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Abstract
Configuration tuning is an essential practice to achieve good performance with

many computational methods. However, configuring complex and discrete algo-
rithms often requires significant trial-and-error effort due to a lack of automated
solutions. In large-scale systems where computational tasks are numerous and con-
stantly changing in specificity, the repetitive cost of manual tuning becomes a major
bottleneck that hinders scalability. Moreover, the absence of a systematic approach
to configure deployment settings makes it challenging to replicate the obtained re-
sults in different deploying conditions. To address these problems, this thesis focuses
on developing new data-driven automated algorithm design (AAD) frameworks in
several classical and multi-task settings. Specifically, in the classical configuration
tuning setting, we address the problems of kernel selection for Bayesian methods,
and minimizer construction for biological sequence sketching. In the multi-task sce-
nario, we address the problems of privacy-preserving neural architecture search for
multiple clients, and meta-learning for parameter optimization in a heterogeneous
task stream. In all of these problems, the variables to be optimized often have under-
lying discrete structures such as trees, graphs or permutations. Our contribution is a
suite of reformulation techniques that result in efficient and accurate tuning methods
for these configuration domains. Finally, we demonstrate the performance of our
methods on practical scenarios and show that they have significantly outperformed
state-of-the-art benchmarks.
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Chapter 1

Introduction

Algorithms are typically developed with parameters that can be configured by users depending

on their use cases. Although it is convenient to use a default configuration for every applica-

tion, such a tactic is sub-optimal when the algorithm’s performance is sensitive to the choice of

configurations [5, 96]. For example, choosing an appropriate kernel function for kernel methods

such as support vector machine [17] and Gaussian processes [83] to model data correlation can

strongly influence the outcome of probabilistic inference [23]. In deep learning, the design of

a neural network architecture (e.g., the number of layers, types of activation functions and the

number of neurons in each layer) must be selected to achieve optimal performance on specific

types of task [35, 80, 113].

In domains where performance variance is large, a more practical approach is therefore to

calibrate the design of an algorithm on a per-task basis. That is, we seek to find the most suitable

model configuration for each new problem instance. However, this calibration step has tradition-

ally relied on the expertise of domain experts and heuristics, making it challenging to scale up

due to the repetitive tuning effort involved. The lack of a principled and automated approach for

configuring algorithmic solutions has motivated the study of automated algorithm design (AAD)

through systematic optimization frameworks, which were first considered in the work of Rice

[85] and subsequently in various algorithmic domains such as deep learning [35, 46, 80], non-
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parametric Bayesian methods [23, 66, 69] and discrete algorithms [110, 111]. Formally, the

general AAD problem is described as follows:

Definition 1 (Automated Algorithm Design) Let T be an arbitrary set of computational tasks,

andM be a likely infinite set of algorithms capable of solving any task τ ∈ T . Given a perfor-

mance evaluation function F : T ×M → R, we say that an algorithm m ∈ M outperforms

m′ ∈ M on some task τ ∈ T if and only if F (τ,m) > F (τ,m′). The AAD problem can be

written as the following optimization task, which seeks to find the optimal algorithm m∗ ∈ M

such that F (τ,m′) is maximized:

m∗ ∈ argmax
m∈M

F (τ,m) . (1.1)

Due to the general nature of the performance measuring function F , the AAD task in Eq. (1.1) is

commonly viewed as a black-box optimization (BBO) problem, where F is taken for an oracle

that can be queried at will given some input configuration. Most existing black-box optimization

methods tend to approach this task via a sequential optimization strategy that alternates between

evaluating observations and making informed decision about subsequent probings of the oracle.

Typically, this decision is either guided by practical heuristics or a surrogate model that esti-

mates the relationship between configurations and evaluated performances. We summarize a few

typical BBO methods in the following section.

1.1 Classical methods for automated algorithm design

1.1.1 Heuristic search

One of the most classical techniques to optimize a black-box function is grid search, which sys-

tematically evaluates all input configurations projected on a lattice to find the best performing

candidate. For continuous configurations, this lattice is obtained by discretizing the search space,

whereas for categorical configurations, this routine simply means exhaustively trying all combi-

nations of values in each dimension. Alternatively, another widely-used approach for black-box
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optimization is random search, where inputs are chosen completely at random to evaluate. Both

grid search and random search are straight-forward to implement and have been used in several

AAD tasks [10, 11, 62]. These methods, however, only focus on exploring the search space and

have no built-in mechanism to exploit the collected observations, thus tend to scale poorly with

the complexity of the input domain.

In contrast, other heuristic optimization methods such as coordinate ascent [31, 103] and

simulated annealing [12] focus on refining the best candidate found so far in a greedy manner.

Coordinate ascent achieves this by successively optimizing along a specific dimension while

fixing every other dimension of the parameter space, repeating for all dimensions until conver-

gence. Instead of making queries along a single coordinate, the simulated annealing algorithm

alternatively evaluates a small neighborhood around the current best estimate and tries to move

in the direction that yield the best improvement. Both methods have also been used in many

AAD tasks [7, 11, 19], but are typically vulnerable to being trapped in local optima due to a lack

of exploration mechanism.

1.1.2 Evolutionary strategies

Evolutionary strategies (ES) are optimization techniques inspired by nature, in which a popu-

lation of configurations is set to evolve over time and improve its averaged performance while

doing so. For every generation of this population, most evolutionary algorithms will conduct the

following three steps: (1) estimate the fitness of each individual in the population; (2) generate

new individuals using certain reproduction and/or mutation operators; and (3) replacing unfit

individuals with new individuals.

Evolutionary algorithms [6, 30] have been widely applied in automated algorithm design,

such as model selection for deep neural networks [61, 65, 75, 78] and support vector machines

(SVM) [63]; or finding clinical interventions [76]. These techniques fundamentally differ from

the above heuristic algorithms by balancing between exploration and exploitation. For example,
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in genetic optimization, high-fitness individuals can partially pass down their representations to

the next generation via a crossover operator (i.e., exploitation), in hope that good performances

can be preserved and improved. At the same time, new representations are continually generated

via the random mutation operator (i.e., exploration), thus ensuring the optimization is not trapped

in local optima.

1.1.3 Sequential model-based optimization

Unlike the above methods which are considered model-free, sequential model-based optimiza-

tion (SMBO) is an optimization paradigm which iteratively uses collected information to esti-

mate a surrogate model for the black-box function F . This model is then used to guide the acqui-

sition of subsequent observations. Different SMBO methods have been used to address various

AAD tasks such as configuring parameterized tree search algorithms and local SAT solvers [45].

We now give a description of the Bayesian optimization (BO) algorithm [93], which is a widely-

used variant of SMBO.

The general BO algorithm usually prescribes a Gaussian Process (GP) prior [83] over the

black-box objective function, i.e. F ∼ GP(µ, k) where µ : M → R and k : M×M → R

are respectively the prior GP mean and covariance functions. This prior implies that for any fi-

nite subset of candidate configurations {m1,m2, . . . ,mT} the corresponding performance vector

[F (m1), F (m2), . . . , F (mT )] is normally distributed a priori with mean [µ(m1), µ(m2), . . . , µ(mT )]

and covariance [k(mi,mj)]i,j∈[T ]. At any iteration t, the BO algorithm then uses this prior distri-

bution and the set Dt of collected observations so far to derive a posterior predictive distribution

p(F (m∗) | m∗,Dt) for any subsequent candidate m∗.

The posterior predictive mean can be used directly to estimate the expected performance

of subsequent candidates, thus allowing us to exploit high-performing configurations without

actually evaluating F . However, since the posterior naturally has high uncertainty in unobserved

regions, doing so would discourage thorough exploration of the search space and risk missing
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out on good solutions. To address this issue, the BO algorithm instead constructs an acquisition

function that incorporates both the posterior mean and covariance to balance this exploitation

and exploration trade-off. For example, the upper confidence bound (UCB) acquisition function

proposed by Srinivas et al. [94] is given by:

αUCB(m;Mt, σt) ≜ Mt(m) + β
√
σt(m) , (1.2)

where Mt(m) and σt(m) respectively denote the posterior mean and variance at iteration t given

some candidate m. Here, the parameter β reflects the trade-off between exploiting candidates

with high expected performance and exploring candidates with high uncertainty. Finally, the BO

algorithm can be described via the following update rules:

mt+1 = argmax
m∈M

αUCB (m;Mt, σt) ,

Dt+1 = Dt ∪ {(mt+1, F (mt+1))} ,

Mt+1, σt+1 ← p (F (m∗) | m∗,Dt+1) . (1.3)

Nonetheless, we remark that the vanilla BO algorithm is best suited for low-dimensional and

continuous input domains. In practical AAD tasks where the space of configuration is structured

and discrete, there is generally no unifying approach to parameterize the mean and covariance

function of the GP surrogate. Furthermore, optimizing the acquisition functions will also become

non-trivial and require special modelling considerations.

1.2 Domain-specific AAD Problems

In many specific AAD problems, M can be specified as a sub-class of algorithms that is de-

scribed by discrete data structures such as sub-trees [23], graphs [8, 35, 80] or permutations [70].

This choice of representation implicitly prescribes a correlation structure among candidate mod-

els via the topology ofM and thus allows the general AAD objective to subsequently be cast as

optimization/search tasks on these structured domains.
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This thesis will focus on several prototypical classes of AAD tasks that can be unified

through the lens of structured optimization, namely kernel selection (KS), minimizer sketch de-

sign (MSD), and neural architecture search (NAS). In particular, the KS problem in Bayesian

statistics [23, 69] can be formulated as a tree search routine to find the composite function that

best models the covariance structure of a stochastic process. The MSD problem, which seeks to

find an optimal sketching scheme for biological sequences, is expressed as finding the optimal

permutation of all fixed length substrings induced by the sequence vocabulary [70, 110, 111].

Finally, the NAS problem is approached via setting M to be a set of computation graphs that

share the same vertex and edge space, which respectively denotes all intermediate feature repre-

sentations and all possible transformations [80, 113].

Even though this domain restriction strategy has enabled more meaningful formulations of

the AAD problem, their resulting discrete/combinatorial objectives are still challenging to solve

due to the prohibitive sizes of their search domains. For example, without any further restriction,

the tree search space in the KS problem naturally has unbounded depth, whereas the graph and

permutation domains of the MSD/NAS problems are virtually infinite in most practical settings.

In practice, this large amount of admissible candidate configurations would render the majority

of standard approaches such as integer programming [3, 4] and heuristic search inefficient, and

thus necessitates better informed search strategies to navigate these massive search spaces.

Another major challenge of AAD arises due to the fact that none of the respective perfor-

mance measuring functions have a closed-form expression, nor are they computationally cheap

to evaluate. For example, measuring the fitness of a neural network architecture would typically

entail training all layer parameters to convergence before measuring its predictive loss/accuracy

with respect to some validation dataset. As such, many strategies that rely on repeatedly probing

this evaluation function are inefficient and not applicable in practice.

To address these challenges, a significant portion of the existing AAD literature is centered

around the idea of developing an efficient knowledge transfer mechanism that can generalize
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algorithmic behaviors across different configuration instances. In particular, methods under this

paradigm often fall under two broad categories. The first category includes methods that aim

to infer unseen regions of high-performing configurations, such as sequential model-based opti-

mization approaches that iteratively refine a surrogate performance function and leverage this to

guide the acquisition of new observations [51, 66]. The second category includes methods that

aim to reduce the cost of evaluating new candidates, focusing on making structural assumptions

about the search space to facilitate reusing knowledge from past evaluations. An example of such

method is the weight sharing scheme in neural architecture search [35, 80], where every candi-

date architecture is constructed from the same pool of building-block layers. Each layer in this

search space is continually optimized throughout all search iterations (i.e., whenever selected by

the search algorithm), thus will alleviate the need to re-train each architecture from scratch. We

will defer the review of these domain-specific methods to their corresponding chapters.

Many approaches in the various AAD domains that we investigate (i.e., KS, MSD and NAS)

either suffer from the scalability issues above, or must rely on additional domain restrictions

to sufficiently prune their massive search spaces. For instance, existing KS methods [23, 66,

69] typically require that all candidate kernel functions must have upper-bounded complexities

(e.g., functions with short expressions), whereas the permutation domain in the MSD problem

is predominantly approximated by the space of sparse hitting sets [26, 110]. In practice, while

such assumptions serve to ensure the feasibility of their respective optimization objectives, they

are typically heuristics that do not factor in the optimality of the pruned candidates.

We note that most AAD frameworks only focus on exploiting the observed performances of

configurations in the same task domain. In practice, this is not always the only source of in-

formation to guide exploration of the candidate space. For instance, in applications that require

tuning for many related tasks, it would be more intuitive to leverage the combined knowledge

from all task domains, rather than to independently approach these problems with their respective

observations. Motivated by these shortcomings, this thesis therefore seeks to address the follow-
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ing research question: Can we design information-efficient frameworks that can better exploit

both intra-task and inter-task information, and thus improve the scalability and performance

for automated algorithm design?

1.3 Thesis aims and contributions

To address the research question above, this thesis aims to exploit intra-task information through

learning complementary components that can implicitly reason about the desirability of candi-

date configurations. This will improve the efficiency of AAD without having to fully commit

to expensive performance evaluations. In this direction, we ground our study in two specific

families of AAD instances, namely the kernel selection (KS) problem, and the minimizer sketch

design (MSD) problem.

Chapter 2 investigates a novel search framework for composite kernel functions through

learning a generative component. We show that the accuracy and efficiency of kernel perfor-

mance estimation can be improved through learning an early stopping policy that optimally

truncates infinitely long trajectories of expressions. On the other hand, Chapter 3 studies the

design problem of various string sketching/compression methods. We similarly develop an in-

nate reasoning component that takes the form of a template model generating desirable substring

ranking patterns. Learning this template model allows us to design surrogate objective func-

tions (for originally challenging permutation learning tasks) that can be efficiently optimized. In

both settings, we show that our proposed learning objectives are more effective formulations of

their respective AAD objectives, and that they yield better performing configurations than other

state-of-the-art methods.

Orthogonal to the above direction, the second aim of this thesis is to develop multi-task

knowledge transfer paradigms that leverage information sharing across different tasks to improve

the performance and efficiency of concurrent AAD instances. Specifically, Chapter 4 studies an

extension of the neural architecture search problem in the federated learning setting [72], where
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an ensemble of predictive tasks collaborate to find optimal architectures for their respective com-

putational goals. Chapter 5 further investigates a new meta-learning approach [28] that can ef-

fectively leverage existing model configuration experiences to address unseen and heterogeneous

AAD instances.

The remainder of this thesis will be organized as follows:

• Chapter 2 investigates the kernel selection (KS) problem, which restricts the candidate

domain to an infinite-depth tree induced by the kernel composition language [23]. Our

contribution is a novel Bayesian optimization framework that optimizes a recurrent kernel

generator that outputs infinitely long sequences of kernel expressions. We jointly learn a

termination policy model which decides the optimal stopping point along each infinite gen-

erative trajectory. We show that this strategy results in better performing kernel functions

on a wide range of predictive tasks.

• Chapter 3 studies the minimizer sketch design (MSD) problem, which aims to find a per-

mutation of substrings that induces the optimal sketch of a sequence via the minimizer

algorithm [70, 89]. Our contribution is a novel optimization framework, called DEEPMIN-

IMIZER, which formulates as a pair of substring ranking networks which guarantee dif-

ferent properties of a good solution. Through negotiating for a consensus outcome, these

networks result in a continuous relaxation of the original discrete permutation learning ob-

jective. We show that our method significantly improves the state-of-the-art performance

and scalability of MSD. We further extend our algorithm to unify and provide sketch de-

signs for other sequence sketching methods, such as the syncmer approach [24, 90].

• Chapter 4 investigates the neural architecture search (NAS) problem in a federated learning

setting [72], which seeks to concurrently optimize the solution architectures for multiple

related tasks without exposing their private data. Our contribution is a novel personalized

learning objective which distills the aggregated problem solving experiences into hierarchi-

cal architecture components which can be fine-tuned to solve each specific task. We show
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that this knowledge sharing scheme is capable of maintaining a high degree of personaliza-

tion in the solution ensemble and thus significantly improves the efficiency of multi-task

neural architecture search.

• Chapter 5 extends the multi-task AAD paradigm to deal with unseen and heterogeneous

tasks. Specifically, drawing inspiration from the meta-learning paradigm for multi-task

scenarios, we aim to learn a common meta-configuration that can be adapted quickly to

solve any specific task. Unlike the standard meta-learning setting, we consider the sce-

nario where the AAD task distribution might be highly heterogeneous, and hence there

might not be a single configuration that can adapt to every task. To address this heteroge-

neous meta learning (HML) problem, we implicitly model the multi-modality of the task

distribution via an adaptive neural routing system within the network architecture. This

motivates the development of a parameter-efficient channel shuffling module for convo-

lutional architectures that can be meta-learned via an extension of the MAML training

objective [28]. We show that, on a wide range of multi-modal meta-learning benchmarks,

our new heterogeneous meta learning framework outperforms previous methods in both

generalization accuracy and convergence speed.

• Chapter 6 summarizes related works beyond the scope of this thesis that are published

during my PhD journey. We also discuss the impact of this thesis and its various potential

future directions.
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Chapter 2

Kernel Selection

2.1 Introduction

In many traditional machine learning algorithms, working with high-dimensional feature spaces

can be computationally expensive or even infeasible. To address this, many existing methods

use the kernel trick to implicitly map data points into high-dimensional feature spaces without

explicitly computing the transformations. The kernel trick works by defining a kernel function

that models the similarity or dissimilarity between pairs of data points in the original space. This

kernel function computes the dot product between the transformed feature vectors in some latent

high-dimensional space, without explicitly carrying out the costly transformations. By doing so,

it avoids the need to store or compute the explicit feature representations, effectively sidestepping

the computational burden associated with high dimensions.

With many kernel functions available, ranging from Gaussian radial basis functions to poly-

nomial and sinusoidal kernels, the choice of an appropriate kernel becomes a crucial step in

building powerful and effective machine learning models. Kernel selection is far from a one-

size-fits-all approach. The decision of which kernel to employ depends on numerous factors,

including the characteristics of the dataset, the nature of the problem at hand, and the desired

trade-offs between accuracy, computational efficiency, and interpretability. Moreover, different
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kernels possess unique properties and capture distinct types of patterns, making the selection

process an intricate task that requires domain knowledge, experience, and a significant amount

of trial-and-error effort.

Various strategies have been proposed to automate this selection problem. Duvenaud et al.

[23] formulates the kernel selection problem as constructing composite kernels from atomic ker-

nel functions, and hence casts it as a tree search problem guided by the model likelihood score.

However, this requires fixing the kernel parameters during the tree search, and training them after

the search concludes. The trained parameters are used as initialization for the next round of tree

search, repeated until convergence or a sufficiently good kernel function is found. Nonetheless,

the parameters optimized with respect to one kernel function might not induce similar predic-

tive behaviors on another function, thus it is inconclusive whether the model likelihood heuristic

accurately estimates the kernel performance.

Malkomes et al. [69] employs a variant of the Bayesian optimization (BO) algorithm [93] that

models the kernel covariance function of the GP surrogate using the Hellinger distance. While

this method partially alleviates the initialization problem from Duvenaud et al. [23] by sampling

kernel parameters from prior distributions to estimate the proposed Hellinger kernel, it cannot

tractably update these priors as the BO algorithm acquires more observations. To address this

problem, Lu et al. [66] first trains a variational autoencoder (VAE) model [53] to acquire a latent

embedding space of kernel functions. Lu et al. [66] then employs BO to optimize for a latent

representation that decodes into the optimal kernel function given the task data, thus bypassing

the challenge of modelling a kernel function on discrete objects.

We note that all of the above methods commonly require further restrictions of the candidate

space to a finite set to ensure feasibility. Particularly, Duvenaud et al. [23] assumes a finite-

depth tree such that the tree search algorithm can successfully terminate. The BO approach

of Malkomes et al. [69] does not have a scalable solution for optimizing its acquisition func-

tion and has to confine the search space to a small number of active candidates, such that their
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acquisition values can be exhaustively computed. Similar to Duvenaud et al. [23], the VAE pa-

rameterization of Lu et al. [66] also assumes that the length of any decoded kernel expression is

upper-bounded.

To address the various shortcomings above, this chapter proposes a more expressive refor-

mulation that does not require any additional domain restriction. Our framework, Dynamic Ter-

mination Generative Search (DTERGENS), casts the kernel selection problem as optimizing the

weights of a generative model, whose mechanism explicitly mirrors the kernel composition rules

via a recurrent formulation. Unlike Lu et al. [66], which treats each kernel expression as an

atomic instance to be embedded on a continuous latent space, our approach instead maps an en-

tire subspace of kernel expressions to each latent representation. Explicitly, this is achieved via

formulating our generative model as an open-ended process which synthesizes an infinite trajec-

tory of kernel expressions given a unique weight initialization. Our AAD objective can be seen as

finding a subspace that contains the optimal model, rather than searching for the optimal model

itself. This relaxation subsequently allows us to capture an unrestricted and significantly more

expansive set of candidate kernel functions, compared to existing approaches such as Duvenaud

et al. [23], Lu et al. [66], Malkomes et al. [69].

Nonetheless, infinitely complex kernel expressions are generally not meaningful and are im-

practical to compute. In addition to our relaxed objective, we further seek to distill the optimal

kernel function from the optimal trajectory. To this end, we introduce a data-driven policy that

learns to optimally terminate the generative model to maximize performance. Intuitively, the in-

terplay between the generator model and this policy component can be interpreted as a two-step

decision making process, in which the generator weight determines a subspace of candidates,

and the policy learns to select candidates in this generative trajectory. Last, we introduce a novel

bi-level Bayesian optimization scheme to jointly optimize both components.

We demonstrate that our method is able to produce complex kernels which significantly im-

prove predictive performance of multiple predictive tasks over state-of-the-art structure search
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methods. Our results show a wider range of structures being explored by DTERGENS and more

rapid rates of improvement as compared to other methods. Finally, we show that DTERGENS

is also able to recover known well-performing kernels on artificially designed predictive tasks.

This chapter is co-authored by Carl Kingsford and was published at the International Conference

for Machine Learning (ICML) in 2020 [38].

2.2 Problem setting

We ground our study in the context of the multivariate regression problem y = g(x)+ϵ given real-

valued observation tuples D = {(xi, yi) ∈ Rd+1}i∈[N ], where d is the input dimension, ϵ denotes

the observation noise and g is the latent function to be inferred. Typically, the prior distribution

of g will be modelled such that a tractable posterior predictive distribution p(g(x∗) | x∗,D) can

be analytically derived. For example, in Gaussian process (GP) regression [83], if g is distributed

by a GP prior [83] with zero mean and covariance function k : Rd × Rd → R, such that for any

finite subset of inputs {xi1 ,xi2 . . .xim} where i1, i2 . . . im ∈ [N ], we have:

g(xi1)

g(xi2)

. . .

g(xim)


∼ N





0

0

. . .

0


,



k(xi1 ,xi1) k(xi1 ,xi2) . . . k(xi1 ,xim)

k(xi2 ,xi1) k(xi2 ,xi2) . . . k(xi2 ,xim)

. . . . . . . . . . . .

k(xim ,xi1) k(xim ,xi2) . . . k(xim ,xim)




.

If the observation noise ϵ is Gaussian, then the posterior distribution p(g(x∗) | x∗,D) is also

Gaussian and can be tractably derived. This modelling choice of the covariance matrix, broadly

referred to as the kernel trick [43], is widely used in the GP literature as well as many other

probabilistic methods to provide non-linear transformations of data onto some high-dimensional

feature space. However, since covariance matrices are required to be positive semi-definite, not

all functions will suffice as a kernel function in the above formulation. The formal condition for

a kernel function k to be valid is given as follows:
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Definition 2 (Valid Kernel) A kernel function k : Rd × Rd → R is valid if and only if for any

subset of inputs {xi1,xi2 . . .xim} and for all γ ∈ Rm we have:

m∑
u=1

m∑
v=1

γuγv · k(xiu,xiv) ≥ 0 , (2.1)

where γu and γv respectively denotes the uth and vth entry of γ.

Although there are infinitely many constructions that satisfy the above condition, we can

derive a systematic method to derive kernel functions via procedurally combining simple base

kernels to generate more sophisticated composite kernels. As formalized in Duvenaud et al. [23],

a popular set of kernel composition rules can be described as follows:

• LetM be the set of all valid kernel functions, we first select KB ⊂ M as a base kernel

set. We say that KB induces a set of composite kernels KC , such that KB ⊂ KC ⊆M. The

membership of KC is recursively defined via the following rules:

• Addition: if k1, k2 ∈ KC and ∀x,x′ : k+(x,x
′) ≜ k1(x,x

′) + k2(x,x
′), then k+ ∈ KC .

• Multiplication: if k1, k2 ∈ KC and ∀x,x′ : k+(x,x
′) ≜ k1(x,x

′)×k2(x,x′), then k× ∈ KC .

