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Abstract

Modern machine learning relies on algorithms that fit expressive latent models to
large datasets. While such tasks are easy in low dimensions, real-world datasets are
truly high-dimensional, often leading to computational intractability. Additionally, a
prerequisite to deploying models in real-world systems is to ensure that their behav-
ior degrades gracefully when the modeling assumptions no longer hold. Therefore,
there is a growing need for efficient algorithms that fit reliable and robust models to
data and are accompanied with provable guarantees.

In this thesis, we focus on designing such efficient and robust algorithms for
learning latent variable models. In particular, we investigate two complementary
regimes arising in learning latent models: establishing computational tractability
and approaching computational optimality. The first regime considers learning high-
dimensional latent models where no efficient algorithms were known. We resolve
several central open questions in this regime, by providing the first polynomial time
algorithms for robustly learning a mixture of Gaussians, robust linear regression and
learning two-layer neural networks. The second regime considers models where
polynomial time algorithms were already well-established. Here, we show that we
can obtain algorithms with information-theoretically minimal running time and sam-
ple complexity. In particular, we show that for several low-rank models there is no

statistical vs. computational trade-off.
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Chapter 1
Introduction

The unreasonable success of modern machine learning relies on algorithms that fit expressive
latent models to large datasets. While such tasks are easy in low dimensions, real-world datasets
are truly high-dimensional, often leading to computational intractability. Additionally, a prereq-
uisite to deploying such models in real-world systems is to ensure that their behavior degrades
gracefully when the modeling assumptions no longer hold. Therefore, there is a growing need
for efficient algorithms that fit reliable and robust latent models to data and are accompanied with

provable guarantees on their performance.

This thesis focuses on the burgeoning area of designing efficient, robust and provable algo-
rithms for fundamental tasks arising in machine learning. In particular, we focus on two com-
plementary regimes for algorithm design: establishing tractability and approaching optimality.
The first regime tackles learning latent models where no efficient algorithms were known when
the dimension is large. We begin by considering the most well-known and widely studied statis-
tical model: the Gaussian Mixture Model (GMM). A long-standing open question in algorithmic
statistics asks whether there exists any efficient algorithm to provably learn the parameters of a
GMM in the presence of a small fraction of outliers. We completely resolve this problem and
dedicate the first two chapters of the thesis to describing our result. Next, we consider learning
a hyperplane and a subspace in the presence of outliers, and characterize the family of distribu-
tions that admit efficient algorithms for these problems. We show that for fitting such simple
models (linear or low-rank), we can handle a much larger family of distributions, often includ-
ing heavy tailed and log-concave distributions. Finally, we consider learning the parameters of
a two-layer neural network with non-linear activations. Here, the input is drawn from a sub-

Gaussian distribution and the network may be under-parameterized. In this setting, we obtain



the first polynomial time algorithms to recover the weight parameters of the network. Therefore,
in the first part of this thesis, we establish the computational tractability for (a) robustly learning
any Gaussian Mixture Models, (b) robust linear regression and subspace recovery for a broad

family of distributions and (c) learning the parameters of a two-layer neural network.

The second regime tackles latent models which already admit efficient (polynomial time)
algorithms, and our goal is to obtain nearly optimal (information-theoretically) algorithms. We
begin by considering the low-rank approximation problem (also known as PCA), where the ob-
jective function is any Schatten norm, including well-studied objectives such as Frobenius norm,
Operator norm and Nuclear norm. We resolve the matrix-vector product complexity of low-rank
approximation for a large class of Schatten norms, obtaining information-theoretically optimal
bounds, and in turn the fastest iterative algorithms for this class of latent models. Next, we con-
sider the setting where we fit low-rank models with additional structure, in particular, positive
semi-definiteness (PSD). We show that if the input is promised to be PSD, then we can obtain a
low-rank approximation without reading most of the input. Our algorithm runs in sub-linear time
and reads the information-theoretically minimal number of entries required. Finally, we consider
the problem of learning a latent simplex, a formulation that captures several latent models such
as the stochastic block model, clustering, latent Dirichlet allocation (topic modeling). We obtain
truly input-sparsity (nearly linear time) algorithms for learning a latent simplex. Therefore, in
the second part of this thesis we obtain nearly optimal algorithms for (a) low-rank approxima-
tion under Schatten norms, (b) low-rank approximation of PSD matrices and (c) learning a latent

simplex.

The algorithms we develop draw upon tools from convex and polynomial optimization, high-
dimensional probability, random matrix theory, functional analysis and convex geometry. In each
setting, the algorithms we obtain are accompanied with provable guarantees on their correctness
and performance. We focus on obtaining the most general theorems possible and identify tech-
niques that may be of interest beyond the specific problems we consider. Next, we describe our

results at a technical level, and explain the new ideas we introduce in each corresponding paper.

1.1 Establishing Tractability of Learning Latent Models

Given a collection of observations and a class of latent models, the objective of a typical learning
algorithm is to find the model in the class that best fits the data. The classes of latent models we

consider in this section are (a) Gaussian mixture models, (b) linear models, (¢) low-rank models

2



and (d) two-layer neural networks. For linear and low-rank models, folklore algorithms such
as least-squares regression on the empirical samples suffices to learn the optimal hyperplane or
subspace efficiently. For GMMs, the first efficient algorithms were obtained in breakthrough
works more than a decade ago [MV 10, BS15]. For learning two-layer neural networks, even
under Gaussian input, there were no provably efficient algorithms to find the model that best fits
the data.

The aforementioned algorithms all assume that the input data are i.i.d. samples generated by
a statistical model in the given class. However, as early as the 60’s, statisticians already realized
that real-world datasets are noisy and are unlikely to fit idealized statistics models [Hub64]. The
sources of such noise can range from systematic bias and error in data collection to malicious
tampering. Robust statistics [Hub0O4, HRRS11] challenges this assumption by focusing on the
design of outlier-robust estimators — algorithms that can tolerate a constant fraction of corrupted
datapoints, and achieve error that is independent of the dimension. Despite significant effort over
several decades starting with important early works of Tukey and Huber in the 60s, until fairly
recently, even for the most basic high-dimensional estimation tasks, all known computationally

efficient estimators were highly sensitive to outliers.

In the first part of this thesis, we establish the computational tractability of learning GMMs,
linear models and low-rank models under adversarial outliers. Subsequently, we provide the first
polynomial time algorithm for fitting a two-layer neural network in the non-robust setting. A
robust variant of this algorithm remains an outstanding open question. We discuss the historical

context, related work and technical details of each of these results below.

1.1.1 Gaussian Mixture Models

The Gaussian Mixture Model (GMM) has been the subject of a century-old line of research be-
ginning with Pearson [Pea94]. Progress on provable algorithms for learning GMMs began with
the influential work of Dasgupta [Das99], yielding clustering algorithms that succeed under vari-
ous separation assumptions [AK05, VW04, AMOS5, BV08]. These assumptions, however, do not
capture natural separated instances of Gaussians, such as separation in distribution (total vari-
ation) distance. A more general approach [MV 10, BS15] circumvents clustering altogether by
giving an efficient algorithm for parameter estimation without any separation assumptions. How-
ever, this approach is brittle to even adversarially corrupting a single input point and crucially

relies on the algebraic structure of Gaussians. A natural question to ask is then as follows:



Question 1. Is there an efficient and robust algorithm to learn the parameters of arbitrary mix-

tures of k Gaussians?

This question, and several special cases has received a lot of attention over the years. Find-
ing an efficient algorithm for this task was also highlighted as a central open problem at the
Foundations of Big Data workshop at the Simons Institute [DVW 18]. Clustering a mixture of
k Gaussians is an important special case of this problem, where each pair of components of the
mixture is nearly completely separated in total variation distance. Until recently, no efficient

robust algorithm was known even for clustering a mixture of two well-separated Gaussians.

We begin by formally defining a Gaussian Mixture model:

Definition 1.1.1 (Gaussian Mixture Model). A mixture of k Gaussians is a probability distrib-
uton, denoted by D = ey pi - N (i, Xs), where for all i € [k], p; € R and ©; € R is
a set of k means and covariances respectively, p; > 0, and 3-;cypi = 1. A sample from D is

generated by picking component 1 with probability p; and then outputting an i.i.d. sample from

Additionally, to measure closeness between two distributions, we use total variation (TV)

distance.

Definition 1.1.2 (Total Variation Distance). Given two distributions p and q, we define the total

variation distance between them as follows:

dTV pa 2/ |d$

We first consider the special case where the input mixture is clusterable, i.e. all components

of the mixture are pairwise separated in TV distance.

Robustly Clustering a Mixture of Gaussians

In recent work with Pravesh Kothari [BK20b], we obtained the first polynomial-time algorithm
based on the sum-of-squares (SoS) method for clustering TV-separated £-GMM s in the presence
of a small fraction of fully adversarial outliers. We begin by precisely defining the corruption
model we consider. We work in the strong contamination model, which generalized several

well-studied noise models, including the Huber contamination model [Hub64].
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Definition 1.1.3 (Strong Contamination Model). Given a parameter ¢ € (0,1/2) and a class of
distributions D over RY, the adversary is computationally unbounded and operates as follows:
the algorithm specifies a number of samples, n, and n i.i.d. samples are drawn from some
unknown D € D. The adversary is allowed to inspect the samples, remove up to en samples and
replace them with arbitrary points in R The modified set is given as input to the algorithm. We

call such a set an e-corrupted sample.

Various communities have also considered less powerful adversaries, giving rise to weaker
contamination models. For instance, an adversary may be adaptive or oblivious to the inliers,

only allowed to add outliers, or only allowed to remove inliers.

Formally, our main result is as follows:

Theorem 1 (Outlier-Robust Clustering of k-GMMs, [BK20b]). Fix n,e > 0. Let D be an equi-
weighted k-GMM such that for all i # @', dry (N (i, i) , N (i, 3:)) = 1 —exp (—(k/n)°), for
a fixed constant c. Then, there exists an algorithm that takes input an e-corruption Y of a sample
X ~ D such that X = Cy U Cy U... U Cy, with equal sized clusters C; corresponding to points
drawn from N (u;,%;), and with probability at least 0.99, outputs an approximate clustering
Y = CyUCyU. .. UCy, satisfying min;<, ‘Cfgfl‘ > 1— O(k*)(e +n). The algorithm succeeds
whenever n = | X| > dP" /") and runs in time n??>*/m),

We can use off-the-shelf robust estimators for mean and covariance of Gaussians( [DKK " 19])

in order to get statistically optimal estimates of the mean and covariances of the target k-GMM.

Corollary 1.1.4 (Parameter Recovery from Clustering, [BK20b]). In the setting of Theorem 1,
with the same running time, sample complexity and success probability, our algorithm can output

{ i, ii}ie[k] such that for some permutation w : [k] — [k],
dry (N (1, 50) , N (eiy, B ) < O (K (e +m))
where O surpresses polylogarithmic factors in k,n and e.

We note that a similar result was independently and concurrently obtained by [DHKK20]
resulting in a merge [BDH"20].

Discussion. We obtain the first outlier-robust algorithm that works for clustering k-GMMs
under information-theoretically minimal separation assumptions. Such results were not known

even for £k = 2. To discuss the bottlenecks in prior works, it is helpful to use following con-
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sequence of two Gaussians with means 1, p1o and covariances >;, Yo being at a TV distance

> 1 — exp(—O(A?)) in terms of the distance between their parameters.

Definition 1.1.5 (A-Separated Mixture Model). An equi-weighted mixture N\, N3, . .., N, with
parameters {ji;, ¥; }icpe) is A-separated if for every pair of distinct components i, j, one of the

following three conditions hold (X1/? is the square root of pseudo-inverse of ¥):
1. Mean-Separation: v € R such that

(i — pj,0)? > A2 0T (3; + ),

2. Spectral-Separation: v € R? such that

v N> A- UTE]-U,

3. Relative-Frobenius Separation:' ; and 3.; have the same range space and

2 4

[iPssl? — 1| > a2 |25y

op

We show that two Gaussians separated in TV distance can be separated in any of the afore-
mentioned notions of parameter distance. The key bottleneck for known algorithms prior to our

work was handling separation in Spectral and Relative Frobenius distance (cases 2 and 3 above).

SAS)

(a) ®)
Ci

(©)

Figure 1.1: (a) Mean Separation (b) Spectral Separation (c) Relative Frobenius Separation

Often real-world data need not be Gaussian, and our algorithm does not overfit to this as-

!'Unlike the other two distances, relative Frobenius distance is meaningful only for high-dimensional Gaussians.
As an illustrative example, consider two 0 mean Gaussians with covariances ¥; = I and Xy = (1 4 ©(1/Vd))I.
Then, for large enough d, the parameters are separated in relative Frobenius distance but not spectral or mean

distance.



sumption. It succeeds for mixtures of all distributions that satisfy two well-studied analytic
conditions: anti-concentration and hypercontractivity. In particular, we formulate these condi-
tions as polynomial inequalities and obtain algorithms that can efficiently verify them. We thus
move beyond Pearson’s method of moments and consider identifying clean analytic conditions
that enable the existence of efficient and robust clustering algorithms an important contribution
of our work. We note that such a result for non-Gaussian distributions was not known, even with

access to unbounded computation.

Next, we define the precise analytic conditions we require.

Definition 1.1.6 (Certifiable Hypercontractivity of Degree-2 polynomials). An isotropic distribu-
tion D on R% is said to be h-certifiably C-hypercontractive if there’s a degree h sum-of-squares

proof of the following unconstrained polynomial inequality in d x d matrix-valued indeterminate

Q:

< (Ch)" <x@NED [(xTQx - x@NED {:CTQJEDQDW ;

5 |(Ter- g [Ted])’

A set of points X C R is said to be C-certifiably hypercontractive if the uniform distribution
on X is h-certifiably C'-hypercontractive.

Hypercontractivity is an important notion in high-dimensional probability and analysis on
product spaces [O’D14]. Kauers, O’Donnell, Tan and Zhou [KOTZ14] showed certifiable hyper-
contractivity of Gaussians and more generally product distributions with subgaussian marginals.
Certifiable hypercontractivity strictly generalizes the better known certifiable subgaussianity

property (studied first in [KSS18]) that controls higher moments of linear polynomials.

In contrast to hypercontractivity, anti-concentration forces lower-bounds of the form Pr[(z, v)2 >
§ ||v]|3] = &, for all directions v. Certifiable anti-concentration was recently introduced in inde-
pendent works of Karmalkar, Klivans and Kothari [KKK19] and Raghavendra and Yau [RY20a]
and later used [BK2I],[RY20b] for the related problems of list-decodable linear regression and

subspace recovery-.

Following [KKK19], we formulate certifiable anti-concentration via a univariate, even poly-
nomial psy, that uniformly approximates the 0-1 core-indicator 1({z,v)* > dvT%v) over a

large enough interval around 0. Let ¢sx(z,v) be a multivariate (in v) polynomial defined by

2List-decodable versions of these problems generalize the “mixture” variants - mixed linear regression and sub-
space clustering - that are easily seen to be special cases of mixtures of k-Gaussians with TV separation 1.
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2s
Gx(r,v) = (UTEU) Do,y (\;%) .Since psx; is an even polynomial, g5, is a polynomial in v.

Definition 1.1.7 (Certifiable Anti-Concentration). A mean 0 distribution D with covariance Y is
2s-certifiably (9, C6)-anti-concentrated if for qsx(x,v) defined above, there exists a degree-2s
sum-of-squares proof of the following two unconstrained polynomial inequalities in indetermi-

nate v:

{(x,v)Zs + 6% g5 (z,v)? = 6 (UTZU)2S} , { E [Q572(1‘,0)2} <o (UTEU)QS} ,

z~D
An isotropic subset X C R%is 2s-certifiably (6, Cd)-anti-concentrated if the uniform distribution
on X is 2s-certifiably (9, C6)-anti-concentrated.

Remark 2. For natural examples, 5(6) < 1/6¢ for some fixed constant c. For e.g., 5(0) = O(55)
for standard Gaussian distribution and the uniform distribution on the unit sphere (see [KKK19]
and [BK21]). To simplify notation, we will assume s(0) < poly(1/4) in the statement of our

results.

Additionally, we need that the variance of degree-2 polynomials is bounded in terms of the

Frobenius norm of the coefficients of the polynomial. Formally,

Definition 1.1.8 (Degree-2 Polynomials with Certifiably Bounded Variance). A mean 0 distribu-
tion D with covariance 3. certifiably bounded variance degree 2 polynomials if there is a degree

2 sum-of-squares proof of the following inequality in the indeterminate () € R4

{E
xz~D

Our general result gives an outlier-robust clustering algorithm for separated mixtures of

(xTQx — ExNDxTQx>2

<cferguefl),

reasonable distributions, i.e., distributions that satisfies both certifiable hypercontractivity, anti-
concentration and have bounded variance of degree-2 polynomials. Even the information-theoretic
(and without outliers, i.e., € = 0) clusterability of such distributions was not known prior to our

work.

Theorem 3 (Outlier-Robust Clustering of Reasonable Mixtures, [BK20b]). Fix n > 0,e¢ > 0.
Let D be a A-separated mixture of reasonable distributions. Then, there exists an algorithm that
takes input an e-corruptionY of a sample X = C1UC,U. .. Cy, with true clusters C; of size n/k
drawn i.i.d. from D and outputs an approximate clustering ¥ = CiuC,U...uC, satisfying

‘C‘gl‘c‘ > 1 — O(k**)(e + n). The algorithm succeeds with probability at least 0.99 over

min; <y,



the draw of the original sample X whenever n > d"*/") and runs in time n?°®*/M) whenever
A = poly(k/n)".

Overview. Our work is naturally related to the recent progress (see Chapter 4 [FKP'19] for
an exposition) on learning spherical mixtures® of Gaussians [DKS18, KSS18, HL.18] and more
generally, all Poincaré distributions [KSS18]. These results rely on subgaussian moment upper
bounds and extend to the outlier-robust setting. However, moment upper bounds are inherently
insufficient to cluster non-spherical mixtures. Informally, this is because the property of having
subgaussian moment upper bounds is closed under taking mixtures and thus cannot distinguish

between a single Gaussian and mixture of a few.

Indeed, it was “folklore” that obtaining generalization of the results above to non-spherical
mixtures will likely require algorithmic use of moment lower bounds. A recent line of work
begun by [KKK19, RY20a] and further built on in [BK20a, RY20b] introduced certifiable anti-
concentration that allows algorithmically accessing moment lower-bounds to solve list-decodable
variants (harsher outlier model than ours) of regression and subspace recovery. An impor-
tant technical contribution of our work is to show that moment lower-bounds, inferred from
anti-concentration inequalities along with certifiable hypercontractivity and bounded variance of
degree-2 polynomials are enough to obtain the desired generalization for clustering of all TV-

separated mixtures.

The key technical contribution of our work is a low-degree sum-of-squares proof of a ba-
sic statistical statement that gives a strong, dimension-independent bound relating closeness of
distribution in fotal variation distance (TV) to an appropriate parameter distance between their
means and covariances. Our proof of this basic result works for all distributions that satisfy
(certifiable) anti-concentration and hypercontractivity of degree-2 polynomials. To the best of
our knowledge, even the information-theoretic relationship between total variation and param-
eter distances of such distributions was not known prior to our work. Further, in Chapter 2.12,
we give a simple proof by exhibiting two (certifiably) hypercontractive (and, thus, also subgaus-
sian) distributions that are (1 — n)-close in TV distance but arbitrarily far in parameter distance
showing that moment upper bounds are provably not enough for the TV vs parameter distance

relationships to hold.

Along the way, we grow the general purpose SoS toolkit for algorithm design. For in-

stance, we give low-degree sum-of-squares formulations of conditional arguments using uni-

3More generally, the SoS-based algorithms succeed when the means of the components are separated when
compared to the maximum variance of the components in any direction.
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form polynomial approximators and basic matrix analytic facts. As another application of our
techniques, we give an outlier-robust algorithm for covariance estimation of all certifiable hyper-
contractive distributions with O(¢) relative Frobenius error guarantee. All prior works [DKK* 19,
LLRV16] either gave error guarantees in spectral norm, which only translate into dimension de-
pendent guarantees for relative Frobenius distance, or worked only for the Gaussian distribu-
tion [DKK™19]). Combined with our outlier-robust clustering algorithm, we obtain a statistically

optimal outlier-robust parameter estimation algorithms for mixtures of Gaussians.

Future Directions. The class of distributions that satisfy certifiable hypercontractivity of degree-
2 polynomials is quite broad, and includes all strongly log-concave distributions. However, all
existing approaches can establish certifiable anti-concentration only for rotiationally invariant

distributions and affine transformations thereof. Therefore, a natural open question is as follows:

Open Question 4 (Charecterizing Certifiable Anti-Concentration). What class of distributions

(beyond rotationally invariant distributions) admit low-degree sum-of-squares certificates ?

Further, the certificates we establish, even for Gaussian distributions, require a degree that
grows polynomialy with d, the bound on the expectation. The running time of our algorithm
scales exponentially in the degree required above and thus improved bounds lead to significantly
faster algorithms. Moreover, such an improvement would lead to milder assumptions on the TV

separation between the components.

Open Question 5 (Degree of Certifiable Anti-Concentration). What is the minimum degree re-
quired to establish (0, C')-certifiable anti-concentration for Gaussian distributions? Is a polyno-

mial dependence on ¢ neccessary?

Robustly Learning a Mixture of Arbitrary Gaussians

Building on [BK20b], in joint work with Diakonikolas, Jia, Kane, Kothari and Vempala, [BDJ*22]
we were able to completely answer the aforementioned central question (Question 1) in the affir-
mative, by providing an efficient and robust algorithm that learns the parameters of all mixtures
of k Gaussians, thereby resolving this central question in high-dimensional statistics. Our re-
sult requires the information-theoretically minimum assumptions on the input mixture, is robust
a small fraction of adversarial corruptions and is provably faster than the existing non-robust
algorithm of Moitra-Valiant [MV 10]. Formally,

Theorem 6 (Robustly Learning & Arbitrary Gaussians, [BDJ"22]). There is an algorithm with

10



the following behavior: Given ¢ > 0 and a multiset of n = d°%) (1/€)* samples from a distribu-
tion ' on R® such that dry(F, M) < ¢, for an unknown target k-GMM D = % wilN (s, 25),
the algorithm runs in time poly(n) (1/ e)cﬁc and outputs a k-GMM hypothesis D = Y% N (fi;, ;)
such that with high probability we have that dry (75, D) < (’)(51/ "’Z), where ¢y, ¢, ¢} depends

only on k.

A number of works have made algorithmic progress on important special cases of the above
problem, including faster robust clustering for the spherical case under minimal separation con-
ditions [HL18, KSS18, DKS18], robust clustering for separated (and potentially non-spherical)
Gaussian mixtures [BDH20], and robustly learning uniform mixtures of two arbitrary Gaussian
components [Kan20]. A similar result was independently and concurrently obtained by [LM21],

under slightly stronger assumptions, and using completely different techniques.

Theorem 6 gives the first polynomial-time robust proper learning algorithm, with dimension-
independent error guarantee, for arbitrary k-GMMs, for any fixed k. Known Statistical Query
lower bounds [DKS17] suggest that d**) samples are necessary for efficiently learning GMMs,
for approximation to constant accuracy, even in the (much simpler) noiseless setting and when
the components are pairwise well-separated in total variation distance. This provides evidence

that the sample-time tradeoff achieved by our result is qualitatively optimal.

Further, we show that the same algorithm also achieves the stronger parameter estimation
guarantee. We note that parameter estimation requires some assumptions on the underlying mix-
ture. The following corollary applies under the standard assumption that any pair of components

in the unknown mixture has total variation distance at least ¢**, where c; only depends on k.

Corollary 1.1.9 (Robust Parameter Estimation, [BDJ*22]). Let D = Y%, w;N (i, 3;) be an
unknown target k-GMM satisfying the following conditions: (i) dry(N (pi, 2:), N (115, 2;)) >
el ® forall i # j, and (ii) S = {i € [k] : w; > ¥} is a subset of [k], where f1(k), fo(k)
are sufficiently small functions of k. Given ¢ > 0 and a multiset of n = d°®) (1/¢)* samples
from a distribution F' on R® such that drv(F, D) < ¢, there exists an algorithm that runs in time
poly(n) (1/)% and outputs a k'-GMM hypothesis D = S5, @.N (fi;, ;) with k' < k such that
with high probability there exists a bijection 7 : S — [k'] satisfying the following: For all i € S,
it holds that |w; — W~(;)| < poly,(€) and dry (N(ui, 35), N (fin i), iw(i)» < ever.

Discussion. Handling Arbitrary Weights: Our algorithm succeeds without any assumptions on
the weights of the mixture components. We emphasize that this is an important feature and not

a technicality. Prior and concurrent work cannot handle the case of general weights — even for
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the case of k = 2 components! Obtaining a fully polynomial-time algorithm for the general case
(i.e., one not incurring an exponential cost in 1/wy,;,) requires genuinely new algorithmic ideas

and is one of the key technical innovations of the aforementioned result.

Handling Arbitrary Covariances: Our algorithm does not require assumptions on the eigenvalues
of the component covariances, modulo basic limitations posed by numerical computation issues.
Specifically, our algorithm works even if some of the component covariances are rank-deficient
(i.e., have directions of 0 variance) with running time scaling polynomially in the bit-complexity
of the unknown component means and covariances. Such a dependence on the bit complexity of
the input parameters is unavoidable — there exist* examples of rank-deficient covariances with
irrational entries such that the total variation distance between the corresponding Gaussian and

every Gaussian with covariance matrix of rational entries is the maximum possible value of one.

Overview. In the non-robust setting (i.e., for ¢ = 0), the algorithm of [MV 10] solves this learn-
ing problem. The key idea of [MV10] is to observe that if a mixture of £ Gaussians has every pair
of components separated in total variation distance by at least d, then a random univariate projec-
tion of the mixture has a pair of components that are §/ V/d-separated in total variation distance.
Their algorithm uses this observation to piece together estimates of the mixture when projected
to several carefully chosen directions to get an estimate of the high-dimensional mixture. Notice,
however, that such a strategy meets with instant roadblock in the presence of outliers: the fraction
of outliers, being a dimension-independent constant, completely overwhelms the total variation

distance between components in any one direction making them indistinguishable.
Our robust algorithm is based on three new ingredients:
1. anew and efficient partial clustering algorithm based on the sum-of-squares (SoS) method,

2. anovel list-decodable tensor decomposition method, and

3. arecursive spectral separation method.
We briefly describe these ideas below and how they can be interleaved to obtain our algorithm.

Efficient Partial Clustering. We call a mixture partially clusterable if it contains a pair of
components at total variation distance larger than 1 — €;(1). Interestingly, it turns out that
the clustering algorithm of [BK20b] (Theorem 3) can be generalized to the partial clustering
setting, i.e., the setting where we are guaranteed to have a pair of components that are well-

separated (with no guarantees on the remaining components). For a mixture with minimum

*For example, for the unit vector v = (1/v/3,1/4/3,1/4/3,0,0,...,0), for every choice of rational covariance
¥, the total variation distance between N (0, — vv ") and (0, X) is one.
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k/@)°™ o partition the input

mixing weight «, this gives an algorithm with running time of d/
sample into components so that each piece of the partition is (effectively) a (poly(a/k) + €)-

corrupted sample from disjoint sub-mixtures.

By applying the above partial-clustering algorithm, we can effectively assume that the input
is an e-corrupted sample from a mixture with every pair of components at most (1 — Qx(1))-
far in total variation distance. Then, we use robust covariance estimation (see Theorem 7.1
in [BK20b]) to make the mixture approximately isotropic, i.e. the mean of the mixture is ~ 0

and the covariance of the mixture is ~ [ (in Frobenius norm).

After partial clustering and an approximate isotropic transformation, every pair of compo-
nents are close in TV distance. Under this condition, in order to learn the unknown mixture with
error guarantees in total variation distance, it suffices to obtain poly, (¢)-error estimates of the
i, 23;’s in Frobenius norm. As we will see soon, this will suffice for our weaker result that has

an exponential dependence on the minimum mixing weight.

To get a fully polynomial algorithm, we delve a bit deeper: the exponential dependence on
the minimum mixing weight is incurred only when two components are spectrally separated (see
Definition 1.1.5, which in turn relies on the degree required for certifiable anti-concentration.
Instead, we give a new partial clustering algorithm that works in fixed polynomial time, whenever
there is a pair of Gaussian components separated either via their means or the relative Frobenius
distance. The resulting clusters might now have components that are spectrally separated, a

difficulty that we address later.

List-decodable Tensor Decomposition. Kane [Kan20] gave a polynomial-time algorithm to
robustly learn an equiweighted mixture of two Gaussians. For this special case, after isotropic
transformation, one can effectively assume that the two means are +y and the two covariances
are [ + >. Kane’s idea was to use the Hermite tensor (which can be built using the 4-th and
6-th raw moments of the mixture). Since we must use outlier-robust estimates of these tensors,
we can only obtain estimates that are accurate up to constant error in Frobenius norm of the
tensor. Kane’s key observation is that for the special case of £ = 2 components, one can build
two different Hermite tensors, one of which is rank-one with component ~ x (and thus one can
immediately “read off” u); the other only has a tensor power of Y. This second tensor is of the
form Ty = Sym((X—1)® (X —1))+E, where || E|| » = Ok(y/€) and Sym refers to symmetrizing
over all possible permutations of the “4 modes of the tensor”. Unlike the case of the mean, one
cannot simply “read-off”’> Y from T, but Kane gives a simple method to accomplish this. As

. 31t is helpful to visualize a single entry of this tensor for, say, the case when i,j,k, ¢ are all distinct:
Ty(i,j, k, 0) = £((i,5)S(k, €) + 2(i, k)2(4,€) + 2(i,£)S(j, k) + error. Notice that obtaining entries of ¥
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noted in [Kan20], it is not clear how to extend this to non-equiweighted mixtures of k = 2

Gaussians, and going to even k = 3 components requires substantially new ideas.

The surprising fact that we establish is that by looking at only the first four moments of
our mixture, we can learn all of the components up to low-rank error, i.e., up to errors along a
bounded number of hidden directions. Thus, the new tensor decomposition has both Frobenius
norm error and low-rank error. To see the idea, it is helpful to focus on the simpler case where
all the means are zero. In this case, the estimated 4th Hermite tensor (built from estimated raw

moments of degree at most 4 of the mixture) has the following :

i=1
where E is a 4-tensor with || E|| . = Ok (1/€).

Given the form of this tensor, it is natural to consider tensor decomposition algorithms, by
thinking of ¥; — I as a d*>-dimensional vector. However, we run into the issue of uniqueness
of tensor decomposition, since we are dealing with 2nd order tensors (once we view >; — I as
a d*-dimensional vector). One might imagine computing higher-order tensors of similar forms
to overcome the uniqueness issues, but this runs into two major complications: first, the sym-
metrization operation introduces spurious terms that do not have the sum of tensor-power struc-

ture required for such an algorithm to succeed.

Second, even if one were to get hold of the tensor without the symmetrization operation,
the only applicable tensor decomposition algorithm (recall that we do not make any genericity
assumptions on the components that are typically required by tensor decomposition algorithms)
is the result of Barak, Kelner, and Steurer [BKS15]. However, the [BKS15] result, while being
efficient in its dependence on the number of components, has exponential dependence on the

target error, which is prohibitively expensive for our application.

Rather than recovering the unique decomposition of the tensor Ty above, we instead produce a
list of candidate decompositions. To do this, we start by applying an operation that is a common
trick in most tensor decomposition algorithms. In our context, this trick amounts to taking a
random matrix (with independent standard Gaussian entries) P and “collapsing” the last two
modes of Ty with P (i.e., computing S(i, j) = Y Tu(i, j, k, 0)P(k, ) to obtain a matrix Q. In
the usual tensor decomposition procedures, we are interested in proving that one can recover all

the information about the components of the tensor from ().

from T is formally a task of solving noisy quadratic equations.

14



Spectral Separation of Thin Components. While the running time of our partial clustering and
tensor decomposition algorithms are now polynomial, the guarantees of the tensor decomposition
subroutine we discussed above are no longer enough to guarantee a recovery of parameters that
result in a mixture close in total variation distance. Because of the three conditions that we
assumed in the working of the tensor decomposition algorithm, we can no longer guarantee the
third one that gives a lower bound on the smallest eigenvalue of every covariance (relative to
the covariance of the mixture). In particular, we can end up in a situation where, even though
we have a list of parameters that contain Frobenius-norm-close estimates of the covariances,
the estimates do not provide a total variation distance guarantee. (Consider a “skinny” direction
where the variance of some component is very small, or even 0, forcing us to learn the parameters

more precisely!)

It turns out that the above is the only way the algorithm can fail at this point — one or more
covariance matrices have a very small eigenvalue (if not, the Frobenius norm error would imply
TV-distance error). But since we have estimates of the covariances, we can find such a small
eigenvector. Now we observe that since the mixture is nearly isotropic (i.e., the overall variance
in each direction is ~ 1), if some component has very small variance along a direction, then
the components must be separable along this direction. We show that it is possible to efficiently
cluster the mixture after projecting it to this direction, so that each cluster has strictly fewer
components. We then recursively apply the entire algorithm on the clusters obtained, which will

each have strictly fewer components.

Future Directions. A natural question arising from our work is to characterize the class of

distributions such that their mixtures can be learned, even information-theoretically.

Open Question 7. Are there mixtures of non-Gaussian distributions that can be learned robustly/non-
robustly and information-theoretically/efficiently? Is there a statistical-computational gap be-

tween any of these settings?

We note that the aforementioned algorithm is not entirely captured by the sum-of-squares

proof system. This leads to the following question:

Open Question 8. Can the sum-of-squares proof system efficiently learn a mixutre of k arbitrary

Gaussians?

We hope that answering some of these question, along with the techniques we have developed

can pave the way for robustly learning various popular latent variable models.
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1.1.2 Robust Linear Regression

Regression continues to be extensively studied under various models, including realizable regres-
sion (no noise), true linear models (independent noise), asymmetric noise, agnostic regression
and generalized linear models (see [Wei05] and references therein). In each model, a variety of
distributional assumptions are considered over the covariates and the noise. As a consequence,
there exist innumerable estimators for regression achieving various trade-offs between sample
complexity, running time and rate of convergence. The presence of adversarial outliers adds yet

another dimension to design and compare estimators.

Seminal works on robust regression focused on designing non-convex loss functions, includ-
ing M-estimators [Hub04], Theil-Sen estimators [The92, Sen68], R-estimators [Jac72], Least-
Median-Squares [Rou84] and S-estimators [RY84]. These estimators have desirable statistical
properties under disparate assumptions, yet remain computationally intractable in high dimen-
sions. Further, recent works show that it is information-theoretically impossible to design robust

estimators for linear regression without distributional assumptions [KKM18].

An influential recent line of work showed that when the data is drawn from the well studied
and highly general class of hypercontractive distributions (see Definition 1.1.6), there exist robust
and computationally efficient estimators for regression [KKM18, PSBR20, DKS19]. Several
families of natural distributions fall into this category, including Gaussians, strongly log-concave
distributions and product distributions on the hypercube. However, both estimators converge
to the the true hyperplane (in ¢,-norm) at a sub-optimal rate, as a function of the fraction of

corrupted points.

Given the vast literature on ad-hoc and often incomparable estimators for high-dimensional

robust regression, the central question we address in this work is as follows:

Does there exist a unified approach to design robust and computationally efficient
estimators achieving optimal rates for all linear regression models under mild

distributional assumptions?

We address the aforementioned question by introducing a framework to design robust esti-
mators for linear regression when the input is drawn from a hypercontractive distribution. Our
estimators converge to the true hyperplanes at the information-theoretically optimal rate (as a
function of the fraction of corrupted data) under various well-studied noise models, including
independent and agnostic noise. Further, we show that our estimators can be computed in poly-

nomial time using the sum-of-squares convex hierarchy.
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In classical regression, we assume D is a distribution over R x R and for a vector © €

2
RY, the least-squares loss is given by errp(0) = E, ,p {(y — J;TG) } The goal is to learn
©* = arg ming errp(©). We assume sample access to D, and given n i.i.d. samples, we want to
obtain a vector © that approximately achieves optimal error, errp(©*). In contrast to the classical

setting, we work in the strong contamination model, defined above.

Model 9 (Robust Regression Model). Let D be a distribution over R¢ x R such that the marginal
distribution over R¢ is centered and has covariance ¥* and let ©* = arg ming E, ,p {(y — (0, x) )2}
be the optimal hyperplane for D. Let {(z7,v7), (z5,v3), ... (xF,y*)} be nii.d. random variables
drawn from D. Given € > 0, the robust regression model Rp (e, X%, ©*) outputs a set of n sam-
ples {(z1,v1),-..(%n,yn)} such that for at least (1 — ¢)n points z; = z} and y; = y;. The

remaining en points are arbitrary, and potentially adversarial w.r.t. the input and estimator.

Our Results. A natural starting point is to assume that the marginal distribution over the co-
variates (the z’s above) is heavy-tailed and has bounded, finite covariance. However, we show
that there is no robust estimator in this setting, even when the linear model has no noise and the

uncorrupted points lie on a line.

Theorem 10 (Bounded Covariance does not suffice [BP21]). For all ¢ > 0, there exist two
distributions Dy, Dy over R x R such that dry (Dy, Ds) < € and the marginal distribution over
the covariates has bounded covariance, denoted by I < ¥ < O(1)I, yet HZl/ 2(0) — @2)"2 =
Q(1), where ©1 and © are the optimal hyperplanes for Dy and Ds.

The aforementioned result precludes any statistical estimator that converges to the true hyper-
plane as the fraction of corrupted points tends to 0. Therefore, we strengthen the distributional

assumption consider hypercontractive distributions instead.

Definition 1.1.10 (Certifiable Hypercontractivity). A distribution D on R% is (cy, k)-certifiably
hypercontractive if for all v < k/2, there exists a degree O(k) sum-of-squares proof (defined
below) of the following inequality in the variable v

E e 0"] < B, ler @]

such that ¢, < c.

Remark 11. Hypercontractivity captures a broad class of distributions, including Gaussian dis-

tributions, uniform distributions over the hypercube and sphere, affine transformations of isotropic
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distributions satisfying Poincare inequalities [KSS18] and strongly log-concave distributions.
Further, hypercontractivity is preserved under natural closure properties like affine transforma-

tions, products and weighted mixtures [KSS18].

In this work we focus on the rate of convergence of our estimators to the true hyperplane,
©*, as a function of the fraction of corrupted points, denoted by €. We measure convergence
in both parameter distance (¢/5-distance between the hyperplanes) and least-squares error on the

true distribution (errp).

We introduce a simple analytic condition on the relationship between the noise (marginal
distribution over y — 2 ' ©*) and covariates (marginal distribution over z) that can be considered

as a proxy for independence of y — 2'©* and x :

Definition 1.1.11 (Negatively Correlated Moments). Given a distribution D over R¢ x R, such
that the marginal distribution on R¢ is (cy, k)-hypercontractive, the corresponding regression
instance has negatively correlated moments if for all r < k, and for all v,

E_[(a) (y-2"0)]<00) E [(v.2)] E [(y-270)]

x7yND xz~D $,yNID

Informally, the negatively correlated moments condition can be viewed as a polynomial re-
laxation of independence of random variables. Note, it is easy to see that when the noise is

independent of the covariates, the above definition is satisfied.

Remark 12. We show that when this condition is satisfied by the true distribution, D, we obtain
rates that match the information theoretically optimal rate in a true linear model, where the noise
(marginal distribution over y —x ' ©*) is independent of the covariates (marginal distribution over
x). Further, when this condition is not satisfied, we show that there exist distributions for which

obtaining rates matching the true linear model is impossible.

When the distribution over the input is hypercontractive and has negatively correlated mo-
ments, we obtain an estimator achieving rate proportional to ¢! ~'/* for parameter recovery. Fur-

ther, our estimator can be computed efficiently. Thus, our main algorithmic result is as follows:

Theorem 13 (Robust Regresssion with Negatively Correlated Noise, [BP21]). Givene > 0,k >
4, and n > (dlog(d))°™ samples from Rp(e, $*,©%), such that D is (c, k)-certifiably hyper-

contractive and has negatively correlated moments, there exists an algorithm that runs in n®®)
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time and outputs an estimator © such that with high probability,
7% 0= €)l, < o+ (o)

and,

errp(0) < (1+ O(&7%/%)) errp(©7)

Remark 14. We note that prior work does not draw a distinction between the independent and
dependent noise models. In comparison (see Table 4.1), Klivans, Kothari and Meka [KKM 18]

1-2/k  For the special case of

obtained a sub-optimal least-squares error scales proportional to €
k = 4, Prasad et. al. [PSBR20] obtain least squares error proportional to O(ex?(X)), where
r 1s the condition number. In very recent independent work Zhu, Jiao and Steinhardt [ZJS20]
obtained a sub-optimal least-squares error scales proportional to e2~4/%,

Further, we show that the rate we obtained in Theorem 13 is information-theoretically opti-

mal, even when the noise and covariates are independent:

Theorem 15 (Lower Bound for Independent Noise, [BP21]). For any ¢ > 0, there exist two
distributions Dy, Dy over R? x R such that the marginal distribution over R? has covariance ¥.

and is (c, k)-hypercontractive for both distributions, and yet HZl/z(@l - @2)H2 = (61_1/k0),
where ©1, ©4 are the optimal hyperplanes for Dy and D, respectively, o = max(errp,(©1), errp,(02))
errp, (0,) — errp, (01)| = Q <62*2/’“a2).

and the noise is uniform over [—o, o). Further,

Next, we consider the setting where the noise is allowed to arbitrary, and need not have
negatively correlated moments with the covariates. A simple modification to our algorithm and
analysis yields an efficient estimator that obtains rate proportional to €'~2/* for parameter recov-

ery.

Corollary 1.1.12 (Robust Regresssion with Dependent Noise, [BP21]). Given e > 0,k > 4 and
n > (dlog(d))°™ samples from Rop(e,%*,0%), such that D is (c, k)-certifiably hypercontrac-
tive, there exists an algorithm that runs in n°®®) time and outputs an estimator © such that with
probability 9/10,

i (0~ 8)], < O(e-2) (emster) ).

and,

Further, we show that the dependence on ¢ is again information-theoretically optimal:
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Estimator Independent Noise | Arbitrary Noise
Prasad et. al. [PSBR20], 9 B 9 o
Diakonikolas et. al. [DKK 18] er”(onlyk =4) | enr” (only k =4)
Klivans, Kothari and Meka (1-2/k (1-2/k
[KKM18]

Zhu, Jiao and Steinhardt (2-4/k (2-4/k
[2JS20]

Our Work 62_2/k 62—4/k'

Thm 13, Cor 4.1.3

Lower Bounds (2-2/k (2-4/k

Thm 15, Thm 16

Table 1.1: Comparison of convergence rate (for least-squares error) achieved by various compu-
tationally efficient estimators for Robust Regression, when the underlying distribution is (¢, k)-
hypercontractive.

Theorem 16 (Lower Bound for Dependent Noise, [BP21]). For any € > 0, there exist two distri-
butions Dy, Dy over R? X R such that the marginal distribution over R? has covariance ¥ and is
(¢, k)-hypercontractive for both distributions, and yet HZl/z(@l — ("‘)2)“2 = <€1_2/k0'), where
O1, O4 be the optimal hyperplanes for Dy and D, respectively and o = max(efrrp, (©1), errp,(02)).
Further, |errp, (©,) — errp, (01)] = (62*4/ ’%2).

Overview. Consider two distributions D; and Ds over R¢ x R such that the total variation
distance between D; and D, is ¢ and the marginals for both distributions over R¢ are (cy, k)-
hypercontractive and have covariance .. Ignoring computational and sample complexity con-
cerns, we can obtain the optimal hyperplanes corresponding to each distribution. Note, these
hyperplanes need not be unique and are simply charecterized as minimzers of the least-squares
loss : fori € {1, 2},
O; =argmin E [(y — xT@)z}
O ay~D;
Our central contribution is to obtain an information theoretic proof that the optimal hyper-

planes are indeed close in scaled /5 norm, i.e.

x,y~D1 z,y~Da

H21/2 (©1 — @2)”2 < Oe1%) < o {(y B $T91)2} 1/2 L {(y B xTGQ)Q] 1/2)

Further, we show that the ¢!~1/* dependence can be achieved even when the noise is not com-
pletely independent of the covariates but satisfies an analytic condition which we refer to as

negatively correlated moments (see Definition 1.1.11). We provide an outline of the proof as it
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illustrates the techniques we introduced in this work.

Coupling and Decoupling. We begin by considering a maximal coupling, G, between distri-
butions D; and D, such that they disagree on at most an e-measure support (e-fraction of the
points for a discrete distribution). Let (z,y) ~ D; and (2',y’) ~ Ds. Then, observe for any

vector v,

(1.1

While the first term in Equation (1.1) depends completely on Dy, the second term requires using
the properties of the maximal coupling. Since 1 = 1, )= (/) + L(2,y)£(a’,y")» WE Can rewrite the

second term in Equation (1.1) as follows:

E[{v.2 (v —270))] =B (0.2 (v = ) 7€2)) L)

(1.2)
+E (w2 (4= 2705)) Lapior )]

With a bit of effort, we can combine Equations (1.1) and (1.2), and upper bound them as follows:
T / NT /
(0 56, — 6) < O1) (IE; (o (761 = )] 4 {02! ()02~ 1))

(i) (ii)
+E [(v2 (y—2761)) Ly ]

(1.3)

+E[(v.7 (v = () 02) ) Ly )

Observe, since we have a maximal coupling, the last two terms appearing in Equation (1.3) are
non-zero only on an e-measure support. To bound them, we decouple the indicator using Holder’s

inequality,
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% (1.4)

where we used the maximality of the coupling G to bound E [1(x7y)#z,,y/)} < €. The above
analysis can be repeated verbatim for the second term in (1.3) as well. Going forward, we focus

on bounding terms (i), (ii) and (iii).

Gradient Conditions. To bound terms (i) and (ii) in Equation (1.3), we crucially rely on gra-
dient information provided by the least-squares objective. Concretely, a key observation in our
information-theoretic proof is that the candidate hyperplanes are locally optimal: given least-

squares loss, for ¢ € {1, 2} for all vectors v,

<v E [(y _ xT@i)Q} ,v> — B [(v.aeTO,—ay)] =0

z,y~D; z,y~D;

where ©; and O, are the optimal hyperplanes for D; and D, respectively. Therefore, both (i)

and (i1) are identically 0. It remains to bound (ii1).

Independence and Negatively Correlated Moments. We observe that term (iii) can be inter-
preted as the k-th order correlation between the distribution of the covariates projected along v
and the distribution of the noise in the linear model. Here, we observe that if the linear model
satisfies the negatively correlated moments condition (Definition 1.1.11), we can decouple the

expectation and bound each term independently:

1/k 1/k

E ’“} Y (1.5)

(-6

(v, ) (y - mTG)l)k} <E {(v, z)

Observe, when the underlying linear model has independent noise, Equation (1.5) follows for
any k. We thus crucially exploit the structure of the noise and require a considerably weaker
notion than independence. Further, if the negatively correlated moments property is not satisfied,
we can use Cauchy-Schwarz to decouple the expectation in Equation (1.5) and incur a ¢!~2/*
dependence. Conceptually, we emphasize that the negatively correlated moments condition may
be of independent interest to design estimators that exploit independence in various statistics

problems.
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Hypercontractivity. To bound the RHS in Equation (1.5), we use our central distributional

assumption of hypercontractive k-th moments (Definition 1.1.6) of the covariates :

1/2

E .27 < vaE [, = va (v, 50) 2

We can bound the noise similarly, by assuming that the noise is hypercontractive and this con-
siderably simplifies our statements. However, hypercontractivity of the noise is not a necessary
assumption and prior work indeed incurs a term proportional to the k-th moment of the noise.
Assuming boundedness of the regression vectors, Klivans, Kothari and Meka [KKM 18] obtained
a uniform upper bound on k-th moment of the noise by truncating large samples. We note that
the same holds for our estimators and we refer the reader to Section 5.2.3 in their paper. Finally,

substituting v = ©; — O, and rearranging, completes the information-theoretic proof.

We note that our approach already differs from prior work [KKM 18, PSBR20, ZJS19] and to
our knowledge, we obtain the first information theoretic proof that being e-close in TV distance

implies that the optimal hyperplanes are 0(61_1/ k) close in /5 distance.

Future Directions. We note that our estimators obtain the rate matching recent work for Gaus-
sians, albeit in quasi-polynomial time. In comparison, Diakonikolas, Kong and Stewart [DKS18]
obtain the same rate in polynomial time, when the noise is independent of the covariates. This

leads to the following question

Open Question 17 (Sub-Gaussian Rates in Polynomial Time). Is there a polynomial time algo-
rithm that achieves O (e - poly (log(1/¢))) rates for all sub-Gaussian distributions? Is any extra

log(1/¢) factor neccesary?

Further, the sample complexity of our estimators scales proportional to d**). Such large

sample complexity may not be neccesary.

Open Question 18 (Sub-Gaussian Rates in Polynomial Time). Can we achieve the optimal trade-

off between sample complexity, running time and rate for all hypercontractive distributions?

A natural generalization of our work is to consider robust algorithms for Generalized Linear
Models, which capture linear, logistic and multi-response regression. Further, such algorithms
would pave the way for robust estimators for learning Graphical Models that have received sig-
nificant attention in various machine learning and computational biology domains. Thus far,
obtaining the statistically optimal rate for learning simple Graphical Models remains open, even

with unbounded computation [LSS™]. A closely related problem is that of list-decodable re-
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gression and subspace recovery, where an overwhelming fraction of data is corrupted (see for
example [KKK19, RY20a, RY20b][BK21]). Studying variants of regression and latent variable

models in the list-decodable setting is ripe for future work.

1.1.3 List-Decodable Subspace Recovery

List-decodable learning is a strict generalization of related and well-studied clustering problems
(for e.g., list-decodable mean estimation generalizes clustering spherical mixture models, list-
decodable regression generalizes mixed linear regression). In our case, list-decodable subspace
recovery generalizes the well-studied problem of subspace clustering where given a mixture
of k distributions with covariances non-zero in different subspaces, the goal is to recover the
underlying k subspaces [AGGROS5, CFZ99, PJAMO02]. Algorithms in this model thus naturally
yield robust algorithms for the related clustering formulations. In contrast to known results, such
algorithms allow “partial recovery” (e.g. for example recovering k£ — 1 or fewer clusters) even in

the presence of outliers that garble up one or more clusters completely.

Another important implication of list-decodable estimation is algorithms for the small outlier
model that work whenever the fraction of inliers v > 1/2 - the information-theoretic minimum
for unique recovery. As a specific corollary, we obtain an algorithm for (uniquely) estimating the
subspace spanned by the inlier distribution D whenever o > 1/2. We note that if « is sufficiently
close to 1, such a result follows from outlier-robust covariance estimation algorithms [DKK™ 19,
LLRV16]. While prior works do not specify precise constants, all known works appear to require
« at least > 0.75.

List-decodable learning was first proposed in the context of clustering by Balcan, Blum and
Vempala [BBVO08]. In a recent work, Charikar, Steinhardt and Valiant [CSV 17] rejuvenated it
as a natural model for algorithmic robust statistics. Most recent works in algorithmic robust
statistics have focused on the related but less harsh model of where input data is corrupted by
an € < 1/2 fraction outliers. This line of work boasts of some remarkable successes including
robust algorithms for computing mean, covariance and higher moments of distributions, clus-
tering mixture models, and performing linear regression in the presence of a small e fraction of

adversarial outliers.

While the success hasn’t been of the same scale, there has been quite a bit of progress
on list-decodable learning that surmount the challenges that arise in dealing with overwhelm-
ingly corrupted data. Recent sequence of works have arrived at a blueprint using the sum-of-

squares method for list-decodable estimation with applications to list-decodable mean estima-
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tion [DKS18, KSS18] and linear regression [KKK19, RY20a].

In the list-decodable subspace recovery problem, our input is a collection of samples {; }ic
€ R%, an an of which are drawn i.i.d. from a distribution D with mean 0 and unknown projective
covariance II, of rank k. The main idea of the algorithm is to encode finding the "inliers" in the
input sample via a polynomial program. To do this, we introduce variables wy, ws, . . ., w, that
are supposed to indicate the samples that correspond to the inliers. Thus, we force w? = w; (i.e.
w; € {0,1}) and > i<n Wi = an as constraints on w. We also introduce a variable 11 that stands
for the covariance of the inliers and add constraints that force it to be a projection matrix. To this
end, it suffices to constraint [1> = II and II >= 0. Further, we require that each of the samples

indicated by w are in the subspace described by II: w;(Ilx; — x;) = 0 for every i.

Recall, an adversary can create multiple rank-k subspaces that satisfy all the aforementioned
constraints, and a priori, a solution to the above polynomial program need not tell us anything
about the true inliers. Therefore, we must force w to share some property that D satisfies so that
we can guarantee a solution to the program contains some information about the inliers. What
property should this be? In the context of list-decodable regression [KKK19, RY20a], it turns
out that it was both necessary and sufficient (up to the additional qualifier of "certifiability") for w
(and D) to be anti-concentrated. Anti-concentration is also sufficient to get some guarantees for
subspace recovery as shown in [RY20b, BK21]. Is it necessary? And if not, is there a property
satisfied by a larger class of distributions that might be sufficient?

Subspace Clustering. A closely related (and formally easier®) problem to list-decodable sub-
space recovery is subspace clustering [EV 13, PHL04, SEC14]. Known algorithms with provable
guarantees for this problem either require runing time exponential in the ambient dimension,
such as RANSAC [FB81], algebraic subspace clustering [VMS05] and spectral curvature clus-
tering [LLY "12], or require the co-dimension to be a constant fraction of the ambient dimen-
sion [CSV13, LMZ"12, TV17, ZWR"18].

Robust Subspace Recovery. Our setting also superficially resembles robust subspace recov-
ery (see [LM18a] for a survey), where the goal is to recover a set of inliers that span a single
low-dimensional space. In this setting, « is assumed to be close to 1. Prior works on this
problem identify some tractable special cases (see [VN18]) while no provable guarantees are
known for the general setting. Further, Hardt and Moitra [HM13] (see also the recent work of
Bhaskara, Chen, Perreault and Vijayraghavan [BCPV19]) provide a polynomial time random-

0ne can think of input to subspace clustering as the special case in list-decodable subspace recovery where the
input sample is a mixture of k¥ = 1/« distributions each with a covariance restricted to some subspace.
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ized algorithm, where both the inliers and outliers are required to be in general position and their
algorithm works as long as the inliers constitute an o = r/d fraction, where 7 is the rank of the
subspace and d is the ambient dimension. This is contrast to our work where the outliers are

completely arbitrary and potentially adversarial with respect to the inliers.

Previous Versions and Concurrent Work. A previous version of this work [BK21] appeared
concurrently with [RY20b] and gave a d°(°7)/2" time algorithm to output a O(1 /) size list that
contains a candidate projection matrix that is O(lo%)—Frobenius close to the rank 7 projection
matrix of the true subspace. The algorithm worked whenever the inlier distribution D satisfies
certifiable anti-concentration. This version of the work combines the ideas in [BK21] with

multiple new insights to obtain the improved results.

Our Results. Our results apply to input samples generated according to the following model:

Model 19 (Robust Subspace Recovery with Large Outliers). For 0 < a < 1 and r < d, let
I1, € R be a projector to a subspace of dimension r < d and let D be a distribution on R?
with mean p, and covariance II.. Let Subp(a, I1,) denote the following probabilistic process to

generate n samples, 1, x5 . . . x, with an inliers Z and (1 — «)n outliers O:
1. Construct Z by choosing an i.i.d. samples from D.

2. Construct O by choosing the remaining (1 — a)n points arbitrarily and potentially adver-

sarially w.r.t. the inliers.

Remark 20. We will mainly focus on the case when i, = 0. The case of non-zero p., can be
easily reduced to the case of p, = 0 by modifying samples by randomly pairing them up and

subtracting off samples in each pair (this changes the fraction of inliers from «a to o).

Our main result is a fixed (i.e. exponent of the polynomial does not depend on «) polyno-
mial time algorithm with dimension-independent error in Frobenius norm - the strongest notion
of closeness that implies other guarantees such as the principal angle and spectral distance be-
tween subspaces - for list-decodable subspace recovery that succeeds whenever D has certifiably

hypercontractive degree-2 polynomials:

Definition 1.1.13 (Certifiably Hypercontractivity). A distribution D on R is said to have (C, 2h)-

certifiably hypercontractive polynomials if there is a degree-2h sum-of-squares proofin the d x d
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matrix-valued indeterminate () of the following inequality:

E

xz~D

(7 Qs ~ Bupa’@2)"| < ( &

xz~D

(+7 Qo ~ Bupa' Qr)’] h) ,

Many natural distributions are certifiably hypercontractive including linear transforms of uni-
form distribution on the Boolean hypercube and unit sphere, Gaussian distributions, and product
distributions with subgaussian marginals. In particular, the set of certifiably hypercontractive
distributions is strictly larger than the currently known list of certifiably anti-concentrated distri-
butions (that essentially only holds for rotationally symmetric distributions with sufficiently light
tails).

We are now ready to state our main result.

Theorem 21 (Dimension-Independent List-Decodable Subspace Recovery, [BK21]). Let 11, be a
projection matrix for a subspace of dimension r. Let D be a distribution with mean 0, covariance

I1., and certifiably (C, 8)-hypercontractive polynomials.

Then, there exists an algorithm takes as input n = ng > Q ((dlog(d)/a)'®) samples from
Subp(a, 11,.) and in O(n'®) time, outputs a list L of O(1/«) projection matrices such that with
probability at least 0.99 over the draw of the sample and the randomness of the algorithm, there
is a 11 € L satisfying |11 — IL || < O(1/c).

As an immediate corollary, this gives an algorithm for list-decodable subspace recovery when
D is Gaussian, uniform on the unit sphere, uniform on the discrete hypercube/g-ary cube, product

distribution with subgaussian marginals and their affine transforms.

Discussion and Comparison with Prior Works Theorem 21 improves on a previous version
of [BK21] and on [RY20b] in running time, error guarantees and the generality of the distribu-
tion D. In particular, it strictly improves on the work of Raghavendra and Yau who gave an error
guarantee of O(r/a®) in polynomial time by relying on certifiable anti-concentration.” It also im-
proves on the guarantee in a previous version of this work for Gaussians that relied on certifiable
anti-concentration and an exponential error reduction method to give an error of O(log(r)/«)
in d°0er/o") time. Unlike Theorem 21, both these algorithms provably cannot extend to the

uniform distribution on the hypercube.

A priori, our result might appear surprising and almost too-good-to-be-true. Indeed, prior

"The results in [RY20a] handle a small amount of additive noise. The algorithm in this paper can be extended to
handle a similar amount of noise but we do not focus on that aspect in this paper.
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works identified anti-concentration as a information-theoretic necessary condition on D for list-
decodable regression (a special case of list-decodable subspace recovery) to be feasible. Specif-
ically, Karmalkar, Klivans and Kothari [KKK19] show:

Fact 1.1.14 (Theorem 6.1, Page 19 in [KKK19]). For any constant o« > 0, there exists a distri-
bution D (uniform distribution on {0, 1}") that is (o + €)-anti-concentrated for every ¢ > 0 but
there is no algorithm for o /2-approximate list-decodable subspace recovery with rank r = d — 1

that outputs a list of size < d.

On the other hand, note that discrete product distributions such as uniform distribution on the
hypercube/q-ary cube satisfy certifiable hypercontractivity (see [KOTZ14]) so our Theorem 21
applies. This is not a contradiction because of the error guarantees - observe that the Frobenius
error bound of O(1/«a) provided by Theorem 21 translates to a ¢5-norm bound of O(1/«) for
linear regression. This is not meaningful for unit vectors, whenever v < 1/2, since even a
random unit vector achieves an error of at most /2 in this setting. On the other hand, for
subspace recovery, this is a non-trivial guarantee whenever the dimension and the co-dimension

of the unknown subspace are > 1/a.

High-Accuracy Subspace Recovery. Our first result naturally raises the question of algo-
rithms obtaining arbitrarily tiny error (instead of O(1/«)). For sufficiently small errors (< 1),
D must necessarily be anti-concentrated, given the lower-bound from Fact 1.1.14 above. Our
next result confirms that certifiable anti-concentration of D is sufficient to obtain an arbitrarily
small error while still maintaining a list-size of an absolute constant (but of size 1/q@U0s(1/2))

independent of the dimension.

To state our result, we first recall certifiable anti-concentration from the previous subsection.

Definition 1.1.15 (Certifiable Anti-Concentration). A zero-mean distribution D with covariance
Y is 2t-certifiably (0, C'0)-anti-concentrated if there exists a univariate polynomial p of degree t

such that there is a degree 2t sum-of-squares proof in variable v of the following inequalities:

32|/ 2v||3?

L [[o]l32 (o) + 6% ({a,0) > =

2. Eanp [P ({2, 0))] < COJ|SY20][3.

A subset S C R% is 2t-certifiably (5, C'§)-anti-concentrated if the uniform distribution on S is
2t-certifiably (0, C'd)-anti-concentrated.

Gaussian distributions and spherically symmetric distributions with subgaussian tails are
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O(1/4?)-certifiably (2, §)-anti-concentrated for every § > 0 (see Section 5.5).

Theorem 22 (High-Accuracy Subspace Recovery, [BK21]). Let 11, be a projector to a subspace
of dimension r. Let D be a k-certifiably (C,«/2C)-anti-concentrated distribution with certifi-
ably C-hypercontractive degree 2 polynomials.

Then, there exists an algorithm that takes as input n = ng > (dlog(d)/a)°® samples from
Subp (o, IL,) and in n®*+1°8(/m) time, outputs a list £ of O(1/a'°8*+1°8(1/n)) projection matrices
such that with probability at least 0.99 over the draw of the sample and the randomness of the
algorithm, there is a 11 € L satisfying |1 — IL || p < 1.

The proof of Theorem 22 is based on new argument using certifiable anti-concentration that
bootstraps our first result with an exponential error reduction mechanism within the sum-of-
squares proof system. This improves on the result in a previous version of this work that gave
a d°0e2d/o") glgorithm with a dimension-dependent list size of d°(°2(1/®) based on a somewhat

complicated pruning procedure.

Using O(1/6?)-certifiable (8, C'§)-anti-concentration of Gaussians and spherically symmetric

distribution with subgaussian tails, we obtain:

Corollary 1.1.16 (Subspace Recover for Gaussian Inliers, [BK21]). Let 11, be a projector a
subspace of dimension r. Let D be a mean 0 Gaussian or a spherically symmetric distribution

with subgaussian tails with covariance 11,.

Then, there exists an algorithm that takes as input n. = ny > (dlog(d)/a®)°/*) samples

from Subp(o, 11,) and in n'°81/*D/* time, outputs a list £ of O(1/a8V/1080/n) projection
matrices such that with probability at least 0.99 over the draw of the samples and the randomness

of the algorithm, there is a Il € L satisfying Hf[ —IL||r <.

Further uses of exponential error reduction. Our exponential error reduction method is
likely to be of wider use. As an example, we observe the following immediate consequence
to list-decodable linear regression by obtaining an improved running time (with a large constant

list-size) as a function of the target accuracy.

Corollary 1.1.17 (List-Decodable Regression, [BK21]). Let D be k-certifiably (a/2C')-anti con-
centrated distribution with mean 0 and covariance I. Then, there exists an algorithm that
takes as input n = ng = (dlog(d)/a)a(k) labeled samples where an an samples (x,y) are
iid withx ~ Dandy = (L., x) for some unknown, unit vector {, and outputs a list L of

O(1/aCUesk)Hoe(1/n)) regressors such that with probability at least 0.99 over the draw of the
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samples and the randomness of the algorithm, there is a regressoré € L satisfying Hg — )3 < n.

The algorithm has time complexity at most n©@%*+1oe(1/7))

Prior works [KKK19, RY20a] needed n®**/7") time but computed a smaller list of size

O(1/a)).

Future Directions. Given the resurgence of interest in list-decodable learning, and the limited
algorithmic results mentioned above, this area is ripe for future work. In addition to obtaining
statistically optimal rates and parameter dependence, it would be interesting to develop a general
theory for when list-decodable learning can be performed efficiently. For high-accuracy learning,
anti-concentration of the underlying distribution appears to be the key ingredient underlying all

efficient estimators.

Open Question 23. Does anti-concentration characterize high-accuracy list-decodable learning?

1.1.4 Learning a Two-Layer Neural Network

Neural networks have achieved remarkable success in solving many modern machine learning
problems which were previously considered to be intractable. With the use of neural networks
now being wide-spread in numerous communities, the optimization of neural networks is an

object of intensive study.

Common usage of neural networks involves running stochastic gradient descent (SGD) with
simple non-linear activation functions, such as the extremely popular ReL.U function, to learn an
incredibly large set of weights. This technique has enjoyed immense success in solving com-
plicated classification tasks with record-breaking accuracy. However, theoretically the behavior
and convergence properties of SGD are very poorly understood, and few techniques are known
which achieve provable bounds for the training of large neural networks. This is partially due to
the hardness of the problem — there are numerous formulations where the problem is known to
be NP-hard [BR92, Jud88, BDL18, MR18]. Nevertheless, given the importance and success in

solving this problem in practice, it is important to understand the source of this hardness.

Typically a neural network can be written in the following form: A = U'(--- U3 f(U%f(U' X)),
where i is the depth of the network, X € R%" is a matrix with columns corresponding to in-
dividual d-dimensional input samples, and A is the output labeling of . The functions f are
applied entry-wise to a matrix, and are typically non-linear. Perhaps the most popular activation

used in practice is the ReLU, given by f(x) = max{0, z}. Here each U’ is an unknown linear

30



map, representing the “weights"”, which maps inputs from one layer to the next layer. In the
reconstruction problem, when it is known that A and X are generated via the above model, the

goal is to recover the matrices U, ... U".

In this work, we consider the problem of learning the weights of two layer networks with a
single non-linear layer. Such a network can be specified by two weight matrices U* € R™**
and V* € R¥*4 such that, on a d-dimensional input vector z € RY, the classification of the
network is given by U* f(V*z) € R™. Given a training set X € R¥*" of n examples, along
with their labeling A = U* f(V*X') + E, where E is a (possibly zero) noise matrix, the learning
problem is to find U and V' for which

|U-U"[p+ ||V -V r<e

We consider two versions of this problem. First, in the noiseless (or realizable) case, we ob-
serve A = U™ f(V*X) precisely. In this setting, we demonstrate that exact recovery of the matri-
ces U™, V* is possible in polynomial time. Our algorithms, rather than exploiting smoothness of
activation functions, exploit combinatorial properties of rectified activation functions. Addition-
ally, we consider the more general noisy case, where we instead observe A = U*f(V*X) + E,
where E is a noise matrix which can satisfy various conditions. Perhaps the most common as-
sumption in the literature [GKLW 18, GLM 17, JSA15] is that E has mean 0 and is sub-Gaussian.
Observe that the first condition is equivalent to the statement that E [A | X| = U*f(V*X).
While we primarily focus on designing polynomial time algorithms for this model of noise, in
Section 6.7 we demonstrate fixed-parameter tractable (in the number k& of ReLLUs) algorithms to
learn the underlying neural network for a much wider class of noise matrices E. We predomi-
nantly consider the identifiable case where U* € R™** has full column rank, however we also
provide supplementary algorithms for the exact case when m < k. Our algorithms are robust to
the behavior of f(x) for positive x, and therefore generalize beyond the ReLU to a wider class
of rectified functions f such that f(z) = 0 for x < 0 and f(z) > 0 otherwise.

It is known that stochastic gradient descent cannot converge to the ground truth parameters
when f is ReLLU and V'* is orthonormal, even if we have access to an infinite number of samples
[LSSS14]. This is consistent with empirical observations and theory, which states that over-
parameterization is crucial to train neural networks successfully [Harl4, SC16]. In contrast, in
this work we demonstrate that we can approximate the optimal parameters in the noisy case, and
obtain the optimal parameters exactly in the realizable case, in polynomial time, without over-

parameterization. In other words, we provide algorithms that do not succumb to spurious local
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minima, and can converge to the global optimum efficiently, without over-parametrization.

Our Results. We now state our results more formally. We consider 2-layer neural networks
with ReLU-activation functions f. Such a neural network is specified by matrices U* € R™*¥
and V* € R**?. We are given d-dimensional input examples x € R?, which form the columns
of our input matrix X', and also give the network’s m-dimensional classification of X', which is
A = U*f(V*X), where f is applied entry-wise. We note that our formulation corresponds to

having one non-linear layer.

In the worst case setting, no properties are assumed on the inputs X', A. While this problem is
generally assumed to be intractable, we show, perhaps surprisingly, that when rank(A) = k and
k = O(1), polynomial time exact algorithms do exist. One of our primary techniques throughout
this work is the leveraging of combinatorial aspects of the ReLU function. For arow f(V*X), .,
we define a sign pattern of this row to simply be the subset of positive entries of the row. Thus,
a sign pattern of a vector in R" is simply given by the orthant of R" in which it lies. We first
prove an upper bound of O(n*) on the number of orthants which intersect with an arbitrary
k-dimensional subspace of R". Next, we show how to enumerate these sign patterns in time

pk+OM),

We use this result to give an n©*)

in the realizable case, where A = U* f(V*X) for some fixed rank-k matrices U*, V*. After

fixing a sign pattern of f(V*X), we can effectively “remove" the non-linearity of f. Even so,

time algorithm for the neural network learning problem

the learning problem is still non-convex, and cannot be solved in polynomial time in the general
case (even for fixed k). We show, however, that if the rank of A is k, then it is possible to use a
sequence of linear programs to recover U™, V'* in polynomial time given the sign pattern, which

O(k)

allows for an n overall running time. Our theorem is stated below.

Since non-convex optimization problems are known to be NP-hard in general, it is, perhaps,
unsatisfying to settle for worst-case results. Typically, in the learning community, to make prob-
lems tractable it is assumed that the input data is drawn from some underlying distribution that
may be unknown to the algorithm. So, in the spirit of learning problems, we make the common
step of assuming that the samples in X" have a standard Gaussian distribution. More generally,
our algorithms work for arbitrary multi-variate Gaussian distributions over the columns of X, as
long as the covariance matrix is non-degenerate, i.e., full rank. In this case, our running time and
sample complexity will blow up by the condition number of the covariance matrix, which we
can estimate first using standard techniques. For simplicity, we state our results here for 3 = I,

though, for the above reasons, all of our results for Gaussian inputs X extend to all full rank 3
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Furthermore, because many of our primary results utilize the combinatorial sparsity patterns
of f(VX), where X is a Gaussian matrix, we do not rely on the fact that f(z) is linear for > 0.
For this reason, our results generalize easily to other non-linear rectified functions f. In other

words, any function f given by

0 ifx <0
flz) =

¢(x) otherwise

where ¢(z) : [0,00] — [0, 00] is a continuous, injective function. In particular, our bounds do
not change for polynomial valued ¢(z) = z¢ for ¢ € N. Note, however, that our worst-case,
non-distributional algorithms (stated earlier), where X is a fixed matrix, do not generalize to

non-linear ¢(x).

We first consider the noiseless setting, also referred to as the exact or realizable setting. Here
A = U*f(V*X) is given for rank k matrices U* and V*, where X" has non-degenerate Gaussian
marginals. The goal is then to recover the weights (U*)”, V* exactly up to a permutation of
their rows (since one can always permute both sets of rows without effecting the output of the
network). Note that for any positive diagonal matrix D, U* f(DV*X) = U*D f(V*X) when
f is the ReLU. Thus recovery of (U*)”, V* is always only possible up to a permutation and
positive scaling. We now state our main theorem for the exact recovery of the weights in the

realizable (noiseless) setting.

Theorem 24 (Exact Parameter Recovery, [BIW19]). Suppose A = U*f(V*X) where U* €
R™F V* € RF* are both rank-k, and such that the columns of X € R¥™ are mean 0 i.i.d.
Gaussian. Then if n = Q(poly(d, m, x(U*), k(V™*))), then there is a poly(n)-time algorithm
which recovers (U*)T, V'* exactly up to a permutation of the rows with high probability.

To the best of our knowledge, this is the first algorithm which learns the weights matrices of
a two-layer neural network with ReLLU activation exactly in the noiseless case and with Gaussian
inputs X'. Our algorithm first obtains good approximations to the weights U*, V'*, and concludes
by solving a system of judiciously chosen linear equations, which we solve using Gaussian elim-
ination. Therefore, we obtain exact solutions in polynomial time, without needing to deal with
convergence guarantees of continuous optimization primitives. Furthermore, to demonstrate the
robustness of our techniques, we show that using results introduced in the concurrent and inde-
pendent work of Ge et. al. [GKLW 18], we can extend Theorem 24 to hold for inputs sampled
from symmetric distributions. We note that [GKLLW 18] recovers the weight matrices up to addi-

tive error € and runs in poly (%)-time, whereas our algorithm has no € dependency.
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The runtime of our algorithm depends on the condition number x(V*) of V*, which is a
fairly ubiquitous requirement in the literature for learning neural networks, and optimization in
general [GKLW18, JSA15, CMTV 17, AGMR17,ZSJ"17, SJIA16]. To address this dependency,
we give a lower bound which shows at least a linear dependence on (V™) is necessary in the

sample and time complexity.

Next, we introduce an algorithm for approximate recovery of the weight matrices U*, V'*
when A = U*f(V*X) + E for Gaussian marginals X and an i.i.d. sub-Gaussian mean-zero

noise matrix E with variance o2.

Theorem 25 (Noisy Parameter Recovery, [BJW19]). Let A = U* f(V*X) + E be given, where
U* ¢ R™* V* € R¥? are rank-k, E is a matrix of i.i.d. mean-zero sub-Gaussian random
variables with variance o2, and such that the columns of X € R>™ are i.i.d. Gaussian. Then
givenn = Q(poly(d, m, k(U*), k(V*), 0, ;)) there is an algorithm that runs in poly(n) time
and w.h.p. outputs V', U such that

IU-U'llr<e, [[V-V'r<e

Again, to the best of our knowledge, this work is the first which learns the weights of a 2-
layer network in this noisy setting without additional constraints, such as the restriction that U be
positive. Recent independent and concurrent work, using different techniques, achieves similar
approximate recovery results in the noisy setting [GKLW 18]. We note that the algorithm of Goel
et. al. [GK17] that [GKLW 18] uses, crucially requires the linearity of the ReLU for x > 0, and
thus the work of [GKLW 18] does not generalize to the larger class of rectified functions which
we handle. We also note that the algorithm of [GLLM17] requires U™ to be non-negative. Finally,
the algorithms presented in [JSA15] work for activation functions that are thrice differentiable
and can only recover rows of V* up to +1 scaling. Note, for the ReLLU activation function, we

need to resolve the signs of each row.

One of the primary technical contributions of this work is the utilization of the combinatorial
structure of sparsity patterns of the rows of f(V X)), where f is a rectified function, to solve
learning problems. Here, a sparsity pattern refers to the subset of coordinates of f(V X’) which
are non-zero, and a rectified function f is one which satisfies f(x) = 0 forx < 0, and f(z) > 0

otherwise.

Overview. In response to the aformentioned hardness results, we relax to the case where the

input X has Gaussian marginals. In the noiseless case, we exactly learn the weights U*, V*
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given A = U* f(V*X) (up to a positive scaling and permutation). As mentioned, our results
utilize analysis of the sparsity patterns in the row-span of A. One benefit of these techniques is
that they are largely insensitive to the behavior of f(x) for positive x, and instead rely on the
rectified property f(-). Hence, this can include even exponential functions, and not solely the
ReLU.

Our exact recovery algorithms proceed in two steps. First, we obtain an approximate version
of the matrix f(V*X). For a good enough approximation, we can exactly recover the sparsity
pattern of f(V*X'). Our main insight is, roughly, that the only sparse vectors in the row span
of A are precisely the rows of f(V*X). Specifically, we show that the only vectors in the row
span which have the same sparsity pattern as a row of f(V*X) are scalar multiples of that row.
Moreover, we show that no vector in the row span of A is supported on a strict subset of the
support of a given row of f(V*X'). Using these facts, we can then set up a judiciously designed
linear system to find these vectors, which allows us to recover f(V*X’) and then V* exactly. By
solving linear systems, we avoid using iterative continuous optimization methods, which recover
a solution up to additive error € and would only provide rates of convergence in terms of ¢.
In contrast, Gaussian elimination yields exact solutions in a polynomial number of arithmetic

operations.

The first step, finding a good approximation of f(V*X), can be approached from multiple
angles. In this work, we demonstrate two different techniques to obtain these approximations, the
first being Independent Component Analysis (ICA), and the second being tensor decomposition.
To illustrate the robustness of our exact recovery procedure once a good estimate of f(V*X) is
known, we show in Section 6.4.3 how we can bootstrap the estimators of recent, concurrent and

independent work [GKLW 18], to improve them from approximate recovery to exact recovery.

In the restricted case when V* is orthonormal, we show that our problem can be modeled
as a special case of Independent Component Analysis (ICA). The ICA problem approximately
recovers a subspace B, given that the algorithm observes samples of the form y = Bz + (, where
x is 1.1.d. and drawn from a distribution that has moments bounded away from Gaussians, and ¢
is a Gaussian noise vector. Intuitively, the goal of ICA is to find a linear transformation of the
data such that each of the coordinates or features are as independent as possible. By rotational
invariance of Gaussians, in this case V' *X is also 1.i.d. Gaussian, and we know that the columns
of f(V*X) have independent components and moments bounded away from a Gaussian. Thus,

in the orthonormal case, our problem is well suited for the ICA framework.

A second, more general approach to approximating f(V*X) is to utilize techniques from

tensor decomposition. Our starting point is the generative model considered by Janzamin et.
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al. [JSA15], which matches our setting, i.e., A = U*f(V*X). The main idea behind this
algorithm is to construct a tensor that is a function of both A, X’ and captures non-linear corre-
lations between them. A key step is to show that the resulting tensor has low CP-rank and the
low-rank components actually capture the rows of the weight matrix V'*. Intuitively, working
with higher order tensors is necessary since matrix decompositions are only identifiable up to
orthogonal components, whereas tensors have identifiable non-orthogonal components, and we

are specifically interested in recovering approximations for non-orthonormal V'*.

Next, we run a tensor decomposition algorithm to recover the low-rank components of the re-
sulting tensor. While computing a tensor decomposition is NP-hard in general [HL13], there is a
plethora of work on special cases, where computing such decompositions is tractable [BCMV 14,
SWz16, WAL6, GVX14, GM15, BM16]. Tensor decomposition algorithms have recently be-
come an invaluable algorithmic primitive and with applications in statistical and machine learn-
ing [JSA15, JSA14, GLM17, AGHK14a, BKS15].

However, there are several technical hurdles involved in utilizing tensor decompositions to
obtain estimates of V'*. The first is that standard analysis of these methods utilizes a general-
ized version of Stein’s Lemma to compute the expected value of the tensor, which relies on the
smoothness of the activation function. Thus, we first approximate f(-) closely using a Cheby-
shev polynomial p(-) on a sufficiently large domain. However, we cannot algorithmically ma-
nipulate the input to demand that A instead be generated as U*p(V*X'). Instead, we add a
small mean-zero Gaussian perturbation to our samples and analyze the variation distance be-
tween A = U*f(V*X) + G and U*p(V*X) + G. For a good enough approximation p, this
variation distance will be too small for any algorithm to distinguish between them, thus standard
arguments imply the success of tensor decomposition algorithms when given the inputs A + G
and X.

Next, a key step is to construct a non-linear transformation of the input by utilizing knowledge
about the underlying density function for the distribution of X', which we denote by p(x). The
non-linear function considered is the so-called Score Function, defined in [JSA14], which is the
normalized m-th order derivative of the input probability distribution function p(z). Computing
the score function for an arbitrary distribution can be computationally challenging. However, as
mentioned in [JSA14], we can use Hermite polynomials that help us compute a closed form for

the score function, in the special case when = ~ N (0, I).

A further complication arises due to the fact that this form of tensor decomposition is agnostic
to the signs of V. Namely, we are guaranteed vectors v; from tensor decomposition such that

|vi — &Vii|lF < e, where § € {1,—1} is some unknown sign. Prior works have dealt with
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this issue by considering restricted classes of smooth activation functions which satisfy f(z) =
1 — f(—=x) [JSAI5]. For such functions, one can compensate for not knowing the signs by
allowing for an additional affine transformation in the neural network. Since we consider non-
affine networks and rectified functions f(-) which do not satisfy this restriction, we must develop
new methods to recover the signs &; to avoid the exponential blow-up needed to simply guess

them.

For the noiseless case, if v; is close enough to &; V",

0,%

we can employ our previous results on
the uniqueness of sparsity patterns in the row-span of A. Namely, we can show that the sparsity
pattern of f(&v;) will in fact be feasible in the row-span of A, whereas the sparsity pattern of

f(—=¢&w;) will not, from which we recover the signs ; via a linear system.

In the presence of noise, however, the problem becomes substantially more complicated.
Because we do not have the true row-span of f(V*X), but instead a noisy row-span given by
U*f(V*X)+ E, we cannot recover the &;’s by feasibility arguments involving sparsity patterns.
Our solution to the sign ambiguity in the noisy case is a projection-based scheme. Our scheme
for determining &; involves constructing a 2k — 2 dimensional subspace .S, spanned by vectors
of the form f(+wv;X) for all j # i. We augment this subspace as S* = S U {f(v;X)} and
S~t = SU{f(—v;X)}. We then claim that the length of the projections of the rows of A
onto the S¢ will be smaller for ¢ = &; than for £ = —¢;. Thus by averaging the projections of
the rows of A onto these subspaces and finding the subspace which has the smaller projection
length on average, we can recover the &;’s with high probability. Our analysis involves bounds
on projections onto perturbed subspaces, and a spectral analysis of the matrices f(W X), where

W is composed of up to 2k rows of the form V%, and — V..

Future Directions. There has been a significant amount of progress on designing algorithms
for provably learning the parameters of two layer (and deeper) neural networks in the years
since our work was published [AZI.19, IMM20, DK20, DKKZ20, ATV21, AAK21, CGKM?22,
CKM?22]. However, some basic algorithmic questions in the simplest possible setting remain

open:

Open Question 26. Given a two layer neural network y = U*f(V*X) + (, where X is drawn
from a sub-Gaussian distribution, ¢ is mean zero independent noise, and U* is a 1 X k matrix,
can we learn some neural network that has small labeling error in time that is polynomial in all

input parameters, and independent of the condition number?

We note that our results require the output dimension to be larger than the number of neurons
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in the hidden layer, and the running time scales proportional to the condition number of U*
and V*. In the easier PAC learning setting, we do not require recovering the parameters up to
small error, and thus could get away without incurring any condition number dependence. For
deeper layers, the best known algorithm [] requires an exponential dependence on the lipschitz
constant of the network, and obtaining a polynomial dependence remains open. We conclude
with another open question on robustly learning two-layer neural networks, which may be of

significant practical interest as well.

Open Question 27. Is there a polynomial time algorithm to learn a two-layer neural network
under the strong contamination model, i.e. (1 — ¢)-fraction of the samples are drawn i.i.d. from
a Gaussian (or any other known) distribution and the remaining e-fraction are arbitrarily chosen

by an adversary?

Natural variants of the above formulation are also open.

1.2 Nearly Optimal Algorithms for Learning Latent Models

In the second half of this thesis we consider learning simple latent models that already admit
polynomial time algorithms. We show that we can obtain nearly optimal algorithms for (a)
low-rank approximation under any Schatten-p norm , (b) low-rank approximation of positive
semi-definite and Euclidean distance matrices and (c) learning a latent simplex. Low-rank ap-
proximation under various Schatten-p norms has been vastly studied over the last two decades
and the numerous algorithms have been obtained based on sketching methods and iterative meth-
ods, however obtaining optimal algorithms for this family of optimization problems has remained
a central open question [Wool4a]. Studying questions in numerical linear algebra where the in-
put matrix is drawn from a structured family has also received a lot of attention in recent years. In
particular, several works have considered solving linear systems for Laplacian/Diagonally Dom-
inant matrices [ST14, KOSZ13, KMP14] and Block Henkel matrices [PV21], covariance esti-
mation of Toeplitz matrices [ELMM?20], and approximation the permanent of boolean [JS89],
non-negative matrices [JSV04] and PSD [AGGS17, YP21] matrices, and low-rank approxima-
tion for PSD [MW17b] and distance matrices [BW18]. However, obtaining optimal algorithms
for these questions remain open. Finally, the latent simplex framework was recently formalized
as a way to capture several well-studied latent models, such as the stochastic block model and
latent dirichelet allocation [BK20d]. However, obtaining a truly input-sparsity time algorithm

for this problem remained open.

38



We begin by providing an overview of an optimal matrix-vector product algorithm for low-
rank approximation under Schatten-p norms, for all constant p. Next, we describe an optimal
sub-linear time algorithm for computing a low-rank approximation when the input matrix is
promised to be PSD or a Euclidean distance matrix. We then conclude by describing a truly

input-sparsity time algorithm for learning a latent simplex.

1.2.1 Low-Rank Approximation for Schatten Norms

Iterative methods, and in particular Krylov subspace methods, are ubiquitous in scientific com-
puting. Algorithms such as power iteration, Golub-Kahan Bidiagonalization, Arnoldi iteration,
and the Lanczos iteration, are used in basic subroutines for matrix inversion, solving linear sys-
tems, linear programming, low-rank approximation, and numerous other fundamental linear al-
gebra primitives [Saa81, LS13]. A common technique in the analysis of Krylov methods is the
use of Chebyshev polynomials, which can be applied to the singular values of a matrix to imple-
ment an approximate interval or step function [MHO02, Riv20]. Further, Chebyshev polynomials
reduce the degree required to accurately approximate such functions, leading to significantly
fewer iterations and faster running time. We investigate the power of Krylov methods for low-

rank approximation in the matrix-vector product model.

The Matrix-Vector Product Model. In this model, there is an underlying matrix A, which
is often implicit, and for which the only access to A is via matrix-vector products. Namely,
the algorithm chooses a query vector v!, obtains the product A - v', chooses the next query

2 2 and so

vector v, which is any randomized function of v! and A - v!, then receives A - v
on. If A is a non-symmetric matrix, we assume access to products of the form A v as well.
We refer to the minimal number ¢ of queries needed by the algorithm to solve a problem with
constant probability as the query complexity. We note that upper bounds on the query complexity
immediately translate to running time bounds for the RAM model, when A is explicit, since a
matrix-vector product can be implemented in nnz(A) time, i.e., the number of non-zero entries
in the matrix. Since this model captures a large family of iterative methods, it is natural to
ask whether Krylov subspace based methods yield optimal algorithms, where the complexity

measure of interest is the number of matrix-vector products.

This model and related vector-matrix-vector query models were formalized for a number
of problems in [SWYZ19, RWZ20], though the model is standard for measuring efficiency in
scientific computing and numerical linear algebra, see, e.g., [BFG96]; in that literature, meth-

ods that use only matrix-vector products are called matrix-free. Subsequently, for the problem
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of estimating the top eigenvector, nearly tight bounds were obtained in [SARI18, BHSW20].
Also, for the problem of estimating the trace of a positive semidefinite matrix, tight bounds were
obtained in [MMMW21] (see, also [WWZ14], where tight bounds were shown in the related
vector-matrix-vector query model). For recovering a planted clique from a random graph, upper
and lower bounds were obtained in [RWYZ21]. In the non-adaptive setting, where v!,. .., v9,
are chosen before making any queries to A, this is equivalent to the sketching model, which is
thoroughly studied on its own (see, e.g., [Nelll, Wool4b]), and in the context of data streams
[Mut05, LNW14b].

Why is the matrix A implicit? A small query complexity ¢ leads to an algorithm running
in time O(T(A) - ¢+ P(n,d,q)), where T'(A) is the time to multiply the n x d matrix A by
an arbitrary vector, and P(n,d, q) is the time needed to form the queries and process the query
responses, which is typically small. When the matrix A is given as a list of nnz(A) non-zero
entries, then T'(A) < nnz(A). However, in many problems A is not given explicitly, and it
is too expensive to write A down. Indeed, one may be given A but want to compute a low-
rank approximation to the “covariance” (Gram) matrix A" A, and computing AT A is too slow
[MW 17a]. More generally, one may be given A = UXV " and a function f : R — R, and want
to compute matrix-vector products with the generalized matrix function f(A) = Uf(Z)V',
where U has orthonormal columns, VT has orthonormal rows, X is a diagonal matrix, and f is

applied entry-wise to each entry on the diagonal.

The covariance matrix corresponds to f(x) = x2, and other common functions f include
the matrix exponential f(x) = e” and low-degree polynomials. For instance, when A is the
adjacency matrix of an undirected graph, f(x) = z®/6 is used to count the number of triangles
[Tso08, Avrl0]. Yet another example is when A is the Hessian H of a neural network with
a huge number of parameters, for which it is often impossible to compute or store the entire
Hessian [GKX19]. Typically H - v, for any chosen vector v, is computed using Pearlmutter’s
trick [Pea94]. However, even with Pearlmutter’s trick and distributed computation on modern
GPUs, it takes 20 hours to compute the eigendensity of a single Hessian H with respect to the
cross-entropy loss on the CIFAR-10 dataset from a set of fixed weights for ResNet-18 [KH09],
which has approximately 11 million parameters [HZRS16, GKX19]. This time is directly pro-
portional to the number of matrix-vector products, and therefore minimizing this quantity is

crucial.

Algorithms and Lower Bounds for Low-Rank Approximation. The low-rank approxima-

tion problem is well studied in numerical linear algebra, with countless applications to clustering,
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data mining, principal component analysis, recommendation systems, and many more. (For sur-
veys on low-rank approximation, see the monographs [KV09, Mah11, Wool4b] and references
therein.) In this problem, given an implicit n X d matrix A, the goal is to output a matrix

7 € Rk with orthonormal columns such that

T : T
JA(T-227)|x < (1+¢) oo |A (1-UU")]lx, (1.6)
where || - ||x denotes some norm. Note that given Z, one can compute AZ with an additional

k queries, which will be negligible, and then (AZ) - Z" is a rank-k matrix written in factored
form, i.e., as the product of an n x k£ matrix and a k£ X d matrix. Among other things, low-rank
approximation provides (1) a compression of A from nd parameters to (n + d)k parameters, (2)
faster matrix-vector products, since AZ - Z" - y can be computed in O((n + d)k) time for an
arbitrary vector y, as opposed to the O(nd) time needed to compute A - y, and (3) de-noising, as
often matrices A are close to low-rank (e.g., they are the product of latent factors) but only high

rank due to noise.

Despite its tremendous importance, the optimal matrix-vector product complexity of low-
rank approximation is unknown for any commonly used norm. The best known upper bound is
due to Musco and Musco [MM 5], who achieve O(k/¢'/?) queries® for both the case when |- || x
is the commonly studied Frobenius norm ||B||r = (Zi,j B%j)1 * as well as when | - |lx is the

Spectral (operator) norm ||B||y = supy,,—; [| Byl

On the lower bound front, there is a trivial lower bound of k, since A may be full rank and
achieving (7.1) requires k& matrix-vector products since one must reconstruct the column span of
A exactly. However, no lower bounds in terms of the approximation factor € were known. We
note that Simchowitz, Alaoui and Recht [SAR 18] prove lower bounds for approximating the top
r eigenvalues of a symmetric matrix; however these guarantees are incomparable to those that

follow from a low-rank approximation, even when the norm || - || x is the operator norm.

Relationship to the Sketching Literature. Low-rank approximation has been extensively
studied in the sketching literature which, when A is given explicitly, can achieve O(nnz(A))
time both for the Frobenius norm [CW13, MM13a, NN13a], as well as for Schatten-p norms
[LW20]. However, these works require reading all of the entries in A, and thus do not apply
to any of the settings mentioned above. Further, the matrix-vector query model is especially
important for problems such as trace estimation, where a low-rank approximation is used to

first reduce the variance [MMMW21]. As trace estimation is often applied to implicit matri-

SWe let O(f) = f - poly(log(dk/€)).
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ces, e.g., in computing Stochastic Lanczos Quadrature (SLQ) for Hessian eigendensity estima-
tion [GKX19], in studying the effects of batch normalization and residual connections in neural
networks [ YGKM?20], and in computing a disentanglement regularizer for deep generative mod-

els [PPZ"20], sketching algorithms for low-rank approximation often do not apply.

Another important application is low-rank approximation of covariance matrices [MW 17a],
for which the covariance matrix is not given explicitly. Here, we have a data matrix A and we
want a low-rank approximation for AA ™. Even when S is a sparse sketching matrix, the matrix
SA is no longer sparse, and one needs to multiply SA by AT to obtain a sketch of SAAT,
which is a dense matrix-matrix multiplication. Moreover, when viewed in the matrix-vector
product model, sketching algorithms obtain provably worse query complexity than existing it-
erative algorithms (see Table 1.2 for a comparison). Further, as modern GPUs often do not
exploit sparsity, even when the matrix A is given, a GPU may not be able to take advantage of
sparse queries, which means the total time taken is proportional to the number of matrix-vector

products.

Motivating Schatten-p Norms. The Schatten norms for 1 < p < 2 are more robust than the
Frobenius norm, as they dampen the effect of large singular values. In particular, the Schatten-1
norm, also known as the nuclear norm, has been widely used for robust PCA [XCS10, CLMW11,
YPCCI16] as well as a convex relaxation of matrix rank in matrix completion [CR09, CP10],
low-dimensional Euclidean embeddings [RFP10, TDSLO0, RS00], image denoising [GZZF14,
GXM™17] and tensor completion [YZ16]. In contrast, for p > 2, Schatten norms are more sensi-
tive to large singular values and provide an approximation to the operator norm. In particular, for
arank  matrix, it is easy to see that setting p = log(r)/n yields a (1+n)-approximation to the op-
erator norm (i.e., p = oo0). While the Block Krylov algorithm of Musco and Musco [MM15] im-
plies a matrix-vector query upper bound of O (k: /et 2) for Schatten-oco low-rank approximation,
the exact complexity of this problem remains an outstanding open problem. When p > 2, we
can interpolate between Frobenius and operator norm, and setting p to be a large fixed constant
can be a proxy for Schatten-oo low-rank approximation, with significantly fewer matrix-vector

products (see Theorem 28).
Our Central Question. The main question of our work is:

What is the matrix-vector product complexity of low-rank approximation for the Frobenius

norm, and more generally, for other matrix norms?
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Problem Frobenius | Schatten-p, p € [1,2) | Schatten-p, p > 2
Sketching [CW09, LW20] | ©O(k/e) Q(K2/P [et/prl) Q(min(n, d)'=2/7)
Block Krylov [MM15] | O(k/e'/?) N/A N/A
Our Upper Bound O(k/e'/?) O(k/e'/?) O(kp'/6/€'/3)
Our Lower Bound Q(1/€/3) Q(1/€/3) Q(1/e'/3)

Figure 1.2: Prior Upper and Lower Bounds on the Matrix Vector Product Complexity for Frobe-
nius and Schatten-p low-rank Approximation. The poly(k/€) factors in prior sketching work for
Schatten-p are not explicit, but we have computed lower bounds on them to illustrate our im-
provements. Our bounds are optimal, up to logarithmic factors, for constant k. For p > log(d) /e,
spectral low-rank approximation [MM 15] implies an O (k//€) upper bound.

Our Results. We begin by stating our results for Frobenius and more generally, Schatten-p

norm low-rank approximation for any p > 1; see Table 1.2 for a summary.

Theorem 28 (Query Upper Bound, [BCW22]). Given a matrix A € R™*4 g target rank k € [d],
an accuracy parameter € € (0, 1) and any (not necessarily constant) p € [1, O(log(d)/€)], there
exists an algorithm that uses O (kpl/ 6/el/ 3) matrix-vector products and outputs a d x k matrix

Z with orthonormal columns such that with probability at least 99/100,
T . T
|A(T-22T)]s, < (1 +0) Irjrg%:IkHA(I—UU ) lls, -

When p > log(d) /e, we get O (k/+/€) matrix-vector products.

We note that for Frobenius norm low-rank approximation (Schatten p for p = 2), we im-
prove the prior matrix-vector product bound of O(k/e'/?) by Musco and Musco [MM15] to
O(k/e'/). For Schatten-p low-rank approximation for p € [1,2), we improve work of Li and
Woodruff [LW20] who require query complexity at least Q(k%/?/¢*/P*1), which is a polynomial
factor worse in both & and 1/e than our O(k/€'/3) bound.

For p > 2, [LW20] obtain a query complexity of Q(min(n, d)'~2/?). We drastically improve
this to O(k/€'/?), which does not depend on d or n at all. Setting p = log(d)/e suffices to
obtain a (1 + ¢)-approximation to the spectral norm (p = oo), and we obtain an O (k/\/€) query
algorithm, matching the best known bounds for spectral low-rank approximation [MM15]. When
p > log(d) /e, we can simply run Block Krylov for p = cc.

Remark 29 (Comments on the RAM Model). Although our focus is on minimizing the num-
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ber of matrix-vector products, which is the key resource in the applications described above,
our bounds also improve the running time of low-rank approximation algorithms when the ma-
trix A has a small number of non-zero entries and is explicitly given. For simplicity, we state
our bounds and those of previous work without using algorithms for fast matrix multiplication;
similar improvements hold when using such algorithms. When nnz(A) = O(n), for Frobe-
nius norm low-rank approximation, work in the sketching literature, and in particular [ACW 17]
(building off of [CW13, NN13a, Coh16]), achieves O(nk?/¢) time. In contrast, in this setting
our runtime is O(nk?/e*3). Similarly, for Schatten-p low-rank approximation for p € [1,2),
the previous best [LW20] requires Q(nk*?/e®/P=2)) time, while for p > 2 [LW20] requires
Q(nd2=2/P) ([ /¢)*/P) time. In both cases our runtime is only O(nk2p'/3/¢2/3). We obtain anal-
ogous improvements when the sparsity nnz(A) is allowed to be n(k/e) for a small constant
C>0.

Next, we state our lower bounds on the matrix-vector query complexity of Schatten-p low-

rank approximation.

Theorem 30 (Query Lower Bound for constant p, [BCW?22]). Given £ > 0, and a fixed constant
p = 1, there exists a distribution D over n X n matrices such that for A ~ D, any algorithm
that with at least constant probability outputs a unit vector v such that ||A (I - UUT) I3, <

(1 + &) min,,—1||A (I — uuT) s, must perform Q(1/e'/%) matrix-vector queries to A.

Remark 31. We note that this is the first lower bound as a function of e for this problem, even
for the well-studied case of p = 2, achieving an ©(1/¢!/?) bound, which is tight for any constant

k, simultaneously for all constant p > 1.

