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Abstract

In this thesis we consider the Weighted Low Rank Approximation problem.
For an m × n matrix A, we give a row-sampling algorithm algorithm running in
O(nnz(A) log n+(m+n)·poly(log n, k, 1/w, 1/ε, 1/κ(A))) time, where all weights
in the weight matrix are within a ratio of 1/w, κ(A) denotes the condition number of
matrix A, and nnz(A) denotes the number of non-zero entries of A. Our algorithm
is bicriteria, and outputs a matrix of rank O( k2

w2ε2κ2(A)
) and achieves a multiplicative

(1+ ϵ)-approximation to the cost of the best rank-k matrix. Compared to prior work
of Bhaskara et al. (PMLR, 2021), our algorithm achieves multiplicative rather than
additive error, outputs a low rank approximation with right factor corresponding to
an actual subset of rows of A, has leading order term in the running time of nnz(A)
rather than at least nnz(A) · k/ϵ2, and has the same bicriteria rank in the worst case.
We also show the 1/w factor is necessary in the bicriteria rank of any row subset
selection algorithm.
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Chapter 1

Introduction

Low rank approximation is a fundamental problem in machine learning with numerous applica-
tions. It can be solved with the singular value decomposition, and there are also very efficient
randomized approximation algorithms. For a survey, we refer the reader to [4, 12].

Unfortunately most variations of the low rank approximation problem are NP-hard. One well-
studied variation is the weighted low rank approximation problem, for which the difficulty is first
explained in [13]. The motivation for this problem is that in many applications, we might not
want each entry to be weighted the same because some entries are less important. Instead, we
would like to assign a non-negative weight to each entry of the matrix, for example, a probability
or the reciprocal of the standard deviation of the distribution of values for that entry. This imme-
diately breaks the linear algebraic structure of the matrix, which results in an NP-hard problem
in general [7].

There are a number of ways of dealing with this NP-hardness. Efficient parameterized algo-
rithms were presented in [10], assuming the weight matrix has a small number of distinct rows
or columns, or has low rank. Several other works [1, 9] also assume the weight matrix has
low rank or other nice structure; interestingly in [9] the output rank is related to the so-called
communication complexity of the weight matrix. One can also deal with hardness by allowing
the output to have larger rank than the desired rank k, which is called a bicriteria solution, and to
also paramaterize the bicriteria rank in terms of the norm of near-optimal solutions - the larger
the norm the larger the output rank. This was the method done in [2], which is most related to
our work.

There are two natural notions of error: additive and multiplicative. For additive error, the goal
is given a matrix W ∈ (R \ R−)

m×n and W ∈ Rm×n, to find matrix F ∈ Rm×n with low rank1

such that:

1Not necessarily rank k
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∥A− F∥2W,F ≤ min
M,rank(M)=k

∥A−M∥2W,F + ε ∥A∥2W,F

For an ε ∥A∥2W,F additive error approximation. The notation here is defined in Definition 1.

And
∥A− F∥2W,F ≤ (1 + ε) min

M,rank(M)=k
∥A−M∥2W,F

For a (1 + ε) multiplicative error approximation.

The work of [2] in fact uses a weaker definition of additive error, which replaces the weighted
norm ∥A∥2W,F with the unweighted version ∥A∥2F . The latter is strictly weaker than the former.

Our Assumption. We consider weight matrices which have a positive minimum weight of w
and a maximum weight of 1. By scaling, this captures any weight matrix with w being the ratio
of the minimum to maximum weights. We do not have any other assumption on the weight
matrix. We also assume the input matrix A has full rank, which can be achieved by an arbitrarily
tiny random perturbation (at the cost of arbitrarily tiny additive error), and for many matrices
in practice holds already because of measurement noise. Our assumption provides a type of
regularization, in that it does not allow entries in the solution to be infinitely large, which could
be possible with zero weights.

