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Abstract
Gene expression has been studied extensively on the transcript level with the help

of RNA-seq technology, however less attention has been paid to gene regulation pre-
transcription and post-transcription. For example, it is not clear whether genome
structure plays an important role in gene functionality, nor is it clear how gene
expression is regulated by translational speed on a codon basis. Recently, several
high-throughput sequencing techniques have been developed to help answer these
questions. Specifically, Chromosome Conformation Capture (3C) was developed to
capture spatially close chromatin loci in cell nuclei and enables whole-genome struc-
ture studies, and ribosome profiling (ribo-seq) is developed to study ribosome loca-
tion preferences during translation and enables genome-wide translational studies.
However, the complicated experimental pipelines make these data inherently noisy,
and typical approaches to process these data are prone to errors and computationally
expensive. We developed various computational pipelines to fundamentally process
these data to advance downstream analysis regarding gene regulation. Specifically,
we developed a graph-based test to identify sets of functionally related genomic loci
that are statistically spatially closer than expected by chance using 3C data. Com-
pared to typical methods, our approach is computationally inexpensive and more
robust to unmeasured interactions and the inclusion of non-associated loci. We also
developed a pipeline to estimate ribosome occupancy preferences on a transcript
level from ribo-seq data. This is the first systematic approach to address the ubiq-
uitous multi-mappings in ribo-seq data and quantify ribosome loci on a transcript
level. It results in better estimations of both ribosome profiles and ribosome loads.
In addition, we designed a mathematical model and algorithm to recover ribosome
positions from ribo-seq data. Unlike existing simple heuristics that make inaccurate
assumptions on ribo-seq read digestions, our approach captured the complicated di-
gestion pattern in a flexible and data-driven way, and outputs better ribosome profiles
that help reveal biologically reasonable observations on translation patterns. Using
these improved preprocessing pipelines above, we estimated the codon decoding
time in yeast, and showed that both codon usage and wobble pairing play a role in
regulating translational speed. Lastly, we performed the first genome-wide analy-
sis on ribosome collisions with the help of a modified ribosome profiling protocol.
Our preliminary results indicate that extreme slow-down of local ribosome move-
ments during translation is likely to be random and rare, and the identification of
programmed ribosome stalling requires further experiments with deeper sequencing.
Together, our algorithms and analysis have helped to build the foundation for explor-
ing pre- and post-transcriptional regulation in gene expression, which will help us
understand the mechanism of cell growth and death, the differential gene expression
across conditions and cell types, and the development and causes of diseases.
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Chapter 1

Introduction

Proteins are the fundamental building blocks of all living cells. Comprising over half of the
dry mass of the cell, they serve as enzymes to catalyze chemical reactions, as passengers to trans-
mit small particles, and as specialized molecules to fight disease and regulate functions. In order
for proteins to be synthesized, first, DNA segments that encode proteins (genes), need to be tran-
scribed into messenger RNAs (mRNAs), and second, mRNAs need to be translated into proteins.
The whole process of converting DNA segments into protein products is called gene expression.
Since cells adjust protein levels according to needs, understanding the process and abundance of
gene expression is therefore important in understanding how cells function fundamentally. The
RNA-seq technology enabled quantifying transcript abundance at a low cost, therefore many
gene expression studies are conducted at the transcription level. Recent high-throughput se-
quencing technologies such as Chromosome Conformation Capture and ribosome profiling have
allowed more studies on gene regulation pre-transcriptionally and post-transcriptionally. They
provide a better view on the whole process of gene expression from DNA to protein. How-
ever, the complicated protocols of these techniques often introduce internal noise that biases
the view of meaningful biological signals, and computational approaches are therefore needed
to interpret observations from these technologies with caution. In this thesis, we developed
several computational methods and techniques to study the mechanism of gene regulation both
pre-transcriptionally and post-transcriptionally. Our methods help to answer the following two
fundamental questions:

1.1 Question 1: What role does genome structure play in gene
expression regulation?

1.1.1 Chromosome Conformation Capture enables studies of genome strc-
ture

DNA molecules are not randomly packed into the cell. Gene-rich regions tend to reside in
the center of the nucleus, while gene-poor regions tend to reside on the peripheral of the nucleus.
Activator proteins can bind to enhancer regions, which causes the DNA to bend and form long
range loops, placing the promoter regions of these genes close to the activator proteins. These
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genes can then be activated to be transcribed. On the other hand, if a repressor protein binds to
the insulator regions near a gene, it can prevent the activator protein from binding, de-activating
gene transcription. Some co-regulated genes are also observed to be spatially co-localized in the
genome [20].

Chromosome Conformation Capture (3C) (see review in [41]) is a recently developed tech-
nique to study 3D genome structure. It allows two genomic loci to be cross linked together
if they are spatially close, and the subsequent high-throughput sequencing step quantitatively
summarizes the observed instances of such cross linking interactions.

To examine whether spatial proximity can explain certain types of gene co-regulation, valid
statistical tests need to be developed to confidently identify functionally important genome struc-
tures. Genomic proximity and global chromosomal patterns need to be controlled for such tests
to rule out less interesting features in the 3C experiments that cause the significance of the tests.
Validation needs to be performed to determine whether significant patterns of 3C interactions
actually correspond to significant spatial proximity.

1.1.2 Our contributions

We developed a rigorous statistical framework to identify whether a given set of functionally
related genomic locations are spatially compact. We proposed to use novel topological properties
of chromatin interaction graphs as proxies of spatial closeness measurements. We demonstrated
these properties are good approximations of spatial volumes within spatially compact regions. In
addition, these properties, such as shortest paths, maximum flows, and dense cores, can be effi-
ciently computed directly from the 3C interactions, therefore avoiding the computationally costly
step of building a three-dimensional embedding of the genome. Furthermore, these properties
also make better use of the raw interaction frequencies, allowing inference of indirect and tran-
sitive spatial closeness events, and are therefore more robust to noise from raw 3C interactions.
Lastly, our method based on maximum density subgraph has the additional benefit of identify-
ing the spatially compact cores from a given set of genomic locations, therefore is capable of
detecting spatial closeness masked by outliers. To sum up, our proposed methods are robust and
unbiased, and can be used to identify spatially compact sets involving multiple chromosomes.
Our methods serve as the foundation to study spatial preferences of co-expressed or functionally
related genes, and therefore help answer question one.

1.2 Question 2: How is translation speed regulated on a per-
codon basis?

The steady-state mRNA abundances measured by RNA-seq [124] or microarrays have been
widely used to infer gene expression levels. One of the reasons to study gene expression is to
better understand the process of protein synthesis. A highly expressed gene tends to produce
more protein. High-throughput sequencing technologies such as RNA-seq are prevalent, in part
because they are easier to obtain than other abundance measurements such as mass spectrometry,
which measure protein abundances more directly. While largely effective, mRNA abundances
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are imperfectly correlated with protein abundances. Moreover, the RNA-seq technique alone
cannot capture the dynamic aspect of gene regulation.

1.2.1 Ribosome profiling helps bridge the gap between transcription mea-
surement and protein quantification

Ribosome abundance measurements may lead to a better understanding of the translation
mechanism, and ribosome profiling (ribo-seq) is developed to quantify ribosome abundance.
It is like taking snapshots of ribosome locations during translation. Therefore, ribosome pro-
filing captures the ribosome density of mRNAs with sub-codon resolution [79]. So far ribo-
some profiling has been performed on many species in various conditions, including plant [31,
91, 103, 108, 186, 190], virus [11, 85, 95, 110, 146, 158, 183], bacteria [14, 50, 70, 87, 93,
105, 106, 123, 125, 128, 173, 178], yeast [8, 12, 13, 22, 59, 60, 61, 69, 79, 86, 98, 115, 126,
135, 148, 174, 176, 185, 189], C. elegans [71, 126, 156, 157, 172], Drosophila [49, 122], ze-
brafish [17, 27, 100], mouse [72, 80, 139, 140, 163], and human across many cell and tissue
types [9, 21, 64, 67, 73, 101, 111, 140, 144, 145, 157, 158, 160].

Ribosome profiling experiments produce ribosome footprints (RPF) on the transcripts, repre-
sented by short read sequences, from which a ribosome profile can be generated for every mRNA
to reflect the probability of observing a ribosome bound to any specific location on the transcript.
Such a probability vector is summarized from counts of ribosomes that were inferred to bind to
a location along the mRNA. Since the translation process can be viewed as a queue of ribosomes
moving along a mRNA chain while recruiting the matched tRNAs to form a peptide, every ri-
bosome footprint along the chain indicates a translation event, and a larger observed count of
ribosome footprints at a certain location over many copies of the same mRNA can be interpreted
as a longer average duration of a ribosome translating at that location.

Such positional information has been widely used to experimentally define the translatome
— the set of translated mRNAs — and proteome — the set of expressed proteins — of many
organisms. For instance, ribosome profiles have been used to identify small open reading frames,
or micropeptides, outside of known open reading frames [18, 88, 90, 133, 154]. They have also
been used to refine the existing knowledge of functional annotations on various species [27, 52,
80, 83, 121]. Ribosome profiling has also been adapted to block initiating ribosomes instead of
elongating ribosomes to identify alternative initiation sites [57, 101]. Together, ribosome profiles
lead to new discoveries of alternative initiation and alternative translations, which in turn broaden
and adjust our view on protein production.

The total number of ribosome footprints are used to study genome-wide translational trends.
Since each ribosome footprint represents a translation event and leads to a protein product, the
total number of ribosome footprints are usually used to infer the translation level of a gene [79],
and sometimes even the relative gene expression level [19]. The ratio between the ribosome
abundance for the ribosome profiling experiment and the transcript abundance from the RNA-seq
experiment, which is called translational efficiency, is also used to detect differential translational
events [67]. Meta-gene analysis is another measurement from the ribosome profiling to study
the overall trend of the ribosome density [79], where the average count of ribosomes on a single
location over all genes is computed, and a meta ribosome profile is generated.
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Figure 1.1: Experimental pipeline of ribosome profiling.

These measurements from ribosome profiling data are essential to quantitatively analyze
genome-wide translational regulation. For example, time series of ribosome profiling data have
been used to study the dynamic process of yeast meiotic program [22], gene activation and
lncRNA regulations in zebrafish development [27, 100], and larval development of C. elegans
[71, 157]. Different cell conditions like stress or starvation alter gene expression, which are then
reflected in ribosome profile patterns [10, 61, 79, 103, 140, 167]. Ribosome profiles have also
been used to study translation evolution [12, 115], the development of diseases [64, 73, 163],
the progression of aging and cell death [97, 175], and the role of specific translational regulation
factors [67, 69, 178]. Thorough reviews on the application of ribosome profiling can be found
in [23, 78, 81, 84, 97, 117]. In summary, ribosome profiling is a powerful tool to study transla-
tional regulation. It bridges the gap between transcript measurement and protein quantification.

1.2.2 Complicated experimental pipeline outputs noisy ribo-seq data

Briefly, ribosome profiling works in five broad steps (Figure 1.1): First, the ongoing trans-
lation process needs to be stopped. That is, the moving ribosomes along mRNAs are suddenly
stopped. Second, those mRNA portions not protected by ribosomes are digested away, leaving
only ribosomes and the underlying mRNA fragments. Third, these ribosome-mRNA complexes
are purified, and other byproducts are discarded. Fourth, ribosomal RNA fragments are removed
from such complexes, and only the mRNA fragments — the ribosome footprints, are kept. Lastly,
cDNA library preparation is conducted on these ribosome footprints, and they are finally deep
sequenced [81, 84].
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Biases and noise can be introduced to the final ribo-seq output from the complicated experi-
mental pipeline. First, the picture of ribosome pileups from ribo-seq data might be blurry. This is
because, to stop ribosome movements, polysome stablizers, such as cycloheximide, are generally
used. But the reversible binding between the ribosome and cycloheximide does not entirely stop
ribosome movements, thus it leads to a blurry picture of ribosome pileups [60, 76, 81]. Second,
the end product of ribo-seq reads is different from the true ribosome footprints. This is caused by
nuclease imperfect digestion [78]. Under-digestion keeps mRNA portions not protected by ribo-
somes, and over-digestion makes ribosome footprints too short. A more detailed discussion about
imperfect digestion can be found in chapter 4. Third, the raw ribo-seq reads are enriched with
other contaminated sequences. This is caused by two main reasons: Most contaminants are often
removed by a physical size selection step, such as sucrose cushion [155]. Therefore contaminants
with a similar size of ribosome footprints are still kept during the library preparation. Further,
ribosomal RNA removal step is substantially different among different labs [82, 155, 174], and
the efficiency of such a step will largely influence the sequencing depth of the real ribosome
footprints.

Bias sources in ribosome profiling experiments have been well documented and summa-
rized [15, 81]. Alternative protocols are compared to minimize biases introduced in rRNA re-
moval, size selection, and library preparation [7, 31, 174]. However, very few methods are
proposed to correct for these biases computationally. Artieri and Fraser propose to normalize
ribosome occupancies with the parallel RNA-seq level [13]. Hussmann et al. specifically address
positional biases caused by cycloheximide, but inevitably lose ribosome footprint enrichment
resolution on specific active sites, since the correction requires accumulation of ribosome foot-
print enrichment on all three active sites [76]. To sum up, ribosome profiling data are inherently
noisy due to complicated experiment pipelines, developing computational methods to clean up
these data are challenging, yet these biases might distort true ribosome profiles and bury biolog-
ically meaningful insights.

Table 1.1: Computational methods for ribo-seq data

Task List of methods

data preprocessing RPFdb [180], GWIPS-viz [118, 119, 120], RiboTools [102], ri-
boseqR [31], RiboProfiling [136]

data normalization RUST [127]
profile properties PTS [121], RRS [68], FLOSS [83], ORFscore [18], Zupanic et

al. [192], Liu et al. [109]
ORF detection TOC [27, 133], ORF-RATER [52], RibORF classifier [88], Rib-

oTaper [24], SPECtre [30], RiboHMM [138]
differential translation Xtail [179], Babel [129], RiboDiff [187]
translation rate Siwiak and Zelenkiewicz [153], Huang et al. [75], Pop et al.

[135], Gritsenko et al. [66], Shah et al. [150]
bias correction Artieri and Fraser [13], Hussmann et al. [76]
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1.2.3 Computational work on ribosome profiling data reveals genome-wide
translational patterns

Many computational methods are developed to process ribo-seq data, identify common fea-
tures of ribosome profiles, and model translation rate. Table 1.1 is a summary of the major com-
putational problems regarding ribo-seq data and existing methods. First, many efforts have been
put to design computational pipelines to preprocess ribo-seq data before downstream analysis.
RPFdb [180], GWIPS-viz [118, 119], its galaxy-based version [120], and RiboTools [102] were
developed to visualize ribosome profile tracks, riboseqR [31] was developed to visualize reading
frame usage, RiboProfiling [136] was developed to visualize summary information on ribosome
profiling data, such as amino acid stalling strength and ribo-seq read distributions. RUST [127]
was developed to normalize ribo-seq reads. While largely useful, these visualization tools do not
systematically handle multi-mappings in ribo-seq reads, which, as will be discussed in chapter 3,
is very common. Handling these multi-mappings without caution might induce inaccurate esti-
mation of transcript-level ribosome profiles, and might lead to faulty conclusions on translational
regulation.

The common patterns of known ORFs are often extracted to help discover regions with
high coding potentials. Since ribosomes move in units of codons (3-nt long), the 3-nt peri-
odicity is recognized as a representative feature in coding regions. A Periodicity Transition
Score (PTS) [121] was developed to identify dual-coding regions by spotting frame preference
changes in ribosome profiles. A ribosome release score (RRS) [68] was developed to detect
the termination of translation at the end of an ORF. A Fragment Length Organization Similarity
Score (FLOSS) [83] has been developed to quantify the magnitude of disagreement between read
length distributions from two sets of profiles. FLOSS is thus used to identify coding potentials
of a set of profiles. An ORFscore [18] is designed to quantify the biased distribution of ribosome
footprints toward the first frame of a given region.

Besides these specially defined statistics for capturing ribosome density patterns within ORFs,
many machine learning and signal processing approaches have been recently applied to classify
novel ORFs from ribo-seq data. A Translated ORF Classifier (TOC) [27, 133] was built to clas-
sify ORF regions based on different ribosome density features with a random forest classifier.
An ORF Regression Algorithm for Translational Evaluation of RPFs (ORF-RATER) [52] was
developed to identify novel ORFs with a linear regression approach by comparing candidate
regions with meta-gene profiles from known coding regions. RibORF classifier [88] identifies
translated ORFs with a support vector machine classifier. RiboTaper [24] uses a multitaper spec-
tral analysis based on Fourier transform to capture 3-nt periodicity patterns from raw ribo-seq
reads and identify novel ORFs. SPECtre [30] identify potential ORFs by calculating the spec-
tral coherence on sliding windows over a candidate region. RiboHMM [138] identifies ORFs
with a Hidden Markov Model approach to capture ribosome density features on CDS and UTR
regions. Zupanic et al. [192] apply change point detection to identify translational regulations
from change of ribosome density. Most recently, Liu et al. [109] successfully predict ribo-seq
count from sequence content with a wavelet analysis. This is evidence that sequence content
play a role in translational regulation, and the predicted marginal density can serve as a prior in
probabilistically mapping reads in the inference of isoform-specific ribosome footprints.

Several methods have also been proposed to identify differentially translated genes from
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ribo-seq data. Xtail [179] identifies significantly differentially translated genes by estimating a
posterior distribution of fold change of translational efficiencies given the translational efficien-
cies under both conditions, Babel [129] identifies differential translational regulation based on
an errors-in-variables regression model by combining ribosome loads with mRNA abundance,
RiboDiff [187] models ribosome loads from mRNA abundance with a generalized linear model
(GLM). These methods all take into account mRNA abundance level estimated from RNA-seq
data while identifying translational changes between conditions.

As described above, currently computational methods on ribo-seq data focus on extracting
common features from ribosome profiles, and summarizing transcript-level statistics such as
ribosome loads. However, unique features on individual ribosome profiles are not yet fully ex-
plored.

1.2.4 Ribosome profiling advances translation models

Translation mechanisms were often studied theoretically prior to ribosome profiling. One
type of approach is to divide the entire translation into a list of very fine-grained chemical re-
actions describing the formation of the ribosome and the process of ribosome elongation. A
translation model with a list of ODEs is formed based on the Michaelis–Menten kinetics of the
reactions [116, 137, 184, 191]. The variables of the ODEs are the change of the concentrations
of the products for a chain of reactions. Such models are very descriptive, yet a prior knowl-
edge of the reaction rates are required. Further, such models can only describe a single ribosome
interacting with the mRNA, and are not scalable to include multiple ribosomes on a mRNA.

Translation can also be modeled as a Totally Asymmetric Simple Exclusion Process (TASEP).
A stochastic continuous-time Markov chain process is usually performed to simulate the trans-
lation process [32, 38]. Here mRNA is modeled as a two-dimensional lattice, and ribosomes
move from one location to another with specified transition rates that are given as inputs. More
details about TASEP are described in section 3.4.1, where we use this model to generate syn-
thetic test sets for mapping. The translation of each mRNA is considered independently. A
similar approach is to treat ribosomes as agents that keep records of information about the par-
ticular transcript position to which they are bound and the tRNA with which they are interact-
ing [28, 29, 150]. The agent-based model considers the translation of the entire transcriptome all
together. However, modeling the entire ribosome population and the locations on all the available
mRNAs is computationally intensive. Both the TASEP model and the agent-based method are
capable of quantitatively simulating the genome-wide translation dynamics. Although the full
vector of transition rates can be estimated using the TASEP model given the ribosome profile,
if we assume a unique transition rate for every position along the mRNA, the model is likely to
overfit the data without bringing too much insight about the general knowledge of the rates.

Existing ribosome profile analyses do not take full advantage of codon-specific ribosome oc-
cupancy. Earlier works on incorporating ribo-seq data into translational model often focus on
usings the overall ribosome abundance estimation. For example, Siwiak and Zelenkiewicz [153]
modeled the tRNA-ribosome binding as a diffusion process, and estimated properties of trans-
lation such as the translation and initiation rate by incorporating the overall ribosome density
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from the ribosome profiling data. However their model is deterministic and cannot describe the
dynamics of the translation. Huang et al. [75] applied a machine learning approach to predict
whether a gene is highly translated or not, where the ‘ground truth’ of the translation rates are
also estimated by the overall ribosome density [79]. Hundreds of candidate features that describe
both the sequence and the structure properties of the mRNA molecules and the corresponding
proteins are selected. While it is desirable to include a large variety of biologically meaningful
features, the model itself is a simple binary classifier. Moreover, treating the overall ribosome
density as the translation rate might be oversimplified.

Bridge the gap between theory and experiment. Recently, more methods are emerging to
model translation using transcript-level ribosome profiles in a more data-driven way. Many
methods study the relationship between codon type and elongation speed [13, 39, 40, 59, 98].
Typically, ribosome profiles are normalized by the average ribosome density of a transcripts, and
these normalized footprint counts are grouped by codon types, and some statistics are computed
based on these codon count distributions to represent codon decoding time. Either the distribu-
tion means are used [98], or the distributions are fit to some statistical model, and specific model
parameters are used as the codon decoding time estimates [39, 40]. These approaches assume
that ribosome footprint counts among different transcripts can be brought to the same level by
proper normalization, and the effect of transcript abundance and initiation rates on ribosome
footprint counts can be canceled out. They also assume that codon type is the main factor that
regulates translational speed, and this speed can be estimated from codon count distributions.
However, they might overlook the effect of transcript abundance and initiation rate on transla-
tion speed of individual transcript, where these effects might play a larger role in the observed
ribosome footprint counts, and the effect of codon type on translational speed might be buried
by other confounding factors.

Alternatively, Pop et al. [135] model the codon-specific elongation rate on each transcript in-
dividually. The observed ribosome footprint counts are assumed to follow a poisson distribution.
Their model also assumes that the observed ribosome profiles are at steady states, so a constant
ribosome flow assumption must hold at each transcript location. They iteratively estimate the
elongation rates and the ribosome flows so that the observed ribosome footprint counts are best
explained. Unintuitively, their estimated elongation rates do not correlate with tRNA abundance
estimations. Gritsenko et al. [66] take another approach by assuming universal elongation rate
per codon type, but transcript-specific initiation rates. They use TASEP to estimate the rate pa-
rameters that fit well with the ribosome footprint observation on multiple scales. Shah et al. [150]
propose another approach (which is recently applied in [174]) to estimate the initiation probabil-
ity from ribosome profiles with a continuous-time, discrete-state Markov model of translation,
assuming other parameters in the model are perfectly known.

To validate the model assumptions, the estimated codon decoding time is often compared
with tRNA abundance estimates [39, 40, 66, 98, 135], codon usage [59, 125], and mRNA sec-
ondary structure [135, 182]. However, controversial conclusions about factors that regulate trans-
lation rate are often derived from these analysis. For example, Pop et al. do not find tRNA abun-
dance to be correlated with elongation rates, while Dana et al. find tRNA abundance to be signif-
icantly correlated with several definitions of elongation rates in yeast [39, 40]. It might be that
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multiple factors are acting together to regulate translation speed [65]. It might also be that noise
and biases introduced from the experiment pipeline distort the true ribosome occupancy [13, 76].
A recent study compared the reproducibility of ribosome profiles among biological replicates,
and showed that ribosome profiles lack consistency between replicates at a codon level, yet the
consistency increases as ribosome counts are estimated with a coarser resolution [42]. This is
another line of evidence that ribosome profiling data are inherently noisy. This also shows that
exploring the mechanism of translational speed requires a better designed protocol both experi-
mentally and computationally.

