CPU Performance Counter-Based Problem
Diagnosis for Software Systems

Keith A. Bare

CMU-CS-09-158
September 2009

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Thesis Committee:
Priya Narasimhan, Chair
Gregory R. Ganger

Submitted in partial fulfillment of the requirements
for the degree of Master of Science.

Copyright (©) 2009 Keith A. Bare

This work has been partially supported by the National Science Foundation CAREER grant CCR-0238381 and
CNS-0326453, and the Army Research Office grant number DAAD19-02-1-0389 ("Perpetually Available and Secure
Information Systems”) to the Center for Computer and Communications Security at Carnegie Mellon University.

The views and conclusions contained in this document are those of the author and should not be interpreted as repre-
senting the official policies, either expressed or implied, of the U.S. Government.



Keywords: black-box instrumentation, CPU performance counters, fingerpointing, problem
diagnosis, support vector machines, Perfmon2, three-tier web-applications



This thesis is dedicated to everybody that has helped me make music such a wonderful part of my
life. This includes, but is not limited to, Sandra Pease, Larry Wilhelm, Philip Simon, Mary Ulrey,
Jan Duga, Paul Gerlach, Maria Sensi-Sellner, Susan Sands, and my loving parents Keith and
Mary Lou Bare.



v



Abstract

Faults that occur in distributed software systems, such as e-commerce applications,
are often costly in terms of lost revenue, but can be difficult to discover manually.
Problem diagnosis tools attempt to detect, and often localize, faults that occur in dis-
tributed software systems. The goal is to detect problems soon after they occur, and
rapidly notify an operator or automatically fix the issue as quickly possible.

Trade-offs are involved in designing such tools. A good tool should be accurate,
and should have low overheads, to minimize adverse effects to the monitored system.
Often there is a trade-off between these two goals. Application-level data can often
lead to very accurate, fine-grained diagnoses, but at a high cost in terms of reduced
system performance. Metrics collected from the operating system are less expensive to
collect, but usually are only suitable for coarse fault localization, usually to a specific
machine.

This thesis explores a data source that has only had limited use in problem di-
agnosis tools: CPU performance counters. Instrumentation based on these perfor-
mance counters can be collected with very low overheads, and provides information
with expressive power similar to data collected from the operating system. This data
source is evaluated experimentally, in conjunction with a variety of simple analysis
algorithms, via synthetic fault-injection experiments against a realistic 3-tier auction
web-application.

Experimental results indicate that CPU performance counter-based approaches are
able to consistently detect, and in some instances localize faults, even when only sim-
ple analyses are performed. Given the low cost to collect data from the counters, and
the fact that this data need not be tied to a specific application or operating system, this
work demonstrates the viability of such approaches to problem diagnosis.
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Chapter 1

Introduction

Today’s software systems are getting larger and increasingly complicated. Seemingly simple ac-
tions can involve processing on many different machines. As a result, it becomes increasingly
likely that a given component of such a system might fail, and potentially cause a cascade of fail-
ures that affects the entire system. Studies [31, 36] demonstrate that a wide variety of these sorts of
failures occur in e-commerce applications. Failures that cause service outages can result in large
monetary losses. For example, an hour-long PayPal outage due to a failed piece of networking
equipment on August 3, 2009 may have prevented up to $7.2 million in customer transactions
[41]. Indirect costs in terms of dissatisfied customers are harder to quantify, but also present a
serious concern.

Automated problem diagnosis techniques focus on alleviating the prohibitive cost of downtime
by continuously monitoring important software systems and localizing/diagnosing the root-cause
of failures when they occur. Knowledge of the root-cause of a failure is helpful to a system admin-
istrator, as it eliminates or reduces the time required to manually determine the cause of the failure,
and allows the administrator to mitigate and/or repair the failure more quickly and effectively. This
has the potential to reduce the duration and cost of any resulting downtime.

Current problem diagnosis techniques work at varying granularities. Techniques such as path-
analysis [14, 19, 29, 39], latency analysis [8, 28] and performance-data analysis [4, 15, 16, 26,
27, 35, 45] all aim to automatically identify the components or nodes that are the source of the
problem, thereby saving the system administrator the time and the manual effort in isolating the
root cause of the problem.

Distributed software systems are comprised of multiple layers, each of which can be an effec-
tive source of instrumentation that then serves as input for problem diagnosis. Application-specific
(white-box) instrumentation is the least general. It requires a specific understanding of the applica-
tion’s operation. Frequently it involves modifications to the application code in order to extract the
relevant data. On the other hand, white-box instrumentation does have its advantages—inevitably,
application-specific data is often required to trace a failure back to root-causes as specific as line
of source-code. However, given the application-specific nature of white-box instrumentation, it
needs to be redone for any new application and also requires an understanding of the semantics
and functionality of the application, which reduces its value as a generic technique. Some problem
diagnosis approaches have successfully used white-box approaches. For example, Pip [39] uses



explicit models of application behavior to determine whether or not annotated distributed systems
are functioning properly. X-Trace [19] uses application-level instrumentation to determine causal
paths in network protocols, which can be useful in determining which node returned an erroneous
value, even when several are involved in handling requests.

Other types of instrumentation are completely application-agnostic (black-box) in that the in-
strumentation is transparent to the application, does not involve application-level modifications,
and does not need an understanding of the application’s semantics or structure. Black-box instru-
mentation generally takes the form of performance data collected by the operating system. This
includes data such as context-switch rate, CPU usage, network-traffic rate, page-fault rate, etc.
Black-box instrumentation is generic, and can be readily collected for any application in the same
manner. Some problem diagnosis approaches have successfully used black-box approaches. For
example, [15, 16] use performance metrics from the operating system to predict when service-level
objectives (SLOs) are violated in web-applications. [35] uses peer-comparison of operating system
performance metrics to identify nodes experiencing memory leaks, process hangs, and packet loss
in two replicated systems.

Library/middleware instrumentation takes a middle ground. These gray-box approaches focus
on instrumentation that can potentially be reused for an entire class of applications. For exam-
ple, instrumentation that collects garbage-collection statistics at the Java Virtual Machine (JVM)
level can be reused for any Java application. Other examples of gray-box instrumentation include
path-tracing based on modified communications layers and management metrics provided by mid-
dleware. Some problem diagnosis approaches have successfully used gray-box approaches. For
example, PinPoint [11, 14] and [29] use request tracing to diagnose Java exceptions, endless calls,
and null calls in three-tier web-applications.

Due to its general, application-independent nature and the ease with which black-box data
can be obtained, this thesis develops a black-box approach to problem diagnosis. However, it is
not novel in its use of black-box instrumentation for problem diagnosis; many other black-box
diagnosis techniques exist.

The novelty of this thesis lies in its use of a new black-box instrumentation source, specifically,
CPU performance counters, for problem diagnosis. A CPU’s performance monitoring unit (PMU)
monitors the processor for the occurrence of specific performance-related events, incrementing
performance counter registers when the events occur. Examples of events that can be monitored
include cache misses, memory prefetches, branch mispredictions, and interrupts. These all provide
low-level information about processor state as it executes code, which would otherwise only be
obtainable by simulation. Traditionally, CPU performance counters are used for profiling and
bottleneck analysis [5, 9, 32, 43] on a single processor. For example, tools like OProfile [32]
can be used by application developers to determine which functions a program spends most of
its execution time in. However, there has been little or no work done in correlated traces of data
from these counters across the processors in a distributed system, with the aim of localizing a
performance problem.



Thesis statement. The thesis statement is as follows:

CPU performance counters provide low-overhead, transparent instrumentation ca-
pable of supporting the black-box diagnosis of performance problems in three-tier
distributed systems for e-commerce.

Validation of thesis statement. The remainder of this thesis attempts to validate the thesis
statement through experimental fault-injection studies on a well-known, open-source, three-tier
e-commerce system, the Rice University Bidding System (RUBIiS) [12], an auction site prototype
modeled after eBay. The validation includes the following:

e Developing an instrumentation framework for extracting CPU performance counter data
from an executing instance of RUBIS;

e Employing fault-injection in a methodical, repeatable manner, to induce various performance
problems in an executing instance of RUBIiS;

e Performing different kinds of analyses on the gathered fault-free and fault-induced traces
of the gathered CPU performance counter data, with the aim of enabling offline problem
localization;

e Understanding the impact, in terms of reduced throughput, caused by collecting CPU per-
formance as RUBIS is executing.

Contributions. To the best of the author’s knowledge, there is no previous work that leverages
CPU performance counters for black-box problem diagnosis. This thesis’ initial, empirical explo-
ration of problem diagnosis using CPU performance counter data is a significant novel contribution
in the area of dependability. Ancillary, but related, contributions include:

e A technique for determining which countable processor events are the most relevant/useful
for problem diagnosis;

e Simple analysis techniques capable of anomaly detection and problem localization;

e Insights about the strengths and limitations of using CPU performance counter data for prob-
lem diagnosis.

Organization of thesis. This thesis is organized as follows: Chapter 2 provides the necessary
background, by describing related work in both the context of CPU performance counters and
the context of problem diagnosis. Chapter 3 provides a synopsis of the approach and covers the
details of the target system, RUBiS. Chapter 4 describes the instrumentation (the CPU performance
counters), the type of data collected, and the significance of the data. Chapter 5 provides the details
of the experimental methods. Chapter 6 outlines the analytical techniques used to examine the
data collected. Chapter 7 describes the results and the insights obtained from this new approach.
Chapter 8 concludes with the lessons learned and directions for future work.






