
Game-Theoretic Decision Making in
Imperfect-Information Games

Learning Dynamics, Equilibrium Computation, and Complexity

Gabriele Farina
CMU-CS-23-117

May 2023

Computer Science Department

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA

Thesis Committee
Tuomas Sandholm, Chair

Vincent Conitzer

Geoffrey Gordon

J. Zico Kolter

Avrim Blum (Toyota Technological Institute at Chicago)

Constantinos Daskalakis (Massachusetts Institute of Technology)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

Copyright © 2023 Gabriele Farina

Parts of this research was sponsored by the National Science Foundation under grant num-

bers IIS-1718457, IIS-1617590, IIS-1901403, and CCF-1733556; the ARO under awards

W911NF-20-1-0081, W911NF-17-1-0082, and W911NF-22-1-0266; a 2019-2020 Facebook Research

fellowship. The views and conclusions contained in this document are those of the author and

should not be interpreted as representing the official policies, either expressed or implied, of any

sponsoring institution, the U.S. government or any other entity.

Keywords: computational game theory, extensive-form games, learning dynamics, equilibrium

computation.

To the many scientists and scholars whose work laid the foundations for this dissertation.
Your ingenuity, innovation, and tireless pursuit of knowledge have been a great personal inspiration.

Abstract

Designing machines that can reason strategically and make optimal decisions even in the

presence of imperfect information and adversarial behavior is a fundamental goal of artificial

intelligence. Our understanding of game-theoretic decision-making is fairly advanced in

normal-form games, strategic interactions in which all players act once and simultaneously,

selecting (possibly randomizing their choice) an action from a pre-determined finite set

of possibilities. In contrast, this dissertation focuses on the more realistic imperfect-

information extensive-form games, tree-form decision-making problems in which decision

makers can face multiple decisions interleaved with observations about the way previous

decisions affected the (partially hidden and possibly adversarial) multiagent environment.

This dissertation seeks to close some recognized open problems in this area, and provide

solid theoretical and algorithmic foundations for strategic, game-theoretic decision-making

in imperfect-information extensive-form games. We highlight the following contributions.

• We close the long-standing open question of whether extensive-form correlated equilib-

ria can arise from efficient, uncoupled learning dynamics, establishing unconditional

positive results.

• We settle the complexity of computing extensive-form perfect equilibria in two-player

games, a recognized open problem, showing it matches that of Nash equilibrium.

• We establish learning dynamics with state-of-the-artOT (log T/T) convergence to coarse

correlated equilibrium, improving as a corollary known bounds for normal-form games.

• We uncover a kernelized version of the classic multiplicative weights update algo-

rithm. This algorithm leads to learning dynamics for coarse correlated equilibria with

theoretical state-of-the-art dependence on the size of the imperfect-information game.

• We give fundamental results about the geometry of correlated strategies, identifying

new important classes of games where optimal (e.g., welfare-maximizing) correlated

solution concepts can be computed in polynomial time, yielding positive complexity

results for extensive-form correlation.

• We give the first learning algorithm with guaranteed convergence to welfare-maximizing

correlated solution concepts, and show their state-of-the-art empirical performance.

• We give state-of-the-art algorithms that enable, for the first time, finding exact trembling-

hand refinements of Nash equilibrium in large games with up to half a billion terminal

states.

• We study the problem of computing optimal team strategies in zero-sum adversarial

team games, and give state-of-the-art algorithms and positive complexity results for

that setting.

• We give learning dynamics that can incorporate a model of the player to produce

strong, human-compatible strategies. These dynamics were a key component in

training artificial intelligence for the game of Diplomacy, a 7-player game involving

both cooperation and competition with humans.

Acknowledgments

Before delving into the contents of the dissertation, I would like to take a moment to express

my heartfelt appreciation to everyone who has been a part of my academic journey and has

contributed to the completion of this dissertation.

To my advisor, Tuomas Sandholm, thank you for the guidance, encouragement, and support

throughout my graduate studies. Your mentorship has helped me grow both as a researcher and

as a person. I am grateful for the countless intellectually stimulating discussions we had, and for

the great deal of academic freedom you have always entrusted me with.

To my roommates over the years, Zach, Jay, and Camille, thank you for the laughter, support,

and fun memories we have shared. From impromptu BBQs to late-night chats, you have

complemented grad school in so many ways. You have often challenged my perspective and

helped me adjust my focus on the things that matter. I was lucky to have you as a second family.

To Margarida, thank you for your unwavering love and support. Your patience, kindness, and

help have been a source of inspiration and have meant the world to me. I am grateful for every

moment we have shared together.

To my committee members, colleagues, mentors, and peers, thank you for your feedback,

insights, and collaborations. Your contributions have broadened my perspective and enriched my

research. I am grateful for the friendships and connections we have formed along the way. I am

especially indebted to my mentors whose example and guidance lit the way: Christian, Nicola,

Noam, Vince, Zico, and Costis. A special thanks also to the many awesome collaborators I was

lucky to work with and learn from: Ioannis Anagnostides, Brian, Stephen, Haipeng, Ioannis

Panageas, Keegan, Misha, Sam, Chun Kai, Fei, John, Chung-Wei, Andrea, Andy, Alberto, Robin,

Luca, Federico, Tommaso, Jacob, Noah, Max, Marc, Anton, Adam, Alex, and more.

To the awesome Pittsburgh friends I have not mentioned yet, including Arman, Anna, Pietro,

Antonis, Luca, Derya, and more, thanks for all the fun, food, and drinks, and for your warmth,

company, and support. A special thanks also to my lab mates and office mates: Ellen, Sid, Carlos,

Brandon, and Roger.

To the Computer Science Department at CMU, and to Meta, thank you for your generous

financial support, which has allowed me to pursue my research interests and complete this

dissertation.

Finally, to my loving family I express my heartfelt gratitude for your steadfast support.

Contents

I Introduction, notation, and background 1

1 Introduction 3
1.1 Structure and summary of contributions . 7

1.2 Research discussed in this dissertation . 10

Mathematical notation . 15

2 Imperfect-information extensive-form games 17
2.1 Game trees and information sets . 18

2.2 The player’s perspective: Tree-form decision processes . 21

2.2.1 Extracting a tree-form decision process from the game tree 22

2.2.2 Notation . 24

2.3 Strategies and sequence-form representation . 26

2.3.1 Sequence-form representation of strategies . 27

2.3.2 Deterministic sequence-form strategies and Kuhn’s theorem 29

3 No-regret learning in games 31
3.1 Hindsight rationality and Φ-regret . 32

3.1.1 Definition of Φ-regret for a player in the repeated game 32

3.1.2 Relationship between Φ-regret and game-theoretic equilibrium 33

3.1.3 Feedback available to the learning player . 34

3.2 Mathematical abstraction of a predictive no-Φ-regret algorithm 35

3.2.1 The canonical optimistic learning setup (COLS) for games 38

3.2.2 The important special case of external regret minimization 39

3.2.3 Reducing Φ-regret minimization to external regret minimization 39

3.2.4 Degrees of predictivity . 40

3.3 No-external-regret algorithms for probability simplexes . 41

3.3.1 Multiplicative weights update (MWU) and its predictive variant (OMWU) 41

3.3.2 Regret matching (RM), regret matching
+

(RM+
), and variants 44

ii CONTENTS

II Computation of coarse-correlated and Nash equilibria 47

4 Composability of learning dynamics and predictive counterfactual regret minimization 49

Dynamics with OT (1/
√
T) convergence to coarse-correlated equilibrium, linear-time iterations,

state-of-the-art practical performance in many game instances

4.1 Contributions and related work . 49

4.2 Regret circuits . 51

4.2.1 Pictorial depiction of regret circuits . 51

4.2.2 Cartesian product . 52

4.2.3 Convex hull . 54

4.2.4 Affine transformation and Minkowski sum . 57

4.2.5 Scaled extension . 59

4.3 Predictive counterfactual regret minimization paradigm . 63

4.3.1 Predictive RM (PRM) and predictive RM+
(PRM+

) algorithms 67

4.3.2 Experimental evaluation . 68

5 Notions of distance for sequence-form strategies, and prox methods 71
Notion of distance for sequence-form strategies with both linear-time projections and polynomial
diameter • Exact polynomial-time algorithm for Euclidean projections • RVU-predictive dynamics
with linear-time iterations, OT (1/T 3/4) convergence to coarse-correlated equilibrium in multiplayer
games, and OT (1/T) convergence to Nash equilibrium in two-player zero-sum games

5.1 Contributions and related work . 72

5.2 Preliminaries . 73

5.2.1 Distance-generating functions and proximal setups . 73

5.2.2 Applications . 75

5.2.3 Online mirror descent and follow-the-regularized-leader 75

5.2.4 Bilinear saddle points: Excessive gap technique and mirror prox 76

5.3 Euclidean distance-generating function . 79

5.3.1 Exact Euclidean projection algorithm . 80

5.4 Distance-generating functions with linear-time projections . 84

5.4.1 Dilated distance-generating functions . 84

5.4.2 Dilatable global entropy distance-generating function 88

5.5 Experimental evaluation . 97

5.5.1 MPROX and EGT without aggressive stepsizing . 99

5.5.2 EGT with aggressive stepsizing . 100

5.A Appendix: Properties of SMPL functions . 101

6 Strongly predictive learning dynamics, and OT (log T/T) convergence in self play 105
Strongly predictive dynamics for imperfect-information extensive-form games • State-of-the-art
OT (log T/T) convergence to coarse-correlated equilibrium in self play

6.1 Related work . 105

6.2 Contributions . 106

6.3 Setup and algorithm pseudocode . 107

CONTENTS iii

6.4 Regret analysis . 108

6.5 Connecting strong predictivity and logarithmic regret . 111

6.6 Implementation and iteration complexity . 112

6.6.1 Local proximal oracle . 113

6.6.2 Linear maximization oracle . 115

6.7 Experimental evaluation . 116

6.A Appendix: Proof details . 117

6.A.1 Proof of Proposition 6.1 . 117

6.A.2 Proof of Proposition 6.2 . 119

6.A.3 Proof of Corollary 6.1 . 125

6.A.4 Proof of Theorems 6.2 and 6.3 . 127

7 State-of-the-art regret dependence on game size via kernelization 131
Kernelized version of the multiplicative weights update algorithm enables reducing learning in
imperfect-information extensive-form games to learning in simultaneous game • Dynamics with
theoretical state-of-the-art dependence on game size, OT (log4 T/T) convergence to coarse-correlated
equilibria in self play, and linear-time iterations

7.1 Contributions and related work . 131

7.2 A natural reduction: Running OMWU on the vertices of the strategy set 133

7.3 Kernelized multiplicative weights . 135

7.3.1 The sequence-form kernel . 135

7.3.2 Using the kernel to simulate the Vertex OMWU algorithm 136

7.4 Efficient evaluation of the sequence-form kernel . 138

7.4.1 Worst-case linear complexity for a single evaluation . 138

7.4.2 Batched computation and amortized complexity . 139

7.5 Regret bound of Kernelized OMWU . 141

7.6 Experimental evaluation . 142

7.A Appendix: Proof details . 144

7.A.1 Proof of Theorem 7.4 . 144

7.A.2 Proof of Proposition 7.1 . 146

III Computation of extensive-form correlated and team equilibria 151

8 Uncoupled learning of extensive-form correlated equilibrium 153
Efficient, uncoupled no-regret learning dynamics for extensive-form correlated equilibria in imperfect-
information extensive-form games • Practical algorithm for EFCE

8.1 Contributions and related work . 153

8.2 Extensive-form correlated equilibrium and its relation with Φ-regret 155

8.2.1 Trigger agents and trigger deviation functions . 155

8.2.2 Convergence to the set of EFCEs via no-Φ-regret dynamics 157

8.3 Construction of no-trigger-regret dynamics . 159

8.3.1 Canonical trigger deviation matrices . 159

8.3.2 Structural decomposition of canonical trigger deviation matrices 163

iv CONTENTS

8.3.3 Complete algorithm and analysis . 167

8.4 Final remarks . 168

8.A Appendix: Inductive computation of fixed points of trigger deviation matrices 169

9 Geometry of correlated strategies, and positive complexity results for optimal EFCE 181
Positive complexity results around optimal correlated solution concepts in imperfect-information
extensive-form games • Enables computation of the polytope of expected utilities that can be reached
via EFCE

9.1 Contributions . 181

9.2 Preliminaries, notation, and prior work . 182

9.2.1 Polytope of correlation plans Ξ . 183

9.2.2 Optimal EFCE as a linear program . 184

9.2.3 The von Stengel-Forges polytope V . 186

9.2.4 von Stengel and Forges (2008)’s result for two-player games without chance 186

9.3 Characterization of the relationship between Ξ and V . 187

9.4 Scaled-extension-based structural decomposition for V . 188

9.4.1 Examples and intuition . 189

9.4.2 Triangle-freeness . 192

9.4.3 Two-player games with public chance moves are triangle-free 193

9.4.4 Computation of the decomposition . 194

9.4.5 Integrality of the vertices of V in triangle-free games 202

9.5 Beyond triangle-freeness . 205

9.6 Experimental investigation of utilities reached by EFCE . 205

9.6.1 Two-player general-sum games . 206

9.6.2 Three-player zero-sum games . 206

9.A Appendix: Additional lemmas on the structure of V . 207

9.B Appendix: Optimal EFCE as a linear program . 209

10 Learning optimal extensive-form correlated equilibria 213
Learning algorithm converging to optimal (e.g., social-welfare-maximizing) EFCE in imperfect-
information extensive-form games • Theoretical and practical state-of-the-art technique for learning
optimal EFCE

10.1 Contributions . 213

10.2 Optimal EFCE as a bilinear saddle-point problem . 214

10.3 No-regret learning algorithm . 216

10.3.1 Construction of weakly-predictive algorithms via regret circuits (Chapter 4) 218

10.3.2 Faster rates using RVU-predictive algorithms (Chapter 5) 219

10.3.3 Remarks on last-iterate convergence . 220

10.4 Experimental evaluation . 221

CONTENTS v

11 Learning dynamics for team coordination and collusion 223
Models of team coordination and collusion • Practical state-of-the-art learning algorithm converging
to team maxmin equilibria with correlation device (TMECor) in two-team zero-sum games • Positive
complexity results to TMECor

11.1 Contributions and related work . 225

11.2 Failure of minmax theorem for team maxmin equilibrium . 225

11.3 TMECor as a bilinear saddle-point problem . 228

11.3.1 Realization vectors and low-dimensional parameterization 229

11.3.2 Connection with correlation plans and triangle-freeness 231

11.4 Experimental evaluation . 232

IV Beyond perfect rationality 235

12 Positive complexity results for trembling-hand perfect equilibria 237
Settles the complexity of computing extensive-form perfect equilibria in two-player games, showing it
is not harder than Nash

12.1 Preliminaries on trembling-hand refinements . 239

12.2 Contributions and related results . 239

12.3 Positive complexity results for two-player EFPE . 240

12.3.1 Behavioral perturbation matrices . 240

12.3.2 EFPE as a trembling linear complementarity problem (LCP) 242

12.3.3 Existence of a negligible positive perturbation (NPP) 245

12.3.4 Computation of extensive-form perfect equilibria . 249

12.3.5 Polynomial-time computation in zero-sum games . 252

12.A Appendix: Undomination does not prevent sequential irrationality 253

13 Computing exact trembling-hand refinements in two-player zero-sum games at scale 255
Scalable algorithm to compute exact trembling-hand refinements in large-scale games

13.1 Related work . 255

13.2 Refined strategies as solutions to trembling linear programs 256

13.2.1 Extensive-form perfect equilibria as trembling linear programs 257

13.2.2 Quasi-perfect equilibria: Definition and formulation 258

13.2.3 One-sided quasi-perfect equilibrium: Definition and formulation 260

13.2.4 Formulations with sparsified payoff matrices . 262

13.3 Basis stability . 263

13.3.1 Analytic basis stability condition and existence of stable bases 264

13.3.2 Existence of stable bases . 265

13.4 A practical algorithm for finding a TLP limit solution . 268

13.4.1 Basis-stability oracle . 269

13.4.2 Oracle for non-singular basis matrices . 270

13.4.3 Oracle for singular basis matrices . 272

13.4.4 Limit of strategy . 275

vi CONTENTS

13.5 Experimental evaluation . 275

13.5.1 Experiments on small and medium-sized benchmark games 275

13.5.2 Experiments on real-world poker endgames . 277

14 Quantal response and regularization towards human play 279
Learning dynamics biased towards to a given model of behavior • Learning dynamics for logit quantal
response equilibria in two-player zero-sum games • Construction of AI players for the game of no-press
Diplomacy

14.1 Contributions and related work . 279

14.2 Logit quantal responses and KL-anchored responses . 282

14.2.1 Logit quantal responses . 282

14.2.2 Logit quantal response as an instances of KL-anchored response 283

14.2.3 Learning dynamics for KL-anchored equilibria . 284

14.2.4 Imitation-anchored responses in imperfect-information extensive-form games 285

14.3 Modeling uncertainty on the anchoring coefficients . 286

14.3.1 A technical lemma needed in the analysis . 288

14.3.2 Regret analysis . 290

14.3.3 Last-Iterate Convergence in Two-Player Zero-Sum Games 293

14.4 Experimental evaluation in no-press Diplomacy . 300

14.4.1 Background on Double Oracle Reinforcement learning for Action exploration (DORA) 300

14.4.2 Training of our bot Diplodocus . 300

14.4.3 Experimental setup . 301

14.4.4 Performance compared to prior algorithms . 302

14.4.5 Experiments against human players . 303

Conclusions and future work 305

Bibliography 308

Appendices 324

A Description of benchmark games used in experimental evaluations 325
A.1 Description of game instances . 325

A.1.1 Battleship (B) . 325

A.1.2 Liar’s dice (D) . 326

A.1.3 Goofspiel (G) . 326

A.1.4 Limited-information Goofspiel (GL) . 326

A.1.5 Kuhn poker (K) . 326

A.1.6 Leduc poker (L) . 327

A.1.7 Pursuit-evasion (P) . 327

A.1.8 River Endgame (REL) . 328

A.1.9 Sheriff (S) . 328

CONTENTS vii

A.1.10 Double-dummy bridge endgame (T , TP) . 329

A.1.11 Ridesharing game (RS) . 329

A.1.12 Small matrix (SM) . 330

A.2 Game dimensions . 331

B Summary of notation 333
B.1 Tree-form decision processes . 334

B.2 Correlated strategies . 335

B.3 Mathematical notation . 335

viii CONTENTS

List of Algorithms

3.1 Predictive multiplicative weights update algorithm (OMWU) . 42

3.2 Regret matching (RM) . 44

3.3 Regret matching
+

(RM+
) . 44

3.4 Discounted regret matching (Discounted RM) . 45

3.5 Linear regret matching (Linear RM) . 45

4.1 Regret circuit for X × Y . 52

4.2 Regret circuit for co{X ,Y} . 55

4.3 Predictive CFR (weakly-predictive no-external-regret algorithm for sequence-form strategy

polytope) . 65

4.4 (Continued) Predictive CFR (weakly-predictive no-external-regret algorithm for sequence-form

strategy polytope) . 66

4.5 Predictive regret matching (PRM) . 68

4.6 Predictive regret matching
+

(PRM+
) . 68

5.1 Predictive FTRL . 76

5.2 Predictive OMD . 76

6.1 Log-Regularized Lifted Optimistic FTRL (LRL-OFTRL) . 107

6.2 Proximal Newton method (Tran-Dinh, Kyrillidis, and Cevher, 2015) 115

7.1 Vertex OMWU . 134

7.2 Kernelized OMWU (KOMWU) . 139

8.1 No-external-regret algorithmRσ̂ for set Λσ̂ := {Tσ̂→xσ̂ : xσ̂ ∈ Q≽j} 164

8.2 No-regret algorithm R̃ for the set co Ψ = co{Λσ̂ : σ̂ ∈ Σ} . 166

8.3 No-trigger-regret algorithm for sequence-form strategy polytopeQ 167

8.4 Extend(T, J, j∗,x) . 172

8.5 FixedPoint(T) . 174

9.1 FillOutRow((σ1, σ2), j1,S,D). 196

9.2 FillOutColumn((σ1, σ2), j2,S,D). 196

x LIST OF ALGORITHMS

9.3 Decompose((σ1, σ2),S,D). 199

12.1 Find-EFPE . 252

13.1 Naïve algorithm for finding a limit solution to a TLP P (ϵ). 268

14.1 DiL-piKL algorithm, for a generic player i . 287

List of Figures

2.1 Game tree for the game of Kuhn poker. Utilities are shown for Player 1 only; utilities for

Player 2 are the opposite Player 1’s. Due to space constraints, we used ‘chk.’ as an abbreviation

for the ‘check’ action. 18

2.2 Tree-form decision process faced by Player 1 in the game of Kuhn poker. 22

2.3 Small game tree used in the example. 23

2.4 (Left) Tree-form decision process considered in the example. (Right) The constraints that

define the sequence-form polytopeQ for Player 1 (besides nonnegativity) in the TFDP shown

on the left. 28

2.5 (Right) Examples of deterministic sequence-form strategies for the small tree-form decision

process on the left. 30

4.1 Regret circuit for the image H(X) of X under the affine transformation H 58

4.2 Regret circuit for the Minkowski sum X + Y . 59

4.3 Regret circuit for the scaled extension X
h
◁Y . 61

4.4 Sequential decision-making problem used in the example. 63

4.5 Performance of PCFR+
, CFR+

, DCFR, and LCFR on nine games. In all plots, the x axis is the

number of iterations of each algorithm. For each game, the top plot shows that the Nash gap

on the y axis (on a log scale), the bottom plot shows and the average prediction error (on a log

scale). 69

5.1 Performance of the EGT algorithm instantiated with the two entropy DGFs across nine games.

The x-axis shows the number of EGT iterations, and the y-axis shows the distance to Nash

equilibrium. 99

5.2 Performance of the MPROX algorithm instantiated with the two entropy DGFs across nine games.100

5.3 Performance of the EGT/AS algorithm instantiated with the two entropy DGFs, as well as

aggressive stepsizing, µ balancing, and initial µ fitting. 101

6.1 The lifting operation performed by the LRL-OFTRL algorithm on the strategy set. 108

6.2 The regret of the players when they follow our learning dynamics, LRL-OFTRL. The x-axis

indexes the iteration, while the y-axis the regret. The scale on the x-axis is logarithmic. We

observe that the regret of each player grows as OT (log T), verifying Theorem 6.3. 117

xii LIST OF FIGURES

7.1 Overview of reduction template fromQ to ∆Π
. The matrix V has the vertices Π ofQ as columns.134

7.2 Experimental comparison of KOMWU with CFR. 143

7.3 Experimental comparison of KOMWU with DOMWU for different choices of learning rates. 144

8.1 Canonical trigger deviation matrices. Entries shaded with dark gray represent the entries of

the matrix defined in the second case of Equation (8.5). Given trigger sequence σ̂ ∈ Σ∗
, all

indices (σr, σc) such that σr, σc ≽ σ̂ are shaded with light gray. 161

8.2 Pictorial depiction of our no-(co Ψ)-reget algorithm for the set of sequence-form strategiesQ.

For notational convenience we let Σ∗ := {1, . . . ,m}. 168

9.1 Overview of the connections among this chapter’s results. 189

9.2 Three examples of extensive-form games with increasingly complex information partitions.

As usual, the crossed nodes belong the chance player, the black round nodes belong to

Player 1, the white round nodes belong to Player 2, the gray round sets define information

sets, and the white squares denote terminal nodes (payoffs are omitted as they are irrelevant).

The numbers along the edges define the action names; for clarity we assign unique action

names at each information set. 189

9.3 Polytope of expected utilities for the players that can be reached via extensive-form correlated

equilibria in three standard two-player general-sum imperfect-information extensive-form

games. 206

9.4 Polytope of expected utilities for the players that can be reached via extensive-form correlated

equilibria in three standard three-player zero-sum imperfect-information extensive-form games.207

11.1 Matching pennies game. 226

12.1 Perfect-information game in which a sequentially-irrational Nash equilibrium is highlighted. 237

12.2 Small imperfect-information game in which a sequentially-irrational Nash equilibrium is

highlighted. 238

12.3 Modified Guess-the-Ace games. The highlighted equilibrium is undominated, and yet

sequentially irrational. 253

13.1 High-level overview of the steps of our practical algorithm for finding a TLP limit solution. . 269

13.2 Example of a situation where the basis matrix B(ϵ) is singular at ϵ = 0. 273

A.1 The graph on which the search game is played. 327

A.2 Left: Graph configuration 1, used for RS212 RS213 . Right: Graph configuration 2, used

for RS222 RS223 . In both cases the position of the two drivers is randomly chosen at the

beginning of the game, edge costs are unitary, and the reward for each node is indicated

between curly brackets. 330

List of Tables

2.1 Summary of basic notation for TFDPs. In cases where it is important to specify the player to

which the different quantities belong, a subscript with the player will be added. 26

4.1 Bottom-up construction rules for sequence-form strategy spaces. ei denotes the i-th indicator

vector, that is, the vector whose entries are all 0 except for the entry in position i, which is set

to 1. 67

5.1 (A) Various measures of the size of each of the games that we test algorithms on. (B), (C) The

magnitude of the dilated entropy DGF and dilatable global entropy DGF weights. 97

7.1 Properties of various no-regret algorithms for imperfect-information extensive-form games.

All algorithms take linear time to perform an iteration. The first set of rows are for non-

predictive algorithms. The second set of rows are for predictive algorithms. The regret

bounds are per player and apply to multiplayer general-sum games. They depend on the

maximum number of actions A available at any decision node, the maximum ℓ1 norm

∥Q∥1 = maxq∈Q ∥q∥1 over the player’s sequence-form strategy polytope Q, the depth D

of the decision polytope, and the number of players m. Optimistic algorithms have better

asymptotic regret, but worse dependence on the game constants m, A, and ∥Q∥1. Note

that our algorithms achieve better dependence on ∥Q∥1 compared to all existing algorithms.

†
Last-iterate convergence results are for two-player zero-sum games, and some results rely

on the assumption of a unique Nash equilibrium—see Section 7.5 for details.
‡
We remark

that LRL-OFTRL enjoys polynomial-time iterations (ignoring a log log T dependence), but not
linear-time iterations unlike the other methods in the table.

∗
See C.-W. Lee, Kroer, and Luo

(2021). 132

9.1 Additional notation used when dealing with correlation of strategy spaces. 183

10.1 Experimental comparison between our learning-based approach (‘Ours’, Section 10.3.1) and

using the commercial LP solver Gurobi on the linear programming formulation of optimal

EFCE (Proposition 9.1), both for computing an optimal EFCE within an optimality and

feasibility tolerance set to 1% of the payoff range of the game. 221

xiv LIST OF TABLES

10.2 Experimental comparison between our learning-based approach (‘Ours’, Section 10.3.1) and

using the commercial LP solver Gurobi on the linear programming formulation of optimal

EFCE (Proposition 9.1), both for computing an optimal EFCE within an optimality and

feasibility tolerance set to 0.1% of the payoff range of the game. 222

11.1 Comparison between TME, TMECor and Team Nash equilibrium. 224

11.2 Runtime of our learning algorithm (column ‘This chapter’), compared to prior state-of-the-art

algorithms based on linear programming (‘ZS22’, B. H. Zhang and Sandholm, 2022b) and

column generation (‘ZFCS22’, B. H. Zhang, Farina, Celli, and Sandholm, 2022) respectively,

on several standard parametric benchmark games. ‘—’: Missing or unknown value. 233

12.1 Complexity of computing trembling-hand equilibrium refinements in two-player games. . . 240

13.1 Comparison between different methods of computing Nash equilibrium refinements in

two-player zero-sum small and medium-sized benchmark games benchmark games. 276

13.2 Unsparsified and sparsified size of River endgames encountered by Libratus during the

“Brains vs AI” competition. 277

13.3 Computation of refined Nash equilibria in real poker endgames using our algorithm. 278

14.1 Performance of different algorithms. Agents above the line were retrained. Agents below the

line were evaluated using the models and the parameters provided by the authors. The ±
shows one standard error. 302

14.2 Performance of four different agents in a population of human players, ranked by Elo, among

all 43 participants who played at least 5 games. The ± shows one standard error. 304

A.1 Dimensions of game instances used in this dissertation. 331

A.2 (Continued) Dimensions of game instances used in this dissertation. 332

Part I

Introduction, notation, and
background

Chapter 1

Introduction

Designing machines that can reason strategically and make optimal decisions even in the presence

of imperfect information and adversarial behavior is a fundamental goal of artificial intelligence.
The study of strategic decision-making is a rich discipline involving models and techniques from

game theory, optimization, statistics, and others, and with applications ranging from markets

(including financial markets, auctions, etc.), to defense (including cybersecurity, airport security,

patrolling routes, etc.), to recreational games, to logistics and procurement, and more.

Our understanding of the computational aspects of game-theoretic decision-making is fairly

advanced in strategic interactions in which all players act once and simultaneously, selecting

(possibly randomizing their choice) an action from a pre-determined finite set of possibilities.

These interactions, called normal-form games, are arguably the best studied in game theory, and

have been the standard model in the theory of learning in games and online learning more

generally for a long time.

In contrast, this dissertation focuses on the more realistic and challenging tree-form decision-

making problems in which decision makers can face multiple decisions interleaved with observa-

tions about the way previous decisions affected the (partially hidden and possibly adversarial)

multiagent environment. These games go under the name of imperfect-information extensive-form
games—where the term extensive-form is a standard term in the literature, meaning tree-form—and

can model both sequential and simultaneous moves, stochastic events (such as drawing a random

card from a deck), and uncertainty about the state of the game. By allowing interleaved decisions

and observations, imperfect-information extensive-form games present unique challenges com-

pared to (and require different techniques from) normal-form games. For one, due to the presence

of observations, the number of strategies in imperfect-information extensive-form games is usually

exponential in the number of possible choices, resulting in additional computational challenges

and a more nuanced complexity landscape than interactions that terminate after a single action.

I believe that tackling the added complexity of imperfect-information extensive-form games

4 §1. INTRODUCTION

is necessary to bring strategic decision-making to the real world, where unlike single-choice

interactions, a decision maker rarely has to face just one choice, much less independently of any

observation about the state of the environment.

This dissertation seeks to provide solid theoretical and algorithmic foundations for strategic,

game-theoretic decision-making in imperfect-information extensive-form games. We identify

three main areas of contributions (a more detailed description of the contributions of each chapter,

as well as of the dependency relations among the chapters is given below, in Section 1.1).

New and state-of-the-art learning dynamics for imperfect-information games Learning

dynamics provide positive, constructive answers to the following fundamental question: Can a

player that repeatedly plays a game follow rules to refine their own strategy after each match,

so as to guarantee reaching a form of game-theoretic equilibrium in the long run? Due to their

uncoupled nature, learning dynamics are typically extremely practical methods to compute

game-theoretic solutions to large games. While the existence of powerful learning dynamics

leading to the most important notions of game-theoretic equilibrium in general normal-form

games (such as correlated and coarse-correlated equilibrium) had been a celebrated result for a

long time, much less was known in general imperfect-information games.

This dissertation provides several contributions to the theory of learning dynamics in

multiplayer imperfect-information games. Here we mention four; more work on learning in

imperfect-information extensive-form games is mentioned later in this section.

• We construct the first efficient (i.e., with polynomial-time iteration complexity) learning

dynamics for extensive-form correlated equilibrium in imperfect-information extensive-form

games. These dynamics resolve a long-standing open problem in the theory of learning

in imperfect-information extensive-form games, and beget the practical state of the art

for computing extensive-form correlated equilibria in multiplayer imperfect-information

extensive-form games.

• We show that learning coarse-correlated equilibria in imperfect-information extensive-form

games can be efficiently reduced to learning in normal-form games by means of a kernelized
version of the classic multiplicative weights update algorithm. This reduction enables

transferring results that were previously known to hold only in normal-form games to

general imperfect-information extensive-form games, thereby shortening the gap between

the two domains. The existence of such a reduction contradicts decades of popular beliefs,

and leads to regret bounds with state-of-the-art dependence on the game size, improving

on all prior learning algorithms for imperfect-information extensive-form games. This

technique is also the first to show that OT (log4 T/T) convergence to coarse-correlated

equilibrium can be achieved in imperfect-information extensive-form games while retaining

linear-time strategy updates. Before this result, the bound was only known to be possible for

§1. INTRODUCTION 5

normal-form games (Daskalakis, Fishelson, and Golowich, 2021), and the best-known result

for imperfect-information extensive-form games was of order OT (1/
√
T), exponentially

worse.

• Using a different technique, we further improve the rate of convergence to coarse-correlated

equilibrium in both imperfect-information extensive-form games and normal-form games

with any number of players. Specifically, we construct learning dynamics leading to coarse-

correlated equilibrium in multiplayer imperfect-information extensive-form games at the

theoretical state-of-the-art, near-optimal rate of OT (log T/T), while enjoying OT (log log T)
per-iteration complexity. We remark that the technique we use to establish the result applies

to the larger class of concave games (of which imperfect-information extensive-form games

and normal-form games are instances), establishing, for the first time, the existence of

near-optimal polynomial-time learning dynamics for any such games.

• Finally, we propose new learning dynamics with state-of-the-art empirical convergence

to Nash equilibrium in a large number of two-player zero-sum imperfect-information

extensive-form games.

Structure of correlated play in imperfect-information extensive-form games Several problems

of interest, including the computation of welfare-maximizing correlated solution concepts and

optimal strategies for teams in the absence of communication, can be formulated as linear

optimization problems over the set of correlated strategies of (possibly subsets of) the players. To

enable progress on those problems, a part of this dissertation focuses on developing new technique

and foundational results regarding the structure and geometry of correlated distributions of play

between players. Here, we highlight the most significant findings.

• We give positive complexity results for the problem of optimizing a linear function over the

polytope of correlated strategies between two players. Specifically, we isolate a condition—

called triangle freeness and automatically satisfied by all two-player games whose chance

moves are publicly observed—that guarantees that the set of correlated strategies can be

represented via polynomially many linear constraints, rendering optimization tractable.

When triangle freeness is not satisfied, we also discuss how the techniques can be generalized

to yield state-of-the-art parameterized complexity results. These complexity thresholds are

unique to imperfect-information extensive-form games and do not have an equivalent in

normal-form games, highlighting the intricate and fascinating structure of the former. We

also remark that the techniques we introduce in this dissertation also enable to study, for the

first time, what equilibrium points can be supported by extensive-form correlated equilibria,

highlighting the richness of behavior that arises from introducing a correlation device in

imperfect-information extensive-form games.

6 §1. INTRODUCTION

• We leverage our results regarding the structure of the polytope of correlated strategies to

construct the first no-regret learning algorithm with guaranteed convergence to the set of

optimal (for example, welfare-optimizing) extensive-form correlated equilibria, leading to

the practical state-of-the-art algorithm for the problem.

• Finally, we draw new connections between the study of correlated strategies and the study

of optimal strategies in two-team zero-sum imperfect-information extensive-form games.

By leveraging these connections, we give the first positive complexity result for the latter

problem, as well as the practical state-of-the-art learning algorithm.

Learning and equilibrium computation in the presence of imperfect players Finally, the last

part of this dissertation focuses on learning and computational techniques for imperfect (that is,

not perfectly rational) players.

• We settle the complexity of computing extensive-form perfect equilibria in two-player games,

a recognized open problem (Miltersen and Sørensen, 2006), showing that it is not harder

than computing a generic Nash equilibrium. Extensive-form perfect equilibria (EFPEs) are

trembling-hand equilibrium refinements, subsets of Nash equilibria that satisfy some additional

robustness guarantees to small mistakes of the opponents. In particular, EFPEs guarantee

that the equilibrium strategies are optimal even in parts of the game tree that are reached

only if a player has made a mistake, and are therefore appealing concepts for AI players that

need to be play against human players.

• We also give practical state-of-the-art algorithms that enable, for the first time, to find exact

trembling-hand refinements of Nash equilibrium (including EFPE and other) at scale in two-

player zero-sum imperfect-information extensive-form games. As we show, our algorithm is

able to scale to real games with up to half a billion terminal nodes, an unprecedented scale

for equilibrium refinements.

• Finally, we introduce a methodology for constraining learning dynamics to remain close to a

given anchor policy for each player. As a special case, such anchored learning algorithms can

be used to compute logit quantal response equilibria in imperfect-information extensive-form

games. We empirically investigate the use of these learning algorithms in the construction

of AI agents for the game of no-press Diplomacy, showing that our approach enables the AI

agents to comply with human conventions. In a 200-game no-press Diplomacy tournament

involving 62 human participants spanning skill levels from beginner to expert, two AI bots

trained with our algorithm both achieved a higher average score than all other participants

who played more than two games, and ranked first and third according to an Elo ratings

model. We also remark that the same methodology was recently used in building Cicero, an

AI agent for playing the full version of Diplomacy using natural language communication.

§1. INTRODUCTION 7

1.1 Structure and summary of contributions
We now summarize the structure and main contributions of each chapter of this dissertation. A

detailed list of contributions presented in each chapter is placed at the beginning of the chapter

itself, together with a discussion of the most relevant related research.

Chapters 2 and 3 give an approachable overview of imperfect-information extensive-form games

and learning in games. When presenting the key ideas of the theory of learning in games,

we opted for a modern approach, introducing the concept of predictivity early on as a

standard aspect in the definition of a no-regret algorithm rather than as a later development.

Chapter 4 introduces regret circuits, a methodology for constructing predictive no-regret al-

gorithms for composite sets obtained via convexity-preserving operations. We use the

framework to construct a predictive version of the counterfactual regret minimization (CFR)

algorithm, a no-external-regret and parameter-free algorithm for the strategy set of a player

in an imperfect-information extensive-form games. We find that our predictive algorithms

obtained via regret circuits achieve state-of-the-art empirical convergence to the set of Nash

equilibria in two-player zero-sum games in a majority of instances we test on. In addition,

the material presented in the chapter will find applications in several other chapters, such

as in the construction of the first learning dynamics for extensive-form correlated equilibria

(Chapter 8), welfare-maximizing equilibria (Chapter 10), and team strategies (Chapter 11).

Chapter 5 investigates several fundamental questions about the metric structure of strategy

spaces in imperfect-information extensive-form games, with applications to online and

offline optimization methods. The contributions are multiple, spanning different notions

of distance between strategies that arise in practice, and laying foundations applicable to

a wide range of optimization techniques. Perhaps most notably, the chapter introduces

the first notion of distance in imperfect-information games that enables projecting points

onto the strategy polytope in linear time (a key operation needed in projected optimization

methods such as mirror descent or projected gradient descent), while at the same time

guaranteeing polynomial (in the game tree size) distance between any two strategies.

Chapter 6 provides state-of-the-art regret bounds for learning in imperfect-information extensive-

form games with an arbitrary number of players, constructing learning dynamics with

guaranteed convergence to coarse correlated equilibria at a rate of OT (log T/T), all while

enjoying an OT (log log T) iteration complexity. This settles, for the positive, the question of

whether near-optimal no-regret learning can be achieved in general imperfect-information

extensive-form games, and improves the state of the art for nonsequential games as well. To

establish the result, we design new techniques that are of independent interest, as they apply

to the larger class of concave games, which contains imperfect-information extensive-form

8 §1.1. STRUCTURE AND SUMMARY OF CONTRIBUTIONS

games. This chapter depends on certain parts of Chapter 5 as prerequisites, as it builds

on new results related to efficient proximal updates for strategies in imperfect-information

extensive-form games.

Chapter 7 shows that learning in imperfect-information extensive-form games can be efficiently

reduced to learning in nonsequential games by means of a kernelized version of the classic

multiplicative weights update algorithm. This reduction enables transferring, in a black-box

fashion, results that were previously known to apply only in nonsequential games to general

imperfect-information extensive-form games, thereby shortening the gap between the two

domains. The existence of such a reduction might come as a surprise, as it contradicts

decades of popularly held beliefs. Even more surprisingly, it leads to regret bounds with

state-of-the-art dependence on the game size, improving on all prior algorithms, despite

these being designed specifically for imperfect-information extensive-form games. The

algorithm presented in this chapter is also the first to show that polylogarithmic regret can

be achieved in imperfect-information extensive-form games while retaining linear-time

strategy updates.

Chapter 8 provides the first uncoupled, polynomial-time learning dynamics leading to extensive-

form correlated equilibrium (EFCE), the natural generalization of correlated equilibrium to

imperfect-information extensive-form games. The material presented in this chapter closes

an longstanding open problem in the literature, and parts of it were recognized with a

paper award at NeurIPS and publication in the Journal of the ACM. This chapter makes use

of the formalism of regret circuits introduced in Chapter 4.

Chapter 9 focuses on the structure and geometry of correlated distributions of play between

players. As we show in this chapter and in the following ones, several problems of interest,

including the computation of welfare-maximizing correlated solution concepts and optimal

strategies for teams in the absence of communication, can all be formulated as linear

optimization problems over the set of correlated strategies of (possibly subsets of) the

players. One of the key results of the chapter is establishing new positive description

complexity results, isolating a condition—called triangle freeness and automatically satisfied

by all two-player games whose chance moves are publicly observed—that guarantees that

the set of correlated strategies can be represented via polynomially many linear constraints,

rendering optimization tractable. Along the way, several new concepts and techniques

of likely independent interest are introduced to study the combinatorial structure of

correlation. Beyond triangle freeness, we also discuss how the ideas of the chapter can be

extended to yield state-of-the-art parameterized complexity results for those optimization

problems over correlated strategies. The complexity thresholds presented in this chapter

are very different from nonsequential games and highlight the intricate and fascinating

structure of imperfect-information extensive-form games. At the end of the chapter, we use

§1. INTRODUCTION 9

our techniques to study, for the first time, what equilibrium points can be supported by

extensive-form correlated equilibria, highlighting the richness of behavior that arises from

introducing a correlation device in imperfect-information extensive-form games.

Chapter 10 combines the structural understanding of correlated strategies gained from Chapter 9

together with the formalism of regret circuits introduced in Chapter 4 to design the

first learning algorithm with guaranteed convergence to optimal (for example, welfare-

maximizing) extensive-form correlated equilibrium in imperfect-information extensive-form

games. As we show in the experimental evaluation at the end of the chapter, the use of

learning begets the practical state-of-the-art approach for computing optimal correlated

solution concepts in multiplayer imperfect-information extensive-form games.

Chapter 11 studies the problem of constructing optimal strategies in two-team zero-sum games,

where the players cannot communicate during the game. After discussing alternative

notions of game-theoretic optimality for the setting, we isolate one, TMECor, as the most

appropriate for the setting. Then, we establish strong ties between the computation of

TMECor strategies for a team and the geometry of correlation plans studied in Chapter 9.

By leveraging that connection, we provide the current state-of-the-art complexity result for

the problem of computing optimal team strategies, as well as the practical state-of-the-art

learning algorithm for TMECor. This chapter combines ideas presented in Chapters 4, 9

and 10.

Chapter 12 settles the complexity of computing an extensive-form perfect equilibrium—arguably

the best-known and most-studied sequentially-rational refinement of the Nash equilibrium—

in two-player games, a recognized problem. Extensive-form perfect equilibrium (EFPE)

resolves certain unsatisfactory behaviors that can be prescribed by Nash equilibrium when

the opponent makes a mistake. This is especially relevant when using Nash equilibrium

as the optimization target for AI bots playing games against humans. Our results show

a positive result: computing an EFPE is not harder, from a computational complexity

standpoint, than computing a Nash equilibrium, showing that the benefits of EFPE come at

no additional (theoretical) cost. However, we remark that the technique we use to establish

the complexity result in this chapter is hardly scalable, and devote the next chapter to

constructing scalable algorithms that can compute EFPE and other equilibrium refinements

at scale for the first time.

Chapter 13 presents the first algorithm able to compute exact trembling-hand equilibrium

refinements in large imperfect-information extensive-form games, significantly extending

some key ideas presented in Chapter 12. We demonstrate the scalability of our algorithm

for computing exact extensive-form perfect, quasi-perfect, and one-sided quasi-perfect (a

new solution concept we introduce), in poker endgames that were encountered as part

10 §1.2. RESEARCH DISCUSSED IN THIS DISSERTATION

of the Brains-vs-AI competition. These are games with hundreds of million of terminal

states, and provide a natural testing ground for research on refinements robust to small

mistakes of the (human) players. The scale of the games that can be handled using the

technology developed in this chapter is several order of magnitude larger that anything that

was possible before, and enables—for the first time—studying the empirical performance

of equilibrium refinements in large games.

Chapter 14 introduces a methodology for anchoring learning dynamics to remain close to given

strategies for each player. As a special case, such anchored learning algorithms can be

used to compute logit quantal response equilibria in imperfect-information extensive-form

games. We empirically investigate the use of these learning algorithms in the construction

of AI agents for the game of no-press Diplomacy, showing that our approach enables

the AI agents to comply with human conventions. This research was recognized with an

outstanding paper honorable mention at ICLR. As mentioned earlier in the introduction, in

a 200-game no-press Diplomacy tournament involving 62 human participants spanning

skill levels from beginner to expert, two AI bots trained with our algorithm both achieved

a higher average score than all other participants who played more than two games, and

ranked first and third according to an Elo ratings model. In the chapter, we also remark

that the same methodology was recently used in building Cicero, an AI agent for playing

the full version of Diplomacy using natural language communication, which was recently

featured on Science.

1.2 Research discussed in this dissertation
This dissertation combines and builds on a selection of articles that I have published during

my doctoral studies. In addition, this dissertation includes a number of improvements to the

published material, with the goal of offering a cohesive and approachable treatment of the subject.

These additions include new text, numerous examples, new figures and diagrams, remarks about

connections across different chapters, and technical improvements that I discovered in hindsight

and never published. Through this additional amount of work I hope that this dissertation will

help future researchers interested in computational aspects of imperfect-information extensive-

form games, serving as an approachable reference and partially filling a current void in the

literature.

Parts of this dissertation have appeared in the literature as follows (in chronological order for

each chapter).

Chapter 4.

§1. INTRODUCTION 11

• Farina, Gabriele, Christian Kroer, and Tuomas Sandholm (2019c). “Regret Circuits: Com-

posability of Regret Minimizers”. In: Proceedings of the International Conference on Machine
Learning (ICML).

• Farina, Gabriele, Christian Kroer, and Tuomas Sandholm (2021b). “Faster Game Solving via

Predictive Blackwell Approachability: Connecting Regret Matching and Mirror Descent”. In:

Proceedings of the AAAI Conference on Artificial Intelligence (AAAI).

Chapter 5.

• Kroer, Christian, Gabriele Farina, and Tuomas Sandholm (2018b). “Solving Large Sequential

Games with the Excessive Gap Technique”. In: Proceedings of the Annual Conference on Neural
Information Processing Systems (NeurIPS).

• Farina, Gabriele, Christian Kroer, and Tuomas Sandholm (2019b). “Optimistic Regret

Minimization for Extensive-Form Games via Dilated Distance-Generating Functions”. In:

Proceedings of the Annual Conference on Neural Information Processing Systems (NeurIPS).

• Farina, Gabriele, Christian Kroer, and Tuomas Sandholm (2021a). “Better Regularization

for Sequential Decision Spaces: Fast Convergence Rates for Nash, Correlated, and Team

Equilibria”. In: ACM Conference on Economics and Computation.

Chapter 6.

• Anagnostides, Ioannis, Gabriele Farina, Christian Kroer, Andrea Celli, and Tuomas Sandholm

(2022). “Faster No-Regret Learning Dynamics for Extensive-Form Correlated and Coarse

Correlated Equilibrium”. In: Proceedings of the ACM Conference on Economics and Computation
(EC).

• Anagnostides, Ioannis, Gabriele Farina, Christian Kroer, Chung-Wei Lee, Haipeng Luo, and

Tuomas Sandholm (2022). “Uncoupled Learning Dynamics with O(log T) Swap Regret in

Multiplayer Games”. In: Proceedings of the Annual Conference on Neural Information Processing
Systems (NeurIPS).

• Anagnostides, Ioannis, Gabriele Farina, and Tuomas Sandholm (2023). “Near-Optimal

Φ-Regret Learning in Extensive-Form Games”. In: Proceedings of the International Conference
on Machine Learning (ICML).

Chapter 7.

12 §1.2. RESEARCH DISCUSSED IN THIS DISSERTATION

• Farina, Gabriele, Chung-Wei Lee, Haipeng Luo, and Christian Kroer (2022). “Kernelized

Multiplicative Weights for 0/1-Polyhedral Games: Bridging the Gap Between Learning in

Extensive-Form and Normal-Form Games”. In: Proceedings of the International Conference on
Machine Learning (ICML).

Chapter 8.

• Celli, Andrea, Alberto Marchesi, Gabriele Farina, and Nicola Gatti (2020). “No-Regret

Learning Dynamics for Extensive-Form Correlated Equilibrium”. In: Proceedings of the
Annual Conference on Neural Information Processing Systems (NeurIPS).

• Farina, Gabriele, Tommaso Bianchi, and Tuomas Sandholm (2020). “Coarse Correlation

in Extensive-Form Games”. In: Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI).

• Farina, Gabriele, Andrea Celli, Alberto Marchesi, and Nicola Gatti (2022). “Simple Uncoupled

No-regret Learning Dynamics for Extensive-form Correlated Equilibrium”. In: Journal of the
ACM 69.6. url: https://dl.acm.org/doi/10.1145/3563772.

Chapter 9.

• Farina, Gabriele, Chun Kai Ling, Fei Fang, and Tuomas Sandholm (2019a). “Correlation in

Extensive-Form Games: Saddle-Point Formulation and Benchmarks”. In: Proceedings of the
Annual Conference on Neural Information Processing Systems (NeurIPS).

• Farina, Gabriele, Chun Kai Ling, Fei Fang, and Tuomas Sandholm (2019b). “Efficient Regret

Minimization Algorithm for Extensive-Form Correlated Equilibrium”. In: Proceedings of the
Annual Conference on Neural Information Processing Systems (NeurIPS).

• Farina, Gabriele and Tuomas Sandholm (2020). “Polynomial-Time Computation of Optimal

Correlated Equilibria in Two-Player Extensive-Form Games with Public Chance Moves and

Beyond”. In: Proceedings of the Annual Conference on Neural Information Processing Systems
(NeurIPS).

Chapter 10.

• Farina, Gabriele, Andrea Celli, Nicola Gatti, and Tuomas Sandholm (2021). “Connecting

Optimal Ex-Ante Collusion in Teams to Extensive-Form Correlation: Faster Algorithms

and Positive Complexity Results”. In: Proceedings of the International Conference on Machine
Learning (ICML).

https://dl.acm.org/doi/10.1145/3563772

§1. INTRODUCTION 13

• Zhang, Brian Hu, Gabriele Farina, Andrea Celli, and Tuomas Sandholm (2022). “Optimal

Correlated Equilibria in General-Sum Extensive-Form Games: Fixed-Parameter Algorithms,

Hardness, and Two-Sided Column-Generation”. In: Proceedings of the ACM Conference on
Economics and Computation (EC).

• Zhang, Brian Hu, Gabriele Farina, Ioannis Anagnostides, Federico Cacciamani, Stephen

McAleer, Andreas Haup, Andrea Celli, Nicola Gatti, Vincent Conitzer, and Tuomas Sandholm

(2023). Learning and Steering toward Optimal Equilibria and Mechanisms.

Chapter 11.

• Farina, Gabriele, Andrea Celli, Nicola Gatti, and Tuomas Sandholm (2018). “Ex Ante Coordi-

nation and Collusion in Zero-Sum Multi-Player Extensive-Form Games”. In: Proceedings of
the Annual Conference on Neural Information Processing Systems (NeurIPS).

• Zhang, Brian Hu, Gabriele Farina, and Tuomas Sandholm (2023). “Team Belief DAG Form:

A Concise Representation for Team-Correlated Game-Theoretic Decision Making”. In:

Proceedings of the International Conference on Machine Learning (ICML).

Chapter 12.

• Farina, Gabriele and Nicola Gatti (2017). “Extensive-Form Perfect Equilibrium Computation

in Two-Player Games”. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI).

Chapter 13.

• Farina, Gabriele, Christian Kroer, and Tuomas Sandholm (2017). “Regret Minimization in

Behaviorally-Constrained Zero-Sum Games”. In: Proceedings of the International Conference on
Machine Learning (ICML).

• Kroer, Christian, Gabriele Farina, and Tuomas Sandholm (2017). “Smoothing Method for

Approximate Extensive-Form Perfect Equilibrium”. In: Proceedings of the International Joint
Conference on Artificial Intelligence (ĲCAI).

• Farina, Gabriele, Nicola Gatti, and Tuomas Sandholm (2018). “Practical Exact Algorithm for

Trembling-Hand Equilibrium Refinements in Games”. In: Proceedings of the Annual Conference
on Neural Information Processing Systems (NeurIPS).

• Farina, Gabriele and Tuomas Sandholm (2021a). “Equilibrium Refinement for the Age of

Machines: The One-Sided Quasi-Perfect Equilibrium”. In: Proceedings of the Annual Conference
on Neural Information Processing Systems (NeurIPS).

14 §1.2. RESEARCH DISCUSSED IN THIS DISSERTATION

• Farina, Gabriele and Tuomas Sandholm (2022). “Fast Payoff Matrix Sparsification Techniques

for Structured Extensive-Form Games”. In: Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI).

Chapter 14.

• Farina, Gabriele, Christian Kroer, and Tuomas Sandholm (2019a). “Online Convex Optimiza-

tion for Sequential Decision Processes and Extensive-Form Games”. In: Proceedings of the
AAAI Conference on Artificial Intelligence (AAAI).

• Bakhtin, Anton, Noam Brown, Emily Dinan, Gabriele Farina, Colin Flaherty, Daniel Fried,

Andrew Goff, Jonathan Gray, Hengyuan Hu, Athul Paul Jacob, Mojtaba Komeili, Karthik

Konath, Minae Kwon, Adam Lerer, Mike Lewis, Alexander H. Miller, Sasha Mitts, Adithya

Renduchintala, Stephen Roller, Dirk Rowe, Weiyan Shi, Joe Spisak, Alexander Wei, David

Wu, Hugh Zhang, and Markus Zĳlstra (2022). “Human-level play in the game of Diplomacy

by combining language models with strategic reasoning”. In: Science 378.6624. url: https:
//www.science.org/doi/pdf/10.1126/science.ade9097.

• Jacob, Athul Paul, David J. Wu, Gabriele Farina, Adam Lerer, Hengyuan Hu, Anton Bakhtin,

Jacob Andreas, and Noam Brown (2022). “Modeling Strong and Human-Like Gameplay with

KL-Regularized Search”. In: Proceedings of the International Conference on Machine Learning
(ICML).

• Bakhtin, Anton, David J Wu, Adam Lerer, Jonathan Gray, Athul Paul Jacob, Gabriele

Farina, Alexander H Miller, and Noam Brown (2023). “Mastering the Game of No-Press

Diplomacy via Human-Regularized Reinforcement Learning and Planning”. In: Proceedings
of the International Conference on Learning Representations (ICLR).

https://www.science.org/doi/pdf/10.1126/science.ade9097
https://www.science.org/doi/pdf/10.1126/science.ade9097

Mathematical notation

Throughout the dissertation, we make use of the following mathematical notational conventions.

Vectors and matrices

• Vectors and matrices are marked in bold.

• Given a finite set S = {s1, . . . , sn}, we denote as ℝS (resp., ℝS⩾0) the set of real (resp.,

nonnegative real) |S|-dimensional vectors whose entries are denoted as x[s1], . . . ,x[sn].

• Similarly, given finite sets S, S′
, we denote as ℝS×S′

(resp., ℝS×S′

⩾0) the set of real (resp.,

nonnegative real) S × S′
square matrices M whose entries are denoted as M[sr, sc] (sr ∈

S, sc ∈ S′
), where sr corresponds to the row index and sc to the column index.

Standard sets

• We denote the set of real numbers as ℝ, the set of nonnegative real numbers as ℝ⩾0, and the

set {1, 2, . . . } of positive integers as ℕ.

• The set {1, . . . , n}, where n ∈ ℕ, is compactly denoted as [[n]].

• The empty set is denoted as {}.

• Given a finite set S, we denote by ∆S the simplex ∆S := {x ∈ ℝS⩾0 :
∑
s∈S x[s] = 1}. The

symbol ∆n, with n ∈ ℕ, is used to mean ∆[[n]]
.

• Given a finite set S, we use the symbol 𝕊S ⊆ ℝS×S
⩾0 to denote the set of stochastic matrices,

that is, nonnegative square matrices whose columns all sum up to 1. The symbol 𝕊n, where

n ∈ ℕ, is used to mean 𝕊[[n]]
.

Operations on sets

• Given a set S, we denote its convex hull with the symbol coS. The convex hull of the union

of finitely many sets S1, . . . , Sm is denoted co{S1, . . . , Sm}.

16 MATHEMATICAL NOTATION

• Disjoint union of set is denoted with the symbol ⊔.

Functions

• Given two functions f : X → Y and g : Y → Z, we denote by g ◦ f : X → Z their

composition x 7→ g(f(x)).

• Given a set S and a function f , the image of S via f is denoted as f(S) := {f(s) : s ∈ S}.

• Given a proposition p, we denote with 𝟙p the indicator function of that proposition:

𝟙p =

1 if p is true

0 otherwise.

Partial orders

• Given a partially ordered set (S,≺) and two elements s, s′ ∈ S, we use the standard derived

symbols s ≼ s′
to mean that (s = s′) ∨ (s ≺ s′), s ≻ s′

to mean that s′ ≺ s, and s ≽ s′
to

mean that s′ ≼ s.

Asymptotic notation

• We use the symbols O, Ω, Θ to denote the usual asymptotic notation.

• The symbol OT is used to denote that only dependence on the parameter T is highlighted,

treating all other parameters as constants.

Additional notation about games and other objects used throughout the dissertation will be

introduced in later chapters. All notation is summarized in Appendix B to help the reader.

Chapter 2

Imperfect-information
extensive-form games

Imperfect-information extensive-form
[2.a]

games model tree-form strategic interactions in which

not all actions might be observed by all players. They represent an ample majority of strategic

interactions encountered in the real world, ranging from recreational games such as poker, to

negotiation, and auctions.

The standard representation of an imperfect-information extensive-form game is through its

game tree, which formalizes the interaction of the players as a directed tree. In the game tree,

each non-terminal node belongs to exactly one player, who acts at the node by picking one of the

outgoing edges (each labeled with an action name). Imperfect information is captured in this

representation by partitioning the nodes of each player into sets (called information sets) of nodes

that are indistinguishable to that player given his or her observations. We will describe in detail

this representation in Section 2.1.

It should be stressed that one of the distinguishing features of the game tree representation of

games is that it encodes the dynamics of the interaction for all players, without taking the side of

any one player in particular. This makes the game tree a suboptimal representation for shedding

light on how individual players can learn in the game—that is, iteratively refine their strategies

to improve performance until eventually, in most cases, game-theoretic equilibrium is reached.

Instead, in most of this dissertation we will find it convenient (and insightful) to express learning

and optimization of strategies from the point of a particular player as a procedure on the player’s

tree-form decision process (TFDP). As the name suggests, the TFDP expresses the interaction from

the point of view of the player of interest, making a distinction between the decisions that the

player faces, and the observations that the player makes. We introduce TFDPs in Section 2.2,

showing how the TFDP of any player can be extracted from the game tree.

[2.a]
The term extensive-form is a standard term in the game theory literature, meaning tree-form.

18 §2.1. GAME TREES AND INFORMATION SETS

2.1 Game trees and information sets
In this section, we detail how the game tree representation captures the dynamics of a game,

and how imperfect information is encoded in this representation. As a running example, we

will illustrate the representation by analyzing the game tree of a simplified two-player variant of

poker (perhaps the archetype of imperfect-information extensive-form games), known as Kuhn
poker (Kuhn, 1950). Additional examples will be presented in Section 2.2.

chk.chk. betbet

chk.chk. betbet foldfold callcall

foldfold callcall

−1−1 +1+1 −2−2

−1−1 −2−2

chk.chk. betbet

chk.chk. betbet foldfold callcall

foldfold callcall

−1−1 +1+1 −2−2

−1−1 −2−2

chk.chk. betbet

chk.chk. betbet foldfold callcall

foldfold callcall

+1+1 +1+1 +2+2

−1−1 +2+2

chk.chk. betbet

chk.chk. betbet foldfold callcall

foldfold callcall

−1−1 +1+1 −2−2

−1−1 −2−2

chk.chk. betbet

chk.chk. betbet foldfold callcall

foldfold callcall

+1+1 +1+1 +2+2

−1−1 +2+2

chk.chk. betbet

chk.chk. betbet foldfold callcall

foldfold callcall

+1+1 +1+1 +2+2

−1−1 +2+2

QKQK QJQJ KJKJ KQKQJKJK JQJQ

A B C

FED

U
T

S
R

Q
P

Player 1 Nature

Player 2 Terminal

Y Information set

Le
ge

nd

Figure 2.1: Game tree for the game of Kuhn poker. Utilities are shown for Player 1 only; utilities for

Player 2 are the opposite Player 1’s. Due to space constraints, we used ‘chk.’ as an abbreviation

for the ‘check’ action.

Histories, actions, and payoffs The game tree represents the strategic interaction of players as

a finite directed tree. The nodes of the game tree are called histories. Each history that is not a

leaf of the game tree is associated with a unique acting player. In an n-player game, the set of

valid players is the set [[n]] ∪ {c} = {1, . . . , n, c}, where c denotes the chance (or nature) player—a

fictitious player that selects actions according to a known fixed probability distribution and

models exogenous stochasticity of the environment (for example, a roll of the dice, or drawing a

card from a deck). The player is free to pick any one of the actions available at the history, which

correspond to the outgoing edges at the histories.

The players keep acting until a leaf of the game tree—called a terminal history—is reached.

Terminal histories are not associated with any acting player; the set of terminal histories is denoted

Z . When the game transitions to a terminal node z ∈ Z , each player i ∈ [[n]] receives a payoff
according to the payoff function ui : Z → ℝ.

§2. IMPERFECT-INFORMATION EXTENSIVE-FORM GAMES 19

Example 2.1 (Kuhn poker). In the game tree of Kuhn poker (Figure 2.1), the root history of the

tree (the first move in the game) belongs to the nature player c. It models a dealer that privately

deals one card to each player from a shuffled deck containing cards {Jack,Queen,King}. The

actions of the nature player correspond to the six possible assignments of two cards from the

deck, which are annotated on the edges; for example, the leftmost edge JK corresponds to the

case in which Player 1 is dealt a Jack and Player 2 is dealt a King. Since the deck is shuffled,

each of the six actions are selected with probability
1
⁄6 by the nature player.

No matter the action selected by the dealer, the game transitions to a history of Player 1,

which marks the beginning of what in poker is called a “betting round”. First, Player 1

decides to either check (continue without betting any money) or bet $1. Then,

• If Player 1 checks, Player 2 can either check, or bet $1.

– If Player 2 checks, the game terminates with a showdown: the player with the higher

card receives from the other player whatever amount the other player bet, plus an

ante amount of $1.

– If, instead, Player 2 bets the additional $1, then Player 1 can either fold his hand or call,
that is, raise his bet by $1.

* If Player 1 folds, he has to give Player 2 only the $1 ante;
* if Player 1 calls, a showdown with the same dynamics as before.

• If Player 1 bets the $1, Player 2 can either fold her hand or call.
– If Player 2 folds her hand, Player 2 gives Player 1 the $1 ante.
– If, instead, Player 2 calls the bet, she increases her bet by $1 and a showdown occurs,

with the same dynamics as before.

Imperfect information and information sets To model imperfect information, the histories

of each player i ∈ [[n]] are partitioned into a collection Ii of so-called information sets. Each

information set I ∈ Ii groups together histories that Player i cannot distinguish between when he

or she acts there. In the limit case in which all information sets are singleton, the player never

has any uncertainty about which history they are acting at, and the game is said to have perfect
information.

Since a player always knows what actions are available at a decision node, any two histories

h, h′
belonging to the same information set I must have the same set of available actions.

Correspondingly, we can write AI to denote the set of actions available at any node that belongs

to information set I .

Example 2.1 (Continued; Kuhn poker). In Kuhn poker, each player observes their own private

card and the actions of the opponent, but not the opponent’s private card. The twelve

20 §2.1. GAME TREES AND INFORMATION SETS

information sets indicated in Figure 2.1 (six for Player 1 denoted A through F, and six for

Player 2 denoted P through U) reflect this partial information.

For example, Player 1’s histories following actions QK and QJ of the nature player (the

dealer) are part of the same information set B, in that Player 1 cannot distinguish between the

two histories, having observed only their private Queen card.

As another example, Player 2’s information set P captures the uncertainty the player has

on the underlying history after having observed a private King card, and a check from Player 1.

Example 2.2. To further illustrate how information sets capture private information, in this

example we speculate on how different rules for Kuhn poker would translate into different

information set structures.

■ First variation
Player 1 is revealed the private

card of Player 2 by the dealer.

QKQK QJQJ KJKJ KQKQJKJK JQJQ

■ Second variation
Player 2 does not get to observe

her private card.

QKQK QJQJ KJKJ KQKQJKJK JQJQ

■ Third variation
Player 1 is allowed to look at his

private card only if he decides to

check.

QKQK QJQJ KJKJ KQKQJKJK JQJQ

Perfect recall As is standard in the literature, we assume that the game has perfect recall, that

is, information sets satisfy the fact that that no player forgets about their actions, and about

information once acquired. This condition is formalized as follows.

§2. IMPERFECT-INFORMATION EXTENSIVE-FORM GAMES 21

Definition 2.1 (Perfect recall). A player i ∈ [[n]] is said to have perfect recall if, for any

information set I ∈ Ii, for any two histories h, h′ ∈ I the sequence of Player i’s actions

encountered along the path from the root to h and from the root to h′
must coincide

(or otherwise Player i would be able to distinguish among the histories, since the player

remembers all of the actions they played in the past). The game is perfect recall if all players

have perfect recall.

2.2 The player’s perspective: Tree-form decision processes
The game tree representation introduced in Section 2.1 provides a description of the global dynamics
of the game, without taking the side of any player in particular.

In this section, we will lay foundations and tools for operating with the tree-form decision process
(TFDP) that an individual player faces in an imperfect-information extensive-form game. The

TFDP provides a more natural formalism for defining player-specific quantities and procedures,

such as strategies and learning algorithms, that inherently refer to the decision space that one player

faces while playing the game. Most of the content of this dissertation, being generally concerned

with how individual players can optimize or refine their strategies so that equilibrium is reached,

will find its natural formalization in the language of TFDPs.

Example 2.3 (Player 1’s decision process in Kuhn poker). As an example, consider Player 1

in Kuhn poker (Example 2.1). From the player’s point of view, playing the game could be

summarized as follows:

• As soon as the game starts, the player observes a private card that has been dealt to

them; the set of possible signals is {Jack,Queen,King}.
• No matter the card observed, the player now needs to select one action from the set

{check, bet}.
– If the player bets, the player does not have a chance to act further

– Otherwise, if the player checks, the player will then observe whether the opponent

checks (at which point the interaction terminates) or bets. In the latter case, a new

decision needs to be made, between folding the hand, or calling the bet. In either

case, after the action has been selected, the interaction terminates.

By arranging the structure of decisions and observations along a tree as in Figure 2.2, we

obtain the tree-form decision process for Player 1.

22 §2.2.THE PLAYER’S PERSPECTIVE:TREE-FORM DECISION PROCESSES

JackJack QueenQueen KingKing

betbet betbet betbetchk.chk. chk.chk. chk.chk.

chk.chk. betbet chk.chk. betbet chk.chk. betbet

foldfold callcall foldfold callcall foldfold callcall

Decision node

Observation node

End of process

Le
ge

nd

Figure 2.2: Tree-form decision process faced by Player 1 in the game of Kuhn poker.

The tree-form decision process lays out the player’s opportunities to act. Unlike the game tree,

in which each node belongs to one of many players, the tree-form decision process is a directed

tree made of only two types of nodes: decision nodes, at which the player must act by picking an

action from a set of legal actions, and observation nodes, at which the player does not act but rather

observes a signal drawn from a set of possible signals. Furthermore, the information structure

of the player, previously defined indirectly through information sets, is captured directly in the

TFDP representation.

While the process that led us to Figure 2.2 was heuristic and based on our intuitive under-

standing of Kuhn poker, in the next subsection we discuss how a TFDP can be extracted from a

game tree in any perfect-recall imperfect-information extensive-form game.

2.2.1 Extracting a tree-form decision process from the game tree

In some cases, like in Example 2.3, it is straightforward to compile the tree-form decision process

faced by a player starting from our intuitive understanding of the game. In this subsection we

discuss how the TFDP for the player can be constructed programmatically starting from the game

tree when such an understanding is missing. We assume that an n-player imperfect-information

extensive-form game with perfect recall and a player i ∈ [[n]] of interest, have been fixed.

The set of decision nodesJi of the player’s TFDP coincides with the set of his or her information

sets, that is, Ji = Ii. This is consistent with the fact that the player cannot condition their behavior

on anything other than their information set, given that they cannot distinguish between histories

in the same information set. Furthermore, the set of actions available at any decision node

j = I ∈ Ii coincides with the set of actions AI available at any history in information set I .

Fix an information set I for the player, and for any history h ∈ I , imagine walking the path

from the root of the game tree to h, keeping track of all the information sets and actions of

Player i encountered along the path—let us call this the trace corresponding to history h. Because

the player recalls their past actions and information sets, and yet all h ∈ I are by definition

indistinguishable to the player, it follows immediately that the traces of all histories h ∈ I must

§2. IMPERFECT-INFORMATION EXTENSIVE-FORM GAMES 23

coincide. Hence, the notion of trace of I , defined as the trace of any h ∈ I , is well defined. We

give two examples illustrating traces.

Example 2.4. Consider Kuhn poker (Figure 2.1) from the point of view of Player 1.

• The trace of any history in A is the sequence (A).

• The trace of any history in E is the sequence (B, chk.,E).

From the point of view of Player 2, the trace of any history in R is the sequence (R).

Example 2.5. Consider the small game tree given in Figure 2.3.

P Q

A

B C D

11 22

33 44 55 66 77 88 99 77 88 99

Player 1

Player 2

Terminal history

Y Information set

Le
ge

nd

Figure 2.3: Small game tree used in the example.

Taking the side of Player 1, the trace of the only history in B is the sequence (A, 1,B), the

trace of any history in D is (A, 2,D), and the trace of the only history in A is (A). Taking the

side of Player 2, the trace of the only history in P is (P), and the trace of the only history in Q
is (Q).

Traces implicitly encode a notion of partial chronological ordering between information sets,

of which the player has recall—see Definition 2.1. Hence, for the TFDP of Player i to be an accurate

representation of the decision process the player faces while playing the game, it is necessary that

traces of the information sets are the same in the game tree and in the TFDP. In other words, we require

that decision points in the TFDP be structured so as to satisfy that the trace of any information set

I matches the sequence of information sets and actions encountered from the root of the TFDP to

decision node I .

Definition 2.2 (Tree-form decision process). Fix the game tree of an n-player imperfect

information game, and a player i ∈ [[n]]. A tree-form decision process (TFDP) for Player i is a

directed rooted tree made of decision, observation, and terminal nodes, satisfying the following

properties.

• The set of decision nodes Ji of the TFDP is equal to the set Ii of information sets.

• The set of actions available at each decision node j = I ∈ Ii (i.e., the set of outgoing

24 §2.2.THE PLAYER’S PERSPECTIVE:TREE-FORM DECISION PROCESSES

edges from the decision node) is equal to the set of actions AI available at any history

h ∈ I in the game tree.

• Given any decision node j = I ∈ Ii, the sequence of decision nodes and actions

encountered from the root of the TFDP to j is equal to the trace of any history h ∈ I .

We remark that Definition 2.2 leaves the labeling and structure of observation nodes unspecified.

In fact, a player might have multiple TFDPs that satisfy the definition, and differ in how the

observation nodes are placed. We illustrate this in the next example.

Example 2.6. The following are both valid TFDPs capturing Player 1’s decision process when

playing Kuhn poker.

A B C

D E F

betbet betbet betbetchk.chk. chk.chk. chk.chk.

foldfold callcall foldfold callcall foldfold callcall

A B C

D E F
betbet betbet betbetchk.chk. chk.chk. chk.chk.

foldfold callcall foldfold callcall foldfold callcall

Decision node

Observation node

Terminal node

Le
ge

nd

Example 2.7. A valid TFDP representing the decision process of Player 1 in the small game

of Figure 2.3, reproduced below on the left, is shown below on the right.

P Q

A

B C D

11 22

33 44 55 66 77 88 99 77 88 99

−→
11 22

33 44 55 66

77 88 99

A

B C

D

Decision node

Observation node

Terminal node

Le
ge

nd

2.2.2 Notation

Most of the algorithms and procedures we will introduce in this dissertation are best understood

as operating on the tree-form decision process of a player. In this section we introduce additional

notation and conventions related to such objects, which will be used throughout the document.

A summary of the notation is given in Table 2.1 and in Appendix B.

§2. IMPERFECT-INFORMATION EXTENSIVE-FORM GAMES 25

Convention regarding players In this dissertation we use the general convention of subscripting

quantities relative to a Player i with a lowercase i whenever important. This is the case, for

example, of the information sets of the players, which we have denoted I1, . . . , In in the past.

However, as most of the algorithms we will discuss in this dissertation assume that a TFDP

for a generic Player i has been fixed, it will be typical to omit the lowercase i from most of the

discussion. The notation summarized in Table 2.1 has the player omitted.

Decision and observation nodes, transition function:

• We denote the set of decision nodes in the TFDP as J , and the set of observation nodes as K.

At each decision node j ∈ J , the player selects an action from the set Aj of available actions.

At each observation node k ∈ K, the player observes a signal sk from the environment out

of a set of possible signals Sk.

• We denote ρ the transition function of the process. Picking action a ∈ Aj at decision node

j ∈ J results in the process transitioning to ρ(j, a) ∈ J ∪K ∪ {⊥}, where ⊥ denotes the end

of the decision process. Similarly, the process transitions to ρ(k, s) ∈ J ∪ K ∪ {⊥} after the

player observes signal s ∈ Sk at observation node k ∈ K.

Sequences, which identify actions at decision nodes, and will be key in defining sequence-form
strategies in the next section:

• A pair (j, a) where j ∈ J and a ∈ Aj is called a non-empty sequence. The set of all non-empty

sequences is denoted as Σ∗ := {(j, a) : j ∈ J , a ∈ Aj}. For notational convenience, we will

often denote an element (j, a) in Σ as ja without using parentheses, especially when used

as a subscript.

• The symbol ∅ denotes a special sequence called the empty sequence. The set of all sequences,

including the empty one, is denoted Σ.

• Given a decision node j ∈ J , we denote by pj its parent sequence, defined as the last sequence

(that is, decision point-action pair) encountered on the path from the root of the decision

process to j. If the player does not act before j (that is, j is the root of the process or only

observation nodes are encountered on the path from the root to j), we let pj = ∅.

• Given a sequence σ ∈ Σ, we denote with Cσ the set of decision nodes j whose parent

sequence is σ: Cσ := {j ∈ J : pj = σ}.

Subtrees and descendancy relationships Finally, we introduce the following symbols to establish

descendancy relationships:

• Given two decision nodes j, j′
, we write j ≺ j′

(or equivalently j′ ≻ j) to mean that j is an

ancestor of j′
in the TFDP and that j ̸= j′

. The symbol j ≼ j′
(or equivalently j′ ≽ j) means

that j ≺ j′
or j = j′

.

• Given two sequences ja, j′a′
, we write ja ≼ j′a′

(or equivalently j′a′ ≽ ja) to mean that

(unique) path from the root to action a′
at j′

passes through action a at j.

26 §2.3. STRATEGIES AND SEQUENCE-FORM REPRESENTATION

• The overloaded notation σ ≽ j (or equivalently j ≼ σ), defined for any j ∈ J , and sequence

σ = (j′, a′) ∈ Σ∗
, denotes that j′ ≽ j.

• Finally, we let Σj := {σ ∈ Σ∗ : σ ≽ j} ⊆ Σ∗
be the set of sequences at or below a given j ∈ J .

Symbol Description
J Set of decision nodes

Aj Set of legal actions at decision node j ∈ J
K Set of observation nodes

Sk Set of possible signals at observation node k ∈ K
ρ Transition function:

• given j ∈ J and a ∈ Aj , ρ(j, a) returns the next point v ∈ J ∪ K in the

decision tree that is reached after selecting legal action a in j, or ⊥ if the

decision process ends;

• given k ∈ K and s ∈ Sk, ρ(k, s) returns the next point v ∈ J ∪ K in the

decision tree that is reached after observing signal s in k, or ⊥ if the decision

process ends

Σ∗
Set of non-empty sequences, defined as Σ∗ := {(j, a) : j ∈ J , a ∈ Aj}

Σ Set of sequences, defined as Σ := Σ∗ ∪ {∅} where the special element ∅ is

called the empty sequence
pj Parent sequence of decision node j ∈ J , defined as the last sequence (decision

node-action pair) on the path from the root of the TFDP to decision node j; if

the player does not act before j, pj = ∅
Cσ Decision nodes j ∈ J with parent sequence σ ∈ Σ: Cσ := {j ∈ J : pj = σ}

j′ ≼ j j′ ∈ J is on the path from the root to j ∈ J
j′a′ ≼ ja Action a′

at j′
is on the path from the root to action a at j ∈ J

σ ≽ j Shorthand for σ = j′a′
with j′ ≽ j

Σ≽j Sequences at or below j: Σ≽j := {σ ∈ Σ∗ : σ ≽ j}

Table 2.1: Summary of basic notation for TFDPs. In cases where it is important to specify the player to

which the different quantities belong, a subscript with the player will be added.

2.3 Strategies and sequence-form representation

Consider the tree-form decision process faced by a player in an imperfect-information extensive-

form game. Conceptually, a strategy for a player corresponds to a choice of distribution over the

set of actions Aj at each decision node j ∈ J . So, perhaps the most intuitive representation of a

strategy, called a behavioral strategy, is as a vector x ∈ ℝΣ
⩾0 indexed over sequences assigning to

each action a at decision node j the probability of picking that action at that decision node. The set

of all possible behavioral strategies is clearly convex, as it is the Cartesian product of probability

§2. IMPERFECT-INFORMATION EXTENSIVE-FORM GAMES 27

simplexes—one per each decision node. However, that representation has a major drawback: the

probability of reaching a particular terminal state in the decision process is the product of all

actions on the path from the root to the terminal state. This makes many expressions of interest

that depend on the probability of reaching terminal states (including crucially the expected utility

in the game) non-convex.

2.3.1 Sequence-form representation of strategies

The sequence-form representation (Romanovskii, 1962; Koller, Megiddo, and von Stengel, 1996; von

Stengel, 1996) soundly resolves the issue of non-convexity. In the sequence-form representation, a

strategy is a vector x ∈ ℝΣ
⩾0 whose entries are indexed by Σ. However, the entry x[ja] contains

the product of the probabilities of all actions at all decision nodes on the path from the root of the

process to action a at decision node j. In order to be a valid sequence-form strategy, the entries in

x must therefore satisfy the following probability-flow-conservation constraints:

x[∅] = 1,
∑
a∈Aj

x[ja] = x[pj] ∀j ∈ J . (2.1)

Conversely, it is easy to see that any x that satisfies the above constraints is the sequence-form

representation of at least one behavioral strategy.

Example 2.8. Consider the TFDP introduced in Example 2.7, reproduced below.

11 22

33 44 55 66

77 88 99

A

B C

D q :=

1.00
0.50
0.50
0.25
0.25
0.10
0.40
0.00
0.50
0.00





∅

A1
A2
B3
B4
C5
C6
D7
D8
D9

Let us consider the mixed sequence-form strategy q ∈ Q defined alongside the TFDP

above. We have that q[A1] = q[A2] = 0.5, and therefore Player 1 will select between actions 1
and 2 at decision node A uniformly at random.

Suppose Player 1 selects action 1. If Player 1 reached decision node B, she would select

actions 3 and 4 with probability 0.25/0.5 = 0.5 each. On the other hand, if Player 1 reached

decision node C, she would choose action 5 with probability 0.1/0.5 = 0.2, and action 6 with

probability 0.4/0.5 = 0.8.

28 §2.3. STRATEGIES AND SEQUENCE-FORM REPRESENTATION

Analogously, if Player 1 played action 2 at decision node A, upon reaching decision node

D she would play action 8 with probability 0.5/0.5 = 1.

In general, the probability of playing action a at a generic decision node j can be obtained

by dividing q[ja] by q[pj].

The set of all sequence-form strategies will be denoted with the symbol Q. Since (2.1) defines

linear constraints, Q is a convex polytope.

Definition 2.3. The polytope of sequence-form strategies of a TFDP is the convex polytope

Q :=

x ∈ ℝΣ
⩾0 : x[∅] = 1,

∑
a∈Aj

x[ja] = x[pj] ∀j ∈ J

.

Example 2.9. Consider the tree-form decision process faced by Player 1 in the small game of

Example 2.5, which is reproduced in Figure 2.4 (Left).

The decision process has four decision nodes J = {A,B,C,D} and nine sequences

including the empty sequence ∅. For decision node D, the parent sequence is pD = A2; for B
and C it is pB = pC = A1; for A it is the empty sequence pA = ∅. The constraints that define

the sequence-form polytope (Definition 2.3) are shown in Figure 2.4 (Right).

11 22

33 44 55 66

77 88 99

A

B C

D

Sequence-form constraints:

x[∅] = 1,
x[A1] + x[A2] = x[∅],
x[B3] + x[B4] = x[A1],
x[C5] + x[C6] = x[A1],

x[D7] + x[D8] + x[D9] = x[A2].

Figure 2.4: (Left) Tree-form decision process considered in the example. (Right) The constraints

that define the sequence-form polytopeQ for Player 1 (besides nonnegativity) in the TFDP

shown on the left.

This dissertation will almost exclusively work with strategies represented in sequence form.

The polytope of sequence-form strategies possesses a strong combinatorial structure that

enables speeding up several common optimization procedures and will be crucial in developing

efficient algorithms to converge to equilibrium.

Sometimes, we will find it important to consider partial strategies that only specify behavior

at a decision node j and all of its descendants j′ ≻ j. We make that formal through the following

definition.

§2. IMPERFECT-INFORMATION EXTENSIVE-FORM GAMES 29

Definition 2.4. The set of sequence-form strategies for the subtree[2.b] rooted at j, denoted Q≽j , is

the set of all vectors x ∈ ℝ
Σ≽j

⩾0 such that probability-mass-conservation constraints hold at

decision node j and all of its descendants j′ ≻ j, specifically

Q≽j :=

x ∈ ℝ
Σ≽j

⩾0 :
∑
a∈Aj

x[ja] = 1, and

∑
a∈Aj′

x[j′a] = x[pj′] ∀ j′ ≻ j

. (2.2)

2.3.2 Deterministic sequence-form strategies and Kuhn’s theorem

Out of the polytope of all possible strategies in the decision process, deterministic strategies are

extremely important. Deterministic strategies are strategies that select exactly one action at each

decision node, without ever randomizing the choice. In other words, deterministic strategies

assign probability either 0 or 1 to each action at each decision node. Hence, when using the

sequence-form representation, the set of all deterministic strategies—denoted Π—corresponds to

the subset of Q whose components are 0 or 1.

Definition 2.5. The set of deterministic sequence-form strategies is the set

Π := Q∩ {0, 1}Σ.

Similarly, the set of deterministic sequence-form strategies for the subtree rooted at j is

Π≽j := Q≽j ∩ {0, 1}Σ≽j .

We provide examples of deterministic sequence-form strategies next.

Example 2.10 (Deterministic sequence-form strategies). Continuing Example 2.7, in Figure 2.5

(Right) we provide five deterministic sequence-form strategies π135, π136, π145, π27, π28 ∈ Π.

[2.b]
The term “subtree” does not refer to a subtree of the game tree, but rather to a subtree of the partially ordered set

(J ,≺). In other words, the term subtree here refers to the fact that the quantities are specified only at decision node j and

all of its descendants.

30 §2.3. STRATEGIES AND SEQUENCE-FORM REPRESENTATION

11 22

33 44 55 66

77 88 99

A

B C

D

π135 π136 π145 π27 π28

1.0
1.0
0.0
1.0
0.0
1.0
0.0
0.0
0.0
0.0





∅

A1
A2
B3
B4
C5
C6
D7
D8
D9

1.0
1.0
0.0
1.0
0.0
0.0
1.0
0.0
0.0
0.0





∅

A1
A2
B3
B4
C5
C6
D7
D8
D9

1.0
1.0
0.0
0.0
1.0
1.0
0.0
0.0
0.0
0.0





∅

A1
A2
B3
B4
C5
C6
D7
D8
D9

1.0
0.0
1.0
0.0
0.0
0.0
0.0
1.0
0.0
0.0





∅

A1
A2
B3
B4
C5
C6
D7
D8
D9

1.0
0.0
1.0
0.0
0.0
0.0
0.0
0.0
1.0
0.0





∅

A1
A2
B3
B4
C5
C6
D7
D8
D9

Figure 2.5: (Right) Examples of deterministic sequence-form strategies for the small tree-form

decision process on the left.

One can check that these vectors are valid sequence-form strategies by verifying that the

probability-mass-conservation constraints of Definition 2.3 hold.

As an illustration, consider the deterministic sequence-form strategy π136. When playing

according to that strategy, the agent will always choose action 1 at decision node A, action 3 at

decision node B, and action 6 at decision node C. It is impossible for the player to reach decision

node D given her strategy at A and correspondingly π136[D7] = π136[D8] = π136[D9] = 0.

Kuhn’s theorem (Kuhn, 1953) establishes the connection between the sequence-form strategy

polytope and the set of deterministic sequence-form strategies.

Theorem 2.1 (Kuhn’s theorem). The sequence-form polytope is the convex hull of the set of

deterministic sequence-form strategies, that is,

Q = co Π, and Q≽j = co Π≽j ∀ j ∈ J .

Chapter 3

No-regret learning in games

One of the key focuses of this dissertation is providing positive, constructive answers to the

following fundamental question:

Can a player that repeatedly plays an imperfect-information extensive-form game follow rules to
refine their strategy after each match, so as to guarantee mastering the game in the long run?

Throughout the different chapters, we will investigate different angles of the question: How does

one define “mastering” the game? What kind of feedback is collected by each player after each

match? How fast can the agent master the game?

To attach a quantitative measure to the goal of learning, we will operate within the framework

of regret minimization. Regret minimization is founded on the idea that learning players should

keep under control (specifically, keep as low as possible) their regret—the difference between

the reward they accumulated through the actions they played, and the reward they would

have accumulated in hindsight had they consistently modified their behavior according to some

strategy transformation function. The size of the set of transformation functions considered by

each learning player determines a natural notion of rationality of that player.

An extremely important feature of regret minimization is that it connects a local notion of

optimality, the minimization of the regret incurred by each learning player, to a global notion of

optimality, convergence to game-theoretic equilibrium. This connection informs a methodology

for computing a variety of equilibria that is core to this dissertation. As of today, algorithms

based on learning dynamics are by far the most scalable techniques for computing many notions

of game-theoretic equilibrium in large games, and have played a central role in most recent

game-playing AI breakthroughs. Compared to other traditional optimization techniques for

equilibrium computation, which tend to define a more centralized notion of update, learning

dynamics have the advantage that the optimization is decentralized (each player updates their

own strategy incrementally), and uncoupled (each player only uses feedback about their own

32 §3.1. HINDSIGHT RATIONALITY AND Φ-REGRET

utility function).

3.1 Hindsight rationality and Φ-regret

No-regret learning algorithms make the objective of “learning to play the game” concrete by

means of the quantitative metric called regret. Intuitively, as the name suggests, regret tracks the

difference between the utility that the algorithm accumulated over time, and the utility that it

could have cumulated in hindsight by employing a different strategy. More specifically, given a

generic player whose set of strategies is X , we consider a necessary condition for saying that the

player has “learnt” to play the game when looking back at the history of play, the player cannot

think of any transformation ϕ : X → X of their strategies that when applied at the whole history

of play would have given strictly better utility to the player. The size of the set Φ of transformations

ϕ : X → X considered by the player defines a natural notion of how “hindsight-rational” the agent

is. As we will see in Section 3.1.2, higher hindsight rationality is tied to the ability to recover more

sophisticated game-theoretic notion from no-regret strategies.

3.1.1 Definition of Φ-regret for a player in the repeated game

In order to formally define Φ-regret, consider a generic n-player imperfect-information extensive-

form game, and let u1, . . . , un andQ1, . . . ,Qn denote the expected utility functions and sequence-

form strategy spaces of the players, respectively. Furthermore, let Φ be a compact set of functions

ϕ : Qi → Qi for a generic player i in the game. Suppose that at all times (repetition of the game)

t = 1, 2, . . . , Player i plays according to some strategy x
(t)
i , while all other players play according

to strategies (x(t)
1 , . . . ,x

(t)
i−1,x

(t)
i+1, . . . ,x

(t)
n) =: x

(t)
−i. Then, for any time horizon T , the Φ-regret of

Player i up to time T is defined as the difference between what Player i could have accumulated

in hindsight had they consistently modified their strategy according to the best ϕ ∈ Φ, and the

expected utility that they actually accumulated; in symbols

Φ-Regi
(
{x(t)

i ,x
(t)
−i}

T
t=1

)
:= max

ϕ̂∈Φ

{
T∑
t=1

ui

(
ϕ̂(x(t)

i),x(t)
−i

)
− ui

(
x

(t)
i ,x

(t)
−i

)}
.

It is clear from the definition that regret can grow at most linearly as a function of the time

horizon T . When the player plays in a way that regret is guaranteed to grow sublinearly in T , we

say that the player is a no-Φ-regret learner. As we show in the next subsection, sublinear growth of

regret is enough to guarantee ergodic convergence to game-theoretic equilibrium.

§3. NO-REGRET LEARNING IN GAMES 33

3.1.2 Relationship between Φ-regret and game-theoretic equilibrium

An important feature of the framework of Φ-regret minimization is its ability to connect the

individual notion of Φ-regret with global notions of game-theoretic optimality. The specific notion

of game-theoretic equilibrium that can be recovered from no-Φ-regret learning players depends

on the class of deviations Φ with respect to which the agents seek to minimize regret. As the

set Φ grows, so does intuitively the rationality of the agents, and more sophisticated notions of

equilibrium are approached. Below, we mention without proof a few landmark results showing

that some of the best-studied notions of equilibrium can indeed be reached via learning dynamics.

Constant transformations (External regret) In this case, we are only requiring that the player

does not regret substituting all of the strategies they played with a unique, constant strategy

x̂ in hindsight. Despite the seemingly restrictive notion of rationality, regret minimization

with respect to constant transformation is extremely powerful.

Connection 3.1 (D. Foster and Vohra, 1997). When all players in a multiplayer game play

so that their Φ-regret with respect to the of constant transformations grows sublinearly

in the number of repetitions of the game T , their average joint strategy
[3.a]

converges to

the set of coarse correlated equilibria of the game as T →∞.

Connection 3.2 (Folklore). When the two players in a two-player zero-sum game play so

that their Φ-regret with respect to the set of constant transformations grows sublinearly

in the number of repetitions of the game T , the average strategies (x̄(T)
1 , x̄

(T)
2) :=

(1
T

∑T
t=1 x

(t)
1 , 1

T

∑T
t=1 x

(t)
2) converge to the set of Nash equilibria of the game as T →∞.

Even more, we will show in Section 3.2.3 that the minimization of regret with respect to

constant transformations forms the backbone of learning with respect to any richer set of

deviations. Φ-regret measured with respect to constant transformations is often called

external regret or static regret in the literature.

Mass-transferring deviations (Internal regret) These deviations apply only to nonsequential

games, where each player’s strategy space is the probability simplex over their finite set of

actionsA. In this context, the set of mass-transferring deviations is the set of transformation

functions that intuitively transfer the probability mass given to an action a to another action

b; formally, Φ := {ϕa→b : a, b ∈ A}, where, for all k ∈ A,

[3.a]
That is, at all times T , the correlated distribution of play µ(T)

that selects (x(t)
1 , . . . ,x

(t)
n) with probability 1/T .

34 §3.1. HINDSIGHT RATIONALITY AND Φ-REGRET

ϕa→b(x)[k] :=


x[k] if k /∈ {a, b}

0 if k = a

x[a] + x[b] if k = b.

Φ-regret measured with respect to mass-transferring transformations is often called internal
regret in the literature. It can be easily shown that an internal-regret-minimizing agent is

automatically external-regret-minimizing; so, Connections 3.1 and 3.2 apply to internal-

regret-minimizing agents too. In addition, internal-regret-minimizing agents recover

correlated equilibria of the game, as the following celebrated result states.

Connection 3.3 (Hart and Mas-Colell, 2000). When all players in a multiplayer

nonsequential game play so that their internal regret grows sublinearly as a function of

the number of repetitions of the game T , their average joint strategy
[3.a]

converges to

the set of correlated equilibria of the game.

Trigger deviation functions (Trigger regret) In Chapter 8 of this dissertation we will introduce

a generalization of the mass-transferring deviations mentioned above, called trigger devi-
ation functions. These deviation functions coincide with mass-transferring deviations in

nonsequential games, and are well-defined in any extensive-form game. In this case, we

will show how one can construct learning players that are able to update their strategies

efficiently while guaranteeing that their Φ-regret bounded with a polynomial dependence

on the size of the game tree. Most importantly, we will show that trigger deviation functions

are related to solution concept called “extensive-form correlated equilibrium”, introduced

by von Stengel and Forges (2008).

Connection 3.4 (Chapter 8). When all players in a multiplayer extensive-form game

play so that their Φ-regret relative to the set of all trigger deviation functions grows

sublinearly in the number of repetitions of the game T , their average joint strategy
[3.a]

converges to the set of extensive-form correlated equilibria of the game.

Φ-regret measured with respect to trigger deviation functions takes the name of trigger
regret.

3.1.3 Feedback available to the learning player

The previous subsections justify keeping regret as small as possible (and, in particular, at most

sublinear) as valuable goal with important connections to the computation of game-theoretic

equilibrium. In order for the player to learn and satisfy the sublinear regret requirement, it is

§3. NO-REGRET LEARNING IN GAMES 35

clearly important to define what kind of input (that is, feedback) the learning player has at his

or her own disposal. In this dissertation we will consider three models of feedback that each

learning player might use to progressively refine their strategies.

Gradient feedback In this model, after the t-th match (repetition of the game) is completed, the

learning player receives as input a vector, which represents the gradient ∇xiui(x
(t)
i ,x

(t)
−i) of

the player’s expected utility evaluated in the current strategy of each player.

Trajectory bandit feedback In this feedback model, it is assumed that the game is simulated by

having the players sample actions according to their current strategies. The learning player

observes the realized trajectory of play (the sequence of actions and observations from the

root of the player’s tree-form decision problem down to a terminal node), as well as the

realized utility.

Bandit optimization feedback In this feedback model, the learning player only observes the

realized utility, but not the realized trajectory of play. One way to think about this feedback

model is that at the beginning of each match, each player writes down their strategy, and

sends it to a third party. The third party simulates the game on behalf of the players, and

informs every player of their expected utility. It might come as a surprise to the reader that

even from this extremely limited feedback, learning and convergence to equilibrium are

possible.

The majority of this dissertation will consider learning algorithms that operate with gradient

feedback, for the important reason that learning under trajectory bandit and bandit optimization

feedback can be reduced to it. Specifically, it is known that the feedback of the latter two models

can be used to construct an unbiased estimator of the gradient of the utility function, making it

feasible to retrofit a learning algorithm designed for gradient feedback into one for the trajectory

bandit or bandit optimization feedback.

3.2 Mathematical abstraction of a predictive no-Φ-regret algo-
rithm

We have seen in Section 3.1.1 that a desirable goal for a generic player i in a repeated game is to

ensure that the Φ-regret

Φ-Regi
(
{x(t)

i ,x
(t)
−i}

T
t=1

)
:= max

ϕ̂∈Φ

{
T∑
t=1

ui

(
ϕ̂(x(t)

i),x(t)
−i

)
− ui

(
x

(t)
i ,x

(t)
−i

)}
(3.1)

grows sublinearly as a function of the number of repetitions of the game T , no matter the strategies

x
(t)
−i of the opponents. By construction of the sequence form, each player’s utility is linear the

36 §3.2. MATHEMATICAL ABSTRACTION OF A PREDICTIVE NO-Φ-REGRET ALGORITHM

player’s strategy, and in particular

ui(· ,x(t)
−i) = ⟨∇xi

ui(x(t)
1 , . . . ,x(t)

n), · ⟩.

Hence, we can rewrite (3.1) to express the goal of Player i as ensuring that the quantity

Φ-Regi
(
{x(t)

i ,x
(t)
−i}

T
t=1

)
:= max

ϕ̂∈Φ

{
T∑
t=1

〈
∇xiui(x

(t)
1 , . . . ,x(t)

n), ϕ̂(x(t)
i)− x

(t)
i

〉}
, (3.2)

grows sublinearly in the number of repetitions T , no matter the strategies x
(t)
−i played by the

opponents. The mathematical abstraction of a no-Φ-regret algorithm generalizes (3.2), by asking

that

Φ-Regi
(
{x(t)

i ,u
(t)
i }

T
t=1

)
:= max

ϕ̂∈Φ

T∑
t=1

〈
u(t), ϕ̂(x(t)

i)− x
(t)
i

〉
,

no matter the sequence of (potentially adversarially chosen) linear utility vectors u(t)
, each of which

is assumed to be drawn from some bounded set. Moving away from the concrete choice of linear

utility vector ∇xi
ui(x(t)

1 , . . . ,x
(t)
n) to a generic u(t)

without assumptions other than bounded

norm comes with advantages and disadvantages.

• Decoupling u(t)
from the strategies of the opponents, and requiring that the no-Φ-regret

algorithm for Player i be able to guarantee sublinear Φ-regret no matter the sequence of u(t)
,

removes Player i’s opponents from the picture. In other words, learning defined in this

abstracted way is properly a per-player endeavor.

• Another advantage is in that the generality afforded by the u(t)
, which are now not constrained

to be in the form u(t) = ∇xi
ui(x(t)

1 , . . . ,x
(t)
n), enables the use of no-Φ-regret algorithms for

tasks other than learning in games. In this sense, one can think of a no-Φ-regret algorithm

as an online optimization algorithm (Zinkevich, Bowling, Johanson, and Piccione, 2007).

• On the flip side, the generality comes at the cost of losing the ability to exploit any special

structure enjoyed by utility vectors of the form u(t) = ∇xi
ui(x(t)

1 , . . . ,x
(t)
n), as the no-Φ-

regret algorithm has in general no assumption about the nature of the utility vectors it could

receive next.

The last point is not just of theoretical interest. When no assumptions are available about the

utility vectors u(t)
(other than bounded norm), a lower bound of ΩT (

√
T) on the regret is known

(Shalev-Shwartz, 2012). Yet, the utilities u(t) = ∇xi
ui(x(t)

1 , . . . ,x
(t)
n) that arise while learning

games are structured and often have nice properties—for example changing slowly over time.

It is then natural to wonder what improved guarantees can be achieved in games specifically,

§3. NO-REGRET LEARNING IN GAMES 37

and consequently how fast convergence to equilibrium can be guaranteed. This fundamental

question was first formulated and addressed by Daskalakis, Deckelbaum, and Kim (2011) within

the context of zero-sum games. Since then, there has been a considerable interest in extending their

guarantee to more general settings (S. Rakhlin and Sridharan, 2013; Syrgkanis, Agarwal, Luo,

and Schapire, 2015; D. J. Foster, Li, Lykouris, Sridharan, and Tardos, 2016; Chen and Peng, 2020;

Daskalakis and Golowich, 2022; Piliouras, Sim, and Skoulakis, 2022). In particular, Daskalakis,

Fishelson, and Golowich (2021) established that when all players in a general nonsequential games

employ a variant of multiplicative weights update (MWU) (see Section 3.3.1), the regret of each player

grows nearly-optimally as OT (log4 T) after T repetitions of the game, leading to an exponential
improvement over the guarantees obtained using traditional techniques within the no-regret

framework. In Chapters 6 and 7 of this dissertation, we will look into this question, extending

polylogarithmic guarantees to the significantly more challenging setting of imperfect-information

extensive-form games, and further improving on the bounds known in the literature, establishing

OT (log T) guarantees.