1.2.5 Challenges in ribosome profiling analysis
In summary, ribosome profiling is a useful relatively recent sequencing technique to study

genome-wide translational patterns. Many methods have been developed to extract common
features of ribosome profiles. However, reliably identifying unique patterns from individual
ribosome profiles and quantify translational speed have remained challenging. Raw ribo-seq
reads need to be handled with caution to produce accurate transcript-level ribosome profiles,
since all downstream analysis relies on such profiles. Meanwhile, methods need to be developed
to filter noise and reveal true ribosome footprint locations.

1.2.6 Our contributions
In this thesis we introduce two methods to tackle two challenges in ribo-seq data processing.

We first resolve multi-mappings in ribo-seq data and output transcript-level ribosome profiles in
chapter 3. Our method is the first approach to systematically handle multi-mappings in ribo-seq
data. We show that our method accurately recovers isoform-level ribosome profiles by assigning
multi-mapping reads guided by transcript abundance. Our method also leads to a more reason-
able estimation of ribosome loads. Both ribosome profiles and ribosome loads are crucial for
downstream analysis such as differential translational analysis and translation speed estimation,
and our computational pipeline prepares ribo-seq data for an unbiased translational analysis.

We then propose a mathematical model and algorithm to infer ribosome footprint locations
from ribo-seq reads in chapter 4. This is a necessary step to convert raw ribo-seq reads into
meaningful ribosome profiles that reflect the ribosome occupancy preferences over time. We
show that such challenge arises due to incomplete digestion during the experimental procedure,
as mentioned above. Our method successfully reduces noise from ribo-seq data and outputs
crisper ribosome profile estimations. Using these better estimated profiles, our estimated codon
decoding time illustrates that both tRNA abundance and wobble pairing influence translational
speed.

Lastly, we provide a genome-wide analysis on ribosome collision quantification. This is the
first approach to quantify extreme local slow-downs of ribosome movements that result in two
ribosomes sitting adjacently on the transcript. With the help of a modified ribosome profiling
protocol that experimentally captures ribosome collisions and a rigorous computational analysis
framework, we show that extreme ribosome stallings are consistent with the model that they
occur randomly. Our study compliments previous findings by providing experimental evidence
for ribosome stallings. However, we consistently observe the libraries for capturing ribosome
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collisions are dominated by contaminated sequences from ribosomal RNAs, and the coverage for
the real ribosome collision sequences from mRNAs are extremely low. Therefore our study is
only preliminary and our observations are suggestive but not conclusive. Additional experiments
that can effectively remove contaminants from biological samples are needed, and biological
replicates are required for future validation of our findings.

Together, we provide multiple computational methods to guarantee an accurate ribosome pro-
file estimation from raw ribo-seq reads, which further promotes our understanding of translation
mechanisms and translational regulation. Our methods provide the groundwork to preprocess
ribo-seq data and output unbiased ribosome profiles at a codon level, whose accuracy is critical
in answering question two.

1.3 Summary
In this thesis, we developed novel computational methods to use next-generation-sequencing

technologies to understand gene expression. These methods are based on graph theories, signal
processing, and statistical tests, and they focus on pre- and post-transcriptional aspects of gene
expression, two important areas that are under studied compared with transcription. Our methods
reliably preprocess the raw sequencing data and produce biologically meaningful results. They
will be useful for researchers to better understand the workings of the cell.
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Chapter 2

Topological properties of chromosome
conformation graphs reflect spatial
proximities within chromatin

This chapter describes a statistical framework to detect sets of spatially closed regions from
Chromosome Conformation Capture data. The validity of the proposed method is crucial in
examining the relationship between genomic function and its spatial arrangement. We start with
a brief introduction of the Chromosome Conformation Capture technique and a survey of existing
approaches to identify spatially closed regions. We then provide a formal problem definition and
give a design of the tested framework using topological properties from chromatin interaction
graph. Finally, we end the chapter with validations of our method for detecting spatial closeness
on both simulated test sets and actual genomic annotations in yeast.

The content of this chapter was originally presented at ACM Conference on Bioinformatics,
Computational Biology, and Biomedical Informatics (ACM BCB) in 2013, and was published
in the Proceedings of the International Conference on Bioinformatics, Computational Biology
and Biomedical Informatics [169]. It was a joint work with Geet Duggal, Rob Patro, Michelle
Girvan, Sridhar Hannenhalli, and Carl Kingsford.

2.1 Background

Chromosome Conformation Capture (3C) [41] is an experimental method used to study the
spatial structure of chromosomes by observing pairwise spatial contacts between regions of
chromatin. Such experiments provide counts of observed instances of cross-linking between
pairs of genomic segments flanked by restriction enzyme sites, with the interpretation that pairs
of segments with high counts were often in close proximity among the population of cells as-
sayed. The 3C technique and its subsequent refinements (4C [47, 151], 5C [16, 46, 166], Hi–
C [43, 107, 149, 161], TCC [92]) have been used as tools to explore the genomic structures and
features of bacteria [166], yeast [47, 161], fruit fly[149], mouse [43], and human [16, 43, 107].
These interactions have been used to verify the large-scale organization of chromatin territo-
ries [107], to investigate cancer and disease related genome alternations [55, 114], and to confirm
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and postulate instances of long-range regulation [16].

Embeddings of three-dimension genomic structure are expensive to compute. In order to
identify spatially colocated genomic features, a three-dimensional model of the chromatin is
often computed to study the genome structure [16, 20, 47, 161, 166]. The model is usually
built to satisfy as many of the 3C interactions as possible, while respecting a variety of other
established properties of chromatin, including the volume constraint of the nucleus, the physical
constraints of the DNA molecules, and some known biological preferences of the chromosome
structure. A three-dimensional model of the chromatin structure is useful, and it can incorporate
biological constraints on highly repetitive sequence regions such as centromeres and ribosomal
DNAs [47] that are not available in the raw 3C data. However, requiring the computation of
an embedded chromatin structure is computationally complex and expensive. In the yeast 4C
experiment, for example, there are 4,053 genomic fragments and 914,746 spatial constraints
between pairs of fragments, and it takes more than one day to optimize this complex objective
function [47]. Further, a large amount of uncertainty exists in the embedded structure. In order
to build the constraints among genomic loci, the observed 3C interaction frequencies need to
be mapped to distances. Different frequency-to-distance mappings will result in very different
constraints, which will then lead to different structures. Moreover, the constraints from the 3C
interactions are usually metrically inconsistent [48]. Such inconsistencies are a result of both the
noisy 3C data and the nature of the 3C experiment. The interactions come from an aggregate
population of cells which may have different and incompatible geometries. Only a small subset
of the constraints can be satisfied to some degree, and different subsets of constraints will result
in different 3D embeddings [48].

Existing tests for spatial enrichment might be sensitive to missing measurements and out-
liers in the test set. Several approaches have been proposed to infer spatial colocalization of
the chromatin structure without computing a chromosome embedding. Earlier methods assume
that the number of observed 3C interactions given the number of possible interactions follows
a hypergeometric distribution [37, 47]. Such a parametric approach, as pointed out by Witten
and Noble [177], makes the inaccurate assumption that every observation of an interaction is an
independent event. This assumption does not hold because 3C interactions involving the same or
nearby fragments of genes are strongly correlated. To address this, Witten and Noble [177] pro-
posed a non-parametric procedure to evaluate the spatial closeness for sets of genes by randomly
resampling sets of restriction fragments as the background distribution. Kruse et al. [96] sub-
sequently proposed a rewiring procedure, randomly shuffling the interactions while preserving
the degrees of restriction fragments and the transitivity of the entire graph, to sample from back-
ground distribution. All of the methods above are based on the (sometimes weighted [161])
fraction of observed interactions (edge-fraction) between the loci of a given set of genomic fea-
tures.
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2.2 Contributions
Here, we propose and compare a variety of topological metrics as measurements of spatial

proximity without the need to compute a three-dimensional embedding of the genome (or any
subset of it). Given a set of genomic loci, we explore the properties of all pairwise shortest
paths, network flow, and the maximum density subgraph to evaluate spatial proximity of the
chromosome structure directly from the 3C graph. Our methods are able to make better use of
the observed frequencies of each interaction (edge weights) than the previously proposed edge-
fraction approach. For example, our approach based on shortest paths accounts for transitivity
of distance constraints and ought to reveal some information about non-observed 3C interactions
due to the absence of cross-linking. The maximum density subgraph approach can extract the
densest core in a graph and can reveal surprisingly compact regions masked by outliers.

We investigate the topological properties on 4C measurements in budding yeast Saccha-
romyces cerevisiae [47]. These data have been widely studied for colocalization tests on genomic
features [20, 37, 47, 96, 177]. We show that all tested topological properties correlate well with
the spatial proximity measured by the volume of the convex hull of the dense subgraph of a set
of positions. The volume of the convex hull is computed based on an existing three-dimensional
model of the yeast genome [47].

We apply our methods to both synthetic feature sets selected from the yeast three-dimensional
embedding and to real genomic features [47]. To test the intuition that richer graph properties will
more accurately identify spatially close sets, we introduce a new framework for systematically
evaluating a method’s false positive rate, true positive rate, and ability to handle outliers when
estimating spatial enrichment.

We show that under a reasonable resampling scheme that controls for chromosome-specific
interaction patterns, our colocalization statistical analyses are both robust and unbiased. More-
over, all methods perform well on test sets that contain a variety of chromosomes. For such sets
of genomic loci, the method of finding the maximum density subgraph has the added benefit
that it finds dense regions in the graph that overlap well with the true spatially compact regions.
Lastly, by incorporating interaction frequencies into the tests, we find the telomere sets, which
were previously thought to be significantly colocalized [47], are likely to be not. Overall, we
illustrate that these proposed graph-theoretic measures can identify spatial closeness well with-
out the need to compute an embedding and can be an alternative indicator of spatial functional
enrichment.

2.3 Problem specification
Given a set F of genomic loci (representing genes or other features) and a collection of

observed 3C interactions G, we would like to test whether the points in F are significantly
spatially close as implied by the 3C interactions. We compute a statistic f on G and F , and we
argue that statistical significance of f likely indicates statistically significant spatial proximity.
This leads to the following problem:

Problem 1 (Spatial Proximity Test) Given a set of genomic loci F and a weighted graph G =
(V,E, d) of 3C interactions where V is the set of genomic segments produced by the 3C experi-
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ment, E is the set of 3C interactions, and d(e) is the weight of interaction e, return YES if F is
statistically significantly spatially close in three dimensions. Otherwise, return NO.

The input loci F here is a subset of V . Input sets consisting of genes or genomic ranges
should be mapped to genomic fragments first, and the test statistic is computed using the frag-
ments. The given edge weight d(e) is typically an estimate of pairwise spatial proximity derived
from observed 3C interaction frequency. Problem 1 does not address the issue of outliers within
the provided set F . To handle these, we introduce the following problem:

Problem 2 (Compact Core Finding) Given input as in Problem 1, return YES if some subset
of F is spatially close in three-dimensions. If so, return the subset.

2.4 Methods

2.4.1 Graph-based proxies for spatial closeness
We evaluate the following topological properties for their statistical correlation with spatial

proximity. Given a set of restriction fragments F ⊂ V , we compute the following topological
properties f(F ):

(a) fedge fraction(F ) =
|E(F )|
|Ea(F )|

.

Here, E(F ) is the set of observed edges with both endpoints in F . Ea(F ) is the set of all
possible edges among the given set of nodes. If only inter-chromosomal edges are included,

|Ea(F )| =
∑
i,j,i6=j

i,j∈chromosomes in F

cicj,

where ci is the number of fragments in F on chromosome i. fedge fraction is widely used as a
proxy for spatial proximity [47, 177], however it is likely sensitive to the effects of outliers
or missing measurements in the 3C experiments. This method does not use edge weights
directly, but rather considers an edge present only if the false discovery rate (FDR) derived
from its observed frequency is less than 0.01.

(b) fsp mean(F ) = the mean of all pairwise shortest path lengths between nodes in F . The weight
on each edge e here is the distance d(e) computed using a frequency-to-distance mapping.
Computing shortest paths instead of using just observed edge weights addresses the issue
of missing 3C interactions in connected triples and longer paths in the 3C graph. fsp mean is
therefore robust to this kind of incomplete experimental data.

(c) fflow mean(F ) = the mean of the maximum flow value between pairs of nodes in F . The
maximum flow on an edge u, v can be thought of as the largest amount of water that can
be sent from u to v by treating the edge as a pipe with the capacity of the observed 3C
interaction frequency. Unlike when computing shortest paths, the edge weight here is the
interaction frequency. Maximum flow avoids the problem that shortest paths can be signif-
icantly lengthened or shorted by a single edge deletion or addition. All pairwise maximum
flows are efficiently computed via a Gomory-Hu tree [63].
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(d) fmax dense(F ) = the density of the maximally dense subgraph D contained in F , where

density =

∑
e∈E(D)w(e)

|V (D)|
,

and w(e) is the interaction frequency of edge e. The unweighted density can be computed
by setting w(e) = 1. The definition of density used in fmax dense has been widely studied and
admits maximization via a polynomial-time algorithm [62]. This statistic emphasizes the
importance of a compact core and helps to eliminates the effects of outliers. A density def-
inition like (a) above — the portion of observed edges — is not applicable to maximization
since there exists a trivial solution that can maximize the density: a graph with one edge.

2.4.2 Scheme for spatial enrichment tests

We obtain a p-value for the statistic f(F ) in a non-parametric manner similar to that proposed
by Witten and Noble [177]. The procedure is described below:
(1) Resample a set B of 1000 sets of from V . How these sets are sampled depends on whether the

input features are fragments, genes, or genomic ranges. In the case that they are fragments,
then |F | random restriction fragments are chosen. If the original input is a set of genes, then
the same number of genes are randomly selected, and the selected genes are converted into
fragments by choosing fragments whose midpoint lies within the selected gene. If the inputs
are genomic regions, then new random starting coordinates for the regions are chosen, keep-
ing the length of each region unchanged; we then choose those fragments whose midpoint
lies within the regions. In all three cases, we keep the number of elements selected from
each chromosome the same as in the input F . Such a procedure controls the fact that differ-
ent chromosomes may interact with each other quite differently due to the tethered nature of
the yeast genome and due to the differences in the chromosomal lengths [164].

(2) For each B ∈ B compute f(B) to get a background distribution of values.

(3) Compute the empirical p-value as the fraction of examples B ∈ B where we count f(B) ≥
f(F ) (except for shortest path, where we count f(B) ≤ f(F )). A set is called statistically
significant if this p-value ≤ 0.05.
In order to generate the background distribution, our resampling procedure randomly samples

nodes in the graph while keeping the graph topology fixed. An alternative approach would be to
randomly rewire the interactions of the network by fixing the nodes of interest [96]. However,
generating a set of random graphs as the null model that preserves the topological structure of the
original graph without introduing any artificial bias is quite challenging. Kruse et al. [96] propose
a Markov-chain procedure for reshuffling 3C edges until the rewired graph reaches or exceeds the
transitivity of the original graph. This is a computationally intensive procedure since it requires
many reshuffling steps to obtain a graph with transitivity comparable to that of the observed 3C
graph. Further, there might exist other properties, or a combination of properties, that can better
describe the topological structure of the yeast network. We thus chose the procedure above in
consideration of efficiency, simplicity, and generality.
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2.5 Data and test sets

2.5.1 Yeast 3C interaction data

We use the S. cerevisiae 4C measurements based on the HindIII restriction enzyme library
from Duan et al [47]. The 3C experimental procedure may introduce systematic biases that distort
the true frequency of the data. We therefore applied the same false discovery rate (FDR) cutoff
of 0.01 to pre-filter the noisy 4C data, and we applied the same frequency-to-distance mapping
to convert the interaction frequencies to distances. Other normalization methods have been pro-
posed for Hi-C experiments [74, 77, 181]. Some are not directly applicable to 4C data because
the assumptions for normalization are specific to Hi-C data [77]. Kruse et al. [96] applied the
normalization method proposed by Yaffe and Tanay [181] to get an interaction probability for
every fragment pair. They then chose a different FDR cutoff to filter the 3C interactions. How-
ever, Yaffe and Tanay’s normalization method [181] does not take into account the circulation
bias [34] that is specific to 4C experiments. Here, in order to compare directly with Duan et
al. [47] and Witten and Noble [177], we use their data processing framework.

We test our methods on 3C graphs considering only the inter-chromosomal (fragments from
different chromosomes) interactions. Including intra-chromosomal (fragments from the same
chromosome) data ought to be beneficial since more information is incorporated for evaluating
spatial enrichment. It can reveal unique spatial structure patterns of a specific chromosomes
like zippering [47] and long range looping [16]. However, intra-chromosomal interactions are
strongly influenced by linear genomic proximity. A high frequency intra-chromosomal inter-
action can be caused by genomic closeness or spatial closeness, and it is difficult to distin-
guish the two. Furthermore, intra-chromosomal interactions have higher frequencies than inter-
chromosomal interactions, and thus can carry more weight in spatial enrichment estimation. We
therefore consider only inter-chromosomal interactions following Witten and Noble [177] and
Kruse et al. [96]. We validate this choice further in section 2.6.5.

2.5.2 Sets of yeast genomic loci of interest

We use the genomic feature sets from Duan et al. [47]. These features include: centromeres,
telomeres, breakpoints (including the ancestor breakpoints of S. cerevisiae and the evolutionary
breakpoints between S. cerevisiae (Scer) and Kluyveromyces waltii (Kwal)), transfer RNAs (tR-
NAs) (including the entire tRNA set, two sub-clusters of the tRNA set, and tRNAs outside the
two clusters), and origins of early and late DNA replication (including two sets with different
identification mechanism). These features were chosen by Duan et al. [47] with both theoretical
and experimental support of their clustering behavior.

2.5.3 Selection of chromatin regions for spatial enrichment test

Generation of synthetic cores

To test each method’s ability to recognize truly spatially close cores masked by outliers, we
generate synthetic sets of features with different sizes (20, 50 and 100 fragments) by choosing
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Figure 2.1: Defining positive examples and negative examples. (A) Cumulative distribution of
1-rc. (rc here is the relative size of the largest spatially-close subset of the instance.) None of
the random sets contain a spatially close set with rc > 0.5. (B) An example of true positive set
(rc = 0.6, |F | = 20). (C) An example of random set (|F | = 20). (B) and (C) are drawn using a
spring layout. Node colors represent different chromosomes. A less transparent and wider edge
represents a higher 3C interaction frequency between fragment pairs.

random segments on the embedded yeast chromatin structure computed by Duan et al. [47]. We
sample from Duan et al.’s [47] embedding since it is built based on real 3C data, and it incorpo-
rated a variety of known biological constraints. We define a set of segments to be spatially close
if they are within a diameter of 400nm, and we define them to be not spatially close otherwise.
This diameter is chosen by observing that 400nm is 1/5 of the diameter of the yeast nucleus
(2000nm) [47], and such a diameter results in a volume < 1% of the entire nucleus volume.
Additionally, in the histogram of the pairwise Euclidean distances between beads in the Duan et
al. [47] yeast embedding, only 11.7% of the distances are within 400nm.

To construct a synthetic set with a spatially close core and with some fraction of outliers,
we first pick a certain percent (rc) of the synthetic set as core segments. To do this, we choose
a center segment u ∈ V and then search for restriction fragments that fall within the sphere
centered at that point with a radius of 200nm. All fragments inside this sphere will be at most
400nm away from each other. We define Ca(u) as the set of all segments within a 200nm radius
of u. We discard Ca(u) if |Ca(u)| < rc|F |. We then randomly pick C(u) ⊂ Ca(u) as the set of
core segments such that |C(u)| = rc|F |. Secondly, we randomly choose the rest of the nodes in
F outside the 200nm radius from the center point to be outliers. The reason for choosing some
spatially-not-close fragments to add to the synthetic core instead of some random fragments is
to enlarge the effect of the outliers.
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If all sampled fragments are from the same chromosome, any method based solely on inter-
chromosomal interactions will fail to detect the spatial proximity by construction, since no intra-
chromosomal interactions are included. We therefore discard sets only containing fragments
from a single chromosome since our test data is inter-chromosomal. (See discussion in sec-
tion 2.6.5.)

Constructing spatially close sets (positive examples)

In order to evaluate a statistic’s power for detecting spatial enrichment, a positive example—a
set of fragments that can be called significantly more spatially close than expected by chance,
and a true negative—a set that cannot be called significantly compact, should be well defined.

Intuitively, a set containing a large compact core (rc is big) is likely to be called spatially
enriched as a whole. We therefore find a rc cutoff such that a set with a core at least that large
can be called significantly spatially compact. To find such a cutoff, we estimate the size of the
largest set with a diameter of 400nm in 1000 randomly selected fragment sets with different
set sizes (|F | = 20, 50, 100). This distribution is an estimation of the probability of observing a
compact core of a particular size in randomly chosen samples (Figure 2.1A). None of the samples
in the random sets contains a compact core with rc > 50%. We thus define a set of embedded
fragments generated as in the previous section to be a positive example if the largest close core
within the set has a size≥ 0.5|F |. An example of a true positive set is shown in Figure 2.1B. For
different set sizes |F | = 20, 50, 100, we generate 1000 positive sets with rc varying from 0.5 to
1.0.

Constructing negative examples

Analogous to the definition of positives, we could define the negative set with another cutoff
of rc such that a set containing a core with fewer than rc nodes is not significantly spatially
close. However, such a filtering scheme makes the example less random. This introduces the
new problem that a method that can reject this ‘far’ set is not necessarily capable of rejecting the
true null hypothesis of random loci. Therefore we define the negative set as a set of randomly
chosen fragments (or genes). An example of a random set is shown in Figure 2.1C.

2.6 Results

2.6.1 Graph-based statistics correlate well with embedded distances on
dense cores

We randomly sample 1000 sets (|F | = 20, 50, 100) of fragments from G. As an indication of
the true spatial proximity, we compute the volume of the convex hull [25] using the embeddings
from Duan et al. [47] for every random set. We then compute the correlation between the topo-
logical properties and the true spatial proximity. We take the cubic root of the volume so that the
unit of the topological properties and the unit of the true spatial proximity are on the same scale.
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Table 2.1: Pearson correlation coefficient between the tested topological properties and the cubic
root of the volume of the covex hull on the entire randomly sampled fragment sets and on the
maximum density subgraphs within in the sets.

|F | = 20 |F | = 50 |F | = 100
whole set dense core whole set dense core whole set dense core

edge-fraction -0.08 -0.79 -0.11 -0.88 -0.10 -0.94
average shortest path 0.05 0.79 0.03 0.91 0.07 0.96
average max flow -0.05 -0.16 -0.09 -0.58 -0.11 -0.74
weighted density -0.06 0.05 -0.05 -0.35 -0.02 -0.51
unweighted density -0.07 0.41 -0.08 0.20 -0.07 0.16

Although no strong correlations are observed when the properties are computed on the en-
tire set (Table 2.1), if the maximum density subgraphs within the sets are found first, and the
embedded distances and the topological properties are computed on these subgraphs, strong cor-
relations appear between the embedded distance and the edge-fraction, average shortest path,
and average maximum flow (Figure 2.2, Table 2.1). (Here property (d), the density is computed
on the entire maximum density subgraph, not on the maximum density subgraph of the maxi-
mum density subgraph). Edge-fraction, max flow and density are all inversely correlated with
the embedded distance, while shortest path positively correlates with the embedded distance. In-
tuitively, we expect a spatially compact set to be denser, to have a larger average max flow, and to
have shorter average shortest path, and we find the sets returned by maximum density subgraph
to have these properties. These correlations increase as |F | increases. This is because not enough
3C interactions are included in smaller sets to accurately evaluate the density and edge fraction,
and noisy data has a larger effect.

The density of the maximum density subgraph has a weaker correlation compared to other
tested properties. As we observe, the density grows as the graph size increases. For instance,
a complete non-weighted graph of size n has a density of (n − 1)/2. Edge-fraction, on the
other hand, assigns all complete graphs of all different sizes the same score of 1. Therefore, the
positive correlation between the density and the graph size weakens the correlation between the
density and the embedded distance.

