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Abstract

We make the case that a wide array of techniques for split computing (SC) and early exit (EE)
exist beyond DNN-only approaches. Practitioners should consider all of these posiblities,
and recognize the difficulty of modifying a complex DNN architecture. We offer a design
strategy for edge-native applications, to help take advantage of split computing and early exit
strategies. We used this strategy to successfully develop four wearable cognitive assistance
applications, and demonstrated that some relatively simple SC and EE strategies offered a
significant savings in bandwidth usage. Lastly, we showed that achieving the best possible
accuracy for our applications require the use of edge computing.
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1 Introduction

How to partition a deep neural network (DNN) so that its lightweight head executes on
a mobile device, and its heavyweight tail executes in the cloud or on an edge computing
node (cloudlet) is a hot topic today [7, 25, 17, 23, 19, 4, 27]. The partitioning is called
split computing (SC) in the machine learning (ML) literature. When combined with early
erit (EE), where the head result indicates that tail execution is unnecessary, it can signif-
icantly lower network bandwidth demand and cloudlet load without serious degradation of
accuracy for recognition/classification tasks in mobile computer vision.

This position paper observes that splitting such tasks into head and tail components is
indeed valuable, but formulating the problem as DNN-partitioning is too narrow and rigid.
In addition, such an approach requires mobile system designers to have deep ML skills, well
beyond the basic ML skills that they typically possess. We observe that the idea of a cheap
head, followed by an expensive tail has been a feature of compute offload for mobile devices
from its earliest roots. Further, the idea of early exit without executing the tail has long
been used by the mobile computing community under the names “early discard” and “offload
shaping.” That older framing offers more general and powerful optimizations, and subsumes
DNN-focused EE. We provide experimental results that confirm the value of the broader
problem formulation.

We conducted a case study for wearable cognitive assistance (WCA), an important emerg-
ing class of applications that are both bandwidth intensive and latency sensitive. Our study
demonstrated the effectiveness of SC and EE strategies that do not require specialized ML
skills to implement. In addition, we examined how well WCA applications perform when
they are run entirely on a mobile device, without offloading any parts of the computation to
a cloudlet.

2 Evolution of Key Concepts

The essence of SC, splitting a mobile application
into a lightweight head and a heavyweight tail, has S Client
been integral to offloading since birth. Figure 1, re- :

produced from the 1997 Odyssey paper by Noble et | _Speech lgsse, Ny | mc | Pemote
al [31], shows the very first use of offloading to am- | ronvEnd el | (e

plify the capabilities of a mobile device. The Janus § J
speech recognition application was modified to oper- : —
ate in one of three modes in Odyssey. In one of the
modes, a prelimary phase of speech processing was Server
done locally (i.e., the “head”), and the extracted in- ‘
formation was shipped to a remote server for the com-
pletion of the recognition process (i.e., the “tail”). For Figure 1: First Use of Offloading [31]
certain combinations of network bandwidth and device/server capabilities, this split offered
lower end-to-end latency than fully local or fully remote execution. In 1999, Flinn et al [11]
showed how SC could extend battery life. Abstracting and generalizing from these efforts,
the concept of “cyber foraging” was introduced in 2001 [35]. Today, we use the term “of-
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floading” instead of “cyber foraging.” Building on this foundational work, the period from
2001-2008 saw vigorous research activity[l, 9, 10, 30, 14, 43, 32, 2, 22]. Flinn’s survey |[§]
provides a detailed account of these efforts. Between 2009 and 2015, MAUT [6], Odessa [33],
CloneCloud [5], and COMET [13] explored programming language and virtual machine sup-
port for offloading. In 2015, Hu et al [18] introduced offload shaping:

“...we show that it is sometimes valuable to perform additional cheap computation, not part of the original
pipeline, on the mobile device in order to modify the offloading workload. We call this offload shaping.
We show that offload shaping can be applied at many different levels of abstraction using a variety of
techniques, and that it can produce significant reduction in resource demand with little loss of application-
level fidelity or responsiveness.”