For ease of notation, we will drop the input argument and instead treat kernel functions as basic

operands (e.g., k+ = k1 + k2 or k× = k1 × k2) when referring to these composition rules. We

further remark that the notation k ∈ KC only implies the discrete form of the kernel function,

which does not include its learnable parameters. For example, consider the general squared

exponential (SE) kernel kSE ∈ KB such that kSE(x,x′) ≜ σ2 exp
(∑d

t=1 ℓ
−2
t · (xt − x′

t)
2
)

is

parameterized by the signal variable σ and the length-scale variables ℓ = {ℓt}dt=1. We do not

count different initializations of kSE inKC because the maximum likelihood estimation (MLE) of

these parameters is well-studied and can be implicitly incorporated into the performance metric.

Finally, the kernel selection problem can be formalized as follows:

Definition 3 (Kernel Selection) Let τ ≜ {KB,D,A} describe a kernel selection task where KB

is the set of base kernels; D is the set of provided observations (i.e., train/validation/test data);

and A denotes a kernel-based algorithm specified by some k ∈ KC that is induced by KB. We
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further let Fτ : KC → R be the performance measuring function of this task, which (1) executes

a well-defined algorithmic procedure to optimize the continuous parameters of some candidate

kernel function k (e.g., applying gradient descent update with respect to the MLE objective until

convergence) and (2) returns the predictive accuracy evaluated on the test set. Then, the kernel

selection problem is succinctly stated as:

k∗ = argmax
k∈KC

Fτ (k) , (2.2)

where k∗ denotes the optimally performing kernel function with respect to τ .

2.3 Methodology

Similar to Lu et al. [66], we reformulate the discrete optimization problem as a BO task over

a latent representation space, which allows us to bypass both the need to select an initial set of

active candidates [23] and to rely on heuristic methods for exploring new candidates [69]. How-

ever, instead of learning a direct embedding, we implicitly encode composite kernels as output

of a parameterized open-ended recurrent generator. While Lu et al. [66] focuses on learning a

mapping between latent representations and kernel expressions, our method, DTERGENS, learns

a mapping between the latent coordinates and the infinitely long kernel expression generative tra-

jectories. This main difference helps to avoid placing an explicit upper limit on the expression

length, thus ensuring sufficient expressiveness of the candidate set.

The VAE decoder in [66], which sequentially generates the next operand and operator given

the current expression, is pre-trained with the VAE encoder using randomly sampled kernel ex-

pressions. In contrast, our generator explicitly captures the sum-of-product structure through a

nested recursion procedure, thus is capable of generalizing the composition rules to create new

expressions. To prevent the generation of infinitely long and computationally expensive expres-

sions, we learn a stochastic early stopping policy, which determines the best performing stopping

point on any generative trajectory. This method enables the exploration of arbitrarily complex
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Figure 2.1: The generic workflow of DTERGENS. Given policy π, we employ BO to obtain

generative weight candidate θ (Section 2.3.3). Using the observed generative trajectory, we

alternately update the policy distribution (Section 2.3.4).

expressions and is the first selection method that places no further structural restriction on the

search space.

Both the generative parameters and the termination policy can be jointly optimized by ex-

ploiting their dynamic in the generative component. Fixing a termination policy, we devise a

dynamic BO algorithm for optimizing generative parameters that is capable of adapting to the

constant policy updates. Alternately, given each sample trajectory collected by the BO step, we

devise an update algorithm for the policy distribution via modelling the dynamic between these

two components. Together, these steps compose our main contribution, which is the DTERGENS

algorithm for composite kernel selection.

We demonstrate that DTERGENS is able to produce sophisticated kernel expressions, which

significantly improve the predictive performance over state-of-the-art methods on multiple bench-

marks. Our results show a wider range of structures being explored by DTERGENS and faster

convergence compared to other methods. Finally, we show that DTERGENS is also able to

recover known well-performing kernels on artificially designed predictive tasks.

2.3.1 Reformulating Kernel Selection

Directly optimizing over the discrete domain of kernel expressions as suggested by Definition 3

is challenging. To work around this, we model k as the output of a generative process G(θ, π)
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conditioned on generative weights θ ∈ Θ and a policy π ∈ Π that controls the termination of G.

The designs of G and π are given in subsequent sections. We approximate the kernel selection

objective in Definition 3 as:

argmax
k∈KC

Fτ (k) ≃ argmax
θ∈Θ,π∈Π

Rτ (θ, π) , (2.3)

where Rτ ≜ Fτ ◦G is the composition of the generative model G and the evaluation function Fτ .

We alternately optimize π and θ while fixing the other component. Explicitly, given a policy

π, the generative parameter θ is optimized using an adapted BO algorithm that is formulated with

the conditional policy distribution p(π | θ) (Section 2.3.3). On the other hand, given the BO-

sampled observations, the policy distribution p(π | θ) can be updated via MLE (Section 2.3.4).

The outline of this workflow is illustrated in Fig. 2.1. To lay the groundwork for our algorithmic

development, we will first discuss the design of our kernel generator G(θ, π) in Section 2.3.2.

2.3.2 Open-ended Kernel Generator

We note that a composite kernel can be expressed as a sum-of-products over some base kernel

units. That is, for any composite kernel k ∈ KC , there exists a finite collection of base kernels

{kt,t′} ⊆ KB such that:

k =
m∑
t=1

nt∏
t′=1

kt,t′ . (2.4)

Composite kernel expressions thus naturally manifest as tree structures with (1) a primary linear

chain; and (2) several secondary linear branches that are connected to the primary chain. In this

view, the secondary branches correspond to different products of base kernel units, whereas the

primary chain corresponds the summation over these products. To generate such structures, we

construct G by composing two nested recurrent units, which are described below and visualized

in Fig. 2.2.

18



Generator Overview

Our generator architecture comprises a primary unit and a secondary unit that respectively gen-

erate the primary chain and the secondary branches. Each unit is parameterized by a recurrent

neural network (RNN) and a termination policy. This policy predicts a stopping signal for the

generative process given the hidden state of the neural network.

Every recurring step of the primary unit initiates a new secondary branch and computes

an initial hidden state for the secondary RNN. On the other hand, every recurring step of the

secondary unit generates a new base kernel unit on the current branch. Each unit will recur until

its respective policy outputs a stopping signal given the respective current hidden state. When

the primary unit terminates, we output a tree structure corresponding to a composite kernel. We

give the mechanism of each component below.

Primary Unit

The primary unit Up : Rdp → KC is given by the RNN Gp and the policy πp : KC → R. Gp has

hidden dimension dp and emits an initial hidden state for Gs. Given an arbitrary initial hidden

state h0 ∈ Rhp , Gp performs the following at any generative step t ≥ 0:

• If t = 0, initialize candidate kernel expression k̄ = 0 (i.e., a constant function).

• Generate the next hidden state and the current emission output: (ht+1, ht,0)← Gp(ht; θt).

• Generate and append the tth secondary branch to the current expression: k̄ ← k̄+Us(ht,0; θs, πs).

• Query termination probability with the current intermediate expression: α← πp(k̄).

• With probability α, end the generative procedure and return k̄ as a terminal expression.

• With probability 1− α, set t← t+ 1 and repeat the procedure.
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. . . . . .
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. . . . . .
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Us ≡ (Gs, πs)

Up ≡ (Gp, πp)

Figure 2.2: Schematic of the kernel generator with nested units Up and Us. Each component

recursively computes its next hidden state and emission output using respective recurrent neural

networkGs andGp. The termination probability at each generative step is determined by policies

πp and πs. The final candidate kernel expression is composed using Eq. (2.4).

Secondary Unit

The secondary unit Us : Rds → KC is given by the RNN Gs and the policy πs : KC → R. Gs has

hidden dimension ds and emits one-hot representations of the base kernel units in KB. Given an

initial hidden state h ∈ Rds output by Gp, Us generates a corresponding product of base kernel

units. Given an initial hidden state ht,0 produced by Gp at time t, Gs then performs the following

at any inner loop generative step t′ ≥ 0:

• If t′ = 0, initialize the inner loop kernel expression k̄t = 1 (i.e., a constant function).

• Generate the next hidden state and emit the current base kernel: (ht,t′+1, kt,t′) ← Gs(ht,t′ ; θs).

• Extend current expression via multiplication: k̄t = k̄t × kt,t′ .
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• Query the termination probability β ← πs(k̄ + k̄t).

• With probability β, end the generative procedure for the current branch and return k̄t.

• With probability 1− β, set t′ ← t′ + 1 and repeat the procedure.

Termination Policy

Let τ = {x1,x2 . . .xn} denote the set of training inputs specified by the learning instance Ω, as

introduced in Definition 3. We respectively parameterize the termination policies πp and πs by

two neural networks γp and γs as follows:

πp(k; γp, τ) ≜ σ

∑
i,j∈[n]

γp(xi) · γp(xj) · k(xi,xj)

 ,

and πs(k; γs, τ) ≜ σ

∑
i,j∈[n]

γs(xi) · γs(xj) · k(xi,xj)

 , (2.5)

where σ(t) ≜ 1/(1 + exp(−t)) denotes the sigmoid activation function. For convenience, the

notation γp and γs are also used interchangeably to denote the weights of these neural networks

This data-driven parameterization serves to model the task-specific termination rules condi-

tioned on observation task data, and accounts for the fact that different expression lengths are

required for different tasks. We then model the interaction between the generative weights θ and

the termination policy π via parameterizing the conditional distributions p(γs | θ) and p(γp | θ)

with neural networks. These distributions are in turn used to construct a covariance function that

measures similarity among candidate composite kernels. Using this covariance function, we in-

troduce an adapted BO routine that alternates between generative weight optimization via policy

sampling (Section 2.3.3), and policy update given collected trajectories of generated base kernels

(Section 2.3.4).
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2.3.3 Generative Parameter Optimization

This section details the BO step to optimize the generative weight θ. Formally, fixing a policy

distribution π̄ whose parameterization γ̄ follows the conditional distribution p̄(γ | θ) ≜ p̄(γp |

θ)p̄(γs | θ), the partial objective can be rewritten as:

θ∗ = argmax
θ∈Θ

gπ̄(θ) ≡ argmax
θ∈Θ

Eγ∼p̄ [Rτ (θ, π(γ))] . (2.6)

We adopt the standard practice of BO [93] and impose a Gaussian Process (GP) [83] prior on

the black-box function gπ̄, i.e., gπ̄ ∼ GP(µ, kBO) where µ and kBO respectively denote its mean

and covariance functions. The BO algorithm obtains the next best candidate θ by maximizing a

surrogate acquisition function constructed from the posterior distribution of this GP. The perfor-

mance evaluation of the composite kernel generated by θ and π, gπ(θ) is then used to update the

GP posterior.

Note that in standard BO setting, the functional landscape is static, whereas in our formula-

tion the policy π̄ updates after every BO iteration. To account for this dynamic update of π̄, we

will therefore model the GP covariance using two components: (1) an intrinsic kernel compo-

nent that characterizes the feature distance between the generative weights θi and θj; and (2) an

extrinsic kernel component that captures the divergence of their conditional policy distribution

p(γ | θi) and p(γ | θj) given the current parameterization γp, γs. Explicitly, given candidates θi

and θj , the kernel distance between these candidates is given as:

kBO(θi, θj) ≜ kPOLICY(θi, θj) · kGENERATOR(θi, θj) , (2.7)

where kGENERATOR is given by the standard squared exponential kernel and kPOLICY is given by the

symmetric KL divergence between the policy distributions conditioned on θi and θj respectively:

kPOLICY(θi, θj) ≜ KL
(
p(γ | θi) ∥ p(γ | θj)

)
. (2.8)
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2.3.4 Optimizing Policy Distribution

This section then details an update iteration of π given a new candidate weight θ (derived from

maximizing the BO acquisition function) and its generated kernel expression k =
∑m

t=1

∏nt

t′=1 kt,t′

where kt,t′ ∈ KB. For simplicity, we use the notation γ to abstract both γp and γs in this section

due to their symmetry. The conditional policy distribution p(γ | θ) is then parameterized using a

standard Bayesian neural networks:

p(γ | θ) ∼ N (γ;µ(θ),Σ(θ)) , (2.9)

where µ and Σ are neural networks that respectively generate the mean and covariance of the

distribution.

As the generative trajectory encoded by θ is infinite, there is no analytical method to compute

its optimal set of stopping points. However, we can approximate the optimal stopping point in

this trajectory by finding the best performing intermediate kernel expression on the observed

finite trajectory. Explicitly, let S = {{m̄, n̄1, n̄2, . . . , n̄m} | m̄ ≤ m,∀t ∈ [m̄] : n̄t ≤ nt} be

the set of all possible intermediate sets of stopping points that precede k, we define the hindsight

estimation of k as:

k∗ =
m∗∑
t=1

n∗
t∏

t′=1

kt,t′ , where

{m∗, n∗
1, . . . , n

∗
m∗} ≜ argmax

{m′,n′
1,...,n

′
m}∈S

Fτ

 m′∑
t=1

n′
t∏

t′=1

kt,t′

 , (2.10)

and let K∗
τ denote the covariance matrix induced by k∗ on training inputs the D described in τ .

We argue that high-performing kernels likely produce covariance matrices that are similar to K∗
τ

, which motivates the following loss function with respect to the current candidate weight θ :

Lθ(µ, σ) = Eγ∼N (µ(θ),σ(θ))

[
⟨G(θ, π(γ)), k∗⟩τ

]
≃ 1

rγ

rγ∑
i=1

⟨G(θ, π(γi)), k∗⟩τ , (2.11)
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where rγ denotes the number of γ samples drawn from the conditional distribution; π(γi) de-

notes the policy parameterized by γi drawn from the conditional policy distribution; G(θ, π(γi))

denotes the kernel expression generated by G with weight θ and policy π(γi)); and ⟨k, k′⟩τ ≜

∥Kτ − K ′
τ∥Fro denotes the Frobenius norm of the difference between the covariance matrices

induced by kernel functions k and k′.

This loss function, however, does not have an analytical gradient with respect to µ and σ

as it requires simulation to compute. To optimize for µ and σ, we first employ the random

gradient estimation technique [77], which approximates gradient at a point by evaluating the

expected gradient of its υ-Gaussian smoothing. In particular, we derive our randomized gradient

estimation for µ as follows:

∇µLθ(µ, σ) ≃ ∇µ Eυ∼N (0,I) [ℓθ(µ+ υ, σ)]

= Eυ∼N (0,I) [ℓθ(µ+ υ, σ)υ]

≃ 1

rυ

rυ∑
j=1

ℓθ(µ+ υj, σ)υj

≃ 1

rγrυ

rγ∑
i=1

rυ∑
j=1

⟨G (θ, π(µi + υj, σi)) , k
∗⟩τ , (2.12)

where rυ denotes the number of υ samples drawn from the standard Gaussian distributionN (0, I)

and we have rewritten π(γi) = π(µi, σi) to clearly show the perturbed component µi in the

estimation. Similarly, the gradient estimation for σ is given as:

∇σLθ(µ, σ) ≃
1

rγrυ

rγ∑
i=1

rυ∑
j=1

⟨G(θ, π(µi, σi + υj), k
∗⟩τ . (2.13)

These estimations allow us to update µ and σ via the gradient descent algorithm, which complete

the specification of our policy update.

2.4 Empirical Study

This section evaluates and reports the empirical performance of our kernel selection framework

DTERGENS on a synthetic kernel recovery task and kernel selection for regression on three
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real-world datasets:

• The DIABETES dataset [25] contains 442 diabetes patient records (i.e., inputs) with 10

variables: age, sex, body mass index, average blood pressure and six blood serum mea-

surements. The target output variable is a quantitative measure of disease progression one

year after baseline.

• The MAUNA LOA dataset [52] measuring monthly average CO2 concentration (in ppvm)

of air samples at the Mauna Loa Observatory over 42 years (i.e., 504 observations in total).

• The PROTEIN dataset [82] with 45730 observations of protein structures, each records 9

physicochemical properties of a protein. The predictive variable is the size of the protein

residue in kDa.

To demonstrate the performance of DTERGENS, we compare our method with the following

benchmarks: (a) random search over the space of kernels with maximum length L ≤ 10 (base-

line); (b) SVO: Structure Variationally-Encoded Optimization [66], for which we train the VAE

component using 25000 randomly generated kernel expressions with max length L ≤ 10; and

(c) DTERGENS with no stopping policy, for which we terminate the secondary component at

random, and terminate the primary component upon reaching a maximum length L = 2, 4, 6.

The baseline (b) serves to demonstrate the advantage of generative search, whereas (c) serves

to demonstrate the advantage of having adaptive termination policies for the generative com-

ponents. For all variants of DTERGENS, we additionally use the REMBO random projection

trick [101] to address the high-dimensionality of the generative weights θ.

For all experiments, we demonstrate the performance of our framework on the black-box

model Variational DTC Sparse Gaussian Process (vDTC) [36] with the following configurations:

(1) 80/10/10 train-test-validation split (i.e., we use the validation fold to compute BO feedback

and the test fold to evaluate final performance); (2) 100 randomly selected inducing inputs; (3)

kernel hyper-parameters are optimized using L-BFGS over 100 iterations. These configurations

implicitly define the learning scenario Ω, such that FΩ is the root-mean-square-error (RMSE) of

25



predictions on the test split, given a model trained and validated accordingly on the train split. We

construct the set of base kernels with 4 different base kernel functions, as suggested by Duvenaud

et al. [23]. These kernel functions, along with their learnable parameters, are defined as follows:

kLIN(xi,xj;σn, σb, c) ≜ σ2
n (xi − c)⊤ (xj − c) + σ2

b (2.14)

kSE(xi,xj;σn, ℓ1, ℓ2 . . . ℓd) ≜
1

σ2
n

exp

(
d∑

t=1

(xt
i − xt

j)
2

ℓ2t

)
(2.15)

kPER(xi,xj;σn, σp, ℓ1, ℓ2 . . . ℓd) ≜
1

σ2
n

exp

(
d∑

t=1

2 sin2
(
π|xt

i − xt
j|/σp

)
ℓ2t

)
(2.16)

kRQ(xi,xj;σn, σw, c) ≜ σ2
n

(
1 +

d∑
t=1

(xt
i − xt

j)
2

2σ2
wℓ

2
t

)−σw

(2.17)

We parameterizeGp andGs using the same RNN architecture with 4 hidden feed-forward layers.

Both Gp and Gs has hidden dimension dp = ds = 5. The emission output of Gp has dimension

ds = 5, as Gp is tasked to generate the initial hidden state of Gs, whereas the emission output

of Gs has dimension |KB| = 4, which corresponds to the number of base kernel functions. We

use ReLU activation for all non-output layers, softmax activation for the kernel output layer

of Gs and tanh activation for the emission output layer of Gp. Finally, we optimize our RNN

parameters by adapting a known high-dimensional BO method called REMBO [101] to account

for the dynamic function landscape (Section 2.3.3).

2.4.1 Synthetic Kernel Recovery

We first investigate how well various kernel selection methods recover a covariance matrix given

synthetic data randomly drawn from its corresponding distribution. Unlike most real-world set-

tings where a ground truth kernel is not known and performance evaluation relies on possibly

noisy predictive accuracy, this scenario provides a ground truth for kernel selection and allows

us to directly measure the success of various contending methods.

Explicitly, given an arbitrarily chosen kernel k∗ (with arbitrarily initialized hyper-parameters)

and n i.i.d. input observations τ = {x1,x2, . . . ,xn} ⊂ Rd drawn fromN (0, I), we subsequently
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RQ× RQ PER× RQ× LIN× LIN LIN× RQ× LIN +

PER× LIN + RQ× SE

Figure 2.3: Best kernel recovery error over 100 iterations with various kernel selection methods

on three synthetic datasets constructed from specific kernels

generate corresponding output observations Y = {y1, y2 . . . yn}, where yi ∼ N (0, K∗
τ +σ

2I) and

K∗
τ denotes the data covariance matrix induced by k∗. We then apply various kernel selection

methods, including DTERGENS for vDTC prediction on this synthetic dataset and measure our

recovery error for any selected kernel k by Lrec(k) = ∥Kτ − K∗
τ ∥Fro. Fig. 2.3 shows the best

recovery errors achieved over a span of 100 BO iterations with 3 different ground truth kernels:

(1) k∗ = kRQ × kRQ; (2) k∗ = kPER × kRQ × kLIN × kLIN; and (3) k∗ = kLIN × kRQ × kLIN +

kPER × kLIN + kRQ × kSE.

In all experiments, DTERGENS consistently achieves the lowest recovery error after 100

iterations compared to other methods. Random search performs competitively when the ground

truth kernels are simple (i.e., L = 2, 4), and hence are easy to be found via randomization. On the

other hand, random search expectedly performs the worst when the ground truth kernel is longer

(i.e., L = 7). We also observe that without the termination policy component, the performance of

DTERGENS is only competitive when L is set to be roughly the length of the ground truth kernel,

but otherwise outperformed by other methods. This shows the importance of adaptively learning

the complexity of the kernel expression using a data driven policy. Lastly, we observe that SVO

is most significantly outperformed by DTERGENS in the first experiment. We reason that this is

because the number of length-2 kernels is relatively smaller in the set of training expressions for
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DIABETES MAUNA LOA PROTEIN

Figure 2.4: Best nRMSE over 100 iterations with various kernel selection methods on 3 bench-

mark datasets using vDTC [36].

the VAE component of SVO. Thus, the trained VAE could be biased to produce longer kernels

and it is more difficult for SVO to find a latent embedding that decodes to a length-2 kernel. In

contrast, DTERGENS does not incur this problem because its termination policy is also learned

as it collects information about the embedding space.

2.4.2 Kernel Selection for Regression Tasks

This section investigates the performance of kernel selection for regression tasks using vDTC [36]

on DIABETES [25], MAUNA [52] and PROTEIN [82] datasets. In all experiments, we mea-

sure performance by computing the root-mean-square-error of predictions, normalized against

the root-mean-square-error achieved by fixing the kernel of VDTC to be kSE, which serves to

demonstrate the improvement over the default choice of kernel. Explicitly, our kernel selection

metric for any selected kernel k is given by:

nRMSE(k) ≜

√ ∑ntest

i=1 (ȳi(k)− yi)2∑ntest

i=1 (ȳi(kSE)− yi)2
(2.18)

where ȳi(k) denotes the prediction made by vDTC for test input xi with selected kernel function

k and yi denotes the corresponding ground truth test output.

Fig. 2.4 shows the comparative performance between DTERGENS and the competing meth-

ods. Across all datasets, DTERGENS consistently obtains the best performing kernel expression.
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Figure 2.5: (Left) the linear-periodic trend of the MAUNA dataset; and (Right) the number of

unique kernels discovered by DTERGENS, SVO and random search on all three datasets.

On the PROTEIN dataset, DTERGENS also shows the fastest convergence among all compet-

ing methods. On the MAUNA dataset, DTERGENS performs competitively with L = 4 and

both variants of DTERGENS outperform SVO. More interestingly, the best kernel found for the

MAUNA dataset is kLIN × kPER × kPER + kRQ × kPER, which accurately reflects the linearly

increasing periodic nature of the data (Fig. 2.5 (left)).

Fig. 2.5 (right) further compares the expressiveness of the three kernel selection methods

(i.e., DTERGENS, SVO and random search), which is measured by the number of unique ker-

nels found over 100 iterations in each method. As expected, random search consistently produces

the same amount of unique expressions across all experiments. While SVO discovers approxi-

mately the same amount of unique kernels as does random search on all three datasets, it tends

to outperform random search as its discovery is guided. Finally, we observe that DTERGENS

consistently discovers more unique kernels and also outperforms the other methods. This finding

asserts our earlier intuition on how adding expressiveness to the embedding method also helps to

improve search efficiency.
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2.5 Conclusion

We tackle the composite kernel selection problem for an arbitrary kernel-based model. The pro-

posed DTERGENS algorithm reformulates the kernel search problem as a parameter optimization

task for a recursive kernel generator equipped with optimal stopping mechanism. Operating on

this well-behaved space of generative weights allows efficient traversing of the candidate space

with Bayesian Optimization. We demonstrate that DTERGENS discovers complex kernels that

improves the model performance. The performance gain is significantly more than that of other

state-of-the-art kernel learning methods on various real-world datasets.

Orthogonal to this work, we have also studied another aspect of model configuration for

the GP framework to improve the accuracy-runtime trade-off. In particular, the classical GP

algorithm [83] has a O(n3) run-time complexity, where n is the size of the training data. Due to

this prohibitively expensive cost, many sparse approximations have been employed to improve

the scalability of GP in practical use cases. These methods, which are broadly referred to as

sparse Gaussian processes (SGPs), usually focus on optimizing a compact set of inducing data

points that serve as sufficient statistics for the training data [33, 36, 42]. Nonetheless, previous

theoretical results have established that this inducing set should be sufficiently large for the SGP

predictions to closely approximate that of GP, and it therefore presents an accuracy-efficiency

trade-off inherent to most SGP variants.

We study this trade-off and derive a set of conditions for the training data of the sparse

spectrum GP (SSGP) method [33]. When these conditions are satisfied, the SSGP method only

requires a compact set of inducing inputs to closely approximate the full GP prediction. Based on

this theoretical understanding, we further develop a practical approach to recondition the training

data using a variational autoencoder (VAE) approach [53]. We showed that our VAE-transformed

data exhibit the proposed conditions and achieve better sample complexity than vanilla SSGP.

