Realizing value in shared compute infrastructures

Andrew Chung

CMU-CS-22-151
December 2022

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Gregory R. Ganger, Chair
Phillip B. Gibbons
George Amvrosiadis
Carlo Curino (Microsoft)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2022 Andrew Chung

This research was sponsored by Intel ISTC-CC. Additional support was provided by Microsoft and members and
companies of the PDL Consortium (Alibaba, Amazon, Google, HPE, Hitachi, IBM, Intel, Meta, NetApp, Oracle,
Pure, Salesforce, Samsung, Seagate, Two Sigma, and Western Digital).

The views and conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of any sponsoring institution, the U.S. government or
any other entity.

Keywords: Cluster Scheduling, Resource Management, Cloud Computing

For my family.

v

Abstract

As company operations become increasingly digitized, the demand to process data
efficiently and cost-effectively has been ever-growing. More and more companies
are therefore moving their workloads off of dedicated, silo-ed clusters in favor of
more cost-efficient, shared data infrastructures, e.g., public and private clouds. These
shared data infrastructures are often deployed on highly heterogeneous servers, are
multi-tenant with server resources shared across multiple organizations, and serve
widely diverse workloads ranging from batch analytics jobs to consumer-facing
services with stringent service level objectives (SLOs). Both users and operators of
such shared data infrastructures strive to optimize for value. Users look to complete
their tasks in an efficient and timely manner without having to pay large amounts of
money, while operators seek to satisfy the demands of their customers to increase
adoption and lower turnover, all the while without sacrificing cluster operation costs
and overhead.

This dissertation presents two case studies that allows users to improve value-
attainment when running their workloads in shared data infrastructures in Tributary
and Stratus. Tributary is an elastic control system that embraces the uncertain nature of
transient cloud resources to manage elastic long-running services with latency SLOs
more robustly and more cost-effectively. Stratus is a cluster scheduler specialized for
orchestrating batch job execution on virtual clusters focusing primarily on dollar cost
considerations: since resources in virtual clusters are charged-for while allocated,
Stratus aggressively packs tasks onto machines, guided by job run time estimates,
such that allocated resources remain highly utilized.

This dissertation presents two more case studies that allow cluster operators to
attain value in Wing and Talon. Inter-job dependencies pervade today’s shared data
infrastructures, yet are often invisible to cluster schedulers. The Wing dependency
profiler analyzes job and data provenance logs to find hidden inter-job dependencies,
characterizes them, and provides improved guidance to cluster schedulers and work-
flow managers to help users attain more value. Talon is one such workflow manager
that uses information provided by Wing to load-shift batch analytics jobs to off-peak
hours, thereby allowing cluster operators to save on infrastructure operation costs
through reduced machines managed and usage of lower-cost, transient resources from
the cloud.

vi

Acknowledgments

I have gotten help from so many people along my 6.5 year (wow) journey at
CMU, and I could not have completed my degree without each and every one of them.
While there is certainly no way to fully express my gratitude, here, I wish to express
my thanks, however inadequately, to those who helped me along the way.

First, I would like to thank my advisor Greg Ganger. Greg has helped me grow
both as a systems researcher and as a person. I’'m always surprised by how Greg can
quickly cut to the core of research problems, identify potential issues and bottlenecks,
and provide insights that immensely improve the quality of our research projects.
Throughout my study, Greg has always been patient and supportive even when I
ramble on incoherently about my research findings. Having him as my advisor is one
of the best decisions I have ever made.

Next, I would like to thank Carlo Curino and Subru Krishnan, my mentors at
Microsoft Gray Systems Lab (GSL). Not only are Carlo and Subru always helpful
and supportive in guiding me in my research, working with them also provided me a
grounded view of real systems operating at scale in industry. Even prior to starting
my Ph.D. studies, resource management papers from GSL always fascinated and
inspired me, and getting to work with Carlo and Subru was really a dream come true.

I’'m grateful to Phil and George for joining my thesis committee, for helping me
out with my Speaking and Writing skills requirements, and for giving me insightful
feedback on my research throughout the years. It was also a pleasure to work with
them as a TA in 15-712 and 15-719, and I will miss our grading parties.

I have been very fortunate to have opportunities to collaborate with excellent
fellow students and colleagues throughout my period at CMU. Aaron Harlap has
been one of my closest collaborators throughout my studies, and I am thankful to
him and Alexey Tumanov for kick-starting my research career by on-boarding me
to the Proteus project. Aaron’s dry humor and the many nights we spent in CIC
trying to make paper deadlines will sorely be missed. I also thank Jun Woo Park for
introducing me to the cluster scheduling project, for helping me with job run time
predictions on the Stratus project, and for the brainstorming sessions we’ve had on
how to improve scheduling “goodness.”

The Parallel Data Lab (PDL) has been a supremely nuturing environment for me
as an early-career researcher, and I am grateful to all the faculty, staff, and students
who contribute to keep the lab running smoothly. The feedback and inspiration we get
from weekly meeting presentations and conversations with industry guests at the PDL
retreat and Spring Visit days have all been invaluable to my growth as a researcher.

Specifically, I would like to thank PDL faculty members Majd Sakr, Andy Pavlo,
David O’Hallaron, Garth Gibson, and David Andersen for the feedback they’ve
provided to help me improve my research projects and presentation skills. I would
also like to thank fellow PDL student members Michael Kuchnik, Rajat Kateja,
Angela Jiang, Jack Kosaian, Daniel Wong, Abutalib Aghayev, Saurabh Kadekodi,
Hojin Park, Sara McAllister, Lin Ma, Ziqiang Feng, Henggang Cui, Jinliang Wei,
and Huanchen Zhang for the conversations (research or otherwise) and camaraderie.

To the newer PDL students (2020 onwards), I regret that I haven’t had too many
opportunities to interact with you due to the COVID-19 pandemic and my starting a
full-time job, but I hope to cross paths with you some time in the future.

Of course, my time at CMU would not have been so great without staff members
who are amazingly helpful and supportive. I’'m grateful to Karen Lindenfelser and
Bill Courtright for handling all the administrative tasks, organizing the many PDL
events we’ve had throughout the years, and for making life as a PDL student much
more enjoyable. I thank Debbie Cavlovich for helping me navigate through Ph.D.
requirements such as scheduling my thesis proposal and defense, and for generally
making life as a student in CS easier. I would also like to thank Joan Digney for
making pretty posters for me at conferences and retreats, and Chad Dougherty, Jason
Boles, and Mitch Franzos for dealing with technical equipment set-ups at retreats
and helping me with questions on PDL clusters and running experiments for Proteus,
Tributary, and Stratus.

I also want to thank the members and companies of the PDL Consortium, includ-
ing Alibaba, Amazon, Datrium, Dell EMC, Facebook, Google, Hewlett Packard Labs,
Hitachi, IBM Research, Intel Corporation, Micron, Microsoft Research, NetApp,
Oracle Corporation, Samsung, Seagate Technology, Two Sigma, Veritas, and Western
Digital for their interest, insights, feedback, and support for my research.

In 2020, I’ve gone the ABD route and began full-time remote work at Microsoft
on the Cosmos Resource Management team. I’m especially grateful to my manager
Fabio Valbuena, who I understand must have put enormous amounts of trust in me
to finish my studies and to produce quality work for the team, all while allowing me
to work remotely. I would also like to thank my former managers and mentors at
Microsoft prior to starting my Ph.D. studies: Markus Weimer, Zhong Chen, Jaliya
Ekanayake, Beysim Sezgin, and Clemens Szyperski, all of whom have encouraged
and supported me to work on my Ph.D. degree.

I could not have possibly completed my studies without the support of my friends
outside of PDL and CS academia: Roger Lo, Peter Chang, David Liu, Dino Wu,
Danli Luo, Dian Yu, Vincent Chung, Xiaoliang Li, Quanyang Lu, Kuai-Kuai Jin,
Kenneth Jeng, Anya Yu, Ruixuan Liu, Henry Zhang, Derek Liu, James Chien, Joseph
Fan, Darren Chin, Cathy Cheng, and I-Ta Yang, thank you for all the great times.

More importantly, I would like to thank my wife, Yanran Yang, who has been
with me through all my highs and lows, and who is always there for me when I need
it most. Thank you Yanran, without you none of this would have been possible.

Finally, I'm eternally grateful to my family, who have provided me with uncondi-
tional love and support. Thank you for everything.

viil

Contents

{2 Tributary: Spot-dancing for elastic services with latency SLOs|

2.1 Background and related work| oL

D11

laaS instance types and contracts|. L.

R.12

Cloud resource acquisition schemes|

2.2 Elastic control in Tributary|

221 Predictionmodels

222 AcquireMegr. L

R2.3

Scalingout|

n24

Scalingn| Lo

P25

Example and future consideration|

2.3 Tributary Implementation| L.

D41

Expertmental setup| oo

42

Scaling policies evaluated|

P43

Improvements with Tributary|. 0.

R44

Risk mitigation| L

D45

Pricing model discussion| oo L Lo

D46

Comparing to state of theart)

2.5 Summary|

3 Stratus: Cost-aware container scheduling in the public cloud|

[3.1 Background and related work|

ix

10
11
12
13
16
18
18
18
20
20
21
21
24
24
25
26
26

[3.3 Experimental setup|o 40
B3I Environmentl 41
3.32 Workload tracesl. 41
[3.3.3 Approaches evaluated|, 42

[3.4 Experimentalresults| 43

-of-the-artl 44

3.4.2 Benefit attribution: SCloud to Stratusl 47

[3.4.3 Attribution: Dynamic instance pricing| L. 48

[3.4.4 Sensitivity to runtime estimate accuracy| 49

[3.5 Summary| 52

[4 Unearthing inter-job dependencies for better cluster scheduling| 53

.1 Hidden inter-job dependencies in Cosmos| 55
M1 Cosmos| o o 55
4.1.2 Inter-jobdependencies| Lo L oL 57
“4.1.3 Observations on inter-job dependencies| 57
4.1.4 Limitations| L 59

4.2 Inter-job dependency predictability|o oL 59
4.2.1 Predictionmodell oo 59
4.2.2 Predictability evaluation|, 60

4.3 The Wing dependency profiler] 61
4.3.1 Archi TEl. o e 62
“4.3.2 The Wing pipeline: Single-hop analysis| 63
4.3.3 Motivating multi-hop analysis: Job valuation using aggregate downloads| 64
4.3.4 The Wing pipeline: Multi-hop analyses| 67
4.3.5 Job value aggregation with Wing|. 68

4.4 Wing-Agg: Inter-job value schedulingl 71

4.5 Experimental setup| 71
4.5.1 Simulationsetup| 72
4.5.2 Evaluated scheduling policies| 73
4.5.3 Workload and predictor descriptions| L. 74

4.6 Experimentalresults| 75
4.6.1 Benefitsof Wing gwidance| oo oL 76
4.6.2 Sensitivity and ablation studies|.o 77
4.6.3 Cluster-wide queue and value metrics| 79

.7 Owl: Visualizing inter-job dependencies and job impact in shared clusters| 80
4.7.1 Visualizing iter-job dependencies| oL 81
4.7.2 Visualizingjobimpact] L oL L 83
W73 Summary| e e e 85

4.8 Relatedworkl 85

4.9 Summary| e 87

[Talon: Reducing costs with dependency-informed Ioad-shifting] 89

[5.1 Background 91
1.1 _Reser nd transient r rcesinAzurelo 91

[5.1.2 Load-shifting to reduce reserved resource commitment| 91

5.2 Talonoverviewl 92
[5.2.1 Load-shifting via inter-job dependencies|. 92
[5.2.2 Architecture and job lifecycle| 92
[5.2.3 Operatingmodes| 94

[5.3 Talon analyzer: Finding load-shiftable jobs| 94
[5.3.1 The Wing pipeline: Identifying recurring job candidates for load-shifting] 94
[5.3.2 Advanceablejobs|o L 94

[5.3.3 Workload advanceability| 95
[5.3.4 Delayable jobs and workload delayability| 96

[5.3.5 Load-shifting correctness and flexibility| 97

[5.4 Talon’s load-shifting approach: Job placement, admission, and scheduling| 97
[5.4.1 Jobplacementpolicy| 98
[5.4.2 Jobadmissionpolicy| o 100
[5.4.3 Actual schedulingmode| 102

[5.5 Experimental setup| 102
[5.5.1 Cosmos, Azure, and our workload| 102
[5.5.2 Simulationsetup| 104
[5.5.3 Compared load-shifting approaches| 105
0.5.4 Evaluation metrics and costmodels| o oL 106

[5.6 Experimental results| o 107
1 Talon -of-the-art] 107

0.6.2 Attributionof benefits|o L o 111

[5.6.3 Sensitivity analyses|. L Lo 113

0.7 Relatedworkl 115
[5.8 Summary| 116
[6_Conclusion and future directions| 117
6.1 Conclusionl 117
6.2 Future directions| L 118
[6.2.1 Cost-efficient resource acquisition mixed job types| 118
[6.2.2 Dynamic dependency-aware value scheduling/ 118

[6.2.3 Better metrics for job value/utility| 000, 118
[6.2.4 Better predictions of time-to-outputusage| 119

[6.2.5 Other cost-aware load-shifting applications| 119
Bibliography 121

X1

Xii

List of Figures

2.1 Figures (b) and (c)) show how Tributary and AutoScale handle a sample workload

respectively. Figure (a)) is the Tegend for (b)) and (c]), color-coding each allocation.