Chapter 2

Related Work

Related work falls into two main categories: applications of CPU performance counters, and tech-
niques for problem diagnosis in three-tier web-applications. Performance counters are typically
used for code profiling, which, in a sense, is a way of finding performance problems in code.
However, there are differences. Problem diagnosis work is typically designed to apply to an entire
distributed system, whereas most profiling techniques only apply to a single executable program
on one machine. Additional constraints also sometimes apply to problem diagnosis tools. Some
examples include low operating overheads, ability to function without access to the monitored
system’s source code, and limited presentation of data to avoid overwhelming administrators.

2.1 CPU Performance Counters

Nearly any software that makes use of CPU performance counters uses some sort library and/or
kernel API to access and control the counters. This research uses Perfmon2 [34], as it is a well-
featured, low-level interface that runs on the Linux systems that were available for experiments.
There are other interfaces that have similar features. perfctr [33] is a performance counter driver
for Linux some previous work has used, which has now for the most part been superceded by
Perfmon2. PMAPI [37] is a library that runs on machines with POWERPC processors running
AIX. In high performance computing, many tools use PAPI [17], which was designed to be portable
across systems and processors. The work in this thesis could have used one of these alternative
interfaces, assuming the interface supports event multiplexing and the abilities to program, start,
read, and stop the processor’s counters.

Most approaches that use a processor’s performance monitoring features do some sort of sta-
tistical profiling. Anderson et al. [S] discuss a continuous profiling framework, one of the earliest
examples. The main idea is to profile programs with low overheads. To do this, interrupts are
generated after every n instances of a specific event occur. The interrupt handler examines the
instruction that had been executing when the interrupt occurs, and attributes the event to that in-
struction. This allows a programmer to determine which instructions frequently cause certain
events, and the runtime overhead can be decreased by increasing the value of n. Anderson uses
the collected information to attribute pipeline stalls to specific instructions, and give a likely cause
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for the stall. Other work that takes this approach includes OProfile [32], the sampling features of
Perfmon2 [34], and Intel’s VTune Performance Analyzer [24].

In [9], Azimi et al. explore difficulties that often arise when hardware performance counters
are used. One difficulty given is that only a small number of counters are typically supported by
processors. The solution provided is counter multiplexing, and it is empirically demonstrated that
multiplexing several logical counters onto a single physical counter usually does not severely af-
fect the accuracy of the data collected. The multiplexing approach is then used to collect data for
attributing pipeline stalls to specific functional units. This thesis makes use of similar multiplex-
ing, and uses the extra data collected to provide more features to the analysis algorithms used in
performing problem diagnosis.

Virtual machines, such as the JVM, can affect code execution and performance in interesting,
seemingly strange ways. Exploration of these phenomena yields work involving CPU performance
counters that is in many ways similar to problem diagnosis. However, the focus is on understanding
performance characteristics on a single processor, rather than diagnosing problems in distributed
systems. Eeckhout et al. [18] explore how different JVM implementations and data sizes can af-
fect the architectural events generated by the same programs. The main conclusion made is that
many more things affect performance characteristics of Java programs than programs written in
languages with simpler runtime environments like C and C++. The authors of [43] do, however,
achieve success using hardware performance counters to explain certain behaviors in Java applica-
tions, included performance improvement over time due to JIT optimization, and decreased perfor-
mance before garbage collection. The next year, Vertical Profiling [21] is introduced, and makes
use of data collected by software in addition to the hardware counter data. The authors claim that
hardware counters alone weren’t expressive enough to explain some phenomena. However, soft-
ware data often requires code modification to collect, which may be time consuming or impossible.
For this reason, this thesis focuses on problem diagnosis using hardware counters alone.

2.2 Problem Diagnosis for Three-Tier Web-Applications

A variety of approaches have been explored to build problem diagnosis tools for three-tier web-
applications. Approaches can be categorized by the source of data used to perform fault detection
and localization. Typical sources of data include request-tracing, management metrics reported by
server software, and black-box performance maintained by the OS. The author is not aware of any
other approaches that used data collected CPU performance counters.

Request tracing requires information identifying which application components a given user-
initiated request touch. If the monitored application does not provide this information, the appli-
cation or its middleware must be modified. This modification may be difficult or impossible if the
application is large, or its source is not available. CPU performance counter-based approaches,
on the other hand, do not require information about the components user-initiated requests touch.
Pinpoint [14] detects faults based on instrumented middleware that reports when Java exceptions
occur. Records indicating which components were used for a request, and whether or not the
request failed are fed into a clustering algorithm. Components in clusters associated with failed
requests are reported as the likely cause of the failures. Candea et al. [11] extend Pinpoint to
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proactively recover from failures using micro-reboot techniques. Khanna et al. [29] take a more
complicated approach, using the path requests takes through application components. Probabilities
are maintained estimating the reliability of components, the reliability of communications links be-
tween components, and how capable a component is it masking failures rather than propagating
them. Based on the request path and the collected probabilities, the components most likely to
have caused the fault are determined.

Management metrics are pieces of data relevant to performance maintained and reported by
server software. These include things such as response times for different classes of requests,
load-balancing weight assigned to certain machines, and load average. Many are specific to the
server software used. Appleby et al. [8] use response time measurements for each component of the
system. Transaction-level service level objectives (SLOs) are used to construct component SLOs,
by dividing the transaction-level SLO into parts, based on dependency information (which can be
estimated using management metrics via the approach in [3]) and typical response times for the
components. When a fault occurs and a transaction-level SLO is violated, the fault can be localized
by observing which components violated their component SLOs. In [4], the authors detect faults
using change point techniques. Faults are detected based on rules specifying which management
metrics should change as a result of the fault, and which should not. This approach is used to detect
storm drain conditions in Trade 6. It is possible that the approach could be extended to other faults,
however, a human with a priori knowledge of how the faults manifest would need to manually con-
struct the rules. Jiang et al. present two approaches based on correlation. [27] explores additional
regression methods to model correlations between metrics where a simple ordinary least squares
(OLS) regression is insufficient. A fault is detected when a significant number of correlations ap-
pear to be violated, based on a Wilcoxon rank-sum test. [26] takes a similar approach, but uses
clustering of normalized mutual information (NMI) values between metrics, rather than regression
models. A fault is detected when changes in the entropy of a cluster are deemed significant by the
Wilcoxon rank-sum test. Localization is attempted by scoring subsystems based on the Jaccard
coefficient, potentially adjusting the scores to account for popular components.

Black-box instrumentation, typically in the form of performance metrics collected by the OS,
has the benefit that it is not in any way tied to the software system being diagnosed. Cohen et al.
explore this type of instrumentation. In [15], they use Tree-augmented Bayesian Networks (TANs)
to predict when an SLO violation is occurring, based only on instrumentation data. Of course, this
requires that SLOs be set, and that the SLOs are monitored when training the TAN model. The
authors make an interesting observation: depending on the root cause of the SLO violations used
for training, the TAN models select different metrics to predict future SLO violations. The work
in [16] extends on this observation, developing a method for creating signatures for different types
of faults. By comparing the current instrumentation values with historical signatures, Cohen et al.
are able to identify faults that are likely to have caused a given SLO violation. While this thesis
does make use of black-box instrumentation, it differs from the approaches discussed in three main
ways: 1) CPU performance counters are used as instrumentation, rather than OS-collected metrics,
i1) there is no requirement to set SLOs, and iii) no attempt is made to identify the type of fault
occurring.






Chapter 3

Approach

This chapter provides an overview of the approach taken in building a tool that uses CPU per-
formance counter-based instrumentation to perform problem diagnosis. The first section clarifies
the problem considered, by enumerating specific goals, non-goals, and assumptions. The second
section presents the rationale behind CPU performance counter-based diagnosis. The third section
provides a brief overview of the approach taken. Finally, the fourth section re-iterates the key
points discussed in this chapter.

3.1 Problem Statement

Objectives. A tool for CPU performance counter-based problem diagnosis should achieve the
following goals:

Low-overhead instrumentation. Instrumentation with high run-time overheads has the possibility
of adversely affecting the target system-under-diagnosis. As a result, a good solution will provide
CPU performance counter data with low overheads.

Support for online and offline data-analysis. In the field, it is desirable for a problem diagnosis tool
to notify a system administrator of a potential problem as soon after a fault occurs as possible. In
practice, this requires some type of online analysis that runs concurrently with the system-under-
diagnosis. Thus, a good solution will perform data-analysis in an incremental manner, supporting
offline analysis of execution traces for evaluation purposes while maintaining the possibility of an
online implementation.

Tier-level localization. Fine-granularity diagnoses are likely to be the most useful to a system
administrator—they minimize the amount of manual diagnosis that must be performed. In a three-
tier e-commerce system, the tier from which an underlying fault originated is a natural choice of
granularity. As a result, a good solution will localize performance problems to a faulty tier.

Scope. To limit this thesis to a tractable problem, the following explicit non-goals are adopted:

Novel or complex data-analysis algorithms. While necessary in the construction of an problem
diagnosis tool, data-analysis algorithms are a secondary consideration. The focus is on validating
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a novel source of instrumentation, so simple analysis techniques based on off-the-shelf tools are
employed.

