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Abstract

The Highly Iterative Palindrome-1 (HIP1) is a highly abundant octamer palindrome motif (5-

GCGATCGC-3) found in a wide range of cyanobacterial genomes from various habitats. In

the most extreme genome, HIP1 frequency is as high as one occurrence per 350 nucleotides.

This is rather astonishing considering that at this frequency, on average, every gene will

be associated with more than one HIP1 motif. This high level abundance is particularly

intriguing, considering the important roles other repetitive motifs play in the regulation,

maintenance, and evolution of prokaryotic genomes. However, although first identified in

the early 1990s, HIP1s functional and molecular roles remain a mystery.

Here I present a comparative genomics investigation of the forces that maintain HIP1

abundance in 40 cyanobacterial genomes. My genome-scale survey of HIP1 enrichment, tak-

ing into account the background tri-nucleotide frequency in the genome, shows that HIP1

frequencies are up to 300 times higher than expected. Further analysis reveals that in

alignments of divergent genomes, HIP1 motifs are more conserved than other octamer palin-

dromes with the same GC content, used as a control. This conservation is not a byproduct

of codon usage, since codons in HIP1 motifs are more conserved than the same codons found

outside HIP1 motifs. HIP1 is also conserved on a broader scale. I predicted orthologs using

the Notung software platform and compared enrichment of HIP1 motifs with control motifs

across orthologous gene pairs. The similarity of HIP1enrichment in orthologs is significantly

higher than the control. Taken together, my results provide the first evidence for the mecha-

nism driving HIP1 prevalence. The observed conservation is consistent with selection acting

to maintain HIP1 prevalence and rejects the hypothesis that HIP1 abundance is due to a

neutral process, such as DNA repair. The evidence of selection thus suggests a functional

role for HIP1. My analysis of the genome-wide spatial distribution of HIP1 suggests that
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the motif lacks periodicity, voting against a role in supercoiling. The spatial distribution of

HIP1 motifs in mRNA transcript data from Synechococcus sp. PCC 7942 reveals a signifi-

cant 3 bias, which is suggestive of regulatory functions such as transcription termination and

inhibition of exonucleolytic degradation. I conclude by discussing my findings in the context

of cyanobacterial evolution and propose testable hypotheses for future work.
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Chapter 1

Introduction

Repetitive sequences play important roles in prokaryotic genome architecture and evolution

(Delihas, 2011; Treangen et al., 2009). Mobile elements contribute to genome plasticity

by transposition, moving sequences around the genome. The presence of similar sequences

at dispersed locations enable illegitimate recombination, which also contributes to genome

plasticity and evolution. Some repetitive sequences, such as USSs and CRISPRs, are gate-

keepers of genome integrity, facilitating or inhibiting the acquisition of foreign DNA. Other

repetitive sequences are related to prokaryotic chromosome maintenance, such as AIMS and

Chi sequence. Bacterial repetitive motifs can also participate in transcriptional regulation

by controlling supercoiling or transcription termination (Treangen et al., 2009).

The Highly Iterated Palindrome-1 (HIP1), a palindromic motif (5’-GCGATCGC-3’), is

highly abundant in a wide range of cyanobacterial genomes from various habitats. A survey

conducted in 2011 (Delaye et al., 2011b) reveals that the high HIP1 abundance is only ob-

served in cyanobacterial genomes, among all the completely sequenced prokaryotic genomes

available at the time the study was conducted. Although discovered twenty years ago (Robin-

son et al., 1995, 1997), the functional and molecular roles of HIP1 remain a mystery. No

mechanism or biological system has been identified, to my current knowledge, that explains

the observed high level of prevalence. It is not even known whether HIP1 is under selection,

or whether HIP1 abundance is an artifact of some neutral process.

In this thesis, I present a comparative genomic analysis of the taxonomic distribution,

enrichment, and conservation of the HIP1 motif, with particular attention to evidence for

selection acting on HIP1 motifs, which could suggest a functional role.

21
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1.1 Cyanobacteria

Cyanobacteria is one of the oldest lineages on the planet. The first fossil record of cyanobacte-

ria, in the form of stromatolites, dates back to 2.8 billion years ago (Olson, 2006). Cyanobac-

teria are believed to have played important roles in shaping the atmosphere of the earth

during the Great Oxygenation Event (also known as the Great Oxidation Event) 2.4 bil-

lion years ago (Kump, 2008; Sessions et al., 2009). It is also believed that plant chloro-

plasts originated from cyanobacteria according to the endosymbiosis hypothesis (reviewed

in Brinkman et al. (2002)). With 2.8 billion years of evolutionary history, currently existing

cyanobacterial genomes display a high level of diversity (Whitton, 2012; Whitton and Potts,

2000). Many cyanobacterial species are capable of photosynthesis and nitrogen fixation.

Interestingly, cyanobacteria are among those few prokaryotes that display multicellularity,

including cell type differentiation and cell-cell communication. Cell type is one important

basis for cyanobacterial taxonomy (Rippka et al., 1979). The current commonly used tax-

onomy classifies the cyanobacterial phylum into five subsections, based on cell morphology

and development (Rippka et al., 1979; Shih et al., 2013). Subsections I and II are unicellular

cyanobacteria. Subsection I (Chroococcales) are strains that undergo binary fission for re-

production, while Subsection II (Pleurocapsales) are strains that undergo multiple fissions.

Subsections III, IV, and V are multicellular cyanobacteria capable of forming filaments, long

chains of individual cells. Subsections IV (Nostocales) and V (Stigonematales) are strains

capable of differentiating into specific cell types, such as heterocysts. Although the original

classification has been revised based on molecular data, the taxonomy based on the five

subsections remains. Another important feature of this group of species is a circadian clock,

which allows some cyanobacterial strains to undergo circadian regulation of gene expression

(Dvornyk et al., 2003; Loza-Correa et al., 2010). It is worth mentioning that while many

cyanobacteria are free-living, some form symbiotic relationships with other organisms, in-

cluding fungi, corals, and angiosperm plants. Cyanobacterial toxins are among the most

powerful known poisons in nature, posing potential health risks. Furthermore, cyanobac-

teria have been used as tools in biotechnology applications, such as biofuel synthesis, food

production, pharmaceuticals, and bioremediation (Abed et al., 2009).
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1.1.1 Ecology and lifestyles

Over the course of evolution, species in the current cyanobacterial lineage have developed var-

ious kinds of sophisticated systems to adapt to their living environment. Some of these (like

the circadian clock) are considered signature features that are rarely observed in prokaryotes

outside of the cyanobacterial lineage. Considering that the hyper-abundance of HIP1 motif

is only observed in cyanobacteria among prokaryotes (Delaye et al., 2011b), it is a valuable

practice to study those features that are unique to cyanobacteria or that are only found in

a few other groups. Here, I briefly review the most salient cyanobacterial features.

Photosynthesis

Photosynthesis is the process of converting light energy into chemical energy that is usable for

various cellular activities. The name of cyanobacteria is actually related to photosynthesis,

as cyan means blue in Greek. Some of the earliest described cyanobacteria are blue in color,

because of the bluish pigment phycocyanin, which cyanobacteria utilize to capture the light

for photosynthesis. Interestingly, it is believed that photosynthesis in eukaryotes (algae and

plants) is descended from cyanobacterial photosynthesis, according to the endosymbiotic

theory, which is supported by both morphological and molecular evidence (Baum, 2013;

Keeling, 2010; McFadden and van Dooren, 2004).

In most known cyanobacteria, Photosystems I and II are the major components for pho-

tosynthesis. However, the photosynthetic machinery varies across cyanobacterial species.

Genomic data reveal that not all species have the same set of Photosystem I and II genes

(Mulkidjanian et al., 2006). In addition, a range of photosynthetic pigments are used to cap-

ture light at different wave lengths in different species. The basal cyanobacterium Gloeobacter

violaceus is unique among cyanobacteria in that it does not have thylakoid membranes, the

subcellular location where the light-dependent reaction of photosynthesis occurs in most

cyanobacteria. In contrast, photosynthesis occurs in the plasma membrane in Gloeobac-

ter (Nakamura et al., 2003). In addition, many genes for Photosystem I and II are absent

from this genome.
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Nitrogen fixation

Many cyanobacteria are capable of nitrogen fixation, in which inorganic nitrogen gas (N2)

from the atmosphere is converted into ammonia, nitrites or nitrates. Nitrogenase, the key

enzyme for this process, has been identified in many cyanobacterial genomes. However, not

all cyanobacteria are nitrogen-fixing, and diazotrophs are found in many other prokaryotic

phyla.

Circadian clock

Oxidative photosynthesis and nitrogen fixation are incompatible processes, as photosynthesis

creates a highly oxidative local enviroment, and nitrogenase, the key enzyme for nitrogen

fixation, is inactivated by oxygen. Species that perform both functions have acquired vari-

ous mechanisms for isolating theses environments from each other. One strategy is temporal

separation of the two incompatible processes. It has been observed for many cyanobacteria,

that there exists a circadian rhythm of gene expression (Dvornyk et al., 2003), in which dif-

ferent sets of genes are expressed during different temporal intervals over the course of a day.

One early study by Liu et al. (1995) suggested that almost all promoters are rhythmically

regulated. Three key genes have been identified that control this cyanobacterial circadian

clock system, namely KaiA, KaiB, and KaiC (Ishiura et al., 1998). Genome-wide scanning

has shown that these three genes are present in current completely sequenced cyanobacterial

genomes, except that KaiA is missing in some marine pico-cyanobacteria, KaiA and KaiB

are missing in cyanobacterium UCYN-A, and none of the three were found in Gloeobacter

(Axmann et al., 2014). Further, KaiA orthologs are only found in cyanobacterial genomes.

These observations suggest that the circadian system evolved within the cyanobacterial lin-

eage. Numerous additional genes involved in this circadian system have been identified in

the last decades (Katayama et al., 1999; Schmitz et al., 2000). The cycling of the phospho-

rylation status of KaiC protein, which is the output of the KaiABC central oscillator, was

reconstructed in vitro (Nakajima et al., 2005). However, it is still unknown how the central

oscillator, which is composed of KaiABC, controls global gene expression (Dvornyk et al.,

2003; Loza-Correa et al., 2010). It has been speculated that this global gene expression

oscillation is regulated at a chromosomal level, and the rhythmic changes of the topology
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of the entire chromosome (e.g., via super-coiling) could explain the global circadian rhythm

(Smith and Williams, 2006; Vijayan et al., 2009; Woelfle et al., 2007).

In addition to the core oscillator genes (KaiABC), other genes have been identified par-

ticipating in the input (PexA, ldpA, and CikA) and output (CikA, SasA, LabA, and RpaA)

pathways to the central circadian oscillator (recently reviewed in Axmann et al. (2014)).

Among them, CikA has a dual role in both input and output pathways. CikA is destabilized

by oxidized quinones, and affects the KaiC phosphorylation via an unknown mechanism.

On the other hand, in the output pathway, CikA interacts with phosphorylated KaiBC

complexes and inhibits RpaA, which has a DNA-binding domain. RpaA is currently the

final component of the output pathway, and its target(s) and impact on chromosome topol-

ogy have not been identified. Therefore, how RpaA affects the chromosome topology and

regulates the global gene expression is currently the missing link in the cyanobacterial circa-

dian system. CikA, LabA, and SasA participate in the output pathway by interacting with

KaiBC complexes and activate or inhibit RpaA. Among these input and output genes, LabA

and CikA are missing in marine pico-cyanobacteria, PexA, LdpA, and LabA are missing in

cyanobacterium UCYN-A, and Pex, CikA, and SasA are missing in Gleoebacter (reviewed in

Axmann et al. (2014)). It is not clear if exist circadian systems in the genomes of Gleoebacter,

cyanobacterium UCYN-A, and marine pico-cyanobacteria.

Cell types

Another strategy for separating nitrogen fixation and photosynthesis is differentiation into

distinct cell types, with different functional roles. The various cell types allow spatial sepa-

ration of the two incompatible processes. For example, in some strains from family Nosto-

caceae, two types of cells can be observed: the common vegetative cells for photosynthesis,

and thick-walled heterocysts where nitrogen fixation occurs (reviewed in Wolk et al. (2004)).

Cyanobacteria are also capable of other forms of cell type differentiation. When the

living environment becomes harsh, some species can form a spore-like dormant cell called an

akinete. Thanks to thick cells wall and food reserves, akinetes have enhanced survivability.

Cyanobacterial cells of Subsections III, IV, V can form filaments, also called trichomes,

long chains of individual cells. Filaments can break into shorter reproductive filaments with
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gliding motility. Filament fragments released from an immotile parental filament are called

Hormogonia (reviewed in Rippka et al. (1979)).

1.2 Bacterial small repeat sequences

Various types of small repeat sequences exist in bacterial genomes, and they have different

impacts on bacterial genome evolution. Many repetitive sequences described in the literature

are related to or are themselves mobile elements. The Repetitive Extragenic Palindromic

sequences (REPs) have imperfect palindromic core sequences, are 20-60 bp long and occur

hundreds of times in a wide range of bacterial genomes (Stern et al., 1984; Versalovic et al.,

1991). Some REP sequences are specific targets for insertion elements. The relationship

between REPs and mobile elements has been systematically studied in Tobes and Pareja

(2006), and it was found that some Insertion Sequence (IS) elements interact specifically

within REPs. The REP sequence has been proposed to replicate itself by an RNA-mediated

mechanism of gene conversion that maintains its prevalence within the genomes (Higgins

et al., 1988). As one of the earliest discovered repetitive sequence, numerous functional roles

have been proposed for REPs. It has been suggested that REP sequences are involved in

transcription termination based on the observation that most REP motifs are located near

the 3-terminus of genes (Gilson et al., 1986; Manzanera et al., 2001). This hypotheses was

later tested experimentally by Aranda-Olmedo et al. (2002), who observed no terminator

activity associated with REP sequences experiments with plasmids possessing introduced

REP elements in Pseudomonas putida. This hypothesis has not been tested in other species,

to my knowledge. REPs are also proposed to be related to mRNA stabilization, control

of translation and genomic rearrangements (reviewed in Treangen et al. (2009)). Various

studies also suggested that REPs are the binding sites for DNA polymerase I, DNA gyrase,

and integration host factor (reviewed in Treangen et al. (2009)), which could potentially be

related to DNA physiology in bacteria. It was observed that REP can fold into small stem

loops (Higgins et al., 1982; Stern et al., 1984), suggesting possible secondary structures at

the DNA or mRNA level, with potential functional importance. Interestingly, the genome-

wide distribution of REPs can be either dispersed or clustered. In the latter case, clusters

of REP sequences are called Bacterial Interspersed Mosaic Elements (BIMEs) (Bachellier
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et al., 1994). BIMEs typically consist of tandemly repeated doublets of two closely spaced

REP elements (Gilson et al., 1991). In E. coli, important proteins were reported to interact

wtih REPs or BIMEs, including integration host factor, DNA gyrase and DNA polymerase

I (reviewed in Nunvar et al. (2013)). Interestingly, BIMEs have also been shown to protect

mRNA from 3’ exonucleolytic degradation by exonuclease III (McLaren et al., 1991; Newbury

et al., 1987; Py et al., 1996).

Miniature Inverted-repeat Transposable Elements (MITEs), also known as class III trans-

posons, are present in many bacterial and eukaryotic genomes (Fattash et al., 2013). Bac-

terial MITEs are usually between 100 and 400 bp in length, and have a relatively complex

structure. Each MITE contains a core sequence, flanked by terminal inverted repeats, which

can carry open reading frames (reviewed in Delihas (2011)). MITEs are incapable of self-

transposition. MITEs are generally believed to be derived from IS (Jiang et al., 2004). A

number of short repeats that have been reported in specific studies, including the RUP mo-

tif in Streptococcus, the ERIC motif in Enterobacteriaceae, and Correia in Neisseria, have

MITE-like properties and could be considered members of this class (Delihas, 2011).

Shorter repeated units are also common, and are observed both in tandem arrays and

dispersed around the genome. A number of known bacterial short repeats are of functional

importance. Some of them have functions that are strongly supported by experimental evi-

dence, while others are speculated to be associated to certain biological functions. Architec-

ture IMparting Sequences (AIMS) are non-palindromic octamers responsible for maintaining

chromosome architecture, allowing for orderly replication and segregation (Hendrickson and

Lawrence, 2006). AIMS are strand-biased, and are overrepresented on one DNA strand.

Further, AIMS on leading strands are increasingly abundant toward replication termini, al-

lowing proteins with functions related to chromosome replication and segregation to find

the replication termini. It is reported that AIMS have been identified in nearly all bacterial

genomes (Hendrickson and Lawrence, 2006).

Another non-palindromic octamer, the Chi site, is associated with recombination hotspots,

and found to be involved in recombinational repair of DNA (reviewed in (Smith, 2012)).

Similar to AIMS, the distribution of Chi sequence is found to be strand-biased in bacterial

genomes, which higher abundance in the leading strand (El Karoui et al., 1999; Uno et al.,
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2000)

Highly Repetitive Motifs (HRMs) found in Lactococcus latis are 13 bp long non-palindromic

dispersed motifs (Mrazek et al., 2002). More than 2000 copies have been identified in that

genome. An analysis by Mrazek et al. (2002) shows that HRMs are more frequently present

in close proximity to the 3’-end of genes, as suggested by the distributions of distances to the

starts and ends of genes. Based on this observation, it has been hypothesized that HRMs

might be related to transcription termination. The distribution of the spacing between two

neighboring HRMs (either on the same strand or not) reveals a strong periodic pattern of

10 bp at the whole genome level. The spacing analysis also showed that HRM motif and

the inverted complement of HRM often form close dyads, separated by ≤20 bp. In two

smaller genomic regions (380 bp and 455 bp), r-scan analysis demonstrated that HRM has

a periodicity of 59 bp.

Many bacterial short repeats are related to controlling the influx of foreign genetic ma-

terial. Some of these promote the uptake of foreign genetic material. For example, DNA

Uptake Short Sequences (USSs) are ∼10 bp long motifs, first found in Haemophilus influen-

zae (Smith et al., 1999), that allow the species to be naturally transformable. It has also

been suggested that USSs could be related to transcription termination given that they are

frequently located within transcription terminators (Smith et al., 1999). This hypothesis has

never been tested systematically to my knowledge.

In contrast, Clustered Regularly Interspaced Palindromic Repeats (CRISPRs) are direct

repeats of palindromic sequences ∼30 bp in length, with spacer DNA separating the repeats.

Approximately 40% of sequenced Eubacterial and 90% of sequenced Archaeal genomes con-

tain at least one CRISPR locus, according to CRISPRdb (Grissa et al., 2007). Recent

studies suggest that CRISPRs act as a prokaryotic immune system that provides resistance

to alien genetic material (Barrangou et al., 2007). Interestingly, the CRISPR system has

been utilized as an effective bioengineering tool for genome editing and gene regulation in

both prokaryotes and eukaryotes (Mali et al., 2013).

Many of these various types of repeats are also observed in Cyanobacterial genomes.

Short Dispersed Repeats (SDRs) are found in a wide range of cyanobacterial genomes, with

lengths 16-40 bp (Elhai et al., 2008). Their primary sequences are non-symmetrical and
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non-palindromic. However, SDRs are predicted to form similar secondary structures (Elhai

et al., 2008). Alignments of homologous regions revealed SDR insertions within genomes,

suggesting they are mobile elements. Elhai et al. (2008) identified eight classes of SDRs

(SDR1-8). Among them, all classes of SDRs are present in the three tested genomes from

the heterocyst-forming Nostocaceae clade, with at least 10 occurrences per genome. Outside

of the Nostocaceae clade, SDR1 and SDR7 were found in four cyanobacterial genomes with

lower frequency (less than 10 per genome). No SDR has been detected in marine pico-

cyanobacteria. Most interestingly for this thesis, SDR5 has a specific insertion target site,

which is the HIP1 motif. However, no SDR5-like sequences were detected in HIP1-rich

cyanobacterial genomes outside of Nostocaceae clade (Elhai et al., 2008), suggesting it is

unlikely that HIP1 acts as an insertion site for SDR, as its primary function.

Aside from SDR repeats, various types of small repeats have been documented in cyanobac-

terial genomes. Katayama et al. (2002) reported tandem repeats, with length 7-14 base-

pairs, in five cyanobacterial genomes (Nostoc sp. PCC 7120, Synechocystis sp. PCC6803,

Thermosynechococcus elongatus BP-1, Synechococcus sp. WH8102 and Prochlorococcus mar-

inus CCMP1986) with abundance ranging from 29 in Prochlorococcus marinus CCMP1986

to 294 in Nostoc sp. PCC 7120. Several thousand MITE occurrences have been identified in

17 cyanobacterial genomes by Lin et al. (2011). Kaneko et al. (2007) identified eight groups

of putative MITE sequences in the cyanobacterium Microcystis aeruginosa. MITEs have

been found inserted into microcystin genes in an Anabaena strain isolated from the Baltic

Sea (Fewer et al., 2011), leading to the inactivation of these genes. Interestingly, in a study

by Treangen et al. (2009), the cyanobacterial genome Microcystis aeruginosa NIES-843 is

found to be among the top ten genomes with highest repeat coverage, out of 659 bacterial

genome analyzed. Repetitive regions make up 20.4% of its 5.8 Mb genome. In the same

study, the cyanobacterial genome Prochlococcus marinus MIT 9312 was found to be among

the ten genomes with the lowest repeat coverage. Other marine pico-cyanobacteria have very

low repeat coverage as well.

In summary, many functions are ascribed to bacterial repetitive sequences. Sequences

such as REP and BIME contribute to genome plasticity by transposition. Similar repetitive

elements at dispersed location may enable illegitimate recombination, which also contributes
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to genome plasticity and evolution (e.g. the Chi sequence). Some repetitive sequences,

such as USSs and CRISPRs, are gatekeepers of genome integrity, facilitating or inhibiting

the acquisition of foreign DNA. Repetitive sequences contribute to prokaryotic chromosome

maintenance, such as the Chi sequence. Repetitive sequences have also been found to be

involved in chromosome replication and segregation. Further, bacterial repetitive motifs can

also potentially be involved in transcriptional regulation by controlling supercoiling, and

transcription termination (e.g. REP, HRM).

1.3 Highly Iterated Palindrome-1 motifs

Highly Iterated Palindrome-1 (HIP1) is a highly abundant DNA motif uniquely found in

cyanobacteria. First identified in early 1990s, this octamer motif (5’-GCGATCGC-3’) is

over-represented in a wide range of cyanobacterial genomes from various habitats (Robinson

et al., 1995, 1997). HIP1 abundance can be as high as one occurrence per 500 nucleotides

on average, which is rather astonishing considering that at this frequency, on average, every

gene in that genome will be associated with more than one HIP1 motif.

The functional and molecular roles of HIP1 have remained a mystery for more than 20

years. Robinson et al. (1997) proposed and tested the hypothesis that HIP1 might function

as a protein binding site. They tested this hypothesis using Electrophoretic Motility Shift

Assays (EMSA), which failed to unambiguously identify any protein that binds specifically

to HIP1 motifs in Synechococcus sp. PCC 7942. Given that their results reflected only one

cyanobacterial strain and were based on the technology that was available at the time, the

role of HIP1 as a potential binding site for protein-DNA interaction remains unresolved.

Akiyama et al. (1998) hypothesized that HIP1 may be involved in site-specific recom-

bination of plasmids in Synechococcus sp. PCC7002, but this hypothesis has never been

tested. Elhai et al. (2008) proposed, based on the scanning of short mobile elements in

16 cyanobacterial genomes, that HIP1 could be an insertion site for mobile element Short

Disperse Repeat-5 (SDR5) in the Nostocaceae lineage. However, no SDR or SDR-like repeat

was found in any HIP1-enriched cyanobacterial genome outside of the Nostocaceae lineage.

Though SDR may have a functional association to HIP1 in Nostocaceae, it is very unlikely

that SDR5 can entirely explain the biological functional of HIP1, given the much wider
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phylogenetic distribution of the HIP1 motif.

A more recent analysis, based on 40 cyanobacterial genomes, used a phylogenetic profiling

approach (Pellegrini et al., 1999) to infer HIP1 function (Delaye et al., 2011b). One goal

of the study was to establish a functional linkage for HIP1, by association analysis between

HIP1-enriched and non-HIP1-enriched cyanobacterial genomes. The authors first searched

for a single PFAM protein domain whose phylogenetic distribution matched the presence

and absence of HIP1 hyper-abundance across the 40 cyanobacterial genomes analyzed. Their

phylogenetic profiling was unable to identify a single PFAM domain that has the exact same

phylogenetic distribution as HIP1 hyper-abundance across the 40 genomes. However, when

protein domain architectures were used instead of protein domains for the phylogenetic

profiling analysis, Delaye et al. (2011b) identified a candidate gene family, the glucose 6-

phosphate dehydrogenase assembly protein (OpcA). OpcA is present in all the cyanobacterial

genomes studied in Delaye et al. (2011b). The gene encoding OpcA was found to have one

PFAM domain in genomes lacking HIP1, while in hyper-abundant HIP1 genomes, OpcA has

two PFAM domains: the OpcA G6PD assem (glucose-6-phosphate dehydrogenase subunit)

domain and PG binding 1 (gutative peptidoglycan binding) domain. The authors concluded

that HIP1 may be functionally linked to the opcA protein.

This result is intriguing because OpcA is cyanobacteria-specific gene with circadian tran-

scriptional regulation (Min and Golden, 2000). However, this functional correlation analysis

was performed without accounting for common ancestry. The distribution of HIP1 among

the 40 genomes is not patchy: All cyanobacterial genomes in that study possess abundant

HIP1 motifs, except Gloeobacter and the species in the marine pico-cyanobacterial clade.

Thus, much of the observed correlation between gene content and HIP1 content could be

due to inheritance from a common ancestor. A correlation model that takes phylogenetic

structure into account (Pagel et al., 2004) would be particularly important for an analysis of

HIP1 function. A second weakness of that analysis is that phylogenetic profiling is highly sen-

sitive to the accurate prediction of the trait in question, in this case HIP1 hyper-abundance.

In this study, HIP1 enrichment was assessed based on estimates of the expected number of

HIP1 motifs derived from nucleotide frequencies, only. Higher order oligomer frequencies

were not taken into account, possibly resulting in errors in the assessment of HIP1 hyper-
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abundance. In addition, in their study, cyanobacterium UCYN-A was included in the set

of genomes with HIP1 hyper-abundance, while the two Yellowstone strains were excluded.

Last but not least, phylogenetic profiling analysis based on domain presence/absence across

the genomes is highly sensitive to accurate domain annotation. Because of these difficulties,

the conclusion in Delaye et al. (2011b) is not convincing and the correlation between HIP1

enrichment and genetic function remains an open question.

It is instructive to compare the characteristics of HIP1 with the properties of the repet-

itive sequences described in the previous section. HIP1 has a very different motif length

and structure from the BIMEs and MITEs. HIP1 resembles REP in that both are palin-

dromic. However, HIP1 is perfectly conserved and much shorter than REP sequences. It is

reasonable to suggest that HIP1 might be a subtype of USS because of their similarity in

motif lengths and their quite comparable genome-wide distribution. However, this hypoth-

esis is not supported by the fact that USS conveys competency to the host genome, while a

naturally incompetent cyanobacterial strain Synechococcus sp. PCC6714 (Vioque, 2007) is

HIP1-rich. HIP1 differs from CRISPRs in that CRISPRs consist of clustered tandem short

repeats, rather than being dispersed throughout the genome like the HIP1 motif. Thus, it

is unlikely that HIP1 prevalence is related to a CRISPR-like function. HIP1 differs from

AIMS and Chi sequences in that HIP1 is palindromic and thus shows no strand bias. In

fact, although HIP1 has properties that are similar to those of various other types of bacte-

rial repeat sequences, it represents a unique combination of those characteristics: it is short,

palindromic, non-tandem and very conserved.

1.4 Thesis Overview

A review of repetitive sequences reveals their profound importance to prokaryotic genome

evolution, chromosome physiology and genetic regulation. In light of this, it is surprising how

little is known about the HIP1 motif. This lack of knowledge underscores the importance

of gaining a better understanding of the genomic behavior and biological roles of the HIP1

motifs.

The major focus of my thesis includes characterizing the taxonomic distribution of HIP1

abundance and enrichment, the spatial distribution of HIP1 motifs in genomes and within
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transcriptional units, and the conservation of HIP1 motifs in species diverging from a com-

mon ancestor. These studies are directed towards understanding how HIP1 abundance is

maintained in cyanobacterial genomes, as well as developing more focused hypotheses con-

cerning HIP1 functional roles.

1.4.1 Cyanobacterial genome data used in this thesis

The majority of the analyses reported in this thesis are based on two cyanobacterial datasets,

summarized in Table 1.1.

The primary dataset, referred to as the NCBI dataset, consists of the 40 cyanobacterial

genomes that were completely sequenced and assembled when I started my thesis research in

December, 2011. This dataset was used for the analyses of HIP1 phylogenetic distribution,

enrichment and conservation in Chapter 3 and the intra-genome HIP1 spatial analysis in

Chapter 4. This dataset, which I obtained from NCBI’s FTP site1, includes the complete

DNA sequences of all chromosomes and plasmids in each genome, as well as an annotation

table that specifies the coordinates of protein coding and RNA genes within the genome.

The details about the creation of this dataset is explained in Section 3.8.

A second dataset, based on 47 cyanobacterial genomes, was provided by Dr. Daniel

Barker (School of Biology, University of St Andrews, Scotland). A total of 39 genomes

are common to both datasets. This dataset, referred to as the Barker dataset, contains

phylogenies of 13,852 gene families from 65 species. Of these, 49 are cyanobacteria, and 16

are proteobacteria, used as an outgroup. This dataset was created from protein sequences

from the Integr8 database (Kersey et al., 2005) for the 65 species. Gene families were

predicted based on OrthoMCL 2.0 (Li et al., 2003). This dataset also contains a species

phylogeny of the 65 species. The species phylogeny was based on 147 universal, single-copy

gene families. This Barker dataset was used for ortholog prediction and calculating the KS

values in Chapter 3. The details about the creation of this dataset are given in Section 3.8.