The black dotted Tines in (b) and (c) signify the request rates over time. At

minute 15, the request rate unexpectedly spikes and AutoScale experiences “slow”

requests until completing integration of additional resources with 5. Tributary,

meanwhile, had extra resources meant to address preemption risk in C, providing

a natural buffer of resources that 1s able to avoid “slow” requests during the spike.

At minute 35, when the request rate decreases, Tributary terminates B, since

1t believes that B has the lowest probability of getting the free partial hour. It

does not terminate D since it has a high probability of eviction and 1s likely to be

free; 1t also does not terminate C since 1t needs to maintain resources. AutoScale,

on the other hand, terminates both 2 and 5, incurring partial cost. At minute

52, the request rate increases and Tributary again benefits from the extra buffer

while AutoScale misses its latency SLO. In this example, Tributary has less “slow”

requests and achieves lower cost than AutoScale because AutoScale pays for 5

and for the partial hour for both / and 2 while Tributary only pays for A and the

partial hour for B since C and D were preempted and incurnocost. |

2.2 Tributary architecture. |
[2.3 Traces used in system evaluation. |

[2.4 Cost savings (red) and percentage of “slow” requests (blue) for the ClarkNet trace. | 22

[2.5 Comparing to ExoSphere and Proteus. Predictive-MWA results not shown but

stmilar. | e e

23

[2.6 Accuracies and F; scores (accounts for data skew) for predicting preemption of

AWS spot mstances. The LSTM RNN outperforms prior techniques (blue bar) by

11% on the accuracy metric and 27% on the 7 score metric. [.

27

[3.2 Toy example showing how runtime binning works with the scheduling of tasks

on to an 1nstance over time (Subfigures [aHc]). This simple example assumes all

tasks are uniformly sized, and that the instance can hold four tasks in total. The

solid gray box outlines the instance. Runtime bins are color-coded (e.g., blue and

red represent bins [16, 32) and [8, 16), respectively). Bars inside the instance

represent tasks assigned to 1t. Task bars are color-coded to the bins they are

assigned to. The dotted box shows the runtime bin that the instance assigned to. |

Xiii

36

B4

Average daily cost for each VC scheduler on the Google and TwoSigma workloads,

normalized to the most costly option for the given trace. Stratus reduces the cost

of other schedulers by at least 17% 1n both traces. |.

44

B3

Constraining resource utilization (VCores for Google and memory for TwoSigma)

36

Break-down of Stratus’s cost savings over SCloud (44 % for Google and 17% for

‘TwoSigma). The cost of running workloads reduces as Stratus features are added

to SCloud, starting with features from left to right (on-line packing to runtime

binning). The closer to zero, the smaller the cost difference between SCloud and

SratusS. | e e e e e

37

Average daily cost for each VC scheduler on the Google and TwoSigma workloads,

using only on-demand VMs, normalized to the most costly option for each trace. |

49

B3

Experiments varying the degree of runtime estimate error in completing jobs

from traces. Each experiment consists of tasks with runtime estimates set to

runtime * h.,, where h, is uniformly sampled from |h, 1) if ~ < 1 and from |1, h|

A>T e

A1

Data lake overview. Different jobs submitted by different organizations share

the same compute infrastructure and read (R) and write (W) to the same storage

system, thereby creating inter-job dependencies as jobs consume the output of

other jobs. e.g., Job 2 (from Org 2) reads a file written by Job 1, so Job 2 depends

onJob 1. | e

A2

(TT) precision-recall tradeoff. Predictor shows the precision-recall tradeoff our

dependency-based job arrival predictor makes. Each point on the curve specifies a

different setting for the prediction threshold (7). As tr — 100% (more selective),

a larger fraction of predictions are relevant (more precision), but less relevant jobs

are captured 1n total (lessrecall). |.

61

A3

(T2) Time-to-dependency (T'TD) prediction. This figure shows our predictor’s

performance on predicting TTD from the submission time of the upstream job, at

different settings of ¢ in a CDFE. [is the forecasted TTD, and a 1s the actual TTD.

While being more precise (17 — 100) does not yield better TTD predictions, 1t

does affect predictions on whether or not a job will arrive. |

4.4

Wing architecture. A workflow manager periodically submits Wing’s pipeline

to Cosmos. Upon pipeline completion, results of its analyses are loaded in

to WingStore, which informs Wing-guided schedulers (§4.5.2) with job and

dependency characteristics. |

X1V

4.5 Value aggregation and value decay. In this toy example, jobs A—/ are submitted |
at strict, absolute times, where the x-axis denotes time relative to the submission |
of job A. 5 and C have hard dependencies on A, and D and £ have hard |
dependencies on C. The aggregate value of A 1s the sum of the aggregate values |
of 5 and C and A’s own job-local value. With Wing, we can model how the |

|
|
|
|

aggregate value of A decays as 1t fails to complete by the time 1ts downstream
jobs arrive, losing the value of 5 at the time of 55’s submission, and collectively
losing the values of C', D, and F at the time of C”s submission (/) and £/ depend
indirectly on A through C, so if C' fails, D and £ will also fail). In this example,
A retains its job-local value until theend. | 66

4.6 Aggregate value convergence. This figure shows the fraction of average aggre- |
| gate job value uncovered downstream 1n each iteration of our value aggregation |
| algorithm. 99% of aggregate value 1s discovered within four iterations. | 70

4.7 Cluster utilization. This figure shows the job-requested and total resource |

4.8 Distribution of job value. This figure shows the distributions of job-local value |
| and aggregate job value, along with a Zipfian distribution fitted to job-local value. |
| The distribution of job value deviates from Zipfian at lower job rankings.| 74

4.9 Value efficiency prediction. This figure shows the CDF of our predictor’s |
[performance on predicting the value efficiency and aggregate value efficiency of |
[recurring Jobs. | L e 75

4.10 Benefits of Wing guidance. This figure shows the value attained for each schedul- |
| ing policy, normalized to total value achievable. Wing-guidance (exemplified in |
| Wing-Agg and Wing-MIL) 1s significantly beneficial at constrained capacities. | . 76

4.11 Benefits of aggregate job value. Aggregate (corresponding to aggregate download- |
| aware) vs Job-local (corresponding to direct download aware only) bars show the |
| benefits of aggregate value, compared to only scheduling based on job-local value. |
| The solid portion of the bars show the benefits of Oracle knowledge. |. 78

.12 Benefits of Wing-guidance with a cluster-wide queue. This figure shows the
value attained for policies from 60-20% cluster capacities in a cluster with a
merged cluster-wide queue. All policies complete all jobs at 60% capacity. Wing-
guidance (exemplified by Wing-Agg) 1s increasingly beneficial at lower capacities.
The solid portion of the bars show the benefits of Oracle knowledge. |. 80

4.13 Workflow graph Shows the job dependency structure within a workflow. |

‘ Allows users to identify important jobs by auto-sizing job vertices with |
| respect to job execution attributes such as CPU-time (depicted).| 82

.14 Recurring Job dependency graph Displays the target recurring job (center) |
| and 1ts upstream (left) and downstream (right) recurring jobs. Hovering over an |
| upstream/downstream link shows statistics of the dependency.| 83

XV

.15 Job utility function graph Shows the value (score) of a job as a function of

time-from-submission. The score displayed 1s normalized to the score of the most

valuable job 1n the hierarchical queue. The red line displays the utility function

of the user-selected job, while the gray lines represent utility functions of other

instances of the same recurring job. The blue line sketches the average score over

time of the recurringjob. | L oL

4.16 Interactive Sankey graph Shows how downstream jobs contribute value up-

stream. Each vertex 1s a job, with the height of the vertex representing relative

job value. Hovering over a job displays its name and value The root job (left)

represents the user-selected job. Clicking on leaf jobs (right) expands the graph

[5.1 Talon architecture and job lifecycle. Talon acts as an intermediary between users

and the virtual cluster consisting of reserved and transient resources. Recurring

jobs are registered via job instance creators with Talon for load-shifting. As

jobs become ready to run, Talon works with the virtual cluster resource manager

to determine when and how best to submit queued jobs via its placement and

admissionpolicies. |

[5.3 Job run time prediction error. This figure shows the probability mass function

of the prediction error of our median based recurring job run time predictor. Here,

error = (predicted — actual) /actual * 100. 60% of predictions fall within £20%. | 97

[5.4 Normalized job time to output usage distribution. This figure shows the

distribution of time to output usage (I'TOU) of recurring jobs normalized against

the median TTOU of jobs of the same template. Much of the distribution lies

toward the two tails, making accurate predictions of TTOU difficult. |.

[5.5 Harvest VM time to preemption. This figure shows the time to preemption of

Harvest VMs. Nearly half of all Harvest VMs live for > a day, and more than

10% of Harvest VMs livefor >aweek. |

[5.6 Workload traces. This figure shows the normalized resource usage of our

workload, along side a scaled resource availability of Harvest VMs. |

[5.7 Comparison against state-of-the-art (CM1). This figure shows the performance

of Talon against compared scheduling policies (85.5.3). Blue bars represent

reserved resource peak relative to TRADITIONAL (y-axis to the left) and red bars

represent job deadline violation rate (y-axis to the right). Lower 1s better for

both types of bars. TRADITIONAL’s peak 1s 100% relative to itself and achieves

0 deadline violations. GHDP and GHDP-R+TAdyv attain lower peaks vs Talon,

but also incurs more job deadline violations. Task replication (GHDP-R and

GHDP-R+TAdv) on transient resources significantly reduces deadline violations,

but incurs higher reserved resource peak. Talon balances reserved resource peak

xXvi

538

Costs of using reserved contracts in Azure (CM2). This figure shows the costs

and job deadline violation rates of compared policies operating using Reserved

VMs and Harvest VMs 1n Azure as reserved and transient resources, respectively.

[We find that cost results are consistent to that observed in CM1: GHDP incurs |

the least cost but the most deadline violations, GHDP-R reduces the deadline

violations of GHDP at more cost, while Talon strikes a balance between both,

costing 31% less than TRADITIONAL while maintaining a low number of deadline

violations. | e e e

59

Costs of using pay-as-you-go contracts in Azure (CM3). This figure shows the

costs and job deadline violation rates of compared policies using On-Demand

reliable VMs and Harvest VMSs 1in Azure as “‘reserved’ and transient resources,

respectively. While Talon under-performs GHDP-R other policies in cost under

CM3, 1t robustly handles bulk transient resource preemptions, allowing it to

achieve lower rates of job deadline violations. |.

