZ])

({A)P(8%,1),1) otherwise
where (8,a) =[¥;A+P:a: [pa.Ala]A]u(8*,a;)
is frugal relative to the embedding

[A] x [pa.A] 25 [A] x (<), [[pa.Afa)A]

(0@ VTN, AT+ [[pa.Afa]AT) x ([A]” * (=), [[pa.Afa]A]7)
(DD T, ([AT*  [pa.A]*) x ([A]" x [pa.A]").

We recognize this embedding as ({A), (pa.A)) by the negative analog of eq. (186).
Cask (E-{}): Recall eq. (143). The result follows from the fact that for all u € [¥], [¥ ;

a;:A;j+a<« {M} < a;:a: A]uis defined to be an element of a dcpo of frugal functions. [J

COROLLARY 8.4.15. If Y s A~ P:a: A then [¥Y; A+ P a: Alu is stable for all u € [\¥].

Proof. Stability is immediate by the definition of junk-freedom, proposition[8.4.9} and the fact that
upper-adjoints preserve existing infima (proposition 2.2.19). O

Recall from corollary [8.2.23] the DCPO JFC[A — ¥] of junk-free, complete, frugal, stable
functions A — ¥ in CYO(Stab, ).
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PROPOSITION 8.4.16. If ¥ I+ M : 7, then [ ¥ I+ M : 7] is continuous. It is stable if ¥ '+ M : T
does not use (I-{}) or any variables whose type involves (T{}). If ¥ ; A+ P a: A, then

[V;A+-Pza:A]:[V] > JEC[A > a: A]
is continuous.

Proof. By induction on the derivation. The proofs for the cases in the functional layer are routine
(see, e.g., [Gung2]), apart for:

Cask (I-{}): Recall eq. . Continuity is immediate by the induction hypothesis. Stability is
vacuous.
In the majority of cases for the process layer:

e Continuity of [¥ ; A + P :: a : A]u follows from the induction hypothesis and the fact
that continuous functions are closed under composition.

e Stability of [¥; A+ P :: a : A]u is a corollary of propositions|2.2.19|and[8.4.9} junk-free
functions are projections, and projections preserve existing infima.

e Junk-freedom, completeness, and frugality of [¥ ; A + P :: a : A]u are given by proposi-
tions|8.4.9} [8.4.10and [8.4.14}

o The function [¥ ; A - P :: a : Au is then a morphism in CYO(Stab, ) by corollary[8.2.15]

o Continuity of [¥; A + P = a : A] follows from the induction hypothesis.

The interesting cases in the process layer are:

Case (Fwp*): Recall eq. (113). Constant functions are continuous, so [¥ ; a: A + a —
b = b:A] is continuous. Continuity of [¥ ; a:A + a - b = b: A]u is a consequence of

proposition
Cast (AR): Recall eq. (i50). We show that [¥ ; A +
continuous. Let U € [¥] be directed. We must show that

[¥; A+ _ < outputa M; P::a:TAA](UTU)
=| '[¥;A+ _<outputa M; P:a:1AA]U.
We consider two cases. Assume first that [¥ I+ M : 7] (LJ'U) = L. Then [¥ I M : 7]u = L for all

u € U by monotonicity, and so [¥; A+ _ < output a M; Pz a: 1A AJu = ((A)P (6%, 1), (A
A)P(L,a7)) for all u € U. Continuity is now clear:

[¥;A+_<«outputaM; P:a:tAA]([]'U)
= ({A)P(8%, 1), (A A)P(L,a7))
= ' (a) (8%, 1), {r A A) (L,07))

ueU

=| T¥;A+_ < outputaM; Pza:7AA]u
uelU

Otherwise, assume that [¥ I+ M : 7] (LJ'U) # L. Then theset U’ = {u e U | [¥ I M : T]u # 1}
is non-empty. Recall that in general, if M is directed, then | |'"M = [ |"(M u {1}). It follows that

[¥;Ar _<outputaM; Pza:taA](]'U)
=[¥;Ar _<outputaM; Pza:tAA] (')
and by proposition [8.2.24]that
| '['¥;A+_ <« outputa M; P:a:tAAJU
=|'[¥;A+ _<outputa M; P:za: 1A AU
It is thus sufficient to show that:
[¥;Ar _<outputaM; Pza:tAA](L|'U)
= | ['[¥;A+_<outputa M; P:a:tA AU

< outputa M; P = a:tAA]is
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But by restricting our attention to U’, we have eliminated the case analysis in the definition of
[V; Ar _ < outputa M; P = a:1AA]. Werecognize it as the composition of continuous
functions, and we conclude the result.

Cast (oR): Recall eq. (211). Continuity of [¥ ; A + x < input a; P == a: 7> A] follows
from the induction hypothesis and closure of continuous functions under composition: it is the
composition of [¥,x : 7; A + P :: a : A] with pairing and application. Continuity of [¥ ; A - x <
input a; P::a: 1> A]u follows similarly.

Cask (p*R): Recall eq. (188). The functions Fold and Unfold are isomorphisms by proposi-
tion[4.3.4} so they are continuous. The result then follows from the induction hypothesis, and the
fact that continuous functions are closed under composition.

CasE (E-{}): Recall eq. (143). By the induction hypothesis and eq. (141). O

PROPOSITION 8.4.17. If ¥ I+ M : 1, then the interpretation [¥ I~ M : 7] is natural in its
environment. If ¥ ; A + P = a: A, then the interpretation [¥ ; A + P :: a: A] is natural in its
environment.

Proof. By case analysis on the last rule in the derivation of ¥ i M : Tand ¥ ; A~ P :: a: A. In the
functional layer, we use C to range over DCPO, or Stab, depending on whether or not [¥ I M :
7] is stable[/] We repeatedly use the following consequence of the Yoneda lemma [Rie16, chap. 2]:
if f : A - Bis a morphism of D, then D(—, f) is a natural transformation D(-, A) = D(-, B).
We omit cases that follow by analogy from others.

Cask (I-{}): Recall eq. (142). The corresponding natural interpretation is:

DCPO, (-, up) : DCPO, (-, JFC(a; : A;,a: A)) = DCPO, (-, [{a: A< a;: A;}]).
Cask (F-VAR): Recall eq. (134). The corresponding natural interpretation is the family:
(A_.)Lu e[¥,x: T}].n;y”‘u)m H{x} > C([Yx: 7], [7])

Cask (F-Fix): Recall eq. . Observe that
[V I fix x.M : T]|u
=[¥x:ti-M:1]u
=lfp(Ave[r].[¥x:ti- M:t][u]|x~v])
= (fpoA([¥x:71- M:1])) (u),

where A is the currying natural isomorphism given by the adjunction for the exponential. The
corresponding natural interpretation is then:

C(-Ifp) o A:C(-x [x:7],7) = C(-, 7).
Cask (F-Fun): Recall eq. . Observe that
[VYIFAx:7.M:7— 0] =upostrictoA([¥,x: 71 M:0]),
where A is the currying natural isomorphism The corresponding natural interpretation is:
C(—,upostrict)o A: C(-— x [x:7],[0]) = C(-, [t = a]).
Cask (F-App): Recall eq. . There is a canonical natural isomorphism (see [Rie16} § 3.4])
a:C(= [ 0]) xC(=7) = C(~ [7 »> a] x [7])

whose D-component is ap(m, n)(u) = (mu, nu). The counit ev of the exponential adjunction is
a natural transformation whose [7], [o]] component is

evir o1 : Cll7] = [o]] x [7] = [o].

27Recall that it is assumed to be stable if it does not use (I-{}) or any variables whose types involve (T{}).
28In contrast to the previous case, we are here taking the A that is the right closure [Rie16} p. 129] of the cartesian
product. Concretely, in this case A : C(— x [x : 7], [¢]) = C(-, C[[z] = [o]])-
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sending (f,v) to f(v). The corresponding natural interpretation for (F-App) is then
C(= vy 107 0 (down xid)) o s C(—, [  0]) x C(— [7]) = C(~ [0]).
Cask (F-S): Recall eq. (140). Let f : [nat] — [nat] be given by
L ifx=1
f(x) = {

x+1 otherwise

The natural interpretation for (E-S) is C(—, f) : C(-, [nat]) = C(-, [nat]).
Cast (Fwp*): Recall eq. (113). The natural interpretation is
(A_A_e[¥](a:(A)P,b: {A))) 1y : {*} = DCPO,([¥].JEC[A — a: A]).
This family is natural is because it is a constant family.

CasE (Curt): Recall eq. (u15). Composition of morphisms p : A, > Aand g : A,,A - C
in CYO(Stab, ) determines a continuous operation o4 : JFC[A, - A] x JEC[A,,A - C] -
JEC[A,, A, — C]. There exists a canonical natural isomorphism

a:DCPO, (-, JFC[[A,] = [a: A]]) x DCPO,(-,JFC[[A,,a: A] - [C]]) =
= DCPO, (-,JFC[[A,] = [a: A]] xJFC[[A,,a: A] = [C]]).
The natural interpretation is
DCPO, (-, 0,)oa : DCPO, (-, JFC[[A,] = [a: A]])xDCPO, (-, JFC[[A,,a: A] = [C]]) =
= DCPO, (-,JEC[[A,, A,] = [C]]).
CASE (1R): Recall eq. (122)). The natural interpretation is
(A_A_e[¥].close)pyy : {*} = DCPO, (-, JFC[- > [a:1]]).

This family is natural is because it is a constant family.
Cask (1L): Recall eq. (123). Let f : JFC[[A] — [c: C]] = JEC[[A,a:1] - [c: C]] be the
continuous function given by

5= {0 L rtsn omn
where (8,¢) = p(87,¢").
The natural interpretation is then
DCPO, (-, f) : DCPO, (-, JFC[[A] ~ [c: C]]) = DCPO, (-,JEC[[A,a:1] > [c: C]]).
. gis,:;i;AR): Recall eq. (150). Let f : [t] x JFC[[A] > [a: A]] > JFC[[A] > [a: T A A]]
flp)(0h.a7) = {EfA(}:(ESa])L)) (A A)P(L,a7)) i: i i
where p(8*,a”) = (8, a).

The proof that is continuous closely follows the proof given in proposition Let V ¢ [7] and
PcJEC[[A] — [a: A]] be directed. We must show that

fatv. U'e) = L'F(v. .
We consider two cases. Assume first that | [V = 1. Thenv = 1 forall v € V, and

f,p)(67,a7) = ((A)P (67, 1), (r A A)P(L,a7))
for all v € V and all p. It follows that

£V LIP) = (A)P (8%, 1), (r A AV (1,a7)) = LI £(1,P) = LI £V, P).
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Otherwise, assume that | |"V # L. Then the set V/ = V \ {1} is non-empty. Recall that in general,
if M is directed, then | |'M = ||'(M u {1}). It follows that

sV, U™y = AUV LR
and by proposition[8.2.24|that LI' f(V, P) = LI f(V", P). It is thus sufficient to show that:
sdvs U = UL P,
But by restricting our attention to U’, we have eliminated the case analysis in the definition of f.

We now recognize f as the composition of continuous functions, so it is continuous.
The natural interpretation is then

DCPO, (-, f) oa: DCPO, (-, [7]) x DCPO, (-, JFC[A — [a: A]]) =
= DCPO, (-,JFC[A - [a: 1A A]])

where « is the canonical natural isomorphism
a : DCPO, (-, [7]) x DCPO, (-, JFC[A — [a: A]]) = DCPO, (-, [7] xJEC[A — [a: A]]).

The remaining cases follow by analogy with one of the previous cases. 0

8.5. Semantic Properties

We show that the denotations of types, terms, and processes satisfy various structural proper-
ties.

8.5.1. Semantic Properties of Types. We show that the denotations of types respect the
structural properties. It is immediate that they respect the exchange rule: contexts of type variables
denote indexed products, so [E] = [E'] and [E + A type,]| = [E' + A type,] whenever B is a
permutation of E.

Weakening is semantically well-behaved, i.e., the semantic clauses are coherent [Tengs, p. 218]:

PROPOSITION 8.5.1 (Coherence). Let ©, E be a context of type variables. If & — A typel, then
the following diagram commutes in Cellcgp for g € {—, +}:

[©,E]

= Pya
n() “J Wpes }

(E-A typel)?

Proof. By induction on the derivation of E - A typed.

Cask (CVaR): Recall egs. (168) to (172). We compute, using the definitions of products and
horizontal composition:

(0, B, a type, - « type,)?
=id oz nEe = 705
=id _mgf“'ﬂi ?f =m0 Si
= (E, a type, - a type,)1 Sf [E, a type, - « types}]ﬂg’,’f’“

= [E, a type - a type, | 1m0 >

This is what we wanted to show.
CasE (Cn): Recall egs. (116)) to (120). This case follows from the fact that the interpretations
constant functors onto the same domain.
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The other cases follow from the induction hypothesis and proposition Explicitly, consider
a type-forming rule
B,B, - A type, -+ E,B,+ A, type,

BrF(A,,...,A,) type,
Assume that its interpretation is given by
(E-F(A,,...,A,) type,)?
=[Fliz] ({8, B, - A, typeg), ..., (B, - A, type)T) .

where [F] is a natural interpretation

i=1

[F][E] : (H Cellcpp([[E,E,»}],Stabﬂ)) g Cellcpp([[aﬂ,stabl!).

Given any other context of type variables ® disjoint from E, we would like to show that
(©,E+F(A,,...,A,) type,)! = (E+ F(A,,..., Ay) typey)? » mo=.
By the induction hypothesis, we have forall1 < i < n,
(©,8,E; - A, type )T = (E,E; - A, type, )T » 7

Using these facts we compute:

(©,E+F(A,,...,A,) type,)?

=[Flie,z ({®, B, E, - A, typeg)?, ..., (®,E,E, + A, type,)?)
which by the induction hypothesis,

=[Flieg ({E,E1 A, type )T+ 7 E")

= [Flio.z) (8,81 - A typeg) + (2% x [Ei]) ..., (8, Eu - Ay type,)T  (
which by naturality of [ F],

= [[F}][[E]] ({E, B, + A, typeg)d, ..., {

=(ErF(A,,...,A,) type))? » m2%.

mE

= [Mm

O (BB, A, type )+ 7

»E

*

This is what we wanted to show. ]

Next, we show that substitution is given by composition. Recall context morphisms from
definition [2.5.7} We write ¢ :s ® ~ E for context morphisms of session types to differentiate them
from context morphisms at the term level, below. Context morphisms ¢ :s ® ~ E denote 2-cells

(A, A, s O~ a, typed, ..., a, typed” )T = (a; : (O + A; typel') ) cicy
where g € {—, +}. In particular,
(O~ )1=id: T=T:[O] > Tcrp,

where Tcgp is the nullary product in CFP, and T : [@] — Tcgp is the unique functor from [@] to
it.

LEMMA 8.5.2 (Weakening of Context Morphisms). Let 0 :s ® ~ E be arbitrary and ©,Q a
context. Then 0 :s Q, ® ~ B and where g ranges over {—, +},

(0:5Q,0~E)=(0:0 ~ E)ing®.
Proof. We consider two cases. The first case is when ¢ is empty, i.e., 0 ;s Q,® ~ -. That
(00,0~ ) =(0:50 ~ )P rH°

follows immediately from the fact that Tcgp is terminal.
Assume now that 0 is A,,..., A, s ® ~ « typeg’, ..., &, types". By weakening, Q,0 +
A; typeg’ forall1< i< n,andby proposition

(Q,0+ A typel')d = (O + A, typel ) 1mg°.
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We then compute:

(00,0~ E)

= (i 1 {Q, 0 + A; typed')T) <<
(i : (@ A, typel }me®) cic
(

a; (O A; typeZ‘)q)lsignn8’®
=(0,A:5 @ ~ B, a typed)P n5°. O
PROPOSITION 8.5.3 (Semantic Substitution of Session Types). Let ¢ :s ® ~ E be arbitrary and
let q range over {—, +}. IfE + A typel, then
[©+ [o]Atypel] = [E+ Atypel]o[o: © ~ E],
[©+ [c]Atypel |1 =[E+ Atypel 900 :s ©® ~ E]Y,
(@ [o]Atypel)? = (E - Atypel)? * (0 ® ~ E)1.
Proof. By induction on the derivation of £ + A type,. Each case follows the same pattern. Consider
a type-forming rule
B,B,-A typeg, -+ E,B,+ A, type,
B+ F(A,,...,A,) type,
By proposition(8.4.4} (E + F(A,,...,A,) type,)? is given by a natural interpretation

{F}EEH : (H Cellcpp([[E, Ei}],Stabll)) - CellCFp([[E}],StabM).

We need to show that

(@ [0](F(A, ..., Ap)) type,)?
=(ErF(A,,...,A,) type)? * (0 :s ® ~ E)1.

From this fact, it will immediately follow that the source and target horizontal morphisms will
respect substitution. By the definition of syntactic substitution, we know that

[0](F(Anr.... A)) = F([0]As,....[0]An).

Foreach1< i< n,leto; begivenby 0,8, ;s ®,E; ~ E, E;. Observe that [¢]A; = [0;]A; for all
1< i < n. Bylemmal8.5.2] properties of products, and the interpretations of (CVAR),

(0,85 @,8; ~ E,Bi) = (0 © ~ E) xid[g,]. (198)
By the induction hypothesis, we know for 1 < i < n that
(®F [0:]A; type )T = (E,E; + A; type,)? + (0,8 :s ©® ~ B, E;)1. (199)
Using these facts, we get:
(O [0](F(Ay,...,An)) type)?
=(@+ F([o]A,,...,[0]A,) type)?
=(OFr F([0,]A,,....[0n]AL) typeg)?
= (Pl (1.1 - 0714 typen)) .c,)
which by egs. and (199),
= (P}l (({5, B - A type,)T * ({0 © ~ E)7 x idﬂgiﬂ))lgign)
which by naturality of {F)?,
= (P, (B - A type)?) ., 05 © ~ B)1
=(Er F(A,,...,A,) type)? + {0 :s ©® ~ B)4.

This is what we wanted to show. O
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8.5.2. Semantic Properties of Terms and Processes. Our semantics respects the exchange
rule because we interpret structural contexts as indexed products. It also respects weakening and
substitution.

PROPOSITION 8.5.4 (Coherence of Terms and Processes). If ¥ I+ M : T, then [O,¥ I+ M : 7] =
[Yi-M:t]ony¥ f¥Y;A-Pua: A then[®,¥Y;A+Pua:Al=[¥Y;ArPua:Along”.

Proof. By induction on the derivation of ¥ - M: tand ¥ ; A+ P:a: A
CasE (F-VAR): Recall eq. (134). We use properties of products to compute:
[0, ¥, x:TIFx:7]= rrf”\y”‘ = 71;1"" o 713’;}"" =[¥x:7tIFx:7]o0 71$)’;*'”‘.
Caskt (1R): Recall eq. . The result is obvious.

The remaining cases all follow an identical proof outline. This outline the direct analog of the one
given in the proof proposition[8.5.1, and it is not reproduced here. O

We write 0 :f @ ~ ¥ for context morphisms in the functional layer. Context morphisms
0 :f ® ~ ¥ denote continuous morphisms [¢ :f @ ~ V] : [®] — [¥]. In particular,

[My,o..iMy 56 ~> x0Ty, X s Ty = (% 0 [V - My 73] icisn
LEMMA 8.5.5 (Weakening of Context Morphisms). Let ¢ ¢ ® ~ ¥ be arbitrary and I', @ a
context. Then o : T, ® ~ ¥ and [0 : T, ® ~ V] = [0 5 ® ~ V] o ;.
Proof. Analogous to the proof of lemma|8.5.2] O
PROPOSITION 8.5.6 (Semantic Substitution of Terms). Let ¢ :¢ @ ~ ¥ be arbitrary.