The genomes in Table 1.1 are primarily unicellular species from Subsection I (binary

fission). There are also a number of multicellular species from Subsection IV, and one

species from Subsection III. Subsections II and V are not represented in this dataset. Despite

1URL: ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/
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Dataset1 ID2 Genome name Genome size GC% NCBI accession ID3 Taxonomy
N,B ama Acaryochloris marina MBIC11017 8.36Mb 46% NC 009925 I
B amx Arthrospira maxima CS-328 5.99Mb 45% III
N,B ana Nostoc sp. PCC 7120 7.21Mb 41% NC 003272 IV
N,B ava Anabaena variabilis ATCC29413 7.11Mb 41% NC 007413 IV
B cwa Crocosphaera watsonni WH 8501 6.24Mb 37% I
N,B cya Cyanothece sp. PCC 7424 6.55Mb 38% NC 011729 I
N,B cyb Cyanothece sp. ATCC51142 5.46Mb 37% NC 010546 I
B cyc Cyanothece sp. CCY0110 5.86Mb 37% I
N,B cyd Cyanothece sp. PCC7425 5.79Mb 50% NC 011884 I
N,B cye Cyanothece sp. PCC 7822 7.84Mb 39% NC 014501 I
N,B cyf Cyanothece sp. PCC8801 4.79Mb 39% NC 011726 I
N,B cyg Cyanothece sp. PCC8802 4.80Mb 39% NC 013161 I
N,B gvi Gloeobacter violaceus PCC7421 4.66Mb 61% NC 005125 I
B lyn Lyngbya sp. PCC 8106 7.03Mb 41% III
N,B mae Microcystis aeruginosa NIES843 5.84Mb 42% NC 010296 I
N,B naz Nostoc azollae 0708 5.49Mb 38% NC 014248 IV
N,B npu Nostoc punctiforme PCC73102 9.06Mb 41% NC 010628 IV
B nsp Nodularia spumigena CCY9414 5.30Mb 41% IV
N,B pma Prochlorococcus marinus AS9601 1.67Mb 31% NC 008816 I
N,B pmb Prochlorococcus marinus MIT9211 1.69Mb 38% NC 009976 I
N,B pmc Prochlorococcus marinus MIT9215 1.74Mb 31% NC 009840 I
N,B pmd Prochlorococcus marinus MIT9301 1.64Mb 31% NC 009091 I
N,B pme Prochlorococcus marinus MIT9303 2.68Mb 50% NC 008820 I
N,B pmf Prochlorococcus marinus MIT9312 1.71Mb 31% NC 007577 I
N,B pmg Prochlorococcus marinus MIT9313 2.41Mb 50% NC 005071 I
N,B pmh Prochlorococcus marinus MIT9312 1.70Mb 30% NC 008817 I
N,B pmi Prochlorococcus marinus NATL1A 1.86Mb 34% NC 008819 I
N,B pmj Prochlorococcus marinus NATL2A 1.84Mb 35% NC 007335 I
N,B pmk Prochlorococcus marinus CCMP1986 1.66Mb 30% NC 005072 I
N,B pml Prochlorococcus marinus CCMP1375 1.75Mb 36% NC 005042 I
N,B sel Synechococcus elongatus PCC7942 2.74Mb 55% NC 007604 I
N,B sya Synechococcus elongatus PCC6301 2.70Mb 55% NC 006576 I
N,B syb Synechococcus sp. PCC7002 3.41Mb 49% NC 010475 I
B syc Synechococcus sp. BL107 2.29Mb 54% I
N,B syd Synechococcus sp. CC9311 2.61Mb 52% NC 008319 I
N,B sye Synechococcus sp. CC9605 2.51Mb 59% NC 007516 I
N,B syf Synechococcus sp. CC9902 2.23Mb 54% NC 007513 I
N,B syg Synechococcus sp. JA-2-3B’a(2-13) 3.05Mb 58% NC 007776 I
N,B syh Synechococcus sp. JA-3-3Ab 2.93Mb 60% NC 007775 I
N,B syi Synechococcus sp. RCC307 2.22Mb 60% NC 009482 I
B syj Synechococcus sp. RS9916 2.66Mb 60% I
B syk Synechococcus sp. RS9917 2.59Mb 64% I
B syl Synechococcus sp. WH 5701 3.12Mb 65% I
N,B sym Synechococcus sp. WH7803 2.37Mb 60% NC 009481 I
B syn Synechococcus sp. WH7805 2.62Mb 58% I
N,B syo Synechococcus sp. WH8102 2.43Mb 59% NC 005070 I
N,B syp Synechocystis sp. PCC6803 3.95Mb 47% NC 000911 I
N,B syq Thermosynechococcus elongatus BP-1 2.59Mb 53% NC 004113 I
N,B syr Trichodesmium erythraeum IMS101 7.75Mb 34% NC 008312 III
N uca cyanobacterium UCYN-A 1.44Mb 31% NC 013771 I

Table 1.1: A summary of the cyanobacterial genomes used for HIP1 analysis. Genomes are
ordered alphabetically. 1N: NCBI dataset, B: Barker dataset. 2 The three-letter genome ID
used in this thesis. 3 Genomes in the Barker dataset were obtained from Inter8 and hence
do not have NCBI accession IDs.



1.4. THESIS OVERVIEW 35

the taxonomic bias among the available whole genome sequences, these datasets represent

substantial genomic and ecological variety.

Both datasets contain Nostoc azollae, which forms a symbiotic relationship with a plant,

the water-fern Azolla filiculoides. An estimated that 31.2% of the Nostoc azollae genome is

made up of pseudogenes, suggesting that it may be currently undergoing genome collapse

(Ran et al., 2010). The NCBI dataset also includes cyanobacterium UCYN-A 2 , a symbiont

of the single-celled alga Rhopalodia gibba. Cyanothece sp. UCYN-A also appears to be un-

dergoing genome reduction. Its genome is 1.44 Mb in size, compared with other Cyanothece

genomes which range from 4.5 Mb to 7.8 Mb. During the genome reduction process, it lost

several key pathways, including carbon fixation and Photosystem II (Kneip et al., 2008; Zehr

et al., 2008), which is essential for water splitting and oxygen evolution.

The marine pico-cyanobacteria are over-represented in these datasets, reflecting great

research interest in this group among the community. Marine pico-cyanobacteria are some of

the most well studied cyanobacteria, consisting of oceanic Prochlococcus and Synechococcus

species. They are believed to be the most abundant photosynthetic organisms on Earth

(Scanlan et al., 2009). Marine pico-cyanobacteria have reduced genomes, owing to genome

streamlining to adapt to nutrient-rich ocean environments. As the names suggests, marine

pico-cyanobacteria are small in sizes (< 3 µm in diameter), and hence have greater surface

area to volume ratios, which make them very efficient at nutrient uptake. Both Synechococcus

and Prochlococcus display unique oceanic distribution as well as a wide range of pigmentation

(Scanlan et al., 2009).

Both datasets contain Gloeobacter violaceus PCC 742. The genus Gloeobacter is a sister

group to all other known cyanobacteria (Nakamura et al., 2003). Gloeobacter violaceus PCC

742 is the only complete genome in this genus. Gloeobacter is believed to be the earliest

branching cyanobacterial species or a transition form, as it lacks some features found in all

other cyanobacteria.

Two thermophilic Synechococcus strains (Synechococcus sp. JA-3-3Ab (syh) and Syne-

chococcus sp. JA-2-3B’a(2-13) (syg)), isolated from a hotspring in Yellowstone National park

2This genome is currently undergoing name changing. It is currently named as Candidatus Atelocyanobac-
terium thalassa, and previously as Cyanothece sp. UCYN-A or cyanobacterium UCYN-A. In this thesis, I
refer this genome as cyanobacterium UCYN-A.
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Literature Taxa Dataset

Gupta 2009 34 cyanobacteria 45 protein families
Bandyopadhyay 2011 61 cyanobacteria 226 protein families
Larsson 2011 58 cyanobacteria 285 protein proteins

Criscuolo 2011
61 cyanobacteria , and 22
primary photosynthetic eukaryotes

191 protein families

Latysheva 2012 49 cyanobacteria and 16 proteobacteria 147 protein families
Schirrmeister 2011 58 cyanobacteria 16S rRNA
Wang 2011 58 cyanobacteria 16S-23S rRNA

Table 1.2: Recent molecular phylogenies of cyanobacteria.

(Bhaya et al., 2007), are present in both datasets. Though named Synechococcus sp. JA-2-

3B’a(2-13) (syg) and Synechococcus sp. JA-3-3Ab (syh), these strains are very different from

the marine pico Synechococcus in niche and ecology, as well as in genomic structure. Syne-

chococcus elongatus PCC7942 (sel), a genome common to both datasets, is a model organism

used to study the prokaryotic circadian clock. Microcystis aeruginosa NIES843 (mae), also

a genome common to both datasets, harbors a large number of repetitive sequences in its

genome, comprising up to ∼20% of its genome (Treangen et al., 2009). This species has been

the target of intensive study because it is responsible for toxic blooms, posing serious public

health risks.

The species tree constructed by Latysheva et al. (2012) reveals the phylogenetic rela-

tionships of genomes in the Barker dataset, reproduced here in Figure 1.1. This tree was

constructed from the concatenated sequences of 147 single copy gene families, as described

in Latysheva et al. (2012) and Section 3.8.6 on page 117. The genomes in the NCBI dataset

are labeled in red in Figure 1.1. Note that cyanobacterium UCYN-A (uca), which is in the

NCBI dataset, but not in the Barker dataset, is not represented in this tree.

This phylogeny is generally in agreement with other recently published molecular phylo-

genies for the cyanobacteria, summarized in Table 1.2. In all trees, Gloeobacter is the basal

species. The marine pico-cyanobacteria are monophyletic in all trees. In addition, all phy-

logenies place Nostocaceae strains in one clade. Similarly, all Cyanothece genomes, except

Cyanothece sp. PCC7425 (cyd), form a clade. Interestingly, Cyanothece sp. PCC7425 (cyd) is

frequently placed together with Thermosynechococcus elongatus BP-1 (syq) and Acaryochlo-

ris marina MBIC11017 (ama) (Criscuolo and Gribaldo, 2011; Larsson et al., 2011; Latysheva
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Figure 1.1: Phylogeny of the cyanobacterial genomes from the Barker dataset, rooted with
16 protobacterial outgroup species (Latysheva et al., 2012). Species in the primary (NCBI)
dataset are shown in red. The three letter genome IDs are beside the genome full names,
separated by ‘- -’. Branch length unit: substitution per amino acid site.
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et al., 2012), posing an intriguing evolutionary scenario for further study.

On the other hand, there is no consensus on the phylogenetic positions of the closely re-

lated strains, Synechococcus elongatus PCC7942 (sel) and Synechococcus elongatus PCC6301

(sya). Most studies in Table 1.2 are in agreement with Figure 1.1 regarding the position of

Synechococcus elongatus PCC7942 (sel) and Synechococcus elongatus PCC6301 (sya). How-

ever, the analysis of Gupta (2009) places Synechococcus elongatus PCC7942 (sel) and Syne-

chococcus elongatus PCC6301 (sya) as sister group to the clade containing Cyanothece and

Nostocaceae. The relationship of the Yellowstone strains Synechococcus sp. JA-2-3B’a(2-13)

(syg) and Synechococcus sp. JA-3-3Ab (syh), relative to other cyanobacteria, has also been

difficult to resolve. In most protein family-based phylogenies (Bandyopadhyay et al., 2011;

Criscuolo and Gribaldo, 2011; Larsson et al., 2011; Latysheva et al., 2012), Synechococcus

sp. JA-3-3Ab (syh) and Synechococcus sp. JA-2-3B’a(2-13) (syg) are sister taxa to all other

cyanobacterial genomes except Gloeobacter, as shown in Figure 1.1. In contrast in rRNA-

based phylogenies (Gupta, 2009; Schirrmeister et al., 2011; Wang et al., 2011), Synechococcus

sp. JA-2-3B’a(2-13) (syg) and Synechococcus sp. JA-3-3Ab (syh) are placed in a clade with

Gloeobacter, so that Synechococcus sp. JA-2-3B’a(2-13) (syg), Synechococcus sp. JA-3-3Ab

(syh), and Gloeobacter violaceus PCC7421 (gvi) together constitute the deepest branching

clade in the tree.

1.4.2 Roadmap to rest of the thesis

The rest of this thesis is organized as follows:

In Chapter 2, I describe my contributions to horizontal gene transfer inference using gene

tree-species tree reconciliation. First, I present an algorithm that ensures that inferred gene

family histories with transfers make temporal sense; that is, in a valid gene family history,

it must be possible to order all the inferred events in a manner that is consistent with

the forward progression in time. Second, I present case studies that probe the challenges

of phylogenetic transfers inference, including model choice, degeneracy of solutions, and

temporal inconsistency. I discuss the results of this study for developing best practices and

design guidelines for new methods.



1.4. THESIS OVERVIEW 39

Chapter 3 focuses on elucidating the forces that shape HIP1 abundance in cyanobacte-

rial genomes. My analysis of HIP1 enrichment, with a suitable correction for background se-

quence composition, confirms that HIP1 is a fundamental feature of cyanobacterial genomes.

I describe the discovery of a novel HIP1 variant in two thermophillic strains that were sam-

pled from hotsprings in Yellowstone National Park, and that were previously believed to

lack HIP1. Further, I present evidence of HIP1 conservation in genome pairs at appropriate

evolutionary distances that is consistent with selection acting to maintain HIP1, and allows

us to reject the hypothesis that a neutral process underlies HIP1 prevalence. The evidence,

following correction for overall selection on coding regions, suggests that HIP1 is not prefer-

entially located in coding or intergenic regions. Further, within coding regions, there is no

demonstrable preference for reading frame. Taken together, these results suggest that it is

unlikely that selection is acting on HIP1 at the codon or amino acid level.

The evidence for selection in Chapter 3 suggests a functional role for HIP1. I explore

this further in Chapter 4, focusing on the spatial distribution of HIP1. The spatial dis-

tribution of HIP1 motifs in high-resolution transcript data shows a marked 3’ preference.

This distribution is consistent with a regulatory role on the mRNA level, such as transcrip-

tion termination, inhibition of exonucleases, or formation of stable secondary structures. It

could also represent selection acting to eliminate HIP1 motifs in relatively AT-rich 5’ pro-

moter regions. Efforts to establish an association between 3’ HIP1 motif enrichment and

features related to transcription (e.g., mRNA abundance, GC content, codon usage) proved

inconclusive.
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Chapter 2

Phylogenetic Reconciliation with

Transfers

Reconciliation is a procedure wherein a gene family tree is compared with a species tree in

order to reveal events that occurred during the history of the gene family. Reconciliation

is the most robust approach to identifying orthologs (Bourgon et al., 2004; Searls, 2003).

In addition, reconciliation is used to estimate gene age and identify gene events that cor-

relate with the emergence of novel functions. Event parsimony provides a basis for rooting

an unrooted tree and for species-tree aware methods for correcting gene tree error. In a

phylogenomic context, reconciliation is used in the construction of databases of annotated

molecular phylogenies.

The earliest work on reconciliation focused only on gene duplication (D) and loss (L).

Reconciliation under a DL-model has been studied for more than 30 years, and is a well

understood problem. Reconciliation with horizontal gene transfers (HGTs), however, is a

more complex and difficult problem. When the event model includes transfers, there may

be more than one, and possibly many, optimal event histories. Software is required that

can generate all optimal histories efficiently and then present this information to the user

in a way that is not overwhelming. Another challenge is that it is possible to generate

mathematically optimal histories that are biologically unacceptable because they imply a

41
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temporal ordering of events that cannot be realized without the aid of a time travel machine.

These conflicts must be recognized and conveyed to the user. Software packages to support

reconciliation with transfers are relatively new. There is no agreement on how to meet these

challenges. Community consensus on best practices for the application of such tools has yet

to be established.

As a doctoral student, I participated in a collaborative project to develop Notung 2.71,

reconciliation software that supports an event model with transfers. In contrast to published

algorithms which do not include losses in the optimization criterion (Berglund-Sonnhammer

et al., 2006; Ma et al., 2000; Tofigh et al., 2011; Zmasek and Eddy, 2001), we developed algo-

rithms for inferring tranfers together with duplications and losses. Unlike other algorithms,

Notung reports all optimal solutions that are temporally feasible. Further, our algorithm

is the first to infer transfers when reconciling a binary gene tree to a non-binary species

tree. In addition, it includes a heuristic to distinguish between incongruence arising from

either uncertainty or Incomplete Lineage Sorting (ILS) and incongruence arising from gene

duplications, and transfers. Notung 2.7 was released on September 2012, and was described

in a paper published in Bioinformatics (Stolzer et al., 2012).

Development of Notung 2.7 was a team effort and I participated in many aspects of the

project in a collaborative way. Two aspects of the project are uniquely mine: first, I devel-

oped an algorithm for testing whether a candidate optimal solution is temporally feasible

and implemented this algorithm in Notung; second, I carried out an empirical investigation

of algorithm performance on two biological datasets, with particular attention to how the

event model and the choice of event costs influences the number and types of events inferred,

the frequency of degenerate solutions, and the frequency of temporally infeasible solutions.

I also investigated the potential for overestimating events when the branching order of the

species tree is poorly resolved. The lessons learned from these case studies provided us with

a deeper understanding of the challenges posed by reconciliation with transfers and had a

significant impact on downstream design decisions. The results of both contributions were

reported in Stolzer et al. (2012).

In Section 2.1, I give a general review of methods for HGT inference, with a focus

1URL:http://lampetra.compbio.cs.cmu.edu/Notung/index27.html
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on transfer in prokaryotic genomes. In 2.2, I review phylogenetic reconciliation, paying

particular attention to the challenges that arise when transfers are included in the event

model. My specific contributions are described in Section 2.4 and Section 2.5.

2.1 Inference Methods for Horizontal Gene Transfer

Horizontal Gene Transfer (HGT) refers to the exchange of genetic material between species

that are not vertically related. In eukaryotes, HGT events are considered to be rare, while

in prokaryotes, HGT occurs much more frequently (Ochman et al., 2000). For example,

Medigue et al. (1991) suggested that approximately 15% percent of the E.coli genome is

subject to HGT activities. HGT is an important aspect of bacterial genome evolution, allow-

ing for rapid acquisition of new systems for adaptation. This is seen in bacterial pathogens,

which can acquire antibiotic resistance genes horizontally (Courvalin, 1994).

Elucidating HGT is very important when studying gene functions in bacteria. Currently,

the ortholog-based approach still plays a major role in bacterial gene annotation and func-

tional prediction. The underlying assumption is that orthologous genes perform similar

biological functions. When a horizontally transferred gene is mistaken for an ortholog, a

function might be assigned to that gene erroneously.

In addition, the prevalence of horizontally transferred regions in bacterial genomes makes

prokaryotic phylogeny reconstruction a very complicated problem, as different parts of the

genome may be of different evolutionary origins (Gogarten et al., 2002). A common question

for bacterial evolution is whether it is meaningful to use a species phylogeny to represent

bacterial evolution (Gogarten et al., 2002; Kunin et al., 2005).

Therefore, detecting HGT activity and identifying possible horizontally transferred genes

is critically important in the study of bacterial genome evolution and the biological function

of genes.

Currently, there are two major strategies for inferring HGT activities: (1) parametric

methods, and (2) phylogenetic methods. Parametric methods infer HGT largely based on

sequence features, such as GC content. Phylogenetic methods, on the other hand, uti-
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lize phylogenetic signals for detecting HGTs. Though fundamentally different in technique,

parametric and phylogenetic methods are complementary approaches that have their own

respective advantages and disadvantages. In practice, it is recommended that both types of

approaches be used for studing potential HGT in the biological scenario of interest (Fitz-

patrick, 2012).

2.1.1 Parametric Methods

Most parametric methods focus on one genome of interest, and detect HGT activity in that

particular genome by identifying regions with sequence composition that strongly deviates

from the rest of the genome. In addition to sequence signatures such as atypical sequence

composition, genomic context such as surrounding transposase genes can also be used as

effective predictors of HGT activity (Hacker et al., 1997).

Commonly used genomic features for HGT detection include nucleotide composition,

oligonucleotide spectrum, and codon usage. Genomic composition can be used for inferring

HGT activity, because bacterial nucleotide composition varies widely. For example, even

within the relatively closely related marine pico-cyanobacterial lineage, the genomic GC

content can vary from 30% in Prochlorococcus marinus CCMP1986 to 60% in Synechococcus

sp. WH7803 (see Table 1.1). Thus, GC content can be used as a genome-specific signature

for identifying recent HGT, when the genomic signatures from donor and recipient differ

significantly. In practice, the GC content at the first and third codon positions are often

used for inferring transferred genes (Lawrence and Ochman, 1998).

GC content is a special case of the k-mer spectrum method. Instead of using one single

k-mer motif as a genomic signature, the k-mer spectrum method assesses the frequency of

all possible k-mers in a particular genome. For example, dinucleotide biases were used as a

genomic signature to discriminate between sequences from different genomes (Karlin, 1998;

Karlin et al., 1995). The k-mer spectrum tends to vary more between genomes than within

genomes, suggesting a fairly good signal-to-noise ratio for use as a genomic signature for

detecting HGT activity (Reviewed in Ravenhall et al. (2015)). The choice of the value of

k controls the predictive power, as well as the complexity of the calculation. Currently,
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di-, tri-, and tetra nucleotide frequencies have all been frequently used for inferring HGT

activity (Delaye et al., 2011a; Dufraigne et al., 2005).

Codon usage bias is also a very powerful measure for predicting HGT, as each genome

has a characteristic preference for certain synonymous codons (Karlin, 1998; Karlin et al.,

1999). When using this feature, a gene is predicted to be foreign, if the codon usage in that

gene is significantly different from the genome-wide codon usage.

For parametric methods for detecting HGT, genes are often used as the units for pre-

diction. A sliding window of fixed length is also frequently used. A longer window size can

better tolerate the within-genome variability; however, it will be worse at the detection of

HGT in smaller segments (Ravenhall et al., 2015) Many studies have focused on detecting

larger alien genomic regions, termed genomic islands, with typical lengths 10-200kb. For

example, Chatterjee et al. (2008) proposed a method for detecting genomic islands by com-

paring tetra-nucleotide frequencies within a sliding window against that in randomly sampled

genomic regions of the same size.

More recently, clustering-based methods have been used to infer sets of genes within a

particular genome that are likely to be of foreign origin. These methods are based on the

idea that alien genes are likely to possess properties that are similar to each other, and hence

form a cluster in sequence space (reviewed in Azad and Lawrence (2012)).

Genomic context is also frequently used as a predictor of HGT activity. The presence

of surrounding repetitive sequences, such as transposase, integrase or tmRNA genes, may

indicate a horizontally acquired genomic region. Furthermore, regions introducing disruption

in gene order, when compared to a closely related sister genome, are indicators of potential

HGT activity. For example, a gene forming part of a non-native operon, when all the other

genes in that operon are native as evidenced by sister genomes, could be considered to be

subject to HGT activity (reviewed in Ravenhall et al. (2015)).

One notable limitation of parametric methods is that the transferred segments need to

display a significant level of difference in terms of sequence signal, compared to the host

genome. Such difference in signal can be hard to achieve when (1) the transfer donor and

recipient of the transfer have similar levels of the sequence signal of interest, and more com-

monly (2) the transfer event is ancient and the transferred regions have adopted sequence
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features of the host genome. This occurs because transferred genes are subject to the direc-

tional mutation pressures of the recipient genome, a process called amelioration (Lawrence

and Ochman, 1997). In addition, the fact that a bacterial genome may have regions with

atypical composition that are not due to HGT, but rather resulted from functional con-

straints such as codon selection, may also introduce noise that can lead to false positive

predictions.

In general, parametric methods are particularly useful when closely related genomes are

not available, hence comparative genomics-based phylogenetic methods are not possible.

2.1.2 Phylogenetic Methods

Phylogenetic methods use information about species relationships to infer horizontal gene

transfer. Phylogenetic methods can be loosely further classified into two categories: the

implicit and explicit methods.

Implicit phylogenetic methods

The implicit methods examine evolutionary distance, sequence similarity, or patterns

of presence/absence across species, without explicitly modeling horizontal transfer events.

Most implicit methods do not require species or gene phylogenies, and rely on extracted

signals that can be used as evidence for potential HGT activities.

A simple implicit approach is to detect highly similar sequences in distantly related

genomes. For example, Nelson et al. (1999) used BLAST to search for foreign genes in the

eubacterial species, Thermotoga maritima. For certain T. maritima query sequences, the top

BLAST hits were archaeal genes, rather than genes from more closely related eubacteria,

suggesting that the query genes are of archaeal origin. The discrepancy between gene and

species divergence can also be used for inferring HGT without explicitly comparing the

trees (Novichkov et al., 2004). According to the molecular clock hypothesis, orthologous

genes should evolve in a consistent, clock-wise fashion across species. Under this assumption,

the divergence between orthologous genes should be proportional to the divergence between
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their corresponding species. A discrepancy between gene and species divergence times may

indicate potential HGT events. One application of this approach is to look for outliers in

the distribution of similarity scores between homologous genes. Statistical tests, such as the

Spearman rank correlation-based test used by Lawrence and Hartl (1992) and the likelihood

ratio test used by Dessimoz et al. (2008), have been applied to identify transferred genes

with similarity scores that significantly differ from genes in the same family.

Phylogenetic profiles, i.e., the pattern of presence and absence of gene family members

across species, can also be used to identify horizontally transferred genes (Pellegrini et al.,

1999). In this case, a gene that lacks homologs in closely related genomes, but possesses

homologs in more distant genomes, may have been horizontally transfered. The presence/

absence pattern can be extended to include counts of gene family members that can be used

to reconstruct the evolutionary scenario along the species tree (Pagel, 1999).

Explicit phylogenetic methods

Explicit phylogenetic methods are based on comparing the gene family tree with the

corresponding species tree. Incongruence between the two trees is interpreted to be due

to an evolutionary event or phenomenon that interrupted standard vertical descent. HGT

activity is one source of incongruence between the species tree and the gene tree.

Subtree Pruning and Regrafting (SPR) is one explicit technique to detect HGT (MacLeod

et al., 2005). When a SPR operation is performed, an internal branch of the gene tree is

selected and cut (pruned) and then regrafted onto another branch, internal or leaf. The

edit distance between a gene tree and species tree, which is based on the number of SPR

operations required to transform the gene tree topology into that of the species tree, is a

clue to potential HGT events. However, finding the minimum number of SPR operations

between a gene tree and species tree is NP-hard (Bordewich et al., 2004).

One SPR-based software for inferring HGT events is HorizStory (MacLeod et al., 2005).

HorizStory first collapses subtrees that are identical between the species tree and the gene

tree, in order to reduce the problem size. It then recursively performs SPR operations until

the gene tree topology agrees with the species tree.
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Another explicit phylogenetic strategy for detecting HGT activity is to decompose a gene

tree into substructures. For example, a gene tree can be decomposed into quartets, or trees

containing only four leaves, sub-sampled from the original tree. HGT events can be inferred

when the topologies of quartets do not agree with the species tree topology (Bansal et al.,

2011; Zhaxybayeva et al., 2006). Such quartet decomposition methods are computationally

efficient in handling large-scale phylogenomic analysis.

Tree reconciliation is another explicit approach, that infers an event history, pinpointing

exactly where in the gene phylogeny putative HGT events occurred. Briefly, given a rooted

gene tree, a rooted species tree, and a mapping from present day genes to present day species,

tree reconciliation finds the ancestral association between genes and species and the set of

events that best explains incongruence between the gene tree and the species tree. The set of

inferred events are postulated events on the gene tree, including speciation, gene duplication,

gene loss, and horizontal gene transfer.

Limitations of explicit phylogenetic methods include the requirement of accurate phylo-

genies for the species and genes of interest, their inability to infer recent HGT between sister

taxa, the difficulty of distinguishing between HGT and other sources of incongruence, and

the need to deal with inferred transfer events that conflict, resulting in histories that are

temporally inconsistent.

2.2 Inferring Transfers with Reconciliation

Reconciliation of gene and species trees is used to investigate many aspects of gene family

evolution. Two important distinguishing properties of a reconciliation algorithm are the

optimization criterion used for inference and the event model, which is the set of allowable

events. Mathematically, reconciliation is based on the rationale that the event history that

optimizes a given objective criterion is the best explanation of the observed incongruence.

Commonly used reconciliation criteria include maximum likelihood and maximum par-

simony. Maximum likelihood methods assume that gene family events occur according to

a neutral, stochastic model. In this model, the process of reconciliation infers the rates
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of events, as well as the event history that maximizes the likelihood of the observed gene

tree given the species tree. Probabilistic approaches to reconciliation have the advantage

that they capture uncertainty and provide a general framework that allows for incorporating

sequence evolution in the analysis. However, they are also computation intensive, require

sufficient data to infer the rates, and may incur errors due to over-fitting. In contrast, par-

simony models are based on the assumption that the history with the fewest events is the

best explanation of the observed incongruence. A disadvantage of parsimony models is that

they do not provide a model of uncertainty and cannot be used to infer rates. On the other

hand, parsimony models have the advantage of computational tractability and avoid the risk

of over-interpretation due to over-fitting. For the remainder of this thesis, only parsimony

models will be considered.

The earliest reconciliation algorithms considered gene duplications and losses (a DL-event

model) (Goodman et al., 1998; Page and Charleston, 1997) or duplications alone (Zmasek

and Eddy, 2001). Under the DL-event model, the most parsimonious reconciliation is unique

and can be found in polynomial time with a greedy algorithm. Given a rooted gene tree and

a rooted species tree, the greedy algorithm traverses the gene tree, starting with the leaves,

and labels each gene tree node with the associated species node. Once this association has

been established, the labels are used to infer duplication and loss events. If the gene tree

is unrooted, the root can be inferred using duplication-loss parsimony (Chen et al., 2000).

Each branch in the gene tree is assigned a score corresponding to the weighted sum of the

events in the most parsimonious reconciliation obtained when the tree is rooted on that

branch. The tree is then rooted on the minimum cost branch. Note that there may be more

than one optimal root.