The weighted density correlates better with real spatial proximity than the unweighted den-
sity (Table 2.1). The unweighted density does not correlate as expected with spatial proximity.
For set size 50 and 100, weighted density is inversely correlated with the cubic root of the volume,
while the unweighted density are positively correlated with the cubic root of the volume. The
inverse correlation is expected since denser regions should have a smaller volume. The correla-
tion for both weighted density and non-weighted density are positive when set size is 20, which
is probably due to the sparsity of the small graph as discussed above. These results illustrate
that a more precise evaluation of the spatial proximity within set can be achieved by consider-
ing the interaction frequencies rather than just edge presence or absence as done by Witten and
Noble [177].

High correlations can occur if the densest subgraphs of all sets strongly overlap with each
other. Under such circumstances, the conclusion that the topological properties drive the high
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Figure 2.2: Scatter plot relating average shortest paths and the cubic root of volume of convex
hull (nm) on the entire randomly sampled fragment sets and on the maximum density subgraph
within the sets (|F | = 100). Average shortest path on the maximum density subgraph strongly
correlates with the cubic root of the volume, while no correlation is observed on the entire set.

correlation is not valid. To make sure the correlation is not caused by dense, highly overlapping
regions, we compute the Jaccard similarity coefficient on nodes in maximum density subgraphs
for all pair of sets. More than 99% of the pairwise Jaccard scores are less than 0.5 for all set sizes.
Moreover, 99.1% pairs share zero nodes in their maximum density subgraphs when |F | = 20.
The proportion of zero overlap is 95.3% for |F | = 50 and 82.4% for |F | = 100. This test illus-
trates that we have covered distinct regions on the chromosome and that the correlation between
the approximate embedded distance and the tested topological properties holds in general.

The results above not only demonstrate that maximum density subgraphs correspond to spa-
tially compact cores, but they also indicate that the tested topological properties are a good
approximation for spatial proximity of these cores.

2.6.2 The maximum density approach identifies true compact cores
Further, to evaluate the ability of the maximum density subgraph approach to find spatially

compact cores, we want to show both that the nodes inside the maximum density subgraph (dense
core) overlap well with the nodes in a known true spatial compact core (true core), and that the
volume of the dense core agrees well with the volume of the true core. We use a spatial Jaccard
score to measure a combination of both properties. The spatial Jaccard score Jvol between nodes
in the dense core D and nodes in the true core C is defined as:

Jvol(D,C) =
volume(D ∩ C)

volume(D ∪ C)
,

where volume(X) is the volume of the convex hull of a set X of points.
We compute the spatial Jaccard score on all positive sets and observe that the spatial Jaccard

score increases if the portion of the fragments from the most common chromosome decreases and
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Figure 2.3: Scatter plot of the spatial Jaccard score between the true compact core and the dense
core on the positive sets with size |F | = 100 (similar results observed for |F | = 20, 50). The x
axis is rc, y axis is the portion of the most common chromosome, and the color represents the
value of the spatial Jaccard score. The spatial Jaccard score is high when rc approaches 1 and
when the test sets contains fragments from a variety of chromosomes.

Figure 2.4: Maximum spatial Jaccard scores of fragments (Jf ) observed in the maximum density
subgraphs of all test set with |F | = 100. Centromere regions for different chromosomes are
marked with red rectangles. Jf is high near centromere regions.

if rc increases. The score is generally between 0.5 and 0.9 when the portion of the most common
chromosome is around 20% (Figure 2.3). This indicates that the dense core overlaps well with
the true core in terms of volume when the set is not denominated by a single chromosome.

The spatial Jaccard score drops down to near zero when the portion of the most common
chromosome is over 50%. The reason that maximum density subgraph cannot extract the most
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dense regions for such test sets is due to the absence of intra-chromosomal interactions. A de-
tailed discussion about our reason to exclude intra-chromosomal interactions is in section 2.6.5.

To determine whether certain chromosomal regions correspond to dense regions that overlap
well with true compact regions, we look at the maximum spatial Jaccard score of a fragment
within the maximum density subgraph for every test set. Formally, every test set F contains
a true compact core CF and a maximum dense subgraph DF ; these result in a spatial Jaccard
score Jvol(DF , CF ). Let F represent all test sets. For a restriction fragment r ∈

⋃
F∈F DF , the

maximum spatial Jaccard score is defined as:

Jf (r) := max
F∈{S|S∈F , r∈DS}

Jvol(DF , CF ).

A high Jf indicates that there exists some highly overlapping cores involving this fragment. We
observe fragments with a high spatial Jaccard scores often locate near centromere regions (Fig-
ure 2.4). More than half of the chromosomes have a average non-zero Jf scores greater than
0.4 within a 20,000 bp window of the centromere. Moreover, 100% of the non-zero Jf scores
of short chromosomes (such as chromosome 1, 3 and 9) near the centromere are > 0.5, and
the average non-zero Jf scores are greater than 0.6. Yet there are 432 fragments outside of the
centromere regions (100,000 bp window) with Jf > 0.5. In summary, fragments with high Jac-
card scores mainly locate near centromere regions, but can be also found in other areas on the
chromosome.

2.6.3 An unbiased null hypothesis

When tested on randomly generated gene sets containing randomly selected genes without
any functional relationships or colocalized properties [177], all tested topological statistics pro-
duced a uniform p-value distribution (Figure 2.5). Evaluating the p-value distribution on the
null sets is a standard approach to check whether a statistic has good control for type I er-
ror [96, 134, 177]. A uniform distribution of p-values is expected if the statistic is valid. Similar
results are observed on sets of randomly chosen fragments.

2.6.4 Topological properties as spatial proxies for spatial enrichment test

We test the power of each topological property as spatial proxies for evaluating spatial en-
richment of a given set on the positive sets with different set sizes. We observe all methods
correctly call compact cores significant when the portion of fragments from the most common
chromosome is less than 30% (Figure 2.6). All methods except for edge-rewiring achieve a true
positive rate of 100% when the portion of fragments from the most common chromosome is less
than 20%, and a positive rate above 80% when the portion of the most common chromosome is
less than 30%. Similar to the result of the dense core overlap, the spatial enrichment evaluation
is more accurate when sets of fragments are from several chromosomes.

The true positive rates of all methods decrease when the portion of the most common chromo-
some increases, and it reaches a low level when the majority of the test set consists of fragments
from the same chromosome. If most of the fragments are from one or two chromosomes, there

22



Figure 2.5: Histogram of p-values for different methods on random gene sets [177]. All sets of
genes are chosen from a list of target genes of all known transcription factors, the size of the
gene set is determined by the number of target genes of a randomly selected transcription factor.
All statistics in section 3.2 achieve a near uniform distribution on this null set, indicating the
methods are not biased.

will be very few inter-interactions among the set to accurately estimate whether the set is more
spatially close than expected by chance.

The edge rewiring method proposed by Kruse et al. [96] is the most conservative among all
tested statistics: The true positive rate on |F | = 20 is below 20%. This is probably because edge
rewiring controls for the global transitivity of the entire graph in the random rewiring procedure,
while the transitivity in local subgraphs in yeast might vary radically.

2.6.5 Rationale for including only inter-chromosomal edges

In line with previous studies [47, 96], our tests are on the set of inter-chromosomal edges.
Ideally, both intra-chromosomal and inter-chromosomal edges would be used. However, testing
for spatial enrichment including intra-chromosomal interactions remains a challenge.

First, a cutoff of 400nm is potentially unsuitable for a primarily intra-chromosomal set of
fragments. Based on the embedding, more than 50% of the intra-chromosomal distances are
less than 400nm, while less than 10% of the inter-chromosomal distances are less than 400nm.
Thus 400nm is not a ‘surprisingly close’ cutoff for intra-chromosomal distances. However, it is
difficult to find a distance cutoff that captures sets that contains both significantly spatially close
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Figure 2.6: True positive rate of different methods on positive examples with different set sizes
(|F | = 20, 50, 100). The x axis is the portion of the most common chromosome. The true
positive rate is high when the fragments of the test sets are from different chromosomes, and
is low when the fragments are mainly from the same chromosome. Edge rewiring is the most
conservative method.

intra-chromosomal and inter-chromosomal structures.

Second, the close spatial proximity between intra-chromosomal pairs is due in large part to
the genomic proximity between these pairs of loci. Distinguishing spatially close sets caused by
polymer packing from otherwise more interesting close sets such as fragments involving long
range loops is not straightforward.

Finally, inter-chromosomal and intra-chromosomal interaction frequencies are not on the
same scale: intra-chromosomal interactions have a much higher expected frequency than inter-
chromosomal interactions. It is thus necessary to place inter-chromosomal interactions and intra-
chromosomal interactions on the same scale, and to place intra-chromosomal interactions with
different genomic distances on the same scale. One such approach is to set q-values as the edge
weights, where a null model has already taken genomic proximity into consideration. Another
approach is to set the edge weight as z-scores conditioned on different genomic distances [134].
Experiments run on the current test sets do not provide evidence that these approaches perform
well in estimating spatial enrichment. Methods of averaged shortest path and average maximum
flow only achieve a true positive rate of < 10% when the edge weights are either q-values or
z-scores. It is possible that these approaches are too conservative and are not sensitive enough
to detect spatially enrichment. It is also possible that since the embedding is computed on the
constraints based on frequencies (mapped to distances), not on z-scores or q-values, setting edge
weights as raw frequencies will thus perform better by construction.

We thus construct the 3C graph by only including inter-chromosomal interactions. Good
estimations are achieved in sets containing fragments from a variety of chromosomes. As men-
tioned, such regions often locate near centromeres (Figure 2.4). These regions are known to
be spatially compact and clustered around the spindle pole body (SPB) with multiple chromo-
somes [188]. The fact that our tests perform well in these cases helps to validate that the sets we
identify as spatially close correspond to truly spatially close sets.
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Table 2.2: P-values (before Bonferroni correction) of different methods on the yeast feature sets
from Duan et al. [47] Numbers marked in red bold are p-values considered significant. Asterisks
after the numbers indicate significance after Bonferroni correction.

features edge-
fraction

mean
shortest
path

mean flow unweighted
maximum
density
subgraph

weighted
maximum
density
subgraph

centromeres 0.00E+00* 0.00E+00* 2.67E-02 0.00E+00* 0.00E+00*
telomeres all 1.23E-02 8.56E-01 1.00E+00 9.97E-01 9.72E-01
early firing CIB5-independent
origins

0.00E+00* 0.00E+00* 0.00E+00* 0.00E+00* 2.00E-03*

late firing CIB5-dependent
origins

1.66E-01 7.72E-01 8.42E-01 3.38E-01 6.30E-01

early firing Rad53-regulated
origins

3.80E-03* 1.20E-02 5.40E-02 2.00E-03* 4.00E-03*

late firing Rad53-regulated
orgins

4.04E-01 5.48E-01 6.96E-01 6.90E-01 8.40E-01

breakpoints (Scer) 0.00E+00* 0.00E+00* 0.00E+00* 0.00E+00* 2.00E-03*
breakpoints (Scer and Kwal) 3.80E-02 1.2E-01 5.40E-02 4.00E-03* 3.20E-02
trnas 2.00E-03* 1.60E-02 2.20E-02 1.00E-02 4.00E-02
trna cluster bright 0.00E+00* 0.00E+00* 0.00E+00* 0.00E+00* 0.00E+00*
trna cluster dim 0.00E+00* 6.00E-03 1.00E-02 3.40E-02 2.34E-01
trna cluster other 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E00

2.6.6 Evaluation of the spatial closeness of various yeast feature sets

For the yeast feature sets [47], most statistics tested here agree with the results presented by
Witten and Noble [177]. The edge-fraction method using only the inter-chromosomal interac-
tion data is equivalent to the resampling method proposed by Witten and Noble [177]. Before
Bonferroni correction, this test finds that all tested features except the two sets of late-firing ori-
gins (late firing CIB5-dependent origins, late firing Rad53-regulated origins) and the tRNA out-
side two clusters (trna cluster other) are statistically co-located. Among all the methods tested,
the non-weighted maximum density approach agreed with the edge-fraction approach in the most
instances (Table 2.2). This is not surprising as these are the methods that ignore edge weights.
On the other hand, the mean flow statistic is more conservative.

Witten and Noble [177] correctly identified the telomere set as not spatially close only after
Bonferroni correction. In contrast, the other methods do not rely on multiple hypothesis cor-
rection to get the correct answer, and the p-values from the other methods are all close to 1.0.
Telomeres tend to form five to eight foci inside the nucleus during interphase [47]. However,
most interactions within the telomere set are low-frequency interactions. Thus edges of the sub-
graph of the telomere set are long-distance edges, and the distribution of the pairwise shortest
paths is not significantly smaller when compared to a random set (Figure 2.7). The fact that
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Figure 2.7: (A) Edge lengths and (B) pairwise shortest-path distribution between points in the
telomeres set. Interactions among telomeres are overall low-frequency (long-distance) interac-
tions and the distribution of the neither d(e) nor shortest paths are significantly different from a
randomly generated set.

fedge fraction cannot exploit edge weights may have lead to a false indication that this feature is
statistically significantly colocalized.

tRNAs are also observed to have clustering behavior in the nucleolus [47]. Duan et al. [47]
found two clusters of tRNAs with 3C interaction data: one colocalized with centromeres (trna
cluster bright), and the other colocalized with rDNAs (trna cluster dim). Although the trna cluster
dim is considered significantly spatially enriched by the method of edge-fraction, the weighted
maximum density subgraph does not identify it as spatially close. Again, it is plausible that
they are not significantly colocalized. The interactions between points in this set are of lower
frequency and thus the cluster appears to be ‘dim’ in the heat map. Taking into account the
edge frequencies, as in the weighted maximum density subgraph approach, might lead to a more
accurate estimate.

2.7 Discussion

We proposed several novel topological properties as proxies for testing for spatially compact
regions of chromatin. These methods avoid the costly process of computing a 3D embedding.
The shortest path and the maximum flow approach implicitly apply inferred information from
the 3C graph, while the maximum density subgraph approach reduces the effect of outliers. The
topological properties we chose here are directly related to spatial proximity of the 3C structures
and are easy to compute. Alternative properties of the 3C graph could result in an equally good
or better estimation of spatial proximity. One particularly interesting approach for future work
is to measure proximity via a diffusion process on the 3C graph, providing robust estimates of
node proximity in the graph.

We illustrate that the tested topological properties can be used to infer true spatial proximities
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in the chromosome structure by first showing in section 2.6.1 that graphical proximities within
dense cores are strongly correlated with proximities in their corresponding embeddings. We then
show in section 2.6.2 that dense regions found by the maximum density subgraph overlap well
with true spatial compact cores when the test sets contains fragments from several chromosomes.

To evaluate the power of the graphical properties for testing spatial enrichment, we first show
in section 2.6.3 that all methods result a uniform p-value distribution on the true negative sets and
are thus unbiased and valid. We then systematically evaluated the performance of all methods by
testing them on both synthetic test sets (section 2.6.4) and yeast feature sets (section 2.6.6). We
have shown that Problem 1 (Spatial Proximity Test) can be solved equally well by many statistics
based on different topological properties when test sets involve fragments from several chromo-
somes. We also demonstrate that, under such circumstances, the weighted maximum density
method is a good solution to both Problem 1 and Problem 2 (Compact Core Finding) since the
cores it finds overlap significantly with synthetically generated cores. The maximum density
subgraph solves a slightly different problem from the other methods and previous approaches. It
finds the densest subset of a given set of fragments, while the other methods evaluate the given
set as a whole.

As mentioned in section 2.5, to validate our methods with true spatial proximity of the chro-
matin, we use an embedding that is partially computed based on 3C data. This introduces cir-
cularity in the validation: Both our methods and the compared ground truth use the knowledge
of raw 3C data, which might contribute to the good agreement between the two. However, there
is no ground truth of the genome structure that is constructed without 3C data, we therefore
chose such an embedding because it is based on both experimental observation (real 3C data)
and theoretical knowledge of the genome.

While the framework for using topological properties to infer spatial enrichment is generally
effective, the proposed methods cannot accurately evaluate the spatial enrichment in regions that
fragments mainly come from the same chromosome due to the absence of the intra-chromosomal
interactions when constructing the 3C graph. We discussed in section 2.6.5 the challenge of
including intra-chromosomal interactions. A more comprehensive test set that includes single
chromosomal examples that cannot be simply explained by genomic proximity is yet to be de-
veloped.

Overall, we show that incorporating richer topological features such as flow, shortest path,
and maximum density subgraphs provides insight into finding regions that are truly spatially
enriched when the 3C graph contains sufficient interactions. These topological features can be
efficiently computed using well-known graph algorithms.
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Chapter 3

Isoform-level ribosome occupancy
estimation guided by transcript abundance
with Ribomap

Estimating ribosome profiles is essential to study translational dynamics from ribo-seq data:
all downstream analysis depends on an accurate estimation of such profiles. This chapter presents
a pipeline to preprocess ribo-seq and output isoform-level ribosome profiles. It tackles one of the
biggest problems in ribosome profile estimation: ambiguous mappings. We begin this chapter by
quantifying the severeity of ambiguous mappings in ribo-seq data. We then described our solu-
tion on handling such multi-mappings. Finally, we validated our methods on both real ribosome
profiling data and synthetic data with known ground truth, and show that our method produces
accurate estimations of ribosome profiles on a transcript level.

The content of this chapter was originally published in Bioinformatics [171]. It was a joint
work with Joel McManus and Carl Kingsford.

3.1 Background
Ribosome profiling (ribo-seq) provides snapshots of the positions of translating ribosomes

by sequencing ribosome-protected fragments [79, 84]. The distribution of ribo-seq footprints
along a transcript, called the ribosome profile, can be used to analyze translational regulation
and discover alternative initiation [58], alternative translation and frameshifting [121], and may
eventually lead to a better understanding of the regulation of cell growth, the progression of
aging [97] and the development of diseases [73, 163]. Different environmental conditions such
as stress or starvation alter the ribosome profile patterns [61, 79], indicating possible changes in
translational regulation.

In higher eukaryotes, alternative transcription initiation, pre-mRNA splicing, and 3’ end for-
mation result in the production of multiple isoforms for most genes. The resulting isoforms
can have dramatically different effects on mRNA stability [99] and translation regulation [159].
However, to date ribosome profiling analyses have been conducted at the gene, rather than iso-
form level, due to the absence of necessary bioinformatic tools.
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(a) Hela data from [67]

0 5 10 15 20
number of mapped locations

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

p
e
rc

e
n
ta

g
e
 o

f 
m

a
p
p
e
d
 r

e
a
d
s

(b) mouse data from [80]

Figure 3.1: Histogram of the number of mappings for all mapped ribo-seq reads in two data
sets. Reads are mapped to the human and mouse transcriptome respectively. The proportion of
uniquely mapped reads are marked in blue. More than 50% of the reads in both data sets are
ambiguously mapped, and ambiguous mappings are extremely common in human reads.

The challenge in estimating isoform ribosome profiles is that a short ribo-seq read may map to
many different transcripts. Ambiguous mappings are not rare in ribo-seq data and can be caused
by either repetitive sequences along the genome or alternative splicing [78]. For example, in the
human Hela cell ribo-seq data (GSM546920, [67]), among all mapped reads (about 50% of all
reads), only 14% (Figure 3.1a) can be uniquely mapped to a single location of a single mRNA
isoform, 22% can be mapped to multiple regions on the reference genome due to repetitive
sequences, and 64% can be mapped to multiple mRNAs due to alternative splicing. Even for a
mouse ribo-seq (GSM765301 [80]), where ambiguous mappings are less frequent (Figure 3.1b),
68% of the multimappings are caused by alternative splicing. This indicates that ambiguous
mappings are very common in ribo-seq data and are mainly caused by alternative splicing.

Current approaches generally avoid dealing with ambiguous mapping caused by alternative
splicing by mapping reads to the genome. The remaining ambiguously mapped reads are either
discarded [67, 79, 128, 163] or randomly assigned to one of the candidate regions [115, 144].
Reads are therefore generally mapped to genes by choosing a single ‘representative’ isoform (e.g.
[67]), or by using the union of all possible exons [39, 129, 160]. Although there is a pipeline
built to process ribo-seq reads for identifying protein sequences [35], a method proposed to
resolve multi-mapping problems caused by repetitive sequences [38], and software developed
to align short reads to splice junctions [118], none of these approaches so far handles multi-
mapping problems caused by alternative splicing, which, as is shown above, is the major cause
of ambiguous mappings.

These unprincipled heuristics can lead to an inaccurate estimations of ribosome profiles.
First, only a small portion of reads can be correctly used. Second, regions without estimated
ribosome footprints are indistinguishable from read-free regions caused by either discarded or
wrongly-assigned multi-mapping reads. Third, randomly assigned reads might cause some re-
gions to have a faulty peak in the profile, while leaving other regions footprint-free (see one
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Transcript 1 Transcript 2 Gene
exons

profiles

Figure 3.2: An illustration of when estimating ribosome profile on a gene level will fail. One
such case is the pileup does not happen in all isoforms, where merging the isoform-level profile
will result in multiple peaks being present simultaneously. Another case is that the pileup in an
exon location is not significant in any isoforms, but accumulating them together might produce
a faulty peak.

example in Section 3.5.2). Without dealing with multi-mappings caused by alternative splicing,
these simplistic approaches can only be used to estimate the overall ribosome abundance of a
given gene, and are incapable of estimating ribosome profiles of different mRNA isoforms. Fur-
ther, they can even lead to incorrect gene-level estimates — see Figure 3.2 for some examples.

Another related problem where ambiguous mappings also need to be addressed is the esti-
mation of mRNA isoform abundance from RNA-seq data [89, 124, 130]. However, unlike in
RNA-seq, coverage in ribo-seq is highly non-uniform regardless of sequencing bias since ribo-
somes move along mRNAs at non-uniform rates, and it is in fact the non-uniformities that are
of interest [78]. Further, ambiguous mappings are much worse for ribo-seq data since the read
length cannot exceed the ribosome size (approximately 30bp), while paired-end and longer reads
can be generated from RNA-seq experiments to reduce the problem of ambiguous mappings.
Methods developed for transcript abundance are therefore not applicable to assigning ribo-seq
reads.

3.2 Contributions
Here, we present a conceptual framework and software (Ribomap) to quantify isoform-level

ribosome profiles. By accounting for multi-mapped reads using RNA-seq estimates of isoform
abundance, Ribomap produces accurate isoform-specific ribosome profiles. Ribomap is the first
approach to estimate ribosome profiles on an isoform-level. It systematically handles both types
of ambiguous mappings, does not discard multi-mapped reads, and therefore results in more
of the data to be used. Specifically, by observing that ambiguous mappings are mainly caused
by multiple isoforms, Ribomap assigns ribo-seq reads to locations using estimated transcript
abundance of the candidate locations. On synthetic data, our approach yields a more precise
estimation of ribosome profiles compared with a pure mapping-based approach. Further, the
ribosome abundance derived using our method correlates better with the transcript abundance on
real ribo-seq data. This indicates that Ribomap not only produces better estimates of ribosome
profiles, but also results in better ribosome load estimation.

Besides deconvolving multi-mapped reads, Ribomap also addresses other challenges of gen-
erating ribosome profiles. For example, Ribomap attempts to select the correct codon location
that the P-site maps to, a problem we will return to in the next chapter, with a read-length specific
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Figure 3.3: Ribomap pipeline for estimating ribosome profiles.

P-site offsets and a prioritized read-assignment heuristic. Ribomap also attempts to correct for
sequencing bias by normalizing ribo-seq counts with RNA-seq counts.

Other than isoform-level ribosome profile estimation, Ribomap also outputs various transcript-
level estimates from ribo-seq experiments. These estimates include: ribosome loads, transla-
tional efficiencies, transcript abundance, and transcripts with the top rank differences between
ribosome loads and transcript abundance. In short, Ribomap is the first pipeline that automati-
cally handles several challenges in isoform-level ribosome profile estimation.