Fine-grained root-cause analysis. Some systems attempt to trace a problem back to a very fine-
grained root-cause, such as a line of code or instruction. For example, [5] attributes pipeline
stalls to specific instructions. The approaches in this thesis only attempt localization to a specific
machine in a three-tier web-application.

Diagnosis of value faults. It may be possible for a system-under-diagnosis to fail in such a way that
it still appears to be performing normally, while in actuality the system is returning incorrect or
bogus values. A web-application meeting its SLO, but presenting the user with a page describing
a Java exception would be an example of a value fault.

Combinations of multiple instrumentation sources. While it is possible to combine CPU perfor-
mance counter-based instrumentation with other sources of data, that is not the focus of this thesis.
Rather, this thesis explores the viability of CPU performance counters alone, as additional data
sources could cloud the contribution CPU performance counters make.

Assumptions. This thesis assumes the following in the approach specified:

RUBIS is the only service running on the machines being diagnosed. CPU performance counter
instrumentation data is generally collected as all processes in the system are running. As a re-
sult, other services that perform processing unrelated to RUBiS may cause what appears to be
anomalous/faulty behavior, and lead to a false alarm.

Synchronized clocks. Timestamps are used to correlate measurements made on different machines
temporally. The clocks in all the machines must be synchronized for this to work properly. Using
the Network Time Protocol (NTP) is one solution for maintaining this synchronization.

Processor support for performance monitoring. It is obvious, but still worth noting, that this
approach will only work on processors that have performance counters. However, performance
monitoring features are ubiquitous, and are supported by all recent AMD and Intel processors.

3.2 Rationale

Why should CPU performance counter data be a useful source of data for problem diagnosis? The
following insight hints at their viability. As a software system executes, and is functioning nor-
mally, it usually executes similar code paths for all requests of a given type. In most e-commerce
systems under normal loads, it is likely that there is a stable request mixture. Since CPU perfor-
mance counter events are based on activities that occur as code executes, it is assumed that different
blocks of code produce different proportions of events. If faults are considered, this line of thought
leads to the central assumption of this thesis: When a fault occurs, different code executes, or the
same code executes differently. This phenomenon produces changes in the collected time-series of
counter-value differences, a key observation that we exploit in the analysis techniques.

The assumption is that faults can be detected because they cause anomalous behavior in the
CPU performance counters. However, other events may also cause anomalous behavior. One
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Figure 3.1: An overview of the three-tier EJB SessionBean version of RUBIS.

example of such an event is a change in the workload the system-under-diagnosis is experienc-
ing. Differentiating between faults (truly anomalous behavior) and workload changes (different
but correct behavior) is a challenge every problem diagnosis approach must face. Approaches that
use application-level data can sometimes get around this difficulty by using an additional white-
box metric that is known to be correlated with workload. Black-box approaches, such as the one
developed in this thesis, often do not fare as well. One strategy is to introduce models of differ-
ent modes of operation, one model per unique workload type. However, such an approach may
introduce large numbers of missed fault-detections, as true faults may be mistaken for a work-
load change. For simplicity, this thesis acknowledges, but does not attempt to solve the problems
associated with workload variation.

3.3 Synopsis of Approach

The approach taken to perform problem diagnosis involves 1) periodically collecting accumulated
event counts from CPU performance counter registers while a target system-under-diagnosis exe-
cutes, ii) analyzing the collected data to determine whether a performance problem occurred, and
iii) localizing the problem to the node on which the fault is occurring. The data-analysis stages,
while currently only implemented as offline techniques for processing trace-data, were designed to
operate incrementally, and thus support online operation in the future.

To validate the thesis statement in this diagnosis-centric study of hardware performance counter
data, the author pursues an empirical approach through fault injection. RUBiS [12], an open-
source, multi-tier e-commerce system, is selected as the target system-under-diagnosis. Specifi-
cally, the three-tier EJB SessionBean version was used. Figure 3.1 provides a high-level overview
of the RUBIS setup. Faults to inject are selected from a set of performance problems, based both on
resource contention and realistic problems (i.e., network communications problems and program
bugs). These faults are injected to a specific tier of the system-under-diagnosis, as CPU perfor-
mance counter data is collected. An analysis technique then attempts to localize the fault to the
appropriate tier using the collected traces of performance counter data.

While this approach is validated on a single system-under-diagnosis (RUBIiS) in this thesis,
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many other systems could have been studied. The data-collection and data-analysis techniques are
in no way specific to RUBIiS, and are applicable to other target systems. Many of the faults injected
are also generic, so large portions of the fault-injection framework will apply to other systems. Of
course, it cannot be assumed that the experimental conclusions reached with RUBIS necessarily
generalize to other systems.

3.4 Summary of Chapter

This chapter attempted to formulate the problem of performing CPU performance counter-based
problem diagnosis with increased clarity. In that interest, the author enumerated goals, non-goals,
and assumptions. The rationale, and key assumptions leading to the believed expressivity of CPU
performance counter instrumentation were then covered. Finally, the target system and an overview
of the approach to solving the problem were presented. More detail on the CPU performance
counters, and techniques in which the data they provide is captured will be presented in the next
chapter.
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Chapter 4

Instrumentation

Three main components are involved in providing hardware performance counter-based instrumen-
tation: the processor’s performance monitoring unit (PMU), the kernel performance monitoring
subsystem, and the pfmon program. The PMU does most of the real work; it increments special
counter registers when certain architectural and micro-architectural events occur. Unfortunately,
configuring the PMU typically requires the execution of privileged instructions. As a result, the
kernel performance monitoring API is introduced as an intermediary, granting non-privileged pro-
grams limited access to the PMU’s features. Finally, the pfmon program is used to collect and
record the data generated.

4.1 CPU Support for Performance Monitoring

Modern processors all support some sort of performance monitoring capability. Designed to sup-
port profiling to optimize the performance of code execution, a processor’s PMU supports a wide
variety of functions. This thesis uses one of the simplest, most common performance monitor-
ing features: the ability to count the occurrence of architectural and micro-architectural events via
programmable counter registers.

The following steps are taken in using these performance counters. First, values are written
to control registers. These values precisely specify which events should be counted, and include
details, including but not limited to: i) privilege modes in which events are counted, ii) functional
units to be monitored, and iii) level- or edge-triggered mode of operation. Initial counter values
also must also be loaded into the counter registers themselves. Next, a bit is set to enable the
counters. At this point, the processor increments the appropriate counter every time an event of
interest occurs. If any counter overflows, the processor may generate an interrupt if configured
to do so. Finally, the data is collected, either by periodically reading the counters’ values, or by
observing overflow interrupts.

The number of counters available for use, and the set of countable events is processor depen-
dent. For example, the AMD Opteron family OFh processors used in this research support four
programmable counters [2], while processors based on Intel’s Core micro-architecture support
three fixed-function counters, and two programmable counters [23]. While the events available
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for counting vary between processor makes and models, available metrics are usually similar. For
example, nearly every processor will support counting clock cycles, instruction retirement, and
cache-related events. Moreover, processor manufacturers typically provide support for monitoring
events that can lead to poor performance. This is so developers employing profiling techniques
based on performance counters can discover and fix code that executes poorly on the processor.

Additional information on the performance monitoring features of processors is typically found
in the processor vendor’s documentation. For AMD processors, general information is available in
section 13.3 of [1], with specific details in chapter 11 of [2]. Intel provides the information for its
processors in chapter 18 and appendix A of [23].

4.2 Kernel Support for Performance Monitoring

Writing to control registers is a privileged operation, so programming the CPU’s performance
counters must be mediated by the operating system. Perfmon2 [34], a set of patches to the Linux
kernel, provides access to the performance counters through a set of system calls. A wide variety of
processor types and models are supported. As a consequence, the approach taken by this thesis is
not necessarily restricted to AMD Opteron processors; it may be possible to obtain similar results
on a different architecture or processor.

Several steps must be taken when using the Perfmon2 kernel API. First, a performance mon-
itoring context, represented by a file descriptor, must be created. This can be associated with a
processor, the current thread, or another thread that is being traced via ptrace (). If the context
is associated with a thread, rather than a processor, Perfmon2 will virtualize the counters to the
specified thread by saving and restoring the counter values when context switches occur. Next, the
performance monitoring context can be configured. This is done using the pfm_write_pmcs () and
pfm write pmds () system calls, which write to the PMU control and counter registers associated
with the context, respectively. Once configured, the counters can then be enabled and disabled via
the pfm_start () and pfm_stop () system calls. Finally, whenever it is desired, the current counter
values can be obtained using the pfm_read_pmds () system call.

Perfmon? is slightly more than a thin wrapper around PMU hardware. It supports some func-
tionality not available from the processor alone. The most useful feature is the ability to multiplex
multiple event sets onto a single physical set of counter registers. When multiplexing is enabled,
Perfmon2 will change which logical counters are mapped to physical counters at a regular inter-
val, and keep track of how long each logical counter is activated. Using this information, full
counts for all the events can be extrapolated. [9] describes a similar technique for multiplexing,
and evaluates accuracy of the resulting estimates. Given the limited number of counters available
on most processors, multiplexing is essential. A second feature is per-thread virtualization of the
performance counter registers. This makes it appear as a given thread is the only program using the
CPU; only events that occur as the thread is executed get counted. Internally, this is implemented
by saving and restoring the performance counters when context switches occur. This virtualization
feature was not used for most experiments; generally data is collected in system-wide mode, where
performance events that occur in any process contribute to the measured event counts.
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4.3 The pfmon Program

The Perfmon?2 project includes the pfmon program, a sample, well-featured program that uses the
Perfmon2 API to program and control system PMUs. pfmon supports collecting the number of
events accrued, either on a given CPU, on all CPUs, or for a specific thread. It records these
counts to standard output or to file. In the thread-specific mode of operation, it has the ability to
track lifecycle events (i.e., calls to fork (), exec (), and clone () ), and also monitor newly created
forks and threads.

