
Algorithms for Learning Latent Models :
Establishing Tractability to

Approaching Optimality
Ainesh Bakshi

CMU-CS-22-146

August 2022

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Pravesh K. Kothari, Co-Chair
David P. Woodruff, Co-Chair

Ryan O’Donnell
Boaz Barak (Harvard)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2022 Ainesh Bakshi

This research was sponsored by the Office of Naval Research under award number N000141812562, the Air Force
Office of Scientific Research under award number FA870215D0002, and the National Science Foundation under
award numbers CCF-1815840 and CCF-2047933. The views and conclusions contained in this document are those
of the author and should not be interpreted as representing the official policies, either expressed or implied, of any
sponsoring institution, the U.S. government or any other entity.

Keywords: Latent Models, Robust Statistics, Sum-of-Squares, Numerical Linear Algebra

To my Grandparents,
who woke up as refugees in an independent India
and toiled to provide a better life for their kids.

Abstract

Modern machine learning relies on algorithms that fit expressive latent models to
large datasets. While such tasks are easy in low dimensions, real-world datasets are
truly high-dimensional, often leading to computational intractability. Additionally, a
prerequisite to deploying models in real-world systems is to ensure that their behav-
ior degrades gracefully when the modeling assumptions no longer hold. Therefore,
there is a growing need for efficient algorithms that fit reliable and robust models to
data and are accompanied with provable guarantees.

In this thesis, we focus on designing such efficient and robust algorithms for
learning latent variable models. In particular, we investigate two complementary
regimes arising in learning latent models: establishing computational tractability

and approaching computational optimality. The first regime considers learning high-
dimensional latent models where no efficient algorithms were known. We resolve
several central open questions in this regime, by providing the first polynomial time
algorithms for robustly learning a mixture of Gaussians, robust linear regression and
learning two-layer neural networks. The second regime considers models where
polynomial time algorithms were already well-established. Here, we show that we
can obtain algorithms with information-theoretically minimal running time and sam-
ple complexity. In particular, we show that for several low-rank models there is no
statistical vs. computational trade-off.

Contents

1 Introduction 1

1.1 Establishing Tractability of Learning Latent Models 2

1.2 Nearly Optimal Algorithms for Learning Latent Models 38

1.3 Roadmap of the Thesis . 61

I Establishing Tractability of Latent Models 63

2 Outlier-Robust Clustering of Non-Spherical Mixtures 65

2.1 Introduction . 65

2.2 Preliminaries . 71

2.3 Clustering Mixtures of Reasonable Distributions 74

2.4 Outlier-Robust Clustering of Reasonable Distributions 102

2.5 Fully Polynomial Algorithm via Recursive Partial Clustering 116

2.6 Outlier-Robust Covariance Estimation in Frobenius Distance 129

2.7 Reasonable Distributions . 138

2.8 Sum-of-Squares Toolkit . 143

2.9 Total Variation vs Parameter Distance for Gaussian Distributions 145

2.10 Typical Samples are Good with High Probability 147

2.11 Polynomial Approximators for Thresholds . 150

v

2.12 TV-Close Subgaussian Distributions with Arbitrarily Far Parameters 152

3 Robustly Learning a Mixture of k Arbitrary Gaussians 153

3.1 Introduction . 153

3.2 Preliminaries . 160

3.3 List-Recovery of Parameters via Tensor Decomposition 175

3.4 Robust Partial Cluster Recovery . 195

3.5 Spectral Separation of Thin Components . 210

3.6 Robust Proper Learning: Proof of Theorem 67 213

3.7 More Efficient Robust Partial Cluster Recovery 227

3.8 Getting poly(ε)-close in TV Distance: Proof of Theorem 68 240

3.9 Robust Parameter Recovery: Proof of Theorem 69 250

3.10 Omitted Proofs . 263

3.11 Bit Complexity Analysis . 276

4 Robustly Linear Regression 279

4.1 Introduction . 279

4.2 Preliminaries . 285

4.3 Robust Certifiability and Information Theoretic Estimators 287

4.4 Robust Regression in Polynomial Time . 292

4.5 Lower bounds . 306

4.6 Bounded Covariance Distributions . 310

4.7 Robust Identifiability for Arbitrary Noise . 312

4.8 Efficient Estimator for Arbitrary Noise . 316

4.9 Proof of Lemma 4.2.4 . 321

5 List-Decodable Subspace Recovery 323

vi

5.1 Introduction . 323

5.2 Technical Overview . 328

5.3 Preliminaries . 334

5.4 Algorithm . 334

5.5 Certifiable Anti-Concentration . 349

5.6 Appendix . 353

6 Learning a Two-Layer Neural Network 359

6.1 Introduction . 359

6.2 Exact solution when rank(A) = k . 376

6.3 NP-Hardness . 383

6.4 A Polynomial Time Exact Algorithm for Gaussian Input 386

6.5 A Polynomial Time Algorithm for Gaussian input and Sub-Gaussian Noise . . . 413

6.6 A Fixed-Parameter Tractable Exact Algorithm for Arbitrary Weight Matrixs . . . 424

6.7 A Fixed-Parameter Tractable Algorithm for Arbitrary Non-Adversarial Noise . . 427

6.8 A Polynomial Time Algorithm for Exact Weight Recovery with Sparse Noise . . 440

II Nearly Optimal Algorithms for Learning Latent Models 445

7 Low-Rank Approximation with 1/ε1/3 Matrix-Vector Products 447

7.1 Introduction . 447

7.2 Additional Related Work . 453

7.3 Preliminaries . 453

7.4 Algorithms for Schatten-p LRA . 457

7.5 Query Lower Bounds . 473

7.6 Extending Prior Work on Lower Bounds . 482

vii

7.7 Low Rank Approximation of Matrix Polynomials 483

7.8 Improved Streaming Bounds . 483

8 PSD Low-Rank Approximation 485

8.1 Introduction . 485

8.2 Preliminaries and Notation . 491

8.3 Relative Error PSD Low-Rank Approximation 491

8.4 Robust Low-Rank Approximation . 528

9 Learning a Latent Simplex in Truly Input-Sparsity Time 559

9.1 Introduction . 559

9.2 Connection to Stochastic Models . 561

9.3 Technical Overview . 566

9.4 Full Analysis . 569

9.5 Connection to Spectral Low-Rank Approximation 582

9.6 Empirical Evaluation . 584

Bibliography 587

viii

Acknowledgments

First and foremost, I must acknowledge how grateful I am to my advisors, Pravesh
Kothari and David Woodruff, for providing an incredibly enriching academic expe-
rience. I could not have asked for a better co-advising duo. David was extremely
influential in shaping me as a researcher early on, and was incredibly patient, con-
stantly involved, and always ready to jump into the technical weeds for hours on
end. In addition to providing exciting research directions, David was receptive to
me coming up with my own questions and research directions. He approached every
project we worked on with his characteristic vigor and unwavering support that has
made each collaboration a cherished one. Pravesh took me on as a student at a cru-
cial juncture during my PhD, and introduced me to the fascinating world of convex
hierarchies. Pravesh’s curiosity and breath of knowledge across theoretical computer
science sets the bar for young researchers. His infectious enthusiasm and relentless
optimism are traits I hope to carry with me for the rest of my career. Finally, I am
really grateful to my advisors for constantly believing in me, even when I did not,
and giving me the time and space to pursue directions I found interesting.

Next, I want to thank Yury Makarychev and Madhur Tulsiani for an exhilarating
summer internship at TTI-Chicago in the summer of 2021. Despite the pandemic,
this was an incredible internship, and one that broke the monotony of working from
home. Over the course of the summer, I also started working closely with Aravindan
Vijayaraghavan and Goutham Rajendran. The weekly Friday night meetings with
Madhur, Aravindan, Goutham and Xue became a beacon of positivity during an
otherwise tumultuous period. The meetings were filled with unrelenting optimism
and camaraderie. Over the course of this internship and the collaborations that came
out of it, I got a glimpse of what academic life would actually be like, and I am
very grateful for it. I would also like to extend special gratitude towards Madhur
and Aravindan, who were always available to answer my questions, to engage with
my arcane suggestions, and to host me in Chicago multiple times. I would also
like to thank Ken Clarkson for an excellent summer internship at IBM Research in
the summer of 2020. Ken provided stimulating research questions that have kept
me busy ever since. I would also like to thank Ewin Tang for closely collaborating
with me on questions that came out of this internship, for her exuberance on dull
pandemic days, and for her knack for formulating beautiful conjectures along the
way.

Additionally, I’d like to thank Santosh Vempala for constant encouragement over

ix

the course of my PhD and the numerous meetings wherein we would painstakingly
go over an algorithm and analysis that required a flow-chart to keep track of. I’d
also like to thank Ryan O’Donnell for always hearing out my most obscure math
questions and pointing me to all the right places, and Daniel Kane for being the
closest approximation to an oracle.

I am grateful to Ryan O’Donnell and Boaz Barak for agreeing to serve on my
thesis committee, and providing insightful feedback and a fresh perspective on the
results that appear in this thesis. I also owe a great deal to the faculty in the Com-
puter Science Department at CMU for their support and invaluable advice, especially
Anupam Guptam, Gary Miller, Ryan O’Donnell and Andrej Risteski.

I am also immensely grateful for having had incredible collaborators over the
past years: Pranjal Awasthi, Nina Balcan, Michael Bender, Chiranjeeb Bhattacharya,
Xue Chen, Nadiia Chepurko, Ken Clarkson, Alex Conway, Ilias Diakonikolas, Mar-
tin Farach-Colton, Piotr Indyk, Rajesh Jayaram, He Jia, Praneeth Kaccham, Daniel
Kane, Ravi Kannan, Pravesh Kothari, Jerry Li, Sidhanth Mohanty Adarsh Prasad,
Goutham Rajendran, Sandeep Silwal, Ewin Tang, Madhur Tulsiani, Santosh Vem-
pala, Aravindan Vijayaraghavan, Colin White, David Woodruff and Samson Zhou.

Getting to graduate school was a long and winding road for me. I started out
doing chemical engineering in India, and two years in, I realized this was not the
path for me. I transfered to Rutgers on a whim, and started doing Computer Science.
I never considered doing a PhD until I took Martin Farach-Colton’s graduate algo-
rithms course. Apart from sparking my love for algorithm design, Martin provided
the blueprint of how awesome academic life can be. Taking Eric Allender’s Gradu-
ate Complexity class convinced me that I wanted to do theoretical computer science,
and I applied to graduate school two years into my CS degree. I got rejected from
every school, and if it wasn’t for a singular conversation with Michael Bender, I’d
quit research. I owe a great deal to Martin, Eric and Pranjal Awasthi for encouraging
me to try again, and taking me on as a research assistant straight out of undergrad.
I am specially grateful to Martin for being a sounding board for every step of my
academic journey, and perhaps the most influential person after my advisors.

It takes a village to raise a PhD student, and in addition to senior academics
mentioned above, I am deeply grateful to my ’academic’ friends, who filled my time
as a PhD student with much joy. In particular, I’d like to thank Vijay Bhattiprolu,
Gautam Kamath, Sahil Singla, David Wajc and Erik Waingarten for always listening
to my complaints and questions, and calming my academic anxieties. In addition,

x

I would like to thank the vibrant Theory Group at CMU, and in particular, Costin
Badescu, Naama Ben-David, Vijay Bhattiprolu, Tim Chu, Laxman Dhulipala, Guru
Guruganesh, Paul Goelz, Isaac Grossof, Nika Haghtalab, Ellis Hershkowitz, Rajesh
Jayaram, Praneeth Kachham, Greg Kehne, Misha Khodak, Roie Levin, Jason Li, Pe-
ter Manohar, Pedro Paredes, Siddharth Prasad, Nic Resch, Andrii Riazanov, Michael
Rudow, Sai Sandeep, Anish Sevakari, Sahil Singla, Ellen Vitercik, Alex Wang, Ru-
osong Wang, David Wajc, Jalani Williams, Colin White, Justin Whitehouse, Xinyu
Wu, Jeff Xu, Samson Zhou and Goran Zuzic.

In addition to having fantastic collaborators and mentors over the years, I’ve been
tremendously lucky to meet some of the most incredible people during my time in
Pittsburgh. I’d like to thank Vijay Bhattiprolu, Emily Black, Shreya Bhatia, Sofia
Bosch, Liting Chen, Nadiia Chepurko, Tim Chu, Marina DiMarco, Rajesh Jayaram,
Greg Kehne, Klas Leino, Roie Levin, Pedro Paredes, Filipe Perez, Kevin Pratt, Aria
Wang, Zoe Wellner and Goran Zuzic for keeping me sane outside of work, and
organizing numerous social events over the years. Some of the best memories of
my life have been with you folks and I will cherish them forever. If any of you are
reading this, I am truly sorry for the terrible jokes I made. A special shout out to
Pedro and Zoe for treating me like family and always having me over for dinner.
To Tim for the extra-ordinary stories, full of life lessons, and Goran for unfiltered
expositions about every-day life. To Pedro for always making time and competing
in obscure sports. And finally to Raj for being a collaborator, travel companion,
gambler, and the sibling I never had.

Next, I’d like to thank my lifelong friends Akshat Agarwal, Anant Agarwal,
Spardha Angra, Khushi Mehra and Karan Saharya for always keeping me grounded,
and in general, sticking around for over a decade and a half.

I would also like to thank my family, without whom I would not be here today.
Geeta Massi, Lewis Uncle and Nina provided a home away from home, here in the
US. My grandparents, to whom this thesis is dedicated, Swaran and Arbindo Kwa-
tra, and Shakuntala and Manmohan Bakshi, came to modern day India as refugees in
1947. They started from scratch in a new land, but instilled the importance of educa-
tion and hard work in their kids. I’ve been fortunate to spend a lot of my childhood
in their presence, and I am extremely grateful for all the stories, from the world war
to Indian mythology. Finally, I’d like to thank my parents, Jappy and Rakesh Bakshi,
without whom none of this would be possible. I am the person I am today due to
them, and I am so grateful to them for being my cornerstone. I am also grateful to

xi

them for spending countless hours explaining how and why everything around me
works. In particular, I’d like to thank my mom instilling a passion for learning from
a young age and always indulging my curiosity for the unknown. I’d like to thank
my dad for instilling rationality as virtue, and setting the example for what it means
to be humble, honest, hardworking, and for the countless hours we sunk into playing
cricket and table tennis over the years. Mom and Dad, if you are reading this, thank
you for all your sacrifice, you are the best parents anyone could ask for.

xii

Chapter 1

Introduction

The unreasonable success of modern machine learning relies on algorithms that fit expressive
latent models to large datasets. While such tasks are easy in low dimensions, real-world datasets
are truly high-dimensional, often leading to computational intractability. Additionally, a prereq-
uisite to deploying such models in real-world systems is to ensure that their behavior degrades
gracefully when the modeling assumptions no longer hold. Therefore, there is a growing need
for efficient algorithms that fit reliable and robust latent models to data and are accompanied with
provable guarantees on their performance.

This thesis focuses on the burgeoning area of designing efficient, robust and provable algo-
rithms for fundamental tasks arising in machine learning. In particular, we focus on two com-
plementary regimes for algorithm design: establishing tractability and approaching optimality.
The first regime tackles learning latent models where no efficient algorithms were known when
the dimension is large. We begin by considering the most well-known and widely studied statis-
tical model: the Gaussian Mixture Model (GMM). A long-standing open question in algorithmic
statistics asks whether there exists any efficient algorithm to provably learn the parameters of a
GMM in the presence of a small fraction of outliers. We completely resolve this problem and
dedicate the first two chapters of the thesis to describing our result. Next, we consider learning
a hyperplane and a subspace in the presence of outliers, and characterize the family of distribu-
tions that admit efficient algorithms for these problems. We show that for fitting such simple
models (linear or low-rank), we can handle a much larger family of distributions, often includ-
ing heavy tailed and log-concave distributions. Finally, we consider learning the parameters of
a two-layer neural network with non-linear activations. Here, the input is drawn from a sub-
Gaussian distribution and the network may be under-parameterized. In this setting, we obtain

1

the first polynomial time algorithms to recover the weight parameters of the network. Therefore,
in the first part of this thesis, we establish the computational tractability for (a) robustly learning
any Gaussian Mixture Models, (b) robust linear regression and subspace recovery for a broad
family of distributions and (c) learning the parameters of a two-layer neural network.

The second regime tackles latent models which already admit efficient (polynomial time)
algorithms, and our goal is to obtain nearly optimal (information-theoretically) algorithms. We
begin by considering the low-rank approximation problem (also known as PCA), where the ob-
jective function is any Schatten norm, including well-studied objectives such as Frobenius norm,
Operator norm and Nuclear norm. We resolve the matrix-vector product complexity of low-rank
approximation for a large class of Schatten norms, obtaining information-theoretically optimal
bounds, and in turn the fastest iterative algorithms for this class of latent models. Next, we con-
sider the setting where we fit low-rank models with additional structure, in particular, positive
semi-definiteness (PSD). We show that if the input is promised to be PSD, then we can obtain a
low-rank approximation without reading most of the input. Our algorithm runs in sub-linear time
and reads the information-theoretically minimal number of entries required. Finally, we consider
the problem of learning a latent simplex, a formulation that captures several latent models such
as the stochastic block model, clustering, latent Dirichlet allocation (topic modeling). We obtain
truly input-sparsity (nearly linear time) algorithms for learning a latent simplex. Therefore, in
the second part of this thesis we obtain nearly optimal algorithms for (a) low-rank approxima-
tion under Schatten norms, (b) low-rank approximation of PSD matrices and (c) learning a latent
simplex.

The algorithms we develop draw upon tools from convex and polynomial optimization, high-
dimensional probability, random matrix theory, functional analysis and convex geometry. In each
setting, the algorithms we obtain are accompanied with provable guarantees on their correctness
and performance. We focus on obtaining the most general theorems possible and identify tech-
niques that may be of interest beyond the specific problems we consider. Next, we describe our
results at a technical level, and explain the new ideas we introduce in each corresponding paper.

1.1 Establishing Tractability of Learning Latent Models

Given a collection of observations and a class of latent models, the objective of a typical learning
algorithm is to find the model in the class that best fits the data. The classes of latent models we
consider in this section are (a) Gaussian mixture models, (b) linear models, (c) low-rank models

2

and (d) two-layer neural networks. For linear and low-rank models, folklore algorithms such
as least-squares regression on the empirical samples suffices to learn the optimal hyperplane or
subspace efficiently. For GMMs, the first efficient algorithms were obtained in breakthrough
works more than a decade ago [MV10, BS15]. For learning two-layer neural networks, even
under Gaussian input, there were no provably efficient algorithms to find the model that best fits
the data.

The aforementioned algorithms all assume that the input data are i.i.d. samples generated by
a statistical model in the given class. However, as early as the 60’s, statisticians already realized
that real-world datasets are noisy and are unlikely to fit idealized statistics models [Hub64]. The
sources of such noise can range from systematic bias and error in data collection to malicious
tampering. Robust statistics [Hub04, HRRS11] challenges this assumption by focusing on the
design of outlier-robust estimators – algorithms that can tolerate a constant fraction of corrupted
datapoints, and achieve error that is independent of the dimension. Despite significant effort over
several decades starting with important early works of Tukey and Huber in the 60s, until fairly
recently, even for the most basic high-dimensional estimation tasks, all known computationally
efficient estimators were highly sensitive to outliers.

In the first part of this thesis, we establish the computational tractability of learning GMMs,
linear models and low-rank models under adversarial outliers. Subsequently, we provide the first
polynomial time algorithm for fitting a two-layer neural network in the non-robust setting. A
robust variant of this algorithm remains an outstanding open question. We discuss the historical
context, related work and technical details of each of these results below.

1.1.1 Gaussian Mixture Models

The Gaussian Mixture Model (GMM) has been the subject of a century-old line of research be-
ginning with Pearson [Pea94]. Progress on provable algorithms for learning GMMs began with
the influential work of Dasgupta [Das99], yielding clustering algorithms that succeed under vari-
ous separation assumptions [AK05, VW04, AM05, BV08]. These assumptions, however, do not
capture natural separated instances of Gaussians, such as separation in distribution (total vari-
ation) distance. A more general approach [MV10, BS15] circumvents clustering altogether by
giving an efficient algorithm for parameter estimation without any separation assumptions. How-
ever, this approach is brittle to even adversarially corrupting a single input point and crucially
relies on the algebraic structure of Gaussians. A natural question to ask is then as follows:

3

Question 1. Is there an efficient and robust algorithm to learn the parameters of arbitrary mix-

tures of k Gaussians?

This question, and several special cases has received a lot of attention over the years. Find-
ing an efficient algorithm for this task was also highlighted as a central open problem at the
Foundations of Big Data workshop at the Simons Institute [DVW18]. Clustering a mixture of
k Gaussians is an important special case of this problem, where each pair of components of the
mixture is nearly completely separated in total variation distance. Until recently, no efficient
robust algorithm was known even for clustering a mixture of two well-separated Gaussians.

We begin by formally defining a Gaussian Mixture model:

Definition 1.1.1 (Gaussian Mixture Model). A mixture of k Gaussians is a probability distrib-

uton, denoted by D = ∑
i∈[k] pi · N (µi,Σi), where for all i ∈ [k], µi ∈ Rd and Σi ∈ Rd×d is

a set of k means and covariances respectively, pi > 0, and
∑
i∈[k] pi = 1. A sample from D is

generated by picking component i with probability pi and then outputting an i.i.d. sample from

N (µi,Σi).

Additionally, to measure closeness between two distributions, we use total variation (TV)
distance.

Definition 1.1.2 (Total Variation Distance). Given two distributions p and q, we define the total

variation distance between them as follows:

dTV (p, q) = 1
2

∫ ∞
−∞
|p(x)− q(x)|dx.

We first consider the special case where the input mixture is clusterable, i.e. all components
of the mixture are pairwise separated in TV distance.

Robustly Clustering a Mixture of Gaussians

In recent work with Pravesh Kothari [BK20b], we obtained the first polynomial-time algorithm
based on the sum-of-squares (SoS) method for clustering TV-separated k-GMMs in the presence
of a small fraction of fully adversarial outliers. We begin by precisely defining the corruption
model we consider. We work in the strong contamination model, which generalized several
well-studied noise models, including the Huber contamination model [Hub64].

4

Definition 1.1.3 (Strong Contamination Model). Given a parameter ε ∈ (0, 1/2) and a class of

distributions D over Rd, the adversary is computationally unbounded and operates as follows:

the algorithm specifies a number of samples, n, and n i.i.d. samples are drawn from some

unknown D ∈ D. The adversary is allowed to inspect the samples, remove up to εn samples and

replace them with arbitrary points in Rd. The modified set is given as input to the algorithm. We

call such a set an ε-corrupted sample.

Various communities have also considered less powerful adversaries, giving rise to weaker
contamination models. For instance, an adversary may be adaptive or oblivious to the inliers,
only allowed to add outliers, or only allowed to remove inliers.

Formally, our main result is as follows:

Theorem 1 (Outlier-Robust Clustering of k-GMMs, [BK20b]). Fix η, ε > 0. Let D be an equi-

weighted k-GMM such that for all i 6= i′, dTV (N (µi,Σi) ,N (µi,Σi)) > 1− exp (−(k/η)c), for

a fixed constant c. Then, there exists an algorithm that takes input an ε-corruption Y of a sample

X ∼ D such that X = C1 ∪ C2 ∪ . . . ∪ Ck, with equal sized clusters Ci corresponding to points

drawn from N (µi,Σi), and with probability at least 0.99, outputs an approximate clustering

Y = Ĉ1 ∪ Ĉ2 ∪ . . .∪ Ĉk satisfying mini6k |Ĉi∩Ci||Ci| > 1−O(k2k)(ε+ η). The algorithm succeeds

whenever n = |X| > dpoly(k/η) and runs in time npoly(k/η).

We can use off-the-shelf robust estimators for mean and covariance of Gaussians([DKK+19])
in order to get statistically optimal estimates of the mean and covariances of the target k-GMM.

Corollary 1.1.4 (Parameter Recovery from Clustering, [BK20b]). In the setting of Theorem 1,

with the same running time, sample complexity and success probability, our algorithm can output

{µ̂i, Σ̂i}i∈[k] such that for some permutation π : [k]→ [k],

dTV
(
N (µi,Σi) ,N

(
µ̂π(i), Σ̂π(i)

))
6 Õ

(
k2k(ε+ η)

)
,

where Õ surpresses polylogarithmic factors in k, η and ε.

We note that a similar result was independently and concurrently obtained by [DHKK20]
resulting in a merge [BDH+20].

Discussion. We obtain the first outlier-robust algorithm that works for clustering k-GMMs
under information-theoretically minimal separation assumptions. Such results were not known
even for k = 2. To discuss the bottlenecks in prior works, it is helpful to use following con-

5

sequence of two Gaussians with means µ1, µ2 and covariances Σ1,Σ2 being at a TV distance
> 1− exp(−O(∆2)) in terms of the distance between their parameters.

Definition 1.1.5 (∆-Separated Mixture Model). An equi-weighted mixture N1,N2, . . . ,Nk with

parameters {µi,Σi}i∈[k] is ∆-separated if for every pair of distinct components i, j, one of the

following three conditions hold (Σ†/2 is the square root of pseudo-inverse of Σ):

1. Mean-Separation: ∃v ∈ Rd such that

〈µi − µj, v〉2 > ∆2 · v>(Σi + Σj)v,

2. Spectral-Separation: ∃v ∈ Rd such that

v>Σiv > ∆ · v>Σjv,

3. Relative-Frobenius Separation:1 Σi and Σj have the same range space and

∥∥∥Σ†/2i ΣjΣ†/2i − I
∥∥∥2

F
> ∆2 ·

∥∥∥Σ†/2i Σ1/2
j

∥∥∥4

op
.

We show that two Gaussians separated in TV distance can be separated in any of the afore-
mentioned notions of parameter distance. The key bottleneck for known algorithms prior to our
work was handling separation in Spectral and Relative Frobenius distance (cases 2 and 3 above).

Figure 1.1: (a) Mean Separation (b) Spectral Separation (c) Relative Frobenius Separation

Often real-world data need not be Gaussian, and our algorithm does not overfit to this as-
1Unlike the other two distances, relative Frobenius distance is meaningful only for high-dimensional Gaussians.

As an illustrative example, consider two 0 mean Gaussians with covariances Σ1 = I and Σ2 = (1 + Θ(1/
√
d))I .

Then, for large enough d, the parameters are separated in relative Frobenius distance but not spectral or mean
distance.

6

sumption. It succeeds for mixtures of all distributions that satisfy two well-studied analytic
conditions: anti-concentration and hypercontractivity. In particular, we formulate these condi-
tions as polynomial inequalities and obtain algorithms that can efficiently verify them. We thus
move beyond Pearson’s method of moments and consider identifying clean analytic conditions
that enable the existence of efficient and robust clustering algorithms an important contribution
of our work. We note that such a result for non-Gaussian distributions was not known, even with
access to unbounded computation.

Next, we define the precise analytic conditions we require.

Definition 1.1.6 (Certifiable Hypercontractivity of Degree-2 polynomials). An isotropic distribu-

tion D on Rd is said to be h-certifiably C-hypercontractive if there’s a degree h sum-of-squares

proof of the following unconstrained polynomial inequality in d×d matrix-valued indeterminate

Q:

E
x∼D

[(
x>Qx− E

x∼D

[
x>Qx

])h]
6 (Ch)h

(
E
x∼D

[(
x>Qx− E

x∼D

[
x>Qx

])2
])h/2

,

A set of pointsX ⊆ Rd is said to be C-certifiably hypercontractive if the uniform distribution

on X is h-certifiably C-hypercontractive.

Hypercontractivity is an important notion in high-dimensional probability and analysis on
product spaces [O’D14]. Kauers, O’Donnell, Tan and Zhou [KOTZ14] showed certifiable hyper-
contractivity of Gaussians and more generally product distributions with subgaussian marginals.
Certifiable hypercontractivity strictly generalizes the better known certifiable subgaussianity

property (studied first in [KSS18]) that controls higher moments of linear polynomials.

In contrast to hypercontractivity, anti-concentration forces lower-bounds of the form Pr[〈x, v〉2 >
δ ‖v‖2

2] > δ′, for all directions v. Certifiable anti-concentration was recently introduced in inde-
pendent works of Karmalkar, Klivans and Kothari [KKK19] and Raghavendra and Yau [RY20a]
and later used [BK21],[RY20b] for the related problems of list-decodable linear regression and
subspace recovery2.

Following [KKK19], we formulate certifiable anti-concentration via a univariate, even poly-
nomial pδ,Σ that uniformly approximates the 0-1 core-indicator 1(〈x, v〉2 > δv>Σv) over a
large enough interval around 0. Let qδ,Σ(x, v) be a multivariate (in v) polynomial defined by

2List-decodable versions of these problems generalize the “mixture” variants - mixed linear regression and sub-
space clustering - that are easily seen to be special cases of mixtures of k-Gaussians with TV separation 1.

7

qδ,Σ(x, v) =
(
v>Σv

)2s
pδ,Σ

(
〈x,v〉√
v>Σv

)
.Since pδ,Σ is an even polynomial, qδ,Σ is a polynomial in v.

Definition 1.1.7 (Certifiable Anti-Concentration). A mean 0 distribution D with covariance Σ is

2s-certifiably (δ, Cδ)-anti-concentrated if for qδ,Σ(x, v) defined above, there exists a degree-2s
sum-of-squares proof of the following two unconstrained polynomial inequalities in indetermi-

nate v:{
〈x, v〉2s + δ2sqδ,Σ(x, v)2 > δ2s

(
v>Σv

)2s
}

,
{

E
x∼D

[
qδ,Σ(x, v)2

]
6 Cδ

(
v>Σv

)2s
}
,

An isotropic subsetX ⊆ Rd is 2s-certifiably (δ, Cδ)-anti-concentrated if the uniform distribution

on X is 2s-certifiably (δ, Cδ)-anti-concentrated.

Remark 2. For natural examples, s(δ) 6 1/δc for some fixed constant c. For e.g., s(δ) = O(1
δ2)

for standard Gaussian distribution and the uniform distribution on the unit sphere (see [KKK19]
and [BK21]). To simplify notation, we will assume s(δ) 6 poly(1/δ) in the statement of our
results.

Additionally, we need that the variance of degree-2 polynomials is bounded in terms of the
Frobenius norm of the coefficients of the polynomial. Formally,

Definition 1.1.8 (Degree-2 Polynomials with Certifiably Bounded Variance). A mean 0 distribu-

tion D with covariance Σ certifiably bounded variance degree 2 polynomials if there is a degree

2 sum-of-squares proof of the following inequality in the indeterminate Q ∈ Rd×d

{
E
x∼D

[(
x>Qx− Ex∼Dx

>Qx
)2
]
6 C

∥∥∥Σ1/2QΣ1/2
∥∥∥2

F

}
,

Our general result gives an outlier-robust clustering algorithm for separated mixtures of
reasonable distributions, i.e., distributions that satisfies both certifiable hypercontractivity, anti-
concentration and have bounded variance of degree-2 polynomials. Even the information-theoretic
(and without outliers, i.e., ε = 0) clusterability of such distributions was not known prior to our
work.

Theorem 3 (Outlier-Robust Clustering of Reasonable Mixtures, [BK20b]). Fix η > 0, ε > 0.

Let D be a ∆-separated mixture of reasonable distributions. Then, there exists an algorithm that

takes input an ε-corruption Y of a sampleX = C1∪C2∪ . . . Ck, with true clusters Ci of size n/k

drawn i.i.d. from D and outputs an approximate clustering Y = Ĉ1 ∪ Ĉ2 ∪ . . . ∪ Ĉk satisfying

mini6k |Ĉi∩Ci||Ci| > 1− O(k2k)(ε + η). The algorithm succeeds with probability at least 0.99 over

8

the draw of the original sample X whenever n > dpoly(k/η) and runs in time npoly(k/η)) whenever

∆ > poly(k/η)k.

Overview. Our work is naturally related to the recent progress (see Chapter 4 [FKP+19] for
an exposition) on learning spherical mixtures3 of Gaussians [DKS18, KSS18, HL18] and more
generally, all Poincaré distributions [KSS18]. These results rely on subgaussian moment upper

bounds and extend to the outlier-robust setting. However, moment upper bounds are inherently
insufficient to cluster non-spherical mixtures. Informally, this is because the property of having
subgaussian moment upper bounds is closed under taking mixtures and thus cannot distinguish
between a single Gaussian and mixture of a few.

Indeed, it was “folklore” that obtaining generalization of the results above to non-spherical
mixtures will likely require algorithmic use of moment lower bounds. A recent line of work
begun by [KKK19, RY20a] and further built on in [BK20a, RY20b] introduced certifiable anti-

concentration that allows algorithmically accessing moment lower-bounds to solve list-decodable
variants (harsher outlier model than ours) of regression and subspace recovery. An impor-
tant technical contribution of our work is to show that moment lower-bounds, inferred from
anti-concentration inequalities along with certifiable hypercontractivity and bounded variance of
degree-2 polynomials are enough to obtain the desired generalization for clustering of all TV-
separated mixtures.

The key technical contribution of our work is a low-degree sum-of-squares proof of a ba-
sic statistical statement that gives a strong, dimension-independent bound relating closeness of
distribution in total variation distance (TV) to an appropriate parameter distance between their
means and covariances. Our proof of this basic result works for all distributions that satisfy
(certifiable) anti-concentration and hypercontractivity of degree-2 polynomials. To the best of
our knowledge, even the information-theoretic relationship between total variation and param-
eter distances of such distributions was not known prior to our work. Further, in Chapter 2.12,
we give a simple proof by exhibiting two (certifiably) hypercontractive (and, thus, also subgaus-
sian) distributions that are (1 − η)-close in TV distance but arbitrarily far in parameter distance
showing that moment upper bounds are provably not enough for the TV vs parameter distance
relationships to hold.

Along the way, we grow the general purpose SoS toolkit for algorithm design. For in-
stance, we give low-degree sum-of-squares formulations of conditional arguments using uni-

3More generally, the SoS-based algorithms succeed when the means of the components are separated when
compared to the maximum variance of the components in any direction.

9

form polynomial approximators and basic matrix analytic facts. As another application of our
techniques, we give an outlier-robust algorithm for covariance estimation of all certifiable hyper-
contractive distributions with Õ(ε) relative Frobenius error guarantee. All prior works [DKK+19,
LRV16] either gave error guarantees in spectral norm, which only translate into dimension de-
pendent guarantees for relative Frobenius distance, or worked only for the Gaussian distribu-
tion [DKK+19]). Combined with our outlier-robust clustering algorithm, we obtain a statistically
optimal outlier-robust parameter estimation algorithms for mixtures of Gaussians.

Future Directions. The class of distributions that satisfy certifiable hypercontractivity of degree-
2 polynomials is quite broad, and includes all strongly log-concave distributions. However, all
existing approaches can establish certifiable anti-concentration only for rotiationally invariant
distributions and affine transformations thereof. Therefore, a natural open question is as follows:

Open Question 4 (Charecterizing Certifiable Anti-Concentration). What class of distributions
(beyond rotationally invariant distributions) admit low-degree sum-of-squares certificates ?

Further, the certificates we establish, even for Gaussian distributions, require a degree that
grows polynomialy with δ, the bound on the expectation. The running time of our algorithm
scales exponentially in the degree required above and thus improved bounds lead to significantly
faster algorithms. Moreover, such an improvement would lead to milder assumptions on the TV
separation between the components.

Open Question 5 (Degree of Certifiable Anti-Concentration). What is the minimum degree re-
quired to establish (δ, Cδ)-certifiable anti-concentration for Gaussian distributions? Is a polyno-
mial dependence on δ neccessary?

Robustly Learning a Mixture of Arbitrary Gaussians

Building on [BK20b], in joint work with Diakonikolas, Jia, Kane, Kothari and Vempala, [BDJ+22]
we were able to completely answer the aforementioned central question (Question 1) in the affir-
mative, by providing an efficient and robust algorithm that learns the parameters of all mixtures
of k Gaussians, thereby resolving this central question in high-dimensional statistics. Our re-
sult requires the information-theoretically minimum assumptions on the input mixture, is robust
a small fraction of adversarial corruptions and is provably faster than the existing non-robust
algorithm of Moitra-Valiant [MV10]. Formally,

Theorem 6 (Robustly Learning k Arbitrary Gaussians, [BDJ+22]). There is an algorithm with

10

the following behavior: Given ε > 0 and a multiset of n = dO(k) (1/ε)ck samples from a distribu-

tion F onRd such that dTV(F,M) 6 ε, for an unknown target k-GMM D = ∑k
i=1wiN (µi,Σi),

the algorithm runs in time poly(n) (1/ε)c
′
k and outputs a k-GMM hypothesis D̂ = ∑k

i=1 ŵiN (µ̂i, Σ̂i)
such that with high probability we have that dTV

(
D̂,D

)
6 O

(
ε1/c′′k

)
, where ck, c′k, c

′′
k depends

only on k.

A number of works have made algorithmic progress on important special cases of the above
problem, including faster robust clustering for the spherical case under minimal separation con-
ditions [HL18, KSS18, DKS18], robust clustering for separated (and potentially non-spherical)
Gaussian mixtures [BDH+20], and robustly learning uniform mixtures of two arbitrary Gaussian
components [Kan20]. A similar result was independently and concurrently obtained by [LM21],
under slightly stronger assumptions, and using completely different techniques.

Theorem 6 gives the first polynomial-time robust proper learning algorithm, with dimension-
independent error guarantee, for arbitrary k-GMMs, for any fixed k. Known Statistical Query
lower bounds [DKS17] suggest that dΩ(k) samples are necessary for efficiently learning GMMs,
for approximation to constant accuracy, even in the (much simpler) noiseless setting and when
the components are pairwise well-separated in total variation distance. This provides evidence
that the sample-time tradeoff achieved by our result is qualitatively optimal.

Further, we show that the same algorithm also achieves the stronger parameter estimation
guarantee. We note that parameter estimation requires some assumptions on the underlying mix-
ture. The following corollary applies under the standard assumption that any pair of components
in the unknown mixture has total variation distance at least εck , where ck only depends on k.

Corollary 1.1.9 (Robust Parameter Estimation, [BDJ+22]). Let D = ∑k
i=1wiN (µi,Σi) be an

unknown target k-GMM satisfying the following conditions: (i) dTV(N (µi,Σi),N (µj,Σj)) >

εf1(k) for all i 6= j, and (ii) S = {i ∈ [k] : wi > εf2(k)} is a subset of [k], where f1(k), f2(k)
are sufficiently small functions of k. Given ε > 0 and a multiset of n = dO(k) (1/ε)ck samples

from a distribution F onRd such that dTV(F,D) 6 ε, there exists an algorithm that runs in time

poly(n) (1/ε)c
′
k and outputs a k′-GMM hypothesis D̂ = ∑k′

i=1 ŵiN (µ̂i, Σ̂i) with k′ 6 k such that

with high probability there exists a bijection π : S → [k′] satisfying the following: For all i ∈ S,

it holds that |wi − ŵπ(i)| 6 polyk(ε) and dTV

(
N (µi,Σi),N (µ̂π(i), Σ̂π(i))

)
6 ε1/c

′′
k .

Discussion. Handling Arbitrary Weights: Our algorithm succeeds without any assumptions on
the weights of the mixture components. We emphasize that this is an important feature and not
a technicality. Prior and concurrent work cannot handle the case of general weights – even for

11

the case of k = 2 components! Obtaining a fully polynomial-time algorithm for the general case
(i.e., one not incurring an exponential cost in 1/wmin) requires genuinely new algorithmic ideas
and is one of the key technical innovations of the aforementioned result.

Handling Arbitrary Covariances: Our algorithm does not require assumptions on the eigenvalues
of the component covariances, modulo basic limitations posed by numerical computation issues.
Specifically, our algorithm works even if some of the component covariances are rank-deficient
(i.e., have directions of 0 variance) with running time scaling polynomially in the bit-complexity
of the unknown component means and covariances. Such a dependence on the bit complexity of
the input parameters is unavoidable – there exist4 examples of rank-deficient covariances with
irrational entries such that the total variation distance between the corresponding Gaussian and
every Gaussian with covariance matrix of rational entries is the maximum possible value of one.

Overview. In the non-robust setting (i.e., for ε = 0), the algorithm of [MV10] solves this learn-
ing problem. The key idea of [MV10] is to observe that if a mixture of k Gaussians has every pair
of components separated in total variation distance by at least δ, then a random univariate projec-
tion of the mixture has a pair of components that are δ/

√
d-separated in total variation distance.

Their algorithm uses this observation to piece together estimates of the mixture when projected
to several carefully chosen directions to get an estimate of the high-dimensional mixture. Notice,
however, that such a strategy meets with instant roadblock in the presence of outliers: the fraction
of outliers, being a dimension-independent constant, completely overwhelms the total variation
distance between components in any one direction making them indistinguishable.

Our robust algorithm is based on three new ingredients:

1. a new and efficient partial clustering algorithm based on the sum-of-squares (SoS) method,

2. a novel list-decodable tensor decomposition method, and

3. a recursive spectral separation method.

We briefly describe these ideas below and how they can be interleaved to obtain our algorithm.

Efficient Partial Clustering. We call a mixture partially clusterable if it contains a pair of
components at total variation distance larger than 1 − Ωk(1). Interestingly, it turns out that
the clustering algorithm of [BK20b] (Theorem 3) can be generalized to the partial clustering
setting, i.e., the setting where we are guaranteed to have a pair of components that are well-
separated (with no guarantees on the remaining components). For a mixture with minimum

4For example, for the unit vector v = (1/
√

3, 1/
√

3, 1/
√

3, 0, 0, . . . , 0), for every choice of rational covariance
Σ, the total variation distance between N (0, I − vv>) and N (0,Σ) is one.

12

mixing weight α, this gives an algorithm with running time of d(k/α)O(k) to partition the input
sample into components so that each piece of the partition is (effectively) a (poly(α/k) + ε)-
corrupted sample from disjoint sub-mixtures.

By applying the above partial-clustering algorithm, we can effectively assume that the input
is an ε-corrupted sample from a mixture with every pair of components at most (1 − Ωk(1))-
far in total variation distance. Then, we use robust covariance estimation (see Theorem 7.1
in [BK20b]) to make the mixture approximately isotropic, i.e. the mean of the mixture is ≈ 0
and the covariance of the mixture is ≈ I (in Frobenius norm).

After partial clustering and an approximate isotropic transformation, every pair of compo-
nents are close in TV distance. Under this condition, in order to learn the unknown mixture with
error guarantees in total variation distance, it suffices to obtain polyk(ε)-error estimates of the
µi,Σi’s in Frobenius norm. As we will see soon, this will suffice for our weaker result that has
an exponential dependence on the minimum mixing weight.

To get a fully polynomial algorithm, we delve a bit deeper: the exponential dependence on
the minimum mixing weight is incurred only when two components are spectrally separated (see
Definition 1.1.5, which in turn relies on the degree required for certifiable anti-concentration.
Instead, we give a new partial clustering algorithm that works in fixed polynomial time, whenever
there is a pair of Gaussian components separated either via their means or the relative Frobenius
distance. The resulting clusters might now have components that are spectrally separated, a
difficulty that we address later.

List-decodable Tensor Decomposition. Kane [Kan20] gave a polynomial-time algorithm to
robustly learn an equiweighted mixture of two Gaussians. For this special case, after isotropic
transformation, one can effectively assume that the two means are ±µ and the two covariances
are I ± Σ. Kane’s idea was to use the Hermite tensor (which can be built using the 4-th and
6-th raw moments of the mixture). Since we must use outlier-robust estimates of these tensors,
we can only obtain estimates that are accurate up to constant error in Frobenius norm of the
tensor. Kane’s key observation is that for the special case of k = 2 components, one can build
two different Hermite tensors, one of which is rank-one with component ≈ µ (and thus one can
immediately “read off” µ); the other only has a tensor power of Σ. This second tensor is of the
form T̂4 = Sym((Σ−I)⊗(Σ−I))+E, where ‖E‖F = Ok(

√
ε) and Sym refers to symmetrizing

over all possible permutations of the “4 modes of the tensor”. Unlike the case of the mean, one
cannot simply “read-off”5 Σ from T4, but Kane gives a simple method to accomplish this. As

5It is helpful to visualize a single entry of this tensor for, say, the case when i, j, k, ` are all distinct:
T̂4(i, j, k, `) = 1

3 (Σ(i, j)Σ(k, `) + Σ(i, k)Σ(j, `) + Σ(i, `)Σ(j, k)) + error. Notice that obtaining entries of Σ

13

noted in [Kan20], it is not clear how to extend this to non-equiweighted mixtures of k = 2
Gaussians, and going to even k = 3 components requires substantially new ideas.

The surprising fact that we establish is that by looking at only the first four moments of
our mixture, we can learn all of the components up to low-rank error, i.e., up to errors along a
bounded number of hidden directions. Thus, the new tensor decomposition has both Frobenius
norm error and low-rank error. To see the idea, it is helpful to focus on the simpler case where
all the means are zero. In this case, the estimated 4th Hermite tensor (built from estimated raw
moments of degree at most 4 of the mixture) has the following :

T̂4 =
k∑
i=1

wiSym((Σi − I)⊗ (Σi − I) + E) ,

where E is a 4-tensor with ‖E‖F = Ok(
√
ε).

Given the form of this tensor, it is natural to consider tensor decomposition algorithms, by
thinking of Σi − I as a d2-dimensional vector. However, we run into the issue of uniqueness
of tensor decomposition, since we are dealing with 2nd order tensors (once we view Σi − I as
a d2-dimensional vector). One might imagine computing higher-order tensors of similar forms
to overcome the uniqueness issues, but this runs into two major complications: first, the sym-
metrization operation introduces spurious terms that do not have the sum of tensor-power struc-
ture required for such an algorithm to succeed.

Second, even if one were to get hold of the tensor without the symmetrization operation,
the only applicable tensor decomposition algorithm (recall that we do not make any genericity
assumptions on the components that are typically required by tensor decomposition algorithms)
is the result of Barak, Kelner, and Steurer [BKS15]. However, the [BKS15] result, while being
efficient in its dependence on the number of components, has exponential dependence on the
target error, which is prohibitively expensive for our application.

Rather than recovering the unique decomposition of the tensor T̂4 above, we instead produce a
list of candidate decompositions. To do this, we start by applying an operation that is a common
trick in most tensor decomposition algorithms. In our context, this trick amounts to taking a
random matrix (with independent standard Gaussian entries) P and “collapsing” the last two
modes of T̂4 with P (i.e., computing Ŝ(i, j) = ∑

k,` T̂4(i, j, k, `)P (k, `)) to obtain a matrix Q. In
the usual tensor decomposition procedures, we are interested in proving that one can recover all
the information about the components of the tensor from Q.

from T4 is formally a task of solving noisy quadratic equations.

14

Spectral Separation of Thin Components. While the running time of our partial clustering and
tensor decomposition algorithms are now polynomial, the guarantees of the tensor decomposition
subroutine we discussed above are no longer enough to guarantee a recovery of parameters that
result in a mixture close in total variation distance. Because of the three conditions that we
assumed in the working of the tensor decomposition algorithm, we can no longer guarantee the
third one that gives a lower bound on the smallest eigenvalue of every covariance (relative to
the covariance of the mixture). In particular, we can end up in a situation where, even though
we have a list of parameters that contain Frobenius-norm-close estimates of the covariances,
the estimates do not provide a total variation distance guarantee. (Consider a “skinny” direction
where the variance of some component is very small, or even 0, forcing us to learn the parameters
more precisely!)

It turns out that the above is the only way the algorithm can fail at this point — one or more
covariance matrices have a very small eigenvalue (if not, the Frobenius norm error would imply
TV-distance error). But since we have estimates of the covariances, we can find such a small
eigenvector. Now we observe that since the mixture is nearly isotropic (i.e., the overall variance
in each direction is ∼ 1), if some component has very small variance along a direction, then
the components must be separable along this direction. We show that it is possible to efficiently
cluster the mixture after projecting it to this direction, so that each cluster has strictly fewer
components. We then recursively apply the entire algorithm on the clusters obtained, which will
each have strictly fewer components.

Future Directions. A natural question arising from our work is to characterize the class of
distributions such that their mixtures can be learned, even information-theoretically.

Open Question 7. Are there mixtures of non-Gaussian distributions that can be learned robustly/non-
robustly and information-theoretically/efficiently? Is there a statistical-computational gap be-
tween any of these settings?

We note that the aforementioned algorithm is not entirely captured by the sum-of-squares
proof system. This leads to the following question:

Open Question 8. Can the sum-of-squares proof system efficiently learn a mixutre of k arbitrary
Gaussians?

We hope that answering some of these question, along with the techniques we have developed
can pave the way for robustly learning various popular latent variable models.

15

1.1.2 Robust Linear Regression

Regression continues to be extensively studied under various models, including realizable regres-
sion (no noise), true linear models (independent noise), asymmetric noise, agnostic regression
and generalized linear models (see [Wei05] and references therein). In each model, a variety of
distributional assumptions are considered over the covariates and the noise. As a consequence,
there exist innumerable estimators for regression achieving various trade-offs between sample
complexity, running time and rate of convergence. The presence of adversarial outliers adds yet
another dimension to design and compare estimators.

Seminal works on robust regression focused on designing non-convex loss functions, includ-
ing M-estimators [Hub04], Theil-Sen estimators [The92, Sen68], R-estimators [Jae72], Least-
Median-Squares [Rou84] and S-estimators [RY84]. These estimators have desirable statistical
properties under disparate assumptions, yet remain computationally intractable in high dimen-
sions. Further, recent works show that it is information-theoretically impossible to design robust
estimators for linear regression without distributional assumptions [KKM18].

An influential recent line of work showed that when the data is drawn from the well studied
and highly general class of hypercontractive distributions (see Definition 1.1.6), there exist robust
and computationally efficient estimators for regression [KKM18, PSBR20, DKS19]. Several
families of natural distributions fall into this category, including Gaussians, strongly log-concave
distributions and product distributions on the hypercube. However, both estimators converge
to the the true hyperplane (in `2-norm) at a sub-optimal rate, as a function of the fraction of
corrupted points.

Given the vast literature on ad-hoc and often incomparable estimators for high-dimensional
robust regression, the central question we address in this work is as follows:

Does there exist a unified approach to design robust and computationally efficient

estimators achieving optimal rates for all linear regression models under mild

distributional assumptions?

We address the aforementioned question by introducing a framework to design robust esti-
mators for linear regression when the input is drawn from a hypercontractive distribution. Our
estimators converge to the true hyperplanes at the information-theoretically optimal rate (as a
function of the fraction of corrupted data) under various well-studied noise models, including
independent and agnostic noise. Further, we show that our estimators can be computed in poly-
nomial time using the sum-of-squares convex hierarchy.

16

In classical regression, we assume D is a distribution over Rd × R and for a vector Θ ∈
Rd, the least-squares loss is given by errD(Θ) = Ex,y∼D

[(
y − x>Θ

)2
]
. The goal is to learn

Θ∗ = arg minΘ errD(Θ). We assume sample access to D, and given n i.i.d. samples, we want to
obtain a vector Θ that approximately achieves optimal error, errD(Θ∗). In contrast to the classical
setting, we work in the strong contamination model, defined above.

Model 9 (Robust Regression Model). LetD be a distribution overRd×R such that the marginal
distribution overRd is centered and has covariance Σ∗ and let Θ∗ = arg minΘ Ex,y∼D

[
(y − 〈Θ, x〉)2

]
be the optimal hyperplane forD. Let {(x∗1, y∗1), (x∗2, y∗2), . . . (x∗n, y∗n)} be n i.i.d. random variables
drawn from D. Given ε > 0, the robust regression model RD(ε,Σ∗,Θ∗) outputs a set of n sam-
ples {(x1, y1), . . . (xn, yn)} such that for at least (1 − ε)n points xi = x∗i and yi = y∗i . The
remaining εn points are arbitrary, and potentially adversarial w.r.t. the input and estimator.

Our Results. A natural starting point is to assume that the marginal distribution over the co-
variates (the x’s above) is heavy-tailed and has bounded, finite covariance. However, we show
that there is no robust estimator in this setting, even when the linear model has no noise and the
uncorrupted points lie on a line.

Theorem 10 (Bounded Covariance does not suffice [BP21]). For all ε > 0, there exist two

distributions D1,D2 overRd×R such that dTV (D1,D2) 6 ε and the marginal distribution over

the covariates has bounded covariance, denoted by I � Σ � O(1)I , yet
∥∥∥Σ1/2 (Θ1 −Θ2)

∥∥∥
2

=
Ω(1), where Θ1 and Θ2 are the optimal hyperplanes for D1 and D2.

The aforementioned result precludes any statistical estimator that converges to the true hyper-
plane as the fraction of corrupted points tends to 0. Therefore, we strengthen the distributional
assumption consider hypercontractive distributions instead.

Definition 1.1.10 (Certifiable Hypercontractivity). A distribution D on Rd is (ck, k)-certifiably

hypercontractive if for all r 6 k/2, there exists a degree O(k) sum-of-squares proof (defined

below) of the following inequality in the variable v

E
x∼D

[
〈x, v〉2r

]
6 E

x∼D

[
cr 〈x, v〉2

]r
such that cr 6 ck.

Remark 11. Hypercontractivity captures a broad class of distributions, including Gaussian dis-
tributions, uniform distributions over the hypercube and sphere, affine transformations of isotropic

17

distributions satisfying Poincare inequalities [KSS18] and strongly log-concave distributions.
Further, hypercontractivity is preserved under natural closure properties like affine transforma-
tions, products and weighted mixtures [KSS18].

In this work we focus on the rate of convergence of our estimators to the true hyperplane,
Θ∗, as a function of the fraction of corrupted points, denoted by ε. We measure convergence
in both parameter distance (`2-distance between the hyperplanes) and least-squares error on the
true distribution (errD).

We introduce a simple analytic condition on the relationship between the noise (marginal
distribution over y − x>Θ∗) and covariates (marginal distribution over x) that can be considered
as a proxy for independence of y − x>Θ∗ and x :

Definition 1.1.11 (Negatively Correlated Moments). Given a distribution D overRd ×R, such

that the marginal distribution on Rd is (ck, k)-hypercontractive, the corresponding regression

instance has negatively correlated moments if for all r 6 k, and for all v,

E
x,y∼D

[
〈v, x〉r

(
y − x>Θ∗

)r]
6 O(1) E

x∼D
[〈v, x〉r] E

x,y∼D

[(
y − x>Θ∗

)r]

Informally, the negatively correlated moments condition can be viewed as a polynomial re-
laxation of independence of random variables. Note, it is easy to see that when the noise is
independent of the covariates, the above definition is satisfied.

Remark 12. We show that when this condition is satisfied by the true distribution, D, we obtain
rates that match the information theoretically optimal rate in a true linear model, where the noise
(marginal distribution over y−x>Θ∗) is independent of the covariates (marginal distribution over
x). Further, when this condition is not satisfied, we show that there exist distributions for which
obtaining rates matching the true linear model is impossible.

When the distribution over the input is hypercontractive and has negatively correlated mo-
ments, we obtain an estimator achieving rate proportional to ε1−1/k for parameter recovery. Fur-
ther, our estimator can be computed efficiently. Thus, our main algorithmic result is as follows:

Theorem 13 (Robust Regresssion with Negatively Correlated Noise, [BP21]). Given ε > 0, k >

4, and n > (d log(d))O(k) samples from RD(ε,Σ∗,Θ∗), such that D is (c, k)-certifiably hyper-

contractive and has negatively correlated moments, there exists an algorithm that runs in nO(k)

18

time and outputs an estimator Θ̃ such that with high probability,

∥∥∥(Σ∗)1/2
(
Θ∗ − Θ̃

)∥∥∥
2
6 O

(
ε1−1/k

) (
errD(Θ∗)1/2

)
and,

errD(Θ̃) 6
(
1 +O

(
ε2−2/k

))
errD(Θ∗)

Remark 14. We note that prior work does not draw a distinction between the independent and
dependent noise models. In comparison (see Table 4.1), Klivans, Kothari and Meka [KKM18]
obtained a sub-optimal least-squares error scales proportional to ε1−2/k. For the special case of
k = 4, Prasad et. al. [PSBR20] obtain least squares error proportional to O(εκ2(Σ)), where
κ is the condition number. In very recent independent work Zhu, Jiao and Steinhardt [ZJS20]
obtained a sub-optimal least-squares error scales proportional to ε2−4/k.

Further, we show that the rate we obtained in Theorem 13 is information-theoretically opti-
mal, even when the noise and covariates are independent:

Theorem 15 (Lower Bound for Independent Noise, [BP21]). For any ε > 0, there exist two

distributions D1,D2 overR2 ×R such that the marginal distribution overR2 has covariance Σ
and is (c, k)-hypercontractive for both distributions, and yet

∥∥∥Σ1/2(Θ1 −Θ2)
∥∥∥

2
= Ω

(
ε1−1/kσ

)
,

where Θ1,Θ2 are the optimal hyperplanes forD1 andD2 respectively, σ = max(errD1(Θ1),errD2(Θ2))
and the noise is uniform over [−σ, σ]. Further, |errD1(Θ2)− errD1(Θ1)| = Ω

(
ε2−2/kσ2

)
.

Next, we consider the setting where the noise is allowed to arbitrary, and need not have
negatively correlated moments with the covariates. A simple modification to our algorithm and
analysis yields an efficient estimator that obtains rate proportional to ε1−2/k for parameter recov-
ery.

Corollary 1.1.12 (Robust Regresssion with Dependent Noise, [BP21]). Given ε > 0, k > 4 and

n > (d log(d))O(k) samples from RD(ε,Σ∗,Θ∗), such that D is (c, k)-certifiably hypercontrac-

tive, there exists an algorithm that runs in nO(k) time and outputs an estimator Θ̃ such that with

probability 9/10, ∥∥∥(Σ∗)1/2
(
Θ∗ − Θ̃

)∥∥∥
2
6 O

(
ε1−2/k

) (
errD(Θ∗)1/2

)
,

and,

errD(Θ̃) 6
(
1 +O

(
ε2−4/k

))
errD(Θ∗).

Further, we show that the dependence on ε is again information-theoretically optimal:

19

Estimator Independent Noise Arbitrary Noise
Prasad et. al. [PSBR20],
Diakonikolas et. al. [DKK+18] ε κ2 (only k = 4) ε κ2 (only k = 4)

Klivans, Kothari and Meka
[KKM18] ε1−2/k ε1−2/k

Zhu, Jiao and Steinhardt
[ZJS20] ε2−4/k ε2−4/k

Our Work
Thm 13, Cor 4.1.3 ε2−2/k ε2−4/k

Lower Bounds
Thm 15, Thm 16 ε2−2/k ε2−4/k

Table 1.1: Comparison of convergence rate (for least-squares error) achieved by various compu-
tationally efficient estimators for Robust Regression, when the underlying distribution is (ck, k)-
hypercontractive.

Theorem 16 (Lower Bound for Dependent Noise, [BP21]). For any ε > 0, there exist two distri-

butionsD1,D2 overR2×R such that the marginal distribution overR2 has covariance Σ and is

(c, k)-hypercontractive for both distributions, and yet
∥∥∥Σ1/2(Θ1 −Θ2)

∥∥∥
2

= Ω
(
ε1−2/kσ

)
, where

Θ1,Θ2 be the optimal hyperplanes forD1 andD2 respectively and σ = max(errD1(Θ1),errD2(Θ2)).

Further, |errD1(Θ2)− errD1(Θ1)| = Ω
(
ε2−4/kσ2

)
.

Overview. Consider two distributions D1 and D2 over Rd × R such that the total variation
distance between D1 and D2 is ε and the marginals for both distributions over Rd are (ck, k)-
hypercontractive and have covariance Σ. Ignoring computational and sample complexity con-
cerns, we can obtain the optimal hyperplanes corresponding to each distribution. Note, these
hyperplanes need not be unique and are simply charecterized as minimzers of the least-squares
loss : for i ∈ {1, 2},

Θi = arg min
Θ

E
x,y∼Di

[(
y − x>Θ

)2
]

Our central contribution is to obtain an information theoretic proof that the optimal hyper-
planes are indeed close in scaled `2 norm, i.e.

∥∥∥Σ1/2 (Θ1 −Θ2)
∥∥∥

2
6 O

(
ε1−1/k

)(
E

x,y∼D1

[(
y − x>Θ1

)2
]1/2

+ E
x,y∼D2

[(
y − x>Θ2

)2
]1/2

)

Further, we show that the ε1−1/k dependence can be achieved even when the noise is not com-
pletely independent of the covariates but satisfies an analytic condition which we refer to as
negatively correlated moments (see Definition 1.1.11). We provide an outline of the proof as it

20

illustrates the techniques we introduced in this work.

Coupling and Decoupling. We begin by considering a maximal coupling, G, between distri-
butions D1 and D2 such that they disagree on at most an ε-measure support (ε-fraction of the
points for a discrete distribution). Let (x, y) ∼ D1 and (x′, y′) ∼ D2. Then, observe for any
vector v,

〈v,Σ(Θ1 −Θ2)〉 =
〈
v,E
G

[
xx>

]
(Θ1 −Θ2)

〉
= E
G

[〈
v, x

(
x>Θ1 − y

)〉]
+ E
G

[〈
v, x

(
y − x>Θ2

)〉] (1.1)

While the first term in Equation (1.1) depends completely on D1, the second term requires using
the properties of the maximal coupling. Since 1 = 1(x,y)=(x′,y′) + 1(x,y)6=(x′,y′), we can rewrite the
second term in Equation (1.1) as follows:

E
G

[〈
v, x

(
y − x>Θ2

)〉]
= E
G

[〈
v, x′

(
y′ − (x′)>Θ2

)〉
1(x,y)=(x′,y′)

]
+ E
G

[〈
v, x

(
y − x>Θ2

)〉
1(x,y)6=(x′,y′)

] (1.2)

With a bit of effort, we can combine Equations (1.1) and (1.2), and upper bound them as follows:

〈v,Σ(Θ1 −Θ2)〉 6 O(1)
E
G

[〈
v, x

(
x>Θ1 − y

)〉]
︸ ︷︷ ︸

(i)

+E
G

[〈
v, x′

(
(x′)>Θ2 − y′

)〉]
︸ ︷︷ ︸

(ii)

+ E
G

[〈
v, x

(
y − x>Θ1

)〉
1(x,y)6=(x′,y′)

]
+ E
G

[〈
v, x′

(
y′ − (x′)>Θ2

)〉
1(x,y) 6=(x′,y′)

]
(1.3)

Observe, since we have a maximal coupling, the last two terms appearing in Equation (1.3) are
non-zero only on an ε-measure support. To bound them, we decouple the indicator using Hölder’s
inequality,

21

E
G

[〈
v, x(y − x>Θ1)

〉
1(x,y)6=(x′,y′)

]
6 E

[
1(x,y)6=(x′,y′)

] k−1
k E

[
〈v, x〉k

(
y − x>Θ1

)k] 1
k

6 ε1−1/k · E
[
〈v, x〉k

(
y − x>Θ1

)k] 1
k

︸ ︷︷ ︸
(iii)

(1.4)

where we used the maximality of the coupling G to bound E
[
1(x,y) 6=(x′,y′)

]
6 ε. The above

analysis can be repeated verbatim for the second term in (1.3) as well. Going forward, we focus
on bounding terms (i), (ii) and (iii).

Gradient Conditions. To bound terms (i) and (ii) in Equation (1.3), we crucially rely on gra-

dient information provided by the least-squares objective. Concretely, a key observation in our
information-theoretic proof is that the candidate hyperplanes are locally optimal: given least-
squares loss, for i ∈ {1, 2} for all vectors v,

〈
∇ E

x,y∼Di

[(
y − x>Θi

)2
]
, v

〉
= E

x,y∼Di

[〈
v, xx>Θi − xy

〉]
= 0

where Θ1 and Θ2 are the optimal hyperplanes for D1 and D2 respectively. Therefore, both (i)
and (ii) are identically 0. It remains to bound (iii).

Independence and Negatively Correlated Moments. We observe that term (iii) can be inter-
preted as the k-th order correlation between the distribution of the covariates projected along v
and the distribution of the noise in the linear model. Here, we observe that if the linear model
satisfies the negatively correlated moments condition (Definition 1.1.11), we can decouple the
expectation and bound each term independently:

E
[
〈v, x〉k

(
y − x>Θ1

)k]1/k
6 E

[
〈v, x〉k

]1/k
E
[(
y − x>Θ1

)k]1/k
(1.5)

Observe, when the underlying linear model has independent noise, Equation (1.5) follows for
any k. We thus crucially exploit the structure of the noise and require a considerably weaker
notion than independence. Further, if the negatively correlated moments property is not satisfied,
we can use Cauchy-Schwarz to decouple the expectation in Equation (1.5) and incur a ε1−2/k

dependence. Conceptually, we emphasize that the negatively correlated moments condition may
be of independent interest to design estimators that exploit independence in various statistics
problems.

22

Hypercontractivity. To bound the RHS in Equation (1.5), we use our central distributional
assumption of hypercontractive k-th moments (Definition 1.1.6) of the covariates :

E
[
〈v, x〉k

]1/k
6
√
ck E

[
〈v, x〉2

]1/2
= √ck 〈v,Σv〉1/2

We can bound the noise similarly, by assuming that the noise is hypercontractive and this con-
siderably simplifies our statements. However, hypercontractivity of the noise is not a necessary
assumption and prior work indeed incurs a term proportional to the k-th moment of the noise.
Assuming boundedness of the regression vectors, Klivans, Kothari and Meka [KKM18] obtained
a uniform upper bound on k-th moment of the noise by truncating large samples. We note that
the same holds for our estimators and we refer the reader to Section 5.2.3 in their paper. Finally,
substituting v = Θ1 −Θ2 and rearranging, completes the information-theoretic proof.

We note that our approach already differs from prior work [KKM18, PSBR20, ZJS19] and to
our knowledge, we obtain the first information theoretic proof that being ε-close in TV distance
implies that the optimal hyperplanes are O

(
ε1−1/k

)
close in `2 distance.

Future Directions. We note that our estimators obtain the rate matching recent work for Gaus-
sians, albeit in quasi-polynomial time. In comparison, Diakonikolas, Kong and Stewart [DKS18]
obtain the same rate in polynomial time, when the noise is independent of the covariates. This
leads to the following question

Open Question 17 (Sub-Gaussian Rates in Polynomial Time). Is there a polynomial time algo-
rithm that achieves O (ε · poly (log(1/ε))) rates for all sub-Gaussian distributions? Is any extra
log(1/ε) factor neccesary?

Further, the sample complexity of our estimators scales proportional to dΩ(k). Such large
sample complexity may not be neccesary.

Open Question 18 (Sub-Gaussian Rates in Polynomial Time). Can we achieve the optimal trade-
off between sample complexity, running time and rate for all hypercontractive distributions?

A natural generalization of our work is to consider robust algorithms for Generalized Linear
Models, which capture linear, logistic and multi-response regression. Further, such algorithms
would pave the way for robust estimators for learning Graphical Models that have received sig-
nificant attention in various machine learning and computational biology domains. Thus far,
obtaining the statistically optimal rate for learning simple Graphical Models remains open, even
with unbounded computation [LSS+]. A closely related problem is that of list-decodable re-

23

gression and subspace recovery, where an overwhelming fraction of data is corrupted (see for
example [KKK19, RY20a, RY20b][BK21]). Studying variants of regression and latent variable
models in the list-decodable setting is ripe for future work.

1.1.3 List-Decodable Subspace Recovery

List-decodable learning is a strict generalization of related and well-studied clustering problems
(for e.g., list-decodable mean estimation generalizes clustering spherical mixture models, list-
decodable regression generalizes mixed linear regression). In our case, list-decodable subspace
recovery generalizes the well-studied problem of subspace clustering where given a mixture
of k distributions with covariances non-zero in different subspaces, the goal is to recover the
underlying k subspaces [AGGR05, CFZ99, PJAM02]. Algorithms in this model thus naturally
yield robust algorithms for the related clustering formulations. In contrast to known results, such
algorithms allow “partial recovery” (e.g. for example recovering k− 1 or fewer clusters) even in
the presence of outliers that garble up one or more clusters completely.

Another important implication of list-decodable estimation is algorithms for the small outlier

model that work whenever the fraction of inliers α > 1/2 - the information-theoretic minimum
for unique recovery. As a specific corollary, we obtain an algorithm for (uniquely) estimating the
subspace spanned by the inlier distributionD whenever α > 1/2. We note that if α is sufficiently
close to 1, such a result follows from outlier-robust covariance estimation algorithms [DKK+19,
LRV16]. While prior works do not specify precise constants, all known works appear to require
α at least > 0.75.

List-decodable learning was first proposed in the context of clustering by Balcan, Blum and
Vempala [BBV08]. In a recent work, Charikar, Steinhardt and Valiant [CSV17] rejuvenated it
as a natural model for algorithmic robust statistics. Most recent works in algorithmic robust
statistics have focused on the related but less harsh model of where input data is corrupted by
an ε < 1/2 fraction outliers. This line of work boasts of some remarkable successes including
robust algorithms for computing mean, covariance and higher moments of distributions, clus-
tering mixture models, and performing linear regression in the presence of a small ε fraction of
adversarial outliers.

While the success hasn’t been of the same scale, there has been quite a bit of progress
on list-decodable learning that surmount the challenges that arise in dealing with overwhelm-
ingly corrupted data. Recent sequence of works have arrived at a blueprint using the sum-of-

squares method for list-decodable estimation with applications to list-decodable mean estima-

24

tion [DKS18, KSS18] and linear regression [KKK19, RY20a].

In the list-decodable subspace recovery problem, our input is a collection of samples {xi}i∈[n]

∈ Rd, an αn of which are drawn i.i.d. from a distributionD with mean 0 and unknown projective
covariance Π∗ of rank k. The main idea of the algorithm is to encode finding the "inliers" in the
input sample via a polynomial program. To do this, we introduce variables w1, w2, . . . , wn that
are supposed to indicate the samples that correspond to the inliers. Thus, we force w2

i = wi (i.e.
wi ∈ {0, 1}) and

∑
i6nwi = αn as constraints on w. We also introduce a variable Π that stands

for the covariance of the inliers and add constraints that force it to be a projection matrix. To this
end, it suffices to constraint Π2 = Π and Π � 0. Further, we require that each of the samples
indicated by w are in the subspace described by Π: wi(Πxi − xi) = 0 for every i.

Recall, an adversary can create multiple rank-k subspaces that satisfy all the aforementioned
constraints, and a priori, a solution to the above polynomial program need not tell us anything
about the true inliers. Therefore, we must force w to share some property that D satisfies so that
we can guarantee a solution to the program contains some information about the inliers. What
property should this be? In the context of list-decodable regression [KKK19, RY20a], it turns
out that it was both necessary and sufficient (up to the additional qualifier of "certifiability") forw
(and D) to be anti-concentrated. Anti-concentration is also sufficient to get some guarantees for
subspace recovery as shown in [RY20b, BK21]. Is it necessary? And if not, is there a property
satisfied by a larger class of distributions that might be sufficient?

Subspace Clustering. A closely related (and formally easier6) problem to list-decodable sub-
space recovery is subspace clustering [EV13, PHL04, SEC14]. Known algorithms with provable
guarantees for this problem either require runing time exponential in the ambient dimension,
such as RANSAC [FB81], algebraic subspace clustering [VMS05] and spectral curvature clus-
tering [LLY+12], or require the co-dimension to be a constant fraction of the ambient dimen-
sion [CSV13, LMZ+12, TV17, ZWR+18].

Robust Subspace Recovery. Our setting also superficially resembles robust subspace recov-

ery (see [LM18a] for a survey), where the goal is to recover a set of inliers that span a single
low-dimensional space. In this setting, α is assumed to be close to 1. Prior works on this
problem identify some tractable special cases (see [VN18]) while no provable guarantees are
known for the general setting. Further, Hardt and Moitra [HM13] (see also the recent work of
Bhaskara, Chen, Perreault and Vijayraghavan [BCPV19]) provide a polynomial time random-

6One can think of input to subspace clustering as the special case in list-decodable subspace recovery where the
input sample is a mixture of k = 1/α distributions each with a covariance restricted to some subspace.

25

ized algorithm, where both the inliers and outliers are required to be in general position and their
algorithm works as long as the inliers constitute an α = r/d fraction, where r is the rank of the
subspace and d is the ambient dimension. This is contrast to our work where the outliers are
completely arbitrary and potentially adversarial with respect to the inliers.

Previous Versions and Concurrent Work. A previous version of this work [BK21] appeared
concurrently with [RY20b] and gave a dO(log r)/α4 time algorithm to output aO(1/α) size list that
contains a candidate projection matrix that is O(log r

α
)-Frobenius close to the rank r projection

matrix of the true subspace. The algorithm worked whenever the inlier distribution D satisfies
certifiable anti-concentration. This version of the work combines the ideas in [BK21] with
multiple new insights to obtain the improved results.

Our Results. Our results apply to input samples generated according to the following model:

Model 19 (Robust Subspace Recovery with Large Outliers). For 0 < α < 1 and r < d, let
Π∗ ∈ Rd×d be a projector to a subspace of dimension r 6 d and let D be a distribution on Rd

with mean µ∗ and covariance Π∗. Let SubD(α,Π∗) denote the following probabilistic process to
generate n samples, x1, x2 . . . xn with αn inliers I and (1− α)n outliers O:

1. Construct I by choosing αn i.i.d. samples from D.

2. Construct O by choosing the remaining (1 − α)n points arbitrarily and potentially adver-
sarially w.r.t. the inliers.

Remark 20. We will mainly focus on the case when µ∗ = 0. The case of non-zero µ∗ can be
easily reduced to the case of µ∗ = 0 by modifying samples by randomly pairing them up and
subtracting off samples in each pair (this changes the fraction of inliers from α to α2).

Our main result is a fixed (i.e. exponent of the polynomial does not depend on α) polyno-
mial time algorithm with dimension-independent error in Frobenius norm - the strongest notion
of closeness that implies other guarantees such as the principal angle and spectral distance be-
tween subspaces - for list-decodable subspace recovery that succeeds wheneverD has certifiably
hypercontractive degree-2 polynomials:

Definition 1.1.13 (Certifiably Hypercontractivity). A distributionD onRd is said to have (C, 2h)-

certifiably hypercontractive polynomials if there is a degree-2h sum-of-squares proof in the d×d

26

matrix-valued indeterminate Q of the following inequality:

E
x∼D

[(
x>Qx− Ex∼Dx

>Qx
)2h
]
6 (Ch)2h

(
E
x∼D

[(
x>Qx− Ex∼Dx

>Qx
)2
]h)

,

Many natural distributions are certifiably hypercontractive including linear transforms of uni-
form distribution on the Boolean hypercube and unit sphere, Gaussian distributions, and product
distributions with subgaussian marginals. In particular, the set of certifiably hypercontractive
distributions is strictly larger than the currently known list of certifiably anti-concentrated distri-
butions (that essentially only holds for rotationally symmetric distributions with sufficiently light
tails).

We are now ready to state our main result.

Theorem 21 (Dimension-Independent List-Decodable Subspace Recovery, [BK21]). Let Π∗ be a

projection matrix for a subspace of dimension r. LetD be a distribution with mean 0, covariance

Π∗, and certifiably (C, 8)-hypercontractive polynomials.

Then, there exists an algorithm takes as input n = n0 > Ω ((d log(d)/α)16) samples from

SubD(α,Π∗) and in O(n18) time, outputs a list L of O(1/α) projection matrices such that with

probability at least 0.99 over the draw of the sample and the randomness of the algorithm, there

is a Π̂ ∈ L satisfying ‖Π̂− Π∗‖F 6 O(1/α).

As an immediate corollary, this gives an algorithm for list-decodable subspace recovery when
D is Gaussian, uniform on the unit sphere, uniform on the discrete hypercube/q-ary cube, product
distribution with subgaussian marginals and their affine transforms.

Discussion and Comparison with Prior Works Theorem 21 improves on a previous version
of [BK21] and on [RY20b] in running time, error guarantees and the generality of the distribu-
tion D. In particular, it strictly improves on the work of Raghavendra and Yau who gave an error
guarantee ofO(r/α5) in polynomial time by relying on certifiable anti-concentration.7 It also im-
proves on the guarantee in a previous version of this work for Gaussians that relied on certifiable
anti-concentration and an exponential error reduction method to give an error of O(log(r)/α)
in dO(log r/α4) time. Unlike Theorem 21, both these algorithms provably cannot extend to the
uniform distribution on the hypercube.

A priori, our result might appear surprising and almost too-good-to-be-true. Indeed, prior

7The results in [RY20a] handle a small amount of additive noise. The algorithm in this paper can be extended to
handle a similar amount of noise but we do not focus on that aspect in this paper.

27

works identified anti-concentration as a information-theoretic necessary condition on D for list-
decodable regression (a special case of list-decodable subspace recovery) to be feasible. Specif-
ically, Karmalkar, Klivans and Kothari [KKK19] show:

Fact 1.1.14 (Theorem 6.1, Page 19 in [KKK19]). For any constant α > 0, there exists a distri-

bution D (uniform distribution on {0, 1}n) that is (α + ε)-anti-concentrated for every ε > 0 but

there is no algorithm for α/2-approximate list-decodable subspace recovery with rank r = d−1
that outputs a list of size < d.

On the other hand, note that discrete product distributions such as uniform distribution on the
hypercube/q-ary cube satisfy certifiable hypercontractivity (see [KOTZ14]) so our Theorem 21
applies. This is not a contradiction because of the error guarantees - observe that the Frobenius
error bound of O(1/α) provided by Theorem 21 translates to a `2-norm bound of O(1/α) for
linear regression. This is not meaningful for unit vectors, whenever α 6 1/2, since even a
random unit vector achieves an error of at most

√
2 in this setting. On the other hand, for

subspace recovery, this is a non-trivial guarantee whenever the dimension and the co-dimension
of the unknown subspace are� 1/α.

High-Accuracy Subspace Recovery. Our first result naturally raises the question of algo-
rithms obtaining arbitrarily tiny error (instead of O(1/α)). For sufficiently small errors (� 1),
D must necessarily be anti-concentrated, given the lower-bound from Fact 1.1.14 above. Our
next result confirms that certifiable anti-concentration of D is sufficient to obtain an arbitrarily
small error while still maintaining a list-size of an absolute constant (but of size 1/αO(log(1/α)))
independent of the dimension.

To state our result, we first recall certifiable anti-concentration from the previous subsection.

Definition 1.1.15 (Certifiable Anti-Concentration). A zero-mean distribution D with covariance

Σ is 2t-certifiably (δ, Cδ)-anti-concentrated if there exists a univariate polynomial p of degree t

such that there is a degree 2t sum-of-squares proof in variable v of the following inequalities:

1. ‖v‖2t−2
2 〈x, v〉2 + δ2p2 (〈x, v〉) > δ2‖Σ1/2v‖2t

2
2 .

2. Ex∼D [p2 (〈x, v〉)] 6 Cδ‖Σ1/2v‖2t
2 .

A subset S ⊆ Rd is 2t-certifiably (δ, Cδ)-anti-concentrated if the uniform distribution on S is

2t-certifiably (δ, Cδ)-anti-concentrated.

Gaussian distributions and spherically symmetric distributions with subgaussian tails are

28

O(1/δ2)-certifiably (2, δ)-anti-concentrated for every δ > 0 (see Section 5.5).

Theorem 22 (High-Accuracy Subspace Recovery, [BK21]). Let Π∗ be a projector to a subspace

of dimension r. Let D be a k-certifiably (C, α/2C)-anti-concentrated distribution with certifi-

ably C-hypercontractive degree 2 polynomials.

Then, there exists an algorithm that takes as input n = n0 > (d log(d)/α)O(k) samples from

SubD(α,Π∗) and in nO(k+log(1/η)) time, outputs a list L ofO(1/αlog k+log(1/η)) projection matrices

such that with probability at least 0.99 over the draw of the sample and the randomness of the

algorithm, there is a Π̂ ∈ L satisfying ‖Π̂− Π∗‖F 6 η.

The proof of Theorem 22 is based on new argument using certifiable anti-concentration that
bootstraps our first result with an exponential error reduction mechanism within the sum-of-
squares proof system. This improves on the result in a previous version of this work that gave
a dO(log d/α4) algorithm with a dimension-dependent list size of dO(log(1/α) based on a somewhat
complicated pruning procedure.

UsingO(1/δ2)-certifiable (δ, Cδ)-anti-concentration of Gaussians and spherically symmetric
distribution with subgaussian tails, we obtain:

Corollary 1.1.16 (Subspace Recover for Gaussian Inliers, [BK21]). Let Π∗ be a projector a

subspace of dimension r. Let D be a mean 0 Gaussian or a spherically symmetric distribution

with subgaussian tails with covariance Π∗.

Then, there exists an algorithm that takes as input n = n0 > (d log(d)/α2)O(1/α2) samples

from SubD(α,Π∗) and in nlog(1/αη)/α4
time, outputs a list L of O(1/αlog 1/α+log(1/η)) projection

matrices such that with probability at least 0.99 over the draw of the samples and the randomness

of the algorithm, there is a Π̂ ∈ L satisfying ‖Π̂− Π∗‖F 6 η.

Further uses of exponential error reduction. Our exponential error reduction method is
likely to be of wider use. As an example, we observe the following immediate consequence
to list-decodable linear regression by obtaining an improved running time (with a large constant
list-size) as a function of the target accuracy.

Corollary 1.1.17 (List-Decodable Regression, [BK21]). LetD be k-certifiably (α/2C)-anti con-

centrated distribution with mean 0 and covariance I . Then, there exists an algorithm that

takes as input n = n0 > (d log(d)/α)Õ(k) labeled samples where an αn samples (x, y) are

i.i.d. with x ∼ D and y = 〈`∗, x〉 for some unknown, unit vector `∗ and outputs a list L of

O(1/αO(log(k)+log(1/η))) regressors such that with probability at least 0.99 over the draw of the

29

samples and the randomness of the algorithm, there is a regressor ˆ̀∈ L satisfying ‖ˆ̀−`∗‖2
2 6 η.

The algorithm has time complexity at most nO(k+log(1/η)).

Prior works [KKK19, RY20a] needed nO(k2/η2) time but computed a smaller list of size
O(1/α)).

Future Directions. Given the resurgence of interest in list-decodable learning, and the limited
algorithmic results mentioned above, this area is ripe for future work. In addition to obtaining
statistically optimal rates and parameter dependence, it would be interesting to develop a general
theory for when list-decodable learning can be performed efficiently. For high-accuracy learning,
anti-concentration of the underlying distribution appears to be the key ingredient underlying all
efficient estimators.

Open Question 23. Does anti-concentration characterize high-accuracy list-decodable learning?

1.1.4 Learning a Two-Layer Neural Network

Neural networks have achieved remarkable success in solving many modern machine learning
problems which were previously considered to be intractable. With the use of neural networks
now being wide-spread in numerous communities, the optimization of neural networks is an
object of intensive study.

Common usage of neural networks involves running stochastic gradient descent (SGD) with
simple non-linear activation functions, such as the extremely popular ReLU function, to learn an
incredibly large set of weights. This technique has enjoyed immense success in solving com-
plicated classification tasks with record-breaking accuracy. However, theoretically the behavior
and convergence properties of SGD are very poorly understood, and few techniques are known
which achieve provable bounds for the training of large neural networks. This is partially due to
the hardness of the problem – there are numerous formulations where the problem is known to
be NP-hard [BR92, Jud88, BDL18, MR18]. Nevertheless, given the importance and success in
solving this problem in practice, it is important to understand the source of this hardness.

Typically a neural network can be written in the following form: A = U i(· · ·U 3f(U 2f(U 1X)),
where i is the depth of the network, X ∈ Rd×n is a matrix with columns corresponding to in-
dividual d-dimensional input samples, and A is the output labeling of X . The functions f are
applied entry-wise to a matrix, and are typically non-linear. Perhaps the most popular activation
used in practice is the ReLU, given by f(x) = max{0, x}. Here each U i is an unknown linear

30

map, representing the “weights", which maps inputs from one layer to the next layer. In the
reconstruction problem, when it is known that A and X are generated via the above model, the
goal is to recover the matrices U 1, . . . ,U i.

In this work, we consider the problem of learning the weights of two layer networks with a
single non-linear layer. Such a network can be specified by two weight matrices U ∗ ∈ Rm×k

and V ∗ ∈ Rk×d, such that, on a d-dimensional input vector x ∈ Rd, the classification of the
network is given by U ∗f(V ∗x) ∈ Rm. Given a training set X ∈ Rd×n of n examples, along
with their labeling A = U ∗f(V ∗X) + E, where E is a (possibly zero) noise matrix, the learning
problem is to find U and V for which

‖U −U ∗‖F + ‖V − V ∗‖F 6 ε

We consider two versions of this problem. First, in the noiseless (or realizable) case, we ob-
serve A = U ∗f(V ∗X) precisely. In this setting, we demonstrate that exact recovery of the matri-
ces U ∗,V ∗ is possible in polynomial time. Our algorithms, rather than exploiting smoothness of
activation functions, exploit combinatorial properties of rectified activation functions. Addition-
ally, we consider the more general noisy case, where we instead observe A = U ∗f(V ∗X) + E,
where E is a noise matrix which can satisfy various conditions. Perhaps the most common as-
sumption in the literature [GKLW18, GLM17, JSA15] is that E has mean 0 and is sub-Gaussian.
Observe that the first condition is equivalent to the statement that E [A | X] = U ∗f(V ∗X).
While we primarily focus on designing polynomial time algorithms for this model of noise, in
Section 6.7 we demonstrate fixed-parameter tractable (in the number k of ReLUs) algorithms to
learn the underlying neural network for a much wider class of noise matrices E. We predomi-
nantly consider the identifiable case where U ∗ ∈ Rm×k has full column rank, however we also
provide supplementary algorithms for the exact case when m < k. Our algorithms are robust to
the behavior of f(x) for positive x, and therefore generalize beyond the ReLU to a wider class
of rectified functions f such that f(x) = 0 for x 6 0 and f(x) > 0 otherwise.

It is known that stochastic gradient descent cannot converge to the ground truth parameters
when f is ReLU and V ∗ is orthonormal, even if we have access to an infinite number of samples
[LSSS14]. This is consistent with empirical observations and theory, which states that over-
parameterization is crucial to train neural networks successfully [Har14, SC16]. In contrast, in
this work we demonstrate that we can approximate the optimal parameters in the noisy case, and
obtain the optimal parameters exactly in the realizable case, in polynomial time, without over-
parameterization. In other words, we provide algorithms that do not succumb to spurious local

31

minima, and can converge to the global optimum efficiently, without over-parametrization.

Our Results. We now state our results more formally. We consider 2-layer neural networks
with ReLU-activation functions f . Such a neural network is specified by matrices U ∗ ∈ Rm×k

and V ∗ ∈ Rk×d. We are given d-dimensional input examples xi ∈ Rd, which form the columns
of our input matrix X , and also give the network’s m-dimensional classification of X , which is
A = U ∗f(V ∗X), where f is applied entry-wise. We note that our formulation corresponds to
having one non-linear layer.

In the worst case setting, no properties are assumed on the inputsX ,A. While this problem is
generally assumed to be intractable, we show, perhaps surprisingly, that when rank(A) = k and
k = O(1), polynomial time exact algorithms do exist. One of our primary techniques throughout
this work is the leveraging of combinatorial aspects of the ReLU function. For a row f(V ∗X)i,∗,
we define a sign pattern of this row to simply be the subset of positive entries of the row. Thus,
a sign pattern of a vector in Rn is simply given by the orthant of Rn in which it lies. We first
prove an upper bound of O(nk) on the number of orthants which intersect with an arbitrary
k-dimensional subspace of Rn. Next, we show how to enumerate these sign patterns in time
nk+O(1).

We use this result to give an nO(k) time algorithm for the neural network learning problem
in the realizable case, where A = U ∗f(V ∗X) for some fixed rank-k matrices U ∗,V ∗. After
fixing a sign pattern of f(V ∗X), we can effectively “remove" the non-linearity of f . Even so,
the learning problem is still non-convex, and cannot be solved in polynomial time in the general
case (even for fixed k). We show, however, that if the rank of A is k, then it is possible to use a
sequence of linear programs to recover U ∗,V ∗ in polynomial time given the sign pattern, which
allows for an nO(k) overall running time. Our theorem is stated below.

Since non-convex optimization problems are known to be NP-hard in general, it is, perhaps,
unsatisfying to settle for worst-case results. Typically, in the learning community, to make prob-
lems tractable it is assumed that the input data is drawn from some underlying distribution that
may be unknown to the algorithm. So, in the spirit of learning problems, we make the common
step of assuming that the samples in X have a standard Gaussian distribution. More generally,
our algorithms work for arbitrary multi-variate Gaussian distributions over the columns of X , as
long as the covariance matrix is non-degenerate, i.e., full rank. In this case, our running time and
sample complexity will blow up by the condition number of the covariance matrix, which we
can estimate first using standard techniques. For simplicity, we state our results here for Σ = I,
though, for the above reasons, all of our results for Gaussian inputs X extend to all full rank Σ

32

Furthermore, because many of our primary results utilize the combinatorial sparsity patterns
of f(V X), where X is a Gaussian matrix, we do not rely on the fact that f(x) is linear for x > 0.
For this reason, our results generalize easily to other non-linear rectified functions f . In other
words, any function f given by

f(x) =

0 if x 6 0

φ(x) otherwise

where φ(x) : [0,∞] → [0,∞] is a continuous, injective function. In particular, our bounds do
not change for polynomial valued φ(x) = xc for c ∈ N. Note, however, that our worst-case,
non-distributional algorithms (stated earlier), where X is a fixed matrix, do not generalize to
non-linear φ(x).

We first consider the noiseless setting, also referred to as the exact or realizable setting. Here
A = U ∗f(V ∗X) is given for rank k matrices U ∗ and V ∗, whereX has non-degenerate Gaussian
marginals. The goal is then to recover the weights (U ∗)T ,V ∗ exactly up to a permutation of
their rows (since one can always permute both sets of rows without effecting the output of the
network). Note that for any positive diagonal matrix D, U ∗f(DV ∗X) = U ∗Df(V ∗X) when
f is the ReLU. Thus recovery of (U ∗)T ,V ∗ is always only possible up to a permutation and
positive scaling. We now state our main theorem for the exact recovery of the weights in the
realizable (noiseless) setting.

Theorem 24 (Exact Parameter Recovery, [BJW19]). Suppose A = U ∗f(V ∗X) where U ∗ ∈
Rm×k,V ∗ ∈ Rk×d are both rank-k, and such that the columns of X ∈ Rd×n are mean 0 i.i.d.

Gaussian. Then if n = Ω(poly(d,m, κ(U ∗), κ(V ∗))), then there is a poly(n)-time algorithm

which recovers (U ∗)T ,V ∗ exactly up to a permutation of the rows with high probability.

To the best of our knowledge, this is the first algorithm which learns the weights matrices of
a two-layer neural network with ReLU activation exactly in the noiseless case and with Gaussian
inputsX . Our algorithm first obtains good approximations to the weights U ∗,V ∗, and concludes
by solving a system of judiciously chosen linear equations, which we solve using Gaussian elim-
ination. Therefore, we obtain exact solutions in polynomial time, without needing to deal with
convergence guarantees of continuous optimization primitives. Furthermore, to demonstrate the
robustness of our techniques, we show that using results introduced in the concurrent and inde-
pendent work of Ge et. al. [GKLW18], we can extend Theorem 24 to hold for inputs sampled
from symmetric distributions. We note that [GKLW18] recovers the weight matrices up to addi-
tive error ε and runs in poly

(
1
ε

)
-time, whereas our algorithm has no ε dependency.

33

The runtime of our algorithm depends on the condition number κ(V ∗) of V ∗, which is a
fairly ubiquitous requirement in the literature for learning neural networks, and optimization in
general [GKLW18, JSA15, CMTV17, AGMR17, ZSJ+17, SJA16]. To address this dependency,
we give a lower bound which shows at least a linear dependence on κ(V ∗) is necessary in the
sample and time complexity.

Next, we introduce an algorithm for approximate recovery of the weight matrices U ∗,V ∗

when A = U ∗f(V ∗X) + E for Gaussian marginals X and an i.i.d. sub-Gaussian mean-zero
noise matrix E with variance σ2.

Theorem 25 (Noisy Parameter Recovery, [BJW19]). Let A = U ∗f(V ∗X) + E be given, where

U ∗ ∈ Rm×k,V ∗ ∈ Rk×d are rank-k, E is a matrix of i.i.d. mean-zero sub-Gaussian random

variables with variance σ2, and such that the columns of X ∈ Rd×n are i.i.d. Gaussian. Then

given n = Ω
(

poly
(
d,m, κ(U ∗), κ(V ∗), σ, 1

ε

))
, there is an algorithm that runs in poly(n) time

and w.h.p. outputs V ,U such that

‖U −U ∗‖F 6 ε, ‖V − V ∗‖F 6 ε

Again, to the best of our knowledge, this work is the first which learns the weights of a 2-
layer network in this noisy setting without additional constraints, such as the restriction that U be
positive. Recent independent and concurrent work, using different techniques, achieves similar
approximate recovery results in the noisy setting [GKLW18]. We note that the algorithm of Goel
et. al. [GK17] that [GKLW18] uses, crucially requires the linearity of the ReLU for x > 0, and
thus the work of [GKLW18] does not generalize to the larger class of rectified functions which
we handle. We also note that the algorithm of [GLM17] requires U ∗ to be non-negative. Finally,
the algorithms presented in [JSA15] work for activation functions that are thrice differentiable
and can only recover rows of V ∗ up to ±1 scaling. Note, for the ReLU activation function, we
need to resolve the signs of each row.

One of the primary technical contributions of this work is the utilization of the combinatorial
structure of sparsity patterns of the rows of f(V X), where f is a rectified function, to solve
learning problems. Here, a sparsity pattern refers to the subset of coordinates of f(V X) which
are non-zero, and a rectified function f is one which satisfies f(x) = 0 for x 6 0, and f(x) > 0
otherwise.

Overview. In response to the aformentioned hardness results, we relax to the case where the
input X has Gaussian marginals. In the noiseless case, we exactly learn the weights U ∗,V ∗

34

given A = U ∗f(V ∗X) (up to a positive scaling and permutation). As mentioned, our results
utilize analysis of the sparsity patterns in the row-span of A. One benefit of these techniques is
that they are largely insensitive to the behavior of f(x) for positive x, and instead rely on the
rectified property f(·). Hence, this can include even exponential functions, and not solely the
ReLU.

Our exact recovery algorithms proceed in two steps. First, we obtain an approximate version
of the matrix f(V ∗X). For a good enough approximation, we can exactly recover the sparsity
pattern of f(V ∗X). Our main insight is, roughly, that the only sparse vectors in the row span
of A are precisely the rows of f(V ∗X). Specifically, we show that the only vectors in the row
span which have the same sparsity pattern as a row of f(V ∗X) are scalar multiples of that row.
Moreover, we show that no vector in the row span of A is supported on a strict subset of the
support of a given row of f(V ∗X). Using these facts, we can then set up a judiciously designed
linear system to find these vectors, which allows us to recover f(V ∗X) and then V ∗ exactly. By
solving linear systems, we avoid using iterative continuous optimization methods, which recover
a solution up to additive error ε and would only provide rates of convergence in terms of ε.
In contrast, Gaussian elimination yields exact solutions in a polynomial number of arithmetic
operations.

The first step, finding a good approximation of f(V ∗X), can be approached from multiple
angles. In this work, we demonstrate two different techniques to obtain these approximations, the
first being Independent Component Analysis (ICA), and the second being tensor decomposition.
To illustrate the robustness of our exact recovery procedure once a good estimate of f(V ∗X) is
known, we show in Section 6.4.3 how we can bootstrap the estimators of recent, concurrent and
independent work [GKLW18], to improve them from approximate recovery to exact recovery.

In the restricted case when V ∗ is orthonormal, we show that our problem can be modeled
as a special case of Independent Component Analysis (ICA). The ICA problem approximately
recovers a subspace B, given that the algorithm observes samples of the form y = Bx+ζ , where
x is i.i.d. and drawn from a distribution that has moments bounded away from Gaussians, and ζ
is a Gaussian noise vector. Intuitively, the goal of ICA is to find a linear transformation of the
data such that each of the coordinates or features are as independent as possible. By rotational
invariance of Gaussians, in this case V ∗X is also i.i.d. Gaussian, and we know that the columns
of f(V ∗X) have independent components and moments bounded away from a Gaussian. Thus,
in the orthonormal case, our problem is well suited for the ICA framework.

A second, more general approach to approximating f(V ∗X) is to utilize techniques from
tensor decomposition. Our starting point is the generative model considered by Janzamin et.

35

al. [JSA15], which matches our setting, i.e., A = U ∗f(V ∗X). The main idea behind this
algorithm is to construct a tensor that is a function of both A,X and captures non-linear corre-
lations between them. A key step is to show that the resulting tensor has low CP-rank and the
low-rank components actually capture the rows of the weight matrix V ∗. Intuitively, working
with higher order tensors is necessary since matrix decompositions are only identifiable up to
orthogonal components, whereas tensors have identifiable non-orthogonal components, and we
are specifically interested in recovering approximations for non-orthonormal V ∗.

Next, we run a tensor decomposition algorithm to recover the low-rank components of the re-
sulting tensor. While computing a tensor decomposition is NP-hard in general [HL13], there is a
plethora of work on special cases, where computing such decompositions is tractable [BCMV14,
SWZ16, WA16, GVX14, GM15, BM16]. Tensor decomposition algorithms have recently be-
come an invaluable algorithmic primitive and with applications in statistical and machine learn-
ing [JSA15, JSA14, GLM17, AGHK14a, BKS15].

However, there are several technical hurdles involved in utilizing tensor decompositions to
obtain estimates of V ∗. The first is that standard analysis of these methods utilizes a general-
ized version of Stein’s Lemma to compute the expected value of the tensor, which relies on the
smoothness of the activation function. Thus, we first approximate f(·) closely using a Cheby-
shev polynomial p(·) on a sufficiently large domain. However, we cannot algorithmically ma-
nipulate the input to demand that A instead be generated as U ∗p(V ∗X). Instead, we add a
small mean-zero Gaussian perturbation to our samples and analyze the variation distance be-
tween A = U ∗f(V ∗X) + G and U ∗p(V ∗X) + G. For a good enough approximation p, this
variation distance will be too small for any algorithm to distinguish between them, thus standard
arguments imply the success of tensor decomposition algorithms when given the inputs A + G

and X .

Next, a key step is to construct a non-linear transformation of the input by utilizing knowledge
about the underlying density function for the distribution of X , which we denote by p(x). The
non-linear function considered is the so-called Score Function, defined in [JSA14], which is the
normalized m-th order derivative of the input probability distribution function p(x). Computing
the score function for an arbitrary distribution can be computationally challenging. However, as
mentioned in [JSA14], we can use Hermite polynomials that help us compute a closed form for
the score function, in the special case when x ∼ N (0, I).

A further complication arises due to the fact that this form of tensor decomposition is agnostic
to the signs of V . Namely, we are guaranteed vectors vi from tensor decomposition such that
‖vi − ξiV

∗
i,∗‖F < ε, where ξi ∈ {1,−1} is some unknown sign. Prior works have dealt with

36

this issue by considering restricted classes of smooth activation functions which satisfy f(x) =
1 − f(−x) [JSA15]. For such functions, one can compensate for not knowing the signs by
allowing for an additional affine transformation in the neural network. Since we consider non-
affine networks and rectified functions f(·) which do not satisfy this restriction, we must develop
new methods to recover the signs ξi to avoid the exponential blow-up needed to simply guess
them.

For the noiseless case, if vi is close enough to ξiV ∗i,∗, we can employ our previous results on
the uniqueness of sparsity patterns in the row-span of A. Namely, we can show that the sparsity
pattern of f(ξvi) will in fact be feasible in the row-span of A, whereas the sparsity pattern of
f(−ξvi) will not, from which we recover the signs ξi via a linear system.

In the presence of noise, however, the problem becomes substantially more complicated.
Because we do not have the true row-span of f(V ∗X), but instead a noisy row-span given by
U ∗f(V ∗X) + E, we cannot recover the ξi’s by feasibility arguments involving sparsity patterns.
Our solution to the sign ambiguity in the noisy case is a projection-based scheme. Our scheme
for determining ξi involves constructing a 2k − 2 dimensional subspace S, spanned by vectors
of the form f(±vjX) for all j 6= i. We augment this subspace as S1 = S ∪ {f(viX)} and
S−1 = S ∪ {f(−viX)}. We then claim that the length of the projections of the rows of A
onto the Sξ will be smaller for ξ = ξi than for ξ = −ξi. Thus by averaging the projections of
the rows of A onto these subspaces and finding the subspace which has the smaller projection
length on average, we can recover the ξi’s with high probability. Our analysis involves bounds
on projections onto perturbed subspaces, and a spectral analysis of the matrices f(WX), where
W is composed of up to 2k rows of the form V ∗i,∗ and −V ∗i,∗.

Future Directions. There has been a significant amount of progress on designing algorithms
for provably learning the parameters of two layer (and deeper) neural networks in the years
since our work was published [AZL19, JMM20, DK20, DKKZ20, ATV21, AAK21, CGKM22,
CKM22]. However, some basic algorithmic questions in the simplest possible setting remain
open:

Open Question 26. Given a two layer neural network y = U∗f(V ∗X) + ζ , where X is drawn
from a sub-Gaussian distribution, ζ is mean zero independent noise, and U∗ is a 1 × k matrix,
can we learn some neural network that has small labeling error in time that is polynomial in all
input parameters, and independent of the condition number?

We note that our results require the output dimension to be larger than the number of neurons

37

in the hidden layer, and the running time scales proportional to the condition number of U∗

and V ∗. In the easier PAC learning setting, we do not require recovering the parameters up to
small error, and thus could get away without incurring any condition number dependence. For
deeper layers, the best known algorithm [] requires an exponential dependence on the lipschitz
constant of the network, and obtaining a polynomial dependence remains open. We conclude
with another open question on robustly learning two-layer neural networks, which may be of
significant practical interest as well.

Open Question 27. Is there a polynomial time algorithm to learn a two-layer neural network
under the strong contamination model, i.e. (1 − ε)-fraction of the samples are drawn i.i.d. from
a Gaussian (or any other known) distribution and the remaining ε-fraction are arbitrarily chosen
by an adversary?

Natural variants of the above formulation are also open.

1.2 Nearly Optimal Algorithms for Learning Latent Models

In the second half of this thesis we consider learning simple latent models that already admit
polynomial time algorithms. We show that we can obtain nearly optimal algorithms for (a)
low-rank approximation under any Schatten-p norm , (b) low-rank approximation of positive
semi-definite and Euclidean distance matrices and (c) learning a latent simplex. Low-rank ap-
proximation under various Schatten-p norms has been vastly studied over the last two decades
and the numerous algorithms have been obtained based on sketching methods and iterative meth-

ods, however obtaining optimal algorithms for this family of optimization problems has remained
a central open question [Woo14a]. Studying questions in numerical linear algebra where the in-
put matrix is drawn from a structured family has also received a lot of attention in recent years. In
particular, several works have considered solving linear systems for Laplacian/Diagonally Dom-
inant matrices [ST14, KOSZ13, KMP14] and Block Henkel matrices [PV21], covariance esti-
mation of Toeplitz matrices [ELMM20], and approximation the permanent of boolean [JS89],
non-negative matrices [JSV04] and PSD [AGGS17, YP21] matrices, and low-rank approxima-
tion for PSD [MW17b] and distance matrices [BW18]. However, obtaining optimal algorithms
for these questions remain open. Finally, the latent simplex framework was recently formalized
as a way to capture several well-studied latent models, such as the stochastic block model and
latent dirichelet allocation [BK20d]. However, obtaining a truly input-sparsity time algorithm
for this problem remained open.

38

We begin by providing an overview of an optimal matrix-vector product algorithm for low-
rank approximation under Schatten-p norms, for all constant p. Next, we describe an optimal
sub-linear time algorithm for computing a low-rank approximation when the input matrix is
promised to be PSD or a Euclidean distance matrix. We then conclude by describing a truly
input-sparsity time algorithm for learning a latent simplex.

1.2.1 Low-Rank Approximation for Schatten Norms

Iterative methods, and in particular Krylov subspace methods, are ubiquitous in scientific com-
puting. Algorithms such as power iteration, Golub-Kahan Bidiagonalization, Arnoldi iteration,
and the Lanczos iteration, are used in basic subroutines for matrix inversion, solving linear sys-
tems, linear programming, low-rank approximation, and numerous other fundamental linear al-
gebra primitives [Saa81, LS13]. A common technique in the analysis of Krylov methods is the
use of Chebyshev polynomials, which can be applied to the singular values of a matrix to imple-
ment an approximate interval or step function [MH02, Riv20]. Further, Chebyshev polynomials
reduce the degree required to accurately approximate such functions, leading to significantly
fewer iterations and faster running time. We investigate the power of Krylov methods for low-
rank approximation in the matrix-vector product model.

The Matrix-Vector Product Model. In this model, there is an underlying matrix A, which
is often implicit, and for which the only access to A is via matrix-vector products. Namely,
the algorithm chooses a query vector v1, obtains the product A · v1, chooses the next query
vector v2, which is any randomized function of v1 and A · v1, then receives A · v2, and so
on. If A is a non-symmetric matrix, we assume access to products of the form A>v as well.
We refer to the minimal number q of queries needed by the algorithm to solve a problem with
constant probability as the query complexity. We note that upper bounds on the query complexity
immediately translate to running time bounds for the RAM model, when A is explicit, since a
matrix-vector product can be implemented in nnz(A) time, i.e., the number of non-zero entries
in the matrix. Since this model captures a large family of iterative methods, it is natural to
ask whether Krylov subspace based methods yield optimal algorithms, where the complexity
measure of interest is the number of matrix-vector products.

This model and related vector-matrix-vector query models were formalized for a number
of problems in [SWYZ19, RWZ20], though the model is standard for measuring efficiency in
scientific computing and numerical linear algebra, see, e.g., [BFG96]; in that literature, meth-
ods that use only matrix-vector products are called matrix-free. Subsequently, for the problem

39

of estimating the top eigenvector, nearly tight bounds were obtained in [SAR18, BHSW20].
Also, for the problem of estimating the trace of a positive semidefinite matrix, tight bounds were
obtained in [MMMW21] (see, also [WWZ14], where tight bounds were shown in the related
vector-matrix-vector query model). For recovering a planted clique from a random graph, upper
and lower bounds were obtained in [RWYZ21]. In the non-adaptive setting, where v1, . . . , vq,
are chosen before making any queries to A, this is equivalent to the sketching model, which is
thoroughly studied on its own (see, e.g., [Nel11, Woo14b]), and in the context of data streams
[Mut05, LNW14b].

Why is the matrix A implicit? A small query complexity q leads to an algorithm running
in time O(T (A) · q + P (n, d, q)), where T (A) is the time to multiply the n × d matrix A by
an arbitrary vector, and P (n, d, q) is the time needed to form the queries and process the query
responses, which is typically small. When the matrix A is given as a list of nnz(A) non-zero
entries, then T (A) 6 nnz(A). However, in many problems A is not given explicitly, and it
is too expensive to write A down. Indeed, one may be given A but want to compute a low-
rank approximation to the “covariance” (Gram) matrix A>A, and computing A>A is too slow
[MW17a]. More generally, one may be given A = UΣV> and a function f : R→ R, and want
to compute matrix-vector products with the generalized matrix function f(A) = Uf(Σ)V>,
where U has orthonormal columns, V> has orthonormal rows, Σ is a diagonal matrix, and f is
applied entry-wise to each entry on the diagonal.

The covariance matrix corresponds to f(x) = x2, and other common functions f include
the matrix exponential f(x) = ex and low-degree polynomials. For instance, when A is the
adjacency matrix of an undirected graph, f(x) = x3/6 is used to count the number of triangles
[Tso08, Avr10]. Yet another example is when A is the Hessian H of a neural network with
a huge number of parameters, for which it is often impossible to compute or store the entire
Hessian [GKX19]. Typically H · v, for any chosen vector v, is computed using Pearlmutter’s
trick [Pea94]. However, even with Pearlmutter’s trick and distributed computation on modern
GPUs, it takes 20 hours to compute the eigendensity of a single Hessian H with respect to the
cross-entropy loss on the CIFAR-10 dataset from a set of fixed weights for ResNet-18 [KH+09],
which has approximately 11 million parameters [HZRS16, GKX19]. This time is directly pro-
portional to the number of matrix-vector products, and therefore minimizing this quantity is
crucial.

Algorithms and Lower Bounds for Low-Rank Approximation. The low-rank approxima-
tion problem is well studied in numerical linear algebra, with countless applications to clustering,

40

data mining, principal component analysis, recommendation systems, and many more. (For sur-
veys on low-rank approximation, see the monographs [KV09, Mah11, Woo14b] and references
therein.) In this problem, given an implicit n × d matrix A, the goal is to output a matrix
Z ∈ Rd×k with orthonormal columns such that

‖A
(
I− ZZ>

)
‖X 6 (1 + ε) min

U:U>U=Ik
‖A

(
I−UU>

)
‖X , (1.6)

where ‖ · ‖X denotes some norm. Note that given Z, one can compute AZ with an additional
k queries, which will be negligible, and then (AZ) · Z> is a rank-k matrix written in factored
form, i.e., as the product of an n × k matrix and a k × d matrix. Among other things, low-rank
approximation provides (1) a compression of A from nd parameters to (n+ d)k parameters, (2)
faster matrix-vector products, since AZ · Z> · y can be computed in O((n + d)k) time for an
arbitrary vector y, as opposed to the O(nd) time needed to compute A · y, and (3) de-noising, as
often matrices A are close to low-rank (e.g., they are the product of latent factors) but only high
rank due to noise.

Despite its tremendous importance, the optimal matrix-vector product complexity of low-
rank approximation is unknown for any commonly used norm. The best known upper bound is
due to Musco and Musco [MM15], who achieve Õ(k/ε1/2) queries8 for both the case when ‖·‖X
is the commonly studied Frobenius norm ‖B‖F =

(∑
i,j B2

i,j

)1/2
as well as when ‖ · ‖X is the

Spectral (operator) norm ‖B‖2 = sup‖y‖2=1 ‖By‖2.

On the lower bound front, there is a trivial lower bound of k, since A may be full rank and
achieving (7.1) requires k matrix-vector products since one must reconstruct the column span of
A exactly. However, no lower bounds in terms of the approximation factor ε were known. We
note that Simchowitz, Alaoui and Recht [SAR18] prove lower bounds for approximating the top
r eigenvalues of a symmetric matrix; however these guarantees are incomparable to those that
follow from a low-rank approximation, even when the norm ‖ · ‖X is the operator norm.

Relationship to the Sketching Literature. Low-rank approximation has been extensively
studied in the sketching literature which, when A is given explicitly, can achieve O(nnz(A))
time both for the Frobenius norm [CW13, MM13a, NN13a], as well as for Schatten-p norms
[LW20]. However, these works require reading all of the entries in A, and thus do not apply
to any of the settings mentioned above. Further, the matrix-vector query model is especially
important for problems such as trace estimation, where a low-rank approximation is used to
first reduce the variance [MMMW21]. As trace estimation is often applied to implicit matri-

8We let Õ(f) = f · poly(log(dk/ε)).

41

ces, e.g., in computing Stochastic Lanczos Quadrature (SLQ) for Hessian eigendensity estima-
tion [GKX19], in studying the effects of batch normalization and residual connections in neural
networks [YGKM20], and in computing a disentanglement regularizer for deep generative mod-
els [PPZ+20], sketching algorithms for low-rank approximation often do not apply.

Another important application is low-rank approximation of covariance matrices [MW17a],
for which the covariance matrix is not given explicitly. Here, we have a data matrix A and we
want a low-rank approximation for AA>. Even when S is a sparse sketching matrix, the matrix
SA is no longer sparse, and one needs to multiply SA by A> to obtain a sketch of SAA>,
which is a dense matrix-matrix multiplication. Moreover, when viewed in the matrix-vector
product model, sketching algorithms obtain provably worse query complexity than existing it-
erative algorithms (see Table 1.2 for a comparison). Further, as modern GPUs often do not
exploit sparsity, even when the matrix A is given, a GPU may not be able to take advantage of

sparse queries, which means the total time taken is proportional to the number of matrix-vector
products.

Motivating Schatten-p Norms. The Schatten norms for 1 6 p < 2 are more robust than the
Frobenius norm, as they dampen the effect of large singular values. In particular, the Schatten-1
norm, also known as the nuclear norm, has been widely used for robust PCA [XCS10, CLMW11,
YPCC16] as well as a convex relaxation of matrix rank in matrix completion [CR09, CP10],
low-dimensional Euclidean embeddings [RFP10, TDSL00, RS00], image denoising [GZZF14,
GXM+17] and tensor completion [YZ16]. In contrast, for p > 2, Schatten norms are more sensi-
tive to large singular values and provide an approximation to the operator norm. In particular, for
a rank r matrix, it is easy to see that setting p = log(r)/η yields a (1+η)-approximation to the op-
erator norm (i.e., p =∞). While the Block Krylov algorithm of Musco and Musco [MM15] im-
plies a matrix-vector query upper bound of Õ

(
k/ε1/2

)
for Schatten-∞ low-rank approximation,

the exact complexity of this problem remains an outstanding open problem. When p > 2, we
can interpolate between Frobenius and operator norm, and setting p to be a large fixed constant
can be a proxy for Schatten-∞ low-rank approximation, with significantly fewer matrix-vector
products (see Theorem 28).

Our Central Question. The main question of our work is:

What is the matrix-vector product complexity of low-rank approximation for the Frobenius

norm, and more generally, for other matrix norms?

42

Problem Frobenius Schatten-p, p ∈ [1, 2) Schatten-p, p > 2

Sketching [CW09, LW20] Θ(k/ε) Ω(k2/p/ε4/p+1) Ω(min(n, d)1−2/p)
Block Krylov [MM15] Õ(k/ε1/2) N/A N/A

Our Upper Bound Õ(k/ε1/3) Õ(k/ε1/3) Õ(kp1/6/ε1/3)
Our Lower Bound Ω(1/ε1/3) Ω(1/ε1/3) Ω(1/ε1/3)

Figure 1.2: Prior Upper and Lower Bounds on the Matrix Vector Product Complexity for Frobe-
nius and Schatten-p low-rank Approximation. The poly(k/ε) factors in prior sketching work for
Schatten-p are not explicit, but we have computed lower bounds on them to illustrate our im-
provements. Our bounds are optimal, up to logarithmic factors, for constant k. For p > log(d)/ε,
spectral low-rank approximation [MM15] implies an Õ (k/

√
ε) upper bound.

Our Results. We begin by stating our results for Frobenius and more generally, Schatten-p
norm low-rank approximation for any p > 1; see Table 1.2 for a summary.

Theorem 28 (Query Upper Bound, [BCW22]). Given a matrix A ∈ Rn×d, a target rank k ∈ [d],
an accuracy parameter ε ∈ (0, 1) and any (not necessarily constant) p ∈ [1,O(log(d)/ε)], there

exists an algorithm that uses Õ
(
kp1/6/ε1/3

)
matrix-vector products and outputs a d× k matrix

Z with orthonormal columns such that with probability at least 99/100,

‖A
(
I− ZZ>

)
‖Sp 6 (1 + ε) min

U: U>U=Ik
‖A

(
I−UU>

)
‖Sp .

When p > log(d)/ε, we get Õ (k/
√
ε) matrix-vector products.

We note that for Frobenius norm low-rank approximation (Schatten p for p = 2), we im-
prove the prior matrix-vector product bound of Õ(k/ε1/2) by Musco and Musco [MM15] to
Õ(k/ε1/3). For Schatten-p low-rank approximation for p ∈ [1, 2), we improve work of Li and
Woodruff [LW20] who require query complexity at least Ω(k2/p/ε4/p+1), which is a polynomial
factor worse in both k and 1/ε than our Õ(k/ε1/3) bound.

For p > 2, [LW20] obtain a query complexity of Ω(min(n, d)1−2/p). We drastically improve
this to Õ(k/ε1/3), which does not depend on d or n at all. Setting p = log(d)/ε suffices to
obtain a (1 + ε)-approximation to the spectral norm (p =∞), and we obtain an Õ (k/

√
ε) query

algorithm, matching the best known bounds for spectral low-rank approximation [MM15]. When
p > log(d)/ε, we can simply run Block Krylov for p =∞.

Remark 29 (Comments on the RAM Model). Although our focus is on minimizing the num-

43

ber of matrix-vector products, which is the key resource in the applications described above,
our bounds also improve the running time of low-rank approximation algorithms when the ma-
trix A has a small number of non-zero entries and is explicitly given. For simplicity, we state
our bounds and those of previous work without using algorithms for fast matrix multiplication;
similar improvements hold when using such algorithms. When nnz(A) = O(n), for Frobe-
nius norm low-rank approximation, work in the sketching literature, and in particular [ACW17]
(building off of [CW13, NN13a, Coh16]), achieves O(nk2/ε) time. In contrast, in this setting
our runtime is Õ(nk2/ε2/3). Similarly, for Schatten-p low-rank approximation for p ∈ [1, 2),
the previous best [LW20] requires Ω̃(nk4/p/ε(8/p−2)) time, while for p > 2 [LW20] requires
Ω̃(nd2(1−2/p)(k/ε)4/p) time. In both cases our runtime is only Õ(nk2p1/3/ε2/3). We obtain anal-
ogous improvements when the sparsity nnz(A) is allowed to be n(k/ε)C for a small constant
C > 0.

Next, we state our lower bounds on the matrix-vector query complexity of Schatten-p low-
rank approximation.

Theorem 30 (Query Lower Bound for constant p, [BCW22]). Given ε > 0, and a fixed constant

p > 1, there exists a distribution D over n × n matrices such that for A ∼ D, any algorithm

that with at least constant probability outputs a unit vector v such that ‖A
(
I− vv>

)
‖pSp 6

(1 + ε) min‖u‖2=1‖A
(
I− uu>

)
‖pSp must perform Ω(1/ε1/3) matrix-vector queries to A.

Remark 31. We note that this is the first lower bound as a function of ε for this problem, even
for the well-studied case of p = 2, achieving an Ω(1/ε1/3) bound, which is tight for any constant
k, simultaneously for all constant p > 1.

Remark 32. Braverman, Hazan, Simchowitz and Woodworth [BHSW20] and Simchowitz, Alaoui
and Recht [SAR18] establish eigenvalue estimation lower bounds that we use in our arguments,
but their results do not directly imply low-rank approximation lower bounds for any matrix norm
that we are aware of, including spectral low-rank approximation, i.e., p =∞.

Overview. We first describe our algorithm for the special case of rank-1 approximation in the
Frobenius norm, i.e., p = 2. Our algorithm is inspired by the Block Krylov algorithm of Musco
and Musco [MM15]. Briefly, their algorithm begins with a random starting vector g (block size
is 1) and computes the Krylov subspace K = [Ag; A2g; . . . ; Aqg], for q = O

(
1/ε1/2

)
. Next,

their algorithm computes an orthonormal basis for the column span of K, denoted by a matrix
Q, and outputs the top singular vector of Q>A2Q, denoted by z (see Algorithm 152 for a formal

44

description). It follows from Theorem 1, guarantee (1) in [MM15] that

‖A
(
I− zz>

)
‖2
F 6 (1 + ε) min

‖u‖2=1
‖A

(
I− uu>

)
‖2
F , (1.7)

and it is easy to see that this algorithm requires Θ
(
1/ε1/2

)
matrix-vector products. A naïve anal-

ysis requires an O(1/ε)-degree polynomial in the matrix A to obtain (1.7), while [MM15] use
Chebyshev polynomials to approximate the threshold function between first and second singular
value, and save a quadratic factor in the degree. The guarantee in (1.7) then follows from ob-
serving that the best vector in the Krylov subspace is at least as good as the one that exists using
Chebyshev polynomial approximation.

Algorithm 33 (Algorithm Sketch for Frobenius rank-1 LRA).

Input: An n× n symmetric matrix A, accuracy parameter 0 < ε < 1.

1. Run Block Krylov for O
(
1/ε1/3

)
iterations with a random starting vector g. Let

z1 be the resulting output.

2. Run Block Krylov forO(log(n/ε)) iterations, but initialize with an n× b random

matrix G, where b = O
(
1/ε1/3

)
. Let z2 be the resulting output.

Output: z = arg maxz1,z2 (‖Az1‖2
2, ‖Az2‖2

2).

Our starting point is the observation that while we require degree Θ
(
1/ε1/2

)
to separate the

first and second singular values, if any subsequent singular value is sufficiently separated from
σ1, a significantly smaller degree polynomial suffices. In the context of Krylov methods, this
translates to the intuition that starting with a matrix G with b columns (block size is b) should
result in fewer iterations to find some vector in the top b subspace of A. On the other hand, if
no such singular value exists, the norm of the tail must be large and we can get away with a less
accurate solution. We show that we can indeed exploit this trade-off by running Block Krylov on
two different scales in parallel and then combine the solution. In particular, we use Algorithm
33.

Algorithm 33 captures the extreme points of the trade-off between the size of the starting
matrix and the number of iterations, such that the total number of matrix-vector products is at
most Õ(1/ε1/3). Further, we can compute the squared Euclidean norms of Az1 and Az2 with an
additional matrix-vector product, and it remains to analyze the Frobenius cost of projecting A
on the subspace I− zz>, where z is the unit vector output by Algorithm 33.

45

Using gap-independent guarantees for Block Krylov [MM15], it follows that withO
(
1/ε1/3

)
iterations, we have

‖Az1‖2
2 > σ2

1(A)− ε2/3σ2
2(A). (1.8)

In contrast, using gap-dependent guarantees for Block Krylov [MM15] initialized with block size
b, it follows that for any γ > 0, running q = log(1/γ) ·

√
σ1(A)/ (σ1(A)− σb(A)) iterations

results in z2 such that
‖Az2‖2

2 > σ2
1(A)− γσ2

2(A). (1.9)

If σb(A) 6 σ1(A)/2, we can set γ = ε/n in Equation (1.9) to obtain a highly accurate solution.
Further, regardless of the input instance, Step 3 in Algorithm 33 ensures that we get the best of
both guarantees, (1.8) and (1.9). Then, observing that I− zz> is an orthogonal projection matrix
(see Definition 7.3.1) and using the Pythagorean Theorem for Euclidean space we have:

‖A
(
I− zz>

)
‖2
F = ‖A‖2

F − ‖Azz>‖2
F = ‖A‖2

F − ‖Az‖2
2, (1.10)

where the second inequality follows from unitary invariance of the Frobenius norm and that the
squared Frobenius norm of a rank-1 matrix Az (vector) is equal to its squared Euclidean norm.
If it happens that σ2(A) 6 σ1(A)/2, i.e., a constant gap exists between the first two singular
values, then since guarantee (1.9) implies that ‖Az‖2

2 > σ2
1(A) − (ε/n)σ2

2(A), we can plug
this into (1.10) to yield a (1 + ε/n)-approximate solution. Hence, we focus on instances where
σ2(A) > σ1(A)/2.

Consider the case where the Frobenius norm of the tail is large, i.e., ‖A−A1‖2
F > σ2

2(A)/ε1/3,
where A1 is the best rank-1 approximation to A. Then we only require an ε2/3-approximate so-
lution (plugging guarantee (1.8) into (1.10)) since

‖A
(
I− z1z

>
1

)
‖2
F 6 ‖A‖2

F − σ2
1(A) + ε2/3σ2

2(A) 6 ‖A−A1‖2
F + ε‖A−A1‖2

F . (1.11)

Otherwise,
∑n
i=2 σ

2
i (A) < σ2

2(A)/ε1/3, which implies that there is a constant gap between the
second and b-th singular values, where b = O

(
1/ε1/3

)
. To see this, observe if σb(A) > σ2(A)/4,

then
∑n
i=2 σ

2
i (A) >

∑b
i=2 σ

2
i (A) > bσ2

2(A)/4, which is a contradiction when b > 10/ε1/3, and
thus σb(A) 6 σ2(A)/4 < σ1/2. Now we can apply guarantee (1.9) with q = O(log(n/ε)) and
conclude ‖Az‖2

2 > σ2
1(A)− (ε/n)σ2

2(A), yielding a highly accurate solution yet again. Overall,
this suffices to obtain a (1 + ε)-approximate solution with Õ(1/ε1/3) matrix-vector queries.

Challenges in generalizing to Schatten p 6= 2 and rank k > 1. The outline above crucially
relies on the norm of interest being Frobenius. In particular, we use the Pythagorean Theorem to

46

analyze the cost of the candidate solution in Equation (1.10); however, the Pythagorean Theorem
does not hold for non-Euclidean spaces. Therefore, a priori, it is unclear how to analyze the
Schatten-p norm of a candidate rank-1 approximation. A proxy for the Pythagorean Theorem
that holds for Schatten-p norms is Mahler’s operator inequality (see Fact 7.3.11), which is in the
right direction but holds only for p > 2, whereas we would like to handle all p > 1. Separately,
for p > 2, the case where the tail is small corresponds to ‖A −A1‖pSp 6 σp2 (A) /ε1/3. There-
fore, naïvely extending the above argument requires picking a block size that scales proportional
to O

(
2p/ε1/3

)
to induce a constant gap between σ1 and σb, and the number of matrix-vector

products scales exponentially in p.

Finally, in the above outline, we also crucially use that ‖Azz>‖2
F = ‖Az‖2

2. Observe that
this no longer holds if we replace z with a matrix Z that has k orthonormal columns. Therefore,
it remains unclear how to relate ‖AZ‖pSp to ‖AZ∗,i‖2

2, yet the vector-by-vector error guarantee
obtained by Block Krylov only bounds the latter.

Handling all Schatten-p Norms and k > 1. We modify our algorithm to run Block Krylov on
A> and obtain an orthonormal matrix W such that for all i ∈ [k],

‖A>W∗,i‖2 > σ2
i (A)− γσ2

k+1(A), (1.12)

for some γ > 0. We then analyze the cost ‖A
(
I− ZZ>

)
‖pSp , where Z is a basis for A>W.

Our key insight is to interpret the input matrix A as a partitioned operator (block matrix) and
invoke pinching inequalities for such operators. Pinching inequalities were originally introduced
to understand unitarily invariant norms over direct sums of Hilbert spaces [VN37, Sch60]. In our

setting, given a block matrix M =
M(1) M(2)

M(3) M(4)

, the pinching inequality (see Fact 7.3.13)

implies that for all p > 1,
‖M‖pSp > ‖M

(1)‖pSp + ‖M(4)‖pSp . (1.13)

A priori, it is unclear how to use Equation (1.13) to bound ‖A
(
I− ZZ>

)
‖pSp . First, we establish

a general inequality for the Schatten norm of a matrix times an orthogonal projection. Let P
and Q be any n× n orthogonal projection matrices with rank k (see Definition 7.3.1). Then, we
prove that for any matrix A,

‖A‖pSp > ‖PAQ‖pSp + ‖(I−P) A (I−Q)‖pSp . (1.14)

47

To obtain this inequality, we use a rotation argument along with the fact that the Schatten-p norms

are unitarily invariant to show that ‖A‖pSp = ‖
A(1) A(2)

A(3) A(4)

‖pSp , where ‖A(1)‖Sp = ‖PAQ‖Sp

and ‖A(4)‖Sp = ‖(I−P) A (I−Q)‖Sp , and then we can apply Equation (1.13) to the block
matrix above.

Once we have established Equation (1.14), we can set P = WW> and set Q = ZZ> to
be the projection matrix corresponding to the column span of A>WW>. Then, we have that
PAQ = WW>A and (I−P) A (I−Q) = A

(
I− ZZ>

)
, and combined with (1.14) this

yields
‖A

(
I− ZZ>

)
‖pSp 6 ‖A‖

p
Sp − ‖WW>A‖pSp . (1.15)

To obtain a bound on ‖WW>A‖pSp , we appeal to the per-vector guarantees in Equation (1.12).
However, translating from `2

2 error to σpp
(
W>A

)
incurs a mixed guarantee:

‖WW>A‖pSp > ‖Ak‖pSp −O(γp)
∑
i∈[k]

σ2
k+1 (A)σp−2

i (A) .

To use this bound, we require σ1(A) to be comparable to σk+1(A) and thus we require an in-
volved case analysis, which appears in the proof of Theorem 28.

Avoiding an exponential dependence on p. Our main insight here is that we do not require
a block size that induces a constant gap between singular values. Instead, we first observe that
if the block size b is large enough such that σb 6 σ2/(1 + 1/p), then O

(
log(n/ε)√p

)
iterations

suffice to obtain a vector z such that ‖Az‖2
2 > σ2

1 (A)− (ε/n)σ2
2 (A). Therefore, we can trade-

off the threshold for the Schatten norm of the tail with the number of iterations as follows: if
‖A − A1‖pSp 6 1

p1/3ε1/3σ
p
2 (A), then setting b = (1 + 1/p)p/(εp)1/3 = Θ(1/(εp)1/3) suffices

to induce a gap of 1 + 1/p with block size b. The total number of matrix-vector products is
O
(
b · log(n/ε)√p

)
= Õ(p1/6/ε1/3), since p can be assumed to be at most (log n)/ε. Otherwise,

‖A−A1‖pSp >
1

p1/3ε1/3σ
p
2 (A), and we only require a (1+ε2/3/p1/3)-approximate solution instead

(compare with Equation (1.11)). Using gap-independent bounds (see Lemma 7.4.1), it suffices
to start with block size 1 and run O

(
log(n/ε)p1/6/ε1/3

)
iterations to obtain a (1 + ε2/3/p1/3)-

approximate solution.

Avoiding a Gap-Dependent Bound. We note that even when there is a constant gap between
the first and second singular values, and the per vector guarantee is highly accurate, i.e., for all
i ∈ [k], ‖AZ∗,i‖2 > σ2

i (A) − poly
(
ε
d

)
σ2
k+1(A), it is not clear how to lower bound ‖AZ‖pSp in

48

Equation 1.15. In general, the best bound we can obtain using the above equation is

‖AZ‖pSp > ‖Ak‖pSp −O
(

ε

poly(d)

)
σ2
k+1 ·

∑
i∈[k]

σp−2
i , (1.16)

which may be vacuous when the top k singular values are significantly larger than σk+1 and
p > 2. One could revert to a gap-dependent bound, where the error is in terms of the gap
between σ1 and σk+1, which one could account for by running an extra factor ofO(log(σ1/σk+1))
iterations.

To avoid this gap-dependent bound, we split A into a head part AH and a tail part AT , such
that AH has all singular values that are at least (1 + 1/d)σk+1 and AT has the remaining singular
values. We then bound ‖AH

(
I− ZZ>

)
‖Sp and ‖AT

(
I− ZZ>

)
‖Sp separately. Repeating the

above analysis, we can obtain Equation (1.16) for AT instead, and since all singular values
larger than σk+1 in AT are bounded, we can obtain ‖AT

(
I− ZZ>

)
‖pSp 6 O(εk/poly(d))σpk+1.

To adapt the analysis for AT and obtain this bound, we use Cauchy’s interlacing theorem to
relate the j-th singular value of AT

(
I− ZZ>

)
to the (i∗+j)-th singular value of A

(
I− ZZ>

)
,

where i∗ is the rank of AH . We lower bound the (i∗+j)-th singular value of A
(
I− ZZ>

)
using

the per vector guarantee of [MM15].

To bound ‖AH

(
I− ZZ>

)
‖Sp , we observe it has rank at most k and thus

‖AH

(
I− ZZ>

)
‖Sp 6

√
k · ‖AH

(
I− ZZ>

)
‖F =

√
k ·
√
‖AH‖2

F − ‖AHZ‖2
F ,

Intuitively, while the k-dimensional subspace that we find can “swap out" singular vectors cor-
responding to singular values σi for which σi is very close to σk+1, since they serve equally well
for a Schatten-p low-rank approximation, for singular values σi that are a bit larger than σk+1,
the k-dimensional subspace we find cannot do this. More precisely, if y is a singular vector of
AH with singular value σi, then the projection of y onto the k-dimensional subspace that our
algorithm finds (namely, Z) must be at least 1 − σ2

k+1/((σ2
i − σ2

k+1)poly(d)), which suffices to
bound the above since the additive error is inversely proportional to σ2

i when σ2
i � σ2

k+1, and so
the very tiny additive error negates the effect of very large singular values.

Future Directions. In terms of concrete open questions, we note that our lower bounds are
tight only when the target rank k and Schatten norm p are fixed constants. In particular, it is open
to obtain matrix-vector lower bounds that grow as a function of k, p and 1/ε.

Open Question 34. What is the optimal matrix-vector complexity of low-rank approximation as

49

a function of k, p and ε?

For the important special case of Spectral low-rank approximation (p = ∞), it is open to
obtain any lower bound that grows as a function of 1/ε, even when the target rank k = 1. We
also note that improving our upper bound to even p1/6−o(1) would imply a faster algorithm for
Spectral low-rank approximation, addressing the main open question in [Woo14b].

In addition, more open ended questions include determining the matrix-vector product com-
plexity of several fundamental problems in numerical linear algebra such as regression, PSD
testing and estimating schatten norms, and finding structured optimization problems where we
can beat the square-root speedup obtained by Chebyshev polynomials.

1.2.2 Low-Rank Approximation for PSD Matrices

As mentioned above, a large body of work over the past two decades has studied relative-error

low-rank approximation, whereby given an n× n matrix A, an accuracy parameter ε > 0, and a
rank parameter k, one seeks to output a rank-k matrix B for which

‖A−B‖2
F 6 (1 + ε)‖A−Ak‖2

F , (1.17)

where for a matrix C, ‖C‖2
F = ∑

i,j C2
i,j , and Ak denotes the best rank-k approximation to A in

Frobenius norm. Ak can be computed exactly using the singular value decomposition, but takes
time O(nω), where ω is the matrix multiplication constant. We refer the reader to the survey
[Woo14a] and references therein.

For worst-case matrices, it is not hard to see that any algorithm achieving (8.1) must spend
at least Ω(nnz(A)) time, where nnz(A) denotes the number of non-zero entries (sparsity) of A.
Indeed, without reading most of the non-zero entries of A, one could fail to read a single large
entry, thus making one’s output matrix B an arbitrarily bad approximation.

A flurry of recent work [KP16, MW17c, CLW18, Tan19, RSML18, GLT18, IVWW19, SW19,
GSLW19] has looked at the possibility of achieving sublinear time algorithms (classical and
quantum) for low-rank approximation. In particular, Musco and Woodruff [MW17c] consider
the important case of positive-semidefinite (PSD) matrices. PSD matrices include as special
cases covariance matrices, correlation matrices, graph Laplacians, kernel matrices and random
dot product models. Further, the special case where the input itself is low-rank (PSD Matrix
Completion) has applications in quantum state tomography [GLF+10]. Subsequently, Bakshi and

50

Woodruff [BW18] considered low-rank approximation of the closely related family of Negative-
type (Euclidean Squared) distance matrices. Negative-type metrics include as special cases `1

and `2 metrics, spherical metrics and hypermetrics, as well as effective resistances in graphs
[DL09, TD87, CRR+96, CKM+11]. Negative-type metrics have found various applications in
algorithm design and optimization [ALN08, SS11, KMP14].

Musco and Woodruff show that it is possible to output a low-rank matrix B in factored form
achieving (8.1) in Õ(nk/ε2.5 +nkω−1/ε2(ω−1)) time, while reading only Õ(nk/ε2.5) entries of A.
They also showed a lower bound that any algorithm achieving (8.1) must read Ω(nk/ε) entries,
and closing the gap between these bounds has remained an open question. Similarly, in joint
work with David Woodruff, we exploit the structure of Negative-type metrics to reduce to the
PSD case and obtain a bi-criteria algorithm that requires Õ(nk/ε2.5) queries. The gap in the
sample complexity and the requirement of a bi-criteria guarantee remained open. We resolve
these both these questions here.

Next we consider PSD matrices that have been corrupted by a small amount of noise. A
drawback of algorithms achieving (8.1) is that they cannot tolerate any amount of unstructured
noise. For instance, if one slightly corrupts a few off-diagonal entries, making the input matrix
A no longer PSD, then it is impossible to detect such corruptions in sublinear time, making the
relative-error guarantee (8.1) information-theoretically impossible. Motivated by this, we also
introduce a new framework where an adversary corrupts the input by adding a noise matrix N
to a psd matrix A. We assume that the Frobenius norm of the corruption is bounded relative
to the Frobenius norm of A, i.e., ‖N‖2

F 6 η‖A‖2
F . We also assume the corruption is well-

spread, i.e., each row of N has `2
2-norm at most a fixed constant factor larger than `2

2-norm of the
corresponding row of A.

This model captures small perturbations to PSD matrices that we may observe in real-world
datasets, as a consequence of round-off or numerical errors in tasks such as computing Laplacian
pseudoinverses, and systematic measurement errors when computing a covariance matrix. One
important application captured by our model is low-rank approximation of corrupted correlation

matrices. Finding a low-rank approximation of such matrices occurs when measured correlations
are asynchronous or incomplete, or when models are stress-tested by adjusting individual corre-
lations. Low-rank approximation of correlation matrices also has many applications in finance
[Hig02].

Given that it is information-theoretically impossible to obtain the relative-error guarantee
(8.1) in the robust model, we relax our notion of approximation to the following well-studied

51

Problem Prior Work Our Results Query Lower
Query Run Time Query Run Time Bound

PSD LRA O
(
nk
ε2.5

)
O
(
nkω−1

ε2ω−2 + nk
ε2.5

)
O∗
(
nk
ε

)
O†
(
nkω−1

εω−1

)
Ω
(
nk
ε

)
[MW17c] Thm. 35 [MW17c]

PSD LRA
PSD Output

O
(
nk2

ε2

)
O
(
nkω−1

(
k
εω + 1

ε3ω−3

))
O∗
(
nk
ε

)
O†
(
nkω−1

εω−1

)
Ω
(
nk
ε

)
[MW17c] Thm. 35 [MW17c]

Negative-Type
LRA

O
(
nk
ε2.5

)
O
(
nkω−1

ε2ω−2 + nk
ε2.5

)
O∗
(
nk
ε

)
O†
(
nkω−1

εω−1

)
Ω
(
nk
ε

)
Bi-criteria, [BW18] No Bi-criteria, Thm. 38 [BW18]

Coreset Ridge
Regression

O

(
ns2
λ

ε4

)
O
(
nsωλ
εω

)
O∗
(
nsλ
ε2

)
O†
(
nsω−1
λ

ε2ω−2

)
Ω
(
nsλ
ε2

)
[MW17c] Thm. 40

Table 1.2: Comparison with prior work. The notationO∗ andO† represent existence of matching
lower bounds for query complexity and running time (assuming the fast matrix multiplication
exponent ω is 2) respectively. The notation sλ is used to denote the statistical dimension of ridge
regression. All bounds are stated ignoring polylogarithmic factors in n, k and ε.

additive-error guarantee:

‖A−B‖2
F 6 ‖A−Ak‖2

F + (ε+ η)‖A‖2
F . (1.18)

This additive-error guarantee was introduced by the seminal work of Frieze et. al. [FKV04b],
and triggered a long line of work on low-rank approximation from a computational perspective.
Frieze et al. showed that it is possible to achieve (8.2) in O(nnz(A)) time. Further, given
access to an oracle for computing row norms of A, 8.2 is achievable in sublinear time. More
recently, the same notion of approximation was used to obtain sublinear sample complexity and
running time algorithms for distance matrices [BW18],[IVWW19], and a quantum algorithm for
recommendation systems [KP16], which was subsequently dequantized [Tan19].

This raises the question of how robust are our sublinear low-rank approximation algorithms
for structured matrices, if we relax to additive-error guarantees and allow for corruption. In
particular, can we obtain additive-error low-rank approximation algorithms for PSD matrices
that achieve sublinear time and sample complexity in the presence of noise? We characterize
when such robust algorithms are achievable in sublinear time.

Our Results. We begin with stating our results for low-rank approximation for structured ma-
trices. Our main result is an optimal algorithm for low-rank approximation of PSD matrices:

Theorem 35 (Sample-Optimal PSD LRA). Given a PSD matrix A, there exists an algorithm that

queries Õ(nk/ε) entries in A and outputs a rank k matrix B such that with probability 99/100,

52

‖A−B‖2
F 6 (1 + ε)‖A−Ak‖2

F , and the algorithm runs in time Õ(n · (k/ε)ω−1).

Remark 36. Our algorithm matches the sample complexity lower bound of Musco and Woodruff,
up to logarithmic factors, which shows that any randomized algorithm that outputs a (1 + ε)-
relative-error low-rank approximation for a PSD matrix A must read Ω(nk/ε) entries. Our run-
ning time also improves that of Musco and Woodruff and is optimal if the matrix multiplication
exponent ω is 2.

Remark 37. We can extend our algorithm such that the low-rank matrix B we output is also PSD
with the same query complexity and running time. In comparison, the algorithm of Musco and
Woodruff accesses Õ(nk/ε3+nk2/ε2) entries in A and runs in time Õ(n(k/ε)ω+nkω−1/ε3(ω−1)).

At the core of our analysis is a sample optimal algorithm for Spectral Regression: minX ‖DX−
E‖2

2. We show that when D has orthonormal columns and E is arbitrary, we can sketch the prob-
lem by sampling rows proportional to the leverage scores of D and approximately preserve the
minimum cost. This is particularly surprising since our sketch only computes sampling probabil-
ities by reading entries in D, while being completely agnostic to the entries in E. Here, we also
prove a spectral approximate matrix product guarantee for our one-sided leverage score sketch,
which may be of independent interest. We note that such a guarantee for leverage score sampling
does not appear in prior work, and we discuss the technical challenges we need to overcome in
the subsequent section.

The techniques we develop for PSD low-rank approximation also extend to computing a
low-rank approximation for distance matrices that arise from negative-type (Euclidean-squared)
metrics. Here, our input is a pair-wise distance matrix A corresponding to a point set P =
{x1, x2, . . . , xn} ∈ Rd such that Ai,j = ‖xi− xj‖2

2. We obtain an optimal algorithm for comput-
ing a low-rank approximation of such matrices:

Theorem 38 (Sample-Optimal LRA for Negative-Type Metrics). Given a negative-type distance

matrix A, there exists an algorithm that queries Õ(nk/ε) entries in A and outputs a rank k

matrix B such that with probability 99/100, ‖A−B‖2
F 6 (1 + ε)‖A−Ak‖2

F , and the algorithm

runs in time Õ(n · (k/ε)ω−1).

Remark 39. In prior work with David Woodruff [BW18], we obtained a Õ(nk/ε2.5) query algo-
rithm that outputs a rank-(k+ 4) matrix B such that ‖A−B‖2

F 6 (1 + ε)‖A−Ak‖2
F . We show

that the bi-criteria guarantee is not necessary, thereby resolving an open question in their paper.

Structured Regression. The sample-optimal algorithm for PSD Low-Rank Approximation

53

also leads to a faster algorithm for Ridge Regression, when the design matrix is PSD. Given
a PSD matrix A, a vector y and a regularization parameter λ, we consider the following opti-
mization problem: minx∈Rn ‖Ax − y‖2

2 + λ‖x‖2
2. This problem is often referred to as Ridge

Regression and has been the focus of numerous theoretical and practical works.

Theorem 40 (PSD Ridge Regression.). Given a PSD matrix A, a regularization parameter λ and

statistical dimension sλ = Tr(A2 + λI)−1A2, there exists an algorithm that queries Õ(nsλ/ε2)
entries of A and with probability 99/100 outputs a (1 + ε) approximate solution to the Ridge

Regression objective and runs in Õ(n(sλ/ε2)ω−1) time.

Remark 41. Our result improves on prior work by Musco and Woodruff [MW17c], who obtain
an algorithm that queries Õ(ns2

λ/ε
4) entries in A and runs in Õ(n(sλ/ε2)ω) time.

Robust Low-Rank Approximation. Next, we consider a robust form of low-rank approxima-
tion problem, where the input is a PSD matrix corrupted by noise. In this setting, we have query
access to the corrupted matrix A + N, where A is PSD and N is such that ‖N‖2

F 6 η‖A‖2
F .

Further, for all i ∈ [n] ‖Ni,∗‖2
2 6 c‖Ai,∗‖2

2, for a fixed constant c. The diagonal of a PSD matrix
carries crucial information since the largest diagonal entry upper bounds all off-diagonal entries.
Therefore, a reasonable adversarial strategy is to corrupt the largest diagonal entries and make
them close to the small diagonal entries, which enables the resulting matrix to have large off-
diagonal entries that are hard to find. Capturing this intuition we parameterize our algorithms
and lower bounds by the largest ratio between a diagonal entry of A and A + N, denoted by
φmax = maxj∈[n] Aj,j/|(A + N)j,j|.

Theorem 42 (Robust LRA Lower Bound). Let ε > η > 0. Given A + N such that A is PSD

and N is a corruption matrix as defined above, any randomized algorithm that with probabil-

ity at least 2/3 outputs a rank-k approximation up to additive error (ε + η)‖A‖2
F must read

Ω (φ2
maxnk/ε) entries of A + N.

Remark 43. Any algorithm must incur additive error η‖A‖2
F , since A is not even identifiable

below additive-error η‖A‖2
F .

Remark 44. In our hard instance, φ2
max can be as large as εn/k, which implies a sample-

complexity lower bound of Ω(n2). While this lower bound precludes sublinear algorithms for
arbitrary PSD matrices, we observe that in many applications φmax can be significantly smaller.
For instance, if A is a correlation matrix, we know that the true diagonal entries of A + N are 1
and can ignore any corruption on them to bound φmax by 1.

54

Motivated by the aforementioned observation, we introduce algorithms for robust low-rank
approximation, parameterized by the corruption on the diagonal entries. We obtain the following
theorem:

Theorem 45 (Robust Low-Rank Approximation). Given A+N, which satisfies our noise model,

there exists an algorithm that queries Õ(φ2
maxnk/ε) entries in A + N and computes a rank k

matrix B such that with probability at least 99/100, ‖A−B‖2
F 6 ‖A−Ak‖2

F +(ε+√η)‖A‖2
F .

Remark 46. While the sample complexity of this algorithm matches the sample complexity in
the lower bound, it incurs additive-error

√
η‖A‖2

F as opposed to η‖A‖2
F . An interesting open

question here is whether we can achieve additive-error o(√η‖A‖2
F), though we note that when

η2 6 ε, this just changes the additive error guarantee of our low-rank approximation by a constant
factor.

Remark 47. Our techniques extend to low-rank approximation of correlation matrices, and we
obtain a sample complexity of Õ(nk/ε), which is optimal. In fact, the hard instance in [MW17c]
implies an Ω(nk/ε) lower bound on the sample complexity, even in the presence of no noise.
Surprisingly, corrupting a correlation matrix does not increase the sample complexity and only
incurs an additive error of

√
η‖A‖2

F .

Future Directions. A nascent area in algorithm design is developing fast algorithms for struc-
tured linear algebra problems. This area has seen rapid progress for problems including low-rank
approximation (see above), regression and covariance estimation. Considering structured matri-
ces can also be an avenue for progress on major open problems like spectral low-rank approxi-
mation. An open ended research direction is as follows:

Open Question 48. When does structure in the input lead to faster algorithms for fundamental
problems in numerical linear algebra? How robust are the corresponding algorithms to perturba-
tions of the structure in the input?

As mentioned above, exploiting structure of the input matrices has lead to several algorith-
mic breakthroughts: solving linear systems for Laplacian/Diagonally Dominant matrices [ST14,
KOSZ13, KMP14] and Block Henkel matrices [PV21], covariance estimation of Toeplitz ma-
trices [ELMM20], and approximation the permanent of boolean [JS89], non-negative matri-
ces [JSV04] and PSD [AGGS17, YP21] matrices. Obtaining provable guarantees for the afore-
mentioned tasks, even when the input matrix is perturbed by noise, is an intruiging research
direction.

55

More broadly, the tools we developed in these works have been useful for a myriad of ma-
chine learning applications, including provable guarantees for training two layer ReLU net-
works [BJW19], distriuted clustering [ABB+19] , learning a latent simplex in input sparsity
time [BBK+21a], and quantum-inspired algorithms for machine learning [CCH+20]. Looking
forward, we hope to understand the power and applicability of these tools to learning other latent
models as well as quantum-inspired algorithms.

1.2.3 Learning a Latent Simplex

We also study the problem of learning k vertices M∗,1, . . . ,M∗,k of a latent k-dimensional sim-
plex K in Rd using n data points generated from K and then possibly perturbed by a stochastic,
deterministic, or adversarial source before given to the algorithm. In particular, the resulting
points observed as input data could be heavily perturbed so that the initial points may no longer
be discernible or they could be outside the simplex K. Recent work of Bhattacharyya and Kan-
nan [BK20c] unifies several stochastic models for unsupervised learning problems, including
k-means clustering [CG92, GH+96, Web03, WT10, Dua20], topic models [BJ03, SG07, BL06a,
Ble12, AGH+13a], mixed membership stochastic block models [ABFX08, MJG09, XFS+10,
FSX09, ABEF14, LAW16, FXC16] and Non-negative Matrix Factorization [AGH+13b, GV14,
Gil20] under the problem of learning a latent simplex. In general, identifying the latent simplex
can be computationally intractable. However many special applications do not require the full
generality. For example, in a mixture model like Gaussian mixtures, the data is assumed to be
generated from a convex combination of density functions. Thus, it may be possible to efficiently
approximately learn the latent simplex given certain distributional properties in these models.

Indeed, Bhattacharyya and Kannan showed that given certain reasonable geometric assump-
tions that are typically satisfied for real-world instances of Latent Dirichlet Allocation, Stochastic
Block Models and Clustering, there exists an Õ(k · nnz(A)) 9 time algorithm for recovering the
vertices of the underlying simplex. We show that, given an additional natural assumption, we
can remove the dependency on k and obtain a true input sparsity time algorithm. We begin by
defining the model along with our new assumption:

Definition 1.2.1 (Latent Simplex Model). Let M be a d×k matrix such that M∗,1,M∗,2, . . . ,M∗,k ∈
Rd denote the vertices of a k-simplex, K. Let P be a d× n matrix such that P∗,1,P∗,2 . . .P∗,n ∈
Rd are n points in the convex hull of K. Given σ > 0, we observe a d × n matrix A, such that

9Throughout the paper we use the notation Õ to suppress poly-logarithmic factors.

56

‖A−P‖2 6 σ
√
n. Further, we make the following assumptions on the data generation process:

1. Well-Separateness. For all ` ∈ [k], M∗,` has non-trivial mass in the orthogonal com-

plement of the span of the remaining vectors, i.e., for all ` ∈ [k], |Proj(M∗,`,Null(M \
M∗,`))| > αmax` ‖M∗,`‖2 where Proj(x, U) denotes the orthogonal projection of x to the

subspace U and M \M∗,` is the matrix M with the `-th column removed.

2. Proximate Latent Points. Given δ ∈ (0, 1), for all ` ∈ [k], there exists a set S` ⊆ [n] such

that |S`| > δn and for all j ∈ S`, ‖M∗,` −P∗,j‖2 6 4σ/δ.

3. Spectrally Bounded Perturbation. The spectrum of A−P is bounded, i.e., for a sufficiently

large constant c, σ/
√
δ 6 α2 min` ‖M∗,`‖2/ck

9.

4. Significant Singular Values. Let A = ∑
i∈[d] σiuiv

T
i be the singular value decomposition

and let 0 < φ 6 nnz(A)/(n · poly(k)). We assume that for all i ∈ [k], σi > φ · σk+1 and

‖A−Ak‖2
F 6 φ‖A−Ak‖2

2.

These assumptions are natural across many interesting applications. [BK20c] introduced
the Well-Separateness (1), Proximate Latent Points (2) and Spectrally Bounded Perturbation
(3) assumptions. We include an additional Significant Singular Values assumption (4), which
is crucial for obtaining a faster running time; we discuss this in more detail below. Our main
algorithmic result can then be stated as follows:

Theorem 49 (Learning a Latent Simplex in Input-Sparsity Time). Given k > 2 and A ∈
Rd×n from the Latent Simplex Model (Definition 1.2.1), there exists an algorithm that runs

in Õ (nnz(A) + (n+ d)poly(k/φ)) time to output subsets AR1 , . . . ,ARk such that upon per-

muting the columns of M, with probability at least 1 − 1/Ω(
√
k), for all ` ∈ [k], we have

‖AR` −M∗,`‖2 6 300k4σ/(α
√
δ).

Our result implies faster algorithms for various stochastic models that can be formulated as
special cases of the Latent Simplex Model, including Latent Dirichlet Allocation for Topic Mod-
eling, Mixed Membership Stochastic Block Models and Adversarial Clustering. We summarize
the connections to these applications below. We describe our algorithm and provide an outline to
our analysis; we defer all formal proofs to the supplementary material.

We first formalize the connection between the Latent Simplex Model (Definition 1.2.1) and
numerous stochastic models. In particular, we show that topic models like Latent Dirichlet Al-
location (LDA), Stochastic Block Models and Adversarial Clustering can be viewed as special
cases of the Latent Simplex Model. We also show how our assumptions are natural in each of

57

these applications.

Topic Models. Probabilistic Topic Models attempt to identify abstract topics in a collection
of documents by discovering latent semantic structure [BJ03, BL06b, HBB10, ZAX12, Ble12].
Each document in the corpus is represented by a bag-of-words vectorization with the correspond-
ing word frequencies. The standard statistical assumption is that the generative process for the
corpus is a joint probability distribution over both the observed and hidden random variables.
The hidden random variables can be interpreted as representative documents for each topic. The
goal is to then design algorithms that can learn the underlying topics. The topics can be viewed
geometrically as k latent vectors M∗,1,M∗,2, . . . ,M∗,k ∈ Rd, where d is the size of the dictio-
nary and Mi,` is the expected frequency of word i in topic `. Since each vector M∗,` represents a
probability distribution,

∑
i Mi,` = 1. Let M be the corresponding d× k matrix. One important

stochastic model is Latent Dirichlet Allocation (LDA) [BNJ03], where each document consists
of m words is generated as follows :

• For all ` ∈ [k], we pick topic weights Wj,` ∼ Dir(1/k), where Dir(1/k) is the Dirichlet
distribution over the unit simplex. The topic distribution of document j is decided by the
topic weights, Wj,`, and given by P∗,j = ∑

`∈[k] Wj,` ·M∗,`, where P∗,j are latent points.

• We then generate the j-th document withmwords by taking i.i.d. samples from Mult(P∗,j),
the multinomial distribution with P∗,j as the probability vector. The resulting document
observed is denoted by the vector A∗,j , where for all i ∈ [d] Ai,j = 1

m

∑m
t=1 X(t)

ij ,, such
that X(t)

ij ∼ Bern(Pij), where X(t)
ij = 1 if the i-th word was chosen in the t-th draw while

generating the j-th document, and 0 otherwise.

The data generation process of LDA can be viewed as a special case of the Latent Simplex Model,
where the j-th document is the data point A∗,j generated from the stochastic vector P∗,j , a point
in the simplex K. The vertices of the simplex are the k topic vectors M∗,1, . . . ,M∗,k; the goal
is then to recover the vertices of K. [BK20c] remark that the Well-Separateness condition holds
for LDA if we assume a Dirichlet prior on M. We note that while K is a k-dimensional simplex,
d � k and the observed points need not lie inside the simplex. On the contrary, [BK20c] show
that the data often lies significantly outside of K. However, they show that the smoothed simplex
obtained by taking the averages of all δn sized subsets of observed points results in a polytope
KS that is close to K.

We formally justify our assumptions below.

Lemma 1.2.2 (LDA as a Latent Simplex). Given A,P,M following the LDA model as described

58

above, such that for all ` ∈ [k], ‖M∗,`‖2 = Ω(1), m,n = Ω(poly(k/α)) and δ = cσ/
√
k,

assumptions (2),(3) and (4) from Definition 1.2.1 are satisfied with high probability.

Proof. Assumptions (2) and (3) follow from Lemma 7.1 in [BK20c]. By Claim 8.1 in [BK20c],
σk(A) > cα

√
δ/kmin` M∗,`. Each column of A sums to 1, so ‖A‖2

F = O(n) and σk(A) >

α
√
δ/k‖A‖F . Since ‖A − P‖2 6 σ

√
n by definition of σ, and P consists of n point in the

convex hull of k points and thus σk+1(P) = 0, we have σk+1(A) 6 σk+1(P) + ‖A − P‖2 6

σ
√
n 6 σ‖A‖F . Thus if σ 6 α

√
δ/poly(k) for a large enough poly(k), our Significant Singular

Values assumption holds.

Mixed Membership Stochastic Block Models. The Stochastic Block Model is a well-studied
stochastic model for generating random graphs, where the vertices are partitioned into k commu-
nities and edges within each community are more likely to occur than edges across communities.
Given communities C1, C2, . . . Ck, there exists a k × k symmetric latent matrix B, where, B`1,`2

is the probability that there exists an edge between vertices in C`1 and C`2 . The MMBM can be
formalized as the following stochastic process:

• For j ∈ [n], vertex j picks a probability vector W∗,j ∈ Rk representing community mem-
bership probabilities that sum to 1, i.e., Wi,j ∼ Dir(1/k) for all i ∈ [k].

• For all pairs (j1, j2) ∈ [n], vertex j1 picks a community `1 proportional to Mult(W∗,j1)
and j2 picks a community `2 proportional to Mult(W∗,j2). The edge (j1, j2) is included
in the graph with probability B`1,`2 . Since

∑
`1,`2 W`1,j1B`1,`2W`2,j2 represents the edge

probability of the edge (j1, j2), the latent variable matrix P of edge probabilities can be
represented as P = WTBWT .

However, our reduction is not straightforward since now P depends quadratically on W and
the only polynomial time algorithms for B directly rely on semidefinite programming. Further,
they require non-degeneracy assumptions in order to compute a tensor decomposition provably
in polynomial time [AGHK14b, HS17]. However, we can pose the problem of recovery of the
k underlying communities differently and first pick at random a subset V1 ⊂ [n] of d vertices
and represent the `-th community by a d-dimensional vector that represents the probabilities of
vertices in [n] \ V1 belonging to community ` and having an edge with each of the d vertices in
V1. We now define W(1) to be a k × d matrix representing the fractional membership of weights
of vertices in V1 and W(2) to be the analogous k× n matrix for vertices in [n] \ V1. Observe that
the probability matrix P can now be represented as WT

(1)BW(2).

The reduction to the Latent Simplex Model can now be stated as follows: given a data matrix

59

A which is the adjacency matrix of the community graph, and the latent variable matrix P, re-
cover the simplex M = WT

(1)B. Further, [ABFX08] assumes that each column of W(2) is picked
from the Dirichlet distribution with parameter 1/k. Combined with tools from random matrix
theory [Ver10a], [BK20c] (Lemma 7.2) shows that the Proximate Latent Points and Spectrally
Bounded assumptions hold for Stochastic Block Models. As for the Significant Singular Values
assumption, it is satisfied when σ is a small enough polynomial in k.

Justifying Significant Singular Values. We give the following further justification for as-
sumption (4) in Section 9.5: a faster algorithm only using the assumptions appearing in [BK20c]
would imply an algorithmic breakthrough for spectral low-rank approximation and partially re-
solve the first open question of [Woo14b].

Theorem 50 (Spectral LRA and Learning a Simplex (informal)). There exists a distribution over

instances such that learning a latent simplex in o(nnz(A) ·k) time with good probability implies

a constant factor spectral low-rank approximation algorithm in the same running time.

Adversarial Clustering. We consider clustering problems that arise naturally from stochastic
mixture models such as Gaussian, Mallows, categorical and so on [SK01, VW04, LB11, CSV17,
DKS18, LM18b]. We can then formulate such a clustering problem in the Latent Simplex Model
as follows: Given n data points A∗,1,A∗,2, . . . ,A∗,n ∈ Rd, such that the data is a mixture of k
distinct clusters, C1,C2, . . . ,Ck, with means M∗,1,M∗,2, . . . ,M∗,k, the goal is to approximately
learn the means. Further, we can set the n latent vectors P∗,j to denote the mean of the cluster
point A∗,j belongs to, and thus P∗,j ∈ {M∗,1,M∗,2, . . . ,M∗,k}. Prior work of [KK10] and
[AS12] shows that if the minimum cluster size if δn and for all ` 6= `′, ‖M∗,` −M∗,`′‖ > ck σ√

δ

the M∗,` can be found within error O(
√
kσ/
√
δ).

However, the aforementioned algorithms are not robust to adversarial perturbations. There-
fore, we describe the perturbations we can handle in the Latent Simplex Model. The adversarial
model is the same as the one considered in [BK20c]. The adversary is allowed to selected a
subset S` of each cluster C` of cardinality at most δn and perturb each point A∗,j for j ∈ S` by
∆j such that :

• P∗,j + ∆j is still in the Convex Hull of M∗,1,M∗,2, . . . ,M∗,k

• The norm of the perturbation is bounded, i.e., |∆j|2 6 4σ/
√
δ.

Intuitively, the adversary can move a 1 − δ fraction of the data points in each cluster an arbi-
trary amount towards the convex hull of the means of the remaining clusters. For the remaining
δn, the perturbation should have norm at most O(σ/

√
δ). The goal is to still learn the means

60

M∗,` approximately. [BK20c] shows that the aforementioned model satisfies Well-Separateness,
Proximate Latent Points and Spectrally Bounded Perturbations assumptions. The proof for the
Significant Singular Values assumption follows from Lemma 1.2.2. We note that there has been
a flurry of recent progress on adversarial clustering in the strong contamination model, where
the input data points are sampled from a mixture of Gaussians distribution and the adversary can
corrupt a small fraction of the samples arbitrarily [DKS18, HL18, KSS18, DHKK20, BK20b]. In
our setting, there is no distribution assumption on the data points but the adversary is constrained
as the norm of the perturbation is bounded.

1.3 Roadmap of the Thesis

This thesis is divided into two parts, each focusing on one of the two distinct regimes of learning
latent models, as discussed in this section. We note that the goals, motivations and technical
ideas we use in the separate parts varies considerably. However, each chapter in the two parts
is designed to be self-contained and thus introduces the notation, background and preliminaries
used in that chapter. While this leads to some redundancy of definitions across chapters, we
believe it vastly improves the readability of each chapter. Next, we outline the chapters in each
part and the paper corresponding to that chapter:

Part I : Establishing Tractability of Latent Models

1. Chapter 2: Outlier-Robust Clustering of Non-spherical Mixtures [BK20b], with Pravesh
Kothari. FOCS ’20.

2. Chapter 3: Robustly Learning a Mixture of k Arbitrary Gaussians [BDJ+22], with Ilias
Diakonikolas, He Jia, Daniel Kane, Pravesh Kothari and Santosh Vempala. STOC ’22.

3. Chapter 4: Robust Linear Regression: Optimal Rates in Polynomial Time [BP21], with
Adarsh Prasad. STOC ’21.

4. Chapter 5: List-Decodable Subspace Recovery [BK21], with Pravesh Kothari. SODA ’21.

5. Chapter 6: Learning a Two-Layer Neural Network in Polynomial Time [BJW19], with
Rajesh Jayaram and David Woodruff. COLT ’18.

Part II : Nearly Optimal Algorithms for Learning Latent Models

1. Chapter 7: Low-Rank Approximation with 1/ε1/3 Matrix-Vector Products [BCW22], with
Ken Clarkson and David Woodruff. STOC ’22.

61

2. Chapter 8: PSD Low-Rank Approximation [BCW20a], with Nadiia Chepurko and David
Woodruff. FOCS ’20.

3. Chapter 9: Learning a Latent Simplex in Truly Input-Sparsity Time [BBK+21a], with
Chiranjeeb Bhattacharya, Ravi Kannan, David Woodruff and Samson Zhou. ICLR ’21.

We note that [BW18, ABB+19, BCJ20] and [BCW19] do not appear in this thesis.

62

Part I

Establishing Tractability of Latent Models

63

Chapter 2

Outlier-Robust Clustering of
Non-Spherical Mixtures

2.1 Introduction

In this chapter, we study outlier-robust clustering of mixtures of distributions that exhibit mean
or covariance separation. As a corollary, we obtain a polynomial time outlier-robust algorithm
for clustering mixtures of k-Gaussians (k-GMMs) when each pair of components is separated in
total variation (TV)1 distance. This is the information-theoretically weakest notion of separation,
allows components of same mean but variances differing in an unknown direction2 or covariances
separated in relative Frobenius distance (see Fig 2.1) and includes well-studied problems such
as mixed linear regression and subspace clustering as special cases.

Clustering all Hypercontractive and Anti-Concentrated Distributions. The Gaussian Mix-
ture Model has been the subject of a century-old line of research beginning with Pearson [Pea94].
A k-GMM

∑
r6k prN (µ(r),Σ(r)) is a probability distribution sampled by choosing a component

r ∼ [k] with probability pr and outputting a sample from the Gaussian distribution with mean
µ(r) and covariance Σ(r). In the k-GMM learning problem, the goal is to output an approxi-
mate clustering of the input sample or estimate the parameters (the mean and covariances) of the
components. Progress on provable algorithms for learning k-GMMs began with the influential

1The TV distance between distributions with PDFs p, q is defined as 1
2
∫∞
−∞ |p(x)− q(x)|dx.

2As an interesting example, consider the case of subspace clustering: mixture of standard Gaussians restricted
to unknown distinct subspaces. The components have a TV distance of 1 regardless of how close the subspaces are
and thus satisfy our assumptions.

65

work of Dasgupta [Das99] followed up by [SK01, VW04, BV08] yielding clustering algorithms
that succeed under various separation assumptions. These assumptions, however, do not cap-
ture natural separated instances of Gaussians (e.g., see (b) or (c) in Fig 2.1). A more general
approach [KMV10, MV10, BS15] circumvents clustering altogether by giving an efficient algo-
rithm (time ∼ dpoly(k)) for parameter estimation without any separation assumptions.

Our main result is a polynomial-time algorithm based on the sum-of-squares (SoS) method
for clustering TV-separated k-GMMs in the presence of an ε-fraction of fully adversarial outliers.
Such a result was not known prior to our work even for k = 2. Our algorithms actually succeed
more generally for mixtures of all distributions that satisfy two well-studied analytic conditions:
certifiable anti-concentration and certifiable hypercontractivity and thus apply, for e.g., to clus-
tering mixtures of arbitrary affine transforms of uniform distribution on the unit sphere. We
consider identifying clean analytic conditions that enable the existence of efficient clustering
algorithms an important contribution of our work.

2.1.1 Our Results

Outlier-Robust Clustering of k-GMMs. Our main result is an efficient algorithm for outlier-
robust clustering of k-GMMs whenever every pair of components of the mixture are separated
in total variation distance. Formally, our algorithms work in the strong contamination model
studied in the bulk of the prior works on robust estimation where an adversary changes an arbi-
trary, potentially adversarially chosen ε-fraction of the input sample before passing it on to the
algorithm.

Theorem 51 (Main Result, Outlier-Robust Clustering of k-GMMs). Fix η, ε > 0. Let Dr =
N (µ(r),Σ(r)) for r 6 k be k-Gaussians such that dTV (Dr,Dr′) > 1 − exp(−poly(k/η))
whenever r 6= r′. Then, there exists an algorithm that takes input an ε-corruption Y of a sample

X = C1∪C2∪. . .∪Ck of size n, with equal sized clusters Ci drawn i.i.d. fromDi for each r 6 k,

and with probability at least 0.99, outputs an approximate clustering Y = Ĉ1 ∪ Ĉ2 ∪ . . . ∪ Ĉk
satisfying mini6k |Ĉi∩Ci||Ci| > 1−O(k2k)(ε+η). The algorithm succeeds whenever n > dO(poly(k/η))

and runs in time nO(poly(k/η))).

We can use off-the-shelf robust estimators for mean and covariance of Gaussians([DKK+19])
in order to get statistically optimal estimates of the mean and covariances of the target k-GMM.

Corollary 2.1.1 (Parameter Recovery from Clustering). In the setting of Theorem 51, with

66

the same running time, sample complexity and success probability, our algorithm can output

{µ̂(r), Σ̂(r)}r6k such that for some permutation π : [k]→ [k],

dTV
(
N (µ(r),Σ(r)) ,N

(
µ̂(π(r)), Σ̂(π(r)

))
6 Õ(k2k(ε+ η)).

Discussion. These are the first outlier-robust algorithms that work for clustering k-GMMs un-
der information-theoretically optimal separation assumptions. Such results were not known even
for k = 2. To discuss the bottlenecks in prior works, it is helpful to use (see Prop 2.9.1 in
Section 2.9 for a proof) following consequence of two Gaussians with means µ(1), µ(2) and
covariances Σ(1),Σ(2) being at a TV distance > 1 − exp(−O(∆2)) in terms of the distance
between their parameters.

Figure 2.1: (a) Mean Separation (b) Spectral Separation (c) Relative Frobenius Separation

Definition 2.1.2 (∆-Separated Mixture Model). An equi-weighted mixture D1,D2, . . . ,Dk with

parameters {µ(i),Σ(i)}i6k is ∆-separated if for every pair of distinct components i, j, one of

the following three conditions hold (Σ†/2 is the square root of pseudo-inverse of Σ):

1. Mean-Separation: ∃v ∈ Rd such that 〈µ(i)− µ(j), v〉2 > ∆2v>(Σ(i) + Σ(j))v,

2. Spectral-Separation: ∃v ∈ Rd such that v>Σ(i)v > ∆v>Σ(j)v,

3. Relative-Frobenius Separation:3 Σ(i) and Σ(j) have the same range space and

∥∥∥Σ(i)†/2Σ(j)Σ(i)†/2 − I
∥∥∥2

F
> ∆2

∥∥∥Σ(i)†/2Σ(j)1/2
∥∥∥4

op
.

The key bottleneck for known algorithms was handling separation in cases 2 and 3 above.
3Unlike the other two distances, relative Frobenius distance is meaningful only for high-dimensional Gaussians.

As an illustrative example, consider two 0 mean Gaussians with covariances Σ1 = I and Σ2 = (1 + Θ(1/
√
d))I .

Then, for large enough d, the parameters are separated in relative Frobenius distance but not spectral or mean
distance.

67

Dependence on k. The dependence on the number of components k in our result is doubly
exponential. A singly exponential lower bound in the statistical query model (for even the non-
robust variant) was shown by Diakonikolas, Kane and Stewart [DKS17].

Dependence on ε: While the information-theoretically optimal bound on fraction of mis-
classified samples is O(kε), we only obtain the weaker bound of kO(k)ε. Our algorithms in
Sections 2.3, 2.4 do obtain this the stronger O(kε) guarantee at the cost of a larger running time.
We believe it should be possible to match the optimal recovery guarantee without incurring this
running time penalty.

Handling General Weights: While we have not attempted to do it in this work, it seems pos-
sible to generalize our techniques to handle arbitrary mixing weights albeit with an exponential
dependence on the reciprocal of the smallest mixing weight in both the running time and sample
complexity on the algorithm.

Clustering and Parameter Recovery for all Reasonable Distributions. Our results apply
more generally to mixture models where each component distribution D satisfies two natural
and well-studied analytic conditions: hypercontractivity and bounded variance of degree 2 poly-
nomials and anti-concentration of all directional marginals. Our algorithmic results hold for
distributions (e.g. Gaussians and affine transforms of uniform distribution on the unit sphere)
that admit efficiently verifiable analogs (in the SoS proof system, see Sec 5.3) of these proper-
ties.

Definition 2.1.3 (Certifiable Hypercontractivity). An isotropic distribution D on Rd is said to

be h-certifiably C-hypercontractive if there’s a degree h sum-of-squares proof of the following

unconstrained polynomial inequality in d× d matrix-valued indeterminate Q:

E
x∼D

[
x>Qx− Ex∼Dx

>Qx
]h

6 (Ch)h
(

E
x∼D

[
x>Qx− Ex∼Dx

>Qx
]2)h/2

.

A set of pointsX ⊆ Rd is said to be C-certifiably hypercontractive if the uniform distribution

on X is h-certifiably C-hypercontractive.

Hypercontractivity is an important notion in high-dimensional probability and analysis on
product spaces [O’D14]. Kauers, O’Donnell, Tan and Zhou [KOTZ14] showed certifiable hyper-
contractivity of Gaussians and more generally product distributions with subgaussian marginals.
Certifiable hypercontractivity strictly generalizes the better known certifiable subgaussianity

property (studied first in [KSS18]) that controls higher moments of linear polynomials.

68

Certifiable anti-concentration. In contrast to subgaussianity, anti-concentration forces lower-

bounds of the form Pr[〈x, v〉2 > δ ‖v‖2
2] > δ′ for all directions v. Certifiable anti-concentration

was recently introduced in independent works of Karmalkar, Klivans and Kothari [KKK19] and
Raghavendra and Yau [RY20a] and later used [BK20a, RY20b] for the related problems of
list-decodable linear regression and subspace recovery4.

Following [KKK19], we formulate certifiable anti-concentration via a univariate, even poly-
nomial pδ,Σ that uniformly approximates the 0-1 core-indicator 1(〈x, v〉2 > δv>Σv) over a
large enough interval around 0. Let qδ,Σ(x, v) be a multivariate (in v) polynomial defined by
qδ,Σ(x, v) =

(
v>Σv

)2s
pδ,Σ

(
〈x,v〉√
v>Σv

)
.Since pδ,Σ is an even polynomial, qδ,Σ is a polynomial in v.

Definition 2.1.4 (Certifiable Anti-Concentration). A mean 0 distribution D with covariance Σ is

2s-certifiably (δ, Cδ)-anti-concentrated if for qδ,Σ(x, v) defined above, there exists a degree 2s
sum-of-squares proof of the following two unconstrained polynomial inequalities in indetermi-

nate v:{
〈x, v〉2s + δ2sqδ,Σ(x, v)2 > δ2s

(
v>Σv

)2s
}

,
{

Ex∼Dqδ,Σ(x, v)2 6 Cδ
(
v>Σv

)2s
}
.

An isotropic subsetX ⊆ Rd is 2s-certifiably (δ, Cδ)-anti-concentrated if the uniform distribution

on X is 2s-certifiably (δ, Cδ)-anti-concentrated.

Remark 52. For natural examples, s(δ) 6 1/δc for some fixed constant c. For e.g., s(δ) = O(1
δ2)

for standard Gaussian distribution and the uniform distribution on the unit sphere (see [KKK19]
and [BK20a]). To simplify notation, we will assume s(δ) 6 poly(1/δ) in the statement of our
results.

Additionally, we need that the variance of degree-2 polynomials is bounded in terms of the
Frobenius norm of the coefficients of the polynomial. Formally,

Definition 2.1.5 (Degree-2 Polynomials with Certifiably Bounded Variance). A mean 0 distribu-

tion D with covariance Σ certifiably bounded variance degree 2 polynomials if there is a degree

2 sum-of-squares proof of the following inequality in the indeterminate Q ∈ Rd×d

{
Ex∼D

(
x>Qx− Ex∼Dx

>Qx
)2

6 C
∥∥∥Σ1/2QΣ1/2

∥∥∥2

F

}
.

4List-decodable versions of these problems generalize the “mixture” variants - mixed linear regression and sub-
space clustering - that are easily seen to be special cases of mixtures of k-Gaussians with TV separation 1.

69

Our general result gives an outlier-robust clustering algorithm for separated mixtures of rea-

sonable distributions, i.e., one that satisfies both certifiable hypercontractivity, anti-concentration
and has bounded variance of degree-2 polynomials. Even the information-theoretic (and without
outliers, i.e., ε = 0) clusterability of such distributions was not known prior to our work.

Theorem 53 (Outlier-Robust Clustering of Separated Mixtures, see Theorem 61 for precise
bounds). Fix η > 0, ε > 0. Let Dr be a ∆-separated mixture of reasonable distributions. Then,

there exists an algorithm that takes input an ε-corruption Y of a sample X = C1 ∪ C2 ∪ . . . Ck,

with true clustersCi of size n/k drawn i.i.d. fromDr for each r 6 k, and outputs an approximate

clustering Y = Ĉ1 ∪ Ĉ2 ∪ . . . ∪ Ĉk satisfying mini6k |Ĉi∩Ci||Ci| > 1 − O(k2k)(ε + η). The algo-

rithm succeeds with probability at least 0.99 over the draw of the original sample X whenever

n > dpoly(k/η) and runs in time npoly(k/η)) whenever ∆ > poly(k/η)k.

Robust Covariance Estimation in Relative Frobenius Distance. In Section 2.6, we give an
outlier-robust algorithm for covariance estimation for all certifiably hypercontractive distribu-
tions.

Theorem 54 (Robust Parameter Covariance Estimation for Certifiably Hypercontractive Distri-
butions). Fix an ε > 0 small enough fixed constant so that Ctε1−1/t � 15. For every even

t ∈ N, there’s an algorithm that takes input Y be an ε-corruption of a sample X of size

n > n0 = dO(t)/ε2 from a 2t-certifiably C-hypercontractive and certifiably C-bounded variance

with unknown mean µ∗ and covariance Σ∗ respectively and in time nO(t) outputs an estimate µ̂

and Σ̂ satisfying:

1.
∥∥∥Σ−1/2(µ∗ − µ̂)

∥∥∥
2
6 O(Ct)1/2ε1−1/t,

2. (1− η)Σ∗ � Σ̂ � (1 + η)Σ∗ for η 6 O(Ck)ε1−1/t, and,

3.
∥∥∥Σ−1/2
∗ Σ̂Σ−1/2

∗ − I
∥∥∥
F
6 (Ct)O(ε1−1/t).

In particular, letting t = O(log(1/ε)) results in the error bounds of Õ(ε) in all the three inequal-

ities above.

The first two guarantees above were shown in [KSS18] for all certifiably subgaussian distri-
butions. [KSS18] also observed (see last paragraph of page 6 for a counter example) that it is
provably impossible to obtain dimension-independent error bounds in relative Frobenius distance
assuming only certifiable subgaussianity. We prove that under the stronger assumption of certifi-

5This notation means that we needed Ctε1−1/t to be at most c0 for some absolute constant c0 > 0

70

able hypercontractivity along with certifiably bounded variance of degree 2 polynomials, we can
indeed obtain dimension-independent, information-theoretically optimal (for e.g. for Gaussians)
error guarantees in relative Frobenius error. Prior works either obtained the weaker spectral error
guarantee (that incurs a loss of

√
d factor when translating into relative Frobenius distance) or

worked only for Gaussians6.

Combining this theorem with our clustering results above yields:

Corollary 2.1.6 (Parameter Recovery from Clustering, General Case). In the setting of either

Theorem 53, there’s an algorithm with same bounds on running time and sample complexity,

that with probability at least 0.99, outputs {µ̂(r), Σ̂(r)}r6k such that for some permutation π :
[k] → [k], for every i, µ̂(π(i)), Σ̂(π(i)) is ∆-close to µ,Σ in the three distances defined in

Definition 3.4.1 for ∆ = Õ(kO(k)(ε+ η)).