This work is co-authored by Nghia Hoang, Hai Pham and David Woodruff, and was published at

the Conference on Neural Information Processing Systems (NeurIPS) 2020 [40].
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Chapter 3

Minimizer Sketch Design

3.1 Introduction

The minimizer scheme [86, 89] is a deterministic method that samples length-k substrings (i.e.,

k-mers) from a long sequence such that sufficient information about the identity of the sequence

is preserved for alignment purposes. Given a choice of k and a window size w, the minimizer

scheme selects the lowest priority k-mer from each overlapping window in the target sequence

according to some total ordering π over all k-mers. The set of all k-mers selected in this manner

is called a minimizer sketch. Minimizer sketches are widely used to reduce memory consumption

and run-time in bioinformatics applications such as genome assemblers [106], read mappers [48,

59] and k-mer counters [20, 27].

The performance of a minimizer sketch can be measured by its density [70] (i.e., the sketch

size relative to the target sequence length, lower is better), or its conservation [24] (i.e., the ex-

pected fraction of k-mers that remain in the sketch over random homologous copies of the target

sequence, higher is better) with respect to the target sequence. Depending on the choice of π, the

resulting density and conservation can vary significantly. The theoretical lower-bound of density

achievable by any minimizer scheme is given by O(1/w) [70]. Given a target sequence with

uniformly random characters, a uniformly random ordering π will yield an expected density of
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O(2/w) [89]. On the other hand, no concrete guarantees have been devised for the conservation

metric of minimizer sketches. To find k-mer sketches with better conservation, Edgar [24] pro-

poses the syncmer scheme, which was subsequently proven to have better expected conservation

than minimizers on comparable settings [90].

For applications that involve aligning many queries against a single reference, such as genome

assembly, it is often more desirable to optimally design an ordering that performs well on the

reference sequence. The idea of learning minimizer schemes for a specific target sequence was

originally explored in the context of the density metric and manifested as a challenging permuta-

tion optimization objective [41]. Existing approaches approximate this task by discrete surrogate

objectives that are either inaccurate [15, 18, 47], or not necessarily easier to solve [111]. There

are no prior works that have successfully tackled the optimization of the sequence-specific con-

servation metric.

To address these problems, we introduce a novel approximation of the density minimizing

objective. Specifically, we reformulate the original permutation learning problem as parameter

optimization of a deep learning system called DEEPMINIMIZER. This results in the first differ-

entiable objective for minimizer sketch design that can be efficiently optimized using gradient-

based learning techniques. We subsequently extend this method to the MASKEDMINIMIZER

algorithm that accounts for the joint optimization of density and conservation for minimizers as

well as its various generalizations.

The first part of this chapter details the DEEPMINIMIZER algorithm, which implicitly rep-

resents k-mer orderings using a continuous scoring function that is parameterized by a neural

network called PRIORITYNET. The PRIORITYNET assigns a consistent score to each k-mer

regardless of its position in the sequence, and hence guarantees the recovery of a total k-mer

ordering given the assigned scores. This property ensures that the set of selected k-mers cor-

responds to a valid minimizer sketch. As the density objective is discrete and not amenable

to gradient-based learning, we further design another neural network called TEMPLATENET.
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The TEMPLATENET potentially outputs inconsistent k-mer scoring, but otherwise guarantees

that few k-mers will be selected. This property is complementary to that of the PRIORITYNET,

which enforces consistent scoring, yet does not necessarily yield a low density sketch. The

DEEPMINIMIZER algorithm thus approximates the original density objective via minimizing a

locality-aware distance metric between the outputs of these networks, resulting in a consensus

sketch that is both consistent and sparse.

The second part of this chapter details the MASKEDMINIMIZER algorithm, which extends the

DEEPMINIMIZER framework to account for a generalized formulation of the minimizer scheme,

as well as the capacity to optimize for the conservation metric. Inspired by Dutta et al. [22], the

MASKEDMINIMIZER method additionally defines a mask variable that encodes a set of posi-

tions, such that the lowest ordered k-mer in each window is only sampled if its relative position

is found in the mask. This pattern-aware sampling rule enriches minimizers with the ability to

(1) balance between density and conservation; and (2) to avoid dense sketches of adversarially

patterned subsequences. Both properties are achieved by optimally configuring the mask vari-

able. Last, we introduce a bi-level optimization algorithm that alternates between pruning the

mask variable and learning the k-mer ordering. Given a fixed mask, the inner loop optimizes for

the k-mer ordering via an extension of the DEEPMINIMIZER objective function. On the other

hand, the outer loop searches for the optimal mask via greedily pruning its set bits, forwarding

pruned candidates to the inner loop, and selecting one that yields the best performance gain.

We demonstrate the performance of both methods on a collection of benchmark genomic

sequences, including several human and bacterial genomes. The DEEPMINIMIZER method

yields sketches with significantly better density than those obtained by other existing approaches.

To better capture the multi-objective optimization performance of the MASKEDMINIMIZER

method, we further introduce a new evaluation metric, called generalized sketch score (GSS),

that combines and measures the trade-off between density and conservation. We show that

the optimized masked minimizer sketches achieve better GSS than previous optimization ap-
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proaches, including the DEEPMINIMIZER method. In addition, we also discover a specific class

of complement mask patterns that exhibit desirable properties in sketching homopolymer-rich

sequences.

The original idea of the DEEPMINIMIZER method was co-authored by Carl Kingsford and

Hongyu Zheng, and was published at the Conference on Research in Computational Biology

(RECOMB) in 2021 [41]. It was subsequently extended and published at the Journal of Com-

putational Biology (JCB) in 2022. The MASKEDMINIMIZER method was co-authored by Carl

Kingsford and Guillaume Marçais, and was accepted to the Journal of Computational Biology

(JCB) in 2022.

3.2 Problem setting

3.2.1 Notation

Let Σ be an arbitrary alphabet over which an input sequence S ∈ ΣL is defined. We further let

κki and Lk ≜ L − k + 1 respectively denote the ith k-mer and the total number of overlapping

k-mers in S. A (w, k)-window is a substring of length wk ≜ w + k − 1 and contains exactly

w overlapping k-mers. By extension, the ith (w, k)-window and the total number of (w, k)-

windows are denoted by κwk
i and Lwk

= L−wk +1. Finally, let π be some k-mer ordering such

that κki ≺π κkj implies κki precedes κkj in π, we additionally define an index selector function

mπ(a, w) ≜ argmax
i∈[0,w−1]

∑w−1
j=0 I(κka+i ≺π κka+j) that returns the lowest-ranked k-mer in the w-

window starting at κka.

Definition 4 (Minimizers) The k-mer sampling minimizer scheme is characterized by a tuple

of parameters (w, k, π). π denotes a total ordering over the set of all k-mers. The minimizer

method samples and reports the indices of the lowest-ranked k-mers (e.g., minimizers) from each

(w, k)-window in S:

M(S;w, k, π) ≜ {i+mπ(i, w)}i∈[1,Lwk
] . (3.1)
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Evaluation metrics. Minimizer sketches are evaluated using various metrics. Schleimer et al.

[89] uses the density metric to measure the compression factor which approximates the degree

of cost-saving in downstream applications. More recently, Edgar [24] proposes the conservation

metric (i.e., the likelihood of sketched k-mers to be persistently sampled across homologous se-

quences) and argues that high conservation is preferable when comparing sequences that might

have diverged due to mutations and/or sequencing error. This thesis further introduces the cov-

erage metric that measures the spread of the sketch across the input sequence. We note that

the minimizer sketch has maximum coverage by design, but other sequence sketching schemes

such as open syncmers [24], parameterized syncmers [22] or the generalized masked minimizers

introduced later in this chapter may not.

Definition 5 (Density) Let X be an arbitrary k-mer sampling scheme parameterized by θ. The

density metric [70] measures the size of the sketch X (S; θ) relative to the number of k-mer in S

(lower is better):

D(S;X , θ) ≜
1

Lk

|X (S; θ)| . (3.2)

Definition 6 (Conservation) Let S ′ be a homologous sequence to S (e.g., differing by a few

random base substitutions), and suppose S ′ follows some arbitrary distribution pS . The conser-

vation metric [24] measures the expected number of bases that are present in both X (S; θ) and

X (S ′; θ), relative to the number of k-mers in S (higher is better). For ease of comparison to

the density metric, we instead define the conservation metric in terms of the number of sketched

k-mers:

C(S;X , θ) ≜
1

Lk

ES′∼pS |X (S; θ) ∩ X (S ′; θ)| . (3.3)
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Definition 7 (Coverage) The w-coverage metric computes the fraction of (w, k)-windows that

overlap at least one sampled k-mer in X (S; θ). This means a minimizer sketch is guaranteed to

have a w-coverage value of 1 by construction; whereas an empty sketch has a w-coverage value

of 0. The w-coverage metric is formally given by:

Vw(S;X , θ) =
1

Lwk

∑
i=1

V i
w(S;X , θ)

≜
1

Lwk

Lwk∑
i=1

(
1−

i+w−1∏
j=i

I(j ̸∈ X (S))

)
, (3.4)

where V i
w indicates the event κwk

i overlaps at least one sampled location in X (S).

The Minimizer Sketch Design (MSD) problem can be broadly stated as finding an ordering π,

or equivalently a scoring function fπ, that optimizes some of the above metrics for a given target

sequence. In this thesis, we consider two variants of the Minimizer Sketch Design (MSD) prob-

lem. The first variant corresponds to minimizing the density metric. The second variant extends

the search space to minimizers whose sampling patterns are more generally encoded by a binary

mask parameter, and optimizes for a multi-objective metric combining density, conservation and

coverage. We defer the technical definition of each variant to its corresponding section.

3.2.2 Other sketching variants

Edgar [24] proposes the open-syncmer scheme to address the goal of shifting the focus from min-

imizing density to maximizing conservation, which is preferable when comparing sequences that

might have diverged due to mutations and/or sequencing error. Shaw and Yu [90] subsequently

shows that an open syncmer scheme has provably better expected conservation than a minimizer

scheme when both their orderings are uniformly random. However, there are currently no meth-

ods to optimize the open-syncmer ordering with respect to either density or conservation.

Definition 8 (Open syncmers) The k-mer sampling open-syncmer scheme [24] is specified by a

tuple (k, s, t, π). Here, the parameter s < k implicitly characterizes the representation of k-mers
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as the collection of their constituent s-mers. We additionally denote the number of s-mers in

each k-mer by ks ≜ k − s+ 1. The parameter π denotes a total ordering over the set of s-mers.

Finally, the offset parameter 0 ≤ t ≤ k − 1 indicates that the scheme will sample all k-mers in

which the lowest-ranked constituent s-mer is exactly at position t (relative to the k-mer position):

O(S; k, s, t, π) ≜ {i | mπ(i, s) = t}i∈[1,Lk]
. (3.5)

Based on the syncmer concept, Dutta et al. [22] subsequently introduces the parameterized

syncmer scheme, which replaces t by a subset of qualifying offset positions v ⊆ [0, ks − 1].

Setting v = {t} for some t ∈ [ks−1] recovers the open-syncmer scheme above. This flexible en-

coding of sampling rules offers a practical handle on the performance of syncmers, where subsets

that do not correspond to open-syncmers have been shown to achieve superior performance [22].

Definition 9 (Parameterized syncmers) The parameterized syncmer method samples and re-

ports the indices of all k-mers such that their lowest-scoring s-mers are found at some offset

positions in v:

O+(S; k, s, v, π) ≜ {i | mπ(i, ks) ∈ v}i∈[1,Lk]
. (3.6)

3.2.3 Other MSD approaches

Universal hitting set construction. Most existing minimizer selection schemes with perfor-

mance guarantees over random sequences are based on the theory of universal hitting sets (UHS) [71,

79]. Particularly, a (w, k)-UHS is defined as a set of k-mers such that every window of length

w (from any possible sequence) contains at least one of its elements. Every UHS subsequently

defines a family of corresponding minimizer schemes whose expected densities on random se-

quences can be upper-bounded in terms of the UHS size [70]. As such, to obtain minimizers with
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provably low density, it suffices to construct small UHS, which is the common objective of many

existing approaches [26, 70, 110]. These methods, however, rely on the unrealistic assumption

that the target sequences follow a uniform distribution [109]. As such, there tends to be little

correspondence between the provable upper-bound on expected density and the actual density

measured on a target sequence.

Heuristic methods. Several minimizer construction schemes rank k-mers based on their fre-

quencies in the target sequence [15, 47], such that infrequent k-mers are more likely to be chosen

as minimizers. These constructions nonetheless rely on the assumption that infrequent k-mers

are spread apart and ideally correspond to a sparse sampling. Another greedy approach is to

sequentially remove k-mers from an arbitrarily constructed UHS, as long as the resulting set still

hits every w-long window on the target sequence [18]. Though this helps to fine-tune a given

UHS with respect to the sequence of interest, there is no guarantee that such an initial set will

yield the optimal solution after pruning.

Polar set construction. Recently, a novel class of minimizer constructions was proposed based

on polar sets of k-mers, whose elements are sufficiently far apart on the target sequence [111].

The sketch size induced by such a polar set is shown to be tightly bounded with respect to its car-

dinality. This reveals an alternate route to low-density minimizer schemes through searching for

the minimal polar set. Unfortunately, this proxy objective is NP-hard and currently approximated

by a greedy construction [111], which can be sub-optimal in practice.

3.3 Density optimization of the minimizer scheme

This section presents an approach to solve the problem of low-density minimizer sketch selection.

In general, a low-density minimizer scheme achieves three desiderata: (1) the sketch is compact

and will offer significant cost saving to downstream applications; (2) every (w, k)-window in S

overlaps at least one k-mer in the sketch; and (3) identical windows are represented by the same

k-mer due to the deterministic sampling protocol. These properties give rise to the following
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problem definition.

Definition 10 (Low density MSD) Let S ∈ ΣL be a length-L sequence drawn from the vocab-

ulary Σ. Assuming that w and k are fixed parameters of the minimizer scheme, the density mini-

mizing MSD objective can be written as an optimization task with respect to the k-mer ordering

π:

π∗ = argmin
π∈Π(Σk)

D(S;M, π) , (3.7)

where Π(Σk) denotes the set of all k-mer orderings.

Generally, this task is challenging due to a factorial large search space (e.g., consisting of

|Π(Σk)| = |Σ|k! possible orderings), and the discrete nature of the density minimizing objective

in Eq. (3.7). To work around these issues, existing methods typically surrogate the pairwise

precedence operator ≺π with a more easily optimized scoring heuristic f such that I(f(κki ) <

f(κkj )) approximates I(κki ≺π κ
k
j ).

Many heuristics for f have been previously proposed. For example, Chikhi et al. [15]

and Jain et al. [47] construct f from relative k-mer frequency, that is f(κki ) ∝
∑Lk

j=1 I(κkj = κki ).

Ekim et al. [26] and Zheng et al. [110] employ a universal hitting set (UHS) υ to characterize f ,

such that for any κki ∈ υ and κkj ̸∈ υ, it is guaranteed that f(κki ) < f(κkj ). Similar set-ups have

been explored in the context of sequence-specific minimizers using a pruned UHS υ(S) [18]

and a polar set ζ(S) [111] constructed for the target sequence. Here, we note that the notation

f is overloaded to admit different parameter representations. This is mainly to highlight the

unification of existing methods, and has no implication on the mathematical consistency of our

formulation.

These methods can be seen as crude approximations of π that map k-mers to a small number

of discrete buckets (e.g., fewer than |Σ|k). When collision of values occur (e.g., different k-mers

are assigned to the same bucket), these algorithms rely on a pre-determined ordering (e.g., typ-

ically random) to break ties, and thus once again may not yield optimal density. To achieve a

more fine-grained representation of π, we instead model f using a neural network parameterized
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by weights α. That is, f takes as input the multi-hot encoding of a k-mer, and returns a corre-

sponding real-valued score in [0, 1]. As continuous scores are less likely to collide, this scheme

practically eliminates collisions and allows the recovery of a total ordering from the score assign-

ment. Using the notion of this neural function f , we can succinctly rewrite the selector function

in Section 3.2.1 as:

mf (a, w) ≜ argmin
i∈[0,w−1]

f(κka+i;α) , (3.8)

which reparameterizes the objective in Eq. (3.7) as an optimization task with respect to weight

α.

Practically, sequentially applying this network on every k-mer in S can be efficiently written

as a single convolutional neural network (CNN). To differentiate this from the atomic function

f , we denote the output of the CNN as f(S;α) ≜ [f(κki ;α)]i∈[L]. We require that the score as-

signment induced by the CNN f to be consistent across different windows in order to recover a

valid ordering π. Specifically, one k-mer can not be assigned different scores at different loca-

tions in S. To enforce this, we let the first convolution layer of our architecture, PRIORITYNET,

have kernel size k, and all subsequent layers to have kernel size 1. This design ensures that the

output entry corresponding to a k-mer is only dependent on the encoding of that k-mer alone.

An illustration for k = 2 is given in Fig. 3.1.

3.3.1 Proxy Objective

The reparameterized objective, however, remains non-differentiable with respect to the network

weights α. As such, α cannot be readily optimized with gradient back-propagation techniques

typically used in most deep learning frameworks. To work around this, we introduce a proxy

optimization objective that couples the PRIORITYNET with another function called the TEM-

PLATENET, which relaxes the consistency requirement and generates template score assignments

that do not necessarily recover a valid minimizer schemes. In exchange, such templates are guar-

anteed to yield low densities by design.
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Figure 3.1: Our PRIORITYNET architecture for k = 2, parameterized by weights α, maps se-

quence multi-hot encoding to priority scores through a series of 3 convolution layers with kernel

size [k, 1, 1] and [256, 64, 16] embedding channels respectively. Given a fixed network weights

α, the priority score of any k-mer is therefore deterministic and does depend on its position in

the sequence.

Intuitively, the goals of these networks are complementary: the PRIORITYNET induces a

valid minimizer scheme via a consistent priority score assignment, whereas the TEMPLATENET

pinpoints potential neighborhoods of low-density score assignments. This reveals an alternative

optimization pathway in which this pair of networks negotiate towards a consensus solution that

(a) satisfies the consistency constraint enforced by PRIORITYNET; and (b) resembles a template

in the output space of TEMPLATENET, and thus will potentially yield low density.

Specifically, we let the TEMPLATENET be characterized by a parameterized function g that

maps any k-mer index in [L] to a real-valued score in [0, 1]. The output of the TEMPLATENET

is achieved by applying g on every k-mer, and is denoted by g(S; β) = [g(i; β)]i∈[L], where β is

the weights of g. Our objective can be cast as minimizing a distance metric ∆ between f and g:

(α∗, β∗) = argmin
α,β

∆(f(S;α),g(S; β)) . (3.9)

We subsequently detail the full specification of our proxy objective, which includes the param-

eterization of the TEMPLATENET (Section 3.3.2), which ensures that any output template ap-

proximates the theoretical lower-bound density [70] on the target sequence, and the practical
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choices of the distance metric ∆ to accurately capture the negotiation objective between the two

networks.

3.3.2 Specification of TemplateNet

The well-known theoretical lower bound 1/w for density implies that the optimal minimizer, if

it exists, samples k-mers exactly w positions [70]. As a result, we will construct g such that

g(S; β) approximates this uniform assignment pattern given any initialization of its parameter β.

Proposition 1 below shows a sufficient construction of g such that g(S; β) approximately yields

the optimal density.

Proposition 1 Let g : R→ [0, 1] be a periodic function, with fundamental period w, such that g

has a unique minimum value on every w-long interval. Formally, h satisfies:

∀t ∈ R : g(t) = g(t+ w) (3.10)

∀i, j ∈ arginf
t

h(t), ∃u ∈ N : |i− j| = uw . (3.11)

Then, the template g(S; β) induces a sketch with density factor 1/w + o(1) on S when S is

sufficiently long (i.e., Lw ≫ w2).

Proof: Even though g may not satisfy the consistency constraint, and hence is not a valid

minimizer scheme, it still induces a k-mer sampling scheme that we denote by G. Further let

γ1 ≜ 1 and γt indicates the event that G picks a different k-mer in the tth window than in the

(t − 1)th window. That is, γt ≜ I(mg(t, w) ̸= mg(t − 1, w)). Then, the density of G can be

expressed as:

D(S;G, β) =
1

Lw

Lw∑
t=1

γt . (3.12)

For any value of u ∈ N+, we further define the integer interval Iu ≜ [(u − 1)w + 1, uw]. As

the density of the entire sequence is simply the sum of density for each interval Iu, it is then

sufficient to derive the values of γt for all values of t in some arbitrary interval Iu.
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Without loss of generality, we assume 0 ∈ arginf
t

g(t) since this can always be achieved via

adding a constant phase shift to g. As g has a period of w, this implies {uw | u ∈ N+} ⊆

arginf
t

g(t), which further reduces to {uw | u ∈ N+} ≡ arginf
t

g(t) when condition (2) holds.

Then, it follows that ∀t ̸= uw, we have t /∈ arginf
t

g(t). In addition, the index uw is in the

window κwk
t by definition. Together, these facts imply that ∀t : m(t, w) = uw, and consequently

γt = 0 for all t ̸= (u− 1)w + 1 since the index uw is overlapped by κwk

(u−1)w+1.

In addition, for u = 1, we trivially have γ(u−1)w+1 = γ1 = 1 by definition. For any u > 1, we

have m(κwk

(u−1)w) = (u − 1)w, and m(κwk

(u−1)w+1) = uw, which alo implies that γ(u−1)w+1 = 1.

Finally, using the above derivations, we have:

D(S; g) =
1

Lw

c+ ⌊Lw
w

⌋∑
u=1

∑
t∈Iu

γt

 =
1

Lw

(
c+

⌊
Lw

w

⌋)
, (3.13)

where c ≜
∑Lw

t=⌊Lw
w

⌋w+1
γt is the remainder of the sequence that does not make up any complete

interval. The second equality follows from the derived values of γt for t ∈ Iu. Finally, using the

fact that c = Lw − ⌊Lw

w
⌋w < w and the sufficient length assumption Lw ≫ w2, we have:

1

Lw

(
c+

⌊
Lw

w

⌋)
<

1

w
+

w

Lw

=
1

w
+ o(1) , (3.14)

which concludes our proof. □

While this sketch has guaranteed low density, it does not preserve the sequence identity like

a minimizer sketch, hence is not useful for downstream applications. However, it is sufficient as

a guiding template to help PRIORITYNET navigating the space of orderings. By Proposition 1,

TEMPLATENET can be as simple as g(t) = sin(2πt/w) to induce a near-optimal score assign-

ment. This naı̈ve specification, however, encodes exactly a single set of template minima (i.e.,

one that picks k-mers from the set of interval positions {w, 2w, . . . }), which might not be in

proximity of any valid minimizer scheme. For example, consider a sequence S in which some

particular k-mer uniquely occurs at positions t ∈
{

1
2
w, 3

2
w, . . .

}
. The ideal assignment would

be such that minima will occur at these locations, which is impossible.
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It is therefore necessary that the specification of TEMPLATENET is sufficiently expressive for

Eq. 3.9 to find an optimal solution. To model this family of template functions, we subsequently

propose several parameterization strategies using (1) an ensemble of sinusoidal functions with

integer phase shifts or (2) a Fourier series model that encodes any arbitrary sinusoidal function.

We further propose an independent positional phase-delay component that can be combined with

(1) and (2) to encode template functions with approximately constant period.

Ensemble Template Model

We first give a construction of a periodic model such that every k-mer position appears in at least

one template encoded by its parameter space. To achieve this, we employ a linear combination

of multiple sine functions with fixed integer phase shifts ϕ ∈ [w − 1], each of which encodes a

set of minima with a unique positional offset such as T1 = {0, w, 2w, . . . }, T2 = {1, w+1, 2w+

1, . . . }, . . . Tw−1 = {w − 1, 2w − 1, 3w − 1, . . . }. In particular, we define:

g(t; β) ≜ σ

(
w−1∑
ϕ=0

βϕ sin

(
2π

w
(t+ ϕ)

))
, (3.15)

where the sigmoid activation function σ ensures that h(t) appropriately maps to [0, 1] and outputs

scores on the same scale as PRIORITYNET; β = {βϕ}w−1
ϕ=0 are optimizable amplitude parameters

such that βϕ ≥ 0 and
∑w

ϕ=1 βϕ = 1. Optimizing β then determines the dominant phase shift

ϕmax = argmaxϕ βϕ, which in turn controls the final offset of the template minima. Additionally,

allowing the amplitudes of the ensemble components to be optimizable also helps to generate

sufficient slack room for matching the template scores against the priority scores.

Truncated Fourier Series Template Model

The periodic function g(t) with period w can be generalized using a Fourier series, which is a

linear combination of an infinite number of sine and cosine functions, whose frequencies are
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integer multiples of 1/w:

g(t; β) = σ

(
β0 +

∞∑
r=1

[
βr,1 sin

(
2rπ

w
t

)
+ βr,2 cos

(
2rπ

w
t

)])
, (3.16)

where β = {βr,1, βr,2}∞r=0 ∪ {β0} are optimizable amplitude parameters. For computational

efficiency, we approximate g by a finite truncation up to the first R summands of the above

Fourier series:

g(t; β) ≃ σ

(
β0 +

R∑
r=1

[
βr,1 sin

(
2rπ

w
t

)
+ βr,2 cos

(
2rπ

w
t

)])
. (3.17)

Similar to the ensemble template model, optimizing the amplitude parameters β of this model

also determines the offset of the minima locations and adds slack room to help matching against

the priority score assignment. The key difference between these two template models is that the

ensemble model requires all w phase shifts (and hence, all w component functions) to encode

every k-mer location, whereas the Fourier model can achieve the same with a fixed value ofR and

remains compact even for large w. The Fourier model, however, will admit periodic functions

whose minima do not coincide with integer indices, therefore condition (2) above will be less

likely to hold in practice.