(1) FYI-N:1,then[® I [o]N:7]=[¥YIF N:1]o[0: ©~ ¥].
(2) If¥;A-P:c:C then[®; A+ [0]P:c:C|=[¥;A+P:c:Clofox @~ V]

Proof. Analogous to the proof of proposition|8.5.3} O

PROPOSITION 8.5.7 (Renaming of channels). If ¥ ; A+~ P a: Aand 0:A,a < T, b, then for
allue Y],
[¥;T+[o]Pub:Alu=[c] " o[¥;A+Pa:Auo[o]*,
where [o] : [T,b: A] = [A,a: A] and [o]* : [T]" x [b: A]™ = [A]* x [a: A]™ are the obvious
relabelling isomorphisms of indexed products.
Proof. By inductionon¥; A+ P:a:A. O

The following proposition states that forwarding acts to rename channels:

PROPOSITION 8.5.8. For all processes ¥ ; A + P :: ¢ : C with C positive or negative, respectively,
[V;Arc<Pc—>d=d:C]=[¥Y;Ar[d/c]P:d:C],
[V;AFc<Picd=d:C)=[¥Y;A+[d/c]P=d:C].

For all processes ¥ 5 A,a : A+ P :: ¢ : C with A positive or negative, respectively,
[V;Ab:Bra<« (b—a); P:c:C]=[¥Y;A,b:Br[bla]P:=d:C],
[V;A,b:Bra<« (b<a); P:c:C]=[¥Y;A,b:Br[b/a]P:=d:C].

Proof. We show the first equality; the other three will follow analogously. Let u € ['¥] be arbitrary.

We compute, using egs. and , proposition and the fact that idj ¢y is ({C)?, (C)?):

[V;A-c<Pc—>d=d:Clu
=[¥;c:Crc—>d=:d:Cluo[¥;A+P:c:Clu
=idjcyo[¥Y;Ar[d/c]P=d:Clu
=[¥;Ar[d/c]P:d:Clu.

The environment u was arbitrary, so we conclude the result. O
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8.6. Soundness

In this section, we show that our denotational semantics is sound. In the case of the functional
layer, this means that our denotational semantics agrees with evaluation. In the case of the process
layer, this means that denotational equivalence implies barbed congruence. As summarized by
fig.[7.1} barbed congruence implies external equivalence and external congruence.

Soundness of the functional interpretation is analogous to soundness of the (stable) fixed-point
semantics of PCF [Gung2, Theorems 4.23 and 5.23].

PROPOSITION 8.6.1 (Soundness of Functional Interpretation). Let M and v be closed terms of
type 1, i.e., such that - \- M : Tand - - v : 7.
(1) Ifvval, then[-Fv:7]L # L
) fM|v,then[- FM:7]=[Fv:1].

Proof. Assume first that 7 is not a quoted process type and that v val. We show that [- - v : 7] 1 # 1
by case analysis on 7:

Case{a: A<« a;:A;}: Bythe canonical forms lemma (proposition|s.8.2), v = a < {P} < a;
for some process P. It is immediate from eq. (142) that [- - a < {P} < @;:{a: A< a;: A;}]L #
1.

Cask nat: An inductive argument extends the canonical forms lemma to state that values of
type nat are either o or s(v) for some value of type nat. In the first case, it is clear that [- I+ o :
nat]1 = o # 1. In the second case, [- IF s(v) : nat]L = [- I+ v : nat]L + 1+ L.

CaSE 0 — ¢”: By the canonical forms lemma (proposition, v = Ax : 0.M’ for some term
x:0 - M: o' Itisimmediate from eq. that[- - Ax:0.M': 0 - o'Ju # 1.

Assume next that M |} v. The fact that [- i+ M : 7] = [ I+ v : 7] follows mutatis mutandis from
the soundness proof for the fixed-point semantics of PCF [Gung2} Theorem 4.23]. Two changes are
required. First, we add an axiom case for quoted processes: it is immediate. Second, we drop several
cases from the proof (the cases involving the predecessor, zero test, and conditional operators). [

Though the introduction of quoted values to the functional layer poses no problems for
soundness, it breaks particularly generous forms of adequacy (cf. [Gung2, Theorem 4.24]):

FaLsenooD ((Generous) Adequacy of Functional Interpretation). If 7 is a base type and M is
a term and v is a value such that - \= M : 7, - - v: T, and [- w M : 7] =[- - v: 1], then M || v.

Proof. We provide a counter-example. Consider processes P and Q given by:
P=b<(a—=b);(c<(b—>c) (c—>4d)),
Q=c<(b<(a—=Db);(b—>c));c—d.

They are denotationally equivalent processes, so quoting them gives denotationally equivalent
values:

[Fd<{P}<a:{d:A<a:A}]=[+d<{Q}«<a:{d:A<a:A}]
However, it is not the case that d < {P} < a || d < {Q} < a. O

We can nevertheless show an adequacy result analogous to the one for PCF [Gung2, Theo-
rem 6.12]:

PRrOPOSITION 8.6.2 (Adequacy of Functional Interpretation). If - I+ M : 7 is a purely functional
closed term and [- = M : T]L # 1, then there exists a value v such that M |} v.

Proof. 'The proof carries over unchanged from [Gung2, Theorem 6.12]. It uses a logical relation
between closed terms of type 7 and elements of [7]. It is not reproduced here. O

We turn our attention to soundness of the process layer. Recall that our observational notions
of equivalence are defined on configurations, but on configurations. However, we have so far only
defined our denotational semantics for processes and functional terms. We remedy this by lifting
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denotations from processes to configurations. The interpretation of (CoNr-C) generalizes the
interpretation of (CuT) in the obvious way:

[Z]A1-+proc(c,P):(c:A)]=[3A+Pzc:A]L (200)
[ZA1-Fmsg(c,m):(c:A)]=[sA+m=c:A]L (201)
[Z,1L,2 | TA 1 LIIL, - C, D = ®E]

=LY |OA 1 LFD=8]o[S,I| T 1 L +C:=OII]. (202)

Definition 8.6.3. Denotational equivalence on configurations is given by I' - C = D :: A if and only
if[T-C:A]=[T+D=A]. WriteT-Cc=D:=Aifandonlyif [T -C: AJc [T-D = A]. <«

Three new concepts play a pivotal role in our proof of soundness: stability, denotational barbs,
and bounded recursion. Stable configurationd™|are the process analogs of functional values:

Definition 8.6.4. A configuration C is stable if no rules are applicable to it. It stabilizes if there
exists a C’ such that C —* C’ and C’ is stable. <

Denotational barbs are a denotational characterization of definition[7.3.5}
Definition 8.6.5. If I~ C :: A, then write [T +C :: A] |, if (mg 0 [T+ C = A])(L) # L. <«

Bounded fixed point operators will let us express unbounded fixed point operators in terms of
their finite unfoldings. This will give us an inductive handle on general recursion. We introduce
the following auxiliary typing and evaluation rules and denotation.

[fix" x.M/x]M | v
fix"" x.M | v

Y.x:tT-M: T
Vi fix"x.M:1

(B-Fix") (EV-p1x"*1)

[¥ i fix" x.M:t]u=(Ax € [t].[¥x: Tk M:7](u,x))" L.

Intuitively, the bounded fixed point operator fix" x.M behaves like the fixed point operator fix x. M,
except that it can only be unfolded up to # times. Its denotation is natural in its environment and
so enjoys the same substitution properties as the rest of Polarized SILL.

At a high-level, our proof of soundness has the following structure:

(1) We show that configurations without unbounded recursion are stabilizing.

(2) We show that definitions[7.3.5|and[8.6.5] coincide on stabilizing configurations.

(3) We show that the denotations of arbitrary configurations are the directed suprema of the
denotations of stabilizing configurations below it.

(4) We show that if a stabilizing configuration below C has a denotational barb, then so does
C.

(5) We deduce that denotational equivalence of configurations is a weak barbed congruence.

Our soundness proof relies on the following simplifying assumption:

Assumption 8.6.6. The rule (E-{}) does not appear in the right premise of (F-Fun), i.e., (E-{}) never
appears in the argument of a function abstraction.

We start by showing that configurations without (F-F1x) are stabilizing. The proof is syntax-
driven and uninspired, but sufficient thanks to assumption Roughly, the approach is to
establish a simulation between a configuration C and the configuration "C" in which every bounded
fixed-point operator has been completely unrolled. We show that each configuration with no fixed-
point operators whatsoever is stabilizing; this establishes a bound on the number of steps C can
take.

ProrosITION 8.6.7.If I + C = A contains no instances of (F-Fix) or (F-F1x"), then it is
stabilizing.

29This use of the adjective “stable” is unrelated to its use in “stable morphisms”
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Proof. By induction on the number of process operators in proc(c, P) facts in C. It is obvious that
each multiset rewriting rule decreases the number of process operators, except potentially the

rules rule (unquoting), rules and (sending values), and rules and (receiving

values). Those for sending and receiving values also decrease the number of process operators by

assumption [8.1.8] Rule (73) also decreases the number of process operators. Indeed, assume M | v

and that M contains no instances of (F-F1x) or (F-F1x"). If we also assume assumption [8.6.6} then

v contains at most as many process operators as M. Then the left hand side of the rule,
eval(M,a <« {P} < a;),proc(a,a « {M} < a;)

has at least one process operator more than the right hand side of the rule, proc(a, P). This gives
the result. 0

Next, we give a translation on configurations that unrolls bounded fixed-point operatorsf| It
is given by induction on the configuration, where all cases are structure-preserving except for:
fix" x M = [fix" x.M"/x]"M".
This unfolding operation respects substitution (cf. [Gung2) Lemma 4.28]):
LEmMMA 8.6.8. Forall M and N, "[M/x]N" = ["M'/x]"N".
Proof. By well-founded induction on the set of well-formed terms, ordered by the transitive closure

of the least relation < generated by:

(1) if M is a subphrase of N, then M < N; and
(2) fix" x.N < fix"™* x.N for all n.

We induct on N. The variable and zero cases are immediate, and the abstraction, application,
successor, and nullary bounded fixed-point operator cases follow immediately by the induction
hypothesis. The only mildly interesting case involves a bounded fixed-point operator with a
non-zero bound, which follows by a computation and the induction hypothesis:

"[M/x]fix""* y.N

= "fix"" y.[M/x]N"

=[x y.[M/XIN"[y]" [M/x]N"
which by the induction hypothesis:

=M [x]fix" y.N'[y](["M[x]'N")

="M [x](["fix" y.N"/yIN)

=["M"/x]fix""" y.N". O

We use lemma [8.6.8] to show that unfolded bounded fixed points simulate bounded fixed

points:

LEMMA 8.6.9. If T I+ M : T contains no instances of (F-Fix) and M || v, then "M || "v".

Proof. By induction on M | v. The value cases are immediate, while the case (EV-Succ) follows
easily from the induction hypothesis.

Case (EV-Arp): Assume MN || v because M || Ax : 7.M’, N || w, and [w/x]M" || v. By
the induction hypothesis, "M" | Ax: 7."M"", "N" | "w", and "[w/x]M"" || "v". By lemma|8.6.8]
["w'/x]"M"" || "v". We conclude that "MN" |} "v" as desired.

Casg (EV-F1x"""): Assume fix"™" x.M |} v because [fix" x.M/x]M || v. We must show that
fix"" x.M" || "v". Observe that "fix"" x.M" = ["fix" x.M"/x]"M". By the induction hypothesis,
"[fix" x.M/x]M" | "v". By lemma|[8.6.8} "[fix" x.M/x]M" = ["fix" x.M"/x]"M". It then follows
that "fix"™ x.M" || "v", as desired. O

301t is similar to the unrolling operator given by Gunter [Gung2} p. 139], except that we do define "fix® x.M" = fix x.x.
This is to simplify the statement of results below, where we need to talk about configurations that do not use (F-Fix).
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ProposITION 8.6.10. If T + C :: A contains no instances of (F-Fix) and C — C’', then "C" — "C"".

Proof. By case analysis on the rule used for the step C — C’. All cases are obvious except those
involving the functional layer. The cases involving sending values or unquoting processes follow
by lemma The cases involving receiving values follow by lemma(8.6.8 O

COROLLARY 8.6.11. If T + C :: A contains no instances of (F-Fi1x), then it is stabilizing.

Proof. Each step C makes is matched by a step "C" can make. But "C” is stabilizing, so it can
only make finitely many steps. It follows that C can only take finitely many steps, i.e., that it is
stabilizing. O

Next, we show that our two notions of barbs, definitions(7.3.5/and[8.6.5} coincide on stabilizing
configurations. To do so, we will need the fact that denotational equivalence is closed under
multiset rewriting. Proposition 8.6.12]is the denotational analogue of proposition [7.1.3} We remark
that it can be used to generate a long list of semantic equivalences.

ProPOSITION 8.6.12. If T C = AandC — C', thenT + C=C" = A.

Proof. By proposition and compositionality, it is sufficient to show that if £ — &’ is an
instance of arulein P and A + £ = B, then A + £ = £’ :: E. A case analysis on this rule using

propositions[8.5.8}[9.1.1)and [9.1.2] gives the result. The only subtle cases involves value transmission.
We treat these cases explicitly:

Cast (74): ThenT + C :: AisT + proc(a, _ < outputa M; P) = a: TAA. Byproposition
eval(M,v) implies that [I- M : 7]1 = [IF v : 7]1 # L. By eq. (200):
[T + proc(a, _ < output a M; P) = a: 1A A]
=[sT+_<outputa M; P:a:1AA]lL
which by compositionality and proposition
=[sT+_<«outputaM; d < [d/a]P;d > az=a:1AA]L
which by proposition
=[sT+d <« [d/a]P; _«<outputa M; d > az=a:1AA]L
which by eq. (13):
=[;d:Ar_<outputaM; d>aza:tAA]Lo[-;T+[d/a]P=d:A]L
which by compositionality:
=[-;d:A+_<«outputavid—>aza:tAA]|Lo[-;T+ [d/a]P=d:A]L
which by egs. and (2o1):
=[b: A+ msg(a,_ <« outputav;d —>a)=a:7tAA]o [l + proc(d,[d/a]P) :: bA]
which by eq. (202):
= [T + proc(d,[d/a]P), msg(a, _ < outputa M; d — a) =a: 1A A].
This is what we wanted to show.

Cast (75): ThenT + C = AisT,d : A1 a: TAA+ msg(a,_ < outputav; d —
a),proc(c,x < input a; P) == ¢ : C. By assumption, msg(a, _ < output a v; d — a) is well-
formed, so v val. By proposition this implies that [ I- v : 7] # 1. By eq. :

[T,d: A+ msg(a,_ < outputav; d > a),proc(c,x < input a; P)::c: C]

=[T,a:tA A+ proc(c,x < inputa; P)::c:Clo[d: A+ msg(a,_<outputav; d —a)z=a:1tAA],
which by egs. and (201):

=[;T,a:7TAArx<«<inputa; Pu:c:ClLo[-;d: A+ _<outputav;d >az=a:1AA]lL

which by eq. (u3):

=[sT,d:Ara<« _<outputav; d— a; x < inputa; P:c:C]L,
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which by proposition
=[sT,d:Ara<a—d; [v/x]P:=c:C]L,
which by proposition [8.5.8}
=[;T,d: A+ [d,v/a,x]P:c:C]d,

which by eq. (200):
=[T,d: A+ proc(c,[d,v/a,x]P) = cC].

This is what we wanted to show. O

LEMMA 8.6.13. If f : Ax X — B x X is continuous and Tr™ (f)(L) # L, then f(1) # L.

Proof. By corollary[2.3.8}
T (f)(L) = rtgxx( L"(A (b, %) .f (1,x))" (lB,LX)) .

neN
Suppose to the contrary that f(L) = 1, then an induction shows that

(A(b,x).f(1,x))" (Lp, Lx) =1

for all n. The result is now obvious from the definitions of least upper bound and of projection. [

PROPOSITION 8.6.14. If T + C == A is stabilizing, then for all a : A € T, A, C |, if and only
if [T+C=A]Y,.

Proof. Let D be such that C —* D and D is stable. By proposition[5.9.1} I' - D :: A. By induction
on C —* D using proposition[8.6.12} [T+~ C :: A] ||, if and only if [T + D :: A] ||, Analogously,
by lemma C |, ifand only if D |,. It is therefore sufficient to show the result for stable
configurations. Assume without loss of generality that C is stable.

We begin with sufficiency. The configuration C is stable, so no rules can be applied to C. It
follows that if C |} ,, then C | ,. We proceed by induction on the derivation of T + C :: A.

Cask (CoNr-M): Immediate by a case analysison C | .

CasE (CoNr-P): A case analysis on C |, shows that this case is vacuously true.

Cask (ConNEe-C): Then C = D, £ is the composition of some configurations I, + D = A, IT
and I, T, + £ = A,. A case analysis on C |, reveals that the barb is due to a message fact with
carrier a, i.e., it does not involve forwarding processes. The responsible message fact must be
contained in one of the two premisses. Assume that it is contained in D; the case where it is in
& will follow by symmetry. By assumption, a € I', A, so a € I, A,. By the induction hypothesis,
[T, - D : A, II] |} ,. Monotonicity and the Kleene fixed-point formulation of the trace operator

corollary.3.8)imply that T - C :: A | .
Next, we show necessity. We proceed by induction on the derivation of I' - C = A.

Cask (CoNE-M): A case analysis on the message fact gives the result.

Cask (CoNE-P): A case analysis on the process fact shows that the result is vacuously true.
Indeed, if [ || A 1 - + proc(c,P) = (c: A)] U, then [- 5 A+~ P = c: AJLL # L. Because the
configuration is stable, we know that the process must be waiting to receive a message or be an
instance of Q. But in each of these cases, [-; A+ P ¢: A]11L = 1. So it cannot be the case that
[Z | Av-rproc(c,P) = (c:A)] {,.

Cask (ConNEr-C): Then C = D, € is the composition of some configurations I, = D = A,, 1
and ILT, + & = A,. Bylemma[8.6.13} [T, = D = A, II] |, or [ILT, + & = A,] |,. The result
follows readily from the induction hypothesis. O

We claim that if a configuration C has a denotational barb, then there exists a stabilizing
configuration C’ that is denotationally below C and that has the same barb. Intuitively, if C has a
denotational barb on g, then it is because C sent a message on a after a finite number of steps. In
particular, it must be because C sent a message on a after some finite number # of unrollings of its
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fixed points. The stabilizing configuration C’ is then given by replacing all unbounded fixed point
operators in C with bounded fixed point operators allowing n unrollings.

Let the n-fold truncation -], of terms, processes, and terms be an assignment of # units of
potential to each instance of fix x. M. The truncation is inductively defined on the syntax. All cases
are structure-preserving except for:

[fix x.M], = fix" x.[M],.

Conversely, let the bound erasure e(-) replace all occurrences of fix" x.M in a term, process,
or configuration by fix x.M. It is defined by induction on the syntax of terms, processes, or
configurations in the obvious way.

These operations preserve typing:

PROPOSITION8.6.15. If ¥ I- M : T, ¥ ; A+ Puc: CoorT +C = A, thenforalln, ¥ I+ [M], : T,

Vi Ar[Plyc:CoorT +[C], = A, respectively. Conversely, if Vv M : 7, ¥ ; A+ P:c:C,
or '+ C == A have instances of (B-F1x") in their derivations, then ¥ - e(M) : 7, ¥ ; A+ e(P) = c: C,
or T +e(C) = A, respectively.