2.2 Preliminaries

Throughout this paper, for a vector v, we use ‖v‖2 to denote the Euclidean norm of v. For a n×m
matrix M , we use ‖M‖2 = max‖x‖2=1‖Mx‖2 to denote the spectral norm of M and ‖M‖F =√∑

i,jM
2
i,j to denote the Frobenius norm of M . For symmetric matrices we use � to denote the

PSD/Löwner ordering over eigenvalues of M . For a n× n, rank-r symmetric matrix M , we use
UΛU> to denote the Eigenvalue Decomposition, where U is a n × r matrix with orthonormal
columns and Λ is a r × r diagonal matrix denoting the eigenvalues. We use M † = UΛ†U> to
denote the Moore-Penrose pseudoinverse, where Λ† inverts the non-zero eigenvalues of M . If
M � 0, we use M †/2 = UΛ†/2U> to denote taking the square-root of the non-zero eigenvalues.
We use Π = UU> to denote the Projection matrix corresponding to the column/row span of M .
Since Π = Π2, the pseudo-inverse of Π is itself, i.e. Π† = Π.

Definition 2.2.1 (σ-Sub-gaussian Distribution). A random variable x is drawn from a σ-Sub-

gaussian distribution if for all t > 0, Pr [|x| > t] 6 2 exp(−t2/σ2).

We work with 1-Sub-gaussian distributions unless otherwise specified and drop the 1 when
clear from context.

6We note that the algorithm of [DKK+19] for Gaussian distributions works in fixed polynomial time to obtain
Õ(ε) error-estimate of the covariance in relative Frobenius distance whereas our algorithm works more generally
for all certifiably hypercontractive distributions but runs in time dO(log2(1/ε)).

71

Probability Preliminaries. We begin with standard convergence results for mean and covari-
ance.

Fact 2.2.2 (Empirical Mean for Sub-gaussians). Let D be a Sub-gaussian distribution on Rd

with mean µ and covariance Σ and let x1, x2, . . . xn ∼ D. Then, with probability 1− δ,

∥∥∥∥∥ 1
n

n∑
i=1

xi − µ
∥∥∥∥∥

2
6

√
Tr [(] Σ)

n
+
√
‖Σ‖2 log(1/δ)

n

Fact 2.2.3 (Empirical Covariance for Sub-gaussians, Proposition 2.1 [Ver18]). Let D be a Sub-

gaussian distribution on Rd with mean µ and covariance Σ and let x1, x2, . . . xn ∼ D. Then,

with probability 1− δ,

∥∥∥∥∥ 1
n

n∑
i=1

xix
>
i − Σ

∥∥∥∥∥
2
6 c

√d

n
+
√

log(1/δ)
n


Definition 2.2.4 (Hellinger Distance). For probability distribution p, q onRd, let

h(P,Q) = 1√
2

√∫
Rd

(√
p(x)−

√
q(x)

)2
dx

be the Hellinger distance between them.

Remark 55. Hellinger distance between p, q satisfies: h(p, q)2 6 dTV(p, q) 6 h(p, q)
√

2− h(p, q)2.

Fact 2.2.5 (Hellinger Distance between Gaussians).

h(N (µ,Σ),N (µ′,Σ′))2 = 1− det(Σ)1/4 det(Σ′)1/4

det
(

Σ+Σ′
2

) 1
2

exp
−1

8(µ− µ)>
(

Σ + Σ′
2

)−1

(µ− µ′)


Basic Sum-of-Squares Proofs

Fact 2.2.6 (Operator norm Bound). Let A be a symmetric d× d matrix and v be a vector in Rd.

Then,

2
v
{
v>Av 6 ‖A‖2‖v‖2

2

}
Fact 2.2.7 (SoS Hölder’s Inequality). Let fi, gi for 1 6 i 6 s be indeterminates. Let p be an

72

even positive integer. Then,

p2
f,g


(

1
s

s∑
i=1

fig
p−1
i

)p
6

(
1
s

s∑
i=1

fpi

)q (1
s

s∑
i=1

gpi

)p−1
 .

Observe that using p = 2 yields the SoS Cauchy-Schwarz inequality.

Fact 2.2.8 (SoS Almost Triangle Inequality). Let f1, f2, . . . , fr be indeterminates. Then,

2t
f1,f2,...,fr


∑
i6r

fi

2t

6 r2t−1
(

r∑
i=1

f 2t
i

) .

Fact 2.2.9 (SoS AM-GM Inequality, see Appendix A of [BKS15]). Let f1, f2, . . . , fm be inde-

terminates. Then,

m
f1,f2,...,fm

{(
1
m

n∑
i=1

fi

)m
> Πi6mfi

}
.

The following fact is a simple corollary of the fundamental theorem of algebra:

Fact 2.2.10. For any univariate degree d polynomial p(x) > 0 for all x ∈ R, d

x {p(x) > 0}.

This can be extended to univariate polynomial inequalities over intervals ofR. 2

Fact 2.2.11 (Fekete and Markov-Lukacs, see [Lau09]). For any univariate degree d polynomial

p(x) > 0 for x ∈ [a, b], {x > a, x 6 b} d

x {p(x) > 0}.

2.2.1 Certifiable Anti-Concentration

This definition is a homogenous variant of the one proposed in [KKK19].

Definition 2.2.12 (Certifiable Anti-Concentration). A zero-mean distribution D with covariance

Σ is 2k-certifiably (δ, Cδ)-anti-concentrated if there exists a univariate polynomial p of degree

k such that:

1. 2k
v
{
‖v‖2k−2

2

〈
Σ−1/2x, v

〉2
+ δ2p2

(〈
Σ−1/2x, v

〉)
> δ2‖v‖2k

2

}
.

2. 2k
v
{
EΣ−1/2x∼Dp

2
(〈

Σ−1/2x, v
〉)

6 Cδ‖v‖2k
2

}
.

A subset X ⊆ Rd is 2k-certifiably (δ, Cδ)-anti-concentrated if the uniform distribution on X is

73

2k-cerfiably (δ, Cδ)-anti-concentrated.

Definition 2.2.13 (Certifiable Anti-Concentration). A random variable (and its distribution) Y

has a k-certifiably (C, δ)-anti-concentrated distribution if there is a univariate polynomial p

satisfying p(0) = 1 such that there is a degree k sum-of-squares proof of the following two

inequalities:

1. 〈Y, v〉2 6 δ2E〈Y, v〉2 implies (p(〈Y, v〉)− 1)2 6 δ2.

2. ∀v, E 〈Y, v〉2 > 0 implies E
[
E 〈Y, v〉2 p2(〈Y, v〉)

]
6 Cδ 〈Y, v〉2.

A set of points S ⊆ Rd are said to be k-certifiably (C, δ)-anti-concentrated if uniform distribu-

tion on S is k-certifiably (C, δ)-anti-concentrated.

2.3 Clustering Mixtures of Reasonable Distributions

In this section, we provide algorithm for clustering mixtures of reasonable distributions. The
main results of this section are simultaneous intersection bounds (Lemmas 2.3.5, 2.3.13, and
2.3.4) that we’ll rely on in the next two sections. We then use these bounds to immediately
derive an algorithm (via the rounding used in Chapter 4.3 of [FKP+19]) for clustering that runs
in time dpoly(k) log(κ) where κ is the spread of the mixture defined as the maximum of v>Σ(j)v

v>Σ(i)v over
all i, j 6 k. In Section 2.5, we will show how to improve the running time of this algorithm to
have no dependence on the spread and prove our main result (Theorem 53).

Theorem 56 (Clustering Mixtures of Separated Reasonable Distributions). For any η > 0, there

exists an algorithm that takes input a sample of size n from ∆-separated equi-weighted mixture of

reasonable distributions D(µ(r),Σ(r)) for r 6 k with true clusters C1, C2, . . . , Ck and outputs

Ĉ1, Ĉ2, . . . Ĉk such that there exists a permutation π : [k]→ [k] satisfying

min
i6k

|Ci ∩ Ĉπ(i)|
|Ci|

> 1−O(η) .

The algorithm succeeds with probability at least 1− 1/k whenever ∆ = Ω ((k/η)c), for a large

enough fixed universal constant c , needs dpoly(k/η) samples and runs in time npoly(k/η) log(κ) where

κ = supv∈Rd maxi,j∈[k]
v>Σ(j)v
v>Σ(i)v is spread of the mixture.

74

2.3.1 Algorithm

Our constraint system A uses polynomial inequalities to describe a subset Ĉ of size αn of the
input sample X . We impose constraints on Ĉ so that the uniform distribution on Ĉ satisfies
certifiable anti-concentration and hypercontractivity of degree-2 polynomials. We intend the true
clusters C1, C2, . . . , Cr to be the only solutions for Ĉ. Proving that this statement holds and that
it has a low-degree SoS proof is the bulk of our technical work in this section.

We describe the specific formulation next. Throughout this section, we use the notation Q(x)
to denote x>Qx for d × d matrix valued indeterminate Q. For ease of exposition, we break
our constraint system A into natural categories A1 ∪ · · · ∪ A5. Our constraint system relies on
parameter τ, δ that we will set in proof of Theorem 56 below.

For our argument, we will need access to the square root of the indeterminate Σ. So we
introduce the constraint system A1 with an extra matrix valued indeterminate Π (with auxiliary
matrix-valued indeterminate U) that satisfies the polynomial equality constraints corresponding
to Π being the square root of Σ. Note that the first constraint is equivalent to Π � 0 in “ordinary
math”.

Square-Root Constraints: A1 =

 Π = UU>

Π2 = Σ .

 (2.1)

Next, we formulate intersection constraints that identify the subset Ĉ of size αn.

Subset Constraints: A2 =


∀i ∈ [n] w2

i = wi∑
i∈[n] wi = n

k
.

 (2.2)

Next, we enforce that Ĉ must have mean µ and covariance Σ, where both µ and Σ are indeter-
minates.

Parameter Constraints: A3 =


1
n

n∑
i=1

wixi = µ

1
n

n∑
i=1

wi (xi − µ) (xi − µ)> = Σ .

 (2.3)

Finally, we enforce certifiable anti-concentration at two slightly different parameter regimes

75

(characterized by τ 6 δ) along with the hypercontractivity of Ĉ.

Certifiable Anti-Concentration : A4 =



k2

n2

n∑
i,j=1

wiwjq
2
δ,2Σ ((xi − xj) , v) 6 2s(δ)Cδ

(
v>Σv

)s(δ)
k2

n2

n∑
i,j=1

wiwjq
2
τ,2Σ ((xi − xj) , v) 6 2s(τ)Cτ

(
v>Σv

)s(τ)


,

(2.4)
where s(x) = Õ (1/x2). Certifiable Hypercontractivity: A5 =


∀h 6 2s, k2

n2

∑
i,j6n

wiwj

Q(xi − x`)−
k2

n2

∑
i,`6n

wiw`Q(xi − x`)
2h

6 (Ch)2h

k2

n2

∑
i,`6n

wiw`

Q(xi − x`)−
k2

n2

∑
i,`6n

wiw`Q(xi − x`)
2

h


.

(2.5)

Certifiable Bounded Variance: A6 =

 k2

n2

∑
i,`6n

wiw`

Q(xi − x`)−
k2

n2

∑
i,`6n

wiw`Q(xi − x`)
2

6 C ‖ΠQΠ‖2
F .

 (2.6)

Algorithm. We are now ready to describe our algorithm. Our algorithm follows the same
outline as the simplified proof for clustering spherical mixtures presented in [FKP+19] (Chapter
4.3). The idea is to find a pseudo-distribution ζ̃ that minimizes the objective

∥∥∥Ẽ[w]
∥∥∥

2
and is

consistent with the constraint system A.

It is simple to round the resulting solution to true clusters: our analysis yields that the matrix
Ẽ[ww>] is approximately block diagonal with the blocks approximately corresponding to the
true clusters C1, C2, . . . , Ck. We can then recover a cluster by a repeatedly greedily selecting
n/k largest entries in a random row, removing those columns off and repeating. We describe this
algorithm below.

Algorithm 57 (Clustering General Mixtures).

Given: A sample X of size n with true clusters C1, C2, . . . , Ck of size n/k each, accuracy

parameter η > 0.

Output: A partition of X into an approximately correct clusters Ĉ1, Ĉ2, . . . , Ĉk.

Operation:

76

1. Find a pseudo-distribution ζ̃ satisfyingA with s = log(κ)poly(k/η), δ = η6/k12,

and τ = 1/(Cpoly(k)), and minimizing
∥∥∥Ẽ[w]

∥∥∥2

2
.

2. For M = Ẽw∼ζ̃ [ww>], repeat for 1 6 ` 6 k:

(a) Choose a uniformly random row i of M .

(b) Let Ĉ` be the set of points indexed by the largest n
k

entries in the ith row of

M .

(c) Remove the rows and columns with indices in Ĉ`.

Analysis of the Algorithm. We first show that the sample X inherits the relevant properties of
the distributions. Towards this, we make the following definition.

Definition 2.3.1 ("Good" Sample). A sampleX ⊆ Rd of size n is said to be a good sample from a

∆-separated mixture ofD(µ(r),Σ(r)) for r 6 k if there exists a partitionX = C1∪C2∪· · ·Ck ⊆
Rd with the corresponding empirical means and covariances µ̂(1), Σ̂(1), . . . , µ̂(k), Σ̂(k) such

that for all r ∈ [k] and s = log(κ)poly(k/η) ,

1. Empirical mean: 〈µ̂(r)− µ(r), v〉2 6 0.1 · v>Σ(r)v

2. Empirical covariance:
(
1− 1

22s

)
Σ(r) � Σ̂(r) �

(
1 + 1

22s

)
Σ(r).

3. Certifiable Anti-concentration: For all τ > poly(η/Ck),

2s
v

k2

n2

∑
i 6=j∈Cr

q2
τ,Σ̂(r) (xi − xj, v) 6 10Cτ

(
v>Σ̂(r)v

)2s

2

 .

2s
v

kn ∑
i1,i2∈Cr,j1,j2∈Cr′

q2
τ,Σ̂(r) (xi1 − xi2 − xj1 + xj2 , v) 6 10Cτ

(
v>(Σ̂(r) + Σ̂(r′)v

)2s

2

 .

4. Certifiable Hypercontractivity: For every j 6 s,

2s
Q

k2

n2

∑
i 6=`∈Cr

Q(xi − x`)−
k2

n2

∑
i 6=`∈Cr

Q(xi − x`)
2j

6 (2Cj)2j

k2

n2

∑
i 6=`∈Cr

Q(xi − x`)−
k2

n2

∑
i 6=`∈Cr

Q(xi − x`)
j .

77

5. Certifiable Bounded-Variance:

2
Q

k
2

n2

∑
i 6=`∈Cr

Q(xi − x`)−
k2

n2

∑
i 6=`∈Cr

Q(xi − x`)
2

6 C
∥∥∥Σ(r)1/2QΣ(r)1/2

∥∥∥2

F

 .

Via standard concentration arguments, it is straightforward (See Section 2.10 of Appendix)
to verify that a large enough sample X from a ∆-separated mixture of reasonable distributions is
a good.

Lemma 2.3.2 (Typical samples are good). Let X be a sample of size n from a equi-weighted

∆-separated mixture D(µ(r),Σ(r)) for r 6 k. Then, for n0 = Ω
(
(poly(k/η)d)poly(k/η) k log k

)
and any n > n0,X is good with probability at least 1−1/d. Further, the the uniform distribution

on C1, C2, . . . , Ck are pairwise ∆/2-separated.

As in the spherical case [FKP+19], the heart of the analysis involves showing that Ẽζ̃ [ww>] is
indeed approximately block diagonal whenever ζ̃ satisfiesA. This follows immediately from the
following lemma that shows that that there’s a low-degree SoS proof that shows that the subset
indicated by w cannot simultaneously have large intersections with two distinct clusters Cr, Cr′ .

Lemma 2.3.3 (Simultaneous Intersection Bounds from Separation). Let X be a good sample of

size n from a ∆-separated, equi-weighted mixture of affine transforms of a reasonable distribu-

tion D with true clusters C1, C2, . . . , Ck. For all r ∈ [k], let w(Cr) denote the linear polynomial
k
n

∑
i∈Cr wi. Then, for every r 6= r′ and δ > 0,

A
O(log κ/δ4)

w
{
w(Cr)w(Cr′) 6 O(δ1/3)

}
,

where κ = supv∈Rd maxi,j v
>Σ(i)v
v>Σ(j)v .

For the special case of k = 2, we obtain the following improved version with no dependence
on κ in the degree.

Lemma 2.3.4 (Simultaneous Intersection Bounds from Separation, Two Components). Let X =
C1 ∪ C2 be a good sample with true clusters C1, C2 of size n/2 from a ∆-separated, equi-

weighted mixture of affine transforms of a reasonable distribution D. Let w(Cr) denote the

linear polynomial k
n

∑
i∈Cr wi for every r 6 2. Then, for any δ > 0,

A
O(1/δ4)

w
{
w(C1)w(C2) 6 O(δ1/3)

}
.

78

It is easy to finish the analysis of the algorithm given Lemma 2.3.3.

Proof of Theorem 56. Enforcing Constraints. First, we argue that the number of constraints in
the SDP we need to solve to find ζ̃ in Step 1 above is dO(log(κ)(1/δ)4). For this, it is enough to
show that the number of polynomial inequalities needed to enforce A is appropriately bounded.
A1,A2,A3 encode O(d2) inequalities by direct inspection. A4,A5 superficially seem to encode
infinitely many constraints. However, by applying the quantifier alternation technique that only
requires SoS certifiability, (first used in [KSS18, HL18], see Page 131 of [FKP+19] for an ex-
position), to compress such constraints by leveraging low-degree SoS proofs allows us to encode
them into dO(1/δ4) polynomial inequalities.

Minimizing Norm. Observe that
∥∥∥Ẽ[w]

∥∥∥
2

is a convex function in Ẽ[w] and thus, a pseudo-

distribution minimizing
∥∥∥Ẽ[w]

∥∥∥
2

consistent with A can be found in time nO(log(κ)/δ4) if it exists
using the ellipsoid method. The rounding itself is easily seen to take at most O(n2) time. This
completes the analysis of the running time.

Feasibility of the SDP. In the remaining part of the analysis, we condition on the event that
the input X is a good sample. We show that the SDP for computing the pseudo-distribution in
Step 1 of the algorithm is feasible. We exhibit a feasible solution by describing a natural setting
of the indeterminates in our constraint program. Let ζ be the uniform distribution (thus, also a
pseudo-distribution of degree∞) on 1(Cr), for all r ∈ k. That is, ζ is uniformly distributed on
the true clusters. Lemma 2.3.2 implies that setting w = 1(Cr) satisfies all the constraints in A.
Thus, ζ̃ is indeed a feasible for the SDP. Observe further that for every i, Ẽζ [wi] = 1/k.

Analysis of the SDP Solution. Now, let ζ̃ be the pseudo-distribution computed in Step 1 of
the algorithm. First, observe that by Cauchy-Schwarz inequality, ‖Ẽζ̃ [w]‖2

2 = ∑
i6n Ẽζ̃ [wi]2 >

1
n

(∑
i6n Ẽζ̃ [wi]

)2
= n

k2 where we used that A
{
k
n

∑n
i=1wi = 1

}
. On the other hand, we

exhibited a feasible pseudo-distribution ζ above with
∥∥∥Ẽζ [w]

∥∥∥2

2
= n

k2 . Together, we obtain that
the output ζ̃ obtained by solving the SDP relaxation must satisfy ‖Ẽζ̃ [w]‖2

2 = n
k2 . Observe that

this is equivalent to Ẽζ̃ [wi] = 1/k for every i 6 n. Thus, we can assume in the following that
Ẽζ̃ [wi] = 1/k for all i. Our analysis is similar to the proofs of Lemmas 4.21 and Lemma 4.23
in [FKP+19].

Let M = Ẽ[ww>]. Let’s understand the entries of M more carefully. First, since Ẽ[wiwj] =
Ẽ[w2

iw
2
j] > 0, M(i, j) is non-negative. The diagonals of M are Ẽ[w2

i] = Ẽ[wi] = 1/k. By
the Cauchy-Schwarz inequality for pseudo-distributions (Fact 3.2.14), M(i, j) = Ẽ[wiwj] 6

79

√
Ẽ[w2

i]
√
Ẽ[w2

j] 6 1/k. Thus, the entries of M are between 0 and 1/k. Next, observe that since
A

{
wi

k
n

∑
j6nwj = wi

}
, taking pseudo-expectations and rearranging yields that for every i,

Ej∼[n]M(i, j) = 1
k2 .

For η′ = η2/k3, choose δ = η′3/k3 . Then, applying Lemma 2.3.3 and using Fact 3.2.18, we
have that for every r, Ei∈CrEj 6∈Cr′M(i, j) = ∑

r′ 6=r Ei∈CrEj∈Cr′ Ẽ[wiwj] = Ẽ[w(Cr)w(Cr′)] 6
O(η′).

Fix any cluster Cr. Call an entry of M large if it exceeds η/k2. Using the above estimates,
we obtain that, the fraction of entries in the ith row that exceed η/k2 is at least (1− η)/k.

On the other hand, by Markov’s inequality applied to the calculation above, we obtain that
with probability 1−1/k2 over the uniformly random choice of i ∈ Cr, Ej 6∈CrM(i, j) 6 O(η′) =
O(η2/k3). Call an i ∈ Cr for which this condition holds “good”.

By Markov’s inequality, for each good row, the fraction of j 6∈ Cr such that M(i, j) > η/k2

is at most η/k. Thus, for any good row in Cr, if we take the indices j corresponding to the largest
n/k entries (i, j) in M , then, at most η fraction of such j are not in Cr. Thus, picking uniformly
random row in Cr and taking the largest n/k entries in that row gives a subset that intersects with
Cr in (1− η) fraction of the points.

Thus, each iteration of our rounding algorithm succeeds with probability at least 1 − 1/k2.
By union bound, all iterations succeed with probability at least 1 − 1/k. The running time is
dominated by the first step and the sample complexity follows from Lemma 2.3.2.

Proving Lemma 2.3.3 In what follows, we focus attention on proving Lemma 2.3.3. Before
describing the analysis, we set some notation/shorthand and simplifying assumptions that we
will use throughout this section.

1. First, Lemma 2.3.2 guarantees us that Cr has mean and Covariance close to the true
µ(r),Σ(r). We abuse the notation a little bit and use µ(r),Σ(r) to denote the mean and
covariance of Cr too. This allows us the luxury of dropping an extra piece of notation and
doesn’t change the guarantees we obtain.

2. In the following, we will use Dr = D(µ(r),Σ(r)) to denote the uniform distribution on
Cr. We will use Dw to informally (in the context of non low-degree SoS reasoning) refer
to the uniform distribution on the subset indicated by w.

Depending on whether Cr, Cr′ are mean separated, spectrally separated or separated in rela-
tive Frobenius distance, our proof of Lemma 2.3.3 breaks into three natural cases. The key part

80

of the analysis is dealing with the case of spectral separation which then plugs into the other two
cases. So we begin with it.

2.3.2 Intersection Bounds from Spectral Separation

In this subsection, we give a sum-of-squares proof of an upper bound on w(Cr)w(Cr′) whenever
Dr,Dr′ are samples chosen from spectrally separated distributions. Note that we do not have any
control of the means ofDr, Dr′ in this subsection and our arguments must work regardless of the
means (or their separation, whether large or small) of Dr,Dr′ .

Formally, we will prove the following upper bound on w(Cr)w(Cr′) where the degree of the
sum-of-squares proof grows logarithmically in the spread κ of the mixture.

Lemma 2.3.5 (Intersection Bounds from Spectral Separation). Let X = C1 ∪ C2 ∪ . . . Cr be a

good sample of size n. Suppose there exists a vector v such that ∆spectralv
>Σ(r)v 6 v>Σ(r′)v

for ∆spectral � Cs/δ2, where s > 1. Then, A
O(log(κ)/δ4)

w
{
w(Cr)w(Cr′) 6 O(

√
δ)
}

where

κ = maxi6k v>Σ(i)v
v>Σ(r′)v .

Observe that for k = 2, κ = 1 and thus, the lemma above results in a bound of O(s/δ2)
on the degree of the SoS proof. The proofs of both the statements above follow by using anti-
concentration of Dr and Dr′ to first show a lower-bound on the variance of Σ(w) in terms of
the v>Σ(r)v and v>Σ(r′)v and then combine it with an upper bound on v>Σ(w)v using anti-
concentration of Dw.

Lemma 2.3.6 (Large Intersection Implies High Variance, Spectral Separation).

A 4s
w,Σ(w)

w(Cr′)w(Cr)
(
v> (Σ(r) + Σ(r′)) v

)s

6
(2
δ2

)s (
v>Σ(w)v

)s
+ Cδ

(
v> (Σ(r) + Σ(r′)) v

)s
(2.7)

Proof. We know from Lemma 2.3.2 that two-sample-centered points from both Cr and Cr′ are
2s-certifiably (δ, Cδ)-anti-concentrated. Using Definition 3.2.28, thus yields:

81

A 4s

k4

n4

∑
i1,i2∈Cr,j1,j2∈Cr′

wi1wi2wj1wj2 〈xi1 − xi2 − xj1 + xj2 , v〉
2s

> δ2sw(Cr)2w(Cr′)2
(
v>2(Σ(r) + Σ(r′))v>

)s
− δ2s k

4

n4

∑
i1,i2∈Cr,j1,j2∈Cr′

wi1wi2wj1wj2q
2
δ,2(Σ(r)+Σ(r′))(xi1 − xi2 − xj1 + xj2 , v)

 (2.8)

Using that A {wi1wi2wj1wj2 6 1} for every i1, i2, j1, j2 and using 2s-certifiable (δ, Cδ)-
anti-concentration of xi1 − xi2 − xj1 + xj2 and invoking Definition 3.2.28, we have:

A 4s

k4

n4

∑
i1,i2∈Cr,j1,j2∈Cr′

wi1wi2wj1wj2q
2
δ,2(Σ(r)+Σ(r′))(xi1 − xi2 − xj1 + xj2 , v)

6
k4

n4

∑
i1,i2∈Cr,j1,j2∈Cr′

q2
δ,2(Σ(r)+Σ(r′))(xi1 − xi2 − xj1 + xj2 , v) 6 Cδ

(
v>2(Σ(r) + Σ(r′))v

)s
(2.9)

Plugging in the above bound in (2.8) gives:

A 4s

k4

n4

∑
i1,i2∈Cr,j1,j2∈Cr′

wi1wi2wj1wj2 〈xi1 − xi2 − xj1 + xj2 , v〉
2s

> δ2s
(
w(Cr)2w(Cr′)2 − Cδ

) (
v>2(Σ(r) + Σ(r′))v>

)s (2.10)

Rearranging thus yields:

A 4s

 1
δ2s

k4

n4

∑
i1,i2∈Cr,j1,j2∈Cr′

wi1wi2wj1wj2 〈xi1 − xi2 − xj1 + xj2 , v〉
2s

+ Cδ
(
v>2(Σ(r) + Σ(r′))v>

)s
> w(Cr)2w(Cr′)2

(
v>2(Σ(r) + Σ(r′))v>

)s (2.11)

82

To finish the proof, we note that:

A 4s


(4cs
δ2

)s (
v>Σ(w)v

)s
>

1
δ2s

k4

n4

∑
i1,i2,j1,j2∈[n]

wi1wi2wj1wj2 〈xi1 − xi2 − xj1 + xj2 , v〉
2s

>
1
δ2s

k4

n4

∑
i1,i2∈Cr,j1,j2∈Cr′

wi1wi2wj1wj2 〈xi1 − xi2 − xj1 + xj2 , v〉
2s

 (2.12)

Plugging in the upper bound above in (2.11) and canceling out a copy of 2s from both sides
gives the lemma.

Moving forward with our proof plan, we can clearly complete the proof by giving an up-

per bound on
(
v>Σ(w)v

)
that scales as the variance of the smaller variance component (i.e. r

above). We make this happen by invoking certifiable anti-concentration again - this time, how-
ever, applying it to the w-samples instead of Cr and Cr′ .

Lemma 2.3.7 (Spectral Upper Bound via Anti-Concentration).

A 4s

(w(Cr)2 − Cδ
) (
v>Σ(w)v>

)s
6
(
Cs

δ2

)s (
v>Σ(r)v

)s (2.13)

Proof. Our constraint system A allows us to derive that two-sample-centered points indicated
by w are 2s-certifiably (δ, Cδ)-anti-concentrated with witnessing polynomial pD. Using Defini-
tion 3.2.28, thus yields:

A 4s

δ2sw(Cr)2
(
v>Σ(w)v>

)s

6
k2

n2

∑
i,j∈Cr

wiwj

〈
1√
2

(xi − xj) , v
〉2s

+ δ2s k
2

n2

∑
i 6=j∈Cr

wiwjq
2
δ,Σ(w)

(
1√
2

(xi − xj) , v
)
(2.14)

Using that A 4s
Σ,w
{wiwj 6 1} for every i, j, using that A derives 2s-certifiable (δ, Cδ)-anti-

concentration of w-samples and invoking Definition 3.2.28, we have:

83

A 4s

k2

n2

∑
i 6=j∈Cr

wiwjq
2
δ,Σ(w)(

1√
2

(xi − xj) , v) 6 k2

n2

∑
i 6=j∈[n]

wiwjq
2
δ,Σ(w)

(
1√
2

(xi − xj) , v
)

6 Cδ
(
v>Σ(w)v

)s
(2.15)

Further, using thatA 4s
Σ,w
{wiwj 6 1} for all i, j and relying on the certifiable Sub-gaussianity

of Cr, we have:

A 4s

k2

n2

∑
i,j∈Cr

wiwj

〈
1√
2

(xi − xj) , v
〉2s

6
k2

n2

∑
i,j∈Cr

〈
1√
2

(xi − xj) , v
〉2s

= (Cs)s
(
v>Σ(r)v

)s
(2.16)

Combining the last two bounds with (2.14) thus yields:

A 4s

w(Cr)2
(
v>Σ(w)v>

)s
6

1
δ2s (Cs)s

(
v>Σ(r)v

)s
+ Cδ

(
v>Σ(w)v>

)s (2.17)

Digression: “Real-World” Proof We’d now like to combine the upper and lower bounds on
v>Σ(w)v obtained in the two previous lemmas in order to conclude a bound on the intersection
size w2(Cr)w2(Cr′). To aid the intuition, observe that this is easy to do in “usual math” (in
contrast to low-degree sum-of-squares proof system). If the reader prefers to skip this digression,
they can skip to the paragraph titled Upper Bounds via SoSizing Conditional Argument.

Lemma 2.3.8 (Low Intersection Size from Spectral Separation (not a low-degree SoS Proof)).
Let v ∈ Rd be a unit vector such that ∆v>Σ(r)v 6 v>Σ(r′)v for some ∆ � 2Cs/δ3. Then,

w3(Cr)w3(Cr′) 6 δ.

84

Proof. We split into two cases: 1)w2(Cr) 6 δ and 2)w(Cr)2 > δ. In the first, casew3(Cr)w3(Cr′)
is clearly at most δ. So we are done!

In the second case, we invoke Lemma 2.3.6 to write:

w(Cr′)w(Cr)
(
v> (Σ(r) + Σ(r′)) v>

)s
6

2s
δ2s

(
v>Σ(w)v

)s
+ Cδ

(
v> (Σ(r) + Σ(r′)) v>

)s
.

Since (w2(Cr)− δ) > 0, we can multiply both sides of above by (w2(Cr)− δ) without changing
the inequality. By Lemma 2.3.7:

(
w(Cr)2 − Cδ

) (
v>Σ(w)v>

)s
6

1
δ2s (Cs)s

(
v>Σ(r)v

)s
.

Using the above bound, using that w(Cr)w(Cr′) 6 1 and rearranging, we have:

w(Cr)2w(Cr′)w(Cr)
(
v> (Σ(r) + Σ(r′)) v>

)s
6 (C + 1)δ

(
v> (Σ(r) + Σ(r′)) v>

)s
+
(2
δ

)s 1
δ2s (Cs)s

(
v>Σ(r)v

)s
.

(2.18)

Using the above bound with the spectrally separating direction v, we know that

v> (Σ(r) + Σ(r′)) v> > ∆v>Σ(r)v.

Thus rearranging the above inequality gives:

w(Cr)3w(Cr′)3 6 w3(Cr)w(Cr′) 6 (C + 1)δ +
(2
δ3

)s
(Cs)s∆−s ,

which is at most 2Cδ whenever ∆� Cs/δ3 as desired.

Crucial to the above “real world” argument is the second step where we use the non-negativity
of w(Cr)2 − δ so as to multiply the starting inequality on both sides with it while preserving the
direction of the inequality. This step relies on an “if-then” case analysis which, unfortunately,
cannot, in general, be implemented as is in low-degree sum-of-squares proof system.

Upper Bounds via SoSizing Conditional Argument In order to implement an argument sim-
ilar to the one above, within the low-degree SoS system, we will introduce a polynomial J
which approximates the thresholding operation withing SoS. We prove the existence of such a
polynomial in Appendix 2.11. This will, however, lose us a log(κ) factor in the SoS degree re-
quired (and thus cause an exponential dependence on log(κ) in the running time of our clustering

85

algorithm).

Lemma 2.3.9 (Polynomial Approximator for Thresholds, See Section 2.11 for a proof). Let

1/2 > ρ > 0 and c ∈ [0, 1]. There exists a square polynomial J satisfying:

1. J (x) ∈ [1, 2] for all x ∈ [2c, 1].

2. J (x) 6 ρ for all x ∈ [0, c].

3. deg(J) 6 O(log(1/ρ)/c).

Lemma 2.3.10. For any 0 < ρ < 1,

{0 6 w(Cr) 6 1}
O(log(1/ρ)/δ2)

w {J (w(Cr))(w(Cr)− δ) > −δρ} ,

and,

{0 6 w(Cr) 6 1}
O(log(1/ρ)/δ2)

w {J (w(Cr))w(Cr) > (w(Cr)− 2δ)} .

Proof. Observe that the conclusion is a polynomial inequality in single variable w(Cr). Thus, it
is enough to give any proof of J (w(Cr))(w(Cr)− δ) > −δρ.

To see why the inequality holds, observe that if w(Cr) > δ, J (w(Cr))(w(Cr) − δ) > 0 >
−δρ. On the other hand, if w(Cr) 6 δ, then, J (w(Cr)) 6 ρ while |w(Cr) − δ| 6 δ. On the
other hand, observe that J (w(Cr)(w(Cr) − δ) 6 J (w(Cr)w(Cr) 6 2w(Cr). This completes
the proof of the first inequality.

For the second claim, notice that ifw(Cr) < 2δ, the inequality trivially holds sinceJ (w(Cr)) >
0. If on the other hand, w(Cr) > 2δ, then, J (w(Cr)) > 1 > w(Cr) > w(Cr)− δ.

We can now implement the above real-world “conditional” argument within SoS using the
polynomial J above. To do this, we will need a rough upper bound on v>Σ(w)v in terms of
v>Σ(r)v for r 6 k. We will prove this via another application of certifiable anti-concentration
of Dw - this time, invoked with the slightly different parameter τ .

Lemma 2.3.11 (Rough Spectral Upper bound on Σ(w)).

A

(v>Σ(w)v>
)s

6 (2Ck)s+1 (Cs)s
∑
r6k

(
v>Σ(r)v

)s (2.19)

Proof. Our proof is similar to the proof of Lemma 2.3.7 with a key additional step. As in the

86

proof of Lemma 2.3.7, we start by invoking our constraints to conclude (note that we sum over
all samples this time instead of those just in Cr as in the previous lemma:

A

τ 2s∑
r6k

w′(Cr)2
(
v>Σ(w)v>

)s

6
k2

n2

∑
r6k

∑
i,j∈Cr

wiwj

〈
1√
2

(xi − xj) , v
〉2s

+τ 2s k
2

n2

∑
r6k

∑
i 6=j∈Cr

wiwjq
2
τ,Σ(w)

(
1√
2

(xi − xj) , v
)
(2.20)

The second term on the RHS can be upper bounded just as in the proof of Lemma 2.3.7 to
yield:

A

k2

n2

∑
r6k

∑
i 6=j∈Cr

wiwjq
2
τ,Σ(w)

(〈
1√
2

(xi − xj) , v
〉)

6
k2

n2

∑
i 6=j∈[n]

wiwjq
2
τ,Σ(w)

(〈
1√
2

(xi − xj) , v
〉)

6 Cτ
(
v>Σ(w)v

)s
(2.21)

The first term can be also be upper bounded - this time in terms of the Covariances of all the
k components.

A

k2

n2

∑
r6k

∑
i,j∈Cr

wiwj

〈
1√
2

(xi − xj) , v
〉2s

6
∑
r6k

k2

n2

∑
i,j∈Cr

〈
1√
2

(xi − xj) , v
〉2s

= (Cs)s
∑
r6k

(
v>Σ(r)v

)s
(2.22)

We can now combine the two estimates above to yield:

A


∑
r6k

w(Cr)2 − Cτ

(v>Σ(w)v>
)s

6
1
τ 2s (Cs)s

∑
r6k

(
v>Σ(r)v

)s (2.23)

87

So far the argument closely follows the proof of Lemma 2.3.7. The key departure we make is
with the following simple observation:

A


∑
r6k

w(Cr)2 >
1
k

∑
r6k

w(Cr)
2

= 1
k

 .

Thus, as long as τ < 1
2Ck , we can derive:

A

(v>Σ(w)v
)s

6 ks+1 (Cs)s
∑
r6k

(
v>Σ(r)v

)s (2.24)

This is the “rough” upper bound on Σ(w) we were after.

We can use the above lemma to get an “upgraded” version of Lemma 2.3.7.

Lemma 2.3.12 (Upper Bound on Variance ofDw). Let λmax(v) ‖v‖2
2 be the maximum of v>Σ(r)v

over all r 6 k. Then,

A

(J (w(Cr))(w(Cr)− δ) + δρ)
(
v>Σ(w)v

)s
6 2 1

δ2s (Cs)s
(
v>Σ(r)v

)s

+ δρs2s (Cs)s kλmax(v)s‖v‖2s
2

 . (2.25)

Proof. From Lemma 2.3.11, we have:

A

(v>Σ(w)v
)s

6 (s)s+1 (Cs)s
∑
r6k

(
v>Σ(r)v

)s (2.26)

Then, the above bound implies:

A

(v>Σ(w)v
)s

6 (ss+1 (Cs)s kλmax(v)s
 . (2.27)

From Lemma 2.3.10, we have: A {J (w(Cr)) 6 2}. Thus, using Lemma 2.3.7 and apply-
ing (2.27) on the RHS, we can conclude:

88

A

(J (w(Cr))(w(Cr)− δ) + δρ)
(
v>Σ(w)v

)s
6 δρ

(
v>Σ(w)v

)s
+ 2

(
Cs

δ2

)s (
v>Σ(r)v

)s

6 δρs2s (Cs)s kλmax(v)s‖v‖2s
2 + 2

(
Cs

δ2

)s (
v>Σ(r)v

)s .

We are now ready to complete the proof of Lemma 2.3.5.

Proof of Lemma 2.3.5. Observe that A {0 6 w(Cr) 6 1}. Thus,

A {J (w(Cr))(w(Cr)− δ) + δρ > 0} . (2.28)

From Lemma 2.3.6, we have:

A

w(Cr′)w(Cr)
(
v> (Σ(r) + Σ(r′)) v

)s
6

2s
δ2s

(
v>Σ(w)v

)s
+Cδ

(
v> (Σ(r) + Σ(r′)) v

)s .

Using (2.28) along with (3.5) with J (w(Cr))(w(Cr)− δ) + δρ gives:

A

(J (w(Cr))(w(Cr)− δ))w(Cr′)w(Cr)
(
v> (Σ(r) + Σ(r′)) v

)s
6 δρ

(
v> (Σ(r) + Σ(r′)) v

)s
+ (J (w(Cr))(w(Cr)− δ) + δρ) 2s

δ2s

(
v>Σ(w)v

)s
+ (J (w(Cr))(w(Cr)− δ) + δρ) 1

δ2s (Cs)s
(
v>Σ(r)v

)s
+ (J (w(Cr))(w(Cr)− δ) + δρ) 2Cδ

(
v>Σ(r′)v

)s . (2.29)

89

Rearranging yields:

A

J (w(Cr))(w(Cr)w(Cr′)w(Cr)
(
v> (Σ(r) + Σ(r′)) v

)s
6 2δρ

(
v> (Σ(r) + Σ(r′)) v

)s
+ (J (w(Cr))(w(Cr)− δ) + δρ) 2s

δ2s

(
v>Σ(w)v

)s
+ (J (w(Cr))(w(Cr)− δ) + δρ) 1

δ2s (Cs)s
(
v>Σ(r)v

)s
+ (J (w(Cr))(w(Cr)− δ) + δρ) 2Cδ

(
v>Σ(r′)v

)s . (2.30)

Using Lemma 2.3.10, we have that J (w(Cr))w(Cr) > (w(Cr) − δ). Multiplying the
above inequality (using (3.5)) by the SoS (and thus non-negative) polynomial w(Cr)w(Cr′)(
v> (Σ(r) + Σ(r′)) v>

)s
yields:

A

J (w(Cr))w(Cr′)w2(Cr)
(
v> (Σ(r) + Σ(r′)) v

)s

> (w(Cr)− δ)w(Cr′)w(Cr)
(
v> (Σ(r) + Σ(r′)) v

)s .

Thus, the LHS above is lower bounded by (w(Cr)− δ)w(Cr′)w(Cr)
(
v> (Σ(r) + Σ(r′)) v

)s
.

Let’s analyze the terms in the RHS one by one. The first term can be upper bounded directly by
applying Lemma 2.3.12. The remaining two terms in the RHS can be upper bounded by relying
on:

A {J (w(Cr))(w(Cr)− δ) + δρ 6 2} .

Thus, using the above bounds we have:

A

w(Cr)2w(Cr′)
(
v> (Σ(r) + Σ(r′)) v

)s
6 3δ

(
v> (Σ(r) + Σ(r′)) v

)s
+ 2
δ2s (Cs)s

(
v>Σ(r)v

)s
+ δρs2s (Cs)s kλmax(v)s‖v‖2s

2

+ 2
δ2s (Cs)s

(
v>Σ(r)v

)s
+ 4Cδ

(
v>Σ(r′)v

)s (2.31)

90

Next, observe that since Cr, Cr′ are spectrally separated and 0 6 v>Σ(r)v < v>Σ(r′)v.
Thus, v>Σ(r′)v = λr′(v)‖v‖2

2 > 0.

We now set ρ 6 s−2s (Cs)−s k−1λmax(v)−sλr′(v)s 6 s−O(s)k−1κ−s and use that ∆ > Cs/δ2

to conclude:

A
O(log(κ)/δ4)

w(Cr)2w2(Cr′) 6 w(Cr)2w(Cr′) 6 O(δ)

 (2.32)

Applying Lemma 2.8.2 completes the proof.

Simpler Proof for Two Components

As an aside, we consider the case where the input mixture only has two components. For this
special case where k = 2, we show that can bypass the use of the threshold approximator above
to get a simpler proof.

Special case of k = 2. We proceed exactly as in the proof of Lemma 2.3.5 until equation (2.31)
where we invoke the uniform eigenvalue upper bound. Instead of using the uniform eigenvalue
upper bound on Σ(w), we use Lemma 2.3.11, setting t = s(1/2Ck) 6 1/kΘ(1) = O(1) for
k = 2 to derive:

A 4t

(v>Σ(w)v>
)t

6 2O(t)
((
v>Σ(1)v

)t
+
(
v>Σ(2)v

)t) (2.33)

With this sharper upper bound, we can complete the proof as in Lemma 2.3.5 by setting
ρ = 2−Θ(s)k−1δ instead of 1/poly(κ). Since log(1/τ) = Θ(s)/δ = poly(1/δ), the degree of the
SoS proof does not grow with κ anymore. . Since log(1/ρ) = Θ(s)/δ = poly(1/δ), the degree
of the SoS proof does not grow with the spread parameters κ anymore.

Remark 58 (Difficulty in extending the simpler argument to k > 2). For mixtures with larger
number of components, the upper bound from Lemma 2.3.11 is not enough. This is because the
upper bound in the Lemma 2.3.11 scales with the largest variance of any of the k component
distributions which could be a lot larger than the variance of Dr and Dr′ in the direction v.

91

2.3.3 Intersection Bounds from Mean Separation

In this section, we give a low-degree sum-of-squares proof that if Cr, Cr′ are mean separated
then w(Cr)w(Cr′) must be small. Formally, we will show:

Lemma 2.3.13 (Intersection Bounds from Mean Separation). Let X = C1 ∪ C2 ∪ . . . Cr be

a good sample of size n. Suppose there exists a vector v ∈ Rd such that 〈µr − µr′ , v〉22 >

∆2
mv
> (Σ(r) + Σ(r′)) v.

Then, whenever ∆m � Cs/δ,

A
O(1/δ4 log(κ))

w
{
w(Cr)w(Cr′) 6 O(

√
δ)
}
.

As in the previous subsection, we can get a sum-of-squares proof of absolute constant degree
for the special case of k = 2 components.

Lemma 2.3.14 (Intersection Bounds from Mean Separation). LetX = C1∪C2 be a good sample

of size n. Suppose there exists a vector v ∈ Rd such that 〈µ(1)− µ(2), v〉22 > ∆2
mv
> (Σ(1) + Σ(2)) v.

Then, whenever ∆m � Θ(1),

A
O(1/δ4)

w
{
w(C1)w(C2) 6 O(

√
δ)
}
.

We will need the following technical fact in our proof.

Lemma 2.3.15 (Lower Bounding Sums). LetA,B,C,D be scalar-valued indeterminates. Then,

for any τ > 0,

{0 6 A,B 6 A+B 6 1} ∪ {0 6 C,D} ∪ {C +D > τ} 2
A,B,C

{AC +BD > τAB} .

Proof. We have:

{0 6 A,B 6 A+B 6 1}∪{0 6 C,D}∪{C +D > F}

AC+BD > (A+B)(AC+BD)

> A2C + AB(C +D) +B2D > AB(C +D) > τAB

 (2.34)

92

Proof of Lemma 2.3.13. Let v be the direction in which the means of Cr and Cr′ are separated.
Then, we have:

〈µr − µr′ , v〉2s2 > ∆2s
m

(
v> (Σ(r) + Σ(r′)) v

)s
. (2.35)

Assume, WLOG, that v>Σ(r)v 6 v>Σ(r′)v.

Applying Lemma 2.3.15 with A = w(Cr), B = w(Cr′), C = 〈µr − µ(w), v〉2s and D =
〈µr′ − µ(w), v〉2s along with the SoS Almost Triangle Inequality (Fact 2.2.8) and certifiable Sub-
gaussianity constraints (A5) yields:

A 4s
µ,w

(Cs)s
(
v>Σ(w)v

)s
>

1
n

∑
i6n

wi 〈xi − µ(w), v〉2s > 1
n

∑
i∈Cr∪Cr′

wi 〈xi − µ(w), v〉2s

>
1
2s

w(Cr) 〈µr − µ(w), v〉2s − 1
n

∑
i∈Cr

wi 〈xi − µr, v〉2s


+ 1
2s

w(Cr′)wi 〈µr′ − µ(w), v〉2s − 1
n

∑
i∈Cr′

wi 〈xi − µr′ , v〉2s


>
1
2s
(
w(Cr) 〈µr − µ(w), v〉2s + w(Cr′) 〈µr′ − µ(w), v〉2s

)
− 1

2s
(
v>Σ(r)v

)s
− 1

2s
(
v>Σ(r′)v

)s
>

1
2s+1

(
w(Cr)w(Cr′)

(
〈µr − µ(w), v〉2s + 〈µr′ − µ(w), v〉2s

))
− 1

2s
(
v>Σ(r)v

)s
− 1

2s
(
v>Σ(r′)v

)s
>

(
∆m

4

)2s (
w(Cr)w(Cr′)

((
v>Σ(r)v

)s
+
(
v>Σ(r′)v

)s))
− 1

2s
(
v>Σ(r)v

)s
− 1

2s
(
v>Σ(r′)v

)s ,
where the last inequality follows from (2.35). Rearranging the chain of reasoning above thus
yields:

A 4s

2s
(
(Cs)s

(
v>Σ(w)v

)s
+
(
v>Σ(r)v

)s
+
(
v>Σ(r′)v

)s)

> ∆2s
mw(Cr)w(Cr′)

((
v>Σ(r)v

)s
+
(
v>Σ(r′)v

)s) .
(2.36)

Lemma 2.3.10 shows a low-degree SoS proof of non-negativity of J (w(Cr))(w(Cr)−δ)+δρ
in variables w:

A
O(log(1/ρ)/δ2)

w {J (w(Cr))(w(Cr)− δ) + δρ > 0} .

93

Thus, we can multiply (2.36) by (J (w(Cr))(w(Cr)− δ) + δρ) throughout to obtain:

A
µ,w

(J (w(Cr))(w(Cr)− δ) + δρ)
(
(2Cs)s

(
v>Σ(w)v

)s
+ 2s

(
v>Σ(r)v

)s
+ 2s

(
v>Σ(r′)v

)s)

> ∆2s
m (J (w(Cr))(w(Cr)− δ) + δρ) (w(Cr)w(Cr′))

((
v>Σ(r)v

)s
+
(
v>Σ(r′)v

)s), (2.37)

where the degree of the inequality above is ` = O(log(1/ρ)s/δ2).

Applying Lemma 2.3.12 for the first term on the LHS and using that

A {(J (w(Cr))(w(Cr)− δ) + δρ) 6 2}

and rearranging the above inequality gives:

A `

µ,w

(2Cs)s
(
δρs2s (Cs)s kλmax(v)s + 2

δ2s (Cs)s
(
v>Σ(r)v

)s)
+2s

(
v>Σ(r)v

)s
+2s

(
v>Σ(r′)v

)s
+ 2∆2s

mδ
((
v>Σ(r)v

)s
+
(
v>Σ(r′)v

)s)
> ∆2s

mJ (w(Cr))
(
w2(Cr)w(Cr′)

) ((
v>Σ(r)v

)s
+
(
v>Σ(r′)v

)s) . (2.38)

Using Lemma 2.3.10, we also have:

A
O(log(1/ρ)/δ2)

w {J (w(Cr))w(Cr) > (w(Cr)− δ)} .

Using this bound on the RHS of (2.38) and rearranging yields:

A `

µ,w

(2Cs)s
(
δρλsmax + 2 1

δ2s (Cs)s
(
v>Σ(r)v

)s)
+ 2s

(
v>Σ(r)v

)s
+ 2s

(
v>Σ(r′)v

)s
+ 2∆2s

mδ
((
v>Σ(r)v

)s
+
(
v>Σ(r′)v

)s)
> ∆2s

m

(
w2(Cr)w(Cr′)

) ((
v>Σ(r)v

)s
+
(
v>Σ(r′)v

)s) . (2.39)

Dividing throughout by ∆2s
m

((
v>Σ(r)v

)s
+
(
v>Σ(r′)v

)s)
and recalling that v>Σ(r)v 6

v>Σ(r′)v yields:

94

A `

µ,w

(w2(Cr)w(Cr′)
)
6 ∆−2s

m (2Cs)s (δρκs) + 2
(
C
√
s

∆mδ

)2s

+ 2δ

 . (2.40)

Thus, choosing ρ = κ−s and using that ∆m � Cs/δ and s = 1/δ2 ensures that we obtain:

A
O(log(1/κ)/δ4)

w

(w2(Cr)w2(Cr′)
)
6
(
w2(Cr)w(Cr′)

)
6 O(δ)

 . (2.41)

Improved SoS Degree Bounds for k = 2

Proof of Lemma 2.3.14. We proceed exactly as in the above proof of Lemma 2.3.13 up until
(2.38) where we invoke a rough eigenvalue upper bound on Σ(w). We replace this bound by
the sharper bound for the k = 2 case given by Lemma 2.3.11 analogous to the case of spectral
separation and get to choose log(1/ρ) = O(1/δ2) . We can then finish the argument as in the
proof of Lemma 2.3.13 above.

2.3.4 Intersection Bounds from Relative Frobenius Separation of Covari-
ances

In this section, we show that if Cr and Cr′ are generated by Gaussians with covariances that are
separated in relative Frobenius distance, then w(Cr)w(Cr′) = O(δ).

Recall that in this case, Σ(r) and Σ(r′) have the same range (as linear operators). Thus,
WLOG, we can assume them to be full rank.

Lemma 2.3.16 (Intersection Bounds from Relative Frobenius Separation). Suppose

∥∥∥Σ(r′)−1/2Σ(r)Σ(r′)−1/2 − I
∥∥∥2

F
> ∆2

cov

(∥∥∥Σ(r′)−1/2Σ(r)1/2
∥∥∥4

op

)

95

for ∆cov � Cs/δ2, where s = O(1/δ2). Then,

A
O(log(κ)/δ4)

w
{
w(Cr)w(Cr′) 6 O(δ1/3)

}
.

As in the previous two subsections, we can get a constant degree sum-of-squares proof for
the special case of k = 2 components.

Lemma 2.3.17 (Intersection Bounds from Relative Frobenius Separation, Two Components).
Suppose

∥∥∥Σ(2)−1/2Σ(1)Σ(2)−1/2 − I
∥∥∥2

F
> ∆2

cov

(∥∥∥Σ(2)−1/2Σ(1)1/2
∥∥∥4

op

)
. Then,

A
O(1/δ4)

w
{
w(C1)w(C2) 6 O(δ1/3)

}
.

Let Q be a d×d matrix-valued indeterminate. In the following, we write Q(z) for z>Qz (the
quadratic form associated with Q). We also use the notation Ew [Q] = k

n

∑
i,j wiwjQ(xi − xj) -

the polynomial computing the mean of Q with respect to the subsample indicated by w. We also
write ECr [Q] = k

n

∑
i,j∈Cr Q(xi−xj) and ECr′ [Q] = k

n

∑
i,j∈Cr Q(xi−xj). We note that for any

distribution D with covariance Σ, Ex,y∼D
[
(x− y)>Q(x− y)

]
= 2 tr(ΣQ).

Proof of Lemma 2.3.16 We can now proceed with the proof of Lemma 2.3.16. As in the
previous two subsections, the idea is to show a lower bound on the variance of some polynomial
in terms of the intersection size w(Cr)w(Cr′) and couple it with an upper bound on the variance
that follows from certifiable hypercontractivity to obtain an upper bound on w(Cr)w(Cr′).

Observe that the relative Frobenius separation condition is invariant under linear transforma-
tions. Thus, we can assume that Σ(r′) = I WLOG. This simplifies notation quite a bit in this
argument. With this simplification, we now have: ‖Σ(r)− I‖2

F > ∆2
cov‖Σ(r)‖2

op . Further, the
covariance of Cr is now Σ(r′)−1/2Σ(r)Σ(r′)−1/2 and that of Cr′ is now I after this linear trans-
formation. It’s also easy to verify that k2

n2
∑
i,j wiwjΣ(r′)−1/2 (xi − xj) (xi − xj)>Σ(r′)−1/2 =

2Σ(r′)−1/2Σ(w)Σ(r′)−1/2.

In order to simplify notation, we will simply treat Σ(r′) = I and Σ(r)→ Σ(r′)−1/2Σ(r)Σ(r′)−1/2

in the analysis below. We start with the lower-bound first.

96

Lemma 2.3.18 (Large Intersection Implies High Variance). LetQ = Σ(r′)−1/2Σ(r)Σ(r′)−1/2−I .

A 4
w

4Ew(Q− EwQ)2 + 2ECr(Q− ECrQ)2 + 2ECr′
(Q− ECr′

Q)2

> w(Cr)2w2(Cr′)
∥∥∥Σ(r′)−1/2Σ(r)Σ(r′)−1/2 − I

∥∥∥4

F

 .

Proof. Observe that ECrQ = tr(Σ(r)(Σ(r)−I)) = ‖Σ(r)− I‖2
F +tr(Σ(r)−I) while, ECr′Q =

tr(Σ(r)− I). In particular, ECrQ−ECr′
Q = ‖Σ(r)− I‖2

F > ∆2
cov‖Σ(r)‖2

op. Thus, the mean of
the polynomial Q(x) is starkly different on the two components. By observing that the standard
deviation of Q on each of Cr and Cr′ is much smaller than the mean, we will be able to derive a
lower-bound on variance of Q under w-samples.

Thus, applying Lemma 2.3.15, with A = w(Cr)2, C = (ECrQ− EwQ)2, B = w(Cr′)2,
D =

(
ECr′

Q− EwQ
)2

and τ = 1
4 ‖Σ(r)− I‖4

F we have:

A 4
w
{
w(Cr)2 (ECrQ− EwQ)2 + w(Cr′)2

(
ECr′

Q− EwQ
)2

>
1
4w(Cr)2w(Cr′)2 ‖Σ(r)− I‖4

F

}
(2.42)

Let’s now lower bound Ew(Q− EwQ)2. We have:

A 4
w

Ew(Q− EwQ)2 = k2

n2

∑
i,j6n

wiwj (Q(xi − xj)− EwQ)2

>
k2

n2

∑
i,j∈Cr or i,j∈Cr′

wiwj (Q(xi − xj)− EwQ)2

>
k2

2n2

∑
i,j∈Cr

wiwj (ECrQ− EwQ)2 − 1
2
k2

n2

∑
i,j∈Cr

wiwj (Q(xi − xj)− ECrQ)2

+ k2

2n2

∑
i,j∈Cr

wiwj
(
ECr′

Q− EwQ
)2
− 1

2
k2

n2

∑
i,j∈Cr′

wiwj
(
Q(xi − xj)− ECr′

Q
)2

>
1
2w(Cr)2 (ECrQ− EwQ)2 − 1

2
k2

n2

∑
i,j∈Cr

(Q(xi − xj)− ECrQ)2

+ 1
2w(Cr′)2

(
ECr′

Q− EwQ
)2
− 1

2
k2

n2

∑
i,j∈Cr′

(
Q(xi − xj)− ECr′

Q
)2

>
1
4w(Cr)2w2(Cr′) ‖Σ(r)− I‖4

F −
1
2ECr(Q− ECrQ)2 − 1

2ECr′
(Q− ECr′

Q)2

 ,
97

where, in the final inequality, we applied (2.42). Rearranging completes the proof.

Onwards to the upper bound now. Observe that the first two terms on the LHS of Lemma 2.3.18
can be upper bounded easily using Lemma 2.3.2: ECr(Q−ECrQ)2 6 (C−1)

∥∥∥Σ(r)1/2QΣ(r)1/2
∥∥∥2

F
6∥∥∥Σ(r)1/2

∥∥∥2

op
‖Q‖2

F . Similarly, ECr′
(Q−ECrQ)2 6 ‖Q‖2

F . Thus, to finish the proof of Lemma 2.3.16,
we need an upper bound on Ew(Q − EwQ)2 which we accomplish by relying on the certifiable
hypercontractivity constraints.

In the following, we will use the following observation: From our bounded-variance con-
straints in A, we have:

A 4
Π,Q,w {

Ew(Q− EwQ)2 6 C ‖Π(w)QΠ(w)‖2
F

}
. (2.43)

From Lemma 2.3.12, we have:

A
s log(1

ρ)

δ2

v,w

(J (w(Cr))(w(Cr)− δ) + δρ)
(
v>Σ(w)v

)s
6 2 1

δ2s (Cs)s
(
v>Σ(r)v

)s
+δρλsmax‖v‖2s

2

 .

To implement the linear transformation xi → Σ(r′)−1/2xi, we substitute v = Σ(r′)−1/2v and
use that Σ(r′)−1 � 1/λmaxI:

A
O(s log(1/ρ)/δ2)

Π,v,w
(J (w(Cr))(w(Cr)− δ) + δρ)

∥∥∥Π(w)Σ(r′)†/2v
∥∥∥2s

2

6 2 1
δ2s (Cs)s ‖v‖2s

2 + δρλsmax‖Σ(r′)†/2v‖2s
2 6

(
2 1
δ2s (Cs)s + δρκs

)
‖v‖2s

2

 . (2.44)

We are now ready for the upper bound proof.

Lemma 2.3.19 (Certifiable Hypercontractivity Implies Low Variance). Let Q = Σ(r)− I .

A
O(s log(κ)/δ2)

w

(J (w(Cr))(w(Cr)− δ) + δη)2s
(
Ew(Q− EwQ)2

)s

6
(

4 1
δ2s (Cs)s

∥∥∥Σ(r)1/2
∥∥∥2s

op

)2
s2s ‖Σ(r)− I‖2

F

 (2.45)

Proof. Lemma 2.3.10 implies thatA {(J (w(Cr))(w(Cr)− δ) + δρ) > 0}. Thus, we can use

98

the multiplication rule (Fact 3.5) and multiply both sides of (2.89) with (J (w(Cr))(w(Cr)− δ) + δρ)
repeatedly while preserving the inequality.

Thus, we have using the bounded-variance constraints in A:

A
O(s log(1/ρ)/δ2)

Π,w
(J (w(Cr))(w(Cr)− δ) + δρ)s

(
Ew(Q− EwQ)2

)s
6 (J (w(Cr))(w(Cr)− δ) + δρ)s (C − 1)s ‖Π(w)QΠ(w)‖2s

F

6 2s (J (w(Cr))(w(Cr)− δ) + δρ)2 (C − 1)s ‖Π(w)Q′Π(w)‖2s
F

6 2s
((1

δ2

)s
(Cs)s

∥∥∥Σ(r)1/2
∥∥∥2s

op
+ δρκs

)
ss (J (w(Cr))(w(Cr)− δ) + 2sδρ) ‖QΠ(w)‖2s

F

6 2s
((1

δ2

)s
(Cs)s

∥∥∥Σ(r)1/2
∥∥∥2s

op
+ δρκs

)2
s2s ‖Q‖2s

F

=
((2

δ2

)s
(Cs)s

∥∥∥Σ(r)1/2
∥∥∥2s

op
+ δρκs

)2
s2s ‖Σ(r)− I‖2s

F

 ,
where, in the last two inequalities, we twice invoked the contraction bound from Lemma 2.8.1
along with the bound on

∥∥∥Π(w)Σ(r′)−1/2v
∥∥∥s

2
from (2.44). Setting ρ = κ−s completes the proof.

As in the previous subsection, we can improve the sum-of-squares degree of the proof above
to be a fixed constant (independent of κ) in the case when k = 2 by using the sharper bound on
Σ(w) in (2.44).

Lemma 2.3.20 (Certifiable Hypercontractivity Implies Low Variance, Two Components). Let

Q = Σ(2)−1/2Σ(1)Σ(2)−1/2 − I .

A
O(1/δ4)
Q,Σ,w

(J (w(C(1)))(w(C1)− δ) + δρ)2s
(
Ew(Q− EwQ)2

)s

6
(

4 1
δ2s (Cs)s

∥∥∥Σ(r)1/2Σ(2)−1/2
∥∥∥2s

op

)2
s2s

∥∥∥Σ(2)−1/2Σ(1)Σ(2)−1/2 − I
∥∥∥2

F

 (2.46)

Proof. We proceed similarly as in the proof above up until (2.44) where, instead of using the
uniform eigenvalue bound, we instead use the sharper bound from Lemma 2.3.11. As in the
previous two subsections, following through the rest of the proof in Lemma 2.3.19 as is, allows
us to eventually set log(1/ρ) = O(1/δ2) yielding a O(1/δ4)-degree SoS proof as desired.

99

Proof of Lemma 2.3.16. As in the previous two lemmas, we argue after performing the linear
transformation Σ(r′)−1/2 on the samples in order to simplify notation.

From Lemma 2.3.18, we have:

A 4
w
{

4Ew(Q− EwQ)2 + 2ECr(Q− ECrQ)2 + 2ECr′
(Q− ECr′

Q)2

> w(Cr)2w2(Cr′) ‖Σ(r)− I‖4
F

}

Multiplying both sides of the and apply the SoS Almost Triangle Inequality (Fact 2.2.8) and
obtain:

A 4s
w,Q

{
23s

(
Ew(Q− EwQ)2s + ECr(Q− ECrQ)2s + ECr′

(Q− ECr′
Q)2s

)
> w(Cr)2sw2s(Cr′) ‖Σ(r)− I‖4s

F

}

Multiplying by (J (w(Cr))(w(Cr)− δ) + δρ)s on both sides, we get:

A
O(s log(1/ρ)/δ2)

Q,w

(J (w(Cr))(w(Cr)− δ) + δρ)sw(Cr)2sw2s(Cr′) ‖Σ(r)− I‖4s
F

6 (J (w(Cr))(w(Cr)− δ) + δρ)s 23s·
(
Ew(Q− EwQ)2s + ECr(Q− ECrQ)2s + ECr′

(Q− ECr′
Q)2s

) . (2.47)

Using the upper bounds proved above (Lemma 2.3.19 and the preceding discussion) on each
of the three terms on the RHS, we get:

A
O(s log(κ)/δ2)

w

(J (w(Cr))(w(Cr)− δ) + δρ)sw(Cr)2sw2s(Cr′) ‖Σ(r)− I‖4s
F

6 2O(s)
(

4 1
δ2s (Cs)s

∥∥∥Σ(r)1/2Σ(r′)−1/2
∥∥∥2s

op
+ 1

)
‖Σ(r)− I‖2s

F

 . (2.48)

Applying the SoS Cancellation lemma (Lemma 2.8.2), we have:

100

A
O(s log(κ)/δ2)

w

(J (w(Cr))(w(Cr)− δ) + δρ)w(Cr)2w2(Cr′) ‖Σ(r)− I‖4
F

6 2O(s)
(

4 1
δ2 (Cs)

∥∥∥Σ(r)1/2Σ(r′)−1/2
∥∥∥2

op

)
‖Σ(r)− I‖2

F

 . (2.49)

Applying Lemma 2.3.10 to observe

A
O(log(1/ρ)/δ2)

w {(J (w(Cr))(w(Cr)− δ) + δρ) > (w(Cr)− 2δ)} .

Thus, using A {w(Cr)2w(Cr′)2) 6 1}, we get:

A
O(s log(κ)/δ2)

w

w(Cr)3w2(Cr′) ‖Σ(r)− I‖4
F

6 2δ ‖Σ(r)− I‖4
F + 2O(s)

(
4 1
δ2 (Cs)

∥∥∥Σ(r)1/2Σ(r′)−1/2
∥∥∥2

op

)
‖Σ(r)− I‖2

F

 . (2.50)

Dividing throughout by ‖Σ(r)− I‖4
F , and using that and that ‖Σ(r)− I‖2

F > ∆2
cov

∥∥∥Σ(r)1/2Σ(r′)−1/2
∥∥∥2

op

yields:

A
O(s log(κ)/δ2)

w

w(Cr)3w(Cr′)3 6 2δ +
(

4 1
δ2 (Cs) ∆−2s

cov

)
‖Σ(r)− I‖2s

F

 . (2.51)

Using that ∆cov � Cs/δ2 and s = O(1/δ2) yields:

A
O(log(κ)/δ4)

w

w(Cr)3w(Cr′)3 6 O(δ)

 . (2.52)

Using SoS cancellation (Lemma 2.8.2) again yields:

A
O(log(κ)/δ4)

w

w(Cr)w(Cr′) 6 O(δ1/3)

 . (2.53)

101

Improved SoS Degree Bounds for k = 2 By using Lemma 2.3.20 instead of Lemma 2.3.19
in the above argument immediately yields Lemma 2.3.17.

2.4 Outlier-Robust Clustering of Reasonable Distributions

In this section, we augment the algorithm from the previous section to tolerate an ε 6 O(1/k)
fraction of fully adversarial outliers. Recall that in this setting, the input sample Y is obtained by
first generating a sample X from the underlying mixture model and adversarially corrupting an
ε-fraction of X .

The following is the main result of this section:

Theorem 59 (Outlier-Robust Clustering of Mixture of Reasonable Distributions). Fix ε > 0. Let

D be a nice distribution that is s(δ)-certifiably (δ, Cδ)-anti-concentrated for all δ > 0 and has h-

certifiably C-hypercontractive degree 2 polynomials for every h. There exists an algorithm that

takes input an ε corruption Y of X of size n generated according equi-weighted ∆-separated

mixture of D(µ(r),Σ(r)) for r 6 k with true clusters C1, C2, . . . , Ck and outputs Ĉ1, Ĉ2, . . . Ĉk

such that there exists a permutation π : [k]→ [k] satisfying

min
i6k

|Ci ∩ Ĉπ(i)|
|Ci|

> 1− η −O(kε) .

The algorithm succeeds with probability at least 1− 1/k whenever ∆ > ∆rob = Ω(poly(k/η)),

need n > dO(poly(k/η)) samples and runs in time nO(log(κ)poly(k/η)) where κ is spread of the mixture.

For the special case of k = 2, the algorithm runs in time nO(poly(k/η)) and uses dO(poly(k/η))

samples (with no dependence on the spread κ.)

Recall that the spread κ = supv∈Rd maxi,j6k v>Σ(i)v
v>Σ(j)v . In Section 2.5, we will use the al-

gorithm above as a subroutine to get a fully-polynomial algorithm with no dependence on the
spread κ of the mixture in the running time.

102

2.4.1 Algorithm

Constraint System. Our constraint systemArob is similar to the one from the previous section
with one key difference introduced in order to handle the adversarial outliers. In the uncorrupted
setting, we are given the original uncorrupted sample X = C1 ∪ C2 ∪ . . . Ck and our program
encodes constraints on a subset Ĉ of samples with the intended solutions to be the true clusters
Cis.

In the outlier-robust setting, we only get to observe the ε-corruption Y of X . Thus, the points
in the indices corresponding to Ci need not satisfy the constraints from the previous section.

We handle this by introducing an extra set of d-dimensional vector-valued indeterminates
X ′ = {x′1, x′2, . . . , x′n} that are intended to be the original uncorrupted sample X that generated
Y . Since X ′ is (supposed to be) a uncorrupted sample, we can now encode finding a subset Ĉ
of X ′ (instead of X) with the intended solutions to be the true clusters Cis of the original X .
In order to force X ′ to be close to X , we force constraints intersection constraints (via the new
matching variables mis) that ask X ′ to intersect Y in (1− ε)-fraction of points (just like the true
X does). This implies that X ′ intersects X in > (1 − 2ε)-fraction of the points and as we will
soon see, this is enough for us to execute the arguments from the previous section with relatively
little change.

Covariance constraints introduce a matrix valued indeterminate intended to be the square root
of Σ.

Covariance Constraints: A1 =

 Π = UU>

Π2 = Σ .

 (2.54)

The intersection constraints force that X ′ be close to X .

Intersection Constraints: A2 =


∀i ∈ [n], m2

i = mi∑
i∈[n] mi = (1− ε)n

∀i ∈ [n], mi(yi − x′i) = 0 .

 (2.55)

The subset constraints introduce w, which indicates the subset Ĉ intended to be the true clusters
of X ′.

Subset Constraints: A3 =


∀i ∈ [n]. w2

i = wi∑
i∈[n] wi = n

k
.

 (2.56)

Parameter constraints create indeterminates to stand for the covariance Σ and mean µ of Ĉ

103

(indicated by w).

Parameter Constraints: A4 =


1
n

n∑
i=1

wi (x′i − µ) (x′i − µ)> = Σ

1
n

n∑
i=1

wix
′
i = µ .

 (2.57)

Finally, we enforce certifiable anti-concentration and hypercontractivity of Ĉ.

Certifiable Anti-Concentration : A4 =



k2

n2

n∑
i,j=1

wiwjq
2
δ,Σ

((
x′i − x′j

)
, v
)
6 2s(δ)Cδ

(
v>Σv

)s(δ)
k2

n2

n∑
i,j=1

wiwjq
2
τ,Σ

((
x′i − x′j

)
, v
)
6 2s(τ)Cτ

(
v>Σv

)s(η)


,

(2.58)
where s(x) = O(1/x2). Certifiable Hypercontractivity: A5 =


∀h 6 2s, k2

n2

∑
i,j6n

wiwj

Q(x′i − x′`)−
k2

n2

∑
i,`6n

wiw`Q(x′i − x′`)
2h

6 (Ch)2h

k2

n2

∑
i,`6n

wiw`

Q(x′i − x′`)−
k2

n2

∑
i,`6n

wiw`Q(x′i − x′`)
2

h

.


(2.59)

Certifiable Bounded Variance: A6 =

∀j 6 2s, k2

n2

∑
i,`6n

wiw`

Q(x′i − x′`)−
k2

n2

∑
i,`6n

wiw`Q(x′i − x′`)
2

6 C ‖ΠQΠ‖2
F .


(2.60)

Our rounding algorithm is exactly the same as in the previous section giving us:

Algorithm 60 (Outlier-Robust Clustering General Mixtures).

Given: An ε-corruption Y of original uncorrupted sample X = C1 ∪ C2 ∪ . . . Ck with true

clusters C1, C2, . . . , Ck.

Output: A partition of Y into an approximately correct clustering Ĉ1, Ĉ2, . . . , Ĉk.

Operation:

1. Find a pseudo-distribution ζ̃ satisfying Arob with s = log(κ)poly(k/η), δ =

104

η6/k12, and τ = 1/(Cpoly(k)), and minimizing
∥∥∥Ẽ[w]

∥∥∥2

2
.

2. For M = Ẽw∼ζ̃ [ww>], repeat for 1 6 ` 6 k:

(a) Choose a uniformly random row i of M .

(b) Let Ĉ` be the largest n
k

entries in the ith row of M .

(c) Remove the rows and columns with indices in Ĉ`.

Analysis of Algorithm An analog of Lemma 2.3.2 extends to this setting without any change.

Lemma 2.4.1 (Typical samples are good). Let X be an original uncorrupted sample of size n

from a equi-weighted ∆-separated mixture D(µ(r),Σ(r)) for r 6 k.

Then, for n0 = Ω ((sd)8sk log k) and for all n > n0, the original uncorrupted sample X of

size n is good with probability at least 1− 1/d.

As in the previous section, the heart of the analysis is proving the following lemma that
bounds the pairwise products w(Cr)w(Cr′) for all r 6= r′.

Lemma 2.4.2 (Intersection Bounds from Separation). Let Y be an ε-corruption of a good sam-

ple X from a ∆ > ∆rob-separated mixture of reasonable distribution D with true clusters

C1, C2, . . . , Ck of size n/k. Let w(Cr) denote the linear polynomial k
n

∑
i∈Cr wi for every r 6 k.

Then, for every r 6= r′,

A
O(log(κ)/δ4)

w

∑
r 6=r′

w(Cr)w(Cr′) 6 O(kε) +O(k2δ1/3)

 .

For the special case when the number of components in the mixture is k = 2, we can improve
on the lemma above and give a sum-of-squares proof of degree O(s(δ)2) with no dependence on
κ.

Lemma 2.4.3 (Intersection Bounds from Separation, Two Components). Let Y be an ε-corruption

of a good sample X from a ∆ > ∆rob-separated mixture of reasonable distribution D with true

clusters C1, C2 of size n/2 each. Let w(Cr) denote the linear polynomial k
n

∑
i∈Cr wi for every

r 6 2. Then,

Arob O(1/δ4)
w

{
w(C1)w(C2) 6 O(ε+ δ1/3)

}
.

105

Given Lemma 2.3.3, the proof of Theorem 59 follows by the same argument as for Theo-
rem 56.

2.4.2 Proof of Lemmas 2.4.2 and 2.4.3

As we show in this section, the proof of Lemma 2.4.2 follows from essentially the same argument
as in the previous section with two additional observations.

The key idea in bringing the machinery from the previous section into play is to consider the
following variables that satisfy constraints of being the indicator of the intersection between X ′

(indeterminates in our program) and X (original uncorrupted sample we do not have access to) -
let m′i = mi · 1(yi = xi) for every i. We now make the following key definition/notation.

Definition 2.4.4 (Proxy Variables and Cluster Sizes). Let w′i = wim
′
i = wimi1(yi = xi) and

define w′(Cr) = k
n

∑
i∈Cr w

′
i for every r.

We refer to w′i variables as proxy variables (they allow us to talk about subsets of X by
“proxy”). Observe that we do not have access to the w′i variables through our program. They
only appear in our analysis of the algorithm. They allow us to “go between” xis (the originals
sample that we do not have access to) and x′i (the indeterminates that our constraints are defined
over).

The result that formally allows us to do this is:

Lemma 2.4.5 (Matching with Original Uncorrupted Samples). Let m′i = mi · 1(yi = xi) for

every i. Let w′i = wim
′
i = wimi1(yi = xi). Then,

Arob 2
w′
{
w′i

2 = w′i ∀i
}
∪ {w′i(x′i − xi) = 0} .

Proof. For the first conclusion,

Arob 2
w′
{
w′i

2 = w2
im

2
i · 1(yi = xi)2 = wimi1(yi = xi) = w′i

}
.

106

For the second conclusion,

Arob 2
w′
{
w′i(x′i − xi) = w′i(x′i − yi) + w′i(yi − xi)

= 1(yi = xi)wimi(x′i − yi) +miwi1(yi = xi)(xi − yi)

= 0
}
.

Using this simple lemma, as we will soon discuss in some more detail, we get to apply our
previous arguments to the original sample X by simply shifting to the “proxy” w′i variables. As
a result, we will be able to prove the following intersection bounds for the proxy cluster sizes.

Lemma 2.4.6 (Proxy Intersection Bounds from Separation). Let Y be an ε-corruption of a good

sample X . Let w′(Cr) denote the linear polynomial k
n

∑
i∈Cr w

′
i for every r 6 k. Then, for every

r 6= r′,

Arob O(log(κ)/δ4)
w

{
w′(Cr)w′(Cr′) 6 O(δ1/3)

}
.

For the special case when the number of components in the mixture is k = 2, we can improve
on the lemma above and give a sum-of-squares proof of degree O(s(δ)2) with no dependence on
κ.

Lemma 2.4.7 (Proxy Intersection Bounds from Separation, Two Components). Let Y be an ε-

corruption of a good sample X . Let w′(Cr) denote the linear polynomial k
n

∑
i∈Cr w

′
i for every

r 6 2. Then,

Arob O(1/δ4)

{
w′(C1)w′(C2) 6 O(δ1/3)

}
.

It is easy to complete the proof of Lemmas 2.4.2 and 2.4.7 using the above two lemmas. We
show the proof for Lemma 2.4.2. The proof for Lemma 2.4.7 is analogous.

We will use the following bound that (in low-degree SoS) shows that X and X ′ intersect in
(1− 2ε)n points.

Lemma 2.4.8 (Matching with Original Uncorrupted Samples). Let m′i = mi · 1(yi = xi) for

107

every i. Then,

Arob 2

∑
i6n

m′i > (1− 2ε)n

 .

Proof. Observe that using {m2
i = mi} 2

m {mi 6 1}, we have:

Arob 2

∑
i6n

mi · 1(yi 6= xi) 6
∑
i6n

1(yi 6= xi) = εn

 .

Similarly,

Arob 2

∑
i6n

(1−mi) · 1(yi = xi) 6
∑
i6n

(1−mi) = εn

 .

Thus,

Arob 2

∑
i6n

mi · 1(yi = xi) >
∑
i6n

(mi + (1−mi)) (1(yi = xi) + 1(yi 6= xi)) > n− 2εn

 .

Proof of Lemma 2.4.2. Observe that usingArob {m′i 6 1} for every i, andArob {∑r6k w(Cr) = 1}
we have:

Arob O(log(κ)/δ4)
w,w′,m′

 ∑
r 6=r′

w′(Cr)w′(Cr′) = k2

n2

∑
r 6=r′

∑
i∈Cr,j∈Cr′

wiwjm
′
im
′
j

>
k2

n2

∑
r 6=r′

∑
i∈Cr,j∈Cr′

wiwj − 2k
2

n2

∑
r 6=r′

∑
i∈Cr,j∈Cr′

wiwj(1−mi)

>
k2

n2

∑
r 6=r′

∑
i∈Cr,j∈Cr′

wiwj − 2k
2

n2

∑
r 6=r′

∑
i∈Cr,j∈Cr′

wi(1−mi)

>
k2

n2

∑
r 6=r′

∑
i∈Cr,j∈Cr′

wiwj − 2k
n

∑
r 6=r′

∑
i∈Cr,j∈Cr′

(1−mi)

>
k2

n2

∑
r 6=r′

∑
i∈Cr,j∈Cr′

wiwj − 2k
n

∑
r 6=r′

∑
i∈Cr,j∈Cr′

(1−mi)

= k2

n2

∑
r 6=r′

∑
i∈Cr,j∈Cr′

wiwj − 2kε

 .
108

Rearranging yields:

Arob O(log(κ)/δ4)
w

∑
r 6=r′

w(Cr)w(Cr′) 6
∑
r 6=r′

w′(Cr)w′(Cr′) + 2kε

 .

Plugging in the bound from Lemma 2.4.6 completes the proof.

2.4.3 Proof of the Simultaneous Proxy Intersection Bounds

We prove Lemma 2.4.6 with a proof strategy that is essentially same as the one employed in the
proofs of Lemmas 2.3.5, 2.3.13 and 2.3.16. We will start with constraints stated in terms of the
X ′ variables and use Lemma 2.4.5 at appropriate places to transition into X variables. At that
point, we can plug in our argument from the previous section without change.

We will do the case of spectral separation in detail to illustrate why this strategy works es-
sentially syntactically.

Lemma 2.4.9 (Simultaneous Proxy Intersection Bounds from Spectral Separation). Suppose

there exists a v such that v>Σ(r′)v > ∆spectralv
>Σ(r′)v. Let κ = supv∈Rd maxi6k v>Σ(i)v

v>Σ(r′)v .

Then, whenever ∆spectral � Cs/δ,

Arob O(log(κ)/δ4)
w′

{
w′(Cr)w′(Cr′) 6 O(

√
δ)
}
.

Observe, as in the previous section, that B = 1 when k = 2.

As in the previous section, we start by proving a lower-bound on the variance of Dw in the
direction v where Σ(r) and Σ(r′) are spectrally separated. This gives us:

Lemma 2.4.10 (Large Intersection Implies High Variance, Spectral Separation).

Arob 4s

w′(Cr′)w′(Cr) (v> (Σ(r) + Σ(r′)) v>
)s

6
(2
δ2

)s (
v>Σ(w)v

)s
+ Cδ

(
v> (Σ(r) + Σ(r′)) v>

)s
Proof. We know from Lemma 2.3.2 that two-sample-centered points from both Cr and Cr′

(note that these are subsets of the original uncorrupted sample X) are 2s-certifiably (δ, Cδ)-

109

anti-concentrated. Using Definition 3.2.28, thus yields:

Arob 4s

k4

n4

∑
i1,i2∈Cr,j1,j2∈Cr′

w′i1w
′
i2w
′
j1w
′
j2 〈xi1 − xi2 − xj1 + xj2 , v〉

2s

> δ2sw′(Cr)2w′(Cr′)2
(
v>2(Σ(r) + Σ(r′))v>

)s
− δ2s k

4

n4

∑
i1,i2∈Cr,j1,j2∈Cr′

w′i1w
′
i2w
′
j1w
′
j2q

2
δ,2(Σ(r)+Σ(r′))(xi1 − xi2 − xj1 + xj2 , v)

 (2.61)

Using thatArob 4

{
w′i1w

′
i2w
′
j1w
′
j2 6 1

}
for every i1, i2, j1, j2 and using 2s-certifiable (δ, Cδ)-

anti-concentration of xi1 − xi2 − xj1 + xj2 and invoking Definition 3.2.28, we have:

Arob 4s
w′,Σ

k4

n4

∑
i1,i2∈Cr,j1,j2∈Cr′

w′i1w
′
i2w
′
j1w
′
j2q

2
δ,2(Σ(r)+Σ(r′))(xi1 − xi2 − xj1 + xj2 , v)

6
k4

n4

∑
i1,i2∈Cr,j1,j2∈Cr′

q2
δ,2(Σ(r)+Σ(r′))(xi1 − xi2 − xj1 + xj2 , v) 6 Cδ

(
v>2(Σ(r) + Σ(r′))v

)s
(2.62)

Plugging in the above bound in (2.61) gives:

Arob

k4

n4

∑
i1,i2∈Cr,j1,j2∈Cr′

w′i1w
′
i2w
′
j1w
′
j2 〈xi1 − xi2 − xj1 + xj2 , v〉

2s

> δ2s
(
w′(Cr)2w′(Cr′)2 − Cδ

) (
v>2(Σ(r) + Σ(r′))v>

)s (2.63)

110

Rearranging thus yields:

Arob 4s

 1
δ2s

k4

n4

∑
i1,i2∈Cr,j1,j2∈Cr′

w′i1w
′
i2w
′
j1w
′
j2 〈xi1 − xi2 − xj1 + xj2 , v〉

2s

+ Cδ
(
v>2(Σ(r) + Σ(r′))v>

)s
> w′(Cr)2w′(Cr′)2

(
v>2(Σ(r) + Σ(r′))v>

)s (2.64)

So far in the proof, the only change (compared to the proof of Lemma 2.3.6) in the proof has
been that we work with the subset indicated by w′i.

The key additional step we observe now is the following consequence ofArob {w′i(xi − x′i) = 0}
(Lemma 2.4.5).

Arob 4

{
w′i1w

′
i2w
′
j1w
′
j2

〈
x′i1 − x

′
i2 − x

′
j1 + x′j2 , v

〉
= w′i1w

′
i2w
′
j1w
′
j2 〈xi1 − xi2 − xj1 + xj2 , v〉

}
.

Using further that wi > w′i, we have:

Arob 4s


(4cs
δ2

)s (
v>Σ(w)v

)s
>

1
δ2s

k4

n4

∑
i1,i2,j1,j2∈[n]

wi1wi2wj1wj2
〈
x′i1 − x

′
i2 − x

′
j1 + x′j2 , v

〉2s

>
1
δ2s

k4

n4

∑
i1,i2,j1,j2∈[n]

w′i1w
′
i2w
′
j1w
′
j2

〈
x′i1 − x

′
i2 − x

′
j1 + x′j2 , v

〉2s

>
1
δ2s

k4

n4

∑
i1,i2,j1,j2∈[n]

w′i1w
′
i2w
′
j1w
′
j2 〈xi1 − xi2 − xj1 + xj2 , v〉

2s

>
1
δ2s

k4

n4

∑
i1,i2∈Cr,j1,j2∈Cr′

w′i1w
′
i2w
′
j1w
′
j2 〈xi1 − xi2 − xj1 + xj2 , v〉

2s

 .

Plugging in the upper bound above in (2.64) and canceling out a copy of 2s from both sides
gives the lemma.

The basic spectral upper bound also follows by simply shifting to the proxy variables w′i.
This yields us the following analog of Lemma 2.3.7:

111

Lemma 2.4.11 (Spectral Upper Bound via Anti-Concentration).

Arob 4s

(w′(Cr)2 − Cδ
) (
v>Σ(w)v>

)s
6
(
Cs

δ2

)s (
v>Σ(r)v

)s (2.65)

Proof. Our constraint systemArob allows us to derive that two-sample-centered points indicated
by w are 2s-certifiably (δ, Cδ)-anti-concentrated with witnessing polynomial pD. Using Defini-
tion 3.2.28 and summing up over all n after multiplying throughout by w′iw

′
j yields:

Arob 4s

δ2sw′(Cr)2
(
v>Σ(w)v>

)s

6
k2

n2

∑
i,j∈Cr

w′iw
′
j

〈
1√
2
(
x′i − x′j

)
, v

〉2s

+ δ2s k
2

n2

∑
i 6=j∈Cr

w′iw
′
jq

2
δ,Σ(w)

(
1√
2
(
x′i − x′j

)
, v

)
(2.66)

Using that Arob 2

{
w′iw

′
j

(
(x′i − x′j)− (xi − xj)

)
= 0

}
(two applications of Lemma 2.4.5)

yields:

Arob 4s
Σ,w′

δ2sw′(Cr)2
(
v>Σ(w)v>

)s

6
k2

n2

∑
i,j∈Cr

w′iw
′
j

〈
1√
2

(xi − xj) , v
〉2s

+ δ2s k
2

n2

∑
i 6=j∈Cr

w′iw
′
jq

2
δ,Σ(w)

(
1√
2

(xi − xj) , v
)
(2.67)

Using that Arob 2

{
w′iw

′
j 6 1

}
for every i, j, using that Arob derives 2s-certifiable (δ, Cδ)-

anti-concentration of w-samples and invoking Definition 3.2.28, we have:

Arob 4s

k2

n2

∑
i 6=j∈Cr

w′iw
′
jq

2
δ,Σ(w)

(
1√
2

(xi − xj) , v
)
6
k2

n2

∑
i 6=j∈[n]

w′iw
′
jq

2
δ,Σ(w)

(
1√
2

(xi − xj) , v
)

6 Cδ
(
v>Σ(w)v

)s
(2.68)

112

Further, using that Arob 2

{
w′iw

′
j 6 1

}
for all i, j and relying on the certifiable subgaussian-

ity of Cr, we have:

Arob 4s
Σ,w′

k2

n2

∑
i,j∈Cr

w′iw
′
j

〈
1√
2

(xi − xj) , v
〉2s

6
k2

n2

∑
i,j∈Cr

〈
1√
2

(xi − xj) , v
〉2s

= (Cs)s
(
v>Σ(r)v

)s
(2.69)

Combining the last two bounds with (2.78) thus yields:

Arob 4s

w′(Cr)2
(
v>Σ(w)v>

)s
6

1
δ2s (Cs)s

(
v>Σ(r)v

)s
+ Cδ

(
v>Σ(w)v>

)s (2.70)

Finally, we must translate the rough spectral upper bounds we had in Lemma 2.3.11. Yet
again, the proof goes through essentially with only syntactic changes.

Lemma 2.4.12 (Rough Spectral Upper bound on Σ(w)).

Arob 4s

(v>Σ(w)v>
)s

6 (2Ck)s+1 (Cs)s
∑
r6k

(
v>Σ(r)v

)s (2.71)

Proof. For ease of exposition, we drop the variable and degree specifications since they are clear
from context. As before, we start by invoking our constraints to conclude:

113

Arob

τ 2s∑
r6k

w′(Cr)2
(
v>Σ(w)v>

)s

6
k2

n2

∑
r6k

∑
i,j∈Cr

w′iw
′
j

〈
1√
2
(
x′i − x′j

)
, v

〉2s

+τ 2s k
2

n2

∑
r6k

∑
i 6=j∈Cr

w′iw
′
jq

2
τ,Σ(w)(

1√
2
(
x′i − x′j

)
, v)


(2.72)

We invoke Lemma 2.4.5 to conclude:

Arob

τ 2s∑
r6k

w′(Cr)2
(
v>Σ(w)v>

)s

6
k2

n2

∑
r6k

∑
i,j∈Cr

w′iw
′
j

〈
1√
2

(xi − xj) , v
〉2s

+ τ 2s k
2

n2

∑
r6k

∑
i 6=j∈Cr

w′iw
′
jq

2
τ,Σ(w)(

1√
2

(xi − xj) , v)


(2.73)

The second term on the RHS can be upper bounded just as in the proof of Lemma 2.3.7 to
yield:

Arob

k2

n2

∑
r6k

∑
i 6=j∈Cr

w′iw
′
jq

2
τ,Σ(w)

(〈
1√
2

(xi − xj) , v
〉)

6
k2

n2

∑
i 6=j∈[n]

w′iw
′
jq

2
τ,Σ(w)

(〈
1√
2

(xi − xj) , v
〉)

6 Cτ
(
v>Σ(w)v

)s
(2.74)

The first term can be also be upper bounded - this time in terms of the Covariances of all the
k components.

Arob

k2

n2

∑
r6k

∑
i,j∈Cr

w′iw
′
j

〈
1√
2

(xi − xj) , v
〉2s

6
∑
r6k

k2

n2

∑
i,j∈Cr

〈
1√
2

(xi − xj) , v
〉2s

= (Cs)s
∑
r6k

(
v>Σ(r)v

)s
(2.75)

114

We can now combine the two estimates above to yield:

Arob


∑
r6k

w′(Cr)2 − Cτ

(v>Σ(w)v>
)s

6
1
τ 2s (Cs)s

∑
r6k

(
v>Σ(r)v

)s (2.76)

So far the argument closely follows the proof of Lemma 2.3.7. We now observe (note the
change in the bound compared to the proof of Lemma 2.3.11)

Arob


∑
r6k

w′(Cr)2 >
1
k

∑
r6k

w′(Cr)
2
 .

Now,

Arob


∑
r6k

w′(Cr)
2

=
k
n

∑
i6n

wim
′
i

2

=
k
n

∑
i6n

wi

2

−

k
n

∑
i6n

wi(1−m′i)
2

>

k
n

∑
i6n

wi

2

−

k
n

∑
i6n

(1−m′i)
2

>

k
n

∑
i6n

wi

2

− k2ε2

> 1− k2ε2

 .

(2.77)

Thus,

Arob


∑
r6k

w′(Cr)2 >
1
k

∑
r6k

w′(Cr)
2

> 1/k − kε2
 .

Thus, as long as τ � 1
2Ck , and ε < 1/k we can derive :

Arob

(v>Σ(w)v>
)s

6 ks+1 (Cs)s
∑
r6k

(
v>Σ(r)v

)s (2.78)

This concludes the proof.

The argument for combining the upper and lower-bounds above proceeds exactly the same
as in Section 2.3.

115

Proxy Intersection Bounds from Mean and Relative Frobenius Separation. The proof of
the other two intersection bounds follows via similar strategy yielding:

Lemma 2.4.13 (Simultaneous Proxy Intersection Bounds from Mean Separation). Suppose there

exists a v ∈ Rd such that 〈µ(r)− µ(r′), v〉22 > ∆2
mv
> (Σ(r) + Σ(r′)) v.

Then, whenever ∆m � Cs/δ,

Arob O(log(κ)/δ4)
w′

{
w′(Cr)w′(Cr′) 6 O(

√
δ)
}
.

For the special case of k = 2, whenever ∆m � Θ(1),

Arob O(s)
w′

{
w′(C1)w′(C2) 6 O(

√
δ)
}
.

Lemma 2.4.14 (Simultaneous Proxy Intersection Bounds from Relative Frobenius Separation).
Suppose

∥∥∥Σ(r′)−1/2Σ(r)Σ(r′)−1/2 − I
∥∥∥2

F
> ∆2

cov

(∥∥∥Σ(r′)−1/2Σ(r)1/2
∥∥∥4

op

)
for ∆cov � C/δ2.

Then,

Arob O(log(κ)/δ2)
w′

{
w′(Cr)w′(Cr′) 6 O(δ1/3)

}
.

For the special case of k = 2, we have:

Arob O(s)
w′

{
w′(C1)w′(C2) 6 O(δ1/3)

}
.

Combining the above three bounds yields Lemma 2.4.2.

2.5 Fully Polynomial Algorithm via Recursive Partial Clus-
tering

In this section, we describe our fully polynomial time algorithm and prove Theorem 53.

Theorem 61 (Precise form of Theorem 53). Let η, ε 6 k−Ω(k). Let ∆ > poly(η/2k)k. There

exists an algorithm that takes input a set of n points Y ⊆ Qd and runs in time nk
O(k)poly log(1/η)/η2

with the following guarantees: Let X be an i.i.d. sample from ∆-separated mixture of k reason-

able distributions {Dr}r6k with parameters {µ(r),Σ(r)}r6k with true clusters C1, C2, . . . , Ck of

size n/k each. If Y is an ε-corruption of X , then with probability > 0.99 over the draw of X

116

and its random choices, the algorithm outputs a clustering Ĉ1, Ĉ2, . . . , Ĉk of Y such that there

exists a permutation π : [k]→ [k] satisfying:

min
i6k

k

n
|Ĉi ∩ Cπ(i)| > 1−O(kO(k)(η + ε)) .

Discussion In Section 2.4, we proved that our simple rounding (Algorithm 60) of any pseudo-
distribution ζ̃ of degree > O(log(κ)poly(k/η)) consistent with Arob produces an approximately
correct clustering of any ε-corruption Y of a good sample X . In this section, we will estab-
lish two somewhat curious technical facts about Algorithm 60 and the constraints Arob to show
Theorem 53.

1. All is not lost in constant degree (Lemma 2.5.2). When the rounding in Algorithm 60 is
run on a pseudo-distribution ζ̃ of degree poly(k/η) consistent with Arob, it still contains
non-trivial information about the true clusters and in particular can be used to construct a
partial clustering.

2. Verification can be done in constant degree (Lemma 2.5.3). While we cannot show that
degree poly(k/η) is enough to find a clustering, we will prove that it is enough to verify a
purported approximate clustering.

These facts let us use a slightly more complicated recursive clustering algorithm combined with
a verification subroutine to obtain an outlier-robust clustering algorithm with no dependence on
the spread κ in the running time.

Algorithm. Our algorithm is the following recursive clustering subroutine that we invoke with
the input corrupted sample Y and outlier parameter ε. The base case of the recursion uses a
verification subroutine that confirms if a subset of n/k samples is close to a true cluster. The
main recursive step employs the exact same rounding of the pseudo-distribution that we used in
Algorithm 60.

Algorithm 62 (Recursive Partial Clustering).

Given: A subsample Y ′ ⊆ Y of size jn/k for j ∈ [k]. A outlier parameter τ > 0 and an

accuracy parameter η > 0.

Output: A partition of Y ′ into an approximately correct clustering Ĉ1, Ĉ2, . . . , Ĉj .

Operation:

117

1. Base Case: If |Y ′| = n/k, accept if verification subroutine from Algorithm 63

when run on Y ′ with outlier parameter τ accepts. Otherwise output fail.

2. SDP Solving: Find a degree poly(j/η) pseudo-distribution ζ̃ satisfyingArob, and

minimizing
∥∥∥Ẽ[w]

∥∥∥2

2
with number of components set to j and outlier parameter

set to τ . If no such pseudo-distribution exists, output fail.

3. Rounding: Let M = Ẽw∼ζ̃ [ww>].

(a) Choose a uniformly random row i of M .

(b) Choose ` = O(k log(k/η)) rows of M uniformly at random and indepen-

dently.

(c) For each i 6 `, let Ĉi be the indices of the columns j such that M(i, j) >

η/poly(k).

(d) Let Ĉ`+1 = [n] \ ∪i6`Ĉi.

4. Brute-Force Search Over Partial Clusterings: For each subset S ⊆ [` + 1],
recursively run two instances of Algorithm 62 with inputs ∪i∈SĈi, ∪i 6∈SĈi re-

spectively with outlier parameters η +O(k3τ) for both runs.

5. If either run fails, output fail and return. Otherwise output the union of clusters

returned by the two runs of the algorithm.

Analysis of Algorithm. The analysis of our algorithm is based on the following two key pieces.
The first shows that Algorithm 60, when run with a pseudo-distribution ζ̃ of degree poly(k/η)
consistent with Arob recovers a partial clustering of the input sample. An (approximate) partial
clustering is a non-trivial split of Y into (approximate) unions of clusters.

Definition 2.5.1 (Partial Clustering). A τ -approximate partial clustering of Y = C1 ∪ C2 ∪
. . . Ck ⊆ Rd described by a partition of Y into P1∪P2 such that there exists S ⊆ [k], 0 < |S| < k

satisfying |P1∩∪i∈SCi|
|∪i∈SCi|

,
|P2∩∪i 6∈SCi|
|∪i6∈SCi|

> 1− τ .

The following lemma analyzes the output of Algorithm 62 when run with a τ -corrupted
mixture of k′ 6 k reasonable distributions. We will use it to analyze all instantiations of Algo-
rithm 62.

Lemma 2.5.2 (Outlier-Robust Partial Cluster Recovery). Let X be a good sample from a ∆-

separated mixture of reasonable distributions with parameters {µ(r),Σ(r)}r6k and true clusters

118

C1, C2, . . . , Ck′ of size n
k

each. Let Y be a τ -corruption ofX . Then, whenever ∆ > poly(η/k′)k′ ,
Algorithm 62 with probability at least 1− 2−Ω(k) recovers a clustering Ĉ1, Ĉ2, . . . , Ĉk′ such that

there exists a partition GS ∪ GL = [k] such that for P1 = ∪j∈GS Ĉj and P2 = ∪j∈GLĈj form a

(η +O(k4τ))-approximate partial clustering of Y .

The next step is a verification subroutine that, in polynomial (degree depending only on k, η)
time verifies if a given subset of n/k samples intersects in a true cluster in (1 − τ) fraction of
points.

Lemma 2.5.3 (Verification Subroutine). Let X be a good sample from a ∆-separated mix-

ture of reasonable distribution with parameters {µ(r),Σ(r)}r6k and equal-size true clusters

C1, C2, . . . , Ck. Let Y be a τ -corruption of X , for τ � 1/k6. Let Ĉ ⊆ Y be such that

maxj6k k
n
|Ĉ ∩ Cj| < 1 − 2k

√
τ . Then, Algorithm 63 rejects on input Ĉ. On the other hand, if

∃r 6 k such that k
n
|Ĉ ∩ Cr| > 1− τ , Algorithm 63 accepts on input Ĉ.

We can complete the analysis of Algorithm 62 and prove Theorem 61 using the above results:

Proof of Theorem 61. We run Algorithm 62 with input Y and initial outlier parameter τ = ε.
Let’s track the outlier parameters in the recursive calls - in each recursive call, τ → η + O(kτ).
Since the depth of our recursive calls is at most k, τ = O(kkη + k3kε) throughout the algorithm,
and thus ε� 1/k3k.

Let’s bound the running time of the algorithm. The base case requires running the verification
algorithm that needs npoly(1/η) time, and in the worst case, the fraction of outliers is τ = kO(k)(η+
ε). Each run of the algorithm makes at most 2k recursive calls to instances with number of
components reduced by at least 1 and needs to solve an SDP that needs npoly(k/η) time. Thus, the
running time follows the recurrence: T (j) 6 2kT (j − 1) + npoly(j/η) and we can conclude that
T (k) 6 2k2

T (1) = 2k2
npoly(k/η).

Finally, let’s confirm the correctness of the procedure. First, we show that if the algorithm
doesn’t fail, then it outputs a correct approximate clustering Ĉ1, Ĉ2, . . . , Ĉk of Y . It’s immediate
that the algorithm always produces a partitioning of Y into subsets of size n/k each. Further, each
Ĉi must cause Algorithm 63 to accept (base case of Algorithm 62). From Lemma 2.5.3, it must
hold for each i, Ĉi some clusterCπ(i) in 1−τ fraction of the n/k samples for τ = O(k2kη+k2kε).
Finally, observe that if τ � 1/k then, Cπ(i) 6= Cπ(j) for i 6= j. Thus, π must be a permutation of
[k]. This finishes the proof.

What remains is to argue that when run with ε-corruption Y of a good sample X , Algo-

119

rithm 62 does not output fail with probability at least 0.99. For this, we need to exhibit a choice
of S ⊂ [k] for each recursive call for which the algorithm does not fail. Observe, our algorithm
never outputs fail if the input Y ′ intersects (1 − τ) fraction of samples in some union of true
clusters. This is guaranteed by Lemma 2.5.2 with probability at least 1 − 2−Ω(k). By a union
bound, this guarantee holds for the output of all rounding steps incurred by making the choices
of S above with probability at least 0.99. Thus, we must arrive at subsets Ĉi that are (1 − τ)-
intersecting with some true cluster for τ = kO(k)(η + ε)� 1/k2, where the last inequality holds
when η, ε < 1/kO(k) . By the completeness of our verification subroutine (Lemma 2.5.3), all
Ĉi produced via these choices cause the verification algorithm to accept. This completes the
proof.

2.5.1 Partial Cluster Recovery

In this section, we prove Lemma 2.5.2. The crux of the proof is the following intersection bound
that finds a bipartition of clusters and proves that the simultaneous intersection of Ĉ (searched
for inArob via w-variables) with the two pieces of the bipartition is small. Note that this gets us a
weaker guarantee than the inter-cluster simultaneous intersection bounds proven in Sections 2.3
and 2.4 with the upshot that the degree of the SoS proof here does not depend on κ, the spread
of the mixture.

Lemma 2.5.4 (Simultaneous Intersections Bounds Across Bipartition). Let X, Y be as in the

setting of Lemma 2.5.2 with true clusters C1, C2, . . . , Ck′ with η = O(1/k′) and ∆ = ∆k′
rob =

poly(k′/η)k′ where ∆rob is the separation requirement in Lemma 2.4.2. There exists a partition

S ∪ L = [k′] such that |S| < k′ satisfying:

A poly(k/η)+poly(1/δ)
w

 ∑
r∈S,r′∈L

w(Cr)w(Cr′) 6 O((k′3)δ1/3 + (k′)2τ)

 .

Proof. We break the proof into two cases.

Case 1: No pair of clusters Cr, Cr′ is spectrally separated. In this case, for every direction
v, either v>Σ(i)v = 0 for all i 6 k′ or v>Σ(r)v

v>Σ(r′)v 6 ∆ 6 (poly(k′/η))k′ for all r, r′ . Thus, in
particular, the spread κ 6 ∆. Applying Lemma 2.4.2 and plugging in the upper bound on κ
immediately yields that for every 1 6 r < r′ 6 k′

A
O(k′ log(k′/η)/δ4)

w

∑
r 6=r′

w(Cr)w(Cr′) 6 O(k′τ) +O((k′)2δ1/3)

 .

120

Thus, in this case, we recover every cluster approximately and thus can set S and L to be any
non-trivial partition (that is, both S and L are non-empty) and finish the proof.

Case 2: There exist r, r′ such that Cr and Cr′ that are spectrally separated. Then there is
a direction v such that ∆k

robv
>Σ(r)v 6 v>Σ(r′)v. Consider an ordering of the true clusters

along the direction v, renaming cluster indices if needed, such that v>Σ(1)v 6 v>Σ(2)v 6

. . . v>Σ(k′)v. Then, clearly, v>Σ(k′)v > ∆robv
>Σ(r)v.

Let j 6 k′ be the largest integer such that ∆robv
>Σ(j)v 6 v>Σ(j + 1)v. Observe that since

we are in Case 2, such a j exists. Further, observe that since j is defined to be the largest index
which incurs separation ∆rob, all indices in [j, k′] have spectral bound at most ∆rob and thus
v>Σ(k′)v
v>Σ(j)v 6 ∆k′

rob. Applying Lemma 2.4.2 with the above direction v to every r < j and r′ > j

and observing that the spread parameter κ in each case is at most v
>Σ(k′)v
v>Σ(j)v 6 ∆k′

rob yields:

A
O(k′2 log(k′/η)/δ4)

w
{
w(Cr)w(Cr′) 6 O(k′τ + (k′)2δ1/3)

}
.

Adding up the above inequalities over all r 6 j − 1 and r′ > j + 1 and taking S = [j − 1],
T = [k′] \ [j − 1] yields the claim.

We are now ready to prove Lemma 2.5.2.

Proof of Lemma 2.5.2. We will prove that whenever ∆ > ∆rob = poly(k/η)k, Algorithm 62,
when run with input Y recovers a collection Ĉ1, Ĉ2, . . . , Ĉ` of subsets of indices such that there
is a partition S ∪ L = [`], 0 < |S| < ` satisfying:

min

kn |Ĉi ∩ ∪j∈SCj|, kn |Ĉi ∩ ∪j∈LCj|
 6 η +O(k4τ) . (2.79)

This suffices to complete the proof: Split [`] into two groups GS, GL as follows. For each
i, let j = arg maxr∈[`]

k
n
|Ĉi ∩ Cr|. If j ∈ S, add it to GS , else add it to GL. Observe that this

process is well-defined. To see this, suppose j ∈ S. Let j′ ∈ L. Then, using Equation (3.40)
and that η + O(k4τ) � 1/k and that k

n
|Ĉi ∩ ∪r∈SCr| > k

n
|Ĉi ∩ Cj| > 1/k, we have that:

k
n
|Ĉi ∩ ∪j′∈LCj′ | < 1/k.

We are now ready to verify the first claim. The second follows immediately from the first.
For each i ∈ GS , we have that k

n
|Ĉi ∩ ∪j∈LCj| 6 η + O(k4τ). Adding up these inequalities for

all i ∈ S yields that k
n
|P1 ∩ ∪j∈LCj| 6 |S| (η +O(k4τ)). Using that |P1| = |S|nk and S, L form

121

a partition of [k] completes the proof.

We now go ahead and establish (3.40). Let ζ̃ be a pseudo-distribution satisfying A of degree
poly(k/η). Let M = Ẽζ̃ [ww>]. Reasoning similarly as in the proof of Theorem 56, we have:

1. 1/k >M(i, j) > 0 for all i, j,

2. M(i, i) = 1/k for all i,

3. Ej∼[n]M(i, j) = 1
k2 for every i.

For an η′ to be chosen later, call an entry of M large if it exceeds η′/k2. For each i, let Bi be the
set of large entries in row i of M . Then, using (3) and (1) above gives that |Bi| > (1− kη′)n/k
for each 1 6 i 6 n. Next, call a row i “good” if k

n
min{|∪r∈LCr ∩ Bi|, |∪r′∈SCr′ ∩ Bi|} 6

100k2η′ +O(k3τ). Let us estimate the fraction of rows of M that are good.

Towards that goal, let’s apply Lemma 2.5.4 with η = η′/2k and δ = η′3/8k6. Then, using
Fact 3.2.18, we obtain

∑
r∈S,r′∈L

Ei∈CrEj∈Cr′M(i, j) 6
∑
r′ 6=r

Ei∈CrEj∈Cr′ Ẽ[wiwj]

= Ẽ[w(Cr)w(Cr′)]

6 η′ +O(k2τ)

Using Markov’s inequality 1−1/100k2 over the uniformly random choice of i, Ej∈Cr′M(i, j) 6
100k2η′ +O(k4τ). Thus, 1− 1/100k2 fraction of the rows of M are good.

Next, let R be the set of 100k log k/η′ rows sampled in the run of the algorithm and set
Ĉi = Bi for every i ∈ R. The probability that all of them are good is then at least (1 −
1/100k2)k log k/η′ > 1 − η′ log k/100k. Let’s estimate the probability that | ∪i∈R Ĉi| > (1 −
1/k10)n. The chance that a given point t ∈ Bi for a uniformly random Bi is at least (1− kη′)/k.
Thus, the chance that t 6∈ ∪i∈RBi is at most (1 − 1/2k)100k log k/η′ 6 η′/k50. Thus, the expected
number of t that are not covered by ∪i∈RĈi is at most nη′/k50. Thus, by Markov’s inequality,
with probability at least 1− 1/k10, 1− η′/k40 fraction of t are covered in ∪i∈RĈi.

Let’s now condition on the events that 1) each of the 100k log k/η′ rows R sampled are good
and 2) | ∪i∈R Ĉi| > (1 − η′/k40)n. By the above computations and a union bound, this event
happens with probability at least 1 − η′/k10. Let Ĉ`+1 = [n] \ ∪i6`Ĉi be the set of indices that

122

are not covered in ∪i∈RĈi. Then, ∪i6`+1Ĉi is a partition of [n].

We will show that the following way of grouping this partition into two buckets: RL =
R ∩ ∪i∈LCi and RS = R \RL satisfies the requirements of the lemma. To see this, note that

|∪i∈RLĈi ∩ ∪i∈SCi| 6 n/k100k3η′ +O(k4τ).

Similarly,

|∪i∈RS Ĉi ∪ P ∩ ∪i∈LCi| 6 n/k100k3η′ + |P |

6 n/k(100k3η′ + η′k−40) +O(k4τ).

Setting η′ 6 η/k10 completes the proof.

2.5.2 Verification Algorithm

In this section, we prove Lemma 2.5.3. We first describe our verification algorithm that involve
computing (if one exists) a pseudo-distribution consistent with a system of constraints that ver-
ifies the properties of being close to a reasonable distribution for a given input subset Ĉ of size
n/k of Y .

We first describe the verification constraint system V = V(Ĉ) = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 that
is closely related to those used in Sections 2.3 and 2.4. Covariance constraints introduce a matrix
valued indeterminate intended to be the square root of Σ.

Covariance Constraints: V1 =

 Π = UU>

Π2 = Σ

 (2.80)

The intersection constraints force that X ′ be close to X .

Intersection Constraints: V2 =


∀i ∈ [n′], m2

i = mi∑
i∈[n′] mi = (1− τ)n′

∀i ∈ [n′], mi(yi − x′i) = 0

 (2.81)

The parameter constraints create indeterminates to stand for the covariance Σ and mean µ of Ĉ

123

(indicated by m).

Parameter Constraints: V3 =



1
n′

n′∑
i=1

mi (x′i − µ) (x′i − µ)> = Σ

1
n′

n′∑
i=1

mix
′
i = µ


(2.82)

Finally, we enforce certifiable anti-concentration and hypercontractivity of Ĉ. Certifiable
Anti-Concentration :

V4 =

 1
n′2

n′∑
i,j=1

mimjq
2
τ/C,2Σ

((
x′i − x′j

)
, v
)
6 2sτ

(
v>Σv

)s  (2.83)

where s = O(C2/τ 2), and C is the certifiable hypercontractivity constant.

Certifiable Hypercontractivity:

V5 =



∀h 6 2s, k2

n2

∑
i,j6n

mimj

Q(x′i − x′`)−
k2

n2

∑
i,`6n

mim`Q(x′i − x′`)
2h

6 (Ch)2h

k2

n2

∑
i,`6n

mim`

Q(x′i − x′`)−
k2

n2

∑
i,`6n

mim`Q(x′i − x′`)
2

h


,

(2.84)
and

Certifiable Bounded Variance: V6 =

∀j 6 2s, k2

n2

∑
i,`6n

mim`

Q(x′i − x′`)−
k2

n2

∑
i,`6n

mim`Q(x′i − x′`)
2

6 C ‖ΠQΠ‖2
F .

 ,
(2.85)

where s = O(C2/τ 2).

Algorithm 63 (Verification Subroutine).

Given: A purported cluster Y = Ĉ of size n′ = n
k

, outlier parameter τ .

Output: Accept or Reject.

Operation: Accept iff ∃ a pseudo-distribution ζ̃ of degree O(C2/τ 2) consistent with V(Ĉ).

124

Analysis of Verification Subroutine Let m′i = mi · 1(yi = xi) for every i. Define m′(Ci) =
k
n

∑
j∈Cim

′
j for every i.

Our proof of Lemma 2.5.3 will rely on the following three lemmas that give a degree-
O(C2/τ 2) refutation of V(Ĉ) whenever Ĉ intersects at least two clusters appreciably. The proofs
follow the same conceptual plan of combining an upper and lower bound on the variance of v>Σv
as in Sections 2.3 and 2.4. The key difference, as we suggested earlier, is that the degree of the
proof is a fixed constant (instead of growing with log κ). The proof exploits the fact that in the
verification setting, Ĉ is not a variable in our constraint system.

Lemma 2.5.5 (SoS Refutation from Simultaneous Intersection with Spectrally Separated Com-
ponents). Let X be a good sample from a ∆-separated reasonable distribution with parame-

ters {µ(r),Σ(r)}r6k′ and true clusters C1, C2, . . . , Ck′ of size n
k

each. Let Y be a τ -corruption

of X . Let Ĉ ⊆ Y be a subset of size n
k

. Suppose Cr, Cr′ are ∆-spectrally separated and
k
n
|Ĉ ∩ Cr|, kn |Ĉ ∩ Cr′| > 2

√
τ . Then, whenever ∆ > 1

τ6 , Then,

{
V(Ĉ)

}
O(C2/τ2) {−1 > 0} .

Lemma 2.5.6 (SoS Refutation from Simultaneous Intersection with Mean Separated Compo-
nents). Let X be a good sample from a ∆-separated reasonable distribution with parameters

{µ(r),Σ(r)}r6k′ and true clusters C1, C2, . . . , Ck′ of size n
k

each. Let Y be a τ -corruption of X .

Let Ĉ ⊆ Y be a subset of size n
k

. Suppose Cr, Cr′ are ∆-mean separated and k
n
|Ĉ ∩ Cr|, kn |Ĉ ∩

Cr′| > 2
√
τ . Then, whenever ∆ > 1

τ6 , Then,

{
V(Ĉ)

}
O(C2/τ2) {−1 > 0} .

Lemma 2.5.7 (SoS Refutation from Simultaneous Intersection with Frobenius Separated Com-
ponents). Let X be a good sample from a ∆-separated reasonable distribution with parameters

{µ(r),Σ(r)}r6k′ and true clusters C1, C2, . . . , Ck′ of size n
k

each. Let Y be a τ -corruption of X .

Let Ĉ ⊆ Y be a subset of size n
k

. Suppose Cr, Cr′ are ∆cov-relative Frobenius separated and
k
n
|Ĉ ∩ Cr|, kn |Ĉ ∩ Cr′| > 2

√
τ . Then, whenever ∆cov > 1

τ6 , Then,

{
V(Ĉ)

}
O(C2/τ2) {−1 > 0} .

Proof of Lemma 2.5.3. Let j be the maximizer of |Ĉ∩Cr| over all r 6 k′. Then, |Ĉ∩Cj| > 1/k.
Let j′ be the maximizer of |Ĉ ∩ Cr| over all r 6= j. Then, |Ĉ ∩ Cj′ | 6 |Ĉ ∩ Cj|. Then, observe
that k

n
|Ĉ ∩ Cj′ | > 2k

√
τ/k > 2

√
τ .

125

Applying Lemmas 2.3.6, 2.5.6 and 2.5.7 for each of the three possible ways that Ci and Cj
could be separated, we obtain that:

V
O(C2/τ2) {−1 > 0} .

This immediately implies that there’s no degree > Ω(C2/τ 2) pseudo-distribution ζ̃ consistent
with V(Ĉ) -for if there was one, then the above inequality yields a contradiction. This completes
the proof of the first part. For the second part, observe that setting X ′ to be the cluster closest
(and thus 1− τ -intersecting) to Ĉ immediately completes the proof.

Sum-of-Squares Refutation of Reasonableness of Bad Clusters. We now prove Lemmas 2.5.5, 2.5.6
and 2.5.7. The proof of these lemmas closely resembles our proofs of the simultaneous intersec-
tion bounds in Sections 2.3 and 2.4. So it may appear somewhat confusing as to how we can get
the SoS proofs to work in degrees that do not depend on κ. The key difference is that, informally
speaking, here we already “know” that two clusters have large intersection with a purported bad
cluster Ĉ (which is given to us, not a variable) and our goal is to obtain a contradiction from
the axioms that Ĉ satisfies V in low-degree SoS. Such a difference, while inconsequential in
“ordinary math”, is key to obtaining the stronger degree bounds that do not depend on κ in this
section.

We will use the following result in all the three proofs.

Lemma 2.5.8 (Matching with Original Uncorrupted Samples). Suppose 1
n′
|Ĉ∩Cr|, 1

n′
|Ĉ∩Cr′ | >

2
√
τ . Let m′(Cr) = 1

n′
∑
i6Cr m

′
i. Then,

V(Ĉ)
O(C2/τ2)

{
m′(Cr)2 >

k

n
|Cr ∩ Ĉ| − 2τ > 2τ

}
.

Proof. Reasoning as in Lemma 2.4.8, we obtain that for any subset Ĉ ′ ⊆ Ĉ, we have:

V(Ĉ)
O(C2/τ2)

m′

 1
n′
∑
i∈Ĉ′

m′i > |Ĉ ′| − 2τ

 .

126

Applying this to subsets Ĉ ′ = Ĉ ∩ Cr yields:

V
O(C2/τ2)

m′
{
m′(Cr)2 >

k

n
|Cr ∩ Ĉ| − 2τ > 2τ

}
.

Proof of Lemma 2.5.5. WLOG, assume ∆v>Σ(r)v 6 v>Σ(r′)v for some v ∈ Rd. The proof
follows by from combining certifiable anti-concentration constraints V4, certifiable anti-concentration
of Cr and Lemma 2.5.8. We will use V to denote V(Ĉ) in the proof below.

Using certifiable anti-concentration of Cr′:

V
O(C2/τ2)

m′

(Cτ)2s
(
m′(Cr′)2 − τ

) (
v>Σ(r′)v>

)s
6

1
n′2

∑
i,j6Cr′

m′im
′
j

〈
x′i − x′j, v

〉2s
6
(
v>Σ(m)v

)s
(2.86)

Similarly, using certifiable anti-concentration constraints V4:

V
O(C2/τ2)

m′

(m′(Cr)2 − τ
) (
v>Σ(m)v>

)s
6
(1
τ 2

)s (
v>Σ(r)v

)s (2.87)

Plugging in the estimates from Lemma 2.5.8 in (2.86) and (2.87), and rearranging yields:

V
O(C2/τ2)

m′
{
τ 2(Cτ)2s

(
v>Σ(r′)v>

)s
6 τ

(
v>Σ(m)v

)s
6
(1
τ 2

)s (
v>Σ(r)v

)s}
.

Dividing throughout by
(
v>Σ(r)v

)s
yields:

V
O(C2/τ2)

{
τ 2(Cτ)4s∆s 6 1

}
.

Using that ∆s > 2 1
τ6 and subtracting out 1 from both sides above yields:

V
O(C2/τ2) {−1 > 0} .

The proof of Lemma 2.5.6 follows via a similar argument as above. We now proceed to the
proof of Lemma 2.5.7.

127

Proof of Lemma 2.5.7. As in the proof of Lemma 2.3.18, for the sake of the analysis, we first
apply the linear transformation yi → Σ(r′)−1/2yi. Let Q = Σ(r)− I .

From an argument similar to Lemma 2.3.18, we can obtain:

V 8
m′

2EX′ (Q− EX′Q)2 + 2ECr(Q− ECrQ)2 + 2ECr′
(Q− ECr′

Q)2

> m′(Cr)2m′(Cr′)2
∥∥∥Σ(r′)−1/2Σ(r)Σ(r′)−1/2 − I

∥∥∥4

F


(2.88)

Reasoning as in Section 2.3.4, and using Lemma 2.3.2:

ECr(Q− ECrQ)2 6 (C − 1)
∥∥∥Σ(r′)−1/2Σ(r)1/2QΣ(r)1/2Σ(r′)−1/2

∥∥∥2

F

6
∥∥∥Σ(r′)−1/2Σ(r)1/2

∥∥∥2

op
‖Q‖2

F .

Similarly, ECr′
(Q− ECrQ)2 6 ‖Q‖2

F .

For the upper bound on EX′ (Q− EX′Q)2, our proof is similar to that of Lemma 2.3.19 but
leverages the argument in the proof of Lemma 2.5.5 to obtain a degree bound independent of κ
(without relying on the uniform polynomial approximator for the threshold):

From our bounded-variance constraints, we have:

A 4
Π,m {

EX′(Q− EX′Q)2 6 C ‖ΠQΠ‖2
F

}
. (2.89)

We will now apply Lemma 2.8.1 in order to bound the RHS above. Towards that, reasoning
as in Lemma 2.5.5, we have:

A
O(C2/τ2)

(v>Σ(X ′)v
)s

6
1

τ 2s+2

(
v>Σ(r)v

)s .
Substituting v → Σ(r′)†/2v yields:

A
O(C2/τ2)

(v>Σ(r′)†/2Σ(X ′)Σ(r′)†/2v
)s

6
1

τ 2s+2

(
v>Σ(r′)†/2Σ(r)Σ(r′)†/2v

)s .

128

Proceeding as in the proof of Lemma 2.3.19, we can now obtain:

A
O(C2/τ2)

{
EX′(Q− EX′Q)2s 6

1
τ 2s+2

∥∥∥Σ(r′)−1/2Σ(r)Σ(r′)−1/2 − I
∥∥∥2

F

}
. (2.90)

Combining (2.88) and (2.90) and the SoS almost triangle inequality (Fact 2.2.8) we obtain:

V
O(C2/τ2)

m′(Cr)2sm′(Cr′)2s
∥∥∥Σ(r′)−1/2Σ(r)Σ(r′)−1/2 − I

∥∥∥4s

F

6 23s 1
τ 2s+2

∥∥∥Σ(r′)−1/2Σ(r)Σ(r′)−1/2 − I
∥∥∥2

F


Using the separation condition with the fact that ∆ > 3

τ6 yields via an argument similar to that
in the proof of Lemma 2.5.5:

V
O(C2/τ2) {−1 > 0} .

2.6 Outlier-Robust Covariance Estimation in Frobenius Dis-
tance

In this section, we give an outlier-robust algorithm for estimating covariances in relative Frobe-
nius distance (i.e. Frobenius distance after putting one of the distribution in isotropic position).

Our stronger error bounds hold for distributions with certifiable hypercontractive degree 2
polynomials. This is a strictly stronger assumption (and thus a smaller class of distributions) than
certifiable subgaussianity considered in [KSS18]. As pointed out in [KSS18] (see discussion in
the last paragraph of page 6 for a simple counter-example), certifiable subgaussianity is provably
insufficient to obtain the stronger relative Frobenius errors guarantees.

Our proof approach is similar to that of [KSS18] - the key difference being that we rely on
certifiable hypercontractivity (instead of the weaker certifiable subgaussianity) and rely on an
appropriate application of the contraction lemma (Lemma 2.8.1).

129

Theorem 64 (Robust Parameter Estimation for Certifiably Hypercontractive and Bounded-Vari-
ance Distributions). Fix an even t ∈ N and ε > 0 small enough so that Ctε1−1/t � 17. There’s

an algorithm that takes input a B-bit rational truncation of an ε-corruption Y of a sample X

of size n > n0 = dO(t)/ε2 from a 2t-certifiably C-hypercontractive distribution with certifiably

C-bounded variance with unknown mean µ∗ and covariance Σ∗ with entries of bit complexity B

and in time (Bn)O(t) outputs an estimate µ̂ and Σ̂ satisfying:

1.
∥∥∥Σ−1/2(µ∗ − µ̂)

∥∥∥
2
6 O(Ct)1/2ε1−1/t,

2. (1− η)Σ∗ � Σ̂ � (1 + η)Σ∗ for η 6 O(Ct)ε1−1/t, and,

3.
∥∥∥Σ−1/2
∗ Σ̂Σ−1/2

∗ − I
∥∥∥
F
6 O

(
Ctε1−1/t

)
.

In particular, by choosing t = O(log(1/ε)) results in the error bounds of Õ(ε) in the inequalities

above.

We consider the following systemA := AY,ε of quadratic equations in scalar-valued variables
w1, . . . , wn and vector-valued variables x′1, . . . , x

′
n, where AY,ε =



∑n
i=1wi = (1− ε) · n

∀i ∈ [n]. w2
i = wi

Π = UU>

Π2 = Σ

∀i ∈ [n]. wi · (yi − x′i) = 0
1
n

∑
i6n

x′i = µ

1
n

∑
i6n

(x′i − µ)(x′i − µ)> = Σ

1
n

∑
i6n

Q(x′i − µ)− 1
n

∑
i6n

Q(x′i − µ)
2t

6 (Ct)2tVar(Q)

1
n

∑
i6n

Q(x′i − µ)− 1
n

∑
i6n

Q(x′i − µ)
2

6 C ‖ΠQΠ‖2
F .



(2.91)

where Var(Q) =
(

1
n

∑
i6n

(
Q(x′i − µ)− 1

n

∑
i6nQ(x′i − µ)

)2
)t

.

7This notation means that we needed Ctε1−1/t to be at most c0 for some absolute constant c0 > 0

130

Algorithm 65 (Parameter Estimation Algorithm).

Input: B-bit truncation of an ε-corrupted sample Y = {y1, . . . , yn} ⊆ Rd of a t-certifiably

hypercontractive distribution D0 overRd.

Output: Estimates µ̂ and Σ̂.

Operation:

1. Find a level-O(t) pseudo-distribution ζ̃ that satisfies AY,ε.

2. Output estimates µ̂ = Ẽ[µ] and Σ̂ = Ẽ[Σ].

Analysis of Algorithm Corollaries 4.6 and 4.7 in [KSS18] show the following low-degree
sum-of-squares proofs of certifiability of mean and covariance under spectral distance. Let Σ̂∗
be the covariance of the uncorrupted samples.

AY,ε O(t)
Σ,u {

(1− η)u>Σ∗u 6 〈u,Σu〉 6 (1 + η)u>Σ∗u
}
, (2.92)

for some η 6 O(Ct)ε1−2/t, and,

AY,ε O(t)
µ,u {

〈u, µ− µ∗〉 6 η 〈u,Σ∗u〉1/2
}
, (2.93)

for some η = O(
√
Ctε1−1/t). The bit complexities of both these sum-of-squares proofs is

poly(Bnt)where B is the bit complexity of the entries of Σ∗.

We will rely on these to show:

Lemma 2.6.1 (Certifying Covariance Closeness in Frobenius Distance). For any t ∈ N,

AY,ε 8t
Σ

∥∥∥Σ̂−1/2
∗ ΣΣ̂−1/2

∗ − I
∥∥∥8t

F
6 η

, (2.94)

where η = (Ct)8tO (ε8t−8) and Σ̂∗ is the covariance of the uncorrupted samples. Further, the bit

complexity of the SoS proof above is poly(Bnt).

We now conclude with proving the parameter proximity lemma:

Proof of Lemma 2.6.1. Let Σ∗ be the covariance of the underlying distribution and Σ̂∗ be the
covariance of the uncorrupted samples.

131

In the following, we apply the the SoS Cauchy-Schwarz inequality (Fact 3.2.20) and guaran-
tee for the mean estimation above (guarantee (2.93)), to obtain:

AY,ε 4t
Q,µ

((µ− µ∗)>Q(µ− µ∗)
)2t

=
〈
(µ− µ∗)(µ− µ∗)>, Q

〉2t

=
〈(

Σ̂−1/2
∗ (µ− µ∗)

) (
Σ̂−1/2
∗ (µ− µ∗)

)>
, Σ̂1/2
∗ QΣ̂1/2

∗

〉2t

6
∥∥∥Σ̂−1/2
∗ (µ− µ∗)

∥∥∥2t

2

∥∥∥Σ1/2
∗ QΣ̂1/2

∗

∥∥∥2t

F

6 (Ct)2tO(ε2t−2)
∥∥∥Σ̂1/2
∗ QΣ̂1/2

∗

∥∥∥2t

F

 .
(2.95)

where the last inequality follows from the mean closeness bound in (2.93). Next, observe

AY,ε 4
Q,µ

((x′i − µ∗)>Q(x′i − µ∗)− (xi − µ∗)>Q(xi − µ∗)
)

=
〈
Q, (x′i − µ∗)(x′i − µ∗)> − (xi − µ∗)(xi − µ∗)>

〉
= (1− wi)

〈
Q, (x′i − µ∗)(x′i − µ∗)> − (xi − µ∗)(xi − µ∗)>

〉
+
〈
Q,wi

(
(x′i − µ∗)(x′i − µ∗)> − (xi − µ∗)(xi − µ∗)>

)〉 .
(2.96)

Let zi be the indicator that xi was not corrupted, i.e. zi(yi − xi) = 0 and observe 1
n

∑
i∈[n] zi =

(1− ε). Then,

AY,ε 4
µ

wi ((x′i − µ∗)(x′i − µ∗)> − (xi − µ∗)(xi − µ∗)>
)

= wi(1− zi)
(
(x′i − µ∗)(x′i − µ∗)> − (xi − µ∗)(xi − µ∗)>

)
+ wizi

(
x′ix
′>
i − xix>i − (x′i − xi)µ> − µ(xi − xi)>

)
= wi(1− zi)

(
(x′i − µ∗)(x′i − µ∗)> − (xi − µ∗)(xi − µ∗)>

) .
(2.97)

132

Subsituting back into Equation (2.96) we can conclude

AY,ε 4
Q,µ

(x′i − µ∗)>Q(x′i − µ∗)− (xi − µ∗)>Q(xi − µ∗)

= (1− wi + wi − wizi)
(
(x′i − µ∗)>Q(x′i − µ∗)− (xi − µ∗)>Q(xi − µ∗)

)
(2.98)

Using that Σ is the covariance of X ′ and Σ̂∗ is the covariance of the uncorrupted samples X ,
along with the SoS almost triangle inequality and the bound in (2.98) we have:

A 4t
µ,w,Q

〈Σ− Σ̂∗, Q
〉2t

=
 1
n

∑
i6n

(
(x′i − µ)>Q(x′i − µ)− (xi − µ∗)>Q(xi − µ∗)

)2t

6 22t

 1
n

∑
i6n

(
(x′i − µ∗)>Q(x′i − µ∗)− (xi − µ∗)>Q(xi − µ∗)

)2t

+ 22t(Ct)2tO(ε2t−2)
∥∥∥Σ1/2
∗ QΣ1/2

∗

∥∥∥2t

F

6 22t

 1
n

∑
i6n

(1− wizi)
(
(x′i − µ∗)>Q(x′i − µ∗)− (xi − µ∗)>Q(xi − µ∗)

)2t

+ 22t(Ct)2tO(ε2t−2)
∥∥∥Σ1/2
∗ QΣ1/2

∗

∥∥∥2t

F

6 24t

 1
n

∑
i6n

(1− wizi)
(
(x′i − µ∗)>Q(x′i − µ∗)− (xi − µ∗)>Q(xi − µ∗)−

〈
Q,Σ− Σ̂∗

〉)2t

+ 24t

 1
n

∑
i6n

(1− wizi)
〈
Q,Σ− Σ̂∗

〉2t

+ 22t(Ct)2tO(ε2t−2)
∥∥∥Σ1/2
∗ QΣ1/2

∗

∥∥∥2t

F

 .
(2.99)

Observe, 1
n

∑
i6n(1−wizi)

〈
Q,Σ− Σ̂∗

〉2t
= ε2t

〈
Q,Σ− Σ̂∗

〉2t
. Plugginng back into (2.99),

and applying the SoS almost triangle inequality again,

133

A 4t
µ,w,Q

(1− (4ε)2t
) 〈

Σ− Σ̂∗, Q
〉2t

6 26t

 1
n

∑
i6n

(1− wizi)
(
(x′i − µ∗)>Q(x′i − µ∗)− 〈Q,Σ〉

)2t

+ (2Ct)2tε2t−2
∥∥∥Σ1/2
∗ QΣ1/2

∗

∥∥∥2t

F
+ 26t

 1
n

∑
i6n

(1− wizi)
(
(xi − µ∗)>Q(xi − µ∗)−

〈
Q, Σ̂∗

〉)2t .
(2.100)

We bound each term above separately. Applying SoS Hölder’s inequality to the first term,
and using that AY,ε {(1− wizi)2 = (1− wizi)}, we obtain

AY,ε 4t
µ,w


 1
n

∑
i6n

(1− wizi)
(
(x′i − µ∗)>Q(x′i − µ∗)− 〈Q,Σ〉

)2t

6

 1
n

∑
i6n

(1− wizi)2t

2t−122t

n

∑
i6n

(
(x′i − µ)>Q(x′i − µ)− 〈Q,Σ〉

)2t


+
 1
n

∑
i6n

(1− wizi)2t

2t−1 (
22t
(
(µ− µ∗)>Q(µ− µ∗)

)2t
)

6 ε2t−122t

 1
n

∑
i6n

(
(x′i − µ)>Q(x′i − µ)− 〈Q,Σ〉

)2t


+ (2Ct)2tO(ε4t−3)
∥∥∥Σ1/2
∗ QΣ1/2

∗

∥∥∥2t

F

 ,

(2.101)

where the last inequality follows from (2.95). Next,

134

AY,ε 4t
µ,w

 1
n

∑
i6n

(
(x′i − µ)>Q(x′i − µ)− 〈Q,Σ〉

)2t

6 (Ct)2t

 1
n

∑
i6n

(x′i − µ)>Q(x′i − µ)− 1
n

∑
i6n

(x′i − µ)>Q(x′i − µ)
2

t

6 (Ct)2t ‖ΠQΠ‖2t
F

 ,
(2.102)

where in the second inenquality we use that A enforces the t-certifiable hypercontractivity of
degree-2 polynomials of X ′ and in the third inequality, we invoked the bounded variance con-
straint. Combining the two equations above and substituting back into (2.101),

AY,ε 4t
µ,w


 1
n

∑
i6n

(1− wizi)
(
(x′i − µ∗)>Q(x′i − µ∗)− 〈Q,Σ〉

)2t

6 ε2t−1(2Ct)2t ‖ΠQΠ‖2t
F + (2Ct)2tε4t−3

∥∥∥Σ1/2
∗ QΣ1/2

∗

∥∥∥2t

F

.
(2.103)

Similarly, we can bound
(

1
n

∑
i6n(1− wizi)(xi − µ∗)>Q(xi − µ∗)−

〈
Q, Σ̂∗

〉)2t
using certi-

fiable hypercontractivity and bounded variance of X (the samples from the true distribution) as
follows:

AY,ε 4t
µ,w,Q


 1
n

∑
i6n

(1− wizi)
(
(xi − µ∗)>Q(xi − µ∗)−

〈
Q, Σ̂∗

〉)2t

6

 1
n

∑
i6n

(1− wizi)
2t−1 1

n

∑
i6n

(
(xi − µ∗)>Q(xi − µ∗)−

〈
Q, Σ̂∗

〉)2t


6 ε2t−1(2Ct)2t
∥∥∥Σ̂1/2
∗ QΣ̂1/2

∗

∥∥∥2t

F

.
(2.104)

135

Plugging (2.103) and (2.104) into (2.100) we get

AY,ε 4t
Σ,Q

〈Σ− Σ̂∗, Q
〉2t

6
ε2t−1(32Ct)2t

1− (4ε)2t

(∥∥∥Σ̂1/2
∗ QΣ̂1/2

∗

∥∥∥2t

F
+ ‖ΠQΠ‖2t

F

)

+ (2Ct)2tε2t−2

1− (4ε)2t

∥∥∥Σ1/2
∗ QΣ1/2

∗

∥∥∥2t

F

.
(2.105)

Next, observe for n > d2, 0.99Σ∗ � Σ̂∗ � 1.01Σ∗, and using the sub-multiplicativity of the
Frobenius norm,

∥∥∥Σ1/2
∗ QΣ1/2

∗
∥∥∥
F
6 2

∥∥∥Σ̂1/2
∗ QΣ̂1/2

∗
∥∥∥
F

. Then, substituting Q = Σ̂−1/2
∗ QΣ̂−1/2

∗ and
using cyclicity of trace,

AY,ε 4t
Σ,Q

〈Σ̂−1/2
∗ ΣΣ̂−1/2

∗ − I,Q
〉2t

6
ε2t−1(32Ct)2t

1− (4ε)2t

(
‖Q‖2t

F +
∥∥∥ΠΣ̂−1/2

∗ QΣ̂−1/2
∗ Π

∥∥∥2t

F

)
+ (8Ct)2tε2t−2

1− (4ε)2t ‖Q‖
2t
F

.
(2.106)

Using the SoS Contraction of Frobenius norm, i.e. Lemma 2.8.1, along with the guarantee in
(2.92), we have,{(

v>Σ−1/2
∗ Π2Σ−1/2

∗ v
)t

6
(
1.01‖v‖2

)t} {∥∥∥ΠΣ̂−1/2
∗ QΣ̂−1/2

∗ Π
∥∥∥2t

F
6 (4t)t ‖Q‖2t

F

}
.

Substituting back into (2.106) and setting Q = Σ̂−1/2
∗ ΣΣ̂−1/2

∗ − I ,

AY,ε 4t
Σ,Q

∥∥∥Σ̂−1/2
∗ ΣΣ̂−1/2

∗ − I,Q
∥∥∥4t

F
6
(
(64Ct)2tε2t−1 + (32Ct)2tε2t−2

) (∥∥∥Σ̂−1/2
∗ ΣΣ̂−1/2

∗ − I
∥∥∥2t

F

).
Applying Lemma 2.8.3 with a =

∥∥∥Σ̂−1/2
∗ ΣΣ̂−1/2

∗ − I
∥∥∥2t

F
,

AY,ε 8t
Σ

∥∥∥Σ−1/2
∗ ΣΣ−1/2

∗ − I
∥∥∥8t

F
6
(
(64Ct)2tε2t−2

)4
 ,

which yields the lemma.

It’s easy to finish the proof of Theorem 64 from here.

Proof of Theorem 64. We prove Theorem 64 here under the additional assumption that Σ∗ �

136

2−poly(d)I . Then, by an argument similar to proof of Theorem 1.2 in [KSS18], Ẽ[Σ] satisfies
the third guarantee in Theorem 64. Let ζ̃ be the degree-O(t) pseudo-distribution output by our
algorithm above. Then, our estimator for the covariance is simply Σ̂ = Eζ̃ [Σ]. From Lemma
2.6.1 it follows that

AY,ε 8t
Σ

∥∥∥Σ̂−1/2
∗ ΣΣ̂−1/2

∗ − I
∥∥∥8t

F
6 η

,
where η = O ((Ct)8tε8t−8). Therefore, for any Q, we have, Eζ̃

[∥∥∥Σ̂−1/2
∗ ΣΣ̂−1/2

∗ − I
∥∥∥8t

F

]
6 η.

Then, using Cauchy-Schwarz for pseudo-distributions we have

∥∥∥∥∥Σ̂−1/2
∗ Ẽ

ζ

[Σ] Σ̂−1/2
∗ − I

∥∥∥∥∥
8t

F

=
∥∥∥∥∥Ẽ
ζ

[
Σ̂−1/2
∗ ΣΣ̂−1/2

∗ − I
]∥∥∥∥∥

8t

F

6 Ẽ
ζ

[∥∥∥Σ̂−1/2
∗ ΣΣ̂−1/2

∗ − I
∥∥∥8t

F

]
6 η.

(2.107)

Taking the 8t-th root,
∥∥∥Σ̂−1/2
∗ Eζ̃ [Σ] Σ̂−1/2

∗ − I
∥∥∥
F
6 O

(
Ctε1−1/t

)
. Recall, by standard conver-

gence of emperical covariance,
(
1−O

(√
d log(d)/n

))
Σ∗ � Σ̂∗ �

(
1 +O

(√
d log(d)/n

))
Σ∗

and since n > d4/ε2,

∥∥∥Σ−1/2
∗ Σ̂∗Σ−1/2

∗ − I
∥∥∥
F
6
√
d
∥∥∥Σ−1/2
∗ Σ̂∗Σ−1/2

∗ − I
∥∥∥

op
6
ε

d
(2.108)

Combining the above, and using triangle inequality,

∥∥∥∥∥Σ−1/2
∗ Ẽ

ζ

[Σ] Σ−1/2
∗ − I

∥∥∥∥∥
F

=
∥∥∥∥∥Σ−1/2
∗

(
Ẽ
ζ

[Σ]− Σ̂∗ + Σ̂∗
)

Σ−1/2
∗ − I

∥∥∥∥∥
F

6

∥∥∥∥∥Σ−1/2
∗

(
Ẽ
ζ

[Σ]− Σ̂∗
)

Σ−1/2
∗

∥∥∥∥∥
F

+
∥∥∥Σ−1/2
∗ Σ̂∗Σ−1/2

∗ − I
∥∥∥
F

=
∥∥∥∥∥Σ−1/2
∗ Σ̂1/2

∗

(
Σ̂−1/2
∗ Ẽ

ζ

[Σ] Σ̂−1/2
∗ − I

)
Σ̂1/2
∗ Σ−1/2

∗

∥∥∥∥∥
F

+
∥∥∥Σ−1/2
∗ Σ̂∗Σ−1/2

∗ − I
∥∥∥
F

6 O
(
Ctε1−1/t

)
+ ε

d
,

which concludes the proof.

137

2.7 Reasonable Distributions

In this section, we recall known results that imply that Gaussian distributions and affine trans-
forms of uniform distribution on the unit sphere are reasonable.

Certifiable Hypercontractivity of Degree 2 Polynomials

Definition 2.7.1 (Certifiable Hypercontractivity). Let D be a distribution on Rd. For an even

h, D is said to have h-certifiably C-hypercontractive degree 2 polynomials if for P - a d × d

matrix-valued indeterminate,

Ex∼D
〈
P, x⊗2

〉h
6 (Ch)h(Ex>Px2)h/2 .

Observe that certifiable hypercontractivity is invariant under linear transformations of D.
This is because for any d × d symmetric matrix A, applying a linear transformation x → A is
equivalent (for the purpose of the inequality above) to conjugating P by the matrix A. Specif-
ically, Ex∼D 〈P, (Ax)⊗2〉 = Ex∼D 〈APA, x⊗2〉. On the other hand, Ex∼D[(Ax)>P (Ax)2] =
Ex∼D[x>APAx]. Combined with certifiable hypercontractivity of degree 2 polynomials of stan-
dard Gaussians [KOTZ14], we obtain:

Fact 2.7.2 (Hypercontractivity of Degree-2 Polynomials of Gaussians). Gaussian distributions

with mean 0 and arbitrary covariance Σ have h-certifiably 1-hypercontractive degree 2 polyno-

mials.

Lemma 2.7.3 (Certifiable Hypercontractivity Under Sampling). Let D be a 1-sub-gaussian, h-

certifiably c-hypercontractive distribution over Rd. Let S be a set of n = Ω((hd)8h) i.i.d. samples

from D. Then, with probability at least 1 − 1/poly(n), the uniform distribution on S has h-

certifiably (2c)-hypercontractive degree 2 polynomials.

Proof. Since D has h-certifiably c-hypercontractive degree 2 polynomials,

2h
P
{
Ex∼D

[〈
P, x⊗2

〉h]
6 (ch)h‖P‖hF

}

Since for any matrices M and N , 〈M,N〉h = 〈M⊗h, N⊗h〉 using the substitution rule,

2h
P
{〈
P⊗h,Ex∼D

[
x⊗2h

]〉
6 (ch)h‖P‖hF

}
(2.109)

138

Let D′ be the uniform distribution over samples from D. Then,

Ex∼D′

[〈
P, x⊗2

〉h]
=
〈
P⊗h,Ex∼D′

[
x⊗2h

]〉

Let M = Ex∼D′
[
x⊗2h

]
− Ex∼D

[
x⊗2h

]
. Therefore, assuming that ‖M‖2 6 (ch)h, using Fact

3.2.19 with the substitution rule, we can conclude

2h
P
{∣∣∣〈P⊗h,M〉∣∣∣ 6 (ch)h‖P‖hF

}
(2.110)

Observe, we can then rewrite (2.109) as follows :

2h
P
{〈
P⊗h,Ex∼D′

[
x⊗2h

]
−M

〉
6 (ch)h‖P‖hF

}
Rearranging and using 2.110, we can conclude

2h
P
{〈
P⊗h,Ex∼D′

[
x⊗2h

]〉
6 2(ch)h‖P‖hF

}
Therefore, it remains to show ‖M‖2 6 (ch)h. Let x(1), x(2), . . . x(n) be n iid samples from D.
Then, observe

Mi1,...,i2h =
[
Ex∼D′x

⊗2h
]
i1,...i2h

−
[
Ex∼Dx

⊗2h
]
i1,...i2h

= 1
n

∑
`∈[n]

(
x

(`)
i1 x

(`)
i2 . . . x

(`)
i2h
− Ex∼D [xi1xi2 . . . xi2h]

)
.

Let Z` =
(
x

(`)
i1 x

(`)
i2 . . . x

(`)
i2h

)
. Then, Mi1,...,i2h is an average of independent random variables

Z̄` = Z` − E[Z`] for ` ∈ [n]. We will estimate moments of
∑
`6n Z̄` in order to order to obtain

upper bounds on the deviation probabilities.

Towards that we observe the following: E
[(

1
n

∑
`∈[n] Z̄`

)2t
]

= 1
n2t
∑
r1,r2,...,r2t E

[∏
j∈[2t] Z̄rj

]
.

If E[∏j∈[2t] Z̄rj] 6= 0, then, each Z̄rj must appear even number of times in the product. Thus, the
number of distinct Z̄rj in the product are at most t. Thus, the number of non-zero terms in the
above sum is at most nt(2t)2t. Next, for any non-zero term in the above sum, using the AM-GM
inequality,

E

 ∏
i∈[2t]

Z̄rj

 6
1

(2t)2tE


∑
i∈[2t]

Z̄rj

2t
 6

1
(2t)

∑
i∈[2t]

E[Z̄2t
rj

] (2.111)

By Jensen’s inequality, (E[Zri])2t 6 E[Z2t
`] and thus E

[
Z̄2t
rj

]
6 22t(E[Z2t

rj
] + (E[Zrj)2t]) 6

139

22t+1E[Z2t
rj

]. Then,

E
[
Z2t
rj

]
= E

[(
x

(rj)
i1 x

(rj)
i2 . . . x

(rj)
i2h

)2t]
6 E


 1

2h
∑
k∈[2h]

(
x

(ri)
ik

)2h
2t


6

1
2h

∑
k∈[2h]

E
[(
x

(ri)
ik

)4ht
]

6 (4ht)2ht

(2.112)

where the first inequality uses the AM-GM inequality, the second uses Jensen’s inequality and
the final inequality uses the 1-subgaussianity of x(rj)

ij . Combining (2.111) and (2.112)

E


 1
n

∑
`∈[n]

Z̄`

2t
 6

1
2tn2t · n

t(2t)2t · (4ht)2ht 6 n−t(2t)2t−1(4ht)2ht

Using Chebyshev’s inequality,

Pr

∣∣∣∣ 1n ∑
`∈[n]

Z̄`

∣∣∣∣ > η

 6
E
[(

1
n

∑
`∈[n] Z̄`

)2t
]

η2t 6
(2t)2t−1(4ht)2ht

η2tnt

Setting t > 2h log d and η = (ch/d2)h yields that whenever n > n0 = Ω
(
d4h

c2h h
9h log2h+2(d)

)
,

|Mi1,i2,...i2h| 6 η with probability at least 1− 1/d4h. By a union bound over the d2h entries of M ,
we have that all entries of M are at most η with probability at least 1− d−2h. We can then easily
bound the operator norm of M by d2h · (ch/d2)h = (ch)h, which completes the proof.

Certifiable Anti-Concentration

Lemma 2.7.4 (Certifiable Anti-Concentration of Gaussians, Theorem 5.5 [BK20a]). Given 0 <
δ 6 1/2, there exists s = O

(
log5(1/δ)

δ2

)
such that the Gaussian distribution and the uniform

distribution on the unit sphere is s-certifiably (C, δ)-anti-concentrated.

Lemma 2.7.5 (Certifiable Anti-Concentration under Sampling, Lemma 5.8 [BK20a]). Let D be

s-certifiably (c, δ)-anti-concentrated Sub-Exponential distribution over Rd. Let S be a set of

n = Ω((sd log(d))s) i.i.d. samples from D. Then, with probability at least 1 − 1/poly(n), the

uniform distribution on S is s-certifiably (2c, δ)-anti-concentrated.

140

Bounded Variance of Degree-2 Polynomials. Recall that we say that a zero mean distri-
bution D with covariance Σ has certifiably C-bounded variance degree 2 polynomials if 2

Q{
Ex∼D(x>Qx− Ex∼Dx

>Qx)2 6 C
∥∥∥Σ1/2QΣ1/2

∥∥∥2

F

}
.

Lemma 2.7.6 (Bounded Variance of Degree 2 Polynomials of 4-wise independent distributions).
LetD be an isotropic, 4-wise independent distribution onRd. Then,D has certifiably 3-bounded

variance degree 2 polynomials. That is,

2
Q
{
ED

(
x>Qx− EDx>Qx

)2
6 3 ‖Q‖2

F

}
.

Proof. By viewing xx> and I ∈ Rd×d as d2 dimensional vectors, and using that Ey∼D(yy> −
I)(yy> − I)> � 3I ⊗ I for any 4-wise independent, isotropic distribution, we have:

2
Q

ED
(
x>Qx− EDx>Qx

)2
= ED

〈
xx> − I,Q

〉2
6
∥∥∥Ex∼D(xx> − I)(xx> − I)>

∥∥∥
2
‖Q‖2

F

6 3 ‖I ⊗ I‖2 ‖Q‖
2
F = 3 ‖Q‖2

F

 . (2.113)

The uniform distribution on
√
d-radius sphere in d dimensions is not 4-wise independent.

However, the above proof only requires that E(y⊗2 − I)(y⊗2 − I)> � CI ⊗ I . For the uniform
distribution on the sphere, notice that i, j, k, `-th entry of this matrix is non-zero iff the indices
are in have two repeated indices and in that case, by negative correlation of the x2

i and x2
j on

the sphere, it holds that Ex2
ix

2
j 6 1. Thus, E(y⊗2 − I)(y⊗2 − I)> � 3I ⊗ I for y uniformly

distribution on the
√
d-radius unit sphere. The above proof thus also yields:

Corollary 2.7.7. Let y be uniform on
√
d-radius sphere in d dimensions. Then, y has certifiably

3-bounded variance degree 2 polynomials.

Lemma 2.7.8 (Linear Invariance). Let x be a random variable with an isotropic distribution D
onRd with certifiably C-bounded variance degree 2 polynomials. Let A ∈ Rd×d be an arbitrary

d×dmatrix. Then, the random variable x′ = Ax also has certifiably C-bounded variance degree

2 polynomials.

Proof. The covariance of x′ is AA> = Σ, say. Let Σ1/2 be the PSD square root of Σ. The
proof follows by noting that x′>Qx′ = (Ax)>Q(Ax) = x>(A>QA)x> and that

∥∥∥A>QA∥∥∥2

F
=

141

tr(A>QAA>QA) = tr(AA>QAA>Q) = tr(ΣQΣQ) = tr(Σ1/2QΣ1/2Σ1/2QΣ1/2) =
∥∥∥Σ1/2QΣ1/2

∥∥∥2

F
.

Lemma 2.7.9 (Bounded Variance Under Sampling). Let D be have degree 2 polynomials with

certifiably C-bounded variance and be 8-certifiably C-subgaussian. Let X be an i.i.d. sample

from D of size n > n0 = O(C4)d16. Then, with probability at least 0.99 over the draw of X , the

uniform distribution on X has degree 2 polynomials with certifiable 2C-bounded variance.

Proof. Using Lemma 2.7.8, we can assume that D is isotropic. Arguing as in the proof of
Lemma 2.7.3, it is enough to upper-bound the spectral norm∥∥∥∥∥ 1

n

∑
i

(x⊗2
i − I)(x⊗2

i − I)> − Ex∼D(x⊗2 − I)(x⊗2 − I)>
∥∥∥∥∥

2

by C (with probability 0.99 over the draw of X). We do this below:

By applying certifiable C-bounded variance property to Q = vv> where ei are standard
basis vectors in Rd, we have that E(〈xi, v〉2 − E 〈xi, v〉2)2 6 C ‖v‖4

2 and thus, E 〈xi, v〉4 6

(1 + C) ‖v‖4
2. By an application of the AM-GM inequality, we know that for every i, j, k, `,

(〈x, ei〉2 〈x, ej〉2 〈x, ek〉2 〈x, e`〉)2 6 〈x, ei〉8 + 〈x, ej〉8 + 〈x, ek〉8 + 〈x, e`〉8. Thus, the variance
of every entry of the matrix Ex⊗4 is bounded above by 4(8C)4 = O(C4). Thus, by Chebyshev’s
inequality, any given entry of 1

n
x⊗4
i − Ex∼Dx

⊗4 is upper-bounded by O(C2)d4/
√
n with proba-

bility at least 1 − 1/(100d4). By a union bound, all entries of this tensor are upper-bounded by
O(C2)d4/

√
n with probability at least 0.99. Thus, the Frobenius norm of this tensor is at most

d8O(C2)/
√
n. Since n > n0 = O(C4)d16, this bound is at most C/2. Thus, we obtain that with

probability at least 0.99,∥∥∥∥∥ 1
n

∑
i

(x⊗2
i − I)(x⊗2

i − I)> − Ex∼D(x⊗2 − I)(x⊗2 − I)>
∥∥∥∥∥

2
6 2

∥∥∥∥∥ 1
n

∑
i

x⊗4
i − Ex∼Dx

⊗4
∥∥∥∥∥
F

6 C

.

The above three lemmas immediately yield that Gaussian distributions, linear transforms of
uniform distribution on unit sphere, discrete product sets such as the Boolean hypercube and any
4-wise independent zero-mean distribution has certifiably C-bounded variance degree 2 polyno-
mials.

142

2.8 Sum-of-Squares Toolkit

In this section, we give low-degree SoS proofs of some inequalities that we use repeatedly in our
arguments.

The following is an SoS version of the following simple matrix analytic inequality: for any
matrices A,B, ‖AB‖2

F 6 ‖A‖2
op ‖B‖

2
F . We give a constant degree SoS proof of this inequality

(with O(1) factor loss) by relying on certifiable hypercontractivity of Gaussians.

Lemma 2.8.1 (Contraction and Frobenius Norms). Let A,B be d × d matrix valued indetermi-

nates. Let β be a scalar-valued indeterminate. Then,{
β
(
v>A>Av

)t
� ∆‖v‖2t

2

} {
β ‖AB‖2t

F 6 ∆tt ‖B‖2t
F

}
,

and {
β
(
v>AA>v

)t
� ∆‖v‖2t

2

} {
β ‖BA‖2t

F 6 ∆tt ‖B‖2t
F

}
,

Proof. We prove the first conclusion. The proof of the second one is similar.

We start by observing that for any matrix valued indeterminateM , 2
M
{
‖M‖2

F = Eg∼N (0,I)
[
‖Mg‖2

2

]}
.

We thus have:

{
β
(
v>A>Av

)t
6 ∆‖v‖2t

2

} β (‖AB‖2
F

)t
= β

(
E

g∼N (0,I)

[
‖ABg‖2

2

])t
6 β E

g∼N (0,I)

[
‖ABg‖t2

]
= E

g∼N (0,I)

[(
(Bg)>

(
βA>A

)
(Bg)

)t]
6 ∆ · E

g∼N (0,I)

[
‖Bg‖2t

2

]
6 tt∆

(
E

g∼N (0,I)

[
‖Bg‖2

2

]t)

= tt∆ ‖B‖2t
F

 .

(2.114)

Here, the first inequality follows by using the SoS Hölder’s inequality, the second one uses the
constraint satisfied by A>A with the substituting v = Bg and finally, the last inequality relies on

143

certifiable hypercontractivity of quadratic forms of Gaussians. This completes the proof.

The following two lemmas allow us to “cancel out” common factors from both sides of an
inequality in low-degree SoS.

Lemma 2.8.2 (Cancellation within SoS, Constant RHS). Let a be an indeterminate. Then,

{
a2t 6 1

}
2t
a
{
a2 6 1

}
.

Proof. Applying the SoS AM-GM inequality (Fact 3.2.22) with f1 = a2, f2 = . . . = ft = 1, we
get:

2t
a
{
a2 6 a2t/t+ 1− 1/t

}
.

Thus, {
a2t 6 1

}
2t
a
{
a2 6 1/t+ 1− 1/t = 1

}
.

Lemma 2.8.3 (Cancellation Within SoS). Let a, C be indeterminates. Then,

{a > 0} ∪
{
at 6 Cat−1

}
2t
a,C {

a2t 6 C2t
}
.

Proof. We first prove the case of t = 2. We have:

2
a,C {

a2 = (a− C/2 + C/2)2 6 2(a− C/2)2 + 2(C/2)2
}
.

And, {
a2 6 Ca

}
2
a,C {

(a− C/2)2 6 C2/4
}
.

Thus, {
a2 6 Ca

}
2
a,C {

a2 6 C2
}
.

Consider now the general case. Iteratively using {at 6 Cat−1} yields:

{a > 0} ∪
{
at 6 Cat−1

}
2t
a,C {

a2t 6 at−2atC2 6 at−3atC3 . . . 6 atCt
}
.

144

Applying the special case of t = 2 above to the indeterminate at now yields:

{a > 0}
{
at 6 Cat−1

}
2t
a,C {

a2t 6 C2t
}
.

2.9 Total Variation vs Parameter Distance for Gaussian Dis-
tributions

Proposition 2.9.1 (Parameter Closeness Implies TV Closeness for Gaussian Base Model). Fix

∆ > 0 and let µ, µ′ and Σ,Σ′ � 0 satisfy:

1. Mean Closeness: for all v ∈ Rd, ‖(µ− µ′) , v‖2
2 6 ∆2v>(Σ + Σ′)v.

2. Spectral Closeness: for all v ∈ Rd 1
∆2v

>Σv 6 v>Σ′v 6 ∆2v>Σ(r′)v.

3. Relative Frobenius Closeness:
∥∥∥Σ†/2Σ′Σ†/2 − I

∥∥∥2

F
6 ∆2 ·

∥∥∥Σ†Σ′∥∥∥2

2
.

Then, dTV(N (µ,Σ),N (µ′,Σ′)) 6 1− exp(−O(∆2 log ∆)).

Proof of Lemma 2.9.1. We will work with the distributions after applying the transformation
x → Σ−1/2x to the associated random variables. Since dTV is invariant under affine transforma-
tions, this is WLOG. The transformation produces distributionsN (µ1, I) andN (Σ−1/2µ′,Σ−1/2Σ′Σ−1/2)
for µ1 = Σ−1/2µ, µ2 = Σ−1/2µ′ and Σ2 = Σ−1/2Σ′Σ−1/2.

We will first bound the Hellinger distance between the two distributions above. Recall that
h = h(N (Σ−1/2µ, I),N (Σ−1/2µ′,Σ−1/2Σ′Σ−1/2)) satisfies:

h(N (µ1, I),N (µ2,Σ2))2 = 1− det(Σ2)1/4

det
(
I+Σ2

2

) 1
2

exp
−1

8(µ1 − µ2)>
(
I + Σ2

2

)−1

(µ1 − µ2)
 .

We will estimate the RHS of the expression above to bound the Hellinger distance.

From the mean closeness condition, we have:

〈µ1 − µ2, v〉 = 〈µ− µ′,Σ−1/2v〉 6
√

log 1/η
√
v>(I + Σ2)v .

145

Plugging in v =
(
I+Σ2

2

)−1
(µ1 − µ2) gives:

〈
µ1 − µ2,

I + Σ2

2

−1
(µ1 − µ2)

〉
6 2/η

√√√√v> (I + Σ2

2

)−1

v ,

or, 〈
µ1 − µ2,

(
I + Σ2

2

)−1

(µ1 − µ2)
〉
6 41/η2 .

And thus,

exp
−1

8(µ1 − µ2)>
(
I + Σ2

2

)−1

(µ1 − µ2)
 > exp

(
−1/2η2

)
.

Thus, we have:

h 6 1− det(Σ2) 1
4

det
(

I+Σ2
2

)1/2 exp
(
−1/2η2

)
.

Let λ1 > λ2 > · · ·λd be eigenvalues of Σ2. From the spectral closeness condition, observe
that each 1

η
> λ1 > · · ·λd > η.

Then,
det(Σ2) 1

4

det
(

I+Σ2
2

)1/2 = Πi6dλ
1/4
i

Πi6d

(
1+λi

2

)1/2 .

Thus,

log(1/(1− h)) 6 1
2 log(1/η) + 1

2
∑
i∈[d]

log
(

1 + λi
2
√
λi

)
. (2.115)

We break the second term in the RHS above based on the magnitude of the eigenvalues λis.
Let’s first bound the contribution to this term coming from eigenvalues λi > 1.5 - let’s call these
the large eigenvalues of Σ2.

Next, observe that the Relative Frobenius Closeness condition gives us that ‖I − Σ2‖2
F 6

(1/η2). Thus,
∑
i∈[d](1−λi)2 = ‖I−Σ2‖2

F 6 (1/η2), the number of large eigenvalues is at most
4/η2. Further, for every large eigenvalue λi, 1 + λi 6 2λi. Thus,

∑
i:λi is large

log
(

1 + λi
2
√
λi

)
6
∑
i∈E

log
(√

λi

)
6

2
η
· log(1/η)

146

where the last step uses that λi 6 1/η.

Let’s now consider all the remaining small eigenvalues that satisfy η 6 λi < 1.5. Then, we
can write λi = 1 + βi such that −(1− η) 6 βi 6 0.5. Then, we have

∑
i:λi61.5

log
(

1 + λi
2

)
+ 1

2 log
(1
λi

)
=
∑
i∈E ′

log
(

1 + βi
2

)
− 1

2 log (1 + βi)

6
∑

i:λi61.5

βi
2 −

βi
2 + β2

i

4

=
∑

i:λi61.5

(1− λi)2

4 6
1

4η2

using the bound
∑
i(1 − λi)2 6 1

η2 in the last inequality. Plugging this estimate back in (2.115)
yields h > 1− exp(−O(1/η2 log(1/η)).

To finish the proof, we observe that dTV(p, q) 6 h(p, q)
√

2− h(p, q) 6 1−exp(−O(1/η2 log(1/η)).

2.10 Typical Samples are Good with High Probability

Proof of Lemma 2.3.2. We begin with the empirical mean condition. For any fixed `, C` con-
tains samples from a 1-Sub-gaussian distributions and thus it follows from Fact 2.2.2 that with
probability at least 1− (1/δ),

〈
µ` − µ̂`,Σ†/2` v

〉2
= v>Σ†/2` (µ` − µ̂`)(µ` − µ̂`)>Σ†/2` v 6

(
kr + log(1/δ)k

n

)
vTv

Since n0 = Ω((k log(rk) + kr)), we can substitute v → Σ1/2
` v to get

〈
µ` − µ̂`,Σ†/2` Σ1/2

` v
〉2

6 1.01vTΣ`v

Observe,
〈
µ` − µ̂`,Σ†/2` Σ1/2

` v
〉

=
〈
Σ†/2` Σ1/2

` (µ` − µ̂`), v
〉

= 〈µ` − µ̂`, v〉, where the last equal-
ity follows from observing that µ` − µ̂` lies in the subspace spanned by Σ`. Union bound over
failure events for all ` ∈ [k] and thus with probability at least 1 − 1/poly(k), for all ` ∈ [k],
〈µ` − µ̂`, v〉2 6 1.01vTΣ`v.

Similarly, using Fact 2.2.3 for i.i.d. samples from a 1-Sub-gaussian distribution, it follows

147

that for a fixed ` ∈ [k], with probability at least 1− 1/d10,

1− c
√
rk log(k)

n

Σ` � Σ̂` �

1 + c

√
rk log(k)

n

Σ`

for fixed constants c. Union bounding over ` ∈ [k], and observing that n0 = Ω(rk log(k)/22s)
with probability at least 1− 1/k8 for all ` ∈ [k],

(
1− 1

22s

)
Σ` � Σ̂` �

(
1 + 1

22s

)
Σ` (2.116)

for any s > 2, which concludes the empirical covariance condition. By definition of a “nice”
distribution, we know that the points in C` are drawn i.i.d. from a s-certifiably (C, δ)-anti-
concentrated distribution denoted by D(µ`,Σ`) and thus for all η,

2s
v

{
E

x,y∼D(µ`,Σ`)

[
q2
η,Σ` (〈x− y, v〉)

]
6 Cη

(
v>Σ`v

)s}

Consider the substitution v → Σ†/2v. Then,

2s
v

{
E

x,y∼D(µ`,Σ`)

[
q2
η,Σ`

(〈
Σ†/2` (x− y), v

〉)]
6 Cη ‖v‖2s

2

}

Since qη,Σ̂ is a degree-s even polynomial, q2
η,Σ̂(z) = ∑

i∈[s] ciz
2i and thus using the substitution

rule,

2s
v

∑
j∈[s]

ci

〈
Ex,y∼D(µ`,Σ`)

(
Σ†/2` (x− y)

)⊗2j
, v⊗2j

〉
6 Cη ‖v‖2s

2

 (2.117)

Let D be the true distribution and D′ be the uniform distribution over n samples from D. We can
rewrite the above expression by adding and subtracting Ex,y∼D′

(
Σ†/2` (x− y)

)⊗2j
as follows:

2s
v

k2

n2

∑
i 6=j∈C`

q2
η,Σ̂(r)

(
xi − xj,Σ†/2v

)
6
∑
j∈[s]

ci

〈
Ex,y∼D

(
Σ†/2` (x− y)

)⊗2j
− Ex,y∼D′

(
Σ†/2` (x− y)

)⊗2j
, v⊗2j

〉

+ Cη ‖v‖2s
2


(2.118)

148

By definition of a reasonable distribution, we know that Σ†/2(x− y) is certifiably hypercontrac-
tive (and thus subgaussian with covariance bounded by identity). Then, using concentration of
polynomials of sub-exponential random variables, for all i1, i2 ∈ [dj],

Prx∼D

∣∣∣∣ E
x,y∼D(µ`,Σ`)

[
((x− y)⊗j)i1((x− y)⊗j)i2

]
− E

x,y∼D(µ`,Σ̂`)

[
((x− y)⊗j)i1((x− y)⊗j)i2

] ∣∣∣∣ > ε


6 exp

−(εn

Ex,y[((x− y)⊗j)i1((x− y)⊗j)i2]2

) 1
2s


Setting ε = Ex,y∼D(µ`,Σ`) [((x− y)⊗j)i1((x− y)⊗j)i2] /22s, and union bounding over ds en-

tries, we can bound error probability by d2s exp
(
−
(

n
(2d)O(s)

) 1
2s
)

. Therefore, setting n = Ω((sd log(d))s)
suffices and substituting v → Σ1/2v, we have with probability 1− 1/poly(d),

2s
v
{
k2

n2

∑
i 6=j∈C`

q2
η,Σ̂(r) (xi − xj, v)

6
(

1 + 1
22s

)s ∑
j∈[s]

ci
〈
Ex,y∼D(µ`,Σ`)(x− y)⊗2j, v⊗2j

〉
+ Cη

(
v>Σ`v

)2s

2

} (2.119)

Applying the definition of certifiable anti-concentration again, and using the spectral closeness
from Eqn (2.116), we can conclude

2s
v

k2

n2

∑
i 6=j∈C`

q2
η,Σ̂(r) (xi − xj, v) 6 10Cη

(
v>Σ̂`v

)2s

2

 (2.120)

A similar proof applies to 4-tuples and yields the second property for anti-concentration.

Since for all ` ∈ [k], D(µ`,Σ`) is also s-certifiably C-hypercontractive,

2s
Q
{
Ex,y∼D(µ`,Σ`)

[
((x− y)>Q(x− y))s

]
6 (Cs)sEx∼D(µ`,Σ`)

[
((x− y)>Q(x− y))2

]s/2}
(2.121)

Substituting Q = Σ†/2QΣ†/2 and observing

(x− y)>Σ†/2QΣ†/2(x− y) =
〈
Σ†/2(x− y)(x− y)>Σ†/2, Q

〉
=
〈(

Σ†/2(x− y)
)⊗2

, Q
〉
,

we have

149

2s
Q
{
Ex,y∼D(µ`,Σ`)

[(〈
(Σ†/2(x− y))⊗2, Q

〉)s]
6 (Cs)sEx∼D(µ`,Σ`)

[
((x− y)>Σ†/2QΣ†/2(x− y))2

]s/2} (2.122)

Observing that Ex,y∼D [(x− y)] = 0, we have

2s
Q {(〈

Ex,y∼D(µ`,Σ`)(Σ†/2(x− y))⊗2s, Q⊗s
〉)

6 (Cs)2s‖Q‖2
F

}
(2.123)

Let D represent the true distribution and D′ represent the uniform distribution over pairs (xi, xj)
sampled from D. Then, adding and subtracting

〈
Ex,y∼D′(Σ†/2(x− y))⊗2s, Q⊗s

〉
, we have

2s
Q

k2

n2

∑
i 6=j∈C`

(
(x− y)>Σ†/2QΣ†/2(x− y)

)s
6 |∆|+ (Cs)2s‖Q‖2

F

 (2.124)

where ∆ =
〈
Ex,y∼D′(Σ†/2(x− y))⊗2s, Q⊗s

〉
−
〈
Ex,y∼D(Σ†/2(x− y))⊗2s, Q⊗s

〉
. Using Lemma

2.7.3, we can bound ∆ by Cs ‖Q‖2s
F , to obtain

2s
Q

k2

n2

∑
i 6=j∈C`

(
(x− y)>Σ†/2QΣ†/2(x− y)

)s
6 (2Cs)2s‖Q‖2

F

 (2.125)

SubstitutingQ→ Σ1/2
` QΣ1/2

` , and observing that Σ1/2
` Σ†/2` (xi−xj) = (xi−xj), we can conclude

2s
Q

k2

n2

∑
i 6=j∈C`

(
(x− y)>Q(x− y)

)s
6 (2Cs)2s‖Σ1/2

` QΣ1/2
` ‖2

F

 (2.126)

A similar argument holds for 4-tuples of samples. The final claim about certifiably bounded
variance property follows by a similar bound on the empirical moments of the distribution along
with Lemma 2.7.9. This concludes the proof.

2.11 Polynomial Approximators for Thresholds

We will use elementary approximation theory to construct the polynomial.

Fact 2.11.1 (Jackson’s Theorem). Let f : [−1, 1] → R be continuous. Let the modulus of

continuity of f be defined as ω(δ) = supx,y∈[−1,1] {|f(x)− f(y)| 6 δ} for every δ > 0. Then,

150

for every b, there’s a degree b polynomial p such that for every x ∈ [−1, 1],

|p(x)− f(x)| 6 6ω(1/b) .

The following lemma gives an “amplifying polynomial” as in [DRST09] and is an easy
consequence of Chernoff bounds.

Fact 2.11.2 (Claim 4.3 in [DRST09]). Let Aq(u) = ∑
j>q/2

(
q
j

) (
1+u

2

)j (1−u
2

)q−j
. Then, Aq is a

degree q polynomial that satisfies:

1. Aq(u) ∈ [1− eq/6, 1] for all u ∈ [3/5, 1],

2. Aq(u) ∈ [0, e−q/6] for all u ∈ [−1,−3/5],

3. Aq(u) ∈ [0, 1] for all u ∈ [−1, 1].

Proof of Lemma 2.3.9. Let thr : [0, 1]→ [0, 1] be any function that is 0 on [0, c], 1 on [2c, 1]

Consider the piecewise linear function f : [0, 1] → [0, 1] such that f(x) = 0 whenever
|x| 6 c, f(x) = 1 for |x| > 2c and f(x) = (x−c)

c
otherwise. Then, f is continuous. Further, the

modulus of continuity, ω(δ) for f is at most 1
cδ

.

Taking q = 25/c and applying Fact 2.11.1 yields a polynomial J(t) of degree at most q such
that:

max
t∈[−1,1]

|J(t)− f(t)| 6 1/4 .

We now "amplify" this polynomial to get the final construction.

Let p(t) = (Ar(8/5J(t)− 4/5))2 for r = 15 log(1/η). Then, the argument of Ar in p(t) lies
in [3/5, 1] whenever t > 2c and in [−1,−3/5] whenever t ∈ [0, c]. Thus, applying Fact 2.11.2
yields that:

sup
t∈[0,c]∪[2c,1]

|p(t)− thr(t)| 6 2e−r/6 6 η .

151

2.12 TV-Close Subgaussian Distributions with Arbitrarily Far
Parameters

We give a simple example of a pair of (one-dimensional) subgaussian distributions that are (1−
η)-close in TV-distance for some η < 1/2 while have an arbitrarily separated variances.

For i = 1, 2, let Di be the distribution on R that outputs 0 with probability η < 1/2 and
a sample from Gaussian N (0, σ2

i) otherwise. Observe that D1,D2 are clearly 2-subgaussian:
EDix2 = (1 − η)σ2

i while for every t, EDix2t 6
(

1
(1−η)

)t
(EDix2)t. Thus, both D1,D2 are

C = 1
(1−η) 6 2-subgaussian. Further, since PrDi [x = 0] > η, it’s immediate that dTV(D1,D2) 6

(1 − η). However, since we can choose σ1, σ2 arbitrary, the variances of D1,D2 are arbitrarily
far.

Observe, however, that both D1,D2 are not anti-concentrated in the construction above. Ob-
serve, further that when η gets close to 1 (instead of 6 1/2), the constant C in Sub-gaussianity
blows-up. Thus, if we fix C before-hand and look at all C-subgaussian distributions, then we can
hope to prove TV-closeness implies parameter closeness when TV distance is small enough but
not when it’s close to 1.

152

Chapter 3

Robustly Learning a Mixture of k
Arbitrary Gaussians

3.1 Introduction

Given a collection of observations and a class of models, the objective of a typical learning
algorithm is to find the model in the class that best fits the data. The classical assumption is
that the input data are i.i.d. samples generated by a statistical model in the given class. This is
a simplifying assumption that is, at best, only approximately valid, as real datasets are typically
exposed to some source of systematic noise. Robust statistics challenges this assumption by
focusing on the design of outlier-robust estimators — algorithms that can tolerate a constant

fraction of corrupted datapoints, independent of the dimension. Despite significant effort over
several decades starting with important early works of Tukey and Huber in the 60s, even for the
most basic high-dimensional estimation tasks, all known computationally efficient estimators
were until fairly recently highly sensitive to outliers.

This state of affairs changed with two independent works from the TCS community [DKK+19,
LRV16], which gave the first computationally efficient and outlier-robust learning algorithms for
a range of “simple” high-dimensional probabilistic models. In particular, these works developed
efficient robust estimators for a single high-dimensional Gaussian distribution with unknown
mean and covariance. Since these initial algorithmic works [DKK+19, LRV16], we have wit-
nessed substantial research progress on algorithmic aspects of robust high-dimensional estima-
tion by several communities of researchers, including TCS, machine learning, and mathematical
statistics. The reader is referred to [DK19] for a recent survey on the topic.

153

One of the main original motivations for the development of algorithmic robust statistics
within the TCS community was the problem of learning high-dimensional Gaussian mixture
models. A Gaussian mixture model (GMM) is a convex combination of Gaussian distributions,
i.e., a distribution on Rd of the form M = ∑k

i=1wiN (µi,Σi), where the weights wi, mean
vectors µi, and covariance matrices Σi are unknown. GMMs are the most extensively studied la-
tent variable model in the statistics and machine learning literatures, starting with the pioneering
work of Karl Pearson in 1894 [Pea94], which introduced the method of moments in this context.

In the absence of outliers, a long line of work initiated by Dasgupta [Das99, AK05, VW04,
AM05, BV08] gave efficient clustering algorithms for GMMs under various separation assump-
tions. Subsequently, efficient learning algorithms were obtained [KMV10, MV10, BS15, HP15]
under minimal information-theoretic conditions. Specifically, Moitra and Valiant [MV10] and
Belkin and Sinha [BS15] designed the first polynomial-time learning algorithms for arbitrary
Gaussian mixtures with any fixed number of components. These works qualitatively charac-
terized the complexity of this fundamental learning problem in the noiseless setting. Alas, all
aforementioned algorithms are very fragile in the presence of corrupted data. Specifically, a
single outlier can completely compromise their performance.

Developing efficient learning algorithms for high-dimensional GMMs in the more realistic
outlier-robust setting — the focus of the current paper — has turned out to be significantly more
challenging. This was both one of the original motivations and the main open problem in the
initial robust statistics works [DKK+19, LRV16]. We note that [DKK+19] developed a robust
density estimation algorithm for mixtures of spherical Gaussians — a very special case of our
problem where the covariance of each component is a multiple of the identity — and highlighted
a number of key technical obstacles that need to be overcome in order to handle the general case.
Since then, a number of works have made algorithmic progress on important special cases of
the general problem. These include faster robust clustering for the spherical case under minimal
separation conditions [HL18, KSS18, DKS18], robust clustering for separated (and potentially
non-spherical) Gaussian mixtures [BK20b, DHKK20], and robustly learning uniform mixtures
of two arbitrary Gaussian components [Kan20].

This progress notwithstanding, the algorithmic task of robustly learning a mixture of a con-
stant number (or even two) arbitrary Gaussians (with arbitrary weights) has remained a central
open problem in this field, as highlighted recently [DVW19].

This discussion motivates the following question, whose resolution is the main result of this
work:

154

Question 2. Is there a poly(d, 1/ε)-time robust GMM learning algorithm, in the presence of an

ε-fraction of outliers, that has a dimension-independent error guarantee, for an arbitrary mixture

of any constant number of arbitrary Gaussians onRd?