Predictions The preceding discussion about the advantages and disadvantages of abstracting

learning in games via the framework of no-Φ-regret algorithms begs the natural question as to

what is the best compromise, or middle ground, between the appealing decoupled formulation

and the ability to not lose track of the positive properties of game-induced utilities. In this thesis

we adopt the middle ground of learning with predictions, pioneered in the works of Chiang, Yang,

C.-J. Lee, Mahdavi, C.-J. Lu, R. Jin, and Zhu (2012) and S. Rakhlin and Sridharan (2013).

The framework of learning with predictions does not introduce any assumption on the

utility vectors u(t)
, but rather introduces the possibility that the no-Φ-regret algorithm is given a

prediction of the next utility function before the strategy is output. In this model the prediction

can either be received by an oracle as a generic input to the algorithm, or more typically it is

assumed that it is constructed by the learning algorithm itself. In the latter case, a standard

choice is to use as prediction the last-received utility vector, as we will recall in Section 3.2.1. In

particular, this latter choice will be used in Chapters 6 and 7 and will lead to ÕT (1/T) convergence

to equilibria. We formalize this choice in what we call the canonical optimistic learning setup (COLS)
in Section 3.2.1.

Definition of no-Φ-regret algorithm We are now ready to formalize in the concept of a

no-Φ-regret algorithm in a definition.

Definition 3.1 (No-Φ-regret algorithm). Given a convex set X and a set Φ of linear

transformations ϕ : X → X , a No-Φ-regret algorithm for the set X is a model for a decision

maker that repeatedly interacts with a black-box environment. At each time t, the algorithm

interacts with the environment through two operations:

38 §3.2. MATHEMATICAL ABSTRACTION OF A PREDICTIVE NO-Φ-REGRET ALGORITHM

• NextStrategy(m(t)) informs the algorithm of the prediction vector m(t)
. The algorithm

will output the next strategy x(t) ∈ X ;

• ObserveUtility(u(t)) provides the environment’s feedback to the no-regret algorithm, in

the form of a linear utility functionX ∋ x 7→ ⟨u(t),x⟩. The utility vector u(t)
can depend

adversarially on the outputs x(1), . . . ,x(t)
if the no-regret algorithm is deterministic

(i.e., does not use randomness internally
a
).

The Φ-regret cumulated up to any time T compared to a transformation ϕ̂ ∈ Φ is defined as

the quantity

Φ-Reg(T)(ϕ̂) :=
T∑
t=1

〈
u(t), ϕ̂(x(t))− x(t)

〉
, (3.3)

whereas the Φ-regret cumulated by to time T by the algorithm is the maximum Φ-regret

cumulated compared to any of the transformations in Φ,

Φ-Reg(T) := max
ϕ̂∈Φ

Φ-Reg(T)(ϕ̂). (3.4)

a
When randomness is involved, the utility vector cannot depend adversarially on x(t)

or guaranteeing sublinear

regret would be impossible. Rather, u(t)
must be conditionally independent on x(t)

, given all past random outcomes.

Calls to NextStrategy and ObserveUtility keep alternating to each other: first, the no-regret

algorithm will output a point x(1)
, then it will receive feedback u(1)

from the environment, then it

will output a new point x(2)
, and so on. The decision-making encoded by the no-regret algorithm

is online, in the sense that at each time t, the output of the no-regret algorithm can depend on the

prior outputs x(1), . . . ,x(t−1)
and corresponding observed utility vectors u(1), . . . ,u(t−1)

, but no

information about future utilities is available.

3.2.1 The canonical optimistic learning setup (COLS) for games

As mentioned in the discussion preceding Definition 3.1, a no-Φ-regret algorithm is an abstract

learning algorithm that outputs strategies (taking into account a prediction vector m(t)
), and

receives as feedback a utility vector u(t)
, guaranteeing that the x(t)

accumulate sublinear Φ-regret

with respect to the u(t)
over time. We now reconnect the definition to the context of learning

in games, by specifying how the m(t)
and u(t)

are defined. In particular, we will refer to these

specific choices as defining the canonical optimistic learning setup (COLS).
In the COLS, at all times t ∈ {1, 2, . . . } each player i ∈ [[n]] picks mixed strategies x

(t)
i according

to some no-Φ-regret learning algorithmRi.NextStrategy(m(t)
i), where the prediction vector m

(t)
i

is defined as the previous loss m
(t)
i := u

(t−1)
i if t ⩾ 2, and m

(1)
i := 0 otherwise. Then, all players

receive as feedback the utility vectors u
(t)
i := ∇xiui(x

(t)
1 , . . . ,x

(t)
m), that is, the gradient of their

§3. NO-REGRET LEARNING IN GAMES 39

own utility evaluated in the mixed strategies last output by the learning players. In this setup,

the Φ-regret accumulated by each player i ∈ [[n]] is equal to the quantity Φ-Regi({x
(t)
i ,x

(t)
−i}Tt=1)

defined in (3.1), enabling the wealth of connections between Φ-regret and equilibrium computation

laid out in Section 3.1.2.

3.2.2 The important special case of external regret minimization

The special case where Φ is chosen to be the set of constant transformations is so important that it

warrants its own definition and notation.

Definition 3.2 (No-regret algorithm). Given a set X , an no-external-regret algorithm for X , or

simply “no-regret algorithm for X”, is a no-Φconst
-regret algorithm, where Φconst

is the set of all

constant transformations

Φconst := {ϕx̂ : x̂ ∈ X}, where ϕx̂ : X ∋ x 7→ x̂.

Its corresponding Φconst
-regret (Equations (3.3) and (3.4)) is called “external regret” or simply

“regret”. We will often indicate external regret with the symbol Reg(T)
rather than Φconst

-Reg.

In particular, we will let

Reg(T)(x̂) :=
T∑
t=1
⟨u(t), x̂− x(t)⟩, Reg(T) := max

x̂∈X
Reg(T)(x̂). (3.5)

3.2.3 Reducing Φ-regret minimization to external regret minimization

As mentioned, a no-external-regret algorithm is a particular case of a no-Φ-regret algorithm.

Then, the problem of constructing a no-external-regret algorithm for a set X cannot be harder

than the problem of constructing a no-Φ-regret algorithm for X for a richer set of transformation

functions Φ. It might then seem surprising that there exists a construction that reduces Φ-regret

minimization to regret minimization. More precisely, a result by G. J. Gordon, A. Greenwald, and

Marks (2008) gives a way to construct a no-Φ-regret algorithm for a generic set X , starting from

any no-external-regret algorithm for the set of functions Φ. We present the result next, as it will be

an important component in the construction of learning algorithms that guarantee convergence

to the set of extensive-form correlated equilibria (Chapter 8).

Theorem 3.1 (G. J. Gordon, A. Greenwald, and Marks, 2008). LetR be a deterministic no-regret

algorithm for the set of transformations Φ whose (external) cumulative regret Reg(T)
grows

sublinearly in T , and assume that every ϕ ∈ Φ admits a fixed point ϕ(x) = x ∈ X . Then, a

40 §3.2. MATHEMATICAL ABSTRACTION OF A PREDICTIVE NO-Φ-REGRET ALGORITHM

no-Φ-regret algorithmRΦ can be constructed starting fromR as follows:

• Each call toRΦ.NextStrategy first calls NextStrategy onR to obtain the next transformation

ϕ(t)
. Then, a fixed point x(t) = ϕ(t)(x(t)) is computed and output.

• Each call to RΦ.ObserveUtility(u(t)) with linear utility vector u(t)
first constructs the

linear utility vector L(t)
corresponding to the linear map ϕ 7→ ⟨u(t), ϕ(x(t))⟩, where x(t)

is the last-output strategy. Then, it passes L(t)
toR by executingR.ObserveUtility(L(t)).b

Furthermore, the Φ-regret Φ-Reg(T)
cumulated up to time T byRΦ we have just defined is

exactly equal to the (external) cumulative regret Reg(T)
cumulated byR:

Φ-Reg(T)(ϕ̂) = Reg(T)(ϕ̂) ∀ ϕ̂ ∈ Φ, T = 1, 2,

So, because the regret cumulated by R grows sublinearly by hypothesis, then so does the

Φ-regret cumulated byRΦ.

b
On the surface, it might look like L(t)

is independent on the last output ϕ(t)
of the no-regret algorithm R, and

thus, that it trivially satisfies the requirements of Definition 3.2. However, that is not true: x(t)
is a fixed point of

ϕ(t)
, and since x(t)

enters into the definition of L(t)
, if R picks ϕ(t)

randomly, it might very well be that L(t)
is not

conditionally independent on ϕ(t)
. We sidestep this issue by requiring that R is deterministic (cf. Footnote a).

Proof. We propose an independent proof of the above statement given the brevity and elegance

of the argument. By construction, the algorithmR outputs transformations ϕ(1), ϕ(2), · · · ∈ Φ
and receives the linear utilities ϕ 7→ ⟨L(t), ϕ⟩ := ⟨u(t), ϕ(x(t))⟩. Hence, its cumulative external

regret Reg(T)
is by definition

Reg(T)(ϕ̂) =
T∑
t=1

〈
u(t), ϕ̂(x(t))− ϕ(t)(x(t))

〉
.

Since by construction x(t)
is a fixed point of ϕ(t)

, then ϕ(t)(x(t)) = x(t)
, and therefore

Reg(T)(ϕ̂) =
T∑
t=1

〈
u(t), ϕ̂(x(t))− x(t)

〉
(3.3)= Φ-Reg(T)(ϕ̂),

as we wanted to show.

3.2.4 Degrees of predictivity

In this dissertation we propose a systematic classification of predictive regret minimization

algorithms on the basis of how effectively they are able to take into account predictions. In

particular, we introduce the following nomenclature.

§3. NO-REGRET LEARNING IN GAMES 41

Definition 3.3. A no-Φ-regret algorithm for a set X is said to be:

• Weakly predictive relative to learning rate η > 0 and norm ∥ · ∥, if its Φ-regret satisfies a

relation of the form

Φ-Reg(T) = OT

(
1
η

+ η

T∑
t=1
∥u(t) −m(t)∥2

∗

)
;

• RVU-Predictive[3.b]
relative to learning rate η > 0 and norm ∥ · ∥, if its Φ-regret satisfies

a relation of the form

Φ-Reg(T) = OT

(
1
η

+ η

T∑
t=1
∥u(t) −m(t)∥2

∗ −
1
η

T∑
t=2
∥x(t) − x(t−1)∥2

)
; (3.6)

• Strongly predictive relative to learning rate η > 0 and norm ∥ · ∥, if its Φ-regret satisfies

a relation of the form

max{0,Φ-Reg(T)} = OT

(
1
η

+ η

T∑
t=1
∥u(t) −m(t)∥2

∗ −
1
η

T∑
t=2
∥x(t) − x(t−1)∥2

)
.

The following chain of implications follows directly from the definition above:

(strongly predictive) =⇒ (RVU-predictive) =⇒ (weakly predictive).

3.3 No-external-regret algorithms for probability simplexes

In this section we review a few no-external-regret algorithms for probability simplexes. Several

more are known in the literature.

3.3.1 Multiplicative weights update (MWU) and its predictive variant (OMWU)

The predictive multiplicative weights update algorithm is arguably the best studied no-external-regret

algorithm with probability simplex, due to its strong properties that will recall in this subsection.

We remark that in the literature, the predictive multiplicative weights update algorithm is often

given under the assumption that the prediction m(t)
is set to u(t−1)

at all times t, as is standard

within the COLS, and is known commonly under the alternative names optimistic multiplicative
weights update, optimistic randomized weighted majority, and optimistic hedge. In this dissertation we

[3.b]
The term RVU stands for Regret bounded by Variation of Utilities (RVU) and was introduced by Syrgkanis, Agarwal,

Luo, and Schapire (2015) to describe the functional form (3.6).

42 §3.3. NO-EXTERNAL-REGRET ALGORITHMS FOR PROBABILITY SIMPLEXES

present the algorithm in its general form, that is, with no assumptions on m(t)
, but still refer to it

as OMWU to avoid confusion due to how widespread the acronym is. At all times t, OMWU produces

as strategy the distribution x(t−1) ∈ ∆d
as specified in Algorithm 3.1.

Algorithm 3.1: Predictive multiplicative weights update algorithm (OMWU)

Data: Learning rates η(t) > 0
1 u(0), m(0) ← 0 ∈ ℝd; x(0) ← 1

d1 ∈ ∆d

2 function NextStrategy(m(t) ∈ ℝd)
[▷ set m(t) = 0 for non-predictive variant]

3 w(t) ← u(t−1) −m(t−1) + m(t)

4 for k ∈ [[d]] do

5 x(t)[k]← x(t−1)[k] · exp{η(t) w(t)[k]}∑
k′∈[[d]] x(t−1)[k′] · exp{η(t) w(t)[k′]}

6 return x(t)

7 function ObserveUtility(u(t))
[▷ No operation until the next call of NextStrategy]

The nonpredictive version of OMWU, called multiplicative weights update (MWU) (or alternatively

randomized weighted majority and hedge), can be obtained from OMWU as the special case in which

m(t) = 0 at all t. We mention the following well-known upper bound for the regret cumulated

by OMWU.

Theorem 3.2 (Syrgkanis, Agarwal, Luo, and Schapire (2015)). After any T iterations, the

regret cumulated by the OMWU algorithm (Algorithm 3.1) set up with constant learning rate

η(t) = η > 0, satisfies the RVU-predictive regret bound

Reg(T) ⩽
log d
η

+ η

T∑
t=1
∥u(t) −m(t)∥2

∞ −
1
4η

T∑
t=2
∥x(t) − x(t−1)∥2

1.

Furthermore, each iteration runs in O(d) time.

In particular, Theorem 3.2 immediately implies that as long as the losses and predictions have

bounded norm, the choice of learning rate η(t) = 1/
√
T guarantees Reg(T) = OT (1/

√
T).

In nonsequential (that is, normal-form) games, where each player i ∈ [[n]] has a single decision

point with a set Ai of actions, OMWU can be used to learn Nash and coarse correlated equilibria

(Section 5.2.2). Specifically, when each player i learns within the COLS using OMWU with the same,

constant learning rate η
(t)
i := η as their learning algorithmRi, the following strong properties are

known to hold. For simplicity we assume without loss of generality that all utilities in the game

§3. NO-REGRET LEARNING IN GAMES 43

are in the range [0, 1] (if not, rescaling all utilities to satisfy the condition leaves the equilibria

unchanged).

Theorem 3.3 (OT (T 1/4) per-player regret; Syrgkanis, Agarwal, Luo, and Schapire, 2015). For

all T , if η = T−1/4
√
n−1 , the regret of each player i ∈ [[n]] is bounded as

Reg(T)
i ⩽ (4 + log |Ai|)

√
n− 1 · T 1/4.

Theorem 3.4 (Near-optimal per-player regret; Daskalakis, Fishelson, and Golowich, 2021).
There exist universal constants C,C ′ > 1 so that, for all T , if η ⩽ 1

Cn log4 T
, the regret of each

player i ∈ [[n]] is bounded as

Reg(T)
i ⩽

log |Ai|
η

+ C ′ log T.

Theorem 3.5 (Optimal regret sum; Syrgkanis, Agarwal, Luo, and Schapire, 2015). If

η ⩽ 1√
8(n−1) , at all times T the sum of the players’ regrets satisfies

∑
i∈[[n]]

Reg(T)
i ⩽

n

η
max
i∈[[n]]

log |Ai|.

We remark that while Theorem 3.4 provides a substantially better bound than Theorem 3.3

asymptotically, for moderate values of T , Theorem 3.3 provides a better numerical bound.

When Γ is a two-player zero-sum game, the following also holds when the two players learn

within the COLS using OMWU.

Theorem 3.6 (Last-iterate convergence). There exists a certain schedule of learning rates η
(t)
i

such that the players’ strategies (x(t)
1 ,x

(t)
2) converge to a Nash equilibrium of the game (Hsieh,

Antonakopoulos, and Mertikopoulos, 2021). Furthermore, if Γ has a unique Nash equilibrium

(x∗
1,x

∗
2) and each player uses any constant learning rate η

(t)
i := η ⩽ 1

8 , at all times t the

strategy profile (x(t)
1 ,x

(t)
2) satisfies

KL(x∗
1 ∥x

(t)
1) + KL(x∗

2 ∥x
(t)
2) ⩽ C(1 + C ′)−t,

where the constants C, C ′
only depend on the game, and KL(· ∥ ·) denotes the KL-divergence

between two distributions (C. Wei, C. Lee, M. Zhang, and Luo, 2021).

44 §3.3. NO-EXTERNAL-REGRET ALGORITHMS FOR PROBABILITY SIMPLEXES

3.3.2 Regret matching (RM), regret matching+ (RM+), and variants

Regret matching (RM, Hart and Mas-Colell, 2000) is a simple no-external-regret algorithm for

probability simplexes that has been widely used for computational game solving due to its

good practical performance and lack of hyperparameters. Regret matching
+

(RM+
, Tammelin,

2014; Tammelin, Burch, Johanson, and Bowling, 2015) is a modification of RM which has been

repeatedly observed to perform better in practice, although no theoretical justification for such an

improved performance is known. Both of the algorithm predate the introduction of predictions as

a concept in online optimization, so their formulation—given in Section 4.3.1—explicitly ignores

the prediction vector supplied to NextStrategy.

Algorithm 3.2: Regret matching (RM)

1 r(0) ← 0 ∈ ℝd, x(0) ← 1/d ∈ ∆d

2 function NextStrategy(_)
3 θ(t) ← [r(t−1)]+

4 if θ(t) ̸= 0 return x(t) ← θ(t) / ∥θ(t)∥1

5 else return x(t) ← any point in ∆d

6 function ObserveUtility(u(t))
7 r(t) ← r(t−1) + u(t) − ⟨u(t),x(t)⟩1

Algorithm 3.3: Regret matching
+

(RM+
)

1 z(0) ← 0 ∈ ℝd, x(0) ← 1/d ∈ ∆d

2 function NextStrategy(_)
3 θ(t) ← [z(t−1)]+

4 if θ(t) ̸= 0 return x(t) ← θ(t) / ∥θ(t)∥1

5 else return x(t) ← any point in ∆d

6 function ObserveUtility(u(t))
7 z(t) ← [z(t−1) + u(t) − ⟨u(t),x(t)⟩1]+

Predictive variants of RM and RM+
will be given in Chapter 4. The predictive variants of RM

and RM+
retain all advantages of the original, nonpredictive algorithm (including the lack of

hyperparameters), while at the same time capitalizing from the benefit of (weak) predictivity,

further increasing the practical performance of these no-external-regret algorithms.

Regret matching and regret matching
+

satisfy the following (nonpredictive) regret bound.

Theorem 3.7 (Farina, Kroer, and Sandholm, 2021b). The external regret cumulated up to any

time T by the RM and RM+
algorithm satisfies, for all η > 0, the bound

Reg(T) ⩽

√√√√2
T∑
t=1

∥∥u(t) − ⟨u(t),x(t)⟩1
∥∥2

2.

In particular, Theorem 3.7 shows that whenever the norm of the utility vectors is bounded by

a time-independent quantity, the external regret incurred by RM and RM+
is upper bounded as

Reg(T) = OT (
√
T), a sublinear quantity.

Variants of RM have been proposed in the literature, including discounted regret matching

(Discounted RM) and linear regret matching (Brown and Sandholm, 2019). These have been

§3. NO-REGRET LEARNING IN GAMES 45

observed to perform better in practice, though they are less well studied, and no predictive

versions are known. We recall Discounted RM and Linear RM in Algorithms 3.4 and 3.5 respectively.

Algorithm 3.4: Discounted regret matching

(Discounted RM)

Data: α := 3/2, β := 0 discounting parameters

1 r(0) ← 0 ∈ ℝd, x(0) ← 1/d ∈ ∆d

2 function NextStrategy(_)
3 θ(t) ← [r(t−1)]+

4 if θ(t) ̸= 0 return x(t) ← θ(t) / ∥θ(t)∥1

5 else return x(t) ← any point in ∆d

6 function ObserveUtility(u(t) ∈ ℝd)
7 for k ∈ [[d]] do
8 if r(t−1)[k] > 0 then
9 r(t)[k]← r(t−1)[k] · tα/(tα + 1)

10 else
11 r(t)[k]← r(t−1)[k] · tβ/(tβ + 1)
12 r(t) ← r(t) + u(t) − ⟨u(t),x(t)⟩1

Algorithm 3.5: Linear regret matching (Lin-

ear RM)

1 r(0) ← 0 ∈ ℝd, x(0) ← 1/d ∈ ∆d

2 function NextStrategy(_)
3 θ(t) ← [r(t−1)]+

4 if θ(t) ̸= 0 return x(t) ← θ(t) / ∥θ(t)∥1

5 else return x(t) ← any point in ∆d

6 function ObserveUtility(u(t) ∈ ℝd)
7 r(t) ← r(t−1) + t ·

(
u(t) − ⟨u(t),x(t)⟩1

)

46 §3.3. NO-EXTERNAL-REGRET ALGORITHMS FOR PROBABILITY SIMPLEXES

Part II

Computation of coarse-correlated and
Nash equilibria

Chapter 4

Composability of learning dynamics
and predictive counterfactual regret
minimization

4.1 Contributions and related work

In this chapter we will show that predictive no-external-regret learning algorithms lend themselves

to a rather natural compositional calculus. In particular, we will show that for many composite

strategy sets obtained via convexity-preserving operations on simpler sets (e.g., Cartesian product,

convex hull, intersection, and more), a predictive no-regret learning algorithm can be obtained by

combining, as black boxes, any predictive no-regret algorithms for the simpler sets. We call these

composition rules regret circuits. This approach has parallels with the calculus of convex sets

and functions found in books such as Boyd and Vandenberghe (2004). It likewise is reminiscent

of disciplined convex programming (Grant, Boyd, and Ye, 2006), which emphasizes the solving of

convex programs via composition of simple convex functions and sets.

Applications to sequence-form polytopes An especially notable application of our framework

is the construction of a weakly-predictive no-external-regret algorithm for sequence-form strategy

polytopes (Section 4.3). In that case, our compositional calculus will show how any weakly-

predictive no-external-regret algorithm for a single-decision (i.e., nonsequential) problems can

be promoted to a weakly-predictive no-external-regret algorithm for tree-form problems. The

resulting algorithm is a generalization of the popular algorithm known as counterfactual regret
minimization (CFR) (Zinkevich, Bowling, Johanson, and Piccione, 2007). CFR and its newer

variants (Lanctot, Waugh, Zinkevich, and Bowling, 2009; Brown and Sandholm, 2015; Tammelin,

50 §4.1. CONTRIBUTIONS AND RELATED WORK

Burch, Johanson, and Bowling, 2015; Brown, Kroer, and Sandholm, 2017; Brown and Sandholm,

2017a; Brown and Sandholm, 2019; Brown and Sandholm, 2019), have been a central component

in several recent milestones in solving imperfect-information games. Bowling, Burch, Johanson,

and Tammelin (2015) used CFR+
to near-optimally solve heads-up limit Texas hold’em. Brown

and Sandholm (2017c) used CFR variants, along with other scalability techniques such as real-time

endgame solving (Ganzfried and Sandholm, 2015; Burch, Johanson, and Bowling, 2014; Moravcik,

Schmid, Ha, Hladik, and Gaukrodger, 2016; Brown and Sandholm, 2017b) and automated action

abstraction Brown and Sandholm, 2014, to create Libratus, an AI that beat top human specialist

professionals at the larger game of heads-up no-limit Texas hold’em. Moravčík, Schmid, Burch,

Viliam Lisý, Morrill, Bard, Davis, Waugh, Johanson, and Bowling (2017) also used CFR variants

and endgame solving to beat professional human players at that game. CFR was originally

proposed as an algorithm for approximating Nash equilibria in two-player zero-sum game, with

a rather lengthy and complex proof. By using our regret circuit formalism, we will construct an

algorithm that specializes into CFR when used in self-play in two-player zero-sum games, but is

otherwise a no-external-regret algorithm in general. In other words, we move away from the

understanding of CFR as a method operating on a two-player game tree, and instead embrace

the one-sided, TFDP-based point of view, whereby CFR is a learning algorithm for a generic

player’s tree-form decision problem in a game. This point of view makes it apparent that CFR can

be used beyond two-player zero-sum games, for all applications in which no-external-regret is

useful (Section 3.1.2). All this comes with the benefit of a radically simpler proof of correctness,

and enables using predictions within the CFR framework in a principled way. As we show in

Section 4.3.2, this leads to some of the fastest learning algorithms known today for equilibrium

computation in large extensive-form games, when paired with predictive no-regret algorithms

for single-decision problems, such as ref PRM+
.

Other applications throughout the dissertation However, the applications of our compositional

calculus go well beyond constructing algorithms for sequence-form strategy spaces. The

framework laid out in this chapter will lead to practical algorithms when constructing no-

Φ-regret learning dynamics leading to extensive-form correlated equilibria (Chapter 8), and

social-welfare-maximizing equilibria (Chapter 10).

Algorithms constructed via the regret circuits compositional calculus tend to perform better

in practice than those constructed using other approaches, for example those based on online

convex optimization techniques (Chapter 5). In fact, methods based on composition have several

positive features that are hard to mirror in other, more monolithic approaches to constructing

no-external-regret algorithms. For one, by treating every no-regret algorithm that appears in the

compositional construction as an independent black box, the compositional approach enables

one to select the best individual algorithm for each of them. Second, our framework is amenable

to pruning or warm-starting techniques in different parts of the composition, and substituting

§4. COMPOSABILITY OF LEARNING DYNAMICS AND PREDICTIVE COUNTERFACTUAL REGRET

MINIMIZATION 51

one or more parts of the composition with an approximation. Finally, it is immediately clear in

what cases the no-external-regret algorithms that are being composed can be run in distributed

and parallel environments.

4.2 Regret circuits

In this section we begin developing a set of rules for how no-external-regret algorithms can

be constructed for composite convex sets. Specifically, given no-regret algorithms for convex

sets (say, X and Y) we show how to compose these no-regret algorithms for the following

standard convexity-preserving operations performed on the sets: convex hull, Cartesian product,

affine transformation. In Section 4.2.5, we will also introduce and give a regret circuit for a

special operation, called scaled extension, which will become important later on in the dissertation,

specifically in Chapter 10.

4.2.1 Pictorial depiction of regret circuits

Regret circuits define the ways in which the inputs (predictions and utility vectors) and outputs

(strategies) of no-regret algorithms can be combined to define a composite no-regret algorithm.

To aid intuition and memory, we will pictorially visualize regret circuits as circuits in which

components are no-regret-algorithms, and wires carry utility vectors, predictions, and decisions.

A simple example of what such a representation will look like in this dissertation is given to the

right of Algorithm 4.1 on page 52.

• a no-external-regret algorithm is drawn as a box with the name of the algorithm placed at

the center, such as RX . We will use the convention of calling the no-regret algorithms

that are being combined asRX ,RY , et cetera. The subscript ofR, say X or Y , corresponds to

the set from which the algorithm draws its strategies.

• Input wires to the no-regret algorithms carry prediction and utility vectors the algorithms

receive at the generic time t. They are dashed and colored dark red, like this: .

• Output wires from no-regret algorithms carry the strategy output at the generic time t. They

are solid lines colored dark blue, like this: .

• The node denotes an adder, that is a node that outputs the sum of all its inputs.

• The node is used to denote an operation, other than addition, that manipulates its

input(s) into its (single) output.

• The black dot denotes a connection point between wires: all wires leaving the connection

point carry the same signal (utility, prediction, or strategy) as the only wire entering the

connection point.

• The boundary of the regret circuits is marked by a gray rectangle, such as .

52 §4.2. REGRET CIRCUITS

4.2.2 Cartesian product

Let X ⊆ ℝdx
and Y ⊆ ℝdy

be two sets, and letRX andRY be no-regret algorithms for X and Y
respectively. In this section we show that it is possible to minimize regret on X × Y by simply

minimizing it on X and Y independently—viaRX andRY—and then combining the decisions.

More precisely, we can combineRX andRY to form a no-external-regret algorithm for the

Cartesian product X × Y ⊆ ℝdx+dy
by means of the following natural procedure:

• To output the next strategy, given a prediction
[4.a]

vector m(t) := (m(t)
x ,m

(t)
y) ∈ ℝdx+dy

,

we feed m
(t)
x and m

(t)
y to X and Y respectively, and receive their next strategies x(t) ∈ X ,

y(t) ∈ Y . We then proceed to outputting the strategy (x(t),y(t)) ∈ X × Y .

• Given the utility vector u(t) := (u(t)
x ,u

(t)
y) ∈ ℝdx+dy

, we forward u
(t)
x toRX and u

(t)
y toRY .

The algorithm we just described is summarized with pseudocode in Algorithm 4.1 and depicted

pictorially contextually to its right.

Algorithm 4.1: Regret circuit for X × Y

1 function NextStrategy(m(t) := (m(t)
x ,m

(t)
y) ∈ ℝdx+dy)

[▷ Set m(t) = 0 for non-predictive version]

2 x(t) ← RX .NextStrategy(m(t)
x)

3 y(t) ← RY .NextStrategy(m(t)
y)

4 return (x(t),y(t)) ∈ X × Y

5 function ObserveUtility(u(t) := (u(t)
x ,u

(t)
y) ∈ ℝdx+dy)

6 RX .ObserveUtility(u(t)
x)

7 RY .ObserveUtility(u(t)
y)

RX RY

x(t) y(t)

(x(t),y(t))

m(t) := (m(t)
x ,m

(t)
y)

u(t) := (u(t)
x ,u

(t)
y)

m
(t)
x

u
(t)
x

m
(t)
y

u
(t)
y

Regret analysis We now turn our attention to the analysis of the regret cumulated by the circuit.

By construction, at all times t the no-regret algorithmsRX andRY produce iterates x(t)
and y(t)

,

respectively, and observe utility vectors u
(t)
X and u

(t)
Y , respectively. Hence, the regret accumulated

byRX andRY up to any T relative to any comparators x̂ ∈ X , ŷ ∈ Y is given by

Reg(T)
X (x̂) :=

T∑
t=1
⟨u(t)

x , x̂− x(t)⟩, Reg(T)
Y (ŷ) :=

T∑
t=1
⟨u(t)

y , ŷ − y(t)⟩. (4.1)

[4.a]
In this dissertation predictions of the next utility vectors are always assumed to be given as input, with the

understanding that the non-predictive version of the algorithm can be recovered by setting the prediction to be 0, the

zero vector.

§4. COMPOSABILITY OF LEARNING DYNAMICS AND PREDICTIVE COUNTERFACTUAL REGRET

MINIMIZATION 53

On the other hand, the regret circuit produces strategies (x(t),y(t)) ∈ X×Y and received utility

vectors (utX ,u
(t)
Y) at all times t. Hence, its accumulated regret compared to any (x̂, ŷ) ∈ X × Y

satisfies

Reg(T)
X ×Y(x̂, ŷ) :=

T∑
t=1

〈(
u

(t)
x

u
(t)
y

)
,

(
x̂

ŷ

)
−

(
x(t)

y(t)

)〉
= Reg(T)

X (x̂) + Reg(T)
Y (ŷ), (4.2)

where we used (4.1) in the last step. By taking a maximum over all (x̂, ŷ) ∈ X × Y in (4.2) we

further obtain

Reg(T)
X ×Y = Reg(T)

X + Reg(T)
Y . (4.3)

In summary, collecting (4.2) and (4.3) we have just proven the following characterization of

the regret of Algorithm 4.1.

Theorem 4.1. The regret circuit of Algorithm 4.1 provides a no-regret algorithm for the

Cartesian product X × Y whose regret Reg(T)
X ×Y accumulated up to any time T is related to

the regrets Reg(T)
X and Reg(T)

Y accumulated by RX and RY , respectively, according to the

equalities

i. Reg(T)
X ×Y(x̂, ŷ) = Reg(T)

X (x̂) + Reg(T)
Y (ŷ), for all x̂ ∈ X , ŷ ∈ Y ; and

ii. Reg(T)
X ×Y = Reg(T)

X + Reg(T)
Y .

So, in particular, Reg(T)
X ×Y grows sublinearly in T since Reg(T)

X and Reg(T)
Y are sublinear by

the hypothesis thatRX andRY are no-regret algorithms.

Extension to multiple sets We conclude the section with a couple of remarks on how one can

adapt the construction we have been describing thus far to Cartesian products of more than two

sets, say the Cartesian product Z := X1 ×X2 × · · · × Xn given access to no-regret algorithmsRXi

for the individual sets. Two avenues are possible.

• First, one can observe that X1 ×X2 × · · · × Xn = (((X1 ×X2)×X3)× . . .)×Xn. Hence, it is

possible to construct a composite no-regret algorithm for Z by composing Algorithm 4.1

n− 1 times: first, combiningRX1 andRX2 to obtain algorithmRX1×X2 , then combining the

algorithm we just obtained withRX3 , and so on.

• Alternatively, we point out that the idea behind Algorithm 4.1 and its corresponding analysis

generalize straightforwardly to multiple sets, by defining a regret circuit that is able to

output strategies on X1 × · · · × Xn by combining the individual strategies returned by the

individual algorithmsRX1 , . . . ,RXn .

54 §4.2. REGRET CIRCUITS

4.2.3 Convex hull

We now show how to combine RX and RY for two sets X ⊆ ℝd and Y ⊆ ℝd to construct a

no-external-regret algorithm for the convex hull

co{X ,Y} :=
{
λx + (1− λ)y : x ∈ X ,y ∈ Y, λ ∈ [0, 1]

}
.

The construction is more involved than in the case of Cartesian products we saw in Section 4.2.2,

but some of the ideas carry over. Like in the Cartesian product construction, we will use the

no-regret algorithmsRX andRY to propose candidate points x(t),y(t)
. However, in this case, we

cannot simply return the pair (x(t),y(t)). Rather, we will use a third no-regret algorithmR∆2 for

the 2-simplex ∆2
to decide how to “mix” x(t)

and y(t)
. More precisely, we will do the following.

• To output the next strategy given the prediction vector m(t) ∈ ℝd, we askRX andRY for

their next strategies—call them x(t)
and y(t)

—upon supplying m(t)
to both. Then, we will

askR∆2 for its next strategy λ(t) = (λ(t)
1 , λ

(t)
2) ∈ ∆2

given prediction

m
(t)
∆2 :=

(
⟨m(t),x(t)⟩
⟨m(t),y(t)⟩

)
,

and return the convex combination λ
(t)
1 x(t) + λ

(t)
2 y(t) ∈ co{X ,Y}.

• When at time t we receive the utility vector u(t) ∈ ℝd, we forward u(t)
toRX andRY . Then,

we forward toR∆2 the utility vector

u
(t)
∆2 :=

(
⟨u(t),x(t)⟩
⟨u(t),y(t)⟩

)
. (4.4)

The algorithm we just described is reported in pseudocode in Algorithm 4.2 and pictorially

contextually to the right.

Regret analysis By construction, the no-regret algorithmsRX andRY output strategies x(t),y(t)

and observe utilities u(t)
at all time t. Hence, their regret cumulated up to time T relative to any

comparators x̂ ∈ X , ŷ ∈ Y is given by

Reg(T)
X (x̂) :=

T∑
t=1
⟨u(t), x̂− x(t)⟩ (4.5)

Reg(T)
Y (ŷ) :=

T∑
t=1
⟨u(t), ŷ − y(t)⟩. (4.6)

§4. COMPOSABILITY OF LEARNING DYNAMICS AND PREDICTIVE COUNTERFACTUAL REGRET

MINIMIZATION 55

Algorithm 4.2: Regret circuit for co{X ,Y}

1 function NextStrategy(m(t) ∈ ℝd)
[▷ Set m(t) = 0 for non-predictive version]

2 x(t) ∈ X ← RX .NextStrategy(m(t))
3 y(t) ∈ Y ← RY .NextStrategy(m(t))

4 m
(t)
∆2 ←

(
⟨m(t),x(t)⟩
⟨m(t),y(t)⟩

)
5 λ(t) := (λ(t)

1 , λ
(t)
2) ∈ ∆2 ← R∆2 .NextStrategy(m(t)

∆2)

6 return λ(t)
1 x(t) + λ

(t)
2 y(t) ∈ co{X ,Y}

7 function ObserveUtility(u(t))
8 RX .ObserveUtility(u(t))
9 RY .ObserveUtility(u(t))

10 R∆2 .ObserveUtility
(

u
(t)
∆2 :=

(
⟨u(t),x(t)⟩
⟨u(t),y(t)⟩

))

RX RY

R∆2

x(t) y(t)

λ
(t)
1 x(t) + λ

(t)
2 y(t)

u
(t)
∆2m

(t)
∆2

λ(t)

m(t),u(t)

Similarly, the no-regret algorithm R∆2 outputs strategies λ(t) = (λ(t)
1 , λ

(t)
2) at all times t and

observes utility vectors u
(t)
∆2 , defined in (4.4), at all times t. So, the regret cumulated by R∆2

compared to any λ̂ ∈ ∆2
is given by

Reg(T)
∆2 (λ̂) :=

T∑
t=1
⟨u(t)

∆2 , λ̂− λ(t)⟩

=
(

T∑
t=1

λ̂1⟨u(t),x(t)⟩+ λ̂2⟨u(t),y(t)⟩

)
−

(
T∑
t=1

λ
(t)
1 ⟨u(t),x(t)⟩ − λ(t)

2 ⟨u(t),y(t)⟩

)
.

The following theorem connects these three quantities, showing that when all of them are

sublinear, Algorithm 4.2 indeed yields a no-regret algorithm.

Theorem 4.2. The regret circuit of Algorithm 4.2 provides a no-regret algorithm for the

convex hull co{X ,Y} whose regret Reg(T)
co{X ,Y} up to any time T , is related to the regrets

Reg(T)
X ,Reg(T)

Y , and Reg(T)
∆2 accumulated byRX ,RY , andR∆2 , respectively, according to

i. for all comparators x̂ ∈ X , ŷ ∈ Y , and (λ̂1, λ̂2) ∈ ∆2
,

Reg(T)
co{X ,Y}(λ̂1x̂ + λ̂2ŷ) = Reg(T)

∆2 (λ̂1, λ̂2) + λ̂1 Reg(T)
X (x̂) + λ̂2 Reg(T)

Y (ŷ),

ii. Reg(T)
co{X ,Y} ⩽ Reg(T)

∆2 + max
{

Reg(T)
X ,Reg(T)

Y
}

.

So, in particular, Reg(T)
co{X ,Y} grows sublinearly in T since Reg(T)

X ,Reg(T)
Y , and Reg(T)

∆2 are

sublinear by the hypothesis thatRX ,RY , andR∆2 are no-regret algorithms.

56 §4.2. REGRET CIRCUITS

Proof. We start by proving the first point. Starting from the definition of regret, we have

Reg(T)
co{X ,Y}(λ̂1x̂ + λ̂2ŷ) :=

T∑
t=1
⟨u(t), λ̂1x̂ + λ̂2ŷ⟩ − ⟨u(t), λ

(t)
1 x(t) + λ

(t)
2 y(t)⟩

= λ̂1

T∑
t=1
⟨u(t), x̂⟩+ λ̂2

T∑
t=1
⟨u(t), ŷ⟩ −

(
T∑
t=1

λ
(t)
1 ⟨u(t),x(t)⟩+ λ

(t)
2 ⟨u(t),y(t)⟩

)
(4.7)

for all comparators x̂ ∈ X , ŷ ∈ Y , and (λ̂1, λ̂2) ∈ ∆2
. From (4.5) and (4.6) we can relate the first

two sums to the regrets accumulated byRX andRY , respectively, according to

T∑
t=1
⟨u(t), x̂⟩ = Reg(T)

X (x̂) +
T∑
t=1
⟨u(t),x(t)⟩, (4.8)

T∑
t=1
⟨u(t), ŷ⟩ = Reg(T)

Y (ŷ) +
T∑
t=1
⟨u(t),y(t)⟩. (4.9)

Plugging Equations (4.8) and (4.9) into (4.7), we obtain

Reg(T)
co{X ,Y}(λ̂1x̂ + λ̂2ŷ) = λ̂1

(
Reg(T)

X (x̂) +
T∑
t=1
⟨u(t),x(t)⟩

)
+ λ̂2

(
Reg(T)

Y (ŷ) +
T∑
t=1
⟨u(t),y(t)⟩

)

−

(
T∑
t=1

λ
(t)
1 ⟨u(t),x(t)⟩+ λ

(t)
2 ⟨u(t),y(t)⟩

)
= λ̂1 Reg(T)

X (x̂) + λ̂2 Reg(T)
Y (ŷ) + Reg(T)

∆2 (λ̂1, λ̂2). (4.10)

This concludes the proof of the first point. To show the second point, it is enough to note that

for any (λ̂1, λ̂2) ∈ ∆2
,

λ̂1 Reg(T)
X (x̂) + λ̂2 Reg(T)

Y (ŷ) ⩽ max
{

Reg(T)
X (x̂),Reg(T)

Y (ŷ)
}
. (4.11)

Hence,

Reg(T) := max
(λ̂1,λ̂2)∈∆2

x̂∈X ,ŷ∈Y

Reg(T)(λ̂1x̂ + λ̂2ŷ)

= max
(λ̂1,λ̂2)∈∆2

x̂∈X ,ŷ∈Y

{
Reg(T)

∆2 (λ̂1, λ̂2) + λ̂1 Reg(T)
X (x̂) + λ̂2 Reg(T)

Y (ŷ)
}

(From (4.10))

⩽ max
(λ̂1,λ̂2)∈∆2

x̂∈X ,ŷ∈Y

{
Reg(T)

∆2 (λ̂1, λ̂2) + max
{

Reg(T)
X (x̂),Reg(T)

Y (ŷ)
}}

(From (4.11))

§4. COMPOSABILITY OF LEARNING DYNAMICS AND PREDICTIVE COUNTERFACTUAL REGRET

MINIMIZATION 57

= Reg(T)
∆2 + max

{
Reg(T)

X ,Reg(T)
Y
}

as we wanted to prove.

Extension to multiple sets Of course, the construction shown in Algorithm 4.2 can be readily

extended to handle the convex hull co{X1, . . . ,Xn} of n sets as follows.

• At each time instant t, we let m no-regret algorithmsRX1 , . . . ,RXm
(for X1, . . . ,Xm, respec-

tively) output their next strategies x
(t)
1 , . . . ,x

(t)
m . Those strategies are combined according to

the convex combination coefficients λ(t)
output by the additional no-regret algorithmR∆m

for the m-simplex ∆m to form the convex combination strategy λ
(t)
1 x

(t)
1 + · · · + λ

(t)
m x

(t)
m ∈

co{X1, . . . ,Xm}.

• The utility vector u(t)
is fed into all the no-external-regret algorithms RXi

(i = 1, . . . ,m).

Then, the utility vector u
(t)
∆m , defined as

u
(t)
∆m =


⟨u(t),x

(t)
1 ⟩

.

.

.

⟨u(t),x
(t)
m ⟩

,
is input into a no-regret algorithm for the m-simplex ∆m.

With the same argument used earlier, it follows that the regret bound in that case is

Reg(T)
co{X1,...,Xm} ⩽ Reg(T)

∆m + max{RegTX1
, . . . ,RegTXm

}.

4.2.4 Affine transformation and Minkowski sum

Let H : ℝd → ℝd
′
,x 7→ Ax + b be an affine map between two Euclidean spaces, and let X ⊆ ℝd

be a strategy set for which a no-regret algorithmRX is given. In this section, we will show how

RX can be adapted into a no-regret algorithm for the strategy set

H(X) := {Ax + b : x ∈ X} ⊆ ℝd
′
,

the image of X under the affine map H . In this case we use this rather natural procedure:

• Given a prediction vector m(t) ∈ ℝd, we feed A⊤m(t)
to RX , receive its next strategy

x(t) ∈ X , and output H(x(t)) = Ax(t) + b.

• Given a utility vector u(t) ∈ ℝd, we feed A⊤u(t)
toRX .

The construction is summarized by the circuit in Figure 4.1.

58 §4.2. REGRET CIRCUITS

RX
x(t) H(x(t))

u(t)

m(t)

A⊤u(t)

A⊤m(t)

Figure 4.1: Regret circuit for the image H(X) of X under the affine transformation H .

Regret analysis We now analyze the regret circuit we have just described, seeking to relate the

regret

Reg(T)
H(X)(ẑ) :=

T∑
t=1
⟨u(t), ẑ −H(x(t))⟩

accumulated by the circuit relative to a generic comparator ẑ ∈ H(X), to that accumulated byRX .

By construction, at all times t the no-regret algorithmRX produces iterates x(t) ∈ X and receives

the utility vector A⊤u(t)
. Hence, the regret accumulated byRX up to any time T is given by

Reg(T)
X (x̂) :=

T∑
t=1
⟨A⊤u(t), x̂− x(t)⟩ =

T∑
t=1
⟨u(t),Ax̂−Ax(t)⟩

=
T∑
t=1
⟨u(t), (Ax̂ + b)− (Ax(t) + b)⟩ = Reg(T)

H(X)(H(x̂)).

Since every ŷ ∈ H(X) can be written as ŷ = H(x̂) for some x̂ ∈ X , we can further conclude

that Reg(T)
X = Reg(T)

H(X). In conclusion, we have shown the following.

Theorem 4.3. The regret circuit depicted in Figure 4.1 provides a no-regret algorithm for the

image H(X) of X under affine transformation H , whose regret Reg(T)
H(X) accumulated up to

any time T is related to the regret Reg(T)
X accumulated byRX according to

i. Reg(T)
H(X)(H(x̂)) = Reg(T)

X (x̂) for all comparators x̂ ∈ X ; and

ii. Reg(T)
H(X) = Reg(T)

X .

So, in particular, Reg(T)
H(X) grows sublinearly in T since Reg(T)

X is sublinear by the hypothesis

thatRX is a no-regret algorithms.

Application: Minkowski sum As a straightforward application, the above construction can

be employed to construct a no-regret algorithm for the Minkowski sum X + Y := {x + y : x ∈
X ,y ∈ Y} of two sets. Indeed, note that X + Y = σ(X × Y), where σ : (x,y) 7→ x + y is a

linear map. Hence, we can combine the construction for affine transformations presented in this

§4. COMPOSABILITY OF LEARNING DYNAMICS AND PREDICTIVE COUNTERFACTUAL REGRET

MINIMIZATION 59

section, together with the construction of the Cartesian product (Section 4.2.2, Algorithm 4.1).

The resulting regret circuit is in Figure 4.2.

RX

RY

x(t)

y(t)

x(t) + y(t)
m(t)

u(t)

Figure 4.2: Regret circuit for the Minkowski sum X + Y .

4.2.5 Scaled extension

In this section we introduce the last regret circuit that will be used in the rest of the dissertation. It

refers to a particular convexity-preserving operation, scaled extension (defined below), which was

introduced in (Farina, Ling, Fang, and Sandholm, 2019b) to capture certain correlated strategy

spaces. We will make extensive use of the scaled extension operation in Chapters 9 and 10.

Definition We now introduce the definition of the scaled extension operation.

Definition 4.1. Let X and Y be nonempty sets, and let h : X → ℝ+ be a nonnegative affine

real function. The scaled extension of X with Y via h is defined as the set

X h
◁Y := {(x,y) : x ∈ X , y ∈ h(x)Y}.

As we show next, the operation above preserves convexity, non-emptiness, and compactness

of the sets.

Lemma 4.1. Let X ,Y and h be as in Definition 4.1. If X and Y are nonempty, compact, or

convex, then X h
◁Y is nonempty, compact, and convex, respectively.

Proof. Let Z := X h
◁Y . We break the proof into three parts:

• Non-emptiness. Since X and Y are nonempty by hypothesis, let x and y be arbitrary

points in X and Y . The element (x, h(x)y) belongs to Z and therefore Z is nonempty.

• Compactness. We now prove that Z is a compact set via the Heine-Borel theorem, by

proving that it is bounded and closed. First, we argue thatZ is bounded. Indeed, note that

h is affine and therefore continuous, and since X is compact we conclude by Weierstrass’

theorem that h∗ := maxx∈X h(x) exists and is finite. Hence, any (x, h(x)y) satisfies

60 §4.2. REGRET CIRCUITS

∥(x, h(x)y)∥1 ⩽ ∥x∥1 + h∗∥y∥1 <∞,

since bothX andY are compact and hence bounded, showing thatZ is bounded. Now, we

argue that Z is (sequentially) closed. Indeed, let {zi} → z̄ be a convergent sequence such

that zi ∈ Z for i = 1, 2, . . . ; we will prove that z̄ ∈ Z . By definition of Z , for all i it must

be zi = (xi, h(xi)yi) for some (xi,yi) ∈ X ×Y . Since {zi} converges, then the sequences

{xi} and {h(xi)yi}must also converge. Let x̄ := lim xi; by closedness of X , it must be

x̄ ∈ X . Furthermore, by continuity of h, lim h(xi) = h(x̄). Now, using the (sequential)

compactness of Y , we can assume without loss of generality that {yi} converges
a
; let Y ∋

ȳ := lim yi. By the usual properties of limits, z̄ = lim zi = lim (xi, h(xi)yi) = (x̄, h(x̄)ȳ),
and since x̄ ∈ X , ȳ ∈ Y we have z̄ ∈ Z and Z is sequentially closed.

• Convexity. Let z, z′
be any two points in Z , and let λ ∈ (0, 1). By definition of Z , there

must exist x,x′ ∈ X and y,y′ ∈ Y such that z = (x, h(x)y) and z′ = (x′, h(x′)y′). If

h(x) = h(x′) = 0, then the affinity of h implies h(λx + (1− λ)x′) = 0 and therefore

λz + (1− λ)z′ =
(
λx + (1− λ)x′,0

)
=
(
λx + (1− λ)x′, h(λx + (1− λ)x′)y

)
∈ Z.

On the other hand, if at least one of h(x) and h(x′) is strictly positive, then the quantity

s := λh(x) + (1− λ)h(x′) is also strictly positive and we can write

λz + (1− λ)z′ =
(
λx + (1− λ)x′, λh(x)y + (1− λ)h(x′)y′

)
=
(
λx + (1− λ)x′, s

[
λh(x)
s

y + (1− λ)h(x′)
s

y′
])

=
(
λx + (1− λ)x′, h(λx+(1−λ)x′)

[
λh(x)
s

y + (1− λ)h(x′)
s

y′
])
,

where the last equality follows from the definition of s together with the affinity of h. The

quantity in the square bracket is a convex combination of the vectors y and y′
, and it is

therefore equal to some y′′ ∈ Y by convexity of Y . Hence,

λz + (1− λ)z′ =
(
λx + (1− λ)x′, h(λx + (1− λ)x′) y′′

)
∈ Z,

as we wanted to show.

a
Or else, extract a convergent subsequence.

Regret circuit We now show that it is always possible to construct a no-regret-algorithm for

Z = X h
◁Y , where h(x) = ⟨a,x⟩ + b is a nonnegative affine function, starting from no-regret

§4. COMPOSABILITY OF LEARNING DYNAMICS AND PREDICTIVE COUNTERFACTUAL REGRET

MINIMIZATION 61

algorithmsRX ,RY forX ⊆ ℝd andY ⊆ ℝd
′
, respectively. In particular, we consider the following

algorithm.

• To output the next strategy, given prediction vector m(t) := (m(t)
x ,m

(t)
y) ∈ ℝd×ℝd

′
, we feed

vector m
(t)
y toRY , and receive its next strategy y(t) ∈ Y . Then, we construct the prediction

vector

m̃(t)
x := m(t)

x + ⟨m(t)
y ,y(t)⟩a,

feed it to RX , and receive its next strategy x(t) ∈ X . Finally, we return the point

(x(t), h(x(t))y(t)) ∈ Z .

• When at time t we receive the utility vector u(t) := (u(t)
x ,u

(t)
y) ∈ ℝd ×ℝd

′
, we forward u

(t)
y

toRY , and forward the utility vector

ũ(t)
x := u(t)

x + ⟨u(t)
y ,y(t)⟩a (4.12)

toRX .

The regret circuit is summarized pictorially in Figure 4.3.

RX

RY
y(t)

⟨y(t),u
(t)
y ⟩a

(
x(t)

h(x(t))y(t)

)
(m(t)

x ,m
(t)
y)

(u(t)
x ,u

(t)
y)

m
(t)
y

u
(t)
y

m
(t)
x ,u

(t)
x x(t)

Figure 4.3: Regret circuit for the scaled extension X
h
◁Y .

Regret analysis We now relate the regret accumulated by the construction we just described up

to any time T compared to a generic point (x̂, h(x̂)ŷ) ∈ Z , that is the quantity

Reg(T)

X
h
◁Y

(x̂, h(x̂)ŷ) :=
T∑
t=1

〈
u(t),

(
x̂

h(x̂)ŷ

)
−

(
x(t)

h(x(t))y(t)

)〉
, (4.13)

to the regrets Reg(T)
X ,Reg(T)

Y accumulated by RX and RY respectively. By construction, at all

times t the no-regret algorithmRY outputs strategies y(t) ∈ Y and receives utilities u
(t)
y . Hence,

the regret accumulated byRY up to time T compared to any ŷ ∈ Y is

62 §4.2. REGRET CIRCUITS

Reg(T)
Y (ŷ) :=

T∑
t=1
⟨u(t)

y , ŷ − y(t)⟩. (4.14)

The no-regret algorithmRX outputs strategies x(t) ∈ X and receives utilities ũ(t)
x defined in (4.12);

hence its regret compared to any x̂ ∈ X is

Reg(T)
X (x̂) :=

T∑
t=1
⟨ũ(t)

x , x̂− x(t)⟩. (4.15)

The connection between the three regret quantities defined above is given in the next theorem.

Theorem 4.4. The regret circuit of Figure 4.3 provides a no-regret algorithm for the scaled

extension X h
◁Y whose regret Reg(T)

X
h
◁Y

up to any time T , is related to the regrets Reg(T)
X and

Reg(T)
Y accumulated byRX andRY , respectively, according to

i. Reg(T)

X
h
◁Y

(x̂, h(x̂)ŷ) = Reg(T)
Y (ŷ) + h(x̂) Reg(T)

X (x̂) for all x̂ ∈ X , ŷ ∈ Y ; and

ii. Reg(T)

X
h
◁Y

⩽ Reg(T)
Y +h∗ · Reg(T)

X , where h∗ := maxx∈X h(x).[4.b]

So, in particular, Reg(T)

X
h
◁Y

grows sublinearly in T since Reg(T)
X and Reg(T)

Y are sublinear by

the hypothesis thatRX andRY are no-regret algorithms.

Proof. By expanding the definition of ũ(t)
x given in (4.12) in the definition (4.15) of regret for

RX , we obtain

Reg(T)
X (x̂) =

(
T∑
t=1
⟨u(t)

x , x̂− x(t)⟩

)
+
(

T∑
t=1
⟨u(t)

y ,y(t)⟩

)
⟨a, x̂⟩ −

T∑
t=1
⟨u(t)

y ,y(t)⟩ · ⟨a,x(t)⟩

=
(

T∑
t=1
⟨u(t)

x , x̂− x(t)⟩

)
+
(

T∑
t=1
⟨u(t)

y ,y(t)⟩

)(
⟨a, x̂⟩+ b

)
−

T∑
t=1
⟨u(t)

y ,y(t)⟩ ·
(
⟨a,x(t)⟩+ b

)
=
(

T∑
t=1
⟨u(t)

x , x̂− x(t)⟩

)
+
(

T∑
t=1
⟨u(t)

y ,y(t)⟩

)
h(x̂)−

T∑
t=1
⟨u(t)

y ,y(t)⟩ · h(x(t)).

Using (4.14), we can rewrite the middle sum as

[4.b]
Since h is affine and X is compact, h∗

exists and is finite by Weierstrass’ theorem.

§4. COMPOSABILITY OF LEARNING DYNAMICS AND PREDICTIVE COUNTERFACTUAL REGRET

MINIMIZATION 63

T∑
t=1
⟨u(t)

y ,y(t)⟩ = −Reg(T)
Y (ŷ) +

T∑
t=1
⟨u(t)

y , ŷ⟩,

and hence

Reg(T)
X (x̂) =

(
T∑
t=1
⟨u(t)

x , x̂− x(t)⟩

)
+
(
−Reg(T)

Y (ŷ) +
T∑
t=1
⟨u(t)

y , ŷ⟩

)
h(x̂)

−
T∑
t=1
⟨u(t)

y ,y(t)⟩ · h(x(t))

= −h(x̂) Reg(T)
Y (ŷ) +

T∑
t=1

〈(
u

(t)
x

u
(t)
y

)
,

(
x̂

h(x̂)ŷ

)
−

(
x(t)

h(x(t))y(t)

)〉
= −h(x̂) Reg(T)

Y (ŷ) + Reg(T)

X
h
◁Y

(x̂, h(x̂)ŷ),

where we used (4.13) in the last equality. Rearranging yields the result.

4.3 Predictive counterfactual regret minimization paradigm
The set of sequence-form strategies can be decomposed in a bottom-up fashion by using the

convex hulls and Cartesian products operations. We illustrate this intuitively by means of a small

example.

Example 4.1. Consider the small tree-form decision problem of Figure 4.4, which was

originally introduced in Example 2.7. As our construction is bottom-up, we will denote with

the symbol Qv, with v ∈ J ∪ K, the partial sequence-form strategy space corresponding to

the subtree rooted at v.

11 22

33 44 55 66

77 88 99

A

B C

D

Figure 4.4: Sequential decision-making problem used in the example.

We can characterize the set of sequence-form strategies as follows:

64 §4.3. PREDICTIVE COUNTERFACTUAL REGRET MINIMIZATION PARADIGM

• At the terminal decision nodes j = B,C,D, Qj is a probability simplex. Specifically,

QB = QC = ∆2
and QD = ∆3

.

• At the (only) observation node k, a strategy for the subtree rooted at k must provide

independent strategies for the subtrees rooted at B and C. So,

Qk = QB ×QC

is the Cartesian product of the strategy spaces for the subtrees rooted B and C.

• At the decision node A, we need to first pick a probability distribution of play for the

two actions (sequences 1 and 2). Let’s call the probabilities assigned to those actions as

λ1 and λ2, respectively. Clearly, (λ1, λ2) ∈ ∆2
. Once the probabilities of sequences 1 and

2 are chosen, strategies for the subtrees rooted at the observation node k and D. Since

sequence-form strategies associate to each sequence σ the product of the probabilities of

all actions on the path form the root of the TFDP to σ, the set of all valid sequence-form

strategies for the subtree rooted in A (that is, the whole TFDP) is

QA =
{

(λ1, λ2, λ1xk, λ2xD) : (λ1, λ2) ∈ ∆2,xk ∈ Qk,xD ∈ QD

}

= co




1
0

Qk

0

,


0
1

0
Q≽D




.

The above approach can be used in any TFDP. In particular, we always have that the sequence-

form strategy space of a subtree rooted at an observation node is the Cartesian product of the

sequence-form strategy spaces of the children subtrees. Furthermore, the sequence-form strategy

space of a subtree rooted at a decision point is the convex hull of the sequence-form strategy

spaces of the children subtrees, augmented with the indicators of the actions. These inductive

rules are summarized in Table 4.1.

By applying the regret circuits described in Sections 4.2.2 and 4.2.3, we can then construct a

no-regret algorithms for any sequence-form strategy space. The resulting no-regret algorithm is

called CFR, whose pseudocode is given in Algorithms 4.3 and 4.4. In a nutshell, CFR decomposes

the problem of minimizing regret on the whole tree-form decision process into local regret

minimization problems at each of the individual decision nodes j ∈ J . Any no-regret algorithm

Rj for simplex domains can be used to solve the local regret minimization problems. Popular

options are the regret matching (RM) algorithm, and the regret matching
+

(RM+
) algorithm

discussed in Section 3.3.2.

By combining the regret guarantees analyzed for the Cartesian product and convex hull regret

§4. COMPOSABILITY OF LEARNING DYNAMICS AND PREDICTIVE COUNTERFACTUAL REGRET

MINIMIZATION 65

Algorithm 4.3: Predictive CFR (weakly-predictive no-external-regret algorithm for sequence-

form strategy polytope)

Data: {Rj : j ∈ J }: no-regret algorithms for ∆Aj
; one for each decision node j ∈ J .

1 function NextStrategy(m(t))
[▷ Compute the expected prediction for each subtree rooted at each v ∈ J ∪ K]

2 M (t) ← empty dictionary [▷ Maps keys J ∪ K ∪ {⊥} to real numbers]

3 M (t)[⊥]← 0
4 for each node in the tree v ∈ J ∪ K in bottom-up order in the TFDP do
5 if v ∈ J then
6 Let j = v

[▷ At each decision node j ∈ J , we now construct the counterfactual utility vector m
(t)
j]

7 m
(t)
j ← 0 ∈ ℝAj

8 for each action a ∈ Aj do
9 m

(t)
j [a]←m(t)[ja] +M (t)[ρ(j, a)]

[▷ Query each of theRj for their strategy local at each decision node]

10 b
(t)
j ∈ ∆Aj ← Rj .NextStrategy(m(t)

j)

[▷ Update expected values using the new local strategy]

11 M (t)[j]←
∑
a∈Aj

b
(t)
j [a] ·m(t)

j [a]

12 else
13 Let k = v

14 M (t)[k]←
∑
s∈Sk

M (t)[ρ(k, s)]

[▷ Construct the sequence-form representation of the strategy that plays according to the

distribution b
(t)
j at each decision node j ∈ J]

15 x(t) = 0 ∈ ℝΣ

16 for each decision node j ∈ J in top-down order in the TFDP do
17 for each action a ∈ Aj do
18 if pj = ∅ then
19 x(t)[ja]← b

(t)
j [a]

20 else
21 x(t)[ja]← x(t)[pj] · b(t)

j [a]
22 return x(t)

(The algorithm continues in Algorithm 4.4)

66 §4.3. PREDICTIVE COUNTERFACTUAL REGRET MINIMIZATION PARADIGM

Algorithm 4.4: (Continued) Predictive CFR (weakly-predictive no-external-regret algorithm

for sequence-form strategy polytope)

1 function ObserveUtility(u(t) ∈ ℝΣ)
[▷ Compute the expected utility for each subtree rooted at each v ∈ J ∪ K]

2 V (t) ← empty dictionary; [▷ Maps keys J ∪ K ∪ {⊥} to real numbers]

3 V (t)[⊥]← 0;

4 for each node in the tree v ∈ J ∪ K in bottom-up order in the TFDP do
5 if v ∈ J then
6 Let j = v;

7 V (t)[j]←
∑
a∈Aj

b
(t)
j [a] ·

(
u(t)[ja] + V (t)[ρ(j, a)]

)
;

8 else
9 Let k = v;

10 V (t)[k]←
∑
s∈Sk

V (t)[ρ(k, s)];

[▷ At each decision node j ∈ J , we now construct the counterfactual utility vector u
(t)
j]

11 for each decision node j ∈ J do
12 u

(t)
j ← 0 ∈ ℝAj

;

13 for each action a ∈ Aj do
14 u

(t)
j [a]← u(t)[ja] + V (t)[ρ(j, a)];

15 Rj .ObserveUtility(u(t)
j);

§4. COMPOSABILITY OF LEARNING DYNAMICS AND PREDICTIVE COUNTERFACTUAL REGRET

MINIMIZATION 67

Decision node Observation point

QnQ1

· · ·
co




e1

X1
0
.
.
.

0

,


e2

0
X2
.
.
.

0

, . . . ,


en

0
0
.
.
.

Xn



 QnQ1

· · ·
X1 ×X2 × · · · × Xn

Table 4.1: Bottom-up construction rules for sequence-form strategy spaces. ei denotes the i-th indicator

vector, that is, the vector whose entries are all 0 except for the entry in position i, which is set to 1.

circuits (Theorems 4.1 and 4.2), it is immediate that the regret cumulated by the CFR algorithm

satisfies the following bound.

Proposition 4.1. Let Reg(T)
j (j ∈ J) denote the regret cumulated up to time T by each of

the no-regret algorithmsRj . Furthermore, let bj ∈ ∆Aj
be arbitrary strategies for the local

decision nodes j, and let x̂ ∈ Q be the sequence-form strategy corresponding to the behavioral

strategy {bj : j ∈ J }. Then, the regret Reg(T)
cumulated by CFR (Algorithms 4.3 and 4.4) up

to time T satisfies the equality

Reg(T)(x̂) =
∑
j∈J

x̂[pj] · Reg(T)
j (b̂j).

In particular,

Reg(T) ⩽
∑
j∈J

max{0,Reg(T)
j }.

4.3.1 Predictive RM (PRM) and predictive RM+ (PRM+) algorithms

As mentioned in Section 3.3.2, variants of the RM algorithm such as RM+
and Discounted RM have

emerged as the preferred no-regret-algorithms for use in game theoretic settings, due to their

strong performance in practice and their lack of hyperparameters. However, those algorithms do

not support prediction, and therefore do not lead to an interesting predictive variant of CFR.

Motivated by the desire to combine the benefits of RM-based methods with those afforded

by predictivity, in this section we introduce the first predictive versions of RM and RM+
. The

resulting algorithms, coined respectively predictive RM (PRM) and predictive RM+ (PRM+), are given

in Algorithms 4.5 and 4.6. The algorithms coincide with RM and RM+
given in Algorithms 3.2

68 §4.3. PREDICTIVE COUNTERFACTUAL REGRET MINIMIZATION PARADIGM

Algorithm 4.5: Predictive regret matching (PRM)

1 r(0) ← 0 ∈ ℝd, x(0) ← 1/d ∈ ∆d

2 function NextStrategy(m(t))
[▷ Set m(t) = 0 for non-predictive version]

3 θ(t) ← [r(t−1) + m(t) − ⟨m(t),x(t−1)⟩1]+

4 if θ(t) ̸= 0 return x(t) ← θ(t) / ∥θ(t)∥1
5 else return x(t) ← any point in ∆d

6 function ObserveUtility(u(t))
7 r(t) ← r(t−1) + u(t) − ⟨u(t),x(t)⟩1

Algorithm 4.6: Predictive regret matching
+

(PRM+
)

1 z(0) ← 0 ∈ ℝd, x(0) ← 1/d ∈ ∆d

2 function NextStrategy(m(t))
[▷ Set m(t) = 0 for non-predictive version]

3 θ(t) ← [z(t−1) + m(t) − ⟨m(t),x(t−1)⟩1]+

4 if θ(t) ̸= 0 return x(t) ← θ(t) / ∥θ(t)∥1
5 else return x(t) ← any point in ∆d

6 function ObserveUtility(u(t))
7 z(t) ← [z(t−1) + u(t) − ⟨u(t),x(t)⟩1]+

and 3.3 when the prediction vector m(t)
is set to 0.

Theorem 4.5 (Farina, Kroer, and Sandholm, 2021b). PRM and PRM+
are no-external-regret

algorithms for the domain ∆d
. For all x̂ ∈ ∆d

and all times T satisfy the weakly-predictive

regret bound

RT (x̂) ⩽ 1
η

+ η

T∑
t=1

∥∥∥u(t) −m(t) − ⟨u(t) −m(t),x(t)⟩1
∥∥∥2

2

⩽
1
η

+ 2η(d+ 1)
T∑
t=1

∥∥u(t) −m(t)∥∥2
2.

4.3.2 Experimental evaluation

We empirically investigate the instantiation of the predictive CFR algorithm described in Section 4.3

together with the weakly-predictive no-external-regret algorithm for probability simplexes PRM+

described in Section 4.3.1.

In the experiments, we apply two heuristics that usually lead to better practical perfor-

mance: we average the sequence-form strategies x(1), . . . ,x(T)
using the formula x̄(t) :=(

1− 6t
(t+1)(t+2)

)
x̄(t−1) + 6t

(t+1)(t+2) x(t), and we use the alternating updates scheme. We call this

algorithm Predictive CFR + (PCFR+). We compare PCFR+
to the prior state-of-the-art CFR variants:

CFR+
(Tammelin, 2014), Discounted CFR (DCFR) with its recommended parameters (Brown and

Sandholm, 2019), and Linear CFR (LCFR) (Brown and Sandholm, 2019).

We conduct the experiments on common parameteric benchmark games. Each game is

identified with an alphabetical mnemonic that uniquely denotes the game and parameters. A full

description of the game instances, as well as their dimensions, is available in Appendix A. Results

are shown in Figure 4.5.

The x-axis shows the number of iterations of each algorithm. Every algorithm pays almost

exactly the same cost per iteration, since the predictions require only one additional thresholding

§4. COMPOSABILITY OF LEARNING DYNAMICS AND PREDICTIVE COUNTERFACTUAL REGRET

MINIMIZATION 69

0 1000 2000

10−6

10−4 0 1000 2000

10−2

100

G25 — Goofspiel

N
a
s
h

g
a
p

A
v
g
.

p
r
e
d

.
e
r
r
.

0 1000 2000

10−5

10−4

10−3 0 1000 2000

10−2

100

GL25 — Goof. lim.info.

0 1000 2000

10−16

10−11

10−6 0 1000 2000

10−11

10−7

10−3

D26 — Liar’s dice

0 1000 2000

10−13

10−8

10−3

0 1000 2000

10−5

10−2

B2324 — Battleship

N
a
s
h

g
a
p

A
v
g
.

p
r
e
d

.
e
r
r
.

0 1000 2000

10−3

10−2

10−1 0 1000 2000

10−1

101

103
REL27 — River

0 1000 2000

10−14

10−9

10−4 0 1000 2000

10−8

10−4

100

P26 — Pursuit-evasion

0 1000 2000

10−6

10−4

10−2

0 1000 2000

10−3

10−1

101
L22d2 — Leduc poker

N
a
s
h

g
a
p

A
v
g
.

p
r
e
d

.
e
r
r
.

0 1000 2000

10−13

10−8

10−3 0 1000 2000

10−11

10−7

10−3

K23 — Kuhn poker

0 1000 2000

10−13

10−8

10−3 0 1000 2000

10−10

10−6

10−2

SM2 — Hard matrix

Legend: PCFR+ CFR+ LCFR DCFR

Figure 4.5: Performance of PCFR+
, CFR+

, DCFR, and LCFR on nine games. In all plots, the x axis is the

number of iterations of each algorithm. For each game, the top plot shows that the Nash gap on

the y axis (on a log scale), the bottom plot shows and the average prediction error (on a log scale).

70 §4.3. PREDICTIVE COUNTERFACTUAL REGRET MINIMIZATION PARADIGM

step in PCFR+
. For each game, the top plot shows on the y-axis the Nash gap, while the bottom

plot shows the accuracy in our predictions of the regret vector, measured as the average ℓ2

norm of the difference between the actual loss u(t)
received and its prediction m(t)

across all

no-regret-algorithms at all decision points in the game. For all non-predictive algorithms (CFR+
,

LCFR, and DCFR), we let m(t) = 0. For our predictive algorithm, we set m(t) = u(t−1)
at all times

t ⩾ 2 and m(1) = 0, in accordance with the canonical optimistic learning setup (Section 3.2.1).

Both y-axes are in log scale. On B2324 Battleship and P26 Pursuit-evasion, PCFR+
is faster

than the other algorithms by 3-6 orders of magnitude already after 500 iterations, and around 10

orders of magnitude after 2000 iterations. On G25 Goofspiel, PCFR+
is also significantly faster

than the other algorithms, by 0.5-1 order of magnitude. On L22d2 Leduc poker as well as the

REL27 River endgame, the predictions in PCFR+
do not seem to help as much as in other games.

On the River endgame, the performance is essentially the same as that of CFR+
. On L22d2 Leduc

poker, it leads to a small speedup over CFR+
. On both of those games, DCFR is fastest. In contrast,

DCFR actually performs worse than CFR+
in the non-poker experiments, though it is sometimes

on par with CFR+
.

Finally, PRM+
converges very rapidly on the SM2 game, a 2-by-2 matrix nonsequential game

that was identified as a hard instance for RM-based methods (Farina, Kroer, and Sandholm, 2019b).

By using optimism, we seem to be able to sidestep the issue.

We observe that, as expected, the convergence rate of PCFR+
is closely related to how good

the predictions m(t)
of u(t)

are. On B2324 Battleship and P26 Pursuit-evasion, the predictions

become extremely accurate very rapidly, and PCFR+
converges at an extremely fast rate. On

G25 Goofspiel, the predictions are fairly accurate (the error is of the order 10−5
) and PCFR+

is

still significantly faster than the other algorithms. On the REL27 River endgame, the average

prediction error is of the order 10−3
, and PCFR+

performs on par with CFR+
, and slower than DCFR.

Overall, the experiments show that PCFR+
tend to be superior to CFR+

and DCFR on non-poker

games thanks to its ability to incorporate predictions, whereas on poker games DCFR is the fastest.

Chapter 5

Notions of distance for
sequence-form strategies, and prox
methods

We have seen in Chapter 4 that an effective way of constructing no-external-regret dynamics

for sequence-form strategy polytopes is through regret circuits. While algorithms constructed

through regret circuits are currently the practical state of the art for finding equilibria in large

games, in this chapter we look into techniques that belong to the important literature of (online)

convex optimization, which enjoy strong theoretical properties that are not known to apply to

algorithms constructed through regret circuits. The investigation of these optimization techniques

will naturally expose us to a series of fundamental questions about the metric structure and

properties of sequence-form strategy polytopes. We touch on some of these questions below.

Unlike regret circuits, which guarantee feasibility of the strategies produced by exploiting the

known combinatorial structure of the strategy set, most convex optimization methods maintain

feasibility of the iterates by projecting onto the feasible sets. Typically, much flexibility is allowed

in the notion of distance—called the distance-generating function (DGF)—that is used to define the

projection (or, more precisely, proximal) steps. This immediately leads to the following natural

question, which serves as the central theme of this chapter.

What are suitable notions of distance (distance-generating functions) for sequence-form strategies
in imperfect-information extensive-form games, leading to efficient proximal steps?

In principle, Euclidean distance can be used as a notion of distance between sequence-form

strategies. However, its efficacy is limited in practice by the fact that projecting points onto

the polytope of sequence-form strategies according to the Euclidean distance is prohibitively

expensive in practice (Gilpin, Peña, and Sandholm, 2012).

72 §5.1. CONTRIBUTIONS AND RELATED WORK

5.1 Contributions and related work

In this chapter we provide several contributions in the direction of better understanding which

notions of distance best serve sequence-form strategy polytopes. Most importantly, in Section 5.4.2

we provide the first DGF that enables, at the same time, (i) projections that can be computed in

linear-time in the number of sequences, and (ii) polynomial diameter of the set of the sequence-

form strategies, a key quantity that affects the runtime of convex optimization algorithms.

This chapter is structured as follows. In Section 5.2.1 we recall the properties that DGFs need

to satisfy for a generic convex feasible set, and introduce proximal setups. In Section 5.2.2 we

recall four convex optimization algorithms (two of which define no-external-regret algorithms,

and two of which do not), elucidating their dependence on the choice of DGFs. In Section 5.3 we

investigate projections onto sequence-form strategy polytopes with respect to the Euclidean norm

(and small variations of it, which will be important in Chapter 6). In particular, we will show that

exact projections can be computed inductively on the structure of the TFDP, albeit at a superlinear

cost in the number of sequences. Such a cost is prohibitive in large games. Motivated by the desire

of overcoming the superlinear dependence, in Section 5.4, we move away from Euclidean distance

to focus on notions of distance that enable linear-time (in the number of sequences) projections

onto the sequence-form strategy polytope. Specifically, in Section 5.4.1 we introduce the class of

dilated DGFs, a class of DGFs specifically designed for sequence-form strategy polytopes originally

introduced by Hoda, Gilpin, Peña, and Sandholm (2010). Dilated DGFs enable fast projections,

but the diameter they induce currently exhibits an unfavorable, exponential dependence on the

dimension of the sequence-form strategy polytope. Finally, in Section 5.4.2 we introduce a new

DGF, which we coin dilatable global entropy DGF. Dilatable global entropy retains the appealing

linear-time guarantees on projections, while overcoming—for the first time—the exponential

diameter in favor of only a polynomial one. It is currently the theoretical state-of-the-art notion of

distance for strategies in imperfect-information extensive-form games.

Prior work The framework of dilated DGFs was introduced by Hoda, Gilpin, Peña, and

Sandholm (2010). Hoda, Gilpin, Peña, and Sandholm (2010) also introduce a notion of a “nice”

DGF. Their definition is similar to the one used in this chapter, but only states that certain

operations should be “easily computable”. In contrast, we attach a concrete meaning to that

statement: we take it to mean linear time in the dimension of the domain.

Kroer, Waugh, Kılınç-Karzan, and Sandholm (2020) and Kroer, Farina, and Sandholm (2018b)

note the drawback in the current analysis of dilated DGFs regarding the exponential dependence

of the DGF weights in the depth of the decision space. Farina, Kroer, and Sandholm (2019b)

extend the analysis of the strong-convexity modulus of φ with respect to the ℓ2 norm on Q, but

their weighting scheme is still exponential in the worst case.

The predictive versions of OMD and FTRL presented in this chapter as applications of proximal

§5. NOTIONS OF DISTANCE FOR SEQUENCE-FORM STRATEGIES, AND PROX METHODS 73

setups can be traced back to the works by Chiang, Yang, C.-J. Lee, Mahdavi, C.-J. Lu, R. Jin, and

Zhu (2012), A. Rakhlin and Sridharan (2013), S. Rakhlin and Sridharan (2013), and Syrgkanis,

Agarwal, Luo, and Schapire (2015). The mirror prox algorithm was introduced by Nemirovski

(2004). The excessive gap technique was introduced by Nesterov (2005a).

Finally, we remark that the question as to what DGF achieves desirable properties has been

explored in the literature for several classes of related decision sets as well, including i) the

simplex case, where both the negative entropy DGF and the Euclidean DGF are known to have

good properties (Held, Wolfe, and Crowder, 1974; Beck and Teboulle, 2003; Condat, 2016), and

ii) the case of positive semidefinite matrices with a trace constraint, where the matrix entropy

performs well (Aharon Ben-Tal and Nemirovski, 2005).

5.2 Preliminaries

In this section we recall key concepts and applications related to proximal setups.

5.2.1 Distance-generating functions and proximal setups

Let X be a convex and compact set. A distance-generating function for X is defined as follows.

Definition 5.1 (Distance-generating function). A distance-generating function (DGF) φ for a

compact and convex set X ⊆ ℝd is a function φ : X → ℝ such that:

• it is continuous on X and differentiable in the relative interior of X ;

• it is strongly convex in the relative interior of X with respect to some norm ∥ · ∥, that is,

there exists a constant µ > 0 such that〈
∇φ(x)−∇φ(x′),x− x′〉 ⩾ µ∥x− x′∥2 ∀x,x′ ∈ relintX .

For twice-differentiable φ, the strong convexity condition is automatically verified as

long as 〈
m,∇2φ(x)m

〉
⩾ µ∥m∥2, ∀x ∈ relintX ,m ∈ ℝn. (5.1)

Once a distance-generating function φ for X has been picked, several important tools can be

defined, which collectively form a proximal setup for X :

• The Bregman divergenceDφ : X ×relintX → ℝ⩾0 associated with φ yields a notion of distance

between points defined as
[5.a]

[5.a]
A Bregman divergence need not be symmetric and thus might not be a metric.

74 §5.2. PRELIMINARIES

Dφ(x ∥x′) := φ(x)− φ(x′)−
〈
∇φ(x′),x− x′〉 ∀x ∈ X ,x′ ∈ relintX . (5.2)

• The φ-diameter of X is

Ωφ,X := max
x,x′∈X

Dφ(x ∥x′) ⩽ max
x∈X

φ(x)− min
x∈X

φ(x) (5.3)

• Finally, we denote the largest possible value of the ℓ1 norm on X with the symbol

MX := max
x∈X
∥x∥1.

While not a part of the assumptions on the DGF φ, it is typically assumed that φ allows one to

efficiently compute the following two quantities, which come up at every iteration of most convex

optimization algorithms:

• the gradient ∇φ(x) of φ at any point x ∈ relintX ;

• the gradient of the convex conjugate φ∗
of φ at any point g ∈ ℝd:

∇φ∗(g) = arg max
x̂∈X

{
⟨g, x̂⟩ − φ(x̂)

}
.

The gradient of the convex conjugate can be intuitively thought of as a linear maximization

problem over X (i.e., the support function of X , which is a non-smooth convex optimization

problem), smoothed by the regularizer φ. For that reason, in this dissertation we shall refer to

∇φ∗(g) either symbolically, or occasionally as the smoothed support function.

Because the above two quantities arise so frequently in optimization methods, it is important

that the chosen distance-generating function allow for efficient computation of them. In particular,

in this dissertation we are concerned with “nice” DGFs that enable linear-time (in the dimension

φ) exact computation of those two quantities.

Definition 5.2. A distance-generating function φ is said to be “nice” if φ(x), ∇φ(x) and

∇φ∗(g) can be computed exactly in linear time in the dimension of the domain of φ.

Finally, we mention a closely related operation that comes up often in optimization methods:

the proximal operator (or prox operator for short), defined as

proxφ(g ∥ x̃) := arg min
x∈X

{
⟨g,x⟩+ Dφ(x ∥ x̃)

}
= ∇φ∗(−g +∇φ(x̃)

)
∈ X (5.4)

for any x̃ ∈ X and g ∈ ℝd. In light of (5.4), the prox operator can be implemented efficiently

provided that ∇φ and ∇φ∗
can. So, prox operators can be computed exactly in linear time in the

§5. NOTIONS OF DISTANCE FOR SEQUENCE-FORM STRATEGIES, AND PROX METHODS 75

dimension φ for “nice” DGFs.

5.2.2 Applications

Proximal setups are ubiquitous in convex optimization. In this section, we discuss four important

convex optimization methods, all of which require a proximal setup.

The first two methods—online mirror descent (OMD) and follow-the-regularized-leader (FTRL)—

are the premier algorithms in online convex optimization. Given any convex and compact set

X , OMD and FTRL define predictive no-external-regret algorithms with rather strong properties.

By having access to good proximal setups (for example, enjoying linear-time projections) for

sequence-form strategy polytopes X = Q, we will be able to efficiently instantiate OMD and FTRL
in imperfect-information extensive-form games.

The other two methods—excessive gap technique and mirror prox—are the two premier

accelerated bilinear saddle-point algorithm. They are offline optimization methods designed

to solve problems of the form maxx∈X miny∈Y x⊤Ay, which are frequent in games. The most

famous example is perhaps the computation of a Nash equilibrium in a two-player zero-sum

imperfect-information extensive-form game, in which case the setsX andY are the sequence-form

polytopes of the players, and A is the payoff matrix of the game. This again underlines the

importance of researching proximal setups for sequence-form polytopes with strong properties,

which will be our focus in the next two sections.

5.2.3 Online mirror descent and follow-the-regularized-leader

Follow-the-regularized-leader (FTRL, Shalev-Shwartz and Singer, 2007) and online mirror descent
(OMD) are the two best-known (and studied) algorithms in online convex optimization. While

their predictive variants are relatively new and can be traced back to the works by Chiang, Yang,

C.-J. Lee, Mahdavi, C.-J. Lu, R. Jin, and Zhu (2012), A. Rakhlin and Sridharan (2013), S. Rakhlin

and Sridharan (2013), and Syrgkanis, Agarwal, Luo, and Schapire (2015), in line with the rest of

the dissertation we use the name FTRL and OMD to refer to the predictive versions, with the usual

understanding that non-predictive variants of FTRL and OMD algorithms correspond to predictive

FTRL and predictive OMD when the prediction m(t)
is set to the 0 vector at all t.

Algorithms 5.1 and 5.2 give pseudocode for FTRL and OMD. In both algorithm, η > 0 is an

arbitrary step size parameter, X ⊆ ℝd is a convex and compact set, and φ : X → ℝ⩾0 is a

1-strongly convex distance-generating function with respect to some norm ∥ · ∥. We also recall

that the symbol Dφ(· ∥ ·) used in OMD denotes the Bregman divergence associated with φ, a standard

surrogate notion of distance in convex optimization which was defined in (5.2).

Predictive FTRL and predictive OMD satisfy the following regret bound.

76 §5.2. PRELIMINARIES

Algorithm 5.1: Predictive FTRL

1 U (0) ← 0 ∈ ℝd

2 function NextStrategy(m(t) ∈ ℝd)
[▷ Set m(t) = 0 for non-predictive version]

3 x(t)←arg min
x̂∈X

{
⟨U (t−1) + m(t), x̂⟩+ 1

η
φ(x̂)

}
4 return x(t)

5 function ObserveUtility(u(t) ∈ ℝd)

6 U (t) ← U (t−1) + u(t)

Algorithm 5.2: Predictive OMD

1 z(0) ∈ X such that∇φ(z(0)) = 0

2 function NextStrategy(m(t) ∈ ℝd)
[▷ Set m(t) = 0 for non-predictive version]

3 x(t)←arg min
x̂∈X

{
⟨m(t), x̂⟩+ 1

η
Dφ

(
x̂
∥∥ z(t−1))}

4 return x(t)

5 function ObserveUtility(u(t) ∈ ℝd)

6 z(t) ← arg min
ẑ∈X

{
⟨u(t), ẑ⟩+ 1

η
Dφ

(
ẑ
∥∥ z(t−1))}

Proposition 5.1 (Syrgkanis, Agarwal, Luo, and Schapire, 2015). Let Ωφ,X denote the diameter

of φ over X , as defined in Equation (5.3). At all times T , the regret cumulated by predictive

FTRL (Algorithm 5.1) and predictive OMD (Algorithm 5.2) compared to any strategy x̂ ∈ X is

bounded as

Reg(T) ⩽
Ωφ,X
η

+ η

T∑
t=1
∥ℓt −m(t)∥2

∗ −
1
cη

T∑
t=2
∥x(t) − x(t−1)∥2,

where c = 4 for FTRL and c = 8 for OMD, and where ∥ · ∥∗ denotes the dual of the norm ∥ · ∥
with respect to which φ is 1-strongly convex.

We remark that the bound is RVU-predictive (see Section 3.2.4), a stronger guarantee compared

to CFR’s weak-predictivity (Chapter 4). In particular, predictive OMD and predictive FTRL guarantee

OT (1/T) convergence to Nash equilibrium, and OT (T 1/4) per-player external regret when used

in self-play, in turn implyingOT (T−3/4) convergence to a coarse-correlated equilibrium in general

imperfect-information extensive-form games.

5.2.4 Bilinear saddle points: Excessive gap technique and mirror prox

Another important class of convex optimization methods with applications to game solving is

methods for solving bilinear saddle-point problems (BSPPs), whose general form is

min
x∈X

max
y∈Y

⟨x,Ay⟩, (5.5)

where X ⊆ ℝdx ,Y ⊆ ℝdy
are convex and compact sets, and A ∈ ℝdx×dy

. This captures,

among other, the problem of computing a Nash equilibrium in a two-player zero-sum imperfect-

information extensive-form game.

§5. NOTIONS OF DISTANCE FOR SEQUENCE-FORM STRATEGIES, AND PROX METHODS 77

We will now present the EGT and mirror prox algorithms for solving BSPPs. These algorithms

depend on two proximal setups: one for X and one for Y , denoted φx and φy, respectively. Let

∥ · ∥x and ∥ · ∥y be the norms associated with the strong convexity of φx and φy in the given

proximal setup. The convergence rate then depends on the following operator norm of the payoff

matrix A:

∥A∥ := max
{
⟨x,Ay⟩ : ∥x∥x ⩽ 1, ∥y∥y ⩽ 1

}
.

The magnitude of ∥A∥ is the primary way in which the norm matters: if both φx and φy are

strongly convex with respect to the ℓ2 norm, then ∥A∥ can be on the order of

√
dxdy , whereas if

both are with respect to the ℓ1 norm, then ∥A∥ is simply equal to its largest entry.

Excessive gap technique (EGT) algorithm The excessive gap technique (EGT) is a first-order method

introduced by Nesterov (2005b), and one of the primary applications is to solve BSPPs such as

Equation (5.5). EGT assumes access to a proximal setup for X and Y , with one-strongly-convex

DGFs φx, φy, and constructs smoothed approximations of the optimization problems faced by

the max and min players. Based on this setup, we formally state the EGT of Nesterov (2005a) in

Algorithm 5.3. EGT alternatingly takes steps focused on decreasing one or the other smoothing

parameter. These steps are called ShrinkX and ShrinkY in Algorithm 5.3.

Algorithm 5.3: Excessive gap technique (EGT) algorithm

1 function Initialize()

2 t← 0
3 µ

(0)
x ← ∥A∥, µ(0)

y ← ∥A∥
4 x̃← arg minx̂∈X φx(x̂)
5 y(0) ← ∇φ∗

y(A⊤x̃/µ
(0)
y)

6 x(0) ← proxφx

(
1

µ
(0)
x

Ay(0)
∥∥∥ x̃
)

7 function Iterate()

8 t← t+ 1, τ ← 2/(t+ 2)
9 if t is even then ShrinkX()

10 else ShrinkY()

11 function ShrinkX()

12 x̄← −∇φ∗
x(−Ayt−1/µt−1

x)
13 x̂← (1− τ)xt−1 + τ x̄

14 ȳ ← ∇φ∗
y(A⊤x̂/µt−1

y)

15 x̃← proxφx

(
τ

(1−τ)µt−1
x

Aȳ
∥∥∥ x̄
)

16 xt ← (1− τ)xt−1 + τ x̃
17 yt ← (1− τ)yt−1 + τ ȳ
18 µt

x ← (1− τ)µt−1
x

19 function ShrinkY()

20 ȳ ← ∇φ∗
y(A⊤xt−1/µt−1

y)
21 ŷ ← (1− τ)yt−1 + τ ȳ
22 x̄← −∇φ∗

x(−Aŷ/µt−1
x)

23 ỹ ← proxφy

(
−τ

(1−τ)µt−1
y

A⊤x̄

∥∥∥ ȳ
)

24 yt ← (1− τ)yt−1 + τ ỹ
25 xt ← (1− τ)xt−1 + τ x̄
26 µt

y ← (1− τ)µt−1
y

Algorithm 5.3 shows how initial points are selected and the alternating steps and stepsizes

are computed. Nesterov (2005a) proves that the EGT algorithm converges at a rate of OT (1/T).

Theorem 5.1 (Nesterov, 2005a, Theorem 6.3). At every iteration t ⩾ 1 of the EGT algorithm,

the solution (x(t),y(t)) satisfies x(t) ∈ X , y(t) ∈ Y , and

max
ŷ∈Y
⟨x(t),Aŷ⟩ − min

x̂∈X
⟨x̂,Ay(t)⟩ ⩽

4∥A∥
√

Ωφx,X · Ωφy,X

t+ 1 .

78 §5.2. PRELIMINARIES

Mirror prox (MPROX) algorithm The mirror prox (MPROX) algorithm was introduced by Nemirovski

(2004). Rather than construct smoothed approximations, mirror prox directly uses the DGFs

to take first-order steps. Hence, the MPROX algorithm is best understood as an algorithm that

operates on the product space X × Y directly. As such, in most analyses of the MPROX algorithm,

a single 1-strongly convex DGF for the product space X × Y is required. To better align with the

setup used for EGT, we will define the DGF for the product space X × Y starting from proximal

setups for both X and Y , with 1-strongly convex DGFs φx, φy with respect to norms ∥ · ∥x and

∥ · ∥y , respectively. With this setup, it is immediate to see that the function

φ : X × Y ∋ (x,y) 7→ φx(x) + φy(y)

is a DGF for the product space X × Y , which is strongly convex with modulus one with respect

to the norm ∥(x,y)∥ :=
√
∥x∥2

x + ∥y∥2
y . Furthermore, each proximal step taken with respect to d

can be expressed as two independent proximal steps with respect to φx and φy :

proxφ

((
gx
gy

)∥∥∥∥∥
(

x̃

ỹ

))
= arg min

(x,y)∈X ×Y

{〈(
gx
gy

)
,

(
x

y

)〉
+Dφ

((
x

y

)∥∥∥∥∥
(

x̃

ỹ

))}

=
(

arg minx∈X {⟨gx,x⟩+ φx(x)− ⟨∇φx(x̃),x⟩}
arg miny∈Y

{
⟨gy,y⟩+ φy(y)− ⟨∇φy(ỹ),y⟩

})

=
(

proxφx
(gx ∥ x̃)

proxφy

(
gy
∥∥ ỹ
)).

Similarly, the d-diameter of the product space X × Y is equal to the sum of diameters of X and Y
in their respective proximal setups. Finally, we note that the function

F : X × Y ∋ (x,y) 7→
(

Ay

−A⊤x

)
,

critical in the analysis of MPROX (Ahron Ben-Tal and Nemirovski, 2001), satisfies∥∥∥∥∥F
(

x

y

)
− F

(
x′

y′

)∥∥∥∥∥
∗

=
√
∥A(y − y′)∥2

x∗ + ∥A⊤(x− x′)∥2
y∗

⩽

√[
max

∥x̃∥x⩽1
⟨x̃,A(y − y′)⟩

]2
+
[

max
∥ỹ∥y⩽1

⟨x− x′,Aỹ⟩
]2

⩽
√
∥A∥2 · ∥y − y′∥2

y + ∥A∥2 · ∥x− x′∥2
x = ∥A∥ ·

∥∥∥∥∥
(

x− x′

y − y′

)∥∥∥∥∥,
that is, it is ∥A∥-Lipschitz with respect to the norm ∥ · ∥ on X × Y .

§5. NOTIONS OF DISTANCE FOR SEQUENCE-FORM STRATEGIES, AND PROX METHODS 79

Algorithm 5.4 shows the sequence of steps taken in every iteration of the MPROX algorithm.

Algorithm 5.4: Mirror Prox (MPROX) algorithm

1 function Initialize()

2 t← 0
3 z

(0)
x ← arg minx̂∈X φx(x̂)

4 z
(0)
y ← arg minŷ∈Y φy(ŷ)

5 function Iterate()

6 t← t+ 1
7 wt

x ← proxφx

(
ηtAzt−1

y

∥∥ zt
x

)
8 wt

y ← proxφy

(
−ηtA⊤zt−1

x

∥∥ zt
y

)
9 zt+1

x ← proxφx

(
ηtAwt

y

∥∥ zt
x

)
10 zt+1

y ← proxφy

(
−ηtA⊤wt

x

∥∥ zt
y

)
11 x(t) ← [

∑t

τ=1 η
τ]−1∑t

τ=1 η
τ wτ

x

12 y(t) ← [
∑t

τ=1 η
τ]−1∑t

τ=1 η
τ wτ

y

Note: {ηt} is a sequence of step-

size parameters. A well-known

and theoretically-sound choice

for ηt
is ηt := 1

∥A∥ for all t =
0, 1, . . . (see also Theorem 5.2).

Compared to EGT, mirror prox has a somewhat simpler structure: it simply takes repeated

extrapolated proximal steps. First, a proximal step in the descent direction is taken for both x

and y. Then, the gradient at those new points is used to take a proximal step starting from the

previous iterate (this is the extrapolation part: a step is taken starting from the previous iterate,

but with the extrapolated gradient). Finally, the average strategy is output.

As we recall in the next theorem, like EGT the MPROX algorithm converges at rate OT (1/T).

Theorem 5.2 (Ahron Ben-Tal and Nemirovski, 2001, Theorem 5.5.1). Suppose the stepsize in

Algorithm 5.4 is set as ηt = 1/∥A∥. Then we have

max
ŷ∈Y
⟨x(t),Aŷ⟩ − min

x̂∈X
⟨x̂,Ay(t)⟩ ⩽

∥A∥(Ωφx,X + Ωφy,Y)
2t .

5.3 Euclidean distance-generating function

We begin our investigation of distance-generating functions for sequence-form strategy spaces

starting from the prototypical notion: the Euclidean distance-generating function. Fix any

tree-form decision process, and letQ be the corresponding sequence-form strategy polytope. The

Euclidean distance-generating function is the function

φ(x) := 1
2∥x∥

2
2 = 1

2
∑
σ∈Σ

x[σ]2, x ∈ Q.

In this case, using the observation that∇φ(x′) = x′
for all x′ ∈ Q, it is easy to see that the Bregman

divergence associated with φ reduces to (half of) the squared Euclidean distance between two

points,

80 §5.3. EUCLIDEAN DISTANCE-GENERATING FUNCTION

Dφ(x ∥x′) := 1
2∥x∥

2
2 −

1
2∥x

′∥2
2 − ⟨x′,x− x′⟩ = 1

2∥x− x′∥2
2.

Similarly, the gradient of the convex conjugate of φ in a generic point g ∈ ℝΣ
reduces to the usual

Euclidean projection,

∇φ∗(g) = arg max
x̂∈Q

{
⟨g, x̂⟩ − φ(x̂)

}
= arg min

x̂∈Q

{
−⟨g, x̂⟩+ 1

2∥x̂∥
2
2

}
= arg min

x̂∈Q

1
2∥g − x̂∥2

2.

The computation of the projection arg minx̂∈Q ∥g − x̂∥2
2 is not known to be possible in linear

time in the number of sequences |Σ|. This means the Euclidean DGF is not known to be “nice”

in the sense Definition 5.2, and in many cases it might provide a less appealing proximal setup

than, for example, the dilatable global entropy DGF which will be introduced later in the chapter.

However, there are good reasons to study the properties of the Euclidean DGF. For one, out of

the DGFs that have been proposed for imperfect-information extensive-form games it is the only

one with Lipschitz-continuous gradients, which can be fundamental in certain contexts (see,

e.g., Anagnostides, Panageas, Farina, and Sandholm (2022)). Furthermore, some of the techniques

we will develop when studying algorithms for Euclidean projection will prove important in other

chapters (specifically, Chapter 6).

5.3.1 Exact Euclidean projection algorithm

In this section we give a combinatorial algorithm for computing exactly the Euclidean projection

of a generic point g ∈ ℝΣ
. Our algorithm formalizes and extends an idea by Gilpin (2009). In fact,

we give an algorithm that can work with any positive definite diagonal inner product norm, that

is a DGF of the form

φw(x) :=
〈
x,diag(w)x

〉
= 1

2
∑
σ∈Σ

(
x[σ]
w[σ]

)2
,

for some given positive vector w ∈ ℝΣ
>0. It is immediate to see that the Euclidean DGF corresponds

to the special case φ1 in which w = 1 ∈ ℝΣ
>0 is the vector of all ones. In Chapter 6 we will benefit

from considering projections with respect to DGFs φw in which w ̸= 1.

The gradient of the convex conjugate of φw corresponds to the optimization problem

∇φ∗
w(g) = arg min

x∈Q

{
−⟨g,x⟩+ 1

2
∑
σ∈Σ

(
x[σ]
w[σ]

)2
}

(g ∈ ℝΣ). (5.6)

We will show how one can solve the projection problem (5.6) inductively, in a bottom-up fashion,

§5. NOTIONS OF DISTANCE FOR SEQUENCE-FORM STRATEGIES, AND PROX METHODS 81

over the structure of the tree-form decision process. To do so, at every decision node j ∈ J we

define the value function

V≽j(t) : ℝ⩾0 → ℝ, V≽j(t) := min
x̂ ∈ t ·Q≽j

− ∑
σ∈Σ≽j

g[σ] x̂[σ] + 1
2
∑

σ∈Σ≽j

(
x̂[σ]
w[σ]

)2
. (5.7)

We will be particularly interested in the derivatives of V≽j(t), which we will denote as
[5.b]

λ≽j(t) := d

dt
V≽j(t).

As we will show, the function λ≽j(t) is extremely structured, in that it is a strictly monotonically

increasing piecewise-linear (SMPL) function, as defined next.

Definition 5.3 (SMPL and quasi-SMPL function). Given an interval I ⊆ ℝ and a function

f : I → ℝ, we say that f is SMPL if it is strictly monotonically increasing and piecewise-linear

on I .

A quasi-SMPL function is a function f : ℝ → [0,+∞) of the form f(x) = [g(x)]+ where

g(x) : ℝ→ ℝ is SMPL and [·]+ := max{0, · }.

The piecewise-linear nature of λ≽j(t) lends itself nicely to combinatorial algorithms, in that

the function can be represented in memory implicitly through the set of breakpoints at which the

slope of the function changes. We call this a standard representation for the function, as introduced

next.

Definition 5.4. Given a SMPL or quasi-SMPL function f , a standard representation for it is an

expression of the form

f(x) = ᾱ+ α0x+
S∑
s=1

αs[x− βs]+,

valid for all x in the domain of f , where S ∈ ℕ⩾0 and β1 < · · · < βS . The size of the standard

representation is defined as the natural number S.