Proof. By induction on the derivation. O

The denotation of an arbitrary configuration C is the directed supremum of its n-fold trunca-
tions. Each of these truncations is stabilizing by corollary[8.6.11]

PROPOSITION 8.6.16. For all terms ¥ I+ M : 7, processes ¥ ; A — P :: ¢ : C, and configurations
I'-C:A

[¥i-M:7]= | |'[¥w [M],: 1],
neN

[¥;A-Puc:Cl=||'[¥;Ar[P)yc:C],
neN
[T+C=A]= | J'[T+[C]. = A]
neN
Proof. By induction on the derivation of the term, process, or configuration. For terms and
processes, all cases except (F-Fix) follow by continuity and proposition|[8.4.17] We give one of these
cases to illustrate.

Cask (F-Fun): Assume V¥ I+ Ax : 7.M : T — ¢ because W, x : 7 I+ M : 0. By the induction
hypothesis,

[Vx:ti-M:o]=| |'[¥x: 71 [M],:0].

Let i be the natural interpretation of (F-FuN) given by proposition 8.4.17}
[YIFAx:T.M:7—> 0]
==y ([Yx:7i- M:0o])

= f[z] (|_|T [¥,x:7 u—:}][M]no)

- U gy (11 o)
= | "[¥ - Ax: . [M], 7> 0]
= | '"[¥ - [Ax: .M, : 7> o).

Cask (F-Fix): Assume that ¥ |- fix x.M : 7 because ¥, x : 7 I+ M : 7. By the induction
hypothesis,

[Yx:ti-M:7]= | [[[¥x:ti [M],: 7] (203)
neN
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By eq. and corollary2.3.3}
[¥ I+ fix x.M : t]u
=[¥x:ti-M:1]'u
=" Axe[r].[¥x: i M:t](u,x))" (1)
meN

=L ()Lx elr] LIM¥x: 71 [M], Tﬂ(u,x)) (1)

meN neN

=L L Qx e [7].[¥x: 7 [M], 2 7] (w, %)™ (1),

meN neN

which by proposition
= |_|T (Ax e [7].[¥x: Tk [M], = 7](u, x))" (1)
neN

= LY i fix" [M],. : 7]u

neN
= LY - [fixx.M], : 7]u.
neN
For configurations, the cases (CoNF-M) and (CoNE-P) are immediate by the induction hy-
pothesis, while (ConF-C) is analogous to (CuT). L]

We show that C has a barb on a whenever one of its n-fold truncations does. Observe first
that erasing bounds on bounded fixed-point operators does not affect evaluation (cf. [Gung2,
Lemma 4.32]):

ProrosITION 8.6.17. If M || v, then e(M) || e(v).

Proof. By induction on the derivation of M |} v. The base cases (EV-Fun), (EV-Proc), and
(EV-ZERO) are obvious. The remaining cases are:

Caske (EV-Succ): Assume that s(M) || s(n) because M || n. By the induction hypothesis,
e(M) || e(n). By (EV-Succ), s(e(M)) | s(e(n)). But this is exactly e(s(M)) || e(s(n)).

Caske (EV-Fix): Assume that fix x.M |} v because [fix x.M/x]M | v. By the induction
hypothesis, e([fix x.M/x]M) || e(v). Observe that e([fix x. M/x]M) = [fix x.e(M)/x]e(M). So
by (EV-FIx) again, e(fix x.M) || e(v).

CasE (EV-F1x"*"): Assume that fix" ™" x.M |} v because [fix" x.M/x]M | v. By the induction
hypothesis, e([fix" x.M/x]M) || e(v). Observe that e([fix" x.M/x|M) = [fix x.e(M)/x]e(M).
Also observe that e(fix"*" x.M) = fix x.e(M). So by (EV-Fix), e(fix""" x.M) || e(v).

Case (EV-Aprp): Assume that MN || v because M || Ax : .M', N || w, and [w/x]M’ || v.
By the induction hypothesis, e(M) | Ax : 7.e(M’), e(N) | e(w), and e([w/x]M") || e(v).
Observe that e([w/x]M") = [e(w)/x]e(M"), and that e(MN) = (e(M))(e(N)). We conclude
that e(MN) || e(v) by (EV-App). O

Erasing bounds also does not affect barbs or multiset rewriting:
PrOPOSITION 8.6.18. If C |, then e(C) |,.

Proof. By case analysis on C |,. The only interesting case is _ < output a M; P |, when M | v
for some v. It follows by proposition 8.6.17] O

PROPOSITION 8.6.19. If C — C', then e(C) —* e(C’).

Proof. By case analysis on the rule used to make the step. The only interesting cases are those
involving the functional layer:

Cask (73): The ruleis
Va,a;.eval(M,a < {P} < a;),proc(a,a « {M} < a;) — proc(a, P)
The result follows immediately from proposition 8.6.17]
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CaSE ([74): The rule is

Va, A.eval(M,v), proc(a, _ < output a M; P) -
— Jd.proc(d,[d/a]P), msg(a,_ < output av; d > a)
The result follows immediately from proposition 8.6.17]
Cask ([76): The rule is

VA, a,d,c.proc(a,x < input a; P),msg(d, _ < outputav; a < d) -
— proc(d, [d,v/a, x]P)

The result follows immediately from proposition and a substitution property. O

COROLLARY 8.6.20. If C |} ,, then e(C) | ,.

Proof. The first sentence follows induction on the number of steps needed to produce the barb. The
base case is given by proposition[8.6.18) while the inductive step is given by proposition O

PROPOSITION 8.6.21. If T+ C :: A, then foralla: Ae T, A, if C |, then [T +C : A] |,

Proof. By induction on the derivation ' + C :: A.

Cask (CoNe-M): By a case analysison C |,,.
Cask (CoNE-P): By a case analysis on C |,.
Cask (Conr-C): Assume first that C |, because (proc(b,a < b),msg(c,m; ) l.. By

proposition|[8.5.8}
I',a:Awproc(b,a < b),msg(c,m;, ) = [a/b]m, = c:C.

The result then follows by a case analysis on m;, .
If C |, because (msg(a, m*), proc(b, a = b)) |;, then we can apply an analogous argument.
Otherwise, C |, because C is of the form £[D] and D |,. Without loss of generality, D is
contained in one of the two premisses to (CoNEg-C). The result then follows by the induction
hypothesis on that premise, monotonicity, and eq. (202). O

Going forward, we assume that I = C :: A is a configuration Polarized SILL processes, i.e., that
(F-F1x") does not appear in the derivation of C.

PROPOSITION 8.6.22 (Soundness). If I + C :: A, then forall a : A € T,A, C |, if and only
if [T+C:=A],.

Proof. Sufficiency is immediate by propositions and To see necessity, we observe
that by proposition[8.6.16] [T + [C],, == A] ||, for some n. The configuration [C], is stabilizing by

corollary[8.6.11} so [C],, |}, by proposition[8.6.14} By corollary[8.6.20} e([C].) |- But e([C],) =C

because C was assumed not to contain any bounded fixed point operators. So we conclude that
cl,. O

THEOREM 8.6.23. fT-C =D = A, thenT +C ~° D 2 A.

Proof. We start by showing that = is a weak barbed bisimulation. The relation = is closed under
multiset stepping by proposition Proposition implies that for all a € T, A,

CUu - [[FFC::AHUa - [[F'_ID::AHUu - DU(J‘

To see that denotational equivalence is contained in weak barbed congruence, it is then
sufficient to observe that denotational equivalence is a congruence. O
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8.7. Related Work

Atkey [Atkiy] gave a denotational semantics for CP, where types are interpreted as sets and
processes are interpreted as relations over these. Because processes in CP are proof terms for
classical linear logic, the interpretation of processes is identical to the relational semantics of proofs
in classical linear logic [Barg1]. Our jump from sets and relations to domains and continuous
functions was motivated by two factors. First, domains provide a natural setting for studying
recursion. Second, we believe that monotonicity and continuity are essential properties for a
semantics of processes with infinite data, and it is unclear how to capture these properties in a
relational setting. Our transition to domains and functions required polarized interpretations
of types. In the case of recursive types, defining the relating natural families of embeddings and
showing that they satisfied the structural rules required significant generalizations of the techniques
found in [SP82|]. Atkey interpreted process composition as relational composition. Our use of
traces is more complex, but we believe that known trace identities make it tractable. We believe
that the extra complexity is justified by SILLs more complex behavioural phenomena.

Our semantics generalizes Kahn's stream-based semantics for deterministic networks [Kahy4].
A deterministic network is graph whose nodes are deterministic processes, and whose edges are
unidirectional channels. Each channel carries values of a single fixed simple type, e.g., integers or
booleans. Semantically, channels denote domains of sequences of values, and processes denote
continuous functions from input channels to output channels. Our semantics generalizes this
to allow for bidirectional, session-typed communication channels. Satisfactorily generalizing
Kahn-style semantics to handle non-determinism is difficult [Bro88;|KP8s}; Pan8s} |PS92} |Sta87;
Stago], partly due to the Keller [Kel77] and Brock and Ackerman [BAS81] anomalies.

Castellan and Yoshida [CY19| gave a game semantics interpretation of the session m-calculus
with recursion. It is fully abstract relative to a barbed congruence notion of behavioural equivalence.
Session types denote event structures that encode games and that are endowed with an w-cpo
structure. Open types denote continuous maps between these and recursive types are interpreted
as least fixed points. Open processes are interpreted as continuous maps that describe strategies.
We conjecture that our semantics could be related via barbed congruence.

Kokke, Montesi, and Peressotti [KMP19| gave a denotational semantics using Brzozowski
derivatives [Brz64] to a proofs-as-processes interpretation between classical linear logic and the
m-calculus. It does not handle recursion or the transmission of functional values.

8.8. Summary of Interpretations

For ease of reference, we give all of the semantic clauses (including omitted clauses).

8.8.1. Clauses for Term Formation (section[5.A.1).
Rule (I-{}):
[Pra<{P}<a;:{a:A<a;:A;}]=upo[¥;a;:A;+Pza:A] (142)

Rule (F-VAR):
[Wx:ti-x:t]u=n""u

Rule (F-FI1x):

3 g
9 E

[¥ifixx.M:t]u=[¥x:71- M:7]"u
Rule (F-Fun):
[PiFAx:T.M:7— 0]u=up(strict(Av e [z].[¥x: T M:0o][u]|x~v]))
Rule (F-App):

[Y-MN:oJu=down([¥YI-M:7—c]u)([¥IFN:7]u)

]
=

Rule (F-Z):
[¥I-o:nat]u=o0
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Rule (F-S):
L if [¥I-M:nat]u=1
Y- s(M) : natu = 4
[[ s(M) : matu {n+1 if [V - M :nat]u=n (149
8.8.2. Clauses for Process Formation (section[s.A.2).
Rule (Fwp™*):
[Psa:Ar-a—bzb:Alu={(a:(A)?, b:(A)?P) (3)
Rule (FwD™):
[Y;a:Ara<b:zb:AJu=(a: (AP, b:(A)P) (114)
Rule (Cur):

[¥;A,A,Fa<P;Quc:Clu=[¥;a:A A +Qu=c:Cluo, [¥;A, +P:a:Alu
Rule (1R):

[¥;-+closea:a:1]ul = close (122)
Rule (1L):
[¥;A,a:1+-waita; Puc:Clu(6,a",¢7)
d,close, ¢ ifa* = close
i {E(M”((Sﬂi),i,{C}"(L,c‘)) otherwise (23
where (8,¢) =[¥;ArP:uc:Clu(d*,c)
Rule (|R):

[W;Arsendashift; Pra:|AJu=(idx(a:up))o[¥;A+P:a:Alu (158)
Rule (JL):
[¥;A,a:lArshift«recva; Puc: Clu(6%,a",¢c7)
i {(6, [a].c) ifa* = [a}]
({A)P(8%, 1), L,{C)?(1,c7)) otherwise
where (8,a,¢)=[¥;A,a: A+ Pzc:Clu(d,al,c7)
Rule (1R):
[¥;Arshift < recva; Pua:tAJu(d,a”)
_ {(a, [a]) ifa = [a;]
({A)P(8%,1),1) otherwise
where (8,a) =[¥; A+ P:a:]u(d%,ay)

(204)

Rule (1L):
[¥;A,a:1tA+send ashift; P:c:Clu=(idx (a:up))o[¥;A,a:A+P:zc:Clu (205)
Rule (&R):
[¥;A-ak Pra:o{l: A}, Ju(6%(a)),) = (8, (k [ak])) [166)
where [¥; A+ Pua:Aflu (6%, a;) = (6, ax)
Rule (&L):
[¥;Aa:o{l: A}, +casea {I =P}, =c:Clu(8,a",c")
i {(&(z,[m),c) ifa* = (I, [a}])
((A)P (8%, 1), L{C)P(L,c7)) otherwise
where [V ;A,a: A+ Pric:Clu(6%,a],¢7)=(8,a;,¢)

(267)
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Rule (&R):
[¥;Arcasea {I =P}, =a:&{I:A1},,Ju(6,a”)
i {(&(z,[ad)) ifa” = (I, [a7])
({(A)P(8*,1),L) otherwise
where [¥;A,a: Ay +P:c:Clu(8*,a;) =(6,a;)
Rule (&L):

¥W;5Aa:&{l:A1}, Faks Puc:Clu(6",(a) )er,c”) = (6, (k,[ar]),c)
where [W;A,a: Ap+P:c: Clu(6%,a;,¢7) = (8, ax,c)
Rule (®R):
[¥;A,b:Brsendab; P:a:B® Alu(8*,b", (ag,ay))
[¥;A+Pxa: Alu(d",a3) = (6, a)
- (0..[(b0)]) where | B
Rule (®L):
[Y;Aa:BRA-b<recva; Puc:Clu(d,a",¢c7)
_ {(6, [(b,a)],¢) ifa = [(b5,a))]
((A)P(8%,1), 1,{C)?(L,c7)) otherwise
where [¥;A,a: A,b:B+P:c: Clu(6%,al,b),c7)=(8,a,b,¢)
Rule (—R):
[P;A+-b<recva; Pia:B— Alu(8*,a7)
i {(a,ub,a)]) ifa” = [(b7,a;)]
({A)P(8%,1),1) otherwise
where [¥;A,b: B+ P:a: Alu(8*,b,a;)=(0,b,a)
Rule (—L):
[¥;Ab:Bya:B— Arsendab; Pxc:Clu(8%,b", (a5, a%),c)
[¥;A,a:A+Pzc:Clu(d%,al,c7)=(8,a)

=(6,[(b,a)],c) where { (BY (b, a3) = b

Rule (AR):
[¥;A+_<«outputaM; P:a:tAAJu(d*,a”)
~ {(6,(1/,[‘1])) if[YFM:tu=v+1
((A)P(8*, L), (t A AP (L,a7)) if[¥YH-M:t]u=1
where [¥; A+ P:a:Alu(d™,a”) =(6,a)
Rule (AL):

[P;A,a:TAA-x < inputa; P:c:Clu(6%,a",¢7)
_ (6. (v, [a]),0) ifa* = (v,[a5])
~ |l ((A)P (8%, 1), L,{C)P(L,¢7)) otherwise
where [V, x:7;A,a: A-Puc:Cllu|x—v](87,at,¢7)=(8,a,¢)

245

(206)

(207)

(130)

(208)

(209)

(150)
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Rule (oL):
[¥;A,a:75A+ _ <« outputa M; P:c:Clu(é%,a",c7)

(3, (v, [a]),0) f[YFM:tlu=v+1
(AP (8%, 1), (12 A)P(a*, 1), {C)P(L,¢7)) if[¥IFM:t]u=1
where [¥;A,a: A+ Pzc:Clu(d%,a%,¢7)=(8,a,¢)

Rule (oR):
[¥;A+x<inputa; Pza:12AJu(8%,a7)
i {(&(v, [a]))  ifa = (v.[a;])
({A)P(8%,1),1) otherwise
where [¥,x:7; A+ Pza:Al[u|x v~ v](8*,a;) =(8,a)
Rule (p*R):

[¥;Arsend aunfold; P:a:pa.Alu
=(idx (a:Foldoup))o[¥;A+P:ua:[pa.Ala]AJuo (id x (a” : Unfold))
Rule (p*L):
[¥;A,a:pa.Ar unfold < recva; P:c: Clu(6%,a",¢c7)
) {(a, Fold([a]), ¢) if a* = Fold([aZ])
({A)P(6%, 1), L,{C)P(1,c7)) otherwise
where (8,a,¢c) =[¥; A, a:[pa.Ala]A+P:c: Clu(6%,al,c7)

Rule (p™R):
[¥; A+ unfold < recva; P:a:pa.AJu(d*,a”)
) {(5, Fold([a]))  ifa™ = Fold([a]])
({(A)P(8%,1),1) otherwise
where (8,a) =[¥Y;A+P:za:[pa.Ala]Alu(d*,a])
Rule (p~L):

[¥;A,a:pa.Arsendaunfold; P::c: Clu
=(idx (a:Foldoup))o[¥;A,a:[pa.Aja]A+ P:c:Cluo(idx (a* : Unfold))
Rule (E-{}):
[¥;a;:Aj-a«{M}«a;za:A]l=downo[¥i-M:{a:A<«a;:A;}]
8.8.3. Clauses for Type Formation (section|s.A.3).
Rule (C1):
[E - 1type.] = diagz;{L  close}
[E - 1type;]" = diagz {1 & close}
[E - 1type]]” = diagz) Tstab

-
™)
—

1typel)* =id

(1]

{
{
{

}_
Fitypel) =T
'_

[89]

1type] ) =,

(210)

(211)

(188))

(212)

(213)

E

= = =
= - =
o] @)

= =
8 &
o o)

=
5
=



Rule (CVAR):

Rule (Cp™):

Rule (Cp7):

Rule (C|):

Rule (C?):

8.8. SUMMARY OF INTERPRETATIONS

o

[E, a typef - a typel] = ng
[E, a typel + a typel | = n2°
[E, a type! + a typel]™ = 5
B, a typel + a typef)* =id

{
(8, a typel + atypel)™ =id
(

[1]

,a typel - a typef)? =

_ _ ¥
[E+F pa.Atypel] = ((-).[E, a typel - Atypel])

[E
[

11 [n

11

{
{
{

1

_ t
Fpa.Atypel " = ((-).[E, a type] - Atypel]*)

- pa.Atypel]” = ([E, a type! - Atype!]")'