111

5.10

Progression results. This figure shows the progression of features we evaluate

that lead us to Talon. REP, a load-shifting approach that runs jobs on transient

resources with replicas, incurs a higher reserved resource usage peak. Enhancing

REP with the ability to delay jobs (REP+delay) does not help much to reduce

reserved resource capacity, as opportunities to delay jobs are limited (§5.3.4).

Talon’s exploitation of job advancement opportunities reduces reserved resource

511

Sensitivity of results to Talon parameters. This figure explores how Talon’s

tunable parameters ¢ and p affect reserved resource usage peak relative to that of

TRADITIONAL. Lighter colors (lower value) are better. The gold-outlined box

(t = 2 and p = 1) refer to our primary experiment settings. Keeping p constant,

setting ¢ = 2 and ¢ = 3 yield the highest reliable resource peak reduction. Keeping

t constant, a lower p yields lowerpeaks. |.,

Xvil

114

XViil

List of Tables

2.1 Summary of parameters used by AcquuireMer| L. 14
[2.2 Cost and “‘slow” request improvements for Tributary compared to AutoScale for |
[the WITS tracel. 23
[3. Summaryoftermsused.| 40
[3.2 The resource capacity of each instance type. | 41

[3.3 The normalized job latencies for each evaluated VC scheduler. Schedulers that |
| pack continuously (Stratus and Fleet) incur lower job latencies than those that do |
| not (HSpot, SCloud) when jobs are short and small (Google). | 46

[3.4 Normalized job latencies for valuesof A (§3.4.4). 51

4.1 Summary of and heuristics to identify and characterize job and dependency |
[types. | e e 56

XiX

XX

Chapter 1

Introduction

As business operations become increasingly digitized and as data processing tasks become more
and more specialized with the proliferation of various types of data applications, companies are
moving their workloads off of dedicated, siloed clusters in favor of more cost-efficient shared
data infrastructures, e.g., public and private clouds. These shared data infrastructures are often
deployed on highly heterogeneous servers, are multi-tenant with server resources shared across
multiple organizations, and serve widely diverse workloads ranging from batch analytics jobs to
consumer-facing services with stringent service level objectives (SLOs).

Both users and operators of such shared data infrastructures strive to optimize for value.
Operators seek to increase profit margins by lowering infrastructure management costs while
satisfying the demands of their customers (i.e., help users maximize their value) to increase
adoption and lower turnover. At the same time, users look to complete their tasks in an efficient
and timely manner without having to pay large amounts of money.

But, the highly heterogeneous nature of these shared environments imposes a high barrier
to value attainment for both users and cluster operators: Users are offered a wide variety of
different types of compute resources, making it difficult for them to make value-efficient resource
acquisition decisions for their applications, given application constraints. Operators, on the other
hand, face difficult challenges in knowing how to assign compute resources to customers when
heavily loaded. Indeed, maximizing value in shared data infrastructures necessarily requires effort
from both operators and users.

This dissertation explores the problem of value attainment in shared data infrastructures
from both the perspectives of users and cluster operators. On the user front, our work proposes
and evaluates two resource acquisition strategies and systems for renting virtual machine (VM)
instances in the public cloud: (1) Tributary [69] for running online services and (2) Stratus [34],
for general batch analytics jobs. Both demonstrate significant cost savings for users for their
respective application category.

On the operator front, this dissertation explores using the notions of historic inter-job depen-
dencies and expected job value/utility to inform cluster resource managers and workflow managers
about upcoming jobs, their resource requirements, and the potential value they generate to users.
Historically, cluster resource managers and cluster operators are scarcely aware of how jobs are
inter-dependent on one-another. Our series of work in Owl [35], Wing [36]], and Talon enable
cluster resource managers and workflow managers to use inter-job dependencies to effectively and

cost-efficiently allocate cluster resources to jobs to help users attain more value, while helping
cluster operators reduce cluster operation costs.

1.1 Thesis statement

This dissertation describes our work in addressing the challenges of attaining value in shared data
infrastructures. In particular, this dissertation examines our work done to support the following
thesis statement:

Value-realized in shared data environments can be improved both by cost- and heterogeneity-aware
applications from users and by value- and dependency-aware resource management systems from
cluster operators.

To support this thesis, this dissertation will describe four case studies in research software
systems, two of which improve value realized through user applications, and two of which improve
value realized through more effective resource management by exploiting inter-job dependencies.
Realizing value through user applications. This dissertation first describes two case studies that
allow users to realize value through cost savings in running their applications in the public cloud
without significantly impacting their applications’ performance:

(i) Tributary: Spot-dancing for elastic services with latency SLOs (Chapter 2)). Aimed
towards the management of elastic cloud services with latency SLOs, the Tributary elastic
control system embraces the uncertain nature of transient cloud resources, e.g., AWS spot
instances, to manage services more robustly and more cost-effectively. Such transient
resources are available at lower cost, but with the proviso that they can be preempted en
masse, making them risky to rely upon for long-running services. Tributary creates models
of preemption likelihood and exploits the partial independence among different resource
offerings, selecting resource allocations that satisfy SLO requirements and adjusting them
over time, as client workloads change. Over a range of web service workloads, we find
that Tributary reduces cost for achieving a given SLO by 81-86% compared to traditional
scaling on non-preemptible resources, and by 47-62% compared to the high-risk approach
of the same scaling with spot resources.

(ii) Stratus: Cost-aware container scheduling in the public cloud (Chapter 3). Aimed
towards general batch analytics jobs, Stratus is a scheduler specialized for orchestrating
job execution on virtual clusters, or dynamically allocated collections of virtual machine
instances on public [aaS platforms. Unlike schedulers for conventional clusters, Stratus
focuses on dollar cost considerations, since public clouds provide effectively unlimited,
highly heterogeneous resources allocated on demand. But, since resources are charged-for
while allocated, Stratus aggressively packs tasks onto machines, guided by job runtime
estimates, trying to make allocated resources be either mostly full (highly utilized) or empty
(so they can be released to save money). Simulation experiments based on cluster workload
traces from Google and TwoSigma show that Stratus reduces cost by 17-44% compared to
state-of-the-art approaches to virtual cluster scheduling.

Realizing value through dependency-aware resource management. This dissertation describes
two other pieces of research in software systems that demonstrate opportunities for cluster opera-
tors and resource managers to realize value through analyses of historical inter-job dependencies,
using the analysis to effectively prioritize and load-shift jobs in the setting of large, multi-tenant
corporate clusters (Microsoft Cosmos).

(i) Wing: Unearthing inter-job dependencies for better cluster scheduling (Chapter 4). Inter-
job dependencies pervade shared data analytics infrastructures (so-called “data lakes™), as
jobs read output files written by previous jobs, yet are often invisible to current cluster
schedulers. Jobs are submitted one-by-one, without indicating dependencies, and the
scheduler considers them independently based on priority, fairness, etc. This work analyzes
inter-job dependencies in a 50k+ node analytics cluster at Microsoft, based on job and data
provenance logs, finding that nearly 80% of all jobs depend on at least one other job. The
Wing dependency profiler analyzes job and data provenance logs to find hidden inter-job
dependencies, characterizes them, and provides improved guidance to cluster schedulers
or users via Owl (§4.7), a tool for visualizing Wing output. Specifically, for the 68% of
jobs that exhibit their dependencies in a recurring fashion, Wing predicts the impact of a
pending job on subsequent jobs and user downloads, and uses that information to refine
valuation of that job by the scheduler. In simulations driven by real job logs, we find that a
traditional YARN scheduler that uses Wing-provided valuations in place of user-specified
priorities extracts more value (in terms of successful dependent jobs and user downloads)
from a heavily-loaded cluster.

(ii) Talon: Reducing costs with dependency-informed load-shifting (Chapter 5). In shared
data environments such as public clouds, organizations often reserve long-term, guaranteed
compute resources proportional to their peak workload to ensure enough capacity to com-
plete their jobs on time. However, such reserved capacity is often expensive and requires
long-term commitment. Thus, careful capacity planning is warranted to lower cost.

Talon is a novel workflow management service that lowers long-term reserved resource
commitment by exploiting two components prevalent in shared data environments: (1) inter-
Jjob dependencies derived from historical job and input and output dataflow relations and
(2) intermittently-available transient resources that are often available at lower or no cost
in shared clusters to increase cluster resource utilization, with the proviso that they can be
preempted by cluster resource managers at any time with little warning.

Talon’s analyses of historical job dependencies and other job properties allow it to safely
load-shift jobs off-peak and more reliably schedule jobs on transient resources to reduce
reserved resource commitment without violating job input requirements or job deadlines. In
simulation experiments driven by real job logs from a production cluster at Microsoft, we
find that Talon can effectively reduce reserved resource commitment by up to 38% compared
to the traditional approach of reserving enough resources to handle peak workload, while
incurring only minimal job deadline violations.

1.2 Contributions

This dissertation makes the following key contributions:

1.3

Tributary:

Describes the first resource acquisition system that takes advantage of preemptible cloud
resources for elastic services with latency SLOs.

Introduces algorithms for composing resource collections of preemptible resources cost-
effectively, exploiting the partial refund model of EC2’s spot markets.

Introduces a new preemption prediction approach that our experiments with EC2 spot
market price traces show is significantly more accurate than previous preemption predictors.
Shows that Tributary’s approach yields significant cost savings and robustness benefits
relative to other state-of-the-art approaches.

Stratus:

Identifies the unique mix of characteristics that indicate a role for a new job scheduler
specialized for virtual clusters (VCs).

Describes how runtime-conscious packing can be used to minimize under-utilization of
rented instances and techniques for making it work well in practice, including with imperfect
runtime predictions.

Exposes the inter-dependence of packing decisions and instance type selection, showing the
dollar cost benefits of co-determining them.

Describes a batch-job scheduler (Stratus) using novel packing and instance acquisition
policies, and demonstrates the effectiveness of its policies with trace-driven simulations of
two large-scale, real-world cluster workloads.

Wing:

Presents the first detailed public study of hidden inter-job dependencies in a large-scale data
analytics cluster, revealing important problems and opportunities.

Describes a novel system for extracting historical inter-job dependencies from provenance
data, at scale, and predicting the impact of a newly-submitted job on future jobs and users.
Shows that use of such predictions can allow a modern scheduler, with minimal changes, to
better serve the overall workload by prioritizing the highest-impact jobs.

Talon:

Presents the first study of batch analytics job load-shiftability based on real-world job
input dependencies in a large data analytics cluster, presenting significant opportunities for
optimizing batch analytics job scheduling.

Presents methods to identify jobs that are load-shiftable using inter-job dependencies and
job output access logs.

Proposes Talon, a novel job workflow manager that exploits job load-shiftability and low-
cost-low-reliability cloud resources to reduce the workload peak on reserved resources.

Outline

The remainder of this dissertation is organized as follows. We start with describing our work in
realizing value in shared compute environments. describes Tributary [69], our elastic
control system that robustly and cost-effectively acquires resources for latency-sensitive, SLO-
aware services. describes Stratus [34]], our specialized scheduler that orchestrates batch

4

analytics job execution in public clouds by focusing on dollar-cost considerations.

This dissertation then describes our work in realizing value through dependency-aware re-
source management. characterizes inter-job dependencies as observed in Cosmos
and describes Wing and Owl, our systems for extracting historical inter-job dependencies from
provenance data, and how Wing and Owl can be used to guide cluster schedulers and users to
realize more value. describes a workflow management system that exploits job load-
shifting with inter-job dependencies in-tandem with intermittently available transient resources to
minimize long-term cluster resource commitment in shared cluster capacity planning. Finally,
wraps up the dissertation and discusses future research directions.