3.3 Implementation

3.3.1 Rationale of the Ribomap footprint assignment scheme
Two conditions must hold for a ribosome footprint read to come from a transcript location:

First, the transcript has to be present in the cell; second, a ribosome has to be translating the cur-
rent codon. Therefore, in order to quantify the observed ribosome pileup, we make the following
two assumptions: First, identical transcripts have identical translation dynamics; second, each
codon location shares a unique pileup behavior affected by how fast the current codon can be
elongated and how ribosomes are accumulated in surrounding codons. This means the final ob-
servation of the number of ribosome footprints cmi from transcript m at location i is proportional
to both the chances of observing the specific transcript codon fragment in the cell αm (transcript
abundance per base) and the chances of a ribosome occupying such a codon location pmi given
that the ribosome is from this transcript: cmi ∝ αm × pmi.

The transcript abundance can be estimated from the RNA-seq reads. However, there is no
prior knowledge of the per-codon-location specific pileup. We therefore assume the per-codon
ribosome abundance is uniformly unbiased. This leads to the assumption that the final ribosome
abundance of a transcript location is determined by the transcript abundance: cmi ∝ αm.

Intuitively, the transcript abundance is like the outline of the profile, and the location-specific
ribosome abundance is like the detail of the profile. Our method tries to grasp the outline of the
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profile first and then let the read sequences themselves take care of the profile details.

3.3.2 Resolving multi-mappings in ribo-seq data
Ribomap de-convolves multi-mappined reads via three steps (Figure 3.3):

Step I: Transcript abundance estimation Since RNA-seq experiments should always be per-
formed in parallel with ribo-seq [78], the abundance αt per base of each transcript t can be
estimated from the RNA-seq data using Sailfish [132], an ultra-fast mRNA isoform quantifica-
tion package. Ribomap also accepts transcript abundance estimations from cufflinks [165] and
eXpress [143].

Step II: Mapping ribo-seq reads to the reference transcriptome We obtain all the transcript-
location pairsLr where the read sequence r matches the transcript sequence by aligning the entire
set of ribo-seq reads R to the transcriptome with STAR [44].

Step III: Ribosome profiling estimation Let cr be the number of ribo-seq reads with sequence
r. Ribomap sets the number of footprints crmi with sequence r that originate from a specific
location i on transcript m to be proportional to the transcript abundance αm of transcript m:
crmi = crαm/

∑
(m′,i′)∈Lr

αm′ , where the denominator is the total transcript abundance with a
sequence matching r. The total number of reads cmi that are assigned to transcript m, location
i, is then cmi =

∑
r∈R crmi. Essentially cmi makes up the profile for each transcript. The sum is

needed here because there can exist multiple read sequences being mapped to the same transcript
location due to sequencing errors, so the final estimated ribosome count for a transcript location
should be the sum of the estimated count for all matched read sequences.

3.3.3 Ribomap pipeline
Ribomap first preprocesses the raw ribosome profiling reads and the RNA-seq reads by trim-

ming the 3’ adapter portion of the reads and discarding contaminated reads. Ribomap ensures
the quality of the footprint set by excluding reads that are too short or too long. Ribomap then
covert candidate mapping locations to their P-site locations dynamically based on the read length
and the start of the mapping location, and resolves multi-mappings and estimates ribosome P-
site profiles. Ribomap also corrects for sequencing bias by normalizing a transcript’s ribosome
profile with its mRNA profile (as done in [13] and [192]). The Ribomap pipeline follows these
steps:

Filtering contaminated reads with STAR Reads that can be mapped to rRNA, tRNA, snoRNA,
may not be representative of ribosome protection per se and, in fact, may be contaminants merely
associated with the ribosome. As such, they can be filtered out by mapping the reads to the ri-
bosome RNA sequences and transfer RNA sequences of the organism in study and keeping only
unmapped reads for downstream analysis. This is done via the STAR aligner [44]. Detailed
commands and specific options to run STAR is described in section 3.7.
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Mapping the remaining reads to the transcriptome After removing reads that may have
been the result of contamination, the remaining reads are aligned to the transcriptome. This step
is also accomplished by STAR. Different options are chosen to handle building the transcriptome
index and recording the alignments (details in section 3.7).

Calculating transcript abundance with Sailfish The transcript abundance estimation is used
to guide the isoform-level ribosome profile estimation. We use the latest version of Sailfish
(called Salmon) that supports the read alignment results as the input.

Estimating Isoform-level ribosome profiles This is the last step of the Ribomap analysis
pipeline. It further filters out ribo-seq reads if their lengths is not within a reasonable range
of true ribosome footprint size. It also selects the P-site of ribo-seq reads based on read lengths,
and it resolves multi-mapping with a heuristic via several iterations.

Specifically, only reads with size between 25 and 36 are kept for estimating the ribosome
profiles. Alignments with RC flag set (reads are reverse complemented and then aligned to the
transcriptome) are discarded due to the single strandedness of the ribosome profile protocol.
Following [80], we assign the P-site of reads with length < 30 to be 12, with length between 31
and 33 to be 13, and with length > 33 to be 14. Only transcripts with abundance greater than
zero are considered to be expressed and are included for ribosome profile estimation.

Footprints are assigned to candidate locations with three iterations: First, only candidate
locations with a frame-0 P-site mapping are considered; second, the remaining reads are assigned
to frame 1 and 2 locations; third, the rest of the unassigned reads — reads that cannot be mapped
to any CDS regions, are mapped to UTR regions. For all three iterations, reads are mapped to
candidate locations proportional to the transcript abundance if multiple locations are presented
for one read.

3.3.4 Output file format
The final output of Ribomap is a vector of read counts per codon position for each transcript

isoform. It also outputs sub-codon resolution, nucleotide-level ribosome profiles including the
UTR regions, along with the total ribosome loads, translation efficiency, and the relative abun-
dance for each transcript. Moreover, Ribomap reports transcripts in order of the rank difference
between the relative transcript abundance and ribosome load, to help identify isoforms with dif-
ferent translation efficiency.

Ribomap outputs five files:

File 1: XXX.base gives the sub-codon resolution, nucleotide-level ribosome profiles including
the UTR regions. Only transcripts with a non-zero total ribosome count are reported. Each entry
of a specific transcript looks like this:

refID: 0
tid: YAL001C
ribo profile: 0 0 0 74 68 ...
mRNA profile: 31 35 50 73 87 96 104 ...
normalized ribo profile: 0 0 0 1.0137 0.781609 0.0208333 ...
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where:
refID is the transcript fai index in the transcript fasta file.

tid is the transcript header name in the transcript fasta file.

ribo profile nucleotide level ribosome profile including the UTR regions.

mRNA profile RNA-seq read coverage profile.

normalized ribo profile is the ribosome profile after bias correction. Each number in the vector
is the ratio between the ribo profile count and the mRNA profile count.

File 2: XXX.codon gives the in-frame ribosome profiles for each transcript within the CDS
region. The file format is the same as the XXX.base file.

File 3: XXX.stats is the summarized statistics for each transcript. Each entry of a specific
transcript looks like this:

refID: 0
tid: YAL001C
rabd: 3959
tabd: 0.000209384
te: 1.89078e+07

where:
rabd is the total ribosome loads, which is the sum of the ribo profile vector in XXX.base.

tabd is the relative transcript abundance from Sailfish’s result.

te is the relative translational efficiency, which is the ratio between rabd and tabd.

File 4: XXX abundant.list gives a list of transcripts whose total ribosome abundance is
more than expected given the transcript abundance. Such a list explores the difference between
the ribosome abundance ranking and the transcript abundance ranking. A higher rank of total
ribosome footprint count compared to the transcript abundance might indicate that the transcript
is more highly packed with ribosomes and this might suggest that there is a translational ampli-
fication regulation for this transcript. Each line in the file looks like this:

ENST00000340756.2 2.81302e-09 1046.59 0 96 -96
It is the transcript header name followed by several statistics, in the following order:

1. relative transcript abundance,

2. total ribosome footprint count,

3. the percentile ranking of the transcript abundance,

4. the percentile ranking of the total ribosome loads (transcripts with zero total ribosome
loads are excluded from the analysis),

5. difference between the transcript abundance rank and the total ribosome footprint count
rank.

The list of entries in this file is ordered by the ranking difference between the transcript abun-
dance and the ribosome abundance. Only transcripts with ranking differences greater than 10 are
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listed.

File 5: XXX scarce.list gives a list of transcripts whose total ribosome abundance is less
than expected given the transcript abundance. Analogous to the abundant list, this list include
transcripts that might have a translational buffering regulation. The file format is the same as
XXX_abundant.list.

3.4 Validation

3.4.1 Generating synthetic footprints

To evaluate the performance of the ribosome footprint read assignment, we generated syn-
thetic footprint data with known ribosome profiles. Let N be the total number of transcripts,
αm be the per-base relative abundance of a transcript m, and pmi be the ribosome occupancy
probability of a location i on transcript m. The number of synthetic footprints from location i on
transcript m is set to be N × αm × pmi, where N is set so that a total of 20,000,000 footprints
from all locations of all transcripts are generated. How αm and pmi are set is described below.

Ribosome occupancy probability

We model the movement of ribosomes on a given transcript with a ribosome flow model
based on a total asymmetric exclusion process (TASEP) [141]. In this process, each mRNA is
modeled as a sequence of codons, with ribosomes moving along it with codon-specific elongation
rates. The model is “asymmetric” because the ribosome can only move from the 5′ end to the 3′

end of the mRNA. The model has “exclusion” because a location can only be occupied by one
ribosome at a time; a ribosome can only move from location i to the next one when it is currently
at location i and the next location is not occupied by another ribosome.

For a mRNA m of length n, the entire translation process is modeled in three steps: First, the
ribosome binds to the the start codon of the mRNA with initiation rate λm0. Second, the ribosome
moves along the mRNA from codon ci to ci+1 with a elongation rate λmi (i = 1 . . . n−1). Third,
the ribosome terminates when it reaches the the stop codon cn with a termination rate λmn, and
the whole peptide chain of the protein will be formed. The λ vector thus describes the transition
rates of the ribosome moving from one location to another.

According to TASEP, for a given a transcript m, that the change of the probability of observ-
ing a ribosome on location i (pmi) is the difference between the incoming and the outgoing flow
of the ribosome, modeled using the differential equations:

dpm1(t)

dt
= λm0[1− pm1(t)]− λm1pm1[1− pm2(t)] (3.1)

dpmi(t)

dt
= λm,i−1pm,i−1(t)[1− pmi(t)]− λmipmi(t)[1− pm,i+1(t)] 1 < i < n, (3.2)

dpmn(t)

dt
= λm,n−1pm,n−1(t)[1− pm,n(t)]− λmnpmn(t) (3.3)
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Equation (3.1) and (3.3) describe the boundary case of the process, and equation (3.2) describes
the intermediate case.

The ribosome profile under this model is the ribosome occupancy probability distribution
when the steady state of the model is reached, during which the probability of observing a ribo-
some at any location will not change over time. This stationary distribution probability can be
solved by setting the left hand side of the equations above to zero.

To generate synthetic profiles, we solve the above equations to find the steady state for all
transcripts. This provides the probabilities pmi that a read is drawn from location i on one copy
of transcript m. Selection of the elongation rates (λmi) and initiation rates (λm0) is described
below.

Elongation rate Following Reuveni et al. [141], we assume the elongation rate is codon-
specific and is proportional to the tRNA abundance of a given codon. The tRNA gene copy
number used as an approximation to the tRNA abundance in the cell, and the elongation rate is
set to be the absolute adaptiveness value (Wi) of a given codon i:

Wi =

ni∑
j=1

(1− Sij)tCGNij
. (3.4)

Here ni is the number of tRNA isoacceptors recognizing codon i. tCGNij
is the gene copy number

of the jth tRNA that recognizes the ith codon, and Sij is the selective constraint on the efficiency
of the codon-anticodon coupling by considering the wobble paring [45]. The absolute adaptive-
ness of a given codon gives an estimate for the total amount of tRNAs that can match to a specific
codon. The larger the adaptiveness value is, the more efficient a codon can be translated, and thus
the faster the elongation rate will be. The elongation rates range between 3.5 and 33 time steps
from this calculation.

Initiation rate The initiation rate is thought to be the rate limiting step during the trans-
lation process [79]. We set the initiation rate range to be approximately 100 times smaller than
the elongation rate, as in [150], by uniformly sampling the rates for each transcript between 0.03
and 0.3 timesteps.

Transcript abundance

The transcript abundance is estimated from the RNA-seq data paired with the ribosome pro-
filing experiments (GSM546921) via Sailfish [132]. Only transcripts with TPM value (transcripts
per million) greater than 1 are included, which results in a total of 39,414 transcripts. The relative
transcript abundance per base αm is computed as follows: Let tm be the transcript abundance es-
timated from Sailfish for transcript m, let lm be the transcript length, let T be the transcriptome,
αm = tm/

∑
m′∈T tm′ × lm′ .

The rationale of using transcript abundance per base for assigning the reads is that each
transcript codon location can be seen as a type of ball with a unique color, and the probability of
observing such a transcript codon fragment in the cell can be compared as randomly picking a
ball of a specific color from a pool of balls. We assume codon locations on the same transcript
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have equal visibilities. For the extreme case where there is only one type of transcript in the cell
with lm bases, the probability of seeing any codon is 1/lm. For the case where there are more
than one type of transcript, if there are tm transcripts with type m, then there will be tm copies
of each codon positions, and the probability of seeing a specific codon position on transcript m
over all possible codon positions is: tm/

∑
m′∈T tm′ × lm′ .

Ribosome footprint generation

We calculate αm and pmi for every transcript as described above and then sample reads by
selecting a random transcript with probability proportional to its αm and then selecting ribosome
position i proportional to pmi. We then extract a 30-bp read with the 12th position set to the
ribosome P-site.

Introducing sequencing errors in the read set

We estimate the frequency of sequencing errors from ribosome profiling data (GSM546920 [67])
to be the total number of mismatches of read assignments in the data over the total number of
aligned bases (total number of aligned reads × read length). The error rate estimated on the
ribosome profiling data GSM546920 is 0.5%.

To add simulated sequencing errors to our simulated reads, we apply a Poisson process with
the rate parameter set to the error rate for mutating the bases in the synthetic read set. We tried
in total three different levels of error rates: 0.5%, 1%, and 2%.

3.4.2 RNA-seq data generation

We synthetically generated RNA-seq reads with the following procedure: The transcript
abundance estimation from Section 3.4.1 is used as a prior to generate 20,000,000 synthetic
RNA-seq fragments with default parameters using rlsim [152]. Consistent with the ribosome
footprint generation settings, only transcripts with TPM value (transcripts per million) greater
than 1 are included. We then truncate the fragments into 36bp-long single-end reads.

When applying Ribomap, we re-estimate the transcript abundance as usual from the synthetic
RNA-seq reads via Sailfish [132] without looking at the original estimates from the true data.

The analysis shown in Figure 3.4 only uses transcripts with non-zero total ribosome counts,
which results in 26,297 transcripts included.

3.4.3 Settings of Star prime

We include a baseline read assignment approach as comparison. This approach only maps
reads to one candidate location, we call it Star prime. By default, STAR only marks one align-
ment for multi-mapping reads as primary (FLAG 0x100 unset), such an alignment “is randomly
selected from the alignments of equal quality.” And this primary alignment is used to estimate
ribosome profiles in Star prime. In addition, no prior transcript abundance knowledge is used
in Star prime, and therefore all transcripts in the transcriptome are taken into account. All other
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settings (i.e. contaminated read filtering, adapter clipping, read size selection, dynamic P-site
assignment) are kept the same as the Ribomap pipeline described above.

Table 3.1: Data used in Ribomap validation

Name Description

Hela ribosome footprint data [67] Human Hela cell ribo-seq mock 32hr runs1-2
(GSM546920).

Hela RNA-seq data [67] Human Hela cell RNA-seq mock 32hr runs1-3
(GSM546921).

Human Transcriptome reference fasta [3] The human transcriptome reference is down-
loaded from the Gencode ftp server. The CDS re-
gion information used in our analysis is obtained
from the headers of the fasta sequence entries.

Human Transcriptome gene annotation
gtf [4]

The human annotations are also downloaded from
the Gencode ftp server. This file is used to obtain
the frame information of the CDS regions of the
transcripts.

Mouse Ribosome footprint data [80] ES cell feeder-free, w/ LIF 60 s CYH (100 ug/ml)
ribo mesc yeslif Illumina GAII (GSM765301).

Mouse RNA-seq data [80] ES cell feeder-free, w/ LIF 60 s CYH (100 ug/ml)
mrna mesc yeslif Illumina GAII (GSM765289).

Mouse Transcriptome reference fasta [5] The mouse transcriptome reference is downloaded
from the Gencode ftp server. The CDS region in-
formation used in our analysis is obtained from the
headers of the fasta sequence entries.

Mouse Transcriptome gene annotation
gtf [6]

Mouse annotations are also downloaded from the
Gencode ftp server. This file is used to obtain the
frame information of the CDS regions of the tran-
scripts.

Human tRNA gene copy number [1] tRNA gene copy numbers are obtained from the
gtrna database [26].

Contaminated sequences Both ribosomal sequences and tRNA sequences
are included in the contaminated sequences. Ri-
bosomal sequences are downloaded from Ensem-
ble’s [53] ncRNA database with gene biotype
as rRNA.

tRNA sequences [2] tRNA sequences are downloaded from the gtrna
database [26].
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3.4.4 Data used in this study
The ribo-seq and RNA-seq data sets used in the study can be found in Table 3.1, along with

the origin of the contaminant and transcriptome references.

3.5 Results and discussion

3.5.1 Performance on synthetic ribo-seq data with known ground truth
To evaluate the performance of Ribomap, we synthetically generated ribo-seq reads with

known ground truth profiles using transcript abundance of GSM546921 RNA-seq data [67]
and a dynamic range of initiation rates. Ribosome occupancy probabilities for locations on a
given transcript were simulated using the ribosome flow model [141]. Errors were added to the
reads using a Poisson process with a rate of 0.5%, which was estimated from the ribo-seq data
GSM546920 [67]. For comparison, we also test a naı̈ve approach, called “Star prime”, that
maps each read to a single candidate location. More details about the synthetic data generation
and settings of Star prime can be found in Section 3.4.

The Pearson correlation coefficients between Ribomap’s ribosome profiles and the ground
truth is significantly higher than that of Star prime (Figure 3.4a): 81% of our profiles have
a higher Pearson correlation (Mann–Whitney U test p < 3 × 10308) and 68% have a smaller
root mean square error (Mann–Whitney U test p = 3.3 × 10221). This suggests that Ribomap
more accurately recovers the ribosome profiles than the standard mapping procedure applied to
isoforms.

We also test our method on synthetic data with different error rates (Figure 3.4). The Pearson
correlation coefficients between Ribomap’s estimated profiles and the ground truth are consis-
tently higher than that of Star prime for all tested error rates (Mann-Whitney-U p < 3 × 10308).
The distributions of the Pearson correlations are qualitatively the same among different error
rates (Figure 3.4), and the median pearson correlation coefficients from Ribomap are signifi-
cantly higher than Star prime (Table 3.2). It is worth noting that the spike at 0 of Star prime is
due to STAR not assigning footprints to transcripts that are estimated to be present. Together,

(a) error rate = 0.5% (b) error rate = 1% (c) error rate = 2%

Figure 3.4: Histogram of the Pearson correlation between the footprint assignments and the
ground truth ribosome profiles on read sets with different error rates.
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Table 3.2: Median Pearson correlation between estimated profiles and ground truth profiles

error rate = 0.5% error rate=1% error rate = 2 %

Ribomap 0.83 0.81 0.78
Star prime 0.28 0.30 0.31

these results show that Ribomap robustly outperform Star prime under various realistic error
rates.

Admittedly both our methods and synthetic data make the same assumption that transcript
abundance play a role in ribosome occupancy, which makes such a validation circular. However,
to generate ribosome profiles with a known ground truth, a model is needed. Unfortunately there
is no existing model for ribosome footprints. Therefore, we proposed a model for generating
ribo-seq reads. Our model takes into account both transcript abundance and ribosome motion,
and we believe such assumptions are reasonable.

3.5.2 Ribomap generates more reasonable profiles

We test our ribomap pipeline on a Human Hela cell ribosome profiling data (GSM546920 [67]).
Figure 3.5 shows one example of the isoform-level ribosome profile estimated from both Ri-
bomap and Star Prime. This is gene RPL37A (ENSG00000197756.5). It is a ribosomal protein,
and is part of the 60S unit. As shown in Figure 3.5, it has 6 isoforms, which are sorted by
their transcript abundance levels. While Ribomap maps the footprints to the more abundant tran-
scripts, Star prime assigns footprint reads to a single candidate location at random, leaving two
of the expressed transcripts almost ribosome-free (Figure 3.5A, C), two of the unexpressed tran-
scripts with the highest ribosome loads (Figure 3.5E, F), and a surprisingly huge pile-up at the
end of transcript ENST00000491306, inconsistent with its surrounding ribosome pile-ups (Fig-
ure 3.5D). Therefore, it is likely that Ribomap produces a more reasonable profile estimation.

3.5.3 Ribomap results in better ribosome load estimations

Ribomap’s better read assignment mechanism results in a more precise estimation of the per-
mRNA ribosome profiles. These better estimated profiles can also lead to a better estimation
of the total ribosome loads on a transcript. For example, Ribomap’s ribosome loads estimated
from the Hela cell data (GSM546920, [67]) correlates well with the estimated transcript abun-
dance (Pearson r = 0.71). We do not expect a perfect correlation due to isoform-specific trans-
lational regulation. On the other hand, the pure mapping-based approach of Star prime does not
correlate as well (r = 0.28). Even for the case of the mouse data from [80], where approximately
only 50% of the reads have multi-mappings, the estimated ribosome loads correlate better to the
estimated transcript abundance (Pearson r=0.56) than the naı̈ve Star prime approach (Pearson
r=0.45).

It is not surprising that Ribomap improves the correlation between ribosome loads and tran-
script abundance: Ribomap assigns multi-mapping reads to candidate locations proportional to
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chr2: 217,363,500 217,364,000 217,364,500 217,365,000

ENST00000491306 ( 2.1% )100

800

...

ENST00000600880 ( 11.6% )200
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Figure 3.5: An example of isoform level ribosome profiles for gene RPL37A. Both Ribomap and
Star Prime profiles are shown. Isoforms are listed in order of their relative abundance estimated
from Sailfish (abundance values next to transcript IDs). Profile plot is shown in UCSC Genome
Browser [94].
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their transcript abundance. If all reads are uniquely mapped, there would be no difference be-
tween Ribomap and Star prime. Under such case, the imperfect correlation between ribosome
loads and transcript abundance is entirely caused by translational regulation. On the other hand,
if all reads are multi-mappings caused by alternative splicing, we should expect a better cor-
relation between transcript abundance and ribosome-loads from Ribomap. In fact, if there is
no translational regulation, we should expect a perfect correlation between ribosome loads and
transcript abundance under such case. The current correlation result for Star prime is therefore
a combination of ambiguous mapping and translational regulation. We believe that Ribomap at
least partially resolves the problem of ambiguous mapping, and produces a better estimation of
the isoform level ribosome profiles. Consequently, these profiles can lead to a better understand-
ing of translational regulation.

3.5.4 Running time and memory usage of Ribomap
Ribomap runs for about 15 minutes on the ribo-seq data GSM546920 with 18 million reads on

15 threads. The running time includes the time to build the STAR index for both the contaminated
sequences and the transcriptome, filtering the contaminated reads and aligning the remaining
reads to the transcriptome for both RNA-seq and ribo-seq data, transcript abundance estimation,
and estimating isoform level ribosome profiles. Memory usage is about 8.6G.