The increased awareness of the importance of HGT in bacterial evolution led to the devel-

opment of reconciliation algorithms based on parsimonious event models with transfers. Most

event inference algorithms consider either gene duplication or HGT (reviewed in Doyon et al.

(2011); Nakhleh (2011); Nakhleh and Ruths (2009)), but not both. Exact algorithms with

exponential time complexity have been presented for the duplication-transfer (DT) (Tofigh

et al., 2011) and duplication-transfer-loss (DTL) models (David and Alm, 2011; Stolzer et al.,

2012), under a parsimony criterion. These algorithms use dynamic programming to find the
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event history that minimizes the weighted sum of inferred events,

π = δ ·ND + λ ·NL + τ ·NT , (2.1)

where ND, NL, and NT are the number of inferred events, and δ, λ, and τ are costs of

duplications (D), transfers (T), and losses (L), respectively. In practice, the costs are often

chosen based on empirical results. For example, when performing HGT prediction among

prokaryotes where high HGT activity are expected, lower costs of λ are used. The choice

of costs is an active research topic (Libeskind-Hadas et al., 2014), and is currently being

systematically studied using simulated genome evolution in our group.

In contrast to the DL-model, when the event model includes transfers, the optimal rec-

onciliation is no longer unique, and there can be more than one most parsimonious event

history. An example of a reconciliation problem with multiple optimal histories is given in

Figure 2.1. Reconciling the gene tree with the species tree, under the DTL model with event

costs δ = 1, τ = 3, and λ = 1, results in three optimal solutions with the same total event

cost. The first two reconciliations in Figure 2.1 both have two transfers and one loss; i.e.,

they have the same total cost and the same number of events of each type. The only differ-

ence is the direction of transfer t2, and the species in which the loss occurred. This is a very

common source of degeneracy, when different sets of transfers lead to the same total event

cost. The third reconciliation (Figure 2.1(c)) has one duplication, one transfer and three

losses. This is another source of degeneracy, when a transfer can be traded for a duplication

and one or more losses. Although all three optimal solutions in this example have the same

total event cost, the underlying event histories are fundamentally different. In practice, it

is important to consider all multiple optimal solutions when inferring the event history of a

gene family, because different solutions could lead to different biological interpretations.

A second challenge associated with reconciliation with transfers is temporal feasibility. In-

ferred transfer events introduce temporal constraints because the donor and recipient species

of each transfer must have co-existed. In a reconciliation with two or more transfers, the

constraints may be mutually incompatible, resulting in a gene family history that cannot be

realized without traveling backwards in time. Figure 2.2 shows a simple example of temporal
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Figure 2.1: Multiple optimal solutions: Hypothetical species and gene trees with three
optimal reconciliations under the DTL-model when δ = 1, τ = 3, and λ = 1. All three
solutions have a total cost of seven. For each solution, the inferred events are shown in red
on the gene tree (right). Each internal gene tree node is labeled with its associated species.
The species tree (left) is annotated with inferred transfer events only.
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Figure 2.2: A simple example showing a temporal infeasibility caused by two transfers. Here
a species phylogeny is shown with two transfers (dashed across).

infeasibility caused by two transfers. If ancestral species α acquired a gene from C, α and C

must have been co-existed at the same time. The ancestor of C could not possibly acquire

the gene from a descendant of α, at least, not without time travel. Such histories are called

temporally infeasible.

In order to be biologically meaningful, an event history must be temporally feasible.

Unfortunately, finding the optimal, temporally feasible reconciliation is an NP-complete

problem (Hallett et al., 2004; Tofigh et al., 2011). The practical consequence of the NP-

completeness of reconciliation with transfers is that there is no known way to find the optimal,

temporally feasible event history without considering all possible event histories. There are

two approaches to this problem. The first approach requires a species tree with branch

lengths, where the branch lengths are proportional to time. In this restricted model, it is

possible to determine which species pairs are contemporaneous. The great advantage of this

approach is that event inference with transfers can be solved in polynomial time. However,

algorithms for this restricted model may fail to recognize transfers if they involve a taxon

that is missing from the dataset (Huson and Scornavacca, 2011; Nakhleh, 2011). More

importantly, this model (reviewed in Doyon et al. (2011); Huson and Scornavacca (2011))

requires estimates of speciation times, which are frequently not known.

The second approach to the problem of temporal feasibility, which we adopt here, makes

no assumption about branch lengths. Instead, we use a heuristic that finds candidate event

histories that are mathematically optimal and then test each candidate history for temporal

feasibility (Stolzer et al., 2012; Tofigh et al., 2011). The test for temporal infeasibility is

one of the contributions of this thesis and is discussed in Section 2.4. This test is based
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solely on topological considerations. It does not seek to establish the co-existence of donor

and recipient of an inferred transfer, but to eliminate histories that could not possibly have

occurred. For example, the scenario in Figure 2.2 is intrinsically impossible regardless of

the co-existence of any two existing or ancestral species. The species tree topology, together

with the two transfers, alone determines infeasibility.

Tofigh et al. (2011), in an extension of their earlier work (Hallett et al., 2004), intro-

duced one of the earliest algorithms for reconciliation with both duplication and transfers.

They were also the first to stress the importance of temporal consistency in phylogenetic

reconciliation when not using a dated species tree. To address the temporal constraints,

Tofigh et al. (2011) proposed two approaches to address temporal constraints. The first uses

a dated species tree. The second algorithm performs reconciliation with an undated species

tree and then performs a post hoc test for temporal feasibility. However, their scheme for

testing feasibility is for the less restrictive DT-model, when loss is not considered in the

optimization criterion. Under this model, the recipient species of a transfer can be ‘lifted’ to

avoid a potential temporal inconsistency. This will only induce additional losses, but since

these losses incur no cost, the solution is till optimal. However, this approach would not

work for detecting temporal infeasibility in reconciliations using a DTL-model. Under the

DTL-model, such solutions would no longer be guaranteed to be optimal.

2.3 Software for tree reconciliation

Software packages implementing the algorithms cited above are summarized in Table 2.1.

Here, I review some of the recent reconciliation models and their corresponding software, in

alphabetical order, focusing especially on how they handle temporal constraints and multiple

optimal solutions.

AnGST David and Alm (2011) developed an algorithm for reconciliation with the DTL-

model. Their method for handling time constraints is to accept a dated species tree as

input. Time consistency is hence ensured by forcing that the donor and recipient species of

a transfer have intersecting time intervals. This method was implemented in the program
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AnGST2, which is Python-based and has a command-line interface. One particular strength

of AnGST is that it can deal with phylogenetic uncertainties in gene trees. It considers

alternative topologies in the set of bootstrap subtrees to obtain a gene tree with a minimal

cost. However, multiple optimal solutions were not addressed in AnGST.

EUCALYPT EUCALYPT3 is a program by Donati et al. (2015) that also performs par-

simonious tree reconciliation under the DTL-model. Temporal infeasibility is tested using

my algorithm, as presented in Stolzer et al. (2012). Unlike the other programs discussed

here except Notung, EUCALYPT enumerates all optimal solutions using a polynomial-delay

algorithm. EUCALYPT is implemented in Java and has a command-line user interface.

Mowgli Mowgli4 is a maximum parsimony-based tree reconciliation program for the DTL-

model (Doyon et al., 2011). Interestingly, Mowgli can compute the number of optimal so-

lutions, but the option to output all optimal reconciliations is not available. Mowgli, like

AnGST, also addresses temporal constraints by using a dated species tree and requiring the

transfer donor and recipient species to co-exist within some temporal interval. Mowgli is

written in C++ and has a command-line user interface. Like AnGST, Mowgli, as imple-

mented in Mowgli-NNI, can deal with uncertainty in gene trees. It does this by considering

edges with weak bootstrap support and performing Nearest-Neighbor Interchanges (NNI) to

find the ideal topology with minimal reconciliation cost.

RANGER-DTL RANGER-DTL5 is another software implemention of the DTL-model

for tree reconciliation (Bansal et al., 2012). RANGER-DTL is implemented to efficiently

analyze trees with even thousands of taxa, via a preprocessing step of the species tree.

RANGER-DTL can take either dated or undated species trees as input. When a dated

species tree is used, RANGER-DTL requires that transfer donor and recipient species co-

exist. When a undated species tree is used as input, it reports a minimum cost reconciliation

but does not check for temporal consistency. In neither case does RANGER-DTL output

2URL: http://almlab.mit.edu/angst/
3URL: http://eucalypt.gforge.inria.fr/
4URL:http://www.atgc-montpellier.fr/Mowgli/
5URL: http://http://compbio.mit.edu/ranger-dtl/
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multiple solutions. RANGER-DTL has command-line user interface.

2.3.1 Other sources of incongruence

Conceptually, phylogenetic reconciliation is used to explain the incongruence between a

species tree and a green tree. In addition to duplication, transfer and loss, gene tree incon-

gruence can arise due to other evolutionary processes, including incomplete lineage sorting

and hybridization. In prokaryotes, fractured speciation processes can give rise to gene tree

heterogeneity (Retchless and Lawrence, 2010). Incongruence due to other processes can be

incorrectly interpreted as duplications or transfers, leading to overestimation of the number

of events that occurred. Accurate inference of gene events can also be a problem in a species

tree that is not well resolved. If the branching order in the species tree is incorrect, or un-

known, gene tree incongruence can similarly be misinterpreted as evidence of duplication or

transfer.

To avoid overestimation of gene events, algorithms are needed that can distinguish be-

tween gene events and other sources of incongruence. One approach to this problem is to

combine explicit models of gene events and of population processes, respectively, in an in-

tegrated probabilistic framework. For example, a recently developed algorithm (Rasmussen

and Kellis, 2012) for the DL-model uses the multi-species coalescent model (Pamilo and

Nei, 1988) to estimate the probability that a given incongruent gene tree node arose through

incomplete lineage sorting, and then takes this probability into account when inferring du-

plications. The strength of this approach is that it includes a specific model of incomplete

lineage sorting: the multispecies coalescent explicitly relates the probability of incongruence

to the ancestral population size and the time between species divergences. A disadvantage

is that estimates of population parameters are only available for a limited set of well studied

species. Further, the specificity of the model ceases to be an advantage if the observed incon-

gruence does not reflect the assumptions of the multispecies coalescent, either because the

multispecies coalescent is too simple (e.g., it does not capture linkage, migration or selection)

or because the incongruence is due to some other process, altogether.

Notung, instead, uses a simple heuristic that is designed to remove noise associated with
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incongruence arising either from uncertainty, or from incomplete lineage sorting. This heuris-

tic uses a non-binary species tree to distinguish between regions of the species tree where only

gene duplication and transfer need be considered (nodes with well resolved branching order)

and regions where incomplete lineage sorting (ILS) or uncertainty may be contributing to

gene tree incongruence (polytomies).

Typically, a species polytomy can be considered from two perspectives: a “hard” poly-

tomy represents simultaneous divergence of three or more populations; a “soft” polytomy

represents a binary branching process in which the branching order is unknown. Notung’s

heuristic is consistent with both meanings. If a polytomy represents rapid or simultaneous

species divergences, then under the multispecies coalescent model all binary resolutions of

the polytomy are equally likely. At binary species tree nodes, incongruence is always treated

as evidence of gene duplication or transfer. At polytomies, gene duplication and transfer

are invoked only if the gene tree does not correspond to one of the binary resolutions of the

polytomy. The rationale behind the heuristic is discussed in greater detail in Stolzer et al.

(2012), along with a technical description of heuristic algorithm. A soft polytomy can be

viewed as a set of possible hypotheses for the time branching order, namely the set of binary

resolutions of the polytomy. Our model offers a conservative stance; events are only inferred

when the topology of the gene tree does not correspond to any of these hypotheses. Note

that in some cases, the hard and soft polytomy models are closely linked: the branching

order of species that arose through multiple speciations in rapid successions (Ebersberger

et al., 2007; Pollard et al., 2006) is often difficult to resolve.

This model can be invoked for both non-binary species trees and for binary species trees

with short branches where ILS is suspected; even when the binary branching order of the

species tree is known, the user can collapse edges in the species tree to indicate in which

lineages ILS should be considered as an alternate hypothesis.

We add “I” to the name of models, as in DTI and DTLI, to denote such heuristic is being

used to model the incongruence, when performing reconciliation with a non-binary species

tree.



58 CHAPTER 2. PHYLOGENETIC RECONCILIATION WITH TRANSFERS

2.4 Testing for temporal infeasibility with a DTL model

.

A reconciliation is feasible if a temporal ordering of species exists that satisfies the con-

straints of all inferred transfers. In a reconciliation that has two or more inferred transfer

events, the temporal constraints of one transfer may be inconsistent with those of another,

and result in a temporally infeasible reconciliation. There are three sources of temporal

constraints, illustrated in Figure 2.3:

1. Species ancestor-descendant relationships in the species tree impose a partial temporal

ordering on species in the tree.

2. For any inferred transfer, the donor and recipient species must have co-existed.

3. The gene tree imposes a temporal order of individual transfers. When a path from

the root to a leaf of the gene tree passes through more than one transfer, then the

species associated with the transfer closer to the leaves cannot have occurred before

the species associated with the transfer closer to the root.

All three types of temporal constraints must be taken into account when considering a

reconciliation. A reconciliation is feasible only if it is possible to assign order to all species

in the species tree such that none of these constraints are violated.

To determine whether a reconciliation is temporally feasible, I developed a method that

constructs a directed timing graph Gt = (Vt, Et) that encodes all three types of temporal

constraints described above. This graph is designed to have the property that a reconciliation

is temporally feasible if and only if the timing graph is acyclic. Prior to describing the

construction of the timing graph, I introduce the following notation: Let P (v) be the parent

node of v, where v is a node either from VG or VS. If (u, v) is an edge either from EG or ES,

then P (v) = u. For node u and v from VT , where tree T can be either be S or G, u ≥T v

means that u is an ancestor of v in tree T .

Given a gene tree G = (VG, EG) and a species tree S = (VS, ES), let RGS be a recon-

ciliation of G with S. Let M(g) = s be a function mapping a gene tree node (g) to the

corresponding species (s). Λ(RGS) is the set of transfer edges in RGS.



2.4. TESTING FOR TEMPORAL INFEASIBILITY WITH A DTL MODEL 59

The vertices in Gt represent species in VS. However, only species that are the donor, d,

or recipient, r, of a transfer edge (g, h) in Λ(RGS) must be considered. Thus, the vertex set

is defined as Vt = {v ∈ VS|∃(g, h) ∈ Λ(RGS) 3 v = M(g) ∨ v = M(h)}.

The edges in Et represent the three types of temporal constraints mentioned above. These

are defined formally as follows:

1. If species si is an ancestor of species sj in S, (i.e., si ≥S sj), then for every (si, sj) in

Vt × Vt, add (si, sj) to Et iff si ≥S sj.

2. Given a transfer (g, h) ∈ Λ(RGS), the donor species M(g) and recipient species M(h)

must be contemporaneous. Therefore, for every (si, sj) ∈ Vt × Vt, add (si, sj) to

Et iff si and sj are the donor and recipient species, or vice versa, of some transfer

(g, h) ∈ Λ(RGS).

3. Let (g, h) and (g′, h′) be transfers in Λ(RGS), such that g ≥G g′ (g predates g′). The

donor and recipient of (g, h) must have occurred no later than both the donor and

the recipient species of (g′, h′). In other words, d = M(g) and r = M(h) must have

occured no later than both d′ = M(g′) and r′ = M(h′). Therefore, (P (d), d′), (P (d), r′),

(P (r), d′), and (P (r), r′) are added to Et.

Each candidate reconciliation is then tested for temporal feasibility by verifying that

the associated timing graph Gt is acyclic, using a modified topological sorting algorithm in

Θ(|Vt| + |Et|) (Cormen et al., 2001). Only temporal feasible solutions are output by the

Notung software6.

An example of temporal infeasibility

Figure 2.3(c) shows the construction of the timing graph for the reconciliation in Figure 2.3(a)

and (b). There are three inferred transfer events, labeled as t1, t2, and t3. The timing graph

is constructed in the following three steps, corresponding to the three temporal constraints

described previously. First, vertices were created by placing species that are associated with

transfers into the timing graph. Note that species ε, A, C, and F are neither donors or

6When losses are not considered in the optimization criterion, edges corresponding to Point 2 can be
omitted. See Stolzer et al. (2012) for an explanation.
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Figure 2.3: An example of a temporally infeasible reconciliation with three transfers. (a)
A species tree showing the inferred transfers t1, t2, and t3 . (b) The reconciled gene tree,
showing the three inferred transfers. The nodes of each transfer are annotated with the
associated donor and recipient species. (c) The corresponding timing graph. The colors of
edges in the timing graph correspond to the three sources of temporal constraints.
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recipients of transfers and do not appear in Gt. Next, edges were added according to the

temporal constraints:

1. Uni-directional edges (highlighted in blue) were added according to the vertical de-

scending order in the species tree. For example, Gt contains an edge from β to D

because β is an ancestor (and, in fact, the parent) of D in the species tree.

2. Bi-directional edges (shown in red) were then added to the graph by connecting species

that are transfer donors and recipients respectively.

3. Finally, unidirectional edges (green) were added according to temporal constraints

corresponding to the order of transfers in the gene tree. In this particular example, t2

and t3 are two inferred transfers that appear on the same path from the root to a leaf

node in the gene tree (Figure 2.3(b)). Thus t2 must have occurred no later than t3.

Therefore, we must ensure that the donor and recipient species of t2 (D and γ) are

no later than the donor and recipient species of t3 (E and α). Note that, “a no later

than b” implies that either a occurred before b OR a was present at the same time

as b. This is equivalent to the assumption that the immediate ancestor of a strictly

predated b. As a result, the requirement that D be no later than E and α, is encoded

by the green edges from β to E and β to α, respectively.

The constructed timing graph in Figure 2.3(c) contains multiple cyclic paths, e.g. α→ B →

β → α. Thus this particular reconciliation is temporally infeasible.

The above described algorithm for testing for temporal infeasibility was implemented

in Notung 2.7. For empirical comparison, the test for temporal infeasibility without losses

(Tofigh et al., 2011) was also implemented in Notung.

2.5 Reconciliation with transfers: A case study

The use of phylogenetic reconciliation to infer horizontal transfer has many advantages,

including the ability to infer transfers between ancestral species, to model the event history,
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and to infer recipient and donor species. However, HGT inference with reconciliation also

poses many challenges:

Event costs: Parsimony-based reconciliation algorithms find the event histories that

minimize the weighted sum of the inferred events. Currently, there is no formal framework

to guide the user in selecting these costs. This is a cause for concern because the choice of

event costs will influence the inference process and, ultimately, the biological interpretation

of the results.

Event model: The outcome will also depend on which events are included in the recon-

ciliation model. Many programs (Berglund-Sonnhammer et al., 2006; Ma et al., 2000; Tofigh

et al., 2011; Zmasek and Eddy, 2001), do not include losses in the optimization criterion;

that is, these algorithms propose candidate solutions that minimize the weighted duplication

and transfer cost (NDδ +NT τ), but do not charge for losses.

Degeneracy: In a model with transfers, there may be more than one minimum cost

solution. When this occurs, how should the information from multiple histories be inter-

preted?

Temporal infeasibility: There is no known algorithm for efficiently finding a solution

that is both optimal and temporally feasible. Notung uses a heuristic that generates candi-

date solutions and then tests them for feasibility 7. The heuristic has the property that it

can identify whether a candidate solution is feasible, only when the solution is also optimal.

However, if all candidate solutions are infeasible, the heuristic fails. We are interested in

how often does this occur?

Other sources of incongruence: In addition to duplication, transfer and loss, gene

tree incongruence can arise due to uncertainty or to other evolutionary processes (e.g., ILS,

hybridization) or due to noise (reconstruction error). Algorithms that do not account for

these other sources of incongruence risk overestimation of duplications and transfers. What

is the extent of this problem?

To investigate the extent to which users might face these challenges in analyses of real

data, I carried out an empirical analysis of two empirical datasets that have been used as

7All reconciliation algorithms with transfers that do not assume a species tree with time estimates use
some form of this heuristic.
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(a) Cyanobacteria (b) Yeasts

Figure 2.4: The species trees for (a) 11 cyanobacterial species and (b) 14 yeast species. Only
tree topologies, not branch lengths, are shown. Full names were listed in Tables A2 and A3
in the Appendix.

test sets within the community.

Cyanobacterial dataset

This dataset, containing 1128 gene trees from 11 cyanobacterial species, was created by

Zhaxybayeva et al. (2006), who applied Quartet Decomposition (QD) method to characterize

transfer activity in those species. Gene families were predicted using a bi-directional best

hit approach with BLASTP E-value cutoff of < 10−4. A multiple sequence alignment for

each family was generated using ClustalW for each gene family. Gene family phylogenies

were reconstructed using Neighbor-Joining algorithm in PHYLIP with 100 bootstraps. In

this dataset, each of the 1128 gene trees has at most one gene copy per species, and each

gene tree has at least 7 leaves. The species tree is shown in Figure 2.4(a).

Yeast dataset

This dataset consists of 106 families of single copy orthologs from 14 yeast species that were

originally constructed by Rokas and Carroll (2005). The trees used in my study are con-

structed via maximum likelihood estimation by Herve Philippe and colleagues from Rokas’
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multiple alignments of these families, as described in Jeffroy et al (2006). This dataset has

been used for many studies related to phylogenetic problems and has become a de facto gold

standard. All 106 gene trees have exactly one copy per species, and thus they all have 14

leaves. The species tree is shown in Figure 2.4(b).

2.5.1 Empirical study – Data Analysis

The trees in both datasets were reconciled using four different event models: DT, DTI, DTL,

and DTLI. DT and DTI are models that do not include losses in the optimization criterion.

For each model, three cost sets were used, consisting of three different transfer costs with

the same fixed duplication and loss costs:

• δ = 3, τ = 2.5, λ = 2

• δ = 3, τ = 6, λ = 2

• δ = 3, τ = 10, λ = 2

The choice of the costs are based on empirical experience. Three different τ values were

used, corresponding to different levels of expected horizontal transfer activities. In the case

of τ = 10, one transfer is more expensive than one duplication and 2 losses. When τ = 6,

one transfer is more expensive than one duplication and 1 loss. When τ = 2.5, one transfer

is cheaper than one duplication alone.

For each setting of model and event cost, gene trees were first rooted with Notung’s

rooting function with corresponding model and parameter settings. Recall that this roots

the gene tree on edge that minimizes the total reconciliation cost. The rooted trees were

then reconciled and the following information was tabulated: (1) the number of events of

each type, (2) the gene and (3) species lineages in which each event occurred, (4) the donor

and recipient of each transfer, and (5) the number of temporally infeasible reconciliations.

The summarized results are given in Table 2.2 for cyanobacteria and Table 2.3 for yeast.

Trees that had no temporally feasible solution for at least one set of parameter values, were

eliminated from analysis under all models and values of τ . If a tree had multiple optimal

solutions (either multiple optimal roots or multiple reconciliations for a specified root or
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Model τ nD nT nL Infeasible Degenerate

DT 2.5 7 1798 1560 84 6
DT 6 1648 191 6096 0 0
DT 10 2066 0 7520 0 0

DTI 2.5 6 1521 1468 3 67
DTI 6 1425 133 5133 0 0
DTI 10 1691 0 5921 0 0

DTL 2.5 0 2121 781 42 13
DTL 6 73 1740 1516 82 50
DTL 10 1324 480 4797 83 40

DTLI 2.5 0 1783 895 92 16
DTLI 6 82 1458 1456 90 109
DTLI 10 1122 405 4093 4 53

Table 2.2: Event counts for the cyanobacteria dataset, with δ = 3 and λ = 2, based on
814 gene trees. Event counts from 314 gene trees with temporally infeasible or conflicting
degenerate solutions in any model were excluded from this analysis. The number of trees
not considered for each model and setting is given in the last two columns, respectively.

both), it was only retained if all solutions yielded the same counts for each event type. The

total numbers of gene trees eliminated due to temporal infeasibility and degeneracy combined

are 314 and 31, for the cyanobacteria and yeast datasets respectively. The detailed criteria

for handling conflicting degenerate situation, for inclusion for reporting in Table 2.2 and

Table 2.3, was summarized in Table A1 in the Appendix.

2.5.2 Empirical study – Results

Patterns of genetic exchange are presented visually by heatmaps (Figure 2.8- 2.11). The

numbers in the heatmaps represent the number of transfer events inferred between a specific

pair of existing or ancestral genomes, from the donor to the recipient genome. Therefore,

heatmaps are asymmetrical because they describe the directional HGT activity among the

genomes. Gene families with no feasible reconciliations were excluded. In the case of multiple

optimal solutions, the average number of transfers over all feasible solutions, between each
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Model τ nD nT nL Infeasible Degenerate

DT 2.5 1 207 192 3 1
DT 6 192 26 684 0 0
DT 10 245 0 841 0 0

DTI 2.5 8 172 180 4 11
DTI 6 162 25 568 0 0
DTI 10 213 0 720 0 0

DTL 2.5 0 233 138 4 1
DTL 6 6 203 192 3 1
DTL 10 155 53 563 0 11

DTLI 2.5 0 208 115 4 12
DTLI 6 10 172 172 2 13
DTLI 10 138 42 493 1 10

Table 2.3: Event counts for the yeast dataset, with δ = 3 and λ = 2, based on 175 gene
trees. Event counts from 31 gene trees with temporally infeasible or conflicting degenerate
solutions in any model were excluded from this analysis. The number of these trees are
shown in the last two columns, respectively.

pair of genomes is reported.

My analysis of the result from these two datasets was published in Stolzer et al. (2012).

As such, some of the results presented here were adapted from Stolzer et al. (2012). Now I

will discuss the results with respect to the challenges described previously in the beginning

of this section.

Event costs: The impact of event cost choice is revealed by comparing the event inferred

with the three different transfer costs for each of the four event models. The results in

Tables 2.2 and 2.3 show that in general, with the increasing cost of transfers (τ), fewer

transfers, but more duplication and losses were inferred. This is as expected because transfer

events can be exchanged with duplications and losses. Thus, with higher transfer costs,

fewer transfer events are inferred and more species-gene tree incongruence is explained by

duplications and losses.

Event model: As previously mentioned, several published reconcilation algorithms in-

clude duplications and transfers but not losses in the optimization criterion. In order to

assess the impact of ignoring losses, we implemented reconciliation with the DT-model in
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Notung. When losses are not included in the optimization criterion, candidate event his-

tories that minimize the weighted sum of duplications and transfers are generated. These

event histories are evaluated using the algorithm for testing temporal infeasibility without

losses proposed by Tofigh et al. (2011). Comparing DT with DTL and DTI with DTLI, we

see that when losses are not included in the event model, the inferred histories have more

duplications, and more losses, but fewer transfers are inferred. As with increasing transfer

cost, this observation can also be explained by the fact that transfer events can be exchanged

with duplications and losses. Recall that in Figure 2.1, the same total cost could be obtained

by replacing one transfer and one loss (Figure 2.1(b)) with one duplication and three losses

(Figure 2.1(c)). As observed in this example, it is not uncommon for histories with du-

plications to require more losses than histories with transfers. When losses cost nothing,

there are frequently more ways to trade duplications for transfers and obtain the same total

event cost. In addition, by comparing the corresponding models with and without losses, we

tend to observe more infeasible and degenerate cases with event models that include losses.

This trend is caused by the fact that more transfer events are inferred with the DTL and

DTLI models. Typically as the number of transfer events increases, the number of temporal

infeasible solutions increases as well. Similarly, the number of degenerate solutions also in-

creases with the number of transfers. This shows that exclusion of losses in the optimization

function will result in substantial changes to the inferred events. Further, excluding losses

can hide problems with degeneracy and temporal infeasibility.

Degeneracy: My empirical data suggests that degeneracy is a serious potential con-

cern, even in models that do include losses. In Table 2.2 and Table 2.3, 314 out of 1128

cyanobacterial gene trees and 31 out of 106 yeast gene trees were in the degenerate class. In

other words, at least 20% of trees had two or more conflicting optimal solutions in at least

one case. This suggests that tree reconciliation based on a single, randomly selected optimal

solution, as implemented in some reconciliation software (reviewed by (Doyon et al., 2011;

Than et al., 2008)), may result in misleading biological conclusions.

Temporal infeasibility: My results also highlight the prevalence of temporal infeasibil-

ity in biological datasets, as approximately 10% of trees were removed because all solutions

were temporally infeasible for at least one cost set. Previously, Hallett et al. (2004) reported
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(a) Cyanobacteria (b) Yeasts

Figure 2.5: The species trees for (a) 11 cyanobacterial species and (b) 14 yeast species, with
one edge collapsed on each tree. Only tree topologies, not branch lengths, are shown. Full
names were listed in Tables A2 and A3 in the Appendix.

no temporal infeasibility for the application of their DT algorithm to a simulated dataset.

Later, it was suggested that temporal infeasibility is rare in biological datasets (Tofigh et al.,

2011). Our results reported in Stolzer et al. (2012) contradict these reports, suggesting that

infeasible cases may be more prevalent in real data than was previously thought, especially

in a model with losses.

Other sources of incongruence: Incongruence can arise from many sources. If all

incongruence is attributed to duplication and transfer, the number of inferred events may be

unrealistically high. This is particularly the case for species trees where the branching order

is unresolved. Notung’s DTI and DTLI models are designed to discount incongruence that

might arise from incomplete lineage sorting or other sources of noise when the species tree is

non-binary. Even when the species tree is binary, if a branch is short or otherwise suspect,

the user may replace that branch with a polytomy to invoke the heuristic.

To investigate the impact of other sources of incongruence on the outcome of these

analyses, as well as the effectiveness of this heuristic, I generated a non-binary species tree

for each of my datasets (Figure 2.5).

For the cyanobacterial tree (Figure 2.5(a)), node n18 was removed because the branch

from n20 to n18 is short and it is associated with substantial gene tree incongruence, such
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that it is an area of the species tree where ILS may be occurring. In yeast (Figure 2.5(b)),

the branching order of S. bayanus and S. kudriazevii has been controversial and one study

reported evidence of hybridization in these species (Yu et al., 2013). The edge from n15 to

n13 was, therefore, replaced by a polytomy in the yeast species tree (Figure 2.5(b)). The

gene trees in both datasets were reconciled with these non-binary species trees to obtain the

DTI and DTLI statistics.