3.1.1 Our Results

To formally state our main result, we define the model of robustness we study. We focus on the
following standard data corruption model that generalizes Huber’s contamination model [Hub64].

Definition 3.1.1 (Total Variation Contamination Model). Given a parameter 0 < ε < 1/2 and

a class of distributions F on Rd, the adversary operates as follows: The algorithm specifies the

number of samples n. The adversary knows the true target distribution X ∈ F and selects a

distribution F such that dTV(F,X) 6 ε. Then n i.i.d. samples are drawn from F and are given

as input to the algorithm.

Intuitively, the parameter ε in Definition 3.1.1 quantifies the power of the adversary. The total
variation contamination model is strictly stronger than Huber’s contamination model. Recall that
in Huber’s model [Hub64], the adversary generates samples from a mixture distribution F of the
form F = (1− ε)X + εN , where X is the unknown target distribution and N is an adversarially
chosen noise distribution. That is, in Huber’s model the adversary is only allowed to add outliers.

Remark 66. The strong contamination model [DKK+19] is a strengthening of the total variation
contamination, where an adversary can see the clean samples and then arbitrarily replace an ε-
fraction of these points to obtain an ε-corrupted set of samples. Our robust learning algorithm
succeeds in this strong contamination model, with the additional requirement that we can obtain
two sets of independent ε-corrupted samples from the unknown mixture.

In the context of robustly learning GMMs, we want to design an efficient algorithm with
the following performance: Given a sufficiently large set of samples from a distribution that
is ε-close in total variation distance to an unknown GMM M on Rd, the algorithm outputs a
hypothesis GMM M̂ such that with high probability the total variation distance dTV(M̂,M)
is small. Specifically, we want dTV(M̂,M) to be only a function of ε and independent of the
underlying dimension d.

The main result of this paper is the following:

Theorem 67 (Main Result, See Corollary 3.6.1). There is an algorithm with the following be-

155

havior: Given ε > 0 and a multiset of n = dO(k)poly(log(1/ε)) samples from a distribution F on

Rd such that dTV(F,M) 6 ε, for an unknown target k-GMMM = ∑k
i=1wiN (µi,Σi), the algo-

rithm runs in time poly(n)polyk(1/ε) and outputs a k-GMM hypothesis M̂ = ∑k
i=1 ŵiN (µ̂i, Σ̂i)

such that with high probability we have that dTV(M̂,M) 6 g(ε, k). Here g : R+ × Z+ → R+

is a function such that limε→0 g(ε, k) = 0.

Theorem 67 gives the first polynomial-time robust proper learning algorithm, with dimension-
independent error guarantee, for arbitrary k-GMMs, for any fixed k. This is the first polynomial-
time algorithm for this problem, even for k = 2.

Discussion Before proceeding, we make a few important remarks about Theorem 67.

1. Sample Complexity and Runtime: Our algorithm succeeds whenever the sample size n sat-
isfies n > n0 = dO(k)/poly(ε). The running time of our algorithm is poly(n)polyk(1/ε).
Statistical query lower bounds [DKS17] suggest that dΩ(k) samples are necessary for effi-
ciently learning GMMs, even for approximation to constant accuracy in the simpler setting
without outliers and under the more restrictive clustering setting (where components are
pairwise well-separated in total variation distance). This provides some evidence that the
sample-time tradeoff achieved by Theorem 67 is qualitatively optimal (within absolute
constant factors in the exponent). We note that the algorithm establishing Theorem 67
works in the standard bit-complexity model of computation and its running time is poly-
nomial in the bit-complexity of the input parameters.

In the noiseless case, the first polynomial-time learning algorithm for k-GMMs on Rd

was given in [MV10, BS15]. In particular, the sample complexity and running time of
the [MV10] algorithm is (d/ε)q(k), for some function q(k) = kΩ(k). We observe that
our running time and sample complexity are exponentially better than the guarantees for
the noiseless case in [MV10, BS15]. Moreover, the [MV10, BS15] algorithms are very
sensitive to outliers and an entirely new approach is required to obtain an efficient robust
learning algorithm.

2. Handling Arbitrary Weights: The algorithm of Theorem 67 succeeds without any assump-

tions on the weights of the mixture components. We emphasize that this is an important
feature and not a technicality. Prior work [BK20b, DHKK20, Kan20], as well as the con-
current work [LM21], cannot handle the case of general weights — even for the case of
k = 2 components. In fact, for the special case of uniform weights, we give a simpler
algorithm for robustly learning GMMs (presented in Theorem 78). This algorithm natu-
rally generalizes to give a sample complexity and running time that grows exponentially in

156

1/wmin, where wmin is the minimum weight of any component in the mixture. Handling
the general case (i.e., obtaining a fully polynomial-time algorithm, not incurring an ex-
ponential cost in 1/wmin) requires genuinely new algorithmic ideas and is one of the key
technical innovations in the proof of Theorem 67.

3. Handling Arbitrary Covariances: The algorithm of Theorem 67 does not require assump-
tions on the variances of the component covariances, modulo basic limitations posed by
numerical computation issues. Specifically, our algorithm works even if some of the com-
ponent covariances are rank-deficient (i.e., have directions of 0 variance) with running
time scaling polynomially in the bit-complexity of the unknown component means and
covariances. Such a dependence on the bit complexity of the input parameters is unavoid-
able – there exist1 examples of rank-deficient covariances with irrational entries such that
the total variation distance between the corresponding Gaussian and every Gaussian with
covariance matrix of rational entries is the maximum possible value of one.

4. Error Guarantee: The function g quantifying the final error guarantee of our basic algo-
rithm is g(ε, k) = 1/(log(1/ε))Ck , for some function Ck that goes to 0 when k increases.
Importantly, for any fixed k, the final error guarantee of our algorithm depends only on ε,
tends to 0 as ε → 0 and is independent of the dimension d. In Theorem 68, we show that,
by modifying our algorithm, we can obtain improved error – scaling as a fixed polynomial
in ε. This turns out to be quantitatively close to best possible for any robust proper learning
algorithm.

Our work is most closely related to the recent paper by Kane [Kan20], which gave a polynomial-
time robust learning algorithm for the uniform k = 2 case, i.e., the case of two equal weight

components, and the polynomial time algorithms [BK20b, DHKK20] for the problem under the
(strong) assumption that the component Gaussians are pairwise well-separated in total variation
distance.

Our algorithm builds on the ideas in the works [BK20b, DHKK20] that gave efficient clus-
tering algorithms for any fixed number k of components, under the crucial assumption that the
components have pairwise total variation distance close to 1. In this case, the above works
actually succeed in efficiently clustering the input sample into k groups, such that each group
contains the samples generated from one of the Gaussians, up to some small misclassification
error. In contrast, the main challenge in this work is the information-theoretic impossibility of
clustering in our setting where there are no separation assumptions. As we will explain in the

1For e.g., for unit vector v = (1/
√

3, 1/
√

3, 1/
√

3, 0, 0, . . . , 0) and for every choice of rational covariance Σ,
the total variation distance between N (0, I − vv>) and N (0,Σ) is the maximum possible 1.

157

proceeding discussion, while we draw ideas from Chapter 2, a number of significant conceptual
and technical challenges need to be overcome in the non-clusterable setting.

Improvements to Theorem 67. We now describe refinements of our main theorem.

Improving Error to a Fixed Polynomial in ε. It turns out that the inverse poly-logarithmic
accuracy (in 1/ε) in the final error guarantee of Theorem 67 can be traced to an exhaustive search
subroutine in our novel tensor decomposition subroutine and probability of success of our round-
ing algorithm in our partial clustering routine. Via natural (and conceptually simple) quantitative
improvements to these two ingredients, we obtain an algorithm achieving the qualitatively nearly
best possible error of polyk(ε). Specifically, we show:

Theorem 68 (Robustly Learning k-Mixtures with poly(ε)-error, Informal, see Corollary 85).
There is an algorithm with the following behavior: Given ε > 0 and a multiset of n = dO(k)polyk(1/ε)
samples from a distribution F on Rd such that dTV(F,M) 6 ε, for an unknown target k-

GMM M = ∑k
i=1wiN (µi,Σi), the algorithm runs in time poly(n)polyk(1/ε) and outputs

a k-GMM hypothesis M̂ = ∑k
i=1 ŵiN (µ̂i, Σ̂i) such that with high probability we have that

dTV(M̂,M) 6 O(εck), where ck depends only on k.

Robust Parameter Recovery. Finally, we show that the same algorithm as in Theorems 67
and 85 actually implies that the recovered mixture of Gaussians is close in parameter distance
to the unknown target mixture. Such parameter estimation results are usually stated under the
assumption that every pair of components of the unknown mixture are separated in total variation
distance. In this work, we provide a stronger version of this parameter estimation guarantee.

More specifically, in the theorem below, we prove that whenever the components of the input
mixture can be clustered together into some groups such that all mixtures in a group are close
(and thus, indistinguishable), there exists a similar clustering of the output mixture such that all
parameters (weight, mean, and covariances) of each cluster are close within polyk(ε) in total
variation distance. In particular this means that for each significant component of the input
mixture, there is a component of the output mixture with very close parameters.

We note that [LM21] gave a parameter estimation guarantee (under additional assumptions
on the mixture weights and component variances) whenever every pair of components in the
unknown mixture are f(k)-far in total variation distance, where f can be any function of k,
but the choice of f affects the exponent in the running time and error guarantee of the [LM21]
algorithm.)

158

By strengthening one of the structural results in their argument, we establish the following:

Theorem 69 (Parameter Recovery, See Theorem 3.9.1). Given ε > 0 and a multiset of n =
dO(k)polyk(1/ε) samples from a distribution F onRd such that dTV(F,M) 6 ε, for an unknown

target k-GMMM = ∑k
i=1wiN (µi,Σi), the algorithm runs in time poly(n)polyk(1/ε) and out-

puts a k′-GMM hypothesis M̂ = ∑k′

i=1 ŵiN (µ̂i, Σ̂i) with k′ 6 k such that with high probability

we have that there exists a partition of [k] into k′ + 1 sets R0, R1, . . . , Rk′ such that

1. Let Wi = ∑
j∈Ri wj , i ∈ {0, 1, . . . , k′}. Then, for all i ∈ [k′], we have that

|Wi − ŵi| 6 polyk(ε), and

dTV(N (µj,Σj),N (µ̂i, Σ̂i)) 6 polyk(ε) ∀j ∈ Ri .

2. The total weight of exceptional components in R0 is W0 6polyk(ε).

If we assume additionally that any pair of components in the unknown mixture has total
variation distance at least polyk(ε), then the following result follows directly from Theorem 69.

Corollary 3.1.2. LetM = ∑k
i=1wiN (µi,Σi) be an unknown target k-GMM satisfying the fol-

lowing conditions: (i) dTV(N (µi,Σi),N (µj,Σj)) > εf1(k) for all i 6= j, and (ii) S = {i ∈ [k] :
wi > εf2(k)} is a subset of [k], where f1(k), f2(k) are sufficiently small functions of k. Given

ε > 0 and a multiset of n = dO(k)polyk(1/ε) samples from a distribution F on Rd such that

dTV(F,M) 6 ε, there exists an algorithm that runs in time poly(n)polyk(1/ε) and outputs a

k′-GMM hypothesis M̂ = ∑k′

i=1 ŵiN (µ̂i, Σ̂i) with k′ 6 k such that with high probability there

exists a bijection π : S → [k′] satisfying the following: For all i ∈ S, it holds that

|wi − ŵπ(i)| 6 polyk(ε)

dTV(N (µi,Σi),N (µ̂π(i), Σ̂π(i))) 6 polyk(ε).

We note that both the pairwise separation between the components and the lower bounds on the
weights in Corollary 3.1.2 scale as a fixed polynomial in ε (for fixed k), which is qualitatively
information-theoretically necessary.

159

3.1.2 Organization

The structure of this chapter is as follows: In Section 4.2, we provide relevant background and
technical facts. In Section 3.3, we describe and analyze our new tensor decomposition algorithm.
In Section 3.4, we use a sum-of-squares based approach to partially cluster a mixture. In Section
3.5, we give a spectral separation algorithm to identify thin components. In Section 3.6, we put all
these pieces together to prove Theorem 67. In Section 3.7, we present a refinement of our partial
clustering procedure that improves the probability of success to a constant independent of the
minimum weight of any component in the input mixture. In Section 3.8, we present an efficient
algorithm that replaces an exhaustive search subroutine in the tensor decomposition algorithm
and combines it with the improved partial clustering subroutine to get a polyk(ε)-error guarantee
for robust proper learning of Gaussian mixtures and prove Theorem 68. Finally, in Section 3.9,
we show that our algorithm in fact achieves the stronger parameter estimation guarantees and
prove Theorem 69.

3.2 Preliminaries

Basic Notation. For a vector v, we use ‖v‖2 to denote its Euclidean norm. For an n × m

matrix M , we use ‖M‖op = max‖x‖2=1‖Mx‖2 to denote the operator norm of M and ‖M‖F =√∑
i,jM

2
i,j to denote the Frobenius norm of M . We sometimes use the notation M(i, j) to index

the corresponding entries in M . For an n × n symmetric matrix M , we use � to denote the
PSD/Loewner ordering over eigenvalues of M and tr (M) = ∑

i∈[n] Mi,i to denote the trace of
M . We use UΛU> to denote the eigenvalue decomposition, where U is an n × n matrix with
orthonormal columns and Λ is the n × n diagonal matrix of the eigenvalues. We use M † =
UΛ†U> to denote the Moore-Penrose pseudoinverse, where Λ† inverts the non-zero eigenvalues
of M . If M � 0, we use M †/2 = UΛ†/2U> to denote taking the square-root of the inverted
non-zero eigenvalues.

For d × d matrices A,B, the Kronecker product of A,B, denoted by A ⊗ B, is indexed by
(i, j), (k, `) ∈ [d] × [d] and has entries (A ⊗ B)((i, j), (k, `)) = A(i, k)B(j, `). We will equip
every tensor T with the norm ‖·‖F that simply corresponds to the `2-norm of any flattening of
T to a vector. The notation T (·, ·, x, y) is used to denote collapsing two modes of the tensor by
plugging in x, y. For a positive integer ` and vector v, we also use v⊗` = v ⊗ v . . .⊗ v︸ ︷︷ ︸

`times

.

We use the notationM = ∑
i∈[k] wiN (µi,Σi) to represent a k-mixture of Gaussians. The to-

160

tal variation distance between two probability distributions onRd with densities p, q is defined as
dTV(p, q) = 1

2
∫
Rd |p(x)− q(x)|dx. We also use E [·], Var· and Cov(·) to denote the expectation,

variance and covariance of a random variable.

For a finite dataset X , we will use Z ∈u X to denote that Z is the uniform distribution on
X . We will sometimes use the term mean (resp. covariance) of X to refer to EZ∈uX [Z] (resp.
CovZ∈uX(Z)).

3.2.1 Gaussian Background

The first few facts in this subsection can be found in Kane [Kan20].

Fact 3.2.1. The total variation distance between two Gaussians N (µ1,Σ1) and N (µ2,Σ2) can

be bounded above as follows:

dTV (N (µ1,Σ1),N (µ2,Σ2)) = O
(
(µ1 − µ2)>Σ†1 (µ1 − µ2) + ‖Σ†/21 (Σ2 − Σ1) Σ†/21 ‖F

)
.

Fact 3.2.2 (Theorem 2.4 in [Kan20]). Let D be a distribution onRd×d, where D is supported on

the subset of Rd×d corresponding to the set of symmetric PSD matrices. Suppose that E[D] =
Σ and that for any symmetric matrix A we have that Vartr(AX) = O

(
σ2‖Σ1/2AΣ1/2‖2

F

)
.

Then, for ε � σ−2, there exists a polynomial-time algorithm that given sample access to an ε-

corrupted set of samples from D returns a matrix Σ̂ such that with high probability ‖Σ−1/2(Σ−
Σ̂)Σ−1/2‖F = O(σ

√
ε).

Fact 3.2.3 (Proposition 2.5 in [Kan20]). Let G ∼ N (µ,Σ) be a Gaussian inRd. Then, we have

that

E[G⊗m] (i1, . . . , im) =
∑

Partitions P of [m]
into sets of size 1 and 2

⊗
{a,b}∈P

Σ (ia, ib)
⊗
{c}∈P

µ (ic) .

We will work with the coefficient tensors of d-dimensional Hermite polynomials:

Definition 3.2.4 (Hermite Tensors). Define the degree-m Hermite polynomial tensor as

hm(x) :=
∑

Partitions P of [m]
into sets of size 1 and 2

⊗
{a,b}∈P

−I (ia, ib)
⊗
{c}∈P

x (ic) .

We will use the following fact that relates Hermite moments to the raw moments of any

161

distribution.

Fact 3.2.5 (Hermite vs Raw Moments). For any real-valued random variable u, and m ∈
N, maxi6m |Eui − Ez∼N (0,1)z

i| 6 2O(m) maxi6m |Ehm(u)|. Similarly, maxi6m |Ehm(u)| 6
2O(m) maxi6m |Eui − Ez∼N (0,1)z

i|.

Fact 3.2.6 (Lemma 2.7 in [Kan20]). If G ∼ N (µ, I + Σ), then we have that

E[hm(G)] =
∑

Partitions P of [m]
into sets of size 1 and 2

⊗
{a,b}∈P

Σ (ia, ib)
⊗
{c}∈P

µ (ic) .

Fact 3.2.7 (Lemma 2.8 in [Kan20]). If G ∼ N (µ, I + Σ), then E[hm(G)⊗ hm(G)] is equal to

∑
Partitions P of [2m]

into sets of size 1 and 2

⊗
{a,b}∈P

a,b in same half of [2m]

Σ (ia, ib)
⊗
{a,b}∈P

a,b in different halves of [2m]

(I + Σ) (ia, ib)
⊗
{c}∈P

µ (ic) .

Lemma 3.2.8 (Slight Strengthening of Lemma 5.2 in [Kan20]). For G ∼ N (µ,Σ), the covari-

ance matrix of hm(G) satisfies:

‖Cov(hm(G))‖op 6 ‖E [hm(G)⊗ hm(G)]‖op = O (m(1 + ‖Σ‖F + ‖µ‖2))2m .

This follows from the proof of Lemma 5.2 in [Kan20] by noting that the number of terms in
the sum is at most 2m times the number of partitions of [2m] into sets of size 1 and 2, which is at
most O(m)2m.

Next, we use upper and lower bounds on low-degree polynomials of Gaussian random vari-
ables. We defer the proof of the subsequent Lemma to Appendix 3.10.

Lemma 3.2.9 (Concentration of low-degree polynomials). Let T be a d-dimensional, degree-4
tensor such that ‖T‖F 6 ∆ for some ∆ > 0 and let x, y ∼ N (0, I). Then, with probability at

least 1− 1/poly(d), the following holds:

‖T (·, ·, x, y)‖2
F 6 O

(
log(d)∆2

)
.

Note that for any matrix M , 〈M,x⊗ y〉, where x, y ∼ N (0, I), is a degree-2 polynomial in
Gaussian random variables. As a result, we have the following anti-concentration inequality.

Lemma 3.2.10 (Anti-concentration of bi-linear forms, [CW01]). Let M be a d × d matrix and

162

let x, y ∼ N (0, I). Then, for any ζ ∈ (0, 1), the following holds:

Pr
[
〈M,x⊗ y〉2 6 ζ E

[
〈M,x⊗ y〉2

]]
6 O

(√
ζ
)
.

3.2.2 Sum-of-Squares Proofs and Pseudo-distributions

We refer the reader to the monograph [FKP+19] and the lecture notes [Bar] for a detailed expo-
sition of the sum-of-squares method and its usage in average-case algorithm design.

Let x = (x1, x2, . . . , xn) be a tuple of n indeterminates and letR[x] be the set of polynomials
with real coefficients and indeterminates x1, . . . , xn. We say that a polynomial p ∈ R[x] is a
sum-of-squares (sos) if there exist polynomials q1, . . . , qr such that p = q2

1 + · · ·+ q2
r .

Pseudo-distributions

Pseudo-distributions are generalizations of probability distributions. We can represent a dis-
crete (i.e., finitely supported) probability distribution over Rn by its probability mass function
D : Rn → R such that D > 0 and

∑
x∈supp(D) D(x) = 1. Similarly, we can describe a pseudo-

distribution by its mass function by relaxing the constraint D > 0 to passing certain low-degree
non-negativity tests.

Concretely, a level-` pseudo-distribution is a finitely-supported function D : Rn → R such
that

∑
xD(x) = 1 and

∑
xD(x)f(x)2 > 0 for every polynomial f of degree at most `/2. (Here,

the summations are over the support ofD.) A straightforward polynomial-interpolation argument
shows that every level-∞-pseudo distribution satisfies D > 0 and is thus an actual probability
distribution. We define the pseudo-expectation of a function f on Rn with respect to a pseudo-
distribution D, denoted ẼD(x) f(x), as

ẼD(x) f(x) =
∑
x

D(x)f(x) . (3.1)

The degree-` moment tensor of a pseudo-distribution D is the tensor ẼD(x)(1, x1, x2, . . . , xn)⊗`.
In particular, the moment tensor has an entry corresponding to the pseudo-expectation of all
monomials of degree at most ` in x. The set of all degree-` moment tensors of probability
distribution is a convex set. Similarly, the set of all degree-` moment tensors of degree-d pseudo-
distributions is also convex. Unlike moments of distributions, there is an efficient separation
oracle for moment tensors of pseudo-distributions.

163

Fact 3.2.11 ([Sho87, Nes00, Las01, Par00]). fact]fact:sos-separation-efficient For any n, ` ∈ N,

the following set has an nO(`)-time weak separation oracle (in the sense of [GLS81]):

{
ẼD(x)(1, x1, x2, . . . , xn)⊗d | degree-d pseudo-distribution D overRn

}
. (3.2)

This fact, together with the equivalence of weak separation and optimization [GLS81], allows
us to efficiently optimize over pseudo-distributions (approximately) — this algorithm is referred
to as the sum-of-squares algorithm. The level-` sum-of-squares algorithm optimizes over the
space of all level-` pseudo-distributions that satisfy a given set of polynomial constraints (defined
below).

Definition 3.2.12 (Constrained pseudo-distributions). Let D be a level-` pseudo-distribution

over Rn. Let A = {f1 > 0, f2 > 0, . . . , fm > 0} be a system of m polynomial inequality

constraints. We say that D satisfies the system of constraints A at degree r, denoted D r A, if

for every S ⊆ [m] and every sum-of-squares polynomial h with deg h + ∑
i∈S max {deg fi, r},

we have that ẼD h ·
∏
i∈S fi > 0.

We write D A (without specifying the degree) if D 0 A holds. Furthermore, we say

that D r A holds approximately if the above inequalities are satisfied up to an error of 2−n` ·
‖h‖ ·∏i∈S‖fi‖, where ‖·‖ denotes the Euclidean norm2 of the coefficients of a polynomial in the

monomial basis.

We remark that if D is an actual (discrete) probability distribution, then we have that D A
if and only if D is supported on solutions to the constraints A. We say that a system A of
polynomial constraints is explicitly bounded if it contains a constraint of the form {‖x‖2 6M}.
The following fact is a consequence of [GLS81]:

Fact 3.2.13 (Efficient Optimization over Pseudo-distributions). There exists an (n + m)O(`)-

time algorithm that, given any explicitly bounded and satisfiable system3 A of m polynomial

constraints in n variables, outputs a level-` pseudo-distribution that satisfies A approximately.

Basic Facts about Pseudo-Distributions. We will use the following Cauchy-Schwarz inequal-
ity for pseudo-distributions:

Fact 3.2.14 (Cauchy-Schwarz for Pseudo-distributions). Let f, g be polynomials of degree at

2The choice of norm is not important here because the factor 2−n`

swamps the effects of choosing another norm.
3Here, we assume that the bit complexity of the constraints in A is (n+m)O(1).

164

most d in indeterminate x ∈ Rd. Then, for any degree-d pseudo-distribution ζ̃ , we have that

Ẽζ̃ [fg] 6
√
Ẽζ̃ [f 2]

√
Ẽζ̃ [g2].

Fact 3.2.15 (Hölder’s Inequality for Pseudo-Distributions). Let f, g be polynomials of degree at

most d in indeterminate x ∈ Rd. Fix t ∈ N. Then, for any degree-dt pseudo-distribution ζ̃ , we

have that Ẽζ̃ [f t−1g] 6
(
Ẽζ̃ [f t]

) t−1
t
(
Ẽζ̃ [gt]

)1/t
.

Corollary 3.2.16 (Comparison of Norms). Let ζ̃ be a degree-t2 pseudo-distribution over a scalar

indeterminate x. Then, we have that Ẽ[xt]1/t > Ẽ[xt′]1/t′ for every t′ 6 t.

Sum-of-squares proofs

Let f1, f2, . . . , fr and g be multivariate polynomials in x. A sum-of-squares proof that the con-
straints {f1 > 0, . . . , fm > 0} imply the constraint {g > 0} consists of polynomials (pS)S⊆[m]

such that
g =

∑
S⊆[m]

pS · Πi∈Sfi . (3.3)

We say that this proof has degree ` if for every set S ⊆ [m] the polynomial pSΠi∈Sfi has degree
at most `. If there is a degree ` SoS proof that {fi > 0 | i 6 r} implies {g > 0}, we write:

{fi > 0 | i 6 r} ` {g > 0} . (3.4)

For all polynomials f, g : Rn → R and for all functions F : Rn → Rm, G : Rn → Rk,
H : Rp → Rn such that each of the coordinates of the outputs are polynomials of the inputs,
we have the following inference rules.

The first one derives new inequalities by addition or multiplication:

A ` {f > 0, g > 0}
A ` {f + g > 0}

,
A ` {f > 0},A

`′
{g > 0}

A
`+`′ {f · g > 0}

. (3.5)

The next one derives new inequalities by transitivity:

A ` B,B `′
C

A
`·`′ C

. (3.6)

165

Finally, the last rule derives new inequalities via substitution:

{F > 0} ` {G > 0}
{F (H) > 0}

`·deg(H) {G(H) > 0}
. (substitution)

Low-degree sum-of-squares proofs are sound and complete if we take low-level pseudo-distributions
as models. Concretely, sum-of-squares proofs allow us to deduce properties of pseudo-distributions
that satisfy some constraints.

Fact 3.2.17 (Soundness). If D r A for a level-` pseudo-distribution D and there exists a sum-

of-squares proof A
r′
B, then D

r·r′+r′
B.

If the pseudo-distribution D satisfies A only approximately, soundness continues to hold
if we require an upper bound on the bit-complexity of the sum-of-squares A

r′
B (i.e., the

number of bits required to write down the proof). In our applications, the bit complexity of all
sum-of-squares proofs will be nO(`) (assuming that all numbers in the input have bit complexity
nO(1)). This bound suffices in order to argue about pseudo-distributions that satisfy polynomial
constraints approximately.

The following fact shows that every property of low-level pseudo-distributions can be derived
by low-degree sum-of-squares proofs.

Fact 3.2.18 (Completeness). Suppose that d > r′ > r and A is a collection of polynomial

constraints with degree at most r, and A {∑n
i=1 x

2
i 6 B} for some finite B. Let {g > 0} be a

polynomial constraint. If every degree-d pseudo-distribution that satisfies D r A also satisfies

D
r′
{g > 0}, then for every ε > 0, there is a sum-of-squares proof A d {g > −ε}.

Basic Sum-of-Squares Proofs. We will require the following basic SoS proofs.

Fact 3.2.19 (Operator norm Bound). Let A be a symmetric d× d matrix and v be a vector in Rd.

Then, we have that

2
v
{
v>Av 6 ‖A‖2‖v‖2

2

}
.

Fact 3.2.20 (SoS Hölder’s Inequality). Let fi, gi, for 1 6 i 6 s, be scalar-valued indeterminates.

Let p be an even positive integer. Then,

p2
f,g


(

1
s

s∑
i=1

fig
p−1
i

)p
6

(
1
s

s∑
i=1

fpi

)(
1
s

s∑
i=1

gpi

)p−1
 .

166

Observe that using p = 2 above yields the SoS Cauchy-Schwarz inequality.

Fact 3.2.21 (SoS Almost Triangle Inequality). Let f1, f2, . . . , fr be indeterminates. Then, we

have that

2t
f1,f2,...,fr


∑
i6r

fi

2t

6 r2t−1
(

r∑
i=1

f 2t
i

) .

Fact 3.2.22 (SoS AM-GM Inequality, see Appendix A of [BKS15]). Let f1, f2, . . . , fm be inde-

terminates. Then, we have that

m
f1,f2,...,fm

{(
1
m

n∑
i=1

fi

)m
> Πi6mfi

}
.

We defer the proofs of the two subsequent lemmas to Appendix 3.10.

Lemma 3.2.23 (Spectral SoS Proofs). Let A be a d× d matrix. Then for d-dimensional vector-

valued indeterminate v, we have:

2
v
{
v>Av 6 ‖A‖2‖v‖2

2

}
.

Fact 3.2.24 (Cancellation within SoS, Lemma 9.2 [BK20b]). Let a, C be scalar-valued indeter-

minates. Then,

{a > 0} ∪
{
at 6 Cat−1

}
2t
a,C {

a2t 6 C2t
}
.

Lemma 3.2.25 (Frobenius Norms of Products of Matrices). Let B be a d × d matrix valued

indeterminate for some d ∈ N. Then, for any 0 � A � I ,

2
B
{
‖AB‖2

F 6 ‖B‖2
F

}
,

and,

2
B
{
‖BA‖2

F 6 ‖B‖2
F

}
,

3.2.3 Analytic Properties of Gaussian Distributions

The following definitions and results describe the analytic properties of Gaussian distributoins
that we will use. We also state the guarantees of known robust estimation algorithms for estimat-

167

ing the mean, covariance and moment tensors of Gaussian mixtures here.

Certifiable Subgaussianity. We will make essential use of the following definition.

Definition 3.2.26 (Certifiable Subgaussianity (Definition 5.1 in [KS17])). For t ∈ N and an

absolute constant C > 0, a distribution D on Rd is said to be t-certifiably C-subgaussian if for

every even t′ 6 t, we have that

t′
v
{
E
D

[
〈x, v〉t

′]
6 (Ct′)t′/2

(
E
D

[
〈x, v〉2

]t′/2)}
.

Fact 3.2.27 (Mixtures of Certifiably Subgaussian Distributions, Analogous to Lemma 5.4 in [KS17]).
Let D1,D2, . . . ,Dq be t-certifiably C-subgaussian distributions on Rd. Let p1, p2, . . . , pq be

non-negative weights such that
∑
i pi = 1 and p = mini6q pi. Then, the mixture

∑
i piDi is

t-certifiably C/p-subgaussian.

Certifiable Anti-Concentration. The first is certifiable anti-concentration — an SoS formu-
lation of classical anti-concentration inequalities — that was introduced in [KKK19, RY20a].

In order to formulate certifiable anti-concentration, we start with a univariate even polyno-
mial p that serves as a uniform approximation to the delta function at 0 in an interval around 0.
Such polynomials are constructed in [KKK19, RY20a]. Let qδ,Σ(x, v) be a multivariate (in v)
polynomial defined by qδ,Σ(x, v) =

(
v>Σv

)2s
pδ,Σ

(
〈x,v〉√
v>Σv

)
. Since pδ,Σ is an even polynomial,

qδ,Σ is a polynomial in v.

Definition 3.2.28 (Certifiable Anti-Concentration). A mean-0 distribution D with covariance Σ
is 2s-certifiably (δ, Cδ)-anti-concentrated if for qδ,Σ(x, v) defined above, there exists a degree-2s
sum-of-squares proof of the following two unconstrained polynomial inequalities in indetermi-

nate v:{
〈x, v〉2s + δ2sqδ,Σ(x, v)2 > δ2s

(
v>Σv

)2s
}

,
{

E
x∼D

[
qδ,Σ(x, v)2

]
6 Cδ

(
v>Σv

)2s
}
.

An isotropic subsetX ⊆ Rd is 2s-certifiably (δ, Cδ)-anti-concentrated if the uniform distribution

on X is 2s-certifiably (δ, Cδ)-anti-concentrated.

Remark 70. The function s(δ) can be taken to be O(1
δ2) for standard Gaussian distribution and

the uniform distribution on the unit sphere (see [KKK19] and [BK20a]).

168

Certifiable Hypercontractivity. Next, we define certifiable hypercontractivity of degree-2
polynomials that formulates (within SoS) the fact that higher moments of degree-2 polynomi-
als of distributions (such as Gaussians) can be bounded in terms of appropriate powers of their
2nd moment.

Definition 3.2.29 (Certifiable Hypercontractivity). An isotropic distribution D on Rd is said to

be h-certifiably C-hypercontractive if there is a degree-h sum-of-squares proof of the following

unconstrained polynomial inequality in d× d matrix-valued indeterminate Q:

E
x∼D

[(
x>Qx

)h]
6 (Ch)h

(
E
x∼D

[(
x>Qx

)2
])h/2

.

A set of points X ⊆ Rd is said to be C-certifiably hypercontractive if the uniform distribution on

X is h-certifiably C-hypercontractive.

Hypercontractivity is an important notion in high-dimensional probability and analysis on
product spaces [O’D14]. Kauers, O’Donnell, Tan and Zhou [KOTZ14] showed certifiable hyper-
contractivity of Gaussians and more generally product distributions with subgaussian marginals.
Certifiable hypercontractivity strictly generalizes the better known certifiable subgaussianity

property (studied first in [KS17]) that controls higher moments of linear polynomials.

Observe that the definition above is affine invariant. In particular, we immediately obtain:

Fact 3.2.30. Given t ∈ N, if a random variable x on Rd has t-certifiable C-hypercontractive

degree-2 polynomials, then so does Ax for any A ∈ Rd×d.

As observed in [KS17], the Gaussian distribution is t-certifiably 1-subgaussian and t-certifiable
1-hypercontractive for every t. Next, we establish certifiable hypercontractivity for mixtures of
Gaussians. We defer the proofs to Appendix 3.10.

Lemma 3.2.31 (Shifts Cannot Decrease Variance). Let D be a distribution onRd, Q be a d× d
matrix-valued indeterminate, and C be a scalar-valued indeterminate. Then, we have that

2
Q,C

{
E
x∼D

[(
Q(x)− E

x∼D
[Q(x)]

)2
]
6 E

x∼D

[
(Q(x)− C)2

]}
.

Lemma 3.2.32 (Shifts of Certifiably Hypercontractive Distributions). Let x be a mean-0 random

variable with distribution D on Rd with t-certifiably C-hypercontractive degree-2 polynomials.

Then, for any fixed constant vector c ∈ Rd, the random variable x + c also has t-certifiable

169

4C-hypercontractive degree-2 polynomials.

Lemma 3.2.33 (Mixtures of Certifiably Hypercontractive Distributions). Let D1,D2, . . . ,Dk
have t-certifiable C-hypercontractive degree-2 polynomials on Rd, for some fixed constant C.

Then, any mixture D = ∑
iwiDi also has t-certifiably (C/α)-hypercontractive degree-2 polyno-

mials for α = mini6k,wi>0wi.

Corollary 3.2.34 (Certifiable Hypercontractivity of Mixtures of k Gaussians). Let M be a k-

mixture of Gaussians
∑
iwiN (µi,Σi) with weights wi > α for every i ∈ [k]. Then, for all t ∈ N,

D has t-certifiably 4/α-hypercontractive degree-2 polynomials.

We will use the following robust mean estimation algorithm for bounded covariance distri-
butions [DKK+19]:

Fact 3.2.35 (Robust Mean Estimation for Bounded Covariance Distributions). There is a poly(n)
time algorithm that takes input an ε-corruption Y of a collection of n pointsX ⊆ Rd, and outputs

an estimate µ̂ satisfying ‖Ex∼uXx− µ̂‖2 6 O(
√
ε)‖Ex∼uX

[
(x− Ex∼uXx)(x− Ex∼uXx)>

]
‖2.

We will use the following robust covariance estimation algorithm from [KS17]:

Fact 3.2.36 (Robust Covariance Estimation, [KS17]). For every C > 0, ε > 0 and even k ∈ N
such that Ckε1−2/k 6 c for some small enough absolute constant c, there exists a polynomial-

time algorithm that given an (corrupted) sample S outputs an estimate of the covariance Σ̂ ∈
Rd×d with the following guarantee: there exists n0 > (C + d)O(k)/ε such that if S is an ε-

corrupted sample with size |S| > n0 of a k-certifiably C-subgaussian distribution D over Rd

with mean µ ∈ Rd and covariance Σ ∈ Rd×d, then with high probability:

(1− δ)Σ � Σ̂ � (1 + δ)Σ

for δ 6 O(Ck)ε1−2/k.

We will also require the following robust estimation algorithm with Frobenius distance guar-
antees proven for certifiably hypercontractive distributions in [BK20b]. Since we obtain esti-
mates to the true covariance in Lowner ordering, we can obtain the subspace spanned by the
inliers exactly, project on to this subspace and apply Theorem 7.1 in [BK20b].

Fact 3.2.37 (Robust Mean and Covariance Estimation for Certifiably Hypercontractive Distribu-

170

tions, Theorem 7.1 in [BK20b]). Given t ∈ N, and ε > 0 sufficiently small so thatCtε1−4/t � 14,

for some absolute constantC > 0. Then, there is an algorithm that takes input Y , an ε-corruption

of a sample X of size n with mean µ∗, covariance Σ∗, and 2t-certifiably C-hypercontractive

degree-2 polynomials, runs in time nO(t), and outputs an estimate µ̂ and Σ̂ satisfying:

1. ‖Σ†/2∗ (µ∗ − µ̂)‖2 6 O(Ct)1/2ε1−1/t,

2. (1− η)Σ∗ � Σ̂ � (1 + η)Σ∗ for η 6 O(Ck)ε1−2/t, and,

3. ‖Σ†/2∗
(
Σ̂− Σ∗

)
Σ†/2∗ ‖F 6 (C ′t)O(ε1−1/t),

where C ′ = max {C,B} for the smallest possible B > 0 such that for d × d-matrix-valued

indeterminate Q, 2
Q
{
ED

[(
x>Qx− EDx>Qx

)2
]
6 B‖Σ1/2

∗ QΣ1/2
∗ ‖2

F

}
.5

The last line in the above fact asserts a bound (along with a degree 2 SoS proof) on the vari-
ance of degree 2 polynomials in terms of the Frobenius norm of its coefficient matrix. In the
next few claims, we verify this property via elementary arguments for the two classes of distribu-
tions relevant to this paper. We note that whenever a distribution satisfies the bounded variance
property (without an SoS proof), it also satisfies the property via a degree 2 SoS proof using
Lemma 3.2.23. Thus, asking for an SoS proof of degree 2 in this context poses no additional
restrictions on the distribution. Nevertheless, we provide explicit and direct SoS proofs in the
following.

We first note that this property of having certifiable bounded variance is closed under linear
transformations.

Lemma 3.2.38 (Linear Transformations of Certifiably Bounded-Variance Distributions). For d ∈
N, let x be a random variable with distribution D on Rd such that for d × d matrix-valued

indeterminate Q, 2
Q {

Ex∼D(x>Qx− EDx>Qx)2 6 ‖Σ1/2QΣ1/2‖2
F

}
. Let A be an arbitrary

d×d matrix and let x′ = Ax be the random variable with covariance Σ′ = AA>. Then, we have

that

2
Q {

Ex′∼D′(x′>Qx′ − ED′x′>Qx′)2 6 ‖Σ′1/2QΣ′1/2‖2
F

}
.

4This notation means that we needed Ctε1−2/t to be at most c0 for some absolute constant c0 > 0.
5The first two guarantees here hold for the larger class of certifiably subgaussian distributions and were proven

in [KS17] (see Theorem 1.2). Gaussian distribution (with arbitrary mean and covariance) are t-certifiably 1-
subgaussian for all t and their mixtures (similar to Lemma 3.2.33 and explicitly proven in Lemma 5.4 of [KS17])
are t-certifiably O(1/α)-subgaussian where α is the minimum mixing weight.

171

Lemma 3.2.39 (Variance of Degree-2 Polynomials of Standard Gaussians). We have that

2
Q
{
EN (0,I)

(
x>Qx− EN (0,I)x

>Qx
)2

6 3‖Q‖2
F

}
.

Remark 71. As is easy to verify, the same proof more generally holds for any distribution that
has the same first four moments as the zero-mean Gaussian distribution.

As an immediate corollary of the previous two lemmas, we have:

Corollary 3.2.40 (Variance of Degree-2 Polynomials of Zero-Mean, Arbitrary Covariance Gaus-
sians). For any 0 � Σ, we have that

2
Q
{
EN (0,Σ)

(
x>Qx− EN (0,Σ)x

>Qx
)2

6 3‖Σ1/2QΣ1/2‖2
F

}
.

We next prove that the same property holds for mixtures of Gaussians satisfying certain
conditions.

Lemma 3.2.41 (Variance of Degree-2 Polynomials of Mixtures). Let M = ∑
iwiDi be a k-

mixture of distributions D1,D2, . . . ,Dk with means µi and covariances Σi. Let µ = ∑
iwiµi be

the mean ofM. Suppose that each of D1,D2, . . . ,Dk have certifiably C-bounded-variance i.e.

for Q: a symmetric d× d matrix-valued indeterminate.

2
Q {

Ex′∼Di(x′
>
Qx′ − EDix′

>
Qx′)2 6 C‖Σ′1/2QΣ′1/2‖2

F

}
.

Further, suppose that for some H > 1, ‖µi − µ‖2
2, ‖Σi − I‖F 6 H for every 1 6 i 6 k. Then,

we have that

2
Q
{

E
x∼M

[(
x>Qx− E

x∼M

[
x>Qx

])2
]
6 100CH2‖Q‖2

F

}
.

As an immediate corollary of Lemma 3.2.38 and Lemma 3.2.41, we obtain:

Lemma 3.2.42 (Variance of Degree-2 Polynomials of Mixtures of Gaussians). LetM = ∑
iwiN (µi,Σi)

be a k-mixture of Gaussians with wi > α, mean µ = ∑
iwiµi and covariance Σ = ∑

iwi((µi −
µ)(µi−µ)>+Σi). Suppose that for someH > 1, ‖Σ†/2(Σi−Σ)Σ†/2‖F 6 H for every 1 6 i 6 k.

Let Q be a symmetric d× d matrix-valued indeterminate. Then for H ′ = max{H, 1/α},

2
Q
{

E
x∼M

[(
x>Qx− E

x∼M

[
x>Qx

])2
]
6 100H ′2‖Σ1/2QΣ1/2‖2

F

}
.

172

Analytic Properties are Inherited by Samples. The following lemma can be proven via sim-
ilar, standard techniques as in several prior works [KS17, KKK19, BK20a, BK20b].

Fact 3.2.43. Let D be a distribution on Rd with mean µ and covariance Σ. Let t ∈ N. Let

X be a sample from D such that, ‖ 1
|X|
∑
x∈X(1, x̄)⊗t − Ex∼D(1, x̄)⊗t‖F 6 d−O(t). Here, x̄ =

Σ†/2(x− µi). Then,

1. If D is 2t-certifiably C-subgaussian, then the uniform distribution on X is t-certifiably

2C-subgaussian.

2. If D has 2t-certifiably C-hypercontractive degree 2 polynomials, then the uniform distri-

bution on X has t-certifiably 2C-hypercontractive degree 2 polynomials.

3. IfD is 2t-certifiablyCδ-anti-concentrated, then the uniform distribution onX is t-certifiably

2Cδ-anti-concentrated.

4. If 2
Q {

Ex∼D(x>Qx− Ex∼Dx
>Qx)2 6 C‖Q‖2

F

}
, then, for the uniform distribution DX

on X , 2
Q {

Ex∼DX (x>Qx− Ex∼DXx
>Qx)2 6 2C‖Q‖2

F

}
.

3.2.4 Deterministic Conditions on the Uncorrupted Samples

In this section, we describe the set of deterministic conditions on the set of uncorrupted samples,
under which our algorithms succeed. We will require the following definition.

Definition 3.2.44. Fix 0 < ε < 1/2. We say that a multiset Y of points in Rd is an ε-corrupted

version (or an ε-corruption) of a multiset X of points inRd if |X ∩ Y | > max{(1− ε)|X|, (1−
ε)|Y |}.

Throughout this paper and unless otherwise specified, we will use X to denote a multiset of
i.i.d. samples from the target k-mixtureM = ∑k

i=1wiGi, where Gi = N (µi,Σi). We will use
Xi for the subset of points in X drawn from Gi, i.e., X = ∪ki=1Xi.

We will use Y to denote an ε-corrupted version of X , as per Definition 3.2.44. In this strong

contamination model, the adversary can see the clean samples from X before they decide on
the ε-corruption Y . The strong contamination model is known to subsume the total variation
contamination of Definition 3.1.1 (see, e.g., Section 2 of [DKK+19]). We note that our robust
learning algorithm succeeds in this stronger contamination model, with the additional require-
ment that we can obtain two sets of independent ε-corrupted samples fromM. (The second set is

173

needed to run a hypothesis testing routine after we obtain a small list of candidate hypotheses.)

Our algorithm works for any finite set of points in Rd that satisfies a natural set of deter-
ministic conditions. As we will show later in this section, these deterministic conditions are
satisfied with high probability by a sufficiently large set of i.i.d. samples from any k-mixture of
Gaussians.

Condition 3.2.45 (Good Samples). LetM = ∑k
i=1wiN (µi,Σi) be a k-mixture of Gaussians in

Rd. Let X be a set of n points in Rd. We say that X satisfies Condition 3.2.45 with respect to

M with parameters (γ, t) if there is a partition of X as X1 ∪X2 ∪ . . . ∪Xk such that:

1. For all i ∈ [k] with wi > γ, any positive integer m 6 t, and any v ∈ Rd,

∣∣∣∣∣∣ 1n
∑
x∈Xi
〈v, x− µi〉m − wiEx∼N (µi,Σi)[〈v, x− µi〉m]

∣∣∣∣∣∣ 6 wi γ m! (vTΣiv)m/2 .

2. For all i ∈ [k] and any halfspaceH ⊂ Rd, we have that
∣∣∣|Xi ∩H|/n− wiPrx∼N (µi,Σi)[x ∈ H]

∣∣∣ 6
γ.

We will also need the following consequences of Condition 3.2.45. The first one is immedi-
ate.

Lemma 3.2.46. Condition 3.2.45 is invariant under affine transformations. In particular, if

A(x) : Rd → Rd′ is an affine transformation, and if X satisfies Condition 3.2.45 with respect

toM with parameters (γ, t), then A(X) satisfies Condition 3.2.45 with respect to A(M) with

parameters (γ, t).

We note that the first part of Condition 3.2.45 implies that higher moment tensors are close
in Frobenius distance.

Lemma 3.2.47. If X satisfies Condition 3.2.45 with respect to M = ∑
iwiN (µi,Σi) with

parameters (γ, t), then if wi > γ for all i ∈ [k], and if for some B > 0 we have that

‖µi‖2
2, ‖Σi‖op 6 B for all i ∈ [k], then for all m 6 t, we have that:

‖Ex∈uX [x⊗m]− Ex∼M [x⊗m]‖2
F 6 γ2mO(m)Bmdm .

We note that Condition 3.2.45 also behaves well with respect to taking submixtures.

174

Lemma 3.2.48. Let M = ∑
iwiN (µi,Σi). Let S ⊂ [k] with

∑
i∈S wi = w, and let M′ =∑

i∈S(wi/w)N (µi,Σi). Then if X satisfies Condition 3.2.45 with respect toM with parameters

(γ, t) for some γ < 1/(2k) with the corresponding partition being X = X1 ∪ X2 ∪ . . . ∪ Xk,

then X ′ = ⋃
i∈S Xi satisfies Condition 3.2.45 with respect toM′ with parameters (O(kγ/w), t).

Finally, we show that given sufficiently many i.i.d. samples from a k-mixture of Gaussians,
Condition 3.2.45 holds with high probability.

Lemma 3.2.49. Let M = ∑k
i=1wiN (µi,Σi) and let n be an integer at least ktCtdt/γ3, for a

sufficiently large universal constant C > 0, some γ > 0, and some t ∈ N. If X consists of n

i.i.d. samples from M, then X satisfies Condition 3.2.45 with respect to M with parameters

(γ, t) with high probability.

The proofs of the preceding lemmas can be found in Appendix 3.10.

3.2.5 Hypothesis Selection

Our algorithm will require a procedure to select a hypothesis from a list of candidates that con-
tains an accurate hypothesis. A number of such procedures are known in the literature. Here we
will use the following variant from [Kan20], showing that we can efficiently perform a hypothesis
selection (tournament) step with access to ε-corrupted samples.

Fact 3.2.50 (Robust Tournament, [Kan20]). Let X be an unknown distribution, η ∈ (0, 1), and

let H1, . . . , Hn be distributions with explicitly computable probability density functions that can

be efficiently sampled from. Assume furthermore than min16i6n(dTV(X,Hi)) 6 η. Then there

exists an efficient algorithm that given access to O(log(n)/η2) ε-corrupted samples from X ,

where ε 6 η, along with H1, . . . , Hn, computes an m ∈ [n] such that with high probability we

have that dTV(X,Hm) = O(η) .

3.3 List-Recovery of Parameters via Tensor Decomposition

In this section, we give an algorithm that takes samples from a k-mixture of Gaussians, whose
component means and covariances are not too far from each other in natural norms, and outputs a
dimension-independent size list of candidate k-tuples of parameters (i.e., means and covariances)
one of which is guaranteed to be close to the true target k-tuple of parameters. Our approach

175

involves a new tensor decomposition procedure that works in the absence of any non-degeneracy
conditions on the components.

The goal of this section is to prove the following theorem:

Theorem 72 (Recovering Candidate Parameters when Component Covariances are close in
Frobenius Distance). Fix any α > ε > 0,∆ > 0. There is an algorithm that takes inputX , a sam-

ple from a k-mixture of GaussiansM = ∑
iwiN (µi,Σi) satisfying Condition 3.2.45 with param-

eters γ = εd−8kk−Ck, for C a sufficiently large universal constant, and t = 8k, and let Y be an

ε-corruption ofX . Ifwi > α, ‖µi‖2 6
2√
α

and ‖Σi − I‖F 6 ∆ for every i ∈ [k], then, given k, Y

and ε, the algorithm outputs a list L of at most exp
(
log(1/ε) (k + 1/α + ∆)O(k) /η2

)
candidate

hypotheses (component means and covariances), such that with probability at least 0.99 there ex-

ist {µ̂i, Σ̂i}i∈[k] ⊆ L satisfying ‖µi − µ̂i‖2 6 O
(

∆1/2

α

)
ηG(k) and

∥∥∥Σi − Σ̂i

∥∥∥
F
6 O(k4) ∆1/2

α
ηG(k)

for all i ∈ [k]. Here, η = (2k)4kO(1/α + ∆)4k√ε, G(k) = 1
Ck+1(k+1)! . The running time of the

algorithm is poly(|L|, |Y |, dk).

In the body of this section, we establish Theorem 72. The structure of this section is as
follows: In Section 3.3.1, we describe our algorithm, which is then analyzed in Sections 3.3.2-
3.3.6.

3.3.1 List-Decodable Tensor Decomposition Algorithm

In this section, we describe our tensor decomposition algorithm, which is given in pseudocode
below (Algorithm 73).

Algorithm 73 (List-Recovery of Candidate Parameters via Tensor Decomposition).

Input: An ε-corruption Y of a sampleX from a k-mixture of GaussiansM = ∑
iwiN (µi,Σi).

Requirements: The guarantees of the algorithm hold if the mixture parameters and the

sample X satisfy:

1. wi > α for all i ∈ [k],

2. ‖µi‖2 6 2/
√
α for all i ∈ [k],

3. ‖Σi − I‖F 6 ∆ for all i ∈ [k].

4. X satisfies Condition 3.2.45 with parameters (γ, t), where γ = εd−8kk−Ck, for

176

C a sufficiently large universal constant, and t = 8k.

Parameters: η = (2k)4k(Ck(1/α + ∆))4k√ε, D = C(k4/(α√η)), δ = 2η1/(Ck+1(k+1)!),

`′ = 100 log k (η/ (k5 (∆4 + 1/α4)))−4k, for some sufficiently large absolute constant

C > 0, λ = 4η, φ = 10(1 + ∆2)/(√ηα5).

Output: A list L of hypotheses such that there exists at least one, {µ̂i, Σ̂i}i6k ∈ L, sat-

isfying: ‖µi − µ̂i‖2 6 O
(

∆1/2

α

)
ηG(k) and

∥∥∥Σi − Σ̂i

∥∥∥
F

6 O(k4) ∆1/2

α
ηG(k), where

G(k) = 1
Ck+1(k+1)! .

Operation:

1. Robust Estimation of Hermite Tensors: For m ∈ [4k], compute T̂m such that

maxm∈[4k]

∥∥∥T̂m − E [hm(M)]
∥∥∥
F
6 η using the robust mean estimation algorithm

in Fact 3.2.35.

2. Random Collapsing of Two Modes of T̂4: Let L′ be an empty list. Repeat `′

times: For j ∈ [4k], choose independent standard Gaussians in Rd, denoted by

x(j), y(j) ∼ N (0, I), and uniform draws a1, a2, . . . , at from [−D,D]. Let Ŝ be a

d× d matrix such that for all r, s ∈ [d], Ŝ(r, s) = ∑
j∈[4k] ajT̂4(r, s, x(j), y(j)) =∑

j∈[4k] aj
∑
g,h∈[d] T̂4(r, s, g, h)x(j)(g)y(j)(h). Add Ŝ to the list L′.

3. Construct Low-Dimensional Subspace for Exhaustive Search: Let V be the

span of all singular vectors of the natural d×dm−1 flattening of T̂m with singular

values > λ for m 6 4k. For each Ŝ ∈ L′, let V ′
Ŝ

be the span of V plus all the

singular vectors of Ŝ with singular value larger than δ1/4.

4. Enumerating Candidates in V ′
Ŝ

: Initialize L to be the empty list. For each

Ŝ ∈ L′, let Vδ1/4 be a δ1/4-cover of vectors in V ′
Ŝ

with `2-norm at most 2/
√
α.

Enumerate over vectors µ̂ in Vδ1/4 . Let k′ = Ck2 and let Cδ1/4 be a δ1/4-cover

of the interval [−φ, φ]k′ . For {τj}j∈[k′] ∈ Cδ1/4 and for all {vj}j∈[k′] ∈ Vδ1/4 , let

Q̂ = ∑
j∈[k′] τjvjv

>
j . Add {µ̂, I + Ŝ + Q̂} to L.

3.3.2 Analysis of Algorithm

We analyze the three main steps of Algorithm 73 in the following lemmas. We will prove the
following three propositions in the subsequent subsections that analyze Steps 1, 2 and 3 of Al-
gorithm 73. For Step 1, we show that when X satisfies Condition 3.2.45, the empirical estimates
of the moment tensors obtained by applying the robust mean estimation algorithm to X are suf-

177

ficiently close to the moment tensors of the input mixtureM.

Proposition 3.3.1 (Robustly Estimating Hermite Polynomial Tensors). For any integer m 6

4k, and ∆ ∈ R+, there exists an algorithm with running time polym(d/ε) that takes an ε-

corruption Y of X , a set satisfying Condition 3.2.45 with respect to M = ∑k
i=1 wiN (µi,Σi)

with parameters γ = εd−mm−Cm, for C a sufficiently large constant, and t = 2m. If wi > α,

‖µi‖2 6 2/
√
α, and ‖Σi − I‖F 6 ∆ for each i ∈ [k], then the algorithm outputs a tensor T̂m

such that
∥∥∥T̂m − E [hm(M)]

∥∥∥
F
6 η, for η = O (m(1 + 1/α + ∆))m

√
ε.

The proof of Proposition 3.3.1 is deferred to Section 3.3.3.

Next, we analyze Step 2 of the algorithm and prove that, with non-negligible probability,
randomly collapsing two modes of T̂4 yields a matrix Ŝ such that Ŝ− (Σi− I) = Pi +Qi, where
Pi has small Frobenius norm and Qi is a rank-O(k2) matrix.

Proposition 3.3.2 (Tensor Decomposition up to Low-Rank Error). LetM = ∑k
i=1 wiN (µi,Σi)

be a k-mixture of Gaussians satisfying wi > α, ‖µi‖2 6 2/
√
α, and ‖Σi − I‖F 6 ∆ for each

i ∈ [k]. For 0 < η < 1, let T̂4 be a tensor such that
∥∥∥E[h4(M)]− T̂4

∥∥∥
F
6 η, and let D be a

sufficiently large constant multiple of k4/(α√η). For all j ∈ [4k], let x(j), y(j) ∼ N (0, I) be

independent and aj ∼ U [−D,D], where U [−D,D] is the uniform distribution over the interval

[−D,D], and let Ŝ = ∑
j∈[4k] ajT̂4

(
·, ·, x(j), y(j)

)
. Then, for each i ∈ [k], with probability at

least (η/ (k5 (∆4 + 1/α4)))4k, over the choice of x(j), y(j) and aj , we have that Ŝ − (Σi − I) =
Pi +Qi, where ‖Pi‖F = O

(√
η/α

)
, ‖Qi‖F = O

(
1+∆2
√
ηα3

)
and rank(Qi) = O(k2).

The proof of Proposition 3.3.2 is given in Section 3.3.4.

Finally, in Step 3, for any Ŝ such that Ŝ− (Σi− I) = Pi +Qi, where Pi has small Frobenius
norm and Qi is a rank O(k2) matrix, we find a low-dimensional subspace V ′ such that the range
space of Qi is approximately contained in V ′. We will use V ′ to exhaustively search for O(k2)
rank matrices to find candidates for Qi.

Proposition 3.3.3 (Low-Dimensional Subspace V ′ for Exhaustive Search). LetM = ∑k
i=1wiN (µi,Σi)

be a k-mixture of Gaussians satisfying wi > α, ‖µi‖2 6 2/
√
α, and ‖Σi − I‖F 6 ∆ for each

i ∈ [k]. Let
∥∥∥T̂m − E [hm(M)]

∥∥∥
F
6 η, for each 1 6 m 6 4k, and some η > 0. Let V be the span

of all the left singular vectors of the d×dm−1 matrix obtained by the natural flattening of T̂m with

singular values at least 2η. For each 1 6 i 6 k, let Si = Σi − I and Ŝi be a d × d matrix such

that Ŝi−Si = Pi +Qi, where ‖Pi‖F 6 O
(√

η/α
)
, Qi has rankO(k2), and ‖Qi‖F 6 O

(
1+∆2
√
ηα3

)
.

Let V ′ be the span of V plus all singular vectors of Ŝi of singular values at least δ for all i. Then,

178

for δ = 2η1/(Ck+1(k+1)!) with a sufficiently large constant C > 0, we have that:

1. dim V ′ 6
(
O (k(1 + 1/α + ∆))4k+5

)
/η2.

2. There is a vector µ′i ∈ V ′ such that ‖µi − µ′i‖
2
2 6

20
α2

√
δ∆.

3. There are q = O(k2) unit vectors v1, v2, . . . , vq ∈ V ′ and scalars τ1, τ2, . . . , τq ∈
[
−10(1 + ∆2)/(√ηα5), 10(1 + ∆2)/(√ηα5)

]
such that

∥∥∥Qi −
∑q
i=1 τiviv

>
i

∥∥∥
F
6 O

(
k2

α
δ1/4∆1/2

)
.

The proof of Proposition 3.3.3 is given in Section 3.3.5.

We can now use these propositions to complete the proof of Theorem 72.

Proof of Theorem 72. Using Proposition 3.3.1, Step 1 of the algorithm outputs estimates T̂i for
i ∈ [4k] such that maxm∈[4k]

∥∥∥T̂m − Ehm(M)
∥∥∥
F
6 η. Next, by the standard coupon collector

analysis, using Proposition 3.3.2 and repeating Step 2 of the algorithm `′ = 100 log k (η/ (k5 (∆4 + 1/α4)))−4k

times, guarantees that with probability at least 1 − 1/(100k)100, for every 1 6 i 6 k, there are
Ŝi ∈ L such that Ŝi − (Σi − I) = Pi +Qi for Pi, Qi satisfying ‖Pi‖F 6

√
η/α, ‖Qi‖F 6 1+∆2

√
ηα5

and Qi has rank O(k2).

Next, Proposition 3.3.3 implies that for every such Ŝi ∈ L′, we can construct a subspace
V ′ = V ′

Ŝi
of dimension O

(
(k(1 + 1/α + ∆))4k+5/η2

)
such that V ′ contains µ′i that satisfies

‖µi − µ′i‖
2
2 6

∆
α2 ·
√
δ, and there is a rank O(k2) matrix Q̂i with range space contained in V ′ such

that
∥∥∥Qi − Q̂i

∥∥∥
F
6 O(k2

α
δ1/4∆1/2).

Now, let Vτ ⊆ V ′ be a τ = δ1/4-cover, in `2-norm, of vectors with `2 norm at most 2/
√
α in

V ′. Then, since ‖µi‖2 6 2√
α

, there is a vector µ̂i ∈ Vτ such that ‖µi − µ̂i‖2
2 6 τ + 20

α2

√
δ∆ 6

40
α2

√
δ∆.

Further, there exist τ1, τ2, . . . τO(k2) in a τ -cover of [−10(1+∆2)/(√ηα5), 10(1+∆2)/(√ηα5)]
and vectors v1, v2, . . . , vO(k2) ∈ Vτ such that

∥∥∥∑O(k2)
i=1 τiviv

>
i −Qi

∥∥∥
F

6 O(k4δ1/4∆1/2/α). In

particular, Σ̂i = I + Ŝ −∑O(k2)
i=1 τiviv

>
i satisfies

‖Σ̂i − Σi‖F = O(√η) +O
(
k4δ1/4∆1/2

α

)
= O

(
k4δ1/4∆1/2

α

)
. (3.7)

The size of this search space for every fixed Ŝ ∈ L′ can be bounded above by
(

1+∆2

δα5

)O(k5 dimV ′)
.

179

Thus, the size of L can be bounded from above by

k5
(

∆4

η
+ 1
α4η

)4k

·
(

1 + ∆2

δ
√
ηα5

)O(k5 dimV ′)

6 exp
(
log(1/ε) (k + 1/α + ∆)O(k) /η2

)
.

This completes the proof.

3.3.3 Robust Estimation of Hermite Tensors

In this section, we will prove Proposition 3.3.1.

Proof of Proposition 3.3.1. Consider the uniform distribution on the uncorrupted sample X . We
want to analyze the effect of applying the robust mean estimation algorithm (Fact 3.2.35) to the
points hm(x), for x ∈ X . In order for us to apply Fact 3.2.35, we need to ensure that the uniform
distribution on {hm(x)}x∈X has bounded covariance. This step gives us a good approximation
to Ex∼uXhm(x). In order for us to obtain an approximation to Ehm(M), we need to bound the
difference between Ehm(M) and Ex∼uXhm(x). We will do both these steps below.

The second part is immediate. By the definition of hm(X), we have that

∥∥∥∥∥ 1
|X|

∑
x∈X

hm(x)− Ehm(M)
∥∥∥∥∥
F

6
∑

j6m/2
m2jdj

∥∥∥∥∥ 1
|X|

∑
x∈X

x⊗(m−2j) − EM⊗(m−2j)
∥∥∥∥∥
F

.

By Lemma 3.2.47, this is at most O(1 + ∆ + 1/α)mmO(m)dm/2γ 6 η/2. We note that a similar
argument bounds ∥∥∥∥∥ 1

|X|
∑
x∈X

hm(x)⊗hm(x)− Ehm(M)⊗hm(M)
∥∥∥∥∥
F

6 η2.

Let us now verify the first part. We proceed via bounding the operator norm of the covariance
of hm(M). We can then use the bound on the Frobenius norm

∥∥∥∥∥ 1
|X|

∑
x∈X

hm(x)⊗hm(X)− Ehm(M)⊗hm(M)
∥∥∥∥∥
F

to get a bound on
∥∥∥ 1
|X|
∑
x∈X hm(x)hm(x)>

∥∥∥
op

(the operator norm of the canonical square flat-
tening of the of the 2m-th empirical Hermite moment tensor ofX). This will complete the proof.

180

Let Gi = N (µi,Σi) be the components ofM. We have that

Cov(hm(M)) =
∑
i∈[k]

wiCov(hm(Gi))

+ 1
2
∑
i,j∈[k]

wiwj (E[hm(Gi)]− E[hm(Gj)]) (E[hm(Gi)]− E[hm(Gj)])> .

(3.8)

By Lemma 3.2.8, we have that for all i ∈ [k], it holds

‖Cov(hm(Gi))‖op = O (m(1 + ‖µi‖2 + ‖Σi − I‖F))2m = O
(
m(1 + 2/

√
α + ∆)

)2m
,

where for any matrix M , ‖M‖op = max‖u‖2=1 ‖Mu‖2 is the operator norm of the matrix. Fur-
ther, for any i, j ∈ [k],
∥∥∥(E[hm(Gi)]− E[hm(Gj)]) (E[hm(Gi)]− E[hm(Gj)])>

∥∥∥
op

= ‖E[hm(Gi)]− E[hm(Gj)]‖2

= O (m(1 + 1/α + ∆))2m .

(3.9)

This claim follows from the triangle inequality of the operator norm.

3.3.4 List-Recovery of Covariances up to Low-Rank Error

In this section, we prove Proposition 3.3.2. We first set some useful notation. We will write
Si

def= Σi − I throughout this section. We will also use S ′i to denote Si + µi ⊗ µi.

We first show that for every i, there exists a matrix P such that
(∑

i∈[k]wiS
′
i ⊗ S ′i

)
(·, ·, P) is

close to S ′i.

Lemma 3.3.4 (Existence of a 2-Tensor). Under the hypothesis of Proposition 3.3.2, for each

i ∈ [k], there exists a matrix P such that ‖P‖F = O
(
1/(√ηα)

)
and ‖T ′4 (·, ·, P)− S ′i‖F =

O
(√

η/α
)
, where T ′4 =

(∑
i∈[k] wiS

′
i ⊗ S ′i

)
.

Note that throughout this section it will be useful to think of T ′4 as a d2 × d2 matrix rather
than as a tensor. In this case, we can think of T ′4 as

∑k
i=1 wi(S ′i)(S ′i)T . From standard facts about

positive semidefinite matrices it follows that S ′i is in the image of T ′4, and Lemma 3.3.4 is just a
slightly robustified version of this (saying that we can find an approximate preimage that it not

181

itself too large).

The proof of this Lemma 3.3.4 will involve linear programming duality with an infinite sys-
tem of constraints. As the application of duality with infinitely many constraints has some tech-
nical issues, we state below an appropriate version of duality.

Fact 3.3.5 (Linear Programming Duality for Compact, Convex Constraint Sets). Let K ⊂ Rn+1

be a compact convex set. There exists an x ∈ Rn so that (x, 1) · z > 0 for all z ∈ K if and only

if there is no element (0, 0, . . . , 0, a) ∈ K for any a 6 0.

This fact can be proved by noting that if no such a exists, there must be a hyperplane sep-
arating K from the set of such points (0, a). This separating hyperplane will be of the form
(z, y) ∈ H if and only if y = x · z for some x and this x will provide the solution to the linear
system.

Proof of Lemma 3.3.4. To show that such a P exists for each i, we apply linear programming
duality. In particular, the conditions imposed on P define a linear program, which has a feasible
solution unless there is a solution to the dual linear program. For sufficiently large constants c1

and c2, consider the following primal in the variable P :

〈v, P 〉 6 c1√
ηα
‖v‖F ∀ v ∈ Rd×d (3.10)

〈u, T ′4 (·, ·, P)− S ′i〉 6 c2
√
η ‖u‖F ∀ u ∈ Rd×d. (3.11)

It is not hard to see that ‖P‖F 6 c1√
ηα

if and only if (3.10) holds for all v and ‖T ′4 (·, ·, P)− S ′i‖F 6

c2

√
η/α if and only if (3.11) holds for all u. Throughout the proof, we suggest that the reader

think of u and v as vectors in d2-dimensional vector space.

Our goal is to show that there exists a feasible solution P such that (3.10) and (3.11) hold
simultaneously for all u, v ∈ Rd×d. We first note that this is equivalent to saying that

〈v, P 〉+ 〈u, T ′4 (·, ·, P)〉 − 〈u, S ′i〉 6
c1√
ηα
‖v‖F + c2

√
η ‖u‖F , (3.12)

for all u, v ∈ Rd×d. This is not quite in the form necessary to apply Fact 3.3.5, so we note that
this is in turn equivalent to saying that

〈v, P 〉+ 〈u, T ′4 (·, ·, P)〉 − 〈u, S ′i〉 6 1 , (3.13)

182

for all u, v ∈ Rd×d so that c1√
ηα
‖v‖F+c2

√
η ‖u‖F 6 1, and u ∈ span{S ′i}. As this is a convex set

of linear equations, we have by Fact 3.3.5 that there exists such a P unless there exists such a pair
of u and v so that the coefficient of P in Equation (3.13) is 0 and so that the resulting inequality
of constants is either false or holds with equality. In particular, the coefficient of P vanishes if
and only if v = −T ′4 (u, ·, ·). We then get a contradiction only if for some u ∈ span{S ′i}

− 〈u, S ′i〉 > 1 >
c1√
ηα
‖T ′4 (u, ·, ·)‖F + c2

√
η ‖u‖F . (3.14)

We claim that this is impossible.

In particular, squaring Equation (3.14) would give

〈u, S ′i〉
2 >

(
c1√
ηα
‖T ′4 (u, ·, ·)‖F + c2

√
η ‖u‖F

)2

>
c

α
‖T ′4 (u, ·, ·)‖F · ‖u‖F ,

(3.15)

for some large enough constant c > 1, where the last inequality follows from the AM-GM
inequality. However, using the dual characterization of the Frobenius norm, we have

‖T ′4 (u, ·, ·)‖F >
〈u, T ′4 (u, ·, ·)〉
‖u‖F

>
wi
‖u‖F

〈u, S ′i〉
2
, (3.16)

where the last inequality follows from T ′4 containing a wiSi ⊗ Si term, and the other terms
contributing non-negatively. Rearranging Equation (3.16), we have

〈u, S ′i〉
2 6

1
wi
‖T ′4 (u, ·, ·)‖F ‖u‖F 6

1
α
‖T ′4 (u, ·, ·)‖F ‖u‖F .

This contradicts Equation (3.15) unless T ′4 (u, ·, ·) = 0. This therefore suffices to prove the
feasibility of the primal.

We have thus shown that there is some matrix P so that T ′4 (P, ·, ·) suffices for our purposes.
We need to show that our appropriate random linear combination of x(j) ⊗ y(j) suffices. In
fact, we will show that with reasonably high probability over our choice of x(j), y(j) that there is
some linear combination of the x(j) ⊗ y(j) (with coefficients that are not too large) so that their
projection onto the space spanned by the S ′i (which is all that matters when applying T ′4) equal
to P .

For the sake of intuition, we note that if we removed the bound on the coefficients, we would

183

need that the projections of the x(j) ⊗ y(j) spanned span{S ′i}. Since there are at least k of them,
this will hold unless there is some v ∈ span{S ′i} so that v is orthogonal to all of the x(j) ⊗ y(j).
This shouldn’t happen because each x(j) ⊗ y(j) is very unlikely to be orthogonal to v.

To deal with the constraint that the coefficients are not too large, we use linear programming
duality to show that there will be a solution unless there is some v that is nearly orthogonal to
all of the x(j) ⊗ y(j). Again, this is unlikely to happen for any individual term, and thus, by
independence, highly unlikely to happen for all j simultaneously. Combining this with a cover
argument will give our proof.

Lemma 3.3.6 (Existence of a Bi-Linear Form). Given the preconditions in Proposition 3.3.2,

with probability at least 99/100 over the choice of x(j), y(j), there exist bj ∈ [−D,D] for j ∈ [4k],
where D = O

(
k4/(√ηα)

)
, such that the projection of

∑t
j=1 bjx

(j)⊗ y(j) onto the space spanned

by the S ′i is P , where P satisfies the conclusion of Proposition 3.3.4.

Proof. To prove this lemma, we again use a linear programming based argument. Consider the
following (primal) linear program in the variables bj , for j ∈ [4k]:

∑
j∈[4k]

bj〈S ′i, x(j) ⊗ y(j)〉 = 〈S ′i, P 〉 ∀ i ∈ [k] (3.17)

−D 6 bj 6 D ∀ j ∈ [4k] (3.18)

We note that a set of bj satisfying Equation (3.17) will have the projection of
∑
j∈[4k] bjx

(j)⊗ y(j)

onto the span of the S ′i be the same as the projection of P , and that if the bj’s satisfy Equation
(3.18) then we will have |bj| 6 D for all j. Thus, it suffices to show that with high probability
over our choice of x(j) and y(j) that the above system is feasible.

We will show this by linear programming duality (since this is now a finite system of equa-
tions, we can use standard results rather than Fact 3.3.5). In particular, we have that Equations
(3.17) and (3.18) are simultaneously satisfiable unless there are real numbers ci and non-negative
real numbers zj, z′j so that

k∑
i=1

ci
∑
j∈[4k]

bj〈S ′i, x(j) ⊗ y(j)〉+
∑
j∈[4k]

(zj − z′j)bj 6
k∑
i=1

ci〈S ′i, P 〉+
∑
j∈[4k]

(zj + z′j)D

184

yields a contradiction. Setting v = ∑k
i=1 ciS

′
i, the above simplifies to

∑
j∈[4k]

bj
(
〈v, x(j) ⊗ y(j)〉+ zj − z′j

)
6 〈v, P 〉+

∑
j∈[4k]

(zj + z′j)D (3.19)

We note that in order for Equation (3.19) to be a contradiction, it must be the case that the
coefficients of bj are all 0. In particular, we must have

z′j − zj = 〈v, x(j) ⊗ y(j)〉

for all j. In particular, this means that

zj + z′j >
∣∣∣〈v, x(j) ⊗ y(j)〉

∣∣∣ .
In such a case, the right hand side of Equation (3.19) will be at least

〈v, P 〉+
∑
j∈[4k]

∣∣∣〈v, x(j) ⊗ y(j)〉
∣∣∣D

Therefore, Equation (3.19) can only yield a contradiction if there exists a v ∈ span{S ′i} so that

〈v, P 〉 < −
∑
j∈[4k]

∣∣∣〈v, x(j) ⊗ y(j)〉
∣∣∣D. (3.20)

We want to show that with high probability over our choice of x(j), y(j) that there is no
v ∈ span{S ′i} satisfying Equation (3.20). In fact, we will show that for every such v that

∑
j∈[4k]

∣∣∣〈v, x(j) ⊗ y(j)〉
∣∣∣ > c1√

ηα
‖v‖F .

We can scale v so that ‖v‖F = 1, and it suffices to show that

∑
j∈[4k]

∣∣∣〈ṽ, x(j) ⊗ y(j)
〉∣∣∣ > (

c1√
ηαD

)
(3.21)

holds for all unit vectors v in span{S ′i} with high probability.

Since we need to show that infinitely many equations all hold with high probability, we will
use a cover argument. In particular, we can construct C, a τ -cover for all unit vectors v in the span
of the S ′i, where we take τ =

(
c′1

k2√ηαD

)
. Since this is a cover of a unit sphere in a k-dimensional

185

subspace, we can construct such a cover so that |C| = O(1/τ)k. Replacing v with the closest
point in C, denoted by v′, it suffices to show that with high probability for all v that

∑
j∈[4k]

∣∣∣〈v, x(j) ⊗ y(j)
〉∣∣∣ > ∑

j∈[4k]

∣∣∣〈v′, x(j) ⊗ y(j)
〉∣∣∣− ∑

j∈[4k]

∣∣∣〈v − v′, x(j) ⊗ y(j)
〉∣∣∣ > (

2c1√
ηαD

)
.

(3.22)
We begin by bounding the terms

∑
j∈[4k]

∣∣∣〈v − v′, x(j) ⊗ y(j)
〉∣∣∣ .

For this we notice by Cauchy-Schwartz that each term is at most ‖v − v′‖F times the Frobenius
norm of the projection of x(j) ⊗ y(j) onto the span of the S ′i. We note that for any k-dimensional
subspace W with orthonormal basis w1, . . . , wk we have that

E
[∥∥∥ProjW (x(j) ⊗ y(j))

∥∥∥2

F

]
=

k∑
i=1

∣∣∣〈wi, x(j) ⊗ y(j)
〉∣∣∣2

= k.

Therefore, with high probability over the choice of x(j), y(j) each of the projections of x(j)⊗ y(j)

onto the span of the S ′i has Frobenius norm Õ(
√
k). Therefore, if this condition holds over our

choice of x(j) and y(j), we can show Equation (3.22) if we can show that

∑
j∈[4k]

∣∣∣〈v′, x(j) ⊗ y(j)
〉∣∣∣ > (

c1√
ηαD

)
>

(
2c1√
ηαD

)
− τÕ(k3/2) (3.23)

for all v′ ∈ C.

Each term in
∑
j∈[4k]

〈
v′, x(j) ⊗ y(j)

〉
is a random bi-linear form given by zj = ∑

`,p∈[d] v
′
`,px

(j)
` y(j)

p .
Then, we have that E [zj] = 0 and

E
[
z2
j

]
= E


 ∑
`,p∈[d]

v′`,px
(j)
` y(j)

p

2
 =

∑
`,`′,p,p′

E
[
v′`,pv

′
`′,p′x

(j)
` x

(j)
`′ y

(j)
p y

(j)
p′

]

=
∑
`,p∈[d]

(
v′`,p

)2
· E

[(
x

(j)
`

)2
]
· E

[(
y(j)
p

)2
]

= 1 ,

where the last equality follows from ṽ′F = 1.

186

Using Lemma 3.2.10 with ζ = 2c1√
ηαD

,

Pr
[
|zj| 6

c1√
ηαD

]
6 c5

(
2c1√
ηαD

)1/2

. (3.24)

However, we note that Equation (3.23) will hold unless |zj| 6 c1√
ηαD

for all j ∈ [4k]. Since the
zj’s are independent, we conclude that

Pr

 ∑
j∈[4k]

∣∣∣〈v′, x(j) ⊗ y(j)
〉∣∣∣ 6 c1√

ηαD

 6 O

(
c1√
ηαD

)2k

. (3.25)

Since the above argument holds for any v′ ∈ C, we can union bound over all elements in the cover
C, and the probability that there exists a ṽ′ in the cover that does not satisfy Equation (3.23) is at
most O

(
k2√ηαD

)k
· O

(
c1√
ηαD

)2k
. Setting D to be a sufficiently large multiple of (k4/(√ηα))

suffices to conclude that with probability at least 1− 1/poly(k), the primal is feasible.

Proof of Proposition 3.3.2. We begin by bounding the Frobenius norm of T̂4. Let T4 = E[h4(X)].
It then follows from Lemma 3.2.6 that

T4 = Sym
(

k∑
i=1

wi
(
3Si ⊗ Si + 6Si ⊗ µ⊗2

i + µ⊗4
i

))
. (3.26)

Further, ‖Si ⊗ Si‖F 6 ‖Si‖2
F 6 ∆2,

∥∥∥Si ⊗ µ⊗2
i

∥∥∥
F

6 ‖Si‖F ‖µi‖
2
2 6 4∆/α, and

∥∥∥µ⊗4
i

∥∥∥
F

6

‖µi‖4
2 6 16/α2. Since T4 is an average of terms of the form S⊗2

i , Si ⊗ µ⊗2
i and µ⊗4

i , and each
such term is upper bounded, we can conclude that ‖T4‖F = O(∆2 + 1/α2), and by the triangle
inequality that

∥∥∥T̂4

∥∥∥
F
6 O(∆2 + 1/α2 + η). Let S ′i = Si +µ⊗2

i and let T ′4 := ∑k
i=1wi (S ′i ⊗ S ′i).

We can then rewrite Equation (3.26) as follows:

T4 = Sym
(

k∑
i=1

wi
(
3S ′i ⊗ S ′i − 2µ⊗4

i

))
. (3.27)

For j ∈ [4k], let x(j), y(j) ∼ N (0, I). Collapsing two modes of T̂4, it follows from Equation

187

(3.27) that for any fixed j,

T̂4
(
·, ·, x(j), y(j)

)
=
(
T̂4 − T4

)(
·, ·, x(j), y(j)

)
+ T4

(
·, ·, x(j), y(j)

)
=
(
T̂4 − T4

)(
·, ·, x(j), y(j)

)
+ Sym

(
k∑
i=1

wi
(
3S ′i ⊗ S ′i − 2µ⊗4

i

)) (
·, ·, x(j), y(j)

)
=
(
T̂4 − T4 + T ′4

)(
·, ·, x(j), y(j)

)
+
∑
i∈[k]

wi
(
S ′ix

(j)
)
⊗
(
S ′iy

(j)
)

+
∑
i∈[k]

wi
(
S ′iy

(j)
)
⊗
(
S ′ix

(j)
)

+
∑
i∈[k]

wi
(
−2µ⊗2

i

〈
µi, x

(j)
〉 〈
µi, y

(j)
〉)

,

(3.28)

where we use that Sym(·) is a linear operator satisfying Sym
(
µ⊗4
i

)
= µ⊗4

i , and

Sym (S ′i ⊗ S ′i) = 1
3S
′
i ⊗ S ′i + 1

3S
′
i ⊕ S ′i + 1

3S
′
i 	 S ′i

where for indices (i1, i2, i3, i4),

(S ′i ⊕ S ′i) (i1, i2, i3, i4) = (S ′i ⊗ S ′i) (i1, i3, i2, i4)

and (S ′i 	 S ′i) (i1, i2, i3, i4) = (S ′i ⊗ S ′i) (i1, i4, i2, i3).

Next, it follows from Lemma 3.3.4 that there exists a matrix P̃i such that
∥∥∥P̃i∥∥∥

F
= O

(
1/(√ηα)

)
and

∥∥∥T ′4 (·, ·, P̃i)− S ′i∥∥∥F = O
(√

η/α
)
. Furthermore, with probability at least 0.99, there exists

a sequence of bj ∈ [−D,D], for j ∈ [4k], such that T ′4
(
·, ·,∑j∈[4k] bjx

(j) ⊗ y(j)
)

= T ′4
(
·, ·, P̃i

)
.

Consider a cover, C, of the interval [−D,D] with points spaced at intervals of length τ =
O
(√

η

αk(∆4+1/α4)

)
. Since we uniformly sample aj’s, with probability at least (τ/D)O(k), for all

j ∈ [4k], |bj − aj| 6 τ , and we condition on this event. Thus,

∥∥∥∥∥∥T ′4
·, ·, ∑

j∈[4k]
ajx

(j)y(j)

− S ′i
∥∥∥∥∥∥
F

6

∥∥∥∥∥∥T ′4
·, ·, ∑

j∈[4k]
bjx

(j) ⊗ y(j)

− S ′i
∥∥∥∥∥∥
F

+

∥∥∥∥∥∥T ′4
·, ·, ∑

j∈[4k]
(bj − aj)x(j) ⊗ y(j)

∥∥∥∥∥∥
F

6 O
(√

η/α
)

+O
(
τ∆2

)
6 O

(√
η/α

)
.

(3.29)

188

Taking the linear combinations with coefficients aj in Equation (3.28), we have

T̂4

·, ·, ∑
j∈[4k]

ajx
(j) ⊗ y(j)

− Si =
(
T̂4 − T4 + T ′4

)·, ·, ∑
j∈[4k]

ajx
(j) ⊗ y(j)

− S ′i − µi ⊗ µi
+

∑
j∈[4k]

aj
∑
i∈[k]

wi
(
S ′ix

(j)
)
⊗
(
S ′iy

(j)
)

+
∑
j∈[4k]

aj
∑
i∈[k]

wi
(
S ′iy

(j)
)
⊗
(
S ′ix

(j)
)

+
∑
j∈[4k]

aj
∑
i∈[k]

wi
(
−2µ⊗2

i

〈
µi, x

(j)
〉 〈
µi, y

(j)
〉)

.

(3.30)

Setting Pi =
(
T̂4 − T4 + T ′4

) (
·, ·,∑j∈[4k] ajx

(j)y(j)
)
−S ′i, it follows from Lemma 3.2.9 that with

probability at least 0.99,
(
T̂4 − T4

) (
·, ·,∑j∈[4k] ajx

(j)y(j)
)

has Frobenius norm O(kDη) and it

follows from Equation (3.29) that with probability at least 0.99, T ′4
(
·, ·,∑j∈[4k] ajx

(j)y(j)
)
− S ′i

has Frobenius norm O
(√

η/α
)
. Setting the remaining terms to Qi, with probability at least 0.99

we can bound their Frobenius norm as follows:

‖Qi‖F 6 ‖µi ⊗ µi‖F +

∥∥∥∥∥∥
∑
i∈[k]

wiS
′
i ⊕ S ′i + wiS

′
i 	 S ′i − 2wiµ⊗4

i

·, ·, ∑
j∈[4k]

ajx
(j)y(j)

∥∥∥∥∥∥
F

6
4
α

+
(

2 max
i∈k
‖S ′i‖

2
F + 32

α2 + kτ
)
·
∥∥∥P̃∥∥∥

F

6
4
α

+O
(

1
√
ηα

(
∆ + 1

α

)2)

6 O
(

1 + ∆2
√
ηα3

)
,

(3.31)

where the first inequality follows from the triangle inequality, the second follows from our as-
sumptions that ‖µi‖2 6 2/

√
α,
∑
j∈[4k] bjx

(j)y(j) = P̃i in the span of the S ′i, and |aj− bj| 6 τ for
all j ∈ [4k], and the third inequality follows from the definition of S ′i, the bound on

∥∥∥P̃∥∥∥
F

and
the bound on ‖Si − I‖F .

3.3.5 Finding a Low-dimensional Subspace for Exhaustive Search

In this subsection, we will prove Proposition 3.3.3.

We start by extending Theorem 4 of [MV10], which shows that large parameter distance
between pairs of univariate Gaussian mixtures implies large distance between their low-degree

189

moments. In the following, we use Mj(F) = E [F j] to denote the j-th moment of a distribution
F . We show:

Lemma 3.3.7. There exists a constant C > 0 such that the following holds: Fix any D > 0 and

0 6 β 6 1/(2(2k − 1)!D2k−3). Suppose that F = ∑k
i=1wiN (µi, σ2

i) is a univariate k-mixture

of Gaussians with wi > β, and |µi|, σi 6 D, for all i ∈ [k]. If |µi|+ |σ2
i −1| > β for some i 6 k,

then

max
j∈[2k]
|Mj(F)−Mj (N (0, 1))| > βC

k+1(k+1)!−1 .

We give the proof of Lemma 3.3.7 in Section 3.3.6.

Lemma 3.3.8 (Bounding µi’s and Si’s in non-influential directions for E [hm(M)]). LetM =∑k
i=1wiN (µi,Σi) be a k-mixture of Gaussians on Rd satisfying wi > α, ‖µi‖2 6 2/

√
α, and

‖Σi − I‖F 6 ∆ for every i ∈ [k]. For some B ∈ R, let u ∈ Rd be a unit vector such that

|E [hm (〈M, u〉)]| 6 B for all m ∈ [2k]. Then, for δ = 2O(k)B1/(Ck+1(k+1)!) and Si = Σi− I , we

have that:

1. for all i 6 k, |〈u, µi〉|, |u>(I − Σi)u| 6 δ,

2. ‖Siu‖2
2 6 20δ∆/α2 +B/α,

where C > 0 is a fixed universal constant.

Proof. The 1-D random variable 〈u,M〉 is a mixture of Gaussians described by
∑k
i=1wiN (〈µi, u〉 , u>Σiu).

Towards a contradiction, assume that there is an i ∈ [k] such that |〈u, µi〉| + |u>(I − Σi)u| >
δ. Then, applying Lemma 3.3.7, yields that there is a j ∈ [2k] such that |Mj(〈u,M〉) −
Mj(N (0, 1))| > δC

k+1(k+1)!−1. Applying Fact 3.2.5 implies that there exists an m ∈ [2k] such
that

|E [hm(〈u,M〉)]| > 2−O(k)δC
k+1(k+1)!−1 � B ,

yielding a contradiction.

We can now prove the second part. Recall that for Si = Σi − I for every i, we have that

E [h4(M)] =
k∑
i=1

wiSym
(
3 (Si ⊗ Si) + 6

(
Si ⊗ µ⊗2

i

)
+ µ⊗4

i

)
.

We consider the d×dmatrix obtained by the natural flattening of the d×d tensor u⊗2 ·E [h4(M)].

190

Then, we can write:

u⊗2 · E [h4(M)] =
k∑
i=1

wi

(
(u>Siu)Si + 2(Siu)(Siu)> + 〈u, µi〉2 Si

+ 2 〈u, µi〉µi(Siu)> + 2 〈u, µi〉 (Siu)µ>i + (u>Siu)µiµ>i + 〈u, µi〉2 µiµ>i
)
. (3.32)

Now, from the first part, we know that for all i ∈ [k], |u>Siu| 6 δ and the hypothesis of the
lemma gives us that ‖Si‖F = ‖Σi − I‖F 6 ∆. Thus, for each i, the first term in the summation
above has Frobenius norm at most ∆δ. Using that 〈u, µi〉22 6 δ2 from the first part of the lemma,
yields that, for each i, the Frobenius norm of the third term is at most ∆δ2.

Next, using in addition that ‖µi‖2 6 2/
√
α yields that, for each i, the Frobenius norm of the

4th and 5th terms are at most 2δ∆/
√
α and the Frobenius norm of the 6th and 7th terms are at

most δ/α. Thus, for each i and all but the 2nd term in the summation above, we have an upper
bound on the Frobenius norm of 4δ∆/α.

Now, since |E [h4 (〈M, u〉)]| 6 B, and u is a unit vector, we have that ‖u⊗2 E [h4(M)]‖F 6

B. Thus, combining the aforementioned argument with the triangle inequality, we have for each
i,

‖Siu‖2
2 =

∥∥∥Siu (Siu)>
∥∥∥
F
6

1
α

∥∥∥∥u⊗2 · E [h4(M)]
∥∥∥∥
F

+
∑
i∈[k]

wi

((
u>Siu+ 〈u, µi〉2

)
‖Si‖F

)

+
∑
i∈[k]

4wi
(

(〈u, µi〉) ‖µi‖2 ‖Siu‖2

)
+
∑
i∈[k]

4wi
((
〈u, µi〉2 + u>Siu

)
‖µi‖2

2

)

6 B/α + 15δ∆/α ,

and the claim follows.

Lemma 3.3.9 (Subspace covering all the means and large singular vectors of Si = Σi − I). Let

M = ∑k
i=1wiN (µi,Σi) be a k-mixture of Gaussians on Rd satisfying wi > α, ‖µi‖2 6 2/

√
α,

and ‖Σi − I‖F 6 ∆ for all i ∈ [k]. Given 0 < η < 1, let T̂m satisfy
∥∥∥T̂m − E [hm(M)]

∥∥∥
F
6 η

for every m ∈ [4k] and let λ > 2η. Let V be the span of all the left singular vectors of the

d × dm−1 matrix obtained by the natural flattening of T̂m with singular values at least λ. Then,

for δ = 2λ1/(2Ck+1(k+1)!), we have that:

1. dim V 6
(
4kη2 + kO(k)

)
O(1 + 1/α + ∆)4k /λ2,

191

2. Let

Vinf = {µi}i∈[k]∪
{
v | ∃i ∈ [k], s.t. ‖v‖2 = 1 and v is an eigenvector of Si and ‖Siv‖2 >

√
δ
}
i6k

.

Then, for every unit vector v ∈ Vinf , ‖v − ΠV v‖2
2 6 20δ1/4∆/α2, where ΠV v is the pro-

jection of v onto V .

Proof. From Fact 3.2.6, we have that E [hm(M)] = ∑
i∈[k]wi E [hm(Gi)], whereGi = N (µi,Σi),

and since ‖µi‖2 6 2/
√
α and ‖Σi − I‖F 6 ∆, it follows that ‖E [hm(M)]‖2

F 6 O (m(1 + 1/α + ∆))4m.
From Proposition 3.3.1, we know that

∥∥∥T̂m∥∥∥2

F
6 2

∥∥∥∥T̂m − E [hm(M)]
∥∥∥∥2

F
+ 2

∥∥∥∥E [hm(M)]
∥∥∥∥2

F
6 η2 +O (m(1 + 1/α + ∆))4m .

Thus, the number of singular vectors of the d× dm−1 flattening of T̂m with a singular value > λ

is at most (η2 + O(m(1 + 1/α + ∆))4m)/λ2. Summing up this bound for all m ∈ [4k], yields
the claimed upper bound on dim V .

For the second part, we will first bound 〈u, v〉 for any unit vector u orthogonal to the subspace
V . Towards this, observe that since u is orthogonal to V and ‖u‖2 = 1, we have

∥∥∥∥u · E [hm(M)]
∥∥∥∥
F
6 ‖uT̂m‖F + ‖T̂m − Ehm(M)‖F 6 λ+ η 6 2λ ,

where u · E [hm(M)] is a matrix-vector product of u with a d × dm−1 flattening of E [hm(M)].
For δ = 2λ1/(Ck+1(k+1)!), applying Lemma 3.3.8 yields that

〈µi, u〉2 + ‖Siu‖2
2 6 δ2 + 20δ∆/α 6 20δ∆/α2 . (3.33)

Now, if v is one of the µi’s, then we immediately get from Equation 3.33 that 〈v, u〉2 6 20δ∆/α2.
Similarly, note that if v is a unit length eigenvector of Si satisfying ‖Siv‖2

2 >
√
δ, then,

〈u, v〉2 = 1
‖Siv‖2

2
〈u, Siv〉2 = 1

‖Siv‖2
2
〈Siu, v〉2 6

‖Siu‖2
2

‖Siv‖2
2
.

In both cases, setting u = (v − ΠV v)/ ‖v − ΠV v‖2 completes the proof.

We can now complete the proof of Proposition 3.3.3:

Proof of Proposition 3.3.3. We know that Ŝi − Pi − Si is a symmetric, rank-k′ matrix such that

192

k′ = O(k2), described by the eigenvalue decomposition
∑k′

i=1 τiviv
>
i , where vi’s are the eigen-

vectors and τi’s are the corresponding eigenvalues. Since ‖Si‖F 6 ∆ and

∥∥∥Ŝi∥∥∥
F
6 ‖Pi‖F + ‖Qi‖F + ‖Si‖F 6 O

(√
η/α

)
+O

(
1 + ∆2
√
ηα3

)
+ ∆ = O

(
1 + ∆2
√
ηα3

)
,

we have that the number of singular values of Ŝi that exceed δ1/4 is at most O
(

1+∆2
√
ηα3
√
δ

)
. Recall

that from Lemma 3.3.9 it follows that the dimension of the subspace V is at most kO(k)O(1 +
1/α + ∆)4k/λ2. Thus, the dimension of V ′ is at most

kO(k)O
(

(1 + 1/α + ∆)4k

λ2

)
+O

(
1 + ∆2

√
ηα3
√
δ

)
= O

kO(k)
(
1 + 1

α
+ ∆

)4k+5

η2

 .

Since V ′ contains V constructed in Lemma 3.3.9, we immediately obtain that for every µi,
‖µi − ΠV ′µi‖2

2 6
20
α2

√
δ∆.

Next, let u be a unit vector orthogonal to V ′. Then, since V ′ contains the V described in
Lemma 3.3.9, we know that ‖Siu‖2

2 6 20
α2

√
δ∆. Similarly, since V ′ contains all eigenvectors of

Ŝi with singular values exceeding δ1/4, we know that
∥∥∥Ŝiu∥∥∥2

2
6 δ1/2. Thus, we can conclude that∥∥∥(Ŝi − Si)u∥∥∥2

2
6 100

α2

√
δ∆. LetQi = ∑k′

j=1 τjvjv
>
j with orthonormal vj ∈ Rd. We know such τj’s

and vj’s exist because of the upper bound on rank(Qi). Therefore, for any j, |v>j (Ŝi − Si)u| 6
10
α
δ1/4∆1/2. On the other hand, for any j, we have that

v>j (Ŝi − Si)u > 〈vj, u〉 τj − ‖Pi‖F = 〈vj, u〉 τj −O(√η) .

Combining the two bounds above, yields that whenever τj > δ1/4,

| 〈vj, u〉 | 6 O(√η/τj) + 10
ατj

δ1/4∆1/2 6
10
α
δ1/2∆1/2 .

Thus, the matrix Q̂i = ∑k′

j=1 τjΠV ′vj(ΠV ′vj)> has its range space in V ′ and satisfies

∥∥∥Q̂i −Qi

∥∥∥
F
6 O

(
k2δ1/4

)
+O

(
k2

α
δ1/2∆1/2

)
= O

(
k2

α
δ1/2∆1/2

)
.

193

3.3.6 Parameter vs Moment Distance for Gaussian Mixtures

In this subsection, we prove Lemma 3.3.7. To that end, we will use the following two results; the
second one is from [MV10].

Lemma 3.3.10. SupposeN (µ1, σ
2
1) andN (µ2, σ

2
2) are univariate Gaussians with |µi|, |σi| 6 D,

for some D ∈ R+. If |µ1 − µ2|+ |σ2
1 − σ2

2| 6 β, then the distance between raw moments of two

Gaussians is ∣∣∣Mj(N (µ1, σ
2
1))−Mj(N (µ2, σ

2
2))
∣∣∣ 6 (j + 1)!Dj−1β.

Proof. By Proposition 3.2.3, the j-th raw moment of a GaussianN (µ, σ2) is a sum of monomials
in µ and σ2 of degree j. There are at most (j + 1)! terms in the polynomial. Thus, changing the
mean or the variance by at most β will change the j-th moment by at most (j + 1)!Dj−1β.

Theorem 74. ([MV10]) LetF, F ′ be two univariate mixtures of Gaussians: F = ∑k
i=1wiN (µi, σ2

i)
and F ′ = ∑k′

i=1w
′
iN (µ′i, σ′i

2). There is a constant c > 0 such that, for any β < c, if F, F ′ satisfy:

1. wi, w′i ∈ [β, 1]

2. |µi|, |µ′i| 6 1/β

3. |µi − µi′ |+ |σ2
i − σ2

i′| > β and |µ′i − µ′i′|+ |σ′i
2 − σ′i′

2| > β for all i 6= i′

4. β 6 minπ
∑
i

(
|wi − w′π(i)|+ |µi − µ′π(i)|+ |σ2 − σ′π(i)

2|
)
, where the minimization is taken

over all mappings π : {1, . . . , k} → {1, . . . , k′},

then

max
j∈[2(k+k′−1)]

|Mj(F)−Mj(F ′)| > βO(k) .

We are now ready to complete the proof of Lemma 3.3.7.

Proof of Lemma 3.3.7. We proceed via induction on k. Consider the base case, i.e., k = 1. Then,
either |µ1| > β/2 or |σ1 − 1| > β/2, and thus the first or second moment differ by at least β2/4.
Let the inductive hypothesis be that Lemma 3.3.7 holds for at most k components.

Consider the case where |µi−µi′|+ |σ2
i −σ2

i′| > βC
kk! for all pairs of components i, i′ ∈ [k].

Then, by Theorem 74, we have that

max
j∈[2k]

|Mj(F)−Mj(N (0, 1))| > βC
k+1k! > βC

k+1(k+1)!−1 ,

194

and the lemma follows.

Otherwise, we know that there exists a pair of components with parameter distance less
than βCkk!. In this case, we merge these two components and get a (k − 1)-mixture F ′. By
Lemma 3.3.10, the distance between the j-th moments of F ′ and F is at most (j+1)!Dj−1βC

kk!.
Since we still have |µ′i| + |σ′i

2 − 1| > β − 3βCkk! for all components i in F ′, the inductive
hypothesis implies that

max
j∈[2k−2]

|Mj(F ′)−Mj(N (0, 1))| >
(
β − 3βCkk!

)Ck(k)!−1
.

By the triangle inequality, we can write

max
j∈[2k]

|Mj(F)−Mj(N (0, 1))| > max
j∈[2k−2]

|Mj(F ′)−Mj(N (0, 1))| − max
j∈[2k−2]

|Mj(F)−Mj(F ′)|

>
(
β − 3βCkk!

)Ckk!−1
− (2k − 1)!D2k−3βC

kk!

> βC
k+1(k+1)!−1 .

The last inequality follows from the assumption that β 6 1/(2(2k − 1)!D2k−3). This completes
the proof of Lemma 3.3.7.

3.4 Robust Partial Cluster Recovery

In this section, we give two robust partial clustering algorithms. A partial clustering algorithm
takes a set of points X = ∪i6kXi with true clusters X1, X2, . . . , Xk and outputs a partition of
the sample X = X ′1 ∪ X ′2 such that X ′1 = ∪i∈SXi and X ′2 = ∪i 6∈SXi, for some subset S ⊆ [k]
of size 1 6 |S| < k. That is, a partial clustering algorithm partitions the sample into two non-
empty parts so that each part is a sample from a “sub-mixture”. This is a weaker guarantee than
clustering the entire mixture, which must find each of the originalXi’s. We show that the relaxed
guarantee is feasible even when the mixture as a whole is not clusterable. In our setting, we will
get an approximate (that is, a small fraction of points are misclassified) partial clustering that
works for ε-corruptions Y of any i.i.d. sample X from a mixture of k Gaussians, as long as there
is a pair of components in the original mixture that have large total variation distance between
them.

A partial clustering algorithm such as above was one of the innovations in [BK20b] that
allowed for a polynomial-time algorithm for clustering all fully clusterable Gaussian mixtures.

195

In this section, we build on the ideas in [BK20b] to derive two new partial clustering algo-
rithms that work even when the original mixture is not fully clusterable. Both upgrade the results
of [BK20b] by handling mixtures with arbitrary weights wis instead of uniform weights and
handling mixtures where not all pairs of components are well-separated in TV distance. The first
algorithm succeeds under the information-theoretically minimal separation assumption (i.e. sep-
aration in total variation distance) but runs in time exponential in the inverse mixing weight. The
second algorithm is a key innovation of this paper – it gives an algorithm that runs in polynomial
time in the inverse mixing weight at the cost of handling separation only in relative Frobenius
distance. This improved running time guarantee (at the cost of strong separation requirement
that we mitigate through a novel standalone spectral separation step in Section 3.5) is crucial to
obtaining the fully polynomial running time in our algorithm.

In order to state the guarantees of our algorithms, we first formulate a notion of parameter
separation as the next definition.

Definition 3.4.1 (∆-Parameter Separation). We say that two Gaussian distributions N (µ1,Σ1)
andN (µ2,Σ2) are ∆-parameter separated if at least one of the following three conditions hold:

1. Mean-Separation: ∃v ∈ Rd such that 〈µ1 − µ2, v〉2 > ∆2v>(Σ1 + Σ2)v,

2. Spectral-Separation: ∃v ∈ Rd such that v>Σ1v > ∆ v>Σ2v,

3. Relative-Frobenius Separation: Σi and Σj have the same range space and
∥∥∥Σ†/21 (Σ2 − Σ1)Σ†/21

∥∥∥2

F
>

∆2
∥∥∥Σ†1Σ2

∥∥∥2

op
.

As shown in [BK20b, DHKK20], if a pair of Gaussians is (1−exp(−O(∆ log ∆))-separated
in total variation distance, then, they are ∆-parameter separated.

Our first algorithm succeeds in robust partial clustering whenever there is a pair of com-
ponent Gaussians that are ∆-parameter separated. The running time of this algorithm grows
exponentially in the reciprocal of the minimum weight in the mixture.

Theorem 75 (Robust Partial Clustering in TV Distance). Let 0 6 ε < α 6 1, and η > 0.

There is an algorithm with the following guarantees: Let {µi,Σi}i6k be means and covariances

of k unknown Gaussians. Let Y be an ε-corruption of a sample X of size n > (dk)Ct /ε for

a large enough constant C > 0, from M = ∑
iwiN (µi,Σi) satisfying Condition 3.2.45 with

parameters t = (k/η)O(k) and γ 6 εd−8tk−Ct, for a sufficiently large constant C > 0. Suppose

further that wi > α > 2ε for every i and that there are i, j such that N (µi,Σi) and N (µj,Σj)
are ∆-parameter separated for ∆ = (k/η)O(k).

196

Then, the algorithm on input Y , runs in time n(k/η)O(k)
, and with probability at least 2−O(1

α
log(k

ηα))

over the draw of X and the algorithm’s random choices, the algorithm outputs a partition of Y

into Y1, Y2 satisfying:

1. Partition respects clustering: for each i, max{ k
n
|Y1∩Xi|, kn |Y2∩Xi|} > 1−η−O(ε/α4),

and,

2. Partition is non-trivial: maxi kn |Xi ∩ Y1|,maxi kn |Xi ∩ Y2| > 1− η −O(ε/α4).

Our proof of the above theorem is based on a relatively straightforward extension of the ideas
of [BK20b], albeit with two key upgrades 1) allowing the input mixtures to have arbitrary mixing
weights (at an exponential cost in the inverse of the minimum weight) and 2) handling mixtures
where some pair of components may not be well-separated in TV distance.

In order to get our main result that gives a fully polynomial algorithm (including in the inverse
mixing weights), we will use a incomparable variant of the above partial clustering method that
only handles a weaker notion of parameter separation, but runs in fixed polynomial time.

Theorem 76 (Robust Partial Clustering in Relative Frobenius Distance). Let 0 6 ε < α/k 6 1
and t ∈ N. There is an algorithm with the following guarantees: Let {µi,Σi}i6k be means

and covariances of k unknown Gaussians. Let Y be an ε-corruption of a sample X of size

n > (dk)Ct /ε for a large enough constant C > 0, from M = ∑
iwiN (µi,Σi) that satisfies

Condition 3.2.45 with parameters 2t and γ 6 εd−8tk−Ck, for a large enough constant C > 0.

Suppose further that wi > α > 2ε for each i ∈ [k], and that for some t ∈ N, β > 0 there exist

i, j 6 k such that
∥∥∥Σ†/2(Σi − Σj)Σ†/2

∥∥∥2

F
= Ω

(
(k2t4)/(β2/tα4)

)
, where Σ is the covariance of

the mixtureM. Then, the algorithm runs in time nO(t), and with probability at least 2−O(1
α

log(kη))

over the random choices of the algorithm, outputs a partition Y = Y1 ∪ Y2 satisfying:

1. Partition respects clustering: for each i, max
{

1
win
|Y1 ∩Xi|, 1

win
|Y2 ∩Xi|

}
> 1 − β −

O(ε/α4), and,

2. Partition is non-trivial: maxi 1
win
|Xi ∩ Y1|,maxi 1

win
|Xi ∩ Y2| > 1− β −O(ε/α4).

The starting point for the proof of the above theorem is the observation that the running time
of our first algorithm above is exponential in the inverse mixing weight almost entirely because
of dealing with spectral separation (which requires the use of “certifiable anti-concentration” that
we define in the next subsection). We formulate a variant of relative Frobenius separation (that
is directly useful to us) and prove that whenever the original mixture has a pair of components
separated in this notion, we can in fact obtain a fully polynomial partial clustering algorithm

197

building on the ideas in [BK20b].

3.4.1 Algorithm

Our algorithm will solve SoS relaxations of a polynomial inequality system. The constraints here
use the input Y to encode finding a sample X ′ (the intended setting being X ′ = X , the original
uncorrupted sample) and a cluster Ĉ in X ′ of size = αn, indicated by zis (the intended setting is
simply the indicator for any of the k true clusters) satisfying properties of Gaussian distribution
(certifiable hypercontractivity and anti-concentration).

Covariance constraints introduce a matrix valued indeterminate Π intended to be the square
root of Σ̂, the sos variable for the covariance of a single component.

Covariance Constraints: A1 =

 Π = UU>

Π2 = Σ̂

 (3.34)

The intersection constraints force that X ′ be ε-close to Y (and thus, 2ε-close to unknown sample
X).

Intersection Constraints: A2 =


∀i ∈ [n], m2

i = mi∑
i∈[n] mi = (1− ε)n

∀i ∈ [n], mi(yi − x′i) = 0

 (3.35)

The subset constraints introduce z, which indicates the subset Ĉ intended to be the true clusters
of X ′.

Subset Constraints: A3 =

∀i ∈ [n]. z2
i = zi∑

i∈[n] zi = αn

 (3.36)

Parameter constraints create indeterminates to stand for the covariance Σ̂ and mean µ̂ of Ĉ
(indicated by z).

Parameter Constraints: A4 =


1
αn

n∑
i=1

zi (x′i − µ̂) (x′i − µ̂)> = Σ̂

1
αn

n∑
i=1

zix
′
i = µ̂

 (3.37)

Certifiable Hypercontractivity : A4=

198


∀t 6 2s 1

α2n2

∑
i,j6n

zizj(Q(x′i − x′j)− EzQ)2t 6

 1
α2n2

∑
i,j6n

zizj(Q(x′i − x′j)− EzQ)2

t
1

α2n2

∑
i,j6n

zizj
(
Q(x′i − x′j)− EzQ

)2
6

6
α2 ‖Q‖

2
F


(3.38)

Here, we used the shorthand EzQ = 1
α2n2

∑
i,j6n zizjQ(x′i − x′j).

In the constraint system for our first algorithm, we will use the following certifiable anti-
concentration constraints on Ĉ for δ = α−poly(k) and τ = α/poly(k) and s(u) = 1/u2 for every
u.

Anti-Concentration : A5 =



1
α2n2

n∑
i,j=1

zizjq
2
δ,Σ

((
x′i − x′j

)
, v
)
6 2s(δ)Cδ

(
v>Σv

)s(δ)
1

α2n2

n∑
i,j=1

zizjq
2
τ,Σ

((
x′i − x′j

)
, v
)
6 2s(τ)Cτ

(
v>Σv

)s(η)


(3.39)

We note that the constraint system for our second algorithm (running in fixed polynomial
time), we will not useA5. Towards proving Theorems 76 and 75 we use the following algorithm
that differs only in the degree of the pseudo-distribution computed and the constraint system that
the pseudo-distribution satisfies.

Algorithm 77 (Partial Clustering).

Given: A sample Y of size n. An outlier parameter ε > 0 and an accuracy parameter η > 0.

Output: A partition of Y into partial clustering Y1 ∪ Y2.

Operation:

1. SDP Solving: Find a pseudo-distribution ζ̃ satisfying ∪5
i=1Ai (∪4

i=1Ai for Theo-

rem 76) such that Ẽζ̃ zi 6 α + od(1) for every i. If no such pseudo-distribution

exists, output fail.

2. Rounding: Let M = Ẽz∼ζ̃ [zz>].

(a) Choose ` = O
(

1
α

log(k/η)
)

rows of M uniformly at random and indepen-

dently.

(b) For each i 6 `, let Ĉi be the indices of the columns j such that M(i, j) >

199

η2α5/k.

(c) Choose a uniformly random S ⊆ [`] and output Y1 = ∪i∈SĈi and Y2 =
Y \ Y1.

3.4.2 Analysis

Simultaneous Intersection Bounds. The key observation for proving the first theorem is the
following lemma that gives a sum-of-squares proof that no z that satisfies the constraints ∪5

i=1Ai
can have simultaneously large intersections with the ∆-parameter separated component Gaus-
sians.

Lemma 3.4.2 (Simultaneous Intersection Bounds for TV-separated case). Let Y be an ε-corruption

of a sampleX of size n > (dk)Ct /ε for a large enough constantC > 0, fromM = ∑
iwiN (µi,Σi)

satisfying Condition 3.2.45 with parameters t = (k/η)O(k) and γ 6 εd−8tk−Ct, for a sufficiently

large constant C > 0. Suppose further that wi > α > 2ε for every i and that there are i, j such

thatN (µi,Σi) andN (µj,Σj) are ∆-parameter separated for ∆ = (k/η)O(k). Then, there exists

a partition of [k] into S ∪ L such that, |S|, |L| < k and for z(Xr) = 1
wrn

∑
i∈Xr zi,

{
∪5
i=1Ai

}
(k/ηα)poly(k)

z

 ∑
i∈S,j∈L

z(Xi)z(Xj) 6 O(k2ε/α) + η/α

 .

The proof of Lemma 3.4.2 is given in Section 3.4.3.

For the second theorem, we use the following version that strengthens the separation assump-
tion and lowers the degree of the sum-of-squares proof (and consequently the running time of
the algorithm) as a result.

Lemma 3.4.3 (Simultaneous Intersection Bounds for Frobenius Separated Case). Let X be a

sample of size n > (dk)Ct /ε for a large enough constantC > 0, fromM = ∑
iwiN (µi,Σi) that

satisfies Condition 3.2.45 with parameters 2t and γ 6 εd−8tk−Ck, for a large enough constant

C > 0. Suppose further that wi > α > 2ε for each i ∈ [k], and that for some t ∈ N, β > 0
there exist i, j 6 k such that

∥∥∥Σ†/2(Σi − Σj)Σ†/2
∥∥∥2

F
= Ω

(
(k2t4)/(β2/tα2)

)
, where Σ is the

covariance of the mixture M. Then, for any ε-corruption Y of X , there exists a partition of

200

[k] = S ∪ T such that

{
∪4
i=1Ai

}
2t
z

∑
i∈S

∑
j∈T

z(Xi)z(Xj) 6 O(k2)β +O(k2)ε/α

 .

Here, z(Xr) = 1
wrn

∑
i∈Xr zi for every r.

The proof of Lemma 3.4.3 is given in Section 3.4.4.

Notice that the main difference between the above two lemmas is the constraint systems they
use. Specifically, the second lemma does not enforce certifiable anti-concentration constraints.
As a result, there is a difference in the degree of the sum-of-squares proofs they claim; the degree
of the SoS proof in the second lemma does not depend on the inverse minimum mixture weight.

First, we complete the proof of the Theorem 75. The proof of Theorem 76 is exactly the same
except for the use of Lemma 3.4.3 (and thus has the exponent in the running time independent of
1/α) instead of Lemma 3.4.2.

Proof of Theorem 75. Let η′ = O(η2α3/k). We will prove that whenever ∆ > poly(k/η′)k =
poly

(
k
ηα

)k
, Algorithm 77, when run with input Y , with probability at least 0.99, recovers a

collection Ĉ1, Ĉ2, . . . , Ĉ` of ` = O
(

1
α

log k/η
)

subsets of indices satisfying | ∪i6` Ĉi| > (1 −
η′/k40)n such that there is a partition S ∪ L = [`], 0 < |S| < ` satisfying:

min

 1
αn
|Ĉi ∩ ∪j∈SXj|,

1
αn
|Ĉi ∩ ∪j∈LXj|

 6 100η′/α3 +O(ε/α4) . (3.40)

We first argue that this suffices to complete the proof. Split [`] into two groupsGS, GL as follows.
For each i, let j = arg maxr∈[`]

1
αn
|Ĉi∩Xr|. If j ∈ S, add it toGS , else add it toGL. Observe that

this process is well-defined - i.e, there cannot be j ∈ S and j′ ∈ L that both maximize 1
αn
|Ĉi∩Xr|

as r varies over [k]. To see this, WLOG, assume j ∈ S. Note that 1
αn
|Ĉi ∩ Xj| > 1/k. Then,

we immediately obtain: 1
αn
| ∪j∈S Xj ∩ Ĉi| > 1/k. Now, if we ensure that η′ 6 α3/k2 and

ε 6 O(α4/k), then, 1
αn
|Ĉi ∩ ∪j′∈LXj′| is at most the RHS of (3.40) which is � 1/k. This

completes the proof of well-definedness. Next, adding up (3.40) for each i ∈ S yields that

1
|Ĉi|
| (∪i∈GSXi) ∩ ∪j∈LXj| 6 O(log(k/η′)/α) (η′ +O(ε/α)) ,

201

where we used that |GS| 6 `. Combined with | ∪i6` Ĉi| > (1− η′/k40)n, we obtain that

| ∪i∈GS Xi| > 1− η′/k40 −O(log(k/η′)/α) (η′ +O(ε/α)) = η +O
(
log(k/ηα)ε/α2

)
for η′ 6 O(η2α3/k).

We now go ahead and establish (3.40). Let ζ̃ be a pseudo-distribution satisfying A of degree
(k/η)poly(k) satisfying Ẽζ̃ zi = α for every i. Such a pseudo-distribution exists. To see why,
let ζ̃ be the actual distribution that always sets X ′ = X , chooses an i with probability wi and
outputs a uniformly subset Ĉ of size αn of Xi conditioned on Ĉ satisfying A. Then, notice
that since X satisfies Condition 3.2.45, by Fact 3.2.43, the uniform distribution on each Xi has
t-certifiably C-hypercontractive degree 2 polynomials and is t-certifiably Cδ-anti-concentrated.
By an concentration argument using high-order Chebyshev inequality, similar to the proof of
Lemma 3.2.49 (applied to uniform distribution on Xi of size n > (dk)O(t), Ĉ chosen above
satisfies the constraints A with probability at least 1 − od(1). Observe that the probabililty that
zi is set to 1 under this distribution is then at most α + od(1). Thus, such a distribution satisfies
all the constraints in A.

Next, let M = Ẽζ̃ [zz>]. Then, we claim that:

1. od(1) + α >M(i, j) > 0 for all i, j,

2. M(i, i) ∈ α± od(1) for all i,

3. Ej∼[n]M(i, j) > α2 − od(1) for every i.

The proofs of these basic observations are similar to those presented in Chapter 4.3 of [FKP+19]
(see also the proof of Theorem 5.1 in [BK20b]): Observe thatA 4

{
zizj = z2

i z
2
j > 0

}
for every

i. Thus, by Fact 3.2.18, Ẽ[zizj] > 0 for every i, j. Next, observe thatA 2 {(1− zi) = (1− zi)2 > 0}
for every i and thus, A 2 {zi(1− zj) > 0}. Thus, by Fact 3.2.18 again, we must have Ẽ[zizj] 6
Ẽ[zi] 6 α + od(1). Finally, A 2

{∑
j zizj = zi

∑
j zj = αnzi

}
. Thus, by Fact 3.2.18 again, we

must have
∑
jM(i, j) = ∑

j Ẽ[zizj] = αn
∑
j Ẽ[zi] ∈ (α2 ± od(1))n. Let Bi be the entries in the

i-th row Mi that are larger than α2/2. Then, by (1) and (2), we immediately derive that Bi must
have at least αn/2 elements. Call an entry of M large if it exceeds α2η′. For each i, let Bi be the
set of large entries in row i of M . Then, using (3) and (1) above gives that |Bi| > α(1 − αη′)n
for each 1 6 i 6 n. Next, call a row i “good” if 1

αn
min{|∪r∈LXr ∩ Bi|, |∪r′∈SXr′ ∩ Bi|} 6

100η′/α3 +O(ε/α4). Let us estimate the fraction of rows of M that are good.

Towards that goal, let us apply Lemma 3.4.2 with η set to η′ and use Fact 3.2.18 (SoS

202

Completeness), to obtain
∑
r∈S,r′∈L Ei∈XrEj∈Xr′M(i, j) 6 η′ + O(ε/α). Using Markov’s in-

equality, with probability 1 − α3/100 over the uniformly random choice of i, Ej∈Xr′M(i, j) 6

100 1
α3η

′ +O(ε/α4). Thus, 1− α3/100 fraction of the rows of M are good.

Next, let R be the set of 100
α

log
(
k50

η′

)
rows sampled in the run of the algorithm and set

Ĉi = Bi for every i ∈ R. The probability that all of them are good is then at least (1 −

α3/100)
100
α

log
(
k50
αη′

)
> 1−α. Let us estimate the probability that | ∪i∈R Ĉi| > (1− η′/k40)n. For

a uniformly random i, the chance that a given point t ∈ Bi is at least α(1−αη′). Thus, the chance
that t 6∈ ∪i∈RBi is at most (1− α/2)100/α log(k50/(αη′)) 6 η′/k50. Thus, the expected number of t
that are not covered by ∪i∈RĈi is at most nη′/k50. Thus, by Markov’s inequality, with probability
at least 1−1/k10, 1−η′/k40 fraction of t are covered in ∪i∈RĈi. By the above computations and a
union bound, with probability at least 1− η′/k10 both the conditions below hold simultaneously:
1) each of the 100

α
log (k50/η′) rows R sampled are good and 2) | ∪i∈R Ĉi| > (1− η′/k40)n. This

completes the proof.

3.4.3 Proof of Lemma 3.4.2

Our proof is based on the following simultaneous intersection bounds from [BK20b]. We will use
the following lemma that forms the crux of the analysis of the clustering algorithm in [BK20b]:

Lemma 3.4.4 (Simultaneous Intersection Bounds, Lemma 5.4 in [BK20b]). Fix δ > 0, k ∈ N.

Let X = X1 ∪ X2 ∪ . . . Xk be a good sample of size n from a k-mixture
∑
iwiN (µi,Σi) of

Gaussians. Let Y be any ε-corruption of X . Suppose there are r, r′ 6 k such that one of the

following three conditions hold for some ∆ > (k/δ)O(k):

1. there exists a v such that v>Σ(r′)v > ∆v>Σ(r′)v and B = maxi6k v>Σ(i)v
v>Σ(r′)v , or

2. there exists a v ∈ Rd such that 〈µ(r)− µ(r′), v〉22 > ∆2v> (Σ(r) + Σ(r′)) v, or,

3.
∥∥∥Σ(r′)−1/2Σ(r)Σ(r′)−1/2 − I

∥∥∥2

F
> ∆2

(∥∥∥Σ(r′)−1/2Σ(r)1/2
∥∥∥4

op

)
.

Then, for the linear polynomial z(Xr) = 1
αn

∑
i∈Xr zi in indeterminates zis satisfies:

{∪i65Ai} (k/δ)O(k) log(2B)
z

{
z(Xr)z(Xr′) 6 O(

√
δ) +O(ε/α)

}
.

Proof of Lemma 3.4.2. Without loss of generality, assume that the pair of separated components
are N (µ1,Σ1) and N (µ2,Σ2). Let us start with the case when the pair is spectrally separated.
Then, there is a v ∈ Rd such that ∆v>Σ1v 6 v>Σ2v.

203

Consider an ordering of the true clusters along the direction v, renaming cluster indices if
needed, such that v>Σ1v 6 v>Σ2v 6 . . . v>Σkv. Let j 6 k′ be the largest integer such that
poly(k/η)v>Σjv 6 v>Σj+1v. Further, observe that since j is defined to be the largest index
which incurs separation poly(k/η), all indices in [j, k] have spectral bound at most poly(k/η)
and thus v>Σkv

v>Σjv 6 poly(k/η)k.

Applying Lemma 3.4.4 with the above direction v to every r < j and r′ > j and observing
that the parameter B in each case is at most v

>Σkv
v>Σjv 6 ∆k yields:

A
O(k2s2poly log(∆))

z
{
z(Xr)z(Xr′) 6 O(ε/α) +

√
δ
}
.

Adding up the above inequalities over all r 6 j − 1 and r′ > j + 1 and taking S = [j − 1],
T = [k] \ [j − 1] completes the proof in this case.

Next, let us take the case when N (µ1,Σ1) and N (µ2,Σ2) are mean-separated. WLOG,
suppose 〈µ1, v〉 6 〈µ2, v〉 . . . 6 〈µk, v〉. Then, we know that 〈µk − µ1, v〉 > ∆v>Σiv. Thus,
there must exist an i such that 〈µi−µi+1, v〉 > ∆v>Σiv/k. Let S = [i] and L = [k]\S. Applying
Lemma 3.4.4 and arguing as in the previous case (and noting that κ = poly(k)) completes the
proof.

Finally, let us work with the case of relative Frobenius separation. Since ‖Σ−1/2
1 Σ1/2

k ‖ 6

poly(k), the hypothesis implies that ‖Σ1 − Σ2‖F > ∆/poly(k). Let B = Σ1 − Σ2 and let A =
B/ ‖B‖F . WLOG, suppose 〈Σ1, A〉 6 . . . 〈Σk, A〉. Then, since 〈Σk, A〉−〈Σ1, A〉 > ∆/poly(k),
there must exist an i such that 〈Σi+1, A〉 − 〈Σi, A〉 > ∆/poly(k). Let us now set S = [i] and
L = [k] \ S.

Then, for every i ∈ S and j ∈ L, we must have: 〈Σj, A〉 − 〈Σi, A〉 > ∆/poly(k). Thus,
‖Σj − Σi‖F > ∆/poly(k). And thus, ∆/poly(k) 6 ‖Σj − Σi‖F 6

∥∥∥Σ−1/2
i Σ1/2

j

∥∥∥2

2

∥∥∥Σ−1/2
i ΣjΣ−1/2

i − I
∥∥∥
F

.

Rearranging and using the bound on
∥∥∥Σ−1/2

i Σ1/2
j

∥∥∥2

2
yields that

∥∥∥Σ−1/2
i ΣjΣ−1/2

i − I
∥∥∥
F
> ∆/poly(k).

A similar argument as in the two cases above now completes the proof.

3.4.4 Proof of Lemma 3.4.3

We use Ez as a shorthand for 1
αn

∑n
i=1 zi. We will write 1

wrn

∑
j∈Xr zj = z(Xr). Note that

z(Xr) ∈ [0, 1]. And finally, we will write z′(Xr) = 1
wrn

∑
j∈Xr zj1(xj = yj) – the version of

204

z(Xr) that only sums over non-outliers.

We will use the following technical facts in the proof:

Fact 3.4.5 (Lower Bounding Sums, Fact 4.19 [BK20b]). Let A,B,C,D be scalar-valued inde-

terminates. Then, for any τ > 0,

{0 6 A,B 6 A+B 6 1} ∪ {0 6 C,D} ∪ {C +D > τ} 2
A,B,C,D

{AC +BD > τAB} .

Fact 3.4.6 (Cancellation within SoS, Lemma 9.2 in [BK20b]). For indeterminate a and any

t ∈ N,

{
a2t 6 1

}
2t
a {a 6 1} .

Lemma 3.4.7 (Lower-Bound on Variance of Degree 2 Polynomials). Let Q ∈ Rd×d. Then, for

any i, j 6 k, and z′(Xr) = 1
wrn

∑
i∈Xr zi1(xi = yi), we have:

A 4
z

z′(Xr)2z′(X ′r)2 6
(32Ct)2t

(EXrQ− EXr′
Q)2t

 α4

w2
rw

2
r′

(
Ez(Q− EzQ)2

)t

+ α2

w2
r

(
EXr′

(Q− EXr′
Q)2

)t
+ α2

w2
r′

(
EXr(Q− EXrQ)2

)t .

Proof. Let z′i = zi1(xi = yi) for every i. Using the substitution rule and non-negativity con-
straints of the zi’s, we have

A 4
z

Ez(Q− EzQ)2t = 1
α2n2

∑
i,j6n

z′iz
′
j (Q(xi − xj)− EzQ)2t

>
1

α2n2

∑
i,j∈Xr or i,j∈Xr′

z′iz
′
j (Q(xi − xj)− EzQ)2t


(3.41)

Using the SoS almost triangle inequality, we have

205

A 4
z

 1
α2n2

∑
i,j∈Xr or i,j∈Xr′

z′iz
′
j (Q(xi − xj)− EzQ)2t

>
(1

22t

) 1
α2n2

∑
i,j∈Xr

z′iz
′
j (EXrQ− EzQ)2t − 1

α2n2

∑
i,j∈Xr

z′iz
′
j (Q(xi − xj)− EXrQ)2t


+
(1

22t

) 1
α2n2

∑
i,j∈Xr

z′iz
′
j

(
EXr′

Q− EzQ
)2t
− 1
α2n2

∑
i,j∈Xr′

z′iz
′
j

(
Q(xi − xj)− EXr′

Q
)2t


= 2−2t

(wr/α)2z(Xr)2 (EXrQ− EzQ)2t − 1
α2n2

∑
i,j∈Xr

(Q(xi − xj)− EXrQ)2t


+ 2−2t

(wr′/α)2z(Xr′)2
(
EXr′

Q− EzQ
)2t
− 1
α2n2

∑
i,j∈Xr′

(
Q(xi − xj)− EXr′

Q
)2t


(3.42)

Using Fact 3.4.5, we can further simplify the above as follows:

A 4
z

Ez(Q− EzQ)2t > 2−6tw
2
rw

2
r′

α4 z′(Xr)2z′(Xr′)2(EXrQ− EXr′
Q)2t

− 2−6t(wr/α)2EXr(Q− EXrQ)2t − 2−6t(wr′/α)2EXr′
(Q− EXr′

Q)2t

> 2−6tw
2
rw

2
r′

α4 z′(Xr)2z′(Xr′)2(EXrQ− EXr′
Q)2t

− (wr/α)2(Ct)2t
((

EXr(Q− EXrQ)2
)t

+
(
EXr′

(Q− EXr′
Q)2

)t)
(3.43)

where the last inequality follows from the Certifiable Hypercontractivity constraint (A4). Rear-
ranging completes the proof.

We can use the lemma above to obtain a simultaneous intersection bound guarantee when
there are relative Frobenius separated components in the mixture.

Lemma 3.4.8. Suppose
∥∥∥Σ−1/2(Σr − Σr′)Σ−1/2

∥∥∥2

F
> 108 C6t4

β2/tα2 . Then, for z′(Xr) = 1
αn

∑
i∈Xr zi·

206

1(yi = xi) for every r,

A 2t
w {z′(Xr)z′(X ′r) 6 β} .

Proof. We work with the transformation xi → Σ−1/2xi. Let Σ′z = Σ−1/2ΣzΣ−1/2, Σ′r =
Σ−1/2ΣrΣ−1/2 and Σ′r′ = Σ−1/2Σr′Σ−1/2 be the transformed covariances. Note that transfor-
mation is only for the purpose of the argument - our constraint system does not depend on Σ.

Notice that ‖Σ′r′‖2 6
1
wr

and ‖Σ′r′‖2 6
1
wr′

.

We now apply Lemma 3.4.7 with Q = Σ′r − Σ′r′ . Then, notice that EXrQ − EXr′
Q =

‖Σ′r − Σ′r′‖
2
F = ‖Q‖2

F . Then, we obtain:

A 2t
z

z′(Xr)2z′(Xr′)2 6

(
32Ct

EXrQ− EXr′
Q

)2t

·

(
α4

w2
rw

2
r′

(
Ez(Q− EzQ)2

)t
+ α2

w2
r

(
EXr′

(Q− EXr′
Q)2

)t
+ α2

w2
r′

(
EXr(Q− EXrQ)2

))t .
(3.44)

Since Xr and Xr′ have certifiably C-bounded variance polynomials for C = 4 (as a conse-
quence of Condition 3.2.45 and Fact 3.2.43 followed by an application of Lemma 3.2.25), we
have:

A 2
Q
{

EXr′
(Q− EXr′

Q)2 6 6
∥∥∥Σ′r′1/2QΣ′r′

1/2
∥∥∥2

F
6

6
w2
r′
‖Q‖2

F

}
,

and

A 2
Q
{

EXr(Q− EXrQ)2 6 6
∥∥∥Σ′r1/2

QΣ′r
1/2
∥∥∥2

F
6

6
w2
r

‖Q‖2
F

}
.

Finally, using the bounded-variance constraints in A, we have:

A 4
Q,z

E(Q− EzQ)2 6
6
α2 ‖Q‖

2
F .

Plugging these estimates back in (3.44) yields:

A 4
z

{
z′(Xr)2z′(Xr′)2 6

(1000Ct)2t

α2t ‖Q‖2t
F

}
. (3.45)

Plugging in the lower bound on ‖Q‖2t
F and applying Fact 3.4.6 completes the proof.

207

We can use the above lemma to complete the proof of Lemma 3.4.3:

Proof of Lemma 3.4.3. WLOG, assume that Σ = I . Let Q = Σr − Σr′ and let Q̄ = Q/ ‖Q‖F .
Consider the numbers vi = tr(Σr ·Q). Then, we know that maxi,j |vi− vj| > ‖Q‖F . Thus, there
must exist a partition of [k] = S ∪ T such that |vi − vj| > ‖Q‖F /k whenever i ∈ S and j ∈ T .

Thus, for every i ∈ S and j ∈ T , ‖Σi − Σj‖2
F > ‖Q‖2

F /k
2 = 108 C6t4

(β2/tα2) . We can now apply

Lemma above to every i ∈ S, j ∈ T , observe thatA 4 {z(Xr)z(Xr′) 6 z′(Xr)z′(Xr′) + 2ε/α},
and add up the resulting inequalities to finish the proof.

3.4.5 Special Case: Algorithm for Uniform and Bounded Mixing Weights

In this subsection, we obtain a polynomial time algorithm when the input mixture has weights
that are bounded from below. This includes the case of uniform weights and when the minimum
mixing weight is at least some function of k. At a high level, our algorithm partitions the sample
into clusters as long as there is a pair of components separated in TV distance and given samples
that are not clusterable, runs the tensor decomposition algorithm to list decode. We then use
standard robust tournament results to pick a hypothesis from the list.

Theorem 78 (Robustly Learning Mixtures of Gaussians with Bounded Weights). Given 0 < ε <

Ok(1), let Y = {y1, y2, . . . , yn} be a multiset of n > n0 = polyk (d, 1/ε) ε-corrupted samples

from a k-mixture of GaussiansM = ∑
i6k wiN (µi,Σi), such that wi > α. Then, there exists

an algorithm with running time polyk(n1/α) · exp (polyk(1/α, 1/ε)) such that with probability at

least 9/10 it outputs a hypothesis k-mixture of Gaussians M̂ = ∑
i6k ŵiN

(
µ̂i, Σ̂i

)
such that

dTV

(
M,M̂

)
= Ok(ε).

Briefly, our algorithm simply does the following:

1. Clustering via SoS: Guess a partition of the mixture such that each component in the
partition is not clusterable. Let the resulting partition have t 6 k components. In parallel,
try all possible ways to run Algorithm 77 repeatedly to obtain a partition of the samples,
{Ỹj}j∈[t] into exactly t components. For each such partition repeat the following.

2. Robust Isotropic Transformation: Run the algorithm corresponding to Lemma 3.6.4 on
each set Ỹj to make the sample approximately isotropic. Grid search for weights over
[α, 1/k]k with precision α.

208

3. List-Decoding via Tensor Decomposition: Run Algorithm 73 on each Ỹj . Concatenate
the lists to obtain L.

4. Robust Tournament: Run the tournament from Fact 3.2.50 over all the hypotheses in L,
and output the winning hypothesis.

Proof Sketch. Setting ∆ = (kkO(k)), it follows from Theorem 75 that we obtain a partition of
Y into {Ỹj}j∈[t], for some t ∈ [k] such that Ỹj has at most O(kε/α) outliers, (1−O(kε/α))-
fraction of samples from at least one component of the input mixture and the resulting samples
are not ∆-separated (see Definition 3.4.1). It then follows from Lemma 3.6.4 that the mean µj
and covariance Σj of Ỹj satisfy : a) ‖µj‖2 6 O(

√
εk1.5/α1.5), b) (1−

√
εk1.5/α1.5) I � Σj �

(1−
√
εk1.5/α1.5) I , and c) ‖Σj − I‖F 6 O(

√
εk1.5/α1.5).

Each component, Ỹj , of the partition can have at most k components. Assuming these corre-
spond to {w(j)

i , µ
(j)
i Σ(j)

i }i∈[k], observe,
∑
i∈[k] w

(j)
i Σ(j)

i +w
(j)
i µ

(j)
i

(
µ

(j)
i

)>
� (1 +

√
εk1.5/α1.5) I .

Thus, we have that
∥∥∥µ(j)

i

∥∥∥2

2
6 (1 +

√
εk1.5) /α2.5 and combined with not being ∆-separated, it

follows that for all i′ ∈ [k],
∥∥∥Σ(j)

i′ − I
∥∥∥
F

=
∥∥∥Σ(j)

i′ − Σj + (Σj − I)
∥∥∥
F

6

∥∥∥∥∥∥Σ(j)
i′ −

∑
i∈[k]

w
(j)
i Σ(j)

i +
∑
i∈[k]

w
(j)
i µ

(j)
i

(
µ

(j)
i

)>∥∥∥∥∥∥
F

+ ‖Σj − I‖F

6

∥∥∥∥∥∥
∑
i∈[k]

w
(j)
i

(
Σ(j)
i′ − Σ(j)

i

)∥∥∥∥∥∥
F

+O
(
k1.5/α2.5

)
6 O(∆/α) .

There are at most O
(
kk
)

ways in which we can partition the set of input points such that each
resulting component is not partially clusterable. We run the algorithm in parallel for each one.
Then, for the correct iteration, we apply Theorem 72 to get a list L of size exp(polyk(1/α, 1/ε))
such that it contains a hypothesis {ŵ(j)

i , µ̂
(j)
i , Σ̂(j)

i }i∈[k] such that |ŵ(j)
i −w

(j)
i | 6 α,

∥∥∥µ̂(j)
i − µ

(j)
i

∥∥∥
2
6

Ok(ε) and
∥∥∥Σ̂(j)

i − Σ(j)
i

∥∥∥
F
6 Ok(ε). Since (1− 1/∆) I � Σ(j)

i , it then follows from Lemma 3.6.2
that the hypothesis is Ok(ε)-close to the input in total variation distance.

Algorithm 77 is called at most O
(
kk
)

times, and along with the robust isotropic trans-

formation, this requires polyk
(
n1/α, 1/ε

)
. The grid search contributes a multiplicative factor

of (1/α)k. The tensor decomposition algorithm and robust hypothesis section polyk(n1/α) ·
exp (polyk(1/α, 1/ε)).

209

3.5 Spectral Separation of Thin Components

In this section, we show how to efficiently separate a thin component, if such a component
exists, given sufficiently accurate approximations to the component means and covariances. This
is an important step in our overall algorithm and is required to obtain total variation distance
guarantees.

Specifically, the main algorithmic result of this section is described in the following lemma:

Lemma 3.5.1. There is a polynomial-time algorithm with the following properties: Let M =∑k
i=1wiGi with Gi = N (µi,Σi) be a k-mixture of Gaussians onRd, and let X be a set of points

in Rd satisfying Condition 3.2.45 with respect toM for some parameters (γ, t). The algorithm

takes input parameters η, δ, satisfying 0 < δ < η < 1/(100k), and Y , an ε-corrupted version of

X , as well as candidate parameters {µ̂i, Σ̂i}i6k. Then as long as

1. Cov(M) � I/2,

2. ‖µi − µ̂i‖2 < δ and ‖Σi − Σ̂i‖F < δ, for all i ∈ [k], and

3. there exists an s ∈ [k] such that Σs has an eigenvalue < η,

the algorithm outputs a partition of Y into Y1 ∪ Y2 such that there is a non-trivial partition of [k]
intoQ1∪Q2, so that lettingMj , j ∈ {1, 2}, be proportional to

∑
i∈Qj wiGi andWj = ∑

i∈Qj wi,

then Yj is an ((O(k2γ) + Õ(η1/2k))/Wj)-corruption of a set satisfying Condition 3.2.45 with

respect toMj with parameters (O(kγ/Wj), t).

The key component in the proof of Lemma 3.5.1 is the following lemma:

Lemma 3.5.2. Let M = ∑k
i=1wiGi with Gi = N (µi,Σi) be a k-mixture of Gaussians in Rd

with Cov(M) � I/2. Suppose that, for some 0 < δ < 1/(100k), we are given µ̂i and Σ̂i

satisfying ‖µi − µ̂i‖2 < δ and ‖Σi − Σ̂i‖F < δ, for all i ∈ [k]. Suppose furthermore that for

some η > δ, there is a Σs, s ∈ [k], with an eigenvalue less than η. There exists a computationally

efficient algorithm that takes inputs η, δ, µ̂i, Σ̂i, and computes a function F : Rd → {0, 1} such

that:

1. For each i ∈ [k], F (Gi) returns the same value in {0, 1} with probability at least 1 −
Õk(η1/(2k)). We define the most likely value of F (Gi) to be this value.

2. There exist i, j ∈ [k] such that the most likely values of F (Gi) and F (Gj) are different.

210

Furthermore, F (x) can be chosen to be of the form f(v·x), for some v ∈ Rd, and f : R → {0, 1}
is an O(k)-piecewise constant function.

Given Lemma 3.5.2, it is easy to finish the proof of Lemma 3.5.1.

Proof of Lemma 3.5.1. We simply take the candidate parameters, obtain F from Lemma 3.5.2,
and partition Y = Y1 ∪ Y2, so that F is constant on both Y1 and Y2. We let Qj be the set of
i so that F (Gi) returns the value j − 1 with large probability. Letting the partition of X for
Condition 3.2.45 be X = X1 ∪ . . . ∪ Xk, we let Xj = ⋃

i∈Qj Xi. Lemma 3.2.48 shows that
the Xj satisfy the appropriate conditions for Mj . It remains to prove that Yj equals Xj with
a sufficiently small rate of corruptions. The fraction of points misclassified by F equals ε (the
fraction of outliers in the sample Y) plus the misclassification error of F . We note that given the
form of F and the fact that the uncorrupted samples in Y satisfy Condition 3.2.45, the fraction
of misclassified samples from each component i is at most the probability that a random sample
fromGi gets misclassified (at most Õk(η1/(2k)) by Lemma 3.5.2) plusO(kγ). Summing this over
components, gives Lemma 3.5.1.

Let us now describe the algorithm to prove Lemma 3.5.2 (and evaluate F), which is given in
pseudocode below (Algorithm 79).

Algorithm 79 (Algorithm for Spectrally Separating Thin Components).

Input: Estimated parameters
{
µ̂i, Σ̂i

}
i6k

, parameters η, δ.

Output: A function F : Rd → {0, 1}.

Operation:

1. Find a unit-norm direction v such that there exists s ∈ [k], vT Σ̂sv < 2η.

2. Compute (vT Σ̂iv) for all i ∈ [k].

(a) If there exists j ∈ [k] such that (vT Σ̂jv) > √η, find a t such that
√
η > t >

2η and there is no j ∈ [k] with t < vT Σ̂jv < tΩ(η−1/(2k)). Set F (x) = 1 if

there is an i such that |v · (x− µ̂i)| <
√
t log(1/η) and 0 otherwise.

(b) Otherwise, compute v · µ̂i for all i ∈ [k]. Find a t between the minimum and

the maximum of v · µ̂i such that there is no v · µ̂i within 1/(20k) of t. Set

F (x) = 1 if v · x > t and 0 otherwise.

211

Proof of Lemma 3.5.2. Let v be a unit vector and s ∈ [k] such that vT Σ̂sv < 2η. By assumption,
we have that Varv · M > 1/2. Furthermore,

Varv · M =
∑
i

wi(vTΣiv) +
∑
i

wi(v · (µi − µ))2 6
∑
i

wi(vTΣiv) +
∑

wi(v · (µi − µs))2 ,

where µ is the mean ofM. This means that either there exists j ∈ [k] such that (vTΣjv) > 1/4,
or there exists j ∈ [k] such that |v · (µj − µs)| > 1/4. Since we have approximations of these
quantities to order δ, we have that there is j ∈ [k] such that (vT Σ̂jv) > 1/10 or that there is
j ∈ [k] with |v · (µ̂j − µ̂s)| > 1/10.

We first consider the case that there is a j ∈ [k] such that (vT Σ̂jv) > √η. Since there is
a j ∈ [k] with (vT Σ̂jv) > √η and another s ∈ [k] with (vT Σ̂sv) < 2η, there must be some
√
η > t > 2η such that there is no j ∈ [k] with t < vT Σ̂jv < tΩ(η−1/(2k)). Otherwise,

there must be at least one Σ̂i in each 2η 6 Ω(η−1/(2k))i 6 √η, where we need more than k
components.

For a given x, we define F (x) to be 1 if there exists i such that |v · (x− µ̂i)| <
√
t log(1/η),

and F (x) = 0 otherwise.

To show that this works, we note that for all i ∈ [k], if vT Σ̂iv 6 t, then Varv ·Gi 6 t + δ,
and since |v · (µi − µ̂i)| < δ, by the Gaussian tail bound, we have that

Prx∼Gi
(
|x− µi| > (

√
t log(1/η)− δ)

)
6 exp

(
−(
√
t log(1/η)− δ)2

2(t+ δ)

)
= O(η) .

Thus, all but an O(η)-fraction of the samples of Gi have F (x) = 1.

On the other hand, for components i with vT Σ̂iv � tη−1/(2k), we have that Varv ·Gi �
tη−1/(2k). Then, the density of Gi is at most 1/

√
2πtη−1/(2k). So, the probability that a sample

from v ·Gi lies in any interval of length 2
√
t log(1/η) is at most

1√
2πtη−1/(2k)

2
√
t log(1/η) = Õ(η1/(4k)) .

Since there are k such intervals, the probability that F (x) is 1 when x is drawn from Gi is at
most Õk(η1/(4k)). This completes our proof of point (1), and point (2) follows from the fact that
we know of component Gj in one class and Gs in the other class.

We next consider the case where (vT Σ̂jv) 6 √η for all j ∈ [k], and where |v · (µ̂j − µ̂s)| >
1/10 for some j ∈ [k]. Then we can find some t between v · µ̂j and v · µ̂s such that no v · µ̂i

212

is within 1/(20k) of t. In this case, we define F (x) be 1 if v · x > t and 0 otherwise. To show
part (1), first consider i ∈ [k] such that v · µ̂i < t − 1/(20k). Then we have that v · µi <
t− 1/(30k). Furthermore, Varv ·Gj 6 δ +√η. Therefore, the probability that v ·Gi > t is at
most exp(−Ωk((δ +√η)−2)), which is sufficient.

A similar argument holds in the other direction for i ∈ [k] such that v · µ̂i > t+ 1/(20k), and
statement (2) holds because we know that there are both kinds of components. This completes
the proof.

3.6 Robust Proper Learning: Proof of Theorem 67

In this section, we show how to combine the partial clustering, tensor decomposition, and re-
cursive clustering algorithms to establish our main result. The main theorem we prove is as
follows:

Theorem 80 (Robustly Learning k-Mixtures of Arbitrary Gaussians). Given 0 < ε < 1/kkO(k2)

and a multiset Y = {y1, y2, . . . , yn} of n i.i.d. samples from a distributionF such that dTV(F,M) 6
ε, for an unknown k-mixture of GaussiansM = ∑

i6k wiN (µi,Σi), where n > n0 = dO(k)/poly(ε),

Algorithm 81 runs in time nO(1) exp (O(k)/ε2) and with probability at least 0.99 outputs a hy-

pothesis k-mixture of Gaussians M̂ = ∑
i6k ŵiN

(
µ̂i, Σ̂i

)
such that dTV

(
M,M̂

)
= O(εck),

with ck = 1/(100kC(k+1)!k!sf(k + 1)), where C > 0 is a universal constant and sf(k) =
Πi∈[k](k − i)! is the super-factorial function.

As an immediate corollary, we obtain the following:

Corollary 3.6.1 (Robustly Learning k-Mixtures of Gaussians in Polynomial Time). Given 0 <
ε < 1/ exp

(
kk

O(k2)
)

, and a multiset Y = {y1, y2, . . . , yn} of n i.i.d. samples from a distribution

F such that dTV(F,M) 6 ε, for an unknown k-mixture of GaussiansM = ∑
i6k wiN (µi,Σi),

where n > n0 = dO(k) logO(1)(1/ε), there exists an algorithm that runs in time polyk(n, 1/ε)
and with probability at least 0.99 outputs a k-mixture of Gaussians M̂ = ∑

i6k ŵiN
(
µ̂i, Σ̂i

)
such that dTV

(
M,M̂

)
= O

(
(1/ log(1/ε))1/

(
kO(k2)

))
.

The corollary follows by running Algorithm 81 with ε ←
√

1/ log(1/ε) and applying Theorem
80.

213

The algorithm establishing Theorem 80 is given in pseudocode below. Algorithm 82 takes as
input a corrupted sample from a k-mixture of Gaussians and outputs a set of k mixing weights,
means, and covariances, such that the resulting mixture is close to the input mixture in total
variation distance with non-negligible probability. Algorithm 81 simply runs Algorithm 82 many
times to create a small list of candidate hypotheses (consisting of mixing weights, means, and
covariances), and finally runs a robust tournament to outputs a winner. This boosts the probability
of success to at least 0.99.

Algorithm 81 (Algorithm for Robustly Learning Arbitrary GMMs).

Input: An outlier parameter ε > 0 and a component-number parameter k ∈ N. An ε-

corrupted sample Y = {y1, y2, . . . , yn} from a k-mixture of GaussiansM = ∑
i∈[k] wiN (µi,Σi).

Parameters: Let ck = 1/(100kC(k+1)!sf(k + 1)k!) be a scalar function of k, where sf(k) =∏
i∈[k](k − 1)! and C is a sufficiently large constant.

Output: A set of parameters {(ŵi, µ̂i, Σ̂i)}i∈[k], such that with probability at least 0.99 the

mixture M̂ = ∑
i∈[k] ŵiN (µ̂i, Σ̂i) is O(εck)-close in total variation distance toM.

Operation:

1. Let L = {φ} be an empty list. Repeat the following exp (O(k)/ε2) times :

(a) Run Algorithm 82 with input Y , fraction of outliers ε, and number of com-

ponents k. Let the resulting output be a set of k mixing weights, means and

covariances, denoted by
{

(ŵi, µ̂i, Σ̂i)
}
i∈[k]

. Add
{

(ŵi, µ̂i, Σ̂i)
}
i∈[k]

to L.

2. Run the robust tournament from Fact 3.2.50 over all the hypotheses in L. Output

the winning hypothesis, denoted by {(ŵi, µ̂i, Σ̂i)}i∈[k].

Algorithm 82 (Cluster or List-Decode).

Input: An outlier parameter 0 < ε < 1 and a component-number parameter k ∈ N.

An ε-corrupted version Y = {y1, y2, . . . , yn} of X , where X is a set of n samples

from a k-mixture of GaussiansM = ∑
i∈[k] wiN (µi,Σi) such that X satisfies Condi-

tion 3.2.45 with respect toM with parameters (εd−8kk−C
′k, 8k + 48), where C ′ > 0

is a sufficiently large constant.

Parameters: Let ck = 1/(100kC(k+1)!sf(k + 1)k!) be a scalar function of k, where sf(k) =∏
i∈[k](k − 1)! and C is a sufficiently large constant.

214

Output: A set of parameters {(ŵi, µ̂i, Σ̂i)}i∈[k] such that with probability at least exp (−O(k)/ε2),

dTV

(∑
i∈[k] ŵiN (µ̂i, Σ̂i),M

)
6 O(εck).

Operation:

1. Treat Light Component as Noise: If k = 0, ABORT. With probability 1/2, run

Algorithm 82 on samples Y , with fraction of outliers ε + ε1/(10Ck+1(k+1)!) and

number of components k − 1. Return the resulting set of estimated parameters,

{(ŵi, µ̂i, Σ̂i)}i∈[k−1], appended with (0, 0, I). Else, do the following:

// We guess whether the event that the minimum mixing weight α is at least

ε1/(10Ck+1(k+1)!)

// holds. If it does not, we proceed with the algorithm. Else, we treat the smallest

weight

// component as noise and recurse with k − 1 components.

2. Robust Isotropic Transformation: With probability 0.5, run the algorithm corre-

sponding to Lemma 3.6.4 on the samples Y , and let µ̂, Σ̂ be the robust estimates

of the mean and covariance. If k = 1, return
(
ŵ = 1, µ̂, Σ̂

)
. Else, compute

Û Λ̂Û>, the eigendecomposition of Σ, and for all i ∈ [n], apply the affine trans-

formation yi → Û>Σ̂†/2 (yi − µ̂).

// The resulting estimates µ̂, Σ̂ satisfy Lemma 3.6.4, and the uncorrupted samples

are

// effectively drawn from a nearly isotropic k-mixture.

3. With probability 1/2, run either (a) or (b) in the following:

(a) Partial Clustering via SoS: Run Algorithm 77 with outlier parameter ε and

accuracy parameter ε1/(5C
k+1(k+1)!). Let Y1, Y2 be the partition returned.

Guess the number of components in Y1 to be some k1 ∈ [k− 1] uniformly at

random. Run Algorithm 82 with input Y1, fraction of outliers ε1/(10ck+1(k+1)!),

and number of components k1, and let
{

(ŵ(1)
i , µ̂

(1)
i , Σ̂(1)

i)
}
i∈[k1]

be the result-

ing output. Similarly, run Algorithm 82 with input Y2, fraction of outliers

ε1/(10ck+1(k+1)!), and number of components k−k1, and let
{

(ŵ(2)
i , µ̂

(2)
i , Σ̂(2)

i)
}
i∈[k−k1]

be the resulting output. Output the set
{

(ŵ(1)
i |Y1|/|Y |, µ̂(1)

i , Σ̂(1)
i)

}
i∈[k1]

∪{
(ŵ(2)

i |Y2|/|Y |, µ(2)
i , Σ̂(2)

i)
}
i∈[k−k1]

.

// When the mixture is covariance separated, the preconditions of Theorem

215

76 are

// satisfied (see Lemma 3.6.5). The partition is non-trivial, and the fraction

of outliers

// increases from ε→ ε1/(10ck+1(k+1)!) .

(b) List-Decoding via Tensor Decomposition: Run Algorithm 73 and let L be

the resulting list of hypotheses such that each hypothesis is a set of parame-

ters {(µ̂i, Σ̂i)}i∈[k]. Let τ = Θ
(
ε1/(40Ck+1(k+1)!)

)
be an eigenvalue threshold.

Select a hypothesis, {(µ̂i, Σ̂i)}i∈[k] ∈ L uniformly at random.

// Conditioned on not being covariance separated, we satisfy the precondi-

tions of

// Theorem 72 (see Lemma 3.6.6). The output is a list that contains {µ̂i, Σ̂i}i∈[k]

// such that for all i ∈ [k], ‖µ̂i − µi‖2 = O
(
ε1/(20Ck+1(k+1)!)

)
and

//
∥∥∥Σ̂i − Σi

∥∥∥
F

= O
(
ε1/(20Ck+1(k+1)!)

)
.

i. Large Eigenvalues: If for all i ∈ [k], Σ̂i � τI , sample ŵi from [0, 1]
uniformly at random such that

∑
i ŵi = (1± kε). Return

{(
ŵi, Û Λ̂1/2Û>µ̂i + µ̂, Û Λ̂1/2Û>Σ̂iÛ Λ̂1/2Û>

)}
i∈[k]

.

// If all estimated covariances have all eigenvalues larger than τ , the

recursion

// bottoms out and the hypothesis is returned.

ii. Spectral Separation of Thin Components: Else, ∃v, i s.t. v>Σ̂iv 6 τ .

Run the algorithm corresponding to Lemma 3.5.1 with input Y , param-

eter estimates {(µ̂i, Σ̂i)}i∈[k] and threshold τ . Let Y1 and Y2 be the re-

sulting partition.

// Use small eigenvalue directions to partition the points.

A. If min(|Y1|, |Y2|) < ε1/(400kCk+1(k+1)!)n, run Algorithm 82 with input

Y , fraction of outliers 2ε1/(400kCk+1(k+1)!) and number of components

being k − 1, and let
{

(ŵ(1)
i , µ̂

(1)
i , Σ̂(1)

i)
}
i∈[k1]

be the resulting output.

216

Output the resulting hypothesis{
(ŵi, Û Λ̂1/2Û>µ̂i + µ̂, Û Λ̂1/2Û>Σ̂iÛ Λ̂1/2Û>)

}
i∈[k−1]

∪ (0, 0, I).

B. Else, select k1 ∈ [k− 1] uniformly at random. Run Algorithm 82 with

input Y1, fraction of outliers ε1/(100kCk+1(k+1)!) and number of compo-

nents being k1. Similarly, run Algorithm 82 with input Y2, fraction

of outliers ε1/(100kCk+1(k+1)!) and number of components k − k1, and

let
{

(ŵ(2)
i , µ̂

(2)
i , Σ̂(2)

i)
}
i∈[k−k1]

be the resulting output. Output the set{
(ŵ(1)

i |Y1|/|Y |, Û Λ̂1/2Û>µ̂
(1)
i + µ̂, Û Λ̂1/2Û>Σ̂(1)

i Û Λ̂1/2Û>)
}
i∈[k1]

∪{
(ŵ(2)

i |Y2|/|Y |, Û Λ̂1/2Û>µ
(2)
i + µ̂, Û Λ̂1/2Û>Σ̂(2)

i Û Λ̂1/2Û>)
}
i∈[k−k1]

.

3.6.1 Analysis of Algorithm 81

To prove Theorem 80, we will require the following intermediate results. We defer some proofs
in this subsection to Appendix 3.10.

We use the following lemma to relate the Frobenius distance of covariances to the total vari-
ation distance between two Gaussians, when the eigenvalues of the covariances are bounded
below.

Lemma 3.6.2 (Frobenius Distance to TV Distance). Suppose N (µ1,Σ1),N (µ2,Σ2) are Gaus-

sians with ‖µ1 − µ2‖2 6 δ and ‖Σ1 − Σ2‖F 6 δ. If the eigenvalues of Σ1 and Σ2 are at least

λ > 0, then dTV(N (µ1,Σ1),N (µ2,Σ2)) = O(δ/λ).

We start by showing that when Condition 3.2.45 holds, the uniform distribution on a (1− ε)-
fraction of the points is certifiably hypercontractive.

Lemma 3.6.3 (Component Moments to Mixture Moments). Let M = ∑
i∈[k] wiN (µi,Σi) be

a k-mixture with mean µ and covariance Σ such that wi > α, for some 0 < α < 1, and

for all i, j ∈ [k],
∥∥∥Σ†/2 (Σi − Σj) Σ†/2

∥∥∥
F

6 1/
√
α. Let X be a multiset of n samples sat-

isfying Condition 3.2.45 with respect to M with parameters (γ, t), for 0 < γ < (dk/α)−ct,
for a sufficiently large constant c, and t ∈ N. Let D be the uniform distribution over X .

Then, D is 2t-certifiably (c/α)-hypercontractive and for d × d-matrix-valued indeterminate Q,

2
Q
{
EM

(
x>Qx− EMx>Qx

)2
6 O(1/α)

∥∥∥Σ1/2QΣ1/2
∥∥∥2

F

}
.

217

Next, we show how to robustly estimate the mean and covariance of an ε-corrupted set of
samples satisfying Condition 3.2.45 when the mixture is not partially clusterable, and make the
inliers nearly isotropic.

Lemma 3.6.4 (Robust Isotropic Transformation). Given 0 < ε < 1, and k ∈ N, let α =
ε1/(10Ck+1(k+1)!). Let M = ∑k

i=1wiGi with Gi = N (µi,Σi) be a k-mixture of Gaussians with

wi > α for all i ∈ [k], and let µ and Σ be the mean and covariance ofM such that r = rank(Σ)
and for all i, j ∈ [k],

∥∥∥Σ†/2 (Σi − Σj) Σ†/2
∥∥∥
F

6 1/
√
α. Let X be a set of points satisfying

Condition 3.2.45 with respect toM for some parameters (γ, t). Given a set Y , an ε-corrupted

version of X , of size n > n0 = dO(1), there exists an algorithm that takes Y as input and in time

nO(1) outputs estimators µ̂ and Σ̂ such that Σ̂ = Û Λ̂Û> is the eigenvalue decomposition, where

Û ∈ Rn×r has orthonormal columns and Λ ∈ Rr×r is a diagonal matrix. Further, we can obtain

n samples Y ′ by applying the affine transformation yi → Û>Σ̂†/2 (yi − µ̂) to each sample, such

that a (1− ε)-fraction have mean µ′ and covariance Σ′ satisfying

1. ‖µ′‖2 6 O
((

1 +
√
εk
α

)√
ε/α

)
,

2.
(

1
1+(k

√
ε/α)

)
Ir � Σ′ �

(
1

1−(k
√
ε/α)

)
Ir,

3. ‖Σ′ − Ir‖F 6 O(
√
εk/α),

where Ir is the r-dimensional Identity matrix, and the remaining points are arbitrary. Let X ′

be the set obtained by Û>Σ̂†/2 (xi − µ̂). Then, X ′ satisfies Condition 3.2.45 with respect to∑k
i=1wiN

(
Û>Σ̂†/2(µi − µ̂), Û>Σ̂†/2ΣiΣ̂†/2Û

)
and parameters (γ, t), and Y ′ is an ε-corruption

of X ′.

Proof. For any t′ ∈ N, it follows from Corollary 3.2.34 that M has 2t′-certifiably (4/α)-
hypercontractive degree-2 polynomials, since wi > α for all i. Next, Lemma 3.6.3 implies
that the uniform distribution over X also has 2t′-certifiably (8/α)-hypercontractive degree-2
polynomials and for d× d-matrix-valued indeterminate Q,

2
Q
{
EM

(
x>Qx− EMx>Qx

)2
6 O(1/α)

∥∥∥Σ1/2QΣ1/2
∥∥∥2

F

}
.

Then, it follows from Fact 3.2.37 that if 16
α
t′ε1−4/t′ � 1, there exists an algorithm that runs in

time nO(t′) and outputs estimates µ̂ and Σ̂ satisfying:

1.
∥∥∥Σ†/2(µ− µ̂)

∥∥∥
2
6 O(t′/α)1/2ε1−1/t′ ,

2.
(
1− (k/α)ε1−2/t′

)
Σ � Σ̂ �

(
1 + (k/α)ε1−2/t′

)
Σ and,

218

3.
∥∥∥Σ†/2 (Σ̂− Σ

)
Σ†/2

∥∥∥
F
6 (t′/α)O(ε1−1/t′).

Setting t′ = 2, compute Σ̂ = Û Λ̂Û>, the eigendecomposition of Σ̂, such that Û ∈ Rn×r has
orthonormal columns, where r 6 d is the rank of Σ̂ and Λ̂ ∈ Rr×r is a diagonal matrix. Similarly,
let Σ = UΛU> be the eigendecomposition of Σ. We apply the affine transformation yi →
Û>Σ̂†/2 (yi − µ̂) to each sample and thus we can assume throughout the rest of our argument
that we have access to ε-corrupted samples from a k-mixture of Gaussians with mean µ′ =
Û>Σ̂†/2(µ− µ̂) and covariance Σ′ = Û>Σ̂†/2ΣΣ̂†/2Û . Then, we have that

‖µ′‖2 =
∥∥∥Û>Σ̂†/2(µ− µ̂)

∥∥∥
2
6
∥∥∥Û>∥∥∥

op

∥∥∥Σ̂†/2(µ− µ̂)
∥∥∥

2

6 O
((

1 +
√
εk

α

)√
ε/α

)
,

where the last inequality follows from (1) and (2). It also follows from (2) that

(
1

1 + (k
√
ε/α)

)
Σ̂ � Σ �

(
1

1− (k
√
ε/α)

)
Σ̂ . (3.46)

Multiplying out (3.46) with Û>Σ̂†/2 on the left and Σ̂†/2Û on the right, we have

(
1

1 + (k
√
ε/α)

)
Û>Σ̂†/2Σ̂Σ̂†/2Û � Σ′ �

(
1

1− (k
√
ε/α)

)
Û>Σ̂†/2Σ̂Σ̂†/2Û .

Observe that (2) implies that the rank of Σ̂ and Σ is the same, and thus Û>Σ̂†/2Σ̂Σ̂†/2Û = Ir,
where Ir is the r-dimensional Identity matrix. Finally, we have that

‖Σ′ − Ir‖F =
∥∥∥Û>Σ̂†/2ΣΣ̂†/2Û − Û>Σ̂†/2Σ̂Σ̂†/2Û

∥∥∥
F
6
∥∥∥Û Λ̂−1/2Û>

(
Σ− Σ̂

)
Û Λ̂−1/2Û>

∥∥∥
F

=
∥∥∥Û Λ̂−1/2Λ1/2Λ−1/2Û>

(
Σ− Σ̂

)
ÛΛ−1/2Λ1/2Λ̂−1/2Û>

∥∥∥
F

6
∥∥∥Λ̂−1/2Λ1/2

∥∥∥2

op

∥∥∥Σ†/2 (Σ̂− Σ
)

Σ†/2
∥∥∥
F

6 O
(√

εk/α
)
,

where we use that Λ̂−1/2 = Λ̂−1/2Λ1/2Λ−1/2, the sub-multiplicative property of the Frobenius
norm, the column span U and Û is identical (see (2)), and the Frobenius recovery guarantee in
(3).

Finally, it follows from Lemma 3.2.46 that Condition 3.2.45 is affine invariant and is thus
preserved under xi → Û>Σ̂−1/2 (xi − µ̂), for i ∈ [n], with parameters (γ, t).

219

The above robust isotropic transformation lemma allows us to obtain a covariance that is
close to the identity matrix in a full-dimensional subspace (potentially smaller than the input
dimension). Therefore, we will subsequently drop the subscript for the dimension, wherever it is
clear from the context.

Next, we show that whenever the minimum mixing weight is sufficiently larger than the
fraction of outliers, and a pair of components is covariance separated, we can partially cluster the
samples.

Lemma 3.6.5 (Non-negligible Weight and Covariance Separation). Given 0 < ε < 1/kkO(k2)

and k ∈ N, let α = ε1/(10Ck+1(k+1)!). LetM = ∑k
i=1wiGi with Gi = N (µi,Σi) be a k-mixture

of Gaussians with mixture covariance Σ such that wi > α for all i ∈ [k] and there exist i, j ∈ [k]
such that

∥∥∥Σ†/2 (Σi − Σj) Σ†/2
∥∥∥
F
> 1/

√
α. Further, let X be a set of points satisfying Con-

dition 3.2.45 with respect to M for some parameters γ 6 εd−8kk−Ck, for a sufficiently large

constant C, and t > 8k. Let Y be an ε-corrupted version of X of size n > n0 = (dk)Ω(1) /ε,

Algorithm 77 partitions Y into Y1, Y2 in time nO(1) such that with probability at least αk log(k/α)

there is a non-trivial partition of [k] into Q1 ∪ Q2 so that lettingMj be a distribution propor-

tional to
∑
i∈Qj wiGi and Wj = ∑

i∈Qj wi, then Yj is an O
(
ε1/(10Ck+1(k+1)!)

)
-corrupted version

of
⋃
i∈Qj Xi satisfying Condition 3.2.45 with respect toM with parameters (O(kγ/Wj) , t).

Proof. We run Algorithm 77 with sample set Y , number of components k, the fraction of outliers
ε and the accuracy parameter β. Since X satisfies Condition 3.2.45, we can set t′ > 24, β =
αt
′/4−4kt

′(t′)2t′ 6 α in Theorem 76. Then, by assumption, there exist i, j such that

∥∥∥Σ†/2 (Σi − Σj) Σ†/2
∥∥∥
F
>

1√
α

= Ω
(
k2(t′)4

(βα4)2/t′

)
.

We observe that we also satisfy the other preconditions for Theorem 76, since n > (dk/)Ω(1) /ε.

Then, Theorem 76 implies that with probability at least αk log(k/α), the set Y is partitioned
in two sets Y1 and Y2 such that there is a non-trivial partition of [k] into Q1 ∪ Q2 so that
letting Mj be a distribution proportional to

∑
i∈Qj wiGi and Wj = ∑

i∈Qj wi, then Yj is an
O
(
ε1/(10Ck+1(k+1)!)

)
-corrupted version of

⋃
i∈Qj Xi. By Lemma 3.2.48,

⋃
i∈Qj Xi satisfies Condi-

tion 3.2.45 with respect toM with parameters (O(kγ/Wj) , t).

When the mixture is not covariance separated and nearly isotropic, we can obtain a small list
of hypotheses such that one of them is close to the true parameters, via tensor decomposition.

220

Lemma 3.6.6 (Mixture is List-decodable). Given 0 < ε < 1/kkO(k2)
let α = ε1/(10Ck+1(k+1)!).

Let M = ∑k
i=1wiGi with Gi = N (µi,Σi) be a k-mixture of Gaussians with mixture mean

µ and mixture covariance Σ, such that ‖µ‖2 6 O
(√

ε/α
)
, ‖Σ − I‖F 6 O(

√
ε/α), wi > α

for all i ∈ [k], and ‖Σi − Σj‖F 6 1/
√
α for any pair of components, and let X be a set of

points satisfying Condition 3.2.45 with respect toM for some parameters γ = εd−8kk−Ck, for

a sufficiently large constant C, and t = 8k. Let Y be an ε-corrupted version of X of size n,

Algorithm 73 outputs a list L of hypotheses of size exp (1/ε2) in time poly(|L|, n) such that if we

choose a hypothesis {µ̂i, Σ̂i}i∈[k] uniformly at random, ‖µi − µ̂i‖2 6 O
(
ε1/(20Ck+1(k+1)!)

)
and∥∥∥Σi − Σ̂i

∥∥∥
F
6 O

(
ε1/(20Ck+1(k+1)!)

)
for all i with probability at least exp (−1/ε2).

Proof. Recall we run Algorithm 73 on the samples Y , the number of clusters k, the fraction
of outliers ε and the minimum weight α = ε1/(10Ck+1(k+1)!). Next, we show that the precon-
ditions of Theorem 72 are satisfied. First, the upper bounds on ‖µ‖2 and ‖Σ − I‖F imply∑
i∈k wi

(
Σi + µiµ

>
i

)
= Σ + µµ> � (1 +O(

√
ε/α))I . Since the LHS is a conic combination of

PSD matrices, it follows that for all i ∈ [k], µiµ>i � 1
α

(1 +O(
√
ε/α)) I , and thus

∥∥∥µiµ>i ∥∥∥F 6 2
α

.
Next, we can write:

‖Σi − I‖F 6 ‖Σi − (Σ + µµ>)‖F + ‖Σ− I‖F + ‖µµ>‖F

=

∥∥∥∥∥∥Σi −
∑
j∈[k]

wj
(
Σj + µjµ

>
j

)∥∥∥∥∥∥
F

+
√
εk

α
+ ε

α

6

∥∥∥∥∥∥
∑
j∈[k]

wj (Σi − Σj)

∥∥∥∥∥∥
F

+ 2
α

+
√
εk

α
+ ε

α

6
4
α
,

where the first and the third inequalities follow from the triangle inequality and the upper bound
on
∥∥∥µiµ>i ∥∥∥F , and the last inequality follows from the assumption that ‖Σi − Σj‖F 6 1/

√
α for

every pair of covariances Σi,Σj . So, we can set ∆ = 4/α in Theorem 72. Then, given the
definition of α, we have that

η = 2k4kO(1 + ∆/α)4k√ε = O
(
ε2/5

)
and 1/ε2 > log(1/η)(k + 1/α + ∆)4k+5/η2. Therefore, Algorithm 73 outputs a list L of hy-
potheses such that |L| = exp (1/ε2), and with probability at least 0.99, L contains a hypothesis

221

that satisfies the following: for all i ∈ [k],

‖µ̂i − µi‖2 = O
(

∆1/2

α

)
ηG(k) = O

(
ε−1/(20Ck+1(k+1)!) · ε1/(10Ck+1(k+1)!)

)
= O

(
ε1/(20Ck+1(k+1)!)

)
and

∥∥∥Σ̂i − Σi

∥∥∥
F

= O
(
k4
) ∆1/2

α
ηG(k) = O

(
ε1/(20Ck+1(k+1)!)

)
.

(3.47)

Then if we choose a hypothesis in L uniformly at random, the probability that we choose the
hypothesis satisfying (3.47) is at least 1/|L| = exp (−1/ε2).

Finally, if the mixture has a covariance matrix with small variance along any direction, we
can further cluster the points by projecting the mixture along that direction.

Lemma 3.6.7 (Spectral Separation of Thin Components). Given 0 < ε < 1/kkO(k2)
, let α =

ε1/(10Ck+1(k+1)!). Let M = ∑k
i=1wiGi with Gi = N (µi,Σi) be a k-mixture of Gaussians with

mixture covariance Σ such that ‖Σ− I‖F 6 O(
√
εk/α), and let X be a set of points satis-

fying Condition 3.2.45 with respect to M for some parameters (γ, t). Given a set Y being

an ε-corrupted version of X of size n, and estimates {µ̂i, Σ̂i}i∈[k], such that ‖µi − µ̂i‖2 6

O
(
ε1/(20Ck+1(k+1)!)

)
,
∥∥∥Σi − Σ̂i

∥∥∥
F
6 O

(
ε1/(20Ck+1(k+1)!)

)
, suppose there exists a unit vector v ∈

Rd such that v>Σ̂sv 6 O
(
ε1/(40Ck+1(k+1)!)

)
, for some s ∈ [k]. Then, there is an algorithm that ef-

ficiently partitions Y into Y1 and Y2 such that there is a non-trivial partition of [k] intoQ1∪Q2 so

that lettingMj be a distribution proportional to
∑
i∈Qj wiGi and Wj = ∑

i∈Qj wi, then Yj is an(
O(k2γ) +O

(
ε1/(80kCk+1(k+1)!)/Wj

))
-corrupted version of

⋃
i∈Qj Xi satisfying Condition 3.2.45

with respect toMj with parameter (O(kγ/Wj) , t).

Proof. We run the algorithm from Lemma 3.5.1 with the input being the samples Y , the current
hypothesis {µ̂i, Σ̂i}i∈[k], and the minimum eigenvalue η = O

(
ε1/(40Ck+1(k+1)!)

)
. Observe that the

mixture covariance satisfies Σ � (1−O(
√
εk/α)) I � I/2 and the upper bound on means and

covariance is δ = O
(
ε1/(20kCk+1(k+1)!)n

)
by assumption. Therefore, we satisfy the preconditions

of Lemma 3.5.1. Thus, we obtain a partition Y1, Y2 such that there is a non-trivial partition of [k]
intoQ1∪Q2 so that lettingMj be a distribution proportional to

∑
i∈Qj wiGi andWj = ∑

i∈Qj wi,
then it follows from Lemma 3.2.48 that Yj is an

(
O(k2γ) +O

(
ε1/(80kCk+1(k+1)!)/Wj

))
-corrupted

version of
⋃
i∈Qj Xi satisfying Condition 3.2.45 with respect toMj with parameter (O(kγ/Wj) , t).

222

3.6.2 Proof of the Main Theorem

We are now ready to complete the proof of Theorem 80.

Input:
: -corrupted sample from -GMM

Partial clustering
(input: -corrupted -GMM).

(Lemma 6.8)

If eigenvalues of all covariances are Else

Tensor Decomposition
(input: -corrupted, min weight)

TV distance error .
(Lemma 6.9)

Add to list of hypotheses

(tv distance)
(Lemma 6.5)

Spectrally Separate Thin
Components

along small eigenvalue direction.
(Lemma 6.10)

#components ,
noise:

Guess if
minimum weight Yes

No

NoGuess if components are
Frobenius separated

#components ,
noise:

#components ,
noise:

Robust Tournament
(Fact 2.43)

Yes

Make isotropic
(Lemma 6.7)

Figure 3.1: If we assume a 1/poly(k) lower bound on minimum weight, then we can skip all
blue steps above; the partial clustering is carried out till it can no longer be done within a cluster
and then followed by the tensor decomposition step.

Proof of Theorem 80. We divide the proof into two parts: first we show that Algorithm 82 out-
puts a hypothesis M̂ = ∑

i∈[k] ŵiN (µ̂i, Σ̂i) such that M̂ andM are O(εck)-close in total varia-
tion distance with probability at least exp (−O(k)/ε2); then we show that Algorithm 81 outputs
a k-mixture of Gaussians M̂ such that M̂ andM are Ok(εck)-close in total variation distance
with probability 0.99.

223

We proceed the first part by induction on k. Let ck = 1
(100)kC(k+1)!sf(k+1)k! be a scalar that only

depends on k, where C > 0 is a sufficiently large universal constant.

Induction Hypothesis: Let X be a set of points satisfying Condition 3.2.45 with respect to
a k-mixture of Gaussians M for some parameters γ = εd−8kk−C

′k, where C ′ is a sufficiently
large constant and t = 8k + 48. Given a set Y being an ε-corrupted version of X of size n, the
outlier parameter ε and the component-number parameter k, Algorithm 81 returns a k-mixture of
Gaussians M̂ such that M̂ andM are Ok(εck)-close in total variation distance with probability
exp (−(3k − 2)/ε2).

Base Case: For k = 1, the algorithm returns the single Gaussian with mean µ̂ and Σ̂ at Step
2. Suppose the true Gaussian is N(µ,Σ). It follows from the proof of Lemma 3.6.4,

∥∥∥Σ†/2 (µ̂− µ)
∥∥∥

2
=
∥∥∥Σ†/2 (µ̂− µ)

∥∥∥
2
6 O

(√
ε
)

and ∥∥∥Σ†/2 (Σ̂− Σ
)

Σ†/2
∥∥∥
F
6 O

(√
ε
)
,

and thus it follows from Fact 3.2.1 that the total variation distance between the hypothesis Gaus-
sian and the true Gaussian is at most O(

√
ε). We can then conclude that the base case is true.

Inductive Step: We assume that our induction hypothesis holds for any m < k and then
prove that the induction hypothesis holds for k.

Small Clusters Can be Treated as Noise. Conditioning on the base case being true, we begin
by guessing whether the minimum weight is less than ε1/(10Ck+1(k+1)!) with equal probability.

Let wmin = miniwi. If wmin 6 ε1/(10Ck+1(k+1)!), our algorithm takes step 1 with prob-
ability 0.5. In this case, we treat the smallest component as noise and recurse on the set of
samples Y . We set the number of components to be k − 1 and the fraction of outliers be-
ing ε + ε1/(10Ck+1(k+1)!) 6 2ε1/(10Ck+1(k+1)!). By Lemma 3.2.48, Y is an 2ε1/(10Ck+1(k+1)!)-
corrupted version of a set satisfying Condition 3.2.45 with respect to a (k − 1)-mixture for
parameters γ = O

(
kεd−8kk−C

′k/(1− wmin)
)
6 εd−8(k−1)(k − 1)−C′(k−1) and t = 8k + 48.

Thus applying the inductive hypothesis to Y , we learn the mixture up to total variation dis-
tance Ok

((
2ε1/(10Ck+1(k+1)!)

)ck−1
)
6 Ok(εck) with probability 0.5 exp (−(3(k − 1)− 2)/ε2) >

exp (−(3k − 2)/ε2). Now we may assume for all i ∈ [k], wi > ε1/(10Ck+1(k+1)!).

Mixture is Covariance Separated. Let α = ε1/(10Ck+1(k+1)!) andψ1 = {∃ N (µi,Σi),N (µj,Σj) |
‖Σi − Σj‖F > α−1/2} be the event that the samples were drawn from a mixture that is covari-

224

ance separated. First, consider the case where ψ1 is true. We will run 3(a) with probability 0.5.
Then it follows from Lemma 3.6.5 that Y can be partitioned into Y1 and Y2 in time dO(1), such
that they both have at least one component and the fraction of outliers in each set Y1, Y2 is at most
ε1/(10Ck+1(k+1)!) with probability αO(k log(k/α)). Then, we can guess the number of components
in Y1 and we will be correct with probability 1/k. Conditioned on our guess being correct, let Y1

consist of k1 components and Y2 consist of k2 components and k1 + k2 = k.

Let Q1 ∪Q2 be the non-trivial partition of [k] in Lemma 3.6.5,Mj be a distribution propor-
tional to

∑
i∈Qj wiGi and Wj = ∑

i∈Qj wi, then By Lemma 3.2.48, Yj is an O
(
ε1/(10Ck+1(k+1)!)