This program served as a good starting point for data collection for offline analysis. However,
two small changes had to be made to facilitate using the collected system-wide data for problem
diagnosis. The first modification added timestamps to collected counts. There was pre-existing
support for dumping system-wide event counts accumulated at regular intervals, but this data was
not annotated with time stamps. The second change made pfmon more suitable for background data
collection. The program was designed for interactive use, so it collects data until the user presses
return. This causes problems when pfmon is run without an input source, so the getchar () call
used to wait for input was replaced with a call to pause (), to wait for a signal instead.

Unless otherwise noted, to collect data for experiments, pfmon is started in system-wide mode
10 seconds after the services on each of the machines providing RUBiS’ three tiers. It is configured
so that the CPU performance counters only count events that occur in user mode. pfmon’s output,
the counter value difference observed every second, is written to two files, one for each processor
core. To ensure the timestamps from each machine are comparable, ntpdate is executed prior to
each experiment. After an experiment completes, the output files are copied to a central location
and merged.

4.4 Summary of Chapter

This chapter presented and described the components used for CPU performance counter-based
instrumentation. These components include physical hardware in the CPU, kernel services, and a
user program. The net result is a stream of data that can be fed into a variety of analysis algorithms.
The author claims that this data is useful, and will proceed to evaluate the data in the context of
synthetic fault-injection experiments.
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Chapter 5

Experimental Methods

The goal of this thesis is to validate the hypothesis that CPU performance counters provide data that
can be used to detect problems that occur in software systems. This chapter will explain common
features of the experimental methods used to empirically evaluate the hypothesis. RUBIS, an eBay-
like three-tier auction web-application, is the targeted software system. During each experiment,
the workload generator included with RUBIiS emulates many concurrent clients while faults are
optionally injected into one of RUBIS’ tiers. Measurements from the CPU performance counters
are taken every second as the experiment runs and the collected data is then fed into an analysis
algorithm.

5.1 System Setup

The Rice University Bidding System (RUBIiS), described in [12], is a three-tier a web-application
that is believed to be similar in architecture and design to real e-commerce applications. It pro-
vides an auction web site modeled off of eBay. While there are many versions of RUBIiS (it was
originally written to compare the performance of different application servers and implementation
techniques), this thesis only used the Enterprise Java Bean (EJB) SessionBean version of RUBIS.
The PHP and Servlet versions were not used because they do not separate presentation and appli-
cation logic, and hence only have two tiers. The initial decision to use the SessionBean version
over the other EJB versions of RUBIS was arbitrary, although [12] demonstrates that using the Ses-
sionBean version is a good choice in practice; the SessionBean RUBiS implementation achieves
better performance than any of the other EJB-based implementations.

Three-tier designs separate distinct concerns of application design. They consist of a front-end
or presentation tier, an application tier, and a persistence or database tier. The first tier is respon-
sible for interacting with users, and formatting information. The second tier handles application
logic, and the third tier is responsible for retaining and storing data. In the case of the EJB Ses-
sionBean version of RUBIS, the presentation tier is handled by a web server, a servlet container,
and servlets. The application tier is handled by an EJB container and EJB Session Beans. Finally,
the persistence tier is handled by a Relational Database Management System (RDBMS).

17



5.2 System Configuration

For all experiments, a set of four identical machines was used. Three machines were dedicated
to RUBIS’ three tiers. The fourth was used to simulate clients. The machines each have a dual-
core 2.8GHz AMD Opteron processor and 4GB of RAM. All were connected to a gigabit ethernet
network via a Broadcom NetExtreme ethernet interface. Each system ran Debian GNU/Linux with
a 2.6.26 kernel, which was patched to support the Perfmon2 API.

Version 1.4.3 of RUBiS was used for all experiments. The machine hosting the front-end tier
was configured with Apache Server [6] version 2.2.9 and Tomcat [7] 5.5.26. Apache Server was
responsible for serving static content, and proxying requests for dynamic content to Tomcat via
mod_7jk using AJP, Tomcat’s custom protocol. The application tier was hosted by JBoss Application
Server [25] version 4.2.3.GA’s EJB container. Finally, MySQL [30] 5.0.51a was used to provide
the database tier. All Java was run under Sun Java 1.5.0.

Very few changes were made to the default configurations of the software used. Configuration
changes were mainly limited to providing the components the ability to communicate with each
other. For example, Apache Server had to know to proxy certain requests to Tomcat. The RUBIiS
servlets running in Tomcat had to be able to communicate with the application server. JBoss
had to be configured to use MySQL for persistence, and MySQL was adjusted to support remote
connections. The Java heap size for Tomcat was increased to 512MB, while JBoss ran with the
defaults set by its startup script.

There are a few interesting things to note about this experimental setup. One is that there is
no replication or redundancy. This is not necessarily realistic; most important services would use
some form of redundancy to handle higher loads, better be able to cope with problems, and reduce
downtime. However, it was convenient to use a configuration without replication or redundancy,
due to resource constraints. Such configurations actually make it more difficult to localize prob-
lems. When a service is replicated three or more times, peer-comparison approaches (such as [35])
provide an easy mechanism to determine which machine is experiencing a fault; it’s probably the
one that’s behaving differently, since all of the replicas should ostensibly be acting the same. Even
if services are just duplicated to handle higher loads, peer comparison approaches may be possible
if requests get distributed to the machines such that each machine is handling a similar workload.
The second point of interest is that all the machines are running different software, and performing
different functions. Despite the fact that three machines are being used, peer-comparison between
them is not meaningful.

5.3 Event Selection

The AMD Opteron processors used for the experiments define a large number (nearly 90) of count-
able events. These are architectural and micro-architectural events, including things like memory
and cache accesses, branch instructions, and pipeline stalls. AMD documents the complete list in
chapter 11 of [2]. Given such a long list of potential metrics, the task of selecting metrics most
useful for problem diagnosis is somewhat daunting. Three steps were taken in selecting the events
that were most useful for diagnosis purposes. First, a large candidate set of events that seemed
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potentially relevant was constructed. Second, plots were made, showing how the counter values
vary over time under a emulated workload and with three simple fault types injected. The plots
were used to manually identify a second candidate set of event counts that visibly reacted to the
faults and workload. Finally, metrics from the second candidate set were ranked using a method
based on Principle Component Analysis (PCA) [42].

AMD’s documentation gives brief descriptions of each event countable by the CPU. Many
seemed completely irrelevant to problem diagnosis in a 3-tier web-application. For example,
some involved floating point operations. Those events were eliminated from the list, since web-
applications generally only use integer math. On the other hand, if one was interested in performing
problem diagnosis on scientific computations, use of the floating point events should probably be
re-considered. The second category of events eliminated involved the memory controller built-in
to the Opteron processor. Counting these events may have provided useful information but using
them would have caused implementation difficulties, due to constraints on their use. One con-
straint is that events can only be counted when the processor is not halted. To count such events
accurately, Linux’s idle thread would need to be adjusted to busy wait, rather than use the HLT
instruction. Such events can also only be counted by a single processor core. This conflicts with
the requirement that other events all be counted on both cores, to ensure that no events are missed.

Selecting events by their descriptions still resulted in a large set of metrics, 47 of the 90 sup-
ported by the processor. This is still too many, given that only four can actually be collected at a
time on the Opteron processors. Multiplexing is possible, but it seemed likely that 12-way multi-
plexing would significantly reduce the accuracy of the counts. To evaluate which metrics seemed
to convey the most useful information in practice, several executions of the emulated workload
described in section 5.4 were performed, both without fault-injection and with injected cpuhogs,
diskhogs, and memoryhogs (see section 5.5 for more details). Every metric was then plotted with
respect to time. The resulting graphs were manually examined to distinguish between metrics that
were definitely affected by workload changes and faults, and those that are noisy or completely
unaffected. The result was a shorter list of 24 event types.

Three examples of graphs that were produced have been included. In all graphs, dotted vertical
lines indicate changes in the workload generated by the RUBIS client emulator, and solid vertical
lines indicate the start and end of the fault-injection period. The “ejb0” label refers to the appli-
cation tier, the “mysql0” label refers to the persistence tier, and the “tomcat0” label refers to the
presentation tier. Figure 5.1 demonstrates how a cpuhog fault causes a significant decrease in the
RETIRED _BRANCH_INSTRUCTIONS, as different code with different branching characteristics
begins executing. Figure 5.2 demonstrates how a memoryhog fault causes a momentary spike in
cache misses, due to the memoryhog allocating and zeroing a large amount of memory, trashing the
cache. Finally, figure 5.3 demonstrates how some event counts just report noise that is completely
unrelated to the workload and fault-injection.