Remark 32. Braverman, Hazan, Simchowitz and Woodworth [BHSW20] and Simchowitz, Alaoui
and Recht [SAR 18] establish eigenvalue estimation lower bounds that we use in our arguments,
but their results do not directly imply low-rank approximation lower bounds for any matrix norm

that we are aware of, including spectral low-rank approximation, i.e., p = 0.

Overview. We first describe our algorithm for the special case of rank-1 approximation in the
Frobenius norm, i.e., p = 2. Our algorithm is inspired by the Block Krylov algorithm of Musco
and Musco [MM15]. Briefly, their algorithm begins with a random starting vector g (block size
is 1) and computes the Krylov subspace K = [Ag; A%g;...; Alq], for ¢ = (’)(1/61/2). Next,
their algorithm computes an orthonormal basis for the column span of K, denoted by a matrix

Q, and outputs the top singular vector of Q" A2Q, denoted by z (see Algorithm 152 for a formal
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description). It follows from Theorem 1, guarantee (1) in [MM15] that

IA (T—22") |3 < (1+¢) min A (T—uu")|3, (1.7)
ull2=1

I
and it is easy to see that this algorithm requires © (1 /et 2) matrix-vector products. A naive anal-
ysis requires an O(1/¢)-degree polynomial in the matrix A to obtain (1.7), while [MM15] use
Chebyshev polynomials to approximate the threshold function between first and second singular
value, and save a quadratic factor in the degree. The guarantee in (1.7) then follows from ob-
serving that the best vector in the Krylov subspace is at least as good as the one that exists using

Chebyshev polynomial approximation.

Algorithm 33 (Algorithm Sketch for Frobenius rank-1 LRA ).
Input: An n X n symmetric matrix A, accuracy parameter ) < € < 1.

1. Run Block Krylov for (9(1 /el 3) iterations with a random starting vector g. Let

21 be the resulting output.

2. Run Block Krylov for O(log(n/€)) iterations, but initialize with an n x b random
matrix G, where b = (’)(1 /el 3). Let z, be the resulting output.

Output: 2 = arg max,, ., (||Az1][3, [[Az]3).

Our starting point is the observation that while we require degree © ( 1/ev/ 2) to separate the
first and second singular values, if any subsequent singular value is sufficiently separated from
01, a significantly smaller degree polynomial suffices. In the context of Krylov methods, this
translates to the intuition that starting with a matrix G with b columns (block size is b) should
result in fewer iterations to find some vector in the top b subspace of A. On the other hand, if
no such singular value exists, the norm of the tail must be large and we can get away with a less
accurate solution. We show that we can indeed exploit this trade-off by running Block Krylov on

two different scales in parallel and then combine the solution. In particular, we use Algorithm
33.

Algorithm 33 captures the extreme points of the trade-off between the size of the starting
matrix and the number of iterations, such that the total number of matrix-vector products is at
most O(1/€'/3). Further, we can compute the squared Euclidean norms of Az, and Az, with an
additional matrix-vector product, and it remains to analyze the Frobenius cost of projecting A

on the subspace I — 22", where z is the unit vector output by Algorithm 33.
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Using gap-independent guarantees for Block Krylov [MM15], it follows that with O(l /e 3)
iterations, we have
1Az > ot (A) — /a3 (A). (1.8)

In contrast, using gap-dependent guarantees for Block Krylov [MM 15] initialized with block size
b, it follows that for any v > 0, running ¢ = log(1/7) - \/01 (A)/ (01(A) — 0p(A)) iterations

results in z, such that

Az > 0f(A) —yo3(A). (1.9)

If 0,(A) < 01(A)/2, we can set v = ¢/n in Equation (1.9) to obtain a highly accurate solution.
Further, regardless of the input instance, Step 3 in Algorithm 33 ensures that we get the best of
both guarantees, (1.8) and (1.9). Then, observing that I — 2z is an orthogonal projection matrix

(see Definition 7.3.1) and using the Pythagorean Theorem for Euclidean space we have:
g ythag p
1A (T—22") |7 = |AlF — |A22" |3 = A7 - |A2]3, (1.10)

where the second inequality follows from unitary invariance of the Frobenius norm and that the
squared Frobenius norm of a rank-1 matrix Az (vector) is equal to its squared Euclidean norm.
If it happens that 02(A) < 01(A)/2, i.e., a constant gap exists between the first two singular
values, then since guarantee (1.9) implies that ||Az||3 > o%(A) — (¢/n)o3(A), we can plug
this into (1.10) to yield a (1 + ¢/n)-approximate solution. Hence, we focus on instances where
o2(A) > 01(A)/2.

Consider the case where the Frobenius norm of the tail is large, i.e., [ A—A1||% > 02(A)/e'/?,

2/3

where A, is the best rank-1 approximation to A. Then we only require an €¢~/°-approximate so-

lution (plugging guarantee (1.8) into (1.10) ) since
1A (T = 212] )17 < [All} = 07(A) + 303(A) < ||A = Ay} + el|A = Ayff. (1.11)

Otherwise, 7", 02(A) < 02(A)/e'/3, which implies that there is a constant gap between the
second and b-th singular values, where b = 0(1/61/3). To see this, observe if 0,(A) > 09(A)/4,
then 37, 02(A) = X0, 0%(A) > bo2(A)/4, which is a contradiction when b > 10/¢'/3, and
thus 0,(A) < 09(A)/4 < 01/2. Now we can apply guarantee (1.9) with ¢ = O(log(n/¢)) and
conclude ||Az||2 > 02(A) — (¢/n)o2(A), yielding a highly accurate solution yet again. Overall,

this suffices to obtain a (1 + €)-approximate solution with O(1/¢'/3) matrix-vector queries.

Challenges in generalizing to Schatten p #* 2 and rank £ > 1. The outline above crucially

relies on the norm of interest being Frobenius. In particular, we use the Pythagorean Theorem to

46



analyze the cost of the candidate solution in Equation (1.10); however, the Pythagorean Theorem
does not hold for non-Euclidean spaces. Therefore, a priori, it is unclear how to analyze the
Schatten-p norm of a candidate rank-1 approximation. A proxy for the Pythagorean Theorem
that holds for Schatten-p norms is Mahler’s operator inequality (see Fact 7.3.11), which is in the
right direction but holds only for p > 2, whereas we would like to handle all p > 1. Separately,
for p > 2, the case where the tail is small corresponds to [[A — A, |5 < o (A)/ €'/3. There-
fore, naively extending the above argument requires picking a block size that scales proportional
to O(Qp /et 3) to induce a constant gap between o, and o, and the number of matrix-vector

products scales exponentially in p.

Finally, in the above outline, we also crucially use that ||Azz"||% = ||Az||3. Observe that
this no longer holds if we replace z with a matrix Z that has k£ orthonormal columns. Therefore,
it remains unclear how to relate ||AZ|5 to [|AZ., |3, yet the vector-by-vector error guarantee
obtained by Block Krylov only bounds the latter.

Handling all Schatten-p Norms and & > 1. We modify our algorithm to run Block Krylov on

AT and obtain an orthonormal matrix W such that for all i € [k],
IATW.* > o2(A) = 1071 (A), (1.12)

for some v > 0. We then analyze the cost ||A (I — ZZT) |5,» where Z is a basis for ATW.
Our key insight is to interpret the input matrix A as a partitioned operator (block matrix) and
invoke pinching inequalities for such operators. Pinching inequalities were originally introduced
to understand unitarily invariant norms over direct sums of Hilbert spaces [VIN37, Sch60]. In our
M®  M®

setting, given a block matrix M = (M(3) M@

), the pinching inequality (see Fact 7.3.13)

implies that for all p > 1,
M5, > (IMW5 + (M@ . (1.13)

A priori, it is unclear how to use Equation (1.13) to bound ||A (I - ZZT) |5, First, we establish
a general inequality for the Schatten norm of a matrix times an orthogonal projection. Let P
and Q) be any n x n orthogonal projection matrices with rank k (see Definition 7.3.1). Then, we

prove that for any matrix A,

IAlls, = [PAQs, + I(T-P) A (T - Q),. (1.14)
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To obtain this inequality, we use a rotation argument along with the fact that the Schatten-p norms
AL A®Q)
AB  AM@
and [[AW|s, = [[I—P)A(I—-Q)|s,, and then we can apply Equation (1.13) to the block

matrix above.

are unitarily invariant to show that [|A[]5 = || ( ) 5,» where AW |s, = |PAQ]|s,

Once we have established Equation (1.14), we can set P = WW ' and set Q = ZZ' to
be the projection matrix corresponding to the column span of ATWW . Then, we have that
PAQ = WW'A and (I-P)A(I-Q) = A(I—ZZ"), and combined with (1.14) this
yields

1A (T—22Z7)[l5, < |All5, — [[WWTAl5 . (1.15)

To obtain a bound on HWWTAng, we appeal to the per-vector guarantees in Equation (1.12).

However, translating from (3 error to ¥ (WTA) incurs a mixed guarantee:

IWW A5, > [ALlls, — O(vp) D oiiy (A) ol * (A).
1€[k]
To use this bound, we require o;(A) to be comparable to 04, 1(A) and thus we require an in-

volved case analysis, which appears in the proof of Theorem 28.

Avoiding an exponential dependence on p. Our main insight here is that we do not require
a block size that induces a constant gap between singular values. Instead, we first observe that
if the block size b is large enough such that o, < 05/(1 + 1/p), then O(log(n / e)\/ﬁ) iterations
suffice to obtain a vector z such that ||Az||2 > o7 (A) — (¢/n) o3 (A). Therefore, we can trade-
off the threshold for the Schatten norm of the tail with the number of iterations as follows: if
A — A4l5, < pl/%maé’ (A), then setting b = (1 + 1/p)?/(ep)/® = O(1/(ep)/?) suffices
to induce a gap of 1 + 1/p with block size b. The total number of matrix-vector products is
(’)(b : log(n/e)\/]_)> = O(p/8/€'/3), since p can be assumed to be at most (log n) /. Otherwise,
|A—AL > mag’ (A), and we only require a (1+4€%3/p'/3)-approximate solution instead
(compare with Equation (1.11)). Using gap-independent bounds (see Lemma 7.4.1), it suffices
to start with block size 1 and run O(log(n/e)p1/6/€1/3> iterations to obtain a (1 + €2/3/p'/3)-

approximate solution.

Avoiding a Gap-Dependent Bound. We note that even when there is a constant gap between
the first and second singular values, and the per vector guarantee is highly accurate, i.e., for all
i € k], ||AZ,;||* > 0Z(A) — poly (3) i+1(A), it is not clear how to lower bound [|AZ|[5 in
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Equation 1.15. In general, the best bound we can obtain using the above equation is

€ -2
1A, > 14, - O i) ot 3ot (116
Sp Sp poly(d) k+1 iez[];]
which may be vacuous when the top k singular values are significantly larger than o4, and
p > 2. One could revert to a gap-dependent bound, where the error is in terms of the gap
between oy and 0.1, which one could account for by running an extra factor of O(log(o1/0y+1))

iterations.

To avoid this gap-dependent bound, we split A into a head part Ay and a tail part A, such
that Ay has all singular values that are at least (1 + 1/d) o441 and At has the remaining singular
values. We then bound ||Ay (I - ZZT) |s, and ||Ar (I — ZZT> ||s, separately. Repeating the
above analysis, we can obtain Equation (1.16) for A, instead, and since all singular values
larger than oy in At are bounded, we can obtain || A (I - ZZT> 15, < O(ek/poly(d)) oj.+.
To adapt the analysis for Ay and obtain this bound, we use Cauchy’s interlacing theorem to
relate the j-th singular value of Ay (I — ZZT) to the (i* + 7)-th singular value of A (I — ZZT),
where * is the rank of A ;. We lower bound the (i* + j)-th singular value of A (I - ZZT) using
the per vector guarantee of [MM15].

To bound ||A gy (I - ZZT) |s,» we observe it has rank at most & and thus

Ay (1= 227)|s, < VE - |Ag (1= Z27)|lr = VE- /| Aul} — |AnZ3,

Intuitively, while the k-dimensional subspace that we find can “swap out" singular vectors cor-
responding to singular values o; for which o; is very close to oy, 1, since they serve equally well
for a Schatten-p low-rank approximation, for singular values o; that are a bit larger than oy,
the k-dimensional subspace we find cannot do this. More precisely, if y is a singular vector of
Ay with singular value o;, then the projection of y onto the k-dimensional subspace that our
algorithm finds (namely, Z) must be at least 1 — o7, /((07 — op,,)poly(d)), which suffices to
bound the above since the additive error is inversely proportional to o7 when o7 > o7, ;, and so

the very tiny additive error negates the effect of very large singular values.

Future Directions. In terms of concrete open questions, we note that our lower bounds are
tight only when the target rank & and Schatten norm p are fixed constants. In particular, it is open

to obtain matrix-vector lower bounds that grow as a function of &, p and 1/e.
Open Question 34. What is the optimal matrix-vector complexity of low-rank approximation as
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a function of £, p and €?

For the important special case of Spectral low-rank approximation (p = ©0), it is open to
obtain any lower bound that grows as a function of 1/¢, even when the target rank & = 1. We

1/6—0(1)

also note that improving our upper bound to even p would imply a faster algorithm for

Spectral low-rank approximation, addressing the main open question in [Woo14b].

In addition, more open ended questions include determining the matrix-vector product com-
plexity of several fundamental problems in numerical linear algebra such as regression, PSD
testing and estimating schatten norms, and finding structured optimization problems where we

can beat the square-root speedup obtained by Chebyshev polynomials.

1.2.2 Low-Rank Approximation for PSD Matrices

As mentioned above, a large body of work over the past two decades has studied relative-error
low-rank approximation, whereby given an n x n matrix A, an accuracy parameter ¢ > 0, and a

rank parameter k, one seeks to output a rank-k matrix B for which
IA =BJ[F < 1+ o)A — Al (1.17)

where for a matrix C, ||C||% = 32, ; C,, and A}, denotes the best rank-k approximation to A in
Frobenius norm. A, can be computed exactly using the singular value decomposition, but takes
time O(n®), where w is the matrix multiplication constant. We refer the reader to the survey

[Wool4a] and references therein.

For worst-case matrices, it is not hard to see that any algorithm achieving (8.1) must spend
at least (2(nnz(A)) time, where nnz(A) denotes the number of non-zero entries (sparsity) of A.
Indeed, without reading most of the non-zero entries of A, one could fail to read a single large

entry, thus making one’s output matrix B an arbitrarily bad approximation.

A flurry of recent work [KP16, MW 17¢, CLW 18, Tan19, RSML18, GLT18,IVWW19, SW19,
GSLW19] has looked at the possibility of achieving sublinear time algorithms (classical and
quantum) for low-rank approximation. In particular, Musco and Woodruff [MW17c] consider
the important case of positive-semidefinite (PSD) matrices. PSD matrices include as special
cases covariance matrices, correlation matrices, graph Laplacians, kernel matrices and random
dot product models. Further, the special case where the input itself is low-rank (PSD Matrix

Completion) has applications in quantum state tomography [GLF " 10]. Subsequently, Bakshi and
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Woodruff [BW 18] considered low-rank approximation of the closely related family of Negative-
type (Euclidean Squared) distance matrices. Negative-type metrics include as special cases /;
and /> metrics, spherical metrics and hypermetrics, as well as effective resistances in graphs
[DL09, TD87, CRR796, CKM " 11]. Negative-type metrics have found various applications in
algorithm design and optimization [ALNOS, SS11, KMP14].

Musco and Woodruff show that it is possible to output a low-rank matrix B in factored form
achieving (8.1) in O(nk/e>% +nk“~!/e2“=1) time, while reading only O(nk/e>?) entries of A..
They also showed a lower bound that any algorithm achieving (8.1) must read )(nk/¢) entries,
and closing the gap between these bounds has remained an open question. Similarly, in joint
work with David Woodruff, we exploit the structure of Negative-type metrics to reduce to the
PSD case and obtain a bi-criteria algorithm that requires O(nk /e2?) queries. The gap in the
sample complexity and the requirement of a bi-criteria guarantee remained open. We resolve
these both these questions here.

Next we consider PSD matrices that have been corrupted by a small amount of noise. A
drawback of algorithms achieving (8.1) is that they cannot tolerate any amount of unstructured
noise. For instance, if one slightly corrupts a few oft-diagonal entries, making the input matrix
A no longer PSD, then it is impossible to detect such corruptions in sublinear time, making the
relative-error guarantee (8.1) information-theoretically impossible. Motivated by this, we also
introduce a new framework where an adversary corrupts the input by adding a noise matrix N
to a psd matrix A. We assume that the Frobenius norm of the corruption is bounded relative
to the Frobenius norm of A, i.e., |[N||% < 7n||A||%. We also assume the corruption is well-
spread, i.e., each row of N has ¢3-norm at most a fixed constant factor larger than ¢3-norm of the

corresponding row of A.

This model captures small perturbations to PSD matrices that we may observe in real-world
datasets, as a consequence of round-off or numerical errors in tasks such as computing Laplacian
pseudoinverses, and systematic measurement errors when computing a covariance matrix. One
important application captured by our model is low-rank approximation of corrupted correlation
matrices. Finding a low-rank approximation of such matrices occurs when measured correlations
are asynchronous or incomplete, or when models are stress-tested by adjusting individual corre-
lations. Low-rank approximation of correlation matrices also has many applications in finance
[HigO2].

Given that it is information-theoretically impossible to obtain the relative-error guarantee

(8.1) in the robust model, we relax our notion of approximation to the following well-studied
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Problem Prior Work Our Results Query Lower
Query Run Time Query Run Time Bound
k kw—1 k * k kw1 k
pspLra | O(25) | o(=+ah) o (%) [o(s) | (%)
[MW17¢] Thm. 35 [MW17¢c]
k2 — k 1 * k kw1 k
PSDLRA | O (™) [0 (k1 (L + 2l5)) | 0 (%) | Oof (£5) | (%)
PSD Output
utpu MW 17¢c] Thm. 35 MW 17c]
Newtvetype | 0 () | 0+ #) | 0'(F) [0/(57) | a(2)
LRA Bi-criteria, [BW 18] No Bi-criteria, Thm. 38 [BW18]
w w—1
Coreset Ridge | O (”5) 0 (%) o (z) | Of ("23_2> (%)
Regression [MW17c] Thm. 40

Table 1.2: Comparison with prior work. The notation O* and O represent existence of matching
lower bounds for query complexity and running time (assuming the fast matrix multiplication
exponent w is 2) respectively. The notation s is used to denote the statistical dimension of ridge
regression. All bounds are stated ignoring polylogarithmic factors in n, k and e.

additive-error guarantee:
1A = BJ[E < [A = Agllz + (e + | All%- (1.18)

This additive-error guarantee was introduced by the seminal work of Frieze et. al. [FKV04b],
and triggered a long line of work on low-rank approximation from a computational perspective.
Frieze et al. showed that it is possible to achieve (8.2) in O(nnz(A)) time. Further, given
access to an oracle for computing row norms of A, 8.2 is achievable in sublinear time. More
recently, the same notion of approximation was used to obtain sublinear sample complexity and
running time algorithms for distance matrices [BW18],[IVWW19], and a quantum algorithm for

recommendation systems [KP16], which was subsequently dequantized [Tan19].

This raises the question of how robust are our sublinear low-rank approximation algorithms
for structured matrices, if we relax to additive-error guarantees and allow for corruption. In
particular, can we obtain additive-error low-rank approximation algorithms for PSD matrices
that achieve sublinear time and sample complexity in the presence of noise? We characterize

when such robust algorithms are achievable in sublinear time.

Our Results. We begin with stating our results for low-rank approximation for structured ma-

trices. Our main result is an optimal algorithm for low-rank approximation of PSD matrices:

Theorem 35 (Sample-Optimal PSD LRA). Given a PSD matrix A, there exists an algorithm that
queries O(nk /) entries in A and outputs a rank k matrix B such that with probability 99/100,
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A = BJE < (1+€)[|A — Ayl

2 and the algorithm runs in time O(n - (k/e)“~1).

Remark 36. Our algorithm matches the sample complexity lower bound of Musco and Woodruff,
up to logarithmic factors, which shows that any randomized algorithm that outputs a (1 + ¢)-
relative-error low-rank approximation for a PSD matrix A must read 2(nk/¢) entries. Our run-
ning time also improves that of Musco and Woodruff and is optimal if the matrix multiplication

exponent w is 2.

Remark 37. We can extend our algorithm such that the low-rank matrix B we output is also PSD
with the same query complexity and running time. In comparison, the algorithm of Musco and
Woodruff accesses O(nk /e3+nk?/e?) entries in A and runs in time O(n(k/€)*+nk* 1 /e3@=1),

At the core of our analysis is a sample optimal algorithm for Spectral Regression: minx [[DX—
E||3. We show that when D has orthonormal columns and E is arbitrary, we can sketch the prob-
lem by sampling rows proportional to the leverage scores of D and approximately preserve the
minimum cost. This is particularly surprising since our sketch only computes sampling probabil-
ities by reading entries in D, while being completely agnostic to the entries in E. Here, we also
prove a spectral approximate matrix product guarantee for our one-sided leverage score sketch,
which may be of independent interest. We note that such a guarantee for leverage score sampling
does not appear in prior work, and we discuss the technical challenges we need to overcome in

the subsequent section.

The techniques we develop for PSD low-rank approximation also extend to computing a
low-rank approximation for distance matrices that arise from negative-type (Euclidean-squared)
metrics. Here, our input is a pair-wise distance matrix A corresponding to a point set P =
{x1,29,...,7,} € R¥such that A; ; = ||z; — z;||3. We obtain an optimal algorithm for comput-

ing a low-rank approximation of such matrices:

Theorem 38 (Sample-Optimal LRA for Negative-Type Metrics). Given a negative-type distance
matrix A, there exists an algorithm that queries 6(nk /€) entries in A and outputs a rank k
matrix B such that with probability 99/100, |A —B||% < (1+¢€)||A — Ay||%, and the algorithm

runs in time O(n - (k/e)*~1).

Remark 39. In prior work with David Woodruftf [BW 18], we obtained a é(nk /e23) query algo-
rithm that outputs a rank-(k + 4) matrix B such that ||A — BJ|%2 < (1+¢)||A — A}||%. We show

that the bi-criteria guarantee is not necessary, thereby resolving an open question in their paper.
Structured Regression. The sample-optimal algorithm for PSD Low-Rank Approximation
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also leads to a faster algorithm for Ridge Regression, when the design matrix is PSD. Given
a PSD matrix A, a vector y and a regularization parameter A\, we consider the following opti-
mization problem: mingcgn [|[Az — y||3 + A||z||3. This problem is often referred to as Ridge

Regression and has been the focus of numerous theoretical and practical works.

Theorem 40 (PSD Ridge Regression.). Given a PSD matrix A, a regularization parameter \ and
statistical dimension sy = Tr(A% + \I)" A2, there exists an algorithm that queries O(nsy /€?)
entries of A and with probability 99/100 outputs a (1 + €) approximate solution to the Ridge

Regression objective and runs in O(n(sy/€*)“~ ) time.

Remark 41. Our result improves on prior work by Musco and Woodruff [MW 17c], who obtain

an algorithm that queries O(ns3 /e*) entries in A and runs in O(n(sy/€?)*) time.

Robust Low-Rank Approximation. Next, we consider a robust form of low-rank approxima-
tion problem, where the input is a PSD matrix corrupted by noise. In this setting, we have query
access to the corrupted matrix A + N, where A is PSD and N is such that |N||% < 7| A||%.
Further, for all i € [n] ||N;.||3 < ¢||A;.||3, for a fixed constant c. The diagonal of a PSD matrix
carries crucial information since the largest diagonal entry upper bounds all off-diagonal entries.
Therefore, a reasonable adversarial strategy is to corrupt the largest diagonal entries and make
them close to the small diagonal entries, which enables the resulting matrix to have large off-
diagonal entries that are hard to find. Capturing this intuition we parameterize our algorithms
and lower bounds by the largest ratio between a diagonal entry of A and A + N, denoted by
Pmax = MaXjen Ajj/|(A +N)jj.

Theorem 42 (Robust LRA Lower Bound). Let ¢ > n > 0. Given A + N such that A is PSD
and N is a corruption matrix as defined above, any randomized algorithm that with probabil-
ity at least 2/3 outputs a rank-k approximation up to additive error (¢ + n)||A||% must read

Q (g2, . nk/e) entries of A + N.

max

Remark 43. Any algorithm must incur additive error 1||A||%, since A is not even identifiable

below additive-error || A [|%.

2

max

Remark 44. In our hard instance, can be as large as en/k, which implies a sample-
complexity lower bound of Q(n?). While this lower bound precludes sublinear algorithms for
arbitrary PSD matrices, we observe that in many applications ¢, can be significantly smaller.
For instance, if A is a correlation matrix, we know that the true diagonal entries of A + N are 1

and can ignore any corruption on them to bound ¢, by 1.
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Motivated by the aforementioned observation, we introduce algorithms for robust low-rank
approximation, parameterized by the corruption on the diagonal entries. We obtain the following

theorem:

Theorem 45 (Robust Low-Rank Approximation). Given A+ N, which satisfies our noise model,

2
max

matrix B such that with probability at least 99,/100,

nk/e€) entries in A + N and computes a rank k
A=BJE < [|A = ApllE + (e+ )| AllZ

there exists an algorithm that queries 6(

Remark 46. While the sample complexity of this algorithm matches the sample complexity in
the lower bound, it incurs additive-error |/7||A || as opposed to n||A||%. An interesting open
question here is whether we can achieve additive-error o(,/7||Al|%), though we note that when
n? < e, this just changes the additive error guarantee of our low-rank approximation by a constant

factor.

Remark 47. Our techniques extend to low-rank approximation of correlation matrices, and we
obtain a sample complexity of 6(nk /€), which is optimal. In fact, the hard instance in [MW17¢]
implies an (2(nk/¢) lower bound on the sample complexity, even in the presence of no noise.
Surprisingly, corrupting a correlation matrix does not increase the sample complexity and only

incurs an additive error of \/77||A[|%.

Future Directions. A nascent area in algorithm design is developing fast algorithms for struc-
tured linear algebra problems. This area has seen rapid progress for problems including low-rank
approximation (see above), regression and covariance estimation. Considering structured matri-
ces can also be an avenue for progress on major open problems like spectral low-rank approxi-

mation. An open ended research direction is as follows:

Open Question 48. When does structure in the input lead to faster algorithms for fundamental
problems in numerical linear algebra? How robust are the corresponding algorithms to perturba-

tions of the structure in the input?

As mentioned above, exploiting structure of the input matrices has lead to several algorith-
mic breakthroughts: solving linear systems for Laplacian/Diagonally Dominant matrices [ST 14,
KOSZ13, KMP14] and Block Henkel matrices [PV21], covariance estimation of Toeplitz ma-
trices [ELMM20], and approximation the permanent of boolean [JS89], non-negative matri-
ces [JSV04] and PSD [AGGS17, YP21] matrices. Obtaining provable guarantees for the afore-
mentioned tasks, even when the input matrix is perturbed by noise, is an intruiging research

direction.
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More broadly, the tools we developed in these works have been useful for a myriad of ma-
chine learning applications, including provable guarantees for training two layer ReLLU net-
works [BJW19], distriuted clustering [ABB"19] , learning a latent simplex in input sparsity
time [BBK"21a], and quantum-inspired algorithms for machine learning [CCH"20]. Looking
forward, we hope to understand the power and applicability of these tools to learning other latent

models as well as quantum-inspired algorithms.

1.2.3 Learning a Latent Simplex

We also study the problem of learning k vertices M., 1, ..., M, of a latent k-dimensional sim-
plex K in R? using n data points generated from X and then possibly perturbed by a stochastic,
deterministic, or adversarial source before given to the algorithm. In particular, the resulting
points observed as input data could be heavily perturbed so that the initial points may no longer
be discernible or they could be outside the simplex K. Recent work of Bhattacharyya and Kan-
nan [BK20c] unifies several stochastic models for unsupervised learning problems, including
k-means clustering [CG92, GH"96, Web03, WT10, Dua20], topic models [BJ03, SGO7, BL06a,
Ble12, AGH" 13a], mixed membership stochastic block models [ABFX08, MJG09, XFS' 10,
FSX09, ABEF14, LAW16, FXC16] and Non-negative Matrix Factorization [AGH" 13b, GV 14,
Gil120] under the problem of learning a latent simplex. In general, identifying the latent simplex
can be computationally intractable. However many special applications do not require the full
generality. For example, in a mixture model like Gaussian mixtures, the data is assumed to be
generated from a convex combination of density functions. Thus, it may be possible to efficiently

approximately learn the latent simplex given certain distributional properties in these models.

Indeed, Bhattacharyya and Kannan showed that given certain reasonable geometric assump-
tions that are typically satisfied for real-world instances of Latent Dirichlet Allocation, Stochastic
Block Models and Clustering, there exists an O(k - nnz(A)) ° time algorithm for recovering the
vertices of the underlying simplex. We show that, given an additional natural assumption, we
can remove the dependency on £ and obtain a true input sparsity time algorithm. We begin by
defining the model along with our new assumption:

Definition 1.2.1 (Latent Simplex Model). Let M be a dx k matrix such that M, 1, M, o, ..., M, €
RY denote the vertices of a k-simplex, K. Let P be a d x n matrix such that P, 1, P,5 ... P, €

R? are n points in the convex hull of IC. Given o > 0, we observe a d X n matrix A, such that

Throughout the paper we use the notation O to suppress poly-logarithmic factors.
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|A — Plla < o+/n. Further, we make the following assumptions on the data generation process:

1. Well-Separateness. For all { € [k], M., has non-trivial mass in the orthogonal com-
Proj(M., ¢, Null(M \
M. ¢))| = amaxy | M, ||z where Proj(z, U) denotes the orthogonal projection of x to the

plement of the span of the remaining vectors, i.e., for all { € [k,

subspace U and M \ M., ; is the matrix M with the (-th column removed.

2. Proximate Latent Points. Given 0 € (0,1), for all { € [k], there exists a set Sy C [n] such
that |Sg| > én and for all j € Sy, | M.y — P, ;|2 < 40/6.

3. Spectrally Bounded Perturbation. The spectrum of A—P is bounded, i.e., for a sufficiently
large constant ¢, o //d < o ming | M, 4|2/ ck®.

4. Significant Singular Values. Let A = 3,4 ouvl be the singular value decomposition
and let 0 < ¢ < nnz(A)/(n - poly(k)). We assume that for all i € [k], 0; > ¢ - o)1 and
IA = AxllE < SllA — Agl3

These assumptions are natural across many interesting applications. [BK20c] introduced
the Well-Separateness (1), Proximate Latent Points (2) and Spectrally Bounded Perturbation
(3) assumptions. We include an additional Significant Singular Values assumption (4), which
is crucial for obtaining a faster running time; we discuss this in more detail below. Our main

algorithmic result can then be stated as follows:

Theorem 49 (Learning a Latent Simplex in Input-Sparsity Time). Given k > 2 and A €
R¥>™ from the Latent Simplex Model (Definition 1.2.1), there exists an algorithm that runs
in O (nnz(A) + (n + d)poly(k/¢)) time to output subsets Ax,, ..., Ax,
muting the columns of M, with probability at least 1 — 1/Q(\VkE), for all ¢ € [k], we have
|AR, — M, (|l2 < 300k*c/(aV/9).

such that upon per-

Our result implies faster algorithms for various stochastic models that can be formulated as
special cases of the Latent Simplex Model, including Latent Dirichlet Allocation for Topic Mod-
eling, Mixed Membership Stochastic Block Models and Adversarial Clustering. We summarize
the connections to these applications below. We describe our algorithm and provide an outline to

our analysis; we defer all formal proofs to the supplementary material.

We first formalize the connection between the Latent Simplex Model (Definition 1.2.1) and
numerous stochastic models. In particular, we show that topic models like Latent Dirichlet Al-
location (LDA), Stochastic Block Models and Adversarial Clustering can be viewed as special

cases of the Latent Simplex Model. We also show how our assumptions are natural in each of

57



these applications.

Topic Models. Probabilistic Topic Models attempt to identify abstract topics in a collection
of documents by discovering latent semantic structure [BJO3, BLLO6b, HBB10, ZAX12, Blel2].
Each document in the corpus is represented by a bag-of-words vectorization with the correspond-
ing word frequencies. The standard statistical assumption is that the generative process for the
corpus is a joint probability distribution over both the observed and hidden random variables.
The hidden random variables can be interpreted as representative documents for each topic. The
goal is to then design algorithms that can learn the underlying topics. The topics can be viewed
geometrically as k latent vectors M, ;, M, o,..., M, € R, where d is the size of the dictio-
nary and M, ; is the expected frequency of word ¢ in topic ¢. Since each vector M, , represents a
probability distribution, >°; M, , = 1. Let M be the corresponding d x k matrix. One important
stochastic model is Latent Dirichlet Allocation (LDA) [BNJO3], where each document consists
of m words is generated as follows :

* For all ¢ € [k], we pick topic weights W, ~ Dir(1/k), where Dir(1/k) is the Dirichlet
distribution over the unit simplex. The topic distribution of document j is decided by the

topic weights, W ,, and given by P, ; = >2yci) W0 - My, where P, ; are latent points.

* We then generate the j-th document with m words by taking i.i.d. samples from Mult(P. ;),
the multinomial distribution with P, ; as the probability vector. The resulting document
observed is denoted by the vector A, ;, where for all i € [d] A;; = LY, Xg),, such
that XS) ~ Bern(P;;), where Xg) = 1 if the ¢-th word was chosen in the ¢-th draw while

generating the j-th document, and 0 otherwise.

The data generation process of LDA can be viewed as a special case of the Latent Simplex Model,
where the j-th document is the data point A, ; generated from the stochastic vector P, ;, a point
in the simplex K. The vertices of the simplex are the £ topic vectors M, ;, ..., M, ; the goal
is then to recover the vertices of K. [BK20c] remark that the Well-Separateness condition holds
for LDA if we assume a Dirichlet prior on M. We note that while X is a k-dimensional simplex,
d < k and the observed points need not lie inside the simplex. On the contrary, [BK20c] show
that the data often lies significantly outside of K. However, they show that the smoothed simplex
obtained by taking the averages of all on sized subsets of observed points results in a polytope
K s that is close to K.

We formally justify our assumptions below.
Lemma 1.2.2 (LDA as a Latent Simplex). Given A, P, M following the LDA model as described
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above, such that for all { € [k], | M, |la = Q(1), m,n = Q(poly(k/a)) and § = ca/Vk,
assumptions (2),(3) and (4) from Definition 1.2.1 are satisfied with high probability.

Proof. Assumptions (2) and (3) follow from Lemma 7.1 in [BK20c]. By Claim 8.1 in [BK20c],
0k(A) = cay/d/kming M, ,. Each column of A sums to 1, so ||A]|3 = O(n) and o(A) >
a\/%HAHF. Since ||A — P||z < o+/n by definition of o, and P consists of n point in the
convex hull of k£ points and thus o1 (P) = 0, we have 0411 (A) < 0441 (P) + ||A — PJ|2 <
oy/n < o||Al|p. Thus if ¢ < av/3/poly(k) for a large enough poly(k), our Significant Singular

Values assumption holds. ]

Mixed Membership Stochastic Block Models. The Stochastic Block Model is a well-studied
stochastic model for generating random graphs, where the vertices are partitioned into £ commu-
nities and edges within each community are more likely to occur than edges across communities.
Given communities C', Cy, . .. Cf, there exists a k X k symmetric latent matrix B, where, By, 4,
is the probability that there exists an edge between vertices in Cy, and Cy,. The MMBM can be

formalized as the following stochastic process:

* For j € [n], vertex j picks a probability vector W, ; € R¥ representing community mem-
bership probabilities that sum to 1, i.e., W, ; ~ Dir(1/k) for all i € [k].

* For all pairs (jy,72) € [n], vertex j; picks a community ¢; proportional to Mult(W._;,)
and j, picks a community ¢, proportional to Mult(W, ;,). The edge (ji, j2) is included
in the graph with probability By, ,. Since 3>, ,, Wy, j, By, ¢, Wy, j, represents the edge
probability of the edge (ji, j2), the latent variable matrix P of edge probabilities can be
represented as P = WTBWT,

However, our reduction is not straightforward since now P depends quadratically on W and
the only polynomial time algorithms for B directly rely on semidefinite programming. Further,
they require non-degeneracy assumptions in order to compute a tensor decomposition provably
in polynomial time [AGHK 14b, HS17]. However, we can pose the problem of recovery of the
k underlying communities differently and first pick at random a subset V; C [n] of d vertices
and represent the ¢-th community by a d-dimensional vector that represents the probabilities of
vertices in [n] \ V} belonging to community ¢ and having an edge with each of the d vertices in
V1. We now define W ;) to be a k x d matrix representing the fractional membership of weights
of vertices in V; and W y) to be the analogous £ x n matrix for vertices in [n] \ V;. Observe that

the probability matrix P can now be represented as Wa)BW(g).

The reduction to the Latent Simplex Model can now be stated as follows: given a data matrix
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A which is the adjacency matrix of the community graph, and the latent variable matrix P, re-
cover the simplex M = Wa)B. Further, [ABFX08] assumes that each column of W ) is picked
from the Dirichlet distribution with parameter 1/k. Combined with tools from random matrix
theory [Verl0Oa], [BK20c] (Lemma 7.2) shows that the Proximate Latent Points and Spectrally
Bounded assumptions hold for Stochastic Block Models. As for the Significant Singular Values
assumption, it is satisfied when o is a small enough polynomial in £.

Justifying Significant Singular Values. We give the following further justification for as-
sumption (4) in Section 9.5: a faster algorithm only using the assumptions appearing in [BK20c]
would imply an algorithmic breakthrough for spectral low-rank approximation and partially re-

solve the first open question of [Wool4b].

Theorem 50 (Spectral LRA and Learning a Simplex (informal)). There exists a distribution over
instances such that learning a latent simplex in o(nnz(A) - k) time with good probability implies

a constant factor spectral low-rank approximation algorithm in the same running time.

Adversarial Clustering. We consider clustering problems that arise naturally from stochastic
mixture models such as Gaussian, Mallows, categorical and so on [SKO1, VW04, LB11, CSV17,
DKS18, LM18b]. We can then formulate such a clustering problem in the Latent Simplex Model
as follows: Given n data points A, 1, A,o,..., A, € R¢, such that the data is a mixture of k
distinct clusters, C;, C,, . . ., Ci, with means M, 1, M., o, ..., M, ;, the goal is to approximately
learn the means. Further, we can set the n latent vectors P, ; to denote the mean of the cluster
point A, ; belongs to, and thus P, ; € {M,1,M,,,...,M,;}. Prior work of [KK10] and
[AS12] shows that if the minimum cluster size if on and for all £ # ¢/, | M, , — M, »|| > ck%
the M, , can be found within error O(v/ko /V/5).

However, the aforementioned algorithms are not robust to adversarial perturbations. There-
fore, we describe the perturbations we can handle in the Latent Simplex Model. The adversarial
model is the same as the one considered in [BK20c]. The adversary is allowed to selected a
subset Sy of each cluster C, of cardinality at most 6n and perturb each point A, ; for j € S, by
A; such that :

* P, ; + A, isstill in the Convex Hull of M, 1, M, 5,..., M,

* The norm of the perturbation is bounded, i.e., |A;| < 407/V/6.

Intuitively, the adversary can move a 1 — ¢ fraction of the data points in each cluster an arbi-
trary amount towards the convex hull of the means of the remaining clusters. For the remaining

on, the perturbation should have norm at most O(c/v/8). The goal is to still learn the means
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M. , approximately. [BK20c] shows that the aforementioned model satisfies Well-Separateness,
Proximate Latent Points and Spectrally Bounded Perturbations assumptions. The proof for the
Significant Singular Values assumption follows from Lemma 1.2.2. We note that there has been
a flurry of recent progress on adversarial clustering in the strong contamination model, where
the input data points are sampled from a mixture of Gaussians distribution and the adversary can
corrupt a small fraction of the samples arbitrarily [DKS18, HL.18, KSS18, DHKK?20, BK20b]. In
our setting, there is no distribution assumption on the data points but the adversary is constrained

as the norm of the perturbation is bounded.

1.3 Roadmap of the Thesis

This thesis is divided into two parts, each focusing on one of the two distinct regimes of learning
latent models, as discussed in this section. We note that the goals, motivations and technical
ideas we use in the separate parts varies considerably. However, each chapter in the two parts
is designed to be self-contained and thus introduces the notation, background and preliminaries
used in that chapter. While this leads to some redundancy of definitions across chapters, we
believe it vastly improves the readability of each chapter. Next, we outline the chapters in each

part and the paper corresponding to that chapter:

Part I : Establishing Tractability of Latent Models
1. Chapter 2: Outlier-Robust Clustering of Non-spherical Mixtures [BK20b], with Pravesh
Kothari. FOCS ’20.

2. Chapter 3: Robustly Learning a Mixture of k Arbitrary Gaussians [BDJ22], with Ilias
Diakonikolas, He Jia, Daniel Kane, Pravesh Kothari and Santosh Vempala. STOC *22.

3. Chapter 4: Robust Linear Regression: Optimal Rates in Polynomial Time [BP21], with
Adarsh Prasad. STOC "21.

4. Chapter 5: List-Decodable Subspace Recovery [BK21], with Pravesh Kothari. SODA °21.

5. Chapter 6: Learning a Two-Layer Neural Network in Polynomial Time [BJW19], with
Rajesh Jayaram and David Woodruff. COLT *18.

Part II : Nearly Optimal Algorithms for Learning Latent Models

1. Chapter 7: Low-Rank Approximation with 1/¢'/ Matrix-Vector Products [BCW22], with
Ken Clarkson and David Woodruff. STOC °22.
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2. Chapter 8: PSD Low-Rank Approximation [BCW?20a], with Nadiia Chepurko and David
Woodruff. FOCS ’20.

3. Chapter 9: Learning a Latent Simplex in Truly Input-Sparsity Time [BBK"21a], with
Chiranjeeb Bhattacharya, Ravi Kannan, David Woodruff and Samson Zhou. ICLR ’21.

We note that [BW 18, ABB" 19, BCJ20] and [BCW 19] do not appear in this thesis.
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Establishing Tractability of Latent Models
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Chapter 2

Outlier-Robust Clustering of
Non-Spherical Mixtures

2.1 Introduction

In this chapter, we study outlier-robust clustering of mixtures of distributions that exhibit mean
or covariance separation. As a corollary, we obtain a polynomial time outlier-robust algorithm
for clustering mixtures of k-Gaussians (k-GMMs) when each pair of components is separated in
total variation (TV)! distance. This is the information-theoretically weakest notion of separation,
allows components of same mean but variances differing in an unknown direction? or covariances
separated in relative Frobenius distance (see Fig 2.1) and includes well-studied problems such

as mixed linear regression and subspace clustering as special cases.

Clustering all Hypercontractive and Anti-Concentrated Distributions. The Gaussian Mix-
ture Model has been the subject of a century-old line of research beginning with Pearson [Pea94].
A kE-GMM Y, . p.N (u(r), X(r)) is a probability distribution sampled by choosing a component
r ~ [k] with probability p, and outputting a sample from the Gaussian distribution with mean
u(r) and covariance (7). In the k-GMM learning problem, the goal is to output an approxi-
mate clustering of the input sample or estimate the parameters (the mean and covariances) of the

components. Progress on provable algorithms for learning £-GMMs began with the influential

I'The TV distance between distributions with PDFs p, ¢ is defined as % ffcoo |p(x) — q(z)|d.

2As an interesting example, consider the case of subspace clustering: mixture of standard Gaussians restricted
to unknown distinct subspaces. The components have a TV distance of 1 regardless of how close the subspaces are
and thus satisfy our assumptions.
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work of Dasgupta [Das99] followed up by [SKO1, VW04, BV08] yielding clustering algorithms
that succeed under various separation assumptions. These assumptions, however, do not cap-
ture natural separated instances of Gaussians (e.g., see (b) or (c) in Fig 2.1). A more general
approach [KMV 10, MV 10, BS15] circumvents clustering altogether by giving an efficient algo-

rithm ( time ~ dP°Y(®)) for parameter estimation without any separation assumptions.

Our main result is a polynomial-time algorithm based on the sum-of-squares (SoS) method
for clustering TV-separated £-GMM s in the presence of an e-fraction of fully adversarial outliers.
Such a result was not known prior to our work even for £ = 2. Our algorithms actually succeed
more generally for mixtures of all distributions that satisfy two well-studied analytic conditions:
certifiable anti-concentration and certifiable hypercontractivity and thus apply, for e.g., to clus-
tering mixtures of arbitrary affine transforms of uniform distribution on the unit sphere. We
consider identifying clean analytic conditions that enable the existence of efficient clustering

algorithms an important contribution of our work.

2.1.1 Our Results

Outlier-Robust Clustering of k-GMMs. Our main result is an efficient algorithm for outlier-
robust clustering of k-GMMs whenever every pair of components of the mixture are separated
in total variation distance. Formally, our algorithms work in the strong contamination model
studied in the bulk of the prior works on robust estimation where an adversary changes an arbi-
trary, potentially adversarially chosen e-fraction of the input sample before passing it on to the

algorithm.

Theorem 51 (Main Result, Outlier-Robust Clustering of k-GMMs). Fix n,e > 0. Let D, =
N(u(r),X(r)) for r < k be k-Gaussians such that dry(D,,D,) > 1 — exp(—poly(k/n))
whenever r #+ 1. Then, there exists an algorithm that takes input an e-corruption Y of a sample
X = ChUCU. . .UCY of size n, with equal sized clusters C; drawn i.i.d. from D; for eachr < k,
and with probability at least 0.99, outputs an approximate clustering ¥ = CiuCyU... UGy
satisfying min; <y, |C£f" > 1—0(k*)(e+n). The algorithm succeeds whenever n > d°Wwok/m)

and runs in time nOweb /),

We can use off-the-shelf robust estimators for mean and covariance of Gaussians( [DKK ™' 19])

in order to get statistically optimal estimates of the mean and covariances of the target k-GMM.
Corollary 2.1.1 (Parameter Recovery from Clustering). In the setting of Theorem 51, with
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the same running time, sample complexity and success probability, our algorithm can output

{7i(r), 32(r) }rer such that for some permutation 7 : [k] — [k],

drv (N (u(r), ) N (fm(r), E(x(r))) < O (e + ).

Discussion. These are the first outlier-robust algorithms that work for clustering k-GMMs un-
der information-theoretically optimal separation assumptions. Such results were not known even
for £ = 2. To discuss the bottlenecks in prior works, it is helpful to use (see Prop 2.9.1 in
Section 2.9 for a proof) following consequence of two Gaussians with means (1), ;(2) and
covariances 3(1),3(2) being at a TV distance > 1 — exp(—O(A?)) in terms of the distance

(@) )
Ci

()

between their parameters.

Figure 2.1: (a) Mean Separation (b) Spectral Separation (c) Relative Frobenius Separation

Definition 2.1.2 (A-Separated Mixture Model). An equi-weighted mixture Dy, Ds, . .., Dy with
parameters {1(1),3(i) Yick is A-separated if for every pair of distinct components i, j, one of

the following three conditions hold (X1/? is the square root of pseudo-inverse of 3.):
1. Mean-Separation: Fv € R such that {u(i) — pu(5),v)? > A% (2(i) + 2(j5))v,
2. Spectral-Separation: Jv € R such that v' %(i)v > Av' X (j)v,
3. Relative-Frobenius Separation:* Y.(i) and X(j) have the same range space and

4

[=@i22()s@2 - 1) > A% [£6)725() V2

op

The key bottleneck for known algorithms was handling separation in cases 2 and 3 above.

3Unlike the other two distances, relative Frobenius distance is meaningful only for high-dimensional Gaussians.
As an illustrative example, consider two 0 mean Gaussians with covariances ¥; = I and Xy = (1 4+ ©(1/Vd))I.
Then, for large enough d, the parameters are separated in relative Frobenius distance but not spectral or mean
distance.
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Dependence on k. The dependence on the number of components % in our result is doubly
exponential. A singly exponential lower bound in the statistical query model (for even the non-

robust variant) was shown by Diakonikolas, Kane and Stewart [DKS17].

Dependence on e: While the information-theoretically optimal bound on fraction of mis-
classified samples is O(ke), we only obtain the weaker bound of k°®e. Our algorithms in
Sections 2.3, 2.4 do obtain this the stronger O(ke) guarantee at the cost of a larger running time.
We believe it should be possible to match the optimal recovery guarantee without incurring this

running time penalty.

Handling General Weights: While we have not attempted to do it in this work, it seems pos-
sible to generalize our techniques to handle arbitrary mixing weights albeit with an exponential
dependence on the reciprocal of the smallest mixing weight in both the running time and sample

complexity on the algorithm.

Clustering and Parameter Recovery for all Reasonable Distributions. Our results apply
more generally to mixture models where each component distribution D satisfies two natural
and well-studied analytic conditions: hypercontractivity and bounded variance of degree 2 poly-
nomials and anti-concentration of all directional marginals. Our algorithmic results hold for
distributions (e.g. Gaussians and affine transforms of uniform distribution on the unit sphere)
that admit efficiently verifiable analogs (in the SoS proof system, see Sec 5.3) of these proper-

ties.

Definition 2.1.3 (Certifiable Hypercontractivity). An isotropic distribution D on R is said to
be h-certifiably C-hypercontractive if there’s a degree h sum-of-squares proof of the following

unconstrained polynomial inequality in d X d matrix-valued indeterminate ():

E [JJTQSL’ - ExNDxTQx}h < (C’h)h ( E [Z‘TQI — EmNDJJTer) " )

A set of points X C R is said to be C-certifiably hypercontractive if the uniform distribution
on X is h-certifiably C'-hypercontractive.

Hypercontractivity is an important notion in high-dimensional probability and analysis on
product spaces [O’D14]. Kauers, O’Donnell, Tan and Zhou [KOTZ14] showed certifiable hyper-
contractivity of Gaussians and more generally product distributions with subgaussian marginals.
Certifiable hypercontractivity strictly generalizes the better known certifiable subgaussianity

property (studied first in [KSS18]) that controls higher moments of linear polynomials.
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Certifiable anti-concentration. In contrast to subgaussianity, anti-concentration forces lower-
bounds of the form Pr[(z,v)* > § ||v||3] > &' for all directions v. Certifiable anti-concentration
was recently introduced in independent works of Karmalkar, Klivans and Kothari [KKK19] and
Raghavendra and Yau [RY20a] and later used [BK20a, RY20b] for the related problems of

list-decodable linear regression and subspace recovery*.

Following [KKK19], we formulate certifiable anti-concentration via a univariate, even poly-
nomial psy that uniformly approximates the 0-1 core-indicator 1({(z,v)> > dv"Xv) over a
large enough interval around 0. Let ¢sx(z,v) be a multivariate (in v) polynomial defined by

2s
Gx(r,v) = (vTEv) Do,y (\;%) .Since psx; is an even polynomial, g5, is a polynomial in v.

Definition 2.1.4 (Certifiable Anti-Concentration). A mean 0 distribution D with covariance ¥ is
2s-certifiably (9, C6)-anti-concentrated if for qsx(x,v) defined above, there exists a degree 2s
sum-of-squares proof of the following two unconstrained polynomial inequalities in indetermi-

nate v:

2s

{(Sc,v>28 + 6% 55 (r,v)? = 6% (UTZv)zs} , {EmND%,E(SC,U)Q <0 (UTEU) } :

An isotropic subset X C R%is 2s-certifiably (6, Cd)-anti-concentrated if the uniform distribution
on X is 2s-certifiably (9, C¢)-anti-concentrated.

Remark 52. For natural examples, s(6) < 1/6° for some fixed constant c. Fore.g., s(6) = O(35)
for standard Gaussian distribution and the uniform distribution on the unit sphere (see [KKK19]
and [BK20a]). To simplify notation, we will assume s(0) < poly(1/6) in the statement of our

results.

Additionally, we need that the variance of degree-2 polynomials is bounded in terms of the

Frobenius norm of the coefficients of the polynomial. Formally,

Definition 2.1.5 (Degree-2 Polynomials with Certifiably Bounded Variance). A mean 0 distribu-
tion D with covariance . certifiably bounded variance degree 2 polynomials if there is a degree

2 sum-of-squares proof of the following inequality in the indeterminate () € R*¢

{E%D (xTQx — ngprQx>2 <C H21/2QEI/2H2F} .

“List-decodable versions of these problems generalize the “mixture” variants - mixed linear regression and sub-
space clustering - that are easily seen to be special cases of mixtures of k-Gaussians with TV separation 1.
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Our general result gives an outlier-robust clustering algorithm for separated mixtures of rea-
sonable distributions, i.e., one that satisfies both certifiable hypercontractivity, anti-concentration
and has bounded variance of degree-2 polynomials. Even the information-theoretic (and without

outliers, i.e., € = 0) clusterability of such distributions was not known prior to our work.

Theorem 53 (Outlier-Robust Clustering of Separated Mixtures, see Theorem 61 for precise
bounds). Fixn > 0,e > 0. Let D, be a A-separated mixture of reasonable distributions. Then,
there exists an algorithm that takes input an e-corruption Y of a sample X = C; UCy U ... CY,
with true clusters C; of size n/k drawn i.i.d. from D, for each r < k, and outputs an approximate
clustering Y = C; UCy, U ... UCy satisfying min; <y ‘C‘gl‘c‘ > 1 — O(k*)(e +n). The algo-
rithm succeeds with probability at least 0.99 over the draw of the original sample X whenever

n = dPP*/M) and runs in time n?°**/") whenever A > poly(k/n)F.

Robust Covariance Estimation in Relative Frobenius Distance. In Section 2.6, we give an
outlier-robust algorithm for covariance estimation for all certifiably hypercontractive distribu-

tions.

Theorem 54 (Robust Parameter Covariance Estimation for Certifiably Hypercontractive Distri-
butions). Fix an ¢ > 0 small enough fixed constant so that Cte'~'/* < 1°. For every even
t € N, there’s an algorithm that takes input Y be an e-corruption of a sample X of size
n > ng = d°® /e from a 2t-certifiably C-hypercontractive and certifiably C-bounded variance
with unknown mean 1, and covariance Y, respectively and in time n°®

and ¥ satisfying:
1. HE_I/Q(U* — 1)

2. (1=n)%, =< 3= (14 n)%, forn < O(Ck)e' =V, and,

outputs an estimate |[i

g O(Ct)1/2€1_1/t,
2

3|z PEnc Y — 1| < (eno(e.

In particular, letting t = O(log(1/€)) results in the error bounds of O(e) in all the three inequal-

ities above.

The first two guarantees above were shown in [KSS18] for all certifiably subgaussian distri-
butions. [KSS18] also observed (see last paragraph of page 6 for a counter example) that it is
provably impossible to obtain dimension-independent error bounds in relative Frobenius distance

assuming only certifiable subgaussianity. We prove that under the stronger assumption of certifi-

5This notation means that we needed Cte! =1/t to be at most co for some absolute constant ¢y > 0
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able hypercontractivity along with certifiably bounded variance of degree 2 polynomials, we can
indeed obtain dimension-independent, information-theoretically optimal (for e.g. for Gaussians)
error guarantees in relative Frobenius error. Prior works either obtained the weaker spectral error
guarantee (that incurs a loss of v/d factor when translating into relative Frobenius distance) or

worked only for Gaussians®.

Combining this theorem with our clustering results above yields:

Corollary 2.1.6 (Parameter Recovery from Clustering, General Case). In the setting of either
Theorem 53, there’s an algorithm with same bounds on running time and sample complexity,
that with probability at least 0.99, outputs {[i(r), i(r)}rgk such that for some permutation 7 :
(k] — [k], for every i, p(m(i)), S(n (i) is A-close to ju, % in the three distances defined in
Definition 3.4.1 for A = O(k°®) (¢ +n)).

2.2 Preliminaries

Throughout this paper, for a vector v, we use ||v||> to denote the Euclidean norm of v. Foran xm
matrix M, we use ||M||; = maxg,=1||Mz||2 to denote the spectral norm of M and ||M||p =
V2 Mf] to denote the Frobenius norm of M. For symmetric matrices we use >~ to denote the
PSD/Lowner ordering over eigenvalues of M. For a n x n, rank-r symmetric matrix M, we use
UAUT to denote the Eigenvalue Decomposition, where U is a n x r matrix with orthonormal
columns and A is a r x 7 diagonal matrix denoting the eigenvalues. We use M = UATUT to
denote the Moore-Penrose pseudoinverse, where A inverts the non-zero eigenvalues of M. If
M = 0, weuse M1/2 = UAY2UT to denote taking the square-root of the non-zero eigenvalues.
We use II = UU " to denote the Projection matrix corresponding to the column/row span of M.

Since II = II?, the pseudo-inverse of 1T is itself, i.e. It =11.

Definition 2.2.1 (0-Sub-gaussian Distribution). A random variable x is drawn from a o-Sub-
gaussian distribution if for all t > 0, Pr[|z]| > t] < 2exp(—t*/d?).

We work with 1-Sub-gaussian distributions unless otherwise specified and drop the 1 when

clear from context.

®We note that the algorithm of [DKK ™ 19] for Gaussian distributions works in fixed polynomial time to obtain
O(e) error-estimate of the covariance in relative Frobenius distance whereas our algorithm works more generally
for all certifiably hypercontractive distributions but runs in time dOUog*(1/e)
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Probability Preliminaries. We begin with standard convergence results for mean and covari-

ance.

Fact 2.2.2 (Empirical Mean for Sub-gaussians). Let D be a Sub-gaussian distribution on R?

with mean . and covariance Y and let x1,xs, . ..z, ~ D. Then, with probability 1 — 9,

< W[g D ¢ [T os(1/5

1 n
i

2

Fact 2.2.3 (Empirical Covariance for Sub-gaussians, Proposition 2.1 [Ver18]). Let D be a Sub-

gaussian distribution on RY with mean 1w and covariance Y. and let x1, %o, ...x, ~ D. Then,

with probability 1 — 6,
. ( W . /1og<1/5>)
) n n

Definition 2.2.4 (Hellinger Distance). For probability distribution p, q on RY, let

2.0 = | [ (o) — o) e

be the Hellinger distance between them.

1 n
—szx: - X
nis

Remark 55. Hellinger distance between p, g satisfies: h(p, ¢)*> < drv(p, q) < h(p,q)y/2 — h(p,q)2.

Fact 2.2.5 (Hellinger Distance between Gaussians).

e 1/4 Jet (Y))1/4 A
BN, ), N (o, )2 — 1 — St (—;m . (E;E) (1 - u’))
det (—EEE')Q

Basic Sum-of-Squares Proofs

Fact 2.2.6 (Operator norm Bound). Let A be a symmetric d x d matrix and v be a vector in R%.
Then,

5 {07 Av < || A]l2]l0]3}

Fact 2.2.7 (SoS Holder’s Inequality). Let f;, g; for 1 < i < s be indeterminates. Let p be an
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even positive integer. Then,
g 1.2 B P 18 /9 s p—1
i) < (Gxn) (fxa) b
Si=1 S i=1 S =1

Observe that using p = 2 yields the SoS Cauchy-Schwarz inequality.

Fact 2.2.8 (SoS Almost Triangle Inequality). Let f1, fa, ..., f, be indeterminates. Then,

2t
f1,f22,2;~-,fr (Z fz) < P21 <Z fi2t>
=1

<r

Fact 2.2.9 (SoS AM-GM Inequality, see Appendix A of [BKS15]). Let f1, fa, ..., fm be inde-

terminates. Then,
f 7f2 ----- fm ]- n "
[ {( Zﬂ) > Hiémfz’} -
m;3

The following fact is a simple corollary of the fundamental theorem of algebra:
Fact 2.2.10. For any univariate degree d polynomial p(z) > 0 for all x € R, Ii {p(x) = 0}.
This can be extended to univariate polynomial inequalities over intervals of R. 2

Fact 2.2.11 (Fekete and Markov-Lukacs, see [LLau09]). For any univariate degree d polynomial
p(z) 2 0forz € [a,0], {2 > a,z < b} F {p(x) > 0}.

2.2.1 Certifiable Anti-Concentration

This definition is a homogenous variant of the one proposed in [KKK19].

Definition 2.2.12 (Certifiable Anti-Concentration). A zero-mean distribution D with covariance
Y is 2k-certifiably (8, C'§)-anti-concentrated if there exists a univariate polynomial p of degree
k such that:

v _ _ 2 -
1B {0l (542 )" 4 022 (572, 0)) > 2ol
2. b {Bonaunt? ((E720,0)) < OOl )
A subset X C R%is 2k-certifiably (5, C§)-anti-concentrated if the uniform distribution on X is
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2k-cerfiably (6, C0)-anti-concentrated.

Definition 2.2.13 (Certifiable Anti-Concentration). A random variable (and its distribution) Y
has a k-certifiably (C,)-anti-concentrated distribution if there is a univariate polynomial p
satisfying p(0) = 1 such that there is a degree k sum-of-squares proof of the following two

inequalities:
1. (Y, v)? < 82E(Y,v)? implies (p({Y,v)) — 1)* < 5
2. Yo, E(Y,v)* > 0 implies E {E (Y, 0)* p2((Y, v})} < C6 (Y, v)%

A set of points S C R? are said to be k-certifiably (C, §)-anti-concentrated if uniform distribu-
tion on S is k-certifiably (C, §)-anti-concentrated.

2.3 Clustering Mixtures of Reasonable Distributions

In this section, we provide algorithm for clustering mixtures of reasonable distributions. The
main results of this section are simultaneous intersection bounds (Lemmas 2.3.5, 2.3.13, and
2.3.4) that we’ll rely on in the next two sections. We then use these bounds to immediately

derive an algorithm (via the rounding used in Chapter 4.3 of [FKP"19]) for clustering that runs
v B(5)v
vTZ(]i)v
all 7, 7 < k. In Section 2.5, we will show how to improve the running time of this algorithm to

in time dP°Y(*)1°8(%) where k is the spread of the mixture defined as the maximum of

over

have no dependence on the spread and prove our main result (Theorem 53).

Theorem 56 (Clustering Mixtures of Separated Reasonable Distributions). For any n > 0, there
exists an algorithm that takes input a sample of size n from A-separated equi-weighted mixture of
reasonable distributions D(u(r), 3(r)) for r < k with true clusters Cy, Cs, . .., Cy, and outputs
Cy, Cy, ... Cy such that there exists a permutation 7 : [k] — [k] satisfying
_|Cin Cr]
LA O B .
min e 2 1-0(n)
The algorithm succeeds with probability at least 1 — 1/k whenever A = Q ((k/n)°), for a large
enough fixed universal constant c , needs d*°®*/) samples and runs in time nP°?»*/M18(%) ywhere

TS - .
K = SUD,cpd MAX; je[k] ZTE((Z)):;] is spread of the mixture.
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2.3.1 Algorithm

Our constraint system .4 uses polynomial inequalities to describe a subset C' of size an of the
input sample X. We impose constraints on C' so that the uniform distribution on C' satisfies
certifiable anti-concentration and hypercontractivity of degree-2 polynomials. We intend the true
clusters C'y, Cs, ..., C.. to be the only solutions for C. Proving that this statement holds and that

it has a low-degree SoS proof is the bulk of our technical work in this section.

We describe the specific formulation next. Throughout this section, we use the notation Q(x)
to denote 2" Qz for d x d matrix valued indeterminate Q. For ease of exposition, we break
our constraint system .4 into natural categories .A; U - - - U A5. Our constraint system relies on

parameter 7, ¢ that we will set in proof of Theorem 56 below.

For our argument, we will need access to the square root of the indeterminate . So we
introduce the constraint system .4; with an extra matrix valued indeterminate II (with auxiliary
matrix-valued indeterminate U) that satisfies the polynomial equality constraints corresponding
to II being the square root of Y. Note that the first constraint is equivalent to II > 0 in “ordinary

math”.

. nm=vu’
Square-Root Constraints: A; = 2.1
*=3.
Next, we formulate intersection constraints that identify the subset C of size an.
Vi € [n] w? = w;
Subset Constraints: Ay = n (2.2)
Zze[n} w; = %

Next, we enforce that ¢ must have mean 1 and covariance X, where both p and X are indeter-
minates.
1 n
— > wiri =
=1

n -
Parameter Constraints: Az = (2.3)

1 n
ﬁzwz’(l’z’—u)(%—ﬂ)T:Z-
=1

Finally, we enforce certifiable anti-concentration at two slightly different parameter regimes
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(characterized by 7 < ) along with the hypercontractivity of C.

k2 3 s(o
B i (s~ 23) ) < 2005 (v T20)
n? “— :

Certifiable Anti-Concentration : A, = wi=1

k2 & s(r st [
3 ijz:l Wiw; ¢ o5 (27 — ;) ,v) < 2 Oer (UTZU)
’ (2.4)
where s(x) = O (1/2?%). Certifiable Hypercontractivity: As =
2 2 2h
Vhi<2s, o5 D wiwy | Qe —xe) — 5 > wiweQ(zi — )
1,j<n id<n
N
k? k2
< (Ch)" | =5 >~ wiwe | Qo — ) — —5 Y wiweQ(z; — )
n i,4<n n if<n
(2.5)

Certifiable Bounded Variance: Ag =

2
k2 L2
{ n2 D> wiwg (Q(xz — ) — 2 > wiweQ(x; — ﬂUe)) <C ||HQH||; . } (2.6)

if<n i4<n

Algorithm. We are now ready to describe our algorithm. Our algorithm follows the same
outline as the simplified proof for clustering spherical mixtures presented in [FKP"19] (Chapter
4.3). The idea is to find a pseudo-distribution ¢ that minimizes the objective HIE[U}]HQ and is

consistent with the constraint system A.

It is simple to round the resulting solution to true clusters: our analysis yields that the matrix
']

]E[ww is approximately block diagonal with the blocks approximately corresponding to the
true clusters C'y, Cs, ..., Ck. We can then recover a cluster by a repeatedly greedily selecting
n/k largest entries in a random row, removing those columns off and repeating. We describe this

algorithm below.

Algorithm 57 (Clustering General Mixtures).

Given: A sample X of size n with true clusters Cy,Cs, . .., Cy of size n/k each, accuracy

parameter 1 > 0.

A

Output: A partition of X into an approximately correct clusters C’l, C’g, oo, Ok

Operation:
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1. Find a pseudo-distribution ¢ satisfying A with s = log(r)poly(k/n), § = n®/k'?,
S
and T = 1/(Cpoly(k)), and minimizing HE[w]H2

2. For M = waNE[wa]’ repeat for 1 < 0 < k:
(a) Choose a uniformly random row i of M.

(b) Let C, be the set of points indexed by the largest - entries in the ith row of
M.

(c) Remove the rows and columns with indices in C,.

Analysis of the Algorithm. We first show that the sample X inherits the relevant properties of
the distributions. Towards this, we make the following definition.

Definition 2.3.1 ("Good" Sample). A sample X C R? of size n is said to be a good sample from a
A-separated mixture of D(pu(r), X(r)) for r < k if there exists a partition X = C1UC5U- - - Cy, C

R? with the corresponding empirical means and covariances i(1),%(1), ..., j(k), (k) such
that for all v € [k] and s = log(r)poly(k/n) ,

1. Empirical mean: (i(r) — p(r),v)> < 0.1- 0TS (r)w

2. Empirical covariance: (1 — 2%) X(r) < f](r) =< (1 + 2%) (7).

3. Certifiable Anti-concentration: For all T > poly(n/Ck),

. ]CQ A 2s
s {n2 > L (@ = 25,0) 1007 (07 5(r)o) } |

. 2
1#j€C

. ~ . 2
11,i2€C,j1,j2€C,

v k A A, 2s
r { S Py (@ —w, =y +y,0) 00T (07 (5(r) + 207)0) } :
4. Certifiable Hypercontractivity: For every j < s,

lf_s{k > (Q(%—xz)—ig > Q(%-w))

i#0eC,

i#0eC, i#LeC;

< (2C5)¥ (22 Z (Q(% — ) —f; Z Qz; — W))) }
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5. Certifiable Bounded-Variance:
2
Q 2
l? ol Z (Q(I'i — 1) — ol Z Q(z; — xg)) <C HE(T>1/2QE(T>1/2HF .

Via standard concentration arguments, it is straightforward (See Section 2.10 of Appendix)
to verify that a large enough sample X from a A-separated mixture of reasonable distributions is

a good.

Lemma 2.3.2 (Typical samples are good). Let X be a sample of size n from a equi-weighted
A-separated mixture D(ju(r),3(r)) for r < k. Then, for ng = ((poly(k:/n)d)pozy(k/") klog k:)
and any n > ny, X is good with probability at least 1 —1/d. Further, the the uniform distribution
on C1,Cs, ..., Cy are pairwise A /2-separated.

As in the spherical case [FKP " 19], the heart of the analysis involves showing that INETé: [ww '] is
indeed approximately block diagonal whenever ( satisfies .A. This follows immediately from the
following lemma that shows that that there’s a low-degree SoS proof that shows that the subset

indicated by w cannot simultaneously have large intersections with two distinct clusters C.., C,..

Lemma 2.3.3 (Simultaneous Intersection Bounds from Separation). Let X be a good sample of
size n from a A-separated, equi-weighted mixture of affine transforms of a reasonable distribu-
tion D with true clusters C1,Cs, ..., Cy. Forall v € [k], let w(C,) denote the linear polynomial
k Yicc, w;. Then, for every r # " and 6 > 0,

n

Al {w(Cw(Cr) < 06"},

O(log k/6%

h _ v B(i)v
where K = SUD,cpa MaX; j Jrs o

For the special case of & = 2, we obtain the following improved version with no dependence

on x in the degree.

Lemma 2.3.4 (Simultaneous Intersection Bounds from Separation, Two Components). Let X =
Cy U Cy be a good sample with true clusters Cy,Cy of size n/2 from a A-separated, equi-
weighted mixture of affine transforms of a reasonable distribution D. Let w(C,) denote the
linear polynomial % Yicc, w; for every r < 2. Then, for any 6 > 0,

Am%ﬁ@wmmm<0w®}

78



It is easy to finish the analysis of the algorithm given Lemma 2.3.3.

Proof of Theorem 56. Enforcing Constraints. First, we argue that the number of constraints in
the SDP we need to solve to find ¢ in Step 1 above is d°(e(*)(1/9)")  For this, it is enough to
show that the number of polynomial inequalities needed to enforce A is appropriately bounded.
Ay, Ay, Az encode O(d?) inequalities by direct inspection. Ay, A5 superficially seem to encode
infinitely many constraints. However, by applying the quantifier alternation technique that only
requires SoS certifiability, (first used in [KSS18, HL18], see Page 131 of [FKP " 19] for an ex-
position), to compress such constraints by leveraging low-degree SoS proofs allows us to encode

them into ¢°(/3") polynomial inequalities.

Minimizing Norm. Observe that H]E[w] H2 is a convex function in E[w)] and thus, a pseudo-
distribution minimizing HIE[w] H2 consistent with A can be found in time n(°8()/") if it exists
using the ellipsoid method. The rounding itself is easily seen to take at most O(n?) time. This

completes the analysis of the running time.

Feasibility of the SDP. In the remaining part of the analysis, we condition on the event that
the input X is a good sample. We show that the SDP for computing the pseudo-distribution in
Step 1 of the algorithm is feasible. We exhibit a feasible solution by describing a natural setting
of the indeterminates in our constraint program. Let ¢ be the uniform distribution (thus, also a
pseudo-distribution of degree oo) on 1(C,.), for all r € k. That is, ¢ is uniformly distributed on
the true clusters. Lemma 2.3.2 implies that setting w = 1(C,.) satisfies all the constraints in .A.
Thus, € is indeed a feasible for the SDP. Observe further that for every i, Ec[w;] = 1/k.

Analysis of the SDP Solution. Now, let ¢ be the pseudo-distribution computed in Step 1 of

i< Bglwi]® >
- 2
1 (Zign ]Eg[wi]) = 1z where we used that A }* {% S w = 1}. On the other hand, we

n

the algorithm. First, observe that by Cauchy-Schwarz inequality, ||fEf<[w] 2=

~ 2
exhibited a feasible pseudo-distribution ¢ above with HEC [w]H2 = 5. Together, we obtain that
the output ¢ obtained by solving the SDP relaxation must satisfy ||IE< [w]||3 = . Observe that
this 1s equivalent to Eg [w;] = 1/k for every i < n. Thus, we can assume in the following that

E¢[w;] = 1/k for all i. Our analysis is similar to the proofs of Lemmas 4.21 and Lemma 4.23
in [FKP"19].

Let M = E[ww"]. Let’s understand the entries of M more carefully. First, since E[w;w;] =
E[w?w?] > 0, M(4, ) is non-negative. The diagonals of M are E[w?] = E[w;] =
the Cauchy-Schwarz inequality for pseudo-distributions (Fact 3.2.14), M(i,5) = E[w;w;] <
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VE[w?), /E[wjz] < 1/k. Thus, the entries of M are between 0 and 1/k. Next, observe that since
A }* {wlf D jn Wi = wi}, taking pseudo-expectations and rearranging yields that for every ¢,
EjmM(i,j) = 5.

For 1 = n%/k3, choose & = 1/* /k? . Then, applying Lemma 2.3.3 and using Fact 3.2.18, we

have that for every r, Eicc, Ejec , M (i,7) = X, Eicc, Ejec,, Elwsw;] = E[w(C,)w(C,)] <
o).

Fix any cluster C,. Call an entry of M large if it exceeds n/k?. Using the above estimates,

we obtain that, the fraction of entries in the ith row that exceed 1/k? is at least (1 — ) /k.

On the other hand, by Markov’s inequality applied to the calculation above, we obtain that
with probability 1 — 1/k* over the uniformly random choice of i € C,., Ej¢c, M(i,7) < O(n') =
O(n?/k3). Call an i € C, for which this condition holds “good”.

By Markov’s inequality, for each good row, the fraction of j ¢ C, such that M (i, j) > n/k?
is at most 77/k. Thus, for any good row in C,, if we take the indices j corresponding to the largest
n/k entries (i, 7) in M, then, at most 7 fraction of such j are not in C,.. Thus, picking uniformly
random row in C,. and taking the largest n/k entries in that row gives a subset that intersects with
C, in (1 — n) fraction of the points.

Thus, each iteration of our rounding algorithm succeeds with probability at least 1 — 1/k?.
By union bound, all iterations succeed with probability at least 1 — 1/k. The running time is

dominated by the first step and the sample complexity follows from Lemma 2.3.2. [

Proving Lemma 2.3.3 In what follows, we focus attention on proving Lemma 2.3.3. Before
describing the analysis, we set some notation/shorthand and simplifying assumptions that we
will use throughout this section.

1. First, Lemma 2.3.2 guarantees us that C). has mean and Covariance close to the true
w(r), 3(r). We abuse the notation a little bit and use p(r), 3(r) to denote the mean and
covariance of C,. too. This allows us the luxury of dropping an extra piece of notation and

doesn’t change the guarantees we obtain.

2. In the following, we will use D, = D(u(r), X(r)) to denote the uniform distribution on
C,. We will use D,, to informally (in the context of non low-degree SoS reasoning) refer

to the uniform distribution on the subset indicated by w.

Depending on whether C.., C,, are mean separated, spectrally separated or separated in rela-

tive Frobenius distance, our proof of Lemma 2.3.3 breaks into three natural cases. The key part
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of the analysis is dealing with the case of spectral separation which then plugs into the other two

cases. So we begin with it.

2.3.2 Intersection Bounds from Spectral Separation

In this subsection, we give a sum-of-squares proof of an upper bound on w(C,.)w(C,.) whenever
D,, D, are samples chosen from spectrally separated distributions. Note that we do not have any
control of the means of D,., D, in this subsection and our arguments must work regardless of the

means (or their separation, whether large or small) of D,., D,..

Formally, we will prove the following upper bound on w(C,.)w(C,,) where the degree of the

sum-of-squares proof grows logarithmically in the spread  of the mixture.

Lemma 2.3.5 (Intersection Bounds from Spectral Separation). Let X = C1, UCy U ...C, be a

good sample of size n. Suppose there exists a vector v such that Agpectraiv ' 2(r)v < v (1 )v

for Agpectrat > C's/6?, where s > 1. Then, A Im {w(Cr)w(C,n/) < O(\/S)} where

v Z(i)v
v E(r )"

KR = IMaX;gk

Observe that for k = 2, k = 1 and thus, the lemma above results in a bound of O(s/d?)
on the degree of the SoS proof. The proofs of both the statements above follow by using anti-
concentration of D, and D, to first show a lower-bound on the variance of ¥(w) in terms of
the v"¥(r)v and v"X(7")v and then combine it with an upper bound on v'¥(w)v using anti-

concentration of D,,,.

Lemma 2.3.6 (Large Intersection Implies High Variance, Spectral Separation).

S

AT {w(aqw(a«) (v (2(r) + (")) v)
2.7

Proof. We know from Lemma 2.3.2 that two-sample-centered points from both C,. and C, are
2s-certifiably (6, C'§)-anti-concentrated. Using Definition 3.2.28, thus yields:
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k‘4 2s
A }Z {4 Z Wiy Wiy Wiy Wiy <xi1 — Lip — Ljy + Ljos U>

N i i2€C j1,52€C,
> u(CPu(Cr)? (72(20) + ST
k4
_pk 3 Wiy Wiy W), Wi G oy ey (T — Tip — Ty + $j27U>} (2.8)

i1,i2€C,j1,j2€C

Using that A }* {w;, w;,wj, wj, <1} for every iy, s, j1, j2 and using 2s-certifiable (6, C'6)-

anti-concentration of x;, — x;, — x;, + x;, and invoking Definition 3.2.28, we have:

k4
A% {n4 Z wilwizwjlezqg,Q(Z(er(m)(inl — Ty, — Tj, + T4, 0)
i1,12€Cr,j1,j2€C,
kit , ] 5
— E /
< n4 Q5,2(Z(T)+E(r/))(l'i1 — Ty, — Ty T Ty, U) <dd (’U 2(2(70) + E(?“ ))U)
i1,12€Cr,J1,j2€C,

2.9

Plugging in the above bound in (2.8) gives:

k4 2s
A }E {77,4 Z Wiy Wiy Wiy Wiy <xi1 — Lip — Ljy + L, U>

i1,i2€Cr,j1,j2€C,

> 6% (w(Cy)*w(Cp)? = C6) (v 2(S(r) + z(r'))zﬁ)s} (2.10)

Rearranging thus yields:

1 k*

2s

A 4s 525 H Z Wiy Wiy Wiy Wiy <xi1 — Tip — Tjy + Ly U>
i1,i2€C,j1,j2€C

+C6 (vT2(3(r) + X))

> w(C,)2w(Cy)? (’UTQ(E(T) + E(r’))zﬁ)s} (2.11)
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To finish the proof, we note that:

4es\® s 1 k4 0
Al {(52) (UTE(@U)U) 2 S Y. Wi WpwH Wy (T — Ty, — Ty + Ty, )
i1,42,J1,J2€[n]
1 k4 .
>t 2wy, (m = o — a2y, 0)0 0 (212)

11,12€C,j1,j2€C,

Plugging in the upper bound above in (2.11) and canceling out a copy of 2¢ from both sides

gives the lemma.

Moving forward with our proof plan, we can clearly complete the proof by giving an up-
per bound on (UTZ(w)v) that scales as the variance of the smaller variance component (i.e. r
above). We make this happen by invoking certifiable anti-concentration again - this time, how-

ever, applying it to the w-samples instead of C'. and C,..

Lemma 2.3.7 (Spectral Upper Bound via Anti-Concentration).

Al {(w(Cr)2 - Cé) (UTE(w)vT>S < (?j)s (UTE(T)U)S} (2.13)

Proof. Our constraint system A allows us to derive that two-sample-centered points indicated
by w are 2s-certifiably (6, C')-anti-concentrated with witnessing polynomial pp. Using Defini-
tion 3.2.28, thus yields:

Ao {5%(@)2 (v"S(w)T)

2 1 S & ) 1

ijEC " izjec,

(2.14)

Z7w . . . . . .
Using that A }T {w;w; < 1} for every i, j, using that A derives 2s-certifiable (6, C'd)-anti-
concentration of w-samples and invoking Definition 3.2.28, we have:
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k? 1 k2 1
A}z {2 Y wiw;Gs s (—= (2 — ;) ,v) < 2 Y wiw;g s ( (zi — ;) ,v)

(2.15)

Further, using that A }24% {w;w; < 1} forall 4, j and relying on the certifiable Sub-gaussianity

of C,, we have:

A}z{f; 5 wiwj< 1 (mi_a;j),vysgf; > <;§(xi_xj),v>28

i,jecr 17]607‘

S

(2.16)
= (Cs)® (UTE(T)U)S}

Combining the last two bounds with (2.14) thus yields:

A= {w@)? (vTB@pT) < (; (Cs)” (VTS (r)w) +C6 (UTE(w)UT)S} (2.17)

]

Digression: ‘“Real-World” Proof We’d now like to combine the upper and lower bounds on
v ¥ (w)v obtained in the two previous lemmas in order to conclude a bound on the intersection
size w?(C,)w?(C,/). To aid the intuition, observe that this is easy to do in “usual math” (in
contrast to low-degree sum-of-squares proof system). If the reader prefers to skip this digression,

they can skip to the paragraph titled Upper Bounds via SoSizing Conditional Argument.

Lemma 2.3.8 (Low Intersection Size from Spectral Separation (not a low-degree SoS Proof)).
Let v € RY be a unit vector such that Av"S(r)v < v"S(r')v for some A > 2Cs/5>. Then,
w3(C)w*(Cr) < 6.
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Proof. We splitinto two cases: 1) w?(C,) < d and 2) w(C,)? > 4. In the first, case w?*(C,)w?(C,)

is clearly at most 6. So we are done!
In the second case, we invoke Lemma 2.3.6 to write:

w(Cw(C,) (v (2() +2()vT)" < z (vTBw)) +C6 (v7 (S(r) + S07)) 0T’

= 528

Since (w?(C,) — &) > 0, we can multiply both sides of above by (w?(C,.) — §) without changing
the inequality. By Lemma 2.3.7:

<w(C’r)2 - 0(5) (UTZ(w)vT)S < % (Cs)® (UTE(T)U)S .
)

Using the above bound, using that w(C,)w(C, ) < 1 and rearranging, we have:

w(Cy)2w(Cr)w(Cy) (v (2(r) + S0)v") < (C+1)3 (v (2(r) + 5()) v")

+ (3)3 515 (Cs)® (UTZ(T)U>S : 219
Using the above bound with the spectrally separating direction v, we know that
v (2(r) + 320 v" = AvTS(r)w.
Thus rearranging the above inequality gives:
W(C P w(C Y < W (Cw(C) < (C+1)0 + (523) (Cs) A~
which is at most 2C'd whenever A > C's/§* as desired. O

Crucial to the above “real world” argument is the second step where we use the non-negativity
of w(C,)? — § so as to multiply the starting inequality on both sides with it while preserving the
direction of the inequality. This step relies on an “if-then” case analysis which, unfortunately,

cannot, in general, be implemented as is in low-degree sum-of-squares proof system.

Upper Bounds via SoSizing Conditional Argument In order to implement an argument sim-
ilar to the one above, within the low-degree SoS system, we will introduce a polynomial J
which approximates the thresholding operation withing SoS. We prove the existence of such a
polynomial in Appendix 2.11. This will, however, lose us a log(x) factor in the SoS degree re-

quired (and thus cause an exponential dependence on log(x) in the running time of our clustering
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algorithm).

Lemma 2.3.9 (Polynomial Approximator for Thresholds, See Section 2.11 for a proof). Let
1/2 > p > 0and c € [0,1]. There exists a square polynomial [J satisfying:

1. J(x) € [1,2] forall x € [2¢,1].

2. J(x) < pforall x €0,

3. deg(J) < O(log(1/p)/c).

Lemma 2.3.10. Forany 0 < p < 1,

{0 < w(C) < 1} i (T W(C))(w(Cr) = 6) > =dp}

and,

0 <w(C) <V gt (T WCw(C) > (w(Cr) —20)}

Proof. Observe that the conclusion is a polynomial inequality in single variable w(C.). Thus, it

is enough to give any proof of J (w(C,))(w(C,) — ) = —dp.

To see why the inequality holds, observe that if w(C,.) > ¢, J(w(C,))(w(C,) —0) = 0 >
—dp. On the other hand, if w(C,) < 4, then, J(w(C,)) < p while |w(C,) — é| < 4. On the
other hand, observe that J (w(C,)(w(C,) — ) < J(w(Cy)w(C,) < 2w(C,). This completes
the proof of the first inequality.

For the second claim, notice that if w(C,.) < 24, the inequality trivially holds since J (w(C,)) >
0. If on the other hand, w(C,) > 24, then, J (w(C,)) > 1 > w(C,) > w(C,) — 0. O

We can now implement the above real-world “conditional” argument within SoS using the
polynomial J above. To do this, we will need a rough upper bound on v' ¥ (w)v in terms of
v"Y(r)v for r < k. We will prove this via another application of certifiable anti-concentration

of D,, - this time, invoked with the slightly different parameter 7.

Lemma 2.3.11 (Rough Spectral Upper bound on ¥(w)).

r<k

AR {(Nz(wﬁﬁ)s < (20K (Cs)* S (UTZ(T)U)S} (2.19)

Proof. Our proof is similar to the proof of Lemma 2.3.7 with a key additional step. As in the
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proof of Lemma 2.3.7, we start by invoking our constraints to conclude (note that we sum over
all samples this time instead of those just in C,. as in the previous lemma:

r<k

A }* {7’25 > w'(Cy)? (UTZ(w)vT>S

r<ki#jeCr

1 2 1
E% E:C wzwj<\/§ T Ij)’ > 25 22 Z wlw]qu(w <\/§<xi_xj)’v>}
r<ki,7€C,
(2.20)

The second term on the RHS can be upper bounded just as in the proof of Lemma 2.3.7 to
yield:

F{ )X S vt (<12< z—xj>,v>)

k? 1
S n2 Z wiquf,mw) <<2 (zi — ) 7U>> (2.21)
i#j€[n]

The first term can be also be upper bounded - this time in terms of the Covariances of all the
k components.

{5 g () <BE B (e

r<k ZJGC%

(2.22)
= (Cs)* Y (UTZ(T)U)S}

r<k

We can now combine the two estimates above to yield:

Al { ( 3 CT) (vTSwpT)" < 7123 (Cs)*S (UTE(T)U>S} (2.23)
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So far the argument closely follows the proof of Lemma 2.3.7. The key departure we make is

with the following simple observation:

AR e > (Zw@,)) -

r<k

1

sore We can derive:

Thus, as long as 7 <

r<k

A }* {(UTE(w)v)S <K (Cs)™Y (UTZ(T)U)S} (2.24)

This is the “rough” upper bound on ¥(w) we were after. ]

We can use the above lemma to get an “upgraded” version of Lemma 2.3.7.

Lemma 2.3.12 (Upper Bound on Variance of D,,). Let Ay (v) ||v]|2 be the maximum of v $(r)v

over all r < k. Then,

S

Al {(J(w(@»(w(@) —8)+09) (7 S(w))" < 25 (C5)° (T8 (r))

+ 6ps* (Cs)® k)\max(v)sHUHgs} . (2.25)

Proof. From Lemma 2.3.11, we have:

A }* {(UTE(w)v)s < (8)TH(Cs)" Y (UTZ(T)U>S} (2.26)

r<k

Then, the above bound implies:

A }* {(vTE(w)U)S < (55T (Cs)° k:)\max(v)s} : (2.27)

From Lemma 2.3.10, we have: A }* {J(w(C,)) < 2}. Thus, using Lemma 2.3.7 and apply-
ing (2.27) on the RHS, we can conclude:
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A}* {(J(w(C’r))(w(C’r) —0)+0p) (UTZ(w)v)S < 0p (UTE(w)v)S +2 <§;>S (UTZ(r)v)S

< 502 (05" Bma @) ol +2 (52 ) (0 szv)s}-

]
We are now ready to complete the proof of Lemma 2.3.5.
Proof of Lemma 2.3.5. Observe that A |- {0 < w(C,) < 1}. Thus,
A {T(w(C)(w(C,) = 6) + 6p > 0} . (2.28)

From Lemma 2.3.6, we have:

Al {w(Cr/)w(C’r) (07 () +3(")v)" < 522 (v"S(w)o) +C6 (v7 (S(r) + 2(r")) v)‘"} .

Using (2.28) along with (3.5) with J (w(C,.))(w(C,) — &) + dp gives:

Al {<J<w<cr>><w<cr> = 8) w(Cr)w(C) (o7 (S(r) + () v)’

<5p(vT<z<r>+z<r'>>v)5+(J(wmr))(w(o> 5) +dp) T(Tz Jo)’
+ (T (w(C))(w(Cy) = 8) +6p) 55 L (s (s ()’

+ (T (w(C))(w(C,) — &) + dp) 206 (UTZ(T')U)S} . (229
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Rearranging yields:

A= {J<w<cr>><w<cr>w<cw>w<cr> (v (S0r) +3(") v)

< 20p (V7 (S(r) + 3(")) v) + (T (w(C)(w(C,) — 8) + dp) 522 (v S(w))”

(T @ENIC) = 0) +39) 5 (Cs)" (T8 ()’

+ (T (w(C))(w(C,) — 8) + dp) 206 (sz(r')v)s} . (2.30)

Using Lemma 2.3.10, we have that J(w(C,))w(C,) > (w(C,) — 0). Multiplying the
above inequality (using (3.5)) by the SoS (and thus non-negative) polynomial w(C,)w(C,)
(v7(S(r) + B(")) vT) yields:

Ab {J<w<cr>>w<cw>w2<cr> (o7 (S0) + =) )’

> (w(Cy) - w(Cr)w(C,) (7 (£(r) + () v)s} .

Thus, the LHS above is lower bounded by (w(C,.) — §)w(Cy)w(C,.) (UT (3(r) + X(r)) v)s.
Let’s analyze the terms in the RHS one by one. The first term can be upper bounded directly by
applying Lemma 2.3.12. The remaining two terms in the RHS can be upper bounded by relying

on:

A {T(w(C))(w(C,) — 8) +8p < 2}

Thus, using the above bounds we have:

s

Al {w(CT)Qw(C’r/) (07 () + 20" v)” <30 (v (2(r) + (7)) v)

2 s
+ 50 (Cs)° (v72(r)0) " + 3ps™ (C'5)° kAmax(v)*[[0]13°

+ (5225 (Cs)* (vTE(r)U)S +4C6 (UTE(T/)U)S} (2.31)
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Next, observe that since C,, C,. are spectrally separated and 0 < v'3(r)v < v"(r)v.
Thus, v "2 (r")v = A\ (v)||[v]|3 > 0.

We now set p < 572 (C's) ™" k™ Aax (V) A (0)* < 579Gk, and use that A > C's/6?

to conclude:

AT loat /59 {w(Cr)2w2(OT/) < w(C)*w(Cp) < 0(5)} (2.32)

Applying Lemma 2.8.2 completes the proof. [

Simpler Proof for Two Components

As an aside, we consider the case where the input mixture only has two components. For this
special case where k£ = 2, we show that can bypass the use of the threshold approximator above

to get a simpler proof.

Special case of k = 2. We proceed exactly as in the proof of Lemma 2.3.5 until equation (2.31)
where we invoke the uniform eigenvalue upper bound. Instead of using the uniform eigenvalue
upper bound on ¥(w), we use Lemma 2.3.11, setting t = s(1/2Ck) < 1/k®1 = O(1) for
k = 2 to derive:

Ak {(UTZ(w)UT)t < 200 ( (Jz(m)t + (UTE(2)v)t) } (2.33)

With this sharper upper bound, we can complete the proof as in Lemma 2.3.5 by setting
p = 27915 instead of 1/poly(k). Since log(1/7) = O(s)/d = poly(1/6), the degree of the
SoS proof does not grow with x anymore. . Since log(1/p) = O(s)/d = poly(1/J), the degree

of the SoS proof does not grow with the spread parameters x anymore.

]

Remark 58 (Difficulty in extending the simpler argument to k£ > 2). For mixtures with larger
number of components, the upper bound from Lemma 2.3.11 is not enough. This is because the
upper bound in the Lemma 2.3.11 scales with the largest variance of any of the £ component

distributions which could be a lot larger than the variance of D, and D, in the direction v.
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2.3.3 Intersection Bounds from Mean Separation

In this section, we give a low-degree sum-of-squares proof that if C'., C,, are mean separated

then w(C,)w(C,,) must be small. Formally, we will show:

Lemma 2.3.13 (Intersection Bounds from Mean Separation). Let X = C} U Cy U ...C, be

a good sample of size n. Suppose there exists a vector v € R® such that {j, — ,ur/,vg >
A2 0T (S(r) + 2(r")) v.

Then, whenever A, > C's /6,
ATty 1(Cw(Cr) < O(Vo)}

As in the previous subsection, we can get a sum-of-squares proof of absolute constant degree

for the special case of £ = 2 components.

Lemma 2.3.14 (Intersection Bounds from Mean Separation). Let X = C;UC, be a good sample
of size n. Suppose there exists avectorv € R% such that {(;u(1) — p(2),v)5 = A207 (Z(1) + B(2)) .

Then, whenever A, > O(1),
Algi {w(Cw(C) < O(Vo)}

We will need the following technical fact in our proof.

Lemma 2.3.15 (Lower Bounding Sums). Let A, B, C, D be scalar-valued indeterminates. Then,
forany T > (),

(0<SAB<A+B<1}U{0<C,D}U{C+D >} 25 {AC + BD > rAB} |
Proof. We have:
{0<AB<A+B<1JU{0<C,DIU{C+D>F}H {AC+BD > (A+B)(AC+BD)
> A*C + AB(C + D) + B>D > AB(C + D) > TAB} (2.34)

]
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Proof of Lemma 2.3.13. Let v be the direction in which the means of C). and C). are separated.

Then, we have:
e — e, 0)3” = AZ (VT (S(r) + S07))v) (2.35)

Assume, WLOG, that v X (r)v < v 3(r')v,

Applying Lemma 2.3.15 with A = w(C,), B = w(Cy), C' = (p, — p(w),v)” and D =
{jtrr — p(w), v)** along with the SoS Almost Triangle Inequality (Fact 2.2.8) and certifiable Sub-
gaussianity constraints (As) yields:

A }%{ (Cs)® (UTZ(U})U)S = izwz (x; — p(w), v>2s P i ' CX:C w; (x; — p(w),u>2s
2 215 (w(cr) <,Ur - #(w)7v>2s - l Z wy <[L’l — ﬂr,v>28)
1€Cy
! 2s 1 2s
o (G s = ), 0 = i = o) )
ieC,
> 21 (w(Cr) (e = p(w), 0)* 4 w(Cor) (pir = p(w), v)**) = o= (vT(r)v)” = 21 (v7S0)0)
z 251+1 (w(C)w(Cr) (e = p(w), v)* + (e — p(w), v)*)) = 21 (v"5(rw) - 21

> <4> (w(CT)w(Cw) ((UTE(T)U)S i (UTE<T/)U)S)) _ ? (UTZ(T‘)U)S i 215 (UTZ(T/)U)S} 7

where the last inequality follows from (2.35). Rearranging the chain of reasoning above thus

yields:

A }g {25 ((C’s)S (UTE(w)v)s + (UTE(T)U)S + (UTZ(T’/)U)S)
(2.36)
> AZw(Cw(Cy) ((vT8(r)) + (Nz(r')v)s)} .

Lemma 2.3.10 shows a low-degree SoS proof of non-negativity of 7 (w(C,))(w(C,)—4§)+dp

in variables w:

Absitm (T (w(C) (w(C) — 6) + dp > 0} .
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Thus, we can multiply (2.36) by (J (w(C;))(w(C,.) — 6) 4+ p) throughout to obtain:

A= {(J(w(Cr))(w(CT) —0) +0p) ((2Cs)° (vTE(w)v)s + 2 (UTE(T)U)S 108 (sz(r')v)S)
> AZ (T (w(C)(w(Cy) = 6) + 8p) (w(Crw(Cr) ((vTE(r)v) + (750 )w)) } (2.37)

where the degree of the inequality above is £ = O(log(1/p)s/d?).

Applying Lemma 2.3.12 for the first term on the LHS and using that

AT Cy) = 0) +dp) < 2}

and rearranging the above inequality gives:
A }7 { (2Cs)* (5,0523 (C's)” kAmax(v)® + 5225 (Cs)® ( TE(T)U)S> +2° (UTZ(T)U)S+28 (UTE(T’)U)S
+ 2725 ((UTZ(T)U)S + (vTE(r’)v>s)

> ALT(w(Cy) (w(Cow(C)) ((vT5(r)) + (Nz(r')v)s)} . (238)

Using Lemma 2.3.10, we also have:
A O(log(;ﬂ/p)/JQ) {T(w(C))w(C,) = (w(C,) = d)} .

Using this bound on the RHS of (2.38) and rearranging yields:

A }7 { 2C's)* (5/0/\;% ;8 (Cs)® (UTE(T)U)S) +2° (UTZ(T)U)S +2° (UTZ(T’)U)S
+2A%5 ((UTE(T)U)S + (vTE(r’)v>s)
> AZ (w(Cow(C)) ((vT8(r)w) + (Nz(r')v)s)} . (2.39)

Dividing throughout by A2 ((UTE(T)U)S + (UTZ(T’)U)S) and recalling that v"%(r)v <
v X (r')v yields:
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A }# {(wQ(Cr)w(Crz)) < ALE(2C5)° (6pK®) + 2 (%) S + 25} : (2.40)

Thus, choosing p = xk~* and using that A,, > C's/§ and s = 1/4? ensures that we obtain:

A G teti 75 {(wQ(Cr)w%Cw)) < (w(Crw(Cr)) < 0(5)}. (2.41)

O

Improved SoS Degree Bounds for & = 2

Proof of Lemma 2.3.14. We proceed exactly as in the above proof of Lemma 2.3.13 up until
(2.38) where we invoke a rough eigenvalue upper bound on ¥(w). We replace this bound by
the sharper bound for the £ = 2 case given by Lemma 2.3.11 analogous to the case of spectral
separation and get to choose log(1/p) = O(1/§?) . We can then finish the argument as in the
proof of Lemma 2.3.13 above.

2.3.4 Intersection Bounds from Relative Frobenius Separation of Covari-

ances

In this section, we show that if C. and C). are generated by Gaussians with covariances that are

separated in relative Frobenius distance, then w(C,)w(C,/) = O(J).

Recall that in this case, ¥(r) and (') have the same range (as linear operators). Thus,

WLOG, we can assume them to be full rank.