)
-

corrupted version of
⋃
i∈Qj Xi satisfying Condition 3.2.45 with respect to M with parameters

γ = O
(
kεd−8kk−C

′k/α
)
6 εd−8kj(kj)−C

′kj and t = 8k + 48. Then, applying the inductive
hypothesis on Yj for j = 1, 2, with number of components kj , we can learn the mixtures Mj

up to total variation distance errorOk
(
εckj /(10Ck+1(k+1)!)

)
with probability exp (−(3kj − 2)/ε2).

Finally if this is the case, we combine the two hypotheses on Y1, Y2 by multiplying each weight
in the hypothesis of Yj by |Yj|/|Y | and then taking union of two hypotheses. Then our com-
bining method gives a final output that learns our full hypothesis to total variation distance error
Ok
(
εck1/(10Ck+1(k+1)!)

)
+Ok

(
εck2/(10Ck+1(k+1)!)

)
6 Ok(εck) with probability at least 0.5 · 0.5 · 1

k
·

αO(k log(k/α)) exp (−(3k1 − 2)/ε2) exp (−(3k2 − 2)/ε2) > exp (−(3k − 2)/ε2).

Mixture is not Covariance Separated. Next, consider the case where ψ1 is false. With
probability 0.5, the algorithm guesses correctly and executes Step 2. Since the mixture is not
covariance separated, we satisfy the preconditions of Lemma 3.6.4, and after applying the trans-
formation in Step 2, Σ, the covariance of the mixtureM, is

√
εk/α-close to the r-dimensional

identity, where r is the rank of Σ. However, since we obtain the subspace exactly, we can simply
project all samples on the subspace and we drop the r in the subsequent exposition.

Let X ′ be the set of points obtained by applying the Affine transformation from Step 2 as
defined in Lemma 3.6.4. Then, X ′ satisfies Condition 3.2.45 with respect to a nearly isotropic
mixture and parameters γ = εd−8kk−C

′k and t = 8k + 48 so that we can continue the algorithm
with X ′. Whenever we return a hypothesis in the following steps, we will first apply the inverse
of the transformation on our estimates µ̂i and Σ̂i. Since total variation distance is affine invariant,
we have the same error guarantee in total variation distance after applying the transformation.
From now on, we reduce to the case where Σ is

√
εk/α-close to the Identity.

There is a 50% chance our algorithm runs Step 3(b) and we will analyze the remainder of
this case under that assumption. It follows from Lemma 3.6.6 that we obtain a hypothesis
{µ̂i, Σ̂i}i∈[k] such that ‖µi − µ̂i‖2 6 O

(
ε1/(20Ck+1(k+1)!)

)
and

∥∥∥Σi − Σ̂i

∥∥∥
F
6 O

(
ε1/(20Ck+1(k+1)!)

)
225

with probability exp (−1/ε2). Conditioned on the hypothesis being correct, we now split into
two cases: either all eigenvalues of all the estimated covariances are large (in which case we
obtain total variation distance guarantees), or there is a direction along which we can project and
cluster further.

Covariance Estimates have Large Eigenvalues. For the hypothesis {µ̂i, Σ̂i}i∈[k] from the last
step, we compute all the eigenvalues of the estimated covariance matrices, Σ̂i, for all i ∈ [k].
If, for all i ∈ [k], λmin

(
Σ̂i

)
> cε1/(40Ck+1(k+1)!), we land in Step 3(b).i that we guess the mix-

ing weights ŵi uniformly in the range [0, 1] and then we output the corresponding hypothesis
{ŵi, µ̂i, Σ̂i}i∈[k]. With probability at least εk, ŵi are within ε of the true mixing weights. Under
this condition, by Lemma 3.6.2, the mixture M̂ = ∑

i∈[k] ŵiN
(
µ̂i, Σ̂i

)
isOk

(
ε1/(40Ck+1(k+1)!)

)
6

Ok(εck)-close to M in total variation distance with probability 0.5 · 0.5 · εk · exp (−1/ε2) >

exp (−(3k − 2)/ε2).

One Covariance Has a Small Eigenvalue. Consider the case (Step 3(b).ii) where there ex-
ists a unit-norm direction v and an estimate Σ̂i such that v>Σ̂iv 6 cε1/(40Ck+1(k+1)!). It then
follows from Lemma 3.6.7 that we can partition Y into Y1 and Y2 such that each has at least
one cluster and the total number of outliers in both Y1 and Y2 is at most O

(
ε1/(80kCk+1(k+1)!)

)
n.

If Y1 or Y2 has size less than ε1/(400kCk+1(k+1)!)n, then we can treat it as noise and get an ad-
ditive O(ε1/(400kCk+1(k+1)!))-error in total variation distance. Otherwise, the fraction of outliers
in both sets is at most O

(
(ε1/(80kCk+1(k+1)!)n)/(ε1/(400kCk+1(k+1)!)n)

)
= O

(
ε1/(100kCk+1(k+1)!)

)
.

We then guess the number of components, k1, in Y1 with success probability 1/k. Let k2 =
k − k1 be the number of components in Y2. Then, conditioned on this event holding, Yj is
an O

(
ε1/(100kCk+1(k+1)!)

)
-corrupted version of a set satisfying Condition 3.2.45 with respect to

a mixture of kj components with parameter γ = kεd−8kk−C
′k/α 6 εd−8(kj)(kj)−C

′(kj) and
t = 8k + 48. We can apply the inductive hypothesis to Y1 with number of components k1 and
fraction of outliersO

(
ε1/(100kCk+1(k+1)!)

)
, and conclude that we learn the components of Y1 to to-

tal variation distance Ok
(
εck1/(100kCk+1(k+1)!)

)
with probability exp (−(3k1 − 2)/ε2). A similar

argument holds for Y2. Finally if this is the case, we combine the two hypotheses on Y1, Y2 by
multiplying each weight by |Yj|/|Y | and then taking union of two hypotheses. Then our com-
bining method gives a final output that learns our full hypothesis to total variation distance error
Ok
(
εck1/(100Ck+1(k+1)!)

)
+Ok

(
εck2/(100Ck+1(k+1)!)

)
+O

(
ε1/(400kCk+1(k+1)!)

)
6 Ok(εck) with prob-

ability at least 0.5 · 0.5 · 1
k
· exp (−1/ε2 − (3k1 − 2)/ε2 − (3k2 − 2)/ε2) > exp (−(3k − 2)/ε2).

Sample Size and Running Time of Algorithm 82 By Lemma 3.2.49, we need n > ktC
′tdt/γ3

samples to generateX satisfying Condition 3.2.45 with parameters (γ, t). We set γ = εd−8kk−C
′k

226

and t = 8k + 48. Then n > n0 = (8k)O(k)dO(k)/ε3. The running time in each sub-routine
we invoke is dominated by the running time of the tensor decomposition algorithm, and by
Lemma 3.6.6 in the worst case this is poly(|L|, n) = poly

(
exp (1/ε2) , dO(k)/ε3

)
= dO(k) exp (1/ε2).

This completes the first part of the proof.

Aggregating Hypotheses. We run Algorithm 82 repeatedly on set Y and add the return hy-
pothesis into a list L until with probability 0.99, there exists a hypothesis M̂ ∈ L such that M̂
andM are Ok(εck)-close in total variation distance. Since Algorithm 82 outputs a correct mix-
ture with probability exp (−(3k − 2)/ε2), we will run Algorithm 82 for exp (O(k)/ε2) times.
Then the total running time is exp (O(k)/ε2) · dO(k) exp (1/ε2) = dO(k) exp (O(k)/ε2).

Robust Tournament. Then we need to run a robust tournament in order to find a hypothesis
that is close to the true mixture in total variation distance. Fact 3.2.50 shows that we can do this
efficiently only with access to an ε-corrupted set of samples of size Ok(log(1/ε)/ε2ck).

This completes the proof.

3.7 More Efficient Robust Partial Cluster Recovery

In this section, we prove the following upgraded partial clustering theorem. In contrast to Theo-
rem 76, here we obtain a probability of success that is inverse exponential in k instead of 1/α.

Theorem 83 (Robust Partial Clustering in Relative Frobenius Distance). Let 0 6 ε < α/k 6 1
and t ∈ N. There is an algorithm with the following guarantees: Let Y be an ε-corruption of a

sample X of size n > (dk)Ct /ε for a large enough constant C > 0, fromM = ∑
iwiN (µi,Σi)

that satisfies Condition 3.2.45 with parameters 2t and γ 6 εd−8tk−Ck, for a large enough con-

stant C > 0. Suppose further that wi > α > 2ε for each i ∈ [k], and that for some t ∈ N,

β > 0 there exist i, j 6 k such that
∥∥∥Σ†/2(Σi − Σj)Σ†/2

∥∥∥2

F
= Ω

(
(k2t4)/β2/tα4

)
, where Σ is the

covariance of the mixtureM. Then, for any η �
√
ε/α, the algorithm runs in time nO(t), and

with probability at least 2−O(k)(1 − O(η/α − √η)) over the random choices of the algorithm,

outputs a partition Y = Y1 ∪ Y2 satisfying:

1. Partition respects clustering: for each i, max
{

1
win
|Y1 ∩Xi|, 1

win
|Y2 ∩Xi|

}
> 1−O(√η)−

O(β
ηα2), where Xi ⊂ X corresponding to the points drawn from N (µi,Σi).

2. Partition is non-trivial: maxi 1
win
|Xi ∩ Y1|,maxi 1

win
|Xi ∩ Y2| > 1−O(√η)−O(β

ηα2).

227

3.7.1 Algorithm

Our algorithm will solve SoS relaxations of a polynomial inequality system. The indeterminates
in this system are X ′ (that is intended to be the guess for the original uncorrupted sample),
a cluster of size αn within X ′ (indicated by zis) with mean µ̂ and covariance matrix Σ̂ and Π
(intended to be the square root of Σ̂). The input corrupted sample Y is a constant in this inequality
system. Let U ∈ Rd×d and m, z ∈ Rd also be indeterminates of the proof system. The system
can be thought of as encoding the task of finding clusters Ĉ within Y that satisfies certifiable
hypercontractivity of degree 2 polynomials.

We present the constraints grouped together into meaningful categories below: The first set
of constraints enforce that Σ̂ is the square of Π.

Covariance Constraints: A1 =

 Π = UU>

Π2 = Σ̂

 (3.48)

The intersection constraints force that X ′ intersects Y in all but an εn points (and thus, 2ε-
close to unknown sample X).

Intersection Constraints: A2 =


∀i ∈ [n], m2

i = mi∑
i∈[n] mi = (1− ε)n

∀i ∈ [n], zi(ỹi − x′i) = 0

 (3.49)

The subset constraints enforce that z indicate a subset of size αn of X ′.

Subset Constraints: A3 =

∀i ∈ [n]. z2
i = zi∑

i∈[n] zi = αn

 (3.50)

Parameter constraints create indeterminates to stand for the covariance Σ̂ and mean µ̂ of Ĉ
(indicated by z).

Parameter Constraints: A4 =


1
αn

n∑
i=1

zi (x′i − µ̂) (x′i − µ̂)> = Σ̂

1
αn

n∑
i=1

zix
′
i = µ̂

 (3.51)

228

Certifiable Hypercontractivity : A4=


∀t 6 2s Ez(Q− EzQ)2t 6 (Ct/α)t22t

(
Ez(Q− EzQ)2

)t
Ez(Q− EzQ)2 6 10

(1
α

)2
‖Q‖2

F

 (3.52)

where we write EzQ as a shorthand for the polynomial 1
αn
∑
i ziQ(xi) and Ez(Q−EXrQ)2j

for the polynomial 1
αn

∑
i zi

(
Q(x′i)− 1

αn

∑
i6n ziQ(x′i)

)2j
for any j. Note thatQ is a d×d-matrix

valued indeterminate. Observe that Q itself can be eliminated from the system as is standard in
several applications of SoS proofs in obtaining a succinct set of polynomial constraints (see
Section 4.3 on “Succinct Representation of Constraints” in [FKP+19] for an exposition).

Algorithm 84 (Polynomial Time Partial Clustering).

Given: A sample Y of size n. An outlier parameter ε > 0 and an accuracy parameter η > 0.

Output: A partition of Y into partial clustering Y1 ∪ Y2.

Operation:

1. Mean and Covariance Estimation: Apply Robust Mean and Covariance Esti-

mation (Fact 3.2.36) to estimate µ̂ and Σ̃ such that 1
2Σ � Σ̃ � 1.5Σ where Σ is

the covariance of the uncorrupted input mixture.

2. Approximate Isotropic Transformation: For each yi ∈ Y , let ỹi = Σ̃†/2(yi− µ̂).

Let Ỹ = ∪i6nỹi.

3. SDP Solving: Find a pseudo-distribution ζ̃ satisfying ∪4
i=1Ai such that Ẽζ̃ zi ∈

α± od(1) for every i. If no such pseudo-distribution exists, output fail.

4. Rounding: Let M = Ẽz∼ζ̃ [zz>].

(a) Generate candidate clusters: For ` = O(1/α log η/α) times, draw a uni-

formly random i ∈ [n] and let Ĉi = {j |M(i, j) > α2/2}. Let L = ∪i6`Ĉi.

(b) Candidate 2nd Moment Estimation: For each Ĉi ∈ L, let Si be the output

of running robust 2nd moment estimation with Frobenius error (Lemma 3.7.5)

on Ĉi with outlier parameter η′i = O(ε
α

+ β
α2η

) .

(c) Merge candidate clusters: For each i 6 `, find Li to be the collection of

all j such that ‖Si − Sj‖F 6 2Cτ for a large enough constant C > 0. Set

229

Ĉi ∪ Li = B̂i. Repeat on L \ {Li ∪ i}.

(d) Output a union of a random subset of candidates: For L′ = ∪iB̂i, choose

a uniformly random subset S of L′, set Y1 = ∪j∈SB̂j and set Y2 = Y \ Y1.

Analysis of Algorithm

Lemma 3.7.1 (Success of Step 1). Let Σ̃ be the output of the robust covariance estimation algo-

rithm (Fact 3.2.36) applied to the input sample Y with outlier parameter ε. If Y is an ε-corruption

of a sample X from a GMM with minimum weight > α > Ω(
√
ε), mixture mean µ and covari-

ance Σ satisfying Condition 3.2.45, then,

0.5Σ � Σ̃ � 1.5Σ ,∥∥∥Σ̃−1/2(µ− µ̂)
∥∥∥

2
6 O(

√
ε/α) .

Proof. The lemma immediately follows by noting that GMMs with minimum weight α are 4-
certifiably 1/α-subgaussian (Fact 3.2.27) and α > Ω(

√
ε).

Lemma 3.7.2 (Simultaneous Intersection Bounds for Frobenius Separated Case). Let X = X1∪
X2 ∪ . . . Xk be a sample of size n > (dk)Ct /ε for a large enough constant C > 0, fromM =∑
iwiN (µi,Σi) that satisfies Condition 3.2.45 with parameters 2t and γ 6 εd−8tk−Ck. Suppose

further that ‖µi‖2 6 2
α

for every i, ‖Σi‖2 6 1
α

for every i and the mixture mean µ, covariance

Σ satisfy ‖µ‖2 6 1 and 0.5I � Σ � 1.5I . Let τ = 108 C6t4

β2/tα2 , for any β > 0. Then, given any

ε-corruption Y of X , for every i, j such that ‖Σi − Σj‖2
F > Ω(τ),

{
∪4
i=1Ai

}
2t
z {z′(Xi)z′(Xj) 6 β} ,

where z′(Xi) = 1
win

∑
j∈Xi zj1(xj = yj) for every i.

Proof of Theorem 83. First, since Y is an ε-corruption of a sample X from a GMM such that X
satisfies Condition 3.2.45, our robust mean and covariance estimation procedure (Step 1) applied
to the mixture succeeds and recovers an estimate of the covariance that is multiplicative 1± 0.5-
factor approximation in Löwner order. Thus, for the rest of the analysis, we can assume that
the smallest and largest eigenvalue of the mixture covariance are at least 0.5 and at most 1.5.
Since each component has weight at least α, this means that each of the constitute component

230

covariance can now be assumed to have a spectral norm at most 1.5/α.

Next, by an argument similar to the one presented in the proof of Theorem 75, the convex
program we wrote is approximately solvable in polynomial time and is feasible whenever the
uncorrupted sample X satisfies Condition 3.2.45. The only change here is in the certifiable
hypercontractivity constraints where instead of the RHS of the bounded variance constraint is
stated in terms of ‖Q‖2

F instead of ‖ΠQΠ‖2
F with an additional slack of O(1/α2). This modified

constraint is satisfied by all true clusters by an application of Lemma 3.2.25 since each of their
covariance has spectral norm at most 1.5/α.

Rounding Let M = Ẽζ̃ zz>. Then, by an argument similar to the proof of Theorem 75, we
can conclude:

1. od(1) + α >M(i, j) > 0.

2.
∑n
j=1M(i, j) > (α2 − od(1))n for every i.

3. For every i, let Bi be the set of “large entries”: i.e. j such that M(i, j) > α2/2. Then,
|Bi| > αn/2.

In the following, let Mi denote the i-th row of M and ‖Mi‖1 for the sum of the non-negative
entries of the vector Mi.

Candidate Clusters For every i, let Fi ⊆ [k] be the set of all i′ ∈ [k] such that ‖Σi − Σi′‖2
F > τ

(i.e., Fi is the set of indices of true clusters whose covariances are far from that of the i-th cluster
in Frobenius norm). For every row j ∈ [n], let C(j) ∈ [k] be such that j ∈ XC(j) Let’s call j-th
row of M “good” if xj = yj (i.e j-th sample is not an outlier) and the following condition holds:

∑
r∈FC(j)

∑
`∈Xr:x`=y`

M(j, `) 6 ‖Mj‖1

(
β

η

)
.

Thus, by Markov’s inequality, the fraction of non-outlier entries in Bj that come from Xr′

such that r′ ∈ Fr is at most 2
(

β
ηα2

)
.

Let us estimate the fraction of good rows now. From Lemma 3.4.3 and Fact 3.2.18, we have
that for every r and r′ ∈ Fr:

Ẽ[z′(Xr)z′(Xr′)] 6 β .

231

Here, recall that z′(Xr) = 1
wrn

∑
i6n zi1(yi = xi) for every r. Summing up over r′ ∈ Fr yields:

1
wrn

∑
r′∈Fr

∑
i∈Xr:xi=yi

∑
j∈Xr′ :xj=yj

Ẽ[zizj] 6 nβ .

Thus, by Markov’s inequality, with probability at least 1− η over the choice of i ∈ Xr such
that xi = yi, it must hold that:

∑
r′∈Fr

∑
j∈Xr′ :xj=yj

Ẽ[zizj] 6 n

(
β

η

)
.

Using that (1 − ε/α)-fraction of i ∈ Xr satisfy xi = yi, for every r, we conclude that
1− η − ε/α-fraction of the rows Xr are good.

Thus, with probability at least (1−η− ε/α)` > (1−O(`(η+ ε/α))), every candidate cluster
picked in Step 1 of our rounding algorithm corresponds to the large entries from a good row of
M .

We next claim that we cover most of the points in the input in the union of the candidate
clusters:

| ∪i6` Ĉi| >
(

1− 2√η − ε
√
ηα

)
n (3.53)

with probability at least 1 − √η. To see why, let’s estimate the chance that an element j ∈ [n]
does not appear in any of the Ĉis. First, we can assume that j-th row of M is good (this loses us
η+ε/α-fraction js). For each such j, there are at least αn/2 large entries. SinceM is symmetric,
the j-th column of M also has αn/2 large entries. Further, j appears in ∪i6`Ĉi if at least one of
the αn/2 large entries are chosen in our rounding. The chance that this does not happen in any of
the ` picks is at most (1− α/2)`. Since ` = Θ

(
1
α

log(1/η)
)
, this chance is at most O(η). Thus,

in expectation |[n] \ ∪i6`Ĉi| 6 O (η + ε/α)n. By Markov’s inequality, with probability at least
1−√η, |[n] \ ∪i6`Ĉi| 6 O

(√
η + ε√

ηα

)
n.

By a union bound, with probability at least 1−O (η`− ε`/α)−√η > 1−O
(
η log(1/η)/α−√η

)
,

we must thus have both the following events hold simultaneously:

| ∪i6` Ĉi| >
(

1− 2√η − ε
√
ηα

)
n > (1− 3√η)n (3.54)

232

and, for every 1 6 i 6 `,

|Ĉi ∩ (∪r′∈FC(r)Xr′)| 6 2
(
β

ηα
+ ε/α

)
· |Ĉi| . (3.55)

Merging Candidate Clusters Observe, following the proof of Theorem 76, we know that there
exists a partition of Y into sets Y1 and Y2 such that for all i,

max
{ 1
win
|Y1 ∩Xi|,

1
win
|Y2 ∩Xi|

}
> 1−O(√η)−O(β

ηα2),

and
max
i

1
win
|Xi ∩ Y1|,max

i

1
win
|Xi ∩ Y2| > 1−O(√η)−O(β

ηα2).

Next, we show that the merging step preserves this partition. For each Ĉi, let Ĉ ′i = Ĉi ∩
∪j 6∈FC(i)Xj . That is, Ĉ ′i is the subset of Ĉi obtained by removing points from “far-off” clusters
and the outliers. Then, since we know that |Ĉi| > αn/2 and |X ∩ Y | > (1− ε)n, we must have
|Ĉi| − |Ĉ ′i| = η′i|Ĉi| 6

(
3ε
α

+ 2β
ηα2

)
|Ĉi|, where we note that η′i 6

(
3ε
α

+ 2β
ηα2

)
.

Thus, Ĉ ′i is a collection of > (1 − η′i)αn/2 points from the submixture ∪j 6∈FC(i)Xj . We
know that each µi is of `2 norm at most 1/α, each Σi has spectral norm at most 1/α and that
for every r, r′ 6∈ FC(i), ‖Σr − Σr′‖2

F 6 τ . Further, Σr is at most τ + 1/α = O(τ)-different in
Frobenius norm from the covariance of the sub-mixture. By an argument similar to the proof
of Lemma 3.2.42, we can establish that the submixture with components r such that r 6∈ FC(i)

is O(τ)-certifiably bounded variance. Since Ĉ ′i is a subset of this sub-mixture of size αn/2, we
immediately obtain that Ĉ ′i isO(τ/α)-certifiably bounded variance. Thus, applying Lemma 3.7.5
with outlier parameter η′i to input Ĉi yields an estimate Si of the 2nd moment of Ĉ ′i within a
Frobenius error of at most O(τ/α) From Lemma 3.7.6, this is an additional O(1/α) different in
Frobenius norm from the 2nd moment of the sub-mixture which, as argued above, is itself at most
O(τ) different in Frobenius norm from Σi. Chaining together yields that ‖Σi − Si‖2

F 6 O(τ/α)
for some constant C.

Since for every r ∈ S, r′ ∈ T it holds that ‖Σr − Σr′‖2
F � Ω(τ/α), conditioned on the good

event above, our algorithm never merges Ĉi and Ĉj whenever i, j are non-outliers and i is in
some cluster in S and j is in some cluster in T . On the other hand, if i, j belong to the same
cluster, then, the corresponding estimate ‖Si − Sj‖2

F 6 2Cτ . Thus, our merging process always
merges together any such candidates.

As a result, the output of the merging process can have at most one i from any true cluster

233

– thus, the number of distinct members of L′ is at most k. We note that the running time is
dominated by computing a pseudo distribution satisfying the union of all the constraints (Step 3
in Algorithm 84) and requires nO(t) time. Step 4 computes a degree O(1) sos relaxation for at
most O(`) components and the merging only requires a fixed polynomial in d and k time.

3.7.2 Proof of Lemma 3.7.2

In the following lemma, we show that the constraint system A, via a low-degree sum-of-squares
proof, implies that a lower bound on the variance of any degree 2 polynomial on X ′ whenever
the cluster Ĉ (indicated by z) appreciably intersects two well-separated true clusters.

Lemma 3.7.3 (Lower-Bound on Variance of Degree 2 Polynomials). Let Q ∈ Rd×d be any

fixed matrix. Then, for any i, j 6 k, and z′(Xr) = 1
wrn

∑
i∈Xr zi · 1(yi = xi), we have for any

r 6= r′ ∈ [k],

A 4t
z

z′(Xr)z′(X ′r) 6
(32Ct/α)2t

(EXrQ− EXr′
Q)2t

 α4

w2
rw

2
r′

(
Ez(Q− EzQ)2

)t

+ α2

w2
r

(
EXr′

(Q− EXr′
Q)2

)t
+ α2

w2
r′

(
EXr(Q− EXrQ)2

)t .

Proof. Let z′i = zi1(yi = xi) for every i. For every 1 6 r 6 k, let EXrQ denote the expectation
of the homogenous degree 2 polynomial defined by Q: EXrQ = 1

wrn

∑
i,j∈Xr Q(xi) for every r

where Q(xi) = x>i Qxi. Similarly, let EzQ be the quadratic polynomial in z defined by EzQ =
1
αn

∑
i6n ziQ(xi). Using the substitution rule and non-negativity of the z′is, we have for any

r, r′ ∈ [k]:

A 4t
z

Ez(Q− EzQ)2t = 1
αn

∑
i∈[n]

zi (Q(xi)− EzQ)2t

>
1
αn

∑
i∈Xr∪Xr′ :xi=yj

z′i (Q(xi)− EzQ)2t


(3.56)

Then, using the SoS almost triangle inequality (Fact 3.2.21), we have:

234

A 4t
z

 1
αn

∑
i∈Xr∪Xr′

z′i (Q(xi)− EzQ)2t

> 2−2t

 1
αn

∑
i∈Xr:i

z′i (EXrQ− EzQ)2t − 1
αn

∑
i∈Xr

z′i (Q(xi)− EXrQ)2t


+ 2−2t

 1
αn

∑
i∈Xr:i:xi=yi

z′i
(
EXr′

Q− EzQ
)2t
− 1
αn

∑
i∈Xr′ ,xi=yi

z′i
(
Q(xi)− EXr′

Q
)2t


= 2−2t

wr
α
z′(Xr) (EXrQ− EzQ)2t − 1

αn

∑
i∈Xr

(Q(xi)− EXrQ)2t


+ 2−2t

wr′
α
z′(Xr′)

(
EXr′

Q− EzQ
)2t
− 1
αn

∑
i∈Xr′

(
Q(xi)− EXr′

Q
)2t


(3.57)

Next, observe that by the SoS almost triangle inequality (Fact 3.2.21), we must have:

A 4t

{
(EXrQ− EzQ)2t +

(
EXr′

Q− EzQ
)2t

> 2−2t
(
EXrQ− EXr′

Q
)2t
}
.

Further, note that A
O(1)

{
wr
α
z′(Xr) + wr′

α
z′(Xr′) 6 1

αn

∑
i zi 6 1

}
. Thus, using Fact 3.4.5

with A = wr
α
z′(Xr), B = wr′

α
z′(Xr′), C = (EXrQ− EzQ)2t, and D =

(
EXr′

Q− EzQ
)2t

and

τ = 2−2t
(
EXrQ− EXr′

Q
)2t

, we can derive:

A 4
z

(Ct/α)2t
(
Ez(Q− EzQ)2

)t
> Ez(Q− EzQ)2t

> 2−6twrwr′

α2 z′(Xr)z′(Xr′)
(
EXrQ− EXr′

Q
)2t

− 2−6twr
α

EXr (Q− EXrQ)2t − 2−6twr′

α
EXr′

(
Q− EXr′

Q
)2t

> 2−6twrwr′

α2 z′(Xr)z′(Xr′)(EXrQ− EXr′
Q)2t

− wr
α

(Ct/α)2t
(
EXr (Q− EXrQ)2

)t
− wr′

α
(Ct/α)2t

(
EXr′

(
Q− EXr′

Q
)2
)t

(3.58)

235

where the first inequality uses the Certifiable Hypercontractivity constraints (A4) and the last
inequality follows from the Certifiable Hypercontractivity of Xr and Xr′ (Condition 3.2.45).
Rearranging completes the proof.

We can use the lemma above to obtain a simultaneous intersection bound guarantee when
there are relative Frobenius separated components in the mixture.

Lemma 3.7.4 (Lemma 3.4.3, restated). Suppose
∥∥∥Σ−1/2(Σr − Σr′)Σ−1/2

∥∥∥2

F
> 108 C6t4

β2/tα4 . Then,

for z(Xr) = 1
wrn

∑
i∈Xr zi · 1(yi = xi),

A 2t {z(Xr)z(Xr′) 6 β} .

Proof. WLOG, we will work with the transformed points xi → Σ−1/2xi where Σ is the covari-
ance of the mixture. Note that our algorithm does not need to know Σ – this transformation is
only for simplifying notation in the analysis that follows.

Let Σ̃z = Σ−1/2ΣzΣ−1/2, Σ̃r = Σ−1/2ΣrΣ−1/2 and Σ̃r′ = Σ−1/2Σr′Σ−1/2 be the transformed
covariances. Then, notice that

∥∥∥Σ̃r

∥∥∥
2
6 1

wr
‖Σ‖2 6

1.5
wr

and
∥∥∥Σ̃r′

∥∥∥
2
6 1

wr′
‖Σ‖2 6

1.5
wr′

.

We now apply Lemma 3.4.7 with Q = Σ̃r − Σ̃r′ . Then, notice that EXrQ − EXr′
Q =∥∥∥Σ̃r − Σ̃r′

∥∥∥2

F
+ µ>r (Σ̃r − Σ̃r′)µr − µ>r′(Σ̃r − Σ̃r′)µr′ > ‖Q‖2

F −
4
α

. Then, we obtain:

A 2t
z

z(Xr)z(Xr′) 6
(

32Ct/α
EXrQ− EXr′

Q

)2t

·

(
α2

wrwr′

(
Ez(Q− EzQ)2

)t
+ α

wr

(
EXr′

(Q− EXr′
Q)2

)t
+ α

wr′

(
EXr(Q− EXrQ)2

))t .
(3.59)

Since Xr and Xr′ have certifiably C-bounded variance polynomials for C = 4 (as a conse-
quence of Condition 3.2.45 and Fact 3.2.43 followed by an application of Lemma 3.2.25), we
have:

EXr′
(Q− EXr′

Q)2 6 6
∥∥∥Σ̃1/2

r′ QΣ̃1/2
r′

∥∥∥2

F
6

10
w2
r′
‖Q‖2

F 6
10
α2 ‖Q‖

2
F ,

and
EXr(Q− EXrQ)2 6 6

∥∥∥Σ̃1/2
r QΣ̃1/2

r

∥∥∥2

F
6

10
w2
r

‖Q‖2
F 6

10
α2 ‖Q‖

2
F .

236

Finally, using the bounded-variance constraints in A, we have:

A 4
Q,z

E(Q− EzQ)2 6
10
α2 ‖Q‖

2
F .

Plugging these estimates back in (3.59) yields:

A 4
z

z(Xr)z(Xr′) 6
(1000Ct/α)2t

‖Q‖2t
F α

2t

(
α2

wr
+ α

wr′
+ α

wrwr′

)

6
3

wrwr′

(1000Ct)2t

α2t ‖Q‖2t
F

6
3(1000Ct)2t

α2t ‖Q‖2t
F

 .
(3.60)

Plugging in the lower bound on ‖Q‖2t
F and applying cancellation within SoS (Fact 3.4.6)

completes the proof.

3.7.3 2nd Moment Estimation Subroutine

The following lemma gives a 2nd moment estimation algorithm with error in Frobenius norm
for distributions that have a certifiably bounded covariance. The proof is very similar to the SoS
based mean and covariance estimation algorithms but we provide it in full for completeness here.

Lemma 3.7.5 (2nd Moment Estimation in Frobenius Norm). Let 1/100 > η > 0. There is an

nO(1) time algorithm that takes input an η-corruption Y of an sample X of size n and outputs

an estimate M2 of the 2nd moment of X with the following properties: Let X ⊆ Rd be a

collection of n points satisfying 2
Q
{

1
|X|
∑
x∈X

(
Q(x)− 1

|X|Q(x)
)2

6 C ‖Q‖2
F

}
for a matrix-

valued indeterminate Q. Let M2 = 1
n

∑
x∈X xx

>. Then, the estimate M̂2 output by the algorithm

satisfies: ∥∥∥M̂2 −M2

∥∥∥2

F
6 80Cη .

Proof. Consider the constraint system with scalar-valued indeterminates zi for 1 6 i 6 n and
d-dimensional vector-valued indeterminates x′1, x

′
2, . . . , x

′
n with the following set of constraints:

237

A = 

∀i 6 n z2
i = zi

n∑
i=1

zi = (1− η)n

M̃2 = 1
n

n∑
i=1

x′ix
′
i
>

∀i 6 n zix
′
i = ziyi

1
n

n∑
i=1

(
x′
>
i Qx

′
i −

1
n

n∑
i=1

x′
>
i Qx

′
i

)2

6 C ‖Q‖2
F



(3.61)

Observe thatX ′ = X and zi set to the 0-1 indicator of non-outliers satisfies the constraint system.
Thus, the constraints are feasible.

Our algorithm finds a pseudo-distribution ζ̃ of degree 10 satisfying the above constraints and
output Ẽ[M̃2]. Let us now analyze this algorithm. The key is the following statement that gives a
sum-of-squares proof of closeness of M̃2 and M2 in Frobenius norm. We use the notation EXQ

and EX′Q to abbreviate 1
n

∑n
i=1 x

>
i Qxi and 1

n

∑n
i=1 x

′>
i Qx

′
i respectively.

A 2
Q


(

1
n

n∑
i=1

x>i Qxi −
1
n

n∑
i=1

x′
>
i Qx

′
i

)2

=
(

1
n

n∑
i=1

(1− zi1(xi = yi))x>i Qxi − x′
>
i Qx

′
i

)2

6
(1
n

(1− zi1(xi = yi))2
)(1

n

n∑
i=1

(
x>i Qxi − x′

>
i Qx

′
i

)2
)

6 20η ·
(

1
n

n∑
i=1

(
x>i Qxi − EXQ

)2
+ 1
n

n∑
i=1

(
x′
>
i Qx

′
i − EX′Q

)2
+ (EXQ− EX′Q)2

)

6 20η(2C ‖Q‖2
F) + 20η (EXQ− EX′Q)2


where the first inequality follows by the SoS version of the Cauchy-Schwarz inequality and the
2nd by the SoS version of the Almost Triangle inequality.

Rearranging and using that 1− 20η > 1/2 now yields that:

A 2
Q


(

1
n

n∑
i=1

x>i Qxi −
1
n

n∑
i=1

x′
>
i Qx

′
i

)2

6 80Cη ‖Q‖2
F



238

Notice that the LHS above equals the linear polynomial 〈M̃2 −M2, Q〉. We now plug in Q =
M̃2 −M2 to obtain:

A 2
Q

∥∥∥M̃2 −M2

∥∥∥4

F
6 80Cη

∥∥∥M̃2 −M2

∥∥∥2

F


Applying Fact 3.2.24 yields:

A 2
Q

∥∥∥M̃2 −M2

∥∥∥8

F
6 804C4η4


Taking pseudo-expectations with respect to ζ̃ and using Hölder’s inequality for pseudo-

distributions yields that

∥∥∥Ẽζ̃ M̃2 −M2

∥∥∥8

F
6 Ẽζ̃

∥∥∥M̃2 −M2

∥∥∥8

F
6 804C4η4 .

Taking the 4-th root, we can conlcude our rounded value M̂2 = Ẽζ̃ M̃2 satisfies:

∥∥∥M̂2 −M2

∥∥∥2

F
6 80Cη .

This completes the proof.

We also note the following simple consequence of the certifiable bounded variance property
that follows via an argument similar to the one employed in the proof of the previous lemma.

Lemma 3.7.6 (Subsamples of Bounded-Variance Distributions). Let X ⊆ Rd be a collection of

n points satisfying 2
Q {

1
|X|
∑
x∈X(Q(x)− 1

|X|Q(x))2 6 C ‖Q‖2
F

}
for a matrix-valued indeter-

minate Q. Let M2 = 1
|X|
∑
x∈X xx

> be the 2nd moment of X . Let S ⊆ X be a subset of size at

least β|X|. Then,

4


∥∥∥∥∥ 1
|S|

∑
x∈S

xx> −M2

∥∥∥∥∥
2

F

6
1
β

 .

239

Proof. We have by the Cauchy-Schwarz inequality:

2
Q


(

1
|X|

∑
x∈X

1(x ∈ S)(x>Qx−M2), Q〉)
)2

6

(
1
|X|

1(x ∈ S)2
)(∑

x∈X
(x>Qx−M2), Q〉)2

)

6

(
|S|
|X|

)
‖Q‖2

F .

We now substitute in Q = 1
|X|
∑
x∈X 1(x ∈ S)(x>Qx−M2 to obtain:

2
Q


∥∥∥∥∥ 1
|X|

∑
x∈X

1(x ∈ S)(x>Qx−M2)
∥∥∥∥∥

4

F

6

(
|S|
|X|

)∥∥∥∥∥ 1
|X|

∑
x∈X

1(x ∈ S)(x>Qx−M2)
∥∥∥∥∥

2

F

.

We now apply Fact 3.2.24 to yield:

2
Q


∥∥∥∥∥ 1
|X|

∑
x∈X

1(x ∈ S)(x>Qx−M2)
∥∥∥∥∥

8

F

6

(
|S|
|X|

)4

.

We finally apply Fact 3.4.6 to conclude that:

2
Q


∥∥∥∥∥ 1
|X|

∑
x∈X

1(x ∈ S)(x>Qx−M2)
∥∥∥∥∥

2

F

6

(
|S|
|X|

)
.

Rescaling gives the claim.

3.8 Getting poly(ε)-close in TV Distance: Proof of Theorem
68

Theorem 85 (Robustly Learning k-Mixtures with small error). Given 0 < ε < 1/kkO(k2)
and a

multiset Y = {y1, y2, . . . , yn} of n i.i.d. samples from a distribution F such that dTV(F,M) 6 ε,

for an unknown k-mixture of GaussiansM = ∑
i6k wiN (µi,Σi), where n > n0 = dO(k)polyk(1/ε),

there exists an algorithm that runs in time nO(1)polyk (1/ε) and with probability at least 0.99 out-

puts a hypothesis k-mixture of Gaussians M̂ = ∑
i6k ŵiN

(
µ̂i, Σ̂i

)
such that dTV

(
M,M̂

)
=

O(εck), with ck = 1/(100kC(k+1)!k!sf(k + 1)), where C > 0 is a universal constant and

sf(k) = Πi∈[k](k − i)! is the super-factorial function.

In order to obtain the above theorem, we require recovering a polynomial sized list of candi-

240

date parameters, in addition to the efficient partial clustering result we obtained in the previous
section. To this end, we show the following list-recovery theorem which is similar to Theorem
72, but the algorithm outputs a polynomial-size list instead.

Theorem 86 (Recovering a small list of candidate parameters). Fix any α > ε > 0,∆ > 0. Let

X , a sample from a k-mixture of GaussiansM = ∑
iwiN (µi,Σi) satisfying Condition 3.2.45

with parameters γ = εd−8kk−Ck, for C a sufficiently large universal constant, and t = 8k, and

let Y be an ε-corruption of X . Let X ′ be a set of n′ = O (εη/ (k5 (∆4 + 1/α4)))−4ck fresh sam-

ples from M and Z be an ε-corruptionn of X ′. If wi > α, ‖µi‖2 6 2√
α

and ‖Σi − I‖F 6 ∆
for every i ∈ [k], then, given k, Y, Z and ε, the algorithm outputs a list L of at most `′ =
O
(
(k5 (∆4 + 1/α4))4k

/η4k
)

candidate hypotheses (component means and covariances), such

that with probability at least 99/100 there exist {µ̂i, Σ̂i}i∈[k] ⊆ L satisfying ‖µi − µ̂i‖2 6

O
(

∆1/2

α

)
ηG(k) and

∥∥∥Σi − Σ̂i

∥∥∥
F
6 O(k4) ∆1/2

α
ηG(k), for all i ∈ [k]. Here, η = (2k)4kO(1/α + ∆)4k ·

ε1/(kO(k2)) and G(k) = 1
Ck+1(k+1)! . The running time of the algorithm is poly(|L|, |Y |, dk) ·

polyk(1/ε).

3.8.1 Proof of Theorem 86

We use the following notation and background from Moitra-Valiant [MV10]:

Definition 3.8.1 (Statistically Learnable). Given ε > 0, we call a mixture of Gaussians M =∑
iwiN (µi,Σi) ε-statistically learnable if miniwi > ε and mini 6=j dTV (N (µi,Σi),N (µj,Σj)) >

ε.

Definition 3.8.2 (Correct Subdivision). Given a Gaussian mixture of k Gaussians,M = ∑
iwiN(µi,Σi)

and a mixture of k′ 6 k Gaussians M̂ = ∑
i ŵiN(µ̂i, Σ̂i), we call M̂ an ε-correct subdivision

ofM if there is a function π : [k]→ [k′] that is onto and

1. ∀j ∈ [k′],
∣∣∣∑i:π(i)=j wi − ŵj

∣∣∣ 6 ε

2. ∀i ∈ [k], ‖µi − µ̂π(i)‖+ ‖Σi − Σ̂π(i)‖F 6 ε.

Theorem 87 (Theorem 8 in [MV10]). Given an ε-statistically learnable Gaussian mixtureM
in isotropic position, for some ε > 0, there exists an algorithm that requires n = poly(d/ε)
samples and runs in time O(polyk(n)) and with probability at least 99/100 recovers an ε-correct

sub-division M̂. Let the corresponding algorithm be referred to as PARTITION PURSUIT.

241

The algorithm has two steps: first run the first three steps of Algorithm 3.2 to get the list
L′ of Ŝ and V ′

Ŝ
; then apply the following proposition to learn the mixture in the subspace V ′

Ŝ
.

This proposition is a generalization of Theorem 87 without the assumption that the total variation
distance between each pair of components is at least ε. The sample and time complexities has a
worse, but still polynomial dependence on ε. Note that although the algorithm in the proposition
is non-robust, we can take a sample without noise with constant probability because the algorithm
only requires a polynomial number of samples in ε.

Algorithm 88 (Efficient List-Recovery of Candidate Parameters).

Input: An ε-corruption Y of a sampleX from a k-mixture of GaussiansM = ∑
iwiN (µi,Σi).

Let Z be an additional ε-corrupted sample of size n′ fromM.

Requirements: The guarantees of the algorithm hold if the mixture parameters and the

sample X satisfy:

1. wi > α for all i ∈ [k],

2. ‖µi‖2 6 2/
√
α for all i ∈ [k],

3. ‖Σi − I‖F 6 ∆ for all i ∈ [k].

4. X satisfies Condition 3.2.45 with parameters (γ, t), where γ = εd−8kk−Ck, for

C a sufficiently large universal constant, and t = 8k.

5. The number of fresh samples n′ = O (εη/ (k5 (∆4 + 1/α4)))−4ck, for a fixed

constant c.

Parameters: η = (2k)4kO(1/α + ∆)4k ε1/(kO(k2)),D = C(k4/(α√η)), δ = 2η1/(Ck+1(k+1)!),

`′ = 100 log k (η/ (k5 (∆4 + 1/α4)))−4k, for some sufficiently large absolute constant

C > 0, λ = 4η, φ = 10(1 + ∆2)/(√ηα5), ε1 = O
(√

∆δ1/4/α
)
.

Output: A list L of hypotheses such that there exists at least one, {µ̂i, Σ̂i}i6k ∈ L, sat-

isfying: ‖µi − µ̂i‖2 6 O
(

∆1/2

α

)
ηG(k) and

∥∥∥Σi − Σ̂i

∥∥∥
F

6 O(k4) ∆1/2

α
ηG(k), where

G(k) = 1
Ck+1(k+1)! .

Operation:

1. Robust Estimation of Hermite Tensors: For m ∈ [4k], compute T̂m such that

maxm∈[4k]

∥∥∥T̂m − E [hm(M)]
∥∥∥
F
6 η using the robust mean estimation algorithm

in Fact 3.2.35.

242

2. Random Collapsing of Two Modes of T̂4: Let L′ be an empty list. Repeat `′

times: For j ∈ [4k], choose independent standard Gaussians in Rd, denoted by

x(j), y(j) ∼ N (0, I), and uniform draws a1, a2, . . . , at from [−D,D]. Let Ŝ be a

d× d matrix such that for all r, s ∈ [d], Ŝ(r, s) = ∑
j∈[4k] ajT̂4(r, s, x(j), y(j)) =∑

j∈[4k] aj
∑
g,h∈[d] T̂4(r, s, g, h)x(j)(g)y(j)(h). Add Ŝ to the list L′.

3. Construct Low-Dimensional Subspace: Let V be the span of all singular vectors

of the natural d × dm−1 flattening of T̂m with singular values > λ for m 6 4k.

For each Ŝ ∈ L′, let V ′
Ŝ

be the span of V plus all the singular vectors of Ŝ with

singular value larger than δ1/4.

4. Moitra-Valiant for Low-Dimensional Subspace: Initialize L to be the empty

list. For each Ŝ ∈ L′, let P̂ = UU> be the orthogonal projection matrix onto

the span of V ′
Ŝ

, where U ∈ Rd×d has orthonormal columns. Let m = dimV ′
Ŝ

and let Ẑ ⊂ Z be a randomly chosen subset of size poly(m/ε1). Let Um denote

the first m columns of U and for all z ∈ Ẑ, compute U>mz. Run PARTITION

PURSUIT on the resulting set of points and let {µ̂P̂i , Σ̂P̂
i }i∈[k] be the parameters

corresponding to the ε-correct subdivision output by PARTITION PURSUIT. Let

µ̂>i = [(µ̂P̂i)>, 0] be a d dimensional vector padded with 0s and Σ̂i be a d ×
d matrix with Σ̂P̂

i in the top left m × m sub-matrix and 0’s elsewhere. Add

{Uµ̂i, UΣ̂iU
> + (Ŝ + I)− P̂ (I + S) P̂}i∈[k] to L.

Proposition 3.8.3. Given ε > 0 and a sample X of size poly(d, 1/ε) from a k-mixture of Gaus-

sians M with mixture covariance Σ such that 0.99I � Σ � 1.01I and satisfies wi > ε, the

PARTITION PURSUIT algorithm runs in time poly(d, 1/ε) and with probability at least 9/10
returns an O(ε)-correct sub-division, denoted by M̂.

Recall, the PARTITION PURSUIT algorithm satisfies Theorem 87 and we will prove that
with an appropriately chosen parameter ε, PARTITION PURSUIT also satisfies Proposition 3.8.3.
The main idea is that if any two components are actually close enough in total variation distance,
then any algorithm with access to only a polynomial number of samples could never distinguish
these two components from a single Gaussian. So if all pairwise distances are either sufficiently
large or sufficiently small, the algorithm will behave as if it were given sample access to a mixture
that meets the requirements of Theorem 87.

Lemma 3.8.4. Given 0 < γ, δ < 1 and two distributions, D1 and D2 over Rd such that

dTV (D1,D2) < γ, let X1 be set of n i.i.d. samples from D1 and X2 be n i.i.d. samples from

243

D2. Let A be any algorithm that takes as input X1 and outputs a list of m real numbers,

Y1 = {yi}i∈[m], such that yi ∈ [−1, 1] with probability at least 1 − δ. Then, for any τ > 0,

A on input X2 outputs a list of m real numbers Y2 = {y′i}i∈[m] such that with probability at least

1− δ − (4mnγ/τ), for all i ∈ [m], |yi − y′i| 6 τ .

Proof. Let U1 be the uniform distribution over X1 and U2 be the uniform distribution over X2.
Then,

dTV (U1,U2) 6
√

2H2 (U1,U2) =
√

2nH2 (D1,D2)

6
√

2ndTV (D1,D2)

6
√

2γn

(3.62)

Consider the family of functions F that take as input n samples and output a single bit in {0, 1}.
We know that for any function f ∈ F , the probability that f(X1) 6= f(X2) is at most

√
2γn.

Recall, the algorithm outputs m real numbers in the range [−1, 1], which we can discretize into
a grid ∆ of length τ . There are at most 2/τ distinct grid points and for any yi ∈ [−1, 1],
there exists a point zi ∈ ∆ such that |yi − zi| 6 τ . Further, observe we can represent each
yi using 2/τ functions f ∈ F . Then, union bounding over the events that each of the 2/τ
functions output different bits, for each of the m parameters, we have that with probabiltiy at
least 1 −

(
2
√

2γnm/τ
)
, any algorithm outputs a list {y′i}i′∈[m] such that |yi − y′i| 6 τ . Finally,

union bounding over the event that algorithm A fails with probability δ yields the claim.

We then prove there is a gap [f(d, ε1), ε1) between pairwise distances of components so that if
we merge components within distance f(d, ε1), the resulting mixture is ε1-statistically learnable.

Lemma 3.8.5. Let f(d)(ε) = f(d, ε). There exists ` ∈ [k2] such that for every pair of compo-

nents, either dTV (N (µi,Σi),N (µj,Σj)) < (f(d))`(ε) or dTV (N (µi,Σi),N (µj,Σj)) > (f(d))`−1(ε).

Moreover, the set of Gaussians with total variation distance at most (f(d))`(ε) is an equivalence

class.

Proof. We can see that intervals
{[

(f(d))`(ε), (f(d))`−1(ε)
)}

`∈[k2]
are disjoint. There are at most

k2−1 distinct values of dTV (N (µi,Σi),N (µj,Σj)). So there exists an interval
[
(f(d))`(ε), (f(d))`−1(ε)

)
such that for every pair of componentsN (µi,Σi),N (µj,Σj), either dTV (N (µi,Σi),N (µj,Σj)) <
(f(d))`(ε) or dTV (N (µi,Σi),N (µj,Σj)) > (f(d))`−1(ε).

Next, we show for any `, Gaussians with pair wise TV distance (f(d)`)(ε) form an equiv-
alence class. Consider component Gaussians G1, G2 and G3 such that G1 and G2 are at total

244

variation distance at most (f(d))`(ε) and G2 and G3 are also at total variation distance at most
(f(d))`(ε).

dTV (G1, G3) 6 dTV (G1, G2) + dTV (G2, G3)

6 2(f(d))`(ε)

� (f(d))`−1(ε)

and since there is no pair of Gaussians with total variation distance inside the interval [(f(d))`(ε), (f(d))`−1(ε)),
this implies dTV (G1, G3) 6 (f(d))`(ε).

We can now complete the proof of Proposition 3.8.3 :

Proof of Proposition 3.8.3. By Lemma 3.8.5, there exists an interval
[
(f(d))`(ε), (f(d))`−1(ε)

)
such that there is no pair of Gaussians with total variation distance inside the interval and
(f(d))`(ε), (f(d))`−1(ε) are polynomials in d and ε. Let ε1 = (f(d))`−1(ε) and f(d, ε1) =
(f(d))`(ε). Let X be a set of n = (d/ε)c samples fromM, where c is fixed universal constant.
Let M̄ be the mixture obtained by merging all components in an equivalence class with total
variation distance at most f(d, ε1) to a single Gaussian and observe dTV

(
M,M̄

)
6 kf(d, ε1).

Next, observe that PARTITION PURSUIT outputs at most k means and covariances, which can
be represented as a list of at most 2kd2 real numbers. Further, since Σ � 1.01I and wi > ε, the
means of each component ‖µi‖2

2 6 2/ε and ‖Σi‖2
F 6 O(d2/ε).

Then, rescaling the instance byO(ε/d2) and applying Lemma 3.8.4 withD1 =M,D2 = M̄,
input samples X and accuracy parameter τ = (ε/d)c2 , for a large enough constant c2, it follows
that with probability at least 1−0.99−O(f(d, ε1) · (ε/d)c3), for a fixed constant c3, the resulting
list of numbers is τ -close to that obtained by running PARTITION PURSUIT on a set of n
samples from M̄. Since M̄ is ε1-statistically learnable, it follows from Theorem 87 that with
probability at least 9/10, PARTITION PURSUIT will output an O(ε1)-correct sub-division M̂.

Proof of Theorem 86. Recall, by part (1) of Proposition 3.3.3, the dimension of the subspace V ′
Ŝ

ism = dimV ′
Ŝ

= O
(

(k(1+∆+1/α))4k+5

η2

)
and let ε1 =

√
∆δ1/4/α. Let cmv be a fixed constant such

that (m/ε1)cmv samples suffice for applying Theorem 87. Further, obseve in the fresh sample Y ,
the probability that any given sample is corrupted is ε. Let ζ be the event that a random subset
of (m/ε1)cmv samples from Z does not contain any corrupted points. Then, the event ζ holds
with probability at least (1− ε)(m/ε1)cmv . Conditioning on ζ and running step 4 of Algorithm

245

88, it follows from Proposition 3.8.3 that we recover O(ε1)-accurate estimates to the parameters
ofM in the subspace, i.e. ‖U>µi − µ̂i‖2 6 O(ε1) and ‖U>ΣiU − Σ̂i‖F 6 O(ε1). Since we
repeat the above for `′ candidate subspaces in L′, the probability over all probability of success
is (1− ε)(m/ε1)cmv ·`′ .

By part (2) in Proposition 3.3.3, there is a vector µ′i ∈ V ′Ŝ such that ‖µi − µ′i‖ 6 20
α
δ1/4∆1/2

where δ = 2η1/(Ck+1(k+1)!) and η = O(4k(1 + 1/α + ∆)4k√ε1). Let P̂ = UU> be a projection
matrix where the columns of Q span V ′

Ŝ
and let Q>µi be the projection of the true means to the

corresponding subspace. Then,

‖Uµ̂i − µi‖2 6 ‖Uµ̂i − µ′i‖2 + ‖µ′i − µi‖2

6 ‖Uµ̂i − P (µ′i − µi + µi)‖2 +O

(√
∆δ1/4

α

)

6 ‖µ̂i − U>µi‖2 +O

(√
∆δ1/4

α

)

6 O

(√
∆δ1/4

α

)
.

where the third inequality follows from observing that U>µi is the true mean in the low dimen-
sional subspace and applying Proposition 3.8.3.

By Proposition 3.3.2, there exists Ŝ ∈ L′ such that Ŝ − (Σi − I) = Pi + Qi where ‖Pi‖F =
O(
√
η/α). Again by part (3) in Proposition 3.3.3, there exists a symmetric matrix Q′i ∈ V ′Ŝ × V

′
Ŝ

such that ‖Qi − Q′i‖F 6 O(k2

α
δ1/4∆1/2). We also know that in the subspace spanned by V ′

Ŝ
,

‖Σ̂i − U>ΣiU‖2
F 6 poly(ε2). Recall, Algorithm 88 outputs the following estimate: M̂ =

UΣ̂U> +
(
I + Ŝ

)
− P̂

(
I + Ŝ

)
P̂ . Observe, for any matrix M and projection matrix P , M =

PMP + (I − P)M(I − P) + PM(I − P) + (I − P)MP . Then,

‖Σi − M̂‖F 6 ‖P̂
(
Σi − M̂

)
P̂‖F︸ ︷︷ ︸

(1)

+ ‖
(
I − P̂

) (
Σi − M̂

) (
I − P̂

)
‖F︸ ︷︷ ︸

(2)

+ ‖P̂
(
Σi − M̂

) (
I − P̂

)
‖F︸ ︷︷ ︸

(3)

+ ‖
(
I − P̂

) (
Σi − M̂

)
P̂‖F︸ ︷︷ ︸

(4)

(3.63)

We bound each of the terms above. Since P̂ (I + S − P (I + S)P) P̂ = 0, we can bound term

246

(1) as follows

‖P̂
(
Σi − M̂

)
P̂‖F = ‖P̂ΣiP̂ − P̂UΣ̂iU

>P̂‖F = ‖U>ΣiU − Σ̂i‖ 6 O

(√
∆δ1/4

α

)
(3.64)

Similarly, since
(
I − P̂

) (
UΣ̂iU

>
) (
I − P̂

)
= 0 and Σi = I + Ŝ−Pi−Qi, we can bound term

(2) as follows:

‖
(
I − P̂

) (
Σi − M̂

) (
I − P̂

)
‖F = ‖

(
I − P̂

) (
Σi −

(
I + Ŝ

)) (
I − P̂

)
‖F

6 ‖
(
I − P̂

) (
Σi −

(
I + Ŝ −Qi

)) (
I − P̂

)
‖F + ‖

(
I − P̂

)
Qi

(
I − P̂

)
‖F

6 ‖Pi‖2
F + ‖

(
I − P̂

)
(Qi −Q′i)

(
I − P̂

)
‖F + ‖

(
I − P̂

)
Q′i
(
I − P̂

)
‖F

6 O

(√
η

α
+ k2δ1/4∆1/2

α

)
(3.65)

Next, we bound term (3). Observe, P̂
(
UΣ̂iU

>
) (
I − P̂

)
= 0 and P̂ (I + S)P̂ (I − P̂) = 0.

Thus,

‖P̂
(
Σi − M̂

) (
I − P̂

)
‖F = ‖P̂

(
Σi −

(
I + Ŝ

)) (
I − P̂

)
‖F

= ‖P̂ (Pi +Qi)
(
I − P̂

)
‖F

6 ‖P̂Pi
(
I − P̂

)
‖F

6 O
(√

η

α

)
(3.66)

Obseve, term (4) follows from a similar argument. Combining equations (3.64), (3.65),(3.66)
and substituting back into (3.63) we can conclude

‖Σi − M̂‖F 6 O

(√
η

α
+ k2δ1/4∆1/2

α

)

The size of L′ is `′ = O
(
log k (η/ (k5 (∆4 + 1/α4)))−4k) and since we add a single tuple of

k means and covariances for each subspace in L′, the list L has the same size. The running time
is poly

(
|Y |, |L|, dk,m, 1/ε1

)
concluding the proof.

247

3.8.2 Proof of Theorem 85

Since we have all the main ingredients: the tensor decomposition algorithm recovering a polyno-
mial size of list (Theorem 86), the upgraded partial clustering algorithm with high probability of
success (Theorem 83) and the spectral separation algorithm of thin components (Lemma 3.5.1),
we can now complete the proof of Theorem 85.

The algorithm establishing Theorem 85 is almost the same as Algorithm 81. The only dif-
ference is we will replace Algorithm 77 by Algorithm 84 and replace Algorithm 73 by Algo-
rithm 88. The following two lemmas show that by modifying the parameters slightly and apply-
ing the upgraded partial clustering and tensor decomposition algorithms, we can have the same
conclusions as in Lemma 3.6.5 and Lemma 3.6.6 with a polynomial success probability. Then
the proof of Theorem 85 is exactly the same as the proof of Theorem 80 in Section 3.6.2 except
for the use of Lemma 3.8.6 and Lemma 3.8.7 instead of Lemma 3.6.5 and Lemma 3.6.6.

Lemma 3.8.6 (Non-negligible Weight and Covariance Separation). Given 0 < ε < 1/kkO(k2)

and k ∈ N, let α = ε1/(45Ck+1(k+1)!).

LetM = ∑k
i=1wiGi with Gi = N (µi,Σi) be a k-mixture of Gaussians with mixture covari-

ance Σ such thatwi > α for all i ∈ [k] and there exist i, j ∈ [k] such that
∥∥∥Σ†/2 (Σi − Σj) Σ†/2

∥∥∥2

F
>

1/α5. Further, let X be a set of points satisfying Condition 3.2.45 with respect toM for some

parameters γ 6 εd−8kk−Ck, for a sufficiently large constant C, and t > 8k. Let Y be an ε-

corrupted version of X of size n > n0 = (dk)Ω(1) /ε, Algorithm 84 partitions Y into Y1, Y2

in time nO(1) such that with probability at least 2−O(k)(1 − O(α)) there is a non-trivial parti-

tion of [k] into Q1 ∪ Q2 so that letting Mj be a distribution proportional to
∑
i∈Qj wiGi and

Wj = ∑
i∈Qj wi, then Yj is anO

(
ε1/(45Ck+1(k+1)!)

)
-corrupted version of

⋃
i∈Qj Xi satisfying Con-

dition 3.2.45 with respect toM with parameters (O(kγ/Wj) , t).

Proof. We run Algorithm 84 with sample set Y , number of components k, the fraction of outliers
ε and the accuracy parameter η. Since X satisfies Condition 3.2.45, we can set t = 10, β =
(k2t4α)t/2 = Ok(α5) and η = α2 �

√
ε/α in Theorem 83. Then, by assumption, there exist i, j

such that ∥∥∥Σ†/2 (Σi − Σj) Σ†/2
∥∥∥2

F
>

1
α5 = Ω

(
k2t4

β2/tα4

)
.

We observe that we also satisfy the other preconditions for Theorem 83, since n > (dk/)Ω(1) /ε.

Then, Theorem 83 implies that with probability at least 2−O(k)(1−O(η/α−√η)) = 2−O(k)(1−
O(α)), the set Y is partitioned in two sets Y1 and Y2 such that there is a non-trivial partition of [k]

248

intoQ1∪Q2 so that lettingMj be a distribution proportional to
∑
i∈Qj wiGi andWj = ∑

i∈Qj wi,
then Yj is an O

(
ε1/(45Ck+1(k+1)!)

)
-corrupted version of

⋃
i∈Qj Xi. By Lemma 3.2.48,

⋃
i∈Qj Xi

satisfies Condition 3.2.45 with respect toM with parameters (O(kγ/Wj) , t).

When the mixture is not covariance separated and nearly isotropic, we can obtain a small list
of hypotheses such that one of them is close to the true parameters, via tensor decomposition.

Lemma 3.8.7 (Mixture is List-decodable). Given 0 < ε < 1/kkO(k2)
let α = ε1/(45Ck+1(k+1)!).

Let M = ∑k
i=1wiGi with Gi = N (µi,Σi) be a k-mixture of Gaussians with mixture mean

µ and mixture covariance Σ, such that ‖µ‖2 6 O
(√

ε/α
)
, ‖Σ − I‖F 6 O(

√
ε/α), wi > α

for all i ∈ [k], and ‖Σi − Σj‖2
F 6 1/α5 for any pair of components, and let X be a set of

points satisfying Condition 3.2.45 with respect toM for some parameters γ = εd−8kk−Ck, for

a sufficiently large constant C, and t = 8k. Let Y be an ε-corrupted version of X of size n,

Algorithm 88 outputs a list L of hypotheses of size O((1/ε)4k2) in time poly(|L|, n) such that

if we choose a hypothesis {µ̂i, Σ̂i}i∈[k] uniformly at random, ‖µi − µ̂i‖2 6 O
(
ε1/(20Ck+1(k+1)!)

)
and

∥∥∥Σi − Σ̂i

∥∥∥
F
6 O

(
ε1/(20Ck+1(k+1)!)

)
for all i with probability at least O(ε4k2).

Proof. Recall we run Algorithm 88 on the samples Y , the number of clusters k, the fraction
of outliers ε and the minimum weight α = ε1/(20Ck+1(k+1)!). Next, we show that the precon-
ditions of Theorem 86 are satisfied. First, the upper bounds on ‖µ‖2 and ‖Σ − I‖F imply∑
i∈k wi

(
Σi + µiµ

>
i

)
= Σ + µµ> � (1 +O(

√
ε/α))I . Since the LHS is a conic combination of

PSD matrices, it follows that for all i ∈ [k], µiµ>i � 1
α

(1 +O(
√
ε/α)) I , and thus

∥∥∥µiµ>i ∥∥∥F 6 2
α

.
Next, we can write:

‖Σi − I‖F 6 ‖Σi − (Σ + µµ>)‖F + ‖Σ− I‖F + ‖µµ>‖F

=

∥∥∥∥∥∥Σi −
∑
j∈[k]

wj
(
Σj + µjµ

>
j

)∥∥∥∥∥∥
F

+
√
εk

α
+ ε

α

6

∥∥∥∥∥∥
∑
j∈[k]

wj (Σi − Σj)

∥∥∥∥∥∥
F

+ 2
α

+
√
εk

α
+ ε

α

6
2
α5/2 ,

where the first and the third inequalities follow from the triangle inequality and the upper bound
on
∥∥∥µiµ>i ∥∥∥F , and the last inequality follows from the assumption that ‖Σi − Σj‖2

F 6 1/α5 for
every pair of covariances Σi,Σj . So, we can set ∆ = 2α−5/2 in Theorem 86. Then, given the

249

definition of α, we have that

η = 2k4kO(1 + ∆/α)4k√ε = O
(
ε2/5

)
and 1/ε2 > log(1/η)(k + 1/α + ∆)4k+5/η2. Therefore, Algorithm 88 outputs a list L of hy-
potheses such that |L| = exp (1/ε2), and with probability at least 0.99, L contains a hypothesis
that satisfies the following: for all i ∈ [k],

‖µ̂i − µi‖2 = O
(

∆1/2

α

)
ηG(k) = O

(
ε−1/(20Ck+1(k+1)!) · ε1/(10Ck+1(k+1)!)

)
= O

(
ε1/(20Ck+1(k+1)!)

)
and

∥∥∥Σ̂i − Σi

∥∥∥
F

= O
(
k4
) ∆1/2

α
ηG(k) = O

(
ε1/(20Ck+1(k+1)!)

)
.

(3.67)

Then if we choose a hypothesis in L uniformly at random, the probability that we choose the
hypothesis satisfying (3.47) is at least 1/|L| = exp (−1/ε2).

3.9 Robust Parameter Recovery: Proof of Theorem 69

In order to show that our algorithm recovers the individual components and the parameters, we
will prove the following identifiability theorem. Without any assumption on the mixtures, it is
impossible to distinguish components within ε total variation distance with ε-fraction of noise.
So given two mixtures of Gaussians with ε total variation distance, the theorem shows that there
exist two partitions of components of the two mixtures respectively such that any two components
in the matched pair is are poly(ε)-close in total variation distance.

Theorem 89 (Identifiability). LetM = ∑k1
i=1wiGi,M′ = ∑k2

i=1w
′
iG
′
i be two mixtures of Gaus-

sians such that dTV(M,M′) 6 ε. Then there exists a partition of [k1] into sets R0, R1, . . . , R`

and a partition of [k2] into sets S0, S1, . . . , S` such that

1. Let Wi = ∑
j∈Ri wj for i = 0, 1, . . . , k1, W ′

i = ∑
j∈Si w

′
j for i = 0, 1, . . . , k2. Then for all

i ∈ [`],

|Wi −W ′
i | 6 polyk(ε)

dTV(Gj, G
′
j′) 6 polyk(ε) ∀j ∈ Ri, j

′ ∈ Si

250

2. W0,W
′
0 6 polyk(ε).

Corollary 3.9.1. There is an algorithm with the following behavior: Given ε > 0 and a multiset

of n = dO(k)poly(ε) samples from a distribution F on Rd such that dTV(F,M) 6 ε, for an

unknown target k-GMM M = ∑k
i=1wiN (µi,Σi), the algorithm runs in time dO(k)polyk(1/ε)

and outputs a k′-GMM hypothesis M̂ = ∑k′

i=1 ŵiN (µ̂i, Σ̂i) with k′ 6 k such that with high

probability there exists a partition of [k] into k′ + 1 sets R0, R1, . . . , Rk′ such that

1. Let Wi = ∑
j∈Ri wj . Then for all i ∈ [k′],

|Wi − ŵi| 6 polyk(ε)

dTV(N (µj,Σj),N (µ̂i, Σ̂i)) 6 polyk(ε) ∀j ∈ Ri

2. The sum of weights of exceptional components in R0 is at most polyk(ε).

Parameter estimation is implied by TV distance for individual Gaussians (in relative Frobe-
nius norm). The corollary follows immediately from the identifiability theorem.

Outline of Proof. The first step is to deal with the components in M and M′ with small
weights. We will construct M̃,M̃′ by removing components with small weights. If we prove
the statement on M̃,M̃′, we can then deduce the theorem in the general case with worse, but
still polynomial dependencies on ε. The second step is a partial clustering, after which the
components within each cluster have TV distance bounded by 1−poly(ε). We prove this lemma
in a separate section. After that we modify the parameters slightly so that the resulting parameters
for different components are either identical or have a minimum separation. After this, we can
use a lemma from [LM21] that provides a 1-1 mapping between the components of two such
mixtures with small TV distance such that the mapped pairs have small TV distance.

Distance between Gaussians. We use the following facts for Gaussian distributions.

Lemma 3.9.2 (Frobenius Distance to TV Distance). Suppose N(µ1,Σ1), N(µ2,Σ2) are Gaus-

sians with ‖µ1 − µ2‖2 6 δ and ‖Σ1 − Σ2‖F 6 δ. If the eigenvalues of Σ1 and Σ2 are at least

λ > 0, then dTV(N(µ1,Σ1), N(µ2,Σ2)) = O(δ/λ).

Lemma 3.9.3 (Lemma 5.4 in [LM21]). LetM be a mixture of k Gaussians that is connected if

we draw edges between all components i, j inM such that dTV(Gi, Gj) 6 1 − δ. Let Σ be the

covariance matrix ofM. Then for any components Σi of the mixture

251

1. Σi � polyk(δ)Σ

2. ‖Σ−1/2(Σ− Σi)Σ−1/2‖F 6 polyk(δ)−1.

The proof is identical to Lemma 5.4 in [LM21]. The only difference is that in [LM21] the
authors assume that the minimal weight ofM is at least δ and TV distance between any pair of
components is at least δ but here we do not need these two assumptions, which does not affect
the proof.

Fact 3.9.4 (Claim 3.9 in [LM21]). Let ∂ denote the differential operator with respect to y. If

f(y) = P (y,X) exp
(
a(X)y + 1

2b(X)y2
)

where P is a polynomial in y of degree k (whose coefficients are polynomials inX) and a(X), b(X)
are polynomials in X then

(∂ − (a(X) + yb(X)))f(y) = Q(y,X) exp
(
a(X)y + 1

2b(X)y2
)

where Q is a polynomial in y with degree exactly k − 1 whose leading coefficient is k times the

leading coefficient of P .

Fact 3.9.5 (Corollary 3.10 in [LM21]). Let ∂ denote the differential operator with respect to y.

If

f(y) = P (y,X) exp
(
a(X)y + 1

2b(X)y2
)

where P is a polynomial in y of degree k then

(∂ − (a(X) + yb(X)))k+1f(y) = 0.

Fact 3.9.6 (Claim 3.11 in [LM21]). Let ∂ denote the differential operator with respect to y. If

f(y) = P (y,X) exp
(
a(X)y + 1

2b(X)y2
)

where P is a polynomial in y of degree k. Let the leading coefficient of P (viewed as a polynomial

in y) be L(X). Let c(X) be a linear polynomial in X and d(X) be a quadratic polynomial in X

such that {a(X), b(X)} 6= {c(X), d(X)}. If b(X) 6= d(X) then

(∂ − (c(X) + yd(X)))k′f(y) = Q(y,X) exp
(
a(X)y + 1

2b(X)y2
)

252

where Q is a polynomial of degree k + k′ in y with leading coefficient

L(X)(b(X)− d(X))k′

and if b(X) = d(X) then

(∂ − (c(X) + yd(X)))k′f(y) = Q(y,X) exp
(
a(X)y + 1

2b(X)y2
)

where Q is a polynomial of degree k in y with leading coefficient

L(X)(a(X)− c(X))k′ .

Lemma 3.9.7. LetM = ∑k1
i=1wiGi,M′ = ∑k2

i=1w
′
iG
′
i be two mixtures of Gaussians such that

dTV(M,M′) 6 ε. For any constant 0 < c1 < 1, there exists i ∈ [k1 + k2 + 1] such that

wj, w
′
j′ /∈ [εci−1

1 , εc
i
1) for any j ∈ [k1], j′ ∈ [k2]. Moreover, if

M̃ =
∑
{j:wj>εc

i
1}
wjGj∑

{j:wj>εc
i
1}
wj

M̃′ =

∑
{j:w′j>ε

ci1}
w′jG

′
j∑

{j:w′j>ε
ci1}
w′j

then dTV(M̃,M̃′) 6 Ok(εc
i−1
1).

Proof. We can see that [εci−1
1 , εc

i
1) with i ∈ [k1 + k2 + 1] are k1 + k2 + 1 disjoint intervals and

wj, w
′
j′ with j ∈ [k1], j′ ∈ [k2] have at most k1 + k2 distinct values. So there is one interval

containing no weights.

We then construct M̃ by removing the small components inM. The sum of weights removed
is at most kεc

i−1
1 . So dTV(M,M̃) 6 kεc

i−1
1 . Similarly, we have dTV(M′,M̃′) 6 kεc

i−1
1 . By the

triangle inequality,

dTV(M̃,M̃′) 6 dTV(M,M′) + dTV(M,M̃) + dTV(M′,M̃′) 6 Ok(εc
i−1
1).

Lemma 3.9.7 shows that we can remove components with tiny weights in the mixtures. So
in the following lemma, we will assume M and M ′ are Gaussian mixtures with minimal weights

253

at least poly(ε). We will show that we can partition the union of components of two mixtures
so that if we prove Theorem 89 for each part of the partition, we can combine them to prove
Theorem 89 on the full mixtures.

Lemma 3.9.8. For any constant 0 < c3 < 1, there exist c1, c2 > 0 that depend on k and c3, such

that ifM = ∑k1
i=1 wiGi,M′ = ∑k2

i=1w
′
iG
′
i with k1, k2 6 k, dTV(M,M′) 6 ε and wi, w′i > εc1

for all i, then there exists a partition of [k1] into sets R1, . . . , R` and a partition of [k2] into sets

S1, . . . , S` such that

1. For all i ∈ [`], let Wi = ∑
j∈Ri wj,W

′
i = ∑

j∈Si w
′
j be the sum of weights in each piece.

LetMi = 1
Wi

∑
j∈Ri wjGj,M′

i = 1
W ′i

∑
j∈Si w

′
jG
′
j be the submixtures of Gaussians after

partition. Then for all i ∈ [`],

|Wi −W ′
i | 6 polyk(ε)

dTV(Mi,M′
i) 6 Ok(εc2)

2. Consider the graph with vertices corresponding to components in M and M′ and two

components are adjacent if the total variation distance between them is at most 1 − εc2c3 .

Then the induced subgraph of vertices with indices Ri ∪ Si is connected for all i ∈ [`].

The proof of Lemma 3.9.8 is deferred to Section 3.9.1. In the following two lemmas, we then
prove Theorem 89 for each pairMi,M′

i defined in Lemma 3.9.8. In Lemma 3.9.9, we construct
two mixtures of which pairs of parameters are identical or separated. We also shows it suffices
to work under this simplification.

Lemma 3.9.9. For any constant 0 < c4 < 1, there exist c3, c5 that depend on k and c4, such that

ifM = ∑k1
i=1wiGi,M′ = ∑k2

i=1w
′
iG
′
i with k1, k2 6 k and

1. 1
2M+ 1

2M
′ is isotropic,

2. dTV(M,M′) 6 ε,

3. wi, w′i > εc3 for all i,

4. Let G be a graph with components Gi, G
′
i inM andM′ as vertex set and two components

are adjacent if the total variation distance between them is at most 1 − εc3 . Then G is

connected

then there exist two mixtures of Gaussians M̃ = ∑k̃1
i=1 w̃iG̃i,M̃′ = ∑k̃2

i=1 w̃
′
iG̃
′
i such that

254

1. Any pair in {µ̃i} ∪ {µ̃′i} is either identical or separated by at least εc4c5

2. Any pair in {Σ̃i}∪{Σ̃′i} is either identical or separated by at least εc4c5 in Frobenius norm.

3. ‖E(hm(M̃))− E(hm(M̃′))‖F 6 Ok(εc5) for any m 6 O(k)

4. There exist π1 : [k1]→ [k̃1] and π2 : [k2]→ [k̃2] such that

∑
i:π1(i)=j

wi = w̃j,
∑

i:π2(i)=j
w′i = w̃′j,

dTV(Gi, G̃π1(i)) 6 polyk(ε), for all i ∈ [k1]

dTV(G′i, G̃′π2(i)) 6 polyk(ε), for all i ∈ [k2].

Proof. For any 0 < c4 < 1, there is ` ∈ [k2] such that the distance between any pair of parameters
in {µi} ∪ {µ′i} or the Frobenius distance between any pair in {Σi} ∪ {Σ′i} is not in the interval
[ε(c4/2)`−1

, ε(c4/2)`).

Now consider a graph G on k1 +k2 nodes where each node represents a vector in {µi}∪{µ′i}
and two vectors a, b are adjacent if

‖a− b‖ 6 ε(c4/2)`−1
.

We now construct new mixtures M̃,M̃′. For each connected component in G say {µi1 , . . . , µ′j1 , . . . },
pick a representative say µi1 and set µ̃i1 = · · · = µ̃′j1 = · · · = µi1 . Do this for all connected
components and similar in the graph on covariance matrices with edges (i, j) if

‖Σi − Σj‖F 6 ε(c4/2)`−1
.

After replacing close parameters with a representative, we may get some exactly same com-
ponents in each new mixture. We then merge components with same means and covariances
by adding their weights. Since all representatives of means and covariances are in different con-
nected components of the graphs, they are separated by at least ε(c4/2)` . Setting c5 = 1/2(c4/2)`−1

gives a separation of εc4c5 .

Next we prove 3. There is a natural mapping π1 : [k1] → [k̃1] that maps any component in
M to the merged component in M̃ and a similar mapping π2 : [k2] → [k̃2] forM′,M̃′. For all
i, we have

‖µ̃π1(i) − µi‖, ‖µ̃′π2(i) − µ′i‖, ‖Σ̃π1(i) − Σi‖F , ‖Σ̃′π2(i) − Σ′i‖F 6 Ok(1)ε(c4/2)`−1
(3.68)

255

because for any pair of parameters above say µ̃π1(i) and µi, there is a path of length at most 2k
connecting µi to the representative of the connected component, and each edge connects a pair
with TV distance at most ε. Suppose ‖µi‖, ‖Σi − I‖F 6 ∆. Then by Definition 3.2.4, we have
for any integer m,

‖E(hm(M))− E(hm(M̃))‖F 6 Ok(m)∆mε(c4/2)`−1
.

Since 1
2M + 1

2M
′ is isotropic and the minimum weight in 1

2M + 1
2M

′ is at least 1
2ε
c3 , we

have ‖µi‖ 6
√

2/εc3 for all i. Applying Lemma 3.9.3 to 1
2M + 1

2M
′, we have ‖I − Σi‖F 6

polyk(εc3)−1. So there is a constant a such that ∆ 6 ε−ac3 . If we take c3 > 0 so that ac3O(k) 6
1/2(c4/2)`−1 and take c5 = 1/2(c4/2)`−1, then

‖E(hm(M))− E(hm(M̃))‖F 6 Ok(m)ε(c4/2)`−1−O(m)ac3 = Ok(εc5)

for m 6 O(k). By the same argument, we have the similar inequality forM′ and M̃′

‖E(hm(M′))− E(hm(M̃′))‖F = Ok(εc5).

Since we can use Proposition 3.3 to robustly estimate the Hermite tensors of a Gaussian mixture
with ε-fraction of noise and poly(ε) error guarantee, we must have

‖E(hm(M))− E(hm(M′))‖F 6 polyk(ε).

Then by the triangle inequality,

‖E(hm(M̃))− E(hm(M̃′))‖F 6 ‖E(hm(M))− E(hm(M̃))‖F+

‖E(hm(M))− E(hm(M′))‖F + ‖E(hm(M′))− E(hm(M̃′))‖F = O(εc5).

For the last conclusion, from the definition of π1 and π2, we know that

∑
i:π1(i)=j

wi = w̃j,
∑

i:π2(i)=j
w′i = w̃′j.

Applying Lemma 3.9.3 to 1
2M+ 1

2M
′, we have that eigenvalues of Σi and Σ′i are at least poly(εc3)

for all i. Then if c3 is sufficiently small, by Lemma 3.9.2, (3.68) implies dTV(Gi, G̃π(i)) 6

polyk(ε) and dTV(G′i, G̃′π(i)) 6 polyk(ε) for all i.

256

The following lemma shows the identifiability under the simplification of Lemma 3.9.9. It is
proved in the proof of Lemma 8.2 in [LM21].

Lemma 3.9.10. Suppose M = ∑k1
i=1wiGi,M′ = ∑k2

i=1w
′
iG
′
i satisfies 1,2,3 in the conclusion

of Lemma 3.9.9 with constants c4, c5 and the minimal weights are at least εc3 . There exists a

sufficiently small function f(k) > 0 depending only on k such that if c4 6 f(k), then k1 = k2

and there exists a permutation π such that |wi − w′π(i)| 6 polyk(ε) and Gi = G′π(i).

Proof. Consider the component G′k2 = N(µ′k2 ,Σ
′
k2) inM′. We claim that there must be some

i ∈ [k1] such that
(µi,Σi) = (µ′k2 ,Σ

′
k2).

Assume for the sake of contradiction that this is not the case. Let S1 = {i ∈ [k1] : Σi = Σ′k2}
and S2 = {i ∈ [k2 − 1] : Σ′i = Σ′k2}. Suppose F, F ′ are the generating functions ofM andM′

F =
k1∑
i=1

wi exp
(
µTi X + 1

2X
TΣiXy

2
)

=
∞∑
m=0

1
m!hm(M)yn

F ′ =
k2∑
i=1

w′i exp
(
µ′i
T
X + 1

2X
TΣ′iXy2

)
=

∞∑
m=0

1
m!hm(M′)yn.

Then define the differential operators

Di = ∂ − µTi X −XTΣiXy

D′i = ∂ − µ′i
T
X −XTΣ′iXy

where partial derivatives are taken with respect to y. Now consider the differential operator

D = (D′k2−1)2k1+k2−2 · · · (D′1)2k1D2k1−1

k1 · · · D1

By Fact 3.9.5, D(F) = 0. By Fact 3.9.5 and Fact 3.9.6, we have

D(F ′) = P (y,X) exp
(
µ′k2

T
X + 1

2X
TΣ′k2Xy

2
)

where P is a polynomial of degree

deg(P) = 2k1+k2−1 − 1−
∑
i∈S1

2i−1 −
∑
i∈S2

2k1+i−2

257

with leading coefficient

C0 = w′k2

∏
i∈[k1]\S1

(XT (Σ′k2 − Σi)X)2i−1 ∏
i∈S1

((µ′k2 − µi)
TX)2i−1

∏
i∈[k2−1]\S2

(XT (Σ′k2 − Σ′i)X)2k1+i−2 ∏
i∈S2

((µ′k2 − µ
′
i)TX)2k1+i−2

.

We now compare the following differentials evaluated at y = 0

(D′k2)deg(P)D(F)

(D′k2)deg(P)D(F ′)

The first quantity is 0 because D(F) is identically 0 as a formal power series. The second one
is Ωk(1)C0. Since for any i (µi,Σi) 6= (µ′k2 ,Σ

′
k2), our assumptions imply that the separation

between µi, µ′k2 or Σi,Σ′k2 is at least εc4c5 . Then we have C0 > εc4c5Ok(1) for some X . On the
other hand, the coefficients of the formal power series F, F ′ are the Hermite polynomials hm(M)
and hm(M′). This is a contradiction with our assumption that

‖E(hm(M)− E(hm(M)‖F 6 Ok(εc5)

as long as c4 is smaller than some sufficiently small function f(k) depending only on k. Thus
there must be some component of M that matches G′k2 = N(µ′k2 ,Σ

′
k2). We can repeat the

argument for each component in M′ and in M to conclude that M and M′ have the same
components.

Next we will show that the weights of the same components inM andM′ are close. We can
assume thatM = ∑k

i=1wiGi,M′ = ∑k
i=1w

′
iGi are two mixtures on the same set of components.

Without loss of generality,

w1 − w′1 6 · · ·w` − w′` 6 0 6 w`+1 − w′`+1 6 · · · 6 wk − w′k.

Then we can consider the following two mixtures

(w1 − w′1)G1 + · · ·+ (w` − w′`)G`

(w`+1 − w′`+1)G`+1 + · · ·+ (wk − w′k)Gk.

258

If
k∑
i=1
|wi − w′i| > εζ

for some sufficiently small ζ depending only on k, we can then normalize each of the above into
a distribution and repeat the same argument, using the fact that pairs of components cannot be
too close, to obtain a contradiction. Thus, the mixing weights ofM andM′ are polyk(ε)-close
and this completes the proof.

Proof of Theorem 89. We first set c4 = f(k) as in Lemma 3.9.10, and then c3, c5 according to c4

as in Lemma 3.9.9, and c′1, c2 according to c3 as in Lemma 3.9.8. Let c1 = min{c′1, c2c3}.

By Lemma 3.9.7, we can find i such that there is no wj, w
′
j in [εci−1

1 , εc
i
1). Let M̃ =∑

{j:wj>εc
i
1}
wjGj and M̃′ = ∑

{j:w′j>ε
ci1}
w′jG

′
j . Then dTV(M̃,M̃′) 6 O(εci−1

1). Let ε1 = εc
i−1
1 .

We have dTV(M̃,M̃′) 6 O(ε1) and the minimum weights of M̃,M̃′ are at least εc1
1 .

Now we can apply Lemma 3.9.8 on M̃,M̃′ and get partitions of components of M̃,M̃′.
For i ∈ [`], let Mi and M′

i be the mixtures defined in Lemma 3.9.8. We can apply a linear
transformation to make 1

2Mi + 1
2M

′
i in isotropic position. Since the total variation distance is

invariant under linear transformations, so we still have both conclusions in Lemma 3.9.8. Let
ε2 = εc2

1 . Then dTV(Mi,Mπ(i)) 6 O(ε2) and 1
2M + 1

2M
′ satisfies Lemma 3.9.3 with δ = εc3

2 .
Weights of both mixtures increase when we do the partition. So minimum weights are at least
εc1

1 > εc2c3
1 = εc3

2 .

We now prove the statement on these smaller mixtures. First we can use Lemma 3.9.9 to
merge close parameters ofMi,M′

i so that all pairs of parameters are either equal or separated by
εc4c5

2 . Under this simplification, Lemma 3.9.10 shows that there is a perfect matching between the
same components in two mixtures and their weights are almost the same. By the last statement
in Lemma 3.9.9, it is also a matching between components ofMi andM′

i by combining π and
π1, π2. Moreover, if G̃j = G̃′π(j), then dTV(G`, G

′
`) 6 poly(ε2) for all `, `′ such that π1(`) =

j, π2(`′) = π(j). Repeating the argument for all pieces in M̃,M̃′ completes the proof.

3.9.1 Proof of Lemma 3.9.8

In this section, we will prove Lemma 3.9.8. The following fact in [Liu-Moitra] shows that a good
set of clusters of one mixture exists.

Fact 3.9.11 (Claim 7.6 in [LM’20]). LetM = ∑k
i=1wiGi be a mixture of Gaussians. For any

259

constants 0 < δ < 1 and ε > 0, there exists t ∈ [k2] such that there exists a partition (possibly

trivial) of [k] into sets R1, . . . , R` such that

1. If we draw edges between all pairs i, j such that dTV(Gi, Gj) 6 1 − εδt , then each piece

of the partition is connected

2. For any i, j in different pieces of the partition, dTV(Gi, Gj) > 1− εδt−1
.

Remark 90. Fact 3.9.11 can be applied to a set of Gaussians instead of a mixture of Gaussians
by randomly assigning positive weights for all Gaussians.

Lemma 3.9.12. For any constant 0 < c < 1, supposeM = ∑k1
i=1wiAi,M′ = ∑k2

i=1 w
′
iBi are

two mixtures of arbitrary distributions with dTV(M,M′) 6 ε and wi, w′i > εc. If for any i 6= j,

dTV(Ai, Bj) > 1− ε, then k1 = k2 and dTV(Ai, Bi) 6 polyk1(ε) for all i ∈ [k1].

Proof. Suppose π is any coupling ofM andM′ and X, Y are random variables with distribu-
tionsM andM′. Then dTV(M,M′) = minπ{Prπ(X 6= Y)}. We define π to be the optimal
coupling such that dTV(M,M′) = Prπ(X 6= Y). Then we can define π̂ on variables i, j,X, Y
such that

∑
i∈[k1],j∈[k2] π̂(i, j,X, Y) = π(X, Y) and the marginal distribution π̂X with fixed i of

X is wiAi for all i ∈ [k1] and the marginal distribution π̂Y with fixed j is w′jBj for all j ∈ [k2].
Let Pij =

∫
X,Y π̂(i, j,X, Y)dXdY and Aij = 1

Pij

∫
Y π̂(i, j,X, Y)dY be distributions on X ,

Bij = 1
Pij

∫
X π̂(i, j,X, Y)dX be distributions on Y . Then we have

dTV(M,M′) = Prπ(X 6= Y) = Prπ̂(X 6= Y)

=
∑
i,j

PijPrπ̂(X 6= Y | i, j)

>
∑
i,j

Pij · dTV(Aij, Bij).

(3.69)

By the definition of Pij, Aij, Bij ,

wiAi = PijAij +
∑
j′ 6=j

Pij′Aij′

w′iBi = PijBij +
∑
i′ 6=i

Pi′jBi′j

260

Dividing both sides by max{wi, w′j}, we get

Ai = Pij
max{wi, w′j}

Aij +
(

1− wi
max{wi, w′j}

)
Ai +

∑
j′ 6=j

Pij′

max{wi, w′j}
Aij′

Bi = Pij
max{wi, w′j}

Bij +
(

1−
w′j

max{wi, w′j}

)
Bi +

∑
i′ 6=i

Pi′j
max{wi, w′j}

Bi′j

From the above two equations, we can write Ai, Bi as linear combinations of two distributions.

Ai = Pij
max{wi, w′j}

Aij +
(

1− Pij
max{wi, w′j}

)
)
A′i

Bi = Pij
max{wi, w′j}

Bij +
(

1− Pij
max{wi, w′j}

)
B′i

Then by the triangle inequality,

dTV(Ai, Bj) 6
Pij

max{wi, w′j}
dTV(Aij, Bij) +

(
1− Pij

max{wi, w′j}

)

Pij · dTV(Aij, Bij) > Pij − (1− dTV(Ai, Bj)) max{wi, w′j}. (3.70)

Combining (3.69) and (3.70), we have the following inequality on the TV distance between
mixtures and the TV distance between components

dTV(M,M′) >
∑
i,j

(
Pij − (1− dTV(Ai, Bj)) max{wi, w′j}

)
. (3.71)

By the lower bounds on dTV(Ai, Bj), we have

ε > dTV(M,M′) >
∑
i,j

Pij −
∑
i 6=j

(1− dTV(Ai, Bj)) max{wi, w′j} −
∑
i

(1− dTV(Ai, Bi)) max{wi, w′i}

> 1−
∑
i 6=j

ε−
∑
i

max{wi, w′i}+
∑
i

max{wi, w′i}dTV(Ai, Bi)

> 1−
∑
i 6=j

ε−
∑
i

max{wi, w′i}+ wmindTV(A1, B1)

(3.72)

where A1, B1 can be replaced by any Ai, Bi pair. Let k = max{k1, k2}. When i 6= j and

261

dTV(Ai, Bj) > 1− ε, we plug it into Equation (3.71) and get

ε > dTV(M,M′) >
∑
i 6=j

Pij − (1− dTV(Ai, Bj)) max{wi, w′j} >
∑
i 6=j

(Pij − ε).

This implies ∑
i 6=j

Pij 6 k2ε.

Then we can bound
∑
i max{wi, w′i} − 1 in Equation (3.72)

∑
i

max{wi, w′i} − 1 =
∑
i

max{wi, w′i} − wi 6
∑
i 6=j

Pij 6 k2ε.

Plugging this bound into Equation (3.72), for any i, we have

dTV(Ai, Bi) 6
1

wmin

(
k2ε+

∑
i

max{wi, w′i} − 1
)
6

2k2ε

εc
.

Proof of Lemma 3.9.8. We apply Fact 3.9.11 on the union set of components ofM andM′ with
parameter δ to find a partition R1, . . . , R`. Let

Mi =
∑
Gj∈Ri wjGj∑
Gj∈Ri wj

M′
i =

∑
G′j∈Ri w

′
jG
′
j∑

G′j∈Ri w
′
j

.

Then for any i 6= j, we know dTV(Ga, G
′
b) > 1 − εδt−1 for Ga ∈ Ri, G

′
b ∈ Rj . By (3.71) in the

proof of Lemma 3.9.12, we have

dTV(Mi,M
′
j) > 1− 2kεδt−1

.

Then by Lemma 3.9.12, for any i, there exists a such that dTV(Mi,M
′
i) 6 εaδ

t−1 . Let c2 = aδt−1.
If we set δ = c2c3/δ

t−1 = ac3, the partition satisfies the second conclusion.

262

3.10 Omitted Proofs

In this subsection, we provide the proofs that were omitted from Section 4.2 and Section 3.6.

3.10.1 Omitted Proofs from Section 3.2.1

Lemma 3.10.1 (Concentration of low-degree polynomials, Lemma 3.2.9 restated). Let T be a

d-dimensional, degree-4 tensor such that ‖T‖F 6 ∆ for some ∆ > 0 and let x, y ∼ N (0, I).

Then, with probability at least 1− 1/poly(d), the following holds:

‖T (·, ·, x, y)‖2
F 6 O

(
log(d)∆2

)
.

Proof. We note that

E
[
‖T (·, ·, x, y)‖2

F

]
= E

∑
i1,i2

∑
i3,i4

T (i1, i2, i3, i4)x (i3) y (i4)
2


= E

∑
i1,i2

∑
i3,i4

T (i1, i2, i3, i4)2 x (i3)2 y (i4)2


=

∑
i1,i2,i3,i4

T (i1, i2, i3, i4)2 6 ∆2 .

The second equality follows from the fact that x (i3) , y (i4) are independent and have zero
means. So the only non-zero terms are the squares. The third equality follows from the fact
that x (i3) , y (i4) are independent with unit variances. Observe that ‖T (·, ·, x, y)‖2

F is a degree-2
polynomial in Gaussian random variables. Using standard concentration bounds for low-degree
Gaussian polynomials, we obtain

Pr
[
‖T (·, ·, x, y)‖2

F > t2E
[
‖T (·, ·, x, y)‖2

F

]]
6 exp (−ct) .

Setting t = Ω(log(d)) completes the proof.

263

3.10.2 Omitted Proofs from Section 3.2.2

Lemma 3.10.2 (Spectral SoS Proofs, Lemma 3.2.23 restated). Let A be a d×d matrix. Then for

d-dimensional vector-valued indeterminate v, we have:

2
v
{
v>Av 6 ‖A‖2 ‖v‖

2
2

}
.

Proof. Note that v is the only variable in the proof here (A is a matrix of constants). We note
that A 6 ‖A‖2 I or ‖A‖2 I − A is PSD and thus ‖A‖2 I − A = QQ> for some d× d matrix Q.
Thus, ‖Qv‖2

2 = v>(‖A‖2 I − A)v = ‖A‖2 ‖v‖
2
2 − v>Av. Thus, ‖A‖2 ‖v‖

2
2 − v>Av is a sum of

squares polynomial (namely ‖Qv‖2
2) in variable v. This completes the proof.

Lemma 3.10.3 (Frobenius Norms of Products of Matrices, Lemma 3.2.25 restated). Let B be a

d× d matrix valued indeterminate for some d ∈ N. Then, for any 0 � A � I ,

2
B
{
‖AB‖2

F 6 ‖B‖2
F

}
,

and,

2
B
{
‖BA‖2

F 6 ‖B‖2
F

}
,

Proof. The proof of the second claim is similar so we prove only the first. We have:

2
B
{
‖B‖2

F = ‖(A+ I − A)B‖2
F = ‖AB‖2

F + ‖(I − A)B‖2
F + 2 tr((I − A)BB>A)

}
Now, A− A2 � 0, thus, A− A2 = RR> for some d× d matrix R. Thus, tr((A− A2)BB>) =
tr(RR>BB>) = ‖BR‖2

F - a sum of squares polynomial of degree 2 in indeterminate B. Thus,

2
B
{

tr((A− A2)BB>) > 0
}

.

3.10.3 Omitted Proofs from Section 3.2.3

Lemma 3.10.4 (Shifts Cannot Decrease Variance, Lemma 3.2.31 restated). Let D be a distribu-

tion onRd, Q be a d× d matrix-valued indeterminate, and C be a scalar-valued indeterminate.

Then, we have that

2
Q,C {

Ex∼D
[
(Q(x)− Ex∼D[Q(x)])2

]
6 Ex∼D

[
(Q(x)− C)2

]}
.

264

Proof.

2
Q,C

 E
x∼D

[
(Q(x)− C)2

]
= E

x∼D

[(
Q(x)− E

x∼D
[Q(x)] + E

x∼D
[Q(x)]− C

)2
]

= E
x∼D

[(
Q(x)− E

x∼D
[Q(x)]

)2
]

+ E
x∼D

[
(Q(x)− C)2

]
+ 2 E

x∼D

[(
Q(x)− E

x∼D
[Q(x)]

)(
E
x∼D

[Q(x)]− C
)]

= E
x∼D

[(
Q(x)− E

x∼D
[Q(x)]

)2
]

+ E
x∼D

[
(Q(x)− C)2

]

> E
x∼D

[(
Q(x)− E

x∼D
[Q(x)]

)2
]  .

Lemma 3.10.5 (Shifts of Certifiably Hypercontractive Distributions, Lemma 3.2.32 restated).
Let x be a mean-0 random variable with distributionD onRd with t-certifiablyC-hypercontractive

degree-2 polynomials. Then, for any fixed constant vector c ∈ Rd, the random variable x + c

also has t-certifiable 4C-hypercontractive degree-2 polynomials.

Proof. Observe that using that Ex∼D [x] = 0, we have that

2
Q
{

E
x∼D

[
(x+ c)>Q(x+ c)

]
= E

x∼D

[
x>Qx+ c>Qc

]}
.

Next, by two applications of the SoS Triangle Inequality (Fact 3.2.21), an application of
Lemma 3.2.31 followed by certifiable hypercontractivity of D, we have:

t′
Q

 E
x∼D

[(
(x+ c)>Q(x+ c)− E

x∼D

[
(x+ c)>Q(x+ c)

])t′]

= E
x∼D

[((
x>Qx− E

x∼D

[
x>Qx

])
+ x>Qc+ c>Qx

)t′]

6 4t′
(

E
x∼D

[(
x>Qx− EDx>Qx

)t′]
+ E

x∼D

[
(x>Qc)t′

]
+ E

x∼D

[
(c>Qx)t′

])

6 4t′(Ct′)t′
(

E
x∼D

[(
x>Qx− EDx>Qx

)2
]t′/2

+ E
x∼D

[
(x>Qc)2

]t′/2
+ E

x∼D

[
(c>Qx)2

]t′/2) .

265

On the other hand, notice that

2
Q

 E
x∼D

[(
(x+ c)>Q(x+ c)− E

x∼D

[
(x+ c)>Q(x+ c)

])2
]

=
(

E
x∼D

[(
x>Qx− EDx>Qx

)2
]

+ E
x∼D

[
(x>Qc)2

]
+ E

x∼D

[
(c>Qx)2

])  .

Thus,

t′
Q

 E
x∼D

[(
x>Qx− E

x∼D

[
x>Qx

])2
]t′/2

+
(

E
x∼D

[
(x>Qc)2

])t′/2
+
(

E
x∼D

[
(c>Qx)2

])t′/2

6 4t′(Ct′)t′
(

E
x∼D

[(
(x+ c)>Q(x+ c)− E

x∼D

[
(x+ c)>Q(x+ c)

])2
])t′/2 .

As a result, we obtain:

t′
Q

 E
x∼D

[(
(x+ c)>Q(x+ c)− E

x∼D

[
(x+ c)>Q(x+ c)

])t′]

6 (4Ct′)t′
(

E
x∼D

[(
(x+ c)>Q(x+ c)− E

x∼D

[
(x+ c)>Q(x+ c)

])2
])t′/2 ,

which completes the proof.

Lemma 3.10.6 (Mixtures of Certifiably Hypercontractive Distributions, Lemma 3.2.33 restated).
Let D1,D2, . . . ,Dk have t-certifiable C-hypercontractive degree-2 polynomials onRd, for some

fixed constant C. Then, any mixture D = ∑
iwiDi also has t-certifiably (C/α)-hypercontractive

degree-2 polynomials for α = mini6k,wi>0wi.

Proof. Applying Lemma 3.2.21 followed by SoS Hölder’s inequality on the second term and

266

followed by a final application of SoS Hölder’s inequality (Fact 3.2.20), we obtain:

t′
Q

 E
x∼D

[(
x>Qx− E

x∼D

[
x>Qx

])t′]
= E

x∼D

(x>Qx−∑
i

wi E
x∼Di

[
x>Qx

])t′
=
∑
i

wi E
x∼Di

(x>Qx−∑
i

wi E
x∼Di

[
x>Qx

])t′
6 2t′

∑
i

wi E
x∼Di

(x>Qx− E
x∼Di

[
x>Qx

])t′
+
∑

i

wi E
x∼Di

[
x>Qx− E

x∼Di

[
x>Qx

]]t′
6 2t′

(Ct′)t′
∑

i

wi E
x∼Di

(x>Qx− E
x∼Di

[
x>Qx

])2
t′/2

+
∑
i

wi

 E
x∼Di

(x>Qx− E
x∼Di

[
x>Qx

])2
t′

6

(
4Ct′
α

)t′ ∑
i

wi E
x∼Di

(x>Qx− E
x∼Di

[
x>Qx

])2
t′/2 .

On the other hand, note that by Lemma 3.2.31, we know that

2
Q

 E
x∼D

[(
x>Qx− E

x∼D
[x]>Qx

)2
]

=
∑
i

wi E
x∼Di

[(
x>Qx− E

x∼D

[
x>Qx

])2
]

>
∑
i

wi E
x∼Di

(x>Qx− E
x∼Di

[
x>Qx

])2
 .

Combining the two equations above completes the proof.

Corollary 3.10.7 (Certifiable Hypercontractivity of k-Mixtures of Gaussians, Corollary 3.2.34
restated). Let D be a k-mixture of Gaussians

∑
iwiN (µi,Σi) with weights wi > α for every

i ∈ [k]. Then, D has t-certifiably 4/α-hypercontractive degree-2 polynomials.

Proof. From [KOTZ14], we know that the standard Gaussian random variable has t-certifiably
1-hypercontractive degree-2 polynomials. From Fact 3.2.30, we immediately obtain that for any
PSD matrix Σ, the Gaussian N (0,Σ) also has t-certifiable 1-hypercontractive degree-2 polyno-
mials. From Lemma 3.2.32, we obtain that for any µ, the Gaussian N (µ,Σ) has t-certifiable
4-hypercontractive degree-2 polynomials. Finally, applying Lemma 3.2.33 to Di = N (µi,Σi)

267

and mixture weights w1, w2, . . . wk, yields that D = ∑
iwiN (µi,Σi) has t-certifiably 4/α-

hypercontractive degree-2 polynomials. This completes the proof.

Lemma 3.10.8 (Linear Transformations of Certifiably Bounded-Variance Distributions, Lemma
3.2.38 restated). For d ∈ N, let x be a random variable with distribution D on Rd such that

for d × d matrix-valued indeterminate Q, 2
Q
{
Ex∼D(x>Qx− EDx>Qx)2 6

∥∥∥Σ1/2QΣ1/2
∥∥∥2

F

}
.

Let A be an arbitrary d × d matrix and let x′ = Ax be the random variable with covariance

Σ′ = AA>. Then, we have that

2
Q
{
Ex′∼D′(x′>Qx′ − ED′x′>Qx′)2 6

∥∥∥Σ′1/2QΣ′1/2
∥∥∥2

F

}
.

Proof. The covariance of x′ is AA> = Σ′, say. Let Σ′1/2 be the PSD square root of Σ′. The
proof follows by noting that x′>Qx′ = (Ax)>Q(Ax) = x>(A>QA)x> and that

∥∥∥A>QA∥∥∥2

F
= tr(A>QAA>QA) = tr(AA>QAA>Q) = tr(Σ′QΣ′Q)

= tr(Σ′1/2QΣ′1/2Σ′1/2QΣ′1/2)

=
∥∥∥Σ′1/2QΣ′1/2

∥∥∥2

F
.

Lemma 3.10.9 (Variance of Degree-2 Polynomials of Standard Gaussians, Lemma 3.2.39 re-
stated). We have that

2
Q
{
EN (0,I)

(
x>Qx− EN (0,I)x

>Qx
)2

6 3 ‖Q‖2
F

}
.

Proof. We will view xx> and I ∈ Rd×d as d2-dimensional vectors. Consider the matrix Ex∼N (0,I)(xx>−
I)(xx>−I)>. The diagonal of this matrix is 2Id2 . The off-diagonal part has exactly one non-zero
entry in any row (which corresponds to entry indexed by (i, j) and (j, i) for i 6= j), and thus has
spectral norm at most 1 by the Gershgorin circle theorem. Thus, Ex∼N (0,I)(xx>−I)(xx>−I)> �
3Id2 .

268

We thus have:

2
Q

EN (0,I)
(
x>Qx− EN (0,I)x

>Qx
)2

= EN (0,I)
〈
xx> − I,Q

〉2
= EN (0,I)

〈
xx> − I,Q

〉2

6
∥∥∥Ex∼N (0,I)(xx> − I)(xx> − I ′)>

∥∥∥
2
‖Q‖2

F 6 3 ‖Id2‖2 ‖Q‖
2
F = 3 ‖Q‖2

F

 . (3.73)

Lemma 3.10.10 (Variance of Degree-2 Polynomials of Mixtures, Lemma 3.2.41 restated). Let

M = ∑
iwiDi be a k-mixture of distributions D1,D2, . . . ,Dk with means µi and covariances

Σi. Let µ = ∑
iwiµi be the mean ofM. Suppose that each of D1,D2, . . . ,Dk have certifiably

C-bounded-variance i.e. for Q: a symmetric d× d matrix-valued indeterminate.

2
Q
{
Ex′∼Di(x′

>
Qx′ − EDix′

>
Qx′)2 6 C

∥∥∥Σ′1/2QΣ′1/2
∥∥∥2

F

}
.

Further, suppose that for some H > 1, ‖µi − µ‖2
2, ‖Σi − I‖F 6 H for every 1 6 i 6 k. Then,

we have that

2
Q
{

E
x∼M

[(
x>Qx− E

x∼M

[
x>Qx

])2
]
6 100CH2 ‖Q‖2

F

}
.

Proof. We have the following sequence of (in-)equalities:

2
Q

Ex∼M
(
x>Qx− Ex∼Mx

>Qx
)2

=
∑
i6k

wiEx∼Di

(
x>Qx− Ex∼Mx

>Qx
)2

(3.74)

=
∑
i6k

wiEx∼Di

(
x>Qx− Ex∼Dix

>Qx+ Ex∼Dix
>Qx− Ex∼Mx

>Qx
)2

(3.75)

6 2
∑
i6k

wiEx∼Di

(
x>Qx− Ex∼Dix

>Qx
)2

+ 2
∑
i

wi
(
Ex∼Dix

>Qx− Ex∼Mx
>Qx

)2
 ,

(3.76)

where the third line follows from Fact 3.2.21 (SoS Almost Triangle Inequality).

Let us first bound the 2nd term in the RHS above. Towards that, let Σ = ∑
iwi((µi−µ)(µi−

µ)>+Σi) be the covariance of the mixtureM. Then, notice that Σ = ∑
iwi((µi−µ)(µi−µ)>+

269

Σi) = ∑
iwiµiµ

>
i +∑

iwiΣi − µµ>. Thus, we can write

µiµ
>
i + Σi − Σ− µµ> =

∑
j 6=i

wj(µiµ>i − µjµ>j) +
∑
j 6=i

wj(Σi − Σj)

=
∑
j 6=i

wj(µj − µ)(µj − µ)> −
∑
j 6=i

(µ− µj)(µ− µj)> +
∑
j 6=i

wj(Σi − Σj)

=
∑
j 6=i

wj(µj − µ)(µj − µ)> −
∑
j 6=i

(µ− µj)(µ− µj)>

+
∑
j 6=i

wj(Σi − I)−
∑
j 6=i

wj(Σj − I) .

Here, in the second to last step, we added and subtracted
∑
j 6=iwjµµ

> and used that
∑
iwiµi = µ,

and in the last step we added and subtracted
∑
j 6=iwjI .

By application of the triangle inequality for Frobenius norm to the RHS of the above, we
have that:

∥∥∥µiµ>i + Σi − µµ> − Σ
∥∥∥
F
6
∑
j 6=i

wj
∥∥∥(µi − µ)(µi − µ)>

∥∥∥
F

+
∑
j 6=i

wj
∥∥∥(µj − µ)(µj − µ)>

∥∥∥
F

+
∑
j 6=i

wj ‖(Σi − I)‖F +
∑
j 6=i

wj ‖(I − Σj)‖F 6 H +H +H +H = 4H .

Using the SoS version of the Cauchy-Schwarz inequality (Fact 3.2.20) on indeterminate Q and
constant µµ> − µiµ>i + Σi − Σ and the above bound, we have:

2
Q

∑
i

wi
(
Ex∼Dix

>Qx− Ex∼Mx
>Qx

)2
=
∑
i

wi
(〈
µiµ

>
i + Σi, Q

〉
−
〈
µµ> + Σ, Q

〉)2

6
∑
i

wi
∥∥∥µµ> − µiµ>i + Σi − Σ

∥∥∥2

F
‖Q‖2

F 6 16H2∑
i

wi ‖Q‖2
F = 16H2 ‖Q‖2

F

 .
Let us now bound the first term in the RHS of (3.76) above. First, observe that x>Qx −
EN (µi,Σi)x

>Qx = (x − µi)>Q(x − µi) − EN (µi,Σi)(x − µi)>Q(x − µi) + 2(x − µi)>Qµi.

270

Thus, using Fact 3.2.21 and Lemma 3.2.40, we have:

2
Q

∑
i6k

wiEDi
(
x>Qx− Ex∼Dix

>Qx
)2

(3.77)

6 2
∑
i6k

wiEDi
(
(x− µi)>Q(x− µi)− Ex∼Di(x− µi)>Q(x− µi)

)2
+ 8

∑
i6k

wiEDi
(
(x− µi)>Qµi

)2

(3.78)

6 6
∑
i

wiC
∥∥∥Σ1/2

i QΣ1/2
i

∥∥∥2

F
+ 8

∑
i6k

wiEDi
(
(x− µi)>Qµi

)2
 . (3.79)

For the first term, note that ‖Σi‖2 6 1 + ‖Σi − I‖F 6 1 +H . Thus,
∥∥∥Σ1/2

i

∥∥∥
2
6
√

1 +H . Thus,

we have that Σ1/2
i � I+(Σ1/2

i −I) �
√

1 +HI . Using Lemma 3.2.25 withA = (1+H)−1/2Σ1/2
i

and B = QΣ1/2
i , we have: 2

Q
{∥∥∥Σ1/2

i QΣ1/2
i

∥∥∥2

F
6 (1 +H)

∥∥∥QΣ1/2
i

∥∥∥2

F

}
. By another application

of Lemma 3.2.25, we have: 2
Q
{∥∥∥QΣ1/2

i

∥∥∥2

F
6 (1 +H) ‖Q‖2

F

}
. Thus, altogether, we have: 2

Q

{∥∥∥Σ1/2
i QΣ1/2

i

∥∥∥2

F
6 (1 +H)2 ‖Q‖2

F

}
. Using our assumption that 1 < H , we thus have:

2
Q

∑
i

wiC
∥∥∥Σ1/2

i QΣ1/2
i

∥∥∥2

F
6 C(1 +H)2 ‖Q‖2

F 6 4CH2 ‖Q‖2
F

 .
For the second term, first observe that the following equality of quadratic polynomials in indeter-
minate Q:

(
(x− µi)>Qµi

)2
=
(
(Σ†/2i (x− µi))>Σ1/2

i Qµi
)2

. Thus, Ex∼Di

(
(x− µi)>Qµi

)2
=∥∥∥Σ1/2

i Qµi
∥∥∥2

2
. Next, by the SoS Cauchy-Schwarz inequality (Fact 3.2.20), we have that

2
Q
{∥∥∥Σ1/2

i Qµi
∥∥∥2

2
= tr(µiµ>i QΣiQ) 6 H tr(QΣiQ) = H

∥∥∥Σ1/2
i Q

∥∥∥2

F

}
.

Applying Lemma 3.2.25 with the observation above that Σ1/2
i 6 (1 +H)1/2I yields:

2
Q
{∥∥∥Σ1/2

i Q
∥∥∥2

F
6 (1 +H) ‖Q‖2

F

}
.

Thus, altogether, we obtain: 2
Q {

Ex∼Di(x− µi)>Qµi
}2

6 H(1 +H)2 ‖Q‖2
F 6 4H3 ‖Q‖2

F . We
thus have:

2
Q

∑
i6k

wiEDi
(
(x− µi)>Qµi

)2
6 4H3 ‖Q‖2

F

 .

271

Plugging in these bounds into (3.79) completes the proof.

As an immediate corollary of Lemma 3.2.38 and Lemma 3.2.41, we obtain:

Lemma 3.10.11 (Variance of Degree-2 Polynomials of Mixtures of Gaussians, Lemma 3.2.42
restated). Let M = ∑

iwiN (µi,Σi) be a k-mixture of Gaussians with wi > α, mean µ =∑
iwiµi and covariance Σ = ∑

iwi((µi − µ)(µi − µ)> + Σi). Suppose that for some H > 1,∥∥∥Σ†/2(Σi − I)Σ†/2
∥∥∥
F

6 H for every 1 6 i 6 k. Let Q be a symmetric d × d matrix-valued

indeterminate. Then for H ′ = max{H, 1/α},

2
Q
{

E
x∼M

[(
x>Qx− E

x∼M

[
x>Qx

])2
]
6 100H ′2

∥∥∥Σ1/2QΣ1/2
∥∥∥2

F

}
.

Proof. Let Σ = UΛU> be the covariance of the mixtureM along with its eigendecomposition.
We want to apply Lemma 3.2.41 and Lemma 3.2.38 with the linear transformation x → Ax

for A = Λ†/2U>. For this, we need to check that the conditions of the Lemma 3.2.41 are
met after this linear transformation. The new component covariance is Σ′i = AΣiA

> and the
hypothesis implies that they are within H in Frobenius distance of the new mixture covariance
I ′ = AΣA> (I in the range space of Σ). The new means of the components after the linear
transformation are µ′i = Aµi and the new mixture mean is µ′ = Aµ. Thus, noting that I ′ =∑
iwi(µ′i − µ′)(µ′ − µ′)> + ∑

iwiΣ′i, and since each of the terms in the RHS of the preceding
equality are PSD, we must have that I ′ � wi(µ′i − µ′)(µ′i − µ′)> for every i. Thus, 1 = ‖I ′‖2 >

wi
∥∥∥(µ′i − µ′)(µ′i − µ′)>∥∥∥2

= ‖µ′i − µ′‖
2
2. Rearranging yields that ‖µ′i − µ′‖

2
2 6 1/wi 6 1/α.

Thus, we can now apply Lemma 3.2.41 to the linearly transformed mixture and the conclusion
follows.

3.10.4 Omitted Proofs from Section 3.2.4

Lemma 3.10.12 (Lemma 3.2.47 restated). If X satisfies Condition 3.2.45 with respect toM =∑
iwiN (µi,Σi) with parameters (γ, t), then if wi > γ for all i ∈ [k], and if for some B > 0 we

have that ‖µi‖2
2 , ‖Σi‖op 6 B for all i ∈ [k], then for all m 6 t, we have that:

∥∥∥Ex∈uX [x⊗m]− Ex∼M [x⊗m]
∥∥∥2

F
6 γ2mO(m)Bmdm .

Proof. We begin by noting that for any symmetric m-tensor A we have that

‖A‖2
F 6mO(m)(Ev∼N (0,I)[〈A, v⊗m〉2]).

272

This is because the squared expectation of 〈A, v⊗m〉 is E[HomA(v)2] > m!E[hA(v)2] = m! ‖A‖2
F ,

where the first inequality holds because
√
m!hA(v) is the degree-m harmonic part of HomA(v),

and the equality is by Claim 3.22. Therefore, to prove the lemma, it suffices to bound

Ev∼N (0,I)
[
(Ex∈uX [(v · x)m]− Ex∼M[(v · x)m])2

]
=Ev∼N (0,I)


 k∑
i=1

 1
n

∑
x∈Xi

(v · x)m − wiEx∼N (µi,Σi)(v · x)m
2


=Ev∼N (0,I)


 k∑
i=1

m∑
j=0

(
m

j

)
µm−ji

 1
n

∑
x∈Xi

(v · (x− µi))j − wiEx∼N (µi,Σi)(v · (x− µi))j
2


6Ev∼N (0,I)


 k∑
i=1

m∑
j=0

(
m

j

)
|v · µi|m−j

(
wiγm!(vTΣv)j/2

)2


6γ2mO(m)Ev∼N (0,I)

[
k∑
i=1

(
wi(|v · µi|+ (vTΣv)1/2)2m

)]

6γ2mO(m)Ev∼N (0,I)
[
2Bm ‖v‖2m

2

]
6γ2mO(m)Bmdm.

This completes the proof.

Lemma 3.10.13 (Lemma 3.2.48 restated). LetM = ∑
iwiN (µi,Σi). Let S ⊂ [k] with

∑
i∈S wi =

w, and let M′ = ∑
i∈S(wi/w)N (µi,Σi). Then if X satisfies Condition 3.2.45 with respect

to M with parameters (γ, t) for some γ < 1/(2k) with the corresponding partition being

X = X1 ∪ X2 ∪ . . . ∪ Xk, then X ′ = ⋃
i∈S Xi satisfies Condition 3.2.45 with respect to M′

with parameters (O(kγ/w), t).

Proof. After noting that |X ′| = w|X|(1+O(kγ/w)), the rest follows straightforwardly from the
definitions using the partition X ′ = ⋃

i∈S Xi.

Lemma 3.10.14 (Lemma 3.2.49 restated). LetM = ∑k
i=1wiN (µi,Σi) and let n be an integer

at least ktCtdt/γ3, for a sufficiently large universal constant C > 0, some γ > 0, and some

t ∈ N. If X consists of n i.i.d. samples fromM, then X satisfies Condition 3.2.45 with respect

toM with parameters (γ, t) with high probability.

Proof. We will show that Condition 3.2.45 holds with high probability using that partition where
Xi is the set of samples drawn from the i-th component of M. Note that the second part of

273

Condition 3.2.45 holds with high probability, so long as n is a sufficiently large multiple of d/γ2

by the VC-Theorem. In particular, if we think of samples as being drawn from Rd × [k], where
the second coordinate denotes the component that the sample was drawn from, the second part
of Condition 3.2.45 says that the empirical probability of any event H × {i} is correct to within
additive error γ. It is easy to see and well-known that the class of such events has VC-dimension
O(d), from which the desired bound follows.

For the first part of Condition 3.2.45, we claim that it holds with high probability so long
as n > ktCtdt/γ3. To prove this, we show it separately for each i with wi > γ (as otherwise
there is nothing to prove) and take a union bound. As Condition 3.2.45 is invariant under affine
transformations, we may perform an invertible affine transformation so that µi = 0 and Σi is the
projection onto the first d′ coordinates, for some d′. It is clear that only the first d′ coordinates of
any element of Xi will be non-zero. We claim that the first part of our condition will follow for a
given m, so long as ||Xi|/n− wi| 6 γwi (which holds with high probability if n� log(k)/γ3),
and ∥∥∥Ex∈uXi [x⊗m]− Ex∼N (0,Id′)[x

⊗m]
∥∥∥2

F
6 γ2 , (3.80)

as 1
n

∑
x∈Xi〈v, x − µi〉m = wi(1 ± γ)〈Ex∈uXi [x⊗m], v⊗m〉. It is easy to see that each entry of

the tensor on the left hand side of Equation (3.80) has mean 0 and variance mO(m)/|Xi|, and
thus the expected size of the left hand side is mO(m)dm/|Xi|. Then, when n > kCkd4k/γ3 for a
sufficiently large constantC, all parts of our condition hold with high probability. This completes
the proof.

3.10.5 Omitted Proofs from Section 3.6

Lemma 3.10.15 (Frobenius Distance to TV Distance, Lemma 3.6.2, restated). SupposeN (µ1,Σ1),

N (µ2,Σ2) are Gaussians with ‖µ1 − µ2‖2 6 δ and ‖Σ1 − Σ2‖F 6 δ. If the eigenvalues of Σ1

and Σ2 are at least λ > 0, then

dTV(N (µ1,Σ1),N (µ2,Σ2)) = O(δ/λ) .

Proof. By Fact 3.2.1, we have

dTV (N (µ1,Σ1),N (µ2,Σ2)) = O
((

(µ1 − µ2)>Σ−1
1 (µ1 − µ2)

)1/2
+ ‖Σ−1/2

1 Σ2Σ−1/2
1 − I‖F)

)
.

Then the first term is
〈
µ1 − µ2,Σ−1

1 (µ1 − µ2)
〉1/2

6 (‖Σ−1
1 ‖op‖µ1 − µ2‖2

2)1/2 6 δ/
√
λ. The

274

second term is

‖Σ−1/2
1 Σ2Σ−1/2

1 − I‖2
F = ‖Σ−1/2

1 (Σ1 − Σ2)Σ−1/2
1 ‖2

F

= tr
((

Σ−1/2
1 (Σ1 − Σ2)Σ−1/2

1

)2
)

6 tr
(
(Σ1 − Σ2)2

)
(1/λ)2

6 (δ/λ)2.

Thus,
dTV(N (µ1,Σ1),N (µ2,Σ2)) = O(δ/

√
λ+ δ/λ) = O(δ/λ) .

Lemma 3.10.16 (Component Moments to Mixture Moments, Lemma 3.6.3 restated). LetM =∑
i∈[k] wiN (µi,Σi) be a k-mixture such that wi > α, for some 0 < α < 1, and M has mean

µ and covariance Σ and for all i 6= j ∈ [k],
∥∥∥Σ†/2 (Σi − Σj) Σ†/2

∥∥∥
F

6 1/
√
α. Let X be

a multiset of n samples satisfying Condition 3.2.45 with respect to M with parameters (γ, t),

for 0 < γ < (dk/α)−ct, for a sufficiently large constant c, and t ∈ N. Let D be the uniform

distribution overX . Then,D is 2t-certifiably (c/α)-hypercontractive and for d×d-matrix-valued

indeterminate Q, 2
Q
{
EM

(
x>Qx− EMx>Qx

)2
6 O(1/α)

∥∥∥Σ1/2QΣ1/2
∥∥∥2

F

}
.

Proof. First, since M is a k-mixture of Gaussians with minimum mixing weight wmin > α,
it follows from Corollary 3.2.34 that M is t-certifiably (4/α) hypercontractive. Further, since
X satisfies Condition 3.2.45 with parameters (γ, t), it follows from Lemma 3.2.46 that the set
X ′ = {Σ†/2(xi − µ)}xi∈X also satisfies Condition 3.2.45 with parameters (γ, t) w.r.t. M′ =∑
i∈[k] wiN

(
Σ†/2(µi − µ),Σ†/2ΣiΣ†/2

)
. Since

∥∥∥Σ†/2ΣiΣ†/2
∥∥∥

op
6 O(1/α), it follows from Lemma

3.2.47 that for all m 6 t, ‖Ex∈uX′ [x⊗m]− Ex∼M ′ [x⊗m]‖2
F 6 γ2mO(m)dm(1/α)m. Since γ <

(dk/α)−O(t), it follows from Fact 3.2.43 that X is 2t-certifiably (c/α)-hypercontractive.

By assumption, for all i 6= j ∈ [k], we have that
∥∥∥Σ†/2 (Σi − Σj) Σ†/2

∥∥∥
F
6 1/

√
α. We can

now apply Lemma 3.2.42 to obtain

2
Q
{

E
x∼M

[(
x>Qx− E

x∼M

[
x>Qx

])2
]
6 O(1/α)

∥∥∥Σ1/2QΣ1/2
∥∥∥2

F

}
.

Therefore, it follows from Fact 3.2.43 that since X satisfies Condition 3.2.45 with parameters

275

(γ, t), the uniform distribution DX on X ,

2
Q
{
Ex∼DX (x>Qx− Ex∼DXx

>Qx)2 6 O(1/α)
∥∥∥Σ1/2QΣ1/2

∥∥∥2

F

}
.

3.11 Bit Complexity Analysis

Here we address numerical issues related to our computation. We begin wth the assumption that
the eigenvalues of our covariance matrices are bounded below.

Lemma 3.11.1. IfM = ∑k
i=1wiGi is a mixture of Gaussians Gi where each Gi has mean and

covariance of norm at most 2b for some positive integer b and each Gi has covariance matrix

whose eigenvalues are bounded below by some λ > 0. LetM′ be an ε-corruption ofM whose

outputs are bounded by 2O(b). Let N be a sufficiently large polynomial in dk/ε and let η be λ

divided by a sufficiently large polynomial in 2bd/ε (where sufficiently large is degreeO(1)). Then

if our algorithm is given N i.i.d. samples fromM′ with each of their coordinates rounded to a

nearby multiple of η (by which we mean one of the two closest), then our algorithm runs in time

poly(N, b, log(1/η)) and with high probability returns a list of mixtures of Gaussians Xi with at

least one of the Xi polyk(ε)-close toM in parameter distance.

Proof. This follows from noting firstly that with high probability the any subset of the rounded
samples will have moments λ/poly(d/ε)-close to their moments before rounding. This means
that with high probability these rounded samples will satisfy Condition 3.2.45. This means
that our algorithm satisfies the necessary correctness guarantees. Furthermore, given that our
samples now all have bounded bit complexity, it is easy to see that the runtime of our algorithm
is polynomial in N and the bit complexity.

More generally, as long as the parameters of the components of our mixture can be expressed
with bounded bit complexity, we can prove a similar result, without needing any lower bound on
the covariances.

Theorem 91. Let M = ∑k
i=1wiGi be a mixture of Gaussians where the Gi are Gaussians

whose means and covariance matrices can all be written with coefficients given by rational

numbers with bit complexity at most b for some integer b. Let M′ be an ε-corruption of M

276

so that with probability 1 the returned points have size 2O(b). Let N be a sufficiently large

polynomial in dk/ε. Then there exists an algorithm that given b bit-oracle access to these samples

runs in time poly(N, b) and with high probability returns a mixture of Gaussians X so that

dTV(X,M) < polyk(ε).

Proof. We begin by showing that we can find a list of hypotheses at least one of which is close.
It is then straightforward to show that we can run a tournament over these hypotheses to find a
specific one that works. We also assume for simplicity that each wi is at least 3ε.

We begin by setting λ to be 2−b·dkC for a sufficiently large constant C. By adding each
sample to a random sample from N(0, λI), we can produce samples from M̃′, and ε-corruption
of M̃ = ∑k

i=1wiG̃i where G̃i is the convolution of Gi with N(0, λI). Note that G̃i is a Gaussian
whose covariance has eigenvalues at least λ. Furthermore, if the covariance matrix of Gi is non-
singular, the smallest eigenvalue of the covariance matrix must be at least 2O(b·d), and therefore
dTV(Gi, G̃i) < ε.

Since the eigenvalues of the components of M̃ are bounded below, we can apply Lemma
3.11.1 to our samples from M̃′ rounded to an appropriate accuracy η, and in poly(N, b)-time
obtain a list of hypothesis mixtures at least one of which is (with high probability) close to M̃ in
total variation distance.

If the covariances of all of theGi with weights more than some sufficiently large polyk(ε) are
all non-singular, then one of these hypotheses will be close toM. Otherwise, there must be some
i for which wi is relatively large and for which Gi has singular covariance matrix. In particular,
there must be an integer vector v with bit complexity O(bd) in the kernel of the covariance
matrix of Gi. The hypothesis mixture X that is close to M̃ in parameter distance must contain
some component close to G̃i. Since G̃i has covariance matrix Σ̃i = λI + Σi where Σi is the
covariance matrix of Gi. We note that Σ̃i will have an eigenvalue of λ and that therefore, our
close hypothesis will have an eigenvalue at most 2λ.

If any of our returned hypotheses have any component with a covariance matrix Σ which has
any eigenvalue less than 2λ, we do the following. We consider the quadratic form on integer
vectors v defined by

Q(v) = vTΣv +
√
λ|v|22.

We note that if this Σ is close in parameter distance to a singular Σ̃i where Σi had a null-vector
v of norm 2O(bd), then for that same value of v we will have that Q(v) < λ1/4. Using the Lovász
local lemma, we can find a v so that Q(v) is within a 2O(d)-factor of the minimum possible value

277

over all non-zero, integer vectors v. If for this v, Q(v) > 2Ω(d)λ1/4, we know that the hypothesis
in question is not close to M̃ in parameter distance and can be ignored. On the other hand, any v
with Q(v) this small must have |v| < 2O(d)λ−1/2 and vTΣv < 2O(d)λ1/4. Note that the projection
of v onto the ker(Σi)⊥ is either zero or has magnitude at least 2O(bd). In the latter case, it would
need to be the case that Q(v) is substantially larger. Thus, if such a hypothesis is close to M̃ in
parameter distance, then v is in the kernel of some Σi.

If our algorithm finds some v for some hypothesis, we then compute v · x to error λ for each
of our samples x. IfM really has a component with v in the kernel of its covariance matrix, all
of the x’s taken from this component will have v · x the same. This means that at least a (3/2)ε
fraction of our samples x will have v · x within λ of each other. Note that if v is not in the kernel
of any covariance matrix of anyGi than Varv ·Gi will be at least 2O(db) for each i, and with high
probability we will not find this many close samples.

To summarize, if our algorithm applies this procedure to every component of every hypoth-
esis and does not find such a v, then it cannot be the case thatM contains any components of
weight more than polyk(ε) that are singular, and thus one of our original hypotheses must be
close in total variational distance. We can then run a tournament to find a single one that is close.
Otherwise, if we find such a v for which many points do have v ·x close by, then v must be a null
vector of the covariance matrix of someGi. Furthermore, all of the samples within λ of this com-
mon value of v · x, with high probability are either errors or come from components contained
in some lower dimensional subspace. We can determine what this subspace is by noting that it
is defined by v · x = q for some rational number q with bit-complexity at most O(bd) and using
continued fractions on a good numerical approximation of q in order to determine its true value.
Our algorithm can then recurse on the points in this subspace (a mixture of Gaussians in a lower
dimensional space) and on the remaining points (which are from a mixture of fewer Gaussians),
and return an appropriate mixture of the results.

278

Chapter 4

Robustly Linear Regression

4.1 Introduction

While classical statistical theory has focused on designing statistical estimators assuming access
to i.i.d. samples from a nice distribution, estimation in the presence of adversarial outliers has
been a challenging problem since it was formalized by Huber [Hub64].

Regression continues to be extensively studied under various models, including realizable
regression (no noise), true linear models (independent noise), asymmetric noise, agnostic re-
gression and generalized linear models (see [Wei05] and references therein). In each model, a
variety of distributional assumptions are considered over the covariates and the noise. As a con-
sequence, there exist innumerable estimators for regression achieving various trade-offs between
sample complexity, running time and rate of convergence. The presence of adversarial outliers
adds yet another dimension to design and compare estimators.

Seminal works on robust regression focused on designing non-convex loss functions, includ-
ing M-estimators [Hub11], Theil-Sen estimators[The92, Sen68], R-estimators[Jae72], Least-
Median-Squares [Rou84] and S-estimators[RY84]. These estimators have desirable statistical
properties under disparate assumptions, yet remain computationally intractable in high dimen-
sions. Further, recent works show that it is information-theoretically impossible to design robust
estimators for linear regression without distributional assumptions [KKM18].

An influential recent line of work showed that when the data is drawn from the well studied
and highly general class of hypercontractive distributions (see Definition 4.1.1), there exist robust
and computationally efficient estimators for regression [KKM18, PSBR20, DKS19]. Several

279

families of natural distributions fall into this category, including Gaussians, strongly log-concave
distributions and product distributions on the hypercube. However, both estimators converge
to the the true hyperplane (in `,2-norm) at a sub-optimal rate, as a function of the fraction of
corrupted points.

Given the vast literature on ad-hoc and often incomparable estimators for high-dimensional
robust regression, the central question we address in this work is as follows:

Does there exist a unified approach to design robust and computationally efficient

estimators achieving optimal rates for all linear regression models under mild

distributional assumptions?

We address the aforementioned question by introducing a framework to design robust esti-
mators for linear regression when the input is drawn from a hypercontractive distribution. Our
estimators converge to the true hyperplanes at the information-theoretically optimal rate (as a
function of the fraction of corrupted data) under various well-studied noise models, including
independent and agnostic noise. Further, we show that our estimators can be computed in poly-
nomial time using the sum-of-squares convex hierarchy.

We note that, despite decades of progress, prior to our work, estimators achieving optimal
convergence rate in terms of the fraction of corrupted points were not known, even with indepen-
dent noise and access to unbounded computation.

4.1.1 Our Results

We begin by formalizing the regression model we work with. In classical regression, we assume
D is a distribution over Rd × R and for a vector Θ ∈ Rd, the least-squares loss is given by
errD(Θ) = Ex,y∼D

[(
y − x>Θ

)2
]
. The goal is to learn Θ∗ = arg minΘ errD(Θ). We assume

sample access to D, and given n i.i.d. samples, we want to obtain a vector Θ that approximately
achieves optimal error, errD(Θ∗).

In contrast to the classical setting, we work in the strong contamination model. Here, an
adversary has access to the input samples and is allowed to corrupt an ε-fraction arbitrarily. Note,
the adversary has access to unbounded computation and has knowledge of the estimators we
design. We note that this is the most stringent corrupt model and captures Huber contamination,
additive corruption, label noise, agnostic learning etc (see [DK19]). Formally,

Model 92 (Robust Regression Model). LetD be a distribution overRd×R such that the marginal

280

distribution overRd is centered and has covariance Σ∗ and let Θ∗ = arg minΘ Ex,y∼D
[
(y − 〈Θ, x〉)2

]
be the optimal hyperplane forD. Let {(x∗1, y∗1), (x∗2, y∗2), . . . (x∗n, y∗n)} be n i.i.d. random variables
drawn from D. Given ε > 0, the robust regression model RD(ε,Σ∗,Θ∗) outputs a set of n sam-
ples {(x1, y1), . . . (xn, yn)} such that for at least (1 − ε)n points xi = x∗i and yi = y∗i . The
remaining εn points are arbitrary, and potentially adversarial w.r.t. the input and estimator.

A natural starting point is to assume that the marginal distribution over the covariates (the
x’s above) is heavy-tailed and has bounded, finite covariance. However, we show that there is
no robust estimator in this setting, even when the linear model has no noise and the uncorrupted
points lie on a line.

Theorem 93 (Bounded Covariance does not suffice, Theorem 105 informal). For all ε > 0, there

exist two distributionsD1,D2 overRd×R such that dTV (D1,D2) 6 ε and the marginal distribu-

tion over the covariates has bounded covariance, denoted by Σ2 = Θ(1), yet
∥∥∥Σ1/2 (Θ1 −Θ2)

∥∥∥
2

=
Ω(1), where Θ1 and Θ2 are the optimal hyperplanes for D1 and D2.

The aforementioned result precludes any statistical estimator that converges to the true hyper-
plane as the fraction of corrupted points tends to 0. Therefore, we strengthen the distributional
assumption consider hypercontractive distributions instead.

Definition 4.1.1 ((C, k)-Hypercontractivity). A distributionD over Rd is (C, k)-hypercontractive

for an even integer k > 4, if for all r ∈ [k/2], for all v ∈ Rd,

E
x∼D

[〈
v, x− E [x]

〉2r
]
6 E

x∼D

[
C
〈
v, x− E [x]

〉2
]r

Remark 94. Hypercontractivity captures a broad class of distributions, including Gaussian dis-
tributions, uniform distributions over the hypercube and sphere, affine transformations of isotropic
distributions satisfying Poincare inequalities [KSS18] and strongly log-concave distributions.
Further, hypercontractivity is preserved under natural closure properties like affine transforma-
tions, products and weighted mixtures [KS17]. Further, efficiently computable estimators ap-
pearing in this work require certifiable-hypercontractivity (Definition 4.2.5), a strengthening that
continues to capture aforementioned distribution classes.

In this work we focus on the rate of convergence of our estimators to the true hyperplane,
Θ∗, as a function of the fraction of corrupted points, denoted by ε. We measure convergence
in both parameter distance (`2-distance between the hyperplanes) and least-squares error on the
true distribution (errD).

281

We introduce a simple analytic condition on the relationship between the noise (marginal
distribution over y − x>Θ∗) and covariates (marginal distribution over x) that can be considered
as a proxy for independence of y − x>Θ∗ and x :

Definition 4.1.2 (Negatively Correlated Moments). Given a distribution D over Rd × R, such

that the marginal distribution on Rd is (ck, k)-hypercontractive, the corresponding regression

instance has negatively correlated moments if for all r 6 k, and for all v,

E
x,y∼D

[
〈v, x〉r

(
y − x>Θ∗

)r]
6 O(1) E

x∼D
[〈v, x〉r] E

x,y∼D

[(
y − x>Θ∗

)r]

Informally, the negatively correlated moments condition can be viewed as a polynomial re-
laxation of independence of random variables. Note, it is easy to see that when the noise is
independent of the covariates, the above definition is satisfied.

Remark 95. We show that when this condition is satisfied by the true distribution, D, we obtain
rates that match the information theoretically optimal rate in a true linear model, where the noise
(marginal distribution over y−x>Θ∗) is independent of the covariates (marginal distribution over
x). Further, when this condition is not satisfied, we show that there exist distributions for which
obtaining rates matching the true linear model is impossible.

When the distribution over the input is hypercontractive and has negatively correlated mo-
ments, we obtain an estimator achieving rate proportional to ε1−1/k for parameter recovery. Fur-
ther, our estimator can be computed efficiently. Thus, our main algorithmic result is as follows:

Theorem 96 (Robust Regresssion with Negatively Correlated Noise, Theorem 101 informal).
Given ε > 0, k > 4, and n > (d log(d))O(k) samples from RD(ε,Σ∗,Θ∗), such that D is (c, k)-

certifiably hypercontractive and has negatively correlated moments, there exists an algorithm

that runs in nO(k) time and outputs an estimator Θ̃ such that with high probability,

∥∥∥(Σ∗)1/2
(
Θ∗ − Θ̃

)∥∥∥
2
6 O

(
ε1−1/k

) (
errD(Θ∗)1/2

)
and,

errD(Θ̃) 6
(
1 +O

(
ε2−2/k

))
errD(Θ∗)

Remark 97. We note that prior work does not draw a distinction between the independent and
dependent noise models. In comparison (see Table 4.1), Klivans, Kothari and Meka [KKM18]
obtained a sub-optimal least-squares error scales proportional to ε1−2/k. For the special case of

282

k = 4, Prasad et. al. [PSBR20] obtain least squares error proportional to O(εκ2(Σ)), where
κ is the condition number. In very recent independent work Zhu, Jiao and Steinhardt [ZJS20]
obtained a sub-optimal least-squares error scales proportional to ε2−4/k.

Further, we show that the rate we obtained in Theorem 96 is information-theoretically opti-
mal, even when the noise and covariates are independent:

Theorem 98 (Lower Bound for Independent Noise, Theorem 103 informal). For any ε > 0,

there exist two distributionsD1,D2 overR2×R such that the marginal distribution overR2 has

covariance Σ and is (c, k)-hypercontractive for both distributions, and yet
∥∥∥Σ1/2(Θ1 −Θ2)

∥∥∥
2

=
Ω
(
ε1−1/kσ

)
, where Θ1,Θ2 are the optimal hyperplanes for D1 and D2 respectively, σ = max(

errD1(Θ1),errD2(Θ2)) and the noise is uniform over [−σ, σ]. Further, |errD1(Θ2)−errD1(Θ1)| =
Ω
(
ε2−2/kσ2

)
.

Next, we consider the setting where the noise is allowed to arbitrary, and need not have
negatively correlated moments with the covariates. A simple modification to our algorithm and
analysis yields an efficient estimator that obtains rate proportional to ε1−2/k for parameter recov-
ery.

Corollary 4.1.3 (Robust Regresssion with Dependent Noise, Corollary 4.3.1 informal). Given

ε > 0, k > 4 and n > (d log(d))O(k) samples fromRD(ε,Σ∗,Θ∗), such thatD is (c, k)-certifiably

hypercontractive, there exists an algorithm that runs in nO(k) time and outputs an estimator Θ̃
such that with probability 9/10,

∥∥∥(Σ∗)1/2
(
Θ∗ − Θ̃

)∥∥∥
2
6 O

(
ε1−2/k

) (
errD(Θ∗)1/2

)
and,

errD(Θ̃) 6
(
1 +O

(
ε2−4/k

))
errD(Θ∗)

Further, we show that the dependence on ε is again information-theoretically optimal:

Theorem 99 (Lower Bound for Dependent Noise, Theorem 104 informal). For any ε > 0, there

exist two distributions D1,D2 over R2 × R such that the marginal distribution over R2 has

covariance Σ and is (c, k)-hypercontractive for both distributions, and yet
∥∥∥Σ1/2(Θ1 −Θ2)

∥∥∥
2

=
Ω
(
ε1−2/kσ

)
, where Θ1,Θ2 be the optimal hyperplanes for D1 and D2 respectively and σ =

max(errD1(Θ1),errD2(Θ2)). Further, |errD1(Θ2)− errD1(Θ1)| = Ω
(
ε2−4/kσ2

)
.

283

Estimator Independent Noise Arbitrary Noise
Prasad et. al. [PSBR20],
Diakonikolas et. al. [DKK+18] ε κ2 (only k = 4) ε κ2 (only k = 4)

Klivans, Kothari and Meka
[KKM18] ε1−2/k ε1−2/k

Zhu, Jiao and Steinhardt
[ZJS20] ε2−4/k ε2−4/k

Our Work
Thm 96, Cor 4.1.3 ε2−2/k ε2−4/k

Lower Bounds
Thm 98, Thm 99 ε2−2/k ε2−4/k

Table 4.1: Comparison of convergence rate (for least-squares error) achieved by various compu-
tationally efficient estimators for Robust Regression, when the underlying distribution is (ck, k)-
hypercontractive.

Applications for Gaussian Covariates. The special case where the marginal distribution over
x is Gaussian has received considerable interest recently [DKS19, DKK+18]. We note that
our estimators extend to the setting of Gaussian covariates, since the uniform distribution over
samples from N (0,Σ) are (O(k) ,O(k))-certifiably hypercontractive for all k (see Section 5 in
Kothari and Steurer [KS17]). As a consequence, instantiating Corollary 4.1.3 with k = log(1/ε)
yields the following:

Corollary 4.1.4 (Robust Regression with Gaussian Covariates). Given ε > 0 and n > (d log(d))O(log(1/ε))

samples from RN (ε,Σ∗,Θ∗), such that the marginal distribution over the x’s is N (0,Σ∗), there

exists an algorithm that runs in nO(log(1/ε) time and outputs an estimator Θ̃ such that with high

probability, ∥∥∥(Σ∗)1/2
(
Θ∗ − Θ̃

)∥∥∥
2
6 O(ε log(1/ε)) (errN (Θ∗))1/2

and,

errN (Θ̃) 6
(
1 +O

(
(ε log(1/ε))2

))
errN (Θ∗)

We note that our estimators obtain the rate matching recent work for Gaussians, albeit in
quasi-polynomial time. In comparison, Diakonikolas, Kong and Stewart [DKS19] obtain the
same rate in polynomial time, when the noise is independent of the covariates. We note that ob-
taining the optimal rate for Gaussian covariates (shaving the additional log(1/ε) factor) remains
an outstanding open question.

284

Concurrent Work. We note that a statistical estimator achieving rate proportional to ε1−1/k

can be obtained from combining ideas in [ZJS19] and [ZJS20]1. However, this approach remains
computationally intractable. Finally, Cherapanamjeri et al. [CAT+20] consider the special case
of k = 4 and obtain nearly linear sample complexity and running time. However, their running
time and rate incurs a condition number dependence. Further, their rate scales proportional to
ε1/2, even when the noise is independent of the covariates (as opposed to ε3/4).

We emphasize that the bottleneck in all prior and concurrent work remains algorithmically
exploiting the independence of the noise and covariates, which we achieve via the negatively

correlated moments condition (Definition 4.1.2).

4.2 Preliminaries

Throughout this paper, for a vector v, we use ‖v‖2 to denote the Euclidean norm of v. For a
n × m matrix M , we use ‖M‖2 = max‖x‖2=1‖Mx‖2 to denote the spectral norm of M and
‖M‖F =

√∑
i,jM

2
i,j to denote the Frobenius norm of M . For symmetric matrices we use � to

denote the PSD/Loewner ordering over eigenvalues ofM . Recall, the definition of total variation
distance between probability measures:

Definition 4.2.1 (Total Variation Distance). The TV distance between distributions with PDFs

p, q is defined as 1
2
∫∞
−∞ |p(x)− q(x)|dx.

Given a distributionD overRd×R, we consider the least squares error of a vector Θ w.r.t. D
to be errD(Θ) = Ex,y∼D

[
(y − 〈x,Θ〉)2

]
. The linear regression problem minimizes the error over

all Θ. The minimizer, ΘD of the aformentioned error satisfies the following "gradient condition"
: for all v ∈ Rd,

E
x,y∼D

[〈
v, xx>ΘD − xy

〉]
= 0

Fact 4.2.2 (Convergence of Empirical Moments, implicit in Lemma 5.5 [KS17]). Let D be

a (ck, k)-hypercontractive distribution with covariance Σ and let X = {x1, . . . xn} be n =
Ω((d log(d)/δ)k/2) i.i.d. samples from D. Then, with probability at least 1− δ,

(1− 0.1)Σ � 1
n

n∑
i

xix
>
i � (1 + 0.1)Σ

1We thank Banghua Zhu, Jiantao Jiao, and Jacob Steinhardt for communicating their observation to us.

285

Fact 4.2.3 (TV Closeness to Covariance Closeness, Lemma 2.2 [KS17]). Let D1,D2 be (ck, k)-

hypercontractive distributions overRd such that ‖D − D′‖TV 6 ε, where 0 < ε < O
(
(1/ck)

k
k−1
)
.

Let Σ1,Σ2 be the corresponding covariance matrices. Then, for δ 6 O
(
ck ε

1−1/k
)
< 1,

(1− δ)Σ2 � Σ1 � (1 + δ)Σ2

Lemma 4.2.4 (Löwner Ordering for Hypercontractive Samples). LetD be a (ck, k)-hypercontractive

distribution with covariance Σ and and let U be the uniform distribution over n samples. Then,

with probability 1− δ, ∥∥∥Σ−1/2Σ̂Σ−1/2 − I
∥∥∥
F
6

C4d
2

√
n
√
δ
,

where Σ̂ = 1
n

∑
i∈[n] xix

>
i .

Next, we define the technical conditions required for efficient estimators. Formally,

Definition 4.2.5 (Certifiable Hypercontractivity). A distribution D on Rd is (ck, k)-certifiably

hypercontractive if for all r 6 k/2, there exists a degree O(k) sum-of-squares proof (defined

below) of the following inequality in the variable v

E
x∼D

[
〈x, v〉2r

]
6 E

x∼D

[
cr 〈x, v〉2

]r
such that cr 6 ck.

Next, we note that if a distribution D is certifiably hypercontractive, the uniform distribution
over n i.i.d. samples from D is also certifiably hypercontractive.

Fact 4.2.6 (Sampling Preserves Certifiable Hypercontractivity, Lemma 5.5 [KS17]). Let D be a

(ck, k)-certifiably hypercontractive distribution onRd. LetX be a set of n = Ω
(
(d log(d/δ))k/2 /γ2

)
i.i.d. samples fromD. Then, with probability 1−δ, the uniform distribution overX is (ck+γ, k)-

certifiably hypercontractive.

We also note that certifiably hypercontractivity is preserved under Affine transformations of
the distribution.

Fact 4.2.7 (Certifiable Hypercontractivity under Affine Transformations, Lemma 5.1, 5.2 [KS17]).
Let x ∈ Rd be a random variable drawn from a (ck, k)-certifiably hypercontractive distribution.

Then, for matrix A and vector b, the distribution over the random variable Ax+ b is also (ck, k)-

certifiably hypercontractive.

286

Next, we formally define the condition on the moments and noise that we require to obtain
efficient algorithms. We note that for technical reasons it is not simply a polynomial identity
encoding Definition 4.1.2.

Definition 4.2.8 (Certifiable Negatively Correlated Moments). A distribution D onRd ×R has

O(1)-certifiable negatively correlated moments if for all r 6 k/2 there exists a degree O(k)
sum-of-squares proof of the following inequality

E
x,y∼D

[(
v>x

(
y − x>Θ

))2r
]
6 O(λrr)

(
E
[
(v>x)2

]r)(
E
[(
y − x>Θ

)2
]r)

for a fixed vector Θ.

4.3 Robust Certifiability and Information Theoretic Estima-
tors

In this section, we provide an estimator that obtains the information theoretically optimal rate for
robust regression. We note that we consider the setting where both the covariates and the noise
are hypercontractive and the are independent of each other. This setting displays all the key
ideas of our estimator. Further, our estimator extends to the remaining settings, such as bounded
dependent noise, by simple modifications to the subsequent analysis.

Theorem 100 (Robust Certifiability with Optimal Rate). Given ε > 0, let D,D′ be distribu-

tions overRd ×R such that the respective marginal distributions overRd, denoted by DX ,D′X ,

are (ck, k)-hypercontractive and ‖D − D′‖TV 6 ε. Let RD(ε,ΣD,ΘD) and RD′(ε,ΣD′ ,ΘD′) be

the corresponding instances of robust regression such that D,D′ have negatively correlated mo-

ments. Further, for (x, y) ∼ D,D′, let the marginal distribution over y−
〈
x,E

[
xx>

]−1
E [xy]

〉
be (ηk, k)-hypercontractive Then,

∥∥∥Σ1/2
D (ΘD −ΘD′)

∥∥∥
2
6 O

(√
ck ηk ε

1−1/k
) (

errD(ΘD)1/2 + errD′(ΘD′)1/2
)

Further,

errD(ΘD′) 6
(
1 +O

(
ck ηk ε

2−2/k
))

errD(ΘD) +O
(
ck ηk ε

2−2/k
)

errD′(ΘD′)

Proof. Consider a maximal coupling of D,D′ over (x, y)× (x′, y′), denoted by G, such that the

287

marginal of G (x, y) is D, the marginal on (x′, y′) is D′ and PG[I(x, y) = (x′, y′)] = 1− ε. Then,
for all v,

〈v,ΣD(ΘD −ΘD′)〉 = E
G

[〈
v, xx>(ΘD −ΘD′) + xy − xy

〉]
= E
G

[〈v, x (〈x,ΘD〉 − y)〉] + E
G

[〈v, x (y − 〈x,ΘD′〉)〉]
(4.1)

Since ΘD is the minimizer for the least squares loss, we have the following gradient condition
: for all v ∈ Rd,

E
(x,y)∼D

[〈v, (〈x,ΘD〉 − y)x〉] = 0 (4.2)

Since G is a coupling, using the gradient condition (4.2) and using that 1 = I(x, y) = (x′, y′)
+I(x, y) 6= (x′, y′), we can rewrite equation (4.1) as

〈v,ΣD(ΘD −ΘD′)〉 = E
G

[〈v, x (y − 〈x,ΘD′〉)〉 I(x, y) = (x′, y′)]

+ E
G

[〈v, x (y − 〈x,ΘD′〉)〉 I(x, y) 6= (x′, y′)]

= E
G

[〈v, x′ (y′ − 〈x′,ΘD′〉)〉 I(x, y) = (x′, y′)]

+ E
G

[〈v, x (y − 〈x,ΘD′〉)〉 I(x, y) 6= (x′, y′)]

(4.3)

Consider the first term in the last equality above. Using the gradient condition for ΘD′ along with
Hölder’s Inequality, we have

∣∣∣∣EG[〈v, x′ (y′ − 〈x′,ΘD′〉)〉 I(x, y) = (x′, y′)
]∣∣∣∣

=
∣∣∣∣ ED′ [〈v, x′ (y′ − 〈x′,ΘD′〉)〉]− E

G
[〈v, x′ (y′ − 〈x′,ΘD′〉)〉 I(x, y) 6= (x′, y′)]

∣∣∣∣
=
∣∣∣∣EG [〈v, x′ (y′ − 〈x′,ΘD′〉)〉 I(x, y) 6= (x′, y′)]

∣∣∣∣
6
∣∣∣∣EG
[
I(x, y) 6= (x′, y′)k/(k−1)](k−1)/k

∣∣∣∣ · ∣∣∣∣ED′
[
〈v, x′ (y′ − 〈x′,ΘD′〉)〉k

]1/k∣∣∣∣
(4.4)

Observe, since G is a maximal coupling EG [I(x, y) 6= (x′, y′)](k−1)/k 6 ε1−1/k. Further, since D′

has negatively correlated moments,

E
D′

[
〈v, x′〉k · (y′ − 〈x′,ΘD′〉)k

]
= E
D′

[
〈v, x′〉k

]
E
D′

[
(y′ − 〈x′,ΘD′〉)k

]

288

By hypercontractivity of the covariates and the noise, we have

E
D′

[
〈v, x′〉k

]1/k
E
D′

[
(y′ − 〈x′,ΘD′〉)k

]1/k
6 O(√ck ηk)

(
v>ΣD′v

)1/2
E

x′,y′∼D′

[
(y′ − 〈x′,ΘD′〉)2]1/2

Therefore, we can restate (4.4) as follows

∣∣∣∣EG [〈v, x′ (y′ − 〈x′,ΘD′〉)〉 I(x, y) = (x′, y′)]
∣∣∣∣ 6 O(√ck ηk ε k−1

k

) (
v>ΣD′v

) 1
2

E
x′,y′∼D′

[
(y′ − 〈x′,ΘD′〉)2] 1

2
(4.5)

It remains to bound the second term in the last equality of equation (4.3), and we proceed as
follows :

E
G

[〈v, x (y − 〈x,ΘD′〉)〉 I(x, y) 6= (x′, y′)] = E
G

[〈
v, xx> (ΘD −ΘD′)

〉
I(x, y) 6= (x′, y′)

]
+ E
G

[〈v, x (y − 〈x,ΘD〉)〉 I(x, y) 6= (x′, y′)]
(4.6)

We bound the two terms above separately. Observe, applying Hölder’s Inequality to the first
term, we have

E
G

[〈
v, xx> (ΘD −ΘD′)

〉
I(x, y) 6= (x′, y′)

]
6 E
G

[I(x, y) 6= (x′, y′)]
k−2
k E
G

[〈
v, xx> (ΘD −ΘD′)

〉 k
2
] 2
k

6 ε
k−2
k E
G

[〈
v, xx> (ΘD −ΘD′)

〉 k
2
] 2
k

(4.7)

To bound the second term in equation 4.6, we again use Hölder’s Inequality followed D having
negatively correlated moments,

289

E
G

[〈v, x (y − 〈x,ΘD〉)〉 I(x, y) 6= (x′, y′)] 6 E
G

[I(x, y) 6= (x′, y′)]
k−1
k E
G

[
〈v, x (y − 〈x,ΘD〉)〉k

] 1
k

6 ε
k−1
k E

x∼D

[
〈v, x〉k

]1/k
E

x,y∼D

[
(y − 〈x,ΘD〉)k

]1/k
6 ε

k−1
k
√
ck ηk

(
v>ΣDv

)1/2
E

x,y∼D

[
(y − 〈x,ΘD〉)2

]1/2
(4.8)

where the last inequality follows from hypercontractivity of the covariates and noise. Substituting
the upper bounds obtained in Equations (4.7) and (4.8) back in to (4.6),

E
G

[〈v, x (y − 〈x,ΘD′〉)〉 I(x, y) 6= (x′, y′)] 6 ε
k−2
k E
G

[〈
v, xx> (ΘD −ΘD′)

〉 k
2
] 2
k

+ ε
k−1
k
√
ck ηk

(
v>ΣDv

)1/2
E

x,y∼D

[
(y − 〈x,ΘD〉)2

]1/2
Therefore, we can now upper bound both terms in Equation (4.3) as follows:

〈v,ΣD(ΘD −ΘD′)〉 6 O
(
ck ηk ε

k−1
k

) (
v>ΣD′v

)1/2
E

x′,y′∼D′

[
(y′ − 〈x′,ΘD′〉)2]1/2

+O
(
ε
k−2
k

)
E
G

[〈
v, xx> (ΘD −ΘD′)

〉k/2]2/k

+O
(
ε
k−1
k
√
ck ηk

) (
v>ΣDv

)1/2
E

x,y∼D

[
(y − 〈x,ΘD〉)2

]1/2
(4.9)

Recall, since the marginals ofD andD′ onRd are (ck, k)-hypercontractive and ‖D − D′‖TV 6 ε,
it follows from Fact 4.2.3 that

(1− 0.1) ΣD′ � ΣD � (1 + 0.1) ΣD′ (4.10)

when ε 6 O
(
(1/ckk)k/k−1

)
. Now, consider the substitution v = ΘD −ΘD′ . Observe,

E
G

[〈
v, xx> (ΘD −ΘD′)

〉k/2]2/k
= E
D

[
〈x, (ΘD −ΘD′)〉k

]2/k
6 ck

∥∥∥Σ1/2
D (ΘD −ΘD′)

∥∥∥2

2

(4.11)

290

Then, using the bounds in (4.10) and (4.11) along with v = ΘD −ΘD′ in Equation 4.9, we have

(
1−O

(
ε
k−2
k ck

)) ∥∥∥Σ1/2
D (ΘD −ΘD′)

∥∥∥2

2
6 O

(√
ck ηk ε

k−1
k

) ∥∥∥Σ1/2
D (ΘD −ΘD′)

∥∥∥
2(

E
x′,y′∼D′

[
(y′ − 〈x′,ΘD′〉)2] 1

2 + E
x,y∼D

[
(y − 〈x,ΘD〉)2

] 1
2

)
(4.12)

Dividing out (4.12) by
(
1−O

(
ε
k−2
k ck

)) ∥∥∥Σ1/2
D (ΘD −ΘD′)

∥∥∥2

2
and observing that O

(
ε
k−2
k ck

)
is

upper bounded by a fixed constant less than 1 yields the parameter recovery bound.

Given the parameter recovery result above, we bound the least-squares loss between the two
hyperplanes on D as follows:

∣∣∣errD(ΘD)− errD(ΘD′)
∣∣∣ =

∣∣∣∣ E
(x,y)∼D

[(
y − x>ΘD

)2
−
(
y − x>ΘD′ + x>ΘD − x>ΘD

)2
] ∣∣∣∣

=
∣∣∣∣ E

(x,y)∼D

[
〈x, (ΘD −ΘD′)〉2 + 2(y − x>ΘD)x>(ΘD −ΘD′)

] ∣∣∣∣
6 O

(
ck ηk ε

2−2/k
)(

E
x′,y′∼D′

[
(y′ − 〈x′,ΘD′〉)2]+ E

x,y∼D

[
(y − 〈x,ΘD〉)2

])
(4.13)

where the last inequality follows from observing E
[〈

ΘD −ΘD′ , x(y − x>ΘD)
〉]

= 0 (gradient
condition) and squaring the parameter recovery bound.

Next, we consider the setting where the noise is allowed to dependent arbitrarily on the co-
variates, which captures the well-studied agnostic model. With a slightly modification in our
certifiability proof above (using Cauchy-Schwarz instead of independence), we obtain the opti-
mal rate in this setting. We defer the details to Appendix 4.7.

Corollary 4.3.1 (Robust Regression with Dependent Noise). Let D,D′ be distributions over

Rd × R and let RD(ε,ΣD,ΘD), RD′(ε,ΣD′ ,ΘD′) be robust regression instances satisfying the

hypothesis in Theorem 100 such that the negatively correlated moments condition is not satisfied.

Then, ∥∥∥Σ1/2
D (ΘD −ΘD′)

∥∥∥
2
6 O

(√
ck ηk ε

1−2/k
) (

errD(ΘD)1/2 + errD′(ΘD′)1/2
)

Further,

errD(ΘD′) 6
(
1 +O

(
ck ηk ε

2−4/k
))

errD(ΘD) +O
(
ck ηk ε

2−4/k
)

errD′(ΘD′)

291

4.4 Robust Regression in Polynomial Time

In this section, we describe an algorithm to compute our robust estimator for linear regression
efficiently. We consider a polynomial system that encodes our robust estimator. We then consider
a sum-of-squares relaxation of this program and compute an approximately optimal solution for
our relaxation. To analyze our algorithm, we consider the dual of the sum-of-squares relaxation
and show that the sum-of-squares proof system caputures a variant of our robust identifiability
proof.

We begin by recalling notation: let D be a distribution over Rd × R such that it is (λk, k)-
certifiably hypercontractive. Let X = {(x∗1, y∗1), (x∗2, y∗2) . . . (x∗n, y∗n)} denote n uncorrupted i.i.d
samples from D and let Xε = .{(x1, y1), (x2, y2) . . . (xn, yn)} be an ε-corruption of the samples
X , drawn from a Robust Regression model, RD(ε,Σ∗,Θ∗) (Model 92). We consider a polyno-
mial system in the variables X ′ = {(x′1, y′1), (x′2, y′2) . . . (x′n, y′n)} and w1, w2, . . . wn ∈ {0, 1}n

as follows:

Aε,λk :



∑
i∈[n] wi = (1− ε)n

∀i ∈ [n]. w2
i = wi

∀i ∈ [n] wi(x′i − xi) = 0

∀i ∈ [n] wi(y′i − yi) = 0〈
v,

1
n

∑
i∈[n]

x′i (〈x′i,Θ〉 − yi)
〉k

= 0

∀r 6 k/2 1
n

∑
i∈[n]
〈x′i, v〉2r 6

λr
n

∑
i∈[n]
〈x′i, v〉2

r

∀r 6 k/2 1
n

∑
i∈[n]

(y′i − 〈Θ, x′i〉)
2r 6

λr
n

∑
i∈[n]

(y′i − 〈Θ, x′i〉)
2

r

∀r 6 k/2 E
[(
v>x′i

(
y′i − (x′i)>Θ

))2r
]
6 O

(
λ2r
r

)
E
[
〈v, x′i〉

2]r E [(y′i − 〈x′i,Θ〉)2]r


We show that optimizing an appropriate convex function subject to the aforementioned con-

straint system results in an efficiently computable robust estimator for regression, achieving the
information-theoretically optimal rate. Formally,

Theorem 101 (Robust Regression with Negatively Correlated Moments, Theorem 96 restated).

292

Given k ∈ N, ε > 0 and n > n0 samplesXε = {(x1, y1), . . . (xn, yn)} fromRD(ε,Σ∗,Θ∗), where

D is a (λk, k)-certifiably hypercontractive distribution over Rd ×R. Further, D has certifiable

negatively correlated moments. Then, Algorithm 102 runs in nO(k) time and outputs an estimator

Ẽζ̃ [Θ] such that when n0 = Ω
(
(d log(d))Ω(k)/γ2

)
with probability 1− 1/poly(d) (over the draw

of the input),

∥∥∥(Σ∗)1/2
(
Θ∗ − Ẽζ̃ [Θ]

)∥∥∥
2
6 O

(
λk ε

1−1/k + λkγ
)

errD(Θ∗)1/2

Further,

errD
(
Ẽζ̃ [Θ]

)
6
(
1 +O

(
λ2
k ε

2−2/k + λ2
k γ

2
))

errD(Θ∗).

Algorithm 102 (Optimal Robust Regression in Polynomial Time).

Input: n samples Xε from the robust regression modelRD(ε,Θ∗,Σ∗).

Operation:

1. Find a degree-O(k) pseudo-distribution ζ̃ satisfying Aε,λk and minimizing

min
w,x′,y′,Θ

Ẽζ̃


 1
n

∑
i∈[n]

wi (y′i − 〈Θ, x′〉)
2

k


.

2. Round the pseudo-distribution to obtain an estimator Ẽζ̃ [Θ].

Output: A vector Ẽζ̃ [Θ] such that the recovery guarantee in Theorem 101 is satisfied.

Efficient Estimator for Arbitrary Noise. We note that an argument similar to the one pre-
sented for Theorem 101 results in a polynomial time estimator when the regression instance
does not have negatively correlated moments (definition 4.1.2), albeit at a slightly worse rate.
Formally,

Corollary 4.4.1 (Robust Regression with Arbitrary Noise). Consider the hypothesis of Theorem

101, without the negatively correlated moments assumption. Then, there exists an algorithm

that runs in time nO(k) outputs an estimator Θ̃ such that when n0 = (d log(d))Ω(k)/γ2, with

probability 1− 1/poly(d) (over the draw of the input),

∥∥∥(Σ∗)1/2
(
Θ∗ − Θ̃

)∥∥∥
2
6 O

(
λk ε

1−2/k + c2 η2 γ
)

errD(Θ∗)1/2

293

Further,

errD
(
Θ̃
)
6
(
1 +O

(
λ2
k ε

2−4/k + λ2
2 γ
))

errD(Θ∗)

At a high level, we simply do not enforce the negatively correlated moments constraint in
our polynomial system Aε,λk and instead use the SoS Cauchy-Schwarz inequality in our key
technical lemma (Lemma 4.4.3). For completeness, we provide the proof of the SoS lemma in
Appendix 4.8.

4.4.1 Analysis

We begin by observing that we can efficiently optimize the polynomial program above since it
admits a compact representation. In particular, Aε,λk can be represented as a system of poly(nk)
constraints in nO(k) variables. We refer the reader to [FKP+19] for a detailed overview on how
to efficiently implement the aforementioned constraints.

Lemma 4.4.2 (Soundness of the Constraint System). Given n > n0 samples fromRD(ε,Θ∗,Σ),

with probability at least 1− 1/poly(d) over the draw of the samples, there exists an assignment

for w, x′, y′ and Θ such that Aε,λk is feasible when n0 =
(
(d log(d))Ω(k)

)
.

Proof. Consider the following assignment: for all i ∈ [n] the wi’s indicate the set of uncorrupted
points in Xε, i.e. wi = 1 if (xi, yi) = (x∗i , y∗i), x′i = xi and y′i = yi. Further, Θ = Θ∗, the true
hyperplane. It is easy to see that the first four constraints (intersection constraints) are satisfied.

We observe that the marginal distribution over the covariates and the noise are both (λk, k)-
certifiably hypercontractive since they are Affine transformations of D (Fact 4.2.7). Next, it
follows from Fact 4.2.6, that for n0 = Ω

(
d log(d)O(k)

)
, the uniform distribution over the samples

xi, is (2 λk, k)-certifiably hypercontractive with probability at least 1− 1/poly(d). Similarly, the
uniform distribution on yi − 〈xi,Θ∗〉 is (2 λk, k)-certifiably hypercontractive.

It remains to show that sampling preserves certifiable negatively correlated moments. Recall,
since the joint distribution is hypercontractive, by Fact 4.2.6 we know that there’s a degree O(k)

294

proof of

1
n

∑
i∈[n]
〈v, xi〉k (yi − 〈xi,Θ∗〉)k 6 O

(
λkk
) 1

n

∑
i∈[n]
〈v, xi〉2 (yi − 〈xi,Θ∗〉)2

k/2

= O
(
λkk
) 1

n

∑
i∈[n]

v>xi(xi)> (yi − 〈xi,Θ∗〉)2 v

k/2
(4.14)

It thus suffices to bound the Operator norm of 1
n

∑
i∈[n] xix

>
i (yi − 〈xi,Θ∗〉)2. It follows from

Lemma 4.2.4 that with probability at least 1− 1/poly(d),

1
n

∑
i∈[n]

xix
>
i (yi − 〈xi,Θ∗〉)2 � O(1) E

x,y∼D

[
xx> (y − 〈x,Θ∗〉)2

]
(4.15)

when n > n0. Using that D has negatively correlated moments,

E
x,y∼D

[
xx> (y − 〈x,Θ∗〉)2

]
� E

x∼D

[
xx>

]
E

x,y∼D

[
(y − 〈x,Θ∗〉)2

]
(4.16)

Using Lemma 4.2.4 on xx> and (y − 〈x,Θ∗〉)2, we can bound (4.16) as follows:

E
x∼D

[
xx>

]
E

x,y∼D

[
(y − 〈x,Θ∗〉)2

]
� O(1)E

[
xix
>
i

]
(yi − 〈xi,Θ∗〉)2 (4.17)

Combining Equations (4.15), (4.16), and (4.17), and substituting in (4.14), we have

1
n

∑
i∈[n]
〈v, xi〉k (yi − 〈xi,Θ∗〉)k 6 O

(
λkk
) 1

n

∑
i∈[n]
〈xi, v〉2

 k
2
 1
n

∑
i∈[n]

(yi − 〈xi,Θ∗〉)2

 k
2

which concludes the proof.

Let Σ̂ be the empirical covariance of the uncorrupted samples X and let Θ̂ be an optimizer
for the empirical loss. Applying Theorem 100 with D being the uniform distribution on the
uncorrupted samples X and D′ being the uniform distribution on x′i, we get

∥∥∥Σ̂1/2
(
Θ− Θ̂

)∥∥∥
2
6 O

(
λk ε

1−1/k
)

errD(Θ∗)1/2

Observe, the aforementioned bound is not a polynomial identity and thus cannot be expressed
in the SoS framework. Therefore, we provide a low-degree SoS proof of a slightly modified
version of the inequality above, that is inspired by our information theoretic identifiability proof

295

in Theorem 100.

Lemma 4.4.3 (Robust Identifiability in SoS). Consider the hypothesis of Theorem 101. Let

w, x′, y′ and Θ be feasible solutions for the polynomial constraint system A. Let

Θ̂ = arg min
Θ

1
n

∑
i∈[n]

(y∗i − 〈x∗i ,Θ〉)2

be the empirical loss minimizer on the uncorrupted samples and let Σ̂ = E
[
x∗i (x∗i)>

]
be the

covariance of the uncorrupted samples. Then,

A 4k
w,x′,y′,Θ

∥∥∥Σ̂1/2
(
Θ̂−Θ

)∥∥∥2k

2
6 23k(2ε)k−1λkk σ

k/2
∥∥∥∥E [x′i(x′i)>]1/2 (Θ̂−Θ

)∥∥∥∥k
2

+ 23k(2ε)k−2λ2k
k

∥∥∥Σ̂1/2
(
Θ̂−Θ

)∥∥∥2k

2

+ 23k(2ε)k−1λkk E
[(
y∗i −

〈
x∗i , Θ̂

〉)2
]k/2 ∥∥∥Σ̂1/2

(
Θ̂−Θ

)∥∥∥k
2



Proof. Consider the empirical covariance of the uncorrupted set given by Σ̂ = E
[
x∗i (x∗i)>

]
.

Then, using the substitution, along with SoS Almost Triangle Inequality (Fact 2.2.8),

2k
Θ

〈v, Σ̂ (Θ̂−Θ
)〉k

=
〈
v,E

[
x∗i (x∗i)>

(
Θ̂−Θ

)
+ x∗i y

∗
i − x∗i y∗i

]〉k

=
〈
v,E

[
x∗i
(〈
x∗i , Θ̂

〉
− y∗i

)]
+ E [x∗i (y∗i − 〈x∗i ,Θ〉)]

〉k
6 2k

〈
v,E

[
x∗i
(〈
x∗i , Θ̂

〉
− y∗i

)]〉k
+ 2k

〈
v,E [x∗i (y∗i − 〈x∗i ,Θ〉)]

〉k
(4.18)

Observe, the first term in (4.18) only consists of constants of the proof system. Since Θ̂ is the
minimizer of E

[
(〈x∗i ,Θ〉 − y∗i)

2
]
, the gradient condition on the samples (appearing in Equation

(4.2) of the indentifiability proof) implies this term is 0. Therefore, applying the substitution it
suffices to bound the second term.

To this end, we introduce the following auxiliary variables : for all i ∈ [n], let w′i = wi iff
the i-th sample is uncorrupted in Xε, i.e. xi = x∗i . Then, it is easy to see that

∑
iw
′
i > (1− 2ε)n.

296

Further, since A 2
w {(1− w′iwi)2 = (1− w′iwi)},

A 2
w

 1
n

∑
i∈[n]

(1− w′iwi)2 = 1
n

∑
i∈[n]

(1− w′iwi) 6 2ε

 (4.19)

The above equation bounds the uncorrupted points in Xε that are not indicated by w. Then, using
the substitution, along with the SoS Almost Triangle Inequality (Fact 2.2.8),

A 2k
Θ,w′


〈
v,E [x∗i (y∗i − 〈x∗i ,Θ〉)]

〉k
=
〈
v,E [x∗i (y∗i − 〈x∗i ,Θ〉 (w′i + 1− w′i))]

〉k

=
〈
v,E [w′ix∗i (y∗i − 〈x∗i ,Θ〉)] + E [(1− w′i)x∗i (y∗i − 〈x∗i ,Θ〉)]

〉k
6 2k

〈
v,E [w′ix∗i (y∗i − 〈x∗i ,Θ〉)]

〉k
+ 2k

〈
v,E [(1− w′i)x∗i (y∗i − 〈x∗i ,Θ〉)]

〉k
(4.20)

Consider the first term of the last inequality in (4.20). Observe, since w′ix
∗
i = wiw

′
ix
′
i and

similarly, w′iy
∗
i = wiw

′
iy
′
i,

A 4
Θ,w′

{
E [w′ix∗i (y∗i − 〈x∗i ,Θ〉)] = E [w′iwix′i (y′i − 〈x′i,Θ〉)]

}

For the sake of brevity, the subsequent statements hold for relevant SoS variables and have degree
O(k) proofs. Using the substitution,

A


〈
v,E [w′ix∗i (y∗i − 〈x∗i ,Θ〉)]

〉k
=
〈
v,E [w′iwix′i (y′i − 〈x′i,Θ〉)]

〉k

=
〈
v,E [x′i (y′i − 〈x′i,Θ〉)] + E [(1− w′iwi)x′i (y′i − 〈x′i,Θ〉)]

〉k
6 2k

〈
v,E [x′i (y′i − 〈x′i,Θ〉)]

〉k
+ 2k

〈
v,E [(1− w′iwi)x′i (y′i − 〈x′i,Θ〉)]

〉k
(4.21)

Observe, the first term in the last inequality above is identically 0, since we enforce the gradient

297

condition on the SoS variables x′, y′ and Θ. We can then rewrite the second term using linearity
of expectation, followed by applying SoS Hölder’s Inequality (Fact 3.2.20) combined with A 2

w

{(1− w′iwi)2 = 1− w′iwi} to get

A


〈
v,E [(1− w′iwi)x′i (y′i − 〈x′i,Θ〉)]

〉k
= E [〈v, (1− w′i)wix′i (y′i − 〈x′i,Θ〉)〉]

k

= E [(1− w′iwi) 〈v, x′i〉 (y′i − 〈x′i,Θ〉)]
k

6 E [(1− w′iwi)]
k−1 E

[
〈v, x′i〉

k (y′i − 〈x′i,Θ〉)
k
]

6 (2ε)k−1 E
[
〈v, x′i〉

k (y′i − 〈x′i,Θ〉)
k
]

(4.22)

where the last inequality follows from Equation (4.19). Next, we use the certifiable negatively
correlated moments constraint with the substitution,

A
{
E
[
〈v, x′i〉

k (y′i − 〈x′i,Θ〉)
k
]
6 O

(
λkk
)
E
[
〈v, x′i〉

2] k2 E [(y′i − 〈x′i,Θ〉)2] k2} (4.23)

For brevity, let σ = E
[
(y′i − 〈x′i,Θ〉)

2
]
. Using the substitution, plugging Equation (4.23) back

into (4.22), we get

A


〈
v,E [(1− w′i)x′i (y′i − 〈x′i,Θ〉)]

〉k
6 (2ε)k−1λkk σ

k/2
〈
v,E

[
x′i(x′i)>

]
v
〉k/2 (4.24)

Recall, we have now bounded the first term of the last inequality in (4.20). Therefore, it remains
to bound the second term of the last inequality in (4.20). Using the substitution, we have

A


〈
v,E [(1− w′i)x∗i (y∗i − 〈x∗i ,Θ〉)]

〉k
=
〈
v,E

[
(1− w′i)x∗i

(
y∗i −

〈
x∗i ,Θ− Θ̂ + Θ̂

〉)]〉k

6 2k
〈
v,E

[
(1− w′i)x∗i

(
y∗i −

〈
x∗i , Θ̂

〉)]〉k
+ 2k

〈
v,E

[
(1− w′i)x∗i

(〈
x∗i ,Θ− Θ̂

〉)]〉k
(4.25)

We again handle each term separately. Observe, the first term when decoupled is a statement

298

about the uncorrupted samples. Therefore, using the SoS Hölder’s Inequality (Fact 3.2.20),

A


〈
v,E

[
(1− w′i)x∗i

(
y∗i −

〈
x∗i , Θ̂

〉)]〉k
= E

[
(1− w′i)

〈
v, x∗i

(
y∗i −

〈
x∗i , Θ̂

〉)〉]k
6 E [(1− w′i)]

k−1 E
[〈
v, x∗i

(
y∗i −

〈
x∗i , Θ̂

〉)〉k]

6 (2ε)k−1 E
[
〈v, x∗i 〉

k
(
y∗i −

〈
x∗i , Θ̂

〉)k]
(4.26)

Observe, the uncorrupted samples have negatively correlated moments, and thus

E
[
〈v, x∗i 〉

k
(
y∗i −

〈
x∗i , Θ̂

〉)k]
6 O

(
λkk
)
E
[
〈v, x∗i 〉

2
]k/2

E
[(
y∗i −

〈
x∗i , Θ̂

〉)2
]k/2

Then, by the substitution, we can bound (4.26) as follows:

A


〈
v,E

[
(1− w′i)x∗i

(
y∗i −

〈
x∗i , Θ̂

〉)]〉k
6 (2ε)k−1λkk E

[(
y∗i −

〈
x∗i , Θ̂

〉)2
]k/2 〈

v, Σ̂v
〉k/2
(4.27)

In order to bound the second term in (4.25), we use the SoS Hölder’s Inequality,

A


〈
v,E

[
(1− w′i)x∗i

(〈
x∗i ,Θ− Θ̂

〉)]〉k
= E

[
(1− w′i)k−2

〈
v, x∗i

(〈
x∗i ,Θ− Θ̂

〉)〉]

6 E [1− w′i]
k−2 E

[(
v>x∗i (x∗i)>(Θ− Θ̂)

) k
2
]2

6 (2ε)k−2 E
[(
v>x∗i (x∗i)>(Θ− Θ̂)

) k
2
]2


(4.28)

Combining the bounds obtained in (4.27) and (4.28), we can restate Equation (4.25) as follows

A


〈
v,E [(1− w′i)x∗i (y∗i − 〈x∗i ,Θ〉)]

〉k
6 2k(2ε)k−1λkk E

[(
y∗i −

〈
x∗i , Θ̂

〉)2
]k/2 〈

v, Σ̂v
〉k/2

+ 2k(2ε)k−2 E
[(
v>x∗i (x∗i)>(Θ− Θ̂)

)k/2]2


(4.29)

299

Combining (4.29) with (4.24), we obtain an upper bound for the last inequality in Equation
(4.20). Therefore, using the substitution, we obtain

A


〈
v,E [x∗i (y∗i − 〈x∗i ,Θ〉)]

〉k
6 2k(2ε)k−1λkk σ

k/2
〈
v,E

[
x′i(x′i)>

]
v
〉k/2

+ 22k(2ε)k−2 E
[(
v>x∗i (x∗i)>(Θ− Θ̂)

) k
2
]2

+ 22k(2ε)k−1λkk E
[(
y∗i −

〈
x∗i , Θ̂

〉)2
]k/2 〈

v, Σ̂v
〉k/2

(4.30)

Recall, an upper bound on Equation (4.18) suffices to obtain an upper bound on
〈
v, Σ̂

(
Θ̂−Θ

)〉
as follows:

A

〈v, Σ̂ (Θ̂−Θ
)〉k

6 22k(2ε)k−1λkk σ
k/2
〈
v,E

[
x′i(x′i)>

]
v
〉k/2

+ 23k(2ε)k−2 E
[(
v>x∗i (x∗i)>(Θ− Θ̂)

) k
2
]2

+ 23k(2ε)k−1λkk E
[(
y∗i −

〈
x∗i , Θ̂

〉)2
]k/2 〈

v, Σ̂v
〉k/2

(4.31)

Consider the substitution v 7→
(
Θ̂−Θ

)
. Then,

〈
v, Σ̂

(
Θ̂−Θ

)〉k
=
∥∥∥Σ̂1/2

(
Θ̂−Θ

)∥∥∥2k

2〈
v,E

[
x′i(x′i)>

]
v
〉k/2

=
∥∥∥∥E [x′i(x′i)>]1/2 (Θ̂−Θ

)∥∥∥∥k
2

E
[(
v>x∗i (x∗i)>(Θ− Θ̂)

) k
2
]2

= E
[
〈x∗i , Θ̂−Θ〉k

]2
6 λ2k

k

∥∥∥Σ̂1/2
(
Θ̂−Θ

)∥∥∥2k

2〈
v, Σ̂v

〉k/2
=
∥∥∥Σ̂1/2

(
Θ̂−Θ

)∥∥∥k
2

300

Combining the above with (4.31), we conclude

A

∥∥∥Σ̂1/2
(
Θ̂−Θ

)∥∥∥2k

2
6 23k(2ε)k−1λkk σ

k/2
∥∥∥∥E [x′i(x′i)>]1/2 (Θ̂−Θ

)∥∥∥∥k
2

+ 23k(2ε)k−2λ2k
k

∥∥∥Σ̂1/2
(
Θ̂−Θ

)∥∥∥2k

2

+ 23k(2ε)k−1λkk E
[(
y∗i −

〈
x∗i , Θ̂

〉)2
]k/2 ∥∥∥Σ̂1/2

(
Θ̂−Θ

)∥∥∥k
2


(4.32)

Next, we relate the covariance of the samples indicated by w to the covariance on the uncor-
rupted points. Observe, a real world proof of this follows simply from Fact 4.2.3.