When the models with and without ILS are compared, a substantial decrease in the

combined number of duplications and transfers was observed, ranging from 15% to 18% in

cyanobacteria and from 11% to 14% in yeast. In addition, considerable decreases in the

number of losses were observed. In fact, the number of inferred losses with the DTI model,

compared to the DT model, decreased by as much as 20%. These differences highlight the

extent to which ignoring other sources of incongruence could lead to overestimation of other

events.

Comparison with other analyses: I also compared the statistics obtained with No-

tung to patterns of transfers reported in a study using Quartet Decomposition (QD) (Bansal

et al., 2011). Bansal et al. (2011) focused on “highways” of horizontal transfer, that is,

pairs of genomes associated with a particularly high degree of genetic exchange (Beiko et al.,

2005). Bansal applied the QD method to the same dataset of 1128 cyanobacterial trees and

found four HGT highways, shown as dotted lines in Figure 2.7.

In my analysis, hotspots of HGT activity were also apparent in the cyanobacterial data,

as shown by the HGT heatmaps (Figure 2.8 and 2.9). To obtain a quantitative definition of

an HGT highway, I termed an HGT highway to be a pair of species between which the total

number of transfers, in both directions, exceeds two standard deviations above the mean

of transfer counts between all pairs of species. The distributions of transfer counts between

cyanobacterial genome pairs inferred with the DTL and DTLI models are shown in Figure 2.6.

Using my qualitative definition, there are three such HGT highways for DTL model, and

1 case for DTLI model, shown in orange and blue, respectively, in Figure 2.7. The HGT

traffic inferred in my analysis with the DTL model is similar to the HGT highways reported

by Bansal et al. (2011) (dotted lines in Figure 2.7), for the same dataset. However, when

events were inferred with the DTLI model, the elevated transfer counts in the Gloeobacter
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(a) DTL model (b) DTLI model

Figure 2.6: Distribution of transfer counts between pairs of genomes under (a) DTL model
and (b) DTLI model. The red lines indicate the cutoff at 2 standard deviation above the
mean.

group disappeared, resulting a single pair of genomes with high HGT activities (blue line).

This further demonstrates the extent to which model choice can influence the biological

conclusions of a study. Some of the HGT highways reported by Bansal et al. (2011) may be

artifactual. Alternatively, the DTLI heuristic may be eliminating a signal of true horizontal

transfer. From a conservative perspective, we could argue that the HGT highway between

Prochlococcus 3 (MIT) and Synechococcus is the most robust of these results.

2.6 Chapter Conclusion

In this chapter, I described my contributions to horizontal gene transfer inference using

gene tree-species tree reconciliation. My two major contributions are an algorithm for test-

ing temporal feasibility and case studies that probe the challenges of phylogenetic transfer

inference.

One of the major challenges associated with an event model that includes transfers is

degeneracy. When the event model includes transfers, the minimum cost event history is
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Figure 2.7: High HGT activities between pairs of genomes were detected, using the DTL and
DTLI models with δ = 3, τ = 2.5 and λ = 2. The internal edge n16-n18 was collapsed for the
DTLI model. Genome pairs with transfer counts greater than 2 standard deviations above
the mean are shown, with the total number of transfers labeled. HGT Highways predicted
by Bansal et al. (2011) are shown as dashed lines.
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Figure 2.8: Transfers in cyanobacteria, inferred with δ = 3, λ = 2 and τ = 2.5 under (a) the
DTL-model, (b) DTLI-model, (c) the DT-model (d) DTI-model.
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Figure 2.9: Transfers in cyanobacteria, inferred with δ = 3, λ = 2 and τ = 6 under (a) the
DTL-model, (b) DTLI-model, (c) the DT-model (d) DTI-model.
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Figure 2.10: Transfers in yeast, inferred with δ = 3, λ = 2 and τ = 6 under (a) the
DTL-model, (b) DTLI-model, (c) the DT-model (d) DTI-model.
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Figure 2.11: Transfers in yeast, inferred with δ = 3, λ = 2 and τ = 6 under (a) the
DTL-model, (b) DTLI-model, (c) the DT-model (d) DTI-model.
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not, in general, unique. However, many of the algorithms and software packages that have

been developed for reconciliation with transfers ignore the problem of degeneracy. With the

exception of Notung and EUCALYPT, the algorithms and software cited in Table 2.1, report

only one of possibly many optimal solutions.

Yet my case studies suggest that multiple optimal solutions are a frequent occurrence,

especially in datasets where transfer is the dominant process. In the analysis reported here,

20% of 1128 cyanobacterial trees had multiple optimal solutions with inconsistent event

histories. In other words, for one in five trees, the arbitrary selection of a single optimal

solution could lead to conclusions that might not be supported by other optimal solutions.

A second major challenge is temporal infeasibility. One approach to this problem has

been to restrict the problem to dated species trees, in which temporally compatible donor-

recipient pairs can be readily identified. This requires accurate inference of species trees with

branch lengths that are proportional to time.

If the molecular clock hypothesis holds (i.e., if the rate of substitutions is the same in all

lineages), then branch lengths in substitutions per site can be used. However, this hypothesis

does not hold for most data sets. The development of relaxed molecular clock methods is

an active research area (Drummond et al., 2006). These require a significant amount of

computation time, rely on model assumptions, and result in very large confidence intervals.

An alternate approach is to estimate dates based on the fossil record. However, fos-

sil dating can be very inaccurate (Drummond et al., 2006; Yang and Rannala, 2006) and

only works in cases where fossil evidence is available. This is particularly a problem with

prokaryotic data.

Some methods simply ignore temporal infeasibility (Libeskind-Hadas et al., 2014; Wu

et al., 2013) based on the argument that it rarely arises in practice. Previous empirical

studies have reported that temporal infeasibility is rare (Tofigh et al., 2011) or non-existent

(Hallett et al., 2004). My results contradict this assumption as well. Approximately 10% of

the trees in my study had no temporally feasible solution.

To address this problem, I developed criteria for recognizing temporally infeasible histo-

ries under the DTL-event model. My approach is similar to the infeasibility checking scheme

proposed by Tofigh et al. (2011) for the less restrictive DT model, in which losses are not
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Figure 2.12: (a-c) Three examples of temporally infeasible transfer pairs on a hypothetical
species tree with four leaves. Dashed arrows correspond to inferred transfers

penalized, but imposes additional constraints. For example, Figure 2.12 shows three scenar-

ios that are temporally infeasible under the DTL model. All three violate the constraints

introduced in Section 2.4. However, only Figure 2.12(b) violates the constraints proposed

by Tofigh et al. (2011).

Tofigh’s constraints are appropriate for applications where only the number of duplica-

tions and transfers is inferred, but the specific events are not of interest. Under the DT

model, there exist certain event histories that are infeasible, but for which a temporally fea-

sible reconciliation can be identified that has the same number of duplications and transfers,

but more losses. Since losses incur no cost under the DT model, this feasible reconciliation

has the same cost as the original, infeasible history. For example, the infeasible histories in

Figures 2.12(a) and (c) can be converted into feasible histories by lifting the transfer recipient

on (b, C) so that it enters the edge (d, b), above the other transfer. This operation generates

a new history that is temporal feasibility, but incurs an additional loss in species D. For the

purposes of inferring only the optimal reconciliation cost, it is not necessary to construct the

feasible history, but simply to verify that it exists.

Therefore, the constraints proposed by Tofigh et al. (2011) do not rule out infeasible

histories for which there exists a feasible history with the same DT cost. This is sufficient if

only the cost is of interest, but insufficient for applications where the goal is to infer the donor

and recipient species of specific transfers. Similarly, Tofigh’s constraints are not appropriate

for counting the number of optimal solutions, because the set of optimal solutions reported
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under these constraints will include infeasible solutions like those in Figures 2.12(a) and (c),

as well as their feasible counterparts. This will lead to an overestimate of the number of

valid, optimal reconciliations. My approach does not fall prey to these shortcomings.

The literature on methods for reconciliation with transfers has approached these chal-

lenges from various perspectives and there is no consensus on the importance of these prob-

lems.

Reconciliation algorithms for inferring horizontal transfer could profitably be generalized

in several ways.

First, most algorithms and software use a single event cost for all inferred events of each

event type. For instance, in an inferred reconciliation scenario, the loss of a 16S rRNA gene

in E.coli has the same cost as the loss of a gene for cellular motility. However, the potential

fitness impact of losing an essential gene like 16S rRNA is much higher. One direction for

future work is to address the variation in fitness impact by assigning different event costs to

different gene families. Another possibility is a transfer cost that is a function of evolutionary

divergence, niche similarity, or the similarity of the genomic nucleotide composition between

donor-recipient species to model the difficulty of such inferred transfers.

Second, in current reconciliation algorithms, events are inferred independently. However,

a region of the chromosome containing multiple of genes may be transferred in a single event.

A challenge in identifying these cases is that foreign genes that originated through a single,

large-scale transfer event are not always contiguous. This can occur, for example, when a

large chunk of foreign DNA is digested into smaller pieces that are integrated into different

parts of the chromosome. Reconciliation models that consider multiple gene trees simulta-

neously are needed to handle large-scale transfers. Expanded event models are also needed.

For example, horizontal transfer may be a single homologous replacement event, instead of

distinct loss and transfer events as modeled in current DTL-reconciliation algorithms.

Finally, phylogenetic noise may be present due to the errors in the gene and species

phylogenies, leading to erroneous inference of the event history. Currently in Notung, we

partially address this by the gene tree rearrangement procedure (Chen et al., 2000). If a

gene tree branch is weakly supported, as defined by branch support, Notung can rearrange

the topology at that branch to better match the topology of the species tree. Similarly,
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Mowgli-NNI rearranges edges with weak bootstraps. It does this with NNI operations. The

AnGST software deals with phylogenetic uncertainties in gene tree by selecting bootstrap

subtrees that minimize costs (David and Alm, 2011). However, both procedures assume that

the species tree is error-free, and cannot address phylogenetic noise from the species tree.

Appropriate handling of phylogenetic noise is an open question for future research.
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Chapter 3

Highly Iterated Palindrome-1 (HIP1)

motifs

In this chapter, I systematically characterize the abundance, enrichment and conservation

of the HIP1 motif in 40 cyanobacterial genomes in the NCBI dataset. My focuses include:

(1) What is the taxonomic distribution of HIP1 among cyanobacterial genomes? (2) What

is the abundance when compared to genomic background composition? (3) Is HIP1 much

more abundant than other motifs?

In 20 of those genomes, I establish that the HIP1 motif is more abundant than expected

by chance. Using a comparative genomic approach, I investigate whether HIP1 prevalence

is maintained by a neutral process or by selection acting on the motif. I further consider

whether selection acts on specific HIP1 positions or on HIP1 content in a local region of the

genome.

3.1 HIP1 Frequency and phylogenetic distribution

In order to characterize the distribution of the HIP1 motif in the 40 genomes in my study

(see Table 1.1), and to investigate its frequency relative to other palindromes of length 8, I

81
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Figure 3.1: The frequency (count/kbp) of all octamer palindromes in 40 cyanobacterial
genomes. Color map is based on a log transformation of the motif frequencies. The blue
vertical bar beside the genome name indicates the marine pico-cyanobacteria lineage. The
orange vertical bar indicates the two Yellowstone strains. The color bands corresponding to
the 5’-GCGATCGC-3’ (HIP1) and 5’-GGGATCCC-3’ motifs are indicated above the heat
map.
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searched all chromosomal sequences in the NCBI dataset for all octamer palindrome motifs,

using in-house Perl scripts. For each genome, the frequency in motifs per kilo basepair, of

each of the 64 possible octamer palindromes was calculated. These are summarized by a

heatmap in Figure 3.1. The HIP1 motif frequencies in the 40 genomes are shown in Table 3.1.

As shown in Figure 3.1, the canonical HIP1 motif (5’-GCGATCGC-3’) has moderate to

very high abundance in all genomes, with some notable exceptions including Gloeobacter

violaceus PCC7421 (gvi), cyanobacterium UCYN-A (uca), the marine pico-cyanobacteria,

and the Yellowstone strains Synechococcus sp. JA-3-3Ab (syh) and Synechococcus sp. JA-2-

3B’a(2-13) (syg). Comparing this heatmap with the genome-wide GC content (Table 1.1),

abundance of AT-rich motifs can be observed in genomes with low GC content, such as most

Prochlococcus (GC% < 40), many Cyanothece (GC% < 45), and many Nostocaceae species

(GC% < 45). Interestingly, many of the non-pico AT-rich genomes, such as Cyanothece

and Nostocaceae genomes, also have high HIP1 frequency. AT-rich motifs are generally low

frequency in GC-rich genomes, including pico and non-pico Synechoccocus, Gloeobacter vi-

olaceus PCC7421 (gvi), and Acaryochloris marina MBIC11017 (ama). In addition, a few

moderately AT-rich motifs have somewhat elevated frequency in most genomes. Some of

these AT-rich motifs may be associated with the Pribnow boxes (5’-TATAAT-3’ or vari-

ants), that are commonly found in bacterial promoter regions in bacteria. Similarly, GC-rich

motifs are moderately elevated in GC-rich genomes, such as some Synechococcus strains

and Gloeobacter. Interestingly, we found that the most abundant octamer palindrome in

Synechococcus sp. JA-3-3Ab (syh) and Synechococcus sp. JA-2-3B’a(2-13) (syg), two closely

related, thermophilic cyanobacterial strains isolated from a hot spring in Yellowstone Na-

tional Park (Steunou et al., 2006), is 5’-GGGATCCC-3’. This motif highly resembles the

canonical HIP1 motif. In fact, this motif and canonical HIP1 are the only ocatmer palin-

dromes with frequency exceeding 0.7 in the 40 cyanobacterial genomes. On the other hand,

the frequency of the canonical motif (5-GCGATCGC-3) was zero in those two genomes.

This raised the question whether motif 5’-GGGATCCC-3’ could be a variant form of the

HIP1 motif, playing the same role in the Yellowstone strains that the canonical HIP1 motif

(5’-GCGATCGC-3’) plays in cyanobacterial species in which the canonical HIP1 motif is

highly abundant.
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Genome HIP1 count HIP1 frequency HIP1 Enrichment

pma 2 0 1.23
pmd 2 0 1.29
pmc 4 0 2.40
pmf 2 0 1.32
pmh 2 0 1.39
pmk 1 0 0.78
pml 3 0 0.85
pmb 1 0 0.24
pmi 3 0 0.87
pmj 4 0 1.13
pme 104 0.04 1.59
pmg 94 0.04 1.47
syd 165 0.06 1.78
sym 256 0.11 1.49
syo 157 0.06 1.33
sye 151 0.06 1.09
syf 144 0.06 1.44
syi 189 0.08 1.11
sya 7356 2.73 26.36
sel 7402 2.75 26.46
syq 3681 1.42 53.10
ava 5239 0.82 98.48
ana 5260 0.82 87.54
naz 1105 0.21 63.32
npu 7151 0.87 80.29
syr 2908 0.38 302.50
cyd 3397 0.63 39.06
ama 2147 0.33 25.21
syb 5084 1.69 59.50
syp 3160 0.88 133.05
mae 1821 0.31 24.32
cya 2252 0.38 76.78
cye 647 0.11 13.17
uca 37 0.03 28.46
cyb 2392 0.48 152.65
cyf 2959 0.63 97.66
cyg 2980 0.64 97.48
syg 57 0.02 0.69
syh 67 0.02 0.70
gvi 318 0.07 0.58

syg 4099 1.35 18.60
syh 3401 1.16 16.75

Table 3.1: Genome-wide HIP1 motif count, frequency (motifs per kbp), and enrichment
in the 40 genomes. The statistics reported in the last two rows are based on the motif
5’-GGGATCCC-3’.
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3.2 HIP1 Enrichment

The high abundance of HIP1 motifs in cyanobacterial genomes is intriguing, but could result

from the underlying sequence composition. The observed high frequency of HIP1 motifs

might not be significantly different from the expected frequency resulting from the back-

ground sequence composition. In order to rule out this possibility, I calculated HIP1 motif

enrichment, which is the ratio between the observed and expected number of motifs1.

The expected number of HIP1 motifs was calculated using a second order Markov model

of sequence composition, which accounts for the background tri-nucleotide frequency (Karlin

and Brendel, 1992). Let W = w1w2...wn be a motif of length n, and let E(W ) be the expected

number of instances in a region of length L. Then E(W ) can be approximated using a second

order Markov model as follows:

E(W ) = P (W )L

≈ P (w1w2)P (w3|w1w2)P (w4|w2w3)...P (wn|wn−2wn−1)L, (3.1)

where P (wiwi+1...wiR) is the frequency of string wiwi+1...wiR in the genome and P (wi+2|wiwi+1)

is the conditional probability of observing wi+2 given that the previous two bases were wi

and wi+1. This conditional probability can be calculated using di- and tri-nucleotide counts:

P (wi+2|wiwi+1) =
N(wiwi+1wi+2)

N(wiwi+1)
, (3.2)

where N(s) is the number of instances of string s in the region of length L. Substituting the

right hand side of Equation (3.2) for each of the conditional probabilities in Equation (3.1),

we obtain

E(W ) ≈ N(w1w2w3)N(w2w3w4)...N(wn−2wn−1wn)

N(w2w3)N(w3w4)...N(wn−2wn−1)
. (3.3)

1O
E is used, instead of (O−E)2

E , as the motif enrichment. This is because (O−E)2

E is directional and can
not distinguish over-representation from under-representation of motifs.
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I estimated HIP1 enrichment using the approximation for the expected number of motifs

given in Equation 3.2. Since background frequencies in coding and non-coding regions can

differ substantially, I calculated the expected number of motifs in coding and non-coding

regions separately.2 When estimating the expected number of motifs in coding regions, the

expected number of HIP1 motifs in each reading frame was calculated separately using the

background frequency from that reading frame. For example, the expected number of HIP1

motifs in Reading Frame 0 (RF0), using the tri-nucleotide background frequency model

(2nd-order Markov model), can be estimated by:

E0(W ) ≈ N0(w1w2w3)N1(w2w3w4)...Nf (wn−2wn−1wn)

N1(w2w3)N2(w3w4)...Nf (wn−2wn−1)
, (3.4)

where Nf (wiwi+1wi+2) is the number of instances of the tri-nucleotide wiwi+1wi+2, when wi is

in codon position f (f = 0, 1, 2). Similar expression can be derived for the expected number

of motifs in Reading Frame 1 (RF1) and Reading Frame 2 (RF2). The expected number of

motifs in coding regions within a given genome is the sum of the expected number of motifs

in each of the three reading frames:

ECDS(W ) = E0(W ) + E1(W ) + E2(W ). (3.5)

The expected number of motifs genome-wide is the sum of expected number of motifs from

coding and non-coding regions:

EGW (W ) = ECDS(W ) + ENC(W )

= E0(W ) + E1(W ) + E2(W ) + ENC(W ), (3.6)

where ECDS and ENC denote the expected number of motifs in Open Reading Frames (ORFs)

and in intergenic regions, respectively. Intergenic regions are defined to be regions between

ORFs that do not contain other annotated elements, such as RNA genes or transposons,

2For the definition of coding and non-coding regions, please refer to the Methods section at the end of
this chapter.
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and that do not exceed given length threshold. The upper limit on the length of intergenic

regions was imposed to rule out unannotated elements such as transposons and long repetitive

sequences. I experimented with several criteria for the inclusion of the intergenic regions, as

described in Section 3.8.3. While specific numbers obtained with the different criteria varied,

the overall trends were unaffected.

The enrichment, E(W ), is the ratio of observed number of motifs to expected number of

motifs:

E(W ) =
O(W )

E(W )
, (3.7)

where O(W ) is the number of observed instances of W in the region of interest.

The enrichment of each octamer palindromes in 40 cyanobacterial genomes was calcu-

lated genome-wide and for coding and intergenic regions. Table 3.2 summarizes the en-

richment results. Overall, the enrichment clearly indicates that HIP1 motif abundance

is not due to genome composition. The enrichment is less than 16 in all marine pico-

cyanobacteria genomes and less than 5 in most of them. In Gloeobacter violaceus PCC7421

(gvi), the number of observed motifs is slightly lower than expected. This is consistent

with the conclusion that HIP1 is absent from the marine pico-cyanobacteria and Gloeobacter

violaceus PCC7421 (gvi). This is also consistent with the observations from Delaye et al.

(2011b). Therefore, these 19 genomes will not be considered further. Interestingly, it is ob-

served that the enrichment in intergenic regions is often higher than in coding regions. This

can be partially explained by the fact that bacterial intergenic regions are more AT-rich in

general, as GC content in intergenic regions are observed to be 5%-10% lower than in coding

regions in bacterial genomes (Brocchieri, 2014).

Figure 3.2 shows the abundance and enrichment of all octamer palindromes that are

enriched by a factor of 5 or greater and occur at least 10 times in one or more genomes3.

Of 40 × 64 = 2560 motif-genome pairs, only 42 meet both criteria. Of the 42 cases that

meet these criteria, almost half are instances of canonical HIP1 motif. Further, both the

enrichment and abundance of HIP1 dwarfs most other motif-genome pairs in Figure 3.2. The

exceptions are 5’-TAGTACTA-3’ in Synechococcus sp. WH8102 (syo) and 5’-GGGATCCC-3’

3To efficiently compute the enrichment for all the 8-mer motifs, expected number of motifs were estimated
using the genome-wide tri-nucleotide frequencies.
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Observed Expected O/E

id intergenic RF0 RF1 RF2 intergenic RF0 RF1 RF2 intergenic coding

pma 0 1 1 0 0.12 0.51 0.50 0.50 0.00 1.32
pmd 1 0 1 0 0.09 0.45 0.50 0.51 10.86 0.69
pmc 2 1 1 0 0.13 0.52 0.51 0.51 15.62 1.30
pmf 0 1 1 0 0.12 0.46 0.45 0.48 0.00 1.44
pmh 0 2 0 0 0.11 0.42 0.45 0.46 0.00 1.51
pmk 1 0 0 0 0.10 0.37 0.47 0.35 10.27 0.00
pml 0 0 2 1 0.29 1.16 1.05 1.01 0.00 0.93
pmb 0 1 0 0 0.27 1.26 1.30 1.27 0.00 0.26
pmi 1 2 0 0 0.26 1.15 0.97 1.06 3.84 0.63
pmj 1 2 1 0 0.27 1.03 1.14 1.11 3.77 0.91
pme 7 45 43 9 3.60 20.96 21.03 19.99 1.94 1.56
pmg 7 40 38 9 4.70 19.32 19.97 20.07 1.49 1.47
syd 5 90 60 10 4.30 30.86 29.67 27.90 1.16 1.81
sym 5 132 106 13 5.23 56.61 56.26 53.18 0.96 1.51
syo 8 74 64 11 5.54 55.51 50.99 6.32 1.44 1.32
sye 7 83 58 3 7.64 42.91 43.81 43.55 0.92 1.11
syf 6 76 53 9 4.53 32.59 32.89 29.88 1.33 1.45
syi 5 73 107 4 3.60 56.24 56.54 53.74 1.39 1.10
sya 1008 2679 2484 1185 15.75 90.53 86.08 86.75 64.00 24.10
sel 907 2755 2539 1201 12.81 90.17 89.08 87.65 70.82 24.34
syq 227 1192 1769 493 2.76 22.75 21.49 22.32 82.29 51.89
ava 474 2444 1575 746 2.97 16.59 16.92 16.72 159.41 94.86
ana 457 2412 1622 769 3.11 28.33 25.77 2.88 147.08 84.29
naz 135 538 304 128 3.32 7.27 6.13 0.73 40.69 68.61
npu 1045 3136 1985 985 8.57 27.12 26.21 27.16 121.92 75.86
syr 978 1039 664 226 1.98 2.58 2.76 2.29 494.08 252.75
cyd 243 1827 874 453 5.16 27.39 28.12 26.29 47.05 38.56
ama 97 1019 750 281 4.99 26.59 26.05 27.52 19.45 25.57
syb 527 2707 1423 427 3.73 29.83 25.96 25.93 141.24 55.77
syp 280 1978 745 157 1.53 7.25 7.11 7.86 182.97 129.64
mae 247 981 454 139 6.21 23.23 22.87 22.57 39.77 22.92
cya 238 1212 597 205 2.21 8.90 9.11 9.11 107.84 74.26
cye 44 412 153 38 2.76 26.99 17.49 1.89 15.93 13.00
uca 2 25 8 2 0.08 0.39 0.40 0.43 25.39 28.67
cyb 122 1094 854 322 0.70 5.06 5.09 4.82 173.69 151.60
cyf 256 1255 1029 419 1.61 10.09 9.45 9.15 158.80 94.20
cyg 241 1283 1040 416 1.49 9.88 9.80 9.40 161.64 94.18
syg 803 1036 875 1385 29.88 36.92 87.29 66.34 26.87 17.30
syh 623 879 700 1199 29.67 32.87 81.35 59.17 21.00 16.02
gvi 12 191 107 8 15.39 175.07 174.19 182.83 0.78 0.58

Table 3.2: HIP1 motif enrichment. The HIP1 statistics reported for genome Synechococcus
sp. JA-3-3Ab (syh) and Synechococcus sp. JA-2-3B’a(2-13) (syg) are based on the HIP1
variant 5’-GGGATCCC-3’.
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Figure 3.2: Enrichment (blue) and abundance (red) for all instances of an 8-mer palindrome
that is enriched by a factor of 5 or more and has at least 10 copies in one or more genomes.

in the Yellowstone strains. In all other genomes, HIP1 is by far the most abundant motif

and it is also more abundant than expected by a factor of at least 20.

There are 24 instances of the AT-rich motif 5’-TAGTACTA-3’ in Synechococcus sp. WH8102

(syo); it has an enrichment of 43. However, an in-depth investigation of the motif 5’-

TAGTACTA-3’ in the Synechococcus sp. WH8102 (syo) genome revealed that 19 out of 24

motif occurrences are clustered in a 10 kbp window within a single annotated ORF. This

particular genomic region is likely a localized genome-specific repetitive region, and thus the

intra-genome distribution of 5’-TAGTACTA-3’ is very different from that of the HIP1 motif.

As a result, I did not consider this particular AT-rich octamer pattern further.

The Yellowstone strains have 4099 and 3401 instances of the motif 5’-GGGATCCC-3’,

respectively. This is comparable to the abundance of the canonical HIP1 motif in Ther-

mosynechococcus elongatus BP-1 (syq) and Cyanothece sp. PCC7425 (cyd). Similarly, the

enrichments of 5’-GGGATCCC-3’ in Synechococcus sp. JA-3-3Ab (syh) and Synechococcus

sp. JA-2-3B’a(2-13) (syg) are 18 and 16, respectively, comparable to that of Cyanothece

sp. PCC7425 (cyd). A closer look at the intra-genomic motif distribution also revealed that
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5’-GGGATCCC-3’ is broadly distributed across the genomes of Synechococcus sp. JA-3-

3Ab (syh) and Synechococcus sp. JA-2-3B’a(2-13) (syg). Taken together, these observations

support the hypothesis that 5’-GGGATCCC-3’ is a variant of the HIP1 motif in the two

Yellowstone strains. Subsequent analyses will be applied to this variant in Synechococcus

sp. JA-2-3B’a(2-13) (syg) and Synechococcus sp. JA-3-3Ab (syh), and to the canonical form

in other genomes. I will use the term “HIP1” to refer to 5’-GGGATCCC-3’ in Synechococcus

sp. JA-2-3B’a(2-13) (syg) and Synechococcus sp. JA-3-3Ab (syh), unless otherwise noted.

Comparison of HIP1 enrichment and frequency for all 40 genomes (Figure 3.3) shows that

the genomes with the highest HIP1 frequency (Synechococcus elongatus PCC7942 (sel) and

Synechococcus elongatus PCC6301 (sya)) do not have the highest enrichment, suggesting a

substantial number of HIP1 motifs in those genomes are contributed by background composi-

tion. On the other hand, Trichodesmium erythraeum IMS101 (syr), a genome with moderate

HIP1 frequency, shows the highest HIP1 enrichment. In addition, two genomes (Cyanothece

sp. PCC 7822 (cye) and cyanobacterium UCYN-A (uca)) with very low HIP1 frequency

did not appear to be HIP1-rich. However, HIP1 enrichment in these genomes is 13 and 28,

respectively. Note that there are only 37 instances of the HIP1 motif in the cyanobacterium

UCYN-A (uca) genome, a reduced genome lacking many biological pathways. As it has

been shown that binding sites rapidly degrade following the loss of the corresponding tran-

scription factor (Moses et al., 2006), it is possible that the mechanism responsible for HIP1

prevalence is no longer present in cyanobacterium UCYN-A (uca) genome, and that HIP1

motifs in cyanobacterium UCYN-A (uca) are undergoing a degeneration process. However,

even though there are only a few HIP1 motifs in the cyanobacterium UCYN-A (uca) genome,

the number is much greater than the expected number, suggesting those HIP1 motifs are

not a chance occurrence. Given that 19 out of 24 5’-TAGTACTA-3’ motifs in Synechococcus

sp. WH8102 (syo) are clustered in a 10 kbp window, I investigated the spatial distribution of

the 37 HIP1 motifs within the cyanobacterium UCYN-A (uca) genome to determine whether

those 37 motif instances are located within a single genomic region. That would suggest that

those HIP1 motifs were transferred into cyanobacterium UCYN-A (uca) from a HIP1-rich

cyanobacterial genome. Interestingly, the spatial distribution reveals that those 37 HIP1

motifs are relatively evenly distributed along the cyanobacterium UCYN-A (uca) chromo-
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Figure 3.4: HIP1 enrichment among the three reading frames in HIP1-rich genomes.

some (data not shown), suggesting that it is unlikely that those HIP1 occurrences are all of

foreign origin. To summarize, these results shown in Figure 3.2 and Table 3.1 indeed suggest

that the high observed HIP1 frequency cannot be explained by the background sequence

composition.