Fpa.Atypel )" = ((-) (8, a typel + 1‘1'5}’P‘3.:}+)Jr

- pa.Atypel)” = (down (2, a type! - A typel) ™)'

+ pa.Atypel)? = Fold o ([pa.A/a]A)? o § o (Unfold x Unfold)

_ ~ _ 1
[E+ pa.Atype; | = ((-).[E, a typel - Atypel])

[E
[E

1]

11

{
{
{

[

_ _ _ .
Fpa.Atype; " = ([E, a type, + Atype,]")

o _ _ 1T
Fpa.Atype; | = ((-)L[E, o type; + Atype |7)
F pa.Atype; )" = (down * (E, a type, + A type;V)T

- paAtype])” = ((-)1(E a type] - Atype;) )’
+ pa.Atypel)? = Fold o ([pa.A/a]A)? o § o (Unfold x Unfold)

[Er{Atypel] =[E+ Atype],
[ErlAtypel]" =[E+ Atype, ]}
[E+Atypel]|” =[E+ Atype] |~
(Er lAtypel)” = (-)L(E - Atype)”
(E+ |Atypel)” =down * (E+ Atype; )~
(B JAtypel)? = () (E+ Atype )P -6

[E+tAtype; ] = [E + Atypel ],
E+tAtype; " = [E+ Atype]]*
[ErtAtype,]” = [E+ Atype, ]|
(E+ tAtype;)* = down * (E + A type; )"
(B tAtype])” = (<) (E+ Atype)”
(Er1Atype;)? = (=) (E+ Atypel )P -4
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Rule (Ca):

8. DENOTATIONAL APPROACHES TO EQUIVALENCE

[E+-ea{l: A}, typel] = PIE+ A typel ],
leL

Fo{l: A} typel T = DIE - Aj typel |
leL

[
[Er@{l: A}, typel]” =][E+ A typel]
leL

(Erof{l: A} typed)" = D(-)(E+ A type])”
leL
(Ero{l: A}, typel)™ = diag(down * (E - A; typel) ™).,

1

03]

(Ere{l: A}y type)E((k [ag]), (a))ie) = (k. [(E - Ay type] )i (ag, ap)])

Rule (C&):

[E-&{1: A1}, type, | =ED[E - A type, ],

leL
[Er&{1: A1}, type;|" = H[E A type] |*
leL
[E+&{1:Ar} o types]” = DIE - A; types ]|
leL

(B &{1: At} type;)" = diag (down + (2 + A; type) "),

(Er&{l: A1} typer)” = D(-)(EF A typeg)”
leL

(B F &{1: At} typeg )7 ((a )iers (ko [ai])) = (k. [{E + Ak type] )] (a, ar)])

Rule (CQ):

Rule (C—):

=
m m

[1]

[1]

+A® Btypel)” =down * ({E + Atypel)” x (E + Btypel

[ (1

03]

ErA®Btype] ] = ([E+ Atype] x [E + Btypel]),

~A®Btype]" = ([E+ Atype]]" x [E+ Btype]]"),

FA®Btypel | =[E+ Atypel]” x[E ~ Btypel ]~

- A®Btype])" = (=), ({E+ Atypes)" x (E - B type)™)
\-

)

{(ErA®Btypel)y([(a",07)],(a7,b7))

[({(E+ Atypeg)i(a®,a™), (E - Btypel){(b",b7))]

[ErB— Atype] = ([E - Btype] x [E - Atype]),
[E+B— Atype]|" =[E+ Btypel]” x [E+ Atype;|*
=B — Atype; | = (=)L ([E - Btypel]" x [E+ Atype,])
+ B — Atype; )" =down * ((E+ Btypel)™ x (E+ Atype;)")
=B — Atype])” = (<)L ((E+ Btypel)" x (E+ Atype;)”)

(8- B— Atypes) (b7 a+), [(b%,a7)])
= [({2 - Atype])(b%,b), (E + Biype! i (a™,a"))]

=
o
=1

= =3 =
AN
E .ﬁ .@

= =
5 E

(226)
(227)
(228)

(229)
(230)

(231)

= E = E
Egga

=
S
(e

(237)



8.8. SUMMARY OF INTERPRETATIONS

Rule (CA):
[E-1tAAtypel] = [E+ Ttypes] ® [E+ Atypel].
[EFtAaAtypel " =[EF rtypes | ® [E+ Atypel [}
[Er-tArAtypel]” =[E+ Atypel]”
(ErTAAtypel)" =idiz s ype,) ® (=)L (E - Atypel)*
(ErF 1A Atypel)” =down * 7, * (E + Atypel)”
(ErraAtypel)i((v[a']),a7) = (v, [(E+ Atypel)[(a”,a7)])
Rule (C2):
[Er1oAtype; ] =[E+ Ttypes] ® [E - A type, ],
[Er1oAtype;|" =[E+ Atype; "
Er1oAtype |  =[E+ Ttypes| ® [E+ Atype]]]
(EF 7o Atype; )" =down * 7, * (E + Atype; )"
(B 7o Atype;)” =id[zrtype,] ® (—)L(E - Atype)”
(Er 12 Atype){(a”, (v.[a7])) = (v, [(E+ Atypeg){(a®,a7)])
Rule (T{}):

[Er{ac:A;<a, :A,....a,: A} types]

=(-).0 diag[m] (JEC[(E+ A, type).,....(E+ A, type), = (E+ A, typeg).])

24

o

N N
N

=
=

= N
N N
2]

(141)

Rule (T—): When the derivation of E - 7 — ¢ type; respectively does and does not use (T{}):

[E - 7~ o type] = diag ((DCPO,, [[E + Ttypes] — [E + o typec]]),)

[E+ 7 otype] = diagg ((Stab,, [[E - T type;] - [E + o typec]]),)

(233)
(132)






CHAPTER ¢

Equivalence, Applied

In this chapter, we apply our denotational techniques to show various program equivalences.
In particular, we show that our denotational semantics satisfies a collection of #-style properties
and commuting conversions in section[9.1] We characterize the denotations of purely positive and
negative types in section[9.2] In section|9.3} we revisit example[s.3.10|to show that flipping the bits
in a bit stream twice is equivalent to forwarding the bit stream. We show that the computational
interpretation of the identity expansion of intuitionistic linear logic coincides with forwarding in
section[9.4} Finally, we study binary arithmetic in section|.5}

Many of the equivalences involve manipulating string diagrams for process compositions in the
traced monoidal category Stab, . Given processes ¥ ; A, -P:a:Aand¥;a:A,A, -Q=c:C
and an environment u € [¥], the morphisms [¥ ; A, - Pz a:AJuand [¥;a: A A, - Q =
¢ : C]u respectively denote the string diagrams

[A]* [A]
(A1 [4.] K ™

[A]- [A] [Cl™ [C]

Here, we've abbreviated the multiple input and output wires associated with each component of
A, and A, by triple lines. In general, we will group together wires that are not of interest in this
manner. We will also generally elide the object labels on wires: they will be clear from context.

Using these conventions, the composition ¥ ; A,, A, - a < P; Q :: ¢ : C then denotes the
string diagramf]

We adopt some convenient notation for string diagrams denoting compositions of processes. We
are free to position the positive and negative projections anywhere along the wire thanks to the
sliding axiom. As a result, we use red dashed wires “------ ” to represent wires with an (implicit)
positive projection, and blue dashed and dotted wires “------- -” for wires with an (implicit) negative

projection. We may label these wires with their associated type. In light of theorem [2.3.6} we also

'In this diagram, we have implicitly used the vanishing axiom to depict fixing the component [A]* x [A] as fixing
the components [A]" and [A]~ separately.

251
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allow ourselves a significant liberty with the layout of our string diagrams[] Consequently, we may
depict the above diagram as follows:

9.1. #-Style Properties

Régle trés appréciée des étudiants, car elle
sert a étoffer des théses peu fournies : un
chapitre sur « # » améne son lot de
complications techniques prévisibles et
fastidieuses, 100% de transpiration, 0%
d’inspiration; bref, cela consomme du
papier.

Jean-Yves Girard [Giro6, p. 166]

n-style properties capture the fact that we have enough communication destructors for each
communication constructor. They correspond to the principal or key cases of the cut-elimination
algorithm that drives communication in Polarized SILL. Though their proof requires no inspiration,
it also requires no perspiration (cf. the epigraph). This is because each #-style property follows
from an easy manipulation of string diagrams.

PROPOSITION 9.1.1 (#-style Properties). The following semantic equivalences hold for appropri-
ately typed processes P, Q, P, and Q;:

Y;A+P=a<«closea; waita; P:c:C (244)

¥ ;Ar a< P; Q=a < (send ashift; P); (shift < recva; Q) :c:C (245)

¥; A+ a< P; Q=a <« (shift < recva; P); (send a shift; Q) :¢c: C (246)
VY;Ara< P; Qr=a<« (ak; P);casea{l=Q;}=c:C (247)
VY;Ara< P; Q=a<casea{l="P}; (ak; Q)=:c:C (248)
¥Y;Ab:Bra< P;Q=a< (sendab; P); (b« recva; Q):c:C (249)
¥Y;Ab:Bra< P;Q=a<« (b<recva; Q); (sendab; P):c:C (250)
VY;Ara< P; [M/x]Q=a<« (_<outputa M; P); (x < inputQ; )=c:C (251)
VY;Ara< [M/x]P; Q=a <« (x < input P; ); (L« outputa M; Q) =c:C (252)
¥;Ara<« P; Q=a < (send aunfold; P); (unfold < recva; Q) =c:C (253)

¥;Ara<« P; Q=a < (unfold < recv a; P); (send a unfold; Q) =¢: C (254)
Equivalences (251) and (252)) are subject to the side condition that [¥ I+ M : Tlu # 1 for all u € [¥].

Proof. Each equivalence follows by a manipulation of string diagrams. We show the cases for cuts
along positive channels. The cases for cuts along negative channels will follow by symmetry.

2In all cases, our diagrams will be morally correct, i.e., their wires and boxes can be rearranged into technically correct
diagrams.
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We start with eq. (244). Fix some arbitrary u € [¥]. The composition [¥ ; A + a «
close a; wait a; P :: ¢ : Cu denotes the string diagram

| close a |

| wait a; P

where the boxes respectively represent the morphisms [W ;- +close a: a:1]uand [¥;A,a:1+
wait a; P i ¢ : Clu. By eq. (119), the positive wire is the identity morphism, while by eq. (120), the
negative wire is the constantly bottom morphism.

| close a

waita; P

By eq. (123)), we recognize the composition in the shaded areaas p™ o [¥; A+ Pz c: Cluop,so
the diagram is equal to:

where the box P is the morphism [W ; A + P :: ¢ : Cu. But the trace is fixing the monoidal unit,
so by vanishing the diagram is equal to:

We conclude that
[¥;A+a<closea; waita; Pic:Clu=[¥Y;A+P:c:Clu
as desired.

Now we show eq. (243). Fix some arbitrary u € [¥]. The composition [¥ ; A,, A, - a <
send a shift; P; shift < recv a; Q :: ¢ : C]u denotes the string diagram

send a shift; P [

\
i
i
i
1
I

A}
1

B il | i e
, s

where the boxes respectively represent the morphisms [¥ ; A, + send a shift; P a: |A]u and
[¥; A, a: LA F shift < recv a; Q = ¢ : Clu. Expanding eq. (158), we see that this diagram is
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equal to:

T [~ up -~

s

where the box P is the morphism [¥; A, - P :: a : AJu. By diagram]o]and eq. (i55), (A)" oup =
up o {A)*. Using this fact and rearranging the diagram, we get:

P

i | g
i
i
i
i
1
1

P

where the box Q is the morphism [¥ ; A,,a: A+ Q :: ¢ : C]u. Taking into account the definition
of (LA)™ (eq. (156)), the diagram is equal to:

______________

This is what we wanted to show.
Next, we show eq. (247). The composition [¥ ; A,, A, + a < a.k; P; case a {I = Q;}j¢; =
¢ : C]u denotes the string diagram

a.k; P

1
1
1

1
1
1
1
1
1

where the boxes respectively represent the morphisms [¥ ; A, + a.k; P a: &{l = A} 1 Ju and
[V;A,,a:0{l = A} Fcasea {l = Q}er = ¢: Clu. Expanding the definition of a.k; P,
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the above diagram is equal to:

P

|casea {l = Q;}eL

where thebox Pis [¥; A, - P = a: Ay Ju. Observe that
(@{l = A;}1er) o oup = Foup o (Af)".

So the diagram is equal to:

p
.... 4 Tk L F====-_| /K

casea {l = Q}rer

= J

P
----- - ﬂk/ S

where the box Qi is [¥ ; A,,a: Ax + Qy = ¢ : Clu. Expanding the definition of the negative
projection (eq. (163)) and observing that

(@{l = A1}ier) o Foup = ix o{Ag)7,

the diagram becomes equal to:

S
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where negative projection is now (Ax)~. Rearranging this diagram to place 14 to the left of 714, we
observe that they cancel out, and the diagram then becomes:

| P

______________

This is what we wanted to show.

We now show the #-style property for tensors, i.e., eq. (249). Fix some arbitrary u € [¥]. The
composition [¥ ; A,,A,,b:B+ a < send a b; P; b < recv a; Q = ¢ : C]u denotes the string
diagram

send a b; P

Bl R (]

(255)

_____________________

where the boxes respectively represent the morphisms [¥; A,,b:B+sendab; P::a:B® Alu
and [¥;A,,a:B® A+ b < recv a; Q :: ¢ : Clu. We begin by expanding the definitions of each

box. By eq. (130), the diagram

send a b; P

is equal to

id ({B)?, (B)?) id up ((BY" x{A)" )L ——

In this diagram, we use the identity morphism as a convenient notation to shuttle between the two
roles of the categorical product: A x B is simulatenously the tensor of A and B (represented by a
pair of wires) and the categorical product of A and B (represented by a single wire). By diagram 2]
({B)* x{A)*)Loup =upo ({B)* x{A)*), so the sequence of three morphisms in the bottom right
corner can be rewritten to give:
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i.e,, the diagram

P -~
id ((B)?,(B)?)| ><] id up

By eq. (131), the diagram

b<recva; Q[

is equal to

;w up pe-o-

which by eq. is equal to

id [\ 1.7]id[—
N\ o[

- J

By sliding and action, we can move the rightmost up the to left of b < recv a; Q, and the diagram
then simplifies to:

P ~~
— id (B, (B | >« id
—id [\ L] d
AN
- /
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We can now use vanishing and action to shift the identity morphisms to be side by side, and we
observe that they cancel out. The diagram becomes:

Recall that (B) is well-woven and that [¥ ; A,,a:A,b:B + Q = c¢:CJu is a morphism of
CYO(Stab). This implies that

[¥;A,,a:Ab:BrQuc:Cluocidigy =[¥Y;A,,a:Ab:Br-Quc:Clu,

i.e., that the above diagram is equal to:

This is exactly what we wanted to show.

Next, we show eq. (251). Fix some environment u € [¥]. By assumption, [¥ I+ M : t]u = v for
some v # 1. The composition [¥ ; A,, A, - a < _ < output a M; P; x < inputa; Q::¢c:Clu
denotes the string diagram

_<outputa M; P|

I |x<inputa; Q
1
1

.. — — S

_____________________

where the boxes respectively represent the morphisms [¥ ; A, - _ < outputa M; P a: 1A Alu
and [¥;A,,a:TAAF x < inputa; Q :: ¢: Clu. Expanding eq. (150), this diagram is equal to:

x
T
5
©
c
+
2
e

—— -
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where ¢ = Aa € [A].(v,[a]) and P is the morphism [¥ ; A, = P = a: AJu. Observe that
(T AA)T o =¢o(A)7, so after sliding, the diagram is equal to:

By semantic substitution (proposition 8.5.6)),
[W,x:7;A,,a:A-Quc:Cllu|xrv]=[¥;A,a:A+[M/x]Q:c:Clu.

Expanding eq. (151), we can simplify the bottom portion of the diagram to get:

_______________________

where the box [ M/x]Q is the morphism [¥; A,,a: A+ [M/x]Q = ¢ : C]u. Finally, observe that
(T AA)” o ¢ ={A)7, so the diagram is equal to to

______________

This is what we wanted to show.

Equation is the final #-style property that we must show. Again, fix some arbitrary
u € [¥]. The composition [¥ ; A,, A, + a < send a unfold; P; unfold < recva; Q = ¢c: Clu
denotes the string diagram

| send a unfold; P [

where the boxes respectively represent the morphisms [¥ ; A, + send a unfold; P :: a: pa.Afu
and [¥; A,,a: pa.A - unfold < recv a; Q == ¢ : CJu. Expanding eq. (188), this diagram is equal
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to:

........... -| Unfold F Foldoup -~

unfold < recv a; Q

'
1
1
1
\

where P is the morphism [V ; A, + P :: a : [pa.A/a]A]u. By diagrams[2and[185]

{pa.A)* o Fold o up

=Fold o () {[pa.A/a]A)* o Unfold o Fold o up
=Foldo (=) {[pa.A/a]A)" o up

=Foldoup o ([pa.A/a]A)".

Combining this fact with sliding, the above diagram is equal to:

g {Unfold——— —T 777777 ~

--{Foldoup | |

A Fold o up =1

_____________________

where Q is the morphism [¥; A,, a : [pa.A/a]A+ Q :: ¢ : C]u. By diagram[18s]

{pa.A)” oFold o up
= (Fold o {[pa.A/a]A)" o down o Unfold) o Fold o up
= Fold o ([pa.A/a]A)".

So the diagram is equal to

~— Unfold = — """ 77777

_____________________
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By sliding the fold morphism to the left of the unfold morphism, we see that they cancel out and
the diagram becomes:

______________

This is what we wanted to show. O

Proposition|9.1.2] captures the semantic identities that arise from the commutation cases in the
cut-elimination proof.

PROPOSITION 9.1.2 (Commuting Conversions). The following semantic equivalences hold for
appropriately typed processes P and Q:

¥ ; A+ a < P; (send ¢ shift; Q) =send cshift; a < P; Q= c:|C (256)
W; A,b: 1B+ a < (send b shift; P); Q =send bshift; a < P; Q:c:C (257)
Yi;Ara<P;(ckiQ)=ckia<P; Quc:a@{l:Ci}it (258)

Vi Ab:&{l:Bj}er-a<« (b.ks P); Q=bk;a< P; Quc:C (259)
¥Y;Ad:Dra< P;(sendcd; Q)=sendcd; a«< P; Q=zc:D®C (260)

¥Y;A,d:D,b:D®Bra<« (sendbd; P); Q=sendbd; a< P; Q:c:C (261)
V;Ara< P; (_<outputcM; Q)=_<«outputc M; a< P; Quc:7AC (262)
VY;Ab:1oBra< (_<outputb M; P); Q=_<«outputbM; a< P; Q:c:C (263)
¥ ; A+ a <« P; (send c unfold; Q) =send c unfold; a < P; Q::¢: pa.C (264)
¥;A,b:pB.B+ a<« (send bunfold; P); Q =send b unfold; a < P; Q:¢:C (265)

Equivalences (262)) and ([263) are subject to the side condition that [¥ I+ M : t]u # L for all u € [¥].

Proof. By string diagram manipulations.
We start with eq. (256). Let u € [\¥] be arbitrary. The composition [¥ ; A, A, + a «
P; (send c shift; Q) :: ¢ : |C]u represents the string diagram

===l —
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where the morphisms are respectively [¥ ; A, - P a:AJluand [V ;a: A A, - Q : c: |Clu.
Expanding the definition of eq. (158), the diagram is seen to be equal to:

pom— o
i i
"7 I I
— Q :
e
o —
B 1
By tightening, this diagram is equal to
........... P = ———
’ T
Spy=s
T —T—— up
S Ao

We recognize it as the diagram for [ ; A,, A, + send c¢ shift; a < P; Q == ¢ : |C]u. It follows that

[¥; A, A, +a< P;(send cshift; Q) ::c: |Clu
=[¥; A, A, +send cshift; a < P; Q:c: | Clu.

But u was arbitrary, so we conclude eq. (256).

The proof of eq. uses an analogous sequence of diagrams as the proof of eq. (256)), except
that all up morphisms are replaced by Ac € [C]. *([c]). Analogously, the proof of eq. replaces
up morphisms by Ac € [C].(v,[c]) wherev = [¥ I M : 7]u.