Positional Phase-Shift Model

By Proposition 1, all template score assignments encoded by the above β-parameterized families

of functions correspond to near-optimal minimizer schemes with approximately perfect density

factors. However, we note that this set of template solutions is usually unrealistic and cannot be

mirrored exactly by PRIORITYNET, especially on complex problem instances with more difficult

scoring constraints. For example, while the theoretical lower bound for densityis 1/w, the actual

optimal density factor attainable given a specific sequence is often considerably larger and occurs

when consecutive minimizer locations are not always exactly w locations apart.

Motivated by this observation, we further extend our template model with a learnable com-

ponent that adaptively adjusts the local frequencies of every encoded periodic function through
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adding positional noise to their phase shift parameters. That is, let ξ(S; γ) ∈ [−1, 1]L be a noise

generating function parameterized by γ and let ξi(S; γ) be the noise value corresponding to the

ith k-mer. We define the (ϵ, γ)-augmented TEMPLATENET as:

g(S; β, γ) ≜ [g (i+ ϵ · ξi(S; γ); β)]i∈[l] , (3.18)

where ξi(S; γ) denotes the i-th entry of the noise vector. This will allow every entry in the

template score assignment to be adjusted by a phase shift of up to ϵ in magnitude. When ϵ = 0,

this space of template functions coincides with that of the exact periodic template model, thus

encodes all theoretical optimal assignments. On the other hand, as ϵ increases, more template

assignments are admitted, but the optimal density guarantee becomes less certain.

3.3.3 Specification of Distance Metric

As standard practice, we first consider as our objective the ℓ2 distance, which is given by:

∆ℓ2(f(S;α),g(S; β)) ≜
l∑

i=1

(fi − gi)
2 , (3.19)

where fi and gi are respectively the short-hands for the ith entries of f(S;α) and g(S; β). When

the positional noise model is used, we assume that β also incorporates the noise parameter γ.

This metric, however, places a strict matching objective at all positions along f and g, which

is often unnecessary. We instead argue that it is sufficient to ensure that the k-mers that are likely

to be selected (as suggested by the template assignment) are assigned lowest scores. Enforcing a

perfect matching will take away the degrees of freedom needed for the proxy objective to satisfy

the constraints implied by PRIORITYNET (i.e., a k-mer has to be assigned the same score at all

of its occurrences).

As such, we construct an alternative distance metric that: (a) prioritizes matching positions

around the window-minima of g; and (b) allows flexible assignment at other positions to admit

more solutions that meet the consistency requirement. To accomplish these design goals, we
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propose the following asymmetrical distance metric:

∆DM(f(S;α),g(S; β)) ≜
Lk∑
i=1

[
(1− gi) · (fi − gi)

2 + λ · (1− fi)
2
]
. (3.20)

Specifically, the intuition behind the first component (1 − gi) · (fi − gi)
2 in the summation is

to weight each position-wise matching term (fi − gi)
2 by its corresponding template score. The

weight term 1 − gi implies stronger matching preference around the minima of g where the

template scores gi are low; and vice-versa weaker matching preference at other locations where

gi are high. The second component λ · (1 − fi)
2, on the other hand, encourages PRIORITYNET

to maximize its output scores whenever possible, which prevents the system from settling for

a trivial solution where both f and g are squashed to zero. The trade-off between these two

components is controlled by the magnitude of the hyper-parameter λ. Finally, we confirm that

this distance metric is fully differentiable with respect to α, β, hence can be efficiently optimized

using gradient-based techniques. The parameter gradients are given by:

∂

∂α
∆DM(f ,g) =

l∑
i=1

ai ·
∂

∂α
fi ,

∂

∂β
∆DM(f ,g) =

l∑
i=1

bi ·
∂

∂β
gi , (3.21)

where the respective constants are derived as follows:

ai = 2 · (1− gi) · (fi − gi) + 2λ · (fi − 1) ,

bi = −2 · (1− gi) · (fi − gi)− (fi − gi)
2 . (3.22)

3.3.4 Empirical study

We implement our method using PyTorch and deploy all experiments on a RTX-2060 GPU.

Each training epoch computes a loss value that is averaged over N = 10 randomly sampled

subsequences of length l = 500× (w+k). We set λ = 1 and use architectures of PRIORITYNET

and TEMPLATENET as given in Fig. 3.1 and Section 3.3.2 respectively. Network weights are

optimized using the ADAM optimizer [54] with learning rate η = 5e−3.
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Comparison baselines

We compare DEEPMINIMIZER with the following benchmarks: (a) random minimizer baseline;

(b) Miniception [110]; (c) PASHA [26]; and (d) PolarSet Minimizer [111]. Among these meth-

ods, (d) is a sequence-specific minimizer scheme. For each method, we measure the density

factor D(S; ·) ≜ (w+1)D(S; ·) to align with the convention of previous work (i.e., the theoreti-

cal lower bound on density factor is thus D(S; ·) ≥ 1+1/w). Our empirical result is obtained on

different segments of the human reference genome: (a) chromosome 1 (CHR1); (b) chromosome

X (CHRX); (c) the centromere region of chromosome X [74] (which we denote by CHRXC); and

(d) the full genome (HG38). We used lexicographic ordering for PASHA as suggested by Zheng

et al. [110]. Random ordering is used to rank k-mers within the UHS for Miniception, and out-

side the layered sets for PolarSet. In most settings, we employ the Ensemble template model

(Section 3.3.2) with no positional phase-shift component (Section 3.3.2) for DEEPMINIMIZER.

However, for scenarios with large w values, we demonstrate that the Fourier template model with

positional phase-shift is able to achieve better performance (Section 3.3.4)

Visualizing the mechanism of DEEPMINIMIZER

First, we show the transformation of the priority scores assigned by SCORENET and TEM-

PLATENET over 600 training epochs. Fig. 3.2 plots the outputs of these networks evaluated

on positions 500 to 1000 of CHRXC, and their corresponding locations of sampled k-mers. As

a practical implementation, we slightly modify the minimizer definition and use the MAXPOOL

operator to select window maxima as minimizer locations (instead of window minima). Thus, we

expect the sampled locations in Fig. 3.2 to coincide with the peaks of the priority scores (instead

of the troughs). We also note that to accommodate this implementation, every relevant term in

the DEEPMINIMIZER objective has been properly negated.

Initially, the PRIORITYNET assignment resembles that of a random minimizer and yields a

density of 2.05. This agrees with previous theoretical result establishing that the expected den-
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Figure 3.2: Visualization of PRIORITYNET and TEMPLATENET score assignments on positions

500− 1000 of CHRXC with w = 13, k = 8. Left: Initial assignments; Right: Final assignments

after 600 training epochs. The bottom plots show corresponding locations of sampled k-mers: a

value of 1 means selected, and 0 otherwise.

sity of a random minimizer is 2.0. After 600 training epochs, the final template score assignment

converges to a different phase shift than its initial assignment, but its period remains the same.

Simultaneously, PRIORITYNET learns to match its output to this template, hence induces a vis-

ibly sparser sketch with a density of 1.39. This result illustrates the negotiating process of our

method to find a consensus score assignment.

Convergence of our proxy objective

We further demonstrate that our proxy objective meaningfully improves minimizer performance

as it is optimized. The first two columns of Fig. 3.3 show the best density factors achieved by our

method over 600 epochs on two scenarios: (a) varying k with fixed w; and (b) varying w with

fixed k. The experiment is repeated on CHRXC and HG38. In each scenario, DEEPMINIMIZER

starts with density D ≃ 2.0, which is comparable to the random minimizer baseline. We observe

steady decrease ofD over the first 300 epochs before reaching convergence, where total reduction

ranges from 11− 23%.
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Figure 3.3: Best density factors obtained by DEEPMINIMIZER on HG38, CHRXC over 600

training epochs. Left: fix w = 13, and vary k ∈ {6, 8, 10, 12, 14}; Right: fix k = 14, and vary

w ∈ {10, 25, 40, 55, 70, 85}.

Generally, larger k values lead to better performance improvement at convergence. This is ex-

pected since longer k-mers are more likely to occur uniquely in the target sequence, which makes

it easier for a minimizer to achieve sparse sampling. In fact, previous results have shown that

when k is much smaller than logw, no minimizer will be able to achieve the theoretical lower-

bound D = 1/w [110]. On the other hand, larger w values lead to smaller improvements and

generally slower convergence. This is because our ensemble parameterization of TEMPLATENET

scales with the window size w and becomes more complicated to optimize as w increases.
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Figure 3.4: Comparing best density factors obtained by DEEPMINIMIZER with ∆ℓ2 and ∆DM

on HG38 (left) and CHRXC (right) over 600 training epochs.

Evaluating our proposed distance metric

Fig. 3.4 shows the density factors achieved by our DEEPMINIMIZER method, respectively speci-

fied by the proposed distance metric ∆DM in Eq. 3.20 and ∆ℓ2 distance. Here, we fix w = 13 and

vary k ∈ {6, 8, 10, 12, 14}. We observe that with the ∆ℓ2 distance, we obtain performance similar

to a random minimizer in most cases. On the other hand, with our divergence function, DEEP-

MINIMIZER obtains significantly lower densities, which confirms the intuition in Section 3.3.3.

Comparing against other minimizer optimization methods

We show the performance of DEEPMINIMIZER compared to other benchmark methods. In this

experiment, DEEPMINIMIZER is trained for 600 epochs with ensemble TEMPLATENET and no

positional phase-shift. Fig. 3.5 and Fig. 3.6 shows the final density factors achieved by all meth-

ods, again on two comparison scenarios: (a) fix w = 13, and vary k ∈ {6, 8, 10, 12, 14}; and (b)

fix k = 14, and vary w ∈ {10, 25, 40, 55, 70, 85}. DEEPMINIMIZER consistently achieves better

performance compared to non-sequence-specific minimizers (i.e., PASHA, Miniception) on all

settings. We observe up to 40% reduction of density factor (e.g., on CHRXC, w = 70, k = 14),

which clearly demonstrates the ability of DEEPMINIMIZER to exploit sequence-specific infor-
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Figure 3.5: Density factors obtained by DEEPMINIMIZER (600 training epochs), Random Min-

imizer, PASHA, Miniception and PolarSet on CHR1, CHRX. Left: fix w = 13, and vary

k ∈ {6, 8, 10, 12, 14}; Right: fix k = 14, and vary w ∈ {10, 25, 40, 55, 70, 85}.

mation. Furthermore, we also observe that DEEPMINIMIZER outperforms our sequence-specific

competitor, PolarSet, in a majority of settings. The improvements over PolarSet are especially

pronounced for smaller k values, which are known harder tasks for minimizers [110]. On larger

w values, our method performs slightly worse than PolarSet in some settings. This is likely due

to the added complexity of optimizing TEMPLATENET, as described in convergence ablation

study of our method.

Notably, the centromere region of chromosome X (i.e., CHRXC) contains highly repetitive

subsequences [32] and has been shown to hamper performance of PolarSet [111]. Fig. 3.6 shows

that PolarSet and the UHS-based methods perform similarly to a random minimizer, whereas

52



Figure 3.6: Density factors obtained by DEEPMINIMIZER (600 training epochs), Random Min-

imizer, PASHA, Miniception and PolarSet on CHRXC, HG38. Left: fix w = 13, and vary

k ∈ {6, 8, 10, 12, 14}; Right: fix k = 14, and vary w ∈ {10, 25, 40, 55, 70, 85}.

our method is consistently better. Moreover, we observe that DEEPMINIMIZER obtains near-

optimal densities with CHRXC on several settings. For example, we achieved D = 1.22 when

k = 14, w ∈ {40, 70}, which is significantly better than the results on CHR1 and CHRX. This

suggests that CHRXC is not necessarily more difficult to sketch, but rather good sketches have

been excluded by the UHS and polar set reparameterizations, which is not the case with our

framework.
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Figure 3.7: Comparing density and number of unique k-mers in the minimizer sets obtained by

various benchmarks on CHR1 with k = 10 and w = 13.

Number of unique k-mers in the final minimizer set

This section investigates the numbers of unique k-mers in the final minimizer sets obtained by

random ordering, PASHA, Miniception and DeepMinimizer. On CHR1, with k = 10 and w =

13, Fig 3.7 shows that the density factors and numbers of unique k-mers obtained by each method

are strongly correlated. This agrees with the intuition of many other minimizer methods that a

small set of high priority k-mers (e.g., a small UHS in the case of PASHA and Miniception) tends

to induce a low density sketch on the target sequence. This observation is also expected since the

10-mer distribution of CHR1 is fairly similar to that of a random sequence, which aligns with the

premise of most UHS-based minimizer theories.

However, on the chromosome region of CHRX, which contains many highly repetitive sub-

sequences, Fig. 3.8 shows that in order to achieve the best density (i.e., D = 1.526), DEEPMINI-

MIZER actually had to pick more high priority k-mers, not fewer. This interestingly demonstrates

that minimizing the size of the UHS is not always a desirable surrogate objective on certain spe-

cific sequences, hence asserts the need for a robust sequence-specific optimizer.
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Figure 3.8: Comparing density and number of unique k-mers in the minimizer sets obtained by

various benchmarks on CHRXC with k = 10 and w = 13.

Comparing template models on large window values

We investigate the performance of DEEPMINIMIZER on large window size with different tem-

plate models. Particularly, we fixed k = 20, w = 100 and compare the best density factor

obtained by DEEPMINIMIZER over 1200 training epochs using the ensemble template model

(Section 3.3.2) and the truncated Fourier series template model (Section 3.3.2). We further

pair each template model with a positional phase-shift component (Section 3.3.2), with ϵ ∈

{0.0, 1.0, 10.0}. We note that in each case, ϵ = 0.0 corresponds to the original template model.

Fig. 3.9 shows the respective loss and density factor over 1200 training epochs of these tem-

plate models. First, we observe that in all models, the loss values correlate positively with the

corresponding density factor. Generally, as the DEEPMINIMIZER loss decreases, the induced

minimizer scheme also yields lower density factor on the input sequence, which suggests that

our loss function is a good surrogate for the discrete density objective.

Furthermore, we observe that among variants of the Fourier template model, both ϵ = 1.0

and ϵ = 10.0 perform significantly better than ϵ = 0.0. This is most likely because adding local
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Figure 3.9: Comparing loss (left) and best density obtained (right) over 1200 training epochs on

CHR1 between ensemble and truncated Fourier series template models. Each template model is

paired with a positional phase-shift component with ϵ ∈ {0.0, 1.0, 10.0}.

phase perturbations indeed allows TEMPLATENET to encode more realistic near-optimal score

assignments. In contrast, among variants of the ensemble template model, ϵ = 0.0 performs

the best. This is most likely because the ensemble model has already accounted for all possible

integer phase-shifts. As such, adding noisy phase perturbations with magnitude greater than 1.0

will negatively affect the convergence of DEEPMINIMIZER.

Finally, pairing Fourier template model with a positional phase-shift component of magni-

tude ϵ = 1.0 achieves the best performance out of all variants. This aligns with our intuition in

Section 3.3.2 regarding the trade-off between the certainty of Proposition 1 and the expressive-

ness of the admitted set of template score assignments.

Runtime performance

Finally, we confirm that DEEPMINIMIZER runs efficiently with GPU computing. In all of our

experiments, each training epoch takes approximately 30 seconds to 2 minutes, depending on the

choice of k and w, which controls the batch size. Performance evaluation takes between several

minutes (CHRXC) to 1 hour (HG38), depending on the length of the target sequence. Generally,
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our method is cost-efficient without frequent evaluations. Our most cost-intensive experiment

(i.e., convergence ablation study on HG38) requires a full-sequence evaluation every 20 epochs

over 600 epochs, thus takes approximately 2 days to complete. This is faster than PolarSet, which

has a theoretical runtime ofO(n2) and takes several days to run with HG38. We note that in real

applications, we only have to evaluate once by the end of the training loop, which is much faster

compared to PolarSet, whose running time above only involves building the minimizer scheme.

Figure 3.10: Best density obtained (left) and runtime (right) of DEEPMINIMIZER for w = 13

and k ∈ {10, 20, 40, 80, 160, 320} on CHR1.

Fig. 3.10 (right) measures runtime (in seconds) of DEEPMINIMIZER on CHR1 over 600 epochs.

Larger k values require PRIORITYNET to have more parameters. We expect running time for

k = 40, 80, 160, 320 to increase in the same order. For k = 10 and 20, however, the running

times are approximately the same as k = 80. We note that a smaller k value means there are

more k-mers in the same sequence. As such, even though PRIORITYNET is more compact for

these values of k, we will incur some overhead from querying it more often. For completeness,

we also show the corresponding density performance plot in Fig. 3.10 (left), which confirms that

our model converges well even for large k.

57



3.4 GSS optimization of the masked minimizer generalization

As an alternative to minimizers, the syncmer sketching scheme was recently proposed by Edgar

[24] to construct sequence sketches that have high conservation (Definition 6). While the min-

imizer sampling rule is dependent on other k-mers in the same context window, the syncmer

sampling rule trades off this window sampling mechanism for other useful properties, such as

better robustness when sketching homologous sequences [24, 90]. In particular, k-mer sampling

syncmer schemes are derived from s-mer orderings, where s < k. Let ks be the number of s-mers

in each k-mer. The open-syncmer variant samples every k-mer in which the lowest-ranked s-mer

is found at the tth offset position for some fixed t ∈ [0, ks − 1]. The closed-syncmer sampling

rule sets this offset position to be either the first or the last position.

The parameterized syncmer scheme [22] generalizes these syncmer variants using a subset

parameter that encodes the selection rule. Specifically, given some subset v ⊆ [0, ks − 1], a v-

parameterized syncmer scheme samples every k-mer in which the lowest-ranked s-mer is found

at some offset position in v. This flexible encoding of sampling rules offers a practical handle

on the performance of syncmers, where subsets that neither correspond to open-syncmer (i.e.,

v = {t}) nor closed-syncmer (i.e., v = {0, ks−1}) have been shown to outperform both original

variants [22].

The major argument for choosing syncmers over minimizers is that high conservation is

preferable when comparing sequences that might have diverged due to mutations and/or se-

quencing error. Shaw and Yu [90] subsequently demonstrated that syncmers indeed have better

expected conservation than minimizers when both the input sequence and the ordering parameter

are randomly drawn from uniform distributions. However, unlike minimizers, syncmer sketches

are not guaranteed to sufficiently cover all regions of the target sequence. Thus, to fairly assess

the quality of a general sketching scheme, we must additionally consider the coverage metric

(Definition 7) that measures how sketched k-mers are spread out across the input sequence. To

this end, we show that these three metrics are often adversarial to one another, and consequently
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propose a more holistic generalized sketch score (GSS) to evaluate sketching performance (Sec-

tion 3.4.1).

Previous studies have established theoretical guarantees for the expected density of minimiz-

ers [70, 89] and syncmers [24] with uniformly random input sequences. The majority of sketch

construction methods derived from these results thus only learn the ordering once and reuse it

for all applications. However, when dealing with scenarios involving multiple query sequences

being aligned against a single reference string, such as genome assembly, it is often more de-

sirable to have an ordering that is optimally configured based on the reference. For instance,

both Zheng et al. [111] and the DEEPMINIMIZER method are practical algorithms to optimize

the k-mer ordering in the minimizer method. These studies have demonstrated that sequence-

specific minimizer sketches generally achieve much lower density compared to non-optimized

minimizer sketches.

Nonetheless, these optimization methods cannot be directly applied to configure low-density

syncmer sketches, because they explicitly leverage the minimizer window sampling mechanism

to construct their respective learning objectives. For example, the polar set method adopts a

heuristic that selects as many k-mers as possible from the set of k-mers that are w (i.e., window

size) bases apart [111], whereas the DEEPMINIMIZER method introduced in this thesis constructs

a sinusoidal template function with period w to guide optimization. In addition, syncmers have

no minimum density guarantee, unlike minimizers that derive this property from the window

sampling mechanism. As such, optimizing the syncmer method for a specific sequence can

potentially result in a vacuous sketch with zero coverage. Finally, extending previous density

optimization methods to account for the conservation metric is also challenging, as conservation

and density are adversarial metrics (Section 3.4.1).

To address these challenges, we adapt the parameterized syncmer framework [22] such that

the pattern-aware sampling rules are applied in conjunction with the window sampling rule of

minimizers. We call this adaptation masked minimizers. Specifically, given a subset v (or equiv-
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alently a binary mask variable in our formulation), the masked minimizer scheme selects all

minimizers that are found at some offset position in v (with respect to the windows they mini-

mizer). Similar to the parameterized syncmer framework, the pattern-aware sampling rules give

masked minimizers the ability to balance the trade-off between density, conservation, and cov-

erage. However, our formulation differs from that of Dutta et al. [22] since the selection of a

masked minimizer depends on k-mers around it, whereas a parameterized syncmer is selected

in a context-free manner. This distinction is identical to how minimizers and syncmers differ

and allows us to leverage and extend density optimization algorithms developed for minimizers

(Section 3.4.4).

In particular, we develop a sequence-specific optimization algorithm for masked minimizers

that extends the DEEPMINIMIZER method. Our algorithm adopts a bi-level learning framework

that alternates between pruning the mask variable and learning the k-mer ordering. Given a fixed

mask, the inner loop optimizes the ordering via combining two differentiable objectives that re-

spectively surrogate the density and conservation of the masked minimizer scheme. Alternately,

the outer loop searches for the optimal mask via greedily pruning its set bits, suggesting pruned

candidates to the inner loop, and selecting one that yields the best metric gain.

We show that the optimized masked minimizer sketch of various human and bacterial genomes

achieves better GSS than previous optimization approaches, such as MINICEPTION [110], PASHA [26]

and DEEPMINIMIZER. We also discover a specific class of complement mask patterns (i.e.,

masks that include most offset positions except one) that combines desirable properties from min-

imizers (i.e., high coverage) and open-syncmers (i.e., tolerance to low-complexity sequences).
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3.4.1 Generalized sketch score

It is straight-forward to see that the conservation metric (Definition 6) is naturally upper-bounded

by the density metric (Definition 5) with respect to any arbitrary sketching scheme X :

C(S;X , θ) =
1

L
ES′∼pS |X (S; θ) ∩ X (S ′; θ)|

≤ 1

L
ES′∼pS |X (S; θ)|

=
1

L
|X (S; θ)| = D(S;X , θ) . (3.23)

This implies that these metrics are mutually conflicting, and since both of them do not account for

coverage (Definition 7), neither can sufficiently measure the quality of a sketch. This motivates

us to construct a more holistic sketching metric, which we call the generalized sketch score

(GSS), to evaluate the performance of sketching schemes. Intuitively, the GSS metric encourages

striking a balance between high conservation, low density, and high coverage. This is achieved

by measuring the trade-off ratio between conservation/density, and normalizing this value by the

w-coverage score of the sketch:

Gw(S;X , θ) ≜
C(S;X , θ)
D(S;X , θ)

× Vw(S;X , θ). (3.24)

As a consequence of Definition 7 and Eq. (3.23), Gw is guaranteed to be in [0, 1].

3.4.2 Masked minimizers

While sequence-specific optimization of minimizers with respect to the density metric has been

addressed by Ekim et al. [26], Zheng et al. [110] and the DEEPMINIMIZER method presented

earlier in this chapter, the same capability has not been developed for either open syncmers,

parameterized syncmers, or for any other metrics than density. To overcome this challenge,

our goal is to extend the minimizer method with pattern-based sampling rules similar to that

of parameterized syncmers. This extension allows us to incorporate desirable properties from

the syncmer family, yet fully retain access to density optimization algorithms developed for
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minimizers. As a result, we introduce the masked minimizer scheme specified by the tuple

(w, k, v, π). The parameters w, k, π maintain the same definition as in the original minimizer

scheme. Similar to parameterized syncmers [22], v denotes a subset of qualifying offsets (e.g., a

binary mask) such that a minimizer is chosen only if its relative location in the window is within

v. The masked minimizer sampling rule is:

V(S;w, k, v, π) ≜ {i+mf (i, w) | mf (i, w) ∈ v}i∈[1,Lwk
] . (3.25)

3.4.3 Relating density and conservation metrics of masked minimizers

This section provides an analysis of the change in performance of the masked minimizer scheme

as v varies in the power set of [0, w − 1]. In particular, we ask whether conservation/density

will improve with more or fewer offset locations in the qualifying subset v? Specifically, let

θ = (w, k, v, π) and θ′ = (w, k, v′, π) be the parameters defining two masked minimizer schemes

such that v ⊆ v′ ⊆ [0, w − 1], our analysis seeks to bound their performance gap in terms of

density and conservation metrics.

Proposition 2 For any input sequence S and parameters θ, θ′ defined above, we have V(S; θ) ⊆

V(S; θ′).

Proof: Let i ∈ V(S; θ). By definition of the masked minimizer sampling rule, there exists

j ∈ [1, Lwk
] such that j + mf (j, w) = i and mf (j, w) ∈ v. Since v ⊆ v′, we also have

mf (j, w) ∈ v′, which implies i ∈ V(S; θ′), again by definition of the masked minimizer rule.