Chapter 2

Tributary: Spot-dancing for elastic services
with latency SLOs

One of the most straightforward ways to increase value realized of user applications run in shared
compute environments is to reduce users’ costs of running their applications without significantly
impacting application performance. This chapter focuses on our work on Tributary [69]], an elastic
control system that effectively reduces cost for users running elastic web services in public clouds,
with minimal impact on SLO attainment.

Elastic web services have been a cloud computing staple from the beginning, adaptively
scaling the number of machines used over time based on time-varying client workloads. Generally,
an adaptive scaling policy seeks to use just the number of machines required to achieve its
Service Level Objectives (SLOs), which are commonly focused on response latency and ensuring
that a given percentage (e.g., 95%) of requests are responded to in under a given amount of
time [70, 82]. Too many machines results in unnecessary cost, and too few results in excess
customer dissatisfaction. As such, much research and development has focused on doing this
well [50, 51} 58 88, [115]].

Elastic service scaling schemes generally assume independent and infrequent failures, which
is a relatively safe assumption for high-priority allocations in private clouds and non-preemptible
allocations in public clouds (e.g., on-demand instances in AWS EC2 [10]). This assumption
enables scaling schemes to focus on client workload and server responsiveness variations in
determining changes to the number of machines needed to meet SLOs.

Modern clouds also offer transient, preemptible resources (e.g., EC2 Spot Instances [11])
at a discount of 70-80% [3], creating an opportunity for cheaper service deployments. But,
simply using standard scaling schemes fails to address the risks associated with such resources.
Namely, preemptions should be expected to be more frequent than failures and, more importantly,
preemptions often occur in bulk. Akin to co-occurring failures, bulk preemptions can cause
traditional scaling schemes to have sizable gaps in SLO attainment.

We describe Tributary, a new elastic control system that exploits transient, preemptible
resources to reduce cost and increase robustness to unexpected workload bursts. Tributary
explicitly recognizes the bulk preemption risk, and it exploits the fact that preemptions are often
not highly correlated across different pools of resources in heterogeneous clouds. For example, in
AWS EC2, there is a separate spot market for each instance type in each availability zone, and

7

researchers have noted that they often move independently: while preemptions within each spot
market are correlated, across spot markets they are not [68]]. To safely use preemptible resources,
Tributary acquires collections of resources drawn from multiple pools, modified as resource prices
change and preemptions occur, while endeavoring to ensure that no single bulk preemption would
cause SLO violation. We refer to this dynamic use of multiple preemptible resource pools as
spot-dancing.

AcquireMgr is Tributary’s component that decides the resource collection’s makeup. It
works with any traditional scaling policy that determines (reactively or predictively) how many
cores or machines are needed for each successive period of time, based on client load variation.
AcquireMgr decides which instances will provide sufficient likelihood of meeting each time
period’s target at the lowest expected cost. Its probabilistic algorithm combines resource cost and
preemption probability predictions for each pool to decide how many resources to include from
each pool, and at what price to bid for any new resources (relative to the current market price).
Given that a preemption occurs when a market’s spot price exceeds the bid price given at resource
acquisition time, AcquireMgr can affect the preemption probability via the delta between its bid
price and the current price, informed by historical pricing trends. In our implementation, which is
specialized to AWS EC2, the predictions use machine learning (ML) models trained on historical
EC2 Spot Price data. The expected cost of the computation takes into account EC2’s policy of
partial refunds for preempted instances, which often results in AcquireMgr choosing high-risk
instances and achieving even bigger savings than just the discount for preemptibility.

In addition to the expected cost savings, Tributary’s spot-dancing provides a burst tolerance
benefit. Any elastic control scheme has some reaction delay between an unexpected burst
and any resulting addition of resources, which can cause SLO violations. Because Tributary’s
resource collection is almost always bigger than the scaling policy’s most recent target in order to
accommodate bulk preemptions, extra resources are often available to handle unexpected bursts.
Of course, traditional elastic control schemes can also acquire extra resources as a buffer against
bursts, but only at a cost, whereas the extra resources when using Tributary are a bonus side-effect
of AcquireMgr’s robust cost savings scheme.

Results for four real-world web request arrival traces and real AWS EC2 spot market data
demonstrate Tributary’s cost savings and SLO benefits. For each of three popular scaling policies
(one reactive and two predictive), Tributary’s exploitation of AWS spot instances reduces cost by
81-86% compared to traditional scaling with on-demand instances for achieving a given SLO
(e.g., 95% of requests below 1 second). Compared to unsafely using traditional scaling with
spot instances (AWS AutoScale [1]) instead of on-demand instances, Tributary reduces cost by
47-62% for achieving a given SLO. Compared to other recent systems’ policies for exploiting
spot instances to reduce cost [68, 114], Tributary provides higher SLO attainment at significantly
lower cost.

Our study on Tributary makes four primary contributions. First, it describes Tributary,
the first resource acquisition system that takes advantage of preemptible cloud resources for
elastic services with latency SLOs. Second, it introduces AcquireMgr algorithms for composing
resource collections of preemptible resources cost-effectively, exploiting the partial refund model
of EC2’s spot markets. Third, it introduces a new preemption prediction approach that our
experiments with EC2 spot market price traces show is significantly more accurate than previous
preemption predictors. Fourth, we show that Tributary’s approach yields significant cost savings

8

and robustness benefits relative to other state-of-the-art approaches.

2.1 Background and related work

Elastic services dynamically acquire and release machine resources to adapt to time-varying client
load. We distinguish two aspects of elastic control, the scaling policy and the resource acquisition
scheme. The scaling policy determines, at any point in time, how many resources the service needs
in order to satisfy a given SLO. The resource acquisition scheme determines which resources
should be allocated and, in some cases, aspects of how (e.g., bid price or priority level). This
section discusses AWS EC2 spot instances and resource acquisition strategies to put Tributary
and its new approach to resource acquisition into context.

2.1.1 IaaS instance types and contracts

Cloud service providers (CSPs) offer an effectively infinite (from most customers’ viewpoints) set
of VM instances available for rental at fine time granularity. Each CSP offers diverse VM instance
“types”, primarily differentiated by their constituent hardware resources (e.g., core counts and
memory sizes), and leasing contract models.

The two primary types of contract model offered by major CSPs [8, |10, [16] are on-demand
and transient. Instances leased under an on-demand contract are non-preemptible. Instances
leased under a transient, or preemptible contract are usually much cheaper, but can be unilaterally
revoked by the CSP at any time. The price of on-demand instances are usually fixed for long
periods of time, whereas the price of transient instances may frequently vary over time.

Here, we describe preemptible resources in AWS EC2, both to provide a concrete example and
because Tributary, Stratus, and most related work specialize to EC2 behavior. In AWS EC2 [10],
instances leased under transient contracts are termed spot instances. Prices of spot instances are
dictated by a spot market [11]], which fluctuates over time but typically remains 70-80% below
the prices of corresponding on-demand instances [68]]. To rent a spot instance, a user specifies a
bid price, which is the maximum price s/he is willing to pay for that instance. The spot instance
can be revoked at any moment, but this rarely occurs when using common bidding strategies (e.g.,
bidding the on-demand price) [[116]. The low cost but riskier nature of spot instances presents
users with a trade-off between reliability (on-demand) and cost savings (spot).

There are several properties of the AWS EC2 spot market behavior that affect customer cost
savings and the likelihood of instance preemption. (1) Each instance type in each availability zone
has a unique AWS-controlled spot market associated with it, and AWS’s spot markets are not truly
free markets [22]]. (2) Price movements among spot markets are not always correlated, even for
the same instance type in a given region [[113]]. (3) Customers specify a bid in order to acquire
a spot instance. The bid is the maximum price a customer is willing to pay for an instance in a
specific spot market; once a bid is accepted by AWS, it cannot be modified. (4) A customer is
billed the spot market price (not the bid price) for as long as the spot market price for the instance
does not exceed the bid price or until the customer releases it voluntarily. (5) As of Oct 2, 2017,
AWS charges for the usage of an EC2 instance up to the second, with one exception: if the spot
market price of an instance exceeds the bid price during its first hour, the customer is refunded

9

fully for its usage. No refund is given if the spot instance is revoked in any subsequent hour. We
define the period where preemption makes the instance free as the preemption window.

When using EC2 spot instances, the bidding strategy plays an important role in both cost and
preemption probability. Many bidding strategies for EC2 spot instances have been studied [22,
120, 1134]. The most popular strategy by far is to bid the on-demand price to minimize the odds of
preemption [94} [113], since AWS charges the market price rather than the bid price.

2.1.2 Cloud resource acquisition schemes

Given a target resource count from a scaling policy, a resource acquisition scheme decides which
resources to acquire based on attributes of resources (e.g., bid price or priority level). Many
elastic control systems assume that all available resources are equivalent, such as would be
true in a homogeneous cluster, which makes the acquisition scheme trivial. But, some others
address resource selection and bidding strategy aspects of multiple available options. Tributary’s
AcquireMgr employs novel resource acquisition algorithms, and we discuss related work here.

AWS AutoScale [[1] is a service provided by AWS that maintains the resource footprint
according to the target determined by a scaling policy. At initialization time, if using on-demand
instances, the user specifies an instance type and availability zone. Whenever the scaling target
changes, AutoScale acquires or releases instances to reach the new target. If using spot instances,
the user can use a so-called “spot fleet”’[17] consisting of multiple instance type and availability
zone options. In this case, the user configures AutoScale to use one of two strategies. The
lowestPrice strategy will always select cheapest current spot price of the specified options. The
diversified strategy will use an equal number of instances from each option. Tributary bids
aggressively and diversifies based on predicted preemption rates and observed inter-market
correlation, resulting in both higher SLO attainment and lower cost than AutoScale.

Kingfisher [115] uses a cost-aware resource acquisition scheme based on using integer linear
programming to determine a service’s resource footprint among a heterogeneous set of non-
preemptible instances with fixed prices. Tributary also selects from among heterogeneous options,
but addresses the additional challenges and opportunities introduced by embracing preemptible
transient resources. Several works have explored ways of selecting and using spot instances.
HotSpot [[116] is a resource container that allows an application to suspend and automatically
migrate to the most cost-efficient spot instance. While HotSpot works for single-instance applica-
tions, it is not suitable for elastic services since its migrations are not coordinated and it does not
address bulk preemptions.

SpotCheck [112] proposes two methods of selecting spot markets to acquire instances in
while always bidding at a configurable multiple of the spot instance’s corresponding on-demand
price. The first method is greedy cheapest-first, which picks the cheapest spot market. The
second method is stability-first, which chooses the most price-stable market based on past market
price movement. SpotCheck relies on VM migration and hot spares (on-demand or otherwise)
to address revocations, which incurs additional cost, while Tributary uses a diverse pool of spot
instances to mitigate revocation risk.

BOSS [130] hosts key-value stores on spot instances by exploiting price differences across
pools in different data-centers and creating an online algorithm to dynamically size pools within a
constant bound of optimality. Tributary also constructs its resource footprint from different pools,

10

within and possibly across data-centers. Whereas BOSS assumes non-changing storage capacity
requirements, Tributary dynamically scales its resource footprint to maintain the specified latency
SLO while adapting to changes in client workload.

Wang et al. [128] explore strategies to decide whether, in the face of changing application
behavior, it is better to reserve discounted resources over longer periods or lease resources at
normal rates on a shorter term basis. Their solution combines on-demand and “reserved” (long
term rental at discount price) instances, neither of which are ever preempted by Amazon.

ExoSphere [114] is a virtual cluster framework for spot instances. Its instance acquisition
scheme is based on market portfolio theory, relying on a specified risk averseness parameter ().
ExoSphere formulates the refurn of a spot instance acquisition as the difference between the
on-demand cost and the expected cost based on past spot market prices. It then tries to maximize
the return of a set of instance allocations with respect to risk, considering market correlations and
«, determining the fraction of desired resources to allocate in each spot market being considered.
For a given virtual cluster size, ExoSphere will acquire the corresponding number of instances
from each market at the on-demand price. Unsurprisingly, since it was created for a different
usage model, ExoSphere’s scheme is not a great fit for elastic services with latency SLOs. We
implement ExoSphere’s scheme and show in that Tributary achieves lower cost, because
it bids aggressively (resulting in more preemptions), and higher SLO attainment, because it
explicitly predicts preemptions and selects resource sets based on sufficient tolerance of bulk
preemptions.