The proof of eq. is only marginally more complex. Fix some arbitrary u € [¥]. The
composition [¥; A, A,,d: D+ a <« P; send cd; Q :: ¢: D® Clu denotes the string diagram

___________________

where the boxes respectively represent the morphisms [¥; A, - P a: AJluand [¥;A,,d: D+
send ¢ d; Q :: ¢ : D ® CJu. From top to bottom, the wires on the left and right rides of send ¢ d; Q
correspond to the channels a : A, A,,d : D, and ¢ : D ® C. We begin by expanding the definitions
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of each box. By eq. (130), the diagram is equal to:

=
A

___________

We recognize this as the diagram for [¥; A,,A,,d:D+sendcd; a < P; Q : ¢: D® CJu. This
is what we wanted to show.

Finally, we show eq. (264). Let u ¢ [¥] be arbitrary. The composition [V ; A,, A, + a <
P; (send c unfold; Q) :: ¢ : pa.C]lu represents the string diagram
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where the morphisms are respectively [¥ ; A, - P a: AJuand [¥ ; A, + send c unfold; Q =:
¢ : pa.Clu. Expanding eq. , we get the diagram:

P

Unfold —1 | —t— Fold o up

___________

We recognize it as the diagram for [V ; A,, A, + send c unfold; a < P; Q = ¢ : pa.Cllu. This is
what we wanted to show. O

9.2. Purely Polarized Session Types
We say that a session type A is purely positive if it is constructed using only positive types. This
means that A is generated by the grammar
AArs=alpaAlr|e{l: A} |A®A |TAA
where all session types are positive, i.e. that its derivation uses only the rules (CVAR) (on a positive

variable), (Cp*), (C1), (C®), (C®), and (CA). A session type A is purely negative if it is constructed
using only negative types. This means that A is generated by the grammar

AAr=alpa.A|&{l: A} |T2A
where all session types are negative, i.e., if it is generated using only the rules (CVAR) (on a negative
variable), (Cp™), (C&), and (C2). We remark that B — A is not purely negative because the type B
must be positive. We say that a type is purely polarized if it is purely positive or purely negative.
Purely polarized types capture unidirectional communication on channels: the direction of
communication never changes. This fact is reflected in our semantics: if a type is purely polarized,
then it has a trivial negative aspect, and vice-versa. Recall that we write L for the initial object.
PROPOSITION 9.2.1. If B + A type, is a purely positive session type, then
(Er Atype,)" =id: [E+ Atype] » [E + Atype,]*
and [E + Atype, ] (L,...,1) 2 L. If B + Atype, is a purely negative session type, then
(E+ Atype,)” =id:[E+ Atype,] > [E+ Atype,]”
and [A]*(L,..., 1) 2 1.
Proof. Assume first that E — A type, is purely positive. We proceed by induction on the derivation,
noting that every subderivation of & - A type; is of a purely positive type.

Cask (CVAR): Immediate by eqs. (168) to (171).
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Cask (Cp*): Assume that E - pa.A type] because B, « type] + A type]. By the induction
hypothesis, [E, o typel + A typel ] = [E, a type] + A typel ]*. It is then immediate by eqs.
and that [E - pa.Atypel ] = [E + pa.Atypel]*. By the induction hypothesis, (Z, « type] +
Atypel)* = id. It then follows from eq. and functoriality that (E, a type! + A typel)* =
id. By the induction hypothesis, [E, « typel + A typel ] (L,...,1) = 1. It follows that the w-
chain used to construct [E + pa.A typel ] (L,..., 1) is constantly 1 (see the remarks preceding

proposition and proposition , so its colimit is 1. But this colimit is exactly [E +
pa.Atypel ] (L,..., 1), so we conclude the result.

Caskt (C1): Immediate by eqs. (116)) to (119).

Cask (Ce): The first part is immediate by eqgs. (160)), and (163), the induction hypothesis,
and functoriality. The second part is immediate by eq. (162), the induction hypothesis, and the fact
that L x .- x L2 1.

Cast (C®): The first part is immediate by egs. and (125), the induction hypothesis, and
functoriality. The second part is immediate by eq. (126)), the induction hypothesis, and the fact that
1lxl=l1.

Cask (CA): The first part is immediate by egs. and (145), the induction hypothesis, and
functoriality. The second part is immediate by eq. and the induction hypothesis.

The proof for purely negative types is analogous. O

We can use proposition[9.2.1and eqs. (113) and (114) to characterize forwarding on purely
polarized channels:

COROLLARY 9.2.2. If A is purely positive, then
[[sa:Ara—-b=b:A]L(a*,_)=(a",a").
If A is purely negative, then
[[5a:Ara<b=b:AJL(L,b7)=(b",b7).

9.3. Flipping Bit Streams

In example[5.3.10} we defined a process £11ip that flips bits in a bit stream. In this section, we
show that flipping bits in a bit stream twice is semantically equivalent to forwarding the bit stream
unchanged. Our approach involves a coinduction principle due to Pitts [Pitg4], as presented by
Abramsky and Jung [AJ9s} § 5.4.4]. We illustrate this coinduction principle using a simpler example
in section we show that the positive projection of bit streams is given by the identity function.

Recall that £1ip was given by

3i:bits o « {fix f.o « {unfold « recv i;
send o unfold;
case i {0=>0.1; 0« {f} «i
|1=00; 0« {f}«i}
} < i}« xuo0:bits,

and that the bit stream protocol was specified by the session type

bits=pB.@{0:5,1:}.
Concretely, we show that]

-;i:bitstc« flip; flip=i > o0:0:bits.

3Note that we are using the fact that process judgments are closed under renaming of symbols to implicitly rename
the shared channel to ¢ in the composition ¢ < £1ip; £1ip.
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9.3.1. Reasoning About Bit Streams. When computing denotations of processes, it is gen-
erally useful to first determine the denotations of the session types they use: they will form the
domains and codomains of the process denotations. When working with recursive types, this also
involves computing the denotations of their unfoldings.

The unfolding of bits is the session type

BITS = ®{0 : bits,1:bits].
The types bits and BITS denote the dI-domains:

[bits] =FIX (X~ ((0:X,)®(1:X,)),) [BITS]=(0:[bits],) e (1:[bits],)
[bits]" =FIX(X~ ((0: X,)®(1:X,)),) [BITS] = (0: [bits]]) @ (1: [bits]})
[pits]” ={1} [BITS] ={1}.

These dI-domains are equipped with the following canonical isomorphisms:
Unfold : [bits] — [BITS],
Unfold® : [bits]* — [BITS]}
Unfold™ : {1} = {(0:1,1: 1)}
Their respective inverses are Fold, Fold™, and Fold™.
Remark that [bits] = [bits]* and [BITS] = [BITS]*. Theorem [2.2.53|and the remarks

preceding proposition [4.2.11] explicitly characterizes their elements as infinite tuples. We use the
following suggestive notation for the elements of [bits] = [bits]*:

=1 = Fold([1]), O:a = Fold([(0, [a])]), 1z = Fold([(1, [«])])-

We show that (bits)* = id. This fact is a special case of proposition|y.2.1 However, we prove
it directly to illustrate the coinduction principle on dcpos. We will use this coinduction principle
in more complex settings later.

Definition 9.3.1 ([Pito6, p. 70]). A pointed dcpo constructor ®(«) is a formal expression built up
from the variable « and from constants K ranging over objects of DCPO, using operators (-),
(lifting), x (product), ® (smash product), and @ (coalesced sum). A pointed dcpo constructor @ ()
induces a functor ® : DCPO, — DCPO, where the dcpo ®(D) is obtained by replacing each
occurrence of « by D and interpreting each operator as the obvious corresponding constructor. <

Given a dcpo D, write D, for the set D = {d € D | d # 1} of non-bottom elements.

Definition 9.3.2 ([Pit96 p. 85]). Let ®(a) be a pointed dcpo constructor, and 9 a binary relation
on a pointed dcpo D. The binary relation ®(9R) on @ (D) is inductively defined on the structure
of @ as follows:

(d,d) ea(R) < (d,d")eR (266)

(d,d")e K(R) < dcx d (267)

(d,d)e® (R) — d=[do]03d..d" =[d.] A (dy,d.) e D(R)  (268)
((d,e),(d',e')) e (D, x D,)(R) < (d,d") e D,(R) A (e,e) € D,(R) (269)
(u,u') e (O, ® D,)(R) < Vde (D,(D)),.Ve e (D,(D)),. (270)

u=(d,e)>3d ¢ (®,(D));.3e' € (D,(D)),.
u' =(d,e' YA (d,d) e ®,(R) A (e,e) e D,(R)
(1,1') € (@, ® D) (R) = (Vd € (Dy(D))u = 1'(d) 5 3d’ € (0,(D)),. (271)
u' =0 (dYn(d,d) e d,(R))
(Vd € (@,(D))y.u = *(d) > 3d" € (B,(D)),.
u' =22(d")Yn(d,d") e D,(R)) <
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Definition 9.3.3. Let ®(«) be a pointed dcpo constructor. A ®-simulation is a binary relation
R ¢ FIX(D) x FIX(®) satisfying (Unfold(x), Unfold(x")) € ®(R) for all (x,x") € . «

THEOREM 9.3.4 ([Pitg6| Corollary 6.13]). Let ®(a) be a pointed dcpo constructor. For any
d,d’ e FIX(®), to prove d c d' it suffices to show (d,d") € R for some O-simulation R.

Remark 9.3.5. Pitts’s [Pitg6| original results also account for mixed-variance pointed dcpo con-
structors. We have specialized his results to constructors @ () where the variable « only occurs
in positive positions. This special case is sufficient for reasoning about the denotations of session
types: assumptionimplies that a only appears in positive positions in constructors for session

types.

PROPOSITION 9.3.6. The positive projection of bits is given by the identity morphism: (bits)* =
id.
Proof. To show {bits)* = id, it is sufficient to show that (bits)*s = s for all s € [bits]. The
constructor defining the interpretations of [bits] = [bits]" is

O(B) = ((0:8), @ (1:4),),-
Let R ¢ [bits] x [bits] be the relation
R = {({bits)Ts,s) | s € [bits]}.
To show our result, it is sufficient by theorem 9.3.4]to show that 93 and 93°P are ®-simulations. Let
s € [bits] be arbitrary. We proceed by case analysis on s to show that
(Unfold({bits)*s), Unfold(s)) € ®(R),
i.e., that fR is a simulation.
Casg s = L: It follows from the fact that Unfold is an isomorphism and (bits) an embedding
- (Unfold({bits)*s),Unfold(s)) = (L, L).
It is immediate from that (1, 1) € ®(%R).
CAsE s = :1: By diagram 18]
(bits)* = Fold o (=), (BITS)" o Unfold.
But (BITS)" is strict, so {(bits)*s = s. It follows that
(Unfold({bits)*s), Unfold(s)) = ([1],[1]).

It is immediate from and that ([L],[L]) € ©(R).

CASE s = 0:s": We compute:
(bits)*s
= (Fold o (=), (BITS)" o Unfold)(Fold([(0,[s'])]))
= (Fold o (=) .(BITS)™)[(0, [s'D)])
= Fold([(0, [(bits)*s'])]).
Then
(Unfold({bits)*s), Unfold(s)) = ([(0, [(bits)*s'])],[(0,[s']])-
It is immediate from the definition of R, (268)), and that
([(0, [{pits)"s'DL.[(0, [sD]) € D(R).
CasE s = 1::s": Analogous to the previous case.
A symmetric argument will give that JR°F is also a simulation. We conclude the result. O
COROLLARY 9.3.7. Forwarding of bit streams is given by:

[si:bits+i—o=o:bits]L(i*, ) =(i",i").
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9.3.2. Reasoning About Bit Flipping. The next step is to give a typing derivation for the
process. This is because the denotations of processes are defined by induction on their typing
derivation. Let 7 abbreviate {i : bits « o0 :bits}. Let By be the 0 branch:

fitF:t (F-Var)

fiTsi:bitsro< {f} < izo:bits
f:iTsi:bitsto0.1; 0« {f} < iz 0:BITS

(E-{})
(@R)

and let B be the 1 branch. The typing derivation of £1ip is then
f:Tsi:bits- By 0:BITS (VIe{0,1})
fi75i:BITS - case i {I = Bj}cqo,1} 0 : BITS (eL)
f:75i:BITS +send o unfold; case i {I = Bj}c(0,1} 0 :bits

(p'R)

f:7;5i:bits + unfold < recv i; send o unfold; case i {I = Bl}lg{o,l} :0:bits

(pL)

(I-4)

. (F-Fix)
(E-{1)

f 71k 0« {unfold « recv i; send o unfold; case i {I = Bj}jefo,1}} < i: 7

I fix f.0 < {unfold < recv i; send o unfold; case i {I = B;}cfo,1}} < i :

3i:bits o« {fix f.o <« {unfold < recv i; -} < i} < iz 0:Dbits
Typing derivation in hand, we can now compute the denotation of £1ip in a top-down manner.
The denotation of the branch B, is{]
[f:7t;i:bitsro0.1; 0« {f} < izo0:BITS]f(i",07) = (L (1,[0]))
where down(f)(i*,07) = (I,0).
The denotation of the 1 branch is analogous. The denotation of the case statement is then:
[f:7;i:BITSFcasei{l = Bj}icfo,1) = 0:BITS]f(i",07)
(L, 1) ifi=1
=1((0.[1]), (1, [0])) ifi=(0,[i'])
(1,1, (o,[0])) ifi=(L.[i'])
where down(f))(i’,07) = (I, 0).
Next, we consider the denotation of sending and receiving unfold messages:
[f:7;i:bits unfold < recv i; send o unfold; case i {I = B;} (0,1} = 0:bits]f(i*,07)
(L, 1) ifit=1
(:L,:1) ifit==u1
(0:1,1:0) ifi* = 0xi’
(1:1,0:0) ifi* =17’
where down(f)(i’,07) = (I, 0).
The four cases in the above denotation respectively correspond to:
(1) receiving nothing on i*;
(2) receiving unfold on i* followed by nothing;
(3) receiving unfold on i*, followed by a bit stream starting with 0; and
(4) receiving unfold on i*, followed by a bit stream starting with 1.
Next, we compute the denotation of the functional term fix f.o < {:--} « i. It is given by the least
fixed point

[IFfix f.o < {unfold < recv i; send o unfold; case i {I = B} (0,13} « i: 7]L = Ifp(P)

4Strictly speaking, f is an environment u = (f : v). We identify this unary tuple with its single entry for convenience.
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where @ : [7] — [7] is the function

(L, 1) ifit =1
(=L,:1) ifit =1
(0:1,1:0) ifi* = 0xi’
(1:1,0:0) ifi* =14’
where down(f)(i’,07) = (I,0)

O(f) =up|A(i*,07) € [bits]" x [bits] . (272)

Finally, unquoting this functional term gives us the denotation of f1ip:
[-;i:bits+ flip:o0:bits]L = down(lfp(D)).

We turn our attention to showing that the composition of £1ip with itself is denotationally
equivalent to the forwarding process. We start by computing the denotation of ¢ < £f1ip; f1lip. It
is given by the string diagram

| £1ip |

T fuip T

’
1
1
1
1
1
1
1
1
1
1
1
1
1
N

Rearranging the above string diagram, we see that the composition is given by

flip

Recall that Stab |, is a symmetric monoidal category with a right unit isomorphism p : [bits]* x
[bits]~, and that we do not draw monoidal units in string diagrams. Let

¢(i*) = down(Ifp(®))(i*, L) : [bits]" — [bits] x [bits]

Then £1ip = ¢ o p. We also recognize (bits)* = id and (bits)™ = L. We now recognize the above
diagram as:

But the trace is fixing the monoidal unit, so by vanishing, the diagram is equal to:

¢

pop

We conclude that
[-5i:bits+ ¢« flip; flip=o:£flip]L(i*,07) = (I,0)

where ¢(i*) = (I, 0') and ¢(0') = (_, 0). (273)
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We can characterize ¢ using the fixed-point identity lfp(®) = @ (lfp(®D)):

(L, 1) ifit =1
(sL,:1) ifit =ul
(0:I,1:0) ifi* =01’
(1:1,0:0) ifi* = 14’
where ¢(i") = (I, 0).

¢(i") =

Using this characterization and eq. (272), we can directly express eq. (273):
[-;i:bits+ c <« flip; flip=o:flip]L(i*,o07) (274)
(L, 1) ifit=1
(s:L,51) ifit=u1
(0:1,0:0) ifi* =01’
(1:0,1:0) ifi* =1z’
where [-;i:bits + ¢ < flip; flip=o:£flip]L(i’,1) = (I, 0).
We are now in a position to prove our result:
PROPOSITION 9.3.8. Flipping bits in a bit stream twice is equivalent to forwarding it:
-;i:bitstc <« flip; flip=i—>o0:0:bits.
Proof. We must show that
[-5i:bitst ¢« flip; flip=o:bits]|L=[-;i:bits+i— 0 0:bits]L.
To do so, let (i*, 07) be arbitrary in their domain. By corollaryg.2.2} it is sufficient to show that
[-;i:bits+ c < flip; flip = o0:bits]L(i*,07) = (i*,i").
Set
F=[-;i:bitst+ c« flip; flip=o:bits]L.
We start by showing that if F(i*,07) = (I, _), then i* = I. Let
R={(G"1)|i" e[bits]", F(i*)=(1,_)}.
We show that R and 2R°P are ®-simulations by case analysis on i* € [bits]*:
Cask it = 1: Then F(i*) = (1,_) by eq. (274). Observe that
(Unfold(1), Unfold(1)) = (1, 1).

It is immediate from that (1, 1) € ®(R) and (L, 1) € ®(R°P).
Cask it = :1: Then F(i*) = (=L, _) by eq. (274). Observe that

(Unfold(::1), Unfold(::1)) = ([L], [L])-

It is immediate from and that ([1],[1]) € ®(R) and ([L],[L]) € D(RP).
Cask i* = 0::i’: Then by eq. (274), F(i*) = (0:I, _ where F(i") = (I, _). Observe that

(Unfold(0::i"), Unfold(0:1)) = ([(0,[i'])], [(0,[I])])-
It is immediate from the definition of R, (268), and that
(L0, [i'D1 [(0, [ID]) € @(R) N O(RP).

Caske i* = 1::i": Analogous to the previous case.
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We conclude that R and R°P are @-simulations. We conclude by theorem|9.3.4that for all (i* €
[bits]*, if F(i*,07) = (I,_), theni* =IL.
An identical argument shows that the relations
S ={(i",0) | i" e[bits]", F(i") =(_,0)}

and G°P are ®-simulations. We conclude by theorem(9.3.4]that for all (i* € [bits]*,if F(i*,07) =
(_,0),theni* = 0.
Combining these results, we deduce that F(i*,07) = (i*,i") for all (i*,07). O

9.4. Identity Expansion

Identity expansion theorems for sequent calculi state that if a sequent is provable, then we can
give it a proof that only uses the identity rule on atomic propositions. Computationally, this corre-
sponds to reducing channel forwarding at complex types to forwarding at simpler types [CPT12,
p. 3].

LEMMA 9.4.1. If A typel, then (A} (L,_) = L. If Atype;, then (A)P(_, 1) = L.

Proof. By case analysis on the last rule of the derivation of - - A type,.
Cask (C1): Immediate by eq. (121).
CASE (Cp™): Recall eq. . By propositionand the definition of &,
{pa.Atypel)P (L, )
= (Fold o {[pa.A/a]A)f o § o (Unfold x Unfold)) (L, _)
(Fold o ([pa.A/a]A)f 0 8) (L, )
(Fold o {[pa.A/a]A)P)) L
1

Cask (C|): Recall eq. (157). By definition of & and the action of the lifting functor,
(VA typel)P (L, )
= ((-)(E - Atype])?-8) (L,-)
= ((5){E - Atypeg)?) (1, 1)
= 1.

CasE (C®): Recall eq. (165). It is by definition strict in the positive component.
Cask (CA): Recall eq. (149). It is by definition strict in the positive component.