Our Results. We design a sampling algorithm which samples rows from matrix A. use the
sampled rows as a right matrix and solve n weighted regression problems to obtain the left
matrix. Here we cannot afford to solve these problems separately in our given time bound.
Instead, we observe that the leverage scores of each of the m instances are within a factor of 1/w
from each other so that oversampling by this factor allows for a single leverage score sampling
matrix to solve each of the m weighted regression problems.

Multiplying our two factors together, we first show that with constant probability, the resulting
matrix provides an additive ε ∥A∥2W,F weighted approximation if we sample O( k2

w2ε2κ2(A)
) rows,

where κ(A) is the condition number of matrix A. In a number of cases, this algorithm gives a
smaller bicriteria rank than the result of [2]. Moreover, this algorithm has a significantly smaller
time complexity of O(nnz(A) + (m+ n) · poly(log n, k, 1/w, 1/ε, 1/κ(A)).

Next, we use our additive error algorithm to construct a multiplicative error algorithm. Specifi-
cally, we first find a rank-O(k) matrix providing an O(1/w)-approximation by performing stan-
dard unweighted Frobenius norm row subset selection, and then apply our previous additive error
approximation algorithm on the residual. In this way we obtain a (1 + ε) approximation with a
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matrix of rank at most O( k2

w4ε2κ2(A)
) with constant probability and in O(nnz(A) log n+(m+n) ·

poly(log n, k, 1/w, 1/ε, 1/κ(A))) time.

Finally, we give lower bounds on the bicriteria rank of row sampling algorithms. Namely, in
section 2.4, we show that we need to sample at least Ω( k

w
) rows for constant ϵ on certain inputs,

namely, when W and A both look approximately like identity matrices2.

Previous Work. The work of [2] studies additive error algorithms which iteratively selects the
principle components of the residual (i.e., the best improvement in the unweighted case). We
restate their algorithm as Algorithm 1 below.

This algorithm assumes a rank-k matrix L with the property that ∥L∥2F ≤ Λ ∥A∥2F and shows
that with O(kΛ

ε2
) rounds, the output achieves an additive error not much more than the cost of

using L.

A sketch of their proof is as follows: consider only columns of L that constitute a significant
portion of the Frobenius norm of L. One can show fast convergence on the cost function for
these columns, while the remaining columns will not exceed the desired additive error bound.

Algorithm 1: Weighted Low Rank Approximation with Additive Error [2]
Input: Matrix A ∈ Rd×n, error parameter ε
Output: Low-rank Approximation L′ ∈ Rd×n whose columns are spanned by a set of

vectors Z, with |Z| = k′ := 8kΛ/ε2.
1 Initialize Z = ∅, set x(0)

j = 0 for all j.
2 for t = 1 · · · k′ do
3 Define fj(v) =

∑
r∈[d]Wrj(Arj − vr)

2 for all j, let z ∈ Rd, ∥z∥2 = 1 be the vector

that maximizes
∑

j⟨∇fj(x
(t−1)
j , z)⟩2, and add z to Z.

4 for each j ∈ [n] do
5 Compute η that minimizes fj(x

(t−1)
j + ηz) and set x′ = x

(t−1)
j + ηz.

6 Computer η that minimizes fj(ηx′) and set x(t)
j = ηx′.

7 end for
8 end for
9 Return Z and the associated low rank approximation L′.

With Low Rank Weight Matrix In [12], the author assumed that the weight matrix has rank
r, and try to find a rank-k approximation instead of a rank-poly(k, ε) one. With this assump-
tion, they utilized sketching technique and reduced the problem to a regression problem. This
approach is very similar to ours, but as they pointed out in Assumption 1.3, there is no polyno-

2See detailed definition in Section 2.4
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mial algorithm solving the problem. Their results showed that there exists an algorithm runs in
nO(k2r/ε) time that gives (1 + ε) multiplicative error.

With Binary Weights. In [9], the author studied a variation where the weight matrix is binary.
They proved that a simple unweighted low rank approximation to matrix W ◦ A (i.e. zero out
entries of A where W is zero) can be a good enough additive error weighted approximation.
Therefore, this algorithm runs in standard low rank approximation time, which is O(nnz(A) +
n · poly(k′/ε)) with k′ be the rank of the approximation.