Therefore, V(S; θ) ⊆ V(S; θ′). □

Corrolary 1 (Density gap). For any input sequence S and parameters θ, θ′ defined above, we

have D(S;V , θ) ≤ D(S;V , θ′).

Proof: By definition of density:

D(S;V , θ) =
|V(S; θ)|
Lk

≤ |V(S; θ′)|
Lk

= D(S;V , θ′) , (3.26)
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where the inequality follows directly from Proposition 2. □

Corollary 2 (Conservation gap). For any input sequence S and parameters θ, θ′ defined above,

we have C(S;V , θ) ≤ C(S;V , θ′).

Proof: Let S ′ be a homologous copy of S obtained through simulating base substitutions. We

additionally define αi(S
′, θ†) ≜ I(i ∈ V(S; θ†) ∩ V(S ′; θ†)), which indicates the event that i is

preserved in both V(S; θ†) and V(S; θ†) for some arbitrary sampling parameter tuple θ†. We then

have the following:

αi(S
′, θ) = I(i ∈ V(S; θ))× I(i ∈ V(S ′; θ))

≤ I(i ∈ V(S; θ′))× I(i ∈ V(S ′; θ′))

= αi(S
′, θ′) , (3.27)

where the inequality follows from Proposition 2, and the fact that the indicator variables take

values in {0, 1}. We now bound the conservation gap as follows:

C(S;V , θ)− C(S;V , θ′) = ES′
|V(S; θ) ∩ V(S ′; θ)| − |V(S; θ′) ∩ V(S ′; θ′)|

Lk

= ES′

∑Lk

i=1 αi(S
′, θ)− αi(S

′, θ′)

Lk

≤ 0 , (3.28)

where the inequality follows from Eq. (3.27) and linearity of expectation. Rearranging the above

result concludes the proof. □

These results imply that any masked minimizer scheme can improve conservation by adding

more locations to its qualifying subset, or improve density by removing locations. However, as

density upper-bounds conservation (Section 3.4.1), it is difficult to simultaneously improve both

metrics by varying the mask, and hence it is necessary to formulate the optimization in terms of

their trade-off ratio (e.g., the GSS metric), and with respect to the mask variable.

3.4.4 Optimizing masked minimizers
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Algorithm 1 Masked minimizer optimization
best-gss← 0

mask← 1w

gss← eval

(
argmin

f,g
Lgss(seq;mask)

)
{Eq. 3.30}

while gss > best-gss and not-empty(mask) do

best-gss← gss

best-mask← mask

for offset ∈ mask do

trial-gss← eval

(
argmin

f,g
Lgss(seq; prune(mask, offset))

)
{Eq. 3.30}

if trial-gss > gss then

gss← trial-gss

best-mask← prune(mask, offset)

mask← best-mask

return f, g, best-mask

To represent k-mer orderings, we employ a continuous scoring function f : Σk → [0, 1] similar

to the DEEPMINIMIZER framework. Given a choice of w, k, we thus seek to optimize f and the

mask parameter v of the masked minimizer scheme with respect to the GSS metric. To achieve

this, we adopt a bi-level optimization framework, which iterates between: (a) taking gradient

descent steps on the weights of f given a fixed v; and (b) greedily pruning v to improve GSS

given an optimized f . The pseudocode of our framework is given in Algorithm 1.

Our greedy pruning step (outer loop) starts with the complete qualifying set v = [0, w−1] and

iteratively removes locations one by one from v to yield the best GSS improvement, given one

full inner loop optimization of f . This outer loop terminates when no further improvement can be

obtained or the mask is empty (i.e., |v| = 0). To address the inner loop optimization, we construct

a differentiable loss function which extends the DEEPMINIMIZER algorithm to account for the

conservation component of the GSS metric. Specifically, we augment the DEEPMINIMIZER loss
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function with an auxiliary term that estimates the stability of the PRIORITYNET score assignment

when subjected to random mutations. This loss function thus surrogates the trade-off between

density and conservation, and it will implicitly allow us to maximize the GSS metric. We describe

the components of our loss function as follows.

Density optimization. Similar to DEEPMINIMIZER, we employ a collaborating neural system

comprising the PRIORITYNET and the TEMPLATENET to model a low density scoring function.

Recall that these networks respectively ensure the validity of a minimizer scheme and the ideal

low density. A low-density sketch thus can be viewed as a consensus score assignment f ≜

[f(κki )]i∈[Lk] that minimizes some distance metric ∆ to an arbitrary template assignment g ≜

[g(i)]i∈[Lk] in the output space of the TEMPLATENET:

∆(f ,g; v) ≜ λ

Lk∑
i=1

(1− fi)
2 +

Lwk∑
i=1

∑
j∈v

(1− gi+j)(fi+j − gi+j)
2 , (3.29)

where the first term λ
∑Lk

i=1(1 − fi)
2 also exists in the formulation of the DEEPMINIMIZER

distance metric ∆DM, and serves as a regularization term that ensures f and g are not trivially

set to 0. On the other hand, the second term differs from that of ∆DM by the inner summation

over the offset positions in v, which is specific to the masked minimizer method. This sum

represents an aggregation of weighted ℓ2-distances over all (w, k)-windows of k-mer scores in f

and g. The weight at each k-mer location is therefore jointly determined by its template value

(i.e., how likely it is that this position will contribute to the sketch) and whether it can be found in

the qualifying subset of some window (i.e., how relevant this is position to the current sampling

rule). Last, the parameter λ captures the trade-off between these two objective terms.

Conservation optimization. To further account for conservation, we extend the above distance

metric with an additional objective to yield the final loss function Lgss:

Lgss(S; v) ≜ ∆(f ,g; v) +
λc
n

n∑
t=1

∆(f ′t,g; v) , (3.30)

where f ′t=1...n denotes the PRIORITYNET score assignments corresponding to homologous copies
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S ′
t=1...n of S simulated by random base mutation. and λc balances between the density and

conservation objectives. Lgss is optimized with respect to the combined parameters of f and

g. The first term of Lgss is exactly the density loss described above. The second term, on the

other hand, surrogates the conservation metric by estimating the expected ∆-distance from each

f ′t to the template score g. When this term is small, we intuitively expect that {f ′t}t=1...n are

concentrated around g, and by extension are also concentrated around f , as f is brought close

to g via minimizing the density term. Since f ′t and f respectively surrogates the sketches of S ′
i

and S, when this happens, the sketch of S is likely preserved across homologous sequences and

yields high conservation.

3.4.5 Empirical study

We demonstrate the effectiveness of our optimization algorithm in learning high conservation,

low density, and high coverage masked minimizer sketches. We also explore various ablation

scenarios to confirm the practical usage of various specific masks (qualifying subsets).

Experimentation details

We compare the following baselines to construct the k-mer ordering for masked minimizers:

(1) random ordering; (2) training with variants of our objective, including the previously intro-

duced DEEPMINIMIZER loss function; (3) MINICEPTION [110]; and (4) PASHA [26]. All

experiments are conducted on the human chromosome 1 (labelled CHR1); the centromere region

of human chromosome X (labelled CHRXC); and several bacterial genomes that were previously

used in Edgar [24] (labelled BTR1, BTR2, BTR3 and BTR4). The details of these sequences are

given in Table 3.2.

We implement our method using PyTorch and deploy all experiments on a RTX-3080 GPU.

Due to limited GPU memory, each training epoch only computes the loss on a randomly sam-

pled batch of 32 substrings of length ℓ = 1500 bases. The conservation component of Lgss is
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averaged over 5 random mutations, simulated using a 10% base substitution rate. Evaluation of

conservation is likewise obtained using 5 random mutations. Network weights are optimized us-

ing the ADAM optimizer [54] with default parameters. Our PyTorch implementation is available

at https://github.com/Kingsford-Group/maskedminimizer.

Table 3.1: Descriptions and lengths of benchmark sequences

Label Description (Assembly) Length

CHRXC Centromere region of human chromosome X [74] 3106132

CHR1 Human chromosome 1 233587144

BTR1 Blautia producta (GCA 004210255.1) 6354838

BTR2 Blautia hansenii DSM 20583 (GCF 002222595.2) 3065949

BTR3 [Clostridium] scindens (GCA 009684695.1) 3785527

BTR4 Blautia producta ATCC 27340 = DSM 2950 (GCA 010669205.1) 6197116

Adversarial relationship of density and conservation

This experiment demonstrates that density and conservation are indeed conflicting objectives and

confirms our argument in Section 3.4.1. Specifically, we train two masked minimizers using the

minimizer mask vm = [0, w − 1] and the open-syncmer mask vo = {w/2} for w = 7, k = 15.

We note that the masked minimizer scheme with vo employs the window-based sampling mech-

anism, hence does not recover exactly the open-syncmer scheme (or equivalently the parame-

terized syncmer scheme with mask vo), and only emulates its sampling pattern in the context

of minimizers. We respectively denote these schemes byM and Ow/2 and optimize them with

three variants of our loss function:

• The extended DEEPMINIMIZER density loss for mask minimizers, given byLDM ≜ ∆(f ,g).

• The conservation loss given by the second term in Eq. (3.30), Lcon ≜ 1
n

∑n
t=1∆(f ′t,g).

• Our loss function Lgss ≜ LDM + λcLcon given in Eq. (3.30) with λc = 1.
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Figure 3.11: Comparing density, conservation, coverage and GSS vs. number of training epochs

using different training losses and masks v on the bacterial genome BTR1.

Fig. 3.11 plots the density, conservation, coverage and GSS metrics on the sequence BTR1

across 300 training epochs for each loss function. As predicted in Section 3.4.1, we observe that

the conservation metric is consistently upper-bounded by the density metric in all experiments.

Additionally, we observe that neither the density nor conservation metric reflects the drop in

coverage when moving from the minimizer maskM to the open-syncmer mask Ow/2. The GSS

metric, on the other hand, properly reflects this by applying a discount to the performance of the

open-syncmer mask.

Training masked minimizers improves GSS

This section demonstrates that our loss functionLgss learns robustly and improves GSS in various

settings of w, k, and different masks v. Specifically, we compare the minimizer mask (vm) and

the open-syncmer mask (vo) defined above with the complement mask vc = vm \ vo that com-

bines desirable properties from minimizer (e.g., high coverage) and open-syncmer mask (e.g.,

preventing repeated sampling in homopolymers). We denote the complement mask by Cw/2.

Again, we do not employ the outer loop of our algorithm to search for the optimal mask since it

involves multiple inner iterations of training and cannot be plotted on the same scale with other

benchmarks (e.g., each corresponds to a single inner loop with 600 epochs). The performance of
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Figure 3.12: Comparing GSS of different masked minimizer variants vs. number of training

epochs on CHRXC and CHR1.

this outer loop training will be demonstrated in the next experiment.

Fig. 3.12 plots the GSS of the masked minimizers M, Ow/2 and Cw/2 over 600 training

epochs in two settings: (1) w = 15 and k ∈ [25, 40, 70]; (2) k = 15 and w ∈ [25, 40, 70].

This experiment is repeated on two sequences, CHRXC and CHR1. All experiments show that

GSS steadily increases over 600 training epochs by 1.5 to 5 times that of their initial random

weights. The performance of the minimizer mask (M) is highly similar to the complement mask

(Cw/2), except for (w, k) = (15, 40) with CHR1 and (w, k) = (15, 25), (40, 15) with CHRXC.

This is expected because their masks only differ by one location. We further observe that both

the minimizer mask (M) and the complement mask (Cw/2) outperform the open syncmer mask
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(Ow/2) in most settings. This is most likely due to the worse coverage of open-syncmers, which

has been previously observed in Fig. 3.11.
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Figure 3.13: Comparing conservation and density metrics of different masked minimizers vs.

number of training epochs on the CHRXC sequence with w = 15 and k ∈ {25, 40, 55, 70}.

Fig. 3.13 further demonstrates the individual effect of training the proposed loss Lgss on the

conservation and density metrics. We observe that both the conservation and density of the open-

syncmer scheme are upper-bounded by that of the minimizer scheme, which confirms the result

of Corollary 1 and Corollary 2. We observe that Lgss improves conservation but worsens density

for the open-syncmer scheme, which is similar to our first experiment. However, this is not the

case for the minimizer and complement schemes, which obtain significant improvements in both

metrics over 600 training epochs (although conservation is still bounded by density at any point

during the training). This implies that our method has found a favorable trade-off between the

two metrics, which in turn explains the sharper increases in GSS compared to that of syncmer

across all experiments.

Comparing GSS of different training losses and masks

We demonstrate the importance of optimizing for the mask variable. Specifically, we compare

the GSS performance among methods that optimize for the k-mer ordering alone with respect

to some fixed mask, and our method (Algorithm 1) that jointly optimizes both variables. We
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Figure 3.14: Comparing GSS of different masked minimizers using various optimization meth-

ods with w = 10, k = 10 on CHRXC. We respectively denote the minimizer mask, the open-

syncmer mask, the complement mask and the optimized mask byM,Ow/2, Cw/2,V .

respectively denote the optimized mask and its induced masked minimizer scheme by v∗ and

V . We benchmark the performance of this mask-optimized scheme against the minimizer (M),

open-syncmer (Ow/2) and complement masks (Cw/2) across various optimization strategies, in-

cluding random orderings, PASHA [26], Miniception [110], AdaOrder [29], and the 3 differen-

tiable loss functions previously introduced (i.e., LDM , Lcon , Lgss). For random ordering and the

UHS-based methods, which only select the ordering once, the inner-loop optimization is simply

replaced by evaluating the GSS metric with respect to the current v. We repeat our experiment

for w = 10, k = 10 (Fig. 3.14) and w = 15, k = 10 (Fig. 3.15).

Among different masks of the same optimization method, we observe that the optimized mask

V achieves the best GSS most frequently (i.e., 13 out of 14 scenarios). Out of 13 occurrences, V

recovers the same GSS as the minimizer maskM 5 times, and the same GSS as the complement

mask Cw/2 3 times. The open-syncmer mask Ow/2 only outperforms V one time on the random

ordering baseline, with negligible margin. Interestingly, when combined with the MINICEPTION
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Figure 3.15: Comparing GSS of different masked minimizers using various optimization meth-

ods with w = 15, k = 10 on CHRXC. We respectively denote the minimizer mask, the open-

syncmer mask, the complement mask and the optimized mask byM,Ow/2, Cw/2,V .

method, the open-syncmer mask yields 0.0 GSS, which suggests that there are no k-mers that

can meet the sampling rule based on the ordering found by MINICEPTION.

Table 3.2 summarizes the result of the gradient-based methods on CHRXC for all combina-

tions of w ∈ {10, 15, 20} and k ∈ {10, 15}. Across 18 experiments (i.e., crossing 6 settings

of (w, k) with 3 loss functions), the best GSS is achieved by the minimizer mask (M) on 6 ex-

periments, the open-syncmer mask (Ow/2) on 1 experiment, and the complement mask (Cw/2)

on 4 experiments. Our optimized mask (V) achieves the best GSS in 17 out of 18 experiments,

including 10 experiments where v∗ recovers either vm, vc or vo; and 7 experiments where v∗ is

novel. Our loss function Lgss achieves the best GSS in 4 out of 6 combinations of (w, k).

Table 3.3 summarizes the result of PASHA [26], MINICEPTION [110] and the random or-

dering baseline for all combinations of w ∈ {10, 15, 20} and k ∈ {10, 15}. Generally, PASHA

and MINICEPTION outperform the random ordering baseline as expected. However, their per-

formance is generally weaker than the gradient-based methods in Table 3.2 by a large margin.
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Table 3.2: Comparing GSS (normalized to the scale of 0–100) of different masked minimizers

with 3 different training losses across 6 settings of (w, k) on CHRXC. The best GSS observed for

each combination of (w, k) and loss function is given in bold. The best GSS for each combination

of (w, k) is further underlined.

Conservation Loss (Lcon) Density Loss (LDM ) Combined Loss (Lgss)

(w, k) M Ow/2 Cw/2 V M Ow/2 Cw/2 V M Ow/2 Cw/2 V

10, 10 70.1 65.6 68.5 70.1 71.6 52.9 72.2 74.5 75.4 60.1 75.3 75.4

10, 15 70.6 65.0 69.6 70.6 76.8 65.6 77.9 77.9 71.9 56.6 70.4 81.0

15, 10 69.3 62.1 68.0 71.3 69.0 61.3 72.6 76.5 68.3 59.7 70.1 75.0

15, 15 71.5 66.7 71.0 89.2 81.3 74.6 82.8 82.8 81.2 82.3 81.7 81.7

20, 10 68.2 61.4 67.9 68.2 67.7 60.8 67.3 69.0 72.1 59.5 69.0 72.1

20, 15 74.7 71.6 81.6 81.6 82.9 71.4 84.5 84.5 89.8 79.4 89.4 89.8

Similar to the previous experiment, we also observe that the optimized mask (V) achieves the

best GSS on 17 over 18 settings, 10 of which are clear improvements over the three baseline

choices for v. Overall, our experiments suggest that it is beneficial to optimize v, and that our

framework is more successful in finding sketches with high GSS than other sketch construction

methods.

Finally, Table 3.4 reports the best performing masks found by our optimization routine in

each scenario. We observe that there is no fixed mask that consistently performs the best across

all experiments. In addition, the maximum pruning depth observed is 3 (e.g., the algorithm

terminates after 3 iterations of the outer loop because no possible GSS improvement can be

found), which implies that dense masks are generally better for our benchmark sequences. In

contrast, the best performing masks reported by Dutta et al. [22] are significantly sparser, such

as v = {3, 9} and v = {6} for k = 15. We remark that this does not contradict our findings, as
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Table 3.3: Comparing GSS (normalized to the scale of 0–100) of different masked minimizers

using 3 different discrete construction methods and 6 settings of (w, k) on CHRXC. The best

GSS observed for each combination of (w, k) and construction method is given in bold. The

best GSS for each combination of (w, k) is further underlined.

MINICEPTION UHS PASHA UHS Random Ordering

(w, k) M Ow/2 Cw/2 V M Ow/2 Cw/2 V M Ow/2 Cw/2 V

10, 10 57.4 0.0 55.1 58.2 62.9 43.8 60.1 62.9 26.5 21.0 28.7 28.8

10, 15 47.3 25.1 48.7 50.1 75.6 19.2 76.9 76.9 22.2 7.9 26.2 26.5

15, 10 55.7 0.0 57.6 55.7 51.0 44.4 58.9 58.9 27.1 27.6 25.3 27.1

15, 15 43.5 36.9 47.1 50.9 52.1 30.2 55.8 63.2 17.2 11.9 14.0 17.2

20, 10 60.4 0.0 48.9 60.4 43.5 30.7 55.1 55.3 18.9 20.2 23.9 24.7

20, 15 39.2 0.0 43.5 47.6 32.9 31.5 39.0 39.9 13.2 9.5 12.8 13.2

it was obtained on random sequences and Dutta et al. [22] compares parameterized syncmers by

the root mean squared gap lengths metric.

The complete mask is a good initialization

We visualize the distribution of GSS across different masks. Fig. 3.16 (left) shows the scatter plot

of all 2w − 1 masked minimizer schemes trained on BTR4 using Lgss with w = 10 and k = 15,

grouped by the cardinality of v. Fig. 3.17 further shows the scatter plots of all 2w − 1 masked

minimizers trained on BTR1, BTR2 and BTR3 using Lgss with w = 10 and k = 15, grouped by

|v|. Across all experiments, we observe that the average GSS generally increases with |v| in all

experiments, which implies that the minimizer mask is a good default choice.
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Table 3.4: The optimized masks found by our algorithm with 3 different training losses across 6

settings of (w, k) on CHRXC, denoted in the format vm\vp, where vm is the complete minimizer

mask, and vp contains the pruned offsets.

(w, k) Conservation Loss (Lcon) Density Loss (LDM ) Combined Loss (Lgss)

10, 10 vm vm \ {7} vm

10, 15 vm vm \ {5} vm \ {1, 8}

15, 10 vm \ {6} vm \ {5, 8} vm \ {14}

15, 15 vm \ {0, 2, 5} vm \ {7} vm \ {3, 7}

20, 10 vm vm \ {9} vm

20, 15 vm \ {10} vm \ {10} vm

Repeated sampling in homopolymer-rich sequences

One advantage of open-syncmers with t > 1 is the ability to avoid repeated sampling of identical

k-mers in homopolymer substrings (i.e., substrings with repeated submer patterns) [24]. To

confirm this, Fig. 3.16 (right) plots the GSS of all syncmer masks (with offsets in [0, w − 1])

and their complement masks on a synthetic sequence with L = 100000 and 0.2% homopolymer

content. The dotted line shows the GSS of the minimizer mask, which expectedly performs

worse than most open-syncmer masks (except for v = {0}) due to the repeated sampling pitfall.

In particular, because of the left-most tie breaking rule, every scheme whose mask contains

the offset 0 (e.g., the minimizer mask, the open-syncmer mask with v = {0}, and all complement

masks except the one where 0 /∈ v) suffers from high density. In contrast, we observe that

the complement scheme with v = [1, w − 1] achieves the best GSS (0.56). This is because it

avoids the repeated sampling pitfall in the same way any open-syncmer scheme with t > 0 does,

but otherwise performs like a minimizer scheme and does not suffer from the low coverage of

syncmers.

75



1 2 3 4 5 6 7 8 9 10
No. 1-entries

0.00

0.25

0.50

0.75

GS
S

0 1 2 3 4 5 6 7 8 9
Offset

0.0

0.2

0.4

0.6

GS
S

Syncmer
Complement
Minimizer

Figure 3.16: Left: GSS vs. number of 1-entries of all masked minimizers trained on the bacterial

genome BTR4; Right: GSS vs. the offset position of various open-syncmer masks, and their

complement schemes on a synthetic sequence with high homopolymer content.
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Figure 3.17: GSS vs. |v| of all masked minimizers on bacterial genomes BTR1, BTR2 and BTR3.

Exploiting the relative density metric

This experiment demonstrates that without the coverage normalization step, the conservation-

density ratio (i.e., relative conservation) can be exploited. We show that this exploitative behav-

ior can be obtained by optimizing the loss function Lexploit ≜
∑n

i=t ∆(f ′t, f). This loss function

differs from Lcon by swapping the template g in each pairwise ∆-distance term with f . The

purpose of this substitution is to isolate any training signal for density (which is implicitly en-

coded in the template) and to directly prioritize minimizing relative conservation. As minimizers

schemes must select one position per (w, k)-window by construction, they do not suffer from this

exploit. We thus train only the open-syncmer scheme O on a random sequence with L = 1000,

using Lexploit with w = 10 and k = 15.

We plot the relative conservation (left-most column of Fig. 3.18) and coverage metrics (mid-

dle column of Fig. 3.18) obtained over 1000 epochs with n ∈ {1, 5, 10, 20} sampled muta-

tions per training epoch and offset t ∈ {6, 7, 8, 9} (e.g., the corresponding masks are v =
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Figure 3.18: Finding the relative conservation exploit for various open syncmers using Lexploit,

w = 10 and k = 15 with (from top to bottom) offset t ∈ {6, 7, 8, 9} .

{6}, {7}, {8}, {9}). Generally, Lexploit improves relative conservation as expected. However,

when n = 20, the optimizer finds the exploit mentioned in Section 3.4.3 after 1000 − 1500

epochs, which causes both metrics to become 0. The resulting sketch consequently selects no

k-mers (i.e., 0 coverage) and is trivially conserved when mutations are introduced (i.e., infinite

conservation, which is manually set to 0 in the above plots).

We further plot the number of segments with monotonically increasing or decreasing priority

scores at each segment length (right most column). For every value of t, the exploitative solution
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contains no segment with more than t−1 consecutively decreasing scores. We note that the total

count for t = 7 is significantly lower than other values of t because the solution contains several

segments of monotonically increasing scores that are relatively long, which count towards the

> 6 bucket. This result suggests that all lowest scoring k-mers are likely found within the first

t−1 positions of their respective windows, and none are sub-sampled into the masked minimizer

sketch.

3.5 Conclusion

This chapter studies the sketch design problem for various string sketching methods. The first

part of this chapter introduces a novel framework called DEEPMINIMIZER for learning low-

density sequence-specific minimizers. This is achieved via casting minimizer selection as opti-

mizing a k-mer scoring function, parameterized by a deep neural network called PRIORITYNET.

We further introduce a continuous relaxation of the density minimization objective via com-

bining the PRIORITYNET with a complementary neural network, called TEMPLATENET. The

TEMPLATENET pinpoints neighborhood of low-density score assignments (although these score

assignments may not yield desirable properties of a minimizer sketch), and guides the PRIORI-

TYNET to the neighborhood of low-density assignments around them. Coupling these networks

leads to a fully differentiable proxy objective that can effectively be optimized through gradient-

based learning techniques. The DEEPMINIMIZER method obtains better performance than pre-

vious state-of-the-art sequence-agnostic and sequence-aware minimizer selection schemes, es-

pecially on known hard tasks such as sketching the repetitive centromere region of Chromosome

X.