The remaining cases follow by analogy with those above. O

A session type E A type, is morally recursion-free if whenever (Cp*) or (Cp~) appears in its
derivation with conclusion & - pf3.B type,, then 8 does not appear free in B. We prove identity
expansion for the morally recursion-free fragment of Polarized SILL. This fragment contains
the logical fragment Polarized SILL, i.e., all session types that correspond to propositions in
intuitionistic linear logic.

THEOREM 9.4.2. For all morally recursion-free closed session types A type?, there exists a cut-free
process 14 whose derivation does not use (Fwp™), (Fwp™), or (E-{}) such that

sa:ArIyz=a—-bub: A

For all morally recursion-free closed session types A type;, there exists a cut-free process I, whose
derivation does not use (Fwp*), (Fwp~), or (E-{}) such that

sa:Avrlp=a<bub: A
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We do not directly prove theorem|9.4.2} it will be an immediate corollary of theorem[9.4.3} We
conjecture that we can extend theorem|9.4.2to support general recursive types. Though a complete
proof remains elusive, we present a compelling proof sketch. Then, we then discuss the difficulties
involved in completing this proof skeleton.

At a high level, we believe that the expanded forwarding process I4 should be defined by
induction on the derivation of A, and that forwarding for pa.A should be captured by a recursive
process. To define I4 by induction on the derivation of A, we must account for open session
types. Indeed, in the case of recursive session types, the rule hypothesis is an open session type,
so our induction hypothesis cannot be restricted to closed session types. Here arises the first
difficulty: processes cannot communicate over open session types. Put differently, we cannot define
aforwarding¥;a: A+ a <« b:b: Aforan open session type E - A type,.

To address this, we show that for all open session types & + A type, and closing substitutions
0 s - ~ E, there exists an open identity expansion process I[,]4 that is (almost) denotationally
equivalent to the forwarding process for [0]A. In the case of E + pa.A type,, we can apply
the induction hypothesis for E,a + A type, to the substitution (o, pa.[0]A) s - ~ E,a to
get an identity expansion process I[pq4.[4]4/a]([s]4)- Wrapping this process in the appropriate
fold and unfold process constructors is still insufficient to define the identity expansion process
I[s]pa.a- Indeed, after enough computation, the process I[,4.[s]4/a]([o]4) MY have to forward
communications of type pa.([0]A). We escape this circularity by defining I;1(,a.4) as a recursive
process in terms of I[ 4 [4]4/a]([0]4)- It is defined such every time I}, [5]4/4]([s]4) has to forward
communications of type [0 ](pa.A), it makes a recursive call to I5](pa.a)-

We make these vague intuitions clear by explicitly constructing the processes I[;14. Given
B =a,...,a, with n > o, the context ¥, of functional variables is given by

Y,=a :{a:0(a)<b:a(a)},....,aq,:{a:0(ay) < b:0(ay)}.

Let u, € [ ¥, ] be the environment that maps the functional variable &; to the quoted forwarding
process for the type o(«a;). Explicitly, it is the environment such that

us(a;)=[rb<{a-by<a:{a:0(a;) < b:0(a;)}]L
whenever «; is positive, and

ug(a;)=[rb<«{a<bt<a:{a:0(a;) < b:0(a;)}]L
otherwise.

THEOREM 9.4.3 (Identity Expansion). For all session types B — A type, and closing substitutions
0 s - ~ E, there exists a cut-free process Wy ; a : [0]A & Ijg)4 = b : [0]A whose derivation does not
use (Fwp*) or (Fwp™). If A is positive and morally recursion-free, then

[Yosa:[0]ArTIoanb:[o]AJus=[-5a:[0]Ara—bub:[o]A]L
and if A is negative and morally recursion-free, then

[¥Yo;a:[0]ArI[gqaub:[o]Alus=[-;a:[0]Ara—bub:[o]A]L.
If the derivation of - - [0]A typeg does not use (CVAR), then If,14 does not use (E-{}).

Proof. By well-founded induction on the set of derivations of session-types, ordered by the smallest
strict preorder < generated by:

e D, <D, if D, is a subderivationf| of D,; and
e D, <D, if D, is obtained by weakening D,.

We proceed by case analysis on the last rule used to form E - A type,. We show the positive cases,
and the negative cases will follow by analogy.

5That is, a subtree.
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Cask (CVAR): Then conclusion is E + «; type, for some «; € E. By definition, [o]a; = o (a;).
We show the case for positive a;; the negative case follows by symmetry. Let I[,1,, given by

(F-VAR)

¥oi-di:{a:o(a;) < b:o(a;)} (E-{})

Y,;a:0(a;))Fb<{a;}<a=b:o(a;)

By construction of u,:
[Yosa:0(a;))-b<{a;} <a=b:o(a;)]us
=downo [V, I+ &;:{a:0(a;) < b:o(a;)}]u,
=down(u,(&;))
=down(up([-+b<{a—>b}<a:{a:0(a;) < b:o(a;)}]L))
=[rb<{a-bl<a:{a:0(a;) < b:o(a;)}]L.

This is what we wanted to show.
Cast (C1): Observe that [0 ]1 = 1. Let I}, be given by

R
Y,; +closeb:b:1 (R)
Y,;a:1+waita; closeb:=b:1

Recall egs. and to (123). We must show that

[Yosai1-Inubitus=[sa:1-a—>bub:a]L

(1L)

are equal functions. It is sufficient to proceed by case analysis on the elements in their domain.
There are two possibilities: (L, L) or (close, 1). In the first case,

[¥y;a:1+waita; closeb:b:1]us(L, 1)

=(L1)

=[sa:1+a—->Db=zb:1]1(L,1).

In the second case,

[¥s;a:1+waita; close b :b:1]us(close, 1)
= (close, close)
=[sa:1+a—->b:b:1]1(close, 1).

This gives the result.

Case (C®): Assume that 2 - A ® B type] because E ~ A type] and E + B type;. By the
induction hypothesis, there is a process ¥, ; a: [0]B + Ij5)p : b : [0]B satisfying the theorem
statement. Observe that [0](B® A) = ([0]B) ® ([0]A). Let I;1(aep) be given by

Yo5a:[0]ArI,pub:[0]A
Y,5a:[o]A,c:[o]Brsendbc; Igp b [0](B®A)
Y,5a:[0](B®A)c<recva;sendbc Ippb:[0](B®A)

(®R)
(L)

Recall egs. and to (131). Assume that B ® A is morally recursion-free. We show that
the denotation of I4)(pga) is suitably equivalent to a — b. As in previous cases, we proceed by
case analysis on an arbitrary element in their domain:

SuBcasE (L, (b™,a7)): We compute:

[Yo;a:[0](B®A)-c<recva; sendbc; Igpb:[o](B®A)Ju(L,(b7,a7))
= (L {[e](B®A)P(L, (b7,a7)))
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which by lemmal9.4.1}
=(L,1)
= (([o](B®A))P(L,(b7,a7)), ([o](B®A))P(L,(b7,a7)))
=[5a:[c](B®A)ra—>b:b:[c](B®A)]L(L, (b",a7)).
Suscase ([(b*,a*)], (b™,a7)): Set
(B.B)=[:a:[c]Ara—b=b:[c]A]L(b",b7).
By the induction hypothesis,
[¥Yy;a:[c]Ar I{o1p = b:[o]Aus(b*,b7) = (B,B).
It follows that
[Yo5a:[0]A,c:[o]Brsend b Ijppb:[0](B® A)Jus(b*,a",(b",a7))
= (B, [(Ba)])
where « = (A)?(a*, a™). Using this, we compute that
[Wo5a:[0](B®A) - c<recva;sendbc; g b: [0](B®A)us([(b7,a")],(b7,a7))
~ ([(B. ). [(B.)))-
But
[sa:[c](B®A)ra—>b:b:[o](BeA)L([(b",a")],(b7,a7)) = ([(B, )], [(B,®)]),
so we conclude the result.

CASE (C®): Assume that & + @{] : A;}c; type, because B + A; type, for I € L. By the
induction hypothesis, there exist processes ¥, ; a: [0]A; & 1414, = b:[0]A; satisfying the
theorem statement for [ € L. Observe that [0 ](&{]: A;}ie) = ®{1: [0]A;}ier- Let Ifo)(@(1:4,}10)
be given by

Yosa:[0]A; - 1I1ga, b [0]A)
Vst [0Ar - bl g, 2 b: [0 (@{ Ad) ) (<)
Yo a:[o](@{l:Ar}ier) - casea{b.]; Iio1a, bier = b2 [o](@{1: Ar}ier) (L)

Recall egs. and to (167). Assume that 8 - &{1 : A;} ¢, type, is morally recursion-
free. We show that I[,)(e{1:4,},.,) is suitably equivalent to a — b. As in previous cases, we proceed
by case analysis on an arbitrary element in their domain:

SUBCASE (L, (al_)leL): We compute:

[Yosa:[o](@{l:A}ier) - casea{b.l; Ijg)a, brer = b2 [0](&{1: Ar}ier)[uo (L, (a[)leL)
= (LAlol(@{l: Ay ier))? (L. (a1 )er))
which by lemma
= (5 1)
= ((Lol(@{1: Ay 1)) (L (ar) 1) ALl ({1 = Arhien))? (1. () 1p))
=[sa:[o)(@{l: Atier) - a~bb:[o](@{1: Arhier) L (L (a7, ) -
Suscase ((k,[af]),(a7),.,): Set
(B.B)=[sa:[0]Akra—b:b:[o]Ad]L(a, a;).
By the induction hypothesis,
[Yosa:[o]Ar+ Itoa, * b: [G]Ak}]“a(aLQE) = (B B)-
It follows from eq. that
[¥osa:[0]Arrb.L; Igya, = b: [o)(@{1: Ar}ier) Jus (ags (a7)e;) = (B (1 [B])
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for all [ € L. Then by eq. (167),
[¥Yo;a:[a](@{l:A1}ie)
case a {b.l; Ijg)a, b1er = b2 [o](&{1: Ar}ier)uo ((k, [ar]), (a,’)leL)
= ((LIB]) (L [B]))-

But

[sa:[o](&{l: At}ier) = a— b b [o](@{1: Ar}ier)Jus (k. [ar]), (a1)ep)
= ((LIBD), (L1A]))

by egs. and (165)), so we conclude the result.
Cask (CJ): Assume that E + |A type, because E — A type,. By the induction hypothesis,

there is a process W, 5 a: [0]A & I[514 = b : [0]A satisfying the theorem statement. Observe that
[0](JA) = [0]A. Let I51(,4) be given by

‘I’U;a:[a]Al—I[g]A ::b:[O']A R
W, 5 a:[o]Ar send bshift; I1,4 b [0](JA) (R)
Yo 5 a:[0](A) - shift < recv a; send b shift; If;14 = b: [0](JA)

Recall egs. and to (159). Assume that 8 | A type, is morally recursion-free. We show
that I[;1(,4) is suitably equivalent to @ — b. A case analysis analogous to the case analysis for case
(Ce) gives the result.

CasE (CA): Assume that B - 7 A A type, because E + A type, and 7 type;. By the induction
hypothesis, there is a process ¥, ; a: [0]A - I[514 = b : [0]A satisfying the theorem statement.
We can weaken it to a process W, x : 75 a: [0]A + I[5)4 = b [0]A, where we assume without
loss of generality that the variable x is fresh. Observe that [0](7 A A) = 7 A [0]A. Let I5)(rra) be
given by

(L)

Yo, x:75a:[0]ArTaub:[0]A
Vo, x:75a:[0]A+ _ < output b x; It = b: [0](TAA)

(AR)

L
Yosa:[0](tAArx <« inputa; _ < outputbx; Iga mb:[0](TAA) (AL)

Recall eqgs. (113) and (149) to (151). Assume that E - 7 A A type, is morally recursion-free.
We show that I[;1(;4) is suitably equivalent to a — b. As in previous cases, we proceed by case

analysis on elements of their domains.
SUBCASE (L,a”): We compute:

[¥o;a:[0](tAArx<«inputa; _ < outputbx; I, b [0](tAA)]us(L,a”)
= (LAo1(T A AN (La))
which by lemmal9.4.1}
=(L1)
= ({[o)(z A A))P(L,a7), ([o](T A A))P(L,a7))
=[sa:[o](zrAA)ra—>b=b:[c](rAA)]L(L,a)
SuBcask ((v,[a*]),a™): Set
B.B)=[:a:[c]Ara—>buzb:[c]A]L(a",a).
By the induction hypothesis,
(¥, 5a: [0]A+ Iy s b: [0]AJug(a®a”) = (. ).
By coherence (proposition ,
[Wyx: 7503 [0JA - Iopa b [0]Al g | x > v](a",a7) = (B, ).
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It follows from eq. that
[Yo,x:75a:[0]Ar _ < output b x; Itpqa = b [0](TAA)][ue | x > v](a®,a7)
- (B (v, [])).
Then by eq. (151),
[¥os5a:[0](tAArx < inputa; _ < output bx; Itep4 = b [0](TAA)Jus ((v.[a"]),a”)
= (v [BD), (v, [B])) -

But
[sa:lol(trd)ra—bb:[o](zAA)]L((v,[a"]),a") = ((v.[B]), (v, [B]))
by egs. and (149), so we conclude the result.

Cask (Cp™*): Then the conclusion is E + pa.A type,. We consider two subcases: when «
appears free in A, and when « is does not appear free in A. This case analysis ensures that if the
derivation of - - [0 ]A type, does not use (CVAR), then If51a does not use (E-{}).

In the first case, observe that [oc](pa.A) = pa.[0]A. Let§ = 0, pa.[0]A s - ~ E, a typel be
the context morphism that extends o to substitute pa.[o]A for «, so that

(MA=[0(ar),....0(an), pafolAay,...,an a]A=[pa.[o]A]a]([c]A).
By the induction hypothesis, there is a process ¥, ; a: [7]A + Ij,a = b [5]A satisfying the
theorem statement. Let the process
I{6)(pa.a) = b < {fix &.b < {unfold « recv a; send b unfold; Ij,j4} < a} < a
be given by:
Vysa:[n]ArIpanb:[n]A
¥, sa:[n]Arsend bunfold; I, = b pa.[o]A

(p'R)

+
L
¥, s a:pa.[o]Ar unfold < recv a; send b unfold; I, 14 = b: pa.[o]A (f )
W, I+ b« {unfold < recva; -} < a:{b:pa.[c]A <« b:pa.[o]A} ()
(F-Fix)

¥, I+ fix &.b < {unfold < recva; -} < a:{b:pa.Jo]A< b:pa.[0]A}
¥,;a:pa.[o]Ar b« {fixa.b < {unfold < recva; -} <« a} <« az=b:pafo]

~ (ED)

At this point, we have nothing left to show: pa.A is not morally recursion-free. Nevertheless, we
conjecture that I;](pa.4) is suitably equivalent to forwarding a — b. We suspect that a coinduction-
style argument could be applied to show this equivalence, but such an argument unfortunately
remains elusive.

Assume next that « does not appear free in A. Then the hypothesis &, « - A type, used to
form E + pa.A type, can obtained by weakening E + A type,. By the induction hypothesis, there
is a process ¥, 5 a: [0]A - Ij5)a = b : [0]A satisfying the theorem statement. Let I[;1(,q.4) be
given by

Yosa:[0]ArIpanb:[o]A (/*R)
¥, 5a:[0]Ar send b unfold; Ijg1a = b: [0](pa.A) p
¥, 5a:[o](pa.A) - unfold < recv a; send b unfold; Ij,14 = b: [0](pa.A)

(pL)

Additionally assume that pa.A is morally recursion-free. We show that I{4}(,a.4) is suitably equiv-
alent to a — b. As in previous cases, we proceed by case analysis on elements of their domain. We
use the fact that

Fold: (). [+ [pa.A/a]Atype,]" — [ + pa.Atype]*

is an isomorphism of dcpos (see the remarks surrounding eq. (184)) to represent the elements of
[ - pa.Atype]* in terms of elements of (-), [ + [pa.A/a]A type,]*. Similarly, we represent
elements of [ - pa.A type,]” in terms of elements of [ + [pa.A/a]A type,] ™.
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Suscask (Fold(1),Fold(a™)): Then Fold(1) = L and the analysis is identical to previous cases,

using eq. and lemmaly.4.1}
Suscask (Fold([a"]),Fold(a™)): Set

B.B)=[:a:[c]Ara—>b=:b:[c]A]L(a",a).
By the induction hypothesis,
[¥s;a:[0]ArIpa b [0]A]us(a™,a™) = (B, B).

It follows from eq. that

[¥o;a:[0]A+send b unfold; Ijg s b [0](pa.A)](a”,Fold(a™)) = (B, Fold([B])).
Then by eq. (189),

[¥ss5a:[c](pa.A) +

unfold < recv a; send b unfold; I,y = b: [0](pa.A)](Fold([a"]),Fold(a™))
= (Fold ([8]) , Fold ([8]))-

But
[¥,5a:[c](pa.A)-a—>b:b:[a](pa.A)](Fold([a*]),Fold(a™))
= (Fold ([B]), Fold ([B8]))
by egs. and (187)), so we conclude the result. O

9.5. Binary Arithmetic

In this section, we consider an encoding of binary arithmetic. Let binary natural numbers be
encoded using the session type

bin=pB.®{0:6,1:f,5:1}.
We assume that binary numbers are transmitted with the least significant bit first. Though it is the
opposite of the usual network order, in which the most significant bit is sent first, it simplifies the
definition of processes. This session type is very similar to the session type bits of bit streams
given in section[9.3] The key difference is the introduction of the label s, which signals the end of
the sequence of bits.

Let [ - | be the “ceiling” or greatest integer function. Recall that every natural number # has a
unique base-2 representation (a, ..., d, ), where a; = 1and a; € {0,1} for 0 < i < k are such that
n =% a;2'. We use this base-2 representation to define a process - ; - + [n], = b: bin that sends
the base two representation of n on the channel b. It is given by

-3+ send b unfold; b.ag; ---; send b unfold; b.ay; send b unfold; b.$; close b :: b : bin
where a; is the obvious label 0 or 1 corresponding to the coefficient a;.

Example 9.5.1. The processes - ; -+ [4], = b:binand-; -+ [5], = b: bin are respectively given
by:
send b unfold; b.0; send b unfold; b.0; send b unfold; b.1; send b unfold; b.$; close b,
send b unfold; b.1; send b unfold; b.0; send b unfold; b.1; send b unfold; b.$; close b. <«

Remark 9.5.2. Binary numbers do not have a unique representation as sequences of bit labels. For
example, the following two processes transmit different representations of zero:

-3 -+ send b unfold; b.0; send b unfold; b.$; close b :: b : bin,
-3 -+ send b unfold; b.0; send b unfold; b.0; send b unfold; b.s; close b :: b : bin.

Remark 9.5.3. There are communications satisfying the type bin that do not represent legitimate
base-2 representations of natural numbers, e.g., the infinite stream of labels 1.
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Assume now that we want to increment a binary natural number given its base-2 representation
(ak,...»4a0),. By the grade-school addition algorithm, we proceed from right-to-left along the bits
a;. If a bit is zero, then we set it to one, and copy the remaining bits unchanged; if it is one, then we
set it to zero and carry the one over. For example, in grade school, we wrote out the addition of
(1,0,1,1), and one like so:

1011
+ 1

1100

We can extract a recursive algorithm from this procedure. To do so, we temporarily extend
the notion of base-2 representations to allow the empty sequence (), to also represent zeroE]

PROPOSITION 9.5.4. The base-2 representation of the successor of the natural number with base-2
representation (), is (1),. The base-2 representation of the successor of the natural number with
base-2 representation (ay, ..., d,), is:

o (ak,...,a,,1), if ap =0;
o (Bere-rB0,0)if ao =1, where (B, ..., o). is the base-2 representation of the successor
of the natural number whose base-2 representation is (ag, . .., a,),.