Our Techniques. Our techniques are completely different than those of [2]. Instead, we first
compute a O(1)-approximate row sampling-based solution to the unweighted problem, which
gives an O(1/w)-approximation to the weighted problem. We then show that adaptively sam-
pling rows proportional to their squared distance to this approximation works.

Our analysis tries to mimic the standard proofs of adaptive sampling in the unweighted case, but
the lack of a solution based on the singular value decomposition is a significant hindrance in our
setting. The proof in the unweighted case shows that a special linear combination of the samples,
depending on the t-th left singular vector of A, is close in expectation to the right singular vector
of A, for each t, and then bounds the variance. Thus, the span of the samples can be shown to
contain a projection which is “close enough” to the projection onto the top k singular vectors.
In the weighted setting, since A has full row rank, we can still write k vectors in a basis for the
rowspan of the optimal solution as a special linear combination of the rows of A.
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Chapter 2

Main Results

2.1 Definitions

Definition 1. Given matrices W ∈ (R \ R−)
m×n and A ∈ Rm×n, we define the weighted

Frobenius norm as:

∥A∥2W,F =
m∑
i=1

n∑
j=1

WijA
2
ij

It is easy to show this is a norm.
Definition 2. We define a row sampling process similar to [6] as follows:

Given matrix A ∈ Rm×n and Pi ∈ [0, 1], i = 1, . . . ,m, with:

Pi ≥ α

∥∥A(i)
∥∥2

∥A∥2F

where α ≤ 1 is a constant (independent of m,n). If we set α = 1, then Pi can be inferred from
matrix A.

2.2 Weighted Low Rank Approximation with Additive Error

Theorem 3. Given ϵ ∈ (0, 1) and a matrix W ∈ Rm×n with entries in range [w, 1] and A ∈
Rm×n of full row rank, there exists an algorithm which finds matrix F of rank O( k2

w2ε2κ2(A)
) such

that
∥A− F∥2W,F ≤

∥∥∥A− Âk

∥∥∥2
W,F

+ ε ∥A∥2W,F
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where Âk is the optimum rank-k weighted approximation and κ(A) is the condition number of
matrix A.

Proof. We use the row sampling procedure in Definition 2 to sample s i.i.d. rows of A with
α = 1. Denote the indices of rows sampled as a multiset S and let s = |S|.

Let Âk = TDV be the optimal weighted rank-k approximation, where T ∈ Rm×k is orthonormal
and D ∈ Rk×k is a diagonal matrix satisfying UTA = V for matrix U ∈ Rm×k whose rows have
unit norm. Denote row t of U as U (t). We use similar notation for other matrices as well.

Notice that the diagonal entries of D is only related to singular values of Âk and A. Specifically,
we can bound it by the following:

We know
∥∥DUTA

∥∥2
F
=
∥∥∥Âk

∥∥∥2
F
≤ 1

w
∥A∥2F . Let A = UAΣV

T
A , then we have:

∥∥DUTUAΣ
∥∥2
F
≤ 1

w

∑
i

Σ2
ii

Notice that UTUA is a projection onto a subspace, so the lower bound on the norm of each row
of UTUAΣ is the smallest singular value of A.

Hence, we derive: ∥D∥2F =
∑

i D
2
ii ≤ k

κ2(A)w
where κ(A) is the condition number of A.

Then, we would like to estimate the samples we selected. For t = 1, . . . , k, we consider:

X(t) =
1

s

∑
i∈S

U
(t)
i

Pi

A(i)

The expectation of X(t) is:
E
(
X(t)

)
= V (t)

Therefore, plugging in Pi =
∥A(i)∥2

∥A∥2F
, an upper bound for the variance is given by:

E
∥∥V (t) −X(t)

∥∥2 ≤ 1

s

m∑
i=1

∥∥∥U (t)
i

∥∥∥2 ∥∥A(i)
∥∥2

Pi

=
1

s
∥A∥2F

Hence, we have E ∥V −X∥2F ≤ k
s
∥A∥2F .
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Let F = TDX , where X consists of rows X(t) defined above. Then, we have:

∥A− F∥W,F ≤
∥∥∥A− Âk

∥∥∥
W,F

+
∥∥∥Âk − F

∥∥∥
W,F

≤
∥∥∥A− Âk

∥∥∥
W,F

+
∥∥∥Âk − F

∥∥∥
F

=
∥∥∥A− Âk

∥∥∥
W,F

+ ∥DV −DX∥F

≤
∥∥∥A− Âk

∥∥∥
W,F

+ ∥D∥F ∥V −X∥F

≤
∥∥∥A− Âk

∥∥∥
W,F

+

(
k

κ2(A)w

)1/2

∥V −X∥F

Therefore,

Pr

(
∥A− F∥W,F −

∥∥∥A− Âk

∥∥∥
W,F

≥ 1

4
ε ∥A∥W,F

)
≤Pr

((
k

κ2(A)w

)1/2

∥V −X∥F ≥ 1

4
ε ∥A∥W,F

)

=Pr

(
k

κ2(A)w
∥V −X∥2F ≥ 1

16
ε2 ∥A∥W,F

)
≤Pr

(
∥V −X∥2F ≥ 1

16

ε2w2κ2(A)

k
∥A∥2F

)
Setting 10k

s
= 1

16
ε2w2κ2(A)

k
, we get s = O

(
k2

w2ε2κ2(A)

)
and

Pr

(
∥V −X∥2F ≥ 1

16

ε2w2κ2(A)

k
∥A∥2F

)
≤ 1

100

Therefore, with constant probability, we have

∥A− F∥W,F <
∥∥∥A− Âk

∥∥∥
W,F

+
1

4
ε ∥A∥W,F (2.1)

if we sample O( k2

w2ε2κ2(A)
) rows.

Squaring both sides of Equation 2.1, we get:

∥A− F∥2W,F <
∥∥∥A− Âk

∥∥∥2
W,F

+ (
1

2
ε+

1

16
ε2) ∥A∥2W,F ≤

∥∥∥A− Âk

∥∥∥2
W,F

+ ε ∥A∥2W,F

Since we can assume ε < 11.
1Otherwise, the 0 matrix is already a good approximation.
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Now we have sampled the rows and built up matrix R where R(t) = A(i), i ∈ S, t = 1, . . . , s. We
next want to solve a regression problem to get L such that matrix LR is the desired approxima-
tion.

Theorem 4. There exists a regression algorithm that solves

argmin
L∈Rm×s

∥A− LR∥2W,F

Proof. We fold W into the norm, so we get:

∥A− LR∥2W,F =
∑
j

∑
i

(W
1/2
ij Aij −

∑
k

(W
1/2
ij Rkj)Lik)

2

Therefore, we can solve for each row of L separately. Now, solving for row i is just a regression
problem argminx∈Rs ∥A′x− b′∥ where A′

jk = W
1/2
ij Rkj and b′j = W

1/2
ij Aij . This can be done in

O(nnz(R) + poly(log n, k, 1/w, 1/κ(A), 1/ε)) time [4].

Since we need to solve m such problems, we need an estimate for O(nnz(R) · m). Notice
that L contains sampled rows of A, so with constant probability, we have O(nnz(R) · m) =
O(nnz(A) · k′) where k′ is the number of rows we sample, so we get an algorithm of time
complexity

O(nnz(A)k′ +m · poly(log n, k, 1/w, 1/κ(A), 1/ε))

2.2.1 Algorithm

To build the algorithm, after we sampled the rows, we reduce the problem to a weighted regres-
sion problem, which we can solve easily. This will be as good as the matrix F analyzed above.
In addition, this algorithm doesn’t involve any knowledge of the optimum Âk.

The time complexity of the algorithm is as follows: sampling has time complexity

O

(
nnz(A) + (m+ n)

k2

w2ε2κ2(A)

)
And solving the regression problem has time complexity

O

(
nnz(A)

k2

w2ε2κ2(A)
+ poly(log n, k, 1/w, 1/κ(A), 1/ε)

)
Hence, in total it takes O(nnz(A) k2

w2ε2κ2(A)
+ poly(log n, k, 1/w, 1/κ(A), 1/ε)) time.