3.6 Conclusion
Quantifying ribosome occupancy correctly is the first step of analyzing the ribo-seq data.

Measurements of protein translation efficiencies [67], ribosome loads [79], pileups and stalling [80]
are all derived from ribosome profiles. The challenges of generating such a profile includes de-
convolving multi-mapped reads, selecting the correct codon location that the P-site maps to, and
bias correction [78]. While none of these issues has a standard protocol, we describe Ribomap,
an automatic pipeline that addresses the above challenges and outputs isoform-level ribosome
profiles and other ribo-seq analyses. Through two lines of evidence, on real and synthetic ribo-
seq data, we show that Ribomap produces useful, high-quality ribosome profiles along individual
isoforms. It can serve as a useful first step for downstream analysis of translational regulation
from ribo-seq data.

3.7 Appendix: Specific commands for running Ribomap
The command to run Ribomap is:
run ribomap.sh --rnaseq fq rnaseq.fq.gz --riboseq fq riboseq.fq.gz
--contaminant fa contaminant.fa --transcript fa transcript.fa
--cds range cds range.txt

Ribomap uses state-of-the-art read-processing tools for several of its steps. We below list in
detail each step of the Ribomap pipeline and the command for executing them, in case the user
wants to skip some intermediate steps or make adjustments on individual steps.
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3.7.1 Contaminated reads filtering
The first step, which must be done only once per organism, is to create a STAR index for

the contaminant RNA sequences with the following command, assuming the sequences of the
unwanted molecules are in the file contamination.fa:

STAR --runThreadN nproc --runMode genomeGenerate
--genomeDir rrna idx --genomeFastaFiles contamination.fa
--genomeSAindexNbases 5 --genomeChrBinNbits 11

nproc specifies the number of threads to run STAR. Since STAR treats every sequence entry in
the reference FASTA as a ‘genome’, the option --genomeSAindexNbases 5 forces STAR
to build the index properly for small molecule sequences. We include both tRNA and rRNA
sequences as contaminants in our analysis.

Once this index is created, it can be used to filter the contaminated reads as follows, assuming
the zipped FASTQ file of raw sequencing reads is in riboseq.fq.gz:

STAR --runThreadN nproc --genomeDir rrna idx
--readFilesIn riboseq.fq.gz
--readFilesCommand zcat --outFileNamePrefix riboaligned
--outStd SAM --outReadsUnmapped Fastx --outSAMmode NoQS
--clip3pAdapterSeq adapter --seedSearchLmax 10
--outFilterMultimapScoreRange 0 --outFilterMultimapNmax 255
--outFilterMismatchNmax nmismatch
--outFilterIntronMotifs RemoveNoncanonical > /dev/null

where adpater is the adapter sequence (TCGTATGCCGTCTTCTGCTTG for the Hela data set, and
CTGTAGGCACCATCAATTCGTATGCCGTCTTCTGCTTGAA for the mouse data set), and nmis-
match = 1 is the number of allowed mismatches for the alignment. The option --outReadsUn-
mapped Fastx causes STAR to output the unmapped reads to a FASTA file called
riboalignedUnmapped.out.mate1; --seedSearchLmax 10 increases the sensitivity of
STAR for aligning short reads; --outFilterMultimapScoreRange 0 guarantees that
only the alignments with the best scores are reported; --outFilterMultimapNmax 255
filters out reads that can be mapped to more than 255 locations. STAR by default clips off read
ends if a better local alignment score can be achieved. Such a procedure, called ‘soft clipping’,
is very useful for handling ribo-seq reads since the first couple of bases in the 5’ end are likely to
be contaminated, and an adapter sequence is usually attached to the 3’ end.

3.7.2 Read mapping
After removing reads that may have been the result of contamination, the remaining reads are

now ready to be aligned to the transcriptome. This step is also accomplished by STAR. Assuming
the transcriptome sequences are in transcript.fa, the command to generate the transcriptome
index is:

STAR --runThreadN nproc --runMode genomeGenerate
--genomeDir transcript idx --genomeFastaFiles transcript.fa
--genomeSAindexNbases 11 --genomeChrBinNbits 12
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Again, --genomeSAindexNbases 11 insures that the index is built properly for shorter
molecules (compared to chromosomes), and --genomeChrBinNbits 12 reduces the mem-
ory consumption when many reference sequences are provided.

The command to align the reads to the transcriptome is:
STAR --runThreadN nproc --genomeDir transcript idx
--readFilesIn riboalignedUnmapped.out.mate1
--outFileNamePrefix riboaligned transcript
--clip3pAdapterSeq adapter --seedSearchLmax 10
--outFilterMultimapScoreRange 0 --outFilterMultimapNmax 255
--outFilterMismatchNmax nmismatch
--outFilterIntronMotifs RemoveNoncanonical
--outSAMtype BAM Unsorted --outSAMmode NoQS
--outSAMattributes NH NM

The aligned reads will be stored in riboaligned transcriptAligned.out.bam. It includes two
SAM attributes for each alignment record: NH is the number of reported alignments for the read,
and NM is the number of mismatches in the current alignment.

3.7.3 Transcript abundance estimation

Assuming that the read alignments of the RNA-seq data are in rnaaligned transcript-
Aligned.out.bam, the command to perform the transcript abundance estimation is:

salmon quant -t transcript.fa -l SF -a rnaaligned transcriptAlig-
ned.out.bam
-o sm quant -p nproc --bias correct

The flag --bias correct allows Salmon to correct for sequencing biases in the RNA-seq
reads. The transcript abundance estimation is in sm quant/quant bias corrected.sf.

3.7.4 Isoform-level ribosome profile estimation

This is the last step of the Ribomap analysis pipeline, and it is automatically handled by
an executable (developed by us) called riboprof. It takes in the transcriptome fasta file, a
CDS range file, the ribo-seq and RNA-seq alignment bam files (produced above), the transcript
abundance estimation file (produced as above; or it also supports abundance estimations from
eXpress [143] or Cufflinks [165] if those estimates are preferred and available). The CDS range
file (assume its name is cds range.txt) gives the coding region for each transcript. The
command to perform an isoform-level ribosome profile estimation is:

riboprof --fasta transcript.fa --cds range cds range.txt
--mrnabam rnaaligned transcriptAligned.out.bam
--ribobam riboaligned transcriptAligned.out.bam
--min fplen min fplen --max fplen max fplen --offset offset.txt
--sf sm quant/quant bias corrected.sf --tabd cutoff tabd cutoff
--out ribomap out
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As described before, min fplen=25, max fplen=36, and tabd cutoff =0. offset.txt provides the P-
site offset of a read given the read length, and the estimated ribosome profiles and other analysis
will be written to the directory ribomap out.

More information about the options and input file formats for Ribomap can be found in the
README file in Ribomap’s Github page (https://github.com/Kingsford-Group/
ribomap/blob/master/README.md).
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Chapter 4

Accurate recovery of ribosome positions
reveals slow translation of wobble-pairing
codons in yeast

In this chapter, we address another challenge in ribosome profile estimation: identifying the
active translating sites. This chapter describes a novel algorithm and mathematical model to
recover the ribosome A-site positions from high-coverage ribosome profiling reads. We begin
the chapter by explaining the cause of the challenge of identifying A-sites from ribo-seq data:
imperfect digestion. We then provide a detailed model to handle imperfect digestions and recover
A-site positions from ribo-seq data. Finally, we show that our method produces better ribosome
profile estimations. Using these refined profiles, we observe that both tRNA concentration and
wobble pairing play roles in translation speed regulation in yeast.

The content of this chapter was originally presented at RECOMB in 2016, and was published
in Research in Computational Molecular Biology [170]. It was a joint work Joel McManus and
Carl Kingsford.

4.1 Background

4.1.1 Identifying the active site from ribo-seq reads is a necessary first step

Ribosome profiling is an important sequencing technique that enables various genome-wide
translational studies, including on translational response to stress [61, 79, 167], protein synthesis
rate [105], alternative translation initiation [57, 101], translation evolution [12, 115], cell de-
velopment [22, 157], and the role of specific translation regulation factors [67, 69, 178]. The
experiment extracts mRNA fragments protected by bound ribosomes (also called ribosome foot-
prints) from RNase I digestion [79]. The technique is analogous to taking snapshots of ribosome
locations during translation. Therefore the ribosome footprint counts at codon locations should
be related to the elongation time [78, 80]. The vector of footprint counts at codon locations of
a mRNA is called a ribosome profile, and each individual count is called a ribosome pileup.
To date, ribosome profiles are generally used to qualitatively visualize ribosome pauses (e.g.
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[69, 80]), translation initiation, and translation termination (e.g. [8, 49]). Yet attempts to quan-
tify translation speed, even from the same experiment, often result in controversial conclusions
on the determinants of translation rate [13].

One of the challenges in translation speed quantification is accurate measurement of ribo-
some decoding locations. Currently, there is no method to extract the precise ribosome decoding
locations when the snapshots are taken [13, 112]. The ribosome P-site or A-site is usually con-
sidered the active decoding site [13, 59, 80, 98, 112, 121, 135, 156, 178]. This is because the
A-site is where the aminoacyl-tRNA enters the ribosome, and the P-site is the position of peptide
bond formation. Only the location of either the P-site or the A-site needs to be estimated from
the experiment data, and the other one can be inferred.

4.1.2 Imperfect digestions complicate the view of ribosome pileups

Ideally, we expect the read length of ribo-seq data to be identical. For example, the typical
ribosome footprint size for yeast is about 28 nt [79], so we would expect most of ribo-seq in yeast
experiments to be 28 bases long. In addition, since ribosomes move in units of codons (3 nt), we
expect the ribosome pileups to have a 3-nt periodicity, with most of the reads concentrated on a
single base (an in-frame location).

However, ribosome footprint reads do not always share a typical length. For example, in a
recently published yeast ribosome profiling data with deep coverage (GSM1335348 [8]), fewer
than 60% of uniquely mapped reads have length 28. Further, ribosome footprint reads are not
always highly concentrated on a single reading frame. For the experiment above, in order to
examine frame distributions by read lengths, we group reads by their lengths, and tallied them on
each location from all transcripts – we called these read count vectors meta profiles. Figure 4.1
shows the meta profiles on different read lengths: For each profile, reads are divided into 3 frames
corresponding to the 1st, 2nd and 3rd nucleotide of codons, and read length and the distribution
of these frames are noted above each profile. We observe although 96% of the reads with length
28 are skewed towards one frame, the highest frame portion for reads with a length not equal to
28 vary from 60% to 80%. While it is possible for reads from the other two frames to be caused
by frameshifts, frameshifts are generally rare and thus cannot explain all of the off-frame reads.

In fact, reads with various lengths show unique shapes of 3-nt periodicity. That is, for each of
the 3 bases within a codon, the order of the read abundance often persists across codon locations.
For example, if the first frame is the most abundant frame for the first codon, it is also likely
to be the most abundant frame for subsequent codons. It is more plausible that the various
lengths from ribo-seq reads and the complicated read pileup patterns are caused by imperfect
digestions of RNAse I during the experimental procedure. As a result, the read start positions
are ‘redistributed’ to off-frame locations. In other words, it is likely that the A-site locations the
the majority of the reads are indeed highly concentrated on a single reading frame, but imperfect
digestions alter the read start locations, making the observed read pileups to be inconsistent with
the actual A-site locations. To sum up, the observations from meta profiles show that imperfect
digestions are very common in ribo-seq data, and they complicate the view of ribosome pileups.
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Figure 1

1

Figure 4.1: Meta-profiles on reads with different lengths near the start codon.
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4.1.3 Existing A-site assignment heuristics cannot explain the complicated
read digestion patterns

In past analyses, the A-site location estimation is usually based on simple heuristics. One
widely used strategy is that the A-site is simply placed at 15 bases away from the 5’ end of the
footprint read [79, 121, 147, 156]. This is shown to be accurate for the typical ribosome footprint
size [79]. However, as illustrated above, the read length from ribosome profiling experiments can
span a wide range [69, 98, 112, 178], with as little as 40% being 28-nt reads [115]. The A-site
position for 28-nt reads might not be suitable for other read lengths.

Since a read length not equal to the typical footprint size is mainly caused by incomplete
RNase digestion during the experimental procedure [78], an alternative strategy is to use a con-
stant A-site offset for a given read length [40, 80, 98]. This assumes that the digested portion
is always the same for all reads with the same length. Such a strategy also implies a 3-nt peri-
odic ribosome position pileups with a highly skewed frame distribution. However, as is observed
above, such a frame distribution is not always presented in read pileups for all read lengths. Thus,
a large fraction of ribosome footprints have under-complete or over-digestion (length 6= 28), and
the simple offset heuristic is insufficient to explain the observed complex frame distribution pat-
tern caused by various nuclease digestion possibilities.

In short, ribosome profiling is a powerful technique to study genome-wide translation mecha-
nisms, but ribosome profiling data are inherently noisy due to complicated experiment pipelines.
Specifically, imperfect RNase digestions distort true ribosome profiles and might bury biolog-
ically meaningful insights. Such complicated non-universal digestions vary between replicates
and laboratories and cannot be well captured by existing simple heuristics of A-site assignments.

4.2 Contributions

We introduce a new model and computational method to recover the A-site positions from
ribosome profiling data. Our method does not make the incorrect assumption that all reads with
the same size are digested to the same extent. Instead, we systematically remove the distortion
caused by imperfect digestions and retrieve true ribosome positions. Our procedure results in
better A-site position estimation, which enables comparisons of ribosome profiling data from
different replicates, conditions, and labs, and will hopefully lead to a better understanding of
translation speed and regulation.

Observing that read pileups for each read length have a unique start for the 3-nt periodicity,
we assume that there is a predominant digestion pattern for each read length. However, individ-
ual reads can be over-digested or under-digested to a certain amount centered around this major
digestion pattern. Such an imperfect digestion causes the ribosome A-site to be a variable dis-
tance away from the read start. We also assume that there is an unknown underlying true A-site
profile consistent across all read lengths. We define this true A-site profile as the ribosome posi-
tion signal. Such a signal at a particular location is blurred to its surrounding neighborhood due
to imperfect RNase digestions. We therefore model the observed read pileups as a blurring of
the unknown ground truth positions. We then recover the ground truth positions by combining
read pileups from different lengths and allowing the reads to be re-allocated with a non-universal
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A-site offset (deblur).
Compared to previous work, our procedure does not assume any specific prior distribution

of RNase digestion patterns, nor do we assume the imperfect digestion is limited to a 3-nt win-
dow [40, 192]. Rather, we learn the probabilities of the digestion for each read length from
the observed data, enabling a more flexible model to explain the ribosome read pileups. Also,
unlike heuristics that discard the off-frame reads [156] or take the sum of reads in all three
frames [59, 135], we do not assume all ribosome reads are from a single reading frame, nor do
we need to distinguish reads from different frames. Instead, we re-distribute reads to their nearby
loci, naturally causing the ribosome pileups to be concentrated towards a single frame within a
codon. Our approach therefore preserves the sub-codon resolution in the estimated A-site posi-
tions. We show that on a synthetic frameshift test set, our method retains the frame preferences
and strengthens the frame skewness in the estimated A-site profiles.

We showcase our method by estimating codon decoding time (CDT) [40] in yeast ribosome
profiling data [8]. Although abundant tRNAs are expected to speed up codon decoding, the naı̈ve
global offset heuristic only recovers a weak negative correlation between the tRNA abundance
estimates and the CDT. This correlation improves after using our deblurred profiles. Also, for
codons decoded by the same tRNA, our estimated CDT shows that the less stable wobble pair-
ing codons generally translate more slowly than their synonymous codons with Watson-Crick
pairing. We find that the difference in decoding time between Watson-Crick-paired codons and
wobble-paired codons is generally larger than the difference between two wobble-paired codons.
Such phenomena was previously only observed in metazoans [156]. This observation is consis-
tent with the expectation that wobble pairing is likely to be delayed by the higher probability
of tRNA rejection [162]. Our result therefore provides evidence for the first time in yeast to
support such a mechanism. Together, our analysis gives further evidence that frequent codons
translate faster than rare codons, and that both tRNA abundance and wobble pairing play roles in
elongation speed.

4.3 Methods

4.3.1 Algorithm overview

For a given transcript and each read length l, let Pobs(l) be the observed ribosome distribu-
tion from ribosome profiling reads. We model Pobs(l) as the result of a blurring effect on an
unknown, lengh-specific clear ribosome position signal Ptrue(l). We assume such a position sig-
nal is consistent across all read lengths, and is deviated from an unknown consensus position
signal Ptrue (Figure 4.2). We aim to recover the clear position signal from the observed blurred
version of the read positions across all read lengths. The length-specific clear signals Ptrue(l)

should be consistent with each other, and our modeled positions P̂obs(l) should agree well with
the observed read positions Pobs(l). We formulate this task as a total least square optimization
problem, where the difference between Ptrue and Ptrue(l) and the difference between Pobs(l) and
P̂obs(l) are simultaneously minimized. We develop an EM-like procedure to optimize the objec-
tive and to extract the hidden clear position signal Ptrue concurrently. One example of our deblur
result is shown in Figure 4.4.
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Figure 4.2: Model of the observed ribosome profiling read pileups. The observed read pileups
Pobs(l) for read length l are modeled as a convolution effect between a blur vector b(l) and a clear
ribosome position signal Ptrue(l). The blur vector diffuses a signal to its nearby locations. The
clear signal is somewhat consistent across all read lengths, and can be captured by a consensus
clear signal Ptrue. An additive slack variable εt is used to match Ptrue(l) with Ptrue, and an
additive error εo is used to match the modeled pileups with the observed pileups. Our goal is to
extract the consensus clear ribosome positions Ptrue from the observed ribosome pileups for all
read lengths (Pobs(l)). We call such a clear profile extraction process Deblur.

4.3.2 Modeling observed profiles as blurred ribosome position signals
We model the observed ribosome read distribution Pobs(l) for read length l as a convolution

between an unknown clear ribosome position distribution Ptrue(l) and an unknown blur proba-
bility vector b(l): P̂obs(l) = b(l) ∗ Ptrue(l), where ∗ is the convolution operator. The blur vector
diffuses the position signal to its neighbor areas. This means, for location i on a transcript, the
estimated observed ribosome abundance is a linear combination of the nearby true signals:

P̂obs(l)[i] =
w∑

j=−w

b(l)[j]× Ptrue(l)[i− j] ,

where w is the width of the blurring effect. The notation x[i] indicates the ith element of vector
x.

We require Ptrue(l) to be as consistent as possible across all read lengths. Specifically:

Ptrue(l)[i] = Ptrue[i− kl]− εt(l)[i− kl] ,

where Ptrue is the consensus position signal consistent across all read lengths, εt(l) is the devia-
tion of Ptrue(l) from Ptrue due to length-specific digestion preferences, and kl is a shift to align
profiles with different lengths.

Profiles with different lengths can be aligned by observing that the start of the 3-nt periodicity
is read length specific. We observe from the meta-profiles that the 3-nt peridicity for reads with
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length l starts at−l+16 (Figure 4.1, darker lines are where 3-nt periodicities start). Therefore the
amount of shift between profile of length l1 and profile of length l2 is −l1 + 16− (−l2 + 16) =
l2 − l1. In our model, to align profiles with different lengths, Ptrue(28) is used as the anchor,
therefore Ptrue(l) can be aligned to Ptrue(28) by shifting kl = l − 28 to the right. We denote by
P kl
true and εklt (l) the shifted version of the original vectors.

The starts of the 3-nt periodicity also indicate the locations of the majority of the ribosome
read 5’ boundaries when ribosomes start translating. They thus give the most probable A-site
offsets for different read lengths. Although these offsets themselves cannot entirely capture the
various distances between the A-site and the read boundaries, they serve as a good starting point
for explaining the major digestion pattern of a given read length.

Putting everything together, the observed read locations Pobs(l) of length l are assumed to be
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Figure 4.4: One example of the ribosome profiles for different read lengths before and after
debluring on transcript YOR302W. Read length and frame distribution are noted above each
profile. In-frame (frame 0) loci are marked with light vertical lines, and read pileups are marked
with dark vertical bars. The clear position signal is assumed to be consistent across read lengths,
but slight shifts and deviations are allowed.

generated from the hidden Ptrue signal as:

Pobs(l) =

P̂obs(l)︷ ︸︸ ︷(
P kl
true − ε

kl
t (l)

)︸ ︷︷ ︸
Ptrue(l)

∗b(l) +εo(l) ,

where εo(l) is the deviation of the modeled profile P̂obs(l) from the observed profile Pobs(l). In
short, the hidden consensus Ptrue is shifted with an additive difference εt(l), convolved with a
blur vector b(l) to get the modeled profile P̂obs(l), and the difference between the observed profile
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Pobs(l) and the modeled profile is then measured with an additive error εo(l). The parameters kl,
εt(l), εo(l), b(l) must be optimized to find the hidden Ptrue. We explained above the rationale of
choosing kl, and we describe how other parameters are optimized in the following sections.

4.3.3 Deblurring ribosome profiles — a least square optimization
Our goal is to use the blurred observed profiles Pobs(l) to deconvolve the clear ribosome

position signal Ptrue of a transcript. Such clear signals should be consistent across all read
lengths, and should be a good estimate of the observed ribosome distribution after applying
the blurring effect. The consensus clear position signal Ptrue and the deviation between the
consensus and the length-specific ribosome signal (εt(l)) are adjusted to minimize two terms:
the difference between the observed profile and the modeled profile and the difference between
the consensus and the length-specific ribosome signal. Specifically:

min
Ptrue,εt(l)

∑
l

α(l)

[
‖Pobs(l)− P̂obs(l)‖22 + ‖P kl

true − Ptrue(l)‖22
]
, (4.1)

where α(l) is the total read count with length l for the tested transcript. Intuitively, if some
read length is more abundant, the true position signal recovered from that read length should be
weighted more.

Using Ptrue(l) = P kl
true − ε

kl
t (l) and P̂obs(l) = b(l) ∗

(
P kl
true − ε

kl
t (l)

)
, we rewrite (4.1) to be:

min
Ptrue,εt(l)

∑
l

α(l)
[
‖Pobs(l)− b(l) ∗

(
P kl

true − εkl
t (l)

)
‖22 + ‖εkl

t (l)‖22
]
. (4.2)

If the blur vectors b(l) are known, we can use an EM-like framework to find the least square
solution:

M-step: We fix Ptrue and adjust εt(l) to optimize the total least square problem in (4.2), where
εt for each l can be optimized separately:

min
εt(l)
‖b(l) ∗ εkl

t (l)−
(
b(l) ∗ P kl

true − Pobs(l)
)
‖22 + ‖εkl

t (l)‖22 , (4.3)

where bold indicates the variables we are optimizing. The optimal εt(l) is found via a least
square solver with Ridge regression [54] (damp = 1).

E-step: We fix P̂obs(l) and Ptrue(l) as estimated from the M-step, and adjust the consensus
Ptrue to minimize the objective in (4.1). The expected Ptrue is therefore the weighted average of
all Ptrue(l). After the M-step, the new estimation of Ptrue(l) is P kl

true − ε
kl
t (l), so the weighted

average of Ptrue(l) is:

P ′true =
∑
l

α(l)(P kl
true − ε

kl
t (l))∑

l′ α(l′)
= Ptrue −

∑
l

α(l)εklt (l)∑
l′ α(l′)

. (4.4)
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We set all negative entries of P ′true to be zero, and renormalize P ′true so that it sums to 1. This
constrains Ptrue to remain valid and in practice appears to have a minor effect on the shape of
Ptrue.

We repeat the EM-like procedure until the change of the objective in (4.2) compared to the
objective value from the previous step is smaller than 0.01.

We initially set Ptrue to be the in-frame values of the observed read pileups with length 28:

Pinit[i] =

{
Pobs(28)[i] if i is a multiple of 3,

0 otherwise.
(4.5)

Pobs(28) is used as the initial consensus because 28 is the typical ribosome footprint size for
yeast. For such size, the real physical ribosome footprint boundaries should be most likely to
overlap with the read ends. This is because an imperfect digestion for reads with length 28 has to
be caused by a simultaneous over-digestion from one end and an under-digestion from the other
end, which is likely to be relatively rare. Therefore, the observed read pileups with read length
28 should be the most clear and the closest to the ground truth position signal. Indeed, these
profiles show the strongest frame skewness and the most visible 3-nt periodicity (Figure 4.1).