Proof. By induction on k. The base case is immediate, so assume the result holds for some k’
and consider the base-2 representation (dky,, ..., d,, do ),. It represents the natural number n =

ij& a;2". If a, = o, then it is immediate that the base-2 representation of n + 1is (ay, ..., a,,1),.

Assume now that a, = 1. Then n + 1 is given by:
k+1 )
(Z aiz’) +1
1=0
k+1 )
= (Z a,»z') +2
1=1
k .
= (2 Z a,-+12’) +2
1=0
k .
=2 (1 + Z a,—+121)

i=o

but we recognize the parenthesized expression as the successor of the natural number whose base-2
representation is (dy, ..., a,),, SO:

i '
ﬁizH—l.
i=o0

It follows that the base-2 representation of n + 1is (8., ..., 0, 0).- O

5Though this breaks the uniqueness of base-2 representations for zero, it is consistent with the original definition: a
nullary sum is equal to zero.
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The following process succ implements the recursive algorithm of proposition[9.5.4} It incre-
ments a binary natural number received on a and sends the result on b:
-;a:bin+ b < {fixs.b < {unfold < recv g;
send b unfold;
casea{0=b.1;a—>b
|1=b.0; b« {s}<a
|$=b.1; b.s; a - b}
}<a}<azb:bin
Operationally, it implements the grade school addition algorithm. It works by checking each
successive component in the bit stream. If a component is zero, then it sets it to one, and then

leaves the remaining components unchanged. If a component is one, then it sets it to zero and

carries the one using a recursive call.
Our goal is to show that succ correctly implements the successor function, i.e., that

5o+ a< [n],; succ=[n+1],=b:bin

forall n e N.
We begin by computing the denotation of the type bin and of its unfolding

BIN = ®{0:bin,1:bin,$:1}.
They denote the dI-domains:
[bin] = FIX(X > ((0: X,) ® (1: X,) @ (s [1])))
[bin]" =FIX(X ~ ((0: X))@ (1: X))@ (s:[1])))
[bin]™ = {1}
[BIN] = (0:[bin],) @ (1: [bin],) & (s: [1])
[BIN]* = (0:[bin]]) ® (1: [bin]}) & (s: [1]7)
[BIN]™ ={1}.
By proposition|[9.2.1, we know that (bin)* and (BIN)" are both given by the identity morphism.
These dI-domains are equipped with the natural isomorphisms These dI-domains are equipped
with the following canonical isomorphisms:
Unfold : [bin] — [BIN],
Unfold™ : [bin]* — [BIN]
Unfold™ : {1} - {(0: L,1:1,8:1)}

Their respective inverses are Fold, Fold*, and Fold™.
We use the following suggestive notation for elements of [bin] = [bin]*:

((B0))= = Fold ([(0, [BD)])
((B,1)). = Fold ([(1, [8])])
((1))2 = Fold([1])
((s7))> = Fold([(s,[1)])])
((8))= = Fold([(s, [close])]).

In particular, write ((bg, ..., b,)), for ((---(((($))2>bx))2"* bo))a-
Next, we observe the correspondence between the process that sends n and the base-2 repre-

sentation of n:
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PROPOSITION 9.5.5. For all n € N,
[-5-+[n],=a:bin]il = (bk,...>bo))s
where (by, ..., b,), is the base-2 representation of n.

Proof. By induction on k. If k = o, then the result follows by computation using egs. (122)),
and . Assume the result for some k, and consider the case where n has a base-2 representa-
tion (bxi1s--.>b0),. Then (bgys,...,b,), is also a base-2 representation, and by the induction
hypothesis,

k+1
[{ . [Z b,-z’] ta binﬂll = ((bksrs. - s b1))s

But
k+1 )
[n], = send b unfold; b.b; [Z bizl:| .
i=1 2
The result then follows by a computation using egs. and (188). O

Now we turn our attention to computing the denotation of succ. To do so, we first compute
the denotations of each branch of the case statement. Let 7 = {b : bin < a : bin}. The branch 0
has the derivation
(Fwp™)
(®R)

s:T;a:bina—>b:b:bin
s:T;a:bin+b.1; a—b:b:BIN

and, by egs. and and corollary[9.2.2} its denotation is the stable function
[s:t5a:bin+b.15a - b= b:BIN]_(a*,_) = (a*,(1,[a"])).

Similarly, the denotation of the $ branch is:
[s:t;a:bin+b.1; b.$; a— b= b:BIN]_(a*,_) = (a*, (1,[(s,[a"])])).

The case of the 1 branch is more interesting because of its interaction with the functional layer. Its
derivation is

— (F-V.
S:TII—SIT( AR)

(E-{})
(@R)

s:T;a:binkFb<« {s} < a:b:bin
s:T;a:bink b.0; b« {s} « b:b:BIN

Its denotation is

[s:T;a:bint+ b.0; b« {s} < b=b:BIN]s(a*,_) = (a,(0,[b]))

where down(s)(a*, 1) = (a,b).
Strictly speaking, the first argument s is an environment u = (s : v) € [s : 7]. We identify this
unary tuple with its single entry for convenience.

Write B; for the branch corresponding to the label I. Combining these three branches, we can
compute the denotation of the case statement using eq. (167):

[s:7;a:BIN+ casea {l = Bj}ic(o,1,s} = b:BIN]s(a",_)
(L, 1) ifat=1
((0,[a™]), (1. [«7])) if a* = (0,[a"])
((1,a), (0, [b])) ifa* = (1,[a"])
((8,a%), (L,[(s, [« ])])) ifa” =(s,[a"])

where down(s)(a*,1) = (a,b).
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By egs. and (189), we then deduce:
[s:7;5a:bin+ unfold < recv a; send b unfold; case a {I = B;}c(0,1,6} = b: bin]s(a®, )
(L, 1) ifat =1
(((@",0))., ((a",1)).) ifa” = ((a",0)),
=1((@,1)2 ((8,0)).)  ifa* = ((a", 1)),
(67D (s71))2)  ifa” = ((s7)):
(((s))2> (s, 1))2) ifa® = ((s))
where down(s)(a", 1) = (a, b).
Finally, we compute the denotation of succ. By egs. and (143), it is given
[-;a:bin+ succ: b:bin]L = down(lfp(D))

where @ : [7] - [7] is the function

1,1) ifat=1
((a7,0)),, (a",1)),) ifa™ = ((a7,0)),
((@,1)).,((6,0)).)  ifa”=((a",1)),
(") ((87,1))2)  ifa” = ((s"))
((($))2> ((s,1))2) ifa” = ((s))-

where down(s)(a*, 1) = (a,b).

By proposition[9.5.5]and an argument similar to the one establishing eq. (273), we deduce that:
succ :: a:bin]1_ = down(Ifp(®)) (b, ..., bo)), (275)

where (bg,...,b,), is the base-2 representation of n.

®(s) =up| A(a*,_) € [bin]" x [bin] .

~ o~~~

[5orae[n]

25

PROPOSITION 9.5.6. The process succ implements the successor function, i.e.,
;-+-a<[n],; succ=[n+1],:b:bin
forallneN.
Proof. Consider some arbitrary n € N. By eq. (275)), it is sufficient to show that

down(lfp(®)) (bks - - -»b0))s = (B> - -5 Bo))a

where (b, ...,bo),and (B, ..., Bo), are respectively the base-2 representations of n and # + 1.
We know that (B, ..., ). can be computed from (by, ..., b,), using the recursive algo-
rithm given in proposition As a result, it is sufficient to show that for any (by, ..., b,).,
if
down(Ip(®))(bis -+ bo))s = (Bns- -+ Bo))s

then (B, ..., PBo), is the result of applying proposition|9.5.4to (b . .., b ).
We proceed by induction on the number of bits in (by, ..., b, ),. If it is the empty sequence,
then it corresponds to the element (($)),, and

down(lfp(®))((s)). = down(®(Ifp(®)))((s))= = (8, 1))

as desired.
Assume the result for sequences of length k, and consider a sequence (by,...,b,),. We
proceed by case analysis on b,. If b, = o, then

down(1fp(®))((bx, ..., b1, b)), = down(O(1fp(®)))(bk> - -.»b1,0))s = (ks - .., b1,1)),,
as desired. If b, = 1, then

down(Ifp(D)) (b, - - ., br, b)) = down(P(Up(D))) (Brs - - > b1,1))2 = (8er -+ -1 86,0))a
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where down(lfp(®)) (b, ..., b1))> = (8, ..., 8,)),. By the induction hypothesis, (J,...,d,).
is the result of applying proposition[9.5.4to ((by. ..., b,)),. It follows that (8., ..., ,,0), is the

result of applying proposition to (bks...> by, bo)),. This completes the case b, = 1. We
conclude the result. O



CHAPTER 10

Summary and Future Research

In this dissertation, we developed a variety of techniques for reasoning about Polarized SILL
and its programs, and we made contributions to the mathematical foundations of programming
semantics to support them. We summarize these contributions and we discuss their potential
applications to future research. We also discuss remaining open problems that are directly related
to our contributions.

In chapter[6} we developed an observed communication semantics for Polarized SILL. We
defined the meaning of a session type to be the set of communications it allows, and we showed that
this set could be endowed with a notion of approximation. Then, we showed how to observe the
communications sent by processes and configurations in the course of an execution. Importantly,
we showed that all fair executions of configurations resulted in the same observed communications.
This fact reflects the confluence property satisfied by Polarized SILL.

We introduced a framework for extensional, observational notions of equivalence for Polarized
SILL in chapter[7} It was inspired by the “testing equivalences” framework of De Nicola and
Hennessy [DH84; [Hen83; De 85]. Both frameworks are similar in that they deem processes to
be equivalent whenever they are indistinguishable through experimentation. The frameworks
differ, however, in the notion of experimentation. Subjecting processes to classical experiments
could potentially result in a “success” state, and two processes were equivalent if they succeeded
the same experiments. Instead of defining experimental indistinguishability using observed states,
we defined it in terms of observed communications. In particular, our experiments communicated
with processes (strictly speaking, with configurations of processes), and we deemed processes to
be equivalent if we could not observe any differences in their communications. We had a certain
latitude in choosing which communications to observe, and this latitude resulted in different
notions of process equivalence. One of these, “external observational equivalence”, coincided with
barbed congruence. We showed how to lift observational congruences on configurations to certain
restricted forms of congruences on processes.

We introduced CYO pluricategories to model systems with bidirectional communication in
section|[8.2} Intuitively, objects in CYO pluricategories represent bidirectional communication pro-
tocols, while morphisms represent communicating processes. Concretely, objects are embeddings
A — A" x A” in an underlying category, where A captures bidirectional communications allowed
by a protocol, and the embedding describes a decomposition of bidirectional communications into
unidirectional communications. Morphisms A — I’ represent communicating systems that use
communications A to provide communications I'. They are morphisms A* x '™ — A x I in the
underlying category that describe how to complete unidirectional input received on A* and I'”
into complete bidirectional communications.

We used CYO pluricategories to give Polarized SILL a denotational semantics in chapter 8]
To capture desirable computational properties, we interpreted protocols and processes in a CYO
pluricategory over the category Stab of dI-domains and stable maps. The functional layer had
the usual stable semantics. Our denotational semantics is notable for being the first to handle
general recursion at the protocol and process layers, combined with a functional layer and value
transmission, and other rich protocols.

The unifying theme of these contributions is that we have defined the meaning of processes
in terms of their communications. In doing so, we have stayed faithful to the process abstraction:
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communication is the only phenomenon of processes. Together, they serve as compelling proof of
the following thesis statement:

Communication-based semantics elucidate the structure of session-typed
languages and allow us to reason about programs written in these languages.

These contributions required major extensions to their underlying mathematical foundations.
For our observed communication semantics to be well-defined and for it to capture our semantic
intuitions, we had to first develop fairness for multiset rewriting systems in chapter[s} We discovered
three independent varieties of fairness—rule fairness, fact fairness, and instantiation fairness—and
saw how each subdivided along the axis of weak and strong fairness. All six forms of fairness are
subsumed by a particularly strong form of fairness called iiber fairness. We studied properties of
fair traces, constructed a scheduler, and gave sufficient conditions for multiset rewriting systems
to have fair traces. We observed that under certain conditions, all varieties of fairness coincided.
We introduced a notion of trace equivalence called “union equivalence” and studied the effects
of permutations on fairness. In particular, we showed that, subject to certain conditions, all fair
executions are permutations of each other and that all fair executions are union-equivalent.

To define the denotations of recursive session types, we first had to explore the 2-categorical
structure of parametrized fixed points of functors in chapter[s] We showed that parametrized
fixed points of w-functors could be given by a Conway operator, and we showed that unfolding
parametrized fixed points was given by a modification. We used these facts repeatedly in chapter|g|
when reasoning about recursive types.

There are many open questions related to the above contributions. We highlight the most
important.

(1) Do junk-free, frugal, complete functions form a dI-domain? If so, then we could drop
assumption and allow quoted processes to be sent by session-typed processes. An
affirmative answer would also simplify the semantics of the functional layer: we could
interpret all types in the functional layer as dI-domains and all functional terms as stable
maps, instead of being forced to interpret some types as dcpos and some functions as
only continuous.

(2) How do we lift observational congruences on configurations to (full) congruences on pro-
cesses? We showed in section[7.5|that observational congruences on configurations induced
certain restricted classes of congruences on processes. However, the subtle interplay be-
tween the process and functional layers prevented us from showing that they induced full
congruences. We conjecture that we could develop a version of Howe’s method [Howg6]]
for languages with adjunctions to show this result.

This question has important implications for practical applications of our observa-
tional congruences. Indeed, the reason congruence relations are so sought after is that
they allow us to replace equals by equals. If we could do so, then we could use them to
reason about, e.g., program optimizations.

(3) What is the relationship between the partial orders of session-typed communications given
in section |6.1) and the dI-domains of complete session-typed communications given in
section Are they isomorphic? How are the observed communications of processes
related to the complete communications in the image of their denotations? We conjecture
that answers to these questions could result in a new soundness proof for our denotational
semantics.

(4) What general structure underlies initial fixed point categories and canonical fixed point
categories? In sections[4.2]and[4.3} we studied initial fixed points and parametrized fixed
points of w-functors. These results carried over, almost unchanged, to locally continuous
functors and O-categories in section [4.5} How can we unify these two analyses into a
single framework?
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(5) Can we use a graphical language to reason about typing derivations for configurations? If so,
then we would be spared from having to tediously reassociate or commute compositions
of configurations using syntactic arguments.

There are also many directions in which our contributions could be extended. The most interest-
ing directions include reasoning about dependent session types and reasoning about computational
interpretations of adjoint logic.

Dependent protocols are an important class of real-world protocols unsupported by Polarized
SILL. Dependent protocols prescribe communications where some messages may depend on
previous messages. An example dependent protocol is the 3-way handshake [Tom7s};/SD78; RFC793]]
used to negotiate TCP connections. In the first step of a 3-way handshake, a process sends its peer
a natural number #. Its peer must then reply with the natural number # + 1, i.e., with a value that
depends on a previously received value. The Heartbeat TLS protocol extension is another example
of a dependent protocol. It is used by processes to ensure that their peers are still reachable. They
do so by exchanging “heartbeat” messages. Roughly speaking, a process sends its peer the message
“Here are n bits of data”, followed by said data. Its peer replies with “Here are those # bits”, followed
by the data it received. The dependency arises from the fact that the only data allowed in the reply
is the data that it received.

There already exist dependently session-typed languages that support various sorts of depen-
dent protocols [TY18} TV19; TCP11;[DP20], but it is unclear how to combine these different kinds
of dependency in a single language. It is also unclear how to extend these languages to support
general recursion.

Our various semantics provide an ideal framework in which to study these questions. Indeed,
program equivalence is the crux of any dependently typed language, and our observational and
denotational semantics both provide notions of program equivalence. Moreover, denotational
semantics have historically excelled at capturing recursion, and we believe ours could be used to
study the interactions between general recursion and various forms of dependency.

Adjoint logic gives a framework for conservatively combining multiple intuitionistic logics
with varying structural properties [Pru+18||. Its computational interpretations uniformly combine
message-passing concurrency, shared-memory functionality, and sequential computation [PP1gb].
Its message-passing interpretation is notable because it permits communication patterns not
possible in Polarized SILL or in other languages that use binary session types [PP21]. These include
multicast, i.e., sending one message to multiple clients, and replicable services, where a service
replicates itself on-demand to handle requests from multiple clients. These richer communication
patterns are found in real-world software, and we would like to extend our semantics to be able to
reason about them.
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IFP 2-category of small IFP-categories ,
O 2-category of small O-categories ,
w-Cat  2-category of small w-categories ,
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DCPO category of dcpos ,
Stab™  category of dI-domains and rigid embeddings ,
Stab category of dI-domains and stable maps,
[ F  category of elements of F ,
K¢ category of embeddings,
CP  category of F-algebras,
Linksg category of links over K,
OLinksg category of links over the O-category K,
CAT  category of locally small categories , [g]
Poset category of posets,
Set category of sets , [g]
Cat  category of small categories , [9]
CYO(C) CYO pluricategory on C,
C°  opposite category of C, [9]
P, subcategory of pointed posets,,
P, subcategory of strict maps,
a:f=>g:A->B 2-cell, [y
F 4G adjunction,
CFIX  canonical-fixed-point w-functor,
gof composition of morphisms,
Cone(F,-) cone functor,
Conef cone-generating functor,
@;A; coproduct,
diag. diagonal functor,
C(A,B) external hom,
Fold folding modification ,
fold folding natural isomorphism ,
GFIX generalized-fixed-point w-functor,
a * 8 horizontal composition ,
7 horizontal iterate
[1;A; indexed product,
(a,:A)x-x(a,:A,) indexed product,
Lc initial object of C,
FIX initial-fixed-point w-functor ,
1! injection into coproduct,
C[A - B] internal hom,
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iter, iteration functor,
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diag(fi)ieq morphism from coproduct to product,
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n:F= G:C—D natural transformation, 9]

e~ negative component of an object e in CYO(C) ,
ob(C) objects of C, [9]

f"  parametrized fixed-point operator ,

e’ positive component of an object e in CYO(C) ,
Ax B product,

7 projection out of product,

Tc terminal object of C,
Tr) 5(f) trace operator, E

Unfold unfolding modification,

unfold unfolding natural isomorphism ,
UNF  unfolding w-functor,

UNR  unrolling 2-natural transformation ,
a-f vertical composition,

oc zero object of C,

Q  w-chain functor,

colim,  w-colimit functor,

Order Theory

I 4u adjunction,
L bottom element ,
P®Q coalesced sum,
(dy,...,dn) combination of embeddings d; ,
x 1y consistent elements,
LI'A  directed supremum ,
PwQ disjoint union,
f¢ embedding associated with projection f,
8 expansion of lifting,
gfp(f) greatest fixed point,
[a] imageofacAinA,,
MNA infimum,
tj injection into product of pointed posets ,
Ifp(f) least fixed point,
P, lifting,
JA  lower set,
<« order of approximation,
f?  projection associated with embedding f ,
P®Q smash product,
E, ¢ stable function ordering,
JEC[A - ¥] stably ordered dcpo of junk-free, frugal, complete maps ,
KC(D) subset of compact elements ,
|D| subset of prime elements ,
LIA supremum,
T top element,
1A upper set,