The “cheap computation” mentioned above can take many forms including blur detection
using vision algorithms [37, 38], IMU-based blur detection, and perceptual hashing [44, 29,
21] to detect nearly similar frames for deduplication. Although the head algorithms explored
by Hu et al did not include DNNs, the 2018 extensions of this concept by Wang et al [41]
did use DNNs at the head to implement early discard of video frames. The head DNN is
cheap but not very accurate; the DNN at the cloudlet (tail) is far more accurate. Together,
the cascaded pair of DNNs achieve good precision and recall. They effectively implement SC
and EE without the algorithmic challenges of splitting a DNN or designing a bottleneck. In
2019, Wang et al [42] showed how these single-user SC and EE concepts could be leveraged
to improve the multi-user scalability of edge-native applications.

The DNN-centric focus of SC for mobile devices began in 2017, with Kang et al [20].
That work did not include the EE concept. A different group of researchers had already
described the EE concept for DNNs in 2016, without explicit mention of its relevance to
mobile computing [40]. Couper, a 2019 system by Hsu et al [17], showed how production
DNNs could be optimally sliced for SC in different hardware settings. No architectural
additions or modifications beyond splitting were made to the DNNs. In 2019, Eshratifar et
al [7] and Matsubara et al [25] independently pointed out that SC was especially valuable
when combined with EE for processing data captured on mobile devices. A 2022 survey [27]
highlights the large volume of work in this space since 2019.

The fact that the code executed on device (i.e., the head) is not part of the original
pipeline may seem to be a weakness of offload shaping/early discard relative to DNN-only
SC with EE. However, this apparent weakness is offset by the need to create a bottleneck in
DNN-only approaches. The code that implements the bottleneck is not part of the original
DNN; it is created solely to make SC work effectively and represents extra work relative to
the original pipeline.

3 The Limits of DNN-only SC and EE

From this 25-year long evolution of SC and EE concepts, the take-away message can be
distilled as follows:
e SC is a valuable performance optimization for offload from mobile devices. It has
withstood the test of time, and is likely to remain highly relevant well into the future.
The head may or may not involve a DNN.



e EE is also likely to remain important for the foreseeable future. It can take many
forms, depending on the specific algorithm and the capabilities of the mobile device.
The head code determining whether tail execution is necessary may or may not involve
a DNN.
To these firmly-grounded observations of the past, we add a third that is forward-facing and
possibly controversial:
e DNN-only SC/EE is a dead end for mobile computing. 1t relies critically on ML expertise,
a resource that is scarce and growing ever scarcer. Scaling up or scaling out SC/EE into
widespread everyday use will be a failure if it is restricted to DNN-only approaches.
Modifing DNN internals is not for the faint of heart. Structural changes to the internals
of a DNN requires a much higher level of ML skill from those needed to re-train an off-the-
shelf DNN via transfer learning, or to use such a DNN for inferencing. That DNN internals
can be modified successfully by ML experts is not in question. What is doubtful is whether
developers with basic ML skills can accomplish similar feats. As the ML experts themselves
state [26]:

“...the complex structure of CNN-based object detectors poses unique challenges in designing effective
splitting approaches. .. .it is not possible to reduce the inference time of CNN-based object detectors by
naive splitting methods without altering the models’ architecture. This is due to the designs of the early
layers of the models, which amplify the input data size.”

Prophetically, the first paper to describe DNN-only SC [20] used the system name “Neu-
rosurgeon.” Indeed, DNN-only SC/EE is like brain surgery — it is not wise for even a
well-trained general surgeon to attempt it! Since ML expertise is a chronically scarce re-
source, it is self-defeating for mobile system designers to become critically reliant on it. A
viable alternative, described in the next section, is readily available.

4 Design Strategy

o Make it work on the cloudlet first: Construct the tail assuming a null head. The tail is
often a single DNN. However, it may sometimes involve a DNN cascade. For example,
an object detector may find relevant regions of a frame, and a fine-grain classifier may
perform precise classification of each detected object. The important point is to design
the tail to achieve the desired accuracy and speed, assuming that the input data is
available locally. Since the tail executes entirely on the cloudlet, all issues pertaining
to mobile device limitations and networking limitations can be ignored at this stage.
The execution of this tail represents the best case from a performance point of view.
It assumes that the head contributes zero frame capture and encoding latency, and
that the network has zero latency and infinite bandwidth. Optimize the tail until the
desired speed and accuracy are achieved.