We review properties and manipulations of SMPL functions in an appendix to this chapter,

Section 5.A. With the above definitions we are ready to state the following result, which is central

in our analysis.

[5.b]
For t = 0 we define λ≽j(t) in the usual way as λ≽j(0) = limt→0+

V≽j (t)−V≽j (0)
t

= limt→0+
V≽j (t)

t
.

82 §5.3. EUCLIDEAN DISTANCE-GENERATING FUNCTION

Lemma 5.1. For any decision node j ∈ J , the function λ≽j(t) is SMPL and has a standard

representation of size |Q≽j |, which can computed in polynomial time in |Σ≽j |.

Proof. The result is known when j is a terminal decision node, i.e., Q≽j is a simplex. Fix a

particular j ∈ J , and assume by induction that the result holds for all j′ ≻ j.
By definition, the value function decomposes recursively as

V≽j(t) = min
x•∈t∆Aj


− ∑

a∈Aj

g[ja] x•[a] + 1
2
∑
a∈Aj

(
x•[a]
w[ja]

)2


+
∑
a∈Aj

∑
j′∈Cja

min
xj′ ∈x•[a]Q≽j′

− ∑
σ∈Σ≽j′

g[σ]xj′ [σ] +
∑

σ∈Σ≽j′

(
xj′ [σ]
w[σ]

)2



= min
x•∈t∆Aj

− ∑
a∈Aj

g[ja] x•[a] + 1
2
∑
a∈Aj

(
x•[a]
w[ja]

)2
+
∑
a∈Aj′

∑
j′∈Cja

V≽j′(x•[a])

. (5.8)

Consider the KKT conditions for x• in Equation (5.8):

−g[ja] + x•[a]
w[ja]2 +

∑
j′∈Cja

λ≽j′(x•[a]) = λ• + µ[a] ∀a ∈ Aj (Stationarity)

x• ∈ t ·∆Aj
(Primal feasibility)

λ• ∈ ℝ, µ ∈ ℝd⩾0 (Dual feasibility)

µ[a] x•[a] = 0 ∀a ∈ Aj (Compl. slackness)

Solving for x•[a] in the stationarity condition, and using the conditions x•[a] µ[a] = 0 and

µ[a] ⩾ 0, it follows that for all a ∈ Aj

x•[a] = w[ja]2
λ• + g[ja]−

∑
j′∈Cja

λ≽j′(x•[a])

+

. (5.9)

Strict monotonicity and piecewise-linearity of x•[a] as a function of λ•. Given the properties

of SMPL functions, it is immediate to see that x•[a] is unique as a function of λ•. Indeed, note

that (5.9) can be rewritten as

§5. NOTIONS OF DISTANCE FOR SEQUENCE-FORM STRATEGIES, AND PROX METHODS 83

x•[a] =

w[ja]2 λ• −w[ja]2
−g[ja] +

∑
j′∈Cja

λ≽j′(x•[a])

+

,

which is a fixed-point problem of the form studied in Lemma 5.8 in the appendix for

y = w[ja]2 λ• and function fa defined as

fa(x•[a]) = w[ja]2
−g[ja] +

∑
j′∈Cja

λ≽j′(x•[a])

,
which is clearly SMPL by inductive hypothesis. Hence, the unique solution to the previous

fixed-point equation is given by the quasi-SMPL function

ga : λ• 7→
1

w[ja]2
[
(x•[a] + fa)−1(λ•)

]+
,

a standard representation of which can be computed in timeO(|Q≽j |) by combining the results

of Lemmas 5.3, 5.5 and 5.6 given that a standard representation of each λ≽j′(t) (j′ ∈ Cja) of

size |Σ≽j′ | is available by inductive hypothesis.

Strict monotonicity and piecewise-linearity of λ• as a function of t. At this stage, we know

that given any value of the dual variable λ•, the unique value of the coordinate x•[a] that

solves the KKT system can be computed using the quasi-SMPL function ga. In turn, this means

that we can remove the primal variables x• from the KKT system, leaving us a system in λ•

and t only. We now show that the solution λ⋆• of that system is a SMPL function of t ∈ [0,+∞).
Indeed, the value λ⋆•(t) that solves the KKT system has to satisfy the primal feasibility

condition

t =
∑
a∈Aj

x•[a] =
∑
a∈Aj

ga(λ•).

Fix any t > 0. The right-hand side of the equation is a sum of quasi-SMPL functions. Hence,

from Lemma 5.4, we have that the right-hand side has a standard representation of size at most

|Aj |+
∑
a∈Aj

∑
j′∈Cja

|Σ≽j′ | = |Σ≽j | can be computed in time O(|Σ≽j | log |Aj |). Furthermore,

from Lemma 5.7, we have that the λ⋆• that satisfies the equation is unique, and in fact that the

mapping (0,+∞) ∋ t 7→ λ⋆•(t) is SMPL with standard representation of size at most |Σ≽j |.

Relating λ• and λ≽j(t). Since λ⋆•(t) is the coefficient on t in the Lagrangian relaxation of (5.8),

it is a subgradient of V≽j(t), and since there is a unique solution, we get that it is the derivative,

84 §5.4. DISTANCE-GENERATING FUNCTIONS WITH LINEAR-TIME PROJECTIONS

that is, λ⋆•(t) = λ≽j(t) for all t ∈ (0,+∞). To conclude the proof by induction, we then need

to analyze the case t = 0, which has so far been excluded. When t = 0, the feasible set

tQ≽j is the singleton {0}, and V≽j(0) = 0. Since V≽j(t) is continuous on [0,+∞), and since

limt→0+ λ≽j(t) = limt→0+ λ⋆•(t) exists since λ⋆•(t) is piecewise-linear, then by the mean value

theorem,

λ≽j(0) = lim
t→0+

λ⋆•(t),

that is, the continuous extension of λ⋆• must be (right) derivative of V≽j(t) in 0. As extending

continuously λ⋆•(t) clearly does not alter its being SMPL nor its standard representation, we

conclude the proof of the inductive case.

5.4 Distance-generating functions with linear-time projections

Most convex optimization methods maintain feasibility by projecting onto the feasible set at each

iteration. Hence, designing notions of distance that enable efficient projections is an important

step in scaling those methods.

In this section, we focus on notions of distance that enable projections in linear time in the

dimension of the dimension of the sequence-form strategy polytope. Remarkably, in Section 5.4.2

we introduce the first such notion of distance whose linear-time projection property does not
come at the cost of an exponential diameter.

5.4.1 Dilated distance-generating functions

Dilated distance-generating functions are a general framework for constructing “nice” DGFs

(in the sense of Definition 5.2) for (the relative interior of the) sequence-form polytopes (Hoda,

Gilpin, Peña, and Sandholm, 2010). Specifically, a dilated DGF for a sequence-form polytope

is constructed by taking a weighted sum over suitable local regularizers φ∅ : ℝ⩾0 → ℝ⩾0 and

φj : ∆Aj → ℝ⩾0 for all decision nodes j ∈ J , and is of the form

φ : Q ∋ x 7→ α∅ φ∅(x[∅]) +
∑
j∈J

αj φ
□
j

(
x[pj], (x[ja])a∈Aj

)
, (5.10)

where

φ□
j : ℝ⩾0 ×ℝ

Aj

⩾0 → ℝ, φ□
j (p, z) :=

0 if p = 0

p · φj
(

z
p

)
otherwise.

(5.11)

Each local function φj : ∆Aj → ℝ is assumed to be continuously differentiable and strongly

§5. NOTIONS OF DISTANCE FOR SEQUENCE-FORM STRATEGIES, AND PROX METHODS 85

convex modulus one on the relative interior of the probability simplex ∆Aj
. By dividing

(x[ja])a∈Aj
by x[pj] in (5.11), we renormalize (x[ja])a∈Aj

to the simplex, measure the DGF there,

and then scale that value back by x[pj]. Finally, the weight αj is a flexible weight term that can be

chosen to ensure good properties. Hoda, Gilpin, Peña, and Sandholm (2010) showed that if each

local DGF φj is strongly convex, then the dilated DGF φ is also strongly convex (although they

do not give an explicit modulus), and they show that the associated smoothed support function

can easily be computed, provided that the smoothed support function for each φj can easily be

computed. For dilated DGFs, the strongest general result on the strong-convexity modulus comes

from Farina, Kroer, and Sandholm (2019b), where the authors show that if each local DGF φj is

strongly convex modulus one with respect to the ℓ2 norm, and the weights of the decision nodes

are set recursively according to αj = 2 + 2 maxa∈Aj

∑
j′∈Cja

αj′ (so, in particular decision nodes

without descendants have a weight of 2), then φ is strongly convex modulus one with respect to

the ℓ2 norm on Q.

The local DGFs must be chosen so that they are compatible with the relative interior of the

simplex. For a given simplex ∆k, these are usually chosen either as:

• the (negative) entropy DGF, log k +
∑k
i=1 y[i] log y[i], where we let y[i] log y[i] = 0 whenever

y[i] = 0; or

• the Euclidean DGF,
1
2
∑k
i=1(y[i]− 1/k)2

. These are both 1-strongly convex on relint ∆k (for

entropy with respect to the ℓ1 norm and for Euclidean with respect to the ℓ2 norm), and

their associated smoothed support functions can be computed in O(k) time (see, e.g., Ahron

Ben-Tal and Nemirovski (2001) and Condat (2016)).

5.4.1.1 “Nice”ness of dilated distance-generating functions

One of the most important properties of dilated DGFs is that they lead to a “nice” DGF as long as

each local convex conjugate gradient∇φ∗
j can be computed in time linear in |Aj |.[5.c]

Specifically,

the gradient of a dilated DGF and of its convex conjugate can be computed exactly in closed form

by combining the gradients of each φj and their convex conjugates, as shown in Algorithm 5.5.

5.4.1.2 Dilated entropy distance-generating function

As mentioned, the dilated entropy DGF is the instantiation of the general dilated DGF framework

of Section 5.4.1 with the particular choice of using the (negative) entropy function at each decision

node. In particular, for any choice of weights α∅, αj > 0 it is the regularizer of the form
[5.d]

[5.c]
In particular, this makes the dilated entropy and dilated Euclidean DGFs “nice” DGFs.

[5.d]
In this dissertation, we let 0 log(0) = 0 log(0/0) = 0. Since the dilated entropy DGF is a Legendre function, it is

guaranteed that all iterates and prox-steps will remain in the relative interior of the optimization domain at all times, thus

avoiding the non-differentiability issue of the entropy function at the boundary of Q.

86 §5.4. DISTANCE-GENERATING FUNCTIONS WITH LINEAR-TIME PROJECTIONS

Algorithm 5.5: Gradient and smoothed support function for general dilated DGFs.

1 function Gradient(x ∈ relintQ)
2 g ← 0 ∈ ℝΣ

3 for j ∈ J in bottom-up order do
4 b ∈ ∆Aj ←

(
x[ja]
x[pj]

)
a∈Aj

5 for a ∈ Aj do
6 g[ja]← g[ja] + αj ∇φj(b)

7 g[pj]← g[pj] + αj

(
φj(b)− ⟨∇φj(b), b⟩

)
8 g[∅]← g[∅] + α∅∇φ∅(x[∅])
9 return g

10 function ConjugateGradient(g ∈ ℝΣ)
11 z ← 0 ∈ ℝΣ

12 z[∅]← 1
13 for j ∈ J in bottom-up order do
14 (z[ja])a∈Aj ← ∇φ∗

j

(
(g[ja])a∈Aj

)
15 g[pj]← g[pj]− φj((z[ja])a∈Aj) +

∑
a∈Aj

g[ja]z[ja]

16 for j ∈ J in top-down order do
17 for a ∈ Aj do
18 z[ja]← z[pj] · z[ja]
19 return z ∈ Q

Q ∋ x 7→ α∅x[∅] log x[∅] +
∑
j∈J

αj

x[pj] log |Aj |+
∑
a∈Aj

x[ja] log x[ja]
x[pj]

. (5.12)

We will now briefly review existing results specific to the dilated entropy DGF, for which

stronger results are known than for the general class of dilated DGFs. A central result in the

present paper is to show that there exist DGFs for sequence-form polytopes which are better than

the dilated entropy DGF, but that these DGFs can be partially recast in a dilated form, in order to

enable efficient computation of the smoothed support function.

First, as a direct consequence of the more general discussion in Section 5.4.1 and Algorithm 5.5,

the dilated entropy DGF is a “nice” DGF (in the precise sense of Definition 5.2) no matter

the choice of weights α. In particular, in the case of the negative entropy functions φj(x) :=
log |Aj |+

∑
a∈Aj

x[ja] log x[ja], one has

(
∇φj(x)

)
[a] = 1 + log x[a],

(
∇φ∗

j (g)
)
[a] = ega∑

a′∈Aj
ega′

for all a ∈ Aj , x ∈ relint ∆Aj
, and g ∈ ℝAj

. By plugging the above expression in the template of

Algorithm 5.5 we obtain linear-time exact algorithms to compute ∇φ and∇φ∗
.

Kroer, Waugh, Kılınç-Karzan, and Sandholm (2020) show that the dilated entropy DGF is

strongly convex modulus 1/MQ with respect to the ℓ1 norm, when the weights α are chosen as in

the following definition.

Definition 5.5 (Kroer et al. dilated entropy DGF). Define the DGF weights βj recursively as

β∅ := 2 + 2
∑
j∈C∅

βj , βj := 2 + 2 max
a∈Aj

∑
j′∈Cja

βj′ ∀j ∈ J .

§5. NOTIONS OF DISTANCE FOR SEQUENCE-FORM STRATEGIES, AND PROX METHODS 87

The resulting instantiation of the dilated entropy DGF is the Kroer et al. dilated entropy DGF

κ : x 7→ β∅x[∅] log x[∅] +
∑
j∈J

βj

x[pj] log |Aj |+
∑
a∈Aj

x[ja] log x[ja]
x[pj]

.

Example 5.1. Consider the small tree-form decision process introduced in Example 2.7,

reproduced below. In this case, the weights β in the construction of the Kroer et al.’s dilated

entropy DGFφ are computed as follows: βD = βC = βB = 2; βA = 2+2 max{βB+βC, βD} = 10;

β∅ = 2 + 2βA = 22. Correspondingly, the DGF φ is the function

κ : x 7→ 22 x[∅] log x[∅]

+ 10

(
x[∅] log(2) + x[A1] log x[A1]

x[∅] + x[A2] log x[A2]
x[∅]

)

+ 2

(
x[A1] log(2) + x[B3] log x[B3]

x[A1] + x[B4] log x[B4]
x[A1]

)

+ 2

(
x[A1] log(2) + x[C5] log x[C5]

x[A1] + x[C6] log x[C6]
x[A1]

)

+ 2

(
x[A2] log(2) + x[D7] log x[D7]

x[A2] + x[D8] log x[D8]
x[A2] + x[D9] log x[D9]

x[A2]

)
.

11 22

33 44 55 66

77 88 99

A

B C

D

We remark that, on the surface, the strong convexity modulus of
1
MQ

with respect to the ℓ1

norm might appear less appealing than the modulus 1 obtained by using the ℓ2 norm. However,

recall that the norm that is used to measure strong convexity affects the value of the operator

norm of A, which is significantly smaller under the ℓ1 − ℓ∞ operator norm (where it is equal to

maxr,c |A[r, c]|) than the ℓ2 − ℓ2 operator norm for strong convexity with respect to the ℓ2 norm.

Unfortunately, due to the exponential nature of the weights defined in Definition 5.5, the

only known bound on the diameter of Q under the Kroer et al. dilated entropy DGF is

exponential.

Proposition 5.2 (Kroer, Waugh, Kılınç-Karzan, and Sandholm, 2020). The diameter of Q
under the Kroer et al. dilated entropy DGF κ satisfies

Ωκ,Q ⩽ 2DQ+2M2
Q max
j′∈J

log |Aj′ |.

In fact, this drawback is actually shared by all known analyses of dilated DGFs, not just dilated

entropy (Farina, Kroer, and Sandholm, 2019b).

88 §5.4. DISTANCE-GENERATING FUNCTIONS WITH LINEAR-TIME PROJECTIONS

5.4.2 Dilatable global entropy distance-generating function

As mentioned at the end of the previous subsection, one drawback of both the general and

entropy-specific dilated DGFs developed in the past is that they have an exponential dependence

on the depth of the sequence-form polytope. In particular, note that the factor of 2 in the recursive

definition of the weights means that the factor βj for some root decision node is growing at

least on the order of 2DQ
, where DQ is the depth of the tree-form decision process. For some

sequence-form polytopes this might be acceptable: if the tree-form decision process is reasonably

balanced, then the number of decision nodes is also exponential in depth. However, for other

sequence-form polytopes this is unacceptable: the most extreme case would be a single line of

decision nodes, where the number of decision nodes is linear in DQ, but the βj at the root is

exponentially large. This exponential dependence on depth also enters the convergence rate of

the optimization methods, since it effectively acts as a scalar on the polytope diameter Ω induced

by DQ. Motivated by the need to soundly resolve that drawback, in this subsection we introduce

the first “nice” DGF (in the sense of Definition 5.2) with guaranteed polynomially-small diameter

for any decision node.

Definition 5.6 (Dilatable global entropy). The dilatable global entropy distance generating function
ψ is the function ψ : Q → ℝ⩾0 defined as

ψ : Q ∋ x 7→ w∅x[∅] log(x[∅]) +
∑
j∈J

∑
a∈Aj

wjax[ja] log x[ja] +
∑
j∈J

γjx[pj] log |Aj |,

where each γj ⩾ 1 (j ∈ J) is defined recursively as

γ∅ = 1 +
∑
j∈C∅

γj , γj := 1 + max
a∈Aj

 ∑
j′∈Cja

γj′

 ∀ j ∈ J , (5.13)

and each wσ ⩾ 1 (σ ∈ Σ) is defined recursively as

w∅ := γ∅ −
∑
j∈C∅

γj ,

wja := γj −
∑
j′∈Cja

γj′ = 1 + max
a′∈Aj

 ∑
j′∈Cja′

γj′

− ∑
j′∈Cja

γj′ ∀ja ∈ Σ.

The weights γj defined in (5.13) are very similar to the ones given for the dilated DGFs in the

previous section, except that the whole expression is smaller by a factor of two. Avoiding this

factor of two is crucial, because it allows us to avoid the exponential dependence on depth. Here,

§5. NOTIONS OF DISTANCE FOR SEQUENCE-FORM STRATEGIES, AND PROX METHODS 89

it is easy to see that γj is upper bounded by the number of decision nodes in the subtree rooted at

j, so γj is at most polynomial in the size of the sequential decision problem. In fact, it is not hard

to show that if j is the sole root decision node, then γj is equal to maxx∈Q∥x∥1.

Example 5.2. We continue the example started in Example 5.1, this time looking at the dilatable
global entropy function. In this case, the weights γ in the construction of the dilatable global

entropy DGF ψ are computed as follows: γD = γC = γB = 1; γA = 1 + max{γB + γC, γD} = 3;

γ∅ = 1+γA = 4. Correspondingly, all weightswja are equal to 1 except forwA2 = γA−γD = 2.

Correspondingly, the DGF φ is the function

ψ(x) = x[∅] log x[∅]

+ x[A1] log x[A1] + 2x[A2] log x[A2]

+ x[B3] log x[B3] + x[B4] log x[B4]

+ x[C5] log x[C5] + x[C6] log x[C6]

+ x[D7] log x[D7] + x[D8] log x[D8] + x[D9] log x[D9]

+ 3x[∅] log(2) + x[A1] log(2) + x[A1] log(2)

+ x[A2] log(2).

11 22

33 44 55 66

77 88 99

A

B C

D

Small TFDP considered in this

example.

5.4.2.1 Dilatability property

The adjective dilatable comes from the key property that the dilatable global entropy is equal

to a specific dilated entropy regularizer ψ̃, on the sequence-from strategy space Q. More precisely,

consider the dilated entropy DGF defined as

ψ̃ : Q ∋ x 7→ γ∅x[∅] log x[∅] +
∑
j∈J

γj

x[pj] log |Aj |+
∑
a∈Aj

x[ja] log x[ja]
x[pj]

.
Then, we have the following.

Theorem 5.3. The dilatable global entropy DGF and the dilated entropy DGF coincide on

the polytope of sequence-form strategies Q, that is, ψ(x) = ψ̃(x) for all x ∈ Q.

Proof. We start by expanding the definition of ψ̃(x) for x ∈ Q:

ψ̃(x) := γ∅x[∅] log x[∅] +
∑
j∈J

∑
a∈Aj

γjx[ja] log x[ja]
x[pj]

+
∑
j∈J

γjx[pj] log |Aj |

90 §5.4. DISTANCE-GENERATING FUNCTIONS WITH LINEAR-TIME PROJECTIONS

=
∑
j∈J

∑
a∈Aj

γjx[ja] log x[ja]−
∑
j∈J

∑
a∈Aj

γjx[ja] log x[pj] +
∑
j∈J

γjx[pj] log |Aj |, (5.14)

where in the second equality we have used the fact that x[∅] = 1, as well as the properties of

logarithms. Given the assumption x ∈ Q, it holds that

∑
a∈Aj

x[ja] = x[pj] for all j ∈ J and

so we can simplify the middle summation in (5.14) and obtain

ψ̃(x) =
∑
j∈J

∑
a∈Aj

γjx[ja] log x[ja]−
∑
j∈J

γjx[pj] log x[pj] +
∑
j∈J

γjx[pj] log |Aj |.

The middle summation multiplies the weights γj by a quantity that depends on the parent

sequence pj of j. It can therefore be rewritten equivalently by summing over nonterminal

sequences and multiplying by the weight of the children decision nodes, as follows.

ψ̃(x) =
∑
j∈J

∑
a∈Aj

γjx[ja] log x[ja]−
∑
j∈J

∑
a∈Aj

∑
j′∈Cja

γj′x[ja] log x[ja] +
∑
j∈J

γjx[pj] log |Aj |

=
∑
j∈J

∑
a∈Aj

γjx[ja] log x[ja]−
∑
j∈J

∑
a∈Aj

 ∑
j′∈Cja

γj′

x[ja] log x[ja] +
∑
j∈J

γjx[pj] log |Aj |

=
∑
j∈J

∑
a∈Aj

wjax[ja] log x[ja] +
∑
j∈J

γjx[pj] log |Aj |

= ψ(x),

as we wanted to show.

The equality established in Theorem 5.3 does not hold outside the sequence-form polytope—a

set with no interior. Because of that, it is not surprising that in general ∇ψ(x) ̸= ∇ψ̃(x) even at

points x in the relative interior of the sequence-form polytope. We will return to the difference

between the gradients of ψ and ψ̃ in Section 5.4.2.5, where we show that the mismatch between

∇ψ(x) and∇ψ̃(x) is orthogonal to the sequence-form polytope when x ∈ Q.

5.4.2.2 “Nice”ness of the dilatable global entropy DGF

We now show that our dilatable global entropy regularizer is “nice” in the sense of Definition 5.2,

that is, its gradient and the gradient of its convex conjugate can be computed exactly in linear

time in |Σ|.

• The gradient of ψ can be trivially computed in closed form and linear time in |Σ| starting

from Definition 5.6 as(
∇ψ(x)

)
[σ] = (1 + log x[σ])wσ +

∑
j∈Cσ

γj log |Aj | ∀σ ∈ Σ,x ∈ relintQ.

§5. NOTIONS OF DISTANCE FOR SEQUENCE-FORM STRATEGIES, AND PROX METHODS 91

• Using the dilatability property, we have that the gradient of the convex conjugate satisfies

∇ψ∗(g) = arg max
x∈Q

{⟨g,x⟩ − ψ(x)} = arg max
x∈Q

{
⟨g,x⟩ − ψ̃(x)

}
= ∇ψ̃∗(g), (5.15)

where we used the dilatability property (Theorem 5.3) in the second equality. Therefore,

since ψ̃ is a dilated DGF and its smoothed support function can be computed in linear time,

the smoothed support function of ψ can be computed in linear time in |Σ|.

An immediate consequence of the niceness established in the previous bullet point is that proximal

operators of ψ can be computed efficiently, as

proxψ(g ∥ c) = ∇ψ∗(−g +∇ψ(c)) = ∇ψ̃∗(−g +∇ψ(c)),

where the last equality is a special case of (5.15).

5.4.2.3 Strong convexity of the dilatable global entropy DGF

On the other hand, we now show that ψ has the advantage of a better strong convex modulus,

compared to the existing dilated entropy DGFs.

Theorem 5.4. The dilatable global entropy function ψ : Q → ℝ⩾0 is a DGF for the sequence-

form polytope Q, 1-strongly convex on relintQwith respect to the ℓ2 norm.

Proof. The function ψ is twice-differentiable on (0, 1)Σ ⊇ relintQ. Using (5.1) we conclude that

ψ is 1-strongly convex, since the Hessian is

∇2ψ(x) = diag

({
wσ

x[σ]

}
σ∈Σ

)
≽ I,

where we used the inequalities 0 ⩽ x[σ] ⩽ 1 and wσ ⩾ 1.

Theorem 5.5. The dilatable global entropy function ψ is strongly convex modulus 1/MQ with

respect to the ℓ1 norm on relintQ.

Proof. Using the second-order definition of strong convexity, we wish to show that the inequality

⟨m,∇2ψ(x)m⟩ ⩾ 1
MQ
∥m∥2

1 holds for any m ∈ ℝΣ
. Expanding the Hessian matrix and using

the fact that wσ ⩾ 1 for all σ ∈ Σ gives

92 §5.4. DISTANCE-GENERATING FUNCTIONS WITH LINEAR-TIME PROJECTIONS

⟨m,∇2ψ(x)m⟩ =
〈

m,diag
({

wσ
x[σ]

}
σ∈Σ

)
m

〉
⩾
∑
σ∈Σ

m[σ]2

x[σ] . (5.16)

On the other hand, by expanding the definition of ∥m∥2
1 and applying the Cauchy-Schwarz

inequality, we have

∥m∥2
1 =

(∑
σ∈Σ
|m[σ]|

)2

=
(∑
σ∈Σ

|m[σ]|√
x[σ]

√
x[σ]

)2

⩽

(∑
σ∈Σ

m[σ]2

x[σ]

)(∑
σ∈Σ

x[σ]
)

=
(∑
σ∈Σ

m[σ]2

x[σ]

)
∥x∥1 ⩽

(∑
σ∈Σ

m[σ]2

x[σ]

)
MQ.

Substituting (5.16) into the last inequality yields a proof of the desired strong convexity

modulus 1/MQ.

5.4.2.4 Diameter of the dilatable global entropy DGF

The properties above immediately imply that our dilatable global entropy DGF satisfies all the

requirements for a prox setup on the polytope of sequence-form strategies Q. Here we complete

the analysis by giving bounds on the diameter induced by ψ.

Theorem 5.6. The ψ-diameter Ωψ,Q of Q is at most M2
Q maxj′∈J log |Aj′ |.

Proof. By the definition of the polytope diameter and the fact that we chose our DGFs such

that minx∈A ψ(x) = 0, we have

Ωψ,Q ⩽ max
x∈Q

ψ(x) ⩽ max
x∈Q

∑
j∈J

γjx[pj] log |Aj | ⩽ max
x∈Q

max
j′∈J

log |Aj′ |
∑
j∈J

γjx[pj]

⩽MQ max
x∈Q

max
j′∈J

log |Aj′ |
∑
j∈J

x[pj]

⩽M2
Q max
j′∈J

log |Aj′ |,

where the second inequality is by noting that log x[σ] ⩽ 0 since x[σ] ⩽ 1 for all σ ∈ Σ, the

fourth inequality is by noting that γj is largest at root decision nodes, where it is at most MQ,

and the fifth inequality upper bounds

∑
j∈J x[pj] by MQ.

In particular, Theorem 5.6 shows that the dilatable global entropy DGF improves the polytope

diameter of dilated entropy (Proposition 5.2) by a factor of 2DQ+2
, achieving a polytope diameter

with no exponential dependence on the depth DQ of the sequence-form polytope.

§5. NOTIONS OF DISTANCE FOR SEQUENCE-FORM STRATEGIES, AND PROX METHODS 93

Example 5.3. Let Q be the sequence-form polytope corresponding to an optimal stopping

problem: an agent has a sequence of k decision nodes, and at each decision node they can

either choose to stop the game, in which case a payoff is reached, or they can choose to

continue the game, in which case they continue to the next decision node. For such a problem,

Q has depth k, which is also the size of Q as measured by the ℓ1 norm, i.e. MQ = k. In

this case, the diameter associated to ψ is k2 log 2, whereas the dilated entropy DGF of Kroer,

Waugh, Kılınç-Karzan, and Sandholm (2020) gives diameter 2k+2k2 log 2.

Example 5.3 shows the most extreme type of decision problem in terms of our improvement

over existing results. Another example of a polytope that partially embeds this structure is the

decision spaces of a no-limit poker game. In those games, a player may raise by any amount

between the minimum raise size and the size of their stack. Because of this, there exists a very

deep decision path where players take turns raising by the minimum amount. However, the

average depth is much smaller than this.

Summing up our results on the dilatable global entropy, we have shown that it enjoys the

same fast smoothed-support-function computation as the dilated entropy DGF, while having a

better way to achieve strong convexity modulus 1/MQ. In particular, the existing dilated entropy

setup requires the weight parameters β to grow exponentially in the depth of the sequence-form

polytope, whereas we have only a linear growth in those weights. More concretely, this means

that the largest weights maxj∈J βj in the dilated entropy DGF are larger than the largest weights

maxj∈J γj in the dilatable global entropy DGF by a factor of more than 2DQ
. This in turn allowed

us to achieve a better polytope diameter by a factor of 2DQ+2
while retaining the same strong

convexity modulus.

5.4.2.5 Gradient properties of the dilatable global entropy DGF

The previous subsections establish that the dilated global entropy DGF ψ̃ is dilatable (i.e., it

coincides with a dilated entropy DGF, ψ̃, on all of their domain Q) and nice (i.e., gradients,

smoothed support functions, and proximal operators can be computed efficiently). Furthermore,

we have seen that ψ̃ has very appealing metric properties, including a diagonal Hessian matrix

that renders establishing strong convexity rather trivial, especially as compared to the analyses of

dilated entropy DGFs in the prior literature (Kroer, Waugh, Kılınç-Karzan, and Sandholm, 2020).

In this subsection we go one step further: by studying the relationship between the gradients

of ψ and ψ̃, we will establish that the two enjoy the same strong convexity parameter. In particular,

we will make use of the following property, which we prove at the end of the section.

94 §5.4. DISTANCE-GENERATING FUNCTIONS WITH LINEAR-TIME PROJECTIONS

Lemma 5.2. At any point x ∈ relintQ, the gradients ∇ψ(x) and ∇ψ̃(x) differ only along

orthogonal directions to the affine hull affQ of Q, that is,〈
∇ψ(x)−∇ψ̃(x),y − z

〉
= 0 ∀y, z ∈ Q.

Lemma 5.2 immediately implies that for any two points x,x′ ∈ relintQ〈
∇ψ̃(x)−∇ψ̃(x′),x− x′〉 =

〈
∇ψ(x)−∇ψ(x′),x− x′〉,

that is, the strong convexity properties of ψ established in Section 5.4.2.3 apply to ψ̃ as well. In

particular, this shows that the specific dilated entropy DGE ψ̃ is 1-strongly convex on relintQ
with respect to the ℓ2 norm, and 1/MQ-strongly convex with respect to the ℓ1 norm. Additionally,

the analysis of the diameter of ψ transfers directly to ψ̃ by dilatability (Section 5.4.2.1). Combined,

these results enable us to introduce a 1-strongly convex dilated entropy DGF (and not just any nice

DGF) ψ̃ that for the first time has worst-case polynomially-bounded diameter.

We remark that it would be hard to establish such a result without first introducing our dilated

global regularizer, as analyzing the product ⟨∇ψ̃(x)−∇ψ̃(x′),x− x′⟩ for a dilated entropy DGF

ψ̃ is notoriously involved. Instead, the good metric properties of ψ—especially the diagonal

Hessian matrix—make the analysis of the strong convexity and diameter properties trivial.

In fact, every strong convexity proof for an entropy DGF that we are aware of uses the

Hessian-based condition (Ahron Ben-Tal and Nemirovski, 2001; Kroer, Waugh, Kılınç-Karzan,

and Sandholm, 2020). If we had used this definition directly on the dilated DGF φ, then

the lower bound from Kroer, Waugh, Kılınç-Karzan, and Sandholm (2020) implies that we

would get an exponential dependence on the depth. This is because the Hessian condition is

a sufficient but not necessary condition for strong convexity: it asks for the condition to hold

along directions orthogonal to the affine hull of the sequence-form strategy space, which is not

necessary. Arguably, the key insight for the dilatable global entropy is that it allows us to use the

Hessian-based sufficient condition for proving strong convexity in a way that avoids paying the

cost of maintaining strong convexity along irrelevant orthogonal directions. The fact that it also

greatly simplifies the Hessian-based analysis is an added bonus.

Another consequence of Lemma 5.2 is that the proximal steps induced by ψ and ψ̃ coincide.

Indeed, for all centers y ∈ relintQ and gradients g, one has

arg min
y∈Q

{
⟨g,y⟩+Dψ(y ∥x)

}
= arg min

y∈Q

{
⟨g,y⟩+ ψ(y)−∇ψ(x)⊤(y − x)

}

§5. NOTIONS OF DISTANCE FOR SEQUENCE-FORM STRATEGIES, AND PROX METHODS 95

= arg min
y∈Q

{
⟨g,y⟩+ ψ̃(y)−∇ψ(x)⊤(y − x)

}
(By dilatability, Theorem 5.3)

= arg min
y∈Q

{
⟨g,y⟩+ ψ̃(y)−∇ψ̃(x)⊤(y − x)

}
(Lemma 5.2)

= arg min
y∈Q

{
⟨g,y⟩+Dψ̃(y ∥x)

}
.

Hence, mirror descent, online mirror descent, follow-the-regularizer-leader, mirror prox, and

EGT (among others) all produce the same iterates when instantiated with ψ̃ or ψ. It is conceivable

that some methods—for examples methods that require taking norms of gradients, or methods

that rely on norms induced by the Hessian matrix of the regularizer (e.g., Abernethy and A.

Rakhlin (2009))—would in general not be equivalent when set up using ψ̃ or ψ.

Proof of Lemma 5.2. We will prove the theorem by structural induction on the structure of

the sequence-form strategy space. Specifically, we seek to prove that at all decision nodes

j ∈ J , one has

∑
j′≽j

∑
a′∈Aj′

∂(ψ − ψ̃)
∂x[j′a′] (x)y[j′a′] = γj y[pj] log x[pj]. (5.17)

Since y is arbitrary, the equality above will immediately imply that for any j such that pj = ∅

∑
j′≽j

∑
a′∈Aj′

∂(ψ − ψ̃)
∂x[j′a′] (x)(y[j′a′]− z[j′a′]) = γj(y[∅]− z[∅]) log x[∅] = 0, (5.18)

where the last equality follows from the fact that y[∅] = z[∅] = 1 since y, z are sequence-form

strategies. Now, since the set of sequences can be partitioned as Σ = {∅} ⊔
⊔
j∈J :pj=∅{j′a′ :

j′ ≽ j, a′ ∈ Aj′}, and furthermore y[∅] = z[∅] = 1, it is evident that (5.18) considered for the

set {j ∈ J : pj = ∅} immediately implies the statement.

In order to prove (5.17) we will use structural induction over the structure of the sequence-

form decision problem.

• Base case: terminal decision nodes j. Consider a terminal decision node j, that is one for

which Cja = {} for all a ∈ Aj . Then, for all a ∈ Aj we obtain from direct inspection that

∂ψ

∂x[ja] (x) = wja(1 + log x[ja]); ∂ψ̃

∂x[ja] (x) = γj

(
1 + log x[ja]

x[pj]

)
.

Hence,

96 §5.4. DISTANCE-GENERATING FUNCTIONS WITH LINEAR-TIME PROJECTIONS

∑
a∈Aj

∂(ψ − ψ̃)
∂x[ja] (x)y[ja] =

∑
a∈Aj

(
wja − γj + (wja − γj) log x[ja] + γj log x[pj]

)
y[ja]

= γj y[pj] log x[pj],

where we used the fact that by definition γj = wja = 1, as well as the fact that y is a

sequence-form strategy and therefore

∑
a∈Aj

y[ja] = y[pj]. Since the only j′ ≽ j is j

itself, the proof of the base case is complete.

• Inductive step. Consider a nonterminal j. Again by direct inspection, we obtain

∂ψ

∂x[ja] (x) = wja(1 + log x[ja]) +
∑
j′∈Cja

γj′ log |Aj′ |; and

∂ψ̃

∂x[ja] (x) = γj

(
1 + log x[ja]

x[pj]

)
−
∑
j′∈Cja

γj′ +
∑
j′∈Cja

γj′ log |Aj′ |

= wja + γj log x[ja]− γj log x[pj] +
∑
j′∈Cja

γj′ log |Aj′ |,

where the last equality uses the definition of wja := γj −
∑
j′∈Aj

γj′ .

Now, the set of descendant decision nodes {j′ ∈ J : j′ ≽ j} can be partitioned as

{j} ⊔
⊔
a∈Aj

⊔
j′∈Cja

{j′′ ∈ J : j′′ ≽ j′}.

Correspondingly, using the inductive hypothesis we have

∑
j′≽j

∑
a′∈Aj′

∂(ψ − ψ̃)
∂x[j′a′] (x)y[j′a′]

=

∑
a∈Aj

∂(ψ − ψ̃)
∂x[ja] (x)y[ja]

+
∑
a∈Aj

∑
j′∈Cja

γj′ y[ja] log x[ja]

=

∑
a∈Aj

(
(wja − γj) log x[ja] + γj log x[pj]

)
y[ja]


+
∑
a∈Aj

∑
j′∈Cja

γj′ y[ja] log x[ja]

=
∑
a∈Aj

wja − γj +
∑
j′∈Cja

γj′

 log x[ja] + γj log x[pj]

y[ja]

§5. NOTIONS OF DISTANCE FOR SEQUENCE-FORM STRATEGIES, AND PROX METHODS 97

=
∑
a∈Aj

γj y[ja] log x[pj] = γj y[pj] log x[pj],

where we again used the definition of wja := γj −
∑
j′∈Aj

γj′ , as well as the fact that y is

a sequence-form strategy and therefore

∑
a∈Aj

y[ja] = y[pj].

This concludes the induction proof.

5.5 Experimental evaluation
In this section we compare the numerical performance of the dilated entropy and dilatable global

entropy DGFs for computing Nash equilibria in two-player zero-sum imperfect-information

extensive-form games.

Our experiments will be shown on nine different games, which span a variety of poker games,

other recreational games, as well as a pursuit-evasion game played on a graph. All games are

standard benchmarks in the computational game theory literature, and a full description of the

games is given in Appendix A. In Table 5.1(a) we summarize the game instances we use, as well

as some of their key dimensions: the number of decision points |J1|, |J2| for Player 1 and 2,

respectively, the number of sequences |Σ1|, |Σ2|, and the number of terminal nodes (leaves).

Decision Points Sequences Leaves Weights β Weights γ
Game instance |J1|+ |J2| |Σ1|+ |Σ2| |Z| Avg Max Avg Max

K23 Kuhn poker 12 26 30 8.857 38 2.286 7
L2232 Leduc poker (3 ranks) 288 674 1116 11.766 686 2.117 43
L22d2 Leduc poker (13 ranks) 5148 12 014 98 956 12.057 12 326 2.131 703
G24 Goofspiel 34 952 42 658 13 824 6.912 23 442 1.698 917
B2323 Battleship (3 turns) 81 027 327 070 552 132 3.294 2894 1.242 99
B2324 Battleship (4 turns) 1 050 723 3 236 158 3 487 428 3.753 27 470 1.331 483
D26 Liar’s dice 24 576 49 142 147 420 15.556 65 546 2.043 1399
P24 Pursuit-evasion (4 turns) 382 2086 15 898 8.286 62 1.943 5
P25 Pursuit-evasion (6 turns) 11 888 69 029 118 514 19.424 254 2.508 7

(A) — Game instances and sizes (B) (C)

Table 5.1: (A) Various measures of the size of each of the games that we test algorithms on. (B), (C) The

magnitude of the dilated entropy DGF and dilatable global entropy DGF weights.

Our experiments will show performance on three algorithms. First, we will plot the perfor-

mance for both the EGT and MPROX algorithms, with stepsizes and smoothing chosen according to

the theoretical values dictated by Theorems 5.1 and 5.2, with one minor variation: for each DGF,

we do not scale by MQ, which is required in order to achieve strong convexity with respect to the

98 §5.5. EXPERIMENTAL EVALUATION

ℓ1 norm. This is done because scaling by this last factor leads to extremely slow performance for

all of the DGFs. Second, we will also show results on a tweaked variant of EGT called ‘EGT/AS’,

which implements several heuristics that typically lead to better performance in practice, as seen

in Hoda, Gilpin, Peña, and Sandholm, 2010; Kroer, Waugh, Kılınç-Karzan, and Sandholm, 2020;

Kroer, Farina, and Sandholm, 2018b. These heuristic are:

1. µ balancing: At each iteration, we take a step on the player i whose smoothing parameter µi

is larger.

2. Aggressive stepsizing: The original stepsize of EGT at iteration t is τ = 2/(3 + t), which is

typically too conservative in practice. Instead, EGT/AS maintains some current value τ ,

initially set at τ = 0.5. EGT/AS then repeatedly attempts to take steps with the current τ ,

and after every step checks whether the invariant condition of EGT still holds. If not, then

we undo the step, decrease τ , and repeat the process.

3. Initial µ fitting: The initial EGT values for µx, µy are much too conservative. Instead, At the

beginning of the algorithm we perform a search over initial values for µx = µy . The search

starts at the candidate value µ = 10−6
and stops as soon as the choice of µx = µy = µ yields

an excessive gap value above 0.1. If the current choice does not, µ is incremented by 20%
and the fitting continues.

For all parameters above, we use the same values as in Kroer, Farina, and Sandholm (2018b), even

though those values were tuned for the dilated entropy DGF, rather than dilatable global entropy.

In the presentation of the numerical performance, we will generally plot the number of

iterations of the FOM on the x-axis, rather than plot wall-clock time. Since we hold the algorithmic

setup fixed in each plot, apart from the DGF, this gives a fair representation of performance, since

they all use the same set of operations (in particular the same number of gradient computations,

which is typically the most expensive operation). For EGT/AS, we will instead plot the number of

gradient computations on the x-axis, since the number of gradient computations can vary for

each DGF, depending on the amount of backtracking incurred.

We will focus on comparing our new dilatable global entropy for the sequence-form poly-

tope (Definition 5.6) to the prior state-of-the-art dilated entropy DGF (Definition 5.5) from Kroer,

Waugh, Kılınç-Karzan, and Sandholm, 2020.

Before we study the numerical performance, we look at the size of the DGF weights β and γ

for each of the games. Table 5.1 column (b) shows the average and maximum size of the dilated

entropy, and Table 5.1 column (c) shows the corresponding values for the dilatable global entropy

DGF. We see that the dilatable global entropy DGF requires vastly less weight, especially in terms

of the maximal weights near the root of each decision space.

§5. NOTIONS OF DISTANCE FOR SEQUENCE-FORM STRATEGIES, AND PROX METHODS 99

5.5.1 MPROX and EGT without aggressive stepsizing

First, we study the theoretically-correct way to use the DGFs. In particular, we instantiate both

EGT and mirror prox with the stepsizes and DGFs as specified in Theorems 5.1 and 5.2, for the

dilatable global entropy and dilated entropy. The results for EGT are shown in Figures 5.1 and 5.2.

Across both algorithms and all nine games, we see that our new dilatable global entropy DGF

performs better, sometimes by over an order of magnitude (e.g., in liar’s dice and pursuit evasion

(6 turns)). This is in line with the fact that our new DGF has a better strong convexity modulus,

which allows for a much smaller amount of smoothing, while still guaranteeing correctness. This

in turns allows the algorithms to safely take larger steps, thereby progressing faster.

N
a
s
h

g
a
p

100 101 102 103

10−3

10−2

10−1

Dilated entropy (ψ)

Global entropy (φ̃)

K23 – EGT

100 101 102 103

10−1

100

Dilated entropy (ψ)

Global entropy (φ̃)

L2232 – EGT

100 101 102 103
10−2

10−1

100

Dilated entropy (ψ)

Global entropy (φ̃)

L22d2 – EGT

N
a
s
h

g
a
p

100 101 102 103

100

Dilated entropy (ψ)

Global entropy (φ̃)

G24 – EGT

100 101 102 103

100

Dilated entropy (ψ)

Global entropy (φ̃)

B2323 – EGT

100 101 102 103

2.4× 100

2.6× 100
2.8× 100

3× 100
3.2× 100
3.4× 100
3.6× 100

Dilated entropy (ψ)

Global entropy (φ̃)

B2324 – EGT

N
a
s
h

g
a
p

100 101 102 103

10−1

100

Dilated entropy (ψ)

Global entropy (φ̃)

D26 – EGT

100 101 102 103

10−1

100

Dilated entropy (ψ)

Global entropy (φ̃)

P24 – EGT

100 101 102 103

10−1

100

Dilated entropy (ψ)

Global entropy (φ̃)

P26 – EGT

Iteration Iteration Iteration

Figure 5.1: Performance of the EGT algorithm instantiated with the two entropy DGFs across nine

games. The x-axis shows the number of EGT iterations, and the y-axis shows the distance to Nash

equilibrium.

100 §5.5. EXPERIMENTAL EVALUATION

N
a
s
h

g
a
p

100 101 102 103

10−3

10−2

10−1

100

Dilated entropy (ψ)

Global entropy (φ̃)

K23 – MPROX

100 101 102 103

10−1

100

Dilated entropy (ψ)

Global entropy (φ̃)

L2232 – MPROX

100 101 102 103

10−1

100

Dilated entropy (ψ)

Global entropy (φ̃)

L22d2 – MPROX

N
a
s
h

g
a
p

100 101 102 103

100

3× 10−1
4× 10−1

6× 10−1

2× 100

Dilated entropy (ψ)

Global entropy (φ̃)

G24 – MPROX

100 101 102 103

100

Dilated entropy (ψ)

Global entropy (φ̃)

B2323 – MPROX

100 101 102 103

2.6× 100

2.8× 100

3× 100

3.2× 100
3.4× 100
3.6× 100

Dilated entropy (ψ)

Global entropy (φ̃)

B2324 – MPROX

N
a
s
h

g
a
p

100 101 102 103

100

Dilated entropy (ψ)

Global entropy (φ̃)

D26 – MPROX

100 101 102 103

10−1

100

Dilated entropy (ψ)

Global entropy (φ̃)

P24 – MPROX

100 101 102 103

10−1

100

Dilated entropy (ψ)

Global entropy (φ̃)

P26 – MPROX

Iteration Iteration Iteration

Figure 5.2: Performance of the MPROX algorithm instantiated with the two entropy DGFs across nine

games.

5.5.2 EGT with aggressive stepsizing

Secondly, we investigate the numerical performance of the two entropy DGFs in the EGT/AS

algorithm in Figure 5.3.

§5. NOTIONS OF DISTANCE FOR SEQUENCE-FORM STRATEGIES, AND PROX METHODS 101
N

a
s
h

g
a
p

103

10−4

10−3

10−2

10−1 Dilated entropy (ψ)

Global entropy (φ̃)

K23 – EGT/AS

102 103

10−2

10−1

100 Dilated entropy (ψ)

Global entropy (φ̃)

L2232 – EGT/AS

102 103
10−3

10−2

10−1

100 Dilated entropy (ψ)

Global entropy (φ̃)

L22d2 – EGT/AS

N
a
s
h

g
a
p

102 103

10−2

10−1

100
Dilated entropy (ψ)

Global entropy (φ̃)

G24 – EGT/AS

102 103

10−2

10−1

Dilated entropy (ψ)

Global entropy (φ̃)

B2323 – EGT/AS

102 103
10−2

10−1

100
Dilated entropy (ψ)

Global entropy (φ̃)

B2324 – EGT/AS

N
a
s
h

g
a
p

102 103

10−2

10−1

100
Dilated entropy (ψ)

Global entropy (φ̃)

D26 – EGT/AS

103
10−3

10−2

10−1

100
Dilated entropy (ψ)

Global entropy (φ̃)

P24 – EGT/AS

103
10−3

10−2

10−1

100 Dilated entropy (ψ)

Global entropy (φ̃)

P26 – EGT/AS

Gradient computations Gradient computations Gradient computations

Figure 5.3: Performance of the EGT/AS algorithm instantiated with the two entropy DGFs, as well as

aggressive stepsizing, µ balancing, and initial µ fitting.

Here we see a smaller performance improvement. For most of the games, we get a small factor

of improvement for the first 100 or so iterations, but then the performance is similar thereafter. For

liar’s Dice there is a persistent improvement to using dilatable global entropy across all iterations.

5.A Appendix: Properties of SMPL functions
In this appendix we mention several basic results about strictly monotonically increasing

piecewise-linear (SMPL) and quasi-SMPL functions. Proofs of elementary results are omitted.

102 §5.A. APPENDIX: PROPERTIES OF SMPL FUNCTIONS

Lemma 5.3. Let f : I → ℝ be SMPL, and consider a standard representation of f of

size S. Then, for any b ∈ ℝ and k ⩾ 0, a standard representation for the SMPL function

I ∋ x 7→ b+ kf(x) can be computed in O(S + 1) time.

Lemma 5.4. The sum f1 + · · · + fn of n SMPL (resp., quasi-SMPL) functions fi : I → ℝ

is a SMPL (resp., quasi-SMPL) function I → ℝ. Furthermore, if each fi admits a standard

representation of size Si, then a standard representation of size at most S1 + · · ·+ Sn for their

sum can be computed in O(S1 + · · ·+ Sn + 1) logn) time.

Lemma 5.5. Let f : ℝ→ ℝ be SMPL, and consider a standard representation of f of size S.

Then, for any β ∈ ℝ, a standard representation of size at most S for the quasi-SMPL function

I ∋ x 7→ [f(x)− β]+ can be computed in O(S + 1) time.

Lemma 5.6. The inverse f−1 : range(f) → ℝ of a SMPL function f : I → ℝ is SMPL.

Furthermore, if f admits a standard representation of size S, then a standard representation

for f−1
of size at most S can be computed in O(S + 1) time.

Lemma 5.7. Let f : ℝ → [0,+∞) be quasi-SMPL. The inverse f−1 : (0,+∞) → ℝ of f

restricted
a

to domain (0,+∞) is SMPL. Furthermore, if f admits a standard representation of

size S, then a standard representation of size at most S for f−1
can be computed in O(S + 1)

time.

a
We restrict the domain to (0,+∞) because f−1(0) may be multivalued.

Proof. We have f(x) = [g(x)]+ where g is SMPL. It follows that the function ḡ : I → ℝ defined

as ḡ(x) = g(x) for the interval I = {x : g(x) > 0} is SMPL as well. For any x such that f(x) > 0
we have x ∈ I , and thus f−1 = g−1

, and it follows from Lemma 5.6 that f−1
is SMPL.

Lemma 5.8. Let f : [0,+∞) → ℝ be a SMPL function, and consider the function g that

maps y to the unique solution to the equation x = [y − f(x)]+. Then, g is quasi-SMPL and

satisfies g(y) = [(x+ f)−1(y)]+, where (x+ f)−1
denotes the inverse of the SMPL function

x 7→ x+ f([x]+).

§5. NOTIONS OF DISTANCE FOR SEQUENCE-FORM STRATEGIES, AND PROX METHODS 103

Proof. For any y ∈ ℝ, the function hy : x 7→ x − [y − f(x)]+ is clearly SMPL on [0,+∞).
Furthermore, hy(0) ⩽ 0 and hy(+∞) = +∞, implying that hy(x) = 0 has a unique solution.

We now show that g(y) = [(x+f)−1(y)]+ is that solution, that is, it satisfies g(y) = [y−f(g(y))]+

for all y ∈ ℝ. Fix any y ∈ ℝ and let

ḡ := (x+ f)−1(y) ⇐⇒ ḡ + f([ḡ]+) = y ⇐⇒ ḡ = y − f([ḡ]+) (5.19)

There are two cases:

• If ḡ ⩾ 0, then g(y) = [ḡ]+ = ḡ, and so we have

g(y) = [ḡ]+ = [y − f([ḡ]+)]+ = [y − f(g(y))]+,

as we wanted to show.

• Otherwise, ḡ < 0 and g(y) = 0. From (5.19), the condition ḡ < 0 implies y < f([ḡ]+) =
f(0). So, it is indeed the case that

0 = g(y) = [y − f(0)]+ = [y − f(g(0))]+,

as we wanted to show.

Finally, we note that the function (x+ f)−1 : ℝ→ ℝ is SMPL due to Lemma 5.6, implying that

g(y) is quasi-SMPL.

104 §5.A. APPENDIX: PROPERTIES OF SMPL FUNCTIONS

Chapter 6

Strongly predictive learning
dynamics, and OT (log T/T)
convergence in self play

As we have seen in the past chapters, it is possible to devise learning algorithms with guaranteed

external regret of order OT (
√
T) in any imperfect-information extensive-form game, without any

assumption on the sequence of utility vectors observed by the learning algorithm. Furthermore, when

all players employ any such algorithm (with potentially different players opting for different

options), the average distribution of play converges to the set of coarse correlated equilibria.

The combination of the two previous facts is remarkable: equilibrium can be reached at

the approximation rate of OT (1/
√
T) even when playing against adversarial unknown players.

However, this begs a natural question:

Is a regret rate better thanOT (
√
T) achievable in less adversarial (more predictable) environments,

including the setting of training agents using self play?
What are the optimal performance guarantees we can obtain when learning agents are

competing against each other?

6.1 Related work

The fundamental question above was first formulated and addressed by Daskalakis, Deckelbaum,

and Kim (2011) within the context of nonsequential, zero-sum games. Since then, there has been

a considerable interest in extending their guarantee to more general settings (S. Rakhlin and

Sridharan, 2013; Syrgkanis, Agarwal, Luo, and Schapire, 2015; D. J. Foster, Li, Lykouris, Sridharan,

106 §6.2. CONTRIBUTIONS

and Tardos, 2016; Chen and Peng, 2020; Daskalakis and Golowich, 2022; Piliouras, Sim, and

Skoulakis, 2021). In particular, Daskalakis, Fishelson, and Golowich (2021) recently established

that when all players in a general normal-form game employ the optimistic variant of multiplicative
weights update (MWU) (reviewed in Section 3.3.1), the regret of each player grows nearly-optimally
as OT (log4 T) after T repetitions of the game, leading to an exponential improvement over the

guarantees obtained using traditional techniques within the no-regret framework. However,

while normal-form games are a common way to represent strategic interactions in theory, most

settings of practical significance inevitably involve more complex strategy spaces. For those

settings, any faithful approximation of the game using the normal form is typically inefficient,

requiring an action space that is exponential in the natural parameters of the problem, thereby

limiting the practical implications of those prior results.

6.2 Contributions

As mentioned, a positive answer for the fundamental question expressed above was known

for nonsequential games but not for imperfect-information extensive-form games, which are

significantly more involved. In this chapter we answer the question in the positive for any

imperfect-information extensive-form games, no matter the number of players. Specifically, in this

chapter we will show the first uncoupled no-regret algorithms that, if used in self play, guarantee

cumulating OT (log T) regret in the worst case, respectively. This method improves over the

prior state of the art, which achieved OT (log4 T) (albeit with better dependence on the size of

the game) and was based on the significantly different technique of Kernelized multiplicative

weights, described in Chapter 7.

One remarkable property about the algorithm we describe in this section, which we call

log-regularized lifted optimistic FTRL (LRL-OFTRL), is its wide applicability even beyond imperfect-

information extensive-form games. Indeed, like the OMD and FTRL algorithms we discussed in

Chapter 5, LRL-OFTRL can be used to define no-external-regret dynamics that apply to any convex

and compact strategy set X , not just sequence-form strategy spaces. However, LRL-OFTRL differs

from OMD and FTRL in at least two significant ways. First, LRL-OFTRL defines strongly predictive
dynamics. This property will be fundamental in establishing logarithmic regret bounds in self

play. Second, LRL-OFTRL does not enable flexibility in the proximal setup used to instantiate

the algorithm, and rather requires that a logarithmic regularizer be used. This inflexibility

should be naturally met with suspicion, as the logarithmic DGF is not “nice” in the sense of

Definition 5.2, and for general convex and compact strategy sets an exact algorithm for projecting

with respect to the logarithmic DGF might not even exist. Luckily, we show that under mild

assumptions—which we show are satisfied in the sequence-form strategy polytope setting—an

approximate projection can be computed with an extremely favorable log log(1/ϵ) dependence on

the desired approximation level ϵ > 0.

§6. STRONGLY PREDICTIVE LEARNING DYNAMICS, AND OT (log T/T) CONVERGENCE IN SELF

PLAY 107

6.3 Setup and algorithm pseudocode

Due to the applicability of LRL-OFTRL to any convex and compact strategy set, we present

LRL-OFTRL in full generality, letting X ⊆ ℝd denote such a strategy set. Without loss of generality,

we will further assume that X ⊆ [0,+∞)d (otherwise, it suffices to first shift the set), and that

there is no index r ∈ [[d]] such that x[r] = 0 for all x ∈ X (if not, dropping the identically-zero

dimension would not alter regret).

The pseudocode for LRL-OFTRL is simple, and is given in Algorithm 6.1.

Algorithm 6.1: Log-Regularized Lifted Optimistic FTRL (LRL-OFTRL)

Data: • X ⊆ ℝd⩾0 convex and compact strategy set

• η ∈ ℝ>0 learning rate.

1 Ũ
(1) ← 0 ∈ ℝd+1

2 function NextStrategy(m(t) ∈ ℝΣ)

3 m̃(t) ←
(
−⟨m(t),x(t)⟩

m(t)

)
[▷ Lifting]

4

(
λ(t)

y(t)

)
← arg max

(λ,y)∈X̃

{
η

〈
Ũ

(t)+ m̃(t),

(
λ
y

)〉
+ log λ+

d∑
r=1

log y[r]
}

[▷ FTRL step]

5 return x(t) := y(t)

λ(t) ∈ X [▷ Normalization]

6 function ObserveUtility(u(t) ∈ ℝΣ)

7 ũ(t) ←
(
−⟨u(t),x(t)⟩

u(t)

)
[▷ Lifting]

8 Ũ
(t+1) ← Ũ

(t) + ũ(t)

It is easy to see that internally LRL-OFTRL builds on the follow-the-regularized-leader (FTRL)

algorithm, which was introduced in Section 5.2.3, but with some important twists.

1. Lifting. First, the FTRL steps are performed not on X , but rather on the lifted strategy set X̃ ,

defined as

X̃ :=
{

(λ,y) : λ ∈ [0, 1],y ∈ λX
}
⊆ ℝd+1. (6.1)

(See Figure 6.1 for geometric intuition on the relationship between X and X̃). The utility

vectors u(t) ∈ ℝd passed to LRL-OFTRL as feedback will also be lifted to vectors ũ(t) ∈ ℝd+1
,

defined on Line 7; this ensures that ũ(t)
is orthogonal to the vector (1,x(t)).

2. Logarithmic regularization. Second, FTRL is instantiated with the logarithmic DGF for ℝd+1
,

that is, the function

108 §6.4. REGRET ANALYSIS

X X̃
1

Lifting

λ

Figure 6.1: The lifting operation performed by the LRL-OFTRL algorithm on the strategy set.

ζ(λ,y) := − log λ−
d∑
r=1

log y[r], ∀(λ,y) ∈ ℝd+1
>0 .

We discuss how the optimization problem defined in Line 4 can be solved efficiently in

Section 6.6. Below we point out that Line 4 is indeed well-defined.

Proposition 6.1. For any η ⩾ 0 and at all times t ∈ ℕ⩾0, the FTRL optimization problem

on Line 4 of Algorithm 6.1 admits a unique optimal solution (λ(t),y(t)) ∈ X̃ ∩ℝd+1
>0 .

3. Normalization. Third, given the iterate (λ(t),y(t)) output by the FTRL step at time t, our

no-regret algorithm over X selects the next strategy x(t) := y(t)/λ(t)
(Line 5); this is indeed

a valid strategy in X by definition of X̃ in (6.1), as well as the fact that λ(t) > 0 as asserted

in Proposition 6.1.

6.4 Regret analysis
In this section, we study the regret of LRL-OFTRL under the idealized assumption that the

optimization problem on Line 4 (FTRL step) is solved exactly at each time t. In Section 6.6 we

will relax that assumption, and study the regret of LRL-OFTRL when the solution to Line 4 is

approximated using variants of Newton’s method.

Connection between regret on X and on X̃ Our ultimate goal will be that of analyzing the

external regret

Reg(T) := max
x̂∈X

{
T∑
t=1
⟨u(t), x̂− x(t)⟩

}

accumulated by LRL-OFTRL up to any time T ∈ ℕ⩾1. To do so, it will be particularly useful to

relate it to the regret R̃eg(T)
incurred with respect to the lifted utilities ũ(t)

by the lifted iterates

§6. STRONGLY PREDICTIVE LEARNING DYNAMICS, AND OT (log T/T) CONVERGENCE IN SELF

PLAY 109

(λ(t),y(t)) ∈ X̃ (produced by Line 4) in the lifted space X̃ , that is,

R̃eg(T) := max
(λ∗,y∗)∈X̃

T∑
t=1

〈
ũ(t),

(
λ∗

y∗

)
−

(
λ(t)

y(t)

)〉
.

As the following theorem clarifies, there is a strong connection between R̃eg(T)
and Reg(T)

.

Theorem 6.1. For any time T ∈ ℕ⩾0 it holds that R̃eg(T) = max{0,Reg(T)}. In particular, it

follows that R̃eg(T)
⩾ 0 and Reg(T) ⩽ R̃eg(T)

for any T ∈ ℕ⩾0.

Proof. First, by definition of ũ(t)
in Line 7, it follows that for any t,〈

ũ(t),

(
λ(t)

y(t)

)〉
=
〈

ũ(t),

(
1

x(t)

)〉
= 0.

As a result, we have that max{0,Reg(T)} is equal to

max
{

0, max
x∗∈X

T∑
t=1
⟨u(t),x∗ − x(t)⟩

}
= max

{
0, max

x∗∈X

T∑
t=1

〈
ũ(t),

(
1

x∗

)
−

(
1

x(t)

)〉}

= max
{

0, max
x∗∈X

T∑
t=1

〈
ũ(t),

(
1

x∗

)〉}

= max
(λ∗,y∗)∈X̃

T∑
t=1

〈
ũ(t),

(
λ∗

y∗

)〉

= max
(λ∗,y∗)∈X̃

T∑
t=1

〈
ũ(t),

(
λ∗

y∗

)
−

(
λ(t)

y(t)

)〉
= R̃eg(T)

,

as we wanted to show.

The nonnegativity of R̃eg(T)
will be a crucial property in establishing Theorem 6.2. Further,

Theorem 6.1 implies that a guarantee over the lifted space can be automatically translated to a

regret bound over the original space X .

Local norms induced by the logarithmic DGF Given any vector (λ,y) ∈ X̃ ∩ℝd+1
>0 , the Hessian

matrix of ζ at (λ,y) induces a local primal-dual norm pair centered at that point, defined as

∥∥∥∥∥
(
a

z

)∥∥∥∥∥
(λ,y)

:=

√√√√(a
λ

)2
+

d∑
r=1

(
z[r]
y[r]

)2
,

∥∥∥∥∥
(
a

z

)∥∥∥∥∥
∗,(λ,y)

:=

√√√√(aλ)2 +
d∑
r=1

(z[r]y[r])2

110 §6.4. REGRET ANALYSIS

for any (a, z) ∈ ℝd+1
. (It is a well-known fact that ∥ · ∥∗,(λ,y) is the dual norm of ∥ · ∥(λ,y), and vice

versa.) To simplify notation, we will use the streamlined symbols

∥ · ∥t := ∥ · ∥(λ(t),y(t)) and ∥ · ∥∗,t := ∥ · ∥∗,(λ(t),y(t)) (6.2)

to denote the local norms centered at the iterate (λ(t),y(t)) produced by FTRL at time t (Line 4).

In the next proposition we establish a refined regret bound in terms of this primal-dual norm

pair.

Proposition 6.2 (Regret of FTRL in local norms). Let R̃eg(T)
be the regret cumulated up to

time T by the internal FTRL algorithm. If ∥u(t)∥∞∥x∥1 ⩽ 1 at all times t ∈ [[T]], then for any

time horizon T ∈ ℕ⩾0 and learning rate η ⩽ 1
50 ,

R̃eg(T)
⩽

(d+1) log T
η

+ 5η
T∑
t=1

∥∥∥ũ(t)−m̃(t)
∥∥∥2

∗,t
− 1

27η

T−1∑
t=1

∥∥∥∥∥
(
λ(t+1)

y(t+1)

)
−

(
λ(t)

y(t)

)∥∥∥∥∥
2

t

.

Proposition 6.2 differs from prior analogous results in that the regularizer is not a barrier over the

feasible set.

Multiplicative stability of the lifted iterates The iterates produced by FTRL satisfy a refined

notion of stability, which we refer to as multiplicative stability.

Proposition 6.3. For any time t ∈ ℕ⩾0 and learning rate η ⩽ 1
50 , if∥u(t)∥∞∥x∥1, ∥m(t)∥∞∥x∥1 ⩽

1 for all x ∈ X , ∥∥∥∥∥
(
λ(t+1)

y(t+1)

)
−

(
λ(t)

y(t)

)∥∥∥∥∥
t

⩽ 22η.

Intuitively, this property ensures that coordinates of successive iterates will have a small mul-

tiplicative deviation. We leverage this notion of stability to establish the following crucial

lemma.

Lemma 6.1. For any time t ∈ ℕ⩾0 and learning rate η ⩽ 1
50 , if ∥u(t)∥∞∥x∥1 ⩽ 1,

∥x(t+1) − x(t)∥1 ⩽ 4∥X∥1

∥∥∥∥∥
(
λ(t+1)

y(t+1)

)
−

(
λ(t)

y(t)

)∥∥∥∥∥
t

.

§6. STRONGLY PREDICTIVE LEARNING DYNAMICS, AND OT (log T/T) CONVERGENCE IN SELF

PLAY 111

Establishing strong predictivity Combining this lemma with Proposition 6.2 allows us to

obtain an RVU bound for the original space X , with no dependencies on local norms.

Corollary 6.1 (RVU bound in the original (unlifted) space). Fix any time T ∈ ℕ⩾0, and

suppose that ∥u(t)∥∞ ⩽ B for any t ∈ [[T]]. If η ⩽ 1
256B∥X ∥1

,

R̃eg(T)
⩽ 6B∥X∥1 + (d+ 1) log T

η
+ 16η∥X∥2

1

T−1∑
t=1
∥u(t) −m(t)∥2

∞

− 1
512η∥X∥2

1

T−1∑
t=1
∥x(t+1) − x(t)∥2

1.

6.5 Connecting strong predictivity and logarithmic regret
The variation in one player’s utilities is related to the variation in the joint strategies based on the

smoothness condition of the utility function, connecting the last two terms of the RVU bound. In

particular, for the rest of the chapter, we will work under the following standard assumptions,

which are always verified in (finite) normal-form and extensive-form games.

Assumption 6.1. The utility function ui(x1, . . . ,xn) of any player i ∈ [[n]] satisfies the

following properties:

1. (Concavity) ui(xi,x−i) is concave in xi for x−i = (x1, . . . ,xi−1,xi+1, . . . ,xn) ∈×j ̸=i Xj ;
2. (Bounded gradients) for any (x1, . . . ,xn) ∈×n

j=1 Xj , ∥∇xi
ui(x1, . . . ,xn)∥∞ ⩽ B, for

some parameter B > 0; and

3. (L-smoothness) there existsL > 0 so that for any two joint strategy profiles x,x′ ∈×n

j=1 Xj ,

∥∇xi
ui(x)−∇xi

ui(x′)∥∞ ⩽ L
∑
j∈[[n]]

∥xj − x′
j∥1.

Given the assumption above, and by leveraging the nonnegativity of the regrets in the lifted

space, we establish that the second-order path lengths of the dynamics up to time T are bounded

by OT (log T):

112 §6.6. IMPLEMENTATION AND ITERATION COMPLEXITY

Theorem 6.2. If all players follow LRL-OFTRL with learning rate

η ⩽ min
{

1
256B∥X∥1

,
1

128nL∥X∥2
1

}
,

where ∥X∥1 := maxi∈[[n]]∥Xi∥1, then

n∑
i=1

T−1∑
t=1
∥x(t+1)

i − x
(t)
i ∥

2
1 ⩽ 6144nηB∥X∥3

1 + 1024n(d+ 1)∥X∥2
1 log T. (6.3)

We next leverage Theorem 6.2 to establish Theorem 6.3.

Theorem 6.3. If all players use LRL-OFTRL within the COLS (that is, with m(t) = u(t−1)
; cf.

Section 3.2.1) with learning rate

η = min
{

1
256B∥X∥1

,
1

128nL∥X∥2
1

}
,

then for any T ∈ ℕ⩾0 the regret Reg(T)
i of each player i ∈ [[n]] can be bounded as

Reg(T)
i ⩽ 12B∥X∥1 + 256(d+ 1) max

{
nL∥X∥2

1, 2B∥X∥1
}

log T. (6.4)

Furthermore, the algorithm can be adaptive so that if player i is instead facing adversarial

utilities, then Reg(T)
i = OT (

√
T).

For clarity, below we cast (6.4) of Theorem 6.3 in normal-form games with utilities normalized in

the range [−1, 1], in which case we can take B = 1, L = 1 and ∥X∥1 = 1.

Corollary 6.2 (Normal-form games). Suppose that all players in a normal-form game with

n ⩾ 2 follow LRL-OFTRL within the COLS with learning rate η = 1
128n . Then, for any T ∈ ℕ⩾0

and player i ∈ [[n]],

Reg(T)
i ⩽ 12 + 256n(d+ 1) log T.

6.6 Implementation and iteration complexity
In this section, we discuss the implementation and iteration complexity of LRL-OFTRL. The main

difficulty in the implementation is the computation of the solution to the strictly concave nonsmooth

§6. STRONGLY PREDICTIVE LEARNING DYNAMICS, AND OT (log T/T) CONVERGENCE IN SELF

PLAY 113

constrained optimization problem in Line 4. We start by studying how the guarantees laid out in

Theorem 6.3 are affected when the exact solution to the FTRL problem (Line 5) in Algorithm 6.1 is

replaced with an approximation. Specifically, suppose that at all times t the solution to the FTRL
step (Line 4) in Algorithm 6.1 is only approximately solved within tolerance ϵ(t), in the sense that∥∥∥∥∥

(
λ(t)

y(t)

)
−

(
λ

(t)
⋆

y
(t)
⋆

)∥∥∥∥∥
(λ(t)

⋆ ,y
(t)
⋆)

⩽ ϵ(t), (6.5)

where (λ(t),y(t)) ∈ ℝd+1
>0 and(

λ
(t)
⋆

y
(t)
⋆

)
:= arg max

(λ,y)∈X̃

{
η

〈
Ũ

(t) + m̃(t),

(
λ

y

)〉
+ log λ+

d∑
r=1

log y[r]
}
.

Then, it can be proven directly from the definition of regret that the guarantees given in

Corollary 6.1 deteriorate by an additive factor proportional to the sum of the tolerances

∑T
t=1 ϵ

(t)
.

As an immediate corollary, when ϵ(t) := ϵ := 1/T , the conclusion of Theorem 6.3 applies even

when the solution to the optimization problem on Line 4 is only approximated up to ϵ tolerance.

Therefore, to complete our construction, it suffices to show that it is indeed possible to efficiently

compute approximate solutions to the FTRL step. In the remainder of this section, we show that

this is indeed the case assuming access to two different types of oracles. It should be stressed that

optimizing over a general convex set introduces several challenges not present under simplex

domains, inevitably leading to an increased per-iteration complexity compared to algorithms

designed specifically for normal-form games—such as OMWU.

6.6.1 Local proximal oracle

First, we will assume access to a proximal oracle in local norm for the set X̃ , that is, access to a

function that is able to compute the solution to the (positive-definite) quadratic optimization

problem

Πw̃(g̃) := arg min
x̃ ∈ X̃

{
⟨g̃, x̃⟩+ 1

2∥x̃− w̃∥2
w̃

}
= arg min

x̃ ∈ X̃

{
⟨g̃, x̃⟩+ 1

2

d+1∑
r=1

(
x̃[r]
w̃[r] − 1

)2
}

(6.6)

for arbitrary centers w̃ ∈ ℝd+1
>0 and gradients g̃ ∈ ℝd+1

. For certain sets X ⊆ ℝd, exact proximal

oracles with polynomial complexity in the dimension d can be given. In particular, this is the

case for sequence-form strategy polytopes, where Πw̃(g̃) can be computed using the algorithm

described in Section 5.3.1. Specifically, the following holds.

114 §6.6. IMPLEMENTATION AND ITERATION COMPLEXITY

Proposition 6.4. Let X = Q be the polytope of sequence-form strategies for a player in an

imperfect-information extensive-form game. Then, the local proximal oracle Πw̃(g̃) defined

in (6.6) can be implemented exactly in time polynomial in the number of sequences |Σ| for

any w̃ ∈ ℝ
|Σ|+1
>0 and g̃ ∈ ℝ|Σ|+1

.

When an efficient, exact local proximal oracle is available, the projection (λ(t)
⋆ ,y

(t)
⋆) ∈ X̃ can

be computed up to any precision ϵ > 0 using log log(1/ϵ) calls to the oracle, by using the proximal
Newton algorithm (Tran-Dinh, Kyrillidis, and Cevher, 2015). More precisely, Tran-Dinh, Kyrillidis,

and Cevher (2015) studied the following composite minimization problem:

min
x̃∈ℝd+1

{F (x̃) := f(x̃) + g(x̃)}, (6.7)

where f is a (standard) self-concordant and convex function, and g : ℝd+1 → ℝ ∪ {+∞} is a

proper, closed and convex function. In our setting, we will let g be defined as

g(x̃) :=

0 if x̃ ∈ X̃ ,

+∞ otherwise.

Further, for a given time t ∈ ℕ⩾0, we let

f : x̃ 7→ −η
〈

Ũ
(t) + m̃(t), x̃

〉
−
d+1∑
r=1

log x̃[r]

and

s̃k := arg min
x̃∈X̃

{
f(x̃k) + (∇f(x̃k))⊤(x̃− x̃k) + 1

2(x̃− x̃k)⊤∇2f(x̃k)(x̃− x̃k)
}
, (6.8)

for some x̃k ∈ ℝd+1
>0 . The optimization problem (6.8) can be solved directly through the local

proximal oracle. The proximal Newton method given in Algorithm 6.2.

The algorithm proceeds in two phases. In the first phase we perform damped steps of proximal

Newton until we reach the region of quadratic convergence. Afterwards, we perform full steps of

proximal Newton until the desired precision ϵ > 0 has been reached. The following is known.

Theorem 6.4 (Tran-Dinh, Kyrillidis, and Cevher, 2015, Theorem 9). Algorithm 6.2 returns

x̃K ∈ ℝd+1
>0 such that ∥x̃K − x̃∗∥x̃∗ ⩽ 2ϵ after at most

§6. STRONGLY PREDICTIVE LEARNING DYNAMICS, AND OT (log T/T) CONVERGENCE IN SELF

PLAY 115

Algorithm 6.2: Proximal Newton method (Tran-Dinh, Kyrillidis, and Cevher, 2015)

Data: Initial point x̃0; Precision ϵ > 0; Constant σ := 0.2

1 for k = 1, . . . ,K do
2 Obtain the proximal Newton direction d̃k ← s̃k − x̃k, where s̃k is defined in (6.8)

3 Set λk ← ∥d̃k∥x̃k

4 if λk > 0.2 then
5 x̃k+1 ← x̃k + αkd̃k, where αk := (1 + λk)−1

[▷ Damped Step]

6 else if λk > ϵ then
7 x̃k+1 ← x̃k + d̃k [▷ Full Step]

8 else
9 return x̃k

K =
⌊
f(x̃0)− f(x̃∗)

0.017

⌋
+
⌊

1.5 ln ln
(

0.28
ϵ

)⌋
+ 2

iterations, for any ϵ > 0, where x̃∗ = arg minx̃ F (x̃), for the composite function F defined

in (6.7).

Corollary 6.3. Given any ϵ > 0, it is possible to compute (λ(t),y(t)) ∈ X̃ ∩ℝd+1
>0 such that (6.5)

holds for ϵ(t) = ϵ using O(log log(1/ϵ)) operations and O(log log(1/ϵ)) calls to the proximal

oracle defined in Equation (6.6).

Proof. The corollary follows from Theorem 6.4 by initializing Algorithm 6.2 at every iteration

t ⩾ 2 with x̃0 := x̃(t−1) = (λ(t−1),y(t−1)). Then, as long as ϵ(t−1)
is sufficiently small,

the number of iterations predicted by Theorem 6.4 will be bounded by O(log log(1/ϵ)), as

claimed.

6.6.2 Linear maximization oracle

Moreover, we consider having access to a weaker linear maximization oracle (LMO) for the set X :

LX (u) := arg max
x∈X

⟨x,u⟩. (6.9)

Such an oracle is more realistic in many settings (Jaggi, 2013), and it is particularly natural in the

context of games, where it can be thought of as a best response oracle. We point out that an LMO

for X automatically implies an LMO for X̃ . The following guarantee follows readily by applying

the Frank-Wolfe (projected) Newton method (Liu, Cevher, and Tran-Dinh, 2020, Algorithms 1 and 2).

116 §6.7. EXPERIMENTAL EVALUATION

Theorem 6.5 (Frank-Wolfe Newton). Given any ϵ > 0, it is possible to compute (λ(t),y(t)) ∈
X̃ ∩ ℝd+1

>0 such that (6.5) holds for ϵ(t) = ϵ using O(poly(1/ϵ)) operations and O(poly(1/ϵ))
calls to the LMO oracle defined in Equation (6.9).

6.7 Experimental evaluation

Finally, we support the theory developed in this chapter by conducting experiments on four estab-

lished benchmark games: K23 and K33 , respectively 2-player and 3-player Kuhn poker (Kuhn,

1950); GL23 2-player limited-information Goofspiel (Ross, 1971); and S1a22 , the baseline version

of (2-player) Sheriff (Farina, Ling, Fang, and Sandholm, 2019a). As usual, a full description of

the game instances used is available in Appendix A. Of these games, only 2-player Kuhn poker

(K23) is a zero-sum game.

The experiments are meant to verify the logarithmic per-player regret bound established in

Theorem 6.3. Our findings are summarized in Figure 6.2, where we remark that the x-axis is on a

logarithmic scale. All plots refer to the choice of learning rate η := 0.5, which was selected after a

very mild tuning process.

§6. STRONGLY PREDICTIVE LEARNING DYNAMICS, AND OT (log T/T) CONVERGENCE IN SELF

PLAY 117

100 101 102 103 104 105

Iteration

0

20

40

60

P
l
a
y
e
r
’
s

e
x
t
e
r
n

a
l
r
e
g

r
e
t

K23 — 2-Player Kuhn poker

Player 1

Player 2

100 101 102 103 104 105

Iteration

0

50

100

P
l
a
y
e
r
’
s

e
x
t
e
r
n

a
l
r
e
g

r
e
t

K33 — 3-Player Kuhn poker

Player 1

Player 2

Player 3

100 101 102 103 104 105

Iteration

0

100

200

300

400

P
l
a
y
e
r
’
s

e
x
t
e
r
n

a
l
r
e
g

r
e
t

GL23 — 2-Player Goofspiel

Player 1

Player 2

100 101 102 103 104 105

Iteration

0

500

1000

1500

2000
P

l
a
y
e
r
’
s

e
x
t
e
r
n

a
l
r
e
g

r
e
t

S1a22 — 2-Player Sheriff

Player 1

Player 2

Figure 6.2: The regret of the players when they follow our learning dynamics, LRL-OFTRL. The x-axis

indexes the iteration, while the y-axis the regret. The scale on the x-axis is logarithmic. We observe

that the regret of each player grows as OT (log T), verifying Theorem 6.3.

We confirm that each player’s regret indeed appears to have a linear trend in the semiloga-

rithmic plot, which corresponds to a logarithmic rate of growth as a function of the number of

iterations T .

6.A Appendix: Proof details

6.A.1 Proof of Proposition 6.1

Proposition 6.1 (Restated). For any η ⩾ 0 and at all times t ∈ ℕ⩾0, the FTRL optimization

problem on Line 4 of Algorithm 6.1 admits a unique optimal solution (λ(t),y(t)) ∈ X̃ ∩ℝd+1
>0 .

118 §6.A. APPENDIX: PROOF DETAILS

Proof. Uniqueness follows immediately from strict convexity. In the rest of the proof we focus

on the existence part.

We start by showing that there exists a point x̃ ∈ X̃ whose coordinates are all strictly

positive. By hypothesis (see Section 6.3), for every coordinate r ∈ [[d]], there exists a point xr

such that xr[r] > 0. Hence, by convexity of X ⊆ [0,+∞)d and by definition of X̃ , the point

(1,x◦) :=
(

1, 1
d

d∑
r=1

xr

)
.

is such that (1,x◦) ∈ X̃ ∩ℝd>0.

Let now M be the ℓ∞ norm of the linear part in the FTRL step (Line 4 of Algorithm 6.1).

Then, a lower bound on the optimal value v⋆ of objective is obtained by plugging in the point

(1,x◦) at least

v⋆ ⩾ −M(1 + ∥X∥1) +
d∑
r=1

log x◦[r]. (6.10)

Let now

m := exp
{
−(2M + d)(1 + ∥X∥1) +

d∑
r=1

log x◦[r]
}
> 0. (6.11)

We will show that any point (λ,y) /∈ [m,+∞) ∩ X̃ cannot be optimal for the FTRL objective.

Indeed, take a point (λ,y) /∈ [m,+∞)∩ X̃ . Then, at least one coordinate of (λ,y) is strictly less

than m. If λ < m, then the objective value at (λ,y) is at most

Mλ+M∥X∥1 + log λ+
d∑
r=1

log y[r] ⩽M(1 + ∥X∥1) + logm+
d∑
r=1

log∥X∥1

⩽M(1 + ∥X∥1) + logm+ d∥X∥1

< (M + d)(1 + ∥X∥1) + logm

= −M(1 + ∥X∥1) +
d∑
r=1

log x◦[r] (from (6.11))

⩽ v∗, (from (6.10))

where the first inequality follows from upper bounding any coordinate of y with ∥X∥1, and

the second inequality follows from using the inequality log z ⩽ z, valid for all z ∈ (0,+∞).
Similarly, if y[s] < m for some s ∈ [[d]], then we can upper bound the objective value at (λ,y) as

§6. STRONGLY PREDICTIVE LEARNING DYNAMICS, AND OT (log T/T) CONVERGENCE IN SELF

PLAY 119

M +M∥X∥1 + log 1 +
d∑
r=1

log y[r] ⩽M(1 + ∥X∥1) + logm+
d∑
r=1

log∥X∥1

⩽M(1 + ∥X∥1) + (d− 1)(∥X∥1 − 1) + logm

< (M + d)(1 + ∥X∥1) + logm ⩽ v∗.

So, in either case, we see that no optimal point can have any coordinate strictly less than m.

Consequently, the maximizer of the FTRL step lies in the set S := [m,+∞)d+1 ∩ X̃ . Since both

[m,+∞)d+1
and X̃ are closed, and since X̃ is bounded by hypothesis, the set S is compact.

Furthermore, note that S is nonempty, as (1,x◦) ∈ S, as for any s ∈ [[d]]

logm = −(2M + d)(1 + ∥X∥1) +
d∑
r=1

log x◦[r]

⩽ −(2M + d)(1 + ∥X∥1) + log x◦[s] + (d− 1) log∥X∥1

⩽ −(2M + d)(1 + ∥X∥1) + log x◦[s] + (d− 1)(∥X∥1 − 1)

⩽ log x◦[s],

implying that (1,x◦) ∈ [m,+∞)d+1
. Since S is compact and nonempty and the objective

function is continuous, the optimization problem attains an optimal solution on S by virtue of

Weierstrass’ theorem.

6.A.2 Proof of Proposition 6.2

For notational convenience, we define the log-regularizer ψ : X̃ → ℝ⩾0 as

ψ(x) := −1
η

d+1∑
r=1

log x̃[r],

and its induced Bregman divergence

Dψ(x ∥ ã) := 1
η

d+1∑
r=1

h

(
x̃[r]
ã[r]

)
, where h(a) = a− 1− ln(a).

Moreover, we define

x̃(t) = arg max
x∈X̃

−Ft(x) = arg min
x∈X̃

Ft(x), where Ft(x) = −
〈

Ũ
(t) + m̃(t),x

〉
+ ψ(x). (6.12)

120 §6.A. APPENDIX: PROOF DETAILS

We note that Ft is a convex function for each t and x̃(t)
is exactly equal to

(
λ(t)

y(t)

)
computed by

Algorithm 6.1. Further, we define an auxiliary sequence {ã(t)}t=1,2,... defined as follows.

ã(t) = arg max
x∈X̃

−Gt(x) = arg min
x∈X̃

Gt(x), where Gt(x) = −
〈

Ũ
(t)
,x
〉

+ ψ(x). (6.13)

Similarly, Gt is a convex function for each t. We also recall the primal and dual norm notation:

∥ã∥t =
d+1∑
r=1

(
ã[r]

x̃(t)[r]

)2
, ∥ã∥∗,t =

d+1∑
r=1

(
x̃(t)[r]ã[r]

)2
.

Finally, for a (d + 1) × (d + 1) positive definite matrix M, we use ∥ã∥M to denote the induced

quadratic norm

√
ã⊤Mã.

In the proof of Proposition 6.2, we will make use of the following lemmas.

Lemma 6.2. The update rule (6.12) ensures the following for any x̃ ∈ X̃ :

T∑
t=1

〈
x̃− x̃(t), ũ(t)

〉
⩽ ψ(x̃)− ψ(x̃(1)) +

T∑
t=1

〈
ã(t+1) − x̃(t), ũ(t) − m̃(t)

〉
−

T∑
t=1

(
Dψ

(
x̃(t)

∥∥∥ ã(t)
)

+Dψ

(
ã(t+1)

∥∥∥ x̃(t)
))
.

Proof. First note that for any convex function F : X̃ → ℝ and a minimizer x⋆, we have for any

x ∈ X̃ :

F (x⋆) = F (x)− ⟨∇F (x⋆),x− x⋆⟩ −DF (x ∥x⋆) ⩽ F (x)−DF (x ∥x⋆),

where DF is the Bregman Divergence induced by F and the inequality is by the first-order

optimality. Using this fact and the optimality of ã(t)
, we have

Gt(ã(t)) ⩽ Gt(x̃(t))−Dψ

(
x̃(t)

∥∥∥ ã(t)
)

= Ft(x̃(t)) +
〈

x̃(t), m̃(t)
〉
−Dψ

(
x̃(t)

∥∥∥ ã(t)
)

Similarly, using the optimality of x̃(t)
, we have

Ft(x̃(t)) ⩽ Ft(ã(t+1))−Dψ

(
ã(t+1)

∥∥∥ x̃(t)
)

§6. STRONGLY PREDICTIVE LEARNING DYNAMICS, AND OT (log T/T) CONVERGENCE IN SELF

PLAY 121

= Gt+1(ã(t+1)) +
〈

ã(t+1), ũ(t) − m̃(t)
〉
−Dψ

(
ã(t+1)

∥∥∥ x̃(t)
)

Combining the inequalities and summing over t, we have

G1(ã(1)) ⩽ GT+1(ã(T+1)) +
T∑
t=1

(〈
x̃(t), ũ(t)

〉
+
〈

ã(t+1) − x̃(t), ũ(t) − m̃(t)
〉)

+
T∑
t=1

(
−Dψ

(
x̃(t)

∥∥∥ ã(t)
)
−Dψ

(
ã(t+1)

∥∥∥ x̃(t)
))
.

Observe that G1(ã(1)) = ψ(x̃(1)) and GT+1(ã(T+1)) ⩽ −
〈

x̃, Ũ
(T+1)〉 + ψ(x̃). Rearranging

then proves the lemma.

Lemma 6.3. If η ⩽ 1
50 and ∥u(t)∥∞∥x∥1, ∥m(t)∥∞∥x∥1 ⩽ 1 for all x ∈ X , then we have∥∥∥ã(t+1) − x̃(t)

∥∥∥
t
⩽ 5η

∥∥∥ũ(t) − m̃(t)
∥∥∥

∗,t
⩽ 10

√
2η ⩽ 15η, (6.14)∥∥∥x̃(t+1) − x̃(t)

∥∥∥
t
⩽ 5η

∥∥∥2ũ(t) − m̃(t)
∥∥∥

∗,t
⩽ 15

√
2η ⩽ 22η. (6.15)

Proof. The second part of both inequalities is clear by definitions:∥∥∥ũ(t) − m̃(t)
∥∥∥2

∗,t

=
(
λ(t)
(〈

x(t),u(t)
〉
−
〈

x(t−1),m(t)
〉))2

+
d∑
r=1

(
y(t)[r]

(
u(t)[r]−m(t)[r]

))2

⩽ 4(λ(t))2 + 4
∥X∥2

1

d∑
r=1

(
y(t)[r]

)2
⩽ 8,

where we use

〈
x,u(t)〉, 〈x,m(t)〉 ⩽ 1 for any x by the hypotheses (using Cauchy-Schwarz),

and similarly |u(τ)[r]|, |m(τ)[r]| ⩽ 1
∥X ∥1

for any time τ and any coordinate r by the assumption.

Analogously,∥∥∥2ũ(t) − m̃(t)
∥∥∥2

∗,t

=
(
λ(t)
(

2
〈

x(t),u(t)
〉
−
〈

x(t−1),u(t−1)
〉))2

+
d∑
r=1

(
y(t)[r]

(
2u(t)[r]− u(t−1)[r]

))2

122 §6.A. APPENDIX: PROOF DETAILS

⩽ 9(λ(t))2 + 9
∥X∥2

1

d∑
r=1

(
y(t)[r]

)2
⩽ 18.

To prove the first inequality in Eq. (6.14), let Et =
{

x :
∥∥∥x− x̃(t)

∥∥∥
t
⩽ 5η

∥∥∥ũ(t) − m̃(t)
∥∥∥

∗,t

}
.

Noticing that ã(t+1)
is the minimizer of the convex function Gt+1, to show ã(t+1) ∈ Et, it

suffices to show that for all x̃ on the boundary of Et, we have Gt+1(x̃) ⩾ Gt+1(x̃(t)). Indeed,

using Taylor’s theorem, for any such x̃, there is a point ξ on the line segment between x̃(t)
and

x̃ such that

Gt+1(x̃) = Gt+1(x̃(t)) +
〈
∇Gt+1(x̃(t)), x̃− x̃(t)

〉
+ 1

2

∥∥∥x̃− x̃(t)
∥∥∥2

∇2Gt+1(ξ)

= Gt+1(x̃(t))−
〈

ũ(t) − m̃(t), x̃− x̃(t)
〉

+
〈
∇Ft(x̃(t)), x̃−x̃(t)

〉
+ 1

2

∥∥∥x̃− x̃(t)
∥∥∥2

∇2ψ(ξ)

⩾ Gt+1(x̃(t))−
〈

ũ(t) − m̃(t), x̃− x̃(t)
〉

+ 1
2

∥∥∥x̃− x̃(t)
∥∥∥2

∇2ψ(ξ)

(by the optimality of x̃(t)
)

⩾ Gt+1(x̃(t))−
∥∥∥ũ(t) − m̃(t)

∥∥∥
∗,t

∥∥∥x̃− x̃(t)
∥∥∥
t

+ 1
2

∥∥∥x̃− x̃(t)
∥∥∥2

∇2ψ(ξ)
.

(by Hölder’s inequality)

⩾ Gt+1(x̃(t))−
∥∥∥ũ(t) − m̃(t)

∥∥∥
∗,t

∥∥∥x̃− x̃(t)
∥∥∥
t

+ 2
9η

∥∥∥x̃− x̃(t)
∥∥∥2

t
(⋆)

= Gt+1(x̃(t)) + 5
9η
∥∥∥ũ(t) − m̃(t)

∥∥∥2

∗,t
(

∥∥∥x̃− x̃(t)
∥∥∥
t

= 5η
∥∥∥ũ(t) − m̃(t)

∥∥∥
∗,t

)

⩾ Gt+1(x̃(t)).

Here, the inequality (⋆) holds because Lemma 6.4 (together with the condition η ⩽ 1
50)

shows
1
2 x̃(t)[i] ⩽ x̃[i] ⩽ 3

2 x̃(t)[i], which implies
1
2 x̃(t)[i] ⩽ ξ[i] ⩽ 3

2 x̃(t)[i] as well, and thus

∇2ψ(ξ) ≽ 4
9∇

2ψ(x̃(t)). This finishes the proof for Eq. (6.14). The first inequality of Eq. (6.15)

can be proven in the same manner.

A restatement of the second inequality of Lemma 6.3 was given earlier in this chapter, in

Proposition 6.3.

Proposition 6.3 (Restated). For any time t ∈ ℕ⩾0 and learning rate η ⩽ 1
50 , if ∥u(t)∥∞∥x∥1, ∥m(t)∥∞∥x∥1 ⩽

1 for all x ∈ X , ∥∥∥∥∥
(
λ(t+1)

y(t+1)

)
−

(
λ(t)

y(t)

)∥∥∥∥∥
t

⩽ 22η.

§6. STRONGLY PREDICTIVE LEARNING DYNAMICS, AND OT (log T/T) CONVERGENCE IN SELF

PLAY 123

Lemma 6.4. If x̃ satisfies ∥x̃− x̃(t)∥t ⩽ 1
2 , then

1
2 x̃(t)[i] ⩽ x̃[i] ⩽ 3

2 x̃(t)[i] for every coordinate

i.

Proof. By definition, ∥x̃ − x̃(t)∥t ⩽ 1
2 implies for any i,

|x̃[i]−x̃(t)[i]|
x̃(t)[i] ⩽ 1

2 , and thus
1
2 x̃(t)[i] ⩽

x̃[i] ⩽ 3
2 x̃(t)[i].

Lemma 6.5. If η ⩽ 1
50 , then we have

T∑
t=1

(
Dψ

(
x̃(t)

∥∥∥ ã(t)
)

+Dψ

(
ã(t+1)

∥∥∥ x̃(t)
))

⩾
1

27η

T−1∑
t=1

∥∥∥x̃(t+1) − x̃(t)
∥∥∥2

t
.

Proof. Recall h(a) = a− 1− ln(a) and Dψ(x ∥ ã) = 1
η

∑d+1
i=1 h

(
x̃[i]
ã[i]

)
. We proceed as

T∑
t=1

(
Dψ

(
x̃(t)

∥∥∥ ã(t)
)

+Dψ

(
ã(t+1)

∥∥∥ x̃(t)
))

⩾
T−1∑
t=1

(
Dψ

(
x̃(t+1)

∥∥∥ ã(t+1)
)

+Dψ

(
ã(t+1)

∥∥∥ x̃(t)
))

= 1
η

T−1∑
t=1

d+1∑
i=1

(
h

(
x̃(t+1)[i]
ã(t+1)[i]

)
+ h

(
ã(t+1)[i]
x̃(t)[i]

))

⩾
1
6η

T−1∑
t=1

d+1∑
i=1

(
(x̃(t+1)[i]− ã(t+1)[i])2

(ã(t+1)[i])2
+ (ã(t+1)[i]− x̃(t)[i])2

(x̃(t)[i])2

)
(h(y) ⩾ (y−1)2

6 for y ∈ [1
3 , 3])

⩾
2

27η

T−1∑
t=1

d+1∑
i=1

(
(x̃(t+1)[i]− ã(t+1)[i])2

(x̃(t)[i])2
+ (ã(t+1)[i]− x̃(t)[i])2

(x̃(t)[i])2

)

⩾
1

27η

T−1∑
t=1

d+1∑
i=1

(
(x̃(t+1)[i]− x̃(t)[i])2

(x̃(t)[i])2

)
= 1

27η

T−1∑
t=1

∥∥∥x̃(t+1) − x̃(t)
∥∥∥2

t
.

Here, the third and the fourth inequalities hold because by Lemma 6.3 and Lemma 6.4, we

have
1
2 ⩽ ã(t+1)[i]

x̃(t)[i] ⩽ 3
2 and

1
2 ⩽ x̃(t+1)[i]

x̃(t)[i] ⩽ 3
2 , and thus

1
3 ⩽ x̃(t+1)[i]

ã(t+1)[i] ⩽ 3.

We are now ready to establish Proposition 6.2.

124 §6.A. APPENDIX: PROOF DETAILS

Proposition 6.2 (Restated; Regret of FTRL in local norms). Let R̃eg(T)
be the regret cumulated

up to time T by the internal FTRL algorithm. If ∥u(t)∥∞∥x∥1 ⩽ 1 at all times t ∈ [[T]], then for

any time horizon T ∈ ℕ⩾0 and learning rate η ⩽ 1
50 ,

R̃eg(T)
⩽

(d+1) log T
η

+ 5η
T∑
t=1

∥∥∥ũ(t)−m̃(t)
∥∥∥2

∗,t
− 1

27η

T−1∑
t=1

∥∥∥∥∥
(
λ(t+1)

y(t+1)

)
−

(
λ(t)

y(t)

)∥∥∥∥∥
2

t

.

Proof. For any comparator x̃ ∈ X̃ , define x̃′ = T−1
T · x̃ + 1

T · x̃
(1) ∈ X̃ , where we recall

x̃(1) = arg minx∈X̃ F1(x) = arg minx∈X̃ ψ(x). Then, we have

T∑
t=1

〈
x̃− x̃(t), ũ

〉
=

T∑
t=1

〈
x̃− x̃′, ũ(t)

〉
+

T∑
t=1

〈
x̃′ − x̃(t), ũ(t)

〉
= 1
T

T∑
t=1

〈
x̃− x̃(1), ũ(t)

〉
+

T∑
t=1

〈
x̃′ − x̃(t), ũ(t)

〉
⩽ 4 +

T∑
t=1

〈
x̃′ − x̃(t), ũ(t)

〉
,

where the last inequality follows from Cauchy-Schwarz together with the assumption that

∥u(t)∥∞ ⩽ 1
∥X ∥1

.

Now, from Lemma 6.2, the last term

∑T
t=1⟨x̃

′ − x̃(t), ũ(t)⟩ (cumulative regret against x̃′
) is

bounded by

T∑
t=1

〈
x̃′ − x̃(t), ũ(t)

〉
⩽ ψ(x̃′)− ψ(x̃(1)) +

T∑
t=1

〈
ã(t+1) − x̃(t), ũ(t) − m̃(t)

〉
−

T∑
t=1

(
Dψ

(
x̃(t)

∥∥∥ ã(t)
)

+Dψ

(
ã(t+1)

∥∥∥ x̃(t)
))
.

For the term ψ(x̃′)− ψ(x̃(1)), a direct calculation using definitions shows

ψ(x̃′)− ψ(x̃(1)) = 1
η

d+1∑
i=1

log x̃(1)[i]
x̃′[i] ⩽

d+ 1
η

log T.

For the other terms, we apply Lemma 6.3 and Lemma 6.5, which completes the proof.

§6. STRONGLY PREDICTIVE LEARNING DYNAMICS, AND OT (log T/T) CONVERGENCE IN SELF

PLAY 125

6.A.3 Proof of Corollary 6.1

Next, we establish an RVU bound in the original (unlifted) space, namely Corollary 6.1. To this

end, we first proceed with the proof of Lemma 6.1, which boils down to the following simple

claim.

Lemma 6.6. Let (λ,y), (λ′,y′) ∈ X̃ ∩ℝd+1
>0 be arbitrary points such that∥∥∥∥∥

(
λ′

y′

)
−

(
λ

y

)∥∥∥∥∥
(λ,y)

⩽
1
2 .

Then, ∥∥∥∥y

λ
− y′

λ′

∥∥∥∥
1
⩽ 4∥X∥1 ·

∥∥∥∥∥
(
λ′

y′

)
−

(
λ

y

)∥∥∥∥∥
(λ,y)

.