Lemma 2.3.16 (Intersection Bounds from Relative Frobenius Separation). Suppose

4
op

2628 wse) 2 1] > a2, (e s

95



for Ay, > Cs /62 where s = O(1/6%). Then,

Algiats {wC)w(C) <o)}

As in the previous two subsections, we can get a constant degree sum-of-squares proof for
the special case of kK = 2 components.

Lemma 2.3.17 (Intersection Bounds from Relative Frobenius Separation, Two Components).
2 4
Suppose “2(2)_1/22(1)2(2)_1/2 - [HF o (HE 1/22(1)1/2" ) Then,
op

AIW { w(Cy) < 0(51/3)}

Let Q be a d x d matrix-valued indeterminate. In the following, we write Q(z) for 2" Q= (the
quadratic form associated with Q). We also use the notation E,, [Q] = % > ww;Q(x; — xj) -
the polynomial computing the mean of () with respect to the subsample indicated by w. We also
write Ec, [Q] = £37, jce, Q(z; — ;) and Bc, [Q] = £ Y, icc, Q(z; — x;). We note that for any
distribution D with covariance X, E; ,.p [(x — )" Q(x — y)} =2tr(XQ).

Proof of Lemma 2.3.16 We can now proceed with the proof of Lemma 2.3.16. As in the
previous two subsections, the idea is to show a lower bound on the variance of some polynomial
in terms of the intersection size w(C,)w(C,) and couple it with an upper bound on the variance
that follows from certifiable hypercontractivity to obtain an upper bound on w(C,. )w(C,).

Observe that the relative Frobenius separation condition is invariant under linear transforma-
tions. Thus, we can assume that ¥(r') = I WLOG. This simplifies notation quite a bit in this
argument. With this simplification, we now have: ||X(r) — I]% > A2 |2 (r r)||7, . Further, the
covariance of C, is now (") ~1/2%(r )Z( ")~1/2 and that of C, is now I after this linear trans-
formation. It’s also easy to verify that & S, - w,w;S(r") ™2 (25 — ;) (2 — ;) D(r") V2 =
25() 125 (w) (1) 2.

In order to simplify notation, we will simply treat ¥(r') = I and X(r) — X(r') "2 (r)2(r") /2
in the analysis below. We start with the lower-bound first.
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Lemma 2.3.18 (Large Intersection Implies High Variance). Let Q = X(r')~Y/23(r)X(r')~Y/2—1.

Aty {4Ew(Q —E.Q)* + 2E¢, (Q — E¢,Q)* + 2E¢, (Q — E¢,Q)?

F

> w(Cy)?w?(Cp) [B() 1/22(r)2(r’)1/2—f"4}.

Proof. Observe that E¢, Q = tr(X(r)(2(r)—1)) = |2(r) — I||5+tr(2(r)— 1) while, EcQ =
tr(X(r) — I). In particular, E¢, Q — E¢ ,Q = ||X(r) — 1|5 > A2 |1%(r r)||2,- Thus, the mean of
the polynomial () is starkly different on the two components. By observing that the standard
deviation of () on each of (). and (). is much smaller than the mean, we will be able to derive a

lower-bound on variance of () under w-samples.

Thus, applying Lemma 2.3.15, with A = w(C,)%, C = (E¢,Q — E,Q)°, B = w(Cy)?,
D= (ECT,Q - EwQ)2 and 7 = 1 [|X(r) — I||3. we have:

1
AfF { 2 (B,Q ~ EuQ) +w(Cr)? (Be,Q — Bu@)” > Ju(C)Pw(Co)? I5(r) — 1 ||‘;}
(2.42)
Let’s now lower bound E,,(Q — E,Q)?. We have:
A }% {Ew(Q —E,Q)* = Z ww; (Q(x; — z5) — EwQ)2
k? 2
>— > wuw(Qz — ;) — E,Q)
n 1,j€Crort,j€C,,
k? s 1K? 5
Z 53 Y wiw; (Ee,Q —E,Q)" — 5= Y wiw; (Qz; — x5) — B¢, Q)
n i,j€C 2n i,J€Cr
k? 1 k2
+ 2712”%; Wiw; (EC Q Ew@>2 2?122'7]; / w;W; (Q(iﬁz — ;) — E¢ /Q>2
1 ) , 1k )
> iw(Cr) (Ec,Q —E,Q)" — o2 > (Qzi — ;) — Ec,Q)
e,
1 1 k2 2
+5w(Cr) (Be,Q ~EuQ) — WZ; (Qzi —2;) —Ec,Q)
1
> L0l (C) [180) ~ Tk~ SBe,(Q ~ Be,Q) - 1B, (@~ Be, @) }

97



where, in the final inequality, we applied (2.42). Rearranging completes the proof. [

Onwards to the upper bound now. Observe that the first two terms on the LHS of Lemma 2.3.18
2
can be upper bounded easily using Lemma 2.3.2: E¢, (Q—E¢,Q)* < (C—1) HE(T)1/2QZ(T)1/2 HF <

2

|22 [QIf%. Similarly, Ec,, (Q—Ec,Q)? < ||Q][%- Thus, to finish the proof of Lemma 2.3.16,
op

we need an upper bound on E,(Q — E,Q)? which we accomplish by relying on the certifiable

hypercontractivity constraints.

In the following, we will use the following observation: From our bounded-variance con-

straints in 4, we have:
AP (BL(Q ~ BuQ)? < € T(w)QU(w) |2} (2.43)

From Lemma 2.3.12, we have:

Al {(ﬂw(c”)(w(c” =) +59) (v Swp)” <25 (O (sz<r>v)s+5pA;ax||v||%s} |

52

—-1/2

To implement the linear transformation 2; — X(r')~/2x;, we substitute v = X (r’)~"/?v and

use that X(r') ™1 = 1/ A pax:

ILv,w 2s

A7 {(j(w((]r))(w((]r) — 8) + 0p) || TT(w)S ()20

2

1

525

1 S S S S
<2 (O9)" o3 + pXin 167 20l < (2

(Cs)* + 5p/€5) ||v||§8} (2.44)

We are now ready for the upper bound proof.

Lemma 2.3.19 (Certifiable Hypercontractivity Implies Low Variance). Let Q = X(r) — 1.

Al {(J(w(@))(w@) ~8)+n)* (Eu(Q ~ E,Q)%)’

1 s
< (4528 (Cs)

1/2||% ? o 2
SOVL) SIS - 1 @49)

Proof. Lemma 2.3.10 implies that .4 }* {(T(w(C))(w(C,) — ) + 0p) = 0}. Thus, we can use
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the multiplication rule (Fact 3.5) and multiply both sides of (2.89) with (J (w(C;,))(w(C,) — ) + dp)

repeatedly while preserving the inequality.

Thus, we have using the bounded-variance constraints in .A:

Al {<J<w<cr>><w<cr> —8)+6p)° (Eu(Q — EuQ)?)’

< (J(@(C)(w(Cy) = 8) +3p)* (C = 1)° [M(w)Q(w)| 3
< 2° (J ((C))(w(Cy) = 8) +6p)* (€ = 1" [I(w)Q'TI(w)]7
< S(0)"27 + o) 57 (T (w(C)(w(Cr) = 8) + 2°6p) [ QU(w) [}

? () (©
((é)
- () ©

where, in the last two inequalities, we twice invoked the contraction bound from Lemma 2.8.1

S + s s QI

S+ dpw ) 2 S(r) - IH?;} ,

along with the bound on HH(w)Z(r’ )~V 2UHZ from (2.44). Setting p = ~~* completes the proof.
O

As in the previous subsection, we can improve the sum-of-squares degree of the proof above
to be a fixed constant (independent of «) in the case when & = 2 by using the sharper bound on
Y(w) in (2.44).

Lemma 2.3.20 (Certifiable Hypercontractivity Implies Low Variance, Two Components). Let
Q=X(2)72n(1)%(2)" 2~ I
Q2w s s
A 0(1/54 { 1))(w(Cy) = 8) + 6p)? ( w(Q—EwQ)Z)

2
23) 525
op

Proof. We proceed similarly as in the proof above up until (2.44) where, instead of using the

S(r)25(2) 2

(452 (Cs)* 2(2)28(1)2(2) V2 - IH;} (2.46)

uniform eigenvalue bound, we instead use the sharper bound from Lemma 2.3.11. As in the
previous two subsections, following through the rest of the proof in Lemma 2.3.19 as is, allows
us to eventually set log(1/p) = O(1/6?) yielding a O(1/5*)-degree SoS proof as desired. O
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Proof of Lemma 2.3.16. As in the previous two lemmas, we argue after performing the linear

—-1/2

transformation >(r’) on the samples in order to simplify notation.

From Lemma 2.3.18, we have:
Aff {4Ew<Q ~EuQ)’ +2E¢,(Q — E0,Q)* + 2Ec, (Q — Ec, Q)°
> w(C)PuA(Cr) [20) — 11l

Multiplying both sides of the and apply the SoS Almost Triangle Inequality (Fact 2.2.8) and

obtain:

A {25 (Bu(Q — EuQ) + Ee,(Q — Bo,Q)* + Ec, (@ — Bo, Q)
> w(C)Pu(Cr) [£() - 15}

Multiplying by (7 (w(C;))(w(C,.) — &) + dp)° on both sides, we get:

A W {(j(w(Cr))(w(Cr) —8) +0p)° w(C) =W (C) |B(r) — I|| 3
< (T (w(C)(w(Cy) = 8) + bp)° 2%

(Bul(@ — BuQ)* + B, (Q — Ec,Q)* +Eq,, (Q - ECT,Q)QS)} ery)

Using the upper bounds proved above (Lemma 2.3.19 and the preceding discussion) on each

of the three terms on the RHS, we get:

Al {U (W(C)(w(Cy) = 8) + 8p) w(Cr)*w? (C) [S(r) — T[I3

1

O(s)
< 2 (4525

(Cs)”

2(7’)1/2E(r’)—1/2HZ; + 1) 12(r) — I||if} - (248)

Applying the SoS Cancellation lemma (Lemma 2.8.2), we have:
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A}m{(J(w(Cr))(w(Cr)—5)+5P)w(0 )w?(C) 12(r) = I

< 200 (452 (Cs) =)0

IO fué}. (249

Applying Lemma 2.3.10 to observe

A}m {(T(w(C))(w(C;) = 0) +dp) = (w(C;) —20)} .

Thus, using A }* {w(C,)?w(C)?) < 1}, we get:

A O(slogz;l()n)/ﬁ) {w<07')3w2(07") ||E(T) - IHZ;‘

<25||z(r>—f||‘;+go<s>( 55 (Cs) ) [E) 72 1/2H >||z r) — 1||§}. (2.50)

E(T)1/2E(T’)_1/2 2

op

Dividing throughout by || X(r') — I|| 1, and using that and that ||X(r) — |7 >

CO’U

yields:

A 0(310;(}@/52) {w(C’T)3w(C'T/)3 <20+ (452 (Cs) cov) 13(r) — ]||2FS} : (2.51)
Using that A, > C's/§? and s = O(1/4?) yields:

A log Y {w(C’T)3w(C’T/)3 < 0(5)} : (2.52)
Using SoS cancellation (Lemma 2.8.2) again yields:

Al o5 { (Crw(Cy) <O(5l/3)}. (2.53)
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Improved SoS Degree Bounds for £ = 2 By using Lemma 2.3.20 instead of Lemma 2.3.19

in the above argument immediately yields Lemma 2.3.17.

2.4 Outlier-Robust Clustering of Reasonable Distributions

In this section, we augment the algorithm from the previous section to tolerate an ¢ < O(1/k)
fraction of fully adversarial outliers. Recall that in this setting, the input sample Y is obtained by
first generating a sample X from the underlying mixture model and adversarially corrupting an

e-fraction of X.

The following is the main result of this section:

Theorem 59 (Outlier-Robust Clustering of Mixture of Reasonable Distributions). Fix ¢ > 0. Let
D be a nice distribution that is s(0)-certifiably (0, C')-anti-concentrated for all § > 0 and has h-
certifiably C-hypercontractive degree 2 polynomials for every h. There exists an algorithm that
takes input an € corruption Y of X of size n generated according equi-weighted A-separated
mixture of D(pu(r), ©(r)) for r < k with true clusters Cy,Cs, . .., Cy, and outputs Cy,Cs, ... Cy,
such that there exists a permutation 7 : [k| — [k] satisfying
_|Cin Cr]
7 7Tl s 1 - — )
Izngll? c >1—n—0(ke)
The algorithm succeeds with probability at least 1 — 1/k whenever A > A, = Q(poly(k/n)),

needn > d°Porkm) samples and runs in time n®18KPeb /M) ywhere K is spread of the mixture.

For the special case of k = 2, the algorithm runs in time n®P°Y*/m) and uses d°wobk/m)
samples (with no dependence on the spread k.)
v S(i)v
vTE()v”
gorithm above as a subroutine to get a fully-polynomial algorithm with no dependence on the

Recall that the spread K = sup,cr« max; j< In Section 2.5, we will use the al-

spread ~ of the mixture in the running time.
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2.4.1 Algorithm

Constraint System. Our constraint system 4, is similar to the one from the previous section
with one key difference introduced in order to handle the adversarial outliers. In the uncorrupted
setting, we are given the original uncorrupted sample X = C; U Cy U ...} and our program
encodes constraints on a subset C' of samples with the intended solutions to be the true clusters
C;s.

In the outlier-robust setting, we only get to observe the e-corruption Y of X. Thus, the points

in the indices corresponding to C; need not satisfy the constraints from the previous section.

We handle this by introducing an extra set of d-dimensional vector-valued indeterminates
X' = {a,x}, ... 2} that are intended to be the original uncorrupted sample X that generated
Y. Since X' is (supposed to be) a uncorrupted sample, we can now encode finding a subset C
of X’ (instead of X) with the intended solutions to be the true clusters C;s of the original X.
In order to force X' to be close to X, we force constraints intersection constraints (via the new
matching variables m;s) that ask X’ to intersect Y in (1 — ¢)-fraction of points (just like the true
X does). This implies that X’ intersects X in > (1 — 2¢)-fraction of the points and as we will
soon see, this is enough for us to execute the arguments from the previous section with relatively

little change.

Covariance constraints introduce a matrix valued indeterminate intended to be the square root
of 2.

n=uvu’
Covariance Constraints: A; = (2.54)
I?=3x.
The intersection constraints force that X’ be close to X.
Vi € [n], m? = m;
Intersection Constraints: A; = Yiemmi = (1—e)n (2.55)

Vi € [n], m;(y; — ;) =0.

)

The subset constraints introduce w, which indicates the subset C intended to be the true clusters

of X'.
2

Vi € [n]. w; = w;
n

Subset Constraints: A3 = (2.56)

> ieln) Wi = 5
Parameter constraints create indeterminates to stand for the covariance > and mean p of C
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(indicated by w).

1 T
—d wi@i—p) (i —p) =%
Parameter Constraints: A, = =l (2.57)

1 n

!
—§ Wi, = .
n;3

Finally, we enforce certifiable anti-concentration and hypercontractivity of C.
k,2 n
n?

k’2

. . . ,j=1
Certifiable Anti-Concentration : Ay = 7

n? %
7,j=1
(2.58)
where s(z) = O(1/z?). Certifiable Hypercontractivity: As =
2 2 2h
Vh < 2s, 3 > waw; | Q) — xy) — o > wiweQ(a) — i)
i,j<n il<n
h

i,4<n if<n
(2.59)
Certifiable Bounded Variance: Ag =
2
' K ' / k2 / / 2
Vj < 2s, 2 ; wiwy | Q] — x7y) — 2 ; wiweQ(x; — ) | < C QI .
1,4<n i0<n
(2.60)

Our rounding algorithm is exactly the same as in the previous section giving us:

Algorithm 60 (Outlier-Robust Clustering General Mixtures).

Given: An e-corruption'Y of original uncorrupted sample X = C1 U Cy U . .. C}, with true
clusters C1,Cy, . .., C.

Output: A partition of Y into an approximately correct clustering C’l, é’g, cee Ch.
Operation:

1. Find a pseudo-distribution C satisfying Ao, with s = log(k)poly(k/n), 6 =
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z”: wiw; ¢, ((m; - x;) ,U) <2207 (UTEU>S(77)
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-2
n° /K2, and 7 = 1/(Cpoly(k)), and minimizing HIE[’LU]H2
2. For M = Eng[wa], repeat for 1 <0 < k:
(a) Choose a uniformly random row v of M.

(b) Let C, be the largest 7 entries in the ith row of M.

(c) Remove the rows and columns with indices in ég.

Analysis of Algorithm An analog of Lemma 2.3.2 extends to this setting without any change.

Lemma 2.4.1 (Typical samples are good). Let X be an original uncorrupted sample of size n
from a equi-weighted A-separated mixture D(u(r), 3(r)) for r < k.

Then, for ng = Q) ((sd)®klogk) and for all n > ny, the original uncorrupted sample X of
size n is good with probability at least 1 — 1/d.

As in the previous section, the heart of the analysis is proving the following lemma that
bounds the pairwise products w(C,.)w(C,) for all r # 7.

Lemma 2.4.2 (Intersection Bounds from Separation). Let Y be an e-corruption of a good sam-
ple X from a A > A,,-separated mixture of reasonable distribution D with true clusters
C1,Cy, ..., Cy of size n/k. Let w(C,) denote the linear polynomial % Yico, w; for every r < k.
Then, for every r # 1/,

Aoty { 5 w(C)w(Cr) < Ofke) + 0(%?5”?’)} .

r#r!

For the special case when the number of components in the mixture is £k = 2, we can improve
on the lemma above and give a sum-of-squares proof of degree O(s(5)?) with no dependence on

K.

Lemma 2.4.3 (Intersection Bounds from Separation, Two Components). Let Y be an e-corruption
of a good sample X from a A > A,y -separated mixture of reasonable distribution D with true
clusters C1, Cy of size n/2 each. Let w(C,.) denote the linear polynomial % > icc, W; for every
r < 2. Then,

Avob Iﬁ {w(Cl)w(C2) < O(e+ 51/3)} _
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Given Lemma 2.3.3, the proof of Theorem 59 follows by the same argument as for Theo-

rem 56.

2.4.2 Proof of Lemmas 2.4.2 and 2.4.3

As we show in this section, the proof of Lemma 2.4.2 follows from essentially the same argument

as in the previous section with two additional observations.

The key idea in bringing the machinery from the previous section into play is to consider the
following variables that satisfy constraints of being the indicator of the intersection between X’
(indeterminates in our program) and X (original uncorrupted sample we do not have access to) -

let m, = m; - 1(y; = z;) for every i. We now make the following key definition/notation.

Definition 2.4.4 (Proxy Variables and Cluster Sizes). Let w} = w;m, = w;m;1(y; = z;) and
define w'(C,) = £, w] for every .

We refer to w; variables as proxy variables (they allow us to talk about subsets of X by
“proxy”). Observe that we do not have access to the w; variables through our program. They
only appear in our analysis of the algorithm. They allow us to “go between” z;s (the originals
sample that we do not have access to) and x; (the indeterminates that our constraints are defined

over).

The result that formally allows us to do this is:

Lemma 2.4.5 (Matching with Original Uncorrupted Samples). Let m, = m; - 1(y; = x;) for

every i. Let w, = wym} = wym;1(y; = x;). Then,

Ao IwT/ {w? = w, Vz’} U{w;(z; —z;) =0} .

Proof. For the first conclusion,

A, ob }WT/ {w;2 = w?m? Ay = 2) = wml(y; = x;) = w;} :
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For the second conclusion,

T‘Ob}i{ {E _xl —w;(x;—yl)—i—w;(yl—xz)

= Ly = z)wimy(z; — ;) + mawiL(y; = 2:) (2 — ¥i)

—o}.

Using this simple lemma, as we will soon discuss in some more detail, we get to apply our
previous arguments to the original sample X by simply shifting to the “proxy” w} variables. As

a result, we will be able to prove the following intersection bounds for the proxy cluster sizes.

Lemma 2.4.6 (Proxy Intersection Bounds from Separation). Let Y be an e-corruption of a good

sample X. Let w'(C,.) denote the linear polynomial % Yicc, w; for every v < k. Then, for every

-
Arob lm {w/(Cr)w’(Cr/) g 0(51/3)} '

For the special case when the number of components in the mixture is £ = 2, we can improve
on the lemma above and give a sum-of-squares proof of degree O(s(§)?) with no dependence on

K.

Lemma 2.4.7 (Proxy Intersection Bounds from Separation, Two Components). Let Y be an e-
corruption of a good sample X. Let w'(C,.) denote the linear polynomial % Yicc, w; for every
r < 2. Then,

Arob o750 {w,(cl)w/(()?) < 0(51/3>} ‘

It is easy to complete the proof of Lemmas 2.4.2 and 2.4.7 using the above two lemmas. We

show the proof for Lemma 2.4.2. The proof for Lemma 2.4.7 is analogous.

We will use the following bound that (in low-degree SoS) shows that X and X" intersect in
(1 — 2¢)n points.

Lemma 2.4.8 (Matching with Original Uncorrupted Samples). Let m, = m; - 1(y; = x;) for
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every 1. Then,

Avob l? {Zm; > (1-— 26)%} .

<n

Proof. Observe that using {m? = m;} }% {m; < 1}, we have:
Ao }? {Z mi - Ly # i) <DLy # a) = en} .
<n i<n

Similarly,

Arob }7 {Z(l —my) Ly =z) <D (1—my) = en} .

1<n i<n

Thus,

Asob }E {Zml Ay = x;) = Z (mi+ (1 —my) (Wy; = 2;) + 1(y; # 25)) = n— 2671} )

1<n i<n

O

Proof of Lemma 2.4.2. Observe that using A, }* {m/ < 1} forevery i, and A, }7 {3cew(Cr) =1}

we have:

w,w’ ,m’ k2
Arop O(log(k)/5%) { > w(Cw'(Cr) = 2 >y WM

#r/ r#r’ 1€Cr,jeC
k2 k2
n r#r i€Cr,jeC, n r#r! i€Cr,jeC\
k? k2
N it ieCyjeC,, N i ieCy jec,,
k2 k
n" i icCr jeC,, Nt ey jeC,,
k2 k
LY S wwerty S oaem
" i icC,jeC,, N e, jeC,,

2
:fﬂz Z wiw]——Qk‘e}.

r#r i€Cr,jeC

108



Rearranging yields:

Arop O(logzl;)/é“) {Z w(Cr)w(Cp) < > W' (Cr)w'(Cr) + 2]{36} .
r#r! rr!

Plugging in the bound from Lemma 2.4.6 completes the proof. [

2.4.3 Proof of the Simultaneous Proxy Intersection Bounds

We prove Lemma 2.4.6 with a proof strategy that is essentially same as the one employed in the
proofs of Lemmas 2.3.5, 2.3.13 and 2.3.16. We will start with constraints stated in terms of the
X' variables and use Lemma 2.4.5 at appropriate places to transition into X variables. At that

point, we can plug in our argument from the previous section without change.

We will do the case of spectral separation in detail to illustrate why this strategy works es-

sentially syntactically.

Lemma 2.4.9 (Simultaneous Proxy Intersection Bounds from Spectral Separation). Suppose
v E(i)v

there exists a v such that v' S (r')v > Agpectraiv! 2(r')v. Let Kk = SUP,cpa MaX;<k TS0

Then, whenever Agpectral > C's /0,

/

Arob o( = )/54) {w/<Cr)wl(Cr’> < O(\/g)} .

log(k

Observe, as in the previous section, that B = 1 when k = 2.

As in the previous section, we start by proving a lower-bound on the variance of D,, in the

direction v where (7)) and X(7”) are spectrally separated. This gives us:

Lemma 2.4.10 (Large Intersection Implies High Variance, Spectral Separation).
Arob 5 {w’(Cw)w’(Cr> (o7 () + 20T
2 s S S
< (52) (v (w)o) + o (v (S(r) + B())v") }

Proof. We know from Lemma 2.3.2 that two-sample-centered points from both C,. and C,.
(note that these are subsets of the original uncorrupted sample X') are 2s-certifiably (9, C'0)-
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anti-concentrated. Using Definition 3.2.28, thus yields:

4
Aror I3 {164 Z w wzzwﬁwjz (Ti, — @iy — Tj, + xj27v>28
i1,12€C,j1,j2€C
> 52w (Ch) 2w (Cp)? (vT2(3(r) + 2(r))wT )
k’4
-0 Do WL WL WG sy (T — Tiy — Tjy + T, v)} (2.61)

11,i2€C7,J1,52€C,

Using that A, }I {w wi, Wi Wi, < 1} for every iy, iz, j1, jo and using 2s-certifiable (9, C'9)-

anti-concentration of x;, — x;, — x;, + x;, and invoking Definition 3.2.28, we have:

4
w2 k
’ 2
Avrob 4s {n4 § : w w7,2wj1w]QQ(S,Q(E(T)-{-Z(T’))($i1 — Tiy — Tjy + Ty, U)

i1,i2€Cr,j1,j2€C,

~X

E* s
= qﬁ,m@m(r/))(xn—%—xﬂwh,v)<c&(f2<z<r>+z<r'>>v)}

nt . . ~
i1,i2€C5,J1,52€C

(2.62)

Plugging in the above bound in (2.61) gives:

k?4 2s
Arob }7 {n4 Z U) wzgwjleg <'ril — Tiy — Tjy + Ty, U>

11,12€Cr,j1,72€C,

> 6% (w'(Cp)*w!(C)? = C6) (v 2(S(r) + E(r’))vT)s} (2.63)
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Rearranging thus yields:

1 k* 25
-Arob 4s {5237}4 Z w wZijlw]Q <xi1 — Tjp, — Tj + $j2av>

i1,12€Cr,J1,j2€C,

+C9 (UTQ(E(T) + E(r’))vT)s

> w'(Cp)?w' (Cr)? (v 2(S(r) + Z(T'))UT)S} (2.64)

So far in the proof, the only change (compared to the proof of Lemma 2.3.6) in the proof has
been that we work with the subset indicated by w;.

The key additional step we observe now is the following consequence of A, }* {wi(z; — x}) =0}
(Lemma 2.4.5).

!/ / / !/ !/ / o / / !/ /
Aob }j {wilwhwﬁwﬂ <xi1 — @, —x v > = W, Wi, W, Who (Tiy — Ty — 5, + ij,v)} .

Using further that w; > w;, we have:

4es\® s 1 k;4 2s
T !
Arob [13 <52) (v Z(w)v) > por Y whw,wjwg, <x2-1 —ry, — 2+, v >
21,i2,j1,j2€[”]
1 k‘4 ’ 2s
Z 52 A Z w wZijleQ <xi1 B QJ B QJ LT sz’ >
i1,42,51,J2€[n]

1 Ek* 0
= s2s H Z w wlzwhw]z <xi1 — Tiy — Tjy + Tjy, U)
11,12,71,J2€[n]
1 E*
2s
> 525 ﬁ Z w wwwjlwm <xi1 — Ty, — Ty + ZL‘j2,1)> .
11,i2€Cr,j1,52€C,

Plugging in the upper bound above in (2.64) and canceling out a copy of 2¢ from both sides
gives the lemma.

The basic spectral upper bound also follows by simply shifting to the proxy variables wy.
This yields us the following analog of Lemma 2.3.7:
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Lemma 2.4.11 (Spectral Upper Bound via Anti-Concentration).

Avoy b3 {(w’(Cr)2 —C3) (vTS(wpT)" < (?j) (sz(r)v)s} (2.65)

Proof. Our constraint system A,.,;, allows us to derive that two-sample-centered points indicated
by w are 2s-certifiably (J, C'd)-anti-concentrated with witnessing polynomial pp. Using Defini-

tion 3.2.28 and summing up over all n after multiplying throughout by wjw’ yields:

2 2s
<z22 wgw}<12(x§—x;),v> 62Sn > ww q(SE (\/_(x;_;ﬁ;)w)}

i#jeC
(2.66)

Using that A, }5 {wéw} ((x; — %) — (2 — azj)) = 0} (two applications of Lemma 2.4.5)
yields:

2s
/7 S 1
< — Z W;w; <2 (25 — ;) ,v> 52 Z w 'qg,E(w) (\/5 (2 — x5) ,1))}

z;éJECT
(2.67)

Using that A, }3 {wgw; < 1} for every i, j, using that A, derives 2s-certifiable (9, C'0)-
anti-concentration of w-samples and invoking Definition 3.2.28, we have:

Avob [13 { Z w’ /quu;) (( —xj), ) Z w’ /q§2w) (( xj)a“)
1#j€Cy \/_ z;éje[n \/_

<06 (UTE(w)v>S}

(2.68)
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Further, using that A, }3 {wgw; < 1} for all 7, j and relying on the certifiable subgaussian-
ity of C'., we have:

(xi - xj) 7U>

1 2s
Z <\/§ (i — ) ,U> (2.69)

i,jECH

= (Cs)® (UTZ(T)U)S}

" jec,

w’ k2
A%{ 5 w;-w;<

—_
= 5

<

S
)

Combining the last two bounds with (2.78) thus yields:

s

Arob 153 {w’(C’r)2 (v S’ < 5123 (Cs)" (vTS(r)w) +C6 (UTE(U))UT)S} (2.70)

O

Finally, we must translate the rough spectral upper bounds we had in Lemma 2.3.11. Yet

again, the proof goes through essentially with only syntactic changes.

Lemma 2.4.12 (Rough Spectral Upper bound on Y(w)).

Aoy 13 {(UTE(w)vT)S < (20K (Cs)* S (UTZ(T)'U)S} 2.71)

r<k

Proof. For ease of exposition, we drop the variable and degree specifications since they are clear

from context. As before, we start by invoking our constraints to conclude:
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Aqop }* {7’23 > w'(Cy)? (UTZ(w)vT)S

/ * / /2 1 / /
(1: —:c]-), > 22 > ww \/i(xi—xj),v)}

r<ki£jeCy

B\H

<E5 5 ulug

r<k i,j€Cy

We invoke Lemma 2.4.5 to conclude:

Ayop }* {7’25 > w'(Cy)? (UTE(w)vT)S

r<k

By s u(Lene) +rE Y S v,

r<k i,j€Cr r<k i#jeCy

(i —fj)av)}

(2.73)

%\H

The second term on the RHS can be upper bounded just as in the proof of Lemma 2.3.7 to
yield:

k{ szwze@w s ({5 - 0.0)
<& % it ((@-o0)) e

1753 €[n]

<Cr (vTZ(w)v)S}

The first term can be also be upper bounded - this time in terms of the Covariances of all the

k components.

mb},{ > w;wg<\/_ —xj),v>25<2k2 > <\}§(xi—xj),v>25

r<k i,j€Cr r<k 1,j€Cr

(2.75)

=(Cs)" ). (UTE(T)U)S}

r<k
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We can now combine the two estimates above to yield:

Avos |- { (Z w'(Cr)? — CT) (vTB@pT) < !

2s
r<k T

(Cs)*>° (UTZ(T)U)S} (2.76)

r<k

So far the argument closely follows the proof of Lemma 2.3.7. We now observe (note the
change in the bound compared to the proof of Lemma 2.3.11)

Avrob }* S ow'(Cr)? > ]1 (Z w’(Cﬁ)

r<k r<k

Now,

2 1 2 I 2 i 9
wal-{(soen) = () - (Exn) - (Egna
r<k = i<n " i<n

k * k 2
(ese) (g )

N n “

s = 2.77)
= ﬁzwl k2e?

7li<n
>1—k262}.

Thus,

Asob }* z:w’(C',,)2 > ]1 (Z w’(CT)) > 1/k — ké

r<k r<k

1

Thus, as long as 7 < 57,

and € < 1/k we can derive :

r<k

Ayrob }7 {(UTZ(w)vT)S <K (Cs)™ ) (UTE(T)U)S} (2.78)

This concludes the proof. ]

The argument for combining the upper and lower-bounds above proceeds exactly the same
as in Section 2.3.
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Proxy Intersection Bounds from Mean and Relative Frobenius Separation. The proof of

the other two intersection bounds follows via similar strategy yielding:

Lemma 2.4.13 (Simultaneous Proxy Intersection Bounds from Mean Separation). Suppose there
exists av € RY such that (u(r) — p(r'),v)s = A20T (S(r) + 2(”)) v.

Then, whenever A, > C's /0,

I

Avon iz {w/ (o (Cr) < O(VD)}

For the special case of k = 2, whenever A,,, > O(1),

Avas Fi {0/ (Cow'(C) < O(V6)}

Lemma 2.4.14 (Simultaneous Proxy Intersection Bounds from Relative Frobenius Separation).
2

Suppose HZ(T’)’I/QE(T)Z(T’)*l/z — [HF A2 (HZ )28 (r 1/2” ) for Aoy > C/6%

Then,

/

Arob [51og(m)/57) {w/(cr)w'(Cw) < 0(51/3)} .

For the special case of k = 2, we have:

Avos [ {0 (C1)w(C2) < O(8Y%)}

Combining the above three bounds yields Lemma 2.4.2.

2.5 Fully Polynomial Algorithm via Recursive Partial Clus-

tering

In this section, we describe our fully polynomial time algorithm and prove Theorem 53.

Theorem 61 (Precise form of Theorem 53). Let n,e < k=%, Let A > poly(n/2¥)F. There
exists an algorithm that takes input a set of n points Y C Q¢ and runs in time n* ©Wpolylog(1/n) /n®
with the following guarantees: Let X be an i.i.d. sample from A-separated mixture of k reason-
able distributions { D, }.<i with parameters {j1(r), 2(r) }r<k with true clusters C1,Cs, ..., Cy of
size n/k each. If Y is an e-corruption of X, then with probability > 0.99 over the draw of X
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and its random choices, the algorithm outputs a clustering C’l, C’g, cee Ch of Y such that there

exists a permutation 7 : [k| — [k| satisfying:

k-~ O
in—|C. > 1 = (k)
min —[C; N Criy| 2 1= O(RT(n+€)).

Discussion In Section 2.4, we proved that our simple rounding (Algorithm 60) of any pseudo-
distribution ¢ of degree > O(log(x)poly(k/n)) consistent with A, produces an approximately
correct clustering of any e-corruption Y of a good sample X. In this section, we will estab-
lish two somewhat curious technical facts about Algorithm 60 and the constraints A, to show
Theorem 53.

1. All is not lost in constant degree (Lemma 2.5.2). When the rounding in Algorithm 60 is
run on a pseudo-distribution ¢ of degree poly(k/n) consistent with A, it still contains
non-trivial information about the true clusters and in particular can be used to construct a

partial clustering.

2. Verification can be done in constant degree (Lemma 2.5.3). While we cannot show that
degree poly(k/n) is enough to find a clustering, we will prove that it is enough to verify a
purported approximate clustering.

These facts let us use a slightly more complicated recursive clustering algorithm combined with
a verification subroutine to obtain an outlier-robust clustering algorithm with no dependence on

the spread « in the running time.

Algorithm. Our algorithm is the following recursive clustering subroutine that we invoke with
the input corrupted sample Y and outlier parameter e. The base case of the recursion uses a
verification subroutine that confirms if a subset of n/k samples is close to a true cluster. The
main recursive step employs the exact same rounding of the pseudo-distribution that we used in
Algorithm 60.

Algorithm 62 (Recursive Partial Clustering).

Given: A subsample Y' CY of size jn/k for j € |k|. A outlier parameter T > 0 and an

accuracy parameter 1 > 0.
Output: A partition of Y into an approximately correct clustering C’l, C’g, ceey C'j.

Operation:
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1. Base Case: If |Y'| = n/k, accept if verification subroutine from Algorithm 63

when run on Y’ with outlier parameter T accepts. Otherwise output fail.

2. SDP Solving: Find a degree poly(j/n) pseudo-distribution C satisfying Ao, and
- 2
minimizing HE[w] H2 with number of components set to j and outlier parameter

set to 7. If no such pseudo-distribution exists, output fail.
3. Rounding: Let M = E,,_:[ww'].
(a) Choose a uniformly random row @ of M.

(b) Choose ¢ = O(klog(k/n)) rows of M uniformly at random and indepen-
dently.

(¢) For eachi < {, let C; be the indices of the columns j such that M(i,j5) >
n/poly(k).
(d) Let Copy = [n] \ Ui Ch.
4. Brute-Force Search Over Partial Clusterings: For each subset S C [( + 1],

recursively run two instances of Algorithm 62 with inputs U,ESCA}, UiQSCA’i re-

spectively with outlier parameters n + O(k3T) for both runs.

5. If either run fails, output fail and return. Otherwise output the union of clusters

returned by the two runs of the algorithm.

Analysis of Algorithm. The analysis of our algorithm is based on the following two key pieces.
The first shows that Algorithm 60, when run with a pseudo-distribution 5 of degree poly(k/n)
consistent with A,..;, recovers a partial clustering of the input sample. An (approximate) partial

clustering is a non-trivial split of Y into (approximate) unions of clusters.

Definition 2.5.1 (Partial Clustering). A T-approximate partial clustering of Y = C; U Cy U

... Cy, € R described by a partition of Y into PyUP, such that there exists S C [k], 0 < |S| < k

. | PINUegCy| [PeNUigs Cil
satisfyin >1—7.
fying UsesCil 7 |UsgsCil =

The following lemma analyzes the output of Algorithm 62 when run with a 7-corrupted
mixture of &’ < k reasonable distributions. We will use it to analyze all instantiations of Algo-
rithm 62.

Lemma 2.5.2 (Outlier-Robust Partial Cluster Recovery). Let X be a good sample from a A-

separated mixture of reasonable distributions with parameters {11(r), 3(r) }.< and true clusters
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C1,Cs, ..., Cp of size 7 each. Let Y be a T-corruption of X. Then, whenever A > poly(n/k"),
Algorithm 62 with probability at least 1 — 2~*) recovers a clustering C’l, C’g, ceey C such that
there exists a partition Gg U G, = |k| such that for P, = Ujegséj and Py, = UjeGLéj form a
(n + O(k*r))-approximate partial clustering of Y.

The next step is a verification subroutine that, in polynomial (degree depending only on k, )
time verifies if a given subset of n/k samples intersects in a true cluster in (1 — 7) fraction of

points.

Lemma 2.5.3 (Verification Subroutine). Let X be a good sample from a A-separated mix-
ture of reasonable distribution with parameters {j(r), 3(r)} <, and equal-size true clusters
C1,Cy,...,Cy. LetY be a T-corruption of X, for 7 < 1/k5. Let C C Y be such that
max,<j %\é N Cj| < 1 — 2ky\/7. Then, Algorithm 63 rejects on input C. On the other hand, if
dr < k such that %|CAY NC,| = 1 — 7, Algorithm 63 accepts on input C.

We can complete the analysis of Algorithm 62 and prove Theorem 61 using the above results:

Proof of Theorem 61. We run Algorithm 62 with input Y and initial outlier parameter 7 = .
Let’s track the outlier parameters in the recursive calls - in each recursive call, 7 — 1 + O(kT).
Since the depth of our recursive calls is at most k, 7 = O(k*n + k3*¢) throughout the algorithm,
and thus e < 1/k%F.

Let’s bound the running time of the algorithm. The base case requires running the verification
algorithm that needs nP°Y(1/") time, and in the worst case, the fraction of outliers is 7 = k%) (4
¢). Each run of the algorithm makes at most 2* recursive calls to instances with number of
components reduced by at least 1 and needs to solve an SDP that needs nP*Y(*/") time. Thus, the
running time follows the recurrence: T'(j) < 2T'(j — 1) 4+ nPY/" and we can conclude that
T(k) < 28°T(1) = 2¥ ppoly(k/m),

Finally, let’s confirm the correctness of the procedure. First, we show that if the algorithm
doesn’t fail, then it outputs a correct approximate clustering C1, Gy, ..., Gy of Y. It's immediate
that the algorithm always produces a partitioning of Y into subsets of size n/k each. Further, each
C; must cause Algorithm 63 to accept (base case of Algorithm 62). From Lemma 2.5.3, it must
hold for each i, C; some cluster Cy;) in 1 —7 fraction of the n/k samples for 7 = O(k**1+ k> ¢).
Finally, observe that if 7 < 1/k then, Cr(iy # Cr(j) for i # j. Thus, m must be a permutation of

[k]. This finishes the proof.

What remains is to argue that when run with e-corruption Y of a good sample X, Algo-
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rithm 62 does not output fail with probability at least 0.99. For this, we need to exhibit a choice
of S C [k] for each recursive call for which the algorithm does not fail. Observe, our algorithm
never outputs fail if the input Y intersects (1 — 7) fraction of samples in some union of true

clusters. This is guaranteed by Lemma 2.5.2 with probability at least 1 — 27*)

. By a union
bound, this guarantee holds for the output of all rounding steps incurred by making the choices
of S above with probability at least 0.99. Thus, we must arrive at subsets C; that are (1 —71)-
intersecting with some true cluster for 7 = k%) () + ¢) < 1/k?, where the last inequality holds
when 1, ¢ < 1/k°%) . By the completeness of our verification subroutine (Lemma 2.5.3), all
C; produced via these choices cause the verification algorithm to accept. This completes the

proof. []

2.5.1 Partial Cluster Recovery

In this section, we prove Lemma 2.5.2. The crux of the proof is the following intersection bound
that finds a bipartition of clusters and proves that the simultaneous intersection of C' (searched
for in A, via w-variables) with the two pieces of the bipartition is small. Note that this gets us a
weaker guarantee than the inter-cluster simultaneous intersection bounds proven in Sections 2.3
and 2.4 with the upshot that the degree of the SoS proof here does not depend on «, the spread

of the mixture.

Lemma 2.5.4 (Simultaneous Intersections Bounds Across Bipartition). Let X,Y be as in the
setting of Lemma 2.5.2 with true clusters Cy,Cs, ..., Crp withn = O(1/k') and A = AF, =

rob

poly(K' /n)¥ where A, is the separation requirement in Lemma 2.4.2. There exists a partition
S UL = [K'] such that |S| < k' satisfying:

| w I /
Alpoly(k/n)-l—poly(l/é) { Z w(Cr)w(CT/) < O<<k 3)51/3 + (k )2T)} :

reSyr’'el

Proof. We break the proof into two cases.

Case 1: No pair of clusters C., C,- is spectrally separated. In this case, for every direction

v, either v X (i)v = 0 for all i < k' or 5;22((:/);; < A < (poly(K'/n))¥ for all 7,7’ . Thus, in

particular, the spread x < A. Applying Lemma 2.4.2 and plugging in the upper bound on

immediately yields that for every 1 < r < r’ <k

[ w ! /
AT w oa e /5% {;/W(Or)w(ow) < O(K'7) +O((k )251/3)} :
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Thus, in this case, we recover every cluster approximately and thus can set S and L to be any

non-trivial partition (that is, both S and L are non-empty) and finish the proof.

Case 2: There exist r, " such that C, and C,. that are spectrally separated. Then there is

a direction v such that A* v"¥(r)v < v"X(r')v. Consider an ordering of the true clusters

along the direction v, renaming cluster indices if needed, such that v'X(1)v < v'2(2)v <
v Y(K)v. Then, clearly, v" S (k) v = A0 B(r)v.

Let j < k' be the largest integer such that A,,,v "% (j)v < v (5 + 1)v. Observe that since
we are in Case 2, such a j exists. Further, observe that since j is defined to be the largest index

which incurs separation A, all indices in [j, k'] have spectral bound at most A,,, and thus

UTTEE o A’job Applying Lemma 2.4.2 with the above direction v to every r<gjandr > j
and observing that the spread parameter « in each case is at most - ’UTE < AF yields:
I w / N251/3
A 2(Crw(Cr) < OK'T + (K)201°)}

Adding up the above inequalities over all » < j — 1 and 7’ > j + 1 and taking S = [j — 1],
T = [K]\ [j — 1] yields the claim. O

We are now ready to prove Lemma 2.5.2.

Proof of Lemma 2.5.2. We will prove that whenever A > A,., = poly(k/n)*, Algorithm 62,
when run with input Y recovers a collection CH, C’Q, ey C, of subsets of indices such that there

is a partition S U L = [{], 0 < | S| < ¢ satisfying:

k. A k. A
ITllIl{TL|C’Z N Uj650j|, ﬁ|OZ N UjeLCj|} < n + O(k}47') . (279)

This suffices to complete the proof: Split [¢] into two groups Gg, G, as follows. For each
i, let j = argmax, g %|CA’Z NC.|. If j € S, add it to G, else add it to G. Observe that this
process is well-defined. To see this, suppose j € S. Let j/ € L. Then, using Equation (3.40)
and that ) + O(k*r) < 1/k and that £|C; N U,esC,| > £1Ci N Cj| > 1/k, we have that:
EICNUyer Oyl < 1/k

We are now ready to verify the first claim. The second follows immediately from the first.
For each i € G'g, we have that £ \C NUjerCj| < n+ O(k*r). Adding up these inequalities for
all i € S yields that £| Py N Uje,Cy| < [S] (n + O(k*7)). Using that |[P;| = |S|% and S, L form
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a partition of [k| completes the proof.

We now go ahead and establish (3.40). Let ¢ be a pseudo-distribution satisfying A of degree
poly(k/n). Let M = INEC~ [ww"]. Reasoning similarly as in the proof of Theorem 56, we have:

1. 1/k > M(i,j) = 0forall 7, j,
2. M(i,i) = 1/k for all ,

3. EjumM(i, j) = 1 for every i.

For an 7’ to be chosen later, call an entry of M large if it exceeds 7’ /k?. For each i, let B; be the
set of large entries in row 7 of M. Then, using (3) and (1) above gives that |B;| > (1 — kn')n/k
for each 1 < ¢ < n. Next, call a row ¢ “good” if %min{\ureLCT N By, |UpesCr N By} <
100k%*n" + O(k>T). Let us estimate the fraction of rows of M that are good.

Towards that goal, let’s apply Lemma 2.5.4 with n = '/2k and § = 7/ 3 /8KkS. Then, using
Fact 3.2.18, we obtain

> Eicc,Ejec, M(i,5) < Y Eice,Ejec, Elww]

reS,r'eL r'#r
= E[w(or)w(or’)]
< ' 4+ O(K*7)

Using Markov’s inequality 1—1/100%? over the uniformly random choice of 7, Ejec. , M (4, j) <
100k*n’ + O(k*7). Thus, 1 — 1/100%? fraction of the rows of M are good.

Next, let R be the set of 100k log k/n' rows sampled in the run of the algorithm and set
C; = B for every i € R. The probability that all of them are good is then at least (1 —
1/100k2)klek/m" > 1 — 1/ log k/100k. Let’s estimate the probability that | U;er Ci| > (1 —
1/k'%)n. The chance that a given point ¢ € B; for a uniformly random B; is at least (1 — k') /k.
Thus, the chance that t & U;cr B; is at most (1 — 1/2k)100%loek/n" < 4 /150 Thus, the expected
number of ¢ that are not covered by U, =C; is at most nn'/k*. Thus, by Markov’s inequality,
with probability at least 1 — 1/k0, 1 — 1/ /k* fraction of ¢ are covered in U;czC;.

Let’s now condition on the events that 1) each of the 100k log k /1’ rows R sampled are good
and 2) | Uieg Ci| > (1 — 1/ /k*)n. By the above computations and a union bound, this event
happens with probability at least 1 — 5/ /k'°. Let Cyiy = [n] \ Uj<,C; be the set of indices that
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are not covered in U;czC;. Then, Uicer1 Ciisa partition of [n].

We will show that the following way of grouping this partition into two buckets: R; =

RNU;erC;and Rs = R\ Ry satisfies the requirements of the lemma. To see this, note that
|Uier, Cs N UiesCi| < n/k100K%0 + O(k'r).
Similarly,

UiersCs U P N U, Cy| < n/k100K*y + |P)

<
< n/k(100K*y + n'k™*%) + O(k'7).

Setting ' < n/k'° completes the proof.

2.5.2 Verification Algorithm

In this section, we prove Lemma 2.5.3. We first describe our verification algorithm that involve
computing (if one exists) a pseudo-distribution consistent with a system of constraints that ver-
ifies the properties of being close to a reasonable distribution for a given input subset C' of size
n/kofY.

A

We first describe the verification constraint system V = V(C') = V; UV, U V3 UV, U Vs that
is closely related to those used in Sections 2.3 and 2.4. Covariance constraints introduce a matrix

valued indeterminate intended to be the square root of X..

. , n=vvu’
Covariance Constraints: V; = (2.80)
=y
The intersection constraints force that X’ be close to X.
Vi € [n'], m? =m;
Intersection Constraints: V, = Siepymi = (1 —7)n/ (2.81)

Vie [n'], mi(y;— ;) =0

The parameter constraints create indeterminates to stand for the covariance > and mean p of C
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(indicated by m).

=2 mi (g — p) (=) =%
Parameter Constraints: V5 = =1 , (2.82)
12 ,
") Z mix; = [
n' =

Finally, we enforce certifiable anti-concentration and hypercontractivity of C. Certifiable
Anti-Concentration :

1 ¥ s
Vy = { 2 > mim; e ((xé — x;) ,v) <2°7 (vTEv) } (2.83)
ij=1

where s = O(C?/72), and C is the certifiable hypercontractivity constant.

Certifiable Hypercontractivity:
2h
k2 / / k2 / /
Vh < 2s, 3 > mumy | Q) — x)) — 3 Z mymeQ(x; — xy)

3,j<n

Vs

and

Certifiable Bounded Variance: Vg =

2
. k2 / / k2 / /
Vj < 2s, - Z mimy | Q(x; — ) — ) Z mimeQ(z; — xy) | < C||HQH||2F : )
n if<n n i4<n
(2.85)
where s = O(C?/72).

Algorithm 63 (Verification Subroutine).
Given: A purported cluster Y = C of size n' = 7, outlier parameter T.

Output: Accept or Reject.

Operation: Accept iff 3 a pseudo-distribution C of degree O(C?/72) consistent with V(C).
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Analysis of Verification Subroutine Let m; = m; - 1(y; = z;) for every i. Define m/(C;) =

k / ;
o 2jec, m; for every .

Our proof of Lemma 2.5.3 will rely on the following three lemmas that give a degree-
O(C?/7?) refutation of V((j ) whenever (' intersects at least two clusters appreciably. The proofs
follow the same conceptual plan of combining an upper and lower bound on the variance of v " v
as in Sections 2.3 and 2.4. The key difference, as we suggested earlier, is that the degree of the
proof is a fixed constant (instead of growing with log ). The proof exploits the fact that in the

verification setting, C' is not a variable in our constraint system.

Lemma 2.5.5 (SoS Refutation from Simultaneous Intersection with Spectrally Separated Com-
ponents). Let X be a good sample from a A-separated reasonable distribution with parame-
ters {ju(r), X(r) }r<pr and true clusters Cy,Cy, ..., Cy of size 3 each. LetY be a T-corruption

of X. Let C C Y be a subset of size 3. Suppose C,,C, are A-spectrally separated and

%|CA' N C,l, %|C’ N Cy| = 24/T. Then, whenever A > =, Then,

(O} (1301,

Lemma 2.5.6 (SoS Refutation from Simultaneous Intersection with Mean Separated Compo-
nents). Let X be a good sample from a A-separated reasonable distribution with parameters
{u(r), X(r) }r<rr and true clusters Cy, Cs, . .., Cys of size 7 each. Let Y be a T-corruption of X.
Let C C Y be a subset of size 7. Suppose C,., C,, are A-mean separated and %|C’ N Crl, §|é N
Cyi| = 24/7. Then, whenever A > T—lﬁ, Then,

WO} oy (=120}

Lemma 2.5.7 (SoS Refutation from Simultaneous Intersection with Frobenius Separated Com-
ponents). Let X be a good sample from a A-separated reasonable distribution with parameters
{u(r), X(r) }r<rr and true clusters Cy, Cs, . .., Cy of size 7 each. LetY be a T-corruption of X.
Let C C Y be a subset of size 7. Suppose C..,C are A op-relative Frobenius separated and
%|é’ NC,l, %]CA' N Cy| = 24/T. Then, whenever Ay, > %, Then,

VO o (-12 01

Proof of Lemma 2.5.3. Let j be the maximizer of [C'NC,| over all + < k'. Then, |CNC;| > 1/k.
Let j' be the maximizer of |C' N C,| over all 7 # 5. Then, |C'N C}/| < |C' N C;]|. Then, observe
that £|C' N Cp| > 2k+/T/k = 2y/7.
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Applying Lemmas 2.3.6, 2.5.6 and 2.5.7 for each of the three possible ways that C; and C;

could be separated, we obtain that:

Vioay {120

This immediately implies that there’s no degree > Q(C?/7%) pseudo-distribution ¢ consistent
with V(C’ ) -for if there was one, then the above inequality yields a contradiction. This completes
the proof of the first part. For the second part, observe that setting X'’ to be the cluster closest

(and thus 1 — 7-intersecting) to C immediately completes the proof.

Sum-of-Squares Refutation of Reasonableness of Bad Clusters. We now prove Lemmas 2.5.5,2.5.6
and 2.5.7. The proof of these lemmas closely resembles our proofs of the simultaneous intersec-
tion bounds in Sections 2.3 and 2.4. So it may appear somewhat confusing as to how we can get
the SoS proofs to work in degrees that do not depend on x. The key difference is that, informally
speaking, here we already “know” that two clusters have large intersection with a purported bad
cluster C' (which is given to us, not a variable) and our goal is to obtain a contradiction from
the axioms that (' satisfies V in low-degree SoS. Such a difference, while inconsequential in
“ordinary math”, is key to obtaining the stronger degree bounds that do not depend on « in this

section.

We will use the following result in all the three proofs.

Lemma 2.5.8 (Matching with Original Uncorrupted Samples). Suppose - cne,|, =1 cney| >
2y/T. Letm/(C,) = 5 Y, mi. Then,

V(C) IW {m'(C’r)2 > i]Cr NC|—2r > 27’} .

Proof. Reasoning as in Lemma 2.4.8, we obtain that for any subset ¢’ C C, we have:

V(CA')}W{ > omi> led —27’} :

e’
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Applying this to subsets C'=Cnc, yields:

m’ k A
V 0(02/7_2) {m/(cr)2 2 ;’CT N C‘ — 27 2 2T} .

]

Proof of Lemma 2.5.5. WLOG, assume Av'%(r)v < v X(r")v for some v € R? The proof

follows by from combining certifiable anti-concentration constraints V4, certifiable anti-concentration

of C, and Lemma 2.5.8. We will use V to denote V(C') in the proof below.

Using certifiable anti-concentration of C):

% m;m <x; — v>28 < (vTZ(m)v)S}

ey i<e,
(2.86)

1% O(C’n;//-rQ) {(C’T)zs (m’(C’T/)2 - 7') (UTZ(’I"/)’UT)S <

r

Similarly, using certifiable anti-concentration constraints V:

bt { (e =) (s < (5) sy ] e

Plugging in the estimates from Lemma 2.5.8 in (2.86) and (2.87), and rearranging yields:

m’ s s s 1\?¢ s
Vi@ {TQ(OT)Q (020" <7 (0TS mp)” < () (2"S()) } '
Dividing throughout by (UTE(T)U)S yields:
2 48 A S
V 0(02/7.2) {T (CT) A g 1} .

Using that A® > 2%6 and subtracting out 1 from both sides above yields:
1% }W {-=1>0}.
O

The proof of Lemma 2.5.6 follows via a similar argument as above. We now proceed to the
proof of Lemma 2.5.7.
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Proof of Lemma 2.5.7. As in the proof of Lemma 2.3.18, for the sake of the analysis, we first
apply the linear transformation y; — X (r')~1/2y,. Let Q = X(r) — I.

From an argument similar to Lemma 2.3.18, we can obtain:

v }mT/ {QEX' (Q —ExQ)*+2Ec, (Q — Ec,Q)* + 2Ec,, (Q — Ec, Q)

> m!(C,)m!(C)? |2() 7 *E(r) () ™2 - IH‘;}

(2.88)

Reasoning as in Section 2.3.4, and using Lemma 2.3.2:

Ee,(Q ~ Ea Q) < (C = 1) [20) 7250 2 Qrr) *2) 2,
<

IR RS o] 7

Similarly, Ec, (Q — Ec,Q)? < || Q|I%.

For the upper bound on Ex/ (Q — E X/Q)Z, our proof is similar to that of Lemma 2.3.19 but
leverages the argument in the proof of Lemma 2.5.5 to obtain a degree bound independent of «

(without relying on the uniform polynomial approximator for the threshold):

From our bounded-variance constraints, we have:
II,m
A {Ex(Q — ExQ)? < O |TIQI1%} - (2.89)

We will now apply Lemma 2.8.1 in order to bound the RHS above. Towards that, reasoning

as in Lemma 2.5.5, we have:

Al {(vTE<X’>v)S < (fwf} -

Substituting v — X(r')/2v yields:

/ ’ ’ s 1 , ) <
A 0(C2/72) {(UTE(T )T/ZE(X )2(7’ )T/2y) < m (UTZ(T )T/zz(T)E(T )T/QU) } '
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Proceeding as in the proof of Lemma 2.3.19, we can now obtain:

1 - - )
Al {EX/(Q ~ExQ)* < 55 =) 2 ()2 - IHF} . (2.90)

Combining (2.88) and (2.90) and the SoS almost triangle inequality (Fact 2.2.8) we obtain:

4s

SR8 TV~ 1

Vi {m’(ca%m'(or,)%

F

<2 S0 RS 2 IH?}

Using the separation condition with the fact that A > T% yields via an argument similar to that

in the proof of Lemma 2.5.5:

VW{—lZO}.

2.6 Outlier-Robust Covariance Estimation in Frobenius Dis-

tance

In this section, we give an outlier-robust algorithm for estimating covariances in relative Frobe-

nius distance (i.e. Frobenius distance after putting one of the distribution in isotropic position).

Our stronger error bounds hold for distributions with certifiable hypercontractive degree 2
polynomials. This is a strictly stronger assumption (and thus a smaller class of distributions) than
certifiable subgaussianity considered in [KSS18]. As pointed out in [KSS18] (see discussion in
the last paragraph of page 6 for a simple counter-example), certifiable subgaussianity is provably

insufficient to obtain the stronger relative Frobenius errors guarantees.

Our proof approach is similar to that of [KSS18] - the key difference being that we rely on
certifiable hypercontractivity (instead of the weaker certifiable subgaussianity) and rely on an

appropriate application of the contraction lemma (Lemma 2.8.1).
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Theorem 64 (Robust Parameter Estimation for Certifiably Hypercontractive and Bounded- Vari-
ance Distributions). Fix an event € N and ¢ > 0 small enough so that Cte'~'/t < 17. There’s
an algorithm that takes input a B-bit rational truncation of an e-corruption Y of a sample X
of size n = ng = d°W /e from a 2t-certifiably C-hypercontractive distribution with certifiably
C-bounded variance with unknown mean i, and covariance 3., with entries of bit complexity B

0" outputs an estimate [1 and )y satisfying:

and in time (Bn)
1|22 (g — )

2. (1=, X2 = (1+n)%, forn < O(Ct)e =Y, and,

, < O(Ct)l/Qelfl/t’

3 Hz;”?iz;l” - IHF <O (Ctel=11Y),

In particular, by choosing t = O(log(1/€)) results in the error bounds of O(e) in the inequalities

above.

We consider the following system A := Ay of quadratic equations in scalar-valued variables

wy, ..., w, and vector-valued variables x, ..., z;, where Ay =
Yriwi=(1—¢€)-n
Vi € [n]. w? = w;
n=uvu’
=y
Vi € [n). w; - (y; — 7)) =
1 )
—_ €Tr. =
= F 2.91)
1
= (@ —p)(;—p) =%
n <n
. . 2
- (Q(w —p) == > Qa; — u)) < (CH)*Var(Q)
<n <n
2
1 / 1 / 2
2 Q=) = > Q@ —p) | < CIRI
<n <n

where Var(Q) = (i > i<n (Q(fé — ) — L3, Q) — M))2> :

"This notation means that we needed Cte! =1/t to be at most co for some absolute constant ¢y > 0
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Algorithm 65 (Parameter Estimation Algorithm).

Input: B-bit truncation of an e-corrupted sample Y = {y1, ..., y,} C R? of a t-certifiably

hypercontractive distribution Dy over R%.
Output: Estimates [i and 5.
Operation:
1. Find a level-O(t) pseudo-distribution C that satisfies Ay .

2. Output estimates iy = E[u] and 3 = E[3)].

Analysis of Algorithm Corollaries 4.6 and 4.7 in [KSS18] show the following low-degree
sum-of-squares proofs of certifiability of mean and covariance under spectral distance. Let S,

be the covariance of the uncorrupted samples.

Yu
Ay }W {(1 —nu' Su < (u, Yu) < (1+ n)uTE*u} ) (2.92)
for some 1 < O(Ct)e'~2/*, and,

Avebgar {(w = m) <nu, S 2} (2.93)

for some = O(v/Cte'~'/"). The bit complexities of both these sum-of-squares proofs is
poly(Bn')where B is the bit complexity of the entries of X,.

We will rely on these to show:

Lemma 2.6.1 (Certifying Covariance Closeness in Frobenius Distance). For anyt € N,
) A A 8t
Ay B {HE* rms | < n}, (2.94)

where n = (Ct)¥0 (e%-8) and 3, is the covariance of the uncorrupted samples. Further, the bit

complexity of the SoS proof above is poly(Bn').

We now conclude with proving the parameter proximity lemma:

Proof of Lemma 2.6.1. Let X, be the covariance of the underlying distribution and S, be the

covariance of the uncorrupted samples.
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In the following, we apply the the SoS Cauchy-Schwarz inequality (Fact 3.2.20) and guaran-

tee for the mean estimation above (guarantee (2.93)), to obtain:

2t

A K5 {((u 1) QU= ) = (= ) (= 1), Q)

= (B2 ) (57720 ) S2Q8Y2)

N BT

sasyf .
F

/A

< (CHO(#72)

(2.95)

where the last inequality follows from the mean closeness bound in (2.93). Next, observe

Av 5 { (@ = )" Q= ) = (s — 1) Qi — 1))

= Q. (@} = )] = )" = (s = ) (s — ) )
= (1= wi) (@, () — ) (@) — )" = (i — ) (i — 1) ")

+ (@ wi (@] = ) (f = o) T — (0 — ) (s M*)T)>} '

(2.96)

Let z; be the indicator that z; was not corrupted, i.e. z;(y; — x;) = 0 and observe % Dicln] % =
(1 — €). Then,

Av.tt {wz’ (@ = ) (@) = )T = (= p) (s — ) ")

= w;(1 — 2;) ((902 — ) (@ = pa) " — (s — ) (i — ,u*)T)

Swan T

(2.97)
+ w;z; (xlmz —xiw] — (2 — )" — p(w; — xz)T)

= wi(1 = 2) (@] = ) (@] — )T = (@ = pa) (@i — u*)T)} :
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Subsituting back into Equation (2.96) we can conclude
Q)
Ay Fi- {($§ — ) QU — pra) — (i — ) T Qi — pu)

= (1w — wz) (2= )T QU — ) — (s — )T Qs — m)}

(2.98)

Using that Y is the covariance of X’ and 33, is the covariance of the uncorrupted samples X,

along with the SoS almost triangle inequality and the bound in (2.98) we have:

A { (2-5.0)
- (1 > (@ =) Qe — ) — (s — ) Qs — W))

<o (jb S (0~ ) Q! — ) — (o — ) Qs m))

<n

+22(CHZO(22) Hzi/zQEi/zuj

< 2% (1 S - wiz) ((932 — 1) Q= pa) — (i — ) T Qi — “*)))

<n

+ 22O O (22 Hgi/zQEi/szFt

<24 (1 Z(l — W;%;) ((33; - M*)TQ@U; — ps) — (15 — H*)TQ(%’ — ) — <Q7 Y — i*>))

<n

2t
4ol (1 Z(l — w;z;) <Q, > — i*>) + 2%(075)2#/0(62#2) HEi/QQEi/QH?} '

<n

(2.99)

A\ 2t a0\ 2t . .
Observe, + 3, (1 — w;z;) <Q, ¥ — E*> = ¢ <Q, ¥ — Z*> . Plugginng back into (2.99),
and applying the SoS almost triangle inequality again,
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s { (1= (40) (5 - £..Q)"

+ (201)% 2 \

i<n

X

(2.100)

We bound each term above separately. Applying SoS Holder’s inequality to the first term,
and using that Ay }* {(1 —w;z)?* = (1 — w;2;)}, we obtain

™ (1 > (11— wz'Zi)Qt) (22t ((u — ) Qp — M*))Qt) (2.101)

< (2192 (1

n

> (= w7 QU — 1) — (Q. 2>)”)

+ (200" ) HEWEWMZ} ,

where the last inequality follows from (2.95). Next,
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Ay 5 {iz (2 = 1) Qe — 1) — (@, %)
< |1y (<x; )R — )~ Yo~ 1) QU - m) (2.102)

< (et HHQHH?} :

where in the second inenquality we use that A enforces the t-certifiable hypercontractivity of
degree-2 polynomials of X’ and in the third inequality, we invoked the bounded variance con-

straint. Combining the two equations above and substituting back into (2.101),

Av. [ { (1 S (1 —wiz) (2 — ) Q] — ) — (@, z>))

<n

(2.103)
< 720 |IQTIY + (2C1) %~ Hzi/QQz,{/?Hif}.

A\ 2
Similarly, we can bound (% Sicn(1 —wizg) (@ — 1) T Q (i — pra) — <Q, E*>> ' using certi-
fiable hypercontractivity and bounded variance of X (the samples from the true distribution) as

follows:

A

Ay 252 { (; > —wiz) (2 — po) Qi — ) — (@, z*>))

< (1 Sa- wiz)) (rlz > (= ) Qs — ) = (@, i*>)2t)

<n <n

< (20

mwu”}.

(2.104)
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Plugging (2.103) and (2.104) into (2.100) we get

2,Q o 20 27132012
AY,e }Tt {<E - Z*7Q> < W (

(20t)2t 2t—2
1— (4e)%

S2QEY?| + mQm)
(2.105)

ElﬂQEUQH%}‘

Next, observe for n > d2, 0.99%, < 3, < 1.01%,, and using the sub-multiplicativity of the

Frobenius norm, 1/2 1/2H Al/Q UQH Then, substituting () = Sy 1/2622_1/2 nd

using cyclicity of trace,

Ay % { <§;1/2ES;1/2 -y Q>2t

e2=1(320t)%
1— (4¢)*

~X

QI + s 2ml ) + L }

o Il
(2.106)

Using the SoS Contraction of Frobenius norm, i.e. Lemma 2.8.1, along with the guarantee in
(2.92), we have,

{( Ty 2y 12 ) (1.01||vy|2)t} {HHE 1203 1/2HH (4t)! Q| }

Substituting back into (2.106) and setting Q = >, /225, /% — 1,

A - 4
;1/222;1/2 _ [’QH; < ((64Ct)2t62t71 + (32075)21&62#2) (

)
F

Applying Lemma 2.8.3 with a = ||3, /25512

AY,G % {

8 4
;1/222;1/2 _ IH; < ((64Ct)2t62t72> } :
which yields the lemma. []
It’s easy to finish the proof of Theorem 64 from here.

Proof of Theorem 64. We prove Theorem 64 here under the additional assumption that >, >
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27PN(@ ] Then, by an argument similar to proof of Theorem 1.2 in [KSS18], E[Y] satisfies
the third guarantee in Theorem 64. Let ¢ be the degree-O(t) pseudo-distribution output by our
algorithm above. Then, our estimator for the covariance is simply 3 = E¢ [¥]. From Lemma

2.6.1 it follows that
p)
Ave s {

A A 8
where = O ((Ct)%e%78). Therefore, for any Q, we have, E¢ {“2;1/222*—1/2 _ ]HFt} <.

Then, using Cauchy-Schwarz for pseudo-distributions we have

soms ) < n},

8t 8t

Hz/ B[S - 1
¢

= HE [2;1/222;1/2 _ I}
¢

F F

(2.107)

< g [Jsomsoe ]
<.

Taking the 8¢-th root, e E¢ [X] sy IHF <0 (C’tel_l/t). Recall, by standard conver-
gence of emperical covariance, (1 -0 ( dlog(d)/n)) Y, <8, < (1 +0 (q/dlog(d)/n» 2.

and since n > d*/é?,

=282 - 1|, < Vd|zoPess — 1

€
oo d

(2.108)

Combining the above, and using triangle inequality,

‘ 2;1/2E [2] 2;1/2 — ] _ 2;1/2 (E [E] o i* + i*> 2;1/2 I
¢ a ¢ F
< 2;1/2 (E [E] _ i*> 2;1/2 + "2;1/22*2;1/2 B IHF
< F
= = <i:”21@ DI I) Dl
¢ F
+ ||z — |
F
1-1/t €

<O (Cte! =) + =

which concludes the proof. [
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2.7 Reasonable Distributions

In this section, we recall known results that imply that Gaussian distributions and affine trans-

forms of uniform distribution on the unit sphere are reasonable.

Certifiable Hypercontractivity of Degree 2 Polynomials

Definition 2.7.1 (Certifiable Hypercontractivity). Let D be a distribution on R®. For an even
h, D is said to have h-certifiably C-hypercontractive degree 2 polynomials if for P - a d x d

matrix-valued indeterminate,

E,-p (P.2%?)" < (Ch)"(Ex" Pa?)""”.

Observe that certifiable hypercontractivity is invariant under linear transformations of D.
This is because for any d x d symmetric matrix A, applying a linear transformation x — A is
equivalent (for the purpose of the inequality above) to conjugating P by the matrix A. Specif-
ically, E,p (P, (Az)®?) = E,.p (APA,2®?). On the other hand, E,p[(Az)" P(Az)?] =
E,p|z" AP Ax]. Combined with certifiable hypercontractivity of degree 2 polynomials of stan-
dard Gaussians [KOTZ14], we obtain:

Fact 2.7.2 (Hypercontractivity of Degree-2 Polynomials of Gaussians). Gaussian distributions
with mean 0 and arbitrary covariance X have h-certifiably 1-hypercontractive degree 2 polyno-

mials.

Lemma 2.7.3 (Certifiable Hypercontractivity Under Sampling). Let D be a 1-sub-gaussian, h-
certifiably c-hypercontractive distribution over R%. Let S be a set of n = Q((hd)®") i.i.d. samples
from D. Then, with probability at least 1 — 1/poly(n), the uniform distribution on S has h-
certifiably (2c¢)-hypercontractive degree 2 polynomials.

Proof. Since D has h-certifiably c-hypercontractive degree 2 polynomials,

i {Beon [(Po)'] < ()" 1711

Since for any matrices M and N, (M, N)* = (M®" N®") using the substitution rule,

i {(P¥" By [2%2] ) < (ch)"||P|I%} (2.109)
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Let D’ be the uniform distribution over samples from D. Then,

E.wp <P, x®2>h _ < P B, o [x®2h}>

Let M = E,pr [x®2h} — Ezop [l‘®2h}. Therefore, assuming that | M || < (ch)", using Fact
3.2.19 with the substitution rule, we can conclude

i {| (P M| < (eh)"||PII%} (2.110)
Observe, we can then rewrite (2.109) as follows :
b {(PE" By [252] = M) < (ch)"|[ P}
Rearranging and using 2.110, we can conclude
b {(P" Banr [29]) < 2(ch)"| P}

Therefore, it remains to show || M|y < (ch)". Let 2 2@ .. 2™ be n iid samples from D.

Then, observe

®2h ®2h _ 0),.(0) (0
Mil ..... ion, — |:E£END"1: :|7/17_._i2h_ [EwNDx ]217-..i2h - ﬁ Zez[n] (l’ll JZZ-2 e ZEZ-% - E;L'ND ['ril'rig e l’i%]) .
Let Z, = (x( )x(z) . £2h> Then, M;, . ;,, 1s an average of independent random variables
Zy = Zy — E[Z,] for £ € [n]. We will estimate moments of 3_,,, Z, in order to order to obtain

upper bounds on the deviation probabilities.

Towards that we observe the following: E [(i et Ze) 21 _ ﬁ S E [Hje[Qt} Zr]}-
If E[[]ep er] # 0, then, each Z,,j must appear even number of times in the product. Thus, the
number of distinct Zr]. in the product are at most ¢. Thus, the number of non-zero terms in the
above sum is at most nt(2t)2t. Next, for any non-zero term in the above sum, using the AM-GM

inequality,

H ZT]

1€[2¢]

(Qt (Z ZT]) (2t S E[Z 2.111)

1€[2t] 1€[2¢]

By Jensen’s inequality, (E[Z,,))* < E[Z7] and thus B [Z%| < 2*(E[2%] + (E[Z,,)*]) <
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2°+1E[Z]. Then,

2t
E {Zfﬂ =E [(xgj)xgj) . Igi))%} <E (21h > (@(:))”‘)

ke([2h]

<y ¥ B[]

ke[2h]

\ (4ht)2ht

(2.112)

where the first inequality uses the AM-GM inequality, the second uses Jensen’s inequality and

the final inequality uses the 1-subgaussianity of x Comblnmg (2.111) and (2.112)

1
< o tiopn2t oht < —t (o) 2t—1 2ht
( > Zg) < g M (2t)* - (4ht)“™ < n7F(2t)° " (4ht)

Le(n]

Using Chebyshev’s inequality,

E {(i 2tefn] Zf)ﬂ o (0 (aht)*

Pr 772t = n2tnt

1 _
FPIAEY

L€n]

Setting ¢t > 2hlogd and n = (ch/d?)" yields that whenever n > ny = Q (d4h ok 10g2h+2(d)),
| M;

we have that all entries of M are at most ) with probability at least 1 — d~2". We can then easily

n with probability at least 1 — 1/d*". By a union bound over the d*" entries of M,

1 7427“-7/2}7,’

bound the operator norm of M by d?" - (ch/d?)" = (ch)", which completes the proof.

Certifiable Anti-Concentration

Lemma 2.7.4 (Certifiable Anti-Concentration of Gaussians, Theorem 5.5 [BK20a]). Given 0 <
§ < 1/2, there exists s = O (logz(#) such that the Gaussian distribution and the uniform

distribution on the unit sphere is s-certifiably (C, §)-anti-concentrated.

Lemma 2.7.5 (Certifiable Anti-Concentration under Sampling, Lemma 5.8 [BK20a]). Let D be
s-certifiably (c,§)-anti-concentrated Sub-Exponential distribution over RY. Let S be a set of
n = Q((sdlog(d))?) i.i.d. samples from D. Then, with probability at least 1 — 1/poly(n), the

uniform distribution on S is s-certifiably (2c, 0)-anti-concentrated.
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Bounded Variance of Degree-2 Polynomials. Recall that we say that a zero mean distri-

bution D with covariance X has certifiably C'-bounded variance degree 2 polynomials if }%
2
{Bn(a™Qz ~ Boupa Qo < C w20 |

Lemma 2.7.6 (Bounded Variance of Degree 2 Polynomials of 4-wise independent distributions).
Let D be an isotropic, 4-wise independent distribution on R%. Then, D has certifiably 3-bounded

variance degree 2 polynomials. That is,
lﬂ E ( T Bz’ 2o 2
> {Ep (27 Qr — Epa'Qz) <3|Ql%¢ -

Proof. By viewing xz" and I € R%*? as d* dimensional vectors, and using that E,.p(yy' —

D(yy" — I)T = 31 ® I for any 4-wise independent, isotropic distribution, we have:

}% {ED (:L’TQJL' — prTQx)2 =Ep <x3:T -1, Q>2 < HExND(xazT —D(zx" — I)TH2 HQH?7
<3| T I, QI =3 HQH?} - (2.113)

O

The uniform distribution on v/d-radius sphere in d dimensions is not 4-wise independent.
However, the above proof only requires that E(y*2 — I)(y®? — I)T < C'I @ I. For the uniform
distribution on the sphere, notice that ¢, j, k, /-th entry of this matrix is non-zero iff the indices
are in have two repeated indices and in that case, by negative correlation of the =7 and x? on
the sphere, it holds that Ez72% < 1. Thus, E(y®* — I)(y®* — I)"T < 31 ® I for y uniformly
distribution on the v/d-radius unit sphere. The above proof thus also yields:

Corollary 2.7.7. Let y be uniform on \/d-radius sphere in d dimensions. Then, y has certifiably

3-bounded variance degree 2 polynomials.

Lemma 2.7.8 (Linear Invariance). Let x be a random variable with an isotropic distribution D
on R¢ with certifiably C-bounded variance degree 2 polynomials. Let A € R be an arbitrary
d x d matrix. Then, the random variable ' = Ax also has certifiably C-bounded variance degree

2 polynomials.

Proof. The covariance of 2’ is AAT = ¥, say. Let /2 be the PSD square root of ¥.. The
2
proof follows by noting that 2/ Qz’ = (Az)TQ(Az) = 2T (ATQA)z" and that HATQAHF =
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tr(ATQAATQA) = tr(AATQAATQ) = tr(TQXQ) = tr(T/2QX/281/2Qx1/?) = HEWQEWHQF.
0

Lemma 2.7.9 (Bounded Variance Under Sampling). Let D be have degree 2 polynomials with
certifiably C-bounded variance and be 8-certifiably C-subgaussian. Let X be an i.i.d. sample
from D of size n > ng = O(C*)d'S. Then, with probability at least 0.99 over the draw of X, the

uniform distribution on X has degree 2 polynomials with certifiable 2C'-bounded variance.

Proof. Using Lemma 2.7.8, we can assume that D is isotropic. Arguing as in the proof of

Lemma 2.7.3, it is enough to upper-bound the spectral norm

Y = D~ )~ Bepla® — D - 1)

i 2

by C' (with probability 0.99 over the draw of X'). We do this below:

By applying certifiable C-bounded variance property to () = vv' where e; are standard
basis vectors in R?, we have that E((z;,v)* — E (z;,v)%)?> < C||v||; and thus, E (z;,v)" <
(1 + C)||v|l5. By an application of the AM-GM inequality, we know that for every i, j, k, £,
((z, €)% (x, ;) (z, ex)? (2, e0))? < (m,e)° + (x,¢,)° + (x,e)® + (z,¢,)°. Thus, the variance
of every entry of the matrix Ez®? is bounded above by 4(8C)* = O(C?). Thus, by Chebyshev’s
inequality, any given entry of 12%* — E, px®* is upper-bounded by O(C?)d*/\/n with proba-
bility at least 1 — 1/(100d*). By a union bound, all entries of this tensor are upper-bounded by
O(C?)d*/+/n with probability at least 0.99. Thus, the Frobenius norm of this tensor is at most
d®O(C?)/+/n. Since n = ng = O(C*)d", this bound is at most C'/2. Thus, we obtain that with
probability at least 0.99,

1

S - DEP - D) = B - D 1)

; e
n

F

1
N Hn > 2t = Bppz®
%

i 2

The above three lemmas immediately yield that Gaussian distributions, linear transforms of
uniform distribution on unit sphere, discrete product sets such as the Boolean hypercube and any
4-wise independent zero-mean distribution has certifiably C'-bounded variance degree 2 polyno-

mials.
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2.8 Sum-of-Squares Toolkit

In this section, we give low-degree SoS proofs of some inequalities that we use repeatedly in our

arguments.

The following is an SoS version of the following simple matrix analytic inequality: for any
matrices A, B, || AB||3 < HAHip | B||%. We give a constant degree SoS proof of this inequality
(with O(1) factor loss) by relying on certifiable hypercontractivity of Gaussians.

Lemma 2.8.1 (Contraction and Frobenius Norms). Let A, B be d x d matrix valued indetermi-

nates. Let [3 be a scalar-valued indeterminate. Then,
{B(oTATA0) = Alol3 |- {B1ABI < a¢ BIE

and

{B (UTAATv)t < A||v||§t} I— {5 |BA|7 < At HB”?} ;

Proof. We prove the first conclusion. The proof of the second one is similar.
We start by observing that for any matrix valued indeterminate M, }ﬁ { IM||% = Egmnor) U\M gHg] }

‘We thus have:

{8(TaTan) <Al - {B (1a1)" =5 (

5 & [4Bgl]

— & (B0 (3474) (B0)

N0

<A E B 2t
JE I1Bgll3']

t
< HA E Ball?
(MM I gM)

=t'A HBH?} :

g~N(

t
& llassld])

/N

(2.114)

Here, the first inequality follows by using the SoS Holder’s inequality, the second one uses the

constraint satisfied by A" A with the substituting v = Bg and finally, the last inequality relies on
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certifiable hypercontractivity of quadratic forms of Gaussians. This completes the proof.

The following two lemmas allow us to “cancel out” common factors from both sides of an

inequality in low-degree SoS.

Lemma 2.8.2 (Cancellation within SoS, Constant RHS). Let a be an indeterminate. Then,
(<1 e fa <1}

Proof. Applying the SoS AM-GM inequality (Fact 3.2.22) with f; = a?, fo = ... = f, =1, we
get:
}L{ 2 < 2t .
3 {a® <a/t+1-1/t}.
Thus,
[ <i}frl{a<it+1-1/t=1}.

Lemma 2.8.3 (Cancellation Within SoS). Let a, C' be indeterminates. Then,

{a >0} U {at < C’at_l} a2tc {a% < C’Qt} )

Proof. We first prove the case of ¢ = 2. We have:

[ a2 = (a— 0/2+ C/2)* < 2(a — C/2)* +2(C/2)%} .
And,
[ < Ca}F5{(a— /2 < C?/4} .
Thus,
{a2 < Ca} }% {a2 < CQ} )
Consider now the general case. Iteratively using {a’ < Ca’™'} yields:

7C — —
{a > 0} U {at < Cat_l} a% {aQt <a%dC? < at3dC? ... < atCt} )
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Applying the special case of ¢t = 2 above to the indeterminate a’ now yields:

{a >0} {at < Cat’l} ath’ {a2t < CQt} .

2.9 Total Variation vs Parameter Distance for Gaussian Dis-

tributions

Proposition 2.9.1 (Parameter Closeness Implies TV Closeness for Gaussian Base Model). Fix
A > 0and let i, 1/ and ¥, Y = 0 satisfy:

1. Mean Closeness: forallv € RY, ||(u— 1), 0|5 < A% (S + ).

2. Spectral Closeness: forallv e R 5v" Sv < v'S'v < A% S(1)v.

3. Relative Frobenius Closeness: HET/QE’ET/z — ]H; < A% HZTZ’ z

Then, dvv(N (p, ), N (i, 3)) <1 —exp(—O(A?log A)).

Proof of Lemma 2.9.1. We will work with the distributions after applying the transformation

x — 27124 to the associated random variables. Since dyy is invariant under affine transforma-

tions, this is WLOG. The transformation produces distributions N(y1;, 1) and N (372, 571/25/571/2)
for p1g = Y2, py = X712 and By = R720/812,

We will first bound the Hellinger distance between the two distributions above. Recall that
h=h(N(SV2pu, 1), N (X2, 2712557 1/2)) satisfies:

e 21/4 . ) -1
h(N(uhf),N(ug,zg))?:l—j‘f))lexp (—1(u1—u2) (”f) ml—m)).
et —”222 2

We will estimate the RHS of the expression above to bound the Hellinger distance.

From the mean closeness condition, we have:

(i1 — pa,0) = (= 1, E7%0) < \Jlog L/my/oT (1 + Sa)o.
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1
Plugging in v = (%) (1 — po) gives:

I4+%, " I+5,\ "
<M1—M27 5 2 (Ml—M2)><2/77\IUT< 5 2) v,

or,
I+%\ "
<u1 — M2, ( 5 2) (11 — u2)> <41/n?.
And thus,
1 T+%,\"
exp | == (m —pa)" 2) (=) | = exp (—1/207) .
8 2
Thus, we have: )
det(Xq)1
h<1-— &exp (—1/2772) )
145, ) /2
Let Ay > Ay > --- )4 be eigenvalues of >5. From the spectral closeness condition, observe
thateach ; > A\ > -+ Ag =1
Then,
det(Tp)i  Teght
dot (122) 7 11y (152) 7
Thus,
1+ N
log(1/(1—h)) < log 1/n) + Z log (2.115)
e[d] 2\/_

We break the second term in the RHS above based on the magnitude of the eigenvalues A;s.
Let’s first bound the contribution to this term coming from eigenvalues \; > 1.5 - let’s call these

the large eigenvalues of X,.

Next, observe that the Relative Frobenius Closeness condition gives us that ||T — ¥y]|% <
(1/7). Thus, ;g (1 — N)* = [T —2||% < (1/9%), the number of large eigenvalues is at most
4/n?. Further, for every large eigenvalue \;, 1 + \; < 2);. Thus,

> log(éjﬁ) Zlog(\/»)éf]-log(l/n)

i\ is large 1€E
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where the last step uses that \; < 1/7.

Let’s now consider all the remaining small eigenvalues that satisfy n < A\; < 1.5. Then, we
can write \; = 1 + f3; such that —(1 — 1) < 3; < 0.5. Then, we have

1+ N 1 1
> log< >+2log (}\Z)

Zlog(l—i—B) —;log(1+ﬁi)

A <1.5 €&’
B B b7
< D oot
i\ <15 2 2 4
1—\)? 1
3 ( ; ) <
i\ <1.5 n

using the bound 3,;(1 — \;)? < n% in the last inequality. Plugging this estimate back in (2.115)
yields b > 1 — exp(—O(1/n*1og(1/n)).
To finish the proof, we observe that drv(p, ) < h(p, q)\/2 — h(p,q) < 1—exp(—O(1/n*log(1/n)).

]

2.10 Typical Samples are Good with High Probability

Proof of Lemma 2.3.2. We begin with the empirical mean condition. For any fixed ¢, Cy con-
tains samples from a 1-Sub-gaussian distributions and thus it follows from Fact 2.2.2 that with
probability at least 1 — (1/0),

. 2 . . kr +log(1/6)k
(e = e, =) =vTEE“W—w(w—Mzz%<( (/%) )

n
Since ng = Q((klog(rk) + kr)), we can substitute v — Zéﬂv to get
</M fie, ET/221/2 > 1.0107 S0

Observe, <,u,g — [, Ez/zZé/2v> = <Zy222/2(u5 — [u), v> = (e — fig, v), where the last equal-
ity follows from observing that 1, — ji, lies in the subspace spanned by >,. Union bound over
failure events for all ¢ € [k]| and thus with probability at least 1 — 1/poly(k), for all £ € [k],
(e — fue, U>2 < 1.01TE 0.

Similarly, using Fact 2.2.3 for i.i.d. samples from a 1-Sub-gaussian distribution, it follows
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that for a fixed ¢ € [k], with probability at least 1 — 1/d'°,

(1_C rkzlog(k;)) 255255(1% Tk:log(k)) :,
n

n

for fixed constants c. Union bounding over ¢ € [k], and observing that ny = Q(rklog(k)/22)
with probability at least 1 — 1/&8 for all ¢ € [k],

1 . 1
(1—223) Y =<3 < (1+225) P (2.116)

for any s > 2, which concludes the empirical covariance condition. By definition of a “nice”
distribution, we know that the points in C, are drawn i.i.d. from a s-certifiably (C, ¢)-anti-

concentrated distribution denoted by D( 11, >,) and thus for all 7,

v
2s

{wvyND]E(:w,Ze) [CJ?,,EZ (& =y, U>)} <O (UTZW)S}

Consider the substitution v — X1/20. Then,

B s (e - )] < calvli]

z,y~D(pe,Er)

Since g, ; is a degree-s even polynomial, qf} E(Z) = Yicls] Ci 22 and thus using the substitution

rule,

‘

Let D be the true distribution and D’ be the uniform distribution over n samples from D. We can

®2j) . s
> <E:c,y~z><w,ze> (=% —v) 7v®2”> < Cnllolf; } (2.117)

JEls]

®2j
rewrite the above expression by adding and subtracting E,. ,.p/ (z;/ 2(3: — y)) ? as follows:

v | K
}T{nz > G (w0 — 25, 5%0)

i7#j€Cy
< Y (Beyon (3@ =)™ = Bayorr (512 = )™ 05

JEls]

2s
+Cn HUH2 }

(2.118)
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By definition of a reasonable distribution, we know that X/2(x — ) is certifiably hypercontrac-

tive (and thus subgaussian with covariance bounded by identity). Then, using concentration of

< exp (— (Exy[(($ —1)%);, ((x — y)®j)i2]2> )

Setting € = Ey yon(u, 5, [((2 — 4)®)i, ((x — y)®7);,] /2%%, and union bounding over d* en-

polynomials of sub-exponential random variables, for all i1, iy € [d’],

PracN'D [

E _ [(@=9i(@-9] - E _ [(@=9)lz -9

z,y~D(1e,5¢) z,y~D(pe,S0)

(2d)©()
suffices and substituting v — X'/?v, we have with probability 1 — 1/poly(d),

tries, we can bound error probability by d** exp (— (L) 2) . Therefore, setting n = Q((sd log(d))*)

v kQ 2
& {n? D 5y (@i = 75,0)
1#j€CY

1 s . . 2s
< <1 + 223> Z[:] Gi <E1‘,yND(W7EZ)(x - y)®2]7 U®2]> +Cn (UTzﬂ))Q }
j€ls

(2.119)

Applying the definition of certifiable anti-concentration again, and using the spectral closeness

from Eqn (2.116), we can conclude
s ? oy (@ = 500) <1007 (0" E0) 2.120
25 1 2 Z 4 5(r) (w; — xj,v) < nv 2ev), (2.120)
i#j€Cy
A similar proof applies to 4-tuples and yields the second property for anti-concentration.
Since for all ¢ € [k], D(, X¢) is also s-certifiably C'-hypercontractive,
Q T s s T 2 5/2
B Bz [(2 = 9) Q= 9))*] < (C3)Banppuz [((z =) Qr —y)?]

2.121)
Substituting Q = L/2Q%/2 and observing

(x—y) SR (x — y) = (212 — y) (v — ) '212,Q) = <(2”2(1‘ -9)”. Q> ,

we have
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o {Baiueso (572 = )%.Q))

o2 (2.122)
<5 Bz [( = ) EV2QE 2w — )] 7}
Observing that E,, ,p [(x — y)] = 0, we have
Q S S S
o { (B o0 (B2 — )52, Q%)) < (Cs)¥|QII% (2.123)

Let D represent the true distribution and D’ represent the uniform distribution over pairs (z;, ;)
sampled from D. Then, adding and subtracting <Ez7yND/(ET/ 2z —y))®%, Q®S>, we have

Q | K s .

= {ng > ((@—y)"=2QS2(z —y))” < |A]+(Cs) ||Q||%} (2.124)
i#j€Ce

where A = <Ex,yND/(ET/2(SU — )%, Q®S> - <Ex7yND(ET/2(x —y))®%, Q®5>. Using Lemma

2.7.3, we can bound A by C* ||Q||%’, to obtain

2
@{k > (<x—y>TE“2QE”2<x—y>)S<<2os>25||@||%} (2.125)

n i#j€C,

1

Substituting Q) — 2%2@2;/2, and observing that 2/222/2(:@- —x;) = (x;—x;), we can conclude

2 S
bﬁ{k > (@-n'Q@-y) <(2Os)28uzé/2622é/2u%} (2.126)

2
" itjec,

A similar argument holds for 4-tuples of samples. The final claim about certifiably bounded
variance property follows by a similar bound on the empirical moments of the distribution along

with Lemma 2.7.9. This concludes the proof. ]

2.11 Polynomial Approximators for Thresholds

We will use elementary approximation theory to construct the polynomial.

Fact 2.11.1 (Jackson’s Theorem). Let f : [—1,1] — R be continuous. Let the modulus of
continuity of f be defined as w(d) = sup, ,e_11{|f(x) — f(y)| < &} for every 6 > 0. Then,
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for every b, there’s a degree b polynomial p such that for every x € [—1, 1],
p(z) — f(2)] < 6w(1/b).

The following lemma gives an “amplifying polynomial” as in [DRST09] and is an easy

consequence of Chernoff bounds.

Fact 2.11.2 (Claim 4.3 in [DRSTOON). Ler A,(u) = Y505 (7) (52) (154)" . Then, A, is a

i)\ 2
degree q polynomial that satisfies:

1. Ay (u) € [1 —e¥S 1] forallu € [3/5,1],
2. A (u) €10,e9S) forallu € [-1,-3/5),

3. Ay(u) €10,1] forall v € [—1,1].

Proof of Lemma 2.3.9. Let thr : [0, 1] — [0, 1] be any function that is 0 on [0, ¢], 1 on [2¢, 1]

Consider the piecewise linear function f : [0,1] — [0, 1] such that f(x) = 0 whenever
lz| < ¢, f(x) =1for|z| > 2cand f(zx) = (I—;C) otherwise. Then, f is continuous. Further, the

. . . 1
modulus of continuity, w () for f is at most .

Taking ¢ = 25/c and applying Fact 2.11.1 yields a polynomial J(¢) of degree at most ¢ such
that:

max |J(t) — f(t)] < 1/4.

te[—1,1]

We now "amplify" this polynomial to get the final construction.

Let p(t) = (A,(8/5J(t) — 4/5))* for r = 15log(1/n). Then, the argument of A, in p(t) lies
in [3/5, 1] whenever ¢ > 2¢ and in [—1, —3/5] whenever ¢ € [0, ¢|. Thus, applying Fact 2.11.2
yields that:

sup  |p(t) —thr(t)] < 270 < p.
te[0,c]U2e,1]
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2.12 'TV-Close Subgaussian Distributions with Arbitrarily Far

Parameters

We give a simple example of a pair of (one-dimensional) subgaussian distributions that are (1 —
n)-close in TV-distance for some 77 < 1/2 while have an arbitrarily separated variances.

For i = 1,2, let D; be the distribution on R that outputs 0 with probability n < 1/2 and
a sample from Gaussian N (0, 0?) otherwise. Observe that Dy, D, are clearly 2-subgaussian:
Ep,z*> = (1 — n)o? while for every ¢, Ep,z* < (ﬁ)t (EpixQ)t. Thus, both D;, D, are
C = ﬁ < 2-subgaussian. Further, since Prp_ [x = 0] > 7, it’s immediate that drv(D;, Ds) <
(1 — n). However, since we can choose o1, oy arbitrary, the variances of Dy, D, are arbitrarily

far.

Observe, however, that both D, D, are not anti-concentrated in the construction above. Ob-
serve, further that when 7 gets close to 1 (instead of < 1/2), the constant C' in Sub-gaussianity
blows-up. Thus, if we fix C' before-hand and look at all C-subgaussian distributions, then we can
hope to prove TV-closeness implies parameter closeness when TV distance is small enough but

not when it’s close to 1.
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Chapter 3

Robustly Learning a Mixture of £

Arbitrary Gaussians

3.1 Introduction

Given a collection of observations and a class of models, the objective of a typical learning
algorithm is to find the model in the class that best fits the data. The classical assumption is
that the input data are i.i.d. samples generated by a statistical model in the given class. This is
a simplifying assumption that is, at best, only approximately valid, as real datasets are typically
exposed to some source of systematic noise. Robust statistics challenges this assumption by
focusing on the design of outlier-robust estimators — algorithms that can tolerate a constant
fraction of corrupted datapoints, independent of the dimension. Despite significant effort over
several decades starting with important early works of Tukey and Huber in the 60s, even for the
most basic high-dimensional estimation tasks, all known computationally efficient estimators

were until fairly recently highly sensitive to outliers.

This state of affairs changed with two independent works from the TCS community [DKK™ 19,
LRV 16], which gave the first computationally efficient and outlier-robust learning algorithms for
arange of “simple” high-dimensional probabilistic models. In particular, these works developed
efficient robust estimators for a single high-dimensional Gaussian distribution with unknown
mean and covariance. Since these initial algorithmic works [DKK ™19, LRV 16], we have wit-
nessed substantial research progress on algorithmic aspects of robust high-dimensional estima-
tion by several communities of researchers, including TCS, machine learning, and mathematical

statistics. The reader is referred to [DK19] for a recent survey on the topic.
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One of the main original motivations for the development of algorithmic robust statistics
within the TCS community was the problem of learning high-dimensional Gaussian mixture
models. A Gaussian mixture model (GMM) is a convex combination of Gaussian distributions,
i.e., a distribution on R? of the form M = Zle w;N (13, X;), where the weights w;, mean
vectors ji;, and covariance matrices 22; are unknown. GMMs are the most extensively studied la-
tent variable model in the statistics and machine learning literatures, starting with the pioneering

work of Karl Pearson in 1894 [Pea94], which introduced the method of moments in this context.

In the absence of outliers, a long line of work initiated by Dasgupta [Das99, AKO5, VW04,
AMOS5, BV08] gave efficient clustering algorithms for GMMs under various separation assump-
tions. Subsequently, efficient learning algorithms were obtained [KMV 10, MV10, BS15, HP15]
under minimal information-theoretic conditions. Specifically, Moitra and Valiant [MV 10] and
Belkin and Sinha [BS15] designed the first polynomial-time learning algorithms for arbitrary
Gaussian mixtures with any fixed number of components. These works qualitatively charac-
terized the complexity of this fundamental learning problem in the noiseless setting. Alas, all
aforementioned algorithms are very fragile in the presence of corrupted data. Specifically, a

single outlier can completely compromise their performance.

Developing efficient learning algorithms for high-dimensional GMMs in the more realistic
outlier-robust setting — the focus of the current paper — has turned out to be significantly more
challenging. This was both one of the original motivations and the main open problem in the
initial robust statistics works [DKK ™19, LRV16]. We note that [DKK ™ 19] developed a robust
density estimation algorithm for mixtures of spherical Gaussians — a very special case of our
problem where the covariance of each component is a multiple of the identity — and highlighted
a number of key technical obstacles that need to be overcome in order to handle the general case.
Since then, a number of works have made algorithmic progress on important special cases of
the general problem. These include faster robust clustering for the spherical case under minimal
separation conditions [HL18, KSS18, DKS18], robust clustering for separated (and potentially
non-spherical) Gaussian mixtures [BK20b, DHKK?20], and robustly learning uniform mixtures

of two arbitrary Gaussian components [Kan20].

This progress notwithstanding, the algorithmic task of robustly learning a mixture of a con-
stant number (or even two) arbitrary Gaussians (with arbitrary weights) has remained a central
open problem in this field, as highlighted recently [DVW19].

This discussion motivates the following question, whose resolution is the main result of this

work:
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Question 2. Is there a poly(d, 1/¢)-time robust GMM learning algorithm, in the presence of an
e-fraction of outliers, that has a dimension-independent error guarantee, for an arbitrary mixture

of any constant number of arbitrary Gaussians on R??

3.1.1 Our Results

To formally state our main result, we define the model of robustness we study. We focus on the

following standard data corruption model that generalizes Huber’s contamination model [Hub64].

Definition 3.1.1 (Total Variation Contamination Model). Given a parameter 0 < ¢ < 1/2 and
a class of distributions F on R, the adversary operates as follows: The algorithm specifies the
number of samples n. The adversary knows the true target distribution X € F and selects a
distribution F' such that dvv(F, X) < e. Then n i.i.d. samples are drawn from F and are given

as input to the algorithm.