o ('reate the lightest possible head: Construct a minimal head that captures live data,
followed by encoding and transmission to the cloudlet. Avoid EE optimizations of any
kind. Ensure that the worst-case end-to-end latency requirement is met. Until you can
meet this requirement, don’t bother trying to add EE. It will only improve the average
case, not the worst case.



e Enrich the head: Find the lightest-weight head optimization that achieves significant
EE for the test data. In many cases, this may not involve a DNN. It may use one
of the simple mechanisms described for offload shaping by Hu et al[18]. In other
cases, as in Wang et al [41], it may involve a cheap but weak DNN to perform EE.
Ensure that adding the optimization still meets worst-case end-to-end latency. Explore
other optimizations in order of increasing cost, resulting in a cascade. If the mobile
device is powerful enough to run part of a cascaded tail, then moving that part to
the device would achieve SC with EE. In the example above of a cascaded object
detector and fine-grain classifer, the object detector could be moved from the tail to
the head. On those frames where no object is detected, no transmission to the cloudlet
is necessary. On frames where an object is detected, only a cropped region around it
needs to be transmitted. It some cases, the move from tail to head may also involve
using a different DNN. For example, it may be profitable to use a less accurate but
cheaper object detector whose threshold is set to preserve recall at the cost of lower
precision. This trades off device cycles and energy for network bandwidth and cloudlet
cycles. In general, the design phase of enriching the head will be inherently iterative in
character, because it depends critically on experimental measurements. What works
well and what doesn’t will depend critically on the use case, input data characteristics,
device and network attributes, the specific optimizations, etc.

This design strategy achieves SC and EE, but involves no DNN surgery. It only relies
on systems skills and basic ML skills that the typical mobile system designer is likely to
possess. Mobile devices evolve quickly, so the third phase (enriching the head) will have to
be experimentally re-validated on each new version of the device.

Although not explicitly mentioned above, energy efficiency is a key metric on mobile
devices. In many cases, adding EE may improve both average case end-to-end latency and
energy efficiency. In other cases, it may improve one but not the other. Adding SC may also
impact on-device energy usage. The additional local compute will consume more energy, but
if the transmitted result is compressed significantly there may be a net win. Only rigorous
experimental exploration on the actual device, network and cloudlet can provide credible
insights in this space.

5 Case Study

We offer a specific use case to exemplify the design strategy presented in §4. This case study
examines Wearable cognitive assistance (WCA) applications, a well published genre of edge
native applications, originally introduced in 2014 and since extensively studied [15, 3, 42].
WCA applications provide assistance with real world tasks to users who are wearing
smart glasses. These applications consume large amounts of bandwidth while being latency
sensitive, which makes them a compelling use case for edge computing. Here, we focus
on an important subclass of WCA applications that provide step-by-step guidance through
physical assembly tasks. These applications carry out a back and forth process with the user.
First, the application gives the user an instruction for completing a step of the task. The
user then completes this step, and then the application gives the user the next instruction.
The camera on the glasses captures image frames of a user’s progress through the task. The



Name Description

Stirling  Assemble a heat engine from
metal parts

Meccano Build a model bike from metal
parts

Toyplane Build a model helicopter from 3D
printed plastic parts

Sanitizer Assemble a sanitizer for a smart-
phone from metal and plastic
parts

Table 1: The WCA applications used for our study.

application processes these frames to determine when a task step has been completed.

We conducted experiments with four distinct WCA applications, which are described in
Table 1. All of these applications required computer vision models, in order to determine
the step of the task that is shown in an image frame. Training these computer vision models
required capturing training images that depicted each step of the task. We labeled each
training image with a bounding box, indicating the region of the image that will be modified
once a user completes the next task step. We also assigned a class label to each image, which
indicates the step of the task that is shown. In addition to the training sets, we collected
test sets of images that we used to evaluate our models. The test images were manually
assigned class labels, but we did not label them with bounding boxes.

5.1 Cloudlet Only Computation

The first step in our design strategy is developing a version of the application that runs
entirely on the cloudlet. This eliminates the need for many of the performance engineering
steps required to run some of these computations on the mobile device. In addition, we can
avoid doing any mobile app development or worrying about network transmission until after
we have a working prototype. We test our application with pre-recorded images and videos,
at this stage.