The dependence of HIP1 enrichment on reading frame was further investigated. When

considering HIP1 enrichment in individual reading frames, it was observed that the HIP1

distributions among the three reading frames vary within a relatively large range (Figure 3.4).

Overall, the distribution of reading frames shows a marked preference for RF2. In 17 out

of 21 genomes, RF2 is most enriched. In the remaining four genomes, RF1 is enriched in

three genomes (Cyanothece sp. PCC 7822 (cye) and the Nostoc strains Nostoc sp. PCC 7120

(ana) and Nostoc azollae 0708 (naz )) and RF0 is enriched in one (Thermosynechococcus

elongatus BP-1 (syq)). In most genomes (16/21), RF0 ranks second for enrichment. A G-

test, based on contingency tables with a phylogenetic correction, shows that this distribution

deviates significantly from a uniform distribution (see Table 3.3). Details on the phylogenetic

correction used to address the phylogenetic dependency among the genomes are described in

the Methods section on page 119. As Synechococcus sp. JA-3-3Ab (syh) and Synechococcus

sp. JA-2-3B’a(2-13) (syg) have the variant form of HIP1, they were excluded from the G-
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RF0 RF1 RF2

Observed 1.88 2.12 14.01
Expected 6 6 6

(a) G-test p-value: 5.59× 10−4

RF0 RF1 RF2

Observed 1.17 2.48 15.35
Expected 6.33 6.33 6.33

(b) G-test p-value: 9.22× 10−5

Table 3.3: Contingency tables showing the number of genomes in which each reading fram is
most enriched, corrected for the phylogenetic dependency. (a) Phylogenetic correction based
on the species phylogeny from the Barker dataset (Figure 1.1). cyanobacterium UCYN-A
(uca) is not represented in the Barker tree and is excluded from this table. (b) Phylogenetic
correction based on a maximum likelihood tree inferred using the concatenation of alignment
of 16S and 23S rRNA genes. (Figure 3.3).

tests.

Since HIP1 motifs within the coding region will be translated into amino acid sequences,

the observed bias among the three reading frames may reflect genome-specific codon usage,

and amino acid preference in proteins. However, given the variation across the genomes, it

seems unlikely that HIP1 is enriched due to selection on a single encoded peptide sequence.

If a specific sequence of amino acid sequences was under selection across these HIP1-rich

genomes, I would expect to see that HIP1 is universally much more enriched in one of the

three reading frames than in the other two. However, in almost all genomes where RF2 is

most enriched (Figure 3.4), the number of HIP1 motifs in RF0 and RF1 still exceeds the

expected number by a substantial margin. Further, enrichment in RF2 is never more than 3

times higher than that in the second most enriched reading frame. As shown in Figure 3.4,

in all genomes, enrichment varies between reading frames, but in no case is a single reading

frame enriched to the exclusion of the other two.

The number of contexts in which HIP1 can be observed varies greatly between the three

reading frames. The canonical motif in RF0 corresponds to four sequences of three codons

each (GCG ATC GC*), all of which encode the hydrophobic triplet, AIA. In RF1, the

canonical motif also corresponds to four sequences of four codons (*GC GAT CGC), each of

which encodes a different peptide. In contrast, there are 255 ways4 to embed the canonical

motif in RF2 (**G CGA TCG C**). Further, Thirteen different amino acids are encoded by

codons ending in G and five different amino acids are encoded by codons starting with C,

resulting in 65 peptides of length four. The elevated degeneracy associated with the encoding

4One of the 16 nucleotide triplets ending in G, one is a STOP codon.
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GA GV sub / site HIP motifs MAUVE blocks KS

sya sel 0.0016 GCGATCGC 4 <0.01
cyf cyg 0.0031 GCGATCGC 5 0.02
ana ava 0.0277 GCGATCGC 263 0.18
syh syg 0.1288 GGGATCCC 404 0.59

Table 3.4: Divergence of genome pairs selected for conservation analyses.

of HIP1 in RF2 may contribute to the observed preference for this reading frame.

3.3 HIP1 motif conservation

The observed enrichment shows that the high abundance of HIP1 is not solely due to the

underlying genomic sequence composition, suggesting that high HIP1 abundance must be

maintained by some genomic mechanism. We expect to see conservation of HIP1 sites in

related genomes if HIP1 is maintained by selection, but not if HIP1 abundance is maintained

by neutral processes. If HIP1 motifs are a byproduct of some neutral process, the motif, once

inserted, will decay due to random stochastic mutation. In this case, HIP1 abundance would

remain high because HIP1 motifs are constantly replenished, not because existing HIP1s are

maintained. To rule out the possibility that a neutral process is driving HIP1 abundance, I

assessed the conservation of HIP1 motifs in four pairs of genomes (sel -sya, cyf -cyg, ana-ava,

and syh-syg), selected at varying evolutionary distances (Table 3.4). Evolutionary distance

between a pair of genomes was assessed using KS (synonymous substitutions per synonymous

site), as described in Methods (3.8.4).

The four selected pairs of genomes, highlighted on the phylogeny in Figure 3.5, also

represent a broad range of ecological strategies and taxonomic groups. Among them, Syne-

chococcus elongatus PCC7942 (sel), a model organism used to study the circadian clock

in cyanobacteria, is very closely related to Synechococcus elongatus PCC6301 (sya). Both

sya and sel are freshwater obligate photoautotrophs. The two Cyanothece strains (cyf and

cyg) were isolated from rice fields in Taiwan during springtime. Both genomes produce

phycoerythrin, a pigment that absorbs light at frequencies that are not utilized by many

other photosynthetic organisms. The Nostocaceae strains, ana and ava, are filamentous
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Figure 3.5: Phylogenetic relationships of genome pairs selected for conservation analyses.

heterocyst-forming diazotrophs with larger genome sizes. The fourth pair, syh and syg, are

the two thermophilic strains with the alternative form of HIP1.

In order to quantify positional motif conservation, I first generated pairwise whole genome

alignments using MAUVE ver. 2.3.1 (Darling et al., 2004, 2010) for the four selected pairs of

genomes, as described in Methods (Section 3.8.5). Conservation was assessed over all aligned

blocks in each pairwise alignment.

Motif conservation was quantified using two different conservation scores: the C score

and the S score. S is a symmetrical measure of the conservation between a pair of genomes

Ga and Gb. S is a specific application of the Jaccard score, which represents the fraction of

elements in the union of two sets that also appear in their intersection. This symmetrical

conservation score can be expressed as

S =
nab

na + nb − nab

, (3.8)

where na and nb are the numbers of motif sites in Ga and Gb, respectively, that occur in the
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alignable blocks, and nab is the number of sites where the motifs in Ga and Gb are perfectly

aligned5.

The C score is an asymmetric measure of motif conservation between a pair of genomes,

where one genome is treated as the reference genome (e.g., genome Ga) and the other as

the comparison genome (e.g., genome Gb). C represents the fraction of sites in the reference

genome that are also found in the comparison genome, and can be expressed as

C =
nab

na

. (3.9)

The mean and variance of the number of conserved motif sites can be estimated under the

assumption that conserved sites are binomially distributed. Given a motif in Ga, let p be

the probability that it is perfectly aligned with the same motif in Gb, and let X be the

random variable representing the number of sites that are conserved. Then, X ∼ B(na, p)

with expectation

E(X) = na · p̂, (3.10)

and variance

V ar(X) = na · p̂(1− p̂), (3.11)

where p̂ = C is the maximum likelihood estimator of p. These statistics can be used to

estimate bounds on the C score. Using the normal approximation, we obtain the 95%

confidence interval of p:

p̂− 1.96

√
p̂(1− p̂)

n
≤ p ≤ p̂+ 1.96

√
p̂(1− p̂)

n
. (3.12)

A p-value can be estimated directly from B(na, p̂).

A more conservative approximation for p can be obtained by estimating the likelihood

5In all four genome pairs, the aligned blocks do not cover the entire length of either genome. Therefore,
the motif counts in the conservation analysis (3.5 and 3.6) are lower than the total motifs counts given in
Table 3.2.
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interval. The log likelihood of p is

L(p) = ln

((
na

nab

)
pnab(1− p)na−nab

)
. (3.13)

The likelihood interval for p̂ is computed by searching for the lower bound (p̂l) and upper

bound (p̂u) such that

L(p̂l) = L(p̂u) = maxL(p)− 2 (3.14)

and

p̂u > p̂l.

The upper bound p̂u can be substituted for p̂ in Equation 3.12 to obtain a more conservative

estimate of the error bounds of C.

The conservation of HIP1 sites was assessed using both S and C measures. As a control,

I also calculated the conservation of motifs that have properties similar to HIP1, but are

not enriched. For example, an octamer palindrome with the same GC content as HIP1 can

be used as a control motif. To have a large set of control motifs, I used the combined set

of all octamer palindromes with 75% GC content as the control motif set, as described in

Methods. When using this heterogeneous set of motifs, na refers to the number of sites in

the aligned regions of Ga where any one of the palindromes in the control set appears; nb is

defined similarly. For control motifs, nab is the number of sites at which a control motif in

Ga is perfectly aligned with the same palindrome in Gb. The conservation of HIP1, SHIP1,

can be assessed in comparison to the conservation of the control, SCtrl, to determine whether

HIP1 motifs are more conserved than other palindromes with the same GC content. The

asymmetric conservation scores are similarly compared.

Genome-wide motif conservation is reported in Table 3.5. Confidence intervals were ob-

tained by estimating the upper bound, pu, as described above, and substituting pu into Equa-

tion 3.12. The p-values were estimated directly from the binomial distribution, B(na, p̂u).

They indicate that the distinction between HIP1 conservation and control motif conservation

is significant (p < 10−14). For all four pairs of genomes, the HIP1 conservation lies outside
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the confidence interval of the control motif conservation.

For the assignment of reference genome and comparison genome when calculating the

C score, conservation was calculated twice, exchanging the reference and the comparison

genomes, to ensure that the results are not biased by the choice of reference genome. The

results, shown in Table A5 in the Appendix, are very similar to those in Table 3.5, suggesting

that the direction of the analysis does not change the observations.

3.4 Conservation in coding and non-coding regions

HIP1 motifs in coding regions are more conserved than in intergenic regions. The same ob-

servation can be made for control motifs, as shown in Table 3.6. The greater conservation of

HIP1 in coding regions could be an indication that HIP1 motifs are of particular importance

in coding regions. It could also be due to the fact that coding regions are, in general, more

conserved than intergenic regions. If selection were acting specifically to maintain HIP1

motifs in coding regions, we would expect the conservation in coding regions, relative to

intergenic regions, to be greater for the HIP1 motif than for the control. Let RHIP1 be the

ratio of the coding and intergenic C scores for HIP1 motifs and let Rctrl be the same ratio

for control motifs. Table 3.6 lists all such ratios.

Comparing RHIP1 with Rctrl for each pair of genomes, the values of RHIP1 and Rctrl are

similar in all four cases. The ratio of RHIP1 toRctrl varies from 1.19 (cyf -cyg) to 0.75 (syg-

syh). In other words, it is relatively close to one, suggesting that the degree of conservation in

coding regions, relative to intergenic regions, is not dramatically different for HIP1 than for

the control. Further,RHIP1 is neither consistently larger, nor consistently smaller, thanRctrl.

However, we have no rigorous basis for testing the hypothesis that HIP1 is more conserved

in coding regions than would be expected by chance. Comparing Rctrl with RHIP1 does not

address the variance of Rctrl, nor does it convey the statistical significance of the difference

between Rctrl with RHIP1. Several approaches could be used to develop a formal hypothesis

test. A broader set of control motifs (for example, based on 6-mers) could be used to obtain

a distribution of control conservation ratios. Alternatively, bootstrapping could be used to



100 CHAPTER 3. HIGHLY ITERATED PALINDROME-1 (HIP1) MOTIFS

G
en

om
e

C
o
d
in

g
re

gi
on

s
In

te
rg

en
ic

re
gi

on
s

a
b

K
S

n
a

n
b

n
a
b

C
S

n
a

n
b

n
a
b

C
S

R

HIP1

sy
a

se
l

0.
00

63
41

63
82

63
37

0.
99

1.
00

10
15

10
17

10
11

0.
99

1.
00

1.
00

cy
f

cy
g

0.
02

26
93

26
94

26
14

0.
94

0.
97

24
9

27
3

20
7

0.
66

0.
83

1.
17

an
a

av
a

0.
18

44
37

42
80

39
46

0.
83

0.
89

37
6

55
6

26
4

0.
40

0.
70

1.
27

sy
h

sy
g

0.
59

26
47

30
39

21
14

0.
59

0.
80

53
3

72
7

29
5

0.
31

0.
55

1.
44

Control

sy
a

se
l

0.
00

25
34

25
22

25
12

0.
99

0.
99

26
8

26
8

26
6

0.
99

0.
99

1.
00

cy
f

cy
g

0.
02

50
7

49
9

44
9

0.
81

0.
89

84
11

4
76

0.
62

0.
90

0.
98

an
a

av
a

0.
18

48
0

48
1

21
7

0.
29

0.
45

45
89

14
0.

12
0.

31
1.

45
sy

h
sy

g
0.

59
33

20
27

87
95

7
0.

19
0.

29
35

7
39

4
54

0.
08

0.
15

1.
91

T
ab

le
3.

6:
P

os
it

io
n
al

co
n
se

rv
at

io
n

of
H

IP
1

an
d

co
n
tr

ol
m

ot
if

s
in

co
d
in

g
an

d
in

te
rg

en
ic

re
gi

on
s.



3.5. CODON CONSERVATION IN HIP1 MOTIFS 101

estimate the variance, using either the current or an expanded control set. As more whole

genome sequences become available, additional genome pairs at appropriate KS distances

promise increased statistical power for both of these approaches.

3.5 Codon conservation in HIP1 motifs

Each bacterial genome has its own codon usage preference. Differences in codon usage can

affect the analyses described in Section 3.3, because the observed HIP1 conservation could

be merely due to the fact that the nucleotide triplets within HIP1 are preferred codons.

I tested whether HIP1 conservation is caused by codon usage by analyzing codon con-

servation. If HIP1 conservation is a byproduct of codon usage, then the tri-nucleotides that

appear in HIP1 motifs should have the same level of conservation within HIP1 motifs and

outside of HIP1 motifs. Alternatively, if those tri-nucleotides are more conserved within

HIP1 motifs, then we can conclude that codon usage is not the force driving the observed

HIP1 conservation.

For each tri-nucleotide that can occur in HIP1, I calculated the conservation score (both C

and S) for instances of the tri-nucleotide found in HIP1 motifs and instances found outside

HIP1 motifs. There are six possible tri-nucleotides within the canonical HIP1 motif 5’-

GCGATCGC-3’: GCG, CGA, GAT, ATC, TCG, and CGC. In the Yellowstone strains, the

tri-nucleotides within the variant HIP1 motif are: GGG, GGA, GAT, ATC, TCC, and CCC.

This analysis was performed using only the genomic regions in the alignable blocks that

are annotated as coding regions in both genomes. This comparison was also carried out

separately for each reading frame.

Table 3.7 summarizes the conservation for each of the six tri-nucleotides. For the three

more divergent pairs of genomes, tri-nucleotides are clearly more conserved in HIP1 motifs,

than outside HIP1 motifs, as evidenced by both C score and S scores. The significance of

the observed result was then determined using the Wilcoxon signed-ranked test, as described

in Methods (Section 3.8), which tests the null hypothesis that the overall conservation of

tri-nucleotides within HIP1 motifs is statistically indistinguishable from codon conservation
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Genome Within HIP1 Outside HIP1

a b codon na nb nab C S na nb nab C S

sya sel

GCG 7266 7277 7262 1.00 1.00 56422 56415 56308 1.00 1.00
CGA 7257 7274 7255 1.00 1.00 50403 50361 50283 1.00 1.00
GAT 7248 7271 7246 1.00 1.00 50677 50723 50616 1.00 1.00
ATC 7252 7273 7252 1.00 1.00 50409 50459 50353 1.00 1.00
TCG 7251 7272 7251 1.00 1.00 50182 50149 50072 1.00 1.00
CGC 7256 7268 7252 1.00 1.00 56250 56230 56129 1.00 1.00

cyf cyg

GCG 2825 2838 2730 0.97 0.93 29320 29355 27035 0.92 0.85
CGA 2826 2840 2735 0.97 0.93 45298 45444 41664 0.92 0.85
GAT 2833 2853 2757 0.97 0.94 85487 85435 78523 0.92 0.85
ATC 2837 2856 2764 0.97 0.94 84454 84548 77713 0.92 0.85
TCG 2817 2843 2732 0.97 0.93 45407 45424 41716 0.92 0.85
CGC 2813 2841 2727 0.97 0.93 29600 29666 27337 0.92 0.86

ana ava

GCG 4724 4760 4246 0.90 0.81 47807 47744 31834 0.67 0.50
CGA 4730 4772 4266 0.90 0.81 43985 44153 28794 0.65 0.49
GAT 4768 4787 4319 0.91 0.82 92111 92578 67014 0.73 0.57
ATC 4769 4787 4318 0.91 0.82 92932 93118 67446 0.73 0.57
TCG 4736 4761 4257 0.90 0.81 44427 44502 29171 0.66 0.49
CGC 4727 4747 4234 0.90 0.81 48071 48234 32055 0.67 0.50

syh syg

GGG 3465 3899 2968 0.86 0.68 72607 73466 43266 0.60 0.42
GGA 3598 4008 3217 0.89 0.73 48127 50164 27410 0.57 0.39
GAT 3633 4005 3250 0.89 0.74 42967 47750 27629 0.64 0.44
ATC 3606 3993 3215 0.89 0.73 43142 47822 27719 0.64 0.44
TCC 3564 3974 3155 0.89 0.72 48198 50813 27706 0.57 0.39
CCC 3396 3854 2868 0.84 0.65 72338 73578 43458 0.60 0.42

Table 3.7: Codon conservation within and outside of HIP1 motifs.
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outside of HIP1, based on the conservation of all six tri-nucleotides and all reading frames.

The results are highly significant; p = 0 for cyf -cyg, ana-ava, and syg-syh. Taken together,

the results indicate that codons are indeed significantly more conserved within HIP1 mo-

tifs. This analysis rules out the possibility that codon usage is the primary cause of HIP1

conservation.

3.6 HIP1 content in orthologous genes

In the previous two sections, I showed that HIP1 motifs are positionally conserved between

pairs of genomes, and that this conservation is not a byproduct of the codon usage. Specifi-

cally, the conservation analysis showed that the positions of HIP1 motifs in aligned regions

are conserved. This positional conservation led me to expect that HIP1 content in local

regions is also correlated between orthologous regions. To see whether the local HIP1 con-

tent can reflect HIP1 positional conservation, relative to the control motif, I investigated the

per-gene motif content correlation in orthologous gene pairs.

3.6.1 Datasets

HIP1 content analyses were carried out using two genome pairs. These are ana-ava and

syh-syg, the most divergent pairs of the four pairs to test for HIP1 positional conservation.

Instead of using MAUVE aligned blocks, I compared motif content in pairs of orthologous

genes. The predicted gene families from the Barker dataset were used for ortholog prediction.

The orthologs were predicted using three methods:

1. Gene pairs were taken from families with exactly one gene copy in each genome.

2. Orthologs were inferred using phylogenetic reconciliation to identify gene pairs that di-

verged from a common ancestor via speciation. These were obtained using the ortholog

prediction function in Notung-2.8 with a DL-event model.

3. Orthologs were predicted using phylogenetic reconciliation with Notung-2.8 with a
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(a) Nostoc sp. PCC 7120 (ana) and Anabaena vari-
abilis ATCC29413 (ava)

(b) Synechococcus sp. JA-3-3Ab (syh) and Synechococ-
cus sp. JA-2-3B’a(2-13) (syg)

Figure 3.6: The number of shared and unique predicted orthologs obtained using three
different methods.

DTL-event model. The details of these three methods are explained in Methods (Sec-

tion 3.8).

The Venn diagrams in Figure 3.6 summarize the number of shared and unique predicted

ortholog pairs, obtained with these three methods. The set of orthologs that were predicted

by all three methods were then used for the HIP1 content conservation analysis. These

datasets contain 3227 ortholog pairs for ana-ava, and 1737 pairs for syh-syg.

3.6.2 Correlation of HIP1 content in orthologous genes

First, I investigated how well the motif content of a gene correlates with the motif content

of the corresponding ortholog. Motif content was assessed by motif frequency and by motif

enrichment. Scatter plots of HIP1 frequency and enrichment in ortholog pairs are shown in

Figures 3.7 and 3.8. For comparison, I also plotted the control motif content in the same

ortholog sets for both pairs of genomes. Correlation coefficients were calculated for each plot,

and summarized in Table 3.8. The correlation coefficients indicate that motif frequency and

enrichment are significantly more correlated for HIP1 than for control motifs (p < 1×10−15),
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Figure 3.7: Scatter plots showing the motif frequency, in occurrences per kilo basepair, in
orthologous gene pairs. Each dot represents an ortholog pair. Only frequencies below 8 motif
per kbp are shown to reveal detail. Scatter plots with all the data points can be found in
the Appendix (Figure A3).

for both frequency and enrichment. These observations are consistent with the result that

HIP1 positions are conserved in aligned blocks, reported in previous sections.

3.6.3 Conservation of HIP1 per-gene content in orthologs

The analysis in Section 3.6.2 assesses motif content similarity across orthologs for the en-

tire set of orthologous pairs. Here, I compare HIP1 content conservation with control motif

content conservation, for each pair of orthologs individually. Again, the per-gene HIP1 con-
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Figure 3.8: Scatter plots showing HIP1 enrichment in orthologous genes. These scatter plots
are full views showing all the data points. Each dot represents an ortholog pair.

Frequency Enrichment

Genomes HIP1 Control HIP1 Control

syh-syg 0.772 0.310 0.527 0.208
ana-ava 0.939 0.581 0.748 0.481

Table 3.8: Correlation coefficients of HIP1 content and control motif content between pairs of
ortholgous genes. Values are based on the plots in Figure 3.7 and Figure 3.8. All correlation
coefficients are supported by p-values smaller than 1× 10−15.
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tent conservation is what would be expected given the positional conservation demonstrated

previously.

Since HIP1 and control motif frequencies differ substantially, the following normaliza-

tion procedures were used to obtain an unbiased comparison. Let gA and gB be a pair of

orthologous genes from genomes GA and GB. To adjust for differences in motif abundance

and enrichment across genomes, the values were first standardized and the resulting z-scores

were compared. For a given raw score, x, let x̃ denote the standardized score

x̃ =
x− x̄
s

, (3.15)

where x̄ is the sample mean and s is the sample standard deviation. For this analysis, the

raw scores of interest are the motif frequency and enrichment in orthologous genes.

To test whether HIP1 motif content is more conserved than the control in individual

ortholog pairs, I considered two test statistics, the absolute value and the square of the

difference of the standardized motif content scores in gA and gB:

da(AB) = |x̃A − x̃B| (3.16)

and

ds(AB) = (x̃A − x̃B)2. (3.17)

The distributions of these test statistics both HIP1 and control motifs are plotted in Fig-

ures 3.9–3.12. The same plots but with full range are shown in Appendix Figures A4-A7. I

used the Kolmogorov-Smirnov (KS) test to determine whether the distributions of differences

in motif content between orthologous genes was significantly smaller for the HIP1 motif than

for the control motif. The test was performed both for the set of all orthologous pairs and

for the restricted set of orthologous pairs where the motif content was greater than zero

in both genes. The resulting p-values are summarized in Table 3.9, which shows that the

per-gene HIP1 content is significantly more conserved than the control motif content. This

observation is consistent with the previous results on HIP1 positional conservation.
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Frequency Enrichment

Tests Genome pair all orthologs non-zero1 all orthologs non-zero1

da[HIP ] vs. da[Ctr] syh - syg 3.36E-191 3.77E-96 3.35E-256 7.71E-215
da[HIP ] vs. da[Ctrl] ana - ava 0 0 0 0
ds[HIP ] vs. ds[Ctrl] syh - syg 5.10E-68 2.36E-32 2.03E-24 7.56E-09
ds[HIP ] vs. ds[Ctrl] ana - ava 0 0 0 0

Table 3.9: Comparison of HIP1 and control motif conservation. The p-values are based on
one-sided KS tests. 1 Tests results obtained using the partial dataset that contains only the
orthologs that have at least 1 HIP1 motif in both genomes.

3.7 Chapter Conclusion

In this chapter, I showed that the HIP1 motif was abundant in most genomes tested with the

exception of the marine pico-cyanobacteria, Gloeobacter, and two Cyanothece strains. The

HIP1 motif content was also enriched, relative to the expected content, in all genomes with

high HIP1 frequency, suggesting HIP1 abundance is not caused by the background genomic

nucleotide composition. The two Cyanothece genomes with low abundance were also revealed

to be enriched for HIP1 when background was taken into account. A prior study of HIP1

enrichment reported similar results (Delaye et al., 2011b). That study used an overly simple

model of underlying sequence composition in estimating the expected number of motifs. My

HIP1 enrichment results are based on a model of expected number of motifs in which tri-

nucleotide frequencies in intergenic regions and in all three reading frames are taken into

account.

In order to determine whether the HIP1 content of HIP1-rich genomes is maintained by

selection or by a neutral process, I further investigated the extent to which HIP1 motifs are

conserved. My results show that HIP1 positions were more conserved than the positions of

control motifs. Analysis of codon conservation suggests that the observed conservation is not

a byproduct of codon usage. Rather, my results suggest that the selection acting on HIP1

motifs is driving codon conservation within HIP1 motifs, and not the other way around.

These results, taken together, support the hypothesis that selection is acting to maintain

HIP1 motif abundance. The alternative hypothesis, that HIP1 abundance is maintained by

a neutral process that continually generates new HIP1 motifs, predicts high abundance and
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Figure 3.9: Histograms (detailed view) of ds[HIP1] and ds[Ctrl] based on motif frequency for
the genome pairs ana-ava and syh-syg. The maximum values on the horizontal and vertical
axes are capped. The complete histograms are shown in the Appendix.
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Figure 3.10: Histograms (detailed view) of da[HIP1] and da[Ctrl] based on motif frequency
for the genome pairs ana-ava and syh-syg. The maximum values on the horizontal and
vertical axes are capped. The complete histograms are shown in the Appendix.
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Figure 3.11: Histograms (detailed view) of ds[HIP1] and ds[Ctrl] based on motif enrichment
for the genome pairs ana-ava and syh-syg. The maximum values on the horizontal and
vertical axes are capped. The complete histograms are shown in the Appendix.
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Figure 3.12: Histograms (detailed view) of da[HIP1] and da[Ctrl] based on motif enrichment
for the genome pairs ana-ava and syh-syg. The maximum values on the horizontal and
vertical axes are capped. The complete histograms are shown in the Appendix.
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enrichment, but not elevated motif conservation.

I discovered a variant HIP1 motif (5’-GGGATCCC-3’) in the Yellowstone strains, from

which the canonical HIP1 motif is absent. I hypothesized that, in these strains, the variant

motif might play the same role as the canonical HIP1 in HIP1-rich genomes. The vari-

ant HIP1 displayed characteristics similar to those of the canonical motif in all subsequent

analyses: The variant motif was not only abundant, but also enriched in the Yellowstone

strains. Like the canonical motif in other genomes, it has greater positional conservation

than control motifs. Codon conservation analysis demonstrated that this conservation is not

caused by codon usage. Further, in the content conservation analysis, the trends that were

observed in the ava-ava pair (canonical HIP1) and the syg-syh pair (variant HIP1) were

similar. These observations are consistent with the hypothesis that 5’-GGGATCCC-3’ is a

HIP1 variant. This suggests that the Yellowstone strains are HIP1-rich genomes, in contrast

to the conclusions of Delaye et al. (2011b). The presence of a variant form could due to

the thermophilic ecology of these strains. On the other hand, considering deep branching

positions of syh and syg on the cyanobacterial phylogeny, it is also possible that the variant

pattern reflects the ancestral form of this sequence motif.

My investigations on motif content in orthologs show that HIP1 content in orthologous

pairs is more correlated than control motif content. Further, when HIP1 content conserva-

tion in an orthologous pair is compared to control content conservation in the same pair,

the difference in HIP1 frequency tends to be smaller than the difference in control motif fre-

quency. The same is true for enrichment. When considered over the entire set of orthologs,

this trend is highly significant, according to KS tests.

The biological implications of HIP1 content conservation are difficult to interpret. The

observed conservation of HIP1 content in orthologous pairs could be a byproduct of selection

acting on HIP1 positions. Alternatively, selection could be acting to keep HIP1 motifs in a

local region, suggesting a functional role that requires the accumulation of HIP1 instances.

Such selection would also result in conserved motif sites. Since orthologs tend to inhabit

regions with conserved synteny, this selective pressure might also act, indirectly, to promote

conservation of HIP1 content in orthologous genes. If selection is acting to maintain HIP1

in local regions, then we would also expect to see elevated HIP1 content conservation when
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windows from aligned blocks were compared. A third possibility is that the target of selection

is not specific regions in the genome, but the orthologs themselves.

Enrichment of HIP1 can be detected among all the genomes surveyed, except for Gloeobac-

ter and the marine pico-cyanobacteria. Considering the placement of Gloeobacter vio-

laceus PCC7421 (gvi), the HIP1 trait could have been acquired after the separation of

Gloeobacter from the rest of the cyanobacterial lineages, and lost at the last common an-

cestor to marine pico-cyanobacteria. Alternatively, HIP1 abundance could be present at

the last common cyanobacterial ancestor, and lost in Gloeobacter. As the deepest branch-

ing cyanobacterium, Gloeobacter is different from the rest of cyanobacteria in many ways.

The thylakoid membrane, together with several key photosynthetic genes, are lacking in

Gloeobacter. KaiABC, the key genes for cyanobacterial circadian clocks, are also missing in

Gloeobacter. It is seemingly possible that HIP1 may perform a function that Gloeobacter

does not require, and consequently was lost in this lineage.