Intuitively, the parameter € in Definition 3.1.1 quantifies the power of the adversary. The total
variation contamination model is strictly stronger than Huber’s contamination model. Recall that
in Huber’s model [Hub64], the adversary generates samples from a mixture distribution /' of the
form F' = (1 — €)X + eN, where X is the unknown target distribution and /N is an adversarially

chosen noise distribution. That is, in Huber’s model the adversary is only allowed to add outliers.

Remark 66. The strong contamination model [DKK ™ 19] is a strengthening of the total variation
contamination, where an adversary can see the clean samples and then arbitrarily replace an e-
fraction of these points to obtain an e-corrupted set of samples. Our robust learning algorithm
succeeds in this strong contamination model, with the additional requirement that we can obtain

two sets of independent e-corrupted samples from the unknown mixture.

In the context of robustly learning GMMs, we want to design an efficient algorithm with
the following performance: Given a sufficiently large set of samples from a distribution that
is e-close in total variation distance to an unknown GMM M on R, the algorithm outputs a
hypothesis GMM M such that with high probability the total variation distance d—rv(ﬂ/l\ , M)
is small. Specifically, we want dTV(M\ , M) to be only a function of ¢ and independent of the

underlying dimension d.

The main result of this paper is the following:
Theorem 67 (Main Result, See Corollary 3.6.1). There is an algorithm with the following be-
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havior: Given ¢ > 0 and a multiset of n = d°®poly(log(1/¢)) samples from a distribution I on
R such that dry(F, M) < ¢, for an unknown target k-GMM M = Y% w,N (1, %;), the algo-
rithm runs in time poly(n)poly,(1/¢) and outputs a k-GMM hypothesis M = -*_ N (Jiz, ;)
such that with high probability we have that drv(M, M) < g(e, k). Here g : Ry x 7y — Ry

is a function such that lim._,o g(e, k) = 0.

Theorem 67 gives the first polynomial-time robust proper learning algorithm, with dimension-
independent error guarantee, for arbitrary k-GMMs, for any fixed £. This is the first polynomial-

time algorithm for this problem, even for & = 2.

Discussion Before proceeding, we make a few important remarks about Theorem 67.

1. Sample Complexity and Runtime: Our algorithm succeeds whenever the sample size n sat-
isfies n > ng = d°®) /poly(e). The running time of our algorithm is poly(n)poly, (1/¢).
Statistical query lower bounds [DKS17] suggest that d**) samples are necessary for effi-
ciently learning GMMs, even for approximation to constant accuracy in the simpler setting
without outliers and under the more restrictive clustering setting (where components are
pairwise well-separated in total variation distance). This provides some evidence that the
sample-time tradeoff achieved by Theorem 67 is qualitatively optimal (within absolute
constant factors in the exponent). We note that the algorithm establishing Theorem 67
works in the standard bit-complexity model of computation and its running time is poly-

nomial in the bit-complexity of the input parameters.

In the noiseless case, the first polynomial-time learning algorithm for k-GMMs on R?
was given in [MV10, BS15]. In particular, the sample complexity and running time of
the [MV10] algorithm is (d/)?*), for some function g(k) = k®*). We observe that
our running time and sample complexity are exponentially better than the guarantees for
the noiseless case in [MV10, BS15]. Moreover, the [MV 10, BS15] algorithms are very
sensitive to outliers and an entirely new approach is required to obtain an efficient robust

learning algorithm.

2. Handling Arbitrary Weights: The algorithm of Theorem 67 succeeds without any assump-
tions on the weights of the mixture components. We emphasize that this is an important
feature and not a technicality. Prior work [BK20b, DHKK?20, Kan20], as well as the con-
current work [LM21], cannot handle the case of general weights — even for the case of
k = 2 components. In fact, for the special case of uniform weights, we give a simpler
algorithm for robustly learning GMMs (presented in Theorem 78). This algorithm natu-

rally generalizes to give a sample complexity and running time that grows exponentially in
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1/Wmin, Where wy;, is the minimum weight of any component in the mixture. Handling
the general case (i.e., obtaining a fully polynomial-time algorithm, not incurring an ex-
ponential cost in 1/wy,,) requires genuinely new algorithmic ideas and is one of the key

technical innovations in the proof of Theorem 67.

3. Handling Arbitrary Covariances: The algorithm of Theorem 67 does not require assump-
tions on the variances of the component covariances, modulo basic limitations posed by
numerical computation issues. Specifically, our algorithm works even if some of the com-
ponent covariances are rank-deficient (i.e., have directions of 0 variance) with running
time scaling polynomially in the bit-complexity of the unknown component means and
covariances. Such a dependence on the bit complexity of the input parameters is unavoid-
able — there exist' examples of rank-deficient covariances with irrational entries such that
the total variation distance between the corresponding Gaussian and every Gaussian with

covariance matrix of rational entries is the maximum possible value of one.

4. Error Guarantee: The function g quantifying the final error guarantee of our basic algo-
rithm is g(e, k) = 1/(log(1/¢))"*, for some function C}, that goes to 0 when k increases.
Importantly, for any fixed k, the final error guarantee of our algorithm depends only on ¢,
tends to 0 as ¢ — 0 and is independent of the dimension d. In Theorem 68, we show that,
by modifying our algorithm, we can obtain improved error — scaling as a fixed polynomial
in €. This turns out to be quantitatively close to best possible for any robust proper learning

algorithm.

Our work is most closely related to the recent paper by Kane [Kan20], which gave a polynomial-
time robust learning algorithm for the uniform k = 2 case, i.e., the case of two equal weight
components, and the polynomial time algorithms [BK20b, DHKK?20] for the problem under the
(strong) assumption that the component Gaussians are pairwise well-separated in total variation

distance.

Our algorithm builds on the ideas in the works [BK20b, DHKK?20] that gave efficient clus-
tering algorithms for any fixed number £ of components, under the crucial assumption that the
components have pairwise total variation distance close to 1. In this case, the above works
actually succeed in efficiently clustering the input sample into k groups, such that each group
contains the samples generated from one of the Gaussians, up to some small misclassification
error. In contrast, the main challenge in this work is the information-theoretic impossibility of

clustering in our setting where there are no separation assumptions. As we will explain in the

"For e.g., for unit vector v = (1/v/3,1/v/3,1//3,0,0,...,0) and for every choice of rational covariance ¥,
the total variation distance between N'(0, I — vv ") and (0, ¥) is the maximum possible 1.
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proceeding discussion, while we draw ideas from Chapter 2, a number of significant conceptual

and technical challenges need to be overcome in the non-clusterable setting.
Improvements to Theorem 67. We now describe refinements of our main theorem.

Improving Error to a Fixed Polynomial in e. It turns out that the inverse poly-logarithmic
accuracy (in 1/€) in the final error guarantee of Theorem 67 can be traced to an exhaustive search
subroutine in our novel tensor decomposition subroutine and probability of success of our round-
ing algorithm in our partial clustering routine. Via natural (and conceptually simple) quantitative
improvements to these two ingredients, we obtain an algorithm achieving the qualitatively nearly

best possible error of poly, (¢). Specifically, we show:

Theorem 68 (Robustly Learning k-Mixtures with poly(e)-error, Informal, see Corollary 85).
There is an algorithm with the following behavior: Given & > 0 and a multiset of n = d°®poly, (1/¢)
samples from a distribution F' on R such that dvv(F, M) < &, for an unknown target k-
GMM M = YF wN(u;, %), the algorithm runs in time poly(n)poly,(1/€) and outputs

a k-GMM hypothesis M = Y% | @;N (fi;, ;) such that with high probability we have that
dTV(M\ , M) < O(e), where ¢, depends only on k.

Robust Parameter Recovery. Finally, we show that the same algorithm as in Theorems 67
and 85 actually implies that the recovered mixture of Gaussians is close in parameter distance
to the unknown target mixture. Such parameter estimation results are usually stated under the
assumption that every pair of components of the unknown mixture are separated in total variation

distance. In this work, we provide a stronger version of this parameter estimation guarantee.

More specifically, in the theorem below, we prove that whenever the components of the input
mixture can be clustered together into some groups such that all mixtures in a group are close
(and thus, indistinguishable), there exists a similar clustering of the output mixture such that all
parameters (weight, mean, and covariances) of each cluster are close within poly,(€) in total
variation distance. In particular this means that for each significant component of the input

mixture, there is a component of the output mixture with very close parameters.

We note that [LM21] gave a parameter estimation guarantee (under additional assumptions
on the mixture weights and component variances) whenever every pair of components in the
unknown mixture are f(k)-far in total variation distance, where f can be any function of £,
but the choice of f affects the exponent in the running time and error guarantee of the [LM21]

algorithm.)
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By strengthening one of the structural results in their argument, we establish the following:

Theorem 69 (Parameter Recovery, See Theorem 3.9.1). Given ¢ > 0 and a multiset of n =
d°®poly, (1/¢) samples from a distribution F on R? such that drv(F, M) < &, for an unknown
target k-GMM M = S8 w,N (i, 3;), the algorithm runs in time poly(n)poly, (1/¢) and out-
puts a k'-GMM hypothesis M = SE L @N (11, ) with k' < k such that with high probability
we have that there exists a partition of k] into k' + 1 sets Ry, Ry, ..., Ry such that

1. Let Wy = Y ep, wj, i € {0,1,...,k'}. Then, for all i € [K'], we have that

|W;i — w;| < poly,(¢€), and

~

drv(N (1, ), N (11, 2i)) < polyy(€) Vi€ R;.

2. The total weight of exceptional components in Ry is Wy <poly,(€).

If we assume additionally that any pair of components in the unknown mixture has total

variation distance at least poly, (¢), then the following result follows directly from Theorem 69.

Corollary 3.1.2. Let M = % w;N (s, ¥;) be an unknown target k-GMM satisfying the fol-
lowing conditions: (i) drv(N (pi, 3:), N (115, %)) = eh'® forall i # j, and (ii) S = {i € [k] :
w; = MY is a subset of [k], where fi(k), fo(k) are sufficiently small functions of k. Given
e > 0 and a multiset of n = d°®poly,(1/¢) samples from a distribution F on R® such that
drv(F, M) < ¢, there exists an algorithm that runs in time poly(n)poly,(1/¢) and outputs a
k'-GMM hypothesis M = Zflzl wN (Jis, il) with k' < k such that with high probability there
exists a bijection 7 : S — [k'] satisfying the following: For all i € S, it holds that

|w; — @w(z‘)| < poly,(€)

drv(N (i, i) s N (L) Briy)) < polyy(€).

We note that both the pairwise separation between the components and the lower bounds on the
weights in Corollary 3.1.2 scale as a fixed polynomial in ¢ (for fixed k), which is qualitatively

information-theoretically necessary.
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3.1.2 Organization

The structure of this chapter is as follows: In Section 4.2, we provide relevant background and
technical facts. In Section 3.3, we describe and analyze our new tensor decomposition algorithm.
In Section 3.4, we use a sum-of-squares based approach to partially cluster a mixture. In Section
3.5, we give a spectral separation algorithm to identify thin components. In Section 3.6, we put all
these pieces together to prove Theorem 67. In Section 3.7, we present a refinement of our partial
clustering procedure that improves the probability of success to a constant independent of the
minimum weight of any component in the input mixture. In Section 3.8, we present an efficient
algorithm that replaces an exhaustive search subroutine in the tensor decomposition algorithm
and combines it with the improved partial clustering subroutine to get a poly, (¢)-error guarantee
for robust proper learning of Gaussian mixtures and prove Theorem 68. Finally, in Section 3.9,
we show that our algorithm in fact achieves the stronger parameter estimation guarantees and

prove Theorem 69.

3.2 Preliminaries

Basic Notation. For a vector v, we use ||v]|y to denote its Euclidean norm. For an n x m
matrix M, we use || M ||op = max|g,=1||M 2|2 to denote the operator norm of M and | M| =
\/2i; M7, to denote the Frobenius norm of 1/. We sometimes use the notation A (7, j) to index
the corresponding entries in M. For an n X n symmetric matrix M, we use >~ to denote the
PSD/Loewner ordering over eigenvalues of M and tr (M) = X ;c(,,) M to denote the trace of
M. We use UAU " to denote the eigenvalue decomposition, where U is an n X n matrix with
orthonormal columns and A is the n x n diagonal matrix of the eigenvalues. We use M =
UATUT to denote the Moore-Penrose pseudoinverse, where AT inverts the non-zero eigenvalues
of M. If M > 0, we use MT/?2 = UAT/2UT to denote taking the square-root of the inverted

non-zero eigenvalues.

For d x d matrices A, B, the Kronecker product of A, B, denoted by A ® B, is indexed by
(,7), (k,£) € [d] x [d] and has entries (A ® B)((i,7), (k,0)) = A(i, k)B(j,£). We will equip
every tensor 7" with the norm ||-|| that simply corresponds to the /5-norm of any flattening of
T to a vector. The notation 7'(+, -, z,y) is used to denote collapsing two modes of the tensor by

plugging in z, y. For a positive integer ¢ and vector v, we also use v = v @ v... ® v.
%/_/

Ltimes

We use the notation M = 3=, w;N (1, ¥;) to represent a k-mixture of Gaussians. The to-
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tal variation distance between two probability distributions on R¢ with densities p, ¢ is defined as
drv(p,q) = 5 Jra [p(z) — q(x)|dz. We also use E [-], Var- and Cov(-) to denote the expectation,

variance and covariance of a random variable.

For a finite dataset X, we will use Z €, X to denote that Z is the uniform distribution on

X. We will sometimes use the term mean (resp. covariance) of X to refer to Ez¢, x [Z] (resp.
Covze,x(2)).

3.2.1 Gaussian Background

The first few facts in this subsection can be found in Kane [Kan20].

Fact 3.2.1. The total variation distance between two Gaussians N (j11, 1) and N (ja, Xo) can

be bounded above as follows:
drv (N (1, 50), N (112, 2)) = O(( = p12) "5 (1 — o) + [ S72 (22 = 1) =12)1r)

Fact 3.2.2 (Theorem 2.4 in [Kan20]). Let D be a distribution on R%**<, where D is supported on
the subset of R%*¢ corresponding to the set of symmetric PSD matrices. Suppose that E[D] =
Y and that for any symmetric matrix A we have that Vartr(AX) = O(OQHZUQAEVQH%) .
Then, for ¢ < o2, there exists a polynomial-time algorithm that given sample access to an c-

corrupted set of samples from D returns a matrix S such that with high probability |2 ~Y/2(X —
L)L) = 00 V2).

Fact 3.2.3 (Proposition 2.5 in [Kan20]). Let G ~ N (i, X) be a Gaussian in R%. Then, we have
that

E[G®m] (ilu cee 7im) = Z ® by (iaa ib) ® % (%) .
Fartitions P of [m] {a,b}€P {c}eP
into sets of size 1 and 2

We will work with the coefficient tensors of d-dimensional Hermite polynomials:

Definition 3.2.4 (Hermite Tensors). Define the degree-m Hermite polynomial tensor as

hm(x) == > QR —1 (ia, i) Q) z(ic) -
Partitions P of [m] {a,b}€P {c}eP
into sets of size 1 and 2

We will use the following fact that relates Hermite moments to the raw moments of any
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distribution.

Fact 3.2.5 (Hermite vs Raw Moments). For any real-valued random variable u, and m &
N, max;cm [Eu' — E,onv01)2!] < 290" max;<,, |[Eh, (u)]. Similarly, max;cy, |Ehy,(u)] <

200" max;c,, |[Eu’ — E. v

Fact 3.2.6 (Lemma 2.7 in [Kan20]). If G ~ N (u, I + X2), then we have that

E[hm(G)] = > Q (iais) @ plic) -
Partitions P of [m] {a,b}eP {c}eP
into sets of size 1 and 2

Fact 3.2.7 (Lemma 2.8 in [Kan20]). If G ~ N (p, I + %), then E[h,,,(G) ® h,,(GQ)] is equal to

Z ® )Y (iaa Zb) ® (] + 2) (iav Zb) ® 2 (Zc) .
Fartitions P of [2m)] {a,b}eP {ab}eP {c}eP
into sets of size 1 and 2 a,b in same half of [2m] a,b in different halves of [2m]

Lemma 3.2.8 (Slight Strengthening of Lemma 5.2 in [Kan20] ). For G ~ N (u, X), the covari-

ance matrix of h,,,(G) satisfies:

1CoV (i ()l < NE [7in(G) © hun(G)]llop = O (m(L+ (|27 + [|ell2))™™ -

op

This follows from the proof of Lemma 5.2 in [Kan20] by noting that the number of terms in
the sum is at most 2™ times the number of partitions of [2m] into sets of size 1 and 2, which is at

most O(m)*™.

Next, we use upper and lower bounds on low-degree polynomials of Gaussian random vari-

ables. We defer the proof of the subsequent Lemma to Appendix 3.10.

Lemma 3.2.9 (Concentration of low-degree polynomials). Let T' be a d-dimensional, degree-4
tensor such that ||T||r < A for some A > 0 and let x,y ~ N(0, ). Then, with probability at
least 1 — 1/poly(d), the following holds:

”T(7 ,x,y)H% < O<log(d)A2) .

Note that for any matrix M, (M, z ® y), where z,y ~ N (0, I), is a degree-2 polynomial in

Gaussian random variables. As a result, we have the following anti-concentration inequality.

Lemma 3.2.10 (Anti-concentration of bi-linear forms, [CWO1]). Let M be a d x d matrix and
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let x,yy ~ N(0, ). Then, for any ¢ € (0, 1), the following holds:

Pr|(M.29y)’ < CE[(M.2 )] <O(\/) -

3.2.2 Sum-of-Squares Proofs and Pseudo-distributions

We refer the reader to the monograph [FKP " 19] and the lecture notes [Bar] for a detailed expo-

sition of the sum-of-squares method and its usage in average-case algorithm design.

Letz = (21,22, ..., z,) be a tuple of n indeterminates and let R [x] be the set of polynomials
with real coefficients and indeterminates z1, ..., x,. We say that a polynomial p € R[z] is a

sum-of-squares (sos) if there exist polynomials ¢, . .., ¢, such that p = ¢} + - - - + ¢>.

Pseudo-distributions

Pseudo-distributions are generalizations of probability distributions. We can represent a dis-
crete (i.e., finitely supported) probability distribution over 'R™ by its probability mass function
D:R"™ — R such that D > 0 and >, cqupp(p) D(z) = 1. Similarly, we can describe a pseudo-
distribution by its mass function by relaxing the constraint D > 0 to passing certain low-degree

non-negativity tests.

Concretely, a level-{ pseudo-distribution is a finitely-supported function D : R™ — R such
that ", D(z) = 1and 3, D(z)f(x)? > 0 for every polynomial f of degree at most ¢/2. (Here,
the summations are over the support of D.) A straightforward polynomial-interpolation argument
shows that every level-oo-pseudo distribution satisfies ) > 0 and is thus an actual probability
distribution. We define the pseudo-expectation of a function f on R™ with respect to a pseudo-
distribution D, denoted Ep(,) f(), as

Ep) f(x) =3 D(@)f(x) . 3.1
The degree-¢ moment tensor of a pseudo-distribution D is the tensor E by (1, 21,29, . .. ,xn)w.
In particular, the moment tensor has an entry corresponding to the pseudo-expectation of all
monomials of degree at most ¢ in . The set of all degree-/ moment tensors of probability
distribution is a convex set. Similarly, the set of all degree-¢ moment tensors of degree-d pseudo-

distributions is also convex. Unlike moments of distributions, there is an efficient separation

oracle for moment tensors of pseudo-distributions.
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Fact 3.2.11 ([Sho87, Nes00, Las01, Par00]). fact]fact:sos-separation-efficient For any n,{ € N,

the following set has an n°Y-time weak separation oracle (in the sense of [GLSS1]):

{ED(I)(I, T1, T, ..., 2,)%% | degree-d pseudo-distribution D over R”} . (3.2)

This fact, together with the equivalence of weak separation and optimization [GLS81], allows
us to efficiently optimize over pseudo-distributions (approximately) — this algorithm is referred
to as the sum-of-squares algorithm. The level-{ sum-of-squares algorithm optimizes over the
space of all level-¢ pseudo-distributions that satisfy a given set of polynomial constraints (defined

below).

Definition 3.2.12 (Constrained pseudo-distributions). Let D be a level-{ pseudo-distribution
over R". Let A = {fi 2 0,fs > 0,..., fr, = 0} be a system of m polynomial inequality
constraints. We say that D satisfies the system of constraints A at degree r, denoted D I% A, if
for every S C [m] and every sum-of-squares polynomial h with degh + > ;cg max {deg f;, r},
we have that Ep h, - [Lics fi = 0.

We write D |= A (without specifying the degree) if D If A holds. Furthermore, we say
that D lf A holds approximately if the above inequalities are satisfied up to an error of 9-n" .
2| - TLics| fill, where ||-|| denotes the Euclidean norm? of the coefficients of a polynomial in the

monomial basis.

We remark that if D is an actual (discrete) probability distribution, then we have that D ): A
if and only if D is supported on solutions to the constraints 4. We say that a system A of
polynomial constraints is explicitly bounded if it contains a constraint of the form {||z||*> < M}.

The following fact is a consequence of [GLS81]:

Fact 3.2.13 (Efficient Optimization over Pseudo-distributions). There exists an (n + m)°®)-

time algorithm that, given any explicitly bounded and satisfiable system® A of m polynomial

constraints in n variables, outputs a level-{ pseudo-distribution that satisfies A approximately.

Basic Facts about Pseudo-Distributions. We will use the following Cauchy-Schwarz inequal-

ity for pseudo-distributions:

Fact 3.2.14 (Cauchy-Schwarz for Pseudo-distributions). Let f, g be polynomials of degree at

. . . £ .
2The choice of norm is not important here because the factor 2~™ swamps the effects of choosing another norm.
3Here, we assume that the bit complexity of the constraints in A is (n + m)°™).
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most d in indeterminate x € R%. Then, for any degree-d pseudo-distribution 6, we have that
Eelfg] < VEe[f2]y/Eelg?].

Fact 3.2.15 (Holder’s Inequality for Pseudo-Distributions). Let f, g be polynomials of degree at
most d in indeterminate x € R®. Fixt € N. Then, for any degree-dt pseudo-distribution ¢, we

have that Eg[ft’lg] < (Eg[ft])% (Eg[gt])l/t

Corollary 3.2.16 (Comparison of Norms). Let { be a degree-t pseudo-distribution over a scalar

indeterminate x. Then, we have that E[z!]'/t > R[z"]V/Y for every t' < t.

Sume-of-squares proofs

Let f1, fo, ..., f and g be multivariate polynomials in x. A sum-of-squares proof that the con-
straints {fy > 0,..., fi,, > 0} imply the constraint {g > 0} consists of polynomials (ps)scm
such that
g = Z ps - ies fi - (3.3)
SC[m]

We say that this proof has degree ¢ if for every set S C [m] the polynomial psIl;cs f; has degree
at most £. If there is a degree ¢ SoS proof that { f; > 0 | i < r} implies {g > 0}, we write:

{(fiz0]i<rif{g=0}. (3.4)

For all polynomials f,g: R" — R and for all functions F': R" — R™, G: R" — RF,
H: RP — R"™ such that each of the coordinates of the outputs are polynomials of the inputs,

we have the following inference rules.

The first one derives new inequalities by addition or multiplication:

Al (£ 20,920} AlF (>0} Al {g>0}

) (3.5)
A {(f+9=0) A}m{f-g%)}
The next one derives new inequalities by transitivity:
Al BB C 46
Az © | |
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Finally, the last rule derives new inequalities via substitution:

{F >0} {G >0}
{F(H) > 0} ey {G(H) >0}

(substitution)

Low-degree sum-of-squares proofs are sound and complete if we take low-level pseudo-distributions
as models. Concretely, sum-of-squares proofs allow us to deduce properties of pseudo-distributions

that satisfy some constraints.

Fact 3.2.17 (Soundness). If D l% A for a level-{ pseudo-distribution D and there exists a sum-
of-squares proof A |7 B, then D B.

reop! 4!

If the pseudo-distribution D satisfies A only approximately, soundness continues to hold
if we require an upper bound on the bit-complexity of the sum-of-squares .4 }7 B (i.e., the
number of bits required to write down the proof). In our applications, the bit complexity of all
sum-of-squares proofs will be n°(®) (assuming that all numbers in the input have bit complexity
n©M)). This bound suffices in order to argue about pseudo-distributions that satisfy polynomial

constraints approximately.

The following fact shows that every property of low-level pseudo-distributions can be derived
by low-degree sum-of-squares proofs.

Fact 3.2.18 (Completeness). Suppose that d > r’' > r and A is a collection of polynomial
constraints with degree at most r, and A I— {31, x? < B} for some finite B. Let {g > 0} be a
polynomial constraint. If every degree-d pseudo-distribution that satisfies D l? A also satisfies
D l? {g = 0}, then for every € > 0, there is a sum-of-squares proof A lg {g > —¢€}.

Basic Sum-of-Squares Proofs. We will require the following basic SoS proofs.

Fact 3.2.19 (Operator norm Bound). Let A be a symmetric d x d matrix and v be a vector in R%.

Then, we have that

5 {vT Av < | All2[l0]3} -

Fact 3.2.20 (SoS Holder’s Inequality). Let f;, g;, for 1 < i < s, be scalar-valued indeterminates.

Let p be an even positive integer. Then,
ro (1S, o\ (1 1\
et (tne) < (Pon) (Bxa) |
S =1 S =1 S =1
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Observe that using p = 2 above yields the SoS Cauchy-Schwarz inequality.

Fact 3.2.21 (SoS Almost Triangle Inequality). Let fi, fo, ..., f. be indeterminates. Then, we
have that

f17f22,t---7ffr- (Z fz) < P21 <Zr: fi2t>

i<r i=1

Fact 3.2.22 (SoS AM-GM Inequality, see Appendix A of [BKS15]). Let f1, fa, ..., fim be inde-

terminates. Then, we have that
Fiofareeesfm I \"
l% (Zfz) Z Hi<mfi} :
m;3

We defer the proofs of the two subsequent lemmas to Appendix 3.10.

Lemma 3.2.23 (Spectral SoS Proofs). Let A be a d x d matrix. Then for d-dimensional vector-

valued indeterminate v, we have:

5 {v" Av < | Allo[l]13} -

Fact 3.2.24 (Cancellation within SoS, Lemma 9.2 [BK20b]). Let a, C be scalar-valued indeter-
minates. Then,
{a =0} U {at < C’at_l} a2tC {a% < C’Qt} .

Lemma 3.2.25 (Frobenius Norms of Products of Matrices). Let B be a d x d matrix valued
indeterminate for some d € N. Then, forany 0 < A <1,

5 {IABIZ < |IBJI%}

and,

5 {IBAIZ < 1BI}

3.2.3 Analytic Properties of Gaussian Distributions

The following definitions and results describe the analytic properties of Gaussian distributoins

that we will use. We also state the guarantees of known robust estimation algorithms for estimat-
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ing the mean, covariance and moment tensors of Gaussian mixtures here.

Certifiable Subgaussianity. We will make essential use of the following definition.

Definition 3.2.26 (Certifiable Subgaussianity (Definition 5.1 in [KS17])). For t € N and an
absolute constant C' > 0, a distribution D on R is said to be t-certifiably C-subgaussian if for

every even t' < t, we have that

ItL' {]% [<$,U>t/} < (CH)'2 (Ig [<$’U>2}t’/2>} '

Fact 3.2.27 (Mixtures of Certifiably Subgaussian Distributions, Analogous to Lemma 5.4 in [KS17]).
Let Dy, Ds, ..., D, be t-certifiably C-subgaussian distributions on R%. Let py,ps,...,p, be
non-negative weights such that 3 ;p; = 1 and p = min;<,p;. Then, the mixture }_; p;D; is
t-certifiably C'/p-subgaussian.

Certifiable Anti-Concentration. The first is certifiable anti-concentration — an SoS formu-

lation of classical anti-concentration inequalities — that was introduced in [KKK19, RY20a].

In order to formulate certifiable anti-concentration, we start with a univariate even polyno-
mial p that serves as a uniform approximation to the delta function at O in an interval around 0.
Such polynomials are constructed in [KKK19, RY20a]. Let ¢sx(z,v) be a multivariate (in v)

2s
polynomial defined by ¢sx(x,v) = (vTZv> D55 ( \}%) Since psx; 1s an even polynomial,

5,5 1s a polynomial in v.

Definition 3.2.28 (Certifiable Anti-Concentration). A mean-0 distribution D with covariance X2
is 2s-certifiably (0, C'6)-anti-concentrated if for qs x:(x, v) defined above, there exists a degree-2s
sum-of-squares proof of the following two unconstrained polynomial inequalities in indetermi-

nate v:

x~D

{(x,v>28 + 6% gsx(x,v)* = 0% (UTZU)QS} , { E {q&g(x,v)z} <06 (UTEv)zs} .

An isotropic subset X C R% is 2s-certifiably (6, C0)-anti-concentrated if the uniform distribution
on X is 2s-certifiably (6, C6)-anti-concentrated.

Remark 70. The function s(0) can be taken to be O(3;) for standard Gaussian distribution and
the uniform distribution on the unit sphere (see [KKK19] and [BK20a]).
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Certifiable Hypercontractivity. Next, we define certifiable hypercontractivity of degree-2
polynomials that formulates (within SoS) the fact that higher moments of degree-2 polynomi-
als of distributions (such as Gaussians) can be bounded in terms of appropriate powers of their

2nd moment.

Definition 3.2.29 (Certifiable Hypercontractivity). An isotropic distribution D on R is said to
be h-certifiably C-hypercontractive if there is a degree-h sum-of-squares proof of the following

unconstrained polynomial inequality in d x d matrix-valued indeterminate ():

(azTQx) 2D

A set of points X C R%is said to be C-certifiably hypercontractive if the uniform distribution on

h/2
E

xz~D

(+702)] < (on”

x~D

X is h-certifiably C-hypercontractive.

Hypercontractivity is an important notion in high-dimensional probability and analysis on
product spaces [O’D14]. Kauers, O’Donnell, Tan and Zhou [KOTZ14] showed certifiable hyper-
contractivity of Gaussians and more generally product distributions with subgaussian marginals.
Certifiable hypercontractivity strictly generalizes the better known certifiable subgaussianity

property (studied first in [KS17]) that controls higher moments of linear polynomials.

Observe that the definition above is affine invariant. In particular, we immediately obtain:

Fact 3.2.30. Given t € N, if a random variable © on R® has t-certifiable C-hypercontractive
degree-2 polynomials, then so does Ax for any A € R4,

As observed in [KS17], the Gaussian distribution is ¢-certifiably 1-subgaussian and ¢-certifiable
1-hypercontractive for every t. Next, we establish certifiable hypercontractivity for mixtures of

Gaussians. We defer the proofs to Appendix 3.10.

Lemma 3.2.31 (Shifts Cannot Decrease Variance). Let D be a distribution on R¢, Q be a d x d

matrix-valued indeterminate, and C be a scalar-valued indeterminate. Then, we have that

S EAICERSNCE) T

SACORCI
Lemma 3.2.32 (Shifts of Certifiably Hypercontractive Distributions). Let x be a mean-0 random

variable with distribution D on R% with t-certifiably C-hypercontractive degree-2 polynomials.

Then, for any fixed constant vector ¢ € R%, the random variable x + c also has t-certifiable
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AC'-hypercontractive degree-2 polynomials.

Lemma 3.2.33 (Mixtures of Certifiably Hypercontractive Distributions). Let Dy, D,, ..., Dy
have t-certifiable C-hypercontractive degree-2 polynomials on R%, for some fixed constant C.
Then, any mixture D = Y, w;D; also has t-certifiably (C/a)-hypercontractive degree-2 polyno-

mials for o = Min; <y, >0 W;.

Corollary 3.2.34 (Certifiable Hypercontractivity of Mixtures of k Gaussians). Let M be a k-
mixture of Gaussians >_; w;N (;, 3;) with weights w; > « for every i € [k|. Then, forallt € N,
D has t-certifiably 4/ a-hypercontractive degree-2 polynomials.

We will use the following robust mean estimation algorithm for bounded covariance distri-
butions [DKK " 19]:

Fact 3.2.35 (Robust Mean Estimation for Bounded Covariance Distributions). There is a poly(n)
time algorithm that takes input an e-corruption'Y of a collection of n points X C R%, and outputs

an estimate [i satisfying | Ep~, xx — fill2 < O(V/€)||Ez~, x {(:1: —E,. xz)(x — ExNuX:c)T} 2.
We will use the following robust covariance estimation algorithm from [KS17]:

Fact 3.2.36 (Robust Covariance Estimation, [KS17]). For every C > 0,¢ > 0 and even k € N
such that Cke'=2'* < ¢ for some small enough absolute constant ¢, there exists a polynomial-
time algorithm that given an (corrupted) sample S outputs an estimate of the covariance S e
R with the following guarantee: there exists ng = (C + d)°%®) /e such that if S is an -
corrupted sample with size |S| > ng of a k-certifiably C-subgaussian distribution D over R?
with mean ;o € R? and covariance 2 € R4, then with high probability:

(1-0)Y == (1+6)%

for § < O(Ck)e'=2/*,

We will also require the following robust estimation algorithm with Frobenius distance guar-
antees proven for certifiably hypercontractive distributions in [BK20b]. Since we obtain esti-
mates to the true covariance in Lowner ordering, we can obtain the subspace spanned by the

inliers exactly, project on to this subspace and apply Theorem 7.1 in [BK20b].

Fact 3.2.37 (Robust Mean and Covariance Estimation for Certifiably Hypercontractive Distribu-
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tions, Theorem 7.1 in [BK20b]). Givent € N, and € > 0 sufficiently small so that Cte' =%/t < 1%,
for some absolute constant C' > 0. Then, there is an algorithm that takes input Y, an e-corruption

of a sample X of size n with mean ., covariance Y.,, and 2t-certifiably C-hypercontractive

o(t)

degree-2 polynomials, runs in time n“\", and outputs an estimate [i and X. satisfying:

L [|12Y2(u, = )]l < O(CH)M 21710,
2. (1=n)%, X2 = (1+n)%, forn < O(Ck)e' 2/, and,
35V (S = 5.) 22s < (CHO(E1),

where C' = max {C, B} for the smallest possible B > 0 such that for d x d-matrix-valued
indeterminate @), l% {ED (xTQx — EDxTQm)ﬂ < BHZi/QQZiﬂH%}ﬁ

The last line in the above fact asserts a bound (along with a degree 2 SoS proof) on the vari-
ance of degree 2 polynomials in terms of the Frobenius norm of its coefficient matrix. In the
next few claims, we verify this property via elementary arguments for the two classes of distribu-
tions relevant to this paper. We note that whenever a distribution satisfies the bounded variance
property (without an SoS proof), it also satisfies the property via a degree 2 SoS proof using
Lemma 3.2.23. Thus, asking for an SoS proof of degree 2 in this context poses no additional
restrictions on the distribution. Nevertheless, we provide explicit and direct SoS proofs in the
following.

We first note that this property of having certifiable bounded variance is closed under linear

transformations.

Lemma 3.2.38 (Linear Transformations of Certifiably Bounded-Variance Distributions). For d &
N, let x be a random variable with distribution D on R® such that for d x d matrix-valued
indeterminate Q, I% {E%D(xTQx —Epr'Qz)? < ]]21/26221/2]]%}. Let A be an arbitrary
d x d matrix and let ¥’ = Az be the random variable with covariance ¥.' = AA". Then, we have
that

o {Epep (27 Q1 — Epa’T Qu')? < |£7Q 2|3}

“This notation means that we needed Cte! ~2/* to be at most co for some absolute constant ¢y > 0.

The first two guarantees here hold for the larger class of certifiably subgaussian distributions and were proven
in [KS17] (see Theorem 1.2). Gaussian distribution (with arbitrary mean and covariance) are t-certifiably 1-
subgaussian for all ¢ and their mixtures (similar to Lemma 3.2.33 and explicitly proven in Lemma 5.4 of [KS17])
are t-certifiably O(1/«)-subgaussian where « is the minimum mixing weight.
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Lemma 3.2.39 (Variance of Degree-2 Polynomials of Standard Gaussians). We have that

Q 2
5 {Evion (¢ Qe — Exona’Qe) <31QI -

Remark 71. As is easy to verify, the same proof more generally holds for any distribution that

has the same first four moments as the zero-mean Gaussian distribution.
As an immediate corollary of the previous two lemmas, we have:

Corollary 3.2.40 (Variance of Degree-2 Polynomials of Zero-Mean, Arbitrary Covariance Gaus-
sians). For any 0 = X, we have that

Q 2
5 {Bvos (¢7Qr ~ ByoseQn)” < 3121200 2}
We next prove that the same property holds for mixtures of Gaussians satisfying certain
conditions.

Lemma 3.2.41 (Variance of Degree-2 Polynomials of Mixtures). Let M = >, w;D; be a k-
mixture of distributions D1, Ds, . .., Dy with means j; and covariances ;. Let = Y, w;; be
the mean of M. Suppose that each of D1, D>, . .., Dy have certifiably C-bounded-variance i.e.

for Q: a symmetric d X d matrix-valued indeterminate.

5 {Ban, (27 Qo' — Epa’ Qo) < CI8PQe |3}

Further, suppose that for some H > 1, ||u; — pl|3, |12 — I||p < H for every 1 < i < k. Then,

I%{ E Kaﬂ@x— E, [JQ:UDQ

z~M T~

we have that

< 1000H2||Q||%} .

As an immediate corollary of Lemma 3.2.38 and Lemma 3.2.41, we obtain:

Lemma 3.2.42 (Variance of Degree-2 Polynomials of Mixtures of Gaussians). Let M = >, w,N (11, 2;)
be a k-mixture of Gaussians with w; > «, mean i = Y, w;ji; and covariance ¥ = >, w;((p; —
1) (1 —p) T+3). Suppose that for some H > 1, || S1/2(2; = X)X12||» < H forevery 1 <i < k.

Let ) be a symmetric d X d matrix-valued indeterminate. Then for H' = max{H, 1/a},

${ 5, |(e- 5, [Tod)

< 100H’2||21/2Q21/2||%} .
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Analytic Properties are Inherited by Samples. The following lemma can be proven via sim-
ilar, standard techniques as in several prior works [KS17, KKK 19, BK20a, BK20b].

Fact 3.2.43. Let D be a distribution on R¢ with mean . and covariance Y. Lett € N. Let
Seex (1, 2)® — Euup(1,2)®|p < d7°Y. Here, 7 =

X be a sample from D such that,
S2(x — p;). Then,

1
| X]

1. If D is 2t-certifiably C-subgaussian, then the uniform distribution on X is t-certifiably

2C'-subgaussian.

2. If D has 2t-certifiably C-hypercontractive degree 2 polynomials, then the uniform distri-
bution on X has t-certifiably 2C'-hypercontractive degree 2 polynomials.

3. If D is 2t-certifiably C'§-anti-concentrated, then the uniform distribution on X is t-certifiably

2C'§-anti-concentrated.

4. Ifl% {ExND(:cTQ:c —E,opr'Qu)? < CHQH%}, then, for the uniform distribution Dx
Q
on X, |5 B, (27Qr — Eyp a ' Qr)* < 20(Q[3 )

3.2.4 Deterministic Conditions on the Uncorrupted Samples

In this section, we describe the set of deterministic conditions on the set of uncorrupted samples,

under which our algorithms succeed. We will require the following definition.

Definition 3.2.44. Fix 0 < & < 1/2. We say that a multiset Y of points in R% is an e-corrupted
version (or an e-corruption) of a multiset X of points in R if | X NY| > max{(1 — )| X]|, (1 —
)Y}

Throughout this paper and unless otherwise specified, we will use X to denote a multiset of
i.i.d. samples from the target k-mixture M = Zle w;G;, where G; = N (i, 2;). We will use
X for the subset of points in X drawn from G, i.e., X = UleXi.

We will use Y to denote an e-corrupted version of X, as per Definition 3.2.44. In this strong
contamination model, the adversary can see the clean samples from X before they decide on
the e-corruption Y. The strong contamination model is known to subsume the total variation
contamination of Definition 3.1.1 (see, e.g., Section 2 of [DKK™19]). We note that our robust
learning algorithm succeeds in this stronger contamination model, with the additional require-

ment that we can obtain two sets of independent e-corrupted samples from M. (The second set is
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needed to run a hypothesis testing routine after we obtain a small list of candidate hypotheses.)

Our algorithm works for any finite set of points in R? that satisfies a natural set of deter-
ministic conditions. As we will show later in this section, these deterministic conditions are
satisfied with high probability by a sufficiently large set of i.i.d. samples from any k-mixture of

Gaussians.

Condition 3.2.45 (Good Samples). Let M = Zle wiN (i, X;) be a k-mixture of Gaussians in
R4, Let X be a set of n points in R%. We say that X satisfies Condition 3.2.45 with respect to
M with parameters (7,t) if there is a partition of X as X; U X5 U ... U Xy, such that:

1. Foralli € [k] with w; > vy, any positive integer m < t, and any v € R,

1 m m
n Z (v, 2 — p)™ — wiExNN(MuZi)KUv z — )" < wiym! (UTZz‘U)
reX;

m/2

2. Foralli € [k] and any halfspace H C R¢, we have that ‘|Xz NH|/n —w,Pry oz, slr € H]‘ <
5.

We will also need the following consequences of Condition 3.2.45. The first one is immedi-

ate.

Lemma 3.2.46. Condition 3.2.45 is invariant under affine transformations. In particular, if
A(z) : RT — RY is an affine transformation, and if X satisfies Condition 3.2.45 with respect
to M with parameters (7, t), then A(X) satisfies Condition 3.2.45 with respect to A(M) with

parameters (7, t).

We note that the first part of Condition 3.2.45 implies that higher moment tensors are close

in Frobenius distance.

Lemma 3.2.47. If X satisfies Condition 3.2.45 with respect to M = Y, w;N (u;, 3;) with
parameters (v, t), then if w; > -~y for all i € [k], and if for some B > 0 we have that
il | Zillop < B foralli € [k, then for all m < t, we have that:

|Ese,x[2%™] — Eponr[22M]]|% < A2mO™ B™ad™

We note that Condition 3.2.45 also behaves well with respect to taking submixtures.
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Lemma 3.2.48. Let M = >, wN (u;, 2;). Let S C [k] with Y ,cqw; = w, and let M’ =
Sies(wi /w)N (i, 3;). Then if X satisfies Condition 3.2.45 with respect to M with parameters
(v,t) for some v < 1/(2k) with the corresponding partition being X = X; U Xy U ... U Xy,
then X' = U,;cq X; satisfies Condition 3.2.45 with respect to M’ with parameters (O (kvy/w), ).

Finally, we show that given sufficiently many i.i.d. samples from a k-mixture of Gaussians,
Condition 3.2.45 holds with high probability.

Lemma 3.2.49. Let M = Y% wiN (u;, ;) and let n be an integer at least kt“d'/~>, for a
sufficiently large universal constant C' > 0, some v > 0, and some t € N. If X consists of n
i.i.d. samples from M, then X satisfies Condition 3.2.45 with respect to M with parameters
(v, t) with high probability.

The proofs of the preceding lemmas can be found in Appendix 3.10.

3.2.5 Hypothesis Selection

Our algorithm will require a procedure to select a hypothesis from a list of candidates that con-
tains an accurate hypothesis. A number of such procedures are known in the literature. Here we
will use the following variant from [Kan20], showing that we can efficiently perform a hypothesis

selection (tournament) step with access to e-corrupted samples.

Fact 3.2.50 (Robust Tournament, [Kan20]). Let X be an unknown distribution, n € (0, 1), and
let Hy, ..., H, be distributions with explicitly computable probability density functions that can
be efficiently sampled from. Assume furthermore than min,<;<,(drv(X, H;)) < n. Then there
exists an efficient algorithm that given access to O(log(n)/n?) e-corrupted samples from X,

where € < n, along with Hy, ..., H,, computes an m € [n| such that with high probability we
have that d+v (X, H,,) = O(n) .

3.3 List-Recovery of Parameters via Tensor Decomposition

In this section, we give an algorithm that takes samples from a k-mixture of Gaussians, whose
component means and covariances are not too far from each other in natural norms, and outputs a
dimension-independent size list of candidate k-tuples of parameters (i.e., means and covariances)

one of which is guaranteed to be close to the true target k-tuple of parameters. Our approach
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involves a new tensor decomposition procedure that works in the absence of any non-degeneracy

conditions on the components.

The goal of this section is to prove the following theorem:

Theorem 72 (Recovering Candidate Parameters when Component Covariances are close in
Frobenius Distance). Fix any o > ¢ > 0, A > 0. There is an algorithm that takes input X, a sam-
ple from a k-mixture of Gaussians M = Y, w;N (s, X;) satisfying Condition 3.2.45 with param-
eters v = ed % k=% for C a suﬁﬁciently large universal constant, and t = 8k, and let Y be an
e-corruption of X. If w; > o, |||y < and |1X; — I||p < Aforeveryi € [k], then, given k,Y
and ¢, the algorithm outputs a list L ofat most exp (log(l/e) (k+1/a+ A)°W /772) candidate
hypotheses (component means and covariances), such that with probability at least 0.99 there ex-
ist {fui, ¥ Yiew € L satispying || — fu]ly < O(%ﬂ)) n“®) and < O(kY) %/QT]G(’“)
for all i € [k]. Here, n = (2k)*O(1/ac + A /e, G(k) The running time of the
algorithm is poly(|L|,|Y |, d*).

_ 1
= CFFI(kf1)!"

In the body of this section, we establish Theorem 72. The structure of this section is as
follows: In Section 3.3.1, we describe our algorithm, which is then analyzed in Sections 3.3.2-
3.3.6.

3.3.1 List-Decodable Tensor Decomposition Algorithm

In this section, we describe our tensor decomposition algorithm, which is given in pseudocode
below (Algorithm 73).

Algorithm 73 (List-Recovery of Candidate Parameters via Tensor Decomposition).
Input: Ane-corruptionY of a sample X from a k-mixture of Gaussians M = 3", w;N (i, 3;)

Requirements: The guarantees of the algorithm hold if the mixture parameters and the

sample X satisfy:

1. w; > aforallic k],

2. |lill, < 2/v/a forall i € [K)
318 = Il < Aforalli € [k].
4. X satisfies Condition 3.2.45 with parameters (,t), where v = ed=k=C%, for

176



C' a sufficiently large universal constant, and t = 8k.

Parameters: 7 = (2k)*(Ck(1/a + A)*\/e D = C(k*/(ay/n)), § = 2p/ ("7 11,
¢ =100logk (n/ (k° (A* + 1/a*))) ™™, for some sufficiently large absolute constant
C >0, A=4n, ¢ =10(1 + A?)/(/na).

Output: A list L of hypotheses such that there exists at least one, {]i;, iz}zgk € L, sat-

isfying: ||p; — fuill, < (’)(%ﬂ) n°®) and ’E,- -5 » S O(k*) %/2776’(’“), where
G(k) = m
Operation:

1. Robust Estimation of Hermite Tensors: For m € [4k], compute T, such that

MAX ¢ [4k] Hfm —E [hm(M)] HF < n using the robust mean estimation algorithm
in Fact 3.2.35.

2. Random Collapsing of Two Modes of Ty: Let L' be an empty list. Repeat ('
times: For j € [4k|, choose independent standard Gaussians in R?, denoted by
x) 4 ~ N(0, 1), and uniform draws ay, as, . . ., a, from [—D, D). Let S bea
d x d matrix such that for all . s € [d], S(r,s) = ¥ e a;Tu(r, 5,29, y?)) =
S et @5 Sgneia La(r, s, g, 1) (9)yY) (h). Add S to the list L.

3. Construct Low-Dimensional Subspace for Exhaustive Search: Let V be the
span of all singular vectors of the natural d x d™~! flattening of 1., with singular
values > \ for m < 4k. For each S el let st be the span of V' plus all the

singular vectors of S with singular value larger than 5'/*.

4. Enumerating Candidates in VS’ Initialize L to be the empty list. For each
S e L, let Vsiya be a 6'/*-cover of vectors in V& with ly-norm at most 2/+/a.
Enumerate over vectors [i in Vsia. Let k' = Ck? and let Csi/a be a 6Y*-cover
of the interval [—¢, ¢¥'. For {7;} ;e € Cyja and for all {v;}icp € Vs, let
Q= i TV, - Add {1, T + S+Q} L.

3.3.2 Analysis of Algorithm

We analyze the three main steps of Algorithm 73 in the following lemmas. We will prove the
following three propositions in the subsequent subsections that analyze Steps 1, 2 and 3 of Al-
gorithm 73. For Step 1, we show that when X satisfies Condition 3.2.45, the empirical estimates

of the moment tensors obtained by applying the robust mean estimation algorithm to X are suf-
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ficiently close to the moment tensors of the input mixture M.

Proposition 3.3.1 (Robustly Estimating Hermite Polynomial Tensors). For any integer m <
4k, and A € R, there exists an algorithm with running time poly,,(d/e) that takes an e-
corruption Y of X, a set satisfying Condition 3.2.45 with respect to M = S-%  wN (i, 2;)
with parameters v = ed~"m~™, for C a sufficiently large constant, and t = 2m. If w; > «,
all, < 2/v/a, and |Z; — ||, < A for each i € [k), then the algorithm outputs a tensor T,
such that HT’" -E [hm(/\/l)]HF <, forn=0(m(1+1/a+ A))" /e

The proof of Proposition 3.3.1 is deferred to Section 3.3.3.

Next, we analyze Step 2 of the algorithm and prove that, with non-negligible probability,
randomly collapsing two modes of Ty yields a matrix S such that S — (3;—1I) = P, 4+ Q;, where
P; has small Frobenius norm and @; is a rank-O(k?) matrix.

Proposition 3.3.2 (Tensor Decomposition up to Low-Rank Error). Let M = Zf:l wiN (pi, X5)
be a k-mixture of Gaussians satisfying w; > o, |||y, < 2/v/o, and |E; — I|| < A for each
i € [k]. For0 < n < 1, let T} be a tensor such that HE[h4(M)] — ﬂHF < n, and let D be a
sufficiently large constant multiple of k*/(a\/m). For all j € [4k], let 2, y\9) ~ N(0,1) be
independent and a; ~ U|—D, D], where U[—D, D] is the uniform distribution over the interval
(=D, D], and let S = 3 e a; T4 (~, -, x(j),y(j)>. Then, for each i € [k], with probability at
least (/) (k5 (A* + 1/a)))*, over the choice of 29,y and a;, we have that S — (X; — 1) =

P, + Qi, where | P,||» = 0(\/%), Qillp = O(%ﬁ;) and rank(Q;) = O(k?).

The proof of Proposition 3.3.2 is given in Section 3.3.4.

Finally, in Step 3, for any S such that S — (3; — I) = P, + Q;, where P; has small Frobenius
norm and Q; is a rank O(k?) matrix, we find a low-dimensional subspace V"’ such that the range
space of (); is approximately contained in V. We will use V’ to exhaustively search for O(k?)

rank matrices to find candidates for ();.

Proposition 3.3.3 (Low-Dimensional Subspace V' for Exhaustive Search). Let M = S-% | w,N (s, ;)
tilly < 2/, and || E; — 1] < A for each
i € [k]. Let HTm -E [hm(M)]HF < n, foreach 1 < m < 4k, and some 1) > 0. Let V' be the span
of all the left singular vectors of the d x d™ ' matrix obtained by the natural flattening of 1., with

be a k-mixture of Gaussians satisfying w; > «,

singular values at least 2n. For each 1 < i < k, let S; = X; — I and ﬁl be a d x d matrix such

that S; — S; = P, + Q;, where | By » < 0(1/7]/0[), Q; has rank O(k?), and ||Q;|| » < O(%ﬁ;)

Let V' be the span of V' plus all singular vectors of S; of singular values at least § for all i. Then,
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for 6 = 2n"/ (CMH R yith g sufficiently large constant C' > 0, we have that:
1. dim V' < (O (k(1+ 1/a + A) ") /2.
2. There is a vector i, € V' such that ||p; — pt||5 < ZVEA.

3. There are ¢ = O(k?) unit vectors vy, va, . .., v, € V' and scalars 11,72, ..., 7, € {—10(1 + A?)/(y/ne’), 1
such that HQZ — > v, - < O(%él/‘lAUQ).

The proof of Proposition 3.3.3 is given in Section 3.3.5.

We can now use these propositions to complete the proof of Theorem 72.

Proof of Theorem 72. Using Proposition 3.3.1, Step 1 of the algorithm outputs estimates T; for

i € [4k] such that max,,c) Hfm — Ehm(/\/l)HF < 1. Next, by the standard coupon collector

analysis, using Proposition 3.3.2 and repeating Step 2 of the algorithm ¢ = 100log k (n/ (k* (A* + 1/a*))) ™"
times, guarantees that with probability at least 1 — 1/(100k)'%, for every 1 < i < k, there are

S; € Lsuchthat S; — (%, — I) = P, + Q; for P;, Q; satistying | B » < \/77/70" Qi < i}%ﬁ

and Q; has rank O(k?).

Next, Proposition 3.3.3 implies that for every such S, € I, we can construct a subspace
V' =V, of dimension O((k(l + 1/ + A))I++> /772) such that V' contains ) that satisfies
s — p]l5 < £ -V/6, and there is a rank O(k?) matrix (); with range space contained in V’ such

that HQ — Qi <oEsrAY),

la ~X
Now, let V. C V' be a 7 = §'/*-cover, in f5-norm, of vectors with £5 norm at most 2 /+/a in
) . N ~ 12
V. Then, since |1, < %, there is a vector fi; € V; such that ||; — fui|l; < 7+ 2V6A <
BV6A.

Further, there exist 71, 72, . . . To(2) ina 7-cover of [=10(1+A?)/(/na”), 10(1+A%) /(\/na®)]

and vectors vy, vy, ..., vox2) € V; such that Hz?:(fz) TiUz'UiT —Q; - < (’)(k451/4A1/2/a). In

A A 2
particular, ¥; = I + S — Zloz(f )Tiviv; satisfies

. k?451/4A1/2 k451/4A1/2
. . N , 1Az OK® dim V')
The size of this search space for every fixed S € L’ can be bounded above by ( o5 ) .
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Thus, the size of L can be bounded from above by

Al 1 4k 14 A2 O(k5 dim V')
Bl=+—) - [=1= < log(1/€) (k + 1 AYOW p2)
(5 ) (5omet) exp (1o8(1/0) ( + 1/ + 3)°¥) /)

This completes the proof. [

3.3.3 Robust Estimation of Hermite Tensors

In this section, we will prove Proposition 3.3.1.

Proof of Proposition 3.3.1. Consider the uniform distribution on the uncorrupted sample X. We
want to analyze the effect of applying the robust mean estimation algorithm (Fact 3.2.35) to the
points h,,(z), for z € X. In order for us to apply Fact 3.2.35, we need to ensure that the uniform
distribution on {h,,(z)},cx has bounded covariance. This step gives us a good approximation
to B, x ", (x). In order for us to obtain an approximation to Eh,, (M), we need to bound the
difference between Eh,, (M) and E,.., x h.,(z). We will do both these steps below.

The second part is immediate. By the definition of h,,(X), we have that

L

zeX

< S m¥d

F j<m/2

Z 22m=24) _ EM@(mJJ)

zeX

H 1
| X -
By Lemma 3.2.47, this is at most O(1 + A + 1/a)™m°™d™/2y < /2. We note that a similar
argument bounds

<t

F

Z B ()R, (2) — Ehpyy (M) @M, (M)

zeX

H :
X
Let us now verify the first part. We proceed via bounding the operator norm of the covariance

of h,,(M). We can then use the bound on the Frobenius norm

3" b (2) @b (X) = By (M) @b (M)

zeX

s
x| i

to get a bound on H\71| Soex () A (2) T H (the operator norm of the canonical square flat-
op

tening of the of the 2m-th empirical Hermite moment tensor of X'). This will complete the proof.
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Let G; = N (ui, 2;) be the components of M. We have that

Cov(hy,(M)) =Y w;Cov(hn,(G;))

i€[k]
1
5 2 wiw; (Blh(Go)] — Elhn(G)))) (Blhn(G)] = Blhn(G))) -
i,j€[K]
(3.8)
By Lemma 3.2.8, we have that for all ¢ € [k], it holds

2m
)

1COV(hn(Gi))llop = O (m(1 + [|paillz + [|Si = I][#)*" = O (m(1 + 2/v/a + A))

where for any matrix M, || M]||,, = max,,=1 [|Mull, is the operator norm of the matrix. Fur-
ther, for any 4, j € [k],
| (Bl (G)] = Elhin (G))]) (Bl (G)] = Elh( G| = Bl (G2)] — Bl (G,
= O (m(l+1/a+ A)*" .
(3.9)

This claim follows from the triangle inequality of the operator norm. O]

3.3.4 List-Recovery of Covariances up to Low-Rank Error

In this section, we prove Proposition 3.3.2. We first set some useful notation. We will write
S; def ¥; — I throughout this section. We will also use S; to denote .S; + p; @ ;.

We first show that for every 4, there exists a matrix P such that (Zie[k] w; S ® S{) (-, P)is

close to 5.

Lemma 3.3.4 (Existence of a 2-Tensor). Under the hypothesis of Proposition 3.3.2, for each
i € [k, there exists a matrix P such that |P| . = O(l/(ﬁa)) and ||T} (-,-, P) = Si||» =

(’)(\/n/a), where T}, = (Ziem w; S ® S;)
Note that throughout this section it will be useful to think of 7] as a d* x d? matrix rather
than as a tensor. In this case, we can think of 7} as Y%, w;(S!)(S!)”. From standard facts about

positive semidefinite matrices it follows that \S; is in the image of 7)j, and Lemma 3.3.4 is just a

slightly robustified version of this (saying that we can find an approximate preimage that it not
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itself too large).

The proof of this Lemma 3.3.4 will involve linear programming duality with an infinite sys-
tem of constraints. As the application of duality with infinitely many constraints has some tech-

nical issues, we state below an appropriate version of duality.

Fact 3.3.5 (Linear Programming Duality for Compact, Convex Constraint Sets). Let K C R"*
be a compact convex set. There exists an v € R" so that (x,1) - z > 0 for all z € K if and only
if there is no element (0,0,...,0,a) € K forany a < 0.

This fact can be proved by noting that if no such a exists, there must be a hyperplane sep-
arating K from the set of such points (0,a). This separating hyperplane will be of the form
(z,y) € H if and only if y = z - z for some x and this = will provide the solution to the linear

system.

Proof of Lemma 3.3.4. To show that such a P exists for each ¢, we apply linear programming
duality. In particular, the conditions imposed on P define a linear program, which has a feasible
solution unless there is a solution to the dual linear program. For sufficiently large constants c;

and c,, consider the following primal in the variable P:

(v, P) < \/cﬁla v V v e R (3.10)
(u, Ty (-, -, P) — Si) < can/m ||u]| vV ue R (3.11)

Itis not hard to see that || P|| . < \/c%a if and only if (3.10) holds for all v and || T} (-, -, P) — S}|| <

c21/n/ v if and only if (3.11) holds for all u. Throughout the proof, we suggest that the reader

think of u and v as vectors in d?-dimensional vector space.

Our goal is to show that there exists a feasible solution P such that (3.10) and (3.11) hold

simultaneously for all u, v € R9*¢. We first note that this is equivalent to saying that

1

Vo

for all u,v € R¥*?. This is not quite in the form necessary to apply Fact 3.3.5, so we note that

<U>P> + <U,Ti ('7 Y P)) - <U'> Sz/> < ||U”F + CQ\/ﬁ HUHF ’ (312)

this is in turn equivalent to saying that
(v, Py + (u, Ty (-,-, P)) — (u, S}) < 1, (3.13)
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for all u, v € R¥*? so that T Wl pteay/m [Jullp < 1, and w € span{S7}. As this is a convex set
of linear equations, we have by Fact 3.3.5 that there exists such a P unless there exists such a pair
of u and v so that the coefficient of P in Equation (3.13) is 0 and so that the resulting inequality
of constants is either false or holds with equality. In particular, the coefficient of P vanishes if

and only if v = =T} (u, -, -). We then get a contradiction only if for some u € span{S;}

C1

Vo

—(u,5) =12 I (s )l + o/ [lull - (3.14)

We claim that this is impossible.

In particular, squaring Equation (3.14) would give

2
! c !
(050" > (< 1T o+ oyl

C

(3.15)

for some large enough constant ¢ > 1, where the last inequality follows from the AM-GM

inequality. However, using the dual characterization of the Frobenius norm, we have

<U7Tzi (ua" )) Wi

lulp 7 llull

|5 (w5 )l e = (. 5)° (3.16)

where the last inequality follows from 77 containing a w;S; ® S; term, and the other terms

contributing non-negatively. Rearranging Equation (3.16), we have
"2 1 / 1 /
(w, 50" < T (s ) e llull e < 2 T3 (s )l

This contradicts Equation (3.15) unless 7} (u,-,-) = 0. This therefore suffices to prove the
feasibility of the primal. [

We have thus shown that there is some matrix P so that T} (P, -, -) suffices for our purposes.
We need to show that our appropriate random linear combination of 2\9) @ y) suffices. In
fact, we will show that with reasonably high probability over our choice of 2(9), 4(4) that there is
some linear combination of the () @ y) (with coefficients that are not too large) so that their
projection onto the space spanned by the S! (which is all that matters when applying 7)) equal
to P.

For the sake of intuition, we note that if we removed the bound on the coefficients, we would
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need that the projections of the () ® y) spanned span{S!}. Since there are at least k of them,
this will hold unless there is some v € span{.S}} so that v is orthogonal to all of the 2\ © y¥).

This shouldn’t happen because each 29) ® y/) is very unlikely to be orthogonal to v.

To deal with the constraint that the coefficients are not too large, we use linear programming
duality to show that there will be a solution unless there is some v that is nearly orthogonal to
all of the 29) @ y). Again, this is unlikely to happen for any individual term, and thus, by
independence, highly unlikely to happen for all j simultaneously. Combining this with a cover

argument will give our proof.

Lemma 3.3.6 (Existence of a Bi-Linear Form). Given the preconditions in Proposition 3.3.2,
with probability at least 99/100 over the choice of tV), y\9), there exist b; € [—D, D] for j € [4k],
where D = (’)(/{:4/(\/_04)>, such that the projection ofzjzl 29 @y onto the space spanned
by the S! is P, where P satisfies the conclusion of Proposition 3.3.4.

Proof. To prove this lemma, we again use a linear programming based argument. Consider the

following (primal) linear program in the variables b;, for j € [4k]:

S (8], 2 @ yW)y = (S, P) Vi€ [k] (3.17)

JE[4k]

-D<b; <D vV j € [4k] (3.18)
We note that a set of b; satisfying Equation (3.17) will have the projection of ¢y bjx(j ) @yl
onto the span of the S; be the same as the projection of P, and that if the b,’s satisfy Equation
(3.18) then we will have |b;] < D for all j. Thus, it suffices to show that with high probability
over our choice of 21/ and 3y\%) that the above system is feasible.

We will show this by linear programming duality (since this is now a finite system of equa-
tions, we can use standard results rather than Fact 3.3.5). In particular, we have that Equations
(3.17) and (3.18) are simultaneously satisfiable unless there are real numbers ¢; and non-negative

real numbers 2;, 27 so that

Zcz Z b y(J)>+ Z (Z]—

=1 je[4k] jE[4k)

N
&

@
Il
A

L P)+ Y (z+z)D

JE[4k]
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yields a contradiction. Setting v = >_7_; ¢;S., the above simplifies to

> b (0,2 @y D) + 25— ) < (0, P)+ Y (2 + 2D (3.19)

JE[4K] JE[4K]

We note that in order for Equation (3.19) to be a contradiction, it must be the case that the

coefficients of b; are all 0. In particular, we must have

z; — 2= <v7x(j) ® y(j)>

for all j. In particular, this means that
zj+ 2 > ’(v,x(j) ® y(j))‘ :
In such a case, the right hand side of Equation (3.19) will be at least

(v, Py + > ’ ®y(3)>‘D

JE[4K]

Therefore, Equation (3.19) can only yield a contradiction if there exists a v € span{S;} so that

(v, P) <= > |(v,29 @y )| D. (3.20)
jE[4k)

We want to show that with high probability over our choice of (), yU) that there is no

v € span{S!} satisfying Equation (3.20). In fact, we will show that for every such v that

. . Ccy
S (0,29 @y = —— vl
j€[4k}‘ ‘ Vina

We can scale v so that ||v|| , = 1, and it suffices to show that

Z ‘<1~),x(j) ®y(j)>’ > <\/ﬁC;D> (3.21)

FE[AK]

holds for all unit vectors v in span{S;} with high probability.

Since we need to show that infinitely many equations all hold with high probability, we will
use a cover argument. In particular, we can construct C, a 7-cover for all unit vectors v in the span

of the S, where we take 7 = (kz\}%) Since this is a cover of a unit sphere in a k-dimensional
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subspace, we can construct such a cover so that |C| = O(1/7)". Replacing v with the closest

point in C, denoted by ¢/, it suffices to show that with high probability for all v that

S (e 0|3 T [ 8y - T o= oad 00> (25,

JE4k] JE[4K] JE[4k]
(3.22)

We begin by bounding the terms
3 ’<U v, 29 y<j)>‘ _
JE[4K]

For this we notice by Cauchy-Schwartz that each term is at most |[v — ¢’|| - times the Frobenius
norm of the projection of ) ® y) onto the span of the S!. We note that for any k-dimensional

subspace W with orthonormal basis wy, . .., w; we have that

B[ [Proju % @ 3] = i 29 )
=1

Therefore, with high probability over the choice of (), () each of the projections of ) ® y)
onto the span of the S! has Frobenius norm O(v/k). Therefore, if this condition holds over our

choice of 2U) and yU), we can show Equation (3.22) if we can show that

> (v, 2D @yP)| > (faD> > (221)) — 7O(K*?) (3.23)
JE[4k]

forall v’ € C.
Each termin 3= ¢4y <v’, ¥ ® y(j)> is a random bi-linear form given by z; = 3 ¢4 vy pxéj)y

Then, we have that E [z;] = 0 and

2
E{ } (Z vgpxe yp ) > E{vgpvg, ) ):Ug,?)y]g)y(f)]

£,peld] 00 p,p
=Y (u,) E {(mgﬁﬂ B [<y7(7j))2]
£,p€|d]
=1,

where the last equality follows from o} = 1.
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Using Lemma 3.2.10 with ¢ = \/%ZD,

Pr||s] < — | <o 29 v . (3.24)
J vnaD VvnaD

for all j € [4k|. Since the

However, we note that Equation (3.23) will hold unless |z;| < \/% 5
z;’s are independent, we conclude that

Pr

2k
C
je%k]K ()®y(3)>‘ \/_;D] (\/ﬁ;D> , (3.25)

Since the above argument holds for any v" € C, we can union bound over all elements in the cover
C, and the probability that there exists a ¢’ in the cover that does not satisfy Equation (3.23) is at

most O <k2 \/ﬁaD)k -0 (\/%D)%. Setting D to be a sufficiently large multiple of (k*/ (/1))

suffices to conclude that with probability at least 1 — 1/poly(k), the primal is feasible. O

Proof of Proposition 3.3.2. We begin by bounding the Frobenius norm of T}. Let T = E[hy(X)].
It then follows from Lemma 3.2.6 that

k
Ty = Sym (Z w; (352- ® S; +65; @ ui? + u?“)) : (3.26)
i=1
Further, [|; @ Sill < ISl < A Pl < ISilp s < <

llplls < 16/a?. Since Ty is an average of terms of the form S?, S; ® u$? and ;**, and each
such term is upper bounded, we can conclude that ||7}|| . = O(A? + 1/a?), and by the triangle
inequality that HﬂHF < O(A?+1/a® +n). Let S = S;+ p? and let T == S8 w; (S} @ SY).

We can then rewrite Equation (3.26) as follows:

k
T, = Sym (Z w; (352 ® S — 2#?4)> ) (3.27)

=1
For j € [4k], let 1) 4@ ~ A(0,I). Collapsing two modes of T}, it follows from Equation
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(3.27) that for any fixed 7,
T, ( .’x(ﬁ,y(j)) - (ﬁ _ T4)(-, .7$<j),y<j)) + T, ( .,xm’y(j))
= (T4 — ’_174)(.7 .’ x(j)7 y(ﬂ)) + Sym <i w; (35’@’ ® S; _ 2:U’z®4)> (.7 : LL’(j)7 y(]))
i=1

= <T4 T+ Ti)(x .’x(j)7y(j)) + 3 (Sz{x(j)> ® (Sl{y(j)>

1€[k]
+ > wi (S9) @ (29) + 37wy (—2u82 (i, 29) (i, y?))
ic[k] i€[k]

(3.28)

where we use that Sym(-) is a linear operator satisfying Sym (,u‘?‘l) = u$*, and

1 1 1
Sym (S} ® S) = gS{@ S+ gsg@s; + gs; S
where for indices (i1, i2, i3, 14),
(S; s> S;) (ila Z'27 7:37 24) - (S,: ® S:) (Z.la i37 Z'Qa 7/4)

and (S! © S) (i1, 49, i3, 74) = (S} @ S!) (i1, 14, 99, i3).
Next, it follows from Lemma 3.3.4 that there exists a matrix P; such that ’ P, p (9(1 / (ﬁa))

T, (~, : 151) -9 , O(\/n / a). Furthermore, with probability at least 0.99, there ex~ists
a sequence of b; € [—D, D], for j € [4k], such that T} (-, Y Y jelak] bz ® y(j)) =1 (-, ° R-).

and ‘

Consider a cover, C, of the interval [—D, D] with points spaced at intervals of length 7 =
O(W\/jl/of‘))' Since we uniformly sample a;’s, with probability at least (7/D)°%), for all
J € [4k], |b; — a;] < 7, and we condition on this event. Thus,

<

F

T, (., . Z ajx(j)y(j)> S

JE[4K]

T ( S bzt ®y(j>) e

JE[4K]

F

n (3.29)

T, (.7 . Z (b; — aj)x(j) ® y(j))

JE[4K]

<o(nfa) +0(ra%) <O /n/a) .

F
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Taking the linear combinations with coefficients a; in Equation (3.28), we have

(7726196 ®y(J)—5¢=<T4—T4+Ti)(HZaxj)@@y])) Si— i ® pi

JE[4k] JE[4K]
jE[4k]  i€lk] jE[4k]  i€lk]

+ 3 a0 > wi (=208 (s, 29 (i y?))

JE[4k]  i€lk]

(3.30)

Setting P, = (ﬁ — Ty + Ti) (‘, Y jeian ajzy ) ) — S/, it follows from Lemma 3.2.9 that with
probability at least 0.99, (ﬂ — T4) (-, 2 ek ajm(j)y(j)) has Frobenius norm O(kDn) and it
follows from Equation (3.29) that with probability at least 0.99, T} (~, Y jepan AV )y(j)) — S
has Frobenius norm (’)(M). Setting the remaining terms to (;, with probability at least 0.99

we can bound their Frobenius norm as follows:

1Qillp < [l @ pual| p +

(Z w;S; & S, +w;S; 6 S — 2101‘/1?4) (-, Y ajx(j)y(j))

ic[k] JE[4K]

F
4 32 >
< 24 (omax s+ 25 4 kr) -]
6% ’Lek o F
2
S ( 1 (A+ 1))
Qo Vo @
1 2
o(1t27)
Vio?
(3.31)

where the first inequality follows from the triangle inequality, the second follows from our as-
sumptions that ||z; |, < 2/v/@, ¥ bjaWyY¥) = P, in the span of the S}, and |a; — b;| < 7 for
all j € [4k], and the third inequality follows from the definition of S/, the bound on Hp HF and
the bound on [|.S; — I|| .. O

3.3.5 Finding a Low-dimensional Subspace for Exhaustive Search

In this subsection, we will prove Proposition 3.3.3.

We start by extending Theorem 4 of [MV10], which shows that large parameter distance

between pairs of univariate Gaussian mixtures implies large distance between their low-degree
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moments. In the following, we use M;(F') = E [F”] to denote the j-th moment of a distribution
F. We show:

Lemma 3.3.7. There exists a constant C' > 0 such that the following holds: Fix any D > 0 and
0 < B < 1/(2(2k — 1)!D?*=3), Suppose that F = % wiN (w;, 02) is a univariate k-mixture
of Gaussians with w; > 3, and |;|,0; < D, for all i € [k]. If || + |02 — 1| = B for some i < k,
then

max | M;(F) = M; (W(0, 1))] > g7 0=

We give the proof of Lemma 3.3.7 in Section 3.3.6.

Lemma 3.3.8 (Bounding 1;’s and S,’s in non-influential directions for E [h,(M)]). Let M =
pilly, < 2/v/a, and
132 — 1|l < A for every i € [k]. For some B € R, let u € R? be a unit vector such that
IE [P, ((M,0)]| < B forall m € [2k]. Then, for § = 200 BY/(C 140D gpg S, = 55, — I, we
have that:

SF L wiN (s, 5) be a k-mixture of Gaussians on RY satisfying w; > a,

1. foralli <k,

(u, )], Ju (I — Sy)ul <6,
2. ||Sul3 < 200A/a” + B/a,

where C' > 0 is a fixed universal constant.

Proof. The 1-D random variable (u, M) is a mixture of Gaussians described by >°"F_, w, N ({p, u) , u' Zu).
Towards a contradiction, assume that there is an i € [k] such that |{u, u;)| + |[u' (I — ;)u| >
6. Then, applying Lemma 3.3.7, yields that there is a j € [2k| such that |M;({u, M)) —
M;(N(0,1))] = 6" +D!=1 " Applying Fact 3.2.5 implies that there exists an m € [2k] such
that

IE [P ((u, M))]| > 9—0(k) 1 (k+1)!1-1 > B,

yielding a contradiction.

We can now prove the second part. Recall that for S; = 3; — [ for every ¢, we have that

E [h4(./\/l)] = zk:wZSym (3 (SZ ® SZ) + 6 (SZ &® M;@Q) + ,UJ;(M) .

i=1
We consider the d x d matrix obtained by the natural flattening of the d x d tensor u®? - [hy(M)].
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Then, we can write:

W2 E [ha(M)] = Zwi<(uTSiu)S¢ +2(S5) (Ssu) T + (u, 1) S

i=1

+ 2 (uy ) i (Siw) 4 2 (uy ) (Siu)p + (w' S e + <u,ui>2uiu?) . (3.32)

u' S;ul < § and the hypothesis of the
— I|| < A. Thus, for each ¢, the first term in the summation

Now, from the first part, we know that for all i € [k],

above has Frobenius norm at most A(S . Using that (u, ui>2 < 62 from the first part of the lemma,

yields that, for each 7, the Frobenius norm of the third term is at most A2,

Next, using in addition that ||z, ||, < 2/+/« yields that, for each 7, the Frobenius norm of the
4th and 5th terms are at most 20A/y/« and the Frobenius norm of the 6th and 7th terms are at
most ¢ /. Thus, for each i and all but the 2nd term in the summation above, we have an upper

bound on the Frobenius norm of 40A /cv.

Now, since |E [hq ((M, u))]] < B, and w is a unit vector, we have that |[u®? E [hy(M)]||p <
B. Thus, combining the aforementioned argument with the triangle inequality, we have for each

i,

T 1
Iiull = [ (5i0) | < [0 B0l + 3w (7 S+ ) ISl
ic[k]
+§:@m(uuznmmwwm)+z}w((um +uT ) )
ick] i€ (k]
< B/a+156A/ac,
and the claim follows. L]

Lemma 3.3.9 (Subspace covering all the means and large singular vectors of S; = ¥, — I). Let
M =S8 wiN (i, %) be a k-mixture of Gaussians on R? satisfying w; > «, |||, < 2/va,
and |2 — I < Aforalli € [k]. Given 0 < n < 1, let T), satisfy HTA’” —E [hm(./\/l)]HF <7
for every m € [4k] and let X\ > 2n. Let V be the span of all the left singular vectors of the

d x d™ ! matrix obtained by the natural flattening of 1., with singular values at least \. Then,
for o = N/ QCFL R oo have that:

1 dim V< 4k + KOW) O(1 + 1a+ A /32
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2. Let

Vint = {/,Li}ie[k}U{’U | 3i € [K], s.t. ||v|l, = 1 and v is an eigenvector of S; and ||S;v||, > \/(_5}

v —Tyw||; < 206Y4A /a2, where Ty is the pro-

Then, for every unit vector v € Vi,

Jjection of v onto V.

Proof. From Fact 3.2.6, we have that E [A,,,(M)] = 3¢5y wi E [hin(G3)], where Gy = N (3, X5),

i<k

and since |||, < 2/v/@and ||%; — I||, < A, itfollows that | [h, (M)][|% < O (m(1 + 1/a + A)*™"

From Proposition 3.3.1, we know that

2

< 772+(9(m(1 + 1/@+A))4m

HTmH; <2 HTm [ (M)] .

Z+ 2 HE B (M))]

Thus, the number of singular vectors of the d x d™ ! flattening of T, with a singular value > A
is at most (7% + O(m(1 4 1/a + A))*™)/A2. Summing up this bound for all m € [4k], yields
the claimed upper bound on dim V.

For the second part, we will first bound (u, v) for any unit vector u orthogonal to the subspace

V. Towards this, observe that since u is orthogonal to V and ||ul|s = 1, we have
u-ElbnM))] < luflle + 1~ B (M)l < A+ <22,
F

where u - E [h,,(M)] is a matrix-vector product of u with a d x d™~! flattening of E [h,,,(M)].
For § = 2\M/(C* " (:+1)) applying Lemma 3.3.8 yields that

(pi, u)® + || Ssul|s < 6% + 200 /o < 2002 /a® . (3.33)

Now, if v is one of the 11;’s, then we immediately get from Equation 3.33 that (v, u)* < 200A /a2,
Similarly, note that if v is a unit length eigenvector of S; satisfying ||S;v||> > v/3, then,

1 1 S;
(u,v)* = ——— (u, Sw)* = 5 (Squ, v)* < ” sull :
1Sivll; 1Sivll; ISills
In both cases, setting u = (v — llyv)/ [[v — Iy v||, completes the proof. O

We can now complete the proof of Proposition 3.3.3:

Proof of Proposition 3.3.3. We know that S; — P, — S; is a symmetric, rank-£’ matrix such that
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k' = O(k?), described by the eigenvalue decomposition Z’? 700, , where v;’s are the eigen-

vectors and 7;’s are the corresponding eigenvalues. Since ||5;||, < A and

1+ A? 1+ A2
8, < 1Pl 10, + 151 < O yaja) + o St ) + A= o S5 |

we have that the number of singular values of S; that exceed 6/4 is at most © ( }*A \[) Recall
that from Lemma 3.3.9 it follows that the dimension of the subspace V is at most kX°®O(1 +

1/a+ A)* /A%, Thus, the dimension of V" is at most

4k+5

oo WU 811 g 1487 ) o1 (112)
/\2 3\/_ - 3
\/ﬁOé (5 n

Since V' contains V' constructed in Lemma 3.3.9, we immediately obtain that for every pu;,
2
12 = Ty i3 < 23V/6A.

Next, let u be a unit vector orthogonal to V. Then, since V' contains the V' described in

Lemma 3.3.9, we know that ||S;ul|5 < %x/c_SA. Similarly, since V'’ contains all eigenvectors of
2

’ < §/2. Thus, we can conclude that
. 2

H(Sl - Si)qu < VoA LetQ; = S, 7jv50] with orthonormal v; € R, We know such 7;°s

and v;’s exist because of the upper bound on rank(Q;). Therefore, for any j, |v] (S; — Si)u| <
%5 1/4A1/2_ On the other hand, for any j, we have that

S, with singular values exceeding /4,

0] (85 = Si)u = (v, u) 75 = | Pillp = (v, u) 75 — O(V/) -

Combining the two bounds above, yields that whenever 7; > ¢ 1/4,
10 10
| (v, u) | < O(Vn/m;) + ——0"* AV < =5 AN
aT; «
Thus, the matrix Q; = K 7w (Ilyv;) T has its range space in V’ and satisfies

|Q:—ai,

(k;251/4)+(’) k251/2A1/2 -0 5251/2A1/2 '
a o
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3.3.6 Parameter vs Moment Distance for Gaussian Mixtures

In this subsection, we prove Lemma 3.3.7. To that end, we will use the following two results; the

second one is from [MV10].

Lemma 3.3.10. Suppose N (1, 0%) and N (uz, 05) are univariate Gaussians with |j1;], |o;| < D,
for some D € R. If |j1 — pa| + |03 — 03| < B3, then the distance between raw moments of two

Gaussians is
My (1, 07)) = My(N (12, 03))| < (G + 1)!D7 .

Proof. By Proposition 3.2.3, the j-th raw moment of a Gaussian N (11, 02) is a sum of monomials
in ;1 and o2 of degree j. There are at most (j + 1)! terms in the polynomial. Thus, changing the

mean or the variance by at most 3 will change the j-th moment by at most (j + 1)!D'~!'3. [

Theorem 74. ([MV10]) Let F', F' be two univariate mixtures of Gaussians: ' = Zle wiN (i, 02)
and F' = Y8 wiN (11}, 0/%). There is a constant ¢ > 0 such that, for any § < ¢, if F, F' satisfy:

3. i = po| + |07 = o3| = B and | — | + |07 — o3| = B for all i # i

4. f<ming Y ; (|w2 — Wl A | — | + 0% — a;(i)g ), where the minimization is taken

over all mappings  : {1,... k} — {1,...,k'},
then
max |M;(F) — M;(F')| > g°®)

Jje2(k+k'—1)]

We are now ready to complete the proof of Lemma 3.3.7.

Proof of Lemma 3.3.7. We proceed via induction on k. Consider the base case, i.e., k = 1. Then,
either |p1| > /2 or |oy — 1| > 3/2, and thus the first or second moment differ by at least 32 /4.
Let the inductive hypothesis be that Lemma 3.3.7 holds for at most £ components.

Consider the case where |j; — 1| + |02 — 02| > S for all pairs of components i, 7’ € [k].

Then, by Theorem 74, we have that

max [V (F) = M0, 1))| 3 97 5 g 01,
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and the lemma follows.

Otherwise, we know that there exists a pair of components with parameter distance less
than S°°*'. In this case, we merge these two components and get a (k — 1)-mixture F’. By
Lemma 3.3.10, the distance between the j-th moments of F” and F is at most (j + 1)!Di~1 5",
Since we still have || + |0/ — 1| > § — 38°"* for all components i in F’, the inductive

hypothesis implies that

' N ‘ S B CFE CFk(k)!-1
e [M(F') = My(V(0,1))] > (5~ 357%)

By the triangle inequality, we can write
. _ ) > (F" — ) _ ) _ (F
JHGI%%(} | M;(F) — M;(N(0,1))] jer[%%}—(Q] | M;(F') — M;(N(0,1))] jen[égg] | M;(F) — M;(F)|
kp_ .
> (5 . 35(}’%!)0 k=1 (2% — 1)!D2k—360kk!

k+1 1—
> ﬁc (k+1)A 1 .

\

The last inequality follows from the assumption that 3 < 1/(2(2k — 1)!D?*=3). This completes
the proof of Lemma 3.3.7. [

3.4 Robust Partial Cluster Recovery

In this section, we give two robust partial clustering algorithms. A partial clustering algorithm
takes a set of points X = U;<;X; with true clusters Xi, Xo, ..., X} and outputs a partition of
the sample X = X{ U X} such that X| = U;esX; and X)) = U;¢5.X;, for some subset S C [K]
of size 1 < |S| < k. That is, a partial clustering algorithm partitions the sample into two non-
empty parts so that each part is a sample from a “sub-mixture”. This is a weaker guarantee than
clustering the entire mixture, which must find each of the original X;’s. We show that the relaxed
guarantee is feasible even when the mixture as a whole is not clusterable. In our setting, we will
get an approximate (that is, a small fraction of points are misclassified) partial clustering that
works for e-corruptions Y of any i.i.d. sample X from a mixture of £ Gaussians, as long as there
is a pair of components in the original mixture that have large total variation distance between

them.

A partial clustering algorithm such as above was one of the innovations in [BK20b] that

allowed for a polynomial-time algorithm for clustering all fully clusterable Gaussian mixtures.
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In this section, we build on the ideas in [BK20b] to derive two new partial clustering algo-
rithms that work even when the original mixture is not fully clusterable. Both upgrade the results
of [BK20b] by handling mixtures with arbitrary weights w;s instead of uniform weights and
handling mixtures where not all pairs of components are well-separated in TV distance. The first
algorithm succeeds under the information-theoretically minimal separation assumption (i.e. sep-
aration in total variation distance) but runs in time exponential in the inverse mixing weight. The
second algorithm is a key innovation of this paper — it gives an algorithm that runs in polynomial
time in the inverse mixing weight at the cost of handling separation only in relative Frobenius
distance. This improved running time guarantee (at the cost of strong separation requirement
that we mitigate through a novel standalone spectral separation step in Section 3.5) is crucial to

obtaining the fully polynomial running time in our algorithm.

In order to state the guarantees of our algorithms, we first formulate a notion of parameter
separation as the next definition.

Definition 3.4.1 (A-Parameter Separation). We say that two Gaussian distributions N (j11, 21)
and N (2, Xo) are A-parameter separated if at least one of the following three conditions hold:

1. Mean-Separation: 3v € R such that (j1; — pi2,v)% > A%0" (31 + o),
2. Spectral-Separation: Jv € R such that v' v > Av' Xy,

2
3. Relative-Frobenius Separation: 3, and 3 ; have the same range space and HEY (3, — 21)21/ 2 HF >
2
2 s,
op

As shown in [BK20b, DHKK?20], if a pair of Gaussians is (1 —exp(—O(A log A))-separated

in total variation distance, then, they are A-parameter separated.

Our first algorithm succeeds in robust partial clustering whenever there is a pair of com-
ponent Gaussians that are A-parameter separated. The running time of this algorithm grows

exponentially in the reciprocal of the minimum weight in the mixture.

Theorem 75 (Robust Partial Clustering in TV Distance). Let 0 < ¢ < a < 1, and n > 0.
There is an algorithm with the following guarantees: Let {j1;, ;} <) be means and covariances
of k unknown Gaussians. Let Y be an e-corruption of a sample X of size n > (dk)Ct /€ for
a large enough constant C > 0, from M = Y, w;N (u;, %;) satisfying Condition 3.2.45 with
OF) and v < ed3'k=C, for a sufficiently large constant C' > 0. Suppose

further that w; > « > 2¢ for every i and that there are i, j such that N (u;, %;) and N (pj, ;)

parameters t = (k/n)

are A-parameter separated for A = (k/n)°®).
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Then, the algorithm on input Y, runs in time n*/ )

over the draw of X and the algorithm’s random choices, the algorithm outputs a partition of Y
into Y1, Y, satisfying:

1. Partition respects clustering: for each i, max{%|Y1NX;|, E[YanX;|} > 1-n—0(e/a*),

and,

2. Partition is non-trivial: max; *|X; NY;|, max; £|X; NY3| > 1 —n — O(e/a?).

Our proof of the above theorem is based on a relatively straightforward extension of the ideas
of [BK20b], albeit with two key upgrades 1) allowing the input mixtures to have arbitrary mixing
weights (at an exponential cost in the inverse of the minimum weight) and 2) handling mixtures

where some pair of components may not be well-separated in TV distance.

In order to get our main result that gives a fully polynomial algorithm (including in the inverse
mixing weights), we will use a incomparable variant of the above partial clustering method that

only handles a weaker notion of parameter separation, but runs in fixed polynomial time.

Theorem 76 (Robust Partial Clustering in Relative Frobenius Distance). Let 0 < € < a/k < 1
and t € N. There is an algorithm with the following guarantees: Let {y;,;}i<) be means
and covariances of k unknown Gaussians. Let Y be an e-corruption of a sample X of size
n > (dkz)Ct /€ for a large enough constant C > 0, from M = Y, w;N (u;, %;) that satisfies
Condition 3.2.45 with parameters 2t and v < ed8'k=*, for a large enough constant C' > 0.
Suppose further that w; > « > 2¢ for each i € [k|, and that for some t € N, 5 > 0 there exist
i,j < k such that HET/Q(ZZ- — Ej)ET/QH; =Q ((k2t4)/(52/t044)), where Y is the covariance of
the mixture M. Then, the algorithm runs in time n°®, and with probability at least 2_0(é tog( 7))

over the random choices of the algorithm, outputs a partition Y =Y, U Y, satisfying:

1. Partition respects clustering: for each i, max {w%n’Yl NXil, g [Ya N XZ]} >1-3—
O(e/at), and,

2. Partition is non-trivial: max; ——|X; NY;|, max; - |X; N Y| > 1 — f — O(e/a?).

The starting point for the proof of the above theorem is the observation that the running time
of our first algorithm above is exponential in the inverse mixing weight almost entirely because
of dealing with spectral separation (which requires the use of “certifiable anti-concentration” that
we define in the next subsection). We formulate a variant of relative Frobenius separation (that
is directly useful to us) and prove that whenever the original mixture has a pair of components

separated in this notion, we can in fact obtain a fully polynomial partial clustering algorithm
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building on the ideas in [BK20b].

3.4.1 Algorithm

Our algorithm will solve SoS relaxations of a polynomial inequality system. The constraints here
use the input Y to encode finding a sample X' (the intended setting being X’ = X, the original
uncorrupted sample) and a cluster C'in X’ of size = an, indicated by z;s (the intended setting is
simply the indicator for any of the £ true clusters) satisfying properties of Gaussian distribution

(certifiable hypercontractivity and anti-concentration).

Covariance constraints introduce a matrix valued indeterminate II intended to be the square

root of 3, the sos variable for the covariance of a single component.

A

n=vu’
Covariance Constraints: A; = (3.34)
I’ =3

The intersection constraints force that X’ be e-close to Y (and thus, 2e-close to unknown sample
X).
Vi € [n], m? =m;

Intersection Constraints: A; = Yiemmi = (1—e)n (3.35)
Vi e n], mi(y, — ;) =0

)

The subset constraints introduce z, which indicates the subset C intended to be the true clusters
of X'.

Zi = an

Vi € [n]. 22 =z
Subset Constraints: A3 = (3.36)
Z'Le[n}

Parameter constraints create indeterminates to stand for the covariance 3 and mean i of C
(indicated by 2).

Parameter Constraints: A, = (3.37)

Certifiable Hypercontractivity : A=
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t
Vi <2 QZzzzj x—x) E.Q)* ( QZZZZJ a:—x) ZQ))
n 1,J<n n 1,J<n
N-E.Q) <l
a nz Z]Z;nzzzj ( Tp — ;) — ZQ) S 2 HQ”F

(3.38)
Here, we used the shorthand E.Q = —5 3, i<, 2%, Q (2] — 7).

In the constraint system for our first algorithm, we will use the following certifiable anti-

concentration constraints on C' for § = o PY*) and 7 = a/poly(k) and s(u) = 1/u? for every

u.
a1n2 > zizidss (( ; x;) ,v) < 22006 (UTEU)S((S)
Anti-Concentration : As; = W= -
s(n
” n2 ”ZI 2z 0o s, ((x; — .T;) ,v) <2207 (UTEU)
(3.39)

We note that the constraint system for our second algorithm (running in fixed polynomial
time), we will not use A5. Towards proving Theorems 76 and 75 we use the following algorithm
that differs only in the degree of the pseudo-distribution computed and the constraint system that

the pseudo-distribution satisfies.

Algorithm 77 (Partial Clustering).

Given: A sample Y of size n. An outlier parameter ¢ > 0 and an accuracy parameter n > (.
Output: A partition of Y into partial clustering Y, U Y.

Operation:

1. SDP Solving: Find a pseudo-distribution ¢ satisfying U>_, A; (UL, A; for Theo-
rem 76) such that I~E§ zi < a+ 04(1) for every i. If no such pseudo-distribution

exists, output fail.
2. Rounding: Let M = &__;[22"].

(a) Choose [ = O(i log(k/n)) rows of M uniformly at random and indepen-
dently.

(b) For eachi < {, let C; be the indices of the columns j such that M (i, j) >
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n*a® /k.

(¢) Choose a uniformly random S C [{| and output Yy = UiesCi and Yy =
Y\ Vi

3.4.2 Analysis

Simultaneous Intersection Bounds. The key observation for proving the first theorem is the
following lemma that gives a sum-of-squares proof that no z that satisfies the constraints U?_,.A;
can have simultaneously large intersections with the A-parameter separated component Gaus-

sians.

Lemma 3.4.2 (Simultaneous Intersection Bounds for TV-separated case). Let Y be an e-corruption
of a sample X of sizen > (dk:)Ct /e for alarge enough constant C' > 0, from M = 3", w;N (s, ;)
satisfying Condition 3.2.45 with parameters t = (k/n)°%®) and v < ed =8 k~*, for a sufficiently
large constant C > 0. Suppose further that w; > o« > 2¢ for every i and that there are i, j such
that N (115, %) and N (p;,%;) are A-parameter separated for A = (k/n)°®). Then, there exists

a partition of [k] into S U L such that, |S|, |L| < k and for z(X,) = ﬁ Yiex, Zi

{U?:lAi} W { Z 2(X)2(X;) < O(k*¢/a) + n/a} )

i€S,j€L

The proof of Lemma 3.4.2 is given in Section 3.4.3.

For the second theorem, we use the following version that strengthens the separation assump-
tion and lowers the degree of the sum-of-squares proof (and consequently the running time of
the algorithm) as a result.

Lemma 3.4.3 (Simultaneous Intersection Bounds for Frobenius Separated Case). Let X be a
sample of size n > (dk)" /e for a large enough constant C > 0, from M = 3", wiN (s, %) that
satisfies Condition 3.2.45 with parameters 2t and v < ed=3k=C*%, for a large enough constant
C > 0. Suppose further that w; > « > 2¢ for each i € [k|, and that for somet € N, § > 0
»H2(%; — Zj)ET/QHi =Q ((k2t4)/(ﬁ2/ta2)), where Y is the

covariance of the mixture M. Then, for any e-corruption Y of X, there exists a partition of

there exist i,j < k such that ‘
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[k] = SUT such that

LAl {Z > = ()5 + o<k2>e/a} .

1€S jeT
Here, z(X,) = w%n Yicx, ziforeveryr.

The proof of Lemma 3.4.3 is given in Section 3.4.4.

Notice that the main difference between the above two lemmas is the constraint systems they
use. Specifically, the second lemma does not enforce certifiable anti-concentration constraints.
As aresult, there is a difference in the degree of the sum-of-squares proofs they claim; the degree

of the SoS proof in the second lemma does not depend on the inverse minimum mixture weight.

First, we complete the proof of the Theorem 75. The proof of Theorem 76 is exactly the same
except for the use of Lemma 3.4.3 (and thus has the exponent in the running time independent of
1/«) instead of Lemma 3.4.2.

Proof of Theorem 75. Let f = O(n*a®/k). We will prove that whenever A > poly(k/n' )k =
poly (n%)k, Algorithm 77, when run with input Y, with probability at least 0.99, recovers a
collection Cy,Cy, ..., Cyof £ = (’)(é log k:/n) subsets of indices satisfying | U<, Cy| > (1 —
1’ /k*°)n such that there is a partition S U L = [{], 0 < |S| < ¢ satisfying:

min { [« ﬂU]egX] |C’ NUjerX; ]} < 1007 /a® + O(e/a?). (3.40)

We first argue that this suffices to complete the proof. Split [¢] into two groups Gg, G, as follows.
Foreach i, let j = arg max, . an|C NX,|. If j € S, additto G, else add it to G',. Observe that
this process is well-defined - i.e, there cannotbe j € S and j' € L that both maximize —n |ClﬂXr\
as r varies over [k]. To see this, WLOG, assume j € S. Note that —- |C’ N X; | 1/k. Then,
we immediately obtain: | Ujes X; N Ci| > 1/k. Now, if we ensure that ' < o?/k? and
e < O(a'/k), then, ﬁ]Cz N UjyerXj| is at most the RHS of (3.40) which is < 1/k;. This
completes the proof of well-definedness. Next, adding up (3.40) for each ¢ € S yields that

1
|Cil

| (Uieas Xi) NUjer X < O(log(k /1) /a) (' + O(e/a)) ,
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where we used that |Gg| < ¢. Combined with | U;<, Ci| > (1 — 1//k*)n, we obtain that
| Uieas Xi| =10/ /k" — O(log(k/n)/a) (if + O(e/a)) = n+ O(log(k/na)e/a?)

for ' < O(n*a®/k).

We now go ahead and establish (3.40). Let { be a pseudo-distribution satisfying A of degree
(k/n)Po¥ (k) satisfying INEC~ z; = « for every i. Such a pseudo-distribution exists. To see why,
let ¢ be the actual distribution that always sets X’ = X, chooses an ¢ with probability w; and
outputs a uniformly subset C' of size an of X; conditioned on C satisfying .A. Then, notice
that since X satisfies Condition 3.2.45, by Fact 3.2.43, the uniform distribution on each X; has
t-certifiably C'-hypercontractive degree 2 polynomials and is ¢-certifiably C'd-anti-concentrated.
By an concentration argument using high-order Chebyshev inequality, similar to the proof of
Lemma 3.2.49 (applied to uniform distribution on X; of size n > (dk)°®, C' chosen above
satisfies the constraints .4 with probability at least 1 — 04(1). Observe that the probabililty that
z; is set to 1 under this distribution is then at most o + 04(1). Thus, such a distribution satisfies

all the constraints in A.

Next, let M = E¢[22"]. Then, we claim that:

1. 04(1) +a > M(i,j) > 0 forall 7, j,
2. M(i,i) € o £ 04(1) for all 4,

3. Ej i M(i,j) > a® — 04(1) for every i.

The proofs of these basic observations are similar to those presented in Chapter 4.3 of [FKP " 19]
(see also the proof of Theorem 5.1 in [BK20b]): Observe that A }I {zizj =212 > 0} for every
i. Thus, by Fact 3.2.18, E[2;2;] > 0 for every i, j. Next, observe that .A }7 {1—2)=(1-2)*=>0}
for every ¢ and thus, A }5 {2i(1 — z;) > 0}. Thus, by Fact 3.2.18 again, we must have E[2;z;] <
]E[zz] < a + 04(1). Finally, A }7 {Zj %2 = 2 ) % = omzi}. Thus, by Fact 3.2.18 again, we
must have >, M (i, j) = > E[zz;] = any; E[z] € (a? & 04(1))n. Let B; be the entries in the
i-th row M; that are larger than o /2. Then, by (1) and (2), we immediately derive that B; must
have at least an/2 elements. Call an entry of M large if it exceeds on. For each i, let B; be the
set of large entries in row ¢ of M. Then, using (3) and (1) above gives that |B;| > a(1 — an/)n
for each 1 < i < n. Next, call a row ¢ “good” if ﬁ min{|U,e X, N B, |Upes X N B;|} <
1007 /a® 4+ O(e/a?). Let us estimate the fraction of rows of M that are good.