4.3.4 Estimating blur vectors from meta-profiles
The deblur process depends on a known set of blur vectors (b(l)) — a crucial element to

model the imperfect digestion in ribosome reads. These vectors describe the probability of re-
locating ribosomes to transfer the clear ribosome position signal to the observed read pileups.
Since these pileups are read 5’ end pileups (see below), essentially the blur vectors adjust a true
footprint boundary to the observed read boundary. They therefore indicate the probability of the
amount of under/over digestion from the 5’ end, and capture the read-length-specific digestion
patterns.

These blur vectors can be estimated directly from the ribosome reads via meta-profiles. Meta-
profiles are widely used to reveal the positional patterns of ribosome profiles [38, 60, 67, 79, 80,
98, 150]. They do so by summing read pileups from all transcripts for each position. The blur
vectors can be estimated from these meta-profiles because convolution satisfies the distributive
property.

To generate the meta-profiles, we group reads by lengths, and accumulate the positions of the
5’ ends relative to the start codon for all transcripts. We then include the first 350 locations away
from the start codon in the meta-profiles. We only use transcripts with length > 350 to reduce
convolution boundary effect. Also, to avoid the outlier points biasing the shape of the blur vector,
we exclude locations in the meta-profiles with the top 1.65% highest read counts. This threshold
is chosen by assuming the top 5% of in-frame reads (1/3 of total reads) are outliers.

To estimate the blur vectors, we use an EM-like procedure similar to the earlier deblur opti-
mization. In this procedure, the observed transcript profiles are replace by the meta-profiles, and
the blur vectors are adjustable variables. The procedure is exactly the same as described in the
previous section, except that the blur vector is first estimated prior to the M-step:

min
b(l)
‖Mkl

true ∗ b(l)−Mobs(l)‖22 ,
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where the “M” variables are the meta-profiles, and we replace Ptrue by Mtrue and Pobs(l) by
Mobs(l) in (4.3) – (4.5). The blur vector size, which limits the diffusion range of the po-
sition signal, is set to 31. This way the signal can be diffused, either to the left or to the
right, as far as approximately half the size of a ribosome. A non-negative least square solver
(scipy.optimize.nnls) is used to find the best b(l). All blur vectors with different read
lengths are optimized separately.

4.3.5 Estimating the A-site profile
We merge the length-specific true profiles to get an overall ribosome position signal for a

given transcript — the A-site profile. It is the weighted sum of all the length-specific true profiles,
shifted to the right by 15:

Ctrue[i] =
∑
l

α(l)Ptrue(l)[i+ kl − 15] .

The shift is needed since the true profiles are estimated from the reads’ 5’ ends, and Ptrue(28) is
the anchor to align profiles with different length. We shift by 15 since it is the major A-site offset
of reads with length 28, and it is the A-site offset under perfect digestion.

4.3.6 Codon decoding time estimation
To investigate the influence of tRNA abundance and wobble pairing on translation speed, we

estimate codon decoding time using the procedure in [40]. The in-frame (frame-0) deblurred read
counts are used as the input ribosome count for each codon position. Such counts are normalized
by the average ribosome count for each transcript, as is done in [98, 178]. Following [40],
these normalized counts are grouped by codon types to form codon count distributions, with the
exclusion of the first and last 20 codon positions of each transcript and positions with ribosome
counts less than 1. Each codon distribution is fit with a log normal distribution. The skewness
of the log normal distribution is used as an estimate of the codon decoding time, as it has been
shown to be informative for estimating the elongation speed from ribosome profiling data among
various species [40].

4.3.7 Read alignment and data preprocessing
We test the deblur method on ribosome profiling data from Saccharomyces cerevisiae, where

ambiguous mapping is not ubiquitous. We use ribosome reads from a yeast study, where the data
is of high quality and of high sequencing depth (GSM1335348) [8].

Reads were first aligned to the yeast noncoding RNA reference, which includes rRNA,
tRNA, snoRNA, etc., to remove noncoding contaminants. The remaining reads are then mapped
to the yeast transcriptome. The yeast noncoding RNA reference and the transcriptome refer-
ence are downloaded from the Saccharomyces Genome Database [51]. Alignments are per-
formed with STAR [44] with parameters --clip3pAdapterSeq CTGTAGGCACCATCAAT
--outFilterMismatchNmax 1, which automatically ‘softclips’ the unaligned adapter se-
quences and any unaligned bases at the 5’ end of the reads, allowing at most 1 mismatch. Only
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uniquely mapped reads, about 83% of the non-contaminated reads, are used to generate the ob-
served profiles Pobs(l).

The observed profile of a given length is included for a transcript in the deblur process if
more than 50% of the in-frame loci have non-zero ribosome counts. Here, we define ‘in-frame’
as the frame with the highest total read count. Only transcripts with at least two observed profiles
from different read lengths are tested for deblur.

Such filtering results in 1966 transcripts with high ribosome coverage. This transcript set size
agrees with the size of highly expressed transcript set: 2108 transcripts share an estimated ex-
pression level > 100 transcript per million (TPM) (expression are estimated using Salmon [131]
with the RNA-seq data from the same experiment (GSM1335347) [8]).

4.4 Results

4.4.1 Ribosome profiles are well explained by the blur model

We test whether the estimated blur vectors can truthfully characterize the observed read loca-
tions on the meta-profiles. Here, different blur vectors are convolved with the initial guess of the
meta consensus — the in-frame values of Mobs(28). Our modeled meta-profiles agree well with
the observed meta-profiles. The blur process results in a good correlation and a small deviation
between the modeled meta-profiles and the observed meta-profiles across all read lengths (Fig-
ure 4.5).

To test whether a single blur vector is sufficient to model all profiles for a given length, we
train the blur vector on subsets of locations and on subsets of transcripts, and we get similar
results compared to training the blur vector on the entire set (Figure 4.5). This indicates that the
blur vectors are transcript and location independent.

In addition, allowing the length-specific clear position signals to be slightly deviated from
the consensus further improves our model fitting. Instead of enforcing an identical consensus
across all read lengths, these deviations result in both better modeled meta-profiles (Figure 4.6),
and better modeled transcript profiles (Figure 4.7): the inconsistencies between the observed
profiles and the modeled profiles are reduced by an average of 66% compared to not allowing
such deviations.

4.4.2 Consistent read-length-specific profiles

To test how shifting and deblurring affect the consistencies among profiles with different
read lengths, we compare read-length-specific profiles with the in-frame values of the observed
profiles with length 28 (Pinit, Eq. (4.5)). We choose Pinit for comparison because it is the original
data in which we have the most confidence. We use the Pearson correlation coefficient as a
measurement of the consistency between the read-length-specific profile and Pinit.

Two factors jointly improve the consistencies of ribosome profiles among different lengths:
the deblur process and allowing a length-specific shift and deviation from the consensus. Ini-
tially, none of the raw observed profiles (Pobs(l)) correlate well with the in-frame values of
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Figure 4.5: The agreement between the observed meta-profiles and the modeled meta-profiles
with blur vectors trained on subsamples of data. (A, B) The transcripts are randomly divided into
five groups with equal size, and the blur vectors are trained on the subset of transcripts. (C, D)
The profile locations are randomly divided into five groups with equal sizes, and the blur vectors
are trained on the subset of locations. The least square and the Pearson correlation are between
the the observed meta-profiles (Mobs(l)) and the modeled meta-profiles (M̂obs(l) = Minit ∗ b(l))
for each read lengths l. Results are qualitatively similar regardless of whether the blur vectors
are trained on a subsample of the data. Read length 18 is modeled slightly worse primarily due
to low coverage and significant outliers.

Pobs(28) (Figure 4.8A). However, the correlations are improved if the observed profiles are prop-
erly shifted and aligned to Pobs(28) (Figure 4.8B). The correlations can be further increased by
applying the deblur process to recover the length-specific clear profiles (Ptrue(l)) (Figure 4.8C).
Lastly, compared to the initial guess of the consensus (Pinit), at the end of the deblur process,
the final consensus estimation (Ptrue) correlate better with the length-specific clear profiles (Fig-
ure 4.8D).

Overall, the correlation between Ptrue(l) and Ptrue for most lengths is close to 1. Since Ptrue

is the centroid of Ptrue(l), the good correlation between the two indicates that the deblurred
profiles are consistent across different read lengths.
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Figure 4.6: The change of the objective function in equation 4.1 for deblurring the meta-profiles.
The circle line is the overall inconsistency between the modeled meta-profile (M̂obs(l)) and the
observed meta-profile (Mobs(l)), the diamond line is the overall inconsistency between the con-
sensus clear signal (Mkl

true) and the read-length-specific deblurred signal (Mtrue(l)), and the star
line is the sum of the two. The overall inconsistency between the modeled meta-profiles and the
observed meta-profiles successfully goes down during the optimization, and the observed profiles
are better modeled by sacrificing the inconsistencies of clear signals across different lengths.
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Figure 4.7: Histogram of the relative improvement of the overall inconsistency between the
observed profiles Pobs and the modeled profiles P̂obs after the deblur procedure. The relative
improvement is defined as the change of the inconsistency between Pobs and P̂obs, over the initial
inconsistency between the two.
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Figure 4.8: Effect of shifting and deblurring on profile consistencies across different read lengths.
Pobs(l) is the observed profile of length l, Pinit is the in-frame values of Pobs(28), which is also
the initial guess of the true profile, kl is the shift applied to a profile, Ptrue(l) is the length-specific
deblurred profile, and Ptrue is the consensus of Ptrue(l)s. Box plots of the Pearson correlation
are between (A) Pobs(l) and Pinit, (B) P kl

obs(l) and Pinit, (C) P kl
true(l) and Pinit, and (D) P kl

true(l)
and Ptrue. The improvement of the Pearson correlation between the read-length-specific profiles
and the true profiles is the combinational effect of the right amount of shifts and the success of
deblurring.

4.4.3 Improved frame skewness

Our deblur process improves the frame skewness of the recovered A-site profiles, even if it
does not explicitly optimize or force frame skewness. The in-frame position is the reading frame
where reads are preferentially distributed within a codon. It is usually frame 0 for the A-sites of
ribosome footprints with the absence of frameshifts. It is desirable for the recovered ribosome
A-site profiles to be highly skewed towards frame 0. This is because ribosomes move in units of
codons, so ribosome profiles should have 3-nt periodicity. Also, such profiles should be mainly
concentrated on frame 0, since frameshifts are rare. Indeed, after deblur, the in-frame skewness
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does improve from an average of 71% to 92% (Mann-Whitney U test p < 3×10−308; Figure 4.9).
This indicates that the deblur process produces ribosome profiles with less noise. It also enables
more reads to be used in downstream analysis. For instance, if only the in-frame reads are used
to represent the codon-level ribosome counts, the deblur process will allow on average 20% more
reads to be used.

4.4.4 Deblur process produces sub-codon resolution profiles

The deblur procedure does not assume that the recovered A-site profiles are all from a fixed
frame, thus it keeps the sub-codon resolution of the A-site profiles, and allows detection of
potential programmed frameshifts. To test whether the deblur process can recover profiles with
frameshifts, we synthetically generate frameshifts as follows: We first choose a random frame-0
location as the frameshift point in a transcript, we then shift all reads with a start location after
such point to the right. This is to simulate an insertion in the transcript to induce a frameshift.
The recovered A-site profiles should have a high skewness towards frame 0 before the frameshift
point, and a high skewness towards frame 1 after the frameshift point. One example of our
constructed frameshift events is shown in Figure 4.10.

The deblur process successfully maintained and improved the skewness of frame 0 before the
frameshift point and the skewness of frame 1 after the frameshift point (Figure 4.11). Therefore,
combining profiles with lengths other than 28 during the deblur process results in a recovery of a
clear frameshifted A-site profile, regardless of the incorrect initial guess. To sum up, frameshift
detection is an important task, but current frameshift detection method [121] suffers from high
false positive rates. Our deblur process recovers ribosome profiles with a clear frame preference,
which will promote the development of a better frameshift detection.

4.4.5 Wobble pairing codons translate slower than Watson-Crick pairing

The tRNA abundance was expected to be negatively correlated with the codon decoding time
(CDT) [39, 40, 59, 98], and such correlation is strengthened using our deblurred profiles. After

Figure 4.9: Histograms of in-frame (frame 0) portion of reads before and after deblur. The
recovered A-site profiles have a higher in-frame skewness compared to the original profiles.
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deblur, 85% of the codon distributions have a smaller variance, indicating the deblur process
successfully removes noise from the observed read pileups. From these distributions, the esti-
mated CDT is the skewness of a lognormal fit [40] (details in Methods). Such estimated CDT is
compared with the tRNA Adaptation Index (tAI) [45] — proxy for the tRNA concentration. The
deblur process strengthens the Spearman correlation between the tAI and the estimated CDT
from -0.21 (p = 0.1) to -0.46 (p = 1 × 10−4). This provides stronger evidence that tRNA
abundance play a role in elongation speed. Similarly, the raw frequency of codon usage also
negatively correlates with the estimated CDT (Spearman correlation −0.5, p = 3.7 × 10−5),
indicating frequent codons are translated faster than rare codons.

Wobble pairing could also affect the elongation speed. Since there are usually fewer tRNA
types than codon types, some of the codons that encode the same amino acid must be decoded
by the same tRNA. Wobble pairing allows a tRNA to recognize more than one codon. Within
these synonymous codons, the determinant of the codon decoding speed is the efficiency of the
tRNA recognizing the corresponding codon. According to the wobble hypothesis [36], the last
two bases of the tRNA anticodon form Watson-Crick base pairs and bond strongly to the first
two bases of the codon. However, the anticodon’s first base can form a wobble pair: The base
G can either Watson-Crick pair with C, or wobble pair with U; the base I (inosine, edited from
A) can also both wobble pair with C and U, but I:U pairing has a less favorable geometry [156];
the base U can Watson-Crick pair with A, and wobble pair with G. It has been hypothesized that
wobble paired codons tend to be translated slower than their synonymous Watson-Crick paired
codons, since wobble pairs are more likely to be rejected before peptidyl transfer, causing the
tRNA selection cycle to be repeated [162].
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Figure 4.10: An example of the ribosome profiles with artificially programmed frameshift on
transcript YDL061C before and after deblur. Frame-0 loci are marked with pink vertical lines
and the frameshift point is marked with a darker vertical line. The high frame-0 skewness before
the frameshift point and the high frame-1 skewness after the frameshift point are well maintained
and strengthened by the deblur process.
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Figure 4.11: Histograms of the frame-0 portion of the ribosome profiles before the frameshift
point and the frame-1 portion of the ribosome profiles after the frameshift point. The deblur
process strengthens the frame skewness while keeping the estimated ribosome positions to be in
the correct frame.

We investigated how wobble pairing influences CDT in yeast. We focus on pairs of codons
that are translated by the same tRNA, so that the influence of tRNA concentration on the elon-
gation speed is controlled. In this case, the codon pair shares the first two bases, and differs in
the third base. We compared the estimated decoding time between the codon pairs, and find that
the wobble pairing codons indeed are estimated to often translate slower than the Watson-Crick
pairing codons (Figure 4.12).

We expect the decoding time difference between two wobble paired codons to be smaller than
the difference between a wobble pair codon and a Watson-Crick pair codon, if the wobble-paired
tRNA is truly more likely to leave the ribosome without successful peptidyl transfer [162]. For
the three codon pairs being compared, we would therefore expect the time difference between I:C
and I:U to be smaller than the time difference between G:C and G:U, and between U:A and U:G.
To control for the absolute level of the translation time, we use the relative decoding time differ-
ence between a synonymous codon pair. It is defined as: ∆t = (twobble − tWatson-Crick)/tWatson-Crick,
where tx is the estimated decoding time for a codon with either wobble pairing or Watson-Crick
pairing.

Using the profiles from the deblur process, the decoding time difference is inline with the
above expectation. The decoding time difference between a wobble paired codon and a Watson-
Crick paired codon is indeed visibly larger than the decoding time difference between two wobble
pair codons (Figure 4.12). Although such a trend was first seen in metazoans [156], it was not
observed for most wobble paired codons in yeast [13, 59, 127]. It is also less obvious when
CDTs are estimated from the original ribosome profiles (Figure 4.12). This indicates that the
uncorrected ribosome profiles obscure true ribosome A-site positions. Together, the CDT es-
timated from the deblurred profiles strengthen the conclusion that wobble pairing slows trans-
lation. These results also suggest that wobble pairing can be used as a mechanism to regulate
elongation speed.
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Figure 4.12: Relative differences of the CDT between pairs of codons that are decoded by the
same tRNA. Lighter colors are time differences estimated from original ribosome profiles, and
darker colors are time differences estimated from deblurred profiles. The anticodon : codon pair-
ings are: (A) U:A (Watson-Crick) vs. U:G (wobble), (B) G:C (Watson-Crick) vs. G:U (wobble),
(C) I:C (stronger wobble) vs. I:U (weaker wobble). The average relative time difference esti-
mated from the deblurred profiles is: 0.2 between U:A and U:G, 0.1 between G:U and G:C,
and 0.04 between I:U and I:C; the average relative time difference estimated from the original
profiles is 0.12 between U:A and U:G, 0.07 between G:U and G:C, and 0.07 between I:U and
I:C.

4.5 Discussion

Estimating ribosome A-site positions from ribosome profiling data is a challenging necessary
step in quantifying codon-specific translation speed and ribosome pausing. There are controver-
sial conclusions about whether the tRNA level plays an important role in CDT. Different analysis
pipelines performed on different experiments show that the estimated CDT sometimes strongly
correlates with the codon usage [59], sometimes weakly correlates with tAI [98], and sometimes
does not correlate with the codon optimality [13] or tRNA level [135]. Different estimates of
CDT alone produce different correlations between the estimated decoding time and the tRNA
level among different species [39, 40]. The fact that there is evidence both for and against the
correlation between tRNA levels and CDT indicates that a better codon decoding time analysis
pipeline is needed.

We here by no means try to touch all aspects of the elongation time estimation, nor do we
try to emphasize or diminish the impact of tRNA level on the translation dynamics. We focus on
recovering the A-site positions from the ribosome profiling data, the first step of any quantitative
analysis on codon rate or pausing strength. Rather than applying simple heuristics that cannot
fully explain the observed read pileup patterns, we borrow an idea from signal processing to re-
cover the A-site positions from ribo-seq data. Our deblur formulation is inspired by the problem
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of blind deconvolution in image processing [104], where both the original clear signal and the
blur kernel (blur vector) are unknown. We make advantage of the strong asymmetry between the
dimensionality of the blur vector and the ribo-seq positional signal, and formulate the clear signal
recovery problem with a total least square optimization. We show via several lines of intrinsic
and extrinsic evidence that our deblur method provides better estimates of A-site profiles, leading
new insights on translation dynamics. Source code for the deblur method and the analysis can be
found at: http://www.cs.cmu.edu/˜ckingsf/software/riboasitedeblur/.
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Chapter 5

Genome-wide analysis on modified
ribosome profiling shows no preferred
locations for ribosome collisions in yeast

This chapter presents the first genome-wide study of ribosome collision with a full experi-
mental and computational pipeline. Ribosome collisions are extreme local ribosome slow-downs
when two ribosomes bump into each other during translation. Understanding the patterns of ri-
bosome collision is important for studying the mechanism of translational speed regulation. This
chapter provides a detailed description of the analysis pipeline, and shows several lines of ev-
idence to support random occurrence of ribosome collision. This was a joint work with Pieter
Spealman, who executed the modified ribosome profiling experiments, Joel McManus, and Carl
Kingsford, who both contributed to the design of the analysis.

5.1 Introduction

Ribosome stalling might play an important role in translational regulation during protein syn-
thesis. Programmed ribosome stalling may modulate the amount of proteins being produced or
assist proper protein foldings during translation. Although anecdotal examples are often exhib-
ited to showcase ribosome stalling [69, 79, 80], methods that make full use of ribosome profiles
and quantify the intensity of ribosome stalling are just starting to emerge. Recently, one statis-
tical test was designed to analyze amino acid enrichments in ribosome stalling across different
species [147], and a pause score was developed to measure the ribosome footprint enrichment
of codon pairs [178]. We here study the extreme ribosome stalling where two ribosomes bump
into each other during translation. We designed a protocol to captures ribosome collisions exper-
imentally, which can provide a complimentary view of ribosome stallings from regular ribosome
profiling experiments.

An overview of the ribosome profiling protocol is described in section 1.2.2. One of the
key steps in the ribo-seq protocol is size selection to remove contaminants and select sequences
bound by a single ribosome. In this chapter, we analyze ribo-seq data from a modified ribosome
profiling protocol, in which the size selection step has been replaced with a step that selects
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regions consistent with two ribosomes being adjacently bound. This modified protocol allows us
to investigate ribosome collision events experimentally. With this data set, we get both standard
ribosome footprints and the so-called doublet footprints. We combined this data set we generated
with our collaborators with two existing data sets that also contain doublets [69]. This allows us
to begin to draw general conclusions about ribosome collisions.

Although the coverages of doublet libraries are low due to contaminants, all of our analysis
are consistent with random occurrences of ribosome collision. Nonetheless we observe a consis-
tent depletion of ribosome collisions within 50 bases away from the start codon. We further study
stalling-induced collision sites (SICS) with a statistical framework to identify ribosome stalling
sites from standard ribo-seq data coupled with enriched ribosome collisions. We notice that ri-
bosome profiles often do not support co-occurrence of ribosome collision and stalling. Among
identified SICS, we observe SICS locations are unique to experimental conditions. Further, we
do not observe a differential pattern of codon usage within SICS compared to regular ribosome
stalling sites, nor do we observe SICS to be preferentially located upstream of known RNA bind-
ing motifs. We provide for the first time a genome-wide ribosome collision study in yeast, and
all of our analysis support the hypothesis that ribosome collisions occurs by chance.

Table 5.1: Terms and definitions used in ribosome collision analysis

Term Definition

RPF RPF stands for ribosome profiling footprint.
singlet singlets are ribosome footprint reads from li-

braries with a typical ribosome footprint size.

doublet doublets are collided ribosome reads from li-
braries with a size selection around 60, i.e. the size
of 2 ribosome footprints back to back.

singlet/doublet load A singlet or doublet load of a transcript is the sum
of ribosome footprint counts from the specific li-
brary of that transcript.

transcript collision rate transcript collision rate is computed as: doublet
load / ( singlet load + doublet load).

Stalling Induced Collision Site (SICS) A SICS is a singlet peak with enriched upstream
doublets.

Stalling Supported Collision Site (SSCS) A SSCS is a doublet peak with enriched down-
stream singlets.

nonSICS A nonSICS is a singlet peak without enrichment
of upstream doublets.
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5.2 Methods

5.2.1 Terms and definitions
We use several terms throughout this chapter and we have collected their definition here in

Table 5.1 for easy reference.