Proteus [68] is an elastic ML system that combines on-demand resources with aggressive
bidding of spot resources to complete batch ML training jobs faster and cheaper. Rather than
bidding the on-demand price, it bids close to market price and aggressively selects spot markets
and bid prices that it predicts will result in preemption, in hopes of getting many partial hours of
free resources. The few on-demand resources are used to maintain a copy of the dynamic state as
spot instances come and go, and acquisitions are made and used to scale the parallel computation
whenever they would reduce the average cost per unit work. Although Tributary uses some of the
same mindset (aggressive use of preemptible resources), elastic services with latency SLOs are
different than batch processing jobs; elastic services have a target resource quantity for each point
in time, and having fewer usually leads to SLO violations, while having more often provides no
benefit. Unsurprisingly, therefore, we find that Proteus’s scheme is not a great fit for such services.
We implement Proteus’s acquisition scheme and show in [§2.4.6| that Tributary achieves much
higher SLO attainment, because it understands the resource target and explicitly uses diversity to
mitigate bulk preemption effects. Tributary also uses a new and much more accurate preemption
predictor.

2.2 Elastic control in Tributary

AcquireMgr is Tributary’s resource acquisition component, and its approach differentiates Trib-
utary from previous elastic control systems. It is coupled with a scaling policy, any of many
popular options, which provides the time-varying resource quantity target based on client load.
AcquireMgr uses ML models to predict the preemption probability of resources and exploits
the relative independence of AWS spot markets to account for potential bulk preemptions by

11

acquiring a diverse mix of preemptible resources collectively expected to satisfy the user-specified
latency SLO. This section describes how AcquireMgr composes the resource mix while targeting
minimal cost.

Resource acquisition. AcquireMgr interacts with AWS to request and acquire resources. To do
so, AcquireMgr builds sets of request vectors. Each request vector specifies the instance type,
availability zone, bid price, and number of instances to acquire. We call this an allocation request.
An allocation is defined as a set of instances of the same type acquired at the same time and price.
AcquireMgr’s fotal footprint, denoted with the variable A, is a set of such allocations. Resource
acquisition decisions are made under four conditions: (1) a periodic (one-minute) clock event
fires, (2) an allocation reaches the end of its preemption window, (3) the scaling policy specifies
a change in resource requirement, and/or (4) a preemption occurs. We term these conditions
decision points.

AcquireMgr abstracts away the resource type which is being optimized for. For the workloads
described in this chapter, virtual CPUs (VCPUs) are the bottleneck resource; however, it is
possible to optimize for memory, network bandwidth, or other resource types instead. A service
using Tributary provides its resource scaling characteristics to AcquireMgr in the form of a utility
Sfunction v(). This utility function maps the number of resources to the percentage of requests
expected to meet the target latency, given the load on the web service. The shape of a utility
function is service-specific and depends on how the service scales, for the expected load, with
respect to the number of resources. In the simplest case where the web service is embarrassingly
parallel, the utility function is linear with respect to the number of resources offered until 100% of
the requests are expected to be satisfied, at which point the function turns into a horizontal line. As
a concrete example, if an embarrassingly parallel service specifies that 100 instances are required
to handle 10000 requests per second without any of the requests missing the target latency, a linear
utility function will assume that 50 instances will allow the system to meet the target latency
on 50% of the requests. Tributary allows applications to customize the utility function so as to
accommodate the resource requirements of applications with various scaling characteristics.

In addition to providing v(), the service also provides the application’s target SLO in terms
of a percentage of requests required to meet the target latency. By exposing the target SLO as
a customizable input, Tributary allows the application to control the Cost-SLO tradeoff. Upon
receiving this information, AcquireMgr acquires enough resources to meet SLO in expectation
while optimizing for expected cost. In deciding which resources to acquire, AcquireMgr uses
the prediction models described in[§2.2.T]to predict the probability that each allocation would be
preempted. Using these predictions, AcquireMgr can compute the expected cost and the expected
utility of a set of allocations (§2.2.2)). AcquireMgr greedily acquires allocations until the expected
utility is greater than or equal to the SLO percentage requirement (§2.2.3)).

2.2.1 Prediction models

When acquiring spot instances on AWS, there are three configurable parameters that affect
preemption probability: instance type, availability zone and bid price. This section describes the
models used by AcquireMgr to predict allocation preemption probabilities.

Previous work [68]] proposed taking the historical median probability of preemption based
on the instance type, availability zone and bid price. This approach does not consider time of

12

day, day of week, price fluctuations and several other factors that affect preemption probabilities.
AcquireMgr trains ML models considering such features to predict resource reliability.
Training Data and Feature Engineering. The prediction models are trained ahead of time with
data derived from AWS spot market price histories. Each sample in the training dataset is a
hypothetical bid, and the target variable, preempted, of our model is whether or not an instance
acquired with the hypothetical bid is preempted before the end of its preemption window (1 hr).
We use the following method to generate our data set: For each instance and bid delta (bid price
above the market price with range [0.00001, 0.2]) we generate a set of hypothetical bids with the
bid starting at a random point in the spot market history. For each bid, we look forward in the
spot market price history. If the market price of the instance rises above the bid price at any point
within the hour, we mark the sample as preempted. For each historical bid, we also record the
ten prices immediately prior to the random starting point and their time-stamps.

To increase prediction accuracy, AcquireMgr engineers features from AWS spot market price

histories. Our engineered features include: (1) Spot market price; (2) Average spot market price;
(3) Bid delta; (4) Frequency of spot market price changing within past hour; (5) Magnitude of spot
market price fluctuations within past two, ten, and thirty minutes; (6) Day of the week; (7) Time
of day; (8) Whether the time of day falls within working hours (separate feature for all three time
zones). These features allow AcquireMgr to construct a more complex prediction model, leading
to a higher prediction accuracy (§2.4.7).
Model design. To capture the temporal nature of the EC2 spot market, AcquireMgr uses a Long
Short-Term Memory Recurrent Neural Network (LSTM RNN) to predict instance preemptions.
The LSTM RNN is a popular model for workloads where the ordering of training examples is
important to prediction accuracy [119]. Examples of such workloads include language modeling,
machine translation, and stock market prediction. Unlike feed forward neural networks, LSTM
models take previous inputs into account when classifying input data. Modeling the EC2 spot
market as a sequence of events significantly improves prediction accuracy (§2.4.7). The output of
the model is the probability of the resource being preempted within the hour.

2.2.2 AcquireMgr

To make decisions about which resources to acquire or release, AcquireMgr computes the expected
cost and expected utility of the set of instances it is considering at each decision point. Calculations
of the expected values are based on probabilities of preemption computed by AcquireMgr’s trained
LSTM model. This section describes how AcquireMgr computes these values.

Definitions. To aid in discussion, we first define the notion of a resource pool. Each instance type
in each availability zone forms its own resource pool—in the context of the EC2 spot instances,
each such resource pool has its own spot market. Given a set of allocations A, where A is
formulated as a jagged array, let A; be defined as the i*" entry of A corresponding to an array of
allocations from resource pool i sorted by bid price in ascending order. We define allocation a; ;
as an allocation from resource pool i (i.e., a; ; € A;) with the j* lowest bid in that resource pool.
We further denote p; ; as the bid price of allocation a; ;, 3; ; as the probability of preemption of
allocation a; ;, and ¢, ; as the time remaining in the preemption window for allocation a; ;. Note
that p; ; > p; ;—1, which also implies 3; ;_; > [; ;. Finally, we define a size(A) function that
returns the size of A’s major dimension. See for symbol reference.

13

A Set of allocations as jagged array

A; Sorted array of allocations from resource pool ¢
a;j Set of instances allocated from resource pool ¢
Bij Probability that allocation a; ; is preempted
t; Time left in the preemption window for a; ;

ki j Number of instances in allocation a; ;

P ; Market price of allocation a; ;

Dij Bid price of allocation a; ;

size(y) Size of the major dimension of array y
resc(y) Counts the total number of resources in y

A Regularization term for diversity

P(R = r) | Probability that r resources remain in A

v(r) The utility of having r resources remain in A
Va The expected utility of a set of allocations A
Ca Expected cost of a set of allocations ($)

Table 2.1: Summary of parameters used by AcquireMgr

Expected cost. The total expected cost for a given footprint A is calculated as the sum over the
expected cost of individual allocations C4 [a; ;]:

size(A) si

size(A;)
Ca= Y > Culay) (2.1)
j=1

=1

AcquireMgr calculates the expected cost of an allocation by considering the probability of
preemption within the preemption window f3; ; for a given allocation a; ; at a given bid delta.
There are exactly two possibilities: an allocation will either be preempted with probability f; ;
or it will reach the end of its preemption window in the remaining ¢; ; minutes with probability
1 — f3;;, in which case we would voluntarily release the allocation. The expected cost can then be
written down as:

where k; ; is the number of instances in the allocation. and P ; is the market price for instance of
type ¢ at the time of acquisition.

Expected utility. In addition to computing expected cost for a set of allocations, AcquireMgr
computes the expected utility for a set of allocations. The expected utility is the expected percentage
of requests that will meet the latency target given the set of allocations A. Expected utility takes
into account the probability of allocation preemptions, providing AcquireMgr with a metric for
quantifying the expected contribution that each allocation should make to meet the resource target.
The expected utility V4 of the set of allocations A is calculated as follows:

Vi= Y PR=r)*v(r) (2.3)

where P(R) is the probability mass function of the discrete random variable R that denotes the
number of resources not preempted within the next hour, v is the utility function provided by the
service, and resc(A) is the function that reports the number of resources in a set of allocations A.
resc(A) computes the total amount of resources in A, while size(A) only computes the size of
A’s major dimension.

computes the expected utility over the next hour given a workload, as though Tributary
just bid for all its allocations. This works, even though there will usually be complex overlapping
expiration windows across an hour, because it only needs to hold true until recomputed at the next
decision point, which is never more than a minute away. To derive P(R), AcquireMgr starts off
with the original set of allocations A and generates all possible subsets of A. Each possible subset
S C A, S marks some allocations in A as preempted (€ S) and the remaining allocations as not
preempted (¢ S). To formalize the notion, we define the indicator variable d; ;, where d; ; = 1 if
allocation a, ; € S and d; ; = 0 otherwise.

To compute the probability of S being the set of preempted resources (P(S)), AcquireMgr
separates all allocations by resource pools, as each resource pool within AWS has its own spot
market. We leverage the following localizing property. Within each resource pool A;, the
probability of preempting an allocation a; ; is only dependent on whether the allocation with the
next lowest bid price, a; ;_1, in the same resource pool is preempted. Note that P(a; 1) = §;; for
allocation a; ; for all resource pools i. Consider two allocations a; ;, a; j—1 € A from resource pool
A;. We observe the following properties: (1) a; ; cannot be preempted unless a; ;1 is preempted,
(2) the probability that both a; ; and a; j_; are preempted is the probability that a; ; is preempted,
and (3) the probability that a; ; is preempted without a; ;_; being preempted is 0. With Bayes’
Rule, we observe that:

PlaijNaij1) Bij

Plajlaij—1) = = : (2.4)
S P(az‘,jq) 6@',]'71
Thus, for an allocation a; ; given subset S C A,
0 if allocation a; j_1 € S,
P(aijlaij—1) = ifallocation a1 ¢ (2.5)
Bi;/Bij—1 else.