Towards that goal, let us apply Lemma 3.4.2 with 7 set to 7’ and use Fact 3.2.18 (SoS
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Completeness), to obtain >, cqcr Eicx, Ejex , M(i,7) < '+ O(e/a). Using Markov’s in-
equality, with probability 1 — /100 over the uniformly random choice of i, Ejcx , M (i,j) <
100257 + O(e/a*). Thus, 1 — /100 fraction of the rows of M are good.

Next, let R be the set of % log ( k;,o) rows sampled in the run of the algorithm and set

C; = B for every i € R. The probability that all of them are good is then at least (1 —
100 (k50

a’/100) © o ”‘T") > 1—a. Let us estimate the probability that | U;cr C;| > (1 —1//k*)n. For
a uniformly random ¢, the chance that a given point ¢ € B; is at least a(1—an'). Thus, the chance
that ¢ & U;cpB; is at most (1 — a/2)100/a1°g(k50/(a77/)) < 1/ /K. Thus, the expected number of ¢
that are not covered by U,¢ #C; is at most nn' /k*°. Thus, by Markov’s inequality, with probability
atleast 1—1/k'°, 1—n'/k*° fraction of ¢ are covered in U;¢ =C.. By the above computations and a
union bound, with probability at least 1 — 1’ /k'° both the conditions below hold simultaneously:
1) each of the 1% log (£ /') rows R sampled are good and 2) | Uier Cy| = (1 — n/k**)n. This
completes the proof. O

3.4.3 Proof of Lemma 3.4.2

Our proof is based on the following simultaneous intersection bounds from [BK20b]. We will use

the following lemma that forms the crux of the analysis of the clustering algorithm in [BK20b]:

Lemma 3.4.4 (Simultaneous Intersection Bounds, Lemma 5.4 in [BK20b]). Fix 6 > 0,k € N.
Let X = X, U Xy U ... X} be a good sample of size n from a k-mixture > ; wN (11;, ;) of
Gaussians. Let Y be any e-corruption of X. Suppose there are r,r' < k such that one of the
following three conditions hold for some A > (k/§)°®);

v 23w
v S(r)v’

1. there exists a v such that v' X(r")v > Av" X (1" )v and B = max;«y, or

2. there exists av € R? such that (u(r) — p(r'),v)s = A%" (S(r) + (1)) v, or;

4
op.

Then, for the linear polynomial z(X,) = ﬁ Y icx, i in indeterminates z;s satisfies:

5. [se) s se) 2 - ) > A2 <HE(7")_1/22(7“)1/2

{UissAi} bsoommany 12(X0)2(X0) < O(V6) + O(e/a)} -

Proof of Lemma 3.4.2. Without loss of generality, assume that the pair of separated components
are N(u1,>) and NV (uz, 3o). Let us start with the case when the pair is spectrally separated.
Then, there is a v € R% such that Av' ¥1v < v 3q0.
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Consider an ordering of the true clusters along the direction v, renaming cluster indices if
needed, such that v Y0 < 0350 < ... v 0. Let j < k' be the largest integer such that
poly(k/n)v"¥;v < v'¥,, v. Further, observe that since j is defined to be the largest index
which incurs separation poly(k/n), all indices in [j, k] have spectral bound at most poly(k/n)
and thus * Z’“” < poly(k/n)*.

Applying Lemma 3.4.4 with the above direction v to every » < j and ' > j and observing

that the parameter B in each case is at most @ < AF yields:

Al : {2(X,)2(X,) < Ole/a) + Vo } .

| O(k?s2poly log(A))

Adding up the above inequalities over all » < j — 1 and 7’ > j + 1 and taking S = [j — 1],
T = [k] \ [j — 1] completes the proof in this case.

Next, let us take the case when N (u1,>;) and N (g, ) are mean-separated. WLOG,
suppose (fi1,v) < {po,v) ... < {ur,v). Then, we know that {1, — p1,v) = Av' 0. Thus,
there must exist an i such that {(y; — ;. 11,v) = Av'Sv/k. Let S = [i] and L = [k]\ S. Applying
Lemma 3.4.4 and arguing as in the previous case (and noting that x = poly(k)) completes the

proof.

Finally, let us work with the case of relative Frobenius separation. Since ||21_1/ 22,1/ | <

poly(k), the hypothesis implies that ||X; — 2|/, > A/poly(k). Let B = £; — ¥y and let A =
B/ ||B||- WLOG, suppose (X1, A) < ... (X, A). Then, since (X, A) — (31, 4) > A/poly(k),
there must exist an ¢ such that (¥;,,, A) — (X;, A) > A/poly(k). Let us now set S = [i] and

= [F]\ 5.

Then, for every i € S and j € L, we must have: (X;, 4) — (¥;, A) > A/poly(k). Thus,
— 2
1%; — %]l = A/poly(k). And thus, A /poly(k) < ||§) — Sl < ‘ 1/2 1/2

1/2 1/2

) 2‘1/2 - ]H > A/poly(k).

Rearranging and using the bound on

A similar argument as in the two cases above now completes the proof.

3.4.4 Proof of Lemma 3.4.3

We use E. as a shorthand for _- 371, 2. We will write -3¢y 2 = 2(X,). Note that
2(X,) € [0,1]. And finally, we will write 2/(X,) = -3 cx, 2z;1(z; = y;) — the version of
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z(X,) that only sums over non-outliers.

We will use the following technical facts in the proof:

Fact 3.4.5 (Lower Bounding Sums, Fact 4.19 [BK20b]). Let A, B, C, D be scalar-valued inde-

terminates. Then, for any T > 0,
(0<SAB<A+B<1}U{0<C,DIU{C+D >} 222 (AC + BD > 7AB} .

Fact 3.4.6 (Cancellation within SoS, Lemma 9.2 in [BK20b]). For indeterminate a and any
teN,

{a%gl}%{agl

Lemma 3.4.7 (Lower-Bound on Variance of Degree 2 Polynomials). Let Q € R Then, for
any i,j < k, and 2'(X,) = w%n Yiex, zil(z; = v;), we have:

AI%{z'(X»%'(Xnk (520" ( (B EQR)

(Ex,Q — Ex Q)% \ w2w?,
(Bx.(@ - Ex,Q) ))}

2 2

+ % (Bx, (Q - Ex,Q?) + 2

w.

Proof. Let 2! = z;1(x; = y;) for every i. Using the substitution rule and non-negativity con-

straints of the z;’s, we have

F{ (Q - E.Q)*

Z - xj) - EZQ)2t
Jsn (3.41)

! > 22 (Q(a; — x;) — E.Q) }

1,j€Xy ori,j€X v

=

a’n?
Using the SoS almost triangle inequality, we have
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Afr { 1 > A5 (Q - 1) ~E.Q)

2,2
QNT jeX, origeX,,

><;>( s 5 e ma

ijeX, 1,j€EXr
1 2t 1 1 2
=272 ((wT/a)Qz(Xr)2 (Ex,Q — E.Q)* - oz21n2 > (Qa —x5) — EXTQ>2t)
1,j€X,
e ((wr,/a)2z(XTr)2 (EXT,Q - EzQ>2t - azlnz > (Q(x, — ;) — EXT’Q)%) }
i JEX,

Using Fact 3.4.5, we can further simplify the above as follows:

O (X2 (X)) (BEx, Q — EXTIQ)%

—27%w, /a)’Ex, (Q — Ex,Q)* — 276t(wr'/04)2EXT/(Q - Ex,Q)*

(3.43)

where the last inequality follows from the Certifiable Hypercontractivity constraint (A,). Rear-

ranging completes the proof.

We can use the lemma above to obtain a simultaneous intersection bound guarantee when

there are relative Frobenius separated components in the mixture.
Lemma 3.4.8. Suppose HE”/Q(ET, — E,,/)Zfl/QH > 108 Bg’f;i Then, for 2 (X,) = &= Yiex, 2
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1(y; = x;) for every r,
Al {#(X,)2(X]) < B} -

Proof. We work with the transformation z; — Y72z, Let ¥/ = X712y, %712 3/ =
Y28, 5712 and ¥/, = £71/2%,,271/2 be the transformed covariances. Note that transfor-

mation is only for the purpose of the argument - our constraint system does not depend on ..

Notice that ||, ||, < - and [|%)]], < 2.

We now apply Lemma 3.4.7 with ) = ¥/ — ¥,. Then, notice that Ex,@Q — Ex ,Q =
|2 = %% = ||Q]|5. Then, we obtain:

: ) , 320t *
A {Z o006 < (g ogng)
ot N Nt a? , t

(3.44)

Since X, and X, have certifiably C'-bounded variance polynomials for C' = 4 (as a conse-
quence of Condition 3.2.45 and Fact 3.2.43 followed by an application of Lemma 3.2.25), we

have:

Q 2 _ 6
Al {Em@ ~Ex, Q7 <62 eu | < H@H%} :

and

Q 2 _ 6
Als {Em(@ ~Ex, QP < 6= < ||Q||%} -

Finally, using the bounded-variance constraints in .4, we have:
Q,z 6
AFFEQ-E.Q < Q-

Plugging these estimates back in (3.44) yields:

z 1000Ct)*
AE {z'(XT)Qz’(X,,/)Q < <2t)2t} (3.45)
o [|Q[p
Plugging in the lower bound on ||Q||if and applying Fact 3.4.6 completes the proof. O
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We can use the above lemma to complete the proof of Lemma 3.4.3:

Proof of Lemma 3.4.3. WLOG, assume that ¥ = [. Let Q = %, — X and let Q = Q/ || Q|| -
Consider the numbers v; = tr(%, - ). Then, we know that max; ; |v; — v;| > ||Q]| . Thus, there

must exist a partition of [k] = S U T such that |v; — v;| > ||Q|| /k wheneveri € Sand j € T

i — Zj ||F ||Q||F /kl2 10° 5g/ﬁtt42) We can now apply
Lemma above to every i € S, j € T, observe that A }j {2(X)z(X,) < 2/(X,)2'(X) + 2¢/a},

and add up the resulting inequalities to finish the proof.

3.4.5 Special Case: Algorithm for Uniform and Bounded Mixing Weights

In this subsection, we obtain a polynomial time algorithm when the input mixture has weights
that are bounded from below. This includes the case of uniform weights and when the minimum
mixing weight is at least some function of k. At a high level, our algorithm partitions the sample
into clusters as long as there is a pair of components separated in TV distance and given samples
that are not clusterable, runs the tensor decomposition algorithm to list decode. We then use

standard robust tournament results to pick a hypothesis from the list.

Theorem 78 (Robustly Learning Mixtures of Gaussians with Bounded Weights). Given 0 < € <
Ok(1), let Y = {y1,v2,...,Yn} be a multiset of n > ny = poly,. (d, 1/¢) e-corrupted samples
from a k-mixture of Gaussians M = Y, wiN (1, %;), such that w; > . Then, there exists
an algorithm with running time poly, (n'/®) - exp (poly, (1/c, 1/€)) such that with probability at
least 9/10 it outputs a hypothesis k-mixture of Gaussians M = S i<k WiN (;21-, il) such that
dry (M, M) = Ox(e).

Briefly, our algorithm simply does the following:

1. Clustering via SoS: Guess a partition of the mixture such that each component in the
partition is not clusterable. Let the resulting partition have ¢ < k£ components. In parallel,
try all possible ways to run Algorithm 77 repeatedly to obtain a partition of the samples,

{}7]} jely into exactly ¢ components. For each such partition repeat the following.

2. Robust Isotropic Transformation: Run the algorithm corresponding to Lemma 3.6.4 on
each set ffj to make the sample approximately isotropic. Grid search for weights over
[, 1/k]* with precision a.
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3. List-Decoding via Tensor Decomposition: Run Algorithm 73 on each }7] Concatenate
the lists to obtain L.

4. Robust Tournament: Run the tournament from Fact 3.2.50 over all the hypotheses in L,

and output the winning hypothesis.

Proof Sketch. Setting A = (k;ko(k)), it follows from Theorem 75 that we obtain a partition of
Y into {Y;},e[, for some ¢ € [k] such that Y; has at most O(ke/) outliers, (1 — O(ke/a))-
fraction of samples from at least one component of the input mixture and the resulting samples
are not A-separated (see Definition 3.4.1). It then follows from Lemma 3.6.4 that the mean f;
and covariance Y; of Y; satisfy : a) ||u;]|, < O(Vek'/a'®),b) (1 — /ek'®/al®) T < %; <
(1 — ek /o) I, and ¢) ||Z; — I, < O(Vek!?/a'?).

Each component, ffj, of the partition can have at most £ components. Assuming these corre-
spond to {uw? 9T by, observe, Tragy w50+ ufh® (1) % (14 ek fat) 1
Thus, we have that ||u!” z < (1 + /ek'®) /a*® and combined with not being A-separated, it
follows that for all ¢/ € [k],

SU | S e

S D SR S N I LN
i€[k] i€[k] F
< Z wz(j) (EEIJ) _ Ez(J)) 4 O(k1‘5/042‘5)
1€[k] F
< O(A/a) .

There are at most O(kk) ways in which we can partition the set of input points such that each
resulting component is not partially clusterable. We run the algorithm in parallel for each one.
Then, for the correct iteration, we apply Theorem 72 to get a list £ of size exp(poly,(1/«a, 1/¢))
i =, <
‘F < Ole). Since (1 — 1/A) I =< 29 it then follows from Lemma 3.6.2

that the hypothesis is Oj(¢€)-close to the input in total variation distance.

such that it contains a hypothesis {wfﬂ ), ﬂl(j ), ifﬂ ) }iepr) such that |1Z}Z(] ) —wfj ) | < a,
O1(e)and 8 — 50

(2

Algorithm 77 is called at most O(kzk) times, and along with the robust isotropic trans-

formation, this requires poly,, (nl/ “1/ e). The grid search contributes a multiplicative factor
of (1/a)*. The tensor decomposition algorithm and robust hypothesis section poly, (n'/®) -
exp (poly,(1/a, 1/€)). Il
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3.5 Spectral Separation of Thin Components

In this section, we show how to efficiently separate a thin component, if such a component
exists, given sufficiently accurate approximations to the component means and covariances. This
is an important step in our overall algorithm and is required to obtain total variation distance

guarantees.

Specifically, the main algorithmic result of this section is described in the following lemma:

Lemma 3.5.1. There is a polynomial-time algorithm with the following properties: Let M =
Zle w;G; with G; = N (i, 2;) be a k-mixture of Gaussians on R4, and let X be a set of points
in R? satisfying Condition 3.2.45 with respect to M for some parameters (v,t). The algorithm
takes input parameters 1), 6, satisfying 0 < 6 < n < 1/(100k), and Y, an e-corrupted version of

X, as well as candidate parameters {|i;, i}z}zgk Then as long as
1. Cov(M) = 1/2,
2. ||l = fuslla < 6 and |Z; — Sillg < 6, foralli € [k, and
3. there exists an s € [k] such that ¥ has an eigenvalue < 1),

the algorithm outputs a partition of Y into Y1 UY5 such that there is a non-trivial partition of [k]
into ()1 U@y, so that letting M, j € {1, 2}, be proportional to Yicq, wiGiand W = Y icq. wi,
then Y; is an ((O(k*y) + O(n'/?*))/W;)-corruption of a set satisfying Condition 3.2.45 with
respect to M with parameters (O(kvy/W;), t).

The key component in the proof of Lemma 3.5.1 is the following lemma:

Lemma 3.5.2. Let M = Y% w;G; with G; = N (s, %) be a k-mixture of Gaussians in R?
with Cov(M) = 1/2. Suppose that, for some 0 < & < 1/(100k), we are given ji; and 3;
satisfying ||t — fislla < 6 and |2 — Si||p < 6, for all i € [k]. Suppose furthermore that for
some 1 > 0, there is a ¥, s € |k, with an eigenvalue less than 1. There exists a computationally
efficient algorithm that takes inputs 1, 0, [i;, S, and computes a function F : R — {0, 1} such
that:

1. For each i € [k|, F(G;) returns the same value in {0, 1} with probability at least 1 —
Or(n"/®9). We define the most likely value of F(G;) to be this value.

2. There exist i, j € [k| such that the most likely values of F(G;) and F(G;) are different.
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Furthermore, F(x) can be chosen to be of the form f(v-z), for somev € R%, and f : R — {0,1}

is an O(k)-piecewise constant function.

Given Lemma 3.5.2, it is easy to finish the proof of Lemma 3.5.1.

Proof of Lemma 3.5.1. We simply take the candidate parameters, obtain F' from Lemma 3.5.2,
and partition Y = Y; U Y5, so that F' is constant on both Y; and Y5. We let (), be the set of
i so that F'(G;) returns the value j — 1 with large probability. Letting the partition of X for
Condition 3.245be X = X; U...U X}, we let X/ = Uier X;. Lemma 3.2.48 shows that
the X satisfy the appropriate conditions for M;. It remains to prove that Y; equals X’ with
a sufficiently small rate of corruptions. The fraction of points misclassified by F' equals € (the
fraction of outliers in the sample Y') plus the misclassification error of F'. We note that given the
form of F' and the fact that the uncorrupted samples in Y satisfy Condition 3.2.45, the fraction
of misclassified samples from each component ¢ is at most the probability that a random sample
from G; gets misclassified (at most Oy (n*/(?*)) by Lemma 3.5.2) plus O(k~). Summing this over

components, gives Lemma 3.5.1. O]

Let us now describe the algorithm to prove Lemma 3.5.2 (and evaluate F’), which is given in

pseudocode below (Algorithm 79).

Algorithm 79 (Algorithm for Spectrally Separating Thin Components).

Input: Estimated parameters { i, il}zgk parameters 1, 0.

Output: A function F : R — {0,1}.

Operation:
1. Find a unit-norm direction v such that there exists s € [k|, oIS < 21,
2. Compute (v7S0) for all i € [k].

(a) If there exists j € [k] such that (v73;v) > V1, find a t such that \/n >t >
21 and there is no j € [k] witht < vTS0 < tQ(n~VR), Set F(x) = 1 if
there is an i such that |v - (xz — ;)| < V/tlog(1/n) and 0 otherwise.

(b) Otherwise, compute v - [i; for all i € [k|. Find a t between the minimum and
the maximum of v - [i; such that there is no v - fi; within 1/(20k) of t. Set
F(z) = 1ifv-z > tand 0 otherwise.
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Proof of Lemma 3.5.2. Let v be a unit vector and s € [k] such that v732,v < 25. By assumption,
we have that Varv - M > 1/2. Furthermore,

Varv - M = Zwi(vTEiv) + Zwi(v (i —p)? < Zwi(vTEiv) + > wi(ve (i — )

where (s is the mean of M. This means that either there exists j € [k] such that (v ,v) > 1/4,
or there exists j € [k] such that |v - (u; — p5)| > 1/4. Since we have approximations of these
quantities to order J, we have that there is j € [k] such that (UTijU) > 1/10 or that there is
j € ] with [0+ (7 — )] > 1/10.

We first consider the case that there is a j € [k] such that (v"3;0) > /7. Since there is
aj e [k] with (v"%;0) > /7 and another s € [k] with (vTS,0) < 2, there must be some
/7 > t > 21 such that there is no j € [k] with t < v"Su < tQ(n~Y/). Otherwise,
there must be at least one 3; in each 2 < Q(n~V/2R)i < /7, where we need more than k

components.

For a given x, we define F(z) to be 1 if there exists 4 such that |v - (z — ;)| < Vtlog(1/n),
and F'(z) = 0 otherwise.

To show that this works, we note that for all ¢ € [k], if TS0 < t, then Varv - Gy < t + 0,
and since |v - (1; — f1;)| < 6, by the Gaussian tail bound, we have that

(vVtlog(1/n) —6)°
2t + 9)

Pro, (17 -l > (Vilog(1/n) — ) < exp (— ) — 0.

Thus, all but an O(n)-fraction of the samples of G; have F'(z) = 1.

On the other hand, for components : with UTEA]Z»U > tn_l/ (2k) we have that Varv - G; >
tn~1/(2%) Then, the density of G; is at most 1//2ntn=1/(2%), So, the probability that a sample
from v - G; lies in any interval of length 2+/Zlog(1/n) is at most

1

\/ 27ty 1/ (2K)

Since there are k such intervals, the probability that F'(x) is 1 when z is drawn from G; is at

2v/tlog(1/n) = O(n/"M) .

most Ok(nl/ (4k)). This completes our proof of point (1), and point (2) follows from the fact that

we know of component G in one class and G in the other class.

We next consider the case where (v73;0) < V/n forall j € [k], and where |v - (fi; — fis)| >
1/10 for some j € [k]. Then we can find some ¢ between v - [i; and v - fi5 such that no v - ji
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is within 1/(20k) of ¢. In this case, we define F'(x) be 1 if v - © > t and 0 otherwise. To show
part (1), first consider ¢ € [k] such that v - i; < ¢ — 1/(20k). Then we have that v - p; <
t — 1/(30k). Furthermore, Varv - G; < 6 4 /7). Therefore, the probability that v - G; > ¢ is at
most exp(—Q((6 + 1/7)2)), which is sufficient.

A similar argument holds in the other direction for ¢ € [k] such that v - i; > ¢t + 1/(20k), and
statement (2) holds because we know that there are both kinds of components. This completes
the proof. O]

3.6 Robust Proper Learning: Proof of Theorem 67

In this section, we show how to combine the partial clustering, tensor decomposition, and re-
cursive clustering algorithms to establish our main result. The main theorem we prove is as

follows:

Theorem 80 (Robustly Learning k-Mixtures of Arbitrary Gaussians). Given 0 < ¢ < 1/ kko(k2)

and a multisetY = {y1, Y2, - . ., Yo } of n i.i.d. samples from a distribution F such that d+y(F, M) <
g, for an unknown k-mixture of Gaussians M = ;< wN (p;, 2;), where n > ng = d°® /poly(e),
Algorithm 81 runs in time n®Y exp (O(k)/e?) and with probability at least 0.99 outputs a hy-
pothesis k-mixture of Gaussians M = Sick WiN (ﬂi, f]z> such that dpy (M, M\) = O(e%),
with ¢, = 1/(100*FC* D kIsf(k + 1)), where C > 0 is a universal constant and sf(k) =

ey (K — @)! is the super-factorial function.
As an immediate corollary, we obtain the following:

Corollary 3.6.1 (Robustly Learning k-Mixtures of Gaussians in Polynomial Time). Given 0 <
e <1/exp l{:ko(kQ)), and a multiset Y = {y1, Y2, . . ., Yn } of n i.i.d. samples from a distribution
F such that dvv(F, M) < ¢, for an unknown k-mixture of Gaussians M = dik wN (15, ),
where n. > ng = d°® 1og® Y (1/e), there exists an algorithm that runs in time poly,(n,1/¢)
and with probability at least 0.99 outputs a k-mixture of Gaussians M = S i<k WiN (;21-, f)z)

such that dry (./\/l, M\) = (’)((1/ log(l/e))l/ (kO(kZ)))

The corollary follows by running Algorithm 81 with € <— \/1/log(1/¢) and applying Theorem
80.
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The algorithm establishing Theorem 80 is given in pseudocode below. Algorithm 82 takes as
input a corrupted sample from a k-mixture of Gaussians and outputs a set of k£ mixing weights,
means, and covariances, such that the resulting mixture is close to the input mixture in total
variation distance with non-negligible probability. Algorithm 81 simply runs Algorithm 82 many
times to create a small list of candidate hypotheses (consisting of mixing weights, means, and
covariances), and finally runs a robust tournament to outputs a winner. This boosts the probability
of success to at least 0.99.

Algorithm 81 (Algorithm for Robustly Learning Arbitrary GMMs).

Input: An outlier parameter € > 0 and a component-number parameter k € N. An e-

corrupted sample Y = {y1,ya, . .., yn } from a k-mixture of Gaussians M = > iclk] wN

Parameters: Let c;, = 1/(100°C*+V'sf(k + 1)k!) be a scalar function of k, where sf(k) =
[Liep (b — 1)! and C is a sufficiently large constant.

A

Output: A set of parameters { (W, [i;, 3;) }icr), such that with probability at least 0.99 the
mixture M = Siep) WiN (f, 33;) is O(e*)-close in total variation distance to M.

Operation:
1. Let L = {¢} be an empty list. Repeat the following exp (O(k)/e?) times :

(a) Run Algorithm 82 with input Y, fraction of outliers €, and number of com-
ponents k. Let the resulting output be a set of k mixing weights, means and

covariances, denoted by {(ﬁ)l, fii, f]l)} . Add {(ﬁ)z, fii, ii)}'e[k] to L.

1€[k]
2. Run the robust tournament from Fact 3.2.50 over all the hypotheses in L. Output
the winning hypothesis, denoted by { (0, ji;, ii)}ie[k].

Algorithm 82 (Cluster or List-Decode).

Input: An outlier parameter 0 < € < 1 and a component-number parameter k € IN.
An e-corrupted version Y = {y1,Ya,...,yn} of X, where X is a set of n samples
from a k-mixture of Gaussians M = > ic[k] wiN (i, 3;) such that X satisfies Condi-
tion 3.2.45 with respect to M with parameters (ed=3* k=% 8k + 48), where C' > 0

is a sufficiently large constant.

Parameters: Let c;, = 1/(100°C*+V'sf(k 4 1)k!) be a scalar function of k, where sf(k) =
[Licp (b — 1)l and C' is a sufficiently large constant.
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A

Output: A set of parameters { (W, fi;, X;) }ic[r] such that with probability at least exp (—O(k)
dry (Zie[k] Wi (fii, 1), M) < O(e™).

Operation:

1. Treat Light Component as Noise: If k = 0, ABORT. With probability 1/2, run
Algorithm 82 on samples Y, with fraction of outliers € + ¢/(0C* (*k+D) g
number of components k — 1. Return the resulting set of estimated parameters,
{(w;, fi;, f)i)}l-e[k_l], appended with (0,0, I). Else, do the following:

// We guess whether the event that the minimum mixing weight « is at least
E1/(106"<+1(Ic+1)!)

// holds. If it does not, we proceed with the algorithm. Else, we treat the smallest
weight

// component as noise and recurse with k — 1 components.

2. Robust Isotropic Transformation: With probability 0.5, run the algorithm corre-
sponding to Lemma 3.6.4 on the samples Y, and let |1, S be the robust estimates
of the mean and covariance. If k = 1, return (w =1,/, f]) Else, compute
UAUT, the eigendecomposition of ¥, and for all i € |n|, apply the affine trans-
formation y; — UTSV2 (y; — ).

// The resulting estimates |i, )y satisfy Lemma 3.6.4, and the uncorrupted samples
are

// effectively drawn from a nearly isotropic k-mixture.
3. With probability 1/2, run either (a) or (b) in the following:

(a) Partial Clustering via SoS: Run Algorithm 77 with outlier parameter € and

1/(50’““(1@-&-1)!).

accuracy parameter € Let Y1, Y, be the partition returned.

Guess the number of components in Y] to be some ki € [k — 1] uniformly at
random. Run Algorithm 82 with input Y1, fraction of outliers €'/(10¢"** (k+1)1)

and number of components k,, and let {(w§1> ﬂgl) f](l))} be the result-
1€[k1]

ing output. Similarly, run Algorithm 82 with input Y5, fraction of outliers
/0D | and number of components k—k1, and let {(11;1(2), a?, 2(2))}
1€

(2

be the resulting output. Output the set {(@§1)|Y]\/]Y], o, 251))} U
i€lk1]

{@Pmlr a5}
iG[k—kl]

// When the mixture is covariance separated, the preconditions of Theorem
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76 are
// satisfied (see Lemma 3.6.5). The partition is non-trivial, and the fraction
of outliers

; k41
// increases from ¢ — /(10" (k1Y)

(b) List-Decoding via Tensor Decomposition: Run Algorithm 73 and let L be
the resulting list of hypotheses such that each hypothesis is a set of parame-
ters {(fu;, f]i)}ie[k]. Lett =0© (61/(4OCH1(’“+1)!)) be an eigenvalue threshold.
Select a hypothesis, {(fi;, %) }icw) € L uniformly at random.

// Conditioned on not being covariance separated, we satisfy the precondi-
tions of

// Theorem 72 (see Lemma 3.6.6). The output is a list that contains { ji;, ii}ie[k]
// such that for all i € [k, ||fi; — pi]l, = O(el/mockﬂ(k“)!)) and

//Hii -y, L= 0(61/(2ock+1(k+1)1)>_

i. Large Eigenvalues: If for all i € [k], &; = 71, sample w; from [0, 1]
uniformly at random such that >, ; = (1 & ke). Return

{ (@, 08207 4, OR2OTE0R120T) |

1€[k]

// If all estimated covariances have all eigenvalues larger than T, the
recursion

// bottoms out and the hypothesis is returned.

ii. Spectral Separation of Thin Components: Else, Jv,i s.t. v S0 < T
Run the algorithm corresponding to Lemma 3.5.1 with input Y, param-
eter estimates {([i;, ii)}ie[k] and threshold 7. Let Y, and Y; be the re-
sulting partition.

// Use small eigenvalue directions to partition the points.

. Ifmin([Y3], [Va]) < €/@OORCE GO0 pyn Algorithm 82 with input
1/(400kCH*+1 (k+1)!)

BN

Y, fraction of outliers 2¢ and number of components

being k — 1, and let {(mﬁ”, ,&1(»1), 251))} be the resulting output.
i€k1]
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Output the resulting hypothesis

{(wi, R0 s+ f, UAl/QUszl/zUT)} U (0,0, 1).

i€[k—1]

B. Else, select ky € [k — 1] uniformly at random. Run Algorithm 82 with

1/(100kCk+1 (k1)1

input Y1, fraction of outliers € and number of compo-

nents being ky. Similarly, run Algorithm 82 with input Ys, fraction

100kCF+1 (k+1)!

of outliers €'/ ) and number of components k — ky, and

let {(@z@), ,ELZ(Q), XA]EQ))} be the resulting output. Output the set
iE[k—k1]
{@O /v, RO 1, ORVAOTEP BRI
iE[kl]
{0 Vol Iy | DR 4 ORPOTEP ORI,
’ie[k:—]ﬁ]

3.6.1 Analysis of Algorithm 81

To prove Theorem 80, we will require the following intermediate results. We defer some proofs

in this subsection to Appendix 3.10.

We use the following lemma to relate the Frobenius distance of covariances to the total vari-
ation distance between two Gaussians, when the eigenvalues of the covariances are bounded

below.

Lemma 3.6.2 (Frobenius Distance to TV Distance). Suppose N (ji1,%1), N (2, Xs) are Gaus-
sians with ||y — polle < 0 and |21 — Xo||p < 0. If the eigenvalues of 21 and Y are at least
A > 0, then dTv(N(,Lbl, 21),N(M2, 22» = 0(5/)\)

We start by showing that when Condition 3.2.45 holds, the uniform distribution on a (1 — ¢€)-

fraction of the points is certifiably hypercontractive.

Lemma 3.6.3 (Component Moments to Mixture Moments). Let M = >7;ciy wiN (s, 3;) be
a k-mixture with mean |1 and covariance . such that w; > «, for some 0 < o« < 1, and
forall i,j € [k, HZT/z (X, — %) ET/QHF < 1/y/a. Let X be a multiset of n samples sat-
isfying Condition 3.2.45 with respect to M with parameters (7, t), for 0 < v < (dk/a)™%,
for a sufficiently large constant ¢, and t € IN. Let D be the uniform distribution over X.
Then, D is 2t-certifiably (c/a)-hypercontractive and for d X d-matrix-valued indeterminate @),

5 {Ba (a7 Qe — BauQz)” < 00/ 220z 2 .
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Next, we show how to robustly estimate the mean and covariance of an e-corrupted set of
samples satisfying Condition 3.2.45 when the mixture is not partially clusterable, and make the

inliers nearly isotropic.

Lemma 3.6.4 (Robust Isotropic Transformation). Given 0 < ¢ < 1, and k € N, let o =
/OO RO - Lor M = S w, Gy with G = N (i, ;) be a k-mixture of Gaussians with
w; = aforalli € [k), and let p and 3 be the mean and covariance of M such that r = rank(X)
and for all i,j € [k|, HET/Q (2 — %)) ET/ZHF < 1/y/a. Let X be a set of points satisfying
Condition 3.2.45 with respect to M for some parameters (7,1). Given a setY, an e-corrupted
version of X, of size n > ng = d°W), there exists an algorithm that takes Y as input and in time

O

outputs estimators [ and S such that $ = UAUT is the eigenvalue decomposition, where
U € R™ has orthonormal columns and A € R"™ " is a diagonal matrix. Further, we can obtain
n samples Y' by applying the affine transformation y; — TSt/ (y; — ) to each sample, such

that a (1 — €)-fraction have mean 1’ and covariance 3 satisfying

1w, < O((1+ %5) efa),

2. (rromm) I 22 2 (mavmm) I

3. 1% = Ll < O(Vek/a),
where I, is the r-dimensional Identity matrix, and the remaining points are arbitrary. Let X'
be the set obtained by UT$1/2 (x; — ). Then, X' satisfies Condition 3.2.45 with respect to
SF L wN (UTEIT/Q(M — 1), UTiT/QZiST/QU) and parameters (7y,t), and Y' is an e-corruption
of X'

Proof. For any t' € N, it follows from Corollary 3.2.34 that M has 2t'-certifiably (4/«)-
hypercontractive degree-2 polynomials, since w; > « for all 7. Next, Lemma 3.6.3 implies
that the uniform distribution over X also has 2¢'-certifiably (8/«)-hypercontractive degree-2

polynomials and for d x d-matrix-valued indeterminate (),
Q 2 2
}7 {EM (xTQx — EMxTQx> < O(1/a) HZI/QQZI/zHF} )

Then, it follows from Fact 3.2.37 that if %t’ ¢!~/ <« 1, there exists an algorithm that runs in

time n°®) and outputs estimates /i and ¥ satisfying:

L [SV2 = ), < O fay 2,

2. (1= (k/a)e=?") 5 <5 < (14 (k/a)e!~%/") S and,

2
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3|2 (2 - %) 52| < (#/a)O( 7).

Setting ¢’ = 2, compute = UAUT, the eigendecomposition of 3, such that U € R™ " has
orthonormal columns, where » < d is the rank of Sand A € R™"isa diagonal matrix. Similarly,
let ¥ = UAUT be the eigendecomposition of ¥.. We apply the affine transformation y; —
UTS12 (y; — p) to each sample and thus we can assume throughout the rest of our argument
that we have access to e-corrupted samples from a k-mixture of Gaussians with mean ;' =
UTS12(p — fi) and covariance X' = U S1/2051/20. Then, we have that

0TS — ), <07

, S

i, = IE - )

ol 2) )

where the last inequality follows from (1) and (2). It also follows from (2) that

(rrm) == (=am) b

Multiplying out (3.46) with U T$1/2 on the left and $1/20 on the right, we have

2

1 o A A A A 1 A A A A A
E—— D 2 3 LT S y A p—— y § A )T 3) 1V
<1 + (k‘\/E/Oé)) - T 1= (kVe/a)

Observe that (2) implies that the rank of 3 and ¥ is the same, and thus U TS1/2881/20 = ..,

where I, is the r-dimensional Identity matrix. Finally, we have that

I = Lllp = |OTSV2ES120 - DTSSR0 <

UA-V20T (2 £) 0A-207
OA—1/2A1/2A—1/2UT (E . S) UA—1/2A1/2A—1/2UTH

= (E-2)=,

< A-1/2pL/2

< O(\/Ek/a) ,

where we use that A=1/2 = A=1/2AY2A~1/2 the sub-multiplicative property of the Frobenius

norm, the column span U and U is identical (see (2)), and the Frobenius recovery guarantee in

3).

Finally, it follows from Lemma 3.2.46 that Condition 3.2.45 is affine invariant and is thus

preserved under 2; — UTSY2 (x; — p), for i € [n], with parameters (v, ). O
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The above robust isotropic transformation lemma allows us to obtain a covariance that is
close to the identity matrix in a full-dimensional subspace (potentially smaller than the input
dimension). Therefore, we will subsequently drop the subscript for the dimension, wherever it is

clear from the context.

Next, we show that whenever the minimum mixing weight is sufficiently larger than the
fraction of outliers, and a pair of components is covariance separated, we can partially cluster the

samples.

Lemma 3.6.5 (Non-negligible Weight and Covariance Separation). Given 0 < ¢ < 1/ kko(kQ)
and k € N, let @ = /A0 B0 - [or M = SF w, Gy with Gy = N (1, 5;) be a k-mixture
of Gaussians with mixture covariance Y. such that w; > « for all i € [k] and there exist i, j € [k]
such that HEVQ (L — %)) ET/QHF > 1/\/a. Further, let X be a set of points satisfying Con-
dition 3.2.45 with respect to M for some parameters v < ed 3k=C% for a sufficiently large
constant C, and t > 8k. Let Y be an e-corrupted version of X of size n > ng = (dk)™™ /e,

Algorithm 77 partitions Y into Y1, Ys in time n®™) klog(k/a)

such that with probability at least «
there is a non-trivial partition of [k] into Q1 U Q2 so that letting M be a distribution propor-
tional to 3 ;cq, wiGi and W; = Yicq. wj, then Y is an O(el/(100k+1(k+1)!))—corrupted version

of Uicq, Xi satisfying Condition 3.2.45 with respect to M with parameters (O(kvy/W) ,t).

Proof. We run Algorithm 77 with sample set Y, number of components k, the fraction of outliers
e and the accuracy parameter 3. Since X satisfies Condition 3.2.45, we can set t’ > 24, § =
ol /44 (#)% < o in Theorem 76. Then, by assumption, there exist 4, j such that

k’2 N4
[ -3 97, > 2 = ()

We observe that we also satisfy the other preconditions for Theorem 76, since n > (dk/ )Q(l) /€.

Then, Theorem 76 implies that with probability at least a*1°2(*/®) the set Y is partitioned
in two sets Y} and Y5 such that there is a non-trivial partition of [k] into (); U Q)2 so that
letting M;; be a distribution proportional to > ;co, w;G; and W; = 3 icq, w;, then Y; is an
O(el/(lockﬂ(’““)!))-corrupted version of Ujcq, X;. By Lemma 3.2.48, U;cq, X; satisfies Condi-
tion 3.2.45 with respect to M with parameters (O(kvy/W) ,t). O

When the mixture is not covariance separated and nearly isotropic, we can obtain a small list

of hypotheses such that one of them is close to the true parameters, via tensor decomposition.
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Lemma 3.6.6 (Mixture is List-decodable). Given 0 < € < 1/ RO Jop o = /00 (k1))
Let M = Zle w;G; with G; = N (u;,%;) be a k-mixture of Gaussians with mixture mean
p and mixture covariance ¥, such that ||pu|, < O(\/%), Y —1Ir < OWe/a), w; =

for all i € [k, and ||3; — X;||. < 1/\/a for any pair of components, and let X be a set of

points satisfying Condition 3.2.45 with respect to M for some parameters v = ed~3k=C*, for
a sufficiently large constant C, and t = 8k. Let Y be an e-corrupted version of X of size n,
Algorithm 73 outputs a list L of hypotheses of size exp (1/ 52) in time poly(|L|, n) such that if we
choose a hypothesis {[i;, 3 }; — il < (el/(mckﬂ(k“)!)) and
’ I 3 IS O( 1/(200%+ (k+1)1) )for all i with probabllzty at least exp (—1/&?).

Proof. Recall we run Algorithm 73 on the samples Y, the number of clusters k£, the fraction

of outliers £ and the minimum weight o = /(100" (k+1)h)

Next, we show that the precon-
ditions of Theorem 72 are satisfied. First, the upper bounds on ||u||2 and |¥ — I||F imply
ik Wi (Zi + ,uZ'/LZ-T) =Y +pupu' = (1+ O(\/e/a))l. Since the LHS is a conic combination of
PSD matrices, it follows that for all i € [k], y;p] =< 1 (14 O(y/€/a)) I, and thus ‘ 2

=
Next, we can write:

Mz‘/ﬁiT

F\

I1Zi = Tllp < 1% = C+pe)lle + 12 = Tl + e’ e

Vek
ZEi—ij<2j+MjMD + s
; « «
JEk] F
ek ¢
<UD w (B =%y += +L+—
; (e «
Jjelk] r
4
<77
«

where the first and the third inequalities follow from the triangle inequality and the upper bound
n ’ e
every pair of covariances 3;, ;. So, we can set A = 4/a in Theorem 72. Then, given the

» and the last inequality follows from the assumption that 13 — %5 < 1/y/a for

definition of «, we have that
n=2k"O1 + AJa)* e = (9(62/5>

and 1/¢2 > log(1/n)(k + 1/a + A)***5/n2. Therefore, Algorithm 73 outputs a list L of hy-
potheses such that |L| = exp (1/¢?), and with probability at least 0.99, L contains a hypothesis
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that satisfies the following: for all i € [k],
A1/2
||ﬂi - Nz‘”g _ (9( > nG(k) _ 0(6—1/(200’v+1(k+1)!) _51/(100k+1(k+1)!)) _ 0(61/(200k+1(k+1)!)> and
a

8=, = oK) A% o _ O/ )
F o

(3.47)

Then if we choose a hypothesis in L uniformly at random, the probability that we choose the
hypothesis satisfying (3.47) is at least 1/|L| = exp (—1/&?). O

Finally, if the mixture has a covariance matrix with small variance along any direction, we

can further cluster the points by projecting the mixture along that direction.

Lemma 3.6.7 (Spectral Separation of Thin Components). Given 0 < ¢ < 1/ k’“o(k2), let a =
l/AOCH (kA1) - [or M = Zle w;G; with G; = N (13, %;) be a k-mixture of Gaussians with
mixture covariance ¥ such that |X — I||, < O(y/ek/a), and let X be a set of points satis-
fying Condition 3.2.45 with respect to M for some parameters (vy,t). Given a set Y being
an e-corrupted version of X of size n, and estimates {]i;, f]i},-e[k], such that ||p; — f1;]], <
(’)( 1/(20C% 1 (k+1)! ) HZ — il < (9( 1/ 2OCk+1(k+1)')) suppose there exists a unit vector v €
R such that v 3,0 < (’)( 1/( 400k+1(k+1 ) for some s € [k|. Then, there is an algorithm that ef-
ficiently partitions Y into Yy and Y5 such that there is a non-trivial partition of [k| into Q1UQ5 so

that letting M be a distribution proportional to Zz‘er w;G; and W; = Zz‘er w;, then'Y; is an
((’)(/{:27) + O(el/(SOkckH(Hl)!)/Wj>)—cormpted version of Ueq, Xi satisfying Condition 3.2.45
with respect to M ; with parameter (O(k~v /W) ,t).

Proof. We run the algorithm from Lemma 3.5.1 with the input being the samples Y, the current
hypothesis {/i;, 3; }icpx)» and the minimum eigenvalue 7 = O(el/ MOCHI(“””). Observe that the
mixture covariance satisfies X = (1 — O(\/ek/a)) I »= I/2 and the upper bound on means and
covariance is § = O(El/ (20kck+l(k+1)!)n) by assumption. Therefore, we satisfy the preconditions
of Lemma 3.5.1. Thus, we obtain a partition Y7, Y5 such that there is a non-trivial partition of [k]
into Q1 UQ2 so that letting M be a distribution proportional to ;e wiGiand W = 3. wi,
then it follows from Lemma 3.2.48 that Y is an (O(k%) + 0(61/(80kck+1(k+1)!)/ﬂ/j))—corrupted
version of ;e X; satisfying Condition 3.2.45 with respect to M with parameter (O(ky/Wj) ,t).
]
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3.6.2 Proof of the Main Theorem

We are now ready to complete the proof of Theorem 80.

#components < K,

Figure 3.1: If we assume a 1/poly(k) lower bound on minimum weight, then we can skip all
blue steps above; the partial clustering is carried out till it can no longer be done within a cluster
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-

and then followed by the tensor decomposition step.

Proof of Theorem 80. We divide the proof into two parts: first we show that Algorithm 82 out-
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:along small eigenvalue direction.
! (Lemma 6.10)

k,

puts a hypothesis M = Siei) WN (f, 33;) such that M and M are O(e*)-close in total varia-

tion distance with probability at least exp (—O(k)/e?); then we show that Algorithm 81 outputs

a k-mixture of Gaussians M such that M and M are Oy(e*)-close in total variation distance
with probability 0.99.
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We proceed the first part by induction on k. Let ¢, = be a scalar that only

(100)kc<k+11)15f(k+1)k!
depends on k, where C' > 0 is a sufficiently large universal constant.

Induction Hypothesis: Let X be a set of points satisfying Condition 3.2.45 with respect to
a k-mixture of Gaussians M for some parameters v = ed~**k~¢'* where C’ is a sufficiently
large constant and ¢ = 8k + 48. Given a set Y being an e-corrupted version of X of size n, the
outlier parameter € and the component-number parameter k£, Algorithm 81 returns a k-mixture of
Gaussians M such that M and M are Op(e)-close in total variation distance with probability
exp (—(3k —2)/&%).

Base Case: For k£ = 1, the algorithm returns the single Gaussian with mean /i and S at Step
2. Suppose the true Gaussian is NV (p, X2). It follows from the proof of Lemma 3.6.4,

=72 =, = =72 (2 =, < O(ve)

2

and

=2 (8 - 2) =77, < o(ve) |

and thus it follows from Fact 3.2.1 that the total variation distance between the hypothesis Gaus-

sian and the true Gaussian is at most O(1/€). We can then conclude that the base case is true.

Inductive Step: We assume that our induction hypothesis holds for any m < k and then
prove that the induction hypothesis holds for k.

Small Clusters Can be Treated as Noise. Conditioning on the base case being true, we begin

10CHF+1 (k4+1)1)

by guessing whether the minimum weight is less than €'/ with equal probability.

Let Wi = min; wi. If wpg < /00 G our algorithm takes step 1 with prob-
ability 0.5. In this case, we treat the smallest component as noise and recurse on the set of
samples Y. We set the number of components to be £ — 1 and the fraction of outliers be-
ing € + /TR 9 l/A0CH (kDY) - By Lemma 3.2.48, Y is an 2¢V/(10C" T (k1)
corrupted version of a set satisfying Condition 3.2.45 with respect to a (k — 1)-mixture for
parameters y = O(k:sd’gkk’clk/(l - wmin)) < ed 8FD(k — 1)"¢"*=1) and t = 8k + 48.
Thus applying the inductive hypothesis to Y, we learn the mixture up to total variation dis-

tance Oy( (26//A0C" 1 E+DD) ™) < O (ec*) with probability 0.5 exp (—(3(k — 1) — 2)/22) >

exp (—(3k — 2)/£2). Now we may assume for all i € [k], w; > €!/(10C* (k+1)h)

Mixture is Covariance Separated. Leta = ¢"/(10C" " 0D and by = {3 N (5, 23), N (15, 55) |
|2 — ]| > a~/2} be the event that the samples were drawn from a mixture that is covari-
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ance separated. First, consider the case where 1/ is true. We will run 3(a) with probability 0.5.
Then it follows from Lemma 3.6.5 that Y can be partitioned into Y; and Y5 in time d°M | such
that they both have at least one component and the fraction of outliers in each set Y7, Y5 is at most
¢t/ (0CF TR+ with probability a©*10s(:/2))  Then, we can guess the number of components
in Y} and we will be correct with probability 1/k. Conditioned on our guess being correct, let Y3

consist of k1 components and Y, consist of &£y components and k; + ko = k.

Let ()1 U ()2 be the non-trivial partition of [k] in Lemma 3.6.5, M be a distribution propor-
tional to 3 e, w;G; and W; = >ieq, Wi, then By Lemma 3.2.48, Y is an O<61/(100k+1(k’+1)!))_
corrupted version of U;c, X; satisfying Condition 3.2.45 with respect to M with parameters
v = O(kedfgkkfc/k/a) < ed %% (k;)%% and t = 8k + 48. Then, applying the inductive
hypothesis on Y} for j = 1,2, with number of components k;, we can learn the mixtures M
up to total variation distance error Ok(ec’“f / (IOCkH(Hl)!)) with probability exp (—(3k; — 2)/£?).
Finally if this is the case, we combine the two hypotheses on Y7, Y5 by multiplying each weight
in the hypothesis of Y; by |Y;|/|Y| and then taking union of two hypotheses. Then our com-
bining method gives a final output that learns our full hypothesis to total variation distance error
Ok(eckl/(mckﬂ(k“)!)) + Ok<ec’€2/(mck+l(k“)!)) < Oy(€*) with probability at least 0.5 - 0.5 - 1 -
a@klos(k/a)) exp (— (3K — 2)/e2) exp (—(3ky — 2)/e%) > exp (—(3k — 2)/&2).

Mixture is not Covariance Separated. Next, consider the case where v, is false. =~ With
probability 0.5, the algorithm guesses correctly and executes Step 2. Since the mixture is not
covariance separated, we satisfy the preconditions of Lemma 3.6.4, and after applying the trans-
formation in Step 2, 3, the covariance of the mixture M, is \/ck/a-close to the r-dimensional
identity, where r is the rank of . However, since we obtain the subspace exactly, we can simply

project all samples on the subspace and we drop the r in the subsequent exposition.

Let X’ be the set of points obtained by applying the Affine transformation from Step 2 as
defined in Lemma 3.6.4. Then, X" satisfies Condition 3.2.45 with respect to a nearly isotropic
mixture and parameters y = ed~**k~¢"¥ and t = 8k + 48 so that we can continue the algorithm
with X’. Whenever we return a hypothesis in the following steps, we will first apply the inverse
of the transformation on our estimates /i; and iz Since total variation distance is affine invariant,
we have the same error guarantee in total variation distance after applying the transformation.

From now on, we reduce to the case where X is y/zk/a-close to the Identity.

There is a 50% chance our algorithm runs Step 3(b) and we will analyze the remainder of
this case under that assumption. It follows from Lemma 3.6.6 that we obtain a hypothesis
(s Seb iy such that s — i, < O(eH/CA ) an 5, — 5], < O(evenc )
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with probability exp (—1/¢?). Conditioned on the hypothesis being correct, we now split into
two cases: either all eigenvalues of all the estimated covariances are large (in which case we
obtain total variation distance guarantees), or there is a direction along which we can project and

cluster further.

Covariance Estimates have Large Eigenvalues. For the hypothesis {/i;, f]i}ie[k] from the last
step, we compute all the eigenvalues of the estimated covariance matrices, ii, for all i € [k].
If, for all i € [k], Amin (f]l> > cet/WCH kDY we Tand in Step 3(b).i that we guess the mix-
ing weights @; uniformly in the range [0, 1] and then we output the corresponding hypothesis
{a;, fi;, f]i}ie[k}. With probability at least £*, 1; are within ¢ of the true mixing weights. Under
this condition, by Lemma 3.6.2, the mixture M= > iclk] N (M“ ) is Ok< 1/( 4ock+1(k+1)')> <
Oy(e*)-close to M in total variation distance with probability 0.5 - 0.5 - € - exp (—1/¢?) >
exp (—(3k — 2)/&?).

One Covariance Has a Small Eigenvalue. Consider the case (Step 3(b).ii) where there ex-
ists a unit-norm direction v and an estimate ; such that v' ;v < cel/(A0C TR+ ¢ then
follows from Lemma 3.6.7 that we can partition Y into Y; and Y5 such that each has at least
one cluster and the total number of outliers in both Y; and Y5 is at most (’)( 1/( gokckﬂ(k*l)'))

If Y; or Y, has size less than ¢/(400kC* (k+1)1)p, then we can treat it as noise and get an ad-
ditive O(e'/(400KC* 1 (1) error in total variation distance. Otherwise, the fraction of outliers
in both sets is at most 0(( 1/(80kC*+1(k+1)!) )/(61/(400kck+1(k+1)!)n)) — (’)( 1/( 100kck+1(k+1)'))
We then guess the number of components, ki, in Y; with success probability 1/k. Let ky =
k — k; be the number of components in Y. Then, conditioned on this event holding, Y; is
an (’)( 1/(100kGH 1 (k+1)! ))—corrupted version of a set satisfying Condition 3.2.45 with respect to
a mixture of k; components with parameter v = ked ¥ k=% /a < ed 8% (k;)=¢"*) and
t = 8k + 48. We can apply the inductive hypothesis to Y; with number of components %k, and
fraction of outliers O(el/(loo’“ckﬂ(k“)!)
tal variation distance Ok<eck1/ (wowk“(k“)!)) with probability exp (—(3k; — 2)/e?). A similar

argument holds for Y5. Finally if this is the case, we combine the two hypotheses on Y7, Y5 by

), and conclude that we learn the components of Y} to to-

multiplying each weight by |Y;|/|Y’| and then taking union of two hypotheses. Then our com-
bining method gives a final output that learns our full hypothesis to total variation distance error
Ok(Gckl/OOOC’k-‘rl(k—l—l)' ) L0, ( Chy / (100CH+1 (k1)1 )+ (9( 1/(400kCH+1 (k+1)1) ) < Oy(e) with prob-
ability atleast 0.5- 0.5 1 - exp (—1/e? — (3ky — 2)/e* — (3ky — 2)/?) > exp (—(3k — 2)/£?).

Sample Size and Running Time of Algorithm 82 By Lemma 3.2.49, we need n > kt“"d’/~*
samples to generate X satisfying Condition 3.2.45 with parameters (v, ). We set y = ed 8%k ~C"*
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and t = 8k +48. Then n > ng = (8k)°*d°®) /3, The running time in each sub-routine
we invoke is dominated by the running time of the tensor decomposition algorithm, and by
Lemma 3.6.6 in the worst case this is poly(| L|, n) = poly (exp (1/?) ,do(’“)/e?’) = d%" exp (1/£2).

This completes the first part of the proof.

Aggregating Hypotheses. We run Algorithm 82 repeatedly on set Y and add the return hy-
pothesis into a list £ until with probability 0.99, there exists a hypothesis M € L such that M
and M are O()-close in total variation distance. Since Algorithm 82 outputs a correct mix-
ture with probability exp (—(3k — 2)/&?), we will run Algorithm 82 for exp (O(k)/e?) times.
Then the total running time is exp (O(k)/e?) - d°*) exp (1/2) = d°® exp (O(k) /£?).

Robust Tournament. Then we need to run a robust tournament in order to find a hypothesis
that is close to the true mixture in total variation distance. Fact 3.2.50 shows that we can do this

efficiently only with access to an e-corrupted set of samples of size O(log(1/¢)/e%*).

This completes the proof. ]

3.7 More Efficient Robust Partial Cluster Recovery

In this section, we prove the following upgraded partial clustering theorem. In contrast to Theo-

rem 76, here we obtain a probability of success that is inverse exponential in k instead of 1/cv.

Theorem 83 (Robust Partial Clustering in Relative Frobenius Distance). Ler 0 < € < a/k < 1
and t € N. There is an algorithm with the following guarantees: Let Y be an e-corruption of a
sample X of size n > (dk:)Ct /€ for a large enough constant C' > 0, from M = 3, w,N (i, 3;)
that satisfies Condition 3.2.45 with parameters 2t and v < ed~8k~*, for a large enough con-
stant C' > 0. Suppose further that w; > « > 2¢ for each i € [k|, and that for some t € N,
B > 0 there exist i, j < k such that || 1/2(3; — zj)EWH; = Q ((k2t1)/5%1at), where 3 is the

oM and

covariance of the mixture M. Then, for any n > \/€/«, the algorithm runs in time n
with probability at least 2-°%)(1 — O(n/a — /7)) over the random choices of the algorithm,

outputs a partition Y =Y, UY, satisfying:

Ve N X} = 1-0(/m)-
O(WZ) where X; C X corresponding to the points drawn from N (u;, ;).

1. Partition respects clustering: for each i, max{ LY N X

2. Partition is non-trivial: max; ——|X; NY}|, max; ——|X; N Ys| > 1 - O(/1) — O(4£;).

na’
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3.7.1 Algorithm

Our algorithm will solve SoS relaxations of a polynomial inequality system. The indeterminates
in this system are X' (that is intended to be the guess for the original uncorrupted sample),
a cluster of size an within X' (indicated by z;s) with mean [ and covariance matrix S and I1
(intended to be the square root of i)). The input corrupted sample Y is a constant in this inequality
system. Let U € R and m, z € R? also be indeterminates of the proof system. The system
can be thought of as encoding the task of finding clusters C within Y that satisfies certifiable

hypercontractivity of degree 2 polynomials.

We present the constraints grouped together into meaningful categories below: The first set

of constraints enforce that 3. is the square of II.

: . n=vvu’
Covariance Constraints: A; = . (3.48)
=3

The intersection constraints force that X' intersects Y in all but an en points (and thus, 2e¢-

close to unknown sample X).

Vi € [n], m? =m;
Intersection Constraints: A; = Yiemmi = (1—e)n (3.49)
Vien], z(g—x;)=0

)

The subset constraints enforce that z indicate a subset of size an of X'.

Zi = an

_ Vi € [n]. zi =z
Subset Constraints: Az = (3.50)
Zze[n}

Parameter constraints create indeterminates to stand for the covariance 3 and mean it of C
(indicated by z2).

1 = / A~ / AN T 2
L =%
o ;21: zi (w5 — 1) (w5 — f)

Parameter Constraints: A, = (3.51)

228



Certifiable Hypercontractivity : A=

Vi <25 E.(Q - E.Q)" < (Ct/a)2" (E.(Q — E.Q)°)'

2 (3.52)
E.Q-EQP<10(.) QI

1

a

where we write E.() as a shorthand for the polynomial ain > 2:Q(x;) and E,(Q — Ex, Q)%

for the polynomial - 37, z; (Q(azg) — =Yin ziQ(x;))Qj for any j. Note that Q) is a d x d-matrix
valued indeterminate. Observe that () itself can be eliminated from the system as is standard in
several applications of SoS proofs in obtaining a succinct set of polynomial constraints (see

Section 4.3 on “Succinct Representation of Constraints” in [FKP ' 19] for an exposition).

Algorithm 84 (Polynomial Time Partial Clustering).

Given: A sample Y of size n. An outlier parameter ¢ > 0 and an accuracy parameter n > (.
Output: A partition of Y into partial clustering Y, U Y.

Operation:

1. Mean and Covariance Estimation: Apply Robust Mean and Covariance Esti-
mation (Fact 3.2.36) to estimate [i and > such that %E = )y =< 1.5% where X is

the covariance of the uncorrupted input mixture.

2. Approximate Isotropic Transformation: For eachy; € Y, let §j; = X1/ (y; — ).
Let Y/ = Uzgngz

3. SDP Solving: Find a pseudo-distribution f satisfying U?_, A; such that ]Ef z; €
a =+ 04(1) for every i. If no such pseudo-distribution exists, output fail.

4. Rounding: Let M = E__;[22"].

(a) Generate candidate clusters: For { = O(1/alogn/«) times, draw a uni-
formly random i € [n) and let C; = {j | M (i, j) > o?/2}. Let £ = U;<,C;.

(b) Candidate 2nd Moment Estimation: For each CA'z € L, let S; be the output
of running robust 2nd moment estimation with Frobenius error (Lemma 3.7.5)

on C; with outlier parameter 1, = O(< + a%) :

(c) Merge candidate clusters: For each i < {, find L; to be the collection of
all j such that ||S; — S;||» < 2CT for a large enough constant C > 0. Set

229




C,UL; =B, Repeat on L\ {L; Ui}.

(d) Output a union of a random subset of candidates: For L = U; Bi, choose
a uniformly random subset S of L', set Y1 = Ujeséj and set Yo =Y \ V1.

Analysis of Algorithm

Lemma 3.7.1 (Success of Step 1). Let . be the output of the robust covariance estimation algo-
rithm (Fact 3.2.36) applied to the input sample Y with outlier parameter €. If Y is an e-corruption
of a sample X from a GMM with minimum weight > « > Q(,/€), mixture mean p and covari-
ance Y. satisfying Condition 3.2.45, then,

0.5 <X < 1.5%,

|72 = m|, < O(Vefo).

Proof. The lemma immediately follows by noting that GMMs with minimum weight « are 4-
certifiably 1/a-subgaussian (Fact 3.2.27) and o > Q(1/€).

O

Lemma 3.7.2 (Simultaneous Intersection Bounds for Frobenius Separated Case). Let X = X U
Xo U ... X} be a sample of size n > (dk)Ct /€ for a large enough constant C' > 0, from M =
> wilN (i, X;) that satisfies Condition 3.2.45 with parameters 2t and v < ed~8' k=%, Suppose
further that |||, < 2 for every i, |Zi||, < L for every i and the mixture mean p, covariance
¥ satisfy ||pll, < 1and 0.51 < ¥ < 1.51. Let 7 = 108%, for any > 0. Then, given any
e-corruption'Y of X, for every i, j such that ||3; — Zj||2F > Q(7),

{ULiA B (7 ()7 (0) < 8
where 2'(X;) = ﬁ Yiex, Zzi1(x; = y;) for everyi.

Proof of Theorem 83. First, since Y is an e-corruption of a sample X from a GMM such that X
satisfies Condition 3.2.45, our robust mean and covariance estimation procedure (Step 1) applied
to the mixture succeeds and recovers an estimate of the covariance that is multiplicative 1 £ 0.5-
factor approximation in Lowner order. Thus, for the rest of the analysis, we can assume that
the smallest and largest eigenvalue of the mixture covariance are at least 0.5 and at most 1.5.

Since each component has weight at least «, this means that each of the constitute component
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covariance can now be assumed to have a spectral norm at most 1.5/ .

Next, by an argument similar to the one presented in the proof of Theorem 75, the convex
program we wrote is approximately solvable in polynomial time and is feasible whenever the
uncorrupted sample X satisfies Condition 3.2.45. The only change here is in the certifiable
hypercontractivity constraints where instead of the RHS of the bounded variance constraint is
stated in terms of ||Q||% instead of ||TIQIT||3, with an additional slack of O(1/a?). This modified
constraint is satisfied by all true clusters by an application of Lemma 3.2.25 since each of their

covariance has spectral norm at most 1.5/«

Rounding Let M = I~E<~ 2z'. Then, by an argument similar to the proof of Theorem 75, we

can conclude:

1. 04(1) + > M(z,5) > 0.
2. 30 M(i,7) = (& — 0a(1))n for every i.
3. For every 1, let B; be the set of “large entries”: i.e. j such that M(i,j) > «?/2. Then,

|B;| = an/2.

In the following, let M/; denote the i-th row of M and || M;||, for the sum of the non-negative

entries of the vector M,.

Candidate Clusters Forevery i, let F; C [k] be the setof all ' € [k] such that ||; — Xy > 7
(i.e., F; is the set of indices of true clusters whose covariances are far from that of the ¢-th cluster
in Frobenius norm). For every row j € [n], let C(j) € [k] be such that j € X¢(;) Let’s call j-th

row of M “good” if z; = y; (i.e j-th sample is not an outlier) and the following condition holds:

>y o<l (2).

r€Fgj) LEXrTe=ye

Thus, by Markov’s inequality, the fraction of non-outlier entries in B; that come from X,
such that ' € F, is at most 2 (%)
no

Let us estimate the fraction of good rows now. From Lemma 3.4.3 and Fact 3.2.18, we have
that for every r and ' € F}.:

E[2/(X,)? (X)) < 5.

231



Here, recall that 2/( X)) = ﬁ >i<n 2i1(y; = x;) for every r. Summing up over 1’ € F, yields:

Ly S 8 By <ns.

r' el i€ Xrixi=y; JEX, 11w j=Yy;

w;n

Thus, by Markov’s inequality, with probability at least 1 — 1 over the choice of 7 € X, such
that z; = y;, it must hold that:

> > Elmzyl<n <B> :

r'eFr jeX, ixj=y; n

Using that (1 — ¢/a)-fraction of ¢ € X, satisfy z; = y;, for every r, we conclude that

1 — n — €/a-fraction of the rows X, are good.

Thus, with probability at least (1 —n —¢/a)’ > (1 —O({(n+¢/a))), every candidate cluster
picked in Step 1 of our rounding algorithm corresponds to the large entries from a good row of
M.

We next claim that we cover most of the points in the input in the union of the candidate

clusters:

| Uiy G| > (1 N ) n (3.53)

with probability at least 1 — /7. To see why, let’s estimate the chance that an element j € [n]
does not appear in any of the Cis. First, we can assume that j-th row of M is good (this loses us
n+€/a-fraction js). For each such j, there are at least an /2 large entries. Since M is symmetric,
the j-th column of M also has an/2 large entries. Further, j appears in Uiggéi if at least one of
the an/2 large entries are chosen in our rounding. The chance that this does not happen in any of
the ¢ picks is at most (1 — a/2)%. Since £ = O (é log(l/n)), this chance is at most O(7). Thus,
in expectation |[n] \ U;<,C;i| < O (n + ¢/a) n. By Markov’s inequality, with probability at least
L= /1 [n] \ UieeGil <O (Vi1 + o5 ) n.

By a union bound, with probability atleast 1—O (nf — el/a)—/n > 1-0 (77 log(1/n)/a — \/ﬁ) ,
we must thus have both the following events hold simultaneously:

N €
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and, for every 1 < ¢ < /,

ICin (Urerg, Xim)| <2 (77504 + e/a) NleAR (3.55)

Merging Candidate Clusters Observe, following the proof of Theorem 76, we know that there

exists a partition of Y into sets Y7 and Y5 such that for all 7,

B
X; Yo N X; — — —
max { Y3 N XL R0 Xl > 1= 0(va) - O(L)
and
L X nv L xinvl>1-0(m - o(-2)
n i 1]s n ) 2| = \/ﬁ 770[2'

Next, we show that the merging step preserves this partition. For each C;, let C‘{ = (N
UjgFo,X;- Thatis, CA’{ is the subset of C; obtained by removing points from “far-off™ clusters

and the outliers. Then, since we know that |C;| > an/2 and | X N'Y| > (1 — €)n, we must have
1Ci| — |CY) = 1| Cy| < ( < 4+ naQ) |C;|, where we note that 7} < (% + T}%)

Thus, C! is a collection of > (1 — 7/)an/2 points from the submixture Ujgreq, X We
know that each p; is of /5 norm at most 1/«, each ¥; has spectral norm at most 1/« and that
for every r,7’ & Fou, |5, — Sv||% < 7. Further, ., is at most 7 + 1/a = O(7)-different in
Frobenius norm from the covariance of the sub-mixture. By an argument similar to the proof
of Lemma 3.2.42, we can establish that the submixture with components r such that r ¢ F;
is O(7)-certifiably bounded variance. Since C/ is a subset of this sub-mixture of size an,/2, we
immediately obtain that C! is O(7/a)-certifiably bounded variance. Thus, applying Lemma 3.7.5
with outlier parameter 7, to input C yields an estimate .S; of the 2nd moment of C’{ within a
Frobenius error of at most O(7/«)) From Lemma 3.7.6, this is an additional O(1/«) different in
Frobenius norm from the 2nd moment of the sub-mixture which, as argued above, is itself at most
O(r) different in Frobenius norm from ;. Chaining together yields that ||%; — S;||3 < O(7/a)

for some constant C'.

Since for every r € S, 7' € T it holds that |, — /][5, > Q(7/a), conditioned on the good
event above, our algorithm never merges C; and C’j whenever ¢, j are non-outliers and ¢ is in
some cluster in S and j is in some cluster in 7. On the other hand, if ¢, j belong to the same
cluster, then, the corresponding estimate ||S; — 5|3 7 < 2CT7. Thus, our merging process always

merges together any such candidates.

As a result, the output of the merging process can have at most one ¢ from any true cluster
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— thus, the number of distinct members of £’ is at most k. We note that the running time is
dominated by computing a pseudo distribution satisfying the union of all the constraints (Step 3
in Algorithm 84) and requires n°® time. Step 4 computes a degree O(1) sos relaxation for at

most O(¢) components and the merging only requires a fixed polynomial in d and & time.

3.7.2 Proof of Lemma 3.7.2

In the following lemma, we show that the constraint system A, via a low-degree sum-of-squares
proof, implies that a lower bound on the variance of any degree 2 polynomial on X’ whenever

the cluster C' (indicated by z) appreciably intersects two well-separated true clusters.

Lemma 3.7.3 (Lower-Bound on Variance of Degree 2 Polynomials). Let Q € R**? be any
fixed matrix. Then, for any i,j < k, and 2'(X,) = w%n Yiex, % - W(yi = x;), we have for any

r#r' e [k],

(32Ct/ )
(EXTQ - EX,J Q)Qt

Al {z’(Xr)z’(X;) < ( - 7 (EZ(Q — EZQ)Q)t

2
wiw

2 2

o (@B + 5 (Be@- ) ) |

T,

Proof. Let zi = z;1(y; = x;) for every i. For every 1 < r < k, let Ex, () denote the expectation
of the homogenous degree 2 polynomial defined by @Q): Ex, Q = w%n >ijex, Q(x;) for every r
where Q(x;) = z] Qx;. Similarly, let E.Q be the quadratic polynomial in z defined by E.Q =
L 3 i< 21Q(z;). Using the substitution rule and non-negativity of the z/s, we have for any

r,r’ € [k]:

(3.56)
z — Z 2 (Q(xs) — EzQ)Qt }

an iEXr,-UXT/ =Y

Then, using the SoS almost triangle inequality (Fact 3.2.21), we have:
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A%{l Y Q) — E.Q)

AN e X, 0X,,
>27 (1 > % (Ex,Q-E.Q)" — — Z —Ex,Q)’ )
RS " iex,
b2 (S (Ex.Q-B @)Qt—i > 2 (Q) —Ex,Q)”
an 1€ Xrii:x;=y; ' o ’ an 1€X 1 ,xi=y; ' Z o
_g-2t [ Wr i N 2t
=2 (a (X ) (EXT‘Q EzQ) an ig}i (Q(sz) EXTQ) )

IGX ’

+oH (“::’zxm (Bx,@-BQ)" 3 (Qr) - By, Q) ) }

(3.57)

Next, observe that by the SoS almost triangle inequality (Fact 3.2.21), we must have:

Al {(Bx,@ - B.0)" + (Bx,@ - B.Q)" > 27 (Ex.Q - Ex, )"}

Further, note that .4 }7 {%z’(XT) + (X)) < =32 < 1}. Thus, using Fact 3.4.5
2
with A = 22/(X,), B = “2/(X,), C = (Ex,Q — E.Q)*.and D = (Ex,Q —E.Q) " and
T=292"2 (EXTQ —Ex, Q)2 , we can derive:

> E.(Q — E.Q)*

> 9 (X, (X,) (Bx, @ - B, Q)

_ ot E Q- Ex.Q) — 276tﬂEXr/ (Q —Ex, Q)Qt
o «

> Q_GtMZ/(XT)Z’(XT,)(EXTQ —Ex,Q)*

a2

2t

= Yt (Ctfa) (Bx, (Q - Ex.Q)) = X (Ct/a)* (Bx, (@ - EXT,@)Q)t }

(3.58)
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where the first inequality uses the Certifiable Hypercontractivity constraints (.4,) and the last
inequality follows from the Certifiable Hypercontractivity of X, and X, (Condition 3.2.45).
Rearranging completes the proof.

]

We can use the lemma above to obtain a simultaneous intersection bound guarantee when

there are relative Frobenius separated components in the mixture.

Lemma 3.7.4 (Lemma 3.4.3, restated). Suppose Hz—lﬂ(zr - zr,)z—WH > 108575 Then,
for 2(X;) = ﬁ Siex, Zi - Wy = 1),

Al {2(X,)2(X,) < B} .

Proof. WLOG, we will work with the transformed points z; — X~%/2z; where ¥ is the covari-
ance of the mixture. Note that our algorithm does not need to know X — this transformation is

only for simplifying notation in the analysis that follows.

Lety, = 212y, -1/2 5 =212y, »7-1/2pd 3, = 2—1/2ET/2—1/2 be the transformed

covariances. ‘ 12|, < 2 X

We now apply Lemma 3.4.7 with Q = %, — 3,.. Then, notice that E XTQ - Ex, Q =
2 N -
|t ) (Z = S e — (S, — ) > ||Q|| % — 2. Then, we obtain:

. 320t/ \*
AR {Z(XT)Z(XW) s (EXTQ - EXNQ> |

a2 9 t le% 9 t a ) t
<wrwr, (Ez(Q - E.Q) ) + o (EXT/(Q -Ex,Q) ) + o (EXT(Q —Eyx, Q) )) _

(3.59)

Since X, and X, have certifiably C'-bounded variance polynomials for C' = 4 (as a conse-
quence of Condition 3.2.45 and Fact 3.2.43 followed by an application of Lemma 3.2.25), we
have:

Ex,(Q —Ex, Q) <6]S/°Qs’|

10 9 10 2
< oz 1QIE < 19

and
- - 2 10 10
Ex,(Q - Ex,Q) < 6[S120517" < QIS5 < — QS
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Finally, using the bounded-variance constraints in .4, we have:
Q,z 9 10 9
AFFEQ-E.Q < 5 1@} -

Plugging these estimates back in (3.59) yields:

AE {z(Xr)z(Xr/) < (1000Ct/a)* <a2 o « >

Qe \w " wp " wuy
3 (1000CH* _ 3(10000t)2t}

S wwe QT a2 ||Qfx

(3.60)

Plugging in the lower bound on ||Q||% and applying cancellation within SoS (Fact 3.4.6)
completes the proof. ]

3.7.3 2nd Moment Estimation Subroutine

The following lemma gives a 2nd moment estimation algorithm with error in Frobenius norm
for distributions that have a certifiably bounded covariance. The proof is very similar to the SoS

based mean and covariance estimation algorithms but we provide it in full for completeness here.

Lemma 3.7.5 (2nd Moment Estimation in Frobenius Norm). Let 1/100 > n > 0. There is an

0(1)

n time algorithm that takes input an n-corruption Y of an sample X of size n and outputs

an estimate M, of the 2nd moment of X with the following properties: Let X C R? be a

. . ) 2 2 .
collection of n points satisfying IT {pl( >sex (Q(:L’) - ﬁ@(m)) <C HQHF} for a matrix-
valued indeterminate (). Let My = % Soex 2. Then, the estimate M, output by the algorithm
satisfies:

|3, - a |} < 800

Proof. Consider the constraint system with scalar-valued indeterminates z; for 1 < ¢« < n and

d-dimensional vector-valued indeterminates z, x5, . . ., z), with the following set of constraints:
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Vi

N
S
Nl\')

P = i
Y zi=01-nn
=1
M, = fZ:c’ a (3.61)
Vi<n 2T = 2y

1 1 2
Ly (TQd - 13 2Tor) < clal}
n;3 ni3

Observe that X’ = X and z; set to the 0-1 indicator of non-outliers satisfies the constraint system.

Thus, the constraints are feasible.

Our algorithm finds a pseudo-distribution ¢ of degree 10 satisfying the above constraints and
output ]E[Mg} Let us now analyze this algorithm. The key is the following statement that gives a
sum-of-squares proof of closeness of M2 and M5 in Frobenius norm. We use the notation E x ()
and Ex/Q to abbreviate - > | 2 Qxz; and = 377 ' T Q! respectively.

(im0 15 0d)

2
Z(l — zil(z; = yz))%Tsz - fEl:Q$;>

=1

(1 = =212 = ) (ig (a7 Qi — ] @x;)2>

< 20 - <7ll i (szsz - EXQ>2 + Xn: (mliTQx; — EX’Q)2 + (ExQ — EX/Q)2>
=1 i=1

S|

< 20n(2C |Q|1%) + 20n (ExQ — EXIQ)Q}

where the first inequality follows by the SoS version of the Cauchy-Schwarz inequality and the
2nd by the SoS version of the Almost Triangle inequality.

Rearranging and using that 1 — 2017 > 1/2 now yields that:

o {( Z$TQ% - —Zx’TQx )2 < 80C HQH?}
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Notice that the LHS above equals the linear polynomial <M2 — M5, Q). We now plug in Q) =

M, — M, to obtain:
Q
AR {

Applying Fact 3.2.24 yields:

~ 4 ~ 2
- ], < soc a2 |

Al {HMQ ~ M < 80404774}

Taking pseudo-expectations with respect to Q: and using Holder’s inequality for pseudo-
distributions yields that
Y 8 _m_ |l 8 A4, 4
e~ M, < e | s, < st
Taking the 4-th root, we can conlcude our rounded value Mg = ]Eé- Mg satisfies:

M, — MQHi < 80C.

This completes the proof.

We also note the following simple consequence of the certifiable bounded variance property

that follows via an argument similar to the one employed in the proof of the previous lemma.

Lemma 3.7.6 (Subsamples of Bounded-Variance Distributions). Let X C R be a collection of

n points satisfying I% {ﬁ Yrex(Qz) — ﬁ@(w))z <C HQH;} for a matrix-valued indeter-
minate (). Let My = |)1(—‘ S.ex x| be the 2nd moment of X. Let S C X be a subset of size at

least B| X|. Then,
2
1
31
s P

reS

s {H@ZMT—MQ
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Proof. We have by the Cauchy-Schwarz inequality:
2
a {(|X| ¥ 1€ 50T~ M. Q) < (g1l 57) (ST - 3. 0)2)

zeX zeX
S
<({57) 1tz

We now substitute in @ = 73 ,cx 1(z € S)(z'Qz — M, to obtain:

2

E e Y [0 ()] - DR

reX F
We now apply Fact 3.2.24 to yield:
8 4
Q 1 T 5]
— » 1(xeS)(z' Qur—M)| < (
g {H X % Y
We finally apply Fact 3.4.6 to conclude that:
s Hl S 1(z € 8) (2" Qz — My) " ('S|>
N & S U]
Rescaling gives the claim. [

3.8 Getting poly(¢)-close in TV Distance: Proof of Theorem
68

Theorem 85 (Robustly Learning k-Mixtures with small error). Given 0 < ¢ < 1/ K and a
multiset Y = {y1, Y2, ..., Yn} of ni.i.d. samples from a distribution F such that dvvy(F, M) <

for an unknown k-mixture of Gaussians M =Y, wN (p1;, 2;), wheren > ng = d°®poly,, (1/5)
there exists an algorithm that runs in time n°®Vpoly, (1/¢) and with probability at least 0.99 out-
puts a hypothesis k-mixture of Gaussians M = i<k WiN (/L-, f]l) such that dry (/\/l, /\7) =
O(e), with ¢, = 1/(100FC*+D'EIsf(k + 1)), where C > 0 is a universal constant and
sf(k) = e (k — @)! is the super-factorial function.

In order to obtain the above theorem, we require recovering a polynomial sized list of candi-

240



date parameters, in addition to the efficient partial clustering result we obtained in the previous
section. To this end, we show the following list-recovery theorem which is similar to Theorem

72, but the algorithm outputs a polynomial-size list instead.

Theorem 86 (Recovering a small list of candidate parameters). Fix any o > € > 0, A > 0. Let
X, a sample from a k-mixture of Gaussians M = %", w,N (u;, ;) satisfying Condition 3.2.45
with parameters v = ed~S*k=C*, for C a sufficiently large universal constant, and t = 8k, and
let Y be an c-corruption of X. Let X' be a set of n' = O (en/ (k° (A* + 1/a*))) ™" fresh sam-
willy < 2 and |5~ 1], < A
for every i € [k], then, given k,Y,Z and ¢, the algorithm outputs a list L of at most {! =

ples from M and Z be an e-corruptionn of X'. If w; > «,

O ((k5 (At +1/ 044))4}C / n4k) candidate hypotheses (component means and covariances), such
that with probability at least 99/100 there exist {]i;, f]i}ie[k} C L satisfying ||p; — i, <

O(%) n%®) and ’ I 3 IR O(k*) %/QUG(k),forallz' € [k]. Here,n = (2k)*O(1/a + A)** .
/) g G(k) = m The running time of the algorithm is poly(|L|,|Y|,d*) -
poly,(1/e).

3.8.1 Proof of Theorem 86

We use the following notation and background from Moitra-Valiant [MV 10]:

Definition 3.8.1 (Statistically Learnable). Given ¢ > 0, we call a mixture of Gaussians M =
> wilN (i, ;) e-statistically learnable if min; w; > € and min, ; dry (N (i, ), N (g, 55)) =
E.

Definition 3.8.2 (Correct Subdivision). Given a Gaussian mixture of k Gaussians, M = 3, w; N (p;, ;)
and a mixture of k' < k Gaussians M = > WilN (i, il) we call M an e-correct subdivision
of M if there is a function 7 : [k] — [k'] that is onto and

1. Vj € K], <e

Zi:ﬂ(i):j w; — @j
2. Vi€ [k, lms = ey | + 113 = Bzl r < &

Theorem 87 (Theorem 8 in [MV10]). Given an e-statistically learnable Gaussian mixture M

in isotropic position, for some € > 0, there exists an algorithm that requires n = poly(d/e)

samples and runs in time O(poly, (n)) and with probability at least 99/100 recovers an e-correct
sub-division M. Let the corresponding algorithm be referred to as PARTITION PURSUIT.
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The algorithm has two steps: first run the first three steps of Algorithm 3.2 to get the list
L' of S and Vé; then apply the following proposition to learn the mixture in the subspace Vé.
This proposition is a generalization of Theorem 87 without the assumption that the total variation
distance between each pair of components is at least . The sample and time complexities has a
worse, but still polynomial dependence on . Note that although the algorithm in the proposition
is non-robust, we can take a sample without noise with constant probability because the algorithm

only requires a polynomial number of samples in €.

Algorithm 88 (Efficient List-Recovery of Candidate Parameters).

Input: Ane-corruptionY of a sample X from a k-mixture of Gaussians M = 3", w;N (i, 3;)
Let Z be an additional e-corrupted sample of size n' from M.

Requirements: The guarantees of the algorithm hold if the mixture parameters and the

sample X satisfy:

1. w; > aforalli € [k],

2. lill, < 2/v/a foralli € [K

3138 = 1| < Aforalli € [k

4. X satisfies Condition 3.2.45 with parameters (,t), where v = ed~8k=C%, for
C' a sufficiently large universal constant, and t = 8k.

5. The number of fresh samples ' = O (en/ (K° (A* + 1/a*)))™*", for a fixed

constant c.

Parameters: 7 = (2k)*O(1/a + A)* 51/(ko(k2>), D = C(k*/(ay/m)), 6 = ot/ (C*H (k1))
¢ =100log k (n/ (k° (A* + 1/a*))) ™™, for some sufficiently large absolute constant
C>0,A=4n ¢ =101+ A?)/(\/n0°), 1 =0 (\/551/4/a),

Output: A list L of hypotheses such that there exists at least one, {]i;, il}lgk € L, sat-

isfying: || — fuill, < (’)(%/2) n“® and ’Zi -3 s S O(k*) %/277(;(’“), where
Operation:

1. Robust Estimation of Hermite Tensors: For m € [4k], compute T,, such that
MAX e [4k] HT m — E [hm(M)] HF < n using the robust mean estimation algorithm
in Fact 3.2.35.
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2. Random Collapsing of Two Modes of Ty: Let L' be an empty list. Repeat ('
times: For j € [4k|, choose independent standard Gaussians in R?, denoted by
x() 49 ~ N(0, 1), and uniform draws ay, as, . . ., a, from [—D, D). Let S be a
d x d matrix such that for all . s € [d], S(r,s) = ¥ e a;Tu(r, 5,29, y7)) =
S et @5 Sgneia La(r, s, g, 1)z (9)yW) (h). Add S to the list L.

3. Construct Low-Dimensional Subspace: Let V' be the span of all singular vectors
of the natural d x d™! flattening ome with singular values > \ for m < 4k.
For each S € L/, let Vé be the span of V' plus all the singular vectors of S with

singular value larger than 5'/*.

4. Moitra-Valiant for Low-Dimensional Subspace: Initialize L to be the empty
list. For each S € L, let P = UUT be the orthogonal projection matrix onto
the span of V., where U € R*? has orthonormal columns. Let m = dim Vé
and let Z C Z be a randomly chosen subset of size poly(m/ey). Let U, denote
the first m columns of U and for all z € Z, compute U 2. Run PARTITION
PURSUIT on the resulting set of points and let { ,&f ) f]zp }Yicpw be the parameters
corresponding to the e-correct subdivision output by PARTITION PURSUIT. Let
al = [(AP)T,0] be a d dimensional vector padded with Os and %; be a d x
d matrix with if in the top left m x m sub-matrix and 0’s elsewhere. Add
(U, USUT 4 (S + 1) — P (I + S) Plicpy to L.

Proposition 3.8.3. Given ¢ > 0 and a sample X of size poly(d, 1/¢) from a k-mixture of Gaus-
sians M with mixture covariance Y such that 0.991 < > =< 1.011 and satisfies w; > ¢, the
PARTITION PURSUIT algorithm runs in time poly(d,1/¢) and with probability at least 9/10

returns an O(g)-correct sub-division, denoted by M.

Recall, the PARTITION PURSUIT algorithm satisfies Theorem 87 and we will prove that
with an appropriately chosen parameter ¢, PARTITION PURSUIT also satisfies Proposition 3.8.3.
The main idea is that if any two components are actually close enough in total variation distance,
then any algorithm with access to only a polynomial number of samples could never distinguish
these two components from a single Gaussian. So if all pairwise distances are either sufficiently
large or sufficiently small, the algorithm will behave as if it were given sample access to a mixture

that meets the requirements of Theorem 87.

Lemma 3.84. Given 0 < ~,0 < 1 and two distributions, D, and Dy over R? such that
drv(Dy1,Dsy) < 7, let Xy be set of n i.i.d. samples from Dy and X5 be n i.i.d. samples from
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D,. Let A be any algorithm that takes as input X, and outputs a list of m real numbers,
Y1 = {yiticim), such that y; € [—1,1] with probability at least 1 — 0. Then, for any T > 0,
A on input X, outputs a list of m real numbers Yo = {y; }icm) such that with probability at least
1 =06 — (dmnvy/7), foralli € [m), |y —yi| <7

Proof. Let U, be the uniform distribution over X; and U; be the uniform distribution over Xs.
Then,

dry (Us,Us) < V2H? Uy, Us) = V2nH? (Dy, Ds)
< V2ndpy (Dy, D,) (3.62)

< V2
Consider the family of functions F that take as input n samples and output a single bit in {0, 1}.
We know that for any function f € F, the probability that f(X;) # f(X>) is at most v/2vyn.
Recall, the algorithm outputs m real numbers in the range [—1, 1], which we can discretize into
a grid A of length 7. There are at most 2/7 distinct grid points and for any y; € [—1,1],
there exists a point z; € A such that |y; — z;| < 7. Further, observe we can represent each
y; using 2/7 functions f € F. Then, union bounding over the events that each of the 2/7

functions output different bits, for each of the m parameters, we have that with probabiltiy at

7. Finally,

yil <

least 1 — (2\/§’ynm / T), any algorithm outputs a list {y; }cm) such that |y; —
union bounding over the event that algorithm A fails with probability ¢ yields the claim. ]

We then prove there is a gap [ f(d, €1), €1) between pairwise distances of components so that if

we merge components within distance f(d, 1), the resulting mixture is £, -statistically learnable.

Lemma 3.8.5. Let f(d)(e) = f(d,e). There exists { € [k?*] such that for every pair of compo-
nents, either dry (N (pi, 3:), N (117, 55)) < (f(d))*(e) or dry (N (i, i), N (13, 55)) = (f ()" (e)-
Moreover, the set of Gaussians with total variation distance at most (f(d))*(¢) is an equivalence

class.

Proof. We can see that intervals { [(f(d))f(g), (f(d))! (5)) }e 2 2T disjoint. There are at most

k*—1 distinct values of dry (N (1, 2:), N (5, 3;)). So there exists an interval [(f(d))g(g), (f(d))g_l(a))
such that for every pair of components N (1, 3;), N (5, ), either dpy (N (14, 24), N (14, Z5)) <
(f(d))(e) or dry (N (s, £i), N (17, 25)) = (f(d)* ' (e)-

Next, we show for any ¢, Gaussians with pair wise TV distance (f(d)?)(¢) form an equiv-

alence class. Consider component Gaussians (GG, Gy and G5 such that G; and G4 are at total
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variation distance at most (f(d))*(¢) and G and G5 are also at total variation distance at most

(f(d)(e)-

and since there is no pair of Gaussians with total variation distance inside the interval [(f(d))‘(¢), (f(d))*1(¢)),
this implies dry (G1, G3) < (f(d))*(e). O

We can now complete the proof of Proposition 3.8.3 :

Proof of Proposition 3.8.3. By Lemma 3.8.5, there exists an interval [(f(d))z(a), (f(d))e‘l(e))
such that there is no pair of Gaussians with total variation distance inside the interval and
(f(d)*(e), (f(d))*"L(e) are polynomials in d and . Let ey = (f(d))*"'(¢) and f(d,e;) =
(f(d))(e). Let X be a set of n = (d/¢)° samples from M, where ¢ is fixed universal constant.
Let M be the mixture obtained by merging all components in an equivalence class with total
variation distance at most f(d,¢;) to a single Gaussian and observe dry (./\/l7 ./\;l> < kf(d,e).
Next, observe that PARTITION PURSUIT outputs at most £ means and covariances, which can
be represented as a list of at most 2kd? real numbers. Further, since ¥ < 1.017 and w; > ¢, the

means of each component ||11;]|3 < 2/¢ and || 3;]|% < O(d?/¢).

Then, rescaling the instance by O(¢/d?) and applying Lemma 3.8.4 with D; = M, Dy = M,
input samples X and accuracy parameter 7 = (£/d), for a large enough constant c,, it follows
that with probability at least 1 —0.99 — O(f(d, 1) - (¢/d)*?), for a fixed constant c3, the resulting
list of numbers is 7-close to that obtained by running PARTITION PURSUIT on a set of n
samples from M. Since M is €1-statistically learnable, it follows from Theorem 87 that with
probability at least 9/10, PARTITION PURSUIT will output an O(e; )-correct sub-division M.

]

Proof of Theorem 86. Recall, by part (1) of Proposition 3.3.3, the dimension of the subspace VSI*
ism=dimV{=0 CMHAHJQ))M%) and lete; = v/A§/*/a. Let ¢, be a fixed constant such

"
that (m/e;)“™ samples suffice for applying Theorem 87. Further, obseve in the fresh sample Y,

the probability that any given sample is corrupted is €. Let  be the event that a random subset
of (m/e1)“™ samples from Z does not contain any corrupted points. Then, the event ¢ holds

with probability at least (1 — ¢)™/*Y™™" . Conditioning on ¢ and running step 4 of Algorithm
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88, it follows from Proposition 3.8.3 that we recover O(e;)-accurate estimates to the parameters
of M in the subspace, i.e. ||UT; — fiilla < O(e1) and |[UTSU — S|l < O(e1). Since we

repeat the above for ¢’ candidate subspaces in L', the probability over all probability of success
is (1 — )/

By part (2) in Proposition 3.3.3, there is a vector i € V/ such that [|zs; — pf|| < 2267/*A1/?
where § = 2"/ (1) and 1) = O(4k(1 + 1/a + A)* /e7). Let P = UUT be a projection
matrix where the columns of () span Vé and let Q" ;1; be the projection of the true means to the

corresponding subspace. Then,

WU — pille < VU — pill2 =+ [ — ]2

\/Z51/4
)

< U = Ppg = pi + pa)l|l2 + O (

ﬂ51/4>

«

<Mr4ﬂmh+0<

<oA1,

h !
where the third inequality follows from observing that U " i, is the true mean in the low dimen-

sional subspace and applying Proposition 3.8.3.

By Proposition 3.3.2, there exists S € L’ such that 5 — (%; — I) = P, 4+ Q; where | P;||r =
O(\/%). Again by part (3) in Proposition 3.3.3, there exists a symmetric matrix @; € Vg x V¢
such that ||Q; — Ql||r < O(%(Sl/ 4A1/2). We also know that in the subspace spanned by V7,
15 — UTS;U|12 < poly(es). Recall, Algorithm 88 outputs the following estimate: N =
UsUT + (I + S’) - P (I + g) P. Observe, for any matrix M and projection matrix P, M =
PMP + (I — PYM(I — P)+ PM(I — P) + (I — P)MP. Then,

IS = Mllp < [P (S = M) Pllp+||(I = P) (i = M) (1= P)|lr

(1) (2)
+ 1P (3= M) (1= P) e+ (1 P) (3 — 81) Pllp
3 (4)

(3.63)

We bound each of the terms above. Since P (I + S — P(I + S)P) P = 0, we can bound term

246



(1) as follows

N AN A N ~ n A . . /A51/4
|P (2 = M) Pllp = | PEiP — PUS,UTPllp = [UTSU - i < O ( ) (3.64)
(8%

Similarly, since (I — P) (US,UT) (I - P) = 0and X; = I + 8 — P, — Qs, we can bound term

(2) as follows:

(1= P) (2= 80) (1= P)llp = (1= P) (5= (1+58)) (I = P)llr
<(I=P) (= (1+5-Q)) (1=P)|p+ (1= P) Qi (1-P)|r
<|PIE+ (1= P) (@i = Q) (1= P)llr+I1I(1=P)Q; (- P)llr

2¢1/4 A1/2
O(\/ﬁ+k6 A )
(0% (0%

N

(3.65)

Next, we bound term (3). Observe, P (US,UT) (I — P) = 0and P(I + S)P(I — P) = 0.
Thus,
1P (2= M) (1= P)|lp =P (%= (1+8)) (1= P)|r
= PP+ Qi) (I - P)llr
<|PP(I-P)|r

o(Va)

Obseve, term (4) follows from a similar argument. Combining equations (3.64), (3.65),(3.66)

(3.66)

N

and substituting back into (3.63) we can conclude

R k2514 AL/2
- e < 0 /T £2127)

o

The size of L' is ¢/ = O (log k(n/ (k5 (A* + 1/oz4)))_4k) and since we add a single tuple of
k means and covariances for each subspace in L/, the list L has the same size. The running time
is poly (|Y|, |L|,d* m, 1/51> concluding the proof. O
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3.8.2 Proof of Theorem 85

Since we have all the main ingredients: the tensor decomposition algorithm recovering a polyno-
mial size of list (Theorem 86), the upgraded partial clustering algorithm with high probability of
success (Theorem 83) and the spectral separation algorithm of thin components (Lemma 3.5.1),

we can now complete the proof of Theorem 85.

The algorithm establishing Theorem 85 is almost the same as Algorithm 81. The only dif-
ference is we will replace Algorithm 77 by Algorithm 84 and replace Algorithm 73 by Algo-
rithm 88. The following two lemmas show that by modifying the parameters slightly and apply-
ing the upgraded partial clustering and tensor decomposition algorithms, we can have the same
conclusions as in Lemma 3.6.5 and Lemma 3.6.6 with a polynomial success probability. Then
the proof of Theorem 85 is exactly the same as the proof of Theorem 80 in Section 3.6.2 except

for the use of Lemma 3.8.6 and Lemma 3.8.7 instead of Lemma 3.6.5 and Lemma 3.6.6.

(k?)

Lemma 3.8.6 (Non-negligible Weight and Covariance Separation). Given 0 < ¢ < 1/ i
and k € N, let o« = e1/(45CHH (k+1)1)

Let M = Zle w;G; with G; = N (u;, %) be a k-mixture of Gaussians with mixture covari-
ance Y such that w; > o foralli € [k] and there exist i, j € [k] such that HET/z (2 — %) ET/QHi >
1/a®. Further, let X be a set of points satisfying Condition 3.2.45 with respect to M for some
parameters v < ed~3¢k~C*% for a sufficiently large constant C, and t > Sk. Let Y be an e-
corrupted version of X of sizen > ng = (dk)™™ /e, Algorithm 84 partitions Y into Yy, Yy
in time n°Y) such that with probability at least 2~°%) (1 — O(«)) there is a non-trivial parti-
tion of [k] into Q1 U Q2 so that letting M be a distribution proportional to Yicq, wiG; and
Wi = Yicq, Wi then Y is an (’)(61/(45Ck+1(’“+1)!))-corrupted version of Ujcq, X satisfying Con-
dition 3.2.45 with respect to M with parameters (O(k~y/W;) , t).

Proof. We run Algorithm 84 with sample set Y, number of components k, the fraction of outliers
e and the accuracy parameter 7. Since X satisfies Condition 3.2.45, we can set t = 10, § =
(K*t*a)"? = Oy (a”®) and n = a® > /¢ /a in Theorem 83. Then, by assumption, there exist i, j
such that -
1 k*t
2y _yant2|t s L=
HZ (Ez EJ)E HF > ab & (62/t044) ’
We observe that we also satisfy the other preconditions for Theorem 83, since n > (dk/ )Q(l) /€.
Then, Theorem 83 implies that with probability atleast 2-°®) (1-O(n/a—,/7)) = 279" (1—

O(«)), the set Y is partitioned in two sets Y; and Y5 such that there is a non-trivial partition of [k]
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into Q1 U@ so that letting M;; be a distribution proportional to 3, w;G; and W = 3icq. wi,
then Y; is an (’)( 1 450k+1("’+1)')) -corrupted version of U;eq, Xi. By Lemma 3.2.48, Ui, X;
satisfies Condition 3.2.45 with respect to M with parameters (O(kvy/W;) ,t).

]

When the mixture is not covariance separated and nearly isotropic, we can obtain a small list

of hypotheses such that one of them is close to the true parameters, via tensor decomposition.

Lemma 3.8.7 (Mixture is List-decodable). Given 0 < ¢ < 1/k**" ler a = /(150" 1)),
Let M = Zle w;G; with G; = N (u;,%;) be a k-mixture of Gaussians with mixture mean
p and mixture covariance ¥, such that ||p||, < O<\/e/7a), Y —I||r < OWe/a), wy >

foralli € [k], and ||3; — Ej||§, < 1/a® for any pair of components, and let X be a set of

points satisfying Condition 3.2.45 with respect to M for some parameters v = ed~3* k=%, for
a sufficiently large constant C, and t = 8k. Let'Y be an e-corrupted version of X of size n,
Algorithm 88 outputs a list L of hypotheses of size O((1/€)**") in time poly(|L|,n) such that
if we choose a hypothesis {ji;, iqj}ig[k} uniformly at random, ||ji; — fi;]|, < 0(61/(200’“+1(k+1)!))
and HZ’ 3 - < O(El/(200k+l(k+1)!)) for all i with probability at least O(e**").

Proof. Recall we run Algorithm 88 on the samples Y, the number of clusters k&, the fraction

of outliers ¢ and the minimum weight o« = ¢/(20C* " (k+1)!),

Next, we show that the precon-
ditions of Theorem 86 are satisfied. First, the upper bounds on — I||F imply
ik Wi (Ei - uiuj) =Y +pu’ 2 (1+ O(\/_/a))l Since the LHS is a conic combination of
PSD matrices, it follows that for all i € [k], p;p] < * (14 O(y/€/)) I, and thus ‘ pift; 2

Next, we can write:

\O(.