5.2.2 Collecting singlet and doublet footprints
Ribosome profiling was performed with minor alterations as described in [155]. Briefly, two

samples were generated, each having a different final concentration of cycloheximide before the
cells were frozen. One sample had no cycloheximde added, while the other had 10x cyclohex-
imide (1 mg/ml of EtOH) added. Cells were then vacuum filtered away from the media and
resuspended in polysome lysis buffer and frozen, dropwise, into N2(l). Cells were disrupted
by rounds of manual vortexing using acid-washed glass beads in conjunction with ice water in
between each round. Cell lysate was digested with 80U of RNase I for 50 minutes at room tem-
perature before digestion was stopped by adding 10µl of SUPERase-In. The digests were then
loaded onto a 1M sucrose cushion and centrifuged at 4◦C for 4 hours at 70,000G. Acid-phenol-
chloroform extraction was performed with the purified product used for library construction.
mRNA samples were enriched in poly-A transcripts using Oligo(dT) and then fragmented by
incubating in alkaline fragmentation buffer. For mRNA 27–40nt size fractions were recovered,
while sub-22nt fragments, 27–34nt, and 60–80nt size fractions were recovered for RPF samples.
This range of RPF fragment sizes is notable as it is from this step that we generated both the
monosome and doublet read populations. RNA was dephosphorylated using T4 PNK without
ATP, followed by ligation of a universal miRNA linker using truncated T4 RNA ligase 2. For
the RPF libraries, a subtractive hybridization step was included to remove ribosomal RNA se-
quences from circularized cDNA. Circularized cDNA templates were amplified by 12 cycles of
PCR using Phusion-polymerase with primers incorporating barcoded library sequences.

5.2.3 Data preprocessing
Raw read trimming and barcode collapsing

Raw read sequences share the following format:
SEQ–CLONELINKER–BARCODE–ILLUMINALINKER

The barcode is to tag duplicate reads caused by sequencing bias. If two reads share both the exact
footprint sequence and barcode, they are both products of PCR bias, and should not be counted
twice. Therefore ribosome footprint sequences and the barcode sequences are first extracted
with cutadapt [113], then reads that share the same footprint sequence and barcode are collapse,
leaving only one record per footprint sequence. There are three steps in preprocessing the raw
reads:

First, ribosome footprints are extracted by trimming the 3’ adapter as the cloning linker
sequence (CLONELINKER = CTGTAGGCACCATCAAT). Second, barcodes are extracted by
simultaneously trimming the 5’ adapter as the cloning linker sequence, and 3’ adapter as the
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Iluumina linker sequence (ILLUMINALINKER=AGATCGGAAGAG). Third, barcodes are col-
lapsed as follows: both ribosome footprints and barcodes are streamed in, and only footprints
with a barcode not seen so far are streamed out.

Aligning reads

Pre-trimmed reads from the previous step are first aligned to the yeast noncoding RNA
reference, which includes rRNA, tRNA, snoRNA, etc., to remove noncoding contami-
nants. The remaining reads are then mapped to the yeast transcriptome. The yeast non-
coding RNA reference and the transcriptome reference are downloaded from the Saccha-
romyces Genome Database [51]. Alignments are performed with STAR [44] with parameters
--outFilterMismatchNmax 1, which automatically ‘softclips’ the first few unaligned
bases and any unaligned bases at the 5’ end of the reads, allowing at most 1 mismatch.

Generating ribosome profiles

Singlet A-site profiles are computed via uniquely mapped reads from singlet libraries. We
use RiboDeblur [170], a method pipeline that automatically selects the appropriate range of read
length and A-site offsets, to process these reads and output ribosome A-site profiles for each
transcript.

Doublet read-start profiles are computed via uniquely mapped reads from doublet libraries.
Only reads with length between 57 and 62 are included to estimate read start pileups at each
nucleotide location. These reads have clear 3-nt periodicity for both our data sets and Guydosh
and Greens’ [69], which is evidence that they might represent real ribosome footprints.

Codon-position level profiles for both singlets and doublets are computed from the
nucleotide-level profiles described above. Footprint counts from all 3 frames are summed to-
gether to get the codon-position level counts.

High coverage filtering

A transcript is included for downstream analysis if more than 50% of the codon-loci in its
singlet profile have ribosome counts greater than 1.

5.2.4 Identifying co-occurrence of ribosome collision and ribosome stalling

We check co-occurrence of ribosome collision and ribosome stalling by identifying stalling
induced collision sites (SICS) and stalling supported collision sites (SSCS). These two types of
sites are two views of overlapping between ribosome collision and ribosome stalling. SICS is in
the view of singlet profiles, where singlet peaks are coupled with enrichment of upstream dou-
blets. SSCS is in the view of doublet profiles, where doublet peaks are coupled with enrichment
of downstream singlets. The concepts of SICS and SSCS are illustrated in figure 5.1.
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singlet profile: captures ribosome stalling

doublet profile: captures ribosome collision

SICS

SSCS

SICS &
SSCS

ribosomes accumulated on a mRNA ribosome 
collision

Figure 5.1: Illustration of simultaneous ribosome stalling and ribosome collision on ribosome
profiles. Stars indicate peaks in profiles, singlet profiles are marked in red, and doublet pro-
files are marked in blue. SICS (stalling induced collision sites) are singlet peaks with enriched
upstream doublets; SSCS (stalling supported collision sites) are doublet peaks with enriched
downstream singlets; SICS & SSCS are doublet peaks with downstream singlet peaks.

Identifying stalling-induced collision sites (SICS)

From singlet profiles, stalling induced collision sites are singlet peaks with upstream doublet
enrichment. They represent extreme ribosome stallings that lead to ribosome collision. Calling
SICS are carried out in the following two steps:

Step I: Identifying potential ribosome stalling sites. Let Ct be the ribosome count vector of
transcript t. We treat such a count vector as a distribution and compute its median (median(Ct))
and standard deviation (std(Ct)). A footprint count on a codon location i (cti) is identified as a
potential stalling site if cti > median(Ct) + 2× std(Ct).

Step II: Identifying doublet enrichment. A stalling induced collision site is a potential ri-
bosome stalling site with more upstream doublet count than expected by chance. The upstream
doublet count is defined as the sum of doublet counts within a window of 13 – 17 codon positions
upstream of the current stalling site.

The reason for such a window size is two fold: First, the typical doublet size is 58nt long [69].
Assuming that doublet footprints with such lengths are digested perfectly, then the A-site of the
collision-causing ribosome should be 45nt away from the doublet read start, i.e.15 codon posi-
tions away. However doublet footprints are not always perfectly digested. Therefore, secondly,
we allow a 2-codon window both before and after this 15th codon position, so that all potential
ribosome collisions (captured by the imperfectly digested doublet reads) are included.

The enrichment of the upstream doublet count is compared with an empirical background
doublet count. Since the foreground upstream doublet count is the sum of doublet counts within
a 5-codon window upstream of the potential stalling sites, to generate a background doublet
counts for a specific transcript, 5 codon locations are randomly selected to compute the doublet
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sum, and such sum is computed for 10,000 times. The significance of the upstream doublet count
enrichment is measured by the empirical p-value: the fraction of times where the tested doublet
count is smaller or equal to the background doublet count. The tested doublet count is called
significant if p-value ≤ 0.1. To sum up, a stalling induced collision site (SICS) is a potential
stalling site with significant enrichment of upstream doublets.

Identifying stalling supported collision sites (SSCS)

From doublet profiles, stalling supported collision sites are doublet peak loci with enriched
singlets downstream. They represent high-confident ribosome collisions that are supported by
ribosome stallings observed from singlets. In SSCS calling, both peak calling and enrichment
testing are identical to the procedure in SSIC calling. SSCS are thus identified symmetrically
to SICS, but in the view of doublet profiles. First, doublet peaks are identified from doublet
profiles, and second, the sum of singlets within 13 – 17 codons downstream of a doublet peak is
compared with an empirical background of singlet sums.

As described above, stalling induced collision sites are singlet peak loci with enriched up-
stream doublets. The underlying assumption is that ribosome collisions (doublet enrichment),
are induced by the observed stallings (singlet peaks). Similarly, the rationale for the name SSCS
is: Doublet peaks are potential non-random ribosome collisions, since they are loci accumulated
with more doublets. These sites are thus more likely to be real programmed ribosome collisions
that do not simply occur by chance. Theoretically, ribosome collisions should be caused by local
slow-down of ribosome movements, and an enrichment of singlet downstream of these doublet
peaks should be expected. In other words, downstream singlet enrichments, i.e. evidence of
stallings, are supporting the observed doublet peaks.

In summary, SICS are identified on singlet profiles, where collisions are doublet enrichment,
and stallings are singlet peaks; SSCS are identified on doublet profiles, where collisions are
doublet peaks, and stallings are singlet enrichment. Both SICS and SSCS are used to study the
relationship between ribosome stalling (measured by singlets) and ribosome collision (measured
by doublets).

5.2.5 Codon usage analysis
We test whether SICS have unique codon composition by comparing SICS codon usage with

the background and the codon usage of regular stalling sites without enrichment of upstream
doublets — we call these sites nonSICS. Specifically, for a set of tested peaks (e.g. SICS), both
a background and a foreground codon usage are computed. The background codon usage is
the codon occurrences among all included transcripts, and the foreground codon usage is the
codon occurrences within the peak set. SICS foreground codon usage is compared with both
SICS background codon usage and nonSICS foreground codon usage. Chi-square test is used
to quantify the similarity between two codon usage distributions. Since chi-square is sensitive
to sample size, all codon usages are first adjusted to be on the same level as the codon usage
of SICS, such that the sum of codon counts for each group of codon usage is the same as the
number of identified SICS. If the tested codon usage vector is Ct (e.g. from SICS foreground),
and the compared codon usage vector is Cc (e.g. from nonSICS foreground), then the chi-square
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is computed as: χ2 =
∑

i∈N(Ct[i]− Cc[i])
2/Cc[i], where N is the set of non-zero codons in Cc.

A bigger chi-square indicates a larger deviance between the two compared distributions.
Individual codons are then examined for over- or under-represented in SICS. The ratio of the

foreground and background codon usage of SICS are computed for any non-zero codons in the
background. A codon is considered over-represented if such a ratio is> 2, and under-represented
if such a ratio is < 1/2. These codon usage ratio after log transformation is plotted for all tested
data sets.

5.2.6 RNA binding sites location analysis
Ribosome collisions might be caused by downstream RNA binding proteins (RBP) blocking

the way of smooth translation, so we examine whether SICS are preferentially located upstream
of RBPs. We compare the distance distribution of SICS and their closest downstream RBP bind-
ing sites with several choices of background distances. A smaller distance should be expected if
SICS are preferentially located upstream of RBPs.

To get the distance distribution, first, thirteen RBP motifs are collected from a systematic
motif finding paper in yeast [142]. Next, all motifs on the entire transcriptome are scanned using
Biopython [33]. For motif calling, the background is based on a built-in 0th order Markov model
from Biopython, and the PSSM score is set with threshold balanced(1000), so the ratio
between the false-negative rate and the false-positive rate is around 1000. The distance is then
computed between a peak location in a ribosome profile and the closest downstream motifs from
all RBP sites on a transcript. Lastly, such a closest distance distribution for SICS and their
downstream motifs is collected and compared with the closest distances between SICS and their
upstream motifs, nonSICS and their downstream motifs, and nonSICS and their upstream motifs.

5.2.7 Measuring reproducibility of SICS between samples
We test whether SICS are reproducible between different samples. Two samples are com-

pared at a time: a tested sample and a compared sample. We match each SICS in the tested
sample with the closest SICS in the compared sample, and we get a distance distribution of
matching peaks. We then compare these matching distances with those computed on nonSICS
and a random peak set. A smaller matching distance is expected if two SICS sets are repro-
ducible.

For a given transcript, let St be the set of SICS in the tested sample, and Sc be the set of SICS
in the compared sample. For each SICS in the tested sample st, the distance between st and each
sc in Sc is computed, and the closest distance is recorded. A distribution of closest distances for
St compared to Sc is collected this way for all transcripts.

Such a closest distance distribution is compared with two other distributions: First, the closest
distance distribution computed on SICS is compared with that on nonSICS. The closest distance
is computed between the set of nonSICS in the tested sample Nt and the set of nonSICS in
the compared sample Nc. Second, the distance distribution of two SICS sets is compared with
that of two randomly sampled ‘peak’ sets. To generate random ‘peaks’ of a given transcript, if
there are nt SICS in the tested sample and nc SICS in the compared sample, then two sets of
codon locations are randomly selected with size nt and nc, and the two sets are called Rt and Rc
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Figure 5.2: Correlation of singlet and doublet loads across different conditions. (A) number
of highly covered transcripts for different samples. (B) scatter plot of singlet loads for all
highly-covered transcripts between our sample without cycloheximide treatment and Guydosh
and Green’s wild type sample. (C) scatter plot of doublet loads for all highly-covered transcripts
between no CHX sample and wild type sample.

respectively. The closest distances are computed between Rt and Rc, and a distance distribution
is collected for all random sets of all transcripts.

5.3 Results
We studied ribosome collision both globally and individually. Globally, we observe doublet

loads to be highly correlated with singlet loads on each transcript, and doublets are depleted
near the start codon. Individually, we observe ribosome collisions do not often overlap with
ribosome stallings. Further, co-occurrence of ribosome collision and ribosome stalling do not
seem to be different from regular stallings in terms of both codon usage and location preferences
to RBP sites. Lastly, co-occurrence of ribosome collision and ribosome stalling do not seem
to be reproducible across different tested conditions. All of the observations above support the
hypothesis that ribosome collisions occur randomly.

5.3.1 Ribosome collisions are rare and proportional to ribosome loads

We generate both doublet and singlet libraries with modified ribosome profiling to quantify
ribosome collisions. Two samples are prepared, one treated with cycloheximide and one with-
out, and good correlation of both singlet loads and doublet loads are observed between the two
samples. Only transcripts with high coverage (see Sec 5.2.3) are included to reduce the effect of
noise. This results in about 700 – 900 transcripts to be included in each condition (Fig 5.2A).
The singlet loads (see def. in Sec 5.2.1) from the sample without cycloheximide treatment are
almost perfectly correlated with the cycloheximide treated sample (Pearson r ' 1, Spearman
r = 0.99). The doublets loads (see def. in Sec. 5.2.1) from the two conditions also correlate
strongly (Pearson r = 0.98, Spearman r = 0.73). Consistent with previous studies [174], these
results show that cycloheximide does not affect ribosome loads at the gene level. They also show
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Table 5.2: Pearson r between singlet loads
and doublet loads.

no chx 0.94
chx 0.91
wild type 0.90
Dom34KO 0.86

Table 5.3: Average collision rate (%) on all
tested data sets.

no chx 0.90
chx 0.11
wild type 0.27
Dom34KO 0.66

good reproducibility of ribosome loads among biological replicates we generated.
To validate our results, we also used another published ribosome profiling data set with avail-

able doublet libraries [69]. The original purpose of that study was to understand the effect of
Dom34 in living cells, so the Dom34 knock out strand (Dom34KO) is compared against the
wild type strand using ribosome profiling. Ribosome loads between samples from this study
are also well reproduced: Singlet loads from Dom34KO correlate near perfectly with wild type
(Pearson r = 0.99, Spearman r = 0.99), and doublet loads from the two strands also correlate
almost perfectly (Pearson r = 0.97, Spearman r = 0.90). Since the correlation level from our
lab is comparable with Guydosh and Green’s [69], this provides another line of evidence that
successful experiments should lead to good reproducibility of ribosome loads within labs.

Ribosome loads are also reproducible across labs. We compare our sample without cyclo-
heximide treatment with the wild type sample from Guydosh and Green [69], since these two
samples are processed with a similar experimental pipeline. Singlets between the two libraries
are highly correlated (Fig 5.2B, Pearson r = 0.94, Spearman r = 0.90), and doublets between
the two are strongly correlated (Fig 5.2C, Pearson r = 0.81, Spearman r = 0.74). Together,
these results show that our libraries are of good quality.

All tested samples consistently show that doublet loads are directly proportional to singlet
loads: All libraries show a strong correlation between singlet loads and doublet loads (Table 5.2).
That is, highly expressed transcripts with more abundant ribosome loads also tend to have more
ribosome collisions. This is consistent with random occurrence of ribosome collisions: If ri-
bosomes collide randomly, we would expect more ribosome collisions on transcripts with more
ribosomes. Although the good correlation between singlet loads and doublet loads alone cannot
indicate that ribosome collisions are random.

Nonetheless ribosome collision rates (see def. in Sec. 5.2.1) for all tested transcripts are
very low across all conditions. Most transcripts have less than one doublet read observed over
every 100 ribosome footprint reads (Table 5.3). This shows that doublet libraries have very low
coverage compared to its companion singlet libraries. Therefore, the measurements of ribosome
collision tend to have high variance across samples and are less reliable than quantification of
singlet loads. In summary, our observation support that ribosome collisions are rare and are often
likely to happen randomly.

5.3.2 Ribosome collisions are depleted near start codons

Ribosome collisions are depleted near the start codon for all tested conditions. Such a trend
is observed by comparing the cumulative distribution of both singlet counts and doublet counts
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Figure 5.3: Cumulative distribution of ribosome footprint counts over transcript locations near
start codon for different samples: (A) no CHX. (B) CHX. (C) wild type (D) Dom34KO. Cumu-
lative distributions are computed based on the first 300 bases from all transcripts.

across all tested samples. As shown in Figure 5.3, singlet CDFs have a sharp increase near the
12th positions before the start codon. This indicates an accumulation of ribosome footprints
at the start codon (Here, read start positions are used to plot the CDFs, and the footprint start
position will be at base 12 before the start codon while the ribosome P-site is at the start codon).
However, the doublet CDFs increase gradually over the transcript positions. In fact, the CDFs
are convex near the start codon, indicating a slow accumulation of doublets. Such a depletion of
doublet near start codon is more apparent considering doublets are longer than singlets. While
the doublet read start is at the start codon, the leading A-site of the two collided ribosomes are
about 47 bases away from the read start (as explained in section 5.2.4), and the leading A-site is
the study of interest since it is the exact location where ribosome collides. Therefore, the gradual
increase of doublet CDFs at the start codon indicates a doublet depletion for the first 47 bases
near the start codon.
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Figure 5.4: Cumulative distribution of ribosome footprint counts over transcript locations near
stop codon for different samples: (A) no CHX. (B) CHX. (C) wild type (D) Dom34KO. Cumu-
lative distributions are computed based on the last 300 bases from all transcripts.

Symmetrically, doublets stop accumulating about 50 bases before the stop codon, while sin-
glets stop accumulating about 15 bases before the stop codon (Fig 5.4). This is consistent with
the assumption above: When a ribosome is terminating on the transcript, its A-site is sitting on
the stop codon, while the doublet footprint start is 50 bases away from the leading A-site, and
the singlet footprint start is 15 bases away. However, unlike CDFs near the start codon, doublet
CDFs and singlet CDFs near the stop codon shares a similar shape: There is an accumulation
of ribosome pileups at the stop codon, but both CDFs increase gradually over the transcript lo-
cations before the stop codon. This indicates that there is no depletion of doublets near the stop
codon.

Although all tested data set show a consistent depletion of ribosome collisions near the start
codon, each lab has a unique singlet profile pattern. For example, the two singlet libraries gen-
erated by us show a clear enrichment near the start codon (Fig 5.3 A, B) but no enrichment near
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Table 5.4: Overlaps between ribosome collision and ribosome stalling. Here SICS& SSCS are
doublet peaks with downstream singlet peaks, and SICS& SSCS /SSCS are the percentage of
doublet peaks with downstream singlet peaks among all doublet peaks.

SICS SICS/
singlet
peaks

SSCS SSCS/
doublet

peaks

SICS&
SSCS

SICS&
SSCS

/SSCS

no chx 582 4.73% 69 11.79% 34 49%
chx 332 2.57% 1 2.63% 1 100%
wild type 889 5.68% 139 13.61% 93 67%
Dom34KO 1410 7.68% 358 13.71% 265 74%

the stop codon (Fig 5.4 A, B). On the other hand, the two singlet libraries generated by Guydosh
and Green [69] show a clear enrichment near the stop codon (Fig 5.4 C, D) but no enrichment
near the start codon (Fig 5.3 C, D). These lab-specific features indicate a limited reproducibility
of ribosome profiles, and further experiments are needed to validate the observation of doublet
depletions near the start codon.

5.3.3 Ribosome collisions do not often overlap with ribosome stallings
We further study individual ribosome collision events on each transcript. Specifically, we test

whether ribosome collisions often co-occur with ribosome stallings. Ribosome stalling is iden-
tified as an enrichment of singlet reads, and ribosome collision is identified as an enrichment of
doublet reads. The co-occurrence of ribosome stalling and ribosome collision are detected from
two angles. From the view of singlets, stalling induced collision sites (SICS) are detected as sin-
glet peaks (stalling) with upstream enrichment of doublets. From the view of doublets, stalling
supported collision sites (SSCS) are detected as doublet peaks (collision) with downstream en-
richment of singlets (Figure 5.1). We developed a statistical framework to identify enrichment
of footprint reads in both SICS and SSCS. Instead of detecting coupled footprint peaks in both
singlet and doublet libraries, we choose to detect footprint peaks in one library coupled with foot-
print enrichment in another. This is because imperfect digestion in ribosome profiling might blur
the locations of peaks in ribosome profiles, which might impede simultaneous peak detections in
both libraries. More details of the SICS and SSCS calling is described in section 5.2.4.

Admittedly, both SICS and SSCS calling depend on their definitions. For footprint enrich-
ment testing, a distance needs to be chosen upstream or downstream of the tested peak, a window
size needs to be chosen to summarize the footprint counts within such a window, and a p-value
cutoff needs to be chosen to call significance. We notice under a lenient p-value cutoff (0.1),
the sets of SICS with different distances given a fixed window size are very similar with each
other. Similarly, the sets of SICS with different window size given a fixed distance are also
largely shared. Therefore, our results will likely to hold under alternative choices of distance and
window size. We thus define SICS and SSCS with first principles, as described in section 5.2.4.

Although stalling events are not rare, only a small portion of singlet peaks are SICS (Ta-
ble 5.4). Among all of the tested data sets, Dom34KO library has the highest percentage of
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Table 5.5: Chi-square statistics between pairs of codon usage distributions

SICS
foreground vs.

background

nonSICS
foreground vs.

background

foreground
SICS vs.
nonSICS

background
SICS vs.
nonSICS

no chx 206∗ 151∗ 56 1
chx 166∗ 82∗ 67 1
wild type 250∗ 224∗ 78 1
Dom34KO 387∗ 323∗ 72 1

* p-value < 0.05.

SICS among singlet peaks, which is still less than 8%. This shows that singlet peaks are rarely
enriched with upstream doublets. Similarly, only a small portion of doublet peaks are SSCS:
all tested libraries have about 10% doublet peaks as SSCS. Compared with other data sets, our
cycloheximide treated sample have very few identified SICS and SSCS. This is likely due to
severe contamination, which lead to a low coverage of the doublet library. Analogous to SICS,
doublet peaks are also rarely enriched with downstream doublets. Nevertheless, the majority
of identified SSCS have downstream singlet peaks (Table 5.4): most tested data sets have more
that 50% SSCS with downstream singlet peaks. This indicates that the two angles of detecting
co-occurrence of ribosome collision and ribosome stalling — from the view of singlet profiles
and from the view of doublet profiles — are often consistent with each other. In short, we do not
often observe ribosome collision overlapping with ribosome stalling.

5.3.4 SICS shares similar codon usage with nonSICS
SICS do not share a unique codon usage compared to regular stalling sites without enrich-

ment of upstream doublets (nonSICS). Codon usage in SICS are compared with the background
codon usage and codon usage in nonSICS. Chi-square is used to quantify the similarity between
two codon usage distributions after controlling for sample size (more details in section 5.2.5). Al-
though bigger than two backgrounds computed from different sets of transcripts, the Chi-square
statistics of codon usage between SICS and nonSICS are much smaller than that between SICS
and its background. In fact, both SICS and nonSICS have significantly different codon usage
compared to the background (Table 5.5). Further, such an observation is consistent across all
tested data sets. This shows that the codon usage of SICS are not significantly different from
regular stalling sites.

However, codon usage preferences seem to be unique to each data set. To test whether spe-
cific codons are over- or under-represented in SICS, the ratio between the foreground and the
background codon frequencies of SICS are computed. These ratio patterns are very different
among different samples. For example, in our sample without cycloheximide treatment, all pro-
line codons in SICS are observed more than twice as frequently compared to background, while
ATA (Isoleucine) is observed less than half of the times. On the other hand, SICS in Guydosh and
Green’s data are enriched with Arginine codons and depleted with Leucine codons (Figure 5.6).
Along with the previous observations, this shows that codon usage in SICS are unique to exper-
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imental conditions, and such a codon preference are likely due to common trends in ribosome
stalling sites.