Proof. Let µ be defined as

µ := max
{∣∣∣∣λ′

λ
− 1
∣∣∣∣,max
r∈[[d]]

∣∣∣∣y′[r]
y[r] − 1

∣∣∣∣}. (6.16)

By definition,

∣∣∣λ′

λ − 1
∣∣∣ ⩽ µ, which in turn implies that

(1− µ)λ ⩽ λ′ ⩽ (1 + µ)λ. (6.17)

Similarly, for any r ∈ [[d]],

(1− µ)y[r] ⩽ y′[r] ⩽ (1 + µ)y[r]. (6.18)

As a result, combining (6.17) and (6.18) we get that for any r ∈ [[d]],

y′[r]
λ′ −

y[r]
λ

⩽

(
1 + µ

1− µ − 1
)

y[r]
λ

⩽ 4µy[r]
λ

= 4µx[r],

since µ ⩽ 1
2 . Similarly, by (6.17) and (6.18),

y[r]
λ
− y′[r]

λ′ ⩽

(
1− 1− µ

1 + µ

)
y[r]
λ

⩽ 2µy[r]
λ

= 2µx[r].

Thus, it follows that

∣∣∣y′[r]
λ′ − y[r]

λ

∣∣∣ ⩽ 4µx[r], in turn implying that

126 §6.A. APPENDIX: PROOF DETAILS

∥x′ − x∥1 =
d∑
r=1

∣∣∣∣y′[r]
λ′ −

y[r]
λ

∣∣∣∣ ⩽ 4µ
d∑
r=1

x[r] ⩽ 4µ∥X∥1. (6.19)

Moreover, by definition of (6.16),

(µ)2 ⩽

∥∥∥∥∥
(
λ′

y′

)
−

(
λ

y

)∥∥∥∥∥
2

t

.

Finally, combining this bound with (6.19) concludes the proof.

Lemma 6.1 (Restated). For any time t ∈ ℕ⩾0 and learning rate η ⩽ 1
50 , if ∥u(t)∥∞∥x∥1 ⩽ 1,

∥x(t+1) − x(t)∥1 ⩽ 4∥X∥1

∥∥∥∥∥
(
λ(t+1)

y(t+1)

)
−

(
λ(t)

y(t)

)∥∥∥∥∥
t

.

Proof. Since η ⩽ 1
50 by assumption, we have∥∥∥x(t+1) − x(t)

∥∥∥
t
⩽ 22η < 1

2 .

Hence, we are in the domain of applicability of Lemma 6.6, which immediately yields the

statement.

Corollary 6.1 (Restated; RVU bound in the original (unlifted) space). Fix any time T ∈ ℕ⩾0,

and suppose that ∥u(t)∥∞ ⩽ B for any t ∈ [[T]]. If η ⩽ 1
256B∥X ∥1

,

R̃eg(T)
⩽ 6B∥X∥1 + (d+ 1) log T

η
+ 16η∥X∥2

1

T−1∑
t=1
∥u(t) −m(t)∥2

∞

− 1
512η∥X∥2

1

T−1∑
t=1
∥x(t+1) − x(t)∥2

1.

Proof. At first, assume that ∥u(t)∥∞ ⩽ 1/∥X∥1. By definition of the induced dual local norm

in (6.2),

∥ũ(t) − m̃(t)∥2
∗,t ⩽

(
⟨x(t),u(t)⟩ − ⟨x(t),m(t)⟩

)2
(λ(t))2 +

d∑
r=1

y[r]2(u(t)[r]−m(t)[r])2

§6. STRONGLY PREDICTIVE LEARNING DYNAMICS, AND OT (log T/T) CONVERGENCE IN SELF

PLAY 127

⩽ ⟨x(t),u(t) −m(t)⟩2 +
d∑
r=1

x[r]2(u(t)[r]−m(t)[r])2

⩽ 2∥X∥2
1 · ∥u(t) −m(t)∥2

∞, (6.20)

Combining with Proposition 6.2 and Lemma 6.1, we get that R̃eg(T)
is upper bounded by

6 + (d+ 1) log T
η

+ 16η∥X∥2
1

T∑
t=1
∥u(t) −m(t)∥2

∞ −
1

512η∥X∥2
1

T−1∑
t=1
∥x(t+1) − x(t)∥2

1.

Finally, we relax the assumption that ∥u(t)∥∞, ∥m(t)∥∞ ⩽ 1/∥X∥1. In that case, one

can reduce to the above analysis by first rescaling all utilities and predictions by the factor

1/(B∥X∥1)—which in turn is equivalent to rescaling the learning rate η by 1/(B∥X∥1). We

then need to correct for the fact that the norm of the difference of utilities gets rescaled by a

factor 1/(B∥X∥1)2
, and that the regret R̃eg(T)

with respect to the original utilities is a factor

B∥X∥1 larger than the regret measured on the rescaled utilities. Taking these considerations

into account leads to the statement.

6.A.4 Proof of Theorems 6.2 and 6.3

Finally, we are ready to establish Theorem 6.3. To this end, the main ingredient is the bound on

the second-order path lengths predicted by Theorem 6.2, which is recalled below.

Theorem 6.2 (Restated). If all players follow LRL-OFTRL with learning rate

η ⩽ min
{

1
256B∥X∥1

,
1

128nL∥X∥2
1

}
,

where ∥X∥1 := maxi∈[[n]]∥Xi∥1, then

n∑
i=1

T−1∑
t=1
∥x(t+1)

i − x
(t)
i ∥

2
1 ⩽ 6144nηB∥X∥3

1 + 1024n(d+ 1)∥X∥2
1 log T. (6.3)

Proof. For any player i ∈ [[n]],

(
∥u(t+1)

i − u
(t)
i ∥∞

)2
⩽

L n∑
j=1
∥x(t+1)

j − x
(t)
j ∥1

2

⩽ L2n

n∑
j=1
∥x(t+1)

j − x
(t)
j ∥

2
1,

by Jensen’s inequality. Hence, by Corollary 6.1 the regret Reg(T)
i of each player i ∈ [[n]] can be

128 §6.A. APPENDIX: PROOF DETAILS

upper bounded by

6B∥X∥1 + (d+ 1) log T
η

+ 16η∥X∥2
1L

2n

n∑
j=1

T−1∑
t=1
∥x(t+1)

j − x
(t)
j ∥

2
1

− 1
512η∥X∥2

1

T−1∑
t=1
∥x(t+1)

i − x
(t)
i ∥

2
1,

Summing over all players i ∈ [[n]], we have that

n∑
i=1

R̃eg(T)
i ⩽ 6nB∥X∥1 + n

(d+ 1) log T
η

+
n∑
i=1

(
16η∥X∥2

1L
2n2 − 1

512η∥X∥2
1

) T−1∑
t=1
∥x(t+1)

i − x
(t)
i ∥

2
1

⩽ 6nB∥X∥1 + n
(d+ 1) log T

η
− 1

1024η∥X∥2
1

n∑
i=1

T−1∑
t=1
∥x(t+1)

i − x
(t)
i ∥

2
1,

since η ⩽ 1
256nL∥X ∥2

1
. Finally, the theorem follows since

∑n
i=1 R̃eg(T)

i ⩾ 0, which in turn follows

directly from Theorem 6.1.

Theorem 6.3 (Restated). If all players use LRL-OFTRL within the COLS (that is, with

m(t) = u(t−1)
; cf. Section 3.2.1) with learning rate

η = min
{

1
256B∥X∥1

,
1

128nL∥X∥2
1

}
,

then for any T ∈ ℕ⩾0 the regret Reg(T)
i of each player i ∈ [[n]] can be bounded as

Reg(T)
i ⩽ 12B∥X∥1 + 256(d+ 1) max

{
nL∥X∥2

1, 2B∥X∥1
}

log T. (6.4)

Furthermore, the algorithm can be adaptive so that if player i is instead facing adversarial

utilities, then Reg(T)
i = OT (

√
T).

Proof. First of all, by Assumption 6.1 we have that for any player i ∈ [[n]],

∥u(t+1)
i − u

(t)
i ∥

2
∞ ⩽

L n∑
j=1
∥x(t+1)

j − x
(t)
j ∥1

2

⩽ L2n

n∑
j=1
∥x(t+1)

j − x
(t)
j ∥

2
1.

§6. STRONGLY PREDICTIVE LEARNING DYNAMICS, AND OT (log T/T) CONVERGENCE IN SELF

PLAY 129

Hence, summing over all t,

T−1∑
t=1
∥u(t+1)

i − u
(t)
i ∥

2
∞ ⩽ L2n

T−1∑
t=1

n∑
j=1
∥x(t+1)

j − x
(t)
j ∥

2
1

⩽ 6144n2L2ηB∥X∥3
1 + 1024n2L2(d+ 1)∥X∥2

1 log T,

where the last bound uses Theorem 6.2. As a result, from Corollary 6.1, if η = 1
128nL∥X ∥2

1
,

R̃eg(T)
i ⩽ 6B∥X∥1 + (d+ 1) log T

η
+ 16η∥X∥2

1

T−1∑
t=1
∥u(t+1)

i − u
(t)
i ∥

2
∞

⩽ 12B∥X∥1 + 256(d+ 1)nL∥X∥2
1 log T.

Thus, the bound on Reg(T)
i follows directly since Reg(T)

i ⩽ R̃eg(T)
i by Theorem 6.1. The case

where η = 1
256B∥X ∥1

is analogous.

Next, let us focus on the adversarial bound. Each player can simply check whether there

exists a time t ∈ [[T]] such that

(t−1)∑
τ=1
∥u(τ+1)

i − u
(τ)
i ∥

2
∞ > 6144n2L2ηB∥X∥3

1 + 1024n2L2(d+ 1)∥X∥2
1 log t. (6.21)

In particular, we know from Theorem 6.2 that when all players follow the prescribed pro-

tocol (6.21) will never by satisfied. On the other hand, if there exists time t so that (6.21)

holds, then it suffices to switch to any no-regret learning algorithm tuned to face adversarial

utilities.

130 §6.A. APPENDIX: PROOF DETAILS

Chapter 7

State-of-the-art regret dependence on
game size via kernelization

7.1 Contributions and related work
In this chapter we establish a new technique for constructing no-external-regret dynamics for

imperfect-information extensive-form games, which leads to the current state-of-the-art regret

bounds in terms of dependence from the game dimensions, while at the same time enjoying

polylogarithmic (albeit with a worse exponent than the LRL-OFTRL algorithm we presented

in Chapter 6) regret in self-play, and polynomial-time iterations. However, in addition to the

benefits above, I believe the technique is remarkable in that (i) it surprisingly shows that a

long-held popular wisdom in the literature of imperfect-information extensive-form games is

inaccurate, and (ii) reduces the gap between learning in sequential and nonsequential games, by

showing that in some cases the former (which is substantially harder both conceptually and in a

complexity-theoretic sense in general) can be efficiently reduced to the latter.

In order to understand our technique, it is beneficial to introduce the concept of normal-form
equivalent of the tree-form decision problem faced by a player. In short, because the polytope of

(sequence-form) strategies is the convex polytope spanned by the deterministic strategies, picking

a (sequence-form) strategy for the game is equivalent to picking a convex combination of vertices.

Such a process is no longer tree-form, but is rather a single decision with as many “actions” as

deterministic strategies for the player. By doing away with the tree-form structure in favor of a

single decision node, learning in the normal-form equivalent of a TFDP can then be achieved by

using any learning algorithm for nonsequential games, opening the way to reaping the benefits

of techniques for nonsequential games in imperfect-information extensive-form games too. Of

course, the catch of the above approach is that it comes at the cost of an exponential blowup

of the strategy space, as the flattened (normal-form equivalent) decision problem typically has

132 §7.1. CONTRIBUTIONS AND RELATED WORK

exponentially many actions—as such is the number of deterministic strategies in a TFDP. For

this reason, the normal-form representation was viewed as impractical, historically leading the

communities working on learning in normal-form and imperfect-information extensive-form

games to follow separate tracks, with the latter community often having to catch up with advances

(e.g., last-iterate convergence and predictive regret bounds) from the former, larger community.

We contradict popular belief and show that it is possible to work with the normal-form

equivalent of a TFDP efficiently: we provide a kernel-based reduction that allows us to simulate

predictive multiplicative weights update OMWU algorithm—arguably the premier learning algo-

rithm for nonsequential games; cf. Section 3.3.1—on the normal-form representation, using only

linear (in the TFDP size) time per iteration. Our algorithm, Kernelized OMWU (KOMWU), achieves all

the guarantees provided by the various normal-form results mentioned previously, as well as any

future results on OMWU for nonsequential games.

As an unexpected byproduct, KOMWU obtains new state-of-the-art regret bounds among all

online learning algorithms for TFDPs (see also Table 7.1); we improve the dependence on

the maximum ℓ1 norm ∥Q∥1 over the sequence-form polytope Q from ∥Q∥2
1 to ∥Q∥1 (for the

non-optimistic version we improve it from ∥Q∥1 to

√
∥Q∥1).

Algorithm Per-player regret bound Last-iter. conv.†

CFR (regret matching / regret matching
+

) Chapter 4 O(
√
A ∥Q∥1 T

1/2) no

CFR (MWU) Chapter 4 O(
√

logA ∥Q∥1 T
1/2) no

FTRL/ OMD (dilated entropy) Chapter 5 O(
√

logA 2D/2 ∥Q∥1 T
1/2) no

FTRL/ OMD (dilatable global entropy) Chapter 5 O(
√

logA ∥Q∥1 T
1/2) no

Kernelized MWU (this chapter) O(
√

logA
√
∥Q∥1 T

1/2) no

Predictive CFR Chapter 4 OT (
√
T) no

Predictive FTRL/ OMD (dilated entropy) Chapter 5 O(
√
m log(A) 2D ∥Q∥2

1 T
1/4) yes

∗

Predictive FTRL/ OMD (dilatable gl. ent.) Chapter 5 O(
√
m log(A) ∥Q∥2

1 T
1/4) no

LRL-OFTRL ‡
Chapter 6 O(mpoly(A) ∥Q∥2

1 log T) no

Kernelized OMWU (this chapter) O(m log(A) ∥Q∥1 log4(T)) yes

Table 7.1: Properties of various no-regret algorithms for imperfect-information extensive-form games.

All algorithms take linear time to perform an iteration. The first set of rows are for non-predictive

algorithms. The second set of rows are for predictive algorithms. The regret bounds are per

player and apply to multiplayer general-sum games. They depend on the maximum number

of actions A available at any decision node, the maximum ℓ1 norm ∥Q∥1 = maxq∈Q ∥q∥1 over

the player’s sequence-form strategy polytopeQ, the depth D of the decision polytope, and the

number of playersm. Optimistic algorithms have better asymptotic regret, but worse dependence

on the game constants m, A, and ∥Q∥1. Note that our algorithms achieve better dependence on

∥Q∥1 compared to all existing algorithms.
†
Last-iterate convergence results are for two-player

zero-sum games, and some results rely on the assumption of a unique Nash equilibrium—see

Section 7.5 for details.
‡
We remark that LRL-OFTRL enjoys polynomial-time iterations (ignoring a

log log T dependence), but not linear-time iterations unlike the other methods in the table.
∗
See

C.-W. Lee, Kroer, and Luo (2021).

Due to the connection between regret minimization and convergence to Nash equilibrium,

§7. STATE-OF-THE-ART REGRET DEPENDENCE ON GAME SIZE VIA KERNELIZATION 133

this also improves the state-of-the-art bounds for converging to a Nash equilibrium at either a

rate of 1/
√
T or 1/T by the same factor. Moreover, KOMWU achieves last-iterate convergence, and

as such it is the first algorithm to achieve linear-rate last-iterate convergence with a learning

rate that does not become impractically-small as the game grows large (albeit under a restrictive

uniqueness assumption).

More generally, we remark that KOMWU can simulate OMWU in general 0/1-polyhedral sets (of

which the decision sets for TFDPs are a special case): a decision set Ω ⊆ ℝd which is convex and

polyhedral, and whose vertices are all contained in {0, 1}d. KOMWU reduces the problem of running

OMWU on the vertices of the polyhedral set to d+ 1 evaluations of what we call the 0/1-polyhedral
kernel. Thus, given an efficient algorithm for performing these kernel evaluations, KOMWU enables

one to get all the benefits of running MWU or OMWU on the simplex of vertices, while retaining the

crucial property that each iteration of OMWU can be performed efficiently.

Regret minimization over 0/1 polyhedral sets, of which the sequence-form strategy polytope

is an example, is closely related to online combinatorial optimization problems (Audibert, Bubeck,

and Lugosi, 2014), where the decision maker (randomly) selects a 0/1 vertex in each round instead

of a point in the convex hull of the set of vertices, and the regret is measured in expectation.

We review the approaches most closely related to the use of MWU here. One approach similar to

our KOMWU is to perform MWU over vertices (e.g., Cesa-Bianchi and Lugosi (2012)); the remaining

problem is whether there is an efficient way to maintain and sample from the weights. Such

efficient implementations have been shown in many instances such as paths (Takimoto and

Warmuth, 2003), spanning trees (Koo, Globerson, Carreras Pérez, and Collins, 2007), and m-set

(Warmuth and Kuzmin, 2008). The work by Takimoto and Warmuth (2003) is the closest to the

kernel approach we adopted, where they show how to produce MWU iterates for paths in directed

graphs. The kernelized method described in this chapter can be seen as a significant extension of

their approach to general 0/1 polyhedral games, unifying many of the previous results listed

above. This unification not only results in important applications to imperfect-information

extensive-form games, but also leads to improvement to previously studied problems such as

n-sets.

7.2 A natural reduction: Running OMWU on the vertices of the
strategy set

Since the set of sequence-form strategies Q in a TFDP is a convex polytope, the decision problem

of picking a sequence-form strategy x(t) ∈ Q can be equivalently thought of as the decision

problem of picking a convex combination λ(t)
of vertices of Q—that is, of deterministic strategies

π ∈ Π (Definition 2.5).

This intuition is correct: as we show next, a learning algorithm R for Q ⊆ ℝΣ
can be

134 §7.2. A NATURAL REDUCTION: RUNNING OMWU ON THE VERTICES OF THE STRATEGY SET

Rm(t)

u(t) x(t)∈Q

R̃m̃(t)

ũ(t) λ(t)∈∆Π

m̃(t) = V⊤m(t)

ũ(t) = V⊤u(t) x(t) = Vλ(t)

Tree-form decision process

Nonsequential decision process

Figure 7.1: Overview of reduc-

tion template from Q to

∆Π
. The matrix V has the

vertices Π ofQ as columns.

Algorithm 7.1: Vertex OMWU

Data: Learning rates η(t) > 0

1 u(0), m(0) ← 0 ∈ ℝΣ; λ(0) ← 1
|Π| 1 ∈ ∆Π

[▷ Initialization]

2 function NextStrategy(m(t) ∈ ℝΣ
) [▷ Set m(t) = 0 for

non-predictive variant]

3 w(t) ← u(t−1) −m(t−1) + m(t)

4 for π ∈ Π do [▷ Run the OMWU update on λ using A = Π]

5 λ(t)[π] := λ(t−1)[π] · exp{η(t) ⟨w(t),π⟩}∑
π′∈Π λ(t−1)[π′] · exp{η(t)⟨w(t),π′⟩}

(7.1)

[▷ Compute new convex combination of vertices]

6 Q ∋ x(t) :=
∑
π∈Π

λ(t)[π] · π (7.2)

7 return x(t)

8 function ObserveUtility(u(t) ∈ ℝΣ)
9 t← t+ 1

constructed from any learning algorithm R̃ for the set of vertices Π. Indeed, consider the following

conceptual template:

• Each distribution λ(t) ∈ ∆Π
output by R̃ defines the convex combination of vertices ofQ and is

used to construct the sequence-form strategy

Q ∋ x(t) :=
∑
π∈Π

λ(t)[π] π.

• Each prediction m(t) ∈ ℝΣ
and utility vector u(t)

fed intoR is used to construct a prediction

m̃ and utility vector ũ ∈ ℝΠ
according to

m̃(t)[π] := ⟨m(t),π⟩,

ũ(t)[π] := ⟨u(t),π⟩
∀π ∈ Π.

By letting V denote the matrix whose columns are the deterministic strategies π ∈ Π, we

can rewrite the above template more concisely by saying that each output λ(t) ∈ ∆Π
of R̃ is

transformed into the output x(t) := Vλ(t) ∈ Q of R, and each prediction and utility vector

m(t),u(t) ∈ ℝΣ
of R are transformed into a prediction and utility vector m̃(t) := V⊤m(t)

and

ũ(t) := V⊤u(t)
for R̃, respectively (see also Figure 7.1). The correctness of the above template is

given by the observation that, since ũ(t) := V⊤u(t)
and x(t) := Vλ(t)

by construction, then the

§7. STATE-OF-THE-ART REGRET DEPENDENCE ON GAME SIZE VIA KERNELIZATION 135

following equality of regrets holds.

Lemma 7.1. The regret R̃eg(T) :=
∑T
t=1⟨ũ

(t),λ(t)⟩ cumulated by R̃ is equal, at all times T , to

the regret Reg(T) :=
∑T
t=1⟨u(t),x(t)⟩.

In this chapter we are particularly interested in the algorithm obtained by using the above

construction for the specific choice of OMWU (Section 3.3.1) as the algorithm R̃. We coin Vertex OMWU
the resulting learning algorithmR. The algorithm is summarized in pseudocode in Algorithm 7.1.

7.3 Kernelized multiplicative weights

Kernelized OMWU (KOMWU) gives a way of efficiently simulating the Vertex OMWU algorithm given in

Algorithm 7.1 and described in Section 7.2.
[7.a]

We start by defining the sequence-form feature map and associated kernel in Section 7.3.1, and

move on to describe how the kernel enables efficient simulation of Vertex OMWU in Section 7.3.2.

7.3.1 The sequence-form kernel

As the name suggests, at its heart KOMWU uses a kernel trick to simulate the steps of Vertex

OMWU without actually operating on the exponentially large probability simplex of deterministic

strategies. Let σ ∈ π be a shorthand notation for the set of sequences σ ∈ Σ such that π[σ] = 1,

that is, those sequences that are supported by the deterministic strategy π.

Definition 7.1 (Sequence-form feature map). The sequence-form feature map ϕQ : ℝΣ → ℝΠ
is

the function such that

ϕQ(x)[π] :=
∏
σ∈π

x[σ] ∀x ∈ ℝΣ,π ∈ Π. (7.3)

Definition 7.2. The sequence-form kernel KQ is the function KQ : ℝΣ ×ℝΣ → ℝ,

KQ(x,y) := ⟨ϕQ(x), ϕQ(y)⟩ =
∑
π∈Π

∏
k∈π

x[σ] y[σ]. (7.4)

[7.a]
More generally, the idea underlying KOMWU applies to on polyhedral decision sets whose vertices have 0/1 integer

coordinates, and leads to an efficient implementation of the Vertex MWU algorithm for such a decision set as long as a

specific polyhedral kernel function can be evaluated efficiently. The reader interested in the more general result is welcome

to read the section assuming that Q ⊆ ℝd
is an arbitrary polytope with (possibly exponentially many) 0/1 integral

vertices Π := {π1, . . . ,π|Π|} ⊆ {0, 1}d
.

136 §7.3. KERNELIZED MULTIPLICATIVE WEIGHTS

We remark that the sequence-form feature map and kernel are defined over the entirety of

ℝΣ
, and therefore take as input generic points x,y ∈ ℝΣ

which might or might not be valid

sequence-form strategies.

7.3.2 Using the kernel to simulate the Vertex OMWU algorithm

We show that Vertex OMWU can be simulated using d + 1 evaluation of the kernel KQ at every

iteration. The key observation is summarized in the next theorem, which shows that the iterates

λ(t)
produced by Vertex OMWU are highly structured, in the sense that they are always proportional

to the feature mapping ϕQ(b(t)) for some b(t) ∈ ℝΣ
.

Theorem 7.1. Consider the Vertex OMWU algorithm (Algorithm 7.2). At all times t ∈ ℕ⩾0, the

vector b(t) ∈ ℝΣ
defined as

b(t)[σ] := exp
{
−

t∑
τ=1

η(τ) w(τ)[σ]
}

(7.5)

for all k = 1, . . . , d, is such that

λ(t) = ϕQ(b(t))
KQ(b(t),1)

. (7.6)

Proof. By induction.

• At time t = 0, the vector b(0)
is b(0) = 1 ∈ ℝΣ

. By definition of the feature map (7.3),

ϕQ(1) = 1 ∈ ℝΠ
. So,

KQ(b(0),1) =
∑
π∈Π

1 = |Π|

and hence the right-hand side of (7.6) is
1

|Π| 1, which matches λ(0)
produced by Vertex OMWU,

as we wanted to show.

• Assume the statement holds up to some time t− 1 ⩾ 0. We will show that it holds at time t

as well. Since π has integral 0/1 coordinates, we can write

exp{−η(t)⟨w(t),π⟩} = exp
{
−η(t)

∑
σ∈π

w(t)[σ]
}

=
∏
σ∈π

exp{−η(t) w(t)[σ]}. (7.7)

§7. STATE-OF-THE-ART REGRET DEPENDENCE ON GAME SIZE VIA KERNELIZATION 137

From the inductive hypothesis and (7.3), for all π ∈ Π,

λ(t−1)[π] = ϕQ(b(t−1))[π]
KQ(b(t−1),1)

=
∏
σ∈π b(t−1)[σ]

KQ(b(t−1),1)
. (7.8)

Plugging (7.7) and (7.8) into (7.1), we complete the inductive step

λ(t)[π] =
∏
σ∈π b(t−1)[σ] exp{−η(t) w(t)[σ]}∑

π∈Π
∏
σ∈π b(t−1)[σ] exp{−η(t) w(t)[σ]}

= ϕQ(b(t))[π]
KQ(b(t),1)

for all π ∈ Π, where in the last step we used the fact that

b(t)[σ] = b(t−1)[σ] exp{−η(t) w(t)[σ]}

by (7.5).

The structure of λ(t)
uncovered by Theorem 7.1 can be leveraged to compute the iterate x(t)

produced by Vertex OMWU, i.e., the convex combination of the vertices (7.2), using d+ 1 evaluations

of the kernelKQ. We do so by extending an idea of Takimoto and Warmuth (2003, Equation (5.2)).

Theorem 7.2. Let b(t)
be as in Theorem 7.1. For each σ ∈ Σ := {σ1, . . . , σ|Σ|}, let ēσ ∈ ℝΣ

be

defined as the indicator vector

ēσ[σ′] := 𝟙σ ̸=σ′ :=

0 if σ′ = σ

1 if σ′ ̸= σ.
(7.9)

Then, at all t ⩾ 1, the iterate x(t) ∈ Q produced by Vertex OMWU can be written as

x(t) =
(

1− KQ(b(t), ēσ1)
KQ(b(t),1)

, . . . , 1−
KQ(b(t), ēσ|Σ|)
KQ(b(t),1)

)
. (7.10)

Proof. The proof crucially relies on the observation that for all σ ∈ Σ, the feature map ϕQ(ēσ)
satisfies

ϕQ(ēσ)[π] =
∏
σ′∈π

ēσ[σ′] =
∏
σ′∈π

𝟙σ′ ̸=σ = 𝟙σ/∈π, ∀π ∈ Π.

Using the fact that ϕQ(1) = 1, we conclude that

ϕQ(1)[π]− ϕQ(ēσ)[π] = 𝟙σ∈π, ∀σ ∈ Σ. (7.11)

138 §7.4. EFFICIENT EVALUATION OF THE SEQUENCE-FORM KERNEL

Therefore, for all σ ∈ Σ, we obtain

x(t)[σ](7.2)=
∑
π∈Π

λ(t)[π] · π[σ] =
∑
π∈Π

λ(t)[π] · 𝟙σ∈π =
∑
π∈Π

λ(t)[π] · (ϕQ(1)[π]− ϕQ(ēσ)[π])

= ⟨ϕQ(b(t)), ϕQ(1)⟩ − ⟨ϕQ(b(t)), ϕQ(ēσ)⟩
KQ(b(t),1)

= KQ(b(t),1)−KQ(b(t), ēσ)
KQ(b(t),1)

= 1− KQ(b(t), ēσ)
KQ(b(t),1)

,

where the second equality follows from the integrality of π ∈ Π := Q ∩ {0, 1}Σ
, the third

from (7.11), the fourth from Theorem 7.1, and the fifth from the definition of KQ (7.4).

Combined, Theorems 7.1 and 7.2 suggest that by keeping track of the vectors b(t)
instead of

λ(t)
, updating them using Theorem 7.1 and reconstructing the iterates x(t)

using Theorem 7.2,

Vertex OMWU can be simulated efficiently. We call the resulting algorithm, given in Algorithm 7.2,

Kernelized OMWU (KOMWU). Similarly, we call Kernelized MWU the non-optimistic version of KOMWU
obtained as the special case in which m(t) = 0 at all t. In light of the preceding discussion, we

have the following.

Theorem 7.3. Kernelized OMWU produces the same iterates x(t)
as Vertex OMWU when it receives

the same sequence of predictions m(t)
and losses u(t) ∈ ℝΣ

. Furthermore, each iteration of

KOMWU runs in time proportional to the time required to compute the |Σ|+1 kernel evaluations

{KQ(b(t),1)} ∪ {KQ(b(t), ēσ) : σ ∈ Σ}.

7.4 Efficient evaluation of the sequence-form kernel
To complete our construction of KOMWU, we now show that the sequence-form kernel can be

evaluated efficiently. The central result of this section, Theorem 7.5, shows that KOMWU can be

implemented with linear-time iterations in the number of sequences Σ.

7.4.1 Worst-case linear complexity for a single evaluation

We start by verifying that the sequence-form kernel can be evaluated in linear time for any pair of

points x,y ∈ ℝΣ
. To do so, we introduce a partial kernel function Kj : ℝΣ × ℝΣ → ℝ for every

decision node j ∈ J ,

Kj : ℝΣ ×ℝΣ → ℝ, Kj(x,y) :=
∑

π∈Π≽j

∏
σ∈π

x[σ] y[σ]. (7.12)

§7. STATE-OF-THE-ART REGRET DEPENDENCE ON GAME SIZE VIA KERNELIZATION 139

Algorithm 7.2: Kernelized OMWU (KOMWU)

Data: Learning rates η(t) > 0
1 u(0), m(0), s(0) ← 0 ∈ ℝΣ

[▷ Initialization]

2 function NextStrategy(m(t) ∈ ℝΣ
) [▷ Set m(t) = 0 for non-predictive variant]

[▷ Compute b(t)
according to Theorem 7.1]

3 w(t) ← u(t−1) −m(t−1) + m(t)

4 s(t) ← s(t−1) + η(t)w(t)
[▷ s(t) =

∑
η(τ)w(τ)

]

5 for σ ∈ Σ do
6 b(t)[σ]← exp{−s(t)[σ]} [▷ See (7.5)]

[▷ Produce iterate x(t)
according to Theorem 7.2]

7 x(t) ← 0 ∈ ℝΣ

8 α← KQ(b(t),1) [▷ KQ is defined in (7.4)]

9 for σ ∈ Σ do

10 x(t)[σ]← 1− KQ(b(t), ēσ)
α

[▷ See (7.10)]

11 return x(t)

12 function ObserveUtility(u(t) ∈ ℝΣ)
13 t← t+ 1

Theorem 7.4. For any vectors x,y ∈ ℝΣ
, the two following recursive relationships hold:

KQ(x,y) = x[∅] y[∅]
∏
j∈C∅

Kj(x,y), (7.13)

and, for all decision nodes j ∈ J ,

Kj(x,y) =
∑
a∈Aj

x[ja] y[ja]
∏

j′∈Cja

Kj′(x,y)

. (7.14)

In particular, Equations (7.13) and (7.14) give a recursive algorithm to evaluate the polyhedral

kernel KQ associated with the sequence-form strategy space of any player i in an imperfect-

information extensive-form game in linear time in the number of sequences |Σ|.

7.4.2 Batched computation and amortized complexity

Theorem 7.4 shows that the kernelKQ can be evaluated in linear time (in the number of sequences

Σ) at any pair of points (x,y) ∈ ℝΣ×ℝΣ
. So, the KOMWU algorithm (Algorithm 7.2) can be trivially

140 §7.4. EFFICIENT EVALUATION OF THE SEQUENCE-FORM KERNEL

implemented in quadratic O(|Σ|2) time per iteration by directly evaluating the |Σ| + 1 kernel

evaluations {KQ(b(t),1)} ∪ {KQ(b(t), ēσ) : σ ∈ Σ} needed at each iteration, where ēσ ∈ ℝΣ
,

defined in (7.9) for the general case, is the vector whose components are ēσ[σ′] := 𝟙σ ̸=σ′ for all

σ, σ′ ∈ Σ.

We will now refine that result by showing an implementation of KOMWU with linear-time

(i.e., O(|Σ|)) per-iteration complexity, by exploiting the structure of the particular set of kernel

evaluations needed at every iteration. In particular, we rely on the following observation.

Proposition 7.1. For any player i ∈ [[m]], vector x ∈ ℝΣ
>0, and sequence ja ∈ Σ∗

,

1−KQ(x, ēja)/KQ(x,1)
1−KQ(x, ēpj

)/KQ(x,1) =
x[ja]

∏
j′∈Cja

Kj′(x,1)
Kj(x,1) .

We defer the proof of Proposition 7.1 as an appendix at the end of the chapter, and first discuss

how the result informs an efficient batched computation of the kernel evaluations needed in KOMWU.

Specifically, in light of Proposition 7.1, we do the following to compute {KQ(b(t), ēσ) : σ ∈ Σ} in

cumulative O(|Σ|) time.

1. First, we compute the valuesKj(b(t),1) for all j ∈ J in cumulativeO(|Σ|) time by using (7.14).

2. Then, we compute the ratio KQ(b(t), ē∅)/KQ(b(t),1) by evaluating the two kernel separately

using Theorem 7.4, spending O(|Σ|) time.

3. At this point, we repeatedly use Proposition 7.1 in a top-down fashion along the tree-form

decision process of player i to compute the ratio KQ(b(t), ēja)/KQ(b(t),1) for each sequence

ja ∈ Σ∗
given the value of the parent ratio KQ(b(t), ēpj

)/KQ(b(t),1) and the partial kernel

evaluations {Kj(b(t),1) : j ∈ J } from Step 1. For each ja ∈ Σ∗
, Proposition 7.1 gives a

formula whose runtime is linear in the number of children decision nodes |Cja| at that sequence.

Therefore, the cumulative runtime required to compute all ratios KQ(b(t), ēja)/KQ(b(t),1) is

O(|Σ|).

4. Finally, by multiplying the ratios computed in Step 3 by the value of KQ(b(t),1) computed in

Step 2, we can easily recover each KQ(b(t), ēσ) for every σ ∈ Σ∗
.

Hence, we have just proved the following result.

Theorem 7.5. For each player i in a perfect-recall extensive-form game, the Kernelized OMWU
algorithm can be implemented exactly, with a per-iteration complexity linear in the number

of sequences |Σ| of that player.

§7. STATE-OF-THE-ART REGRET DEPENDENCE ON GAME SIZE VIA KERNELIZATION 141

7.5 Regret bound of Kernelized OMWU

If the players in an imperfect-information extensive-form game run KOMWU, then we can combine

Theorem 7.3 with standard OMWU regret bounds given in Section 3.3.1 to immediately get the

following.

Theorem 7.6. In an imperfect-information extensive-form game, after any T iterations, KOMWU
satisfies

1. A player i using KOMWU with η(t) := η =
√

8 log(A)∥Q∥1/
√
T is guaranteed to incur

regret at most Reg(T) = O(
√
∥Q∥1 log(A)T).

2. For all T , if η(t) := η = T−1/4
√
m−1 , the regret of each player i ∈ [[m]] is bounded as

Reg(T) ⩽ (4 + ∥Q∥ logA)
√
m− 1 · T 1/4.

3. There exist C,C ′ > 0 such that if all m players learn using KOMWU with constant learning

rate η(t) := η ⩽ 1/(Cm log4 T), then each player is guaranteed to incur regret at most

log(A)∥Q∥1
η + C ′ log T .

4. If all m player learn using KOMWU with η(t) := η ⩽ 1/
√

8(m− 1), then the sum of regrets

is at most

∑m
i=1 Reg(T) = O(maxmi=1{∥Q∥1 logAi}mη).

5. For two-player zero-sum imperfect-information extensive-form games, if both players

learn using KOMWU, then there exists a schedule of learning-rates η(t)
such that the

iterates converge to a Nash equilibrium. Furthermore, if the NFG representation of

the imperfect-information extensive-form game has a unique Nash equilibrium and

both players use learning rates η(t) = η ⩽ 1/8, then the iterates converge to a Nash

equilibrium at a linear rate C(1 + C ′)−t
, where C,C ′

are constants that depend on the

game.

Prior to our result, the strongest regret bound for methods that take linear time per iteration was

based on instantiating, e.g., follow the regularized leader (FTRL) or its optimistic variant with the

dilatable global entropy regularizer discussed in Chapter 5 (Section 5.4.2). For FTRL this yields a

regret bound of the form O(
√

log(A) ∥Q∥2
1T). For optimistic FTRL this yields a regret bound of

the form O(log(A) ∥Q∥2
1
√
mT 1/4), when every player in an m-player game uses that algorithm

and appropriate learning rates.

Our algorithm improves the state-of-the-art rate in two ways. First, we improve the dependence

on game constants by almost a square root factor, because our dependence on ∥Q∥1 is smaller

by a square root, compared to prior results. Secondly, in the multiplayer general-sum setting,

every other method achieves regret that is on the order of T 1/4
, whereas our method achieves

142 §7.6. EXPERIMENTAL EVALUATION

regret on the order of log4(T). In the context of two-player zero-sum imperfect-information

extensive-form games, the bound on the sum of regrets in Theorem 7.6 guarantees convergence

to a Nash equilibrium at a rate of O(maxi∥Q∥1 logAi/T). This similarly improves the prior state

of the art.

C.-W. Lee, Kroer, and Luo (2021) showed the first last-iterate results for imperfect-information

extensive-form games using algorithms that require linear time per iteration. In particular, they

show that the dilated entropy DGF combined with optimistic online mirror descent leads to

last-iterate convergence at a linear rate. However, their result requires learning rates η ⩽ 1/(8|Σ|).
This learning rate is impractically small in practice. In contrast, our last-iterate linear-rate result

for KOMWU allows learning rates of size 1/8. That said, our result is not directly comparable to theirs.

The existence of a unique Nash equilibrium in the imperfect-information extensive-form game

representation is a necessary condition for uniqueness in the NFG representation. However, it is

possible that the NFG has additional equilibria even when the imperfect-information extensive-

form game does not. C. Wei, C. Lee, M. Zhang, and Luo (2021) conjecture that linear-rate

convergence holds even without the assumption of a unique Nash equilibrium. If this conjecture

turns out to be true for NFGs, then Theorem 7.3 would immediately imply that KOMWU also has

last-iterate linear-rate convergence without the uniqueness assumption.

7.6 Experimental evaluation

We complement the theoretical results provided in this chapter with a numerical investigation of

KOMWU in Kuhn and Leduc poker (Kuhn, 1950; Southey, Bowling, Larson, Piccione, Burch, Billings,

and Rayner, 2005), standard benchmark games from the extensive-form games literature. As

usual, a full description of the game instances we use is available in Appendix A.

Specifically, we investigate whether the strong theoretical guarantees enjoyed by KOMWU, which

crucially rely on predictivity, are shared by non-predictive algorithm such as (vanilla) CFR and

CFR instantiated with RM+
at all decision points. Additionally, we investigate how KOMWU compares

with DOMWU (C.-W. Lee, Kroer, and Luo, 2021).

Results are shown in Figure 7.2 and Figure 7.3.

For algorithms that require learning rates (KOMWU and DOMWU), we consider the four different

choices of constants η(t) := η ∈ {0.1, 1, 5, 10}. We remark that the payoff ranges of these games

are not [0, 1] (i.e., the games have not been normalized). The payoff range of Kuhn poker is 6 for

the 3-player variant and 8 for the 4-player variant. The payoff range of Leduc poker is 21 for the

3-player variant and 28 for the 4-player variant. So, a learning rate value of η = 0.1 corresponds to

a significantly smaller learning rate in the normalized game where the payoffs have been shifted

and rescaled to lie within [0, 1].
In all games, we observe that the maximum per-player regret cumulated by KOMWU plateaus

and remains constants, unlike the CFR variants. This behavior is consistent with the near-optimal

§7. STATE-OF-THE-ART REGRET DEPENDENCE ON GAME SIZE VIA KERNELIZATION 143

100

101

102

M
a
x
.

i
n

d
i
v

i
d

u
a
l
r
e
g

r
e
t

K3b — 3-player Kuhn poker

100

101

102

K45 — 4-player Kuhn poker

100 101 102 103 104

Iteration

100

101

102

103

M
a
x
.

i
n

d
i
v

i
d

u
a
l
r
e
g

r
e
t

L3133 — 3-player Leduc poker

CFR CFR (RM+
) KOMWU

100 101 102 103 104

Iteration

101

102

103

L4133 — 4-player Leduc poker

η = 0.1 1 5 10

Figure 7.2: Experimental comparison of KOMWU with CFR.

144 §7.A. APPENDIX: PROOF DETAILS

100

101

102

103

M
a
x
.

i
n

d
i
v

i
d

u
a
l
r
e
g

r
e
t

K3b — 3-player Kuhn poker

100

101

102

103

K45 — 4-player Kuhn poker

100 101 102 103 104

Iteration

100

101

102

103

M
a
x
.

i
n

d
i
v

i
d

u
a
l
r
e
g

r
e
t

L3133 — 3-player Leduc poker

KOMWU DOMWU

100 101 102 103 104

Iteration

101

102

103

104

L4133 — 4-player Leduc poker

η = 0.1 η = 1 η = 5 η = 10

Figure 7.3: Experimental comparison of KOMWU with DOMWU for different choices of learning rates.

per-player regret guarantees of KOMWU (Theorem 7.6). In the 3-player variant of Leduc poker, we

observe that the largest learning rate we use, η = 10, leads to divergent behavior of the learning

dynamics.

7.A Appendix: Proof details

7.A.1 Proof of Theorem 7.4

Proof. In the proof of this result, we will make use of the following additional notation. Given

any x ∈ ℝΣ
and a j ∈ J , we let x(j) ∈ ℝΣ≽j

denote the subvector obtained from x by only

considering sequences σ ∈ Σ≽j , that is, the vector whose entries are defined as x(j)[σ] = x[σ]
for all σ ∈ Σ≽j .

§7. STATE-OF-THE-ART REGRET DEPENDENCE ON GAME SIZE VIA KERNELIZATION 145

• Proof of (7.13). Direct inspection of the definitions of Π and Π≽j (given in Section 2.2.2),

together with the observation that the {Σ≽j : j ∈ C∅} form a partition of Σ∗
, reveals that

Π =
{

π ∈ {0, 1}Σ :
1 π[∅] = 1

2 π(j) ∈ Π≽j ∀ j ∈ C∅

}
(7.15)

The observation above can be summarized informally into the statement that “Π is
equal, up to permutation of indices, to the Cartesian product×j∈C∅

Π≽j”. The idea for the

proof is then to use that Cartesian product structure in the definition of 0/1-polyhedral

kernel (7.4), as follows

KQ(x,y) =
∑
π∈Π

∏
σ∈π

x[σ] y[σ]

=
∑
π∈Π

x[∅] y[∅]
∏
j′∈C∅

∏
σ∈π(j′)

x[σ] y[σ]


=

∑
π(j)∈Π≽j ∀ j∈C∅

x[∅] y[∅]
∏
j′∈C∅

∏
σ∈π(j′)

x[σ] y[σ]


= x[∅] y[∅]

∑
π(j)∈Π≽j ∀ j∈C∅

 ∏
j′∈C∅

∏
σ∈π(j′)

x[σ] y[σ]


= x[∅] y[∅]

∏
j∈C∅

∑
π(j)∈Π≽j

∏
σ∈π(j)

x[σ] y[σ]

= x[∅] y[∅]
∏
j∈C∅

Kj(x,y),

where the second equality follows from the fact that {∅}∪{Σ≽j : j ∈ C∅} form a partition

of Σ, the third equality follows from (7.15), the fifth equality from the fact that each

πj ∈ Π≽j can be chosen independently, and the last equality from the definition of partial

kernel function (7.12).

• Proof of (7.14). Similarly to what we did for (7.13), we start by giving an inductive

characterization of Π≽j as a function of the children Π≽j′ for j′ ∈ ∪a∈Aj
Cja. Specifically,

direct inspection of the definitions of Π≽j , together with the observation that the

{Σ≽j′ : j′ ∈ ∪a∈AjCja} form a partition of Σ≽j , reveals that

Π≽j =
{

π ∈ {0, 1}Σ≽j :
1
∑
a∈Aj

π[ja] = 1

2 π(j′) ∈ π[ja] ·Π≽j′ ∀ a ∈ Aj , j′ ∈ Cja

}
. (7.16)

146 §7.A. APPENDIX: PROOF DETAILS

From constraint 1 together with the fact that π[ja] ∈ {0, 1} for all a ∈ Aj , we conclude

that exactly one a∗ ∈ Aj is such that π[ja∗] = 1, while π[ja] = 0 for all other a ∈ Aj , a ̸= a∗
.

So, we can rewrite (7.16) as

Π≽j =
⋃

a∗∈Aj

π ∈ {0, 1}Σ≽j :

1 π[ja∗] = 1
2 π[ja] = 0 ∀ a ∈ Aj , a ̸= a∗

3 π(j′) ∈ Π≽j′ ∀ j′ ∈ Cja∗

4 π(j′) = 0 ∀ j′ ∈ ∪a∈Aj ,a ̸=a∗Cja

, (7.17)

where the union is clearly disjoint. The above equality can be summarized informally

into the statement that “Π≽j is equal, up to permutation of indices, to a disjoint union over
actions a∗ ∈ Aj of Cartesian products×j∈Cja∗

Π≽j”. We can then use the same set of

manipulations we already used in the proof of (7.13) to obtain

Kj(x,y) =
∑

π∈Π≽j

∏
σ∈π

x[σ] y[σ]

=
∑

π∈Π≽j

x[ja∗] y[ja∗]
∏

j′∈Cja∗

∏
σ∈π(j′)

x[σ] y[σ]


=
∑
a∗∈Aj

∑
πj′ ∈Π≽j′

∀ j′∈Cja∗

x[ja∗] y[ja∗]
∏

j′∈Cja∗

∏
σ∈π(j′)

x[σ] y[σ]



=
∑
a∗∈Aj

x[ja∗] y[ja∗]
∏

j′∈Cja∗

∑
π(j′)∈Π≽j′

∏
σ∈π(j′)

x[σ] y[σ]


=
∑
a∈Aj

x[ja] y[ja]
∏

j′∈Cja

Kj′(x,y)

,
where the second equality follows from the fact that the {Σ≽j′ : j′ ∈ ∪a∈AjCja} form a

partition of Σ≽j , third equality follows from (7.17), the fourth equality from the fact that

each πj′ ∈ Π≽j′ can be picked independently, and the last equality from the definition of

partial kernel function (7.12) as well as renaming a∗
into a.

7.A.2 Proof of Proposition 7.1

We give a self-contained proof of the result stated in Proposition 7.1, repeated below for

convenience.

§7. STATE-OF-THE-ART REGRET DEPENDENCE ON GAME SIZE VIA KERNELIZATION 147

Proposition 7.1 (Restated). For any player i ∈ [[m]], vector x ∈ ℝΣ
>0, and sequence ja ∈ Σ∗

,

1−KQ(x, ēja)/KQ(x,1)
1−KQ(x, ēpj

)/KQ(x,1) =
x[ja]

∏
j′∈Cja

Kj′(x,1)
Kj(x,1) .

Proof. Note that since x > 0, clearly KQ(x,1),Kj(x, 1) > 0. Furthermore, from (7.11) we have

that for all σ ∈ Σ

KQ(x,1)−KQ(x, ēσ) = ⟨ϕQ(1)− ϕQ(ēσ), ϕQ(x)⟩ =
∑
π∈Π

π[σ]=1

∏
σ′∈π

x[σ′] > 0. (7.18)

The above inequality immediately implies that 0 < KQ(x, ēpj
)/KQ(x,1) < 1 and therefore all

denominators in the statement are nonzero, making the statement well-formed.

In light of (7.18), we further have

1−KQ(x, ēja)/KQ(x,1)
1−KQ(x, ēpj

)/KQ(x,1) =
x[ja]

∏
j′∈Cja

Kj′(x,1)
Kj(x,1)

⇐⇒ KQ(x,1)−KQ(x, ēja)
KQ(x,1)−KQ(x, ēpj

) =
x[ja]

∏
j′∈Cja

Kj′(x,1)
Kj(x,1)

⇐⇒
∑

π∈Π,π[ja]=1
∏
σ∈π x[σ]∑

π∈Π,π[pj]=1
∏
σ∈π x[σ] =

x[ja]
∏
j′∈Cja

Kj′(x,1)
Kj(x,1) . (7.19)

We now prove (7.19). Let

A := {π ∈ Π : π[ja] = 1}, B := {π ∈ Π : π[pj] = 1}

be the domains of the summations. From the definition of Π (specifically, constraints 2 in the

definition of Q, of which Π is a subset by definition; see Definition 2.5), it is clear that A ⊆ B.

Furthermore, it is straightforward to check, using the definitions of Π≽j , Π, and B, that

π(j) ∈ Π≽j ∀π ∈ B (7.20)

We now introduce the function ((· ∥ ·)) : B ×Π≽j → B defined as follows. Given any π ∈ B
and π′ ∈ Π≽j , ((π ∥π′)) is the vector obtained from π by replacing all sequences at or below

decision node j with what is prescribed by π′
; formally,

148 §7.A. APPENDIX: PROOF DETAILS

((π ∥π′))[σ] :=

π′[σ] if σ ∈ Σ≽j

π[σ] otherwise.
∀π ∈ B,π′ ∈ Π≽j (7.21)

It is immediate to check that ((π ∥π′)) is indeed an element of B. We now introduce the

following result.

Lemma 7.2. There exists a set P ⊆ B such that every π′′ ∈ B can be uniquely written as

π′′ = ((π ∥π′)) for some π ∈ P and π′ ∈ Π≽j . Vice versa, given any π ∈ P and π′ ∈ Π≽j ,

then ((π ∥π′)) ∈ B.

Proof. The second part of the statement is straightforward. We now prove the first part.

Fix any π∗ ∈ Π≽j and let P := {((π ∥π∗)) : π ∈ B}. It is straightforward to verify that

for any π′′ ∈ B, the choices π := ((π′′ ∥π∗)) ∈ P and π′ := π(j) ∈ Π≽j satisfy the equality

((π ∥π′)) = π′′
. So, every π′′ ∈ B can be expressed in at least one way as π′′ = ((π ∥π′)) for

some π ∈ P and π′ ∈ Π≽j . We now show that the choice above is in fact the unique choice.

First, it is clear from the definition of ((· ∥ ·)) that π′
must satisfy π′ = π′′

(j), and so it is

uniquely determined. Suppose now that there exist π, π̃ ∈ P such that ((π ∥π′)) = ((π̃ ∥π′)).
Then, π and π̃ must coincide on all σ ∈ Σ \Σ≽j . However, since all elements of P are of the

form ((b ∥π∗)) for some b ∈ B, then π and π̃ must also coincide on all σ ∈ Σ≽j . So, π and π̃

coincide on all coordinates σ ∈ Σ, and the statement follows.

Lemma 7.2 exposes a convenient combinatorial structure of the set B. In particular, it

enables us to rewrite the denominator on the left-hand side of (7.19) as follows∑
π∈B

∏
σ∈π

x[σ] =
∑

π′∈P

∑
π′′∈Π≽j

∏
σ∈((π′ ∥ π′′))

x[σ]

=
∑

π′∈P

∑
π′′∈Π≽j

 ∏
σ∈((π′ ∥ π′′))
σ∈Σ≽j

x[σ]


 ∏
σ∈((π′ ∥ π′′))
σ ̸∈Σ≽j

x[σ]



=
∑

π′∈P

∑
π′′∈Π≽j

(∏
σ∈π′′

x[σ]
) ∏

σ∈π′

σ ̸∈Σ≽j

x[σ]



=

 ∑
π′′∈Π≽j

∏
σ∈π′′

x[σ]


∑

π′∈P

∏
σ∈π′

σ ̸∈Σ≽j

x[σ]



§7. STATE-OF-THE-ART REGRET DEPENDENCE ON GAME SIZE VIA KERNELIZATION 149

= Kj(x,1) ·

∑
π′∈P

∏
σ∈π′

σ ̸∈Σ≽j

x[σ]

, (7.22)

where we used (7.21) in the third equality.

We can use a similar technique to express the numerator of the left-hand side of (7.19). Let

Πi,ja := {π ∈ Π≽j : π[ja] = 1}.

Using the constraints that define Π and the definition of A, it follows immediately that for any

π ∈ A, π(j) ∈ Πi,ja. Furthermore, a direct consequence of Lemma 7.2 is the following:

Corollary 7.1. The same set P ⊆ B introduced in Lemma 7.2 is such that every π′′ ∈ A
can be uniquely written as π′′ = ((π ∥π′)) for some π ∈ P and π′ ∈ Πi,ja.

Using Corollary 7.1 and following the same steps that led to (7.22), we express the numerator

of the left-hand side of (7.19) as∑
π∈A

∏
σ∈π

x[σ] =
∑

π′∈P

∑
π′′∈Πi,ja

∏
σ∈((π′ ∥ π′′))

x[σ]

=
∑

π′∈P

∑
π′′∈Πi,ja

 ∏
σ∈((π′ ∥ π′′))
σ∈Σ≽j

x[σ]


 ∏
σ∈((π′ ∥ π′′))
σ ̸∈Σ≽j

x[σ]



=
∑

π′∈P

∑
π′′∈Πi,ja

(∏
σ∈π′′

x[σ]
) ∏

σ∈π′

σ ̸∈Σ≽j

x[σ]



=

 ∑
π′′∈Πi,ja

∏
σ∈π′′

x[σ]


∑

π′∈P

∏
σ∈π′

σ ̸∈Σ≽j

x[σ]

. (7.23)

The statement then follows immediately if we can prove that∑
π∈Πi,ja

∏
σ∈π

x[σ] = x[ja]
∏

j′∈Cja

Kj′(x,1).

To do so, we use the same approach as in the proof of Theorem 7.4. In fact, we can directly use

the inductive characterization of Π≽j obtained in (7.17) to write

150 §7.A. APPENDIX: PROOF DETAILS

Πi,ja =

π ∈ {0, 1}Σ≽j :

1 π[ja] = 1
2 π[ja′] = 0 ∀ a′ ∈ Aj , a′ ̸= a

3 π(j′) ∈ Π≽j′ ∀ j′ ∈ Cja
4 π(j′) = 0 ∀ j′ ∈ ∪a′∈Aj ,a′ ̸=aCja′

,
which fundamentally uncovers the Cartesian-product structure of Πi,ja. Using the same technique

as Theorem 7.4, we then have

∑
π∈Πi,ja

∏
σ∈π

x[σ] =
∑

π(j′)∈Π≽j′ ∀ j′∈Cja

x[ja]
∏

j′∈Cja

∏
σ∈π(j′)

x[σ]


=

x[ja]
∏

j′∈Cja

∑
π(j′)∈Π≽j′

∏
σ∈π(j′)

x[σ]


=

x[ja]
∏

j′∈Cja

Kj′(x,1)

,
and the statement is proven.

Part III

Computation of extensive-form
correlated and team equilibria

Chapter 8

Uncoupled learning of
extensive-form correlated
equilibrium

In Chapter 4 we have seen how one can construct simple, uncoupled no-external-regret dynamics

for sequence-form strategy polytopes in any imperfect-information extensive-form game. Due to

the connection between external regret and coarse correlated equilibria discussed in Chapter 3,

those dynamics can be used to compute normal-form coarse-correlated equilibria in general

multiplayer games, as well as Nash equilibria in two-player zero-sum games.

However, a different notion of equilibrium, extensive-form correlated equilibrium (the

counterpart of correlated equilibrium in normal-form games), cannot be obtained through

no-external-regret dynamics, begging the following question.

Do uncoupled, polynomial-time learning dynamics leading to the set of extensive-form correlated
equilibrium exist in any imperfect-information extensive-form game?

In this chapter, we settle it for the positive.

8.1 Contributions and related work

In this chapter we show that it is possible to construct simple, uncoupled learning dynamics

that minimize a stronger notion of regret—that is, that guarantee a stronger notion of hindsight

rationality—than external regret. In particular, we will define and study an instance of Φ-regret

based on the notion of trigger deviation functions. As we will show, the minimization of Φ-regret

154 §8.1. CONTRIBUTIONS AND RELATED WORK

with respect to the set of trigger deviation functions leads to extensive-form correlated equilib-

rium (EFCE), the imperfect-information extensive-form game counterpart of what correlated

equilibrium is for single-decision simultaneous-action games (von Stengel and Forges, 2008).

Related work The notion of trigger deviation functions which we introduce in this chapter

builds on prior work on extensive-form transformations by G. J. Gordon, A. Greenwald, and Marks

(2008). However, trigger deviation functions are simpler than the extensive-form transformations.

Specifically, extensive-form transformations allow one to specify more than one trigger sequence

(together with different continuation strategies, one for each specified trigger sequence), whereas

our notion of trigger deviation functions only contemplates a single trigger sequence. Conse-

quently, the set of all trigger deviation functions is significantly smaller, and simpler, than the

set of all extensive-form transformations. The simpler structural properties of the set of trigger

deviation functions, explored in Section 8.3.2, will enable us to construct an efficient no-regret

algorithm for the convex hull of the set of all canonical trigger deviation matrices.

We also mention relevant literature concurrent and subsequent to the conference version of

the paper on which this chapter is based (Celli, Marchesi, Farina, and Gatti, 2020). First, we

acknowledge the thesis work by H. Zhang (2022) on computing certain refinements of EFCE

via polynomial-time uncoupled learning dynamics, though their procedure could require up

to exponential memory. In a later chapter of the thesis, the author notes that some of the

dynamics introduced in the thesis can be modified to guarantee polynomial memory usage when

convergence to the set of (unrefined) EFCE is sought. That work was conducted independently

and concurrently with ours. In a recent paper, Morrill, D’Orazio, Sarfati, Lanctot, J. Wright, A.

Greenwald, and Bowling (2020) conduct a study of different forms of correlation in extensive-form

games, defining a taxonomy of solution concepts. Each of their solution concepts is attained

by a particular set of no-regret learning dynamics, which is obtained by instantiating the phi-

regret minimization framework (A. Greenwald and Jafari, 2003; Stoltz and Lugosi, 2007; G. J.

Gordon, A. Greenwald, and Marks, 2008) with a suitably-defined deviation function. As part of

their analysis, Morrill, D’Orazio, Sarfati, Lanctot, J. Wright, A. Greenwald, and Bowling (2020)

investigate some properties of the well-established CFR regret minimization algorithm (Zinkevich,

Bowling, Johanson, and Piccione, 2007) applied to n-player general-sum extensive-form games,

establishing that it is hindsight-rational with respect to a specific set of deviation functions, which

the authors coin blind counterfactual deviations. In subsequent recent work, Morrill, D’Orazio,

Lanctot, J. R. Wright, Bowling, and A. R. Greenwald (2021) extend their prior work (Morrill,

D’Orazio, Sarfati, Lanctot, J. Wright, A. Greenwald, and Bowling, 2020) by identifying a general

class of deviations—called behavioral deviations—that induce equilibria that can be found through

uncoupled no-regret learning dynamics. Behavioral deviations are defined as those specifying an

action transformation independently at each decision node of the game. As the authors note, the

deviation functions involved in the definition of EFCE do not fall under that category. A particular

§8. UNCOUPLED LEARNING OF EXTENSIVE-FORM CORRELATED EQUILIBRIUM 155

class of behavioral deviation functions—called causal partial sequence deviations—induces solution

concepts that are (subsets of) EFCEs. Thus, their result begets an alternative set of no-regret

learning dynamics that converge to EFCE, based on a different set of deviation functions than

those we use in this dissertation.

Organization This chapter is organized as follows. In Section 8.2 we introduce the notion of

trigger agents and trigger deviation functions, and formally establish the important connection

between such notions and convergence to the set of EFCEs via no-regret dynamics. In Section 8.3

we show how regret with respect to the set of all trigger deviation functions can be kept sublinear.

We do so by first identifying a suitable characterization of the set of all trigger deviation functions.

Such a characterization exhibits a strong combinatorial structure that naturally lends itself to

being addressed via the regret decomposition techniques we saw in Chapter 4. Pseudocode for

the resulting learning dynamics, as well as a theoretical analysis, is given in Section 8.3.3.

8.2 Extensive-form correlated equilibrium and its relation with
Φ-regret

Extensive-form correlated equilibrium (EFCE) has been proposed by von Stengel and Forges

(2008) as the natural counterpart to (normal-form) correlated equilibrium in sequential games. In

an EFCE, before the beginning of the game an external mediator draws a recommended action

for each of the possible decision nodes that players may encounter in the game, according to

some probability distribution known to the player. These recommendations are not immediately

revealed to each player. Instead, the mediator incrementally reveals relevant action recommen-

dations as players reach new decision nodes. At any decision node, the acting player is free to

deviate from the recommended action, but doing so comes at the cost of future recommendations,

which are no longer issued if the player deviates. In an EFCE, the recommended behavior is

incentive-compatible for each player, that is, no player is strictly better off ever deviating from any

of the mediator’s recommended actions.

We make the definition of EFCE formal in the next subsection.

8.2.1 Trigger agents and trigger deviation functions

Multiple equivalent definitions of EFCE can be given; we will follow the equivalent formulation

given by Farina, Ling, Fang, and Sandholm (2019a) based on the concept of trigger agents introduced

by G. J. Gordon, A. Greenwald, and Marks (2008) and Dudik and G. J. Gordon (2009). Fix any

n-player imperfect-information extensive-form game, and let i ∈ [[n]] be a player. Furthermore,

let σ̂ = (j, a) ∈ Σ∗
i be a non-empty sequence for Player i, and let π̂ ∈ Πi,≽j be a strategy for the

156 §8.2. EXTENSIVE-FORM CORRELATED EQUILIBRIUM AND ITS RELATION WITH Φ-REGRET

subtree rooted at decision node j of the tree-form decision process for Player i. The (σ̂, π̂)-trigger
agent is the agent that plays the game as Player i according to the following rules.

• If the trigger agent has never been recommended to play action a at decision node j, the

trigger agent will follow whatever recommendation is issued by the mediator.

• When the trigger agent reaches decision node j and is recommended to play action a, we

say that the trigger agent “gets triggered” by the trigger sequence σ̂ = (j, a). This means

that, from that point on, the trigger agent will disregard the recommendations and play

according to the continuation strategy π̂ from decision node j onward (that is, at j and all its

descendant decision nodes).

More formally, a (σ̂, π̂)-trigger agent for Player i is a function that maps a recommended strategy

to realized behavior, according to a trigger deviation function, which we now formally define.

Definition 8.1 (Trigger deviation function). Let i ∈ [[n]], σ̂ = (j, a) ∈ Σ∗
i , and π̂ ∈ Πi,≽j . We

call “trigger deviation function corresponding to trigger σ̂ and continuation strategy π̂”, any linear

function ϕσ̂→π̂ : ℝΣi → ℝΣi
whose effect on sequence-form strategies is as follows:

• all strategies π ∈ Πi that do not prescribe the sequence σ̂ are left unmodified. In

symbols,

ϕσ̂→π̂(π) = π ∀ π ∈ Πi : π[σ̂] = 0; (8.1)

• all strategies π ∈ Πi that prescribe sequence σ̂ = (j, a) are modified so that the behavior

at j and all of its descendants is replaced with the behavior prescribed by the continuation

strategy π̂. In symbols,

ϕσ̂→π̂(π)[σ] =

π[σ] if σ ̸≽ j

π̂[σ] if σ ≽ j
∀ σ ∈ Σi,π ∈ Πi : π[σ̂] = 1. (8.2)

At this stage, it is technically unclear whether a linear function that satisfies Definition 8.1 exists

for all valid choices of σ̂ and π̂. We show that this is indeed the case in Section 8.3.1, by exhibiting

such a linear function via an explicit transformation matrix. Until then, we will take for granted

the well-posedness of the definition of trigger deviations, and focus on their relationship with

EFCE.

Having defined trigger deviation functions, we are now ready to formally define the concept

of extensive-form correlated equilibrium (EFCE) as a distribution of recommended behavior, such

that no player has incentive to unilaterally deviate from the recommendation according to any

trigger deviation function. Formally, we have the following.

§8. UNCOUPLED LEARNING OF EXTENSIVE-FORM CORRELATED EQUILIBRIUM 157

Definition 8.2 (ϵ-EFCE). Let Γ be an n-player imperfect information game, where each

player i ∈ [[n]] has multilinear expected utility ui : Q1 × · · · × Q[[n]] → ℝ. A distribution

µ ∈ ∆Π1×···×Π[[n]]
is an ϵ-EFCE if for all i ∈ [[n]], σ̂ = (j, a) ∈ Σ∗

i , and π̂ ∈ Πi,≽j ,∑
π1 ∈ Π1

· · ·
∑

πn ∈ Πn

µ[π1, . . . ,πn]
(
ui(ϕσ̂→π̂(πi),π−i)− ui(πi,π−i)

)
⩽ ϵ.

In particular, an EFCE is defined as a 0-EFCE.

8.2.2 Convergence to the set of EFCEs via no-Φ-regret dynamics

We now show that the set of EFCEs can be approached by no-Φ-regret dynamics, where Φ is the

set of all trigger deviation functions (Definition 8.1). This result can be thought of as the extension

of celebrated connection between correlated equilibrium and internal regret (D. Foster and Vohra,

1997) to imperfect-information extensive-form games.

Theorem 8.1. Consider an n-player repeated imperfect-information extensive-form game,

and denote with Reg(T)
i the Φ-regret of a generic player i, with respect to the set of all trigger

deviation functions (Definition 8.1) for that player, that is,

Reg(T)
i := max

σ̂=(j,a)∈Σ∗
i

π̂∈Πi, ≽j

{
T∑
t=1

(
ui

(
ϕσ̂→π̂(x(t)

i),x(t)
−i

)
− ui

(
x

(t)
i ,x

(t)
−i

))}
.

Furthermore, for all i ∈ [[i]] and time t, let µ
(t)
i ∈ ∆Πi

be a distribution of strategies whose

expectation is x
(t)
i , that is, be such that

x
(t)
i =

∑
πi∈Πi

µ
(t)
i [πi] πi.

Then, at all times T the average product distribution of play

µ̄(T) := 1
T

T∑
t=1

µ
(t)
1 ⊗ · · · ⊗ µ(t)

n , (8.3)

is an ϵ(T)
-EFCE, where

ϵ(T) :=
maxi∈[[n]] Reg(T)

i

T
.

158 §8.2. EXTENSIVE-FORM CORRELATED EQUILIBRIUM AND ITS RELATION WITH Φ-REGRET

Proof. Fix any player i ∈ [[n]], trigger sequence σ̂ = (j, a) ∈ Σ∗
i , and continuation strategy

π̂ ∈ Πi,≽j . From the multilinearity of the expected utility function ui as a function of

sequence-form strategies, we obtain that

ui

(
ϕσ̂→π̂(x(t)

i),x(t)
−i

)
= ui

ϕσ̂→π̂

(∑
πi∈Πi

µ
(t)
i [πi] πi

)
,
∑

π−i∈Π−i

µ
(t)
−i[π−i] π−i


= ui

 ∑
πi∈Πi

µ
(t)
i [πi]ϕσ̂→π̂(πi),

∑
π−i∈Π−i

µ
(t)
−i[π−i] π−i

 (8.4)

=
∑

π1 ∈ Π1

· · ·
∑

πn ∈ Πn

 ∏
r∈[[n]]

µ(t)
r [πr]

ui

(
ϕσ̂→π̂(πi),π−i

)
,

where (8.4) follows from the linearity of ϕσ̂→π̂ . Similarly, we have

ui(x(t)
i ,x

(t)
−i) =

∑
π1 ∈ Π1

· · ·
∑

πn ∈ Πn

 ∏
r∈[[n]]

µ(t)
r [πr]

ui

(
πi,π−i

)
.

Hence, using the definition of Φ-regret for Player i, we can write

Reg(T)
i

T
⩾

1
T

T∑
t=1

(
ui

(
ϕσ̂→π̂(x(t)

i),x(t)
−i

)
− ui

(
x

(t)
i ,x

(t)
−i

))

=
∑

π1 ∈ Π1

· · ·
∑

πn ∈ Πn

 1
T

T∑
t=1

∏
r∈[[n]]

µ(t)
r [πr]

(ui(ϕσ̂→π̂(πi),π−i

)
− ui

(
πi,π−i

))

=
∑

π1 ∈ Π1

· · ·
∑

πn ∈ Πn

µ̄[π1, . . . ,πn]
(
ui

(
ϕσ̂→π̂(πi),π−i

)
− ui

(
πi,π−i

))
.

Rearranging, taking a maximum over players i ∈ [[n]], trigger sequences σ̂ = (j, a) ∈ Σ∗
i , and

continuation strategies π̂ ∈ Πi,≽j , and applying Definition 8.2 yields the statement.

Theorem 8.1 relates an inherently global object—EFCE, a correlated distribution of play—to

an inherently local, per-player goal—hindsight rationality for a learning agent with respect to a

specific set of deviation functions. In light of this connection, in the rest of the chapter we focus on

how any individual player can ensure their Φ-regret with respect to the set of trigger deviations

grows sublinear in time. As a result, we will assume that a particular player and corresponding

tree-form decision process has been isolated, and we will omit (and imply) all player subscripts

from the corresponding TFDP quantities.

§8. UNCOUPLED LEARNING OF EXTENSIVE-FORM CORRELATED EQUILIBRIUM 159

Definition 8.3. We refer to a no-Φ-regret algorithm for the set Φ of all trigger deviation

functions as a no-trigger-regret algorithm.

The rest of the chapter will be concerned with constructing simple, efficient no-trigger-regret

dynamics.

8.3 Construction of no-trigger-regret dynamics
For the rest of the chapter we assume that an arbitrary TFDP has been fixed, and omit any player

indices.

In this section, we give an explicit construction of a no-trigger-regret algorithm.
[8.a]

To that

end, in Section 8.3.1 we start by giving an explicit characterization of the set of all trigger deviation

functions, showing that it admits a concise combinatorial description in terms of canonical trigger
deviation matrices. Then, in Section 8.3.2 we study the combinatorial structure of the convex

hull of canonical trigger deviation matrices, showing that it can be described using simple

convexity-preserving operations already studied in Chapter 4.

8.3.1 Canonical trigger deviation matrices

In this subsection, we show that for any trigger sequence σ̂ = (j, a) ∈ Σ∗
and continuation

strategy π̂ ∈ Π≽j , a particular trigger deviation function (Definition 8.1) can be written explicitly

in matrix form, using a heavily structured object which we coin canonical trigger deviation matrix.

Such a structural characterization will form the basis for constructing simple, efficient, uncoupled

no-regret learning dynamics that converge to the set of EFCEs in any imperfect-information

extensive-form game.

Definition 8.4 (Canonical trigger deviation matrix). Let σ̂ = (j, a) ∈ Σ∗
and y ∈ ℝ

Σ≽j

⩾0 . We

denote with Tσ̂→y ∈ ℝΣ×Σ
⩾0 the matrix whose entries are defined as

Tσ̂→y[σr, σc] :=


1 if σc ̸≽ σ̂ and σr = σc

y[σr] if σc = σ̂ and σr ≽ j

0 otherwise

∀ σr, σc ∈ Σ. (8.5)

The matrix Tσ̂→y is called the “canonical trigger deviation matrix corresponding to trigger σ̂ and
continuation strategy π̂”. Furthermore, the set of all canonical trigger deviation matrices is

[8.a]
In fact, this was the first efficient construction proposed in the literature.

160 §8.3. CONSTRUCTION OF NO-TRIGGER-REGRET DYNAMICS

denoted with the symbol

Ψ :=
{

Tσ̂→π̂ : σ̂ = (j, a) ∈ Σ∗, π̂ ∈ Π≽j

}
.

Canonical trigger deviation matrices fully characterize the set of trigger deviation functions,

as we show next.

Lemma 8.1. For any σ̂ = (j, a) ∈ Σ∗
and π̂ ∈ Π≽j , the linear function

ϕσ̂→π̂ : x 7→ Tσ̂→π̂x,

where Tσ̂→π̂ is as defined in Definition 8.4, is a trigger deviation function corresponding to

trigger σ̂ and continuation strategy π̂, in the sense of Definition 8.1.

Proof. The proof just amounts to a simple application of several definitions. Let π ∈ Π be

an arbitrary sequence-form strategy. By expanding the matrix-vector multiplication Tσ̂→π̂π

using the definition (8.5), we obtain that for all σ ∈ Σ

(Tσ̂→π̂ π)[σ] = π[σ]𝟙σ ̸≽σ̂ + π̂[σ]π[σ̂]𝟙σ≽j . (8.6)

There are only two possibilities:

• If π[σ̂] = 0, then (8.6) simplifies to

(Tσ̂→π̂ π)[σ] =

π[σ] if σ ̸≽ σ̂

0 otherwise.

Since by case hypothesis the probability of the sequence of actions from the root of the

game tree down to σ̂ is zero, then necessarily the probability of any longer sequence

of actions σ ≽ σ̂ must be zero as well, that is π[σ] = 0 for all σ ≽ σ̂. So, Tσ̂→π̂ π = π

and (8.1) holds.

• Conversely, assume π[σ̂] = 1. This means that at decision node j ∈ J action a is selected

(with probability 1), and therefore π[σ] = 0 for all σ = (j, a′) : a′ ∈ Aj , a′ ̸= a. This means

that π[σ]𝟙σ ̸≽σ̂ = π[σ]𝟙σ ̸≽j for all σ ∈ Σ. Substituting that equality into (8.6) gives (8.2), as

we wanted to show.

As the combinatorial structure of canonical trigger deviation functions will be the crucial

component in the construction of our simple no-regret dynamics converging to the set of EFCEs,

we now pause to provide a few examples. Specifically, in the following example we show three

§8. UNCOUPLED LEARNING OF EXTENSIVE-FORM CORRELATED EQUILIBRIUM 161

canonical trigger deviation matrices, and illustrate how they modify sequence-form strategies in

a simple extensive-form game.

Example 8.1. We build on the small extensive-form game and example sequence-form

strategies defined in Example 2.7, which are reproduced below for convenience.

11 22

33 44 55 66

77 88 99

A

B C

D

π135 π136 π145 π27 π28

1.0
1.0
0.0
1.0
0.0
1.0
0.0
0.0
0.0
0.0





∅

A1
A2
B3
B4
C5
C6
D7
D8
D9

1.0
1.0
0.0
1.0
0.0
0.0
1.0
0.0
0.0
0.0





∅

A1
A2
B3
B4
C5
C6
D7
D8
D9

1.0
1.0
0.0
0.0
1.0
1.0
0.0
0.0
0.0
0.0





∅

A1
A2
B3
B4
C5
C6
D7
D8
D9

1.0
0.0
1.0
0.0
0.0
0.0
0.0
1.0
0.0
0.0





∅

A1
A2
B3
B4
C5
C6
D7
D8
D9

1.0
0.0
1.0
0.0
0.0
0.0
0.0
0.0
1.0
0.0





∅

A1
A2
B3
B4
C5
C6
D7
D8
D9

We consider the following three examples of canonical trigger deviation matrices:

Ta Tb Tc

Trigger sequence: A1 Trigger sequence: A2 Trigger sequence: B3
Continuation: A2, D7 Continuation: A1, B3, C5 Continuation: B4

1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1





∅
A1
A2
B3
B4
C5
C6
D7
D8
D9

∅ A1 A2 B3 B4 C5 C6 D
7

D
8

D
9

1 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0





∅
A1
A2
B3
B4
C5
C6
D7
D8
D9

∅ A1 A2 B3 B4 C5 C6 D
7

D
8

D
9

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1





∅
A1
A2
B3
B4
C5
C6
D7
D8
D9

∅ A1 A2 B3 B4 C5 C6 D
7

D
8

D
9

Figure 8.1: Canonical trigger deviation matrices. Entries shaded with dark gray represent the

entries of the matrix defined in the second case of Equation (8.5). Given trigger sequence

σ̂ ∈ Σ∗
, all indices (σr, σc) such that σr, σc ≽ σ̂ are shaded with light gray.

First example (TA1→π̂A1) First, let us consider the trigger deviation matrix corresponding to

trigger sequence σ̂ = (A, 1), and the continuation strategy π̂A1 that plays action 2 at decision

node A, and subsequently action 7 at decision node D. The matrix TA1→π̂A1 is reported

162 §8.3. CONSTRUCTION OF NO-TRIGGER-REGRET DYNAMICS

in Figure 8.1 (Left). In order to illustrate the effect of this linear mapping on sequence-form

strategies, we provide some examples using the sequence-form strategy vectors defined

in Figure 2.5. First, we observe that any sequence-form strategy choosing action A1 with

probability 1 triggers a deviation which follows the continuation strategy π̂. The deviation

for those sequence-form strategies results in a final sequence-form strategy equal to π27. For

example, using some of the-sequence form strategies of Figure 2.5, it can be easily verified (by

working out the matrix-vector product) that:

TA1→π̂A1 π135 = TA1→π̂A1 π136 = TA1→π̂A1 π145 = π27.

On the other hand, sequence-form strategies that do not select sequence 1 are left unmodified

by the linear mapping. For instance,

TA1→π̂A1 π28 = π28 and TA1→π̂A1 π27 = π27.

Second example (TA2→π̂A2) Second, we examine the trigger deviation matrix TA2→π̂A2 for

trigger sequence σ̂ = (A, 2), where the continuation strategy π̂A2 is defined so that Player 1

plays action 1 at decision node A, sequence 3 at decision node B, and action 5 at decision node

C. The corresponding matrix TA2→π̂A2 is reported in Figure 8.1 (Middle). As in the previous

case, all sequence-form strategy vectors which put probability 1 on action 2 at decision node

A are modified so that be strategy at A and its descendants B, C, D matches the continuation

strategy. For example, we have that

TA2→π̂A2 π27 = TA2→π̂A2 π28 = π135.

Furthermore, sequence-form strategies which do not put probability 1 on sequence A2 are

left unchanged. So, for example,

TA2→π̂A2 π136 = π136 and TA2→π̂A2 π145 = π145.

Third example (TB3→π̂B3) As a final example, Figure 8.1 (Right) shows the deviation matrix

TB3→π̂B3 corresponding to trigger sequence σ̂ = (B, 3) and continuation strategy π̂B3 selecting

action 4 at decision node B. Here, we have that

TB3→π̂B3 π135 = TB3→π̂B3 π145 and TB3→π̂B3 π145 = π145.

§8. UNCOUPLED LEARNING OF EXTENSIVE-FORM CORRELATED EQUILIBRIUM 163

8.3.2 Structural decomposition of canonical trigger deviation matrices

The characterization of trigger deviation functions through canonical trigger deviation matrices

(Lemma 8.1) enables us to simplify the task of constructing no-trigger-regret dynamics to ensuring

sublinear regret compared to canonical trigger deviation matrices. Therefore, for the rest of

the chapter our objective will be to construct a no-Ψ-regret algorithm for any sequence-form

polytope Q. We will achieve that by actually considering a slightly more complicated problem:

constructing a no-(co Ψ)-regret algorithm, that is, tackling the convex hull of Ψ. It is clear, since

co Ψ ⊇ Ψ, that any no-(co Ψ)-regret algorithm is automatically a no-Ψ-regret algorithm as well.

From the general theory developed in Chapter 4, a no-(co Ψ)-regret algorithm can be con-

structed from any no-external-regret algorithm R̃ for the set co Ψ. In this section we show

how the strong combinatorial structure of co Ψ enables use of regret circuits to construct a

no-external-regret algorithm for it.

The starting point of our approach is the observation that, because the convex hull operation

is associative, the set

co Ψ = co
{

Tσ̂→π̂ : σ̂ = (j, a) ∈ Σ∗, π̂ ∈ Π≽j

}
can be evaluated in two stages:

1. First, for each sequence σ̂ = (j, a) ∈ Σ∗
one can define the set

Λσ̂ := co
{

Tσ̂→π̂ : π̂ ∈ Πj

}
;

2. Then, one can take the convex hull of all Λσ̂ , that is,

co Ψ = co
{

Λσ̂ : σ̂ ∈ Σ∗
}
. (8.7)

Our construction of R̃ will follow a similar structure. First, for each σ̂ ∈ Σ∗
we will construct

a no-regret algorithm Rσ̂ for the set of deviations Λσ̂. Then, we will combine all the no-regret

algorithmsRσ̂ into a composite no-regret algorithm R̃ for the set co Ψ.

No-external-regret algorithm for the inner sets Λσ̂ For any σ̂ = (j, a) ∈ Σ∗
, a no-regret

algorithm for the set Λσ̂ can be constructed starting from any no-regret algorithm for the set Q≽j

by using one of the composition rules (regret circuits) seen in Chapter 4. The crucial insight lies

in the observation that the mapping

Hσ̂ : ℝΣ≽j ∋ y 7→ Tσ̂→y

164 §8.3. CONSTRUCTION OF NO-TRIGGER-REGRET DYNAMICS

is affine, since it is clear from Definition 8.4 that the entries in Tσ̂→y =: Hσ̂(y) are either constants

or linear combinations of entries in y. By using the fact that affine images and convex hulls

commute, we can therefore write

Λσ̂ := co
{

Tσ̂→π̂ : π̂ ∈ Π≽j

}
= coHσ̂(Π≽j) = Hσ̂(co Π≽j) = Hσ̂(Q≽j).

So, we have just proved the following characterization of the set Λσ̂ .

Lemma 8.2. For all sequences σ̂ = (j, a) ∈ Σ∗
, Λσ̂ is the image of Q≽j under the affine

mapping Hσ̂ , that is,

Λσ̂ =
{

Tσ̂→xσ̂
: xσ̂ ∈ Q≽j

}
.

Let Aσ̂ ∈ ℝ(Σ×Σ)×Σ≽j ,B ∈ ℝΣ×Σ
be such that the affine map Hσ̂ has representation

Hσ̂(y) = Aσ̂y + b ∀y ∈ ℝΣ≽j .

By leveraging the regret circuit for affine transformations we developed in Section 4.2.4, Lemma 8.2

immediately implies that a no-external-regret algorithmRσ̂ for Λσ̂ can be constructed from any

no-external-regret R̃Q, σ̂ for Q≽j (for example, CFR, §4.3), as done in Algorithm 8.1.

Algorithm 8.1: No-external-regret algorithmRσ̂ for set Λσ̂ := {Tσ̂→xσ̂
: xσ̂ ∈ Q≽j}

Data: • σ̂ = (j, a) ∈ Σ∗
trigger sequence

• R̃Q, σ̂ no-external-regret algorithm for set Q≽j (e.g., CFR, Section 4.3)

1 function NextElement(M(t) ∈ ℝΣ×Σ)
2 x

(t)
σ̂ ← R̃Q, σ̂.NextElement(A⊤

σ̂M(t))
3 return T

σ̂→x
(t)
σ̂

, represented in memory implicitly through the vector x
(t)
σ̂

4 function ObserveUtility(U(t) ∈ ℝΣ×Σ)
5 R̃Q, σ̂.ObserveUtility(A⊤

σ̂U(t))

Algorithm 8.1 can be instantiated with any no-regret algorithm R̃Q, σ̂ for the set of sequence-

form strategiesQ≽j . The following proposition formalizes the cumulative regret guarantee when

R̃Q, σ̂ is set to the CFR algorithm (Section 4.3), which so far has arguably been the most widely

used no-regret algorithm for sequence-form strategy spaces.

Proposition 8.1. Let σ̂ = (j, a) ∈ Σ∗
be any trigger sequence. Consider the no-regret algorithm

Rσ̂ (Algorithm 8.1), where R̃Q, σ̂ is set to be the CFR no-regret algorithm (Section 4.3) with RM

§8. UNCOUPLED LEARNING OF EXTENSIVE-FORM CORRELATED EQUILIBRIUM 165

as the choice of local no-regret algorithm for each decision node. Then, upon observing any

sequence of linear utility matrices U(1), . . . ,U(T) ∈ ℝΣ×Σ
, the external regret cumulated by

the elements T(1) := Tσ̂→x1
σ̂
, . . . ,T(T) := Tσ̂→xT

σ̂
output byRσ̂ satisfies

Reg(T)
σ̂ := max

T∗∈Λσ̂

T∑
t=1
⟨U(t),T∗ −T(t)⟩ ⩽ D |Σ≽j |

√
T ,

where D is the range of U(1), . . . ,U(T)
, i.e., any constant such that maxT∈Λσ̂

⟨U(t),T⟩ ⩽ D

for all t = 1, . . . , T . Furthermore, the NextElement and the ObserveUtility operations run in

O(|Σ≽j |) time.

Proof. From Theorem 4.3, the regret cumulated byRσ̂ upon observing linear utility matrices

U(1), . . . ,U(t)
equals the regret cumulated by the CFR algorithm upon observing linear utility

functions A⊤
σ̂U(t)

. Furthermore, the range of A⊤
σ̂U(t)

satisfies the inequality

max
x∈Q≽j

⟨A⊤
σ̂U(t),x⟩ = max

x∈Q≽j

⟨U(t),Aσ̂x⟩ ⩽ D,

since Aσ̂x ∈ Λσ̂ .

So, applying the regret bound of the CFR algorithm,

Reg(T)
σ̂ ⩽ D

∑
j′≽j

√
|Aj′ |

√T ⩽ D

∑
j′≽j

|Aj′ |

√T = D|Σ≽j |
√
T ,

completing the proof of the regret bound.

We now look at the complexity analysis. First, we observe that Hσ̂(y) maps each entry of y

to exactly one entry of the resulting canonical trigger deviation matrix Tσ̂→y . Hence, Aσ̂ has

exactly |Σ≽j | nonzero entries, and therefore the products A⊤
σ̂M(t),A⊤

σ̂U(t)
require O(|Σ≽j |)

operations each. Since CFR’s NextElement and ObserveUtility operations both run in linear

time in |Σ≽j |, we conclude that the NextElement of Algorithm 8.1 required a total of O(|Σ≽j |)
operation.

No-external-regret algorithm for the convex hull of the Λσ̂ We have seen in Section 4.2.3

that a no-regret algorithm for a composite set of the form co{X1, . . . ,Xm} can be constructed by

combining any individual no-regret algorithms for X1, . . . ,Xm through the convex hull regret
circuit.

Hence, we apply the construction described in Algorithm 4.2 to obtain our no-regret algorithm

R for the set co Ψ = co{Λσ̂ : σ̂ ∈ Σ} starting from the no-regret algorithmsRσ̂ (Algorithm 8.1),

166 §8.3. CONSTRUCTION OF NO-TRIGGER-REGRET DYNAMICS

one for each sequence σ̂ ∈ Σ∗
, as well as any no-regret algorithm R∆ for the simplex ∆Σ∗

.

Pseudocode is given in Algorithm 8.2.

Algorithm 8.2: No-regret algorithm R̃ for the set co Ψ = co{Λσ̂ : σ̂ ∈ Σ}

Data: • Rσ̂ , one per σ̂ ∈ Σ∗
: no-regret algorithm for Λσ̂ , defined in Algorithm 8.1

• R∆ no-regret algorithm for ∆Σ∗
(e.g., regret matching (Hart and Mas-Colell, 2000))

1 function NextElement(M(t) ∈ ℝΣ×Σ)
2 for σ̂ ∈ Σ∗ do
3 T

σ̂→x
(t)
σ̂

← Rσ̂.NextElement() [▷ See Algorithm 8.1]

4 m
(t)
∆ ←

(
⟨M(t),T

σ̂→x
(t)
σ̂

⟩
)
σ̂∈Σ∗

5 λ(t) ← R̃∆Σ∗ .NextElement(m(t)
∆)

6 return
∑
σ̂∈Σ∗

λ(t)[σ̂] T
σ̂→x

(t)
σ̂

, represented in memory as list {(λ(t)[σ̂],x(t)
σ̂)}σ̂∈Σ∗

7 function ObserveUtility(U(t) ∈ ℝΣ×Σ)
8 for σ̂ ∈ Σ∗ do
9 Rσ̂.ObserveUtility(U(t)) [▷ See Algorithm 8.1]

10 u
(t)
∆ ←

(
⟨U(t),T

σ̂→x
(t)
σ̂

⟩
)
σ̂∈Σ∗

11 R̃∆.ObserveUtility(u(t)
∆)

Theorem 8.2. Consider the no-regret algorithm R̃ (Algorithm 8.2), whereR∆ is set to the

regret matching algorithm, and Rσ̂ is instantiated as described in Proposition 8.1. Upon

observing any sequence of linear utility matrices U(1), . . . ,U(T) ∈ ℝΣ×Σ
, the regret cumulated

by the transformations T(1), . . . ,T(T) ∈ co Ψ output by R̃ satisfies

Reg(T)
co Ψ := max

T∗∈co Ψ

T∑
t=1
⟨U(t),T∗ −T(t)⟩ ⩽ 2D |Σ|

√
T ,

where D is any constant such that maxT∈co Ψ⟨U(t),T⟩ ⩽ D for all t = 1, . . . , T . Furthermore,

the NextElement and the ObserveUtility operations run in O(|Σ|2) time.

Proof. At all times t, ⟨M(t),T
σ̂→x

(t)
σ̂

⟩, ⟨U(t),T
σ̂→x

(t)
σ̂

⟩ ⩽ D is upper bounded by D. Hence,

from the known regret bound of the regret matching algorithm (Hart and Mas-Colell, 2000;

Zinkevich, Bowling, Johanson, and Piccione, 2007), the regret cumulated by R∆ after T

iterations is upper bounded as

§8. UNCOUPLED LEARNING OF EXTENSIVE-FORM CORRELATED EQUILIBRIUM 167

Reg(T)
∆ ⩽ D

√
|Σ∗|
√
T ⩽ D|Σ|

√
T .

On the other hand, the regret bound in Proposition 8.1 shows that, for all σ̂ = (j, a) ∈ Σ∗
,

the regret Reg(T)
σ̂ cumulated by Rσ̂ is upper bounded as Reg(T)

σ̂ ⩽ D|Σ≽j |
√
T . Applying

Theorem 4.2 together with the fact that |Σ≽j | ⩽ |Σ| for all j ∈ J , yields the regret bound in the

statement.

Furthermore, the regret matching algorithm produces elements inO(|Σ∗|) time, while each

iteration of the loop over Σ∗
requires O(|Σ≽j |) time from Proposition 8.1.

8.3.3 Complete algorithm and analysis

Having established the existence of an efficient no-external-regret algorithm for the set of canonical

trigger deviation matrices co Ψ (Algorithm 8.2, R̃), we can now invoke the reduction from Φ-regret

to external regret seen in Section 3.2.3 to establish no-trigger-regret dynamics.

Remark 8.1. To complete the construction, it is important to verify that for each canonical

trigger deviation function T(t)
output by R̃, a fixed point strategy x(t) = T(t)x(t)

exists and

can be computed.

Existence is straightforward: as x 7→ T(t)x is a continuous function from Q to itself, a

fixed point must exist by Brouwer’s fixed-point theorem.

Furthermore, since Q is a polytope, we remark that a fixed point of each matrix T(t)
can

be computed in polynomial time using linear programming. A more efficient algorithm is

proposed in an appendix to this chapter, Section 8.A.

The final algorithm is presented pictorially in Figure 8.2 and in pseudocode in Algorithm 8.3.

Algorithm 8.3: No-trigger-regret algorithm for sequence-form strategy polytope Q

Data: R̃ no-regret algorithm for Ψ, defined in Algorithm 8.2

1 x(0) ← 0 ∈ ℝΣ

2 function NextElement(m(t) ∈ ℝΣ)
3 T(t) =

∑
σ̂∈Σ∗

λ
(t)
σ̂ T

σ̂→x
(t)
σ̂

∈ co Ψ← R̃.NextElement(m(t) ⊗ x(t−1)) [▷ Algorithm 8.2]

4 x(t) ∈ Q ← FixedPoint(T(t)) [▷ See Remark 8.1]

5 return x(t)

6 function ObserveUtility(u(t) ∈ ℝΣ)
7 R̃.ObserveUtility(u(t) ⊗ x(t)) [▷ See Algorithm 8.2]

From the guarantees of the different pieces combined, we obtain the following.

168 §8.4. FINAL REMARKS

R∆

R̃Q, 1

R̃Q,m

u(t) ∈ ℝΣ U (t)

T1→x
(t)
1

Tm→x
(t)
m

T(t) x(t) ∈ Q
Fixed

point

R̃1 (Algorithm 8.1)

R̃m (Algorithm 8.1)

R̃ (Algorithm 8.2)

No-trigger-regret algorithm forQ (Algorithm 8.3)

Figure 8.2: Pictorial depiction of our no-(co Ψ)-reget algorithm for the set of sequence-form strategies

Q. For notational convenience we let Σ∗ := {1, . . . ,m}.

Theorem 8.3. Algorithm R, defined in Algorithm 8.3, is a no-(co Ψ)-regret algorithm for

the set of sequence-form strategies Q, whose cumulative co Ψ-regret upon observing any

sequence of linear utility functions u(1), . . . ,u(T) ∈ ℝΣ
satisfies

Reg(T) := max
T∗∈co Ψ

⟨u(t),T∗(x(t))− x(t)⟩ ⩽ 2D|Σ|
√
T ,

where D is any constant such that maxx∈Q⟨u(t),x⟩ ⩽ D for all t = 1, . . . , T . Furthermore,

ObserveUtility requires time O(|Σ|2), and NextElement requires O(|Σ|2) operations, plus the

time required to compute a fixed point of T(t)
(see Remark 8.1). In particular, if the algorithm

described in the appendix (Section 8.A) is used to compute each fixed point, NextElement
requires O(|Σ|2 +

∑
j∈J FP(|Aj |)) time at all t, where FP(m) is the time required to find a

fixed point of an m×m stochastic matrix.

8.4 Final remarks

We conclude by pointing out that the material in this chapter can be extended in several directions,

though for space and organizational reasons we decided not to develop these extensions in detail

in this dissertation.

For one, the whole machinery presented in this chapter applies to extensive-form coarse correlated
equilibria (EFCCE) (Farina, Bianchi, and Sandholm, 2020), an intermediate solution concept that

sits between EFCE and coarse-correlated equilibria. Since an EFCE is always an EFCCE, the

algorithm we presented in this chapter can be used—without modifications—to find an EFCCE

§8. UNCOUPLED LEARNING OF EXTENSIVE-FORM CORRELATED EQUILIBRIUM 169

as well. However, as shown by Anagnostides, Farina, Kroer, Celli, and Sandholm (2022), when

an EFCCE is sought it is possible to slightly simplify the construction of the algorithm to obtain

slightly faster per-iteration complexity.

Another direction is obtaining learning dynamics that can recover EFCE at the near-optimal

rate ÕT (1/T), similarly to what was done in Chapter 6. This is possible, but is significantly harder

due to the presence of the fixed point computation in EFCE (Anagnostides, Farina, Kroer, Celli,

and Sandholm, 2022). We refer the reader interested in this direction to the work by Anagnostides,

Daskalakis, Farina, Fishelson, Golowich, and Sandholm (2022) and Anagnostides, Farina, and

Sandholm (2023).

8.A Appendix: Inductive computation of fixed points of trigger
deviation matrices

As mentioned in Section 8.3.3, a fixed point of any transformation T ∈ co Ψ can be computed in a

variety of ways, including linear programming. In this appendix, we show that the combinatorial

structure of co Ψ enables us to find a fixed point of any T ∈ co Ψ as the result of the solution

of a sequence of fixed point computations for smaller stochastic matrices. This structural

understanding will enable us to conclude that any transformation T ∈ co Ψ admits a fixed point

x = Tx ∈ Q that can be computed in time quadratic in the number of sequences Σ.

As a key step in our algorithm, we will use the following well-known result about stationary

distributions of stochastic matrices.

Fact 8.1. Any stochastic matrix A ∈ 𝕊d admits a fixed point Ax = x ∈ ∆d. Furthermore, such

a fixed point can be computed in polynomial time in d.

Several specialized algorithms are known for computing fixed points of stochastic matrices

(see, e.g., Paige, Styan, and Wachter (1975) for a comparison of eight different methods). Since

the particular choice of method is irrelevant, in this dissertation we will make the following

assumption.

Assumption 8.1. Given any m ∈ ℕ⩾1, we assume access to an oracle for computing a fixed

point of any m×m stochastic matrix A. Furthermore, we assume that the oracle requires at

most FP(m) time in the worst case to compute any such fixed point.

Our algorithm for computing a fixed point of T ∈ co Ψ requires that the transformation T be

expressed as a convex combination of elements from the sets {Λσ̂}σ̂∈Σ∗ , that is, an expression of

170

§8.A. APPENDIX: INDUCTIVE COMPUTATION OF FIXED POINTS OF TRIGGER DEVIATION

MATRICES

the form

T =
∑
σ̂∈Σ∗

λσ̂ Tσ̂→xσ̂
, with

∑
σ̂∈Σ∗

λσ̂ = 1, λσ̂ ⩾ 0,xσ̂ ∈ Q≽j ∀ σ̂ = (j, a) ∈ Σ∗, (8.8)

in accordance with the characterization of co Ψ established by (8.7) and Lemma 8.2. Note that

our no-regret algorithm R̃ for the set co Ψ (Algorithm 8.2) already outputs transformations T
expressed in the form above.

Our algorithm operates incrementally, constructing a fixed point sequence-form strategy x for

T decision node by decision node, in a top down fashion. To formalize this notion of top-down

construction, we will make use of the two following definitions.

Definition 8.5. Let J ⊆ J be a subset of decision nodes. We say that J is a trunk of J if, for

every j ∈ J , all predecessors of j (that is, all j′ ∈ J such that j′ ≺ j) are also in J .

Example 8.2. Consider again the small tree-form decision process of Example 2.7, reproduced

below.

11 22

33 44 55 66

77 88 99

A

B C

D

In this case, the sets {}, {A}, {A,B}, {A,C}, {A,D}, {A,B,D}, {A,C,D}, {A,B,C,D} exhaust

all the possible trunks.

Conversely, sets {B} and {B,D} are not trunks, because A ≺ B and yet A is not in the sets.

Similarly, {C} and {C,D} are not trunks, since A ≺ C and yet A is not in the sets.

Definition 8.6. Let J ⊆ J be a trunk of J (Definition 8.5), and T ∈ co Ψ. We say that a

vector x ∈ ℝΣ
⩾0 is a J-partial fixed point of T if it satisfies the sequence-form constraints at all

j ∈ J , that is,

x[∅] = 1, x[pj] =
∑
a∈Aj

x[ja] ∀ j ∈ J, (8.9)

and furthermore

§8. UNCOUPLED LEARNING OF EXTENSIVE-FORM CORRELATED EQUILIBRIUM 171

(Tx)[∅] = x[∅] = 1, (Tx)[ja] = x[ja] ∀ j ∈ J, a ∈ Aj . (8.10)

It follows from Definition 8.6 that a J -partial fixed point of T is a vector x ∈ Q such that

x = Tx. The following simple lemma establishes a {}-partial fixed point for any transformation

T ∈ co Ψ.

Lemma 8.3. Let T =
∑
σ̂∈Σ∗ λσ̂Tσ̂→xσ̂

be any transformation in co Ψ, expressed as in (8.8).

Then, the vector x0 ∈ ℝΣ
⩾0, whose entries are all zeros except for x0[∅] = 1, is a {}-partial

fixed point of T.

Proof. Condition (8.9) is straightforward. So, we focus on (8.10). Fix any σ̂ = (j, a) ∈ Σ∗
. The

definition of Tσ̂→x̂, given in (8.5), implies that

Tσ̂→x̂σ̂
[σr,∅] =

1 if σr = ∅

0 otherwise

∀σr ∈ Σ.

Consequently, Tσ̂→x̂σ̂
(x0) = Tσ̂→x̂σ̂

x0 = x0 (from expanding the matrix-vector multipli-

cation). So, T(x0) =
∑
σ̂∈Σ∗ λσ̂Tσ̂→x̂σ̂

(x0) = x0 and in particular T(x0)[∅] = x0[∅] = 1.

So, (8.10) holds, as we wanted to show.