Tributary further introduces a regularization term J\; to encourage bidding in markets with low
correlation. Having instances spread across lowly correlated markets is important for avoiding
high-risk footprints. If the resource footprint has too many instances from correlated resource
pools, Tributary becomes exposed to having too many resources being lost to a correlated price
spike, potentially causing an SLO violation. In order obtain price correlation across spot markets,
we periodically keep track of fix-sized moving windows of spot markets and compute the Pearson
correlation between each pair of spot markets. When computing expected utility, Tributary
increases an allocation in A;’s probability of preemption 3; ; by A;:

size(A)

B resc(A;) + resc(A;)
A= % ; Pt = resel A (2.6)

where p;; is the Pearson correlation between resource pools 7 and [, and v € R > 0 is the
configurable penalty multiplier. Essentially, we add a weighted penalty to an allocation based

15

on its Pearson correlation scores with the rest of our resources in different resource pools.
In our experiments, we set v = 0.01. The regularization term leads to Tributary creating a
diversified resource pool, thus reducing the probability that a significant portion of the resources
are preempted simultaneously. Having a high probability of maintaining the majority of the
resource pool at any point time, allows Tributary to avoid SLO violations with a high probability.

Let’s denote P(S) as the probability of S being the set of resources preempted from A.
AcquireMgr computes it by taking the product of the conditional probability of each allocation
having the outcome specified in S. If the allocation is preempted (d; ; = 1) the conditional
probability of the allocation being preempted (P(a; j|a; j—1)) is used, otherwise (d; ; = 0) the
product uses the conditional probability of the allocation not being preempted (1 — P(a; j|a; ;—1)).

size(A) size(A;

ps)= 11 1I (di,j*P(@i,j\ai,jfl) o
=1 j=1 .

+(1 = dig) * (1= Plaglai; 1))

Finally, AcquireMgr formulates the probability of r resources remaining after preemption
P(R = r) (Eq. 2.3) as the sum of the probabilities of all sets S where the number of resources
not preempted in S equals to 7:

P(R=r)= > P(S) (2.8)

SCA,resc(S)=resc(A)—r

which it uses to calculate the expected utility of a set of allocations A (Eq. 2.3).

Computational tractability. AcquireMgr’s algorithm is exponentially computationally expensive
as the number of spot markets considered increases. When considering more markets, it is possible
to reduce computational complexity by grouping similar, correlated spot markets, and performing
revocation analysis with a representative market. Although this would potentially decrease the
precision of the preemption analysis, it would allow AcquireMgr to further improve performance
by considering a larger number of markets.

2.2.3 Scaling out

Resource acquisition. When Tributary starts, the user specifies a target SLO in terms of percent-
age of requests that respond within a certain latency for Tributary to target. AcquireMgr uses this
target SLO to acquire resources. At each decision point, AcquireMgr’s objective is to acquire
resources until the expected utility 64 is greater than or equal to the target SLO. If the expected
utility is greater than or equal to the target SLO, no action is taken; otherwise, AcquireMgr
computes the expected cost and utility of the current set of allocations (Eq. 2.3). Ac-
quireMgr then calculates the missing number of resources (M) required to meet the target SLO
and builds a set of possible allocations (A) that consists of allocations from different resource
pools at different bid prices (from $0.0001 to $0.2 above the current price). For each possible
allocation A;, AcquireMgr records the new expected utility divided by the new expected cost of
AU A;, choosing the allocation A s, that maximizes this value. AcquireMgr continues to add
possible allocations until it achieves the target SLO in expectation.

16

8 c4.large in us-west-2¢

—
=
o
o
o

2 c4.2xlarge in us-west-2a 2 2
[} F---=- | - i}
> 1 | g_
o o
4ohxagenuswesZe 3 5
{f} Evicti 2 Alloc C 2
viction & S
@ Termination
30 60 30 60
Time (min) Time (min)
(a) Legend (b) Tributary (¢) AutoScale

Figure 2.1: Figures (IEI) and (c)) show how Tributary and AutoScale handle a sample workload respectively.
Figure (a) is the legend for (b) and (c)), color-coding each allocation. The black dotted lines in (b))
and signify the request rates over time. At minute 15, the request rate unexpectedly spikes and
AutoScale experiences “slow” requests until completing integration of additional resources with 3. Tributary,
meanwhile, had extra resources meant to address preemption risk in C, providing a natural buffer of
resources that is able to avoid “slow” requests during the spike. At minute 35, when the request rate
decreases, Tributary terminates B, since it believes that B has the lowest probability of getting the free
partial hour. It does not terminate D since it has a high probability of eviction and is likely to be free; it
also does not terminate C since it needs to maintain resources. AutoScale, on the other hand, terminates
both 2 and 3, incurring partial cost. At minute 52, the request rate increases and Tributary again benefits
from the extra buffer while AutoScale misses its latency SLO. In this example, Tributary has less “slow”
requests and achieves lower cost than AutoScale because AutoScale pays for 3 and for the partial hour for
both / and 2 while Tributary only pays for A and the partial hour for B since C and D were preempted and
incur no cost.

17

Buffers of transient resources. To accommodate potential resource preemptions, Tributary
inherently acquires more than the required amount of resources if any of its allocations have
a preemption probability greater than zero, which is always the case with spot instances. The
amount of additional resources acquired depends on the target SLO and the probabilities of
allocation preemptions (Eq. 2.3). While the primary goal of these additional resources is to
account for preemptions, they often have the added benefit handling unexpected increases in load.
Experiments with Tributary show that these resource buffers both increase the fraction of requests
meeting latency targets and decrease cost (§2.4.3).

2.2.4 Scaling in

Aside from preemptions, Tributary also tries to scale in voluntarily. As described earlier, each
allocation is considered only for the duration of the preemption window. When an allocation
reaches the end of its preemption window, it is terminated and replaced with a new allocation if
required. When resource requirements decrease, Tributary considers terminating allocations for
allocations least likely to be preempted. During this process Tributary chooses the allocation with
the least time remaining in the hour, computes the expected utility 6 4 without this allocation, and
if it 1s greater than the target SLO, Tributary terminates the allocation. Tributary continues to try
and terminate allocations as long as # 4 remains greater than the target SLO.

2.2.5 Example and future consideration

Example. shows how Tributary and AutoScale handle a sample workload, including how
the extra resources Tributary acquires to handle preemption events can also handle an unexpected
request rate increase and how aggressive allocation selection can get some resources for free due
to preemptions.

Future. Tributary lowers cost and meets SLO requirements by taking advantage of low-cost spot
instances and uncorrelated prices across different spot instance markets. Mass adoption of systems
like Tributary could change these characteristics. While a detailed analysis of mass adoption’s
potential effects on EC2 spot-markets is outside the scope of this chapter, we evaluate the effects
of two potential changes to the spot-market policies in [§2.4.5]

2.3 Tributary Implementation

shows Tributary’s high-level system architecture. This section describes the main compo-
nents, how they fit together, and how they interact with AWS.

Preemption prediction models. The prediction models are trained offline using TensorFlow [21]]
and deployed using Tensorflow Serving [18]]. A separate model is used for each resource pool.
To service run time predictions Tributary launches a Prediction Serving Proxy that receives all
prediction queries from AcquireMgr, forwards them to their respective models, aggregates the
results, and returns the predictions to AcquireMgr.

Resource footprint management. In Tributary, AcquireMgr takes primary responsibility for
managing the resource footprint. AcquireMgr acquires instances, terminates instances, and

18

Tributary

. | |Prediction , :
' Resource Resources Scaling |.
: Mo:els Manager E Required Policy |1
: T I A A '
1 Prediction Quer ili i '
' Y Utilty | stances Instances Resource ~ Service
: Function | N Summary Stats |
1 . Y | !
' rediction :]!
') Prediction . Service Monitoring| 1
E SS:;':}? Query AcquireMgr Manager Manager |

o

Allocation ; Instances Metrics
Prices Request Alloca\tl\on

Elastic
Load
Balancer

: Amazon EC2 Instances

Amazon Web Services
Figure 2.2: Tributary architecture.

monitors AWS for instance preemption notifications. AcquireMgr considers modifying the
resource footprint at every decision point, and it follows the procedure described in[§2.2.3] when
additional resources are needed. Once AcquireMgr selects a set of instances to acquire, it sends
instance requests to AWS via boto.ec2 API calls. AWS responds with a set of spot request ids,
which corresponds to the EC2 instances allocated to AcquireMgr. Once the instances are in a
running state, AcquireMgr sends the instance ids associated with the new instances to Resource
Manager. Instance removal follows a similar procedure.

Scaling policy. The Scaling Policy component determines dynamic sizing of the resource target.
Through a simple event-driven API, users can implement their own scaling policies that access
metrics provided by the Monitoring Manager and specify the resource target.

Monitoring Manager (MonMgr). The Monitoring Manager orchestrates monitoring of service
system resources. The Scaling Policy can register for metrics such as total number of requests
and average CPU utilization of instances. The MonMgr queries requested metrics using AWS
CloudWatch each monitoring period and forwards them to the scaling policy.

Resource Manager (ResMgr). The Resource Manager is a proxy for AcquireMgr. Using
resource targets provided by the Scaling Policy, the ResMgr generates the utility function used
by AcquireMgr to make resource acquisition decisionsﬂ The ResMgr also receives instance
allocations and termination notices from AcquireMgr and forwards them to the Service Manager.

!Process of constructing the utility function is described in[§2.4.2

19

2.4 Evaluation

This section evaluates Tributary’s effectiveness. The results support a number of important
findings: (1) Tributary’s exploitation of AWS spot market instances reduces cost by 81%—-86%
compared to on-demand instances and simultaneously decrease SLO latency misses; (2) Compared
to standard bidding policies for spot instances, Tributary reduces cost by up to 41% and decreases
SLO latency misses by 31%—65%; (3) Compared to extending those standard policies to use
enough extra (buffer) resources to match Tributary’s number of SLO latency misses, Tributary
reduces cost by 47%—62%; (4) Tributary outperforms state-of-the-art resource managers in running
elastic services; (5) Tributary’s preemption prediction models improve accuracy significantly,
resulting in 37% lower cost than previous prediction approaches.

2.4.1 Experimental setup

Experimental platform. We report results for use of three AWS EC2 spot instance types: c4.large,
c4.xlarge, and c4.2xlarge. The results correspond to the us-west-2 region, which consists of three
availability zones. Using the three instance types in each availability zone, our experiments
involve nine resource pools.

Workload. The simulated workload uses a real-world trace for request arrival times, with each
request consisting of the derivation of the PBKDF?2 [[79] key of a password. The calculation of
a PBKDF?2 key is CPU-heavy, with no network overhead and minimal memory overhead. With
the CPU performance being the bottleneck, the resource requirement can be characterized in
requests-per-second-per-VCPU.

Environment. In the simulation framework, each instance is characterized with a number of
VCPUs, and the request processing time is configured to the measured time for one request on an
EC2 instance (=100ms). Each instance server maintains a queue of requests, and we simulate
the queueing effects using the discrete event simulation library SimPy [98]]. The simulation
framework takes into account resource start-up time, with newly acquired instances not able to
service requests for two hundred seconds following their launch.

SLO and scaling. The target service latency is set to one second, and we verified on EC2 that a
VCPU can handle roughly 10 requests per second without violating the latency target. So, the
requests-per-second-per-VCPU is ten, and the queue size per server instance is ten times the
number of VCPUs in the instance. Tributary is not overly sensitive to the target latency setting.

Traces. We use four real-world request arrival traces with differing characteristics. Berkeley
is from the Berkeley Home IP proxy service and ClarkNet is from the ClarkNet ISP’s HTTP
servers [41]. Both exhibit a periodic, diurnal pattern. We use the first 2000 minutes of these two
traces, which covers an entire period. WITS is a sampled trace from the Waikato Internet Traffic
Storage (WITS) [62]. The trace lasts for roughly a day, from April 6" to April 7% of the year 2000.
This trace exhibits large variation of request rates throughout the day, as can be seen in
WorldCup98 is the arrival trace of the workload on the 1998 FIFA World Cup HTTP Servers [41]
on day 75 of the World Cup. All traces are scaled to have an average of 125 requests per second
in order to generate sufficient load for the experiments.