This reduction is much better than the approximately 90 events supported by the Opteron pro-
cessors, or even the original reduction to 47 seemingly relevant events. However, it would be ideal
to have a small set of 4 to 12 metrics, so only a small amount of multiplexing is necessary. How-
ever, all the metrics at this point were well-affected by faults. As a result, the goal was to determine
which of events were most affected by the faults. That is, to find subsets that feature the “best”
performance counter events.
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Figure 5.1: Plot of a cpuhog injected on tomcatO.
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Figure 5.2: Plot of a memoryhog injected on ejb0.
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Figure 5.3: Plot of a diskhog injected on mysql0.

Principal Component Analysis (PCA) is a technique for analyzing data with high dimension-
ality. One typical use is to reduce the dimensionality of data. Given m vectors of length n, PCA
attempts to find a transformation of the data to a new orthonormal basis with the property that the
variance of the first dimension in the new orthonormal basis is maximized, and each subsequent
dimension maximizes its variance, given the constraint that it must be orthogonal to the previous
dimensions. Thus, taking the first k£ dimensions in the transformed space maximizes the variance
retained when reducing the original data to k orthogonal dimensions. Additional conceptual infor-
mation on PCA, and discussion on its computation is given in [42].

Note that the typical use of PCA, dimensionality reduction, is not particularly helpful in this
thesis. The goal is to collect fewer metrics at the beginning, not to transform the data into a lower-
dimensional space. However, the transformation matrix PCA produces does contain information
that is helpful. Each dimension in the new basis found by PCA is a linear combination of the
original dimensions, counter events in this case. As a result, the weight of a counter event in the
PCA-generated transformation is indicative of the counter event’s importance. Moreover, selecting
counter events with large contributions to the first several dimensions of the PCA-generated basis
retains more of the original data’s variance. A heuristic algorithm for ordering counter events based
on these observations is given in figure 5.4.

The algorithm was applied to two sets of data, all of which was collected without using multi-
plexing. Since multiplexing was not used, a set of experiments is defined to be enough experiment
runs to collect data for each of 24 counter events. The first set of data, referred to as standard,
consisted of data collected from a set of fault-injection experiments for each possible fault, as well
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1: procedure RANKMETRICS(names,T)

2 > names; is the name of the ith original metric
3 > T is the transformation matrix generated by PCA
4 while NROWS(T') > 1 do

. NROWS(T)

5: J < argmax;_, 751

6 OUTPUT(names ;)

7 T — DELETEROW(T, j)

8 names <— DELETE (names, j)

9: forallic {1,...,NROWS(T)} do
10: if |7; 1| > |T; 2| then
11: Tip —T;q
12: end if
13: end for
14: T «— DELETECOLUMN(T, 1).
15: end while
16: OUTPUT(names)

17: end procedure

Figure 5.4: Heuristic algorithm for ranking metrics based on PCA.

as a single set of fault free experiments. All experiments used 1000 simulated clients, and a 15
minute steady-state period. The second set, referred to as w/ extra faultfree used the same data
as standard but additionally used two sets of fault free experiments with 90 minute steady-state
periods. Both sets of data were examined, because it was not initially clear whether using extra
fault-free training data would help or hinder performance when detecting and localizing faults.

The fact that data collected from all instrumented machines is fed into the selection algorithm
introduces the caveat that the resulting list of metrics distinguishes between the same counter event
collected on different machines. To remove the distinction between machines, the counter events
are ranked based on their first occurrence in the selection algorithm’s output. The resulting ordered
counter event lists for both the standard and w/ extra faultfree sets of data are displayed in table 5.1.

5.4 Emulated Workload

RUBIS includes a client emulator, a Java program that simulates the workloads that human clients
might generate. This program simulates clients by having many threads perform interactions with
the RUBIS deployment. A thread will perform an interaction, wait for some amount of think time,
and then choose another interaction to perform based on the previous interaction and a probability
matrix. Session and think times are based on those from the TPC-W benchmark [44]. Some
additional discussion of the RUBIS client emulator is given in [12].

Unless otherwise noted, the same RUBIS client emulator configuration was used for all exper-
iments. In this configuration, a single dedicated machine emulates 1000 clients. This number of
clients was chosen as it resulted in approximately 70% load on the front-end, which was the bot-
tleneck machine. Client transitions were made based on the default browse/buy transition matrix.
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rank standard w/ extra faultfree
1 LI1_JITLB_MISS_AND_L2_ITLB_MISS LI1_JITLB_MISS_AND_L2_ITLB_MISS
2 RETIRED_BRANCH.INSTRUCTIONS RETIRED_BRANCH_INSTRUCTIONS
3 RETIRED_TAKEN_BRANCH_INSTRUCTIONS RETIRED_TAKEN_BRANCH_INSTRUTIONS
4 RETIRED_MISPREDICTED_BRANCH_INSTRUCTIONS RETIRED _MISPREDICTED_BRANCH_INSTRUCTIONS
5  REQUESTS.TOL2.ALL REQUESTS_TOL2.ALL
6 INSTRUCTION_FETCH_STALL DATA_CACHE_REFILLS _FROM_L2
7 DATA_CACHE_REFILLS _FORM_L2 DATA_PREFETCHES.ATTEMPTED
8 DATA_CACHE _REFILLS FROM_SYSTEM.ALL DISPATCH_STALL_FOR_BRANCH_ABORT

—_ =
N = O O

DISPATCH_STALL_FOR_BRANCH_ABORT
RETIRED_BRANCH_RESYNCS
DISPATCH_STALL_WAITING_FOR_ALL_QUIET
DATA_PREFETCHES.ATTEMPTED

DISPATCH_STALL_WAITING_FOR_ALL_QUIET
RETIRED_BRANCH_RESYNCS
RETIRED_FAR_CONTROL_TRANSFERS
DATA_CACHE_REFILLS _FROM_SYSTEM.ALL

[
AN N AW

DISPATCH_STALL_FOR_SEGMENT_LOAD
RETIRED_FAR_.CONTROL_TRANSFERS
DATA_CACHE_ACCESSES
DISPATCH_STALLS

DISPATCH_STALL_FOR_SEGMENT_LOAD
INSTRUCTION_FETCH_STALL
DISPATCH_STALL_FOR_RESERVATION_STATION_FULL
DATA_CACHE_ACCESSES

D = —
[=INoR-CREN]

INSTRUCTION_CACHE_FETCHES
DISPATCH_STALL_FOR_LS_FULL
DISPATCH_STALL_FOR_RESERVATION_STATION_FULL
RETIRED_UOPS

DISPATCH_STALLS
DISPATCH_STALL_FOR_LS_FULL
INSTRUCTION_CACHE_FETCHES
CPU_CLK_UNHALTED

NI ST S )
AW =

D1_DTLB_MISS_AND_L2_DTLB_MISS
RETIRED_INSTRUCTIONS
DATA_CACHE_MISSES
CPU_CLK_UNHALTED

L1_DTLB_AND_L2_DTLB_MISS
RETIRED_UOPS
RETIRED_INSTRUCTIONS
DATA_CACHE_MISSES

Table 5.1: Counter event lists, as ordered by the PCA-based algorithm.

When the RUBIS client emulator runs, it features three distinct phases of operation: a warm-up
phase, a steady-state phase, and a cool-down phase. Experiments typically used a 2 minute warm-
up, a 6 minute steady-state, and a 1 minute cool-down.

5.5 Fault Injection

Three broad categories of faults were injected: resource contention caused by an external program,
internal faults that could potentially be caused by program bugs, and packet loss that reduces
network performance. Injected faults are activated 4 minutes after the emulated workload starts,
which is 2 minutes into the workload emulator’s steady-state period. If the effects of the fault
can be reversed, the fault is de-activated 90 seconds later. The resource contention and packet
loss faults can be injected into any of the 3 tiers, while the internal faults are specific to a certain
service. Each injected fault is described in table 5.2.

5.6 Summary of Chapter

To reiterate, CPU performance counter data is periodically collected as RUBIiS, a three tier web-
application runs under an emulated workload and simulated faults. Three machines are involved, a
front-end running Apache server and Tomcat, an application server running JBoss, and a database
server running MySQL. The collected data is saved to disk for future analysis.
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resource contention

cpuhog An external program consumes 50% of all CPU time by performing matrix
multiplication under a real-time scheduler.

diskhog A script uses up I/O bandwidth by repeatedly writing a 1GB file in 102MB
blocks to disk with dd.

memoryhog An external program allocates, zeros, and locks 2GB of RAM.

internal

dblock A script locks the items table in the RUBiS database, and holds the lock
for the duration of the fault-injection period.

jbas994 Simulation of JBAS-994 [40], a real JBoss bug, that caused a serious con-

nection leak.

packet loss

pktloss_both

pktloss_in
pktloss_out

iptables is used to drop 40% of all incoming network packets, as well as
40% of all outgoing network packets.

iptables is used to drop 40% of all incoming network packets.

iptables is used to drop 40% of all outgoing network packets.

Table 5.2: Descriptions of injected faults.
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Chapter 6

Analysis Techniques

Analysis algorithms were implemented to demonstrate that CPU performance counter data is suit-
able for detecting problems in software systems. This thesis does not focus on designing novel or
complex data-analysis algorithms, but rather attempts to demonstrate the utility of applying hard-
ware performance counters to problem diagnosis. Simple techniques based on libsvm [13], an
off-the-shelf machine learning package implementing Support Vector Machines (SVMs) [20], are
applied to data from a novel source. Two approaches are taken: one that performs classification
based on performance counter data collected from all machines, and one that performs local classi-
fication based on data from a single machine and then merges the data to perform fault localization.
For each of method, multiple ways of labeling the training data are considered.