1S = Illp < N1Z = (B + pu e + 12 = Ille + i |17

Vek e
=== >y (B ) )|+ =+
; « (6
Jelk] F
ck €
<2 wi(Z-%y)) += +L+f
; (0%
JE(K] F
2
<&5/2’

where the first and the third inequalities follow from the triangle inequality and the upper bound
n ‘Miﬂ?
every pair of covariances X;, ¥;. So, we can set A = 2o~

,» and the last inequality follows from the assumption that 112 — E]-pr < 1/a’ for

5/2 in Theorem 86. Then, given the
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definition of «, we have that
n=2k"0(1+ AJa)™* Ve = O()

and 1/¢? > log(1/n)(k + 1/a + A)**5/n2. Therefore, Algorithm 88 outputs a list L of hy-
potheses such that |L| = exp (1/£?), and with probability at least 0.99, L contains a hypothesis
that satisfies the following: for all i € [k],

A1/2 G k k+1 k+1
A =0 (k) _ —1/(20C*F 1 (k+1)!) | _1/(10CFTH(k+1)1)\ _ 1/(20C*+1 (k+1)!)
1A — il —O( - )n =O(e e ) =0(e )
N Al/2 .
’ Zz . Zz — O(k4) 777G(k‘) — O(El/(2OC +1(k+1)!)) )
F «
(3.67)

Then if we choose a hypothesis in L uniformly at random, the probability that we choose the
hypothesis satisfying (3.47) is at least 1/|L| = exp (—1/&?). O

3.9 Robust Parameter Recovery: Proof of Theorem 69

In order to show that our algorithm recovers the individual components and the parameters, we
will prove the following identifiability theorem. Without any assumption on the mixtures, it is
impossible to distinguish components within ¢ total variation distance with e-fraction of noise.
So given two mixtures of Gaussians with ¢ total variation distance, the theorem shows that there
exist two partitions of components of the two mixtures respectively such that any two components

in the matched pair is are poly(e)-close in total variation distance.

Theorem 89 (Identifiability). Let M = Zf;l w; Gy, M/ = Z?il wi G’ be two mixtures of Gaus-
sians such that dvv(M, M) < e. Then there exists a partition of k1] into sets Ry, Ry, ..., Ry
and a partition of [ks] into sets Sy, Si, ..., Se such that

1. Let W; = Y jep,wjfori=0,1,....k, W) =3 cq,wj fori =0,1,...,ky. Then for all
i€ [/,

Wi — W] < poly,(e)
drv(Gj,G) < poly,(e) Vi€ Ry, j €8
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2. Wy, W < poly,(€).

Corollary 3.9.1. There is an algorithm with the following behavior: Given ¢ > 0 and a multiset
of n = d°P®poly(e) samples from a distribution F on R such that drvy(F, M) < ¢, for an
unknown target k-GMM M = Y% w,N (1;, %), the algorithm runs in time d°®poly, (1/¢)
and outputs a k'-GMM hypothesis M = SN (11, ) with K <k such that with high
probability there exists a partition of [k] into k' + 1 sets Ry, Ry, . .., Ry such that

1. Let W; = Y jcg, wj. Then for all i € [K],

Wi — | < poly,(e)

drv(N (15, 25), N (i, 2i)) < polyy(e) Vi€ R

2. The sum of weights of exceptional components in Ry is at most poly, (¢).

Parameter estimation is implied by TV distance for individual Gaussians (in relative Frobe-

nius norm). The corollary follows immediately from the identifiability theorem.

Outline of Proof. The first step is to deal with the components in M and M’ with small
weights. We will construct M, M’ by removing components with small weights. If we prove
the statement on M, M , we can then deduce the theorem in the general case with worse, but
still polynomial dependencies on . The second step is a partial clustering, after which the
components within each cluster have TV distance bounded by 1 — poly(e). We prove this lemma
in a separate section. After that we modify the parameters slightly so that the resulting parameters
for different components are either identical or have a minimum separation. After this, we can
use a lemma from [[LM21] that provides a 1-1 mapping between the components of two such

mixtures with small TV distance such that the mapped pairs have small TV distance.

Distance between Gaussians. We use the following facts for Gaussian distributions.

Lemma 3.9.2 (Frobenius Distance to TV Distance). Suppose N (pi1,%1), N (2, X2) are Gaus-
sians with ||y — polle < 6 and |21 — Xo||p < 6. If the eigenvalues of X1 and Yo are at least
A > 0, then drv(N (1, 21), N(p2,X2)) = O(5/N).

Lemma 3.9.3 (Lemma 5.4 in [LM21]). Let M be a mixture of k Gaussians that is connected if
we draw edges between all components i, j in M such that dvy(G;,G;) < 1 — 6. Let X be the

covariance matrix of M. Then for any components Y.; of the mixture
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1. X; = poly,,(6)X

2. 2728 = 8)S7 2| p < poly, ()"

The proof is identical to Lemma 5.4 in [LM21]. The only difference is that in [LM21] the
authors assume that the minimal weight of M is at least  and TV distance between any pair of
components is at least ¢ but here we do not need these two assumptions, which does not affect

the proof.

Fact 3.9.4 (Claim 3.9 in [LM21]). Let O denote the differential operator with respect to y. If

£ = Ply, X e (a(X)y + 25007

where P is a polynomial in y of degree k (whose coefficients are polynomials in X ) and a(X), b(X)

are polynomials in X then

(0= @(X) + O S() = Qs X)exp (a(X)y + 57

where () is a polynomial in y with degree exactly k — 1 whose leading coefficient is k times the

leading coefficient of P.

Fact 3.9.5 (Corollary 3.10 in [LM21]). Let O denote the differential operator with respect to y.
If

£ = Py, X)exp (alX)y+ 500002)

where P is a polynomial in y of degree k then
(0 — (a(X) +yb(X)))** f(y) = 0.
Fact 3.9.6 (Claim 3.11 in [LM21]). Let O denote the differential operator with respect to y. If
£ = Ply X)exp (a(X)y + 250007

where P is a polynomial in y of degree k. Let the leading coefficient of P (viewed as a polynomial
iny) be L(X). Let c¢(X) be a linear polynomial in X and d(X ) be a quadratic polynomial in X
such that {a(X),b(X)} # {c(X),d(X)}. Ifb(X) # d(X) then

(0= (e(X) + ydCO) F(w) = @y, X)exp ((X)y + 35Xy )
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where () is a polynomial of degree k + k' in y with leading coefficient
L(X)(b(X) — d(X)¥
and if b(X) = d(X) then

(0= () + yd(X)) £(v) = Qly, X) exp (o(X)y + SHX)?)

where () is a polynomial of degree k in y with leading coefficient
L(X)(a(X) = (X))

Lemma 3.9.7. Let M = M w,Gi, M/ = 82, wiG’ be two mixtures of Gaussians such that
drv(M, M') < €. For any constant 0 < c¢; < 1, there exists i € [k1 + ko + 1] such that
wy, wh & [ &%) for any j € [ki], 5 € [ka]. Moreover; if

nres
M_Z{j:wpeci} I
w0

{w;>e1}

) IYali

~, Z{j;w;;gi} w;G;
M = ,

T
{w,>e1y I
i—1

then dTv(./\;l,M/) < Ok(a?cl )

Proof. We can see that [, %) with i € [ky + ks + 1] are k; + ko + 1 disjoint intervals and
w;, wy with j € [ki1],j" € [ka] have at most k; + k; distinct values. So there is one interval

containing no weights.

We then construct M by removing the small components in M. The sum of weights removed
is at most ket . So drv(M, M) < ket . Similarly, we have dy(M’, M) < k=< . By the

triangle inequality,

i—1

drv(M, M) < drv(M, M) + dry(M, M) + dry(M', M) < Op(e9 ).

]

Lemma 3.9.7 shows that we can remove components with tiny weights in the mixtures. So

in the following lemma, we will assume M and M’ are Gaussian mixtures with minimal weights
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at least poly(e). We will show that we can partition the union of components of two mixtures
so that if we prove Theorem 89 for each part of the partition, we can combine them to prove

Theorem 89 on the full mixtures.

Lemma 3.9.8. For any constant 0 < c3 < 1, there exist c1, co > 0 that depend on k and cs, such
that if M = S5 w,Gy, M/ = 82 w!iG! with &y, by < k, dpv(M, M) < & and w;, w) >
for all i, then there exists a partition of |k,] into sets Ry, ..., R, and a partition of ko] into sets
Si,...,S such that

1. Foralli € [(], let W; = ¥ ;cp, wj, W] = 3 ;cg, W; be the sum of weights in each piece.
Let M; = Wi Yjer, wiGj, M| = # > jes; W;GY be the submixtures of Gaussians after
partition. Then for all i € [{],

’Wi - W| < Olylc( )
dry(Mi, M) < Op(e)

2. Consider the graph with vertices corresponding to components in M and M’ and two

components are adjacent if the total variation distance between them is at most 1 — €.

Then the induced subgraph of vertices with indices R; U S; is connected for all i € [{].

The proof of Lemma 3.9.8 is deferred to Section 3.9.1. In the following two lemmas, we then
prove Theorem 89 for each pair M, M/ defined in Lemma 3.9.8. In Lemma 3.9.9, we construct
two mixtures of which pairs of parameters are identical or separated. We also shows it suffices

to work under this simplification.

Lemma 3.9.9. For any constant 0 < ¢, < 1, there exist cs, c5 that depend on k and cy4, such that
if M =Y w,Gi, M = 12 wiG with ki, ky < k and

1 1 .o .
1. M+ 3 M is isotropic,
2. dTv<M,M/) <e€
3wy, w, = e forall i,

4. Let G be a graph with components G;, G in M and M’ as vertex set and two components
are adjacent if the total variation distance between them is at most 1 — €%. Then G is

connected

then there exist two mixtures of Gaussians M = ZZ LGy, M =SR2 @ G such that
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1. Any pair in {ji;} U {1, } is either identical or separated by at least €“*°
2. Any pair in {3;}U{%"} is either identical or separated by at least £°> in Frobenius norm.
3. | E(hun(M)) = E(hn(M") |7 < Ok(e®) for any m < O(k)

4. There exist 7ty : [ki] — [ky] and o - [ky) — [ko] such that

Z w; = 12)]', w; = ﬁ);,
iy (i)=j ima (i)=j
dTV<Gi; ém(i)) < polyk(é), fOV all 1 € [/{Zl]
drv(Gy, Gryy) < polyy(e),  foralli € [ko).

Proof. Forany 0 < ¢4 < 1, thereis ¢ € [k?] such that the distance between any pair of parameters

in {y;} U {u;} or the Frobenius distance between any pair in {3;} U {X!} is not in the interval
e/ lea/2)t),

Now consider a graph G on k; + ks nodes where each node represents a vector in {y; } U {1}

and two vectors a, b are adjacent if

)271

la —b]| < /2

We now construct new mixtures M, M’. For each connected componentin G say {j;,, . .., i}, , - - -

pick a representative say pi;, and set fi;, = -+ = fi’; = --- = p;. Do this for all connected

components and similar in the graph on covariance matrices with edges (i, j) if

I8 = Sylle < oo

After replacing close parameters with a representative, we may get some exactly same com-
ponents in each new mixture. We then merge components with same means and covariances
by adding their weights. Since all representatives of means and covariances are in different con-
nected components of the graphs, they are separated by at least £(4/ 2", Setting c5 = 1/2(cy/2)¢!

gives a separation of .

Next we prove 3. There is a natural mapping m; : [ki] — [k1] that maps any component in
M to the merged component in M and a similar mapping 7 : [ks] — [k] for M’, M’. For all

7, we have

~ -~ ad ad c -1
lFims iy = #3ll, By = 11 1m0y = Zill e, 120,6) — Sille < Ow(1)l/? (3.68)
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because for any pair of parameters above say fi,, (;y and p;, there is a path of length at most 2%
connecting y; to the representative of the connected component, and each edge connects a pair
with TV distance at most €. Suppose ||;|[, ||2; — ]|z < A. Then by Definition 3.2.4, we have

for any integer m,
[E(hin(M)) = E(hin(M))[|p < Ox(m) A/

Since %M + %M’ is isotropic and the minimum weight in %/\/l + %M’ is at least %563, we
have ||1;]| < 1/2/e% for all i. Applying Lemma 3.9.3 to 3 M +  M’, we have || — ;|| <
poly, (£%3)~1. So there is a constant a such that A < e, If we take c3 > 0 so that aczO(k) <
1/2(c4/2)" " and take c5 = 1/2(c4/2)" "1, then

BT (M) = By (M))|[ 1 < Op(m)e/?™ 70t — 0y ()
for m < O(k). By the same argument, we have the similar inequality for M’ and M’
[E (M) = E(hn(M) || F = Ox(e).

Since we can use Proposition 3.3 to robustly estimate the Hermite tensors of a Gaussian mixture

with e-fraction of noise and poly(¢) error guarantee, we must have

[E(hm (M) = E(hn (M) [F < poly,(e).

Then by the triangle inequality,

1E(hin (M) = E(hun( M) F < [E(hin(M)) = E(hn (M)l 7+
1E(hun (M) = E(hun(M )7 + [E(hin(M") = E(hn(M))]r = O(=).

For the last conclusion, from the definition of 7; and 79, we know that

> w3

1 (3)=7J i (i)=j

Applying Lemma 3.9.3 to $ M+ M'’, we have that eigenvalues of ¥; and ¥} are at least poly(e*)
for all . Then if c3 is sufficiently small, by Lemma 3.9.2, (3.68) implies dtv(G;, (N?W(,-)) <
poly, (¢) and drv(Gi, G ;) < poly,(e) for all 4. =
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The following lemma shows the identifiability under the simplification of Lemma 3.9.9. It is

proved in the proof of Lemma 8.2 in [LM21].

Lemma 3.9.10. Suppose M = Zf;l w; Gy, M = Zfﬁl wiG' satisfies 1,2,3 in the conclusion
of Lemma 3.9.9 with constants cy, c5 and the minimal weights are at least €. There exists a
sufficiently small function f(k) > 0 depending only on k such that if ¢y < f(k), then ky = ko

and there exists a permutation 7 such that |w; — w | < poly,(€) and G; = G ;).

Proof. Consider the component G}, = N(y,,,2),) in M’. We claim that there must be some
i € [k1] such that

(,uia EZ) - (/’6;627 2;62)

Assume for the sake of contradiction that this is not the case. Let S} = {i € [k] : X; = X} }
and Sy = {i € [ky — 1] : X} = X} }. Suppose I, F" are the generating functions of M and M’

k1 1 e’} 1
F =Y wexp <,u;-rX + 2XTZZ-Xy2) = > — i (M)y"
i=1 m=0 "MV
ko T 1 [e'e) 1
F' =3 wjexp (ué X + ZXTEQXyQ) = > —hm(M)y".
i=1 m=0 "

Then define the differential operators

D;=0—pl X — XT8, Xy
Di=0—u"X — XTS! Xy

where partial derivatives are taken with respect to y. Now consider the differential operator

ok1+ko—2

D= (D;CQ—I) T (Dll)%lpzflil Dy

By Fact 3.9.5, D(F') = 0. By Fact 3.9.5 and Fact 3.9.6, we have
1
D(F') = P(y, X) exp (M;QTX + 2XT2;2Xy2>
where P is a polynomial of degree

deg(P) — 2k1+k2—1 —1-= Z 2i—1 . Z 2k1+i—2

1€S1 1€S2
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with leading coefficient

Co=wj, [I (X"(Zh, —S)X) " IT ((h, — )" X))
i€[k1]\S1 i€S1

k i—2 k i—2
[T X7, ==X T (e — )" X))
iG[kQ—l}\SQ i€S2

We now compare the following differentials evaluated at y = 0

(D},) 5" D(F)
(D}, =P D(F)

The first quantity is 0 because D(F) is identically O as a formal power series. The second one
is {;,(1)Co. Since for any i (p;, ;) # ({44, 2, ), our assumptions imply that the separation
between u;, p1j,, or ¥;, 3, is at least €. Then we have Cjy > g¢4cs0r(1) for some X. On the
other hand, the coefficients of the formal power series F, F” are the Hermite polynomials h,, (M)

and h,,,(M"). This is a contradiction with our assumption that
[E(hmn (M) = E(hm(M)]lr < Or(e™)

as long as ¢, is smaller than some sufficiently small function f(k) depending only on k. Thus
there must be some component of M that matches G}, = N(u,,%),). We can repeat the
argument for each component in M’ and in M to conclude that M and M’ have the same

components.

Next we will show that the weights of the same components in M and M’ are close. We can
assume that M = Y% w,G;, M’ = SF | w!G; are two mixtures on the same set of components.

Without loss of generality,
wy —wy < --rwp—wy <0< weyy —wyyy <o - < wy — Wy
Then we can consider the following two mixtures

(wy — w))Gy + -+ (we — wy) Gy

(wer1 — Wy y)Gopr + -+ + (wy, — w),) Gy
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If

k
3w — wj| > e
i=1

for some sufficiently small ¢ depending only on k, we can then normalize each of the above into
a distribution and repeat the same argument, using the fact that pairs of components cannot be
too close, to obtain a contradiction. Thus, the mixing weights of M and M’ are poly, (¢)-close

and this completes the proof. ]

Proof of Theorem 89. We first set ¢, = f(k) as in Lemma 3.9.10, and then c3, c5 according to ¢,

as in Lemma 3.9.9, and ¢/, ¢» according to ¢ as in Lemma 3.9.8. Let ¢; = min{c}, cacs}.

% in [, ). Let M =
w]Gj and M’ — Z ; w;G; Then dTV(M,M/) < O(gcifl)- Let e = 667171.

{j:w; >aczl} {jw) >€c11}

We have drv(M, M') < O(e,) and the minimum weights of M, M’ are at least 5.

By Lemma 3.9.7, we can find i such that there is no w;, w’

Now we can apply Lemma 3.9.8 on M, M’ and get partitions of components of M, M'.
For i € [/], let M; and M. be the mixtures defined in Lemma 3.9.8. We can apply a linear
transformation to make %MZ + %M; in isotropic position. Since the total variation distance is
invariant under linear transformations, so we still have both conclusions in Lemma 3.9.8. Let
g2 = €7, Then drv(M;, M) < O(ez) and %M + %M’ satisfies Lemma 3.9.3 with 0 = 5.
Weights of both mixtures increase when we do the partition. So minimum weights are at least
cac3

eft > eP® = .

We now prove the statement on these smaller mixtures. First we can use Lemma 3.9.9 to
merge close parameters of M, M so that all pairs of parameters are either equal or separated by
5. Under this simplification, Lemma 3.9.10 shows that there is a perfect matching between the
same components in two mixtures and their weights are almost the same. By the last statement
in Lemma 3.9.9, it is also a matching between components of M, and M, by combining 7 and
7> then drv(Ge, G) < poly(ez) for all £,¢" such that 7,(¢) =
J,m2(¢") = 7(j). Repeating the argument for all pieces in M, M’ completes the proof. O

7, Te. Moreover, if G; = G;(

3.9.1 Proof of Lemma 3.9.8

In this section, we will prove Lemma 3.9.8. The following fact in [Liu-Moitra] shows that a good

set of clusters of one mixture exists.
Fact 3.9.11 (Claim 7.6 in [LM’20]). Let M = Zle w;G; be a mixture of Gaussians. For any
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constants 0 < § < 1 and € > 0, there exists t € [k*] such that there exists a partition (possibly
trivial) of [k] into sets Ry, ..., Ry such that

1. If we draw edges between all pairs i, j such that drvy(G;,G;) < 1 — % then each piece
of the partition is connected

2. For any i, j in different pieces of the partition, drv(G;,G;) > 1 — e

Remark 90. Fact 3.9.11 can be applied to a set of Gaussians instead of a mixture of Gaussians

by randomly assigning positive weights for all Gaussians.

Lemma 3.9.12. For any constant 0 < ¢ < 1, suppose M = Y1, wZAZ,M’ Sk w,B; are

two mixtures of arbitrary distributions with drv(M, M') < e and w;, w}; > €. If for any i # j,
drv(Ai, Bj) > 1 — ¢, then ki = ky and dvv(A;, B;) < poly,, () for all i € [kq].

Proof. Suppose 7 is any coupling of M and M’ and X, Y are random variables with distribu-
tions M and M’. Then dry(M, M) = min {Pr.(X # Y)}. We define 7 to be the optimal
coupling such that drv(M, M’) = Pr,(X # Y). Then we can define 7 on variables i, j, X, Y
such that 3¢, ey 74,4, X, Y) = (X, Y) and the marginal distribution 7 x with fixed i of
X is w;A; for all i € [k;] and the marginal distribution 7y with fixed j is w’; B; for all j € [k].
Let Py = [xy 7(i,5,X,Y)dXdY and Aj; = P% Jy 7(i, 7, X, Y)dY be distributions on X,
B;; = Pi] [x (i, 4, X,Y)dX be distributions on Y. Then we have

dTV(M, MI) = PI'ﬂ-(X 7é Y) = Prﬁ—(X 7é Y)

Z Pro(X #£Y | 4,7) (3.69)

Z - drv(Ay, Bij).

By the definition of P;;, A;;, B;

ijy “1ijy Digs
wid; = PyjAy; + Y PyrAyy
i

)
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Dividing both sides by max{w;, w}}, we get

P
A= 1v 4, M R R B I
max{w;, w} it ( max{wl, J}> N ,%:] max{wz, w)}
P /

Bl-:B”qL(l %)B#Z

max{w;, wj} max{w;, wj} ey

Py,

max{w;, w)}

Bi’j

From the above two equations, we can write A;, B; as linear combinations of two distributions.

Ai = P—AU + ( PZJ)) A;

max{w;, wj} max{w;, w)}

P; P;
Bi=——7 B, +<1 —a )B;

max{w;, w)} i max{w;, w)}

Then by the triangle inequality,

P, P,
drv(Ai, Bj) < dev(AwB )+ <1 - W)
(3] 7 (2] 7
-Pij . dTv(AU, B ) B]‘ — (1 — dTV(Aia B])) max{wi, U};} (370)

Combining (3.69) and (3.70), we have the following inequality on the TV distance between

mixtures and the TV distance between components

drv(M, M) =3 (Py — (1 — dry(Ai, By)) max{w;, w}}) . (3.71)

i’j

By the lower bounds on drv(A;, B;), we have

> drv(M, M) ZPZ] Z (1 —dyv(A;, Bj)) max{wi,w;} — Z(l — drv(A;, By)) max{w;, w;}

i#]
>1-> e— ) max{w;,w}+ Zmax{wl, wi}drv(A;, B;)
i#£j i
>1- Z € — Z max{w;, W, } + wyindrv (A1, By)
itj ;

(3.72)

where A;, By can be replaced by any A;, B; pair. Let k& = max{ky, k2}. When i # j and
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drv(A;, B;) > 1 — ¢, we plug it into Equation (3.71) and get

dTV M, M Z 1 - dTV(AuB )) maX{wiaw;‘} > Z(Plj - 6)'
i#] i#]
This implies
Z P < k*e
i#j

Then we can bound >, max{w;, w;} — 1 in Equation (3.72)
> max{w;,wi} —1 =" max{w;, w} —w; <> Py < k.

Plugging this bound into Equation (3.72), for any ¢, we have

drv(4;, B;) <

<k2€ + > max{w;, w;} — 1) <

Wmin

Proof of Lemma 3.9.8. We apply Fact 3.9.11 on the union set of components of M and M’ with

parameter ¢ to find a partition Ry, ..., R,. Let
= == 2
ZGjGRi w]
!/ !
M — Yaer, WG]
i = T
ZG;eRi wy

Then for any i # 7, we know dyv(Ga, G) > 1 — & " for G, € R;, G}, € R;. By (3.71) in the
proof of Lemma 3.9.12, we have

dTV(Mi, MJ/) 2 1— 2]{3651571.

Then by Lemma 3.9.12, for any ¢, there exists a such that dry (M;, M) < e Letcy = adtl.

If we set § = cye3/8'1 = acs, the partition satisfies the second conclusion. O]
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3.10 Omitted Proofs

In this subsection, we provide the proofs that were omitted from Section 4.2 and Section 3.6.

3.10.1 Omitted Proofs from Section 3.2.1

Lemma 3.10.1 (Concentration of low-degree polynomials, Lemma 3.2.9 restated). Let T’ be a
d-dimensional, degree-4 tensor such that ||T|, < A for some A > 0 and let x,y ~ N(0,1I).
Then, with probability at least 1 — 1/poly(d), the following holds:

||T(7 ’xvy)Hi“ < O<log(d)A2) .

Proof. We note that

Ewﬂm%w%FJIZ(ZT@Jmm@MMymO

11,02 \13,i4

=E|Y (Z T (i1, 9,05, 14)" @ (2'3)2;/(@’4)2)]

L%1,02 \13,i4
. . . - \2
= Z T(Zl,Zg,lg,’u) < A2 .
11,82,03,14
The second equality follows from the fact that x (i3),y (i4) are independent and have zero
means. So the only non-zero terms are the squares. The third equality follows from the fact
that 2 (i3) , y (i4) are independent with unit variances. Observe that || T (-, -, z, y)|| % is a degree-2
polynomial in Gaussian random variables. Using standard concentration bounds for low-degree

Gaussian polynomials, we obtain
Pr (|7, 2.9)[} > PE [T, 2.9)[}]] < exp(~et) .
Setting ¢t = (log(d)) completes the proof. O
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3.10.2 Omitted Proofs from Section 3.2.2

Lemma 3.10.2 (Spectral SoS Proofs, Lemma 3.2.23 restated). Let A be a d X d matrix. Then for

d-dimensional vector-valued indeterminate v, we have:
2
5 {v" Av < J|A], [I]l3} -

Proof. Note that v is the only variable in the proof here (A is a matrix of constants). We note
that A < ||Al|, I or [|All, I — Ais PSD and thus ||A|l, I — A = QQ" for some d x d matrix Q.
Thus, [|Qu||Z = vT(|A|l, I — A)v = ||A|l, |lv]|3 — v Av. Thus, ||A||, ||v||5 — vT Av is a sum of
squares polynomial (namely ||Qu||3) in variable v. This completes the proof.

O

Lemma 3.10.3 (Frobenius Norms of Products of Matrices, Lemma 3.2.25 restated). Let B be a
d x d matrix valued indeterminate for some d € N. Then, for any 0 < A < I,

5 {IABI < 1B}

and,

5 {IBAI < |1B3}

Proof. The proof of the second claim is similar so we prove only the first. We have:
B
2 IBIZ = (A + 1 — A)BI: = [ABI% + (1 — A)BJ% + 2tx(I — A)BBT A)}

Now, A — A% = 0, thus, A — A2 = RR" for some d x d matrix R. Thus, tr((A — A2)BB") =
tr(RRTBBT) = | BR|) - a sum of squares polynomial of degree 2 in indeterminate B. Thus,
|5 {tr((A - 4%)BBT) > 0}. 0

3.10.3 Omitted Proofs from Section 3.2.3

Lemma 3.10.4 (Shifts Cannot Decrease Variance, Lemma 3.2.31 restated). Let D be a distribu-
tion on R%, Q be a d x d matrix-valued indeterminate, and C be a scalar-valued indeterminate.

Then, we have that

2 (Bun [(Q(2) — BaunQ(@)])?] < Ban [(Qa) — O]} .
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E, A [COREACEEEA
- & |(00- B 0w)) |+ B [w - o
o [0 gyan) a1
- & |(e- B @) |+ B [w - o
> E [(Q@) - E [Q(w)]ﬂ } -

]

Lemma 3.10.5 (Shifts of Certifiably Hypercontractive Distributions, Lemma 3.2.32 restated).
Let x be a mean-0 random variable with distribution D on R% with t-certifiably C-hypercontractive
degree-2 polynomials. Then, for any fixed constant vector ¢ € R, the random variable x + ¢

also has t-certifiable AC-hypercontractive degree-2 polynomials.

Proof. Observe that using that E,p [z] = 0, we have that

Q T _ T T
F{E [e+aTQw+0] = E [TQu+cTQd}

Next, by two applications of the SoS Triangle Inequality (Fact 3.2.21), an application of
Lemma 3.2.31 followed by certifiable hypercontractivity of D, we have:

xz~D

}% { m@p K(x +oTQ@+¢)— E [(x +0)7Q(x + C)Dt,]
_ xINED l((xTQx _ x@D [xTQ:UD +2 Qe+ cTQx>t/]

<M(E
x~D

(¢7Qr ~ Epa’Qe)" | + E [07Q0)] + E [(c7Qu)])

/2

x~D T

<wiery (5, [(ormororf] 4 g [ 00] "4 g, 0] )}
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On the other hand, notice that

}%{ E [(<x+C)TQ(w_|_C)_ E {(erc)TQ(aH—c)})z]

xz~D

(alowios]- girernesican) |

t/2

+ (8, [ee) " + (8, [ren])

}%{ E [(mTQI— E [xTQIDZ]

<4'(cry ( E l((x +0TQ@+ o)~ E [+ Qe+ c)])QDt /2} |

As a result, we obtain:

xz~D

}%{ﬁp [((erC)TQ(ijC) ) [(erc)TQ(anc)])t']

97\ /2
< (4ot (Ep [((x +0)'Q(z+c) — B [(1' +0)'Qx + C)D D } ’

which completes the proof. O]

Lemma 3.10.6 (Mixtures of Certifiably Hypercontractive Distributions, Lemma 3.2.33 restated).
Let Dy, Ds, ..., Dy, have t-certifiable C-hypercontractive degree-2 polynomials on RY, for some
fixed constant C. Then, any mixture D = Y, w;D; also has t-certifiably (C'/«)-hypercontractive

degree-2 polynomials for oo = min;<y, ;>0 Wi.

Proof. Applying Lemma 3.2.21 followed by SoS Holder’s inequality on the second term and
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followed by a final application of SoS Hdlder’s inequality (Fact 3.2.20), we obtain:

}% {x@D [(xTQx B xiED [l’TQl’})tl‘| B miED

(oo o)
(o 5, o)

—_

i [

<2(>Yw E (mTQw— E [mTQ:EDt]

P z~D; x~D;

me,- z~D;

( Q- E [JQ@)QDt

/

+Ew ( (+7qe- & WDD) o
< (1) (z |(ee- 5, o) D }

On the other hand, note that by Lemma 3.2.31, we know that

{5, [ gl or)]-Su g, [(ar- 3, lar)]

>3 g (o g, rad) |}

+(Xw E [27Qr— E [TQx”tj)

//2

<2"|( (Z w;

z~D;

Combining the two equations above completes the proof. ]

Corollary 3.10.7 (Certifiable Hypercontractivity of k-Mixtures of Gaussians, Corollary 3.2.34
restated). Let D be a k-mixture of Gaussians Y_; w;N (ju;, 2;) with weights w; > « for every
€ [k]. Then, D has t-certifiably 4/ a-hypercontractive degree-2 polynomials.

Proof. From [KOTZ14], we know that the standard Gaussian random variable has ¢-certifiably
1-hypercontractive degree-2 polynomials. From Fact 3.2.30, we immediately obtain that for any
PSD matrix ¥, the Gaussian A/ (0, X) also has ¢-certifiable 1-hypercontractive degree-2 polyno-
mials. From Lemma 3.2.32, we obtain that for any pu, the Gaussian N (u, ) has t-certifiable
4-hypercontractive degree-2 polynomials. Finally, applying Lemma 3.2.33 to D; = N (u;, ;)
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and mixture weights wy, ws, ... wy, yields that D = >, w;N (u;, ;) has t-certifiably 4/a-

hypercontractive degree-2 polynomials. This completes the proof. ]

Lemma 3.10.8 (Linear Transformations of Certifiably Bounded-Variance Distributions, Lemma
3.2.38 restated). For d € N, let x be a random variable with distribution D on R® such that
for d x d matrix-valued indeterminate (), I2 {EIND(Z‘TQQZ —Epr'Qx)? < HEl/QQEl/QHi}.
Let A be an arbitrary d x d matrix and let ¥’ = Ax be the random variable with covariance
Y = AAT. Then, we have that

5 {Bun Q0 ~ Bpa' Qo' < |

E'WQZ’WHi} .

Proof. The covariance of 2’ is AAT = ¥, say. Let Y/ 1/2 e the PSD square root of /. The
proof follows by noting that 2’ ' Qz' = (Az)TQ(Az) = 2T (ATQA)z" and that

[ATQA|" = tr(ATQAATQA) = 1(AATQAATQ) = tx(TQEQ)
_ tr(Z/l/QQE/l/QE/l/QQZ/l/Q)

le/zleﬂHi'

]

Lemma 3.10.9 (Variance of Degree-2 Polynomials of Standard Gaussians, Lemma 3.2.39 re-
stated). We have that

Q 2
|7 {E/\/(OJ) (JZTQJZ — EN(OJ)QZTQHC) <3 HQH?«“} :

Proof. We will view zz " and I € R**? as d*-dimensional vectors. Consider the matrix E,. o 1) (zz " —
I)(xz" —1I)T. The diagonal of this matrix is 2. The off-diagonal part has exactly one non-zero

entry in any row (which corresponds to entry indexed by (i, j) and (j,7) for ¢ # j), and thus has
spectral norm at most 1 by the Gershgorin circle theorem. Thus, E, oy (z2"—1)(za"—1)T <

3.
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We thus have:
}E{ENOI( Qr — Exona' Q) = Buon (z2" —1,Q) = By (zz —1,Q)’

< [Bewvon(ee” = Diaa” = 1)), NQIG < 31ell QU7 =3 ||Q||%} -6

]

Lemma 3.10.10 (Variance of Degree-2 Polynomials of Mixtures, Lemma 3.2.41 restated). Let
M = 3, w;D; be a k-mixture of distributions D1, Ds, . .., Dy with means p; and covariances
Y. Let i = Y, w;p; be the mean of M. Suppose that each of Dy, D, . .., Dy have certifiably

C-bounded-variance i.e. for QQ: a symmetric d x d matrix-valued indeterminate.
5 {Ben, (07 Q' ~ BoaTQu) < O [P0}

wi — pll3, 12 = I||» < H for every 1 < i < k. Then,

5{ 5, |(e- 5, [Tos)

we have that

< 100CH? llQlli} :

Proof. We have the following sequence of (in-)equalities:

}%{ ort (17Qr ~ Bpopqt Q) = Y wiBap, (27 Qr — Epoper Qu)’ (3.74)

i<k

=Y wEBop, (17Qr — Boupt' Qu + Byupe ' Qr — Bgonia ' Q) (3.75)

i<k
< 2 ZwiEmNDi (mTQx - EacNDimTQx>2 +2 sz <Em~DixTQx - Ea:NM:L‘TQ:L‘)Q} )
i<k i
(3.76)

where the third line follows from Fact 3.2.21 (SoS Almost Triangle Inequality).

Let us first bound the 2nd term in the RHS above. Towards that, let ¥ = >, w; (1 — 1) (it —
1) " + %) be the covariance of the mixture M. Then, notice that 3 = 3>, w; (i — ) (pi — ) " +
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i) = S wipipt; + 3 w;Y; — pp' . Thus, we can write

pap; + % =X = ppt =3 wi (s — g ) + Y wi(B — %)

el ji
= ;wj(ﬂj )y —p)" — ;(u — )= )" + gwj(zi _y)
= Z;wj(uj — )y — )"~ Z?;(u — 1) (1= 1)
+3 w (B = 1) = Y wy(S - 1).
J#i G

Here, in the second to last step, we added and subtracted >, .; w; pp" and used that 3=, wip; = p,
and in the last step we added and subtracted >, ; w; 1.

By application of the triangle inequality for Frobenius norm to the RHS of the above, we
have that:

pid + % —pp” =2 < ;wj (s = (s = )|, + ;wj (s = (s = )|,
j#i oy

+ will(Si = Dllp+ > wi =)l <H+H+H+H=4H .
= i#i

Using the SoS version of the Cauchy-Schwarz inequality (Fact 3.2.20) on indeterminate () and
constant pu ' — pgp + ¥; — X and the above bound, we have:

}%{sz (Ez~pi$TQx - Eg;NMxTQx)Q = Zwi (<uiuj + 3, Q> - <,uuT + 3, Q>)2

<Y wi
5

2
i’ = + 5 =3 1QIE < 1613 wi[|QII = 16H ||Q||§} :

Let us now bound the first term in the RHS of (3.76) above. First, observe that ' Qx —
Exguzyr' Qe = (v — )" Q(r — i) — Exuzy(e — )" Qr — i) + 2(x — 1) " Qpus.
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Thus, using Fact 3.2.21 and Lemma 3.2.40, we have:

}%{Z wEp, (27 Qw — E:M>,ocTC2a:)2 (3.77)
i<k
<2 wiBp, (2 — ) Q1) ~ Buop,( — 1) T Q(x — 1)) + 8 wiBp, ((x — 1) Qi)
i<k i<k
(3.78)
<6 w 23/26223/2“; +8) wiEp, ((x - Mi)TQNi)Q} : (3.79)
% i<k

For the first term, note that ||, ||, <1+ ||3; — I|| < 1+ H. Thus, UQH Vv1+ H. Thus,
we have that $)/% < T+(S?~1) < /1 + HI. Using Lemma 3.2.25 with A = (1+H)~Y/2x}/?
and B = QEI/ we have: }* { 1/2 1/2H (1+H) HQZI/QH } By another application

of Lemma 3.2.25, we have: }7 {HQEE/Z P S

{

(1+H) HQHF} Thus, altogether, we have: }%

1/2Q21/2H (1+H)? HQH%} Using our assumption that 1 < H, we thus have:

2
sgsl, <l < e i3

For the second term, first observe that the following equality of quadratic polynomials in indeter-
. 2 2 2
minate Q: ((m — 1) TQui) = (S (@ — 1)) "5*Qui) . Thus, Byp, ((z — 1) Qi) =

’ »1/ ZQ[I,Z . Next, by the SoS Cauchy-Schwarz inequality (Fact 3.2.20), we have that

Q 2
4 Q)
Applying Lemma 3.2.25 with the observation above that £./* < (1 + H)Y/2[ yields:
i

Thus, altogether, we obtain: }% {E%Di(m — i) Quz} < H(1L+ H)?||Q|7 < 4H? ||Q|[5. We
thus have:

2
2 Qui|, = tr(pap] Q¥:Q) < H ta

1/2

<(+mQI%}-

}%{ZwiEm (0 — ) Qui)” < 4b? ||@||%} -

i<k
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Plugging in these bounds into (3.79) completes the proof. [l

As an immediate corollary of Lemma 3.2.38 and Lemma 3.2.41, we obtain:

Lemma 3.10.11 (Variance of Degree-2 Polynomials of Mixtures of Gaussians, Lemma 3.2.42
restated). Let M = >, w,N (u;, ;) be a k-mixture of Gaussians with w; > «, mean jy =
> wip; and covariance Y = Y, wi (s — ) (s — )" + 3;). Suppose that for some H > 1,
HET/Q(Ei - I)ET/QHF < H forevery 1 < i < k. Let Q be a symmetric d x d matrix-valued
indeterminate. Then for H' = max{H,1/a},

I%{ E, [(xTQx— E, [:JQQ;DQ

< 100H"

xrn~ T~

‘Zl/QQEI/QHi} ‘

Proof. Let ¥ = UAU" be the covariance of the mixture M along with its eigendecomposition.
We want to apply Lemma 3.2.41 and Lemma 3.2.38 with the linear transformation x — Az
for A = AY2UT. For this, we need to check that the conditions of the Lemma 3.2.41 are
met after this linear transformation. The new component covariance is X, = AY; A" and the
hypothesis implies that they are within / in Frobenius distance of the new mixture covariance
I' = AXAT (I in the range space of ). The new means of the components after the linear
transformation are y;, = Ay, and the new mixture mean is ' = Agp. Thus, noting that I’ =
S wi(plh — ) (@ — /)T + 3 w; X4, and since each of the terms in the RHS of the preceding
equality are PSD, we must have that I’ = w;(u} — p//) (i, — /)" for every i. Thus, 1 = ||I'||, >
(1 = 1)ty = 1)), = llh = 4[5 Rearranging yields that || — p'[l3 < 1/w; < 1/av
Thus, we can now apply Lemma 3.2.41 to the linearly transformed mixture and the conclusion
follows. []

w;

3.10.4 Omitted Proofs from Section 3.2.4

Lemma 3.10.12 (Lemma 3.2.47 restated). If X satisfies Condition 3.2.45 with respect to M =
S wiN (g, 3;) with parameters (v,t), then if w; > v for all i € [k], and if for some B > 0 we
have that || |5 , 1%ill,p, < Bforalli € [k], then for all m < t, we have that:

2
HE:BEuX[x(X)m] _ ExNM[:E@m]HF < ,YQmO(m)Bmdm )
Proof. We begin by noting that for any symmetric m-tensor A we have that

1A <mO™ (Bonron[(A, 057)?).
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This is because the squared expectation of (A, v®™) is E[Hom 4 (v)?] = m!E[ha(v)?] = m! || A|%.
where the first inequality holds because v/m!h 4(v) is the degree-m harmonic part of Hom 4 (v),

and the equality is by Claim 3.22. Therefore, to prove the lemma, it suffices to bound

Eono) [(Boe,x[(v - 2)"] = By (v - 2)™))’]

r 2
k
1
=E., .o || D (n (v-2)" — Wi Bpn (20 (V- x)m)>
i=1 zeX;
i k m 2
m . .
=Evnvon || 22D ( )M ] ( Yo (=) = Wiz (v (x = Mi))g)>
i=1 j=0 j zeX;
i k m 2
m .
<Evonvon [ 22D j) v ™ UWm'( TEU)W))
=1 j=0

<Y'mOE o~N(0,1) [Z

(sl + (07502
<*mO " By [ ||U||§m}

<72m0(m) B™d™.
This completes the proof. []

Lemma 3.10.13 (Lemma 3.2.48 restated). Let M = Y, w;N (5, ;). Let S C [k] with > ,cq w; =
w, and let M' = Y, cq(w;/w)N (i, ;). Then if X satisfies Condition 3.2.45 with respect
to M with parameters (7,t) for some v < 1/(2k) with the corresponding partition being
X = XiUXoU...UXy, then X' = U;cg X; satisfies Condition 3.2.45 with respect to M’
with parameters (O (kvy/w),t).

Proof. After noting that | X'| = w|X|(1+ O(kvy/w)), the rest follows straightforwardly from the
definitions using the partition X' = UJ;cg X;. ]

Lemma 3.10.14 (Lemma 3.2.49 restated). Let M = S-F  w;N' (115, ;) and let n be an integer
at least kt®'d' /3, for a sufficiently large universal constant C' > 0, some ~y > 0, and some
t € N. If X consists of n i.i.d. samples from M, then X satisfies Condition 3.2.45 with respect
to M with parameters (-, 1) with high probability.

Proof. We will show that Condition 3.2.45 holds with high probability using that partition where

X is the set of samples drawn from the ¢-th component of M. Note that the second part of
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Condition 3.2.45 holds with high probability, so long as n is a sufficiently large multiple of d />
by the VC-Theorem. In particular, if we think of samples as being drawn from R? x [k], where
the second coordinate denotes the component that the sample was drawn from, the second part
of Condition 3.2.45 says that the empirical probability of any event H x {i} is correct to within
additive error 7. It is easy to see and well-known that the class of such events has VC-dimension
O(d), from which the desired bound follows.

For the first part of Condition 3.2.45, we claim that it holds with high probability so long
as n > kt¢'d' /4. To prove this, we show it separately for each i with w; > v (as otherwise
there is nothing to prove) and take a union bound. As Condition 3.2.45 is invariant under affine
transformations, we may perform an invertible affine transformation so that x; = 0 and ; is the
projection onto the first d’ coordinates, for some d'. It is clear that only the first d’ coordinates of
any element of X; will be non-zero. We claim that the first part of our condition will follow for a
given m, so long as || X;|/n — w;| < yw; (which holds with high probability if n > log(k)/7?),
and

2

[Bae.x 2] = Eoenou 2], <77 (3.80)

as L3 cx (v, x — )™ = wi(1 £ ) (Epe, x, [2%™],v®™). It is easy to see that each entry of

n

the tensor on the left hand side of Equation (3.80) has mean 0 and variance m®™ /| X;|, and
thus the expected size of the left hand side is m©™d™ /| X;|. Then, when n > k¢*d** /~? for a
sufficiently large constant C, all parts of our condition hold with high probability. This completes
the proof. ]

3.10.5 Omitted Proofs from Section 3.6

Lemma 3.10.15 (Frobenius Distance to TV Distance, Lemma 3.6.2, restated). Suppose N (11, %1),
N (12, X9) are Gaussians with |1 — ps|l2 < § and | X1 — Xo||p < d. If the eigenvalues of 3y
and Y5 are at least X\ > 0, then

drv(N (b1, 21), N (p2, 22)) = O(3/A) -

Proof. By Fact 3.2.1, we have

v (N (s, £0), Nz, E2)) = O( (1 = 12) TS0 o = i) 15028250 = 1))

. _ 1/2 _
Then the first term is <,u1 — po, 27 (g — u2)> < (IS opllinr — p2ll2)? < 8/V/\. The
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second term 1is

=728 52 — I = 157221 — Z2) 87 1%
2
= tr ((2;1/2(21 - 22)21‘”2) )

<tr (D1 = $2)%) (1/2)?
< (0/2)%

Thus,
drv(N (11, 21), N (12, 22)) = O(8/V A+ 5/X) = O(5/\) .

]

Lemma 3.10.16 (Component Moments to Mixture Moments, Lemma 3.6.3 restated). Let M =
> ic[k] wiN (i, 2;) be a k-mixture such that w; > «, for some 0 < a < 1, and M has mean
w and covariance Y and for all 1 # j € [k], HET/Q (% — %)) ZT/2HF < 1/y/a. Let X be
a multiset of n samples satisfying Condition 3.2.45 with respect to M with parameters (v, t),
for 0 < v < (dk/a)~%, for a sufficiently large constant ¢, and t € N. Let D be the uniform
distribution over X. Then, D is 2t-certifiably (c/«)-hypercontractive and for d x d-matrix-valued

indeterminate (), l2 {EM (;ETQx — EMmTQx)Q < O(1/a) HEU%}EUZH?}.

Proof. First, since M is a k-mixture of Gaussians with minimum mixing weight w.;, > a,
it follows from Corollary 3.2.34 that M is t-certifiably (4/«) hypercontractive. Further, since
X satisfies Condition 3.2.45 with parameters (v, t), it follows from Lemma 3.2.46 that the set
X" = {XV2(z; — ) }s,ex also satisfies Condition 3.2.45 with parameters (7,t) w.rt. M’ =
Siep wiN (ZT/2(,ui — ), ZT/2ZZ~ZT/2>. Since HET/2EiET/2HOp < O(1/a), it follows from Lemma
3.2.47 that for all m < t, ||Epe, x/[29™] — Eporr [227]]|3 < A2mO™d™(1/a)™. Since y <
(dk/a))=C® it follows from Fact 3.2.43 that X is 2¢-certifiably (c¢/a)-hypercontractive.

By assumption, for all i # j € [k], we have that HZW (% — %)) ET/QHF < 1/y/a. We can
now apply Lemma 3.2.42 to obtain

T

Q T T ? 1/2,s1/2||2
45, [(Tar- 5 [rad) ] < ot s}
Therefore, it follows from Fact 3.2.43 that since X satisfies Condition 3.2.45 with parameters
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(,t), the uniform distribution Dx on X,

}% {EZNDX (2" Qz — Epopy v Qr)? < O(1/0) HEI/QQEUQH;} '

3.11 Bit Complexity Analysis

Here we address numerical issues related to our computation. We begin wth the assumption that

the eigenvalues of our covariance matrices are bounded below.

Lemma 3.11.1. [f M = Zle w;G; is a mixture of Gaussians G; where each G; has mean and
covariance of norm at most 2° for some positive integer b and each G; has covariance matrix
whose eigenvalues are bounded below by some X\ > 0. Let M’ be an e-corruption of M whose
outputs are bounded by 2°®). Let N be a sufficiently large polynomial in d* /s and let 1 be )
divided by a sufficiently large polynomial in 2°d /e (where sufficiently large is degree O(1)). Then
if our algorithm is given N i.i.d. samples from M’ with each of their coordinates rounded to a
nearby multiple of 1) (by which we mean one of the two closest), then our algorithm runs in time
poly(N, b,1og(1/n)) and with high probability returns a list of mixtures of Gaussians X; with at

least one of the X; poly,(e)-close to M in parameter distance.

Proof. This follows from noting firstly that with high probability the any subset of the rounded
samples will have moments \/poly(d/c)-close to their moments before rounding. This means
that with high probability these rounded samples will satisfy Condition 3.2.45. This means
that our algorithm satisfies the necessary correctness guarantees. Furthermore, given that our
samples now all have bounded bit complexity, it is easy to see that the runtime of our algorithm

is polynomial in NV and the bit complexity. [

More generally, as long as the parameters of the components of our mixture can be expressed
with bounded bit complexity, we can prove a similar result, without needing any lower bound on

the covariances.

Theorem 91. Let M = Ef;l w;G; be a mixture of Gaussians where the G; are Gaussians
whose means and covariance matrices can all be written with coefficients given by rational

numbers with bit complexity at most b for some integer b. Let M’ be an e-corruption of M

276



so that with probability 1 the returned points have size 2°%). Let N be a sufficiently large
polynomial in d* /. Then there exists an algorithm that given b bit-oracle access to these samples

runs in time poly(N,b) and with high probability returns a mixture of Gaussians X so that
drv(X, M) < poly(e).

Proof. We begin by showing that we can find a list of hypotheses at least one of which is close.
It is then straightforward to show that we can run a tournament over these hypotheses to find a

specific one that works. We also assume for simplicity that each wj is at least 3¢.

We begin by setting A to be 204" for a sufficiently large constant C'. By adding each
sample to a random sample from N (0, A/), we can produce samples from M, and e-corruption
of M = Zle w;G; where G; is the convolution of G; with N (0, AI). Note that G, is a Gaussian
whose covariance has eigenvalues at least \. Furthermore, if the covariance matrix of GG; is non-
singular, the smallest eigenvalue of the covariance matrix must be at least 20(¢)

dTv<Gi, GZ) < €.

, and therefore

Since the eigenvalues of the components of M are bounded below, we can apply Lemma
3.11.1 to our samples from M’ rounded to an appropriate accuracy 7, and in poly (N, b)-time
obtain a list of hypothesis mixtures at least one of which is (with high probability) close to M in

total variation distance.

If the covariances of all of the G; with weights more than some sufficiently large poly, (¢) are
all non-singular, then one of these hypotheses will be close to M. Otherwise, there must be some
1 for which w; is relatively large and for which G; has singular covariance matrix. In particular,
there must be an integer vector v with bit complexity O(bd) in the kernel of the covariance
matrix of G;. The hypothesis mixture X that is close to M in parameter distance must contain
some component close to G;. Since G; has covariance matrix 3; = M + Y; where Y; is the
covariance matrix of G;. We note that ii will have an eigenvalue of )\ and that therefore, our

close hypothesis will have an eigenvalue at most 2.\.

If any of our returned hypotheses have any component with a covariance matrix > which has
any eigenvalue less than 2\, we do the following. We consider the quadratic form on integer

vectors v defined by

Q(v) = v" v + VA|u|2.

We note that if this X is close in parameter distance to a singular f]i where >2; had a null-vector
v of norm 2°(® then for that same value of v we will have that Q(v) < A/, Using the Lovasz

local lemma, we can find a v so that Q(v) is within a 2°(@-factor of the minimum possible value
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over all non-zero, integer vectors v. If for this v, Q(v) > 2%@\/4 we know that the hypothesis
in question is not close to M in parameter distance and can be ignored. On the other hand, any v
with Q(v) this small must have |v| < 29 X\1/2 and vT 20w < 20 \1/4, Note that the projection
of v onto the ker(X;)" is either zero or has magnitude at least 2°(*Y)_ In the latter case, it would
need to be the case that (Q(v) is substantially larger. Thus, if such a hypothesis is close to M in
parameter distance, then v is in the kernel of some ;.

If our algorithm finds some v for some hypothesis, we then compute v - x to error A for each
of our samples z. If M really has a component with v in the kernel of its covariance matrix, all
of the 2’s taken from this component will have v - « the same. This means that at least a (3/2)e
fraction of our samples x will have v - = within A of each other. Note that if v is not in the kernel

(db)

of any covariance matrix of any G, than Varv - G; will be at least 2°(®) for each 4, and with high

probability we will not find this many close samples.

To summarize, if our algorithm applies this procedure to every component of every hypoth-
esis and does not find such a v, then it cannot be the case that M contains any components of
weight more than poly, (¢) that are singular, and thus one of our original hypotheses must be
close in total variational distance. We can then run a tournament to find a single one that is close.
Otherwise, if we find such a v for which many points do have v - z close by, then v must be a null
vector of the covariance matrix of some (;. Furthermore, all of the samples within A of this com-
mon value of v - x, with high probability are either errors or come from components contained
in some lower dimensional subspace. We can determine what this subspace is by noting that it
is defined by v - © = ¢ for some rational number ¢ with bit-complexity at most O(bd) and using
continued fractions on a good numerical approximation of ¢ in order to determine its true value.
Our algorithm can then recurse on the points in this subspace (a mixture of Gaussians in a lower
dimensional space) and on the remaining points (which are from a mixture of fewer Gaussians),

and return an appropriate mixture of the results. ]
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Chapter 4

Robustly Linear Regression

4.1 Introduction

While classical statistical theory has focused on designing statistical estimators assuming access
to i.i.d. samples from a nice distribution, estimation in the presence of adversarial outliers has

been a challenging problem since it was formalized by Huber [Hub64].

Regression continues to be extensively studied under various models, including realizable
regression (no noise), true linear models (independent noise), asymmetric noise, agnostic re-
gression and generalized linear models (see [Wei05] and references therein). In each model, a
variety of distributional assumptions are considered over the covariates and the noise. As a con-
sequence, there exist innumerable estimators for regression achieving various trade-offs between
sample complexity, running time and rate of convergence. The presence of adversarial outliers

adds yet another dimension to design and compare estimators.

Seminal works on robust regression focused on designing non-convex loss functions, includ-
ing M-estimators [Hubl11], Theil-Sen estimators[The92, Sen68], R-estimators[Jac72], Least-
Median-Squares [Rou84] and S-estimators[RY84]. These estimators have desirable statistical
properties under disparate assumptions, yet remain computationally intractable in high dimen-
sions. Further, recent works show that it is information-theoretically impossible to design robust

estimators for linear regression without distributional assumptions [KKM18].

An influential recent line of work showed that when the data is drawn from the well studied
and highly general class of hypercontractive distributions (see Definition 4.1.1), there exist robust
and computationally efficient estimators for regression [KKM 18, PSBR20, DKS19]. Several
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families of natural distributions fall into this category, including Gaussians, strongly log-concave
distributions and product distributions on the hypercube. However, both estimators converge
to the the true hyperplane (in ¢ 2-norm) at a sub-optimal rate, as a function of the fraction of

corrupted points.

Given the vast literature on ad-hoc and often incomparable estimators for high-dimensional

robust regression, the central question we address in this work is as follows:

Does there exist a unified approach to design robust and computationally efficient
estimators achieving optimal rates for all linear regression models under mild

distributional assumptions?

We address the aforementioned question by introducing a framework to design robust esti-
mators for linear regression when the input is drawn from a hypercontractive distribution. Our
estimators converge to the true hyperplanes at the information-theoretically optimal rate (as a
function of the fraction of corrupted data) under various well-studied noise models, including
independent and agnostic noise. Further, we show that our estimators can be computed in poly-

nomial time using the sum-of-squares convex hierarchy.

We note that, despite decades of progress, prior to our work, estimators achieving optimal
convergence rate in terms of the fraction of corrupted points were not known, even with indepen-

dent noise and access to unbounded computation.

4.1.1 Our Results

We begin by formalizing the regression model we work with. In classical regression, we assume
D is a distribution over R¢ x R and for a vector © € RY, the least-squares loss is given by
errp(©) = Eyyp [(y - xT@)Q]. The goal is to learn ©* = arg ming errp(0). We assume
sample access to D, and given n i.i.d. samples, we want to obtain a vector © that approximately
achieves optimal error, errp(©O*).

In contrast to the classical setting, we work in the strong contamination model. Here, an
adversary has access to the input samples and is allowed to corrupt an e-fraction arbitrarily. Note,
the adversary has access to unbounded computation and has knowledge of the estimators we
design. We note that this is the most stringent corrupt model and captures Huber contamination,

additive corruption, label noise, agnostic learning etc (see [DK19]). Formally,
Model 92 (Robust Regression Model). Let D be a distribution over R¢ x R such that the marginal
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distribution over R¢ is centered and has covariance ¥* and let ©* = arg ming E, ,~p [(y — (0, z) )2}
be the optimal hyperplane for D. Let {(z7,v7), (z5,v3), ... (xF,y%)} be nii.d. random variables
drawn from D. Given € > 0, the robust regression model Rp (e, X%, ©*) outputs a set of n sam-
ples {(z1,v1),-..(%n,yn)} such that for at least (1 — ¢)n points z; = 2} and y; = y;. The

remaining en points are arbitrary, and potentially adversarial w.r.t. the input and estimator.

A natural starting point is to assume that the marginal distribution over the covariates (the
x’s above) is heavy-tailed and has bounded, finite covariance. However, we show that there is
no robust estimator in this setting, even when the linear model has no noise and the uncorrupted

points lie on a line.

Theorem 93 (Bounded Covariance does not suffice, Theorem 105 informal). For all € > 0, there
exist two distributions Dy, Dy over R% x R such that dty (Dy, Ds) < € and the marginal distribu-
tion over the covariates has bounded covariance, denoted by * = (1), yet HEI/ 2(0, —6,) H2 =

Q(1), where ©1 and © are the optimal hyperplanes for Dy and Ds.

The aforementioned result precludes any statistical estimator that converges to the true hyper-
plane as the fraction of corrupted points tends to 0. Therefore, we strengthen the distributional

assumption consider hypercontractive distributions instead.

Definition 4.1.1 ((C, k)-Hypercontractivity). A distribution D over R% is (C, k)-hypercontractive
for an even integer k > 4, if for all v € [k/2], for all v € RY,

& (-] < el me)]

Remark 94. Hypercontractivity captures a broad class of distributions, including Gaussian dis-

T

tributions, uniform distributions over the hypercube and sphere, affine transformations of isotropic
distributions satisfying Poincare inequalities [KSS18] and strongly log-concave distributions.
Further, hypercontractivity is preserved under natural closure properties like affine transforma-
tions, products and weighted mixtures [KS17]. Further, efficiently computable estimators ap-
pearing in this work require certifiable-hypercontractivity (Definition 4.2.5), a strengthening that

continues to capture aforementioned distribution classes.

In this work we focus on the rate of convergence of our estimators to the true hyperplane,
©*, as a function of the fraction of corrupted points, denoted by e. We measure convergence
in both parameter distance (¢/5-distance between the hyperplanes) and least-squares error on the
true distribution (errp).
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We introduce a simple analytic condition on the relationship between the noise (marginal
distribution over y — 2 ' ©*) and covariates (marginal distribution over x) that can be considered

as a proxy for independence of y — ' ©* and x :

Definition 4.1.2 (Negatively Correlated Moments). Given a distribution D over R% x R, such
that the marginal distribution on R% is (cy, k)-hypercontractive, the corresponding regression
instance has negatively correlated moments if for all r < k, and for all v,

E [(U,xy (y — xT@*)T} <O1) E [{(v,z)'] E Ky — xT@*y}

z,y~D x~D z,y~D

Informally, the negatively correlated moments condition can be viewed as a polynomial re-
laxation of independence of random variables. Note, it is easy to see that when the noise is

independent of the covariates, the above definition is satisfied.

Remark 95. We show that when this condition is satisfied by the true distribution, D, we obtain
rates that match the information theoretically optimal rate in a true linear model, where the noise
(marginal distribution over y —x ' ©*) is independent of the covariates (marginal distribution over
x). Further, when this condition is not satisfied, we show that there exist distributions for which

obtaining rates matching the true linear model is impossible.

When the distribution over the input is hypercontractive and has negatively correlated mo-
ments, we obtain an estimator achieving rate proportional to e!~'/* for parameter recovery. Fur-

ther, our estimator can be computed efficiently. Thus, our main algorithmic result is as follows:

Theorem 96 (Robust Regresssion with Negatively Correlated Noise, Theorem 101 informal).
Given e > 0,k > 4, andn > (dlog(d))°"™ samples from Ryp(e, X%, 0%), such that D is (¢, k)-
certifiably hypercontractive and has negatively correlated moments, there exists an algorithm

O(k)

that runs in n time and outputs an estimator © such that with high probability,

i (0~ ©)], < Ofc) (emster)

and,
errp(0) < (1+ O(2/%)) errp(67)

Remark 97. We note that prior work does not draw a distinction between the independent and

dependent noise models. In comparison (see Table 4.1), Klivans, Kothari and Meka [KKM 18]

1-2/k

obtained a sub-optimal least-squares error scales proportional to € . For the special case of
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k = 4, Prasad et. al. [PSBR20] obtain least squares error proportional to O(ex?(2)), where
k is the condition number. In very recent independent work Zhu, Jiao and Steinhardt [ZJS20]
obtained a sub-optimal least-squares error scales proportional to €2~%/*,

Further, we show that the rate we obtained in Theorem 96 is information-theoretically opti-

mal, even when the noise and covariates are independent:

Theorem 98 (Lower Bound for Independent Noise, Theorem 103 informal ). For any € > 0,
there exist two distributions D1, Do over R? x R such that the marginal distribution over R? has
covariance 3 and is (c, k)-hypercontractive for both distributions, and yet HEI/ 2(0; — 0y) H2 =
Q (61_1/ ka), where ©1, O4 are the optimal hyperplanes for Dy and D respectively, 0 = max(
errp, (01), errp,(©,)) and the noise is uniform over [—o, o|. Further, |errp, (O2)—errp, (01)| =
0O (62—2/1%2)'

Next, we consider the setting where the noise is allowed to arbitrary, and need not have
negatively correlated moments with the covariates. A simple modification to our algorithm and

analysis yields an efficient estimator that obtains rate proportional to €' ~2/* for parameter recov-

ery.

Corollary 4.1.3 (Robust Regresssion with Dependent Noise, Corollary 4.3.1 informal). Given
€> 0,k > 4andn > (dlog(d))°™ samples from Rp (e, %, ©*), such that D is (c, k)-certifiably

O(k)

hypercontractive, there exists an algorithm that runs in n time and outputs an estimator 6

such that with probability 9/10,

1 o - @) < o) (ome)

2

and,

errp(0) < (1+ O(&7/%)) errp(©7)
Further, we show that the dependence on € is again information-theoretically optimal:

Theorem 99 (Lower Bound for Dependent Noise, Theorem 104 informal). For any € > 0, there
exist two distributions Dy, Dy over R* x R such that the marginal distribution over R? has
covariance ¥ and is (c, k)-hypercontractive for both distributions, and yet HEl/Q(@l — 0s) H2 =
Q (61_2/ ka), where ©1, 0, be the optimal hyperplanes for Dy and D, respectively and o =
max(errp, (01), errp,(0s)). Further, |errp, (0,) — errp, (1) = Q (62_4/k0'2).
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Estimator Independent Noise | Arbitrary Noise
Prasad et. al. [PSBR20], 9 B 2 .
Diakonikolas et. al. [DKK 18] | " (only kb =4) | e " (only k = 4)
Klivans, Kothari and Meka (1-2/k (1-2/k
[KKM18]

Zhu, Jiao and Steinhardt (2-4/k (2-4/k
[2JS20]

Our Work 62_2/k 62—4/k'

Thm 96, Cor 4.1.3

Lower Bounds (2-2/k (2-4/k

Thm 98, Thm 99

Table 4.1: Comparison of convergence rate (for least-squares error) achieved by various compu-
tationally efficient estimators for Robust Regression, when the underlying distribution is (¢, k)-
hypercontractive.

Applications for Gaussian Covariates. The special case where the marginal distribution over
x is Gaussian has received considerable interest recently [DKS19, DKK"18]. We note that
our estimators extend to the setting of Gaussian covariates, since the uniform distribution over
samples from N (0, X) are (O(k) , O(k))-certifiably hypercontractive for all &k (see Section 5 in
Kothari and Steurer [KS17]). As a consequence, instantiating Corollary 4.1.3 with k£ = log(1/e)
yields the following:

Corollary 4.1.4 (Robust Regression with Gaussian Covariates). Given ¢ > 0andn > (dlog(d))°"**/9)

samples from R (e, 2%, ©%), such that the marginal distribution over the x’s is N'(0,3*), there
exists an algorithm that runs in n°®1°80/9 time and outputs an estimator © such that with high
probability,

|22 (07 = 8)||, < Ofelog(1/e)) (erm(©7)”

and,
erny(©) < (1+ O((elog(1/€))*) ) ermy (0"

We note that our estimators obtain the rate matching recent work for Gaussians, albeit in
quasi-polynomial time. In comparison, Diakonikolas, Kong and Stewart [DKS19] obtain the
same rate in polynomial time, when the noise is independent of the covariates. We note that ob-
taining the optimal rate for Gaussian covariates (shaving the additional log(1/¢) factor) remains

an outstanding open question.

284



Concurrent Work. We note that a statistical estimator achieving rate proportional to ¢'~1/*

can be obtained from combining ideas in [ZJS19] and [Z]S20]'. However, this approach remains
computationally intractable. Finally, Cherapanamjeri et al. [CAT20] consider the special case
of £k = 4 and obtain nearly linear sample complexity and running time. However, their running
time and rate incurs a condition number dependence. Further, their rate scales proportional to

€'/2, even when the noise is independent of the covariates (as opposed to €%/%).

We emphasize that the bottleneck in all prior and concurrent work remains algorithmically
exploiting the independence of the noise and covariates, which we achieve via the negatively

correlated moments condition (Definition 4.1.2).

4.2 Preliminaries

Throughout this paper, for a vector v, we use ||v||2 to denote the Euclidean norm of v. For a
n x m matrix M, we use | M|z = max|,|,=1|| Mz, to denote the spectral norm of M and
| M|z = /X ; M7, to denote the Frobenius norm of A/. For symmetric matrices we use > to
denote the PSD/Loewner ordering over eigenvalues of M. Recall, the definition of total variation

distance between probability measures:

Definition 4.2.1 (Total Variation Distance). The TV distance between distributions with PDF's
D, q is defined as % 20 Ip(x) — q(z)|d.

Given a distribution D over R% x R, we consider the least squares error of a vector © w.r.t. D
tobe errp(©) = Ey yp {(y — (x, ®>)2} . The linear regression problem minimizes the error over
all ©. The minimizer, ©p of the aformentioned error satisfies the following "gradient condition"
- for all v € R4,

E [<v,m:T@D — xyﬂ =0

x,y~D

Fact 4.2.2 (Convergence of Empirical Moments, implicit in Lemma 5.5 [KS17] ). Let D be
a (cx, k)-hypercontractive distribution with covariance % and let X = {x1,...x,} be n =
Q((dlog(d)/6)*/?) i.i.d. samples from D. Then, with probability at least 1 — 6,

1 n
(1-01)S < =Y za <(1+0.1)%
n <
K2
'"We thank Banghua Zhu, Jiantao Jiao, and Jacob Steinhardt for communicating their observation to us.
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Fact 4.2.3 (TV Closeness to Covariance Closeness, Lemma 2.2 [KS17]). Let Dy, Dy be (cy, k)-
hypercontractive distributions over R? such that |D — D'|| 7, < € where 0 < € < (’)((1 / ck)%)

Let 331, %5 be the corresponding covariance matrices. Then, for § < O(ck e/ '“) <1,
(1—-0)2 =% 2 (1460)%

Lemma 4.2.4 (Léwner Ordering for Hypercontractive Samples). Let D be a (¢, k)-hypercontractive
distribution with covariance . and and let U be the uniform distribution over n samples. Then,

with probability 1 — 9,
Cyd?

< :

“271/22271/2 _ [H
where 33 = % > icn) zx] .
Next, we define the technical conditions required for efficient estimators. Formally,

Definition 4.2.5 (Certifiable Hypercontractivity). A distribution D on R is (cy, k)-certifiably
hypercontractive if for all v < k/2, there exists a degree O(k) sum-of-squares proof (defined
below) of the following inequality in the variable v

E [(x,wzr} < E [cr (x,v)zr

such that ¢, < cg.

Next, we note that if a distribution D is certifiably hypercontractive, the uniform distribution

over n i.i.d. samples from D is also certifiably hypercontractive.

Fact 4.2.6 (Sampling Preserves Certifiable Hypercontractivity, Lemma 5.5 [KS17] ). Let D be a
(cx, k)-certifiably hypercontractive distribution on R%. Let X be a set of n = ) ((d log(d/5))"? /72)
i.i.d. samples from D. Then, with probability 1 — 0, the uniform distribution over X is (cy+, k)-

certifiably hypercontractive.

We also note that certifiably hypercontractivity is preserved under Affine transformations of

the distribution.

Fact 4.2.7 (Certifiable Hypercontractivity under Affine Transformations, Lemma 5.1, 5.2 [KS17]).
Let v € R? be a random variable drawn from a (cy, k)-certifiably hypercontractive distribution.
Then, for matrix A and vector b, the distribution over the random variable Az + b is also (cy, k)-

certifiably hypercontractive.
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Next, we formally define the condition on the moments and noise that we require to obtain
efficient algorithms. We note that for technical reasons it is not simply a polynomial identity

encoding Definition 4.1.2.

Definition 4.2.8 (Certifiable Negatively Correlated Moments). A distribution D on R? x R has
O(1)-certifiable negatively correlated moments if for all r < k/2 there exists a degree O(k)

sum-of-squares proof of the following inequality

(v (y-270))"| <o) (B[] (&](v-=T0)] )

for a fixed vector ©.

E

z,y~D

4.3 Robust Certifiability and Information Theoretic Estima-

tors

In this section, we provide an estimator that obtains the information theoretically optimal rate for
robust regression. We note that we consider the setting where both the covariates and the noise
are hypercontractive and the are independent of each other. This setting displays all the key
ideas of our estimator. Further, our estimator extends to the remaining settings, such as bounded

dependent noise, by simple modifications to the subsequent analysis.

Theorem 100 (Robust Certifiability with Optimal Rate). Given ¢ > 0, let D, D’ be distribu-
tions over R? x R such that the respective marginal distributions over R¢, denoted by Dy, D,
are (¢, k)-hypercontractive and |D — D'|| 7, < €. Let Rp(e, Xp, ©p) and Rp(e, Xpr, Opr) be
the corresponding instances of robust regression such that D, D' have negatively correlated mo-
ments. Further, for (x,y) ~ D, D', let the marginal distribution over y — <x, E {sz] - E [xy]>
be (ng, k)-hypercontractive Then,

HZ%D(GD — Opr)

’2 < O(m 61—1/16) (eer(@D)1/2 + efrp/(@pl)1/2>
Further,

erFD(@D/) < (1 —+ O(Ck Nk 6272/}6)) efrp(@p) + O(Ck Mk 6272/[6) efrp/<@pl)

Proof. Consider a maximal coupling of D, D’ over (x,y) x (2',y'), denoted by G, such that the
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marginal of G (x,y) is D, the marginal on (2/,y') is D’ and Pg[I(x,y) = (', y')] = 1 — €. Then,

for all v,

<’U, ED(@D — @D’» = [<U, [I)f—r(@p — @D/) =+ Ty — $y>}

E
¢ (4.1
— IQE [<U7 X (<$, ®D> - y)>] + IQE KU, x (y - <I7 @D'>)>]

Since ©p is the minimizer for the least squares loss, we have the following gradient condition
: for all v € R,
E [(v,({z,0p) —y)z)] =0 (4.2)

(z,y)~D
Since G is a coupling, using the gradient condition (4.2) and using that 1 = I(x,y) = (2, /)
+1(z,y) # (2/,v'), we can rewrite equation (4.1) as

4.3)

Consider the first term in the last equality above. Using the gradient condition for ©p: along with

Holder’s Inequality, we have

Eq| (v,2' (= (¢, 00)) I(z.1) = (@',

= |E 0.2’ (/ ~ (", 0p)))] ~ E[(v.2' (¢ ~ (. Op)) Iz, ) # (') \

“4.4)
= [E[v.2' (v = (&', 0p)) I(2,9) # (&', 9]
< ]g[]l@f,y) £ (m',y’)k/(k 1)}(1‘3_1)/743 ) %_% [(’U,l’/ (y/ . <x/7®D’>)>k} 1/k

Observe, since G is a maximal coupling g [I(z, y) # (2, y/)]* /% < €-=V/*. Further, since D’

has negatively correlated moments,

E [(v.2)" (y = («/.00)"] = E [(0,2)"| E [(v/ — 2/, 0p))"]

D’ D’
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By hypercontractivity of the covariates and the noise, we have

" <ommm) ()" E (W - em))?]

@y ~D’

E [0, E [ - (', 0))]

D/

Therefore, we can restate (4.4) as follows

4.5)

N =

B0’ (/ — (', 00))) Iw,) = (') | < O( V@i ') (v Sow)

E |0~ @ 60))]

z/,

It remains to bound the second term in the last equality of equation (4.3), and we proceed as

follows :

El(v, 7 (y = (,00)) Iw,9) # (¢',4)] = E |(v,227 (Op = Op)) I(,9) # (')
(4.6)
FE (0.2 (v~ (,00)) I ) # (4))]

We bound the two terms above separately. Observe, applying Holder’s Inequality to the first

term, we have

MES

E[(v.a07 (0 — 0p))I(e,y) # (,9))] <E[l(e,9) # (@,9)) T E (0,227 (O~ Op)

|

< e%[g[g Kv,xxT (Op — @p/)>§] '

4.7)

To bound the second term in equation 4.6, we again use Holder’s Inequality followed D having

negatively correlated moments,
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k-1

El(v.2 (s~ (@.00)) I(w.y) # (1) S E[w.y) # @) T E [ (v — (2. 00))

e

< B[00 B, - o))"
< vam (v2o0) B [ (@.00)7] "

where the last inequality follows from hypercontractivity of the covariates and noise. Substituting
the upper bounds obtained in Equations (4.7) and (4.8) back in to (4.6),

El(w.z(y— (2,00 I(z.y) # ()] < €T E K” rz! (Op — @pf)ﬂ E
+ e% vV Ck Mk (UTEDU>1/2 L;[.ED [(y _ (x, @D>)2]1/2

Therefore, we can now upper bound both terms in Equation (4.3) as follows:

<U, ZD<®D - @D’>> (Ck Nk Ek 1) (U ED/U) 12 E [(y/ - <1’/, @D’>)2} V2

[ v,zz" (Op — @D/)>k/2]2/k 4.9)
( vam) (075o0) " B[ (@000

Recall, since the marginals of D and D’ on R? are (¢, k)-hypercontractive and | D — D’ ||y
it follows from Fact 4.2.3 that

(1-01)Ep < ¥p < (1+0.1)p (4.10)

when e < <(1 crk)*/k= 1) Now, consider the substitution v = ©p — Op/. Observe,

E
4

/272/k /
<v, vz’ (Op — @D/)>k 2] = Ig [<13, (Op — @D'>>k}: k 4.11)
<[54 - on]
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Then, using the bounds in (4.10) and (4.11) along with v = ©p — Op in Equation 4.9, we have

< ofvam ) [sHen o),

(m’,ylgvp/ [(y/ - <$/; @D’»ﬂé + E [(y _ <x’ @D>)2} %)

(1 — O(e%ckw “EgQ(@D - Op)

z,y~D

(4.12)

Dividing out (4.12) by (1 — O(¢'T ;) ) | £7*(©p — O)

upper bounded by a fixed constant less than 1 yields the parameter recovery bound.

2 . k=2 .
) and observing that (’)(ET ck) 1s

Given the parameter recovery result above, we bound the least-squares loss between the two

hyperplanes on D as follows:

’errp(@p) —errp(Opr)

E - [(y — ZL‘T@D)2 — (y — CL’T@D/ + ZL’T@D — JZT@D>2:| '

(z.y)~
=| E_[(.(60—6p))* +2(y—+T6p)s" (00 — 0]
(z,y)~D
<o) (5 [0/~ w00+ B [b-(non)])

(4.13)

where the last inequality follows from observing £ K@D — Opr,z(y — xT@D)H = 0 (gradient
condition) and squaring the parameter recovery bound. ]

Next, we consider the setting where the noise is allowed to dependent arbitrarily on the co-
variates, which captures the well-studied agnostic model. With a slightly modification in our
certifiability proof above (using Cauchy-Schwarz instead of independence), we obtain the opti-

mal rate in this setting. We defer the details to Appendix 4.7.

Corollary 4.3.1 (Robust Regression with Dependent Noise). Let D, D’ be distributions over
R x R and let Rp (e, ¥p, Op), Rp/(€, Spr, Op/) be robust regression instances satisfying the
hypothesis in Theorem 100 such that the negatively correlated moments condition is not satisfied.
Then,

|1=7%(©p — )

’2 < O(\/m 61—2/16) (eer(@D)l/2 + efrp/(@pl)1/2>
Further,
errp(Opr) < (1 + O(ck M 62_4/k)) errp(©p) + O(Ck I E2—4/1<;) errm (Op)
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4.4 Robust Regression in Polynomial Time

In this section, we describe an algorithm to compute our robust estimator for linear regression
efficiently. We consider a polynomial system that encodes our robust estimator. We then consider
a sum-of-squares relaxation of this program and compute an approximately optimal solution for
our relaxation. To analyze our algorithm, we consider the dual of the sum-of-squares relaxation
and show that the sum-of-squares proof system caputures a variant of our robust identifiability

proof.

We begin by recalling notation: let D be a distribution over R? x R such that it is (Ag, k)-
certifiably hypercontractive. Let X = {(z1,v7), (z3,v3) ... (x%,y*)} denote n uncorrupted i.i.d
samples from D and let X, = .{(z1,y1), (z2,¥2) - .. (s, yn)} be an e-corruption of the samples
X, drawn from a Robust Regression model, Rp (e, ¥*, ©*) (Model 92). We consider a polyno-

mial system in the variables X' = {(z,v}), (5, 45) ... (z),y.)} and wy, we, ... w, € {0,1}"

as follows:
Yiem wi = (1 —¢€)n
Vi € [n]. w? = w;
Vi € [n] wi(x, —x;) =0
Vi € [n] wi(y; —yi) =0
1 k
(00 S (o) -m)) =0
AQ)\ki n i€[n]
1 / 2r )\7" / 2 '
Vr < k/2 =3 (@ vy < | D (g v)
n i€[n] n i€[n]
1 / I\ 2T )\7“ / I\ 2 '
vr g k/Q - (yz - <67 .’L‘l>) < — Z (yz <67 :Cz>)
n i€[n] n i€[n]
2r T T
Vr<k/2 E [(M; (- @)'e)) } <OO)E (v, )] E (v — (2/,©))"]

We show that optimizing an appropriate convex function subject to the aforementioned con-
straint system results in an efficiently computable robust estimator for regression, achieving the

information-theoretically optimal rate. Formally,
Theorem 101 (Robust Regression with Negatively Correlated Moments, Theorem 96 restated).
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Givenk € N, e > 0and n > ng samples X, = {(x1,11), . .. (Tn, Yn) } from Rp(e, 3, %), where
D is a (\y, k)-certifiably hypercontractive distribution over R¢ x R. Further, D has certifiable
negatively correlated moments. Then, Algorithm 102 runs in n®®) time and outputs an estimator
]Eg[@] such that when ng = Q ((dlog(d))ﬂ(k)/vz) with probability 1 — 1/poly(d) (over the draw
of the input),

=

|2 (0 = Eel0])], < O(A 7 + Avy) errp(©7)'/

Further,
errp (IEQ:[@]) < (1 + O(/\i AR DY 72)) errp(0*).

Algorithm 102 (Optimal Robust Regression in Polynomial Time).
Input: n samples X, from the robust regression model Rp(e, ©F, ¥%).
Operation:

1. Find a degree-O(k) pseudo-distribution C satisfying A, and minimizing

2. Round the pseudo-distribution to obtain an estimator Eg[@].

Output: A vector IEE[@] such that the recovery guarantee in Theorem 101 is satisfied.

Efficient Estimator for Arbitrary Noise. We note that an argument similar to the one pre-
sented for Theorem 101 results in a polynomial time estimator when the regression instance
does not have negatively correlated moments (definition 4.1.2), albeit at a slightly worse rate.
Formally,

Corollary 4.4.1 (Robust Regression with Arbitrary Noise). Consider the hypothesis of Theorem
101, without the negatively correlated moments assumption. Then, there exists an algorithm

O(k)

that runs in time n outputs an estimator © such that when ny = (dlog(d))*® /42, with

probability 1 — 1/poly(d) (over the draw of the input),
H(E*)l/2 (@* — é) H2 < O(Ak el =2k 4oy M2 7) (;"rrp(@*)l/2
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Further,
errp (@) < (1 + (’)()\i ek 4 \2 7)) errp(©)

At a high level, we simply do not enforce the negatively correlated moments constraint in
our polynomial system A, ,, and instead use the SoS Cauchy-Schwarz inequality in our key
technical lemma (Lemma 4.4.3). For completeness, we provide the proof of the SoS lemma in

Appendix 4.8.

4.4.1 Analysis

We begin by observing that we can efficiently optimize the polynomial program above since it
admits a compact representation. In particular, A, ,, can be represented as a system of poly(n)

O(k)

constraints in n variables. We refer the reader to [FKP " 19] for a detailed overview on how

to efficiently implement the aforementioned constraints.

Lemma 4.4.2 (Soundness of the Constraint System). Given n > ng samples from Rp(e, ©*, %),
with probability at least 1 — 1/poly(d) over the draw of the samples, there exists an assignment
forw, 2’y and © such that A. ,, is feasible when ny = ((dlog(d))ﬂ(k)>.

Proof. Consider the following assignment: for all i € [n] the w;’s indicate the set of uncorrupted
points in X, i.e. w; = 1if (z;,y;) = (27,y), «} = x; and y, = y;. Further, © = ©*, the true

hyperplane. It is easy to see that the first four constraints (intersection constraints) are satisfied.

We observe that the marginal distribution over the covariates and the noise are both (A, k)-
certifiably hypercontractive since they are Affine transformations of D (Fact 4.2.7). Next, it
follows from Fact 4.2.6, that for ny = 2 (d log(d)o(k)), the uniform distribution over the samples
x;, 18 (2 A, k)-certifiably hypercontractive with probability at least 1 — 1 /poly(d). Similarly, the

uniform distribution on y; — (x;, ©*) is (2 A, k)-certifiably hypercontractive.

It remains to show that sampling preserves certifiable negatively correlated moments. Recall,

since the joint distribution is hypercontractive, by Fact 4.2.6 we know that there’s a degree O(k)
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proof of

k/2
- Z <U7 xl>k (yl - <Ii7 @*>)k < O()\lﬁ) (1 Z <U> Ii>2 (yi - <xi7 ®*>)2)
i€l e (419)
= o(x) (; > ol (i — (i, @*m)
i€[n]

It thus suffices to bound the Operator norm of %Zie[n} zix] (yi — (i, @*))2.

Lemma 4.2.4 that with probability at least 1 — 1/poly(d),

It follows from

1

= > wa] (i~ (2,07 2 0(1) E_ 2z (y — (2,07)"] (4.15)
1€[n] Ly~

when n > ny. Using that D has negatively correlated moments,

E [:mT (y — (x,@*)ﬂ = E [m:w E {(y— <x,@*>)2} (4.16)

z,y~D x~D z,y~D

Using Lemma 4.2.4 on zz " and (y — (x, ©*))?, we can bound (4.16) as follows:

E {xxT} E {(y — (z, @*))2} <=O01)E [:clxj] (y; — (x;, %)) 4.17)

x~D z,y~D

Combining Equations (4.15), (4.16), and (4.17), and substituting in (4.14), we have

[SIEa

1 . 1 * (1 )
~ 2 (v,2:)" (y: = (2:,07))" < O(N) (n > <ZEZ‘,U>2) ( > (i~ (2,0 >)2)
1€[n] i€[n] i€[n]
which concludes the proof. ]

Let 3 be the empirical covariance of the uncorrupted samples X’ and let O be an optimizer
for the empirical loss. Applying Theorem 100 with D being the uniform distribution on the

uncorrupted samples X’ and D’ being the uniform distribution on z/, we get

/2 (6 — é) H2 < (’)()\k eH/’“) errp(©%)"/?

Observe, the aforementioned bound is not a polynomial identity and thus cannot be expressed
in the SoS framework. Therefore, we provide a low-degree SoS proof of a slightly modified

version of the inequality above, that is inspired by our information theoretic identifiability proof
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in Theorem 100.

Lemma 4.4.3 (Robust Identifiability in SoS). Consider the hypothesis of Theorem 101. Let

w, x',y and © be feasible solutions for the polynomial constraint system A. Let

A . 1 * * 2
©= argmén— Z(yz — (77,0))

i€[n]

be the empirical loss minimizer on the uncorrupted samples and let S =E {[EZ‘(ZE:)T} be the

covariance of the uncorrupted samples. Then,

k

E [x;(:v;)w i (@ — @)

2k

2

ape L (6 o)1 < 2ot o

+ 23R (2¢)F 22k Him (6-0) H

2

+ 23k(2€>k—1)\§E [(y: _ <l’;k, é>>2] k/2

o (6-o).|

Proof. Consider the empirical covariance of the uncorrupted set given by S =F {xf(mf)w

Then, using the substitution, along with SoS Almost Triangle Inequality (Fact 2.2.8),
{@, £(6-6))" = (wk [a:(u2)" (6 - ) +uts; —oiai] )
= (v [ ((1.0) )] +Elst (5 — (o7, O))])

R k k
<2 (v [ ((o1.0) —u)]) +2* (wElwi 4 ~ (71, 0)]) }
(4.18)
Observe, the first term in (4.18) only consists of constants of the proof system. Since O is the
minimizer of E [((aﬁ;‘, ) — y;*)ﬂ, the gradient condition on the samples (appearing in Equation

(4.2) of the indentifiability proof) implies this term is 0. Therefore, applying the substitution it

suffices to bound the second term.

To this end, we introduce the following auxiliary variables : for all i € [n], let w} = w; iff

the i-th sample is uncorrupted in X, i.e. x; = z}. Then, it is easy to see that }_, w; > (1 — 2¢)n.
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Further, since A }% {(1 — whw;)?* = (1 — wiw;)},

AlE { (1 — whw;)? = 711 ST (1 — whw,) < 26} (4.19)
]

i€[n] i€n

The above equation bounds the uncorrupted points in X, that are not indicated by w. Then, using

the substitution, along with the SoS Almost Triangle Inequality (Fact 2.2.8),

AP {<U,E [} (g — (a7, @))]>k = <v,JE [ (47 = (27,0) (wj+1 - wé))]>k
— (o Blufas (4 - (57,00 + B — ulat 47 — (a2, O]
<2 (v Elufa} (s — {7, 0))])
+24 (0 B 10— wh)es (45 - «m@mf}

(4.20)

Consider the first term of the last inequality in (4.20). Observe, since wjxr; = w;w;z; and

similarly, wy! = w;wyL,

AP {E luie? 57 — (@7.0))] = Ewfwi) (s — (1, 0))]}

For the sake of brevity, the subsequent statements hold for relevant SoS variables and have degree

O(k) proofs. Using the substitution,

Al {<U,E[ng i~ r5.00)) = (v
:<ME — (af, O]+ E (1~ w4 — {2, 0))])
< 2k

(4.21)

Observe, the first term in the last inequality above is identically 0, since we enforce the gradient

297



condition on the SoS variables z’, ¢’ and ©. We can then rewrite the second term using linearity
of expectation, followed by applying SoS Holder’s Inequality (Fact 3.2.20) combined with A }%

{(1 — ww;)* =1 — wiw, } to get

AF {@,E (1 = wiws)a} (4, — («, @>>]>k = E (v, (1 — w)wi! (y; — (x/,©)))]"
= E[(1 — wjw;) (v,2}) (4 — (2}, ©))]"
<E[(1 = wjw)]" " E [(v,2)" (v; — (], 0))"]
< (20" E [(v,2)" () — (], @m}
4.22)

where the last inequality follows from Equation (4.19). Next, we use the certifiable negatively

correlated moments constraint with the substitution,

[NIES
ISIES

AF{E (v, 2)" () — (2}, 00" <O E [(v,2)°]* B |(4; — (2], ©))?] } (4.23)

For brevity, let 0 = E [(y; — (2, ®>)2}. Using the substitution, plugging Equation (4.23) back
into (4.22), we get

A}* {<U,E (1 —w))xl (y; — (2, @>)]>k < (26)FINF oF/2 <U,IE [x;(x;)q U>k/2} (4.24)

Recall, we have now bounded the first term of the last inequality in (4.20). Therefore, it remains

to bound the second term of the last inequality in (4.20). Using the substitution, we have
Al {<E (0 — i (0 — o1, 0) = (0B [0 —ua (47— (25,0 -6+ O))] )
< 2k <v,]E {(1 — wi); (y;‘ - <x;‘,(:)>>}>k
+2 (08 (11— uf)at (51,0 - 6))] >k}

We again handle each term separately. Observe, the first term when decoupled is a statement
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about the uncorrupted samples. Therefore, using the SoS Holder’s Inequality (Fact 3.2.20),

Al- {<U,E (1= w)as (7 — (a7, é>)]> — B[ - ) (va7 (4 — (23,0)))]"
<E[1—u)l* B (.2 (4 - (=i,

6
< (20" 'E {(w?)’“ (w7 = (at. é>)k}}

)]

(4.26)
Observe, the uncorrupted samples have negatively correlated moments, and thus
E [@, )" (yr = (a7, é})k} <O(N)E [(v,2)"] g [(y: — (a7, é>)2]k/2
Then, by the substitution, we can bound (4.26) as follows:
Al {<U,E [(1 — )z} (yf - <xf, @>)}>k < (20N E [(yf - <x;*, é>)2} o <v, iv>k/2
(4.27)

In order to bound the second term in (4.25), we use the SoS Holder’s Inequality,

k

A }* {<U,E {(1 — w;)x; (<xf, - @>)}> =E {(1 — w))k? <v, x; (<x;‘, O - é>

N—
~_—
[E——

(4.28)

Combining the bounds obtained in (4.27) and (4.28), we can restate Equation (4.25) as follows

(v, 50)""”

(v s @ - )] }

(4.29)

/2

Al {<E (0 —uf)a (7 — (o7, O))] ) < 20N B (v — (27.0))’]

4 2]{(26)]672 E
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Combining (4.29) with (4.24), we obtain an upper bound for the last inequality in Equation

(4.20). Therefore, using the substitution, we obtain

k)2

Al {<v,E o (o — (25, 001) < 2420 ¥ o2 (v B [a(a1) ] )

ka2

(v (0~ 6)°]

r 2o (1 - (1.6))7] " (o zvyﬂ}

(4.30)

+ 22k‘(26)k—2 E

Recall, an upper bound on Equation (4.18) suffices to obtain an upper bound on <U, ) (@ — G)) >

as follows:

AF- {@, 2(6-0)) < 2% (v g [sa) ] 0)
+2%(20)F 2B | (v 2] (2]) T (O — é))ﬂ2 (4.31)

r oo (v - (. 0))] (o zvy/z}

Consider the substitution v — (@ - @). Then,
(n(6-0)) =2 (6-0),
(&[] = B[] (6 - 0)
(v ()T (O - @))5]2 =& [(}.6 - 0)] < 2[£72 (6 - 0)[

(0. 20)" <[22 (6 - )

k

2

300



Combining the above with (4.31), we conclude

k

E [a:;(x;)qlﬂ (@ — @)

2

AR {7 @ - o) < e

a0k 5172 (6 - )

+ 23k(2€)k_1>\];:E [(yl* B <.T;k, ©>)2] k/2

(0o

(4.32)

O
Next, we relate the covariance of the samples indicated by w to the covariance on the uncor-
rupted points. Observe, a real world proof of this follows simply from Fact 4.2.3.

Lemma 4.4.4 (Bounding Sample Covariance). Consider the hypothesis of Theorem 101. Let

w,x’,y and © be feasible solutions for the polynomial constraint system A. Then, for 6 <
O()\kﬁl_l/k) <1,

A { (o atte) o)™ < (10 0(0)) 20

Proof. Our proof closely follows Lemma 4.5 in [KS17]. For i € [n], let z; be an indicator
variable such z;(r} — x;) = 0. Observe, there exists an assignment to z; such that >, 2 =
(1 — €)n, since at most en points were corrupted. Further, zf = z; and %zz = €. Then, using the

substitution,

A }’“’T: {<v, (Ef [:L‘;(J};)T ) > = < 1 + 2 — 2) (x;(xg)T - x;k(x:)T)} U>k
E

’L

< h 2ok <CIZ E [(v,%ﬂkﬂ +X E [(v,xf>2]k/2>2 }

(4.33)

2
< €k72]E |:2k/2 <’U,$ > 4 2k’/2< v, *>k:|
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where the first inequality follows from applying the SoS Holder’s Inequality, the second follows
from the SoS Almost Triangle Inequality and the third inequality follows from certifiable hyper-
contractivity of the SoS variables and the uncorrupted samples. Using the SoS Almost Triangle

Inequality again, we have

2 k .
A }* {(cﬁ E [(v, x;>2}k/2 + M E {(v,xfﬂkﬂ) < AR 92 <<U,E [:c;(a:;)TvD + <v, Ev>k>}
(4.34)
Combining Equations 4.33, 4.34, we obtain

A k R k
A }* <U, (E [:L';(x;)T} — E) v> L P2 \Ik gkt2 <v, <E [x;(x;)w + E) v> (4.35)
Using Lemma A.4 from [KS17], rearranging and setting & = k/2 yields the claim. ]

Lemma 4.4.5 (Rounding). Consider the hypothesis of Theorem 101. Let 0= arg ming % > icln] (yr—

(xF,0))? be the empirical loss minimizer on the uncorrupted samples. Then,

79

3226 - By, < ot ) (e[ o - ] ™+ [ - (51.6))])

Proof. Observe, combining Lemma 4.4.3 and Lemma 4.4.4, we obtain
R . ok 93k k=1 \k . R k
aF{[ o) <o it I8 @ -o)L

(E [~ (. 0))] " +E (7 = (a2 é>>2]g>}

Using Cancellation within SoS (Fact 2.8.3) along with the SoS Almost Triangle Inequality, we

(4.36)

can conclude

{57 0 -0) <o ey
(5[0~ o]+ & (5 - (o é>)2]k)}

Recall, C is a degree-O(k) pseudo-expectation satisfying A. Therefore, it follows from Fact
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3.2.17 along with Equation 4.36,

A 2k

51 (6-0)] < of2™ e ALY’

(Ef [E (i — (2, ©))7] k} +E {(y — (a1, é)>)2r> (#39)

B |

£1(6-K0)[) <B|

2

N 2k

Further, using Fact 3.2.15, we have . Substituting

above and taking the (1/2k)-th root,

. g1k /2
54 (6~ Eqfel), < o+ au) (B [k - (et 4= (1 - (1.6)) )
<o(at x) (fag B[~ (@.0)] } +E | (4 = (1.0))] é)
(4.39)
which concludes the proof. O]

Lemma 4.4.6 (Bounding Optimization and Generalization Error). Under the hypothesis of The-
orem 101,

L
2k

1. B [E [y = (a, 9>)2ﬂ

2. Forany ¢ > 0, if n > ny, such that ng = 2 (max{c4d/§2,do(k)}>, with probability at

<E [y;‘ — <x;‘,é)>2} %, and

least 1 — 1/poly(d), E [y;k — <x:" é>2r < (14 ¢)Ezy~p {y — (z, @*>2} %

Proof. We exhibit a degree-O(k) pseudo-distribution f such that it is supported on a point mass
AN 2
v — (27,0)

over all degree-O(k) pseudo-distributions, the resulting objective value w.r.t. C~ can only be better.

2
and attains objective value at most | . Since our objective function minimizes

Let ¢ be the pseudo-distribution supported on (w, x*, y*, @) such that w; = 1 if z; = xf (i.e. the
1-th sample is not corrupted.) It follows from n > ny and Lemma 4.4.2 that this assignment

satisfies the constraint system A, »,. Then, the objective value satisfies

i B [~ 0,007 < B [B [0 - (e 007 ] =E[ (1 — (21.0))] s0)

Taking (1/2k)-th roots yields the first claim.

To bound the second claim, let I/ be the uniform distribution on the uncorrupted samples,
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¥, yr. Observe, by optimality of © on the uncorrupted samples, err,(0) < err,(©*). Consider
the random variable z; = (y; — (2}, 0%))* —Euyup [(y — (z, @*))2}. Since E [z;] = 0, we apply

79

Chebyschev’s inequality to obtain

1 E[:2] E|@—(z.0))]
*\2
< o 22

Therefore, with probability at least 1 — 9,

N C
erry(0) < (1 + n‘;) errp(©%)

Therefore, setting n = Q(cyd/¢?), it follows that with probability 1 — 1/poly(d), for any ¢ > 0,
erry(0) < (1+¢)errp(0%)

Taking square-roots concludes the proof. []

Proof of Theorem 101. Given n > nj samples, it follows from Lemma 4.4.2, that with probabil-
ity 1 — 1/poly(d), the constraint system A, ,, is feasible. Let £; be the event that the system is
feasible and condition on it. Then, it follows from Lemma 4.4.5 and Lemma 4.4.6, with proba-

bility 1 — 1/poly(d),

|£2 (Eclo] - ©)

’2 < O(n €78 errp(07)!/? (4.41)

Let & be the event that (4.41) holds and condition on it. It then follows from Fact 4.2.2, with
probability 1 — 1/poly(d),

H(z*)m (Eg[@] ~ é)

, SO(n e errp(e)1 442)

Let & be the event that (4.42) holds and condition on it. It remains to relate the hyperplanes )

and ©*. By reverse triangle inequality,

A

o) (et - 0) ], 5 (6 - 8), < )" (01 - 6)

; ; ,

Using normal equations, we have © = S [2;1,] and ©* = (*) "' E [zy]. Since & < (1 +
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0.01)%*,

()2 ( H 1/2< SISO — f}”E[m%]) ,
H N2 % ( [i(yi—xj@*)}) 2 (4.43)
< Lot (=) (- ale7)]|
By Jensen’s inequality
2
E Tlli;m](z*)‘l/%i(yi—xj@*) < |E Tlhez[q;}(z*) i (g — 2] 07)

2 2

Let 2; = Xicp) ()2 g, (yZ - xj@*) Let (3;¢(,) 2:)1 denote the first coordinate of the vec-

tor. We bound the expectation of this coordinate as follows:

(Z zz)%] = —=E ,Z% | ((Z*)il.ﬁixi/)l (yl - a:ZT@*) (yi, — x;@*)

(4.44)

- Le| (@) ), (- eTe )

Li€[n]

= B[k (v - o))

where the second equality follows from independence of the samples. Using negatively corre-

lated moments, we have

=i (- o] <5l @i [ -ao)]

Setting v = (Z*)l/ 2¢; and using Hypercontractivity of the covariates and the noise in the above
equation,
2
E {E_l(ﬂf)ﬂ E {(y - xT@*) } < (’)(c§ 773) errp(0*) (4.45)

Summing over the coordinates, and combining (4.44), (4.45), we obtain
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l Z (E*)—Uz i (yl . x:@*)

n i€[n]

d errp(©*)
n

E < O(eamp) (4.46)

2

Applying Chebyschev’s Inequality , with probability 1 —

o7 0 - )], < 0w o) e

Since n > ng, we can simplify the above bound and obtain the claim.