Lemma 4.4.4 (Bounding Sample Covariance). Consider the hypothesis of Theorem 101. Let

w, x′, y′ and Θ be feasible solutions for the polynomial constraint system A. Then, for δ 6

O
(
λkε

1−1/k
)
< 1,

A 2k
w,x′

{〈
v,E

[
x′i(x′i)>

]
v
〉k/2

6
(
1 +O

(
δk/2

)) 〈
v, Σ̂v

〉k/2}

Proof. Our proof closely follows Lemma 4.5 in [KS17]. For i ∈ [n], let zi be an indicator
variable such zi(x∗i − x′i) = 0. Observe, there exists an assignment to zi such that

∑
i∈[n] zi =

(1− ε)n, since at most εn points were corrupted. Further, z2
i = zi and 1

n
zi = ε. Then, using the

substitution,

A 2k
w,x′


〈
v,
(
E
[
x′i(x′i)>

]
− Σ̂

)
v
〉k

=
〈
v,E

[
(1 + zi − zi)

(
x′i(x′i)> − x∗i (x∗i)>

)]
v
〉k

= E
[
(1− zi)

〈
v,
(
x′i(x′i)> − x∗i (x∗i)>

)
, v
〉]k

6 εk−2 · E
[(
〈v, x′i〉

2 − 〈v, x∗i 〉
2
)k/2]2

6 εk−2 E
[
2k/2 〈v, x′i〉

k + 2k/2 〈v, x∗i 〉
k
]2

6 εk−22k
(
ckk E

[
〈v, x′i〉

2]k/2 + λkk E
[
〈v, x∗i 〉

2
]k/2)2


(4.33)

301

where the first inequality follows from applying the SoS Hölder’s Inequality, the second follows
from the SoS Almost Triangle Inequality and the third inequality follows from certifiable hyper-
contractivity of the SoS variables and the uncorrupted samples. Using the SoS Almost Triangle
Inequality again, we have

A
{(

ckk E
[
〈v, x′i〉

2]k/2 + λkk E
[
〈v, x∗i 〉

2
]k/2)2

6 λ2k
k 22

(〈
v,E

[
x′i(x′i)>v

]〉k
+
〈
v, Σ̂v

〉k)}
(4.34)

Combining Equations 4.33, 4.34, we obtain

A


〈
v,
(
E
[
x′i(x′i)>

]
− Σ̂

)
v
〉k

6 εk−2 λ2k
k 2k+2

〈
v,
(
E
[
x′i(x′i)>

]
+ Σ̂

)
v
〉k (4.35)

Using Lemma A.4 from [KS17], rearranging and setting k = k/2 yields the claim.

Lemma 4.4.5 (Rounding). Consider the hypothesis of Theorem 101. Let Θ̂ = arg minΘ
1
n

∑
i∈[n](y∗i−

〈x∗i ,Θ〉)2 be the empirical loss minimizer on the uncorrupted samples. Then,

∥∥∥Σ̂1/2
(
Θ̂− Ẽζ̃ [Θ]

)∥∥∥
2
6 O

(
ε1−

1
k λk

)(
Ẽζ̃
[
E
[
(y′i − 〈x′i,Θ〉)

2]k] 1
2k

+ E
[(
y∗i −

〈
x∗i , Θ̂

〉)2
] 1

2
)

Proof. Observe, combining Lemma 4.4.3 and Lemma 4.4.4, we obtain

A

∥∥∥Σ̂1/2
(
Θ̂−Θ

)∥∥∥2k

2
6 O

(
23kεk−1 λkk

1 + 23k(2ε)k−2λ2k
k

)∥∥∥Σ̂1/2
(
Θ̂−Θ

)∥∥∥k
2(

E
[
(y′i − 〈x′i,Θ〉)

2] k2 + E
[(
y∗i −

〈
x∗i , Θ̂

〉)2
] k

2
)

(4.36)

Using Cancellation within SoS (Fact 2.8.3) along with the SoS Almost Triangle Inequality, we
can conclude

A

∥∥∥Σ̂1/2
(
Θ̂−Θ

)∥∥∥2k

2
6 O

(
23k εk−1 λkk

)2

(
E
[
(y′i − 〈x′i,Θ〉)

2]k + E
[(
y∗i −

〈
x∗i , Θ̂

〉)2
]k)

(4.37)

Recall, ζ̃ is a degree-O(k) pseudo-expectation satisfying A. Therefore, it follows from Fact

302

3.2.17 along with Equation 4.36,

Ẽζ̃
[∥∥∥Σ̂ 1

2
(
Θ̂−Θ

)∥∥∥2k

2

]
6 O

(
24k εk−1 λkk

)2

(
Ẽζ̃
[
E
[
(y′i − 〈x′i,Θ〉)

2]k]+ E
[(
y∗i −

〈
x∗i , Θ̂

〉)2
]k) (4.38)

Further, using Fact 3.2.15, we have
∥∥∥Σ̂ 1

2
(
Θ̂− Ẽζ̃ Θ

)∥∥∥2k

2
6 Ẽζ̃

[∥∥∥Σ̂ 1
2
(
Θ̂−Θ

)∥∥∥2k

2

]
. Substituting

above and taking the (1/2k)-th root,

∥∥∥Σ̂ 1
2
(
Θ̂− Ẽζ̃ [Θ]

)∥∥∥
2
6 O

(
ε1−

1
k λk

)(
Ẽζ̃
[
E
[
(y′i − 〈x′i,Θ〉)

2]k]+ E
[(
y∗i −

〈
x∗i , Θ̂

〉)2
]k)1/2k

6 O
(
ε1−

1
k λk

)(
Ẽζ̃
[
E
[
(y′i − 〈x′i,Θ〉)

2]k] 1
2k

+ E
[(
y∗i −

〈
x∗i , Θ̂

〉)2
] 1

2
)

(4.39)

which concludes the proof.

Lemma 4.4.6 (Bounding Optimization and Generalization Error). Under the hypothesis of The-

orem 101,

1. Ẽζ̃
[
E
[
(y′i − 〈x′i,Θ〉)

2
]k] 1

2k
6 E

[
y∗i −

〈
x∗i , Θ̂

〉2
] 1

2
, and

2. For any ζ > 0, if n > n0, such that n0 = Ω
(
max{c4d/ζ

2, dO(k)}
)
, with probability at

least 1− 1/poly(d), E
[
y∗i −

〈
x∗i , Θ̂

〉2
] 1

2
6 (1 + ζ)Ex,y∼D

[
y − 〈x,Θ∗〉2

] 1
2 .

Proof. We exhibit a degree-O(k) pseudo-distribution ζ̂ such that it is supported on a point mass

and attains objective value at most E
[
y∗i −

〈
x∗i , Θ̂

〉2
] 1

2
. Since our objective function minimizes

over all degree-O(k) pseudo-distributions, the resulting objective value w.r.t. ζ̃ can only be better.
Let ζ̂ be the pseudo-distribution supported on (w, x∗, y∗, Θ̂) such that wi = 1 if xi = x∗i (i.e. the
i-th sample is not corrupted.) It follows from n > n0 and Lemma 4.4.2 that this assignment
satisfies the constraint system Aε,λk . Then, the objective value satisfies

Ẽζ̃
[
E
[
(y′i − 〈x′i,Θ〉)

2]k] 6 Ẽζ̂
[
E
[
(y′i − 〈x′i,Θ〉)

2]k] = E
[(
y∗i −

〈
x∗i , Θ̂

〉)2
]k

(4.40)

Taking (1/2k)-th roots yields the first claim.

To bound the second claim, let U be the uniform distribution on the uncorrupted samples,

303

x∗i , y
∗
i . Observe, by optimality of Θ̂ on the uncorrupted samples, errU(Θ̂) 6 errU(Θ∗). Consider

the random variable zi = (y∗i − 〈x∗i ,Θ∗〉)
2−Ex,y∼D

[
(y − 〈x,Θ∗〉)2

]
. Since E [zi] = 0, we apply

Chebyschev’s inequality to obtain

Pr

 1
n

∑
i∈[n]

zi > ζ

 = E [z2
1]

ζ2n
6

E
[
(y − 〈x,Θ〉)4

]
ζ2n

6 c4
errD(Θ∗)2

nζ2

Therefore, with probability at least 1− δ,

errU(Θ̂) 6
(

1 +
√
c4

nδ

)
errD(Θ∗)

Therefore, setting n = Ω(c4d/ζ
2), it follows that with probability 1− 1/poly(d), for any ζ > 0,

errU(Θ̂) 6 (1 + ζ) errD(Θ∗)

Taking square-roots concludes the proof.

Proof of Theorem 101. Given n > n0 samples, it follows from Lemma 4.4.2, that with probabil-
ity 1 − 1/poly(d), the constraint system Aε,λk is feasible. Let ξ1 be the event that the system is
feasible and condition on it. Then, it follows from Lemma 4.4.5 and Lemma 4.4.6, with proba-
bility 1− 1/poly(d),

∥∥∥Σ̂1/2
(
Ẽζ̃ [Θ]− Θ̂

)∥∥∥
2
6 O

(
λk ε

1−1/k
)

errD(Θ∗)1/2 (4.41)

Let ξ2 be the event that (4.41) holds and condition on it. It then follows from Fact 4.2.2, with
probability 1− 1/poly(d),

∥∥∥(Σ∗)1/2
(
Ẽζ̃ [Θ]− Θ̂

)∥∥∥
2
6 O

(
λk ε

1−1/k
)

errD(Θ∗)1/2 (4.42)

Let ξ2 be the event that (4.42) holds and condition on it. It remains to relate the hyperplanes Θ̂
and Θ∗. By reverse triangle inequality,

∥∥∥(Σ∗)1/2
(
Ẽζ̃ [Θ]−Θ∗

)∥∥∥
2
−
∥∥∥(Σ∗)1/2

(
Θ∗ − Θ̂

)∥∥∥
2
6
∥∥∥(Σ∗)1/2

(
Ẽζ̃ [Θ]− Θ̂

)∥∥∥
2

Using normal equations, we have Θ̂ = Σ̂−1 E [xiyi] and Θ∗ = (Σ∗)−1 E [xy]. Since Σ̂ � (1 +

304

0.01)Σ∗,

∥∥∥(Σ∗)1/2
(
Θ∗ − Θ̂

)∥∥∥
2

=
∥∥∥∥(Σ∗)1/2

(
Σ̂−1Σ̂Θ∗ − Σ̂−1 E [xiyi]

)∥∥∥∥
2

=
∥∥∥∥(Σ∗)1/2 Σ̂−1

(
E
[
xi
(
yi − x>i Θ∗

)])∥∥∥∥
2

6 1.01
∥∥∥∥E [(Σ∗)−1/2 xi

(
yi − x>i Θ∗

)]∥∥∥∥
2

(4.43)

By Jensen’s inequality

E

∥∥∥∥∥∥ 1
n

∑
i∈[n]

(Σ∗)−1/2 xi
(
yi − x>i Θ∗

)∥∥∥∥∥∥
2

 6

√√√√√√E


∥∥∥∥∥∥ 1
n

∑
i∈[n]

(Σ∗)−1/2 xi
(
yi − x>i Θ∗

)∥∥∥∥∥∥
2

2



Let zi = ∑
i∈[n] (Σ∗)−1/2 xi

(
yi − x>i Θ∗

)
. Let (∑i∈[n] zi)1 denote the first coordinate of the vec-

tor. We bound the expectation of this coordinate as follows:

E

(
∑
i∈[n]

zi)2
1

 = 1
n2 E

 ∑
i,i′∈[n]

(
(Σ∗)−1xixi′

)
1

(
yi − x>i Θ∗

) (
yi′ − x>i′Θ∗

)
= 1
n2 E

∑
i∈[n]

(
(Σ∗)−1x2

i

)
1

(
yi − x>i Θ∗

)2


= 1
n
E
[
(Σ∗)−1(x)2

1

(
y − x>Θ∗

)]
(4.44)

where the second equality follows from independence of the samples. Using negatively corre-
lated moments, we have

E
[
(Σ∗)−1(x)2

1

(
y − x>Θ∗

)2
]
6 E

[
(Σ∗)−1(x)2

1

]
E
[(
y − x>Θ∗

)2
]

Setting v = (Σ∗)1/2e1 and using Hypercontractivity of the covariates and the noise in the above
equation,

E
[
Σ−1(x)2

1

]
E
[(
y − x>Θ∗

)2
]
6 O

(
c2

2 η
2
2

)
errD(Θ∗) (4.45)

Summing over the coordinates, and combining (4.44), (4.45), we obtain

305

E

∥∥∥∥∥∥ 1
n

∑
i∈[n]

(Σ∗)−1/2 xi
(
yi − x>i Θ∗

)∥∥∥∥∥∥
2

 6 O(c2η2)
√
d errD(Θ∗)

n
(4.46)

Applying Chebyschev’s Inequality , with probability 1− δ

∥∥∥(Σ∗)1/2
(
Θ∗ − Eζ̃ [Θ]

)∥∥∥
2
6 O

λk ε1−1/k + c2 η2

√
d

δn

errD(Θ∗)1/2

Since n > n0, we can simplify the above bound and obtain the claim.

The running time of our algorithm is clearly dominated by computing a degree-O(k) pseudo-
distribution satisfying Aε,λk . Given that our constraint system consists of O(n) variables and
poly(n) constraints, it follows from Fact 3.2.13 that the pseudo-distribution ζ̃ can be computed
in nO(k) time.

4.5 Lower bounds

In this section, we present information-theoretic lower bounds on the rate of convergence of
parameter estimation and least-squares error for robust regression. Our constructions proceed
by demonstrating two distributions over regression instances that are ε-close in total variation
distance and the marginal distribution over the covariates is hypercontractive, yet the true hyper-
planes are f(ε)-far in scaled `2 distance.

4.5.1 True Linear Model

Consider the setting where there exists an optimal hyperplane Θ∗ that is used to generate the
data, with the addition of independent noise added to each sample, i.e.

y = 〈x,Θ∗〉+ ω,

where ω is independent of x. Further, we assume that covariates and noise are hypercontractive.
In this setting, Theorem 100 implies that we can recover a hyperplane close to Θ∗ at a rate
proportional to ε1−1/k. We show that this dependence is tight for k = 4. We note that independent
noise is a special case of the distribution having negatively correlated moments.

306

Theorem 103 (True Linear Model Lower Bound, Theorem 98 restated). For any ε > 0, there ex-

ist two distributionsD1,D2 overR2×R such that the marginal distribution overR2 has covari-

ance Σ and is (ck, k)-hypercontractive yet
∥∥∥Σ1/2(Θ1 −Θ2)

∥∥∥
2

= Ω
(√

ck σ ε
1−1/k

)
, where Θ1,Θ2

be the optimal hyperplanes for D1 and D2 respectively, σ = max(errD1(Θ1),errD2(Θ2)) <

1/ε1/k and the noise ω is uniform over [−σ, σ].

Proof. We construct a 2-dimensional instance where the marginal distribution over covariates is
identical for D1 and D2. The pdf is given as follows: for q ∈ {1, 2} on the first coordinate, x1,

Dq(x1) =

1/2, if x1 ∈ [−1, 1]

0 otherwise

and on the second coordinate, x2,

Dq(x2) =


ε/2, if x2 ∈ {−1/ε1/k, 1/ε1/k}
1−ε
2εσ if x2 ∈ [−εσ, εσ]

0 otherwise

Next, we set Θ1 = (1, 1), Θ2 = (1,−1) and ω to be uniform over [−σ, σ]. Therefore,

D1(y | (x1, x2)) = x1 + x2 + ω and

D2(y | (x1, x2)) = x1 − x2 + ω
(4.47)

Observe, E
[
xk1
]

=
∫ 1
−1 x

k/2 = 1/(k + 1) and E [x2
1] =

∫ 1
−1 x

2/2 = 1/3. Further,

E
[
xk2
]

= (1− ε)
εσ

(εσ)k+1

k + 1 + ε ·
(1
ε1/k

)k
= 1 + (1− ε)

(k + 1)(εσ)k

E
[
x2

2

]
= (1− ε)

3εσ (εσ)3 + ε ·
(1
ε1/k

)2
= ε1−2/k + 1− ε

3 (εσ)2

Observe, E
[
xk2
]
6 (1/(cεk/2−1)) E [x2

2]k/2, for a fixed constant c. Then, for any unit vector v,

E
[
〈x, v〉k

]
6 E

[
(2x1v1)k + (2x2v2)k

]
6 c

k/2
k

(
E
[
(x1v)2

]k/2
+ E

[
(x2v)2

]k/2)
6 c

k/2
k E

[
〈x, v〉2

]k/2
where ck/2k = 2k/cεk/2−1. Therefore, D1,D2 are (ck, k)-hypercontractive over R2. Next, we

307

compute the TV distance between the two distributions.

dTV (D1,D2) = 1
2

∫
R2×R

|D1(x1, x2, y)−D2(x1, x2, y)|

= 1
2

∫
R2
D1(x1, x2)

∫
R
|D1(y | (x1, x2))−D2(y | (x1, x2))|

(4.48)

where the last equality follows from the definition of conditional probability. It follows from
Equation (4.47) that D1(y | (x1, x2)) = U(x1 + x2 − σ, x1 + x2 + σ) and D2(y | (x1, x2)) =
U(x1− x2− σ, x1− x2 + σ). If |x2| > σ the intervals are disjoint and |D1(y | (x1, x2))−D2(y |
(x1, x2))| = 2. If |x2| < σ, then two symmetric non-intersecting regions have mass 2|x2|/2σ and
the intersection region contributes 0. Therefore, |D1(y | (x1, x2))−D2(y | (x1, x2))| = 2|x2|/σ
and (4.48) can be evaluated as

dTV(D1,D2) = 1
2

∫
R

2I|x2| > σ + 2|x2|
σ

I|x2| < σ

= Pr [|x2| > σ] + 1
σ

E
x2∼D1

[|x2|I|x2| < σ]

= 2ε

Finally, we lower bound the parameter distance. Since the coordinates are independent, Σ is a
diagonal matrix with Σ1,1 = E [x2

1] = 1/3 and Σ2,2 = E [x2
2] = ε1−2/k + (εσ)2/3. Further,

Θ1 −Θ2 = (0, 2). Thus,
∥∥∥Σ1/2 (Θ1 −Θ2)

∥∥∥
2

= 2Σ1/2
2,2 > 2ε1/2−1/k. For any σ < 1/ε1/k,

∥∥∥Σ1/2 (Θ1 −Θ2)
∥∥∥

2
> 2 ε1/2−1/k > 2 σ ε1/2

> 2 √ck σ ε1−1/k

which concludes the proof.

4.5.2 Agnostic Model

Next, consider the setting where we simply observe samples from (x, y) ∼ D, and our goal is
to return is to return the minimizer of the squared error, given by Θ∗ = E

[
xx>

]−1
E [xy]. Here,

the distribution of the noise is allowed to depend on the covariates arbitrarily. We further assume
the noise is hypercontractive and obtain a lower bound proportional to ε1−2/k for recovering an
estimator close to Θ∗. This matches the upper boundd obtained in Corollary 4.3.1.

308

Theorem 104 (Agnostic Model Lower Bound, Theorem 99 restated). For any ε > 0, there exist

two distributionsD1,D2 overR2×R such that the marginal distribution overR2 has covariance

Σ and is (ck, k)-hypercontractive yet
∥∥∥Σ1/2(Θ1 −Θ2)

∥∥∥
2

= Ω
(√

ck σ ε
1−2/k

)
, where Θ1,Θ2 be

the optimal hyperplanes for D1 and D2 respectively, σ = max(errD1(Θ1),errD2(Θ2)) < 1/ε1/k

and the noise is a function of the marginal distribution ofR2.

Proof. We provide a proof for the special case of k = 4. The same proof extends to general k.
We again construct a 2-dimensional instance where the marginal distribution over covariates is
identical for D1 and D2. The pdf is given as follows: for q ∈ {1, 2} on the first coordinate, x1,

Dq(x1) =

1/2, if x1 ∈ [−1, 1]

0 otherwise

and on the second coordinate, x2,

Dq(x2) =


ε/2, if x2 ∈ {−1/ε1/4, 1/ε1/4}
1−ε

2 if x2 ∈ [−1, 1]

0 otherwise

Observe, E [x4
1] = 1/5 and E [x2

1] = 1/3. Similarly, E [x4
2] = 1 + (1 − ε)/5 and E [x2

2] =
√
ε + (1 − ε)/3. Therefore, the marginal distribution over R2 is (c, 4)-hypercontractive for a

fixed constant c. Next, let

D1(y | (x1, x2)) = x2 and

D2(y | (x1, x2)) =

0 if |x2| = 1/ε1/4

x2 otherwise

(4.49)

Then,

dTV(D1,D2) = 1
2

∫
R2
D1(x1, x2)

∫
R
|D1(y | (x1, x2))−D2(y | (x1, x2))|

= 1
2

∫
R
|x2|I|x2| = 1/ε1/4

= ε

Since the coordinates over R2 are independent the covariance matrix Σ is diagonal, such that
Σ1,1 = E [x2

1] = 1/3 and Σ2,2 = E [x2
2] =

√
ε + (1 − ε)/3. We can then compute the optimal

309

hyperplanes using normal equations:

Θ1 = E
x∼D1

[
xx>

]−1
E

x,y∼D1
[xy] = Σ−1 E

x,y∼D1
[xy]

Observe, using (4.49),

E [x1y] =
∫
R
x1yD1(x1y) =

∫
R
x1yD1(x1)D1(y) = 0

since x1 and y are independent. Further,

E [x2y] =
∫
R
x2yD(x2, y) =

∫
R
x2

2D(x2) =
√
ε+ (1− ε)/3

Therefore, Θ1 = (0, 1). Similarly,

Θ2 = E
x∼D2

[
xx>

]−1
E

x,y∼D2
[xy] = Σ−1 E

x,y∼D2
[xy]

Further, E [x1y] = 0. However,

E [x2y] =
∫
R
x2yD2(x2, y) =

∫
R
x2

2I|x2| 6 1D2(x2) = 1− ε

Therefore, Θ2 =
(
0, 1−ε

1+
√
ε

)
. Then,

∥∥∥Σ1/2 (Θ1 −Θ2)
∥∥∥

2
=
√√

ε+ (1− ε)/3 ·
√
ε+ ε

1 +
√
ε

= Ω(
√
ε)

which concludes the proof.

4.6 Bounded Covariance Distributions

In the heavy-tailed setting, the minimal assumption is to consider a distribution over the covari-
ates with bounded covariance. In this setting, we show that robust estimators for linear regression
do not exist, even when the underlying linear model has no noise, i.e. the uncorrupted samples
are drawn as follows: yi = 〈Θ∗, xi〉.

Theorem 105 (Lower Bound for Bounded Covariance Distributions). For all ε > 0, there

exist two distributions D1,D2 over R × R corresponding to the linear model y = 〈Θ1, x〉
and y = 〈Θ2, x〉 respectively, such that the marginal distribution over R has variance σ and

310

dTV (D1,D2) 6 ε, yet |σ (Θ1 −Θ2)| = Ω(σ).

Our hard instance relies on the so called Student’s t-distribution, which has heavy tails when
the degrees of freedom are close to 2.

Definition 4.6.1 (Student’s t-distribution). Given ν > 1, Student’s t-distribution has the follow-

ing probability density function:

fν(t) =
Γ
(
ν+1

2

)
√
νπ Γ

(
ν
2

) (1 + t2

ν

)− ν+1
2

where Γ(z) =
∫∞

0 xz−1exdx, for z ∈ R, is the Gamma function.

We use the following facts about Student’s t-distribution:

Fact 4.6.2 (Mean and Variance). The mean of Student’s t-distribution is Ex∼fν [x] = 0 for ν > 1
and undefined otherwise. The variance of Student’s t-distribution is

E
x∼fν

[
x2
]

=


∞ if 1 < ν 6 2
ν
ν−2 if 2 < ν

undefined otherwise

The intuition behind our lower bound is to construct a regression instance where the co-
variates are non-zero only on an ε-measure support and are heavy tailed when non-zero. As
a consequence, the adversary can introduce a distinct valid regression instance by changing a
different ε-measure of the support. It is then information-theoretically impossible to distinguish
between the true and the planted models.

Proof of Theorem 105. We construct a 1-dimensional instance where the marginal distribution
over covariates is identical for D1 and D2. The pdf is given as follows: for q ∈ {1, 2} the
marginal distribution on the covariates is given as follows:

Dq(x) =

1− ε, if x = 0

ε · f2+ε(x) otherwise

311

The distribution of the labels is gives as follows:

D1 (y | x) = x and D2 (y | x) = −x

Next, we compute the total variation distance between D1 and D2. Recall,

dTV(D1,D2) = 1
2

∫
R×R
|D1(x, y)−D2(x, y)|

= 1
2

∫
R
D1(x)

∫
R
|D1(y | x)−D2(y | x)|

= 1
2

∫
R
|D1(y | x)−D2(y | x)| (Ix = 0 + Ix 6= 0)

= 1
2

∫
R
|2x|Ix 6= 0 6 ε

(4.50)

Observe, since the regression instances have no noise, we can obtain a perfect fit by setting
Θ1 = 1 and Θ2 = −1. Further, for q ∈ {1, 2},

E
x∼Dq

[x] = (1− ε) · 0 + ε · E
x∼f2+ε

[x] = 0 (4.51)

and

E
x∼Dq

[
x2
]

= (1− ε) · 0 + ε · E
x∼f2+ε

[
x2
]

= ε · 2 + ε

ε
(4.52)

Thus, ∣∣∣∣∣ E
x∼Dq

[
x2
]1/2

(Θ1 −Θ2)
∣∣∣∣∣ = (2 + ε)1/2 · 2 = 2σ (4.53)

which completes the proof. We note that the 4-th moment of f2+ε(t) is infinite and thus it is not
hypercontractive, even for k = 4.

4.7 Robust Identifiability for Arbitrary Noise

Proof of Corollary 4.3.1. Consider a maximal coupling ofD,D′ over (x, y)×(x′, y′), denoted by
G, such that the marginal of G (x, y) isD, the marginal on (x′, y′) isD′ and PG[I(x, y) = (x′, y′)] =
1− ε. Then, for all v,

〈v,ΣD(ΘD −ΘD′)〉 = E
G

[〈
v, xx>(ΘD −ΘD′) + xy − xy

〉]
= E
G

[〈v, x (〈x,ΘD〉 − y)〉] + E
G

[〈v, x (y − 〈x,ΘD′〉)〉]
(4.54)

312

Since ΘD is the minimizer for the least squares loss, we have the following gradient condition
: for all v ∈ Rd,

E
(x,y)∼D

[〈v, (〈x,ΘD〉 − y)x〉] = 0 (4.55)

Since G is a coupling, using the gradient condition (4.55) and using that 1 = I(x, y) = (x′, y′)
+I(x, y) 6= (x′, y′), we can rewrite equation (4.54) as

〈v,ΣD(ΘD −ΘD′)〉 = E
G

[〈v, x (y − 〈x,ΘD′〉)〉 I(x, y) = (x′, y′)]

+ E
G

[〈v, x (y − 〈x,ΘD′〉)〉 I(x, y) 6= (x′, y′)]

= E
G

[〈v, x′ (y′ − 〈x′,ΘD′〉)〉 I(x, y) = (x′, y′)]

+ E
G

[〈v, x (y − 〈x,ΘD′〉)〉 I(x, y) 6= (x′, y′)]

(4.56)

Consider the first term in the last equality above. Using the gradient condition for ΘD′ along with
Hölder’s Inequality, we have

∣∣∣∣EG[〈v, x′ (y′ − 〈x′,ΘD′〉)〉 I(x, y) = (x′, y′)
]∣∣∣∣

=
∣∣∣∣ ED′ [〈v, x′ (y′ − 〈x′,ΘD′〉)〉]− E

G
[〈v, x′ (y′ − 〈x′,ΘD′〉)〉 I(x, y) 6= (x′, y′)]

∣∣∣∣
=
∣∣∣∣EG [〈v, x′ (y′ − 〈x′,ΘD′〉)〉 I(x, y) 6= (x′, y′)]

∣∣∣∣
6
∣∣∣∣EG
[
I(x, y) 6= (x′, y′)k/(k−2)](k−2)/k

∣∣∣∣ · ∣∣∣∣ED′
[
〈v, x′ (y′ − 〈x′,ΘD′〉)〉k/2

]2/k∣∣∣∣
(4.57)

Observe, since G is a maximal coupling EG [I(x, y) 6= (x′, y′)](k−2)/k 6 ε1−2/k. Here, we no
longer have independence of the noise and the covariates, therefore using Cauchy-Schwarz

E
D′

[
〈v, x′〉k/2 · (y′ − 〈x′,ΘD′〉)k/2

]
6
(
E
D′

[
〈v, x′〉k

]
E
D′

[
(y′ − 〈x′,ΘD′〉)k

])1/2

By hypercontractivity of the covariates and the noise, we have

E
D′

[
〈v, x′〉k

]1/k
E
D′

[
(y′ − 〈x′,ΘD′〉)k

]1/k
6 O(ck ηk)

(
v>ΣD′v

)1/2
E

x′,y′∼D′

[
(y′ − 〈x′,ΘD′〉)2]1/2

313

Therefore, we can restate (4.57) as follows

∣∣∣∣EG [〈v, x′ (y′ − 〈x′,ΘD′〉)〉 I(x, y) = (x′, y′)]
∣∣∣∣ 6 O(ck ηk ε k−2

k

) (
v>ΣD′v

) 1
2

E
x′,y′∼D′

[
(y′ − 〈x′,ΘD′〉)2] 1

2
(4.58)

It remains to bound the second term in the last equality of equation (4.56), and we proceed as
follows :

E
G

[〈v, x (y − 〈x,ΘD′〉)〉 I(x, y) 6= (x′, y′)] = E
G

[〈
v, xx> (ΘD −ΘD′)

〉
I(x, y) 6= (x′, y′)

]
+ E
G

[〈v, x (y − 〈x,ΘD〉)〉 I(x, y) 6= (x′, y′)]

(4.59)

We bound the two terms above separately. Observe, applying Hölder’s Inequality to the first
term, we have

E
G

[〈
v, xx> (ΘD −ΘD′)

〉
I(x, y) 6= (x′, y′)

]
6 E
G

[I(x, y) 6= (x′, y′)]
k−2
k E
G

[〈
v, xx> (ΘD −ΘD′)

〉 k
2
] 2
k

6 ε
k−2
k E
G

[〈
v, xx> (ΘD −ΘD′)

〉 k
2
] 2
k

(4.60)

To bound the second term in equation 4.59, we again use Hölder’s Inequality followed by
Cauchy-Schwarz noise and covariates.

E
G

[〈v, x (y − 〈x,ΘD〉)〉 I(x, y) 6= (x′, y′)] 6 E
G

[I(x, y) 6= (x′, y′)]
k−1
k E
G

[
〈v, x (y − 〈x,ΘD〉)〉k

] 1
k

6 ε
k−2
k E

x∼D

[
〈v, x〉k/2

]2/k
E

x,y∼D

[
(y − 〈x,ΘD〉)k/2

]2/k
6 ε

k−2
k ck ηk

(
v>ΣDv

)1/2
E

x,y∼D

[
(y − 〈x,ΘD〉)2

]1/2
(4.61)

where the last inequality follows from hypercontractivity of the covariates and noise. Substituting

314

the upper bounds obtained in Equations (4.60) and (4.61) back in to (4.59),

E
G

[〈v, x (y − 〈x,ΘD′〉)〉 I(x, y) 6= (x′, y′)] 6 ε
k−2
k E
G

[〈
v, xx> (ΘD −ΘD′)

〉 k
2
] 2
k

+ ε
k−2
k ck ηk

(
v>ΣDv

)1/2
E

x,y∼D

[
(y − 〈x,ΘD〉)2

]1/2
Therefore, we can now upper bound both terms in Equation (4.56) as follows:

〈v,ΣD(ΘD −ΘD′)〉 6 O
(
ck ηk ε

k−2
k

) (
v>ΣD′v

)1/2
E

x′,y′∼D′

[
(y′ − 〈x′,ΘD′〉)2]1/2

+O
(
ε
k−2
k

)
E
G

[〈
v, xx> (ΘD −ΘD′)

〉k/2]2/k

+O
(
ε
k−2
k ck ηk

) (
v>ΣDv

)1/2
E

x,y∼D

[
(y − 〈x,ΘD〉)2

]1/2
(4.62)

Recall, since the marginals ofD andD′ onRd are (ck, k)-hypercontractive and ‖D − D′‖TV 6 ε,
it follows from Fact 4.2.3 that

(1− 0.1) ΣD′ � ΣD � (1 + 0.1) ΣD′ (4.63)

when ε 6 O
(
(1/ckk)k/(k−2)

)
. Now, consider the substitution v = ΘD −ΘD′ . Observe,

E
G

[〈
v, xx> (ΘD −ΘD′)

〉k/2]2/k
= E
D

[
〈x, (ΘD −ΘD′)〉k

]2/k
6 c2

k

∥∥∥Σ1/2
D (ΘD −ΘD′)

∥∥∥2

2

(4.64)

Then, using the bounds in (4.63) and (4.64) along with v = ΘD−ΘD′ in Equation 4.62, we have

(
1−O

(
ε
k−2
k c2

k

)) ∥∥∥Σ1/2
D (ΘD −ΘD′)

∥∥∥2

2
6 O

(
ck ηk ε

k−2
k

) ∥∥∥Σ1/2
D (ΘD −ΘD′)

∥∥∥
2(

E
x′,y′∼D′

[
(y′ − 〈x′,ΘD′〉)2] 1

2 + E
x,y∼D

[
(y − 〈x,ΘD〉)2

] 1
2

)
(4.65)

Dividing out (4.65) by
(
1−O

(
ε
k−2
k c2

k

)) ∥∥∥Σ1/2
D (ΘD −ΘD′)

∥∥∥2

2
and observing that O

(
ε
k−2
k c2

k

)
is

upper bounded by a fixed constant less than 1 yields the parameter recovery bound.

Given the parameter recovery result above, we bound the least-squares loss between the two

315

hyperplanes on D as follows:

∣∣∣errD(ΘD)− errD(ΘD′)
∣∣∣ =

∣∣∣∣ E
(x,y)∼D

[(
y − x>ΘD

)2
−
(
y − x>ΘD′ + x>ΘD − x>ΘD

)2
] ∣∣∣∣

=
∣∣∣∣ E

(x,y)∼D

[
〈x, (ΘD −ΘD′)〉2 + 2(y − x>ΘD)x>(ΘD −ΘD′)

] ∣∣∣∣
6 O

(
c2
k η

2
k ε

2−4/k
)(

E
x′,y′∼D′

[
(y′ − 〈x′,ΘD′〉)2]+ E

x,y∼D

[
(y − 〈x,ΘD〉)2

])
(4.66)

where the last inequality follows from observing E
[〈

ΘD −ΘD′ , x(y − x>ΘD)
〉]

= 0 (gradient
condition) and squaring the parameter recovery bound.

4.8 Efficient Estimator for Arbitrary Noise

In this section, we provide a proof of the key SoS lemma required to obtain a polynomial time
estimator. The remainder of the proof, including the feasibility of the constraints and rounding
is identical to the one presented in Section 4.4.

Lemma 4.8.1 (Robust Identifiability in SoS for Arbitrary Noise). Consider the hypothesis of

Theorem 101. Let w, x′, y′ and Θ be feasible solutions for the polynomial constraint system A.

Let Θ̂ = arg minΘ
1
n

∑
i∈[n](y∗i − 〈x∗i ,Θ〉)2 be the empirical loss minimizer on the uncorrupted

samples and let Σ̂ = E
[
x∗i (x∗i)>

]
be the covariance of the uncorrupted samples. Then,

A 4k
w,x′,y′,Θ

∥∥∥Σ̂1/2
(
Θ̂−Θ

)∥∥∥2k

2
6 23k(2ε)k−2ckk η

k
k σ

k/2
∥∥∥∥E [x′i(x′i)>]1/2 (Θ̂−Θ

)∥∥∥∥k
2

+ 23k(2ε)k−2c2k
k

∥∥∥Σ̂1/2
(
Θ̂−Θ

)∥∥∥2k

2

+ 23k(2ε)k−2ckk η
k
k E

[(
y∗i −

〈
x∗i , Θ̂

〉)2
]k/2 ∥∥∥Σ̂1/2

(
Θ̂−Θ

)∥∥∥k
2



Proof. Consider the empirical covariance of the uncorrupted set given by Σ̂ = E
[
x∗i (x∗i)>

]
.

316

Then, using the substitution, along with Fact 2.2.8

2k
Θ

〈v, Σ̂ (Θ̂−Θ
)〉k

=
〈
v,E

[
x∗i (x∗i)>

(
Θ̂−Θ

)
+ x∗i y

∗
i − x∗i y∗i

]〉k

=
〈
v,E

[
x∗i
(〈
x∗i , Θ̂

〉
− y∗i

)]
+ E [x∗i (y∗i − 〈x∗i ,Θ〉)]

〉k
6 2k

〈
v,E

[
x∗i
(〈
x∗i , Θ̂

〉
− y∗i

)]〉k
+ 2k

〈
v,E [x∗i (y∗i − 〈x∗i ,Θ〉)]

〉k
(4.67)

Since Θ̂ is the minimizer of E
[
(〈x∗i ,Θ〉 − y∗i)

2
]
, the gradient condition (appearing in Equation

(4.55) of the indentifiability proof) implies this term is 0. Therefore, it suffices to bound the
second term.

For all i ∈ [n], let w′i = wi iff the i-th sample is uncorrupted in Xε, i.e. xi = x∗i . Then, it is
easy to see that

∑
iw
′
i > (1− 2ε)n. Further, since A 2

w {(1− w′iwi)2 = (1− w′iwi)},

A 2
w

 1
n

∑
i∈[n]

(1− w′iwi)2 = 1
n

∑
i∈[n]

(1− w′iwi) 6 2ε

 (4.68)

The above equation bounds the uncorrupted points in Xε that are not indicated by w. Then, using
the substitution, along with the SoS Almost Triangle Inequality (Fact 2.2.8),

A 2k
Θ,w′


〈
v,E [x∗i (y∗i − 〈x∗i ,Θ〉)]

〉k
=
〈
v,E [x∗i (y∗i − 〈x∗i ,Θ〉 (w′i + 1− w′i))]

〉k

=
〈
v,E [w′ix∗i (y∗i − 〈x∗i ,Θ〉)] + E [(1− w′i)x∗i (y∗i − 〈x∗i ,Θ〉)]

〉k
6 2k

〈
v,E [w′ix∗i (y∗i − 〈x∗i ,Θ〉)]

〉k
+ 2k

〈
v,E [(1− w′i)x∗i (y∗i − 〈x∗i ,Θ〉)]

〉k
(4.69)

Consider the first term of the last inequality in (4.69). Observe, since w′ix
∗
i = wiw

′
ix
′
i and

317

similarly, w′iy
∗
i = wiw

′
iy
′
i,

A 4
Θ,w′

{
E [w′ix∗i (y∗i − 〈x∗i ,Θ〉)] = E [w′iwix′i (y′i − 〈x′i,Θ〉)]

}

For the sake of brevity, the subsequent statements hold for relevant SoS variables and have degree
O(k) proofs. Using the substitution,

A


〈
v,E [w′ix∗i (y∗i − 〈x∗i ,Θ〉)]

〉k
=
〈
v,E [w′iwix′i (y′i − 〈x′i,Θ〉)]

〉k

=
〈
v,E [x′i (y′i − 〈x′i,Θ〉)] + E [(1− w′iwi)x′i (y′i − 〈x′i,Θ〉)]

〉k
6 2k

〈
v,E [x′i (y′i − 〈x′i,Θ〉)]

〉k
+ 2k

〈
v,E [(1− w′iwi)x′i (y′i − 〈x′i,Θ〉)]

〉k
(4.70)

Observe, the first term in the last inequality above is identically 0, since we enforce the gradient
condition on the SoS variables x′, y′ and Θ. We can then rewrite the second term using linearity
of expectation, followed by applying SoS Hölder’s Inequality (Fact 3.2.20) combined with A 2

w

{(1− w′iwi)2 = 1− w′iwi} to get

A


〈
v,E [(1− w′iwi)x′i (y′i − 〈x′i,Θ〉)]

〉k
= E [〈v, (1− w′i)wix′i (y′i − 〈x′i,Θ〉)〉]

k

= E [(1− w′iwi) 〈v, x′i〉 (y′i − 〈x′i,Θ〉)]
k

6 E [(1− w′iwi)]
k−2 E

[
〈v, x′i〉

k/2 (y′i − 〈x′i,Θ〉)
k/2]

6 (2ε)k−2 E
[
〈v, x′i〉

k
]
E
[
(y′i − 〈x′i,Θ〉)

k
]

(4.71)

where the last inequality follows from (4.68) and the SoS Cauchy Schwarz Inequality. Using the
certifiable-hypercontractivity of the covariates,

A 2k
w,x′

{
E
[
〈v, x′i〉

k
]
6 ckk E

[
〈v, x′i〉

2]k/2 = ckk

〈
v,E

[
x′i(x′i)>

]
v
〉k/2}

(4.72)

318

Further, using certifiable hypercontractivity of the noise,

A
{
E
[
(y′i − 〈wix′i,Θ〉)

k
]
6 ηkk E

[
(y′i − 〈x′i,Θ〉)2)

]k/2}
(4.73)

Recall, σ = E [(y′i − 〈x′i,Θ〉)2)] Combining the upper bounds obtained in (4.72) and (4.73), and
plugging this back into (4.71), we get

A


〈
v,E [(1− w′i)x′i (y′i − 〈x′i,Θ〉)]

〉k
6 (2ε)k−2ckk η

k
k σ

k/2
〈
v,E

[
x′i(x′i)>

]
v
〉k/2 (4.74)

Recall, we have now bounded the first term of the last inequality in (4.69). Therefore, it remains
to bound the second term of the last inequality in (4.69). Using the substitution, we have

A


〈
v,E [(1− w′i)x∗i (y∗i − 〈x∗i ,Θ〉)]

〉k
=
〈
v,E

[
(1− w′i)x∗i

(
y∗i −

〈
x∗i ,Θ− Θ̂ + Θ̂

〉)]〉k

6 2k
〈
v,E

[
(1− w′i)x∗i

(
y∗i −

〈
x∗i , Θ̂

〉)]〉k
+ 2k

〈
v,E

[
(1− w′i)x∗i

(〈
x∗i ,Θ− Θ̂

〉)]〉k
(4.75)

We again handle each term separately. Observe, the first term when decoupled is a statement
about the uncorrupted samples. Therefore, using the SoS Hölder’s Inequality (Fact 3.2.20),

A


〈
v,E

[
(1− w′i)x∗i

(
y∗i −

〈
x∗i , Θ̂

〉)]〉k
= E

[
(1− w′i)

〈
v, x∗i

(
y∗i −

〈
x∗i , Θ̂

〉)〉]k
6 E [(1− w′i)]

k−2 E
[〈
v, x∗i

(
y∗i −

〈
x∗i , Θ̂

〉)〉k/2]

6 (2ε)k−2 E
[
〈v, x∗i 〉

k
]
E
[(
y∗i −

〈
x∗i , Θ̂

〉)k]
(4.76)

Using certifiable hypercontractivity of the x∗i s,

E
[
〈v, x∗i 〉

k
]
6 ckk E

[
〈v, x∗i 〉

2
]k/2

= ckk
〈
v, Σ̂v

〉k/2

319

where Σ̂ = E
[
x∗i (x∗i)>

]
and similarly using hypercontractivity of the noise,

E
[(
y∗i −

〈
x∗i , Θ̂

〉)k]
6 ηkk E

[(
y∗i −

〈
x∗i , Θ̂

〉)2
]k/2

Then, by the substitution, we can bound (4.76) as follows:

A


〈
v,E

[
(1− w′i)x∗i

(
y∗i −

〈
x∗i , Θ̂

〉)]〉k
6 (2ε)k−1ckk η

k
k E

[(
y∗i −

〈
x∗i , Θ̂

〉)2
]k/2 〈

v, Σ̂v
〉k/2

(4.77)
In order to bound the second term in (4.75), we use the SoS Hölder’s Inequality,

A


〈
v,E

[
(1− w′i)x∗i

(〈
x∗i ,Θ− Θ̂

〉)]〉k
= E

[
(1− w′i)k−2

〈
v, x∗i

(〈
x∗i ,Θ− Θ̂

〉)〉]

6 E [1− w′i]
k−2 E

[(
v>x∗i (x∗i)>(Θ− Θ̂)

) k
2
]2

6 (2ε)k−2 E
[(
v>x∗i (x∗i)>(Θ− Θ̂)

) k
2
]2


(4.78)

Combining the bounds obtained in (4.77) and (4.78), we can restate Equation (4.75) as follows

A


〈
v,E [(1− w′i)x∗i (y∗i − 〈x∗i ,Θ〉)]

〉k
6 2k(2ε)k−1ckk η

k
k E

[(
y∗i −

〈
x∗i , Θ̂

〉)2
]k/2 〈

v, Σ̂v
〉k/2

+ 2k(2ε)k−2 E
[(
v>x∗i (x∗i)>(Θ− Θ̂)

) k
2
]2


(4.79)

Combining (4.79) with (4.74), we obtain an upper bound for the last inequality in Equation

320

(4.69). Therefore, using the substitution, we obtain

A


〈
v,E [x∗i (y∗i − 〈x∗i ,Θ〉)]

〉k
6 2k(2ε)k−1ckk η

k
k σ

k/2
〈
v,E

[
x′i(x′i)>

]
v
〉k/2

+ 22k(2ε)k−2 E
[(
v>x∗i (x∗i)>(Θ− Θ̂)

) k
2
]2

+ 22k(2ε)k−1ckk η
k
k E

[(
y∗i −

〈
x∗i , Θ̂

〉)2
]k/2 〈

v, Σ̂v
〉k/2

(4.80)

The remaining proof is identical to Lemma 4.4.3.

4.9 Proof of Lemma 4.2.4

Lemma 4.9.1 (Löwner Ordering for Hypercontractive Samples (restated)). Let D be a (ck, k)-

hypercontractive distribution with covariance Σ and and let U be the uniform distribution over

n samples. Then, with probability 1− δ,

∥∥∥Σ−1/2Σ̂Σ−1/2 − I
∥∥∥
F
6

C4d
2

√
n
√
δ
,

where Σ̂ = 1
n

∑
i∈[n] xix

>
i .

Proof. Let x̃i = Σ−1/2xi and observe that 1
n

∑
i x̃ix̃i

T = Σ−1/2Σ̂Σ−1/2. Moreover, we know that

E
[
x̃x̃T

]
= I . Let zj,k be the (j, k) entry of Σ−1/2Σ̂Σ−1/2 − I given by,

zj,k = 1
n

∑
i∈[n]

x̃i(j)x̃i(k)− E [x̃(i)x̃(k)]

Using Chebyshev’s inequality, we get that with probability at least 1− δ,

|zjk| 6
E [x̃(j)2x̃(k)2]
√
n
√
δ

6
Ex̃(j)4 [+]E [x̃(k)4]

2
√
n
√
δ

,

where the inequality follows from AM-GM inequality. To bound E [x̃(j)4], we use hypercon-
tractivity.

E
x̃(j)4

[=]E
[
(vTx)4

]
6 C4 E

[
(vTx)2

]2
,

321

where v = Σ−1/2ej . Plugging this above, we get that E [x̃(j)4] 6 C4. which in turn implies that
with probability at least 1− δ,

|zjk| 6
C4√
nδ
.

Taking a union bound over d2 entries of Σ−1/2Σ̂Σ−1/2 − I , we get that with probability at least
1− δ, ∥∥∥Σ−1/2Σ̂Σ−1/2 − I

∥∥∥
F
6

C4d
2

√
n
√
δ

322

Chapter 5

List-Decodable Subspace Recovery

5.1 Introduction

In this chapter, we focus on the harsher list-decodable estimation model where the fraction of
inliers α is� 1/2 - i.e.,a majority of the input sample are outliers. First considered in [BBV08]
in the context of clustering, this was proposed as a model for untrusted data in a recent influential
recent work of Charikar, Steinhardt and Valiant [CSV17]. Since unique recovery is information-
theoretically impossible in this setting, the goal is to recover a small (ideally O(1/α)) size list
of parameters one of which is guaranteed to be close to those of the inlier distribution. A recent
series of works have resulted in a high-level blueprint based on the sum-of-squares method for
list-decodable estimation yielding algorithms for list-decodable mean estimation [DKS18] and
linear regression [KKK19, RY20a].

We extend this line of work by giving the first efficient algorithm for list-decodable subspace

recovery. In this setting, we are given data with α fraction inliers generated i.i.d. according
N (0,Σ∗)1 on Rd with a (possibly low-rank, say r < d) covariance matrix Σ∗ and rest being
arbitrary outliers. We give an algorithm that succeeds in returning a list of size O(1/α) that
contains a Π̂ satisfying

∥∥∥Π̂− Π∗
∥∥∥2

F
6 log(rκ)Õ(κ4/α2)) where Π∗ is the projector to the range

space of Σ∗ and κ is the ratio of the largest to smallest non-zero eigenvalues of Σ∗. Our Frobenius
norm recovery guarantees are the strongest possible and imply guarantees in other well-studied
norms such as spectral norm or principle angle distance between subspaces. Our algorithm runs
in time nlog (rκ)Õ(1/α4) and requires n = dlog (rκ)Õ(1/α2) samples.

1Our techniques naturally extend to distributions with non-zero means but we will omit this generalization to not
complicate the notation.

323

Our results work more generally for any distributionD that satisfies certifiable anti-concentration

and mild concentration properties (concentration of PSD forms). Certifiable anti-concentration
was first defined and studied in recent works on list-decodable regression [RY20a, KKK19].
Gaussian distribution and uniform distribution on sphere (restricted to a subspace) are natural ex-
amples of distributions satisfying this property. We note that Karmalkar et. al. [KKK19] proved
that anti-concentration of D is necessary for list-decodable regression (and thus also subspace
recovery) to be information theoretically possible.

Why List-Decodable Estimation? List-decodable estimation is a strict generalization of re-
lated and well-studied clustering problems (for e.g., list-decodable mean estimation generalizes
clustering spherical mixture models, list-decodable regression generalizes mixed linear regres-
sion). In our case, list-decodable subspace recovery generalizes the well-studied problem of
subspace clustering where given a mixtur of k distributions with covariances non-zero in differ-
ent subspaces, the goal is to recover the underlying k subspaces [AGGR98, CFZ99, GNC99,
PJAM02, AY00]. Algorithms in this model thus naturally yield robust algorithms for the related
clustering formulations. In contrast to known results, such algorithms allow “partial recovery”
(e.g. for example recovery k− 1 or fewer clusters) even in the presence of outliers that garble up
one or more clusters completely.

Another important implication of list-decodable estimation is algorithms for unique recov-

ery that work all the way down to the information-theoretic threshold (i.e. fraction of inliers
α > 1/2). Thus, specifically in our case, we obtain an algorithm for (uniquely) estimating the
subspace spanned by the inlier distribution D whenever the fraction of inliers satisfy α > 1/2
- the information theoretically minimum possible value. We note that such a result will follow
from outlier-robust covariance estimation algorithms [LRV16, DKK+19] whenever α is suffi-
ciently close to 1. While prior works do not specify precise constants, all known works appear
to require α at least > 0.75.

5.1.1 Our Results

We are ready to formally state our results. Our results apply to input samples generated according
to the following model:

Model 106 (Robust Subspace Recovery with Large Outliers). For 0 6 α < 1 and r < d, let
µ ∈ Rd, Σ∗ ∈ Rd×d be a rank r PSD matrix and let D be a distribution on Rd with mean µ∗
and covariance Σ∗. Let SubD(α,Σ∗) denote the following probabilistic process to generate n

324

samples, x1, x2 . . . xn with αn inliers I and (1− α)n outliers O:

1. Construct I by choosing αn i.i.d. samples from D.

2. Construct O by choosing the remaining (1 − α)n points arbitrarily and potentially adver-
sarially w.r.t. the inliers.

Remark 107. We will mainly focus on the case when µ∗ = 0. The case of non-zero µ∗ can be
easily reduced to the case of µ∗ = 0 by modifying samples by randomly pairing them up and
subtracting off samples in each pair (this changes the fraction of inliers from α to α2).

Remark 108. Our results naturally extend to the harsher strong contamination model (where
one first chooses an i.i.d. sample from D and then corrupts an arbitrary (1−α) fraction of them)
with no change in the algorithm.

An η-approximate list-decodable subspace recovery algorithm takes input a sample S drawn
according to SubD(α,Σ∗) and outputs a list L of absolute constant (depending only on α) such
that there exists a Π ∈ L satisfying ‖Π−Π∗‖2

F 6 η, where Π∗ is the projector to the range space
of Σ∗.

Before stating our results we observe that since list-decodable subspace recovery strictly
generalizes list-decodable regression (by viewing samples as d + 1 dimensional points with a
rank d covariance), we can import the result of Karamalkar, Klivans and Kothari [KKK19] that
shows the information-theoretic necessity of anti-concentration of the distribution D.

Fact 5.1.1 (Theorem 6.1, Page 19 in [KKK19]). There exists a distribution D that (α + ε)-

anti-concentrated for every ε > 0 but there is no algorithm for α/2-approximate list-decodable

subspace recovery for SubD(α,Σ∗) that outputs a list of size < d.

The distributionD is simply the uniform distribution on an affine subcube of dimension n−1
of {0, 1}n (and more generally, q-ary discrete cube).

Our first main result shows that given any arbitrarily small η > 0, we can recover a poly-
nomial (in the rank r) size list of subspaces that contains a Π̂ satisfying

∥∥∥Π̂− Π∗
∥∥∥2

F
6 η. The

surprising aspect of this result is that we can get an error that can be made arbitrarily small (in-
dependent of the rank r or the dimension d) at the cost of increasing the list size from a fixed
constant to polynomially large in the rank r of Σ∗. This result crucially relies on our new expo-
nential error reduction method (see Lemma 5.4.3).

325

Theorem 109 (Large-List Subspace Recovery). Let SubD(α,Σ∗) be such that Σ∗ has rank r and

condition number κ, and D is k-certifiably (c, δ)-anti-concentrated. For any η > 0 and t ∈ N,

there exists an algorithm that takes input n > n0 = (kd log(d))O(k) samples from SubD(α,Σ∗)
and outputs a list of matrices, L, such that |L| = O(1/αt) and with probability at least 0.99 over

the draw of the sample and the randomness of the algorithm, there is a matrix Π̂ ∈ L satisfying

‖Π̂− Π∗‖2
F 6 O

(
r1/k(2rκ)1/2(δ/α)t/k

)
. The algorithm has time complexity at most nO(t+k).

Remark 110. We note that our algorithm obtains a trade-off between list size, accuracy and
running time as setting t = 1 results in a polynomial time algorithm with list size O(1/α) and
accuracyO(r1/k(2rκ)1/2(δ/α)), which is comparable to the result obtained by Raghavendra-Yau
[RY20b].

Remark 111. In general our algorithm for Large-List Subspace Recovery can obtain arbitrarily
high accuracy at the expense of running time and list size. Formally, for any η > 0, we obtain
‖Π̂−Π∗‖2

F 6 η, with list sizeO(1/αk log(rκ/η)) and runnning time nO(k2 log(rκ/η)/ log(δ/α)). Further,
for η < 0.1, we can ensure that the resulting list only contains projection matrices.

Remark 112. We note that our large-list rounding algorithm only requires the inliers to be cer-
tifiably anti-concentrated. Our subsequent results require subgaussianity as well.

We use a new pruning procedure to get the optimal list size ofO(1/α) at the cost of increasing
the Frobenius error to Õ(κ4 log(r)/α2).

Theorem 113 (List-Decodable Subspace Recovery). Let SubD(α,Σ∗) be such that Σ∗ has rank

r and condition number κ, and D be k-certifiably (α/2)-anti concentrated as well as sub-

gaussian with covariance Σ∗. Then, there exists an algorithm that takes as input n = n0 >

(d log(d)/α2)Õ(k) samples from SubD(α,Σ∗) and outputs a list L of O(1/α) projection matrices

such that with probability at least 0.99 over the draw of the sample and the randomness of the

algorithm, there is a Π̂ ∈ L satisfying ‖Π̂ − Π∗‖2
F 6 Õ(κ4 log(r)/α2). The algorithm has time

complexity at most nÕ(log(rκ)k2).

Remark 114. Our algorithm can also achieve a smooth trade-off between list-size and accuracy.
For any γ > 1, we can output a list of size O(1/αγ) such that it contains a projection matrix
satisfying ‖Π̂−Π∗‖2

F 6 Õ(κ4 log(r)/α2γ) by obtaining 1/αγ fresh samples from SubD(α,Σ∗).

Remark 115. For Gaussian distributions with mean 0 and covariance Σ∗, it suffices to set k =
Õ(1/α2) (see Theorem 121 for details).

326

As discussed above, our results immediately extends by means of a simple reduction to the
case when µ∗ is non-zero.

Corollary 5.1.2 (Large-List Affine Recovery). Let SubD(α,Σ∗) be such that Σ∗ has rank r and

condition number κ, and D is k-certifiably (α/2)-anti concentrated as well as subgaussian with

covariance Σ∗. Then, there exists an algorithm that takes as input n = n0 > (d log(d)/α4)Õ(k)

samples from SubD(α,Σ∗) and outputs a list L of O(1/α2) projection matrices such that with

probability at least 0.99 over the draw of the sample and the randomness of the algorithm, there

is a Π̂ ∈ L satisfying ‖Π̂−Π∗‖2
F 6 Õ(κ4 log(r)/α4). The algorithm has time complexity at most

nÕ(log(rκ)k2).

Remark 116. We note that our algorithm and subsequent analysis can be carried out using the
projection onto the orthogonal complement of the subspace spanned by Σ∗ as variables in the
constraint system and therefore, our running time depends on min(r, d − r). Recall, in the
List-Decodable Linear Regression problem, α-fraction of the input spans the (d− 1) dimension
subspace represented by {〈xi, `∗〉 = yi}, where `∗ is the regressor we would like to recover.
Combining these two observations, we obtain a faster algorithm for List-Decodable Linear Re-
gression.

Corollary 5.1.3 (List-Decodable Regression). Let LinD(α, `∗) be such that an α-fraction of the

input satisfies 〈xi, `∗〉 = yi, where the xi are drawn from D, and the remaining fraction is

chosen arbitrarily, potentially adversarially w.r.t the inliers. Let Σ∗ be a rank-(d−1) matrix with

condition number κ. Let D be k-certifiably (α/2)-anti concentrated as well as subgaussian with

covariance Σ∗. Then, there exists an algorithm that takes as input n = n0 > (d log(d)/α2)Õ(k)

samples from LinD(α, `∗) and outputs a list L of O(1/α) projection matrices such that with

probability at least 0.99 over the draw of the sample and the randomness of the algorithm, there

is a Π̂ ∈ L satisfying ‖Π̂ − Π∗‖2
F 6 Õ(κ4/α2). The algorithm has time complexity at most

nÕ(log(κ)k2).

5.1.2 Related Work

Subspace Clustering. Prior work on subspace recovery focused on the closely related prob-
lem of subspace clustering in high dimension, where to goal is to partition a set of points into
k-clusters according to their underlying subspaces. Subspace clustering methods have found
numerous applications computer vision tasks such as image compression [HWHM06], motion
segmentation [CK98], data mining [PHL04], disease classfication [MM14], recommendaation

327

systems [ZFIM12] etc. Algorithms for subspace clustering include iterative methods, algebraic
and statistical methods and spectral techniques. We refer the readers to the following surveys
for a comprehensive overview [EV13, PHL04]. Elhamifar and Vidal [EV13] also introduced
sparse subspace clustering, building on the compressed sensing and matrix completion litera-
ture. Soltanolkotabi et. al. [SEC14] extend sparse subspace clustering to work in the presence
of noise and provide rigorous algorithmic guarantees. They assume the outliers contribute a
small fraction of the input and are distributed uniformly distributed of the unit sphere.

Robust Subspace Recovery. A recent line of work on robust subspace recovery has focused on
projection pursuit techniques, `1-PCA (robust PCA), exhaustive subspace search and robust co-
variance estimation. Here, the goal is to recover a set of inliers that span a single low-dimensional
space. Projection pursuit algorithms iteratively find directions that maximize a scale function.
The scale function often accounts on outliers and thus may be non-convex. McCoy and Tropp
[MT+11] consider one such function and develop a rounding which approximates the global op-
timizer. The `1 or Robust PCA objective replaces the Frobenius norm objective with a sum of ab-
solute values objective, since it is less sensitive to outliers. While this formulation is non-convex
and NP-hard in general, many special cases are tractable, as discussed here [VN18]. Hardt and
Moitra [HM13] provide a worst-case exhaustive search algorithm, where both the inliers and
outliers are required to be in general position and the inliers are generated deterministically. For
a more comprehensive treatment of robust subspace recovery we refer the reader to [LM18a].

In a concurrent and independent work, Raghavendra and Yau proved related results for list-
decodable subspace recovery [RY20a].

5.2 Technical Overview

In this section, we give a high level overview of our algorithm and the new ideas that go into
making it work. At a high level, our algorithm generalizes the framework for list-decodable
estimation recently used to obtain an efficient algorithm for list-decodable regression in the recent
work of [KKK19].

In the list-decodable subspace recovery problem, our input is a collection of samples x1, x2,

. . . , xn ∈ Rd, an αn of which are drawn i.i.d. from distribution D with mean 0 and unknown
covariance Σ∗ of rank r. For the purpose of this overview, we will think of Σ∗ itself being a
projection matrix Π∗. Our algorithm starts from a polynomial feasibility program that simply
tries to find a subset of sample that contains at least an αn points such that all of these points

328

lie in a subspace of dimension r 6 d. We can encode these two requirements as the following
system Aw,Π of polynomial constraints as follows:

Aw,Π :



∑
i∈[n] wi = αn

∀i ∈ [n]. wi(I− Π)xi = 0

∀i ∈ [n]. w2
i = wi

Π2 = Π

Tr(Π) = r


(5.1)

In this system of constraints, w1, w2, . . . , wn are indicators (due to the constraint w2
i = wi) of

the subset of sample we pick. Since
∑n
i=1wi = αn, the constraints force w to indicate a subset of

the sample of size αn. To force that all the points indicated by w lie in a subspace of dimension
r, we define variable Π intended to be the projector to this unknown subspace. The constraint
Π2 = Π forces Π to be a projection matrix and tr(Π) = r forces its rank to be r. Given these
constraints, it’s easy to verify the constraint wi(I − Π)xi = 0 forces xi to be in the subspace
projected to by Π whenever wi = 1.

5.2.1 Designing an Inefficient Algorithm

A feasible solution (w,Π) to the aforementioned constraint system (ignoring for now, the issue
of efficiency), results in a subset of αn samples that span a subspace of dimension r. However,
there can be multiple r dimensional subspaces that satisfy this requirement for various αn subsets
chosen entirely out of the outliers2. Thus, even if we were to find a solution to this program, it’s
not immidiately clear how to recover a subspace close to the one spanned by the inliers.

High-Entropy Distributions. In order to force our solution to (5.1) to give us information
about the true inliers, it seems beneficial to try to find not one but multiple solution pairs {(wi,Πi)}
such that at least one of the wi indicates a subset that has a substantial intersection with the true
inliers. An important conceptual insight in (see Overview section in [KKK19] for a longer dis-
cussion) is to thus ask for a probability distribution (which, at this point can be thought of as a
method to ask for multiple solutions) µ over solutions (w,Π) satisfying (5.1). It turns out that
we can ensure that there are solutions (w,Π) in the support of µ where w indicates a subset
with a non-trivial intersection with the inliers by finding a distribution µ so that ‖∑n

i=1 Ewi‖2
2 is

2See Section 3 in [KKK19] for examples showing how outliers can generate exp(Ω(d)) many possible subspaces
that can all be far from the ground truth subspace.

329

minimized. This constraint serves as a proxy for high entropy distributions. Formally, we can
conclude the following useful result that shows that the expected (over µ) intersection of a subset
indicated by w and the inliers is at least α fraction of the inliers.

Proposition 5.2.1. Let µ be a distribution on (w,Π) satisfyingAw,Π. Then, Eµ [∑i∈I wi] > α|I|.

This result follows by a simple "weight-shifting" argument (if the distribution is over w that
do not intersect enough with the inliers, we can shift probability mass on the inliers and decrease∥∥∥∑n

i=1 Ẽwi
∥∥∥2

2
)).

Anti-Concentration. Our distribution over µ is guaranteed to containw with at least α fraction
of the points of I in the intersection. Our hopes of finding information about the true subspace
are pinned on such “good” (w,Π) at this point. We would like that for such w, the corresponding
projector Π matches the ground truth subspace corresponding to the projector Π∗. Let S be the
"intersection indices", i.e., the set of indices of samples in I for which wi = 1. Why should this
be true? Since we have no control over S, it could, a priori, consist of the points in I that span
only a proper subspace, say V of the ground truth subspace. In this case, Π may not equal Π∗.

The key observation is that in this “bad” case, there is a vector v that is in the orthogonal
complement of ΠV inside the subspace spanned by Π∗ such that 〈xi, v〉 = 0 for every i ∈ S.
That is, there’s a direction that inliers have a zero projection in α fraction of the times. Such an
eventuality is ruled out if we force D, the distribution of the inliers to be anti-concentrated.

Definition 5.2.2 (Anti-Concentration). A Rd-valued random variable Y with mean 0 and co-

variance Σ is δ-anti-concentrated if for all v satisfying v>Σv > 0, Pr[〈Y, v〉 = 0] < δ. A set

T ⊆ Rd is δ-anti-concentrated if the uniform distribution on T is δ-anti-concentrated.

The following proposition is now a simple corollary:

Proposition 5.2.3 (High Intersection Implies Same Subspace (TV Distance to Parameter Dis-
tance)). Let S be a sample of size n from SubD(α,Σ∗, r) for a projection matrix Σ∗ = Π∗ of

rank r such that the inliers I are α-anti-concentrated. Let T ⊆ S be a subset of size αn such

that Πx = x for every x ∈ T for some projection matrix Π of rank r. Suppose |T ⊆ I| > α|I|.
Then, Π = Π∗.

Proof. Let I − Π = ∑d−r
i=1 viv

>
i for an orthonormal set of vectors vis. Since Πx = x for every

x ∈ T , 〈x, vi〉 = 0 for every x ∈ T . Thus, Prx∼I [〈x, vi〉 = 0] > |T ∩ I|/|I| > α. Since I is
α-anti-concentrated, this must mean that v>i Π∗vi = 0.

330

Thus,
∑
i v
>
i Π∗vi = tr(Π∗∑d−r

i=1 viv
>
i) = tr(Π∗(I − Π)) = 0. Or tr(Π∗) = tr(Π · Π∗).

On the other hand, by Cauchy-Schwarz inequality, tr(Π · Π∗) 6
√

tr(Π2) tr((Π∗)2) = tr(Π)
with equality iff Π = Π∗. Here, we used the facts that Π = Π2, (Π∗)2 = Π∗ and that tr(Π) =
tr(Π∗) = r. Thus, Π = Π∗.

Inefficient Algorithm for Anti-Concentrated Distributions. We can use the lemma above to
give an inefficient algorithm for list-decodable subspace recovery.

Lemma 5.2.4 (Identifiability for Anti-Concentrated inliers). Let S be a sample drawn according

to SubD(α,Σ∗, r) such that the inliers I are δ-anti-concentrated for δ < α. Then, there is an

(inefficient) randomized algorithm that finds a list L of projectors of rank r of size 20/(α − δ)
such that Π∗ ∈ L with probability at least 0.99.

Proof. Let µ be any maximally uniform distribution over soluble subset-projection pairs (w,Π)
wherew indicates a set S of size at least αn. For k = 20/(α−δ), let (S1,Π1), (S2,Π2), . . . , (Sk,Πk)
be i.i.d. samples from µ. Output {Π1,Π2, . . . ,Πk}. To finish the proof, we will show that there
is an i such that |Si∩I| > α+δ

2 |I| > δ|I|. Then, we can then apply Proposition 5.2.3 to conclude
that Πi = Σ.

By Proposition 5.2.1, ES∼µ|S ∩ I| > α|I|. Thus, by averaging, PrS∼µ[|S ∩ I| > α+δ
2 |I|] >

α−δ
2 |I|. Thus, the probability that at least one of S1, S2, . . . Sk satisfy |Si ∩ I| > α+δ

2 |I| is at
least 1− (1− α−δ

2)k > 0.99.

5.2.2 Efficient Algorithm

Our key technical contributions are in making the above inefficient algorithm into an efficient
algorithm via the sum-of-squares method. At a high level, we consider a low-degree sum-of-
squares relaxation of the constraint system and design an efficient rounding algorithm. As in
prior works, it is natural at this point to consider the algorithm that finds a pseudo-distribution

minimizing ‖∑i6nwi‖
2
2 and satisfying Aw,Π.

A precise discussion of pseudo-distributions and sum-of-squares proofs appears in Section 5.3
- at this point, it suffices to think of pseudo-distributions as objects similar to the distribution µ
that appeared above for all “properties” that have a low-degree sum-of-squares proofs. Sum-
of-squares proofs are a system of reasoning about polynomial inequalities under polynomial
inequality constraints. It turns out that the analog of Proposition 5.2.1 holds even for pseudo-
distributions. Our central goal is then to find a sum-of-squares proof of the "high-intersection

331

implies same subspace" property and use such a statement algorithmically to obtain a small list
of projectors. To this end, we describe three novel technical contributions that go into achieving
this goal.

Anti-Concentration as a Polynomial Identity. As we recall from our discussion above, such
an argument relies on the distributionD being anti-concentrated. While as stated, anti-concentration
does not have a natural formalization as a low-degree polynomial identity, recent works [KKK19,
RY20a] made progress towards formalizing it within the SoS system in slightly different ways.

Our proofs are more attuned to the formalization in [KKK19]. But for technical reasons the
precise formulation proposed in [KKK19] is not directly useful for us. Briefly and somewhat
imprecisely put, anti-concentration formalizations posit that there be a low-degree SoS proof
(in the variable v) for polynomial inequalities of the form EDp

2(〈x, v〉) 6 δ for a univariate
polynomial p that approximates a Dirac Delta function at 0. In the prior works, this requirement
was formulated in a constrained manner (“‖v‖2

2 6 1 implies EDp2(〈x, v〉) 6 δ”). For the
application to subspace recovery, natural arguments require unconstrained versions of the above
inequality (i.e. that hold without the norm bound constraint on v). Definition 2.2.12 formulates
this condition precisely. We then show that our formalization of anti-concentration holds for
natural distribution families such as Gaussians (see Section 5.5 for details).

Spectral Bound on Subsamples. Given our modified formalization of anti-concentration, we
give a sum-of-squares proof of the analog of Proposition 5.2.3. In particular, we prove a poly-
nomial identity that states if the samples indicated by w non-trivially intersect the true inliers,
then the projector Π is close to Π∗ in Frobenius norm. Further, we are able to achieve a trade-off
between the degree of the polynomial identity and the closeness in Frobenius norm. This state-
ment as well as the trade-off between the degree and error (see Lemma 5.4.1) is a key technical
contribution of our work and we expect will find applications in future works.

Alternatively, we can view this statement as an SoS version of results relating total variation
distance between anti-concentrated distributions to the Frobenius norm difference between their
covariance. Here, the analog of closeness in total variation distance is the size of the intersec-
tion between the samples indicated by w and the true inliers and the closeness is between the
corrresponding projectors.

An important technical component in our proof is to show that given a set of points S sampled
from an anti-concentrated distribution, we can lower bound the eigenvalues of the empirical
covariance of a significantly large subset of S (see Lemma 5.4.5 for a precise statement). For
subspace recovery, this implies that non-zero directions in the empirical covariance for S remain

332

non-zero for a subset of S. Intuitively, such a statement implies that we preserve subspace even
when the samples indicated by w intersect a small fraction of the inliers.

Exponential Error Reduction and Large List Rounding. Recall, a high-entropy pseudo-
distribution satisfying Aw,Π can be interpreted as a “distribution” over tuples (w,Π) satisfying
the constraint system such that the samples indicated by w non-trivially intersect the inliers in
expectation. Next, we design a rounding algorithm that takes the pseudo-distribution as input and
outputs a list of projectors such that one is close to Π∗. Note, for the list-decodable regression
problem, simply applying the rounding “by votes” strategy from sufficed to get a polynomial
time algorithm for any fixed constant error [KKK19]. However, for subspace recovery, the same
rounding strategy gives an error bound that depends polynomially on the rank (or co-rank) of
the unknown subspace and the fraction of inliers. When the rank of the subspace is high (say
d/2, where d is the dimension), such a bound may not even be meaningful. To reduce error
down to something that is dimension independent ends up needing running time that is (super)-
exponential in the dimension.

We extend the voting based rounding algorithm such that it allows for a trade-off between the
list size and the closeness of Π to Π∗ and our exponential error reduction mechanism allows us
to obtain a dimension-independent error bound in quasi-polynomial time. We show that picking
a sufficiently large subset of the points indicated by w proportional to the high-entropy pseudo-
distribution results in an projector that is η close to Π∗ in Frobenius norm, with probability
1/poly(d). Further, the running time of our algorithm scales proportional to nlog(1/η) and the list
size blows up by 1/αlog(1/η) 3. Our powering and error reduction technique is quite general and
will likely find new uses in list-decodable estimation.

Pruning Lists. In order to get optimal list size bounds, the last step in our algorithm is to in-
troduce a "pruning method" that decreases the size of the large list obtained by rounding pseudo-
distributions. Here, we obtain O(1/α) fresh samples from D and for each fresh sample x com-
pute the projection on to the orthogonal complement for each projector in our large list. We then
pick an arbitrary projector Π such that ‖(I− Π)x‖2 is a small fraction of ‖x‖2. Our resulting list
thus has at most O(1/α) projectors. Further, when x is drawn from the inliers, we show that we
add a projector close to Π∗ to our list using our aforementioned test.

3Here, we ignore the dependence on the remaining parameters.

333

5.3 Preliminaries

Throughout this paper, for a vector v, we use ‖v‖2 to denote the Euclidean norm of v. For a n×m
matrix M , we use ‖M‖2 = max‖x‖2=1‖Mx‖2 to denote the spectral norm of M and ‖M‖F =√∑

i,jM
2
i,j to denote the Frobenius norm of M . For symmetric matrices we use � to denote the

PSD/Loewner ordering over eigenvalues of M . For a n×n, rank-r symmetric matrix M , we use
UΛU> to denote the Eigenvalue Decomposition, where U is a n × r matrix with orthonormal
columns and Λ is a r × r diagonal matrix denoting the eigenvalues. We use M † = UΛ†U> to
denote the Moore-Penrose Pseudoinverse, where Λ† inverts the non-zero eigenvalues of M . If
M � 0, we use M †/2 = UΛ†/2U> to denote taking the square-root of the non-zero eigenvalues.
We use Π = UU> to denote the Projection matrix corresponding to the column/row span of M .
Since Π = Π2, the pseudo-inverse of Π is itself, i.e. Π† = Π.

Reweightings Pseudo-distributions. The following fact is easy to verify and has been used in
several works (see [BKS17] for example).

Fact 5.3.1 (Reweighting). Let µ̃ be a pseudo-distribution of degree k satisfying a set of poly-

nomial constraints A in variable x. Let p be a sum-of-squares polynomial of degree t such

that Ẽ[p(x)] 6= 0. Let µ̃′ be the pseudo-distribution defined so that for any polynomial f ,

Ẽµ̃′ [f(x)] = Ẽµ̃[f(x)p(x)]/ Ẽµ̃[p(x)]. Then, µ̃′ is a pseudo-distribution of degree k − t satis-

fying A.

5.4 Algorithm

In this section, we describe an efficient algorithm for list-decodable subspace recovery. LetAw,Π
be the following system of polynomial inequality constraints in indeterminates w,Π.

Aw,Π :



∑
i∈[n] wi = αn

∀i ∈ [n]. wi(I− Π)xi = 0

∀i ∈ [n]. w2
i = wi

Π2 = Π

Tr(Π) = r


(5.2)

Our algorithm finds a pseudo-distribution consistent with Aw,Π. It then uses the large-list

334

rounding algorithm as a first step to get a polynomial (in d) size list that contains a subspace that
is η-close in Frobenius norm to the range space of Σ∗. Finally, we apply a pruning procedure to
obtain a O(1/α) size from the large list procedure.

Algorithm 117. List-Decodable Subspace Recovery

Given: Sample S = {x1, x2, . . . xn} = I ∪ O of size n drawn according to SubD(α,Σ∗)
such that the D is k-certifiably (c, δ)-anti-concentrated, has mean 0 and the condition

number of Σ∗ is κ.

Operation:

1. Let t = ∆ ·
(

log5(1/α) log(rκ)
α2

)
for a large enough constant ∆ > 0.

2. Compute a (t+ 2k)-degree pseudo-distribution µ̃ satisfyingAw,Π that minimizes∥∥∥∑n
i=1 Ẽ[wi]

∥∥∥2

2
.

3. Run Large-List Rounding with η = 0.1 (Algorithm 118) to output a O(1/αt)
sized list L′.

4. Run pruning (Algorithm 119) on L′ with γ = 1 and output the resulting list L.

Output: A listL ofO(1/α) projection matrices containing a Π̃ ∈ L satisfying ‖Π̃−Π∗‖2
F 6

Õ(κ4 log(r)/α2).

Algorithm 118. Large List Rounding

Given: A pseudo-distribution µ̃ of degree t+2k satisfyingAw,Π and minimizing
∥∥∥∑i6n Ẽwi

∥∥∥2

2
such that t = ∆·

(
log5(1/α) log(rκ/η)

α2

)
, for a large constant ∆, accuracy parameter η > 0.

Operation: Repeat ` = O(1/αt) times:

1. Let S ⊂ [n] such that |S| = αn. Draw S with probability proportional to(
n
S

)
Ẽµ̃[wS].

2. Let Π̃ = Ẽµ̃[wsΠ]
Ẽµ̃[wS] be the corresponding matrix. Compute the Eigenvalue De-

composition of Π̃ = Ũ Λ̃Ũ> and let Π̂ = ŨrŨ
>
r , where Ũr are the eigenvectors

corresponding to the top-r eigenvalues of Π̃.

3. Add Π̂ to the list L′.

Output: A list L′ ⊆ Rd of size O(1/αt) containing a Projection matrix Π̂ ∈ L′ satisfying

‖Π̂− Π∗‖2
F < η.

335

Algorithm 119. Pruning Lists

Given: A list L′ of d× d projection matrices such that there exists Π̂ ∈ L′ satisfying ‖Π−
Π∗‖2

F 6 0.1, O(1/αγ) fresh samples S, drawn according to SubD(α,Σ∗), for some

γ > 1, a threshold τ = Õ(κ4 log(r)/α2γ).

Operation:
For i = 1, 2, . . . , |S| :

1. Let L′i = L′. For j = i, . . . , i+ γ − 1

(a) For each Π̄ ∈ L′i, compute ‖(I− Π̄)xj‖2
2.

(b) If ‖(I− Π̄)xj‖2
2 > τ , discard Π̄ from L′i.

2. If L′i is non-empty, pick an arbitrary matrix Π̂ from this set and add it to L.

Output: A L ⊆ Rd of size O(1/α) such that there exists a Projection matrix Π̂ ∈ L
satisfying ‖Π̂− Π∗‖2

F 6 τ .

5.4.1 Analysis of Algorithm 117.

The following theorem captures the guarantees we prove on Algorithm 117.

Theorem 120 (List-Decodable Subspace Recovery, restated). Let SubD(α,Σ∗) be such that Σ∗
has rank r and condition number κ, and D is k-certifiably (c, α/2)-anti-concentrated and sub-

gaussian with covariance Σ∗. Then, Algorithm 117 takes as input n = n0 > (d log(d)/α2)Õ(k)

samples from SubD(α,Σ∗) and outputs a list L of O(1/α) projection matrices such that with

probability at least 0.9 over the draw of the sample and the randomness of the algorithm, there is

a Π̂ ∈ L satisfying ‖Π̂−Π∗‖2
F 6 Õ(κ4 log(r)/α2). Further, Algorithm 117 has time complexity

at most nÕ(log(rκ)k2).

Our proof of Theorem 120 is based on the following four pieces. The key technical piece is
the following consequence of the constraint system Aw,Π in the low-degree SoS proof system.

Lemma 5.4.1. Given δ > 0 and any t ∈ N, and an instance of SubD(α,Σ∗), such that the inlier

336

distribution D has mean 0 and is k-certifiably (C, δ)-anti-concentrated,

Aw,Π 2k+t
Π,w


(

1
|I|

∑
i∈I

wi

)t
‖Π− Π∗‖kF =

(
1
|I|

∑
i∈I

wi

)t
2k/2 tr(MΠ∗M)k/2 6 (2rκ)k/2δt

 .

where κ is the condition number of Σ∗ and Π∗ is the corresponding rank-r Projection matrix.

Next, we show that “high-entropy” pseudo-distributions must place a large enough weight on
the inliers. This is similar to the usage of high-entropy pseudo-distributions in [KKK19].

Lemma 5.4.2 (Large weight on inliers from high-etropy constraints). Let µ̃ pseudo-distribution

of degree > t that satisfiesAw,Π and minimizes
∥∥∥Ẽµ̃′∑i∈[n] wi

∥∥∥
2
. Then, 1

|I|t Ẽ
[
(∑i∈I wi)t

]
> αt.

The above two lemmas allow us to argue that our large-list rounding algorithm (Algorithm
118) succeeds.

Lemma 5.4.3 (Large-List Subspace Recovery, Theorem 109 restated). Let SubD(α,Σ∗) be such

that Σ∗ has rank r and condition number κ, and D is k-certifiably (c, α/2)-anti-concentrated.

For any η > 0, there exists an algorithm that takes input n > n0 = (kd log(d))O(k) samples from

SubD(α,Σ∗) and outputs a list L of size O(1/αk log(rκ/η)) of projection matrices such that with

probability at least 0.99 over the draw of the sample and the randomness of the algorithm, there

is a Π̂ ∈ L satisfying ‖Π̂−Π∗‖2
F 6 η. The algorithm has time complexity at most nO(k2 log(rκ/η)).

Finally, we show that we can prune the list output by Algorithm 118 to a list of size O(1/α)
such that it still contains a Projection matrix close to Π∗. Here, we require that D is subgaussian.
Formally,

Lemma 5.4.4 (Pruning Algorithm). Let γ > 1 and L′ be the list output by Algorithm 118.

Given O(1/αγ) fresh samples from SubD(α,Σ∗), Algorithm 119 outputs a list L of size O(1/αγ)
such that with probability at least 99/100, there exists a projection matrix Π̂ ∈ L satisfying

‖Π̂− Π∗‖2
F 6 Õ

(
κ4 log(r)
α2γ

)
.

Theorem 120 follows easily by combining the above claims :

Proof of Theorem 120. Recall, D is k-certifiably (c, α/2)-anti-concentrated, and thus it fol-
lows from Lemma 5.5.6 that the uniform distribution on I is also O(k)-certifiably (c, α)-anti-
concentrated if the number of samples are at least n0 = (d log(d)/α2)Õ(k).

We begin by observing that the system of constraints Aw,Π is feasible when we set wi to

337

indicate the inliers, and Π = Π∗. Next, the hypothesis of Lemma 5.4.3 is now satisfies for
η = 0.1, Algorithm 118 runs in time nÕ(log(rκ)k) and outputs a list L′ of size (1/α)Õ(log(rκ)k)

such that with probability at least 99/100, it contains a projector Π̃ satisfying ‖Π̃−Π∗‖2
F 6 0.1.

Recall, Π∗ is the projector corresponding to Σ∗ and let ζ1 be the event that L′ contains Π∗.

Conditioning on ζ1, we now have a list satifying the hypothesis for Lemma 5.4.4 and access
to O(1/α) fresh samples (γ = 1) we can conlcude that with probability 99/100 Algorithm 119
outputs a list of size O(1/α) which containts a projection matrix Π̂ satisfying ‖Π̂ − Π∗‖2

F 6

Õ(κ4 log(r)/α2), as desired. Let ζ2 be the event that Algorithm 119 succeeds. Therefore, union
bounding over ζ1 and ζ2 implies Algorithm 117 succeeds with probability at least 9/10. The
overall running time is dominated by Algorithm 118, which completes the proof.

5.4.2 Analyzing Aw,Π: Proof of Lemma 5.4.1

We first show that covariance of all large enough subsamples of certifiably anti-concentrated
samples have lower-bounded eigenvalues. Recall, for a PSD matrix Σ∗, UΛU> denotes the
Eigenvalue Decomposition and Π∗ = UU> denotes the corresponding rank-r Projection matrix.

Lemma 5.4.5 (Covariance of Subsets of Certifiably Anti-Concentrated Distributions). Let S =
{x1, x2, . . . xn} ⊆ Rd be k-certifiably (C, δ)-anti-concentrated with 1

n

∑
x∈S xx

> = Σ. Then,

{
w2
i = wi | ∀i

}
2k
w,v

{
1
n

n∑
i=1
‖v‖k−2

2 wi
〈
Σ†/2xi, v

〉2
> δ2

(
1
n

n∑
i=1

wi − Cδ
)
‖v‖k2

}
, (5.3)

Proof. Let p be the degree k polynomial provided by Definition 2.2.12 applied to S. Thus, for
each 1 6 i 6 n, we must have:

2k
v
{
‖v‖k−2

2

〈
Σ†/2xi, v

〉2
+ δ2p2

(〈
Σ†/2xi, v

〉)
> δ2‖v‖k2

}
.

Observe that {
w2
i = wi

}
2
wi {wi > 0} .

Using the above along with (3.5) for manipulating SoS proofs, we must have:

{
w2
i = wi | ∀i

}
2k
w,v

{
1
n

n∑
i=1
‖v‖k−2

2 wi
〈
Σ†/2xi, v

〉2
+ δ2 1

n

n∑
i=1

wip
2
(〈

Σ†/2xi, v
〉)

> δ2 1
n

n∑
i=1

wi‖v‖k2

}
.

338

Rearranging yields:

{
w2
i = wi | ∀i

}
2k
w,v

{
1
n

n∑
i=1
‖v‖k−2

2 wi
〈
Σ†/2xi, v

〉2
> δ2 1

n

n∑
i=1

wi‖v‖k2 − δ2 1
n

n∑
i=1

wip
2
(〈

Σ†/2xi, v
〉)}

.

(5.4)

Next, observe that {w2
i = wi} 2

wi {(1− wi) = (1− wi)2 > 0}. Thus, {w2
i = wi} 2

wi {wi 6 1}.
As a consequence, {w2

i = wi} k+2
wi,v

{
wip

2(
〈
Σ†/2xi, v

〉
) 6 p2(

〈
Σ†/2xi, v

〉
)
}

. Summing up over
1 6 i 6 n yields:

{
w2
i = wi | ∀i

}
2k
w,v

{
1
n

n∑
i=1

wip
2
(〈

Σ†/2xi, v
〉)

6
1
n

n∑
i=1

p2
(〈

Σ†/2xi, v
〉)

6 Cδ ‖v‖k2

}
,

where in the final inequality on the RHS above, we used the second condition from Defini-
tion 2.2.12 satisfied by S. Plugging this back in (5.4), we thus have:

{
w2
i = wi | ∀i

}
2k
w,v

{
1
n

n∑
i=1
‖v‖k−2

2 wi
〈
Σ†/2xi, v

〉2
> δ2

(
1
n

n∑
i=1

wi − Cδ
)
‖v‖k2

}
, (5.5)

as desired.

Lemma 5.4.6 (Technical SoS fact about Powering). For indeterminates a, b, Z and any t ∈ N,

{a > 0, b > 0, (a− b)Z 6 0} t

a,b {(at − bt)Z 6 0
}

(5.6)

Proof. We have:

{a > 0, b > 0} t
a

{
t−1∑
i=0

at−1−ibi > 0
}
.

Using the above identity with (3.5) yields:

{a > 0, b > 0, (a− b)Z 6 0} t

a,b
{

(a− b)
(
t−1∑
i=0

at−1−ibi
)
Z 6 0

}
.

Using the identity: (a2 − δ)
(∑t−1

i=0 a
t−1−ibi

)
= at − bt, we finally obtain:

{a > 0, b > 0, (a− b)Z 6 0} t

a,b {(
at − bt

)
Z 6 0

}
.

339

Proof of Lemma 5.4.1. We begin by applying Lemma 5.4.5 to the set I. Observe, the uniform
distribution on I is k-certifiably (C, δ)-anti-concentrated. Thus,

{
w2
i = wi | ∀i

}
2k
w,v

{
1
|I|

∑
i∈I

wi
〈
Σ†/2∗ xi, v

〉2
‖v‖k−2

2 > δ2
(∑

i∈I wi
|I|

− Cδ
)
‖v‖k2

}
(5.7)

Let M = I − Π. Since xi = Σ1/2
∗ Σ†/2∗ xi, we have the following polynomial identity (in

indeterminates Π, v) for any i:

〈
Σ−†/2∗ xi,Σ1/2

∗ Mv
〉

= 〈Mxi, v〉 .

By using the (substitution) for manipulating SoS proofs and substituting v with the polyno-
mial Σ†/2∗ Mv, we thus obtain:

{
∀i ∈ [n] w2

i = wi
}

2k
w,v

{
1
|I|

∑
i∈I

wi 〈Mxi, v〉2
∥∥∥Σ†/2∗ Mv

∥∥∥k−2

2
> δ2

(∑
i∈I wi
|I|

− Cδ
)∥∥∥Σ†/2∗ Mv

∥∥∥k
2

}
(5.8)

Next, observe that Aw,Π 2
w,Π
{wiMxi = 0 ∀i} and thus,

Aw,Π 4
w,v,Π {

〈wiMxi, v〉2 = wi 〈Mxi, v〉2 = 0 ∀i
}
.

Combining this with (5.8), we thus have:

Aw,Π 2k
w,v

{
0 > δ2

(
1
|I|

∑
i∈I

wi − Cδ
)∥∥∥Σ†/2∗ Mv

∥∥∥k
2

}
(5.9)

Using (3.5) to multiply throughout by the constant 1/δ2 yields:

Aw,Π 2k
w,v

{
0 >

(
1
|I|

∑
i∈I

wi − Cδ
)∥∥∥Σ†/2∗ Mv

∥∥∥k
2

}
(5.10)

340

Applying Lemma 5.4.6 with a = 1
|I|
∑
i∈I wi, b = Cδ and Z =

∥∥∥Σ†/2∗ Mv
∥∥∥k

2
, we obtain:

Aw,Π 2k+t
w,v

0 >

(1
|I|

∑
i∈I

wi

)t
− (Cδ)t

∥∥∥Σ†/2∗ Mv
∥∥∥k

2

 (5.11)

Let λmax be the largest eigenvalue of Σ∗. By applying (3.5) and multiplying by 1/λmax through-
out, we can work with 1/λmaxΣ∗ and thus assume that λmax = 1. Let λmin be the smallest
non-zero eigenvalue of Σ∗. Then, λmin = 1

κ
.

Recall, Σ∗ = UΛU> and Π∗ = UU>. Then, from the above, Σ∗ − λminΠ∗ � 0 and thus, we
have:

2
v,Π {

λminv
>MΠ∗Mv 6 v>MΣ∗Mv

}
.

Using the (3.5) repeatedly we thus obtain:

k

v
{
λ
k/2
min

(
v>MΠ∗Mv

)k/2
6
(
v>MΣ∗Mv

)k/2}
. (5.12)

Since λmax = 1 and M2 = M , we have:

Aw,Π 4
v,Π {

v>MΣ∗Mv 6 ‖Mv‖2
2 = v>Mv = v>(I− Π)v = ‖v‖2

2 − ‖Πv‖
2
2 6 ‖v‖

2
2

}
Using the (3.5) repeatedly again, we obtain:

Aw,Π 4
v,Π

{(
v>MΣ∗Mv

)k/2
6 ‖v‖k2

}
(5.13)

Using (5.12) and (5.13) with (5.11), we thus have:

Aw,Π 2k
v,w


(

1
|I|

∑
i∈I

wi

)t (
v>MΠ∗Mv

)k/2

6
1

λ
k/2
min

(
1
|I|

∑
i∈I

wi

)t (
v>MΣ∗Mv

)k/2

6
1

λ
k/2
min

δt ‖v‖k2

 .
(5.14)

341

Let g ∼ N (0, I). Then, using the above with the substitution v = g, we have:

Aw,Π 2k
v,w


(

1
|I|

∑
i∈I

wi

)t
tr(MΠ∗M)k/2 =

(
1
|I|

∑
i∈I

wi

)t
(Eg>MΠ∗Mg)k/2

6

(
1
|I|

∑
i∈I

wi

)t
E(g>MΠ∗Mg)k/2 6 1

λ
k/2
min

δt ‖Mg‖k2 = rk/2
1

λ
k/2
min

δt

 , (5.15)

where the inequality follows from the SoS Hölder’s inequality.

Next, {
Π2 = Π

}
2
Π {
‖Π‖2

F = tr(Π2) = tr(Π) = r
}
.

And also, {
Π2 = Π

}
2
Π {

M2 = (I − Π)2 = I − 2Π + Π2 = I − Π = M
}
.

Thus,

Aw,Π 2
Π

‖Π− Π∗‖2
F = ‖Π‖2

F + ‖Π∗‖2
F − 2 tr(ΠΠ∗) = 2r − 2 tr(ΠΠ∗)

= 2 tr((I − Π)Π∗) = 2 tr(MΠ∗) = 2 tr(M2Π∗) = 2 tr(MΠ∗M)

 .

Aw,Π 2
Π

‖Π− Π∗‖2
F = ‖Π‖2

F + ‖Π∗‖2
F − 2 tr(ΠΠ∗) = 2r − 2 tr(ΠΠ∗)

= 2 tr((I − Π)Π∗) = 2 tr(MΠ∗) = 2 tr(M2Π∗) = 2 tr(MΠ∗M)

 .
Using (3.5) and combining with (5.15), we thus obtain:

Aw,Π 2k+t
Π,w


(

1
|I|

∑
i∈I

wi

)t
‖Π− Π∗‖kF =

(
1
|I|

∑
i∈I

wi

)t
2k/2 tr(MΠ∗M)k/2 6 (2r/λmin)k/2δt

 .

Noting that λmin = 1/κ completes the proof.

342

5.4.3 High-Entropy Pseudo-distributions: Proof of Lemma 5.4.2

Fact 5.4.7 (Similar to the proof of Lemma 4.3 in [KKK19]). Let µ̃ be a pseudo-distribution of

degree at least 2 on w1, w2, . . . , wn that satisfies {w2
i = wi∀i}∪{

∑n
i=1 wi = αn} and minimizes∥∥∥∑n

i=1 Ẽ[wi]
∥∥∥2

2
. Then, 1

|I|
∑
i∈I Ẽ[wi] > α.

We defer the proof of this Fact to Appendix 5.6.1.

Proof of Lemma 5.4.2. From Fact 5.4.7, we have that 1
|I|
∑
i∈I Ẽ[wi] > α. Applying Hölder’s

inequality for pseudo-distributions with f = 1 and g = 1
|I|
∑
i∈I wi gives:

1
|I|t

Ẽ
(∑
i∈I

wi

)t
>

1
|I|t

(∑
i∈I

Ẽwi
)t

> αt .

5.4.4 Rounding Pseudo-distributions to a Large List: Proof of Lemma
5.4.3

In this subsection, we analyze Algorithm 118 and show that it returns a list L′ that contains a
projection matrix Π̂ close to Π∗. The key step in our proof is the following lemma:

Lemma 5.4.8. Given t ∈ N, and an instance of SubD(α,Σ∗) such that I is k-certifiably (C, δ)-

anti-concentrated, let µ̃ be a degree-(2k+ t) pseudo-distribution satisfyingAw,Π and minimizing

‖Ẽµ̃ [w]‖2. Then,

1
Ẽµ̃
[
(∑i∈I wi)t

] ∑
S⊆I,|S|6t

(
I
S

)
Ẽµ̃
[
wS ‖Π− Π∗‖kF

]
6

(
8δ
α

)t
(2rκ)k/2 .

where
(
I
S

)
is the coefficient of the monomial indexed by S.

Proof. From Lemma 5.4.1, we have for every t, ` ∈ N,

Aw,Π t+k
w,Π

 1
|I|t

(∑
i∈I

wi

)t
‖Π− Π∗‖kF 6 (2rκ)k/2δt

 .

343

Since µ̃ satisfies Aw,Π and has degree at least t+ k, taking pseudo-expectation yields:

Ẽµ̃

 1
|I|t

(∑
i∈I

wi

)t
‖Π− Π∗‖kF

 6 (2rκ)k/2δt .

Since µ̃ satisfies Aw,Π and minimizes
∥∥∥Ẽµ̃w∥∥∥2

, Lemma 5.4.2 yields: 1
|I|t Ẽµ̃

[
(∑i∈I wi)t

]
> αt.

Multiplying both sides by |I|t

Ẽµ̃
[
(∑i∈I wi)

t
] 6 1

αt
, we obtain:

1
Ẽµ̃
[
(∑i∈I wi)t

] Ẽµ̃
(∑

i∈I
wi

)t
‖Π− Π∗‖kF

 6

(
8δ
α

)t
(2rκ)k/2 . (5.16)

For any monomial wS , let wS′ be its multilinearization. Then, observe that:

{
w2
i = wi | ∀i

}
t
w {wS = wS′} .

Therefore, we have

Aw,Π t
w


(∑
i∈I

wi

)t
‖Π− Π∗‖kF =

∑
S⊆I,|S|6t

(
I
S

)
wS ‖Π− Π∗‖kF

 . (5.17)

Combining equations 5.16 and 5.17, we have

1
Ẽµ̃
[
(∑i∈I wi)t

] ∑
S⊆I,|S|6t

(
I
S

)
Ẽµ̃
[
wS ‖Π− Π∗‖kF

]
6

(
8δ
α

)t
(2rκ)k/2 . (5.18)

which concludes the proof.

Next, we show that sampling a subset of size t indicated by thee w’s proportional to the
marginal pseudo-distribution on this set results in an empirical estimator that is close to Π∗ with
constant probability.

Lemma 5.4.9. Given t ∈ N, let µ̃ be a pseudo-distribution of degree at least t + 2k satisfying

Aw,Π and minimizing ‖Ẽµ̃ [w]‖2. Let S ⊆ I, |S| 6 t be chosen randomly with probability

proportional to
(
I
S

)
Ẽµ̃[wS]. Let µ̃S be the pseudo-distribution obtained by reweighting µ̃ by the

SoS polynomial w2
S . Then, with probability at least 9/10 over the draw of S,

∥∥∥Ẽµ̃S [Π]− Π∗
∥∥∥k
F
6

10(2rκ)k/2(8δ)tα−t.

344

Proof. Rewriting the conclusion of Lemma 5.4.8, we have:

1
Ẽµ̃
[
(∑i∈I wi)t

] ∑
S⊆I,|S|6t

(
I
S

)
Ẽµ̃[wS]

Ẽµ̃
[
wS ‖Π− Π∗‖kF

]
Ẽµ̃[wS]

6

(
8δ
α

)t
(2rκ)k/2 . (5.19)

Further,
∑
S⊆I,|S|6t

(
I
S

)
Ẽµ̃[wS] = Ẽµ̃ (∑i∈I wi)t. Thus, (IS) Ẽµ̃[wS]

Ẽµ̃(∑i∈I wi)
t is a probability distribution,

ζ , over S ⊆ I, |S| 6 t. Thus, we can rewrite (5.19) as simply:

ES∼ζ

[
Ẽµ̃[wS ‖Π− Π∗‖kF]

Ẽµ̃[wS]

]
6

(
8δ
α

)t
(2rκ)k/2 .

By Markov’s inequality, a S ∼ ζ satisfies Ẽµ̃[wS‖Π−Π∗‖kF]
Ẽ[wS] 6 10(2rκ)k/2(8δ)tα−t with probability

at least 9/10. Finally, observe that by Fact 5.3.1, Ẽµ̃S ‖Π− Π∗‖kF = Ẽµ̃[wS‖Π−Π∗‖kF]
Ẽµ̃[wS] . Thus, with

probability at least 9/10 over the choice of S ∼ ζ , Ẽµ̃S
[
‖Π− Π∗‖kF

]
6 10(2rκ)k/2(8δ)tα−t. By

Cauchy-Schwarz inequality applied with f = 1 and g = ‖(Π−Π∗)‖kF , we have:
∥∥∥Ẽµ̃[(Π− Π∗)]

∥∥∥k
F
6

Ẽµ̃
[
‖Π− Π∗‖kF

]
. Thus,

∥∥∥Ẽµ̃S [Π]− Π∗
∥∥∥k
F
6 10(2rκ)k/2(8δ)tα−t. This completes the proof.

Proof of Lemma 5.4.3. We note that since D is k-certifiably (c, δ)-anti-concentrated, sampling
n0 = (kd log(d))k suffices for the uniform distribution over I to be k-certifiably (c, 2δ)-anti-

concentrated (this follows from Lemma 5.5.6). We then observe that by Lemma 5.4.7,
Ẽµ̃[(∑i∈I wi)

t]
|I|t =

Ẽµ̃[(∑i∈I wi)
t]

Ẽµ̃
[

(
∑

i∈[n] wi)
t

] > αt. Therefore, with probability at least 9αt/10, wS ⊂ I and the conclusion of

Lemma 5.4.9 holds. However, the resulting matrix Π̃ = Ẽµ̃S [Π] need not be a Projection matrix.

From Lemma 5.4.9, we can now conclude ‖Π̃−Π∗‖2
F 6

(
10(2rκ)k/2(8δ/α)t

)2/k
6 crκ(δ/α)2t/k.

Setting t = Ω
(
k log(rκ/η′)

log(δ/α)

)
in Lemma 5.4.9 suffices to bound ‖Π̃ − Π∗‖2

F 6 η′. It follows that
with probability at least 9αt/10, for all i ∈ [d],

λ2
i (Π̃) = λ2

i (Π∗)±
(
10(2rκ)k/2(8δ)tα−t

)
= λ2

i (Π∗)± η′

Since Π∗ is an actual rank-r Projection matrix, for i ∈ [r], λ2
i (Π̃) ∈ [1 − η′, 1 + η′] and for

i ∈ [r + 1, d], λ2
i (Π̃) ∈ [−η′, η′] . Recall, Π̃ = UΛU> is the full Eigenvalue decomposition

and therefore, ‖(Λ − I)‖2
2 6 η′. Further, since

∑r
i=1 λ

2
i (Π̃) > (1 − η′)r and trace is exactly r,

‖U\rΛ\rU>\r‖2
F = ∑n

i=r+1 λ
2
i (Π̃) 6 rη′.

345

Now recall, Π̂ = UrU
>
r is the corresponding Projection matrix we obtain in Algorithm 118,

where Ur are the eigenvectors corresponding to the top-r eigenvalues of Π̃. Therefore,

‖Π̂− Π∗‖2
F = ‖Π̂− Π̃ + Π̃− Π∗‖2

F

6 2
(
‖Π̃− Π∗‖2

F + ‖UrU>r − UΛU>‖2
F

)
6 4

(
η′ + ‖Ur(Λr − Ir)U>r ‖2

F + ‖U\rΛ\rU>\r‖2
F

)
6 4

(
η′ + ‖(Λr − Ir)‖2

2‖Π̂‖2
F + rη′

)
6 6rη′

(5.20)

Setting η′ = η/6r, we get t = ∆
(
k log(rκ/η)

log(δ/α)

)
, for a sufficiently large constant ∆. Repeating

O(1/αt) times, with probability 99/100, the resulting list contains a Projection matrix Π̂ such
that ‖Π̂ − Π∗‖2

F 6 η. The claim follows by choosing δ = α/2. The running time is dominated
by computing a (t+ 2k)-degree pseudo-distribution which requires nO(k2 log(rκ/η)) time.

5.4.5 Pruning the List: Proof of Lemma 5.4.4

Fact 5.4.10 (Concentration of Quadratic Forms of Subgaussians). Let x be a 1-subgaussian

random variable on Rd, i.e, E exp(v>(x− µ)) 6 exp(‖v‖2σ2/2) for all v ∈ Rd. Then, for any

a matrix A and for any t > 0, we have

Pr
[∣∣∣‖Ax‖2

2 − E ‖Ax‖2
2

∣∣∣ > t
]
6 2 exp

(
−min

(
t2

‖A>A‖2
F

,
t

‖A>A‖2

))

Fact 5.4.11 (Subspace Distance). Let Π1,Π2 be rank-r Projection matrices. Then, ‖(I−Π2)Π1‖2
F =

1
2‖Π1 − Π2‖2

F .

Proof. Using ‖M‖2
F − Tr

[
M>M

]
, we have

‖(I− Π2)Π1‖2
F = tr

[
((I− Π2)Π1)> (I− Π2)Π1

]
= tr [Π1(I− Π2)(I− Π2)Π1]

= tr [Π1]− tr [Π1Π2]

= 1
2
(
tr
[
Π2

1

]
+ tr

[
Π2

2

]
− 2 tr [Π1Π2]

)
= 1

2‖Π1 − Π2‖2
F

(5.21)

346

where we repeatedly use Π1 = Π2
1, Π2 = Π2

2 and the cyclic property of the trace.

Lemma 5.4.12 (Testing Distinct Subspaces with One Sample). Let Σ1 be any rank-r Covariance

matrix and let D be a mean-zero subgaussian distribution with covariance Σ1. Let Π1 be the

corresponding rank-r Projection matrix for Σ1 and Π2 be any fixed rank r Projection matrix.

Then, for any 0 < ζ < 1,

Prx∼D
[
‖(I− Π2)x‖2

2 >
(1− ζ)λmin

2 ‖Π1 − Π2‖2
F

]

> 1− exp
(
−cmin

(
ζ2

κ4 ,
ζ

κ2

)(
‖Π1 − Π2‖2

F

‖(I− Π2)Π1‖2
F

))
,

for a fixed constant c.

Proof. Let D′ be a 1-subgaussian distribution. Observe,

E
x∼D

[
‖(I− Π2)x‖2

2

]
= E

g∼D′

[
‖(I− Π2)Σ†/21 g‖2

2

]
> E

g∼D′

[
λmin‖(I− Π2)Π1g‖2

2

]
= λmin‖(I− Π2)Π1‖2

F

= λmin

2 ‖Π1 − Π2‖2
F

(5.22)

where we use Eg∼D′ [‖Mg‖2
2] = Eg∼D′

[
g>MTMg

]
= Tr[MTM] and Fact 5.4.11. Similarly,

Ex∼D[‖(I − Π2)x‖2
2] 6 λmax

2 ‖Π1 − Π2‖2
F . Since ((I − Π2) is a projector, ‖(I − Π2)Σ1‖2 6

λmax. Applying Fact 5.4.10 with A = ((I − Π2)Σ1)>(I − Π2)Σ1, ‖A‖2
2 = ‖(I − Π2)Σ1‖2

2 6

λ2
max‖(I − Π2)Σ1‖2

2, ‖A>A‖F = ‖((I − Π2)Σ1)>(I − Π2)Σ1‖F 6 λ2
max · ‖(I − Π2)Π1‖F and

t = ζλmin‖Π1 − Π2‖2
F/2:

Prx∼D
[∣∣∣∣∣‖(I− Π2)x‖2

2 −
λmin

2 ‖Π1 − Π2‖2
F

∣∣∣∣∣ > ζλmin

2 ‖Π1 − Π2‖2
F

]

6 2 exp
(
−cmin

(
ζ2

κ4 ,
ζ

κ2

)(
‖Π1 − Π2‖2

F

‖(I− Π2)Π1‖2
2

)) (5.23)

Rearranging the terms yields the claim.

We are now ready to prove Lemma 5.4.4:

Proof of Lemma 5.4.4. Let 100/αγ be the number of fresh samples we draw from SubD(α,Σ∗),
for some γ > 1. Observe, by Markov, with probability 99/100, there are at least γ contiguous

347

samples drawn from the inlier set I. For the samples that are not inliers, we have no guar-
antees on the projector we add to our list L. Let the i-th iteration of Algorithhm 119 cor-
respond to xi, xi+1, . . . xi+γ−1 ∼ D. For a fixed projector Π̂ ∈ L′ such that ‖Π̂ − Π∗‖2

F =
Ω(κ4 log(rκ) log(1/α)/α2γ), it follows from Lemma 5.4.12, that with probability at least 1 −
Ω(α−(κ4 log(rκ) log(1/α)/α2γ)),

‖(I− Π̂)xi‖2
2 >

λmin

4 ‖Π1 − Π2‖2
F >

λminκ
4 log(rκ) log(1/α)

α2γ

We then repeat the test γ times independently and thus with probabiltiy at least 1−Ω
(

1

α
log(rκ) log(1/α)

α2

)
,

there exists ` ∈ [γ], ‖(I− Π̂)xi+`‖2
2 >

λminκ4 log(rκ) log(1/α)
α2γ

.

Since our list size is at mostO(1/αlog(rκ)/α2), we can union bound over the failure probability
for each projector in the list L′. Therefore, with probability at least 99/100, simultaneously for
all projectors Π̂ ∈ L, if ‖Π̂− Π∗‖2

F = Ω(κ4 log(rκ) log(1/α)/α2γ), there exists ` ∈ [γ],

‖(I− Π̂)xi+`‖2
2 >

λmin

2 ‖Π̂− Π∗‖2
F > λminκ

4t log(1/α) (5.24)

Recall,D has covariance Σ∗ and if x ∼ D Ex∼D[‖x‖2
2] = tr[Σ∗]. By Markov, with probability

at least 99/100, ‖x‖2
2 = O(tr[Σ∗]). Dividing out (5.24) by ‖x‖2

2, with probability at least 99/100,

‖(I− Π̂)x‖2
2

‖x‖2
2

>
λminκ

4t log(1/α)
tr[Σ∗]

= Ω
(
κ4t log(1/α)

α2γ

)

where the last inequality follows from λmin/ tr[Σ∗] > 1. Therefore, the set of projectors in the
sub-listL′i in Algorithm 119 only contains projectors Π̂ such that ‖Π̂−Π∗‖2

F 6
(
κ4 log(rκ) log(1/α)

α2γ

)
.

By Lemma 5.4.9, L′ is guanteed to have a projector Π̄ such that ‖Π̄− Π∗‖2
F 6 0.1. Observe,

‖(I− Π̄)x‖2
2

‖x‖2
2

= ‖(I− Π̄)x/‖x‖2‖2
2 = ‖(I− Π̄)Π∗g/‖g‖2‖2

2 6 ‖(I− Π̄)Π∗‖2
F

= ‖Π̄− Π∗‖2
F

2

�
(
κ4 log(rκ) log(1/α)

α2γ

)

Therefore, L′i is non-empty. Algorithm 119 selects one projector from L′i arbitrarily, which
completes the proof.

348

5.5 Certifiable Anti-Concentration

In this section, prove basic facts about certifiable anti-concentration. We start by recalling the
definition again.

Definition 5.5.1 (Certifiable Anti-Concentration). A zero-mean distribution D with covariance

Σ is 2k-certifiably (δ, Cδ)-anti-concentrated if there exists a univariate polynomial p of degree

d such that:

1. 2k
v
{
‖v‖2k−2

2

〈
Σ†/2x, v

〉2
+ δ2p2

(〈
Σ†/2x, v

〉)
> δ2‖v‖2k

2
4

}
.

2. 2k
v
{
Ex∼D

[
p2
(〈

Σ†/2x, v
〉)]

6 Cδ‖v‖2k
2

}
.

A set S is 2k-certifiably (C, δ)-anti-concentrated if the uniform distribution on S is 2k-certifiably

(C, δ)-anti-concentrated.

As discussed earlier, this definition is obtained by a important but technical modification of
the definition used in [KKK19, RY20a]. We verify basic properties of this notion here and
establish that natural distributions such as Gaussians do satisfy it. We first prove that natural
distributions like the Gaussians and uniform distribution on the unit sphere are certifiably anti-
concentrated.

Theorem 121. (Certifiable Anti-Concentration of Gaussians.) Given 0 < δ 6 1/2, there exists

k = O
(

log5(1/δ)
δ2

)
such that N (0,Σ) is k-certifiably (C, δ)-anti-concentrated.

Our proof of Theorem 121 will rely on the following construction of a low-degree polynomial
with certain important properties:

Lemma 5.5.2 (Core Indicator for Strictly Sub-Exponential Tails). Given a univariate distribution

D with mean 0 and variance σ 6 1 such that

1. Anti-Concentration: for all η > 0, Prx∼D[|x| 6 ησ] 6 c1η,

2. Strictly Sub-Exponential Tail: for all k1 < 2, Prx∼D[|x| > tσ] 6 exp(−t2/k1/c2),

for some fixed c1, c2 > 1. Then, for any δ > 0, there exists a degree d = O
(

log(4+k1)/(2−k1)(1/δ)
δ2/(2−k1)

)
even polynomial q satisfying:

1. |x| 6 δ, q(x) = 1± δ, and,

2. σ2 Ex∼D [q2(x)] 6 10c1c2δ.

349

We will also use the following basic fact about even polynomials.

Lemma 5.5.3 (Structure of Even Polynomials). For any even univariate polynomial q(t) of de-

gree d, ‖v‖2d
2 q

2(〈x, v〉 /‖v‖2) is a polynomial in vector-valued indeterminate v and further,

2d
v
{
‖v‖2d

2 q
2(〈x, v〉 /‖v‖2) > 0

}
.

Proof. The conclusion requires us to prove that ‖v‖2d
2 q

2(〈x, v〉 /‖v‖2) is a sum-of-squares poly-
nomial in vector-valued variable v. Let q(t) = ∑

i∈d cit
i. Since q(t) is even,

q(t) = 1
2(q(t) + q(−t)) = 1

2

∑
i∈[d]

cit
i + ci(−t)i

 =
∑

16i6d/2
c2it

2i .

Thus, in particular, d is even and q(t) = r(t2) for some polynomial r of degree d/2. Sub-

stituting t = 〈x, v〉 /‖v‖2, we have; ‖v‖2d
2 q

2(〈x, v〉 /‖v‖2) = ‖v‖2d
2

(∑
i6d/2 c2i

〈x,v〉2i
‖v‖2i

2

)2
=(∑

i6d/2 c2i‖v‖d−2i
2 〈x, v〉2i

)2
which is a sum-of-squares polynomial in v.

Now, we are ready to prove that Gaussians are certifiably anti-concentrated under our new
definition:

Proof of Theorem 121. Let x ∼ N (0,Σ). We begin with the following polynomial :

p(v) = ‖v‖d2q(
〈
Σ†/2x, v

〉
/‖v‖2)

where q is the degree d = Θ
(

log5(1/δ)
δ2

)
polynomial from Lemma 5.5.2. By Fact 5.5.3, p is indeed

a univariate polynomial in v. We will prove thatN (0,Σ) is 2d-certifiably (C, δ)-subgaussian for
some some absolute constant C > 0 using the polynomial p.

Consider the polynomial g(x) = x2 + δ2q2(x) − δ2/4. If |x| > δ then, g(x) > 3δ2/4 > 0.
On the other hand, if |x| 6 δ, using that q2(x) = (1 ± δ)2 > 1

4 for every δ 6 1/2, g(x) > 0.
Thus, g is a univariate, non-negative polynomial. Using Fact 2.2.10 we thus obtain:

2d
x
{
x2 + δ2q2(x) > δ2/4

}
,

or, equivalently, x2 + δ2q2(x)− δ2/4 = s(x) for a SoS polynomial s of degree at most 2d. Since
q is even, the LHS is invariant under the transformation x→ −x. Thus, s is an even polynomial.

350

Substituting x = 〈Σ
†/2x,v〉
‖v‖2

, we thus have:

〈
Σ†/2x, v

〉2

‖v‖2
2

+ δ2q2


〈
Σ†/2x, v

〉
‖v‖2

− δ2

2 = s


〈
Σ†/2x, v

〉
‖v‖2


Multiplying out by ‖v‖2d

2 and using the definition of p gives us the polynominal (in v) identity:

‖v‖2d−2
2

〈
Σ†/2x, v

〉2
+ δ2p2

(〈
Σ†/2x, v

〉)
− δ2‖v‖2d

2
4 = ‖v‖2d

2 s


〈
Σ†/2x, v

〉
‖v‖2



Since s is an even polynomial, it follows from Fact 5.5.3, ‖v‖2d
2 s

(〈Σ†/2x,v〉
‖v‖2

)
is a sum-of-squares

in v. Thus, we can conclude:

2d
v

{
‖v‖2d−2

2

〈
Σ†/2x, v

〉2
+ δ2p2

(〈
Σ†/2x, v

〉)
>
δ2‖v‖2d

2
4

}

which completes the proof of the first inequality in Definition 2.2.12. By rotational invariance of

Gaussians, Ex∼N (0,1)
[
〈x, v〉`

]
is just a function of ‖v‖2`

2 . Thus ‖v‖2t
2 Ex∼N (0,Σ)

[
q2
(〈Σ†/2x,v〉

‖v‖

)]
is a polynomial in ‖v‖2

2. Since Σ†/2x has variance 1, it follows from the definition of p and q that
Ex∼Dp

2
(〈

Σ†/2x, v
〉)

6 Cδ‖v‖d2, for C = 10c1c2. Therefore, applying Fact 2.2.10

2d
‖v‖2

2
{
Ex∼Dp

2
(〈

Σ†/2x, v
〉)

6 Cδ‖v‖2d
2

}

The proof above naturally extends to the uniform distribution on the unit sphere.

Theorem 122. (Certifiable Anti-Concentration of Gaussians.) Given 0 < δ 6 1/2, there exists

k = O
(

log5(1/δ)
δ2

)
such that the uniform distribution on the unit sphere is k-certifiably (C, δ)-

anti-concentrated.

Next, we observe that our definition of certifiable anti-concentration is invariant under linear
transformations:

Lemma 5.5.4. (Affine Invariance.) Let x ∼ D such thatD is k-certifiably (C, δ)-anti-concentrated

distribution. Then, for any A ∈ Rm×d, the random variable Ax has a k-certifiably (C, δ)-anti-

concentrated distribution.

351

In particular, this yields that certifiable-anti-concentration is preserved under taking linear
projections of a distribution.

Corollary 5.5.5. (Closure under taking projections) Let x ∼ D such that D is k-certifiably

(C, δ)-anti-concentrated distribution on Rd. Let V be any subspace of Rd and let ΠV be the

associated projection matrix. Then, the random variable ΠV x has a k-certifiably (C, δ)-anti-

concentrated distribution.

Next, we show that anti-concentration is preserved under sampling, i.e. ifD is anti-concentrated,
then the uniform distribution over n samples from D is also anti-concentrated.

Lemma 5.5.6. (Certifiable Anti-Concentration under Sampling.) Let D be k-certifiably (c, δ)-

anti-concentrated Sub-Exponential distribution such that the certifying polynomial p has coeffi-

cients bounded by dO(k). Let S be a set of n = Ω((kd log(d))O(k)/Cδ) i.i.d. samples from D.

Then, with probability at least 1−1/d, the uniform distribution on S is k-certifiably (2c, δ)-anti-

concentrated.

Proof. Let p be a degree-k that witnesses anti-concentration of D. We show that p also wit-
nesses anti-concentration of the uniform distribution on S, denoted by D′. First, we observe that
property 1 in definition 2.2.12 is point-wise and continues to hold for x sampled from D′.

Further, we know that

2k
v
{
Ex∼D

[
p2
(〈

Σ†/2x, v
〉)]

6 Cδ‖v‖2k
2

}
(5.25)

Since p2 is a square polynomial, we can represent it in the monomial basis as p2
(〈

Σ†/2x, v
〉)

=〈
c(Σ†/2x)c(Σ†/2x)>, (1, v)⊗k(1, v)>⊗k

〉
, where c(Σ†/2x) are the coefficients of Ex∼Dp

(〈
Σ†/2x, v

〉)
and (1, v)⊗k are all monomials of degree at most d. For notational convenience let cx = c(Σ†/2x).

Since Ex∼Dp
2
(〈

Σ†/2x, v
〉)

=
〈
Ex∼Dcxc

>
x , (1, v)⊗k(1, v)>⊗k

〉
, and Ex∼Dcxc

>
x = Ex∼D′cxc

>
x +(

Ex∼Dcxcx − Ex∼D′cxc
>
x

)
, using linearity of expectation and the (substitution) in (5.25),

2k
v
{〈

Ex∼D′cxc
>
x , (1, v)⊗k(1, v)>⊗k

〉
+
〈
|Ex∼Dcxc

>
x − Ex∼D′cxc

>
x |, (1, v)⊗k(1, v)>⊗k

〉
6 Cδ‖v‖2k

2

}
2k
v
{〈

Ex∼D′cxc
>
x , (1, v)⊗k(1, v)>⊗k

〉
6
∥∥∥Ex∼Dcxc

>
x − Ex∼D′cxc

>
x

∥∥∥
2
‖v‖2k

2 + Cδ‖v‖2k
2

}
(5.26)

where the second equation follows from Fact 3.2.19. Observe, it suffices to bound each entry,

352

i.e. for all i, j ∈ [d2k], (Ex∼D′ [(cx)i(cx)j]− Ex∼D [(cx)i(cx)j])2 6 (C2δ2/d2k), with probability
at least 1−1/d. Then, using concentration of polynomials of Sub-exponential random variables,
for all i, j ∈ [dk],

Prx∼D

(E
x∼D′

[(cx)i(cx)j]− E
x∼D

[(cx)i(cx)j]
)2

> ε2


6 exp

−(εn

Ex∼D[(cx)i(cx)j]2

) 1
2k


Setting ε = Cδ/d2k and union bounding over all i and j,

Pr

 ∑
i,j∈[dk]

(
ED′ [(cx)i(cx)j]− ED[(cx)i(cx)j]

)2
> C2δ2


6 d2k exp

(
−
(

n

dO(k)

) 1
2k
)

where the bound on Ex∼D[(cx)i(cx)j]2 follows from our assumption on the coefficients of p.
Setting n = Ω((kd log(d))O(k)/Cδ) suffices to bound the above probability by 1/d.

5.6 Appendix

We begin with showing that a d-dimension Gaussian vector that spans an r 6 d subspace is
δ-anti-concentrated in the subspace, for any δ > 0.

Proposition 5.6.1 (Anti-Concentration). For all δ > 0, Prx∼N (0,Σ)[| 〈x, v〉 | 6 δ
√
v>Σv] 6 δ

whenever v>Σv > 0.

Proof. Let Σ be a rank-r covariance matrix and N (0,Σ) be the corresponding Gaussian distri-
bution over vectors in Rd. Let Π be the corresponding rank-r projection matrix. We first observe
that only the subspace of Rd spanned by Σ has non-zero measure. Restricted to this subspace, we
show that x ∼ N (0,Σ) is δ-anti-concentrated for all δ > 0. Note, this is equivalent to consider-
ing vectors of the form Πv for any v ∈ Rd. Recall, the PDF of a multivariate Gaussian denoted
by N (0,Σ) is given by

p(x,Σ) = 1√
det†(2πΣ∗)

exp
(
−1

2x
TΣ†x

)

353

where (Σ)† inverts the non-zero eigenvalues of Σ and det† is the pseudo-determinant. Now,
we observe that for any non-zero v ∈ Rd and x ∼ N (0,Σ), {〈Πv, x〉 = 0} defines a rank-
(k − 1) subspace. It is well known that the Gaussian measure on a lower dimensional subspace
of span(Σ) is 0. Formally, ∫

〈Πv,x〉=0
dp(x,Σ) = 0 (5.27)

Therefore, for all v ∈ Rd, Prx∼N (0,Σ) [〈x,Πv〉 = 0] = 0. For all v in the kernel of Σ, vTΣv = 0.

For any v such that the quadratic form in non-zero, from stability of Gaussians, it follows
that 〈x, v〉 ∼ N (0, vTΣv). Recall, the PDF of a univariate Gaussian denoted by N (0, v>Σv) is
given by

p(x) = 1√
2πv>Σv

exp
(
− x2

v>Σv

)

Then,

Pr
[
|x| 6 δ

√
v>Σv

]
=
∫ δ
√
v>Σv

−δ
√
v>Σv

1√
2πv>Σv

exp
(
− x2

v>Σv

)
dx

6
∫ δ
√
v>Σv

−δ
√
v>Σv

1√
2πv>Σv

dx 6 δ

Using standard concentration arguments, we can derive a robust version of anti-concentration
on a set of samples drawn from

Proposition 5.6.2 (Anti-Concentration of Gaussian Samples). Fix any δ > 0 and let {x1, x2, . . . , xn} ∼
N (0,Σ) . Then, whenever n > n0 for some n0 = Ω(d/δ2), with probability at least 1 − 1/ed

over the draw of xis, for every v such that v>Σv > 0, 1
n

∑n
i=1 1

(
| 〈xi, v〉 | < 2δ

√
v>Σv

)
6 2δ.

Proof. By Proposition 5.6.1, for each i ∈ [n], for all v, Pr[| 〈xi, v〉 | 6 δ
√
v>Σv] 6 δ. Therefore,

E

 1
n

∑
i∈[n]

1
(
| 〈xi, v〉 | < δ

√
v>Σv

) = 1
n

∑
i∈[n]

Pr
[
| 〈xi, v〉 | < δ

√
v>Σv

]
6 δ

By Chernoff, for any v,

Pr

 1
n

∑
i∈[n]

1
(
| 〈xi, v〉 | < δ

√
v>Σv

)
> 2δ

 6 exp
(
−4δn

3

)
(5.28)

354

Next, we construct a δ/
√
d net in Rd, denoted by T , such that for any v, there exists v′ ∈ T in

the net and ‖v − v′‖2 6 δ/
√
d. By standard constructions, |T | 6 (

√
d/δ)d. Then, by setting

n = Ω(d log(d/δ)), with probability at least 1− 1/ed, for all v′ ∈ T ,

1
n

∑
i∈[n]

1
(
| 〈xi, v′〉 | < δ

√
v′>Σv′

)
6 2δ

By construction, for all v /∈ T , | 〈xi, v − v′〉 | 6 ‖xi‖2δ/
√
d 6 2δ and the claim follows.

5.6.1 Proof of Fact 5.4.7

For completeness, we provide a proof of Fact 5.4.7. The proof strategy is similar to the proof of
Lemma 4.3 in [KKK19].

Fact 5.5.2 (High-Entropy Psuedo-Distribution Restated.) Let µ̃ be a pseudo-distribution of de-

gree at least 2 on w1, w2, . . . , wn that satisfies {w2
i = wi∀i} ∪ {

∑n
i=1wi = αn} and minimizes∥∥∥∑n

i=1 Ẽµ̃[wi]
∥∥∥2

2
. Then, 1

|I|
∑
i∈I Ẽµ̃[wi] > α.

Proof. Let u = 1
αn

Ẽ[w] be a non-negative vector with entries summing to 1. Let uI = ∑
i∈I ui

denote the fraction of of mass on the inliers and uO = 1 − uI . Let µ̃ be the minimal pseudo-
distribution. For sake of contradiction, assume uI < α. We can then exhibit a pseudo-distribution
µ̃′ that satisfies A and

∥∥∥∑n
i=1 Ẽµ̃′ [wi]

∥∥∥2

2
<
∥∥∥∑n

i=1 Ẽµ̃[wi]
∥∥∥2

2
, contradicting minimality. Consider

the real distribution µ̃∗ that is supported on the inliers and Π = Π∗. This distribution clearly
satisfiesAw,Π and thus any convex combination of µ̃′ and µ̃ also satisfiesAw,Π. For some λ > 0,
let µ̃λ = λµ̃∗ + (1− λ)µ̃ be the corresponding mixed distribution.

We begin with lower bounding ‖u‖2
2 in terms of uI and uO. It is easy to see that the minimum

norm is obtained by spreading the mass uI uniformly over the inliers and uO uniformly over the
outliers. Therefore,

‖u‖2
2 >

(
uI
αn

)2
· αn+

(
uO

(1− α)n

)2

· (1− α)n = 1
αn

(
u2
I +

(
u2
O ·

α

1− α

))

Now, consider uλ = 1
αn

Ẽµ̃λ w. Then,

‖uλ‖2
2 = (1− λ)2‖u‖2

2 + λ2

αn
+ 2λ(1− λ) uI

αn

355

Therefore,

‖uλ‖2
2 − ‖uλ‖2

2 >
λ

αn

(
(2− λ)

(
u2
I + u2

O ·
α

1− α

)
− λ− 2(1− λ)uO

αn

)
>
λ(2− λ)
αn

(
u2
I + u2

O ·
α

1− α − uI
) (5.29)

By assumption, uI < α and thus

u2
I + (1− uI)2 · α

1− α − uI = (1− α)uI(uI − 1) + α(1− uI)2

1− α

= (1− uI) (α(1− uI)− (1− α)uI)
1− α

> 0

Therefore, picking λ such that (5.29) is strictly greater than 0 suffices.

5.6.2 Proof of Lemma 5.5.2

In this Subsection, we describe our construction of the core indicator polynomial. Our construc-
tion is derived from the polynomial approximation to the sign function in [DRST09] with a key
difference. We do not require an upper envelope to the sign function, and thus obtain a simpler
polynomial, which is even.

Lemma 5.5.2 (Core Indicator Restated.) Given a univariate distribution D with mean 0 and

variance σ 6 1 such that

1. Anti-Concentration: for all η > 0, Prx∼D[|x| 6 ησ] 6 c1η,

2. Sub-Exponential Tail: for all k < 2, Prx∼D[|x| > tσ] 6 exp(−t2/k/c2),

for some fixed c1, c2 > 1. Then, for any δ > 0, there exists a degree d = O
(

log(4+k)/(2−k)(1/δ)
δ2/(2−k)

)
even polynomial q such that for all |x| 6 δ, q(x) = 1± δ and σ2 Ex∼D [q2(x)] 6 10c1c2δ.

We start with recalling the following basic fact about growth of polynomials.

Fact 5.6.3. (Growth of Polynomials [Riv74].) Let a(x) be a polynomial of degree at most d such

that |a(x)| 6 b for all x ∈ [−1, 1]. Then, |a(x)| 6 b|2x|d for all |x| > 1.

We first show the existence of a low-degree indicator approximator polynomial that is even.
We use an approximation to the sign function from [DRST09] :

356

Lemma 5.6.4. (Sign Polynomial.) Let a = Θ(ε2/ log(1/ε)). There exists a degree-O(1/a)
polynomial `(x) such that :

1. for all |x| ∈ [a, 1], `(x) ∈ [sign(x)− ε2, sign(x) + ε2]

2. for all x ∈ [−a, a], `(x) ∈ [1− ε2, 1 + ε2]

3. ` is monotonically increasing in (−∞,−1] ∪ [1,∞)

4. ` is an odd polynomial.

5. |`(x)| 6 (1 + ε2)(|2x|)d for all |x| > 1

Proof. The first three properties follow from the construction in Theorem 4.5 [DRST09]. The
fourth property follows from observing this polynomial has the form `(x) = xr(x2). From Fact
5.6.3, we can conclude that |`(x)| 6 (1 + ε2)(|2x|)d for all |x| > 1.

Lemma 5.6.5. (Indicator Polynomial.) Given δ > 0 and L > 1, let ε2 = δ/L. Then, there exists

a polynomial q of degree d = O(L log(L/δ)/δ) such that q(0) = 1 and

1. q is an even polynomial.

2. q(x) ∈ [−3ε2, 3ε2] for all x ∈ [2δ, L] ∪ [−L,−2δ].

3. q(x) ∈ [−1− ε2, 1 + ε2] for all x ∈ [δ, 2δ] ∪ [−2δ,−δ].

4. q(x) ∈ [1− 3ε2, 1 + 3ε2] for all x ∈ [−δ, δ].

5. q(x) < 4(|4x|)d for all |x| > L.

Proof. Let ` be the polynomial from Lemma 5.6.4. We then define

q(x) =
`
(
x+δ
L

+ a
)
− `

(
x−δ
L
− a

)
2`(δ/L+ a)

It is easy to see q(0) = 1, since ` is an odd polynomial. Next, we observe that q is an even
polynomial:

q(−x) =
p
(
−x+δ
L

+ a
)
− p

(
−x−δ
L
− a

)
2p(δ/L+ a) = q(x)

Now, for all x ∈ [δ + 2aL, L], `
(
x+δ
L

+ a
)

= sign
(
x+δ
L

+ a
)
± ε2 = 1± ε2 and `

(
x−δ
L
− a

)
=

1 ± ε2 and thus assuming δ > α, q(x) = ±(4ε2)/2(1 ± ε2) = ±3ε2. A similar argument
holds for x ∈ [−L,−δ − aL]. Now, we show that q(x) is close to 1 for x ∈ [−δ, δ]. Here,

357

`
(
x+δ
L

+ a
)

= 1 ± ε2 and `
(
x−δ
L
− a

)
= −1 ± ε2. Therefore, q(x) = 2±2ε2

2±ε2 = 1 ± 3ε2. Setting
aL = δ suffices, therefore q has degree at mostO(L log(L/δ)/δ). Further, for all |x| ∈ [δ, δ+aL],
q(x) = ±(1 + ε2). Finally, for |x| > L, q(x) 6 4(|4x|)d.

We can now blackbox the proof of Lemma A.1 from [KKK19] since the aforementioned
Lemma constructs an appropriate polynomial to approximate the indicator function. Addition-
ally, the polynomial we obtain is even and suffices for Lemma 5.5.2.

358

Chapter 6

Learning a Two-Layer Neural Network

6.1 Introduction

Neural networks have achieved remarkable success in solving many modern machine learning
problems which were previously considered to be intractable. With the use of neural networks
now being wide-spread in numerous communities, the optimization of neural networks is an
object of intensive study.

Common usage of neural networks involves running stochastic gradient descent (SGD) with
simple non-linear activation functions, such as the extremely popular ReLU function, to learn an
incredibly large set of weights. This technique has enjoyed immense success in solving com-
plicated classification tasks with record-breaking accuracy. However, theoretically the behavior
and convergence properties of SGD are very poorly understood, and few techniques are known
which achieve provable bounds for the training of large neural networks. This is partially due to
the hardness of the problem – there are numerous formulations where the problem is known to
be NP-hard [BR92, Jud88, BDL18, MR18]. Nevertheless, given the importance and success in
solving this problem in practice, it is important to understand the source of this hardness.

Typically a neural network can be written in the following form: A = U i(· · ·U 3f(U 2f(U 1X)),
where i is the depth of the network, X ∈ Rd×n is a matrix with columns corresponding to in-
dividual d-dimensional input samples, and A is the output labeling of X . The functions f are
applied entry-wise to a matrix, and are typically non-linear. Perhaps the most popular activation
used in practice is the ReLU, given by f(x) = max{0, x}. Here each U i is an unknown linear
map, representing the “weights", which maps inputs from one layer to the next layer. In the

359

reconstruction problem, when it is known that A and X are generated via the above model, the
goal is to recover the matrices U 1, . . . ,U i.

In this chapter, we consider the problem of learning the weights of two layer networks with
a single non-linear layer. Such a network can be specified by two weight matrices U ∗ ∈ Rm×k

and V ∗ ∈ Rk×d, such that, on a d-dimensional input vector x ∈ Rd, the classification of the
network is given by U ∗f(V ∗x) ∈ Rm. Given a training set X ∈ Rd×n of n examples, along
with their labeling A = U ∗f(V ∗X) + E, where E is a (possibly zero) noise matrix, the learning
problem is to find U and V for which

‖U −U ∗‖F + ‖V − V ∗‖F 6 ε

We consider two versions of this problem. First, in the noiseless (or realizable) case, we ob-
serve A = U ∗f(V ∗X) precisely. In this setting, we demonstrate that exact recovery of the matri-
ces U ∗,V ∗ is possible in polynomial time. Our algorithms, rather than exploiting smoothness of
activation functions, exploit combinatorial properties of rectified activation functions. Addition-
ally, we consider the more general noisy case, where we instead observe A = U ∗f(V ∗X) + E,
where E is a noise matrix which can satisfy various conditions. Perhaps the most common as-
sumption in the literature [GKLW18, GLM17, JSA15] is that E has mean 0 and is sub-Gaussian.
Observe that the first condition is equivalent to the statement that E [A | X] = U ∗f(V ∗X).
While we primarily focus on designing polynomial time algorithms for this model of noise, in
Section 6.7 we demonstrate fixed-parameter tractable (in the number k of ReLUs) algorithms to
learn the underlying neural network for a much wider class of noise matrices E. We predomi-
nantly consider the identifiable case where U ∗ ∈ Rm×k has full column rank, however we also
provide supplementary algorithms for the exact case when m < k. Our algorithms are robust to
the behavior of f(x) for positive x, and therefore generalize beyond the ReLU to a wider class
of rectified functions f such that f(x) = 0 for x 6 0 and f(x) > 0 otherwise.

It is known that stochastic gradient descent cannot converge to the ground truth parameters
when f is ReLU and V ∗ is orthonormal, even if we have access to an infinite number of samples
[LSSS14]. This is consistent with empirical observations and theory, which states that over-
parameterization is crucial to train neural networks successfully [Har14, SC16]. In contrast, in
this work we demonstrate that we can approximate the optimal parameters in the noisy case, and
obtain the optimal parameters exactly in the realizable case, in polynomial time, without over-
parameterization. In other words, we provide algorithms that do not succumb to spurious local
minima, and can converge to the global optimum efficiently, without over-parametrization.

360

6.1.1 Our Contributions

We now state our results more formally. We consider 2-layer neural networks with ReLU-
activation functions f . Such a neural network is specified by matrices U ∗ ∈ Rm×k and V ∗ ∈
Rk×d. We are given d-dimensional input examples xi ∈ Rd, which form the columns of
our input matrix X , and also give the network’s m-dimensional classification of X , which is
A = U ∗f(V ∗X), where f is applied entry-wise. We note that our formulation corresponds to
having one non-linear layer.

Worst Case Upper Bounds. In the worst case setting, no properties are assumed on the inputs
X ,A. While this problem is generally assumed to be intractable, we show, perhaps surprisingly,
that when rank(A) = k and k = O(1), polynomial time exact algorithms do exist. One of our
primary techniques throughout this work is the leveraging of combinatorial aspects of the ReLU
function. For a row f(V ∗X)i,∗, we define a sign pattern of this row to simply be the subset of
positive entries of the row. Thus, a sign pattern of a vector in Rn is simply given by the orthant
ofRn in which it lies. We first prove an upper bound of O(nk) on the number of orthants which
intersect with an arbitrary k-dimensional subspace of Rn. Next, we show how to enumerate
these sign patterns in time nk+O(1).

We use this result to give an nO(k) time algorithm for the neural network learning problem
in the realizable case, where A = U ∗f(V ∗X) for some fixed rank-k matrices U ∗,V ∗. After
fixing a sign pattern of f(V ∗X), we can effectively “remove" the non-linearity of f . Even so,
the learning problem is still non-convex, and cannot be solved in polynomial time in the general
case (even for fixed k). We show, however, that if the rank of A is k, then it is possible to use a
sequence of linear programs to recover U ∗,V ∗ in polynomial time given the sign pattern, which
allows for an nO(k) overall running time. Our theorem is stated below.

Theorem 123. Given A ∈ Rm×n,X ∈ Rd×n, such that A = U ∗f(V ∗X) and A is rank k,

there is an algorithm that finds U ∗ ∈ Rm×k,V ∗ ∈ Rk×d such that A = U ∗f(V ∗X) and runs

in time poly(n,m, d) min{nO(k), 2n}.

Worst Case Lower Bounds. Our upper bound relies crucially on the fact that A is rank k,
which is full rank when k 6 d,m. We demonstrate that an O(nk) time algorithm is no longer
possible without this assumption by proving the NP-hardness of the realizable learning problem
when rank(A) < k, which holds even for k as small as 2. Our hardness result is as follows.

361

Theorem 126. For a fixed α ∈ Rm×k,X ∈ Rd×n,A ∈ Rm×n, the problem of deciding whether

there exists a solution V ∈ Rk×d to αf(V X) = A is NP-hard even for k = 2. Furthermore, for

the case for k = 2, the problem is still NP-hard when α ∈ Rm×2 is allowed to be a variable.

Gaussian Inputs. Since non-convex optimization problems are known to be NP-hard in gen-
eral, it is, perhaps, unsatisfying to settle for worst-case results. Typically, in the learning commu-
nity, to make problems tractable it is assumed that the input data is drawn from some underlying
distribution that may be unknown to the algorithm. So, in the spirit of learning problems, we
make the common step of assuming that the samples in X have a standard Gaussian distribu-
tion. More generally, our algorithms work for arbitrary multi-variate Gaussian distributions over
the columns of X , as long as the covariance matrix is non-degenerate, i.e., full rank (see Remark
127). In this case, our running time and sample complexity will blow up by the condition number
of the covariance matrix, which we can estimate first using standard techniques. For simplicity,
we state our results here for Σ = I, though, for the above reasons, all of our results for Gaussian
inputs X extend to all full rank Σ

Furthermore, because many of our primary results utilize the combinatorial sparsity patterns
of f(V X), where X is a Gaussian matrix, we do not rely on the fact that f(x) is linear for x > 0.
For this reason, our results generalize easily to other non-linear rectified functions f . In other
words, any function f given by

f(x) =

0 if x 6 0

φ(x) otherwise

where φ(x) : [0,∞] → [0,∞] is a continuous, injective function. In particular, our bounds do
not change for polynomial valued φ(x) = xc for c ∈ N. Note, however, that our worst-case,
non-distributional algorithms (stated earlier), where X is a fixed matrix, do not generalize to
non-linear φ(x).

We first consider the noiseless setting, also referred to as the exact or realizable setting. Here
A = U ∗f(V ∗X) is given for rank k matrices U ∗ and V ∗, whereX has non-degenerate Gaussian
marginals. The goal is then to recover the weights (U ∗)T ,V ∗ exactly up to a permutation of
their rows (since one can always permute both sets of rows without effecting the output of the
network). Note that for any positive diagonal matrix D, U ∗f(DV ∗X) = U ∗Df(V ∗X) when
f is the ReLU. Thus recovery of (U ∗)T ,V ∗ is always only possible up to a permutation and
positive scaling. We now state our main theorem for the exact recovery of the weights in the
realizable (noiseless) setting.

362

Theorem 134. Suppose A = U ∗f(V ∗X) where U ∗ ∈ Rm×k,V ∗ ∈ Rk×d are both rank-k, and

such that the columns ofX ∈ Rd×n are mean 0 i.i.d. Gaussian. Then if n = Ω(poly(d,m, κ(U ∗), κ(V ∗))),

then there is a poly(n)-time algorithm which recovers (U ∗)T ,V ∗ exactly up to a permutation of

the rows with high probability.

To the best of our knowledge, this is the first algorithm which learns the weights matrices of
a two-layer neural network with ReLU activation exactly in the noiseless case and with Gaussian
inputsX . Our algorithm first obtains good approximations to the weights U ∗,V ∗, and concludes
by solving a system of judiciously chosen linear equations, which we solve using Gaussian elim-
ination. Therefore, we obtain exact solutions in polynomial time, without needing to deal with
convergence guarantees of continuous optimization primitives. Furthermore, to demonstrate the
robustness of our techniques, we show that using results introduced in the concurrent and inde-
pendent work of Ge et. al. [GKLW18], we can extend Theorem 134 to hold for inputs sampled
from symmetric distributions (we refer the reader to Corollary 6.4.21). We note that [GKLW18]
recovers the weight matrices up to additive error ε and runs in poly

(
1
ε

)
-time, whereas our algo-

rithm has no ε dependency.

The runtime of our algorithm depends on the condition number κ(V ∗) of V ∗, which is a
fairly ubiquitous requirement in the literature for learning neural networks, and optimization
in general [GKLW18, JSA15, LSW15, CMTV17, AGMR17, ZSJ+17, SJA16]. To address this
dependency, in Lemma 6.4.22 we give a lower bound which shows at least a linear dependence
on κ(V ∗) is necessary in the sample and time complexity.

Next, we introduce an algorithm for approximate recovery of the weight matrices U ∗,V ∗

when A = U ∗f(V ∗X) + E for Gaussian marginals X and an i.i.d. sub-Gaussian mean-zero
noise matrix E with variance σ2.

Theorem 138. Let A = U ∗f(V ∗X)+E be given, where U ∗ ∈ Rm×k,V ∗ ∈ Rk×d are rank-k, E
is a matrix of i.i.d. mean-zero sub-Gaussian random variables with variance σ2, and such that the

columns of X ∈ Rd×n are i.i.d. Gaussian. Then given n = Ω
(

poly
(
d,m, κ(U ∗), κ(V ∗), σ, 1

ε

))
,

there is an algorithm that runs in poly(n) time and w.h.p. outputs V ,U such that

‖U −U ∗‖F 6 ε ‖V − V ∗‖F 6 ε

Again, to the best of our knowledge, this work is the first which learns the weights of a 2-
layer network in this noisy setting without additional constraints, such as the restriction that U be

363

positive. Recent independent and concurrent work, using different techniques, achieves similar
approximate recovery results in the noisy setting [GKLW18]. We note that the algorithm of Goel
et. al. [GK17] that [GKLW18] uses, crucially requires the linearity of the ReLU for x > 0, and
thus the work of [GKLW18] does not generalize to the larger class of rectified functions which
we handle. We also note that the algorithm of [GLM17] requires U ∗ to be non-negative. Finally,
the algorithms presented in [JSA15] work for activation functions that are thrice differentiable
and can only recover rows of V ∗ up to ±1 scaling. Note, for the ReLU activation function, we
need to resolve the signs of each row.

Fixed-Parameter Tractable Algorithms. For several harder cases of the above problems, we
are able to provide Fixed-Parameter Tractable algorithms. First, in the setting where the “labels”
are vector valued, i.e., m > 1, we note prior results, not restricted to ReLU activation, require
the rank of U ∗ to be k [GKLW18, JSA15, GLM17]. This implies that m > k, namely, that
the output dimension of the neural net is at least as large as the number k of hidden neurons.
Perhaps surprisingly, however, we show that even when U ∗ does not have full column rank, we
can still recover U ∗ exactly in the realizable case, as long as no two columns are non-negative
scalar multiples of each other. Note that this allows for columns of the form [u,−u] for u ∈ Rm

as long as u is non-zero. Our algorithm for doing so is fixed paramater tractable in the condition
number of V ∗ and the number of hidden neurons k. Our results rely on proving bounds on
the sample complexity in order to obtain all 2k possible sparsity patterns of the k-dimensional
columns of f(V ∗X).

Theorem 140. Suppose A = U ∗f(V ∗X) for U ∗ ∈ Rm×k for any m > 1 such that

no two columns of U ∗ are non-negative scalar multiples of each other, and V ∗ ∈ Rk×n has

rank(V ∗) = k, and n > κO(k)poly(dkm). Then there is an algorithm which recovers U ∗,V ∗

exactly with high probability in time κO(k)poly(d, k,m).

Furthermore, we generalize our results in the noisy setting to arbitrary error matrices ‖E‖, so
long as they are independent of the Gaussians X . In this setting, we consider a slightly different
objective function, which is to find U ,V such that Uf(V X) approximates A well, where the
measure is to compete against the optimal generative solution ‖U ∗f(V ∗X) − A‖F = ‖E‖F .
Our results are stated below.

Theorem 142. Let A = U ∗f(V ∗X) + E be given, where U ∗ ∈ Rm×k,V ∗ ∈ Rk×d are rank-

k, and E ∈ Rm×n is any matrix independent of X . Then there is an algorithm which outputs

364

U ∈ Rm×k,V ∈ Rk×d in time (κ/ε)O(k2)poly(n, d,m) such that with probability 1−exp(−
√
n)

we have

‖A−Uf(V X)‖F 6 ‖E‖F +O
([
σmaxε

√
nm‖E‖2

]1/2)
,

where ‖E‖2 is the spectral norm of E.

Note that the above error bounds depend on the flatness of the spectrum of E. In particular,
our bounds give a (1+ε) approximation whenever the spectral norm of E is a

√
m factor smaller

than the Frobenius norm, as is in the case for a wide class of random matrices [Ver10b]. When
this is not the case, we can scale ε by 1/

√
m, to get an (mκ/ε)O(k2)-time algorithm which

gives a (1 + ε) approximation for any error matrix E independent of X such that ‖E‖F =
Ω(ε‖U ∗f(V ∗X)‖F).

Sparse Noise. Finally, we show that for sparse noise, when the network is low-rank we can
reduce the problem to the problem of exact recovery in the noiseless case. Here, by low-rank
we mean that m > k. It has frequently been observed in practice that many pre-trained neural-
networks exhibit correlation and a low-rank structure [DSD+13, DZB+14]. Thus, in practice it is
likely that k need not be as large asm to well-approximate the data. For such networks, we give a
polynomial time algorithm for GaussianX for exact recovery of U ∗,V ∗. Our algorithm assumes
that U ∗ has orthonormal columns, and satisfies an incoherence property, which is fairly standard
in the numerical linear algebra community [CR07, CR09, KMO10, CLMW11, JNS13, Har14].
Formally, assume A = U ∗f(V ∗X) + E where X is i.i.d. Gaussian, and E is obtained from the
following sparsity procedure. First, fix any matrix E, and randomly choose a subset of nm − s
entries for some s < nm, and set them equal to 0. The following result states that we can exactly
recover U ∗,V ∗ in polynomial time even when s = Ω(mn).

Theorem 144 & Corollary 6.8.4. Let U ∗ ∈ Rm×k,V ∗ ∈ Rk×d be rank k matrices, where

U ∗ has orthonormal columns, maxi ‖(U ∗)T ei‖2
2 6 µk

m
for some µ, and k 6 m

µ log2(n) , where

µ = O
(
(κ(V ∗))2

√
k log(n)µ + µ + (κ(V ∗))4 log(n)

)
. Here κ(V ∗) is the condition number of

V ∗. Let E be generated from the s-sparsity procedure with s = γnm for some constant γ > 0
and let A = U ∗f(V X) + E. Suppose the sample complexity satisfies n = poly(d,m, k, κ(V ∗))
Then on i.i.d. Gaussian input X there is a poly(n) time algorithm that recovers U ∗,V ∗ exactly

up to a permutation and positive scaling with high probability.

365

6.1.2 Related Work

Recently, there has been a flurry of work developing provable algorithms for learning the weights
of a neural network under varying assumptions on the activation functions, input distributions,
and noise models [SJA16, ABMM16, GKKT16, MR18, ZSJ+17, GKLW18, GLM17, ZSJ+17,
Tia17a, LY17a, BG17, Sol17, GKM18, DG18]. In addition, there have been a number of works
which consider lower bounds for these problems under a similar number of varying assump-
tions [GKKT16, LSSS14, ZLJ16, SJA16, ABMM16, BDL18, MR18]. We describe the main
approaches here, and how they relate to our problem.

Learning ReLU Networks without noise. In the noiseless setting with Gaussian input, the
results of Zhong et al. [ZSJ+17] utilize a similar strategy as ours. Namely, they first apply tech-
niques from tensor decomposition to find a good initialization of the weights, whereafter they
can be learned to a higher degree of accuracy using other methods. At this point our techniques
diverge, as they utilize gradient descent on the initialized weights, and demonstrate good conver-
gence properties for smooth activation functions. However, their results do not give convergence
guarantees for non-smooth activation functions, including the ReLU and the more general class
of rectified functions considered in this work. In this work, once we are given a good initial-
ization, we utilize combinatorial aspects of the sparsity patterns of ReLU’s, as well as solving
carefully chosen linear systems, to obtain exact solutions.

Li and Yuan [LY17b] also analyize stochastic gradient descent, and demonstrate good conver-
gence properties when the weight matrix V ∗ is known to be close to the identity, and U ∗ ∈ R1×k

is the all 1’s vector. In [Tia17b], stochastic gradient descent convergence is also analyzed when
U ∗ ∈ R1×k is the all 1’s vector, and when V ∗ is orthonormal. Moreover, [Tia17b] does not give
bounds on sample complexity, and requires that a good initialization point is already given.

For uniformly random and sparse weights in [−1, 1], Arora et al. [ABGM14] provide poly-
nomial time learning algorithms. In [BG17], the learning of convolutions neural networks is
considered, where they demonstrate global convergence of gradient descent, but do not provide
sample complexity bounds.

Learning ReLU Networks with noise. Ge et al. [GLM17] considers learning a ReLU net-
work with a single output dimension A = uTf(V X) + E where u ∈ Rk is restricted to be
entry-wise positive and E is a zero-mean sub-Gaussian noise vector. In this setting, it is shown
that the weights u,V can be approximately learned in polynomial time when the input X is
i.i.d. Gaussian. However, in contrast to the algorithms in this work, the algorithm of [GLM17]

366

relies heavily on the non-negativity of u [Ge18], and thus cannot generalize to arbitrary u. Jan-
zamin, Sedghi, and Anandkumar [JSA15] utilize tensor decompositions to approximately learn
the weights in the presence of mean zero sub-Gaussian noise, when the activation functions are
smooth and satisfy the property that f(x) = 1 − f(−x). Using similar techniques, Sedghi and
Anandkumar [SJA16] provide a polynomial time algorithm to approximate the weights, if the
weights are sparse.

A more recent result of Ge et al. demonstrates polynomial time algorithms for learning
weights of two-layer ReLU networks in the presence of mean zero sub-gaussian noise, when the
input is drawn from a mixture of a symmetric and Gaussian distribution [GKLW18]. We remark
that the results of [GKLW18] were independently and concurrently developed, and utilize sub-
stantially different techniques than ours that rely crucially on the linearity of the ReLU for x > 0
[Ge18]. For these reasons, their algorithms do not generalize to the larger class of rectified func-
tions which are handled in this work. To the best of the our knowledge, for the case of Gaussian
inputs, this work and [GKLW18] are the first to obtain polynomial time learning algorithms for
this noisy setting.

Agnostic Learning. A variety of works study learning ReLU’s in the more general agnostic

learning setting, based off Valiant’s original PAC learning model [Val84]. The agnostic PAC
model allows for arbitrary noisy and distributions over observations, and the goal is to output a
hypothesis function which approximates the output of the neural network. Note that this does
not necessarily entail learning the weights of an underlying network. For instance, Arora et al.
[ABMM16] gives an algorithm withO(nd) running time to minimize the empirical risk of a two-
layer neural network. A closer analysis of the generalization bounds required in this algorithm for
PAC learning is given in [MR18], which gives a 2poly(k/ε)poly(n,m, d, k) time algorithm under
the constraints that U ∗ ∈ {1,−1}k is given a fixed input, and both the input examples X and the
weights V ∗ are restricted to being in the unit ball. In contrast, our (κ/ε)O(k2) time algorithm for
general error matrices E improves on their complexity whenever κ = O(2poly(k)), and moreover
can handle arbitrarily large V ∗ and unknown U ∗ ∈ Rm×k. We remark, however, that our loss
function is different from that of the PAC model, and is in fact roughly equivalent to the empirical
loss considered in [ABMM16].

Note that the above algorithms properly learn the networks. That is, they actually output
weight matrices U ,V such that Uf(V X) approximates the data well under some measure. A
relaxation if this setting is improper learning, where the output of the learning algorithm can
be any efficiently computable function, and not necessarily the weights of neural network. Sev-
eral works have been studied that achieve polynomial running times under varying assumptions

367

about the network parameters, such as [GKKT16, GK17]. The algorithm of [GK17], returns
a “clipped” polynomial. In addition, [ZLJ16] gives polynomial time improper learning algo-
rithms for multi-layer neural networks under several assumptions on the weights and activation
functions.

Hardness. Hardness results for learning networks have an extensive history in the literature
[Jud88, BR92]. Originally, hardness was considered for threshold activation functions f(x) ∈
{1,−1}, where it is known that even for two ReLU’s the problem is NP-hard [BR92]. Very
recently, there have been several concurrent and independent lower bounds developed for learn-
ing ReLU networks. The work of [BDL18] has demonstrated the hardness of a neural network
with the same number of nodes as the hard network in this paper, albeit with two applications of
ReLU’s (i.e., two non-linear layers) instead of one. Note that the hardness results of this work
hold for even a single non-linear layer. Also concurrently and independently, a recent result
of [MR18] appears to demonstrate the same NP-hardness as that in this paper, albiet using a
slightly different reduction. The results of [MR18] also demonstrate that approximately learning
even a single ReLU is NP-hard. In addition, there are also NP-hardness results with respects
to improper learning of ReLU networks [GKKT16, LSSS14, ZLJ16] under certain complexity
theoretic assumptions.

Sparsity. One of the main techniques of our work involves analyzing the sparsity patterns of
the vectors in the rowspan of A. Somewhat related reasoning has been applied by Spielman,
Wang, and Wright to the dictionary learning problem [SWW12]. Here, given a matrix A, the
problem is to recover matrices B,X such that A = BX , where X is sparse. They argue the
uniqueness of such a factorization by proving that, under certain conditions, the sparsest vectors
in the row span of A are the precisely rows of X . This informs their later algorithm for the exact
recovery of these sparse vectors using linear programming.

6.1.3 Our Techniques

One of the primary technical contributions of this work is the utilization of the combinatorial
structure of sparsity patterns of the rows of f(V X), where f is a rectified function, to solve
learning problems. Here, a sparsity pattern refers to the subset of coordinates of f(V X) which
are non-zero, and a rectified function f is one which satisfies f(x) = 0 for x 6 0, and f(x) > 0
otherwise.

368

Arbitrary Input. For instance, given A = U ∗f(V ∗X) where U ∗,V ∗ are full rank and f

is the ReLU, one approach to recovering the weights is to find k-linearly vectors vi such that
f(viX) span precisely the rows of A. Without the function f(·), one could accomplish this
by solving a linear system. Of course, the non-linearity of the activation function complicates
matters significantly. Observe, however, that if the sparsity pattern of f(V ∗X) was known before
hand, one could simple *remove* f on the coordinates where f(V ∗X) is non-zero, and solve
the linear system here. On all other coordinates, one knows that f(V ∗X) is 0, and thus finding a
linearly independent vector in the right row span can be solved with a linear system. Of course,
naively one would need to iterate over 2n possible sparsity patterns before finding the correct one.
However, one can show that any k-dimensional subspace ofRn can intersect at most nk orthants
of Rn, and moreover these orthants can be enumerated in nkpoly(n) time given the subspace.
Thus the rowspan of A, being k-dimensional, can contain vectors with at most nk patterns. This
is the primary obervation behind our nkpoly(n)-time algorithm for exact recovery of U ∗,V ∗ in
the noiseless case (for arbitrary X).

As mentioned before, the prior result requires A to be rank-k, otherwise the row span of
f(V X) cannot be recovered from the row span of A. We show that this difficulty is not merely
a product of our specific algorithm, by demonstrating that even for k as small as 2, if U ∗ is given
as input then it is NP-hard to find V ∗ such that U ∗f(V ∗X) = A, thus ruling out any general nk

time algorithm for the problem. For the case of k = 2, the problem is still NP-hard even when
U ∗ is not given as input, and is a variable.

Gaussian Input. In response to the aformentioned hardness results, we relax to the case where
the input X has Gaussian marginals. In the noiseless case, we exactly learn the weights U ∗,V ∗

given A = U ∗f(V ∗X) (up to a positive scaling and permutation). As mentioned, our results
utilize analysis of the sparsity patterns in the row-span of A. One benefit of these techniques is
that they are largely insensitive to the behavior of f(x) for positive x, and instead rely on the
rectified property f(·). Hence, this can include even exponential functions, and not solely the
ReLU.

Our exact recovery algorithms proceed in two steps. First, we obtain an approximate version
of the matrix f(V ∗X). For a good enough approximation, we can exactly recover the sparsity
pattern of f(V ∗X). Our main insight is, roughly, that the only sparse vectors in the row span
of A are precisely the rows of f(V ∗X). Specifically, we show that the only vectors in the row
span which have the same sparsity pattern as a row of f(V ∗X) are scalar multiples of that row.
Moreover, we show that no vector in the row span of A is supported on a strict subset of the
support of a given row of f(V ∗X). Using these facts, we can then set up a judiciously designed

369

linear system to find these vectors, which allows us to recover f(V ∗X) and then V ∗ exactly. By
solving linear systems, we avoid using iterative continuous optimization methods, which recover
a solution up to additive error ε and would only provide rates of convergence in terms of ε.
In contrast, Gaussian elimination yields exact solutions in a polynomial number of arithmetic
operations.

The first step, finding a good approximation of f(V ∗X), can be approached from multiple
angles. In this work, we demonstrate two different techniques to obtain these approximations, the
first being Independent Component Analysis (ICA), and the second being tensor decomposition.
To illustrate the robustness of our exact recovery procedure once a good estimate of f(V ∗X) is
known, we show in Section 6.4.3 how we can bootstrap the estimators of recent, concurrent and
independent work [GKLW18], to improve them from approximate recovery to exact recovery.

Independent Component Analysis. In the restricted case when V ∗ is orthonormal, we show
that our problem can be modeled as a special case of Independent Component Analysis (ICA).
The ICA problem approximately recovers a subspace B, given that the algorithm observes sam-
ples of the form y = Bx + ζ , where x is i.i.d. and drawn from a distribution that has moments
bounded away from Gaussians, and ζ is a Gaussian noise vector. Intuitively, the goal of ICA
is to find a linear transformation of the data such that each of the coordinates or features are as
independent as possible. By rotational invariance of Gaussians, in this case V ∗X is also i.i.d.
Gaussian, and we know that the columns of f(V ∗X) have independent components and mo-
ments bounded away from a Gaussian. Thus, in the orthonormal case, our problem is well suited
for the ICA framework.

Tensor Decomposition. A second, more general approach to approximating f(V ∗X) is to uti-
lize techniques from tensor decomposition. Our starting point is the generative model considered
by Janzamin et. al. [JSA15], which matches our setting, i.e., A = U ∗f(V ∗X). The main idea
behind this algorithm is to construct a tensor that is a function of both A,X and captures non-
linear correlations between them. A key step is to show that the resulting tensor has low CP-rank
and the low-rank components actually capture the rows of the weight matrix V ∗. Intuitively,
working with higher order tensors is necessary since matrix decompositions are only identifiable
up to orthogonal components, whereas tensors have identifiable non-orthogonal components, and
we are specifically interested in recovering approximations for non-orthonormal V ∗.

Next, we run a tensor decomposition algorithm to recover the low-rank components of the re-
sulting tensor. While computing a tensor decomposition is NP-hard in general [HL13], there is a
plethora of work on special cases, where computing such decompositions is tractable [BCMV14,

370

SWZ16, WA16, GVX14, GM15, BM16]. Tensor decomposition algorithms have recently be-
come an invaluable algorithmic primitive and with applications in statistical and machine learn-
ing [JSA15, JSA14, GLM17, AGHK14a, BKS15].

However, there are several technical hurdles involved in utilizing tensor decompositions to
obtain estimates of V ∗. The first is that standard analysis of these methods utilizes a general-
ized version of Stein’s Lemma to compute the expected value of the tensor, which relies on the
smoothness of the activation function. Thus, we first approximate f(·) closely using a Cheby-
shev polynomial p(·) on a sufficiently large domain. However, we cannot algorithmically ma-
nipulate the input to demand that A instead be generated as U ∗p(V ∗X). Instead, we add a
small mean-zero Gaussian perturbation to our samples and analyze the variation distance be-
tween A = U ∗f(V ∗X) + G and U ∗p(V ∗X) + G. For a good enough approximation p, this
variation distance will be too small for any algorithm to distinguish between them, thus standard
arguments imply the success of tensor decomposition algorithms when given the inputs A + G

and X .

Next, a key step is to construct a non-linear transformation of the input by utilizing knowledge
about the underlying density function for the distribution of X , which we denote by p(x). The
non-linear function considered is the so-called Score Function, defined in [JSA14], which is the
normalized m-th order derivative of the input probability distribution function p(x). Computing
the score function for an arbitrary distribution can be computationally challenging. However, as
mentioned in [JSA14], we can use Hermite polynomials that help us compute a closed form for
the score function, in the special case when x ∼ N (0, I).

Sign Ambiguity. A further complication arises due to the fact that this form of tensor de-
composition is agnostic to the signs of V . Namely, we are guaranteed vectors vi from tensor
decomposition such that ‖vi − ξiV ∗i,∗‖F < ε, where ξi ∈ {1,−1} is some unknown sign. Prior
works have dealt with this issue by considering restricted classes of smooth activation functions
which satisfy f(x) = 1−f(−x) [JSA15]. For such functions, one can compensate for not know-
ing the signs by allowing for an additional affine transformation in the neural network. Since we
consider non-affine networks and rectified functions f(·) which do not satisfy this restriction, we
must develop new methods to recover the signs ξi to avoid the exponential blow-up needed to
simply guess them.

For the noiseless case, if vi is close enough to ξiV ∗i,∗, we can employ our previous results on
the uniqueness of sparsity patterns in the row-span of A. Namely, we can show that the sparsity
pattern of f(ξvi) will in fact be feasible in the row-span of A, whereas the sparsity pattern of

371

f(−ξvi) will not, from which we recover the signs ξi via a linear system.

In the presence of noise, however, the problem becomes substantially more complicated.
Because we do not have the true row-span of f(V ∗X), but instead a noisy row-span given by
U ∗f(V ∗X) + E, we cannot recover the ξi’s by feasibility arguments involving sparsity patterns.
Our solution to the sign ambiguity in the noisy case is a projection-based scheme. Our scheme
for determining ξi involves constructing a 2k − 2 dimensional subspace S, spanned by vectors
of the form f(±vjX) for all j 6= i. We augment this subspace as S1 = S ∪ {f(viX)} and
S−1 = S ∪ {f(−viX)}. We then claim that the length of the projections of the rows of A
onto the Sξ will be smaller for ξ = ξi than for ξ = −ξi. Thus by averaging the projections of
the rows of A onto these subspaces and finding the subspace which has the smaller projection
length on average, we can recover the ξi’s with high probability. Our analysis involves bounds
on projections onto perturbed subspaces, and a spectral analysis of the matrices f(WX), where
W is composed of up to 2k rows of the form V ∗i,∗ and −V ∗i,∗.

FPT Algorithms. In addition to our polynomial time algorithms, we also demonstrate how
various seemingly intractable relaxations to our model, within the Gaussian input setting, can
be solved in fixed-parameter tractable time in the number k of hidden units, and the condition
numbers κ of U ∗ and V ∗. Our first result demonstrates that, in the noiseless case, exact recovery
of U ∗,V ∗ is still possible even when U ∗ is not rank k. Note that the assumption that U ∗ is rank k
is required in many other works on learning neural networks [GLM17, GKLW18, JSA15, SJA16]

We demonstrate that taking poly(d)κO(k) columns of X , where κ is the condition number of
V ∗, is sufficient to obtain 1-sparse vectors in the columns of f(V ∗X). As a result, we can look
for column of A which are positive scalar multiples of each other, and conclude that any such
pair will indeed be a positive scaling of a column of U ∗ with probability 1. This allows for exact
recovery of U ∗ for any U ∗ ∈ Rm×k and m > 1, as long as no two columns of U ∗ are positive
scalar multiples of each other. Thereafter, we can recover V ∗ by solving a linear system on the
subset of 1-sparse columns of f(V X), and argue that the resulting constraint matrix is full rank.
The result is a poly(d, k,m)κO(k) time algorithm for exact recovery of U ∗,V ∗.

Our second FPT result involves a substantial generalization of the class of error matrices E
which we can handle. In fact, we allow arbitrary E, so long as they are independent of the input
X . Our primary technical observation is as follows. Suppose that we were given f(vX) + E,
where E is an arbitrary, possibly very large, error vector, and v ∈ Rd. Then one can look at
the sign of each entry i, and consider it to be a noisy observation of which side of a halfspace
the vector X∗,i lies within. In other words, we couch the problem as a noisy half-space learning

372

problem, where the half-space is given by the hyperplane normal to v, and the labeling of X∗,i is
the sign of (f(vX) + E)i.

Now while the error on each entry will be large, resulting in nearly half of the labelings being
flipped incorrectly, because E is independent of X , we are able to adapt recent techniques in
noisy-halfspace learning to recover v in polynomial time. In order to utilize these techniques
without knowing anything about E, we must first smooth out the error E by adding a large Gaus-
sian matrix. The comparatively small value of f(vX) is then able to shift the observed distribu-
tion of signs sufficiently to have non-trivial correlation with the true signs. Taking polynomially
many samples, our algorithms detect this correlation, which will allow for accurate recovery of
v.

To even obtain a matrix of the form f(vX) + E, where v is a row of V ∗, we can guess
the pseudo-inverse of U ∗. To reduce the dependency on m, we first sketch U ∗ by a subspace-

embedding S ∈ RO(k)×d, which will be a random Gaussian matrix and approximately preserve
the column span of U ∗. In particular, this approximately preserves the spectrum of U ∗. The
resulting matrix SU ∗ has O(k2) entries, and, given the maximum singular value of the inverse
(which can be guessed to a factor of 2), can be guessed accurately enough for our purposes in
time (κ/ε)O(k2), which dominates the overall runtime of the algorithm.

6.1.4 Roadmap

In Section 6.2 we introduce our nO(k) time exact algorithm when rank(A) = k and arbitrary
X , for recovery of rank-k matrices U ∗,V ∗ such that U ∗f(V ∗X) = A. In this section, we
also demonstrate that for a very wide class of distributions for random matices X , the matrix
U ∗f(V ∗X) is in fact full rank with high probability, and therefore can be solved with our exact
algorithm. Then, in Section 6.3, we prove NP-hardness of the learning problem when rank(A) <
k. Next, in Section 6.4, we give a polynomial time algorithm for exact recovery of U ∗,V ∗ in
the case when X has Gaussian marginals in the realizable setting. Section 6.4.1 develops our
Independenct Component Analysis Based algorithm, whereas Section 6.4.2 develops our more
general exact recovery algorithm. In Section 6.4.3, we show how recent concurrent results can
be bootstrapped via our technqiues to obtain exact recovery for a wider class of distributions.

In Section 6.5, we demonstrate how to extend our algorithm to the case where A = U ∗f(V ∗X)+
E where E is mean 0 i.i.d. sub-Gaussian noise. Then in Section 6.6, we give a fixed-paramater
tractable (FPT) (in k and κ(V ∗)) for the exact recovery of U ∗,V ∗ in the case where U ∗ does not
have full column rank. We give our second FPT algorithm in Section 6.7, which finds weights

373

which approximate the optimal network for arbitrary error matrices E that are independent of X .
In Section 6.8, we demonstrate how the weights of certain low-rank networks, where k < d,m,
can be recovered exactly in the presence of a class of arbitrary sparse noise in polynomial time.

6.1.5 Preliminaries

For a positive integer k, we write [k] to denote the set {1, 2, . . . , k}. We use the term with

high probability (w.h.p.) in a parameter r > 1 to describe an event that occurs with probability
1 − 1

poly(r) . For a real r, we will often use the shorthand poly(r) to denote a sufficiently large
constant degree polynomial in r. Since for simplicity we do not seek to analyze or optimize the
polynomial running time of our algorithms, we will state many of our error bounds within techni-
cal lemmas as 1

poly(r) where r constitutes some set of relevant parameters, with the understanding
that this polynomial can be made arbitrarily large by increasing the sample complexity n of our
algorithms by a polynomial factor.

In this work we use boldface font A,V ,U ,W to denote matrices, and non-boldface font
x, y, u, v to denote vectors. For a vector x, we use ‖x‖2 to denote the `2 norm of x. For any
matrix W with p rows and q columns, for all i ∈ [p], let Wi,∗ denote the i-th row of W , for
all j ∈ [q] let W∗,j denote the j-th column and let Wi,j denote the i, j-th entry of W . Further,
the singular value decomposition of W , denoted by SVD(W) = UΣV T , is such that U is a
p× r matrix with orthonormal columns, V T is a r× q matrix with orthonormal rows and Σ is an
r × r diagonal matrix, where r is the rank of W . The entries along the diagonal are the singular
values of W , denoted by σmax = σ1(W) > σ2(W) > . . . > σr(W) = σmin(W). We write
‖W ‖F = (∑p,q W 2

p,q

)1/2
to denote the Frobenius norm of W , and

‖W ‖2 = supx
‖Ax‖2

‖x‖2
= σmax(W)

to denote the spectral norm. We will write Ik to denote the k × k square identity matrix. We
use the notation ProjW (w) to denote the projection of the vector w onto the row-span of W .
In other words, if x∗ = arg minx ‖xW − w‖2, then ProjW (w) = x∗W . We now recall the
condition number of a matrix W .

Definition 6.1.1. For a rank k matrix W ∈ Rp×q, let σmax(W) = σ1(W) > σ2(W) > . . . >

σk(W) = σmin(W) be the non-zero singular values of W . Then the condition number κ(W)

374

of W is given by

κ(W) = σmax(W)
σmin(W)

Note that if W has full column rank (i.e., k = q), then if W † is the pseudo-inverse of W we

have W †W = Iq and

κ(W) = ‖W †‖2‖W ‖2

where ‖W ‖2 = σ1(W) is the spectral norm of W . Similarly if W has full row rank (i.e. k = p),

then W W † = Ip and

κ(W) = ‖W †‖2‖W ‖2

A real m-th order tensor is T ∈ ⊗mRd is the outer product of m d-dimensional Euclidean
spaces. A third order tensor T ∈ ⊗Rd is defined to be rank-1 if T = w · a ⊗ b ⊗ c where
a, b, c ∈ Rd. Further, T has Candecomp/Parafac (CP) rank-k if it can be written as the sum of k
rank-1 tensors, i.e.,

T =
k∑
i=1

wiai ⊗ bi ⊗ ci

is such that wi ∈ R, ai, bi, ci ∈ Rd. Next, given a function f(x) : Rd → R, we use the notation
∇m
x f(x) ∈ ⊗mRd to denote the m-th order derivative operator w.r.t. the variable x, such that

[∇m
x f(x)]i1,i2,...im = ∂f(x)

∂xi1∂xi2 . . . ∂xim

.

In the context of the ReLU activation function, a useful notion to consider is that of a sign
pattern, which will be used frequently in our analysis.

Definition 6.1.2. For any matrix dimensions p, q, a sign pattern is simply a subset of [p] × [q].
For a matrix W ∈ Rp×q, we let sign(W) be the sign pattern defined by

sign(W) = {(i, j) ∈ [p]× [q] |Wi,j > 0}

Intuitively, in the context of rectified activation functions, the sign pattern is an impor-
tant notion since sign(W) is invariant under application of f , in other words sign(W) =
f(sign(W)). We similarly define a sparsity-pattern of a matrix W ∈ Rp×q as a subset of
[p] × [q] where W is non-zero. Note that a sign and sparsity pattern of W , taken together,
specify precisely where the strictly positive, negative, and zero-valued entries are in W .

375

We use the notation N (µ, σ2) to denote the Gaussian distribution with mean µ and variance
σ2. More generally, we writeN (µ,Σ) to denote a k-dimensional multi-variate Gaussian distribu-
tion with mean µ ∈ Rk and variance Σ ∈ Rk×k. We make use of the 2-stability of the Gaussian
distribution several times in this work, so we now recall the following definition of stable random
variables. We refer the reader to [Ind06] for a further discussion of such distributions.

Definition 6.1.3. A distributionDp is said to be p-stable if wheneverX1, . . . ,Xn ∼ Dp are drawn

independently, we have
n∑
i=1

aiXi ∼ ‖a‖pX

for any fixed vector a ∈ Rn, whereX ∼ Dp is again distributed as a p-stable random variable. In

particular, the Gaussian random variablesN (0, σ2) are p-stable for p = 2 (i.e.,
∑
i aigi = ‖a‖2,

where g, g1, . . . , gn ∼ N (0, σ2)).

Finally, we remark that in this paper, we will work in the common real RAM model of
computation, where arithmetic operations on real numbers can be performed in constant time.

6.2 Exact solution when rank(A) = k

In this section, we consider the exact case of the neural network recovery problem. Given an
input matrix X ∈ Rd×n of examples, and a matrix A ∈ Rm×n of classifications, the exact
version of the recovery problem is to obtain rank-k matrices U ∗,V ∗ such that A = U ∗f(V ∗X),
if such matrices exist. In this section we demonstrate the existence of an nO(k)poly(md)-time
algorithm for exact recovery when rank(A) = k. We demonstrate that this assumption is likely
necessary in Section 6.3, where we show that if rank(A) < k then the problem is NP-hard even
for any k > 2 when the matrix U is given as input, and NP-hard for k = 2 when U ∗ is allowed
to be a variable. This rules out the existence of a general nO(k) time algorithm for this problem.