6.1 Support Vector Machines

The SVM is a popular supervised classification method. The underlying principle is that an SVM
takes as input a set of n-dimensional data points with binary labels, and outputs a hyperplane. If
possible, the hyperplane separates the data points, such that all points on one side of the hyperplane
have one label, and all points on the other side have the other label. Moreover, the hyperplane is
chosen to maximize the margin, the orthogonal distance between the hyperplane and any point, in
the hope that this margin provides a maximal safety cushion for generalization to yet-unseen data.
If there is no such hyperplane that separates the data points as described (the data is not linearly
separable), a cost is associated with points that end up lying on the wrong side of the hyperplane,
and a parameter C controls the trade-off between this cost, and the size of the margin produced.
Classification of new data points can be performed by determining which side of the hyperplane
the point lies on.

SVMs can be extended in a couple useful ways to improve their usability or predictive perfor-
mance. One extension is the ability to classify into more than two groups. Multiple SVMs can be
used to allow classification into an arbitrary number of sets. A second extension that the author
does not explore, is the use of a kernel function to transform non-linear data into a linear feature
space.

A concise, but more detailed discussion of SVMs can be found in [20]. Given their wide use
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and numerous public implementations, SVMs will be treated as black boxes for the remainder of
this thesis.

One issue with SVMs and other supervised-learning algorithms, is that they require labeled
training data for each possible classification. This causes difficulty when real faults are involved.
Unless faults can accurately be simulated or a previous occurrence of a real fault was used for
training, such algorithms may have difficulty identifying real faults. As a result, the analysis
techniques discussed may not be ideal for real-world problem diagnosis applications. However,
positive results using SVMs for analysis still will demonstrate that the data from CPU performance
counters is expressive enough to indicate when a fault is occurring. Thus, success with SVMs
may indicate that approaches that do not require training data for faults, (e.g., clustering or peer
comparison-based approaches) may also work.

6.2 Data Labeling

Since SVMs require labeled training data, one issue that arises is how to label the data. Many
possibilities exist. Three specific schemes were evaluated.

Detection. This labeling scheme simply distinguishes between instances in which a fault is a
occurring, and instances where no fault is occurring. All data points collected when the fault
injector is active are labeled “fault.” Every other data point is labeled “nofault.”

Localization. This labeling scheme uses the hostname of the machine on which a fault is occur-
ring. For example, data points collected when the fault injector is active on the machine hosting
the database would be labeled “mysqlO.” If the fault injector was instead active on the application
server, the data points would be labeled “ejb0.” Data points collected when fault injection is not
occurring are labeled “nofault.” In a three-tier system, this results in a total of four possible labels.

Limited. This labeling scheme is essentially a hybrid of detection and localization. Data points
collected while faults that only significantly affect a single machine are injected are labeled with
the faulty machine’s hostname, as in localization. However, some faults significantly affect all
machines, given the lack of redundancy in the experimental setup. For example, the dblock fault
causes drops in many metrics on all machines, since the front-end is waiting on the application
server, which is waiting on the database. Such faults are labeled “fault.” The dblock, jbas994, and
pktloss faults are given this special treatment. As in the other approaches, data points that occur
when no fault is being injected are labeled “nofault.” In a three-tier system, this results in a total
of five possible labels.

To clarify the labeling schemes, table 6.1 shows several faults together with the corresponding
labeling for each of the three labeling schemes.
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labeling scheme

example fault detection localization limited

none nofault nofault nofault
diskhog injected into persistence tier fault mysql0 mysql0
cpuhog injected into application tier fault ejb0 ejb0
dblock injected into persistence tier fault mysqlO fault
Jbas994 injected into application tier fault ejb0 fault

Table 6.1: Examples of the three labeling schemes.

classifier

Tomcat
Serviets

Figure 6.1: Overview of SVM analysis Technique 1.

6.3 Implemented Techniques

Two analysis techniques using SVMs were implemented. The first uses CPU performance counters
from every monitored machine as inputs to a single classifier. This classifier’s output is the final
result of the analysis. The second uses a separate classifier for each machine, and each classifier is
only aware of the data from that one machine. The data from each classifier is then analyzed in a
second stage before generating a final result.

Technique 1. The first technique is conceptually simple. There is a single analysis agent, aware
of all data in the system. Localization can occur if the SVM was trained with data labeled using the
localization or limited scheme. Moreover, this technique has the advantage that it can conceivably
detect faults that only cause anomalous-looking behavior when metrics from multiple machines
are examined simultaneously. For example, consider a cpuhog fault. Looking just at data from the
machine on which the cpuhog is running, the cpuhog could potentially be mistaken as increased
workload. However, if data from the other machines is examined, their lack of an apparent work-
load increase would lead to the conclusion that a fault truly is occurring. Unfortunately, there is
also a significant disadvantage. The trained model created for problem diagnosis becomes invalid
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Figure 6.2: Overview of SVM analysis Technique 2.

whenever the number or make-up of machines to monitor changes. Figure 6.1 gives a high-level
view of this analysis technique.

Technique 2. The second technique trains a separate SVM classifier for each type of machine
(i.e., front-end, application server, or database) based solely on the CPU performance counter data
collected from a single machine of the given type. As a result, if a new machine of an existing type
is added, and the software system balances load such that its workload is similar to that for existing
machines, no new training is necessary. Data labeling for training is also modified slightly; when
a fault occurs, only the data points used by the classifiers on machines from which the fault is
apparent get labeled to indicate a fault is occurring. For example, if the detection labeling scheme
is used, and a diskhog fault is being injected on the database server, the data point for the database
server is labeled “fault,” but the data points for the other machines are labeled “nofault.” On the
other hand, if a dblock, jbas994, or pktloss fault is being injected, data points for all machines
will be labeled “fault.” Localization can then proceed in two ways: by an explicit prediction that a
specific machine is faulty (only applicable if the localization or limited labeling scheme is used) or
by extrapolating that faults only predicted by the classifier on a single machine are in fact occurring
on that specific machine. Figure 6.2 gives a high-level view of this analysis technique.

In all cases, training data was pre-processed to avoid bias due to differing magnitudes for different
processor event counts. As suggested by [22], linear scaling was applied to make the range of each
feature [0, 1]. The scaling transformations used were saved, so the same transformations can be
applied to test data analyzed in the future.
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6.4 Summary of Chapter

This chapter discussed the analysis techniques implemented. The first is based on a single SVM
classifier, and the second uses one SVM classifier for each machine, together with logic for merging
the intermediate per-machine results. Since performing a prediction with an SVM is essentially
just a polynomial evaluation, both techniques have low run-time computational requirements.

More sophisticated analysis could, and would likely result in better performance. However, as
the experimental results will indicate, even these simple analysis approaches achieve good true-
and false-positive rates, and can accurately localize certain types of faults.
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Chapter 7

Results and Evaluation

This chapter presents results obtained from experiments performed using synthetic fault-injection.
First, the metrics used to measure the performance characteristics of analysis algorithms are pre-
sented, so the results are well-defined. Next, the tunable parameters of the analysis techniques
are presented and discussed. This discussion includes the rationale for choosing specific values,
together with data used to make those decisions. Finally, results for combinations of analysis and
labeling techniques are presented, followed by a section examining the overhead of performance
counter-based data collection.

7.1 Metrics for Evaluation

Evaluation of problem diagnosis performance is always carried out on data collected during the
RUBIS client emulator’s steady-state phase, to avoid the effects of workload change. To account
for hysteresis, a fault is considered to be occurring from 10 seconds before fault-injection, until 10
seconds after fault-injection terminates.

The true-positive rate for fault detection (fp). This is the number of experiments that experi-
enced a true-positive (the analysis detected a fault, and a fault was actually occurring) divided by
the number of experiments where a fault was injected. A perfect algorithm would have a #p value
of 1. Note that this does consider not whether or not a fault was correctly localized. For example, if
a fault is occurring on the database, and the analysis believes a fault is occurring on the application
server, a true-positive is recorded.

The false-positive rate for fault detection (fp). This is the number of experiments that experi-
enced a false-positive (the analysis detected a fault, but no fault was actually occurring) divided by
the total number of experiments. A perfect algorithm would have a fp value of 0. For presentation
purposes, most graphs show 1 —fp, so all plots have the property that higher values are better.

31



The accuracy rate for fault localization (accuracy). The result of a single experiment is said to
be accurate if the analysis algorithm indicated the machine in which the fault injected was faulty.
The accuracy rate is the number of accurate experiments divided by the number of experiments
where a fault was injected. A perfect algorithm would have an accuracy value of 1.

The average precision of fault localization (precision). The precision of a single experiment
is the number of machines correctly identified as faulty by the analysis algorithm divided by all
machines identified as faulty by the analysis algorithm. When no machines are determined to be
faulty by the analysis algorithm, and the denominator of the ratio is 0, the precision is reported as
1. A perfect algorithm would have a precision value of 1.

The tp and accuracy metrics provide information on how well the analysis techniques cover the
detection and localization, respectively, of the faults explored. High values indicate the analysis
techniques work well for many types of faults. fp and precision are complimentary in some sense.
Jfp must be low, and precision must be high for a problem diagnosis tool to be useful. Otherwise,
a large amount of the system administrator’s time will be wasted trying to fix problems that don’t
exist or are on a different machine from the one being examined.