20

T 3671 o 242
Fo) C
O (@)
] O
” 3
| -
o)
o i
125
£ 125 2
)]
0 0
> -}
g g
o x
0 1000 2000 3000 4000 0 200 400 600 800 1000 1200 1400
Minutes Minutes
(a) ClarkNet Periodic[41]] (b) WITS Large Variation[|62]]

Figure 2.3: Traces used in system evaluation.

2.4.2 Scaling policies evaluated

We implement three popular scaling policies: Reactive, Predictive Moving Window Average
(MWA), and Predictive Linear Regression (LR) to evaluate our system. The utility function
provided by the service is linear for all three policies. We make this assumption since our workload
characteristic is embarrassingly parallel—if a workload exhibits different scaling characteristics,
a different utility function can be employed.

The Reactive Policy scales out immediately when demand reported by the MonMgr is greater
than what the available resources are able to handle. It scales in slowly (only after three minutes
of low demand), as recommended by Gandhi et al. [S1], to prevent premature scale-in in case the
demand fluctuates widely in a short period of time. The MWA Policy maintains a sliding window
of a fixed size, with each window entry consisting of the number of requests received in each
monitoring period. The policy takes the average of the window entries to predict the number of
requests on the next monitoring period. The policy then adjusts the utility and scaling functions
according to the predicted number of requests, and reports the updated functions to the ResMgr to
scale in expectation of future requests. The LR Policy also maintains a sliding window of a fixed
size, but rather than using the average in the window for prediction, the policy performs linear
regression on data points in the window to estimate the expected number of requests in the next
monitoring period. Our experiments show that regardless of the scaling policy used, Tributary
beats its competitors in both meeting the service latency target and cost.

2.4.3 Improvements with Tributary

Here, we evaluate Tributary’s ability to reduce cost and latency target misses against AutoScale.
AWS Autoscale. AWS AutoScale (§2.1.2) as offered by Amazon only supports the simplest reac-
tive scaling policies. To provide better comparison between approaches, we implement the AWS
AutoScale resource acquisition algorithm as closely as possible according to its documentation [[1]
and integrate it with Tributary’s SvcMgr to work with its more powerful scaling policies. From

21

14

o
=]

50 14 <50 14 -
E @ Cost % s B Cost g’ s BCost g’w
5 40 BSlow Requests | 12 g £ 40 BSlow Requests | 12 g §40 BSlow Requests | 12 ‘2
z 108 z 108 1 108
& s S 5 & b
230 g o 230 8 o 230 g o
© - o - he] a—
[(%] v (3 ﬂ) (%]
520 6% 520 68 520 63
£ =3 3 = g g
S 4 2 S 4 2 5 4 @
-4 =z =z
Z10 2 2 ,\?'IO , 2 ,\310) 2
<) & o £ o
g o 0 8o 0o g o 0o ?
© AutoScale AutoScale+Buffer Tributary AutoScale AutoScale+Buffer Tributary © AutoScale AutoScale+Buffer Tributary

(a) Reactive (b) Predictive-LR (¢) Predictive-MWA

Figure 2.4: Cost savings (red) and percentage of “slow” requests (blue) for the ClarkNet trace.

here on, mentions of AutoScale refer to our implementation of AWS AutoScale. AutoScale is the
equivalent of the AcquireMgr component of Tributary. The default AutoScale algorithm with spot
instances bids for the lowest market-priced spot instance at the on-demand price upon resource
requests by the scaling policy. In addition, AutoScale terminates resources as soon as the resource
requirements are lowered, choosing to terminate resources that are most expensive at the moment.
Methodology and terminology. To achieve fair comparisons across a wide range of data points,
we perform cost analysis with simulations using historical spot market traces. Using traces allows
us to test different approaches on the same period of market data and to get a better picture of the
expected behavior of the system in a shorter amount of time. For each request arrival trace
and resource acquisition approach, we present the average cost and percentage of “slow” requests
over trace requests across ten randomly chosen day/time starting points between January 23,
2017 and March 23, 2017 in the us-west-2 region. From here on, we define a “slow” request
as a request that does not meet the latency target and the percentage of “slow” requests as the
percentage of “slow” requests over all requests in a single trace

Cost savings and service latency improvements. [Fig. 2.4 shows the cost savings and percentage
of “slow” requests for the ClarkNet trace. The cost savings are normalized against running
Tributary on on-demand resources. The results demonstrate that Tributary reduces cost and “slow”
requests for all three scaling policies. Cost savings are &~ 85% compared to on-demand resources.
For the ClarkNet trace, Tributary reduces cost by 36%, 24% and 21% compared to to AutoScale
for the Reactive, Predictive-LR and Predictive-MWA scaling policies, respectively. Compared to
AutoScale, Tributary reduces “slow” requests by 72%, 61% and 64%, respectively, for the three
scaling policies.

In order to decrease the number “slow” requests, popular scaling polices are often configured
to provision more resources than immediately necessary to handle unexpected increases in load.
It is common to specify the resource buffer as a percentage of the expected resource requirement.
For example, with a buffer of 50%, 15 resources (e.g., VCPUs) would be acquired rather than the
projected 10. AutoScale+Buffer shows the cost of provisioning AutoScale with a large enough
buffer such that its number of “slow” requests matches that of Tributary. Tributary reduces cost
by 61%, 56% and 57% compared to AutoScale+Buffer for the three scaling policies.

The cost savings for Tributary on the Berkeley trace relative to AutoScale are similar to
those on the ClarkNet trace, but the reduction in percentage of “slow” requests increases. This
difference in performance is due to differing characteristics of the two traces—the ClarkNet

2Prediction models were trained on data from 06/06/16 — 01/22/17.

22

IS
S

@ Cost
@Slow Requests

) w
=3 S

3
Slow Request Percentage

Cost(%) Normalized to On-Demand

hhL

ExoSmalla Exolargea Tributary

=)

(a) Reactive

IS
3
N
o

BCost
BSlow Requests

)
S

P
8
Slow Request Percentage

N
S
o @

o
L

Cost(%) Normalized to On-Demand

o

ExoSmalla Exolargea Tributary

(b) Predictive-LR

IS
S
N
o

@Cost
BSlow Requests

I w
5 8
o o N
s & 3
Slow Request Percentage

=)
o

Cost(%) Normalized to On-Demand

o

Proteus Proteus+Buffer Tributary

(¢) Reactive

IS
S
N
o

@Cost
@Slow Requests

I w
5 8
o o N
s & 38
Slow Request Percentage

o
)

Cost(%) Normalized to On-Demand

o

Proteus Proteus+Buffer Tributary

(d) Predictive-LR

Figure 2.5: Comparing to ExoSphere and Proteus. Predictive-MWA results not shown but similar.

trace experiences more minute-to-minute volatility in request rate compared to the Berkeley trace.
We observe similar levels of cost reductions and reduction in “slow” requests on the WITS and
WorldCup98 traces, results for WITS are shown in Tables @ Compared to AutoScale+Buffer,
Tributary decreased costs by 47-62% across all traces.

Scaling Policy Cost Saving | “Slow” request Reduction
Reactive 37% 31%
Predictive-LR 33% 50%
Predictive-MWA | 29% 51%

Table 2.2: Cost and “slow” request improvements for Tributary compared to AutoScale for the WITS trace

Attribution of benefits. Tributary’s superior performance arises from several factors. Much of
the reduction in cost compared to AutoScale is due to Tributary’s ability to get free instance hours.
Free instance hours occur when an allocation does useful work but is preempted by AWS before
the end of a preemption window. The user receives a refund for the partial hour, which means that
any work done by the allocation in the preemption window comes at no cost to the user. Tributary
takes the probability of getting free instance hours into account when computing the expected
cost of allocations (Eq. 2.1)), often acquiring resources that provide higher opportunities for free
instance hours.

Another factor in Tributary’s lower cost is its ability to remove allocations that are not likely
to be preempted when demand drops. When resource demand decreases, Tributary terminates
instances that are least likely to be preempted, thus lowering the expected cost of its resource
footprint. The reductions in “slow” requests arise from the buffer of resources acquired by Tribu-
tary (§2.2.3). When acquiring instances, AcquireMgr estimates their probability of preemption.
Unless all allocations have a preemption probability of zero, which never occurs for spot instances,
Tributary acquires more resources than specified by the scaling policy. The primary goal of the
additional resources is to ensure that, when Tributary experiences preemption events, it still has at
least the specified number of resources in expectation. The additional resources also provide a
secondary benefit by handling some or all of unexpected bursts of requests that exceed the load
expected by the scaling policy. The cost of these additional resources is commonly offset by free
instance hours; indeed, the extra resources are acquired to cope with preemptions.

23

2.4.4 Risk mitigation

A key feature of Tributary is that it encourages instance diversification, i.e., acquiring instances
from mostly independent resource pools (§2.2.2)). The default AutoScale policy is the lowest-
price policy, which does not take diversification into account when acquiring instances; instead,
it acquires the cheapest instance. Illustrated in Tributary acquires different types of
instances in different availability zones, while AutoScale acquires instances of the same type
(all red). Diversifying across resource pools is important, because each has an independent
spot market, avoiding highly correlated allocation preemptions within a single instance market.
Acquiring too much from a single pool, as often occurs with AutoScale, creates a high risk of SLO
violation when preemption events occur (e.g., if the red allocation in was preempted
prior to minute 35).

In our experiments, we found it to be very rare for market prices to rise above on-demand

prices, meaning that AutoScale rarely experiences preemption events. However, when examining
past EC2 spot market traces and other availability zones, we found it to be significantly more
common for the market price to rise above the on-demand price, thus preempting AutoScale
instancesE] Since Amazon charges users the market price and not the bid price, it is possible
that Amazon may once again preempt instances bidding the on-demand price with regularity—a
phenomenon we recently observed in the us-east availability zones. Thus, AutoScale’s resource
acquisition approach is riskier for services with latency SLOs on spot machines.
Cost of diversified AutoScale. In addition to the default AutoScale policy which acquires the
lowest-priced instance, AWS also offers a diversified AutoScale policy that starts instances from
a diverse set of resource pools [17)]. Acquiring instances from different spot markets reduces
preemption risks, but our experiments showed that it increases cost by 8%—12% compared to
the lowest-price AutoScale policy. Compared to Tributary, which diversifies across spot markets
intelligently, we found that a diversified AutoScale policy cost 68% more to achieve the same
number of “slow” requests for the reactive scaling policy on the ClarkNet trace.

2.4.5 Pricing model discussion

Our experimental results are based on 2018 AWS EC2 billing policies, as described in [§2.1.1
This section discusses how Tributary would function under two potential changes to the billing
model: (1) elimination of preemption refunds, (2) institution of a free market.
Elimination of preemption refunds. If Amazon eliminates refunds when the market price
exceeds bid price during the first hours of usage, Tributary would lose incentive to bid close to
market price. Tributary’s model would capture this change by setting /3 in[Eq. 2.2]to zero. With
higher bids, Tributary would acquire fewer resources because preemption would be less likely.
The amount of resources acquired would still exceed the amount of resources required as they
would still have non-zero preemption probabilities.

Although Tributary extracts significant benefit from the refunds, it still outperforms AutoScale
without it. For example, in a simulation with this billing model modification, Tributary still
reduces cost by 31% compared to AutoScale with sufficient buffer to match numbers of “slow”

3From 01/23/17-03/20/17, the market price rose above the on-demand price 0 times for the c4.2xlarge instance
type in us-west-2. From 11/1/16-01/22/17, it happened 1073 times.

24

requests, for the Clarknet trace using the reactive scaling policy. As expected, Tributary continues
to meet SLOs with high likelihood, as it continues to diversify its resource pool and acquire
buffers of resources (albeit smaller ones) to account for preemption events.