The main theorem we prove in this section is that there is an algorithm with running time
dominated by min{nO(k), 2n} such that it recovers the underlying matrices U ∗ and V ∗ exactly.
Intuitively, we begin by showing a structural result that there are at most nO(k) sign patterns
that lie in the row space of f(V ∗X) and we can efficiently enumerate over them using a linear
program. For a fixed sign pattern in this set, we construct a sequence of k linear programs (LP)
such that the i-th LP finds a vector yi, f(yi) is in the row span of f(V ∗X), subject to the fixed
sign pattern, and the constraint that f(yi) is not a linear combination of f(y1), f(y2), . . . f(yi−1).
We note that f(yi) being linearly independent is not a linear constraint, but we demonstrate how

376

it can be linearized in a straightforward manner.

Crucially, our algorithm relies on the fact that we have the row-span of f(V ∗X). Note that
this is implied by the assumption that A is rank k. Knowing the rowspan allows us to design
the constraints in the prior paragraph, and thus solve the LP to recover the rows of f(V ∗X).
On the other hand, if the rank of A is less than k, then it no longer seems possible to efficiently
determine the row span of f(V ∗X). In fact, our NP-Hardness result of Section 6.3 demonstrates
that, given U ∗ as input, if the rank of A is strictly less than k, the problem of determining the
exact row-span of f(V ∗X) is NP-Hard. The main result of this section is then as follows.

Theorem 123. Given A ∈ Rm×n,X ∈ Rd×n, there is an algorithm that finds U ∗ ∈ Rm×k,V ∗ ∈
Rk×d such that A = U ∗f(V ∗X) and runs in time poly(nmd) min{nO(k), 2n}, if rank(A) = k.

Let V ′ ∈ Rk×n be a basis for the row-span of A. For two matrices Y,Z of the same
dimension, we will write Y row' Z if the row spans of Y and Z are the same. The first step in
our algorithm is to obtain a feasible set S of sign patterns, within which the true sign pattern of
f(V ∗X) must lie.

Lemma 6.2.1. Given A ∈ Rm×n,X ∈ Rd×n, such that rank(A) = k, there is an algorithm

which runs in time min{nO(k), 2n} and returns a set of sign patterns S ⊂ 2[m]×[n] with |S| =
min{nO(k), 2n} such that for any rank-k matrices U ∗ ∈ Rm×k,V ∗ ∈ Rk×d such that A =
U ∗f(V ∗X) and any row i ∈ [k], sign((V ∗X)i) = sign(S) for some S ∈ S.

Proof. Recall, A is rank k. Thus there is a subset V ′ ∈ Rk×n of k rows of A which span all
the rows of A. Critically, here we require that the rank of A is k and thus the row space of
A is the same as that of f(V ∗X). Since A = U ∗f(V ∗X) and V ′, f(V ∗X) have the same
dimensional row space, the row spaces of V ′ and f(V ∗X) are precisely the same, and so there
must be an invertible change of basis matrix W such that W V ′ = f(V ∗X). Now note that
sign(V ∗X) = sign(f(V ∗X)) = sign(W V ′), and thus it suffices to return a set of sign
patterns S which contains sign(W V ′). Therefore, consider any fixed sign pattern S ⊂ [n],
and fix a row j ∈ [k], and consider the following feasibility linear program in the variables wj

(wjV ′)i > 1, for all i ∈ sign(S)

(wjV ′)i 6 0, for all i /∈ sign(S)

Note that if the sign pattern S is feasible by some wjV ′, then the above LP will be feasible with
a suitably large positive scaling to wj . Now the LP has k variables and n constraints, and thus a

377

solution is obtained by choosing the wj that makes a subset of k linearly independent constraints
tight. Observe in any such LP of the above form, there are at most 2n possible constraints that
can ever occur. Thus if S is realizable as the sign pattern of some wjV ′, then it is obtained by
the unique solution to a system which chooses to make k of these constraints tight. Formally, if
S, b are the constraints for which wjS > b in the LP, then a solution is given by wjS ′ = b′ where
S ′, b′ are a subset of k of the constraints. Since there are at most

(
2n
k

)
= O(nk) such possible

choices, it follows that there are at most O(min{nO(k), 2n}) realizable sign patterns, and these
can be enumerated in O(min{nO(k), 2n}) time by simply checking the sign pattern which results
from the solution (if one exists) to wjS ′ = b′ taken over all subsets S ′, b′ of constraints of size k.

Given access to the set of candidate sign patterns, S ∈ S, and vectors y1, y2, ..., yi−1 ∈ Rn,
we can define the following iterative feasibility linear program, that at each iteration i finds a vec-
tor yi which is equal to some vector in the row span of X , and such that f(y1), f(y2), . . . , f(yi)
are all linearly independent and in the row span of A.

378

Algorithm 1 : Iterative LP(X , S, y1, y2, . . . yi−1).

Input: MatrixX , a sign pattern S, vectors y1, y2, . . . yi−1 such that f(y1), f(y2), . . . f(yi−1)
are linearly independent.

1. Let yi, zi, wi be variables inRn.

2. Let Q ∈ R(i−1)×n be a matrix such that for all j ∈ [i − 1], Qj,∗ = f(yj). Construct
the projection matrix Pi−1 onto span {f(y1), f(y2), ..., f(yi−1)}. Note, the projection
matrix is given by Pi−1 = QT (QTQ)−1Q.

3. Define fS(yi) w.r.t. the sign pattern S such that

fS(yij) =

(yij) if j ∈ S

0 otherwise

Output: A feasible solution to the following LP:

∀j ∈ [n] yij > 1, if j ∈ S
∀j ∈ [n] yij 6 0, if j /∈ S

yi = wiX
fS(yi) = ziV ′

fS(yi)(I −Pi−1) 6= 0

Remark 124. Observe, while the last constraint is not a linear constraint, it can be made linear
by running 2n consecutive LP’s, such that, for t ∈ [n], in the 2t-th LP we replace the constraint
fS(yi)(I−Pi−1) 6= 0 above with

[
fS(yi)

(
I−Pi−1

)]
t
> 1

and in the (2t− 1)-th LP we replace constraint fS(yi) (I−Pi−1) 6= 0 with

[
fS(yi)

(
I−Pi−1

)]
t
6 −1

Note, the modified constraints are linear in the variables yi. If there is a vector yi which satisfies
the above constraints such that fS(yi)(I−Pi−1) 6= 0, then by scaling yi, wi, zi all by a sufficiently
large positive constant, then yi will also satisfy one of the 2n LPs described above, thus giving a
solution to the original feasibility problem by returning the first feasible solution returned among

379

the 2n new LPs.

Using Algorithm 1 as a sub-routine, we iterate over all sign patterns S ∈ S , such that we
recover a linearly independent set of k vectors f(y1), f(y2), . . . f(yk). Let Y be a matrix such
that the j-th row corresponds to yj . We then set up and solve two linear systems in U and V ,
given by A = Uf(Y) and Y = V X . We show that the solutions to the linear system correspond
to U ∗ and V ∗. Here, we note that since the optimal U ∗ and V ∗ are solutions to a linear system,
we can recover them exactly.

Algorithm 2 : ExactNeuralNet(A,X ,S).

Input: Matrices A,X , a set of sign patterns S.

1. For i = 1, 2, . . . , k

topsep=0pt,1temsep=-1ex,p1rtopsep=1ex,p1rsep=1ex t = 1.

topsep=0pt,2temsep=-2ex,p2rtopsep=2ex,p2rsep=2ex While(t 6 |S|)

i. If Iterative LP(X , St, y1, y2, ..., yi−1)
is feasible, let yi be the out-
put, and set t = |S|+ 1.

ii. Else t← t+ 1.

2. Let Y ∈ Rk×n be the matrix with j-th row equal to yj and let S be the corresponding
sign pattern.

3. Let U ∗ be the solution to the linear system in U given by A = UfS(Y).

4. Let V ∗ be the solution to the linear system in V given by Y = V X .

Output: U ∗,V ∗.

Lemma 6.2.2. For any i ∈ [k] vectors y1, y2, ..., yi−1 ∈ Rn and S ∈ S , let yi be a feasible

solution to Iterative LP(X , S, y1, y2, ..., yi−1). Then all of the following hold:

1. yi is in the row span of X .

2. f(yi) is in the row span of A.

3. f(yi) is independent of f(y1), f(y2), ..., f(yi−1).

Proof. The first condition follows due to the third constraint yi = wiX . The first and second

380

constraint ensure that fS(yi) = f(yi), thus along with the fourth constraint and the fact that V ′

spans the rows of A, the second condition follows. For the last condition, it suffices to show
that if ‖f(yi)(I − Pi−1)‖ > 1 then f(yi) is not in the span of {f(y1), . . . , f(yi−1)}. Now if
f(yi)(I − Pi−1) = z 6= 0, then f(yi) = z + Proji−1(f(yi)), where Proji−1(f(yi)) is the
projection of f(yi) onto the subspace spanned by {f(y1), . . . , f(yi−1)}. If f(yi) was in this
subspace, then we would have Proji−1(f(yi)) = yi, but this is impossible since z 6= 0, which
completes the proof.

Lemma 6.2.3. Suppose that there exist matrices U ∗ ∈ Rm×k,V ∗ ∈ Rk×d with A = U ∗f(V ∗X).

Then in the above algorithm, for each i ∈ [k] Iterative LP(X , St, y1, y2, ..., yi−1) will be

feasible for at least one St ∈ S.

Proof. The proof is by induction. For i = 1, since f(V ∗X) has rank k and spans the rows of A,
it follows that there must be some j ∈ [k] such that the j-th row f(V ∗X)j of f(V X) is in in the
row span of V ′, and clearly (V ∗X)j is in the row span of X . The last constraint is of the LP non-
existent since i = 1. Furthermore, (V ∗X)j has some sign pattern S∗, and it must be that S∗ ∈ S
by construction of S. Then there exists a positive constant c > 0 such that (cV ∗X)j satisfies the
last constraints of Iterative LP(X , S∗, y1, y2, ..., yi−1) (made linear as described in Remark
124), and multiplying (V ∗X)j by a positive constant does not affect the fact that (cV ∗X)j is in
the row space of X and f(cV ∗X)j is in the row space of A by closure of subspaces under scalar
multiplication. Thus the Iterative LP(X , S∗, y1, y2, ..., yi−1) has a feasible point.

Now suppose we have feasible points y1, . . . , yi−1, with i 6 k. Note that this guarantees that
f(y1), . . . , f(yi−1) are linearly independent. Since f(V ∗X) spans the k-dimensional row-space
of A, there must be some j with f(V ∗X)j that is linearly independent of f(y1), . . . , f(yi−1)
such that f(V ∗X)j is in the row span of A. Then (V ∗X)j is in the row span of X , and similarly
(V X)j has some sign pattern S∗, and after multiplication by a suitably large constant it follows
that the Iterative LP(X , S∗, y1, y2, ..., yi−1) will be feasible. The proposition follows by
induction.

Proof of Theorem 123. By Proposition 6.2.2, f(y1), . . . , f(yk) are independent, and give a
solution to f(V X) row' A. Thus we can find a U ∈ Rd×k in polynomial time via d independent
linear regression problems that solves Uf(V X) = A. By Proposition 6.2.1, there are at most
min{nO(k), 2n} sign patterns in the set S, and solving for each iteration of Iterative LP

takes poly(nm)-time. Thus the total time is poly(nmd) min{nO(k), 2n} as stated.

381

6.2.1 Rank(A) = k for random matrices X .

We conclude this section with the observation that if the input X is drawn from a large class of
independent distributions, then the resulting matrix U ∗f(V ∗X) will in fact be rank k with high
probability if U ∗ and V ∗ are rank k. Therefore, Algorithm 2 recovers U ∗,V ∗ in poly(nmd) min{nO(k), 2n}
for all such input matrices X .

Lemma 6.2.4. Suppose A = U ∗f(V ∗X) for rank k matrices U ∗ ∈ Rm×k and V ∗ ∈ Rk×d,

where X ∈ Rd×n is a matrix of random variables such that each column X∗,i is drawn i.i.d. from

a distribution D with continuous p.d.f. p(x) : Rd → R such that p(x) > 0 almost everywhere in

Rd, and such that

inf
v∈Rd

Prx∼D
[
〈v, x〉 > 0

]
> 10k log(k/δ)/n

Then rank(A) = k with probability 1−O(δ).

Proof. By Sylverster’s rank inequality, it suffices to show f(V ∗X) is rank k. By symmetry
and i.i.d. of the Xij’s in a fixed row i, each entry f(V ∗X)ij is non-zero with probability at
least 10k log(k/δ)/n independently (within the row i). Then by Chernoff bounds, a fixed row
(V ∗X)i,∗ will have at least k positive entries with probability at least 1− 2−k log(k/δ), and we can
then union bound over all k rows to hold with probability at least 1 − O(δ). Thus one can pick
a k × k submatrix W of f(V ∗X) such that, under some permutation W ′ of the columns of W ,
the diagonal of W ′ is non-zero.

Since V ∗ is rank k, V ∗ is a surjective linear mapping of the columns of X from Rd to Rk.
Since p(x) > 0 almost everywhere, it follows that pV ∗(x) > 0 almost everywhere, where pV ∗(x)
is the continuous pdf of a column of V ∗X . Then if X ′ is any matrix of k columns of X , by
independence of the columns, if pk×k : Rk2 → R is the joint pdf of all k2 variables in V ∗X ′, it
follows that pk×k(x) > 0 for all x ∈ Rk2 . Thus, by conditioning on any sign pattern S of V ∗X ′,
this results in a new pdf pSk×k, which is simply pk×k where the domain is restricted to an orthant
Ω of Rk2 . Since pk×k is continuous and non-zero almost everywhere, it follows that the support
of the pdf pSk×k : Ω→ R is all of Ω. In particular, the Lesbegue measure of the support Ω inside
ofRk2 is non-zero (note that this would not be true if V ∗ has rank k′ < k, as the support on each
column would then be confined to a subspace of Rk, which would have Lesbegue measure zero
inRk).

Now after conditioning on a sign pattern, det(W ′) is a non-zero polynomial in s random
variables, for k 6 s 6 k2, and it is well known that such a function cannot vanish on any
non-empty open set in Rs (see e.g. Theorem 2.6 of [Con], and note the subsequent remark on

382

replacing Cs with Rs). It follows that the set of zeros of det(W ′) contain no open set of Rs,
and thus has Lesbegue measure 0 in Rs. By the remarks in the prior paragraph, we know that
the Lesbegue measure (taken over Rs) of the support of the joint distribution on the s variables
is non-zero (after restricting to the orthant given by the sign pattern). In particular, the set of
zeros of det(W ′) has Lesbegue measure 0 inside of the support of the joint pdf of the non-zero
variables in W ′. We conclude that the joint density of the variables of W ′, after conditioning
on a sign pattern, integrated over the set of zeros of det(W ′) will be zero, meaning that W ′ will
have full rank almost surely, conditioned on the sign pattern event in the first paragraph when
held with probability 1−O(δ).

Remark 125. Note that nearly all non-degenerate distributions D on d-dimensional vectors will
satisfy infv∈Rd Prx∼D

[
〈v, x〉 > 0

]
= c = Ω(1). For instance any multi-variate Gaussian distribu-

tion with non-degenreate (full-rank) covariance matrix Σ will satisfy this bound with c = 1/2,
and this will also hold for any symmetric i.i.d. distribution over the entries of x ∼ D. Thus it
will suffice to take n = Ω(k log(k/δ)) for the result to hold.

Corollary 6.2.5. Let A = U ∗f(V ∗X) for rank k matrices U ∗ ∈ Rm×k and V ∗ ∈ Rk×d, where

X ∈ Rd×n is a matrix of random variables such that each column X∗,i is drawn i.i.d. from a

distribution D with continuous p.d.f. p(x) : Rd → R such that p(x) > 0 almost everywhere in

Rd, and such that

inf
v∈Rd

Prx∼D
[
〈v, x〉 > 0

]
= Ω(k log(1/δ)/n)

Then, there exists an algorithm such that, with probability 1 − O(δ), recovers U ∗, V ∗ exactly

and runs in time poly(n,m, d, k) min{nO(k), 2n}.

6.3 NP-Hardness

The goal of this section is to prove that the problem of deciding whether there exists V ∈ Rk×d

that solves the equation αf(V X) = w for fixed input α ∈ Rm×k, X ∈ Rd×n, A ∈ Rm×n, is
NP-hard. We will first prove the NP-hardness of a geometric separability problem, which will
then be used to prove NP-hardness for the problem of deciding the feasibility of αf(V X) = w.
Our hardness reduction is from a variant of Boolean SAT, used in [Meg88] to prove NP-hardness
of a similar geometric seperability problem, called reversible 6-SAT, which we will now define.
For a Boolean formula ψ on variables {u1, . . . , un, u1, . . . , un} (where ui is the negation of ui),
let ψ be the formula where every variable ui and ui appearing in ψ is replaced with ui and ui

383

respectively. For instance, if ψ = (u1 ∨u2 ∨u3)∧ (u2 ∨u3) then ψ = (u1 ∨u2 ∨u3)∧ (u2 ∨u3).

Definition 6.3.1. A Boolean formula ψ is said to be reversible if ψ and ψ are both either satisfi-

able or not satisfiable.

The reverse 6-SAT problem is then to, given a reversible Boolean formula ψ where each
conjunct has exactly six literals per clause, determine whether or not ψ is satisfiable. Observe,
if ξ is a satisfying assignment to the variables of a reversible formula ψ, then ξ, obtained by
negating each assignment of ξ, is a satisfying assignment to ψ. The following can be found in
[Meg88].

Proposition 6.3.2 (NP-Hardness of Reversible 6-SAT). [Meg88]] Given a reversible formula ψ

in conjunctive normal form where each clause has exactly six literals, it is NP-hard to decide

whether ψ is satisfiable.

We now introduce the following ReLU-seperability problem, and demonstrate NP-hardness
via a reduction from reversible 6-SAT.

Definition 6.3.3 (ReLU-separability.). Given two sets P = {p1, ..., pr}, Q = {q1, . . . , qs} of

vectors in Rd, the ReLU-seperability is to find vectors x, y ∈ Rd such that

• For all pi ∈ P , both pTi x 6 0 and pTi y 6 0.

• For all qi ∈ Q, we have f(qTi x) + f(qTi y) = 1 where f(·) = max(·, 0) is the ReLU

function.

We say that an instance of ReLU-seperability is satisfiable if there exists such an x, y ∈ Rd that

satisfy the above conditions.

Proposition 6.3.4. It is NP-Hard to decide whether an instance of ReLU-seperability is satisfi-

able.

Proof. Let u1, . . . , un be the variables of the reversible 6-SAT instance ψ, and set d = n + 2,
and let x, y be the solutions to the instance of ReLU separability which we will now describe.
The vector x will be such that xi represents the truth value of ui, and yi represents the truth value
of xi = ui. For j ∈ [n + 2], let ej ∈ Rn+2 be the standard basis vector with a 1 in the j-th
coordinate and 0 elsewhere. For each i ∈ [n], we insert ei and −ei into Q. This ensures that
f(xi) + f(yi) = 1 and f(−xi) + f(−yi) = 1. This occurs iff either xi = 1 and yi = −1 or
xi = −1 and yi = 1, so yi is the negation of xi. In other words, the case xi = 1 and yi = −1

384

means ui is true and ui is false, and the case xi = −1 and yi = 1 means ui is false and ui is true.
Now suppose we have a clause of the form u1 ∨ u2 ∨ u3 ∨ u4 ∨ u5 ∨ u6 in ψ. Then this clause
can be represented equivalently by the inequality x1 − x2 + x3 + x4 − x5 + x6 > −5.

To represent this affine constraint, we add additional constraints that force xn+1 + xn+2 =
1/2 and yn+1 + yn+2 = 1/2 (note that the n + 1, and n + 2 coordinates do not correspond
to any of the n variables ui). We force this as follows. Add en+1 and en+2 to Q, and add
−2en+1, −2en+2 to Q. This forces f(xi) + f(yi) = 1 and f(−2xi) + f(−2yi) = 1 for each
i ∈ {n + 1, n + 2}. For each i ∈ {n + 1, n + 2} there are only two solutions, either xi = 1 and
yi = −1/2 or xi = −1/2 and yi = 1. Finally, we add the vector en+1 + en+2 to Q, which forces
f(xn+1+xn+2)+f(yn+1+yn+2) = 1. Now if xn+1 = 1, then xn+2 must be−1/2 since otherwise
there is no solution to 2 + f(·) = 1, and we know xn+2 ∈ {1,−1/2}. This forces yn+2 = 1,
which forces xn+1 + xn+2 = 1/2 = yn+1 + yn+2, and a symmetric argument goes through
when one assumes yn+1 = 1. This lets us write affine inequalities as follows. For the clause
u1∨u2∨u3∨u4∨u5∨u6, we can write the corresponding equation x1−x2+x3+x4−x5+x6 > −5
precisely as a point constraint, which for us is (−1, 1,−1,−1, 1,−1, 0, 0, . . . , 0,−10,−10) ∈ P
(the two −10’s are in coordinate positions n+ 1 and n+ 2). Now this also forces the constraint
y1 − y2 + y3 + y4 − y5 + y6 > −5, but since the formula is reversible so we can assume WLOG
that u1 ∨ u2 ∨ u3 ∨ u4 ∨ u5 ∨ u6 is also a conjunct and so the feasible set is not affected, and the
first n coordinates of any solution x will indeed correspond to a satisfying assignment to ψ if one
exists. Since reversible 6-SAT is NP-hard by Proposition 6.3.2, the stated result holds.

Theorem 126. For a fixed α ∈ Rm×k,X ∈ Rd×n,A ∈ Rm×n, the problem of deciding whether

there exists a solution V ∈ Rk×d to αf(V X) = A is NP-hard even for k = 2. Furthermore, for

the case for k = 2, the problem is still NP-hard when α ∈ Rm×2 is allowed to be a variable.

Proof. Now we show the reduction from ReLU-separability to our problem. Given an instance
(P,Q) of ReLU separability as in Definition 6.3.3, set α = [1, 1], andw = [0, 0, . . . , 0, 1, 1, . . . , 1]
so wi = 0 for i 6 r and wi = 1 for r < i 6 r + s. Let X = [p1, p2, . . . , pr, q1, . . . , qs] ∈
Rd×(r+s). Now suppose we have a solution V = [x, y]T ∈ R(r+s)×2 to αf(V X) = w. This
means f(pTi x) + f(ptiy) = 0 for all pi ∈ P , so it must be that both pTi x 6 0and pTi y 6 0. Also,
we have f(qTi x) + f(qtiy) = 1 for all qi ∈ Q. These two facts together mean that x, y are a
solution to ReLU-separability. Conversely, if solutions x, y to ReLU separability exist, then for
all pi ∈ P , both pTi x 6 0 and pTi y 6 0 implies f(pTi x) + f(ptiy) = 0, and for all qi ∈ Q we
get f(qTi x) + f(qTi y) = 1, so V = [x, y]T is a solution to our factoring problem. Using the
NP-hardness of ReLU-separability by Proposition 6.3.4, the result follows. Note here that k = 2

385

is a constant, but for larger α ∈ Rm×k with m rows and k columns, we can pad the new entries
with zeros to reduce the problem to the aforementioned one, which completes the proof for a
fixed α.

Now for k = 2 and α a variable, we add the following constraints to reduce to the case of
α = [1, 1], after which the result follows. First, we add 2 new columns and 1 new row to X ,
giving X ′ ∈ R(d+1)×(r+s+2). We set

X ′ =
X ~0 ~0
~0T 1 −1


Where X is as in the last paragraph, where ~0 is a column vector of the appropriate dimensions
above. Also, we set A′ = [A, 1, 1] ∈ Rr+s+4. Let V = [x, y]T as before. This ensures
that α1f(xd+1) + α2f(yd+1) = 1 and α1f(−xd+1) + α2f(−yd+1) = 1. As before, we cannot
have that both (xd+1) and (yd+1) are negative, or that both are positive, as then one of the two
constraints would be impossible. WLOG, (yd+1) < 0. Then we have α1f(xd+1) = 1, which
ensures α1 > 0, and α2f(−yd+1) = 1, which ensures α2 > 0.

Now suppose we have a solution to V = [x, y]T and α ∈ R2 to this new problem with
X ′,A′. Then we can set x′ = x/α1 and y′ = y/α2, and α′ = [1, 1], and we argue that we have
recovered a solution [x′, y′] to ReLU separability. Note that [1, 1]f([x′, y′]TX ′) = A′, since we
can always pull a positive diagonal matrix in and out of f . Then restricting to the first r + s

columns of X ′,A′, we see that [1, 1]f([x′, y′]TX) = A, thus [x′, y′] are a solution to the neural-
net learning problem as in the first paragraph, so as already seen we have that x′, y′ is a solution
to ReLU-separability. Similarly, any solution x, y to ReLU separability can easily be extended

to our learning problem by simply using V =
x 1
y −1

 and α = [1, 1], which completes the

proof.

6.4 A Polynomial Time Exact Algorithm for Gaussian Input

In this section, we study an exact algorithm for recovering the weights of a neural network
in the realizable setting, i.e., the labels are generated by a neural network when the input is
sampled from a Gaussian distribution. We also show that we can use independent and concurrent
work of Ge et. al. [GKLW18] to extend our algorithms to the input being sampled from a
symmetric distribution. Our model is similar to non-linear generative models such as those

386

for neural networks and generalized linear models already well-studied in the literature [SJA16,
SA14, KKSK11, MM18], but with the addition of the ReLU activation function f and the second
layer of weights U ∗. In other words, we receive as input i.i.d. Gaussian1 inputX ∈ Rd×n and the
generated output is A = U ∗f(V ∗X), where U ∗ ∈ Rm×k and V ∗ ∈ Rk×d. For the remainder
of the section, we assume that both V ∗ and U ∗ are rank k. Note that this implies that d > k

and k 6 m. In Section 6.6, however, we show that if we allow for a larger ((κ(V ∗))O(k)) sample
complexity, we can recover U ∗ even when it is not full rank.

We note that the generative model considered in [SA14] matches our setting, however, it
requires the function f to be differentiable and V ∗ to be sparse. In contrast, we focus on f being
ReLU. The ReLU activation function has gained a lot of popularity recently and is ubiquitous
in applications [Com94, Hyv99, FJK96, HO00, AGMS12, LAF+12, HK13]. As mentioned in
Sedghi et. al. [SA14], if we make no assumptions on V ∗, the resulting optimal weight matrix is
not identifiable. Here, we make no assumptions on U ∗ and V ∗ apart from them being full rank
and show an algorithm that runs in polynomial time. The main technical contribution is then to
recover the optimal U ∗ and V ∗ exactly, and not just up to ε-error. By solving linear systems
at the final step of our algorithms, as opposed to iterative continuous optimization methods, our
algorithms terminate after a polynomial number of arithmetic operations.

Formally, suppose there exist fixed rank-k matrices U ∗ ∈ Rm×k,V ∗ ∈ Rk×d such that
A = U ∗f(V ∗X), and X is drawn from an i.i.d. Gaussian distribution. Note that we can assume
that each row V ∗i of V ∗ satisfies ‖V ∗i ‖2 = 1 by pulling out a diagonal scaling matrix D with
positive entries from f , and noting U ∗f(DV ∗X) = (U ∗D)f(V ∗X). Our algorithm is given
as input both A and X , and tasked with recovering the underlying generative neural network
U ∗,V ∗. In the context of training neural networks, we consider X to be the feature vectors and
A to be the corresponding labels. Note U ∗,V ∗ are oblivious to X , and are fixed prior to the
generation of the random matrix X . In this section we present an algorithm that is polynomial in
all parameters, i.e., in the rank k, the condition number of U ∗ and V ∗, denoted by κ(U ∗), κ(V ∗)
and n,m, d.

Given an approximate solution to U ∗, we show that there exists an algorithm that outputs
U ∗,V ∗ exactly and runs in time polynomial in all parameters. We begin by giving an altenative
algorithm for orthonormal V ∗ based on Independent Component Analysis. We believe that this
perspective on learning neural networks may be useful beyond our results. Next, we will give a
general algorithm for exact recovery of U ∗,V ∗ which does not require V ∗ to be orthonormal.
This algorithm is based on the completely different approach of tensor decomposition, yet yields

1See Remark 127

387

the same polynomial running time for exact recovery in the noiseless case. We now pause for a
brief aside on the generalization of our results to the non-identity covariance case.

Remark 127. While our results are stated for when the columns of X are Gaussian with iden-
tity covariance, they can naturally be extended to X with arbitrary non-degenerate (full-rank)
covariance Σ, by noting that X = Σ1/2X ′ where X ′ is i.i.d. Gaussian, and then implicitly re-
placing V ∗ with V ∗Σ1/2 so that f(V ∗X) = f((V ∗Σ1/2)X ′), and noting that κ(V ∗Σ1/2) blows
up by a

√
κ(Σ) factor from κ(V ∗). All our remaining results, which do not require V ∗ to be

orthonormal, hold with the addition of polynomial dependency on
√
κ(Σ), by just thinking of

V ∗ as V ∗Σ1/2 instead.

We use the sample covariance as our estimator for the true covariance Σ and have the fol-
lowing guarantee:

Lemma 6.4.1. (Estimating Covariance of X [Ver18].) Let X ∈ Rd×N such that for all i ∈ [N],
X∗,i ∼ N (0,Σ). Let ΣN = 1

N

∑
i∈[N]X∗,iX T

∗,i. With probability at least 1− 2e−δ,

‖Σ−Σn‖2 6 c
d+ δ

N
‖Σ‖2

for a fixed constant c.

We can then estimate Σ using a holdout set of N = Ω(n2δ2) samples, which suffices to
get an accurate estimate of the covariance matrix. We point out that, other than the tensor de-
composition algorithm of Section 6.4.2 and the noisy half-space learning routine in Section 6.7,
our algorithms do not even need to estimate the covariance matrix Σ in the multivariate case in
order to approximately (or exactly) recover U ∗,V ∗. With regards to our tensor decomposition
algorithms, while our estimator for the covariance introduces small error in the computation of
the Score Function and the resulting tensor decomposition, this can be handled easily in the per-
turbation analysis of Theorem 130 (refer to Remark 4 in [JSA15]). For our half-space learning
algorithm in Section 6.7, the error caused by estimating Σ is negligible, and can be added to the
“advesarial” error B of Theorem 141 which is already handled.

In the following warm-up Section 6.4.1, where it is assumed that V ∗ is orthonormal, we can-
not allow X to have arbitrary covariance, since then V ∗Σ1/2 would not be orthonormal. How-
ever, for in the more general algorithm which follows in Section 6.4.2, arbitrary non-degenerate
covariance Σ is allowed.

388

6.4.1 An Independent Component Analysis Algorithm for Orthonormal
V ∗

We begin with making the simplifying assumption that the optimal V ∗ has orthonormal rows, as
a warm-up to our more general algorithm. Note, if V ∗ is orthonormal and X is standard normal,
then by 2-stability of Gaussian random variables, V ∗X is a matrix of i.i.d. Gaussian random
variables. Since Gaussian random variables are symmetric around the origin, each column of
f(V ∗X) is sparse, has i.i.d entries, and has moments bounded away from Gaussians. Using
these facts, we form a connection to the Independent Component Analysis (ICA) problem, and
use standard algorithms for ICA to recover an approximation to U ∗.

The ICA problem approximately recovers a subspace B, given that the algorithm observes
samples of the form y = Bx+E, where x is i.i.d. and drawn from a distribution that has moments
bounded away from Gaussians and E is Gaussian noise. The ICA problem has a rich history
of theoretical and applied work [Com94, FJK96, Hyv99, HO00, FKV04a, LAF+12, AGMS12,
HK13]. Intuitively, the goal of ICA is to find a linear transformation of the data such that each of
the coordinates or features are as independent as possible. For instance, if the dataset is generated
as y = Bx, where B is an unknown affine transformation and x has i.i.d. components, with no
noise added, then applying B−1 to y recovers the independent components exactly, as long as x
is non-Gaussian. Note, if x ∼ N (0, Im), then by rotational invariance of Gaussians, we can only
hope to recover B up to a rotation and the identity matrix suffices as a solution.

Definition 6.4.2. (Independent Component Analysis.) Given ε > 0 and samples of the form

yi = Bxi + Ei, for all i ∈ [n], such that B ∈ Rm×m is unknown and full rank, xi ∈ Rm is a

vector random variable with independent components and has fourth moments strictly less than

that of a Gaussian, the ICA problem is to recover an additive error approximation to B, i.e.,

recover a matrix B̂ such that ‖B̂−B‖F 6 ε.

We use the algorithm provided in Arora et. al. [AGMS12] as a black box for ICA. We
note that our input distribution is rectified Gaussian, which differs from the one presented in
[AGMS12]. Observe, our distribution is invariant to permutations and positive scaling, is sub-
Gaussian, and has moments that are bounded away from Gaussian. The argument in [AGMS12]
extends to our setting, as conveyed to us via personal communication [Ge18]. We have the
following formal guarantee :

Theorem 128. (Provable ICA, [AGMS12] and [Ge18].) Suppose we are given samples of the

form yi = Bxi + Ei for i = 1, 2, . . . , n, where B ∈ Rm×m, the vector xi ∈ Rm has i.i.d.

389

components and has fourth moments strictly bounded away from Gaussian, and Ei ∈ Rm is

distributed as N (0, Im), there exists an algorithm that with high probability recovers B̂ such

that ‖B̂−BΠD‖F 6 ε, where Π is a permutation matrix and D is a diagonal matrix such that

it is entry-wise positive. Further, the sample complexity is n = poly
(
κ(B), 1

ε

)
and the running

time is poly(n,m).

We remark that ICA analyses typically require B to be a square matrix, and recall thatU ∗ is
m × k for m > k. To handle this, we sketch our samples using a dense Gaussian matrix with
exactly k columns, and show this sketch is rank preserving. We will denote the resulting matrix
by TU ∗.

390

Algorithm 3 : ExactNeuralNet(A,X)

Input: Matrices A ∈ Rd×n and X ∈ Rr×n such that each entry in X ∼ N (0, 1).

1. Let T ∈ Rk×m be a matrix such that for all i ∈ [k], j ∈ [m], Ti,j ∼ N (0, 1). Let TA
be the matrix obtained by applying the sketch to A.

2. Consider the ICA problem where we receive samples of the form TA = TU ∗f(V ∗X).

3. Run the ICA algorithm, setting ε = 1
poly(m,d,k,κ(U∗)) , to recover T̂U such that ‖T̂U −

TU ∗ΠD‖F 6 1
poly(m,d,k,κ(U∗)) .

4. Let X be the first ` = poly(d,m, k, κ(U ∗), κ(V ∗)) columns of X , and let A =
U ∗f(V ∗X). Let τ = 1

poly(`) be a threshold. Then for all i ∈ [k], j ∈ [`], set

f̂(V X)i,j =


0 if

(
(T̂U)−1TA

)
i,j

6 τ(
(T̂U)−1TA

)
i,j

otherwise

5. Let Sj be the sparsity pattern of the vector f̂(V X)j,∗. For all j ∈ [k], and r ∈ [k],
solve the following linear system of equations in the unknowns xrj ∈ Rk.

∀i ∈ [`] \ Sj (xrjA)i = 0,
(xrj)r = 1

Where (xrj)r is the r-th coordinate of xrj .

6. Set wj to be the first vector xrj such that a solution exists to the above linear system.

7. Let W ∈ Rk×` be the matrix where the i-th row is given by wiA. Flip the signs of
the rows of W so that W has no strictly negative entries.

8. For each i ∈ [k], solve the linear system (Wi,∗)Si = Vi,∗X Si for V ∈ Rk×d, where
the subscript Si means restricting to the columns of Si. Normalize V to have unit
norm rows. Finally, solve the linear system A = Uf(V X) for U , using Gaussian
Elimination.

Output: U ,V .

Lemma 6.4.3. (Rank Preserving Sketch.) Let T ∈ Rk×m be a matrix such that for all i ∈ [k],
j ∈ [m], Ti,j ∼ N (0, 1). Let U ∗ ∈ Rm×k such that rank(U ∗) = k and m > k. Then,

391

TU ∗ ∈ Rk×k has rank k. Further, with probability at least 1− δ, κ(TU ∗) 6 (k2m/δ)κ(U ∗).

Proof. Let MΣNT be the SVD of U ∗, such that M ∈ Rm×k and ΣNT ∈ Rk×n. Since
columns of M are orthonormal and Gaussians are rotationally invariant, TM ∈ Rk×k is i.i.d.
standard normal. Further, ΣNT has full row rank and thus has a right inverse, i.e., NΣ−1.
Then, rank(TU) = rank(TMΣNT) 6 rank(TM). Further TM = TUΣ−1, and therefore
rank(TM) = rank(TUΣ−1) 6 rank(TU). Recall, TM is a m×k matrix of standard Gaussian
random variables and has a non-zero determinant with probability 1.

Next, κ(TU ∗) 6 κ(T)κ(U ∗). Note T is at least k + 1 × k and by Theorem 3.1 in [RV10],
with probability 1 − δ, σmin(T) > kδ. Similarly, by Proposition 2.4 [RV10], with probability
1 − 1/eΩ(1/δ), σmax(T) 6 km/δ. Union bounding over the two events, with probability at least
1− 1/poly(k), κ(T) 6 poly(k) and thus κ(TU ∗) 6 κ(U)k2m/δ.

Algorithmically, we sketch the samples TA such that they are of the form TU ∗f(V ∗X). By
Lemma 6.4.3, TU ∗ is a square matrix and has rank k. Since V is orthonormal, each column
of f(V ∗X) has entries that are i.i.d. max{N (0, 1), 0}. Note, the samples TA now fit the ICA
framework, the noise E = 0, and thus we can approximately recover U ∗, without even looking
at the matrix X . Here, we set ε = 1

poly(m,d,k,κ(U∗)) to get the desired running time. Recall, given
the polynomial depedence on 1/ε, we cannot recover U ∗ exactly.

Corollary 6.4.4. (Approximate Recovery using ICA.) Given A ∈ Rm×n,X ∈ Rd×n, and a

sketching matrix T ∈ Rk×m such that A = U ∗f(V ∗X) and for all i ∈ [k], j ∈ [m],
Ti,j ∼ N (0, 1), there exists an algorithm that outputs an estimator to T̂U ∗ such that ‖T̂U −
TU ∗ΠD‖F 6 1

poly(m,d,k,κ(U∗)) , where Π is a permutation matrix and D is strictly positive diag-

onal matrix. Further, the running time is poly (m, d, k, κ(U ∗)).

Exact Recovery: By Corollary 6.4.4, running ICA on TA = TU ∗f(V ∗X), we recover TU ∗

approximately up to a permutation and positive scaling of the column. Note that we can disregard
the permutation by simply assuming V has been permuted to agree with the Π. Let T̂U be our
estimate of TU ∗. We then restrict our attention to the first ` = poly (d,m, k, κ(U ∗), κ(V ∗))
columns of X , and call this submatrix X , and A = U ∗f(V ∗X). We then multiply TA by the
inverse (T̂U)−1, which we show allows us to recover D−1f(V ∗X) up to additive ε error where
ε is at most O

(
1

poly(d,m,k,κ(U∗),κ(V ∗)

)
. Since the sketch T will preserve rank, TU will have an

inverse, and thus (T̂U) will be invertible (we can always perturbe the entries of our estimate
by 1/poly(n) to ensure this). The inverse can then be computed in a polynomial number of
arithmetic operations via Gaussian elimination. By a simple thresholding argument, we show

392

that after rounding off the entries below τ = 1/poly(`) in (T̂U)−1TA, we in fact recover the
exact sign pattern of f(V ∗X).

Our main insight is now that the only sparse vectors in the row space of A are precisely the
rows (up to positive a scaling) of f(V ∗X). Specifically, we show that the only vectors in the
row span of U ∗f(V ∗X) which have the same sign and sparsity pattern as a row of f(V ∗X)
are positives scalings of the rows of f(V ∗X). Here, by sparsity pattern, we mean the subset
of entries of a row that are non-zero. Since each row of f(V ∗X) is non-negative, the sign and
sparsity patterns of f(V ∗X) together specify where the non-zero entries are (which are therefore
strictly positive).

Now after exact recovery of the sign pattern of f(V ∗X), we can set up a linear system to
find a vector in the row span of A with this sign pattern, thus recovering each row of f(V ∗X)
exactly. Critically, we exploit the combinatorial structure of ReLUs together with the fact that
linear systems can be solved in a polynomial number of arithmetic operations. This allows for
exact recovery of U ∗ thereafter. Recall that we assume the rows of V ∗ have unit length, which
removes ambiguity in the positive scalings used for the rows of V ∗ (and similarly the columns
of U ∗).

We begin by showing that the condition number of V ∗ is inversely proportional to the min-
imum angle between the rows of V ∗, if they are interpreted as vectors in Rd. This will allow
us to put a lower bound on the number of disagreeing sign patterns between rows of f(V ∗X)
in Lemma 6.4.6. We will then use these results to prove the uniqueness of the sign and sparsity
patterns of the rows of f(V ∗X) in Lemma 6.4.8.

Lemma 6.4.5. Let θmin ∈ [0, π] be the smallest angle between the lines spanned by two rows of

the rank k matrix V ∈ Rk×d which unit norm rows, in other words θmin = mini,j arccos(〈Vi,∗,Vj,∗〉)
where arccos takes values in the principle range [0, π]. Then κ(V) > c

θmin
for some constant c.

Proof. Let i, j be such that arccos(|〈Vi,∗,Vj,∗〉|) = θmin. Let V − be the pseudo-inverse of V .
Since V has full row rank, it follows that V (V −)T = Ik, thus 〈Vi,∗,V

−
j,∗〉 = 0 and 〈Vj,∗,V

−
j,∗〉 =

1. The first fact implies that V −j,∗ is orthonormal to Vi,∗, and the second that cos(θ(Vj,∗,V
−
j,∗)) =

(‖V −j,∗‖2)−1 where θ(Vj,∗,V
−
j,∗) is the angle between Vj,∗ and V −j,∗.

Now let x = Vi,∗, y = V −j,∗/‖V −j,∗‖, z = Vj,∗. Note that x, y, z are all points on the unit
sphere in r dimensions, and since scaling does not effect the angle between two vectors, we have
θ(x, y) = θ(Vi,∗,V

−
j,∗). We know θ(x, y) = π/2, and θmin = θ(x, z), so the law of cosines gives

cos(θ(y, z)) = 2−‖y−z‖2
2

2 . We have ‖y − z‖2 = ‖(y − x)− (z − x)‖2 > |
√

2− ‖z − x‖2|. Again

393

by the law of cosines, we have ‖z − x‖2
2 = 2− 2 cos(θmin). Since cos(x) ≈ 1−Θ(x2) for small

x (consider the Taylor expansion), it follows that ‖z − x‖2 6 c′θmin for some constant c′. So
‖y − z‖2

2 > 2− 2
√

2‖z − x‖2 + ‖z − x‖2
2 > 2− c′′θmin for another constant c′′. It follows that

cos(θ(y, z)) 6 c′′θmin

2

From which we obtain ‖V −j,∗‖2 > 2/(c′′θmin). It follows that σ1(V −) > ‖eTj,∗V −‖2 = ‖V −j,∗‖2 >
2

c′′θmin
. Since the rows of V have unit norm, we have σ1(V) > 1, so κ(V) = σ1(V)σ1(V −) >

2
c′′θmin

which is the desired result setting c = 2
c′′

.

Lemma 6.4.6. Fix any matrix V ∈ Rk×d with unit norm rows. Let X ∈ Rd×` be an i.i.d.

Gaussian matrix for any ` > tpoly(k, κ), where κ = κ(V). For every pair i, j ∈ [k] with i 6= j,

with probability 1− 1/poly(`) there are at least t coordinates p ∈ [`] such that (V X)i,p < 0 and

(V X)j,p > 0.

Proof. We claim that Pr[(V X)i,p < 0, (V X)j,p > 0] = Ω(1/κ). To see this, Consider the
2-dimensional subspace H spanned by Vi,∗ and Vj,∗. Let θ be the angle between Vi,∗ and Vj,∗

in the plane H . Then the event in question is the event that a random Gaussian vector, when
projection onto this plane H , lies between two vectors with angle θ between each other. By the
rotational invariance and spherical symmetric of Gaussians (see, e.g. [Bry12]), this probability
is θ

2π . Since κ(V) > c
θmin

= Ω(1
θ
) by Lemma 6.4.5, it follows that a random gaussian splits Vi,∗

and Vj,∗ with probability Ω(1/κ) as desired.

Thus on each column p of f(V X), f(Vi,∗X∗,p) < 0 and f(Vj,∗X∗,p) > 0 with probability
at least Ω(1/κ). Using the fact that the entries in separate columns of V X are independent, by
Chernoff bounds, with probability greater than 1− k2 exp(Ω(`/κ)) > 1− 1/poly(`), after union
bounding over all O(k2) ordered pairs i, j, we have that f(Vi,∗X) < 0 and f(Vj,∗X) > 0 on at
least Ω(`/κ) > t coordinates.

Lemma 6.4.7. Let Zi be the i-th column of (V X), where V has rank k. Then the covariance of

the coordinates of Zi are given by the k × k posiitve definite covariance matrix V V T , and the

joint density function is given by:

p(Zi,1, . . . ,Zi,k) =
exp

(
− 1

2ZT
i (V V T)−1Zi

)
√

(2π)k det(V V T)

394

In particular, the joint probability density of any subset of entries of V X is smooth and every-

where non-zero.

Proof. Since Zi = V (X T
i)T , where X T

i are i.i.d. normal random variables, t is well known
that the covariance is given by V V T [Gut09], which is positive definite since V has full row
rank. These are sufficient conditions ([Ash]) for the pdf to be given in the form as stated in the
Proposition. Since distinct columns of V X are statistically independent (as they are generated
by separate columns of X), the last statement of the proposition follows.

The following Lemma demonstrates that the the only vectors in the row span of f(V ∗X)
with the same sign and sparsity pattern as f(V ∗X)i,∗, for any given row i, are positive scalings
of f(V ∗X)i,∗. Recall that a sparsity pattern S ⊆ [n] of a vector y ∈ Rn is just set of coordinates
i ∈ S such that yi > 0.

Lemma 6.4.8. Let X ∈ Rd×` be an i.i.d. Gaussian matrix for any ` > tpoly(k, κ(V ∗)). Let S

be the sparsity pattern of a fixed row f(V ∗X)i,∗, and let ∅ (S ′ ⊆ S. Then w.h.p. (in t), the

only vectors in the row span of f(V ∗X) with sparsity pattern S ′, if any exist, are non-zero scalar

multiples of f(V ∗X)i,∗.

Proof. Suppose Z = wf(V ∗X) had sparsity pattern S ′ and was not a scaling of f(V ∗X)i,∗.
Then w is not 1-sparse, since otherwise it would be a scaling of a another row of f(V ∗X), and
by Proposition 6.4.6 no row’s sparsity pattern is contained within any other row’s sparsity pattern.
Let W be f(V ∗X) restricted to the rows corresponding to the non-zero coordinates in w, and
write Z = wW (where now w has also been restricted to the appropriate coordinates). Since
W has at least 2 rows, and since the sparsity pattern of wW is contained within the sparsity
pattern of f(V ∗X)i,∗, by Proposition 6.4.6, taking t = 10k2, we know that there are at least 10k2

non-zero columns of W for which wW is 0, so let W ′ be the submatrix of all such columns.

Now for each row W ′
i of W ′ with less than k non-zero entries, remove this row W ′

i and
also remove all columns of W ′ where W ′

i was non-zero. Continue to do this removal iteratively
until we obtain a new matrix W ′′ where now every row has at least k non-zero entries. Observe
that the resulting matrix W ′′ has at least 9k2 columns. If there are no rows left, then since we
only removed k columns for every row removed, this means there were at least 9k2 columns of
W ′ which contained only zeros, which is a contradiction since by construction the columns of
W ′ were non-zero to begin with. So, let k′ 6 k be the number of rows remaining in W ′′. Note

395

that since the rows we removed were zero on the columns remaining in W ′′, there must still be a
vector w′, which in particular is w restricted to the rows of W ′′, which has no zero-valued entries
and such that w′W ′′ = 0.

Now observe once we obtain this matrix W ′′, note that we have only conditioned on the
sparsity pattern of the entries of W ′′ (over the randomness of the Gaussians X), but we have not
conditioned on the values of the non-zero entries of W ′′. Note that this conditioning does not
change the continuity of the joint distributions of the columns of W ′′, since this conditioning
is simply restricting the columns to the non-zero intersection of half spaces which define this
sign pattern. Since the joint density function of the columns of V X is non-zero on all of Rk by
Lemma 6.4.7, it follows that, after conditioning, any open set in this intersection of half spaces
which defines the sparsity pattern of W ′′ has non-zero probability measure with respects to the
joint density function.

Given this, the argument now proceeds as in Lemma 6.2.4. Since each row of W ′′ has at least
k non-zero entries, we can find a square matrix W † ∈ Rk′×k′ obtained by a taking a subset of
k′ < 9k2 columns of W ′′ and permuting them such that the diagonal of W † has a non-zero sign
pattern. After conditioning on the sign pattern so that the diagonal is non-zero, the determinant
det(W †) of W † is a non-zero polynomial in s random variables with k′ 6 s 6 (k′)2. By Lemma
6.4.7, the joint density function of these s variables is absolutely continuous and everywhere non-
zero on the domain. Here the domain Ω is the intersection of half spaces given by the sign pattern
conditioning.

Since Ω is non-empty, it has unbounded Lebesgue measure in Rs. Since det(W †) is a
non-zero polynomial in s real variables, it is well known that det(W †) cannot vanish on any
non-empty open set in Rs (see e.g. Theorem 2.6 of [Con], and note the subsequent remark on
replacingCs withRs). It follows that the set of zeros of det(W †) contain no open set ofRs, and
thus has Lesbegue measure 0 in Ω. Integrating the joint pdf of the s random variables over this
subset of measure 0, we conclude that the probability that the realization of the random variables
is in this set is 0. So the matrix W ′′ has rank k′, and so w′W ′′ = 0 is impossible, a contradiction.
It follows that Z is a scaling of a row of f(V ∗X) as needed.

We will now need the following perturbation bounds for the pseudo-inverse of matrices.

Proposition 6.4.9 (Theorem 1.1 [MZ10]). Let B† denote the Moore–Penrose Pseudo-inverse of

B, and let ‖B‖2 denote the operator norm of B. Then for any E we have

‖(B + E)† −B†‖F 6
√

2 max
{
‖B†‖2

2, ‖(B + E)†‖2
2

}
‖E‖F

396

We prove the following corollary which will be useful to us.

Corollary 6.4.10. For any B,E and 1
4 > ε > 0 with ‖B‖2 > 1, ‖E‖F 6 ε

κ2 and where κ = κ(B)
is the condition number of B. Then we have

‖(B + E)† −B†‖F 6 O(ε)

and moreover, if B has full column rank, then

‖(B + E)†B− I‖F 6 O(‖B‖2ε)

Proof. We have ‖(B+E)†−B†‖F 6 max
{
‖B†‖2

2, ‖(B + E)†‖2
2

}
O(ε)
κ2 by applying Proposition

6.4.9. In the first case, this is at most 1
σ2

min(B)
O(ε)
κ2 = O(ε) as stated. Here we used the fact

that ‖B‖2 = σmax(B) > 1, so 1/σmin(B) 6 κ. In the second case of the max, we have
‖(B + E)† −B†‖F 6 ‖(B + E)†‖2

2
O(ε)
κ2 = σ−2

min(B + E)O(ε)
κ2 . By the Courant-Fisher theorem 2,

using that ‖E‖2 6 ‖E‖F 6 1/(4κ), we have

σmin(B + E) > inf
x:‖x‖2=1

‖x(B + E)‖2 > inf
x:‖x‖2=1

∣∣∣ ‖xB‖2 − ‖xE‖2

∣∣∣
> σmin(B)− 1

4κ > σmin(B)/2 > 1/(2κ)

where the minimum is taken over vectors x with the appropriate dimensions. Thus in both cases,
we have ‖(B + E)† −B†‖F 6 O(ε), so

‖(B + E)†B− I‖F = ‖((B + E)† −B†)B‖F 6 ‖B‖2O(ε)

We now are ready to complete the proof of the correctness of Algorithm 3

Theorem 129. (Exact Recovery for Orthonormal V ∗.) Given A = U ∗f(V ∗X), for rank k-

matrices U ∗ ∈ Rm×k,V ∗ ∈ Rk×d where V ∗ is orthonormal and X ∈ Rd×n which is i.i.d.

Gaussian with n = poly(d, k,m, κ(U ∗), κ(V ∗)), there is a poly(n)-time algorithm which recov-

ers U ∗,V ∗ exactly with probability 1− 1
poly(d,m,k) .

Proof. By Corollary 6.4.4, after sketching A by a Gaussian matrix T ∈ Rk×m and running
ICA on TA in poly(d,m, k, κ(U ∗)) time, we recover T̂U ∗ such that ‖T̂U − TU ∗ΠD‖F 6

2See https://en.wikipedia.org/wiki/Min-max_theorem

397

https://en.wikipedia.org/wiki/Min-max_theorem

1
poly(d,k,m,κ(U∗),κ(V ∗)) for a sufficiently high constant-degree polynomial, such that Π is a permuta-
tion matrix and D is strictly positive diagonal matrix. We can disregard Π by assuming the rows
of V ∗ have also been permuted by Π, and we can disregard D by pulling this scaling into V ∗

(which can be done since it is a positive scaling). Thus ‖T̂U −TU ∗‖F 6 1
poly(d,k,m,κ(U∗),κ(V ∗))

Observe now that we can assume that 1 6 ‖TU ∗‖2 6 2 by guessing a scaling factor c to
apply to A before running ICA. To guess this scaling factor, we can find the largest column
(in L2) y of TA, and note that y = (TU ∗)f(V ∗X∗,j) for some j. Since ‖f(V ∗X∗,j)‖2 6

O(
√

log(n))d with high probability for all j ∈ [n] (using the Gaussian tails of X), it follows that

‖y‖2 6 σmax(TU ∗)O(
√

log(n))d. Since with w.h.p there is at least one column of f(V ∗X) with
norm at least 1/poly(n), it follows that ‖y‖2 > σmin(TU ∗)/poly(n) > σmax(TU∗)

poly(n,κ) . Thus one can

make log
(
poly(n, κ, d)

)
= O(log(n)) guesses in geometrically increasing powers of 2 between

‖y‖2/O(
√

log(n))d and ‖y‖2poly(n, κ) to find a guess such that ‖cTU ∗‖2 ∈ (1, 2) as desired.
This will allow us to use Corollary 6.4.10 in the following paragraph.

Now let T̂U
†

be the pseduo-inverse of T̂U , and let A = U ∗f(V ∗X) where X is the first
poly(d, k,m, κ(U ∗), κ(V ∗)) columns of X . We now claim that the sign pattern of (T̂U)†TA =
T̂U

†
TU ∗f(V ∗X) is exactly equal to that of f(V ∗X) after rounding all entries of with value

less than 1/poly(`) to 0. Note that since TU ∗ is full rank, it has an inverse (which is given by the
pseudoinverse (TU ∗)†. Let Z be the resulting matrix after rounding performing this rounding
to T̂U

†
TA′. We now apply Corollary 6.4.10, with TU ∗ = B and T̂U = B + E. Since we

guesses σmax(TU ∗) up to a factor of 2 and normalized T̂U by it, it follows that the entries of
the diagonal matrix D are all at most 2 and at least 1/(2κ(TU ∗)), and then using the fact that
‖f(V ∗X)‖F < ‖V ∗X‖F 6

√
`‖V ∗‖F 6

√
`k w.h.p. in ` (using well-known upper bounds

on the spectral norm of a rectangular Gaussian matrix, see e.g. Corollary 5.35 if [Ver10b]) we
obtain

‖Z−Df(V ∗X)‖F = ‖
(
T̂U

†(TU ∗)− I
)
Df(V ∗X ′)‖F

6
1

poly (d, k,m, κ(U ∗), κ(V ∗))

Note that algorithmically, instead of computing the inverse T̂U
†
, we can first randomly per-

turb T̂U by an entry-wise additive 1/poly(n) to ensure it is full rank, and then compute the true
inverse, which can be done via Gaussian elimination in polynomially many arithmetic opera-
tions. By the same perturbational bounds, our results do not change when using the 1/poly(n)
perturbed inverse, as opposed to the original pseudo-inverse.

398

Now since the positive entries of Df(V ∗X) have normal Gaussian marginals, and D is
a diagonal matrix which is entry-wise at most 2 and at least 1/(2κ(TU ∗)), the probability
that any non-zero entry of f(V ∗X) is less than 1/poly(`) is at most 2κ(TU ∗)/poly(`), and
we can then union bound over poly(d, k,m, κ) such entries in X . Note that by Lemma 6.4.3,
κ(TU ∗) < poly(k, d,m)κ(U ∗) w.h.p. in k, d,m, so poly(`) >> κ(TU ∗). Conditioned on this,
with probability 1 − 1/poly(d,m, k, κ) for sufficiently large ` = poly(d, k,m, κ), every strictly
positive entry of Df(V ∗X), and therefore of f(V ∗X), is non-zero in Z, and moreover, and
every other entry will be 0 in Z, which completes the claim that the sign and sparsity patterns of
the two matrices are equal.

Given this, for each i ∈ [k] we can then solve a linear system to find a vector wj such
that (wjA)p = 0 for all p not in the sparsity pattern of Zi,∗. In other words, the sparsity pat-
tern of (wjA) must be contained in the sparsity pattern of Zi,∗, which is the sparsity pattern of
f(V ∗X)i,∗ be the prior argument. By Lemma 6.4.8, the only vector in the row span of A (which
is the same as the row span of f(V ∗X) since U ∗ is full rank) which has a non-zero sparsity
pattern contained in that of f(V ∗X)i,∗ must be a non-zero scaling of f(V ∗X)i,∗. It follows that
there is a unique wj , up to a scaling, such that wjA is zero outside of the sparsity pattern of
f(V ∗X)i,∗. Since at least one of the entries r of wj is non-zero, there exists some scaling such
that wjA is zero outside of the sparsity pattern of f(V ∗X)i,∗ and (wj)r = 1 (where (wj)r) is the
r-th coordinate of wj). Since the first constraint is satisfied uniquely up to a scaling, it follows
that there will be a unique solution wrj to at least one of the r ∈ [k] linear systems in Step 5 of Al-
gorithm 3, which will therefore be optained by the linear system. This vector wj we obtain from
Steps 5 and 6 of Algorithm 3 will therefore be such that wjA is a non-zero scaling of f(V ∗X)i,∗.

Then in Step 7 of Algorithm 3, we construct the matrix W , and flip the signs appropriately
so that each row of W is a strictly positive scaling of a row of f(V ∗X). We then solve the linear
system (Wi,∗)Si = Vi,∗X Si for the unknowns V , which can be done with a polynomial number
of arithmetic operations via Gaussian elimination. Recall here that Si is the set of coordinates
where Wi,∗, and therefore f(V ∗i,∗X), is non-zero. Since at least 1/3 of the signs in a given row
i will be positive with probability 1− 2−Ω(`) by Chernoff bounds, restricting to this subset Si of
columns gives the equation Wi,∗ = V ∗i,∗X Si . Conditioned on Si having at least d columns, we
have that X Si is full rank almost surely, since it is a matrix of Gaussians conditioned on the fact
that every column lies in a fixed halfspace. To see this, apply induction on the columns of X S′i

,
and note at every step i < d, the Lesbegue measure of the span of the first i columns is 0 in this
halfspace, and thus the i+1 column will not be contained in it almost surely. It follows that there
is a unique solution Vi,∗ for each row i, which must therefore be the corresponding row of V ∗ (we

399

normalize the rows of Vi,∗ to have unit norm so that they are precisely the same). So we recover
V ∗ exactly via these linear systems. Finally, we can solve the linear system A = Uf(V ∗X) for
the variables U to recover U ∗ exactly in strongly polynomial time. Note that this linear system
has a unique solution, since f(V ∗X) is full rank w.h.p. by Lemma 6.2.4, which completes the
proof.

6.4.2 General Algorithm

We now show how to generalize the algorithm from the previous sub-section to handle non-
orthonormal V ∗. Observe that when V ∗ is no longer orthonormal, the entries within a column
of V ∗X are no longer independent. Moreover, due to the presence of the non-linear function
f(·), no linear transformation will exist which can make the samples (i.e. columns of f(V ∗X))
independent entry-wise. While the entries do still have Gaussian marginals, they will have the
non-trivial covariance matrix V ∗(V ∗)T 6= Ik. Thus it is no longer possible to utilize previously
developed techniques from independent component analysis to recover good approximations to
U ∗. This necessitates a new approach.

Our starting point is the generative model considered by Janzamin et. al. [JSA15], which
matches our setting, i.e. A = U ∗f(V ∗X). The main idea behind this algorithm is to construct
a tensor that is a function of both A,X and then run a tensor decomposition algorithm to re-
cover the low-rank components of the resulting tensor. While computing a tensor decomposition
is NP-hard in general [HL13], there is a plethora of work on special cases, where computing
such decompositions is tractable [BCMV14, SWZ16, WA16, GVX14, GM15, BM16]. Tensor
decomposition algorithms have recently become an invaluable algorithmic primitive and found
a tremendous number of applications in statistical and machine learning tasks [JSA15, JSA14,
GLM17, AGHK14a, BKS15].

A key step is to construct a non-linear transform of the input by utilizing knowledge about
the underlying pdf for the distribution of X , which we denote by p(x). The non-linear function
considered is the so called Score Function, defined in [JSA14], which is the normalized m-th
order derivative of the input probability distribution function p(x).

Definition 6.4.11. (Score Function.) Given a random vector x ∈ Rd such that p(x) describes

the corresponding probability density function, the m-th order score function Sm(x) ∈ ⊗mRd is

defined as

Sm(x) = (−1)m∇
(m)
x p(x)
p(x)

400

The tensor that Janzamin et. al. [JSA14] considers is the cross moment tensor between A
and S3(X). This encodes the correlation between the output and the third order score function.
Intuitively, working with higher order tensors is necessary since matrix decompositions are only
identifiable up to orthogonal components, whereas tensor have identifiable non-orthogonal com-
ponents, and we are specifically interested in recovering approximations for non-orthonormal
V ∗. Computing the score function for an arbitrary distribution can be computationally challeng-
ing. However, as mentioned in Janzamin et. al. [JSA14], we can use orthogonal polynomials
that help us compute the closed form for the score function S(m)(x), in the special case when
x ∼ N (0, I).

Definition 6.4.12. (Hermite Polynomials.) If the input is drawn from the multi-variate Gaussian

distribution, i.e. x ∼ N (0, I), then S(m)(x) = Hm(x), where Hm(x) = (−1)m∇(m)
x p(x)

p(x) and

p(x) = 1
(
√

2π)d e
−
‖x‖22

2 .

Since we know a closed form for the m-th order Hermite polynomial, the tensor S(m) can be
computed efficiently. The critical structural result in the algorithm of [JSA15] is to show that
in expectation, the cross moment of the output and the score function actually forms a rank-k
tensor, where the rank-1 components capture the rows of V ∗. Formally,

Lemma 6.4.13. (Generalized Stein’s Lemma [JSA15].) Let A,X be input matrices such that

A = U ∗f(V ∗X), where f is a non-linear, thrice differentiable activation function. Let S3(x) be

the 3-rd order score function from Definition 6.4.11. Then,

T̃ = E
[
n∑
i=1

A∗,i ⊗ S3(X∗,i)
]

=
k∑
j=1

E
x

[f ′′′(V ∗x)] U ∗∗,j ⊗ V ∗j,∗ ⊗ V ∗j,∗ ⊗ V ∗j,∗

where f ′′′ is the third derivative of the activation function and x ∼ p(x).

Note, T̃ is a 4-th order tensor and can be constructed from the input A and X . The first mode
of T̃ can be contracted by multiplying it with a random vector θ, therefore,

E
[
n∑
i=1

A∗,i ⊗ S3(X∗,i)
]

=
k∑
j=1

λjV
∗
j,∗ ⊗ V ∗j,∗ ⊗ V ∗j,∗

where λj = Ex [f ′′′(V ∗x)] 〈U ∗∗,j, θ〉. Therefore, if we could recover the low-rank components of
T̃ we would be obtain a approximate solution to V ∗. The main theorem in [JSA15] states that
under a set of conditions listed below, there exists a polynomial time algorithm that recovers an

401

additive error approximation to V ∗. Formally,

Theorem 130. (Approximate recovery [JSA15]) Let A ∈ Rm×n, X ∈ Rd×n be inputs such

that A = U ∗f(V ∗X) + η, where f is a non-linear thrice differentiable activation function,

U ∗ ∈ Rm×k has full column rank, V ∗ ∈ Rk×d has full row rank, for all i ∈ [n], X∗,i ∼ N (0, I)
and η is mean zero sub-Gaussian noise with variance σnoise. Then, there exists an algorithm

that recovers V̂ such that ‖V̂ −DΠV ∗‖F 6 ε, where D is a diagonal ±1 matrix and Π is a

permutation matrix. Further, the algorithm runs in time

poly
(
m, d, k,

1
ε
,E
[
‖M3(x)M3(x)T‖2

]
,E
[
‖S2(x)S2(x)T‖2

]
,

1
λmin

, λmax,
λ̃max

λ̃min
, κ(V ∗), σnoise

)

where S3 is the 3-rd order score function, M3(x)Rd×d2
is the matricization of S3, λj = Ex [f ′′′(V ∗x)]

〈U ∗∗,j, θ〉, λ̃j = Ex [f ′′(V ∗x)] 〈U ∗∗,j, θ〉 ,κ(V ∗) is the condition number, σnoise is the variance of η

and. Note, in the case whereX∗,i ∼ N (0, I), E
[
‖M3(x)M3(x)T‖2

]
= O(d3) and E

[
‖S2(x)S2(x)T‖2

]
=

O(d2).

Remark 131. We only use the Whitening, Tensor Decomposition and Unwhitening steps from
Janzamin et. al. [JSA15], and therefore the sample complexity and running time only depends
on Lemma 9 and Lemma 10 in [JSA15].

However, there are many technical challenges in extending the aforementioned result to our
setting. We begin with using the estimator from Theorem 130 in the setting where the noise, η,
is 0. The first technical challenge is the above theorem requires the activation function f to be
thrice diffrentiable, however ReLU is not. To get around this, we use a result from approximation
theory to show that ReLU can be well approximated every where with a low-degree polynomial.

Lemma 6.4.14. (Approximating ReLU [GK17].) Let f(x) = max(0, x) be the ReLU function.

Then, there exists a polynomial p(x) such that

sup
x∈[−1,1]

|f(x)− p(x)| 6 η

and deg(p) = O(1
η
) and p([−1, 1]) ⊆ [0, 1].

This polynomial is at least thrice differentiable and can be easily extended to the domain we
care about using simple transformations. We assume that the samples we observe are of the form
U ∗p(V ∗X) corrupted by small adversarial error. Formally, the label matrix A can be viewed as

402

being generated via A = U ∗p(V ∗X) + Z, where Z = U ∗
(
f(V ∗X)− p(V ∗X)

)
. We note that

we only use the approximation as an analysis technique and show that we can get an approximate
solution to V ∗. First, we make a brief remark regarding the normalization of the entries in A.

Remark 132. Observe in both the noiseless and noisy cases, the latter being where A = U ∗f(V ∗X)+
E where E is i.i.d. mean 0 with variance σ2, that by scaling A by 1/‖A∗,max‖2, where ‖A∗,max‖2

is the largest column norm of A, we can ensure that the resulting U ∗ has ‖U ∗‖2 < mmax{1, σ}κ(U ∗),
where σ2 is the variance of the noise E (in the noisy case). To see why this is true, suppose
this were not the case. Observe that w.h.p. at least half of the columns U ∗f(V ∗X) which
will have norm at least ω(1)σ−1

min(U ∗) (since w.h.p. half the columns of f(V ∗X) have norm
ω(1)), thus if ‖U ∗‖2 > mmax{1, σ}κ(U ∗) after normalization, then then at least half of the
normalized columns of Uf(V ∗X) will have norm ω(mmax{1, σ}). By Markov inequality
and a Chernoff bound, strictly less than 1/4 of the columns of the original E can have norm
ω(mσ) w.h.p., and since the normalized E is strictly smaller, by triangle inequality there will
be a column of A = U ∗f(V ∗X) + E after normalization with larger than unit norm, a con-
tradiction. Thus we can assume this normalization, giving η << 1

‖U∗‖2
for sufficiently small

η = O(1
poly(n,d,m,κ(U∗),κ(V ∗),σ)).

We now set η in Lemma 6.4.14 to be 1
poly(n,d,m,κ(U∗),κ(V ∗),σ) . By the operator norm bound

of Lemma 6.4.18, we know that ‖V ∗X‖F = O(
√
nk), w.h.p., so ‖Z‖F = O(‖U ∗‖2

√
nkη) =

O(1
poly(n)) as needed. We again construct the same tensor, T̃ = E [∑n

i=1 A∗,i ⊗ S3(X∗,i)]. Our
analysis technique is now as follows. We add a light N (0, 1) random matrix to our input A,
and argue that the variation distance between the distribution over inputs A (for a fixed X),
between the case of A using f and A using the polynomial p as a non-linear activation, is at
most 1/poly(n). As a result, the input using ReLUs is statistically indistinguishable in variation
distance from samples generated using the polynomial approximation to the ReLU function.
Thus, any algorithm that succeeds on such a polynomial approximation must also succeed on the
ReLU. Therefore, the algorithm from Theorem 130 still holds for approximate recovery using
ReLUs. Formally,

Lemma 6.4.15. The variational distance between n samples of the form A = U ∗f(V ∗X) + G,

where the columns of G are N (0, Id) and X is fixed, and A′ = U ∗p(V ∗X) + G + Z where

‖Z‖F = 1
poly(n) is at most 1

poly(n) .

Proof. Given two independent GaussianN (µ1, I),N (µ2, I), a standard result in probability the-
ory is that their variations distance is Θ(‖µ1−µ2‖2) [Das08]. Thus the variation distance between

403

the i-th column of A and A′ is O(‖Z∗,i‖2). Since the columns of the input are independent, the
overall distribution is a product distribution so the variation distance adds. Thus the total varia-
tion distance is at most O(‖Zi,∗‖2

F) = 1
poly(n) as needed.

It follows from the above lemma that the algorithm corresponding to Theorem 130 cannot dis-
tinguish between receiving samples from the ReLU distribution with artificially added Gaussian
noise or the samples from the polynomial approximation with small adversarial noise. There-
fore, the algorithm recovers an approximation to the underlying weight matrix V ∗ in polynomial
time. Formally, if we have an algorithm which can solve a class of problems coming from a
distributionD with failure probability at most δ, then it can solve problems coming a distribution
D′ with failure probability at most O(δ + δ′), where δ′ is the variational distance between D and
D′. Since δ′ in our case is 1

poly(n) , we can safely ignore this additional failure probability going
forward. This is summarized in the following lemma, which follows directly from the definition
of variation distance. Namely, that the probability of any event in one distribution can change
by at most the variation distance in another distribution, in particular the event that an algorithm
succeeds on that distribution.

Lemma 6.4.16. Suppose we have an algorithmA that solves a problem P taken from a distribu-

tion D over Rn with probability 1− δ. Let D′ be a distribution over Rn with variation distance

at most δ′ > 0 from D. Then if P ′ is drawn from D′, algorithm A will solve P ′ with probability

1−O(δ + δ′).

Corollary 6.4.17. (Approximate ReLU Recovery.) Let A ∈ Rm×n, X ∈ Rd×n be inputs such

that A = U ∗f(V ∗X), where f is the ReLU activation function, U ∗ ∈ Rm×k has full column

rank, V ∗ ∈ Rk×d has full row rank, for all i ∈ [n], X∗,i ∼ N (0, I). Then, there exists an

algorithm that recovers V̂ such that ‖V̂ − DΠV ∗‖F 6 1
poly(n,m,d,κ(U∗)) , where D is a diag-

onal ±1 matrix and Π is a permutation matrix. Further, the running time of this algorithm is

poly(n,m, d, κ(U ∗)).

First observe that we can assume WLOG that Π = I, in other words that we recover an
approximate V ∗ only up to its signs and not a permutation. We do this by simply (implicitly)
permuting the rows of V ∗ to agree with our permutation, and permuting the columns of U ∗ by
the same permutation. The resulting A is identical, and so we can assume that we know the
permutation already.

404

Algorithm 4 : ExactNeuralNet(A,X)

Input: Matrices A ∈ Rm×n and X ∈ Rd×n such that each entry in X ∼ N (0, 1).

1. Let S3(x) = H3(x), where H3(x) = −∇(3)
x p(x)
p(x) is the 3-rd order Hermite polynomial

and and p(x) = 1
(
√

2π)d e
−
‖x‖22

2 .

2. Let A′ = A + G where G ∈ Rm×n and Gi,j ∼ N (0, 1).

3. Compute the 4-th order tensor T̃ = 1
n

∑n
i=1 A′∗,i ⊗ S3(X∗,i). Collapse the first mode

using a random vector θ. By Lemma 6.4.13, T̃ (θ, I, I, I) = ∑k
j=1 λjV

∗
j,∗⊗V ∗j,∗⊗V ∗j,∗,

where λj = Ex [f ′′′(V ∗x)] 〈U ∗∗,j, θ〉.

4. Compute a CP-decomposition of T̃ (θ, I, I, I) using Tensor Power Method correspond-
ing to Theorem 130, [JSA15], with accuracy parameter ε = 1

poly(d,m,κ(V),κ(U)) to obtain
V̂ such that ‖V̂ −DΠV ∗‖F 6 1

poly(d,m,κ(V),κ(U)) , where D is a diagonal ±1 matrix
and Π is a permutation matrix.

5. Run the Recovering Signs Algorithm (5) on V̂ , A and X to obtain V ∗.

6. Using the matrix V ∗ obtained above, set up and solve the following linear system for
the matrix U :

A = Uf(V ∗X) (6.1)

7. Let U ∗ be the solution to the above linear system.

Output: U ∗,V ∗.

Unfortunately, the ambiguity in signs resulting from the algorithm of Theorem 130 is a non-
trivial difficulty, and must be resolved algorithmically. This is due to the fact that the ReLU
is sensitive to negative scalings, as f(·) only commutes with positive scalings. Suppose the
diagonal of D of Corollary 6.4.17 is given by the coefficents ξi ∈ {1,−1}. Then in order to
recover the weights, we must recover the terms ξi, Naively trying each sign results in a running
time of 2k, which is no longer polynomial3. Thus, a considerably technical challenge will be to
show how to determine the correct scaling for each row even in the presence of noise. We begin

3We remark that some prior results [JSA15] were able to handle this ambiguity by considering only a restricted
class of smooth activation functions f(·) with the property that f(x) = 1 − f(−x) for all x ∈ R. Using affine
transformations after application of the ReLU, this sign ambiguity for such activation functions can be accounted
for. Since firstly the ReLU does not satisfy this condition and is non-trivially sensitive to the signs of its input,and
secondly we are restricting to optimization over networks without affine terms, a more involved approach to dealing
with sign ambiguity is required (especially for the noisy case).

405

with the case where there is no noise.

Recovering V ∗ from the Tensor Decomposition in the Noiseless Case. Recall that the ten-
sor power method provides us with row vectors vi such that ‖vi − ξiV

∗
i,∗‖2 6 ε where ε =

O
(

1
poly(d,m,k,κ(U∗),κ(V ∗))

)
for ξi ∈ {V ∗i,∗,−V ∗i,∗}. Thus, the tensor power method gives us a noisy

version of either V ∗i,∗ or −V ∗i,∗, however we do not know which. A priori, it would require 2k

time to guess the correct signs of the k vectors vi. In this section, we show that using the com-
binatorial sparsity patterns in the row span of A, we can not only recover the signs, but recover
the matrix V ∗ exactly. Our procedure is detailed in Algorithm 5 below, which takes the outputs
vi from the tensor power method and returns the true matrix V ∗ up to a permutation of the rows.

406

Algorithm 5: Exact Recovery of V ∗

Input: Matrices A = U ∗f(V ∗X) + E, and vTi ∈ Rd s.t. ‖vi − ξiV ∗i,∗‖2 6 ε for some
ε = O

(
1

poly(d,m,κ(U∗),κ(V ∗))

)
for some unknown ξi ∈ {1,−1} and each i = 1, 2, . . . , k.

1. Let X ∈ Rd×` be the first ` = poly (k, d,m, κ(U ∗), κ(V ∗)) columns of X , and let
A = U ∗f(V ∗X).

2. Let τ = Θ(1/poly(`)) be a thresholding value. Define the row vectors v+
i , v

−
i ∈ R`

via

(v+
i)j =

f(viX)j if f(viX)j > τ

0 otherwise
v−i =

f(−viX)j if f(−viX)j > τ

0 otherwise

for j = 1, 2, . . . , `.

3. Let S+
i be the sign pattern of v+

i , and S−i be the sign pattern of v−i . For q ∈ {+,−},
solve define the r linear systems of equations in the variable wqi ∈ Rk, where the r-th
system is given by

(wqiA)j = 0 for j /∈ Sqi

(wqi)r = 1

Where (wqi)r is the r-th coordinate of (wqi). Then let (wqi) be the vector returned from
the first linear system which had a solution.

4. Let q′ be such that the above linear system returns a solution wq
′

i with the constraints
given by Sq

′

i (and at least one of the constraints of the form (wq
′

i)r = 1). We output
FAIL if this occurs for both q ∈ {+,−}.

5. Output Vi,∗ = zi/‖zi‖2 where zi is the solution to the following linear system.

for all j ∈ Sq
′

i (ziX)j = (wqiA)j

Output: V such that V = V ∗.

Before we proceed, we recall a standard fact about the singular values of random Gaussian
matrices.

Lemma 6.4.18 (Corollary 5.35 [Ver10b]). Let S ∈ Rk×n be a matrix of i.i.d. normal N (0, 1)

407

random variables, with k < 10n. Then with probability 1 − 2e−n/8, for all row vectors w ∈ R`

we have
√
n/3‖w‖2 6 ‖wS‖2 6 2

√
n‖w‖2

In other words, we have
√
n/3 6 σmin(S) 6 σmax(S) 6 2

√
n.

Theorem 133. With high probability in d,m, Algorithm 5 does not fail, and finds V such that

V = V ∗.

Proof. Fix a i ∈ [k], and WLOG suppose the input row vi is such that ‖vi − V ∗i,∗‖2 6 ε (i.e.
WLOG suppose ξi = 1). Then ‖viX − V ∗i,∗X‖2 6 O(1)

√
`ε by the operator norm bound of

Lemma 6.4.18, and since f can only decrease the distance between matrices, it follows that
‖f(viX)− f(V ∗i,∗X)‖2 6 O(1)

√
`ε . Similarly, we have ‖f(−viX)− f(−V ∗i,∗X)‖2 6 O(1)

√
`ε

.

We now condition on the event that none of the non-zero entries of f(V ∗i,∗X), and f(−V ∗i,∗X)
are less than τ = Θ(1/poly(`)) (where τ is as in Algorithm 5), which holds by a union bound
with probability 1− 1/poly(`) (high prob in d,m) and the fact that the non-zero entries of these
matrices have folded Gaussian marginals (distributed as the absolute value of a Gaussian). Given
this, it follows that the sign patterns S+

i and S−i of v+
i and v−i are precisely the sign patterns of

f(V ∗i,∗X) and f(−V ∗i,∗X) respectively. Since f(V ∗i,∗X) is in the row space of A, at least one of
the the linear systems run on S+

i will have a unique solution given by taking w+
i = ceTi U−1 for

an appropriate constant c 6= 0 such that one of the constraints of the form (w+
i)r = 1 is satisfied,

and where U−1 is the left inverse of U .

Now consider the matrix W such that W is V ∗ with the row −V ∗i,∗ appended at the end.
Then Applying the same argument as in Lemma 6.4.6, we see that the sign patterns of every pair
of rows of f(WX) disagrees on at least poly(k) signs w.h.p.. This is easily seen for all pairs
which contain one of {V ∗i,∗,−V ∗i,∗} by applying the exact argument of the lemma and noting that
the condition number of the matrix V ∗ does not change after negating the i-th row. The pair
{f(V ∗i,∗X), f(−V ∗i,∗X)} itself disagrees on all sign patterns, which completes the proof of the
claim. Note here that disagree means that, for any two rows yi, yj in question there are at least
poly(k) coordinates such that both yip > 0 and yjp < 0 and vice-versa. Thus no sparsity pattern is
contained within any other. Then by Lemma 6.4.8, it follows that with high probability the only
vector in the row span of f(WX) which has a sparsity pattern contained within S−i is a scalar
multiple of f(−V ∗i,∗X). Since no vector with such a sparsity pattern exists in the row span of
f(V ∗X), the linear system with constraints given by S−i will be infeasible with high probability.

408

We conclude from the above q′ = + in the fourth step of Algorithm 5, and that wq
′

i = w+
i is

such that the sign pattern of w+
i A is S+

i , which is also the sign pattern of f(V ∗i,∗X). Since w+
i A

is in the row span of f(V ∗X), again by Lemma 6.4.8, we conclude that w+
i A = cf(V ∗i,∗X) for

some constant c > 0 (we can enfoce c > 0 by flipping the sign of w+
i so that w+

i A has no strictly
negative entries). The linear system in step 5 solves the equation ziX S+

i
= w+

i AS+
i

, where X S+
i

is X restricted to the columns corresponding to indices in S+
i , and similarly with AS+

i
. This

will have a unique solution if X S+
i

has full row rank. Since an index is included in S+
i with

probability 1/2 independently, it follows that |S+
i | > `/3 > poly(d) with probability 1− 2−Ω(`).

A column of X S+
i

is just an i.i.d. Gaussian vector conditioned on being in a fixed half-space.
Then if the first i < d columns of X S+

i
are independent, they span a i− 1 dimensional subspace.

The Lebesgue measure of this subspace intersected with the halfspace has has measure 0, since
the half-space is d-dimensional and the subspace is i-dimensional. It follows that the probability
that the i + 1 column of X S+

i
is in this subspace is 0, from which we conclude by induction

that X S+
i

has rank d. Thus the solution zi is unique, and must therefore be equal to 1
c
V ∗i,∗ as we

also have V ∗i,∗XS+
i

= cw+
i A for c > 0. After normalizing zi to have unit norm, we conclude

Vi,∗ = zi/‖z‖2 = V ∗i,∗ as needed.

Given the results developed thus far, the correctness of our algorithm for the exact recovery
of U ∗,V ∗ in the realizable (noiseless) case follows immediately. Recall we can always assume
WLOG that ‖V ∗i,∗‖2 = 1 for all rows i ∈ [k].

Theorem 134. (Exact Recovery for Gaussian Input.) Suppose A = U ∗f(V ∗X) where U ∗ ∈
Rm×k,V ∗ ∈ Rk×d are both rank-k, and such that X ∈ Rd×n is i.i.d. Gaussian. Assume WLOG

that ‖V ∗i,∗‖2 = 1 for all rows i ∈ [k]. If n = Ω(poly(d,m, κ(U ∗), κ(V ∗))), then Algorithm 4

runs in poly(n)-time and recovers (U ∗)T ,V ∗ exactly up to a permutation of the rows w.h.p. (in

d,m).

Proof. By Theorem 130 and Corollary 6.4.17, we can recover DV ∗ up to ε = 1
poly(d,m,κ(U∗),κ(V ∗))

error in polynomial time, and then by Theorem 133 we can not only recover the signs ξi that con-
stitute the diagonal of D, but also recover V ∗ exactly (all in a polynomial number of arithmetic
operations). Given the fact that f(V ∗X) is full rank by Lemma 6.2.4, the solution U to the
linear system Uf(V ∗X) = A is unique, and therefore equal to U ∗. This linear system can be
solved in polynomial time by Gaussian elimination, and thus the runtime does not depend on the
bit-complexity of U ∗,V ∗ in the real RAM model. So the entire procedure runs in time polyno-

409

mial in the sample complexity n, which is polynomial in all relevant parameters as stated in the
Theorem.

6.4.3 Extension to Symmetric Input Distributions.

The independent and concurrent work of Ge et al. [GKLW18] demonstrates the existence of
an algorithm that approximately recovers U ∗, V ∗ in polynomial time, given that the input X is
drawn from a mixture of a symmetric probability distribution and a Gaussian. In this section,
we observe how our techniques can be combined with the those of [GKLW18] to achieve exact
recovery of U ∗,V ∗ for this broader class of distributions. Namely, that we can replace running
the tensor decomposition algorithm from [JSA15] with the algorithm of [GKLW18] instead to
obtain good approximations to U ∗,V ∗, and then use our results on the uniqueness of sparsity
patterns in the row-span of f(V ∗X) to obtain exactly recovery. Only minor changes are needed
in the proofs of our sparsity pattern uniqueness results (Lemmas 6.4.6 and 6.4.8) to extend them
to mixtures of symmetric distributions and Gaussians.

.

Definition 6.4.19. (Symmetric Distribution.) Let x ∈ Rd be a vector random variable and D be

a probability distribution function such that x ∼ D. Then, D is a symmetric distribution if for

all x, the probability of x and −x is equal, i.e. D(x) = D(−x).

Ge et. al. [GKLW18] define an object called the distinguishing matrix, denoted by M, and
require that the minimum singular value of M is bounded away from 0.

Definition 6.4.20. (Distinguishing Matrix [GKLW18].) Given an input distribution D the dis-

tinguishing matrix is defined as ND ∈ Rd2×(k2), whose columns are indexed by i, j such that

1 6 i < j 6 k and

NDi,j = 1
n

∑
k∈[n]

(V ∗i,∗X∗,k)(V ∗j,∗X∗,k)(X∗,k ⊗X∗,k)1
{

(V ∗i,∗X∗,k)(V ∗j,∗X∗,k) 6 0
}

Similarly an augmented distinguishing matrix MD ∈ Rd2×((k2)+1) has all the same columns as

ND with the last column being 1
n

∑
k∈[n]X∗,k ⊗X∗,k.

In order to bound the singular values of the distinguishing matrix, Ge et. al. consider input
distributions that are perturbations of symmetric distributions. In essence, given a desired target

410

distributionD, the algorithm of Ge et. al. can handle a similar distributionDγ , which is obtained
by mixing D with a Gaussian with random covariance.

More formally, the perturbation is paramaterized by γ ∈ (0, 1), which will define the mixing
rate. It is required that γ > 1

poly(N) in order to achieve polynomial running time (where poly(N)
is the desired running time of the algorithm). First, let G be an i.i.d. entry-wise N (0, 1) random
Gaussian matrix, which will be used to give the random the covariance. To generate Dγ , first
define a new distribution N ′G as follows. To sample a point from N ′G, first sample a Gaussian
g ∼ N (0, Id) and then output Gg. Then the perturbation Dγ of the input distribution D is a
mixture between D and N ′G. To sample X∗,i from Dγ , pick z as a Bernoulli random variable
where Pr[z = 1] = γ and Pr[z = 0] = 1− γ, then for i ∈ [n]

X∗,i ∼

D if z = 0

Gg otherwise

If the input is drawn from a mixture distribution Dγ , σmin(M) is bounded away from 0. We
refer the reader to Section 2.3 in [GKLW18] for further details. We observe that we can extend
the main algorithmic result therein with our results on exact recover to recover U ∗, V ∗ with
zero-error in polynomial time.

Theorem 135. (Informal Theorem 7 in [GKLW18].) Let U ∗ ∈ Rm×k,V ∗ ∈ Rk×d be full rank k

such that A = U ∗f(V ∗X), f is ReLU, and for all i ∈ [n] X∗,i ∼ Dγ as defined above. Let M be

the distinguishing matrix as defined in [GKLW18]. For all i ∈ [n], let Γ be such that ‖X∗,i‖2 6 Γ.

Then, there exists an algorithm than runs in time poly
(

Γ, 1/ε, 1/δ, ‖U ∗‖2,
1

σmin(E[X∗,iXT∗,i])
, 1
σmin(U∗) ,

1
σmin(M)

)
and with probability 1− δ outputs a matrix Û such that ‖Û −U ∗ΠD‖F 6 ε.

We use the algorithm corresponding to the aforementioned theorem to obtain an approxima-
tion Û to U ∗, and then obtain an approximation to f(V ∗X) by multiplying A on the left by
Û−1. The error in our approximation of V ∗ obtained via Û−1A is analyzed in Section 6.4.1.
Given this approximation of V ∗, we observe that running steps 4-8 of our Algorithm 3 recovers
V ∗,U ∗ exactly (see Remark 136 below). Note that the only part of Algorithm 3 that required
V ∗ to be orthonormal is step 3 which runs ICA, which we are replacing here with the algorithm
of Theorem 135.

Here we remove the random matrix T from Algorithm 3, as it is not needed if we are already
given an approximation Û of U ∗. Thus we proceed exactly as in Algorithm 3 by restricting
X ,A to ` = poly(d,m, k, 1

γ
, κ(U ∗), κ(V ∗)) columns X ,A, and then rounding the entries of

411

f̂(V X) = Û−1A below τ to 0. Finally, we solve the same linear system as in Algorithm 3 to
recover the rows of f(V ∗X) exactly, from which V ∗ and then U ∗ can be exactly recovered via
solving the final two linear systems in Algorithm 3. We summarized this formally as follows.

Corollary 6.4.21. (Exact Recovery for Symmetric Input.) Suppose A = U ∗f(V ∗X) where

U ∗ ∈ Rm×k,V ∗ ∈ Rk×d are both rank-k, for all i ∈ [n], X∗,i ∼ Dγ , and ‖X∗,i‖2 6 Γ. Assume

WLOG that ‖V ∗i,∗‖2 = 1 for all rows i ∈ [k]. If

n > poly
(
d,m, κ(U ∗), κ(V ∗),Γ, 1

γ
, ‖U ∗‖2,

1
σmin(E[X∗,iX T

∗,i])
,

1
σmin(U ∗) ,

1
σmin(M)

)

then there exists an algorithm that runs in poly(n)-time and recovers (U ∗)T ,V ∗ exactly up to a

permutation of the rows w.h.p. (in d,m).

Remark 136. To prove the correctness of Algorithm 5 on Dγ , we need only to generalize
Lemmas 6.4.6 and 6.4.8 which together give the uniqueness of sparsity patterns of the rows
of f(V ∗X) in the rowspan of A. We note that Lemma 6.4.6 can be easily generalized by first
conditioning on the input being Gaussian, which in Dγ occurs with γ probability, and then going
applying the same argument, replacing 1

κ
with γ

κ
everywhere. The only change in the statement

of Lemma 6.4.6 is that we now require ` = tpoly(k, κ, 1
γ
) to handle X ∼ Dγ .

Next, the proof of Lemma 6.4.8 immediately goes through as the argument in the proof
which demonstrates the determinant in question is non-zero only requires that the distribution
Dγ is non-zero everywhere in the domain. Namely, the proof requires that the support of Dγ is
all ofRd. Note, this condition is always the case for the mixtureDγ since Gaussians are non-zero
everywhere in the domain.

6.4.4 Necessity of poly(κ(V ∗)) Sample Complexity

So far, our algorithms for the exact recovery of U ∗,V ∗ have had polynomial dependency on the
condition numbers of U ∗ and V ∗. In this section, we make a step towards justifying the necessity
of these dependencies. As always, we work without loss of generality under the assumption that
‖Vi,∗‖2 = 1 for all rows i ∈ [k]. Specifically, demonstrate the following.

Lemma 6.4.22. Any algorithm which, when run on A,X , where that A = U ∗f(V ∗X), and X
has i.i.d. GaussianN (0, 1) entries, recovers (U ∗)T ,V ∗ exactly (up to a permutation of the rows)

with probability at least 1− c for some sufficiently small constant c > 0, requires n = Ω(κ(V ∗))

412

samples.

Proof. We construct two instances of A1 = U 1f(V 1X) and A2 = U 1f(V 2X) . Let

U 1 =
[√

1 + a2/2
√

1 + a2/2
]

V 1 =
 1√

1+a2
a√

1+a2

1√
1+a2 − a√

1+a2



U 2 =
[√

1 + (2a)2/2
√

1 + (2a)2/2
]

V 2 =

 1√
1+(2a)2

a√
1+(2a)2

1√
1+(2a)2

− (2a)√
1+(2a)2


Now note that for a ∈ [0, 1], the rows of V 1 have unit norm, and κ(V 1) = 1

a
. Now let ai = ia,

and note, however, that for the j-th sample X∗,j = [xj1, xj2] i.i.d. Gaussian, we have for i ∈ {1, 2}

U if(V iX∗,j) = f(xj1 + aixj2) + f(xj1 − aixj2)
2

Now note that when |xj1| > (2a)|xj2|, for both i ∈ {1, 2} we have either

Ai
∗,j = U if(V iX∗,j) = 0

or
Ai
∗,j = U if(V iX∗,j) = xj1

And in either case we do not get any information about a. In such a case, the j-th column of
A1 and A2 are the same. In particular, conditioned on a given X such that |xj1| > (2a)|xj2| for
all columns j, we have A1 = A2. Now note that the probability that one Gaussian is 1

2a times
larger than another is Θ(1

a
), thus any algorithm that takes less than c 1

a
samples, for some absolute

constant c > 0, cannot distinguish between A1 and A2, since we will have A1 = A2 with Ω(1)
probability in this case, which completes the proof.

6.5 A Polynomial Time Algorithm for Gaussian input and Sub-
Gaussian Noise

In the last section, we gave two algorithms for exact recovery of U ∗,V ∗ in the noiseless (exact)
case. Namely, where the algorithm is given as input A = U ∗f(V ∗X) and X . Our general
algorithm for this problem first utilized a tensor decomposition algorithm which allowed for

413

approximate recovery of V ∗, up to the signs of its rows. Observe that this procedure, given by
Theorem 130, can handle mean zero subgaussian noise E, such that A = U ∗f(V ∗X) + E. In
this section, we will show how to utilize this fact as a sub-procedure to recover approximately
recover U ∗,V ∗ in this noisy case.

We begin with using the algorithm corresponding to Theorem 130 to get an approximate
solution to V ∗, up to permutations and ±1 scaling. We note that the guarantees of Theorem
130 still hold when the noise E is sub-Gaussian. Therefore, we obtain a matrix Ṽ such that
‖V̂ −DΠV ∗‖F 6 ε, where D is a diagonal ±1 matrix and Π is a permutation matrix.

Algorithm 6: Recovering Signs(vi,A,X)

Input: Matrices A = U ∗f(V ∗X) + E, and vTi ∈ Rd s.t. ‖vi − ξiV ∗i,∗‖2 6 ε for some
unknown ξi ∈ {1,−1} and i = 1, 2, . . . , k, where ε = O(1

poly(d,m,k,κ(U∗),κ(V ∗)).

1. Let X ∈ Rd×` be the first ` = poly(k, d,m, κ(U ∗), κ(V ∗), σ) columns of X , and
similarly define E, and let A = U ∗f(V ∗X) + E.

2. For i ∈ [k], let
Si,+ = {f(vjX), f(−vjX)}j 6=i ∪ {f(viX)}

and
Si,− = {f(vjX , f(−vjX)}j 6=i ∪ {f(−viX)}

3. Let PSi,+ be the orthogonal projection matrix onto the row span of vectors in Si,+.
Compute

a+
i,j = ‖Aj,∗(I−PSi,+)‖2

2

a−i,j = ‖Aj,∗(I−PSi,−)‖2
2

For each j ∈ [m].

4. Let a+
i = ∑

j a
+
i,j , and a−i = ∑

j a
−
i,j . If a+

i < a−i , set Vi,∗ = vi, otherwise set
Vi,∗ = −vi.

Output: V such that ‖V − V ∗‖2 6 ε, thus recovering ξi for i ∈ [k].

Recall that in the noiseless case, we needed to show that given a approximate version of V ∗

up to the signs of the rows, we can recover both the signs and V ∗ exactly in polynomial time.
Formally, we were given rows vi such that ‖vi − ξiV

∗
i,∗‖2 was small for some ξi ∈ {1,−1},

however we did not know ξi. This issue is a non-trivial one, as we cannot simply guess the ξi’s

414

(there are 2k possibilities), and moreover we cannot assume WLOG that the ξi’s are 1 by pulling
the scaling through the ReLU, which is only commutes with positive scalings. Our algorithm for
recovery of the true signs ξi in the exact case relied on combinatorial results about the sparsity
patterns of f(V ∗X). Unfortunately, these combinatorial results can no longer be used as a black-
box in the noisy case, as the sparsity patterns can be arbitrarily corrupted by the noise. Thus, we
must develop a refined, more general algorithm for the recovery of the signs ξi in the noise case.
Thus we begin by doing precisely this.

6.5.1 Recovering the Signs ξi with Subgaussian Noise

Lemma 6.5.1. Let g ∈ Rn be a row vector of i.i.d. mean zero variables with variance σ, and let

S be any fixed k dimensional subspace of Rn. Let PS ∈ Rn×n be the projection matrix onto S.

Then for any δ > 0 with probability 1− δ, we have

‖gPS‖2 = σ
√
k/δ

Proof. We can write PS = W TW for matrices W ∈ Rk×n with orthonormal rows. Then

E
[
‖gW T‖2

2

]
= σ2k, and by Markov bounds with probability 1 − δ we have ‖gW T‖2

2 =
‖gW TW ‖2

2 < σ2k/δ as needed.

Lemma 6.5.2. Let Q ∈ Rk×` be a matrix of row vectors for ` > poly(k) (for some sufficiently

large polynomial) with 1 6 ‖Q‖2 and let PQ = QT (QTQ)−1Q be the projection onto them. Let

E be such that ‖E‖F 6 ε(
κ(Q)‖Q‖2

)4 , and let PQ+E be the projection onto the rows of Q + E .

Then for any vector xT ∈ R`, we have

‖xPQ+E‖2 = ‖xPQ‖2 ±O(ε‖x‖2)

Proof. We have PQ+E = (Q + E)T ((Q + E)T (Q + E))−1(Q + E). Now

(Q + E)T (Q + E) = QTQ + ETQ + QTE + ETE

Further, ‖ETQ + QTE + ETE‖F 6 ‖E‖F‖Q‖2 + ‖E‖2
F 6 2 ε

κ4(Q)‖Q‖2
2
. Thus we can write

(Q + E)T (Q + E) = QTQ + Z where ‖Z‖F 6 2 ε
κ4(Q)‖Q‖2

2
. Applying Corollary 6.4.10 with

B = QTQ, and E = Z, we can write (Q + E)T (Q + E))−1 = (QTQ)−1 + Z′, where ‖Z′‖F 6

415

O(ε
κ2(Q)‖Q‖2

2
). Thus

PQ+E = (Q + E)T ((QTQ)−1 + Z′)(Q + E)

= PQ + QTZ′(Q + E) + QT (QTQ)−1E + ET ((QTQ)−1 + Z′)(Q + E)

Therefore,

‖QTZ′(Q + E)‖F 6 ‖QT‖2‖Z′(Q + E)‖F
6 ‖QT‖2‖Z′‖F‖(Q + E)‖2

6 ‖QT‖2‖Z′‖F (‖Q‖2 + ‖E‖F)

= O

(
ε

κ2(Q)

)
= O(ε)

Next, we have

‖QT (QTQ)−1E‖F 6 ‖QT‖2‖(QTQ)−1‖2‖E‖F

6
ε

‖Q‖3
2

< ε

where in the second to last inequality we used the fact that ‖Q‖2 > 1 so σ−2
min(Q) = ‖(QTQ)−1‖2 <

1/κ2(Q). Applying the above bounds similarly, we have ‖ET (QTQ)−1Q‖F 6 O(ε), ‖ET (QTQ)−1E‖F 6

O(ε), and ‖ETZ′(Q + E)‖F 6 O(ε). We conclude PQ+E = PQ + Z′′, where ‖Z′′‖F 6 O(ε).
It follows that for any x ∈ R`, we have

‖xPQ+E‖2 = ‖xPQ‖2 ± ‖xZ′′‖2

= ‖xPQ‖2 ±O(ε‖x‖2)

Lemma 6.5.3. Let Q ∈ Rr×` for 1 6 r 6 2k be any matrix whose rows are formed by taking

r distinct rows from the set {f(V ∗i,∗X), f(−V ∗i,∗X)}i∈[k], where X is X restricted to the first

` = poly(k, d,m, κ(V ∗)) columns. Then w.h.p. (in `), both ‖Q‖2
F 6 10r` and σmin(Q) =

Ω(
√
`

(κ(V ∗))2)).

Proof. The first bound ‖Q‖2
F 6 10r` follows from the fact that the ‖ · ‖2

2 norm of each row
is distributed as a χ2 random variable, so the claim follows from standard tail bounds for such
variables [LM00]. For the second claim, write Q = f(WX), where the rows of W are the

416

r distinct rows from the set {V ∗i,∗,−V ∗i,∗}i∈[k] corresponding to the rows of Q. Let W + be the
subset of rows of the form V ∗i,∗, and W− its complement. There now there is a rotation matrix
R that rotates W + to be lower triangular, so that the j-th row of W +R is supported on the
first j columns. Let W be such that the pairs of rows {V ∗i,∗,−V ∗i,∗} with the same index i are
placed together. Then WR is block-upper triangular, where the j-th pair of rows of the form
{V ∗i,∗,−V ∗i,∗} are supported on the first j columns. Since Gaussians are rotationally invariant,
W RX has the same distribution as WX , thus we can assume that W is in this block lower
triangular form, and V ∗ is in lower triangular form.

WLOG assume the rank of W is k (the following arguements will hold when the rank is
k′ < k). We now claim that we can write Wr,∗ = α+ϕek, where α is in the span of e1, . . . , ek−1

and ϕ = Ω(1
κ
) where κ = κ(V ∗). To see this, note that if this were not the case, the projection

of Wr,∗ onto the all prior rows with the same sign (i.e. all either of the form V ∗i,∗ or−V ∗i,∗) would
be less than 1

κ
, since the prior span all of Rk−1 on the first k − 1 columns, and the only part of

Wr,∗ outside of this span has weight ϕ. Let w be such that wW ′ is this projection, where W ′

excludes the last row of W WLOG this row is of the form V ∗i,∗, and WLOG i = k. Then can
write wW ′ = v(V ∗)′ where (V ∗)′ excludes the last row of V ∗. Then ‖[v,−1]V ∗‖2 <

1
κ

, and
since ‖V ∗‖2 > 1 it follows that κ(V ∗) > κ, a contradiction since κ is defined as the condition
number of V ∗.

Now let xi be the i-th column of X , and let Ei be the event that ϕxik > λ|〈α, (xi1, . . . , xik−1)〉|,
where λ will later be set to be a sufficiently large constant. Since ϕxik and 〈α, (xi1, . . . , xik−1)〉
are each distributed as a Gaussian with variance at most 1, by anti-concentration of Gaussians
PrEi = Ω(1

λκ
). So let S ⊂ [`] be the subset of i such that Ei holds, and let XS be X restricted

to this subset. Let V ∗i,∗ be the last column of W (WLOG we assume it is V ∗i,∗ and not −V ∗i,∗).
We now upper bound the norm of the projection of f(V ∗i,∗XS) onto the row span of f(WXS).
Now f(−V ∗i,∗X), if it exists as a row of f(WX), will be identically 0 on the coordinates in S
(because V ∗i,∗X is positive on these coordinates by construction). So we can disregard it in the
following analysis. By construction of S we can write

f(V ∗i,∗XS) = f(ϕ(XS)k,∗) + b

where ‖b‖2 6 ‖ 1
λ
f(V ∗i,∗XS)‖2, where (XS)k,∗ is the k-th row of XS . By the triangle inequality,

the projection of f(V ∗i,∗XS) onto the rowspan of f(W ′XS) (where W ′ is W excluding V ∗i,∗), is

‖f(V ∗i,∗XS)PW ′‖2 6
1
λ
‖f(V ∗i,∗XS)‖2 + ‖f(ϕ(XS)k,∗)PW ′‖2

417

where PW ′ is the projection onto the rowspan of f(W ′XS). Crucially, observe that f(W ′XS),
and thus PW ′ , does not depend on the k-th row (XS)k,∗ of XS . Now

‖f(ϕ(XS)k,∗)PW ′‖2 6 ‖f(ϕ(XS)k,∗)PW ′+1‖2

where PW ′+1 is the projection onto the row span of {f(W ′XS)j,∗}rows j of W ′
⋃{1} where 1 is

the all 1′s vector. This holds since adding a vector to the span of the subspace being projected
onto can only increase the length of the projection. Let P1 be the projection just onto the row 1.

Now observe that ϕf((XS)k,∗)(I − P1) is a mean 0 i.i.d. shifted rectified-Gaussian vector
with variance strictly less than ϕ2 (here rectified means 0 with prob 1/2 and positive Gaussian
otherwise). Moreover, the mean of the entries of f(ϕ(XS)k,∗) is Θ(ϕ). The L2 of these vectors
are thus sums of sub-exponential random variables, so by standard sub-exponential concentration
(see e.g. [Wai19]) we have ‖f(ϕ(XS)k,∗)(I−P1)‖2 = Θ(ϕ)

√
|S|, and moreover

‖f(ϕ(XS)k,∗)‖2 − ‖f(ϕ(XS)k,∗)(I−P1)‖2 = Ω(ϕ)
√
|S| (6.2)

w.h.p in log(|S|) where |S| > Θ(1) `
κλ

= poly(d,m, k, κ). Now by Lemma 6.5.1, we have

‖f(ϕ(XS)k,∗)(I−P1)PW ′+1‖2 6 ϕ
√

(2k + 1)/δ

with probability 1− δ, for some δ = 1/poly(k, d,m). So

‖f(ϕ(XS)k,∗)(I−P1)PW ′+1‖2 6 O(poly(k, d,m)√
|S|

)‖f(ϕ(XS)k,∗)(I−P1)‖2

Write f(ϕ(XS)k,∗) = f(ϕ(XS)k,∗)P+1 + f(ϕ(XS)k,∗)(I− P1). Then by triangle inequality, we
can upper bound ‖f(ϕ(XS)k,∗)PW ′+1‖2 by

6 ‖f(ϕ(XS)k,∗)P1PW ′+1‖2 + ‖f(ϕ(XS)k,∗)(I−P1)PW ′+1‖2

6 ‖f(ϕ(XS)k,∗)P1‖2 +O(poly(k, d,m)√
|S|

)‖f(ϕ(XS)k,∗)(I−P1)‖2

=
(
‖f(ϕ(XS)k,∗)‖2

2 − ‖f(ϕ(XS)k,∗)(I−P1)‖2
2

)1/2
+O(poly(k, d,m)√

|S|
)‖f(ϕ(XS)k,∗)‖2

418

Using the bound from Equation 6.2, for some constants c, c′ < 1 bounded away from 1, we have

= ‖f(ϕ(XS)k,∗)‖2(1− c) +O(poly(k, d,m)√
|S|

)‖f(ϕ(XS)k,∗)‖2

6 ‖f(ϕ(XS)k,∗)‖2(1− c′)

Thus ‖f(V ∗i,∗XS)PW ′‖2 6 ‖f(V ∗i,∗XS)PW ′+1‖2 6 (1 − Θ(1))‖f(V ∗i,∗XS)‖2. Now by setting
λ > 2c′ a sufficently large constant, the b term becomes negligible, and the above bound holds
replacing c′ with c′/2. Since we have ‖f(V ∗i,∗XS)‖2 = Θ(ϕ

√
|S|), and ‖f(V ∗i,∗X)‖2 = Θ(

√
`),

if PW ′ is projection of onto the rows of f(W ′X), we have

‖f(V ∗i,∗X)PW ′‖2 6 ‖f(V ∗i,∗X)‖2

(
1−Θ

(
ϕ

κλ

))
< ‖f(V ∗i,∗X)‖2(1−Θ(1

κ2))

Where here we recall λ = Θ(1). Since this argument used no facts about the row i we were
choosing, it follows that the norm of the projection of any row onto the subspace spanned by
the others others in f(WX) is at most a (1 − Θ(1

κ2)) factor less than the norm was before
the projection. In particular, this implies that f(WX) is full rank. Note by sub-exponential
concentration, each row norm is Θ(

√
`) w.h.p. We are now ready to complete the argument.

Write f(WX) = BΣQT in its singular value decomposition. Since the projection of one row
onto another does not change by a row rotation„ we can rotate QT to be the identity, and consider
BΣ. Let ui be a unit vector in the direction of the i-th row projected onto the orthogonal space
to the prior rows. Now for any unit vector u, write it as u = ∑

i uiai (which we can do because
f(WX) is full rank). Noting that ‖f(WX)i,∗‖2

‖f(WXS)i,∗‖2
= O(poly(k)κ2) for any row i, we have

‖f(WX)u‖2
2 >

∑
i

〈ui, u〉2Ω(`
κ4)

>
∑
i

a2
iΩ(`

κ4)

= Ω(`
κ4)

Thus σmin(Q) = σmin(f(WX)) = Ω(
√
`

κ2) as needed, where recall we have been writing κ =
κ(V ∗).

Using the bounds developed within the proof of the prior lemma gives the following corollary.

419

Corollary 6.5.4. Let PSi,+ ,PSi,− be as in Algorithm 6. Then

‖f(V ∗i,∗X)PSi,−‖2 = ‖f(V ∗i,∗X)‖2

(
1− Ω(1

κ(V ∗)2poly(k))
)

and

‖f(−V ∗i,∗X)PSi,+‖2 = ‖f(−V ∗i,∗X)‖2

(
1− Ω(1

κ(V ∗)2poly(k))
)

Theorem 137. Let A = U ∗f(V ∗X) + E, where E is i.i.d. mean zero with variance σ2. Then

given vTi ∈ Rd such that. ‖vi− ξiV ∗i,∗‖2 6 ε for some unknown ξi ∈ {1,−1} and i = 1, 2, . . . , k,

where ε = O(1
poly(d,m,k,κ(U∗),κ(V ∗)) is sufficiently small, with high probability, Algorithm 6 returns

V such that ‖V − V ∗‖2 6 ε in poly(d,m, k, κ(U ∗), κ(V ∗), σ) time.

Proof. Consider a fixed i ∈ [k], and WLOG assume ξi = 1, so we have ‖vi − V ∗i,∗‖2 6

ε = O(1
poly(d,m,k,κ(U∗),κ(V ∗)). We show a+

i < a−i with high probability. Now fix a row j

of A = U ∗f(V ∗X) + E as in Algorithm 6, where Q refers to restricting to the first ` =
poly(k, d,m, κ(U ∗), κ(V ∗), σ) columns of a matrix Q. Note that we choose ε so that ε <

1/poly(`) (which is achieved by taking n sufficiently large). This row is given by Aj,∗ =
U ∗j,∗f(V ∗X) + Ej,∗. As in the proof of Theorem 133, using Lemma 6.4.18 to bound ‖X‖2,
we have ‖f(viX) − f(ξV ∗i,∗X)‖2 6 O(ε

√
`). We now using Lemma 6.5.2 to bound the pro-

jection difference between using approximate projection matrix PSi,+ formed by our approxi-
mate vectors f(viX), and the true projection matrix P∗Si,+ formed by the vectors f(V ∗i,∗X). By
Lemma 6.5.3, the condition number and the spectral norm of the matrix formed by the rows that
span P∗Si,+ are at most O(rpoly(k)κ2) and O(r`) = poly(k, d,m, κ(U ∗), κ(V ∗), σ) respectively,
w.h.p. (in k, d,m). Setting ε = ε′/poly(k, d,m, κ(U ∗), κ(V ∗), σ) sufficiently small, Lemma
6.5.2 gives ‖xPSi,+‖2 = ‖xP∗Si,+‖2±O(ε′‖x‖2) for ε′ = 1

poly(k,d,m,κ(V ∗),κ(U∗),σ and any vector x.

Now we have a+
i,j = (‖Ej,∗(I−PSi,+)‖2±O(ε′σ

√
`))2 6 ‖Ej,∗‖2

2 +±O(σ2ε′`poly(k, d,m)).
Here we used that ‖E‖2

2 6 σ2`poly(k, d,m), w.h.p. in k, d,m (by Chebyshev’s inequality), and
the fact that w.h.p. we have ‖(U ∗j,if(V ∗i,∗X)+Ej,∗)‖2 = O(σ

√
`). Then, setting ε′ = ε′′/poly(`),

we have

(a−i,j)2 = ‖(U ∗j,if(V ∗i,∗X) + Ej,∗)(I−PSi,−)‖2
2 ±O(ε′′)

= ‖(U ∗j,if(V ∗i,∗X) + Ej,∗)‖2
2 − ‖(U ∗j,if(V ∗i,∗X) + Ej,∗)PSi,−‖2

2 ±O(ε′′)

> ‖(U ∗j,if(V ∗i,∗X) + Ej,∗)‖2
2 −

(
‖(U ∗j,if(V ∗i,∗X)PSi,−‖2 + ‖‖Ej,∗PSi,−‖2

)2
±O(ε′′)

where the second equality follows by the Pythagorean Theorem. Applying Lemma 6.5.1 and

420

Corollary 6.5.4, writing κ = κ(V ∗), with probability 1− δ we have

(a−i,j)2 >‖(U ∗j,if(V ∗i,∗X) + Ej,∗)‖2
2

−
(
‖(U ∗j,if(V ∗i,∗X)‖2(1− Ω(1

κ2poly(k))) + 2σ
√
k/δ

)2
±O(ε′′)

Setting δ < 1/poly(k, d,m) to get high probability gives

(a−i,j)2 > ‖(U ∗j,if(V ∗i,∗X) + Ej,∗)‖2
2 − ‖(U ∗j,if(V ∗i,∗X)‖2

2(1− Ω(1
κ2poly(k)))

− 4σ
√
k

δ
‖(U ∗j,if(V ∗i,∗X)‖2 ±O(ε′

√
`σ + σ2k

δ
)

= Ω(1
κ2poly(k))‖U ∗j,if(V ∗i,∗X)‖2

2 + ‖Ej,∗‖2
2 + 2〈U ∗j,if(V ∗i,∗X),Ej,∗〉

− 4σ
√
k/δ‖(U ∗j,if(V ∗i,∗X)‖2 ±O(ε′

√
`σ + σ2k

δ
)

Thus,

a−i − a+
i >

∑
j∈[m]

Ω(1
κ2poly(k))‖U ∗j,if(V ∗i,∗X)‖2

2 + 2〈U ∗j,if(V ∗i,∗X),Ej,∗〉

− 4σ
√
k/δ‖(U ∗j,if(V ∗i,∗X)‖2 ±O(ε′

√
`σ + σ2k

δ
)

By Chebyshev’s inequality, we have, |2〈U ∗j,if(V ∗i,∗X),Ej,∗〉| < poly(dkm)σ‖U ∗j,if(V ∗i,∗X)‖2

w.h.p. in d, k,m. Thus
∑
j |2〈U ∗j,if(V ∗i,∗X),Ej,∗〉| < poly(dkm)σ‖U ∗j,if(V ∗i,∗X)‖2. Now ‖U ∗∗,i‖2 >

1/κ(U ∗), otherwise we would have ‖U ∗ei‖2 < 1/κ(U ∗), which is impossible by definition.
Thus there is at least one entry of U ∗∗,i with magnitude at least 1/(mκ(U ∗)). So

∑
j

‖U ∗j,if(V ∗i,∗X)‖2
2 >

1
mκ(U ∗)‖f(V ∗i,∗X)‖2

2

= Ω(` 1
mκ(U ∗))

where the last bound follows via bounds on χ2 variables [LM00].

The above paragraph also demonstrates that
|2〈U∗j,if(V ∗i,∗X),Ej,∗〉|
‖U∗j,if(V ∗i,∗X)‖2

2
6 poly(dkm)σ√

`
, so taking ` suf-

ficiently large this is less than 1/2. Thus

∑
j∈[m]

Ω(1
κ2poly(k))‖U ∗j,if(V ∗i,∗X)‖2

2 + 2〈U ∗j,if(V ∗i,∗X),Ej,∗〉 >
1
2
∑
j∈[m]

Ω(1
κ2poly(k))‖U ∗j,if(V ∗i,∗X)‖2

2

421

and we are left with

a−i − a+
i >

∑
j∈[m]

Ω(1
κ2poly(k))‖U ∗j,if(V ∗i,∗X)‖2

2 − 4σ
√
k/δ‖(U ∗j,if(V ∗i,∗X)‖2 −O(ε′

√
`σ + σ2k

δ
)

> Ω(` 1
mκ2κ(U ∗)poly(k))−O(σ

√
k`/δ + ε′

√
`σ + σ2k

δ
)

Taking δ = 1/poly(d, k,m) as before and ` sufficiently larger than 1/δ2, the above becomes
a−i −a+

i = Ω(` 1
mκ2κ(U∗)poly(k)) = ω(1) w.h.p. in d, k,m. Thus the algorithm correctly determines

ξi = 1 after seeing a−i > a+
i , and the analysis is symmetric in the case that xii = −1.

6.5.2 Recovering the Weights U ∗,V ∗

We have now shown in the prior section that given approximate V ∗i,∗’s where the signs ξi are
unknown, we can recover the signs exactly in polynomial time in the noisy setting. Thus we
recover V such that ‖V −V ∗i,∗‖2 6 ε for some polynomially small ε. To complete our algorithm,
we simply find U ∗ by solving the linear regression problem

min
U
‖Uf(V X)−A‖F

It is well know that the solution to the above regression problem can be solved by computing the
pseduoinverse of the matrix f(V X), thus the entire procedure can be carried out in polynomial
time. The following lemma states that, even in the presence of noise, the solution U from the
regression problem must in fact be very close to the true solution U ∗.

Lemma 6.5.5. LetX be the first ` = poly(k, d,m, κ(U ∗), κ(V ∗), σ) columns ofX , and similarly

define E. Set A = U ∗f(V ∗X)+E. Then given V such that ‖V −V ∗‖2 6 ε where ε = ε′

poly(`) for

some ε′ > 0, if U is the regression solution to minU ‖Uf(V X)−A‖2, then ‖U−U ∗‖2 < O(ε′)
with high probability in m, d.

Proof. Note ‖f(V X)− f(V ∗X)‖2 6 O(1)
√
`ε by standard operator norm bounds on Gaussian

matrices (see Lemma 6.4.18), and the fact that |a − b| > |f(a) − f(b)| for any a, b ∈ R. The
regression problem is solved row by row, so fix a row i ∈ [m] and consider minu ‖uf(V X) −
Ai,∗‖2 = minu ‖uf(V X) − (U ∗i,∗f(V ∗X) + Ei,∗)‖2 = ‖uf(V X) − (U ∗i,∗f(V X) + Ei,∗ +

422

U ∗i,∗Z)‖2, where Z is a matrix such that ‖Z‖F 6 O(1)
√
`ε. Now by the normal equations4, if u∗

is the above optimizer, we have

u∗ =
(

U ∗i,∗f(V X) + Ei,∗ + U ∗i,∗Z
)
f(V X)T

[
f(V X)f(V X)T

]−1

= U ∗i,∗ +
(
Ei,∗ + U ∗i,∗Z

)
f(V X)T

[
f(V X)f(V X)T

]−1

= U ∗i,∗ + Ei,∗f(V X)T
[
f(V X)f(V X)T

]−1
+ U ∗i,∗Z′

Where Z′ is a matrix such that ‖Z′‖F = O
(√

`εκ(f(V X)
σmin(f(V X))

)
. Note that we can scale A at the

beginning so that no entry is larger than `2, which implies w.h.p. that each row of U ∗ has norm
at most `2. Thus

‖Ui,∗Z′‖F = O
(`5/2εκ(f(V X)
σmin(f(V X))

)

Now note E
[
‖Ei,∗f(V X)T

[
f(V X)f(V X)T

]−1
‖2

2

]
= O(

√
`k σ2

σ2
min(f(V X))) using ‖f(V X‖2 =

O(
√
`k) by the same operator norm bounds as before. By Markov bounds, w.h.p. in m, d, we

have
‖Ei,∗f(V X)T

[
f(V X)f(V X)T

]−1
‖2

2 = O(
√
`poly(d,m) σ2

σ2
min(f(V X))

)

Now by Courant-Fischer theorem and application of the triangle inequality, we have σmin(f(V X)) >
σmin(f(V ∗X)) − O(

√
`ε), and by Lemma 6.5.3 (see Section 6.5.1), we have σmin(f(V ∗X)) =

Ω(
√
`

κ(V ∗)poly(k)), thus for ` sufficiently large we obtain σmin(f(V X)) = Ω(
√
`

κ(V ∗)poly(k)), in which
case we have

‖Ei,∗f(V X)T
[
f(V X)f(V X)T

]−1
‖2

2 = O
(

poly(d,m) σ
2
√
`

)

Setting `, 1/ε to be sufficiently large polynomials in (d,m, k, κ(U ∗), κ(V ∗), σ), we obtain

‖u∗ −U ∗i,∗‖2 6 O(ε′/
√
m)

from which the Lemma follows.

We now state our main theorem for recovery of the weight matrices in the noisey case.

Theorem 138. Let A = U ∗f(V ∗X) + E be given, where U ∗ ∈ Rm×k,V ∗ ∈ Rk×d are rank-k

and E is a matrix of i.i.d. mean zero subgaussian random variables with variance σ2. Then

4See https://en.wikipedia.org/wiki/Linear_least_squares

423

https://en.wikipedia.org/wiki/Linear_least_squares

given n = Ω
(

poly
(
d,m, κ(U ∗), κ(V ∗), σ, 1

ε

))
, there is an algorithm that runs in poly(n) time

and w.h.p. outputs V ,U such that

‖U −U ∗‖F 6 ε ‖V − V ∗‖F 6 ε

Proof. The proof of correctness of the Tensor Decomposition based approximate recovery of
V ∗ up to the signs is the same as in the exact case, via Theorem 130. By Theorem 137, we can
recover the signs ξi, and thus recover V so that ‖V − V ∗‖F 6 ε. Observe that while the results
in Section 6.5.1 were stated for ε = Θ

(
1

poly(d,m,κ(U∗),κ(V ∗)σ)

)
, they can naturally be generalized

to any ε which is at least this small by increasing n by a poly(1/ε) factor before running the
tensor decomposition algorithm. Then by Lemma 6.5.5, we can recover U in polynomial time
such that ‖U −U ∗‖F 6 ε as desired, which completes the proof.

Remark 139. As in Remark 132, we have implicitly normalized the entire matrix A so that the
columns of A have at most unit norm. If one seeks bounds for the recovery of the unnormalized

U ∗, the error becomes ‖U−U ∗‖F 6 ε‖U ∗‖2. To see why this holds, note that the normalization
factor of Remark 132 is at least Ω(1

‖U∗‖2+
√
m log(`)

), where ` = poly(d,m, κ(U ∗), κ(V ∗), σ) is

as in Section 6.5.1, and O(
√
m log(`)) is a bound on the max column norm of E by subgaussian

concentration. Thus multiplying by the inverse of this normalization factor blows up the error to
‖U ∗‖2ε after scaling ε down by a polynomial factor.

6.6 A Fixed-Parameter Tractable Exact Algorithm for Arbi-
trary Weight Matrixs

In the prior sections, we required that U ∗ ∈ Rm×k have rank k in order to recover it properly.
Of course, this is a natural assumption, making U ∗ identifiable. In this section, however, we
show that even when m < k and U ∗ does not have full column rank, we can still recover U ∗V ∗

exactly in the noiseless case where we are given A = U ∗f(V ∗X) and X , as long as the no
two columns of U ∗ are non-negative scalar multiples of each other. Observe that this excludes
columns from being entirely zero, but allows for columns of the form [u,−u] for for u ∈ Rm,
as long as u is non-zero. Our algorithm requires n = poly(d, k)κΩ(k), samples, and runs in time
O(npoly(d,m, k)). Here κ = κ(V ∗) is the condition number of V ∗. Our algorithm does not
have any dependency on the condition number of U ∗.

424

Algorithm 7 : FPTExactNeuralNet(V ′,X ,S).

Input: Matrices A = U ∗f(V ∗X) ∈ Rd×n and X ∈ Rr×n such that each entry in
X ∼ N (0, 1).

1. Find a subset S of columns of non-zero columns of A such that each for each i ∈ S
there is a j ∈ S, j 6= i, with A∗,i = cA∗,j for some c > 0.

2. Partition S into Sr for r ∈ [k] such that for each pair i, j ∈ Sr, i 6= j, we have
A∗,i = cA∗,j for some c ∈ R6=0.

3. For each i ∈ [k], choose a representative ji ∈ Si, and let U∗,i = A∗,ji . For each
j ∈ Si, let ci,j be such that ci,jU∗,i = A∗,j .

4. let W be the matrix where the i-th row is given by the solution wi to the following
linear system:

∀i ∈ [k] : wiX∗,j = ci,j if j ∈ Si

5. Set Vi,∗ = Wi,∗/‖Wi,∗‖2, and let U be the solution to the following linear system:

Uf(V X) = A

Output: (U ,V).

The runtime of our algorithm is polynomial in the sample complexity n and the size of the
networks d, k, but simply requires poly(d, k)κΩ(k) samples in order to obtain columns of f(V ∗X)
which are 1-sparse, in which case the corresponding column of A will be precisely a positive
scaling of a column of U ∗. In this way, we are able to progressively recover each column of U ∗

simply by finding columns of A which are scalar multiples of each other. The full algorithm,
Algorithm 7, is given formally below.

Lemma 6.6.1. For each i ∈ [k], with probability 1−δ, at least d columns of f(V ∗X) are positive

scalings of eTi , where X is the first ` columns of X for n = Ω(d log(k/δ)κO(k)). In other words,

|Si| > d.

Proof. Let κ = κ(V ∗). As in the proof of Lemma 6.5.3, we can assume that V ∗ is lower
triangular by rotating the rows by a matrix R, and noting that RX has the same distribution as

425

X by the rotational invariance of Gaussians. We now claim that Pr[‖V ∗g‖2 <
1
kκ

] = Ω((1
kκ

)k),
where g ∼ N (0, Id) is a Gaussian vector. To see this, since V ∗ is rank k and in lower triangular
form, V ∗ is supported on its the first k columns. Thus it suffices to compute the value ‖V ∗g‖2

were g ∈ Rk is a k-dimensional Gaussian. By the anti-concentration of Gaussian, each gi < 1
kκ

with probability at least Ω(1/(kκ)). Since the entries are independent, it follows that Pr[‖g‖2 6
1√
kκ

] = Ω(1/(kκ)k). Let E1 be the event that this occurs. Since V ∗ has unit norm rows, it follows
by Cauchy-Schwartz that conditioned on E1, we have g̃ = V ∗g satisfies ‖g̃‖2 = O(1

κ
)

Now consider the pdf of the k-dimensional multivariate Gaussian g̃ that has covariance Σ =
V ∗(V ∗)T , which is given by

p(x) =
exp

(
− 1

2xΣ−1x
)

√
(2π)k det(Σ)

for x ∈ Rk. Now condition on the event E2 that g̃ is contained within the ball B of radius O(1
κ
)

centered at 0. Since E1 implies E2, we have Pr[E2] = Ω(1/(kκ)k) Now the eigenvalues of Σ are
the squares of the singular values of V ∗, which are all between 1/κ and

√
k. So all eigenvalues

of Σ−1 are between 1/k and κ2. Thus for all x ∈ B, we have

1
2 6

1
e1/2 6 exp

(
− 1

2xΣ−1x
)
6 1

It follows that
sup
x,y∈B

p(x)
p(y) 6 2

Now let O1,O2, . . . ,O2k be the intersection of all 2k orthants in Rk with B. The above bound
implies that

max
i,j∈[2k]

∫
Oi p(x)dx∫
Oj p(y)dy 6 2

Thus conditioned on E2 for the i.i.d. gaussian vector g̃ ∼ N (0,Σ) ∈ Rk, the probability that g̃ is
in a givenOi is at most twice the probability that g is inOj for any other j. Thus mini∈[2k] Pr[g̃ ∈
Oi] > 1

2k+1 . Thus for any sign pattern S on k-dimensional vectors, and in particular for the sign
partner Si of ei, the probability that g̃ has this sign pattern conditioned on E2 is at least 1

2k+1 .
Since Pr[E2] = Ω(1/(kκ)k), it follows that in n = Ω(d log(k/δ)(kκ)2k) repetitions, a scaling
of ei will appear at least d times in the columns of f(V ∗X) with probability 1 − δ/k, and the
Lemma follows by a union bound over ei for i ∈ [k].

Theorem 140. Suppose A = U ∗f(V ∗X) for U ∗ ∈ Rm×k for any m > 1 such that no two

426

columns of U ∗ are non-negative scalar multiples of each other, and V ∗ ∈ Rk×n has rank(V ∗) =
k, and n > κO(k)poly(dkm). Then Algorithm 7 recovers U ∗,V ∗ exactly with high probability in

time κO(k)poly(d, k,m).

Proof. By Lemma 6.6.1, at least d columns of f(V ∗X) will be scalar multiples of ei for each
i. Thus the set S of indices, as defined in Step 2 of Algorithm 7, will contain each column of
U ∗ as a column. It suffices to show that no two columns of A can be scalar multiples of each
other if they are not a scalar multiple of U ∗. To see this, if two columns of f(V ∗X) were not
1-sparse, then the distribution of U ∗f(V ∗X) on these columns is supported on a t-dimensional
manifold living inside Rm, for some t > 2. In particular, this manifold is the conic hull of at
least t′ > t > 2 columns of U ∗ (where t′ is the sparsity of the columns of f(V ∗X). This follows
from the fact that the conic hull of any subset of 2 columns of U ∗ is 2-dimensional, since no
columns two of U ∗ are non-negative scalings of each other. Thus the probability that two draws
from such a distribution lie within the same 1-dimensional subspace, which has measure 0 inside
of any t > 2-dimensional conic hull, is therefore 0, which completes the claim.

To complete the proof of the theorem, by pulling a diagonal matix D through f , we can
assume U = U ∗. By construction then, ci,j is such that (DVi,∗X∗,j) = ci,j , as it is the scaling
which takes U∗,i to A∗,j . Thus wi, as defined in step 4 of Algorithm 7, is the solution to a linear
equation wiXSi = c for some fixed vector c, whereXSi isX restricted to the columns in Si. Since
|Si| > d by Lemma 6.6.1, to show that wi is unique it suffices for XSi to be full rank. But as
argued in the proof of Theorem 129, any subset of d columns of X will be rank d and invertible
with probability 1. Thus wi is unique, and must therefore be a scaling of V ∗i,∗, which we find by
normalizing wi to have unit norm. After this normalization, we can renormalize U , or simply
solve a linear system for U as in Step 5 of Algorithm 7. By Lemma 6.2.4, f(V ∗X) will have
full rank w.h.p., so the resulting U will be unique and therefore equal to U ∗ as desired.

6.7 A Fixed-Parameter Tractable Algorithm for Arbitrary Non-
Adversarial Noise

In the noisy model, the observed matrix A is generated by a perturbation E of some neural
network U ∗f(V ∗X) with rank k matrices U ∗ ∈ Rm×k,V ∈ Rk×d, and i.i.d. Gaussian N (0, 1)
input X ∈ Rd×n. Formally, we are given as input X and A = U ∗f(V X) + E, which is a noisy

427

observation of the underlying network U ∗f(V X), and tasked with recovering approximations
to this network. In Section 6.5, we showed that approximate recovery of the weight matrices
U ∗,V ∗ is possible in polynomial time when the matrix E was i.i.d. mean 0 and sub-Gaussian.
In this section, we generalize our noise model substantially to include all error matrices E which
do not depend on the input matrix X . Our goal is then to obtain U ,V such that

‖Uf(V X)−A‖F 6 (1 + ε)‖E‖F

Thus we would like to be able to recover a good approximation to the observed input, where
we are competing against the cost OPT = ‖A − U ∗f(V ∗X)‖2 = ‖E‖2. Observe that this
is a slightly different objective than before, where our goal was to recover the actual weights
U ∗,V ∗ approximately. This is a product of the more general noise model we consider in this
Section. The loss function here can be thought of as recovering U ,V which approximate the
observed classification nearly as well as the optimal generative U ∗,V ∗ do. This is more similar
to the empirical loss considered in other words [ABMM16]. The main result of this section is
the development of a fixed parameter tractable algorithm which returns U ,V such that

‖A−Uf(V X)‖F 6 ‖E‖F +O
([
σminε

√
nm‖E‖2

]1/2)
(6.3)

Where σmax = σmax(U ∗), and ‖E‖2 is the spectral norm of E. In this section, to avoid clustering,
we will write σmax, σmin, and κ to denote the singular values and condition number of U ∗. Our
algorithm has no dependency on the condition number of V ∗. The runtime of our algorithm is
(κ
ε
)O(k2)poly(n, r, d), which is fixed-parameter tractable in k, κ, 1

ε
. Here the sample complexity

n satisfies n = Ω(poly(r, d, κ, 1
ε
)).

We remark that the above bound in Equation 6.3 may at first seem difficult to parse. Intu-
itively, this bound will be a (1 + ε) multiplicative approximation whenever the Frobenius norm
of E is roughly an

√
m factor larger than the spectral norm–in other words, when the error E is

relatively flat. Note that these bounds will hold when E is drawn from a very wide class of ran-
dom matrices, including matrices with heavier tails (see [Ver10b] and discussion below). When
this is not the case, and ‖E‖2 ≈ ‖E‖F , then we lose an additive

√
m factor in the error guaran-

tee. Note that this can be compensated by scaling ε by a 1√
m

factor, in which case we will get a
(1 + ε) multiplicative approximation for any E which is not too much smaller than U ∗f(V ∗X)
(meaning ‖E‖F = Ω(ε‖U ∗f(V ∗X)‖F)). The runtime in this case will be (mκ/ε)O(k2), which
is still (κ/ε)O(k3) whenever m = O(2k). Note that if the noise E becomes arbitrarily smaller
than the signal U ∗f(V ∗X), then the multiplicative approximation of Equation 6.3 degrades, and

428

instead becomes an additive guarantee.

To see why this is a reasonable bound, we must first examine the normalizations implicit
in our problem. As always we assume that V ∗ has unit norm rows. Using the 2-stability of
Gaussians, we know that E

[
(V ∗X)2

i,j

]
= 1 for any i, j ∈ [k]×[n], and by symmetry of Gaussians

we have that E
[
f(V ∗X)2

i,j

]
= 1/2. By linearity of expectation we have E [‖f(V ∗X)‖2

F] =
kn/2. Since σ2

min‖f(V ∗X)‖2
F 6 ‖Uf(V ∗X)‖2

F 6 σ2
max‖f(V ∗X)‖2

F , it follows that

σ2
min(U)kn

2 6 E
[
‖Uf(V ∗X)‖2

F

]
6
σ2

max(U)kn
2

Thus for the scale of the noise E to be within a Ω(1) factor of the average squared entry of
Uf(V ∗X) on average, we expect ‖E‖F = O(σmax

√
nk) and ‖E‖F = Ω(σmin

√
nk)

Now consider the case where E is a random matrix, coming from a very broad class of
distributions. Since E ∈ Rm×n with n >> m, one of the main results of random matrix theory
is that many such matrices are approximately isometries [Ver10b]. Thus, for a such a random
matrix E normalized to be within a constant of the signal, we will have ‖E‖2 = O(σmax

√
nk
m

).
This gives

‖A−Uf(V ∗X)‖F 6 ‖E‖F (1 +O(ε))

after scaling ε by a quadratic factor. In general, we get multiplicative approximations whenever
either the spectrum of E is relatively flat, or when we allow (mκ/ε)O(k2) runtime. Note that in
both cases, for the above bound to be a ‖A−Uf(V ∗X)‖F 6 (1 + ε)‖E‖F approximation, we
must have ‖E‖F = Ω(ε‖U ∗f(V ∗X)‖F) as noted above. Otherwise, the error we are trying to
compete against is too small when compared to the matrices in question to obtain a multiplicative
approximation.

6.7.1 Main Algorithm

Our algorithm is then formally given in Figure 8. Before presenting it, we first recall some fun-
damental tools of numerical linear algebra. First, we recall the notion of a subspace-embedding.

Definition 6.7.1 (Subspace Embedding). Let U ∈ Rm×k be a rank-k matrix and, let F be family

of random matrices with m columns, and let S be a random matrix sampled from F . Then we

429

say that S is a (1± δ)-`2-subspace embedding for the column space of U if for all x ∈ Rk,

‖SUx‖2 = (1± δ)‖Ux‖2

Note in the above definition, S is a subspace embedding for the column span of U , meaning
for any other basis U ′ spanning the same columns as U , we have that S is also a (1 ± δ)-`2-
subspace embedding for U ′. For brevity, we will generally say that S is a subspace embedding
for a matrix U , with the understanding that it is in fact a subspace embedding for all matrices with
the same column span as U . Note that if S is a subspace embedding for a rank-k matrix U with
largest and smallest singular values σmax and σmin respectively, then SU is rank-k with largest
and smallest singular values each in the range (1 ± δ)σmax and (1 ± δ)σmin respectively. The
former fact can be seen by the necessity that ‖SUx‖2 be non-zero for all non-zero x ∈ Rk, and
the latter by the fact that maxx∈Rk, ‖x‖2=1 ‖SUx‖2 = (1 ± δ) maxx∈Rk, ‖x‖2=1 ‖Ux‖2 = σmax,
and the same bound holds replacing max with min. Our algorithm will utilize the following
common family of random matrices.

430

Algorithm 8 : Learning Neural Nets with Gaussian Inputs and Arbitrary Non-Adversarial
Noise(A,X).

1. Generate a random matrix S ∈ Rc1k/δ2×m of i.i.d. Gaussian N (0, 1/k) variables for
some sufficiently large constant c1 and δ = 1/10.

2. Enumerate all k×c1k/δ
2 matrices M1,M2, . . . ,Mν with entries of the form 1

σmin(U)(1+
ε4

ck4)−i for integers 0 6 i 6 c′k8(1/ε8)κ8 for sufficiently large constants c, c′ and any
1
ε
> k. Note that ν = 2O(k2 log(1

ε
kκ)).

3. For i = 1, 2, . . . , ν

(a) Generate a matrix G ∈ Rk×n s.t. G consists of i.i.d. N
(

0,Θ
((

ε−2κ2k‖MSE‖F√
n

)2))
random variables. Note, we can guess the value ‖MSE‖F in O(log(n)) powers
of 2 around ‖MSA‖F .

(b) For each row p ∈ [k] and q ∈ [n], let yq = sign(MiSA + G)p,q.

(c) For each p = 1, 2, . . . , [k], let wpi be the solution to the following convex pro-
gram:

max
w,

n∑
i=1

yi〈w,X∗,i〉

subject to ‖w‖2
2 6 1

(d) Let V i ∈ Rk×d be the matrix with p-th row equal to wpi .

4. Let U and V i∗ be the matrices that achieve the minimum value of the linear regression
problem

arg min
U ,V i
‖A−Uf(V iX)‖2

F

Output: (U ,W i∗).

Proposition 6.7.2 (Gaussian Subspace Embedding [Sar06]). Fix any rank k-matrix matrix U ∈
Rm×k, and let S ∈ Rc1k/ε2×m be a random matrix where every entry is generated i.i.d. Gaussian

N (0, 1/k), for some sufficiently large constant c1. Then with probability 99/100, S is a subspace

embedding for U .

Our algorithm is then as follows. We first sketch the input matrix A by a O(k)×m Gaussian
matrix S, and condition on it being a subspace embedding for U . We then left multiply by S
to obtain SA = SUf(V X) + SE. Now we would like to ideally recover f(V X), and since
S is a subspace embedding for U , we know that SU has full column rank and thus has an left

431

inverse. Since we do not know U , we must guess the left inverse (SU)−1 ∈ Rk×O(k) of SU . We
generate guesses Mi of (SU)−1, and try each of them. For the right guess, we know that after
left multiplying by Mi we will have MiSA = f(V X) + MiSE + Z, where Z is some error
matrix which arises from our error in guessing (SU)−1.

We then observe that the signs of each row of this matrix can be thought of as labels to a noisy
halfspace classification problem, where the sign of (MiSA)p,q is a noisy observation of the sign
of 〈Vp,∗,X∗,q〉. Using this fact, we then run a convex program to recover each row Vp,∗. In
order for recovery to be possible, there must be some non-trivial correlation between the labeling
of these signs, meaning the sign of (MiSA)p,q, and the true sign of 〈Vp,∗,X∗,q〉. In order to
accomplish this, we must spread out the error E to allow the value of 〈Vp,∗,X∗,q〉 to have an effect
on the observed sign a non-trivial fraction of the time. We do this by adding a matrix G such
that the i-th row Gi,∗ consists of i.i.d. N

(
0,Θ

((
ε−2κ2k‖MSE‖F√

n

)2))
random variables to MiSA.

We will simply guess the value ‖MSE‖F here in O(log(n)) powers of 2 around ‖MSA‖F . We
prove a general theorem (Theorem 141) about the recovery of hyperplanes v ∈ Rd when given
noisy labels from a combination of ReLU observations, adversarial, and non-adversarial noise
components. Finally, we solve for U by regression. The full procedure is described formally
given in Algorithm 8.

6.7.2 Analysis

First note that by our earlier bounds on the singular values of X (Proposition 6.4.18), we have
‖f(V ∗X)‖F 6 O(

√
nk), thus if ‖E‖F > σmax(U ∗)

√
nk
ε

, we can simply return U ∗ = 0,V ∗ = 0,
and obtain our desired competitive approximation with the cost OPT = ‖E‖F . Thus, where can
now assume that ‖E‖F < σmax(U ∗)

√
nk
ε

.

By Proposition 6.7.2, with probability 99/100 we have both that SU ∗ is rank-k and that the
largest and smallest singular values of SU ∗ are perturbed by at most a (1 ± δ) factor, meaning
σmax(U ∗) = (1 ± δ)σmax(SU ∗) and σmin(U ∗) = (1 ± δ)σ∈(SU ∗), from which it follows that
κ(U ∗) = (1 ± O(δ))κ(SU ∗). Note that we can repeat the algorithm O(n) times to obtain this
result with probability 1−exp(−n) at least once by Hoeffding bounds. So we can now condition
on this and assume the prior bounds on the singular values and rank of SU ∗. Thus we will now
write σmax = σmax(SU ∗), σmin = σmin(SU ∗), and κ = κ(SU ∗), with the understanding that
these values have been perturbed by a (1± 3δ) < (1± 1/2) factor.

We can assume that we know κ and σmin(U ∗) up to a factor of 2 by guessing them in geo-
metrically increasing intervals. Note that we can assume σmax is within a poly(n) factor of the

432

largest column norm of A, since otherwise ‖E‖F would necessarily be larger than σmax(U ∗)
√
nk
ε

.
Given this column norm, we obtain an interval [a, b] ⊂ R a

b
= poly(n, κ), such that both κ and

σmin(U ∗) must live inside [a, b]. Then we can makeO(log2(a
b
)) = O(log2(nκ)) guesses to find κ

and σmin(U ∗) up to a factor of 2. Thus guessing the correct approximations to κ, σmin(U ∗) will
not effect our run time bounds, since our overall complexity is already polynomial in n and κ.
Similarly, we can also guess the value of ‖MSE‖F up to a factor of 2 using O(log(nκ)) guesses,
as is needed in step 3a of Algorithm 8.

The following Proposition gives the error bound needed for the right guess of the inverse
(SU)−1

Proposition 6.7.3. On the correct guess of σmax(SU ∗) (up to a constant factor of 2 error), there

is an i ∈ [ν] such that Mi = (SU ∗)−1 + Λ where ‖Λ‖∞ 6 ε4

σminκ4k4 .

Proof. First note that no entry in (SU ∗)−1 can be greater than 1
σmin

(since σmin is the smallest
singular value of SU ∗, and therefore 1

σmin
is the largest singular value of (SU ∗)−1. Thus there

is a guess of Mi such that for each entry (p, q) of (SU ∗)−1 in the range (1
σmin(1/ε)4κ4k4 ,

1
σmin

), we
have Mi

p,q = (SU ∗)−1
p,q(1± 1

(1/ε)4κ4k4) = (SU ∗)−1± 1
σmin(1/ε)4κ4k4 . For all other entries less than

1
σmin(1/ε)4κ4k4 , we get Mi

p,q = (SU ∗)−1
p,q ± 1

σmin(1/ε)4κ4k4 by setting Mi
p,q = 1

σmin(1/ε)4κ4k4 (which is
the lowest guess of value which we make for the coordinates of Mi), from which the proposition
follows.

6.7.3 Learning Noisy Halfspaces:

By Proposition 6.7.3, we know that for the correct guess of Mi we can write MiSA = f(V ∗X)+
(MiSE) + Z where Z = ΛSU ∗f(V ∗X). Thus MiSA can be thought of as a noisy ver-
sion of f(V ∗X). We observe now that our problem can be viewed as the problem of learn-
ing a halfspace in Rd with noisy labels. Specifically, we are obtain examples of the form X∗,q
with the label yq = Sign

(
f(V ∗p,∗X∗:q) + (MiSE)p,q + Zp,q

)
∈ {1,−1}, and our goal is to re-

cover V ∗p,∗ from these labeled examples {yq}. Note that if the labeled examples were of the
form X∗,q and Sign(〈V ∗p,∗,X∗,q〉), then this would correspond to the noiseless learning problem
for half-spaces. Unfortunately, our problem is not noiseless, as it will often be the case that
Sign

(
f(Vp,∗X∗:q) + (MiSE)p,q + Zp,q

)
6= Sign(〈Vp,∗,X∗,q〉) (in fact, this will happen very close

to half of the time). We will demonstrate, however, that recovery of Vp,∗ is still possible by
showing that there is a non-trivial correlation between the labels yq and the true sign. To do this,
we show the following more general result.

433

Theorem 141. Given n i.i.d. Gaussian examples X ∈ Rd×n with labels yq = Sign
(
(f(V X) +

G + B)p,q
)
∈ {1,−1} where G is an arbitrary fixed matrix independent of X , and B is any

matrix such that ‖B‖F 6
√
n
ω

for any ω = o(
√
n). Then if vp,∗ is the solution to the convex

program in step 3c of Figure 8 run on the inputs examples X and {yq}, then with probability

1− e−n1/2/10 we have

‖vp,∗ − Vp,∗‖2
2 = O

(
√
ω
‖G‖F√

n

(√
d√
n

+ 1
n1/4 + log(ω)

ω

))

Before we prove the theorem, we first show that our setting fits into this model. Observe that
in our setting, G = MiSE, and B = Z. Note that the Gaussian matrix added in Step 3a of
Algorithm 8 is a component of proof of Theorem 141, and different than the G here. Namely,
for Theorem 141 to work, one must first add Gaussian matrix to *smear out* the fixed noise
matrix MiSE. See the proof of Theorem 141 for further details. The following Proposition
formally relates our setting to that of Theorem 141.

Proposition 6.7.4. We have ‖(MiSE)‖F = O(1
σmin

√
m‖E‖2), and ‖Z‖F = ‖ΛSU ∗f(V X)‖2 6√

n 2
(1/ε)4κ4k2

Proof. Since SU ∗ is κ = σmax/σmin conditioned (as conditioned on by the success of S as a
subspace embedding for U ∗), it follows that for any row p, we have ‖((SU ∗)−1)p,∗‖2 6 1

σmin
.

Thus by Proposition 6.7.3 we have ‖Mi
p,∗‖2 6 1

σmin
+ 1

σmin(1/ε)4κ4k3 6 2
σmin

, and by Proposition
6.4.18, noting that S can be written as a i.i.d. matrix of N (0, 1) variables scaled by 1√

k
, we

have ‖Mi
p,∗S‖2 6 2

σmin

√
2m
k

. Applying this over all O(k) rows, it follows that ‖MiSE‖F =
O(1

σmin

√
m‖E‖2), where ‖E‖2 is the spectral norm of E.

For the second, note the bound ‖Λ‖∞ 6 1/(σmin(1/ε)4κ4k4) from Proposition 6.7.3 im-
plies that ‖Λp,∗‖2 6 1/(σmin(1/ε)4κ4k3) (using that k > c1/δ where δ is as in Figure 8),
so ‖Λp,∗SU ∗‖2 6 σmax

σmin(1/ε)4κ4k3 6 1
(1/ε)4κ4k3 . Now by Proposition 6.4.18, we have that the

largest singular value of X is at most 2
√
n with probability at least 1 − 2e−n/8, which we now

condition on. Thus ‖V X‖F 6 2
√
nk, from which it follows ‖f(V X)‖F 6 2

√
nk, giving

‖Zp,∗‖2 6 2
√
n 1

(1/ε)4κ4k5/2 for every p ∈ [k], so ‖Z‖F 6
√
n 2

(1/ε)4κ4k2 as needed.

By Theorem 141 and Proposition 6.7.4, we obtain the following result.

Corollary 6.7.5. Let i be such that Mi = (SU ∗)−1 + Λ, where ‖Λ‖∞ 6 1/(σmin(1/ε)4κ4k4)

434

as in Proposition 6.7.3, and let W i be the solution to the convex program as defined in Step 3d
of the algorithm in Figure 8. Then with probability 1− exp(−

√
n/20), for every row p ∈ [k] we

have

‖Vp,∗ −W i
p,∗‖2

2 6
ε
√
m‖E‖2

σmin
√
n

Proof. By Proposition 6.7.4 we can apply Theorem 141 with ω = ε−4κ4k2 and ‖G‖F =
O(1

σmin

√
m‖E‖2), we obtain the stated result for a single row p with probability at least 1 −

e−
√
n/10 after taking n = poly(κ, d) sufficiently large. Union bounding over all k rows gives the

desired result.

Proof of Theorem 141 To prove the theorem, we will use techniques from [PV13]. Let v ∈ Rd

be fixed with ‖v‖2 = 1, and letX ∈ Rd×n be a matrix of i.i.d. GaussianN (0, 1) variables. Let yq
be a noisy observation of the value sgn(〈v,X∗,q〉), such that the yq’s are independent for different
q. We say that the yq’s are symmetric if E [yq | X∗,q] = θq(〈v,X∗,q〉) for each q ∈ [n]. In other
words, the expectation of the noisy label yq given the value of the sample X∗,q depends only on
the value of the inner product 〈v,X∗,q〉. We consider now the following requirement relating to
the correlation between yq and sgn(〈v,X∗,q〉).

Eg∼N (0,1)

[
θq(g)g

]
= λq > 0 (6.4)

Note that the Gaussian g in Equation 6.4 can be replaced with the identically distributed variable
〈v,X∗,q〉. In this case, Equation 6.4 simply asserts that there is indeed some correlation between
the observed labels yq and the ground truth sgn(〈v,X∗,q〉). When this is the case, the following
convex program is proposed in [PV13] for recovery of v

max
w, ‖w‖261

n∑
q=1

yq〈w,X∗,q〉 (6.5)

We remark that we must generalize the results of [PV13] here in order to account for θq
depending on q. Namely, since E is not identically distribution, we must demonstrate bounds on
the solution to the above convex program for the range of parameters {λq}q∈[n].

Now fix a row p ∈ [k] and let v = V ∗p,∗. We will write G′ = G + G′′, where G′′ is
an i.i.d. Gaussian matrix distributed (G′′)i,j ∼ N (0, η2) for all i, j ∈ [k] × [n], where η =
100
√
ω‖G‖F/

√
n. For technical reasons, we replace the matrix G with G′ be generating and

435

adding G′′ to our matrix (f(V X) + G + B). Then the setting of Theorem 141, we have yq =
Sign((f(V ∗X) + G′ + B)p,q). Note that by the definition of η, at most n

100ω entries in G can be
larger than η/10 = 10

√
ω‖G‖F/

√
n. Let B′ be the matrix of entries of G which do not satisfy

this, so we instead write yq = Sign((f(V ∗X) + G′ + B′ + B)p,q), where G′ = G + G′′ −B′.
Thus G′p,q ∼ N (µp,q, η2) where µp,q < 10

√
ω‖G‖F/

√
n = η/10. Note that B′ is n

100ω sparse, as
just argued.

Note that the above model does not fully align with the aforementioned model, because B is
an arbitrary matrix that can depend potentially on f(V ∗X), and not just 〈V ∗p,∗,X∗,q〉. So instead,
suppose hypothetically that in the place of yq we were given the labels y′q = Sign((f(V ∗X) +
G′)p,q), which indeed satisfies the above model. Note that we have also removed B′ from the
definition of y′q, since we will handle it at the same time as we handle B. In this case we can write

E
[
y′q | X∗,q

]
= Eg[sign(f(〈X∗,q,V ∗p,∗〉) + gp,q)

∣∣∣ 〈X∗,q,Vp,∗〉] where gp,q ∼ N (Gp,q −B′p,q, η2) is
a Gaussian independent of X .

Proposition 6.7.6 gives the corresponding value of λ for this model.

Proposition 6.7.6. The function θq as defined by the hypothetical labels y′q satisfies Equation 6.4

with λq > c
η

for some constant c > 0, where η = 100
√
ω‖G‖F/

√
n.

Proof. We can write E
[
y′q | X∗,q

]
= E[sign(f(〈X∗,q,Vp,∗〉) + gp,q)

∣∣∣ 〈X∗,q,Vp,∗〉] where gp,q ∼
N (Gp,q −Bp,q, η

2). Let µq = Gp,q −Bp,q (for a fixed row p. Then θ(z) = 1− 2Pr[g 6 −f(z)],

and Equation 6.4 can be evaluated by integration by parts. Let pq(z) = 1√
2πη2

e
− (z−µq)2

2η2 is the

p.d.f. of gp,q. Note by the prior paragraphs we have η2 > 10µ2
q for all q. Then we have

λ = E [θ′(g)] = E [2p(−f(z))]

= Ez∼N (0,1)

[√ 2
π(η2)e

−(f(z)+µq)2/(2(η2))
]

=
√

2
π(η2)Ez∼N (0,1)

[
e
−
f(z)2+2µqf(z)+µ2

q

2η2

]
= Ω(1

η
)

Now for any z ∈ Rd with ‖z‖2 6 1, let h(z) = 1
n

∑n
q=1 yq〈z,X∗,q〉, and let h′(z) = 1

n

∑n
q=1 y

′
q〈z,X∗,q〉.

Observe that the hypothetical function h′ corresponds to the objective function of Equation 6.5

436

with values of y′q which satisfy the model of 6.4, whereas h, corresponding to the labels yq which
we actually observe, does not. Let Bd

2 = {x ∈ Rd | ‖x‖2 6 1} and let Bd2 = B − B =
{x − z | x, y ∈ B} be the Minkowski difference. The following follows immediately from
[PV13].

Lemma 6.7.7 (Lemma 4.1 [PV13]). For any z ∈ Bd
2 , we have E [h′(z)] = 1

n

∑n
q=1 λq〈z,Vp,∗〉

and thus because h′ is a linear function, we have

E [h′(Vp,∗)− h′(z)] = E [h′(Vp,∗ − z)] = 1
n

n∑
q=1

λq(1− 〈Vp,∗, z〉) >
1
n

n∑
q=1

λq
2 ‖Vp,∗ − z‖2

2

We now cite Proposition 4.2 of [PV13]. We remark that while the proposition is stated for
the concentration of the value of h′(z) around its expectation when the λq are are all uniformly
the same λq = λ, we observe that this fact has no bearing on the proof of Proposition 6.7.8
below. This is because only the yq ∈ {1,−1} depend on the λq’s, and the concentration result of
Proposition 6.7.8, in fact, holds for any possible values of the yq’s. Thus one could replace h′(z)
below with any function of the form ĥ(z) = 1

n

∑n
q=1 yq〈z, gq〉 for any values of yq ∈ {1,−1}, and

the following concentration result would hold as long as {gq}q∈[n]’s is a collection of independent
N (0, Id) variables.

Proposition 6.7.8 (Proposition 4.2 [PV13]). For each t > 0, we have

Pr[sup
z∈Bd2

∣∣∣h′(z)− E [h′(z)]
∣∣∣ > 4

√
d√
n

+ t] 6 4 exp(−−nt
2

8)

We now demonstrate how to utilize these technical results in our setting. First, however, we must
bound supz∈B |h′(z) − h(z)|, since in actuality we will need bounds on the value of h(z). We
first introduce a bound on the expected number of flips between the signs yp,∗ and y′p,∗.

Proposition 6.7.9. Let T = {q ∈ [n] | yq 6= y′q}. Then with probability 1 − e−10
√
n, we have

|T | 6 11n
ω

.

Proof. We have ‖Bp,∗‖1 6
√
n‖Bp,∗‖2 6 n/ω by the original assumption on B in Theorem

141. Then Pr[q ∈ T] is at most the probability G′p,q is in some interval of size 2|Bp,q|, which is
at most 2|Bp,q| by the anti-concentration of Gaussians. Thus E [|T |] 6 2‖Bp,∗‖1 6 2n/ω, and
by Chernoff bounds Pr[|T | > 10n/ω] < e−10

√
n as needed. To handle B′, we simple recall that

B′ was n
100ω sparse, and thus can flip at most n

100ω < n/ω signs.

437

Proposition 6.7.10. Let h, h′ be defined as above. Let ŵ ∈ Br
2 be the solution to the optimization

problem

max
w, ‖w‖2

n h(w) = max
w, ‖w‖2

n∑
q=1

yq〈w,X∗,q〉 (6.6)

Then if with probability 1− exp(−
√
n) we have

Pr[sup
z∈B

∣∣∣h′(z)− h(z)
∣∣∣ 6 3 log(ω)

ω
] > 1− e−

√
n

Proof. Let S ⊂ {x ∈ Rd | ‖x‖∞ 6 1} be an ε-net for ε = 1/n3. Standard results demonstrate
the existence of S with |S| < 212d log(n) (see e.g. [Ver10b, Woo14b]). Fix z ∈ S and observe
|h′(z) − h(z)| = 2

n

∑
q∈T |〈z,X∗,q〉|. Note that we can assume ‖z‖2 = 1, since increasing the

norm to be on the unit sphere can only make |h′(z)−h(z)| larger. By Proposition 6.7.9, we have
|T | 6 n/τ , where τ = ω

11 with probability 1 − e−10
√
n, so we can let F = {T ′ ⊂ [n] | |T ′| 6

n/τ}. Note |F| 6 n(eτ)n/τ . Fix T ′ ∈ F . The sum
∑
q∈T ′ |〈z,X∗,q〉| is distributed as the L1

of a Gaussian N (0, 1) vector in |T ′|, dimensions, and is
√
|T ′|-Lipschitz with respect to L2, i.e.

|‖x‖1 − ‖y‖1| 6 ‖x − y‖1 6
√
|T ′|‖x − y‖2. So by Lipschitz concentration (see [Ver10b]

(Proposition 5.34)), we have Pr[1
n

∑
q∈T ′ |〈z,X∗,q〉| > log(eτ)

τ
] 6 exp(− log2(eτ)n/τ). We can

then union bound over all T ′ ∈ F and z ∈ S to obtain the result with probability

1− exp
(
− n log2(eτ)

τ
+ n log(eτ)

τ
+ log(n) + 12r log(n)

)
> 1− exp

(
− log2(τ)n/(2τ)

)

So let E1 be the event that
∑
q∈T ′ |〈z,X∗,q〉| <

√
log(τ)|T ′| for all T ′ ∈ F and z ∈ S. Now fix

w ∈ Rd with ‖w‖2 6 1, and let y ∈ S be such that ‖y − z‖2 6 1/n3. Observing that h and
h′ are linear functions, we have |h(z) − h′(z)| 6 |h(y) − h′(y)| + |h(z − y) − h′(z − y)| 6
log(eτ)
τ

+|h(z−y)−h′(z−y)|. Now condition on the event E2 that ‖X‖2
F 6 10nd, where Pr[E2] >

1 − exp(nd) by standard concentration results for χ2 distributions [LM00]. Conditioned on E2

we have |h(z−y)|+ |h′(z−y)| 6 4
√

10nd/n3 6 1/τ , giving |h(z)−h′(z)| 6 3 log(eτ)
τ

< 3 log(ω)
ω

,
from which the proposition follows after union bounding over the events E1, E2 and Proposition
6.7.9, which hold with probability 1 − (exp(− log2(τ)n/(2τ)) + exp(nd) + exp(−10

√
n)) >

1− exp(−
√
n).

Lemma 6.7.11. Let ŵ be the solution to the optimization Problem in Equation 6.5 for our input

labels yq = sign((f(V X) + G′ + B + B′)p,q). Then w with probability 1 − e−n1/2/10, we have

‖ŵ − Vp,∗‖2
2 = O(

√
ω‖G‖F/

√
n)
(

4
√
d√
n

+ 1
n1/4 + 6 log(ω)

ω

)
for some constant c.

438

Proof. Applying Lemma 6.7.7, and a union bound over the probabilities of failure in Proposition
6.7.8 with t = n1/4 and Proposition 6.7.10, we have

0 6 h(ŵ)− h(Vp,∗)

6 h′(ŵ)− h′(Vp,∗) + 6 log(ω)
ω

= h′
(
ŵ − Vp,∗

)
+ 6 log(ω)

ω

6 E
[
h′
(
ŵ − Vp,∗

)]
+ 4
√
d√
n

+ 1
n1/4 + 6 log(ω)

ω

6 −λ2‖ŵ − Vp,∗‖2
2 + 4

√
d√
n

+ 1
n1/4 + 6 log(ω)

ω

Applying Proposition 6.7.6, which yields 1
λ

= O(η) = O(
√
ω‖G‖F/

√
n) completes the proof.

Proof of Theorem 141. The proof of the theorem follows directly from Lemma 6.7.11.

6.7.4 Completing the Analysis

We will now need the following straightforward lemma to complete the proof.

Theorem 142. Let A = U ∗f(V X) + E be the input, where each entry of X ∈ Rd×n is i.i.d.

N (0, 1) and E independent ofX . Then the algorithm in Figure 8 outputs U ∈ Rm×k,V ∈ Rk×d

in time 2O(k2 log((1/ε)κ))poly(n, d) such that with probability 1− exp(−
√
n) we have

‖A−Uf(V X)‖F 6 ‖E‖F +O
([
σminε

√
nm‖E‖2

]1/2)

Where ‖E||2 is the spectral norm of E.

Proof. Let W i ∈ Rk×r be as in Corollary 6.7.5. Then, taking n = poly(d, κ, 1
ε
) large enough, we

have W i = V + Γ where ‖Γp,∗‖2
F 6 εk

√
m‖E‖2

σmin
√
n

for each row p with probability 1− exp(−r4) by
Corollary 6.7.5. Then applying the spectral norm bound on Gaussian matrices from Proposition
6.4.18, we obtain that ‖Vp,∗X −W i

p,∗X‖2
F = O(

√
n εk
√
m‖E‖2
σmin

) with probability at least 1− e−9n.
Since f just takes the maximum of 0 and the input, it follows that ‖f(W iX) − f(V X)‖2

F =
O(
√
n εk
√
m‖E‖2
σmin

), and therefore ‖U ∗f(W iX) − U ∗f(V X)‖2
F = O(σ2

max
√
n εk
√
m‖E‖2
σmin

), which
is at most O(σminε

√
nm‖E‖2) after rescaling ε by a 1

κ2k
factor. Now if U is the minimizer to the

439

regression problem minU ‖A−Uf(W iX)‖2
F in step 5 of Figure 8, then note

‖A−Uf(W iX)‖F 6 ‖A−U ∗f(W iX)‖F 6 ‖E‖F +O
([
σminε

√
nm‖E‖2

]1/2)

as needed.

For the probability of failure, note that Corollary 6.7.5 holds with probability 1−exp(−Ω(
√
n)).

To apply this, we needed only to condition on the fact that S was a subspace embedding for U ,
which occurs with probability 99/100 for a single attempt. Running the algorithm O(n) times,
by Hoeffding bounds at least one trial will be successful with probability 1 − exp(−Ω(

√
n)) as

desired. To analyze runtime, note that we try at most poly(nd) guesses of S and guesses of σmin

and κ. Moreover, there are at most ν = (κ
ε
)O(k2) guesses Mi carried out in Step 2 of Figure 8).

For every such guess, we run the optimization program in step 3c. Since the program has a linear
function and a convex unit ball constraint, it is will known that such programs can be solved
in polynomial time [BV04]. Finally, the regression problem in step 4 is linear, and thus can be
solved in poly(n) time, which completes the proof.

6.8 A Polynomial Time Algorithm for Exact Weight Recovery
with Sparse Noise

In this section, we examine recovery procedures for the weight matrices of a low-rank neural
network in the presence of arbitrarily large sparse noise. Here, by low rank, we mean that
m > k. It has frequently been observed in practice that many pre-trained neural-networks exhibit
correlation and a low-rank structure [DSD+13, DZB+14]. Thus, in practice it is likely that k need
not be as large as m to well-approximate the data.

More formally, we are given A = U ∗f(V ∗X) + E where E is some sparse noise matrix
with possibly very large entries. We show that under the assumption that U ∗ has orthonormal
columns and satisfies an incoherence assumptions (which is fairly standard in the numerical
linear algebra community) [CR07, CR09, KMO10, CLMW11, JNS13, Har14], we can recover
the weights U ∗,V ∗ exactly, even when the sparsity of the matrices is a constant fraction of the
number of entries. Our algorithm utilizes results on the recovery of low-rank matrices in the
presence of a sparse noise. The error matrix E ∈ Rm×n is a sparse matrix whose non-zero
entries are uniformly chosen from the set of all coordinates of an arbitrary matrix E. Formally,

440

we define the following noise procedure:

Definition 6.8.1. (Sparse Noise.) A matrix E is said to be generated from a s-sparse-noise

procedure if there is an arbitrary matrix E, such that E is generated by setting all but s 6 mn

entries of E to be 0 uniformly at random.

Definition 6.8.2. (Incoherence.) A rank k matrix M ∈ Rm×n is said to be µ-incoherent if

svd(M) = PΣQ is the singular value decomposition of M and

max
i
‖PT ei‖2

2 6
µk

m

max
i
‖Qei‖2

2 6
µk

n

(6.7)

and

max
i
‖PQ‖∞ 6

√
µk

nm
(6.8)

Remark 143. The values ‖Pei‖2
2 and ‖Qei‖2

2 are known as the (left and right, respectively)
leverage-scores of M. For an excellent survey on leverage scores, we refer the reader to [M+11].
We note that the set of leverage scores of M does not depend on the choice of orthonormal basis
P or Q [Woo14b]. Thus, to obtain the bounds given in Equation 6.7, it suffices let P be any
matrix with orthonormal columns which spans the columns of M, and similarly it suffices to let
Q be any matrix with orthonormal rows which spans the rows of M.

Lemma 6.8.3. The entire matrix U ∗f(V ∗X), where X is i.i.d. Gaussian, (U ∗)T ,V ∗ have

orthonormal rows, and U ∗ is µ-incoherent, meaning maxi ‖(U ∗)T ei‖2
2 6 µk

m
, is µ-incoherent

for

µ = O
(
(κ(V ∗))2

√
k log(n)µ+ µ+ (κ(V ∗))4 log(n)

)

Proof. For t ∈ {max,min}, let σt = σt(U ∗f(V ∗X)). Let PΣQ be the SVD of U ∗f(V ∗X),
and let For any i, since U ∗ and V ∗ are orthonormal we have

‖QT ei‖2
2 6
‖ΣQT ei‖2

2
σ2
min

= ‖U
∗f(V ∗X)ei‖2

2
σ2
min

= ‖f(V ∗X)ei‖2
2

σ2
min

6
‖V ∗X ei‖2

2
σ2
min

441

Now each entry in of V ∗X is an i.i.d. Gaussian, and so is at most 10
√

log(n) with prob-
ability 1 − e−10n, so ‖V ∗X ei‖2

2 6 100k log(n) with probability 1 − e−9n by a union bound.
Since the columns of U ∗ are orthonormal, σ2

min = σ2
min(f(V ∗X)), which is at least n

(κ(V ∗))4

by Lemma 6.5.3. Thus we have that ‖QT ei‖2
2 = O(k(κ(V ∗))4 log(n)/n). This shows the

O((κ(V ∗))4 log(n))-incoherehnce for the second part of Equation 6.7, and the first part follows
from the µ-incoherence assumption on U . The incoherence bound of (κ(V ∗))2

√
k log(n)µ for

Equation 6.8 follows by applying Cauchy Schwartz to the LHS and using the bounds just ob-
tained for Equation 6.7.

Theorem 144. (Extending Theorem 1.1 in [CLMW11].) If A = U ∗f(V ∗X) + E where E is

produced by the sparsity procedure outlined above with s 6 γnm for a fixed constant γ > 0.

Then if U ∗ has orthonormal columns, is µ-incoherent, X is Gaussian, and the sample com-

plexity satisfies n = poly(d,m, k, κ(V ∗)), then there is a polynomial time algorithm which,

given only A, outputs both matrices M = U ∗f(V ∗X) and E, given that k 6 m
µ log2(n) , where

µ = O
(
(κ(V ∗))2

√
k log(n)µ+ µ+ (κ(V ∗))4 log(n)

)
.

Proof. The results of [CLMW11] demonstrate that solving

minY ‖A−Y‖2
F

s.t. rank(Y) 6 k

recovers the optimal low-rank matrix given that conditions of the previous lemma are satis-
fied. That is, if we do not care about running time, the above optimization problem recovers
U ∗f(V ∗X) exactly. However, the above problem is highly non-convex and instead we optimize
over the nuclear norm.

minY,E ‖Y‖∗ + ‖E‖1

s.t. Y + E = A

By Theorem 1.1 in [CLMW11], we know that the solution to the above problem is unique
and equal to U ∗f(V ∗X). It remains to show that the above optimization problem can be solved
in polynomial time. Note, the objective function is convex. As mentioned in [LSW15], we
can then run an interior point algorithm and it is well known that in order to achieve additive
error ε, we need to iterate poly(log(1/ε)) times. Observe, for exact recovery we require a dual
certificate that can verify optimality. Section 2.3 in [CLMW11] uses a modified analysis of the
golfing scheme introduced by [Gro11] to create a dual certificate for the aforementioned convex

442

program. We observe that this construction of the dual is independent of the kind of factorization
we desire and only requires Y to be rank k. Given that U ∗,V ∗,X ,E have polynomially bounded
bit complexity, this immediately implies a polynomial time algorithm to recover U ∗f(V ∗X) in
unfactored form.

As an immediate corollary of the above theorem, our exact algorithms of Section 6.4 can be
applied to the matrix M of Theorem 144 to recover U ∗,V ∗. Formally,

Corollary 6.8.4. Let U ∗ ∈ Rm×k,V ∗ ∈ Rk×d be rank k matrices, where U ∗ has orthonormal

columns, maxi ‖(U ∗)T ei‖2
2 6

µk
m

for some µ, and k 6 m
µ log2(n) , where µ = O

(
(κ(V ∗))2

√
k log(n)µ+

µ+ (κ(V ∗))4 log(n)
)
. Here κ(V ∗) is the condition number of V ∗. Let E be generated from the

s-sparsity procedure with s = γnm for some constant γ > 0 and let A = U ∗f(V X) + E. Sup-

pose the sample complexity satisfies n = poly(d,m, k, κ(V ∗)) Then on i.i.d. Gaussian input X
there is a poly(n) time algorithm that recovers U ∗,V ∗ exactly up to a permutation and positive

scaling with high probability.

Acknowledgements

The authors would like to thank Anima Anandkumar, Mark Bun, Rong Ge, Sam Hopkins and
Rina Panigrahy for useful discussions.

443

444

Part II

Nearly Optimal Algorithms for Learning
Latent Models

445

Chapter 7

Low-Rank Approximation with 1/ε1/3

Matrix-Vector Products

7.1 Introduction

Iterative methods, and in particular Krylov subspace methods, are ubiquitous in scientific com-
puting. Algorithms such as power iteration, Golub-Kahan Bidiagonalization, Arnoldi iteration,
and the Lanczos iteration, are used in basic subroutines for matrix inversion, solving linear sys-
tems, linear programming, low-rank approximation, and numerous other fundamental linear al-
gebra primitives [Saa81, LS13]. A common technique in the analysis of Krylov methods is the
use of Chebyshev polynomials, which can be applied to the singular values of a matrix to imple-
ment an approximate interval or step function [MH02, Riv20]. Further, Chebyshev polynomials
reduce the degree required to accurately approximate such functions, leading to significantly
fewer iterations and faster running time. In this paper we investigate the power of Krylov meth-
ods for low-rank approximation in the matrix-vector product model.

The Matrix-Vector Product Model. In this model, there is an underlying matrix A, which
is often implicit, and for which the only access to A is via matrix-vector products. Namely,
the algorithm chooses a query vector v1, obtains the product A · v1, chooses the next query
vector v2, which is any randomized function of v1 and A · v1, then receives A · v2, and so
on. If A is a non-symmetric matrix, we assume access to products of the form A>v as well.
We refer to the minimal number q of queries needed by the algorithm to solve a problem with
constant probability as the query complexity. We note that upper bounds on the query complexity

447

immediately translate to running time bounds for the RAM model, when A is explicit, since a
matrix-vector product can be implemented in nnz(A) time, i.e., the number of non-zero entries
in the matrix. Since this model captures a large family of iterative methods, it is natural to
ask whether Krylov subspace based methods yield optimal algorithms, where the complexity
measure of interest is the number of matrix-vector products.

This model and related vector-matrix-vector query models were formalized for a number
of problems in [SWYZ19, RWZ20], though the model is standard for measuring efficiency in
scientific computing and numerical linear algebra, see, e.g., [BFG96]; in that literature, meth-
ods that use only matrix-vector products are called matrix-free. Subsequently, for the problem
of estimating the top eigenvector, nearly tight bounds were obtained in [SAR18, BHSW20].
Also, for the problem of estimating the trace of a positive semidefinite matrix, tight bounds were
obtained in [MMMW21] (see, also [WWZ14], where tight bounds were shown in the related
vector-matrix-vector query model). For recovering a planted clique from a random graph, upper
and lower bounds were obtained in [RWYZ21]. In the non-adaptive setting, where v1, . . . , vq,
are chosen before making any queries to A, this is equivalent to the sketching model, which is
thoroughly studied on its own (see, e.g., [Nel11, Woo14b]), and in the context of data streams
[Mut05, LNW14b].

Why is the matrix A implicit? A small query complexity q leads to an algorithm running
in time O(T (A) · q + P (n, d, q)), where T (A) is the time to multiply the n × d matrix A by
an arbitrary vector, and P (n, d, q) is the time needed to form the queries and process the query
responses, which is typically small. When the matrix A is given as a list of nnz(A) non-zero
entries, then T (A) 6 nnz(A). However, in many problems A is not given explicitly, and it
is too expensive to write A down. Indeed, one may be given A but want to compute a low-
rank approximation to the “covariance” (Gram) matrix A>A, and computing A>A is too slow
[MW17a]. More generally, one may be given A = UΣV> and a function f : R→ R, and want
to compute matrix-vector products with the generalized matrix function f(A) = Uf(Σ)V>,
where U has orthonormal columns, V> has orthonormal rows, Σ is a diagonal matrix, and f is
applied entry-wise to each entry on the diagonal.

The covariance matrix corresponds to f(x) = x2, and other common functions f include
the matrix exponential f(x) = ex and low-degree polynomials. For instance, when A is the
adjacency matrix of an undirected graph, f(x) = x3/6 is used to count the number of triangles
[Tso08, Avr10]. Yet another example is when A is the Hessian H of a neural network with
a huge number of parameters, for which it is often impossible to compute or store the entire
Hessian [GKX19]. Typically H · v, for any chosen vector v, is computed using Pearlmutter’s

448

trick [Pea94]. However, even with Pearlmutter’s trick and distributed computation on modern
GPUs, it takes 20 hours to compute the eigendensity of a single Hessian H with respect to the
cross-entropy loss on the CIFAR-10 dataset from a set of fixed weights for ResNet-18 [KH+09],
which has approximately 11 million parameters [HZRS16, GKX19]. This time is directly pro-
portional to the number of matrix-vector products, and therefore minimizing this quantity is
crucial.

Algorithms and Lower Bounds for Low-Rank Approximation. The low-rank approxima-
tion problem is well studied in numerical linear algebra, with countless applications to clustering,
data mining, principal component analysis, recommendation systems, and many more. (For sur-
veys on low-rank approximation, see the monographs [KV09, Mah11, Woo14b] and references
therein.) In this problem, given an implicit n × d matrix A, the goal is to output a matrix
Z ∈ Rd×k with orthonormal columns such that

‖A
(
I− ZZ>

)
‖X 6 (1 + ε) min

U:U>U=Ik
‖A

(
I−UU>

)
‖X , (7.1)

where ‖ · ‖X denotes some norm. Note that given Z, one can compute AZ with an additional
k queries, which will be negligible, and then (AZ) · Z> is a rank-k matrix written in factored
form, i.e., as the product of an n × k matrix and a k × d matrix. Among other things, low-rank
approximation provides (1) a compression of A from nd parameters to (n+ d)k parameters, (2)
faster matrix-vector products, since AZ · Z> · y can be computed in O((n + d)k) time for an
arbitrary vector y, as opposed to the O(nd) time needed to compute A · y, and (3) de-noising, as
often matrices A are close to low-rank (e.g., they are the product of latent factors) but only high
rank due to noise.

Despite its tremendous importance, the optimal matrix-vector product complexity of low-
rank approximation is unknown for any commonly used norm. The best known upper bound is
due to Musco and Musco [MM15], who achieve Õ(k/ε1/2) queries1 for both the case when ‖·‖X
is the commonly studied Frobenius norm ‖B‖F =

(∑
i,j B2

i,j

)1/2
as well as when ‖ · ‖X is the

Spectral (operator) norm ‖B‖2 = sup‖y‖2=1 ‖By‖2.

On the lower bound front, there is a trivial lower bound of k, since A may be full rank and
achieving (7.1) requires k matrix-vector products since one must reconstruct the column span of
A exactly. However, no lower bounds in terms of the approximation factor ε were known. We
note that Simchowitz, Alaoui and Recht [SAR18] prove lower bounds for approximating the top
r eigenvalues of a symmetric matrix; however these guarantees are incomparable to those that

1We let Õ(f) = f · poly(log(dk/ε)).

449

follow from a low-rank approximation, even when the norm ‖ · ‖X is the operator norm (see
Appendix 7.6 for a brief discussion).

Relationship to the Sketching Literature. Low-rank approximation has been extensively
studied in the sketching literature which, when A is given explicitly, can achieve O(nnz(A))
time both for the Frobenius norm [CW13, MM13a, NN13a], as well as for Schatten-p norms
[LW20]. However, these works require reading all of the entries in A, and thus do not apply
to any of the settings mentioned above. Further, the matrix-vector query model is especially
important for problems such as trace estimation, where a low-rank approximation is used to
first reduce the variance [MMMW21]. As trace estimation is often applied to implicit matri-
ces, e.g., in computing Stochastic Lanczos Quadrature (SLQ) for Hessian eigendensity estima-
tion [GKX19], in studying the effects of batch normalization and residual connections in neural
networks [YGKM20], and in computing a disentanglement regularizer for deep generative mod-
els [PPZ+20], sketching algorithms for low-rank approximation often do not apply.

Another important application is low-rank approximation of covariance matrices [MW17a],
for which the covariance matrix is not given explicitly. Here, we have a data matrix A and we
want a low-rank approximation for AA>. Even when S is a sparse sketching matrix, the matrix
SA is no longer sparse, and one needs to multiply SA by A> to obtain a sketch of SAA>,
which is a dense matrix-matrix multiplication. Moreover, when viewed in the matrix-vector
product model, sketching algorithms obtain provably worse query complexity than existing it-
erative algorithms (see Table 1.2 for a comparison). Further, as modern GPUs often do not
exploit sparsity, even when the matrix A is given, a GPU may not be able to take advantage of

sparse queries, which means the total time taken is proportional to the number of matrix-vector
products.