One important thing to remember, is that due to the definitions of precision and accuracy, an
analysis technique that always predicts all machines are faulty will have an accuracy value of 1 and
a precision value of 0.33. When those values appear on result graphs, it is important to remember
that performance is poor in reality.

7.2 Parameters for Analysis

The analysis techniques presented, like most analysis techniques, have several parameters that
can affect their performance. Some are due to the use of SVMs. These include the choice of
kernel, kernel parameters, and cost parameter C. Others involve the choice of CPU performance
events counted. Due to the limited number of counter registers available, only 4 events can be
counted simultaneously with the current experimental setup. Multiplexing several logical counters
onto a single physical counter is a strategy to overcome this limitation, but may start introducing
inaccuracies into the collected data. Lastly, a detection window was introduced to Technique 2,
to avoid excessive false-positives. The size of this window must be selected to provide a good
trade-off between tp, fp, accuracy, precision, and latency to diagnosis.

7.2.1 SVM Parameters

Only limited exploration of SVM parameters was carried out. For the most part, the guidelines in
[22] were followed. While the RBF kernel is generally recommended, it is noted that when there
are large numbers of features (e.g., as with Technique 1), the linear kernel may be a better choice.
For consistency and performance reasons, the linear kernel was used with both techniques. A good
value for the cost parameter C can be found by running v-fold cross-validation on the training data
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Figure 7.1: ROC curve for Technique 2 fault detection with detection labeling.

with varied values of C. A few rough tests indicated that higher C values typically result in higher
cross validation accuracy. However, the default C value of 1 was only slightly worse (0.3-2.0% less
accurate for 5-fold cross-validation), and caused training to run much more quickly. As a result, a
C value of 1 was used in all experiments.

7.2.2 Window Size

Initial results using analysis Technique 2 displayed very high false-positive rates. Examination of
these results indicated that the high false-positive rates were due to a small number of isolated fault
predictions when no fault was occurring. Given that most faults are expected to have longer-term
effects, it makes sense to ignored isolated predictions. A windowing approach achieves this goal.

The windowing approach works as follows: Only report fault predictions when the prediction
lies in some N-sample window containing at least two fault predictions. This is successful at re-
ducing the false-positive rate, but may introduce up to N seconds of additional latency in reporting
a fault. To observe empirically the affects of different values of N on the evaluation metrics, N is
varied to construct Receiver Operating Characteristic (ROC) curves [38].

Data from experiments using the detection labeling method for Technique 2 was used to gen-
erate the ROC curves in figures 7.1 and 7.2. These curves were generated from experiments where
the first 8 counter events selected by PCA-based metric selection with standard training were col-
lected. The first curve, which provides a visualization of the analysis technique’s fault detection
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Figure 7.2: ROC curve for Technique 2 fault localization with detection labeling.
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Figure 7.3: ROC curve for Technique 2 fault detection with limited labeling.
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Figure 7.4: ROC curve for Technique 2 fault localization with limited labeling.

performance, has a long, flat, high curve. This is a good characteristic, and means it is possible to
obtain a high true-positive rate, with a low false-positive rate. The ideal point on an ROC curve is
the upper left-hand corner of the plot, where the true-positive rate is 1 and the false-positive rate is
0. Data points near that location correspond to small window sizes, such as 10. The second curve
illustrates fault-localization performance. It is not nearly as good; all of the points are near the
center of the grid, meaning all window sizes experiences moderate accuracy and precision.

Equivalent data from experiments using the limited labeling method are shown in figures 7.3
and 7.4. These curves were generated from experiments where the first 4 counter events selected
by PCA-based metric selection under either training data set were collected. The curves are very
similar to those for the detection case, and similar conclusions can be made.

7.2.3 Dataset Selection

Section 5.3 described a technique based on PCA for determining which CPU performance counter
were most likely to convey useful information. Two lists of events, ordered based on the expressive
power of the events were the result. One, standard, was constructed using data from standard
experiments, while the other, w/ extra faultfree, used additional data from an extended faultfree run
of the system under an emulated workload. Results are presented using the top-4, 8, 12, and 16
events from each of the two lists.

Graphs useful in evaluating the choice of dataset size for analysis Technique 1 are shown in
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Figure 7.5: Dataset comparison graphs for SVM Technique 1 with detection labeling.

figures 7.5, 7.6, and 7.7. In all graphs, the results are based on data from all experiments performed
that were not used for SVM training. Specifically, the graphs show results for four runs of each
fault type, and four fault-free runs.

Figure 7.5 shows that, for Technique 1 with detection labeling, tp values range from about
0.8 to 0.9. Predictions based on the counter event sets constructed from the standard training
set always fare slightly better than those constructed from the w/ extra faultfree training set, and
subsets with 8 events work the best. For fp, additional counters help for up to 12 event types, but
then performance decreases with 16. The event sets based on w/ extra faultfree training typically do
better than those based on standard. Based on the graphs, it appears that the 8 events constructed
from the w/ extra faultfree training data perform the best overall.

Figure 7.6 shows performance information for Technique 1 with localization labeling. In this
case, an increased number of events definitely helps #p and accuracy. Only at that point does
performance become at all reasonable. However, at that same point precision takes a dramatic
decrease. Based on the graphs, it is probably most reasonable to use 12 counter events, based on
the standard PCA-selected metrics.

Figure 7.7 shows performance for different datasets when Technique 1 is used with limited
labeling. This labeling technique was motivated by the poor #p values seen using the localization
labeling technique. As expected, limited labeling greatly improves #p, but at the cost of accuracy;
accuracy values never make it above 0.2. Performance does not improve significantly after 8
counter events, so 8 events based on the standard PCA-selected metrics work best for this technique
and labeling combination.

Graphs useful in evaluating the choice of dataset size for analysis Technique 2 are shown in
figure 7.8 and 7.9. As with the Technique 1 graphs, data was based on four runs of each fault type,
and four fault free runs, none of which were used for SVM training. Windowing was configured
to require 2 fault predictions within 10 seconds in order for a fault to be reported. As shown in
section7.2.2, this size greatly decreases the false-positive rate, without also causing a large decrease
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Figure 7.6: Dataset comparison graphs for SVM Technique 1 with localization labeling.
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Figure 7.7: Dataset comparison graphs for SVM Technique 1 with limited labeling.
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Figure 7.8: Dataset comparison graphs for SVM Technique 2 with detection labeling.

in the true-positive rate.

Figure 7.8 shows performance for different datasets when Technique 2 is used with detection
labeling. In general, more counters yield better #p and accuracy values, at the expense of fp and
precision. Fault detection works well, with 7p values above 0.8 when 8 or more events are counted,
with fp values below 0.2. Localization, on the other hand does not perform as well. Both accuracy
and precision values hover around 0.5. Based on the graphs, it appears either of the 8 counter event
sets would be good a choice.

Figure 7.9 shows performance for different datasets when Technique 2 is used with limited
labeling. All sets of events have similar performance characteristics. However, it appears that on
average using the 4 counter events selected by the PCA from the standard PCA fair slightly better.
In reality the difference between the two 4 counter event sets is entirely due to experimental vari-
ance; the PCA-based selection algorithm chooses the same top-4 events when either the standard
or the w/ extra faultfree training data is used. accuracy and precision are slightly better than with
detection labeling, but still leave something to be desired, having values around 0.6.

7.3 Overall Results

This section presents overall results based on system-wide CPU performance counter instrumen-
tation. All data was collected using the settings and parameters given in section 5.4. Data was
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Figure 7.9: Dataset comparison graphs for SVM Technique 2 with limited labeling.

collected from four experimental runs under each fault, and four fault-free runs. This data is sepa-
rate from the data collected and used to train the SVMs for analysis.

7.3.1 Technique 1 with Detection Labeling

Based on the evaluation in section 7.2.3, the combination of Technique 1 and detection labeling
works best with the top-8 metrics selected by the PCA when the w/ extra faultfree training is used.
Results, itemized by injected fault type are displayed in figure 7.10. The graph shows that all faults
other than memoryhog can be consistently detected. This fact is not necessarily surprising; the
momentary spike a memoryhog fault produces in measurements from CPU performance counters
seems like it should harder to detect than the sustained behavior changes the other faults cause.
Overall, the combination of this analysis technique and detection labeling resulted in true-positive
rate of 0.925, and a false-positive rate of 0.155.

7.3.2 Technique 1 with Localization Labeling

Using localization labeling, Technique 1 works best with the top-12 counter events selected via
PCA-based selection using the standard training data. Results are displayed in figure 7.11. For
fault detection, memoryhog faults again cause the greatest difficulty. Localization works best
for the cpuhog faults. Poor performance seems largely due to the fact that the dblock, jbas994,
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Figure 7.10: Results for Technique 1 with detection labeling.

and pktloss faults all cause similar manifestations to each machine hosting RUBIS. Overall, this
combination of analysis and labeling techniques resulted in a true-positive rate of 0.875, a false-
positive rate of 0.0357, an accuracy of 0.438, and an average precision of 0.548.