The second part of this chapter studies a more general version of the sketch design problem,

in which we extend the minimizer concept to masked minimizers and construct an optimization

objective that simultaneously accounts various sketching metrics. We call this new metric the

generalized sketch score (GSS) and develop a bi-level optimization framework to design masked
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minimizers with high GSS for a specific reference sequence. We show that our algorithm finds

combinations of masks and k-mer orderings that induce masked minimizer schemes with better

GSS than other sketch construction methods. We additionally introduce a special category of

complement masks that combine desirable properties of minimizers and syncmers. We demon-

strate the robustness of these masks in both the standard setting and sketching a homopolymer-

rich sequence that is known to be a pitfall for the minimizer method.
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Chapter 4

Federated Neural Architecture Search

4.1 Introduction

Neural network architecture is the core element of deep learning’s success on many perceptual

tasks such as computer vision [58] and natural language processing [98]. Even though most

renowned architectures in deep learning literature are hand-designed by domain experts, recent

studies have suggested that searching for an optimal design that composes well-known building

blocks can significantly improve performances in many task domains [44, 104, 113].

Formally, a neural network architecture can be written as a hierarchical feature extractor

which explicitly takes the form of a directed acyclic graph G ≜ (V,E), where V and E respec-

tively denote the sets of nodes and edges in G. Each node v ∈ V denotes an intermediate feature

representation zv, which has been arbitrarily transformed from some input x ∈ Rd. We often

associate x and the output of the network with a source node vs and a sink node vt, respectively.

Each edge e ≡ (v, v′) ∈ E encodes an operator oe that transforms zv and forwards the result to

v′ to be aggregated as zv′ . The computation of any intermediate representation in G can then be

recursively defined as:

zv′ ≜
∑

(v,v′)∈E

o(v,v′)(zv) , (4.1)
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where we have assumed a simple additive aggregation rule for simplicity.

In a typical neural architecture search task, there are two design choices to be made: (1) the

flow of information determined by the topology of G; and (2) the corresponding transformations

of data features encoded by the edge operators oe for every e ∈ E. To ensure feasibility, the

space of edge operators is often restricted to a small, finite set O of well-known layers, such as

linear transformation, convolution and pooling, thus reducing the problem to finding an optimal

mapping m : E → O that assigns an operator in O for every edge. Similar to the setting of

the kernel selection problem, we are also interested in only representing the discrete structures

and categorical types of these layers in O. This does not include continuous and differentiable

parameters (e.g., layer weights), for which optimization is well-studied.

Manually configuring the structure of G can be time-consuming and may not fully exploit

the vast design space of possible architectures. To this end, neural architecture search (NAS)

surfaces as a study that aims at designing practical search spaces for G, and developing corre-

sponding search algorithms that efficiently explore high-performing network structures within

these spaces. This revolutionary paradigm shift has led to the development of more efficient and

effective deep learning models [80, 113].

Various strategies to formulate the NAS search space have previously been explored, such as

composing complex architectures from modular components [80, 113], or continually evolving

the network structures [75]. This thesis chapter focuses on the over-parameterized graph search

space, whose goal is to distil high-performing a candidate network G = (V,E) from a larger

graph G = (V , E), such that V ⊆ V , E ⊆ E , and the edges in G facilitates information flow from

a source node vs to a sink node vt.

Learning to distill high-performing structures, however, requires a sufficiently large amount

of training data and compute resource to achieve. In the multi-party NAS setting, in which a

number of clients wish to configure neural architectures to solve various correlated tasks given

their own limited and private data, this core challenge consequently gives rise to a perplexing
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dilemma. That is, individually performing local NAS in a per-client manner is potentially inac-

curate and ineffective due to the lack of data, whereas a centralized approach that pools data to

a global server would surely compromise the privacy of clients. To this end, the Federated Neu-

ral Architecture Search (FNAS) paradigm, which combines the privacy-preserving principles of

federated learning [72] with traditional NAS, has recently emerged as a solution.

Nonetheless, existing FNAS solutions [44, 104] only focus on the scenario where client tasks

are assumed to be identical, which is described in Definition 11. As such, these methods are

restricted to finding a homogeneous solution across all clients. In practice, tasks will likely di-

verge and require customization of solution to achieve satisfactory performance. This chapter

hence turns the attention to the multi-task FNAS problem, which is described in Definition 12.

In particular, we introduce a novel federated personalized NAS framework (FEDPNAS) that is

capable of customizing the model architecture for each task in the Federated learning (FL) work-

flow. The FEDPNAS method represents the model architecture for each task as a sub-network

sampled from a large, over-parameterized network. The sampling distribution is subsequently

learned together with the weights of the sampled network. Our contributions include:

• A novel architecture search space that modularizes each candidate network into a base

component (shared across tasks) and a personalizable component. These components re-

spectively capture the task-agnostic and task-specific information inferred from training

data.

• A context-aware sampling distribution conditioned on specific task instance, which cap-

tures task-specific information and naturally incorporates personalization into architecture

search.

• An new FNAS algorithm that optimizes for a common architecture, and subsequently fine-

tunes this architecture to fit each local dataset. We further adopt a meta-learning objective

to ensure that the common architecture distribution converges at a vantage point that is

relevant and beneficial to all clients.
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• A theoretical perspective on the role of our FL objective and thorough empirical analysis

showing significant performance gain compared to the state-of-the-art FL and NAS meth-

ods.

This work is co-authored by Carl Kingsford, and was accepted to the Workshop on New Fron-

tiers in Federated Learning (NFFL) at the Neural Information Processing Systems (NeurIPS)

conference in 2021 [37].

4.2 Problem setting

The neural architecture search problem on an over-parameterized search space can be described

as follows:

Definition 11 (Neural Architecture Search) A neural architecture search instance is described

by τ ≜ {G,O,D}, where G = (V , E) denotes an over-parameterized graph, O is the set of all

edge operators, and D denotes the observed task data. Further letM be the set of all functions

m : E → O that assign a feature mapper to any edge in G. Finally, let Fτ : M → R be

the performance measuring function of this task, which (1) executes a well-defined algorithmic

procedure to optimize the parameters of the selected operators (e.g., applying gradient descent

update with respect to the cross-entropy loss until convergence) and then (2) returns the predic-

tive accuracy evaluated on the test set. The NAS objective is given by:

m∗ = argmax
m∈M

Fτ (m) , (4.2)

where m∗ denotes the optimally performing assignment function with respect to τ .

The problem statement above is specifically written for a single-task scenario, for which only

one instance of τ requires optimal configuration. In this thesis, we further consider a new setting

for neural architecture search, which focuses on concurrently configuring a set of n related tasks

τ ≜ {τ1, τ2 . . . τn}. We state the problem as follows:
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Definition 12 (Multi-task Neural Architecture Search) Let τ ≜ {τ1, τ2 . . . τn} be a set of neu-

ral architecture search tasks such that every task τi ≜ {G,O,Di} shares the same search space

G and the operator setO, but differs from one another by the given task dataDi. Using the same

notation ofM in Definition 11 and let m = {m1,m2 . . .mn} be a collection of mappers inM,

where each mi corresponds to a candidate architecture for task τi. The performance measuring

function for the multi-task NAS problem is then given by averaging the per-task performance:

Fτ (m) ≜
1

n

n∑
i=1

Fτi(mi) . (4.3)

Finally, we state the multi-task NAS objective as the following optimization task:

m∗ = argmax
m⊂M

Fτ (m) . (4.4)

4.3 Related work

The NAS literature can generally be classified into two separate lines of research: (1) designing

search space, and (2) developing search strategy. As briefly mentioned above, this thesis will

adopt the over-parameterized search space proposed by Bender et al. [8] and focus on developing

new search strategies under this paradigm. This section provides a brief summary of various

NAS methods in this direction (which we will simply refer to as NAS from this point onward)

and some preliminary works in the multi-task NAS domain.

4.3.1 Cell-based over-parameterized search space

Most NAS methods converge on a cell-based organization of the over-parameterized network

search space that was inspired by Pham et al. [80]. This entails factoring the search space graph

G into a linear chain of modular cell blocks, each serves as an over-parameterized network by

itself. Every cell has its own source and sink node, which respectively receives the output of
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its previous cell and forwards its own output to the next cell. The NAS outcome is then the

combined edge selection for all cells in G, which is then achieved by specific search strategies.

4.3.2 Scheduled dropout

One major challenge of NAS is the expensive cost of evaluating candidate architectures, which

involves sufficient training of the selected layer weights. Bender et al. [8] proposes to isolate

this bottleneck from the performance measuring function through optimizing the entire over-

parameterized network G once before conducting edge selection, thus avoiding the repeated

training cost. The cost and the stability of optimizing such a giant model are kept manageable

via a steadily increasing dropout rate (i.e., the probability of zeroing out the output of a neuron)

as the training progresses. Bender et al. [8] conducts random search to find the best pruning of

the trained G, but this step can easily be extended with other black-box optimization methods.

4.3.3 Continuous relaxation

A main cause for inefficiency in NAS is often due to the intractability of the edge selection

problem, which can be written as a high-dimensional integer programming objective. Explicitly,

we cast the output domain of the mapping function m as the space of one-hot vectors with

dimension |O| and express the computation at edge e = (v, v′) as:

zv′ =

|O|∑
i=1

mi(e) · oi(zv) , (4.5)

where oi denotes the ith operator in O, mi(e) ∈ {0, 1} denotes the ith entry of the one-hot

vector m(e), i.e.,
∑|O|

i=1mi(e) = 1. Liu et al. [64] then proposes the to alleviate this problem via

approximating m(e) with a continuous vector m̄(e) ∈ R|O|, called the operator mixing weights

of e. We can then rewrite the above computation using a softmax operator:

zv′ ≃
|O|∑
i=1

exp(m̄i(e))∑|O|
j=1 exp(m̄j(e))

· oi(zv) . (4.6)
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In this manner, the computation induced by any candidate architecture can be expressed entirely

with continuous transformations that are fully differentiable with respect to all {m̄(e)}e∈E and the

corresponding layer weights, hence reducing the NAS problem to a gradient-based optimization

task. Xie et al. [104] subsequently proposes a similar approach that instead replaces the softmax

operator in Eq. (4.6) with a Gumbel-softmax operator [49], thus obtaining candidate architectures

with mixing weights that converge to samples of a categorical distribution (i.e., when its temper-

ature parameter is annealed to 0), which better approximates Eq. (4.5). Hu et al. [44] further

exploits this set up to perform differentiable edge sampling using the straight-through trick [49],

thus avoids the expensive cost of training all layer weights at once.

4.3.4 Federated NAS

More recently, the NAS problem is also considered in the federated learning context [72]. This

line of research studies a variant of the multi-task NAS problem introduced above, where the task

data Di are assumed to be privately hosted and cannot leave their respective silos. To address

this problem, He et al. [35] adopts the differentiable framework by Liu et al. [64] to perform

local NAS for each task τi and periodically synchronizes these local architectures via averaging

both their operator mixing weights and layer weights. Nonetheless, we note that this aggregation

scheme will mandate all local nodes to converge at a single architecture, which is not necessarily

optimal when their respective tasks are heterogeneous. We will therefore focus on solving exactly

the multi-task NAS objective given in Definition 12, which instead seeks to efficiently optimize

an entire collection of architectures to optimally address each task.

4.4 Methodology

Our method, FEDPNAS, adopts the same continuous relaxation of the over-parameterized archi-

tecture space as suggested by Hu et al. [44]. Unlike [44], which lacks the ability to customize
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architectures for individual tasks, our method achieves architecture personalization via factor-

izing the architecture space into: (1) a base component that is shared among all client models;

and (2) a task-specific component, which personalizes across clients to best solve their respec-

tive tasks. We learn the operator mixing weights m̄(e) for all edges, which induce the joint

distribution over all edge operators over two phases.

In the federated phase of FEDPNAS, a common overall architecture is learned such that all

task-specific architectures can be quickly and optimally derived from it with minimal fine-tuning

efforts. This learning objective is achieved by extending the MAML meta learning algorithm

proposed by Finn et al. [28]. (Section 4.4.2). Subsequently, in the adaptation phase of FEDP-

NAS, each client separately performs local update of its task-specific component using private

data. Unlike other meta learning objectives [28], which only focus on adapting the weights of

a single architecture, this adaptation step will result in diverging personalized architectures that

are optimal for their respective tasks. The remainder of this section describes these contributions

in details.

4.4.1 Cell-based Architecture Space

Similar to Hu et al. [44], we express the over-parameterized architecture GO as a stack of modular

cells, i.e., G0 =
⋃C

t=1 Gt, where C is the total number of cells and each cell Gt denotes a compact

space of architecture constructed from the operator listO. To obtain an architecture from GO, we

first distill an architecture module Gt = (Vt, Et) from each cell by selecting a subset of edges in

Gt. The propagation path of the input vector across these modules is then heuristically chosen and

specified by a cell-level DAG. For example, a simple linear propagation scheme can be written

as G(x) = GC ◦ GC−1 · · · ◦ G1(x), where x denotes an input vector and each Gi is treated as a

feature map.

The inner computation of each distilled module Gt is similarly defined as in Section 4. Given

an input vector x, we then sample an operator oe on each edge e ≡ (v, v′) ∈ Et from the vocab-
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ulary O ≜ [o1, o2, . . . , oD] using a parameterized categorical distribution pte. Hu et al. [44] as-

sumes this edge sampling distribution is independent of the input x and any intermediate feature

mapping of x, hence does not make use of these context information in deciding the distilled ar-

chitecture. In the context of horizontal NAS, we instead argue that these information are valuable

in guiding client-level architecture adaptations and consequently parameterize pte as conditional

sampling distributions, which jointly model a hierarchical decision process (Section 4.4.3).

The feature aggregation scheme for any arbitrary node v′ ∈ Vt is then given as:

zv′ =
e∈Et∑

e≡(v,v′)

Er∼pte

[
r⊤ξ(zv)

]
≃

e∈Et∑
e≡(v,v′)

s∑
i=1

r⊤ei ξ(zv) , (4.7)

where each rei is a one-hot vector drawn from pte and ξ(zv) ≜ [o1(zv), o2(zv), . . . , oD(zv)] is the

concatenation of all possible transformations of zv using the operators in O. Even though the

computation above requires sampling from a categorical distribution, it can be made differen-

tiable with respect to the parameters of pte using the straight through Gumbel-softmax trick [49].

Unlike the original design, which assumes similar importance for every cell in the architec-

ture stack, we opt to split our cell-based architecture into two component stacks with different

roles to facilitate our personalized architecture search goal. Specifically, our search space con-

tains: (a) a base stack Gb = {G1b ,G2b , . . . ,G
Cb
b }, which aims to capture a feature map that is

universally useful to all tasks; and (b) a personalized stack Gp = {G1p ,G2p , . . . ,G
Cp
p }, which will

be adapted using client data to capture task-specific features. Fig. 4.1 summarizes the relation-

ship of these components.

Generally, we assume that the tasks are broadly related and diverge in finer details. Therefore,

the base architecture stack is designed to be significantly more expressive than the personalized

stack, via employing a larger operator vocabulary and a more sophisticated propagation scheme

as shown in Fig. 4.1. In addition, as we will subsequently discuss in Section 4.4.2, our objective

is formulated such that its gradient evaluation will require approximating the Hessian of the

personalized component. As such, a minimally expressive personalized stack is also a practical

design to lower the computational cost.
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Figure 4.1: Feature mapping induced by the component stacks of our architecture space. Each

cell in the base stack receives outputs from two previous cells, whereas each cell in the person-

alized stack receives outputs from only one previous cell.

4.4.2 Personalized Federated Learning Objective

In this section, we will now discuss the learning objective of FEDPNAS, which enables the

discovery of personalized architecture. Let θ = {θb, θp} respectively denote all trainable param-

eters of the two component stacks above. In particular, θb = {Wb,Πb} contains the concatenated

weights Wb of all edge operators; and the concatenated parameters Πb = [Πt
e]t∈[Cb],e∈Et of the

joint edge sampling distribution. Likewise, θp = {Wp,Πp} contains their counterparts in the

personalized stack. Given N local clients with tasks {Ω1,Ω2, . . . ,ΩN}, the straight-forward

extension of FL objective to the NAS problem defined by this search space can be written as:

θ∗ = argmax
θ

1

N

N∑
i=1

FΩi
(θ) . (4.8)

McMahan et al. [72] proposes a privacy preserving approach to optimize this objective by alter-

nating between two communication steps of the model parameters. At any iteration t ≥ 0:

• Each local client performs a local gradient step with its current parameter θti and sends the

suggested update θ̄ti = θti + λ∇θFΩi
(θti) to a central server.

• The central server then computes θtSERVER = 1
N

∑N
i=1 θ̄

t
i and broadcasts the aggregated pa-
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rameters θtSERVER to all clients.

• Each local client performs the update θt+1
i ← θtSERVER and prepares for the (t + 1)th com-

munication round.

This FL scheme implies that all clients will follow the same architecture distribution after the

last communication round, which is not necessarily optimal in a heterogeneous task setting.

To address this, our framework instead adopts the MAML meta learning objective [28], which

aims to find a favorable initialization of θ that yields maximum averaged performance given an

expected adaptation step. This is different from Eq. 4.8, which does not directly optimize for

this initialization, but approximates it using the instantaneous averaged performance. Explicitly,

this is achieved by the following objective:

θ∗ = argmax
θb,θp

1

N

N∑
i=1

FΩi

(
θb, θp + λ∇θpFΩi

(θb, θp)
)
, (4.9)

in which the difference from Eq. (4.8), highlighted in red, models a gradient ascent update with

step size λ to the aggregated personalized parameters θp, which is to be conducted by each

client at the end of the federated phase. Intuitively, this gradient step acts as a regularization

term which favors θ that are simultaneously close to all task-specific optima and yield the best

averaged performance after the adaptation phase.

We now derive the gradient of this objective and discuss a practical algorithm to perform its

computation. First, we let θ̃t ≜
(
θtb, θ

t
p + λ∇θtpFΩ(θ

t
b, θ

t
p)
)

denote the anticipated update of θ at

time t of some arbitrary client. Then, dropping the client index for clarity, we subsequently derive

the gradient ascent update for each client pertaining to the above personalized FL objective:

θ̄t = θt + λ∇θtFΩ

(
θ̃t
)

= θt +
(
λ∇θt θ̃

t
)(
∇θ̃tFΩ(θ̃t)

)
= θt +

 λI λ2∇θtb
∇θtpFΩ(θ

t
b, θ

t
p)

0 λ2∇2
θtp
FΩ(θ

t
b, θ

t
p)

(∇θ̃tFΩ(θ̃
t)
)
, (4.10)

where we applied chain rule in the second equality and subsequently expanded λ∇θt θ̃
t in the
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third equality. The second-order gradient terms ∇θtb
∇θtpFΩ(θ

t
b, θ

t
p) and ∇2

θtp
FΩ(θ

t
b, θ

t
p), however,

are expensive to evaluate exactly. In order to derive practical computations of these terms, we

note that the first-order Taylor approximation of the Hessian∇2
θtp
FΩ(θ

t
b, θ

t
p) can be written as:

∇2
θtFΩ(θ

t
b, θ

t
p) =

 ∇2
θtb
FΩ(θ

t
b, θ

t
p) ∇θtb

∇θtpFΩ(θ
t
b, θ

t
p)

∇θtp∇θtb
FΩ(θ

t
b, θ

t
p) ∇2

θtp
FΩ(θ

t
b, θ

t
p)


≃

 ∇θtb
FΩ(θ

t
b, θ

t
p)

∇θtpFΩ(θ
t
b, θ

t
p)


 ∇θtb

FΩ(θ
t
b, θ

t
p)

∇θtpFΩ(θ
t
b, θ

t
p)


⊤

=

 ∇θtb
FΩ(θ

t
b, θ

t
p)∇⊤

θtb
FΩ(θ

t
b, θ

t
p) ∇θtb

FΩ(θ
t
b, θ

t
p)∇⊤

θtp
FΩ(θ

t
b, θ

t
p)

∇θtpFΩ(θ
t
b, θ

t
p)∇⊤

θtb
FΩ(θ

t
b, θ

t
p) ∇θtpFΩ(θ

t
b, θ

t
p)∇⊤

θtp
FΩ(θ

t
b, θ

t
p)

 . (4.11)

Matching appropriate terms in the above derivation then implies the following approximations,

which can be computed with a single forward-backward pass of the architecture:

∇θtb
∇θtpFΩ(θ

t
b, θ

t
p) ≃ ∇θtb

FΩ(θ
t
b, θ

t
p)∇⊤

θtp
FΩ(θ

t
b, θ

t
p) , (4.12)

∇2
θtp
FΩ(θ

t
b, θ

t
p) ≃ ∇θtpFΩ(θ

t
b, θ

t
p)∇⊤

θtp
FΩ(θ

t
b, θ

t
p) . (4.13)

Plugging this back to Eq. (4.10) gives:

θ̄t ≃ θt +

 λI λ2∇θtb
FΩ(θ

t
b, θ

t
p)∇⊤

θtp
FΩ(θ

t
b, θ

t
p)

0 λ2∇θtpFΩ(θ
t
b, θ

t
p)∇⊤

θtp
FΩ(θ

t
b, θ

t
p)

(∇θ̃tFΩ(θ̃t)
)
, (4.14)

where the term ∇θ̃tFΩ(θ̃t) requires another forward-backward pass to compute (i.e., θ̃t is com-

puted in the same pass with the two approximated gradient terms above). Overall, this results in

a local update scheme which uses two forward-backward passes of the architecture per iteration:

• Compute FΩ(θ
t) in the first forward pass.

• Perform backpropagation to obtain∇θtFΩ(θ
t) =

[
∇θtb

FΩ(θ
t
b, θ

t
p),∇θtpFΩ(θ

t
b, θ

t
p)
]
.

• Compute∇θtb
FΩ(θ

t
b, θ

t
p)∇⊤

θtp
FΩ(θ

t
b, θ

t
p) and ∇θtpFΩ(θ

t
b, θ

t
p)∇⊤

θtp
FΩ(θ

t
b, θ

t
p).

• Compute θ̃t =
(
θtb, θ

t
p + λ∇⊤

θtp
FΩ(θ

t
b, θ

t
p)
)

.
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• Compute FΩ(θ̃
t) in the second forward pass.

• Perform backpropagation to obtain∇θ̃tFΩ(θ̃
t).

• Compute the update in Eq. (4.14).

4.4.3 Context-Aware Operator Sampling

Finally, this section describes the parameterization of the joint operator sampling distribution

over the edges of GO. Let OG ≜ ∪t∈[C]OGt be the set of all selected edge operators in a distilled

architecture G, where OGt ≜ {ote ∈ O}e∈Et in turn denotes the set of all selected edge operators

in cell Gt (i.e., in a single stack architecture). Hu et al. [44] then assumes a fully factorizable

sampling distribution:

p(OG) =
∏
t∈[C]

p(OGt) =
∏
t∈[C]

∏
e∈Et

pte(o
t
e; Π

t
e) , (4.15)

where Πt
e denotes the learnable parameters of the edge sampling distribution pte for every t ∈ [C]

and e ∈ Et. This formulation, however, does not factor in the important context information

carried by the input instance x and its subsequent embeddings as x propagates through G. While

this approach might be sufficient when only one architecture needs to be distilled from GO, it is

challenging to extend to the horizontal NAS setting because every edge in the over-parameterized

architecture GO is required to maintain and optimize its own set of categorical distribution pa-

rameters. In the context of our horizontal NAS problem, this means that the set of parameters

that need to be personalized will also scale with the size of the architecture, hence posing both a

computational and a convergence problem.

To overcome this issue, we will instead look at the conditional sampling distribution p(Og |

x) and subsequently model architecture distillation as a Markov chain decision process, where

each cell in the architecture stack will sequentially determine its edge operators given the input

feature it receives from previous cells. For simplicity, we give our factorization of p(OG | x)

below as if the architecture contains a single stack of cells and uses a linear propagation scheme,
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but it would be trivial to extend this formulation to any other propagation scheme:

p(OG | x) = p(OG1 | x)
C∏
t=2

p(OGt | OGt−1 ,x)

≃
C∏
t=1

e∈Et∏
e≡(v,v′)

pte
(
otv,v′ | zv

)
(4.16)

where zv denotes the feature vector at an arbitrary node v in G and in the factorization above, we

have also assumed that zv acts as the sufficient statistics of the random variable otv,v′ .

The advantage of this formulation is two-fold. First, it provides a natural mechanism to

incorporate context information into the edge selection process, thus allowing FEDPNAS to ef-

ficiently memorize architecture distillation patterns across clients. Second, the above factoriza-

tion of p(OG | x) as a product of edge-wise conditional probabilities further reveals a compact

representation of all sampling parameters using a single neural network ψ, which reduces the

number of parameters that require fine-tuning in the local adaptation phase. That is, for any

edge e ≡ (v, v′) ∈ Et, its context-aware operator distribution conditioned on zv is given as

pte(o
t
v,v′ | zv) ≜ Cat (D,ψ (zv)), where D denotes the number of operators in O and the neural

network ψ maps the zv to the event probabilities of a categorical distribution.