8



2.2.2 Further Improvement by leverage score sampling

In the last part of Theorem 4, we need to solve n regression problem. However, with leverage
score sampling [8], we can sample the rows of D

W (i)1/2R
T , where D

W (i)1/2 is the diagonal matrix
from row vector W (i), i = 1, . . . ,m.

Since the weights are in range [w, 1], the leverage scores are the same for all i up to a factor of
w−1/2. In other words, we only need to oversample by a factor of w−1/2 so that a single sampling
and rescaling matrix S ∈ Rs′×m with s′ = Õ(kw−3/2ε−4) rows can be used to solve all regression
problem. In brief, with constant probability, we can reach a (1+ε) approximation by solving the
new regression problem: argminx

∥∥SD
W (i)1/2R

Tx− SD
W (i)1/2A

(i)
∥∥2.

This algorithm for the second step has a time complexity of

O((nnz(L) +m · poly(k, 1/w, 1/ε, 1/κ(A))) log n)

for all m regression problems. Notice that matrix L has at most n · poly(k, 1/w, 1/ε, 1/κ(A))
entries, so it takes at most O((m+ n) · poly(log n, k, 1/w, 1/κ(A), 1/ε)) time.
Thus, in total the new algorithm has time complexity

O(nnz(A) + (m+ n) · poly(log n, k, 1/w, 1/κ(A), 1/ε))

2.3 Refining to Multiplicative Error

We can further improve additive error to multiplicative error with two passes similar to [5].

Theorem 5. Given W with entries in range [w, 1] and A of full row rank, there exists an algo-
rithm that finds matrix F with rank O( k2

w4ε2κ2(A)
) s.t.

∥A− F∥2W,F ≤ (1 + ε)
∥∥∥A− Âk

∥∥∥2
W,F

where Âk is the optimum rank-k weighted approximation.

Proof. We first find a rank-k approximation B to A. Suppose ∥A−B∥2W,F ≤ c
∥∥∥A− Âk

∥∥∥2
W,F

.

Note that a O(1) unweighted approximation is a trivial O(1/w) weighted approximation, so we
can assume c ∈ O(1/w).

This can be done by SVD to get an exact unweighted approximation of rank k′ = k, or we can
use the row/column selection algorithm in [3] to get a (1 + ε′) approximation. Notice that this
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algorithm requires selecting O(k/ε′) columns, but since we only need a O(1) approximation, we
can set ε′ = .5 or any constant, so that we select only k′ = O(k) rows.

Then, we apply the algorithm in Theorem 3 with k := k + k′, ε := εw and A := A − B. This
gives a matrix F ′ that satisfies:

∥A−B − F ′∥2W,F ≤
∥∥∥A−B − X̂

∥∥∥2
W,F

+ εw ∥A−B∥2W,F

Where X̂ denotes the optimal rank-(k + k′) approximation to A−B.

Notice that
∥∥∥A−B − X̂

∥∥∥2
W,F

≤
∥∥∥A− Âk

∥∥∥2
W,F

because the latter takes minimum over a subset

of matrices of the former.

Now, the matrix F = B + F ′ is the matrix we want, with rank O( k2

w4ε2κ2(A)
), and satisfy the

relative error:
∥A− F∥2W,F ≤ (1 + ε)

∥∥∥A− Âk

∥∥∥2
W,F

The algorithm needs to sample O( k2

w4ε2κ2(A)
) rows.

2.3.1 Algorithm

The algorithm consists of two parts, finding a good rank-k approximation and running previous
algorithm in Theorem 3.

The first part can be done with time complexity [3]

O(nnz(A) log n+ n · poly(log n, k, 1/ε))

While the second part has time complexity

O(nnz(A) + (m+ n) · poly(log n, k, 1/w, 1/ε, 1/κ(A)))

Hence, in total it takes O(nnz(A) log n+ (m+ n) · poly(log n, k, 1/w, 1/ε, 1/κ(A))) time.