5.3.5 SICS do not preferentially locate upstream of RNA binding sites

One potential reason for ribosome collision is RNA binding proteins (RBP) blocking the way
of ribosome movements. However SICS do not seem to be more likely to appear upstream of a
RBP site. To test such a preferential location of SICS, all RBP sites on the transcriptome are iden-
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Figure 5.6: Ratio of foreground and background codon frequencies of SICS

tified, and the closest downstream and upstream motifs to both SICS and nonSICS are recorded
(more details in section 5.2.6). The distance distribution of SICS and its closest downstream
motif is not significantly different from the distance distribution of SICS and its closest upstream
motif according to the Kolmogorov-Smirnov test, nor is it different from the distance distribution
between nonSICS and its closest downstream motif (Figure 5.7). Further, there does not seem
to be dominant RBP motifs from downstreams of SICS (Figure 5.8). Such results again con-
sistently hold across all tested data sets. This provides evidence that SICS do not preferentially
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Figure 5.7: Distance distribution of SICS/nonSICS to its closest RBP motif. Distributions
are computed from the no chx sample. The distribution of SICS and downstream motifs is
not significantly different from the distribution of SICS and upstream motifs (KS statistics
= 0.03, p = 0.99), nor is it different from the distribution of nonSICS and downstream mo-
tifs (KS statistics = 0.04, p = 0.33). Other samples share qualitatively similar results.

locate upstream of RBP sites.

5.3.6 SICS locations are unique to experimental conditions

We test whether SICS detected from one condition can also be observed in another condition.
Again, we compare our no-cycloheximide sample with Guydosh and Green’s wild type sample.
For each of our SICS, the closest distance to SICS in wild type is computed. The closest distances
of nonSICS between the two samples are also computed (more details in section 5.2.7). The
distances of SICS are significantly larger than the distances of nonSICS (Figure 5.9, Mann-
Whitney U test p = 3.01 × 10−100). If two SICS between two samples are considered matched
or reproducible when they are within 10 codons away, only 13% SICS in no-cycloheximide
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Figure 5.8: Distance distribution of SICS to its closest downstream RBP motif. All tested data
sets are shown, different motifs are marked with different colors.

have a matched SICS in wild type. On the other hand, 62% nonSICS in no-cycloheximde have
a matched nonSICS in wild type. Other pair-wise sample comparisons all have qualitatively
similar results. This indicates that SICS are unique to experimental conditions.

The longer distances between the closest two SICS might simply due to a smaller sample
size: if peak positions are randomly drawn, a shorter distance is expected if more points are
included. As mentioned above, SICS only count for about 5% of all singlet peaks, so nonSICS
have a much bigger set size compare to SICS. To test whether the longer distance is indeed caused
by two sparser set of points, we randomly generate two sets of peak locations and compute the
closest distances between the two (more details in section 5.2.7). The distance distribution of
the random peaks are qualitatively the same as the distance distribution of SICS (KS statistics
= 0.06, p = 0.57). Further, increasing the sample size indeed makes the distance distribution
skew towards a shorter value (Figure 5.9). This shows that the distance distribution of SICS and
nonSICS are indistinguishable from the distance distribution of randomly drawn peak locations,
thus supporting that random occurrences of ribosome collisions.
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Figure 5.9: Matching SICS of wild type to no chx sample.

It is desirable to test whether SICS are reproducible between biological replicates. However,
we do not have ribo-seq samples from biological replicates. Our no-cycloheximide sample shares
a similar experimental protocol as Guydosh and Green’s wild type, and these two data sets are
the closest we can find as biological replicates. However, the two samples are from different
yeast strains, and the experiments are conducted by different labs, both of which might indeed
lead to unique patterns of ribosome collision.

5.4 Discussion

We developed an experimental and computational pipeline to systematically capture ribo-
some collisions in yeast. This is the first genome-wide analysis to quantify extreme local ri-
bosome slow downs. From several lines of evidence, our analysis consistently suggests that
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ribosome collisions might occur randomly.
Interestingly, we do observe a global trend of doublet depletion near the start codon among

all tested data sets: Cumulative distribution of doublet counts shows a near-zero coverage for
the first 50 bases of all transcripts (Figure 5.3). One potential explanation is that the engaging
initiation factors during the initiation process will block some space on the mRNA [69], thus
disabling ribosome collisions near the start codon. It is also possible that since initiation might
be much slower than elongation [67, 79, 168], ribosomes will be naturally spaced out so that
ribosome collisions are avoided at the beginning of a transcript. But such a spacing effect is
reduced as ribosomes move down the transcript, and ribosomes that enter the transcript later start
to catch up and bump into ribosomes in front of them.

Unfortunately, reads from doublet libraries can be rarely mapped to the transcriptome. For
singlet libraries, since real singlet footprints share a strikingly different size signature from con-
taminants, contaminant sequences such as ribosomal RNAs can be effectively removed via a
physical size selection procedure. This results in about 50% of raw reads as true ribosome
footprints (under the assumption that reads that can be mapped to the transcriptome are ‘true
ribosome footprints’). On the contrary, doublet footprints share a similar size as contaminant
sequences, thus contaminants are the major components of doublet libraries. Table 5.6 shows
that more than 90% of raw reads from doublet libraries can be mapped to ribosomal RNAs, tR-
NAs, and other non-coding RNAs. Besides these mappable contaminants, there are often a small
portion of reads (less than 5%) that cannot be mapped to any non-coding RNAs, mRNAs, or the
genome.

The high portion of contaminants in doublet libraries is problematic. For singlet libraries,
contaminants are harmless since the true signal, i.e., the percentage of true ribosome footprints,
is stronger or comparable to contaminants, therefore ribosome footprints are likely to be more
accurately quantified. However, for the same amount of raw cell material, doublet libraries often
have less than 1% potential true doublet footprints. Even noise from non-mappable contaminants
is stronger than the doublet footprints signal. This might lead to a false conclusion that ribosome
collisions are rare during translation, while it might very well be that ribosome collisions are
prevalent on many mRNAs, but the current library preparation protocol cannot effectively capture
them. Moreover, these low coverage doublet libraries can also impede an accurate observation
and estimation of ribosome collision events. This is a clear call for a better experimental protocol
for better observing extreme local ribosome slow-downs.

From a statistical framework for identifying co-occurrence of ribosome collision and ribo-
some stalling from two angles, we do not observe much overlapping between ribosome collision
and ribosome stalling. This supports the hypothesis that ribosome collisions happen by chance. It
is possible that ribosome collisions are indeed often coupled with ribosome stalling, but the cur-
rent doublet libraries do not have enough sequencing depth to support that. It is also possible that
abundant ribosome collisions will mask out severe ribosome stalling, thus ribosome collisions
and ribosome stallings will happen individually instead of simultaneously. Either hypothesis
requires a better designed doublet profiling technique to reliably identify ribosome collisions.

Different experimental conditions also exhibit different codon usage preferences. Addition-
ally, codon usage of SICS is very similar to codon usage of regular stalling sites without ribo-
some collisions. This is also inline with random occurrence of ribosome collisions. However,
individual codons alone might not be sufficient to characterize ribosome collision patterns. A
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Table 5.6: Read mapping statistics for all tested data sets. Contaminants refer to mappable
contaminants from rRNA, tRNA, and other non-coding RNAs. Unmappable contaminants refer
to reads that cannot be mapped to the genome.

Singlets Raw Contaminants Transcriptome Genome

no chx 11,703,032 5,209,671 (44%) 6,308,169 (54%) 11,556,933 (99%)
chx 11,252,157 4,644,867 (41%) 6,422,036 (57%) 11,099,571 (99%)
wild type 34,710,064 16,809,904 (48%) 16,357,454 (47%) 33,038,058 (95%)
Dom34KO 29,584,871 13,520,796 (46%) 15,258,457 (52%) 28,550,877 (97%)

Doublets Raw Contaminants Transcriptome Genome

no chx 6,253,737 5,927,522 (95%) 127,794 (2%) 6,129,541 (98%)
chx 3,337,230 3,226,506 (97%) 29,033 (0.9%) 3,289,686 (99%)
wild type 69,277,151 63,188,638 (91%) 686,060 (1%) 63,935,303 (92%)
Dom34KO 89,062,886 82,403,395 (93%) 448,064 (0.5%) 82,834,707 (93%)

recent study shows that interactions between adjacent codon pairs might strongly affect trans-
lational efficiency [56], thus codon pair might be the right unit to study sequence patterns in
ribosome collision. Yet the very rare co-occurrence between ribosome stalling and ribosome
collision hinders such analysis. In fact, almost all codons from all tested data sets have less than
50 co-occurrences of ribosome collision and ribosome stalling. The current doublet data sets are
therefore too sparse to support codon pair analysis.

We do not observe collision sites to be preferentially located upstream of RNA binding mo-
tifs. Admittedly, RNA binding protein blocking the way of ribosomes during translation is only
one potential reason for ribosome slow-down. Other factors might also contribute to transla-
tional speed regulation. One alternative case is a complicated secondary mRNA structure, such
as a hairpin, might substantially slow down ribosome movements. In addition, only 13 existing
RBP motifs are tested. RBP sites might be hard to identify solely based on sequence contents
due to the lack of a strong consensus motif. Nevertheless, our result at least shows that SICS do
not preferentially locate upstream of 13 known RBP motifs, agreeing with the hypothesis that
ribosome collisions might happen randomly.

Lastly, we do not observe consistent occurrences of SICS across different experimental condi-
tions. This again supports that ribosome collisions tend to arise randomly. It would be interesting
to test whether SICS can be reproduced between biological replicates, and lacking reproducibil-
ity between replicates will provide a stronger evidence for ribosome collisions being random.
However, such a test is currently not available, and it should be a necessary next step for validat-
ing the reproducibility of ribosome collision sites.

Most of our analysis relies on the identification of stalling induced collision sites, which de-
tects simultaneous enrichments of singlets coupled with upstream doublets. However, footprint
accumulations can be biased by experimental protocols. For example, the reversible binding na-
ture of cycloheximide is known to redistribute footprints on a transcript after translation being
halted [76]. Anecdotal examples also show that RNA-seq shares a somewhat correlated coverage
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patterns with ribo-seq [115], indicating that ribosome profiling might share a similar sequencing
bias from RNA-seq technology. These biases might distort the true pictures of ribosome pile-
ups. True ribosome footprint accumulation might be missed, while false footprint peaks might be
identified. Unfortunately, currently, there is no software or algorithm developed to systematically
correct for sequencing biases for ribo-seq reads. Without correctly handling biases introduced
during the experiments, we can only get a noisy observation of ribosome pileup patterns. Along
with the low coverage of doublet libraries, it might be very difficult to confidently draw out real
patterns of programmed ribosome slow-downs.

In summary, we provide a preliminary study on ribosome collision quantification. Our study
consistently supports the hypothesis that ribosome collisions are likely to be random. However,
to further validate our conclusion, or alternatively extract meaningful programmed ribosome
stalling patterns, a better experimental protocol needs to be developed to effectively capture
ribosome collisions.
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Chapter 6

Conclusion and future work

In this thesis, we developed various statistical tests and mathematical solutions to help study
gene regulation mechanisms from high-throughput sequencing data like chromosome conforma-
tion capture data and ribosome profiling data. Pre-transcriptionally, we designed a statistical
framework to study whether functionally related elements also tend to be spatially close. Our
test is crucial in understanding the role of chromatin’s spatial arrangement in transcriptional reg-
ulation. Post-transcriptionally, we developed several methods and analysis to study key factors
that regulate translational speed. Understanding the translational dynamics is important because
it can help us understand the mechanism of protein production, and further the engineering of
protein synthesis design.

6.1 Conclusion and limitations

We first study the relationship between chromatin spatial arrangement and its functionality
in chapter 2. Specifically, we propose a statistical framework to identify spatially compact sets
that are functionally related. We construct 3C interaction graphs directly from raw 3C interac-
tion data, and we apply novel topological features for a chromatin spatial closeness test. Our
approach therefore avoids the computation of a three-dimensional chromatin embedding that is
often time consuming. In our statistical framework, our resampling scheme successfully controls
for chromosome-specific patterns, thus outputs robust and unbiased p-value estimations. Our ap-
proach can accurately recognize spatially compact regions across multiple chromosomes, but
misses cases where the spatially closed region is mainly located on a single chromosome. This
is because of only inter-chromosomal interactions are included for constructing the 3C graph.

We then study translational dynamic regulations from ribosome profiling data. Ribosome
profiling is a powerful technique to study translational dynamics by capturing ribosome loca-
tions during translation. It provides a picture of where ribosomes are over time. However,
several challenges need to be addressed to convert raw ribo-seq reads to ribosome locations.
In this thesis, we tackle two of the main challenges in ribo-seq read processing. Particularly,
we presented an automatic pipeline in Chapter 3 to resolve multi-mappings in ribo-seq reads
and output isoform-level ribosome profile estimation. This is the first systematic approach to
handle multi-mappings caused by alternative splicing, which is shown to be the main cause for
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multi-mappings in mammalian ribo-seq data. By reasoning that transcript abundance partially
determines the observed ribosome pileups, we assign ribo-seq reads to candidate locations with
the guidance of transcript abundance estimation. Our approach accurately recovers the true ribo-
some profiles from synthetic ribo-seq data, and therefore improves overall transcript-level total
ribosome load estimations. One of the remaining challenge in such a read-assignment scheme
is to simultaneously model ribosome movements and estimate translation rate while assigning
ribo-seq reads. The limitation of our method is that we only consider transcript abundance when
resolving multi-mapping reads. We do not make any assumptions about ribosome motion while
assigning ribo-seq reads.

We further tackle another challenge in converting ribo-seq reads to ribosome locations — es-
timating ribosome active sites from ribo-seq reads. In chapter 4, we show that imperfect digestion
during the ribosome profiling experiment complicates the observed ribosome pileups. Further,
imperfect digestions are very common among ribo-seq reads. We propose a signal processing
approach based on blind deconvolution to recover the unknown clear ribosome positions from the
blurred observations. Our estimated profiles are consistent across different read lengths, have a
sharper 3-nt periodicity — a key feature for a clean ribosome pileup signal, and retain sub-codon
resolutions for off-frame events detection. From these better estimated profiles, we compute the
codon decoding time, and show that both tRNA abundance and wobble pairing affect translation
speed — a conclusion that is inline with our prior understanding about translation, but was not
observable from the original ribosome profiles. This shows that our method successfully unveils
biologically meaningful insights from the noisy ribo-seq data. The limitation of our method is
that we assume that each read length shares a universal digestion pattern, while other factors such
as sequencing bias and read positions might also alter such a pattern.

Finally, in chapter 5, we provide the first genome-wide analysis on ribosome-collisions in
yeast. This is the first attempt to study extreme local ribosome slow-downs during translation
with the help of a modified ribosome profiling experiment that captures ribosome collisions.
Our preliminary analysis suggests that ribosome collisions might be random and rare, and the
sequencing depth in our experiments is not sufficient to capture strong features in programmed
ribosome stalling.

6.2 Future work
For the problem of using topological properties of 3C graph to infer spatial proximity, incor-

porating 3C interactions within a chromosome into spatial compactness test still remains to be
challenging. Normalization schemes are yet to be developed to embed these data into 3C graph
without diluting the spatial closeness estimation from 3C interactions among different chromo-
somes.

For the problem of resolving multi-mappings in ribo-seq data, our method can be strength-
ened by incorporating position-wise ribosome occupancy probabilities into the framework. How-
ever, currently there is no universally recognized approaches to model ribosome movements, yet
the choice of such a model will largely affect the results of assigning ribo-seq reads. Therefore,
a valid model of ribosome occupancy probability will surely improve the estimation of ribosome
profiles.
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For the problem of recovering ribosome A-sites from ribo-seq reads, it would be beneficial
to extend our approach to take into account other factors that might influence ribo-seq digestion
patterns, such as sequencing bias and positional preferences. It would also be of great use to
the community if de-convolving multi-mapping reads and recovering ribosome active site can be
combined into a unified pipeline. A new objective function that captures both intents needs to be
developed.

For the problem of quantifying ribosome collisions, one of the challenges in capturing ri-
bosome collision is that the size of two collided ribosome back to back is similar to the size of
typical contaminants in ribo-seq reads. Unlike the classical ribosome profiling, where contam-
inants can be easily removed by a physical size selection step, here, contaminants need to be
targeted by special agents for removal. However, effectively removing these contaminants will
substantially strengthen the amplification of the true signals during PCR. Further, if ribosome
collisions are indeed rare, then the signal-to-noise ratio for detecting ribosome collisions is ex-
pected to be low, thus accurately quantifying ribosome collisions will be difficult. To amplify the
signal-to-noise ratio, inducing ribosome stalling might be a necessary step in cell preparation.
Therefore, any biological conclusions on programmed ribosome stalling determinants hinge on a
better experiment design to effectively capture ribosome collisions, along with the reproducibil-
ity of the discoveries across multiple biological replicates.

Together, this thesis provides several methods to prepare two types of high-throughput se-
quencing data to study gene regulatory mechanisms. These methods are the necessary first step
to explore mechanism of genome structure and translational control.
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Changes of Translation Efficiency from Ribosome Footprints. bioRxiv, page 017111,
2016. 1.1, 1.2.3

[188] Christophe Zimmer and Emmanuelle Fabre. Principles of chromosomal organization:
lessons from yeast. J. Cell Biol., 192(5):723–733, 2011. 2.6.5

[189] Boris Zinshteyn and Wendy V Gilbert. Loss of a conserved trna anticodon modification
perturbs cellular signaling. PLoS Genet, 9(8):e1003675, 2013. 1.2.1

[190] Reimo Zoschke and Alice Barkan. Genome-wide analysis of thylakoid-bound ribosomes
in maize reveals principles of cotranslational targeting to the thylakoid membrane. Pro-
ceedings of the National Academy of Sciences, 112(13):E1678–E1687, 2015. 1.2.1

[191] Hermioni Zouridis and Vassily Hatzimanikatis. Effects of codon distributions and tRNA
competition on protein translation. Biophysical Journal, 95(3):1018–1033, 2008. 1.2.4

[192] A. Zupanic, C. Meplan, S. N. Grellscheid, J. C. Mathers, T. B. Kirkwood, J. E. Hesketh,
and D. P. Shanley. Detecting translational regulation by change point analysis of ribosome
profiling data sets. RNA, 20(10):1507–1518, 2014. 1.1, 1.2.3, 3.3.3, 4.2

107


	1 Introduction
	1.1 Question 1: What role does genome structure play in gene expression regulation?
	1.1.1 Chromosome Conformation Capture enables studies of genome strcture
	1.1.2 Our contributions

	1.2 Question 2: How is translation speed regulated on a per-codon basis?
	1.2.1 Ribosome profiling helps bridge the gap between transcription measurement and protein quantification
	1.2.2 Complicated experimental pipeline outputs noisy ribo-seq data
	1.2.3 Computational work on ribosome profiling data reveals genome-wide translational patterns
	1.2.4 Ribosome profiling advances translation models
	1.2.5 Challenges in ribosome profiling analysis
	1.2.6 Our contributions

	1.3 Summary

	2 Topological properties of chromosome conformation graphs reflect spatial proximities within chromatin
	2.1 Background
	2.2 Contributions
	2.3 Problem specification
	2.4 Methods
	2.4.1 Graph-based proxies for spatial closeness
	2.4.2 Scheme for spatial enrichment tests

	2.5 Data and test sets
	2.5.1 Yeast 3C interaction data
	2.5.2 Sets of yeast genomic loci of interest
	2.5.3 Selection of chromatin regions for spatial enrichment test
	Generation of synthetic cores
	Constructing spatially close sets (positive examples)
	Constructing negative examples


	2.6 Results
	2.6.1 Graph-based statistics correlate well with embedded distances on dense cores
	2.6.2 The maximum density approach identifies true compact cores
	2.6.3 An unbiased null hypothesis
	2.6.4 Topological properties as spatial proxies for spatial enrichment test
	2.6.5 Rationale for including only inter-chromosomal edges
	2.6.6 Evaluation of the spatial closeness of various yeast feature sets

	2.7 Discussion

	3 Isoform-level ribosome occupancy estimation guided by transcript abundance with Ribomap
	3.1 Background
	3.2 Contributions
	3.3 Implementation
	3.3.1 Rationale of the Ribomap footprint assignment scheme
	3.3.2 Resolving multi-mappings in ribo-seq data
	3.3.3 Ribomap pipeline
	3.3.4 Output file format

	3.4 Validation
	3.4.1 Generating synthetic footprints
	Ribosome occupancy probability
	Transcript abundance
	Ribosome footprint generation
	Introducing sequencing errors in the read set

	3.4.2 RNA-seq data generation
	3.4.3 Settings of Star prime
	3.4.4 Data used in this study

	3.5 Results and discussion
	3.5.1 Performance on synthetic ribo-seq data with known ground truth
	3.5.2 Ribomap generates more reasonable profiles
	3.5.3 Ribomap results in better ribosome load estimations
	3.5.4 Running time and memory usage of Ribomap

	3.6 Conclusion
	3.7 Appendix: Specific commands for running Ribomap
	3.7.1 Contaminated reads filtering
	3.7.2 Read mapping
	3.7.3 Transcript abundance estimation
	3.7.4 Isoform-level ribosome profile estimation


	4 Accurate recovery of ribosome positions reveals slow translation of wobble-pairing codons in yeast
	4.1 Background
	4.1.1 Identifying the active site from ribo-seq reads is a necessary first step
	4.1.2 Imperfect digestions complicate the view of ribosome pileups
	4.1.3 Existing A-site assignment heuristics cannot explain the complicated read digestion patterns

	4.2 Contributions
	4.3 Methods
	4.3.1 Algorithm overview
	4.3.2 Modeling observed profiles as blurred ribosome position signals
	4.3.3 Deblurring ribosome profiles — a least square optimization
	4.3.4 Estimating blur vectors from meta-profiles
	4.3.5 Estimating the A-site profile
	4.3.6 Codon decoding time estimation
	4.3.7 Read alignment and data preprocessing

	4.4 Results
	4.4.1 Ribosome profiles are well explained by the blur model
	4.4.2 Consistent read-length-specific profiles
	4.4.3 Improved frame skewness
	4.4.4 Deblur process produces sub-codon resolution profiles
	4.4.5 Wobble pairing codons translate slower than Watson-Crick pairing

	4.5 Discussion

	5 Genome-wide analysis on modified ribosome profiling shows no preferred locations for ribosome collisions in yeast
	5.1 Introduction
	5.2 Methods
	5.2.1 Terms and definitions
	5.2.2 Collecting singlet and doublet footprints
	5.2.3 Data preprocessing
	Raw read trimming and barcode collapsing
	Aligning reads
	Generating ribosome profiles
	High coverage filtering

	5.2.4 Identifying co-occurrence of ribosome collision and ribosome stalling
	Identifying stalling-induced collision sites (SICS)
	Identifying stalling supported collision sites (SSCS)

	5.2.5 Codon usage analysis
	5.2.6 RNA binding sites location analysis
	5.2.7 Measuring reproducibility of SICS between samples

	5.3 Results
	5.3.1 Ribosome collisions are rare and proportional to ribosome loads
	5.3.2 Ribosome collisions are depleted near start codons
	5.3.3 Ribosome collisions do not often overlap with ribosome stallings
	5.3.4 SICS shares similar codon usage with nonSICS
	5.3.5 SICS do not preferentially locate upstream of RNA binding sites
	5.3.6 SICS locations are unique to experimental conditions

	5.4 Discussion

	6 Conclusion and future work
	6.1 Conclusion and limitations
	6.2 Future work

	Bibliography