The key result that powers our algorithm to compute a fixed point of any T ∈ co Ψ is that

a J-partial fixed point can be cheaply promoted to be a (J ∪ {j∗})-partial fixed point, where

j∗ ∈ J \ J is any decision node whose predecessors are all in J . Algorithm 8.4 below gives an

implementation of such a promotion: Extend(T, J, j∗,x) starts with a J-partial fixed point x of

T, and modifies all entries x[j∗a], a ∈ Aj∗, so that x becomes a (J ∪ {j∗})-partial fixed point.

Therefore, at a conceptual level, one can repeatedly invoke Extend, growing the trunk J one

decision node at a time until J = J , starting from the {}-partial fixed point x0 described in

Lemma 8.3.

172

§8.A. APPENDIX: INDUCTIVE COMPUTATION OF FIXED POINTS OF TRIGGER DEVIATION

MATRICES

Algorithm 8.4: Extend(T, J, j∗,x)

Input : • T =
∑
σ̂∈Σ∗ λσ̂Tσ̂→xσ̂

∈ co Ψ, represented as list {(λσ̂,xσ̂)}σ̂∈Σ∗

• J ⊆ J trunk

• j∗ ∈ J decision node not in J such that its immediate predecessor is in J

• x ∈ ℝΣ
⩾0 J-partial fixed point of T

Output : • x′ ∈ ℝΣ
⩾0 (J ∪ {j∗})-partial fixed point of T

1 σp ← pj∗

2 Let r ∈ ℝ
Aj∗
⩾0 be the vector whose entries are defined, for all a ∈ Aj∗, as

r[a] :=
∑
j′≼σp

∑
a′∈Aj′

λj′a′ xj′a′ [j∗a] x[j′a′]

3 Let W ∈ x[σp] · 𝕊Aj∗
be the matrix whose entries are defined, for all ar, ac ∈ Aj∗, as

W[ar, ac] := r[ar] +

λj∗ac
xj∗ac

[j∗ar] +

1−
∑

σ̂∈Σ∗, σ̂≼j∗ac

λσ̂

 𝟙ar=ac

x[σp]

4 if x[σp] = 0 then
5 w ← 0 ∈ ℝ

Aj∗
⩾0

6 else
7 b ∈ ∆Aj∗ ← fixed point of stochastic matrix

1
x[σp] W

8 w ← x[σp] b

9 x′ ← x

10 for a ∈ Aj∗ do
11 x′[j∗a]← w[j∗a]
12 return x′

Before giving a proof of correctness and an analysis of the complexity of Extend, we illustrate

an application of the algorithm in the simple extensive-form game of Example 2.5.

Example 8.3.
Consider the simple extensive-form game of Example 2.5, and recall the three deviation

matrices TA1→π̂A1 ,TA2→π̂A2 ,TB3→π̂B3 considered in Example 8.1. We will illustrate two

applications of Extend, with respect to the transformation

T := 1
2 TA1→π̂A1 + 1

3 TA2→π̂A2 + 1
6 TB3→π̂B3 ∈ co Ψ.

• In the first application, consider the trunk J = {}, decision node j∗ = A, and the

{}-partial fixed point described in Lemma 8.3, that is, the vector x whose components

are all 0 except for the entry corresponding to the empty sequence ∅, which is set to 1.

§8. UNCOUPLED LEARNING OF EXTENSIVE-FORM CORRELATED EQUILIBRIUM 173

In this case, σp = pj∗ (Line 1 of Algorithm 8.4) is the empty sequence. Since no decision

node j′
can possibly satisfy j′ ≼ σp, the vector r defined on Line 2 is the zero vector.

Consequently, the matrix W defined on Line 3 is

W =
1/2 1/3

1/2 2/3

()
1

1

2

2

which is a stochastic matrix. A fixed point for W is given by the vector b := (2/5, 3/5) ∈
∆{2,3}

. So, the vector x′
returned by Extend is given by

x′[∅] = 1, x′[A1] = 2
5 , x′[A2] = 3

5

and zero entries everywhere else. Direct computation reveals that x′
is indeed a

{A}-partial fixed point of T.

• In the second application of Extend, we start from the {A}-partial fixed point that we

computed in the previous bullet point, and extend it to a {A,D}-partial fixed point.

Here, j∗ = D, and so σp = A2). The only j′ ≼ σp is A, and so the vector r defined on

Line 2 is

r[7] = 1
5 , r[8] = 0, r[9] = 0.

Consequently, the matrix W defined on Line 3 is

W =

3/5 1/5 1/5

0 2/5 0
0 0 2/5


 7

7

8

8

9

9

As expected, W ∈ 3/5𝕊{D7,D8,D9} = x[A2]𝕊{D7,D8,D9}
. A fixed point for

1
x[A2] W = 5/3 W

is given by the vector b := (1, 0, 0). So, the vector x′
returned by Extend is given by

x′[∅] = 1, x′[A1] = 2
5 , x′[A2] = 3

5 , x′[D7] = 3
5 , x′[D8] = 0, x′[D9] = 0,

and zero entries everywhere else. Once again, direct computation reveals that x′
is

indeed a {A,D}-partial fixed point of T.

174

§8.A. APPENDIX: INDUCTIVE COMPUTATION OF FIXED POINTS OF TRIGGER DEVIATION

MATRICES

Proposition 8.2. Let T =
∑
σ̂∈Σ∗ λσ̂ Tσ̂→xσ̂

be a linear transformation in co Ψ expressed as

in (8.8), x ∈ ℝΣ
⩾0 be aJ-partial fixed point of T, and j∗ ∈ J be a decision node not inJ such that

its immediate predecessor is in J . Then, Extend(T, J, j∗,x), given in Algorithm 8.4, computes

a (J ∪ {j∗})-partial fixed point of T in time upper bounded by O(|Σ| |Aj∗|+ FP(|Aj∗|)).

The proof of Proposition 8.2 is deferred until the end of the section. Proposition 8.2 immediately

implies that a fixed point for T ∈ co Ψ can be computed by repeatedly invoking Extend to grow the

trunk J one decision node at a time, until J = J , starting from the {}-partial fixed point x0 ∈ ℝΣ
⩾0

introduced in Lemma 8.3. This leads to Algorithm 8.5, whose correctness and computational

complexity is a straightforward corollary of Proposition 8.2.

Algorithm 8.5: FixedPoint(T)

Input : T =
∑
σ̂∈Σ∗ λσ̂Tσ̂→xσ̂

∈ co Ψ transformation

Output : x ∈ Q such that x = Tx

1 x← 0 ∈ ℝΣ, x[∅]← 1
2 J ← {}
3 for j ∈ J in top-down order

[8.b] do
4 x← Extend(T, J, j,x) [▷ See Algorithm 8.4]

5 J ← J ∪ {j}
6 return x

Corollary 8.1. Let T =
∑
σ̂∈Σ∗ λσ̂Tσ̂→xσ̂

be a transformation in co Ψ expressed as in (8.8).

Then, Algorithm 8.5 computes a fixed point Q ∋ x = Tx in time upper bounded as

O(|Σ|2 +
∑
j∈J FP(|Aj |)).

Proof of Proposition 8.2

In order to prove correctness of Extend in Proposition 8.2, we will find useful the following

technical lemma.

Lemma 8.4. Let T =
∑
σ̂∈Σ∗ λσ̂ Tσ̂→xσ̂

be any linear transformation in co Ψ expressed as

in (8.8). Then, for all σ ∈ Σ,

[8.b]
That is, according to a pre-order tree traversal: if j ≺ j′

, then j appears before j′
in the iteration order.

§8. UNCOUPLED LEARNING OF EXTENSIVE-FORM CORRELATED EQUILIBRIUM 175

(Tx)[σ] =

1−
∑

σ̂∈Σ∗, σ̂≼σ

λσ̂

x[σ] +
∑
j′≼σ

∑
a′∈Aj′

λj′a′ xj′a′ [σ] x[j′a′].

Proof. Fix any trigger sequence σ̂ = j′a′ ∈ Σ∗
. By expanding the matrix-vector multiplication

between Tσ̂→xσ̂
(Definition 8.4) and x, we have that for all σ ∈ Σ,

Tσ̂→xσ̂
(x)[σ] = x[σ]𝟙σ ̸≽σ̂ + xσ̂[σ]x[σ̂]𝟙σ≽j′ . (8.11)

Therefore, for all σ ∈ Σ,

(Tx)[σ] =
∑
σ̂∈Σ∗

λσ̂ Tσ̂→xσ̂
(x)[σ] =

∑
σ̂=j′a′∈Σ∗

λσ̂(x[σ]𝟙σ ̸≽σ̂ + xσ̂[σ]x[σ̂]𝟙σ≽j′)

=

 ∑
σ̂∈Σ∗, σ ̸≽σ̂

λσ̂

x[σ] +
∑
j′≼σ

∑
a′∈Aj′

λj′a′ xj′a′ [σ] x[j′a′]

=

1−
∑

σ̂∈Σ∗, σ̂≼σ

λσ̂

x[σ] +
∑
j′≼σ

∑
a′∈Aj′

λj′a′ xj′a′ [σ] x[j′a′],

as we wanted to show.

We are now ready to prove Proposition 8.2, which is restated below for the reader’s convenience.

Proposition 8.2 (Restated). Let T =
∑
σ̂∈Σ∗ λσ̂ Tσ̂→xσ̂

be a linear transformation in co Ψ
expressed as in (8.8), x ∈ ℝΣ

⩾0 be a J-partial fixed point of T, and j∗ ∈ J be a decision

node not in J such that its immediate predecessor is in J . Then, Extend(T, J, j∗,x), given

in Algorithm 8.4, computes a (J ∪ {j∗})-partial fixed point of T in time upper bounded by

O(|Σ| |Aj∗|+ FP(|Aj∗|)).

Proof. We break the proof into four parts. In the first part, we analyze the sum of the entries of

vector r defined in Line 2 of Algorithm 8.4. In the second part, we prove that
1

x[σp] W ∈ 𝕊Aj∗
,

as stated in Line 3. In the third part, we show that the output x′
of the algorithm is indeed a

(J ∪ {j∗})-partial fixed point of T. Finally, in the fourth part we analyze the computational

complexity of the algorithm.

Part 1: Sum of the entries of r In this first part of the proof, we study the sum of the entries of

the vector r defined on Line 2 in Algorithm 8.4. By hypothesis, the immediate predecessor of j∗

is in J . So, because x is a J-partial fixed point, the sequence σp := pj∗ satisfies (Tx)[σp] = x[σp].

176

§8.A. APPENDIX: INDUCTIVE COMPUTATION OF FIXED POINTS OF TRIGGER DEVIATION

MATRICES

Hence, expanding the term (Tx)[σp] using Lemma 8.4, we conclude that1−
∑

σ̂∈Σ∗, σ̂≼σp

λσ̂

x[σp] +
∑
j′≼σp

∑
a′∈Aj′

λj′a′ xj′a′ [σp] x[j′a′] = x[σp].

By rearranging terms, we have ∑
σ̂∈Σ∗, σ̂≼σp

λσ̂

x[σp] =
∑
j′≼σp

∑
a′∈Aj′

λj′a′ xj′a′ [σp] x[j′a′]. (8.12)

On the other hand, since xj′a′ ∈ Q≽j′ for all j′ ≼ σp, a
′ ∈ Aj′ , the sequence-form

(probability-mass-conservation) constraints (2.2) imply that

xj′a′ [σp] =
∑
a∈Aj∗

xj′a′ [j∗a]. ∀ j′ ≼ σp, a
′ ∈ Aj′ .

Hence, plugging the previous equality into (8.12), we obtain ∑
σ̂∈Σ∗, σ̂≼σp

λσ̂

x[σp] =
∑
j′≼σp

∑
a′∈Aj′

∑
a∈Aj∗

λj′a′ xj′a′ [j∗a] x[j′a′]

=
∑
a∈Aj∗

 ∑
j′≼σp

∑
a′∈Aj′

λj′a′ xj′a′ [j∗a] x[j′a′]


=
∑
a∈Aj∗

r[a],

where the last equality follows from recognizing the definition of r on Line 2 of Algorithm 8.4.

So, in conclusion,

∑
a∈Aj∗

r[a] =

 ∑
σ̂∈Σ∗, σ̂≼σp

λσ̂

x[σp]. (8.13)

Part 2: W belongs to x[σp] · 𝕊Aj∗
In this second part of the proof, we will prove that all

columns of the nonnegative matrix W, defined on Line 3 of Algorithm 8.4, sum to the same

value x[σp]. Fix any ac ∈ Aj∗. Using the definition of W, the sum of the entries in the column

of W corresponding to action ac is

§8. UNCOUPLED LEARNING OF EXTENSIVE-FORM CORRELATED EQUILIBRIUM 177

∑
ar∈Aj∗

W[ar, ac] =
∑

ar∈Aj∗

r[ar] + λj∗ac
xj∗ac

[j∗ar]x[σp]

+

1−
∑

σ̂∈Σ∗, σ̂≼j∗ac

λσ̂

 𝟙ar=ac
x[σp]

=

 ∑
σ̂∈Σ∗, σ̂≼σp

λσ̂

x[σp] + x[σp]λj∗ac

 ∑
ar∈Aj∗

xj∗ac
[j∗ar]


+

1−
∑

σ̂∈Σ∗, σ̂≼j∗ac

λσ̂

x[σp]

=

 ∑
σ̂∈Σ∗, σ̂≼σp

λσ̂

x[σp] + x[σp]λj∗ac
+

1−
∑

σ̂∈Σ∗, σ̂≼j∗ac

λσ̂

x[σp],

where we used (8.13) in the second equality, and the fact that

∑
ar∈Aj∗

xj∗ac [j∗ar] = 1 since

xj∗ac
∈ Q≽j∗ (Definition 2.4), in the third. Using the fact that the set of all predecessors of

sequence (j∗, ac) is the union between all predecessors of the parent sequence σp and {(j∗, ac)}
itself, after rearranging terms we can write

∑
ar∈Aj∗

W[ar, ac] =

 ∑
σ̂∈Σ∗, σ̂≼σp

λσ̂

x[σp] + x[σp]λj∗ac +

1−
∑

σ̂∈Σ∗, σ̂≼j∗ac

λσ̂

x[σp]

= x[σp]

1 + λ(j∗,ac) +
∑

σ̂∈Σ∗, σ̂≼σp

λσ̂ −
∑

σ̂∈Σ∗, σ̂≼j∗ac

λσ̂


= x[σp].

So, all columns of the nonnegative matrix W sum to x[σp], and therefore W ∈ x[σp] · 𝕊Aj∗
.

Part 3: x′ is a (J ∪ {j∗})-partial fixed point of T We start by arguing that x′
satisfies the

sequence-form constraints (8.9) for all j ∈ J∪{j∗}. The crucial observation is that Algorithm 8.4

only modifies the indices corresponding to sequences (j∗, a) for a ∈ Aj∗ and keeps all other

entries unmodified. In particular,

x′[ja] = x[ja] ∀ j ∈ J, a ∈ Aj . (8.14)

Furthermore, because J is a trunk, the above equation implies that

x′[pj] = x[pj] ∀ j ∈ J.

178

§8.A. APPENDIX: INDUCTIVE COMPUTATION OF FIXED POINTS OF TRIGGER DEVIATION

MATRICES

Hence, using the hypothesis that x is a J-partial fixed point of T at the beginning of the call,

we immediately conclude that the constraints (8.9) corresponding to j ∈ J hold for vector x′
,

and the only condition that remains to be verified is that

x′[σp] =
∑
a∈Aj∗

x′[(j∗, a)]. (8.15)

If x[σp] = 0, then all entries x′[(j∗, a)] are set to 0 (Line 5) and so (8.15) is trivially satisfied.

On the other hand, if x[σp] ̸= 0, then x′[j∗a] is set to the value x[σp] b[a] (Line 8), and since b

belongs to the simplex ∆Aj∗
, (8.15) holds in this case too. So, x′

satisfies (8.9) for all j ∈ J ∪{j∗}
as we wanted to show.

We now turn our attention to conditions (8.10). From Lemma 8.4 it follows that (Tx)[σ]
only depends on the values of x[j′a′] for j′ ≼ σ, a′ ∈ Aj′ . So, from (8.14) it follows that

T(x′)[ja] = x[ja] = x′[ja] ∀ j ∈ J, a ∈ Aj ,

and the only condition that remains to be verified is that

T(x′)[j∗a∗] = x′[j∗a∗] ∀ a∗ ∈ Aj∗. (8.16)

Fix any a∗ ∈ Aj∗. We break the analysis into two cases.

• If x[σp] = 0, then w = 0 (Line 5) and therefore x′[j∗a∗] = 0. Hence, to show that (8.16)

holds, we need to show that T(x′)[j∗a∗] = 0. To show that, we start from applying

Lemma 8.4:

T(x′)[j∗a∗] =
∑

j′≼j∗a∗

∑
a′∈Aj′

λj′a′ xj′a′ [j∗a∗] x′[j′a′].

Now, using the fact that {j′ ∈ J : j′ ≼ [j∗a∗]} is equal to the disjoint union {j′ ∈ J : j′ ≼

σp} ∪ {j∗}, and that x′[(j∗, a′)] = 0 for all a′ ∈ Aj∗, we have

T(x′)[j∗a∗] =
∑
j′≼σp

∑
a′∈Aj′

λj′a′ xj′a′ [j∗a∗] x′[j′a′]. (8.17)

Since xj′a′ ∈ Q≽j′ is a nonnegative vector, from Definition 2.4 it follows that

xj′a′ [σp] =
∑
a∈Aj∗

xj′a′ [j∗a] ⩾ xj′a′ [j∗a∗]. (8.18)

Hence, substituting (8.18) into (8.17),

§8. UNCOUPLED LEARNING OF EXTENSIVE-FORM CORRELATED EQUILIBRIUM 179

T(x′)[j∗a∗] ⩽
∑
j′≼σp

∑
a′∈Aj′

λj′a′ xj′a′ [σp] x′[j′a′]

= T(x′)[σp] = x′[σp] = 0,

where the first equality follows again from Lemma 8.4, and the second equality follows

from the inductive hypothesis that x′
is a J-partial fixed point of T. Since x′

is a

nonnegative vector and T maps nonnegative vectors to nonnegative vectors, we conclude

that T(x′)[j∗a∗] = 0 as we wanted to show.

• If x[σp] ̸= 0, then b is a fixed point of the stochastic matrix
1

x[σp] W, and therefore it

satisfies ∑
ac∈Aj∗

W[a∗, ac] b[ac] = x[σp] b[a∗].

Hence, by using the fact that x′[j∗a∗] = x[σp] b[a∗] (Line 11), we can write

x′[j∗a∗] =
∑

ac∈Aj∗

W[a∗, ac] b[ac].

By expanding the definition of W[a∗, ac] (Line 3) on the right-hand side

x′[j∗a∗] =
∑

ac∈Aj∗

r[a∗] +

λj∗ac
xj∗ac

[j∗a∗] +

1−
∑
σ̂∈Σ∗

σ̂≼j∗ac

λσ̂

𝟙a∗=ac

x[σp]

b[ac]

= r[a∗] +

1−
∑

σ̂∈Σ∗, σ̂≼j∗a∗

λσ̂

x′[j∗a∗] +
∑

ac∈Aj∗

λj∗ac
xj∗ac

[j∗a∗]x′[j∗ac],

where in the second equality we used the fact that b ∈ ∆Aj∗
, and the fact that x′[j∗a] =

x[σp] b[a] for all a ∈ Aj∗ (Line 11). Expanding the definition of r (Line 2),

x′[j∗a∗] =
∑
j′≼σp

∑
a′∈Aj′

λj′a′ xj′a′ [j∗a∗] x[j′a′] +

1−
∑

σ̂∈Σ∗, σ̂≼j∗a∗

λσ̂

x′[j∗a∗]

+
∑

ac∈Aj∗

λj∗acxj∗ac [j∗a∗]x′[(j∗, ac)]

=

1−
∑

σ̂∈Σ∗, σ̂≼j∗a∗

λσ̂

x′[j∗a∗] +
∑

j′≼j∗a∗

∑
a′∈Aj′

λj′a′ xj′a′ [j∗a∗] x′[j′a′]

180

§8.A. APPENDIX: INDUCTIVE COMPUTATION OF FIXED POINTS OF TRIGGER DEVIATION

MATRICES

= T(x′)[j∗a∗],

where we used the fact that the set {j′ ∈ J : j′ ≼ j∗a∗} is equal to the disjoint union

{j′ ∈ J : j′ ≼ σp} ⊔ {j∗} in the second equality, and Lemma 8.4 in the third equality.

Part 4: Complexity analysis In this part, we bound the number of operations required by

Algorithm 8.4.

• Line 2: each entry r[a] can be trivially computed in O(|Σ|) time by traversing all

predecessors of j∗
. So, the vector r requires O(|Σ| |Aj∗|) operations to be computed.

• Line 3: if ar = ac, then the number of operations required to compute W[ar, ac]
is dominated by the computation of

∑
σ̂≼(j∗,ac) λσ̂, which requires O(|Σ|) operations.

Otherwise, if ar ̸= ac, the computation of W[ar, ac] can be carried out in a constant

number of operations. Hence, the computation of W[ar, ac] for all ar, ac ∈ Aj∗ requires

O(|Σ| |Aj∗|+ |Aj∗|2) time. Since |Aj∗| ⩽ |Σ|, the total number of operations required to

compute all entries of W is O(|Σ| |Aj∗|).

• Lines 4 to 8: if x[σp] = 0, then the computation of w requires O(|Aj∗|) operations. If,

on the other hand, x[σp] ̸= 0, then the computation of w requires O(FP(|Aj∗|) + |Aj∗|)
operation. Since clearly any fixed point oracle for a square matrix of order |Aj∗| needs to

spend time at least Ω(|Aj∗|) time writing the output,O(FP(|Aj∗|)+ |Aj∗|) = O(FP(|Aj∗|)).
So, no matter the value of x[σp], the number of iterations is bounded by O(FP(|Aj∗|)).

• Line 11: finally, the algorithm spends O(|Aj∗|) operations to fill out the entries of x.

Summing the number of operations of each of the different steps of the algorithm, we conclude

that each call to Extend(T, J, j∗,x) requires at most O(|Σ| |Aj∗|+ FP(|Aj∗|)) operations.

Chapter 9

Geometry of correlated strategies,
and positive complexity results for
optimal EFCE

We have shown in Chapter 8 that one extensive-form correlated equilibrium can be obtained by

following simple, uncoupled no-trigger-regret dynamics. In this chapter we instead focus on the

computation of an optimal (for example, social-welfare-maximizing) EFCE. Because an EFCE is by

definition a correlated distribution over the Cartesian product of the strategies of the players, in

order to find one such optimal equilibrium point it is sufficient to have a concise characterization

of all such correlated distributions. That will be exactly the focus of this chapter:

Are there polynomially-sized descriptions of the set of all correlated strategies of players in an
imperfect-information extensive-form game?

9.1 Contributions
In this chapter, we greatly expand the set of games in which we prove the question can be

answered for the positive, obtaining the first positive complexity results around optimal correlated

equilibria in more than a decade. Specifically, we show the following:

• In two-player games, correlated strategies have a polynomial description provided that

a certain condition, which we coin triangle-freeness, is satisfied. We then show that the

condition holds, for example, when all chance moves are public, that is, both players observe

all chance moves. This result immediately implies that a social-welfare-maximizing EFCE

can be computed in polynomial time in the game tree size in these games. Furthermore, the

182 §9.2. PRELIMINARIES, NOTATION, AND PRIOR WORK

techniques that we introduce to establish the result might be of independent interest.

• As a byproduct of the proof technique, we show that in triangle-free games the polytope

of correlated strategies can be obtained via composition of the scaled extension operation

that we introduced in Chapter 4. This will set the stage for constructing a state-of-the-art

learning algorithm for computing optimal EFCE in Chapter 10.

• In Section 9.5 we mention that in games that are not triangle-free, we recently established

a generalization of the result, proving that the polytope of correlated strategies can be

expressed as a linear transformation of a set obtained via a chain of scaled extension

operations. While the length of the chain is in the worst case exponential in the size of

the game tree—this is unavoidable unless P = NP—we show that it can be bounded by a

function of a parameter of the game that intuitively measures the amount of asymmetric

private information among the players, thereby leading to state-of-the-art parameterized

complexity results.

• Finally, in Section 9.6 we put to use the characterization of the polytope of correlated strategies

we develop in the chapter to empirically investigate the set of expected utilities that can be

reached by EFCEs across nine games. In all cases, we observe that both the shape of the

polytope and the range of reachable payoffs are highly nontrivial. This empirically suggests

that being able to search and optimize over the space of EFCE (rather than computing a

single EFCE without a priori guarantees over the social welfare, as in Chapter 8) is important.

9.2 Preliminaries, notation, and prior work

In this section, we define some notation to describe correlated strategies. We will focus on the case

of two correlating players, as that reduces the notational burden while exposing the complexity

in its generality. Extending the notation and concepts to more than two players is mechanical.

We will denote quantities that belong to the two correlating players using subscripts 1 and 2,

respectively.

A correlated distribution of play is a probability distribution over deterministic sequence-form

strategies Π1 × Π2 of the players. As summarized in Table 9.1, given two decision nodes

j1 ∈ J1, j2 ∈ J2, we say that j1 and j2 are connected, and write j1 ⇌ j2, if there exists at least

one possible trajectory in the decision process is consistent with Player 1 acting at j1 and Player

2 acting at j2. Equivalently, in game tree terms, j1 ⇌ j2 if and only if there exist nodes u1 in

information set j1 and u2 in information set j2, such that there exists a path from the root of the

game tree to u2 that passes through u1, or vice versa. With the notation of connected decision

nodes, the notion of relevant sequence pairs can be introduced. We say that (σ1, σ2) ∈ Σ1 ×Σ2 form

a relevant sequence pair—denoted σ1 ▷◁ σ2—if at least one of the sequences is the empty sequence,

§9. GEOMETRY OF CORRELATED STRATEGIES, AND POSITIVE COMPLEXITY RESULTS FOR

OPTIMAL EFCE 183

Symbol Description
j1 ⇌ j2 Connected decision nodes: if j1 ⇌ j2, it is possible that the trajectory in the

decision process goes through both j1 ∈ J1 and j2 ∈ J2
σ1 ▷◁ σ2 Relevant sequence pair: σ1 ▷◁ σ2 if at least one between σ1 and σ2 is the empty

sequence ∅, or if σ1 = (j1, a1), σ2 = (j2, a2) with j1 ⇌ j2
Σ1 ▷◁ Σ2 Set of all relevant sequence pairs {(σ1, σ2) ∈ Σ1 × Σ2 : σ1 ▷◁ σ2}
j1 ▷◁ σ2 Shorthand for: (j1, a1) ▷◁ σ2 for all a1 ∈ Aj1

σ1 ▷◁ j2 Shorthand for: σ1 ▷◁ (j2, a2) for all a2 ∈ Aj2

Table 9.1: Additional notation used when dealing with correlation of strategy spaces.

or if σ1 = (j1, a1), σ2 = (j2, a2) with j1 ⇌ j2. Finally, we denote with the symbol Σ1 ▷◁ Σ2 the set

of all relevant sequence pairs, and use the notation j ▷◁ σ to mean that (j, a) ▷◁ σ for all a ∈ Aj .

9.2.1 Polytope of correlation plans Ξ

Consider now a particular terminal state of the game. Let σ1, σ2 be the last sequences that were

encountered by the two players. Clearly, σ1 ▷◁ σ2 because the underlying decision nodes must

be connected. In order to express the expected utility of such terminal state, it is important to

measure the probability according to which strategies consistent with σ1 and σ2 were selected.

Let µ be the correlated distribution over deterministic sequence-form strategies for the agents.

Such a probability is given by ∑
π∈Π1

π[σ1]=1

∑
π′∈Π2

π′[σ2]=1

µ[π,π′]. (9.1)

Next, we extend (9.1) to any pair of relevant sequences.

Definition 9.1. Let µ ∈ ∆Π1×Π2
be a correlated distribution over deterministic strategies for

the correlating agents. We let f denote the function mapping µ to the vector

f(µ)[σ1, σ2] :=
∑

π∈Π1
π[σ1]=1

∑
π′∈Π2

π′[σ2]=1

µ[π,π′] ∀(σ1, σ2) ∈ Σ1 ▷◁ Σ2. (9.2)

The function f just introduced defines a convenient mapping between a correlated distribution

of play µ, an exponentially large object, to the vector f(µ), which only has a polynomial number

of entries in the sizes of the correlated strategy spaces. We call f(µ) the correlation plan equivalent

to µ. The set of all legal correlation plan is introduced next.

184 §9.2. PRELIMINARIES, NOTATION, AND PRIOR WORK

Definition 9.2. The polytope of correlation plans Ξ is the image of f (Definition 9.1) as µ varies

over the set of all possible correlated distributions over Π1 ×Π2, that is,

Ξ := Im f =
{
f(µ) : µ ∈ ∆Π1×Π2

}
.

Since the function f (Definition 9.1) is linear and the probability simplex is a convex polytope,

it immediately follows that Ξ is indeed a convex polytope, as stated in the following lemma.

Lemma 9.1. The polytope of correlation plans Ξ is a convex polytope, and a subset of ℝΣ1▷◁Σ2
⩾0 .

Lemma 9.1 means good news: just like in the non-correlated case (Section 2.3), we can

represent strategies as elements of low-dimensional (more precisely: with dimension bounded

as a polynomial in the size of the input decision spaces) convex polytope. However, unlike the

non-correlated case, in general the constraints that define Ξ are unknown. Furthermore, even if

the constraints were known, a polynomial number of constraints might not be enough to describe

Ξ. A simple computational complexity argument in the work by von Stengel and Forges (2008)

shows that this hurdle cannot be avoided, unless P = NP.

Remark 9.1. Since f sums up distinct entries from the distribution µ, all entries of f(µ)
belong to [0, 1]. Hence, Ξ ⊆ [0, 1]Σ1▷◁Σ2

.

9.2.2 Optimal EFCE as a linear program

We now show that the concise representation defined by Ξ enables to express the set of all EFCEs

as a polytope whose number of constraints is polynomial whenever Ξ can be expressed via

polynomially many constraints. In order to elucidate the connection between the polytope of

all EFCEs and the polytope of correlation plans Ξ, we go back to the very definition of EFCE,

which was given in Section 8.2. According to the definition, a correlated strategy µ ∈ ∆Π1×Π2

is an EFCE when for any player i ∈ {1, 2}, there is no trigger sequence σ̂ = (j, a) ∈ Σ∗
i and

continuation strategy (deterministic or mixed) xσ̂ ∈ Qi,≽j such that the (σ̂,xσ̂)-trigger agent

for Player i attains more value in expectation than the player that always play according to the

strategies sampled from µ. As we show in Section 9.B, given any i ∈ {1, 2}, σ̂ = (j, a) ∈ Σ∗
i , and

continuation strategy xσ̂ ∈ Qi,≽j , the difference in expected utility obtained by the (σ̂,xσ̂)-trigger

agent is a bilinear function ξ⊤Ai,σ̂xσ̂ of the correlated plan ξ ∈ Ξ that corresponds to µ, and xσ̂ .

Hence, by just using the definition of EFCE we get to the following intermediate result.

§9. GEOMETRY OF CORRELATED STRATEGIES, AND POSITIVE COMPLEXITY RESULTS FOR

OPTIMAL EFCE 185

Lemma 9.2. An EFCE ξ that maximizes the linear
a

objective c⊤ξ is the solution to the

following nonlinear optimization problem:
max

ξ
c⊤ξ

s.t. 1 ξ ∈ Ξ
2 max

xσ̂∈Qi, ≽j

ξ⊤Ai,σ̂xσ̂ ⩽ 0 ∀ i ∈ {1, 2}, σ̂ = (j, a) ∈ Σ∗
i .

a
We remark that by the very construction of correlation plans, the expected utility of a player that plays according

to the strategy sampled from ξ is a linear function of ξ. Hence, linear objectives in ξ are in particular able to capture

any linear combination of the utilities of the players, including the sum of the utilities (that is, the social welfare).

We now show that the constraints 2 can be rewritten as linear constraints, by means of linear

programming duality. Indeed, letting Fi,≽j ,f i,≽j denote the sequence-form constraints that

define Qi,≽j , that is, Qi,≽j = {xσ̂ : Fi,≽jxσ̂ = f i,≽j ,xσ̂ ⩾ 0}, we have that the linear programs
max

xσ̂

ξ⊤Ai,σ̂xσ̂

s.t. Fi,≽jxσ̂ = f i,≽j
xσ̂ ⩾ 0,

and


min
vi,σ̂

f⊤
i,≽jvi,σ̂

s.t. F⊤
i,≽jvi,σ̂ ⩾ A⊤

i,σ̂ξ

vi,σ̂ ∈ ℝJi, ≽j

are dual to each other for all i ∈ {1, 2} and trigger sequences σ̂ = (j, a) ∈ Σ∗
i , and therefore have

the same value. So, it follows that constraint 2 in the formulation of Lemma 9.2 holds if and only

if there exists vi,σ̂ ∈ ℝJi, ≽j
such that

F⊤
i,≽jvi,σ̂ ⩾ A⊤

i,σ̂ξ and f⊤
i,≽jvi,σ̂ ⩽ 0.

Hence, we have the following.

Proposition 9.1. An EFCE ξ that maximizes the linear objective c⊤ξ is the solution to the

following nonlinear optimization problem:

max
ξ

c⊤ξ

s.t. 1 ξ ∈ Ξ
2 f⊤

i,≽jvi,σ̂ ⩽ 0 ∀ i ∈ {1, 2}, σ̂ = (j, a) ∈ Σ∗
i

3 F⊤
i,≽jvi,σ̂ ⩾ A⊤

i,σ̂ξ ∀ i ∈ {1, 2}, σ̂ = (j, a) ∈ Σ∗
i

4 vi,σ̂ ∈ ℝJi, ≽j ∀ i ∈ {1, 2}, σ̂ = (j, a) ∈ Σ∗
i .

186 §9.2. PRELIMINARIES, NOTATION, AND PRIOR WORK

9.2.3 The von Stengel-Forges polytope V

We now introduce a second important polytope. It lives in the same Euclidean space as Ξ but

unlike Ξ it is defined as the intersection of a polynomial number of linear constraints. This

polytope was introduced without name by von Stengel and Forges (2008)—we will refer to it as

the von Stengel-Forges polytope.

Definition 9.3 (von Stengel-Forges polytope). The von Stengel-Forges polytope is the convex

polytope of non-negative vectors v ∈ ℝΣ1▷◁Σ2
⩾0 indexed over relevant sequence pairs, and

defined as

V :=

v ∈ ℝ
Σ1▷◁Σ2
⩾0 :

1 v[∅,∅] = 1
2

∑
a∈Aj1

v[(j1, a), σ2] = v[pj1 , σ2] ∀j1 ∈ J1, σ2 ∈ Σ2 : j1 ▷◁ σ2

3
∑

a∈Aj2
v[σ1, (j2, a)] = v[σ1, pj2] ∀j2 ∈ J2, σ1 ∈ Σ1 : σ1 ▷◁ j2

.

We remark that, unlike the sequence-form strategy polytope, the constraints that define the

von Stengel-Forges polytope V (Definition 9.3) do not exhibit a natural hierarchical structure: the

same entry in a vector v ∈ V can appear in multiple constraints, and furthermore the constraints

will in general form cycles. This makes the problem of decomposing the structure of V as we did

in Section 2.3 significantly more challenging.

9.2.4 von Stengel and Forges (2008)’s result for two-player games without
chance

The following important inclusion was shown by von Stengel and Forges (2008), and holds in

general—that is, no matter the game.

Lemma 9.3. The von Stengel-Forges polytope is always a superset of the polytope of

correlation plans. In symbols, Ξ ⊆ V .

The reverse inclusion might or might not include. In their seminal paper, von Stengel and

Forges (2008) show that the reverse inclusion holds in all two-player games without chance

moves. From that statement, it follows that Ξ = V , and since V is a convex polytope defined by a

polynomial number of linear constraints, optimization over the set of all EFCEs can be carried out

in polynomial time. For more than a decade, von Stengel and Forges (2008)’s result remained our

best understanding of the classes of games in which V = Ξ. In this chapter we greatly extend the

set of games for which the relationship holds.

§9. GEOMETRY OF CORRELATED STRATEGIES, AND POSITIVE COMPLEXITY RESULTS FOR

OPTIMAL EFCE 187

9.3 Characterization of the relationship between Ξ and V
We now give a complete characterization as to when that inclusion V ⊆ Ξ holds, by connecting it

with the integrality of the vertices of the von Stengel-Forges polytope. In doing so, we will find

the following lemma useful.

Lemma 9.4. Let 1(π1,π2) ∈ ∆Π1×Π2
denote the distribution over Π1 ×Π2 that assigns mass 1

to the pair (π1,π2), and mass 0 to any other pair of reduced-normal-form plans. Then,

Ξ = co{f(1(π1,π2)) : π1 ∈ Π1,π2 ∈ Π2}.

Proof. The “deterministic” distributions 1(π1,π2) are the vertices of ∆Π1×Π2
, so, in particular,

∆Π1×Π2 = co{1(π1,π2) : π1 ∈ Π1,π2 ∈ Π2}.

Since by definition Ξ = Im f , and f is a linear function, the images (under f) of the 1(π1,π2)

are a convex basis for Ξ, which is exactly the statement.

We are now ready to state our characterization.

Theorem 9.1. Let Γ be a two-player perfect-recall imperfect-information extensive-form

game, let V be its von Stengel-Forges polytope, and let Ξ be its polytope of correlation plans.

Then, Ξ = V if and only if all vertices of V have integer {0, 1} coordinates.

Proof. We prove the two implications separately.

(⇒) We start by proving that if Ξ = V , then all vertices of V have integer {0, 1} coordinates.

Since V = Ξ by hypothesis, from Lemma 9.4 we can write

V = co{f(1(π1,π2)) : π1 ∈ Π1,π2 ∈ Π2}.

So, to prove this direction it is enough to show that f(1(π1,π2)) has integer {0, 1}
coordinates for all (π1,π2) ∈ Π1 ×Π2. To see that, we use the definition (9.2): each entry

in f(1(π1,π2)) is the sum of distinct entries of 1(π1,π2). Given that by definition 1(π1,π2)

has exactly one entry with value 1 and |Π1 ×Π2| − 1 entries with value 0, we conclude

that all coordinates of f(1(π1,π2)) are in {0, 1}.

(⇐) We now show that if all vertices of V have integer {0, 1} coordinates, then V ⊆ Ξ. This

is enough, since the reverse inclusion, V ⊇ Ξ, is trivial and already known von Stengel

188 §9.4. SCALED-EXTENSION-BASED STRUCTURAL DECOMPOSITION FOR V

and Forges, 2008. Let {v1, . . . ,vn} be the vertices of V . To conclude that V ⊆ Ξ, we will

prove that vi ∈ Ξ for all i = 1, . . . , n. This is sufficient since V and Ξ are convex.

Let v ∈ {v1, . . . ,vn} be any vertex of V . By hypothesis, v[σ1, σ2] ∈ {0, 1} for all (σ1, σ2) ∈
Σ1 ▷◁ Σ2. Because v satisfies the von Stengel-Forges constraints and furthermore v has

{0, 1} entries by hypothesis, the two vectors q1, q2 defined according to q1[σ1] = v[σ1,∅]
(σ1 ∈ Σ1) and q2[σ2] = v[∅, σ2] (σ2 ∈ Σ2) are pure sequence-form strategies. Now, let

π∗
1 and π∗

2 be the reduced-normal form plans corresponding to q1 and q2, respectively.

We will show that v = f(1(π∗
1 ,π

∗
2)), which will immediately imply that v ∈ Ξ using

Lemma 9.4.

Since 1(π∗
1 ,π

∗
2) has exactly one positive entry with value 1 in the position corresponding

to (π∗
1,π

∗
2), by definition of the linear map f , for any (σ1, σ2) ∈ Σ1 ▷◁ Σ2,

f(1(π∗
1 ,π

∗
2))[σ1, σ2] = 𝟙σ1∈Π1(σ1) · 𝟙σ2∈Π2(σ2).

So, using the known properties of pure sequence-form strategies, we obtain

f(1(π∗
1 ,π

∗
2))[σ1, σ2] = q1[σ1] · q2[σ2] = v[σ1,∅] · v[∅, σ2] = v[σ1, σ2],

where the last equality follows from Lemma 9.10. Since the equality holds for any

(σ1, σ2) ∈ Σ1 ▷◁ Σ2, we have that v = f(1(π∗
1 ,π

∗
2)).

9.4 Scaled-extension-based structural decomposition for V

Theorem 9.1 shows that in all games for which the von Stengel-Forges polytope has integral

vertices, V = Ξ, and hance computing an optimal EFCE can be done in polynomial time. In this

section we will show that in games for which the von Stengel-Forges polytope V can be expressed

as a composition of scaled-extension operations (Definition 4.1) on probability simplexes, the

vertices of V are integral. We later isolate a condition, which we coin scaled extension, which

implies the existence of such a scaled-extension-based decomposition. Finally, we will show

that all two-player games with public chance moves are automatically triangle-free (and not all

triangle-free have public chance moves), thereby greatly extending the set of games for which the

equality V = Ξ is known to hold. The chain of implications that lead to result are summarized in

Figure 9.1.

Beyond enabling the proof that V = Ξ, we also remark that the existence of a scaled-extension-

based decomposition enables the construction of scalable no-external-regret algorithms for V
using the regret circuits construction for scaled extension we presented in Section 4.2.5. We will

leverage this observation in Chapter 10.

§9. GEOMETRY OF CORRELATED STRATEGIES, AND POSITIVE COMPLEXITY RESULTS FOR

OPTIMAL EFCE 189

Triangle-freeness

(Definition 9.5)

Two-player game

with public chance

Efficient learning algorithm

for optimal EFCE (Chapter 10)

Scaled-extension-based

decomposition of V
Integrality of

the vertices of V

Ξ = V

Theorem 9.2

Thm. 9.3

Theorem 4.4

Thm. 9.4

Theorem 9.1

Figure 9.1: Overview of the connections among this chapter’s results.

9.4.1 Examples and intuition

We give three examples of increasing complexity that capture the main intuition behind our

structural decomposition routine, and will set the stage for the rest of the theory to come.

Example 9.1. We consider as examples the three small imperfect-information extensive-form

games whose game trees are depicted in the top row of Figure 9.2.

G
a
m

e
t
r
e
e

11

11

22

1122 22

33

11

44

1122 22

A B

C
11

11

22

1122 22

33

33

44

3344 44

A B

C D
C

D

11

11

22

33
22

44

33

11

44

33
22

44

A B

C
o
r
r
e
l
a
t
i
o
n

p
l
a
n

fi
l
l
-
i
n

o
r
d

e
r

∅ 11 22

∅

11

22

33

44

1

4

4

4

4

3 3

3 3

2

∅ 11 22 33 44

∅

11

22

33

44

1

2

2

3

3

3

3

4 4 4 4

∅ 11 22 33 44

∅

11

22

33

44

Figure 9.2: Three examples of extensive-form games with increasingly complex information

partitions. As usual, the crossed nodes belong the chance player, the black round nodes

belong to Player 1, the white round nodes belong to Player 2, the gray round sets define

information sets, and the white squares denote terminal nodes (payoffs are omitted as they

are irrelevant). The numbers along the edges define the action names; for clarity we assign

unique action names at each information set.

First example Consider the leftmost game in Figure 9.2. The game starts with a chance node,

190 §9.4. SCALED-EXTENSION-BASED STRUCTURAL DECOMPOSITION FOR V

where two outcomes (say, heads or tails) are possible. After observing the outcome of

the chance node, Player 1 chooses between two actions (say, the “left” and the “right”

action). The choice as to whether to play the left or the right action can be different

based on the observed chance outcome. After Player 1 has played their action, Player 2

has to pick whether to play their left or right action—however, Player 2 does not observe

the chance outcome nor Player 1’s action. The chance outcome is not observed by Player

2, so, this is not a public-chance game.

The only information set C for Player 2 is connected to both information sets (denoted A
and B in Figure 9.2) of Player 1, so, all sequence pairs (σ1, σ2) ∈ Σ1 × Σ2 are relevant.

Since Player 2 only has one information set, it is easy to incrementally generate the

von Stengel-Forges polytope. First, the fixed value 1 is assigned to v[∅,∅] (step 1

in the fill-in order). Then, this value is split arbitrarily into the two (non-negative)

entries v[∅,C1],v[∅,C2] so that v[∅,C1] + v[∅,C2] = v[∅,∅] in accordance with the

von Stengel-Forges constraints. This operation can be expressed using scaled extension

as

{(v[∅,∅],v[∅,C1],v[∅,C2])} = {1} h◁∆2,

where h is the identity function (step 2 in the fill-in order).

Then, v[∅,C1] is further split into v[A1,C1] + v[A2,C1] = v[∅,C1] and v[B3,C1] +
v[B4,C1] = v[∅,C1], while v[∅,C2] is split into v[A1,C2] + v[A2,C2] = v[∅,C2] and

v[B3,C2] + v[B4,C2] = v[∅,C2] (step 3 of the fill-in order). These operations can be

expressed as scaled extensions with ∆2
.

Now that the eight entries v[σ1, σ2] for σ1 ∈ {A1,A2,B3,B4}, σ2 ∈ {C1,C2} have been

filled out, we fill in v[σ1,∅] for all σ1 ∈ {A1,A2,B3,B4} in accordance with the von

Stengel-Forges constraint v[σ1,∅] = v[σ1,C1] + v[σ1,C2] (step 4). In this step, we are

not splitting any values, but rather we are summing already-filled-in entries in v to

form new entries. Specifically, we can extend the set of partially-filled-in vectors

v = (v[∅,∅],v[∅,C1],v[∅,C2],v[A1,C1],v[A2,C1],

v[B3,C1],v[B4,C1],v[A1,C2],v[A2,C2],v[B3,C2],v[B4,C2])

with the new entry v[A1,∅] by using the scaled extension operation {v} h◁{1}where h is

the (linear) function that extracts the sum v[σ1,C1] + v[σ1,C2] from v. By doing so, we

have incrementally filled in all entries in v. Furthermore, by construction, we have that all

von Stengel-Forges constraints v[σ1,∅] = v[σ1,C1]+v[σ1,C2] (σ1 ∈ {∅,A1,A2,B3,B4})
and v[∅, σ2] = v[A1, σ2]+v[A2, σ2] = v[B3, σ2]+v[B4, σ2] (σ2 ∈ {C1,C2}) must hold. So,

§9. GEOMETRY OF CORRELATED STRATEGIES, AND POSITIVE COMPLEXITY RESULTS FOR

OPTIMAL EFCE 191

the only two von Stengel-Forges constraints that we have ignored and might potentially

be violated are v[∅,∅] = v[A1,∅] + v[A2,∅] and v[∅,∅] = v[B3,∅] + v[B4,∅]. This

concern is quickly resolved by noting that those constraints are implied by the other

ones that we satisfy. In particular, by construction we have

v[A1,∅] + v[A2,∅] = (v[A1,C1] + v[A1,C2]) + (v[A2,C1] + v[A2,C2])

= (v[A1,C1] + v[A2,C1]) + (v[A1,C2] + v[A2,C2])

= v[∅,C1] + v[∅,C2]

= v[∅,∅],

and an analogous statement holds for v[B3,∅] + v[B4,∅]. So, all constraints hold and

the scaled-extension-based decomposition is finished.

Remark 9.2. An approach that would start by splitting v[∅,∅] into v[A1,∅] +
v[A2,∅] = v[∅,∅] and v[B3,∅] + v[B4,∅] = v[∅,∅], thereby inverting the order

of fill-in steps 4 and 2 , would fail. Indeed, after filling v[σ1, σ2] for all σ1 ∈
{A1,A2,B3,B4}, σ2 ∈ {C1,C2}), there would be no clear way of guaranteeing that

v[A1,C1] + v[A2,C1] = v[B3,C1] + v[B4,C1] (= v[∅,C1]).

Second example We now consider a variation of the game from the first example, where

Player 2 observes the chance outcome but not the actions selected by Player 1. This

game, shown in the middle column of Figure 9.2, has public chance moves, because the

chance outcome is observed by all players. In this game, not all pairs of information

sets are connected. In fact, only (A,C) and (B,D) are connected information set pairs.

Correspondingly, entries such as v[A1,D3], v[B4,C2], and v[A2,D4] are not defined in

the correlation plans for the game. This observation is crucial, and will set apart this

example from the next one. To fill in any correlation plan, we can start by splitting

v[∅,∅] into v[A1,∅] + v[A2,∅] = v[∅,∅] and v[B3,∅] + v[B4,∅] = v[∅,∅] (fill-in

step 2 in the figure). Both operations can be expressed as a scaled extension of

partially-filled-in vectors with ∆2
, scaled by the affine function that extracts v[∅,∅] = 1

from the partially-filled-in correlation plans. Then, we further split those values into

entries v[σ1,C1] + v[σ1,C2] = v[σ1,∅] for σ1 ∈ {A1,A2} in accordance with the von

Stengel-Forges constraint. Similarly, we will in v[σ1,D3],v[σ1,D4] for σ1 ∈ {B3,B4} in

accordance with the constraint v[σ1,D3] + v[σ1,D4] = v[σ1,∅] for σ1 ∈ {A1,A2} (fill-in

step 3). Finally, we recover the values of v[∅, σ2] for σ2 ∈ {C1,C2,D3,D4}with a scaled

extension with the singleton set {1} as discussed in the previous example. Again, it can be

192 §9.4. SCALED-EXTENSION-BASED STRUCTURAL DECOMPOSITION FOR V

checked that despite the fact that we ignored the constraints v[∅,C1]+v[∅,C2] = v[∅,∅]
and v[∅,D3] + v[∅,D4] = v[∅,∅], those constraints are automatically satisfied by

construction. In this case, we were able to sidestep the issue raised in Remark 9.2

because of the particular connection between the information sets.

Third example Finally, we propose a third example in the third column of Figure 9.2. It is a

variation of the first example, where Player 2 now observes Player 1’s action but not
the chance outcome. The most significant difference with the second example is that

the information structure of the game is now such that all pairs of information sets of

the players are connected. Hence, the problem raised in Remark 9.2 cannot be avoided.

Our decomposition algorithm cannot handle this example.

9.4.2 Triangle-freeness

The third example in the previous section highlights an unfavorable situation in which our

decomposition attempt based on incremental generation of the correlation plan. In order to

codify all situations in which that issue does not arise, we introduce the concept of rank of an

information set.

Definition 9.4. Let i ∈ {1, 2} be a player, and let −i denote the other player. Furthermore, let

ji ∈ Ji and σ−i ∈ Σ−i. The σ−i-rank of ji is the cardinality of the set

{j−i ∈ J−i : j−i ⇌ ji, pj−i
= σ−i}.

The issue in Remark 9.2 can be stated in terms of the ranks. Consider a relevant sequence pair

(σ1, σ2) ∈ Σ1 ▷◁ Σ2 and two connected information sets j1 ⇌ j2 such that pj1 = σ1, pj2 = σ2. If

the σ1-rank of j2 and the σ2-rank of j1 are both greater than 1, the issue cannot be avoided and

the decomposition will fail. For example, in the third example, where our decomposition fails,

all information sets have ∅-rank 2. We prove that such situations cannot occur, provided the

game satisfies the following condition, which can be verified in polynomial time in the size of the

EFG.

Definition 9.5 (Triangle-freeness). A two-player imperfect-information extensive-form

game is triangle-free if, for any choice of two distinct information sets j1, j
′
1 ∈ J1 such that

pj1 = pj′
1

= σ1 and two distinct information sets j2, j
′
2 ∈ J2 such that pj2 = pj′

2
= σ2, it is

never the case that j1 ⇌ j2 ∧ j′
1 ⇌ j′

2 ∧ j1 ⇌ j′
2.

Using the definition of triangle-freeness, we can verify that the issue exposed in Remark 9.2

never occurs, as the next lemma clarifies.

§9. GEOMETRY OF CORRELATED STRATEGIES, AND POSITIVE COMPLEXITY RESULTS FOR

OPTIMAL EFCE 193

Lemma 9.5. Consider a triangle-free game, let (σ1, σ2) ∈ Σ1 ▷◁ Σ2, and let j1 ⇌ j2 be such

that pj1 = σ1, pj2 = σ2. Then, at most one between the σ1-rank of j2 and the σ2-rank of j1 is

strictly larger than 1.

Proof. The results follows almost immediately from the definition of triangle-freeness. We

prove the statement by contradiction. Let (σ1, σ2) ∈ Σ1 ▷◁ Σ2 be a relevant sequence pair, and

let information sets j1 ∈ J1, j2 ∈ J2 be such that pj1 = σ1, pj2 = σ2. Furthermore, assume that

the σ1-rank of j2 is greater than 1, and at the same time the σ2-rank of j1 is greater than 1. Since

the σ2-rank of j1 is greater than 1, there exists an information set j′
2 ∈ J2, pj′

2
= σ2, distinct

from j2, such that j1 ⇌ j′
2. Similarly, because the σ1-rank of j2 is greater than 1, there exists an

information set j′
1 ∈ J1, pj′

1
= σ1, distinct from j1, such that j′

1 ⇌ j2. But then, we have found

j1, j
′
1 ∈ J1 and j′

2, j2 ∈ J2 such that pj1 = pj2 = σ1, pj′
2

= pj2 = σ2 such that j1 ⇌ j′
2, j

′
1 ⇌ j2,

and j1 ⇌ j2. So, the game is not triangle-free, contradiction.

9.4.3 Two-player games with public chance moves are triangle-free

In Theorem 9.2 we show that games with public chance (which includes games with no chance

moves at all) always satisfy the triangle-freeness condition of Definition 9.5.

Theorem 9.2. A two-player imperfect-information extensive-form game with public chance

moves is triangle-free.

Proof. For contradiction, let j1, j2 be two distinct information sets for Player 1 such that pj1 = pj2 ,

let J1, J2 be two distinct information sets for Player 2 such that pJ1 = pJ2 , and assume that

j1 ⇌ J1, j2 ⇌ J2, j1 ⇌ J2. By definition of connectedness, there exist nodes u ∈ j1, v ∈ J1 such

that v is on the path from the root to u, or vice versa. Similarly, there exist nodes u′ ∈ j2, v
′ ∈ J2

such that u′
is on the path from the root to v′

, or vice versa. Letw be the lowest common ancestor

of u and u′
. It is not possible that w = u or w = u′

, because otherwise the parent sequences

of j1 and j2 would be different. So w must be a strict ancestor of both u and u′
, and u and u′

must be reached using different edges at w. Therefore, node w cannot belong to Player 1, or

otherwise it again would not be true that pj1 = pj2 . So, there are only two possible cases: either

w belongs to Player 2, or it belongs to the chance player. We break the analysis accordingly.

First case: w belongs to Player 2. From above, we know that u and u′
are reached by following

different branches at w. So, if both v and v′
were strict descendants of w, they would need

to be on two different branches of w (because they are connected to u and u′
respectively),

violating the condition pJ1 = pJ2 . So, at least one between v and v′
is on the path from

194 §9.4. SCALED-EXTENSION-BASED STRUCTURAL DECOMPOSITION FOR V

the root to w (inclusive). But then either v is an ancestor of v′
, or vice versa. Either case

violates the hypothesis that pJ1 = pJ2 .

Second case: w belongs to the chance player. If any between v and v′
is an ancestor of w, then

necessarily either v is an ancestor of v′
, or v′

is an ancestor of v. Either case violates the

condition pJ1 = pJ2 . So, both v and v′
must be descendants of w. Because v is on the

path from the root to u (or vice versa), and v′
is on the path from the root to u′

(or vice
versa), then necessarily u, v and u′, v′

are on two different branches of the chance node w.

To fix names, call a the action at w that must be taken to (eventually) reach u and v, and

let b be the action that must be taken to (eventually) reach u′
and v′

. Now, we use the

hypothesis that j1 ⇌ J2, that is, there exists u′′ ∈ j1, v
′′ ∈ J2 such that u′′

is on the path

from the root to v′′
or vice versa. Assume that u′′

is on the path from the root to v′′
. Since

u′′
belongs to the same information set as u (that is, j1), and since chance is public by

hypothesis, then Player 1, when acting at u and u′′
, must have observed action a at w.

In other words, the path from the root to u′′
must pass through action a at w. But then,

using the fact that u′′
is on the path from the root to v′′

, this means that the path from the

root to v′′
passes through action a. However, the path from the root to v′

passes through

action b. Since chance is public, nodes v′
and v′′

cannot be in the same information set,

because Player 2 is able to distinguish them by means of the observed chance outcome.

We reached a contradiction. The symmetric case where v′′
is on the path from the root to

u′′
is analogous.

However, not all triangle-free games must have public chance nodes. For example, the leftmost

game in Figure 9.2 is triangle-free, but in that game the chance outcome is not public to Player 2.

So, our results apply more broadly than games with public chance moves.

9.4.4 Computation of the decomposition

Our algorithm consists of a recursive function, Decompose. It takes three arguments:

(i) a sequence pair (σ1, σ2) ∈ Σ1 ▷◁ Σ2;

(ii) a subset S of the set of all relevant sequence pairs; and

(iii) a set D where only the entries indexed by the elements in S have been filled in.

High-level overview The decomposition for the whole von Stengel-Forges polytope V is com-

puted by calling Decompose((∅,∅), {(∅,∅)}, {(1)})—this corresponds to the starting situation

in which only the entry v[∅,∅] has been filled in (denoted as fill-in step 1 in Figure 9.2). Each

call to Decompose returns a pair (S ′,D′) of updated indices and partial vectors, to reflect the new

entries that were filled in during the call.

Decompose((σ1, σ2),S,D) operates as follows (we denote with −i the opponent for Player i):

§9. GEOMETRY OF CORRELATED STRATEGIES, AND POSITIVE COMPLEXITY RESULTS FOR

OPTIMAL EFCE 195

1. Let Bi := {I ∈ Ji : I ▷◁ σ−i, pI = σi} for all i ∈ {1, 2}, and J ∗ ← {}.
2. For each (j1, j2) ∈ B1 × B2 such that j1 ⇌ j2, if the σ2-rank of I1 is greater than or equal to

the σ1-rank of j2, we update J ∗ ← J ∗ ∪ {j1}. Else, we update J ∗ ← J ∗ ∪ {j2}.
3. For each i ∈ {1, 2} and I ∈ Bi such that the σ−i-rank of I is 0, do J ∗ ← J ∗ ∪ {I}.
4. For each I ∈ J ∗

: (Below we assume that I ∈ J1, the other case is symmetrical)

(a) Fill in all entries {v[(I, a), σ2] : a ∈ AI} by splitting v[σ1, σ2]. This can be expressed

using a scaled extension operation as D ← D h
◁∆|AI |

where h extracts v[σ1, σ2] from any

partially-filled-in vector.

(b) Update S ← S ∪{((I, a), σ2)} to reflect that the entries corresponding to (I, a) ▷◁ σ2 have

been filled in.

(c) For each a ∈ AI we assign (S,D)← Decompose(((I, a), σ2),S,D). End for.

(d) LetK := {J ∈ J2 :I ⇌ J}. For all J ∈ J2 such that pJ ≽ (J ′, a′) for some J ′ ∈ K, a′ ∈ AJ′ :

• If I ⇌ J , then for all a ∈ AJ we fill in the sequence pair v[σ1, (J, a)] by assign-

ing its value in accordance with the von Stengel-Forges constraint v[σ1, (J, a)] =∑
a∗∈AI∗ v[(I∗, a∗), (J, a)] via the scaled extension D ← D h

◁{1} where the linear

function h maps a partially-filled-in vector to the value of

∑
a∗∈AI∗ v[(I∗, a∗), (J, a)].

Since this is done for all a ∈ AJ , automatically

∑
a∈AJ

v[σ1, (J, a)] = v[σ1, σ2], and

we can safely ignore the latter constraint.

• Otherwise, we fill in the entries {v[σ1, (J, a)] : a ∈ AJ}, by splitting the value

v[σ1, pJ]. In this case, we let D ← D h
◁∆|AJ |

where h extracts the entry v[σ1, pJ] from

a partially-filled-in vector in D.

5. At this point, all the entries corresponding to indices S̃ = {(σ′
1, σ

′
2) : σ′

1 ≽ σ1, σ
′
2 ≽ σ2} have

been filled in, and we return (S ∪ S̃,D).

The above algorithm formalizes and generalizes the first two examples of Figure 9.2. For

example, step 2 of the fill-in order in either example is captured in Step 4(a), while fill-in step 3

corresponds to Step 4(c). Finally, fill-in step 4 corresponds to Step 4(d). In the rest of the section,

we formalize the construction and prove the correctness of the algorithm.

9.4.4.1 Two useful subroutines

We start by presenting two simple subroutines that capture Step 4(d) of Section 9.4.4 (which

correspond to fill-in step 4 in Figure 9.2). The two subroutines are symmetric and have the role

of filling rows and columns of the correlation plans.

The following inductive contract will be important for the full algorithm.

196 §9.4. SCALED-EXTENSION-BASED STRUCTURAL DECOMPOSITION FOR V

Algorithm 9.1: FillOutRow((σ1, σ2), j1,S,D)
Preconditions :(σ1, σ2) ∈ Σ1 ▷◁ Σ2, j1 ∈ I1, pj1 =

σ1, (σ1, σ2) ∈ S
1 for j2 such that pj2 = σ2 and σ1 ▷◁ j2 do
2 if j1 ⇌ j2 then
3 for σ′

2 ∈ {(j2, a) : a ∈ Aj2} do
[▷ Fill (σ1, σ

′
2) by summing up all entries

{v[(j1, a
′), σ′

2] : a′ ∈ Aj1}]
4 S ← S ⊔ {(σ1, σ

′
2)}

5 D ← D
h
◁{1}where

h : v 7→
∑

a′∈Aj1
v[(j1, a

′), σ′
2]

6 else
[▷ Fill all {v[σ1, (j2, a)] : a ∈ Aj2} by

splitting v[σ1, σ2] accordance with the von

Stengel-Forges constraints]

7 S ← S ⊔ {(σ1, (j2, a)) : a ∈ Aj2}

8 D ← D
h
◁∆Aj2 where h : v 7→ v[σ1, σ2]

9 for σ′
2 ∈ {(j2, a) : a ∈ Aj2} do

10 FillOutRow((σ1, σ
′
2), j1)

11 return (S,D)

Algorithm 9.2: FillOutColumn((σ1, σ2), j2,S,D)
Preconditions :(σ1, σ2) ∈ Σ1 ▷◁ Σ2, j2 ∈ I2, pj2 =

σ2, (σ1, σ2) ∈ S
1 for j1 such that pj1 = σ1 and σ2 ▷◁ j1 do
2 if j1 ⇌ j2 then
3 for σ′ ∈ {(j1, a) : a ∈ Aj1} do

[▷ Fill (σ′
1, σ2) by summing up all entries

{v[σ′
1, (j2, a

′)] : a′ ∈ Aj2}]
4 S ← S ⊔ {(σ′

1, σ2)}

5 D ← D
h
◁{1}where

h : v 7→
∑

a′∈Aj2
v[σ′

1, (j2, a
′)]

6 else
[▷ Fill all {v[(j1, a), σ2] : a ∈ Aj1} by splitting

v[σ1, σ2] accordance with the von

Stengel-Forges constraints]

7 S ← S ⊔ {((j1, a), σ2) : a ∈ Aj1}

8 D ← D
h
◁∆Aj1 where h : v 7→ v[σ1, σ2]

9 for σ′ ∈ {(j1, a) : a ∈ Aj1} do
10 FillOutColumn((σ′

1, σ2), j2)
11 return (S,D)

Lemma 9.6 (Inductive contract for FillOutRow). Suppose that the following preconditions

hold when FillOutRow((σ1, σ2), j1,S,D)) is called:

(Pre1) (σ1, σ2) ∈ Σ1 ▷◁ Σ2;

(Pre2) j1 ∈ I1 is such that pj1 = σ;

(Pre3) S contains only relevant sequence pairs andD consists of vectors indexed by exactly

the indices in S;

(Pre4) (σ1, σ2) ∈ S, but (σ1, σ
′
2) /∈ S for all σ′

2 ≻ σ2;

(Pre5) For all a ∈ j1 and σ′
2 ≽ σ2 such that j1 ▷◁ σ

′
2, ((j1, a), σ′

2) ∈ S;

(Pre6) If j1 ▷◁ σ2, all v ∈ D satisfy the von Stengel-Forges constraint v[σ1, σ2] =∑
a∈j1

v[(j1, a), σ2];

(Pre7) All v ∈ D satisfy the von Stengel-Forges constraints

v[(I, a), pj2] =
∑

a′∈Aj2

v[(I, a), (j2, a
′)]

for all a ∈ j1, and j2 ∈ I2 : j1 ▷◁ j2, pj2 ≽ σ2.

Then, the sets (S ′,D′) returned by the call are such that

(Post1) S ′
contains only relevant sequence pairs and D′

consists of vectors indexed by

§9. GEOMETRY OF CORRELATED STRATEGIES, AND POSITIVE COMPLEXITY RESULTS FOR

OPTIMAL EFCE 197

exactly the indices in S ′
;

(Post2) S ′ = S ⊔ {(σ1, σ
′
2) : σ′

2 ≻ σ2, σ ▷◁ σ
′
2};

(Post3) All v ∈ D′
satisfy the von Stengel-Forges constraints

v[σ1, pj2] =
∑

a′∈Aj2

v[σ1, (j2, a
′)] ∀j2 ∈ I2 : σ ▷◁ j2, pj2 ≽ σ2

and all von Stengel-Forges constraints

v[σ1, σ
′
2] =

∑
a∈Aj1

v[(I, a), σ′
2] ∀σ′

2 ∈ Σ2 : σ′
2 ▷◁ j1, σ

′
2 ≽ σ2.

Proof. By induction.

Base case The base case corresponds to σ2 ∈ Σ2 such that no information set j2 ∈ I2 : pj2 =
σ2 ∧ σ1 ▷◁ j2 exists. In that case, Algorithm 9.1 returns immediately, so (Post1) holds

trivially from (Pre3). Since no j2 such that pj2 = σ2 ∧ σ1 ▷◁ j2 exists, no σ′
2 ≻ σ2 such that

σ1 ▷◁ σ
′
2 exists, so (Post2) holds as well. The first set of constraints of (Post3) is empty, and

the second set reduces to (Pre6).

Inductive step Suppose that the inductive hypothesis holds when σ′
2 ≻ σ2. We will show

that it holds when σ′
2 = σ2 as well. In order to use the inductive hypothesis, we first

need to check that the preconditions are preserved at the time of the recursive call on

Line 10. (Pre1) holds since σ1 ▷◁ j2. (Pre2) holds trivially since σ does not chance. (Pre3)

holds since we are updating S and D in tandem on lines 4, 5 and 7, 8. (Pre4) holds since

by the time of the recursive call we have only filled in entries (σ1, σ
′
2) where σ′

2 is an

immediate successor of σ2. (Pre5) at Line 10 holds trivially, since it refers to a subset of

the entries for which the condition held at the beginning of the call. (Pre6) holds because

j1 ▷◁ σ
′
2 ⇐⇒ j1 ⇌ j2. Hence, if j1 ▷◁ σ

′
2 then Lines 4 and 5 must have run. (Pre7) at Line

10 holds trivially, since it refers to a subset of the constraints for which the condition held

at the beginning of the call. Using the inductive hypothesis, (Post1), (Post2), and the

second set of constraints in (Post3) follow immediately. The only constraints that are left

to be verified are

v[σ1, σ2] =
∑

a′∈Aj2

v[σ1, (j2, a
′)] ∀j2 ∈ I2 : σ ▷◁ j2, pj2 = σ2. (9.3)

That constraint is guaranteed by Lines 7 and 8 for all j2 ̸⇌ j1. So, we need to verify

that it holds for all those j2 such that pj2 = σ2, σ ▷◁ j2 and j1 ⇌ j2. Let j2 be one such

198 §9.4. SCALED-EXTENSION-BASED STRUCTURAL DECOMPOSITION FOR V

information set. Then, from Lines 4 and 5 we have that

v[σ1, (j2, a)] =
∑

a′∈Aj1

v[(I, a′), (j2, a)] ∀a ∈ Aj2 .

Summing the above equations across all a ∈ Aj2 and using (Pre7) yields∑
a∈Aj2

v[σ1, (j2, a)] =
∑
a∈Aj2

∑
a′∈Aj1

v[(I, a′), (j2, a)]

=
∑

a′∈Aj1

∑
a∈Aj2

v[(I, a′), (j2, a)]

=
∑

a′∈Aj1

v[(I, a′), pj2]

=
∑

a′∈Aj1

v[(I, a′), σ2],

where we used the hypothesis that pj2 = σ2 in the last equality. Finally, since j1 ⇌ j2

and pj2 = σ2, it must be j1 ▷◁ σ2 and so, using (Pre6), we obtain that∑
a∈Aj2

v[σ1, (j2, a)] = v[σ1, σ2],

completing the proof of Equation (9.3). So, (Post3) holds as well and the proof of the

inductive step is complete.

The inductive contract for FillOutColumn is symmetric.

§9. GEOMETRY OF CORRELATED STRATEGIES, AND POSITIVE COMPLEXITY RESULTS FOR

OPTIMAL EFCE 199

9.4.4.2 The full decomposition algorithm

We are now ready to present the full decomposition algorithm.

Algorithm 9.3: Decompose((σ1, σ2),S,D)
Preconditions :(σ1, σ2) ∈ Σ1 ▷◁ Σ2, (σ1, σ2) ∈ S

1 B ← {}
2 for all i ∈ {1, 2}, I ∈ Ii, pI = σi, σ−i ▷◁ I do
3 if the σ−i-rank of I is 0 then
4 B ← B ⊔ I
5 for (j1, j2) ∈ I1 × I2 such that pj1 = σ1, pj2 = σ2, j1 ⇌ j2 do
6 if the σ2-rank of j1 is ⩾ the σ1-rank of j2 then
7 B ← B ⊔ j1
8 else
9 B ← B ⊔ j2

10 for I ∈ B do
11 if I ∈ I1 then

[▷ Fill all {v[(I, a), σ2] : a ∈ AI} by splitting v[σ1, σ2] accordance with the von Stengel-Forges

constraints]

12 S ← S ⊔ {((I, a), σ2) : a ∈ AI}

13 D ← D
h
◁∆AI

where h : v 7→ v[σ1, σ2]
14 for σ′

1 ∈ {(I, a) : a ∈ AI} do [▷ Recursive call]

15 Decompose((σ′
1, σ2),S,D)

[▷ Fill a portion of the row for σ1]

16 for j2 ∈ I2 : σ1 ▷◁ j2, pj2 = σ2 do
17 for σ′

2 ∈ {(j2, a
′) : a′ ∈ Aj2} do

[▷ Fill (σ1, σ
′
2) by summing up all entries {v[(I, a′), σ′

2] : a′ ∈ AI}]
18 S ← S ⊔ {(σ1, σ

′
2)}

19 D ← D
h
◁{1}where h : v 7→

∑
a′∈AI

v[(I, a′), σ′
2]

20 FillOutRow((σ1, σ
′
2), I)

21 else
[▷ Fill all {v[σ1, (I, a)] : a ∈ AI} by splitting v[σ1, σ2] accordance with the von Stengel-Forges

constraints]

22 S ← S ⊔ {(σ1, (I, a)) : a ∈ AI}

23 D ← D
h
◁∆AI

where h : v 7→ v[σ1, σ2]
24 for σ′

2 ∈ {(I, a) : a ∈ AI} do [▷ Recursive call]

25 Decompose((σ1, σ
′
2),S,D)

[▷ Fill a portion of the column for σ2]

26 for j1 ∈ I1 : σ2 ▷◁ j1, pj1 = σ1 do
27 for σ′

1 ∈ {(j1, a
′) : a′ ∈ Aj1} do

[▷ Fill (σ′
1, σ2) by summing up all entries {v[σ′

1, (I, a′)] : a′ ∈ AI}]
28 S ← S ⊔ {(σ′

1, σ2)}

29 D ← D
h
◁{1}where h : v 7→

∑
a′∈AI

v[σ′
1, (I, a′)]

30 FillOutColumn((σ′
1, σ2), I)

31 return (S,D)

200 §9.4. SCALED-EXTENSION-BASED STRUCTURAL DECOMPOSITION FOR V

Lemma 9.7 (Inductive contract for Decompose). Assume that at the beginning of each call to

Decompose((σ1, σ2),S,D) the following conditions hold

(Pre1) S contains only relevant sequence pairs andD consists of vectors indexed by exactly

the indices in S.

(Pre2) S does not contain any relevant sequence pairs which are descendants of (σ1, σ2),
with the only exception of (σ1, σ2) itself. In formulas,

S ∩ {(σ′
1, σ

′
2) ∈ Σ1 × Σ2 : σ′

1 ≽ σ1, σ
′
2 ≽ σ2} = {(σ1, σ2)}.

Then, at the end of the call, the returned sets (S ′,D′) are such that

(Post1) S ′
contains only relevant sequence pairs and D′

consists of vectors v indexed by

exactly the indices in S ′
.

(Post2) The call has filled in exactly all relevant sequence pair indices that are descendants

of (σ1, σ2) (except for (σ1, σ2) itself, which was already filled in). In formulas,

S ′ = S ⊔ {(σ′
1, σ

′
2) ∈ Σ1 × Σ2 : σ′

1 ≽ σ1, σ
′
2 ≽ σ2, (σ′

1, σ
′
2) ̸= (σ1, σ2), σ′

1 ▷◁ σ
′
2}.

(Post3) D′
satisfies the subset of von Stengel-Forges constraints∑
a∈AI

v[(I, a), σ′
2] = v[pI , σ′

2] ∀σ′
2 ≽ σ2, I ∈ I1 s.t. σ′

2 ▷◁ I, pI ≽ σ1∑
a∈AJ

v[σ′
1, (J, a)] = v[σ′

1, pJ] ∀σ′
1 ≽ σ1, J ∈ I2 s.t. σ′

1 ▷◁ J, pJ ≽ σ2.

Proof. By induction.

Base case The base case is any (σ1, σ2) such that there is no σ′
1 ≽ σ1, σ

′
2 ≽ σ2, σ′

1 ▷◁ σ
′
2. In that

case, the set B is empty, so the algorithm terminates immediately without modifying

the sets S and D. Consequently, (Post1) and (Post2) hold trivially from (Pre1) and (Pre2).

(Post3) reduces to an empty set of constraints, so (Post3) holds as well.

Inductive step In order to use the inductive hypothesis, we will need to prove that the

preconditions for Decompose hold on Lines 15 and 25. We will focus on Line 15 (I ∈ I1),

as the analysis for the other case (I ∈ I2) is symmetric. (Pre1) clearly holds, since

we always update S and D in tandem. Since all iterations of the for loop on Line 10

touch different information sets, at the time of the recursive call on Line 15, and given

(Post2) for all previous recursive calls, the only relevant sequence pairs (σ′′
1 , σ

′′
2) such that

σ′′
1 ≽ σ′

1, σ
′′
2 ≽ σ2 that have been filled are the ones on Lines 12 and 13. So, (Pre2) holds.

§9. GEOMETRY OF CORRELATED STRATEGIES, AND POSITIVE COMPLEXITY RESULTS FOR

OPTIMAL EFCE 201

We now check that the preconditions for FillOutRow hold at Line 20. (Pre1), (Pre2),

(Pre3), and (Pre4) are trivial. (Pre5) and (Pre7) are guaranteed by (Post2) and (Post3) of

Decompose applied to Line 15. (Pre6) holds because of Lines 18 and 19.

Using the inductive contracts of FillOutRow, FillOutColumn and Decompose for the recursive

calls, we now show that all postconditions hold at the end of the call. (Post1) is trivial

since we always update S and D together. (Post2) holds by keeping track of what entries

are filled in Lines 12, 13, 18, 19, 22, 23, 28, 29, as well as those filled in the calls to

FillOutRow, FillOutColumn and Decompose, as regulated by postcondition (Post2) in the

inductive contracts of the functions. In order to verify (Post3), we need to verify that the

constraints that are not already guaranteed by the recursive calls hold. In particular, we

need to verify that

A
∑
a∈AI

v[(I, a), σ2] = v[σ1, σ2] ∀I ∈ I1 s.t. σ2 ▷◁ I, pI = σ1, I /∈ B

B
∑
a∈AJ

v[σ1, (J, a)] = v[σ1, σ2] ∀J ∈ I2 s.t. σ1 ▷◁ J, pJ = σ2, J /∈ B.

We will show that constraints A hold; the proof for B is symmetric. Using Lemma 9.5

together with the definition ofB (Lines 1-9), any information set I ∈ Ii : pI = σi, σ−i ▷◁ I

that is not inBmust haveσ−i-rank exactly 1. Let I ∈ I1 be such thatσ2 ▷◁ I, pI = σ1, I /∈ B,

as required in A . Since the σ2-rank of I is 1, let J be the only information set in I2 such

that I ⇌ J, pJ = σ2. Note that J ∈ B. The entries v[(I, a), σ2] : a ∈ AI were filled in

Lines 28 and 29 when the for loop picked up J ∈ B. So, in particular,

v[(I, a), σ2] =
∑
a′∈AJ

v[(I, a), (J, a′)] ∀a ∈ AI .

Summing the above equations across a ∈ AI , we obtain∑
a∈AI

v[(I, a), σ2] =
∑
a∈AI

∑
a′∈AJ

v[(I, a), (J, a′)]

=
∑
a′∈AJ

∑
a∈AI

v[(I, a), (J, a′)]

=
∑
a′∈AJ

v[σ1, (J, a′)]

= v[σ1, σ2],

where the last equation follows from the way the entries v[σ1, (J, a′)] : a′ ∈ AJ were

filled in (Lines 22 and 23). This shows that the set of constraints A hold.

We are now ready to conclude the proof of correctness for the decomposition algorithm.

202 §9.4. SCALED-EXTENSION-BASED STRUCTURAL DECOMPOSITION FOR V

Theorem 9.3. The von Stengel-Forges polytope V of a two-player perfect-recall triangle-free

EFG can be expressed via a sequence of scaled extensions with simplexes and singleton sets:

V = {1} h1
◁ X1

h2
◁ X2

h3
◁ · · · hn

◁ Xn, (9.4)

where, for i = 1, . . . , n, either Xi = ∆si
for some simplex dimension si ∈ ℕ, or Xi = {1}, and

hi is a linear function. Furthermore, an exact algorithm exists to compute such expression in

linear time in the dimensionality of V , and so, in time at most quadratic in the size of the

game.

Proof. The correctness of the algorithm follow from (Post3) in the inductive contract. Every

time the set of partially-filled-in vectorsD gets extended, it is extended with either the singleton

set {1} or a simplex. In either case the nonnegative affine functions h used are linear. So, the

decomposition structure is as in the statement. Finally, since the overhead of each call (on top

of the recursive calls) is linear in the number of relevant sequence pairs (σ, τ) ∈ Σ1 ▷◁ Σ2 that

are filled, and each relevant sequence pair is filled only once, the complexity of the algorithm

is linear in the number of relevant sequence pairs.

9.4.5 Integrality of the vertices of V in triangle-free games

The scaled-based decomposition of V can be used to conclude the integrality of the vertices of V ,

by leveraging the following analytical result about the scaled extension operation.

Lemma 9.8. Let X ,Y , and h be as in Definition 4.1. If X is a convex polytope with

vertices {x1, . . . ,xn}, and Y is a convex polytope with vertices {y1, . . . ,ym}, then X h
◁Y is a

convex polytope whose vertices are a nonempty subset of {(xi, h(xi)yj) : i ∈ {1, . . . , n}, j ∈
{1, . . . ,m}}.

Proof. Take any point z ∈ X h
◁Y . By definition of scaled, extension, there exist x ∈ X ,y ∈ Y

such that z = (x, h(x)y). Since {x1, . . . ,xn} are the vertices of X , x can be written as a convex

combination x =
∑n
i=1 λixi where (λ1, . . . , λn) ∈ ∆n

. Similarly, y =
∑m
i=1 µiyi for some

(µ1, . . . ,µm) ∈ ∆m
. Hence, using the hypothesis that h is affine, we can write

z = (x, h(x)y) =

 n∑
i=1

λixi, h

(
n∑
i=1

λixi

)
m∑
j=1

µjyj



§9. GEOMETRY OF CORRELATED STRATEGIES, AND POSITIVE COMPLEXITY RESULTS FOR

OPTIMAL EFCE 203

=

 n∑
i=1

λixi,

(
n∑
i=1

λih(xi)
)

m∑
j=1

µjyj

 =
n∑
i=1

m∑
j=1

λiµj
(
xi, h(xi)yj

)
.

Since λiµj ⩾ 0 for all i ∈ [[n]], j ∈ [[m]] and

n∑
i=1

m∑
j=1

λiµj =
(

n∑
i=1

λi

) m∑
j=1

µj

 = 1,

we conclude that z ∈ co{(xi, h(xi)yj) : i ∈ [[n]], j ∈ [[m]]}. On the other hand, (xi, h(xi)yj) ∈

X h
◁Y , so

X h
◁Y = co

{(
xi, h(xi)yj

)
: i ∈ [[n]], j ∈ [[m]]

}
.

Since the vertices of a (nonempty) polytope are a (nonempty) subset of any convex basis for the

polytope, the vertices of X h
◁Y must be a nonempty subset of

{
(xi, h(xi)yj) : i ∈ [[n]], j ∈ [[m]]

}
,

which is the statement.

In particular, by applying Lemma 9.8 inductively on the structure of the scaled-extension-based

structural decomposition of V , we obtain the following theorem.

Theorem 9.4. Let V be the von Stengel-Forges polytope of a two-player triangle-free game

(Definition 9.5). All vertices of V have integer {0, 1} coordinates.

Proof. We prove the statement by induction over the scaled-extension-based decomposition

V = {1} h1
◁ X1

h2
◁ · · · hn

◁ Xn.

In particular, we will show that for all k = 0, . . . , n, the coordinates of the vertices of the

polytope

Vk = {1} h1
◁ · · · hk

◁ Xk

constructed by considering only the first k scaled extensions in the decomposition are all

integer. Since V ⊆ [0, 1]Σ1▷◁Σ2
(Remark 9.1), this immediately implies that each coordinate is in

{0, 1}.

Base case: k = 0. In this case, V0 = {1}. The only vertex is {1}, which is integer. So, base case

trivially holds.

204 §9.4. SCALED-EXTENSION-BASED STRUCTURAL DECOMPOSITION FOR V

Inductive step Suppose that the polytope Vk (k < n) has integer vertices. We will show

that the same holds for Vk+1. Clearly, Vk+1 = Vk
hk+1
◁ Xk+1. From the properties of the

structural decomposition, we know that Kk+1 is either the singleton {1}, or a probability

simplex ∆sk+1
for some appropriate dimension sk+1. We break the analysis accordingly.

• If Xk+1 = {1}, the scaled extension represents filling in a linearly-dependent entry

in v ∈ V by summing already-filled-in entries. So, hk+1 takes a partially-filled-in

vector from Vk and sums up some of its coordinates. Let v1, . . . ,vn be the vertices

of Vk. Using Lemma 9.8, the vertices of Vk+1 are a subset of

{(vi, h(vi) · 1) : i = 1, . . . , n}. (9.5)

Since by inductive hypothesis vi have integer coordinates, and h sums up some of

them, h(v)i is integer for all i = 1, . . . , n. So, all of the vectors in (9.5) have integer

coordinates, and in particular this must be true of the vertices of Vk+1.

• If Xk+1 = ∆sk+1
, the scaled extension represents the operation of partitioning an

already-filled-in entry v[σ, τ] of Vk into si non-negative real values. The affine

function hk+1 extracts the entry v[σ, τ] from each vector v ∈ Vk. Let v1, . . . ,vn be the

vertices of Vk. The vertices of ∆sk+1
are the canonical basis vectors {e1, . . . , esk+1}.

From Lemma 9.8, the vertices of Vk+1 are a subset of

{(vi, h(vi)ej) : i = 1, . . . , n, j = 1, . . . , sk+1}

= {(vi, vi[σ, τ]ej) : i = 1, . . . , n, j = 1, . . . , sk+1}. (9.6)

Since by inductive hypothesis the vertices vi have integer coordinates, vi[σ, τ] is an

integer. Since the canonical basis vector only have entries in {0, 1}, all of the vectors

in (9.6) have integer coordinates. So, in particular, this must be true of the vertices

of Vk+1.

Finally, combining Theorem 9.4 and Theorem 9.1, we obtain the central theorem of this

chapter.

Theorem 9.5. In a two-player perfect-recall imperfect-information extensive-form game that

satisfies the triangle-freeness condition (Definition 9.5), the polytope of correlation plans

coincides with the von Stengel-Forges polytope. Consequently, an optimal EFCE can be

computed in polynomial time (in the size of the input imperfect-information extensive-form

game) in two-player triangle-free games.

§9. GEOMETRY OF CORRELATED STRATEGIES, AND POSITIVE COMPLEXITY RESULTS FOR

OPTIMAL EFCE 205

9.5 Beyond triangle-freeness

The result established in Theorem 9.3 shows that, in certain games, the polytope of correlation

plans can be expressed as a polynomially-sized chain of scaled extension operations. This

characterization implies that an optimal EFCE can be found in polynomial time, and, as we

will show in Chapter 10, it also enables the construction of practical no-regret algorithms via

the formalism of regret circuits (Chapter 4). In work following the introduction of the result,

B. H. Zhang, Farina, Celli, and Sandholm (2022) showed that a characterization of Ξ based on

scaled extension exists in any game, though it might not be of polynomial size.
[9.a]

To establish

that result, which will not be discussed in detail in this dissertation, we used techniques from

the theory of tree decompositions to construct a polytope of dimension typically exponential in

the input game tree size, whose vertices are guaranteed to map onto the vertices of the polytope

of correlation plans via a linear projection. We remark that the length of the chain of scaled

extension operations that define the polytope whose projection is Ξ is exponential in a parameter

that intuitively represent the amount of uncommon information between the players, thereby

yielding the current state-of-the-art parameterized complexity results for the computation of

optimal EFCE in general imperfect-information extensive-form games.

We refer the interested reader to the paper by B. H. Zhang, Farina, Celli, and Sandholm (2022)

for the result, and to prior work by B. H. Zhang, Farina, and Sandholm (2023) and B. H. Zhang

and Sandholm (2022a) as a gentle introduction on how the machinery of tree decomposition can

be applied in correlated strategy spaces, and how that relates to scaled extension.

9.6 Experimental investigation of utilities reached by EFCE

The characterization of the polytope of correlation plans given in this chapter enables visualizing,

for the first time, the polytope of all expected utility profiles that can be reached by EFCEs. Indeed,

recall that the expected utility for any player is a linear function of the correlation plan ξ. Hence,

set of all utilities reachable by EFCE is a linear transformation of the polytope of EFCE defined by

constraints 1 - 4 in Proposition 9.1, and can thus be computed efficiently.

In the next two subsections, we use the characterization of the polytope of correlation plans to

investigate empirically the set of expected utilities that can be reached by EFCE in game instances

drawn from a variety of standard parametric classes, identified with an alphabetical mnemonic:

B – battleship, D – liar’s dice, K – Kuhn poker, L – Leduc poker, RS – ridesharing game,

S – sheriff, T – three-player tricks game, TP – double dummy bridge game. As in the other

chapters, a full description of the games is available in Appendix A.

[9.a]
As discussed, the exponential size cannot be avoided, unless P = NP. See also von Stengel and Forges (2008).

206 §9.6. EXPERIMENTAL INVESTIGATION OF UTILITIES REACHED BY EFCE

9.6.1 Two-player general-sum games

Figure 9.3 shows the polytopes of expected utilities that can be reached by EFCE in three two-player

general-sum games. We observe that both the shape of the polytope and the range of reachable

payoffs is highly nontrivial. This empirically suggests that being able to search and optimize over

the space of EFCE (rather than computing a single EFCE without a priori guarantees over the

social welfare, as in Chapter 8) is important.

B2222 — Battleship

−0.203
−0.184
−0.166
−0.147
−0.128
−0.109
−0.090
−0.071
−0.053
−0.034
−0.015

−
0.

58
5

−
0.

55
8

−
0.

53
1

−
0.

50
4

−
0.

47
7

−
0.

45
0

−
0.

42
3

−
0.

39
6

−
0.

36
9

−
0.

34
2

−
0.

31
5

P
l
a
y
e
r

1
’
s

u
t
i
l
i
t
y
→

Player 2’s utility→

S2122 — Sheriff

0.175
0.949
1.722
2.495
3.268
4.041
4.814
5.587
6.360
7.133
7.906

−
0.

38
4

0.
07

7
0.

53
8

0.
99

9
1.

46
0

1.
92

1
2.

38
2

2.
84

3
3.

30
4

3.
76

5
4.

22
6

Player 2’s utility→

RS212 — Ridesharing

2.844
2.869
2.894
2.919
2.943
2.968
2.993
3.018
3.043
3.067
3.092

2.
84

4
2.

86
9

2.
89

4
2.

91
9

2.
94

3
2.

96
8

2.
99

3
3.

01
8

3.
04

3
3.

06
7

3.
09

2

Player 2’s utility→

Figure 9.3: Polytope of expected utilities for the players that can be reached via extensive-form correlated

equilibria in three standard two-player general-sum imperfect-information extensive-form games.

9.6.2 Three-player zero-sum games

Figure 9.3 shows the polytopes of expected utilities that can be reached by EFCE across six

three-player zero-sum games. We remark that despite the appearance of curved boundaries, the

set of payoffs reachable by EFCE, being the linear projection of a polytope with finitely many

facets, must itself be a polytope defined by finitely many facets. The experimental data confirms

the conclusion we drew in the case of two-player games (Figure 9.3): both the shape of the

polytope and the range of reachable payoffs is highly nontrivial. Once again, this empirically

suggests that being able to search and optimize over the space of EFCE (rather than computing a

single EFCE without a priori guarantees over the social welfare, as in Chapter 8) is important.

§9. GEOMETRY OF CORRELATED STRATEGIES, AND POSITIVE COMPLEXITY RESULTS FOR

OPTIMAL EFCE 207

K34 — Kuhn poker

−0.036
−0.034
−0.032
−0.030
−0.028
−0.026
−0.024
−0.022
−0.020
−0.018
−0.016

−
0.025

−
0.023

−
0.021

−
0.019

−
0.017

−
0.015

−
0.013

−
0.011

−
0.009

−
0.007

−
0.005

0.
04

1
0.

04
3

0.
04

5
0.

04
7

0.
04

9
0.

05
1

0.
05

3
0.

05
5

0.
05

7
0.

05
9

0.
06

1

P
l
a
y
e
r
1
’s

u
t
i
l
i
t
y
→ P

l
a
y
e
r
3
’s

u
t
i
l
i
t
y
→

← Player 2’s utility

K35 — Kuhn poker

−0.046
−0.043
−0.039
−0.035
−0.031
−0.027
−0.024
−0.020
−0.016
−0.012
−0.009

−
0.016

−
0.012

−
0.008

−
0.004

−
0.001

0.003

0.007

0.011

0.014

0.018

0.022

0.
02

4
0.

02
8

0.
03

2
0.

03
6

0.
03

9
0.

04
3

0.
04

7
0.

05
1

0.
05

5
0.

05
8

0.
06

2

P
l
a
y
e
r
1
’s

u
t
i
l
i
t
y
→ P

l
a
y
e
r
3
’s

u
t
i
l
i
t
y
→

← Player 2’s utility

L3223 — Leduc poker

−1.487
−1.100
−0.713
−0.326

0.060
0.447

0.834
1.221

1.607
1.994

2.381

−
1.282

−
0.895

−
0.508

−
0.122

0.265

0.652

1.039

1.425

1.812

2.199

2.586

−
1.

09
9

−
0.

71
2

−
0.

32
5

0.
06

1
0.

44
8

0.
83

5
1.

22
1

1.
60

8
1.

99
5

2.
38

2
2.

76
8

P
l
a
y
e
r
1
’s

u
t
i
l
i
t
y
→ P

l
a
y
e
r
3
’s

u
t
i
l
i
t
y
→

← Player 2’s utility

D32 — Liar’s dice

−0.050
0.010

0.070
0.130

0.190
0.250

0.310
0.370

0.430
0.490

0.550

−
0.275

−
0.215

−
0.155

−
0.095

−
0.035

0.025

0.085

0.145

0.205

0.265

0.325

−
0.

27
5

−
0.

21
5

−
0.

15
5

−
0.

09
5

−
0.

03
5

0.
02

5
0.

08
5

0.
14

5
0.

20
5

0.
26

5
0.

32
5

P
l
a
y
e
r
1
’s

u
t
i
l
i
t
y
→ P

l
a
y
e
r
3
’s

u
t
i
l
i
t
y
→

← Player 2’s utility

T3[50] — Tricks

1.132
1.190

1.247
1.305

1.362
1.420

1.478
1.535

1.593
1.650

1.708

0.876

0.934

0.991

1.049

1.106

1.164

1.222

1.279

1.337

1.394

1.452

0.
41

6
0.

47
4

0.
53

1
0.

58
9

0.
64

6
0.

70
4

0.
76

2
0.

81
9

0.
87

7
0.

93
4

0.
99

2

P
l
a
y
e
r
1
’s

u
t
i
l
i
t
y
→ P

l
a
y
e
r
3
’s

u
t
i
l
i
t
y
→

← Player 2’s utility

TP3 — Double-dummy bridge

1.009
1.088

1.167
1.246

1.325
1.404

1.483
1.562

1.641
1.720

1.799

0.815

0.894

0.973

1.052

1.131

1.210

1.289

1.368

1.447

1.526

1.605

0.
38

6
0.

46
5

0.
54

4
0.

62
3

0.
70

2
0.

78
1

0.
86

0
0.

93
9

1.
01

8
1.

09
7

1.
17

5

P
l
a
y
e
r
1
’s

u
t
i
l
i
t
y
→ P

l
a
y
e
r
3
’s

u
t
i
l
i
t
y
→

← Player 2’s utility

Figure 9.4: Polytope of expected utilities for the players that can be reached via extensive-form correlated

equilibria in three standard three-player zero-sum imperfect-information extensive-form games.

9.A Appendix: Additional lemmas on the structure of V

Lemma 9.9. Let v ∈ V . For all σ1 ∈ Σ1 such that v[σ1,∅] = 0, v[σ1, σ2] = 0 for all σ2 ▷◁ σ1.

Similarly, for all σ2 ∈ Σ2 such that v[∅, σ2] = 0, v[σ1, σ2] = 0 for all σ1 ▷◁ σ2.

Proof. We prove the theorem by induction on the depth of the sequences σ1 and σ2. The depth

depth(σ) of a generic sequence σ = (I, a) ∈ Σi of Player i is defined as the number of actions

that Player i plays on the path from the root of the tree down to action a at information set I

included. Conventionally, we let the depth of the empty sequence be 0.

208 §9.A. APPENDIX: ADDITIONAL LEMMAS ON THE STRUCTURE OF V

Take σ1 ∈ Σ1 such that v[σ1,∅] = 0. For σ2 of depth 0 (that is, σ2 = ∅), clearly

v[σ1, σ2] = 0. For the inductive step, suppose that v[σ1, σ2] = 0 for all σ2 ∈ Σ2, σ1 ▷◁ σ2

such that depth(σ2) ⩽ d2. We will show that v[σ2, σ2] = 0 for depth(σ2) ⩽ d2 + 1. Indeed,

let (I, a′) = σ2 ▷◁ σ1 of depth d2 + 1. Since v ∈ V , in particular the von Stengel-Forges

constraint

∑
a∈AI

v[σ1, (I, a)] = v[σ1, pI] must hold. The depth of pI is d2, so by the inductive

hypothesis, it must be v[σ1, pI] = 0, and therefore

∑
a∈AI

v[σ1, (I, a)] = 0. But all entries of v

are nonnegative, so it must be v[σ1, (I, a)] = 0 for all a ∈ AI , and in particular for (I, a′) = σ2.

This completes the proof by induction.

The proof for the second part is analogous.

Lemma 9.10. Let v ∈ V have integer {0, 1} coordinates. Then, for all (σ1, σ2) ∈ Σ1 ▷◁ Σ2, it

holds that

v[σ1, σ2] = v[σ1,∅] · v[∅, σ2].

Proof. We prove the theorem by induction on the depth of the sequences, similarly to Lemma 9.9.

The base case for the induction proof corresponds to the case where σ1 and σ2 both have

depth 0, that is, σ1 = σ2 = ∅. In that case, the theorem is clearly true, because v[∅,∅] = 1 as

part of the von Stengel-Forges constraints (Definition 9.3).

Now, suppose that the statement holds as long as depth(σ1),depth(σ2) ⩽ d. We will show

that the statement will hold for any (σ1, σ2) ∈ Σ1 ▷◁ Σ2 such that depth(σ1),depth(σ2) ⩽ d+ 1.

Indeed, consider (σ1, σ2) ∈ Σ1 ▷◁ Σ2 such that depth(σ1),depth(σ2) ⩽ d + 1. If any of the

sequences is the empty sequence, the statements holds trivially, so assume that neither is the

empty sequence and in particular σ1 = (I, a), σ2 = (J, b). If v[σ1,∅] = 0, then from Lemma 9.9

v[σ1, σ2] = 0 and the statement holds. Similarly, if v[∅, σ2] = 0, then v[σ1, σ2] = 0, and the

statement holds. Hence, the only remaining case given the integrality assumption on the

coordinates of v is v[σ1,∅] = v[∅, σ2] = 1.

From the von Stengel-Forges constraints,

v[pI ,∅] =
∑
a′∈AI

v[(I, a′),∅] = 1 +
∑

a′∈AI ,a′ ̸=a
v[(I, a′),∅] ⩾ 1.

Hence, because all entries of v are in {0, 1}, it must be v[pI ,∅] = 1 and v[(I, a′),∅] = 0 for all

a′ ∈ AI , a′ ̸= a. With a similar argument we conclude that v[∅, pJ] = 1 and v[∅, (J, b′)] = 0
for all b′ ∈ AJ , b ̸= b′

. Using the inductive hypothesis,

v[pI , pJ] = v[pI ,∅] · v[∅, pJ] = 1.

§9. GEOMETRY OF CORRELATED STRATEGIES, AND POSITIVE COMPLEXITY RESULTS FOR

OPTIMAL EFCE 209

Now, using the von Stengel-Forges constraints together with the equality v[pI , pJ] = 1 we

just proved, we conclude that ∑
a′∈AI

∑
b′∈AJ

v[(I, a′), (J, b′)] = 1. (9.7)

On the other hand, since v[(I, a′),∅] = 0 for all a′ ∈ AI , a′ ̸= a and v[∅, (J, b′)] = 0 for all

b′ ∈ AJ , b′ ̸= b, from Lemma 9.9 we have that

a′ ̸= a ∨ b′ ̸= b =⇒ v[(I, a′), (J, b′)] = 0. (9.8)

From (9.8) and (9.7), we conclude that v[(I, a), (J, b)] = v[σ1, σ2] = 1 = v[σ1,∅] · v[∅, σ2], as

we wanted to show.

9.B Appendix: Optimal EFCE as a linear program

In order to express the utility of a trigger agent, it is necessary to compute the probability of the

game ending in each of the terminal states. To do that, for the purposes of this appendix we

introduce the following additional notation:

• Πi(I), is the set of reduced-normal-form strategies that can lead to information set I

(which belongs to Player i) assuming that the other player acts to do so as well. This is

equivalent (assuming no zero-chance nodes or disconnected game trees) to saying that all

reduced-normal-from strategies in Πi(I) have some action which belongs to information set

I . Formally,

Πi(I) := {π ∈ Πi : π[pI] = 1}.

• Πi(Ia) is the set of reduced normal form strategies which will lead to information set I

and recommend the action a at I . This is equivalent to the set of reduced normal form

strategies which contain a as part of their recommendation (this set is typically a subset of

Πi(Ia)).Formally,

Πi(Ia) := {π ∈ Πi : π[Ia] = 1}.

• σi(z) is the last sequence belonging to Player i on the path from the roof of the game tree to

the terminal state z ∈ Z .

• Πi(z) is the set of reduced-normal-form strategies which can lead to the terminal state z

(assuming the other player players to do so). This is equivalent to Πi(σi(z)).