General Judgments
,%I;X J derivability,
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yIT »%X J generic derivability,

Y | ] genericjudgment,

r »%’;X J hypothetical derivability,

I+ L hypothetical judgment,

J(X,Y) inputsand outputs of a judgment J ,
V| T»E¥ ] parametric derivability ,

V| ] parametric judgment,

Miscellanea

B[X] abstract binding trees ,
[p]a application of renaming , [31}
0:T~T" context morphism,
@ empty multiset ,

n finite cardinal , @

X* free monoid on X,

p:Y < V' fresh renaming of abts,

p: VY < VY fresh renaming of gbts,

B[U; X]  general binding trees,,

0:B[X] ~ B[Y] morphism of abstract binding trees ,
f 1A restrictionof fto A,

[0]a simultaneous capture-avoiding substitution ,
¢ unit of a free monoid ,

$[  universal relation ,

=, a-equivalence,
Multiset Rewriting Systems

o-T action of permutation ¢ on trace T,

p ephemeral formula,

r(6,) =7,(0,) equivalent rule instantiations,,
¥ ;M multiset-in-context, [41[43]
Qu(M,,...,M,) overlapof M,,...,M, in M,
R*  parallel multiset rewriting system,

p persistent formula,

[7]T refreshing substitution ,

r(6) rule instantiations ,

supp(M) support of the multiset M,

supp(T) support of the trace T,

(Mo, (ri36)ier) trace from M, ,

Polarized SILL

Interpretations
[E+ Atypef] complete communications satisfying A ,
(E + Atype,) decomposition embedding,
[T+ C:=A] denotation of configurations,
[¥I-M:7] denotation of functional terms,
[E + Ttype,] denotation of functional types,
[[sA+-P:=a:A] denotation of processes,
[E+ Atypef]~ negative communications satisfying A,
(T 1 I+C=A)y observed communications,
[E+ Atypel]* positive communications satisfying A,
Judgments
T+c:A channel c hastype Aintrace T,
Z|IT1I+C=A configuration typing judgment,
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M | v evaluation judgment,
Ttypes functional type,
T~veA[c observed communicationson c, m
VY;A+-P:a:A process typing judgment,
Atypel session type of polarity p,
Vi-M:7 term typing judgment,
vval value judgment,
Relations
=,%/= communication equivalence , [140
<, < / < communication simulation , [138
R contextual interior ,
= denotational equivalence , [236)
<p external observational simulation ,
<; internal observational simulation , [155|
s observational S-equivalence,, [153]
<s observational S-simulation,
RP  observationally contextual interior ,
R’ simply branched contextual interior ,
<r total observational simulation ,
vORweA type-indexed relation on communications ,
A-CRD:d type-indexed relation on configurations, [122
VY;A-PR Q:=c:A type-indexed relation on processes,
VYi-FMRN:7 type-indexed relation on terms,
~ weak barbed bisimilarity ,
5 weak barbed similarity ,
Types
&{l: A}y external choice,
7 ¢ function type,
@{l:A;}. internal choice, [to4]
nat natural numbers , [181]
LA polarity shift,
1A  polarity shift,
{ao:Ag < a,:A,,...,a,:A,} quoted processes,
pa.A  recursive type,
1 unit type,
TAA value transmission,,
72 A value transmission ,
() la barb >
cc(msg(a,m)) carrier channel ,
I' channel names in context T, |g9|
C[']4 configuration context,
kc(msg(a, m)) continuation channel ,
Q  divergent process, [103]
eval(M,v) evaluation fact,
fc(P),fc(C) free channel names,
0 ®~ V¥ functional context morphism , [106|
|wlx height n approximation , [141]
ic(P),ic(C) input channel names,
msg(c,m) message fact, |98]
my, . negative message ,

oc(P),oc(C) output channel names,

m*  positive message ,




Glossary

{A)< preorder of communications ,
C []gg\ process context ,

proc(c, P) process fact, |98|

veA session-typed communication,
ics(P) static input channel names,
ocs(P) static output channel names,
C[-]} term context,

0:s©® ~ E type context morphism ,

(), weakbarb or denotational barb , [160|
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2-
2-cartesian closed,i2]
2-category, []
z—cell,ﬂ
2-exponential object, fi2]
2-functor, fi2]
2-natural transformation, @

2-product, iz
opposite 2-category, [i2]

abstract binding tree,[31]

a-equivalence,[32]

arity,@

fresh renaming, 31

morphism, [32]

operator, [31]

sort,[31]

substitution, [32]

valency,@

variable,@
adjoint, see adjunction
adjunction

counit of ~,io]

~ of functors, io]

left and right adjoints, fio]

~ of monotone functions, 21]

two-variable ~,E|

unit of ~,fio]

upper and lower adjoints,
algebra

functor ~,[1] 74} [76]

horizontal morphism ~,E|

~ of horizontal morphisms,@
a-equivalence

~ of abstract binding trees,

~ of general binding trees,
arity,@
axiom,[34]

basis
~ of compact elements, 22]

~ofa dcpo,@
binding tree

abstract ~, see abstract binding tree

a-equivalence
~ of abstract ~,
~ of general ~,[33]
arity, [31[32]
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fresh renaming

~ for abstract ~,[31]

~ for general ~,
general ~, see general binding tree
morphism

~ of abstract ~,@

~ of general N,Q
operator,@@
sort,[3132]

substitution
~ of abstract ~,[32]
~ of general ~,@
symbol,@
valency, [31][32]
variable, [31[32]

bottom element, fig]
bound
~ channel,[108]
directed supremum, [29]
greatest lower ~,E
least upper N,E
lower ~,[19]
upper ~, 9]

canonical forms property; [124]
category
2-category theory, see 2-
~ of bounded-complete dcpos, 22|
cartesian ~,fi1]
cartesian closed ~,E
~ of cocones,[io]
~ of cones,iq]
~ of dcpos,@l
diagram ~,io]
discrete ~,E
~ of elements, o]
full subcategory, 9]
~ of functor algebras, i1
IFP-~,[63]
~ of links, [64]
locally small ~,E|
monoidal ~,@
multicategory, i4]
O-category, [27]
o~
opposite ~,[g]
pluricategory, i7]
polycategorys ig]
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~ of posets,iq]

small ~,[g]

symmetric monoidal ~,

wide subcategory,g]
channel,

bound ~,fi06] fiog]

carrier ~,[109]

continuation ~,[109]

free ~,[106][108]

input ~,@

internal ~,

~ names are symbols, [o8]

output ~,[107}[108|

provided N,E

session-typed ~,@

used ~,[97}[oo]

closed
~ functional term, [98]
~ functional type, [58]
~ process, [57]
~ session type,[§7]
coalesced sum, see poset, coalesced sum
cocone, [0} see cone,[74]
category of cocones, io]
~ functor, io]
colimit,io]
limit-colimit coincidence theorem, [26]
Ofcolimit,ﬁ
w»colimit,
compact
basis of ~ elements,22]
~ element, [22]
complete
~ function,
composition
~ of arrows, fi1]
configuration ~,[59]
horizontal ~,[i1]
middle four interchange law,a
~in multicategories,@
~ in pluricategories, 17]
~ in polycategories, 14]
process ~,[100]
vertical ~,f11]
cone,[io]
category of cones, fio]
conﬁguration,
~ composition, [99]
~ context, i23} [125]
simply branched ~,[1i24]
initial ~,[p8]
~ interface, [99]
intersection property,
inversion principle,
LMR derivation,[19]
preservation property, [i25]
replacement property,
simply branched ~,fi21]
subformula property;[113]
type-indexed relation ~,122]
~ typing judgment, 59|

congruence

relation, [124]

context

~ of channels, 57

configuration ~,@
simply branched z,

contextual interior,@
simply-branched ,[1i24]

contextual relation, 23]

functional term ~,[123]

~ of functional variables, [98]

~ of hypotheses, [35]

linear ~,|§|ﬁ

~ morphism,

multiset-in-context, see multiset, multiset-in-context

process ~,@
~ of session-typed variables,@

structural ~,[36}[o7]

structural properties of ~, see structural property

substructural ~,[36]
continuous
~ function, [20]
locally ~ functor,@
w-~ function,fig]
Conway identities, @
coproduct,@
injection,El
counit
~ of adjunction, io]

dagger operation, [78]
dcpo, o]
basis, [22]
bounded-complete ~,[22]
category of ~, 20|
category of bounded-complete ~,|§
consistent elements, [22]
d—property,
domain
algebraic z,@
dl-w, 23]
w-algebraic ~,[22]
I-property, 23]
w-colimit, 26]
prime algebraic,@
derivability, see derivation
derivation,
derivability
generic z,
hypothetical ~, 35
linear ~,[36]
parametric ~,[3¢]
structural ,[36]
substructural «, [36]
generic ~,
hypothetical ~,
LMR ~,[f19]
parametric ~,@

structural properties of ~, see structural property

diagram
~ category;[i0]
string ~,[13]
string ~ for trace operators, 2g]
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directed
~ set,[20]
~ supremum, [20]
domain
algebraic ~,[22]
dI-~,[23]
w-algebraic ~,[22]

e-p-pair, see embedding-projection pair
element
bottom ~,|ﬂ
category of elements, io]
compact ~,[22]
consistent ~,[22]
prime ~,[22]
top ~,[i9
embedding-projection pair,[21]
rigid ~,
equivalence
a-equivalence
~ of abstract binding trees, [32]
~ of general binding trees, [33]
evaluation
~ fact,[o8]
~ judgment, 5]
exchange
structural property,@
execution, see multiset rewriting system, execution
fair process ~,@
exponential
2-exponential object, i2]
~ object,fi1]

external choice, see session type, choice type

fact,[a0]
enabled,@

ephemeral ~,E|
evaluation ~, (98]
~ fairness,[50]
message ~,@
persistent ~,[43]
process ~,[58]

fairness
effects of permutation,
equivalence under interference-freedom, 53|
fact ~,[50]
fair concatenation property,
fair execution, [133]
fair scheduling,
fair tail property, [51]
instantiation ~,[50]
rule ~,[a9]
strong ~,@
weak ~,[a7]
iber ~,[51

fixed
~ point,[102]

fixed point,@
Conway operator,
generalized ~ functor,ﬁ
~ identity, [79]
initial ~ functor,@

Kleene ~ theorem, [20] 0] 28] [29]
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Knaster-Tarski ~ theorem, [19) 20} 28] 9]
parametrized ~,
parametrized ~ functor,@
parametrized ~ operator,
post-~,[ig]
pre-~, 9]
trace operator, 28]
fold
~ modification, 7]
~ natural transformation,@
free
~ channel,fio8]
fresh
~ renaming
~ for abstract binding trees,
~ for general binding trees,[33]
~ variable,@
function
complete ~,[i78]
continuous ~,[20]
embedding, |21
embedding-projection pair, [21]
rigid z,
~ junk-free,[178]
monotone ~,fi9]
w-cocontinuous ~,[20|
w-continuous ~,[ig]
projection between posets,@
Scott-continuous, see function, continuous
stable ~,[23]
stable ~ order, [24]
strict ~,[19]
functional
rule ~,
functional term
canonical forms property, fi24]
closed ~,[98]
~ context,[i23]
context morphism,[i0§]
introduction and elimination rules,

preservation property,@
substitution
semantic,[234]
syntactic,[1od]

type-indexed relation ~,[122]
~ typing judgment,
~ variable,

functional type
closed ~,[98]
function type,fioz]
~ judgment, 8]
quoted process type, io2]

functor
2—functor,@
adjunction, fio]
~ algebra,i1] 74} 76]
closed ~,fid]
cocone ~,[Q]
diagonal ~,E
generalized fixed-point ~,[71]
hom 2-functor, fi2]
hom set ~,fio]
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initial-fixed-point ~,[74]
internal hom ~,@

left and right closures,[io]
locally continuous N,Q

w-chain ~,@

w-colimit ~,[71]

w-functor,[64]
parametrized z,@

parametrized fixed-point ~,[74]

unfolding ~,E

Galois connection, see adjunction of monotone

functions

general binding tree,
a-equivalence,
arity, [32]
fresh renaming, [33]
morphism,@
operator,@
sort,[32]
substitution, [33]
symbol,
valency, [32]
variable, [32]

generic
~ derivation, [36]
~ judgment, [37}[o7]

inductively defined w,[37]

~ rule,

Hasegawa-Hyland theorem, |29 [85]
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~ 2-functor,fi2]
internal ~ functor,EI
~ set functor,[ig]
horizontal
~ composition, 1]
~ morphism,E'
hypothesis
context of ~,[35]
hypothetical
~ derivation,@
~ judgment, 34
inductively defined =,37]
linear z,@
structural =, [36]
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~ rule,[37]

identity
abstraction ~,
composition ~,[85]
Conway ~,[85]
double dagger ~, [85]
fixed-point ~,[79]
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power ~,[85]
IFP-category, [64]
infimum, see bound, greatest lower
injection
~of coproducts,El
interface, see configuration, interface
internal choice, see session type, choice type

judgment,[34]
basic ~,@
closure under rules,[34]
coinductively defined ~,|E
configuration typing ~,[99]
derivability ~, see derivation, derivability
derivation of a ~, see derivation
evaluation ~,[98]
functional term typing ~,[og]
functional type ~,
generic ~,[37}[07]
holding,@
hypothetical ~,[36]
linear »,[36]
structural =, [36]
substructural z,@
inductively defined ~,[34} 37} 58]
mode of use, [38]
parametric ~,[37[97]
process typing ~,[57]
session-type ~,E

typing, 3]
junk-free
function ~,[178]

Kleene fixed-point theorem, [20} 20} 28}
Knaster-Tarski fixed-point theorem, E

lattice, fig]

complete N,E
linear

~ context,[38} [07}[09]
linearity,

linear hypothetical judgment, 34|
link

category of ~,[64]
lower

~ bound, ig]

greatest ~ bound,@

~ set,fig]

matrix notation for morphisms,
message

~ fact,[o8]
~ process, [l00]
mode, [38]
modification, 2]
fold ~,[z9]
unfold ~,[79]
morphism
~ of abstract binding tree,@
context ~,[38]
~ of general binding tree,[33]
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~ algebra,[82]
vertical ~, ]
zero ~,[i0]
MRS, see multiset rewriting system
multicategory, i4]
multiset, [39]
active ~,[40][43]
difference, [39]
element, [39]
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intersection,[39]
multiset-in-context, [41} [43]
overlap, 53]
stationary ~,[40}[43]
sum, B9
support,[39]
union, [39]
multiset rewrite rule, 20} [43]
applicable ~,[40} [41} 23]
~ fairness, [a9]
~ instantiation, 4o} [41 [43]
distinct ~,[a4]
equivalent z,@
~ fairness, [50]
substitution
fresh-constant ~, [20]
instantiating m,@
matching =,[40]
multiset rewriting system,[40]
active multiset, [40] [43]
commuting ~,[52]
execution, [40] [133]
fairness, see fairness
interference-free ~,@
~ for multisets-in-context, [41]
non—determinism,@
non-overlapping ~,[53}[132]
parallel ~,[a4]
relation to linear logic, [42}[43]
result

as a multiset, [40] [43]
as a multiset-in-context, [47] [43]
stationary multiset, [40} [43]
trace,[40]
permutation,@
union-equivalence, [60]
multiset-in-context

~ configuration, 98]

nadir, see cocone

name, 3]

natural
2-~ transformation, f12]
~ transformation,ﬂ

natural transformation
fold ~,[z72]
horizontal iterate, [66]
unfold ~,[72]
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locally continuous functor,@
O-cocomplete, 27]
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2-exponential N’@
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terminal ~, 10} fi2]
Zero ~,[i0]

-
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w-chain, [2¢][64]
w-chain functor, [69]
w-colimit functor, 71
w-functor,[64]
parametrized z,@@
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~ function,
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~ function,ig]
operator
abstract binding tree ~,[31]
arity, [31[32]
Conway ~,[28
dagger ~,[78|
general binding tree ~,[32]
parametrized fixed-point ~,[28]
trace, see trace operator
valency, [31][32]
opposite
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order
approximation ~,[22]
partial ~,g]
stable function ~,@

way-below ~,

parametric
~ derivation, [36]
~ judgment, [37}[o7]
inductively defined w, 38|
~ rule,[38]

partial order, ig]
directed-complete, see dcpo

permutation,@
effects on fairness, [59]
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point
fixed ~,[102
polarity, see session type, polarity
polycategory,i5]
poset,[ig]
category of ~,fig]
coalesced sum, 25|
directed-complete, see dcpo
disjoint union,@
lifting, [24]
pointed ~,fig]
product of ~,[25]
smash product, [23]
precongruence
relation, [124]
preservation property
~ for conﬁgurations,@
~ for functional terms,[124]
prime
~ algebraic dcpo,@
~ element, 22]
process
closed ~,[o7
~ composition, [ioo]
~ context,[123]
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divergent ~,f103]

~ fact,

fair ~ execution, [g9]

forwarding ~,

message ~,[T00]
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receiving ~,[107]

recursive ~,[103]

sending ~,107]

structural ~,[107]

~ trace,[98]

type-indexed relation ~,fi22]

~ typing judgment, [p7]
product
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projection, 1]
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~ process, [103]
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type-indexed ~,@|
renaming
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axiom, [34]
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~ functional,[34]
generic ~,[37
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inference ~,[34]
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uniform ~,[37]

service, see session type
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choice type,@
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~ judgment,@
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recursive ~,[i05|
substitution
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unit type,
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~ variable, [97]

set
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lower ~,[19]
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upper ~,[i9]

sort

~ of abstract binding tree, [31]
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stable

~ function, 23]
~ function order, [24]

strict

~ function, ig]

string

~ diagram,

~ diagrams for trace operators, [29]

structural

~ context,[38] [97]

structural property,

~ of contexts,[36]
contraction, [36]
exchange, [35][3¢]
linearity,
proliferation, [36} [o9]
reflexivity, @ @
renaming,
substitution, @

transitivity,@@

weakening, @

subcategory

full ~,[g]
wide ~,[g]

subformula property,
substitution

~ of abstract binding trees,@
~ as a context morphism,
fresh-constant ~,[20]
functional term, [234]
functional term ~,[108]

~ of general binding trees,
instantiating ~,@|

matching ~, 40|

session type,[233|

session type ~,[106]
structural property, [3¢]

substructural

~ context,[34

derivability,
~ hypothetical judgment, [z4]
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support
~ofa multiset,@
~ of a trace, 40|
supremum, see bound, least upper
directed ~,[20]
symbol
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general binding tree ~,[32]
synchronization, see session type, polarity shift

theorem
Hasegawa-Hyland ~,29]
Kleene fixed-point ~,@@
Knaster-Tarski fixed-point ~, 19} 20} 28] [29]
limit-colimit coincidence ~,[26]

top element, [ig]

trace
for multiset rewriting systems, see multiset rewriting

system, trace

process ~,[58]
support, 40|
trace operator, 28]
string diagrams,
transformation

2-natural ~,fi2]
natural ~,[g]
transposition, see permutation

unfold
~ functor, 7178
~ modiﬁcation,ﬂ
~ natural transformation, 72|
union—equivalence,@l
unit
~of adjunction,@
upper
~ bound, fig]
least ~ bound, 9]

~ set,fig]
valency,[31][32]

variable,@
abstract binding tree ~,
fresh ~,@
functional term ~, [98]
general binding tree ~,[32]
session-type ~,[97]
sort of ~,

vertical
~ composition, i1]
~ morphism, i1

weakening
structural property,@

zero
~ morphism,@

~ object,@
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