7.3.3 Technique 1 with Limited Labeling

Limited labeling was introduced to try and solve some of the issues with localization labeling. The
top-8 events selected by PCA-based event selection on the standard data set were measured. Result
graphs showing the detection and localization statistics for each fault are given in figure 7.12.
The bars labeled “all *” are the evaluation metrics as calculated when only considering cpuhog,
diskhog, and memoryhog faults. Given the labeling used to train the SVM, those are the only
faults where the analysis is expected to be able to perform localization. The results demonstrate
that Technique 1 with limited labeling does not do a good job localizing faults, only obtaining an
accuracy of 0.1. On the other hand, detection works well, obtaining a true-positive rate of 0.8 and
no false-positives.

7.3.4 Technique 2 with Detection Labeling

Figure 7.13 shows the performance of analysis Technique 2 with detection labeling. As discussed
in section 7.2.2, a fault is only reported if two faults are predicted by the underlying SVMs within
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Figure 7.11: Results for Technique 1 with localization labeling.
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Figure 7.13: Results for Technique 2 with detection labeling.



some 10 second window. For this data, the top-8 counter events selected via PCA-based selection
on the w/ extra faultfree dataset were used. All non-memoryhog faults are consistently detected.
Localization is better than that experienced using Technique 1, but still not good enough to be
particularly useful. Overall, this approach yields a true-positive rate of 0.850, a false-positive rate
of 0.071, an accuracy of 0.513, and an average precision of 0.470.

7.3.5 Technique 2 with Limited Labeling

Figure 7.14 shows the performance of analysis Technique 2 with limited labeling. As before, the
window size for fault reporting was set to 10. Plots show the top-4 metrics chosen by PCA-based
selection on the standard training data. Results are similar to those using detection labeling from
the previous section, but with slightly worse detection performance and slightly better localization
performance. Overall, this approach yields a true-positive rate of 0.838, a false-positive rate of
0.119, an accuracy of 0.613, and an average precision of 0.643.

7.4 Per-Task Operation

As mentioned, Perfmon2 supports a per-task mode of operation where CPU performance counters
are virtualized per-thread. It seems like this mode of operation might work better than the system-
wide mode that has been explored so far, as the per-task CPU performance counters will not pick
up noise introduced by other, unrelated programs. Initial exploration, however, runs contrary to
these expectations. Analysis results indicates that the system-wide mode generally performs better.

A seperate metric selection/ranking step was not performed on per-task data. As a consequence,
fault detection and localization performance in this initial exploration of per-task instrumentation
is probably worse than would be expected if the datasets were more carefully tuned.

Figure 7.15 shows the performance of analysis Technique 2 with limited labeling, when per-
task data is used. As with the system-wide data, the window size was set to 10. The results
displayed are based on the 8-event set generated by running the PCA-ranking heuristic on w/ extra
faultfree. Fault detection is reasonable, but localization is very poor.

No other analysis technique and labeling combination obtained good results on the per-task
data. Some had #p values of 1 with fp values of 1. Others had #p values of 0 with fp values of 0.

7.5 Overheads

This thesis hypothesizes not only that data from CPU performance counters is suitable for use
in problem diagnosis, but that the data also can be collected with low runtime overhead. This
section evaluates the overheads introduced experimentally, by observing how much throughput (as
measured by the RUBIS client emulator) decreases when instrumentation is enabled.

The average overheads when a single set of counters is used (i.e., there is no multiplexing),
of instrumentation are given in table 7.1. This data was collected from experiments where no
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Figure 7.14: Results for Technique 2 with limited labeling.
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avg stdev min max

baseline 161.33 0.4924 161 162
instrumented 160.67 0.5164 160 161
overhead 0.413% 0.000% 1.235%

Table 7.1: Overheads introduced by instrumentation: no multiplexing.
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Figure 7.16: Overheads introduced by instrumentation: with multiplexing.

fault was injected, 1000 clients were emulated, and the steady-state period lasted 15 minutes. 18
experiments were performed in total: 12 without instrumentation, in order to obtain a baseline for
expected throughput, and 6 with instrumentation. The data demonstrates that CPU performance

counter-based instrumentation truly is low-overhead; on average, throughput decreases by less than
0.5%.

To implement multiplexing functionality, Perfmon2 has a timer generate interrupts at a regular
period to trigger event set switching. Thus, when multiplexing is used, one would expect higher
overheads, since event set switching uses CPU time and potentially hurts cache locality. Moreover,
shorter switching intervals should result in higher overheads, since more event set switching must
occur. To evaluate the effects of multiplexing, experiments were run varying the switching interval
from 25 to 150 milliseconds in 25 millisecond steps. Four fault-free experiments were performed
using each switching interval, in addition to four experiments performed without any instrumen-
tation. All experiments used 1000 emulated clients and a steady-state period lasting 6 minutes.
The average overheads experienced are graphed in figure 7.16. Varying the switching interval for
multiplexing does not appear to affect overheads. Moreover, in all cases, the overheads produced
are very small, less than 0.4%. This seems to indicate the overheads are similar in magnitude to
variance in the experimental results.
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7.6 Summary of Chapter

This chapter first presented four metrics for measuring the performance of problem diagnosis tools:
tp, fp, accuracy, and precision. These metrics provide a solid foundation on which experimen-
tal data can be discussed. Second, tunable parameters of the analysis techniques were explored.
Rationale, based on empirical data when possible, is given for the parameter values ultimately
chosen. Third, performance was evaluated for combinations of analysis techniques and labeling
methods. Fault detection performance is usually rather good, but localization only succeeds for a
limited subset of the faults explored. Finally, the instrumentation overheads were examined. Fur-
ther reflection will consider the strengths and weaknesses of this CPU performance-counter based
problem diagnosis approach, and consider potential improvements and extensions.
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Chapter 8

Conclusion

This thesis presented a technique for performing problem diagnosis based on black-box data col-
lected from CPU performance counters. Methods of data collection and analysis were designed,
and then evaluated empirically via a series of experiments with synthetic fault-injection. Through
these experiments, the author was able to determine good values for parameters controlling vari-
ous aspects of the analysis, and obtain concrete results on the effectiveness of a CPU performance
counter-based approach to problem diagnosis.

8.1 Lessons Learned

The main lesson learned from this research is that CPU performance counters can provide infor-
mation that is very suitable for detecting faults. One of the analysis techniques was able to obtain a
true-positive rate of 0.875 and a false-positive rate of only 0.0357. However, at least with the algo-
rithms explored, localization does not work particularly well. The analysis technique that worked
best for localization only obtained an accuracy of 0.613 and a precision of 0.643.

Of course, it is possible that more sophisticated analysis techniques can do a better job lo-
calizing faults. Given the low instrumentation overheads, which were less than 1% on average,
additional exploration seems worthwhile.

It 1s also constructive to consider the types of faults where localization was most effective.
These faults involved external code running on one of RUBIS’ tiers, which was directly measurable
through the CPU performance counters. The faults that could not be effectively localized typically
were not directly measurable by CPU performance counters: instead, the fault caused a bottleneck
in RUBIS’ request processing, which caused indirect effects to the CPU performance counters on
all of the tiers. Since these indirect effects occurred on all the tiers, localization was not possible.
As a result, it seems like localization is only effective when a fault’s direct effects are greater than
its indirect effects seen on all machines.
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8.2 Future Work

This research has focused on one use of CPU performance counters for problem diagnosis. Ad-
ditionally, only simple analysis techniques were explored, and problem diagnosis was only per-
formed offline, and in the context of a single system-under-diagnosis, RUBIS.

As a part of this work, the original intent was to implement an online version of CPU perfor-
mance counter-based diagnosis in the context of ASDF [10]. In fact, a functioning data-collection
module based on pfmon was written. However, no analysis techniques were ultimately imple-
mented as ASDF modules. It would be instructive to actually implement an analysis technique in
ASDF, to empirically measure the overheads of online analysis.

The current method for collecting performance counter data is black-box. As a result, it is
general, but lacks some context information that gray- and white-box approaches are able to obtain.
An interesting thing to note, is that data collection from CPU performance counters need not be
black-box. It would be very interesting to instrument an RPC or middleware library or application
function, to collect the number of performance counter events that occur during the call. Then, a
profiling approach similar to the one specified in [28] could be used to determine if a given call
may be anomalous.

Another area of interesting future work would be to explore additional algorithms for fault
detection and localization. The techniques presented serve as a good proof of concept, but more
advanced techniques would likely be able to achieve better results.

Three-tier e-commerce applications form an important class of deployed, well-used software
systems. However, the exploration of different types of systems might demonstrate the increased
applicability of this hardware performance counter-based approach, or introduce additional dif-
ficulties. It would also be instructive to try different system configurations. Presumably, peer-
comparison analysis approaches would become applicable if one or more tiers were replicated or
duplicated for increased capacity.

Finally, more faults could be explored. The set of faults used in those work mainly consist of
external problems that were induced outside of the target system-under-diagnosis. In some ways,
this is very well-suited to the global event-collection data mode discussed. The effects of many
of the faults studied could be observed directly. However, there are many more types of faults.
For example, some faults may cause specific requests to hang, or fail and complete prematurely.
Some may not be easily diagnosable with the methods presented, but getting a better idea of the
limitations of an approach is helpful in understanding what combinations of problem diagnosis
techniques would provide sufficient coverage.

CPU performance counter-based diagnosis certainly is interesting and has value, as it presents
a novel instrumentation source for problem diagnosis. In many ways, this thesis just explores a
small subset of the potential uses of this instrumentation source. Future work is bound to reach
many more exciting conclusions.
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