210 §9.B. APPENDIX: OPTIMAL EFCE AS A LINEAR PROGRAM

For simplicity, we focus on the two-player case; generalizing to the general case is straight-

forward. Consider the random variable tσ̂ : Π1 × Π2 × Π1(Î) → Z that maps a triple of

reduced-normal-form strategies (π1,π2, π̂1) to the terminal state of the game that is reached

when Player 1 is a σ̂-trigger agent and Player 2 follows all recommendations. We are interested in

expressing the probability of terminating at each z ∈ Z for a σ̂-trigger agent, given the mediator’s

joint distribution µ over reduced normal form strategies and the trigger strategy µ̂ for the deviating

player, which we will assume to be Player 1 without loss of generality. For each trigger σ̂, the

terminal leaves may be partitioned into the following 3 sets.

• Zσ̂ (or equivalently ZÎ,â) is the set of terminal nodes that are descendants of the trigger

σ̂ = (Î , â). In order for the game to end in one of these terminal nodes, it is necessary that the

recommendation device recommended to Player 1 the trigger sequence σ̂, and therefore the

agent must have deviated. Furthermore, Player 2 must have been recommended the terminal

sequence σ2(z) corresponding to the terminal state, and finally π̂1 must be compatible with

σ1(z). We can capture all these constraints concisely by saying that the sampled (π1,π2, π̂1)
must be such that π1 ∈ Π1(σ̂), π2 ∈ Π2(z) and π̂1 ∈ Π1(z). Therefore the probability that a

σ̂ trigger agent terminates at some z ∈ Zσ̂ is given by,

ℙµ,µ̂[tσ̂ = z ∈ Zσ̂] =

 ∑
π1∈Π1(σ̂)
π2∈Π2(z)

µ(π1,π2)


 ∑

π̂1∈Π1(z)

µ̂1(π̂1)

,
where the first term in the product is the probability that Player 2 plays to z and Player 1
gets triggered, and the second term is the probability that the deviation strategy from Player

1 upon getting triggered is one that reaches z.

• ZÎ is the set of terminal states that are descendant of any sequence in Î , except σ̂. In

order for the game to reach this terminal state, recommendations issued to Player 1 by the

correlation device must have been such that Player 1 reached Î . There are two cases: either

the correlation device recommended σ̂ at Î , or it did not. In the former case, Player 1 started

deviating (using the sampled reduced-normal-form plan π̂1); hence, in this case it must be

π̂1 ∈ Π1(z). In the latter case, Player 1 does not deviate from the recommendation, and

therefore it must be π1 ∈ Π1(z). Either way, Player 2 must have been recommended the

terminal sequence z corresponding to the terminal state z; that is, π2 ∈ Π2(z). Collecting all

these constraints, it must be

(π1,π2, π̂1) ∈ Π1(σ̂)×Π2(z)×Π1(z) ∪ Π1(z)×Π2(z)×Π1(Î).

Using the fact that the two cases as to whether or not Player 1 was recommended σ̂ or not at

Î are disjoint, we can write

§9. GEOMETRY OF CORRELATED STRATEGIES, AND POSITIVE COMPLEXITY RESULTS FOR

OPTIMAL EFCE 211

ℙµ,µ̂[tσ̂ = z ∈ ZÎ] =

 ∑
π1∈Π1(σ̂)
π2∈Π2(z)

µ(π1,π2)


 ∑

π̂1∈Π1(z)

µ̂1(π̂1)

+

 ∑
π1∈Π1(z)
π2∈Π2(z)

µ(π1,π2)

.
The first term in the summation may be understood as the probability that the agent was

triggered and its deviation was to play something other than σ̂. The second term is that

probability that the agent was not triggered and the game simply terminates at z based on µ.

• Finally, Z−Î is the set of terminal nodes that are neither in Zσ̂ nor in ZÎ . If the game

has ended in any terminal state that belongs to Z−Î , Player 1 has not deviated from the

recommended strategy, since they have never even reached the trigger information set, Î .

Hence, in this case it must be (π1,π2) ∈ Π1(z)×Π2(z). Hence,

ℙµ,µ̂[tσ̂ = z ∈ Z−Î] =
∑

π1∈Π1(z)
π2∈Π2(z)

µ(π1,π2).

With the above, we can finally express the constraint that no deviation strategy µ̂ can lead to a

higher utility for Player 1 than simply following each recommendation. Indeed, for all µ̂, the

utility of the trigger agent is expressed as∑
z∈Z

u1(z)ℙµ,µ̂[tσ̂ = z],

where the correct expression for ℙµ,µ̂[tσ̂ = z] must be selected depending on whether z ∈ Zσ̂,

z ∈ ZÎ or z ∈ Z−Î . On the other hand, the utility of an agent that follows all recommendations is

∑
z∈Z

u1(z)ℙµ,µ̂[π1 ∈ Π1(z),π2 ∈ Π2(z)] =
∑
z∈Z

u1(z)
∑

π1∈Π1(z)
π2∈Π2(z)

µ(π1,π2)

.
Therefore, following all recommendations is a best response for the σ̂-trigger agent if and only if

µ is chosen so that

∑
z∈Z

u1(z)

ℙµ,µ̂[tσ̂ = z]−
∑

π1∈Π1(z)
π2∈Π2(z)

µ(π1,π2)

 ⩽ 0 ∀µ̂ ∈ ∆Π1(Î). (9.9)

The crucial observation is that all the probabilities ℙµ,µ̂[t = z] defined above can be expressed

via the following quantities:

212 §9.B. APPENDIX: OPTIMAL EFCE AS A LINEAR PROGRAM

y1,σ̂(z) :=
∑

π̂1∈Π1(z)

µ̂1(π̂1) ∀z ∈ Z; ξ1(σ1; z) :=
∑

π1∈Π1(σ1)
π2∈Π2(z)

µ(π1,π2) ∀σ1 ∈ Σ1, z ∈ Z.

For example, for all z ∈ ZÎ we can write

ℙµ,µ̂[tσ̂ = z] = ξ1(σ̂; z)yi,σ̂(z) + ξ1(σ1(z); z).

When deviations relative to Player 2 are brought into the picture, the following two sets of

symmetric quantities also become relevant:

y2,σ̂(z) :=
∑

π̂2∈Π2(z)

µ̂1(π̂2) ∀z ∈ Z; ξ2(σ2; z) :=
∑

π1∈Π1(z)
π2∈Π2(σ2)

µ(π1,π2) ∀σ2 ∈ Σ2, z ∈ Z.

It is now natural to perform a change of variables, and pick (correlated) distributions for the

random variables y1,σ̂(·), y2,σ̂(·), ξ1(·; ·) and ξ2(·; ·) instead of µ, µ̂1 and µ̂2. Since there are only a

polynomial number (in the game tree size) of combinations of arguments for these new random

variables, this approach would allow one to remove the redundancy of realization-equivalent

normal-form plans and focus on a polynomially-small search space. In the case of the random

variables y1,σ̂ and y2,σ̂ , it is clear that the change of variables is possible via the sequence form (von

Stengel, 2002). Therefore, the only difficulty is in characterizing the space spanned by ξ1 and ξ2

as µ varies across the probability simplex, which has been the focus of the present chapter.

Chapter 10

Learning optimal extensive-form
correlated equilibria

10.1 Contributions
In this chapter, we propose the first no-regret learning algorithm that guarantees convergence to

an optimal EFCE. Specifically, we show that computing optimal EFCE in multiplayer imperfect-

information extensive-form games can be cast as solving a bilinear saddle-point problem. This

unlocks applying rich technology, both theoretical and experimental, developed so far for

computing bilinear saddle points (for example, Nash equilibria in zero-sum games) for the more

challenging—and much less understood—problem of computing optimal equilibria.

To establish the result, we build on the structural understanding of the polytope of correlation

plans Ξ, which we developed in Chapter 9, to cast the computation of optimal EFCE as a max-min

equilibrium over two heavily structured domains: Ξ on the one side, and a Cartesian product of

rescaled sequence-form strategy polytopes on the other. By then leveraging the machinery of

regret circuits, together with the insight regarding the scaled-extension-based decomposition of

Ξ, we are able to construct learning algorithms that are able to compute EFCE at significantly

faster and at a significantly larger scale than the best prior approach based on linear programming

(Proposition 9.1).

We experimentally evaluate our learning-based method on 23 game instances from 8 different

classes of established parametric benchmark games. Our experiments once again confirm the

conclusion that learning dynamics form the basis for some of the most scalable technique available

today to compute equilibrium points in large games, and computation of optimal EFCE in

imperfect-information extensive-form games is no exception.

Beyond computational advances, we remark that our bilinear formulation also allows us to

obtain last-iterate guarantees to the optimal equilibria when using predictive online gradient

214 §10.2. OPTIMAL EFCE AS A BILINEAR SADDLE-POINT PROBLEM

descent as the learning algorithm, instead of the time-average guarantees traditionally derived

within the no-regret framework.

10.2 Optimal EFCE as a bilinear saddle-point problem

In this section we show that the problem of computing an optimal (for example, social welfare

maximizing) EFCE can be converted to the problem of finding a Nash equilibrium in a two-player

zero-sum game. This realization is important algorithmically, in that it will enable us to tap into

the richness of approaches studied in Part II of this dissertation to compute an optimal EFCE at

scale, for the first time.

Our approach relies on a Lagrangian relaxation of the optimization problem that was given in

Lemma 9.2, reproduced below for convenience:
max

ξ
c⊤ξ

s.t. 1 ξ ∈ Ξ
2 max

xσ̂∈Qi, ≽j

ξ⊤Ai,σ̂xσ̂ ⩽ 0 ∀ i ∈ [[n]], σ̂ = (j, a) ∈ Σ∗
i .

(10.1)

We note that the feasible set of the program above does not change if constraint 2 is replaced by

max
{

0, max
xσ̂∈Qi, ≽j

ξ⊤Ai,σ̂xσ̂

}
⩽ 0 ∀ i ∈ [[n]], σ̂ = (j, a) ∈ Σ∗

i .

Hence, using the fact that max{0,maxx∈X f(x)} = maxx∈co{{0},X } f(x) for any linear function f

and set X , the following program is equivalent to (10.1):
max

ξ
c⊤ξ

s.t. 1 ξ ∈ Ξ
2 max

xσ̂∈co{{0},Qi, ≽j}
ξ⊤Ai,σ̂xσ̂ ⩽ 0 ∀ i ∈ [[n]], σ̂ = (j, a) ∈ Σ∗

i .

(10.2)

Letting nowQi,σ̂ := co{{0},Qi,≽j for all i ∈ [[n]] and σ̂ = (j, a) ∈ Σ∗
i , the Lagrangian relaxation

of the above program is the saddle-point problem

max
ξ∈Ξ

min
λ∈ℝ⩾0,

xi,σ̂∈Qi,σ̂ ∀i,σ̂

c⊤ξ − λ
∑
i∈[[n]]

∑
σ̂∈Σ∗

i

ξ⊤Aσ̂xi,σ̂. (10.3)

We first point out that the above saddle-point optimization problem admits a solution (ξ⋆,x⋆, λ⋆).

§10. LEARNING OPTIMAL EXTENSIVE-FORM CORRELATED EQUILIBRIA 215

Proposition 10.1. The problem (10.3) admits a finite saddle-point solution (ξ∗,x∗, λ∗)
Moreover, for all fixed λ > λ∗

, the problems (10.3) and (10.1) have the same value and same

set of optimal solutions.

Proof. Let v be the optimal value of (10.2), which, as we argued, is equal to the optimal value

of (10.1). The Lagrangian of (10.2) is

max
ξ∈Ξ

min
λi,σ̂∈ℝ⩾0,
xi,σ̂∈Qi,σ̂

∀i∈[[n]],σ̂∈Σ∗
i

c⊤ξ −
∑
i∈[[n]]

∑
σ̂∈Σ∗

i

λi,σ̂ξ⊤Aσ̂xi,σ̂.

Now, making the change of variables x̄i,σ̂ := λi,σ̂xi,σ̂ , the above problem is equivalent to

max
ξ∈Ξ

min
x̄i,σ̂∈Q̄i,σ̂

∀i∈[[n]],σ̂∈Σ∗
i

c⊤ξ −
∑
i∈[[n]]

∑
σ̂∈Σ∗

i

ξ⊤Aσ̂x̄i,σ̂. (10.4)

where Q̄i,σ̂ is the conic hull of Qi,σ̂: Q̄i,σ̂ := [0,+∞)Qi,σ̂. The problem (10.4) is a bilinear

saddle-point problem, where Ξ is compact and convex and Q̄i,σ̂ is convex. Thus, Sion’s

minimax theorem Sion, 1958 applies, and we have that the value of (10.4) is equal to the value

of the problem

min
x̄i,σ̂∈Q̄i,σ̂

∀i∈[[n]],σ̂∈Σ∗
i

max
ξ∈Ξ

c⊤ξ −
∑
i∈[[n]]

∑
σ̂∈Σ∗

i

ξ⊤Aσ̂x̄i,σ̂. (10.5)

Since this is a linear program (by taking a dual of the inner maximization problem) with a finite

value, its optimum value must be achieved by some x̄ := (. . . , x̄i,σ̂, . . .) := (. . . , λi,σ̂xi,σ̂, . . .).
Let λ∗ := maxi,σ̂ λi,σ̂. Using the fact that 0 ∈ Qi,σ̂ ⊆ Q̄i,σ̂ and clearly ξ⊤Ai,σ̂0 = 0 for all µ,

the profile

x̄′ := (. . . , λ∗x̄i,σ̂, . . .) where x′
i,σ̂ := 0 + λi,σ̂

λ∗ (xi,σ̂ − 0)

is also an optimal solution of (10.5). Therefore, for any λ ⩾ λ∗
, x′ := (x′

1, . . . ,x
′
n) is an optimal

solution for the minimizer in (10.3) that achieves the value of (10.1), so (10.1) and (10.3) have

the same value.

Now takeλ > λ∗
, and suppose for contradiction that (10.3) admits some optimal µ ∈ Ξ that is

not optimal in (10.1). Then, either c⊤µ < v, or µ violates some constraint maxxi,σ̂
µ⊤Ai,σ̂xi,σ̂ ⩽

0. The first case is impossible because then setting xi,σ̂ = 0 for all i yields value less than v

in (10.3). In the second case, since we know that (10.3) and (10.1) have the same value when

216 §10.3. NO-REGRET LEARNING ALGORITHM

λ = λ∗
, we have

c⊤ξ − λmax
x∈X

∑
i∈[[n]]

∑
σ̂∈Σ∗

i

ξ⊤Ai,σ̂xi,σ̂ < c⊤ξ − λ∗ max
x∈X

∑
i∈[[n]]

∑
σ̂∈Σ∗

i

ξ⊤Ai,σ̂xi,σ̂ ⩽ v.

10.3 No-regret learning algorithm
Since (10.3) is a bilinear saddle point, its solution can be found by self play of no-external-

regret algorithms. However, a challenge that arises in this approach is that the domain of the

minimization is unbounded—the Lagrange multiplier is allowed to take any nonnegative value.

Nevertheless, we show in the theorem below that it suffices to set the Lagrange multiplier to a

fixed value (that may depend on the time horizon); appropriately setting that value will allow us

to trade-off between the equilibrium gap and the optimality gap. Before we proceed, we remark

that the minimization domain in (10.3) is the Cartesian product of Qi,σ̂ over all possible (i, σ̂).
Hence, a no-regret algorithm for the minimization problem can be obtained by instantiating

individual no-regret algorithm for each Qi,σ̂ using the approach described in Section 4.2.2; this

justifies the notation

∑
i∈[[n]]

∑
σ̂∈Σ∗

i
Reg(T)

Qi,σ̂
used for the regret of the min deviator below.

Theorem 10.1. Suppose that the max deviator in the saddle-point problem (10.3) incurs regret

Reg(T)
Ξ and the min deviator incurs regret

∑
i∈[[n]]

∑
σ̂∈Σ∗

i
Reg(T)

Qi,σ̂
after T ∈ ℕ repetitions, for

a fixed λ = λ(T) > 0. Then, the average mediator strategy Ξ ∋ ξ̄ := 1
T

∑T
t=1 ξ(t)

satisfies the

following:

1. For any strategy ξ∗ ∈ Ξ such that maxi∈[[n]],σ̂∈Σ∗
i

maxx∗
i,σ̂

∈Qi,σ̂
(ξ∗)⊤Ai,σ̂x∗

i ⩽ 0,

c⊤ξ̄ ⩾ c⊤ξ∗ − 1
T

Reg(T)
Ξ +

∑
i∈[[n]]

∑
σ̂∈Σ∗

i

Reg(T)
Qi,σ̂

;

2. The equilibrium gap of ξ̄ decays with a rate of λ−1
:

max
i∈[[n]],σ̂∈Σ∗

i

max
x∗

i
∈Qi,σ̂

ξ̄
⊤Ai,σ̂x∗

i ⩽
maxξ,ξ′∈Ξ c⊤(ξ − ξ′)

λ
+ 1
λT

Reg(T)
Ξ +

∑
i∈[[n]]

∑
σ̂∈Σ∗

i

Reg(T)
Qi,σ̂

.

Proof. Let ξ̄ ∈ Ξ be the average strategy of the mediator, and x̄i ∈ Qi,σ̂ be the average strategy

of each deviator i ∈ [[n]], σ̂ ∈ Σ∗
i over the T iterations. We first argue about the approximate

optimality of ξ̄. In particular, we have that

§10. LEARNING OPTIMAL EXTENSIVE-FORM CORRELATED EQUILIBRIA 217

c⊤ξ̄ ⩾ max
ξ∈Ξ

c⊤ξ − λ
∑
i∈[[n]]

∑
σ̂∈Σ∗

i

ξ⊤Ai,σ̂x̄i

− 1
T

∑
i∈[[n]]

∑
σ̂∈Σ∗

i

Reg(T)
Qi,σ̂

+ Reg(T)
Ξ

 (10.6)

⩾ c⊤ξ∗ − λ
∑
i∈[[n]]

∑
σ̂∈Σ∗

i

(ξ∗)⊤Ai,σ̂x̄i −
1
T

∑
i∈[[n]]

∑
σ̂∈Σ∗

i

Reg(T)
Qi,σ̂

+ Reg(T)
Ξ

 (10.7)

⩾ c⊤ξ∗ − λ
∑
i∈[[n]]

∑
σ̂∈Σ∗

i

max
x∗

i
∈Qi,σ̂

(ξ∗)⊤Ai,σ̂x∗
i −

1
T

∑
i∈[[n]]

∑
σ̂∈Σ∗

i

Reg(T)
Qi,σ̂

+ Reg(T)
Ξ


⩾ c⊤ξ∗ − 1

T

∑
i∈[[n]]

∑
σ̂∈Σ∗

i

Reg(T)
Qi,σ̂

+ Reg(T)
Ξ

, (10.8)

where:

• (10.6) follows from the fact that the Lagrangian of the problem,

L : Ξ×X ∋ (ξ, (xi,σ̂)ni=1) 7→ c⊤ξ − λ
∑
i∈[[n]]

∑
σ̂∈Σ∗

i

ξ⊤Ai,σ̂xi,σ̂,

satisfies

max
ξ∗∈Ξ

L(ξ∗, (x̄i)ni=1)− min
(x∗

i
)n

i=1∈X
L(ξ̄, (x∗

i)ni=1) ⩽ 1
T

∑
i∈[[n]]

∑
σ̂∈Σ∗

i

Reg(T)
Qi,σ̂

+ Reg(T)
Ξ

, (10.9)

in turn implying (10.6) since∑
i∈[[n]]

∑
σ̂∈Σ∗

i

max
x∗

i
∈Qi,σ̂

ξ̄
⊤Ai,σ̂x∗

i,σ̂ ⩾
∑
i∈[[n]]

∑
σ̂∈Σ∗

i

ξ̄
⊤Ai,σ̂0 = 0;

• (10.7) uses the notation ξ∗
to represent any equilibrium strategy optimizing the objective

c⊤ξ; and

• (10.8) follows from the fact that, by assumption, ξ∗
satisfies the equilibrium constraint

maxx∗
i

∈Qi,σ̂
(ξ∗)⊤Ai,σ̂x∗

i ⩽ 0 for any Player i ∈ [[n]], σ̂ ∈ Σ∗
i , as well as the nonnegativity

of the Lagrange multiplier.

This establishes Item 1 of the statement.

Next, we analyze the equilibrium gap of ξ̄. Consider any mediator strategy ξ ∈ Ξ such that

ξ⊤Ai,σ̂xi,σ̂ ⩽ 0 for any xi,σ̂ ∈ Qi,σ̂ and deviator i ∈ [[n]], σ̂ ∈ Σ∗
i . By (10.9),

218 §10.3. NO-REGRET LEARNING ALGORITHM

c⊤ξ − λ
∑
i∈[[n]]

∑
σ̂∈Σ∗

i

ξ⊤Ai,σ̂x̄i − c⊤ξ̄ + λ
∑
i∈[[n]]

∑
σ̂∈Σ∗

i

max
x∗

i,σ̂
∈Qi,σ̂

ξ̄
⊤Ai,σ̂x∗

i,σ̂

⩽
1
T

Reg(T)
Ξ +

∑
i∈[[n]]

∑
σ̂∈Σ∗

i

Reg(T)
Qi,σ̂

. (10.10)

But, by the equilibrium constraint for ξ, it follows that ξ⊤Ai,σ̂xi,σ̂ ⩽ 0 for any xi,σ̂ ∈ Qi,σ̂ and

deviator i ∈ [[n]], σ̂ ∈ Σ∗
i , in turn implying that

∑
i∈[[n]]

∑
σ̂∈Σ∗

i
ξ⊤Ai,σ̂xi,σ̂ ⩽ 0. So, combining

with (10.10),

λ
∑
i∈[[n]]

∑
σ̂∈Σ∗

i

max
x∗

i
∈Qi,σ̂

ξ̄
⊤Ai,σ̂x∗

i,σ̂ ⩽ c⊤ξ̄ − c⊤ξ + 1
T

∑
i∈[[n]]

∑
σ̂∈Σ∗

i

Reg(T)
Qi,σ̂

+ Reg(T)
Ξ

. (10.11)

Finally, given that maxx∗
i′ ∈Xi′ ξ̄

⊤Ai′x
∗
i′ ⩾ ξ̄

⊤Ai′di′ = 0 for any deviator i′, it follows that

∑
i∈[[n]]

∑
σ̂∈Σ∗

i

max
x∗

i,σ̂
∈Qi,σ̂

ξ̄
⊤Ai,σ̂x∗

i,σ̂ ⩾ max
i∈[[n]],σ̂∈Σ∗

i

max
x∗

i,σ̂
∈Qi,σ̂

ξ̄
⊤Ai,σ̂x∗

i,σ̂,

and (10.11) implies Item 2 of the statement.

As a result, if we can simultaneously guarantee that λ(T)→ +∞ and

1
T

Reg(T)
Ξ +

∑
i∈[[n]]

∑
σ̂∈Σ∗

i

Reg(T)
Qi,σ̂

→ 0, as T → +∞,

Theorem 10.1 guarantees that both the optimality gap (Item 1) and the equilibrium gap (Item

2) converge to 0. We show that this is indeed possible in the sequel (Corollaries 10.1 and 10.2),

obtaining favorable rates of convergence as well.

It is important to stress that while there exists a bounded critical Lagrange multiplier for our

problem (Proposition 10.1), thereby obviating the need for truncating its value, such a bound is

not necessarily polynomial.

10.3.1 Construction of weakly-predictive algorithms via regret circuits (Chap-
ter 4)

Next, we combine Theorem 10.1 with suitable regret minimization algorithms in order to

guarantee fast convergence to optimal equilibria. A particularly natural approach in this case is

via the regret circuits introduced in Chapter 4. Indeed, the regret minimization problem over

the domain of the minimization in the saddle-point problem is the Cartesian product of the

sets Qi,σ̂, each of which is the convex hull between the singleton set {0} and the sequence-form

§10. LEARNING OPTIMAL EXTENSIVE-FORM CORRELATED EQUILIBRIA 219

polytope Qi,≽j , for which several no-regret algorithms are known (including those presented in

this dissertation, in Chapters 4 to 7).

Similarly, as we discussed in Chapter 9, the domain Ξ of the maximization problem—the

polytope of correlation plans—can be expressed as (possibly a linear projection of an exponentially

long) composition of scaled extension operations and probability simplexes. Since scaled extension

admits a regret circuit, we can repeatedly use the circuit in combination with no-regret algorithms

for probability simplexes (for example, Discounted RM or PRM+
) to construct a parameter-free

no-external-regret algorithm that is rather competitive in practice.

Given that the deviators’ observed utilities have range OT (λ), the regret of each deviator

under suitable choices of local algorithm (for example, Discounted RM or PRM+
as we use in the

experiments) will grow as OT (λ
√
T). Selecting a bound of λ := T 1/4

on the Lagrange multiplier,

so as to optimally trade off Items 1 and 2 of Theorem 10.1, leads to the following conclusion.

Corollary 10.1. There exist regret minimization algorithms such that when employed in the

saddle-point problem (10.3), the average strategy of the mediator ξ̄ := 1
T

∑T
t=1 ξ(t)

converges

to the set of optimal equilibria at a rate of T−1/4
. The per-iteration complexity is polynomial

in the number of scaled extensions required to represent X (see Chapter 9).

10.3.2 Faster rates using RVU-predictive algorithms (Chapter 5)

As already discussed in Chapter 5, proximal algorithms such as predictive online mirror descent

beget RVU-predictive algorithms, which typically imply faster convergence rate compared to

only weakly-predictive algorithm such as those constructed in Section 10.3.1. In particular, using

predictive mirror descent we can guarantee that the sum of the agents’ regrets in the saddle-point

problem (10.3) will now grow as OT (λ), instead of the previous bound OT (λ
√
T). Thus, letting

λ = T 1/2
leads to the following improved rate of convergence.

Corollary 10.2 (Improved rates using predictivity). There exist regret minimization algorithms

that guarantee that the average strategy of the mediator ξ̄ := 1
T

∑T
t=1 ξ(t)

converges to the

set of optimal equilibria at a rate of T−1/2
. The per-iteration complexity is analogous to

Corollary 10.1.

Proof sketch. By the RVU bound (Syrgkanis, Agarwal, Luo, and Schapire, 2015; S. Rakhlin

and Sridharan, 2013), the sum of the agents’ regrets can be bounded as
diam2

Ξ + diam2
X

η , for a

sufficiently small η = OT (1/λ), where diamΞ and diamX denote the ℓ2-diameter of Ξ and X ,

respectively. Thus, taking η = Θ(1/λ) to be sufficiently small implies the statement.

Improving the T−1/2
rate of Corollary 10.2 is an interesting direction for future research.

220 §10.3. NO-REGRET LEARNING ALGORITHM

10.3.3 Remarks on last-iterate convergence

The results we have stated thus far apply for the average strategy produced by the no-regret

algorithm—a typical feature of traditional guarantees in the no-regret framework. In contrast,

there is a recent line of work that endeavors to recover last-iterate guarantees as well (Daskalakis

and Panageas, 2019; Gorbunov, Loizou, and Gidel, 2022; Abe, Sakamoto, and Iwasaki, 2022; Cai,

Oikonomou, and Zheng, 2022; Azizian, Iutzeler, Malick, and Mertikopoulos, 2021; C. Wei, C. Lee,

M. Zhang, and Luo, 2021; C.-W. Lee, Kroer, and Luo, 2021; Golowich, Pattathil, and Daskalakis,

2020; Lin, Zhou, Mertikopoulos, and Jordan, 2020; Gorbunov, Berard, Gidel, and Loizou, 2022).

Yet, despite many efforts, the known last-iterate guarantees of no-regret learning algorithms

apply only for restricted classes of games, such as two-player zero-sum games. There is an

inherent reason for the limited scope of those results: last-iterate convergence is inherently tied to

Nash equilibria, which in turn are hard to compute in general games (Daskalakis, Goldberg, and

Papadimitriou, 2009; Chen, Deng, and Teng, 2009)—let alone computing an optimal one (Gilboa

and Zemel, 1989; Conitzer and Sandholm, 2008). Indeed, any given joint strategy profile of

the deviators induces a product distribution, so ϵ-iterate convergence requires at the very least

computing an ϵ-Nash equilibrium.

Proposition 10.2 (Informal). Any uncoupled learning dynamics without a mediator require

superpolynomial time to guarantee ϵ-last-iterate convergence, for a sufficiently small ϵ =
(1/ poly), even for two-deviator normal-form games, unless PPAD ⊆ P.

There are also unconditional exponential communication-complexity lower bounds for uncoupled

methods (Babichenko and Rubinstein, 2022; Hirsch, Papadimitriou, and Vavasis, 1989; Rough-

garden and Weinstein, 2016; Hart and Mansour, 2010), as well as other pertinent impossibility

results (Hart and Mas-Colell, 2003; Milionis, Papadimitriou, Piliouras, and Spendlove, 2022) that

document the inherent persistence of limit cycles in general-sum games. In contrast, an important

advantage of our formulation using Ξ is that we can guarantee last-iterate convergence to bilinear

saddle points, using the known bound of OT (λ/
√
T) for the last-iterate gap of predictive online

gradient descent can be employed (Anagnostides, Panageas, Farina, and Sandholm, 2022).

Theorem 10.2 (Last-iterate convergence to bilinear saddle points). There exist regret

minimization algorithms that guarantee that the last strategy of the mediator ξ(T)
converges

to the set of optimal equilibria at a rate of T−1/4
. The per-iteration complexity is analogous

to Corollaries 10.1 and 10.2.

As such, our mediator-augmented learning paradigm bypasses the hardness of Proposition 10.2

since last-iterate convergence is no longer tied to convergence to Nash equilibria.

§10. LEARNING OPTIMAL EXTENSIVE-FORM CORRELATED EQUILIBRIA 221

10.4 Experimental evaluation

We extensively evaluate the empirical performance of the regret-circuit-based learning algorithm

given in Section 10.3.1 for computing optimal EFCE across 23 game instances and different

objective functions including social welfare. The game instances we use are described in detail in

Appendix A, and belong to following eight different classes of established parametric benchmark

games, each identified with an alphabetical mnemonic: B – Battleship, D – Liar’s dice, GL
– Goofspiel, K – Kuhn poker, L – Leduc poker, RS – ridesharing game, S – Sheriff, TP –

double dummy bridge game.

For each of the 23 games, we compare the runtime required by a commercial linear programming

method instantiated on the optimal EFCE LP given in Proposition 9.1 (and originally proposed

by B. H. Zhang, Farina, Celli, and Sandholm, 2022) (‘LP’) and the runtime required by our

regret-circuit-based learning algorithm defined in Section 10.3.1 (‘Ours’) for computing ϵ-optimal

equilibrium points.

Game Max. Pl.1’s utility Max. Pl.2’s utility Max. soc. welf.
LP Ours LP Ours LP Ours

B2222 0.00s 0.01s 0.00s 0.05s 0.00s 0.02s

B2322 9.00s 1.23s 9.00s 4.63s 9.00s 1.60s

B2323 3m 54s 48.40s 4m 9s 1m 27s 3m 40s 44.87s

B2324 timeout 9m 3s timeout 10m 21s timeout 10m 48s

S2122 0.00s 0.01s 0.00s 0.02s 0.00s 0.02s

S2123 1.00s 0.09s 1.00s 0.34s 1.00s 0.15s

S2133 4.00s 0.52s 3.00s 1.31s 3.00s 0.49s

S2254 timeout 2m 10s timeout timeout timeout 3m 34s

S2264 timeout timeout timeout timeout timeout timeout

RS212 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s

RS213 timeout 35.37s timeout 32.49s timeout 23.37s

RS222 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s

RS223 timeout timeout timeout timeout timeout timeout

Game Max. Pl.1’s utility Max. Pl.2’s utility Max. Pl.3’s utility
LP Ours LP Ours LP Ours

D32 12.00s 0.40s 11.00s 0.35s 10.00s 0.66s

D33 timeout timeout timeout timeout timeout timeout

GL33 0.00s 0.01s 0.00s 0.01s 0.00s 0.01s

K35 57.00s 0.55s 55.00s 1.03s 60.00s 1.26s

L3132 8m 18s 6.10s 8m 57s 7.65s 7m 35s 6.78s

L3133 21m 25s 6.84s 21m 43s 10.76s 19m 58s 10.28s

L3151 timeout timeout timeout timeout timeout timeout

L3223 2m 2s 5.52s 1m 50s 6.46s 2m 0s 5.94s

L3523 timeout timeout timeout timeout timeout timeout

TP3 timeout 13.46s timeout 14.25s timeout 14.48s

Table 10.1: Experimental comparison between our learning-based approach (‘Ours’, Section 10.3.1)

and using the commercial LP solver Gurobi on the linear programming formulation of optimal

EFCE (Proposition 9.1), both for computing an optimal EFCE within an optimality and feasibility

tolerance set to 1% of the payoff range of the game.

Table 10.1 and Table 10.2 show experimental results for the case in which the threshold ϵ is set

to be, respectively, 1% and 0.1% of the payoff range of the game. Each table is split into a left

part, which contains two-player general-sum games, and a right part with three-player zero-sum

games. For each game, three objective functions are considered:

• For the two-player general-sum games, we consider the three objectives of (i) maximizing

Player 1’s utility, (ii) maximizing Player 2’s utility, and (iii) maximizing social welfare, that is,

the sum of the two players’ utilities.

• For the three-player zero-sum games, we consider the three objectives corresponding to

222 §10.4. EXPERIMENTAL EVALUATION

maximizing Player 1, 2, and 3’s utility, respectively.

Each row corresponds to a game, whose identifier begins with the alphabetical mnemonic of the

game class.

The regret-circuit-based construction detailed in Section 10.3.1 allows a degree of flexibility as

to what no-regret algorithms are used for each of the probability simplexes that make up Ξ and

the Qi,σ̂. In the experimental tables, the column ‘Ours’ reports the minimum between the time

required by the regret-circuit-based algorithm instantiated with Discounted RM and PRM+
at each

decision point. For each run of the algorithms, the timeout was set at one hour.

We observe that our learning-based approach is faster—often by more than an order of

magnitude—and more scalable than the linear program. This shows the promise of our

computational approach.

Game
Max. Pl.1’s utility Max. Pl.2’s utility Max. soc. welf.

LP Ours LP Ours LP Ours

B2222 0.00s 0.16s 0.00s 0.10s 0.00s 0.03s

B2322 9.00s 11.04s 9.00s 10.87s 9.00s 4.11s

B2323 4m 12s 3m 41s 4m 9s 3m 35s 3m 40s 1m 28s

B2324 timeout timeout timeout timeout timeout timeout

S2122 0.00s 0.04s 0.00s 0.07s 0.00s 0.07s

S2123 2.00s 0.24s 1.00s 1.63s 1.00s 0.37s

S2133 5.00s 1.12s 3.00s 4.80s 4.00s 0.95s

S2254 timeout 6m 24s timeout timeout timeout 9m 2s

S2264 timeout timeout timeout timeout timeout timeout

RS212 0.00s 0.00s 0.00s 0.01s 0.00s 0.00s

RS213 timeout 5m 1s timeout 4m 19s timeout 2m 28s

RS222 0.00s 0.02s 0.00s 0.02s 0.00s 0.02s

RS223 timeout timeout timeout timeout timeout timeout

Game
Max. Pl.1’s utility Max. Pl.2’s utility Max. Pl.3’s utility

LP Ours LP Ours LP Ours

D32 14.00s 0.92s 13.00s 0.74s 12.00s 1.60s

D33 timeout timeout timeout timeout timeout timeout

GL33 0.00s 0.06s 0.00s 0.05s 0.00s 0.05s

K35 1m 5s 2.99s 1m 3s 4.80s 1m 4s 4.66s

L3132 9m 41s 26.68s 10m 28s 27.57s 9m 54s 30.00s

L3133 26m 52s 22.31s 27m 22s 39.44s 25m 32s 40.75s

L3151 timeout timeout timeout timeout timeout timeout

L3223 2m 38s 20.44s 2m 32s 28.27s 2m 31s 49.95s

L3523 timeout timeout timeout timeout timeout timeout

TP3 timeout 26.28s timeout 40.64s timeout 41.96s

Table 10.2: Experimental comparison between our learning-based approach (‘Ours’, Section 10.3.1)

and using the commercial LP solver Gurobi on the linear programming formulation of optimal

EFCE (Proposition 9.1), both for computing an optimal EFCE within an optimality and feasibility

tolerance set to 0.1% of the payoff range of the game.

Chapter 11

Learning dynamics for team
coordination and collusion

The positive results regarding the geometry of correlated strategies we investigated in Chapter 9

also imply positive results about the computation of optimal team strategies in imperfect-

information two-team zero-sum games, helping answer questions such as:

How should two players colluding against a third at a poker table play?

Or, how would the two defenders in Bridge (who are prohibited from communicating privately
during the game) play optimally against the declarer?

Depending on the amount of communication allowed among the team members, we can

identify at least three solution concepts.

• If the team members can freely (and privately) communicate during play, the team effectively

becomes a single player. Hence, all the tools we have seen so far (for example, learning

an optimal strategy using CFR or linear programming) directly apply. We will refer to this

equilibrium as ‘Team Nash equilibrium’.

• If the team members cannot communicate at all, then the strategies of the team members

should be picked as the pair of strategies that maximizes the expected utility of the team

against a best-responding agent. This solution concept is called a team maxmin equilibrium
(TME). As we show in Section 11.2, the minmax theorem does not hold in general for TME.

So, perhaps, the term “equilibrium” should be used carefully when referring to TME.

• The third case is intermediate, and models the setting where the team members have an

opportunity to discuss and agree on tactics before the game starts, but are otherwise unable

224 §11. LEARNING DYNAMICS FOR TEAM COORDINATION AND COLLUSION

to communicate during the game, except through their publicly-observed actions. This

models, for example, multiplayer poker in the presence of collusion, and the game of bridge.

This solution concept is called a team maxmin equilibrium with correlation device (TMECor).

TMECor can be thought of as follows. Before playing, the team members get together in

secret, and discuss about tactics for the game. They come up with m possible plans, each of

which specifies a deterministic strategy for each team member, and write them down in

m separate envelopes. Then, just before the game starts, they together pick one of the m

envelopes according to a shared probability distribution, and play according to the plan in

the chosen envelope.

It is important to realize that the sampling of the envelope can happen even if the team

members cannot communicate before the game starts, as long as they can agree on some

shared signal, such as for example a common clock. With that signal as input, the team

members could seed a random number generator and use that to agree on the same random

envelope to use, without having communicated among each other.

Table 11.1 compares the properties of the three solution concepts defined above. Generally

speaking, as the amount of allowed communication increases (from TME to TMECor to Team

Nash), the utility of the team increases, while the complexity of computing the optimal strategy

for the team decreases. In particular, as the first three rows of Table 11.1 show, the problem of

computing a TME strategy for the team is significantly less well-behaved than TMECor.

For all these reasons, we believe that TMECor is often a superior solution concept for adversarial
team games when no in-game private communication is allowed. It yields higher utility to the
team, is computationally and game-theoretically better behaved, and can be implemented in
many practical interaction.

TME TMECor Team Nash Eq.
no communication

ever
no communication

during play
private communication

during play

Convex problem ✗ ✓ ✓
Bilinear saddle-point problem ✗ ✓ ✓
Low-dimensional strat. polytope ✗ ✓ ✓
Minmax theorem ✗ ✓ ✓
Team utility low higher highest

Complexity very hard sometimes hard polynomial

Table 11.1: Comparison between TME, TMECor and Team Nash equilibrium.

§11. LEARNING DYNAMICS FOR TEAM COORDINATION AND COLLUSION 225

11.1 Contributions and related work

After demonstrating that TME does not satisfy the minmax theorem, in this chapter we show

that learning dynamics for the teams can be devised to compute TMECor, by connecting TMECor

computation with EFCE-related technology introduced in Chapters 9 and 10. As we show, this

approach leads to theoretical and practical state-of-the-art learning algorithms for computing

TMECor strategies in imperfect-information two-team zero-sum games, adding to the conclusion,

already drawn several times in this dissertation, that uncoupled learning dynamics often lead

to both the theoretical and practical state-of-the-art technique for computing equilibria in

imperfect-information extensive-form games.

The study of TME dates back to at least the work by von Stengel and Koller (1997). The study

of TMECor—the focus of this chapter—is more recent. Basilico, Celli, De Nittis, and Gatti (2017)

show that TMECor can lead to significantly higher utility (up to a factor linear in the number of

game tree leaves) than TME. The study of the computational aspects of TMECor was initiated by

Celli and Gatti (2018). Until recently, the best techniques for solving adversarial team games in

absence of communication were based on column generation (Farina, Celli, Gatti, and Sandholm,

2018; Farina, Celli, Gatti, and Sandholm, 2021; Y. Zhang, An, and Černỳ, 2021; B. H. Zhang, Farina,

Celli, and Sandholm, 2022). Those techniques work well in some small and medium-sized games

in practice, but generally have no or weak theoretical guarantees. More recently, other techniques

emerged. B. H. Zhang and Sandholm (2022b) developed an algorithm for solving adversarial

team games based on a novel tree decomposition of each player’s strategy space, and use it to devise

a linear program. They show parameterized complexity bounds that scale with the amount of

uncommon information among team members. Simultaneously, Carminati, Cacciamani, Ciccone,

and Gatti (2022) developed an algorithm for converting the game into a strategically equivalent

(but exponentially-larger) two-player game with perfect recall, inspired by prior research in the

multiagent reinforcement learning community (e.g., Nayyar, Mahajan, and Teneketzis, 2013;

Sokota, Lockhart, Timbers, Davoodi, D’Orazio, Burch, Schmid, Bowling, and Lanctot, 2021).

The technique we develop in this chapter is based on learning dynamics, and yields an

algorithm significantly faster than all prior approaches.

11.2 Failure of minmax theorem for team maxmin equilibrium

As mentioned in the introduction, one of the major shortcomings of TME (at least from a game-

theoretic point of view) is that it fails the minmax theorem. We demonstrate this by explicitly

showing a game in which the maxmin and minmax values of the game are different.

Consider the matching pennies game of Figure 11.1 (Left), where a team ▲ of two players

(denoted 1▲ and 2▲ respectively) compete against an opponent. Each player has a penny. First,

the opponent (denoted ▼) secretly turns their penny heads (H) or tails (T). Then, Player 1▲ secretly

226 §11.2. FAILURE OF MINMAX THEOREM FOR TEAM MAXMIN EQUILIBRIUM

(1,−1)

HH

(0, 0)

TT

HH

(0, 0)

HH

(0, 0)

TT

TT

HH

(0, 0)

HH

(0, 0)

TT

HH

(0, 0)

HH

(1,−1)

TT

TT

TT
Player 1▲

Player 2▲

Opponent, ▼
Team ▼

Team ▲

Terminal history

Y Information set

Le
ge

nd

Figure 11.1: Matching pennies game.

turns their penny heads or tail. Finally, Player 2▲ turns their penny heads or tail. After all pennies

have been turned, all of them are revealed. If all three pennies match (that is, they are all heads or

they are all tails), the team wins a payoff of 1 and the opponent suffers a loss of −1. Otherwise,

nobody gains or loses anything.

Maxmin value We will use x,y, z to denote strategies for Players 1▲, 2▲, and ▼, respectively.

The TME strategy for team ▲ is the solution to the maxmin problem

vmaxmin
:=



max
x,y


min

z
xH · yH · zH + xT · yT · zT

s.t. 1 zH + zT = 1
2 zH, zT ⩾ 0

s.t. 3 xH + xT = 1
4 yH + yT = 1
5 xH, xT, yH, yT ⩾ 0.

(♠)

Lemma 11.1. The solution to the maxmin problem defined in (♠) is vmaxmin = 1/4.

Proof. The internal minimization problem in (♠) is minimizing a linear function over the

2-simplex. So, the solution to the internal minimization problem is the minimum of the

function over the two vertices, that is, min{xH · yH, yT · yT}. Hence, we can rewrite (♠) as

vmaxmin =


max
x,y

min{xH · yH, yT · yT}

s.t. 3 xH + xT = 1
4 yH + yT = 1
5 xH, xT, yH, yT ⩾ 0.

§11. LEARNING DYNAMICS FOR TEAM COORDINATION AND COLLUSION 227

We can now perform the substitutions xT = 1− xH and yT = 1− yH (justified by 3 and 4),

and get to

vmaxmin =
{

max
x,y

min{xH · yH, (1− xH) · (1− yH)}

s.t. 5 0 ⩽ xH ⩽ 1, 0 ⩽ yH ⩽ 1.

Not that the problem is completely symmetric: if (x∗
H, y

∗
H) is an optimal solution, then

(1− x∗
H, 1− y∗

H) is also optimal. Hence, there exists at least one optimal solution in which

xH · yH ⩽ (1− H) · (1− yH) ⇐⇒ xH + yH ⩽ 1

and consequently

vmaxmin =


max
x,y

xH · yH

s.t. 6 xH + yH ⩽ 1
5 0 ⩽ xH ⩽ 1, 0 ⩽ yH ⩽ 1.

Since xH is nonnegative, the objective is maximized when yH is maximized, which happens for

yH = 1− xH. So,

vmaxmin =
{

max
xH

xH · (1− xH)

s.t. 5 0 ⩽ xH ⩽ 1,

which is the maximum of a one-dimensional parabola. Taking the gradient of the objective, it’s

immediate to check that the maximum is obtained when xH = 1/2, and hence the statement of

the lemma follows.

Minmax value Conversely, the TME strategy for the opponent is the solution to the maxmin
problem

vminmax
:=



min
z


max
x,y

xH · yH · zH + xT · yT · zT

s.t. 1 xH + xT = 1
2 yH + yT = 1
3 xH, xT, yH, yT ⩾ 0.

s.t. 4 zH + zT = 1
5 zH, zT ⩾ 0

(♣)

228 §11.3. TMECOR AS A BILINEAR SADDLE-POINT PROBLEM

Lemma 11.2. The solution to the minmax problem defined in (♣) is vminmax = 1/2.

Proof. The choices (xH, xT, yH, yT) = (1, 0, 1, 0) and (xH, xT, yH, yT) = (0, 1, 0, 1) are feasible for

the internal maximization problem in (♣). Hence, we have

vminmax ⩾


min

z
max{zH, zT}

s.t. 4 zH + zT = 1
5 zH, zT ⩾ 0

=
{

min
z

max{zH, 1− zH}

s.t. 5 0 ⩽ zH ⩽ 1.

It’s immediate to see that the solution to the one-dimensional optimization problem on the

right-hand side is
1/2, attained for zH = 1/2. So vminmax ⩾ 1/2. To complete the proof, it is

enough to show that the there exists an assignment of z for which (♣) attains the value
1/2.

To that end, consider the feasible assignment zH = zT = 1/2. Then, the objective of (♣) is
max
x,y

1/2 · xH · yH + 1/2 · xT · yT

s.t. 1 xH + xT = 1
2 yH + yT = 1
3 xH, xT, yH, yT ⩾ 0.

=
{

max
x,y

1/2(xH · yH + (1− xH)(1− yH))

s.t. 3 0 ⩽ xH ⩽ 1, 0 ⩽ yH ⩽ 1.

=
{

max
x,y

(xH − 1/2)(yH − 1/2) + 1/4

s.t. 3 0 ⩽ xH ⩽ 1, 0 ⩽ yH ⩽ 1.
= 1/2,

where the last equality follows from since the product in the objective is maximized for

xH = yH = 1.

Given that the maxmin and minmax values are different, we conclude that, unlike regular

minmax equilibrium, TME does not satisfy the minmax theorem in general.

11.3 TMECor as a bilinear saddle-point problem

In this section, we show how TMECor in imperfect-information two-team zero-sum games can

be cast as a bilinear saddle-point problem over polytopes embedded in Euclidean spaces of

polynomial dimension in the game size. To simplify the exposition, we will assume that the

teams—denoted ▲ and ▼ respectively—each consist of two team members, denoted 1▲, 2▲ and

1▼, 2▼ respectively. The case where a team has less or more players extends directly; in the

experimental evaluation we test on teams of varying size.

§11. LEARNING DYNAMICS FOR TEAM COORDINATION AND COLLUSION 229

Similar to maxmin strategies in regular (non-team) two-player zero-sum games, a TMECor

strategy for team (say, ▲) is a distribution µ▲ ∈ ∆Π1▲×Π2▲
over tuples of deterministic strategies

for the team members’ (1▲ and 2▲), such that it maximizes the team’s expected expected utility

against a best-responding, independent opposing team:

max
µ▲∈∆Π1▲×Π2▲

min
µ▼∈∆Π1▼×Π2▼

𝔼(π1▲,π2▲)∼µ▲
𝔼(π1▼,π2▼)∼µ▼

[
u▲(π1▲,π2▲,π1▼,π2▼)

]
, (11.1)

where u▲ = u1▲ + u2▲ denotes the utility function of team ▲, defined as the sum of the utilities of

its team members.

By definition of expectation, the objective function in (11.1) is bilinear in µ▲ and µ▼. This

shows that the computation of a TMECor is a bilinear saddle-point problem over convex polytopes

(and therefore in particular it can be converted into a linear program, which is itself a convex

problem, cf. Table 11.1). Another consequence of the bilinear saddle-point structure is the fact

that the minmax theorem must hold for TMECor strategies, unlike TME, as we have hinted in

Section 11.2. However, as formulated, the optimization problem (11.1) has the major drawback

of requiring optimization over exponentially-large domains, since so is typically the number

of deterministic strategies of every player. We show in the next subsection that by operating

an appropriate change of variables, we can retain the convexity-concavity and the bilinear

saddle-point structure, while at the same time gaining that the domains of the maximizing and

minimization problems belong to a space of polynomial dimension in the game tree size.

11.3.1 Realization vectors and low-dimensional parameterization

Letting u▲(z) = u1▲(z) + u2▲(z) denote the utility received by team ▲ at terminal node z ∈ Z ,

pc(z) denote the product of the probability of all chance actions on the path from the root of the

game tree to terminal node z, and σi(z) denote the last sequence on the path from the root of the

game tree to z, by definition we have that the utility u▲(π1▲,π2▲,π1▼,π2▼) can be written as∑
z∈Z

u▲(z) · pc(z) · π1▲[σ1▲(z)] · π2▲[σ2▲(z)]︸ ︷︷ ︸
probability of all ▲’s

actions on the path

from root to z

·π1▼[σ1▼(z)] · π2▼[σ2▼(z)]︸ ︷︷ ︸
probability of all ▼’s

actions on the path

from root to z

(11.2)

By using (11.2) together with the independence of µ▲ and µ▼, the expected utility

ū▲(µ▲,µ▼) := 𝔼(π1▲,π2▲)∼µ▲
𝔼(π1▼,π2▼)∼µ▼

[
u▲(π1▲,π2▲,π1▼,π2▼)

]
satisfies the equation

230 §11.3. TMECOR AS A BILINEAR SADDLE-POINT PROBLEM

ū▲(µ▲,µ▼) =
∑
z∈Z

u▲(z) · pc(z) · 𝔼µ▲

[
π1▲[σ1▲(z)]·π2▲[σ2▲(z)]

]
· 𝔼µ▼

[
π1▼[σ1▼(z)]·π2▼[σ2▼(z)]

]
,

(11.3)

where for brevity we used 𝔼µ▲
and 𝔼µ▼

as shorthands for 𝔼(π1▲,π2▲)∼µ▲
and 𝔼(π1▲,π2▲)∼µ▲

,

respectively. The above formulation shows that it is not necessary to optimize over µ▲ and µ▼

directly, as the objective function only depends bilinearly on the aggregate quantities

ω▲[z] := 𝔼µ▲

[
π1▲[σ1▲(z)]·π2▲[σ2▲(z)]

]
=

∑
(π1▲,π2▲)

µ▲[π1▲,π2▲] · π1▲[σ1▲(z)] · π2▲[σ2▲(z)],

ω▼[z] := 𝔼µ▼

[
π1▼[σ1▼(z)]·π2▼[σ2▼(z)]

]
=

∑
(π1▼,π2▼)

µ▼[π1▼,π2▼] · π1▼[σ1▼(z)] · π2▼[σ2▼(z)]

(11.4)

for z ∈ Z . Hence, at least conceptually, we can operate a change of variables in the optimization

problem, trading the distributions µ▲,µ▼ in (11.1), for the vectors ω▲,ω▼, called realization vectors.
Doing so greatly reduces the number of variables in the optimization problem: the distributions

µ are over an exponential number of elements (the product of deterministic plans for each of the

team’s members), while ω▲,ω▼ only require |Z| scalar variables—a linear amount in the game

tree size.

In order to perform the change of variable effectively, we need to study the new domain of the

optimization problem. In particular, as we move away from µi ∈ ∆Πi1×Πi2
and allow the team to

specify a ωi instead (i ∈ {▲,▼}), we need to characterize the domain of ωi that can be induced

from µi according to (11.4). The key observation here is that the mapping from µi to ωi is linear.
Hence, since the set of feasible µi is a convex polytope (the simplex ∆Πi1×Πi2

), we can use the

following lemma to conclude that the set Ωi of all feasible ωi is itself a convex polytope. Hence, a

TMECor can be expressed as a bilinear saddle-point problem

max
ω▲∈Ω▲

min
ω▼∈Ω▼

∑
z∈Z

u▲(z) · pc(z) · ω▲[z] · ω▼[z] =: max
ω▲∈Ω▲

min
ω▼∈Ω▼

ω⊤
▲U▲ω▼, (11.5)

where U▲ is an appropriate matrix that encodes the bilinear objective.

While the formulation (11.5) is reminescent of the bilinar formulation of Nash equilibrium in

two-player zero-sum games, several important differences exist. Most importantly, unfortunately,

in general the convex polytopes Ω▲ and Ω▼ cannot be captured via a polynomial number of linear

constraints, as it is known that the computation of TMECor is computationally intractable in

practice (Chu and Halpern, 2001). This makes the formulation (11.5) conceptually similar to that

of EFCE (Chapters 9 and 10). In the next subsection we formalize this latter connection, and give

new positive complexity results for TMECor, as well as learning dynamics for teams inspired by

the technique pioneered by Chapter 10.

§11. LEARNING DYNAMICS FOR TEAM COORDINATION AND COLLUSION 231

11.3.2 Connection with correlation plans and triangle-freeness

For each team i ∈ {▲,▼}, consider the game tree Γi obtained by converting all nodes of the

opposing team into chance nodes. The polytope of correlation plans Ξi of Γi encode a superset of

the information encoded by realization plans. Indeed, it is immediate to see from the definition

of the polytope of correlation plans (Definitions 9.1 and 9.2) that the following holds.

Lemma 11.3. The polytope of valid realization vectors for each team i ∈ {▲,▼} can be

obtained by considering a subset of the dimensions of the polytope of correlation plans Ξi of

the team, specifically

Ωi =
{(

ξ[σi1(z), σi2(z)]
)
z∈Z

: ξ ∈ Ξi
}
. (11.6)

As a direct consequence, we have the following.

Corollary 11.1. When the information structure of the members of a team i ∈ {▲,▼} is

triangle-free (Section 9.4.2), then Ωi can be defined using only polynomially many constraints

in the size of the input game tree.

Hence, when both teams are triangle-free, or a triangle-free team plays against a single

opponent (for which the set of correlation plans is simply the sequence-form polytope), a

TMECor can be found in polynomial time.

As far as we are aware, this positive complexity result has not been noted before in the

literature. As an example application, we remark that in many cases the G Goofspiel, GL
limited-information Goofspiel, and B battleship games involve triangle freeness, and therefore a

TMECor in those instances can be computed in polynomial time.

More generally, the connection between Ωi and Ξi enables us to use the results discussed in

Section 9.5 to characterize an upper bound on the number of constraints required to define Ωi, and

consequently arrive at parameterized complexity results for the computation of TMECor.

Corollary 11.2. For any team i ∈ {▲,▼}, the set Ωi of realization vectors is a linear

transformation of a set that can be defined via a chain of scaled extension operations

{1} h1
◁ X1

h2
◁ X2

h3
◁ · · · hm

◁ Xm, (11.7)

where, for j = 1, . . . ,m, Xj = ∆sj
for some simplex dimension sj ∈ ℕ and hj is a linear

function.

232 §11.4. EXPERIMENTAL EVALUATION

Remark 11.1. In fact, we remark that since Ωi only depends on a subset of Ξi, sharper bounds

can be given on the number of simplexes m used in (11.7) and the total dimension

∑m
j=1 sj

that what could be done directly using the results known for Ξi alone. We will not discuss

such improvements in this dissertation, but refer the interested reader to the preprint by

B. H. Zhang, Farina, and Sandholm (2023).

Following the same approach as Chapter 10, by leveraging the structural decomposition

of Ω▲,Ω▼ via scaled extension operations (Corollary 11.2) via the framework of regret circuits

described in Chapter 4, we obtain no-external-regret learning dynamics. By using the folklore

connection between no-external-regret algorithms and solutions to bilinear saddle-point problems,

we can then use these learning dynamics to compute TMECors in games. We show in Section 11.4

that this approach indeed leads to the current practical state-of-the-art algorithm for computing

TMECor.

11.4 Experimental evaluation

In this section we experimentally evaluate our no-external-regret dynamics for solving the

TMECor bilinear saddle-point formulation (11.5). Following the approach laid out in Chapter 10,

we construct the dynamics by applying the regret circuit of Section 4.2.5 to the scaled-extension-

based decomposition of the sets (Corollary 11.2), employing both PRM+
and Discounted RM as

local no-external-regret minimizers for the probability simplexes that form the scaled-extension-

decomposition of Ξ▲,Ξ▼.

We compare our method against the prior state-of-the-art algorithms from three different set

of techniques that have been used for this problem (see also Section 11.1):

• The tree-decomposition-based LP solver proposed by B. H. Zhang and Sandholm (2022b)

(henceforth “ZS22”). We used the original implementation of the authors, which internally

uses the barrier algorithm implemented by the commercial solver Gurobi. As recommended

by the authors, we turned Gurobi’s presolver off to avoid numerical instability and increase

speed. We allowed Gurobi to use up to four threads.

• The single-oracle algorithm of B. H. Zhang, Farina, Celli, and Sandholm (2022) (henceforth

“ZFCS22”), which is an improved version of a prior single-oracle algorithm by Farina, Celli,

Gatti, and Sandholm (2021). It represents currently the fastest single-oracle benchmark, and

therefore it fairly represents the state of the literature based on such technique. ZFCS22

iteratively refines the strategy of each team by solving best-response problems using a tight

integer program derived from the theory of extensive-form correlation (von Stengel and Forges,

2008; Farina, Kroer, and Sandholm, 2021b). We used the original code by the authors, which

§11. LEARNING DYNAMICS FOR TEAM COORDINATION AND COLLUSION 233

was implemented for three-player games in which a team of two players faces an opponent.

Like ZS22 and our LP-based solver, ZFCS22 uses the commercial solver Gurobi to solve linear

and integer linear programs. We allowed Gurobi to use up to four threads.

• The coordinator-based representation of Carminati, Cacciamani, Ciccone, and Gatti (2022)

(henceforth, “CCCG22”), which computes a TMECor by converting the problem into com-

puting a Nash equilibrium of a strategically-equivalent by exponentially-sized imperfect-

information extensive-form game, using a technique inspired by the work of Nayyar, Mahajan,

and Teneketzis (2013).

All experiments were run on a 64-core AMD EPYC 7282 processor. Each algorithm was

allocated a maximum of 4 threads, 60GBs of RAM, and a time limit of 6 hours. Experimental

results are summarized in Table 11.2.

Game {▼}
Decompos. of Ω▲ Decompos. of Ω▼ CCCG22 This chapter ZS22 ZFCS22

Simplexes Dimension Simplexes Dimension Game size ϵ=10−3 ϵ=10−4 ‡ ϵ=10−3 ϵ=10−4

K33 {3} 487 918 37 36 4,108 0.00s 0.00s 0.01s 0.00s 0.00s

K34 {3} 2,100 6,711 49 48 66,349 0.00s 0.00s 0.02s 0.01s 0.02s

K36 {3} 54,255 336,944 73 72 7,002,763 0.03s 0.12s 1.22s 0.14s 0.14s

K38 {3} 1,783,926 15,564,765 97 96 488,157,721 4.73s 32.36s 3m 23s 0.23s 0.32s

K3c {3} — — — — — oom oom oom 0.84s 1.39s

K45 {3,4} 26,566 124,875 4,621 15,415 — 0.03s 0.05s 0.79s — —

K45 {4} 998,471 4,658,070 121 120 202,660,366 1.59s 6.34s 3m 25s — —

L3133 {3} 23,983 49,005 685 684 1,691,158 0.02s 0.05s 0.50s 24.89s 45.96s

L3143 {3} 139,964 417,027 1,201 1,200 61,983,093 0.10s 0.48s 7.58s 2m 4s 6m 3s

L3151 {3} 150,707 496,196 1,501 1,500 — 0.18s 0.50s 9.30s 3.06s 13.98s

L3153 {3} 855,397 3,486,091 1,861 1,860 1,973,610,366 1.24s 4.94s 4m 24s 7m 23s 28m 13s

L3223 {3} 32,750 45,913 2,437 2,436 538,111 0.03s 0.08s 0.27s 13.48s 18.53s

L3523 {3} 2,911,352 4,183,685 220,705 220,704 222,239,487 11.26s 24.86s 2m 26s > 6h > 6h

L4133 {3,4} 79,351 158,058 75,157 155,475 277,714,570 0.21s 0.92s 7.30s — —

D33 {3} 91,858 215,967 1,522 1,521 — 0.11s 0.40s 2.10s 11.05s 11.05s

D34 {3} 4,043,377 13,749,608 16,381 16,380 — 22.54s 1m 28s 8m 29s 3h 19m 3h 19m

D43 {2,4} 514,120 1,217,310 486,442 1,155,144 — 2.31s 4.70s 1m 32s — —

D62 {2,4,6} 254,758 457,795 218,570 389,995 — 1.72s 4.26s 16.55s — —

D62 {4,6} 991,861 2,029,546 46,236 60,717 — 3.80s 11.09s 1m 35s — —

D62 {6} 3,158,364 7,395,885 5,551 5,550 — 30.20s 1m 11s 8m 53s — —

Table 11.2: Runtime of our learning algorithm (column ‘This chapter’), compared to prior state-of-the-

art algorithms based on linear programming (‘ZS22’, B. H. Zhang and Sandholm, 2022b) and

column generation (‘ZFCS22’, B. H. Zhang, Farina, Celli, and Sandholm, 2022) respectively, on

several standard parametric benchmark games. ‘—’: Missing or unknown value.

Column ‘Game‘ indicates the game, and the set of players on Team ▼. The games belong to

234 §11.4. EXPERIMENTAL EVALUATION

different classes of standard parametric benchmark games, each identified with an alphabetical

mnemonic whose starting letters and numbers identify the game class and number of players:

K3 K4 3- and 4-player Kuhn poker; L3 L4 3- and 4-player Leduc poker; D3 D4 D6 3-, 4-,

and 6-player liar’s dice. Depending on the game instance, we test with different time sizes, raging

from all-versus-one scenarios, to balanced splits. As usual, we refer the reader to Appendix A

for a description of each game class and their parameters. Columns ‘Decompos. of Ω▲’ and

‘Decompos. of Ω▼’ report the total number of simplexes and dimension of the scaled-extension

decomposition of Ω▲,Ω▼ (see Remark 11.1) for each game. Column ‘CCCG22’ indicates the

number of histories in the equivalent game produced by Carminati, Cacciamani, Ciccone, and

Gatti (2022)’s algorithm. Column ‘This chapter’ reports the time to convergence of the best
variant of our learning dynamics to an average team exploitability of less than ϵ times the range

of payoffs of the game. Column ‘ZS22’ reports the time it took ZS22 to compute an equilibrium

strategy for team ▲, to Gurobi’s default precision. Finally, column ‘ZFCS22’ reports the time it

took ZFCS22 to compute an equilibrium strategy for team ▲ with exploitability of less than ϵ

times the range of payoffs of the game. The missing values in that column are due to the fact that

the implementation of ZFCS22 by the original authors only supported 3-player games.

Overall, our algorithms based on the team belief DAG are generally 2-3 orders of magnitude

faster than ZS22. In games with high parameters (e.g., K38 and K3c), on the other hand, ZFCS22

is significantly more scalable, as it avoids the exponential dependence in the parameters at the

cost of requiring the solution to integer programs, for which runtime guarantees are hard to

give. Compared to the converted game of Carminati, Cacciamani, Ciccone, and Gatti (2022), our

team belief DAG is much smaller, often by orders of magnitude, which allows our algorithms to

similarly be faster by orders of magnitude. Since Carminati, Cacciamani, Ciccone, and Gatti (2022)

do not give detailed timing results for their implementation for most of the games they tested, we

have not included a runtime comparison. However, they reported a runtime of approximately 3

minutes to achieve an exploitability of 0.021 in L3133 , whereas our algorithm took 0.02 seconds

to achieve a lower exploitability of 0.001—a difference of about four orders of magnitude.

Part IV

Beyond perfect rationality

Chapter 12

Positive complexity results for
trembling-hand perfect equilibria

The Nash equilibrium prescribes optimal strategies against perfectly rational opponents. However,

it is known that it has serious shortcomings when used to prescribe strategies to be deployed

against imperfect opponents who may make mistakes. This is problematic when operationalizing

equilibria in the real world among imperfect players. In this chapter we will provide new

positive complexity results for the computation of a refinement of the Nash equilibrium—called an

extensive-form perfect equilibrium (EFPE)—that guarantees rational strategies even upon mistakes

of the opponent.

Undesirable behavior can be prescribed by the Nash equilibrium already in the simple and

well-understood case of two-player zero-sum games, as we illustrate with the following example.

Example 12.1. As an example, consider the perfect-information game in Figure 12.1.

(1,−1)

(0, 0) (−5, 5)

aa bb

ll rr

A

B

Figure 12.1: Perfect-information game in which a sequentially-irrational Nash equilibrium is

highlighted.

The bold lines show one of the Nash equilibria of the game. It does not matter whether

the white player acting at B chooses action l or action r because he never gets to action if

238 §12. POSITIVE COMPLEXITY RESULTS FOR TREMBLING-HAND PERFECT EQUILIBRIA

the black player acting at A plays rationally. So, in Nash equilibrium, the white player can

choose action l. However, if the black player makes a mistake and chooses action b, it would

be better for the white player to choose action r (thus getting a payoff of 5 instead of 0). So, in

that part of the game where the black player has made the mistake, the white player’s Nash

equilibrium strategy is not rational. In game-theoretic terms, it is not sequentially rational.

While in the particular example of Figure 12.1 the issue could be resolved by using an

equilibrium refinement called subgame perfect Nash equilibrium, that solution concept is not

particularly useful in imperfect-information extensive-form games, where few subgames (nodes

of the game tree that are alone in their information set) typically exist.

Example 12.2. For example, consider the example in Figure 12.2.

(1,−1)

(0, 0) (−5, 5) (−1, 1) (−5, 5)

aa bb

ll rr

cc

ll rr

A

B

Player 1

Player 2

Terminal history

Y Information set

Le
ge

nd

Figure 12.2: Small imperfect-information game in which a sequentially-irrational Nash equilibrium

is highlighted.

The white player acting at information set B does not have any subgame, and therefore the

highlighted sequentially-irrational Nash equilibrium is subgame perfect.

Another refinement of Nash equilibrium is undominated Nash equilibrium (UNE), that is, Nash

equilibrium where the pure strategies in the support of the equilibrium do not include strongly

dominated strategies. UNE would remove the unreasonable Nash equilibria in the games of both

Figures 12.1 and 12.2, but there are other games where UNEs can be sequentially irrational, and

in general undomination and sequential rationality are incomparable in the sense that neither

implies the other (Miltersen and Sørensen, 2006). We included an example of a situation where an

undominated equilibrium is sequentially irrational in an appendix to this chapter, Section 12.A.

Trembling-hand refinements are the standard solution proposed in the literature to avoid the

issue of sequential irrationality. One of these, extensive-form perfect equilibrium (EFPE) will then be

the focus of this chapter. We review trembling-hand refinements, and in particular EFPE, in the

next section.

§12. POSITIVE COMPLEXITY RESULTS FOR TREMBLING-HAND PERFECT EQUILIBRIA 239

12.1 Preliminaries on trembling-hand refinements
The issue of sequential irrationality stems from the fact that some parts of the game tree are

unreachable at equilibrium. For those excluded parts of the game tree, any strategy can be

picked without affecting the equilibrium. The idea behind trembling-hand refinements can be

conceptualized easily. To avoid sequential irrationality, trembling-hand refinements force all

players to explore the whole game tree. They do so by requiring the players to tremble, that is, play

all actions at all decision points with some strictly positive lower bound probability controlled

by a hyperparameter ϵ > 0. A trembling-hand refinement is then any limit point of such Nash

equilibria as ϵ→ 0+
.

Different equilibrium notions differ as to how the lower bounds are set as a function of ϵ. In

this chapter we are interested in extensive-form perfect equilibria (EFPE), due to Selten (1975),

which define perhaps the conceptually simplest trembling scheme. Specifically, in an EFPE, the

trembles are behavioral: given ϵ > 0, the perturbed game simply mandates that every action at

every decision point must be picked with probability at least ϵ.

Definition 12.1 (Extensive-form perfect equilibrium, EFPE). Given a game Γ, an EFPE is

a limit point, as ϵ → 0+
, of Nash equilibria of the perturbed Γ(ϵ) in which each player is

constrained to play only strategies that put probability at least ϵ on every action.

It is well-known (e.g., Kreps and Wilson, 1982) that every game has at least one EFPE, and that

EFPEs are sequentially rational.

Other notions of trembling-hand refinements exist, most notably the quasi-perfect equilibrium
(QPE) due to van Damme (1984). The definition of QPE is significantly more complicated, and

will be given in Definition 13.5 (in Chapter 13), together with its one-sided counterpart called

one-sided QPE (Farina and Sandholm, 2021a).

12.2 Contributions and related results
The main contribution of this chapter will be to establish the following result:

Finding an EFPE in a two-player game is not harder than finding a Nash equilibrium.

Specifically, in zero-sum games, an EFPE can be found in polynomial time in the size of the
input game, and in general-sum games it can be computed using a path-following algorithm
with polynomial-time steps.

The result closes a problem left explicitly open by Miltersen and Sørensen (2006), and

complements a similar result that was known for the quasi-perfect equilibrium (see Table 12.1).

240 §12.3. POSITIVE COMPLEXITY RESULTS FOR TWO-PLAYER EFPE

Solution concept Two-player general-sum games Two-player zero-sum games

Nash equilibrium (NE)

(Nash, 1950)

PPAD-complete

(Daskalakis, Goldberg, and Papadim-

itriou, 2009)

FP
(Romanovskii, 1962)

(von Stengel, 1996)

Quasi-perfect equilibrium (QPE)

(van Damme, 1984)

PPAD-complete

(Miltersen and Sørensen, 2010)

FP
(Miltersen and Sørensen, 2010)

Extensive-form perfect eq. (EFPE)

(Selten, 1975)

PPAD-complete
(this chapter)

FP
(this chapter)

Table 12.1: Complexity of computing trembling-hand equilibrium refinements in two-player games.

Building on some of the ideas and techniques introduced in this chapter, in Chapter 13 we

will propose the first scalable algorithm for computing exact QPE, EFPE, and other refinements of

the Nash equilibrium in two-player zero-sum games.

12.3 Positive complexity results for two-player EFPE

In two-player games, a Nash equilibrium can be expressed as a linear complementarity problem

(LCP). In this section, we show that the same holds even when each strategy is required to select

every action with probability at least ϵ as required to compute the EFPE defined in Definition 12.1.

12.3.1 Behavioral perturbation matrices

The constraint that each action in a strategy xi ∈ Qi for Player i ∈ {1, 2}must be selected with

probability is at least ϵ is captured in the sequence-form representation by requiring that

xi[ja] ⩾ ϵ · xi[pj] ∀ ja ∈ Σ∗
i .

By including the dummy constraint xi[∅] ⩾ 0 so as to make the matrix square, we can collect

the linear constraints above in matrix form as Ri(ϵ) xi ⩾ 0, where the matrix Ri(ϵ) ∈ ℝΣi×Σi
is

defined by

Ri(ϵ)[σ, σ′] :=


1 if σ = σ′

−ϵ if σ = ja and σ′ = pj

0 otherwise,

∀σ, σ′ ∈ Σi.

We call Ri(ϵ) the behavioral perturbation matrix of Player i. We illustrate these matrices with an

example.

§12. POSITIVE COMPLEXITY RESULTS FOR TREMBLING-HAND PERFECT EQUILIBRIA 241

Example 12.3. Consider the small game below. The matrices R1(ϵ) and R2(ϵ) in this case are

as follows:

11 22

33 44

55 66

A

B

C
R1(ϵ) =

1 0 0 0 0
−ϵ 1 0 0 0
−ϵ 0 1 0 0
0 0 −ϵ 1 0
0 0 −ϵ 0 1




∅
A1
A2
B5
B6

∅ A1 A2 B5 B6

R2(ϵ) =
1 0 0
−ϵ 1 0
−ϵ 0 1


∅

C3
C4

∅ C3 C4

.

Assuming that the rows and columns of behavioral perturbation matrices are ordered in

accordance with the partial order ≼ of sequences, we remark that behavioral perturbation matrices

are lower triangular square matrices having only 0 or −ϵ as entries. We now show that they are

always invertible and that their inverse is a matrix of polynomials in ϵ.

Lemma 12.1. Let Ri(ϵ) be a n× n behavioral perturbation matrix. Then Ri(ϵ) is invertible.

Furthermore, assuming that the rows and columns of behavioral perturbation matrices are

ordered in accordance with the partial order ≼ of sequences, its inverse is

Ri(ϵ)−1 = I + ϵE(ϵ),

where I is the identity matrix, and E(ϵ) is a lower triangular matrix whose entries are

polynomials in ϵ having non-negative integer coefficients.

Proof. By induction on the submatrix formed by the first k rows and k columns. When k = 1,

the statement is trivial. Now, suppose the theorem holds for the k × k top-left submatrix of

Ri(ϵ), denoted Rk
i (ϵ); we will show that it holds for the (k + 1)× (k + 1) top-left submatrix

mRk+1
i (ϵ) of Ri(ϵ). By definition of Ri(ϵ), we can write

Rk+1
i (ϵ) =

 Rk
i (ϵ) 0

b(ϵ)⊤ 1

, where b(ϵ)⊤ = (0, . . . , 0,−ϵ, 0, . . . , 0).

It is immediate to check by direct inspection that the matrix

Rk+1
i (ϵ)−1 =

 Rk
i (ϵ)−1 0

−b(ϵ)⊤Rk
i (ϵ)−1 1



242 §12.3. POSITIVE COMPLEXITY RESULTS FOR TWO-PLAYER EFPE

is the inverse of Rk+1
i (ϵ). Using the inductive hypothesis, we have Rk

i (ϵ)−1 = I + ϵEk(ϵ), and

therefore

Rk+1
i (ϵ)−1 = I + ϵ

 Ek(ϵ) 0

(−b(ϵ)/ϵ)⊤Rk
i (ϵ)−1 0

.
Since (−b(ϵ)/ϵ)⊤ = (0, . . . , 0, 1, 0 . . . , 0) is a non-negative real vector, the row vector b′(ϵ) :=
(−b(ϵ)/ϵ)⊤Rk

i (ϵ)−1
has entries that are polynomials with non-negative integer coefficients, and

so

Rk+1
i (ϵ)−1 = I + ϵ

 Ek(ϵ) 0

b′(ϵ) 0

 =: I + ϵEk+1(ϵ),

where Ek+1(ϵ) is a lower triangular matrix whose entries are polynomials in ϵ having non-

negative integer coefficients, as we wanted to show.

Example 12.4. For the matrix R1(ϵ) of Example 12.3, we have:

R1(ϵ)−1 =

1 0 0 0 0
ϵ 1 0 0 0
ϵ 0 1 0 0
ϵ2 0 ϵ 1 0
ϵ2 0 ϵ 0 1




∅
A1
A2
B5
B6

∅ A1 A2 B5 B6

.

12.3.2 EFPE as a trembling linear complementarity problem (LCP)

In this subsection, we show that the problem of finding a Nash equilibrium of a two-player game

Γ(ϵ) subject to the constraint that each player pick each action with lower bound probability ϵ can

be expressed as a linear complementarity program whose entries are polynomials in ϵ. In what

follows, we let Fi ∈ ℝJi×Σi
and f i ∈ ℝJi

define the sequence-form polytope

Qi = {x ∈ ℝΣi

⩾0 : Fix = f i,x ⩾ 0}

of Player i ∈ {1, 2}, and Ui define the payoff matrix of Player i in sequence form.

Lemma 12.2. An EFPE is a limit point as ϵ→ 0+
of any solution of the perturbed standard-

form LCP

§12. POSITIVE COMPLEXITY RESULTS FOR TREMBLING-HAND PERFECT EQUILIBRIA 243

P (ϵ) :


find z,w

s.t. z⊤w = 0
w = M(ϵ)z + b

z,w ⩾ 0

where, using the shorthand R1 ≡ R1(ϵ),R2 ≡ R2(ϵ) for brevity,

z =



x̃1

x̃2

v+
1

v−
1

v+
2

v−
2


, b =



0
0
f1
−f1
f2
−f2


,

M(ϵ) =



0 −R1
−⊤U1R2

−1 R1
−⊤F⊤

1 −R1
−⊤F⊤

1 0 0
−R2

−⊤U⊤
2 R1

−1 0 0 0 R2
−⊤F⊤

2 −R2
−⊤F⊤

2
−F1R1

−1 0 0 0 0 0
F1R1

−1 0 0 0 0 0
0 −F2R2

−1 0 0 0 0
0 F2R2

−1 0 0 0 0


.

Proof. The problem of finding the best response of Player i in the perturbed game Γ(ϵ) where

every action is selected with probability at least ϵ is a linear problem

BRi(ϵ) :


maxxi

x⊤
i Uix−i

s.t. Fixi = f i
Ri(ϵ)xi ⩾ 0

Notice that Ri(ϵ) is invertible (Lemma 12.1), hence by changing variable x̃i := Ri(ϵ)xi, we find

the equivalent problem:

BRi(ϵ) :


maxx̃i x̃⊤

i Ri(ϵ)−⊤UiR−i(ϵ)−1x̃−i

s.t. 1 FiRi(ϵ)−1x̃i = f i
2 x̃i ⩾ 0.

Taking the dual:

244 §12.3. POSITIVE COMPLEXITY RESULTS FOR TWO-PLAYER EFPE

BRi(ϵ) :


minvi f⊤

i vi

s.t. 3 Ri(ϵ)−⊤F⊤
i vi ⩾ Ri(ϵ)−⊤UiR−i(ϵ)−1x̃−i

4 vi free in sign.

Finally, complementarity slackness requires that

5 x̃⊤
i (Ri(ϵ)−⊤F⊤

i vi −Ri(ϵ)−⊤UiR−i(ϵ)−1x̃−i) = 0.

Solving problem BRi(ϵ) or BRi(ϵ) is equivalent to solving the feasibility problem defined by

constraints 1 to 5 . It is now easy to see that we can cast the problem of satisfying conditions

1 to 5 for both players as a standard-form LCP whose parameters are as defined in this

lemma.

In particular, we show that a polynomial (in the game size) number of bits is sufficient to

represent the polynomial entries of the LCP introduced in Lemma 12.2.

Lemma 12.3. Consider the LCP formulation of Lemma 12.2, where ϵ is treated as a symbolic

variable, so that the entries of M(ϵ) are polynomials in ϵ. A number of bits polynomial in the

input game size is sufficient to store all coefficients appearing in P (ϵ).

Proof. Consider the LCP formulation of Lemma 12.2. We begin by showing that each coefficient

appearing in P (ϵ) requires a polynomial amount of memory to be store. This property trivially

holds for vector b. On the other hand, all numbers appearing in matrix M(ϵ) are either

zeros, or they are obtained by multiplying two or more of the following matrices together:

R1(ϵ)−⊤,R2(ϵ)−⊤,U1,U⊤
2 ,F⊤

1 ,F⊤
2 . Hence, as long as each of the coefficients appearing in

the above-mentioned matrices requires a polynomial number of bits in the input game size,

the property is true. This is clearly true for U1,U⊤
2 ,F1,F⊤

2 , so we are left with the task of

proving this property for R1(ϵ)−1
and R2(ϵ)−1

. However, since det R1(ϵ) = 1 (indeed, notice

that R1(ϵ) is lower triangular), using the adjoint matrix theorem and the Leibniz formula for

the determinant, we conclude that each entry in R1(ϵ)−1
is obtained as a sum of |Σ1|! terms,

each of which is a product of |Σ1| entries of R1(ϵ), since |Σ1| is the dimension of R1(ϵ) (the

same holds for R2(ϵ)). Therefore, the property holds, showing that each coefficient in M(ϵ)
and b requires a polynomial amount of memory to be stored.

We now show that the maximum degree appearing in M(ϵ) is 2|Σ1|. This is a consequence

of the observation above: since each entry in R1(ϵ)−1
is obtained as sum of |Σ1|! terms, each

of which is a product of |Σ1| entries of R1(ϵ), the maximum degree appearing in R1(ϵ)−1
is

|Σ1|. Now, since each element of M(ϵ) is obtained from the product of at most two matrices

dependent on ϵ, the maximum degree appearing in M(ϵ) (and therefore in P (ϵ)) is 2|Σ1|.
Thus, we have a polynomial amount of coefficients to store, each of which requires a

§12. POSITIVE COMPLEXITY RESULTS FOR TREMBLING-HAND PERFECT EQUILIBRIA 245

polynomial amount of memory. The required space is therefore polynomial.

Finally, we show that for ϵ sufficiently small, the LCP of Lemma 12.2 is feasible.

12.3.3 Existence of a negligible positive perturbation (NPP)

Before turning our attention to the computational aspects of finding an EFPE, we introduce some

general concepts, pertaining to perturbed linear optimization problems. While we target the

development of these concepts with our specific use-case in mind, it should be noted that this

section’s definitions and lemmas are of broader interest, being applicable to any linear program

(LP) or LCP. We recall that a basis B for a standard-form LP with constraints Mx = b or a

standard-form LCP with linear equality constraints w = Mz + b is a set of linearly independent

columns of M such that the associated solution (called basic solution) is feasible.

Definition 12.2 (Negligible positive perturbation, NPP). Let P (ϵ) be an LCP dependent on

some perturbation ϵ. The value ϵ∗ > 0 is a negligible positive perturbation (NPP) if any optimal

basis B for P (ϵ∗) is optimal for P (ϵ), for all ϵ ∈ (0, ϵ∗].

Definition 12.3 (Optimality certificate for a basis). Given an LCP P (ϵ), and a basis B for it, we

call the finite-dimensional column vector γB(ϵ) an optimality certificate for B if for all ϵ > 0

γB(ϵ) ⩾ 0 ⇐⇒ B is optimal for P (ϵ).

Lemma 12.4. In the case of a perturbed LCP in standard form

P (ϵ) :


find z,w

s.t. 1 z⊤w = 0
2 w = M(ϵ)z + b(ϵ)
3 z,w ⩾ 0

an optimality certificate for the complementary basis B is

γB(ϵ) = B(ϵ)−1b(ϵ)

where B is the basis matrix corresponding to B.

246 §12.3. POSITIVE COMPLEXITY RESULTS FOR TWO-PLAYER EFPE

Proof. Since the basis B is complementary by hypothesis, constraint 1 is always satisfied.

Constraint 2 is satisfied by the definition of B(ϵ). Constraint 3 is satisfied if and only if

B(ϵ)−1b(ϵ) = γB(ϵ) ⩾ 0.

Finally, before proceeding, we introduce three lemmas that come in handy when dealing with

optimality certificates. Indeed, it is often the case that γB(ϵ) has polynomial or rational functions

(with respect to ϵ) as entries.

Lemma 12.5. Let p(ϵ) := a0 + a1ϵ
1 + · · ·+ anϵ

n
be a real polynomial such that a0 ̸= 0, and let

µ := maxi |ai|. Then p(ϵ) has the same sign of a0 for all 0 ⩽ ϵ ⩽ ϵ∗, where

ϵ∗ := |a0|/(µ+ |a0|).

Proof. We prove that when a0 > 0, p(ϵ) is positive for all 0 ⩽ ϵ ⩽ ϵ∗. Indeed,

p(ϵ) = a0 + a1ϵ
1 + · · ·+ anϵ

n > a0 − µϵ
∞∑
i=0

ϵi = a0 −
µϵ

1− ϵ .

Since ϵ ⩽ ϵ∗ := a0/(µ+ a0) we have

p(ϵ) > a0 −
µa0

µ+ a0 − a0
= 0.

The case a0 < 0 is symmetric, and in that case p(ϵ) is negative for all 0 ⩽ ϵ ⩽ ϵ∗.

As a corollary, we extend the result of Lemma 12.5 to rational functions.

Lemma 12.6. Let

p(ϵ) := a0 + a1ϵ
1 + · · ·+ anϵ

n

b0 + b1ϵ1 + · · ·+ bmϵm

be a rational function such that a0, b0 ̸= 0, and let µa := maxi |ai|, µb := maxi |bi|. Then p(ϵ)
has the same sign of a0/b0 for all 0 ⩽ ϵ ⩽ ϵ∗, where

ϵ∗ := min
{
|a0|

µ+ |a0|
,
|b0|

µ+ |b0|

}
.

§12. POSITIVE COMPLEXITY RESULTS FOR TREMBLING-HAND PERFECT EQUILIBRIA 247

Proof. The proof follows immediately by applying Lemma 12.5 to the numerator and the

denominator of p(ϵ).

Lemma 12.7. Let

p(ϵ) := a0 + a1ϵ
1 + · · ·+ anϵ

n

b0 + b1ϵ1 + · · ·+ bmϵm

be a rational function with integer coefficients, where the denominator is not identically zero;

let µa := maxi |ai|, µb := maxi |bi|, µ := max{µa, µb} and ϵ∗ := 1/(2µ). Then exactly one of

the following holds:

• p(ϵ∗) = 0 for all 0 < ϵ ⩽ ϵ∗,

• p(ϵ∗) > 0 for all 0 < ϵ ⩽ ϵ∗,

• p(ϵ∗) < 0 for all 0 < ϵ ⩽ ϵ∗.

Proof. If the numerator of p(ϵ) is identically zero, the thesis follows trivially, as p(ϵ) = 0 for all

ϵ, while the denominator is never zero for all 0 < ϵ ⩽ ϵ∗ due to Lemma 12.5. If, on the other

hand, the numerator of p(ϵ) is not identically zero, there exist j and x, both non-negative, such

that p can be written as

p(ϵ) = ϵq(aq + aq+1ϵ+ · · ·+ anϵ
n−q)

ϵr(br + br+1ϵ1 + · · ·+ bnϵn−r) ,

with aq, br ̸= 0. Since aq and br are integer, |aq|, |br| ⩾ 1 and we have

ϵ∗ = 1
2µ ⩽ min

{
|aq|

µa + |aq|
,
|br|

µb + |br|

}
.

Using Lemma 12.6 we conclude that the sign of p(ϵ) is constant, and equal to that of aq/br, for

all 0 < ϵ ⩽ ϵ∗.

Theorem 12.1. Given a (general-sum) two-player game Γ with ν := maxi∈{1,2}, j∈Ji
|Aj |, the

problem P (ϵ) of computing any EFPE for Γ admits an NPP ϵ∗ ⩽ 1/ν that can be computed

from Γ in polynomial time. In particular, ϵ∗ = 1/V ∗
, where the integer value V ∗

can be

represented in memory with a number of bits polynomial in the input game size.

248 §12.3. POSITIVE COMPLEXITY RESULTS FOR TWO-PLAYER EFPE

Proof. We illustrate the steps that lead to the determination of such V ∗
. The central idea is as

follows: we want to determine ϵ∗ so that, whatever the feasible base B for P (ϵ∗) may be, the

optimality certificate for ϵ∗ is positive for all ϵ ∈ (0, ϵ∗]. Indeed, it is immediate to see that such

ϵ∗ is necessarily an NPP.

• Optimality certificate. We begin by studying the optimality certificate for the LCP P (ϵ),
that is, by Lemma 12.4,

B(ϵ)−1b(ϵ) ⩾ 0,

where B(ϵ) is base matrix corresponding to the feasible baseB found by Lemke’s algorithm.

Introducing C(ϵ) = cof B(ϵ), the cofactor matrix of matrix B(ϵ), and leveraging the well-

known identity B(ϵ)−1 = C(ϵ)⊤/ det B(ϵ), we can rewrite the optimality certificate above

as

C(ϵ)⊤b(ϵ)
det B(ϵ) ⩾ 0.

The vectorial condition above is equivalent to a system of m scalar conditions, each of the

form

gk(ϵ) = ck(ϵ)⊤b(ϵ)
det B(ϵ) ⩾ 0,

where ck(ϵ) is the k-th row of C(ϵ)⊤
. Evidently, gk(ϵ) is a rational function in ϵ, having

only integer coefficients, for all k = 1, . . . ,m.

• Denominator coefficients. We now give an upper bound on the coefficients of the

denominator of gk(ϵ), that is det B(ϵ). Let VB be the largest coefficient that could

potentially appear in B(ϵ) and b(ϵ), and let d be the largest polynomial degree appearing

in B(ϵ). Notice that d ∈ O(poly(m)). By using Hadamard’s inequality, we can write

coeff(det B(ϵ)) ⩽ mm/2V mB coeff((1 + ϵ+ · · ·+ ϵd)m),

where coeff(·) is the largest coefficient of its polynomial argument. Since coeff((1 + ϵ+
· · ·+ ϵd)m) ⩽ dm, we have

coeff(det B(ϵ)) ⩽ VD := mm/2(dVB)m.

Notice that this bound is valid for all possible basis matrices B(ϵ). Furthermore, notice

that

§12. POSITIVE COMPLEXITY RESULTS FOR TREMBLING-HAND PERFECT EQUILIBRIA 249

log VD = m/2 logm+m log d+m log VB ,

and by Lemma 12.3 we conclude that VD requires a number of bits polynomial in the

input game size in order to be stored in memory.

• Numerator coefficients. Since the elements of ci(ϵ) are cofactors for B(ϵ), they are

upper-bounded by det B(ϵ), which in turn is upper-bounded by VD. Therefore,

coeff(ci(ϵ)⊤b(ϵ)) ⩽ VN := VBVD.

Again, it is worthwhile to notice that this bound is valid for all possible basis matrices

B(ϵ).

• Wrapping up. Define V ∗ = 2 max{VN , VD} = 2VBVD. We now argue that ϵ∗ = 1/V ∗
is

an NPP for P (ϵ). Indeed, let B∗
be a feasible basis (since ϵ∗ ⩽ 1/m, B always exists—see

Lemma 12.9) for P (ϵ∗), and let B(ϵ∗) be the corresponding base matrix. Being B feasible

for P (ϵ∗), each row gk in the optimality certificate is non-negative when evaluated at ϵ∗ for

all k. Therefore, we know from Lemma 12.7 that gk(ϵ) ⩾ 0 for all ϵ ∈ (0, 1/V ∗] = (0, ϵ∗].
Hence, the optimality certificate for B is non-negative for all 0 < ϵ ⩽ ϵ∗, which is

equivalent to say that ϵ∗ is an NPP. Finally, note that V ∗ = 2VBVD be stored in memory

with a number of bits polynomial in the game size. This completes the proof.

12.3.4 Computation of extensive-form perfect equilibria

We finally delve into the computational details of finding extensive-form perfect equilibria. The

central result of this section (Theorem 12.1) roughly states that the EFPE LCP (Lemma 12.2) always

admits a “small” NPP. Leveraging this fact, we quickly derive a path-following algorithm for the

computation of EFPE in general-sum games in which each pivoting step has a polynomial-time cost

(Theorem 12.2), and a polynomial-time algorithm for the zero-sum counterpart (Theorem 12.3).

These two algorithms put the two search problems in PPAD and FP classes, respectively.

To establish the result, we will make use of Lemke’s algorithm (Lemke, 1970), a classic iterative

algorithm that is able to solve a linear complementarity problem, provided it satisfies the following

conditions.

Lemma 12.8 (Theorem 4.1, Koller, Megiddo, and von Stengel, 1996). Consider a linear

complementarity problem in standard form

250 §12.3. POSITIVE COMPLEXITY RESULTS FOR TWO-PLAYER EFPE


find z,w

s.t. 1 z⊤w = 0
2 w = Mz + b

3 z,w ⩾ 0.

If the two conditions

(a) z⊤Mz ⩾ 0 for all z ⩾ 0, and

(b) z ⩾ 0, Mz ⩾ 0, z⊤Mz = 0 =⇒ z⊤b ⩾ 0,

are satisfied, then Lemke’s algorithm computes a solution of the LCP.

We start by observing that, as long as the perturbation ϵ is “reasonably small”, the LCP defined

in Lemma 12.2 always admits a solution.

Lemma 12.9. If 0 < ϵ ⩽ 1/ν, where ν := maxi∈{1,2}, j∈Ji
|Aj | is the maximum number of

actions available at any information set of the game. Lemke’s algorithm always finds a

solution for P (ϵ).

Proof. We follow the same proof structure as that in Koller, Megiddo, and von Stengel, 1996,

Section 4. In particular, we prove that if U1,U2 < 0, then conditions (a) and (b) of Lemma 12.8

hold for all problemsP (ϵ) defined in Lemma 12.2. Notice that we can always assume U1,U2 < 0
without loss of generality, as we can apply an offset to the payoff matrices leaving the game

unaltered.

• Condition (a). We need to show that when U1,U2 < 0, then z⊤M(ϵ)z ⩾ 0 for all z ⩾ 0.

We have:

z⊤M(ϵ)z = x̃⊤
1 R1(ϵ)−⊤(−U1 −U2)R2(ϵ)−1x̃2.

Substituting U = −U1 −U2 > 0 and using Lemma 12.1:

z⊤M(ϵ)z = x̃⊤
1 (I + ϵE1(ϵ))⊤U(I + ϵE2(ϵ))x̃2

⩾ x̃⊤
1 Ux̃2. (12.1)

When z ⩾ 0, then x̃1, x̃2 ⩾ 0 and we conclude that x̃⊤
1 Ux̃2 ⩾ 0, which implies the thesis.

• Condition (b). We already proved (Equation (12.1)) that

z⊤M(ϵ)z ⩾ x̃⊤
1 Ux̃2,

§12. POSITIVE COMPLEXITY RESULTS FOR TREMBLING-HAND PERFECT EQUILIBRIA 251

where U > 0. In order for z⊤M(ϵ)z to be zero given z ⩾ 0, it is necessary that x̃1, x̃2 = 0.

Defining v1 = v+
1 − v−

1 and v2 = v+
2 − v−

2 , we have

M(ϵ)z =



R1(ϵ)−⊤F⊤
1 v1

R2(ϵ)−⊤F⊤
2 v2

0
0
0
0


, z⊤b = b⊤z = f⊤

1 v1 + f⊤
2 v2.

Hence, in order to complete the proof, it suffices to show that

Ri(ϵ)−⊤F⊤
i vi ⩾ 0 =⇒ f⊤

i vi ⩾ 0 (i ∈ {1, 2}).

To this end, we consider the following linear optimization problem Yi(ϵ), and its dual

Ȳi(ϵ):

Yi(ϵ) :


maxx̃i

0
s.t. FiRi(ϵ)−1x̃i = f i

x̃i ⩾ 0
,

Ȳi(ϵ) :
{

minvi
f⊤
i vi

s.t. Ri(ϵ)−⊤F⊤
i vi ⩾ 0

.

Notice that Yi(ϵ) is feasible since ϵ ⩽ 1/ν by hypothesis (indeed, the strategy that picks

every action uniformly at random satisfies that each action is select with probability

⩾ 1/ν). By the strong duality theorem, we conclude that whenever the constraint of

the dual problem is satisfied, the objective value is non-negative, that is Ri(ϵ)−⊤F⊤
i vi ⩾

0 =⇒ f⊤
i vi ⩾ 0 as we aimed to show.

We remark that when ϵ is a given value, the task of finding an NE of P (ϵ) has a powerful

interpretation. Indeed, it captures the situation in which the actions of a player are subject to

execution uncertainty and therefore a player cannot perfectly control their actions.

Theorem 12.2. The problem of computing an EFPE of a general-sum two-player game Γ is

PPAD-complete.

Proof. Let ϵ∗ = 1/V ∗
be an NPP as defined in Theorem 12.1, and let B be a feasible base for the

(numerical) problem P (ϵ∗), found using Lemke’s algorithm. Since ϵ∗ is an NPP, the pair of

strategies (x∗
1,x

∗
2) corresponding to B retain their feasibility with respect to the LCP P (ϵ) as

252 §12.3. POSITIVE COMPLEXITY RESULTS FOR TWO-PLAYER EFPE

ϵ→ 0+
, meaning that (x∗

1,x
∗
2) is in fact an EFPE.

Furthermore, given that V ∗
requires a number of bits polynomial in the input game size,

each iteration of Lemke’s algorithm takes time polynomial in the game size. This proves that

the algorithm described is a path-following algorithm requiring a polynomial-time cost at each

step, and therefore the problem of finding an EFPE in two-player games is in the PPAD class.

The hardness easily follows from the fact that EFPE is a refinement of Nash equilibrium, an

EFPE always exists, and finding a Nash is PPAD-complete. Therefore, if finding an EFPE were

not PPAD-hard, then one could use the EFPE-finding algorithm with the aim of finding an NE

and therefore not even finding an NE would be PPAD-hard. This concludes the proof.

We remark that the proof of theorem above also applies for an arbitrary ϵ (potentially non-NPP),

showing that finding an NE for any ϵ < maxi∈{1,2}, j∈Ji
|Aj | is in the PPAD class. We summarize

the procedure to find an EFPE of general-sum games in Algorithm 12.1.

Algorithm 12.1: Find-EFPE

1 Compute ϵ∗ from Γ as in the proof of Theorem 12.1

2 Determine a basis B for the numerical LCP P (ϵ∗)
3 Let B(ϵ) be the base matrix corresponding to B in P (ϵ), as ϵ varies

[▷ Since B(ϵ)−1b is a rational bounded function in a neighborhood of 0, B(0)−1b exists]

4 (x̃1, x̃2,v
+
1 ,v

−
1 ,v

+
2 ,v

−
2)⊤ = B(0)−1b

[▷ Note that R1(0) = R2(0) = I, so x̃1 = x1, x̃2 = x2]

5 return the pair of strategies (x̃1, x̃2)

12.3.5 Polynomial-time computation in zero-sum games

We now show that Algorithm 12.1 requires polynomial time when the game is zero sum.

Theorem 12.3. The problem of computing an EFPE of a zero-sum two-player game Γ can be

solved in polynomial time in the size of the input game.

Proof. Like in Theorem 12.2, we can easily extract an EFPE by looking at the feasible matrix B
which solves the (numerical) LCP P (ϵ∗). However, in the zero-sum setting, we do not need to

use Lemke’s algorithm. Indeed, notice that in zero-sum two-player games, matrix M(ϵ) as

defined in Lemma 12.2 is such that M(ϵ) + M(ϵ)⊤ = 0 for all ϵ, because U2 = −U⊤
1 . Therefore,

the complementarity condition can be rewritten as

0 = z⊤(M(ϵ)z + b(ϵ)) = 1
2 z⊤(M(ϵ) + M(ϵ)⊤)z + z⊤b(ϵ) = z⊤b(ϵ),

§12. POSITIVE COMPLEXITY RESULTS FOR TREMBLING-HAND PERFECT EQUILIBRIA 253

a linear condition instead of a quadratic one. This shows that when the game is zero-sum,

the LCP is actually an LP. As such, a basis for the LCP of Algorithm 12.1 can be computed

in polynomial time, leading to an overall polynomial time algorithm. This completes the

proof.

We remark that the technique used to establish the above result yields a polynomial-time

method for computing EFPE. However, the method scales unfavorably in practice due to the need

to operate with extremely small rational numbers. A significantly more scalable approach will be

presented in Chapter 13.

12.A Appendix: Undomination does not prevent sequential
irrationality

One might believe that the problem of sequential irrationality is that of picking dominated

strategies. So, one might be inclined to look into the problem of finding a Nash equilibrium

whose support does not include any (weakly) dominated strategy (the concept is not immediately

well defined, but for the purposes of this discussion let’s restrict ourselves to Nash equilibria in

deterministic strategies).

Example 12.5. Figure 12.3 shows a modification of the classic Guess-the-Ace game introduced

by Miltersen and Sørensen (2006).