Motivating Schatten-p Norms. The Schatten norms for 1 6 p < 2 are more robust than the
Frobenius norm, as they dampen the effect of large singular values. In particular, the Schatten-1
norm, also known as the nuclear norm, has been widely used for robust PCA [XCS10, CLMW11,
YPCC16] as well as a convex relaxation of matrix rank in matrix completion [CR09, CP10],
low-dimensional Euclidean embeddings [RFP10, TDSL00, RS00], image denoising [GZZF14,
GXM+17] and tensor completion [YZ16]. In contrast, for p > 2, Schatten norms are more sensi-
tive to large singular values and provide an approximation to the operator norm. In particular, for
a rank r matrix, it is easy to see that setting p = log(r)/η yields a (1+η)-approximation to the op-
erator norm (i.e., p =∞). While the Block Krylov algorithm of Musco and Musco [MM15] im-
plies a matrix-vector query upper bound of Õ

(
k/ε1/2

)
for Schatten-∞ low-rank approximation,

450

the exact complexity of this problem remains an outstanding open problem. When p > 2, we
can interpolate between Frobenius and operator norm, and setting p to be a large fixed constant
can be a proxy for Schatten-∞ low-rank approximation, with significantly fewer matrix-vector
products (see Theorem 150).

Our Central Question. The main question of our work is:

What is the matrix-vector product complexity of low-rank approximation for the Frobenius

norm, and more generally, for other matrix norms?

7.1.1 Our Results

We begin by stating our results for Frobenius and more generally, Schatten-p norm low-rank
approximation for any p > 1; see Table 1.2 for a summary.

Theorem 145 (Query Upper Bound, informal Theorem 150). Given a matrix A ∈ Rn×d, a

target rank k ∈ [d], an accuracy parameter ε ∈ (0, 1) and any (not necessarily constant) p ∈
[1,O(log(d)/ε)], there exists an algorithm that uses Õ

(
kp1/6/ε1/3

)
matrix-vector products and

outputs a d× k matrix Z with orthonormal columns such that with probability at least 99/100,

‖A
(
I− ZZ>

)
‖Sp 6 (1 + ε) min

U: U>U=Ik
‖A

(
I−UU>

)
‖Sp .

When p > log(d)/ε, we get Õ (k/
√
ε) matrix-vector products.

We note that for Frobenius norm low-rank approximation (Schatten p for p = 2), we im-
prove the prior matrix-vector product bound of Õ(k/ε1/2) by Musco and Musco [MM15] to
Õ(k/ε1/3). For Schatten-p low-rank approximation for p ∈ [1, 2), we improve work of Li and
Woodruff [LW20] who require query complexity at least Ω(k2/p/ε4/p+1), which is a polynomial
factor worse in both k and 1/ε than our Õ(k/ε1/3) bound.

For p > 2, [LW20] obtain a query complexity of Ω(min(n, d)1−2/p). We drastically improve
this to Õ(k/ε1/3), which does not depend on d or n at all. Setting p = log(d)/ε suffices to
obtain a (1 + ε)-approximation to the spectral norm (p =∞), and we obtain an Õ (k/

√
ε) query

algorithm, matching the best known bounds for spectral low-rank approximation [MM15]. When
p > log(d)/ε, we can simply run Block Krylov for p =∞.

Remark 146 (Comments on the RAM Model). Although our focus is on minimizing the num-

451

ber of matrix-vector products, which is the key resource in the applications described above,
our bounds also improve the running time of low-rank approximation algorithms when the ma-
trix A has a small number of non-zero entries and is explicitly given. For simplicity, we state
our bounds and those of previous work without using algorithms for fast matrix multiplication;
similar improvements hold when using such algorithms. When nnz(A) = O(n), for Frobe-
nius norm low-rank approximation, work in the sketching literature, and in particular [ACW17]
(building off of [CW13, NN13a, Coh16]), achieves O(nk2/ε) time. In contrast, in this setting
our runtime is Õ(nk2/ε2/3). Similarly, for Schatten-p low-rank approximation for p ∈ [1, 2),
the previous best [LW20] requires Ω̃(nk4/p/ε(8/p−2)) time, while for p > 2 [LW20] requires
Ω̃(nd2(1−2/p)(k/ε)4/p) time. In both cases our runtime is only Õ(nk2p1/3/ε2/3). We obtain anal-
ogous improvements when the sparsity nnz(A) is allowed to be n(k/ε)C for a small constant
C > 0.

Next, we state our lower bounds on the matrix-vector query complexity of Schatten-p low-
rank approximation.

Theorem 147 (Query Lower Bound for constant p, informal Theorem 153 and Theorem 155).
Given ε > 0, and a fixed constant p > 1, there exists a distribution D over n × n matrices

such that for A ∼ D, any algorithm that with at least constant probability outputs a unit vector

v such that ‖A
(
I− vv>

)
‖pSp 6 (1 + ε) min‖u‖2=1‖A

(
I− uu>

)
‖pSp must perform Ω(1/ε1/3)

matrix-vector queries to A.

Remark 148. We note that this is the first lower bound as a function of ε for this problem, even
for the well-studied case of p = 2, achieving an Ω(1/ε1/3) bound, which is tight for any constant
k, simultaneously for all constant p > 1.

Remark 149. Braverman, Hazan, Simchowitz and Woodworth [BHSW20] and Simchowitz,
Alaoui and Recht [SAR18] establish eigenvalue estimation lower bounds that we use in our
arguments, but their results do not directly imply low-rank approximation lower bounds for any
matrix norm that we are aware of, including spectral low-rank approximation, i.e., p = ∞ (see
Appendix 7.6).

Matrix Polynomials and Streaming Algorithms. Since our algorithms are based on iter-
ative methods, they generalize naturally to low-rank approximations of matrices of the form
A
(
A>A

)`
and

(
A>A

)`
for any integer `, given A as input. We defer the details to Appendix

7.7.

452

Since we work in the matrix-vector model, our algorithms naturally extend to the multi-pass
turnstile streaming setting. Notably, for p > 2, with O

(
log(d/ε)p1/6/ε1/3

)
passes we are able to

improve the Õ
(
n
(
kn1−2/p

ε2
+ k2/p+n1−2/p

ε2+2/p

))
memory bound of [LW20] to Õ

(
nk/ε1/3

)
. We defer

the details to Appendix 7.8.

7.2 Additional Related Work

Existing approaches to solve low-rank approximation problems under several norms fall into
two broad categories: iterative methods and linear sketching. Iterative methods, such as Krylov
subspace based methods, are captured by the matrix-vector product framework, whereas linear
sketching allows for the choice of a matrix S ∈ Rt×n, where t is the number of “queries”, and
then observes the product S · A and so on (see [Woo14b] and references therein). The model
has important applications to streaming and distributed algorithms and several recent works have
focused on estimating spectral norms and the top singular values [AN13, LNW14a, LW16b,
BBK+21b], estimating Schatten and Ky-Fan norms [LW16b, LW17, LW16a, BKKS19] and low-
rank approximation [CW13, MM13b, NN13a, BDN15, Coh16].

In addition to studying unitarily invariant norms, such as the Schatten norm, there also has
been significant amount of work on studying low-rank approximation under matrix `p norms [SWZ17,
BBB+19, SWZ20, MW21] and weighted low-rank approximation [SJ03, RSW16, BWZ19], set-
tings in which the problem is known to be NP-Hard. Finally, there has been a recent flurry
of work on sublinear time algorithms for low-rank approximation under various structural as-
sumptions on the input [MW17c, BW18, IVWW19, SW19, BCW20b] and in quantum-inspired
models [KP16, CLW18, Tan19, RSML18, GLT18, GSLW19, CCH+20].

7.3 Preliminaries

Given an n × d matrix A with rank r, and n > d, we can compute its singular value decom-
position, denoted by SV D(A) = UΣV>, such that U is an n × r matrix with orthonormal
columns, V> is an r × d matrix with orthonormal rows and Σ is an r × r diagonal matrix. The
entries along the diagonal are the singular values of A, denoted by σ1, σ2 . . . σr. Given an integer
k 6 r, we define the truncated singular value decomposition of A that zeros out all but the top
k singular values of A, i.e., Ak = UΣkV>, where Σk has only k non-zero entries along the
diagonal. It is well-known that the truncated SVD computes the best rank-k approximation to A

453

under any unitarily invariant norm, but in particular for any Schatten-p norm (defined below), we
have Ak = minrank(X)=k ‖A−X‖Sp . More generally, for any matrix M, we use the notation Mk

and M\k to denote the first k components and all but the first k components respectively. We use
Mi,∗ and M∗,j to refer to the ith row and jth column of M respectively.

We use the notation Ik to denote a truncated identity matrix, that is, a square matrix with
its top k diagonal entries equal to one, and all other entries zero. The dimension of Ik will be
determined by context.

Definition 7.3.1 (Orthogonal Projection Matrices). Given a d × d symmetric matrix P and k ∈
[d], P is a rank-k orthogonal projection matrix if rank(P) = k and P2 = P.

It follows from the above definition that P has eigenvalues that are either 0 or 1 and admits a
singular value decomposition of the form UU> where U has k orthonormal columns.

Definition 7.3.2 (Unitary Matrices). Given a symmetric matrix U ∈ Rd×d we say U is a unitary

matrix if U>U = UU> = I.

Definition 7.3.3 (Rotation Matrices). Given a symmetric matrix R ∈ Rd×d we say R is a rotation

matrix if R is unitary and det (R) = 1.

Fact 7.3.4 (Courant-Fischer for Singular Values). Given an n× d matrix A with singular values

σ1 > σ2 > . . . > σd, the following holds: for all i ∈ [d],

σi = max
S: dim(S)=i

min
x∈S: ‖x‖2=1

‖x>A‖2.

Fact 7.3.5 (Weyl’s Inequality for Singular Values (see Exercise 22 [Tao20])). Given n × d ma-

trices X,Y, for any i, (j − 1) ∈ [d] such that i+ j 6 d ,

σi+j (X + Y) 6 σi(X) + σj+1(Y).

Fact 7.3.6 (Bernoulli’s Inequality). For any x, p ∈ R such that x > −1 and p > 1, (1 + x)p >
1 + px.

Schatten Norms and Trace Inequalities. We recall some basic facts for Schatten-p norms.
We also require the following trace and operator inequalities.

Definition 7.3.7 (Schatten-p Norm). Given a matrix A ∈ Rn×d, let σ1 > σ2 > . . . > σd be the

454

singular values of A. Then, for any p ∈ [0,∞), the Schatten-p norm of A is defined as

‖A‖Sp = Tr
[(

A>A
)p/2]1/p

=
∑
i∈[d]

σpi (A)
1/p

.

Fact 7.3.8 (Schatten-p norms are Unitarily Invariant). Given an n × d matrix M, for any m ×
n matrix U with orthonormal columns, a norm ‖ · ‖X is defined to be unitarily invariant if

‖UM‖X = ‖M‖X . The Schatten-p norm is unitarily invariant for all p > 1.

There exists a closed-form expression for the low-rank approximation problem under Schatten-
p norms:

Fact 7.3.9 (Schatten-p Low-Rank Approximation). Given a matrix A ∈ Rn×d and an integer

k ∈ N,

Ak = arg min
rank(X)6k

‖A−X‖Sp ,

where Ak is the truncated SVD of A.

Fact 7.3.10 (Araki–Lieb–Thirring Inequality [Ara90]). Given PSD matrices A,B ∈ Rd×d, for

any r > 1, the following inequality holds:

Tr [(BAB)r] 6 Tr [BrArBr] .

Further, for 0 < r < 1, the reverse holds

Tr [(BAB)r] > Tr [BrArBr] .

Fact 7.3.11 (Mahler’s Orthogonal Operator Inequality, Theorem 1.7 in [Mah90]). Given p > 2,

and matrices P and Q such that the row (column) span of P is orthogonal to the row (column)

span of Q, the following inequality holds:

‖P‖pSp + ‖Q‖pSp 6 ‖P + Q‖pSp .

Fact 7.3.12 (Hölder’s Inequality for Schatten-p Norms, Corollary 4.2.6 [Bha13]). Given matri-

ces A,B> ∈ Rn×d and p ∈ [1,∞), the following holds

‖AB‖Sp 6 ‖A‖Sq · ‖B‖Sr ,

455

for any q, r such that 1
p

= 1
q

+ 1
r
.

We also require pinching inequalities that were originally introduced to relate norms for par-
titioned operators over direct sums of Hilbert spaces. In our context, these inequalities simplify
to norm inequalities for block matrices:

Fact 7.3.13 (Pinching Inequalities for Schatten-p Norms, [BKL02]). Let M ∈ Rtd×td be the

following block matrix

M =


M(1,1) M(1,2) · · · M(1,t)

M(2,1) M(2,2) · · · M(1,t)
...

M(t,1) M(t,2) · · · M(t,t)

 ,

where for all i, j ∈ [t], M(i,j) ∈ Rd×d. For all p > 1, the following inequality holds:

∑
i∈[t]
‖M(i,i)‖pSp

1/p

6 ‖M‖Sp .

We also require a norm compression inequality that is a special case of Conjecture 7.3.15
(and known to be true), when each block is aligned in the following sense:

Fact 7.3.14 (Aligned Norm Compression Inequality, Section 4.3 in [Aud08]). Let M =
M1 M2

M3 M4


such that there exist scalars α1, α2, β1, β2 such that M1 = α1X, M2 = α2X, M3 = β1Yand

M4 = β2Y. Then, for any p > 2,

‖M‖Sp 6 ‖

‖M1‖Sp ‖M2‖Sp
‖M3‖Sp ‖M4‖Sp

‖Sp .
Finally, we note a related conjecture, Audenaert’s Norm Compression Conjecture [Aud08],

a question in functional analysis concerning operator inequalities (see also [AK12]):

Conjecture 7.3.15 (Schatten-p Norm Compression). Let M be a partitioned operator (block

matrix) such that M =
M1 M2

M3 M4

. Let CM,p =
‖M1‖Sp ‖M2‖Sp
‖M3‖Sp ‖M4‖Sp

 be a 2 × 2 matrix

that denotes the Schatten-p compression of M for any p > 1. Then, ‖M‖Sp > ‖CM,p‖Sp if

1 6 p 6 2, and ‖M‖Sp 6 ‖CM,p‖Sp if 2 6 p <∞.

456

We only require special cases of this that are known to be true.

Random Matrix Theory. Next, we recall some basic facts for Wishart ensembles from random
matrix theory (we refer the reader to [Tao12] for a comprehensive overview).

Definition 7.3.16 (Wishart Ensemble). An n×n matrix W is sampled from a Wishart Ensemble,

Wishart(n), if W = XX> such that for all i, j ∈ [n] Xi,j ∼ N
(
0, 1

n
I
)
.

Fact 7.3.17 (Norms of a Wishart Ensemble). Let W ∼ Wishart(n) such that n = Ω(1/ε3).

Then, with probability 99/100, ‖W‖op 6 5 and for any fixed constant p, ‖I− 1
5W‖pSp = Θ

(
1

ε1/3

)
.

7.4 Algorithms for Schatten-p LRA

In this section, we focus on obtaining algorithms for low-rank approximation in Schatten-p norm,
simultaneously for all real, not necessarily constant, p ∈ [1,O(log(d)/ε)]. For the special case
of p ∈ {2,∞}, Musco and Musco [MM15] showed an algorithm with matrix-vector query
complexity Õ(k/ε1/2), given below as Algorithm 152. We show that the number of matrix-
vector products we require scales proportional to Õ

(
kp1/6/ε1/3

)
instead. Finally, recall when

p > log(d)/ε, it suffices to run Block Krylov for p = ∞, which requires O(log(d/ε)k/
√
ε)

matrix-vector products.

Theorem 150 (Optimal Schatten-p Low-Rank Approximation). Given a matrix A ∈ Rn×d, a

target rank k ∈ [d], an accuracy parameter ε ∈ (0, 1) and any p ∈ [1,O(log(d)/ε)], Algorithm

151 performsO
(
kp1/6 log(d/ε)

ε1/3 + log(d/ε)k√p
)

matrix-vector products and outputs a d×k matrix

Z with orthonormal columns such that with probability at least 9/10,

‖A
(
I− ZZ>

)
‖Sp 6 (1 + ε) min

U: U>U=Ik
‖A

(
I−UU>

)
‖Sp .

Further, in the RAM model, the algorithm runs in time O
(

nnz(A)p1/6k log2(d/ε)
ε1/3 + np(ω−1)/6kω−1

ε(ω−1)/3

)
.

We first introduce the following lemmas from Musco and Musco [MM15] that provide con-
vergence bounds for the performance of Block Krylov Iteration (Algorithm 152) :

Lemma 7.4.1 (Gap Independent Block Krylov with Arbitrary Accuracy). Let A be an n × d

matrix, k be the target rank and γ > 0 be an accuracy parameter. Then, initializing Algorithm

152 with block size k and running for q = Ω
(
log(d/γ)/√γ

)
iterations outputs a d× k matrix Z

457

such that with probability 99/100, for all i ∈ [k],

‖AZ∗,i‖2
2 = σ2

i ± γσ2
k+1.

Further, the total number of matrix-vector products is O(kq) and the running time in the RAM

model is O
(
nnz(A)kq + n (kq)2 + (kq)ω

)
.

The aforementioned lemma follows directly from Theorem 1 in [MM15], using the per-vector
error guarantee (3).

Lemma 7.4.2 (Gap Dependent Block Krylov, Theorem 13 [MM15]). Let A be an n× d matrix

and γ > 0, be an accuracy parameter and p, k ∈ N be such that b > k. Let σ1, σ2 . . . σd be

the singular values of A. Then, initializing Algorithm 152 with block size b and running for

q = Ω
(
log(n/γ)√σk/

√
σk − σb

)
iterations outputs a d× k matrix Z such that with probability

99/100, for all i ∈ [k]
‖AZ∗,i‖2

2 = σ2
i ± γσ2

k+1.

Further, the total number of matrix-vector products is O(pq) and the running time in the RAM

model is O
(
nnz(A)bq + n (bq)2 + (bq)ω

)
.

Algorithm 151 (Optimal Schatten-p Low-rank Approximation).

Input: An n× d matrix A, target rank k 6 d, accuracy parameter 0 < ε < 1, and p > 1.

1. Let γ1 = ε2/3/p1/3. Run Block Krylov Iteration (Algorithm 152) on A> with

block size k, and number of iterations q = O
(
log(d/γ1)/√γ1 + log(d/ε)√p

)
.

Let W1 ∈ Rn×k be the corresponding output with orthonormal columns.

2. Let γ2 = ε and let s = O
(
p−1/3k/ε1/3

)
. Run Block Krylov Iteration (Algorithm

152) on A> with block size s, and number of iterations q = O
(
log(d/γ2)√p

)
.

Let W2 ∈ Rn×k be the corresponding output with orthonormal columns.

3. Run Block Krylov on A with target rank k + 1 and number of iterations q =
O
(
(log(dp) + log(d/ε))√p

)
, and let Ẑ1 be the resulting d×(k+1) output matrix.

Compute σ̂2
1 = ‖A(Ẑ1)∗,1‖2

2 and σ̂2
k+1 = ‖A(Ẑ1)∗,k+1‖2

2, rough estimates of the

1-st and (k+1)-st singular values of A. Run Block Krylov on A with target rank

s, where s = O
(
p−1/3k/ε1/3

)
and iterations q = O

(
log(d/ε)√p

)
, and let Ẑ2 be

the resulting d× s output matrix. Compute σ̂2
s = ‖A(Ẑ2)∗,s‖2

2, an estimate to the

458

s-th singular value of A.

4. If σ̂2
1 > (1+0.5/p)σ̂2

k+1, set Z = Z1. Else, if σ̂2
s 6 σ̂2

k+1/ (1 + 0.5/p), set Z to be

an orthonormal basis for A>W2W>
2 and otherwise set Z to be an orthonormal

basis for A>W1W>
1 .

Output: A matrix Z ∈ Rd×k with orthonormal columns such that

‖A
(
I− ZZ>

)
‖pSp 6 (1 + ε) min

U: U>U=Ik
‖A

(
I−UU>

)
‖pSp .

Next, we prove the following key lemma relating the Schatten-p norm of row and column
projections applied to a matrix A to the Schatten-p norm of the matrix itself. We can interpret
this lemma as an extension of the Pythagorean Theorem to Schatten-p spaces and believe this
lemma is of independent interest. We note that we appeal to pinching inequality for partitioned
operators to obtain this lemma.

Lemma 7.4.3 (Schatten-p Norms for Orthogonal Projections). Let A be an n × d matrix, let P
be an n×nmatrix, and let Q be a d×dmatrix such that both P and Q are orthogonal projection

matrices of rank k (see Definition 7.3.1). Then, the following inequality holds for all p > 1:

‖A‖pSp > ‖PAQ‖pSp + ‖(I−P) A (I−Q)‖pSp .

Proof. Let A = UΣV> be the SVD of A, where U ∈ Rn×d and V> ∈ Rd×d have orthonormal
columns and rows respectively. We construct unitary matrices R and S, such that R ∈ Rn×n and
S ∈ Rd×d that satisfy the following constraints:

1. R>IkRAS>IkS = PAQ, and

2. R> (I− Ik) RAS> (I− Ik) S = (I−P) A (I−Q),

where the trunctated Identity matrix, Ik, left multiplying A is n × n and right multiplying A is
d× d.

Recall, since P is a rank-k projection matrix, it admits a decomposition P = XX> such that
X has k orthonormal columns and similarly I − P = YY>, where Y has n − k orthonormal
columns. Further, since X and Y span disjoint subspaces, and the union of their span is Rn,
the matrix (X | Y), obtained by concatenating their columns, is unitary. Then, it suffices to set

459

R = (X | Y)>. To see this, observe,

R>IkR = (X | 0) ·
X>

0

 = XX> = P,

and similarly,
R> (I− Ik) R = YY> = I−P.

We repeat the above argument for the projection matrix Q. Let Q = WW>, where W is
d×k and has orthonormal columns, and I−Q = ZZ>, where Z is d×(d−k) and has orthonormal
columns. Observe, it suffices to set S = (W | Z)>, since S is unitary and S>IkS = Q and
S> (I− Ik) S = I−Q. Note, by construction, we satisfy the two aforementioned constraints.

Let Â = RAS>. Since R and S are unitary, it follows from unitary invariance of the
Schatten-p norm that

‖Â‖Sp = ‖RUΣV>S>‖Sp = ‖A‖Sp (7.2)

Further, observe for any n× d matrix M, we have have the following block decomposition

M = IkMIk + IkM (I− Ik) + (I− Ik) MIk + (I− Ik) M (I− Ik)

=
 M1:k,1:k M1:k,k+1:d

Mk+1:n,1:k Mk+1:n,k+1:d

 ,
where the notation Mi:i′,j:j′ picks the (i′−i+1)×(j′−j+1) sized sub-matrix corresponding to the
rows indices [i, i′] and column indices [j, j′]. Since appending rows and columns of 0’s does not
change the singular values, we have ‖IkMIk‖Sp = ‖M1:k,1:k‖Sp and ‖(I− Ik) M (I− Ik)‖Sp =
‖Mk+1:n,k+1:d‖Sp . Setting M = Â, we have

‖Â‖pSp = ‖
 Â1:k,1:k Â1:k,k+1:d

Âk+1:n,1:k Âk+1:n,k+1:d

‖pSp
> ‖Â1:k,1:k‖pSp + ‖Âk+1:n,k+1:d‖pSp
= ‖IkÂIk‖pSp + ‖(I− Ik) Â (I− Ik)‖pSp ,

(7.3)

where the inequality follows from using the pinching inequality on the block matrix (see Fact
7.3.13). By the unitary invariance of the Schatten-p norm, we have

‖IkÂIk‖pSp = ‖R>IkÂIkS‖pSp = ‖PAQ‖pSp ,

460

and similarly,

‖(I− Ik) Â (I− Ik)‖pSp = ‖R> (I− Ik) Â (I− Ik) S‖pSp = ‖(I−P) A (I−Q)‖pSp .

Plugging these two bounds back into Equation (7.3), along with Equation (7.2), we can conclude,

‖A‖pSp > ‖PAQ‖pSp + ‖(I−P) A (I−Q)‖pSp .

Algorithm 152 (Block Krylov Iteration, [MM15]).

Input: An n × d matrix A, target rank k, iteration count q and a block size parameter s

such that k 6 s 6 d.

1. Let U be a n×smatrix such that each entry is drawn i.i.d. fromN (0, 1). Let K =[
A>U; (A>A)A>U; (A>A)2A>U; . . . ; (A>A)qA>U

]
be the d × s(q + 1)

Krylov matrix obtained by concatenating the matrices A>U, . . . ,
(
A>A

)q
A>U.

2. Compute an orthonomal basis Q for the column span of K. Let M = Q>A>AQ.

3. Compute the top k left singular vectors of M, and denote them by Yk.

Output: Z = QYk

Note, despite establishing Lemma 7.4.3, it is not immediately apparent how to lower bound
‖AZZ>‖pSp , where Z is a candidate solution. Next, we show how to translate a guarantee on the
Euclidean norm of A times a column of Z to a lower bound on ‖AZZ>‖pSp .

Lemma 7.4.4 (Per-Vector Guarantees to Schatten Norms). Let A be an n×dmatrix with singular

values denoted by {σi (A)}i∈[d]. Let Z be a d × k matrix with orthonormal columns that is

output by Algorithm 152, such that for all i ∈ [k], with probability at least 99/100, ‖AZ∗,i‖2
2 >

σ2
i (A)− γiσ2

k+1 (A), for some γ ∈ (0, 1). Then, for any p > 1, we have

‖AZZ>‖pSp > ‖Ak‖pSp −
∑
i∈[k]
O(γip)σ2

k+1 (A)σp−2
i (A) .

Proof. First, we observe that it suffices to show that σi(AZ)2 > ‖Azi‖2
2, where zi is shorthand

for Z∗,i, the i-th columm of Z. Assuming this inequality holds, we can complete the proof as

461

follows: we know that for all i ∈ [k],

σ2
i (AZ) > ‖Azi‖2

2 > σ2
i (A)− γσ2

k+1(A)

= σ2
i (A)

(
1− γσ

2
k+1(A)
σ2
i (A)

) (7.4)

Then, taking p/2-th powers in (7.4),

σpi (AZ) > σpi (A)
(

1− γσ
2
k+1(A)
σ2
i (A)

)p/2

> σpi (A)
(

1−O
(
γpσ2

k+1(A)
σ2
i (A)

))
= σpi (A)−O(γp)σ2

k+1 (A)σp−2
i (A)

(7.5)

where the second inequality follows from the generalized Bernoulli inequality (see Fact 7.3.6).
Summing over all i ∈ [k], we can conclude

‖AZ‖pSp > ‖Ak‖pSp −
∑
i∈[k]
O(γp)σ2

k+1 (A)σp−2
i (A) .

Therefore, it remains to show that σi(AZ)2 > ‖Azi‖2
2. First, we recall that Algorithm 152

outputs {zi}i∈[k] such that zi = Qz̃i, where Q is an orthonormal basis for the Krylov space K
(an d × s(q + 1) matrix) and z̃i is the i-th singular vector of Q>A>AQ. Note that the z̃i’s are
s(q + 1)-dimensional vectors. Let WΩW> be the SVD of Q>A>AQ. Then, QWΩW>Q>

is the SVD of QQ>A>AQQ>. To see this, let the i-th column of QW be denoted by QW∗,i.
Then,

〈QW∗,i,QW∗,i〉 = W>
∗,iQ>QW∗,i = 1

and similarly for any j 6= i,

〈QW∗,i,QW∗,j〉 = W>
∗,iQ>QW∗,j = 0

where we use that Q>Q = I and the columns of W are orthonormal, which holds by definition.
Therefore, zi = Qz̃i is the i-th singular vector of QQ>A>AQQ>. Let Z̃ be the matrix obtained

462

by stacking the vectors z̃i together. Then, we have

σi(AZ)2 = σ2
i (AQZ̃) = σ2

i (AQ)

= σ2
i (AQQ>)

= zTi QQ>A>AQQ>zi
= z>i A>Azi

(7.6)

where the first equality follows from the definition of Z̃, the second follows from observing that
Z̃ are the singular vectors of AQ as shown above, the third follows from Q> having orthonormal
rows, the fourth from zi being the i-th singular vector of AQQ> and the last from observing that
zi is in the column span of Q and thus QQ>zi = zi. This concludes the proof.

Next, we show a lemma relating a high-accuracy per vector guarantee to cost on the residual
subspace.

Lemma 7.4.5 (High-Accuracy Per-Vector Guarantee to Residual Cost). Given a matrix A ∈
Rn×d, integer p > 1, k ∈ [d], ` ∈ [k] and orthonormal vectors {wi}i∈[`] such that ‖A>wi‖2

2 >

σ2
i −poly (ε/d)σ2

k+1 and (σ`−σ`+1)/σ` > ε/d. Let W be the matrix formed by stacking together

the wi’s as columns. Then,

‖A>`
(
I−WW>

)
‖2
F 6 poly

(
ε

d

)
σ2
k+1,

where A` is the matrix obtained by truncating all but the top ` singular values of A.

Proof. By Pythagorean Theorem,

‖A>WW>‖2
F = ‖A>` WW>‖2

F + ‖(A−A`)>WW>‖2
F

6 ‖A>` WW>‖2
F + σ2

`+1

(
‖W‖2

F − ‖U>` W‖2
F

)
,

(7.7)

where A = UΣV>. Further,

‖A>` WW>‖2
F = ‖Σ`U>` W‖2

F 6
∑
i∈[`]

σ2
i − σ2

`

(
`− ‖U>` W‖2

F

)
, (7.8)

where the last inequality is obtained by making the Euclidean norm of all of the U`W’s in
[` − 1]to be 1, and the `-th row to be ‖(U>` W)`,∗‖2

2 = ‖U>` W‖2
F − (` − 1). Rearranging

463

Equation (7.8), we have

`− ‖U>` W‖2
F 6

‖A>` ‖2
F − ‖A>` W‖2

F

σ2
`

. (7.9)

Now, observe ‖W‖2
F = `, and substituting (7.9) back into (7.8),

‖A>W‖2
F 6 ‖A>` W‖2

F + σ2
`+1
σ2
`

(
‖A>` ‖2

F − ‖A>` W‖2
F

)
. (7.10)

Next, we can use the guarantee’s on the wi to obtain a lower bound on ‖A>W‖2
F as follows:

‖A>W‖2
F =

∑
i∈[`]
‖A>wi‖2

2 > ‖A>` ‖2
F − ` · poly

(
ε

d

)
σ2
k+1, (7.11)

Combining equations (7.10) and (7.11), we have

‖A>` −A>` WW>‖2
F =

(
‖A>` ‖2

F − ‖A>` W‖2
F

)
6
`poly(ε/d)σ2

k+1
1− (σ`+1/σ`)2

6 poly(ε/d)σ2
k+1,

(7.12)

which concludes the proof.

Next, we need a lemma relating the Schatten-p norm of AZ to that of W>A, where Z is an
arbitrary orthonormal basis and W is an orthonormal basis for AZ.

Lemma 7.4.6. Given a full-rank n × d matrix A, let W be a n × k matrix with orthonormal

columns. Further, let Z be an d× k matrix with orthonormal columns such that Z is a basis for

A>W. Then, for all i ∈ [k],
σi (AZ)p > σi

(
A>W

)p

Proof. We use the following fact that for two matrices A and B, we have that for all i, σi(A·B) 6
σi(A) · σ1(B); see, e.g., (2) in [LC15] and references [33-36] therein.

464

Using this fact, we have

σi(A>W) = σi(A>WWT) = σi(ZZTA>WWT)

6 σi(ZZTA>) · σ1(WWT)

= σi(ZZTA>)

= σi(ZTA),

where we have used that σ1(WWT) = 1 since WWT is a projection matrix, and the fact that
ZZT is a basis for the column span of A>W. Raising both sides to the p-th power establishes
the lemma.

Finally, we can combine the two aforementioned lemmas to obtain the following corollary:

Corollary 7.4.7 (Changing Basis for high-accuracy vectors). Given a matrix A ∈ Rn×d, in-

teger p > 1, k ∈ [d], ` ∈ [k] and orthonormal vectors {wi}i∈[`] such that ‖A>wi‖2
2 >

σ2
i − poly (ε/d)σ2

k+1 and (σ` − σ`+1)/σ` > ε/d. Let W be the matrix formed by stacking

together the wi’s as columns and let Z be an orthonormal basis for A>WW>. Then,

‖A`

(
I− ZZ>

)
‖2
F 6 poly

(
ε

d

)
σ2
k+1.

Proof. We closely follow the proof in Lemma 7.4.5. By Pythagorean Theorem,

‖AZZ>‖2
F = ‖A`ZZ>‖2

F + ‖(A−A`) ZZ>‖2
F

6 ‖A`ZZ>‖2
F + σ2

`+1

(
‖Z‖2

F − ‖V`Z‖2
F

)
,

(7.13)

where A = UΣV>. Further,

‖A`ZZ>‖2
F = ‖Σ`V>` Z‖2

F 6
∑
i∈[`]

σ2
i − σ2

`

(
`− ‖V>` Z‖2

F

)
, (7.14)

where the last inequality is obtained by making the Euclidean norm of all of the V>` Z’s in [`−1]to
be 1, and the `-th row to be ‖(V>` Z)`,∗‖2

2 = ‖V>` Z‖2
F − (` − 1). Rearranging Equation (7.14),

we have
`− ‖V>` Z‖2

F 6
‖A`‖2

F − ‖A`Z‖2
F

σ2
`

. (7.15)

465

Now, observe ‖Z‖2
F = `, and substituting (7.15) back into (7.14),

‖AZ‖2
F 6 ‖A`Z‖2

F + σ2
`+1
σ2
`

(
‖A`‖2

F − ‖A`Z‖2
F

)
. (7.16)

Next, we can use the guarantee’s on the wi to obtain a lower bound on ‖A>W‖2
F as follows:

‖A>W‖2
F =

∑
i∈[`]
‖A>wi‖2

2 > ‖A>` ‖2
F − ` · poly

(
ε

d

)
σ2
k+1, (7.17)

Observe ‖A>W‖2
F = ∑

i∈[`] σ
2
i (A>W). By Lemma 7.4.6, we know that for all i, σ2

i (A>W) 6
σ2
i (AZ). Therefore, we can restate the above equation as follows:

‖AZ‖2
F > ‖A>W‖2

F > ‖A`‖2
F − ` · poly

(
ε

d

)
σ2
k+1, (7.18)

Combining equations (7.16) and (7.18), we have

‖A` −A`ZZ>‖2
F =

(
‖A`‖2

F − ‖A`Z‖2
F

)
6
`poly(ε/d)σ2

k+1
1− (σ`+1/σ`)2

6 poly(ε/d)σ2
k+1,

(7.19)

which concludes the proof.

We now have all the ingredients we need to complete the proof of Theorem 150.

Proof of Theorem 150. Observe, using Lemma 7.4.1 with probability at least 97/100, Step 1
of Algorithm 151 outputs σ̂i’s such that for all i ∈ [k + 1], σ̂2

i = (1± 0.1/p)σ2
i and σ̂2

s =
(1± 0.1/p)σ2

s , for s = O
(
kp−1/3/ε1/3

)
. Condition on this event.

At a high level, we proceed via a case analysis: either the Schatten-p norm of the tail is large
compared to the (k+ 1)-st singular value, and we don’t require a highly accurate solution, or the
Schatten-p norm of the tail is small, and increasing the block size induces a gap. We formalize
this intuition into a proof.

No large singular values. Let us first consider the case where σ1 < (1 + 1/p)σk+1. We yet
again split into cases, and consider the case where the Schatten-p norm of the tail is small, i.e.

466

‖A−Ak‖pSp 6
k

p1/3ε1/3 · σpk+1. Observe, for any t ∈ [1, d− k − 1],

k

p1/3ε1/3
· σpk+1 > ‖A−Ak‖pSp >

k+1+t∑
i=k+1

σpi > tσpk+1+t. (7.20)

Then, setting t = (1+1/p)pk
ε1/3p1/3 = Θ

(
k

ε1/3p1/3

)
, we have σk+1+t 6 σk+1/ (1 + 1/p). It suffices

to show that we can detect this gap for some s > k + 1 + t. Recall, we know that σ̂k+1 =
(1± 0.1/p)σk+1 and σ̂s = (1± 0.1/p)σs. Then, we have

σ̂s 6

(
1 + 0.1

p

)
σs 6

(
1 + 0.1

p

)
σk+1+t 6

(
1 + 0.1

p

)
·
(

1
1 + 1/p

)
σk+1 6

1(
1 + 0.5

p

) σ̂k+1.

(7.21)
Therefore, Algorithm 151 outputs Z, an orthonormal basis for A>W2, where W2 is obtained
by running Algorithm 152 on A>, initialized with a block size of Θ

(
k

ε1/3p1/3

)
and run for

O
(
log(d/ε)√p

)
iterations. Observe, since σk+1+t 6 σk+1/ (1 + 1/p), this suffices to demon-

strate a gap that depends on p as follows: σk
σk−σk+t+1

6 p. Recall, we account for this gap by

running O
(
log(d)√p

)
iterations. Using the gap dependent analysis (Lemma 7.4.2), we can con-

clude that with probability at least 99/100, for all i ∈ [k],

‖A>(W2)∗,i‖2
2 > σ2

i − poly
(
ε

d

)
σ2
k+1. (7.22)

Then, applying Lemma 7.4.4 with W2W>
2 satisfying the guarantee in (7.22), we have

‖A>W2W>
2 ‖

p
Sp > ‖Ak‖pSp − poly

(
ε

d

) ∑
i∈[k]

σ2
k+1σ

p−2
i

> ‖Ak‖pSp − poly
(
ε

d

)
σpk+1.

(7.23)

where the last inequality uses that σ1 < (1 + 1/p)σk+1 and (1 + 1/p)p−2 = O(1). Next, we
use Lemma 7.4.3 to relate ‖A>W2W>

2 ‖
p
Sp to ‖A

(
I− ZZ>

)
‖pSp , where Z is an orthonormal

basis for A>W2W>
2 as output by the algorithm. Setting Q = ZZ> and P = W2W>

2 , we
observe that ‖PAQ‖pSp = ‖A>W2W>

2 ‖
p
Sp = ‖W2W>

2 A‖pSp and ‖(I−P) A (I−Q)‖pSp =

467

‖A
(
I− ZZ>

)
‖pSp . Then, invoking Lemma 7.4.3 and plugging in Equation (7.23), we have

‖(I−P) A (I−Q)‖pSp = ‖A
(
I− ZZ>

)
‖pSp 6 ‖A‖

p
Sp − ‖A

>W2W>
2 ‖

p
Sp

6 ‖A‖pSp − ‖Ak‖pSp + poly
(
ε

d

)
σpk+1

6
(

1 + poly
(
ε

d

))
‖A−Ak‖pSp ,

(7.24)

which concludes the analysis in this case.

As shown in Equation 7.21, we can detect a gap between σk+1+t and σk+1 by comparing
σ̂s and σ̂k+1. When 7.21 does not hold, we know that σ̂s > (1 + 0.5/p) σ̂k+1 and Algorithm
151 outputs Z, an orthonormal basis for A>W1W>

1 . Since we have (1 ± 0.1/p)-approximate
estimates to these quantities, we can conclude that σs > (1 + 0.1/p)σk+1. Then, we have

‖A−Ak‖pSp > s · σps = Ω
(

k

ε1/3p1/3

)
σpk+1. (7.25)

It therefore remains to consider the case where ‖A−Ak‖pSp >
ck

p1/3ε1/3 ·σpk+1, for a fixed universal

constant c. Here, we note that the tail is large enough that an additive error of O
(
ε2/3p1/3

)
σ2
k+1

on each of the top-k singular values suffices. Formally, it follows from Lemma 7.4.1 (setting
γ = ε2/3p−1/3, and invoking it for A>) that initializing Algorithm 152 with block size k and
running for O

(
log(d/ε)p1/6/ε1/3

)
iterations suffices to output a n× k matrix W1 such that with

probability at least 99/100, for all i ∈ [k],

‖A> (W1)∗,i‖
2
2 > σ2

i − ε2/3p−1/3σ2
k+1. (7.26)

Then, invoking Lemma 7.4.4 with A> and W1 as defined above, we have

‖A>W1W>
1 ‖

p
Sp = ‖W1W>

1 A‖pSp
> ‖Ak‖pSp −

∑
i∈[k]
O
(
ε2/3p−1/3p

)
σ2
k+1σ

p−2
i

> ‖Ak‖pSp −O
(
kε2/3p2/3

)
σpk+1

(7.27)

where the last inequality uses that σ1 < (1 + 1/p)σk+1 and (1 + 1/p)p = O(1). Recall, in
this case, Algorithm 151 outputs ZZ> where Z is an orthonormal basis for A>W1W>

1 . Next,
we invoke Lemma 7.4.3 to relate ‖A>W1W>

1 ‖
p
Sp to ‖A

(
I− ZZ>

)
‖pSp . Setting Q = ZZ>

and P = W1W>
1 , we observe that ‖PAQ‖pSp = ‖W1W>

1 A‖pSp and ‖(I−P) A (I−Q)‖pSp =

468

‖A
(
I− ZZ>

)
‖pSp . Then, invoking Lemma 7.4.3 and plugging in Equation (7.27), we have

‖(I−P) A (I−Q)‖pSp = ‖A
(
I− ZZ>

)
‖pSp 6 ‖A‖

p
Sp − ‖W1W>

1 A‖pSp
6 ‖A‖pSp − ‖Ak‖pSp +O

(
kε2/3p2/3

)
σpk+1

6 (1 +O(pε)) ‖A−Ak‖pSp ,
(7.28)

where the last inequality follows from our assumption on the Schatten-p norm of the tail, given
the case we are in. Taking the (1/p)-th root, and recalling that ε < 1/2, we obtain

‖A
(
I− ZZ>

)
‖Sp 6 (1 +O(ε)) ‖A−Ak‖p, (7.29)

which concludes the case where ` = 0.

Large Singular Values. Next, we consider the case where σ1 > (1 + 1/p)σk+1. Then, let
` ∈ [k] be the largest integer such that σ` > (1 + 0.5/p)σk+1 and σ`+1 < (1− ε/d)σ`. Observe,
such an ` is guaranteed to exist.

We then note that in all settings Algorithm 151 runs Ω(log(d/ε)√p iterations on A> and
since exists a gap of size p between σ` and σk+1 it follows from Lemma 7.4.2 that running Block
Krylov Iteration that Algorithm 151 always outputs an orthonormal matrix W s.t. for all i ∈ [`],

‖A>W∗,i‖2 > σ2
i − poly

(
ε

d

)
σ2
k+1. (7.30)

Further, for all i ∈ [`+ 1, k], we have

‖A>W∗,i‖2 > σ2
i − γiσ2

k+1, (7.31)

where γi is determined by whether W = W1 or W = W2, as we discuss later.

We note that we cannot simply take p/2-th powers here (for large p) as this would introduce
cross terms that scale proportional to σi(A), which can be significantly larger than σk+1(A).
Instead, we require a finer analysis by splitting A into a head and tail term. Further, we let Z be
an orthonormal basis for A>WW>.

We are now ready to bound ‖A
(
I− ZZ>

)
‖Sp . By the triangle inequality,

‖A
(
I− ZZ>

)
‖Sp 6 ‖A`

(
I− ZZ>

)
‖Sp + ‖(A−A`)

(
I− ZZ>

)
‖Sp (7.32)

469

By Corollary 7.4.7, we know that ‖A`

(
I− ZZ>

)
‖2
F 6 poly

(
ε
d

)
σ2
k+1, and since all Schatten

norms are within a
√
d factor of the Frobenius norm, we have

‖A`

(
I− ZZ>

)
‖Sp 6 poly

(
ε

d

)
σk+1.

Substituting this back into Equation (7.32), we have

‖A
(
I− ZZ>

)
‖Sp 6 O

(
ε

d

)
‖A−Ak‖Sp + ‖(A−A`)

(
I− ZZ>

)
‖Sp︸ ︷︷ ︸

7.33.1

. (7.33)

It remains to bound term 7.33.1 above. By triangle inequality, we have

‖(A−A`) (I− ZZ>)‖pSp
6
(
‖(I−WW>) (A−A`) (I− ZZ>)‖Sp + ‖WW> (A−A`) (I− ZZ>)‖Sp

)p (7.34)

We bound the two terms on the RHS independently. To upper bound ‖WW> (A−A`) (I−
ZZ>)‖pSp we use the relation between Frobenius and Schatten norms, and recall that by definition,
WW>A

(
I− ZZ>

)
= WW>A−WW>AZZ> = 0, and thus

‖WW> (A−A`) (I− ZZ>)‖Sp 6
√
k‖WW> (A−A`) (I− ZZ>)‖F

=
√
k‖WW>A`(I− ZZ>)‖F

6
√
k‖A`(I− ZZ>)‖F

6 poly
(
ε

d

)
σk+1,

(7.35)

where the last inequality follows from Corollary 7.4.7. Therefore, combining the above, we have

‖WW> (A−A`) (I− ZZ>)‖Sp 6 poly
(
ε

d

)
σk+1, (7.36)

It remains to upper bound ‖(I−WW>) (A−A`) (I−ZZ>)‖pSp . Recall, W is the orthonor-
mal basis output by Block Krylov run on A>, and in Algorithm 151 W is either W1 or W2. Let

470

Z is a basis for A>WW>. Then, applying Lemma 7.4.3 with Q = ZZ> and P = WW>, we
have

‖
(
I−WW>

)
(A−A`)

(
I− ZZ>

)
‖pSp 6 ‖(A−A`)‖pSp − ‖WW>

(
A−A`ZZ>

)
‖pSp

=
∑

j∈[`+1,d]
σpj −

∑
j∈[k]

σpj
(
W> (A−A`) Z

)
(7.37)

Next, we show that for all j ∈ [k], σj
(
W> (A−A`) Z

)
> σj+`

(
W>A

)
. Here, we invoke

Fact 7.3.5 for X = W> (A−A`) Z and Y = W>A`Z, with i = j and j = `. Note, the
precondition on the indices i, j in Fact 7.3.5 is satisfied since X,Y are n × k matrices, and
j ∈ [k] and ` < k. Then, we have

σj+`
(
W>AZ

)
= σj+`

(
W> (A−A`Z) + W>A`Z

)
6 σj

(
W> (A−A`) Z

)
+ σ`+1

(
W>A`Z

)
,

but W>A`Z is a rank 6 ` matrix, and thus σ`+1
(
W>A`Z

)
= 0. Therefore, we can conclude,

‖
(
I−WW>

)
(A−A`)

(
I− ZZ>

)
‖pSp 6

∑
j∈[`+1,d]

σpj −
∑

j∈[`+1,k+`]
σpj
(
W>AZ

)
. (7.38)

However, now we observe that WW>AZZ> = WW>A, and thus σj
(
W>AZ

)
= σj (WA).

Recall, for all j ∈ [k], it follows from Equation (7.5) in the proof of Lemma 7.4.4 that σpj (W>A) =
σpj (A>W) > σpj (A) − O(γjp)σ2

k+1σ
p−2
j . Further, by definition, for j ∈ [` + 1, k], σj 6

(1 + 1/p)σk+1 and thus, for all j ∈ [`+ 1, k],

σpj (W>A) > σpj −O
(
γjp (1 + 1/p)p−2

)
σpk+1

> σpj −O(γjp)σpk+1.
(7.39)

Recall, we can correctly determine whether ‖A − Ak‖pSp 6 k
p1/3ε1/3σ

p
k+1 or not, up to error

in estimating the singular values as shown earlier, in the analysis for the case where there are no
large singular values. In particular, let us first consider the case where this is true. Repeating the

471

argument in equations (7.20), (7.21), we can conclude that Algorithm 151 outputs W = W2 and
thus for all j ∈ [`+ 1, k], γj = poly(ε/d). Therefore, substituting this back into Equation (7.38),
we have

‖
(
I−WW>

)
(A−A`)

(
I− ZZ>

)
‖pSp 6

∑
j∈[`+1,d]

σpj −

 ∑
j∈[`+1,k]

σpj −O(γjp)σpk+1


6 ‖A−Ak‖pSp +

∑
j∈[`+1,k]

O(γjp)σpk+1

6
(

1 + poly
(
ε

d

))
‖A−Ak‖pSp ,

(7.40)

concluding the analysis in this case.

Next, consider the case where ‖A −Ak‖pSp >
k

p1/3ε1/3σ
p
k+1. Then, repeating the analysis in

Equation (7.25), we know that Algorithm 151 outputs W = W2, and thus for all j ∈ [` + 1, k],
γj = ε2/3p−1/3 as shown in Equation (7.26). Again, substituting this back into Equation (7.38),
we have

‖
(
I−WW>

)
(A−A`)

(
I− ZZ>

)
‖pSp 6 ‖A−Ak‖pSp +

∑
j∈[`+1,k]

O(γjp)σpk+1

6 ‖A−Ak‖pSp +O
(
kp · ε2/3p−1/3

)
σpk+1

6 (1 +O(εp)) ‖A−Ak‖pSp ,

(7.41)

where the last inequality follows from our assumption. Taking the (1/p)-th root and substituting
equations (7.36) and (7.41) back into (7.34), we can conclude

‖(A−A`)
(
I− ZZ>

)
‖pSp 6 (1 +O(ε)) ‖A−Ak‖Sp+poly

(
ε

d

)
σk+1 6 (1 +O(ε)) ‖A−Ak‖Sp ,

which when substituted into Equation (7.32) concludes the analysis.

Next, we analyze the running time and matrix-vector products. Running Algorithm 152
with block size k for q = O

(
log(d)p1/6/ε1/3

)
iterations requires O

(
nnz(A)kp1/6 log(d)

ε1/3

)
time and

O
(
kp1/6 log(d)

ε1/3

)
matrix-vector products. Similarly, running with block size O

(
k/ (εp)1/3

)
for q =

O
(
log(d/ε)√p

)
iterations requires O

(
nnz(A)kp1/6 log(d/ε)

ε1/3

)
time and O

(
kp1/6 log(d)

ε1/3

)
matrix-vector

products. Finally, we observe that to obtain a (1 + 1/p)-approximation to σ1 and σk+1, we need
O
(
log(d)√p

)
iterations with blocksize k + 1 and this requires O

(
log(d)√pk

)
matrix-vector

products. Note, our setting of the exponent of p and ε was chosen to balance the two cases, and

472

this concludes the proof.

7.5 Query Lower Bounds

Next, we show that the ε-dependence obtained by our algorithms for Schatten-p low-rank approx-
imation is optimal in the restricted computation model of matrix-vector products. The matrix-
vector product model is defined as follows: given a matrix A, our algorithm is allowed to make
adaptive matrix-vector queries to A, where one matrix-vector query is of the form Av, for any
v ∈ Rd. Our lower bounds are information-theoretic and rely on the hardness of estimating the
smallest eigenvalue of a Wishart ensemble, as established in recent work of Braverman, Hazan,
Simchowitz and Woodworth [BHSW20].

We split the lower bounds into the case of p ∈ [1, 2] and p > 2. For p ∈ [1, 2], we have a sim-
ple argument based on the Araki-Lieb-Thirring inequality (Fact 7.3.10), whereas for p > 2, our
lower bounds require an involved argument using a norm compression inequality for partitioned
operators (Fact 7.3.14).

7.5.1 Lower Bounds for p ∈ [1, 2]

The main lower bound we prove in this sub-section is as follows:

Theorem 153 (Query Lower Bound for p ∈ [1, 2]). Given ε > 0, and p ∈ [1, 2], there exists a

distribution D over n × n matrices such that for A ∼ D, any randomized algorithm that with

probability at least 9/10 outputs a rank-1 matrix B such that ‖A−B‖pSp 6 (1 + ε)‖A−A1‖pSp
must make Ω(1/ε1/3) matrix-vector queries to A.

We require the following theorem on the hardness of computing the minimum eigenvalue of a
Wishart Matrix, introduced recently by Braverman, Hazan, Simchowitz and Woodworth [BHSW20]:

Theorem 154 (Computing Min Eigenvalue of Wishart, Theorem 3.1 [BHSW20]). Given ε ∈
(0, 1), there exists a function d : (0, 1) → N such that for all d > d(ε), the following holds.

Let W ∼ Wishart(d) be a Wishart matrix and {λi}i∈[d] be the eigenvalues of W, in descending

order. Then, there exists a universal constant c∗ such that:

473

1. Let ζ1 be the event that λd(W) 6 c1/d
2, ζ2 be the event that λd−1(W)− λd(W) > c2/d

2

and ζ3 be the event that ‖W‖op 6 5, where c1 and c2 are constants that depend only on ε.

Then, PrW [ζ1 ∩ ζ2 ∩ ζ3] > 1− c∗
√
ε

2 .

2. Any randomized algorithm that makes at most (1− ε)d adaptive matrix-vector queries and

outputs an estimate λ̂d must satisfy

PrW

[
|λ̂d − λd| >

1
4d2

]
> c∗
√
ε.

We also use the following lemma from [BHSW20] bounding the minimum eigenvalue of a
Wishart ensemble:

Lemma 7.5.1 (Non-Asymptotic Spectra of Wishart Ensembles, Corollary 3.3 [BHSW20]). Let

W ∼Wishart(n) be such that n = Ω(1/ε3). Then, there exists a universal constant c2 > 0 such

that

Pr
[
λn (W) > 1

n2

]
> c2, and Pr

[
λn (W) < 1

2n2

]
>
c2

2 .

We are now ready to prove Theorem 153. Our high level approach is to show that we can
take any solution that is a (1 + ε)-relative-error Schatten-p low-rank approximation to the hard
instance I− 1

5W, where W is a Wishart ensemble, and extract from it an accurate estimate of the
minimum eigenvalue of W, thus appealing to the hardness stated in (2) of Theorem 154 above.

Proof of Theorem 153. Let n = Θ
(
1/ε1/3

)
and let A = I − 1

5W be an n × n instance where
W ∼ Wishart(n). Let ζ1 be the event that ‖W‖op 6 5. It follows from Fact 7.3.17 that ζ1

holds with probability at least 99/100, and we condition on this event. Let ζ2 be the event that
λn (W) > 1

n2 = ε2/3

c∗
and ζ3 be the event that λn (W) < 1

2n2 = ε2/3

2c∗ .

Then, conditioning on ζ2, we have that

1− 1
5λn(W) 6 1− ε2/3

5c∗ . (7.42)

Similarly, conditioning on ζ3, we have that

1− 1
5λn(W) > 1− ε2/3

10c∗ . (7.43)

474

We observe that for p ∈ [1, 2], using Bernoulli’s inequality (Fact 7.3.6) we have

(
1− 1

5λn(W)
)p

> 1− p

5λn(W)

and since (1− x)p 6 (1− x) for any x ∈ (0, 1), we also have that,

(
1− 1

5λn(W)
)p

6 1− 1
5λn(W)

Therefore, we can conclude,
(
1− 1

5λn(W)
)p

= 1−Θ (λn(W)).

‖A‖pSp =
∑
i∈[n]

λpi

(
I− 1

5W
)
6
∑
i∈[n]

λi

(
I− 1

5W
)
6 O

(1
ε1/3

)
(7.44)

where the last inequality follows from the fact that n =
√
c∗/ε1/3. Let A1 denote the best rank-1

approximation to A. Then, it follows from Equation (7.44) that

ε‖A−A1‖pSp 6 ε‖A‖pSp 6 O
(
ε2/3

)
(7.45)

Observe, any (1 + ε)-approximate relative-error Schatten-p low-rank approximation algorithm
for k = 1 outputs a matrix vv> such that

‖A
(
I− vv>

)
‖pSp 6 (1 + ε)‖A−A1‖pSp

6 ‖A‖pSp − ‖A‖
p
op + Θ(ε2/3)

(7.46)

By definition of the Schatten-p norm we have:

‖A
(
I− vv>

)
‖pSp = Tr

[((
I− vv>

)2
A2

(
I− vv>

)2
)p/2]

> Tr
[(

I− vv>
)p

Ap
(
I− vv>

)p]
= Tr

[
Ap −Apvv>

]
= ‖A‖pSp − Tr

[(
vv>

)p/2 (
A2
)p/2 (

vv>
)p/2]

> ‖A‖pSp − Tr
[(
vv>A2vv>

)p/2]
= ‖A‖pSp − ‖Avv

>‖pSp
= ‖A‖pSp − ‖Av‖

p
2

(7.47)

where the first and last inequality follows from the reverse Araki-Lieb-Thirring inequality (Fact

475

7.3.10). Combining equations (7.46) and (7.47), we have that

‖A‖pop > ‖Av‖
p
2 > ‖A‖pop −Θ(ε2/3) (7.48)

Next, we observe that Av = (I− 1/5W) v can be computed with one additional matrix-
vector product and

‖A‖pop =
(

1− 1
5λn(W)

)p
= 1− p

5λn(W) +O
(
λ2
n(W)

)
(7.49)

Consider the estimator λ̂(W) = 5
p

(
1− ‖

(
I− 1

5W
)
v‖p2

)
. Combining equations (7.48) and

(7.49), we can conclude
λ̂(W) = λmin(W)±Θ(ε2/3).

obtaining an additive error estimate to the minimum eigenvalue of W by computing an additional
matrix-vector product. It follows that we satisfy conditions (1) and (2) in Theorem 154 and thus
any algorithm for computing a rank-1 approximation to the matrix A = I − 1

5W in Schatten p
norm must make at least 1

ε1/3 queries to the aforementioned matrix, completing the proof. The
claim follows from Theorem 154.

7.5.2 Lower Bound for p > 2

We now consider the case when p > 2. We note that the previous approach no longer works
since we cannot lower bound the cost of ‖ (I−W/5)

(
I− vv>

)
‖Sp , as the Araki-Lieb-Thirring

inequality reverses (see application in Equation 7.47). Therefore, we require a new approach,
and appeal to a special case of Conjecture 7.3.15 that is known to be true, i.e. the Aligned Norm
Compression inequality (see Fact 7.3.14). The main theorem we prove in this sub-section is as
follows:

Theorem 155 (Query Lower Bound for p > 2). Given ε > 0, and p > 2 such that p = O(1),

there exists a distributionD over n×nmatrices such that for A ∼ D, any randomized algorithm

that with probability at least 99/100 outputs a unit vector u such that ‖A −Auu>‖pSp 6 (1 +
ε)‖A−A1‖pSp must make Ω

(
1/ε1/3

)
matrix-vector queries to A.

We first introduce a sequence of key lemmas required for our proof.

Corollary 7.5.2 (Special Case of Lemma 7.4.1). Given γ ∈ [0, 1], a vector v ∈ Rd and an

476

n × d matrix A, let t = log(n/γ)/(c√γ), for a fixed universal constant c. Then, there exists an

algorithm that computes t matrix-vector products with A and outputs a unit vector u such that

with probability at least 99/100,

‖A‖2
op − ‖Au‖2

2 6 O
(
γσ2

2

)
.

where σ2 is the second largest singular value of A.

Next, we prove a key lemma relating the norm of a matrix to norms of orthogonal projections
applied to the matrix. We note that this lemma is straight forward and holds for arbitrary vectors
unit u, v if Conjecture 7.3.15 holds. However, we show that we can transform our matrix to have
structure such that we can apply Fact 7.3.14 instead.

Lemma 7.5.3 (Orthogonal Projectors to Block Matrices). Given an n× d matrix A, p > 2 and

unit vectors u ∈ Rd, v ∈ Rn, such that
(
I− vv>

)
Auu> = 0. Then, we have

‖A‖Sp 6 ‖

‖vv>Auu>‖Sp ‖vv>A
(
I− uu>

)
‖Sp

0 ‖
(
I− vv>

)
A
(
I− uu>

)
‖Sp

‖Sp .

Proof. Let I − vv> = YY>, where Y has n − 1 orthonormal columns. Further, since v and
Y span disjoint subspaces, and the union of their span is Rn, the matrix (v | Y), obtained by
concatenating their columns is unitary. Then, let R = (v | Y)> and observe, R has orthonormal
rows and columns (since R is unitary). Next, let I − uu> = ZZ>, where Z is d × (d − 1) and
has orthonormal columns. Let S = (u | Z)>, and observe S has orthonormal rows and columns.

Let Â = RAS>, which admits the following block-matrix form:

Â =
 v>

Y>

 ·A · (u | Z) =
 v>

Y>

 (Au | AZ) =
 v>Au v>AZ

Y>Au Y>AZ


Since R and S are unitary, it follows from unitary invariance of the Schatten-p norm that

‖A‖Sp = ‖Â‖Sp = ‖
 v>Au v>AZ

Y>Au Y>AZ

‖Sp = ‖
v>Au v>AZ

0 Y>AZ

‖Sp , (7.50)

477

where the last equality follows from observing that

‖Y>Au‖F = ‖YY>Auu>‖F = ‖
(
I− vv>

)
Auu>‖F = 0

and therefore Y>Au is a matrix of all 0s. Next, we append a set of d− 2 columns of 0’s to make
the top left and top right block the same size. Since this does not change the singular values, we
have

‖A‖Sp = ‖
v>Au 0 v>AZ

0 0 Y>AZ

‖Sp (7.51)

Next, we construct a rotation matrix R such that on right multiplying a row vector by R, the
first d − 1 coordinates remain the same and on the remaining coordinates, the vector v>AZ
gets mapped to ce>1 for some scalar c. Let S be the d − 1 × d − 1 rotation matrix such that

v>AZS = ce>1 . Then, R =
I 0

0 S

 and it is easy to verify that R is unitary. Therefore,

v>Au 0 v>AZ
0 0 Y>AZ

 ·R =
v>Au 0 ce>1

0 0 Y>AZS


Now, we observe the final matrix above has a block matrix form we can apply the Aligned Norm
Compression inequality from Fact 7.3.14, with α1 = v>Au, α2 = c, β1 = 0 and β2 = 0, and
therefore

‖A‖Sp = ‖
v>Au 0 ce>1

0 0 Y>AZS

‖Sp 6 ‖
‖v>Au‖Sp 0 ‖ce>1 ‖Sp

0 0 ‖Y>AZS‖Sp

‖Sp
= ‖

‖vv>Auu>‖Sp ‖vv>AZZ>‖Sp
0 ‖YY>AZZ>‖Sp

‖Sp
(7.52)

where the last equality follows from unitary invariance and substituting the definition of YY>

and ZZ> completes the proof.

Fact 7.5.4 (SVD of a 2× 2 Matrix). Given a 2× 2 matrix M =
a b

c d

 let UΣV> be the SVD

478

of M. Then,

Σ1,1 =

√√√√a2 + b2 + c2 + d2 +
√

(a2 + b2 − c2 − d2)2 + 4 (ac+ bd)2

2 ,

and

Σ2,2 =

√√√√a2 + b2 + c2 + d2 −
√

(a2 + b2 − c2 − d2)2 + 4 (ac+ bd)2

2 .

Now, we are ready to prove Theorem 155.

Proof of Theorem 155. Let A = I − 1
5W where W is an n × n Wishart matrix as in the proof

of Theorem 153 and we have by hypothesis that there is an algorithm that with probability at
least 99/100, outputs a unit vector u such that ‖A

(
I− uu>

)
‖pSp 6 (1 + ε)‖A − A1‖pSp . Let

v = Au/‖Au‖2 and observe,
(
I− vv>

)
Auu> = 0. Further, by the unitary invariance of the

Schatten-p norm,

‖vv>Auu>‖Sp = |v>Au| = |u
>A>Au|
‖Au‖2

= ‖Au‖2. (7.53)

Similarly,

‖vv>A
(
I− uu>

)
‖Sp =

√
‖v>A (I− uu>)‖2

2 =
√
‖v>A‖2

2 − ‖v>Auu>‖2
2

=

√√√√‖u>A>A‖2
2

‖Au‖2
2
− ‖Au‖2

2

6

√√√√‖u>A>‖2
2 · ‖A‖2

op

‖Au‖2
2

− ‖Au‖2
2

6 ε1/3σ2,

(7.54)

where we use sub-multiplicativity of the `2 norm and Corollary 7.5.2 with γ = ε2/3. Note
that we can assume w.l.o.g. that Corollary 7.5.2 holds since we can just iterate Block Krylov
q = (1/cε1/3) times, for a sufficiently large constant c, starting the iterations with the vector u
output by the algorithm hypothesized for the theorem, and pay only (1/cε1/3) extra matrix-vector

479

products. Since vv>A + Auu> − vv>Auu> has rank at most 3,

‖
(
I− vv>

)
A
(
I− uu>

)
‖pSp = ‖A− vv>A−Auu> + vv>Auu>‖pSp

> ‖A−A3‖pSp

= Ω
(1
ε1/3

)
,

(7.55)

where the last inequality follows from Fact 7.3.17.

Let M =
a b

c d

 =
 ‖vv>Auu>‖Sp ‖vv>A

(
I− uu>

)
‖Sp

‖
(
I− vv>

)
Auu>‖Sp ‖

(
I− vv>

)
A
(
I− uu>

)
‖Sp

>. Then, it

follows from Fact 7.5.4 that

Σ1,1 (M) = 1√
2
·
√
a2 + c2 + d2 +

√
(a2 − c2 − d2)2 + 4 (ac)2

= 1√
2
·

√√√√a2 + c2 + d2 + (c2 + d2 − a2) + Θ
(

4a2c2

c2 + d2 − a2

)

=

√√√√c2 + d2 + Θ
(

a2c2

c2 + d2 − a2

)
,

(7.56)

where we use that b = 0, c, a 6 1 and 1 � d and the Taylor expansion of
√
x+ y for x, y > 0.

Similarly,

Σ2,2 (M) =

√√√√a2 −Θ
(

a2c2

c2 + d2 − a2

)
. (7.57)

Then, using equations (7.56) and (7.57) we can bound the Schatten-p norm of M as follows:

‖M‖pSp 6
(
c2 + d2 + Θ

(
a2c2

c2 + d2 − a2

))p/2
︸ ︷︷ ︸

7.58.1

+
(
a2 −Θ

(
a2c2

c2 + d2 − a2

))p/2
︸ ︷︷ ︸

7.58.2

. (7.58)

480

We now bound each of the terms above. Consider the first term:

(
c2 + d2 + Θ

(
a2c2

c2 + d2 − a2

))p/2
=
‖vv>A

(
I− uu>

)
‖2
Sp

+ ‖
(
I− vv>

)
A
(
I− uu>

)
‖2
Sp + Θ

(
ε2/3‖Au‖2

2

)p/2

6
(
Θ
(
ε2/3

)
+ ‖A

(
I− uu>

)
‖2
Sp

)p/2
6
(
1 +O

(
ε2p/3

))
‖A−A1‖pSp ,

(7.59)

where we use equation (7.53), (7.54), and (7.55), and ‖A
(
I− uu>

)
‖2
Sp 6 (1+ε)2/p‖A−A1‖2

Sp .
The last inequality follows from observing that

ε2/3 6 O
(
ε4/3 · 1

ε2/3p

)
6 O

(
ε4/3 · ‖A−A1‖2

Sp

)
.

We can now bound the second term in Equation 7.58 as follows:

(
a2 −Θ

(
a2c2

c2 + d2 − a2

))p/2
=
(
‖Au‖2

2 −Θ
(
ε2/3‖Au‖2

2

))p/2
6 ‖Au‖p2. (7.60)

Then, we have

‖M‖pSp 6
(
1 +O

(
ε2p/3

))
‖A−A1‖pSp + ‖Au‖p2.

It follows from Lemma 7.5.3, that ‖M‖pSp > ‖A‖
p
Sp and thus

‖Au‖p2 > ‖A‖pSp −
(
1 +O

(
ε2p/3

))
‖A−A1‖pSp

= ‖A‖pop −O
(
ε2p/3

)
‖A−A1‖pSp

> ‖A‖pop −O
(
ε‖A−A1‖pSp

)
> ‖A‖pop −O

(
ε2/3

)
(7.61)

where the second to last inequality follows from recalling p > 2. The remainder of the proof is
as in that following (7.48) in the proof of Theorem 153.

481

7.6 Extending Prior Work on Lower Bounds

In this section, we briefly discuss prior work on estimating top singular/eigenvalues in the matrix-
vector product model and why existing approaches do not immediately imply a lower bound for
low-rank approximation, under any unitarily invariant norm, including Frobenius and spectral
norm.

In a sequence of works, Braverman, Hazan, Simchowitz and Woodworth [BHSW20] and
Simchowitz, Alaoui and Recht [SAR18] establish eigenvalue estimation lower bounds in the
matrix-vector query model. We draw on their techniques and use the hard instance at the heart
of their lower bound, but require additional techniques to obtain a lower bound for low-rank
approximation.

The main theorem (Theorem 2.2 of [SAR18]), for k =1, states that any randomized algorithm
which outputs a vector v such that with constant probability

v>|A|v >= (1−O(gap))‖A‖op,

requires Ω
(
1/√gap

)
matrix-vector products, where |A| = (A2)1/2 has the same singular values

as A and gap ∈ (0, 1). However, this guarantee is too weak to imply a lower bound for spectral
low-rank approximation.

Indeed, for this theorem to be meaningful in our setting, we require setting gap = Θ(ε).
However, there exist input matrices A, e.g., A = diag (1 + ε, 1, . . . , 1, 0), and vector v =
Θ (
√
ε) e1 + ((1−Θ(ε)) en such that

‖A(I− vv>)‖op 6 (1 + ε)σ2(A),

i.e. v yields a valid low-rank approximation but v>Av is only Θ(ε). Note, here the gap is
Θ(1) instead of the required 1 − ε and thus we obtain no lower bound for spectral low-rank
approximation.

Moreover, it can be shown that when A is the hard instance considered in [SAR18], i.e.
A = G + λuuT , where G is a Gaussian Orthogonal Ensemble (GOE) and u is a random unit
vector on the sphere, there exists a vector v that does not satisfy the guarantee of Theorem 2.2, yet
yields a spectral low-rank approximation. In particular, consider v = Θ(

√
ε)r1 + (1−Θ(ε)) rd

where r1 is the largest singular vector of |A| and rd is the smallest singular vector. Since the
smallest O(1) singular values of a d × d GOE can be shown to be O(1/d), and A is a rank-1

482

perturbation of a GOE, similar to the diagonal case above, we can show

‖A
(
I− vvT

)
‖op 6 (1 + ε)σ2(A),

yet v>|A|v is only Θ(ε). Therefore, it is not possible to obtain a lower bound for low-rank
approximation from Theorem 2.2 in a black-box manner.

7.7 Low Rank Approximation of Matrix Polynomials

We note that polynomials of matrices are implicitly defined, even in the RAM model, and com-
puting them explicitly would be prohibitively expensive and may destroy any sparsity structure.
The proof just follows from running our algorithm on M =

(
A>A

)`
. It is straightforward to

simulate a matrix-vector product of the form Mv using access to matrix-vector products for A
and A> with an O(`) overhead.

Theorem 156 (Low Rank Approximation of Matrix Polynomials). Given an n × d matrix A,

` ∈ N, target rank k and an accuracy parameter ε > 0, let M =
(
A>A

)`
or M = A

(
A>A

)`
.

Then, for any p > 1, there exists an algorithm that uses at most O
(
k` log(nk)p1/6/ε1/3

)
matrix-

vector products and with probability at least 9/10 outputs a matrix Z ∈ Rd×k with orthonormal

columns such that,

‖M
(
I− ZZ>

)
‖Sp 6 (1 + ε) min

U: U>U=Ik
‖M

(
I−UU>

)
‖Sp .

The only prior work we are aware of is the algorithm of [MM15], which would achieve a
worse O

(
k` log(nk)/ε1/2

)
number of matrix-vector products for the Frobenius norm and match

our guarantee for the spectral norm.

7.8 Improved Streaming Bounds

In the streaming model, the input matrix is initialized to all zeros, and at each time step, the
(i, j)-th entry is updated. The updates can be positive or negative, and the goal is to output a
low-rank approximation, without storing the whole matrix. The number of passes required by
our algorithm is proportional to the number of adaptive matrix-vector queries we require. As an
immediate corollary of this observation, we obtain the following formal guarantee:

483

Corollary 7.8.1 (Schatten LRA in a Stream). Given a matrix A ∈ Rn×d, a target rank k ∈ [d],
an accuracy parameter ε ∈ (0, 1) and any p > 1, there exists a streaming algorithm that makes

O
(
log(d/ε)p1/6/ε1/3

)
passes over the input, requires O

(
nk/ε1/3

)
space, and outputs a d × k

matrix Z with orthonormal columns such that with probability at least 9/10,

‖A
(
I− ZZ>

)
‖pSp 6 (1 + ε) min

U: U>U=Ik
‖A

(
I−UU>

)
‖pSp .

The only prior work on low-rank approximation in a stream is by Boutsidis, Woodruff and
Zhong, who consider the special case of p = 2 [BWZ16]. They obtain a single pass algorithm
that requiresO(nk/ε+ poly(k/ε)) space and a two pass algorithm that requiresO(nk + poly(k/ε))
space. For general p, we note that recent work by Li and Woodruff [LW20] can be used to derive
a streaming algorithm that obtains a worse space dependence but only requires a single pass: for
1 6 p < 2, the space required is Õ

(
n
(
k+k2/p

ε2
+ k2/p

ε1+2/p

))
and for p > 2, the space required is

Õ
(
n
(
kn1−2/p

ε2
+ k2/p+n1−2/p

ε2+2/p

))
.

We note that for p < 2, we obtain a polynomially better dependence on ε and for p > 2, the
space complexity of our algorithm is linear in n, as compared to n2−2/p above. The optimal space
complexity of Schatten-p low-rank approximation (for p 6= 2) in a single pass remains open.

484

Chapter 8

PSD Low-Rank Approximation

8.1 Introduction

Low-rank approximation is one of the most common dimensionality reduction techniques, whereby
one replaces a large matrix A with a low-rank factorization U · V ≈ A. Such a factorization
provides a compact way of storing A and allows one to multiply A quickly by a vector. It is used
as an algorithmic primitive in clustering [DFK+04, McS01], recommendation systems [DKR02],
web search [AFKM01, Kle99], and learning mixtures of distributions [AM05, KSV05], and has
numerous other applications.

A large body of recent work has looked at relative-error low-rank approximation, whereby
given an n × n matrix A, an accuracy parameter ε > 0, and a rank parameter k, one seeks to
output a rank-k matrix B for which

‖A−B‖2
F 6 (1 + ε)‖A−Ak‖2

F , (8.1)

where for a matrix C, ‖C‖2
F = ∑

i,j C2
i,j , and Ak denotes the best rank-k approximation to A in

Frobenius norm. Ak can be computed exactly using the singular value decomposition, but takes
time O(nω), where ω is the matrix multiplication constant. We refer the reader to the survey
[Woo14a] and references therein.

For worst-case matrices, it is not hard to see that any algorithm achieving (8.1) must spend
at least Ω(nnz(A)) time, where nnz(A) denotes the number of non-zero entries (sparsity) of A.
Indeed, without reading most of the non-zero entries of A, one could fail to read a single large
entry, thus making one’s output matrix B an arbitrarily bad approximation.

485

A flurry of recent work [KP16, MW17c, BW18, CLW18, Tan19, RSML18, GLT18, IVWW19,
SW19, GSLW19] has looked at the possibility of achieving sublinear time algorithms (classi-
cal and quantum) for low-rank approximation. In particular, Musco and Woodruff [MW17c]
consider the important case of positive-semidefinite (PSD) matrices. PSD matrices include as
special cases covariance matrices, correlation matrices, graph Laplacians, kernel matrices and
random dot product models. Further, the special case where the input itself is low-rank (PSD
Matrix Completion) has applications in quantum state tomography [GLF+10]. Subsequently,
Bakshi and Woodruff [BW18] considered low-rank approximation of the closely related fam-
ily of Negative-type (Euclidean Squared) distance matrices. Negative-type metrics include as
special cases `1 and `2 metrics, spherical metrics and hypermetrics, as well as effective resis-
tances in graphs [DL09, TD87, CRR+96, CKM+11]. Negative-type metrics have found various
applications in algorithm design and optimization [ALN08, SS11, KMP14, MST15].

Musco and Woodruff show that it is possible to output a low-rank matrix B in factored form
achieving (8.1) in Õ(nk/ε2.5 +nkω−1/ε2(ω−1)) time, while reading only Õ(nk/ε2.5) entries of A.
They also showed a lower bound that any algorithm achieving (8.1) must read Ω(nk/ε) entries,
and closing the gap between these bounds has remained an open question. Similarly, Bakshi and
Woodruff exploit the structure of Negative-type metrics to reduce to the PSD case and obtain a
bi-criteria algorithm that requires Õ(nk/ε2.5) queries. The gap in the sample complexity and the
requirement of a bi-criteria guarantee remained open.

Next we consider PSD matrices that have been corrupted by a small amount of noise. A
drawback of algorithms achieving (8.1) is that they cannot tolerate any amount of unstructured
noise. For instance, if one slightly corrupts a few off-diagonal entries, making the input matrix
A no longer PSD, then it is impossible to detect such corruptions in sublinear time, making the
relative-error guarantee (8.1) information-theoretically impossible. Motivated by this, we also
introduce a new framework where an adversary corrupts the input by adding a noise matrix N
to a psd matrix A. We assume that the Frobenius norm of the corruption is bounded relative
to the Frobenius norm of A, i.e., ‖N‖2

F 6 η‖A‖2
F . We also assume the corruption is well-

spread, i.e., each row of N has `2
2-norm at most a fixed constant factor larger than `2

2-norm of the
corresponding row of A.

This model captures small perturbations to PSD matrices that we may observe in real-world
datasets, as a consequence of round-off or numerical errors in tasks such as computing Laplacian
pseudoinverses, and systematic measurement errors when computing a covariance matrix. One
important application captured by our model is low-rank approximation of corrupted correlation

matrices. Finding a low-rank approximation of such matrices occurs when measured correlations

486

are asynchronous or incomplete, or when models are stress-tested by adjusting individual corre-
lations. Low-rank approximation of correlation matrices also has many applications in finance
[Hig02].

Given that it is information-theoretically impossible to obtain the relative-error guarantee
(8.1) in the robust model, we relax our notion of approximation to the following well-studied
additive-error guarantee:

‖A−B‖2
F 6 ‖A−Ak‖2

F + (ε+ η)‖A‖2
F . (8.2)

This additive-error guarantee was introduced by the seminal work of Frieze et. al. [FKV04b],
and triggered a long line of work on low-rank approximation from a computational perspective.
Frieze et al. showed that it is possible to achieve (8.2) in O(nnz(A)) time. Further, given
access to an oracle for computing row norms of A, 8.2 is achievable in sublinear time. More
recently, the same notion of approximation was used to obtain sublinear sample complexity and
running time algorithms for distance matrices [BW18, IVWW19], and a quantum algorithm for
recommendation systems [KP16], which was subsequently dequantized [Tan19].

This raises the question of how robust are our sublinear low-rank approximation algorithms
for structured matrices, if we relax to additive-error guarantees and allow for corruption. In
particular, can we obtain additive-error low-rank approximation algorithms for PSD matrices
that achieve sublinear time and sample complexity in the presence of noise? We characterize
when such robust algorithms are achievable in sublinear time.

8.1.1 Our Results

We begin with stating our results for low-rank approximation for structured matrices. Our main
result is an optimal algorithm for low-rank approximation of PSD matrices:

Theorem 166 (Informal Sample-Optimal PSD LRA.) Given a PSD matrix A, there exists an

algorithm that queries Õ(nk/ε) entries in A and outputs a rank k matrix B such that with

probability 99/100, ‖A − B‖2
F 6 (1 + ε)‖A − Ak‖2

F , and the algorithm runs in time Õ(n ·
(k/ε)ω−1).

Remark 157. Our algorithm matches the sample complexity lower bound of Musco and Woodruff,
up to logarithmic factors, which shows that any randomized algorithm that outputs a (1 + ε)-

487

Problem Prior Work Our Results Query Lower
Query Run Time Query Run Time Bound

PSD LRA O
(
nk
ε2.5

)
O
(
nkω−1

ε2ω−2 + nk
ε2.5

)
O∗
(
nk
ε

)
O†
(
nkω−1

εω−1

)
Ω
(
nk
ε

)
[MW17c] Thm. 166 [MW17c]

PSD LRA
PSD Output

O
(
nk
(
k
ε2 + 1

ε3

))
O
(
nkω−1

(
k
εω + 1

ε3ω−3

))
O∗
(
nk
ε

)
O†
(
nkω−1

εω−1

)
Ω
(
nk
ε

)
[MW17c] Thm. 166 [MW17c]

Negative-Type
LRA

O
(
nk
ε2.5

)
O
(
nkω−1

ε2ω−2 + nk
ε2.5

)
O∗
(
nk
ε

)
O†
(
nkω−1

εω−1

)
Ω
(
nk
ε

)
Bi-criteria, [BW18] No Bi-criteria, Thm. 173 [BW18]

Coreset Ridge
Regression

O

(
ns2
λ

ε4

)
O
(
nsωλ
εω

)
O∗
(
nsλ
ε2

)
O†
(
nsω−1
λ

ε2ω−2

)
Ω
(
nsλ
ε2

)
[MW17c] Thm. 174 Thm 176

Table 8.1: Comparison with prior work. The notationO∗ andO† represent existence of matching
lower bounds for query complexity and running time (assuming the fast matrix multiplication
exponent ω is 2) respectively. The notation sλ is used to denote the statistical dimension of ridge
regression. All bounds are stated ignoring polylogarithmic factors in n, k and ε.

relative-error low-rank approximation for a PSD matrix A must read Ω(nk/ε) entries. Our run-
ning time also improves that of Musco and Woodruff and is optimal if the matrix multiplication
exponent ω is 2.

Remark 158. We can extend our algorithm such that the low-rank matrix B we output is
also PSD with the same query complexity and running time. In comparison, the algorithm of
Musco and Woodruff accesses Õ(nk/ε3 + nk2/ε2) entries in A and runs in time Õ(n(k/ε)ω +
nkω−1/ε3(ω−1)).

At the core of our analysis is a sample optimal algorithm for Spectral Regression: minX ‖DX−
E‖2

2. We show that when D has orthonormal columns and E is arbitrary, we can sketch the prob-
lem by sampling rows proportional to the leverage scores of D and approximately preserve the
minimum cost. This is particularly surprising since our sketch only computes sampling probabil-
ities by reading entries in D, while being completely agnostic to the entries in E. Here, we also
prove a spectral approximate matrix product guarantee for our one-sided leverage score sketch,
which may be of independent interest. We note that such a guarantee for leverage score sampling
does not appear in prior work, and we discuss the technical challenges we need to overcome in
the subsequent section.

The techniques we develop for PSD low-rank approximation also extend to computing a
low-rank approximation for distance matrices that arise from negative-type (Euclidean-squared)
metrics. Here, our input is a pair-wise distance matrix A corresponding to a point set P =

488

{x1, x2, . . . , xn} ∈ Rd such that Ai,j = ‖xi− xj‖2
2. We obtain an optimal algorithm for comput-

ing a low-rank approximation of such matrices:

Theorem 173 (Informal Sample-Optimal LRA for Negative-Type Metrics.) Given a negative-

type distance matrix A, there exists an algorithm that queries Õ(nk/ε) entries in A and outputs

a rank k matrix B such that with probability 99/100, ‖A−B‖2
F 6 (1 + ε)‖A−Ak‖2

F , and the

algorithm runs in time Õ(n · (k/ε)ω−1).

Remark 159. Prior work of Bakshi and Woodruff [BW18] obtains a Õ(nk/ε2.5) query algorithm
that outputs a rank-(k + 4) matrix B such that ‖A−B‖2

F 6 (1 + ε)‖A−Ak‖2
F . We show that

the bi-criteria guarantee is not necessary, thereby resolving an open question in their paper.

Structured Regression. The sample-optimal algorithm for PSD Low-Rank Approximation
also leads to a faster algorithm for Ridge Regression, when the design matrix is PSD. Given
a PSD matrix A, a vector y and a regularization parameter λ, we consider the following opti-
mization problem: minx∈Rn ‖Ax − y‖2

2 + λ‖x‖2
2. This problem is often referred to as Ridge

Regression and has been the focus of numerous theoretical and practical works (see [Gru17] and
references therein).

Theorem 174 (Informal Ridge Regression.) Given a PSD matrix A, a regularization parameter

λ and statistical dimension sλ = Tr [(A2 + λI)−1A2], there exists an algorithm that queries

Õ(nsλ/ε2) entries of A and with probability 99/100 outputs a (1 + ε) approximate solution to

the Ridge Regression objective and runs in Õ(n(sλ/ε2)ω−1) time.

Remark 160. Our result improves on prior work by Musco and Woodruff [MW17c], who obtain
an algorithm that queries Õ(ns2

λ/ε
4) entries in A and runs in Õ(n(sλ/ε2)ω) time.

Remark 161. Since our algorithm works for all y simultaneously, we obtain a low-rank coreset

of the design matrix (in factored form) that preserves the Ridge Regression cost up to a (1 + ε)
factor. Further, in Theorem 176, we prove a matching lower bound on the query complexity for
any coreset construction.

Robust Low-Rank Approximation. Next, we consider a robust form of low-rank approxima-
tion problem, where the input is a PSD matrix corrupted by noise. In this setting, we have query
access to the corrupted matrix A + N, where A is PSD and N is such that ‖N‖2

F 6 η‖A‖2
F .

Further, for all i ∈ [n] ‖Ni,∗‖2
2 6 c‖Ai,∗‖2

2, for a fixed constant c. The diagonal of a PSD matrix
carries crucial information since the largest diagonal entry upper bounds all off-diagonal entries.

489

Therefore, a reasonable adversarial strategy is to corrupt the largest diagonal entries and make
them close to the small diagonal entries, which enables the resulting matrix to have large off-
diagonal entries that are hard to find. Capturing this intuition we parameterize our algorithms
and lower bounds by the largest ratio between a diagonal entry of A and A + N, denoted by
φmax = maxj∈[n] Aj,j/|(A + N)j,j|.

Theorem 178. (Informal lower bound.) Let ε > η > 0. Given A + N such that A is PSD and N
is a corruption matrix as defined above, any randomized algorithm that with probability at least

2/3 outputs a rank-k approximation up to additive error (ε + η)‖A‖2
F must read Ω (φ2

maxnk/ε)
entries of A + N.

Remark 162. Any algorithm must incur additive error η‖A‖2
F , since A is not even identifiable

below additive-error η‖A‖2
F .

Remark 163. In our hard instance, φ2
max can be as large as εn/k, which implies a sample-

complexity lower bound of Ω(n2). While this lower bound precludes sublinear algorithms for
arbitrary PSD matrices, we observe that in many applications φmax can be significantly smaller.
For instance, if A is a correlation matrix, we know that the true diagonal entries of A + N are 1
and can ignore any corruption on them to bound φmax by 1.

Motivated by the aforementioned observation, we introduce algorithms for robust low-rank
approximation, parameterized by the corruption on the diagonal entries. We obtain the following
theorem:

Theorem 183 (Informal Robust LRA.) Given A + N, which satisfies our noise model, there

exists an algorithm that queries Õ(φ2
maxnk/ε) entries in A + N and computes a rank k matrix

B such that with probability at least 99/100, ‖A−B‖2
F 6 ‖A−Ak‖2

F + (ε+√η)‖A‖2
F .

Remark 164. While the sample complexity of this algorithm matches the sample complexity in
the lower bound, it incurs additive-error

√
η‖A‖2

F as opposed to η‖A‖2
F . An interesting open

question here is whether we can achieve additive-error o(√η‖A‖2
F), though we note that when

η2 6 ε, this just changes the additive error guarantee of our low-rank approximation by a constant
factor.

Remark 165. Our techniques extend to low-rank approximation of correlation matrices, and we
obtain a sample complexity of Õ(nk/ε), which is optimal. In fact, the hard instance in [MW17c]
implies an Ω(nk/ε) lower bound on the sample complexity, even in the presence of no noise.

490

Surprisingly, corrupting a correlation matrix does not increase the sample complexity and only
incurs an additive error of

√
η‖A‖2

F (see Corollary 8.4.11 for a formal statement).

8.2 Preliminaries and Notation

Given anm×nmatrix A with rank r, we can compute its singular value decomposition, denoted
by SVD(A) = UΣV>, such that U is anm×r matrix with orthonormal columns, V> is an r×n
matrix with orthonormal rows and Σ is an r× r diagonal matrix. The entries along the diagonal
are the singular values of A, denoted by σ1, σ2 . . . σr. Given an integer k 6 r, we define the
truncated singular value decomposition of A that zeros out all but the top k singular values of A,
i.e., Ak = UΣkV>, where Σk has only k non-zero entries along the diagonal. It is well known
that the truncated SVD computes the best rank-k approximation to A under the Frobenius norm,
i.e., Ak = minrank(X)6k ‖A −X‖F . More generally, for any matrix M, we use the notation Mk

and M\k to denote the first k components and all but the first k components respectively. We use
Mi,∗ and M∗,j to refer to the ith row and jth column of M respectively. For an n×n PSD matrix
A, we denote the singular (eigenvalue) decomposition by UΣU>. Further, since Σi,i > 0, let
A1/2 = UΣ 1

2 U> be the square root of A. Note that Ai,j = 〈A1/2
i,∗ ,A

1/2
j,∗ 〉. By Cauchy-Schwarz,

for all i, j ∈ [n], A2
i,j = 〈A1/2

i,∗ ,A
1/2
j,∗ 〉2 6 ‖A1/2

i,∗ ‖2
2 · ‖A

1/2
j,∗ ‖2

2 = Ai,i · Aj,j . We use nnz(A)
to denote the number of non-zero entries (sparsity) of A. We use operator and spectral norm
interchangeably to denote ‖M‖2 = max‖y‖2=1 ‖My‖2. We also use the notation M† to denote
the Moore-Penrose pseudoinverse.

8.3 Relative Error PSD Low-Rank Approximation

In this section, we describe our main algorithm for relative-error PSD Low-Rank Approxima-
tion, where we query only Õ(nk/ε) of the input matrix A. This improves the best known algo-
rithm by Musco and Woodruff that queries Õ(nk/ε2.5) and matches their query lower bound of
Ω(nk/ε) up to polylogarithmic factors [MW17c]. Formally, we prove the following:

Theorem 166. (Sample-Optimal PSD Low-Rank Approximation.) Given an n×n PSD matrix A,

an integer k, and 1 > ε > 0, Algorithm 11 samples Õ(nk/ε) entries in A and outputs matrices

M,N> ∈ Rn×k such that with probability at least 9/10,

‖A−MN‖2
F 6 (1 + ε)‖A−Ak‖2

F

491

Further, the algorithm runs in Õ(n(k/ε)ω−1 + (k/ε3)ω) time.

We begin by defining various statistical quantities associated with a given matrix, such as the
leverage and ridge-leverage scores. The leverage score of a given row measures the importance
of this row in composing the row span. Leverage scores have found numerous applications in
regression, preconditioning, linear programming and graph sparsification [Sar06, SS11, LS15,
CLM+15]. In the special case of graphs, they are referred to as effective resistances.

Definition 8.3.1. (Leverage Scores.) Given a matrix M ∈ Rn×m, let mi = Mi,∗ be the i-th row

of M. Then, for all i ∈ [n] the i-th row leverage score of M is given by

τi(M) = mi(M>M)†m>i

The column leverage scores can be defined analogously. Note, in the special case where M
has orthonormal columns, the row leverage scores of M are simply the `2

2 norms of the rows i.e.,
τi(M) = ‖mi‖2

2. It is well-known that sampling rows of a matrix proportional to the leverage
scores satisfies the subspace embedding property (Spectral Sparsification for Graphs) and leads
to faster algorithms for `2-norm Regression. Recall, for an n × m matrix A, a leverage score
sampling matrix S = DΩ>, where D is a t × t diagonal matrix and Ω is an n × t sampling
matrix. For all j ∈ [t], select row index i ∈ [n] with probability pi = τi(A)/∑i τi(A) and set
Ωi,j = 1 and Dj,j = 1/

√
tpi.

Lemma 8.3.2. (Subspace Embedding.) Given a matrix A ∈ Rn×m, ε > 0, and a leverage

score sampling matrix S with t = O(mlog(m)/ε2) rows, with probability at least 99/100, for all

x ∈ Rm

‖SAx‖2
2 = (1± ε)‖Ax‖2

2

This simply follows from an application of the Matrix Chernoff bound. Observe that the
sketch preserves all the singular values of A up to a factor of 1 ± ε. We refer the reader to a
recent survey for more details [Woo14a]. Next, we recall that leverage score sampling results in
a fast algorithm for regression.

Lemma 8.3.3. (Fast Regression, Theorem 38 [CW13].) Given matrices A ∈ Rn×m,B ∈ Rn×d

such that rank(A) 6 r and ε > 0, sample O(r log(r) + r/ε) rows of A,B proportional to the

leverage scores of A to obtain a sketch S such that Y∗ = arg minY ‖SAY− SB‖2
F . Then, with

492

probability at least 1− c,

‖AY∗ −B‖2
F 6 (1 + ε) min

Y
‖AY −B‖2

F

for a fixed small constant c. Further, the time to compute Y∗ is O(nnz(A) log(r/ε) + (n +
d)(r/ε)ω−1 + poly(r/ε)).

Note, the terms in the running time follow from using Cohen’s construction for OSNAP
[Coh16]. Leverage score sampling matrices also approximately preserve norms in affine spaces,
which leads to faster algorithms for multi-response regression, i.e., minX ‖AX−B‖2

F , where B
now has a large number of columns.

Lemma 8.3.4. (Affine Embeddings, Theorem 39 [CW13].) Given matrices A ∈ Rn×m , such

that rank(A) = r, and B ∈ Rn×d, let S be a leverage score sampling matrix with t = O(r/ε2)
rows. Further, let X∗ be the optimizer for minX ‖AX − B‖2

F and let B∗ = AX∗ − B. Then,

with probability at least 1− c, for all X ∈ Rm×d

‖SAX− SB‖2
F − ‖SB∗‖2

F = (1± ε)‖AX−B‖2
F − ‖B∗‖2

F

for a fixed small constant c.

An important application of the above lemma (which we use extensively) is to sketch con-
strained regression problems, for example, when the matrix X has a fixed small rank. Since affine
embeddings approximately preserve the cost of all affine spaces up to a fixed shift, this guarantee
in particular holds for X with small rank. Recall, an important caveat here is that the cost of
the sketched problem is not a relative-error approximation to the cost of the original problem
since we cannot estimate ‖B∗‖2

F in general. However, the upshot here is that the aforementioned
guarantee still suffices for optimization since the fixed shift does not change the optimizer.

The next tool we use is input-sparsity time low-rank approximation. This was achieved by
Clarkson and Woodruff [CW13] and the exact dependence on k, ε was improved in subsequent
works [MM13b, NN13a, BDN15, Coh16]. While the standard low-rank approximation guaran-
tee achieves relative-error under Frobenius norm, here we will require a spectral norm bound,
which follows from results of [CEM+15, CMM17].

Lemma 8.3.5. (Input-Sparsity Spectral LRA [CEM+15, CMM17].) Given a matrix A ∈ Rn×d,

ε, δ > 0 and k ∈ N, let k′ = O(k/ε). Then, there exists an algorithm that outputs a matrix

493

Z> ∈ Rk′×n such that with probability at least 1− δ,

‖A−AZZ>‖2
2 6 O

(
ε

k

)
‖A−Ak/ε‖2

F

in time and query complexity Õ (nnz(A) + (n+ d)poly(k/εδ)).

Proof. By Lemma 18 from [CEM+15] it suffices to use any obvious subspace embedding matrix
with ε = O(1) and k = k/ε. Here, we use OSNAP in the regime that requires Õ(k/ε2) rows
and sparsity polylog(k)/ε [NN13a]. Instantiating this OSNAP construction with ε = O(1) and
k = k/ε results in Z> with k/ε rows in the desired running time.

Next we define the ridge leverage scores of a matrix. The ridge leverage scores were used
as sampling probabilities in the context of linear regression and spectral approximation [LMP13,
KLM+17, AM15], and low-rank approximation [CMM17, MW17c]. Intuitively, the ridge lever-
age scores can be thought of as adding a regularization term that attenuates the smaller singular
directions such that they are sampled with proportionately lower probability.

Definition 8.3.6. (Ridge Leverage Scores.) Given a matrix M ∈ Rn×m and an integer k, let

mi = Mi,∗ be the i-th row of M. Then, for all i ∈ [n], the i-th rank-k ridge leverage score of M
is

ρki (M) = mi

(
M>M + ‖M−Mk‖2

F

k
I
)†

m>i

Since we typically use the row ridge leverage scores to define a probability distribution over
the rows and sample according to this distribution, it is crucial that their sum is small as this
controls the number of rows we would need to sample. This follows from a straightforward
calculation:

Lemma 8.3.7. (Lemma 4 from [CMM17].) Let ρki (M) be the i-th ridge leverage score of M.

Then, ∑
i∈[n]

ρki (M) 6 2k

Cohen et. al. [CMM17] show that the ridge leverage scores of a matrix can be approximated
up to a small constant inO(nnz(A)) time, however this involves reading the entire matrix A. For
the special case of A being PSD, Musco and Musco [MM17] show that the ridge leverage scores
of A 1

2 can be approximated up to a small constant using a so-called Nyström approximation.

494

Lemma 8.3.8. (Lemma 4 of [MW17c].) Given a PSD matrix A ∈ Rn×n and integer k, there

exists an algorithm that accesses O(nk log(k/δ)) entries in A and computes ρ̂ki (A
1
2) for all

i ∈ [n], such that with probability 1− δ,

ρki (A1/2) 6 ρ̂ki (A1/2) 6 3ρki (A1/2)

and runs in time O(n(k log(k/δ))ω−1), where ω is the matrix multiplication exponent.

Note, while it is not known how to compute ridge leverage scores of a PSD matrix in sublinear
time, Musco and Woodruff [MW17c] show that the ridge leverage scores of A 1

2 are a coarse
approximation to the ridge leverage scores of A.

Lemma 8.3.9. (Lemma 5 in [MW17c].) Given a PSD matrix A ∈ Rn×n, for all i ∈ [n],

ρki (A) 6 2
√
n

k
ρki (A

1
2)

Musco and Woodruff then show that sampling columns of A, according to the corresponding
ridge leverage scores of A 1

2 , suffices to obtain a column projection-cost preserving sketch (PCP),
if we oversample by a

√
n/k factor. Projection-cost preserving sketches were introduced by

Feldmen et. al. [FSS13] and Cohen et. al. [CEM+15] and studied in the context of low-rank
approximation in [CMM17, MW17c, BW18].

Lemma 8.3.10. (Column PCP from [MW17c].) Given a PSD matrix A ∈ Rn×n, integer k and

ε > 0, for all j ∈ [n] let ρ̄kj (A
1
2) be a constant approximation to the column-ridge leverage

scores of A 1
2 . Let qj = ρ̄kj (A

1
2)/∑j ρ̄

k
j (A

1
2) and let t = O

(√
n
k

∑
j ρ̄

k
j (A

1
2) log(k/δ)/ε2

)
=

O
(√

nk log(k/δ)/ε2
)
. Construct C ∈ Rn×t by sampling t columns of A and setting each one to

be 1√
tqj

A∗,j with probability qj . Then, with probability 1 − δ, for any rank-k projection matrix

X ∈ Rn×n,

(1− ε)‖A−XA‖2
F 6 ‖C−XC‖2

F 6 (1 + ε)‖A−XA‖2
F

Further, such a C can be computed by accessing Õ(nk) entries in A and in time O(nkω−1).

This result also implies that the resulting matrix C is a Spectral-Frobenius PCP for A
(Lemma 24 in [MW17c]), i.e., for any rank-k projection matrix X,

(1−ε)‖A−XA‖2
2−

ε

k
‖A−Ak‖2

F 6 ‖C−XC‖2
2 6 (1+ε)‖A−XA‖2

2 + ε

k
‖A−Ak‖2

F (8.3)

495

As noted by Musco and Woodruff, the resulting matrix C is not even square and thus is it unclear
how to sample rows of C to obtain a row-PCP in sublinear time and queries. In particular, the
ridge-leverage scores of rows of C can be an n/k-factor larger than the corresponding ridge-
leverage scores of A 1

2 . Instead, Musco and Woodruff sample rows of C proportional to the
rank-k/ε2 ridge leverage scores of A 1

2 . In addition, they show the stronger guarantee that a
Spectral-Frobenius PCP holds (by Lemma 8 of [MW17c]) for PSD Matrices.

Lemma 8.3.11. (Spectral-Frobenius PCP.) Given a PSD matrix A ∈ Rn×n, an integer k and

ε > 0, let C ∈ Rn×t be a column PCP for A, following Lemma 8.3.10. Let k′ = k/ε2. For all

i ∈ [n], let ρ̄k
′
i (A 1

2) be a constant approximation to the rank-k′ row ridge leverage scores of A 1
2 .

Let pi = ρ̄k
′
i (A 1

2)/∑i ρ̄
k′
i (A 1

2) and let t = O
(√

n
k

∑
i ρ̄

k′
i (A 1

2) log(n)/ε
)

= O
(√

nk log(n)/ε3
)
.

Then, with probability 1− c, for all rank-k′ projection matrices X,

(1− ε)‖C−CX‖2
2 −

ε

k
‖A−Ak‖2

F 6 ‖R −RX‖2
2 6 (1 + ε)‖C−CX‖2

2 + ε

k
‖A−Ak‖2

F

We observe that we could compute a low-rank approximation to R in input sparsity time,
which already requires querying Ω(nnz(R)) = Ω(nk/ε4) entries in A and is far from optimal
in terms of the dependence on ε. It is here that we digress from the approach of Musco and
Woodruff. We observe that the dependence on n and k is optimal and thus we instantiate the
aforementioned column and row PCPs with ε = O(1) and k = k/ε. While this results in weaker
PCP guaranteees, the resulting matrix R is a

√
nk/ε ×

√
nk/ε matrix and we can now afford

to read all of it and thus we can compute a rank-k low-rank approximation to R using the input
sparsity time algorithm of Clarkson and Woodruff [CW13].

However, the main technical challenge here is that we can no longer use the approach of
[CMM17, MW17c, BW18] to use the low-rank approximation for R and solve regression prob-
lems to recover an ε-approximate low-rank matrix for A. In particular, we can now only hope for
an O(1) approximation if we use the standard technique of iteratively solving regression prob-
lems. Our first insight is that computing a Spectral Low-Rank Approximation to R results in a
structured projection matrix for C, from which we can compute a structured projection matrix
for A. Further, this structured projection can be computed with only Õ(nk/ε) queries. We first
describe how this structured projection matrix for A results in an efficient low-rank approxima-
tion algorithm.

496

8.3.1 Structured Projections to Low-Rank Approximation

Our starting point is a structural result based on the Spectral-Frobenius projection (SF) property
introduced by Clarkson and Woodruff in the context of approximating arbitrary matrices with
low-rank PSD matrices [CW17]. In this subsection, we show that if we are given a projection
matrix that satisfies the SF property, we can obtain a query-optimal algorithm for Low-Rank
Approximation. We begin by defining this property:

Definition 8.3.12. ((ε, k)-SF Projection.) Given any matrix A ∈ Rn×n, integer k, and ε > 0, a

projection matrix P ∈ Rn×n is (ε, k)-SF w.r.t. A if

‖A−AP‖2
2 6

ε

k
‖A−Ak‖2

F

or

‖A−PA‖2
2 6

ε

k
‖A−Ak‖2

F

Intuitively, the following structural result of Clarkson and Woodruff relates an (ε, k)-SF pro-
jection to a relative-error low-rank approximation. We leverage this connection heavily in sub-
sequent sections.

Lemma 8.3.13. (Structured Projections and Low-Rank Approximation [CW17].) Let P ∈ Rn×n

be an (ε, k)-SF projection w.r.t A, then

‖A−PAkP‖2
F 6 (1 + ε)‖A−Ak‖2

F

Ignoring computational and query complexity constraints, suppose we were given a matrix
Q ∈ Rn×k′ with orthonormal columns such that P = QQ> is an (ε, k)-SF Projection, where k′

is the dimension of the space P projects onto. Note, for now it suffices to set k′ = poly(k/ε).
As a consequence of Lemma 8.3.13, we observe that solving the following constrained regres-
sion problem suffices to obtain a (1 + ε)-relative error solution to the Low-Rank Approximation
problem:

min
rank(X)6k

‖A−QXQ>‖2
F (8.4)

However, there are several challenges pertaining to this approach. As noted above, it is not
immediately clear how to obtain such a Q with nk/ε queries to A. Further, it is not immediately
clear how to solve Equation 8.4 efficiently. While we have reduced to optimizing over k′ × k′

sized matrices X with rank at most k, the problem still seems intractable in sublinear time and

497

queries.

Algorithm 9 : Structured Projection to Low-Rank Approximation

Input: A PSD Matrix A ∈ Rn×n, integer k, ε > 0, an orthonormal matrix Q ∈ Rn×k′ such
that the projection matrix P = QQ> satisfies ‖A−PA‖2

2 6
ε
k
‖A−Ak‖2

F

1. Consider the optimization problem:

min
rank(X)6k

‖A−QXQ>‖2
F

2. For all i ∈ [n], compute the leverage scores, τi(Q). Since Q has orthonormal columns,
τi(Q) = ‖Qi,∗‖2

2 and can be computed exactly. Let p = {p1, p2 . . . pn} denote a
distribution over rows of A for which pi = τi(Q)/∑i′ τi′(Q).

3. Let t = k′/ε2. Construct a leverage score sampling matrix S by sampling t rows of A,
such that S = DΩ>, where D is a t × t diagonal matrix and Ω is an n × t sampling
matrix. For all j ∈ [t], select row index i ∈ [n] with probability pi and set Ωi,j = 1
and Dj,j = 1/

√
tpi. Repeat this sampling process to construct another leverage score

sampling matrix T.

4. Consider the sketched optimization problem :

min
rank(X)6k

‖SAT− SQXQ>T‖2
F

Compute SAT, PSQ, PQ>T,(SQ)† and (Q>T)†, where PSQ and PQ>T are the pro-
jections onto SQ and Q>T respectively. Compute SVD(PSQSATPQ>T). By Theo-
rem 167 the sketched problem is minimized by X∗ = (SQ)†[PSQSATPQ>T]k(Q>T)†.

5. Let U∗ ∈ Rk′×k be an orthonormal basis for the columns of X∗. Compute an orthonor-
mal basis M for QU∗. Consider the following regression problem: minY∈Rk×n ‖A−
MY‖2

F . For all i ∈ [n], compute τi(M) = ‖Mi,∗‖2
2. Let q = {q1, q2, . . . , qn} be a

distribution over the rows of A such that qi = τi(M)/∑i′∈[n] τi′(M). Let W be a
leverage score sampling matrix with k/ε rows sampled proportional to q.

6. Consider the sketched regression problem: minY∈Rk×n ‖WA−WMY‖2
F . Let N be

the minimizer to this regression problem computed using the algorithm from Lemma
8.3.3.

Output: M,N> ∈ Rn×k such that ‖A−MN‖2
F 6 (1 + ε)‖A−Ak‖2

F

498

We begin by describing how to solve the optimization problem in Equation 8.4 with Õ(nk/ε)
queries given that we have access to Q and QQ> is an (ε, k)-SF Projection. At a high level, our
approach is to sketch the problem by sampling rows and columns proportional to the row leverage
scores of Q. We observe that since Q has orthonormal columns, the row leverage scores of Q
are simply the `2

2 norms of corresponding rows. Therefore, we create sampling matrices S and
T that sample poly(k′) rows proportional to the leverage scores of Q and consider the resulting
optimization problem:

min
rank(X)6k

‖SAT− SQXQ>T‖2
F (8.5)

We then show that the minimizer for Equation 8.5 is an approximate minimizer for Equation
8.4. Further, the optimization problem in Equation 8.5 is referred to as Generalized Low-Rank
Approximation and admits a closed form solution:

Theorem 167. (Generalized Low-Rank Approximation [FT07].) Let A ∈ Rn×n, B ∈ Rn×k′ and

C ∈ Rk′×n and k ∈ N. Then, the Generalized Low-Rank Approximation problem

min
rank(X)6k

‖A−BXC‖2
F

is minimized by X = B†[PBAPC]kC†, where PB,PC are the projection matrices onto B and

C respectively.

We apply the above theorem to Equation 8.5. Both the query complexity and running time
here contribute a lower-order term and we can afford to compute the SVD for each term. Let X∗

be the solution to the sketched optimization problem in Equation 8.5. Then, we can compute U∗,
an orthonormal column basis for X∗ and consider M, an orthonormal basis for QU∗ ∈ Rn×k to
be one of the low-rank factors for A. To find the second factor, we set up the following regression
problem:

min
N∈Rk×n

‖A−MN‖2
F (8.6)

Again, M has orthonormal columns and thus we can efficiently compute the corresponding
row leverage scores and sample k/ε rows. By Lemma 8.3.4 this achieves a (1+ε)-approximation
to the optimal cost in Equation 8.6 and obtains an N∗ with Õ(nk/ε) queries to A. At this stage,
we have obtained a (1 + ε)-approximate rank-k solution to Equation 8.4 and Lemma 8.3.13
implies that we are done. We now formalize this argument:

Theorem 168. (Structured Projection to Low-Rank Approximation.) Given a rank-k′ projection

499

matrix P = QQ>, such that P is an (ε, k)-SF projection, Algorithm 9 queries Õ(nk/ε+k′2/ε4)
entries in A and with probability 99/100 outputs M,N> ∈ Rn×k such that

‖A−MN‖2
F 6 (1 + ε)‖A−Ak‖2

F

Further, Algorithm 9 runs in time Õ(n(k/ε)ω−1 + nk′ω−1 + (k′/ε2)ω).

Proof. Since P is an (ε, k)-SF projection and Ak is a feasible solution to minrank(Y)6k ‖A −
PYP‖2

F , from Lemma 8.3.13 we have

min
rank(Y)6k

‖A−PYP‖2
F 6 (1 + ε)‖A−Ak‖2

F (8.7)

Since P = QQ>, we can substitute it in Equation 8.7 to get minrank(Y)6k ‖A−QQ>YQQ>‖2
F .

We further relax this by optimizing over all rank-k matrices X ∈ Rk′×k′ instead of matrices of
the form QYQ>. Therefore,

min
rank(X)6k

‖A−QXQ>‖2
F 6 (1 + ε)‖A−Ak‖2

F (8.8)

where we are now optimizing over a k′×k′ matrix X, which is considerably smaller than Y. Let
S,T> ∈ Rk′/ε2×n be the leverage score sampling matrices as defined in Algorithm 9. Observe,
from Lemma 8.3.4 we know S has a sufficient number of rows to be an affine embedding for
Equation 8.8. However, we cannot directly apply the affine embedding guarantee since A −
QXQ> is not an affine space. Let H be k′ × n matrix, let H∗ = arg minH ‖A−QH‖2

F and let
A∗ be A−QH∗. Then, with probability at least 1− c1, for all H,

‖SA− SQH‖2
F − ‖SA∗‖2

F = (1± ε)‖A−QH‖2
F + ‖A∗‖2

F (8.9)

Since Equation 8.9 holds for all H, in particular it holds for all rank-k matrices X such that
H = XQ>. Therefore, with probability at least 1− c1, for all rank k matrices X,

‖SA− SQXQ>‖2
F − ‖SA∗‖2

F = (1± ε)‖A−QXQ>‖2
F + ‖A∗‖2

F (8.10)

Here, we observe that while we cannot estimate ‖A∗‖2
F accurately, it is a fixed matrix inde-

pendent of X and thus we can still approximately optimize. Let ζ1 be the event that Equa-
tion 8.10 holds. We now use the sampling matrix T to sketch ‖SA − ZQ>‖2

F . Let Z′ =
arg minZ ‖SA−ZQ>‖2

F and let SA′ = SA−Z′Q>. Then, with probability at least 1− c2, for

500

all Z,
‖SAT− ZQ>T‖2

F − ‖SA′T‖2
F = (1± ε)‖SA− ZQ>‖2

F + ‖SA′‖2
F (8.11)

In particular, the above equation holds for all rank-k matrices X such that Z = SQ>X. Let ζ2

be the event that the aforementioned equation holds. Combining equations 8.10 and 8.11 and
conditioning on ζ1 and ζ2, for all rank-k matrices X,

‖SAT−SQXQ>T‖2
F−‖SA′T‖2

F = (1±ε)2
(
‖A−QXQ>‖2

F + ‖SA∗‖2
F + ‖A∗‖2

F

)
+‖SA′‖2

F

(8.12)

Here, we observe that while the sketch does not preserve the cost of all X up to relative error
(1 + ε), the additive error ∆ 6 (1 + ε) (‖SA∗‖2

F + ‖A∗‖2
F + ‖SA′‖2

F + ‖SA′T‖2
F) is fixed and

is independent of X. Let X∗ = arg minrank(X)6k ‖SAT− SQXQ>T‖2
F . Then, union bounding

over ζ1 and ζ2, with probability 1− c1 − c2,

‖A−QX∗Q>‖2
F 6 (1 + ε) min

rank(X)6k
‖A− SQXQ>‖2

F (8.13)

Therefore, it suffices to efficiently compute X∗. By Theorem 167, we know that the sketched
optimization problem above is minimized by X∗ = (SQ)†[PSQSATPQ>T]k(Q>T)†, which
can be computed exactly as shown in Step 4 of Algorithm 9. We note that we can now explicitly
compute SAT by querying the relevant entries in A. Further, we can compute SQ and Q>T
without querying A at all. Recalling equation 8.13 we can approximate the optimal low rank
approximation cost:

‖A−QX∗Q>‖2
F 6 (1 +O(ε))‖A−Ak‖2

F

While we have now approximately minimized the optimization problem from Equation 8.4, re-
call our goal was to obtain a rank-k approximation to A in factored form i.e., outputting n × k
matrices M,N> such that the low rank approximation is given by MN. Towards this end, we
compute U∗, an orthonormal column basis for X∗ such that X∗ = U∗V∗. Substituting this in
the above equation we have

‖A−QU∗V∗Q>‖2
F 6 (1 + ε)‖A−Ak‖2

F (8.14)

Let M = QU∗ ∈ Rn×k be one of the low-rank factors for A. To find the second factor, we
observe :

min
Y∈Rk×n

‖A−MY‖2
F 6 ‖A−MV∗Q>‖2

F (8.15)

and therefore, approximately optimizing minY∈Rk×n ‖A −MY‖2
F suffices. Again, M has or-

501

thonormal columns and thus we can efficiently compute the corresponding leverage scores to
create a sketch W with O(k/ε) rows. From Lemma 8.3.3, with probability at least 1− c3 for all
Y,

‖WA−WMY‖2
F = (1± ε)‖A−MY‖2

F

Let N be the optimal solution for the sketched problem as defined in Algorithm 9. Then, with
probability at least 1− c3,

‖A−MN‖2
F 6

(1 + ε

1− ε

)
min

Y∈Rk×n
‖A−MY‖2

F (8.16)

We conclude correctness by union bounding over the failure probabilities of all the sketches and
observing that with probability at least 99/100,

‖A−MN‖2
F 6 (1 +O(ε))‖A−MV∗Q>‖2

F 6 (1 +O(ε))‖A−Ak‖2
F

where the inequalities follow from Equations 8.6, 8.15 and 8.14.

Finally, we analyze the query complexity and running time of our algorithm. Since Algorithm
9 is given Q as input, computing the leverage scores in Step 2 requires no queries to A and
requires O(nk′) time. Next, observe we do not have to explicitly compute SA or AT, since
SAT is simply a submatrix of A with (k′/ε2)2 entries appropriately scaled, it suffices to query
them. SAT can be computed in O(k′2/ε4) time. Next, we compute SVD(SQ) and SVD(Q>T),
which requires no queries to A and time O(k′ω/ε2). We can then compute (SQ)†, (Q>T)†,PSQ

and PQ>T from the aforementioned SVDs. Next, we compute the matrix PSQSATPQ>T, which
requires no extra queries to A and time O((k′/ε2)ω), which is also the time required to compute
its SVD. We can then compute X∗ in Step 4 with a total of O(k′2/ε4) queries to A in time
O(nk′ + (k′/ε2)ω).

In Step 5, we can compute U∗ by computing the SVD of X∗ and compute M in time
O(nk′ω−1 + k′ω) and do not require any queries to A. In Step 6, computing WA requires
O(nk/ε) queries to A, since W has Õ(k/ε) rows. Note, this step contributes the leading term to
the query complexity and it is crucial W does not have more rows. By Lemma 8.3.3, N can be
computed in time Õ(nk/ε+n(k/ε)ω−1 +k3/ε). Overall, Algorithm 9 requires Õ(nk/ε+k′2/ε4)
queries to A and runs in time Õ(n(k/ε)ω−1 + nk′ω−1 + (k′/ε2)ω).

In light of Theorem 168, to obtain a low rank approximation for A, it suffices to obtain an SF
Projection. In particular, it suffices to obtain a matrix Q ∈ Rn×k′ , for k′ = poly(k, 1/ε) such that
P = QQ> is an (ε, k)-SF projection, by querying Õ(nk/ε) entries in A. One possible approach

502

to computing such a Q is to use the following result by Musco and Woodruff:

Theorem 169. (Theorem 25, [MW17c].) Given a PSD matrix A, integer k, ε > 0, there exists

an algorithm that reads Õ(nk/ε6 + nk2/ε2) entries of A and with probability at least 99/100,

outputs M,N> ∈ Rn×k such that

‖A−MN‖2
2 6 (1 + ε)‖A−Ak‖2

2 + ε

k
‖A−Ak‖2

F

Instantiating this theorem with ε = O(1) and k = k/ε, we obtain a matrix M,N> ∈ Rn×k/ε such
that

‖A−MN>‖2
2 6 O(1)‖A−Ak/ε‖2

2 +O
(
ε

k

)
‖A−Ak/ε‖2

F

6 O
(
ε

k

)
‖A−Ak‖2

F

where the last inequality follows from observing ‖A−Ak/ε‖2
F 6 ‖A−Ak‖2

F and

‖A−Ak‖2
F =

n∑
j=k+1

σ2
j (A) >

(
k

ε
− k

)
σ2
k/ε >

(
k

ε
− k

)
‖A−Ak/ε‖2

2

We can then compute an orthonormal basis for M and denote it by Q. Here, we observe
P = QQ> is an (ε, k)-SF projection matrix. Further, the algorithm of Musco and Woodruff in-
stantiated with the above parameters queries Õ(nk2/ε2) entries in A. As a corollary of Theorem
168, providing the rank-k/ε projection matrix Q as input to Algorithm 9, implies an algorithm
for low rank approximation which queries Õ(nk2/ε2) entries in A. This already improves the
ε-dependence in the query complexity of best known algorithm for PSD low-rank approximation,
since the algorithm of Musco and Woodruff requires Õ(nk/ε2.5) queries [MW17c]. Note, this
algorithm has worse dependence on k. However, our goal is to obtain linear dependence on both
k and 1/ε. Towards this end, we focus on obtaining an SF projection with fewer queries to A.

8.3.2 Spectral Regression

In this subsection, we consider the Spectral Regression problem. This problem is a natural gener-
alization of least-squares regression, when the response variable is a matrix. Spectral Regression

arises in the context of Regularized Least Squares Classification, for instance [CLL+10]. Given
matrices A ∈ Rn×d, X ∈ Rd×m and B ∈ Rn×m, the Spectral Regression problem considers the

503

following optimization problem:
min

X
‖AX−B‖2

We note that this is natural variant of multi-response regression where we minimize the difference
between AX and B in spectral norm as opposed to the extensively studied and well-understood
Frobenius norm. To the best of our knowledge the only relevant related work on Spectral Re-

gression is by Clarkson and Woodruff [CW09] and Cohen et. al. [CNW15]. Both these works
provide oblivious sketches to reduce the dimension of the problem, which unfortunately do not
suffice for our application. Instead of Spectral Regression in its full generality we focus on the
following special case:

Given an n × n PSD matrix A, a rank parameter k, and an accuracy parameter ε, let C be a
n×

√
nk/εmatrix such that it is a column PCP for A, satisfying the guarantees of Lemma 8.3.10,

instantiated with k = k/ε, and ε = O(1). Let Z> be a k/ε ×
√
nk/ε matrix with orthonormal

rows such that the corresponding projection matrix ZZ> is an (O(1), k/ε)-SF Projection for C.
Then, we consider the following Spectral Regression problem:

min
W∈Rn×k/ε

‖C−WZ>‖2 (8.17)

Our main technical contribution here is to obtain a new algorithm to solve this optimization
problem. We subsequently show how understanding this special case is crucial to obtaining
optimal algorithms for low rank approximation of PSD matrices. The techniques we develop
here may be of independent interest and find applications to other problems. Formally, we prove
the following:

Theorem 170. (Approximate Spectral Regression.) Let C ∈ Rn×
√
nk/ε be a column PCP for

A satisfying the guarantees of Lemma 8.3.10 instantiated with k = k/ε and ε = O(1). Let

Z ∈ R
√
nk/ε×k/ε be an orthonormal matrix such that ZZ> is an (O(1), k/ε)-SF projection for

C. Then, Algorithm 10 queries Õ(nk/ε) entries in A and with probability 99/100 computes Ŵ
such that

‖C− ŴZ>‖2
2 6 Õ(1)

(
min

W∈Rn×k/ε
‖C−WZ>‖2

2 + ε

k
‖C−Ck/ε‖2

F

)

Further, the algorithm runs in time Õ(nk/ε+ (k/ε)ω).

504

Algorithm 10 : Approximate Spectral Regression

Input: A PSD Matrix A ∈ Rn×n, integer k, and ε > 0. C ∈ Rn×
√
nk/ε, a column PCP

for A satisfying the guarantees of Lemma 8.3.10 instantiated with k = k/ε and ε = O(1).
Z ∈ R

√
nk/ε×k/ε be an orthonormal matrix such that ZZ> is an (O(1), k/ε)-SF projection

for C.

1. Consider the Spectral Regression problem:

min
W
‖C−WZ>‖2

2

Let t =
√
nk/ε. For all j ∈ [t], compute τj(Z>) = ‖Zj,∗‖2

2. Let q = {q1, q2, . . . , qt}
be a distribution of columns of C such that for all j ∈ [t], qj = min(τj(Z>), 1).

2. Construct a sampling matrix S such that CS selects each column C∗,j independently
with probability qj and scales it by 1/√qj . Similarly, construct Z>S. Consider the
sketched optimization problem :

min
W
‖CS−WZ>S‖2

2

3. Compute (Z>S)† = S>Z(Z>SS>Z)−1. Let Ŵ = CS(Z>S)† be the solution to the
sketched optimization problem.

Output: Ŵ ∈ Rn×k/ε such that ‖C−ŴZ>‖2
2 6 Õ(1) minW ‖C−WZ>‖2

F +Õ(ε/k)‖C−
Ck/ε‖2

F

We begin by characterizing the optimal solution and optimal cost for the Spectral Regression

problem. We prove a structural result that shows the optimal solution for Spectral Regression is
given by projecting C away from the span of Z>. This matches the characterization of the opti-
mal solution to regression under the Frobenius norm, given by the well-known normal equations.
Recall, by definition of the Moore-Penrose pseudoinverse, this projection matrix is (Z>)†Z>.

Then, the optimal cost for Equation 8.17 is ‖C − C(Z>)†Z>‖2
2 and is achieved by W∗ =

C(Z>)†. Intuitively, we show that any feasible W must incur the above cost by analyzing
‖y>(C − C(Z>)†Z>)‖2

2 for a fixed vector y. This enables us to exploit the geometry of Eu-
clidean space and instantiate y as needed to relate it back to the spectral norm.

Lemma 8.3.14. (Characterizing Opt for Spectral Regression.) Let C and Z be matrices as

505

defined in Theorem 170. Let W∗ = C(Z>)† = CZ(Z>Z)−1, such that W∗Z> is the projection

of C on the colspan(Z). Let C∗ = C−W∗Z> be the projection of C orthogonal to colspan(Z).

Then,

‖C∗‖2
2 = min

W
‖C−WZ>‖2

2

and the corresponding minimizer is W∗.

Proof. Note, by definition ‖C−W∗Z>‖2
2 = ‖C∗‖2

2 and since W∗ is feasible,

min
W
‖C−WZ>‖2

2 6 ‖C∗‖2
2.

Therefore, it suffices to show any W must incur cost at least ‖C∗‖2
2. By definition, we have

C = C(Z>)†Z> + C(I− (Z>)†Z>) = C(Z>)†Z> + C∗

By definition of spectral norm, ‖C−WZ>‖2
2 > ‖y>C−y>WZ>‖2

2, for all y such that ‖y‖2 = 1.
Next, for any unit vector y ∈ Rn,

‖y>C− y>WZ>‖2
2 = ‖y>(C(Z>)†Z> + C∗)− y>WZ>‖2

2

= ‖y>C∗ − y>(W−W∗)Z>‖2
2

= ‖y>C∗‖2
2 + ‖y>(W−W∗)Z>‖2

2 + 2〈y>C∗, y>(W−W∗)Z>〉
(8.18)

We observe that WZ> = C(Z>)†Z> is the projection of C on the rowspan of Z> and C∗ is the
projection of C on the orthogonal complement of rowspan of Z>. Therefore, 〈C(Z>)†Z>,C∗〉 =
0. Further, for any y, y>(W −W∗)Z> is in the row span of Z> and is thus perpendicular to
y>C∗. Plugging this back in to Equation 8.18, we have

‖y>C− y>WZ>‖2
2 = ‖y>C∗‖2

2 + ‖y>(W−W∗)Z>‖2
2 > ‖y>C∗‖2

2 (8.19)

where the inequality follows from non-negativity of norms. Since Equation 8.19 holds for all y,
we can pick y such that ‖y>C∗‖2

2 = ‖C∗‖2
2. Therefore, ‖C−WZ>‖2

2 > ‖y>C− y>WZ>‖2
2 >

‖C∗‖2
2. This completes the proof.

Next, we sketch the Spectral Regression problem from Equation 8.17 such that we approx-
imately preserve the spectral norm cost of all W ∈ Rn×k/ε. A natural approach here would be
to follow the Affine Embedding idea for Frobenius norm and hope a similar guarantee holds for

506

spectral norm as well. However, since Z could have rank as large as k/ε and we can no longer
obtain a relative-error (1 + ε)-approximate Affine Embedding even for Frobenius norm without
incurring a larger dependence on ε. Instead, we relax the notion of approximation for our sketch.
We note that it suffices to construct a sketch S such that if

Ŵ = arg min
W
‖CS−WZ>S‖2

2

then
‖C− ŴZ>‖2

2 6 Õ(1)
(

min
W∈Rn×k/ε

‖C−WZ>‖2
2 + ε

k
‖C−Ck/ε‖2

F

)
as stated in Theorem 170. Note, here we only need to weakly preserve the cost of the optimal W
for the sketched problem as opposed to preserving the cost of all matrices W. At a high level,
this comes down to analyzing the spectrum of ‖C∗SS>‖2 We begin with the definition of the Ap-
proximate Matrix Multiplication (AMM) guarantee and discuss its application in approximately
minimizing Spectral Regression.

Definition 8.3.15. ((ε, k)-Spectral AMM.) Given matrices A ∈ Rn×m and B ∈ Rm×d, a sketch

Π ∈ Rm×t satisfies (ε, k)-Spectral AMM if with probability at least 1− δ,

‖AΠΠ>B−AB‖2 6 ε

√√√√(‖A‖2
2 + ‖A‖

2
F

k

)
·
(
‖B‖2

2 + ‖B‖
2
F

k

)

Approximate Matrix Multiplication was introduced by Drineas et al. [DKM06] with respect
to the Frobenius norm, as opposed to the spectral norm above. Subsequent work by Cohen et
al. [CNW15] studied the spectral norm bound and showed that any sketch Π that is an oblivious
subspace embedding (i.e., satisfies Lemma 8.3.2 with Π being an oblivious sketch) implies an
AMM guarantee, as long as Π has Θ(k + log(1/δ)/ε2) columns. The Spectral AMM property
combined with an O(1)-Subspace Embedding suffice to approximately minimize the Spectral
Regression problem :

Theorem 171. (Theorem 3, [CNW15]) Let A, B and Π be as defined above. If Π is an

(
√
ε, rank(A))-Spectral AMM for UA and (I − PA)B, and an O(1)-Subspace Embedding for

A, and X̂ = arg minX ‖ΠAX−ΠB‖2
2, then with probability 99/100,

‖AX̂−B‖2
2 6 (1 + ε)‖PAB−B‖2

2 + ε

k
‖PAB−B‖2

F

where UA is an orthonormal basis for A and PA is the projection onto the span of A.

507

However, all the constructions presented for the sketch in [CEM+15] are either oblivious
sketches or require sampling proportional to both A and B. Applying an oblivious sketch S in
our problem requires computing CS which would query Ω(nnz(C)) = Ω(n1.5

√
k/ε) entries in

A. Therefore, the main challenge here is to construct a sampling matrix S while reading Õ(nk/ε)
entries in A such that S is an (Õ(1), k/ε)-Spectral AMM and an O(1)-Subspace Embedding.
We construct S by sampling Õ(k/ε) columns of Z> proportional to the leverage scores of Z>.
While it is easy to show S is a Subspace Embedding, observe that our sampling probabilities are
computed without reading C.

Proof of Theorem 170. As a starting point, we observe that yet again, since Z> has or-
thonormal rows, the leverage scores are simply the `2

2 norms of the columns of Z>. Therefore,
one possible approach is to construct a leverage score sampling sketch S for C, by sampling
columns proportional to the leverage scores of Z>. We note we can afford to sample at most
Õ(k/ε) columns, since our algorithm queries all entries in the resulting sketched matrix CS.

Further, for reasons to be discussed later, it is crucial that we sample columns of C inde-
pendently, as opposed to the standard way of sampling with replacement we have used thus far.
The independent sampling process can be described as follows: for all j ∈ [

√
nk/ε], we sample

C∗∗,j with probability min(‖Z>∗,j‖2
2, 1). We use the following lemma from [CMM17] to show that

independently sampling columns satisfies some desirable properties.

Lemma 8.3.16. (Lemma 21, [CMM17].) Given a matrix M ∈ Rn×m, for all j ∈ [m] let

ρ̄kj (M) = Θ(ρkj (M) be estimates of the rank-k column ridge-leverage scores of M and let qj =
min(ρ̄kj (M) log(k/δ)/ε2, 1). Then, construct MS by selecting each column M∗,j with probabil-

ity qj and scale it by 1/√qj . Then, with probability at least 1−δ, MS has
∑
j∈[m] ρ̄

k
j · log(k/δ)/ε2

columns and

(1− ε)MSS>M> − ε

k
‖M−Mk‖2

F I �MM> � (1 + ε)MSS>M> + ε

k
‖M−Mk‖2

F I

The above lemma independently samples columns proportional to the ridge leverage scores.
In our setting, we can set the ridge parameter λ = 0, and sample according to the exact leverage
scores of Z>. Formally, let q = {q1, q2, . . . , qm} be the corresponding distribution over columns
of Z> such that qj = min(‖Z>‖2

2 log(k), 1). Since Z> has k/ε orthonormal rows, the leverage
scores sum up to rank(Z>) 6 k/ε. We then use Lemma 8.3.16 by setting ε = 1/10, δ = 0.01 and

508

thus with probability at least 99/100, Z>S has
∑
j∈[
√
nk/ε] τj(Z

>) log(n) = Õ(k/ε) rows and

9
10Z>SS>Z � Z>Z � 11

10Z>SS>Z (8.20)

If the guarantee in Equation 8.20 holds for a sketch S, we refer to S as satisfying an O(1)-
Subspace Embedding property. Observe, this is equivalent to S preserving all singular values of
Z> up to a constant.

We can now obtain a closed form solution for the Spectral Regression problem in the sketched
space. By Lemma 8.3.14, the optimal solution to the optimization problem in Step 2 of Algorithm
10 is given by Ŵ = CS(Z>S)†. Since S satisfies the O(1)-Subspace Embedding property in
Equation 8.20, it preserves the rank of Z>. Therefore, Z>S has full row rank and (Z>S)† =
S>Z(Z>SS>Z)−1 and thus Ŵ = CSS>Z(Z>SS>Z)−1 is the optimal solution. Next, we bound
the cost of Ŵ in the original problem. Let PZ> = Z†Z> be the orthogonal projection matrix
onto Z>. Using the fact that ‖M‖2

2 = max‖y‖2=1 ‖y>M‖2
2 and the Pythagorean Theorem for

Euclidean space we have

‖C− ŴZ>‖2
2 = ‖C−CSS>Z(Z>SS>Z)−1Z>‖2

2

= max
‖y‖2

2=1
‖y>CPZ> − y>CSS>Z(Z>SS>Z)−1Z>PZ>‖2

2+

‖y>C(I−PZ>)− y>CSS>Z(Z>SS>Z)−1Z>(I−PZ>)‖2
2

(8.21)

Here, we observe y>CSS>Z(Z>SS>Z)−1Z> is a vector in the row space of Z> and(I − PZ>)
is the projection on the orthogonal complement of rowspan(Z>), thus this evaluates to 0. Since
C(I− PZ>) = C∗, we can upper bound ‖y>C(I− PZ>)‖2 by ‖C∗‖2

2. Similarly, we can upper
bound the first term by its spectral norm. Therefore, plugging this back into Equation 8.21,

‖C− ŴZ>‖2
2 6 ‖C(Z>)†Z> −CSS>Z(Z>SS>Z)−1Z>‖2

2 + ‖C∗‖2
2

= ‖
(
C(Z>)†Z>SS>Z−CSS>Z

)
(Z>SS>Z)−1‖2

2 + ‖C∗‖2
2

6 ‖C(Z>)†Z>SS>Z−CSS>Z‖2
2‖(Z>SS>Z)−1‖2

2 + ‖C∗‖2
2

(8.22)

where we use that Z> has orthonormal columns and the sub-multiplicativity of the spectral norm.
From Equation 8.20, it follows that for all i ∈ [k/ε], σ2

i (Z>SS>Z) = (1 ± 0.1)2σ2
i (Z>Z) =

(1± 0.1)2. Therefore, ‖(Z>SS>Z)−1‖2
2 = 1/σ2

min(Z>SS>Z) 6 100/81. Substituting this back

509

into Equation 8.22, we have

‖C− ŴZ>‖2
2 6 O(1)‖(C(Z>)†Z> −C)SS>Z‖2

2 + ‖C∗‖2
2

6 O(1)‖C∗SS>Z‖2
2 + ‖C∗‖2

2

(8.23)

where the last inequality follows from the definition of C∗. In order to bound the cost above, we
focus on analyzing ‖C∗SS>Z‖2

2. Since we want to compare ‖C∗SS>Z‖2
2 to ‖C∗Z‖2

2, a natural
way to proceed would be to interpret this term as an instance of Approximate Matrix Product.
Therefore, we next show that the leverage score sampling matrix S satisfies the Spectral AMM

property for C∗ and Z>. Here, we want to analyze how sampling columns of C∗ proportional to
the leverage scores of Z> affects the spectrum of C∗. An important tool in this analysis is the
following result by Rudelson and Vershynin on how the spectral norm of a matrix degrades when
we sample a uniformly random subset of rows of a matrix:

Theorem 172. (Theorem 1.8 in [RV07]) Given a matrix A ∈ Rn×n, letQ be a uniformly random

subset of [n] s.t. E [Q] = q. Let A|Q denote the submatrix restricted to the rows indexed by Q.

Then,

E
[∥∥∥A|Q∥∥∥2

]
= O

(√
q

n
‖A‖2 +

√
log(q)‖A‖(n/q)

)
where ‖A‖(n/q) is the average of the largest n/q `2-norms of columns of A.

We extend the above statement to rectangular matrices:

Corollary 8.3.17 (Spectral Decay for Rectangular Matrices). Given a matrix A ∈ Rn×m, s.t. for

all j, j′ ∈ [m], ‖A∗,j‖2
2 = Θ(‖A∗,j′‖2

2). LetQ be a uniformly random subset of [n] s.t. E [Q] = q.

Let b = dn/me and A|Q denote the submatrix restricted to the rows indexed by Q. Then,

E
[∥∥∥A|Q∥∥∥2

]
= O

(√
q

n
‖A‖2 +

√
log(q)/b‖A‖(n/q)

)

Proof. First, consider the case when m > n. To see this, let SVD(A) = UΣV> where UΣ is
an n× n matrix. Now, ‖A‖2 = ‖UΣ‖2 and applying Theorem 172 to UΣ, we have

E
[∥∥∥A|Q∥∥∥2

]
= E

[∥∥∥(UΣ)|Q
∥∥∥

2

]
= O

(√
q

n
‖UΣ‖2 +

√
log(q)‖UΣ‖(n/q)

)
= O

(√
q

n
‖A‖2 +

√
log(q)‖A‖(n/q)

) (8.24)

where we repeatedly use that VT has orthonormal rows. Here, we note that since the columns
of A have the same squared norm up to a constant,‖A‖(n/q) = Θ(‖A‖1→2), i.e. the max column

510

norm of A.

Next, consider the case where m < n. Let b = dn/me. In order to analyze the spectral norm
of AQ, we create b copies of A and concatenate them such that the resulting matrix A∗ has more
columns than rows. Applying Equation (8.24) to A∗ and substituting the average with max, we
have

E
[∥∥∥A∗|Q∥∥∥2

]
= O

(√
q

n
‖A∗‖2 +

√
log(q)‖A∗‖1→2

)
(8.25)

Observe, A∗|Q selects uniformly random rows of A∗ and
∥∥∥A∗|Q∥∥∥2

= max‖x‖2=1 ‖x>A∗|Q‖2 and

for any vector x, ‖x>A∗|Q‖2 =
√
b‖x>A|Q‖2. Therefore, E

[∥∥∥A∗|Q∥∥∥2

]
=
√
b · E

[∥∥∥A|Q∥∥∥2

]
and

‖A∗‖2 =
√
b ·‖A∗‖2. Finally, it is easy to see that since the columns of A∗ are copies of columns

of A, the max column norm does not change. Therefore, (8.24) to A∗, we have

E
[∥∥∥A|Q∥∥∥2

]
= O

(√
q

n
‖A‖2 +

√
log(q)/b‖A‖1→2

)
= O

(√
q

n
‖A∗‖2 +

√
log(q)‖A∗‖(n/q)

)
(8.26)

and the claim follows.

Intuitively, there are two technical challenges in applying Corollary 8.3.17. First, a leverage

score sampling matrix need not sample columns uniformly at random, since we have no control
over the column norms of Z>. Second, the ‖ · ‖(n/q) norm only shrinks when all columns of A
have roughly the same squared norm. We overcome these challenges by partitioning the matrix,
first according to row norms, such that each partition does indeed have the same row norm, up to
a factor of 2. Next, we further partition each such matrix according to the sampling probabilities,
such that within each partition, the sampling process is close to uniform sampling. Formally,

Lemma 8.3.18. (Weak Spectral Approximate Matrix Product.) Let Z,C∗ and S be as defined

in Lemma 8.3.14. Then, with probability at least 99/100, S satisfies (Õ(1), k/ε)-Spectral AMM,

i.e.,

‖C∗SS>Z‖2
2 6 Õ(1)

(
ε

k
‖C∗‖2

F + ‖C∗‖2
2

)

Proof. By sub-multiplicativity of the spectral norm and S being an O(1)-subspace embedding
for Z>, we have

‖C∗SS>Z‖2
2 6 ‖C∗S‖2

2 · ‖S>Z‖2
2

6 O(1)‖C∗S‖2
2

(8.27)

where the second inequality follows from Z> having orthonormal rows.

511

We begin by observing that Corollary 8.3.17 requires the squared row norms of C∗ to be
roughly the same, which need not be the case in general. Note, here the sampling matrix sub-
samples columns of C∗, as opposed to rows in Corollary 8.3.17. Thus, we partition the rows of
C∗ into O(log(n)) blocks such that either the squared column norms are the same up to a factor
of 2 or they are at most ‖C∗‖2

F/poly(n). Formally, for all ` ∈ [c log(n)], let

B` =
{
i ∈ [n] : ‖C

∗‖2
F

2`+1 6 ‖C∗i,∗‖2
2 6
‖C∗‖2

F

2`

}

represent the blocks for rows with large squared norm. Let Br = [n]\∪`∈[log(n)]B` be the remain-
ing rows, which have norm at most ‖C∗‖2

F/poly(n). Since the set of indices in the blocks form
a partition of the rows of C∗, we can write ‖C∗‖2

F = ∑
`∈[log(n)] ‖C∗B`‖

2
F + ‖C∗Br‖2

F . Similarly,
we can bound the spectral norm as follows:

‖C∗S‖2
2 = max

‖y‖2
2=1
‖C∗Sy‖2

2 6 O

 ∑
`∈[log(n)]

‖C∗B`Sy‖
2
2 + ‖C∗BrSy‖

2
2


6 O

 ∑
`∈[log(n)]

‖C∗B`S‖
2
2 + ‖C∗BrS‖

2
2

 (8.28)

We now handle the two separately. Since S is an unbiased estimator of the squared Frobenius
norm of Z>, it is an unbiased estimator of the squared Frobenius norm of C∗. Therefore, with
probability at least 99/100,

‖C∗|BrS‖
2
2 6 ‖C∗|BrS‖

2
F = O(‖C∗|Br‖

2
F) 6 ‖C

∗‖2
F

poly(n) <<
ε

k
‖C∗‖2

F (8.29)

For the remaining terms, we cannot use this näive analysis as this would only leave us with an
upper bound of ‖C∗‖2

F , which is too large.

If instead of a leverage score sampling matrix, S were a uniform sampling sketch that samples
k/ε columns of C∗ in expectation, we could apply Corollary 8.3.17 for each `, with q = k/ε and
n =

√
nk/ε and b = d

√
nk/(
√
ε|B`|)e, to obtain

E
[∥∥∥C∗|B`S∥∥∥2

2

]
=
√
nε

k
E
[∥∥∥(C∗|B`)Q∥∥∥2

2

]
6 O

(∥∥∥C∗|B`∥∥∥2

2
+ ε log(k/ε)|B`|

k

∥∥∥(C∗)>|B`∥∥∥2√
εn/k

)

6 O

(∥∥∥C∗|B`∥∥∥2

2
+ ε log(k/ε)

k

∥∥∥C∗|B`∥∥∥2

F

)
(8.30)

512

whereQ is the subset of columns selected by S and the second inequality follows from observing
that the all the row norms of (C∗)|B` are within a factor of 2 of each other and thus the max
squared row norm times the size of the set is the squared Frobenius norm.

Using Equations 8.29 and 8.30 to upper bound the two terms in Equation 8.28 suffices to
finish the proof. Unfortunately, a similar analysis does not immediately go through when we
replace a uniform sampling matrix with a leverage score sketch. Instead, we partition the sketch
S into buckets such that each bucket corresponds to rows in S that scale columns of C∗ within
a factor of 2. For notational convenience, let m =

√
nk/ε and t = k/ε. Recall, we construct S

by sampling the j-th column of Z> independently with probability qj = min(‖Zj,∗‖2
2 log(k), 1)

and scale this column by 1/√qj . We group the scaling factors into buckets. Note, if for some j,
qj < 1/n3, we can ignore the corresponding column.

Let ζj be the indicator for a column of Z> to be sampled by S. Then, Pr[ζj = 1] = qj =
min(‖Z>∗,j‖2

2 log(k), 1). Since qj 6 1/n3, we can union bound over at most m such events and
conclude with probability at least 1 − 1/n2, for all j ∈ m, no column Z>∗,j is sampled such that
qj 6 1/n3. Further, since qj 6 1, 1/√qj ∈ [1, n1.5]. Therefore, it suffices to bucket values in the
range [1, n1.5]. For all h ∈ [c log(n)], let S denote the set of column indices from Z> that were
sampled by the sketch S. Then,

Th =
{
j ∈ S : 2h 6 1

√
qj

6 2h+1
}

Let STh be the subset of rows of S which are indexed by the set Th. Since t is fixed and the scaling
factors in Th differ by at most a factor of 2, the corresponding sampling probabilities in D differ
by at most

√
2, which is still not uniform. To fix this, we change the sampling process and

independently sample each column indexed by j ∈ Th with probability 2h+1, while still scaling it
by 1/√tqj . Let this new distribution be denoted by q′. Under the new sampling process, we now
sample rows independently and therefore, we are at least as likely to see all the rows sampled by
STh in our new sampling process. Therefore, it now holds that

E
q

[
‖C∗|B`STh‖

2
2

]
6 E

q′

[
‖C∗|B`STh‖

2
2

]

Further, in the new sampling process, each row restricted to the set Th is uniformly sampled with

513

probability 1/2(h+1)/2 and thus we can apply Corollary 8.3.17 to C∗|B`STh .

E
q′

[
‖C∗|B`STh‖

2
2

]
6 O

(
‖C∗|B`‖

2
2 + ε log(k/ε)|B`|

k

∥∥∥(C∗|B`)>∥∥∥(
√
εn/k)

)

6 O

(
‖C∗|B`‖

2
2 + ε log(k/ε)

k

∥∥∥C∗|B`∥∥∥2

F

) (8.31)

where the second inequality follows from squared row norms in C∗|B` being equal up to a factor
of 2. Therefore, with probability at least 1− 1/c′ log(n),

∥∥∥C∗|B`STh∥∥∥2

2
6 Õ

(
‖C∗|B`‖

2
2 + ε log(k/ε)

k
‖C∗|B`‖

2
F

)
(8.32)

Let ηh be the event that the above bound holds. Then, union bounding over all c log(n) such
events, with probability at least 99/100, simultaneously for all h,

‖C∗|B`S‖
2
2 6 O

 ∑
h∈[c log(n)]

‖C∗|B`STh‖
2
2


6 Õ

(
‖C∗|B`‖

2
2 + ε

k
‖C∗|B`‖

2
F

) (8.33)

which follows from Equation 8.32. Substituting this back into Equation 8.28,

‖C∗S‖2
2 6 O

 ∑
`∈[log(n)]

‖C∗|B`S‖
2
2 + ‖C∗|BrS‖

2
2


6 Õ

(
‖C∗‖2

2 + ε

k
‖C∗‖2

F

) (8.34)

where the second inequality follows from Equation 8.33 and observing that ‖C∗B`‖
2
2 6 ‖C∗‖2

2

and
∑
` ‖C∗B`‖

2
F = ‖C∗‖2

F , which completes the proof.

Combining the above lemma with 8.21, and observing that ‖C∗‖2
F 6 ‖C −Ck/ε‖2

F , we can
bound the cost of Ŵ

‖C− ŴZ>‖2
2 6 Õ

(
min

W
‖C−WZ>‖2

2 + ε

k
‖C−Ck/ε‖2

F

)

which completes the correctness proof of Theorem 170. Next, we analyze the running time.
In Step 1 of Algorithm 10, we compute a distribution over the columns of Z>, which does not
require reading any entries in A and takes time

√
nk/ε · k/ε =

√
n(k/ε)1.5. Step 2 requires

computing CS and Z>S. Note since S samples Õ(k/ε) columns in C, we have to query n ·

514

Õ(k/ε) entries in A to explicitly compute CS and can be computed in as much time. Since
Z> has fewer rows the running time is dominated by computing CS. For Step 3, we compute
(Z>SS>Z)−1, which requires no queries to A and runs in time Õ((k/ε)ω) and thus (Z>S)† can
be computed in the same time. Therefore, the total query complexity of Algorithm 10 is Õ(nk/ε)
and the running time is Õ(nk/ε+ (k/ε)ω), which concludes the proof.

8.3.3 Sample-Optimal Algorithm

In this subsection, we describe our main algorithm for PSD Low-Rank Approximation. Given
a PSD matrix A, our algorithm queries Õ(nk/ε) entries in A and runs in time Õ(n(k/ε)ω−1 +
(k/ε3)ω). This resolves an open question on the ε-dependence of the query complexity and
matches the lower bound of Ω(nk/ε) up to polylog factors from [MW17c]. At a high level, our
algorithm consists of two stages: first, we use the existing machinery developed by Musco and
Woodruff to obtain weak PCPs by setting ε to be a constant. By observing that their algorithms
have linear dependence on the rank, we can afford to rank-(k/ε) PCPs instead. This enables us
to find a structured subspace that contains a spectral low-rank approximation for the PCP.

Since our PCPs are accurate only up toO(1)-error, we cannot directly extract a (1+ε) relative
error approximation for A. However, we show that the PCPs have enough structure to obtain a
structured subspace that spans a (1 + ε)-approximate solution for A. A key ingredient to recover
this structured subspace is an efficient algorithm for Spectral Regression.

Following the approach of Musco and Woodruff we use the ridge leverage scores of A1/2 to
compute C, a column PCP for A and R a row PCP for C, with a minor tweak: we instantiate
their theorems (Lemmas 8.3.10 and 8.3.11) with k = k/ε and ε = O(1). While the precise
guarantees satisfied by our PCPs are weaker than the PCPs used by Musco and Woodruff, the
dimensions of our PCPs are smaller.

515

Algorithm 11 : Sample Optimal PSD Low-Rank Approximation

Input: A PSD Matrix A ∈ Rn×n, integer k, and ε > 0.

1. Let t = c
√

nk
ε

log(n), for some constant c and let k′ = Õ(k/ε). For all j ∈ [n],
let ρ̄k′j (A1/2) be the approximate column ridge-leverage scores that satisfy Lemma
8.3.8. Let q = {q1, q2 . . . qn} denote a distribution over columns of A such that qj =
ρk
′
j (A1/2)/∑j ρ

k′
j (A1/2).

2. Construct a column PCP for A by sampling t columns of A such that each column is
set to A∗,j√

tqj
with probability qj , for all j ∈ [n]. Let C be the resulting n× t matrix that

satisfies the guarantee of Lemma 8.3.10 instantiated with k = k′ and ε = O(1).

3. Construct a row PCP for C by sampling t rows of C such that each row is set to Ci,∗√
tqi

with probability qi, for all i ∈ [n]. Let R be the resulting t× t matrix that satisfies the
guarantee of Lemma 8.3.11 instantiated with k = k/ε and ε = O(1).

4. Run the input-sparsity algorithm from Lemma 9.4.1 to compute a rank-k/ε matrix Z
with orthonormal columns such that ‖R −RZZ>‖2

2 6 O
(
ε
k

)
‖R −Rk/ε‖2

F .

5. Run Algorithm 10 with parameters k, ε on the Spectral Regression problem

min
W
‖C−WZ>‖2

Let Ŵ be the output of Algorithm 10. Compute an orthonormal basis Q for W. Note,
QQ> is an (O(1), k/ε)-SF projection for A.

6. Run Algorithm 9 with input A, Q, k and ε to approximately minimize ‖A−QXQ>‖2
F

over rank k matrices X. Let M,N be the output of Algorithm 9.

Output: M,N> ∈ Rn×k such that ‖A−MN‖2
F 6 (1 + ε)‖A−Ak‖2

F

In particular, we obtain a row PCP R, which is a
√
nk/ε ×

√
nk/ε matrix (ignoring poly-

logarithmic factors) and we can afford to read all of it. The input-sparsity time algorithm from
Lemma 9.4.1 queries nnz(R) = Õ(nk/ε) entries to obtain a rank-(k/ε) matrix Z with orthonor-
mal columns such that

‖R −RZZ>‖2
2 6

ε

k
‖R −Rk‖2

F (8.35)

Since R is a Spectral-Frobenius PCP for C, ZZ> satisfies ‖C−CZZ>‖2
2 6

ε
k
‖C−Ck‖2

F . Since
C is a Spectral-Frobenius PCP for A, it suffices to obtain a projection for the column space of
C that also satisfies the above guarantee. Therefore, we solve the following Spectral Regression

516

problem: minW ‖C−WZ>‖2
2. Recall, we can approximately optimize this using Algorithm 10.

Let Ŵ be the resulting solution. We can then compute an orthonormal basis for W̃ (denoted by
Q) and show that QQ> is an (O(1), k/ε)-SF projection for A. Then, we can obtain a low rank
approximation for A by simply running Algorithm 9.

Proof of Theorem 166. Let k′ = Õ(k/ε). It follows from Lemma 8.3.8 that we can com-
pute the rank-k′ ridge leverage scores of A1/2, up to a constant factor using the algorithm of
Musco and Musco [MM17]. By Lemma 8.3.9, the ridge leverage scores of A1/2 are a

√
εn/k′-

approximation to the ridge leverage scores of A. Let q be a distribution over rows and columns
of A as defined in Algorithm 11. Since we sample t = O(

√
nk/ε log(n)) columns of A propor-

tional to q, instantiating Lemma 8.3.11 with k = k′ and ε = 0.1, we obtain a mixed Spectral-
Frobenius column PCP C such that with probability at least 1 − c1, for all rank-k′ projections
X,

9
10‖A−XA‖2

2−
1

10k′‖A−Ak′‖2
F 6 ‖C−XC‖2

2 6
11
10‖A−XA‖2

2+ 1
10k′‖A−Ak′‖2

F (8.36)

Let ζ1 be the indicator for C satisfying the above guarantee. Similarly, sampling t rows of C
proportional to q, results in a mixed Spectral-Frobenius row PCP for R such that with probability
at least 1− c2, for all rank-k′ projection matrices X,

9
10‖C−CX‖2

2−
1

10k′‖C−Ck′‖2
F 6 ‖R−RX‖2

2 6
11
10‖C−CX‖2

2 + 1
10k′‖C−Ck′‖2

F (8.37)

Further, it is well-known that with the same probability ‖R − Rk′‖2
F = ‖C − Ck′‖2

F . Let
ζ2 be the event that R satisfies the above guarantee. Next, we compute a Spectral Low-Rank
Approximation for R, using the algorithm from Lemma 9.4.1, with k = k′ and ε = 0.1. As a
result, with probability at least 1− c3, we obtain a rank-k′ matrix Z ∈ Rt×k, such that ZZ> is a
(0.1, k′)-SF projection for R, i.e.,

‖R −RZZ>‖2
2 6

1
10k′‖R −Rk′‖2

F (8.38)

Let ζ3 be the event that Z satisfies the above guarantee. Union bounding over ζ1, ζ2, ζ3, we know
that all of them hold with probability at least 1− (c1 + c2 + c3). Since R is a Spectral-Frobenius

517

row PCP for C and ZZ> is a rank-k′ projection matrix, it follows from Equation 8.37

‖C−CZZ>‖2
2 6

10
9 ‖R −RZZ>‖2

2 + 1
9k′‖R −Rk′‖2

F

6
1

10k′‖R −Rk‖2
F + 1

9k′‖R −Rk′‖2
F

6 Õ
(
ε

k

)
‖C−Ck′‖2

F

(8.39)

where the second inequality follows from Equation 8.35 and the third follows from the fact that
PCPs preserve Frobenius norm up to a constant factor. While conditioning on ζ3, it follows from
Equation 8.39 that ZZ> is an (Õ(1), k/ε)-SF projection for C, our goal is to compute an SF
projection for A. Since ZZ> is a t × t matrix, it does not even match the dimensions of A.
Therefore, we set up the following Spectral Regression problem:

min
W∈Rn×k′

‖C−WZ>‖2
2 (8.40)

Let Ŵ be the approximate minimizer of the above problem obtained by running Algorithm 10.
Then, it follows from Theorem 170 that with probability at least 99/100,

‖C− ŴZ>‖2
2 6 Õ(1)

(
min

W
‖C−WZ>‖2

2 + ε

k
‖C−Ck′‖2

F

)
6 Õ(1)

(
‖C−Ck′‖2

2 + ε

k
‖C−Ck′‖2

F

)
6 Õ(1)

(
ε

k
‖C−Ck′‖2

F

) (8.41)

where the second inequality follows from ‖C−CZZ>‖2
2 6 Õ

(
ε
k

)
‖C−Ck′‖2

F (by definition of
an SF projection) and observing that W = CZ> is a feasible solution to Equation 8.40. Let ζ4 be
the event that Equation 8.41 holds. Next, let Q be an orthonormal basis for W. We observe that
QQ>C is the orthogonal projection of C onto the subspace spanned by Q and the matrix ŴZ>

also lies in the subspace. Therefore, by the Pythagorean Theorem, for any fixed unit vector y,

‖Cy −QQ>Cy‖2
2 6 ‖Cy − ŴZ>y‖2

2 6 ‖C− ŴZ>‖2
2

Picking y such that ‖Cy −QQ>Cy‖2
2 = ‖C−QQ>C‖2

2, and combining it with Equation 8.41
we have

‖C−QQ>C‖2
2 6 Õ(1)

(
ε

k
‖C−Ck′‖2

F

)
(8.42)

Conditioning on event ζ1, we know that ‖C − Ck′‖2
F = ‖A − Ak′‖2

F . Since QQ> is a rank-

518

k′ projection matrix and C is a mixed Spectral-Frobenius column PCP for A, it follows from
Equation 8.36,

‖A−QQ>A‖2
2 6

10
9 ‖C−QQ>C‖2

2 + 1
9k′‖A−Ak′‖2

F

6 Õ(1)
(
ε

k
‖A−Ak′‖2

F

) (8.43)

where the last inequality follows from Equation 8.42. Therefore, QQ> is a (0.1, k′)-SF projec-
tion for A. Finally, we run Algorithm 9 on minrank(X)=k ‖A − QXQ>‖2

F . Here, we note that
for Algorithm 9, a (0.1, k′)-SF projection is equivalent to an (ε, k)-SF projection, up to poly-
logarithmic factors. Therefore, Theorem 168 holds as is. Then, by Theorem 168, we know that
with probability at least 99/100 Algorithm 9 outputs matrices M,N such that ‖A−MN>‖2

F 6

(1 + ε)‖A − Ak‖2
F . Let ζ5 be the event that the aforementioned algorithm succeeds. Then,

union bounding over ζ1, ζ2, ζ3, ζ4 and ζ5, with probability at least 9/10, M,N is a relative-error
Low-Rank Approximation for A, which concludes correctness.

Next, we analyze the query complexity and running time of Algorithm 11. Step 1 computes
the rank-k′ ridge leverage scores of A1/2 and by Lemma 8.3.8, requires readingO(nk′ log(k′)) =
Õ(nk/ε) entries in A and runs in time Õ(n(k/ε)ω−1). Steps 2 and 3 require no queries to A and
the sampling can be performed inO(n) time. In step 4, the input sparsity algorithm from Lemma
9.4.1 queries nnz(R) = t2 = Õ(nk/ε) entries in A and runs in Õ(nk/ε +

√
npoly(k/ε)) =

Õ(nk/ε) time. We know from Theorem 168 that Step 5 requires Õ(nk/ε) queries to A and runs
in Õ(nk/ε+ (k/ε)ω) time. Finally, in Step 6, we run Algorithm 9 such that Q is a n× k′ matrix.
Therefore, it follows from Theorem 168, that the total number of queries to A is Õ(nk/ε+k2/ε6)
and the running time is Õ(n(k/ε)ω−1 + (k/ε3)ω). The final query complexity and running time
follows, and this concludes the proof.

Outputting a PSD Low-Rank Approximation. Here, we extend our algorithm to show that we
can obtain a relative-error low-rank approximation matrix B such that B itself is a PSD matrix,
using the same sample complexity and running time as in Theorem 166. Outputting a PSD
low-rank approximation was first considered by Clarkson and Woodruff [CW17], who obtain an
input-sparsity algorithm for arbitrary A. When A is PSD, Musco and Woodruff show that this
problem can be solved with Õ(nk/ε3 + nk2/ε2) queries, in time Õ(n(k/ε)ω + nkω−1/ε3(ω−1)).

We run Algorithm 11 till Step 5, i.e., we recover Q such that QQ> is a SF projection for A.

519

We then modify Algorithm 9 by considering the following optimization problem instead:

min
rank(X)6k

X�0

‖A−QXQ>‖2
F (8.44)

As before, we sketch on both sides by sampling proportional to the leverage scores of Q. Let
the resulting sampling matrices be denoted by S,T. Then, we have the following sketched
optimization problem:

min
rank(X)6k

X�0

‖SAT− SQXQ>T‖2
F (8.45)

Following Step 4 in Algorithm 9, we can compute SAT, PSQ, PQ>T. We then compute X̂ =
(SQ)†PSQSATPQ>T(Q>T)† and X∗ = [(X̂ + X̂>)/2]k+, where for any matrix M, [M]k+ is
defined by setting all but the top-k positive eigenvalues to 0. Finally, we output NN> where
N = Q(X∗)1/2.

Corollary 8.3.19. (Outputting a PSD Low-Rank Approximation.) Given an n × n PSD matrix

A, an integer k, and 1 > ε > 0, there exists an algorithm that samples Õ(nk/ε) entries in A
and outputs a rank-k MM> such that with probability at least 9/10,

‖A−MM>‖2
F 6 (1 + ε)‖A−Ak‖2

F

Further, the algorithm runs in Õ(n(k/ε)ω−1 + (k/ε3)ω) time.

Proof. We first note that an extension of Lemma 8.3.13 holds for outputting a PSD matrix as well.
As a consequence of the following lemma, obtaining an approximate solution to the optimization
problem in Equation 8.44 suffices.

Lemma 8.3.20. (Structured Projections and PSD LRA [CW17].) Let P ∈ Rn×n be an (ε, k)-SF
projection w.r.t A, then

‖A−PAk+P‖2
F 6 (1 + ε)‖A−Ak+‖2

F

We then use the analysis of Lemma 15 from [CW17] to conclude that X∗ is the minimizer
for Equation 8.45. Finally, we note that the running time and query complexity is dominated
by computing Q and thus is the same as Theorem 166. Computing X∗ requires no additional
queries to A and only contributes a lower order term to the running time.

520

8.3.4 Negative-Type Distances

In this subsection, we consider the problem of computing low-rank approximation for distance
matrices. Here, the input matrix A is formed by the pairwise distances between a set of points
P = {p1, . . . , pn} in an underlying metric space d, i.e., Ai,j = d(pi, pj). Low-rank approxima-
tion for distance matrices was introduced by Bakshi and Woodruff [BW18] who obtained sublin-
ear time additive-error algorithms for arbitrary metrics. Subsequently, Indyk et. al. [IVWW19]
provided sample-optimal algorithms for additive-error low-rank approximation. For arbitrary
distance matrices, it is known that relative-error algorithms require Ω(nnz(A)) queries [BW18].

Here, we focus on the special case of negative-type (Euclidean Squared) metrics [Sch38].
Negative-type metrics have numerous applications in algorithm design since it is possible to op-
timize over them using a semidefinite program (SDP). One significant algorithmic application of
negative-type metrics appears in the Arora-Rao-Vazirani algorithm for the Sparsest Cut problem
[ARV09]. We refer the reader to extensive subsequent work on embeddability of such metrics
and the references therein [ALN08, ALN07, CGR05]. It is well-known that negative-type met-
rics include `1 and `2 metrics, spherical metrics and hyper metrics [DL09, TD87]. Therefore, our
algorithms extend to distance matrices that arise from all such metrics.

For negative-type metrics, Bakshi and Woodruff obtain a bi-criteria relative-error low-rank
approximation algorithm that queries Õ(nk/ε2.5) entries in A and output a rank k+ 4 matrix. In
contrast, we obtain a sample-optimal algorithm that does not require a bi-criteria guarantee. As
noted above, our algorithm works for any distance matrix where the distance can be realized as
a negative-type metric.

Theorem 173 (Sample-Optimal Negative-Type LRA). Let A ∈ Rn×n be a negative-type dis-

tance matrix. Given ε > 0 and k ∈ [n], there exists an algorithm that queries Õ(nk/ε) entries in

A and outputs matrices M,N> ∈ Rn×k such that with probability 99/100,

‖A−MN‖2
F 6 (1 + ε)‖A−Ak‖2

F

Further, the algorithm runs in time Õ(n(k/ε)ω−1).

To demonstrate the connection between negative-type metrics and PSD matrices, we observe
that a negative-type distance matrix A can be realized as the distances corresponding to a point
set P = {x1, x2, . . . xn} such that Ai,j = ‖xi − xj‖2

2 = ‖xi‖2
2 + ‖xj‖2

2 − 2〈xi, xj〉. Therefore,
we can rewrite A as R1 + R2 − 2B, where for all j ∈ [n], (R1)i,j = ‖xi‖2

2, R2 = R>1 and B is

521

PSD. Further, we can obtain query access to B by simply assuming w.l.o.g. that x1 is centered
at the origin and the i-th entry in the first row corresponds to ‖xi‖2

2. Therefore, we can simulate
our PSD low-rank approximation algorithms on the matrix B by only having query access to A.

Our main contribution here is to show that if P = QQ> is an (O(1), k/ε)-SF projection
matrix for B, then adjoining Q> with the row span of R1 and R2 results in an SF-projection
matrix for A. Here, the row span of R1 is 1>/

√
n and R2 is v such that for all i ∈ [n] vi =

‖xi‖2
2/
∑
i ‖xi‖2

2. We note that once we obtain an SF projection for A, we can run Algorithm 9
to output a (1 + ε) relative-error low-rank approximation.

Lemma 8.3.21 (Structured Projections for Distance Matrices). Let A be a negative-type matrix

such that A = R1 + R2 − 2B, as defined above and let ε > 0. Given an (O(1), k/ε)-SF
projection P = QQ> for B, let Ω> be a basis for Q> appended with the basis vectors for

rowspan(R1) and rowspan(R2). Then, with probability at least 99/100,

min
rank(X)6k

‖A−ΩXΩ>‖2
2 6 (1 + ε)‖A−Ak‖2

F

Proof. By Lemma 7 in [CW17], for any symmetric matrices Y,Z such that (Y − Z)Z = 0 and
projection matrix P, the following holds:

‖Y −PZP‖2
F = ‖Y − Z‖2

F + ‖Z−PZP‖2
F + 2Tr [(Y − Z)(I−P)ZP] (8.46)

Applying Equation 8.46 with Y = A and Z = Ak, for any projection matrix P, we have

‖A−PAkP‖2
F = ‖A−Ak‖2

F + ‖Ak −PAkP‖2
F + 2Tr [(A−Ak)(I−P)AkP] (8.47)

Next, we bound the ‖Ak −PAkP‖2
F as follows:

‖Ak −PAkP‖2
F 6 2‖Ak(I−P)‖2

F

6 2k‖Ak(I−P)‖2
2

6 2k‖A(I−P)‖2
2

(8.48)

522

To bound the trace, we use the Von Neuman trace inequality,

2Tr [(A−Ak)(I−P)AkP] = 2Tr
[
(A−Ak)(I−P)2AkP

]
6 2

∑
i∈[n]

σi((A−Ak)(I−P))σi((I−P)AkP)

6 2k‖(A−Ak)(I−P)‖2‖(I−P)AkP‖2

6 2k‖A(I−P)‖2
2

(8.49)

It suffices to bound ‖A(I−P)‖2
2 for P = ΩΩ>. Since A = R1 + R2− 2B and (R1 + R2)(I−

P) = 0, we have

‖A(I−P)‖2
2 6 2‖B(I−P)‖2

2

6 2‖B(I−QQ>)‖2
2

6 O
(
ε

k

)
‖B−Bk+2‖2

F

To relate ‖B−Bk‖2
F back to A, observe

‖A−Ak‖2
F = ‖R1 + R2 − 2B−Ak‖2

F = 4‖B− (R1 + R2 −Ak)/2‖2
F

> 4‖B−Bk+2‖2
F

Therefore, ‖A(I − P)‖2
2 6 O(ε/k)‖A − Ak‖2

F . We can thus bound Equations 8.49 and 8.48
with O(ε)‖A−Ak‖2

F . Substituting this into Equation 8.47, we conclude that ‖A−PAkP‖2
F 6

(1 +O(ε))‖A−Ak‖2
F , for P = ΩΩ> and the claim follows.

Recall, we can compute an SF projection for the PSD matrix B efficiently using Algorithm
11 and then solve the optimization problem in Lemma 8.3.21 using Algorithm 9. We can there-
fore reduce low-rank approximation of negative-type matrices to PSD low-rank approximation
with only O(n) additional queries and Theorem 173 follows.

8.3.5 Ridge Regression

We consider the following regression problem: given a PSD matrix A, a vector y and a ridge
parameter λ,

min
x
‖Ax− y‖2

2 + λ‖x‖2
2.

523

As a corollary of Theorem 166, we obtain a faster algorithm for the aforementioned problem.
We begin with the following simple lemma from [MW17c]:

Lemma 8.3.22 (Lemma 26 in [MW17c]). Given a PSD matrix A, vector y, and λ > 0, let B be

a matrix such that ‖A−B‖2
2 6 ε2λ. Then, for any vector x̃ such that

‖Bx̃− y‖2
2 + λ‖x̃‖2

2 6 (1 + ε′)
(

min
x
‖Bx− y‖2

2 + λ‖x‖2
2

)

we have

‖Ax̃− y‖2
2 + λ‖x̃‖2

2 6 (1 + ε′)(1 + 5ε)
(

min
x
‖Ax− y‖2

2 + λ‖x‖2
2

)

Therefore, it suffices to find a rank-k matrix B such that ‖A−B‖2
2 6 ε2λ. Let s̃λ be an upper

bound on the statistical dimension sλ = Tr [(A2 + λI)−1A2] Setting k = s̃λ/ε
2, we can bound

‖A−Ak‖2
F as follows:

ε2

s̃λ
‖A−Ak‖2

F 6 ε2
∑n
i=k+1 λ

2
i (A)∑n

i=1 λ
2
i (A)/(λ2

i (A) + λ)

6 ε2
∑n
i=k+1 λ

2
i (A)∑n

i=k+1 λ
2
i (A)/(λ2

i (A) + λ)
6 cε2λ

We can then solve the regression problem minx ‖Bx − y‖2
2 + λ‖x‖2

2 exactly in time O(nkω−1)
and obtain the following result:

Theorem 174 (Ridge Regression). Given a PSD matrix A, a regularization parameter λ and an

upper bound s̃λ on the statistical dimension sλ = Tr [(A2 + λI)−1A2], there exists an algorithm

that queries Õ(ns̃λ/ε2) entries of A and with probability 99/100 outputs x̂ such that for all

y ∈ Rd,

‖Ax̂− y‖2
2 + λ‖x̂‖2

2 6 (1 + ε)
(

min
x
‖Ax− y‖2

2 + λ‖x‖2
2

)
Further, the algorithm runs in Õ(n(s̃λ/ε2)ω−1) time.

Remark 175. Observe that we can derive a data structure from our algorithm that preserves the
objective cost (up to 1 + ε) for all x and y simultaneously and thus we obtain a coreset for Ridge
Regression.

To complement the above algorithmic result, we present a new lower bound for coreset con-
structions for ridge regression, which matches our upper bound in all parameters. At a high level,

524

our hard instance for constant sλ consists of 1/ε2 blocks of all 1s, each of size ε
√
n×ε
√
n, placed

randomly across the matrix. Since any coreset construction must preserve the cost of all x, y, we
pick pairs (x, y) to be the eigenvectors of A (scaled appropriately) and show that in order to pre-
serve the cost of all pairs, the coreset algorithm must find all the blocks, which requires Ω(n/ε2)
queries to A. Repeating the above construction sλ-times suffices to obtain a linear lower bound
in terms of sλ. Formally,

Theorem 176 (Coreset Lower Bound for Ridge Regression). Given a PSD matrix A and ε, λ > 0
let sλ = Tr [(A2 + λI)−1A2] denote the statistical dimension of A. Then, any coreset construc-

tion C that with constant probability, preserves the ridge regression cost up to (1 + ε) simultane-

ously for all x, y, must read Ω(nsλ/ε2) entries in A.

We recall the lower bound instance for low rank approximation of PSD matrices shown by
Musco and Woodruff :

Theorem 177 (Lower Bound for PSD LRA ([MW17c])). Given an n × n PSD matrix A, ε0 >

0 and k0 ∈ [n], any randomized algorithm that outputs a rank k0 matrix B such that with

probability at least 9/10,

‖A−B‖2
F 6 (1 + ε0)‖A−Ak0‖2

F

must query Ω(nk0/ε0) entries in A.

We consider the hard distribution defined by Musco and Woodruff, and show that we can
obtain a low rank approximation to this instance with strengthened parameters by using a coreset
for ridge regression.

Definition 8.3.23 (Hard Input Distribution for LRA ([MW17c])). Let M be an n×n matrix and

let ε0 > 0, k0 ∈ [n]. Let γ(n, ε0, k0) be a distribution over M such that S ⊂ [n] is a uniformly

random subset of size n/2, which is further partitioned into subsets S1,S2, . . .Sk0 such that for

all ` ∈ [k], S` is picked uniformly at random and |S`| = n/(2k0). For each subset S`, let AS`
denote the principle submatrix of A indexed by the set S`. Then, with probability 1/2, AS` is

such that all the diagonal entries are set to 1 and a uniformly random principle submatrix of AS` ,
indexed by the set T`, such that |T`| = c

√
ε0|S`| is set to all 1s. With the remaining probability

AS` is set to the I.

We show that we can derive a low-rank matrix B that satisfies the relative-error guarantee
above from a coreset for ridge regression.

525

Proof of Theorem 176. We show a proof by contradiction, where the high level idea is that a
coreset for ridge regression can be used to derive a low-rank approximation to A, when A is
picked from γ(n,O(1), sλ/ε2) (the hard distribution defined in 8.3.23). First, we observe that
with probability at least 99/100, the input distribution has Ω(sλ/ε2) blocks that contain a princi-
ple submatrix with all 1s. To see this letX1, . . . Xsλ/ε2 be indicators for the corresponding blocks
AS` having a principle submatrix of all 1s. Then,

E

 ∑
`∈[sλ/ε2]

X`

 = ε2n

2sλ
(8.50)

Since the X`’s are independent, by a Chernoff bound we have

Pr []
∑

`∈[sλ/ε2]
X` 6 (1− δ)ε

2n

2sλ
6 exp

(
−cδε

2n

sλ

)
(8.51)

For n > Ω(sλ/ε2), we can bound the above probability by 1/100. We begin by showing that for
our input instance, sλ = Θ(n/λ) and thus the aforementioned equations differ by O(εn/sλ). To
see this observe

sλ =
∑
i∈[n]

σ2
i (A)

σ2
i (A) + λ

(8.52)

Then, there are sλ/2ε2 large eigenvalues, each of magnitude ε
√
n/sλ and thus the total contribu-

tion is
sλ
2ε2 ·

(ε2n/sλ)
(ε2n/sλ) + λ

= n

ε2n/sλ + λ

The remaining eigenvalues simply contribution 1/(1 + λ) to the sum and since there are at most
n of them, the total contribution is n/(1 + λ). Therefore, we can conclude sλ = Θ(n/λ).

For a block in A indexed by `, let x̂` be the eigenvector supported on indices in S` and let
ŷ` =

√
n/sλx̂`. For non-identity blocks, Ax̂` = |T`|x̂` =

√
ε2n/sλx̂` and the regression cost is

‖(1− ε)
√
n/sλx̂`‖2

2 + λ = (1− 2ε)n/sλ + cn/sλ (8.53)

When the block indexed by ` is the identity block, we get Ax̂` = x̂ and the regression cost is

‖(
√
n/sλ − 1)x̂`‖2

2 + λ = (n/sλ + 1− 2
√
n/sλ) + cn/sλ (8.54)

Instead consider a vector that intersects an eigenvector x̃` on a (1 − γ)-fraction of the support
and the rest is arbitrary. Then, when an an all 1s block exists, Ax̃` > (1 − γ)2|T`|x̂` = (1 −

526

γ)2
√
ε2n/sλx̂` and thus the regression cost is at most

(1− ε(1− 2γ))2n/sλ + cn/sλ

Further, when the block is simply the identity, a similar calculation shows that the regression cost
is at least (1− 2εγ)2n/sλ + cn/sλ. Therefore, the ridge regression cost determines the existence
of a (1−2γ)-fraction of an all 1s principle submatrix even when x̂` intersects with an eigenvector
on a (1− γ)-fraction of coordinates.

Consider a coreset C for the above instance. Since this coreset preserves the ridge regression
objective upto a (1 + ε/1000) factor for all x, y, as per our above discussion we can query the
coreset on the tuples (x̂`, ŷ`), which represent the eigenvectors of each block, to determine if a
block contains a principle submatrix with all 1s. However, a priori we do not know the support
of the eigenvector within each block AS` .

Instead we query the coreset on all possible supports and show we can determine the right
one as follows: let x̃ be supported on a set that intersects with a principle submatrix of all 1s on
at most a γ fraction. Observe that Ax̃ 6 1

γ
(γ2εx̃) and thus the ridge regression cost can be lower

bounded as follows:
(1− εγ)2n/sλ + cn/sλ (8.55)

We therefore take the set of all vectors on which the coreset cost is less than the above cost and
let the resulting list be L. Note, this list must include the eigenvectors and further, only includes
vectors which intersect an all 1’s submatrix on a 1−γ-fraction. Therefore, picking a set of ε2n/sλ
vectors that have maximum support suffices.

Since we detect a (1 − γ)-fraction of all principle submatrices in A, it follows that we can
output a 1 + c′-approximate low-rank approximation for A, for a fixed small constant c′. To see
this, observe that the optimal low-rank approximation to A is given by the matrix that selects all
the principle submatrices with all 1s and thus ‖A−Ak0‖2

F = n− k0 = n− sλ/ε2. Further, our
approximation to Ak, denoted by B, matches Ak on a (1−γ)-fraction of each principle submatrix
of all 1s and thus we match Ak on these entries. Subsequently we bound the additional cost that
B incurs which Ak does not. This includes entries that are 1 in Ak and 0 in B and vice versa.

To bound the cost of the entries that exist in Ak but do not exist in B, observe on each
principle submatrix, B and A intersect in at least (1 − γ)2-fraction of the entries and thus the
remaining entries are at most (1 − (1 − γ)2) · ε2n

csλ
· sλ
ε2

= 4γn/c, since the size of each block is
ε2n
csλ

and the number of blocks are at most sλ
ε2

. Finally, observe that since we do not pick exact

527

eigenvectors we can have non-zero off diagonal entries in B that do not exist in Ak. However,
we have at most γ-fraction of the support on each indicator vector remaining and contributing to
two rectangular blocks of 1s, each of size γ · ε2n

csλ
· sλ
ε2

= γn/c. Therefore, the additional non-zero
entries in B that do not appear in A are 2γn/c in number.

Therefore, the overall cost ‖A −B‖2
F 6 (1 + 6γ/c)n. By setting the constants γ and c and

observing that sλ/ε2 � n, we obtain a (1 + c′)-low-rank approximation to A, for any arbitrary
small constant c′. Therefore, our reduction suffices to solve the hard instance above and a lower
bound of Ω(nk0/ε0) = Ω(nsλ/ε2) queries follows.

8.4 Robust Low-Rank Approximation

One drawback of relative-error guarantees is that the corresponding algorithms cannot tolerate
any amount of noise. Therefore, we introduce a robust model for low-rank approximation by
relaxing the requirement from relative-error guarantees to additive-error guarantees. In the ro-
bustness model we consider, we begin with an n×n PSD matrix A. An adversary is then allowed
to arbitrarily corrupt A by adding a corruption matrix N such that the corruption in each row
is an fixed constant times the `2

2 row norm of the row and the total corruption is an η-fraction
of squared Frobenius norm of A. While the adversary may corrupt any number of entries of
A, the norm of the corruption matrix is bounded and the algorithm has query access to A + N.
We parameterize our lower bound and algorithms by the largest ratio between a diagonal entry
of A and A + N, denoted by φmax = maxj∈[n] Aj,j/|(A + N)j,j|. This captures the intuition
that the diagonal is crucial for sublinear time low rank approximation and the sample complexity
degrades as we corrupt larger diagonals entries.