The running time of our algorithm is clearly dominated by computing a degree-O(k) pseudo-
distribution satisfying A, ,,. Given that our constraint system consists of O(n) variables and
poly(n) constraints, it follows from Fact 3.2.13 that the pseudo-distribution ¢ can be computed

O(k)

nn time.

4.5 Lower bounds

In this section, we present information-theoretic lower bounds on the rate of convergence of
parameter estimation and least-squares error for robust regression. Our constructions proceed
by demonstrating two distributions over regression instances that are e-close in total variation
distance and the marginal distribution over the covariates is hypercontractive, yet the true hyper-

planes are f(e)-far in scaled /¢, distance.

4.5.1 True Linear Model

Consider the setting where there exists an optimal hyperplane ©* that is used to generate the

data, with the addition of independent noise added to each sample, i.e.
y=(r,0%) +w,

where w is independent of z. Further, we assume that covariates and noise are hypercontractive.
In this setting, Theorem 100 implies that we can recover a hyperplane close to ©* at a rate
proportional to €'~ /% We show that this dependence is tight for k& = 4. We note that independent

noise is a special case of the distribution having negatively correlated moments.
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Theorem 103 (True Linear Model Lower Bound, Theorem 98 restated). For any € > 0, there ex-

ist two distributions Dy, Dy over R? x R such that the marginal distribution over R?* has covari-
ance X and is (cy, k)-hypercontractive yet HElﬂ(@l - @2)”2 =0 (\/@ o 61_1/k), where ©1, 0,
be the optimal hyperplanes for D, and D; respectively, o = max(errp, (0,), errp,(02)) <

1/€'/* and the noise w is uniform over [—o, o).

Proof. We construct a 2-dimensional instance where the marginal distribution over covariates is

identical for D; and Ds. The pdf is given as follows: for ¢ € {1, 2} on the first coordinate, 1,

1/2, if z, € [-1,1]

0 otherwise

and on the second coordinate, -,

€/2, if @y € {—1/e/* 1/l /k}

Dy(w2) = { 5= if 25 € [—€0, 0]
0

otherwise
Next, we set ©; = (1,1), O = (1, —1) and w to be uniform over [—o, o. Therefore,

Di(y | (x1,29)) =21 + 22 +w and
D2(y | (9517532)) =T — Ty +w

Observe, [xﬂ = [ 2¥/2=1/(k+1)and E [2?] = [!, 2%/2 = 1/3. Further,

(1 —€) (eo)*t! 1 \* (1—¢)
E{LH’;}: ec  k+1 +6'<61/k> :1+(k+1)(60)k

2 _(1_5) 3 1 2_ 1-2/k l—e 2
E[@}— o (€0) +€'(E1/k; =€ —l—?(ea)

(4.47)

Observe, F [m’g} < (1/(ce?>1)) E [22]""?, for a fixed constant c. Then, for any unit vector v,

E [<377 U>k} S E [(2$1U1)k + (2x202)k:| < 02/2 (E [(xlv)ﬂkm IR [(5621))2}]6/2)

< Cz/z B [(x,v)ﬂ k/2

k/2
where ck/
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compute the TV distance between the two distributions.

drv (D1, Ds) = 2/ |D1(x1, 22, y) — Dao(z1, T2, y)|

(4.48)
= 5/7‘32 Dl(l’l,JIQ) /R|D1(y | (1317'752)) —Dg(@/ ’ ($1,$2))|

where the last equality follows from the definition of conditional probability. It follows from
Equation (4.47) that Dy (y | (x1,22)) = U(xy + x9 — 0,21 + 22 + 0) and Dy(y | (21, 22)) =
U(z1 —x9 — 0,21 — 22+ 0). If |x5] > o the intervals are disjoint and | D (y | (21, 22)) — Da(y |
(1, 19))| = 2. If | 23] < o, then two symmetric non-intersecting regions have mass 2|xs| /20 and
the intersection region contributes 0. Therefore, |D;(y | (z1,22)) — Da(y | (21, x2))| = 2|z2|/0

and (4.48) can be evaluated as

1 2|z
dTV(Dl,D2> = 5/]{21‘%2’ =0+ |O_2|H‘l’2| <o
1
=Prllzs[ 2 0]+ — E_[[z2]l|22] < o]
0 xo~D1

= 2¢

Finally, we lower bound the parameter distance. Since the coordinates are independent, X is a
diagonal matrix with ¥, ; = E[2?] = 1/3 and ¥y, = E [23] = €'72/* + (e0)?/3. Further,
©1 — 0, = (0,2). Thus, [S1/2 (6 — ©,)| | = 2555 > 2¢/271/%, Forany o < 1/e'/¥,

HEI/Q (O - @2)H2 > 2 /2UR 5 9 g €/

> 2.\/cp o el —1/k

which concludes the proof.

4.5.2 Agnostic Model

Next, consider the setting where we simply observe samples from (z,y) ~ D, and our goal is
to return is to return the minimizer of the squared error, given by O* = E [mzﬂ ! E [zy]. Here,
the distribution of the noise is allowed to depend on the covariates arbitrarily. We further assume
the noise is hypercontractive and obtain a lower bound proportional to €' ~2/* for recovering an

estimator close to ©*. This matches the upper boundd obtained in Corollary 4.3.1.
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Theorem 104 (Agnostic Model Lower Bound, Theorem 99 restated). For any € > 0, there exist
two distributions D, Dy over R? x R such that the marginal distribution over R? has covariance
Y and is (c, k)-hypercontractive yet HZl/Q(@l - @2)H2 =0 <\/c_k o 61_2/k), where ©1, 04 be
the optimal hyperplanes for D, and D, respectively, ¢ = max(efrp, (0,), errp,(0,)) < 1/e'/k

and the noise is a function of the marginal distribution of R>.

Proof. We provide a proof for the special case of k = 4. The same proof extends to general k.
We again construct a 2-dimensional instance where the marginal distribution over covariates is

identical for D; and Ds. The pdf is given as follows: for ¢ € {1, 2} on the first coordinate, 1,

1/2, if z; € [-1,1]
,Dq(xl) =
0 otherwise

and on the second coordinate, -,

€/2, if my € {—1/e/* 1/e/4}
Dy(w9) = {55 if wo € [~1,1]

0 otherwise

Observe, E [z}] = 1/5 and E [#3] = 1/3. Similarly, E[z3] = 1 + (1 — ¢)/5 and E [23] =
Ve + (1 — €)/3. Therefore, the marginal distribution over R? is (c,4)-hypercontractive for a

fixed constant c. Next, let

Dl(?/ ‘ (551,5172)) = Z9 and

0 if |ag| =1/e/4 (4.49)
Dy(y | (21,72)) =
T  otherwise

Then,

(D1 Ds) = 5 [ Da(ona) [ D4y | (122)) = Daly | 0,22)

1
1] foaltlan] = 176
2 Jr

= €

Since the coordinates over R? are independent the covariance matrix ¥ is diagonal, such that
Y11 =E[23] = 1/3 and 3y = E [23] = /e + (1 — €)/3. We can then compute the optimal
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hyperplanes using normal equations:

6= E [z2'] E_[sg] =% E_[uy]

x~Dy z,y~D1 x,y~D1

Observe, using (4.49),

E [z1y] = /Rl‘lypl(xly) = /RIlyDl(xl)Dl(y) =0
since x; and y are independent. Further,
Eles] = [ #2yD(ray) = [ #3D(rs) = Vet (1-)/3
Therefore, ©; = (0, 1). Similarly,
Oy = xEEzl)Q {xacTTl E [vy]=X"" E [z

Further, E [z,y] = 0. However,

Elwy] = [ wayDa(way) = [ adllaal < 1Dy(az) =1 - ¢

Therefore, Oy = (0, lf:\jg). Then,

|52 (61 - 00, = Vet (1073 Y E —arve)

which concludes the proof.

4.6 Bounded Covariance Distributions

In the heavy-tailed setting, the minimal assumption is to consider a distribution over the covari-

ates with bounded covariance. In this setting, we show that robust estimators for linear regression

do not exist, even when the underlying linear model has no noise, i.e. the uncorrupted samples

are drawn as follows: y; = (©*, ;).

Theorem 105 (Lower Bound for Bounded Covariance Distributions). For all ¢ > 0, there

exist two distributions Dy, Dy over R X R corresponding to the linear model y = (©4,x)

and y = (Oq, x) respectively, such that the marginal distribution over R has variance o and
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drv (D1, Dy) < € yet |0 (01 — O3)| = Q(0).

Our hard instance relies on the so called Student’s t-distribution, which has heavy tails when

the degrees of freedom are close to 2.

Definition 4.6.1 (Student’s ¢-distribution). Given v > 1, Student’s t-distribution has the follow-
ing probability density function:

where I'(z) = [° 27 te®dz, for z € R, is the Gamma function.
We use the following facts about Student’s ¢-distribution:

Fact 4.6.2 (Mean and Variance). The mean of Student’s t-distribution is E,~y, [x] = 0 forv > 1

and undefined otherwise. The variance of Student’s t-distribution is

00 ifl<v <2
E{xz}z £ if2<v

undefined  otherwise

The intuition behind our lower bound is to construct a regression instance where the co-
variates are non-zero only on an e-measure support and are heavy tailed when non-zero. As
a consequence, the adversary can introduce a distinct valid regression instance by changing a
different e-measure of the support. It is then information-theoretically impossible to distinguish

between the true and the planted models.

Proof of Theorem 105. We construct a 1-dimensional instance where the marginal distribution
over covariates is identical for D; and D,. The pdf is given as follows: for ¢ € {1,2} the

marginal distribution on the covariates is given as follows:

D, (2) 1 —k, if =0
xTr) =
! € fore(z) otherwise
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The distribution of the labels is gives as follows:
Di(y|z)=z and Dy (y | x) = —x

Next, we compute the total variation distance between D; and D,. Recall,

1
dtv(D1,Ds) = §~/R><R |Di(z,y) — D2z, y)|

=5 [ 2@) [1Pi(y | 2) ~ Dty | )
=5 [Py 1 2) = Doly | )] (Te =0+ T £ 0)

1
:f/\Qx\]Ix#Oge
2JrR

(4.50)

Observe, since the regression instances have no noise, we can obtain a perfect fit by setting
©; = 1 and ©5 = —1. Further, for ¢ € {1,2},

E [2g]=(1—¢€:-0+¢- E [2]=0 4.51)
Z‘NDq x"‘f2+e
and 5
E {xﬂ:(l—e)-O—l—e- E [xﬂ:e- e (4.52)
QJNDq x~ fote €
Thus,
E [+] e, -y =210 2=2 4.53)

which completes the proof. We note that the 4-th moment of f5 () is infinite and thus it is not

hypercontractive, even for £ = 4. [

4.7 Robust Identifiability for Arbitrary Noise

Proof of Corollary 4.3.1. Consider a maximal coupling of D, D’ over (z,y) X (2, 3/'), denoted by
G, such that the marginal of G (z, y) is D, the marginal on (2, 3/') is D" and Pg[I(z,y) = («/, )] =
1 — €. Then, for all v,

(0, %p(Op — Op/)) = ]g [<v, me(@D — Op/) + 2y — :z:y>]

(4.54)
E
g

[{v, 2 ((2,0p) =y + E[{v, 2 (y — {z, Op)))]
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Since ©p is the minimizer for the least squares loss, we have the following gradient condition
- for all v € R,

E [(v,({z,0p) —y)z)] =0 (4.55)

(z,y)~D

Since G is a coupling, using the gradient condition (4.55) and using that 1 = I(x,y) = (2, /)
+1(z,y) # (', '), we can rewrite equation (4.54) as

(4.56)

Consider the first term in the last equality above. Using the gradient condition for ©p along with

Holder’s Inequality, we have

&

(0.0 (f = (&', 00))) L) = (a1

= |El(v,a"(y' = (&, Op))] ~ E (v, 2" (' — {2, O0))) Uz, y) # («,¢/)] ’

(4.57)

2/k

N

B [0’ 7 = @ 00

Observe, since G is a maximal coupling Eg [I(z,y) # (', y/)]* /% < €'=2/k. Here, we no

longer have independence of the noise and the covariates, therefore using Cauchy-Schwarz

E [(0a)"7 (- (@00 < (E [(0:0)] E [ - (&' %»)’“Dm

D’ D’ D’

By hypercontractivity of the covariates and the noise, we have

E {<U,$/>k] 1/’6%2 [(y' s @D,»k}l/k

D/
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Therefore, we can restate (4.57) as follows

N

E[(0,2' (4~ (o, 00)) W(w.y) = (&',9)]| < O(cwme 'F') (7 Spr0)
. (4.58)

It remains to bound the second term in the last equality of equation (4.56), and we proceed as
follows :

El(v,7 (y — (,00))) I(z,y) # (+',9)] = E [(v,22" (Op — Op)) L(z,y) # (+',4))]
+E[v,z(y —(2,0p)) I(z,y) # (@, y)]
(4.59)

We bound the two terms above separately. Observe, applying Holder’s Inequality to the first
term, we have

INES
o

IgE KU’ wa (@D - @D/)> H(QU, y) 7é (.I/, y/)} < IgE [H($7 y) 7& (:E,, y/)]% IgE

<v, zx' (Op — @D/)> }

< E%IQE |:<U,JJZ‘T (@D — @D’>>§

(4.60)

To bound the second term in equation 4.59, we again use Holder’s Inequality followed by
Cauchy-Schwarz noise and covariates.

E ({0, (s — {2, 00)) 10, 0) # (¢,1/)] < [T 9) # (/) T B [(00 s — o, 00))"]
< g [T g, o te 0
<e€EF (v Epv)1/2 %EEND {(y — (z, @D>)2} s
(4.61)

where the last inequality follows from hypercontractivity of the covariates and noise. Substituting
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the upper bounds obtained in Equations (4.60) and (4.61) back in to (4.59),

2
_ E1k
B (0,2 (s — (2, 00 Iw,y) £ (09)] < €5 B [(v,227 (00— 00))]
k=2 T 1/2 971/2
+F o (vT800) B[y (2, 00))]
Therefore, we can now upper bound both terms in Equation (4.56) as follows:
b2 1/2 1/2
(0,%p(0p — 0p)) <O(cem e ) (v Spw) " B[y — (¢, 0p))]
x! ' ~D’
o . k2] 2/k
+ (’)(6 k )IQE <v,:cx (Op — @D/)> ] (4.62)
k—2 T 1/2 971/2
+O(F com) (v72o0)  E [y~ (. O0))]

Recall, since the marginals of D and D’ on R are (c, k)-hypercontractive and | D — D'||;, < €,
it follows from Fact 4.2.3 that

(1-0.1)Sp < Tp < (140.1) Spy (4.63)
when € < ((1 Jcipk)k/(F=2) ) Now, consider the substitution v = ©p — Op/. Observe,

IgEﬂ R’U, zr' (Op — @D/)>k/2]2/k = Ig, [(m, (Op — @’D’)>k} o

(4.64)
<d [ e - 60

Then, using the bounds in (4.63) and (4.64) along with v = ©p — Ops in Equation 4.62, we have

(1-0()) [5' 00 - 00|

< O(Ck Nk € = ) HE @D—@D/)

(x'»yE&D’ [(yl — («',0p1)) } + “IE [(y — (=, @D>)2f>
(4.65)

k22

Dividing out (4.65) by (1—O(c'%"¢})) || 28°(©p — Op)||]
upper bounded by a fixed constant less than 1 yields the parameter recovery bound.

and observing that (’)(e z ci) is

Given the parameter recovery result above, we bound the least-squares loss between the two
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hyperplanes on D as follows:

’errp(@p) —errp(Op)

E . [(y — xT@D)2 — (y —2'Op +1'Op — wTGDf} ’

(@)~
L I? D [<x= (Op —Op))* +2(y — 2" Op)z" (Op — @D')} ‘
T,y)~
2,2 2-4/k g 2 o 2
< O(c i ") (E o6 =@ o)+ E [y (2,60) })

(4.66)

where the last inequality follows from observing E [<@D — Opr,z(y — azT@D)ﬂ = 0 (gradient
condition) and squaring the parameter recovery bound. ]

4.8 Efficient Estimator for Arbitrary Noise

In this section, we provide a proof of the key SoS lemma required to obtain a polynomial time
estimator. The remainder of the proof, including the feasibility of the constraints and rounding

is identical to the one presented in Section 4.4.

Lemma 4.8.1 (Robust Identifiability in SoS for Arbitrary Noise). Consider the hypothesis of
Theorem 101. Let w,x',1y" and © be feasible solutions for the polynomial constraint system A.
Let © = argming LS e (= (27, 0))? be the empirical loss minimizer on the uncorrupted

samples and let S=F [mf (xf )T} be the covariance of the uncorrupted samples. Then,
1o T2 (2 F

2k

2

A w,x;,ky’,@ {"21/2 (é B G)H% < 23k(2€)k—2011z 771]: o2 2

4 23k (2€>k72cik

22 (6-el

2

+ 2% (2¢) 2k i E [(y;‘ — (a5, @)Tﬂ

o (60|

Proof. Consider the empirical covariance of the uncorrupted set given by S =E {xj(x*)q

(2

316



Then, using the substitution, along with Fact 2.2.8

s (e-0))

(0.8 [ai(at)T (6 - ) + a1yt — aiut])

(0B [ ((27,0) )] + B Lot (4 — (5,00
<2 (o7 (51.0) - )] ) +2* (Bl (7 - @>>]>k}

(4.67)
Since © is the minimizer of {((a:f, 0) —y! )2} , the gradient condition (appearing in Equation

(4.55) of the indentifiability proof) implies this term is 0. Therefore, it suffices to bound the

second term.

For all i € [n], let w, = wj iff the i-th sample is uncorrupted in X, i.e. ; = z}. Then, it is
easy to see that 3, w; > (1 — 2¢)n. Further, since A }* {(1 — whw;)?* = (1 — wiw;)},

1
A}* { (1 —ww;)* = = > (1 — ww;) < 26} (4.68)
i€[n] n i€[n]

The above equation bounds the uncorrupted points in X, that are not indicated by w. Then, using

the substitution, along with the SoS Almost Triangle Inequality (Fact 2.2.8),

AfE {<U,E[ i — (a2, 001) = (v Bl (o — o e><wg+1—wz>>1>k
:<U,E — (@5, O +E (1 — wa (y — (a7,
<2 (Bl (5 - (07.0))])

+ 24 (0B - w))a (5] - <x:,@>>1>k}
(4.69)

Consider the first term of the last inequality in (4.69). Observe, since wiz; = w;w.x, and
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similarly, wy! = w;wlyL,

AP {E i (47 ~ (@7.0))] = Elwfwi) (s, — (1. 0))]}

For the sake of brevity, the subsequent statements hold for relevant SoS variables and have degree

O(k) proofs. Using the substitution,

AF{<uEmn<m >

v, B [wiwx! (yi — (2, @})]>k

<
= (v, Bl (4~ (o}, ) + B[~ ) (4] — (&1, 0)])
<2 (v B (4~ (ot 0))])
+a%uEm—MmmMA%¢@mY}

(4.70)

Observe, the first term in the last inequality above is identically 0, since we enforce the gradient
condition on the SoS variables 2,y and ©. We can then rewrite the second term using linearity
of expectation, followed by applying SoS Holder’s Inequality (Fact 3.2.20) combined with .4 }%
{(1 — ww;)? = 1 — whw;} to get

AF{@mkrﬂWM@w#w%@mf=Eumu—@mmwkwm@mf

= E[(1 — wjw) (v, 2]) (4, — («},0))]"
<E[(1 = wiw)*?E [(v,2)" (4] — (2}, )]

1)

<@wﬂERu¢ﬂERM_mu»ﬂ}
4.71)

where the last inequality follows from (4.68) and the SoS Cauchy Schwarz Inequality. Using the
certifiable-hypercontractivity of the covariates,

A5 {JE [(0,2)"] < AE [(w. ") = b (0. [o/e) ] v>k/2} .72)
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Further, using certifiable hypercontractivity of the noise,
k/2
AF{E[ - il o)) <ubE [ - . 0)))] ] (4.73)

Recall, 0 = E [(y, — («},©))?)] Combining the upper bounds obtained in (4.72) and (4.73), and
plugging this back into (4.71), we get

Al { (B0 — et — (o}, )]} < (20)~2ck nf o (v, B [w2(a1)"] v>m} @79

Recall, we have now bounded the first term of the last inequality in (4.69). Therefore, it remains

to bound the second term of the last inequality in (4.69). Using the substitution, we have

AR {@,ma e (o — (o1 O] = (v B[~ what (47— (x50 -6+ O]}
<2 (v E[(1—upas (5 ~ (a7,6))] )’
+2 (u.m [ - ul (57,0 - 6)) >’“}

4.75)

We again handle each term separately. Observe, the first term when decoupled is a statement
about the uncorrupted samples. Therefore, using the SoS Holder’s Inequality (Fact 3.2.20),

AR {<E (0=t (57— (a2, O0)] ) =B [0~ (v, (v — (a7, 0)))]"

<E[1-w)]""E

Using certifiable hypercontractivity of the s,

E |(v,2})"] < &E (v, 2]
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where ¥ = {xj‘(w*)w and similarly using hypercontractivity of the noise,

E (v -~ (2.0))] < kB [(s: — (1.6))]

Then, by the substitution, we can bound (4.76) as follows:

k)2

k)2

Al {<E (0wt (v~ (2.0)]) < ot [ - (12.0)] (v iU>W}

4.77)

In order to bound the second term in (4.75), we use the SoS Holder’s Inequality,

A }* {<U,E {(1 — w;)x; (<xf, O — (:)>)] >k =K {(1 — w))k? <v, T (<x:, - é>

<E[l—w]E

(UTQ:Z‘ (xF

(v7ar (@) (O — é))gf}

(4.78)

< (20" °E

Combining the bounds obtained in (4.77) and (4.78), we can restate Equation (4.75) as follows

k/2

AF {<E 0 —uf)a (5 — (a7, 00 < 2y ek k(37 — (o5, 0))"] " (S0

+28(2¢)" 2 [(vTa:j(xj)T(@ — @))g} }
(4.79)

Combining (4.79) with (4.74), we obtain an upper bound for the last inequality in Equation
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(4.69). Therefore, using the substitution, we obtain

Al {<U,E o — (o O))]) < 2820 ek 0 (v [wl e o)
20 (0T )0 - ©) ]

+ 222k I E [(y — (a3, é>)2} o (v, §v>'“/2}

The remaining proof is identical to Lemma 4.4.3. []

4.9 Proof of Lemma 4.2.4

Lemma 4.9.1 (Lowner Ordering for Hypercontractive Samples (restated)). Let D be a (cy, k)-
hypercontractive distribution with covariance Y. and and let U be the uniform distribution over

n samples. Then, with probability 1 — 0,

Cyd?
Vo

s, <
F
where 33 = % > icn] xx] .

Proof. Let #; = ¥~ /22, and observe that Ly EEt = Y-1/25:9-1/2, Moreover, we know that
E {a?izT] — I. Let z,, be the (j, k) entry of ©~'/25%1/2 — [ given by,

k= 5N EG)ER) - E[E(0)ER)

1€[n]

Using Chebyshev’s inequality, we get that with probability at least 1 — 9,

E [#(j)*%(K)?] _ Eagy [H]E[2(k)']
\/ﬁ\/g X 2\/5\/5 ’

2| <
where the inequality follows from AM-GM inequality. To bound F [Z(j)*], we use hypercon-
tractivity.

E [FE[("2)] < CiE [0"2)*],
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-1/2

where v = X 71/2¢;. Plugging this above, we get that E [Z(j)*] < C,. which in turn implies that

with probability at least 1 — 9,
Cy

Nod

Taking a union bound over d? entries of ©~1/25%71/2 — ], we get that with probability at least
1-—9,

|zjk] <

Cyl?
o

s ], <
F
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Chapter 5

List-Decodable Subspace Recovery

5.1 Introduction

In this chapter, we focus on the harsher list-decodable estimation model where the fraction of
inliers av is < 1/2 - i.e.,a majority of the input sample are outliers. First considered in [BBV08]
in the context of clustering, this was proposed as a model for untrusted data in a recent influential
recent work of Charikar, Steinhardt and Valiant [CSV 17]. Since unique recovery is information-
theoretically impossible in this setting, the goal is to recover a small (ideally O(1/a)) size list
of parameters one of which is guaranteed to be close to those of the inlier distribution. A recent
series of works have resulted in a high-level blueprint based on the sum-of-squares method for
list-decodable estimation yielding algorithms for list-decodable mean estimation [DKS18] and
linear regression [KKK19, RY20a].

We extend this line of work by giving the first efficient algorithm for list-decodable subspace
recovery. In this setting, we are given data with « fraction inliers generated i.i.d. according
N(0,3,)" on R¢ with a (possibly low-rank, say r < d) covariance matrix ¥, and rest being
arbitrary outliers. We give an algorithm that succeeds in returning a list of size O(1/«) that
; < log(rk)O(k*/a?)) where I1, is the projector to the range
space of X, and x is the ratio of the largest to smallest non-zero eigenvalues of >.,. Our Frobenius

contains a II satisfying Hf{ — 1L,

norm recovery guarantees are the strongest possible and imply guarantees in other well-studied

norms such as spectral norm or principle angle distance between subspaces. Our algorithm runs

log (rr)O(1/a*) 1/a?)

in time n and requires n = ('°8 (77O samples.

'Our techniques naturally extend to distributions with non-zero means but we will omit this generalization to not
complicate the notation.
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Our results work more generally for any distribution D that satisfies certifiable anti-concentration

and mild concentration properties (concentration of PSD forms). Certifiable anti-concentration
was first defined and studied in recent works on list-decodable regression [RY20a, KKK19].
Gaussian distribution and uniform distribution on sphere (restricted to a subspace) are natural ex-
amples of distributions satisfying this property. We note that Karmalkar et. al. [KKK19] proved
that anti-concentration of D is necessary for list-decodable regression (and thus also subspace

recovery) to be information theoretically possible.

Why List-Decodable Estimation? List-decodable estimation is a strict generalization of re-
lated and well-studied clustering problems (for e.g., list-decodable mean estimation generalizes
clustering spherical mixture models, list-decodable regression generalizes mixed linear regres-
sion). In our case, list-decodable subspace recovery generalizes the well-studied problem of
subspace clustering where given a mixtur of & distributions with covariances non-zero in differ-
ent subspaces, the goal is to recover the underlying k& subspaces [AGGR98, CFZ99, GNC99,
PJIAMO2, AY00]. Algorithms in this model thus naturally yield robust algorithms for the related
clustering formulations. In contrast to known results, such algorithms allow “partial recovery”
(e.g. for example recovery k — 1 or fewer clusters) even in the presence of outliers that garble up

one or more clusters completely.

Another important implication of list-decodable estimation is algorithms for unique recov-
ery that work all the way down to the information-theoretic threshold (i.e. fraction of inliers
a > 1/2). Thus, specifically in our case, we obtain an algorithm for (uniquely) estimating the
subspace spanned by the inlier distribution D whenever the fraction of inliers satisfy o > 1/2
- the information theoretically minimum possible value. We note that such a result will follow
from outlier-robust covariance estimation algorithms [LRV 16, DKK™19] whenever « is suffi-
ciently close to 1. While prior works do not specify precise constants, all known works appear

to require «v at least > 0.75.

5.1.1 Our Results

We are ready to formally state our results. Our results apply to input samples generated according

to the following model:

Model 106 (Robust Subspace Recovery with Large Outliers). For 0 < a < 1 and r < d, let
p € R4 ¥, € R be a rank » PSD matrix and let D be a distribution on R¢ with mean /i,

and covariance X,. Let Subp(a, 3,) denote the following probabilistic process to generate n
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samples, x1, T3 . . . x, with an inliers Z and (1 — a)n outliers O:
1. Construct Z by choosing an i.i.d. samples from D.

2. Construct O by choosing the remaining (1 — «)n points arbitrarily and potentially adver-

sarially w.r.t. the inliers.

Remark 107. We will mainly focus on the case when p, = 0. The case of non-zero p., can be
easily reduced to the case of i, = 0 by modifying samples by randomly pairing them up and

subtracting off samples in each pair (this changes the fraction of inliers from « to o).

Remark 108. Our results naturally extend to the harsher strong contamination model (where
one first chooses an i.i.d. sample from D and then corrupts an arbitrary (1 — «) fraction of them)

with no change in the algorithm.

An n-approximate list-decodable subspace recovery algorithm takes input a sample S drawn
according to Subp(a, 3,) and outputs a list L of absolute constant (depending only on «) such
that there exists a II € L satisfying ||IT — IL, ||% < 7, where II, is the projector to the range space
of X,.

Before stating our results we observe that since list-decodable subspace recovery strictly
generalizes list-decodable regression (by viewing samples as d + 1 dimensional points with a
rank d covariance), we can import the result of Karamalkar, Klivans and Kothari [KKK19] that

shows the information-theoretic necessity of anti-concentration of the distribution D.

Fact 5.1.1 (Theorem 6.1, Page 19 in [KKKI19]). There exists a distribution D that (o + €)-
anti-concentrated for every ¢ > 0 but there is no algorithm for o /2-approximate list-decodable

subspace recovery for Subp (., 3.) that outputs a list of size < d.

The distribution D is simply the uniform distribution on an affine subcube of dimension n — 1

of {0,1}" (and more generally, g-ary discrete cube).

Our first main result shows that given any arbitrarily small > 0, we can recover a poly-
2

< 7. The
F

surprising aspect of this result is that we can get an error that can be made arbitrarily small (in-

nomial (in the rank ) size list of subspaces that contains a I satisfying Hﬂ — 1L,

dependent of the rank r or the dimension d) at the cost of increasing the list size from a fixed
constant to polynomially large in the rank r of X,. This result crucially relies on our new expo-

nential error reduction method (see Lemma 5.4.3).
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Theorem 109 (Large-List Subspace Recovery). Let Subp(«, X,) be such that 3, has rank r and
condition number k, and D is k-certifiably (c, d)-anti-concentrated. For anyn > 0 and t € N,
there exists an algorithm that takes input n. > ny = (kdlog(d))°® samples from Subp(a, 3.,
and outputs a list of matrices, L, such that |L| = O(1/a") and with probability at least 0.99 over
the draw of the sample and the randomness of the algorithm, there is a matrix lecr satisfying
I —1L|12 <O (rl/k(Qr/i)l/Q(d/a)t/k). The algorithm has time complexity at most n©®t+"),

Remark 110. We note that our algorithm obtains a trade-off between list size, accuracy and
running time as setting ¢ = 1 results in a polynomial time algorithm with list size O(1/«) and
accuracy O(r'/*(2rk)'/2(§/a)), which is comparable to the result obtained by Raghavendra-Yau
[RY20b].

Remark 111. In general our algorithm for Large-List Subspace Recovery can obtain arbitrarily
high accuracy at the expense of running time and list size. Formally, for any > 0, we obtain
|II—IL,||% < 75, with list size O(1/a*'°s(+/1)) and runnning time nO** les(rs/m)/l0g(8/2) Further,

for n < 0.1, we can ensure that the resulting list only contains projection matrices.

Remark 112. We note that our large-list rounding algorithm only requires the inliers to be cer-

tifiably anti-concentrated. Our subsequent results require subgaussianity as well.

We use a new pruning procedure to get the optimal list size of O(1/«) at the cost of increasing

the Frobenius error to O(x*log(r)/a?).

Theorem 113 (List-Decodable Subspace Recovery). Let Subp(«, ¥.) be such that ¥, has rank
r and condition number k, and D be k-certifiably (a/2)-anti concentrated as well as sub-
gaussian with covariance ... Then, there exists an algorithm that takes as input n = ny >
(dlog(d)/on)a(k) samples from Subp(«, ¥.) and outputs a list L of O(1/«) projection matrices
such that with probability at least 0.99 over the draw of the sample and the randomness of the
algorithm, there is a 11 € L satisfying ||l — I1,||2 < O(x*log(r)/a?). The algorithm has time

complexity at most nCs(rmk*),

Remark 114. Our algorithm can also achieve a smooth trade-off between list-size and accuracy.
For any v > 1, we can output a list of size O(1/a”) such that it contains a projection matrix

satisfying ||IT — II, |2 < O(k*log(r)/a?y) by obtaining 1/ fresh samples from Subp(cv, ,).

Remark 115. For Gaussian distributions with mean 0 and covariance Y., it suffices to set k =
O(1/a?) (see Theorem 121 for details).
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As discussed above, our results immediately extends by means of a simple reduction to the

case when (i, 1s non-zero.

Corollary 5.1.2 (Large-List Affine Recovery). Let Subp(«, ¥,) be such that ¥, has rank r and
condition number r, and D is k-certifiably (o /2)-anti concentrated as well as subgaussian with
covariance ¥.,.. Then, there exists an algorithm that takes as input n = ngy > (dlog(d)/ a4)5(k)
samples from Subp(c, X,) and outputs a list L of O(1/a?) projection matrices such that with
probability at least 0.99 over the draw of the sample and the randomness of the algorithm, there
is a1l € L satisfying |I1—1IL,||% < O(k*log(r)/a*). The algorithm has time complexity at most

nOog(rr)k?)
Remark 116. We note that our algorithm and subsequent analysis can be carried out using the
projection onto the orthogonal complement of the subspace spanned by Y, as variables in the
constraint system and therefore, our running time depends on min(r,d — r). Recall, in the
List-Decodable Linear Regression problem, a-fraction of the input spans the (d — 1) dimension
subspace represented by {(x;,¢.) = y;}, where /, is the regressor we would like to recover.
Combining these two observations, we obtain a faster algorithm for List-Decodable Linear Re-

gression.

Corollary 5.1.3 (List-Decodable Regression). Let Linp(«, £.) be such that an a-fraction of the
input satisfies (x;, () = y; where the x; are drawn from D, and the remaining fraction is
chosen arbitrarily, potentially adversarially w.r.t the inliers. Let ., be a rank-(d — 1) matrix with
condition number k. Let D be k-certifiably («/2)-anti concentrated as well as subgaussian with
covariance ¥.,.. Then, there exists an algorithm that takes as input n = ngy > (dlog(d)/ a2)5(k)
samples from Linp(«, ) and outputs a list L of O(1/«) projection matrices such that with
probability at least 0.99 over the draw of the sample and the randomness of the algorithm, there
is a Il € L satisfying 1T — IL||%2 < O(x*/a?). The algorithm has time complexity at most

nO(log(n)kQ).

5.1.2 Related Work

Subspace Clustering. Prior work on subspace recovery focused on the closely related prob-
lem of subspace clustering in high dimension, where to goal is to partition a set of points into
k-clusters according to their underlying subspaces. Subspace clustering methods have found
numerous applications computer vision tasks such as image compression [HWHMO06], motion

segmentation [CK98], data mining [PHLO4], disease classfication [MM14], recommendaation
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systems [ZFIM12] etc. Algorithms for subspace clustering include iterative methods, algebraic
and statistical methods and spectral techniques. We refer the readers to the following surveys
for a comprehensive overview [EV13, PHLO4]. Elhamifar and Vidal [EV13] also introduced
sparse subspace clustering, building on the compressed sensing and matrix completion litera-
ture. Soltanolkotabi et. al. [SEC14] extend sparse subspace clustering to work in the presence
of noise and provide rigorous algorithmic guarantees. They assume the outliers contribute a
small fraction of the input and are distributed uniformly distributed of the unit sphere.

Robust Subspace Recovery. A recent line of work on robust subspace recovery has focused on
projection pursuit techniques, ¢;-PCA (robust PCA), exhaustive subspace search and robust co-
variance estimation. Here, the goal is to recover a set of inliers that span a single low-dimensional
space. Projection pursuit algorithms iteratively find directions that maximize a scale function.
The scale function often accounts on outliers and thus may be non-convex. McCoy and Tropp
[MT ™" 11] consider one such function and develop a rounding which approximates the global op-
timizer. The ¢; or Robust PCA objective replaces the Frobenius norm objective with a sum of ab-
solute values objective, since it is less sensitive to outliers. While this formulation is non-convex
and NP-hard in general, many special cases are tractable, as discussed here [VIN18]. Hardt and
Moitra [HM13] provide a worst-case exhaustive search algorithm, where both the inliers and
outliers are required to be in general position and the inliers are generated deterministically. For

a more comprehensive treatment of robust subspace recovery we refer the reader to [LM18a].

In a concurrent and independent work, Raghavendra and Yau proved related results for list-
decodable subspace recovery [RY20a].

5.2 Technical Overview

In this section, we give a high level overview of our algorithm and the new ideas that go into
making it work. At a high level, our algorithm generalizes the framework for list-decodable
estimation recently used to obtain an efficient algorithm for list-decodable regression in the recent
work of [KKK19].

In the list-decodable subspace recovery problem, our input is a collection of samples x1, xs,
..., Zn € RY, an an of which are drawn i.i.d. from distribution D with mean 0 and unknown
covariance X, of rank . For the purpose of this overview, we will think of X, itself being a
projection matrix II.. Our algorithm starts from a polynomial feasibility program that simply

tries to find a subset of sample that contains at least an an points such that all of these points
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lie in a subspace of dimension » < d. We can encode these two requirements as the following

system A, ;; of polynomial constraints as follows:

Zie[n] w; = an

Vi€ [n]. w(I—-I)x; =0

Ay (Vi € [n]. w? = w; (5.1
1 =11
Tr(Il) = r
In this system of constraints, wy, ws, . . ., w,, are indicators (due to the constraint w? = w;) of

the subset of sample we pick. Since > " ; w; = an, the constraints force w to indicate a subset of
the sample of size an. To force that all the points indicated by w lie in a subspace of dimension
r, we define variable II intended to be the projector to this unknown subspace. The constraint
[12 = TI forces IT to be a projection matrix and tr(IT) = r forces its rank to be r. Given these
constraints, it’s easy to verify the constraint w;(I — II)z; = 0 forces x; to be in the subspace

projected to by II whenever w; = 1.

5.2.1 Designing an Inefficient Algorithm

A feasible solution (w, IT) to the aforementioned constraint system (ignoring for now, the issue
of efficiency), results in a subset of an samples that span a subspace of dimension . However,
there can be multiple r dimensional subspaces that satisty this requirement for various an subsets
chosen entirely out of the outliers®. Thus, even if we were to find a solution to this program, it’s

not immidiately clear how to recover a subspace close to the one spanned by the inliers.

High-Entropy Distributions. In order to force our solution to (5.1) to give us information
about the true inliers, it seems beneficial to try to find not one but multiple solution pairs { (w*, IT*) }
such that at least one of the w’ indicates a subset that has a substantial intersection with the true
inliers. An important conceptual insight in (see Overview section in [KKK19] for a longer dis-
cussion) is to thus ask for a probability distribution (which, at this point can be thought of as a
method to ask for multiple solutions) y over solutions (w, IT) satisfying (5.1). It turns out that
we can ensure that there are solutions (w,II) in the support of ;1 where w indicates a subset

with a non-trivial intersection with the inliers by finding a distribution 1 so that || X", Ew;|[; is

2See Section 3 in [KKK 19] for examples showing how outliers can generate exp(£2(d)) many possible subspaces
that can all be far from the ground truth subspace.
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minimized. This constraint serves as a proxy for high entropy distributions. Formally, we can
conclude the following useful result that shows that the expected (over ) intersection of a subset

indicated by w and the inliers is at least « fraction of the inliers.
Proposition 5.2.1. Let 11 be a distribution on (w, I1) satisfying A, 11. Then, E,, [>;cz wi] > o|Z|.

This result follows by a simple "weight-shifting" argument (if the distribution is over w that

do not intersect enough with the inliers, we can shift probability mass on the inliers and decrease
-2
|2 B ).

Anti-Concentration. Our distribution over y is guaranteed to contain w with at least « fraction
of the points of Z in the intersection. Our hopes of finding information about the true subspace
are pinned on such “good” (w, IT) at this point. We would like that for such w, the corresponding
projector II matches the ground truth subspace corresponding to the projector IL,. Let .S be the
"intersection indices", i.e., the set of indices of samples in Z for which w; = 1. Why should this
be true? Since we have no control over 9, it could, a priori, consist of the points in Z that span

only a proper subspace, say V' of the ground truth subspace. In this case, II may not equal II,.

The key observation is that in this “bad” case, there is a vector v that is in the orthogonal
complement of IIy inside the subspace spanned by II, such that (z;,v) = 0 for every ¢ € S.
That is, there’s a direction that inliers have a zero projection in « fraction of the times. Such an

eventuality is ruled out if we force D, the distribution of the inliers to be anti-concentrated.

Definition 5.2.2 (Anti-Concentration). A R%valued random variable Y with mean 0 and co-
variance X is §-anti-concentrated if for all v satisfying v’ v > 0, Pr[(Y,v) = 0] < 6. A set

T C R%is §-anti-concentrated if the uniform distribution on T is §-anti-concentrated.
The following proposition is now a simple corollary:

Proposition 5.2.3 (High Intersection Implies Same Subspace (TV Distance to Parameter Dis-
tance)). Let S be a sample of size n from Subp(a, X*, 1) for a projection matrix ¥, = 11* of
rank r such that the inliers T are a-anti-concentrated. Let T' C S be a subset of size an such
that Tlx = x for every x € T for some projection matrix 11 of rank r. Suppose |T C Z| > o|Z|.
Then, 11 = IT".

Proof. Let I —II = Y%= v;v," for an orthonormal set of vectors v;s. Since Ilz = x for every

x €T, (z,v;) = 0forevery x € T. Thus, Pr, z[(z,v;) = 0] > |TNZ|/|Z| > «. Since Z is

a-anti-concentrated, this must mean that viT IT*v; = 0.
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Thus, ;v Ty, = tr(IT* S5 v ) = tr(IT*(1 — 11)) = 0. Or tr(IT*) = tr(II - IT%).
On the other hand, by Cauchy-Schwarz inequality, tr(IT - IT*) < \/tr(HQ) tr((11*)2) = tr(II)
with equality iff IT = IT*. Here, we used the facts that IT = I1%, (IT*)? = II* and that tr(II) =

tr(IT*) = r. Thus, IT = IT*. O

Inefficient Algorithm for Anti-Concentrated Distributions. We can use the lemma above to

give an inefficient algorithm for list-decodable subspace recovery.

Lemma 5.2.4 (Identifiability for Anti-Concentrated inliers). Let S be a sample drawn according
to Subp (o, X*, 1) such that the inliers T are §-anti-concentrated for § < «. Then, there is an
(inefficient) randomized algorithm that finds a list L of projectors of rank r of size 20/(a — §)
such that IT* € L with probability at least 0.99.

Proof. Let ;1 be any maximally uniform distribution over soluble subset-projection pairs (w, IT)
where w indicates a set S of size at least an. For k = 20/(a—4§), let (S1, I1y), (S2,I12), . .., (Sk, [1x)
be i.i.d. samples from p. Output {II;, II,, ..., II;}. To finish the proof, we will show that there
is an i such that | $;NZ| > 2|Z| > §|Z|. Then, we can then apply Proposition 5.2.3 to conclude
that II, = X..

By Proposition 5.2.1, Eg.,|S N Z| > a|Z|. Thus, by averaging, Prg.,[|SNZ| > 2|7 >
9=2|Z|. Thus, the probability that at least one of S, S, ... Sy satisfy [S; N Z| > 2F2|T] is at

least 1 — (1 — 252)F > 0.99. O

5.2.2 Efficient Algorithm

Our key technical contributions are in making the above inefficient algorithm into an efficient
algorithm via the sum-of-squares method. At a high level, we consider a low-degree sum-of-
squares relaxation of the constraint system and design an efficient rounding algorithm. As in
prior works, it is natural at this point to consider the algorithm that finds a pseudo-distribution

minimizing ||, w; ||§ and satisfying A,, 1.

A precise discussion of pseudo-distributions and sum-of-squares proofs appears in Section 5.3
- at this point, it suffices to think of pseudo-distributions as objects similar to the distribution
that appeared above for all “properties” that have a low-degree sum-of-squares proofs. Sum-
of-squares proofs are a system of reasoning about polynomial inequalities under polynomial
inequality constraints. It turns out that the analog of Proposition 5.2.1 holds even for pseudo-

distributions. Our central goal is then to find a sum-of-squares proof of the "high-intersection
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implies same subspace" property and use such a statement algorithmically to obtain a small list
of projectors. To this end, we describe three novel technical contributions that go into achieving

this goal.

Anti-Concentration as a Polynomial Identity. As we recall from our discussion above, such
an argument relies on the distribution D being anti-concentrated. While as stated, anti-concentration
does not have a natural formalization as a low-degree polynomial identity, recent works [KKK19,
RY20a] made progress towards formalizing it within the SoS system in slightly different ways.

Our proofs are more attuned to the formalization in [KKK19]. But for technical reasons the
precise formulation proposed in [KKK19] is not directly useful for us. Briefly and somewhat
imprecisely put, anti-concentration formalizations posit that there be a low-degree SoS proof
(in the variable v) for polynomial inequalities of the form Epp*({z,v)) < ¢ for a univariate
polynomial p that approximates a Dirac Delta function at 0. In the prior works, this requirement
was formulated in a constrained manner (“||v||> < 1 implies Epp?((x,v)) < 6”). For the
application to subspace recovery, natural arguments require unconstrained versions of the above
inequality (i.e. that hold without the norm bound constraint on v). Definition 2.2.12 formulates
this condition precisely. We then show that our formalization of anti-concentration holds for

natural distribution families such as Gaussians (see Section 5.5 for details).

Spectral Bound on Subsamples. Given our modified formalization of anti-concentration, we
give a sum-of-squares proof of the analog of Proposition 5.2.3. In particular, we prove a poly-
nomial identity that states if the samples indicated by w non-trivially intersect the true inliers,
then the projector II is close to II, in Frobenius norm. Further, we are able to achieve a trade-off
between the degree of the polynomial identity and the closeness in Frobenius norm. This state-
ment as well as the trade-off between the degree and error (see Lemma 5.4.1) is a key technical

contribution of our work and we expect will find applications in future works.

Alternatively, we can view this statement as an SoS version of results relating total variation
distance between anti-concentrated distributions to the Frobenius norm difference between their
covariance. Here, the analog of closeness in total variation distance is the size of the intersec-
tion between the samples indicated by w and the true inliers and the closeness is between the

corrresponding projectors.

An important technical component in our proof is to show that given a set of points S sampled
from an anti-concentrated distribution, we can lower bound the eigenvalues of the empirical
covariance of a significantly large subset of S (see Lemma 5.4.5 for a precise statement). For

subspace recovery, this implies that non-zero directions in the empirical covariance for S remain
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non-zero for a subset of S. Intuitively, such a statement implies that we preserve subspace even

when the samples indicated by w intersect a small fraction of the inliers.

Exponential Error Reduction and Large List Rounding. Recall, a high-entropy pseudo-
distribution satisfying A,, ;1 can be interpreted as a “distribution” over tuples (w, II) satisfying
the constraint system such that the samples indicated by w non-trivially intersect the inliers in
expectation. Next, we design a rounding algorithm that takes the pseudo-distribution as input and
outputs a list of projectors such that one is close to II,. Note, for the list-decodable regression
problem, simply applying the rounding “by votes” strategy from sufficed to get a polynomial
time algorithm for any fixed constant error [KKK19]. However, for subspace recovery, the same
rounding strategy gives an error bound that depends polynomially on the rank (or co-rank) of
the unknown subspace and the fraction of inliers. When the rank of the subspace is high (say
d/2, where d is the dimension), such a bound may not even be meaningful. To reduce error
down to something that is dimension independent ends up needing running time that is (super)-

exponential in the dimension.

We extend the voting based rounding algorithm such that it allows for a trade-off between the
list size and the closeness of 1I to II, and our exponential error reduction mechanism allows us
to obtain a dimension-independent error bound in quasi-polynomial time. We show that picking
a sufficiently large subset of the points indicated by w proportional to the high-entropy pseudo-
distribution results in an projector that is 7 close to II, in Frobenius norm, with probability
1/poly(d). Further, the running time of our algorithm scales proportional to 7'°(/" and the list
size blows up by 1/a!°#(1/7) 3 Our powering and error reduction technique is quite general and

will likely find new uses in list-decodable estimation.

Pruning Lists. In order to get optimal list size bounds, the last step in our algorithm is to in-
troduce a "pruning method" that decreases the size of the large list obtained by rounding pseudo-
distributions. Here, we obtain O(1/«) fresh samples from D and for each fresh sample « com-
pute the projection on to the orthogonal complement for each projector in our large list. We then
pick an arbitrary projector II such that || (I — II)x||, is a small fraction of ||z ||,. Our resulting list
thus has at most O(1/«) projectors. Further, when z is drawn from the inliers, we show that we

add a projector close to I, to our list using our aforementioned test.

3Here, we ignore the dependence on the remaining parameters.
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5.3 Preliminaries

Throughout this paper, for a vector v, we use ||v||» to denote the Euclidean norm of v. Foran xm
matrix M, we use ||M||; = maxy,=1||Mz||; to denote the spectral norm of M and ||M||r =
V2 Mf] to denote the Frobenius norm of M. For symmetric matrices we use >~ to denote the
PSD/Loewner ordering over eigenvalues of M. For a n x n, rank-r symmetric matrix M, we use
UAUT to denote the Eigenvalue Decomposition, where U is a n X r matrix with orthonormal
columns and A is a 7 x r diagonal matrix denoting the eigenvalues. We use M = UATUT to
denote the Moore-Penrose Pseudoinverse, where A' inverts the non-zero eigenvalues of M. If
M = 0, weuse M1/2 = UAY2UT to denote taking the square-root of the non-zero eigenvalues.
We use II = UU to denote the Projection matrix corresponding to the column/row span of M.

Since II = I1?, the pseudo-inverse of 11 is itself, i.e. It = 11.

Reweightings Pseudo-distributions. The following fact is easy to verify and has been used in

several works (see [BKS17] for example).

Fact 5.3.1 (Reweighting). Let [i be a pseudo-distribution of degree k satisfying a set of poly-
nomial constraints A in variable x. Let p be a sum-of-squares polynomial of degree t such
that B[p(z)] # 0. Let [’ be the pseudo-distribution defined so that for any polynomial f,
Ex[f(z)] = Eulf(x)p(x)]/ Balp(x)). Then, ji is a pseudo-distribution of degree k — t satis-
Sfring A.

5.4 Algorithm

In this section, we describe an efficient algorithm for list-decodable subspace recovery. Let A,, ;1

be the following system of polynomial inequality constraints in indeterminates w, I1.

> ie[n) Wi = an

Vi€ [n]. w(I—-1Iz; =0

Ap i (Vi € [n]. w? = w; (5.2)
I* =11
Tr(I1) = r

Our algorithm finds a pseudo-distribution consistent with 4, ;. It then uses the large-list
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rounding algorithm as a first step to get a polynomial (in d) size list that contains a subspace that
is n-close in Frobenius norm to the range space of >.,. Finally, we apply a pruning procedure to

obtain a O(1/«) size from the large list procedure.

Algorithm 117. List-Decodable Subspace Recovery

Given: Sample S = {x1,29,...2,} = Z U O of size n drawn according to Subp(c, 3,)
such that the D is k-certifiably (c, 0)-anti-concentrated, has mean 0 and the condition

number of 3., is K.

Operation:

1. Lett = A- (M) for a large enough constant A > 0.

2. Compute a (t + 2k)-degree pseudo-distribution [i satisfying A, i1 that minimizes
- 2
|y Efw]

3. Run Large-List Rounding with n = 0.1 (Algorithm 118) to output a O(1/at)
sized list L.

5

4. Run pruning (Algorithm 119) on L' with v = 1 and output the resulting list L.

Output: A list £ of O(1/a) projection matrices containing a1l € L satisfying |I1-11,||% <
O(r*log(r)/a?).

Algorithm 118. Large List Rounding

-2
Given: A pseudo-distribution [i of degree t+2k satisfying A,, 11 and minimizing HZK" Ew; )

such thatt = A- (logB(I/ aiéog(m/ ) ),fOr a large constant A\, accuracy parametern > 0.

Operation: Repeat { = O(1/a') times:
1. Let S C [n] such that |S| = an. Draw S with probability proportional to
() Ealws)

2. Let TI = ]E“[E“Sf]] be the corresponding matrix. Compute the Eigenvalue De-
,u,
composition ofH UAUT and let 11 = U,U!, where U, are the eigenvectors

corresponding to the top-r eigenvalues of IL.
3. Add 11 to the list L'.

Output: A list £ C R of size O(1/al) containing a Projection matrix 11 € L satisfying
T = IL [ <.
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Algorithm 119. Pruning Lists

Given: A list L' of d x d projection matrices such that there exists e satisfying |11 —
IL]|% < 0.1, O(1/a") fresh samples S, drawn according to Subp(c, ¥,), for some
v > 1, a threshold T = O(x*log(r)/a?).

Operation:
Fori=1,2,...,|S|:

1. Let L, =L"Forj=1i,....,i+v—1
(a) Foreach Il € L, compute ||(I — II)z;||3.
(b) If |(1 — ;|3 > 7, discard 1 from L.,
2. If L. is non-empty, pick an arbitrary matrix I from this set and add it to L.

Output: A £ C R? of size O(1/«) such that there exists a Projection matrix I € L
satisfying |11 — 1L, ||% < 7

5.4.1 Analysis of Algorithm 117.

The following theorem captures the guarantees we prove on Algorithm 117.

Theorem 120 (List-Decodable Subspace Recovery, restated). Let Subp(«, X.) be such that ¥,
has rank r and condition number k, and D is k-certifiably (c, o /2)-anti-concentrated and sub-
gaussian with covariance 3. Then, Algorithm 117 takes as input n = ng > (d log(d)/a2)5(k)
samples from Subp(a, ) and outputs a list L of O(1/«) projection matrices such that with
probability at least 0.9 over the draw of the sample and the randomness of the algorithm, there is
a1l € L satisfying |11 — IL||% < O(k*log(r) /a?). Further, Algorithm 117 has time complexity
at most nO(ra)i?),

Our proof of Theorem 120 is based on the following four pieces. The key technical piece is

the following consequence of the constraint system .4,, 1y in the low-degree SoS proof system.
Lemma 5.4.1. Given § > 0 and any t € N, and an instance of Subp(«, 3.), such that the inlier
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distribution D has mean 0 and is k-certifiably (C, §)-anti-concentrated,

Aun b {(mzu;) ITT — IL,||%, = (!I\Zw> k2 tr(MTI,M)*/? < (2m)k/25t} :

i€l €L

where k is the condition number of 32, and 11, is the corresponding rank-r Projection matrix.

Next, we show that “high-entropy” pseudo-distributions must place a large enough weight on

the inliers. This is similar to the usage of high-entropy pseudo-distributions in [KKKI19].

Lemma 5.4.2 (Large weight on inliers from high-etropy constraints). Let [t pseudo-distribution
,- Then, |I|t E [(Ziez wi)t} > al.

of degree > t that satisfies A,, 1 and minimizes HE,]/ 2ieln) Wi

The above two lemmas allow us to argue that our large-list rounding algorithm (Algorithm

118) succeeds.

Lemma 5.4.3 (Large-List Subspace Recovery, Theorem 109 restated). Let Subp(«, X..) be such
that ¥, has rank r and condition number k, and D is k-certifiably (c, a/2)-anti-concentrated.
For any 1 > 0, there exists an algorithm that takes input n > ng = (kdlog(d))°®) samples from
Subp(«, Y.) and outputs a list L of size O(1/a*1°8%/M)) of projection matrices such that with
probability at least 0.99 over the draw of the sample and the randomness of the algorithm, there
is a Il € L satisfying |1 — I1,||2 < n. The algorithm has time complexity at most n©**108(rs/m)),

Finally, we show that we can prune the list output by Algorithm 118 to a list of size O(1/«)
such that it still contains a Projection matrix close to II,. Here, we require that D is subgaussian.

Formally,

Lemma 5.4.4 (Pruning Algorithm). Let v > 1 and L' be the list output by Algorithm 118.
Given O(1/a") fresh samples from Subp(«, ¥..), Algorithm 119 outputs a list L of size O(1/a”)
such that with probability at least 99/100, there exists a projection matrix Iler satisfying

2 2 A ( w*log(r)
L~ TL [ < O (o),
Theorem 120 follows easily by combining the above claims :

Proof of Theorem 120. Recall, D is k-certifiably (c, a/2)-anti-concentrated, and thus it fol-
lows from Lemma 5.5.6 that the uniform distribution on Z is also O(k)-certifiably (c, a)-anti-

concentrated if the number of samples are at least ng = (dlog(d)/a?)°®)

We begin by observing that the system of constraints A, 11 is feasible when we set w; to
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indicate the inliers, and II = II.. Next, the hypothesis of Lemma 5.4.3 is now satisﬁes for
n = 0.1, Algorithm 118 runs in time nOUog(rk) and outputs a list £’ of size (1/a)° Olog(r)k)
such that with probability at least 99/100, it contains a projector IT satisfying ||IT — IT,||% < 0.1.
Recall, I, is the projector corresponding to ¥, and let (; be the event that £’ contains I1..

Conditioning on (7, we now have a list satifying the hypothesis for Lemma 5.4.4 and access

to O(1/a) fresh samples (7 = 1) we can conlcude that with probability 99/100 Algorithm 119
outputs a list of size O(1/a)) which containts a projection matrix II satisfying ||IT — IL,||2 <
O(k*log(r)/a?), as desired. Let ¢, be the event that Algorithm 119 succeeds. Therefore, union
bounding over (; and ¢, implies Algorithm 117 succeeds with probability at least 9/10. The

overall running time is dominated by Algorithm 118, which completes the proof.

5.4.2 Analyzing A, 11: Proof of Lemma 5.4.1

We first show that covariance of all large enough subsamples of certifiably anti-concentrated
samples have lower-bounded eigenvalues. Recall, for a PSD matrix X, UAU T denotes the

Eigenvalue Decomposition and IT, = UU " denotes the corresponding rank-r Projection matrix.

Lemma 5.4.5 (Covariance of Subsets of Certifiably Anti-Concentrated Distributions). Let S =
{z1,29,...2,} € R? be k-certifiably (C, §)-anti-concentrated with 1 3", s xx” = 3. Then,

{w? = w; | Vi} IZ—: {le S lvlls 2w <ET/2xi,v>2 > 4 (:L > w; — C’5> ||U||]§} . (5.3)
=1 i—1

Proof. Let p be the degree k polynomial provided by Definition 2.2.12 applied to S. Thus, for

each 1 <7 < n, we must have:

o {HUH';? (5V2,0) 4+ %7 ((5V23,0)) > 52|yv\|’g} .

Observe that

{wiz :wi}}%{wi >0

Using the above along with (3.5) for manipulating SoS proofs, we must have:

fut = 1 {3 3ol (20 0) 4 220 3 ? ((200)) > 0 3 wilols)-
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Rearranging yields:

{wi2 = wj | Vz’} }% {711 ZXZ;HUHIZ?QU)Z <ET/2xi,v>2 > 52711 ZXZEMZHUHS — 52711 g}wiﬁ <<ZT/2$1‘71}>)}

(5.4)

Next, observe that {w? = w;} Fo- {(1 — w;) = (1 — w;)? > 0}. Thus, {w? = w;} |5~ {w; < 1}
As a consequence, {w? = w;} }% {wip2(<ZT/2:ci,v>) < p2(<27/2xi, v>)} Summing up over
1 <7 < nyields:

(it = b {250 (50)) <
=1

where in the final inequality on the RHS above, we used the second condition from Defini-
tion 2.2.12 satisfied by S. Plugging this back in (5.4), we thus have:

o2 ((5720,0)) < €5 uvu’;} |
=1

{w? = w; | vi} o {:L S llolls 2wy (512, )" > 6 (; S wy - oa) ||U||§} .59
=1 =1

as desired.
O
Lemma 5.4.6 (Technical SoS fact about Powering). For indeterminates a,b, Z and any t € N,
{020,620, (a7 <0} 5 {(a — )7 <0} (5.6)

Proof. We have:
t—1

b>0}%{

Using the above identity with (3.5) yields:

0

1=0

-1
{a>0,b>0,(a—b)Z <0} {(a —b) (Zat-l—ibi> 7 < 0} .
i=0
Using the identity: (a® — §) (ZZ —oat 1_ibi) = a' — V!, we finally obtain:

{a>0,0>0,(a—b)Z O}F{(a—bt) }
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Proof of Lemma 5.4.1. We begin by applying Lemma 5.4.5 to the set Z. Observe, the uniform
distribution on Z is k-certifiably (C, §)-anti-concentrated. Thus,

w 2 — 7 (2
fut = w1} S (2o ol 5 7 (B - ) it} s

€T

Let M = I —1I. Since z; = syl *z;, we have the following polynomial identity (in

indeterminates II, v) for any ¢:

(5122, S Mv) = (Ma;,v) .

By using the (substitution) for manipulating SoS proofs and substituting v with the polyno-
o1 y1/2 .
mial X' " Mv, we thus obtain:

{Vi € [n]w? = wi} }%: {lzll > w; (Mx;,v)° HZIQMUH’;—? > 62 <Zi§j‘wi _ 05) HEI/QMUHI;}
i€z

(5.8)
Next, observe that A, 11 }an {w;Mx; = 0Vi} and thus,
ij[ % {(szxl, U>2 = w; <M!L‘Z, U>2 = O \V/Z} .
Combining this with (5.8), we thus have:
w,v 1 k
Awt 55 {0 > 62 ( 3w, — 05> =120 | } (5.9)
Izl iz 2
Using (3.5) to multiply throughout by the constant 1/6? yields:
Aw 51 {0 (\I| S w; — 05> 12 Mo } (5.10)
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k
Applying Lemma 5.4.6 with a = é Yiczwi, b=Cédand Z = HEI/QMU ,» we obtain:

Ayt { ((II!ZM) _ )‘ H’;} (5.11)

Let \,,q. be the largest eigenvalue of ¥,.. By applying (3.5) and multiplying by 1/\,,,, through-

out, we can work with 1/)\,,,,2, and thus assume that \,,,, = 1. Let \,,;, be the smallest

non-zero eigenvalue of X,. Then, A\, = +

Recall, ¥, = UAU " and I, = UU ". Then, from the above, X, — \,.;nll. = 0 and thus, we
have:
v,11 T T
5 { it MIL Mo < 0T M, Mo} .

Using the (3.5) repeatedly we thus obtain:

o {Af,{; (v ML M) < (v M r0) 2} . (5.12)
Since \ee = 1 and M? = M, we have:

Awat 5 {0 ME Mo < [ Mol = 0" Mo = 071~ ITv = [Jol]? — [To]l? < lo]l2}
Using the (3.5) repeatedly again, we obtain:

wn}f{( ") < HUH’;} (5.13)

Using (5.12) and (5.13) with (5.11), we thus have:

Ao {<|I|sz> (v v pe)

€L
< )\k/2 ( Zwl> (v" M. 00) " (5.14)

ZGI

\ )\k/g 5tH HQ}
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Let g ~ N(0, I). Then, using the above with the substitution v = g, we have:

i€ i€

Ay {(me) tr( ML, M)*? = <|I|Zw> (BEg" MIL,M g)*/?

1
T k/2 k/2
<’I| Zw) g  MTI,Mg)*'? < AW 5| Mglls = I 5t} ., (5.15)

€T

min min

where the inequality follows from the SoS Holder’s inequality.

Next,
{12 =1} b {3, = te(I12) = te(1T) = 7} .
And also,
(P=n}lg {M=(I-1P=I-2M+=]-T=M}.
Thus,

Aun by {HH — L7 = 7 + L7 — 2 te(IL) = 27 — 2 tr(IIIL,)

= 2tr((I — IDIL,) = 2tr(MIL,) = 2 tr(M>1L,) = 2tr(MH*M)} .

Awnifz 3| { [T — TL|[5 = [ITT[f + [|TL|f% — 2 tr(TIL) = 2r — 2 te(TTIL)
= 2tr((1 — IDII,) = 2tr(MIL,) = 2tr(M>11,) = 2tr(MH*M)} :
Using (3.5) and combining with (5.15), we thus obtain:

w; —TIL|% = k/2 1 k12 (/N )R 25t
Aun i {(mz ) I — 1L (mz )2 te(MILM)Y? < (28 /A 5}

i€l €T

Noting that \,,,;, = 1/x completes the proof.
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5.4.3 High-Entropy Pseudo-distributions: Proof of Lemma 5.4.2

Fact 5.4.7 (Similar to the proof of Lemma 4.3 in [KKKI19]). Let [i be a pseudo-distribution of

degree at least 2 on wy, wy, . . ., w, that satisfies {w? = w;Vi} U {37, w; = an} and minimizes
~ 2 ~

HZ?Zl E[w;] , Then, ﬁ Sier Elw;] = a.

We defer the proof of this Fact to Appendix 5.6.1.

Proof of Lemma 5.4.2. From Fact 5.4.7, we have that é Siez Elwi] > o. Applying Holder’s

inequality for pseudo-distributions with f = 1 and g = é Y icT W; gives:

1 ~ t t ,
i (Z ) > @7 (ZE“’> Z
1€

i€

5.4.4 Rounding Pseudo-distributions to a Large List: Proof of Lemma
543

In this subsection, we analyze Algorithm 118 and show that it returns a list £’ that contains a

projection matrix I close to I1,. The key step in our proof is the following lemma:

Lemma 5.4.8. Givent € N, and an instance of Subp(«, X, such that T is k-certifiably (C, 6)-
anti-concentrated, let [i be a degree-(2k +t) pseudo-distribution satisfying A,, 1 and minimizing
||]}~Eﬁ [w]||2. Then,

1 7\ - i 85" /o
= E; lwg ||IT = IL 5| < <> (2rK)*/2 .
Ez [(Ziez wz‘)t} sg;w*lgt <S> g [ ’ F} a

where (g) is the coefficient of the monomial indexed by S.

Proof. From Lemma 5.4.1, we have for every ¢,/ € N,

wn%{mt (sz) - T < <2m>’f/25t}

i€
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Since i satisfies A, ;1 and has degree at least ¢ + k, taking pseudo-expectation yields:

E; < (2rk)*/26t

1 t N
o (Zwi) -,k

1€T

Since /i satisfies A, ;1 and minimizes H]E“ w

,» Lemma 5.4.2 yields: ﬁ E; [(Ziel wi)t] > al.

< L, we obtain:

at?

Multiplying both sides by -

B | (Ciezws) |

t
< (if) (2rK)*/2 . (5.16)

L g [(Zw) e

Eﬁ [(EiGI wi)t} ieT

For any monomial wg, let wgs be its multilinearization. Then, observe that:

{w? = w; | Vz’} }% {ws = wg'} .
Therefore, we have
' T
Aw,n}%{<2wi> m-1IL)p = > <S>ws\|H—H*H’;} : (5.17)
i€l SCT,|S|<t

Combining equations 5.16 and 5.17, we have

1 7\ - 85\
- -y <S> Es [wSHH—H*HZ] < <&> (2rk)k/2. (5.18)

Ep |(Siez wi)'] sczigiee

which concludes the proof.

Next, we show that sampling a subset of size ¢ indicated by thee w’s proportional to the
marginal pseudo-distribution on this set results in an empirical estimator that is close to II, with

constant probability.

Lemma 5.4.9. Givent € N, let [i be a pseudo-distribution of degree at least t + 2k satisfying
Ay.1r and minimizing |E; [w]|s. Let S C T,

S| < t be chosen randomly with probability
proportional to (é) Eﬂ [wg]. Let fis be the pseudo-distribution obtained by reweighting [i by the

~ k
Eq I = IL|| <

~

SoS polynomial w%. Then, with probability at least 9/10 over the draw of S,
10(2rK)*/2(86) a .
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Proof. Rewriting the conclusion of Lemma 5.4.8, we have:

t
< (85> (2rk)?2. (5.19)

(07

! 7\ B fws - TL
E; [(Zz‘eI wz‘)t} sgz,zmgt <S> Eples) E;[ws]

i =~ IR i |w . eqe . . .
Further, > gc7 |51t (é) Exilws] =E5 (Xier wi)t. Thus, E((S%:E“[S})t is a probability distribution,
A\ 2iiez Wi
¢,over S C Z,|S| < t. Thus, we can rewrite (5.19) as simply:

- [faﬂ[ws @'LTM;]“*”]”] . @6) ()

By Markov’s inequality, a S ~ ( satisfies %;}H*m < 10(2rk)*2(86) a~" with probability

at least 9/10. Finally, observe that by Fact 5.3.1, K ||TT — IL|/%, = EplwsIT-TL. 7] Thus, with

Egws]

probability at least 9/10 over the choice of S ~ ¢, [HH — H*H’;] < 10(2rk)*/2(80)tat. By
- k
Cauchy-Schwarz inequality applied with f = 1 and g = ||(IT-IL,)||%., we have: HEM[(H — H*)]HF <

. - k
E; {HH — H*||’H Thus, ||E;4 [II] — 11, » S 10(2rk)*2(86)!a*. This completes the proof.

Proof of Lemma 5.4.3. We note that since D is k-certifiably (c, §)-anti-concentrated, sampling

no = (kdlog(d))* suffices for the uniform distribution over Z to be k-certifiably (c, 25)-anti-
concentrated (this follows from Lemma 5.5.6). We then observe that by Lemma 5.4.7, W =
Ea (X, crwi)']
Ez {(Zie[n] wi)t} i i
Lemma 5.4.9 holds. However, the resulting matrix II = [E;_[II] need not be a Projection matrix.

> o'. Therefore, with probability at least 9o’ /10, ws C Z and the conclusion of

. 2/k

From Lemma 5.4.9, we can now conclude || TI-II,||% < (10(27“%;)’“/2(85/04)75) / < erk(8/a)?/k,
Setting t = (%) in Lemma 5.4.9 suffices to bound ||IT — IL,||%2 < 7. It follows that
with probability at least 9o /10, for all i € [d],

NE(IT) = AP(IL) & (10(2rk)*2(86)"0”") = A}(IL) % 7/
Since II, is an actual rank-r Projection matrix, for i € [r], \2(II) € [1 — #/,1 + /] and for
i € [r+1,d, \2(II) € [-1',7] . Recall, I = UAU is the full Eigenvalue decomposition
and therefore, ||(A — I)||3 < 7. Further, since 37, A2(TT) > (1 — #')r and trace is exactly r,
1A U = S N2 < .
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Now recall, [T = U, U is the corresponding Projection matrix we obtain in Algorithm 118,

where U, are the eigenvectors corresponding to the top-r eigenvalues of II. Therefore,

I~ T3 = T — F T — T
<2 (|- |2 + [UU] - UAUT|2)
<4 (0 + (A, = LU |2 + [T, AU 1)
<A (0 + 1A = TIZITE + 7o) < 6o

(5.20)

klog(rk/n)
log(d/cv)

O(1/at) times, with probability 99/100, the resulting list contains a Projection matrix II such

Setting ' = n/6r, we gett = A ( ), for a sufficiently large constant A. Repeating

that ||IT — IL||% < 7. The claim follows by choosing § = «/2. The running time is dominated

by computing a (¢ + 2k)-degree pseudo-distribution which requires n©*108(%/1) time.

5.4.5 Pruning the List: Proof of Lemma 5.4.4

Fact 5.4.10 (Concentration of Quadratic Forms of Subgaussians). Let x be a 1-subgaussian
random variable on R¢, i.e, Eexp(v' (z — p)) < exp(||v||?6?/2) for all v € R%. Then, for any

a matrix A and for any t > 0, we have

t2 t
Pr ||| Az|? — E || Az|%| > ¢ SQexp(—min( , ))
142l = Bl Acla] > [ATATE TATAT,

Fact 5.4.11 (Subspace Distance). Let I1y, I, be rank-r Projection matrices. Then, ||(I—1Iy)I1 ||% =

ST — T |3

Proof. Using ||M||% — Tr {MTM}, we have

(T = )T} = tr [((T = T)Iy) " (T = T | = tr [T (T — TIy) (T — Tp)ITy]
tr [Hl] — tr [H1H2]

= & (o [m] + o0 3] - 200 (1))

1
= §||H1 — IL|7
(5.21)
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where we repeatedly use IT; = I1%, IT, = II2 and the cyclic property of the trace. [

Lemma 5.4.12 (Testing Distinct Subspaces with One Sample). Let 31 be any rank-r Covariance
matrix and let D be a mean-zero subgaussian distribution with covariance >.,. Let 11, be the
corresponding rank-r Projection matrix for Y., and 11y be any fixed rank r Projection matrix.
Then, forany 0 < ¢ < 1,

(1 B O)‘min
I — L

s C)( T, — TLy||% ))
>1—exp|—cmin |, = ,
p( ( w2 ) \ 10— o) 3

Pr,» [H(I L)l

for a fixed constant c.

Proof. Let D' be a 1-subgaussian distribution. Observe,

21 N /2 112 ) _ 2
E - 1alE] = B [I0-TSP0] > B [T - Ta)Tigl]
= Ain | (T = TIo) T4 |7 (5.22)
)\min

where we use Egup [[|Mg3] = Egop [gTMTMg} = Tr[MTM)] and Fact 5.4.11. Similarly,
E.p[||(T — p)z||3] < 2mex||I; — IL[|%. Since ((I — ILy) is a projector, [|(I — II5)%; s <
Amax. Applying Fact 5.4.10 with A = ((I — I1,)%1) T (I — I1,) %4, [|A|12 = (I — I1,)%, |2 <
Al (X = T2) X4 [[3, [[ATAllp = [[(T = T2) 1) T (T = o) E4 [ r < A,y - [[(T = TIo)IT4 || p and

t= C)\min”Hl — H2H%~/2

)\min /\min
Proc |0 ajol} - 2520 — Ml > 5, - )]
(5.23)
< 2exp <—cmin <C2 C) ( [T — I |7 ))
462 ) NI = T |13
Rearranging the terms yields the claim. U

We are now ready to prove Lemma 5.4.4:

Proof of Lemma 5.4.4. Let 100/a” be the number of fresh samples we draw from Subp(a, ¥,),
for some v > 1. Observe, by Markov, with probability 99/100, there are at least v contiguous
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samples drawn from the inlier set Z. For the samples that are not inliers, we have no guar-
antees on the projector we add to our list £. Let the i-th iteration of Algorithhm 119 cor-
respond to %;, T;41, ... %ipy—1 ~ D. For a fixed projector 11 € £ such that ||[IT — IL||% =

Q(k*log(rk) log(1/a)/a*y), it follows from Lemma 5.4.12, that with probability at least 1 —
Q(Oé—(ff‘1 log(rx) 10g(1/a)/0127))’

Amink? log(rk) log(1/a)

. Ao
I—1Dxz|? > =21 — L% >
I )il ITI — I o

4

We then repeat the test y times independently and thus with probabiltiy at least 1— €2 <1> ,

log(rn)w
o @

2 .4
(I — H>x2+€||% > AminK loiggj) log(l/a).

there exists ¢ € [v],

Since our list size is at most O(1/a/°2(")/**) 'we can union bound over the failure probability
for each projector in the list £’. Therefore, with probability at least 99/100, simultaneously for
all projectors I1 € £, if || — I, |2 = Q(x* log(rx) log(1/a) /o), there exists £ € [4],

AInin
2

(X — )z ||2 > ITT — IL,||% > Amims'tlog(1/a) (5.24)

Recall, D has covariance X, and if v ~ D E,.p[||z||3] = tr[X.]. By Markov, with probability
atleast 99/100, ||z||3 = O(tr[%,]). Dividing out (5.24) by ||||3, with probability at least 99,/100,

na—mﬂ@>mmﬁﬂ%umozg(ﬂbyuw>
B ulz] a2y

where the last inequality follows from A;,/ tr[2.] > 1. Therefore, the set of projectors in the

a“y

sub-list £} in Algorithm 119 only contains projectors II such that || [I—IT, ||2. < (
By Lemma 5.4.9, £’ is guanteed to have a projector IT such that ||TI — IL, ||% < 0.1. Observe,

J[(T — IT)x||3 - _ )
BT — i 0l = 18— EOg gl < 1 FOL
2
_ - ILE
2
1 log(1
< (/ﬂ) og(r/iz og( /a))
a2y

Therefore, £ is non-empty. Algorithm 119 selects one projector from L) arbitrarily, which

completes the proof. O
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5.5 Certifiable Anti-Concentration

In this section, prove basic facts about certifiable anti-concentration. We start by recalling the

definition again.

Definition 5.5.1 (Certifiable Anti-Concentration). A zero-mean distribution D with covariance
Y is 2k-certifiably (9, C'§)-anti-concentrated if there exists a univariate polynomial p of degree
d such that:

1 {2 (80,0 %2 (51,0} > 1)

2. b5 {EIND [pQ (<ET/233,U>)} < C(SHUH%k}

A set S is 2k-certifiably (C, 0)-anti-concentrated if the uniform distribution on S is 2k-certifiably

(C, 0)-anti-concentrated.

As discussed earlier, this definition is obtained by a important but technical modification of
the definition used in [KKKI19, RY20a]. We verify basic properties of this notion here and
establish that natural distributions such as Gaussians do satisfy it. We first prove that natural
distributions like the Gaussians and uniform distribution on the unit sphere are certifiably anti-

concentrated.

Theorem 121. (Certifiable Anti-Concentration of Gaussians.) Given 0 < 6 < 1/2, there exists
k=0 (bgz(#) such that N'(0,X) is k-certifiably (C, 0)-anti-concentrated.

Our proof of Theorem 121 will rely on the following construction of a low-degree polynomial

with certain important properties:

Lemma 5.5.2 (Core Indicator for Strictly Sub-Exponential Tails). Given a univariate distribution

D with mean 0 and variance o < 1 such that
1. Anti-Concentration: for alln > 0, Pr, p[|z| < no] < e,

2. Strictly Sub-Exponential Tail: for all k; < 2, Pr,.p||z| > to] < exp(—t?/1 /cy),

for some fixed c1,co > 1. Then, for any 6 > 0, there exists a degree d = O (1og<4+;;g?k’$>(1/ 6))
even polynomial q satisfying:
1. |z| <6, q(x) =1=+0, and,

2. 0% Euop [¢% ()] < 10ci¢20.
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We will also use the following basic fact about even polynomials.

Lemma 5.5.3 (Structure of Even Polynomials). For any even univariate polynomial q(t) of de-

q¢*({x,v) /||v]|2) is a polynomial in vector-valued indeterminate v and further,

a7 {132 (. ) /lell) > 0}

Proof. The conclusion requires us to prove that ||v]|3%¢*({x,v) /||v||2) is a sum-of-squares poly-

nomial in vector-valued variable v. Let q(t) = 3,4 cit'. Since ¢(t) is even,

l\D\»—t

(Z cit' + ci(— ) = Z ot

i€[d) 1<i<d/2

Thus, in particular, d is even and ¢(t) = 7(¢?) for some polynomial 7 of degree d/2. Sub-
2
T,V 2
3462, [loll) = [0l (Srcaenlt ) =

. N\ 2
(Zigd /2 coi| V|47 (a, v)QZ) which is a sum-of-squares polynomial in v. O

stituting ¢t = (z,v) /||v||2, we have;

Now, we are ready to prove that Gaussians are certifiably anti-concentrated under our new
definition:

Proof of Theorem 121. Let z ~ N (0, X). We begin with the following polynomial :

p(©) = [[vllsa((S2z, ) /|[v]]2)

where ¢ is the degree d = © (log 1/5))

polynomial from Lemma 5.5.2. By Fact 5.5.3, p is indeed
a univariate polynomial in v. We will prove that A/(0, X) is 2d-certifiably (C, ¢)-subgaussian for

some some absolute constant C' > 0 using the polynomial p.

Consider the polynomial g(x) = 2% + §%¢*(x) — 6%/4. If |x| > ¢ then, g(x) > 36%/4 > 0.
On the other hand, if |z| < ¢, using that ¢*(z) = (14 §)* >  forevery § < 1/2, g(z) > 0

Thus, g is a univariate, non-negative polynomial. Using Fact 2.2.10 we thus obtain:

}Q‘Ld {:1:2 +6%¢*(z) = 52/4} ,
or, equivalently, 22 + §%¢*(x) — 0%/4 = s(z) for a SoS polynomial s of degree at most 2d. Since

q is even, the LHS is invariant under the transformation x — —z. Thus, s is an even polynomial.
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<ZT/2$,U>
llvll2

<ET/295,'U>2 o (<ZT/23:,U>) 5 ) <<ET/2$,U>)

Substituting x = , we thus have:

Ivl13 1]l 2 0]l

Multiplying out by ||v||3¢ and using the definition of p gives us the polynominal (in v) identity:

/
H’UH%CpQ <ET/2x,U>2 + 02 (<ZT/2x,'U>> _ 52||4U||%d = HUH%dS (W)

<ET/2$,U

llvll2

Since s is an even polynomial, it follows from Fact 5.5.3, ||v||3¢s ( >> is a sum-of-squares

in v. Thus, we can conclude:

i (I (510" 2 (50,0)) > P

which completes the proof of the first inequality in Definition 2.2.12. By rotational invariance of

[

/200
Gaussians, E;x(0,1) [(x,v)é] is just a function of ||v[|3*. Thus ||v[|3 Ezno.5) [q2 <<E>>}

is a polynomial in ||v||2. Since ¥/22 has variance 1, it follows from the definition of p and ¢ that
E,pp* (<ET/2:E, v>) < C6|jv||4, for C = 10c;cy. Therefore, applying Fact 2.2.10

o {Baop? ((122,0)) < OBlul"}

The proof above naturally extends to the uniform distribution on the unit sphere.

Theorem 122. (Certifiable Anti-Concentration of Gaussians.) Given 0 < 0 < 1/2, there exists
k=0 (%) such that the uniform distribution on the unit sphere is k-certifiably (C,0)-

anti-concentrated.

Next, we observe that our definition of certifiable anti-concentration is invariant under linear

transformations:

Lemma 5.5.4. (Affine Invariance.) Let x ~ D such that D is k-certifiably (C, §)-anti-concentrated
distribution. Then, for any A € R™*Y, the random variable Ax has a k-certifiably (C, §)-anti-

concentrated distribution.
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In particular, this yields that certifiable-anti-concentration is preserved under taking linear

projections of a distribution.

Corollary 5.5.5. (Closure under taking projections) Let x ~ D such that D is k-certifiably
(C, 0)-anti-concentrated distribution on R%. Let V be any subspace of R and let 11y, be the
associated projection matrix. Then, the random variable 11y x has a k-certifiably (C, 0)-anti-

concentrated distribution.

Next, we show that anti-concentration is preserved under sampling, i.e. if D is anti-concentrated,

then the uniform distribution over n samples from D is also anti-concentrated.

Lemma 5.5.6. (Certifiable Anti-Concentration under Sampling.) Let D be k-certifiably (c,6)-
anti-concentrated Sub-Exponential distribution such that the certifying polynomial p has coeffi-
cients bounded by d°%). Let S be a set of n = Q((kdlog(d))°® /C?) i.i.d. samples from D.
Then, with probability at least 1 — 1/d, the uniform distribution on S is k-certifiably (2c, )-anti-

concentrated.

Proof. Let p be a degree-k that witnesses anti-concentration of D. We show that p also wit-
nesses anti-concentration of the uniform distribution on S, denoted by D’. First, we observe that

property 1 in definition 2.2.12 is point-wise and continues to hold for = sampled from D'.

Further, we know that

i {Been [P ((5122,0))] < €603} (5:25)

Since p? is a square polynomial, we can represent it in the monomial basis as p> (<ET/ 2z, v>) =

<C<ET/21’)C(ET/2CL’)T, (1,0)er(1, v);k>, where c(X1/22) are the coefficients of E,..pp (<EV2x, v>)

and (1, v) gy are all monomials of degree at most d. For notational convenience let ¢, = c(31/2x).
Since ExNDp2 <<ET/2:E7 U>) = <Ex~DCJ:C;7 (L U)@k’(L U)gk:> and EJ:NDCzC - ExND’Ca:C +

(E%Dcxcx — E:EN'D/CJ;CI) , using linearity of expectation and the (substitution) in (5.25),

i {(Bawpreac], (1,0)ar(1,0)5,) + <|EMcm - EM,%CQ (1, v)®k(1,u);k> < Colvf|3+}
[ {<E$Np,cmc;,(1,v) V)ak) < [Banneac] = Bavprere] | IIv][3 + CoJlv]3}
(5.26)

where the second equation follows from Fact 3.2.19. Observe, it suffices to bound each entry,
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i.e. forall i, j € [d], (Eanp [(ca)i(c2);] = Eann [(ca)i(ca);])* < (C26%/d?*), with probability
at least 1 — 1/d. Then, using concentration of polynomials of Sub-exponential random variables,
for all i, j € [d¥],

Pron|( B l)ie)] - B e(e)]) > ¢

x~D’ xz~D

S exp (_ (EWDKCI)Z‘(C””)]'P) )

Setting ¢ = C'6/d?* and union bounding over all i and j,

Pr

> (Enle(e)] - Boleh(e)])’ > ¢

1,5€[d¥]
2k no\%
S 47w <_ <d0<k>> )

where the bound on E,.p[(c;)i(c;);]* follows from our assumption on the coefficients of p.
Setting n = Q((kdlog(d))°® /C§) suffices to bound the above probability by 1/d. O

5.6 Appendix

We begin with showing that a d-dimension Gaussian vector that spans an 7 < d subspace is

d-anti-concentrated in the subspace, for any § > 0.

Proposition 5.6.1 (Anti-Concentration). For all 6 > 0, Prynox)[] (z,v) | < 0vVoTE0] <9

whenever v' Xv > 0.

Proof. Let ¥ be a rank-r covariance matrix and N (0, X2) be the corresponding Gaussian distri-
bution over vectors in R, Let II be the corresponding rank-r projection matrix. We first observe
that only the subspace of R? spanned by 3 has non-zero measure. Restricted to this subspace, we
show that x ~ N(0, X)) is d-anti-concentrated for all & > 0. Note, this is equivalent to consider-
ing vectors of the form ITv for any v € R¢. Recall, the PDF of a multivariate Gaussian denoted
by N(0,X) is given by

p(z,Y) = ———=exp (—1$TET£L'>

detf (2732%) 2
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where (X)' inverts the non-zero eigenvalues of ¥ and det' is the pseudo-determinant. Now,
we observe that for any non-zero v € R? and z ~ N(0,%), {(Ilv,z) = 0} defines a rank-
(k — 1) subspace. It is well known that the Gaussian measure on a lower dimensional subspace

of span(X) is 0. Formally,
/ dp(z,%) = 0 (5.27)
(Iv,z)=0
Therefore, for all v € RY, Pr, o) [(x, [Iv) = 0] = 0. For all v in the kernel of X, v"$v = 0.

For any v such that the quadratic form in non-zero, from stability of Gaussians, it follows
that (x,v) ~ N(0,v73v). Recall, the PDF of a univariate Gaussian denoted by N (0, v Xv) is
given by

1 x?
T) = ——exp | ——=—
p() V2muT X p< UTEU)

Then,

Vo T S 1 xQ
Prllz| < 6VoTY _/ SR
<oVl = | e (vTqu> ’
/5\/UTZU 1

VT Sv 4/ 27TUTEU

Using standard concentration arguments, we can derive a robust version of anti-concentration

on a set of samples drawn from

Proposition 5.6.2 (Anti-Concentration of Gaussian Samples). Fixany § > 0 and let {x1, 2, ... ,x,} ~
N(0,%) . Then, whenever n > ng for some ng = (d/(52) with probability at least 1 — 1/ed
over the draw of x;s, for every v such that v’ $v > 0, L Y0, (\ (i, v) | <20V UTE’U)

Proof. By Proposition 5.6.1, for each i € [n], forall v, Pr[| (z;,v) | < dvVvTXv] < . Therefore,

Z 1( T ’<5VUTE’U>

zE [n]

ZPI‘[ Tiy v |<(5VUTEU}<(5

16 [n]

By Chernoff, for any v,

Z 1 (| xi,v) | < 5VUTEU) > 20

ze [n]

< exp ( 4§n> (5.28)
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Next, we construct a §/ V/d net in R?, denoted by 7, such that for any v, there exists v’ € T in
the net and ||v — v'||; < 6/+/d. By standard constructions, | 7| < (v/d/d)?. Then, by setting
n = Q(dlog(d/?)), with probability at least 1 — 1/e4, forall v’ € T,

:L 2.1 (| (zi,0") | < 5VU’TZU’) < 26

1€[n]

By construction, for all v ¢ T, | (x;,v — v') | < ||#]|26/v/d < 20 and the claim follows. O

5.6.1 Proof of Fact 5.4.7

For completeness, we provide a proof of Fact 5.4.7. The proof strategy is similar to the proof of
Lemma 4.3 in [KKKI19].

Fact 5.5.2 (High-Entropy Psuedo-Distribution Restated.) Let [i be a pseudo-distribution of de-

gree at least 2 on wy, wo, . . ., w, that satisfies {w? = w¥i} U{>", w; = an} and minimizes
~ 2 ~

HZ?Zl E[w;] ) Then, ﬁ Yier Ealwi] > a.

1 . . . .

Proof. Letu = —- E[w] be a non-negative vector with entries summing to 1. Let uz = > ;e7 u;

denote the fraction of of mass on the inliers and up = 1 — uz. Let i be the minimal pseudo-

distribution. For sake of contradiction, assume u7 < «. We can then exhibit a pseudo-distribution
. - 2 -

' that satisfies .4 and Hz?zl Eq [w; , < HZ?zl Ej[w;]

the real distribution j* that is supported on the inliers and II = II,. This distribution clearly

2 .. .. . .
» contradicting minimality. Consider

satisfies \A,, ;1 and thus any convex combination of /i’ and /i also satisfies A, 1. For some A > 0,

let fiy = A\ii* + (1 — M) be the corresponding mixed distribution.

We begin with lower bounding ||u||3 in terms of uz and ue. It is easy to see that the minimum
norm is obtained by spreading the mass w7 uniformly over the inliers and u» uniformly over the

outliers. Therefore,

3 () an (25 o= & (i (- 125)

Now, consider uy = —E;, w. Then,

22 U
2 (1= Null2 + 2= £ 201 — N -=
Juallz = ( )IIU||2+Om+ ( )Om
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Therefore,

A « u
lasllg = el > = (@ = X) (6 + - 72— ) = A= 2(1 = ) 22)
an -« an
(5.29)
- A2 =) ( 2 2. O )
> — (ur +up - —u
an z O 1-a ’
By assumption, u7z < « and thus
a (1 — a)uz(uz — 1) + a(l — ug)?
u%—l—(l—uI)Q-l_a—uI: T
_ (1 —uz) (a1 —uz) — (1 — a)ug)
1l -«
> 0
Therefore, picking A such that (5.29) is strictly greater than 0 suffices. ]

5.6.2 Proof of Lemma 5.5.2

In this Subsection, we describe our construction of the core indicator polynomial. Our construc-
tion is derived from the polynomial approximation to the sign function in [DRST09] with a key
difference. We do not require an upper envelope to the sign function, and thus obtain a simpler

polynomial, which is even.

Lemma 5.5.2 (Core Indicator Restated.) Given a univariate distribution D with mean 0 and
variance o < 1 such that

1. Anti-Concentration: for alln > 0, Pr, p[|z| < no] < e,

2. Sub-Exponential Tail: for all k < 2, Pr,p[|z| > to] < exp(—t?/*/cy),

for some fixed ci,co > 1. Then, for any 0 > 0, there exists a degree d = O log "1/ 071 (1/5)
1,2 . ’ y ’ 8 §52/(2—k)

even polynomial q such that for all |x| < 6, q(x) = 1+ 6 and 0 Epp [¢*(x)] < 10¢1¢90.
We start with recalling the following basic fact about growth of polynomials.

Fact 5.6.3. (Growth of Polynomials [Riv74].) Let a(x) be a polynomial of degree at most d such
that |a(z)| < bforall v € [—1,1]. Then, |a(x)| < b|2x|? for all |z| > 1.

We first show the existence of a low-degree indicator approximator polynomial that is even.

We use an approximation to the sign function from [DRSTO09] :
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Lemma 5.6.4. (Sign Polynomial.) Let a = ©O(¢®/log(1/€)). There exists a degree-O(1/a)
polynomial {(x) such that :

1. forall |z| € [a,1], () € [sign(x) — €%, sign(z) + €]
2. forallw € [—a,al, {(x) € [1 — €, 1+ €

3. L is monotonically increasing in (—oo, —1] U [1, 00)
4. (s an odd polynomial.

5. 00x)| < (1+ €2)(|2x])? for all |x| > 1

Proof. The first three properties follow from the construction in Theorem 4.5 [DRST09]. The

fourth property follows from observing this polynomial has the form ¢(z) = xr(z?). From Fact
5.6.3, we can conclude that |¢(z)| < (1 + €2)(|2z|)? for all |z| > 1. O

Lemma 5.6.5. (Indicator Polynomial.) Given § > 0 and L > 1, let €2 = 0/ L. Then, there exists
a polynomial q of degree d = O(Llog(L/§)/d) such that q(0) = 1 and

1. qis an even polynomial.

2. q(z) € [-3€%,3€¢?] for all x € [25, L] U [ L, —24].

3. q(z) € [-1—€,1+ €] forall x € [5,20) U [—26, —4].
4. q(z) € [1 —3€%, 1+ 3€*] forall € [—4, ).

5. q(x) < 4(|4z|)? for all |z| > L.

Proof. Let ¢ be the polynomial from Lemma 5.6.4. We then define

6(%5+a) —é(%—fs—a)
20(6/L + a)

q(z) =

It is easy to see ¢(0) = 1, since ¢ is an odd polynomial. Next, we observe that ¢ is an even
polynomial:

(G +0) - (5 -
2p(6/L + a)
Now, for all z € [5+2aL,L],€(IT+5+a) = sign(‘%"s—i-a) +e2=14¢€ andé(’”—z‘; —a) =
1 4 €% and thus assuming 6 > «, q(z) = +(4€%)/2(1 + €?) = +3¢%. A similar argument
holds for z € [—-L,—0 — aL]. Now, we show that ¢(z) is close to 1 for x € [—J,d]. Here,

q(—=z) = = q(z)
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14 (%r‘s + a) =1+¢*and/ (%‘6 — a) = —1 + €% Therefore, ¢(z) = 2;;2:22 = 1+ 3¢%. Setting
aL = 0 suffices, therefore ¢ has degree at most O(L log(L/d)/6). Further, for all |z| € [0, d+al],

q(z) = £(1 + €%). Finally, for |z| > L, q(z) < 4(|4z|)% O
We can now blackbox the proof of Lemma A.1 from [KKKI19] since the aforementioned

Lemma constructs an appropriate polynomial to approximate the indicator function. Addition-

ally, the polynomial we obtain is even and suffices for Lemma 5.5.2.
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Chapter 6

Learning a Two-Layer Neural Network

6.1 Introduction

Neural networks have achieved remarkable success in solving many modern machine learning
problems which were previously considered to be intractable. With the use of neural networks
now being wide-spread in numerous communities, the optimization of neural networks is an

object of intensive study.

Common usage of neural networks involves running stochastic gradient descent (SGD) with
simple non-linear activation functions, such as the extremely popular ReL.U function, to learn an
incredibly large set of weights. This technique has enjoyed immense success in solving com-
plicated classification tasks with record-breaking accuracy. However, theoretically the behavior
and convergence properties of SGD are very poorly understood, and few techniques are known
which achieve provable bounds for the training of large neural networks. This is partially due to
the hardness of the problem — there are numerous formulations where the problem is known to
be NP-hard [BR92, Jud88, BDL18, MR18]. Nevertheless, given the importance and success in

solving this problem in practice, it is important to understand the source of this hardness.

Typically a neural network can be written in the following form: A = U'(--- U3 f(U%f(U' X)),
where i is the depth of the network, X € R%" is a matrix with columns corresponding to in-
dividual d-dimensional input samples, and A is the output labeling of X. The functions f are
applied entry-wise to a matrix, and are typically non-linear. Perhaps the most popular activation
used in practice is the ReLU, given by f(z) = max{0,z}. Here each U is an unknown linear

map, representing the “weights", which maps inputs from one layer to the next layer. In the
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reconstruction problem, when it is known that A and X" are generated via the above model, the

goal is to recover the matrices U, ... U".

In this chapter, we consider the problem of learning the weights of two layer networks with
a single non-linear layer. Such a network can be specified by two weight matrices U* € R™**
and V* € R¥*? such that, on a d-dimensional input vector x € R, the classification of the
network is given by U* f(V*z) € R™. Given a training set X € R%*" of n examples, along
with their labeling A = U* f(V*X') + E, where E is a (possibly zero) noise matrix, the learning
problem is to find U and V for which

U -Ur+[V-V'r<e

We consider two versions of this problem. First, in the noiseless (or realizable) case, we ob-
serve A = U™ f(V*X) precisely. In this setting, we demonstrate that exact recovery of the matri-
ces U™, V" is possible in polynomial time. Our algorithms, rather than exploiting smoothness of
activation functions, exploit combinatorial properties of rectified activation functions. Addition-
ally, we consider the more general noisy case, where we instead observe A = U* f(V*X) + E,
where E is a noise matrix which can satisfy various conditions. Perhaps the most common as-
sumption in the literature [GKLW 18, GLM 17, JSA15] is that EE has mean 0 and is sub-Gaussian.
Observe that the first condition is equivalent to the statement that E [A | X] = U*f(V*X).
While we primarily focus on designing polynomial time algorithms for this model of noise, in
Section 6.7 we demonstrate fixed-parameter tractable (in the number £ of ReLUs) algorithms to
learn the underlying neural network for a much wider class of noise matrices E. We predomi-
nantly consider the identifiable case where U* € R™** has full column rank, however we also
provide supplementary algorithms for the exact case when m < k. Our algorithms are robust to
the behavior of f(x) for positive x, and therefore generalize beyond the ReLU to a wider class
of rectified functions f such that f(z) = 0 for x < 0 and f(z) > 0 otherwise.