These applications detect the presence of the partially-completed completed assembly
after each step i. We can use image classification for this, but also object detection DNNs,
particularly for cases where the object may not be dominant in the view. We trained and
tested multiple classifiers and detectors for our applications. We also tried cascades of
an object detector to find likely regions of interest (ROIs), followed by classification to
confirm the presence of the object at those ROIs (similar to the approach in [12]). Table 2
shows the accuracy of the best models for each of our applications. The object detectors
(EfficientDet [39] and Faster R-CNN [34]) outperformed the image classifiers (Resnet 50 [16]
and Fast MPN-COV [23]), even though our test images had relatively clean backgrounds.
However, the cascaded pairs worked best for all of our applications.

The cascade of Faster R-CNN with Fast MPN-COV performed best for all applications
except Stirling, where Effi-cientDet-Lite2 with Resnet 50 worked better. This highlights



Application Best model or cascade pair Accuracy

Stirling EfficientDet-Lite2 & Resnet 50 91.0%
Meccano Faster R-CNN & Fast MPN-COV  84.5%
Toyplane Faster R-CNN & Fast MPN-COV  92.9%
Sanitizer Faster R-CNN & Fast MPN-COV  81.9%

Accuracy is the fraction of images correctly associated with the assembly “step.”

Table 2: The model or cascade pair that achieved the highest accuracy for each application.

the need for WCA application developers to determine the models that work best for their
specific application.

5.2 Adding a Thin Mobile Client

After successfully implementing the image processing on the cloudlet, we developed a mobile
client that transmits JPEG images from the mobile device to the cloudlet. This client sends
all images, without cropping them. We tested the application using a Glass Enterprise
Edition 2 as the mobile device, and a cloudlet with an Intel Intel Xeon E5-2699 CPU and a
GeForce GTX 1080 Ti GPU. The ping time between the mobile device and the cloudlet was
under 0.5 ms.

The average end-to-end round trip time required to transmit a 1920 * 1080 pixel image
to the cloudlet, process it using our Faster R-CNN and Fast MPN-COV pipeline, and receive
the result back on the mobile device was 398 ms. This is well within the 600 ms (tight) or
2700 ms (loose) bounds of acceptable latency for such interactive applications as determined
in a recent user study [3]. Energy consumption on the Google Glass is moderate, averaging
0.57 J per frame (measured using Android’s PowerManager class) to transmit frames and
wait for results. The main drawback to the thin client approach is the significant amount
of bandwidth consumed transmitting every single frame to the cloudlet. The thin client
approach also puts a significant strain on the cloudlet, requiring it to carry out expensive
computations for each frame that the client sends.

5.3 Offload Shaping

Hu et al [18] suggested running cheap computations on the mobile device in order to avoid
sending certain frames to the cloudlet. We first experimented with computing perceptual
hash values to detect duplicate frames. When a new frame’s perceptual hash value is similar
to the last frame that was sent, the client does not send the new frame to the cloudlet. We
tuned the perceptual hash threshold, so that we never increased the amount of time that a
user has to wait for the application to give the next task instruction.

We also considered modifying the application so that it only sends frames to the cloudlet
after a user has indicated that they have completed a step. The user makes a thumbs
up gesture to indicate that they believe a step is complete. The application then begins
transmitting frames to the cloudlet, and gives the user the next instruction if a step has in



Time (ms) Energy (J)

Perceptual Hash 94 0.40
Thumbs Up 102 0.51

Table 3: Cost of deciding whether a frame should be offloaded

Stirling Meccano Toyplane Sanitizer

Perc. Hash  76.8%  38.4% 41.2% 51.0%
Thumbs Up 46.3%  73.8% 54.9% 65.0%

Table 4: The percentage reduction in frames achieved by offload shaping.

fact been completed. After the next instruction is given, the application waits for a thumbs
up gesture again. We detected thumbs up gestures using MediaPipe, which can be run on
Google Glass [24]. The application can therefore detect thumbs up gestures locally, and then
it only has to send frames to the cloudlet after the user has indicated that a step has been
completed.