2.4 Lower Bound on the number of rows sampled

In this section we show that there exists a lower bound of the number of rows sampled if we use
row sampling algorithm.
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Theorem 6. There exists examples where we need to sample at least O(k/w) rows in order to
get a good approximation.

Proof. Set m = n = k
2w

.
Let A ∈ Rm×n be an identity matrix.

Separate the matrix W ∈ Rm×n into k × k equally sized blocks. In other words, block i, j
contains entries with row index in range [ i−1

2w
+ 1, i

2w
] and column index in range [ j−1

2w
+ 1, j

2w
]

for i, j = 1, . . . , n.
Then, we can set the entries of block i, j as follows:

W
(i,j)
st =


1 i ̸= j

w if i = j, s ̸= t

1 i = j, s = t

In other words, for blocks on the diagonal, it contains 1 on its diagonal and w elsewhere. Oth-
erwise, the block is filled with 1. The purpose is to concentrate the optimum into blocks on the
diagonal.

By symmetry, the optimum must be of the form UTU where matrix U contains only 0 and 1.
Then, we only need to decide how many 1’s we need to have for each block. This is the reason
why we set n = k

2w
, because this implies each row of U contains all 1 for one block. Formally,

we have:

U (i) =

i/(2w)∑
t=(i−1)/(2w)+1

et

This gives an optimal cost of
(

1
4w2 − 1

2w

)
w = 1

4w
− 1

2
for one block.

Thus, in total we get an optimal cost of k
4w

− k
2
≤ k

4w
.

Hence, for our algorithm, we start from an empty matrix, which is a 2-approximation, to build a
(1+ε)-approximation. However, if we were to sample rows from A, each sample can only reveal
one dimension. This implies no matter how we process the sampled rows, we at most cover s
dimensions where s is the number of rows sampled. This gives a final cost of at least k

2w
− s.

Hence, we need to sample at least O( k
w
) rows to reach ( k

4w
− k

2
) + ε k

2w
.

2.5 Comparison with other additive error result

Algorithm 1 considers an approximation that doesn’t have dependence on the weight matrix W .
However, their conclusion depends on an assumed good approximation L. To reach optimum
within additive error, it runs much slower than ours.
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Proposition 7. Consider the matrix in Section 2.4. Set k = 1 for simplification and let L = uvT

where u, v are vectors.
The algorithm in [2] must output a rank-Ω( k

wε2
) matrix to reach ε ∥A∥2W,F approximation.

Proof. First note that ∥A∥W,F = ∥A∥F in this example.

Then, since their algorithm depends on the cost of a matrix L, we separate into two cases:

Case 1. If ∥A− L∥2W,F ≤
∥∥∥A− Âk

∥∥∥2
W,F

+ O(ε) ∥A∥2W,F , then by pigeon hole principle on the

diagonal terms, it must be the case that uivi ∈ [1 − O(ε), 1 + O(ε)] for more than half
of i’s.

Therefore, consider the set S = {i | uivi ∈ [1−O(ε), 1+O(ε)]} which contains indices
of such dimensions, we must have ∀i, j ∈ S, uivj ≥ 1−O(ε). This gives

∥L∥2F = Ω

((n
2

)2)
= Ω

(
1

w2

)
Hence, Λ ≥ ∥L∥2F

∥A∥2F
= Ω( 1

w
).

Moreover, notice that their algorithm chooses the principle component of the residual at
each step, which contains one dimension only. Thus, their upper bound must be strict.

Hence, their theorem implies they need a rank-Θ(kΛ
ε2
) = Ω( k

wε2
) matrix to reach a good

additive error approximation.

Case 2. Otherwise, the algorithm cannot reach an additive error approximation with respect to
the optimal, so we don’t want to choose such a matrix L.

Therefore, in extreme cases, our algorithm is worse than theirs by a factor of k/w since κ(A) = 1.

Finally, the time complexity of their algorithm can reach O(nnz(A)kw−1ε−2) in the example
above. This is because they need to find the best direction at each step, which takes at least
O(nnz(A)) time. Then, in extreme cases, they need to run O(kw−1ε−2) rounds to achieve addi-
tive error approximation.