A

B

C D

(A♠ on top) (A♠ not on top)1/521/52 51/5251/52

betbet betbetquitquit quitquit

A♠A♠¬A♠¬A♠ A♠A♠¬A♠¬A♠

¬gift¬gift giftgift ¬gift¬gift giftgift

(0, 0) (0, 0)

(−$, $)

(0, 0) (−$, $)

(−$, $)

(0, 0) (−$, $)

Figure 12.3: Modified Guess-the-Ace games. The highlighted equilibrium is undominated, and yet

sequentially irrational.

254 §12.A. APPENDIX: UNDOMINATION DOES NOT PREVENT SEQUENTIAL IRRATIONALITY

In regular Guess-the-Ace, at the start a standard 52-card deck is perfectly shuffled, face

down, by a dealer. Then, Player 1 can decide whether to immediately end the game, at

which point no money is transferred between the players, or offer $1000 to Player 2 if they

can correctly guess whether the top card of the shuffled deck is the ace of spaces or not. If

Player 2 guesses correctly, the $1000 get transferred from Player 1 to Player 2; if not, no money

is transferred.

In Figure 12.3, again due to Miltersen and Sørensen (2006), the Guess-the-Ace game is

slightly modified in that, when Player 2 guesses wrong, Player 1 can decide whether they

still want to give $1000 to Player 2 out of the kindness of their heart or not. By introducing

that possibility, action ‘¬A♠’ is not strictly dominating anymore, because Player 2 might still

hope that the second gift of $1000 is given only when the insensible guess ‘A♠’ is made.

The example above implies the following general principle.

Observation 12.1. Undomination does not prevent a player from playing risky actions,

“hoping” for an opponent’s mistake.

Chapter 13

Computing exact trembling-hand
refinements in two-player zero-sum
games at scale

In this chapter we develop the first technique for computing exact trembling-hand equilibrium

refinements—including extensive-form perfect (Chapter 12) and quasi-perfect equilibria—in large

two-player zero-sum games. For the first time, it enables computing exact, refined, sequentially-

rational Nash equilibrium strategies in games with up to hundreds of millions of terminal states,

4-5 orders of magnitude larger than what prior techniques could handle.

13.1 Related work

An alternative algorithm to compute an exact quasi-perfect equilibrium (QPE) is a simplex

algorithm variant that deals symbolically with the perturbation using the lexico-minimum ratio

test (Miltersen and Sørensen, 2010). It was not known if, in practice, it can scale up to large

instances. Our experiments show that it does not. While in principle also an extensive-form

perfect equilibrium (EFPE) can be computed using a simplex algorithm that deals with the

perturbation symbolically, it is not even clear whether it can run in polynomial space. In summary,

although there is agreement that Nash equilibrium refinements can play an important role even

in two-player zero-sum games, prior algorithms do not scale in practice.

Some algorithms have been proposed for computing approximate trembling-hand equilibria

resorting to regret-minimization techniques (Farina, Kroer, and Sandholm, 2017) or to smoothing

methods paired with bilinear saddle-point techniques (Kroer, Farina, and Sandholm, 2017). Those

algorithms do not provide any guarantee of finding or approximating actual QPEs or EFPEs.

256 §13.2. REFINED STRATEGIES AS SOLUTIONS TO TREMBLING LINEAR PROGRAMS

Rather, they provide approximate solutions to approximate solution concepts.

Finally, we mention proper equilibria (PEs), proposed by Myerson (1978). PEs form a non-empty

subset of EFPEs, with the additional requirement that the worse an action is for a player, the lower

the agent’s tremble probability on that action must be. Therefore, the trembles are a function of

the strategies of the players. This potentially complicates equilibrium finding. It is unknown

whether PEs can be efficiently found in imperfect-information extensive-form games, and the

techniques in this chapter do not apply to PE.

13.2 Refined strategies as solutions to trembling linear programs
In this chapter we will focus on three notions of trembling-hand refinements: extensive-form

perfect equilibria (EFPE, already seen in Chapter 12), quasi-perfect equilibrium (QPE, defined

in Section 13.2.2), and one-sided quasi-perfect equilibrium (OS-QPE, defined in Section 13.2.3).

As we will show, in two-player zero-sum games all these equilibria are similar, in the sense that

they can be expressed as limit points, as ϵ→ 0+
, of sequences of optimal solutions to appropriate

linear programs (LPs) shows entries are polynomials of ϵ > 0. In this section, we formalize this

type of problems into a general framework and develop a series of results that apply not only to

QPEs, OS-QPEs, and EFPEs, but to any other computational problem with that general structure

as well.

Definition 13.1 (Trembling linear program). A trembling linear program (TLP) is a linear

program parametric in ϵ > 0,

P (ϵ) :


max c(ϵ)⊤ x

s.t. A(ϵ) x = b(ϵ)
x ⩾ 0,

where A(ϵ), b(ϵ), c(ϵ) are polynomials in the variable ϵwith rational coefficients. Furthermore,

we require that the set of all feasible solutions for P (ϵ) be non-empty for all sufficiently small

ϵ, and that the set of all feasible solutions for P (0) be non-empty and bounded.

In the case of QPEs (Section 13.2.2) the perturbation variable ϵ only appears in b, whereas in the

case of EFPEs (Section 13.2.1) the perturbation ϵ only appears in A.
[13.a]

[13.a]
In principle, one could also study the case where ϵ appears only in c. To our knowledge, that does not have

applications to games, and has not been studied in that context. However, it has been studied, for example, for

lexicographic multi-objective LPs Isermann, 1982. In particular, given the set of objectives c⊤
1 x, c⊤

2 x, . . . , c⊤
n x, one can

define a new objective (c1 + ϵc2 + · · · + ϵn−1cn)⊤x. That formulation is fundamentally equivalent to the grossone-based

approach Cococcioni, Pappalardo, and Sergeyev, 2018. Even for the grossone-based approach, our TLP-based approach

overcomes some of the key limitations of the work by Cococcioni, Pappalardo, and Sergeyev (2018). In particular, our

algorithm for finding a TLP limit solution (Section 13.4) is purely numerical (yet provably correct)—thus avoiding the time

§13. COMPUTING EXACT TREMBLING-HAND REFINEMENTS IN TWO-PLAYER ZERO-SUM GAMES

AT SCALE 257

We now formalize the concept of limit solution for a TLP:

Definition 13.2 (Limit solution of a TLP). A limit solution of a TLP P (ϵ) is a limit point of

optimal solutions for P (ϵ) as ϵ→ 0+
.

In the rest of the section, we show that EFPE, QPE, and OS-QPE strategies can all be expressed

as limit solutions of appropriately defined trembling LPs. To do so, we will assume that a

two-player zero-sum game has been fixed. Analogously to the previous chapter, for each player

i ∈ {1, 2}, we let Fi ∈ ℝJi×Σi
and f i ∈ ℝJi

define the player’s sequence-form polytope

Qi = {x ∈ ℝΣi

⩾0 : Fix = f i,x ⩾ 0}.

Furthermore, we let Ui be the payoff matrix of Player i.

13.2.1 Extensive-form perfect equilibria as trembling linear programs

As defined in Definition 12.1 in Chapter 12, an EFPE is a limit point, as ϵ→ 0+
, of Nash equilibria

of the restricted game in which players need to select each action with probability at least ϵ. Using

the fact that in two-player zero-sum games Nash equilibrium strategies are solutions to a linear

program, we obtain the following result.

Proposition 13.1. Any limit point of solutions to the trembling linear program

max
x̃i,v−i

f⊤
−iv−i

s.t. 1 R−⊤
−i (ϵ)F⊤

−iv−i ⩽ R−⊤
−i (ϵ)U⊤

i R−1
i (ϵ)x̃i

2 FiR−1
i (ϵ)x̃i = f i

3 x̃i ⩾ 0.

as the trembling magnitude ϵ → 0+
is an extensive-form perfect equilibrium strategy for

Player i ∈ {1, 2}.

Proof. A Nash equilibrium strategy for Player i ∈ {1, 2} in a two-player zero-sum game is

a max-min strategy. Incorporating the constraint that the strategy xi pick each action with

probability at least ϵ, captured via the behavioral perturbation matrix Ri(ϵ) as Ri(ϵ)xi ⩾ 0, we

obtain the optimization problem

and space penalty for storing the symbolic powers of the grossone unit—and not tied to the use of the simplex algorithm,

thereby guaranteeing a polynomial run time.

258 §13.2. REFINED STRATEGIES AS SOLUTIONS TO TREMBLING LINEAR PROGRAMS


max

xi


min
x−i

x⊤
i Uix−i

s.t. 1 F−i x−i = f−i

2 R−i(ϵ) x−i ⩾ 0
s.t. 3 Fi xi = f i

4 Ri(ϵ) xi ⩾ 0.

(13.1)

Since the perturbation matrices Ri and R−i are invertible (Lemma 12.1), we can substitute

x̃i = Ri(ϵ)xi, x̃−i = R−i(ϵ)x−i, obtaining


maxx̃i


minx̃−i

x̃⊤
i R−⊤

i (ϵ)UiR−1
−i (ϵ)x̃−i

s.t. 1 F−iR−1
−i (ϵ)x̃−i = f−i

2 x̃−i ⩾ 0
s.t. 3 FiR−1

i (ϵ) x̃i = f i

4 x̃i ⩾ 0.

Taking the dual of the inner problem introducing the vector of dual variables v−i for constraint

1 , we obtain the LP in the statement.

13.2.2 Quasi-perfect equilibria: Definition and formulation

Quasi-perfection, introduced by van Damme (1984), is significantly more intricate to define

than extensive-form perfection. Instead of giving an explicit lower bound on the probability

with which each action needs to be selected, the definition of a quasi-perfect equilibrium (QPE)

relies on a refined notion of best response. We now give one of the multiple known equivalent

definitions, and we present it for the special case of two-player games only. Several equivalent

definitions that apply to more general games can be found in the original work by van Damme,

as well as in the work by Miltersen and Sørensen (2010) and Gatti, Gilli, and Marchesi (2020).

Definition 13.3 (I-local purification). Let i ∈ {1, 2} be a player, x be a strategy for Player i,

and let I ∈ Ii be an information set. We say that a strategy x′
for Player i is an I-local

purification of x if x′
is deterministic at any information set I ′ ≽ I , and coincides with x at

any other information set. When x′
is an I-local purification of x, we further say that

• x′ is ϵ-consistent with x if, for all I ′ ≽ I , x′
assigns probability 1 only to actions that have

probability ⩾ ϵ in x;

• π′ is optimal against a given strategy of the opponent if no other I-local purification of x

achieves (strictly) higher expected utility against said strategy of the opponent.

§13. COMPUTING EXACT TREMBLING-HAND REFINEMENTS IN TWO-PLAYER ZERO-SUM GAMES

AT SCALE 259

Definition 13.4 (ϵ-quasi-perfect best response). A strategy xi is an ϵ-quasi-perfect best response
to the opponent strategy x−i if

(i) x assigns strictly positive probability to all actions of Player i; and

(ii) for all information sets I ∈ Ii of Player i, every ϵ-consistent I-local purifications of xi

(Definition 13.3) is optimal for x−i.

A strategy profile (x1,x2) where each strategy is an ϵ-quasi-perfect best response to the

opponent’s strategy is called an ϵ-quasi-perfect strategy profile.

Definition 13.5 (Quasi-perfect equilibrium). A quasi-perfect equilibrium is any limit point of

ϵ-quasi-perfect strategy profiles as ϵ→ 0+
.

It is known since the work by Miltersen and Sørensen (2010) that some QPEs (we call them

Miltersen-Sørensen QPEs) can be computed in any two-player game as the limit point of Nash

equilibria of perturbed games Γ(ϵ), akin to EFPE. The subtlety is that while in EFPE each perturbed

game Γ(ϵ) mandates a lower bound of ϵ on the probability of playing each action, in the case of a

Miltersen-Sørensen QPE the lower bounds are given on the probability of each sequence of actions.

Specifically, for any ϵ ⩾ 0 and for each player i ∈ {1, 2}, let ℓi : ϵ→ ℝΣi
>0 denote the vector whose

entries are defined as

ℓi(ϵ)[σ] = ϵdepth(σ) ∀σ ∈ Σi, (13.2)

where depth(σ) denotes the number of Player i’s actions on the path from the root of the

player’s tree-form decision process down to the sequence σ (the empty sequence has a depth of

0). Miltersen and Sørensen (2010) prove that any limit point of the solution to the perturbed

optimization problem

max
F 1x1=f1

x1⩾ℓ1(ϵ)

min
F 2x2=f2

x2⩾ℓ2(ϵ)

x⊤
1U1x2. (13.3)

is a Miltersen-Sørensen QPE.
[13.b]

[13.b]
Recently, Gatti, Gilli, and Marchesi (2020) took this construction further, and showed that any QPE can be expressed

as a limit point of solutions to (13.3), as long as more general vectors of polynomials ℓ1, ℓ2 are used than in (13.2). In this

chapter, we will solely focus on Miltersen-Sørensen-style perturbation as defined in (13.2).

260 §13.2. REFINED STRATEGIES AS SOLUTIONS TO TREMBLING LINEAR PROGRAMS

Proposition 13.2. Any limit point of solutions to the trembling linear program

max
x̃i,v−i,z−i

f⊤
−iv−i + ℓ⊤

−i(ϵ) z−i

s.t. 1 F⊤
−iv−i −U⊤

i x̃i ⩽ U⊤
i ℓi(ϵ)− z−i

2 Fix̃i = f i − Fi ℓi(ϵ)
3 x̃i, z−i ⩾ 0

as the trembling magnitude ϵ→ 0+
is a Miltersen-Sørensen QPE strategy for Player i ∈ {1, 2}.

Proof. Similarly to the proof of Proposition 13.1, we start from the problem of finding a maxmin

strategy for Player i in the game subject to the perturbation constraints,
maxxi


minx−i

x⊤
i Uix−i

s.t. 1 F−i x−i = f−i

2 x−i ⩾ ℓ−i(ϵ)
s.t. 3 Fi xi = f i

4 xi ⩾ ℓi(ϵ).

(13.4)

Taking the dual of the inner minimization problem, we obtain
maxxi


maxv−i,z−i

f⊤
−i v−i + ℓ−i(ϵ)⊤z

s.t. 1 F⊤
−i v−i + z ⩽ U⊤

i xi

2 z−i ⩾ 0
s.t. 3 Fi xi = f i

4 xi ⩾ ℓi(ϵ).

Finally, by substituting x̃i = xi − ℓi(ϵ), x̃−i = x−i − ℓ−i(ϵ) we obtain the formulation in the

statement.

13.2.3 One-sided quasi-perfect equilibrium: Definition and formulation

Both EFPE and QPE define “two sided” notions of refinements, in the sense that both players

are trembling. That two-sidedness comes at a computational cost: both the domain of the

maximization and minimization problem in the saddle-point formulations (for example, Equa-

tion (13.3) in the case of QPE) of the refinements are perturbed, making the computation of a

limit point computationally expensive. Yet, in many strategic interactions of interest, a player

might be concerned about being able to capitalize on the opponent’s mistakes, but not about

§13. COMPUTING EXACT TREMBLING-HAND REFINEMENTS IN TWO-PLAYER ZERO-SUM GAMES

AT SCALE 261

making mistakes of her own. After all, in the age of machines, that player might well be a bot

interacting strategically (for example, playing a poker tournament) against imperfect opponents.

In that situation, the player in question might therefore seek, in the interest of lowering the

computational requirement of computing a robust strategy, to find equilibrium points that are

robust to perturbations of the opponent’s strategy only, thereby breaking the two-sidedness of all

known trembling-hand equilibrium refinements.

We introduce a one-sided trembling-hand refinement, which we coin one-sided quasi-perfect
equilibrium (OS-QPE, Farina and Sandholm, 2021a). Because of the asymmetric role of the players,

from now on we stop referring to the players as Player 1 and 2, and adopt the terms machine
player and imperfect player to highlight their asymmetric role. The machine player is assumed to

never make mistakes: lower bounds on the probability of play (the “trembling hands”) are only

introduced for the imperfect player. Accordingly, from now on we will drop subscripts 1 and 2 to

denote quantities that belong to the players, and will use m and h for quantities belonging to the

machine and the imperfect player, respectively.

Definition 13.6 (One-sided quasi-perfect equilibrium). We call a strategy profile (πm,πh) a

one-sided ϵ-quasi-perfect strategy profile if πh is an ϵ-quasi-perfect best response (Definition 13.4)

to πm, and πm is a best response to πh. We say that (πm,πh) is an one-sided quasi-perfect
equilibrium if it is the limit point of one-sided ϵ-quasi-perfect strategy profiles, as ϵ→ 0+

.

In two-player zero-sum games, a OS-QPE is any limit point as ϵ → 0+
of solutions of the

bilinear saddle-point problem

max
Fmxm=fm

xm⩾0

min
Fhxh=fh

xh⩾ℓh(ϵ)

x⊤
mUmxh (13.5)

where ℓh(ϵ) is as in Equation (13.2). Then, for any ϵ > 0 for which the domain of the minimization

problem is nonempty, any solution to (13.5) is a one-sided ϵ-quasi-perfect strategy profile.

Following steps similar to those we took for QPE in Proposition 13.2, we obtain the following

trembling LP formulation.

Proposition 13.3. Any limit point of solutions to the trembling linear program

P (ϵ) :=



arg max
xm

(Umℓh(ϵ))⊤xm + (fh − Fhℓh(ϵ))⊤v

s.t. 1 U⊤
mxm − Fhv ⩾ 0

2 Fmxm = fm

3 xm ⩾ 0, v free.

262 §13.2. REFINED STRATEGIES AS SOLUTIONS TO TREMBLING LINEAR PROGRAMS

as the trembling magnitude ϵ→ 0+
is a one-sided quasi-perfect equilibrium strategy for the

machine player.

13.2.4 Formulations with sparsified payoff matrices

As we discuss in Section 13.4, our algorithm for solving trembling linear programs relies on

solving the linear program P (ϵ) for different numerical instantiations of the value of ϵ > 0. Since

the solution of the linear programs is the bottleneck of our algorithm, generally speaking the

sparser the formulation of the linear programs P (ϵ), the better. The use of sparsified payoff

matrices was recently shown to help speed up the solution of linear programs representing Nash

equilibrium computations (B. H. Zhang and Sandholm, 2020). Farina and Sandholm (2022) show

games with a strong combinatorial structure such as poker can be sparsified efficiently, and

propose a more general framework than that of B. H. Zhang and Sandholm (2020). In particular,

a sparsification of Player i’s payoff matrix Ui is a decomposition of the form

Ui = Ûi + SiK−1V⊤
i , (13.6)

such that the combined number of nonzeros in Ûi,KSi, and Vi is significantly smaller than the

number of nonzeros in Ui, and K is a square invertible matrix.

All formulations of refinements (Propositions 13.1 to 13.3) can benefit from a sparsified payoff

matrix directly. As an illustration, we consider the case of OS-QPE, but the technique applies to all

other equilibria. By plugging in (13.6) into the constraints of the formulation of Proposition 13.3,

we can express OS-QPE as limit solutions of the trembling LP

P (ϵ) :=



arg max
xm

(Umℓh(ϵ))⊤xm + (fh − Fhℓh(ϵ))⊤v

s.t. 1 (Ûm + SmK−1V⊤
m)⊤xm − Fhv ⩾ 0

2 Fmxm = fm

3 xm ⩾ 0, v free.

Hence, by introducing the variable

ym := K−⊤S⊤
mxm ⇐⇒ K⊤ym = S⊤

mxm,

we can rewrite the formulation into sparsified form as

§13. COMPUTING EXACT TREMBLING-HAND REFINEMENTS IN TWO-PLAYER ZERO-SUM GAMES

AT SCALE 263

P (ϵ) :=



arg max
xm

(Umℓh(ϵ))⊤xm + (fh − Fhℓh(ϵ))⊤v

s.t. ⋆ S⊤
mxm − K⊤ym = 0

1 Û⊤
mxm − Fhv + Vmym ⩾ 0

2 Fmxm = fm

3 xm ⩾ 0, v free,

where the dense Um matrix in constraint 1 has been replaced with a much smaller combined

number of nonzeros due to the presence of K,Vm, and Sm in the sparsified formulation. Due

to the reduced number of nonzero entries in the LP, solving the LP typically requires less

computational resources (time and memory).

We will use the sparsified formulation of EFPE, QPE, and OS-QPE when testing on real poker

endgames in Section 13.5.

13.3 Basis stability

We now introduce the concept of basis stability for TLPs. As we will show, there is a tight

connection between a stable basis and a TLP limit solution. In particular, given a stable basis, one

can find a TLP limit solution in polynomial time.

First, recall that a basis of an LP is a subset of the program’s variables such that the submatrix

B obtained considering the columns of A corresponding to variables in the basis is square and

invertible. Now we define our notion of basis stability.

Definition 13.7 (Stable basis). Let P (ϵ) be a TLP. The LP basis B is called stable if there exists

ϵ̄ > 0 such that B is optimal for P (ϵ) for all ϵ : 0 < ϵ ⩽ ϵ̄.

Theorem 13.1 states a connection between stable bases and TLP limit solutions. Informally,

Theorem 13.1 guarantees that once we know a stable basis B, we can recover a limit solution of

the TLP by simply taking the limit of the solutions to the underlying perturbed LP induced by

B.

Theorem 13.1. Let P (ϵ) be a TLP, and let B be a stable basis for P , optimal for all ϵ : 0 < ϵ ⩽ ϵ̄.

Furthermore, let x(ϵ) := B(ϵ)−1(ϵ) b(ϵ) be the optimal basic solution of P (ϵ) corresponding

to B. Then,

1. x̃ = limϵ→0+ x(ϵ) exists, and

2. x̃ is a limit solution to the TLP P .

264 §13.3. BASIS STABILITY

Proof. The fact that x̃ is a solution to P follows directly from Definition 13.2. Therefore, it is

enough to show the existence of x̃.

For all ϵ ⩾ 0, let B(ϵ) be the basis matrix in P (ϵ), corresponding to the given basis B. By

hypothesis, B is optimal for P (ϵ) for all ϵ : 0 < ϵ ⩽ ϵ̄; hence, B(ϵ) is invertible for all ϵ : 0 < ϵ ⩽ ϵ̄

and we conclude that det B(ϵ) is not identically zero over that range. This implies that

x(ϵ) = B−1(ϵ) b(ϵ)

is well defined for all 0 < ϵ ⩽ ϵ̄ and is a vector of rational functions. This, together with the

boundedness assumption of the feasible set of P (0), is enough to conclude that limϵ→0+ x(ϵ)
exists.

The matrix of (symbolic) rational functions B−1(ϵ) in Theorem 13.1 can be computed in

polynomial time in the size of the TLP starting from B(ϵ). Hence, we can compute all the rational

function entries of x(ϵ) in polynomial time, and therefore also limϵ→0+ x. Thus we have the

following result.

Theorem 13.2. Let P be a TLP, and let B be a stable basis for P . A limit solution to P can be

computed in polynomial time in the size of the input TLP.

13.3.1 Analytic basis stability condition and existence of stable bases

Theorem 13.2 above shows that the problem of solving a TLP is not harder than the problem of

finding a stable basis for it. In this subsection, we focus on this latter problem, showing that a

stable basis always exists and can be computed in polynomial time given access to an efficient LP

oracle.

Given a TLP and a stable basis B for it, let B(ϵ) be the basis matrix corresponding to B in the

underlying perturbed LP P (ϵ). From the theory of LPs, we know that B is optimal for P (ϵ) if and

only if (see, for instance, the book by Dantzig and Thapa (2006)):

• it is primal-feasible, that is,

B−1(ϵ) b(ϵ) ⩾ 0.

(In practice, sometimes we have non-negativity constraint on only some of the variables,

but not all. In this case, we can simply check that B−1(ϵ)b(ϵ) is non-negative only for what

concerns the relevant entries.)

• the reduced costs of all nonbasic columns are nonpositive, that is,

§13. COMPUTING EXACT TREMBLING-HAND REFINEMENTS IN TWO-PLAYER ZERO-SUM GAMES

AT SCALE 265

c⊤
B̄ − c⊤

B B−1(ϵ)B̄(ϵ) ⩽ 0,

where cB is the part of c corresponding to the basic variables, cB̄ is the part of c corresponding

to the nonbasic variables, and B̄(ϵ) is the matrix formed by all nonbasic columns.

Therefore, we can define the following analytical notion of a stability certificate. It collects the

conditions above into a vector tB(ϵ), which is nonnegative if and only if B is an optimal basis for

the LP P (ϵ). Therefore, by the definition of basis stability, a basis is stable if tB(ϵ) is nonnegative

for all sufficiently small values of ϵ. Formally, we have the following.

Theorem 13.3. Given a TLP P (ϵ), a basis B is stable if and only if there exists ϵ̄ > 0 such that

tB(ϵ) :=
(

B−1(ϵ) b(ϵ)

B̄⊤(ϵ)B−⊤(ϵ)cB − cB̄

)
⩾ 0 ∀ ϵ : 0 ⩽ ϵ ⩽ ϵ̄.

The vector tB(ϵ) is called the stability certificate for B.

13.3.2 Existence of stable bases

We use Theorem 13.3 as an important building block to prove the following. The proof is presented

in the appendix.

Theorem 13.4. Given as input a TLP P (ϵ), there exists ϵ∗ > 0 such that any optimal basis for

the numerical LP P (ϵ∗) is stable. Furthermore, such a value ϵ∗ can be computed in polynomial

time in the input size.
a

a
We assume that a polynomial of degree d requires Ω(d) space to represent in the input. If this were not the

case, evaluating a polynomial in an integer n would not be an efficient operation, since it requires Ω(d logn) bits to

represent the output.

Before showing the proof of Theorem 13.4 we recall a couple of simple facts from Chapter 12.

Lemma 12.6 (Restated). Let

p(ϵ) := a0 + a1ϵ
1 + · · ·+ anϵ

n

b0 + b1ϵ1 + · · ·+ bmϵm

be a rational function such that a0, b0 ̸= 0, and let µa := maxi |ai|, µb := maxi |bi|. Then p(ϵ)
has the same sign of a0/b0 for all 0 ⩽ ϵ ⩽ ϵ∗, where

266 §13.3. BASIS STABILITY

ϵ∗ := min
{
|a0|

µ+ |a0|
,
|b0|

µ+ |b0|

}
.

Lemma 12.7 (Restated). Let

p(ϵ) := a0 + a1ϵ
1 + · · ·+ anϵ

n

b0 + b1ϵ1 + · · ·+ bmϵm

be a rational function with integer coefficients, where the denominator is not identically zero;

let µa := maxi |ai|, µb := maxi |bi|, µ := max{µa, µb} and ϵ∗ := 1/(2µ). Then exactly one of

the following holds:

• p(ϵ∗) = 0 for all 0 < ϵ ⩽ ϵ∗,

• p(ϵ∗) > 0 for all 0 < ϵ ⩽ ϵ∗,

• p(ϵ∗) < 0 for all 0 < ϵ ⩽ ϵ∗.

We now proceed with the proof of Theorem 13.4.

Proof of Theorem 13.4. Let B⋆ be the set of all bases for P (ϵ) that are optimal for at least one

ϵ ∈ ℝ>0. For any B ∈ B⋆, we let tB(δ) be the stability certificate for B (Theorem 13.3). All

entries of tB(δ) are rational functions in δ; hence, by Lemma 12.6, we can find a value δ∗
B > 0,

such that all entries of tB(δ) keep the same sign on the domain 0 < δ ⩽ δ∗
B. We now introduce

the function f : B⋆ → ℝ>0 that maps every B ∈ B⋆ to the corresponding value of δ∗
B. Since B⋆

is finite, min f exists and is (strictly) positive; this means that any optimal basis for P (min f) is

optimal for all P (ϵ) where 0 < ϵ ⩽ min f , and is therefore stable.

In light of the above, we only need to prove that we can compute a lower bound for min f
in polynomial time. We will assume without loss of generality that the objective function is

not perturbed. Furthermore, we will assume without loss of generality that A(ϵ), b(ϵ) and c(ϵ)
only contain integer entries (if not, it is enough to multiply all the entries in the LP by the least

common multiple of all denominators to satisfy this assumptions). As long as we can prove

that the maximum coefficient appearing in tB is polynomially large (in the size of the input

TLP), the result follows from the bound in Lemma 12.6.

The entries of the stability certificate are obtained by composing sums and products of

entries from three vectors: the LP matrix A(ϵ), the inverse of the basis matrix B−1(ϵ), the vector

of constants b(ϵ) and the objective function coefficients c. Let M be the largest coefficient that

appears in A(ϵ), b(ϵ) and c, and let m be the largest polynomial degree appearing in A(ϵ) and

b(ϵ). We now study the magnitude of the maximum coefficient and the maximum polynomial

degree that can appear in B(ϵ)−1
.

§13. COMPUTING EXACT TREMBLING-HAND REFINEMENTS IN TWO-PLAYER ZERO-SUM GAMES

AT SCALE 267

Introducing C(ϵ) = cof B(ϵ), the cofactor matrix of B(ϵ), we can write the well-known

identity

B−1(ϵ) = C(ϵ)⊤

det B(ϵ)

Denominator. We now give an upper bound on the coefficients of the denominator of the

entries in B−1(ϵ). By using Hadamard’s inequality, we can write

coeff(det B(ϵ)) ⩽ nn/2Mn coeff((1 + ϵ+ · · ·+ ϵmA)n),

where coeff(·) is the largest coefficient of its polynomial argument. Since

coeff((1 + ϵ+ · · ·+ ϵmA)n) ⩽ (mA + 1)n,

we have

coeff(det B(ϵ)) ⩽ nn/2((mA + 1)M)n, deg(det B(ϵ)) ⩽ n ·mA.

Notice that this bound is valid for all possible basis matrices B(ϵ).

Numerator. It is easy to see that the bounds on coeff(det B(ϵ)) hold for the cofactor matrix as

well:

coeff(det C(ϵ)⊤) ⩽ nn/2((mA + 1)M)n, deg(det C(ϵ)⊤) ⩽ n ·mA.

Again, it is worthwhile to notice that this bound is valid for all possible basis matrices B(ϵ).

Stability certificate. We have

coeff(C⊤b(ϵ)) ⩽ coeff(B̄⊤(ϵ) C(ϵ)⊤ cB) ⩽ nn/2((mA + 1)M)n ·mA ·McM,

coeff(det B(ϵ) cB̄) ⩽ nn/2((mA + 1)M)n ·Mc.

Hence,

coeff(tB(ϵ)) ⩽ nn/2((mA + 1)M)n ·Mc(mAM + 1)

⩽ nn/2((mA + 1)M)n+1 ·Mc.

Therefore, all coefficients involved require a polynomial number of bits to be represented,

concluding the proof.

268 §13.4. A PRACTICAL ALGORITHM FOR FINDING A TLP LIMIT SOLUTION

The existence of polynomial-time algorithms for solving LPs (Karmarkar, 1984), as well as for

finding optimal basic solutions (Megiddo, 1991), taken together with Theorems 13.2 and 13.4,

immediately imply the following corollary.

Corollary 13.1. A limit solution to a TLP can be found in polynomial time by means of the

following algorithm.

Algorithm 13.1: Naïve algorithm for finding a limit solution to a TLP P (ϵ).

1 Compute the value ϵ∗ as described in the proof of Theorem 13.4;

2 Extract an optimal basis B for P (ϵ∗);
3 Extract the (symbolic) basis matrix B(ϵ) corresponding to B;

4 Compute the symbolic vector x(ϵ) = B−1(ϵ) b(ϵ);
5 return x̃ = limϵ→0+ x(ϵ) ; [▷ See also Theorem 13.2]

When this algorithm is applied to the EFPE or QPE TLPs, it essentially specializes into the

algorithm proposed by Miltersen and Sørensen (2010) for QPE and the one proposed in Chapter 12

for EFPE. In practice, as we show in the experiments later in this dissertation, this algorithm is

extremely inefficient, because it involves finding an exact solution to an LP whose numerical

constants require a large number of bits. Therefore, we devote the next section to developing a

practical algorithm for finding limit solutions to general TLPs.

13.4 A practical algorithm for finding a TLP limit solution
We now develop a practical algorithm for finding a limit solution in a TLP P (ϵ). It avoids the

pessimistically small numerical perturbation ϵ∗ of Theorem 13.4 by using an efficient stability-

checking oracle for checking if a basis is stable or not. It enables an iterative algorithm that

repeatedly picks a numerical perturbation ξ, computes an optimal basis for the perturbed LP

P (ξ), and queries the basis-stability oracle. If the basis is not stable, the algorithm concludes

that the perturbation value ξ was too optimistic, and a new iteration is performed with a smaller

perturbation (for example, ξ/2). On the other hand, if the basis is stable, the algorithm takes

the limit of the LP solution and returns it as the limit solution of the TLP (by Theorem 13.1, this

is guaranteed to provide a limit solution). Termination of the algorithm is guaranteed by the

following observation.

Observation 13.1. Let ϵ∗ be as in Theorem 13.4. Any value of ξ in the range (0, ϵ∗] guarantees

termination of the algorithm. Indeed, by Theorem 13.4, any optimal basis for P (ξ) is stable

§13. COMPUTING EXACT TREMBLING-HAND REFINEMENTS IN TWO-PLAYER ZERO-SUM GAMES

AT SCALE 269

and makes our iterative algorithm terminate. Furthermore, if after every negative stability

test the value of ξ is reduced by a constant multiplicative factor (e.g., halved), then since

ϵ∗ only has a polynomial number of bits, the algorithm terminates after trying at most a

polynomial number of different values for ξ.

This algorithm is summarized pictorially in Figure 13.1.

Reduce ξ

Solve P (ξ)

Check basis

stability

Evaluate limit

of solution

P, ξ

B

Not stable Stable

x∗

Figure 13.1: High-level overview of the steps of our practical algorithm for finding a TLP limit solution.

Two practical considerations contribute to making our algorithm appealing. First, as long as ξ

is sufficiently large, we can use any finite-precision LP solver to solve the numerically-perturbed

linear program. However, as soon as ξ becomes small, a finite-precision solver is doomed to fail

because of numerical instability, and an implementation of the simplex algorithm supporting

arbitrary-precision rational numbers is required. Second, the optimal basis found in the previous

iteration can be used to warm-start the next iteration. This greatly reduces the runtime of the

method, as iterations of the arbitrary-precision simplex method are extremely expensive.

In the next section, we formally state the purpose of the basis-stability oracle.

13.4.1 Basis-stability oracle

We now formally state the purpose of the basis-stability oracle.

Definition 13.8. Given a TLP P (ϵ) and a basis B optimal for some numeric instance P (ϵ̄), a

basis-stability oracle determines whether B is stable or not.

It is not necessary—and in general not true—that the inverse of B(0) exist. We start from the

simpler case in which B−1(0) exists (thus ruling out the possibility that the stability certificate tB

is not defined in 0) and later move to the general case.

However, the existence of B−1(0) allows further numerical optimizations making the overall

algorithm fast. In what follows we separately analyze these two cases (singular versus non-singular

B(0)).

270 §13.4. A PRACTICAL ALGORITHM FOR FINDING A TLP LIMIT SOLUTION

13.4.2 Oracle for non-singular basis matrices

If B(0) is non-singular, then B−1(ϵ) b(ϵ) and B̄⊤(ϵ) B−⊤(ϵ) cB − cB̄ are analytic functions of ϵ at

ϵ = 0. Thus, tB(ϵ) is analytic at ϵ = 0. In other words, each entry ti(ϵ) of tB(ϵ) is equal to its Taylor

expansion

ti(ϵ) = αi0 + αi1
1! ϵ+ αi2

2! ϵ
2 + αi3

3! ϵ
3 + · · ·

where αij = (djti(ϵ)/dϵj)(0) is the j-th derivative of ti(ϵ) evaluated at ϵ = 0.
[13.c]

The sign of ti(ϵ)
in positive proximity

[13.d]
of 0 is the same as the first (i.e., relative to the lowest degree monomial)

non-zero coefficient of the expansion of ti(ϵ) around 0. In other words, there exists a ϵ̄ > 0 such

that ti(ϵ) has the same sign as the first non-zero derivative of ti evaluated in 0 for all 0 < ϵ < ϵ̄. If

all derivatives are 0, then we conclude that ti(ϵ) is identically zero around ϵ = 0.

This suggests a simple algorithm for determining whether B is stable: we compute its stability

certificate tB(ϵ) and repeatedly differentiate each row until we either determine the sign of that

row in positive proximity of 0 or we establish that the row is identically zero. If all the rows

happen to be non-negative in positive proximity of 0, then the basis is stable; otherwise, it is not.

In order to make the algorithm fast, we need to be able to quickly evaluate tB(ϵ) and its derivatives

at 0. This fundamentally reduces to our ability to efficiently compute a Taylor expansion of a

function of the form B−1(ϵ) H(ϵ) around ϵ = 0, where H is a matrix or vector whose entries are

polynomial in ϵ. This part of the algorithm assumes that a sparse LU factorization of the numerical

basis matrix B(0) is available; one is easy to compute in polynomial time. Below, we will break

the presentation of the algorithm into multiple steps. Since the algorithm described below can be

applied to any square matrix M(ϵ)—not only to a basis matrix B(ϵ)—with polynomial entries

and with nonzero determinant at ϵ = 0, we will use the symbol M(ϵ) in place of B(ϵ).

Derivatives of M−1(ϵ) H. We start by showing how to efficiently and inductively evaluate

derivatives of M−1(ϵ) H in 0, where H is a constant matrix or vector. We start with a simple

lemma.

Lemma 13.1. For all n ⩾ 1,

n∑
i=0

(
n

i

)
diM(ϵ)
dϵi

dn−iM−1(ϵ)
dϵn−i = 0.

[13.c]
Throughout this dissertation, we define the zeroth derivative d0f/dϵ0 of f to be f itself.

[13.d]
We say that a property parametrized by ϵ is true in positive proximity of 0 to mean that there exists a ϵ̄ > 0 such that

the property holds for all ϵ : 0 < ϵ < ϵ̄. We say that the property is true in proximity of 0 if there exists a ϵ̄ > 0 such that

the property holds for all ϵ : 0 < |ϵ| < ϵ̄.

§13. COMPUTING EXACT TREMBLING-HAND REFINEMENTS IN TWO-PLAYER ZERO-SUM GAMES

AT SCALE 271

Proof. The statement is equivalent to the expansion of the identity

dn

dϵn
(M(ϵ) M−1(ϵ)) = 0,

which holds true for all n ⩾ 1, by means of the product rule of derivatives.

Lemma 13.1 implies that

M(0) d
nM−1

dϵn
(0) = −

n∑
i=1

(
n

i

)
diM
dϵi

(0) d
n−iM−1

dϵn−i (0).

Multiplying by H and introducing the symbol Dn := dnM−1

dϵn (0) H, we obtain

M(0) Dn = −
n∑
i=1

(
n

i

)
diM
dϵi

(0) Dn−i.

The right hand side is relatively inexpensive to compute, especially when n is small. Indeed,

computing (diM/dϵi)(0) amounts to extracting the coefficients of the monomials of degree i

of the polynomial entries in M. This can be done extremely efficiently by reading directly

from the perturbed LP constraint matrix A. Therefore, if we inductively assume knowledge of

D0,D1, . . . ,Dn−1, we can easily compute Dn using the precomputed LU factorization of M(0).

Derivatives of M−1(ϵ) H(ϵ). We now turn our attention to the computation of the derivatives

of M−1(ϵ) H(ϵ), where H(ϵ) can be any matrix or vector with polynomial entries. This case is

particularly relevant, as it applies to both the primal-feasibility conditions and the reduced costs.

We introduce the formal symbol ⟨i, j⟩ defined over pairs (i, j) ∈ ℕ2
as

⟨i, j⟩ := diM−1

dϵi
(0) d

jH
dϵj

(0).

By means of the product rule, we have that

dn(M−1 H)
dϵn

(0) =
n∑
i=0

(
n

i

)
⟨i, n− i⟩. (13.7)

From the previous section, we know how to compute ⟨i+ 1, j⟩ having access to ⟨0, j⟩, ⟨1, j⟩, . . .,
⟨i, j⟩. On the other hand, ⟨0, j⟩ = M(0)−1 dj/dϵj H(0) is easy to compute having access to the LU

factorization of M(0). Therefore, Equation (13.7) gives an efficient way of expanding M−1(ϵ)H(ϵ)
into its power series. Finally, we address the problem of determining, row by row in the derivative

vector in the Taylor series, when it is safe to stop after observing only zero-valued derivatives for

some row for a number of iterations (i.e., a number of terms in the Taylor series).

272 §13.4. A PRACTICAL ALGORITHM FOR FINDING A TLP LIMIT SOLUTION

Lemma 13.2. Consider a TLP ϵ 7→ P (ϵ) where P (ϵ) has n rows and let m be the maximum

degree appearing in the polynomial functions defining P . Given any basis B, if the first

2nm+ 1 derivatives of the i-th entry of the stability certificate tB(ϵ) are all zero, the entry is

identically zero.

Since 2nm+1 is a polynomial number in the input size, we conclude that the overall algorithm

runs in polynomial time, since it terminates in a polynomial number of steps and each step takes

polynomial time. There is a more convenient way of determining whether a given row is 0. It is

sufficient to pick a random number ϵ̃ (for example in (0, 1)), and evaluate the rational function ti

at ϵ̃: if ti(ϵ̃) = 0, then ti is identically zero with probability 1 because of the fundamental theorem

of algebra. This is the variant that we use in the experiments later in this dissertation.

Finally, in some cases we can take theoretically sound shortcuts to further enhance the speed

of the algorithm. For example, in the formulation of QPE given in Section 13.2.2, the LP constraint

matrix A is constant, meaning that the stability certificate b has polynomial entries (as opposed

to ratios of polynomials entries). In this case, we can avoid computing all the derivatives of B−1
,

with large practical savings of time and space.

13.4.3 Oracle for singular basis matrices

We now show how to deal with a singular B(0). An example of this phenomenon is shown in the

next example.

Example 13.1. Consider the TLP of Figure 13.2; there, the (only) basis matrix

B(ϵ) =
(

2 2
1− ϵ2 1 + ϵ− ϵ2

)

is not invertible when ϵ = 0.

§13. COMPUTING EXACT TREMBLING-HAND REFINEMENTS IN TWO-PLAYER ZERO-SUM GAMES

AT SCALE 273

x1

x2

1

2
OPT

1/20

1/2

P (ϵ) :


max x2

s.t. 1 2x1 + 2x2 = 1
2 (1− ϵ2)x1 + (1 + ϵ− ϵ2)x2 = 1/2
3 x1, x2 ⩾ 0

The optimal solution (OPT) is x(ϵ) =
(1− ϵ

2 ,
ϵ

2

)
, for all ϵ > 0.

Figure 13.2: Example of a situation where the basis matrix B(ϵ) is singular at ϵ = 0.

The core idea of our method is to replace the computation of the Taylor expansion of the stability

certificate around ϵ = 0 with a Laurent expansion, that is, a power series in ϵ where negative

exponents are allowed. Lemma 13.3 provides the key result that enables this process.

Lemma 13.3. Let M(ϵ) be a square matrix with polynomial entries, not all of which are

identically zero. Then there exist k ∈ ℕ+
and matrices M̃(ϵ) and T(ϵ) that have polynomials

as entries, with nonsingular M̃(0), such that

M(ϵ) = ϵk T−1(ϵ) M̃(ϵ), (13.8)

in proximity of ϵ = 0.

Proof. We prove the lemma by induction on the number of roots in 0 of det M(ϵ). This number

corresponds to the maximum integer d ⩾ 0 such that ϵd is a divisor of det M(ϵ).
Base case. When d = 0, det M(0) ̸= 0, and therefore M(0) is nonsingular. The result holds

trivially by letting M̃(ϵ) = M(ϵ) and T(ϵ) = I be the identity function for all ϵ.

Inductive step. Suppose the results holds for all matrices M(ϵ) whose determinants have

d ⩽ d̄− 1 roots in 0, with d̄ ⩾ 1. We will now show that the results holds when d = d̄ as well.

Since d̄ ⩾ 1, det M(0) = 0 and therefore there exists a nonzero vector v such that v⊤M(0) = 0.

This necessarily means that ϵ divides all entries of v⊤M(ϵ), and therefore ϵ−1v⊤M(ϵ) is a

vector with polynomial entries. Let i be any index such that vi ̸= 0, and consider the new

matrix M′(ϵ) obtained by substituting the i-th row in M(ϵ) with ϵ−1v⊤M(ϵ). It is immediate

to verify that we can write this operation compactly as

M′(ϵ) = 1
ϵ

S(ϵ) M(ϵ).

where S(ϵ) is a nonzero square matrix with polynomial entries. Hence,

274 §13.4. A PRACTICAL ALGORITHM FOR FINDING A TLP LIMIT SOLUTION

M(ϵ) = ϵS−1(ϵ) M′(ϵ). (13.9)

M′(ϵ) is a square matrix with polynomial entries not all of which are identically zero; however,

the number of roots in 0 of det M′(ϵ) is smaller than d̄ since we multiplied one of the rows by

ϵ−1
. Thus, we can apply our inductive hypothesis to M′(ϵ) and write

M′(ϵ) = ϵk T ′−1(ϵ) M̃′(ϵ)

for some integer k ⩾ 0. Substituting into (13.9), we obtain

M(ϵ) = ϵk+1 S−1(ϵ)T ′−1(ϵ) M̃′(ϵ)

= ϵk+1 (T′(ϵ) S(ϵ))−1M̃′(ϵ).

Since T′(ϵ) S(ϵ) is a square matrix with polynomial entries, concluding the proof.

Example 13.2. For the TLP in Figure 13.2,(
2 2

1− ϵ2 1 + ϵ− ϵ2

)
︸ ︷︷ ︸

M(ϵ)

= ϵ ·

(
ϵ 0
−1/2 1

)−1

︸ ︷︷ ︸
T−1(ϵ)

·

(
2 2
−ϵ 1− ϵ

)
︸ ︷︷ ︸

M̃(ϵ)

.

We observe that B(ϵ) respects the hypotheses of Lemma 13.3: its entries are not all identically

zero since its determinant is not identically zero. Inverting Equation (13.8) in proximity of ϵ = 0,

we obtain

M−1(ϵ) = 1
ϵk

M̃−1(ϵ) T(ϵ).

Now, given a matrix or vector with polynomial entries H(ϵ), suppose that we seek to expand

M−1(ϵ) ·H(ϵ) into its Laurent series. Due to Lemma 13.3, we can rewrite this product as

M−1(ϵ) ·H(ϵ) = 1
ϵk
(
M̃−1(ϵ)(T(ϵ)H(ϵ))

)
,

where the equality holds in proximity of ϵ = 0. Since M̃(ϵ) is a square matrix with polynomial

entries invertible at ϵ = 0 and T(ϵ)H(ϵ) is a vector or matrix with polynomial entries, we can

leverage the machinery of Section 13.4.2 to expand M̃−1(ϵ) · (T(ϵ)H(ϵ)) into its Taylor series

around ϵ = 0. Multiplying this power series by ϵ−k gives a Laurent series for M−1(ϵ)H(ϵ) at ϵ = 0.

The above shows how to deal with a singular basis matrix. The rest of the algorithm remains

unchanged.

§13. COMPUTING EXACT TREMBLING-HAND REFINEMENTS IN TWO-PLAYER ZERO-SUM GAMES

AT SCALE 275

13.4.4 Limit of strategy

Together, Sections 13.4.2 and 13.4.3 show that, for every TLP, there exists a polynomial-time

basis-stability oracle. Finally, we deal with the last piece of the algorithm, which is the computation

of the limit of optimal solutions limϵ→0+ x(ϵ) = limϵ→0+ B−1(ϵ)b(ϵ). This task is easy after having

computed the Laurent series expansion of x(ϵ) around ϵ = 0 (see Sections 13.4.2 and 13.4.3).

Theorem 13.1 guarantees that all coefficients of the monomials of negative degree are zero vectors,

so we conclude that computing limϵ→0+ x(ϵ) simply amounts to returning the coefficient of the

term of degree 0 in the expansion.

13.5 Experimental evaluation

We evaluate the algorithm presented in this chapter by computing EFPEs, QPEs, and one-sided

QPEs. The algorithm is single-threaded, was implemented in C++, and was run on a machine

with 32GB of RAM and an Intel processor running at a nominal speed of 2.4GHz per core.

As mentioned in Section 13.4, the algorithm computes, as an intermediate step at every

iteration, an optimal basis of each trembling linear program where the perturbation magnitude ϵ

has been set to a numerical value ϵ∗. We start from the value ϵ∗ = 10−3
and use Gurobi to solve the

linear program. After the first iteration, if the basis is not stable, we halve the magnitude of ϵ∗ and

re-solve the linear program using the previous basis as warm start. The process continues until

ϵ∗ < 10−6
. If the basis is still not stable, we switch to a modification of Google’s open-source linear

programming solver (GLOP), which we modified so as to use arbitatry-digit precision floating

point numbers via GNU’s MPFR library (Fousse, Hanrot, Lefèvre, Pélissier, and Zimmermann,

2007). From there onward, if the basis is not stable we reduce the value of ϵ∗ by a factor 1000 and

solve again with our modified version of GLOP, until a stable basis is found or ϵ∗ < 10−30
. In the

latter case, our implementation was set up to employ a rational-precision implementation (that

is, one that represents all numbers as ratios of integers to achieve an exact “infinite-precision”

solution) of the simplex algorithm, but that case was never hit in practice. The basis stability oracle

is implemented using rational precision, using GNU’s GMP library (Granlund and the GMP

development team, 2012). Therefore, our answer is exact (i.e., infinite-precision) even though the

intermediate steps are not.

13.5.1 Experiments on small and medium-sized benchmark games

We experimentally evaluate the performance of our practical algorithm against the following

three algorithms in small and medium-sized benchmark games. A description of the games, as

usual, is available in Appendix A.

Exact Nash equilibrium solver (‘Simplex’) via an implementation of the simplex method using

276 §13.5. EXPERIMENTAL EVALUATION

arbitrary-precision arithmetics implemented using the GMP library. We warm start the LP

oracle with a Nash equilibrium found by an LP oracle that uses finite-precision arithmetics.

NPP-based naïve solver (‘NPP’, Algorithm 13.1) using an infinite-precision LP oracle; to im-

prove the efficiency, we warm start the LP oracle with a NE found using an LP oracle with

finite-precision arithmetics.

Symbolic-simplex QPE solver (‘M&S’) proposed by Miltersen and Sørensen (2010) to find a

QPE. It is a modified simplex algorithm, where some entries are kept as polynomials. We

implemented the algorithm as described in the original paper. However, we modified the

pivoting rule from the suggested one (pick any nonbasic variable with positive reduced

cost) to the greedy one (pick any nonbasic variable with maximum reduced cost). This

greatly improved run time. This method does not apply to EFPE.

Experimental results for QPE and EFPE are given in Table 13.1.

Nash QPE EFPE

Simplex M&S NPP This chapter NPP This chapter
Game Time Time Time Time Final ϵ Time Time Final ϵ

K23 1ms 78ms 28ms 11ms 1/819200 14ms 26ms 1/819200

L2232 59ms > 6h 1.56s 1.15s 10−6 > 6h 535ms 1/819200
L2252 372ms > 6h 27.81m 494ms 10−6 > 6h 1.6s 10−6

L2282 3.35s > 6h > 6h 1s 10−6 > 6h 15s 10−6

L2292 4.90s > 6h > 6h 1s 10−6 > 6h 15s 10−6

G23 33ms 21.64m 2.88s 203ms 1/819200 1.93m 489ms 1/819200
G24 1.01m > 6h > 6h 19s 1/819200 > 6h 54s 10−6

Table 13.1: Comparison between different methods of computing Nash equilibrium refinements in

two-player zero-sum small and medium-sized benchmark games benchmark games.

The largest poker games solvable by the NPP method within 6 hours is L2252 – Leduc poker

with 5 ranks, for QPE. The NPP solver is significantly slower than the NE solver. This is because

1) it requires a larger number of pivoting steps, and 2) each pivoting step has a higher cost. Unlike

the exact NE computation, additional pivoting steps are needed by the rational simplex to find a

QPE or an EFPE, even after warm starting from a Nash equilibrium. These extra pivoting steps

need to manipulate extremely small constants due to the values of ϵ, hence introducing a large

overhead. For instance, already in L2252 the order of magnitude of the ϵ used for QPE is 10−5883
.

In the QPE case, these expensive numerical values only appear in the objective function and in

the right-hand-side constants. In the EFPE case, they appear in the constraint matrix, and there

§13. COMPUTING EXACT TREMBLING-HAND REFINEMENTS IN TWO-PLAYER ZERO-SUM GAMES

AT SCALE 277

are qualitatively more of them, making the computation even slower. Accordingly, the EFPE NPP

solver scales very poorly.

The M&S solver only applies to QPEs. Empirically, it is significantly slower than the NPP

solver. The reason is two-fold. First, the method is harder to warm start, as the initial basic

solution has to be feasible for all sufficiently small ϵ > 0. We initialize the method according to the

suggestion of the authors, but this initial vertex is empirically farther away from the optimal one

than a NE, which we use to warm start NPP solvers. Second, the pivoting step is more expensive,

as the min-ratio test is substituted with a more sophisticated lexicographic test on polynomial

coefficients.

Our solver represents a dramatic improvement over the prior state-of-the-art algorithms. It

finds a QPE/EFPE in few minutes even on the largest game instances. This is a reduction in

runtime by 3–4 orders of magnitude. This breakthrough is mainly due to the fact that, in practice,

terminates with an ϵ that is drastically larger than that required by the NPP algorithms.

13.5.2 Experiments on real-world poker endgames

We use our scalable technique to compute sequentially-rational equilibria in real poker endgames

that were encountered as part of the “Brains vs AI” competition played by the Libratus AI (Brown

and Sandholm, 2017c). To increase the scalability of our solver, we employed the Kronecker-

product-based sparsification technique described in Farina and Sandholm (2022) to bring down

the number of nonzeros of the payoff matrix when solving the linear program at each iteration

(see Section 13.2.4). The unsparsified and sparsified dimensions of each endgame are listed in

Table 13.2. We remark that unlike other papers (for example, Brown and Sandholm, 2019), we do

not use a simplified abstraction, and rather use the full-sized abstraction used by Libratus.

Game Decision nodes Sequences Terminal Sparsified
Pl. 1 Pl. 2 Pl. 1 Pl. 2 nodes NNZ

REL26 26 550 26 460 64 606 77 617 71 270 327 271 364
REL27 20 801 21 297 61 062 62 518 75 928 256 279 902
REL28 33 930 33 501 85 261 98 786 111 580 420 395 700
REL22 49 470 49 674 146 471 147 075 185 831 684 677 886
REL25 120 744 121 446 360 169 362 263 494 214 830 1 660 170

Table 13.2: Unsparsified and sparsified size of River endgames encountered by Libratus during the

“Brains vs AI” competition.

Runtimes for each of the solution concepts are given in Table 13.3. We observe that our

algorithm is able to compute an exact refinement in all of the game instances. This would have

not been possible for any of the other algorithms known for the problem. Our method pushes

the boundary of what refinement technology can achieve today by several orders of magnitude,

278 §13.5. EXPERIMENTAL EVALUATION

hopefully adding a crucial step towards the investigation and adoption of sequentially-rational

equilibrium refinements, which so far had only remained a theoretical remedy to a serious

drawback of the Nash equilibrium, in practice.

Game Refinement
Time MPFR

precisionGurobi GLOP Stability Final ϵ Total

REL26 EFPE Player 1 36s 35m 43s 6m 50s 10−15 43m 11s 200 digits

EFPE Player 2 36s 43m 23s 9m 45s 10−15 53m 45s 200 digits

QPE Player 1 1m 8s 7m 50s 25s 10−15 9m 24s 100 digits

QPE Player 2 21s 12m 44s 19s 10−12 13m 26s 100 digits

OS-QPE Player 1 20s 16m 15s 20s 10−9 16m 56s 50 digits

OS-QPE Player 2 28s 2m 24s 21s 10−12 3m 14s 50 digits

REL27 EFPE Player 1 46s 1h 6m 5m 12s 10−12 1h 12m 200 digits

EFPE Player 2 3m 37s 1h 10m 9m 12s 10−12 1h 22m 200 digits

QPE Player 1 14s 7m 25s 20s 10−9 8m 0s 100 digits

QPE Player 2 24s 4m 22s 19s 10−9 5m 5s 100 digits

OS-QPE Player 1 17s 11m 27s 20s 10−9 12m 5s 50 digits

OS-QPE Player 2 33s 2m 47s 21s 10−12 3m 42s 50 digits

REL28 EFPE Player 1 2m 52s 1h 3m 58m 7s 10−15 2h 4m 200 digits

EFPE Player 2 4m 28s 1h 52m 29m 52s 10−15 2h 26m 200 digits

QPE Player 1 1m 7s 16m 32s 1m 0s 10−15 18m 41s 100 digits

QPE Player 2 1m 27s 31m 3s 41s 10−15 33m 12s 100 digits

OS-QPE Player 1 4m 36s 14m 20s 1m 1s 10−15 19m 59s 100 digits

OS-QPE Player 2 2m 26s 14m 31s 38s 10−12 17m 37s 100 digits

REL22 EFPE Player 1 33m 24s 3h 58m 2h 48m 10−15 7h 20m 200 digits

EFPE Player 2 1h 7m 4h 5m 1h 0m 10−18 6h 13m 200 digits

QPE Player 1 8m 7s 1h 43m 1m 45s 10−12 1h 53m 100 digits

QPE Player 2 19m 22s 1h 19m 1m 44s 10−12 1h 40m 100 digits

OS-QPE Player 1 10m 11s 37m 21s 2m 19s 10−12 49m 51s 100 digits

OS-QPE Player 2 17m 55s 48m 19s 1m 31s 10−12 1h 7m 100 digits

REL25 EFPE Player 1 — — — — > 72h —

EFPE Player 2 — — — — > 72h —

QPE Player 1 39m 37s 13h 28m 4m 40s 10−12 14h 13m 200 digits

QPE Player 2 1h 16m 8h 7m 3m 42s 10−12 9h 27m 200 digits

OS-QPE Player 1 23m 40s 2h 13m 4m 24s 10−9 2h 42m 200 digits

OS-QPE Player 2 53m 7s 3h 5m 3m 54s 10−12 4h 2m 200 digits

Table 13.3: Computation of refined Nash equilibria in real poker endgames using our algorithm.

Chapter 14

Quantal response and regularization
towards human play

All the solution concepts and algorithms we considered so far in this dissertation—Nash

equilibrium, coarse correlated equilibrium, correlated equilibrium, team maxmin equilibrium

with or without correlation, and trembling-hand refinements such as extensive-form perfect

and quasi-perfect equilibria—implicitly assume a model of game-theoretic rationality in which

players are perfectly utility-maximizing. For example, when faced with a choice between two

actions, one of which produces an expected utility of 1.0, and the other an expected utility of

1.0001, rationality of the player would require that the player pick the latter action 100% of the

times, and solution concepts learnt via self-play of learning dynamics would evolve to expect

(or predict) such a behavior from each player, despite it is arguable that most human decision

makers would instead be rather indifferent between the two actions.

The inability to take into account a model of human play in the computation of game-

theoretic behavior is a serious problem for human-computer interactions that involve elements

of cooperation rather than purely competition. In such settings, modeling the other human

participants accurately is important for success. For example, it is important for a self-driving

car at a four-way stop sign to conform to existing human conventions rather than an arbitrary

convention derived from self-play (Lerer and Peysakhovich, 2019).

14.1 Contributions and related work
In this chapter, we propose a technique for anchoring no-external-regret dynamics to a given

model of human play. At its core, our approach works by regularizing the utility that each

player receives in the game by including a KL term that penalizes selecting strategies that are

far away from the anchor. In the special case in which the anchor strategy is uniformly random,

280 §14.1. CONTRIBUTIONS AND RELATED WORK

our approach recovers logit quantal response equilibrium (McKelvey and Palfrey, 1995), which

models players that are not perfectly utility-maximizing but rather pick actions with very similar

utilities with roughly equal probability. After developing foundations for how this approach

can be used in imperfect-information extensive-form games, and proposing efficient learning

algorithms, we show that our approach yields strong human-compatible strategies in practice.

In a 200-game no-press Diplomacy tournament involving 62 human participants spanning skill

levels from beginner to expert, two AI bots trained with our algorithm both achieved a higher

average score than all other participants who played more than two games, and ranked first and

third according to an Elo ratings model. We also remark that the same methodology was recently

used in building Cicero, a bot for playing the full version of Diplomacy using natural language

communication, which was recently featured on Science (Bakhtin, Brown, Dinan, Farina, Flaherty,

Fried, Goff, Gray, Hu, Jacob, Komeili, Konath, Kwon, Lerer, Lewis, Alexander H. Miller, Mitts,

Renduchintala, Roller, Rowe, Shi, Spisak, A. Wei, D. Wu, H. Zhang, and Zĳlstra, 2022).

Alternative approaches to human modeling Behavioral cloning (BC) is the standard approach for

modeling human behaviors given data. Behavioral cloning learns a strategy that maximizes the

likelihood of the human data by gradient descent on a cross-entropy loss. However, as observed

and discussed in Jacob, David J. Wu, Farina, Lerer, Hu, Bakhtin, Andreas, and Brown, 2022, BC

often falls short of accurately modeling or matching human-level performance, with BC models

underperforming the human players they are trained to imitate in games such as Chess, Go, and

Diplomacy. Intuitively, it might seem that initializing self-play with an imitation-learned strategy

would result in an agent that is both strong and human-like. Indeed, Bakhtin, D. Wu, Lerer,

and Brown, 2021 showed improved performance against human-like agents when initializing

the training procedure from a human imitation strategy and value, rather than starting from

scratch. However, such an approach still results in strategies that deviate from human-compatible

equilibria, as shown in an appendix of Bakhtin, David J Wu, Lerer, Gray, Jacob, Farina, Alexander

H Miller, and Brown (2023).

Prior work on Diplomacy As mentioned, we evaluate our imitation-anchored learning dynamics

in the game of Diplomacy. After briefly describing that game specifically, we recall prior

approaches that were investigated for the game, and how they relate to ours.

Diplomacy is a benchmark 7-player mixed cooperative/competitive game featuring simulta-

neous moves and a heavy emphasis on negotiation and coordination. In the no-press variant of

the game, there is no cheap talk communication. Instead, players only implicitly communicate

through moves. In the full version of the game, every pair of players has a private communication

channel they can use to coordinate in natural language. In the game, seven players compete for

majority control of 34 “supply centers” (SCs) on a map. On each turn, players simultaneously

choose actions consisting of an order for each of their units to hold, move, support or convoy

§14. QUANTAL RESPONSE AND REGULARIZATION TOWARDS HUMAN PLAY 281

another unit. If no player controls a majority of SCs and all remaining players agree to a draw

or a turn limit is reached then the game ends in a draw. In this case, we use a common scoring

system in which the score of Player i is C2
i /
∑
i′ C

2
i′ , where Ci is the number of SCs Player i owns.

Most recent successes in no-press Diplomacy use deep learning to imitate human behavior

given a corpus of human games. The first Diplomacy agent to leverage deep imitation learning

was Paquette, Y. Lu, Bocco, Smith, Satya, Kummerfeld, Pineau, Singh, and Courville, 2019.

Subsequent work on no-press Diplomacy have mostly relied on a similar architecture with some

modeling improvements (Gray, Lerer, Bakhtin, and Brown, 2020; Anthony, Eccles, Tacchetti,

Kramár, Gemp, Hudson, Porcel, Lanctot, Perolat, Everett, Singh, Graepel, and Bachrach, 2020;

Bakhtin, D. Wu, Lerer, and Brown, 2021).

Gray, Lerer, Bakhtin, and Brown, 2020 proposed an agent that plays an improved strategy via

one-ply search. It uses strategy and value functions trained on human data to conduct search

using regret minimization.

Several works explored applying self-play to compute improved strategies. Paquette, Y. Lu,

Bocco, Smith, Satya, Kummerfeld, Pineau, Singh, and Courville (2019) applied an actor-critic

approach and found that while the agent plays stronger in populations of other self-play agents, it

plays worse against a population of human-imitation agents. Anthony, Eccles, Tacchetti, Kramár,

Gemp, Hudson, Porcel, Lanctot, Perolat, Everett, Singh, Graepel, and Bachrach (2020) used a

self-play approach based on a modification of fictitious play in order to reduce drift from human

conventions. The resulting strategy is stronger than pure imitation learning in both 1vs6 and

6vs1 settings but weaker than agents that use search. Most recently, Bakhtin, D. Wu, Lerer, and

Brown (2021) combined one-ply search based on equilibrium computation with value iteration to

produce an agent called Double Oracle Reinforcement learning for Action exploration (DORA). DORA

achieved superhuman performance in a two-player zero-sum version of Diplomacy without

human data, but in the full 7-player game plays poorly with agents other than itself.

Jacob, David J. Wu, Farina, Lerer, Hu, Bakhtin, Andreas, and Brown (2022) showed that

regularizing inference-time search techniques can produce agents that are not only strong but can

also model human behaviour well. In no-press Diplomacy, they show that regularizing hedge

(an equilibrium-finding algorithm) with a KL-divergence penalty towards a human imitation

learning strategy can match or exceed the human action prediction accuracy of imitation learning

while being substantially stronger. KL-regularization toward human behavioral strategies has

previously been proposed in various forms in single- and multiagent RL algorithms (Nair, McGrew,

Andrychowicz, Zaremba, and Abbeel, 2018; Siegel, Springenberg, Berkenkamp, Abdolmaleki,

Neunert, Lampe, Hafner, Heess, and Riedmiller, 2020; Nair, Dalal, Gupta, and Levine, 2021), and

was notably employed in AlphaStar (Vinyals, Babuschkin, Czarnecki, Mathieu, Dudzik, Chung,

Choi, Powell, Ewalds, Georgiev, et al., 2019), but this has typically been used to improve sample

efficiency and aid exploration rather than to better model and coordinate with human play.

An alternative line of research has attempted to build human-compatible agents without

282 §14.2. LOGIT QUANTAL RESPONSES AND KL-ANCHORED RESPONSES

relying on human data (Hu, Lerer, Peysakhovich, and Foerster, 2020; Hu, Lerer, Cui, Pineda,

D. Wu, Brown, and Foerster, 2021; Strouse, McKee, Botvinick, Hughes, and Everett, 2021). These

techniques have shown some success in simplified settings but have not been shown to be

competitive with humans in large-scale collaborative environments.

Related work on KL-regularized games Other work has studied learning dynamics in games

regularized with a KL or entropic term, and their relationship to quantal response. Ling, Fang, and

Kolter (2018) establishes the connection between quantal-response equilibria and dilated entropic

regularization in imperfect-information extensive-form games. The work by Farina, Kroer, and

Sandholm (2019a) shows that a decomposition framework similar to that of regret circuits enables

to decompose the problem of minimizing regret with respect to the regularized utilities into

each decision node, leading to a regularized version of the CFR algorithm. The work by Perolat,

Remi Munos, Lespiau, Omidshafiei, Rowland, Ortega, Burch, Anthony, Balduzzi, De Vylder,

et al. (2021) studies continuous-time learning dynamics with last-iterate convergence. The work

by Sokota, D’Orazio, Kolter, Loizou, Lanctot, Mitliagkas, Brown, and Kroer (2023) studies an

algorithm that is very similar to a special case of the DiL-piKL algorithm described in this chapter,

proving additional properties related to the last-iterate convergence in the non-Bayesian setting.

14.2 Logit quantal responses and KL-anchored responses

In this section we review some standard idea related to logit quantal responses, and introduce

the more general concept of KL-anchored responses. To better fix ideas, we begin by considering

nonsequential games, that is, games in which each player’s tree-form decision problem only

has a single decision node. Later on in the section, we discuss how the ideas extend to general

imperfect-information extensive-form games. As we have seen in Chapter 4, a suitable no-regret

algorithm leading to logit quantal response equilibria and KL-anchored equilibria in general

imperfect-information extensive-form games can be constructed starting from any no-regret

algorithm for the probability simplex.

14.2.1 Logit quantal responses

As mentioned in the preamble to the chapter, a standard assumption that underpins most of

the material we have seen so far is that players best-respond, that is, when faced with actions

they will tend to deterministically pick the one with the highest value, no matter how similar in

value the other actions are. So, for example, when faced with the choice between an action with

expected utility 1.0 and another action with expected utility 1.0001, it is assumed that rational

players would favor the latter 100% of the times.

The concept of a quantal responses revises this assumption by instead postulating that the

§14. QUANTAL RESPONSE AND REGULARIZATION TOWARDS HUMAN PLAY 283

probability with which actions tend to be played by agents rather follows a continuous function

of the value of the actions. Specifically, when faced with a set of actions A each of which has

expected utility u[a], a player responding using a logit quantal response (the most common type

of quantal response) picks actions according to the distribution x ∈ ∆A
defined by

x[a] := exp{u[a]/λ}∑
a′∈A exp{u[a′]/λ} , (14.1)

for some parameter λ ⩾ 0. When λ = 0, x converges to being a best response, that is, putting

mass 0 to any suboptimal action, no matter how small the suboptimality. For higher values of λ,

x puts mass also on suboptimal actions. For example, when λ = 1, the quantal response to two

actions of expected utility 1.0 and 1.0001 puts probability ≈ 49.9975% and ≈ 50.0025% on the two

actions. When λ→∞, the player would pick every action uniformly at random not matter its

expected utility.

While best responses can be formulated as solutions to the linear optimization problem

arg max
x∈∆A

⟨u,x⟩,

it is well-known (see also Chapter 5), that logit quantal responses (14.1) arise as solutions to the

entropy-regularized, strongly convex optimization problem

arg max
x∈∆A

{⟨u,x⟩ − λφent(x)}, where φent(x) :=
∑
a∈A

x[a] log x[a] (14.2)

is the negative entropy function (as is standard, we define 0 log 0 = 0).

Given an n-player nonsequential game, a logit quantal response equilibrium (QRE) relative to

anchoring coefficients λi for each player i ∈ [[n]] is an assignment of strategies for each player in

a game, such that each player plays the logit quantal response (relative to their own anchoring

coefficient) to everyone else’s strategies. Similarly to Nash equilibrium, in two-player zero-sum

games, in a nonsequential game where the two players have action sets A1 and A2 and anchoring

coefficients λ1 and λ2, a logit QRE can be expressed as the solution to the strongly convex-concave

saddle-point problem

max
x∈∆A1

min
y∈∆A2

x⊤U1y − λ1φent(x) + λ2φent(y), (14.3)

where U1 is the payoff matrix for Player 1.

14.2.2 Logit quantal response as an instances of KL-anchored response

Given the finite set of actions A, the uniform distribution
1

|A| ∈ ∆A
is such that

284 §14.2. LOGIT QUANTAL RESPONSES AND KL-ANCHORED RESPONSES

KL
(

x

∥∥∥∥ 1
|A|

)
= φent(x) ∀x ∈ ∆A.

Hence, we can rewrite (14.2) as

arg max
x∈∆A

{
⟨u,x⟩ − λKL

(
x

∥∥∥∥ 1
|A|

)}
. (14.4)

Since the KL divergence is a notion of distance, the above optimization problem can be interpreted

as interpolating between the objective of maximizing the utility of the response, while at the

same time not picking a response that is too far from the uniform distribution. To highlight the

effect that λ has on the rationality of the player’s choice, we will refer to the parameter λ as the

anchoring coefficient.
We call a composite problem of the form (14.4) a KL-anchored response, as formalized next.

Definition 14.1. Given the set of actions A available to a player, an anchor strategy τ ∈ ∆A
,

and a utility vector u ∈ ℝA
, the τ -anchored response to utility vector u with anchoring coefficient

λ > 0 is the solution to the optimization problem

arg max
x∈∆A

{⟨u,x⟩ − λKL(x ∥ τ)}.

Like QRE, given an n-player nonsequential game, an anchored response equilibrium relative

to anchoring coefficients λi and anchor strategies τ i for each Player i ∈ [[n]] is an assignment

of strategies for each player in a game, such that each player plays the logit quantal response

(relative to their own anchoring coefficient) to everyone else’s strategies. Similarly to (14.3), in

the two-player zero-sum case we can define a KL-anchored equilibrium as the solution to the

strongly convex-concave saddle-point problem

max
x∈∆A1

min
y∈∆A2

x⊤U1y − λ1KL(x ∥ τ 1) + λ2KL(y ∥ τ 2).

14.2.3 Learning dynamics for KL-anchored equilibria

In order to use learning dynamics to learn a KL-anchored equilibrium, it is necessary to modify

the definition of regret to incorporate the penalty derived from selecting strategies that are far

from the anchors. Specifically, consider a generic player i, and let τ i be his or her anchor policy.

By introducing the regularized utility function

ũi(x,u) := ⟨u,x⟩ − λKL(x ∥ τ i) ∀x ∈ ∆Ai ,u ∈ ℝAi .

§14. QUANTAL RESPONSE AND REGULARIZATION TOWARDS HUMAN PLAY 285

we define KL-anchored external regret cumulated by strategies x
(1)
i ,x

(2)
i , . . . relative to utility vectors

u
(1)
i ,u

(2)
i , . . . as

Reg(T)
i (x̂) :=

T∑
t=1

ũ(x̂,u(t)
i)− ũ(x(t)

i ,u
(t)
i), Reg(T)

KL := max
x̂∈∆Ai

Reg(T)
KL (x̂).

A no-KL-anchored-external-regret algorithm will be given in Section 14.3 as a special case of

an even more general notion of regret.

14.2.4 Imitation-anchored responses in imperfect-information extensive-form
games

the above construction can be extended naturally to imperfect-information extensive-form games.

In particular, Ling, Fang, and Kolter (2018) shows that in imperfect-information extensive-form

games, a logit quantal response is the solution to the optimization problem over sequence-form

strategies defined as

arg max
x∈Q

⟨u,x⟩ − λ∑
j∈J

∑
a∈Aj

x[ja] log x[ja]
x[pj]


= arg max

x∈Q

⟨u,x⟩ − λ∑
j∈J

x[pj]
∑
a∈Aj

φent

((
x[ja]
x[pj]

)
a∈Aj

).
(We remark that the convex regularizer being subtracted is an instantiation of the dilated entropy

DGF discussed in Chapter 5.) Correspondingly, the KL-anchored response is naturally generalized

as the solution to

arg max
x∈Q

⟨u,x⟩ − λ∑
j∈J

x[pj]KL
((

x[ja]
x[pj]

)
a∈Aj

∥∥∥∥∥
(

τ [ja]
τ [pj]

)
a∈Aj

).
We remark that the regret circuit formalism (Chapter 4) can be extended in this case to

show that a no-KL-anchored-external-regret algorithm for the sequence-form polytope of a

generic imperfect-information extensive-form game can be constructed starting from any no-

KL-anchored-external-regret algorithm for probability simplexes (Farina, Kroer, and Sandholm,

2019a).

286 §14.3. MODELING UNCERTAINTY ON THE ANCHORING COEFFICIENTS

14.3 Modeling uncertainty on the anchoring coefficients
The previous chapter lays the foundations for a solution concept that trades off utility maximization

and playing close to an anchor policy. However, a major obstacle on the path to operationalizing

KL-anchored equilibria is that in practice it is not easy to define exactly what anchoring coefficient

λi the equilibrium notion should be configured with. In this section we propose a possible

solution to this problem in nonsequential games, by modeling the uncertainty via a Bayesian

game—a special type of imperfect-information extensive-form game with a strong combinatorial

structure. In particular, for each player i, we let βi be a distribution over the set Λi of anchoring

coefficients (the “types”) that we think might describe the player. In the Bayesian game, at each

time t each player i produces strategies x
(t)
i,λi

, one for each possible type λi ∈ Λi. The regularized

utility relative to each type λi is then defined as

ũi,λi
(x,u) := ⟨u,x⟩ − λi KL(x ∥ τ i), (14.5)

and each player cares about minimizing (that is, keeping sublinear) the per-type regret

max
x̂∈∆Ai

{
T∑
t=1

ũi,λi(x̂,u
(t)
i)− ũi,λi(x

(t)
i,λi

,u
(t)
i)
}
,

no matter the sequence of utility vectors u
(t)
i received as feedback. As usual (Chapter 3), the

utility vectors u
(t)
i are the gradient of the player’s expected utility in the underlying game, where

the expectation in this case takes into account the additional fact that the type of each player is

sampled independently from each distribution βi.

The algorithm we propose to minimize the notion of regret just defined is called DiL-piKL
and can be seen in Algorithm 14.1.

The rest of the section will be focused on the analysis of DiL-piKL, specifically its KL-anchored

external regret and its last-iterate convergence properties in two-player zero-sum games. Before

delving into the details of the analysis, we summarize a few key takeaways.

DiL-piKL can be understood as a sampled form of follow-the-regularized-leader (FTRL). When

a player i learns using DiL-piKL, the distributions x
(t)
i,λi

for any type λi ∈ Λi are no-regret with

respect to the regularized utilities ũi,λi defined in (14.5). Formally:

Theorem 14.1 (Simplified version of Theorem 14.3). Let W be a bound on the maximum

absolute value of any payoff in the game, and Qi := 1
ni

∑
a∈Ai

log τ i(a). Then, for any player

i, type λi ∈ Λi, and number of iterations T , the regret cumulated can be upper bounded as

§14. QUANTAL RESPONSE AND REGULARIZATION TOWARDS HUMAN PLAY 287

Algorithm 14.1: DiL-piKL algorithm, for a generic player i

Data: Ai set of actions for Player i; Λi a set of λ values to consider for Player i;
βi a belief distribution over λ values for Player i.

1 θ
(0)
i ← 0

2 function NextStrategy(_) [▷ Predictions are not used by DiL-piKL]

3 Sample λ ∼ βi
4 Let x

(t)
i,λ ∈ ∆Ai

be the policy such that

x
(t)
i,λ[a] ∝ exp

{
θ

(t−1)
i [a] + λ log τ i[a]
1/(η(t− 1)) + λ

}
∀a ∈ A

5 sample an action a
(t)
i ∼ x

(t)
i,λ

6 return 1
a

(t)
i

∈ ∆Ai

7 function ObserveUtility(u(t)
i ∈ ℝAi)

8 θ
(t)
i ←

t− 1
t

θ
(t−1)
i + 1

t
u

(t)
i

max
x∈∆Ai

{
T∑
t=1

ũi,λi(x,u
(t)
i)− ũi,λi(x

(t)
i,λi

,u
(t)
i)
}

⩽
W 2

4 min
{

2 log T
λi

, Tη

}
+ logni

η
+ ρi,λi

,

where the game constant ρi,λi
is defined as ρi,λi

:= λi(logni +Qi).

We remark that the result holds no matter the choice of learning rate η > 0, thus implying a

OT (log T/(Tλi)) regret bound without assumptions on η other than η = Ω(1). Second, in the

cases in which λi is tiny, by choosing η = Θ(1/
√
T) we recover a sublinear guarantee (of order√

T) on the regret.

In two-player zero-sum games, the logarithmic regret of Theorem 14.1 immediately implies

that the average strategy x̄
(T)
i,λi

:= 1
T

∑T
t=1 x

(t)
i,λi

of each player i is a
C logT
T -approximate Bayes-Nash

equilibrium strategy. In fact, a strong guarantee on the last-iterate convergence of the algorithm

can be obtained too:

Theorem 14.2 (Simplified version of Theorem 14.5; Last-iterate convergence of DiL-piKL in

two-player zero-sum games). When both players in a two-player zero-sum game learn using

DiL-piKL for T → ∞ iterations, their strategies x
(T)
i,λi

converge almost surely to the unique

Bayes-Nash equilibrium (x∗
i,λi

) of the regularized game defined by utilities ũi,λi
, that is, the

solution to the strongly convex-concave saddle-point problem

max
x1,λ1

min
x2,λ2

𝔼λ1∼β1𝔼λ2∼β2

[
x⊤

1,λ1
U1x2,λ2 − λ1KL(x1,λ1 ∥ τ 1) + λ2KL(x2,λ2 ∥ τ 2)

]
,

288 §14.3. MODELING UNCERTAINTY ON THE ANCHORING COEFFICIENTS

where U1 is the utility matrix of Player 1 in the game.

The last-iterate guarantee stated in Theorem 14.2 crucially relies on the strong convexity of

the regularized utilities, and conceptually belongs with related efforts in showing last-iterate

convergence of online learning methods. However, a key difficulty that sets apart Theorem 14.2 is

the fact that the learning agents observe sampled actions from the opponents, which makes the

proof of the result (as well as the obtained convergence rate) different from prior approaches.

14.3.1 A technical lemma needed in the analysis

In this section we study the last-iterate convergence of DiL-piKL, establishing that in two-player

zero-sum games DiL-piKL converges to the (unique) Bayes-Nash equilibrium of the regularized

Bayesian game. As a corollary (in the case in which each player has exactly one type), we conclude

that piKL converges to the Nash equilibrium of the regularized game in two-player zero-sum

games. We start from a technical result.

Lemma 14.1. Fix any player i, λi ∈ Λi, and t ⩾ 1. For all x,x′ ∈ ∆Ai
, the iterates x

(t)
i,λi

and

x
(t+1)
i,λi

defined in Line 4 of Algorithm 14.1 satisfy〈
η

ηλit+ 1

(
−u

(t)
i + λi∇φent(x(t)

i,λi
)− λi∇φent(τ i)

)
+∇φent(x(t+1)

i,λi
)−∇φent(x(t)

i,λi
),x− x′

〉
= 0.

Proof. If t = 1, then the results follows from direct inspection: x
(1)
i,λi

is the uniform strategy

(and so ⟨∇φent(x(1)
i,λi

),x−x′⟩ = 0 for any x,x′ ∈ ∆Ai
, and so the statement reduces to the first-

order optimality conditions for the problem x
(2)
i,λi

= arg maxx∈∆Ai {−φent(x)/η + ⟨u(1)
i , π⟩ −

λiKL(x ∥ τ i)}. So, we now focus on the case t ⩾ 2. The iterates x
(t+1)
i,λi

and x
(t)
i,λi

produced by

DiL-piKL are respectively the solutions to the optimization problem

x
(t+1)
i,λi

= arg max
x∈∆Ai

{
−φent(x)

ηt
+ ⟨Ū (t)

i ,x⟩ − λi KL(x ∥ τ i)
}
,

x
(t)
i,λi

= arg max
x∈∆Ai

{
− φent(x)
η(t− 1) + ⟨Ū (t−1)

i ,x⟩ − λi KL(x ∥ τ i)
}
,

where we let the averages utility vectors be

Ū
(t−1)
i := 1

t− 1

t−1∑
t′=1

ut
′

i , Ū
(t)
i := 1

t

t∑
t′=1

ut
′

i .

§14. QUANTAL RESPONSE AND REGULARIZATION TOWARDS HUMAN PLAY 289

Since the regularizing function negative entropy φent is Legendre, the strategies x
(t+1)
i,λi

and x
(t)
i,λi

are in the relative interior of the probability simplex, and therefore the first-order

optimality conditions for x
(t+1)
i,λi

and x
(t)
i,λi

are respectively〈
−Ū

(t)
i + λi∇φent(x(t+1)

i,λi
)− λi∇φent(τ i) + 1

ηt
∇φent(x(t+1)

i,λi
),x− x′

〉
= 0 ∀x,x′ ∈ ∆Ai ,

(14.6)〈
−Ū

(t−1)
i +λi∇φent(x(t)

i,λi
)−λi∇φent(τ i)+ 1

η(t− 1)∇φent(x(t)
i,λi

),x− x′
〉

= 0 ∀x,x′ ∈ ∆Ai .

Taking the difference between the equalities, we find〈
−Ū

(t)
i + Ū

(t−1)
i +

(
λi + 1

ηt

)
∇φent(x(t+1)

i,λi
)−

(
λi + 1

η(t− 1)

)
∇φent(x(t)

i,λi
),x− x′

〉
= 0

We now use the fact that

Ū
(t)
i − Ū

(t−1)
i = − 1

t− 1Ū
(t)
i + 1

t− 1u
(t)
i .

to further write〈
1

t− 1

(
−u

(t)
i + Ū

(t)
i

)
+
(
λi+

1
ηt

)
∇φent(x(t+1)

i,λi
)−

(
λi+

1
η(t− 1)

)
∇φent(x(t)

i,λi
),x− x′

〉
= 0

(14.7)

From Equation (14.6) we find

⟨Ū (t)
i ,x− x′⟩ =

〈
λi∇φent(x(t+1)

i,λi
)− λi∇φent(τ i) + 1

ηt
∇φent(x(t+1)

i,λi
),x− x′

〉
and so, plugging back the previous relationship in Equation (14.7) we can write, for all

x,x′ ∈ ∆Ai
,

0 =
〈

1
t− 1

(
−u

(t)
i + λi∇φent(x(t+1)

i,λi
)− λi∇φent(τ i) + 1

ηt
∇φent(x(t+1)

i,λi
)
)

+
(
λi + 1

ηt

)
∇φent(x(t+1)

i,λi
)−

(
λi + 1

η(t− 1)

)
∇φent(x(t)

i,λi
),x− x′

〉

=
〈

1
t− 1

(
−u

(t)
i + λi∇φent(x(t+1)

i,λi
)− λi∇φent(τ i)

)
+
(
λi + 1

η(t− 1)

)
∇φent(x(t+1)

i,λi
)

290 §14.3. MODELING UNCERTAINTY ON THE ANCHORING COEFFICIENTS

−
(
λi + 1

η(t− 1)

)
∇φent(x(t)

i,λi
),x− x′

〉
=
〈

1
t− 1

(
−u

(t)
i + λi∇φent(x(t)

i,λi
)− λi∇φent(τ i)

)
+ ηλit+ 1
η(t− 1)∇φent(x(t+1)

i,λi
)

−ηλit+ 1
η(t− 1)∇φent(x(t)

i,λi
),x− x′

〉
.

Dividing by (ηλit+ 1)/(η(t− 1)) yields the statement.

Corollary 14.1. Fix any player i, λi ∈ Λi, and t ⩾ 1. For all x ∈ ∆Ai
, the iterates x

(t)
i,λi

and

x
(t+1)
i,λi

defined in Line 4 of Algorithm 14.1 satisfy〈
−u

(t)
i + λi∇φent(x(t)

i,λi
)− λi∇φent(τ i),x− x

(t+1)
i,λi

〉
=
(
λit+ 1

η

)(
KL(x ∥x

(t+1)
i,λi

)−KL(x ∥x
(t)
i,λi

) + KL(x(t+1)
i,λi

∥x
(t)
i,λi

)
)
.

Proof. Since Lemma 14.1 holds for all x,x′ ∈ ∆Ai
, we can in particular set x′ = x

(t+1)
i,λi

, and

obtain

η

ηλit+ 1

〈
−u

(t)
i + λi∇φent(x(t)

i,λi
)− λi∇φent(τ i),x− x

(t+1)
i,λi

〉
+
〈
∇φent(x(t+1)

i,λi
)−∇φent(x(t)

i,λi
),x− x

(t+1)
i,λi

〉
= 0. (14.8)

Using the three-point identity〈
∇φent(x(t+1)

i,λi
)−∇φent(x(t)

i,λi
),x−x

(t+1)
i,λi

〉
= KL(x ∥x

(t)
i,λi

)−KL(x ∥x
(t+1)
i,λi

)−KL(x(t+1)
i,λi

∥x
(t)
i,λi

)

in Equation (14.8) yields

KL(x ∥x
(t+1)
i,λi

) = KL(x ∥x
(t)
i,λi

)−KL(x(t+1)
i,λi

∥x
(t)
i,λi

)

+ η

ηλit+ 1

〈
−u

(t)
i + λi∇φent(x(t)

i,λi
)− λi∇φent(τ i),x− x

(t+1)
i,λi

〉
.

Multiplying by λit+ 1/η yields the statement.

14.3.2 Regret analysis

Let ũ
(t)
i,λi

be the regularized utility of agent type λi ∈ Λi

§14. QUANTAL RESPONSE AND REGULARIZATION TOWARDS HUMAN PLAY 291

ũ
(t)
i,λi

: ∆Ai ∋ x 7→ ⟨u(t)
i ,x⟩ − λi KL(x ∥ τ i).

Observation 14.1. We note the following:

• For any i ∈ {1, 2} and λi ∈ Λi, the function ũ
(t)
i,λi

satisfies

ũ
(t)
i,λi

(x) = ũ
(t)
i,λi

(x′) + ⟨∇ũ(t)
i,λi

(x′),x− x′⟩ − λi KL(x ∥x′) ∀x,x′ ∈ ∆Ai .

• Furthermore,

−∇ũ(t)
i,λi

(x(t)
i,λi

) = −u
(t)
i + λi∇φent(x(t))− λi∇φent(τ i).

Using Corollary 14.1 we have the following

Lemma 14.2. For any player i and type λi ∈ Λi,

ũ
(t)
i,λi

(x)− ũ(t)
i,λi

(x(t)
i,λi

) ⩽ ∥u(t)
i ∥2

∞
4λit+ 4/η + λi

(
KL(x(t)

i,λi
∥ τ i)−KL(x(t+1)

i,λi
∥ τ i)

)
−
(
λit+ 1

η

)
KL(x ∥x

(t+1)
i,λi

) +
(
λi(t− 1) + 1

η

)
KL(x ∥x

(t)
i,λi

).

Proof. From Lemma 14.1,

0 =
(
λit+ 1

η

)(
−KL(x ∥x

(t+1)
i,λi

) + KL(x ∥x
(t)
i,λi

)−KL(x(t+1)
i,λi

∥x
(t)
i,λi

)
)

+ ⟨−∇ũ(t)
i,λi

(x(t)
i,λi

),x− x
(t+1)
i,λi
⟩

=
(
λit+ 1

η

)(
−KL(x ∥x

(t+1)
i,λi

) + KL(x ∥x
(t)
i,λi

)−KL(x(t+1)
i,λi

∥x
(t)
i,λi

)
)

+ ⟨∇ũ(t)
i,λi

(x(t)
i,λi

),x(t)
i,λi

+ x
(t+1)
i,λi
⟩+ ⟨−∇ũ(t)

i,λi
(x(t)
i,λi

),x− x
(t)
i,λi
⟩

=
(
λit+ 1

η

)(
−KL(x ∥x

(t+1)
i,λi

) + KL(x ∥x
(t)
i,λi

)−KL(x(t+1)
i,λi

∥x
(t)
i,λi

)
)

+ ⟨−∇ũ(t)
i,λi

(x(t)
i,λi

),x(t)
i,λi
− x

(t+1)
i,λi
⟩ − ũ(t)

i,λi
(x) + ũ

(t)
i,λi

(x(t)
i,λi

)− λi KL(x ∥x
(t)
i,λi

).

Rearranging, we find

ũ
(t)
i,λi

(x)− ũ(t)
i,λi

(x(t)
i,λi

) = −
(
λit+ 1

η

)
KL(x ∥x

(t+1)
i,λi

) +
(
λi(t− 1) + 1

η

)
KL(x ∥x

(t)
i,λi

)

292 §14.3. MODELING UNCERTAINTY ON THE ANCHORING COEFFICIENTS

−
(
λit+ 1

η

)
KL(x(t+1)

i,λi
∥x

(t)
i,λi

) + ⟨−∇ũ(t)
i,λi

(x(t)
i,λi

),x(t)
i,λi
− x

(t+1)
i,λi
⟩︸ ︷︷ ︸

(14.9)

.

(14.10)

We now upper bound the term in (14.9) using convexity of the function x 7→ KL(x ∥ τ i), as

follows:

⟨−∇ũ(t)
i,λi

(x(t)
i,λi

),x(t)
i,λi
− x

(t+1)
i,λi
⟩

= ⟨−u
(t)
i ,x

(t)
i,λi
− x

(t+1)
i,λi
⟩+ λi⟨∇φent(x(t)

i,λi
)−∇φent(τ i),x(t+1)

i,λi
− x

(t)
i,λi
⟩

⩽ ⟨−u
(t)
i ,x

(t)
i,λi
− x

(t+1)
i,λi
⟩+ λi

(
KL(x(t+1)

i,λi
∥ τ i)−KL(x(t)

i,λi
∥ τ i)

)
.

Substituting the above bound into (14.10) yields

ũ
(t)
i,λi

(x)− ũ(t)
i,λi

(x(t)
i,λi

) ⩽ ⟨−u
(t)
i ,x

(t)
i,λi
− x

(t+1)
i,λi
⟩ −

(
λit+ 1

η

)
KL(x(t+1)

i,λi
∥x

(t)
i,λi

)

+ λi

(
KL(x(t)

i,λi
∥ τ i)−KL(x(t+1)

i,λi
∥ τ i)

)
−
(
λit+ 1

η

)
KL(x ∥x

(t+1)
i,λi

) +
(
λi(t− 1) + 1

η

)
KL(x ∥x

(t)
i,λi

)

⩽
∥u(t)

i ∥2
∞

4λit+ 4/η +
(
λit+ 1

η

)
∥x(t)

i,λi
− x

(t+1)
i,λi
∥2

1

−
(
λit+ 1

η

)
KL(x(t+1)

i,λi
∥x

(t)
i,λi

)

+ λi

(
KL(x(t)

i,λi
∥ τ i)−KL(x(t+1)

i,λi
∥ τ i)

)
−
(
λit+ 1

η

)
KL(x ∥x

(t+1)
i,λi

) +
(
λi(t− 1) + 1

η

)
KL(x ∥x

(t)
i,λi

),

where the second inequality follows from Young’s inequality. Finally, by using the strong

convexity of the KL divergence between points x
(t)
i,λi

and x
(t+1)
i,λi

, that is,

KL(x(t+1)
i,λi

∥x
(t)
i,λi

) ⩾ ∥x(t+1)
i,λi

− x
(t)
i,λi
∥2

1,

yields the statement.

Noting that the right-hand side of Lemma 14.2 is telescopic, we immediately have the

following.

§14. QUANTAL RESPONSE AND REGULARIZATION TOWARDS HUMAN PLAY 293

Theorem 14.3. For any player i and type λi ∈ Λi, and strategy x ∈ ∆Ai
, the following regret

bound holds at all times T :

T∑
t=1

ũ
(t)
i,λi

(x)− ũ(t)
i,λi

(x(t)
i,λi

) ⩽ W 2

4 min
{

2 log T
λi

, Tη

}
+ logni

η
+ λi(logni +Qi).

Proof. From Lemma 14.2 we have that

T∑
t=1

ũ
(t)
i,λi

(x)− ũ(t)
i,λi

(x(t)
i,λi

) ⩽
(
W 2

4

T∑
t=1

1
λit+ 1/η

)
+ λiKL(x(1)

i,λi
∥ τ i) +

KL(x ∥x
(1)
i,λi

)
η

⩽
W 2

4

(
T∑
t=1

min
{

1
λit

, η

})
+ λi(logni +Qi) + logni

η

⩽
W 2

4 min
{

2 log T
λi

, ηT

}
+ λi(logni +Qi) + logni

η
,

where the second inequality follows from the fact that λit+ 1/η ⩾ max{λit, 1/η} and the fact

that x
(1)
i,λi

is the uniform strategy.

14.3.3 Last-Iterate Convergence in Two-Player Zero-Sum Games

In two-player game with payoff matrix U for Player 1, a Bayes-Nash equilibrium to the regularized

game is a collection of strategies (x∗
i,λi

) such that for any supported type λi of Player i ∈ {1, 2},
the strategy x∗

i,λi
is a best response to the average strategy of the opponent. In symbols,

x∗
1,λ1
∈ arg max

x∈∆A1

{
⟨U𝔼λ2∼β2

[
x∗

2,λ2

]
,x⟩+ λ1KL(x ∥ τ 1)

}
∀λ1 ∈ Λ1,

x∗
2,λ2
∈ arg max

x∈∆A2

{
⟨−U⊤ 𝔼λ1∼β1

[
x∗

1,λ1

]
,x⟩+ λ2KL(x ∥ τ 2)

}
∀λ2 ∈ Λ2.

Denoting x̄∗
1 := 𝔼λ1∼β1

[
x∗

1,λ1

]
, x̄∗

2 := 𝔼λ2∼β2

[
x∗

2,λ2

]
, the first-order optimality conditions for

the best response problems above are

⟨U x̄∗
2 + λ1∇φent(x∗

1,λ1
)− λ1∇φent(τ 1),x∗

1,λ1
− x′

1,λ1
⟩ ⩾ 0 ∀x′

1,λ1
∈ ∆A1 ,

⟨−U⊤ x̄∗
1 + λ2∇φent(x∗

2,λ2
)− λ2∇φent(τ 2),x∗

2,λ2
− x′

2,λ2
⟩ ⩾ 0 ∀x′

2,λ2
∈ ∆A2 .

We also mention the following standard lemma.

294 §14.3. MODELING UNCERTAINTY ON THE ANCHORING COEFFICIENTS

Lemma 14.3. Let (x∗
i,λi

)i∈{1,2},λ1∈Λi
be the unique Bayes-Nash equilibrium of the regularized

game. Let strategies x′
i,λi

be arbitrary, and let:

• x̄′
1 := 𝔼λ1∼β1

[
x′

1,λ1

]
, x̄′

2 := 𝔼λ2∼β2

[
x′

2,λ2

]
;

• α := 𝔼λ1∼β1

[
⟨−Ux̄′

2 + λ1∇φent(x′
1,λ1

)− λ1∇φent(τ 1),x∗
1,λ1
− x′

1,λ1
⟩
]
;

• β := 𝔼λ2∼β2

[
⟨U⊤x̄′

1 + λ2∇φent(x′
2,λ2

)− λ2∇φent(τ 2),x∗
2,λ2
− x′

2,λ2
⟩
]
.

Then,

α+ β ⩽ −
∑

i∈{1,2}

𝔼λi∼βi

[
λi KL(x′

i,λi
∥x∗

i,λi
) + λi KL(x∗

i,λi
∥x′

i,λi
)
]
.

The following potential function will be key in the analysis:

Ψ(t) :=
∑

i∈{1,2}

𝔼λi∼βi

[(
λi(t− 1) + 1

η

)
KL(x∗

i,λi
∥x

(t)
i,λi

) + λi KL(x(t)
i,λi
∥ τ i)

]
, t ∈ {1, 2, . . . }.

Proposition 14.1. At all times t ∈ {1, 2, . . . }, let

x̄t−i := 𝔼λ−i∼β−i

[
xt−i,λ−i

]
.

The potential Ψ(t)
satisfies the inequality

Ψ(t+1) ⩽ Ψ(t) +
∑

i∈{1,2}

𝔼λi∼βi


∥∥∥u

(t)
i

∥∥∥2

∞
4λit+ 4/η +

〈
Uix̄

(t)
−i − u

(t)
i ,x∗

i,λi
− x

(t)
i,λi

〉.

Proof. By multiplying both sides of Corollary 14.1 for the choice x = x∗
i,λi

, taking expectations

over λi ∼ βi, and summing over the player i ∈ {1, 2}, we find

∑
i∈{1,2}

𝔼λi∼βi

[(
λit+ 1

η

)
KL(x∗

i,λi
∥x

(t+1)
i,λi

)
]

=
∑

i∈{1,2}

𝔼λi∼βi

[(
λit+ 1

η

)
KL(x∗

i,λi
∥x

(t)
i,λi

)
]

−
∑

i∈{1,2}

𝔼λi∼βi

[(
λit+ 1

η

)
KL(x(t+1)

i,λi
∥x

(t)
i,λi

)
]

§14. QUANTAL RESPONSE AND REGULARIZATION TOWARDS HUMAN PLAY 295

+
∑

i∈{1,2}

𝔼λi∼βi

[〈
−u

(t)
i + λi∇φent(x(t)

i,λi
)− λi∇φent(τ i),x∗

i,λi
− x

(t+1)
i,λi

〉]
︸ ︷︷ ︸

(♣)

.

(14.11)

We now proceed to analyze the last summation on the right-hand side. First,

(♣) =
∑

i∈{1,2}

𝔼λi∼βi

[〈
−Uix̄

(t)
−i + λi∇φent(x(t)

i,λi
)− λi∇φent(τ i),x∗

i,λi
− x

(t)
i,λi

〉]
︸ ︷︷ ︸

(♠)

+
∑

i∈{1,2}

𝔼λi∼βi

[〈
−u

(t)
i + λi∇φent(x(t)

i,λi
)− λi∇φent(τ i),x(t)

i,λi
− x

(t+1)
i,λi

〉]
︸ ︷︷ ︸

(♡)

+
∑

i∈{1,2}

𝔼λi∼βi

[〈
Uix̄

(t)
−i − u

(t)
i ,x∗

i,λi
− x

(t)
i,λi

〉]
. (14.12)

Using Lemma 14.3 we can immediately write

(♠) ⩽
∑

i∈{1,2}

𝔼λi∼βi

[
−λiKL(x∗

i,λi
∥x

(t)
i,λi

)
]
.