Given the cyanobacterial phylogeny and the phylogenetic distribution of HIP1 enrich-

ment (Figure 3.3), loss of the HIP1 trait in the marine pico-cyanobacteria is more likely

than independent gains in the non-pico lineages. Marine pico-cyanobacteria could have lost

HIP1 because of changes in underlying genome composition during genome streamlining. It

was shown that picos have very low repetitive sequence coverage (Treangen et al., 2009).

Therefore HIP1 might have been lost at the same time that other repetitive elements were

lost. Alternatively, marine pico-cyanobacteria might have lost the phenotype that requires

HIP1.

The phylogenetic distribution of HIP1 abundance and enrichment, as shown in Figure 3.3,

provides interesting insights into the evolution of HIP1 enrichment. It seems that within the

HIP1-rich genomes, the levels of enrichment are constantly changing during the course of

genome evolution. There is no obvious, trend of increasing HIP1 enrichment change along the

species tree. For example, even within the relatively closely related Cyanothece genomes,

the enrichments range from 18 in Cyanothece sp. PCC 7822 (cye) to 189 in Cyanothece

sp. ATCC51142 (cyb), which is more than a 10-fold change. On the other hand, the variation

of HIP1 enrichment among the Nostocaceae is relatively small.
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3.8 Methods

3.8.1 Control motifs

The combined set of all 63 octamer palindromes with 75% GC content, other than HIP1,

was used as a control. The complete list of all possible octamers and their abundance can

be found in Table A4 in the Appendix.

3.8.2 Genome dataset acquisition

Forty complete cyanobacterial genomes were retrieved from NCBI’s FTP site 6 in Decemeber

2011. For each genome, the following files were acquired:

1. *.fna files containing the primary DNA sequences from all the replicons,

2. *.ptt files, protein annotation tables specifying the coordinates, reference accession id

and locus tag for each protein coding gene in the genome,

3. *.rnt files, annotation tables for RNA genes.

3.8.3 Specification of coding and intergenic regions

In comparisons of coding and intergenic regions, coding regions were defined to be all genomic

regions annotated as open reading frames in the NCBI protein annotation table. In other

words, coding regions are ORFs. Non-coding regions, also referred to as inter-genic regions

in this thesis, are the genomic regions that are not coding for proteins or RNAs, according

to the annotation tables.

Intergenic regions were defined to be regions that are not included in any annotated ORF,

RNA gene, and transposon. When calculating HIP1 motif enrichment and conservation

within non-coding regions, long non-coding regions were excluded because they may contain

unannotated genetic elements such as unknown protein coding or RNA genes, transposable

6URL: ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/
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elements, tandem repeats, pseudogenes, etc. The upper limit on the length of between-

ORF regions was imposed to rule out unannotated elements such as transposons and long

repetitive sequences.

I experimented with different criteria for inclusion as non-coding region for the conser-

vation analysis and the results are summarized in Figure A2 in the Appendix. The criteria

I experimented with were:

1. No limit (i.e., all non-coding regions out side of annotated features were treated as

intergenic regions).

2. Between-ORF regions start 10bp downstream (3’) of the stop codon and extend to

the next annotated feature or to a position X bp downstream, which ever comes first.

Values of X considered were 500 bp, 1000 bp, 2000 bp, and 3000 bp, respectively.

While specific numbers obtained with the different criteria varied, the overall trends were

unaffected. For results reported in the main text of this thesis, a cutoff of 2000bp was used.

3.8.4 KS calculation

KS, the fraction of synonymous substitutions per synonymous site, was calculated from a

concatenated alignment of 147 single copy genes obtained from a previous study (Latysheva

et al., 2012). In that study, an amino acid sequence alignment for each family was previously

generated, as described in Section 3.8.6. The protein sequence alignments were converted

to DNA sequence alignments using the web-based tool PAL2NAL (Suyama et al., 2006),

which generates codon-aware DNA alignments from pre-aligned amino acid sequences. KS

values were then calculated using the software KaKs Calculator (Zhang et al., 2006) using

the criteria described in Nei and Gojobori (1986). KS is computationally easier to calculate

than the more commonly used dS (Ota and Nei, 1994; Yang, 1998), and given the range of

the genomes I am interested in, KS is a good approximation of dS (Li et al., 1985).



3.8. METHODS 117

3.8.5 Whole genome alignment

Pairwise whole genome alignment was performed in MAUVE ver. 2.3.1 (Darling et al., 2004,

2010) using default parameter settings. Only the genomic regions in the alignable blocks

were used for the conservation analyses.

3.8.6 Ortholog prediction

Orthologous gene pairs were prediction between ana-ava, and between syh-syg, based on the

dataset of gene families and their corresponding phylogenies provided by Dr. Daniel Barker

(School of Biology, University of St Andrews).

Gene family prediction and phylogeny reconstruction

The Barker dataset contains 65 species, among which 47 are cyanobacteria. The complete

genomes were obtained from Integr8 database (release 108). Gene families were predicted

using OrthoMCL 2.0 (Li et al., 2003) with MCL 09-308, on BLAST results with ’m S’

masking and an E-value cutoff of 10−5. The inflation parameter 1.6 was chosen.

The Barker dataset contains a species phylogeny of the 65 species. The species phylogeny

was based 147 universal, single-copy gene families. Multiple alignment of each gene family

was performed in MAFFT in ’E-INS-I’ mode with 1000 iterations (Katoh and Toh 2008).

LG+Γ was in MODELGENERATOR (Keane et al., 2006) using the using the Bayesian

Information criterion (BIC). The phylogeny was constructed using PhyML (Guindon et al.,

2010) with ’best’ rearrangements.

Phylogenies of 13,852 gene families from 65 species were based on multiple sequence

alignments performed in MAFFT. A model was selected for each family using MODELGEN-

ERATOR with 4 rate categories and BIC. 13,852 gene trees were constructed in PhyML via

’best’ rearrangements. Each gene tree was bootstrapped with 200 replicates.

Orthologs were predicted from these gene families using three different methods. The first

method is based on sequence comparison. The other two methods are based on phylogenetic

reconciliation, a process that compares a gene tree with a species tree to infer the evolution
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process that gave rise to each bifurcation in the gene tree. Notung 2.7 (Stolzer et al., 2012)

was used to reconcile the gene and species trees, to root the gene trees, and to rearrange

weakly supported branches.

Single copy presence in both genomes

Specifically, if genes gA and gB, from genome GA and GB respectively, are both in gene

family F , and no other members of F are found in GA and GB, then gA and gB are predicted

to be orthologs.

Notung prediction with DL event model

Given a species tree and a gene tree, Notung can predict orthologs once the DL-reconciliation

is done, by looking at the events history. If the last common ancestor of gA and gB, from

genomes GA and GB respectively, is predicted to be a speciation event, then gA and gB are

predicted to be orthologs. The gene trees were rooted using duplication-loss (DL) parsimony.

To remove noise, the gene trees were rearranged using an edge support threshold of 70%. The

reconciliation was performed after a DL-rearrangement and a DL-rerooting process. In all

steps of this pipeline, the duplication and loss costs used were δ = 3 and λ = 2, respectively,

as described in Section 2.2 in Chapter 2.

Notung prediction with DTL event model

If the the last common ancestor of gA and gB, from genomes GA and GB respectively, on the

gene tree is predicted to be a speciation event, and there is no transfer predicted along the

path between gA and gB, then gA and gB are predicted to be orthologs (Fitch, 2000). The

DTL reconciliation was performed after a DL-rearrangement and a DL-rerooting process.

In all steps of this pipeline, the event costs used for DL-model are δ = 3 and λ = 2. The

event costs used for DTL-model are δ = 3, τ = 2.5, and λ = 2. For gene families with

more than one optimal reconciliation, only the orthologs that are supported by all optimal

reconciliations are reported.
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3.8.7 Correction for phylogenetic dependency

To address the phylogenetic dependency when counting the number of genomes in which

HIP1 is most enriched in a particular reading frame, weights are assigned to each genome,

reflecting the presence or absence of closely related genomes. Given a species tree with

branch lengths, the weight assigned to a species node (A), either an internal or leaf node, is

defined to be

WA =
a+ SA

a+ SA + b+ SB

WP (A,B), (3.18)

where B is the sister group to A, and P (A,B) is the parent of A and B. Here, a and b

are the branch lengths from A and B to P (A,B), respectively. SA is the sum of all branch

lengths below A. When A is a leaf node, SA is zero. The value of Wtoot is a scaling factor

and can be chosen arbitrarily. To avoid underflow due to multiplication of numbers less than

one, WRoot is frequently set to large, positive integer; e.g., 1000. . Weights for leaf nodes are

normalized so that they will sum to 1. Thus, the normalized weight of leaf node X will be:

W ′
X =

WX

Σi∈LWi

, (3.19)

where L is the set of all leaf nodes.
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Chapter 4

Intra-Genome Variation of HIP1

Motifs

Previous results from Chapter 3 indicate HIP1 is conserved. The HIP1 positional conserva-

tion, as well as the HIP1 content conservation, implies selection, indicating HIP1 might have

important functional roles. Such function might be acting on the whole-genome level. If this

is the case, the spatial distribution of HIP1 may provide useful insights as many repetitive

motifs related to chromosome structure are suggested to have specific spatial patterns, such

as periodicity. In addition, the spatial distribution of HIP1 within genetic units can also

provide valuable clues about the functional aspects of HIP1, as motifs with regulatory roles

tend to be located within or near the promoter regions and terminator regions of the genetic

units.

In this chapter, I explore the spatial distribution of the HIP1 motifs on a genome scale,

as well as within genetic units. I further look into the spatial distribution with respect to

potential functional implications.

121
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4.1 Genome-wide HIP1 spatial variation

I first consider the spatial organization of HIP1 motifs on a genome-scale. I am interested

in whether there exist genome regions with a burst of HIP1 motifs or regions lacking HIP1

motifs. If there exist such regions, how can I detect them and systematically characterize

the intra-genome variation of motif abundance?

4.1.1 Genome-wide HIP1 distribution

Four genomes were chosen for visual inspection of genome-wide patterns. The four selected

genomes are Synechococcus elongatus PCC7942 (sel), Nostoc sp. PCC 7120 (ana), Syne-

chocystis sp. PCC6803 (syp), and the Yellowstone strain Synechococcus sp. JA-3-3Ab (syh).

Of these, Synechococcus elongatus PCC7942 (sel), Nostoc sp. PCC 7120 (ana) and Syne-

chococcus sp. JA-3-3Ab (syh) are the genomes used in conservation analyses in Chapter

3, and Synechococcus elongatus PCC7942 (sel), Nostoc sp. PCC 7120 (ana), Synechococ-

cus sp. PCC7002 (syb) are the model organisms in cyanobacterial lineage. These genomes

exhibit a range of HIP1 frequencies (Table 1.1).

The spatial distribution of HIP1 motifs is presented visually in Figure 4.1. All four strains

display variations in HIP1 density along the genome, with gaps corresponding to HIP1-free

regions.

Figure 4.2 shows examples of HIP1-free and HIP1-rich regions in the genome of Syne-

chococcus elongatus PCC7942 (sel), the genome with the highest genome-wide HIP1 fre-

quency. Figure 4.2(a), (b), and (c) show HIP1-free regions containing a protein coding gene,

a transposase, and rRNA genes. Visual inspection of HIP1-depauparate regions in HIP1-

rich genomes suggests that transposase and rRNA genes are frequently associated with such

regions. The transposons are often of foreign origin; these may have originated in genomes

lacking HIP1. HIP1 motifs are rarely found in RNA genes, suggesting that secondary struc-

ture constraints conflict with the HIP1 motif. Figure 4.2(d) shows a dense cluster of HIP1

motifs in a coding region and, more generally, a pattern of varying HIP1 density in a dozen

genes. Again, visual inspection reveals that this variation is typical.
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(a) Synechococcus elongatus PCC7942 (sel) (b) Nostoc sp. PCC 7120 (ana)

(c) Synechocystis sp. PCC6803 (syp) (d) Synechococcus sp. JA-3-3Ab (syh)

Figure 4.1: Spatial variation in HIP1 motif content in four HIP1-rich cyanobacterial genomes.
Figures produced by the BLAST Ring Image Generator (Alikhan et al., 2011). (a) Syne-
chococcus elongatus PCC7942 (sel), (b) Nostoc sp. PCC 7120 (ana), (c) Synechocystis
sp. PCC6803 (syp), (d) Synechococcus sp. JA-3-3Ab (syh).
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(a) A HIP1-free region

(b) A HIP1-free region

(c) A HIP1- free region with rRNA genes

(d) A HIP1-rich region

Figure 4.2: Selected examples of HIP1 intra-genome variation in Synechococcus sp. PCC
7942. (a) A HIP1-free region containing the integrin alpha chain. (b) A HIP1-Hole containing
one single gene which is annotated as transposase IS605. (c) a HIP1-free rRNA region
containing 16S and 23S rRNA genes. Most commonly, rRNA genes are HIP1-free. (d) A
case of a HIP1-rich region, containing a 16S rRNA methyltransferase (RsmE), and a 4-
hydroxythreonine-4-phosphate dehydrogenase. Images generated with the genome browser
interface of the Geneious software package (Kearse et al., 2012).
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4.2 HIP1 spatial organization within genetic units

The visual inspection of genome-wide HIP1 distribution is intriguing. A natural extension

would be quantitative assessment of the motif clustering and clumpiness effect, as well as

special motif distribution properties such as periodicity. It is not uncommon to see oligo-

nucleotides that have periodic patterns of occurrence within bacterial genomes (Collings

et al., 2010; Mrazek, 2010; Mrazek et al., 2002). However, such analyses are beyond the

scope of this thesis.

Next, I considered HIP1’s spatial distribution at the sub-genomic level, focusing on the

HIP1 distribution within transcripts, operons, and genes. The distribution of the HIP1

motifs within those genetic units may be of functional importance. Usually the 5’ end of

these genetic units are considered to be the promoter regions with regulatory elements. For

example, a potential preferred distribution of HIP1 motif may indicate HIP1 is related to

transcriptional regulation. There is evidence that repetitive sequences influence transcription

in a variety of ways, including modulating supercoiling, promoting transcription termination,

and inhibiting 3’ oriented RNA degradation (reviewed in Treangen et al. (2009)). Repeti-

tive sequences may contribute to the formation of RNA secondary structures that influence

transcription. HIP1 could act as a DNA binding site for proteins that regulate transcription.

Given the palindromic nature and the high abundance of HIP1 in some genomes, it is quite

possible that pair motifs interact with HIP1s to form inter-motif secondary structures in a

single mRNA molecule. A non-uniform distribution of HIP1 motifs would be an indirect

indicator of this type of functional role.

In prokaryotic genomes, two or more neighboring genes in the same orientation may be

co-transcribed into a single mRNA and then translated into separate proteins. The concept

of an operon was proposed to describe a sequence of contiguous genes that are co-transcribed.

An operon and a transcript may contain the same set of genes, however, the two have

very different definitions. A transcript is an rRNA molecule, and the level of a certain type

of transcript can be measured in a biological system. An operon is an abstract structural

concept. It describes an organization of genes. Operons are predicted and can be verified in

biological systems. Transcripts can often have overlaps, as they may have alternative start
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and stop sites. The genes are typically (but not always) separated by non-coding intergenic

regions and the entire sequence of genes may be flanked by 5’ and 3’ UnTranslated Regions

(UTRs).

My analyses in this subsection focus on HIP1 spatial distribution within genes, tran-

scripts, and (predicted) operons. The spatial distribution of HIP1 motif in those genetic

units can give useful insight of HIP1 function.

4.2.1 Definitions and Datasets

Here I describe the three genetic units under consideration; genes, transcripts, and operons,

and how they are defined in the context of the datasets.

Genes: In this thesis, I use ’gene’ mainly to refer to predicted protein coding genes. I also

use the term open reading frame (ORF) to refer to the protein coding genes, in the genome

annotation files. Note that ORF may have a different meaning in other contexts, such as

continuous sequence of DNA triplets that starts with Met codon and ends with STOP codon.

The coordinates for annotated genes were obtained from the protein annotation tables

(*.ptt files) downloaded together with the genome sequences from NCBI’s ftp site. The

actual protein coding sequences were then extracted from the genomic sequence in the *.fna

files using in-house scripts.

Transcripts: A transcriptome dataset from is available for Synechococcus sp. PCC7942

(Vijayan et al., 2011). This dataset consists of a transcriptome map, generated by combining

three high-resolution datasets obtained using RNA sequencing, tiling expression microarrays,

and RNA polymerase chromatin immuno-precipitation sequencing (RNA pol ChIP-Seq).

The transcriptome map provides the start and end positions in the genome sequence for

each transcript. This dataset also provides the expression level of each transcript, measured

in RNA read abundance. There are a total of 1415 transcripts in the dataset, some of

which overlap. When two neighboring transcripts overlap, I remove the shorter one from

the dataset. A set of 1375 non-overlapping transcripts is thus obtained. In the following
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distance cutoff (d) P TP precision sensitivity

100 1455 887 0.610 0.627
125 1345 825 0.613 0.583
150 1265 770 0.609 0.544
175 1210 729 0.602 0.515
200 1169 702 0.601 0.496

Table 4.1: Assessment of operon prediction under various inter ORF distance cutoff d.

analyses, unless otherwise stated I use the term ’transcript dataset’ to refer to the set of

1375 non-overlapping transcripts.

Operons: The high-resolution transcriptome dataset from Vijayan et al. (2011) is for one

genome, Synechococcus sp. PCC 7942. The transcriptomes for other genomes are lacking

and experimentally expensive to generate. In order to study transcriptional units in other

genomes, I predicted operons in all 20 cyanobacterial genomes in this study.

There are various studies on operon prediction methods for bacterial genomes. Here, I

use a relatively simple one: Two neighboring ORFs in the same orientation are placed in

the same operon if the inter-ORF distance between them does not exceed a user specified

cutoff distance, d. In other words, a predicted operon is a run of consecutive of ORFs with

the same orientation that are not too far apart.

To assess the accuracy of this operon prediction method for various cutoff distances,

I compared the operons predicted in the Synechococcus elongatus PCC7942 (sel) genome

with the 1415 transcripts in the transcriptome dataset. In this comparison, I considered a

prediction to be a true positive (TP) if the start and end positions of the operon coincide

exactly with the boundaries of the transcript once the 5’ and 3’ UTRs have been removed.

Predicted operons that are not perfect matches for a transcript are considered false positives

(FP), even if they substantially overlap with the transcript. Transcripts that do not perfectly

align to a predicted operon are considered to be false negatives (FN). I use

precision =
TP

TP + FP
(4.1)
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and

sensitivity =
TP

TP + FN
(4.2)

to assess the operon prediction performance.

The results of this comparison, summarized in Table 4.1, suggest that a cutoff of d = 125

gives the best precision. Note that d = 100 is almost as precise as d=125, but has better

sensitivity. Because of the nature of analyses, I weighed precision over sensitivity, so that the

majority of the predicted operons dataset resembled the experimentally detected transcripts.

Based on these results, operons were predicted in all 20 HIP1-rich genomes using a cutoff

of d = 125. Also note that the value of d is estimated from a single genome (Synechococcus

elongatus PCC7942 (sel)), and then applied to all 20 HIP1 rich genomes. It is possible that

bias was introduced because each genome may have its own optimal value of d.

The operon prediction method described above does not take untranslated regions into

account. However, most transcripts in the Vijayan dataset have UTR regions; only 175 tran-

scripts lacked a 5’ UTR and all but 266 transcripts had a non-zero 3’ UTR. The distribution

of UTR lengths is summarized in Table 4.2. Statistics were calculated for all UTRs and for

the set of UTRs of non-zero length.

To better mimic the behavior of transcripts, I also predicted operons with UTRs by

adding an extra 60 bp to the 5’ end of the predicted operon and 100 bp to the 3’ end of the

predicted operon. These values correspond to the mean of the lengths of all non-zero 5’- and

3’-UTRs in the Synechococcus sp. PCC 7942 transcript dataset, respectively (Table 4.2).

4.2.2 HIP1 spatial distribution in genes, transcripts, and operons

I used two approaches to quantify the HIP1 spatial distribution within those genetic units:

the Fractional Spatial Distribution (FSD) and Binned Statistics (BS).
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All 5’-UTR 3’-UTR

mean 50.04 82.99
median 29 50
s.d. 66.96 143.61

Non-zero 5’-UTR 3’-UTR

mean 56.79 101.28
median 33 64
s.d. 68.59 152.702

Table 4.2: A survey of the lengths (in bp) of UTRs in the Synechococcus sp. PCC 7942 tran-
scriptome dataset.

Fractional Spatial Distribution (FSD)

FSD is a measure of the motif abundance at a given position in a genetic unit, normalized by

its length. Given a motif in a genetic unit of length L, let m be the position, in base pairs,

of the first nucleotide in the motif. Then, f = m/L is the position of the motif expressed

as a fraction of the length of the genetic unit. A value of f that is closer to 0 indicates a

motif located closer to the 5’ terminus; if f is closer to 1, then the motif is closer to the

3’ end. Given a set of genetic units and a motif of interest, the FSD is the histogram of

the fractional positions of all instances of the motif in the data set, normalized by the total

number of observed motifs. The benefit of this second normalization is that it is easier to

visually compare FSDs.

If the motif exhibits no spatial preference, one would expect the motifs to be uniformly

distributed within the transcripts. The observed FSD can be tested against a uniform distri-

bution using a one-sample Kolmogorov-Smirnov (KS) test. The resulting p-value indicates

the significance of the deviation of the the FSD from this null hypothesis.

I used the FSD to quantify the spatial distribution of HIP1 motifs in the set of 1375 non-

overlapping transcripts (Figure 4.3). For comparison, I plotted the FSD for control motifs

in the same set of transcripts. Visual inspection of the HIP1 FSD suggests a preference for

the 3’ end of transcripts. KS tests show that the HIP1 FSD deviate significantly from a

uniform distribution (p = 2.5×10−21), in contrast to the control motifs, where the deviation

from uniform is much less significant (p = 2.1× 10−3). A two-sample KS test was applied to
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Figure 4.3: Fractional Spatial Distributions of HIP1 motifs (left) and control motifs (right)
in 1375 non-overlapping transcripts.

compare the HIP1 with control motif FSDs, suggesting that the spatial distribution of HIP1

motifs is significantly different from the control motif (p = 3.24× 10−14).

To assess the contribution of the 3’ UTR to the observed preference for HIP1 motifs at

the 3’ terminus, I re-plotted the HIP1 and control FSDs after removing the 5’- and 3’-UTR

regions from the transcripts. Again, I used a KS test to determine the statistical significance

of the HIP1 FSD relative to the uniform and the control distributions. The resulting p-values

are noticeably less significant than those obtained using transcripts with UTR regions (see

Table 4.3). This observation suggests that the UTRs make a substantial contribution to the

observed 3’ preference.

For comparison, the spatial distribution of the HIP1 motif in predicted operons was

also studied. FSDs based on the set of 1345 predicted operons (without added UTRs) is

shown in Figure 4.4. For comparison, I plotted the FSD for control motifs in the same

set of predicted operons. I compared both FSDs to the uniform distribution and to each

other, using KS tests. The resulting p-values are shown in Table 4.3. Visually, the trend

of 3’ HIP1 preference is much weaker, compared to the FSD for the transcipt dataset. The
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p values

Dataset HIP1 vs unif Ctrl vs. unif HIP1 vs Ctrl

Transcripts 2.46× 10−21 2.12× 10−03 3.24× 10−14

Transcripts (noUTR) 5.67× 10−10 5.73× 10−03 1.27× 10−08

Operon (with UTR) 1.05× 10−07 6.57× 10−05 5.29× 10−10

Operon (noUTR) 1.92× 10−02 5.47× 10−04 2.83× 10−05

Genes 7.54× 10−02 1.81× 10−03 1.07× 10−02

Table 4.3: Comparison of the Fractional Spatial Distributions of the HIP1 and Control
motifs with the uniform distribution (one sample Kolmogorov Smirnov test) and with each
other (two sample Kolmogorov Smirnov test). All tests are for genome Synechococcus sp.
PCC7942 (sel)

deviation from the uniform distributions is barely significant (1.92 × 10−2). I repeated the

above analysis using operons with added predicted UTRs (figures not shown). When UTRs

are included in the operon prediction, the deviation of the HIP1 FSD from the uniform

distribution is much more significant (1.05×10−7 versus 1.92×10−2), suggesting that UTRs

substantially contribute to the observed 3’ HIP1 preference.

I further repeated the FSD analyses and KS tests for genes. The resulting p-values, shown

in Table 4.3, are barely significant. These observations do not support a 3’ HIP1 preference

in individual genes.

In summary, I observed a strong and significant 3’ preference for HIP1 distribution in

transcripts. Such spatial preference is significant as revealed by comparing the HIP1 FSD

with the uniform distribution and control motif FSD. I also compared the control motif FSD

with the uniform distribution using one-sample KS test. The resulting p-values (Table 4.3)

suggest that there is only a mild difference between the control motif FSD and the uniform

distribution.

The 3’ preference of HIP1 was also observed in predicted operons, but to a much weaker

extent. The HIP1 distribution revealed no significant 3’ spatial preference of in annotated

genes. My results suggest that the 3’ preference of HIP1 distribution is at least partially

contributed by the UTR sequences. The observed 3’ preference of HIP1 motif distribution

in transcripts is intriguing. However, all the above analyses are based a single genome Syne-
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Figure 4.4: Fractional Spatial Distributions of HIP1 motifs (left) and Control motifs (right)
in 1345 predicted operons.

chococcus elongatus PCC7942 (sel). I then further investigated whether such 3’ HIP1 spatial

preference was present in other HIP1-rich genomes. The spatial motif distribution in other

genomes can only be assessed using predicted operons. Since the UTRs contribute substan-

tially to the magnitude of the observed 3’ preference, the assessment of 3’ preference in other

genomes will likely be influenced by the quality of the UTR predictions. I plotted the HIP1

FSDs for predicted operons with predicted UTRs in Figure 4.5. Visually, among the 20

genomes, only Synechococcus elongatus PCC6301 (sya), a genome closely to Synechococcus

elongatus PCC7942 (sel), showed a 3’ preference similar to that observed in Synechococcus

elongatus PCC7942 (sel). Further, the p-values from KS tests against a uniform distribution

suggest that Synechococcus elongatus PCC7942 (sel) and Synechococcus elongatus PCC6301

(sya) are the only two genomes that exhibit a significant 3’ preference in predicted operons.

Given these observations, it is difficult to determine whether the 3’ preference of HIP1 is

a specific property of Synechococcus elongatus PCC6301 (sya) and Synechococcus elonga-

tus PCC7942 (sel), or whether the failure to observe a 3’ bias in other genomes is due to

the prediction accuracy of operons, and UTRs.
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Binned Statistics

The FSD gives an assessment of the spatial distribution of motif abundance, but cannot be

used to assess whether the spatial distribution of motif enrichment deviates from a uniform

distribution. In order to assess the spatial distribution of motif enrichment, I used a binned

statistic, in which the genetic unit is divided into b bins and the ratio of observed to expected

number of motifs is calculated for each bin separately.

For a genetic unit of length L, each bin corresponds to a subsequence of length

l =
L

b
. (4.3)

The ith bin is the subsequence of the genetic unit, starting at position l · (i − 1) + 1 and

ending at position l · i. Let nj
i be the number of motifs observed in the subsequence in bin i

in genetic unit j. Given a set of genetic units, the abundance for bin i is simply

Oi =
∑
j

nj
i . (4.4)

The expected abundance in bin i is calculated by estimating the di- and tri-nucleotide fre-

quencies in the concatenation of the sequences associated with bin i in each of the genetic

units. Ei, the expected number of motifs in bin i, can then be estimated from these fre-

quencies using the second order Markov model introduced in Chapter 3 (Equation 3.3). The

motif enrichment in bin i is

Ei =
Oi

Ei

. (4.5)

Figure 4.6 shows binned abundance and binned enrichment for the HIP1 and control

motifs in the transcript data. Visual inspection of the binned HIP1 abundance again reveals

a strong 3’ preference. This preference is not observed in the plot of binned control motif

abundance. Interestingly, the binned HIP1 enrichment plot shows a preference for both

termini: the enrichment in the first and last bin is noticeably elevated, relative to the middle

bins. Since the binned abundance in the 5’ terminal bin is not elevated, the elevated 5’
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Figure 4.6: Binned statistics: abundance (blue), enrichment (red), and expected number
of motifs (green) for HIP1 (left) and the control motif (right) in Synechococcus elonga-
tus PCC7942 (sel) transcript data.
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enrichment is presumably due to reduction in the expected number of motifs in the first

bin. This is consistent with the observation that intergenic regions tend to have lower G+C

content than coding regions and that promoters, in particular, tend to be relatively AT rich.

Randomized permutation tests can be used to assess the significance of the spatial distri-

bution of a binned statistic. To assess the significance of a 3’ bias, the test statistic is defined

to be the difference between the average value in the first b− k bins and the average in the

last k bins. The distribution of this test statistic under the null hypothesis is simulated by

repeatedly permuting the order of the bins. For this analysis, we used a value of k = 3.

Unfortunately, there is a limit to the statistical power available for this test. Since the

order within the first b − k bins or within the last k bins does not matter, there are only(
b
k

)
possible permutations. For example, when k = 3, the total number of permutations is

19,600. Thus, unless the observed test statistic is more extreme than all permutations, the

most significant p value that can be obtained is 5e−5. The number of permutations, and

hence the statistical power, could be increased by increasing k, but this would dilute the

signal because the mean motif abundance would decrease. Alternatively, one could increase

the number of possible permutations by increasing the number of bins, but then the estimate

of the expected number of motifs in any one bin would become less accurate.

Figure 4.7 shows the binned statistics for 1345 predicted operons in Synechococcus elon-

gatus PCC7942 (sel), with and without UTRs. The significance in each case was estimated

by permutation testing. In order to discount 5’ effects, the test statistic used is the dif-

ference between the average values of the top 3 bins and the middle 44 bins. Once again,

3’ bias of HIP1 abundance and enrichment is observed. However, the p-values are only

mildly significant for HIP1 enrichment and abundance when UTRs are included, and for

HIP1 abundance when UTRs are not included. The p-values for other conditions are not

significant (Figure 4.7). The main conclusions to be drawn from this figure are that (1) the

distributions of both the binned abundance and the binned enrichment are more significant

for the HIP1 motif than for the control motif and (2) that the distributions of BS for HIP1

motifs in operons predicted with UTRs are more significant than in operons lacking UTRs.