4.5 Empirical Study

We conduct experiments to showcase the performance of FEDPNAS compared to other NAS and

FL benchmarks. Our empirical studies are conducted on two image recognition datasets: (a) the

CIFAR-10 dataset [55] which aims to predict image labels from 10 classes given a train/test set of

50000/10000 colour images of dimension 32× 32 pixels; and (b) the MNIST dataset [57] which

aims to predict handwritten digits (i.e. 0 to 9) given a train/test set of 60000/10000 grayscale im-

ages of dimension 28× 28 pixels. Our search space entails 240 possible architectures. Table 4.1

gives the list of operators available for sampling at every edge of the over-parameterized archi-

tecture search space. The implementation details of each operator type follows that of SNAS
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Table 4.1: List of operators to be sampled from at every edge and their respective number of

parameters in the CIFAR-10 experiment (32 channels) and the MNIST experiment (16 chan-

nels). MASTEREDGE denotes the combination of all operators at every edge in the network and

MASTERARCHITECTURE denotes the combination of all operators in the network (total of 32

edges).

OPERATOR FILTER SIZE NO. PARAMS (CIFAR-10) NO. PARAMS (MNIST)

AVGPOOL 3× 3 64 32

MAXPOOL 3× 3 64 32

SEPCONV 3× 3 2752 864

SEPCONV 5× 5 3776 1376

DILCONV 3× 3 1376 432

DILCONV 5× 5 1888 688

HOURGLASSCONV 7× 1, 1× 7 14400 3616

SKIPCONNECT N/A 0 0

MASTEREDGE 29632 9184

MASTERARCHITECTURE 948224 293888

[104] and DSNAS [44]. Even though the master architecture has nearly a million parameters,

we note that each learning batch only samples a fraction of these parameters to update.

We compare two variants of our framework, CA-FEDPNAS (with context-aware operation

sampler) and FEDPNAS (without the operation sampler), against: (a) FEDAVERAGING of a

fixed architecture to justify the need for NAS in FL; (b) FEDDSNAS - which trivially extends

DSNAS to the FL setting (Eq. (4.8)); and (c) CA-FEDDSNAS, which extends FEDDSNAS

with our context-aware sampler.
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4.5.1 Heterogeneous predictive tasks

We first design a control experiment to test our framework on heterogeneous tasks and demon-

strate the necessity of architecture personalization. To simulate this scenario, we first distribute

the data i.i.d across clients (10000/2000 and 12000/2000 training/test images per client for

CIFAR-10 and MNIST datasets respectively). Then, we independently apply a different trans-

formation to each partitioned dataset. Input images within the same train/test set is subject to

the same transformation. In both our experiments, the client datasets are subjected to rotations

of −30◦,−15◦, 0◦, 15◦ and 30◦ respectively. Fig. 4.2 below shows the performance of all the

methods in comparison, plotted against number of search epochs and averaged over the above

rotated variants of CIFAR-10 and MNIST datasets.

(a) (b) (c)

Figure 4.2: Plotting average classification accuracy of various methods against no. training

epochs on heterogeneous tasks derived from (a) MNIST and (b) CIFAR-10 dataset. Figure (c)

compares cumulative running time of various methods against no. training epochs on the CIFAR-

10 dataset.

On the MNIST dataset (Fig. 4.2b), all methods converge to a similar performance. Among

the NAS benchmarks, FEDPNAS and FEDDSNAS both converge slower than FEDAVG and start

off with worse performance in early iterations. This is expected since FEDAVG does not have to

search for the architecture and it is likely that the default architecture is sufficient for the MNIST

task. On the other hand, we observe that both CA-FEDPNAS and CA-FEDDSNAS converge
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much faster than their counterparts without the context-aware operation sampler component.

This shows that making use of contextual information helps to quickly locate regions of high-

performing architectures, especially on similar inputs.

On the CIFAR-10 dataset (Fig. 4.2a), we instead observe significant gaps between the worst

performing FEDAVG and other NAS methods. This is likely because the default architecture

does not have sufficient learning capability, which confirms the need for customizing solutions.

Among the NAS benchmarks, we again observe that both CA-FEDPNAS and CA-FEDDSNAS

outperform their counterparts without our operation sampler, which confirms the intuition above.

Most remarkably, our proposed framework CA-FEDPNAS achieves the best performance (0.8)

and significantly outperformed both variants of federated DSNAS (0.71 for CA-FEDDSNAS

and 0.63 for FEDDSNAS).

Lastly, Fig. 4.2c shows the runtime comparison between three methods on the CIFAR-10

experiment. In terms of sampling time, we observe that there is negligible overhead incurred by

using our context-aware sampler (CA-FEDDSNAS vs. FEDDSNAS). The time incurred by our

update (CA-FEDPNAS) scales by a constant factor compared to CA-FEDDSNAS since we use

exactly one extra forward-backward pass per update.

4.5.2 Tasks with varying heterogeneity levels

We expand the above study by subsequently investigating the respective performances of CA-

FEDPNAS and FEDDSNAS on tasks with varying levels of heterogeneity. At low levels of

heterogeneity, we deploy these methods on 5 sets of slightly rotated MNIST images. At high

levels of heterogeneity, we employ a more diverse set of transformations on MNIST images,

such as hue jitter and large angle rotations of 90◦ and−90◦. Table 4.2 shows the respective result

of each task from these two settings. We observe that our method CA-FEDPNAS achieves better

performance on most tasks and the performance gaps on tasks with higher heterogeneity are more

pronounced (i.e., up to 7% improvement on ROTATE 90 task). This clearly shows the importance
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Table 4.2: Predictive accuracy of CA-FEDPNAS FEDDSNAS on tasks with varying hetero-

geneity levels. ROTATE X denotes a rotation transformation of X◦ on client data; VANILLA

denotes the original MNIST images; and HUEJITTER X denotes a hue jitter transformation of

training images by a factor of X. The best performance in each row is in bold font.

HETEROGENEITY TASK DESCRIPTION FEDDSNAS CA-FEDPNAS

LOW

ROTATE -30 0.947 0.978

ROTATE -15 0.973 0.976

VANILLA 0.988 0.985

ROTATE 15 0.986 0.987

ROTATE 30 0.972 0.981

HIGH

HUEJITTER -0.5 0.966 0.978

HUEJITTER 0.5 0.967 0.972

VANILLA 0.988 0.989

ROTATE -90 0.892 0.932

ROTATE 90 0.866 0.932

of architecture personalization when the training tasks are significantly different and justifies our

research goal.

4.5.3 Knowledge transfer to completely new tasks

Finally, we conduct an ablation study to assess the quality of the pre-adaptation architecture

distributions respectively discovered by CA-FEDPNAS and FEDDSNAS. In particular, we will

leverage these learned distributions, which supposedly capture the broad commonalities of the

task distribution, to generalize to completely unseen tasks (i.e., tasks that do not participate in

the federated learning phase). To simulate this scenario, we train both methods on five clients
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whose local data consist of 12000 rotated CIFAR-10 images (i.e., in the range of ±30◦), similar

to the setting of the first experiment. During the evaluation phase, however, we supply each local

client with 2000 test images subjected to related but completely unseen transformations (i.e., 90◦

and −90◦ rotations).

Table 4.3: Predictive accuracy (averaged over 5 clients) and standard deviation of CA-

FEDPNAS and FEDDSNAS on two unseen tasks (CIFAR-10).

UNSEEN TASK FEDDSNAS CA-FEDPNAS FEDDSNAS CA-FEDPNAS

DESCRIPTION (RETRAINED) (RETRAINED)

ROTATE -90 0.545 ± 0.04 0.578 ± 0.09 0.699 ± 0.12 0.734 ± 0.17

ROTATE 90 0.553 ± 0.12 0.569 ± 0.06 0.673 ± 0.13 0.727 ± 0.22

We summarize our results in Table 4.3 above. First, we measure the performance of CA-

FEDPNAS and FEDDSNAS without any weight retraining. When received no additional infor-

mation from the unseen tasks, both methods perform poorly as expected. While CA-FEDPNAS

achieves better predictive accuracy, the performance gap in this scenario is negligible. To pro-

vide additional clues for adaptation, albeit minimal, we retrain the weights of each local model

with 200 images that are rotated according to their respective unseen task description. With only

100 retraining iterations on limited data, CA-FEDPSNAS already outperforms FEDDSNAS

(5% and 8% improvement respectively on two unseen tasks). This implies that CA-FEDPNAS

has captured more accurately the broad similarity of the task spectrum and requires minimal

additional information to successfully adapt to unseen tasks.

4.6 Conclusion

We demonstrate that federated learning for multi-task scenarios requires extensive personaliza-

tion on the architecture level to obtain good predictive performance. This paper identifies two
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potential sources of model personalization: (1) task-personalization, which aims to select archi-

tectures best suited for specific learning objectives; and (2) context-personalization, which aims

to select architectures best suited for specific input samples. To incorporate these aspects of

personalization into Federated NAS, we propose FEDPNAS which consists of two main com-

ponents: (1) a context-aware operator sampler which learns a sampling distribution for feature

maps along a master architecture; and (2) a personalized federated learning objective which an-

ticipates client fine-tuning and guides the federated model update to regions that tolerate future

local updates. Finally, we demonstrate the performance gain of our method compared to existing

NAS and FL frameworks on several real-world benchmarks.

Orthogonal to this work, we have also investigated the related problem of black-box model

fusion (BBMF). It differs from standard FL in two aspects. First, the client models are pre-trained

and they are unable to coordinate their parameter update. Due to this constraint, the aim of model

fusion is to aggregate these artifacts into a more accurate predictor, given only the ability to query

their predictions at any arbitrary input. In addition, the BBMF problem demands a stronger level

of privacy compliance, which avoids exposing both training data and internal architectures to

other clients.

To this end, we present the first collective model fusion framework for multiple experts with

heterogeneous black-box architectures. The proposed method addresses the key issue of how

black-box experts interact to understand the predictive behaviors of one another, how these un-

derstandings can be represented and shared efficiently among themselves, and how the shared un-

derstandings can be combined to generate high-quality consensus prediction. The performance

of the resulting framework is analyzed theoretically and demonstrated empirically on several

datasets. This work is co-authored by Carl Kingsford, Nghia Hoang and Bryan Low, and was

published at the International Conference on Machine Learning (ICML) 2019 [39].
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Chapter 5

Meta-Learning for Heterogeneous Tasks

5.1 Introduction

Few-shot learning (FSL) is a challenging problem where the goal is to learn new concepts with

only a small number of labeled samples, similar to how humans learn new things by incorporating

prior knowledge and context. One promising approach to tackle FSL problems is meta-learning,

which learns to extract and generalize transferable meta-knowledge from a distribution of tasks

and quickly adapt it to unseen tasks.

Many meta-learning methods [1, 81, 107] are built upon the model-agnostic meta learning

(MAML) framework [28]. The MAML method aims to learn a single set of model parameters

(for any arbitrary network architecture) that can be quickly fine-tuned to deliver high perfor-

mance on unseen tasks. However, most MAML variants are grounded in the context of a ho-

mogeneous task distribution where all tasks originate from the same concept domain and thus

implicitly assume that all transferable knowledge are globally shared among all tasks [100].

This assumption, however, constrains the generalization capacity of these meta-learners when

handling multi-modal task distributions, for which the task-specific optimal parameters could

diverge significantly from one another. For example, if the task distribution consists of modes

that are far apart (e.g., animal and vehicle recognition tasks), it would be impossible to find an
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initialization that is simultaneously close to all modes.

Recent work has demonstrated that the generalization of MAML and, by extension, its many

variants, is indeed related to the similarity of tasks in the training distribution [112]. This per-

spective aligns with many previous clustering approaches that aim to detect homogeneous clus-

ters of tasks which MAML-based learners can be effectively applied [100, 105, 112]. Zhou et al.

[112] seeks to learn an ensemble of initializations, each of which is set to represent a cluster

of task (i.e., a mode in the task distribution). This is achieved via augmenting the MAML loss

function with an assignment step. The cluster assignment heuristic, however, is conditioned on

the single-mode, vanilla MAML initialization and thus is likely not optimal in a multi-modal

setting.

Alternatively, Yao et al. [105] and Vuorio et al. [100] propose to implicitly cluster tasks

using the embedding vectors of their few-shot data. In particular, Vuorio et al. [100] applies

a modulation network on the learned task embedding to modulate the meta-initialization of the

predictor model, yielding the task-specific parameters. Yao et al. [105] adopts a similar idea,

but further imposes explicit hierarchical structure on the task space through jointly optimizing

several task cluster centroids. The estimated parameter modulation is then applied to the nearest

centroid based on their embedding distance.

While both methods are capable of addressing the task heterogeneity challenge, they suffer

from significant increase in parameter complexity since their respective modulation networks

must scale with the size of the predictor model (e.g., for an average convolutional architecture

with millions of parameters, the modulation network is essentially a million-output map). Even

when the modulation is applied layer-wise, learning to generate that many variables is still a

challenging task. This thus prevents applying these tactics on larger architectures.

To overcome this weakness, we develop a new heterogeneous meta-learning strategy that ef-

ficiently captures the multi-modality of the task distribution via modulating the routing between

neurons in the network, instead of directly modulating the network weights. Our approach is
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inspired by the ShuffleNet architecture [108], which employs convolutional channel shuffling

to encode a highly expressive solution space. The phenomenal success of ShuffleNet, which

achieves comparable performance to state-of-the-art models that have many-fold more parame-

ters, suggests that adapting the routing configuration (i.e., implied by the channel shuffling order)

can potentially emulate the modulation of many neurons without incurring the extra computa-

tional costs.

This insight therefore motivates us to reformulate the weight modulation network in previ-

ous heterogeneous meta-learning work [100, 105] as a routing modulation network that controls

task-specific shuffling of convolution channels. In particular, given a task embedding vector, our

modulation network learns to generate a permutation matrix which simulates the channel shuf-

fling operator when multiplied with the output of a convolution layer. To model this permutation

network, one can adopt the Gumbel-Sinkhorn layer [73], which differentiably transforms gen-

eral square matrices to discrete permutation matrices in the limit of a temperature parameter. The

permutation network thus can be optimized via learning a mapping f : Rz → RC2 , where z and

C are respectively the task embedding dimension and the number of convolutional channels.

Figure 5.1: Beneš network for C = 8. Input channels are grouped pairwise. Each square

block denotes a learnable binary switch which either maintains or permutes the ordering of its

respective pairs. Routing between layers of switches are performed in a deterministic manner [9].

Nonetheless, accurately learning a dense C × C matrix given the few shot training data
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can still be challenging, especially for large convolutional layers with many channels. To this

end, we propose an even more compact formulation of the permutation module based on the

Beneš routing network [9], which can emulate any C-permutation using at most C log2C binary

switches that pairwise permute adjacent indices (Fig. 5.1). Finally, to enable end-to-end learning

of this compact permutation network, we approximate the discrete switches by applying the same

Gumbel-softmax transformation in [73] to 2× 2 general matrices. In summary, the contributions

of this chapter include:

• A more efficient heterogeneous meta-learning framework that estimates the different modal-

ities in the task distribution via modulating the network routing configurations. This mod-

ulation operator takes the form of a permutation network that performs channel shuffling

based on the few shot training data of a task. Our meta routing modulation (MRM) frame-

work is presented in Section 5.4.

• A compact formulation of the above permutation network based on a continuous relaxation

of the classical Beneš network [9], which we call the Gumbel-Beneš layer (Section 5.4).

The Gumbel-Beneš layer trains efficiently with limited data and scales better in the number

of network channels than the state-of-the-art Gumbel-Sinkhorn method.

• A demonstration of our approach on various multi-modal meta-learning benchmarks. We

show that our framework outperforms existing methods in both generalization accuracy

and runtime (Section 5.5).

This work is co-authored by Carl Kingsford, and is currently under review at the Neural Infor-

mation Processing Systems (NeurIPS) conference, 2023.

5.2 Problem setting

In the meta-learning setting, we are given a task distribution T , where each task Ti ∼ T consists

of a datasetDi and a learning objectiveLi. Similar to many other meta-learning studies, we adopt
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a simplified setting where all tasks in T share the same learning objective L and each dataset

Di = {xij,yij}nj=1 contains n-shot supervised learning samples. The goal of meta-learning is

to train a meta-model M∗ that maps any task Ti to a parameter vector θi in the weight space

of some predictor model G, such that M∗ minimizes the expected learning loss (over random

tasks):

M∗ = argmin
M

ETi∼T

[
1

n

n∑
j=1

L
(
G(xij; θi ≜M(Ti)),yij

)]
= argmin

M
ETi∼T

[
L† (M(Ti),Di))

]
, (5.1)

where L†
G(θ,D) denotes the averaged objective value evaluated on model architecture G with

parameters θ over all data points in D. Towards this goal, the MAML framework [28] models

M∗(Ti) as a fine-tuning gradient descent step with respect to Di given some base initialization

θ∗. That is,M∗(Ti) ≜ θ∗ − η∇θL†
G(θ∗,Di), where η denotes the step size. To obtain the base

initialization θ∗, Finn et al. [28] proposes to optimize the following loss function:

θ∗ = argmin
θ

ETi∼T

[
L†

G

(
θ − η∇θL†

G

(
θ,Dt

i

)
,Dv

i

)]
, (5.2)

where {Dt
i ,Dv

i } denotes the train-validation split of Di. Intuitively, the goal of this loss function

is to find a single initialization θ∗ such that given the fine-tuning step at the time of evaluating

M∗(Ti), the adapted parameters will yield the best performance in expectation.

5.3 Related work

5.3.1 Meta-learning

Existing meta-learning approaches can be broadly classified into three families: metric-based,

model-based, and optimization-based methods. Model-based approaches [34, 95] aim to rec-

ognize the task identity from its few-shot data and use the task identity to adjust the model

state accordingly. While these methods perform well on certain task domains, they require fix-

ing the model architecture and thus are difficult to apply on arbitrary use cases. Metric-based
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methods [92, 99] learn a task similarity metric (based on observed data) which can be used to

perform inference on new tasks. Optimization-based methods [1, 28, 81, 107] learn a single

model initialization that is amenable to fast adaption and can be applied to any arbitrary architec-

ture. However, most existing metric-based and optimization-based methods assume that a single

metric model or parameter initialization is sufficient to capture the entire task distribution.

5.3.2 Heterogeneous meta-learning

Heterogeneous meta-learning (HML) is an emerging area that develops meta-learning techniques

that can generalize well to tasks drawn from a multi-modal distribution. Existing HML ap-

proaches account for task heterogeneity via (a) explicitly maintaining several local meta initial-

izations (i.e., task clusters), to which observed tasks are assigned during training [105, 112],

and/or (b) modulating a global meta initialization based on the learned task embedding vec-

tor [100, 105].

Nonetheless, both tactics have several drawbacks. The effectiveness of (a) largely depends

on the quality of the many heuristics employed, such as the number of clusters and the distance

metric used for cluster assignment. While (b) is a more principled approach that does not require

expert understanding of the task distribution, both Yao et al. [105] and Vuorio et al. [100] adopt

an additive weight modulation model that is extremely expensive to learn with parameter-heavy

predictor architectures. To improve the efficiency of (b), this paper instead adopts a permutative

routing modulation model, which implicitly maps task modes to various shuffling configurations

of convolution channels in the network architecture.

5.3.3 Routing neural networks

Routing neural networks or neural routing refers to a technique in neural network architecture

where information is selectively passed between groups of neurons based on some learned deci-

sion rules. This can be accomplished through the use of routing algorithms or specialized routing
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layers in a neural network. The most common form of routing is by pruning computational paths

(e.g., setting certain weights to zero), which is typically used to induce sparsity [91] in the net-

work for computational efficiency, or to prevent catastrophic forgetting in continual learning

scenarios [16].

Random channel shuffling was introduced by [108] in the context of designing compact ar-

chitecture to improve model expressiveness. The ShuffleNet architecture was subsequently ex-

tended to explicitly learn the shuffling order [67] (i.e., via optimizing for the permutation matri-

ces that control the shuffling). Neural routing for meta learning has only been considered by the

work of Cai et al. [14] in the form of heuristic pruning. We introduce a different approach that

explicitly learns to modulate channel shuffling given observed task data.

5.4 Methodology

Motivated by our discussion above and previous work which established that learning a single

initialization θ∗ is sub-optimal when the task distribution T is multi-modal, we now introduce our

heterogeneous meta-learning approach (Fig. 5.2). To account for task-heterogeneity, Yao et al.

[105] and Vuorio et al. [100] propose to apply task-specific modulation of the base parameter θ∗

as follows:

M∗(Ti) = mo(θ∗,Di)− η∇θL†
G(mo(θ∗,Di),Di) , (5.3)

where mo(θ∗,Di) abstracts the modulation operator that takes the form mo(θ∗,Di) = θ∗⊙ψ(Di)

in both [105] and [100], ⊙ denotes the point-wise multiplication operator, and ψ denotes some

arbitrary embedding protocol that maps a task dataset to the weight space of the predictor G. For

example, Vuorio et al. [100] models ψ as an attention mechanism, whereas Yao et al. [105] pre-

trains a ProtoNet task embedding [92] for task clustering and applies a fully connected network

to generate ψ(Di) from the cluster centroids. Both methods, however, suffer from high additional

complexity since the output dimension of ψ is the prohibitively large number of parameters in
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G. To work around this shortcoming, we instead apply the task-specific modulation tactic on the

Figure 5.2: The overview of our meta-routing approach (MRM). Task data is first embedded

as ϕ(Di). ϕ(Di) is then used to compute prototypical network loss [92] and generate channel

routing matrices interleaving convolutional layers of the predictor network. Our loss function

combines the MAML loss (over a meta-task batch) and the prototypical network loss (per task).

architecture routing level:

M∗(Ti) = θ∗ − η∇θL†
mo(G,Di)

(θ∗,Di) . (5.4)

To concretely describe our modulation operator, we will first re-imagine the architecture G as a

sequence of neural layers {G1, G2, . . . , GM}, such that for any arbitrary input x, we can rewrite

G(x) = GM ◦ GM−1 ◦ · · · ◦ G1(x). We assume that the output of layer Gi has dimension

Ci × di, where Ci is the number of feature channels and di is the (flattened) feature dimension

of each channel. Then, our modulation operator can be succinctly applied through interleaving a

sequence of routing layers {R1, R2, . . . , RM−1} in between the predictor layers of G, that is:

mo(G,Di) = GM ◦RM−1 ◦GM−1 ◦ · · · ◦R1 ◦G1 , (5.5)

where each routing layer takes the form of Rj(Q;Di) ≜ Pj(Di)Q for some intermediate feature

Q ∈ RCj×dj , such that Pj maps Di to a Cj × Cj permutation matrix. Intuitively, the goal of Pj

is to re-route the information flow between layer Gj and Gj+1 of the predictor net in response
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to the current task. It is thus appropriate for Pj to generate a permutation matrix, such that the

information channels are shuffled without degrading their signals.

To construct such a map, we first compute the ProtoNet embedding [92] of Di and apply

a convolutional layer which subsequently transforms this embedding into a general square ma-

trix in RCj×Cj . To approximate the discrete permutation constraint, we could directly apply a

Gumbel-Sinkhorn layer [73], whose output is guaranteed to converge to a permutation matrix

in the limit of its temperature parameter. We direct readers to the appropriate references for

the specific details of the involved layers. However, we note that the Gumbel-Sinkhorn layer

does not scale well with the total number of channels in G, and will show in the next sec-

tion that the permutation constraint can be approximated more compactly using a novel layer

that we call Gumbel-Beneš. For convenience, we further let π denote the combined weights of

{P1, P2, . . . , PM−1}, which fully specifies our modulation network. The base predictor parame-

ters θ∗ and the modulation parameters γ∗ can then be jointly optimized via extending the MAML

loss function [28] as follows:

(θ∗, π∗) = argmin
θ,π

ETi

[
L†

mo(G,Di;π)

(
θ − η∇θL†

mo(G,Di;π)

(
θ,Dt

i

)
,Dv

i

)
+ λLProto(Di; π)

]
,(5.6)

where LProto denotes the PROTONET loss [92] and λ denotes the trade-off hyper-parameter.

5.4.1 Gumbel-Beneš Routing Layer

The Gumbel-Sinkhorn layer is a differentiable transformation that approximately produces per-

mutation matrices. However, in order to generate a sparse permutation matrix of size C × C, it

is necessary that the Gumbel-Sinkhorn layer also receives as input a dense C×C matrix. Due to

this requirement, each routing layer Rj will require at least a quadratic number of parameters in

terms of Cj (e.g., for the convolutional map) to generate an input to the Gumbel-Sinkhorn layer.

Overall, the addition of the entire modulation component would yield an extra O(
∑M

j=1C
2
j )

learnable parameters. Although this additional complexity would be smaller than the total num-

ber of parameters in G in most cases, it could become very expensive for larger architectures.
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To overcome this challenge, we first point to a classical result from Beneš [9], which shows

that any permutation of C channels can be emulated by exactly 2 log2C layers of C/2 binary

switches (e.g., 2 × 2 permutation matrix). Within each layer, we divide the input channels into

groups of two and permute their feature pairwise via multiplying with the content of the binary

switches. The output of one layer is then forwarded to the next via a deterministic exchange

step [9]. An example routing configuration is shown in Fig. 5.1. It was shown that the Beneš

network has a congestion of 1 [9], meaning there is no two different permutations that share the

same switch configurations. As a result, it is sufficient to compactly model channel routing with

just Cj log2Cj parameters at any layer Rj , instead of C2
j if the Gumbel-Sinkhorn layer were

employed.