By manipulating the inner product in (♡), we have

(♡) =
∑

i∈{1,2}

𝔼λi∼βi

[
⟨−u

(t)
i ,x

(t)
i,λi
− x

(t+1)
i,λi
⟩ − λi

〈
∇φent(x(t)

i,λi
)− φent(x(t+1)

i,λi
),x(t+1)

i,λi
− x

(t)
i,λi

〉]
⩽

∑
i∈{1,2}

𝔼λi∼βi

[
⟨−u

(t)
i ,x

(t)
i,λi
− x

(t+1)
i,λi
⟩+ λi

(
KL(x(t+1)

i,λi
∥ τ i)−KL(x(t)

i,λi
∥ τ i)

)]

⩽
∑

i∈{1,2}

𝔼λi∼βi


∥∥∥u

(t)
i

∥∥∥2

∞
4λit+ 4/η +

(
λit+ 1

η

)∥∥∥x
(t)
i,λi
− x

(t+1)
i,λi

∥∥∥2

1


+

∑
i∈{1,2}

𝔼λi∼βi

[
λi

(
KL(x(t+1)

i,λi
∥ τ i)−KL(x(t)

i,λi
∥ τ i)

)]
,

where the last inequality follow from the fact that ab ⩽ a2/(4ρ) + ρb2
for all choices of a, b ⩾ 0

and ρ > 0. Substituting the individual bounds into (14.12) yields

(♣) ⩽
∑

i∈{1,2}

𝔼λi∼βi

[
λi

(
KL(x(t+1)

i,λi
∥ τ i)−KL(x(t)

i,λi
∥ τ i)

)]

296 §14.3. MODELING UNCERTAINTY ON THE ANCHORING COEFFICIENTS

+
∑

i∈{1,2}

𝔼λi∼βi


∥∥∥u

(t)
i

∥∥∥2

∞
4λit+ 4/η +

(
λit+ 1

η

)∥∥∥x
(t)
i,λi
− x

(t+1)
i,λi

∥∥∥2

1


+

∑
i∈{1,2}

𝔼λi∼βi

[〈
Uix̄

(t)
−i − u

(t)
i ,x∗

i,λi
− x

(t)
i,λi

〉]
.

Finally, plugging the above bound into (14.11) and rearranging terms yields

Ψ(t+1) ⩽ Ψ(t) +
∑

i∈{1,2}

𝔼λi∼βi

[
−
(
λit+ 1

η

)
KL(x(t+1)

i,λi
∥x

(t)
i,λi

)
]

+
∑

i∈{1,2}

𝔼λi∼βi


∥∥∥u

(t)
i

∥∥∥2

∞
4λit+ 4/η +

(
λit+ 1

η

)∥∥∥x
(t)
i,λi
− x

(t+1)
i,λi

∥∥∥2

1


+

∑
i∈{1,2}

𝔼λi∼βi

[〈
Uix̄

(t)
−i − u

(t)
i ,x∗

i,λi
− x

(t)
i,λi

〉]
.

⩽ Ψ(t) +
∑

i∈{1,2}

𝔼λi∼βi

[
−
(
λit+ 1

η

)∥∥∥x
(t+1)
i,λi

− x
(t)
i,λi

∥∥∥2

1

]

+
∑

i∈{1,2}

𝔼λi∼βi


∥∥∥u

(t)
i

∥∥∥2

∞
4λit+ 4/η +

(
λit+ 1

η

)∥∥∥x
(t)
i,λi
− x

(t+1)
i,λi

∥∥∥2

1


+

∑
i∈{1,2}

𝔼λi∼βi

[〈
Uix̄

(t)
−i − u

(t)
i ,x∗

i,λi
− x

(t)
i,λi

〉]
.

⩽ Ψ(t) +
∑

i∈{1,2}

𝔼λi∼βi


∥∥∥u

(t)
i

∥∥∥2

∞
4λit+ 4/η +

〈
Uix̄

(t)
−i − u

(t)
i ,x∗

i,λi
− x

(t)
i,λi

〉,
as we wanted to show.

Theorem 14.4. As in Proposition 14.1, let

x̄t−i := 𝔼λ−i∼β−i

[
xt−i,λ−i

]
.

Let D̃T
KL be the notion of distance defined as

D̃T
KL :=

∑
i∈{1,2}

𝔼λi∼βi

[
(λi + 1/(η(T − 1)))KL(x∗

i,λi
∥x

(T)
i,λi

)
]
.

§14. QUANTAL RESPONSE AND REGULARIZATION TOWARDS HUMAN PLAY 297

At all times T = 2, 3, . . . ,

D̃T
KL ⩽

1
T

ρ+ logni
η

+ W 2

2
∑

i∈{1,2}

𝔼λi∼βi

[
min

{
2 log T
λi

, ηT

}]
+ 2
T

T∑
t=1

∑
i∈{1,2}

𝔼λi∼βi

[〈
Uix̄

(t)
−i − u

(t)
i ,x∗

i,λi
− x

(t)
i,λi

〉]
,

where

ρ := 2
∑

i∈{1,2}

𝔼λi∼βi
[λi] (logni +Qi).

Proof. Using the bound on Ψ(t+1) −Ψ(t)
given by Proposition 14.1 we obtain

Ψ(T) −Ψ(1) =
T−1∑
t=1

(Ψ(t+1) −Ψ(t))

⩽
T−1∑
t=1

∑
i∈{1,2}

𝔼λi∼βi


∥∥∥u

(t)
i

∥∥∥2

∞
4λit+ 4/η +

〈
Uix̄

(t)
−i − u

(t)
i ,x∗

i,λi
− x

(t)
i,λi

〉
= 1

4
∑

i∈{1,2}

𝔼λi∼βi

 T∑
t=1

∥∥∥u
(t)
i

∥∥∥2

∞
λit+ 1/η

+
T∑
t=1

∑
i∈{1,2}

𝔼λi∼βi

[〈
Uix̄

(t)
−i − u

(t)
i ,x∗

i,λi
− x

(t)
i,λi

〉]

⩽
1
4
∑

i∈{1,2}

𝔼λi∼βi

[
T−1∑
t=1

W 2

λit+ 1/η

]
+

T∑
t=1

∑
i∈{1,2}

𝔼λi∼βi

[〈
Uix̄

(t)
−i − u

(t)
i ,x∗

i,λi
− x

(t)
i,λi

〉]
.

We can now bound

T∑
t=1

W 2

λit+ 1/η ⩽W 2
T∑
t=1

min
{

1
λit

, η

}

⩽W 2 min
{

T∑
t=1

1
λit

,

T∑
t=1

η

}

⩽W 2 min
{

2 log T
λi

, Tη

}
.

On the other hand, note that

298 §14.3. MODELING UNCERTAINTY ON THE ANCHORING COEFFICIENTS

Ψ(T) −Ψ(1) = −Ψ(1) +
∑

i∈{1,2}

𝔼λi∼βi

[(
λi(T − 1) + 1

η

)
KL(x∗

i,λi
∥x

(T)
i,λi

) + λi KL(x(T)
i,λi
∥ τ i)

]
⩾ −Ψ(1) +

∑
i∈{1,2}

(T − 1)𝔼λi∼βi

[
(λi + 1/(η(T − 1)))KL(x∗

i,λi
∥x

(T)
i,λi

)
]

= (T − 1)D̃T
KL −

∑
i∈{1,2}

𝔼λi∼βi

[
KL(x∗

i,λi
∥x

(1)
i,λi

)
η

− λiKL(x(1)
i,λi
∥ τ i)

]

⩾ (T − 1)D̃T
KL −

∑
i∈{1,2}

𝔼λi∼βi

[
logni
η

+ λi(logni +Qi)
]

= (T − 1)D̃T
KL − ρ,

where the last inequality follows from expanding the definition of the KL divergence and using

the fact that x
(1)
i,λi

is the uniform strategy. Combining the inequalities and dividing by T − 1
yields

D̃T
KL ⩽

W 2

4
∑

i∈{1,2}

𝔼λi∼βi

[
min

{
2 log T

(T − 1)λi
,

T

T − 1η
}]

+ ρ

T − 1

+ 1
T − 1

T∑
t=1

∑
i∈{1,2}

𝔼λi∼βi

[〈
Uix̄

(t)
−i − u

(t)
i ,x∗

i,λi
− x

(t)
i,λi

〉]
.

Finally, using the fact that 2(T − 1) ⩾ T yields the statement.

Theorem 14.5 (Last-iterate convergence of DiL-piKL in two-player zero-sum games). Let ρ

be as in the statement of Theorem 14.4. When both players in a zero-sum game learn using

DiL-piKL for T iterations, their strategies converge to the unique Bayes-Nash equilibrium

(x∗
1,x

∗
2) of the regularized game defined by utilities (14.5), in the following senses:

(a) In expectation: for all i ∈ {1, 2} and λi ∈ Λi, at a rate of roughly log T/(λiT)

𝔼
[
KL(x∗

i,λi
∥x

(T)
i,λi

)
]
⩽

1
λiT

ρ+ logni
η

+ W 2

2
∑

j∈{1,2}

𝔼λj∼βj

[
min

{
2 log T
λj

, ηT

}].
(We remark that for η = 1/

√
T the convergence is never slower than 1/

√
T).

(b) With high probability, at a rate of roughly 1/
√
T : for any δ ∈ (0, 1) and Player i ∈ {1, 2},

§14. QUANTAL RESPONSE AND REGULARIZATION TOWARDS HUMAN PLAY 299

ℙ

[
∀λi ∈ Λi : KL(x∗

i,λi
∥x

(T)
i,λi

) ⩽ 𝔼
[
KL(x∗

i,λi
∥x

(T)
i,λi

)
]

+ 8
√

2W
λi
√
T

√
log |Λi|

δ

]
⩾ 1− δ.

A n upper bound on 𝔼
[
KL(x∗

i,λi
∥x

(T)
i,λi

)
]

was given in the previous point.

(c) Almost surely in the limit:

ℙ
[
∀λi ∈ Λi : KL(x∗

i,λi
∥x

(T)
i,λi

) T→+∞−−−−−→ 0
]

= 1 ∀i ∈ {1, 2}.

Proof. We prove the three statements incrementally.

(a) Let Ft be the σ-algebra generated by {u(t′)
i : t′ = 1, . . . , t − 1, i ∈ {1, 2}}. We let

𝔼t[·] := 𝔼[· | Ft]. Since piKL is a deterministic algorithm, x
(t)
i,λi

is Ft-measurable. Hence,

given that uti is an unbiased estimator of Uix̄
(t)
−i we have that at all times t

𝔼t

[〈
Uix̄

(t)
−i − u

(t)
i ,x∗

i,λi
− x

(t)
i,λi

〉]
=
〈
𝔼t

[
Uix̄

(t)
−i − u

(t)
i

]
,x∗

i,λi
− x

(t)
i,λi

〉
= 0. (14.13)

Note that from the definition of D̃T
KL given in Theorem 14.4

KL(x∗
i,λi
∥x

(T)
i,λi

) ⩽ 1
λi
D̃T

KL. (14.14)

Hence, taking expectations and using (14.13) yields the statement.

(b) To prove high-probability convergence, we use the Azuma-Hoeffding concentration

inequality. In particular, (14.13) shows that the stochastic process ∑
j∈{1,2}

𝔼λj∼βj

[
⟨Ujx̄

(t)
−j − u

(t)
j ,x∗

j − x
(t)
j ⟩
]

t=1,2,...

is a martingale difference sequence adapted to the filtration Ft. Furthermore, note that∣∣∣∣∣∣
∑

j∈{1,2}

𝔼λj∼βj

[
⟨Ujx̄

(t)
−j − u

(t)
j ,x∗

j,λj
− x

(t)
j,λj
⟩
]∣∣∣∣∣∣ ⩽ 4W

for all t. Hence, using the Azuma-Hoeffding inequality for martingale difference

sequences we obtain that for all δ ∈ (0, 1),

300 §14.4. EXPERIMENTAL EVALUATION IN NO-PRESS DIPLOMACY

ℙ

 T∑
t=1

∑
j∈{1,2}

𝔼λj∼βj

[
⟨Ujx̄

(t)
−j − u

(t)
j ,x∗

j − x
(t)
j ⟩
]
⩽ 4W

√
2T log 1

δ

 ⩾ 1− δ.

Plugging the above probability bound in the statement of Theorem 14.4 and using the

union bound over λi ∈ Λi yields the statement.

(c) follows from (b) via a standard application of the Borel-Cantelli lemma.

14.4 Experimental evaluation in no-press Diplomacy

We empirically investigate using DiL-piKL as the planning algorithm used at each decision-point

within the DORA framework, which we now recall.

14.4.1 Background on Double Oracle Reinforcement learning for Action
exploration (DORA)

DORA (Bakhtin, D. Wu, Lerer, and Brown, 2021) is an algorithm similar to past model-based

reinforcement-learning methods such as AlphaZero (Silver, Hubert, Schrittwieser, Antonoglou,

Lai, Guez, Lanctot, Sifre, Kumaran, Graepel, et al., 2018), except that in place of Monte Carlo tree

search—which is unsound in simultaneous-action games such as Diplomacy or other imperfect-

information extensive-form games—it instead uses an equilibrium-finding algorithm such as

hedge or RM to iteratively approximate a Nash equilibrium for the current state (i.e., one-step

lookahead search). A deep neural net trained to predict the strategy is used to sample plausible

actions for all players to reduce the large action space in Diplomacy down to a tractable subset for

the equilibrium-finding procedure, and a deep neural net trained to predict state values is used

to evaluate the results of joint actions sampled by this procedure. Beginning with a strategy and

value network randomly initialized from scratch, a large number of self-play games are played

and the resulting equilibrium strategies and the improved 1-step value estimates computed on

every turn from equilibrium-finding are added to a replay buffer used for subsequently improving

the strategy and value. Additionally, a double-oracle (McMahan, G. Gordon, and Blum, 2003)

method was used to allow the strategy to explore and discover additional actions, and the same

equilibrium-finding procedure was also used at test time.

14.4.2 Training of our bot Diplodocus

Our training algorithm closely follows that of DORA, described above. However, the key

difference is that in place of RM to compute the equilibrium strategy σ on each turn of a game

§14. QUANTAL RESPONSE AND REGULARIZATION TOWARDS HUMAN PLAY 301

during self-play, we use DiL-piKL with a λ distribution and human imitation anchor strategy τ

that is fixed for all of training. We call this self-play algorithm RL-DiL-piKL. We use RL-DiL-piKL
to train value and strategy proposal networks and use DiL-piKL during test-time search. The call

final trained agent is called Diplodocus.
Following Bakhtin, D. Wu, Lerer, and Brown, 2021, at evaluation time we perform 1-ply

lookahead where on each turn we sample up to 30 of the most likely actions for each player from

the RL strategy proposal network. However, rather than using RM to compute the equilibrium σ,

we apply DiL-piKL.

As also mentioned previously in Section 14.3, while our agent samples λi from the probability

distribution βi when computing the DiL-piKL equilibrium, the agent chooses its own action to

actually play using a fixed low λ. For all experiments, including all ablations, the agent uses the

same BC anchor strategy. For DiL-piKL experiments for each player iwe set βi to be uniform over

{10−4, 10−3, 10−2, 10−1} and play according to λ = 10−4
, except for the first turn of the game. On

the first turn we instead sample from {10−2, 10−1.5, 10−1, 10−0.5} and play according to λ = 10−2
,

so that the agent plays more diverse openings, which more closely resemble those that humans

play.

14.4.3 Experimental setup

We compare the performance of two variants of Diplodocus both in a population of prior agents

and other baseline agents, and in a tournament with humans.

In order to measure the ability of agents to play well against a diverse set of opponents, we

play many games between AI agents where each of the seven players are sampled randomly from

a population of baselines or the agent to be tested. We report scores for each of the following

algorithms against the baseline population.

• Diplodocus-Low and Diplodocus-High are the proposed agents that use RL-DiL-piKL
during training with player types {10−4, 10−1} and {10−2, 10−1}, respectively.

• DORA is an agent that is trained via self-play and uses RM as the search algorithm during

training and test-time. Both the strategy and the value function are randomly initialized at

the start of training.

• DNVI is similar to DORA, but the strategy proposal and value networks are initialized from

human behavioral-cloning pretraining.

• DNVI-NPU is similar to DNVI, but during training only the RL value network is updated.

The strategy proposal network is trained but never fed back to self-play workers, to limit

drift from human conventions. The trained strategy proposal is only used at test time (along

with the RL value network).

302 §14.4. EXPERIMENTAL EVALUATION IN NO-PRESS DIPLOMACY

• BRBot is an approximate best response to the behavioral-cloning strategy. It was trained the

same as Diplodocus, except that during training the agent plays one distinguished player

each game with λ = 0 while all other players use λ ≈ ∞.

• SearchBot is a one-step lookahead equilibrium search agent from the paper by Gray, Lerer,

Bakhtin, and Brown (2020), evaluated using their published model.

• HedgeBot is an agent similar to SearchBot (Gray, Lerer, Bakhtin, and Brown, 2020) but using

our latest architecture and using hedge rather than RM as the equilibrium-finding algorithm.

• FPPI-2 and SL are two agents from the work by Anthony, Eccles, Tacchetti, Kramár, Gemp,

Hudson, Porcel, Lanctot, Perolat, Everett, Singh, Graepel, and Bachrach (2020), evaluated

using their published model.
[14.a]

14.4.4 Performance compared to prior algorithms

We report results for Diplodocus against prior algorithms for the problem. The results, shown in

Table 14.1, show Diplodocus-Low and Diplodocus-High perform the best by a wide margin.

Score against
Agent Reference population
Diplodocus-Low 29% ± 1%

Diplodocus-High 28% ± 1%

DNVI-NPU (retrained) Bakhtin, D. Wu, Lerer, and Brown, 2021 20% ± 1%

BRBot 18% ± 1%

DNVI (retrained) Bakhtin, D. Wu, Lerer, and Brown, 2021 15% ± 1%

HedgeBot (retrained) Jacob, David J. Wu, Farina, Lerer, Hu, Bakhtin, Andreas,

and Brown, 2022

14% ± 1%

DORA (retrained) Bakhtin, D. Wu, Lerer, and Brown, 2021 13% ± 1%

FPPI-2 Anthony, Eccles, Tacchetti, Kramár, Gemp, Hudson,

Porcel, Lanctot, Perolat, Everett, Singh, Graepel, and

Bachrach, 2020

9% ± 1%

SearchBot Gray, Lerer, Bakhtin, and Brown, 2020 7% ± 1%

SL Anthony, Eccles, Tacchetti, Kramár, Gemp, Hudson,

Porcel, Lanctot, Perolat, Everett, Singh, Graepel, and

Bachrach, 2020

6% ± 1%

Table 14.1: Performance of different algorithms. Agents above the line were retrained. Agents below

the line were evaluated using the models and the parameters provided by the authors. The ±
shows one standard error.

[14.a]https://github.com/deepmind/diplomacy

https://github.com/deepmind/diplomacy

§14. QUANTAL RESPONSE AND REGULARIZATION TOWARDS HUMAN PLAY 303

14.4.5 Experiments against human players

we organized a tournament where we evaluated four agents for 50 games each in a population of

online human participants. We evaluated two baseline agents, BRBot and DORA, and our new

agents, Diplodocus-Low and Diplodocus-High.

In order to limit the duration of games to only a few hours, these games used a time limit of 5

minutes per turn and a stochastic game-end rule where at the beginning of each game year between

1909 and 1912 the game ends immediately with 20% chance per year, increasing in 1913 to a 40%

chance. Players were not told which turn the game would end on for a specific game, but were told

the distribution it was sampled from. Our agents were also trained based on this distribution.
[14.b]

Players were recruited from Diplomacy mailing lists and from webdiplomacy.net. In order to

mitigate the risk of cheating by collusion, players were paid hourly rather than based on in-game

performance. Each game had exactly one agent and six humans. The players were informed that

there was an AI agent in each game, but did not know which player was the bot in each particular

game. In total 62 human participants played 200 games with 44 human participants playing more

than two games and 39 human participants playing at least 5 games.

We report results for the human tournament in Table 14.2. For each listed player, we report

their average score, Elo rating, and rank within the tournament based on Elo among players

who played at least 5 games. Elo ratings were computed using a standard generalization of

BayesElo (Coulom, 2005) to multiple players (Hunter, 2004).This gives similar rankings as average

score, but also attempts to correct for both the average strength of the opponents, since some

games may have stronger or weaker opposition, as well as for which of the seven European

powers a player was assigned in each game, since some starting positions in Diplomacy are

advantaged over others. To regularize the model, a weak Bayesian prior was applied such that

each player’s rating was normally distributed around 0 with a standard deviation of around 350

Elo.

The results show that Diplodocus-High performed best among all the humans by both Elo and

average score. Diplodocus-Low followed closely behind, ranking second according to average

score and third by Elo. BRBot performed relatively well, but ended ranked below that of both

DiL-piKL agents and several humans. DORA performed relatively poorly.

Two participants achieved a higher average score than the Diplodocus agents, a player

averaging 35% but who only played two games, and a player with a score of 29% who played

only one game.

We note that given the large statistical error margins, the results in Table 14.2 do not conclusively

demonstrate that Diplodocus outperforms the best human players, nor do they alone demonstrate

an unambiguous separation between Diplodocus and BRBot. However, the results do indicate

[14.b]
Games were run by a third-party contractor. In contradiction of the criteria we specified, the contractor ended games

artificially early for the first ∼80 games played in the tournament, with end dates of 1909-1911 being more common than

they should have been. We immediately corrected this problem once it was identified.

webdiplomacy.net

304 §14.4. EXPERIMENTAL EVALUATION IN NO-PRESS DIPLOMACY

Rank Elo Average score # Games
Diplodocus-High 1 181 27% ± 4% 50

Human 2 162 25% ± 6% 13

Diplodocus-Low 3 152 26% ± 4% 50

Human 4 138 22% ± 9% 7

Human 5 136 22% ± 3% 57

BRBot 6 119 23% ± 4% 50

Human 7 102 18% ± 8% 8

Human 8 96 17% ± 3% 51

· · · · · · · · · · · · · · ·
DORA 32 -20 13% ± 3% 50

· · · · · · · · · · · · · · ·
Human 43 -187 1% ± 1% 7

Table 14.2: Performance of four different agents in a population of human players, ranked by Elo,

among all 43 participants who played at least 5 games. The ± shows one standard error.

that Diplodocus performs at least at the level of expert players in this population of players with

diverse skill levels. Additionally, the superior performance of both Diplodocus agents compared

to BRBot is consistent with the results from the agent population experiments in Table 14.1.

In addition to the tournament, we asked three expert human players to evaluate the strength of

the agents in the tournament games based on the quality of their actions. Games were presented to

these experts with anonymized labels so that the experts were not aware of which agent was which

in each game when judging that agent’s strategy. All the experts picked a Diplodocus agent as

the strongest agent, though they disagreed about whether Diplodocus-High or Diplodocus-Low

was best. Additionally, all experts indicated one of the Diplodocus agents as the one they would

most like to cooperate with in a game.

Conclusions and future work

This dissertation sought to provide solid theoretical and algorithmic foundations for strategic,

game-theoretic decision-making in imperfect-information extensive-form games.

In the first part of the dissertation, we focused on learning dynamics, procedures each player can

use to iteratively refine their strategy. Learning dynamics are a fascinating technique, which can

recover global notions of game-theoretic optimality from local notions of strategy improvements.

In this dissertation, we gave several new fundamental results about learning dynamics in

imperfect-information extensive-form games. In Chapter 4 we presented a methodology for

constructing predictive dynamics with state-of-the-art practical performance in many game

instances. In Chapter 5 we investigated several fundamental questions about the metric structure

of strategy spaces in imperfect-information extensive-form games, establishing the first notion of

distance that enables linear-time projections while at the same time guaranteeing polynomial

distance between any two strategies. In Chapters 6 and 7 we settled for the positive the question

of whether near-optimal no-regret learning can be achieved in general imperfect-information

extensive-form games, all while improving bounds for normal-form games as well. Finally,

in Chapter 8 we provided the first uncoupled, polynomial-time learning dynamics leading

to extensive-form correlated equilibrium (the natural generalization of the classic correlated

equilibrium in normal-form games), closing a longstanding open problem in the literature. As

we pointed out along the way, learning in imperfect-information games is significantly more

challenging (and fascinating) than learning in normal-form (nonsequential) games, and often

requires different techniques. However, surprisingly many positive results can be given. I

hope these results will be useful foundations for future investigations of learning in imperfect-

information games.

Several questions about learning in extensive-form games remain open. We mention just a

few. First, what are lower bounds for no-external-regret dynamics, both in terms of dependence

on the number of repetitions T of the game, and as a function of the dimensions of the game?

More concretely, is the state-of-the-art dependence on the game size we developed in Chapter 7

optimal? Can learning dynamics in games with provable OT (1/T) convergence to coarse-

correlated equilibrium be given? And is there an inherent tradeoff between rate of convergence

306 §14.4. EXPERIMENTAL EVALUATION IN NO-PRESS DIPLOMACY

and complexity of iterations?
[14.c]

Another set of questions relate to alternative feedback models. Is it possible to extend

most (or all) of the no-regret learning dynamics described so far to online learning models

such as bandit and semi-bandit settings? To achieve that, we need to construct several tools of

independent interest, such as efficient loss estimation techniques and the introduction of certain

combinatorially-structured local norms to study convergence of the learning algorithm. While

some work has already been done (see, e.g., Farina, Schmucker, and Sandholm (2021), Farina and

Sandholm (2021b), Kozuno, Ménard, Rémi Munos, and Valko (2021), Bai, C. Jin, Mei, Song, and

Yu (2022), Song, Mei, and Bai (2022), McAleer, Farina, Lanctot, and Sandholm (2023), and Fiegel,

Ménard, Kozuno, Rémi Munos, Perchet, and Valko (2023)), significant work remains to be done.

In the second part of the dissertation, we focused on the geometry of correlated strategies in

imperfect-information games. This topic does not have a counterpart in the theory of normal-form

games, as the difficulty in characterizing correlated strategies lies in the asymmetric information

that each player observes while playing the imperfect-information game. By making progress on

the fundamental problem of characterizing the polytope of correlated strategies in Chapter 9, we

were able to provide positive complexity results and new algorithms for several domains, including

welfare-maximizing solution concepts (Chapter 10) and TMECor equilibria in adversarial team

games (Chapter 11). This rippling effect shows that much value is to be gained from attacking

the fundamental question of the structure of correlation in imperfect-information games. In the

future, it would be interesting to further expand the class of games for which the set of correlated

strategies can be characterized (and optimized over) efficiently, and further push the scalability of

existing methods.

The special combinatorial structure of the polytope of correlated strategies has also enabled

us to develop the first learning algorithms for optimal correlated solution concepts and TMECor

strategies. These techniques are the current practical state of the art. As of now, these learning

algorithms require that correlating players update their strategies in a rather coupled manner. By

shedding even more light on the structure of correlation, it would be interesting to understand

whether this requirement could be somehow relaxed.

Finally, in the last part of the dissertation we focused on learning and equilibrium computation

in the presence of imperfect players. As we argued in Chapter 14, it is important to train artificial

intelligence by taking into account a model of human play, while at the same time avoiding the

inherent strategic weaknesses and potential for manipulation of imitation learning. This area

of the literature seems to still be in its infancy, both in terms of solution concepts and scalable

computational techniques for computing those concepts. In Chapters 12 and 13 we focused on

trembling-hand refinements in two-player games, standard refinements of the Nash equilibrium

that provably avoid sequentially-irrational behavior and that are therefore more robust to mistakes

[14.c]
For example, can variance reduction methods, such as those of Carmon, Y. Jin, Sidford, and Tian (2019) for normal-form

games, be meaningfully extended to imperfect-information extensive-form games?

§14. QUANTAL RESPONSE AND REGULARIZATION TOWARDS HUMAN PLAY 307

of the players. These solution concepts had remained a theoretical technique, and before the work

in this dissertation, it was an open question how to compute them. After settling the recognized

open problem of the complexity of computing extensive-form perfect equilibria in Chapter 12, in

Chapter 13 we gave the first practical algorithm for computing exact trembling-hand equilibrium

refinements in real (non-synthetic) games with up to half a billion terminal nodes. These games

are 4-5 orders of magnitude larger than what could be handled with prior techniques. Using our

results, it would be interesting to assess empirically trembling-hand refinements deliver on their

theoretical promises, for example, by evaluating the performance of artificial intelligence trained

to converge to refinements against humans, and comparing with prior techniques for unrefined

equilibria.

In addition to the above questions, furthering our understanding of the computational aspects

of equilibrium computation and learning in other classes of structured games, beyond imperfect-

information extensive-form games, is a natural and important direction of research. For example,

some strategic interactions might be better conceptualized as taking place on a DAG or on a generic

directed graph, rather than a tree. In other applications, the specific class of games has such a

strong combinatorial structure that it might be advantageous to resort to different (for example,

factorized) representations of the interaction. This might apply to sequential auctions, security

games, and other games whose action space has a strong combinatorial flavor. More generally, one

could also try to design algorithms that are able to automatically exploit symmetries, structures,

and invariants of the games, constructing an appropriate representation on the fly. Infinite games

might also be considered. These could arise from reasoning about infinite repetitions of a finite

game, or from continuous action spaces. Orthogonally to these models, fundamental questions

remain regarding what solution concepts are even meaningful in these settings.

With the rapid advancements in machine learning, game theory, and artificial intelligence,

we have the potential to create systems that can make strategic, sound, intentional, optimal

decisions in ways and at scales that were once thought impossible. I have no doubt that as we

continue to rely more and more on technology and artificial intelligence in our daily lives, these

systems will help us make better and more efficient decisions. In fact, systems developed using

technology covered in this dissertation are already able, today, to make strategic decisions that

are often superior to human ones in certain settings (including some involving natural language

and cooperation, such as Diplomacy). It is my hope that the work presented in this dissertation

will inspire others to continue pushing the boundaries of what is possible. As we move forward, I

am eager to be a part of the ongoing effort to develop machines that can make strategic decisions,

with both old and new colleagues, and to explore the many exciting open questions that lie ahead.

308 §14.4. EXPERIMENTAL EVALUATION IN NO-PRESS DIPLOMACY

Bibliography

Abe, Kenshi, Mitsuki Sakamoto, and Atsushi Iwasaki (2022). “Mutation-driven follow the

regularized leader for last-iterate convergence in zero-sum games”. In: Proceedings of the
Conference on Uncertainty in Artificial Intelligence (UAI).

Abernethy, Jacob and Alexander Rakhlin (2009). Beating the Adaptive Bandit with High Probability.

Tech. rep. UCB/EECS-2009-10. EECS Department, University of California, Berkeley. url:

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-10.html.

Anagnostides, Ioannis, Constantinos Daskalakis, Gabriele Farina, Maxwell Fishelson, Noah

Golowich, and Tuomas Sandholm (2022). “Near-Optimal No-Regret Learning for Correlated

Equilibria in Multi-Player General-Sum Games”. In: Proceedings of the Annual Symposium on
Theory of Computing (STOC).

Anagnostides, Ioannis, Gabriele Farina, Christian Kroer, Andrea Celli, and Tuomas Sandholm

(2022). “Faster No-Regret Learning Dynamics for Extensive-Form Correlated and Coarse

Correlated Equilibrium”. In: Proceedings of the ACM Conference on Economics and Computation
(EC).

Anagnostides, Ioannis, Gabriele Farina, Christian Kroer, Chung-Wei Lee, Haipeng Luo, and

Tuomas Sandholm (2022). “Uncoupled Learning Dynamics with O(log T) Swap Regret in

Multiplayer Games”. In: Proceedings of the Annual Conference on Neural Information Processing
Systems (NeurIPS).

Anagnostides, Ioannis, Gabriele Farina, and Tuomas Sandholm (2023). “Near-Optimal Φ-Regret

Learning in Extensive-Form Games”. In: Proceedings of the International Conference on Machine
Learning (ICML).

Anagnostides, Ioannis, Ioannis Panageas, Gabriele Farina, and Tuomas Sandholm (2022). “On Last-

Iterate Convergence Beyond Zero-Sum Games”. In: Proceedings of the International Conference
on Machine Learning (ICML).

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-10.html

310 BIBLIOGRAPHY

Anthony, Thomas, Tom Eccles, Andrea Tacchetti, János Kramár, Ian Gemp, Thomas Hudson,

Nicolas Porcel, Marc Lanctot, Julien Perolat, Richard Everett, Satinder Singh, Thore Graepel,

and Yoram Bachrach (2020). “Learning to Play No-Press Diplomacy with Best Response Policy

Iteration”. In: Proceedings of the Annual Conference on Neural Information Processing Systems
(NeurIPS).

Audibert, Jean-Yves, Sébastien Bubeck, and Gábor Lugosi (2014). “Regret in online combinatorial

optimization”. In: Mathematics of Operations Research 39.1, pp. 31–45.

Azizian, Waiss, Franck Iutzeler, Jérôme Malick, and Panayotis Mertikopoulos (2021). “The Last-

Iterate Convergence Rate of Optimistic Mirror Descent in Stochastic Variational Inequalities”.

In: Proceedings of the Conference on Learning Theory (COLT).

Babichenko, Yakov and Aviad Rubinstein (2022). “Communication complexity of approximate

Nash equilibria”. In: Games Econ. Behav. 134, pp. 376–398.

Bai, Yu, Chi Jin, Song Mei, Ziang Song, and Tiancheng Yu (2022). In: Proceedings of the Annual
Conference on Neural Information Processing Systems (NeurIPS).

Bakhtin, Anton, Noam Brown, Emily Dinan, Gabriele Farina, Colin Flaherty, Daniel Fried,

Andrew Goff, Jonathan Gray, Hengyuan Hu, Athul Paul Jacob, Mojtaba Komeili, Karthik

Konath, Minae Kwon, Adam Lerer, Mike Lewis, Alexander H. Miller, Sasha Mitts, Adithya

Renduchintala, Stephen Roller, Dirk Rowe, Weiyan Shi, Joe Spisak, Alexander Wei, David

Wu, Hugh Zhang, and Markus Zĳlstra (2022). “Human-level play in the game of Diplomacy

by combining language models with strategic reasoning”. In: Science 378.6624. url: https:
//www.science.org/doi/pdf/10.1126/science.ade9097.

Bakhtin, Anton, David Wu, Adam Lerer, and Noam Brown (2021). “No-Press Diplomacy from

Scratch”. In: Proceedings of the Annual Conference on Neural Information Processing Systems
(NeurIPS).

Bakhtin, Anton, David J Wu, Adam Lerer, Jonathan Gray, Athul Paul Jacob, Gabriele Farina,

Alexander H Miller, and Noam Brown (2023). “Mastering the Game of No-Press Diplomacy via

Human-Regularized Reinforcement Learning and Planning”. In: Proceedings of the International
Conference on Learning Representations (ICLR).

Basilico, Nicola, Andrea Celli, Giuseppe De Nittis, and Nicola Gatti (2017). “Team-maxmin

equilibrium: efficiency bounds and algorithms”. In: Proceedings of the AAAI Conference on
Artificial Intelligence (AAAI).

Beck, Amir and Marc Teboulle (2003). “Mirror descent and nonlinear projected subgradient

methods for convex optimization”. In: Operations Research Letters 31.3, pp. 167–175.

https://www.science.org/doi/pdf/10.1126/science.ade9097
https://www.science.org/doi/pdf/10.1126/science.ade9097

BIBLIOGRAPHY 311

Ben-Tal, Aharon and Arkadi Nemirovski (2005). “Non-Euclidean restricted memory level method

for large-scale convex optimization”. In: Mathematical Programming 102.3, pp. 407–456.

Ben-Tal, Ahron and Arkadi Nemirovski (2001). Lectures on modern convex optimization: analysis,
algorithms, and engineering applications. Vol. 2. Siam.

Bošanskỳ, B, Christopher Kiekintveld, V Lisý, and Michal Pěchouček (2014). “An Exact Double-

Oracle Algorithm for Zero-Sum Extensive-Form Games with Imperfect Information”. In:

Journal of Artificial Intelligence Research, pp. 829–866.

Bošanskỳ, Branislav and Jiři Čermák (2015). “Sequence-form algorithm for computing Stackelberg

equilibria in extensive-form games”. In: Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI).

Bowling, Michael, Neil Burch, Michael Johanson, and Oskari Tammelin (2015). “Heads-up Limit

Hold’em Poker is Solved”. In: Science 347.6218.

Boyd, Stephen and Lieven Vandenberghe (2004). Convex Optimization. Cambridge University

Press.

Brown, Noam, Christian Kroer, and Tuomas Sandholm (2017). “Dynamic Thresholding and

Pruning for Regret Minimization”. In: Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI).

Brown, Noam and Tuomas Sandholm (2014). “Regret Transfer and Parameter Optimization”. In:

Proceedings of the AAAI Conference on Artificial Intelligence (AAAI).

Brown, Noam and Tuomas Sandholm (2015). “Regret-Based Pruning in Extensive-Form Games”.

In: Proceedings of the Annual Conference on Neural Information Processing Systems (NIPS).

Brown, Noam and Tuomas Sandholm (2017a). “Reduced Space and Faster Convergence in

Imperfect-Information Games via Pruning”. In: Proceedings of the International Conference on
Machine Learning (ICML).

Brown, Noam and Tuomas Sandholm (2017b). “Safe and nested subgame solving for imperfect-

information games”. In: Proceedings of the Annual Conference on Neural Information Processing
Systems (NIPS).

Brown, Noam and Tuomas Sandholm (2017c). “Superhuman AI for heads-up no-limit poker:

Libratus beats top professionals”. In: Science 359, pp. 418–424.

Brown, Noam and Tuomas Sandholm (2019). “Solving imperfect-information games via discounted

regret minimization”. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI).

312 BIBLIOGRAPHY

Burch, Neil, Michael Johanson, and Michael Bowling (2014). “Solving Imperfect Information

Games Using Decomposition”. In: Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI).

Cai, Yang, Argyris Oikonomou, and Weiqiang Zheng (2022). “Tight Last-Iterate Convergence

of the Extragradient Method for Constrained Monotone Variational Inequalities”. In: CoRR
abs/2204.09228.

Carminati, Luca, Federico Cacciamani, Marco Ciccone, and Nicola Gatti (2022). “Public Informa-

tion Representation for Adversarial Team Games”. In: Proceedings of the International Conference
on Machine Learning (ICML).

Carmon, Yair, Yujia Jin, Aaron Sidford, and Kevin Tian (2019). “Variance reduction for matrix

games”. In: Proceedings of the Annual Conference on Neural Information Processing Systems
(NeurIPS).

Celli, Andrea and Nicola Gatti (2018). “Computational Results for Extensive-Form Adversarial

Team Games”. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI).

Celli, Andrea, Alberto Marchesi, Gabriele Farina, and Nicola Gatti (2020). “No-Regret Learning

Dynamics for Extensive-Form Correlated Equilibrium”. In: Proceedings of the Annual Conference
on Neural Information Processing Systems (NeurIPS).

Cesa-Bianchi, Nicolo and Gábor Lugosi (2012). “Combinatorial bandits”. In: Journal of Computer
and System Sciences 78.5, pp. 1404–1422.

Chen, Xi, Xiaotie Deng, and Shang-Hua Teng (2009). “Settling the Complexity of Computing

Two-Player Nash Equilibria”. In: Journal of the ACM.

Chen, Xi and Binghui Peng (2020). “Hedging in games: Faster convergence of external and

swap regrets”. In: Proceedings of the Annual Conference on Neural Information Processing Systems
(NeurIPS).

Chiang, Chao-Kai, Tianbao Yang, Chia-Jung Lee, Mehrdad Mahdavi, Chi-Jen Lu, Rong Jin, and

Shenghuo Zhu (2012). “Online optimization with gradual variations”. In: Proceedings of the
Conference on Learning Theory (COLT).

Chu, Francis and Joseph Halpern (2001). “On the NP-completeness of finding an optimal strategy

in games with common payoffs”. In: International Journal of Game Theory.

Cococcioni, Marco, Massimo Pappalardo, and Yaroslav D. Sergeyev (2018). “Lexicographic

multi-objective linear programming using grossone methodology: Theory and algorithm”. In:

Applied Mathematics and Computation 318, pp. 298–311.

BIBLIOGRAPHY 313

Condat, Laurent (2016). “Fast projection onto the simplex and the ℓ1 ball”. In: Mathematical
Programming 158.1, pp. 575–585.

Conitzer, Vincent and Tuomas Sandholm (2008). “New Complexity Results about Nash Equilibria”.

In: Games and Economic Behavior 63.2. Early version in ĲCAI-03, pp. 621–641.

Coulom, Rémi (2005). BayesElo. Software. url: https://www.remi- coulom.fr/Bayesian-
Elo/#theory.

Dantzig, George B and Mukund N Thapa (2006). Linear programming 2: theory and extensions.
Springer Science & Business Media.

Daskalakis, Constantinos, Alan Deckelbaum, and Anthony Kim (2011). “Near-optimal no-regret

algorithms for zero-sum games”. In: Proceedings of the Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA).

Daskalakis, Constantinos, Maxwell Fishelson, and Noah Golowich (2021). “Near-Optimal No-

Regret Learning in General Games”. In: CoRR abs/2108.06924.

Daskalakis, Constantinos, Paul W. Goldberg, and Christos H. Papadimitriou (2009). “The Com-

plexity of Computing a Nash Equilibrium”. In: Commun. ACM 52.2, pp. 89–97.

Daskalakis, Constantinos and Noah Golowich (2022). “Fast rates for nonparametric online learning:

from realizability to learning in games”. In: Proceedings of the Annual Symposium on Theory of
Computing (STOC).

Daskalakis, Constantinos and Ioannis Panageas (2019). “Last-Iterate Convergence: Zero-Sum

Games and Constrained Min-Max Optimization”. In: 10th Innovations in Theoretical Computer
Science Conference, ITCS 2019.

Dudik, Miroslav and Geoffrey J Gordon (2009). “A sampling-based approach to computing

equilibria in succinct extensive-form games”. In: Proceedings of the Conference on Uncertainty in
Artificial Intelligence (UAI).

Farina, Gabriele, Tommaso Bianchi, and Tuomas Sandholm (2020). “Coarse Correlation in

Extensive-Form Games”. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI).

Farina, Gabriele, Andrea Celli, Nicola Gatti, and Tuomas Sandholm (2018). “Ex Ante Coordination

and Collusion in Zero-Sum Multi-Player Extensive-Form Games”. In: Proceedings of the Annual
Conference on Neural Information Processing Systems (NeurIPS).

Farina, Gabriele, Andrea Celli, Nicola Gatti, and Tuomas Sandholm (2021). “Connecting Optimal

Ex-Ante Collusion in Teams to Extensive-Form Correlation: Faster Algorithms and Positive

Complexity Results”. In: Proceedings of the International Conference on Machine Learning (ICML).

https://www.remi-coulom.fr/Bayesian-Elo/#theory
https://www.remi-coulom.fr/Bayesian-Elo/#theory

314 BIBLIOGRAPHY

Farina, Gabriele, Andrea Celli, Alberto Marchesi, and Nicola Gatti (2022). “Simple Uncoupled

No-regret Learning Dynamics for Extensive-form Correlated Equilibrium”. In: Journal of the
ACM 69.6. url: https://dl.acm.org/doi/10.1145/3563772.

Farina, Gabriele and Nicola Gatti (2017). “Extensive-Form Perfect Equilibrium Computation in

Two-Player Games”. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI).

Farina, Gabriele, Nicola Gatti, and Tuomas Sandholm (2018). “Practical Exact Algorithm for

Trembling-Hand Equilibrium Refinements in Games”. In: Proceedings of the Annual Conference
on Neural Information Processing Systems (NeurIPS).

Farina, Gabriele, Christian Kroer, and Tuomas Sandholm (2017). “Regret Minimization in

Behaviorally-Constrained Zero-Sum Games”. In: Proceedings of the International Conference on
Machine Learning (ICML).

Farina, Gabriele, Christian Kroer, and Tuomas Sandholm (2019a). “Online Convex Optimization

for Sequential Decision Processes and Extensive-Form Games”. In: Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI).

Farina, Gabriele, Christian Kroer, and Tuomas Sandholm (2019b). “Optimistic Regret Minimization

for Extensive-Form Games via Dilated Distance-Generating Functions”. In: Proceedings of the
Annual Conference on Neural Information Processing Systems (NeurIPS).

Farina, Gabriele, Christian Kroer, and Tuomas Sandholm (2019c). “Regret Circuits: Composability

of Regret Minimizers”. In: Proceedings of the International Conference on Machine Learning (ICML).

Farina, Gabriele, Christian Kroer, and Tuomas Sandholm (2021a). “Better Regularization for

Sequential Decision Spaces: Fast Convergence Rates for Nash, Correlated, and Team Equilibria”.

In: ACM Conference on Economics and Computation.

Farina, Gabriele, Christian Kroer, and Tuomas Sandholm (2021b). “Faster Game Solving via

Predictive Blackwell Approachability: Connecting Regret Matching and Mirror Descent”. In:

Proceedings of the AAAI Conference on Artificial Intelligence (AAAI).

Farina, Gabriele, Chung-Wei Lee, Haipeng Luo, and Christian Kroer (2022). “Kernelized Multiplica-

tive Weights for 0/1-Polyhedral Games: Bridging the Gap Between Learning in Extensive-Form

and Normal-Form Games”. In: Proceedings of the International Conference on Machine Learning
(ICML).

Farina, Gabriele, Chun Kai Ling, Fei Fang, and Tuomas Sandholm (2019a). “Correlation in

Extensive-Form Games: Saddle-Point Formulation and Benchmarks”. In: Proceedings of the
Annual Conference on Neural Information Processing Systems (NeurIPS).

https://dl.acm.org/doi/10.1145/3563772

BIBLIOGRAPHY 315

Farina, Gabriele, Chun Kai Ling, Fei Fang, and Tuomas Sandholm (2019b). “Efficient Regret

Minimization Algorithm for Extensive-Form Correlated Equilibrium”. In: Proceedings of the
Annual Conference on Neural Information Processing Systems (NeurIPS).

Farina, Gabriele and Tuomas Sandholm (2020). “Polynomial-Time Computation of Optimal

Correlated Equilibria in Two-Player Extensive-Form Games with Public Chance Moves and

Beyond”. In: Proceedings of the Annual Conference on Neural Information Processing Systems
(NeurIPS).

Farina, Gabriele and Tuomas Sandholm (2021a). “Equilibrium Refinement for the Age of Machines:

The One-Sided Quasi-Perfect Equilibrium”. In: Proceedings of the Annual Conference on Neural
Information Processing Systems (NeurIPS).

Farina, Gabriele and Tuomas Sandholm (2021b). “Model-Free Online Learning in Unknown

Sequential Decision Making Problems and Games”. In: Proceedings of the AAAI Conference on
Artificial Intelligence (AAAI).

Farina, Gabriele and Tuomas Sandholm (2022). “Fast Payoff Matrix Sparsification Techniques

for Structured Extensive-Form Games”. In: Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI).

Farina, Gabriele, Robin Schmucker, and Tuomas Sandholm (2021). “Bandit Linear Optimization

for Sequential Decision Making and Extensive-Form Games”. In: Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI).

Fiegel, Côme, Pierre Ménard, Tadashi Kozuno, Rémi Munos, Vianney Perchet, and Michal Valko

(2023). Adapting to game trees in zero-sum imperfect information games. arXiv: 2212.12567.

Foster, Dean and Rakesh Vohra (1997). “Calibrated Learning and Correlated Equilibrium”. In:

Games and Economic Behavior 21, pp. 40–55.

Foster, Dylan J., Zhiyuan Li, Thodoris Lykouris, Karthik Sridharan, and Éva Tardos (2016).

“Learning in Games: Robustness of Fast Convergence”. In: Proceedings of the Annual Conference
on Neural Information Processing Systems (NIPS).

Fousse, Laurent, Guillaume Hanrot, Vincent Lefèvre, Patrick Pélissier, and Paul Zimmermann

(2007). “MPFR: A Multiple-Precision Binary Floating-Point Library with Correct Rounding”.

In: ACM Trans. Math. Softw. 33.2. doi: 10.1145/1236463.1236468.

Ganzfried, Sam and Tuomas Sandholm (2015). “Endgame Solving in Large Imperfect-Information

Games”. In: Proceedings of the International Conference on Autonomous Agents and Multiagent
Systems (AAMAS).

https://arxiv.org/abs/2212.12567
https://doi.org/10.1145/1236463.1236468

316 BIBLIOGRAPHY

Gatti, Nicola, Mario Gilli, and Alberto Marchesi (2020). “A characterization of quasi-perfect

equilibria”. In: Games and Economic Behavior 122, pp. 240–255.

Gilboa, Itzhak and Eitan Zemel (1989). “Nash and Correlated Equilibria: Some Complexity

Considerations”. In: Games and Economic Behavior 1, pp. 80–93.

Gilpin, Andrew (2009). “Algorithms for abstracting and solving imperfect information games”.

PhD thesis. Computer Science Department, Carnegie Mellon University.

Gilpin, Andrew, Javier Peña, and Tuomas Sandholm (2012). “First-Order Algorithm withO(ln(1/ϵ))
Convergence for ϵ-Equilibrium in Two-Person Zero-Sum Games”. In: Mathematical Programming
133.1–2. Conference version appeared in AAAI-08, pp. 279–298.

Golowich, Noah, Sarath Pattathil, and Constantinos Daskalakis (2020). “Tight last-iterate conver-

gence rates for no-regret learning in multi-player games”. In: Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS
2020.

Gorbunov, Eduard, Hugo Berard, Gauthier Gidel, and Nicolas Loizou (2022). “Stochastic Ex-

tragradient: General Analysis and Improved Rates”. In: International Conference on Artificial
Intelligence and Statistics.

Gorbunov, Eduard, Nicolas Loizou, and Gauthier Gidel (2022). “Extragradient Method: O(1/K)
Last-Iterate Convergence for Monotone Variational Inequalities and Connections With Cocoer-

civity”. In: International Conference on Artificial Intelligence and Statistics.

Gordon, Geoffrey J, Amy Greenwald, and Casey Marks (2008). “No-regret learning in convex

games”. In: Proceedings of the International Conference on Machine Learning (ICML), pp. 360–367.

Granlund, Torbjörn and the GMP development team (2012). GNU MP: The GNU Multiple Precision
Arithmetic Library. 5.0.5. http://gmplib.org/.

Grant, Michael, Stephen Boyd, and Yinyu Ye (2006). “Disciplined convex programming”. In:

Global optimization. Springer, pp. 155–210.

Gray, Jonathan, Adam Lerer, Anton Bakhtin, and Noam Brown (2020). “Human-Level Performance

in No-Press Diplomacy via Equilibrium Search”. In: Proceedings of the International Conference
on Learning Representations (ICLR).

Greenwald, Amy and Amir Jafari (2003). “A General Class of No-Regret Learning Algorithms

and Game-Theoretic Equilibria”. In: Proceedings of the Conference on Learning Theory (COLT).

Hart, Sergiu and Yishay Mansour (2010). “How long to equilibrium? The communication

complexity of uncoupled equilibrium procedures”. In: Games Econ. Behav. 69.1, pp. 107–126.

http://gmplib.org/

BIBLIOGRAPHY 317

Hart, Sergiu and Andreu Mas-Colell (2000). “A Simple Adaptive Procedure Leading to Correlated

Equilibrium”. In: Econometrica 68, pp. 1127–1150.

Hart, Sergiu and Andreu Mas-Colell (2003). “Uncoupled dynamics do not lead to Nash equilib-

rium”. In: American Economic Review 93, pp. 1830–1836.

Held, Michael, Philip Wolfe, and Harlan P Crowder (1974). “Validation of subgradient optimiza-

tion”. In: Mathematical programming 6.1, pp. 62–88.

Hirsch, Michael D., Christos H. Papadimitriou, and Stephen A. Vavasis (1989). “Exponential lower

bounds for finding Brouwer fix points”. In: J. Complex. 5.4, pp. 379–416.

Hoda, Samid, Andrew Gilpin, Javier Peña, and Tuomas Sandholm (2010). “Smoothing Techniques

for Computing Nash Equilibria of Sequential Games”. In: Mathematics of Operations Research
35.2.

Hsieh, Yu-Guan, Kimon Antonakopoulos, and Panayotis Mertikopoulos (2021). “Adaptive Learn-

ing in Continuous Games: Optimal Regret Bounds and Convergence to Nash Equilibrium”.

In: Proceedings of the Conference on Learning Theory (COLT).

Hu, Hengyuan, Adam Lerer, Brandon Cui, Luis Pineda, David Wu, Noam Brown, and Jakob

Foerster (2021). “Off-Belief Learning”. In: Proceedings of the International Conference on Machine
Learning (ICML).

Hu, Hengyuan, Adam Lerer, Alexander Peysakhovich, and Jakob Foerster (2020). ““Other-Play”

for Zero-Shot Coordination”. In: Proceedings of the International Conference on Machine Learning
(ICML).

Hunter, David R. (2004). “MM algorithms for generalized Bradley-Terry models.” In: The annals of
statistics 32, pp. 384–406.

Isermann, H. (1982). “Linear lexicographic optimization”. In: Operations-Research-Spektrum 4.4,

pp. 223–228.

Jacob, Athul Paul, David J. Wu, Gabriele Farina, Adam Lerer, Hengyuan Hu, Anton Bakhtin,

Jacob Andreas, and Noam Brown (2022). “Modeling Strong and Human-Like Gameplay with

KL-Regularized Search”. In: Proceedings of the International Conference on Machine Learning
(ICML).

Jaggi, Martin (2013). “Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization”. In:

Proceedings of the International Conference on Machine Learning (ICML).

Karmarkar, Narendra (1984). “A new polynomial-time algorithm for linear programming”. In:

Proceedings of the Annual Symposium on Theory of Computing (STOC), pp. 302–311.

318 BIBLIOGRAPHY

Koller, Daphne, Nimrod Megiddo, and Bernhard von Stengel (1996). “Efficient Computation of

Equilibria for Extensive Two-Person Games”. In: Games and Economic Behavior 14.2.

Koo, Terry, Amir Globerson, Xavier Carreras Pérez, and Michael Collins (2007). “Structured

prediction models via the matrix-tree theorem”. In: Joint Conference on Empirical Methods in
Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL),
pp. 141–150.

Kozuno, Tadashi, Pierre Ménard, Rémi Munos, and Michal Valko (2021). “Model-Free Learning for

Two-Player Zero-Sum Partially Observable Markov Games with Perfect Recall”. In: Proceedings
of the Annual Conference on Neural Information Processing Systems (NeurIPS).

Kreps, David M. and Robert Wilson (1982). “Sequential Equilibria”. In: Econometrica 50.4, pp. 863–

894.

Kroer, Christian, Gabriele Farina, and Tuomas Sandholm (2017). “Smoothing Method for Approx-

imate Extensive-Form Perfect Equilibrium”. In: Proceedings of the International Joint Conference
on Artificial Intelligence (ĲCAI).

Kroer, Christian, Gabriele Farina, and Tuomas Sandholm (2018a). “Robust Stackelberg Equilibria

in Extensive-Form Games and Extension to Limited Lookahead”. In: Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI).

Kroer, Christian, Gabriele Farina, and Tuomas Sandholm (2018b). “Solving Large Sequential

Games with the Excessive Gap Technique”. In: Proceedings of the Annual Conference on Neural
Information Processing Systems (NeurIPS).

Kroer, Christian, Kevin Waugh, Fatma Kılınç-Karzan, and Tuomas Sandholm (2020). “Faster algo-

rithms for extensive-form game solving via improved smoothing functions”. In: Mathematical
Programming.

Kuhn, H. W. (1950). “A Simplified Two-Person Poker”. In: Contributions to the Theory of Games.
Vol. 1. Annals of Mathematics Studies, 24. Princeton University Press, pp. 97–103.

Kuhn, H. W. (1953). “Extensive Games and the Problem of Information”. In: Contributions to
the Theory of Games. Vol. 2. Annals of Mathematics Studies, 28. Princeton University Press,

pp. 193–216.

Lanctot, Marc, Kevin Waugh, Martin Zinkevich, and Michael Bowling (2009). “Monte Carlo

Sampling for Regret Minimization in Extensive Games”. In: Proceedings of the Annual Conference
on Neural Information Processing Systems (NIPS).

Lee, Chung-Wei, Christian Kroer, and Haipeng Luo (2021). “Last-iterate convergence in extensive-

form games”. In: Advances in Neural Information Processing Systems 34.

BIBLIOGRAPHY 319

Lemke, Carlton E. (1970). “Recent results on complementarity problems”. In: Nonlinear program-
ming, pp. 349–384.

Lerer, Adam and Alexander Peysakhovich (2019). “Learning Existing Social Conventions via

Observationally Augmented Self-Play”. In: Proceedings of the AAAI/ACM Conference on AI,
Ethics, and Society (AIES).

Lin, Tianyi, Zhengyuan Zhou, Panayotis Mertikopoulos, and Michael I. Jordan (2020). “Finite-Time

Last-Iterate Convergence for Multi-Agent Learning in Games”. In: Proceedings of the International
Conference on Machine Learning (ICML).

Ling, Chun Kai, Fei Fang, and J. Zico Kolter (2018). “What game are we playing? End-to-end

learning in normal and extensive form games”. In: Proceedings of the International Joint Conference
on Artificial Intelligence (ĲCAI).

Lisỳ, Viliam, Marc Lanctot, and Michael Bowling (2015). “Online Monte Carlo counterfactual regret

minimization for search in imperfect information games”. In: Proceedings of the International
Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 27–36.

Liu, Deyi, Volkan Cevher, and Quoc Tran-Dinh (2020). “A Newton Frank-Wolfe Method for

Constrained Self-Concordant Minimization”. In: CoRR abs/2002.07003.

McAleer, Stephen, Gabriele Farina, Marc Lanctot, and Tuomas Sandholm (2023). “ESCHER:

Eschewing Importance Sampling in Games by Computing a History Value Function to

Estimate Regret”. In: Proceedings of the International Conference on Learning Representations
(ICLR).

McKelvey, Richard D. and Thomas R. Palfrey (1995). “Quantal Response Equilibria for Normal

Form Games”. In: Games and Economic Behavior 10.1.

McMahan, Brendan, Geoffrey Gordon, and Avrim Blum (2003). “Planning in the Presence of

Cost Functions Controlled by an Adversary”. In: Proceedings of the International Conference on
Machine Learning (ICML), pp. 536–543.

Megiddo, Nimrod (1991). “On finding primal-and dual-optimal bases”. In: ORSA Journal on
Computing 3.1, pp. 63–65.

Milionis, Jason, Christos H. Papadimitriou, Georgios Piliouras, and Kelly Spendlove (2022). “Nash,

Conley, and Computation: Impossibility and Incompleteness in Game Dynamics”. In: CoRR
abs/2203.14129.

Miltersen, Peter Bro and Troels Bjerre Sørensen (2006). “Computing Proper Equilibria of Zero-Sum

Games”. In: Computers and Games.

320 BIBLIOGRAPHY

Miltersen, Peter Bro and Troels Bjerre Sørensen (2010). “Computing a Quasi-Perfect Equilibrium

of a Two-Player Game”. In: Economic Theory 42.1.

Moravcik, Matej, Martin Schmid, Karel Ha, Milan Hladik, and Stephen Gaukrodger (2016).

“Refining Subgames in Large Imperfect Information Games”. In: Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI).

Moravčík, Matej, Martin Schmid, Neil Burch, Viliam Lisý, Dustin Morrill, Nolan Bard, Trevor

Davis, Kevin Waugh, Michael Johanson, and Michael Bowling (2017). “DeepStack: Expert-level

artificial intelligence in heads-up no-limit poker”. In: Science.

Morrill, Dustin, Ryan D’Orazio, Marc Lanctot, James R Wright, Michael Bowling, and Amy R

Greenwald (2021). “Efficient Deviation Types and Learning for Hindsight Rationality in

Extensive-Form Games”. In: Proceedings of the International Conference on Machine Learning
(ICML).

Morrill, Dustin, Ryan D’Orazio, Reca Sarfati, Marc Lanctot, James Wright, Amy Greenwald,

and Michael Bowling (2020). “Hindsight and Sequential Rationality of Correlated Play”. In:

Proceedings of the AAAI Conference on Artificial Intelligence (AAAI).

Myerson, Roger B. (1978). “Refinements of the Nash equilibrium concept”. In: International Journal
of Game Theory 15, pp. 133–154.

Nair, Ashvin, Murtaza Dalal, Abhishek Gupta, and Sergey Levine (2021). “AWAC: Accelerating

online reinforcement learning with offline datasets”. In: Proceedings of the International Conference
on Learning Representations (ICLR).

Nair, Ashvin, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel (2018).

“Overcoming exploration in reinforcement learning with demonstrations”. In: IEEE international
conference on robotics and automation (ICRA).

Nash, John (1950). “Equilibrium points in N-person games”. In: Proceedings of the National Academy
of Sciences 36, pp. 48–49.

Nayyar, Ashutosh, Aditya Mahajan, and Demosthenis Teneketzis (2013). “Decentralized stochastic

control with partial history sharing: A common information approach”. In: IEEE Transactions
on Automatic Control 58.7, pp. 1644–1658.

Nemirovski, Arkadi (2004). “Prox-method with rate of convergence O(1/t) for variational inequal-

ities with Lipschitz continuous monotone operators and smooth convex-concave saddle point

problems”. In: SIAM Journal on Optimization 15.1.

Nesterov, Yurii (2005a). “Excessive Gap Technique in Nonsmooth Convex Minimization”. In:

SIAM Journal of Optimization 16.1.

BIBLIOGRAPHY 321

Nesterov, Yurii (2005b). “Smooth Minimization of Non-Smooth Functions”. In: Mathematical
Programming. A 103.

Paige, C.C., George P.H. Styan, and Peter G. Wachter (1975). “Computation of the stationary

distribution of a markov chain”. In: Journal of Statistical Computation and Simulation 4.3, pp. 173–

186.

Paquette, Philip, Yuchen Lu, Seton Steven Bocco, Max Smith, O-G Satya, Jonathan K Kummerfeld,

Joelle Pineau, Satinder Singh, and Aaron C Courville (2019). “No-press diplomacy: Modeling

multi-agent gameplay”. In: Proceedings of the Annual Conference on Neural Information Processing
Systems (NeurIPS).

Perolat, Julien, Remi Munos, Jean-Baptiste Lespiau, Shayegan Omidshafiei, Mark Rowland, Pedro

Ortega, Neil Burch, Thomas Anthony, David Balduzzi, Bart De Vylder, et al. (2021). “From

Poincaré Recurrence to Convergence in Imperfect Information Games: Finding Equilibrium

via Regularization”. In: Proceedings of the International Conference on Machine Learning (ICML).

Piliouras, Georgios, Ryann Sim, and Stratis Skoulakis (2021). “Optimal No-Regret Learning in

General Games: Bounded Regret with Unbounded Step-Sizes via Clairvoyant MWU”. In:

arXiv preprint arXiv:2111.14737.

Piliouras, Georgios, Ryann Sim, and Stratis Skoulakis (2022). “Beyond Time-Average Convergence:

Near-Optimal Uncoupled Online Learning via Clairvoyant Multiplicative Weights Update”.

In: Proceedings of the Annual Conference on Neural Information Processing Systems (NeurIPS).

Rakhlin, Alexander and Karthik Sridharan (2013). “Online Learning with Predictable Sequences”.

In: Proceedings of the Conference on Learning Theory (COLT).

Rakhlin, Sasha and Karthik Sridharan (2013). “Optimization, learning, and games with predictable

sequences”. In: Proceedings of the Annual Conference on Neural Information Processing Systems
(NIPS).

Romanovskii, I. (1962). “Reduction of a Game with Complete Memory to a Matrix Game”. In:

Soviet Mathematics 3.

Ross, Sheldon M (1971). “Goofspiel—the game of pure strategy”. In: Journal of Applied Probability
8.3, pp. 621–625.

Roughgarden, Tim and Omri Weinstein (2016). “On the Communication Complexity of Approxi-

mate Fixed Points”. In: 2016 IEEE 57th Annual Symposium on Foundations of Computer Science
(FOCS), pp. 229–238.

Selten, Reinhard (1975). “Reexamination of the perfectness concept for equilibrium points in

extensive games”. In: International Journal of Game Theory.

322 BIBLIOGRAPHY

Shalev-Shwartz, Shai (2012). “Online Learning and Online Convex Optimization”. In: Foundations
and Trends in Machine Learning 4.2.

Shalev-Shwartz, Shai and Yoram Singer (2007). “A primal-dual perspective of online learning

algorithms”. In: Machine Learning 69.2-3, pp. 115–142.

Siegel, Noah Y, Jost Tobias Springenberg, Felix Berkenkamp, Abbas Abdolmaleki, Michael Neunert,

Thomas Lampe, Roland Hafner, Nicolas Heess, and Martin Riedmiller (2020). “Keep doing

what worked: Behavioral modelling priors for offline reinforcement learning”. In: Proceedings
of the International Conference on Learning Representations (ICLR).

Silver, David, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur

Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. (2018). “A general

reinforcement learning algorithm that masters chess, shogi, and Go through self-play”. In:

Science 362.6419, pp. 1140–1144.

Sion, Maurice (1958). “On general minimax theorems.” In: Pacific J. Math. 8.4, pp. 171–176.

Sokota, Samuel, Ryan D’Orazio, J. Zico Kolter, Nicolas Loizou, Marc Lanctot, Ioannis Mitliagkas,

Noam Brown, and Christian Kroer (2023). “A unified approach to reinforcement learning,

quantal response equilibria, and two-player zero-sum games”. In: Proceedings of the International
Conference on Learning Representations (ICLR).

Sokota, Samuel, Edward Lockhart, Finbarr Timbers, Elnaz Davoodi, Ryan D’Orazio, Neil Burch,

Martin Schmid, Michael Bowling, and Marc Lanctot (2021). “Solving Common-Payoff Games

with Approximate Policy Iteration”. In: Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI).

Song, Ziang, Song Mei, and Yu Bai (2022). In: Proceedings of the Annual Conference on Neural
Information Processing Systems (NeurIPS).

Southey, Finnegan, Michael Bowling, Bryce Larson, Carmelo Piccione, Neil Burch, Darse Billings,

and Chris Rayner (2005). “Bayes’ Bluff: Opponent Modelling in Poker”. In: Proceedings of the
Conference on Uncertainty in Artificial Intelligence (UAI).

Stoltz, Gilles and Gábor Lugosi (2007). “Learning correlated equilibria in games with compact

sets of strategies”. In: Games and Economic Behavior 59.1, pp. 187–208.

Strouse, DJ, Kevin McKee, Matt Botvinick, Edward Hughes, and Richard Everett (2021). “Collabo-

rating with humans without human data”. In: Proceedings of the Annual Conference on Neural
Information Processing Systems (NeurIPS).

Syrgkanis, Vasilis, Alekh Agarwal, Haipeng Luo, and Robert E Schapire (2015). “Fast convergence

of regularized learning in games”. In: Advances in Neural Information Processing Systems.

BIBLIOGRAPHY 323

Takimoto, Eĳi and Manfred K Warmuth (2003). “Path kernels and multiplicative updates”. In:

Journal of Machine Learning Research 4, pp. 773–818.

Tammelin, Oskari (2014). Solving large imperfect information games using CFR+. arXiv: 1407.5042.

Tammelin, Oskari, Neil Burch, Michael Johanson, and Michael Bowling (2015). “Solving Heads-up

Limit Texas Hold’em”. In: Proceedings of the International Joint Conference on Artificial Intelligence
(ĲCAI).

Tran-Dinh, Quoc, Anastasios Kyrillidis, and Volkan Cevher (2015). “Composite self-concordant

minimization”. In: Journal of Machine Learning Research 16, pp. 371–416.

van Damme, Eric (1984). “A relation between perfect equilibria in extensive form games and

proper equilibria in normal form games”. In: International Journal of Game Theory.

Vinyals, Oriol, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik,

Junyoung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. (2019).

“Grandmaster level in StarCraft II using multi-agent reinforcement learning”. In: Nature
575.7782.

von Stengel, Bernhard (1996). “Efficient Computation of Behavior Strategies”. In: Games and
Economic Behavior 14.2, pp. 220–246.

von Stengel, Bernhard (2002). “Computing Equilibria for Two-Person Games”. In: Handbook of
game theory. Ed. by Robert Aumann and Sergiu Hart. Vol. 3.

Von Stengel, Bernhard and Françoise Forges (2008). “Extensive-form correlated equilibrium:

Definition and computational complexity”. In: Mathematics of Operations Research 33.4, pp. 1002–

1022.

Von Stengel, Bernhard and Daphne Koller (1997). “Team-maxmin equilibria”. In: Games and
Economic Behavior 21.1-2, pp. 309–321.

Warmuth, Manfred K and Dima Kuzmin (2008). “Randomized online PCA algorithms with regret

bounds that are logarithmic in the dimension”. In: Journal of Machine Learning Research 9.10,

pp. 2287–2320.

Wei, Chen-Yu, Chung-Wei Lee, Mengxiao Zhang, and Haipeng Luo (2021). “Linear Last-iterate

Convergence in Constrained Saddle-point Optimization”. In: Proceedings of the International
Conference on Learning Representations (ICLR).

Zhang, Brian Hu, Gabriele Farina, Ioannis Anagnostides, Federico Cacciamani, Stephen McAleer,

Andreas Haup, Andrea Celli, Nicola Gatti, Vincent Conitzer, and Tuomas Sandholm (2023).

Learning and Steering toward Optimal Equilibria and Mechanisms.

https://arxiv.org/abs/1407.5042

324 BIBLIOGRAPHY

Zhang, Brian Hu, Gabriele Farina, Andrea Celli, and Tuomas Sandholm (2022). “Optimal

Correlated Equilibria in General-Sum Extensive-Form Games: Fixed-Parameter Algorithms,

Hardness, and Two-Sided Column-Generation”. In: Proceedings of the ACM Conference on
Economics and Computation (EC).

Zhang, Brian Hu, Gabriele Farina, and Tuomas Sandholm (2023). “Team Belief DAG Form: A

Concise Representation for Team-Correlated Game-Theoretic Decision Making”. In: Proceedings
of the International Conference on Machine Learning (ICML).

Zhang, Brian Hu and Tuomas Sandholm (2020). “Sparsified Linear Programming for Zero-Sum

Equilibrium Finding”. In: Proceedings of the International Conference on Machine Learning (ICML).

Zhang, Brian Hu and Tuomas Sandholm (2022a). “Team Correlated Equilibria in Zero-Sum

Extensive-Form Games via Tree Decompositions”. In: Proceedings of the AAAI Conference on
Artificial Intelligence (AAAI).

Zhang, Brian Hu and Tuomas Sandholm (2022b). “Team Correlated Equilibria in Zero-Sum

Extensive-Form Games via Tree Decompositions”. In: Proceedings of the AAAI Conference on
Artificial Intelligence (AAAI).

Zhang, Hugh (2022). A Simple Adaptive Procedure Converging to Forgiving Correlated Equilibria. arXiv:

2207.06548.

Zhang, Youzhi, Bo An, and Jakub Černỳ (2021). “Computing Ex Ante Coordinated Team-Maxmin

Equilibria in Zero-Sum Multiplayer Extensive-Form Games”. In: Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI).

Zinkevich, Martin, Michael Bowling, Michael Johanson, and Carmelo Piccione (2007). “Regret

Minimization in Games with Incomplete Information”. In: Proceedings of the Annual Conference
on Neural Information Processing Systems (NIPS).

https://arxiv.org/abs/2207.06548

Appendix A

Description of benchmark games
used in experimental evaluations

In this appendix, we provide a detailed description of the game instances used throughout the

different empirical evaluations in the dissertation. All games are identified with a mnemonic that

identifies the game and parameters. A table summarizing several key dimensions of the games is

available in Appendix A.2.

A.1 Description of game instances

A.1.1 Battleship (B)

The game is a general-sum version of the classic game Battleship, where two players take turns

placing ships of varying sizes and values on two separate grids of size h×w, and then take turns

firing at their opponent. Ships which have been hit at all their tiles are considered destroyed.

The game ends when one player loses all their ships, or after each player has fired r shots. Each

player’s payoff is determined by the sum of the value of the opponent’s destroyed ships minus

γ ⩾ 1 times the number of their own lost ships. We denote by Bphwr an instance with p players

on a grid of size h× w, one unit-size ship for each player, and r rounds.

The Battleship game is known to possess a rich set of correlated solution concepts and were

introduced by Farina, Ling, Fang, and Sandholm (2019a) as a benchmark for extensive-form

correlated equilibrium.

326 §A.1. DESCRIPTION OF GAME INSTANCES

A.1.2 Liar’s dice (D)

This is a standard benchmark game in the game-solving literature (see, e.g., Lisỳ, Lanctot, and

Bowling, 2015). At the start of the game, each of the n players rolls a fair k-sided die privately.

Then, the players take turns making claims about the outcome of their roll. The first player starts

by stating any number from 1 to k and the minimum number of dice they believe are showing

that value among all players. On their turn, each player has the option to make a higher claim

or challenge the previous claim by calling the previous player a “liar”. A claim is higher if

the number rolled is higher or the number of dice showing that number is higher. If a player

challenges the previous claim and the claim is found to be false, the challenger is rewarded +1

and the last bidder receives a penalty of -1. If the claim is true, the last bidder is rewarded +1,

and the challenger receives -1. Game instances are encoded as Dnk .

A.1.3 Goofspiel (G)

This is a standard trick-taking game introduced by Ross (1971). It is an n-player card game,

employing n+ 1 identical decks of k cards each whose values range from 1 to k. At the beginning

of the game, each player gets dealt a full deck as their hand, and the third deck (the “prize” deck)

is shuffled and put face down on the board. In each turn, the topmost card from the prize deck

is revealed. Then, each player privately picks a card from their hand. This card acts as a bid to

win the card that was just revealed from the prize deck. The selected cards are simultaneously

revealed, and the highest one wins the prize card. If the players’ played cards are equal, the prize

card is split. The players’ score are computed as the sum of the values of the prize cards they

have won. Game instances are encoded as Gnk .

A.1.4 Limited-information Goofspiel (GL)

This is a variant of Goofspiel with limited information. In this variation, in each turn the players

do not reveal the cards that they have played. Instead, players show their cards to a neutral

umpire, who then decides the winner of the round by determining which card is the highest.

In the event of a tie, the umpire directs the players to divide the prize equally among the tied

players, similar to the Goofspiel game. Game instances are encoded as GLnk .

A.1.5 Kuhn poker (K)

Three-player Kuhn Poker, an extension of the original two-player version proposed by Kuhn

(1950), is played with n players and r cards. Each player begins by paying one chip to the pot and

receiving a single private card. The first player can check or bet (i.e., putting an additional chip in

the pot). Then, the second player can check or bet after a first player’s check, or fold/call the first

player’s bet. The third player can either check or bet if no previous bet was made, otherwise they

§A. DESCRIPTION OF BENCHMARK GAMES USED IN EXPERIMENTAL EVALUATIONS 327

must fold or call. At the showdown, the player with the highest card who has not folded wins

all the chips in the pot. We encode Kuhn poker instances with the mnemonic Knr , where r is

encoded in hexadecimal (so, for example, K2c is set up with r = 12).

A.1.6 Leduc poker (L)

This is another standard benchmark introduced by Southey, Bowling, Larson, Piccione, Burch,

Billings, and Rayner (2005). In n-player Leduc poker the deck consists of s suits with r cards each.

Our instances are parametric in the maximum number of bets b, which in limit hold’em is not

necessarily tied to the number of players. The maximum number of raise per betting round can

be either 1, 2 or 3. At the beginning of the game, players each contribute one chip to the pot. The

game proceeds with two rounds of betting. In the first round, each player is dealt a private card,

and in the second round, a shared board card is revealed. The minimum raise is set at 2 chips in

the first round and 4 chips in the second round. We denote by Lnbrs an instance with n players,

b bets per round, r ranks, and s suits.

A.1.7 Pursuit-evasion (P)

This is a security-inspired pursuit-evasion game played on the graph shown in Figure A.1. It

is a zero-sum variant of the one used by Kroer, Farina, and Sandholm (2018a), and a similar

search game has been considered by Bošanskỳ, Kiekintveld, Lisý, and Pěchouček (2014) and

Branislav Bošanskỳ and Čermák (2015).

P1 P2

S

5

10

3

Figure A.1: The graph on which the search game is played.

In each turn, the attacker and the defender act simultaneously. The defender controls two

patrols, one per each respective patrol areas labeled P1 and P2. Each patrol can move by one

step along the gray dashed lines, or stay in place. The attacker starts from the leftmost node

(labeled S) and at each turn can move to any node adjacent to its current position by following

the black directed edges. The attacker can also choose to wait in place for a time step in order to

hide all their traces. If a patrol visits a node that was previously visited by the attacker, and the

attacker did not wait to clean up their traces, they will see that the attacker was there. The goal of

the attacker is to reach any of the rightmost nodes, whose corresponding payoffs are 5, 10, or 3,

328 §A.1. DESCRIPTION OF GAME INSTANCES

respectively, as indicated in Figure A.1. If at any time the attacker and any patrol meet at the

same node, the attacker loses the game, which leads to a payoff of −1 for the attacker and of 1 for

the defender. The game times out after m simultaneous moves, in which case both defenders

receive payoffs 0. We encode instances of this game via the mnemonic P2m .

A.1.8 River Endgame (REL)

The river endgame is structured and parameterized as follows. The game is parameterized by the

conditional distribution over hands for each player, current pot size, board state (5 cards dealt to

the board), and a betting abstraction. First, Chance deals out hands to the two players according

to the conditional hand distribution. Then, Libratus has the choice of folding, checking, or betting

by a number of multipliers of the pot size: 0.25x, 0.5x, 1x, 2x, 4x, 8x, and all-in. If Libratus checks

and the other player bets then Libratus has the choice of folding, calling (i.e. matching the bet

and ending the betting), or raising by pot multipliers 0.4x, 0.7x, 1.1x, 2x, and all-in. If Libratus

bets and the other player raises Libratus can fold, call, or raise by 0.4x, 0.7x, 2x, and all-in. Finally,

when facing subsequent raises Libratus can fold, call, or raise by 0.7x and all-in. When faced

with an initial check, the opponent can fold, check, or raise by 0.5x, 0.75x, 1x, and all-in. When

faced with an initial bet the opponent can fold, call, or raise by 0.7x, 1.1x, and all-in. When faced

with subsequent raises the opponent can fold, call, or raise by 0.7x and all-in. The game ends

whenever a player folds (the other player wins all money in the pot), calls (a showdown occurs),

or both players check as their first action of the game (a showdown occurs). In a showdown the

player with the better hands wins the pot. The pot is split in case of a tie. We denote with REL2i
the instances of the river endgame, where i is a unique identifier of the endgame configuration.

A.1.9 Sheriff (S)

This game is a simplified version of the Sheriff of Nottingham board game, which models the

interaction between a Smuggler—who is trying to smuggle illegal items in their cargo—and the

Sheriff—whose goal is stopping the Smuggler. First, the Smuggler has to decide the number

n ∈ {0, . . . , N} of illegal items to load on the cargo. Then, the Sheriff decides whether to inspect

the cargo. If they choose to inspect, and find illegal goods, the Smuggler has to pay p · n to

the Sheriff. Otherwise, the Sheriff has to compensate the Smuggler with a reward of s. If the

Sheriff decides not to inspect the cargo, the Sheriff’s utility is 0, and the Smuggler’s utility is

v · n. After the Smuggler has loaded the cargo, and before the Sheriff decides whether to inspect,

the Smuggler can try to bribe the Sheriff to avoid the inspection. In particular, they engage in r

rounds of bargaining and, for each round i, the Smuggler proposes a bribe bi ∈ {0, . . . , B}, and

the Sheriff accepts or declines it. Only the proposal and response from the final round r are

executed. If the Sheriff accepts a bribe br then they get br, while the Smuggler’s utility is vn− br.
Further details on the game can be found in Farina, Ling, Fang, and Sandholm (2019a). An

§A. DESCRIPTION OF BENCHMARK GAMES USED IN EXPERIMENTAL EVALUATIONS 329

instance SpNBr has p players, N illegal items (encoded in hexadecimal notation), a maximum

bribe of B, and r rounds of bargaining. The other parameters are v = 5, p = 1, s = 1 and they are

fixed across all instances.

A.1.10 Double-dummy bridge endgame (T , TP)

The double-dummy bridge endgame is a benchmark introduced by B. H. Zhang, Farina, Celli,

and Sandholm (2022) which simulates a bridge endgame scenario. The game uses a fixed deck of

playing cards that includes three ranks (2, 3, 4) of each of four suits (spades, hearts, diamonds,

clubs). Spades are designated as the trump suit. There are four players involved: two defenders

sitting across from each other, the dummy, and the declarer. The dummy’s actions will be

controlled by the declarer, so there are only three players actively participating. However, for

clarity, we will refer to all four players throughout this section.

The entire deck of cards is randomly dealt to the four players. We study the version of the

game that has perfect information, meaning that all players’ cards are revealed to everyone,

creating a game in which all information is public (i.e., a double-dummy game). The game is played

in rounds called tricks. The player to the left of the declarer starts the first trick by playing a card.

The suit of this card is known as the lead suit. Going in clockwise order, the other three players

play a card from their hand. Players must play a card of the lead suit if they have one, otherwise,

they can play any card. If a spade is played, the player with the highest spade wins the trick.

Otherwise, the highest card of the lead suit wins the trick. The winner of each trick then leads

the next one. At the end of the game, each player earns as many points as the number of tricks

they won. In this adversarial team game, the two defenders are teammates and play against the

declarer, who controls the dummy.

The specific instance that we use (i.e., TP3) has 3 ranks and perfect information. The dummy’s

hand is fixed as 2♠ 2♥ 3♥.

In the limited deals variant T3[L] , L deals are randomly selected at the beginning of the game,

and it is common knowledge that the true deal is among them. This limits the size of the game

tree, as well as the parameters on which the complexity of our algorithms depend. Note that

L = 9!/(3!)3 = 1680 is the full game.

A.1.11 Ridesharing game (RS)

This benchmark was first introduced by B. H. Zhang, Farina, Celli, and Sandholm (2022), and it

models the interaction between two drivers competing to serve requests on a road network. The

network is defined as an undirected graph GU = (V U, EU), where each vertex v ∈ V U
corresponds

to a ride request to be served. Each request has a reward in ℝ⩾0, and each edge in the network

has some cost. The first driver who arrives at node v ∈ V U
serves the corresponding ride, and

receives the corresponding reward. Once a node has been served, it stays clean until the end of

330 §A.1. DESCRIPTION OF GAME INSTANCES

the game. The game terminates when all nodes have been cleared, or when a timeout is met (i.e.,
there’s a fixed time horizon T). If the two drivers arrive simultaneously on the same vertex they

both get reward 0. The final utility of each driver is computed as the sum of the rewards obtained

from the beginning until the end of the game. The initial position of the two drivers is randomly

selected at the beginning of the game. Finally, the two drivers can observe each other’s position

only when they are simultaneously on the same node, or they are in adjacent nodes.

Ridesharing games are particularly well-suited to study the computation of optimal equilibria

because they are not triangle-free (Farina and Sandholm, 2020).

Setup We denote by RS p i T a ridesharing instance with p drivers, network configuration i,

and horizon T . Parameter i ∈ {1, 2} specifies the graph configuration. We consider the two

network configurations of B. H. Zhang, Farina, Celli, and Sandholm (2022), their structure is

reported in Figure A.2. All edges are given unitary cost. We consider a total of four instances:

RS212 , RS222 , RS213 , RS223 .

0
{1}

1
{.5}

3
{.5}

2
{1.5}

4
{4.5}

5
{2}

6
{1.5}

0
{1}

1
{.5}

2
{.5}

3 {1.5}

4
{1}

5 {2.5}

6 {1.5}

7 {5}

Figure A.2: Left: Graph configuration 1, used for RS212 RS213 . Right: Graph configuration 2, used

for RS222 RS223 . In both cases the position of the two drivers is randomly chosen at the

beginning of the game, edge costs are unitary, and the reward for each node is indicated between

curly brackets.

A.1.12 Small matrix (SM)

This is a small 2× 2 matrix game introduced by Farina, Kroer, and Sandholm (2019b) as a hard

instance for the CFR+
algorithm. Given a mixed strategy x = (x1, x2) ∈ ∆2

for Player 1 and a

mixed strategy y = (y1, y2) ∈ ∆2
for Player 2, the payoff function for player 1 is defined as

u(x,y) := 5x1y1 − x1y2 + x2y2.

We denote the small matrix with the mnemonic SM2 .

§A. DESCRIPTION OF BENCHMARK GAMES USED IN EXPERIMENTAL EVALUATIONS 331

A.2 Game dimensions

Game Players Decision nodes Sequences Terminal nodes Constant sum?

B2222 2 162 506 1072 ✗

B2322 2 938 4730 19 116 ✗

B2323 2 15 338 62 330 191 916 ✗

B2324 2 144 938 451 130 969 516 ✗

D32 3 128 255 504 ✓

D33 3 1536 3069 13 797 ✓

D42 4 12 288 24 574 331 695 ✓

G33 3 4383 4890 1296 ✓

G24 2 34 952 42 658 13 824 ✓

G25 2 4 369 010 5 332 052 1 728 000 ✓

GL24 2 17 432 21 298 13 824 ✓

GL25 2 1 175 330 1 428 452 1 728 000 ✓

GL33 3 2511 2802 1296 ✓

GL44 4 13 236 14 008 7776 ✓

GL55 5 65 385 67 310 46 656 ✓

K23 2 12 26 30 ✓

K2c 2 5148 12 014 98 956 ✓

K33 3 36 75 78 ✓

K34 3 48 99 312 ✓

K35 3 60 123 780 ✓

K36 3 72 147 1560 ✓

K3c 3 144 291 17 160 ✓

K38 3 96 195 4368 ✓

K45 4 160 324 3960 ✓

Table A.1: Dimensions of game instances used in this dissertation.

332 §A.2. GAME DIMENSIONS

Game Players Decision nodes Sequences Terminal nodes Constant sum?

L2232 2 288 674 1116 ✓

L2252 2 780 1822 5500 ✓

L2282 2 1968 4594 22 936 ✓

L2292 2 2484 5798 32 724 ✓

L22d2 2 5148 12 014 98 956 ✓

L3132 3 684 1371 4500 ✓

L3133 3 684 1371 6477 ✓

L3151 3 1500 3003 10 020 ✓

L3223 3 1890 4329 8762 ✓

L3523 3 148 752 369 459 775 148 ✓

P24 2 382 2081 15 898 ✓

P25 2 2078 11 899 61 084 ✓

P26 2 11 888 69 029 118 514 ✓

REL26 2 53 010 142 223 71 270 327 ✓

REL27 2 42 098 123 580 75 928 256 ✓

REL28 2 67 431 184 047 111 580 420 ✓

REL22 2 99 144 293 546 185 831 684 ✓

REL25 2 242 190 722 432 494 214 830 ✓

S2122 2 99 286 396 ✗

S2123 2 603 1690 2376 ✗

S2133 2 1096 3809 5632 ✗

S2254 2 50 896 260 153 435 456 ✗

S2264 2 82 741 475 778 806 736 ✗

SM2 2 2 6 4 ✓

T3[50] 3 14 448 24 304 10 300 ✓

TP3 3 531 728 909 059 379 008 ✓

RS212 2 68 214 400 ✗

RS213 2 704 2370 4356 ✗

RS222 2 76 218 484 ✗

RS223 2 672 1982 4096 ✗

Table A.2: (Continued) Dimensions of game instances used in this dissertation.

334 §B.1. TREE-FORM DECISION PROCESSES

Appendix B

Summary of notation

B.1 Tree-form decision processes

Symbol Description

J Set of decision nodes

Aj Set of legal actions at decision node j ∈ J

K Set of observation nodes

Sk Set of possible signals at observation node k ∈ K

ρ Transition function:

• given j ∈ J and a ∈ Aj , ρ(j, a) returns the next point v ∈ J ∪ K in the

decision tree that is reached after selecting legal action a in j, or ⊥ if the

decision process ends;

• given k ∈ K and s ∈ Sk, ρ(k, s) returns the next point v ∈ J ∪ K in the

decision tree that is reached after observing signal s in k, or ⊥ if the decision

process ends

Σ∗
Set of non-empty sequences, defined as Σ∗ := {(j, a) : j ∈ J , a ∈ Aj}

Σ Set of sequences, defined as Σ := Σ∗ ∪ {∅} where the special element ∅ is

called the empty sequence
pj Parent sequence of decision node j ∈ J , defined as the last sequence (decision

node-action pair) on the path from the root of the TFDP to decision node j; if

the player does not act before j, pj = ∅
Cσ Decision nodes j ∈ J with parent sequence σ ∈ Σ: Cσ := {j ∈ J : pj = σ}

j′ ≼ j j′ ∈ J is on the path from the root to j ∈ J
j′a′ ≼ ja Action a′

at j′
is on the path from the root to action a at j ∈ J

σ ≽ j Shorthand for σ = j′a′
with j′ ≽ j

Σ≽j Sequences at or below j: Σ≽j := {σ ∈ Σ∗ : σ ≽ j}

§B. SUMMARY OF NOTATION 335

B.2 Correlated strategies

Symbol Description

j1 ⇌ j2 Connected decision nodes: if j1 ⇌ j2, it is possible that the trajectory in the

decision process goes through both j1 ∈ J1 and j2 ∈ J2

σ1 ▷◁ σ2 Relevant sequence pair: σ1 ▷◁ σ2 if at least one between σ1 and σ2 is the empty

sequence ∅, or if σ1 = (j1, a1), σ2 = (j2, a2) with j1 ⇌ j2

Σ1 ▷◁ Σ2 Set of all relevant sequence pairs {(σ1, σ2) ∈ Σ1 × Σ2 : σ1 ▷◁ σ2}

j1 ▷◁ σ2 Shorthand for: (j1, a1) ▷◁ σ2 for all a1 ∈ Aj1

σ1 ▷◁ j2 Shorthand for: σ1 ▷◁ (j2, a2) for all a2 ∈ Aj2

B.3 Mathematical notation

Vectors and matrices

• Vectors and matrices are marked in bold.

• Given a finite set S = {s1, . . . , sn}, we denote as ℝS (resp., ℝS⩾0) the set of real (resp.,

nonnegative real) |S|-dimensional vectors whose entries are denoted as x[s1], . . . ,x[sn].

• Similarly, given finite sets S, S′
, we denote as ℝS×S′

(resp., ℝS×S′

⩾0) the set of real (resp.,

nonnegative real) S × S′
square matrices M whose entries are denoted as M[sr, sc] (sr ∈

S, sc ∈ S′
), where sr corresponds to the row index and sc to the column index.

Standard sets

• We denote the set of real numbers as ℝ, the set of nonnegative real numbers as ℝ⩾0, and the

set {1, 2, . . . } of positive integers as ℕ.

• The set {1, . . . , n}, where n ∈ ℕ, is compactly denoted as [[n]].

• The empty set is denoted as {}.

• Given a finite set S, we denote by ∆S the simplex ∆S := {x ∈ ℝS⩾0 :
∑
s∈S x[s] = 1}. The

symbol ∆n, with n ∈ ℕ, is used to mean ∆[[n]]
.

• Given a finite set S, we use the symbol 𝕊S ⊆ ℝS×S
⩾0 to denote the set of stochastic matrices,

that is, nonnegative square matrices whose columns all sum up to 1. The symbol 𝕊n, where

n ∈ ℕ, is used to mean 𝕊[[n]]
.

336 §B.3. MATHEMATICAL NOTATION

Operations on sets

• Given a set S, we denote its convex hull with the symbol coS. The convex hull of the union

of finitely many sets S1, . . . , Sm is denoted co{S1, . . . , Sm}.

• Disjoint union of set is denoted with the symbol ⊔.

Functions

• Given two functions f : X → Y and g : Y → Z, we denote by g ◦ f : X → Z their

composition x 7→ g(f(x)).

• Given a set S and a function f , the image of S via f is denoted as f(S) := {f(s) : s ∈ S}.

• Given a proposition p, we denote with 𝟙p the indicator function of that proposition:

𝟙p =

1 if p is true

0 otherwise.

Partial orders

• Given a partially ordered set (S,≺) and two elements s, s′ ∈ S, we use the standard derived

symbols s ≼ s′
to mean that (s = s′) ∨ (s ≺ s′), s ≻ s′

to mean that s′ ≺ s, and s ≽ s′
to

mean that s′ ≼ s.

Asymptotic notation

• We use the symbols O, Ω, Θ to denote the usual asymptotic notation.

• The symbol OT is used to denote that only dependence on the parameter T is highlighted,

treating all other parameters as constants.

	I Introduction, notation, and background
	Introduction
	Structure and summary of contributions
	Research discussed in this dissertation
	Mathematical notation

	Imperfect-information extensive-form games
	Game trees and information sets
	The player's perspective: Tree-form decision processes
	Extracting a tree-form decision process from the game tree
	Notation

	Strategies and sequence-form representation
	Sequence-form representation of strategies
	Deterministic sequence-form strategies and Kuhn's theorem

	No-regret learning in games
	Hindsight rationality and Φ-regret
	Definition of Φ-regret for a player in the repeated game
	Relationship between Φ-regret and game-theoretic equilibrium
	Feedback available to the learning player

	Mathematical abstraction of a predictive no-Φ-regret algorithm
	The canonical optimistic learning setup (COLS) for games
	The important special case of external regret minimization
	Reducing Φ-regret minimization to external regret minimization
	Degrees of predictivity

	No-external-regret algorithms for probability simplexes
	Multiplicative weights update () and its predictive variant ()
	Regret matching (), regret matching+ (), and variants

	II Computation of coarse-correlated and Nash equilibria
	Composability of learning dynamics and predictive counterfactual regret minimization
	Contributions and related work
	Regret circuits
	Pictorial depiction of regret circuits
	Cartesian product
	Convex hull
	Affine transformation and Minkowski sum
	Scaled extension

	Predictive counterfactual regret minimization paradigm
	Predictive () and predictive () algorithms
	Experimental evaluation

	Notions of distance for sequence-form strategies, and prox methods
	Contributions and related work
	Preliminaries
	Distance-generating functions and proximal setups
	Applications
	Online mirror descent and follow-the-regularized-leader
	Bilinear saddle points: Excessive gap technique and mirror prox

	Euclidean distance-generating function
	Exact Euclidean projection algorithm

	Distance-generating functions with linear-time projections
	Dilated distance-generating functions
	Dilatable global entropy distance-generating function

	Experimental evaluation
	and without aggressive stepsizing
	with aggressive stepsizing

	Appendix: Properties of SMPL functions

	Strongly predictive learning dynamics, and O(logT/T) convergence in self play
	Related work
	Contributions
	Setup and algorithm pseudocode
	Regret analysis
	Connecting strong predictivity and logarithmic regret
	Implementation and iteration complexity
	Local proximal oracle
	Linear maximization oracle

	Experimental evaluation
	Appendix: Proof details
	Proof of Proposition 6.1
	Proof of Proposition 6.2
	Proof of Corollary 6.1
	Proof of Theorems 6.2 and 6.3

	State-of-the-art regret dependence on game size via kernelization
	Contributions and related work
	A natural reduction: Running on the vertices of the strategy set
	Kernelized multiplicative weights
	The sequence-form kernel
	Using the kernel to simulate the algorithm

	Efficient evaluation of the sequence-form kernel
	Worst-case linear complexity for a single evaluation
	Batched computation and amortized complexity

	Regret bound of Kernelized
	Experimental evaluation
	Appendix: Proof details
	Proof of Theorem 7.4
	Proof of Proposition 7.1

	III Computation of extensive-form correlated and team equilibria
	Uncoupled learning of extensive-form correlated equilibrium
	Contributions and related work
	Extensive-form correlated equilibrium and its relation with -regret
	Trigger agents and trigger deviation functions
	Convergence to the set of EFCEs via no-Φ-regret dynamics

	Construction of no-trigger-regret dynamics
	Canonical trigger deviation matrices
	Structural decomposition of canonical trigger deviation matrices
	Complete algorithm and analysis

	Final remarks
	Appendix: Inductive computation of fixed points of trigger deviation matrices

	Geometry of correlated strategies, and positive complexity results for optimal EFCE
	Contributions
	Preliminaries, notation, and prior work
	Polytope of correlation plans Ξ
	Optimal EFCE as a linear program
	The von Stengel-Forges polytope V
	Stengel08:Extensive's result for two-player games without chance

	Characterization of the relationship between and
	Scaled-extension-based structural decomposition for
	Examples and intuition
	Triangle-freeness
	Two-player games with public chance moves are triangle-free
	Computation of the decomposition
	Integrality of the vertices of in triangle-free games

	Beyond triangle-freeness
	Experimental investigation of utilities reached by EFCE
	Two-player general-sum games
	Three-player zero-sum games

	Appendix: Additional lemmas on the structure of
	Appendix: Optimal EFCE as a linear program

	Learning optimal extensive-form correlated equilibria
	Contributions
	Optimal EFCE as a bilinear saddle-point problem
	No-regret learning algorithm
	Construction of weakly-predictive algorithms via regret circuits (4)
	Faster rates using RVU-predictive algorithms (5)
	Remarks on last-iterate convergence

	Experimental evaluation

	Learning dynamics for team coordination and collusion
	Contributions and related work
	Failure of minmax theorem for team maxmin equilibrium
	TMECor as a bilinear saddle-point problem
	Realization vectors and low-dimensional parameterization
	Connection with correlation plans and triangle-freeness

	Experimental evaluation

	IV Beyond perfect rationality
	Positive complexity results for trembling-hand perfect equilibria
	Preliminaries on trembling-hand refinements
	Contributions and related results
	Positive complexity results for two-player EFPE
	Behavioral perturbation matrices
	EFPE as a trembling linear complementarity problem (LCP)
	Existence of a negligible positive perturbation (NPP)
	Computation of extensive-form perfect equilibria
	Polynomial-time computation in zero-sum games

	Appendix: Undomination does not prevent sequential irrationality

	Computing exact trembling-hand refinements in two-player zero-sum games at scale
	Related work
	Refined strategies as solutions to trembling linear programs
	Extensive-form perfect equilibria as trembling linear programs
	Quasi-perfect equilibria: Definition and formulation
	One-sided quasi-perfect equilibrium: Definition and formulation
	Formulations with sparsified payoff matrices

	Basis stability
	Analytic basis stability condition and existence of stable bases
	Existence of stable bases

	A practical algorithm for finding a TLP limit solution
	Basis-stability oracle
	Oracle for non-singular basis matrices
	Oracle for singular basis matrices
	Limit of strategy

	Experimental evaluation
	Experiments on small and medium-sized benchmark games
	Experiments on real-world poker endgames

	Quantal response and regularization towards human play
	Contributions and related work
	Logit quantal responses and KL-anchored responses
	Logit quantal responses
	Logit quantal response as an instances of KL-anchored response
	Learning dynamics for KL-anchored equilibria
	Imitation-anchored responses in imperfect-information extensive-form games

	Modeling uncertainty on the anchoring coefficients
	A technical lemma needed in the analysis
	Regret analysis
	Last-Iterate Convergence in Two-Player Zero-Sum Games

	Experimental evaluation in no-press Diplomacy
	Background on Double Oracle Reinforcement learning for Action exploration (DORA)
	Training of our bot Diplodocus
	Experimental setup
	Performance compared to prior algorithms
	Experiments against human players

	Conclusions and future work
	Bibliography
	Appendices
	Description of benchmark games used in experimental evaluations
	Description of game instances
	Battleship ([B])
	Liar's dice ([D])
	Goofspiel ([G])
	Limited-information Goofspiel ([GL])
	Kuhn poker ([K])
	Leduc poker ([L])
	Pursuit-evasion ([P])
	River Endgame ([REL])
	Sheriff ([S])
	Double-dummy bridge endgame ([T], [TP])
	Ridesharing game ([RS])
	Small matrix ([SM])

	Game dimensions

	Summary of notation
	Tree-form decision processes
	Correlated strategies
	Mathematical notation