It is known that stochastic gradient descent cannot converge to the ground truth parameters
when f is ReLU and V'* is orthonormal, even if we have access to an infinite number of samples
[LSSS14]. This is consistent with empirical observations and theory, which states that over-
parameterization is crucial to train neural networks successfully [Har14, SC16]. In contrast, in
this work we demonstrate that we can approximate the optimal parameters in the noisy case, and
obtain the optimal parameters exactly in the realizable case, in polynomial time, without over-
parameterization. In other words, we provide algorithms that do not succumb to spurious local

minima, and can converge to the global optimum efficiently, without over-parametrization.
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6.1.1 Our Contributions

We now state our results more formally. We consider 2-layer neural networks with RelLU-
activation functions f. Such a neural network is specified by matrices U* € R™* and V* €
RE*d We are given d-dimensional input examples z° € R? which form the columns of
our input matrix X, and also give the network’s m-dimensional classification of X', which is
A =U*f(V*X), where f is applied entry-wise. We note that our formulation corresponds to

having one non-linear layer.

Worst Case Upper Bounds. In the worst case setting, no properties are assumed on the inputs
X, A. While this problem is generally assumed to be intractable, we show, perhaps surprisingly,
that when rank(A) = k and £ = O(1), polynomial time exact algorithms do exist. One of our
primary techniques throughout this work is the leveraging of combinatorial aspects of the ReLU
function. For a row f(V*X), ., we define a sign pattern of this row to simply be the subset of
positive entries of the row. Thus, a sign pattern of a vector in R" is simply given by the orthant
of R™ in which it lies. We first prove an upper bound of O(n*) on the number of orthants which
intersect with an arbitrary k-dimensional subspace of R". Next, we show how to enumerate

these sign patterns in time n*+O(1).

We use this result to give an n°*) time algorithm for the neural network learning problem

in the realizable case, where A = U* f(V*X) for some fixed rank-k matrices U*, V*. After
fixing a sign pattern of f(V*X), we can effectively “remove" the non-linearity of f. Even so,
the learning problem is still non-convex, and cannot be solved in polynomial time in the general
case (even for fixed k). We show, however, that if the rank of A is k, then it is possible to use a
sequence of linear programs to recover U*, V'* in polynomial time given the sign pattern, which

O(k)

allows for an n overall running time. Our theorem is stated below.

Theorem 123. Given A € R™" X € R, such that A = U*f(V*X) and A is rank k,
there is an algorithm that finds U* € R™* V* € R**4 such that A = U* f(V*X) and runs

in time poly(n, m, d) min{n®®) 2"},

Worst Case Lower Bounds. Our upper bound relies crucially on the fact that A is rank £,
which is full rank when & < d, m. We demonstrate that an O(n*) time algorithm is no longer
possible without this assumption by proving the NP-hardness of the realizable learning problem

when rank(A) < k, which holds even for & as small as 2. Our hardness result is as follows.
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Theorem 126. For a fixed o € R™F* X € R¥>", A € R™*", the problem of deciding whether
there exists a solution V.€ R to af(VX) = A is NP-hard even for k = 2. Furthermore, for
the case for k = 2, the problem is still NP-hard when o € R™*? is allowed to be a variable.

Gaussian Inputs. Since non-convex optimization problems are known to be NP-hard in gen-
eral, it is, perhaps, unsatisfying to settle for worst-case results. Typically, in the learning commu-
nity, to make problems tractable it is assumed that the input data is drawn from some underlying
distribution that may be unknown to the algorithm. So, in the spirit of learning problems, we
make the common step of assuming that the samples in X’ have a standard Gaussian distribu-
tion. More generally, our algorithms work for arbitrary multi-variate Gaussian distributions over
the columns of &, as long as the covariance matrix is non-degenerate, i.e., full rank (see Remark
127). In this case, our running time and sample complexity will blow up by the condition number
of the covariance matrix, which we can estimate first using standard techniques. For simplicity,
we state our results here for 32 = I, though, for the above reasons, all of our results for Gaussian

inputs X extend to all full rank 3

Furthermore, because many of our primary results utilize the combinatorial sparsity patterns
of f(VX), where X is a Gaussian matrix, we do not rely on the fact that f(z) is linear for > 0.
For this reason, our results generalize easily to other non-linear rectified functions f. In other

words, any function f given by

0 ifx <0
fx) =

¢(x) otherwise

where ¢(z) : [0,00] — [0, 00] is a continuous, injective function. In particular, our bounds do
not change for polynomial valued ¢(z) = x° for ¢ € N. Note, however, that our worst-case,
non-distributional algorithms (stated earlier), where X is a fixed matrix, do not generalize to

non-linear ¢(z).

We first consider the noiseless setting, also referred to as the exact or realizable setting. Here
A =U*f(V*X) is given for rank k£ matrices U* and V*, where X has non-degenerate Gaussian
marginals. The goal is then to recover the weights (U*)T, V* exactly up to a permutation of
their rows (since one can always permute both sets of rows without effecting the output of the
network). Note that for any positive diagonal matrix D, U* f(DV*X) = U*D f(V*X') when
f is the ReLU. Thus recovery of (U*)?, V* is always only possible up to a permutation and
positive scaling. We now state our main theorem for the exact recovery of the weights in the

realizable (noiseless) setting.
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Theorem 134. Suppose A = U* f(V*X) where U* € R™* V* € R** are both rank-k, and
such that the columns of X € R¥™ are mean 0 i.i.d. Gaussian. Then ifn = Q(poly(d, m, x(U*), k(V*))),
then there is a poly(n)-time algorithm which recovers (U*)T, V* exactly up to a permutation of

the rows with high probability.

To the best of our knowledge, this is the first algorithm which learns the weights matrices of
a two-layer neural network with ReLU activation exactly in the noiseless case and with Gaussian
inputs X'. Our algorithm first obtains good approximations to the weights U*, V'*, and concludes
by solving a system of judiciously chosen linear equations, which we solve using Gaussian elim-
ination. Therefore, we obtain exact solutions in polynomial time, without needing to deal with
convergence guarantees of continuous optimization primitives. Furthermore, to demonstrate the
robustness of our techniques, we show that using results introduced in the concurrent and inde-
pendent work of Ge et. al. [GKLW 18], we can extend Theorem 134 to hold for inputs sampled
from symmetric distributions (we refer the reader to Corollary 6.4.21). We note that [GKLW 18]
recovers the weight matrices up to additive error € and runs in poly e) -time, whereas our algo-

rithm has no ¢ dependency.

The runtime of our algorithm depends on the condition number x(V*) of V*, which is a
fairly ubiquitous requirement in the literature for learning neural networks, and optimization
in general [GKLW18, JSA15, LSW15, CMTV17, AGMR17, ZSJ*17, SJA16]. To address this
dependency, in Lemma 6.4.22 we give a lower bound which shows at least a linear dependence

on k(V*) is necessary in the sample and time complexity.

Next, we introduce an algorithm for approximate recovery of the weight matrices U*, V'*
when A = U*f(V*X) + E for Gaussian marginals X and an i.i.d. sub-Gaussian mean-zero

noise matrix E with variance o2.

Theorem 138. Let A = U* f(V*X)+E be given, where U* € R™* V* € R¥*4 are rank-k, E
is a matrix of i.i.d. mean-zero sub-Gaussian random variables with variance o, and such that the
columns of X € R¥™ are i.i.d. Gaussian. Then givenn = ) (poly(d, m, k(U*), k(V*), 0, i)),
there is an algorithm that runs in poly(n) time and w.h.p. outputs V' U such that

lU-Ur<e [[V-V'r<e

Again, to the best of our knowledge, this work is the first which learns the weights of a 2-

layer network in this noisy setting without additional constraints, such as the restriction that U be
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positive. Recent independent and concurrent work, using different techniques, achieves similar
approximate recovery results in the noisy setting [GKLW 18]. We note that the algorithm of Goel
et. al. [GK17] that [GKLW 18] uses, crucially requires the linearity of the ReLU for z > 0, and
thus the work of [GKLW 18] does not generalize to the larger class of rectified functions which
we handle. We also note that the algorithm of [GLLM17] requires U * to be non-negative. Finally,
the algorithms presented in [JSA15] work for activation functions that are thrice differentiable
and can only recover rows of V* up to £1 scaling. Note, for the ReLU activation function, we

need to resolve the signs of each row.

Fixed-Parameter Tractable Algorithms. For several harder cases of the above problems, we
are able to provide Fixed-Parameter Tractable algorithms. First, in the setting where the “labels”
are vector valued, i.e., m > 1, we note prior results, not restricted to ReLU activation, require
the rank of U* to be k£ [GKLWI18, JSA15, GLM17]. This implies that m > k, namely, that
the output dimension of the neural net is at least as large as the number & of hidden neurons.
Perhaps surprisingly, however, we show that even when U™ does not have full column rank, we
can still recover U* exactly in the realizable case, as long as no two columns are non-negative
scalar multiples of each other. Note that this allows for columns of the form [u, —u] for u € R™
as long as wu 1s non-zero. Our algorithm for doing so is fixed paramater tractable in the condition
number of V* and the number of hidden neurons k. Our results rely on proving bounds on
the sample complexity in order to obtain all 2¥ possible sparsity patterns of the k-dimensional
columns of f(V*X).

Theorem 140.  Suppose A = U*f(V*X) for U* € R™* for any m > 1 such that
no two columns of U* are non-negative scalar multiples of each other, and V* € RF*" has
rank(V*) = k, and n > k°®poly(dkm). Then there is an algorithm which recovers U*, V*
exactly with high probability in time K°®poly(d, k, m).

Furthermore, we generalize our results in the noisy setting to arbitrary error matrices ||E||, so
long as they are independent of the Gaussians &'. In this setting, we consider a slightly different
objective function, which is to find U, V such that U f(V X') approximates A well, where the
measure is to compete against the optimal generative solution |U*f(V*X) — A||r = ||E| F.

Our results are stated below.

Theorem 142. Let A = U* f(V*X) + E be given, where U* € R™** V* € R**4 are rank-
k, and E € R™*™ is any matrix independent of X. Then there is an algorithm which outputs
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U e R™* V e R in time (r/)°%)poly(n, d, m) such that with probability 1 —exp(—+/n)
we have

1/2
1A~ UV )r < [Ble + O [ommevaml®l] ).

where ||E||2 is the spectral norm of E.

Note that the above error bounds depend on the flatness of the spectrum of E. In particular,
our bounds give a (1+ ¢) approximation whenever the spectral norm of E is a /m factor smaller
than the Frobenius norm, as is in the case for a wide class of random matrices [Ver10b]. When
this is not the case, we can scale ¢ by 1//m, to get an (mx/e)°*")-time algorithm which
gives a (1 + ¢) approximation for any error matrix E independent of X" such that ||E|r =

QU™ (VX)) p).

Sparse Noise. Finally, we show that for sparse noise, when the network is low-rank we can
reduce the problem to the problem of exact recovery in the noiseless case. Here, by low-rank
we mean that m > k. It has frequently been observed in practice that many pre-trained neural-
networks exhibit correlation and a low-rank structure [DSD™ 13, DZB ™ 14]. Thus, in practice it is
likely that £ need not be as large as m to well-approximate the data. For such networks, we give a
polynomial time algorithm for Gaussian X" for exact recovery of U™, V' *. Our algorithm assumes
that U* has orthonormal columns, and satisfies an incoherence property, which is fairly standard
in the numerical linear algebra community [CR0O7, CR09, KMO10, CLMW11, JNS13, Harl4].
Formally, assume A = U* f(V*X') + E where X is i.i.d. Gaussian, and E is obtained from the
following sparsity procedure. First, fix any matrix E, and randomly choose a subset of nm — s
entries for some s < nm, and set them equal to 0. The following result states that we can exactly

recover U*, V* in polynomial time even when s = Q(mn).

Theorem 144 & Corollary 6.8.4. Let U* € R™* V* € R¥*4 be rank k matrices, where

U* has orthonormal columns, max; ||(U*)7e;||2 < & for some pi, and k < where

flog?(n)’
= O((/@'(V*))Qw/klog(n)u + p+ (k(V*))* log(n)). Here x(V'™*) is the condition number of
V*. Let E be generated from the s-sparsity procedure with s = ynm for some constant v > ()
and let A = U* f(V X) + E. Suppose the sample complexity satisfies n = poly(d, m, k, c(V*))
Then on i.i.d. Gaussian input X there is a poly(n) time algorithm that recovers U*, V* exactly

up to a permutation and positive scaling with high probability.
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6.1.2 Related Work

Recently, there has been a flurry of work developing provable algorithms for learning the weights
of a neural network under varying assumptions on the activation functions, input distributions,
and noise models [SJA16, ABMMI16, GKKT16, MR18, ZSJ"17, GKLW18, GLM17, ZSJ"17,
Tial7a, LY 17a, BG17, Soll7, GKM18, DG18]. In addition, there have been a number of works
which consider lower bounds for these problems under a similar number of varying assump-
tions [GKKTI16, LSSS14, ZLLJ16, SJA16, ABMM16, BDL18, MR18]. We describe the main

approaches here, and how they relate to our problem.

Learning ReLU Networks without noise. In the noiseless setting with Gaussian input, the
results of Zhong et al. [ZSJ " 17] utilize a similar strategy as ours. Namely, they first apply tech-
niques from tensor decomposition to find a good initialization of the weights, whereafter they
can be learned to a higher degree of accuracy using other methods. At this point our techniques
diverge, as they utilize gradient descent on the initialized weights, and demonstrate good conver-
gence properties for smooth activation functions. However, their results do not give convergence
guarantees for non-smooth activation functions, including the ReLLU and the more general class
of rectified functions considered in this work. In this work, once we are given a good initial-
ization, we utilize combinatorial aspects of the sparsity patterns of ReLLU’s, as well as solving

carefully chosen linear systems, to obtain exact solutions.

Li and Yuan [LY 17b] also analyize stochastic gradient descent, and demonstrate good conver-
gence properties when the weight matrix V* is known to be close to the identity, and U* € R'*¥
is the all 1’s vector. In [Tial7b], stochastic gradient descent convergence is also analyzed when
U* € R is the all 1’s vector, and when V* is orthonormal. Moreover, [Tial7b] does not give

bounds on sample complexity, and requires that a good initialization point is already given.

For uniformly random and sparse weights in [—1, 1], Arora et al. [ABGM 14] provide poly-
nomial time learning algorithms. In [BG17], the learning of convolutions neural networks is
considered, where they demonstrate global convergence of gradient descent, but do not provide

sample complexity bounds.

Learning ReLLU Networks with noise. Ge et al. [GLM17] considers learning a ReLLU net-
work with a single output dimension A = u? f(VX) + E where u € R” is restricted to be
entry-wise positive and E 1s a zero-mean sub-Gaussian noise vector. In this setting, it is shown
that the weights u, V' can be approximately learned in polynomial time when the input X is

i.i.d. Gaussian. However, in contrast to the algorithms in this work, the algorithm of [GLM17]
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relies heavily on the non-negativity of v [Gel8], and thus cannot generalize to arbitrary w. Jan-
zamin, Sedghi, and Anandkumar [JSA15] utilize tensor decompositions to approximately learn
the weights in the presence of mean zero sub-Gaussian noise, when the activation functions are
smooth and satisfy the property that f(z) = 1 — f(—xz). Using similar techniques, Sedghi and
Anandkumar [SJA16] provide a polynomial time algorithm to approximate the weights, if the

weights are sparse.

A more recent result of Ge et al. demonstrates polynomial time algorithms for learning
weights of two-layer ReLLU networks in the presence of mean zero sub-gaussian noise, when the
input is drawn from a mixture of a symmetric and Gaussian distribution [GKLW 18]. We remark
that the results of [GKLW 18] were independently and concurrently developed, and utilize sub-
stantially different techniques than ours that rely crucially on the linearity of the ReLU for z > 0
[Ge18]. For these reasons, their algorithms do not generalize to the larger class of rectified func-
tions which are handled in this work. To the best of the our knowledge, for the case of Gaussian
inputs, this work and [GKLW 18] are the first to obtain polynomial time learning algorithms for

this noisy setting.

Agnostic Learning. A variety of works study learning ReLU’s in the more general agnostic
learning setting, based off Valiant’s original PAC learning model [Val84]. The agnostic PAC
model allows for arbitrary noisy and distributions over observations, and the goal is to output a
hypothesis function which approximates the output of the neural network. Note that this does
not necessarily entail learning the weights of an underlying network. For instance, Arora et al.
[ABMM 6] gives an algorithm with O(n?) running time to minimize the empirical risk of a two-
layer neural network. A closer analysis of the generalization bounds required in this algorithm for
PAC learning is given in [MR 18], which gives a 2P°¥*/)poly(n, m, d, k) time algorithm under
the constraints that U* € {1, —1}* is given a fixed input, and both the input examples X and the

weights V* are restricted to being in the unit ball. In contrast, our (/e )°*")

time algorithm for
general error matrices E improves on their complexity whenever x = O(2P°¥(*)), and moreover
can handle arbitrarily large V* and unknown U* € R™ ¥k We remark, however, that our loss
function is different from that of the PAC model, and is in fact roughly equivalent to the empirical

loss considered in [ABMM 16].

Note that the above algorithms properly learn the networks. That is, they actually output
weight matrices U, V' such that U f(V X') approximates the data well under some measure. A
relaxation if this setting is improper learning, where the output of the learning algorithm can
be any efficiently computable function, and not necessarily the weights of neural network. Sev-

eral works have been studied that achieve polynomial running times under varying assumptions
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about the network parameters, such as [GKKT16, GK17]. The algorithm of [GK17], returns
a “clipped” polynomial. In addition, [ZL.J16] gives polynomial time improper learning algo-
rithms for multi-layer neural networks under several assumptions on the weights and activation

functions.

Hardness. Hardness results for learning networks have an extensive history in the literature
[Jud88, BR92]. Originally, hardness was considered for threshold activation functions f(z) €
{1, —1}, where it is known that even for two ReLU’s the problem is NP-hard [BR92]. Very
recently, there have been several concurrent and independent lower bounds developed for learn-
ing ReLU networks. The work of [BDL 18] has demonstrated the hardness of a neural network
with the same number of nodes as the hard network in this paper, albeit with two applications of
ReLU’s (i.e., two non-linear layers) instead of one. Note that the hardness results of this work
hold for even a single non-linear layer. Also concurrently and independently, a recent result
of [MR18] appears to demonstrate the same NP-hardness as that in this paper, albiet using a
slightly different reduction. The results of [MR 18] also demonstrate that approximately learning
even a single ReLLU is NP-hard. In addition, there are also NP-hardness results with respects
to improper learning of ReLLU networks [GKKT16, LSSS14, ZL.J16] under certain complexity

theoretic assumptions.

Sparsity. One of the main techniques of our work involves analyzing the sparsity patterns of
the vectors in the rowspan of A. Somewhat related reasoning has been applied by Spielman,
Wang, and Wright to the dictionary learning problem [SWW12]. Here, given a matrix A, the
problem is to recover matrices B, X such that A = BX’, where X is sparse. They argue the
uniqueness of such a factorization by proving that, under certain conditions, the sparsest vectors
in the row span of A are the precisely rows of X'. This informs their later algorithm for the exact

recovery of these sparse vectors using linear programming.

6.1.3 Our Techniques

One of the primary technical contributions of this work is the utilization of the combinatorial
structure of sparsity patterns of the rows of f(V X'), where f is a rectified function, to solve
learning problems. Here, a sparsity pattern refers to the subset of coordinates of f(V X’) which
are non-zero, and a rectified function f is one which satisfies f(x) = 0 forx < 0, and f(z) > 0

otherwise.

368



Arbitrary Input. For instance, given A = U*f(V*X') where U*, V* are full rank and f
is the ReLLU, one approach to recovering the weights is to find k-linearly vectors v; such that
f(v;X) span precisely the rows of A. Without the function f(-), one could accomplish this
by solving a linear system. Of course, the non-linearity of the activation function complicates
matters significantly. Observe, however, that if the sparsity pattern of f(V*X') was known before
hand, one could simple *remove* f on the coordinates where f(V*X) is non-zero, and solve
the linear system here. On all other coordinates, one knows that f(V*X’) is 0, and thus finding a
linearly independent vector in the right row span can be solved with a linear system. Of course,
naively one would need to iterate over 2" possible sparsity patterns before finding the correct one.
However, one can show that any k-dimensional subspace of R" can intersect at most n* orthants
of R™, and moreover these orthants can be enumerated in n*poly(n) time given the subspace.
Thus the rowspan of A, being k-dimensional, can contain vectors with at most n* patterns. This
is the primary obervation behind our n*poly(n)-time algorithm for exact recovery of U*, V* in

the noiseless case (for arbitrary X).

As mentioned before, the prior result requires A to be rank-%, otherwise the row span of
f(V X) cannot be recovered from the row span of A. We show that this difficulty is not merely
a product of our specific algorithm, by demonstrating that even for £k as small as 2, if U™ is given
as input then it is NP-hard to find V* such that U* f(V*X’) = A, thus ruling out any general n*
time algorithm for the problem. For the case of £k = 2, the problem is still NP-hard even when

U™ is not given as input, and is a variable.

Gaussian Input. In response to the aformentioned hardness results, we relax to the case where
the input X" has Gaussian marginals. In the noiseless case, we exactly learn the weights U*, V'*
given A = U*f(V*X) (up to a positive scaling and permutation). As mentioned, our results
utilize analysis of the sparsity patterns in the row-span of A. One benefit of these techniques is
that they are largely insensitive to the behavior of f(x) for positive x, and instead rely on the
rectified property f(-). Hence, this can include even exponential functions, and not solely the
ReLU.

Our exact recovery algorithms proceed in two steps. First, we obtain an approximate version
of the matrix f(V*X’). For a good enough approximation, we can exactly recover the sparsity
pattern of f(V*X'). Our main insight is, roughly, that the only sparse vectors in the row span
of A are precisely the rows of f(V*X). Specifically, we show that the only vectors in the row
span which have the same sparsity pattern as a row of f(V*X) are scalar multiples of that row.
Moreover, we show that no vector in the row span of A is supported on a strict subset of the

support of a given row of f(V*X). Using these facts, we can then set up a judiciously designed
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linear system to find these vectors, which allows us to recover f(V*X’) and then V* exactly. By
solving linear systems, we avoid using iterative continuous optimization methods, which recover
a solution up to additive error ¢ and would only provide rates of convergence in terms of ¢.
In contrast, Gaussian elimination yields exact solutions in a polynomial number of arithmetic

operations.

The first step, finding a good approximation of f(V*X), can be approached from multiple
angles. In this work, we demonstrate two different techniques to obtain these approximations, the
first being Independent Component Analysis (ICA), and the second being tensor decomposition.
To illustrate the robustness of our exact recovery procedure once a good estimate of f(V*X) is
known, we show in Section 6.4.3 how we can bootstrap the estimators of recent, concurrent and

independent work [GKLW 18], to improve them from approximate recovery to exact recovery.

Independent Component Analysis. In the restricted case when V* is orthonormal, we show
that our problem can be modeled as a special case of Independent Component Analysis (ICA).
The ICA problem approximately recovers a subspace B, given that the algorithm observes sam-
ples of the form y = Bx + (, where z is i.i.d. and drawn from a distribution that has moments
bounded away from Gaussians, and ¢ is a Gaussian noise vector. Intuitively, the goal of ICA
is to find a linear transformation of the data such that each of the coordinates or features are as
independent as possible. By rotational invariance of Gaussians, in this case V*X is also i.i.d.
Gaussian, and we know that the columns of f(V*X’) have independent components and mo-
ments bounded away from a Gaussian. Thus, in the orthonormal case, our problem is well suited
for the ICA framework.

Tensor Decomposition. A second, more general approach to approximating f(V*X') is to uti-
lize techniques from tensor decomposition. Our starting point is the generative model considered
by Janzamin et. al. [JSA15], which matches our setting, i.e., A = U* f(V*X’). The main idea
behind this algorithm is to construct a tensor that is a function of both A, X’ and captures non-
linear correlations between them. A key step is to show that the resulting tensor has low CP-rank
and the low-rank components actually capture the rows of the weight matrix V'*. Intuitively,
working with higher order tensors is necessary since matrix decompositions are only identifiable
up to orthogonal components, whereas tensors have identifiable non-orthogonal components, and

we are specifically interested in recovering approximations for non-orthonormal V*.

Next, we run a tensor decomposition algorithm to recover the low-rank components of the re-
sulting tensor. While computing a tensor decomposition is NP-hard in general [HL13], there is a

plethora of work on special cases, where computing such decompositions is tractable [BCMV 14,
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SWz16, WA16, GVX14, GM15, BM16]. Tensor decomposition algorithms have recently be-
come an invaluable algorithmic primitive and with applications in statistical and machine learn-
ing [JSA15, JSA14, GLM17, AGHK14a, BKS15].

However, there are several technical hurdles involved in utilizing tensor decompositions to
obtain estimates of V'*. The first is that standard analysis of these methods utilizes a general-
ized version of Stein’s Lemma to compute the expected value of the tensor, which relies on the
smoothness of the activation function. Thus, we first approximate f(-) closely using a Cheby-
shev polynomial p(-) on a sufficiently large domain. However, we cannot algorithmically ma-
nipulate the input to demand that A instead be generated as U*p(V*X). Instead, we add a
small mean-zero Gaussian perturbation to our samples and analyze the variation distance be-
tween A = U*f(V*X) 4+ G and U*p(V*X) + G. For a good enough approximation p, this
variation distance will be too small for any algorithm to distinguish between them, thus standard
arguments imply the success of tensor decomposition algorithms when given the inputs A + G
and X.

Next, a key step is to construct a non-linear transformation of the input by utilizing knowledge
about the underlying density function for the distribution of X', which we denote by p(x). The
non-linear function considered is the so-called Score Function, defined in [JSA14], which is the
normalized m-th order derivative of the input probability distribution function p(z). Computing
the score function for an arbitrary distribution can be computationally challenging. However, as
mentioned in [JSA14], we can use Hermite polynomials that help us compute a closed form for

the score function, in the special case when z ~ N (0, I).

Sign Ambiguity. A further complication arises due to the fact that this form of tensor de-
composition is agnostic to the signs of V. Namely, we are guaranteed vectors v; from tensor
decomposition such that |[v; — &V, ||F < &, where & € {1, —1} is some unknown sign. Prior
works have dealt with this issue by considering restricted classes of smooth activation functions
which satisfy f(z) = 1— f(—=z) [JSA15]. For such functions, one can compensate for not know-
ing the signs by allowing for an additional affine transformation in the neural network. Since we
consider non-affine networks and rectified functions f(-) which do not satisfy this restriction, we
must develop new methods to recover the signs &; to avoid the exponential blow-up needed to

simply guess them.

For the noiseless case, if v; is close enough to &;V,, we can employ our previous results on
the uniqueness of sparsity patterns in the row-span of A. Namely, we can show that the sparsity

pattern of f(&v;) will in fact be feasible in the row-span of A, whereas the sparsity pattern of

371



f(—=¢&w;) will not, from which we recover the signs ; via a linear system.

In the presence of noise, however, the problem becomes substantially more complicated.
Because we do not have the true row-span of f(V*X’), but instead a noisy row-span given by
U*f(V*X)+ E, we cannot recover the &;’s by feasibility arguments involving sparsity patterns.
Our solution to the sign ambiguity in the noisy case is a projection-based scheme. Our scheme
for determining &; involves constructing a 2k — 2 dimensional subspace .S, spanned by vectors
of the form f(£wv;X) for all j # i. We augment this subspace as S* = S U {f(v;X)} and
S™1 = SU {f(—v;X)}. We then claim that the length of the projections of the rows of A
onto the S¢ will be smaller for ¢ = &; than for ¢ = —¢&;. Thus by averaging the projections of
the rows of A onto these subspaces and finding the subspace which has the smaller projection
length on average, we can recover the &;’s with high probability. Our analysis involves bounds
on projections onto perturbed subspaces, and a spectral analysis of the matrices f(W X), where

W is composed of up to 2k rows of the form V%, and — V..

FPT Algorithms. In addition to our polynomial time algorithms, we also demonstrate how
various seemingly intractable relaxations to our model, within the Gaussian input setting, can
be solved in fixed-parameter tractable time in the number & of hidden units, and the condition
numbers x of U* and V'*. Our first result demonstrates that, in the noiseless case, exact recovery
of U*, V* is still possible even when U * is not rank k. Note that the assumption that U™ is rank %
is required in many other works on learning neural networks [GLM 17, GKLW 18, JSA15, SIA16]

We demonstrate that taking poly(d)x°*) columns of X', where  is the condition number of
V'*, is sufficient to obtain 1-sparse vectors in the columns of f(V*X). As a result, we can look
for column of A which are positive scalar multiples of each other, and conclude that any such
pair will indeed be a positive scaling of a column of U™ with probability 1. This allows for exact
recovery of U* for any U* € R™ ¥ and m > 1, as long as no two columns of U* are positive
scalar multiples of each other. Thereafter, we can recover V* by solving a linear system on the
subset of 1-sparse columns of f(V X'), and argue that the resulting constraint matrix is full rank.

The result is a poly(d, k, m)x® (k) time algorithm for exact recovery of U*, V'*.

Our second FPT result involves a substantial generalization of the class of error matrices E
which we can handle. In fact, we allow arbitrary E, so long as they are independent of the input
X. Our primary technical observation is as follows. Suppose that we were given f(vX) + E,
where E is an arbitrary, possibly very large, error vector, and v € R?. Then one can look at
the sign of each entry ¢, and consider it to be a noisy observation of which side of a halfspace

the vector X, ; lies within. In other words, we couch the problem as a noisy half-space learning
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problem, where the half-space is given by the hyperplane normal to v, and the labeling of &, ; is
the sign of (f(vX) + E);.

Now while the error on each entry will be large, resulting in nearly half of the labelings being
flipped incorrectly, because E is independent of X, we are able to adapt recent techniques in
noisy-halfspace learning to recover v in polynomial time. In order to utilize these techniques
without knowing anything about E, we must first smooth out the error E by adding a large Gaus-
sian matrix. The comparatively small value of f(vX') is then able to shift the observed distribu-
tion of signs sufficiently to have non-trivial correlation with the true signs. Taking polynomially
many samples, our algorithms detect this correlation, which will allow for accurate recovery of

V.

To even obtain a matrix of the form f(vX) + E, where v is a row of V*, we can guess
the pseudo-inverse of U*. To reduce the dependency on m, we first sketch U* by a subspace-
embedding S € RO**4, which will be a random Gaussian matrix and approximately preserve
the column span of U*. In particular, this approximately preserves the spectrum of U*. The
resulting matrix SU* has O(k?) entries, and, given the maximum singular value of the inverse
(which can be guessed to a factor of 2), can be guessed accurately enough for our purposes in

time (x/)°**), which dominates the overall runtime of the algorithm.

6.1.4 Roadmap

In Section 6.2 we introduce our n°®*)

time exact algorithm when rank(A) = k& and arbitrary
X, for recovery of rank-k matrices U*, V* such that U*f(V*X) = A. In this section, we
also demonstrate that for a very wide class of distributions for random matices X', the matrix
U*f(V*X) is in fact full rank with high probability, and therefore can be solved with our exact
algorithm. Then, in Section 6.3, we prove NP-hardness of the learning problem when rank(A) <
k. Next, in Section 6.4, we give a polynomial time algorithm for exact recovery of U*, V* in
the case when X has Gaussian marginals in the realizable setting. Section 6.4.1 develops our
Independenct Component Analysis Based algorithm, whereas Section 6.4.2 develops our more
general exact recovery algorithm. In Section 6.4.3, we show how recent concurrent results can

be bootstrapped via our techngiues to obtain exact recovery for a wider class of distributions.

In Section 6.5, we demonstrate how to extend our algorithm to the case where A = U* f(V*X')+
E where E is mean 0 1.1.d. sub-Gaussian noise. Then in Section 6.6, we give a fixed-paramater
tractable (FPT) (in k£ and x(V*)) for the exact recovery of U*, V* in the case where U * does not

have full column rank. We give our second FPT algorithm in Section 6.7, which finds weights
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which approximate the optimal network for arbitrary error matrices E that are independent of X'.
In Section 6.8, we demonstrate how the weights of certain low-rank networks, where k < d, m,

can be recovered exactly in the presence of a class of arbitrary sparse noise in polynomial time.

6.1.5 Preliminaries

For a positive integer k, we write [k] to denote the set {1,2,...,k}. We use the term with
high probability (w.h.p.) in a parameter > 1 to describe an event that occurs with probability
1 - WI(T)' For a real r, we will often use the shorthand poly(r) to denote a sufficiently large
constant degree polynomial in 7. Since for simplicity we do not seek to analyze or optimize the
polynomial running time of our algorithms, we will state many of our error bounds within techni-
cal lemmas as Wl(ﬂ where 7 constitutes some set of relevant parameters, with the understanding
that this polynomial can be made arbitrarily large by increasing the sample complexity n of our

algorithms by a polynomial factor.

In this work we use boldface font A,V .U, W to denote matrices, and non-boldface font
x,y,u,v to denote vectors. For a vector x, we use ||z||, to denote the ¢, norm of x. For any
matrix W with p rows and ¢ columns, for all ¢ € [p], let W, , denote the i-th row of W, for
all j € [q] let W, ; denote the j-th column and let W; ; denote the 4, j-th entry of W. Further,
the singular value decomposition of W, denoted by SVD(W) = UX V7, is such that U is a
p X r matrix with orthonormal columns, V7 is a 7 x ¢ matrix with orthonormal rows and X is an
r X r diagonal matrix, where r is the rank of W. The entries along the diagonal are the singular
values of W, denoted by 0pax = 01 (W) = 0o(W) > ... = 0,(W) = opuin(W). We write
IWlr= (2,4 Wp%q> /2 {6 denote the Frobenius norm of W, and

| Az
W2 = sup, =—= = Tmax (W)
[E41P
to denote the spectral norm. We will write [, to denote the k£ x k square identity matrix. We
use the notation Pro jy (w) to denote the projection of the vector w onto the row-span of W.
In other words, if * = argmin, ||[tW — w||s, then Projw (w) = z*W. We now recall the

condition number of a matrix W'.

Definition 6.1.1. For a rank k matrix W € RP*9, let 0o (W) = 01(W) Z 02(W) > ... >
0k(W) = omin(W) be the non-zero singular values of W. Then the condition number k(W)

374



of W is given by
Tmax (W)
W)= ——=
K,( ) 0min<W)
Note that if W has full column rank (i.e., k = q), then if W1 is the pseudo-inverse of W we
have WIW =1, and
(W) = W[ W]

where ||W || = 01(W) is the spectral norm of W. Similarly if W has full row rank (i.e. k = p),
then WWT = L, and
R(W) = [W2||[W ]

A real m-th order tensor is 7 € ®™R? is the outer product of m d-dimensional Euclidean
spaces. A third order tensor 7 € ®R? is defined to be rank-1if 7 = w - a ® b ® ¢ where
a,b, c € RY. Further, 7 has Candecomp/Parafac (CP) rank-% if it can be written as the sum of k
rank-1 tensors, i.e.,

k
T=> wa;®b®c
i=1
is such that w; € R, a;, b;, ¢; € R%. Next, given a function f(x) : R? — R, we use the notation

V™ f(z) € @R to denote the m-th order derivative operator w.r.t. the variable x, such that

0f (x)

m 03:1-1(9:101-2 R 83:%

(Va2 F (@), i

In the context of the ReLU activation function, a useful notion to consider is that of a sign

pattern, which will be used frequently in our analysis.

Definition 6.1.2. For any matrix dimensions p, q, a sign pattern is simply a subset of [p] X [q].
For a matrix W € RP*9, we let sign(W) be the sign pattern defined by

sign(W) = {(i,j) € [p] x [ | Wi; > 0}

Intuitively, in the context of rectified activation functions, the sign pattern is an impor-
tant notion since sign(W) is invariant under application of f, in other words sign(W) =
f(sign(W)). We similarly define a sparsity-pattern of a matrix W € RP*9 as a subset of
[p] % [q] where W is non-zero. Note that a sign and sparsity pattern of W, taken together,

specify precisely where the strictly positive, negative, and zero-valued entries are in W.
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We use the notation N'(u, 0%) to denote the Gaussian distribution with mean p and variance
o?. More generally, we write N (i, X) to denote a k-dimensional multi-variate Gaussian distribu-
tion with mean ;. € R* and variance ¥ € R***. We make use of the 2-stability of the Gaussian
distribution several times in this work, so we now recall the following definition of stable random

variables. We refer the reader to [Ind06] for a further discussion of such distributions.

Definition 6.1.3. A distribution D, is said to be p-stable if whenever X, ..., X,, ~ D, are drawn

independently, we have

n
> aiX; ~ al|,X
1=1

for any fixed vector a € R", where X ~ D, is again distributed as a p-stable random variable. In

particular, the Gaussian random variables N'(0, 0?) are p-stable for p = 2 (i.e., ¥, a;g; = ||a|2,

where g, 1, ..., gn ~ N(0,02)).

Finally, we remark that in this paper, we will work in the common real RAM model of

computation, where arithmetic operations on real numbers can be performed in constant time.

6.2 Exact solution when rank(A) = k

In this section, we consider the exact case of the neural network recovery problem. Given an
input matrix X € R¥" of examples, and a matrix A € R™ " of classifications, the exact
version of the recovery problem is to obtain rank-k matrices U*, V* such that A = U*f(V*X),
if such matrices exist. In this section we demonstrate the existence of an n®®*)poly(md)-time
algorithm for exact recovery when rank(A) = k. We demonstrate that this assumption is likely
necessary in Section 6.3, where we show that if rank(A) < k then the problem is NP-hard even
for any k£ > 2 when the matrix U is given as input, and NP-hard for £ = 2 when U* is allowed

to be a variable. This rules out the existence of a general n°*) time algorithm for this problem.

The main theorem we prove in this section is that there is an algorithm with running time
dominated by min{n®®*) 2"} such that it recovers the underlying matrices U* and V* exactly.

O(k) sign patterns

Intuitively, we begin by showing a structural result that there are at most n
that lie in the row space of f(V*X) and we can efficiently enumerate over them using a linear
program. For a fixed sign pattern in this set, we construct a sequence of k linear programs (LP)
such that the i-th LP finds a vector y, f(y’) is in the row span of f(V*X), subject to the fixed
sign pattern, and the constraint that f(y') is not a linear combination of f(y'), (), ... f(y'™).

We note that f(y°) being linearly independent is not a linear constraint, but we demonstrate how
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it can be linearized in a straightforward manner.

Crucially, our algorithm relies on the fact that we have the row-span of f(V*X). Note that
this is implied by the assumption that A is rank k. Knowing the rowspan allows us to design
the constraints in the prior paragraph, and thus solve the LP to recover the rows of f(V*X).
On the other hand, if the rank of A is less than £, then it no longer seems possible to efficiently
determine the row span of f(V*X). In fact, our NP-Hardness result of Section 6.3 demonstrates
that, given U™ as input, if the rank of A is strictly less than %, the problem of determining the

exact row-span of f(V*X') is NP-Hard. The main result of this section is then as follows.

Theorem 123. Given A € R™ ", X € RY™, there is an algorithm that finds U* € R™*k V*
R¥ such that A = U* f(V*X) and runs in time poly(nmd) min{n®® 2"} if rank(A) = k.

Let V' € R**" be a basis for the row-span of A. For two matrices Y,Z of the same
dimension, we will write Y ‘% Z if the row spans of Y and Z are the same. The first step in

our algorithm is to obtain a feasible set S of sign patterns, within which the true sign pattern of
f(V*X) must lie.

Lemma 6.2.1. Given A € R™" X € R™", such that rank(A) = k, there is an algorithm
which runs in time min{n°®) 2"} and returns a set of sign patterns S C 2> with |S| =
min{n®® 2"\ such that for any rank-k matrices U* € R™* V* ¢ R**? such that A =
U*f(V*X) and any row i € [k], sign((V*X);) = sign(S) for some S € S.

Proof. Recall, A is rank k. Thus there is a subset V' € R**" of k rows of A which span all
the rows of A. Critically, here we require that the rank of A is k£ and thus the row space of
A is the same as that of f(V*X). Since A = U*f(V*X) and V', f(V*X) have the same
dimensional row space, the row spaces of V' and f(V*X) are precisely the same, and so there
must be an invertible change of basis matrix W such that WV’ = f(V*X). Now note that
sign(V*X) = sign(f(V*X)) = sign(WV’), and thus it suffices to return a set of sign
patterns S which contains sign(W'V’). Therefore, consider any fixed sign pattern S C [n],

and fix arow j € [k], and consider the following feasibility linear program in the variables w;
(w;V'); =21, foralli € sign(9S)

(w;V"); <0, foralli ¢ sign(S)

Note that if the sign pattern .S is feasible by some w; V", then the above LP will be feasible with

a suitably large positive scaling to w;. Now the LP has k variables and n constraints, and thus a
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solution is obtained by choosing the w; that makes a subset of £ linearly independent constraints
tight. Observe in any such LP of the above form, there are at most 2n possible constraints that
can ever occur. Thus if S is realizable as the sign pattern of some w; V", then it is obtained by
the unique solution to a system which chooses to make k of these constraints tight. Formally, if
S, b are the constraints for which w;S > b in the LP, then a solution is given by w;S" = b’ where
S’, V' are a subset of k of the constraints. Since there are at most (2,:,1) = O(n*) such possible
choices, it follows that there are at most O(min{n°®*) 2"}) realizable sign patterns, and these
can be enumerated in O(min{n®®*), 2}) time by simply checking the sign pattern which results

from the solution (if one exists) to w;S" = b’ taken over all subsets S", I’ of constraints of size k.

O

Given access to the set of candidate sign patterns, S € S, and vectors y', 2, ...,y !t € R",
we can define the following iterative feasibility linear program, that at each iteration ¢ finds a vec-
tor 3y* which is equal to some vector in the row span of X, and such that f(y'), f(v?),..., f(y")

are all linearly independent and in the row span of A.
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Algorithm 1 : Iterative LP(X', S, y', % ...y 1),

Input: Matrix X, a sign pattern S, vectors ', y%, ...y "' suchthat f(y!), f(v?),... f(y*"Y)
are linearly independent.
1. Lety?, 2%, w’ be variables in R".

2. Let Q € R(=D*" be a matrix such that for all j € [i — 1], Q;. = f(y’). Construct

the projection matrix P*~! onto span { f(y!), f(v?), ..., f(y*1)}. Note, the projection
matrix is given by P! = QT(QTQ)~'Q.

3. Define fs(y") w.r.t. the sign pattern S such that

(v;) ifjes

0 otherwise

fs(yh) =

Output: A feasible solution to the following LP:

Vieln] yi>1, ifjes
vjeml ¢ <o, it ¢S
y’L — w’LX
fS(yZ) — Zz‘V/
fs)I = P=) #0

Remark 124. Observe, while the last constraint is not a linear constraint, it can be made linear
by running 2n consecutive LP’s, such that, for ¢t € [n], in the 2¢-th LP we replace the constraint
fs(y*) (I — P*~1) # 0 above with

£s) (1-P7)] > 1

t

and in the (2t — 1)-th LP we replace constraint fs(y") (I — P*~!) # 0 with

50) (1= P )], <

Note, the modified constraints are linear in the variables 3. If there is a vector 3* which satisfies
the above constraints such that fs(y*)(I—P~1) # 0, then by scaling 3*, w', 2% all by a sufficiently
large positive constant, then ' will also satisfy one of the 2n LPs described above, thus giving a

solution to the original feasibility problem by returning the first feasible solution returned among
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the 2n new LPs.

Using Algorithm 1 as a sub-routine, we iterate over all sign patterns S € S, such that we
recover a linearly independent set of k vectors f(y'), f(32),... f(y*). Let Y be a matrix such
that the j-th row corresponds to y/. We then set up and solve two linear systems in U and V,
givenby A =U f(Y)and Y = V X. We show that the solutions to the linear system correspond
to U* and V'*. Here, we note that since the optimal U* and V'* are solutions to a linear system,

we can recover them exactly.

Algorithm 2 : ExactNeuralNet(A, X' S).

Input: Matrices A, X, a set of sign patterns S.

1. Fori=1,2,...,k
topsep=0pt, 1temsep=-1ex,plrtopsep=1lex,plrsep=lex ¢t = 1.
topsep=0pt,2temsep=-2ex,p2rtopsep=2ex,p2rsep=2ex While(t < |S])

i. f Iterative LP(X, S,
is feasible, let ¢/ be the out-
put, and set t = |S| + 1.

ii. Else t < ¢t + 1.

2. Let Y € RF*" be the matrix with j-th row equal to 3 and let S be the corresponding

sign pattern.
3. Let U* be the solution to the linear system in U given by A = U fs(Y).
4. Let V'* be the solution to the linear system in V givenby Y = V X.

Output: U*, V*.

Lemma 6.2.2. For any i € [k] vectors y',y* ..,y € R"and S € S, let y' be a feasible
solution to Tterative LP(X,S,y',y? ...,y""'). Then all of the following hold:

1. v is in the row span of X.
2. f(y*) is in the row span of A.

3. f(y') is independent of f(y'), f(v?), ..., f(yi71).

Proof. The first condition follows due to the third constraint y* = wX. The first and second
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constraint ensure that fs(y’) = f(y*), thus along with the fourth constraint and the fact that V”’
spans the rows of A, the second condition follows. For the last condition, it suffices to show
that if || f(y*)(I — P*"1)|] > 1 then f(y") is not in the span of {f(y'),..., f(y*"")}. Now if
fy)T—P1) =z # 0, then f(y') = 2+ Proj;_1(f(y")), where Proj;_1(f(y’)) is the
projection of f(y") onto the subspace spanned by {f(y'),..., f(y""1)}. If f(y') was in this
subspace, then we would have Proj;_;(f(y")) = v', but this is impossible since z # 0, which
completes the proof. O]

Lemma 6.2.3. Suppose that there exist matrices U* € R™* V* € R¥4with A = U*f(V*X).
Then in the above algorithm, for each i € k] Iterative LP(X,Sy,y' y%, ...,y 1) will be
feasible for at least one S; € S.

Proof. The proof is by induction. For i = 1, since f(V*X) has rank k and spans the rows of A,
it follows that there must be some j € [k] such that the j-th row f(V*X); of f(V X) isin in the
row span of V', and clearly (V*X’); is in the row span of X'. The last constraint is of the LP non-
existent since ¢ = 1. Furthermore, (V*X) ; has some sign pattern S*, and it must be that S* € S
by construction of S. Then there exists a positive constant ¢ > 0 such that (cV*X'); satisfies the
last constraints of Tterative LP(X,S* y', 9% ...,4""!) (made linear as described in Remark
124), and multiplying (V*X'); by a positive constant does not affect the fact that (cV*X’); is in
the row space of X’ and f(cV*X), is in the row space of A by closure of subspaces under scalar

multiplication. Thus the Tterative LP(X,S* y' 42, ...,y 1) has a feasible point.

Now suppose we have feasible points 4, ..., 7", with i < k. Note that this guarantees that
fyY), ..., f(y*~!) are linearly independent. Since f(V*X) spans the k-dimensional row-space
of A, there must be some j with f(V*X); that is linearly independent of f(y'),..., f(y"™!)
such that f(V*X); is in the row span of A. Then (V*X); is in the row span of X, and similarly
(V X); has some sign pattern S*, and after multiplication by a suitably large constant it follows
that the Tterative LP(X,S* y',9?%, ...,y ') will be feasible. The proposition follows by

induction. L]

Proof of Theorem 123. By Proposition 6.2.2, f(y'),..., f(y*) are independent, and give a
solution to f(V X) ‘Z' A. Thus we can finda U € R%* in polynomial time via d independent
linear regression problems that solves U f(V X) = A. By Proposition 6.2.1, there are at most
min{n®®) 27} sign patterns in the set S, and solving for each iteration of Tterative LP

takes poly(nm)-time. Thus the total time is poly(nmd) min{n®® 27} as stated.
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6.2.1 Rank(A) = k for random matrices X.

We conclude this section with the observation that if the input X" is drawn from a large class of
independent distributions, then the resulting matrix U* f(V*X’) will in fact be rank k with high
probability if U* and V* are rank k. Therefore, Algorithm 2 recovers U*, V'* in poly(nmd) min{n®® 27}

for all such input matrices X'.

Lemma 6.2.4. Suppose A = U* f(V*X) for rank k matrices U* € R™* and V* € R4,
where X € RY™ is a matrix of random variables such that each column X, ; is drawn i.i.d. from
a distribution D with continuous p.d.f. p(z) : R* — R such that p(z) > 0 almost everywhere in
Re and such that

inf Prop|(v,x) > 0| > 10klog(k/d)/n

vERL

Then rank(A) = k with probability 1 — O(9).

Proof. By Sylverster’s rank inequality, it suffices to show f(V*X) is rank k. By symmetry
and i.i.d. of the Xj;’s in a fixed row i, each entry f(V*X),; is non-zero with probability at
least 10k log(k/d)/n independently (within the row 7). Then by Chernoff bounds, a fixed row
(V*X);.. will have at least k positive entries with probability at least 1 — 27%12(*/9) "and we can
then union bound over all k£ rows to hold with probability at least 1 — O(d). Thus one can pick
a k x k submatrix W of f(V*X) such that, under some permutation W’ of the columns of W,

the diagonal of W' is non-zero.

Since V* is rank k, V* is a surjective linear mapping of the columns of X from R? to R*.
Since p(x) > 0 almost everywhere, it follows that py«(z) > 0 almost everywhere, where py« ()
is the continuous pdf of a column of V*X. Then if X’ is any matrix of £ columns of X, by
independence of the columns, if pyxy : RF — R is the joint pdf of all k2 variables in V*X”, it
follows that pgyr(z) > 0 for all z € R¥. Thus, by conditioning on any sign pattern S of V*X’,
this results in a new pdf py. ., which is simply pyx Where the domain is restricted to an orthant
Q of R*. Since pyxy is continuous and non-zero almost everywhere, it follows that the support
of the pdf py, ;. : © — R is all of Q. In particular, the Lesbegue measure of the support 2 inside
of R** is non-zero (note that this would not be true if V* has rank &’ < k, as the support on each
column would then be confined to a subspace of R*, which would have Lesbegue measure zero
in RF).

Now after conditioning on a sign pattern, det(W’) is a non-zero polynomial in s random
variables, for & < s < k2, and it is well known that such a function cannot vanish on any

non-empty open set in R° (see e.g. Theorem 2.6 of [Con], and note the subsequent remark on
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replacing C* with R®). It follows that the set of zeros of det(W"’) contain no open set of R?,
and thus has Lesbegue measure 0 in R°. By the remarks in the prior paragraph, we know that
the Lesbegue measure (taken over R°) of the support of the joint distribution on the s variables
is non-zero (after restricting to the orthant given by the sign pattern). In particular, the set of
zeros of det(W’) has Lesbegue measure 0 inside of the support of the joint pdf of the non-zero
variables in W’. We conclude that the joint density of the variables of W', after conditioning
on a sign pattern, integrated over the set of zeros of det(W"’) will be zero, meaning that W' will
have full rank almost surely, conditioned on the sign pattern event in the first paragraph when
held with probability 1 — O(J). O

Remark 125. Note that nearly all non-degenerate distributions D on d-dimensional vectors will
satisty inf,cpa Pryop [(v, x) > 0} = ¢ = §(1). For instance any multi-variate Gaussian distribu-
tion with non-degenreate (full-rank) covariance matrix X will satisfy this bound with ¢ = 1/2,
and this will also hold for any symmetric i.i.d. distribution over the entries of + ~ D. Thus it
will suffice to take n = Q(klog(k/¢)) for the result to hold.

Corollary 6.2.5. Let A = U* f(V*X) for rank k matrices U* € R™* and V* € R**%, where
X € R¥™ is a matrix of random variables such that each column X, ; is drawn i.i.d. from a
distribution D with continuous p.d.f. p(z) : RY — R such that p(z) > 0 almost everywhere in
RY, and such that

inf Prop|(v,7) > 0] = Q(klog(1/6)/n)

vERI
Then, there exists an algorithm such that, with probability 1 — O(0), recovers U*, V'* exactly

and runs in time poly(n, m, d, k) min{n®® 2n},

6.3 NP-Hardness

The goal of this section is to prove that the problem of deciding whether there exists V' € R*¥*4
that solves the equation o f (V X) = w for fixed input a € R™* X € R A € R™", is
NP-hard. We will first prove the NP-hardness of a geometric separability problem, which will
then be used to prove NP-hardness for the problem of deciding the feasibility of af(V X) = w.
Our hardness reduction is from a variant of Boolean SAT, used in [Meg88] to prove NP-hardness
of a similar geometric seperability problem, called reversible 6-SAT, which we will now define.
For a Boolean formula ¢ on variables {uy, ..., u,,ut, ..., u,} (Where %; is the negation of w;),

let ) be the formula where every variable u; and 7; appearing in 1) is replaced with %; and v;
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respectively. For instance, if ¢ = (u1 V us VU3) A (U V uz) then v = (uy V Uy V uz) A (ug V 3).

Definition 6.3.1. A Boolean formula 1) is said to be reversible if 1 and 1) are both either satisfi-

able or not satisfiable.

The reverse 6-SAT problem is then to, given a reversible Boolean formula ¢» where each
conjunct has exactly six literals per clause, determine whether or not v is satisfiable. Observe,
if ¢ is a satisfying assignment to the variables of a reversible formula v/, then £, obtained by
negating each assignment of ¢, is a satisfying assignment to 7). The following can be found in
[Meg88].

Proposition 6.3.2 (NP-Hardness of Reversible 6-SAT). [MegS88]] Given a reversible formula 1
in conjunctive normal form where each clause has exactly six literals, it is NP-hard to decide
whether 1) is satisfiable.

We now introduce the following ReLU-seperability problem, and demonstrate NP-hardness

via a reduction from reversible 6-SAT.

Definition 6.3.3 (ReLU-separability.). Given two sets P = {p1,....p,},Q = {q1,...,qs} of
vectors in R%, the ReLU-seperability is to find vectors x,y € R such that

* Forall p; € P, both pFx < 0 and ply < 0.

* Forall ¢; € Q, we have f(¢'z) + f(¢l'y) = 1 where f(-) = max(-,0) is the ReLU

function.

We say that an instance of ReLU-seperability is satisfiable if there exists such an x,y € R? that

satisfy the above conditions.

Proposition 6.3.4. It is NP-Hard to decide whether an instance of ReLU-seperability is satisfi-
able.

Proof. Let uq,...,u, be the variables of the reversible 6-SAT instance 1), and set d = n + 2,
and let =,y be the solutions to the instance of ReLU separability which we will now describe.
The vector x will be such that x; represents the truth value of u;, and y; represents the truth value
of 7; = w;. For j € [n+ 2], lete; € R"™2 be the standard basis vector with a 1 in the j-th
coordinate and 0 elsewhere. For each i € [n], we insert e¢; and —e; into ). This ensures that
f(z;) + f(y;) = 1 and f(—x;) + f(—y;) = 1. This occurs iff either z; = 1 and y; = —1 or
x; = —land y; = 1, so y; is the negation of x;. In other words, the case x; = 1 and y; = —1
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means wu; is true and w; is false, and the case x; = —1 and y; = 1 means wu; is false and 7; is true.
Now suppose we have a clause of the form u, V Uy V u3 V uy V U5 V ug in 1. Then this clause

can be represented equivalently by the inequality z; — xo + 3 + x4 — x5 + 16 = —5.

To represent this affine constraint, we add additional constraints that force x, 1 + T,12 =
1/2 and y,11 + Ynio = 1/2 (note that the n + 1, and n + 2 coordinates do not correspond
to any of the n variables u;). We force this as follows. Add e,.; and e, 5 to @), and add
—2e,41, —2€,49 to Q). This forces f(z;) + f(y;) = 1 and f(—2z;) + f(—2y;) = 1 for each
i€ {n+ 1,n+ 2}. Foreachi € {n + 1,n + 2} there are only two solutions, either z; = 1 and
y; = —1/2orz; = —1/2 and y; = 1. Finally, we add the vector e, 1 + €, to (), which forces
f(@ps1+2n0)+ f(Yns1+Yni2) = 1. Nowif .1 = 1, then x,,, » must be —1/2 since otherwise
there is no solution to 2 + f(-) = 1, and we know x,, .o € {1,—1/2}. This forces y, 2 = 1,
which forces zn41 + Zpi2 = 1/2 = Yn41 + Yny2, and a symmetric argument goes through
when one assumes 4,1 = 1. This lets us write affine inequalities as follows. For the clause
Uy Vi VusVug Vs Vug, we can write the corresponding equation x4 —2o+23+24—25+2g = —H
precisely as a point constraint, which for usis (-1,1,—-1,—-1,1,-1,0,0,...,0,—10,—10) € P
(the two —10’s are in coordinate positions n + 1 and n + 2). Now this also forces the constraint
Y1 — Y2 + Y3 + Y4 — Ys + Y = —5, but since the formula is reversible so we can assume WLOG
that 7 V ug V U3 V Uy V us V Ug is also a conjunct and so the feasible set is not affected, and the
first n coordinates of any solution = will indeed correspond to a satisfying assignment to v if one
exists. Since reversible 6-SAT is NP-hard by Proposition 6.3.2, the stated result holds. U

Theorem 126. For a fixed o € R™* X € R¥>*" A € R™*", the problem of deciding whether
there exists a solution V. € RF*? to af(VX) = A is NP-hard even for k = 2. Furthermore, for
the case for k = 2, the problem is still NP-hard when o € R™*? is allowed to be a variable.

Proof. Now we show the reduction from ReLLU-separability to our problem. Given an instance
(P, Q) of ReLU separability as in Definition 6.3.3, seta = [1,1],andw = [0,0,...,0,1,1,... 1]
sow;, =0fori <randw; = 1forr <i<r+s. LetX = [p1, p2, -, Pry Qs+, qs] €
R4(+3) Now suppose we have a solution V' = [z,y]T € RC+9)>*2 0 af(VX) = w. This
means f(p! z) + f(ply) = 0 for all p; € P, so it must be that both p! z < Oand p!y < 0. Also,
we have f(¢lz) + f(qly) = 1 forall ¢; € Q. These two facts together mean that z,y are a
solution to ReLU-separability. Conversely, if solutions x, y to ReLU separability exist, then for
all p; € P, both p/'z < 0 and p/'y < 0 implies f(p!z) + f(ply) = 0, and for all ¢; € Q we
get f(¢fz) + f(¢ly) = 1,0 V = [x,y]T is a solution to our factoring problem. Using the
NP-hardness of ReLLU-separability by Proposition 6.3.4, the result follows. Note here that & = 2
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is a constant, but for larger o € R™** with m rows and k columns, we can pad the new entries
with zeros to reduce the problem to the aforementioned one, which completes the proof for a
fixed a.

Now for £ = 2 and « a variable, we add the following constraints to reduce to the case of

a = [1, 1], after which the result follows. First, we add 2 new columns and 1 new row to X,

giving X/ € REFDx(r+s+2) We set
X 0 0
X =
[GT 1 —1}

Where X is as in the last paragraph, where 0 is a column vector of the appropriate dimensions
above. Also, we set A’ = [A,1,1] € R™™%. Let V = [z,y|” as before. This ensures
that a1 f(xg41) + aof(yar1) = 1 and oy f(—2411) + aof(—yar1) = 1. As before, we cannot
have that both (z4,1) and (y4y1) are negative, or that both are positive, as then one of the two
constraints would be impossible. WLOG, (y4+1) < 0. Then we have oy f(x4y1) = 1, which
ensures oy > 0, and a f(—yq441) = 1, which ensures ay > 0.

Now suppose we have a solution to V' = [z,y]T and o € R? to this new problem with
X’ A’. Then we can set 2’ = x/a; and y' = y/as, and o’ = [1, 1], and we argue that we have
recovered a solution [z, 3/'] to ReLU separability. Note that [1, 1] f([2,y/]* X’) = A/, since we
can always pull a positive diagonal matrix in and out of f. Then restricting to the first r + s
columns of X’ A’, we see that [1, 1] f([2/,y/]* X) = A, thus [2’,y/] are a solution to the neural-
net learning problem as in the first paragraph, so as already seen we have that z’, 3/ is a solution

to ReLU-separability. Similarly, any solution z,y to ReLU separability can easily be extended

to our learning problem by simply using V' = and o = [1, 1], which completes the

y —1
proof.

6.4 A Polynomial Time Exact Algorithm for Gaussian Input

In this section, we study an exact algorithm for recovering the weights of a neural network
in the realizable setting, i.e., the labels are generated by a neural network when the input is
sampled from a Gaussian distribution. We also show that we can use independent and concurrent
work of Ge et. al. [GKLWI18] to extend our algorithms to the input being sampled from a

symmetric distribution. Our model is similar to non-linear generative models such as those
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for neural networks and generalized linear models already well-studied in the literature [SJA16,
SA14, KKSK11, MM 18], but with the addition of the ReLLU activation function f and the second
layer of weights U*. In other words, we receive as input i.i.d. Gaussian' input X € R%*" and the
generated output is A = U~ f(V*X), where U* € R™** and V* € R**¢. For the remainder
of the section, we assume that both V* and U* are rank k. Note that this implies that d > k
and k < m. In Section 6.6, however, we show that if we allow for a larger ((+(V*))°*)) sample

complexity, we can recover U™ even when it is not full rank.

We note that the generative model considered in [SA14] matches our setting, however, it
requires the function f to be differentiable and V'* to be sparse. In contrast, we focus on f being
ReLU. The ReLU activation function has gained a lot of popularity recently and is ubiquitous
in applications [Com94, Hyv99, FJK96, HO00, AGMS12, LAF"12, HK13]. As mentioned in
Sedghi et. al. [SA14], if we make no assumptions on V'*, the resulting optimal weight matrix is
not identifiable. Here, we make no assumptions on U* and V' * apart from them being full rank
and show an algorithm that runs in polynomial time. The main technical contribution is then to
recover the optimal U* and V* exactly, and not just up to e-error. By solving linear systems
at the final step of our algorithms, as opposed to iterative continuous optimization methods, our

algorithms terminate after a polynomial number of arithmetic operations.

Formally, suppose there exist fixed rank-k matrices U* € R™* V* € RF*4 such that
A =U"f(V*X), and X is drawn from an i.i.d. Gaussian distribution. Note that we can assume
that each row V;* of V* satisfies | V;*||o = 1 by pulling out a diagonal scaling matrix D with
positive entries from f, and noting U* f(DV*X) = (U*D) f(V*X). Our algorithm is given
as input both A and X, and tasked with recovering the underlying generative neural network
U™, V*. In the context of training neural networks, we consider X" to be the feature vectors and
A to be the corresponding labels. Note U™, V* are oblivious to X', and are fixed prior to the
generation of the random matrix X'. In this section we present an algorithm that is polynomial in
all parameters, i.e., in the rank k, the condition number of U* and V'*, denoted by (U *), (V™)

and n, m, d.

Given an approximate solution to U*, we show that there exists an algorithm that outputs
U™, V* exactly and runs in time polynomial in all parameters. We begin by giving an altenative
algorithm for orthonormal V'* based on Independent Component Analysis. We believe that this
perspective on learning neural networks may be useful beyond our results. Next, we will give a
general algorithm for exact recovery of U*, V* which does not require V* to be orthonormal.

This algorithm is based on the completely different approach of tensor decomposition, yet yields

ISee Remark 127
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the same polynomial running time for exact recovery in the noiseless case. We now pause for a

brief aside on the generalization of our results to the non-identity covariance case.

Remark 127. While our results are stated for when the columns of X" are Gaussian with iden-
tity covariance, they can naturally be extended to X with arbitrary non-degenerate (full-rank)
covariance X, by noting that X = XY/2X’ where X’ is i.i.d. Gaussian, and then implicitly re-
placing V* with V*X1/2 5o that f(V*X) = f((V*X'/2)X"), and noting that x(V*%'/2) blows
up by a \/@ factor from x(V*). All our remaining results, which do not require V* to be
orthonormal, hold with the addition of polynomial dependency on \/@ , by just thinking of
V* as V*X1/2 instead.

We use the sample covariance as our estimator for the true covariance 3 and have the fol-

lowing guarantee:

Lemma 6.4.1. (Estimating Covariance of X [Ver18].) Let X € R¥Y such that for all i € [N],
Xoi ~ N(0,%). Let By = 5 Yicpn XoiXy. With probability at least 1 — 2e~°,

d+¢

I = Sl < e

1552
for a fixed constant c.

We can then estimate Y using a holdout set of N = Q(n?§?) samples, which suffices to
get an accurate estimate of the covariance matrix. We point out that, other than the tensor de-
composition algorithm of Section 6.4.2 and the noisy half-space learning routine in Section 6.7,
our algorithms do not even need to estimate the covariance matrix X in the multivariate case in
order to approximately (or exactly) recover U*, V*. With regards to our tensor decomposition
algorithms, while our estimator for the covariance introduces small error in the computation of
the Score Function and the resulting tensor decomposition, this can be handled easily in the per-
turbation analysis of Theorem 130 (refer to Remark 4 in [JSA15]). For our half-space learning
algorithm in Section 6.7, the error caused by estimating . is negligible, and can be added to the

“advesarial” error B of Theorem 141 which is already handled.

In the following warm-up Section 6.4.1, where it is assumed that V'* is orthonormal, we can-
not allow X to have arbitrary covariance, since then V*31/2 would not be orthonormal. How-
ever, for in the more general algorithm which follows in Section 6.4.2, arbitrary non-degenerate

covariance X is allowed.
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6.4.1 An Independent Component Analysis Algorithm for Orthonormal
V*

We begin with making the simplifying assumption that the optimal V* has orthonormal rows, as
a warm-up to our more general algorithm. Note, if V'* is orthonormal and &’ is standard normal,
then by 2-stability of Gaussian random variables, V*X is a matrix of i.1.d. Gaussian random
variables. Since Gaussian random variables are symmetric around the origin, each column of
f(V*X) is sparse, has i.i.d entries, and has moments bounded away from Gaussians. Using
these facts, we form a connection to the Independent Component Analysis (ICA) problem, and

use standard algorithms for ICA to recover an approximation to U*.

The ICA problem approximately recovers a subspace B, given that the algorithm observes
samples of the form y = Bz +E, where z is 1.1.d. and drawn from a distribution that has moments
bounded away from Gaussians and E is Gaussian noise. The ICA problem has a rich history
of theoretical and applied work [Com94, FJIK96, Hyv99, HO00, FKV04a, LAF"12, AGMS12,
HK13]. Intuitively, the goal of ICA is to find a linear transformation of the data such that each of
the coordinates or features are as independent as possible. For instance, if the dataset is generated
as y = Bz, where B is an unknown affine transformation and x has i.i.d. components, with no
noise added, then applying B~! to y recovers the independent components exactly, as long as
is non-Gaussian. Note, if z ~ N (0, 1,,), then by rotational invariance of Gaussians, we can only

hope to recover B up to a rotation and the identity matrix suffices as a solution.

Definition 6.4.2. (Independent Component Analysis.) Given ¢ > 0 and samples of the form
y; = Bx; + E;, for all i € [n], such that B € R™ ™ is unknown and full rank, x; € R™ is a
vector random variable with independent components and has fourth moments strictly less than
that of a Gaussian, the ICA problem is to recover an additive error approximation to B, i.e.,

recover a matrix B such that |B — B||p < e.

We use the algorithm provided in Arora et. al. [AGMSI2] as a black box for ICA. We
note that our input distribution is rectified Gaussian, which differs from the one presented in
[AGMS12]. Observe, our distribution is invariant to permutations and positive scaling, is sub-
Gaussian, and has moments that are bounded away from Gaussian. The argument in [AGMS12]
extends to our setting, as conveyed to us via personal communication [Gel8]. We have the

following formal guarantee :

Theorem 128. (Provable ICA, [AGMS12] and [Gel8].) Suppose we are given samples of the
form y; = Bx; + E; fori = 1,2,...,n, where B € R"™ ™, the vector x; € R™ has i.i.d.

389



components and has fourth moments strictly bounded away from Gaussian, and E; € R™ is
distributed as N (0,1,,,), there exists an algorithm that with high probability recovers B such
that |B — BILD||» < €, where I1 is a permutation matrix and D is a diagonal matrix such that
it is entry-wise positive. Further, the sample complexity is n = poly (HJ(B), %) and the running

time is poly(n, m).

We remark that ICA analyses typically require B to be a square matrix, and recall thatU™* is
m X k for m > k. To handle this, we sketch our samples using a dense Gaussian matrix with

exactly k£ columns, and show this sketch is rank preserving. We will denote the resulting matrix
by TU*.
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Algorithm 3 : ExactNeuralNet(A, X)

Input : Matrices A € R¥"™ and X € R™ " such that each entry in X ~ N(0, 1).

1. Let T € R**™ be a matrix such that for all : € [k], j € [m], T;; ~ N(0,1). Let TA
be the matrix obtained by applying the sketch to A.

2. Consider the ICA problem where we receive samples of the form TA = TU* f(V*X).

3. Run the ICA algorithm, setting € = m, to recover TU such that | TU —
TUTNID||r < Gymmarmm

4. Let X be the first £ = poly(d, m, k, x(U*),x(V*)) columns of X, and let A =

U f(V*X). Let T = m be a threshold. Then for all i € [k], j € [¢], set

f(VX). . = e . bJ
((TU)_ITA) ~ otherwise

1,]

— 0 if (TU)'TA) <7

—

5. Let S; be the sparsity pattern of the vector f(V X) i Forall j € [k], and r € [K],
solve the following linear system of equations in the unknowns z’; € RE.

vie [\ S, (¢5A); =0,

Where (%), is the r-th coordinate of 7.
6. Set w; to be the first vector z; such that a solution exists to the above linear system.

7. Let W € R¥*‘ be the matrix where the i-th row is given by w;A. Flip the signs of

the rows of W so that W has no strictly negative entries.

8. For each i € [k], solve the linear system (W;,)s, = V;.Xs, for V. € R¥*¢ where
the subscript S; means restricting to the columns of .S;. Normalize V' to have unit
norm rows. Finally, solve the linear system A = U f(V X)) for U, using Gaussian

Elimination.

Output: U, V.

Lemma 6.4.3. (Rank Preserving Sketch.) Let T € R¥*™ be a matrix such that for all i € [k],
j € Im), T;; ~ N(0,1). Let U* € R™* such that rank(U*) = k and m > k. Then,
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TU* € R*** has rank k. Further, with probability at least 1 — 6, k(TU*) < (k*m/d)x(U*).

Proof. Let MENT be the SVD of U*, such that M € R™ ¥ and XNT € R¥*"  Since
columns of M are orthonormal and Gaussians are rotationally invariant, TM & RE¥E g i.i.d.
standard normal. Further, ¥IN7 has full row rank and thus has a right inverse, i.e., NX 1,
Then, rank(TU) = rank(TMXNT) < rank(TM). Further TM = TUX ™', and therefore
rank(TM) = rank(TUX ") < rank(TU). Recall, TM is a m x k matrix of standard Gaussian

random variables and has a non-zero determinant with probability 1.

Next, k(TU*) < k(T)x(U*). Note T is at least k£ + 1 x k and by Theorem 3.1 in [RV10],
with probability 1 — §, oyin(T) > k6. Similarly, by Proposition 2.4 [RV 10], with probability
1—1/e9 5. (T) < km/d. Union bounding over the two events, with probability at least
1 —1/poly(k), k(T) < poly(k) and thus x(TU*) < (U)k*m/s. O

Algorithmically, we sketch the samples TA such that they are of the form TU* f(V*X). By
Lemma 6.4.3, TU™ is a square matrix and has rank k. Since V is orthonormal, each column
of f(V*X) has entries that are i.i.d. max{N(0,1),0}. Note, the samples TA now fit the ICA
framework, the noise E = 0, and thus we can approximately recover U*, without even looking

at the matrix X'. Here, we set € = to get the desired running time. Recall, given

1
poly(m,d,k,x(U*))
the polynomial depedence on 1/¢, we cannot recover U* exactly.

Corollary 6.4.4. (Approximate Recovery using ICA.) Given A € R™" X € R™", and a
sketching matrix T € R¥™ such that A = U*f(V*X) and for all i € [k], j € [m)],
T, ; ~ N(0,1), there exists an algorithm that outputs an estimator to TU" such that ||T/l\] —
TUIID|r < m, where 11 is a permutation matrix and D is strictly positive diag-

onal matrix. Further, the running time is poly (m, d, k, k(U*)).

Exact Recovery: By Corollary 6.4.4, running ICA on TA = TU* f(V*X), we recover TU*
approximately up to a permutation and positive scaling of the column. Note that we can disregard
the permutation by simply assuming V' has been permuted to agree with the II. Let TU be our
estimate of TU*. We then restrict our attention to the first £ = poly (d, m, k, k(U*), k(V*))
columns of X, and call this submatrix X, and A = U* f(V*X). We then multiply TA by the
inverse (TU)™!, which we show allows us to recover D~ f(V*X) up to additive ¢ error where

¢ is at most O (poly( d’m’kﬂlw*)’ﬁ(v*)). Since the sketch T will preserve rank, TU will have an

Pty

inverse, and thus (TU) will be invertible (we can always perturbe the entries of our estimate
by 1/poly(n) to ensure this). The inverse can then be computed in a polynomial number of

arithmetic operations via Gaussian elimination. By a simple thresholding argument, we show
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that after rounding off the entries below 7 = 1/poly(¢) in (TU) 'TA, we in fact recover the
exact sign pattern of f(V*X).

Our main insight is now that the only sparse vectors in the row space of A are precisely the
rows (up to positive a scaling) of f(V*X). Specifically, we show that the only vectors in the
row span of U* f(V*X) which have the same sign and sparsity pattern as a row of f(V*X)
are positives scalings of the rows of f(V*X). Here, by sparsity pattern, we mean the subset
of entries of a row that are non-zero. Since each row of f(V*X') is non-negative, the sign and
sparsity patterns of f(V*X) together specify where the non-zero entries are (which are therefore

strictly positive).

Now after exact recovery of the sign pattern of f(V*X'), we can set up a linear system to
find a vector in the row span of A with this sign pattern, thus recovering each row of f(V*X)
exactly. Critically, we exploit the combinatorial structure of ReLLUs together with the fact that
linear systems can be solved in a polynomial number of arithmetic operations. This allows for
exact recovery of U™ thereafter. Recall that we assume the rows of V'* have unit length, which
removes ambiguity in the positive scalings used for the rows of V'« (and similarly the columns
of U").

We begin by showing that the condition number of V'* is inversely proportional to the min-
imum angle between the rows of V'*, if they are interpreted as vectors in R%. This will allow
us to put a lower bound on the number of disagreeing sign patterns between rows of f(V*X)
in Lemma 6.4.6. We will then use these results to prove the uniqueness of the sign and sparsity
patterns of the rows of f(V*X) in Lemma 6.4.8.

Lemma 6.4.5. Let 0.y, € [0, 7] be the smallest angle between the lines spanned by two rows of

the rank k matrix V. € R¥*® which unit norm rows, in other words 0, = min; ; arccos((V; ., Vj..))

where arccos takes values in the principle range [0, 7). Then k(V') > <

for some constant c.

emin

Proof. Let i, j be such that arccos(|(V;., V;.)|) = Omin. Let V'~ be the pseudo-inverse of V.
Since V' has full row rank, it follows that V/(V =) = I, thus (V; ., V) = 0 and (V} ., V}7)
1. The first fact implies that V is orthonormal to V; ., and the second that cos(0(Vj., V)
(IIV;.ll2)~" where §(Vj,,, V) is the angle between Vj , and V..

Now let z = V;.,y = V;./||V;.|l,z = Vj.. Note that z,y, z are all points on the unit
sphere in r dimensions, and since scaling does not effect the angle between two vectors, we have
0(z,y) = 0(V,., ‘/};).2We know 0(x,y) = 7/2, and 0, = 0(x, z), so the law of cosines gives

2—||ly—= .
cos(0(y, 2)) = 5= We have [ly — 2l = [|[(y — #) — (z = )]l > [VZ = ||z — 2]l2]- Again
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by the law of cosines, we have ||z — x||3 = 2 — 2 c08(0min)- Since cos(x) ~ 1 — O(x?) for small
x (consider the Taylor expansion), it follows that ||z — x|l < 0, for some constant ¢’. So

ly — 2]|2 > 2 — 22|z — z|]s + ||z — 2||2 = 2 — /"Opin for another constant ¢”. It follows that

/"
c emin

2

cos(0(y, 2)) <

Fromwhichweobtain 1Vizll2 = 2/(¢"Omin). It follows that o1 (V™) > |le] V™[l = ||V ||

2
//9 . Since the rows of V' have unit norm, we have 01(V') > 1,50 (V') = 01(V)o1(V ")

Wthh is the desired result setting ¢ = %

WV WV

//9

Lemma 6.4.6. Fix any matrix V. € R¥*¢ with unit norm rows. Let X € R’ be an i.i.d.
Gaussian matrix for any { > tpoly(k, k), where k = k(V'). For every pair i, j € [k] withi # j,
with probability 1 — 1 /poly({) there are at least t coordinates p € [{] such that (V X);,, < 0 and
(VX);,>0.

Proof. We claim that Pr[(VX),, < 0,(VX),, > 0] = Q(1/k). To see this, Consider the
2-dimensional subspace H spanned by V; ., and Vj .. Let ¢ be the angle between V; , and V/ ,

in the plane H. Then the event in question is the event that a random Gaussian vector, when
projection onto this plane H, lies between two vectors with angle 6 between each other. By the

rotational invariance and spherical symmetric of Gaussians (see, e.g. [Bry12]), this probability

is 5. Since K(V) > 55 = Q(5) by Lemma 6.4.5, it follows that a random gaussian splits V; .

and V; . with probability Q2(1/x) as desired.

Thus on each column p of f(VX), f(V;.X.,) < 0and f(V.X.,) > 0 with probability
at least 2(1/rk). Using the fact that the entries in separate columns of V' X" are independent, by
Chernoff bounds, with probability greater than 1 — k% exp(Q(¢/k)) > 1 — 1/poly(¢), after union
bounding over all O(k?) ordered pairs i, j, we have that f(V;.X) < 0 and f(V;.X) > 0 on at
least 2(¢/r) > t coordinates.

]

Lemma 6.4.7. Let Z; be the i-th column of (V X'), where V' has rank k. Then the covariance of
the coordinates of Z; are given by the k x k posiitve definite covariance matrix VV'T, and the

joint density function is given by:

exp ( — %ZiT(VVT)*IZi)

PZats-- 2 D) = JemFdet(VVT)
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In particular, the joint probability density of any subset of entries of V X is smooth and every-

where non-zero.

Proof. Since Z; = V(X1)T, where X! are i.i.d. normal random variables, t is well known
that the covariance is given by V'VT [Gut09], which is positive definite since V has full row
rank. These are sufficient conditions ([Ash]) for the pdf to be given in the form as stated in the
Proposition. Since distinct columns of V' X are statistically independent (as they are generated

by separate columns of &X'), the last statement of the proposition follows.

]

The following Lemma demonstrates that the the only vectors in the row span of f(V*X)
with the same sign and sparsity pattern as f(V*X), ., for any given row ¢, are positive scalings
of f(V*X),.. Recall that a sparsity pattern S C [n] of a vector y € R" is just set of coordinates
1 € S such that y; > 0.

Lemma 6.4.8. Let X € R be an i.i.d. Gaussian matrix for any ¢ > tpoly(k,k(V*)). Let S
be the sparsity pattern of a fixed row f(V*X);., and let ) C S" C S. Then w.h.p. (in t), the
only vectors in the row span of f(V*X') with sparsity pattern S', if any exist, are non-zero scalar
multiples of f(V*X), ..

Proof. Suppose Z = wf(V*X) had sparsity pattern S’ and was not a scaling of f(V*X), ..
Then w is not 1-sparse, since otherwise it would be a scaling of a another row of f(V*X'), and
by Proposition 6.4.6 no row’s sparsity pattern is contained within any other row’s sparsity pattern.
Let W be f(V*X) restricted to the rows corresponding to the non-zero coordinates in w, and
write Z = wW (where now w has also been restricted to the appropriate coordinates). Since
W has at least 2 rows, and since the sparsity pattern of wW is contained within the sparsity
pattern of f(V*X), ., by Proposition 6.4.6, taking ¢ = 10k?, we know that there are at least 10k
non-zero columns of W for which wW 1is 0, so let W’ be the submatrix of all such columns.

Now for each row W/ of W' with less than k£ non-zero entries, remove this row W/ and
also remove all columns of W' where W/ was non-zero. Continue to do this removal iteratively
until we obtain a new matrix W” where now every row has at least £ non-zero entries. Observe
that the resulting matrix W” has at least 95> columns. If there are no rows left, then since we
only removed k columns for every row removed, this means there were at least 9k% columns of
W' which contained only zeros, which is a contradiction since by construction the columns of

W' were non-zero to begin with. So, let &’ < k be the number of rows remaining in W”. Note
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that since the rows we removed were zero on the columns remaining in W”, there must still be a
vector w’, which in particular is w restricted to the rows of W, which has no zero-valued entries
and such that w'W" = 0.

Now observe once we obtain this matrix W, note that we have only conditioned on the
sparsity pattern of the entries of W (over the randomness of the Gaussians X’), but we have not
conditioned on the values of the non-zero entries of W”. Note that this conditioning does not
change the continuity of the joint distributions of the columns of W, since this conditioning
is simply restricting the columns to the non-zero intersection of half spaces which define this
sign pattern. Since the joint density function of the columns of V' X is non-zero on all of R¥ by
Lemma 6.4.7, it follows that, after conditioning, any open set in this intersection of half spaces
which defines the sparsity pattern of W” has non-zero probability measure with respects to the

joint density function.

Given this, the argument now proceeds as in Lemma 6.2.4. Since each row of W has at least
k non-zero entries, we can find a square matrix W1 € R**¥ obtained by a taking a subset of
k' < 9k? columns of W and permuting them such that the diagonal of W has a non-zero sign
pattern. After conditioning on the sign pattern so that the diagonal is non-zero, the determinant
det(WT) of W is a non-zero polynomial in s random variables with &’ < s < (k’)2. By Lemma
6.4.7, the joint density function of these s variables is absolutely continuous and everywhere non-
zero on the domain. Here the domain €2 is the intersection of half spaces given by the sign pattern

conditioning.

Since €2 is non-empty, it has unbounded Lebesgue measure in R°. Since det(WT) is a
non-zero polynomial in s real variables, it is well known that det(W) cannot vanish on any
non-empty open set in R* (see e.g. Theorem 2.6 of [Con], and note the subsequent remark on
replacing C* with R*). It follows that the set of zeros of det(WT) contain no open set of R*, and
thus has Lesbegue measure 0 in (). Integrating the joint pdf of the s random variables over this
subset of measure 0, we conclude that the probability that the realization of the random variables
is in this set is 0. So the matrix W has rank k', and so w'W" = 0 is impossible, a contradiction.
It follows that Z is a scaling of a row of f(V*X) as needed. O

We will now need the following perturbation bounds for the pseudo-inverse of matrices.

Proposition 6.4.9 (Theorem 1.1 [MZ10]). Let Bt denote the Moore—Penrose Pseudo-inverse of
B, and let |B

|2 denote the operator norm of B. Then for any E we have

I(B+E)f — B < vVZmax {|IB[3. | (B + E)'|3} B+
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We prove the following corollary which will be useful to us.

Corollary 6.4.10. ForanyB,Eand ; > ¢ > Owith |B||; > 1, |E|r < 5 and where . = £(B)

is the condition number of B. Then we have
I(B +E)' = Bl||» < Ofe)
and moreover, if B has full column rank, then
I(B+E)'B —TI||» < O(|[Bll2¢)

Proof. We have ||(B+E)! — B[/ < max {||BT||2, (B+E)|3 } ) by applying Proposition
6.4.9. In the first case, this is at most m:(B) @) — O(e) as stated. Here we used the fact
that |B|ls = omax(B) > 1, so 1/0mm(B) < k. In the second case of the max, we have
(B +E) — Bf||r < |(B+E)[32 = 0,2(B + E)2. By the Courant-Fisher theorem 2,
using that ||E|» < ||E||r < 1/(4k), we have

onin(B+E) > inf [|e(B+E)|>> inf [ [lzB];— |l2E]; |
Ti|Tl|2= z:||z||2=

> 0ain(B) ~ 1= > Tuia(B)/2 > 1/(26)

where the minimum is taken over vectors x with the appropriate dimensions. Thus in both cases,

we have ||(B +E)" — Bf||» < O(¢), so

I(B +E)B ~1Ir = [(B+E)" - B)B|r < [B]:0()

We now are ready to complete the proof of the correctness of Algorithm 3

Theorem 129. (Exact Recovery for Orthonormal V*.) Given A = U*f(V*X), for rank k-
matrices U* € R™* V* ¢ R ywhere V* is orthonormal and X € R¥™™ which is i.i.d.
Gaussian with n = poly(d, k, m, k(U*), (V*)), there is a poly(n)-time algorithm which recov-

ers U*, V* exactly with probability 1 — W

Proof. By Corollary 6.4.4, after sketching A by a Gaussian matrix T € R**™ and running
ICA on TA in poly(d, m, k, x(U*)) time, we recover TU~ such that |ITU — TU*TID||y <

2See https://en.wikipedia.org/wiki/Min-max_theorem
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1
poly(d,k,m,k(U*),k(V*))

tion matrix and D is strictly positive diagonal matrix. We can disregard II by assuming the rows

for a sufficiently high constant-degree polynomial, such that I1 is a permuta-

of V* have also been permuted by 11, and we can disregard D by pulling this scaling into V*

1
poly(d,k,m,x(U*),x(V*))

(which can be done since it is a positive scaling). Thus | TU — TU* || <

Observe now that we can assume that 1 < || TU*||; < 2 by guessing a scaling factor ¢ to
apply to A before running ICA. To guess this scaling factor, we can find the largest column
(in Ly) y of TA, and note that y = (TU™*)f(V*X, ;) for some j. Since || f(V*X,;)[l2 <
O(4/log(n))d with high probability for all j € [n] (using the Gaussian tails of X), it follows that
ly]l2 < Omax(TU*)O(4y/log(n))d. Since with w.h.p there is at least one column of f(V*X’) with
norm at least 1/poly(n), it follows that ||y||2 = 0w (TU*)/poly(n) > %
make log (poly(n, K, d)) = O(log(n)) guesses in geometrically increasing powers of 2 between

lly|l2/O(y/log(n))d and ||y||2poly(n, ) to find a guess such that ||cTU*||; € (1,2) as desired.
This will allow us to use Corollary 6.4.10 in the following paragraph.

. Thus one can

Now let TU' be the pseduo-inverse of TU, and let A = U* f(V*X) where X is the first
poly(d, k,m, x(U*), (V*)) columns of X'. We now claim that the sign pattern of (TU ) TA =
TU TU* f(V*X) is exactly equal to that of f(V*X) after rounding all entries of with value
less than 1/poly(¢) to 0. Note that since TU* is full rank, it has an inverse (which is given by the
pseudoinverse (TU*)'. Let Z be the resulting matrix after rounding performing this rounding
to ’ffJTTA’. We now apply Corollary 6.4.10, with TU* = B and TU = B + E. Since we
guesses opax(TU™) up to a factor of 2 and normalized TU by it, it follows that the entries of
the diagonal matrix D are all at most 2 and at least 1/(2x(TU™)), and then using the fact that
1f(VX)||r < [V*X|lr < VIV*|r < VEk whp. in ¢ (using well-known upper bounds
on the spectral norm of a rectangular Gaussian matrix, see e.g. Corollary 5.35 if [Ver10b]) we

obtain

|Z — Df(VE)|r = |(TU (TU") ~ 1) Df (VX'
1
S poly (d, k. m, 5(U), 5(V))

Note that algorithmically, instead of computing the inverse ’I/‘ET, we can first randomly per-
turb TU by an entry-wise additive 1/poly(n) to ensure it is full rank, and then compute the true
inverse, which can be done via Gaussian elimination in polynomially many arithmetic opera-
tions. By the same perturbational bounds, our results do not change when using the 1/poly(n)

perturbed inverse, as opposed to the original pseudo-inverse.
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Now since the positive entries of D f(V*X) have normal Gaussian marginals, and D is
a diagonal matrix which is entry-wise at most 2 and at least 1/(2x(TU™)), the probability
that any non-zero entry of f(V*X) is less than 1/poly(¢) is at most 2x(TU*)/poly(¢), and
we can then union bound over poly(d, k, m, k) such entries in X. Note that by Lemma 6.4.3,
k(TU*) < poly(k,d, m)x(U*) w.h.p. in k, d, m, so poly(¢) >> x(TU™). Conditioned on this,
with probability 1 — 1/poly(d, m, k, k) for sufficiently large ¢ = poly(d, k, m, ), every strictly
positive entry of D f(V*X), and therefore of f(V*X), is non-zero in Z, and moreover, and
every other entry will be 0 in Z, which completes the claim that the sign and sparsity patterns of

the two matrices are equal.

Given this, for each i € [k] we can then solve a linear system to find a vector w; such
that (w;A), = 0 for all p not in the sparsity pattern of Z; .. In other words, the sparsity pat-
tern of (w;A) must be contained in the sparsity pattern of Z; ., which is the sparsity pattern of
f(V*X), . be the prior argument. By Lemma 6.4.8, the only vector in the row span of A (which
is the same as the row span of f(V*X) since U* is full rank) which has a non-zero sparsity
pattern contained in that of f(V*X); . must be a non-zero scaling of f(V*X); .. It follows that
there is a unique w;, up to a scaling, such that w;A is zero outside of the sparsity pattern of
f(V*X), .. Since at least one of the entries r of w; is non-zero, there exists some scaling such
that w; A is zero outside of the sparsity pattern of f(V*X), . and (w;), = 1 (where (w;),) is the
r-th coordinate of w;). Since the first constraint is satisfied uniquely up to a scaling, it follows
that there will be a unique solution w} to at least one of the r € [k] linear systems in Step 5 of Al-
gorithm 3, which will therefore be optained by the linear system. This vector w; we obtain from

Steps 5 and 6 of Algorithm 3 will therefore be such that w; A is a non-zero scaling of f(V*X), ..

Then in Step 7 of Algorithm 3, we construct the matrix W, and flip the signs appropriately
so that each row of W is a strictly positive scaling of a row of f(V*X'). We then solve the linear
system (W; .)s, = VQ,*?SZ, for the unknowns V', which can be done with a polynomial number
of arithmetic operations via Gaussian elimination. Recall here that S; is the set of coordinates
where W, ,, and therefore f (VZ**Y), is non-zero. Since at least 1/3 of the signs in a given row
i will be positive with probability 1 — 27%¢) by Chernoff bounds, restricting to this subset .S; of
columns gives the equation W, , = ‘/i:k*?gi. Conditioned on S; having at least d columns, we
have that X's, is full rank almost surely, since it is a matrix of Gaussians conditioned on the fact
that every column lies in a fixed halfspace. To see this, apply induction on the columns of ygl{,
and note at every step ¢ < d, the Lesbegue measure of the span of the first 2 columns is 0 in this
halfspace, and thus the 7 + 1 column will not be contained in it almost surely. It follows that there

is a unique solution V/ . for each row ¢, which must therefore be the corresponding row of V'* (we
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normalize the rows of V; , to have unit norm so that they are precisely the same). So we recover
V* exactly via these linear systems. Finally, we can solve the linear system A = U f(V*X) for
the variables U to recover U* exactly in strongly polynomial time. Note that this linear system
has a unique solution, since f(V*X) is full rank w.h.p. by Lemma 6.2.4, which completes the
proof. ]

6.4.2 General Algorithm

We now show how to generalize the algorithm from the previous sub-section to handle non-
orthonormal V*. Observe that when V* is no longer orthonormal, the entries within a column
of V*X are no longer independent. Moreover, due to the presence of the non-linear function
f(+), no linear transformation will exist which can make the samples (i.e. columns of f(V*X))
independent entry-wise. While the entries do still have Gaussian marginals, they will have the
non-trivial covariance matrix V*(V*)T # I;. Thus it is no longer possible to utilize previously
developed techniques from independent component analysis to recover good approximations to

U*. This necessitates a new approach.

Our starting point is the generative model considered by Janzamin et. al. [JSA15], which
matches our setting, i.e. A = U*f(V*X'). The main idea behind this algorithm is to construct
a tensor that is a function of both A, X and then run a tensor decomposition algorithm to re-
cover the low-rank components of the resulting tensor. While computing a tensor decomposition
is NP-hard in general [HL13], there is a plethora of work on special cases, where computing
such decompositions is tractable [BCMV 14, SWZ16, WA16, GVX14, GM15, BM16]. Tensor
decomposition algorithms have recently become an invaluable algorithmic primitive and found
a tremendous number of applications in statistical and machine learning tasks [JSA15, JSA14,
GLM17, AGHK14a, BKS15].

A key step is to construct a non-linear transform of the input by utilizing knowledge about
the underlying pdf for the distribution of X, which we denote by p(x). The non-linear function
considered is the so called Score Function, defined in [JSA14], which is the normalized m-th

order derivative of the input probability distribution function p(z).

Definition 6.4.11. (Score Function.) Given a random vector x € R® such that p(z) describes

the corresponding probability density function, the m-th order score function S,,(x) € @™ R% is

defined as

() (o
Sulw) = (1) V2 20)



The tensor that Janzamin et. al. [JSA14] considers is the cross moment tensor between A
and S3(X'). This encodes the correlation between the output and the third order score function.
Intuitively, working with higher order tensors is necessary since matrix decompositions are only
identifiable up to orthogonal components, whereas tensor have identifiable non-orthogonal com-
ponents, and we are specifically interested in recovering approximations for non-orthonormal
V*. Computing the score function for an arbitrary distribution can be computationally challeng-
ing. However, as mentioned in Janzamin et. al. [JSA14], we can use orthogonal polynomials

that help us compute the closed form for the score function Si,,,)(), in the special case when

z ~ N(0,I).

Definition 6.4.12. (Hermite Polynomials.) If the input is drawn from the multi-variate Gaussian

distribution, i.e. x ~ N(0,I), then Sin)(z) = Hp(z), where Hy,(x) = % and
=13
p(x) = (\/2171-)d6772

Since we know a closed form for the m-th order Hermite polynomial, the tensor S(,,y can be
computed efficiently. The critical structural result in the algorithm of [JSA15] is to show that
in expectation, the cross moment of the output and the score function actually forms a rank-k

tensor, where the rank-1 components capture the rows of V' *. Formally,

Lemma 6.4.13. (Generalized Stein’s Lemma [JSA15].) Let A, X be input matrices such that
A =U*f(V*X), where f is a non-linear, thrice differentiable activation function. Let S3(x) be
the 3-rd order score function from Definition 6.4.11. Then,

k
T=E|Y Au @ &) = Y B (VUL VL 0 Vi e Vi,

i=1 7j=1

where " is the third derivative of the activation function and x ~ p(x).

Note, 7 is a 4-th order tensor and can be constructed from the input A and X'. The first mode

of 7 can be contracted by multiplying it with a random vector 6, therefore,

E |y A0 8 ZA Vi.® V.oV

=1

where \; = E, [f"(V*x)] (U}

*j?

0). Therefore, if we could recover the low-rank components of
T we would be obtain a approximate solution to V'*. The main theorem in [JSA15] states that

under a set of conditions listed below, there exists a polynomial time algorithm that recovers an
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additive error approximation to V' *. Formally,

Theorem 130. (Approximate recovery [JSAI5]) Let A € R™ ", X € R¥™" be inputs such
that A = U*f(V*X) + n, where f is a non-linear thrice differentiable activation function,
U* € R™* has full column rank, V* € R**? has full row rank, for all i € [n], X,; ~ N(0,1)
and 1 is mean zero sub-Gaussian noise with variance 0,,;.. Then, there exists an algorithm
that recovers V such that |V — DIIV*||p < ¢, where D is a diagonal +1 matrix and I1 is a
permutation matrix. Further, the algorithm runs in time
1 T T 1 Amax *

poly (m,d, By o B [IMa(2)My (@) 2] E [182(2)S2(0) Il 1= A, 5, 5(V >a)

min

where Sy is the 3-rd order score function, Ms(x)R® is the matricization of Ss, N =E. [f"(V*2)]
(Uy;,0), \; =B [f(V*2)] (U};,0) ,x(V™) is the condition number, 0,is. is the variance of 1)

and. Note, in the case where X, ; ~ N'(0,1), E [HMg(l’)Mg(iIf)THQ} = O(d®) and E |:HSQ(SC)82(.T)TH2:| =
O(d?).

Remark 131. We only use the Whitening, Tensor Decomposition and Unwhitening steps from
Janzamin et. al. [JSA15], and therefore the sample complexity and running time only depends
on Lemma 9 and Lemma 10 in [JSA15].

However, there are many technical challenges in extending the aforementioned result to our
setting. We begin with using the estimator from Theorem 130 in the setting where the noise, 7,
is 0. The first technical challenge is the above theorem requires the activation function f to be
thrice diffrentiable, however ReLLU is not. To get around this, we use a result from approximation

theory to show that ReLU can be well approximated every where with a low-degree polynomial.

Lemma 6.4.14. (Approximating ReLU [GK17].) Let f(x) = max(0,x) be the ReLU function.

Then, there exists a polynomial p(z) such that

sup |f(x) —p(z)| <7
ze[—1,1]

and deg(p) = O(;) and p([-1,1]) € [0, 1].

1
n
This polynomial is at least thrice differentiable and can be easily extended to the domain we

care about using simple transformations. We assume that the samples we observe are of the form

U*p(V*X) corrupted by small adversarial error. Formally, the label matrix A can be viewed as
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being generated via A = U*p(V*X) + Z, where Z = U* (f(V*X) - p(V*X)). We note that
we only use the approximation as an analysis technique and show that we can get an approximate

solution to V'*. First, we make a brief remark regarding the normalization of the entries in A.

Remark 132. Observe in both the noiseless and noisy cases, the latter being where A = U* f(V*X)+
E where E is i.i.d. mean 0 with variance o2, that by scaling A by 1/|| A jax]|2, Where || A max|l2
is the largest column norm of A, we can ensure that the resulting U* has [|[U* ||, < m max{1,c}x(U*),
where o2 is the variance of the noise E (in the noisy case). To see why this is true, suppose
this were not the case. Observe that w.h.p. at least half of the columns U*f(V*X") which
will have norm at least w(1)o,,{, (U*) (since w.h.p. half the columns of f(V*X’) have norm
w(1)), thus if ||U*||s > mmax{1l,o}x(U") after normalization, then then at least half of the
normalized columns of U f(V*X) will have norm w(m max{1,c}). By Markov inequality
and a Chernoff bound, strictly less than 1/4 of the columns of the original E can have norm
w(mo) w.h.p., and since the normalized E is strictly smaller, by triangle inequality there will

be a column of A = U*f(V*X) + E after normalization with larger than unit no