Free market behavior. In its current design, the AWS EC2 spot markets do not behave as free
markets [22]]. Customers specify their bid prices for a given resource, but generally do not pay
that amount. Instead, a customer is billed according to the EC2-determined spot price for that
resource. It is possible, perhaps even likely as the spot market becomes widely popular, that AWS
will transition toward a billing policy in which users are charged their bid price, instead of the
market price, and prices move based on supply and demand rather than unknown seller policies.
This change would render the commonly used strategy of bidding far above the market price (e.g.,
bidding the on-demand price) obsolete. Tributary’s behavior would not change significantly, as it
already often sets bid prices close to market prices and explicitly considers revocation risks, and
we believe it would therefore outperform other approaches by even larger margins.

2.4.6 Comparing to state of the art

This section compares Tributary’s support for elastic services to two state-of-the-art resource
managers designed for preemptible instances. Since neither system was designed for elastic
services with latency SLOs, Tributary unsurprisingly performs significantly better.
Exosphere. We implemented ExoSphere’s allocation strategy, described in [§2.1.2] with the
following assumptions and modifications: (i) The ExoSphere paper did not specify whether the
correlation between markets is recomputed as time moves on. In order to avoid the need to
constantly reconstruct ExoSphere’s resource footprint, we assumed static correlation between
markets. (ii) As the ExoSphere paper does not provide guidelines as to how to choose a, we
experimented with a range of « from 1 to 10°. Higher « instructs ExoSphere to be more risk
averse at the expense of higher cost.

Fig. 2.5|shows the normalized cost and percentage of “slow” requests served for Tributary and
for ExoSphere with small (1) and large (10%) values of o.. These experiments were performed on a
further scaled-up version of the ClarkNet trace (100x of already-scaled version), since ExoSphere
was designed for 100s to 1000s of instances and performs poorly at a scale of lOsﬂ In our
experiments, we observed that Exosphere with a small « tends to acquire mainly the cheapest
resources, inducing little diversity and increasing the number of “slow” requests in the event of
preemptions. Tributary’s advantage in both cost and SLO attainment results from Tributary’s
exploitation of spot instance characteristics (§2.4.3).
Proteus. We implemented Proteus’s allocation strategy, described in[§2.1.2] modified to acquire
only spot resources (reducing cost with no significant change in SLO attainment).
compares Tributary and Proteus for the ClarkNet trace, for two different scaling policies. While
Proteus achieves lower cost than Tributary, it experiences a large increase in ’slow” requests.
This increase is due to Proteus not diversifying its resource pool, instead only acquiring resources
based on reducing average per-core cost. When told by the scaling policy to acquire additional
resources, similarly to AutoScale buffers (@, Proteus is unable to match Tributary’s number

4At small scales, ExoSphere with low « had no resource diversity. With large o, it acquired too many resources,
increasing its cost.

25

of ”slow” requests no matter how large the buffer (and, thus, how high the cost). This is once
again due to the lack of diversity in the resources that Proteus acquires.

2.4.7 Prediction model evaluations

This section evaluates the accuracy of the preemption prediction models used by Tributary, which
are described in[§2.2.1] The recent Proteus system [68]] used the historical median probability of
preemption depending on the instance type, availability zone and the difference between the user
bid price and the spot market price of the resource. Tributary improves prediction accuracy by
using machine learning inference models trained with historical spot market data with engineered
features. [Fig. 2.6/ shows the accuracy and F7 scores for prediction models based on the historical
median, a logistic regression classifier, a multilayer perceptron neural network (MLP NN) and a
long short term memory recurrent neural network (LSTM RNN). These models were trained on
spot market data from 06/06/16 — 01/22/17 and were evaluated on data from 01/23/17 — 03/20/17
for instance types c4.large, c4.xlarge and c4.2xlarge in us-west-2.

The output of the prediction models is whether the instance specified in a query will be
preempted within the preemption window. Accuracy scores are calculated by the number of
samples classified correctly divided by total number of samples. F} scores, which account for
data skew, are a good accuracy measurement because the data set is skewed toward preemptions
at lower bid deltas and non-preemptions at higher bid deltas. The LSTM RNN model provides
the best accuracy and the best F7 because it is able to capture the temporal nature of the AWS
spot market. LSTM increases accuracy by 11% and the F; score by 27% compared to using the
historical median. The MLP NN model performs worse than the historical median model for
accuracy, but its F7 score is higher because unlike the historical median model, the MLP model
considers advanced features when predicting preemptions as described in[§2.2.1] The increased
accuracy of the LSTM RNN model translates to Tributary’s effectiveness. When using the LSTM
RNN model, Tributary runs at ~37% less cost on the ClarkNet workload compared to Tributary
using historical medians, because the historical median model overestimates the probability of
preemption, causing Tributary to acquire more resources than necessary.

2.5 Summary

Tributary exploits AWS spot instances to meet latency SLOs for elastic services at lower cost.
By predicting preemption probabilities and acquiring diverse resource footprints, Tributary can
aggressively use collections of cheap spot instances to reliably meet SLOs even in the face of bulk
preemptions. Our experiments show cost savings of 81-86% relative to using non-preemptible
on-demand instances and 47-2% relative to traditional high-risk use of spot instances.

Tributary exploits AWS properties, such as dynamic spot markets and preemption based
thereon. We believe its approach would also work for other clouds offering preemptible resources,
if they expose enough information to predict preemption probabilities, probabilities, which AWS
provides via the visible spot market prices. Currently, Google Cloud Engine [16] does not expose
such a signal for its preemptible instances. For private clouds, exposing preemption logs could

26

9_0/ Bl Historical Median ‘ [EHistorical Median
> [ClLogistic Regression [Logistic Regression
(6] BEMLP NN o B MLP NN

© 100; BELSTM RNN 9 100 BELSTM RNN

>

8 80 g 80¢

< 60 Q 60

g 0p]

= 40 — 40*

k3] L

)] F L

5 20 20

a O 0

Figure 2.6: Accuracies and F scores (accounts for data skew) for predicting preemption of AWS spot
instances. The LSTM RNN outperforms prior techniques (blue bar) by 11% on the accuracy metric and
27% on the F) score metric.

provide the historical view, but even better predictions can be enabled by exposing scheduler
state.

27

28

Chapter 3

Stratus: Cost-aware container scheduling in
the public cloud

Continuing the theme to increase value-realized of user applications in shared compute envi-
ronments by reducing users’ cost of running applications, this chapter focuses on our work on
Stratus [34], a virtual cluster scheduler suited to cost-effectively schedule batch analytics jobs in
public clouds.

Public cloud computing has matured to the point that many organizations rely on it to offload
workload bursts from traditional on-premise clusters (so-called “cloud bursting”) or even to
replace on-premise clusters entirely. Although traditional cluster schedulers could be used to
manage a mostly static allocation of public cloud virtual machine (VM) instances such an
arrangement would fail to exploit the public cloud’s elastic on-demand properties and thus be
unnecessarily expensive.

A common approach [29, 46, 91, 93] is to allocate an instance for each submitted task and
then release that instance when the task completes. Although straightforward, this new-instance-
per-task approach misses significant opportunities to reduce cost by packing tasks onto fewer
and perhaps larger instances. Doing so can increase utilization of rented resources and enable
exploitation of varying price differences among instance types.

What is needed is a virtual cluster (VC) scheduler that packs work onto instances, as is done
by traditional schedulers, without assuming that a fixed pool of resources is being managed. The
concerns for such a scheduler are different than for traditional clusters, with resource rental costs
being added and queueing delay being removed by the ability to acquire additional resources
on demand rather than forcing some jobs to wait for others to finish. Minimizing cost requires
good decisions regarding which tasks to pack together on instances as well as when to add more
instances, which instance types to add, and when to release previously allocated instances.

Stratus is a scheduler specialized for virtual clusters on public IaaS platforms. Stratus adap-
tively grows and shrinks its allocated set of instances, carefully selected to minimize cost and
accommodate high-utilization packing of tasks. To minimize cost over time, Stratus endeavors to
get as close as possible to the ideal of having every instance be either 100% utilized by submitted
work or 0% utilized so it can be immediately released (to discontinue paying for it). Via aggressive

'We use “instance” as a generic term to refer to a virtual machine resource rented in a public IaaS cloud.

29

use of a new method we call runtime binning, Stratus groups and packs tasks based on when they
are predicted to complete. Done well, such-packed tasks will fully utilize an instance, complete
around the same time, and allow release of the then-idle instance with minimal under-utilization.
To avoid extended retention of low-utilization instances due to mispredicted runtimes, Stratus
migrates still-running tasks to clear out such instances.

Stratus’s scale-out decisions are also designed to exploit both instance type diversity and
instance pricing variation (static and dynamic). When additional instances are needed in the
virtual cluster in order to immediately run submitted tasks, Stratus requests instance types that
cost-effectively fit sets of predicted-completion-time-similar tasks. We have found that achieving
good cost savings requires considering packings of pending tasks in tandem with the cost-per-
resource-used of instances on which the tasks could fit; considering either alone before the other
leads to many fewer <packing, instance-type> combinations considered and thereby higher costs.
Stratus co-determines how many tasks to pack onto instances and which instance types to use.

Simulation experiments of virtual clusters in AWS spot markets, driven by cluster workload
traces from Google and TwoSigma, confirm Stratus’s efficacy. Stratus reduces total cost by 25%
(Google) and 31% (TwoSigma) compared to an aggressive state-of-the-art non-packing task-per-
VM approach [116]. Compared to two state-of-the-art VC schedulers that combine dynamic
virtual cluster scaling with job packing, Stratus reduces cost by 17-44%. Even with static instance
pricing, such as is used for AWS’s on-demand instances as well as Google Compute Engine and
Microsoft Azure, Stratus reduces cost by 10-29%. Attribution of Stratus’s benefits indicates that
significant value comes from each of its primary elements—runtime-conscious packing, instance
diversity-awareness, and under-utilization-driven migration. Further, we find that the combination
is more than the sum of the parts and that failure to co-decide packing and instance type selection
significantly reduces cost savings.

This chapter makes four primary contributions. (1) It identifies the unique mix of character-
istics that indicate a role for a new job scheduler specialized for virtual clusters (VCs). (2) It
describes how runtime-conscious packing can be used to minimize under-utilization of rented
instances and techniques for making it work well in practice, including with imperfect runtime
predictions. (3) It exposes the inter-dependence of packing decisions and instance type selection,
showing the dollar cost benefits of co-determining them. (4) It describes a batch-job scheduler
(Stratus) using novel packing and instance acquisition policies, and demonstrates the effectiveness
of its policies with trace-driven simulations of two large-scale, real-world cluster workloads.

3.1 Background and related work

Job scheduling for clusters of computers has a rich history, with innovation still occurring as
new systems address larger scale and emerging work patterns [30, 143, 55, 161, 78, 80, 1100, 109}
125, 126l]. Generally speaking, job schedulers are the resource assignment decision-making
component of a cluster management system that includes support for detecting and monitoring
cluster resources, initiating job execution as assigned, enforcing resource usage limits, and so on.
Users submit jobs consisting of one or more tasks (single-computer programs that collectively
make up a job) to the cluster management system, often together with resource requests for each
task (e.g., how much CPU and memory is needed). The job scheduler will decide when and on

30

which cluster computer to run each task of the job. Each task is generally executed in some form
of container for resource isolation and security purposes.

Stratus is a cluster scheduler aimed to schedule batch processing workloads (e.g., machine
learning model training, parallel test-suites, and distributed ETL workloads such as MapRe-
duce [42] and Spark [133]]) on virtual clusters (a “VC scheduler”). This chapter describes how
Stratus reduces cost by exploiting public clouds’ effectively-unbounded virtual cluster elasticity,
instance type diversity, and rental price variation.

3.1.1 Virtual clusters

This section describes virtual clusters and their properties. A virtual cluster (VC) is a cluster
consisting of VMs rented from the public cloud. As such, VCs are hi