However, we managed to improve dependence of nnz(A) to O(nnz(A)) in the time complexity
as described in Section 2.2.2, which is much better than theirs. In fact, this implies our algorithm
is always better, given that the rank of the matrix can’t be constant in almost all cases.
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Chapter 3

Experiments

3.1 Data

We use synthetic data to test the algorithm. Specifically, we used normal distribution to generate
the entries of matrix A. We also generate W as follows:

Let W ′
ij be i.i.d. random variables following normal distribution, then

Wij = .8
W ′

ij
2

maxi′,j′ W ′
i′j′

2 + .2

So that we ensure matrix W has a minimum of w ≥ .2.

3.2 Models

We compare the additive error algorithm as well as multiplicative error algorithm with the addi-
tive error approximation algorithm in [2].

Specifically, we follow the synthetic data generation procedure in Section 3.1 to generate matrix
W,A ∈ R3000×3000.

Then, we test the algorithms to find approximations of rank from 5 to 20. In the second experi-
ment, we allow 2 times the rank for our algorithms.

Moreover, notice that for multiplicative error approximation, we not only need the final rank, but
also the rank for the first step. Hence, we set this rank to be 1/4 of the final rank.
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Finally, we didn’t test leverage score sampling because it introduces more failure probability to
the algorithm. In addition, for small cases, it is fast enough to solve the regression problems
directly.

3.3 Experiment Results

3.3.1 Comparison with same rank

The first experiment gives following comparison on the cost function as well as runtime in Fig-
ure 3.1.

(a) Cost (b) Runtime

Figure 3.1: Comparison, same rank

This implies that although our algorithms didn’t give better approximation, they are way faster
than the algorithm in [2]. This implies that in most applications, we can output a matrix with
more ranks in much less time, which motivates us to run the second experiment.

3.3.2 Comparison with 2x rank

The second experiment gives following comparison on the cost function as well as runtime in
Figure 3.2.
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(a) Cost (b) Runtime

Figure 3.2: Comparison, 2x rank

This experiment implies that with 2 times the rank, we can do much better than baseline and still
use much less time.
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Chapter 4

Conclusion and Future Work

4.1 Weighted Low Rank Approximation

In conclusion, we showed there exists a row selection based algorithm runs in O(nnz(A)+ (m+
n) · poly(log n, k, 1/w, 1/ε, 1/κ(A))) time that finds a weighted low rank approximation with
the assumption that matrix A has full row rank and matrix W has a minimum positive entry. The
number of rows sampled is O( k2

w2ε2κ2(A)
) for additive error and O( k2

w4ε2κ2(A)
) for multiplicative

error.

These assumptions are, in some sense, necessary for the algorithm, because:

1. In the weighted settings, it is not necessary that the optimum is in the row span of the
original matrix A. This implies it’s possible that sampling algorithms may not find a good
solution at all. Assuming A has full row rank could solve this problem.

2. If the matrix W has entry 0, then we cannot get a lower bound on the weighted Frobenius
norm. Assuming a minimum positive weight can solve this problem.

As explained in introduction, there are applications with these assumptions, but we are also
looking forward to find algorithms that don’t need to make such assumptions.
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4.2 Adding Regularizations

We are also seeking similar algorithms that can deal with variations that include regularizations
terms. An example is Ridge regularization, defined as follows:

Cost(L) = ∥A− L∥2W,F + λ ∥U∥2F + λ ∥V ∥2F

Where L = UV , U ∈ Rm×rank(L), V ∈ Rrank(L)×n.

With a simple argument, we can reduce this problem to:

Cost(L) = ∥A− L∥2W,F + 2λ ∥L∥1

Where ∥L∥1 is the Schatten-1 norm (trace norm).

In the unweighted case, the optimum can be found by subtracting λ from SVD result [11], while
this won’t work in weighted case. Therefore, we are looking forward to find efficient algorithms
that can solve this problem in the future.
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