Finally, we can redefine our routing layer Rj in terms of the Beneš network. This is achieved

by first reformulating the convolutional map to produce a stacked tensor of continuous switch

configurations. We then apply the Gumbel-Sinkhorn transformation on these continuous config-

urations to approximate the discrete binary switches. Finally, we perform the shuffle-exchange

steps recursively to permute the input channels. Formally, we describe the computational path-

way of the routing layer Rj given input Q and task data Di as follows:

S0 = Q

Uj = fj(ϕ(Di)) Ŝl[2k − 1]

Ŝl[2k]

 = GS(Uj[l, k])

 Sl[2k − 1]

Sl[2k]

 ∀k ∈ [1, Cj/2]

Sl+1 = exchange
(
Ŝl

)
Rj(Q,Di) = S2 log2 C , (5.7)

where ϕ denotes the PROTONET embedding, fj maps task embedding to continuous switch

configurations, GS(Uj[l, k]) denotes the Gumbel-Sinkhorn transform of the component of Uj

corresponding to the kth switch of lth layer. The exchange step refers to the deterministic routing

of Beneš network, which we refer readers to Beneš [9] for details. Last, each Sl denotes the
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output of the lth Beneš layer.

5.5 Empirical Study

We compare the performance of our method using the Gumbel-Sinkhorn permutation layer [73]

(MRM-GS) and our proposed Gumbel-Beneš routing layer (MRM-GB) against several meta-

learning baselines, including MAML [28], its first-order approximation FO-MAML [1], the

prototypical network method (PROTONET) [92] and the multi-modal model-agnostic meta learn-

ing method (MMAML) [100]. We adapt the MAML and PROTONET implementations from the

LEARN2LEARN package [2], and implement the rest in PyTorch. Experiments are conducted on

a GTX-3080 GPU with 13GB memory.

For MRM-GS, MRM-GB and MMAML, we parameterize the task embedding network and

the predictor network with the same CNN architecture with 4 hidden convolutional blocks and a

simple feed-forward classification layer. Each block consists of a 3 × 3 convolution layer, fol-

lowed by BATCHNORM, MAXPOOL and RELU activations. All convolution layers have C = 32

or 64 hidden channels, depending on the specific task distribution. The mapping from task em-

bedding to modulation parameters is parameterized by a 1-layer, TANH-activated feed-forward

neural network, whose output dimension depends on the method (e.g., approximately C2 for

MRM-GS, C log2C for MRM-GB and 9C2 for MMAML). We apply the modulation to the

first hidden convolutional layer.

Both MAML and FO-MAML have no embedding network. For fair comparison against the

above methods, we parameterize the predictor network by a two-headed CNN architecture with

4 hidden convolutional blocks per head. Their outputs are then concatenated and forwarded to

the classification layer for prediction. Last, PROTONET has no predictor network and performs

prediction via clustering the input embeddings. For the same reason as above, we parameterize

its embedding network by a similar two-headed CNN architectures (no classification layer). Our

experiments are conducted on several meta-learning vision baselines, described as follows:
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• The OMNIGLOT dataset [56], which consists of 1623 handwritten characters from 50 dif-

ferent alphabets and writing systems. We randomly split the dataset by class into train

(1100 classes), validation (100 classes), and test sets (423 classes), as suggested by [84].

• The MINI-IMAGENET dataset [99], which is a subset of the larger ImageNet dataset [87]

that contains 60000 images from 100 object categories. We randomly split the dataset by

category into train (64 categories), validation (16 categories), and test sets (20 categories).

• The JIGSAW-OMNIGLOT and JIGSAW-MINI-IMAGENET datasets, which are obtained by

segmenting the training images in the respective original datasets into 2 × 2 tiles and

randomly permuting these tiles to simulate 24 different task modalities.

• The FLOWER-AIRCRAFT-FUNGI dataset, which combines: (a) The VGGFLOWER102

dataset [97] consisting of 102 classes of flowers (between 40 to 258 images per class);

(b) the FGVCAIRCRAFT dataset [68, 97] consisting of 102 classes of aircraft (100 images

per class); and (c) the FGVCFUNGI dataset [97] consisting of 1394 classes of fungi, with

a total of 89760 images.

5.5.1 Meta-learning for uni-modal task distribution

We first show that our method performs robustly on the traditional homogeneous meta-learning

setting despite the multi-modal treatment. We train all baseline methods on random batches of

tasks drawn from (a) the OMNIGLOT dataset; and (b) the MINI-IMAGENET dataset. All tasks

consist of randomly drawn images from 5 distinct labels. For each label, the task dataset contains

ns support and nq query images. For training, both the support and query images are used to train

the meta-learners. For testing, we perform fast adaptation using the support image and measure

the test accuracy on the query images. For each epoch, we sample a batch of 32 training tasks to

train each baseline method and evaluate their averaged performances over 5 random test tasks.

For the OMNIGLOT experiments, ns = 1, nq = 15. For the MINI-IMAGENET experiments,

ns = 5, nq = 5.
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Figure 5.3: Plots of training loss and average test accuracy vs. number of training epochs for

various baseline methods on OMNIGLOT (top row) and MINI-IMAGENET dataset (bottom row).

Error bars are obtained over 5 random test task batches.

Fig 5.3 plots the running mean (over 50 consecutive epochs) of (a) average test accuracy

(over 5 test tasks); and (b) training loss against the number of training epochs for each baseline

method. Across both datasets, we observe a gradual decrease in training loss and increase in

test accuracy over 2000 training epochs for all methods, including our meta-routing frameworks

MRM-GB and MRM-GS.

Additionally, MAML, MMAML, MRM-GS and MRM-GB all converge to a similar test

accuracy on this unimodal task (e.g., approximately 0.98 for OMNIGLOT and 0.60 for MINI-

IMAGENET). The final classification accuracies of both MRM-GS (0.978/0.597) and MRM-
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GB (0.976/0.590) are comparable to MAML (0.977/0.609) on these unimodal settings, while

significantly outperforming FO-MAML (0.960/0.552) and PROTONET (0.918/0.502). This is

expected since FO-MAML uses an inaccurate first-order approximation of the MAML loss,

whereas PROTONET does not make use of the task diversity in the meta task batch. We will omit

the results of FO-MAML in subsequent experiments because it is consistently outperformed

by MAML in every scenario. Overall, our empirical results demonstrate that the proposed

meta-routing framework performs robustly in standard meta-learning setting despite the extra

consideration for task heterogeneity.

5.5.2 Meta-learning for multi-modal task distribution

2× 2 Jigsaw Omniglot and Jigsaw Mini-Imagenet

We further conduct experiments to demonstrate the performance of our method in two different

settings of task heterogeneity. In the first experiment, we simulate the multi-modality of the task

distribution by applying a jigsaw transformation to the training images in the OMNIGLOT and

MINI-IMAGENET datasets. Specifically, each training/test image is first segmented into 2 × 2

smaller tiles. For each sampled task, we then randomly draw a permutation of these 4 tiles and

shuffle them accordingly to systematically derive new tasks that belong to 4! = 24 different

modalities.

Fig. 5.4 plots the running mean (over 50 consecutive epochs) of (a) average test accuracy

(over 5 test tasks); and (b) training loss against the number of training epochs for each baseline

method. We perform a total of 3000 training epochs for each JIGSAW-OMNIGLOT experiment,

and 5000 training epochs for each JIGSAW-MINI-IMAGENET experiment, which are sufficient

to observe convergence.

PROTONET demonstrates poor learning on these task distributions. This is most likely be-

cause PROTONET tries to assign similar embeddings to images of the same label, which in-

clude different jigsaw shufflings of the same image. While our approaches also make use of
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the PROTONET loss to embed tasks, the specificity of the shuffling will be captured by meta-

training the predictor network and the modulator network using the MAML loss. As a result,

our methods MRM-GB (0.944/0.595) and MRM-GS (0.948/0.580) consistently achieve the

best average test accuracies in both datasets. On the harder JIGSAW-MINI-IMAGENET dataset,

our baselines improve between 5.8 − 8.5% over the classification performance of MAML.

The other multi-modal baseline MMAML (0.935/0.580) outperforms MAML on the JIGSAW-

MINI-IMAGENET, but performs poorly on JIGSAW-OMNIGLOT.

Figure 5.4: Running means of average test accuracy vs. number of training epochs for vari-

ous baseline methods on the JIGSAW-OMNIGLOT (left) and JIGSAW-MINI-IMAGENET dataset

(right).

Fig. 5.5 further plots the running means of training loss (over 50 consecutive epochs) vs.

number of training epochs for various baseline methods on the 2 × 2 JIGSAW-OMNIGLOT and

JIGSAW-MINI-IMAGENET datasets. As expected, we observe trends similar to the classification

accuracy plots shown in Fig. 5.4. Specifically, the training loss of our methods, MRM-GS

and MRM-GB, converge to comparable values on the easier JIGSAW-OMNIGLOT dataset, and

outperform other baselines by 7% on the more complex JIGSAW-MINI-IMAGENET dataset.
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Figure 5.5: Running means of average training loss vs. number of training epochs for vari-

ous baseline methods on the JIGSAW-OMNIGLOT (left) and JIGSAW-MINI-IMAGENET dataset

(right). The vertical bars denote the standard deviations over 5 random test tasks.

5.5.3 4x4 Jigsaw Mini-Imagenet

In this experiment, we increase the number of modalities of the JIGSAW MINI-IMAGENET task

distribution. This is achieved by adopting a finer segmentation of training images into 4 × 4

jigsaw pieces. Fig. 5.6 below plots the running means of training loss and classification accuracy

of various baselines. Here, we drop both PROTONET and FO-MAML, as we have demonstrated

that they are sub-optimal baselines for multi-modal scenarios. We observe that both MRM-

GS and MRM-GB are clearly more robust in this setting, having significantly outperformed

MAML and MMAML in both accuracy (18% increase) and training loss (17% decrease). This

result suggests that our meta routing scheme is most suitable for complex task distributions.

Flower-Aircraft-Fungi

In this experiment, we simulate multi-modality via grafting three different image datasets: (a) VG-

GFLOWERS102, (b) FGVCAIRCRAFT and (c) FGVCFUNGI. The combined FLOWERS-AIRCRAFT-

FUNGI dataset thus has three distinct task modalities. We initialize the task distribution with only

data from (a) and subsequently inject data from (b) after 16000 sampled train/test tasks (around
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Figure 5.6: Running means of average accuracy and training loss vs. number of training epochs

for various baseline methods on the 4 × 4 JIGSAW-MINI-IMAGENET dataset. The vertical bars

denote the standard deviations over 5 random test tasks.

1230 epochs); and from (c) after 32000 sampled train/test tasks (around 2460 epochs). For this

experiment, we use a batch size of 8 tasks per epoch instead of 32 like the above experiments.

Fig. 5.7 plots the running mean of average test accuracies (over 5 test tasks) for the same

meta-learning baselines. The running mean window is increased to 100 to ensure visual clarity.

The dotted vertical lines in each plot mark the injection points of subsequent datasets into the task

streams. As expected, each task injection causes a significant drop in average test accuracy (and

likewise, a spike in training loss) due to the introduction of a new modality in the distribution.

This confirms that the meta initialization learned on one modality cannot be easily adapted to ad-

dress tasks from another modality, and thereby motivates the need to address task-heterogeneity

in meta-learning. Last but not least, MRM-GB achieves the best average test accuracy (0.342)

among all baselines, improving 2.4% over MMAML (0.334) and 8.9% over MAML (0.314).

This result corroborates our previous observations regarding the robust performance of our ap-

proach in a multi-modal setting.

Finally, we simulate the scenario where all three datasets are simultaneously injected onto

the task stream at the very first training epoch. In this way, the meta-model is not given sufficient

training budget to learn each dataset individually, and has to contrast the heterogeneous learn-
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Figure 5.7: Plots of running means of training loss and average test accuracy vs. number of

training epochs for various baseline methods on the multi-modal FLOWERS-AIRCRAFT-FUNGI

dataset. The dotted vertical lines respectively mark the injection points of the FGVCAIRCRAFT

and the FGVCFUNGI datasets into the task distribution.

ing signals at every point of the training process. Fig. 5.8 plots the running means of training

loss and test accuracy for the same baselines above in this scenario. As expected, the standard

deviations of training loss and test accuracy are generally larger than in the original setting with

sequential injection points. More importantly, we again observe that both MRM-GB and MRM-

GS outperform MAML and MMAML, thus confirm the effectiveness of our method on highly

heterogeneous task streams.

5.5.4 Scalability of the modulation networks

Last, we show that our method scales well in terms of the predictor network’s architecture com-

plexity. Specifically, we vary the number of hidden channels C per convolutional block in our

standard 4-block CNN architecture described above and record the training time per epoch as

well as the number of modulating parameters in Table 5.1. For this experiment, weight modu-

lation (MMAML) and routing modulation (MRM-GB, MRM-GS) are applied to all 4 blocks.

The reported runtimes are averaged over 200 consecutive training epochs.
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Figure 5.8: Plots of running means of training loss and average test accuracy vs. number of

training epochs for various baseline methods on the multi-modal FLOWERS-AIRCRAFT-FUNGI

dataset. All three datasets are injected at epoch 0. The vertical bars denote the standard deviations

over 5 random test tasks.

As expected, the number of parameters in MRM-GB increases almost linearly inC, resulting

in the most efficient runtime at every size of the predictor architecture. We note that the increase

in runtime, however, does not always correlate perfectly to the increase in the number of modula-

tion parameters. This is due to various other factors, such as the overhead cost of computing the

more complicated gradients of MRM-GB, MRM-GS compared to MMAML. Nonetheless, as

C becomes very large, we observe that the number of modulation parameters in both MRM-GS

and MMAML will grow prohibitively expensive. For example, at C = 256 (which is reasonable

for many common architectures), we were no longer able to fit the MMAML model into the

GPU memory.

5.6 Conclusion

Existing meta-learning methods assume a homogeneous task distribution, which limits their gen-

eralization ability when dealing with multi-modal task distributions. Several recent works have

attempted to rectify this problem, but suffer from increased complexity in terms of parameters.
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Table 5.1: Runtime (in seconds) per training epoch and number of learnable parameters in the

modulation networks of MRM-GB, MRM-GS and MMAML at different numbers of hidden

convolution channels. — indicates that the model exceeds our GPU memory, and its runtime

cannot be recorded.

METHOD MRM-GB MRM-GS MMAML

C RUNTIME PARAMS RUNTIME PARAMS RUNTIME PARAMS

16 3.25± 0.33 0.04M 3.35± 0.36 0.08M 3.83± 0.41 0.75M

32 3.57± 0.07 0.21M 4.48± 0.58 0.66M 6.36± 0.37 5.93M

64 4.21± 0.08 0.99M 5.58± 0.38 5.26M 7.96± 0.38 47.3M

128 5.06± 0.08 4.59M 7.16± 0.59 42.0M 12.91± 0.79 378M

256 7.84± 0.34 21.0M 12.64± 0.57 336M — 3.02B

To overcome this limitation, we propose an innovative strategy for heterogeneous meta-learning.

Our approach efficiently captures the multi-modality of the task distribution by modulating the

routing between convolution channels in the network. This mechanism can be viewed as a per-

mutation learning problem, which we model and solve using a compact neural permutation layer

based on the classical Benes routing network.

Our Gumbel-Benes layer exhibits sub-quadratic parameter complexity in the total number

of channels, in contrast to the quadratic complexity of state-of-the-art Gumbel-Sinkhorn layers.

We validate our approach on various multi-modal meta-learning benchmarks, demonstrating su-

perior performance compared to previous methods in terms of both generalization accuracy and

runtime. Theoretical understanding of our approach will be a future research consideration.
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Chapter 6

Conclusion and Future Directions

New algorithmic advances in Machine Learning (ML) and Computational Biology (CB) have

surpassed human capabilities in tasks previously considered too complex for computers. How-

ever, to construct computational pipelines with impressive predictive power, the practical design

of the solution needs to be carefully calibrated for every task instance. This process is complex,

iterative, and frequently involves human trial-and-error effort, making it time-consuming and

computationally expensive. The study of automated algorithm design (AAD) aims to revolution-

ize the way these applications are developed by automating tedious tasks such as hyper-parameter

optimization and architecture search, leading to improved accuracy and efficiency. This disser-

tation explores various aspects of the AAD problem in both ML and CB applications.

Chapter 2 investigates the kernel selection (KS) problem for kernel-based regression methods

that are widely applied in many analytic applications. This is a challenging problem because the

kernel function search space is complex and arbitrarily large, yet any valid kernel function must

satisfy a semi positive definite constraint. Previous selection methods heuristically restrict the

search space to finite sets of candidate functions to enable tractable search algorithms, but this

strategy may limit the diversity of potential kernels. To overcome this problem, we propose the

first kernel search algorithm for the infinitely large composite kernel search space, induced by a

generative grammar and a vocabulary of atomic functions. We approach the unboundedness of
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this search space by casting the kernel search problem as simultaneously optimizing a recurrent

generative model and a self-supervised termination policy that prevents the generation of overly

complex and impractical kernels. To achieve this, we develop a bi-level Bayesian optimization

technique to alternately optimize these two components of the reparameterized objective. Our al-

gorithm outperforms many existing baseline methods on different kernel recovery and regression

kernel search tasks.

However, our kernel selection approach is limited to composite kernels built from a prede-

fined set of atomic functions. Implicitly, it assumes that the most suitable kernel expression can

be represented as a combination of the known kernels. Such assumption lacks expressiveness and

may restrict the method’s usability in some applications. To overcome this limitation, a potential

extension is to incorporate recent advances in deep kernel learning [102], which utilizes deep

neural networks to parameterize the kernel functions instead of predefined atomic functions. In

particularly, a deep kernel kϕ can be written as:

kϕ(xi,xj;wϕ, wb) ≜ kb (ϕ(xi;wϕ), ϕ(xj;wϕ);wb) , (6.1)

where kb denotes some known kernel function, ϕ denotes a neural feature encoder, and wb, wϕ

are respectively their learnable parameters. This converts the problem of searching for optimal

composite kernel expressions into an architecture search task for the encoder network ϕ, which

can leverage existing methods described in Chapter 4. As the neural network search space is

significantly more expressive compared to heuristic choices of the base kernel vocabulary, this

reformulation may lead to the discovery of more expressive neural kernels, hence offering en-

hanced flexibility and performance for a wider range of tasks.

Chapter 3 investigates the minimizer sketch design (MSD) problem for biological sequence

compression. In particular, we study the family of minimizer sketching schemes that are param-

eterized by k-mer permutations. This combinatorial parameter space makes minimizer sketches

highly difficult to optimize with respect to the various sketching goals. As such, all previous

works have turned to heuristic surrogate objectives with limited theoretical connection to the
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original metrics, and thus they only achieve moderate performance on realistic sketching tasks.

Our approach for both minimizer variants presented in this dissertation is to train a deep con-

volutional neural scoring function that implicitly represents a k-mer permutation. We arrive at

a tractable learning objective via further introducing a self-supervised template model that cap-

tures the characteristics of k-mer permutations that are likely to induce desirable sketches. Via

aligning the output of the score function to that of the template function, we arrive at the first dif-

ferentiable objectives for minimizer optimization, yielding significantly improved run-time and

sketching performance on many biological sequence baselines.

The MSD frameworks investigated in this thesis are limited to the representation of sequence

sketches as collections of fixed-length k-mers. A potential extension to this dissertation is to

learn sketches that comprise of variable-sized substrings, or continuous latent embeddings of

substrings. The variable-sized substrings perspective has recently been considered by Sahlin

[88], whose method achieves promising performance on many alignment baselines. However,

there is much more to achieve in this direction, as Sahlin [88] simply relies on a heuristic pro-

cedure to link together clusters of densely sampled syncmers [24]. The latent embedding per-

spective, on the other hand, aligns with the idea of learning useful representations for natural

language tokens [21], which recently extends to biological domains [13, 50]. Nonetheless, these

pre-trained embedding models aim to learn representations that are useful for prediction, and

thus do not support sequence alignment. As such, it will be challenging to configure these em-

beddings in ways that allow us to infer conserved domains, substitutions and deletions between

sequences.

Another venue for future work is extending the proposed minimizer optimization algorithms

to the local scheme [71], which implements different local k-mer orderings for different win-

dows (in contrast to applying a single global ordering to all windows, such as in the minimizer

approach). This modification would potentially yield sketching schemes that are more robust in

long sequences with multiple distinct local patterns. Optimizing the local scheme translates to
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learning a neural scoring function f that is consistent on a window level, but not on a k-mer level.

That is, similar windows will rank constituent k-mers similarly, but a k-mer may not receive the

same score everywhere in the sequence. Because of this, there is no single score vector that

represents the entire sequence, and thus it would be challenging to design template functions that

capture desirable scoring patterns. Modelling a new class of template functions would therefore

be the central goal of this research direction.

Chapter 4 investigates the federated neural architecture search (FNAS) problem. The goal

is to find optimal neural network architectures for a collection of decentralized clients seeking

to solve related computational tasks. This setup is especially useful in privacy-sensitive (e.g.,

clients do not want to share data) and resource-constrained (e.g., clients do not have sufficient

data) systems as it allows high-performing architectures to be collectively inferred. Previous

works in this direction are restricted to the scenario in which all clients seek to solve the same

task, and therefore they focus on finding a homogeneous architecture across clients. This dis-

sertation instead considers a more realistic personalized learning setting where local tasks are

not necessarily identical, and might require architectural adaptations to address task-specific nu-

ances. We approach this challenge from a meta-learning perspective, with the goal of designing

a base architecture that can efficiently adapt to specific tasks with reasonably small fine-tuning

budgets. To facilitate this, we develop a novel search space for personalizable architectures,

and a new approximation of the MAML meta learning objective [28] to ensure the scalability of

our algorithm. Finally, we demonstrate that our method, FEDPNAS, outperforms the federated

extension of previous state-of-the-art NAS frameworks on various vision benchmarks.

As the proposed approach brings together Federated Learning, Meta Learning and NAS, it

naturally inherits the technical challenges from each approach. For example, the learning degra-

dation issue for heterogeneous clients in FL [60] is substantially more challenging when applied

to NAS due to the large dimension of the over-parameterized master network. Our heterogeneous

learning framework in Chapter 5 is a step toward addressing the task heterogeneity challenge,
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but it does not trivially extend to the NAS setting and thus this challenge will remain an avenue

for future investigations.

In addition, existing FL methods, including the proposed FEDPNAS approach, typically as-

sume that the solution model is fully parametric and can be jointly inferred via aggregating the

local copies of its parameters. This mode of aggregation is not applicable to non-parametric

models, such as the Gaussian process regression [83] framework, that compute data-dependent

predictions of the form y∗ = f(x∗,D), where x∗ denotes the unseen input, D denotes the ob-

served training data, and y∗ denotes the predicted outcome corresponding to x∗. This is be-

cause the aggregated global model would necessarily require access to the local data to perform

prediction, and thus it will trivially violate the privacy-preserving objective of FL. A potential

approach to this problem is to segment the solution architecture into distinct communicable and

non-communicable portions (in an analogous fashion to the FEDPNAS search space) to facilitate

partial model aggregation. For example, a Gaussian process with deep kernel [102] can be made

amenable to FL via communicating the parameters of the encoders while keeping the local data

private. It would also be of interest to investigate the convergence of this approach as compared

to that of traditional FL with full model aggregation.

Chapter 5 investigates the meta-learning problem that focuses on training models to quickly

adapt and generalize to unseen tasks with minimal data. Meta-learning has found applications in

various fields, including computer vision, natural language processing, robotics, and optimiza-

tion problems. It holds the promise of enabling artificial general intelligence and potentially

reduces the need for large amounts of task-specific data and enhancing the efficiency of learning

algorithms.

Most existing meta-learning frameworks operate under the assumption that the optimal so-

lution distribution (associated with tasks within the task distribution) is concentrated around a

singular mode, and thus they deem it sufficient to train a single base model that can easily adapt

to any other task. Unfortunately, this assumption does not encompass situations where the task
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distribution is multi-modal. To tackle this restrictive assumption, this dissertation introduces a

new class of convolutional neural architecture that incorporates adaptive channel routing layers

to implicitly represents exponentially many solution modes (architecture configurations). By

learning a task-driven routing model, our method maps similar tasks to the same mode and dif-

ferent tasks to different modes. Consequently, for unseen tasks, fine-tuning is only necessary

to adjust the nearest mode toward the optimal solution. We show that this approach results in

a more efficient meta-learning protocol that outperforms previous state-of-the-art methods on

several multi-modal baseline task streams.

While this dissertation provides a new algorithmic perspective on solving the heterogeneous

meta-learning problem, there remain several promising avenues for future exploration. One cru-

cial direction is to investigate a more rigorous quantification of task heterogeneity. Developing

robust measures to gauge and categorize the diversity across tasks could provide a foundation

for designing tailored solutions that effectively accommodate varying data distributions, modal-

ities, and complexities. Furthermore, a weakness of the current framework is that even though

many different solution modes are implicitly encoded in the channel routing architecture, they

are strongly correlated due to having shared parameters, and thus are not ideal for generalization

to unseen task modalities. A crucial future direction therefore involves the development of more

robust meta-models that yield decoupled solution modes, while maintaining efficiency during the

training process.

126



Bibliography

[1] Antreas Antoniou, Harrison Edwards, and Amos Storkey. How to train your MAML.

arXiv preprint arXiv:1810.09502, 2018. 5.1, 5.3.1, 5.5
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