We recorded videos using a Google glass, of a user completing each of the tasks and
making a thumbs up gesture in between each step. We then processed these videos using
both strategies. The code for all of these measurements was run using a Google Glass.
Profiling information for both strategies is listed in Table 3, and the reductions in frames
sent to the cloudlet are listed in Table 4.

5.4 Running DNNs on the mobile device

Resnet 50 and EfficientDet can both be run on Android devices using TensorFlow Lite. This
enables us to carry out some or all of the computation on the mobile device instead of the
cloudlet. Inference time for a given DNN is going to be higher on a mobile device than a
cloudlet. For a given latency bound, a cloudlet can run a more accurate DNN than a mobile
device can. Therefore, we can run DNNs on the mobile device instead of the cloudlet, in
order to reduce bandwidth and cloudlet resource consumption at the cost of accuracy.

We experimented with running all computations on the Google Glass, as well as splitting
the cascade described in Section 5.1 across the mobile device and the cloudlet. In particular,
we ran the object detector on the mobile device and the image classifier on the cloudlet.
This allowed us to use Fast MPN-COV, which is not supported by PyTorch Mobile!. It also
presented a huge bandwidth savings compared to sending every frame in full. Our application
can crop images around the region of interest detected by the object detector, and just send
this cropped region to the server. In addition, the application can avoid sending images that
the detector does not find any instances of the object being assembled.

We examined all models and cascades of models that can be run on a Google Glass within
[3]’s tight and loose latency bounds. Table 5 lists the best possible accuracy when running all
computations on the cloudlet (mobile only) and running the object detector on the Google

Thttps://github.com/pytorch/pytorch /issues /22329



Stirling Meccano Toyplane Sanitizer

Mobile, tight 85.1% 75.2% 69.8% 87.9%
Mobile, loose 91.0%  75.2% 70.1% 89.1%
Split, tight  85.1%  82.0%  77.2%  87.9%
Split, loose 91.0%  82.0% 7. 7% 89.1%

The split implementations achieve accuracy much closer to the best-case fully-offloaded versions from
§ 5.1 than the mobile-only implementations.

Table 5: Best accuracy achieved for mobile-only and split computing implementations

Stirling Meccano Toyplane Sanitizer

79.2%  52.3% 86.8% 94.2%

Table 6: Bandwidth saved by sending only bounding boxes from EfficientDet-Lite0

Glass and the image classifier on the cloudlet (split). The bandwidth saved by transmitting
detected crops instead of full images is presented in Table 6. The Google Glass consumed
an average of 0.71 J to process one frame without offloading, and it consumed an average of
0.51 J to process one frame with the split implementation.

5.5 The Problem with DNN-only approaches

Matsubara et al [28] offer architectures to split the computation for a standalone object
detector or a standalone image classifier, between a mobile device and a cloudlet. However,
the output from the split object detector just contains the bounding box coordinates and
class labels for detected objects. There is no way for the server to obtain a crop from the
original image based on this output. In order to apply one of the above split architectures
to our cascade of models we face two choices. One choice is for our application to send the
entire image to the cloudlet along with the input to the tail of the object detector. The
other choice is for it to send the bounding box coordinates back to the mobile device, and
request the mobile device to send the cropped image in some form to run the classifier. The
first choice eliminates all of the bandwidth savings that split computing offers. The second
choice requires a second round trip to the mobile device, which increases end-to-end latency.

All of the strategies presented in this section offer significant savings in bandwidth, and
none of them require specialized ML knowledge to implement. We suggest that developers
follow our design strategy, and consider a broad range of EE and SC options, rather than
focusing entirely on splitting computation using a single DNN.

6 Conclusion
While we commend and appreciate the recent interest in split computing in the ML, commu-

nity, we believe a purely ML approach is overly limiting. It leaves out many non-ML based
optimization opportunities, and requires expertise in DNN architecture design. In contrast,



we propose (and demonstrate with a case study) a design strategy tailored to ML practition-
ers and system integrators rather than DNN researchers. It leverages off-the-shelf DNNs,
application-specific training, various non-DNN early discard techniques, but needs no new
DNN architectures or network surgery. We believe this is the most practical approach to
producing edge-native applications on mobile devices — i.e., those that are simultaneously
compute-, bandwidth-, and latency-sensitive [36].
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