The results from BS in other genomes are similar (data not shown). Among the 20

HIP1-rich genomes, only Synechococcus elongatus PCC7942 (sel), Synechococcus elonga-
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Figure 4.7: Distribution of binned statistics for the observed (blue) and expected (aqua)
number of motifs and for motif enrichment (red). p-values represent the significance of the
observed distribution, relative to a null distribution generated with permutation testing.

tus PCC6301 (sya), Anabaena variabilis ATCC29413 (ava), Nostoc sp. PCC 7120 (ana),

Cyanothece sp. ATCC51142 (cyb), and Synechococcus sp. PCC7002 (syb) have mildly sig-

nificant p-values for the 3’ bias of HIP1 enrichment, with p values 2.61e-3, 2.64e-3, 1.95e-5,

5.29e-5, 2.95e-4 and 1.35e-3, respectively, when the predicted UTRs are included. All other

genomes have p-values greater than 0.01. When the predicted UTRs are not included, in

all 20 genome, HIP1 enrichment shows no significant 3’ bias of HIP1 enrichment (p > 0.01).

These observations again suggest that UTRs contribute to the 3’ bias of HIP1 enrichment.

4.2.3 Signal isolation (via Boys and Girls)

The observation of a 3’ bias in the spatial distribution of HIP1 motifs is intriguing because

some of the functions that are known to be associated with other types of repeats, act at the
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Figure 4.8: An abstract representation of a hypothesized mixture of spatial distributions
exhibit a 3’ bias when combined.

3’ ends or transcripts as transcription termination or inhibition of exonucleolytic degradation.

However, the observed the 3’ bias was based on aggregate measures of spatial preference,

whereas functions like transcription termination are acting in individual transcripts. How do

individual transcripts contribute to this observed aggregate behavior? And if the the 3’ bias

is, indeed, related to HIP1 function, then in which transcripts is this function operative?

I hypothesized that the set of transcripts represents a mixture of spatial motif distribu-

tions, in which some transcripts have a 5’ motif bias, some have 3’ bias, some have no strong

bias, and yet others are HIP1-free. Further, there is a preponderance of transcripts with

a 3’ bias in this mixture, resulting in the observed 3’ preference in the FSD and BS plots.

In addition, I hypothesized that HIP1 has a functional role associated with its 3’ position

in some transcripts and that this accounts for the preponderance of 3’ biased transcripts

(assuming this preponderance exists). Figure 4.8 shows a schematic representation of these

hypotheses.

In order to determine whether the aggregate 3’ preference arises because there are more

transcripts with a 3’ bias than would be expected under a uniform distribution, it is necessary
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to extract those transcripts that have a preponderance of HIP1 motifs at the 3’ end. I used

two approaches for this purpose. First, since the 3’ bias was observed in the combined

set of transcripts, it is possible that the positional bias is too weak to be seen in individual

transcripts. With this in mind, I used an iterative heuristic optimization procedure to search

for batches of transcripts with a 3’ bias. There are two variants of this method: Boys and

Girls (BG) and normalized Boys and Girls (nBG). The second approach seeks individual

transcripts with a 3’ bias, using Ranking by Mean Position (RMP).

Boys and Girls (BG) is an iterative heuristic optimization process that, given a set of

N transcripts, seeks the subset of N transcripts to that contribute most to the 3’ bias. The

goal of the heuristic is to separate the set of transcripts into batches of n transcripts, such

that the first batch has the strongest 3’ bias and the last batch has the weakest 3’ bias.

This approach requires an optimization criterion to assess the strength of the 3’ bias in a

set of transcripts. I quantified the 3’ bias of a batch of transcripts by calculating the slope

of the FSD, which is calculated by fitting the FSD array to a straight line via least-square

fitting in MatLab. Pseudocode describes the heuristic procedure is given in Algorithm:

Boys-and-Girls.

Ideally, the inner loop of this heuristic will output a batch of n transcripts in which the

3’ bias is maximized. However, since this is a hill-climbing procedure that does not consider

all possible bi-partitions, the output of the inner loop may not be optimal. As a result, the

final list of batches may not be in strictly decreasing order. The accuracy of this heuristic

depends on how well the optimization criterion (in this case, the FSD slope) captures 3’ bias

and how thoroughly the heuristic searches the space of bipartitions. This, in turn, depends

on the the maximum number of failed attempts, κ, in the termination condition.

Normalized Boys and Girls (nBG) One potential problem of the BG process is that

the FSD slope used in the optimization criterion has a length bias: longer transcripts tend to

contribute higher slopes because they contain more HIP1 motifs. To address this problem,

I used a variant of the heuristic, in which the optimization criterion is the FSD slope,

normalized by the total number of motifs in the FSD.



140 CHAPTER 4. INTRA-GENOME VARIATION OF HIP1 MOTIFS

Algorithm: Boys-and-Girls

Input:

T = a set of N transcripts.

Initialization:

Sorted = list()

Batches:

While ( T is not empty ) {

B = a set of n transcripts, selected at random.

R = T −B

S = slope(B)

Repeat {

tb = select a transcript from B uniformly at random.

tr = select a transcript from R uniformly at random.

Move tb from B to R and tr from R to B # Swap a pair of transcripts

S ′ = slope(B)

if (S ′ > S)

{ continue } # Accept swap

else

{ move tr from B to R and tb in R to B } # Reverse swap

} until (κ attempts without a successful swap)

T = R

Sorted = list(Sorted,B) # Add B to sorted list of batches.

} # End while

Output:

Sorted: A list of batches of transcripts sorted by slope.
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Figure 4.9: Comparison between the three criterion for separation signal from noise.

Ranking by Mean Position (RMP) This approach does not subdivide the transcripts

into batches. In this case, the transcripts are ranked according to mean normalized motif

position. The normalized position of a single motif is the position of the first nucleotide in

the motif, divided by the length of the transcript.

Figure 4.10 shows an example of the output of the BG heuristic, with a batch size of

n = 100. The first 13 plots show the binned abundance for each batch, where the batch

resulting from the first iteration of the outer loop appears in the upper left hand corner.

The red barplot in the lower right hand corner shows the slopes of the 13 batches. The

barplot shows that there are 8 batches with positive slopes, three with negative sloes and
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Figure 4.10: A partition of 1375 transcripts into 13 batches with decreasing slopes, obtained
with BG process. The last barplot in the bottom row shows the slopes in the resulting
batches.

two with slopes close to zero. This is consistent with the hypothesis that the aggregate 3’

bias observed in the FSD plots is due to an excess of individual transcripts with a 3’ bias.

Figure 4.9 shows a comparison of the three methods. All HIP1-free transcripts were

removed from the data set prior to the analysis. The remaining 1056 transcripts were

partitioned into 42 batches using the BG and nBG heuristics, with a batch size of n = 25

and a termination criterion of κ = 1000. In addition, each transcript was scored according

to its mean normalized motif position. The transcripts were then sorted according to their

scores and combined into 42 batches according.

Figure 4.9 shows the resulting three partitions of the same set of transcripts into 42

batches, where the three partitions were obtained with the BG, nBG and RMP methods,

respectively. Each column in Figure 4.9 corresponds to one data set, scored using the three

different scoring schemes, slope, normalized slope, and RMP. Thus, the plots on the main

diagonal show batches obtained with BG, nBG and RMP, respectively, and scored with

slope, normalized slope, and RMP. The slopes in the upper left and middle plots are not

strictly decreasing. This is because the heuristic does not perfectly partition the data.

The off-diagonal plots represent batches that were generated with one scoring method

and then re-scored with a different method. This reveals the extent to which the scoring

methods have similar properties. For example, the left and middle plots in the bottom row
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were generated using BG and nBG, respectively. The resulting batches were then scored

by calculating the mean RMP for the 25 transcripts in each batch. Note that the shape

of the middle plot is very similar to that of the right-most plot, in which the transcripts

were partitioned and scored with the same measure (RMP). This suggests that normalized

slope and RMP behave similarly. In contrast, the plot on the left, which was generated

with the BG method, lacks monotonicity and looks quite different from the other two plots,

suggesting that the slope does not have behavior similar to normalized slope and RMP. The

plots in the middle row exhibit a similar trend.

The top 50 transcripts with highest mean HIP1 position are reported in Table A6 and

Table A7 in the Appendix. These transcripts contribute most to the observed 3’ bias of

HIP1 spatial distribution.

4.3 Functional implication of HIP1 spatial variation

One possible hypothesis for the observed 3’ bias in sel transcripts is that HIP1 plays a role

in transcriptional or translational regulation. To further explore the functional implications

of HIP1 spatial variation in transcripts, I investigated the extent to which 3’ bias correlates

with properties that are directly or indirectly related to expression.

Those properties include the motif frequency within each transcript, transcript expression

level, circadian behavior of transcript expression, codon usage bias (GCB, ACE), transcript

lengths (in base pairs or in the number of ORFs), and transcript GC content. I also consid-

ered motif frequency within each transcript to check if there is a relationship between motif

abundance and 3’ bias.

Transcript expression level and codon usage bias reflect two different aspects of expres-

sion. Transcript expression level is a direct measure of RNA abundance and reflects mRNA

expression under a specific set of experimental conditions. My analysis is based on a tran-

script expression data set that was sampled from cells during exponential growth in constant

light, so called ”circadian free-run” conditions (Vijayan et al., 2009). Transcripts were sam-

pled at successive time points. Those displaying circadian behavior were annotated ”subjec-
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tive dawn” and ”subjective dusk”, providing a data set suitable for testing the hypothesis

that HIP1 3’ bias is related to the circadian regulation of genes. This hypothesis is inspired

by the observation that both HIP1 hyper-abundance and the circadian gene regulation are

observed exclusively in cyanobacteria among prokaryotes.

Codon usage bias is an indirect measure of expression and reflects selection acting on ex-

pression levels under many conditions (reviewed in Plotkin and Kudla (2011)). The rationale

for using codon usage bias to assess expression levels is that highly expressed genes are more

likely to use preferred codons. The use of preferred codons is also linked to translational

accuracy and efficiency.

A correlation between codon usage bias and gene length has been reported in E. coli (Eyre-

Walker, 1996; Moriyama and Powell, 1998). This suggests a potential link between gene

length and gene expression, although codon usage bias in this case may be driven by a need

for greater translational accuracy in longer transcripts. GC content is correlated with the

length of coding sequences, possibly because stop codons are AT-rich.

The transcriptome dataset used in this chapter (Vijayan et al., 2011) specifies the start

and termination coordinates of each experimentally verified transcript. Transcript expression

level is a direct measure of RNA abundance and reflects the expression of the gene under a

specific set of experimental conditions. The expression level data is in the form of absolute

transcript level (mRNA molecule per cell), measured by direct RNA sequencing 1. Thus,

the transcript lengths can be obtained directly from the dataset. Transcript GC content

was calculated from the transcript sequence, which was obtained by mapping the transcript

coordinates onto the genome. Similarly, the number of ORFs (nORF) within each transcript

was obtained by comparing the transcriptome map and gene annotation table. The motif

frequency was calculated by dividing number of motifs in the transcript by the transcript

length.

A number of methods for quantifying codon usage bias have been proposed. I used

ACE (Retchless and Lawrence, 2011) and GCB (Merkl, 2003) for this purpose. These quan-

tities were estimated for each gene using DNAMaster 2. I estimated codon usage bias for

1The number of transcripts per cell is estimated assuming 1,500 mRNAs per cell.
2Software URL: http://cobamide2.bio.pitt.edu/
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each transcript by averaging the codon usage bias for all the protein coding genes in the

transcript. The circadian behavior of genes was from a study by Vijayan et al. (2009), in

which whole genome microarrays were used to measure gene expression over a 60-hour pe-

riod. From that data, each gene in Synechococcus elongatus PCC7942 (sel) was assigned to

one of the three categories for circadian expression behavior: Non-Circadian, peak expres-

sion at Dusk, and peak expression at Dawn. To assign the circadian categories of genes to

transcripts, three properties were associated to each transcript: the number non-circadian

genes, the number of circadian genes which peak at dusk, and the number of circadian genes

which peak at dawn, within the transcript.

I used several approaches to investigate a possible association between the HIP1 spatial

distribution within transcripts and the properties of the transcripts. Transcripts possessing

at least one HIP1 motifs were ranked according to their mean motif position and partitioned

into batches of 25 transcripts each, resulting in 42 batches. The same procedure was carried

out for the control motif. Because there were fewer transcripts possessing at least one control

motif, the control set had only 35 batches.

For each batch resulting from this analysis, I calculated the mean value of each of the

numerical properties, averaged over all transcripts in the batch. The fraction of transcripts in

each batch that have o ORFs, for o = 1, 2, 3, 4 and o ≥ 5, was determined. I also tabulated,

for each batch, the number of genes in each of the three circadian categories. These counts

were also normalized by the total number of genes in the batch, to obtain the fraction of

genes associated with each of the circadian categories. These values are displayed in Figures

4.16 for the HIP1 motif and 4.17 for the control motif.

Comparing Figure 4.11 and Figure 4.12, no functional property stands out visually. In-

terestingly, the subplots for the averaged transcript lengths, motif numbers, and motifs

frequencies are bell shaped for both HIP1 and control motifs. These observations suggest

that there exists a correlation between the transcript length and the 3’ bias in spatial motif

distribution. The shorter the sequence, the more likely the transcripts are to have extreme

bias (both 5’ and 3’). The bell shapes on the subplots for motif count and frequency also

exhibit this length effect, as the motif abundance is related to the transcript length. On

average, the number of motifs associated with a transcript increases with its length. This
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length effect can distort the association between the 3’ bias and the various properties. To

control for this confounding effect, I used a stratified analysis in which the transcripts were

partitioned into sets with similar lengths. The correlation between 3’ bias and the various

properties was then considered for each set separately.

4.3.1 Stratified analyses

Before performing the stratified analyses, I first carried out a survey of the length effect.

I considered both the transcript length in basepairs, and the number of ORFs within the

transcript (nORF). Scatter plots of mean position, the number of motifs, and transcript

length (bp) are shown in Figures 4.13 and Figures 4.14. Plots of mean position, the number

of motifs, and the number of ORFs per transcript are shown in Figure 4.15 and Figure 4.16.

These plots reveal the extent of the dependence between these quantities. As the number of

motifs increases, the variance in mean position decreases and approaches 0.5. This observa-

tion can be made for both HIP1 and control motifs. In general, the longer the transcript, the

more likely it is to have a mean position close to 0.5, because HIP1 abundance and transcript

length are strongly correlated. This again shows the importance of stratified analyses, to

avoid the potential bias introduced by the transcript length.

Though the number of motifs and the transcript length are strongly correlated, it is not

necessarily true that this reflects two sides of the same effects. To be safe, I separated the

whole set of transcripts according to both the transcript length in terms of the number of

ORFs, as well as the number of motifs in the transcript (nMotif). I assigned each transcript

to one of the four categories for nORF (nORF = 1,2,3, and nORF > 3), and 5 categories for

nMotif (nMotif = 1,2,3,4, and nMotif > 5). Therefore, the whole dataset was divided into 20

subsets. I then studied the relationship between mean motif positions and various functional

properties. Here, I show results from two functional properties: ACEu (Figure 4.17 and

4.18), and expression level (Figure 4.19 and 4.20). In these plots, each dot represents a
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Figure 4.11: Functional properties of interest, in different RMP bins (bin size: 25).
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Figure 4.12: Functional properties of interest, in different RMP bins (bin size: 25) based on
control motif.
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Figure 4.13: Scatterplots showing relationship between mean motif position, transcript
length in bp, and per-transcript number of HIP1 motifs.

Figure 4.14: Scatterplots showing relationship between mean motif position, transcript
length in bp, and per-transcript number of control motifs.
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Figure 4.15: Scatterplots showing relationship between mean motif position, transcript
length in nORF, and per-transcript number of HIP1 motifs.

Figure 4.16: Scatterplots showing relationship between mean motif position, transcript
length in nORF, and per-transcript number of control motifs.
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transcript.

Visually, no observable correlation between mean position and ACE, or expression level,

stands out in each of the subplots for both control and HIP1 motifs. Comparing plots

generated from HIP1 motif with ones based on control motifs, no distinguishable difference

was detected, except that there are more transcripts in the subsets with higher motif counts

for HIP1 than for control. Similarly no trend was observed for other functional properties

(not shown here), suggesting a lack of relationship between 3’ bias and those functional

properties tested.

In each of the 20 stratified subsets, I further compared the functional properties within

the 20% of transcripts with the greatest mean position, and the 50% of the transcripts with

the lowest mean position, using a two-sample Kolmogorov-Smirnov (KS) test. Table 4.4

shows the sample sizes, in terms of numbers of transcripts, of the top 20% and bottom 50%

in each subset. The resulting p-values from the KS tests are listed in Table 4.5. As the

KS p-values indicate, none of the KS tests show significant differences between the top 20%

and bottom 50% of the sorted transcripts according to RMP, in all stratified subsets. Thus,

this analysis provides no evidence to suggest that the observed 3’ bias in HIP1 position is

related to any of the functional properties tested. However, because of the stratification of

the data, the sample sizes are extremely small (Table 4.4). It is possible that a relationship

between mean HIP1 position and the various properties does exist, but that we do not have

the statistical power to detect it.

nHIP1=1 nHIP1=2 nHIP1=3 nHIP1=4 nHIP1>4

nORF=1 13 | 31 11 | 25 16 | 38 14 | 33 52 | 130
nORF=2 7 | 17 11 | 25 9 | 22 9 | 22 29 | 70
nORF=3 3 | 5 5 | 12 4 | 8 3 | 7 12 | 28
nORF>3 3 | 6 3 | 6 4 | 9 4 | 8 8 | 20

Table 4.4: Sizes of the stratified subsets (top 20% | bottom 50%).
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Figure 4.17: Relationship between ACEu and Mean HIP1 Motif Position.
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Figure 4.18: Relationship between ACEu and Mean Ctrl Motif Position.
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Figure 4.19: Relationship between transcript expression level and Mean HIP1 Motif Position.
The unit for expression is log per-cell mRNA count.
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Figure 4.20: Relationship between transcript expression level and Mean Ctrl Motif Position.
The unit for expression is log per-cell mRNA count.
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4.3.2 Chapter Summary

In this chapter, I explored the intra-genome variation of the HIP1 motif distribution. In-

stances of regions with high HIP1 occurrence, as well as HIP1-free regions, can be observed

in the cyanobacterial genomes. This is particularly interesting, as non-uniform spatial vari-

ation of sequence repeats can be indicative of various functional properties. For example,

motif periodicity can be an indicator of function in DNA supercoiling, and chromosome

organization (Mrazek, 2010).

I further looked into the distribution of HIP1 motifs within genetic units. Interestingly,

a 3’ bias was detected in the mRNA transcripts in Synechococcus sp. PCC 7942. This 3’

bias was not observed with control motifs. When HIP1 distribution was assessed in the same

transcripts, but with the UTRs removed, the bias was substantially reduced. This suggests

that a substantial number of HIP1 motifs participating in this 3’ bias are in transcripts but

outside the protein coding region. This is consistent with a transcriptional role for HIP1 and

further supports the hypothesis that HIP1 is unlikely to have a functional role on the amino

acid level.

When the same analysis was applied to predicted operons, the observed 3’ bias was

also greatly reduced. This may be caused by the difficulty of predicting the coordinates of

UTRs. This is unfortunate, because it makes it difficult to determine whether the 3’ bias

is specific to the Synechococcus sp. PCC 7942 genome or a phenomenon that occurs more

broadly in cyanobacteria. If the latter, more accurate prediction of operons with UTRs

and/or additional transcriptome data in other species would greatly improve our ability to

investigate this trend.

In order to determine how individual transcripts contribute to the 3’ bias, I designed

methods to separate the transcripts dataset into batches with increasing 3’ bias. The results

show that transcripts represent a mixture of spatial distributions, but with an excess of

transcripts in which HIP1 motifs are preferentially located at the 3’ end. Having separated

transcripts according to the mean HIP1 position, I analyzed the relationship between HIP1

spatial distribution within a transcript, and properties including GC content, codon usage

bias, and transcript expression level. This analysis was confounded by a correlation between
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the length and the number of motifs in a transcript. I attempted to remove this confounding

factor by stratifying the data by transcript length and by motif content. However, partition-

ing the data greatly reduced the statistical power and the results revealed no strong links

between HIP1 position and any of the properties tested.
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Properties nHIP1=1 nHIP1=2 nHIP1=3 nHIP1=4 nHIP1>4

Ln mRNA nORF=1 0.4609 0.2594 0.7615 0.9800 0.2159
Ln mRNA nORF=2 0.2048 0.0287 0.0536 0.8092 0.0302
Ln mRNA nORF=3 0.8254 0.9887 0.9857 0.7029 0.0357
Ln mRNA nORF>3 0.5344 0.5344 0.5083 0.7399 0.4949

GCB nORF=1 0.0243 0.6190 0.0555 0.6069 0.9437
GCB nORF=2 0.1359 0.0305 0.0382 0.0538 0.3845
GCB nORF=3 0.6816 0.8244 0.4623 0.7464 0.4933
GCB nORF>3 0.8266 0.0235 0.9252 0.9026 0.4591

ACEu nORF=1 0.2348 0.9401 0.6659 0.3309 0.9437
ACEu nORF=2 0.0515 0.0053 0.3339 0.8794 0.3242
ACEu nORF=3 0.1967 0.6176 0.0224 0.3728 0.5179
ACEu nORF>3 0.1945 0.1441 0.8134 0.9801 0.2044

Trans Len nORF=1 0.9744 0.7608 0.6464 0.5714 0.2385
Trans Len nORF=2 0.4416 0.2942 0.6315 0.3970 0.6498
Trans Len nORF=3 0.6567 0.5074 0.9857 0.4477 0.3325
Trans Len nORF>3 0.9350 0.1984 0.5921 0.9857 0.2466

GC nORF=1 0.2504 0.6728 0.9729 0.5135 0.0419
GC nORF=2 0.8007 0.7608 0.1302 0.9621 0.3239
GC nORF=3 0.2235 0.0950 0.3788 0.3399 0.6648
GC nORF>3 0.1984 0.1984 0.1223 0.7399 0.7062

GC(avg ORF) nORF=1 0.1795 0.9761 0.9874 0.9313 0.0792
GC(avg ORF) nORF=2 0.8589 0.2278 0.2640 0.6315 0.0388
GC(avg ORF) nORF=3 0.0854 0.5074 0.9857 0.7029 0.6648
GC(avg ORF) nORF>3 0.1984 0.1984 0.8414 0.9857 0.4949

nCirc0(non) nORF=1 0.9783 1.0000 1.0000 1.0000 0.9856
nCirc0(non) nORF=2 1.0000 0.4974 0.9977 0.3970 1.0000
nCirc0(non) nORF=3 1.0000 0.9242 0.7399 0.9245 0.2894
nCirc0(non) nORF>3 0.1984 0.5344 1.0000 1.0000 0.5987

nCirc1(dusk) nORF=1 0.8078 0.9761 1.0000 1.0000 1.0000
nCirc1(dusk) nORF=2 0.4719 0.8105 0.6086 0.4978 1.0000
nCirc1(dusk) nORF=3 1.0000 0.9242 0.7399 0.4477 1.0000
nCirc1(dusk) nORF>3 0.9350 0.9350 0.5921 1.0000 0.1417

nCirc2(dawn) nORF=1 0.1674 1.0000 1.0000 1.0000 1.0000
nCirc2(dawn) nORF=2 0.9290 0.9936 1.0000 0.0498 1.0000
nCirc2(dawn) nORF=3 1.0000 0.9242 0.3788 0.0089 0.7257
nCirc2(dawn) nORF>3 0.1984 0.5344 0.9543 0.9857 0.0762

Table 4.5: The KS test p-values comparing the top 20% and bottom 50% (according to mean
HIP1 position) transcripts in each category.



Chapter 5

Conclusion and Future Directions

Highly Iterated Palindrome-1 (HIP1) was first discovered in the mid 1990s (Robinson et al.,

1995). Over the intervening two decades, HIP1 has been observed to be highly abundant

in many cyanobacterial genomes. However, the forces maintaining HIP1 prevalence are still

not understood.

This thesis focuses on the investigation of the origins and evolution of the HIP1 motif

in cyanobacterial genomes. In Chapter 3, I characterized the taxonomic distribution, abun-

dance, and enrichment of HIP1. The enrichment is based on the ratio of the observed and

the expected number of HIP1 motifs in each genome. I estimated the expected number

of motifs using a second order Markov model to reflect underlying tri-nucleotide frequen-

cies, taking differences in sequence composition between intergenic and coding regions into

account. Variation in tri-nucleotide frequencies across the three reading frames was also con-

sidered. In all genomes studied, except for the marine pico-cyanobacteria and Gloeobacter

violaceus PCC7421 (gvi), the number of observed HIP1 motifs exceeds the expected number

of motifs by a factor of at least 13. In some genomes, the O/E ratio exceeds 300.

Given these observed high levels of HIP1 enrichment, how HIP1 is maintained in cyanobac-

terial genomes is a key question. The hypothesis that HIP1 abundance is maintained by a

neutral process that constantly replenishes the genome with new HIP1 instances, predicts

that HIP1 sites will not be conserved. In contrast, my evidence shows that HIP1 sites are

159
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more conserved than would be expected given the degree of divergence in the genome pairs

considered. In addition, analysis of codon conservation in HIP1 rules out the possibility that

HIP1 is conserved due to selection acting on codon usage. These results support the hypoth-

esis that selection is acting to maintain HIP1. Further, this raises intriguing questions about

the targets of selection. By establishing the first evidence for selection acting on HIP1, my

results open up the possibility for investigating HIP1’s functional aspects.

My analyses led to the discovery of a novel variant of the HIP1 motif (5’-GGGATCCC-3’)

in two thermophilic strains isolated from a hot spring in Yellowstone National Park, Syne-

chococcus sp. JA-3-3Ab (syh) and Synechococcus sp. JA-2-3B’a(2-13) (syg). In contrast, the

canonical form (5’-GCGATCGC-3’) was not enriched in those genomes. This putative HIP1

variant exhibits levels of abundance, enrichment, and conservation that are comparable to

those of canonical HIP1 motifs in HIP1-rich genomes. This suggests that in the Yellow-

stone strains 5’-GGGATCCC-3’ may play an equivalent role to the canonical HIP1 in other

cyanobacterial genomes.

To explore the functional aspects of HIP1 motifs, in Chapter 4, I studied the spatial distri-

bution of HIP1, and discovered a 3’ bias in transcripts in Synechococcus elongatus PCC7942

(sel). A similar bias can also be detected in predicted operons in that genome, to a weaker

extent. However, a 3’ bias in predicted operons was not universally observed; it can only

be detected in a selected set of the genomes (data not shown). This could be explained

by poor operon prediction. In the transcript data, I observed that the 3’ UTR contributes

substantially to the strength of the 3’ bias. Estimating the length of UTRs is more difficult

than estimating the genes in an operon. In particular, in my study, the UTRs were predicted

based on a single genome, and the lengths of UTRs in that genome vary greatly (Table 4.2).

On the other hand, it is also possible that the 3’-bias is a specific feature in Synechococcus

elongatus PCC7942 (sel). Last, but not least, the 3’-bias could also be an artifact due to

error in the transcriptome dataset.

Given the 3’ bias of the HIP1 distribution in Synechococcus elongatus PCC7942 (sel), I

further attempted to establish a functional connection between transcripts wtih a strong 3’

bias and various properties related to regulation, including transcript abundance, circadian

gene expression, codon usage bias, and GC content. Unfortunately, no significant connec-



161

tion was detected. This could be due to the sparsity of accurate functional annotations in

cyanobacterial genomes, a lack of statistical power, or the difficulty of distinguishing between

transcripts that have a 3’ bias for functional reasons and transcripts that have a 3’ bias by

chance. It could also suggest that HIP1 is not functionally related to any of the properties

I tested.

The taxonomic distribution of HIP1 abundance provides insights into both the evolution

and the function of HIP1. HIP1 is highly enriched in all genomes studied, except for the ma-

rine pico-cyanobacteria and Gloeobacter violaceus PCC7421 (gvi). Interestingly, Gloeobacter

violaceus PCC7421 (gvi) is the deepest branching cyanobacterial species with a completely

sequenced genome. Based on the phylogenetic distribution of HIP1 abundance, two models

of HIP1 origin can be hypothesized, based on the principle of maximum parsimony:

1. The origination of HIP1 abundance occurred before the last common cyanobacterial

ancestor. HIP1 prevalence was independently lost in Gloeobacter violaceus PCC7421

(gvi), and marine pico-cyanobacteria.

2. The origination of HIP1 abundance occurred in the common ancestor of all non-

Gloeobacter cyanobacteria, after the divergence of Gloeobacter violaceus PCC7421

(gvi). HIP1 prevalence was lost once in the ancestor of all marine pico-cyanobacteria.

The discovery of the HIP1 variant in Yellowstone strains is particularly intriguing, con-

sidering the placement of Synechococcus sp. JA-3-3Ab (syh) and Synechococcus sp. JA-2-

3B’a(2-13) (syg) in the cyanobacterial phylogeny. Most cyanobacterial phylogenies in the

literature (reviewed in Section 1.4.1) place these strains either as sister taxa to Gloeobac-

ter violaceus PCC7421 (gvi), or as the sister group to all non-Gloeobacter cyanobacterial

genomes. In either case, the placement of Synechococcus sp. JA-3-3Ab (syh) and Syne-

chococcus sp. JA-2-3B’a(2-13) (syg) has interesting implications for the ancestral form of

the HIP1 motif, suggesting that the ancestral form of HIP1 could be either the canonical

or the Yellowstone variant. If the former is true, the HIP1 form in Synechococcus sp. JA-3-

3Ab (syh) and Synechococcus sp. JA-2-3B’a(2-13) (syg) possibly evolved to its current form

when adapting to the thermophilic environment. Shifting from the canonical form to the

5’-GGGATCCC-3’ variant, would have resulted in an alteration of free energy at both the
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DNA and RNA level, with possible consequences for fitness.

The taxonomic distribution of HIP1 abundance may also contain clues to its function.

Since HIP1 hyper-abundance is unique to cyanobacteria, it is tempting to seek functional

hypotheses related to unique physiological features of cyanobacteria; i.e., oxygenic photosyn-

thesis and circadian gene expression. In the genomes analyzed in this thesis, the species lack-

ing HIP1 enrichment only from two clades, the basal species Gloeobacter violaceus PCC7421

(gvi) and the marine pico-cyanobacteria. Both groups have functional characteristics that

set them apart from the “canonical” cyanobacterium.

Gloeobacter violaceus lack a thylakoid membrane, the location where the light-dependent

reactions of photosynthesis occur in other cyanobacteria. Instead, these reactions occur in

the plasma membrane. Several components of the canonical photosynthetic machinery are

also lacking in Gloeobacter violaceus PCC7421 (gvi), suggesting a different photosynthesis

scenario in this genome. In addition Gloeobacter violaceus PCC7421 (gvi) lacks a number

of other features that are common to many other cyanobacterial genomes. For example,

KaiABC, the three genes which encode for core components of the cyanobacterial circadian

clock, are all missing in Gloeobacter violaceus PCC7421 (gvi), although LdpA, LabA, and

RpaA are present.

Marine pico-cyanobacteria were also found to lack HIP1 abundance. Interestingly, they

also lack many cyanobacterial pathways, and are believed to have undergone genome re-

duction in the process of adaptation to the nutrient-rich marine environment. It is likely

that HIP1 prevalence was lost in the last common ancestor of all marine pico-cyanobacteria,

along with the mechanism or pathway responsible for HIP1 abundance. The marine pico-

cyanobacteria appear to have lost virtually all repetitive sequences (Treangen et al., 2009),

so the loss of HIP1 in these genomes may be part of a larger trend.

In general, the photosynthetic machinery in marine pico-cyanobacteria (reviewed in Scan-

lan et al. (2009)) is similar to that of freshwater species, although most Prochlorococcus

strains lack several extrinsic photosystem II proteins. The light harvesting systems in the

pico-cyanobacteria differ substantially, however, from light harvesting strategies in non-pico

species. There are also major differences between the light harvesting proteins in the two

the two pico-cyanobacterial species, reflecting the differences in ecological adaptation.
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Although Prochlorococcus species lack KaiA, as well as several proteins from the circadian

input and output pathways, KaiBC and various other proteins associated with the circadian

circuitry are still present. Axmann et al. (2014) have proposed that while pico-cyanobacteria

lack a full oscillatory clock, their genomes do encode an “hourglass-like” timing mechanism.

In addition to the marine pico-cyanobacteria, my data set contains the genomes of two

symbiotic strains that are in the process of genome reduction. Interestingly, low HIP1 abun-

dance (37 HIP1 copies), but moderate HIP1 enrichment (28.46) was detected in cyanobac-

terium UCYN-A (uca) (Figure 3.3), an AT-rich reduced genome closely related to Cyanoth-

ece. Cyanobacterium UCYN-A (uca) is a symbiont to a prymnesiophyte, alga that is itself

capable of photosynthesis. cyanobacterium UCYN-A (uca) lacks photosystem II and some

key enzymes in the Calvin cycle. Some key genes for circadian regulation are also absent

from the cyanobacterium UCYN-A (uca) genome, including KaiA, KaiB, Pex, LdpA, and

LabA (Axmann et al., 2014).

Among the genomes analyzed, Nostoc azollae 0708 (naz )is another symbiont that is

currently undergoing genome reduction. The Nostoc azollae 0708 (naz ) genome is scattered

with transposable elements and pseudogenes (Ran et al., 2010). Since Nostoc azollae 0708

(naz ) still retains a large number of discernible pseudogenes, it may be possible to observe the

decay process “in action”. Interestingly, despite its symbiotic life style, Nostoc azollae 0708

(naz ) is capable of photosynthesis. As far as I know, its circadian clock machinery has not

been studied.

Both Nostoc azollae 0708 (naz ) and cyanobacterium UCYN-A (uca) have relatively low

HIP1 frequencies (0.03 and 0.21, respectively), but HIP1 motifs are substantially enriched in

both species. At this point, it is not possible to determine whether these genome are in the

process of losing HIP1 enrichment, in tandem with genome reduction. Analysis of additional

cyanobacterial symbionts with reduced genomes may reveal a link between the loss of genes

or pathways and the loss of HIP1 abundance.

Several functional hypotheses are intriguing targets for future study. Given the weak

spatial bias among reading frames, and between coding and intergenic regions, it is possible

that HIP1 is involved in maintaining the structure or regulating the topological status of

the chromosome. It is also possible that such a function can have a regional effect, such
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as adjusting the local chromosome relaxation status. It has been shown that the circadian

change of chromosome topology, between relaxation and condensation, contributes to the

circadian pattern of gene expression in Synechococcus elongatus PCC7942 (sel) (Vijayan

et al., 2009).

Alternatively, HIP1 may function at a local level, consistent with the observed 3’ bias in

transcripts in Synechococcus elongatus PCC7942 (sel). Previous studies have reported exam-

ples of bacterial repetitive sequences with functional roles in transcription regulation through

transcription termination of 3’ to 5’ degradation. The transcription termination factor Rho

is reported to be associated with BIME for transcription attenuation (Espeli et al., 2001).

There is evidence that REPs contribute to the protection of the 3’ ends of mRNA molecules,

from exonucleolytic degradation by exonuclease III (Khemici and Carpousis, 2004). Both

of these functions are consistent with the observed HIP1 3’ bias. However, HIP1 differs

substantially from the REP sequence in motif size and structure. Because of HIP1’s very

short sequence length, clusters of HIP1 motifs would be required for such functions. Another

hypothesis is that HIP1 motifs at the 3’ end of transcripts may contribute to the function of

stable secondary structures. A pair of neighboring HIP1 motifs could form a local hairpin

structure at the mRNA level, similar to the REPIN sequence, where a pair of REP instances

separated by a specific distance (e.g., ≈71 and 110 bp in Pseudomonas fluorescens) form a

local hairpin structure (Bertels and Rainey, 2011). Investigating the impact of HIP1 on the

secondary structure and local free energy at the 3’ end of transcripts is a worthy direction

for future study.

HIP1 may also be contributing to genomic plasticity. The highly conserved sequence

pattern of HIP1 could cause intra-genome recombination, and thus promote genome rear-

rangements. This hypothesis could be investigated by looking at the HIP1 spatial distri-

bution relative to breakpoints in pair-wise whole genome alignments of related genomes. It

is interesting to see that the presence of HIP1 has been reported in cyanophage genomes

(Delaye et al., 2011b). HIP1 can potentially provide a new angle to study how phage DNA

interacts with cyanobacterial genomes.
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Appendix A

Supplementary Figures and Tables

A.1 Chapter 2 Phylogenetic Reconciliation with Trans-

fers

Number of Cycle-free Event Source &
Stats heatmap

roots solutions counts target

≥ 1 0 NA NA Discard tree

≥ 1 1 NA NA OK OK

≥ 1 ≥ 2
Same Same OK OK
Same Different OK Not

Different Different Discard tree

For all roots: For all roots:

≥ 2 1 per root
Same Same OK OK
Same Not OK No
Not Not Discard tree

For all roots and solns: For all roots and solns:

≥ 2 At least one root has ≥ 1
Same Same OK OK
Same Not OK No
Not Not Discard tree

Table A1: Protocol for handling the degeneracy in the empirical analyses.
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Short name Long name

Synechocys Synechocystis sp. PCC 6803
Crocosphae Crocosphaera watsonni WH 8501
Nostoc Nostoc sp. PCC 7120
Anabaena Anabaena variabilis ATCC29413
Trichodesm Trichodesmium erythraeum IMS101
1Prochloro Prochlorococcus marinus CCMP1375
2Prochloro Prochlorococcus marinus CCMP1986
3Prochloro Prochlorococcus marinus MIT9313
Synechococ Synechococcus sp. WH8102
Thermosyne Thermosynechococcus elongatus BP-1
Gloeobacte Gloeobacter violaceus PCC7421

Table A2: Full names of cyanobacterial species used in the case study.

Short name Long name

Ylip Yarrowia lipolytica
Dhan Debaryomyces hansenii
Calb Candida albicans
Sklu Saccharomyces kluyveri
Kwal Kluyveromyces waltii
Klac Kluyveromyces lactis
Agos Ashbya gossypii
Cgla Candida glabrata
Scas Saccharomyces castellii
Sbay Saccharomyces bayanus
Skud Saccharomyces kudriavzevii
Smik Saccharomyces mikatae
Spar Saccharomyces paradoxus
Scer Saccharomyces cerevisiae

Table A3: Full names of yeast species used in the case study.
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sya sel syq ava ana naz npu syr cyd ama syb syp mae cya cye uca cyb cyf cyg syg syh

AGGGCCCT 5 5 9 2 2 0 11 10 21 19 3 39 3 1 7 0 6 0 1 22 27
GAGGCCTC 14 13 22 3 2 3 1 5 8 22 6 4 11 0 7 1 0 1 1 19 29
GGAGCTCC 14 14 11 0 1 2 3 69 16 10 8 11 4 0 1 4 0 10 12 40 64
GGGATCCC1 36 36 57 0 1 8 1 12 14 12 33 37 92 4 0 1 0 1 1 4099 3401
AGGCGCCT 6 6 20 0 1 3 0 2 6 12 5 1 1 0 1 2 1 0 0 13 31
GAGCGCTC 37 36 24 22 22 46 40 25 29 57 15 9 56 38 52 1 0 0 0 86 88
GGACGTCC 19 19 11 0 0 2 0 12 14 37 16 4 1 1 0 8 0 0 0 7 14
GGCATGCC 42 42 23 0 0 3 1 3 48 62 6 27 0 0 2 4 0 1 1 43 65
AGCGCGCT 21 20 20 11 12 7 5 6 19 21 16 0 25 7 5 2 6 2 2 13 27
GACGCGTC 7 7 2 14 10 0 9 1 8 20 8 1 6 0 0 0 1 2 1 0 2
GCAGCTGC 175 171 44 82 76 67 138 32 36 158 9 3 60 0 0 24 10 2 4 98 45
GCGATCGC2 7277 7323 3659 5227 5253 1102 7128 2907 3395 2147 5083 3160 1821 2252 647 37 2390 2956 2977 57 67
AGCCGGCT 40 37 33 21 29 6 22 13 16 15 8 18 25 89 134 3 19 4 7 115 153
GACCGGTC 23 23 24 2 1 4 7 2 7 22 3 10 25 12 15 0 4 15 10 10 10
GCACGTGC 7 7 12 0 0 19 8 4 6 6 9 2 0 4 7 4 1 0 0 13 15
GCCATGGC 107 106 138 3 1 51 3 26 182 188 151 407 134 22 37 11 58 77 81 144 171
ACGGCCGT 25 25 10 10 9 3 5 6 30 18 4 23 27 0 8 2 23 62 58 2 19
CAGGCCTG 32 32 53 5 3 5 1 12 79 50 23 34 14 0 9 3 2 3 3 49 99
CGAGCTCG 30 31 10 1 0 2 3 12 5 11 9 7 0 0 1 2 0 8 5 7 21
CGGATCCG 54 54 34 2 2 0 0 5 10 58 44 19 27 23 2 3 0 1 0 109 121
ACGCGCGT 6 6 1 6 6 8 11 1 1 9 3 0 6 2 6 1 2 7 7 5 7
CAGCGCTG 288 289 117 73 75 5 145 15 105 161 31 37 33 15 22 3 0 2 2 173 228
CGACGTCG 18 18 8 0 0 1 0 6 5 30 9 1 8 0 1 2 1 1 0 11 16
CGCATGCG 18 18 9 0 0 1 0 0 16 15 2 14 0 0 3 3 0 0 0 20 26
ACCGCGGT 12 12 21 0 0 6 2 5 15 11 3 11 21 1 0 0 0 0 0 21 13
CACGCGTG 4 4 2 3 2 0 2 0 4 5 2 1 3 0 0 0 0 0 0 2 0
CCAGCTGG 53 53 20 25 11 17 30 22 87 123 3 10 13 0 0 6 4 0 0 79 42
CCGATCGG 82 82 8 2 4 1 43 7 519 86 5 9 57 87 13 0 6 5 6 28 22
ACCCGGGT 10 10 17 1 1 5 2 19 11 26 10 15 44 14 44 2 5 21 24 15 15
CACCGGTG 51 51 94 37 26 22 19 6 10 33 36 45 82 41 63 1 30 5 6 105 53
CCACGTGG 19 19 27 2 1 8 11 4 15 15 22 22 7 6 4 3 2 0 0 50 55
CCCATGGG 36 36 61 1 1 23 0 28 87 106 65 114 29 0 0 5 11 55 55 60 45
TGGGCCCA 14 14 22 7 9 4 37 19 68 34 21 80 14 21 43 7 22 0 0 68 68
GTGGCCAC 38 38 141 24 3 24 19 24 103 72 54 130 62 31 40 0 47 23 21 143 138
GGTGCACC 27 27 39 0 1 17 5 13 21 38 18 19 3 1 3 9 0 19 15 25 52
GGGTACCC 14 14 76 4 3 4 7 8 31 52 34 49 9 0 14 2 3 0 0 30 20
TGGCGCCA 37 37 93 1 2 4 2 29 21 61 17 30 17 0 0 3 1 1 0 57 85
GTGCGCAC 22 21 66 0 1 0 0 48 11 14 21 5 2 0 0 0 2 0 0 79 79
GGTCGACC 30 31 4 1 0 1 4 8 6 34 2 5 3 6 4 0 8 1 2 9 10
GGCTAGCC 63 64 41 36 34 1 51 14 73 110 20 66 0 16 3 2 2 2 3 39 62
TGCGCGCA 9 10 14 34 29 4 5 3 8 22 5 2 18 1 4 1 5 4 4 7 14
GTCGCGAC 51 51 18 1 0 4 12 39 6 44 12 8 23 0 2 1 0 1 1 28 14
GCTGCAGC 274 273 69 2 3 33 4 73 244 285 31 12 22 4 0 27 58 6 8 309 447
GCGTACGC 4 4 20 5 3 3 0 2 4 8 4 0 1 0 3 2 5 4 3 2 1
TGCCGGCA 65 62 87 40 40 13 42 11 39 28 11 69 92 98 172 1 30 1 2 254 262
GTCCGGAC 6 6 12 11 6 4 1 5 9 7 12 6 10 12 18 1 2 7 6 5 3
GCTCGAGC 69 68 34 0 0 9 3 10 31 18 5 1 3 3 22 2 1 4 4 28 29
GCCTAGGC 50 50 35 1 3 3 8 12 8 45 38 43 14 10 25 2 3 6 4 35 41
TCGGCCGA 36 36 3 6 6 4 8 4 29 22 4 11 80 0 21 0 23 8 8 6 9
CTGGCCAG 89 90 93 39 39 27 33 30 438 116 52 96 61 33 43 2 30 32 42 238 292
CGTGCACG 10 10 8 0 0 1 0 2 4 3 3 0 0 0 0 2 0 4 5 3 7
CGGTACCG 48 47 39 7 8 1 15 6 20 52 52 26 9 11 19 0 11 4 5 33 25
TCGCGCGA 75 74 22 24 30 3 36 4 9 14 11 0 12 22 22 0 2 31 32 6 8
CTGCGCAG 97 97 68 2 0 4 0 8 25 36 14 5 3 1 1 1 0 1 1 106 112
CGTCGACG 28 27 3 1 0 2 3 6 3 26 2 4 1 6 4 4 7 2 1 7 17
CGCTAGCG 77 77 32 27 34 3 63 4 18 57 10 10 3 9 4 0 0 5 5 35 38
TCCGCGGA 9 9 6 0 0 1 5 9 16 13 4 8 12 3 0 5 2 2 2 15 20
CTCGCGAG 48 48 13 0 0 2 8 11 9 32 15 2 34 1 10 0 3 4 8 27 32
CCTGCAGG 125 126 86 2 0 6 1 29 373 137 8 40 0 1 0 15 10 3 3 311 345
CCGTACGG 19 19 25 7 0 5 0 2 34 23 7 6 4 0 5 0 9 13 13 10 3
TCCCGGGA 6 6 10 0 0 0 3 16 5 8 26 35 49 10 15 1 0 6 4 24 24
CTCCGGAG 9 9 11 15 12 4 10 37 16 13 41 45 19 19 16 1 3 7 9 34 35
CCTCGAGG 42 42 48 0 0 4 2 1 9 9 7 10 10 1 32 2 1 0 0 29 68
CCCTAGGG 43 44 166 0 0 73 4 25 25 115 122 141 124 62 47 2 63 118 127 53 55

Total Control 2825 2813 2346 625 565 596 914 882 3145 2966 1250 1899 1528 749 1036 196 545 604 625 3471 4005

Table A4: Count of all 64 8-mer palindromes with 75% GC content in the 20 HIP1-rich
genomes. 1Yellowstone HIP1 variant. 2Canoncial HIP1 motif.
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(a) Synechococcus elongatus PCC7942 (sel) and
Synechococcus elongatus PCC6301 (sya)

(b) Cyanothece sp. PCC8801 (cyf ) and Cyanothece
sp. PCC8802 (cyg)

(c) Nostoc sp. PCC 7120 (ana) and Anabaena vari-
abilis ATCC29413 (ava)

(d) Synechococcus sp. JA-3-3Ab (syh) and Syne-
chococcus sp. JA-2-3B’a(2-13) (syg)

Figure A1: The distribution of permutated RC for HIP1 and control motif in the 4 genome
pairs. (a) Synechococcus elongatus PCC7942 (sel) and Synechococcus elongatus PCC6301
(sya), (b) Cyanothece sp. PCC8801 (cyf ) and Cyanothece sp. PCC8802 (cyg), (c) Nostoc
sp. PCC 7120 (ana) and Anabaena variabilis ATCC29413 (ava), (d) Synechococcus sp. JA-
3-3Ab (syh) and Synechococcus sp. JA-2-3B’a(2-13) (syg).
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Figure A2: The motif conservation (S scores) calculated using different criteria for non-
coding regions. GW: genome wide; CDS: coding regions; NC0: full length inter-ORF regions;
NC1: inter-ORF regions less than 500 bp; NC1: inter-ORF regions less than 1000 bp; NC1:
inter-ORF regions less than 2000 bp; NC1: inter-gene regions less than 3000 bp. For NC1-4,
the 10 bp immediately next to annotated protein or RNA genes were excluded.
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Figure A3: Full range scatter plots showing the HIP1 enrichment in orthologous genes. Each
dot represents an ortholog pair.
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Figure A4: Histograms (full range view) of ds[HIP1] and ds[Ctrl] based on motif frequency
for the genome pairs Nostoc sp. PCC 7120 (ana)-Anabaena variabilis ATCC29413 (ava) and
Synechococcus sp. JA-3-3Ab (syh)-Synechococcus sp. JA-2-3B’a(2-13) (syg).
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Figure A5: Histograms (ull range view) of da[HIP1] and da[Ctrl] based on motif frequency
for the genome pairs Nostoc sp. PCC 7120 (ana)-Anabaena variabilis ATCC29413 (ava) and
Synechococcus sp. JA-3-3Ab (syh)-Synechococcus sp. JA-2-3B’a(2-13) (syg).
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Figure A6: Histograms (ull range view) of ds[HIP1] and ds[Ctrl] based on motif enrichment
for the genome pairs Nostoc sp. PCC 7120 (ana)-Anabaena variabilis ATCC29413 (ava) and
Synechococcus sp. JA-3-3Ab (syh)-Synechococcus sp. JA-2-3B’a(2-13) (syg).
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Figure A7: Histograms (ull range view) of da[HIP1] and da[Ctrl] based on motif enrichment
for the genome pairs Nostoc sp. PCC 7120 (ana)-Anabaena variabilis ATCC29413 (ava) and
Synechococcus sp. JA-3-3Ab (syh)-Synechococcus sp. JA-2-3B’a(2-13) (syg).
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A.3 Chapter 5 Intra-Genome Variation of HIP1 Motifs

Rank Location Strand Length nORF1 nHIP12
Mean HIP1
position

1 1824612-1825011 + 400 1 2 0.94
2 2485537-2486679 - 1143 1 3 0.93
3 2340127-2340927 + 801 1 2 0.92
4 2499675-2500957 - 1283 2 4 0.89
5 1716762-1717589 + 828 1 2 0.89
6 1173872-1174990 - 1119 1 3 0.89
7 2032100-2032718 - 619 1 2 0.88
8 1137758-1138034 - 277 1 2 0.88
9 294788-296809 + 2022 1 2 0.88
10 473353-474207 - 855 1 2 0.88
11 1990819-1991436 - 618 1 2 0.87
12 1911935-1913842 - 1908 1 2 0.85
13 2492192-2493019 + 828 1 2 0.85
14 585681-587529 + 1849 1 4 0.85
15 1497152-1498624 + 1473 2 2 0.84
16 621248-622240 + 993 1 2 0.84
17 2245016-2245713 + 698 1 3 0.84
18 2018328-2019540 + 1213 1 3 0.84
19 959818-960692 + 875 1 3 0.83
20 2445310-2447361 + 2052 2 4 0.83
21 1852455-1853695 + 1241 1 3 0.82
22 974053-975417 + 1365 2 4 0.82
23 1157386-1157996 - 611 1 2 0.82
24 2619075-2620994 - 1920 3 4 0.82
25 466721-469366 - 2646 2 4 0.82
26 2044382-2047420 - 3039 3 4 0.81
27 1377140-1379998 + 2859 4 3 0.81
28 1518990-1521363 + 2374 3 3 0.81
29 226210-227342 - 1133 1 7 0.81
30 1311801-1313283 + 1483 1 4 0.81
31 1484524-1485033 + 510 1 2 0.80
32 1583328-1586106 + 2779 2 6 0.80
33 590846-592822 - 1977 2 2 0.80
34 1780025-1781245 + 1221 3 3 0.80
35 671621-672657 - 1037 1 3 0.80
36 2112719-2114132 - 1414 1 2 0.80
37 1276672-1277247 - 576 1 2 0.80
38 966374-967577 - 1204 1 2 0.80
39 595366-596808 + 1443 2 4 0.80
40 1172694-1174011 + 1318 1 3 0.79
41 483622-484524 - 903 2 3 0.79
42 1687415-1689171 - 1757 1 3 0.79
43 1973439-1984570 - 11132 7 12 0.78
44 2085761-2090061 - 4301 2 6 0.78
45 1118636-1120443 + 1808 2 4 0.78
46 2570956-2573066 + 2111 1 3 0.78
47 1431081-1432779 - 1699 2 3 0.77
48 1671435-1672079 + 645 1 2 0.77
49 763606-764877 - 1272 1 4 0.77
50 1463651-1464861 - 1211 2 5 0.77

Table A6: The top 50 transcripts with highest mean HIP1 motif position. 1 Number of
annotated ORFs within the transcript. 2 Number of HIP1 motifs within the transcript.
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Trans.1 Location Strand Length Locus tag Gene annotation

1 1824648-1824935 + 288 Synpcc7942 1757 hypothetical protein

2 2485595-2486650 - 1056 Synpcc7942 2414 hypothetical protein

3 2340153-2340920 + 768 Synpcc7942 2273 hypothetical protein

4 2499798-2500244 - 447 Synpcc7942 2428 biopolymer transport ExbD like protein
4 2500278-2500928 - 651 Synpcc7942 2429 biopolymer transport ExbB like protein

5 1716788-1717504 + 717 Synpcc7942 1649 rubrerythrin

6 1173913-1174890 - 978 Synpcc7942 1149 dTDP-glucose 46-dehydratase

7 2032190-2032696 - 507 Synpcc7942 1960 hypothetical protein

8 1137860-1138015 - 156 Synpcc7942 1120 hypothetical protein

9 294872-296713 + 1842 Synpcc7942 0297 FtsH peptidase

10 473510-474172 - 663 Synpcc7942 0487 thylakoidal processing peptidase

11 1991020-1991412 - 393 Synpcc7942 1915 chorismate mutase

12 1911978-1913807 - 1830 Synpcc7942 1846 hypothetical protein

13 2492215-2492949 + 735 Synpcc7942 2420 serine O-acetyltransferase

14 585701-587473 + 1773 Synpcc7942 0598 peptidoglycan-binding LysM

15 1497217-1498290 + 1074 Synpcc7942 1443 fructose-1,6-bisphosphate aldolase

16 621277-622137 + 861 Synpcc7942 0628 spermidine synthase

17 2245037-2245525 + 489 Synpcc7942 2163 hypothetical protein

18 2018389-2019417 + 1029 Synpcc7942 1944 pyruvate dehydrogenase (lipoamide)

19 959837-960685 + 849 Synpcc7942 0951 nicotinate-nucleotide pyrophosphorylase

20 2445387-2446568 + 1182 Synpcc7942 2378 cell division protein FtsZ
20 2446568-2447359 + 792 Synpcc7942 2379 phosphomethylpyrimidine kinase

21 1852529-1853311 + 783 Synpcc7942 1784 RNA polymerase sigma factor SigF

22 974099-975061 + 963 Synpcc7942 0967 porphobilinogen deaminase
22 975143-975358 + 216 Synpcc7942 0968 hypothetical protein

23 1157413-1157931 - 519 Synpcc7942 1135 cation transporter

24 2619093-2619626 - 534 Synpcc7942 2536 heat shock protein DnaJ-like protein
24 2619632-2620231 - 600 Synpcc7942 2537 ATP-dependent Clp protease proteolytic subunit
24 2620274-2620960 - 687 Synpcc7942 2538 ATP-dependent Clp protease-like protein

25 467004-468773 - 1770 Synpcc7942 0482 peptidoglycan glycosyltransferase
25 468776-469219 - 444 Synpcc7942 0483 hypothetical protein

26 2044388-2045224 - 837 Synpcc7942 1974 condensin subunit ScpA
26 2045410-2045763 - 354 Synpcc7942 1975 hypothetical protein
26 2045793-2047397 - 1605 Synpcc7942 1976 NAD(P)H-quinone oxidoreductase subunit 4

27 1377217-1378335 + 1119 Synpcc7942 1343 NADH dehydrogenase subunit H
27 1378378-1378986 + 609 Synpcc7942 1344 NADH dehydrogenase subunit I
27 1378990-1379595 + 606 Synpcc7942 1345 NADH dehydrogenase subunit J
27 1379614-1379925 + 312 Synpcc7942 1346 NADH dehydrogenase subunit K

28 1518994-1519449 + 456 Synpcc7942 1465 BadM/Rrf2 family transcriptional regulator
28 1519664-1520668 + 1005 Synpcc7942 1466 cysteine synthase

29 226263-227309 - 1047 Synpcc7942 0230 hypothetical protein

30 1311841-1313181 + 1341 Synpcc7942 1289 putative modulator of DNA gyrase

31 1484549-1484986 + 438 Synpcc7942 1431 peptidylprolyl isomerase

32 1583407-1585200 + 1794 Synpcc7942 1525 GTP-binding protein TypA
32 1585287-1586078 + 792 Synpcc7942 1526 hypothetical protein
33 591459-592751 - 1293 Synpcc7942 0603 glucose-1-phosphate adenylyltransferase
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34 1780048-1780278 + 231 Synpcc7942 1710 DNA-directed RNA polymerase subunit omega
34 1780275-1780847 + 573 Synpcc7942 1711 hypothetical protein
34 1780853-1781218 + 366 Synpcc7942 1712 hypothetical protein

35 672082-672462 - 381 Synpcc7942 0677 PadR family transcriptional regulator

36 2112977-2113990 - 1014 Synpcc7942 2044 hypothetical protein

37 1276940-1277221 - 282 Synpcc7942 1253 hypothetical protein

38 966530-967561 - 1032 Synpcc7942 0959 GTPase ObgE

39 595381-595707 + 327 Synpcc7942 0607 hypothetical protein
39 595756-596298 + 543 Synpcc7942 0608 hypothetical protein

40 1172695-1173912 + 1218 Synpcc7942 1148 metal dependent phosphohydrolase

41 483634-484323 - 690 Synpcc7942 0496 hypothetical protein
41 484328-484504 - 177 Synpcc7942 0497 hypothetical protein

42 1687584-1689152 - 1569 Synpcc7942 1621 Elongator protein 3/MiaB/NifB

43 1973458-1975839 - 2382 Synpcc7942 1901 putative glycosyltransferase
43 1975932-1976978 - 1047 Synpcc7942 1902 putative glycosyltransferase
43 1976983-1978113 - 1131 Synpcc7942 1903 hypothetical protein
43 1978129-1979454 - 1326 Synpcc7942 1904 hemolysin secretion protein-like protein
43 1979496-1982498 - 3003 Synpcc7942 1905 cyclic nucleotide-binding domain-containing protein
43 1982513-1983253 - 741 Synpcc7942 1906 hypothetical protein
43 1983417-1984493 - 1077 Synpcc7942 1907 magnesium-protoporphyrin IX monomethyl ester cyclase

44 2085893-2086762 - 870 Synpcc7942 2019 hypothetical protein
44 2086845-2089937 - 3093 Synpcc7942 2020 translation initiation factor IF-2

45 1118661-1119818 + 1158 Synpcc7942 1101 hypothetical protein
45 1119830-1120258 + 429 Synpcc7942 1102 hypothetical protein

46 2571012-2572949 + 1938 Synpcc7942 2491 DNA gyrase subunit B

47 1431285-1431506 - 222 Synpcc7942 1385 hypothetical protein
47 1431627-1432760 - 1134 Synpcc7942 1386 hypothetical protein

48 1671451-1672011 + 561 Synpcc7942 1606 Beta-Ig-H3/fasciclin

49 763640-764854 - 1215 Synpcc7942 0771 hypothetical protein

50 1464368-1464817 - 450 Synpcc7942 1412 hypothetical protein

Table A7: Annotated ORFs associated to the top 50 transcripts with highest mean HIP1
position. 1 Transcript rank as shown in Table A6.