8.4.1 Lower Bound for Robust PSD Low-Rank Approximation

In this subsection, we show a query lower bound of Ω(η2n2k/ε2) = Ω(φ2
maxnk/ε) for any algo-

rithm that outputs a low rank approximation up to additive-error (ε + η)‖A‖2
F . Note, obtaining

error smaller than η‖A‖2
F is information-theoretically impossible and reflected in the query lower

bound.

Our lower bound holds for randomized algorithms, and uses Yao’s minimax principle [Yao77].
The overall strategy is to demonstrate a lower bound for deterministic algorithms on a carefully
chosen input distribution. We construct our input distributions as follows: let A ∈ Rn×n be a

528

block diagonal matrix with such that B1 is 5ε/η × 5ε/η randomly positioned, non-contiguous
block with all entries

√
nη2/5ε and B2 is the identity matrix on the remaining indices. A is

clearly a PSD matrix since each principle submatrix is PSD. Observe ‖A‖2
F = (25ε/η2) ·

(nη2/5ε) + (n − 5ε/η) = (1 + 5ε)n − o(n). Further, the dense block B1 contributes a total
squared Frobenius norm of at least 4εn and the diagonal entry contributes an η/ε fraction of
each row. Since ε > η, the diagonal contributes at most the entire `2

2 norm. The corresponding
diagonal of B1 also has `2

2 squared norm 5ε/η · nη2/5ε = ηn.

At a high level, the adversary can then corrupt the diagonal and set each diagonal entry to
be 1, making it hard for the algorithm to find rows corresponding to B1. We show that any ε-
additive-error low-rank approximation must detect at least one entry in B1 to adaptively sample
the corresponding row and column, but the diagonals no longer provide any useful information.
Thus any algorithm must query most entries in A. Further, in our construction, note φmax =√
nη2/5ε.

We first describe intuitively why a low rank approximation needs to recover many rows from
the block B1. Since A has this block structure, the best rank-1 approximation satisfies ‖A −
Ak‖2

F = n− |B1|. Therefore, assuming the cardinality of B1 is negligible, in order to obtain an
overall error bound of ε‖A‖2

F > εn, the algorithm must find a constant fraction of off-diagonal
entries in B1. This is because B1 contributes at least 5εn norm. However, since the diagonals no
longer convey any information about the off-diagonals, and the block B1 is placed on a random
subset of indices, any deterministic algorithm must read arbitrary off-diagonal entries until it
finds a non-zero entry. Since there are only 25ε2/η2 non-zeros in B1, to find one in expectation
(over the input distribution) requires sampling ε2n2/η2 entries. While the above serves well as
intuition, a rigorous proof requires many additional steps. We begin by defining a distribution
over the input matrices :

Definition 8.4.1. Given n ∈ N, ε > η > 0, let S ⊂ [n] be a uniformly random subset of size

d5ε/ηe. Let µ(n, ε, η) be a distribution over matrices M ∈ Rn×n such that ∀i ∈ [n], Mi,i = 1
and ∀i, j ∈ S, Mi,j =

√
η2n/5ε. All remaining entries in M are 0.

Next, we show that any M sampled from µ(n, ε, η) can be decomposed into A + N such
that A is PSD and ‖N‖2

F 6 η‖A‖2
F . To see this, let N be a diagonal matrix such that for all

i ∈ S, Ni,i = −
√
η2n/5ε and let A = M−N. We give an algebraic proof that A is PSD, but A

can also be decomposed into a rank-1 block of all
√
η2n/5ε-s corresponding to all i, j ∈ S and

529

identity on the remaining indices. For all x ∈ Rn,

xTAx =
∑
i,j∈S

Ai,jxixj +
∑
i,j /∈S

Ai,jxixj

=
√
η2n/5ε

∑
i,j∈S

xixj +
∑
i/∈S

x2
i

=
√
η2n/5ε

(∑
i∈S

xi

)2

+
∑
i/∈S

x2
i

> 0

(8.56)

and thus A is PSD. Further, ‖A‖2
F = (25ε2/η2) · (nη2/5ε) + (n − 5ε/η) = (1 + 5ε)n − 5ε/η.

Then, ‖N‖2
F = 5ε/η · η2n/ε = η‖A‖2

F , as desired. Intuitively, we show that if B is a rank-k
matrix that is a good low-rank approximation for M sampled from µ, then it cannot be a good
low-rank approximation for I. To this end, we consider a distribution where M is drawn from
µ(n, ε, η) with probability 1/2 and is In×n with probability 1/2.

Definition 8.4.2. (Hard Distribution) Given n ∈ N, ε > η > 0, let ν(n, ε, η) be a distribution

over M ∈ Rn×n such that with probability 1/2, M is sampled from µ(n, ε, η) and with probability

1/2, M = In×n.

We now show that a low-rank approximation to M can be used as a certificate to separate the
mixture ν(n, ε, η) since it can distinguish between the input being identity or far from it. Thus
if the distributions are close in a statistical sense, any algorithm to distinguish between the two
would require querying many entries in M. Formally,

Lemma 8.4.3. (LRA as a Distinguisher.) Let M be a matrix drawn from µ(n, ε, η) and let B be

a rank-k matrix that is the candidate low-rank approximation to M such that ‖M−B‖2
F 6 εn.

Then, ‖M− I‖2
F > 1.1εn.

Proof. Since ‖M−B‖2
F 6 εn, B must have at least 4εn mass on the off-diagonal entries of M.

So, B must have at least 10ε2/η2 non-zero off-diagonal entries. Therefore, it must have at least
5ε2/η2 entries with squared mass εn/2. To see why, assume there is a subset of at least 12ε2/η2

entries, each being at most
√
nη2/10ε. Restricted to only these entries, the squared Frobenius

norm difference between M and B is already at least 1.2εn, contradicting our assumption. Given
that there exists a subset of 5ε2/η2 off-diagonal entries having squared mass 1.2εn, ‖B− I‖2

F >

1.2εn, and thus B is not an additive error low-rank approximation for I.

Theorem 178. (Lower bound for PSD Matrices.) Let A be a PSD matrix, k ∈ Z and ε > 0

530

be any constant. Let N be an arbitrary matrix such that ‖N‖2
F 6 η‖A‖2

F . Any randomized

algorithm A that only has query access to A + N, with probability at least 2/3, computes a

rank-k matrix B such that

‖A−B‖2
F 6 ‖A−Ak‖2

F + ε‖A‖2
F

must read Ω (φ2
maxnk/ε) entries of A + N on some input, possibly adaptively, in expectation.

Proof. Let Algorithm A be a deterministic algorithm that outputs a rank-k matrix B such that it
is an additive-error low-rank approximation M. Let T ⊂ [n2] be the subset of entries read by A.
Let L(µ) denote the distribution of T conditioned on M ∼ µ(n, ε, η) and L(i) be the distribution
of T conditioned on M = I. By Lemma 8.4.3, since the output of A can be used to distinguish
between the two distributions, it is well-known that the success probability over the randomness
in T is at most 1/2+DTV (L(µ), L(i))/2 [BY02]. Since we assumeA succeeds with probability
at least 2/3,

DTV (L(µ), L(i)) > 1/3 (8.57)

It remains to upper bound DTV in terms of |T |. Recall, S is the random set of indices where
µ(n, ε, η) is non-zero. Let Ŝ be the subset of S restricted to the off-diagonal entries of M. When
M ∼ µ(n, ε, η), ∀i, j ∈ S̃, Mi,j is non-zero and when M = I, the same entries are 0. Observe,
for all i, j /∈ S̃, Mi,j are fixed. Further, S is a uniform subset of [n]. Therefore,

Pr [(i, j) ∈ T | (i, j) ∈ S] = |T |ε
2

η2n2 (8.58)

Then, with probability at least 1 − |T |ε2/η2n2, A queries the same entries for both L(µ) and
L(i). Therefore

DTV (L(µ), L(i)) 6 |T |ε2/η2n2.

Combined with Equation 8.57, if A succeeds with probability at least 2/3, |T |ε2/η2n2 > 1/3
and thus |T | = Ω(η2n2/ε2). Given that any deterministic algorithm must query Ω(η2n2/ε2) =
Ω(φ2

maxn/ε) entries for ν(n, ε, η), to now obtain a linear dependence on the rank k, we can use
the standard approach of creating k disjoint copies of the block B1 in the hard distribution, as
shown in [MW17c]. The theorem follows from Yao’s minimax principle.

531

8.4.2 Robust Sublinear Low-Rank Approximation Algorithms

In this subsection, we provide a robust algorithm for the model discussed above. We parame-
terize our algorithms and lower bound by the largest ratio between a diagonal entry of A and
A + N, denoted by φmax = maxj∈[n] Aj,j/|(A + N)j,j|. In addition, we provide robust PCP

constructions, by introducing a new sampling procedure to construct projection-cost preserving
sketches. Our sampling procedure is straightforward: we sample each column proportional to
the diagonal entry in that column. This sampling requires n queries to the matrix A to obtain an
additive-error projection cost preservation guarantee. Further, for the special case of correlation
matrices, we can uniformly sample columns of A to obtain a smaller matrix such that all rank k
projections in the column and row space are preserved.

For our algorithms, we assume we know φmax. In practice, this assumption may not hold,
but we can query as many entries in A + N as our budget allows, given that correctness holds
only when the queries are at least Õ(φ2

maxnk/ε). Since we read the diagonals of A + N and
we know φmax, we can obtain an upper bound on Ai,i and Aj,j . Therefore, whenever we query
an off-diagonal entry in A + N, we can truncate it to φmax

√
|(A + N)i,i| · |(A + N)j,j| without

increasing the corruption in our input.

Robust Projection-Cost Preserving Sketches. Here, we show that diagonal sampling is a
robust sampling procedure to create projection-cost preserving sketches. We begin by relating
the `2

2 row (or column) norms of a PSD matrix to it’s spectral norm. Let A be a PSD matrix and
let UΣUT be the SVD for A.

Lemma 8.4.4. Given an n× n PSD matrix A, for all i ∈ [n], ‖Ai,∗‖2
2 6 ‖A‖2 ·Ai,i.

Proof. Observe, Ai,∗ = UiΣUT and Ai,i = (Ui,∗ΣUT)i = ∑n
j=1 σj(A)U2

i,j . Then,

‖Ai,∗‖2
2 = Ai,∗AT

i,∗ = Ui,∗ΣUTUΣUT
i,∗ =

n∑
j=1

σ2
j (A)U2

i,j

6 ‖A‖2

n∑
j=1

σjU2
i,j

= ‖A‖2 ·Ai,i

An immediate consequence of Lemma 8.4.4 is that the `2
2 norm of a row or column of a PSD

532

matrix is at most ‖A‖FAi,i
. Note, this precludes matrices where most of the mass in concentrated on

a small number of rows or columns. Recall, we observe as input the matrix A + N and our goal
is to obtain a PCP for this in sublinear time and queries.

Musco and Musco [MM17] describe how to approximately compute the ridge leverage scores
of A 1

2 (if A is PSD) using a Nystrom approximation. [MW17c] use this method to compute
the ridge leverage scores of A 1

2 with O(nk) queries, where A = A 1
2 · A 1

2 . However, these
approaches do not apply when we perturb the input and it may no longer be PSD. Therefore, the
best known construction by Cohen et. al. [CMM17] would require Ω(nnz(A)) time to compute
approximate ridge-leverage scores of A. Note, this does not use the structure that A has.

In contrast, we show that sampling columns proporitional to the diagonal entries suffices to
obtain a PCP. Note, we only need to query the diagonal of A to compute the distribution over
columns exactly. The main technical challenge here is to obtain the correct dependence on n
and k and account for the perturbation to the input, given that our sampling probabilities are
straightforward to compute and do not rely on spectral properties of A + N. Note, the following
is a structural result and while we do not know A, we can still show the following :

Theorem 179. (Robust Spectral Bound.) Let A be an n× n PSD matrix and N be an arbitrary

matrix such that ‖N‖2
F 6 η‖A‖2

F and for all j ∈ [n], ‖N∗,j‖2
2 6 c‖A∗,j‖2

2, for any fixed constant

c. Let φmax = maxj Aj,j/(A+N)j,j and let q = {q1, q2 . . . qn} be a distribution over the columns

of A+N such that for all j, qj = (A+N)j,j/Tr [A + N] and let t = O (φmax
√
nk2 log(n/δ)/ε2).

Then, construct a sampling matrix T that samples t columns of A + N such that it samples

column(A + N)∗,j with probability qj and scales it by 1/√tqj . With probability at least 1 − δ,
for any rank-k orthogonal projection X,

AAT −
(
ε

k

)
‖A‖2

F I � AT(AT)T � AAT +
(
ε

k

)
‖A‖2

F I

Proof. First, we note that we cannot explicitly compute AT, but we can show that the sampling
probabilities we have access to result in a PCP for A. Let Y = AT(AT)T−AAT . For notational
convenience let Aj = A∗,j . We can then write Y = ∑

j∈[t]

(
C∗,jCT

∗,j − 1
t
AAT

)
= ∑

j∈[t] Xj ,
where Xj = 1

t
(1
qj

AjAT
j −AAT) with probability qj . We observe that E[Xj] = E[C∗,jCT

∗,j −
1
t
AAT] = 0, and therefore, E[Y] = 0. Next, we bound the operator norm of Y. To this end, we

use the Matrix Bernstein inequality, which in turn requires a bound on the operator norm of Xj

533

and variance of Y. Recall,

‖Xj‖2 =
∥∥∥∥∥ 1
tqj

AjAj −
1
t
AAT

∥∥∥∥∥
2

6
Tr [A + N]
t(A + N)j,j

‖Aj‖2
2 + 1

t
‖A‖2

2

6
2Tr [A] + |Tr [N] |
t(A + N)j,j

((1 + η)‖A‖2Aj,j)

6
c(Tr [A] + |Tr [N] |)‖A‖2φmax

t

6
cφmax

√
n‖A‖F‖A‖2

t

(8.59)

where we use triangle inequality for operator norm to obtain the first inequality, triangle in-
equality up to a factor of 2 for `2

2 norms for the second inequality, ‖Nj‖2
2 6 η‖A∗,j‖2

2 and
‖Aj‖2

2 6 ‖A‖2 · Aj,j (from Lemma 8.4.4) for the third inequality and definition of φmax and
η = O(1) for the fourth. Finally, we relate the trace of A and N to their respective Frobenius
norm using Cauchy-Schwarz:

Tr [A] =
n∑
i=1

σi(A) 6
√√√√ n∑
i=1

σ2
i (A) · n =

√
n‖A‖2

F

and

|Tr [N] | =
∣∣∣∣∣
n∑
i=1

σi(A)
∣∣∣∣∣ 6

√√√√ n∑
i=1

σ2
i (N) · n =

√
n‖N‖2

F 6
√
nη‖A‖F

where the last inequality follows from ‖N‖F 6
√
η‖A‖F . Next, we bound VarY 6 E [Y2].

534

E
[
Y2
]

= tE
[(

(AT)∗,j(AT)T∗,j −
1
t
AAT

)2]

= tE
[(

(AT)∗,j(AT)T∗,j
)2

+ 1
t2

(
AAT

)2
− 2
t
(AT)∗,j(AT)T∗,jAAT

]

= 1
t

∑
j∈[n]

(AjAT
j)2

qj
+ (AAT)2 −

∑
j∈[n]

2AjAT
j AAT


� Tr [A + N]

tAj,j

∑
j∈[n]

(AjAT
j)2


� cφmax

√
n‖A‖F‖A‖2

t
AAT

(8.60)

where we use linearity of expectation, (AAT)2 � 0 and ‖Aj,∗‖2
2 6 ‖A‖2 ·Aj,j . Applying the

Matrix Bernstein inequality,

Pr [] ‖Y‖2 > ε‖A‖2
F 6 2n exp

− ε2‖A‖4
F

cφmax
√
n‖A‖F ‖A‖3

2
t

+ 2φmax
√
n‖A‖F ‖A‖2(ε‖A‖2

F)
3t


6 2n exp

(
− ε2t

cφmax
√
n‖A‖F‖A‖2

(
‖A‖4

F

‖A‖2
2 + ε‖A‖2

F

))

6 2n exp
(
− ε2t

c′φmax
√
n

)
6 δ/2

where the last inequality follows from setting t = O(φmax
√
n log(n/δ)/ε2). To yield the claim,

we set ε = ε/k.

We use the above spectral bound to show that sampling proportional to diagonal entries preserves
the projection cost of the columns of A on to any k-dimensional subspace up to an additive
(ε+√η)‖A‖2

F .

Theorem 180. (Column Projection-Cost Preservation.) Given A + N, where A is an n × n

PSD matrix and N is an arbitrary noise matrix as defined above, k ∈ Z and ε > η > 0, let q =
{q1, q2 . . . qn} be a probability distribution over the columns of A + N such that qj = (A+N)j,j

Tr[A+N] .

Let t = O
(
φmax
√
nk2 log(n

δ
)/ε2

)
. Then, construct C using t columns of A + N and set each

one to (A+N)∗,j√
tqj

with probability qj . With probability at least 1 − c, for any rank-k orthogonal

535

projection X,

‖C−XC‖2
F = ‖A−XA‖2

F ± (ε+√η)‖A‖2
F

for a fixed constant c.

Proof. Here, the matrix C is actually a matrix we can compute. Observe that we can relate C
to the sampling matrix T as defined in Theorem 179 as C = (A + N)T. We follow the proof
strategy of the relative error guarantees in [CMM17] and additive error guarantees in [BW18] but
note, our spectral bounds from Theorem 179 apply to matrices that we do not actually compute.
Observe, ‖A−XA‖2

F = Tr
[
(I−X)AAT (I−X)

]
. Then,

Tr
[
(I−X)AAT (I−X)

]
= Tr

[
AAT

]
+ Tr

[
XAATX

]
− Tr

[
AATX

]
− Tr

[
XAAT

]
= Tr

[
AAT

]
+ Tr

[
XAATX

]
− Tr

[
AATXX

]
− Tr

[
XXAAT

]
= Tr

[
AAT

]
+ Tr

[
XAATX

]
− Tr

[
XAATX

]
− Tr

[
XAATX

]
= Tr

[
AAT

]
− Tr

[
XAATX

]
(8.61)

where we used the fact that for any projection matrix X = X2 in addition to the cyclic property
of the trace. Similarly,

‖C−XC‖2
F = Tr

[
(I−X)CCT (I−X)

]
= Tr

[
CCT

]
− Tr

[
XCCTX

]
(8.62)

We first relate Tr
[
AAT

]
and Tr

[
CCT

]
. Recall,

E
[
Tr
[
CCT

]]
= E

[
‖C‖2

F

]
= ‖A + N‖2

F 6 Tr
[
AAT

]
+ 2√η‖A‖2

F

Using a scalar Chernoff bound, we show that with probability at least 1 − 1/poly(n), ‖C‖2
F =

(1 ± ε)‖A + N‖2
F . This is equivalent to |‖C‖2

F − ‖A + N‖2
F | 6 ε‖A + N‖2

F . Observe, for all
j ∈ [t], C∗,j = 1√

qj′ t
(A + N)∗,j′ for some j′ ∈ [n]. Then,

‖C∗,j‖2
2 = 1

qj′t
‖(A + N)∗,j′‖2

2 = Tr [A + N] ε2
φmax
√
nk log(n/δ)(A + N)j′,j′

‖(A + N)∗,j′‖2
2

6
c
√
n‖A‖F ε2√
n log(n/δ)‖A‖2

6
cε2

k log(n/δ)‖A + N‖2
F

(8.63)

536

where we use Tr [A] 6
√
n‖A‖F , Tr [N] 6

√
ηn‖A‖F and t = O(φmax

√
nk log(n/δ)/ε2).

Therefore, k log(n/δ)
ε2‖A‖2

F
‖C∗,j‖2

2 ∈ [0, 1]. By a Chernoff bound,

Pr [] ‖C‖2
F > (1 + 2ε)‖A + N‖2

F = Pr [] k log(n/δ)
ε2‖A + N‖2

F

‖C‖2
F >

k log(n/δ)
ε2

(1 + ε)

6 exp
(
−kε

2 log(n/δ)
ε2

)

6
δ

2

(8.64)

We can repeat the above argument to lower bound ‖C‖2
F . Therefore, with probability 1− δ, we

have
|‖C‖2

F − ‖A + N‖2
F | 6 ε‖A + N‖2

F

Here, we can upper bound this by observing ‖A + N‖2
F 6 ‖‖2

F + ‖N‖2
F + 2〈A,N〉 6 ‖A‖2

F +
3√η‖A‖2

F . Therefore,

|‖C‖2
F − ‖A‖2

F | 6 ε‖A‖2
F + (1 + ε)√η‖A‖2

F 6 (ε+ 2√η)‖A‖2
F (8.65)

Next, we relate Tr
[
XCCTX

]
and Tr

[
XAATX

]
. First, we observe

CCT = (AT+NT)(AT+NT)T = (AT)(AT)T+(AT)(NT)T+(NT)(AT)T+(NT)(NT)T

(8.66)
We begin by first bounding Tr

[
X(AT)(AT)TX

]
. Observe, X is a rank k projection matrix

and we can represent it as ZZT , where Z ∈ Rn×k and has orthonormal columns. By the cyclic
property of the trace, we have

Tr
[
ZZT (AT)(AT)TZZT

]
= Tr

[
ZT (AT)(AT)TZ

]
=
∑
j∈[k]

ZT
∗,j(AT)(AT)TZ∗,j

Similarly, Tr
[
ZZTAATZZT

]
= ∑

j∈[k] ZT
∗,jAATZ∗,j . By Theorem 179 , we have

537

∑
j∈[k]

(
ZT
∗,jAATZ∗,j −

(
ε

k

)
‖A‖2

FZT
∗,jIZ∗,j

)
6
∑
j∈[k]

(
ZT
∗,j(AT)(AT)TZ∗,j

)
6
∑
j∈[k]

(
ZT
∗,jAATZ∗,j +

(
ε

k

)
‖A‖2

FZT
∗,jIZ∗,j

)
(8.67)

Since ZT
∗,jZ∗,j = 1 and Tr

[
ZTAATZ

]
= Tr

[
XAATX

]
, we have

Tr
[
XAATX

]
− ε‖A‖2

F 6 Tr
[
X(AT)(AT)TX

]
6 Tr

[
XAATX

]
+ ε‖A‖2

F (8.68)

Next, we focus on Tr
[
X(NT)(NT)TX

]
= ‖XNT‖2

F . Observe, since T is an unbiased esti-
mator of Frobenius norm, by Markov’s inequality we can show with probability at least 1 − c,
‖XNT‖F = c‖N‖F = O(√η)‖A‖F . Therefore, we can upper bound Tr

[
X(NT)(NT)TX

]
by

O(η)‖A‖2
F . Now, we focus on the cross terms. By Cauchy-Schwartz, and a Markov bound, with

probability at least 1− c,

Tr
[
X(AT)(NT)TX

]
6 ‖AT‖F · ‖NT‖F 6 O(√η)‖A‖2

F (8.69)

Combining equations 8.65, 8.68, 8.69 and union bounding over the success of the random
events, with probability 1− c,

‖A−XA‖2
F −O(ε+√η)‖A‖2

F 6 ‖C−XC‖2
F 6 ‖A−XA‖2

F +O(ε+√η)‖A‖2
F

Robust Row Projection Cost Preserving Sketches. We now extend the diagonal sampling
algorithm to construct a row projection cost preserving sketch for the matrix C. We note that
following the construction for A does not immediately give a row PCP for C since C is no longer
PSD or even square matrix. Here, all previous approaches to construct a PCP with sublinear
queries hit a roadblock, since the matrix C need not have any well defined structure apart from
being a scaled subset of the columns of a PSD matrix. However, we show that sampling rows of
C proportional to the diagonal entries of A results in a row PCP.

We begin by relating the row norms of C to the row norms of A. Note, we do not expect
to obtain concentration here, since such a sampling procedure would then help us estimate row

538

norms of A up to a constant and we would be done by using [FKV04b]. Therefore, we obtain
the following one-sided guarantee:

Lemma 8.4.5. Let AT ∈ Rn×t be a column projection-cost preserving sketch for A as described

in Theorem 179. For all i ∈ [n], with probability at least 1− 1/nc,

‖(AT)i,∗‖2
2 6 O

(
log(n) max

{
‖Ai,∗‖2

2,
φmax
√
n‖A‖FAi,i

t

})

where c is a fixed constant.

Proof. Observe that ‖(AT)i,∗‖2
2 = ∑

j∈[t](AT)2
i,j , where (AT)2

i,j = Tr[A+N]
t(A+N)j,jA

2
i,j with probabil-

ity (A+N)j,j
Tr[A+N] . Then, E[‖(AT)i,∗‖2

2] = ∑n
i=1 A2

i,j = ‖Ai,∗‖2
2. Next, we compute the variance of

‖(AT)i,∗‖2
2. Var [‖(AT)i,∗‖2

2] = tVar
[
(AT)2

i,j

]
6 E

[
(AT)4

i,j

]
. Then,

tE
[
(AT)4

i,j

]
=
∑
j∈[n]

1
tqj

A4
i,j 6

∑
j∈[n]

Tr [A + N]
t(A + N)j,j

A2
i,jAi,iAj,j

6
Tr [A + N]φmaxAi,i

t
‖Ai,∗‖2

2

6

(
2φmax

√
n‖A‖FAi,i

t

)2

+ ‖Ai,∗‖4
2 [AM-GM]

where we use A2
i,j 6 Ai,iAj,j , which follows from applying Cauchy-Schwarz to 〈A1/2

i,∗ ,A
1/2
j,∗ 〉,

i.e.,
A2
i,j = 〈A1/2

i,∗ ,A
1/2
j,∗ 〉2 6 ‖A

1/2
i,∗ ‖2

2‖A
1/2
j,∗ ‖2

2 = Ai,iAj,j

Similarly, we bound

(AT)2
i,j = Tr [A + N]

t(A + N)j,j
A2
i,j 6

2φmax
√
n‖A‖F
t

Ai,i

539

Applying Bernstein’s inequality,

Pr [] |‖(AT)i,∗‖2
2 − ‖Ai,∗‖2

2 > γmax
{
‖Ai,∗‖2

2,
φmax
√
n‖A‖FAi,i

t

}

6 2 exp

− γ2 max
{
‖Ai,∗‖4

2,
(
φmax

√
n‖A‖FAi,i

t

)2}
(

2φmax
√
n‖A‖FAi,i

t

)2
+ ‖Ai,∗‖4

2 + γmax
{
φmax

√
n‖A‖FAi,i‖Ai,∗‖2

2
t

,
(

Tr[A]Ai,i

t

)2
}


6 2 exp

−γmax
{
‖Ai,∗‖4

2,
(
φmax

√
n‖A‖FAi,i

t

)2}
c′
(
φmax

√
n‖A‖FAi,i

t

)2
+ c′‖Ai,∗‖4

2



where φmax
√
n‖A‖FAi,i

t
‖Ai,∗‖2

2 6
(
φmax

√
n‖A‖FAi,i

t

)2
+‖Ai,∗‖4

2 follows from the AM-GM inequal-
ity. Setting γ = Ω(log(n)) completes the proof.

To construct a row projection cost preserving sketch of C, we sample t rows of C proportional
to the corresponding diagonal entries of A. Formally, we consider a probability distribution, p =
{p1, p2, . . . pn}, over the rows of C such that pi = Ai,i

Tr[A] . Let R be a t×tmatrix where each row of
R is set to 1√

tpi
Ci,∗ with probability pi. As before, R can be represented as SC = S(AT+NT).

We first obtain a spectral guarantee for SAT, while we cannot actually compute this.

Theorem 181. (Spectral Bounds.) Let AT be an n× t matrix constructed as shown in Theorem

179. Let p = {p1, p2 . . . pn} be a probability distribution over the rows of AT such that pi =
(A+N)i,i
Tr[A+N] . Let t = O

(√
nk2

ε2
log(n

δ
)
)
. Construct a sampling matrix S that samples t rows of

AT such that row (AT)i,∗ is picked with with probability pi and scaled by 1√
tpi

. Then, with

probability at least 1− δ,

(AT)T (AT)− ε

k
‖A‖2

F I � (SAT)T (SAT) � (AT)T (AT) + ε

k
‖A‖2

F I

Proof. Let Y = (SAT)T (SAT) − (AT)T (AT). For notational convenience let (AT)i =
(AT)i,∗ and (SAT)i = (SAT)i,∗. We can then write Y = ∑

i∈[t]

(
(SAT)Ti (SAT)i − 1

t
(AT)T (AT)

)
=∑

i∈[t] Xi, where Xi = 1
t

(
1
pi

(AT)Ti (AT)i − (AT)T (AT)
)

with probability pi. We observe that
E[Xi] = E[(SAT)Ti (SAT)i − 1

t
(AT)T (AT)] = ∑

i
pi
pi

(AT)Ti (AT)i − (AT)T (AT) = 0, and
therefore, E[Y] = 0. Next, we bound the operator norm of Y. To this end, we use the Matrix
Bernstein inequality, which in turn requires a bound on the operator norm of Xi and variance of

540

Y. Recall, for some i′ ∈ [n]

‖Xi‖2 =
∥∥∥∥∥ 1
tpi′

(AT)Ti′ (AT)i′ −
1
t
(AT)T (AT)

∥∥∥∥∥
2

6
1
tpi′
‖(AT)Ti′ (AT)i′‖2 + 1

t
‖(AT)T (AT)‖2

= ‖(AT)i′‖2
2

tpi′
+ ‖(AT)‖2

2
t

6
log(n)
tpi′

max
{
‖Ai′,∗‖2

2,
φmax
√
n‖A‖FAi,i

t

}
+ ‖(AT)‖2

2
t

[by Lemma 8.4.5]

6
log(n)
t

max
{
φmax
√
n‖A‖F‖A‖2,

(φmax
√
n‖A‖F)2

t
, ‖(AT)‖2

2

}
[by Lemma 8.4.4]

6
φmax
√
n log(n)‖A‖2

F

t

(
1 +
√
n

t

)
6

2φmax
√
n log(n)‖A‖2

F

t

(8.70)

where the last inequality uses that t = Ω(
√
n). Next, we bound VarY 6 E [Y2] as follows

E
[
Y2
]

= t

∑
i∈[n]

pi
t2p2

i

((AT)Ti (AT)i)2 + 1
t2

((AT)T (AT))2 −
∑
i∈[n]

2pi
pit2

(AT)Ti (AT)i(AT)T (AT)


= 1
t

∑
i∈[n]

((AT)Ti (AT)i)2

pi
+ ((AT)T (AT))2 −

∑
i∈[n]

2(AT)Ti (AT)i(AT)T (AT)


� 1
t

∑
i∈[n]

((AT)Ti (AT)i)2

pi


� log(n)

t
max

{
φmax
√
n‖A‖F‖A‖2,

(φmax
√
n‖A‖F)2

t

}∑
i∈[n]

(AT)Ti (AT)i


� c log(n)

√
n‖A‖2

F‖(AT)‖2
2

t
In×n

(8.71)

where we again use Lemma 8.4.4 and Theorem 180. Observe,

Applying the Matrix Bernstein inequality with equations 8.70 and 8.71

541

Pr [] ‖Y‖2 > ε‖A‖2
F 6 2n exp

− ε2‖A‖4
F

c log(n)
√
nφmax‖A‖2

F ‖(AT)‖2
2

t
+ ε
√
n log(n)φmax

3t ‖A‖4
F


6 2n exp

(
− ε2t

c′φmax
√
n log(n)

) (8.72)

where the second inequality uses Theorem 179, to conclude that with probability at least 1− δ/2
‖AT‖2

2 6 ‖A‖2
2+ε/k‖A‖2

F 6 O(‖A‖2
F). Therefore, it suffices to set t = c′φmax

√
n log(n))
ε2

log(n/δ),
to bound the above probability by δ/2. Union bounding over the error for both PCPs, and setting
ε = ε/k, we can conclude that with probability at least 1− δ,

(AT)T (AT)− ε

k
‖A‖2

F I � (SAT)T (SAT) � (AT)T (AT) + ε

k
‖A‖2

F I

when t = Ω
(
φmax

√
nk2

ε2

)
.

We use the spectral bound from Theorem 181 to obtain a row projection-cost preservation
guarantee. We follow the same proof strategy as Theorem 180, while requiring modified version
of the scalar Chernoff bound. We do away with the head-tail split from [CMM17],[MW17c] and
[BW18] and analyze the projection-cost guarantee directly. This enables us to obtain a better
ε dependence than [MW17c] and [BW18]. Note, our ε dependence matches that of [CMM17]
but our row projection cost preserving sketch can be computed in sub-linear time, albeit for PSD
matrices.

Theorem 182. (Row Projection-Cost Preservation.) Given as input A + N let C be an n × t
matrix as defined in Theorem 180 such that C = AT + NT. Let p = {p1, p2 . . . pn} be a

probability distribution over the rows of C such that pj = (A+N)j,j
Tr[A+N] . Let t = O

(
φmax

√
nk2 log2(n)
ε2

)
.

Then, construct R using t rows of C and set each one to Ci,∗√
tpi

with probability pi. With probability

at least 1− c, for any rank-k orthogonal projection X,

‖R −RX‖2
F = ‖C−CX‖2

F ±O(ε+√η)‖A‖2
F

for a fixed constant c.

Proof. Note, R = SC = SAT+SNT, where S and T are the corresponding sampling matrices.

542

Observe, ‖C−CX‖2
F = Tr

[
(I−X)CTC(I−X)

]
. Then,

Tr
[
(I−X)CTC(I−X)

]
= Tr

[
CTC

]
+ Tr

[
XCTCX

]
− Tr

[
CTCX

]
− Tr

[
XCTC

]
= Tr

[
CTCT

]
+ Tr

[
XTCTCX

]
− Tr

[
CTCXX

]
− Tr

[
XXCTC

]
= Tr

[
CTC

]
+ Tr

[
XCTCX

]
− Tr

[
XCTCX

]
− Tr

[
XCTCX

]
= Tr

[
CTC

]
− Tr

[
XCTCX

]
= Tr

[
CTC

]
− Tr

[
X(AT + NT)T (AT + NT)X

]
(8.73)

where we used the fact that for any projection matrix X = X2 in addition to the cyclic property
of the trace. Here, for analyzing the cross and tail terms, we observe that with probability 1− c,
‖X(AT)T‖F 6 O(1)‖A‖F and ‖X(NT)T‖2

F 6 O(η)‖A‖2
F . Therefore,

Tr
[
X(AT + NT)T (AT + NT)X

]
= Tr

[
X(AT)TATX

]
±O(√η)‖A‖2

F (8.74)

Similarly,

‖R −RX‖2
F = Tr

[
(I−X)RTR(I−X)

]
= Tr

[
RTR

]
− Tr

[
XRTRX

]
= Tr

[
RTR

]
− Tr

[
X(SAT)T (SAT)X

]
±O(√η)‖A‖2

F

(8.75)

Here, we observe ‖SAT‖2
F is an unbiased estimator for ‖A‖2

F and ‖SNT‖2
F is an unbiased

estimator for ‖N‖2
F . Using the same idea as above, we can bound the cross and tail terms

by O(√η)‖A‖2
F . Our goal is show that Equations 8.73 and 8.75 are related up to additive error

O(ε+√η)‖A‖2
F . We first relate Tr

[
CTC

]
and Tr

[
RTR

]
. Recall, E

[
Tr
[
RTR

]]
= E [‖R‖2

F] =
‖C‖2

F = Tr
[
CTC

]
. Using a scalar Chernoff bound, we show that with probability at least

1 − 1/poly(n), |‖R‖2
F − ‖C‖2

F | 6 ε‖A‖2
F . Observe, for all i ∈ [t], R∗,i = 1√

pi′ t
Ci′,∗ for some

543

i′ ∈ [n]. Then,

‖Ri,∗‖2
2 = 1

pi′t
‖Ci′,∗‖2

2 = φmax
√
n‖A‖F ε2

φmax
√
nk log(n) log(n/δ)Ai′,i′

‖Ci′,∗‖2
2

6
c(1 + η)‖A‖F ε2√
k log(n/δ)Ai′,i′

max
{
‖Ai′,∗‖2

2,
φmax
√
n‖A‖FAi′,i′

t

}

6
cε2√

k log(n/δ)
max

{
‖A‖2‖A‖F ,

‖A‖2
F ε

2
√
k log(n/δ)

}

6
cε2√

k log(n/δ)
‖A + N‖2

F

(8.76)

where we use Ci′,∗ = (AT)i′,∗ + (NT)i′,∗, ‖(NT)i,∗‖2
2 6 (η)‖(AT)i,∗‖2

2 for all i and Lemma
8.4.5 to bound ‖(AT)i,∗‖2

2. Therefore,
√
k log(n/δ)
cε2‖A‖2

F
‖Ri,∗‖2

2 ∈ [0, 1]. Note, ‖R‖2
F is an unbiased

estimator for ‖A + N‖2
F . Using a Chernoff bound,

Pr [] ‖R‖2
F > (1 + ε)‖A + N‖2

F = Pr []
√
k log(n/δ)
ε2‖A‖2

F

‖R‖2
F >

√
k log(n/δ)

ε2
(1 + ε)

6 exp
(
−
√
kε2 log(n/δ)

ε2

)
6

δ

10

(8.77)

Therefore, with probability at least 1− δ/10, |‖R‖2
F −‖A + N‖2

F | 6 ε‖A + N‖2
F . Note, we can

then bound ‖A + N‖2
F 6 ‖A‖2

F + 2√η‖A‖2
F . Therefore,

|‖R‖2
F − ‖A‖2

F | 6 O(ε+√η)‖A‖F

Recall, by equation 8.65, with probability δ/10, ‖A‖2
F = (1 ± (ε + 2√η))‖C‖2

F and thus we
have that ‖R‖2

F − ‖C‖2
F 6 3ε‖A‖2

F . We can repeat the above argument to lower bound ‖R‖2
F .

Therefore, with probability 1− δ, we have

|‖R‖2
F − ‖C‖2

F | 6 O(ε+√η)‖A‖2
F (8.78)

Next, we relate Tr
[
X(SAT)T (SAT)X

]
and Tr

[
X(AT)TATX

]
. Observe, X is a rank k pro-

jection matrix and we can represent it as ZZT , where Z ∈ Rn×k and has orthonormal columns.
By the cyclic property of the trace, we have

Tr
[
ZZT (SAT)T (SAT)ZZT

]
= Tr

[
ZT (SAT)T (SAT)Z

]
=
∑
j∈[k]

ZT
∗,j(SAT)T (SAT)Z∗,j

544

Similarly, Tr
[
ZZT (AT)TATZZT

]
= ∑

j∈[k] ZT
∗,j(AT)TATZ∗,j . By Theorem 181 , we have

∑
j∈[k]

(
ZT
∗,j(AT)TATZ∗,j

)
=
∑
j∈[k]

(
ZT
∗,j(SAT)T (SAT)Z∗,j ±

ε

k
‖A‖2

FZT
∗,jIZ∗,j

)
(8.79)

Since ZT
∗,jZ∗,j = 1 and Tr

[
ZT (SAT)T (SAT)Z

]
= Tr

[
X(AT)TATX

]
, we obtain

Tr
[
X(AT)TATX

]
− ε‖A‖2

F 6 Tr
[
X(SAT)T (SAT)X

]
6 Tr

[
X(AT)TATX

]
+ ε‖A‖2

F

(8.80)
Combining equations 8.80,8.78, 8.74 and 8.75 with probability 1− c,

‖C−CX‖2
F −O(ε+√η)‖A‖2

F 6 ‖R −RX‖2
F 6 ‖C−CX‖2

F +O(ε+√η)‖A‖2
F

545

Algorithm 12 : Robust PSD Low-Rank Approximation

Input: A Matrix A + N, integer k, ε > 0 and φmax = maxj Aj,j/(A + N)j,j

1. Let t = cφ2
max
√
nk log2(n)
ε2

, for some constant c. Let q = {q1, q2 . . . qn} denote a distri-
bution over columns of A + N such that qj = (A+N)j,j

Tr[A+N] . Construct a column PCP for

A + N by sampling t columns of A + N such that each column is set to (A+N)∗,j√
tqj

with probability qj . Let C be the resulting n× t matrix that satisfies the guarantee of
Theorem 180.

2. Let p = {p1, p2 . . . pn} denote a distribution over rows of C such that pi = (A+N)i,i
Tr[A+N] .

Construct a row PCP for C by sampling t rows of C such that each row is set to Ci,∗√
tpi

with probability pi. Let R be the resulting t × t matrix that satisfies the guarantee
of Theorem 182. Sample Θ(n) entries uniformly at random from A and rescale such
that ṽ2 = Θ(‖A‖2

F).

3. Let µ = φmax
√
|(A + N)i,i| · |(A + N)i′,i′ | For all i ∈ [t], let Xi = ∑

j∈[ε3t/k3]Xi,j
such that Xi,j = (k3/ε3)R2

i,i′ , with probability 1/t, for all i′ ∈ [t]. Here, we query the
entry corresponding to Ri,i′ in A + N and truncate it to µ. Let τ = φ2

maxnṽ
2/t2. If

Xi > τ , sample row Ri,∗ with probability 1. For the remaining rows, sample nk/(εt)
rows uniformly at random.

4. Run the sampling algorithm from Frieze-Kannan-Vempala [FKV04b] to compute a
t × k matrix S such that ‖R − RSST‖2

F 6 ‖R − Rk‖2
F + ε‖R‖2

F . Consider the
regression problem

min
X∈Rn×k

‖C−XST‖2
F .

Sketch the problem using the leverage scores of ST , as shown in Lemma 8.3.3, to
obtain a sampling matrix E with O(k

ε
) columns. Compute

XC = arg min
X∈Rn×k

‖CE−XSTE‖2
F .

Let XCST = UVT be such that U ∈ Rn×k has orthonormal columns.

5. Consider the regression problem

min
X∈Rk×n

‖A−UX‖2
F .

Sketch the problem as above, following Lemma 8.3.3 to obtain a sampling matrix E′

with O(k
ε
) rows. Compute

XA = arg min
X

‖E′A− E′UX‖2
F

Output: M = U, NT = XA

546

Full Algorithm. Next, we describe a sublinear time and query robust algorithm for low-rank ap-
proximation of PSD matrices. We show that querying Õ(φ2

maxnk/ε) entries of A suffices. While
we assume we know φmax, in practice this need not be the case. Therefore, given a budget for the
total number of queries, denoted by β, we can run the algorithm by querying a

√
β×
√
β subma-

trix (as described in Algorithm 12), but correctness only holds when β > Θ̃(φ2
maxnk/ε). Recall,

whenever we read an entry in (A+N)i,j , we can truncate it to φmax
√
|(A + N)i,i| · |(A + N)j,j|.

We can compute these thresholds by simply reading the diagonal of A + N.

We proceed by constructing column and row projection-cost preserving sketches of A + N,
to obtain a t× t matrix R, where t = Õ(φmax

√
nk2/ε2). Instead of reading the entire matrix, we

sample ε3t/k3 entries in each row of R, and read these entries. Ideally we would want to estimate
`2

2 norms of rows of R to then use a result of Frieze-Kannan-Vempala [FKV04b] to show that
there exists an s× t matrix S such that the row space of S contains a good rank-k approximation,
where s = cφ2

maxnk/εt, for some constant c. However, we show that is it not possible to obtain
accurate estimates of the row norms of each row of R with high probability.

Instead, we describe a new sampling procedure that ends up sampling rows of R with the
same probability as Frieze-Kannan-Vempala. Once we compute a good low-rank approximation
for R we can follow the approach of [CMM17],[MW17c] and [BW18], where we set up two
regression problems, and use fast approximate regression to compute a low rank approximation
for A. The main theorem we prove in this section is as follows:

Theorem 183. (Robust PSD LRA.) Let k be an integer and ε > η > 0. Given a matrix A + N,

where A is PSD and N is a corruption term such that ‖N‖2
F 6

√
η‖A‖2

F and for all i ∈ [n]
‖Ni,∗‖2

2 6 c‖Ai,∗‖2
2, for a fixed constant c, Algorithm 12 samples Õ (φ2

maxnk/ε) entries in A+N
and computes matrices M,NT ∈ Rn×k such that with probability at least 99/100,

‖A−MN‖2
F 6 ‖A−Ak‖2

F + (ε+√η)‖A‖2
F

We begin with the following simple lemma for approximating the Frobenius norm :

Lemma 8.4.6. (Approximating Frobenius Norm.) Given as input an n× n matrix A + N, there

exists an algorithm that reads O(φ2
maxn) entries in A and outputs an estimator ṽ such that with

probability at least 1− 1
nc

, ṽ = Θ(‖A‖2
F).

Proof. There are multiple ways to see this. Observe, in Theorem 182, we show that sampling
φ2

maxn log(n)
ε2

entries results in row projection-cost preserving sketch R such that ‖R‖2
F = (1 ±

547

ε)‖A + N‖2
F . Setting ε to be a small constant suffices.

Next, we provide intuition for why uniformly sampling columns of R does not suffice for
obtaining a sketch that spans a good low rank approximation. For simplicity, we assume there is
no noise (η = 0 and φmax = 1) and show that our techniques to bound the column norms of R
results in an estimate that is too large. We note that this lemma is not required for proving our
result, and is just present for intuition.

Lemma 8.4.7. Let η = 0. Let R ∈ Rt×t be a row projection-cost preserving sketch for C as

described in Theorem 182. For all j ∈ [t], with probability at least 1− 1/nc,

‖R∗,j‖2
2 6 O

(
log(n) max

{
‖C∗,j‖2

2,
n‖A‖2

F

t2

})
= O

(
log(n) max

{√
n‖A‖2

F

t
,
n‖A‖2

F

t2

})

where c is a fixed constant.

Proof. Observe, ‖R∗,j‖2
2 = ∑

i∈[t] R2
i,j , where R2

i,j = Tr[A]
tAi′,i′

C2
i′,j with probability Ai′,i′

Tr[A] for all
i′ ∈ [n]. Then, E[‖R∗,j‖2

2] = ∑n
i=1 C2

i,j = ‖C∗,j‖2
2. Next, we compute the variance of ‖R∗,j‖2

2.
Var [‖R∗,j‖2

2] = tVar [Ri,j] 6 tE
[
R4
i,j

]
. Then,

tE
[
R4
i,j

]
=
∑
i′∈[n]

1
tpi′

C4
i′,j 6

∑
i′∈[n]

Tr [A]2

t2Ai′,i′Aj,j

A2
i′,jAi′,i′Aj,j

6
Tr [A]2

t2
‖A∗,j‖2

2

= Tr [A]
t
‖C∗,j‖2

2

6

(
Tr [A]
t

)2

+ ‖C∗,j‖4
2 [AM-GM]

where we use A2
i,j 6 Ai,iAj,j , which follows from applying Cauchy-Schwarz to 〈A1/2

i,∗ ,A
1/2
j,∗ 〉.

548

Similarly, we bound R2
i,j 6

Tr[A]
t

. Applying Bernstein’s inequality,

Pr [] |‖R∗,j‖2
2 − ‖C∗,j‖2

2 > ηmax
{
‖C∗,j‖2

2,
Tr [A]
t

}

6 2 exp

− η2 max
{
‖C∗,j‖4

2,
(

Tr[A]
t

)2
}

(
Tr[A]
t

)2
+ ‖C∗,j‖4

2 + ηmax
{

Tr[A]‖C∗,j‖2
2

t
,
(

Tr[A]
t

)2
}


6 2 exp

−ηmax
{
‖C∗,j‖4

2,
(

Tr[A]
t

)2
}

c′
(

Tr[A]
t

)2
+ c′‖C∗,j‖4

2


where we use the AM-GM inequality on Tr[A]

t
‖C∗,j‖2

2 repeatedly. Setting η = Ω(log(n)) com-
pletes the proof. Finally, observe, for any j ∈ [t], ‖C∗,j‖2

2 = Tr[A]
tAj′,j′

‖A∗,j′‖2
2 for some j′ ∈ [n].

We then use Tr [A] 6
√
n‖A‖F .

It is well-known that to recover a low-rank approximation for R, one can sample rows of R
proportional to row norm estimates, denoted by Yi [FKV04b]. As shown in [IVWW19] the
following two conditions are a relaxation of those required in [FKV04b], and suffice to obtain an
additive error low-rank approximation :

1. For all i ∈ [t], Yi > ‖Ri,∗‖2
2.

2.
∑
i∈[t] Yi 6 n

t
‖R‖2

F

To satisfy the first condition, we need to obtain overestimates for each row. Since it is not
immediately clear how to obtain overestimates for row norms of R, a naïve approach would be
to bias the estimate for each row by an upper bound on the row norm. However, by Lemma 8.4.7,
a row norm could be as large as

√
n‖A‖2

F/t. Observe, we cannot afford to bias the estimator
of each row, Yi, by this amount since

∑
i∈[t] Yi >

√
n‖A‖2

F >
√
n‖R‖2

F . Therefore, we would
have to sample

√
nk/ε rows of R, resulting in us querying Ω(nk3/ε3) entries in A, even when

η = 0.

An alternative strategy would be to bias the estimator for each row by n‖R‖2
F/t

2, as this
would satisfy condition 2 above. We can now hope to detect rows of R that have norm larger
than n‖R‖2

F/t
2 by sampling ε3t/k3 entries in each row of R, uniformly at random. Note, this

way we can construct an unbiased estimator for the `2
2 norm of each row. Ideally, we would want

to show a high probability statement for concentration of our row norm estimates around the
expectation. We could then union bound, and obtain concentration for all i simultaneously.

549

However, this is not possible since it may be the case that a row of R is log(n)-sparse with
each entry being large in magnitude. In this case, uniformly querying the row would not observe
any non-zero with good probability and thus cannot distinguish between such a row and an
empty row. Instead, we settle for a weaker statement, that shows our estimate is accurate with
o(1) probability. All subsequent statements hold for η > 0.

Lemma 8.4.8. (Estimating large row norms.) Let R ∈ Rt×t be the row PCP output by Step 2 of

Algorithm 12. For all i ∈ [t] let Xi = ∑
j∈[ε3t/k3]Xi,j such that Xi,j =

k3R2
i,j′

ε3
with probability 1

t
,

for all j′ ∈ [t]. Then, for all i ∈ [t], Xi =
(
1± 1

10

)
‖Ri,∗‖2

2 with probability at least ‖Ri,∗‖2
2k

εn
.

Proof. Observe, Xi is an unbiased estimator of ‖Ri,∗‖2
2 :

E [Xi] = ε3t

k3 E [Xi,j] = ε3t

k3

∑
j′∈[t]

k3

ε3n
R2
i,j′ = ‖Ri,∗‖2

2

Next, we compute the variance of Xi.

Var [Xi] = ε3t

k3 Var [Xi,j] 6
∑
j∈[t]

1
ε3

R4
i,j

6
∑
j∈[t]

k3

ε3
R2
i,j

(
Tr [A + N]2

t2(A + N)i,i(A + N)j,j
(A + N)2

i,j

)

6
∑
j∈[t]

k3

ε3
R2
i,j

(
Tr [A + N]2

t2(A + N)i,i(A + N)j,j
(Ai,iAj,j + N2

i,j)
)

6
∑
j∈[t]

k3

ε3
R2
i,j

(
Tr [A + N]2 φ2

max
t2

+ Tr [A + N]2 φ2
max(A + N)i,i(A + N)j,j

t2(A + N)i,i(A + N)j,j

)

6
∑
j∈[t]

k3

ε3
R2
i,j

(
Tr [A + N]2 φ2

max
t2

)
6 O

(
ε‖A‖2

F

k
‖Ri,∗‖2

2

)

(8.81)

Here, we use that N2
i,j 6 φ2

max(A + N)i,i(A + N)j,j , which follows from our truncation pro-
cedure. Further, using t = φmax

√
nk2/ε2 and Tr [A + N] 6

√
n‖A‖F + √ηn‖A‖F , we can

bound
Tr [A + N]2 φ2

max
t2

6 O

(
ε‖A‖2

F

k

)

550

Further, using the same argument as above
(8.82)

Xi,j 6
k3

ε3
R2
i,j 6 O

(
ε‖A‖2

F

k

)

Using Equations 8.81 and 8.82 in Bernstein’s inequality,

Pr
[∣∣∣Xi − E[Xi]

∣∣∣ > δ E [Xi]
]
6 exp

− δ2‖Ri,∗‖4
2

ε‖A‖2
F

k
‖Ri,∗‖2

2 + δε‖A‖2
F

3k ‖Ri,∗‖2
2


6 exp

(
−δ

2‖Ri,∗‖2
2k log2(n)

ε‖R‖2
F

)

where we use that ‖A‖2
F = Θ(‖R‖2

F). Setting η = 1
10 , Xi =

(
1± 1

10

)
‖Ri,∗‖2

2 with probability

at least 1− exp
(
−‖Ri,∗‖2

2k log2(n)
ε‖R‖2

F

)
. Let ξi be the event that Xi =

(
1± 1

10

)
‖Ri,∗‖2

2. Then, union
bounding over t 6 n such events ξi, simultaneously for all i, ξi is true with probability at least

1− exp
(
−‖Ri,∗‖2

2k log(n)
ε‖R‖2

F

)
>
‖Ri,∗‖2

2k log(n)
ε‖R‖2

F

We now have two major challenges: first, the probability with which the estimators are ac-
curate is too small to even detect all rows with norm larger than φ2

maxn‖R‖2
F/t

2, and second,
there is no small query certificate for when an estimator is accurate in estimating the row norms.
Therefore, we cannot even identify the rows where we obtain an accurate estimate of their norm.

To address the first issue, we make the crucial observation that while we cannot estimate
the norm of each row accurately, we can hope to sample the row with the same probability as
Frieze-Kannan-Vempala [FKV04b]. Recall, their algorithm samples row Ri,∗ with probability
at least ‖Ri,∗‖2

2/‖R‖2
F , which matches the probability in Lemma 8.4.8. Therefore, we can focus

on designing a weaker notion of identifiability, that may potentially include extra rows.

We begin by partitioning rows of R into two sets. Let H =
{
i
∣∣∣ ‖Ri,∗‖2

2 > φ2
maxnṽ

2/t2
}

be
the set of heavy rows and [t]\H be the remaining rows. Since with probability at least 1− 1

poly(n) ,
‖R‖2

F = Θ(‖A‖2
F) = Θ(ṽ2),

|H| = O(t2/φ2
maxn) = O(k4 log4(n)/ε4)

Observe, every row inH can potentially satisfy the threshold τ = φ2
maxnṽ

2/t2. Therefore, even if
our estimator Xi is Θ(‖Ri,∗‖2

2) for all i ∈ H, we include at most Õ(k4/ε4) extra rows in S, which

551

is well within our budget. Observe, we can then sample a row with probability 1 whenever the
corresponding estimate is larger than τ . This sampling process ensures that we identify rows in
H with the right probability and also doees not query more than O(φ2

maxnk/ε) entries in A + N.
For all the remaining rows, we know the norm is at most O(φ2

maxnṽ
2/t2). We then modify the

analysis of [FKV04b] to show that we can handle both cases separately.

Theorem 184. (Existence [FKV04b].) Let R be a row projection-cost preserving sketch output

by Step 2 of Algorithm 12. For all i ∈ [t], let Xi be estimate for ‖Ri,∗‖2
2 as described in Step 3

of Algorithm 12. Let S be a subset of s = O(φ2
maxnk/εt) columns of R sampled according to

distribution r = {r1, r2, . . . rt} such that ri is the probability of sampling the i-th row. Then, with

probability at least 99/100, there exists a t× k matrix U in the column span of S such that

‖R −UUTR‖2
F 6 ‖R −Rk‖2

F + ε‖R‖2
F

Proof. We follow the proof strategy of [FKV04b] and show how to directly bound the vari-
ance in our setting as opposed to reducing to the two conditions above. Let R = PΣQT =∑
`∈[t] Σ`,`P`,∗QT

`,∗ = ∑
`∈[t] σ`P`QT

` . Recall, Rk = ∑
`∈[k] AQ`QT

` . For ` ∈ [t], let W` =
1
s

∑
i′∈[s] Yi′ where Yi′ = Pi,`

ri
Ri,∗ with probability ri, for all i ∈ [t]. Then,

E [W`] = E [Yi′] =
∑
j∈[t]

Pi,`

ri
Ri,∗ri = σ`Q` (8.83)

Therefore, in expectation the span of the rows contain a good low-rank solution. Next, we
bound the variance. Recall, here we consider the rows inH and its complement separately. From
Lemma For all i ∈ H, we know thatXi = Θ(‖Ri,∗‖2

2) with probability at least ‖Ri,∗‖2
2k log(n)/ε‖R‖2

F .
Since for all such i, ‖Ri,∗‖2

2 > τ , the corresponding ri >
‖Ri,∗‖2

2k log(n)
ε‖R‖2

F
, since every time we pass

the threshold we sample the row. For all i /∈ H, ri > 1/t since there can be at most t such i,
and we sample each such row with uniform probability. Once we have a lower bound on ri in
both cases, we open up the analysis of the variance bound in [FKV04b] and show that our lower
bounds suffice.

552

E
[
‖W` − σ`Q`‖2

2

]
= 1
s

∑
j∈[t]

P2
i,`

ri
‖Ri,∗‖2

2

− σ2
`

s
6

1
s

∑
j∈H

P2
i,`

ri
‖Ri,∗‖2

2 +
∑

i∈[t]\H

P2
i,`

ri
‖Ri,∗‖2

2


6

1
s

∑
j∈H

k log(n)P2
i,`‖R‖2

F

ε
+

∑
j∈[t]\H

tP2
i,`‖Ri,∗‖2

2


6

1
s

∑
j∈H

k log(n)P2
i,`‖R‖2

F

ε
+

∑
j∈[t]\H

n

t
P2
i,`ṽ

2


6

1
s

(
k log(n)

ε
+ φ2

maxn

t

)
‖R‖2

F

(8.84)

Now, we can repeat the argument from [FKV04b] and it suffices to set s =
(
φ2

maxn
t

+ k
ε

)
k
ε

=
O(φ

2
maxnk
εt

). For completeness, we present the rest of the proof here. For all ` ∈ [t], let Y` =
1
σ`

W`. Let V = span(Y1,Y2, . . . ,Yk). Let Z1,Z2, . . .Zt be an orthonormal basis for Rt such
that V = span(Z1,Z2, . . . ,Zk′), where k′ = dim(V). Let S = R∑

`∈[k] Z`ZT
` be the candidate

low-rank approximation approximation. Then,

‖R − S‖2
F =

∑
`∈[t]
‖(R − S)Z`‖2

2

=
∑

`∈[k′+1,t]
‖RZ`‖2

2

=
∑

`∈[k′+1,t]

∥∥∥∥∥∥
(R −R

∑
`′∈[k]

Q`′YT
`′

Z`

∥∥∥∥∥∥
2

2

6

∥∥∥∥∥∥R −R
∑
`′∈[k]

Y`′YT
`′

∥∥∥∥∥∥
2

F

(8.85)

where the first equality follows from ‖Z`‖2
2 = 1, the seconds follows from ZT

`′Z` = 0 for `′ 6= `,
the third follows from 〈Y`′ ,Z`〉 = 0 for all `′ 6 k and ` > k′. Let Ŝ = R∑

`′∈[k] Y`′YT
`′ . Since

P1,P2, . . . ,Pt forms an orthonormal basis

∥∥∥R − Ŝ
∥∥∥2

F
6
∑
`∈[t]

∥∥∥P`

(
R − Ŝ

)∥∥∥2

2

=
∑
`∈[k]
‖σ`Q` −W`‖2

2 +
∑

`∈[k+1,t]
σ2
`

(8.86)

553

Taking expectations on both sides of equation 8.86, we have

E
[∥∥∥R − Ŝ

∥∥∥2

F

]
6 E

∑
`∈[k]
‖σ`Q` −W`‖2

2

+ ‖R −Rk‖2
F

6
k

s

(
k log(n)

ε
+ φ2

maxn

t

)
‖R‖2

F + ‖R −Rk‖2
F

(8.87)

Since Ŝ is a rank k matrix and Rk is the best rank k approximation to R, ‖R−Ŝ‖2
F−‖R−Rk‖2

F

is a non-negative random variable. Thus, using Markov’s inequality and Equation 8.85,

Pr
[
‖R − S‖2

F − ‖R −Rk‖2
F >

100nk
st
‖R‖2

F

]
6

1
100

Therefore, it suffices to sample s = O
(
φ2

maxnk
εt

)
columns, read all of them and compute a low

rank approximation for R with probability at least 99
100 . Observe, the total entries read by this

algorithm is O
(
φ2

maxnk
εt
· t
)

= O
(
φ2

maxnk
ε

)
.

It remains to show that we can now recover a low-rank approximation for A, in factored form,
from the low-rank approximation for R. Here, we follow the approach of [CMM17],[MW17c]
and [BW18], where we set up two regression problems, and use the sketch and solve paradigm
to compute an approximate solution. We use the following Lemma from [BW18] that relates a
good low-rank approximation of an additive error project-cost preserving sketch to a low-rank
approximation of the original matrix. A similar guarantee for relative error appears in [CMM17]
and [MW17c].

Lemma 8.4.9. (Lemma 4.4 in [BW18].) Let C be a column PCP for A satisfying the guarantee of

Theorem 180. Let P∗C = arg minrank(X)6k ‖C−XC‖2
F and P∗A = arg minrank(X)6k ‖A−XA‖2

F .

Then, for any rank k projection matrix P such that ‖C−PC‖2
F 6 ‖C−P∗CC‖2

F+(ε+√η)‖C‖2
F ,

with probability at least 99/100,

‖A−PA‖2
F 6 ‖A−P∗AA‖2

F + (ε+√η)‖A‖2
F

A similar guarantee holds for a row PCP of A.

Note, while RSST is an approximate rank-k solution for R, it does not have the same dimensions
as A. If we do not consider running time, we could construct a low-rank approximation to A as
follows: since projecting R onto ST is approximately optimal, it follows from Lemma 8.4.9 that

554

with probability 99/100,

‖C−CSST‖2
F = ‖C−Ck‖2

F ± (ε+√η)‖C‖2
F (8.88)

Let Ck = U′V′T be such that U′ has orthonormal columns. Then, ‖C −U′U′TC‖2
F = ‖C −

Ck‖2
F and by Lemma 8.4.9 it follows that with probability 98/100, ‖A −U′U′TA‖2

F 6 ‖A −
Ak‖2

F + (ε + √η)‖A‖2
F . However, even approximately computing a column space U′ for Ck

using an input-sparsity time algorithm, such as [CW13], could require Ω (nt) queries. To get
around this issue, we observe that an approximate solution for R lies in the row space of ST and
therefore, an approximately optimal solution for C lies in the row space of ST . We then set up
the following regression problem:

min
rank(X)6k

‖C−XST‖2
F (8.89)

Note, this regression problem is still too large to be solved in sublinear time. Therefore, we
sketch it by sampling columns of C to set up a smaller regression problem. Observe, since S
has orthonormal columns, the leverage scores are simply `2

2 norms of rows of S. Now, using
Lemma 8.3.3, approximately solving this regression problem requires sampling Ω(k/ε) rows
of C, which in turn requires Ω(nk

ε
) queries to A + N. Note, the above theorem applied to

Equation 8.89 can take O (nk + poly(k, ε−1)) time and thus is a lower order term. Since ST has
orthonomal rows, the leverage scores are precomputed. With probability at least 99/100, we can
compute XC = arg minX ‖CE −XSTE‖2

F , where E is a leverage score sketching matrix with
O
(
k
ε

)
columns, as shown in Lemma 8.3.3, and thus requires O

(
nk
ε

)
queries to A. Then,

‖C−XCST‖2
F 6 (1 + ε) min

X
‖C−XST‖2

F

6 (1 + ε)‖C−CSST‖2
F

= ‖C−Ck‖2
F ± (ε+√η)‖C‖2

F

(8.90)

where the last two inequalities follow from equation 8.88. Let XCST = U′V′T be such that
U′ has orthonormal columns. Then, the column space of U′ contains an approximately optimal
solution for A, since ‖C−U′V′T‖2

F = ‖C−Ck‖2
F ± ε‖C‖2

F and C is a column PCP for A. It
follows from Lemma 8.4.9 that with probability at least 98/100,

‖A−U′U′TA‖2
F 6 ‖A−Ak‖2

F + (ε+√η)‖A‖F (8.91)

Therefore, there exists a good solution for A in the column space of U′. Since we cannot compute

555

this explicitly, we set up the following regression problem:

min
X
‖A−U′X‖2

F (8.92)

Again, we sketch the regression problem above by sampling columns of A and apply Lemma
8.3.3. We can then compute XA = arg minX ‖E′A−E′U′X‖2

F with probability at least 99/100,
where E′ is a sketching matrix with

(
k
ε

)
rows and O

(
nk
ε

)
queries to A. Then,

‖A−U′XA‖2
F 6 (1 + ε) min

X
‖A−U′X‖2

F

6 (1 + ε)‖A−U′U′TA‖2
F

6 ‖A−Ak‖2
F +O(ε+√η)‖A‖2

F

(8.93)

where the second inequality follows from X being the minimizer and U′TA being some other
matrix, and the last inequality follows from equation 8.91. Recall, U′ is an n× k matrix and the
time taken to solve the regression problem is O (nk + poly(k, ε−1)).

Therefore, we observe that U′XA suffices and we output it in factored form by setting M =
U′ and N = XT

A. Union bounding over the probabilistic events, and rescaling ε, with probability
at least 9/10, Algorithm 12 outputs M ∈ Rn×k and NT ∈ Rn×k such that the total number of
entries queried in A are Õ

(
φ2

maxnk
ε

)
. This concludes the proof of Theorem 183.

Correlation Matrices. We introduce low-rank approximation of correlation Matrices, a spe-
cial case of PSD matrices where the diagonal is all 1s. Correlation matrices are well studied
in numerical linear algebra, statistics and finance since an important statistic of n random vari-
ables X1, X2, . . . Xn is given by computing the pairwise correlation coefficient, corr(Xi, Xj) =
cov(Xi, Xj)/

√
var(Xi) · var(Xj). A natural matrix representation of correlation coefficients re-

sults in a n× n correlation matrix A such that Ai,j = corr(Xi, Xj).

Definition 8.4.10. (Correlation Matrices.) A is an n × n correlation matrix if A is PSD and

Ai,i = 1, for all i ∈ [n].

Often, in practice the correlation matrices obtained are close to being PSD, but corrupted by
noise in the form of missing or asynchronous observations, stress testing or aggregation. Here
the goal is to query few entries of the corrupted matrix and recover a rank-k matrix close to the
underlying correlation matrix, assuming that the underlying matrix is also close to low rank to
begin with.

556

Here we observe that since correlation matrices have all diagonal entries equal to 1, we can
compute φmax by simply reading the diagonal entries of A + N. However, we can do even better
since we can discard the diagonal entries of A + N. The main insight here is that for correlation
matrices, our algorithm simply uniformly samples columns and rows to construct our row and
column PCPs, since we know what the true diagonals should be. In this case, no matter what the
adversary does to the diagonal, φmax = 1 and we obtain a Õ(nk/ε) query algorithm.

Corollary 8.4.11. (Robust LRA for Correlation Matrices.) Let k be an integer and 1 > ε >

η > 0. Given A + N, where A is a correlation matrix and N is a corruption term such that

‖N‖2
F 6 η‖A‖2

F and for all i ∈ [n] ‖Ni,∗‖2
2 6 c‖Ai,∗‖2

2 for a fixed constant c, there exists an

algorithm that samples Õ (nk/ε) entries in A+N and with probability at least 99/100, computes

a rank k matrix B such that

‖A−B‖2
F 6 ‖A−Ak‖2

F + (ε+√η)‖A‖2
F

Note, the sample complexity of this algorithm is optimal, since there is an Ω(nk/ε) query
lower bound for additive-error low-rank approximation of correlation matrices, even when there
is no corruption (see Corollary 8.4.13).

Additive-Error PSD Low-Rank Approximation. In the limit where η = 0, φmax = 1,
and we obtain an algorithm with query complexity Õ(nk/ε). While this guarantee is already
implied by our algorithm for relative-error low-rank approximation, our additive-error algorithm
is simpler to implement, since the sampling probabilities can be computed exactly by simply
reading the diagonal.

Corollary 8.4.12. (Sample-Optimal Additive-Error LRA.) Given a PSD matrix A, rank param-

eter k, and ε > 0, there exists an algorithm that samples Õ(nk/ε) entries in A and outputs a

rank-k matrix B such that with probability at least 99/100,

‖A−B‖2
F 6 ‖A−Ak‖2

F + ε‖A‖2
F

We show a matching lower bound on the query complexity of additive-error low-rank approx-
imation of PSD matrices. Here, we simply observe that the lower bound construction introduced
by [MW17c] of Ω

(
nk
ε

)
also holds for additive error. As a consequence our algorithm is optimal

in the setting where there is no corruption.

557

Corollary 8.4.13. (Correlation Matrix Lower Bound, Theorem 13 [MW17c].) Let A be a PSD

matrix, k ∈ Z and ε > 0 be such that nk
ε

= o(n2). Any randomized algorithm, A, that with

probability at least 2/3, computes a rank k matrix B such that

‖A−B‖2
F 6 ‖A−Ak‖2

F + ε‖A‖2
F

must read Ω
(
nk
ε

)
entries of A on some input, possibly adaptively, in expectation.

Proof. We observe that in the lower bound construction of [MW17c], the matrix A is binary,
with all 1s on a the diagonal, and k off-diagonal blocks of all 1s, each of size

√
2εn
k
×
√

2εn
k

.
Therefore, A is a correlation matrix and ‖A‖2

F = (1 + 2ε)n. Further, the optimal rank-k cost,
‖A−Ak‖2

F = Θ(n). To compute an additive-error approximation, any algorithm must caputure
ε‖A‖2

F = εn mass among the off-diagonal entries of A. Note, the remaining proof is identical
to Theorem 13 in [MW17c].

558

Chapter 9

Learning a Latent Simplex in Truly
Input-Sparsity Time

9.1 Introduction

We study the problem of learning k vertices M∗,1, . . . ,M∗,k of a latent k-dimensional simplex
K in Rd using n data points generated from K and then possibly perturbed by a stochastic, de-
terministic, or adversarial source before given to the algorithm. In particular, the resulting points
observed as input data could be heavily perturbed so that the initial points may no longer be
discernible or they could be outside the simplex K. Recent work of Bhattacharyya and Kan-
nan [BK20c] unifies several stochastic models for unsupervised learning problems, including
k-means clustering [CG92, GH+96, Web03, WT10, Dua20], topic models [BJ03, SG07, BL06a,
Ble12, AGH+13a], mixed membership stochastic block models [ABFX08, MJG09, XFS+10,
FSX09, ABEF14, LAW16, FXC16] and Non-negative Matrix Factorization [AGH+13b, GV14,
Gil20] under the problem of learning a latent simplex. In general, identifying the latent simplex
can be computationally intractable. However many special applications do not require the full
generality. For example, in a mixture model like Gaussian mixtures, the data is assumed to be
generated from a convex combination of density functions. Thus, it may be possible to efficiently
approximately learn the latent simplex given certain distributional properties in these models.

Indeed, Bhattacharyya and Kannan showed that given certain reasonable geometric assump-
tions that are typically satisfied for real-world instances of Latent Dirichlet Allocation, Stochastic

559

Block Models and Clustering, there exists an Õ(k · nnz(A)) 1 time algorithm for recovering the
vertices of the underlying simplex. We show that, given an additional natural assumption, we
can remove the dependency on k and obtain a true input sparsity time algorithm. We begin by
defining the model along with our new assumption:

Definition 9.1.1 (Latent Simplex Model). Let M be a d×k matrix such that M∗,1,M∗,2, . . . ,M∗,k ∈
Rd denote the vertices of a k-simplex, K. Let P be a d× n matrix such that P∗,1,P∗,2 . . .P∗,n ∈
Rd are n points in the convex hull of K. Given σ > 0, we observe a d × n matrix A, such that

‖A−P‖2 6 σ
√
n. Further, we make the following assumptions on the data generation process:

1. Well-Separateness. For all ` ∈ [k], M∗,` has non-trivial mass in the orthogonal com-

plement of the span of the remaining vectors, i.e., for all ` ∈ [k], |Proj(M∗,`,Null(M \
M∗,`))| > αmax` ‖M∗,`‖2 where Proj(x, U) denotes the orthogonal projection of x to the

subspace U and M \M∗,` is the matrix M with the `-th column removed.

2. Proximate Latent Points. Given δ ∈ (0, 1), for all ` ∈ [k], there exists a set S` ⊆ [n] such

that |S`| > δn and for all j ∈ S`, ‖M∗,` −P∗,j‖2 6 4σ/δ.

3. Spectrally Bounded Perturbation. The spectrum of A−P is bounded, i.e., for a sufficiently

large constant c, σ/
√
δ 6 α2 min` ‖M∗,`‖2/ck

9.

4. Significant Singular Values. Let A = ∑
i∈[d] σiuiv

T
i be the singular value decomposition

and let 0 < φ 6 nnz(A)/(n · poly(k)). We assume that for all i ∈ [k], σi > φ · σk+1 and

‖A−Ak‖2
F 6 φ‖A−Ak‖2

2.

These assumptions are natural across many interesting applications; see Section 9.2 for more
details. [BK20c] introduced the Well-Separateness (1), Proximate Latent Points (2) and Spec-
trally Bounded Perturbation (3) assumptions. We include an additional Significant Singular Val-
ues assumption (4), which is crucial for obtaining a faster running time; we discuss this in more
detail below. Our main algorithmic result can then be stated as follows:

Theorem 185 (Learning a Latent Simplex in Input-Sparsity Time). Given k > 2 and A ∈
Rd×n from the Latent Simplex Model (Definition 9.1.1), there exists an algorithm that runs in

Õ (nnz(A) + (n+ d)poly(k/φ)) time to output subsets AR1 , . . . ,ARk such that upon permuting

the columns of M, with probability at least 1 − 1/Ω(
√
k), for all ` ∈ [k], we have ‖AR` −

M∗,`‖2 6 300k4σ/(α
√
δ).

1Throughout the paper we use the notation Õ to suppress poly-logarithmic factors.

560

Our result implies faster algorithms for various stochastic models that can be formulated as
special cases of the Latent Simplex Model, including Latent Dirichlet Allocation for Topic Mod-
eling, Mixed Membership Stochastic Block Models and Adversarial Clustering. We summarize
the connections to these applications below. We describe our algorithm and provide an outline to
our analysis; we defer all formal proofs to the supplementary material.

9.2 Connection to Stochastic Models

We first formalize the connection between the Latent Simplex Model (Definition 9.1.1) and nu-
merous stochastic models. In particular, we show that topic models like Latent Dirichlet Alloca-
tion (LDA), Stochastic Block Models and Adversarial Clustering can be viewed as special cases
of the Latent Simplex Model. We also show how our assumptions are natural in each of these
applications.

9.2.1 Topic Models

Probabilistic Topic Models attempt to identify abstract topics in a collection of documents by
discovering latent semantic structure [BJ03, BL06b, HBB10, ZAX12, Ble12]. Each document in
the corpus is represented by a bag-of-words vectorization with the corresponding word frequen-
cies. The standard statistical assumption is that the generative process for the corpus is a joint
probability distribution over both the observed and hidden random variables. The hidden ran-
dom variables can be interpreted as representative documents for each topic. The goal is to then
design algorithms that can learn the underlying topics. The topics can be viewed geometrically
as k latent vectors M∗,1,M∗,2, . . . ,M∗,k ∈ Rd, where d is the size of the dictionary and Mi,`

is the expected frequency of word i in topic `. Since each vector M∗,` represents a probability
distribution,

∑
i Mi,` = 1. Let M be the corresponding d × k matrix. One important stochastic

model is Latent Dirichlet Allocation (LDA) [BNJ03], where each document consists of m words
is generated as follows :

• For all ` ∈ [k], we pick topic weights Wj,` ∼ Dir(1/k), where Dir(1/k) is the Dirichlet
distribution over the unit simplex. The topic distribution of document j is decided by the
topic weights, Wj,`, and given by P∗,j = ∑

`∈[k] Wj,` ·M∗,`, where P∗,j are latent points.

• We then generate the j-th document withmwords by taking i.i.d. samples from Mult(P∗,j),
the multinomial distribution with P∗,j as the probability vector. The resulting document

561

observed is denoted by the vector A∗,j , where for all i ∈ [d] Ai,j = 1
m

∑m
t=1 X(t)

ij ,, such
that X(t)

ij ∼ Bern(Pij), where X(t)
ij = 1 if the i-th word was chosen in the t-th draw while

generating the j-th document, and 0 otherwise.

The data generation process of LDA can be viewed as a special case of the Latent Simplex Model,
where the j-th document is the data point A∗,j generated from the stochastic vector P∗,j , a point
in the simplex K. The vertices of the simplex are the k topic vectors M∗,1, . . . ,M∗,k; the goal
is then to recover the vertices of K. [BK20c] remark that the Well-Separateness condition holds
for LDA if we assume a Dirichlet prior on M. We note that while K is a k-dimensional simplex,
d � k and the observed points need not lie inside the simplex. On the contrary, [BK20c] show
that the data often lies significantly outside of K. However, they show that the smoothed simplex
obtained by taking the averages of all δn sized subsets of observed points results in a polytope
KS that is close to K.

We formally justify our assumptions below.

Lemma 9.2.1 (LDA as a Latent Simplex). Given A,P,M following the LDA model as described

above, such that for all ` ∈ [k], ‖M∗,`‖2 = Ω(1), m,n = Ω(poly(k/α)) and δ = cσ/
√
k,

assumptions (2),(3) and (4) from Definition 9.1.1 are satisfied with high probability.

Proof. Assumptions (2) and (3) follow from Lemma 7.1 in [BK20c]. By Claim 8.1 in [BK20c],
σk(A) > cα

√
δ/kmin` M∗,`. Each column of A sums to 1, so ‖A‖2

F = O(n) and σk(A) >

α
√
δ/k‖A‖F . Since ‖A − P‖2 6 σ

√
n by definition of σ, and P consists of n point in the

convex hull of k points and thus σk+1(P) = 0, we have σk+1(A) 6 σk+1(P) + ‖A − P‖2 6

σ
√
n 6 σ‖A‖F . Thus if σ 6 α

√
δ/poly(k) for a large enough poly(k), our Significant Singular

Values assumption holds.

9.2.2 Mixed Membership Stochastic Block Models

The Stochastic Block Model is a well-studied stochastic model for generating random graphs,
where the vertices are partitioned into k communities and edges within each community are more
likely to occur than edges across communities. Given communities C1, C2, . . . Ck, there exists a
k×k symmetric latent matrix B, where, B`1,`2 is the probability that there exists an edge between
vertices in C`1 and C`2 . The MMBM can be formalized as the following stochastic process:

• For j ∈ [n], vertex j picks a probability vector W∗,j ∈ Rk representing community mem-
bership probabilities that sum to 1, i.e., Wi,j ∼ Dir(1/k) for all i ∈ [k].

562

• For all pairs (j1, j2) ∈ [n], vertex j1 picks a community `1 proportional to Mult(W∗,j1)
and j2 picks a community `2 proportional to Mult(W∗,j2). The edge (j1, j2) is included
in the graph with probability B`1,`2 . Since

∑
`1,`2 W`1,j1B`1,`2W`2,j2 represents the edge

probability of the edge (j1, j2), the latent variable matrix P of edge probabilities can be
represented as P = WTBWT .

However, our reduction is not straightforward since now P depends quadratically on W and
the only polynomial time algorithms for B directly rely on semidefinite programming. Further,
they require non-degeneracy assumptions in order to compute a tensor decomposition provably
in polynomial time [AGHK14b, HS17]. However, we can pose the problem of recovery of the
k underlying communities differently and first pick at random a subset V1 ⊂ [n] of d vertices
and represent the `-th community by a d-dimensional vector that represents the probabilities of
vertices in [n] \ V1 belonging to community ` and having an edge with each of the d vertices in
V1. We now define W(1) to be a k × d matrix representing the fractional membership of weights
of vertices in V1 and W(2) to be the analogous k× n matrix for vertices in [n] \ V1. Observe that
the probability matrix P can now be represented as WT

(1)BW(2).

The reduction to the Latent Simplex Model can now be stated as follows: given a data matrix
A which is the adjacency matrix of the community graph, and the latent variable matrix P, re-
cover the simplex M = WT

(1)B. Further, [ABFX08] assumes that each column of W(2) is picked
from the Dirichlet distribution with parameter 1/k. Combined with tools from random matrix
theory [Ver10a], [BK20c] (Lemma 7.2) shows that the Proximate Latent Points and Spectrally
Bounded assumptions hold for Stochastic Block Models. As for the Significant Singular Values
assumption, it is satisfied when σ is a small enough polynomial in k.

Justifying Significant Singular Values. We give the following further justification for as-
sumption (4) in Section 9.5: a faster algorithm only using the assumptions appearing in [BK20c]
would imply an algorithmic breakthrough for spectral low-rank approximation and partially re-
solve the first open question of [Woo14b].

Theorem 186 (Spectral LRA and Learning a Simplex (informal)). There exists a distribution

over instances such that learning a latent simplex in o(nnz(A) · k) time with good probability

implies a constant factor spectral low-rank approximation algorithm in the same running time.

563

9.2.3 Adversarial Clustering

We consider clustering problems that arise naturally from stochastic mixture models such as
Gaussian, Mallows, categorical and so on [SK01, VW04, LB11, CSV17, DKS18, LM18b]. We
can then formulate such a clustering problem in the Latent Simplex Model as follows: Given
n data points A∗,1,A∗,2, . . . ,A∗,n ∈ Rd, such that the data is a mixture of k distinct clusters,
C1,C2, . . . ,Ck, with means M∗,1,M∗,2, . . . ,M∗,k, the goal is to approximately learn the means.
Further, we can set the n latent vectors P∗,j to denote the mean of the cluster point A∗,j belongs
to, and thus P∗,j ∈ {M∗,1,M∗,2, . . . ,M∗,k}. Prior work of [KK10] and [AS12] shows that if the
minimum cluster size if δn and for all ` 6= `′, ‖M∗,` −M∗,`′‖ > ck σ√

δ
the M∗,` can be found

within error O(
√
kσ/
√
δ).

However, the aforementioned algorithms are not robust to adversarial perturbations. There-
fore, we describe the perturbations we can handle in the Latent Simplex Model. The adversarial
model is the same as the one considered in [BK20c]. The adversary is allowed to selected a
subset S` of each cluster C` of cardinality at most δn and perturb each point A∗,j for j ∈ S` by
∆j such that :

• P∗,j + ∆j is still in the Convex Hull of M∗,1,M∗,2, . . . ,M∗,k

• The norm of the perturbation is bounded, i.e., |∆j|2 6 4σ/
√
δ.

Intuitively, the adversary can move a 1 − δ fraction of the data points in each cluster an arbi-
trary amount towards the convex hull of the means of the remaining clusters. For the remaining
δn, the perturbation should have norm at most O(σ/

√
δ). The goal is to still learn the means

M∗,` approximately. [BK20c] shows that the aforementioned model satisfies Well-Separateness,
Proximate Latent Points and Spectrally Bounded Perturbations assumptions. The proof for the
Significant Singular Values assumption follows from Lemma 9.2.1. We note that there has been
a flurry of recent progress on adversarial clustering in the strong contamination model, where
the input data points are sampled from a mixture of Gaussians distribution and the adversary can
corrupt a small fraction of the samples arbitrarily [DKS18, HL18, KSS18, DHKK20, BK20b]. In
our setting, there is no distribution assumption on the data points but the adversary is constrained
as the norm of the perturbation is bounded.

564

9.2.4 Preliminaries

We use n, d, and k to denote the number of data points, the number of dimensions of the space
and the number of vertices of K respectively. We use the notation A∗,j to denote the j-th column
of matrix A. For A ∈ Rd×n with rank r, its singular value decomposition, denoted by SVD(A) =
UΣVT , guarantees that U is a d × r matrix with orthonormal columns, VT is an r × n matrix
with orthonormal rows and Σ is an r × r diagonal matrix. The diagonal entries of Σ are the
singular values of A, denoted by σ1 > σ2 > . . . > σr. Given an integer k 6 r, we define
the truncated singular value decomposition of A that zeros out all but the top k singular values
of A, i.e., Ak = UΣkVT , where Σk has only k non-zero entries along the diagonal. It is well-
known that the truncated SVD computes the best rank-k approximation to A under the Frobenius
norm, i.e., Ak = minrank(X)6k ‖A−X‖F . Given an orthonormal basis U for a subspace, we use
PU = UUT to denote the projection matrix corresponding to the subspace. We consider the
following notion of subspace distance:

Definition 9.2.2 (sin Θ Distance). For any two subspaces R, S of Rd, the sin Θ distance between

R and S is defined as

sin Θ(R,S) = max
u∈R

min
v∈S

sin θ(u, v) = max
u∈R,|u|=1

min
v∈S
‖u− v‖.

We use the notion of spectral low-rank approximation to obtain a compact representation of
the input and compute matrix-vector products efficiently. We also require the notion of mixed
spectral-Frobenius low-rank approximation. This guarantee is weaker than spectral-low rank
approximation but admits faster algorithms and has been recently used in several sublinear time
algorithms [MW17b, BCW20b].

Definition 9.2.3 (Spectral Low-rank Approximation, Spectral-Frobenius Low-rank Approxima-
tion). Given a matrix A, an integer k and ε > 0, a rank-k matrix B satisfies a relative-error

spectral low-rank approximation guarantee if ‖A − B‖2
2 6 (1 + ε)‖A − Ak‖2

2. B satisfies a

mixed spectral-Frobenius low-rank approximation guarantee if

‖A−B‖2
2 6 (1 + ε)‖A−Ak‖2

2 + ε

k
‖A−Ak‖2

F .

565

9.3 Technical Overview

In this section, we provide an overview of our algorithmic techniques and discuss the main
challenges we overcome to obtain an input-sparsity time algorithm.

Our Techniques. The starting point in [BK20c] is that the smoothened polytope, obtained by
averaging points in the data matrix A is itself close to the latent points in the convex hull of K in
operator norm. This fact is captured by the following lemma:

Lemma 9.3.1 (Subset Smoothing). For any S ⊂ [n], let AS be a vector obtained by averaging

the columns of A indexed by S and define PS similarly. Then for ‖A − P‖2 6 σ
√
n, we have

‖AS −PS‖2 6 σ
√
n/|S|.

Our main insight is that we can approximately optimize a linear function on the smoothed
polytope by working with a rank-k spectral approximation to A instead. Geometrically, this
implies that while the smoothed polytope is perhaps d-dimensional, projecting it onto the k-
dimensional space spanned by the top-k singular values of the data matrix A suffices to recover
the latent k-simplex, K. This is surprising since the data matrix can contain points significantly
far from the latent polytope. Further, this approach presents several challenges: we do not have
access to the left singular space of A and even if we are provided this subspace exactly, it is
unclear why it spans a set of points that approximate vertices of K. Finally, the points obtained
by smoothing the projected polytope have no immediate relation to points in the smoothed high-
dimensional polytope considered by [BK20c].

We would like to begin by computing a spectral low-rank approximation (Definition 9.2.3)
for A. Since a low-rank approximation to A can be represented in factored form YZT , where
Y is d × k and ZT is k × n, any matrix-vector product of the form YZT · x only requires
(n + d)k time. Thus optimizing a linear function k times over a smoothed low-rank polytope
requires only (n + d)k2 time, circumventing the previous bound of k · nnz(A). However, the
best known algorithm for spectral low-rank approximation (Theorem 1 in [MM15]) requires
Õ(nnz(A) · k/

√
ε) time and thus provides no improvement. A natural direction to pursue is

then to compute a Frobenius low-rank approximation (which requires nnz(A) time) for A and
use this as our proxy. However, a Frobenius low-rank approximation is too coarse to obtain a
subspace that is close to the top-k singular vectors of A.

Instead we compute a mixed spectral-Frobenius low-rank approximation (see Definition 9.2.3)
that runs in O(nnz(A) + dk2) time, but the resulting error guarantee is weaker. In particular, it

566

incurs an additive ε‖A−Ak‖2
F/k term. Here, we use the assumption we introduced (the Signif-

icant Singular Value assumption) to show that the low-rank matrix obtained from this algorithm
also satisfies a relative-error spectral low-rank approximation guarantee. The next challenge is
that the aforementioned guarantee only bounds the spectral norm of A − YZT in terms of the
(k + 1)-st singular value of A. This guarantee does not relate how close the subspaces spanned
by the columns and rows of the low-rank approximation are to the top-k singular space of A.

A key technical contribution of our work is thus to prove that the subspaces obtained via
spectral low-rank approximation are close to the true left and right top-k singular space in angular
(sin Θ) distance. We note that such a guarantee is crucial to approximately optimize a linear
function over A. Further, this result provides an intriguing connection between spectral low-
rank approximation and power iteration. It is well known that power iteration suffices to obtain
a subspace that is close to the top-k subspace of a matrix in sin Θ distance, which at first glance
appears much stronger than spectral low-rank approximation. However, our work implies that it
suffices to compute a spectral low-rank approximation, which provides a succinct representation
of the data matrix and can be computed faster than power iteration in several natural settings.

Algorithm 13 : Learning a Latent k-Simplex in Input Sparsity Time

Input: A matrix A ∈ Rd×n, integer k, and ε > 0.

1. Using the algorithm from Lemma 9.4.1, compute rank-k matrices Y,Z such that YZT

is a spectral low-rank approximation to A, i.e., ‖A−YZT‖2
2 6 (1 + ε)‖A−Ak‖2

2.

2. Let S = {∅}. For each t ∈ [k],

(a) Let Ut be an orthonormal basis for the vectors in S.

(b) Compute the projection matrix Pt = UtUT
t that projects onto the row span of

S.

(c) Let g ∼ N (0, Ik) and let ut = gYT (Id − Pt)YZT be a random vector in Rn.
Compute Rt ⊂ [n], a subset of δn indices corresponding to the largest coordi-
nates of ut in absolute value.

(d) Let ARt be the average of the columns of A indexed byRt. Update S = S∪ARt .

Output: The set of vectors AR1 ,AR2 , . . . ,ARk as our approximation to the vertices of the
latent k-simplex K.

In the context of learning the latent simplex, given a spectral low-rank approximation, YZT ,
we first restrict to the column span of Y, which w.l.o.g. has orthonormal columns, and iteratively

567

generate k vectors in this subspace. In the first iteration, we generate a random vector gYT and
compute gYTYZT . We then consider the largest δn indices of gYTYZT . While the resulting
vector does not have strong provable guarantees, we show that averaging the columns of A cor-
responding to these indices results in a vector, AR1 , which intuitively corresponds to efficiently
optimizing a linear function over a low-rank approximation to the smoothened polytope, where
the smoothened polytope is obtained by averaging over all subsets of δn data points. Our next
contribution is to show that AR1 obtained by the aforementioned algorithmic process is indeed
close to a vertex of K.

To obtain an approximation to the remaining vertices ofK, we consider the following iterative
process: in the t-th iteration, consider the subspace YT (I−Pt), where (I−Pt) is the projection
onto the orthogonal complement of the span of AR1 ,AR2 . . .ARt−1 . Then generate a random
vector gYT (I−Pt), and compute the largest δn coordinates of gYT (I−Pt)YZT . Average the
corresponding columns of A to obtain ARt and output this vector. We prove that after iterating k
times, the vectors AR1 ,AR1 , . . .ARk approximate all the vertices of the latent simplex K within
the desired accuracy and running time.

In contrast, prior work of [BK20c] uses power iteration to approximate the left top-k singular
space Uk of A using a subspace V̂ that is poly(α/k) close in sin Θ distance. Each step of the
power iteration uses O(nnz(A) + dk2) time and is repeated log(d) times. Next, they pick a
random vector u1 in the subspace spanned V̂ and compute AR1 = arg maxS:|S|=δn |u1 · AS |,
using the resulting vector as an approximation to some vertex M∗,1.

They then repeat the above algorithm k times and in the i-th iteration, they pick ui to be a
uniformly random direction in the k − i dimensional subspace constructed as follows: let Ṽi−1

be an orthonormal basis for AR1 ,AR2 , . . . ,ARi−1 . Intuitively, this corresponds to sampling a
random vector from the subspace orthogonal to the set of vertex approximations picked thus
far. The resulting k vectors AR1 , . . . ,ARk are the approximation to the vertices of the latent
simplex. Since they directly optimize over the smoothened polytope, the correctness analysis is
more straightforward.

However, each iteration of the algorithm requires optimizing a linear function over the smoothened
polytope and in particular requires computing ui ·A, and thus, the overall running time is dom-
inated by k · nnz(A). Since the latent simplex satisfies the Well-Separateness condition, the
inner product with a random direction is maximized by a unique vertex. Intuitively, it appears
necessary to project away from the set of vectors obtained up to the i-th iteration in order to learn
new vertices of K. The inherently iterative nature of the algorithm combined with matrix-vector
product lower bounds indicates that the new algorithmic ideas we introduce are in fact necessary.

568

9.4 Full Analysis

In this section, we analyze Algorithm 13 and show that it outputs a set of k vectors that approxi-
mate the vertices of the latent simplex K. Formally, the main theorem we prove is as follows:

Theorem 185 (Restated.) Given input data A from the Latent Simplex Model, there exists
Algorithm 13 that takes Õ (nnz(A) + (n+ d)poly(k)) time to output k vectorsR1, . . . ,Rk such
that upon permuting the columns of M, for all ` ∈ [k], we have

‖R` −M∗,`‖2 6
300k4

α

σ√
δ
,

with probability at least 1− 1
Ω(
√
k) .

We start with a spectral low-rank approximation for A. We then use the right factor as an
approximation to ΣkVT

k and the left factor as an approximation to Uk.

Lemma 9.4.1. (Input-Sparsity Spectral LRA [CEM+15, CMM17].) Given a matrix A ∈ Rd×n,

ε, δ > 0 and k ∈ N, there exists an algorithm that outputs matrices Y,Z, such that with

probability at least 1 − δ, ‖A − YZT‖2
2 6 (1 + ε)‖A − Ak‖2

2 + ε
k
‖A − Ak‖2

F , in time

Õ (nnz(A) + (n+ d)poly(k/εδ)).

Under the Significant Singular Values condition (4), setting ε = φ in Lemma 9.4.1 implies
with probability 99/100,

1
poly(k)

n∑
i=k+1

σ2
i = 1

poly(k)‖A−Ak‖2
F 6 σ2

k+1 = ‖A−Ak‖2
2 (9.1)

and thus ‖A−YZT‖2
2 6 2‖A−Ak‖2

2. Further, the aforementioned lemma implies such a matrix
YZT can be computed in Õ (nnz(A) + (n+ d)poly(k/φ)) time. Thus the Well-Separateness
condition immediately implies that the algorithm from Lemma 9.4.1 is a spectral low-rank ap-
proximation.

Next, we show that if YZT is a good rank k spectral approximation to A, then the subspace
spanned by the columns of Y must be close to the column span of Uk, the top-k left singular
vectors of A. In fact, the subspace Y obtained via spectral low-rank approximation is a good
approximation to the subspace Uk in angular distance. The appropriate measure of angular
distance between subspaces can be formalized as the principal angle between the subspaces and

569

the corresponding sin Θ function. Wedin [Wed72] bounded the sin Θ between the SVD subspace
of a matrix and the SVD subspace of a slight perturbation of the matrix.

Theorem 187 (Wedin’s sin Θ theorem [Wed72]). Let R,S ∈ Rd×n and 0 < m 6 ` be integers.

Let Rm and Sσ` denote the subspaces spanned by the top m singular vectors of R and top `

singular vectors of S, respectively. Suppose γ = σm(R)− σ`+1(S). Then

sin Θ(Rm,Sσ`) 6
‖R − S‖2

γ
.

Bhattacharyya and Kannan [BK20c] use Wedin’s sin Θ theorem to measure the distance be-
tween the subspace Uk spanned by the top k left singular vectors of A and the subspace returned
by their iterative subspace power method. Since we create the sketch Y for Uk, we would instead
like to argue that Y and Uk are close in sin Θ distance.

Lemma 9.4.2 (Proximity of Subspace Projections). Let Y be defined as in Algorithm 13 and let

Uk be the subspace spanned by the top k left singular vectors of A. Let PY and PUk
be the

d× d projection matrices onto the row span of Y and Uk. Then ‖PY −PUk
‖2 6 1

1000k10 .

Proof. Suppose by way of contradiction that ‖PY − PUk
‖2 > 1

1000k10 . Note that since Y and
Uk are each orthonormal matrices with rank k, then

‖UkUT
k −YYT‖2

F > ‖UkUT
k −YYT‖2

2 >
1

(1000k10)2

so that

‖UkUT
k −YYT‖2

F = ‖Uk‖2
F + ‖Y‖2

F − 2‖UkYT‖2
F

= 2k − 2‖UkYT‖2
F >

1
(1000k10)2

Hence, ‖UkYT‖2
F 6 k − 1

(1000k10)2 . Now we would like to show for the sake of contradiction
that ‖A−PYA‖2 is large. Thus, for the singular value decomposition A = UΣVT , we write

‖A−PYA‖2 = ‖UTΣ−YYTUTΣ‖2

> ‖UkUTΣ−UkYYTUTΣ‖2

570

since ‖Uk‖2 6 ‖U‖2 6 1. Thus, there exist matrices C1,C2 such that

UkUTΣ−UkYYTUTΣ =
[
C1 C2

] Σk 0
0 Σn−k

 ,
where Σk is the diagonal matrix consisting of the top k singular values of A and Σn−k is the
diagonal matrix consisting of the bottom n− k singular values of A. Now we know that one of
the top k eigenvalues of UT

kYYTUk is at most 1− 1
(1000k10)2 . Thus, one of the top k eigenvalues

of Ik − C1 is at least 1
(1000k10)2 . In particular, let λ be such an eigenvalue and let x be the

corresponding unit eigenvector of I−C1. Then we have

‖UkUTΣ−UkYYTUTΣ‖2 > ‖(I−C1)Σkx‖2 > σk(A)λ >
1

(1000k10)2σk(A).

Since the Significant Singular Values assumption implies that 1
(1000k10)2σk(A) > (1+ε)σk+1(A),

this implies that ‖A−PYA‖2 > (1 + ε)σk+1(A), which contradicts the assumption that Y is a
good low-rank approximation to A. Thus we have ‖PY −PUk

‖2 6 1
1000k10 , as desired.

Our analysis proceeds via induction on the number of iterations performed by the algorithm.
Suppose our algorithm has selected t points from our approximation of the top k subspace and
these points are reasonably close to i points of the k-simplex. In the (t+ 1)-st iteration, we again
bound the sin Θ distance between YT (I−Pt), which corresponds to our approximation of the top
k subspace projected away from the selected vectors, and the actual k-simplex projected away
from the corresponding points closest to our selected vectors. This argues that we can continue
selecting random vectors in the subspace spanned by YT (I − Pt) as a close approximation to
random vectors in M(I−Pt).

We first bound the k-th singular values of the simplex vertices (M) and latent variables (P),
leveraging the Well-Separateness and Spectrally Bounded Perturbations assumptions.

Lemma 9.4.3 (Claim 8.1 in [BK20c]). If the underlying points M follow the Well-Separateness

and Spectrally Bounded Perturbation assumptions, then

σk(M) > 1000k8.5

α2
σ√
δ
, σk(P) > 995k8.5√n

α2 σ.

We can then upper bound sin Θ distance between Y and Uk as follows:

Corollary 9.4.4. Let Y be defined as in Algorithm 13 and let Uk be the subspace spanned by

571

the top k left singular vectors of A. Then sin Θ(Y,Uk) 6 1
1000k10 .

Proof. By setting m = k = ` in Theorem 187, we have

sin Θ(Y,Uk) = sin Θ(PY,PUk
)

6
‖PY −PUk

‖2

σk(Y)− σk+1(Uk)
.

By definition of σ, we have that ‖A−P‖2 6 σ
√
n. Thus, Lemma 9.4.3 implies that σk(A)� 1.

Since Y has rank k, we have σk+1(Y) = 0. By Lemma 9.4.2, sin Θ(Y,Uk) 6 ‖PY−PUk
‖2 6

1
1000k10 .

They also showed that vectors in Uk are close to the subspace M:

Lemma 9.4.5. [BK20c] Let Uk be the subspace spanned by the top k left singular vectors of

A and let R be any k-dimensional subspace of Rd with sin Θ(Uk,R) 6 α2

1001k9 . Let M be

the underlying latent k-simplex. Then for each unit vector x ∈ R, there exists a vector y ∈
Span (M) with ‖x− y‖2 6 α2

500k8.5 .

Since we have sin Θ(Y,Uk) 6 1
1000k10 from Corollary 9.4.4, then it follows from Lemma 9.4.5

and the triangle inequality of sin Θ distance that vectors in Yk are close to the subspace M:

Corollary 9.4.6. Let Y be defined as in Algorithm 13 and let R be any k-dimensional subspace

of Rd with

sin Θ(Y,R) 6 α2

1000k9 .

Let M be the underlying latent k-simplex. Then for each unit vector x ∈ R, there exists a vector

y ∈ Span (M) with ‖x− y‖2 6 α2

500k8.5 .

We then use the following structural result between the first r points selected by Algorithm
13 and the closest r points in the latent k-simplex M.

Lemma 9.4.7 (Equation 10.21 in [BK20c]). For r ∈ [k] letR1, . . . ,Rk ∈ Rd be points such that

there exist distinct `1, . . . , `r ⊆ [n] with

‖Ri −M∗,`i‖2 6
300k4

α

σ√
δ

572

Let Â = R1 ◦ . . . ◦ Rt and M̂ = M∗,`1 ◦ . . . ◦M∗,`r . Then

‖M̂− Â‖2 6
k4.5

α

σ√
δ
.

Proof. Note that the claim follows immediately from the hypothesis and applying the Cauchy-
Schwarz inequality.

We first bound the sin Θ distance between Span (M) ∩ Null(M̂) and Y(Id − Pr). This
essentially says that we can work in the subspace Y(Id −Pr) rather than Span (M) ∩ Null(M̂)
and we will not incur too much error.

Next, we prove our lemma relating angular distance of the subspace obtained in the i-th
iteration of the algorithm (Y(I−Pi)) to the optimal subspace (M(I−Pi)).

Lemma 9.4.8 (Angular Distance between Subspaces.). For some r ∈ [k], let M̂ = M∗,`1 ◦
. . . ◦M∗,`r be the matrix with r columns corresponding to vertices of the latent k-simplex M
closest to the first r points selected by Algorithm 13, AR1 , . . . ,ARr , respectively. Suppose

‖ARi −M∗,`i‖2 6 300k4

α
σ√
δ

for each i ∈ [r]. Let Pr be the projection matrix orthogonal to

AR1 , . . . ,ARr . Then,

sin Θ
(
Y(Id −Pr),Span (M) ∩ Null(M̂)

)
6

α

100k4

sin Θ
(
Span (M) ∩ Null(M̂),Y(Id −Pr)

)
6

α

100k4 .

Proof. Let y ∈ Y(Id−Pr) be a unit vector. By Corollary 9.4.6, there exists x ∈ Span (M) with

‖x− y‖2 6
α2

500k8.5 . (9.2)

Let z = x − M̂M̂†x be the component of x in Null(M̂). Note that M̂M̂† is a projection matrix
and thus ‖M̂M̂†‖2 6 1. Then we have

‖x− z‖2 6 ‖M̂M̂†(x− y)‖2 + ‖M̂M̂†y‖2

6 ‖x− y‖2 + ‖M̂(M̂TM̂)−1(M̂T − ÂT)y‖2

where Â = R1 ◦ . . . ◦ Rt so that ÂTy = 0 since Pr projects away from Â. We also have

573

‖M̂(M̂TM̂)−1‖2 = 1
σr(M̂)

. Thus by (9.2) and Lemma 9.4.7, we have

‖x− z‖2 6 ‖x− y‖2 + 1
σr(M̂)

‖(M̂T − ÂT)y‖2

6
α2

500k8.5 + k4.5σ

α
√
δσk(M̂)

.

Hence by the triangle inequality and Lemma 9.4.3, we have ‖y − z‖2 6 α
100k4 . Since y ∈

Y(Id − Pr) and z ∈ Span (M) ∩ Null(M̂), then by definition of the sin Θ distance, it follows
that sin Θ

(
Y(Id −Pr),Span (M) ∩ Null(M̂)

)
6 α

100k4 , proving the first part of the claim.

To prove the second half of the claim, it suffices to show that the dimension of Y(Id − Pr)
is k − r, since Span (M) ∩ Null(M̂) has dimension k − r and the sin Θ distance is symmetric
between two subspaces of the same dimension. By construction, Y has dimension k so that
Y(Id − Pr) has dimension at least k − r. But if Y(Id − Pr) has dimension larger than k − r,
then there exists a set of orthonormal vectors u1, . . . ,uk−r+1 ∈ Y(Id − Pr). By the first part
of the claim and the definition of the sin Θ distance, there exists a set of corresponding vectors
v1, . . . ,vk−r+1 ∈ Span (M) ∩ Null(M̂) such that ‖ui − vj‖2 <

α
100k4 . But then for a 6= b, we

have by the triangle inequality and the fact that ua · ub = 0,

|va · vb| 6 |ua · ub|+ |(va − ua) · ub|+ |va · (vb − ub)|

6
α

50k4

Similarly, since ua · ua = 1, we have

|va · va| > |ua · ua| − |(va − ua) · ua| − |va · (va − ua)|

> 1− α

50k4 .

Thus if V = v1◦. . .◦vk−r+1 ∈ Rd×k−r+1 is formed by concatenating the vectors v1, . . . ,vk−r+1,
then VTV is diagonally-dominant. Hence, VTV is nonsingular, so v1, . . . ,vk−r+1 must be lin-
early independent vectors in Span (M)∩Null(M̂), which contradicts the fact that its dimension is
k−r. Therefore, the dimension of Y(Id−Pr) must be k−r, and so sin Θ

(
Span (M) ∩ Null(M̂),Y(Id −Pr)

)
6

α
100k4 .

We now recall a structural lemma from [BK20c].

574

Lemma 9.4.9 (Claim 10.1 in [BK20c]). Let a, b /∈ {`1, . . . , `r} be distinct indices. Then

‖Proj(M∗,a −M∗,b,Null(M̂)‖2 > αmax
`
‖M∗,`‖2.

Now we need to show that our algorithm is (1) well-defined and (2) preserves the invariant
that the (i+ 1)-st point sampled from YT (I−Pi) will also be reasonably close to some different
point of the k-simplex. We show the selected procedure is well-defined in Lemma 9.4.10 by
arguing that there exists a unique solution to the maximization problem.

Lemma 9.4.10 (Optimization is Well-Defined). Let u ∈ Rd be a random unit vector in the space

of YT (Id − Pr), where Pr is the orthogonal projection to AR1 , . . . ,ARr . Then there exists a

constant c > 0 so that with probability at least 1− c/k1.5:

1. For all distinct a, b /∈ {`1, . . . , `r}, then |u · (M∗,a −M∗,b)| > 0.097
k4 αmax` ‖M∗,`‖2.

2. For all a /∈ {`1, . . . , `r}, then |u ·M∗,a| > 0.0989
k4 αmax` ‖M∗,`‖2.

Proof. For a /∈ {`1, . . . , `r}, let pa be the projection of M∗,a onto Null(M̂) and qa be the
projection of M∗,a onto Span

(
M̂
)
. By the Well-Separateness assumption, we have ‖pa‖2 >

αmax` ‖M∗,`‖2. Let wa be defined so that qa = M̂wa. Since ‖qa‖2 6 ‖M∗,a‖2 and σr(M̂) 6
σk(M), then Lemma 9.4.3 gives

‖wa‖2 6
‖qa‖2

σr(M̂)
6
‖M∗,a‖2α

2

1000k8.5

√
δ

σ
. (9.3)

Since Âu = 0, we can also write

u ·M∗,a = u · pa + u · qa
= u · Proj(pa,YT (Id −Pr)) + uT (M̂− Â)wa.

By Lemma 9.4.7, (9.3), and normalizing so that ‖u‖2 = 1, we have

|u · (M∗,a − ·Proj(pa,YT (Id −Pr)))| 6 ‖M̂− Â‖2‖wa‖2

6
α‖M∗,a‖2

1000k4 .
(9.4)

575

The same holds for u · (M∗,a −M∗,b), so that

|u · (M∗,a −M∗,b)− u · Proj(pa − pb,YT (Id −Pr))|

6
‖M∗,a −M∗,b‖2α

1000k4 .
(9.5)

Let E be the event that:

1. For all a, |u · Proj(pa,YT (Id −Pr))| > 1
10k4‖Proj(pa,YT (Id −Pr))‖2.

2. For all a 6= b, |u · Proj(pa − pb,YT (Id −Pr))| > 1
10k4‖Proj(pa − pb,YT (Id −Pr))‖2.

Note that |u · Proj(pa,YT (Id − Pr))| > 1
10k4‖Proj(pa,YT (Id − Pr))‖2 holds as long as u ·

Proj(pa,YT (Id − Pr)) 6= 0. Since the volume of the set {x ∈ YT (Id − Pr) : u · x = 0} is at
most

√
k times the volume of the unit ball {x ∈ YT (Id − Pr) : ‖x‖2 = 1}, then by taking a

union bound over at most k2 indices, it follows that E holds with probability at least 1− 1
k1.5 .

By Lemma 9.4.8, there exists p′a ∈ YT (Id − Pr) such that ‖p′a − pa‖2 6 α‖pa‖2
100k4 . Hence

for k > 2, ‖pa − Proj(pa,YT (Id − Pr))‖2 6 α‖pa‖2
100k4 6 ‖pa‖2

1600 . This implies ‖Proj(pa,YT (Id −
Pr))‖2 > 0.999‖pa‖2. Then conditioning on E ,

|u · Proj(pa,YT (Id −Pr))| >
‖Proj(pa,YT (Id −Pr))‖2

10k4

>
0.999‖pa‖2

10k4

>
0.999 max` ‖M∗,`‖2

10k4 ,

where the last inequality follows since ‖pa‖2 > ‖Proj(M∗,a,Null(M\M∗,a))‖2 > αmax` M∗,`

by the Well-Separateness assumption. Hence by (9.4), it follows that for all a /∈ {`1, . . . , `r},

|u ·M∗,a| > |u ∗ Proj(u,YT (Id −Pr))−
α‖M∗,a‖2

1000k4

>
0.0989αmax` ‖M∗,`‖2

k4 ,

which proves the second half of the claim.

576

To prove the first half of the claim, note that conditioned on E , then (9.5) implies

|u · (M∗,a −M∗,b)| > |u · Proj(pa − pb,YT (Id −Pr))|

− ‖M∗,a −M∗,b‖2α

1000k4

>
‖Proj(pa − pb,YT (Id −Pr))‖2

10k4

− ‖M∗,a −M∗,b‖2α

1000k4 .

By Lemma 9.4.8, there exists v ∈ YT (Id −Pr) such that ‖v− (pa − pb)‖2 6
α‖pa−pb‖2

100k4 . Thus,
‖Proj(pa − pb,YT (Id − Pr))‖2 > 0.99‖pa‖2 > 0.99αmax` ‖M∗,`‖2, by Lemma 9.4.9. Since
‖M∗,a−M∗,b‖2α

1000k4 6 2αmax` ‖M∗,`‖2
1000k4 , it follows that |u · (M∗,a −M∗,b)| > 0.097

k4 αmax` ‖M∗,`‖2.

We next show that the selected index is not among the previously selected indices. Thus, we
obtain a new index at each iteration, which implies that we only need k iterations.

Lemma 9.4.11. Let M̂ = M∗,`1 ◦ . . . ◦M∗,`r be the r points in the latent k-simplex M closest to

the first r points selected by Algorithm 13,R1, . . . ,Rr, respectively. Suppose

‖Ri −M∗,`i‖2 6
300k4

α

σ√
δ

for each i ∈ [r]. Let u ∈ Rd be a random unit vector in the space of YT (Id − Pr), where Pr is

the orthogonal projection toR1, . . . ,Rr. Let

`r+1 =

arg max` u ·M∗,` if u · Rr+1 > 0

arg min` u ·M∗,` if u · Rr+1 < 0
.

Then `r+1 /∈ {`1, . . . , `r}.

Proof. We consider the case u ·Rr+1 > 0 as the analysis for the case u ·Rr+1 < 0 is symmetric.
Let `r+1 = arg max` u·M∗,`. Suppose by way of contradiction that `r+1 ∈ {`1, . . . , `r}. Without
loss of generality, let `r+1 = `1. Since ‖R1 −M∗,`1‖2 6 300k4

α
σ√
δ

and u · R1, then

u ·M∗,`i‖2 6 u · Ri + 300k4

α

σ√
δ

= 300k4

α

σ√
δ
.

Since `1 = arg max` u ·M∗,`, then u ·M∗,` 6 u ·M∗,`1 for all `. Thus u · P∗,S 6 300k4

α
σ√
δ

for

577

any set of indices S ⊆ [n] inside the convex hull of M. In conjunction, Lemma 9.4.12 implies

u ·A∗,Rr+1 6 u ·P∗,Rr+1 + σ√
δ
6

(
300k4

α
+ 1

)
σ√
δ
. (9.6)

Recall that by Lemma 9.4.1, ‖A − YZT‖2
2 6 (1 + ε)‖A − Ak‖2

2 + ε
k
‖A − Ak‖2

F and thus
‖A − YZT‖ 6 (1 + 2ε)‖A − Ak‖2, given the Significant Singular Values assumption. Since
A∗,Rr+1 is a subset of δn columns of A andRr+1 is a subset of δn columns of Y, then for ε < 1,

u · Rr+1 6 u ·A∗,Rr+1 + u · (Rr+1 −A∗,Rr+1)

6

(
300k4

α
+ 1

)
σ√
δ

+ 3√
δn
‖A−Ak‖2,

where the last step follows from (9.6) and applying the Cauchy-Schwarz inequality and the fact
that u is a unit vector. Since P has rank k and Ak is the best rank k approximation to A, then
‖A−Ak‖2 6 ‖A−P‖2 so that

u · Rr+1 6

(
300k4

α
+ 1

)
σ√
δ

+ 3√
δn
‖A−P‖2,

6

(
300k4

α
+ 1

)
σ√
δ

+ 3σ√
δ

(9.7)

=
(

300k4

α
+ 4

)
σ√
δ
, (9.8)

since ‖A − P‖2 6 σ
√
n by definition of σ. However for t /∈ {`1, . . . , `r}, Lemma 9.4.12 and

the Proximate Latent Points assumption imply the existence of a set σt of δn columns such that

|u ·A∗,σt | > |u ·P∗,σt | −
σ√
δ

> |u ·M∗,t| −
5σ√
δ

>
0.0989
k4 αmax

`
‖M∗,`‖2 −

5σ√
δ
,

(9.9)

where the last step follows from Lemma 9.4.10. Moreover, σt has δn columns, so again by
applying the Cauchy-Schwarz inequality and the fact that u is a unit vector, we have

|u · (A∗,σt −Y∗,σt)| 6
1√
δn
‖A−Ak‖2

6
1√
δn
‖A−P‖2 6

3σ√
δ
.

(9.10)

578

where the last two inequalities come from the fact that P has rank k and ‖A − P‖2 6 σ
√
n by

definition of σ.

Thus from (9.9) and (9.10),

|u ·Y∗,σt | > |u ·A∗,σt | − |u · (A∗,σt −Y∗,σt)|

>
0.0989
k4 αmax

`
‖M∗,`‖2 −

8σ√
δ
.

However by the Spectrally Bounded Perturbation assumption, we have |u ·Y∗,σt | > 2400k5

α
σ√
δ
−

8σ√
δ
, which contradicts the maximality ofRr+1 in (9.8). Therefore, it holds that `r+1 /∈ {`1, . . . , `r}.

Before showing that the selected index completes the inductive step, we recall the following:

Lemma 9.4.12 (Lemma 3.1 in [BK20c]). For a subset S ⊆ [n], let A∗,S = 1
|S|
∑
i∈S A∗,i. For all

S ⊆ [n], |A∗,S −P∗,S| 6 σ
√
n/|S|.

We then show that the algorithm preserves the aforementioned invariant by showing that the
unique solution ARi cannot correspond to one of the vertices of the k-simplex that have been
found in the first i rounds, thus proving that we find a solution ARi that corresponds to a new
vertex of M. We then show ARi is close to the new vertex of M, preserving the inductive
hypothesis.

Lemma 9.4.13 (Recovery Guarantees). Let M̂ = M∗,`1 ◦ . . . ◦M∗,`r be the r points in the latent

k-simplex M closest to the first r points selected by Algorithm 13, R1, . . . ,Rr, respectively.

Suppose

‖Ri −M∗,`i‖2 6
300k4

α

σ√
δ

for each i ∈ [r]. Let u ∈ Rd be a random unit vector in the space of YT (Id − Pr), where Pr is

the orthogonal projection toR1, . . . ,Rr. Let

`r+1 =

arg max` u ·M∗,` if u · Rr+1 > 0

arg min` u ·M∗,` if u · Rr+1 < 0
.

Then

‖Rr+1 −M∗,`r+1‖2 6
300k4

α

σ√
δ
.

579

Proof. We consider the case u ·Rr+1 > 0 as the analysis for the case u ·Rr+1 < 0 is symmetric.
Let `r+1 = arg max` u ·M∗,`. By Lemma 9.4.11, we have `r+1 /∈ {`1, . . . , `r}. Thus applying
Lemma 9.4.10,

u ·M∗,`r+1 >
0.0989
k4 αmax

`
‖M∗,`‖. (9.11)

By the Proximate Latent Points assumption, there exists a set σ`r+1 of size δn so that ‖P∗,j −
M∗,`r+1‖2 6 4σ√

δ
for all j ∈ σ`r+1 so that ‖P∗,σ`r+1

−M∗,`r+1‖2 6 4σ√
δ
. Then by Lemma 9.4.12,

u ·A∗,σ`r+1
> u ·P∗,σ`r+1

− σ√
δ
> u ·M∗,`r+1 −

5σ√
δ
.

By the same reasoning as 9.10, we have ‖Rr+1 −A∗,σ`r+1
‖2 6 3σ√

δ
and thus,

u · Rr+1 > u ·M∗,`r+1 −
8σ√
δ
. (9.12)

Now for any a /∈ {`1, . . . , `r+1}, Lemma 9.4.10 says

u ·M∗,a 6 u ·M∗,`r+1 −
0.097
k4 αmax

`
‖M∗,`‖2. (9.13)

Similarly, for a ∈ {`1, . . . , `r}, we have ‖Ra −M∗,a‖ 6 300k4

α
σ√
δ

by the inductive hypothesis.
Since u · Ra = 0, then

u ·M∗,a 6 u · Ra + 300k4

α

σ√
δ

= 300k4

α

σ√
δ

6 u ·M∗,`r+1 −
0.0989
k4 αmax

`
‖M∗,`‖

+ 300k4

α

σ√
δ

by (9.11). Thus by the Spectrally Bounded Perturbation assumption,

u ·M∗,a 6 u ·M∗,`r+1 −
0.097
k4 αmax

`
‖M∗,`‖ (9.14)

Since P∗,Rr+1 is a convex combination of the columns of M, there exists a vector w such that

580

P∗,Rr+1 = Mw. Then by the same reasoning as 9.10 and Lemma 9.4.12,

u · Rr+1 6 u ·A∗,Rr+1 + 3σ√
δ
6 u ·P∗,Rr+1 + 3σ√

δ
+ 4σ√

δ

6 w`r+1(u ·M∗,`r+1)+∑
a6=`r+1

wa

(
(u ·M∗,`r+1 −

0.097
k4 αmax

`
‖M∗,`‖2

)

+ 4σ√
δ
,

where the last line follows from decomposing M and applying (9.13) and (9.14) to M∗,a for
a 6= `r+1. Hence,

u · Rr+1 6 u ·M∗,`r+1 −
0.097αmax` ‖M∗,`‖2(1− w`r+1)

k4

+ 4σ√
δ
.

Combining with (9.12), we have

(1− w`r+1) max
`
‖M∗,`‖2 6

12σ√
δ

k4

0.097α 6
124k4

α

σ√
δ
.

Thus,

‖P∗,Rr+1 −M∗,`r+1‖2 = ‖(w`r+1 − 1)M∗,`r+1

+
∑

a6=`r+1

waM∗,a‖

6
∑

a6=`r+1

wa‖M∗,`r+1 −M∗,a‖2

6 2(1− w`r+1) max
`
‖M∗,`‖2

6
248k4

α

σ√
δ
.

581

Finally from the triangle inequality and Lemma 9.4.12, we have

‖Rr+1 −M∗,`r+1‖2 6 ‖Rr+1 −P∗,Rr+1‖2

+ ‖P∗,Rr+1 −M∗,`r+1‖2

6
3σ√
δ

+ 248k4

α

σ√
δ

6
300k4

α

σ√
δ
.

9.5 Connection to Spectral Low-Rank Approximation

In this section, we show that learning a latent simplex is closely related to computing a spec-
tral low-rank approximation. Spectral low-rank approximation is a fundamental primitive for
algorithm design and numerical linear algebra and the best known algorithm for computing a
(1 + ε)-approximation is O(nnz(A) · k) [MM15]. A major open question in randomized linear
algebra is to determine whether the dependence on k in the running time is necessary for spectral
low-rank approximation.

We show that for a candidate hard distribution over the input, determined by a Stochas-
tic Block Model (with appropriate parameters) satisfying Well-Separateness1, Proximate Latent
Points2 and Spectrally Bounded Perturbations3, an algorithm for learning a latent simplex re-
quiring o(nnz(A) · k) time also recovers a spectral low-rank approximation for the input. One
way to interpret this statement is that improving the running time for learning a latent simplex
under the same assumptions as [BK20c] would likely lead to a major algorithmic breakthrough
for spectral low-rank approximation.

Theorem 188 (Spectral LRA to Latent Simplex). Given k ∈ [n], let S1,S2 . . . ,Sk be a par-

tition of [n] such that for all ` ∈ [k], |S`| = n/k. Consider a stochastic block model with k

communities, S1, . . . ,Sk such that for all i ∈ S` and j ∈ S`′ , the probability of an edge (i, j)
is p = poly(k)/n1/8 when ` = `′ and q = p/10 otherwise. Let A be a matrix drawn from

the aforementioned model such that Ai,j = 1 if there exists an edge between (i, j) and 0 oth-

erwise. Then any algorithm that learns the simplex also recovers a rank k matrix B such that

‖A−B‖2
2 6 ‖A−Ak‖2

2 + 1
n1/3‖A−Ak‖2

F .

582

Proof. Let PB be the projection matrix onto the column span of the output matrix B. We show
that A−PB is a good mixed spectral-Frobenius low-rank approximation to A.

‖A−PBA‖2 6 ‖A−P + P‖2‖I−PB‖2

6 ‖A−P‖2‖I−PB‖2 + P‖2‖I−PB‖2

6 ‖A−P‖2 + ‖P‖2‖I−PB‖2.

From the definition of σ, we have ‖A − P‖2 6 σ
√
n. For the specific stochastic block model,

we have σ 6
√
p(1− p), e.g., see [Awa17]. Moreover, the algorithm of [BK20c] guarantees

specifically in their Theorem 7.2 that ‖I − PB‖2 6 C1k4.5d1/8

n1/4 for some constant C1 > 0. Since
‖P‖F > ‖P‖2 and ‖P‖2

F 6 C2p
2nd for some constant C2 > 0 with high probability, then we

have

‖A−PBA‖2 6
√
p(1− p)n+ C1k

4.5d1/8√C2p2nd

n1/4

6
√
pn+ C1pk

4.5d5/8
√
C2n

1/4.

On the other hand, we have ‖A−Ak‖2
F > ‖A‖2

F−k‖A‖2
2. As before, we have ‖P‖2 6 p

√
C2nd,

so that
‖A‖2 6 ‖P‖2 + ‖A−P‖2 6 p

√
C2nd+

√
p(1− p)n.

Moreover, we have ‖A‖F > C3
√
qnd for some constant C3 > 0 with high probability. Hence

for q > C4p
2 with a sufficiently high constant C4, we have

‖A−Ak‖2
F > C5qnd,

for some C5 > 0. Let p = O(q) and d = n1/C for some constant C > 3 so that k4.5d5/8 =
o(n1/4). Since ‖A−PBA‖2

2 6 C6pn for some constant C6, then

‖A−PBA‖2
2 6 C6pn 6

C5

n1/C qnd = O
(1
n1/C

)
‖A−Ak‖2

F

6 ‖A−Ak‖2
2 +O

(1
n1/C

)
‖A−Ak‖2

F .

Taking C = 3 gives the desired claim.

583

9.6 Empirical Evaluation

In this section, we describe a series of experiments that demonstrate the advantage of our algo-
rithm, performed in Python 3.6.9 on an Intel Core i7-8700K 3.70 GHz CPU with 12 cores and
64GB DDR4 memory, using an Nvidia Geforce GTX 1080 Ti 11GB GPU, on both synthetic
and real-world data. Whereas previous work requires computing the top k subspace as a pre-
processing step, our main improvement is that we only require a crude approximation. Thus we
compared the running times for finding the top k subspace as required by [BK20c] to finding
a mixed spectral-Frobenius approximation using an input sparsity algorithm, as required by our
algorithm. For the former, we use the svds method from the sparse scipy linalg package opti-
mized by LAPACK. For the latter, [CEM+15, CMM17] show that using a sparse CountSketch
matrix [CW13, MM13a, NN13b], i.e., a matrix with O(k2) columns and a single nonzero entry
in each row that is in a random location and is a random sign, suffices to obtain a mixed spectral-
Frobenius guarantee; we evaluate such a matrix with exactly k2 columns. Across all parameters
and datasets, the input sparsity procedure used by our algorithm significantly outperforms the
optimized power iteration methods required by [BK20c].

Synthetic Data. Since our theoretical results are most interesting when k � d � n, we set
n = 50000, d = 1000, k ∈ {20, 50, 100} and generate a random d× n matrix A that consists of
independent entries that are each 1 with probability p ∈

{
1

500 ,
1

2000 ,
1

5000

}
and 0 with probability

1−p. In Figure 9.1, we report the average running time of both algorithms, among 5 independent
runs for each choice of p and k.

Mean Runtime of Algorithms across Parameters p = 1/500 p = 1/2000 p = 1/5000
Top k Subspace, k = 20 35.056s 29.725s 16.45s

Input Sparsity Approximation, k = 20 0.595s 0.329s 0.83s
Top k Subspace, k = 50 56.146s 54.613s 53.213s

Input Sparsity Approximation, k = 50 0.658s 0.657s 0.434s
Top k Subspace, k = 100 78.420s 79.410s 71.424s

Input Sparsity Approximation, k = 100 0.501s 0.387s 0.440s

Figure 9.1: Mean runtime comparison of algorithms across parameters on synthetic data.

Social Networks. We also evaluate the algorithms on the email-Eu-core network

dataset of interactions across email data between individuals from a large European research
institution [YBLG17, LKF07] and the com-Youtube dataset of friendships on the Youtube
social network [YL15], both accessed through the Stanford Network Analysis Project (SNAP).
In the former, there are n = d = 1005 nodes in the adjacency matrix over 25571 total edges,

584

forming k = 42 communities. In the latter, there are 1134890 nodes with 8385 communities,
from which we extract a d× n matrix with n = 100000, d = 1000 to represent a bipartite graph,
as described in both Section 9.2.2 and [BK20c]. In Figure 9.2, we report the running time of
both algorithms across each dataset among choices of k ∈ {20, 50, 100}. We observe that the
resulting matrix has sparsity roughly 1000, which is consistent with p ≈ 1

n
and is much less than

the sparsity parameters tested in our synthetic data.

email-Eu-core network com-Youtube
Top k Subspace, k = 20 0.387s 5.713s

Input Sparsity Approximation, k = 20 0.005s 0.379s
Top k Subspace, k = 50 0.556s 16.711s

Input Sparsity Approximation, k = 50 0.003s 0.373s
Top k Subspace, k = 100 1.281s 41.788s

Input Sparsity Approximation, k = 100 0.003s 0.366s

Figure 9.2: Mean runtime comparison of algorithms across parameters on real-world data.

Finally, we consider a full end-to-end implementation comparing the runtime and least squares
loss of the top k subspace algorithm and our input sparsity approximation algorithm over various
ranges of the parameter k and smoothening parameter δn on the com-Youtube dataset, from
which we randomly extract an n×dmatrix, with n = 20000 and d = 1000 to represent a bipartite
graph. Our results in Figure 9.3 show that our algorithm not only significantly outperforms the
top k subspace algorithm in runtime, but also produces solutions with lower least squared loss.

0 5 10 15 20 25 300

300

600

900

1,200

1,500

1,800

2,100

Number of communities (k), with δn = 10

L
ea

st
Sq

ua
re

d
L

os
s

0 5 10 15 20 25 300

300

600

900

1,200

1,500

1,800

2,100

Smoothening parameter (δn), with k = 20

L
ea

st
Sq

ua
re

d
L

os
s

0 5 10 15 20 25 300
1
2
3
4
5
6
7
8
9

Number of communities (k), with δn = 10

R
un

tim
e

Figure 9.3: Comparison of least squares loss by power iteration algorithm (in blue triangles)
and by our algorithm (in red circles), over various ranges of the parameter k with smoothening
parameter δn = 10, and over various ranges of δn with k = 20, on the com-Youtube dataset.
Also runtime comparison over a range of k, with δn = 10.

585

586

Bibliography

[AAK21] Naman Agarwal, Pranjal Awasthi, and Satyen Kale. A deep conditioning treatment
of neural networks. In Algorithmic Learning Theory, pages 249–305. PMLR,
2021.

[ABB+19] Pranjal Awasthi, Ainesh Bakshi, Maria-Florina Balcan, Colin White, and David P
Woodruff. Robust communication-optimal distributed clustering algorithms.
In 46th International Colloquium on Automata, Languages, and Programming

(ICALP 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[ABEF14] Edoardo M. Airoldi, David M. Blei, Elena A. Erosheva, and Stephen E. Fienberg.
Introduction to mixed membership models and methods, 2014.

[ABFX08] Edoardo M. Airoldi, David M. Blei, Stephen E. Fienberg, and Eric P. Xing. Mixed
membership stochastic blockmodels. J. Mach. Learn. Res., 9:1981–2014, June
2008.

[ABGM14] Sanjeev Arora, Aditya Bhaskara, Rong Ge, and Tengyu Ma. Provable bounds
for learning some deep representations. In International Conference on Machine

Learning, pages 584–592, 2014.

[ABMM16] Raman Arora, Amitabh Basu, Poorya Mianjy, and Anirbit Mukherjee. Un-
derstanding deep neural networks with rectified linear units. arXiv preprint

arXiv:1611.01491, 2016.

[ACW17] Haim Avron, Kenneth L. Clarkson, and David P. Woodruff. Sharper bounds for
regularized data fitting, 2017.

[AFKM01] Dimitris Achlioptas, Amos Fiat, Anna R Karlin, and Frank McSherry. Web search
via hub synthesis. In Proceedings 42nd IEEE Symposium on Foundations of Com-

puter Science, pages 500–509. IEEE, 2001.

[AGGR98] Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, and Prabhakar Ragha-
van. Automatic subspace clustering of high dimensional data for data mining

587

applications. In Proceedings of the 1998 ACM SIGMOD international conference

on Management of data, pages 94–105, 1998.

[AGGR05] Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, and Prabhakar Ragha-
van. Automatic subspace clustering of high dimensional data. Data Mining and

Knowledge Discovery, 11(1):5–33, 2005.

[AGGS17] Nima Anari, Leonid Gurvits, Shayan Oveis Gharan, and Amin Saberi. Simply
exponential approximation of the permanent of positive semidefinite matrices. In
2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS),
pages 914–925. IEEE, 2017.

[AGH+13a] Sanjeev Arora, Rong Ge, Yonatan Halpern, David Mimno, Ankur Moitra, David
Sontag, Yichen Wu, and Michael Zhu. A practical algorithm for topic model-
ing with provable guarantees. In International Conference on Machine Learning,
pages 280–288. PMLR, 2013.

[AGH+13b] Sanjeev Arora, Rong Ge, Yoni Halpern, David Mimno, Ankur Moitra, David Son-
tag, Yichen Wu, and Michael Zhu. A practical algorithm for topic modeling with
provable guarantees. In Proceedings of the 30th International Conference on Ma-

chine Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013, 2013.

[AGHK14a] Animashree Anandkumar, Rong Ge, Daniel Hsu, and Sham M Kakade. A ten-
sor approach to learning mixed membership community models. The Journal of

Machine Learning Research, 15(1):2239–2312, 2014.

[AGHK14b] Animashree Anandkumar, Rong Ge, Daniel J. Hsu, and Sham M. Kakade. A
tensor approach to learning mixed membership community models. Journal of

Machine Learning Research, 15(1):2239–2312, 2014.

[AGMR17] Sanjeev Arora, Rong Ge, Tengyu Ma, and Andrej Risteski. Provable learning of
noisy-or networks. In Proceedings of the 49th Annual ACM SIGACT Symposium

on Theory of Computing, pages 1057–1066. ACM, 2017.

[AGMS12] Sanjeev Arora, Rong Ge, Ankur Moitra, and Sushant Sachdeva. Provable ica
with unknown gaussian noise, with implications for gaussian mixtures and autoen-
coders. In Advances in Neural Information Processing Systems, pages 2375–2383,
2012.

[AK05] Sanjeev Arora and Ravi Kannan. Learning mixtures of separated nonspherical
gaussians. The Annals of Applied Probability, 15(1A):69–92, 2005.

[AK12] Koenraad MR Audenaert and Fuad Kittaneh. Problems and conjectures in matrix

588

and operator inequalities. arXiv preprint arXiv:1201.5232, 2012.

[ALN07] Sanjeev Arora, James R Lee, and Assaf Naor. Fréchet embeddings of negative
type metrics. Discrete & Computational Geometry, 38(4):726–739, 2007.

[ALN08] Sanjeev Arora, James Lee, and Assaf Naor. Euclidean distortion and the sparsest
cut. Journal of the American Mathematical Society, 21(1):1–21, 2008.

[AM05] Dimitris Achlioptas and Frank McSherry. On spectral learning of mixtures of
distributions. In International Conference on Computational Learning Theory,
pages 458–469. Springer, 2005.

[AM15] Ahmed Alaoui and Michael W Mahoney. Fast randomized kernel ridge regres-
sion with statistical guarantees. In Advances in Neural Information Processing

Systems, pages 775–783, 2015.

[AN13] Alexandr Andoni and Huy L. Nguyen. Eigenvalues of a matrix in the streaming
model. In Proceedings of the twenty-fourth annual ACM-SIAM symposium on

Discrete algorithms, pages 1729–1737. Society for Industrial and Applied Math-
ematics, 2013.

[Ara90] Huzihiro Araki. On an inequality of Lieb and Thirring. LMaPh, 19(2):167–170,
1990.

[ARV09] Sanjeev Arora, Satish Rao, and Umesh Vazirani. Expander flows, geometric em-
beddings and graph partitioning. Journal of the ACM (JACM), 56(2):5, 2009.

[AS12] Pranjal Awasthi and Or Sheffet. Improved spectral-norm bounds for clustering.
CoRR, abs/1206.3204, 2012.

[Ash] Robert B. Ash. Lecture notes 21-25 in statistics, finding the den-
sity. https://faculty.math.illinois.edu/~r-ash/Stat/

StatLec21-25.pdf.

[ATV21] Pranjal Awasthi, Alex Tang, and Aravindan Vijayaraghavan. Efficient algorithms
for learning depth-2 neural networks with general relu activations. Advances in

Neural Information Processing Systems, 34:13485–13496, 2021.

[Aud08] Koenraad MR Audenaert. On a norm compression inequality for 2× N partitioned
block matrices. Linear algebra and its applications, 428(4):781–795, 2008.

[Avr10] Haim Avron. Counting triangles in large graphs using randomized matrix trace
estimation. In Workshop on Large-scale Data Mining: Theory and Applications,
volume 10, pages 10–9, 2010.

589

https://faculty.math.illinois.edu/~r-ash/Stat/StatLec21-25.pdf
https://faculty.math.illinois.edu/~r-ash/Stat/StatLec21-25.pdf

[Awa17] Pranjal Awasthi. Cs 598: Theoretical machine learning lecture notes, 2017.
https://www.cs.rutgers.edu/~pa336/mlt_f17/lec-14.pdf.

[AY00] Charu C Aggarwal and Philip S Yu. Finding generalized projected clusters in high
dimensional spaces. In Proceedings of the 2000 ACM SIGMOD international

conference on Management of data, pages 70–81, 2000.

[AZL19] Zeyuan Allen-Zhu and Yuanzhi Li. What can resnet learn efficiently, going beyond
kernels? Advances in Neural Information Processing Systems, 32, 2019.

[Bar] Boaz Barak. Proofs, beliefs, and algorithms through the lens of sum-of-squares.

[BBB+19] Frank Ban, Vijay Bhattiprolu, Karl Bringmann, Pavel Kolev, Euiwoong Lee, and
David P Woodruff. A PTAS for lp-low rank approximation. In Proceedings of the

Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 747–766.
SIAM, 2019.

[BBK+21a] Ainesh Bakshi, Chiranjib Bhattacharyya, Ravi Kannan, David Woodruff, and
Samson Zhou. Learning a latent simplex in input sparsity time. In International

Conference on Learning Representations, 2021.

[BBK+21b] Ainesh Bakshi, Chiranjib Bhattacharyya, Ravi Kannan, David P Woodruff, and
Samson Zhou. Learning a latent simplex in input-sparsity time. arXiv preprint

arXiv:2105.08005, 2021.

[BBV08] Maria-Florina Balcan, Avrim Blum, and Santosh Vempala. A discriminative
framework for clustering via similarity functions. In Proceedings of the fortieth

annual ACM symposium on Theory of computing, pages 671–680, 2008.

[BCJ20] Ainesh Bakshi, Nadiia Chepurko, and Rajesh Jayaram. Testing positive semi-
definiteness via random submatrices. In 2020 IEEE 61st Annual Symposium on

Foundations of Computer Science (FOCS), pages 1191–1202. IEEE, 2020.

[BCMV14] Aditya Bhaskara, Moses Charikar, Ankur Moitra, and Aravindan Vijayaraghavan.
Smoothed analysis of tensor decompositions. In Proceedings of the forty-sixth

annual ACM symposium on Theory of computing, pages 594–603, 2014.

[BCPV19] Aditya Bhaskara, Aidao Chen, Aidan Perreault, and Aravindan Vijayaraghavan.
Smoothed analysis in unsupervised learning via decoupling. In 2019 IEEE 60th

Annual Symposium on Foundations of Computer Science (FOCS), pages 582–610.
IEEE, 2019.

[BCW19] Ainesh Bakshi, Nadiia Chepurko, and David P Woodruff. Weighted maxi-
mum independent set of geometric objects in turnstile streams. arXiv preprint

590

https://www.cs.rutgers.edu/~pa336/mlt_f17/lec-14.pdf

arXiv:1902.10328, 2019.

[BCW20a] Ainesh Bakshi, Nadiia Chepurko, and David P Woodruff. Robust and sample
optimal algorithms for psd low rank approximation. In 2020 IEEE 61st Annual

Symposium on Foundations of Computer Science (FOCS), pages 506–516. IEEE,
2020.

[BCW20b] Ainesh Bakshi, Nadiia Chepurko, and David P Woodruff. Robust and sample
optimal algorithms for PSD low rank approximation. In 2020 IEEE 61st Annual

Symposium on Foundations of Computer Science (FOCS), pages 506–516. IEEE,
2020.

[BCW22] Ainesh Bakshi, Kenneth L Clarkson, and David P Woodruff. Low-rank approx-
imation with 1/ε1/3 matrix-vector products. In Proceedings of the 54th Annual

ACM SIGACT Symposium on Theory of Computing, pages 1130–1143, 2022.

[BDH+20] Ainesh Bakshi, Ilias Diakonikolas, Samuel B Hopkins, Daniel Kane, Sushrut Kar-
malkar, and Pravesh K Kothari. Outlier-robust clustering of gaussians and other
non-spherical mixtures. In 2020 IEEE 61st Annual Symposium on Foundations of

Computer Science (FOCS), pages 149–159. IEEE, 2020.

[BDJ+22] Ainesh Bakshi, Ilias Diakonikolas, He Jia, Daniel M Kane, Pravesh K Kothari, and
Santosh S Vempala. Robustly learning mixtures of k arbitrary gaussians. In Pro-

ceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing,
pages 1234–1247, 2022.

[BDL18] Digvijay Boob, Santanu S Dey, and Guanghui Lan. Complexity of training relu
neural network. arXiv preprint arXiv:1809.10787, 2018.

[BDN15] Jean Bourgain, Sjoerd Dirksen, and Jelani Nelson. Toward a unified theory of
sparse dimensionality reduction in euclidean space. In Proceedings of the Forty-

Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, Port-

land, OR, USA, June 14-17, 2015, pages 499–508, 2015.

[BFG96] Zhaojun Bai, Gark Fahey, and Gene Golub. Some large-scale matrix computation
problems. Journal of Computational and Applied Mathematics, 74(1-2):71–89,
1996.

[BG17] Alon Brutzkus and Amir Globerson. Globally optimal gradient descent for a con-
vnet with gaussian inputs. arXiv preprint arXiv:1702.07966, 2017.

[Bha13] Rajendra Bhatia. Matrix analysis, volume 169. Springer Science & Business
Media, 2013.

591

[BHSW20] Mark Braverman, Elad Hazan, Max Simchowitz, and Blake Woodworth. The
gradient complexity of linear regression. In Conference on Learning Theory, pages
627–647. PMLR, 2020.

[BJ03] David M Blei and Michael I Jordan. Modeling annotated data. In Proceedings of

the 26th annual international ACM SIGIR conference on Research and develop-

ment in informaion retrieval, pages 127–134, 2003.

[BJW19] Ainesh Bakshi, Rajesh Jayaram, and David P Woodruff. Learning two layer rec-
tified neural networks in polynomial time. In Conference on Learning Theory,
pages 195–268. PMLR, 2019.

[BK20a] Ainesh Bakshi and Pravesh Kothari. List-decodable subspace recovery via sum-
of-squares. arXiv preprint arXiv:2002.05139, 2020.

[BK20b] Ainesh Bakshi and Pravesh Kothari. Outlier-robust clustering of non-spherical
mixtures. arXiv preprint arXiv:2005.02970, 2020.

[BK20c] Chiranjib Bhattacharyya and Ravindran Kannan. Finding a latent k-simplex in O*
(k · nnz(data)) time via subset smoothing. In Proceedings of the 2020 ACM-SIAM

Symposium on Discrete Algorithms, pages 122–140. SIAM, 2020.

[BK20d] Chiranjib Bhattacharyya and Ravindran Kannan. Finding a latent k–simplex in
o*(k· nnz (data)) time via subset smoothing. In Proceedings of the Fourteenth

Annual ACM-SIAM Symposium on Discrete Algorithms, pages 122–140. SIAM,
2020.

[BK21] Ainesh Bakshi and Pravesh K Kothari. List-decodable subspace recovery: Dimen-
sion independent error in polynomial time. In Proceedings of the 2021 ACM-SIAM

Symposium on Discrete Algorithms (SODA), pages 1279–1297. SIAM, 2021.

[BKKS19] Vladimir Braverman, Robert Krauthgamer, Aditya Krishnan, and Roi Sinoff.
Schatten norms in matrix streams: Hello sparsity, goodbye dimension. arXiv

preprint arXiv:1907.05457, 2019.

[BKL02] Rajendra Bhatia, William Kahan, and Ren-Cang Li. Pinchings and norms of scaled
triangular matrices. Linear and Multilinear Algebra, 50(1):15–21, 2002.

[BKS15] Boaz Barak, Jonathan A Kelner, and David Steurer. Dictionary learning and tensor
decomposition via the sum-of-squares method. In Proceedings of the forty-seventh

annual ACM symposium on Theory of computing, pages 143–151, 2015.

[BKS17] Boaz Barak, Pravesh K Kothari, and David Steurer. Quantum entanglement, sum
of squares, and the log rank conjecture. In Proceedings of the 49th Annual ACM

592

SIGACT Symposium on Theory of Computing, pages 975–988, 2017.

[BL06a] David Blei and John Lafferty. Correlated topic models. Advances in neural infor-

mation processing systems, 18:147, 2006.

[BL06b] David M Blei and John D Lafferty. Dynamic topic models. In Proceedings of the

23rd international conference on Machine learning, pages 113–120, 2006.

[Ble12] David M. Blei. Probabilistic topic models. Commun. ACM, 55(4):77–84, 2012.

[BM16] Boaz Barak and Ankur Moitra. Noisy tensor completion via the sum-of-squares
hierarchy. In Conference on Learning Theory, pages 417–445, 2016.

[BNJ03] David Blei, Andrew Ng, and Michael Jordan. Latent Dirichlet allocation. Journal

of Machine Learning Research, 3:993–1022, 2003.

[BP21] Ainesh Bakshi and Adarsh Prasad. Robust linear regression: Optimal rates in
polynomial time. In Proceedings of the 53rd Annual ACM SIGACT Symposium on

Theory of Computing (STOC), pages 102–115, 2021.

[BR92] Avrim Blum and Ronald L. Rivest. Training a 3-node neural network is np-
complete. Neural Networks, 5(1):117–127, 1992.

[Bry12] Wlodzimierz Bryc. The normal distribution: characterizations with applications,
volume 100. Springer Science & Business Media, 2012.

[BS15] Mikhail Belkin and Kaushik Sinha. Polynomial learning of distribution families.
SIAM Journal on Computing, 44(4):889–911, 2015.

[BV04] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge uni-
versity press, 2004.

[BV08] S Charles Brubaker and Santosh S Vempala. Isotropic pca and affine-invariant
clustering. In Building Bridges, pages 241–281. Springer, 2008.

[BW18] Ainesh Bakshi and David Woodruff. Sublinear time low-rank approximation of
distance matrices. In Advances in Neural Information Processing Systems, pages
3782–3792, 2018.

[BWZ16] Christos Boutsidis, David P Woodruff, and Peilin Zhong. Optimal principal com-
ponent analysis in distributed and streaming models. In Proceedings of the forty-

eighth annual ACM symposium on Theory of Computing, pages 236–249, 2016.

[BWZ19] Frank Ban, David Woodruff, and Qiuyi Zhang. Regularized weighted low rank
approximation. arXiv preprint arXiv:1911.06958, 2019.

[BY02] Ziv Bar-Yossef. The complexity of massive data set computations. PhD thesis,

593

University of California, Berkeley, 2002.

[CAT+20] Yeshwanth Cherapanamjeri, Efe Aras, Nilesh Tripuraneni, Michael I Jordan,
Nicolas Flammarion, and Peter L Bartlett. Optimal robust linear regression in
nearly linear time. arXiv preprint arXiv:2007.08137, 2020.

[CCH+20] Nadiia Chepurko, Kenneth L Clarkson, Lior Horesh, Honghao Lin, and David P
Woodruff. Quantum-inspired algorithms from randomized numerical linear alge-
bra. arXiv preprint arXiv:2011.04125, 2020.

[CEM+15] Michael B Cohen, Sam Elder, Cameron Musco, Christopher Musco, and Madalina
Persu. Dimensionality reduction for k-means clustering and low rank approxima-
tion. In Proceedings of the forty-seventh annual ACM symposium on Theory of

computing, pages 163–172. ACM, 2015.

[CFZ99] Chun-Hung Cheng, Ada Waichee Fu, and Yi Zhang. Entropy-based subspace
clustering for mining numerical data. In Proceedings of the fifth ACM SIGKDD

international conference on Knowledge discovery and data mining, pages 84–93,
1999.

[CG92] Gilles Celeux and Gérard Govaert. A classification em algorithm for clustering and
two stochastic versions. Computational statistics & Data analysis, 14(3):315–332,
1992.

[CGKM22] Sitan Chen, Aravind Gollakota, Adam R Klivans, and Raghu Meka. Hard-
ness of noise-free learning for two-hidden-layer neural networks. arXiv preprint

arXiv:2202.05258, 2022.

[CGR05] Shuchi Chawla, Anupam Gupta, and Harald Räcke. Embeddings of negative-type
metrics and an improved approximation to generalized sparsest cut. In Proceed-

ings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms, pages
102–111. Society for Industrial and Applied Mathematics, 2005.

[CK98] João Paulo Costeira and Takeo Kanade. A multibody factorization method
for independently moving objects. International Journal of Computer Vision,
29(3):159–179, 1998.

[CKM+11] Paul Christiano, Jonathan A Kelner, Aleksander Madry, Daniel A Spielman, and
Shang-Hua Teng. Electrical flows, laplacian systems, and faster approximation
of maximum flow in undirected graphs. In Proceedings of the forty-third annual

ACM symposium on Theory of computing, pages 273–282. ACM, 2011.

[CKM22] Sitan Chen, Adam R Klivans, and Raghu Meka. Learning deep relu networks is

594

fixed-parameter tractable. In 2021 IEEE 62nd Annual Symposium on Foundations

of Computer Science (FOCS), pages 696–707. IEEE, 2022.

[CLL+10] Pei-Chun Chen, Kuang-Yao Lee, Tsung-Ju Lee, Yuh-Jye Lee, and Su-Yun Huang.
Multiclass support vector classification via coding and regression. Neurocomput-

ing, 73(7-9):1501–1512, 2010.

[CLM+15] Michael B Cohen, Yin Tat Lee, Cameron Musco, Christopher Musco, Richard
Peng, and Aaron Sidford. Uniform sampling for matrix approximation. In Pro-

ceedings of the 2015 Conference on Innovations in Theoretical Computer Science,
pages 181–190. ACM, 2015.

[CLMW11] Emmanuel J Candès, Xiaodong Li, Yi Ma, and John Wright. Robust principal
component analysis? Journal of the ACM (JACM), 58(3):1–37, 2011.

[CLW18] Nai-Hui Chia, Han-Hsuan Lin, and Chunhao Wang. Quantum-inspired sub-
linear classical algorithms for solving low-rank linear systems. arXiv preprint

arXiv:1811.04852, 2018.

[CMM17] Michael B. Cohen, Cameron Musco, and Christopher Musco. Input sparsity time
low-rank approximation via ridge leverage score sampling. In Proceedings of

the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA

2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 1758–1777, 2017.

[CMTV17] Michael B Cohen, Aleksander Madry, Dimitris Tsipras, and Adrian Vladu. Ma-
trix scaling and balancing via box constrained newton’s method and interior point
methods. In Foundations of Computer Science (FOCS), 2017 IEEE 58th Annual

Symposium on, pages 902–913. IEEE, 2017.

[CNW15] Michael B Cohen, Jelani Nelson, and David P Woodruff. Optimal approximate
matrix product in terms of stable rank. arXiv preprint arXiv:1507.02268, 2015.

[Coh16] Michael B Cohen. Nearly tight oblivious subspace embeddings by trace inequali-
ties. In Proceedings of the twenty-seventh annual ACM-SIAM symposium on Dis-

crete algorithms, pages 278–287. SIAM, 2016.

[Com94] Pierre Comon. Independent component analysis, a new concept? Signal process-

ing, 36(3):287–314, 1994.

[Con] Keith Conrad. Expository papers: Universal identities. http://www.math.

uconn.edu/~kconrad/blurbs/linmultialg/univid.pdf.

[CP10] Emmanuel J Candes and Yaniv Plan. Matrix completion with noise. Proceedings

of the IEEE, 98(6):925–936, 2010.

595

http://www.math.uconn.edu/~kconrad/blurbs/linmultialg/univid.pdf
http://www.math.uconn.edu/~kconrad/blurbs/linmultialg/univid.pdf

[CR07] Emmanuel Candes and Justin Romberg. Sparsity and incoherence in compressive
sampling. Inverse problems, 23(3):969, 2007.

[CR09] Emmanuel J Candès and Benjamin Recht. Exact matrix completion via convex
optimization. Foundations of Computational mathematics, 9(6):717, 2009.

[CRR+96] Ashok K Chandra, Prabhakar Raghavan, Walter L Ruzzo, Roman Smolensky, and
Prasoon Tiwari. The electrical resistance of a graph captures its commute and
cover times. Computational Complexity, 6(4):312–340, 1996.

[CSV13] Emmanuel J Candes, Thomas Strohmer, and Vladislav Voroninski. Phaselift: Ex-
act and stable signal recovery from magnitude measurements via convex program-
ming. Communications on Pure and Applied Mathematics, 66(8):1241–1274,
2013.

[CSV17] Moses Charikar, Jacob Steinhardt, and Gregory Valiant. Learning from untrusted
data. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of

Computing, pages 47–60, 2017.

[CW01] Anthony Carbery and James Wright. Distributional and lq norm inequalities for
polynomials over convex bodies in rn. Mathematical research letters, 8(3):233–
248, 2001.

[CW09] Kenneth L Clarkson and David P Woodruff. Numerical linear algebra in the
streaming model. In Proceedings of the forty-first annual ACM symposium on

Theory of computing, pages 205–214. ACM, 2009.

[CW13] Kenneth L Clarkson and David P Woodruff. Low rank approximation and regres-
sion in input sparsity time. In Proceedings of the forty-fifth annual ACM sympo-

sium on Theory of computing, pages 81–90. ACM, 2013.

[CW17] Kenneth L Clarkson and David P Woodruff. Low-rank psd approximation in input-
sparsity time. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Sympo-

sium on Discrete Algorithms, pages 2061–2072. Society for Industrial and Applied
Mathematics, 2017.

[Das99] Sanjoy Dasgupta. Learning mixtures of gaussians. In 40th Annual Symposium on

Foundations of Computer Science (Cat. No. 99CB37039), pages 634–644. IEEE,
1999.

[Das08] A. DasGupta. Asymptotic Theory of Statistics and Probability. Springer Texts in
Statistics. Springer New York, 2008.

[DFK+04] Petros Drineas, Alan Frieze, Ravi Kannan, Santosh Vempala, and V Vinay. Clus-

596

tering large graphs via the singular value decomposition. Machine learning, 56(1-
3):9–33, 2004.

[DG18] Simon S Du and Surbhi Goel. Improved learning of one-hidden-layer convolu-
tional neural networks with overlaps. arXiv preprint arXiv:1805.07798, 2018.

[DHKK20] Ilias Diakonikolas, Samuel B Hopkins, Daniel Kane, and Sushrut Karmalkar.
Robustly learning any clusterable mixture of gaussians. arXiv preprint

arXiv:2005.06417, 2020.

[DK19] Ilias Diakonikolas and Daniel M Kane. Recent advances in algorithmic high-
dimensional robust statistics. arXiv preprint arXiv:1911.05911, 2019.

[DK20] Ilias Diakonikolas and Daniel M Kane. Small covers for near-zero sets of polyno-
mials and learning latent variable models. In 2020 IEEE 61st Annual Symposium

on Foundations of Computer Science (FOCS), pages 184–195. IEEE, 2020.

[DKK+18] Ilias Diakonikolas, Gautam Kamath, Daniel M Kane, Jerry Li, Jacob Steinhardt,
and Alistair Stewart. Sever: A robust meta-algorithm for stochastic optimization.
arXiv preprint arXiv:1803.02815, 2018.

[DKK+19] Ilias Diakonikolas, Gautam Kamath, Daniel Kane, Jerry Li, Ankur Moitra, and
Alistair Stewart. Robust estimators in high-dimensions without the computational
intractability. SIAM Journal on Computing, 48(2):742–864, 2019.

[DKKZ20] Ilias Diakonikolas, Daniel M Kane, Vasilis Kontonis, and Nikos Zarifis. Algo-
rithms and sq lower bounds for pac learning one-hidden-layer relu networks. In
Conference on Learning Theory, pages 1514–1539. PMLR, 2020.

[DKM06] Petros Drineas, Ravi Kannan, and Michael W Mahoney. Fast monte carlo algo-
rithms for matrices i: Approximating matrix multiplication. SIAM Journal on

Computing, 36(1):132–157, 2006.

[DKR02] Petros Drineas, Iordanis Kerenidis, and Prabhakar Raghavan. Competitive recom-
mendation systems. In Proceedings of the thiry-fourth annual ACM symposium

on Theory of computing, pages 82–90. ACM, 2002.

[DKS17] Ilias Diakonikolas, Daniel M Kane, and Alistair Stewart. Statistical query lower
bounds for robust estimation of high-dimensional gaussians and gaussian mix-
tures. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science

(FOCS), pages 73–84. IEEE, 2017.

[DKS18] Ilias Diakonikolas, Daniel M Kane, and Alistair Stewart. List-decodable robust
mean estimation and learning mixtures of spherical gaussians. In Proceedings of

597

the 50th Annual ACM SIGACT Symposium on Theory of Computing, pages 1047–
1060, 2018.

[DKS19] Ilias Diakonikolas, Weihao Kong, and Alistair Stewart. Efficient algorithms and
lower bounds for robust linear regression. In Proceedings of the Thirtieth Annual

ACM-SIAM Symposium on Discrete Algorithms, pages 2745–2754. SIAM, 2019.

[DL09] Michel Marie Deza and Monique Laurent. Geometry of cuts and metrics, vol-
ume 15. Springer, 2009.

[DRST09] Ilias Diakonikolas, Prasad Raghavendra, Rocco A Servedio, and Li-Yang Tan.
Average sensitivity and noise sensitivity of polynomial threshold functions. arXiv

preprint arXiv:0909.5011, 2009.

[DSD+13] Misha Denil, Babak Shakibi, Laurent Dinh, Nando De Freitas, et al. Predicting pa-
rameters in deep learning. In Advances in neural information processing systems,
pages 2148–2156, 2013.

[Dua20] Leo L Duan. Latent simplex position model: High dimensional multi-view clus-
tering with uncertainty quantification. Journal of Machine Learning Research,
21(38):1–25, 2020.

[DVW18] Ilias Diakonikolas, Santosh Vempala, and David Woodruff. Research vignette:
Foundations of data science. Simons Institute, Semester on Foundations of Big

Data, 2018.

[DVW19] Ilias Diakonikolas, Santosh Vempala, and David Woodruff. Research vignette:
Foundations of data science, 2019.

[DZB+14] Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus.
Exploiting linear structure within convolutional networks for efficient evaluation.
In Advances in neural information processing systems, pages 1269–1277, 2014.

[ELMM20] Yonina C Eldar, Jerry Li, Cameron Musco, and Christopher Musco. Sample ef-
ficient toeplitz covariance estimation. In Proceedings of the Fourteenth Annual

ACM-SIAM Symposium on Discrete Algorithms, pages 378–397. SIAM, 2020.

[EV13] Ehsan Elhamifar and René Vidal. Sparse subspace clustering: Algorithm, theory,
and applications. IEEE transactions on pattern analysis and machine intelligence,
35(11):2765–2781, 2013.

[FB81] Martin A Fischler and Robert C Bolles. Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated cartography.
Communications of the ACM, 24(6):381–395, 1981.

598

[FJK96] Alan Frieze, Mark Jerrum, and Ravi Kannan. Learning linear transformations. In
Foundations of Computer Science, 1996. Proceedings., 37th Annual Symposium

on, pages 359–368. IEEE, 1996.

[FKP+19] Noah Fleming, Pravesh Kothari, Toniann Pitassi, et al. Semialgebraic Proofs and

Efficient Algorithm Design. now the essence of knowledge, 2019.

[FKV04a] Alan Frieze, Ravi Kannan, and Santosh Vempala. Fast monte-carlo algorithms for
finding low-rank approximations. Journal of the ACM (JACM), 51(6):1025–1041,
2004.

[FKV04b] Alan M. Frieze, Ravi Kannan, and Santosh Vempala. Fast monte-carlo algorithms
for finding low-rank approximations. J. ACM, 51(6):1025–1041, 2004.

[FSS13] Dan Feldman, Melanie Schmidt, and Christian Sohler. Turning big data into tiny
data: Constant-size coresets for k-means, pca and projective clustering. In Pro-

ceedings of the twenty-fourth annual ACM-SIAM symposium on Discrete algo-

rithms, pages 1434–1453. Society for Industrial and Applied Mathematics, 2013.

[FSX09] Wenjie Fu, Le Song, and Eric P Xing. Dynamic mixed membership blockmodel
for evolving networks. In Proceedings of the 26th annual international conference

on machine learning, pages 329–336, 2009.

[FT07] Shmuel Friedland and Anatoli Torokhti. Generalized rank-constrained matrix ap-
proximations. SIAM Journal on Matrix Analysis and Applications, 29(2):656–659,
2007.

[FXC16] Xuhui Fan, Richard Yi Da Xu, and Longbing Cao. Copula mixed-membership
stochastic block model. In IJCAI International Joint Conference on Artificial In-

telligence, 2016.

[Ge18] Rong Ge. Personal communication. October, 2018.

[GH+96] Zoubin Ghahramani, Geoffrey E Hinton, et al. The em algorithm for mixtures of
factor analyzers. Technical report, Technical Report CRG-TR-96-1, University of
Toronto, 1996.

[Gil20] Nicolas Gillis. Nonnegative Matrix Factorization. SIAM, 2020.

[GK17] Surbhi Goel and Adam Klivans. Learning depth-three neural networks in polyno-
mial time. arXiv preprint arXiv:1709.06010, 2017.

[GKKT16] Surbhi Goel, Varun Kanade, Adam Klivans, and Justin Thaler. Reliably learning
the relu in polynomial time. arXiv preprint arXiv:1611.10258, 2016.

599

[GKLW18] Rong Ge, Rohith Kuditipudi, Zhize Li, and Xiang Wang. Learning two-layer
neural networks with symmetric inputs. arXiv preprint arXiv:1810.06793, 2018.

[GKM18] Surbhi Goel, Adam Klivans, and Raghu Meka. Learning one convolutional layer
with overlapping patches. arXiv preprint arXiv:1802.02547, 2018.

[GKX19] Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. An investigation into neu-
ral net optimization via Hessian eigenvalue density. In Kamalika Chaudhuri and
Ruslan Salakhutdinov, editors, Proceedings of the 36th International Conference

on Machine Learning, volume 97 of Proceedings of Machine Learning Research,
pages 2232–2241. PMLR, 09–15 Jun 2019.

[GLF+10] David Gross, Yi-Kai Liu, Steven T Flammia, Stephen Becker, and Jens Eis-
ert. Quantum state tomography via compressed sensing. Physical review letters,
105(15):150401, 2010.

[GLM17] Rong Ge, Jason D Lee, and Tengyu Ma. Learning one-hidden-layer neural net-
works with landscape design. arXiv preprint arXiv:1711.00501, 2017.

[GLS81] Martin Grötschel, László Lovász, and Alexander Schrijver. The ellipsoid method
and its consequences in combinatorial optimization. Combinatorica, 1(2):169–
197, 1981.

[GLT18] András Gilyén, Seth Lloyd, and Ewin Tang. Quantum-inspired low-rank stochas-
tic regression with logarithmic dependence on the dimension. arXiv preprint

arXiv:1811.04909, 2018.

[GM15] Rong Ge and Tengyu Ma. Decomposing overcomplete 3rd order tensors using
sum-of-squares algorithms. arXiv preprint arXiv:1504.05287, 2015.

[GNC99] Sanjay Goil, Harsha Nagesh, and Alok Choudhary. Mafia: Efficient and scal-
able subspace clustering for very large data sets. In Proceedings of the 5th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining,
volume 443, page 452. ACM, 1999.

[Gro11] David Gross. Recovering low-rank matrices from few coefficients in any basis.
IEEE Transactions on Information Theory, 57(3):1548–1566, 2011.

[Gru17] Marvin Gruber. Improving Efficiency by Shrinkage: The James–Stein and Ridge

Regression Estimators. Routledge, 2017.

[GSLW19] András Gilyén, Yuan Su, Guang Hao Low, and Nathan Wiebe. Quantum singular
value transformation and beyond: exponential improvements for quantum matrix
arithmetics. In Proceedings of the 51st Annual ACM SIGACT Symposium on The-

600

ory of Computing, pages 193–204. ACM, 2019.

[Gut09] Allan Gut. An intermediate course in probability. chapter 5. Springer Publishing
Company, Incorporated, 2009.

[GV14] Nicolas Gillis and Stephen A. Vavasis. Fast and robust recursive algorithmsfor
separable nonnegative matrix factorization. IEEE Transactions on Pattern Analy-

sis and Machine Intelligence, 36(4):698–714, 2014.

[GVX14] Navin Goyal, Santosh Vempala, and Ying Xiao. Fourier pca and robust tensor de-
composition. In Proceedings of the forty-sixth annual ACM symposium on Theory

of computing, pages 584–593. ACM, 2014.

[GXM+17] Shuhang Gu, Qi Xie, Deyu Meng, Wangmeng Zuo, Xiangchu Feng, and Lei
Zhang. Weighted nuclear norm minimization and its applications to low level
vision. International journal of computer vision, 121(2):183–208, 2017.

[GZZF14] Shuhang Gu, Lei Zhang, Wangmeng Zuo, and Xiangchu Feng. Weighted nuclear
norm minimization with application to image denoising. In Proceedings of the

IEEE conference on computer vision and pattern recognition, pages 2862–2869,
2014.

[Har14] Moritz Hardt. Understanding alternating minimization for matrix completion. In
Foundations of Computer Science (FOCS), 2014 IEEE 55th Annual Symposium

on, pages 651–660. IEEE, 2014.

[HBB10] Matthew Hoffman, Francis R Bach, and David M Blei. Online learning for latent
dirichlet allocation. In advances in neural information processing systems, pages
856–864, 2010.

[Hig02] Nicholas J Higham. Computing the nearest correlation matrix—a problem from
finance. IMA journal of Numerical Analysis, 22(3):329–343, 2002.

[HK13] Daniel Hsu and Sham M Kakade. Learning mixtures of spherical gaussians: mo-
ment methods and spectral decompositions. In Proceedings of the 4th conference

on Innovations in Theoretical Computer Science, pages 11–20. ACM, 2013.

[HL13] Christopher J Hillar and Lek-Heng Lim. Most tensor problems are np-hard. Jour-

nal of the ACM (JACM), 60(6):45, 2013.

[HL18] Samuel B Hopkins and Jerry Li. Mixture models, robustness, and sum of squares
proofs. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory

of Computing, pages 1021–1034, 2018.

[HM13] Moritz Hardt and Ankur Moitra. Algorithms and hardness for robust subspace

601

recovery. In Conference on Learning Theory, pages 354–375. PMLR, 2013.

[HO00] Aapo Hyvärinen and Erkki Oja. Independent component analysis: algorithms and
applications. Neural networks, 13(4-5):411–430, 2000.

[HP15] Moritz Hardt and Eric Price. Tight bounds for learning a mixture of two gaus-
sians. In Proceedings of the forty-seventh annual ACM symposium on Theory of

computing, pages 753–760, 2015.

[HRRS11] Frank R Hampel, Elvezio M Ronchetti, Peter J Rousseeuw, and Werner A Stahel.
Robust statistics: the approach based on influence functions, volume 196. John
Wiley & Sons, 2011.

[HS17] Samuel B. Hopkins and David Steurer. Efficient bayesian estimation from few
samples: Community detection and related problems. In 58th IEEE Annual Sym-

posium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA,

October 15-17, 2017, pages 379–390, 2017.

[Hub64] Peter J Huber. Robust estimation of a location parameter. The Annals of Mathe-

matical Statistics, 35(1):73–101, 1964.

[Hub04] Peter J Huber. Robust statistics, volume 523. John Wiley & Sons, 2004.

[Hub11] Peter J Huber. Robust statistics. In International encyclopedia of statistical sci-

ence, pages 1248–1251. Springer, 2011.

[HWHM06] Wei Hong, John Wright, Kun Huang, and Yi Ma. Multiscale hybrid linear mod-
els for lossy image representation. IEEE Transactions on Image Processing,
15(12):3655–3671, 2006.

[Hyv99] Aapo Hyvarinen. Fast and robust fixed-point algorithms for independent compo-
nent analysis. IEEE transactions on Neural Networks, 10(3):626–634, 1999.

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 770–778, 2016.

[Ind06] Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and data
stream computation. Journal of the ACM (JACM), 53(3):307–323, 2006.

[IVWW19] Piotr Indyk, Ali Vakilian, Tal Wagner, and David Woodruff. Sample-optimal low-
rank approximation of distance matrices. arXiv preprint arXiv:1906.00339, 2019.

[Jae72] Louis A Jaeckel. Estimating regression coefficients by minimizing the dispersion
of the residuals. The Annals of Mathematical Statistics, pages 1449–1458, 1972.

602

[JMM20] Adel Javanmard, Marco Mondelli, and Andrea Montanari. Analysis of a two-layer
neural network via displacement convexity. The Annals of Statistics, 48(6):3619–
3642, 2020.

[JNS13] Prateek Jain, Praneeth Netrapalli, and Sujay Sanghavi. Low-rank matrix comple-
tion using alternating minimization. In Proceedings of the forty-fifth annual ACM

symposium on Theory of computing, pages 665–674. ACM, 2013.

[JS89] Mark Jerrum and Alistair Sinclair. Approximating the permanent. SIAM journal

on computing, 18(6):1149–1178, 1989.

[JSA14] Majid Janzamin, Hanie Sedghi, and Anima Anandkumar. Score function fea-
tures for discriminative learning: Matrix and tensor framework. arXiv preprint

arXiv:1412.2863, 2014.

[JSA15] Majid Janzamin, Hanie Sedghi, and Anima Anandkumar. Beating the perils of
non-convexity: Guaranteed training of neural networks using tensor methods.
arXiv preprint arXiv:1506.08473, 2015.

[JSV04] Mark Jerrum, Alistair Sinclair, and Eric Vigoda. A polynomial-time approxima-
tion algorithm for the permanent of a matrix with nonnegative entries. Journal of

the ACM (JACM), 51(4):671–697, 2004.

[Jud88] J Stephen Judd. Neural network design and the complexity of learning. Techni-
cal report, CALIFORNIA INST OF TECH PASADENA DEPT OF COMPUTER
SCIENCE, 1988.

[Kan20] Daniel M Kane. Robust learning of mixtures of gaussians. arXiv preprint

arXiv:2007.05912, 2020.

[KH+09] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from
tiny images. 2009.

[KK10] Amit Kumar and Ravindran Kannan. Clustering with spectral norm and the k-
means algorithm. FOCS, 2010.

[KKK19] Sushrut Karmalkar, Adam Klivans, and Pravesh Kothari. List-decodable linear
regression. In Advances in Neural Information Processing Systems, pages 7423–
7432, 2019.

[KKM18] Adam Klivans, Pravesh K Kothari, and Raghu Meka. Efficient algorithms for
outlier-robust regression. arXiv preprint arXiv:1803.03241, 2018.

[KKSK11] Sham M Kakade, Varun Kanade, Ohad Shamir, and Adam Kalai. Efficient learn-
ing of generalized linear and single index models with isotonic regression. In

603

Advances in Neural Information Processing Systems, pages 927–935, 2011.

[Kle99] Jon M Kleinberg. Authoritative sources in a hyperlinked environment. Journal of

the ACM (JACM), 46(5):604–632, 1999.

[KLM+17] Michael Kapralov, Yin Tat Lee, CN Musco, Christopher Paul Musco, and Aaron
Sidford. Single pass spectral sparsification in dynamic streams. SIAM Journal on

Computing, 46(1):456–477, 2017.

[KMO10] Raghunandan H Keshavan, Andrea Montanari, and Sewoong Oh. Matrix comple-
tion from a few entries. IEEE transactions on information theory, 56(6):2980–
2998, 2010.

[KMP14] Ioannis Koutis, Gary L Miller, and Richard Peng. Approaching optimality for
solving sdd linear systems. SIAM Journal on Computing, 43(1):337–354, 2014.

[KMV10] Adam Tauman Kalai, Ankur Moitra, and Gregory Valiant. Efficiently learning
mixtures of two gaussians. In Proceedings of the forty-second ACM symposium

on Theory of computing, pages 553–562, 2010.

[KOSZ13] Jonathan A Kelner, Lorenzo Orecchia, Aaron Sidford, and Zeyuan Allen Zhu. A
simple, combinatorial algorithm for solving sdd systems in nearly-linear time. In
Proceedings of the forty-fifth annual ACM symposium on Theory of computing,
pages 911–920, 2013.

[KOTZ14] Manuel Kauers, Ryan O’Donnell, Li-Yang Tan, and Yuan Zhou. Hypercontractive
inequalities via sos, and the frankl–rödl graph. In Proceedings of the Twenty-Fifth

Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1644–1658. SIAM,
2014.

[KP16] Iordanis Kerenidis and Anupam Prakash. Quantum recommendation systems.
arXiv preprint arXiv:1603.08675, 2016.

[KS17] Pravesh K Kothari and David Steurer. Outlier-robust moment-estimation via sum-
of-squares. arXiv preprint arXiv:1711.11581, 2017.

[KSS18] Pravesh K Kothari, Jacob Steinhardt, and David Steurer. Robust moment esti-
mation and improved clustering via sum of squares. In Proceedings of the 50th

Annual ACM SIGACT Symposium on Theory of Computing, pages 1035–1046,
2018.

[KSV05] Ravindran Kannan, Hadi Salmasian, and Santosh Vempala. The spectral method
for general mixture models. In International Conference on Computational Learn-

ing Theory, pages 444–457. Springer, 2005.

604

[KV09] Ravi Kannan and Santosh S. Vempala. Spectral algorithms. Found. Trends Theor.

Comput. Sci., 4(3-4):157–288, 2009.

[LAF+12] Yi-Kai Liu, Animashree Anandkumar, Dean P Foster, Daniel Hsu, and Sham M
Kakade. Two svds su ffice: Spectral decompositions for probabilistic topic mod-
eling and latent dirichlet allocation. In Neural Information Processing Systems

(NIPS), 2012.

[Las01] Jean B Lasserre. New positive semidefinite relaxations for nonconvex quadratic
programs. In Advances in Convex Analysis and Global Optimization, pages 319–
331. Springer, 2001.

[Lau09] Monique Laurent. Sums of squares, moment matrices and optimization over
polynomials. In Emerging applications of algebraic geometry, pages 157–270.
Springer, 2009.

[LAW16] Wenzhe Li, Sungjin Ahn, and Max Welling. Scalable mcmc for mixed mem-
bership stochastic blockmodels. In Artificial Intelligence and Statistics, pages
723–731, 2016.

[LB11] Tyler Lu and Craig Boutilier. Learning mallows models with pairwise preferences,
2011.

[LC15] Sergey Loyka and Charalambos D. Charalambous. Novel matrix singular value
inequalities and their applications to uncertain MIMO channels. IEEE Trans. Inf.

Theory, 61(12):6623–6634, 2015.

[LKF07] Jure Leskovec, Jon M. Kleinberg, and Christos Faloutsos. Graph evolution: Densi-
fication and shrinking diameters. ACM Trans. Knowl. Discov. Data, 1(1):2, 2007.

[LLY+12] Guangcan Liu, Zhouchen Lin, Shuicheng Yan, Ju Sun, Yong Yu, and Yi Ma. Ro-
bust recovery of subspace structures by low-rank representation. IEEE transac-

tions on pattern analysis and machine intelligence, 35(1):171–184, 2012.

[LM00] B. Laurent and P. Massart. Adaptive estimation of a quadratic functional by model
selection. Ann. Statist., 28(5):1302–1338, 10 2000.

[LM18a] Gilad Lerman and Tyler Maunu. An overview of robust subspace recovery. Pro-

ceedings of the IEEE, 106(8):1380–1410, 2018.

[LM18b] Allen Liu and Ankur Moitra. Efficiently learning mixtures of mallows models. In
2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS),
pages 627–638. IEEE, 2018.

[LM21] Allen Liu and Ankur Moitra. Settling the robust learnability of mixtures of gaus-

605

sians. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of

Computing, pages 518–531, 2021.

[LMP13] Mu Li, Gary L Miller, and Richard Peng. Iterative row sampling. In 2013 IEEE

54th Annual Symposium on Foundations of Computer Science, pages 127–136.
IEEE, 2013.

[LMZ+12] Can-Yi Lu, Hai Min, Zhong-Qiu Zhao, Lin Zhu, De-Shuang Huang, and
Shuicheng Yan. Robust and efficient subspace segmentation via least squares re-
gression. In European conference on computer vision, pages 347–360. Springer,
2012.

[LNW14a] Yi Li, Huy L Nguyen, and David P Woodruff. On sketching matrix norms and the
top singular vector. In Proceedings of the twenty-fifth annual ACM-SIAM sympo-

sium on Discrete algorithms, pages 1562–1581. SIAM, 2014.

[LNW14b] Yi Li, Huy L. Nguyen, and David P. Woodruff. Turnstile streaming algorithms
might as well be linear sketches. In Symposium on Theory of Computing, STOC

2014, New York, NY, USA, May 31 - June 03, 2014, pages 174–183, 2014.

[LRV16] Kevin A Lai, Anup B Rao, and Santosh Vempala. Agnostic estimation of mean and
covariance. In 2016 IEEE 57th Annual Symposium on Foundations of Computer

Science (FOCS), pages 665–674. IEEE, 2016.

[LS13] Jörg Liesen and Zdenek Strakos. Krylov subspace methods: principles and anal-

ysis. Oxford University Press, 2013.

[LS15] Yin Tat Lee and Aaron Sidford. Efficient inverse maintenance and faster algo-
rithms for linear programming. In 2015 IEEE 56th Annual Symposium on Foun-

dations of Computer Science, pages 230–249. IEEE, 2015.

[LSS+] Erik M Lindgren, Vatsal Shah, Yanyao Shen, Alexandros G Dimakis, and Adam
Klivans. On robust learning of ising models.

[LSSS14] Roi Livni, Shai Shalev-Shwartz, and Ohad Shamir. On the computational effi-
ciency of training neural networks. In Advances in Neural Information Processing

Systems, pages 855–863, 2014.

[LSW15] Yin Tat Lee, Aaron Sidford, and Sam Chiu-wai Wong. A faster cutting plane
method and its implications for combinatorial and convex optimization. In Foun-

dations of Computer Science (FOCS), 2015 IEEE 56th Annual Symposium on,
pages 1049–1065. IEEE, 2015.

[LW16a] Yi Li and David P Woodruff. On approximating functions of the singular values

606

in a stream. In Proceedings of the forty-eighth annual ACM symposium on Theory

of Computing, pages 726–739, 2016.

[LW16b] Yi Li and David P Woodruff. Tight bounds for sketching the operator norm, Schat-
ten norms, and subspace embeddings. In Approximation, Randomization, and

Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM

2016). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

[LW17] Yi Li and David P Woodruff. Embeddings of Schatten norms with applications
to data streams. In 44th International Colloquium on Automata, Languages, and

Programming (ICALP 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2017.

[LW20] Yi Li and David P. Woodruff. Input-sparsity low rank approximation in Schatten
norm. CoRR, abs/2004.12646, 2020.

[LY17a] Yuanzhi Li and Yang Yuan. Convergence analysis of two-layer neural networks
with relu activation. In Advances in Neural Information Processing Systems, pages
597–607, 2017.

[LY17b] Yuanzhi Li and Yang Yuan. Convergence analysis of two-layer neural networks
with relu activation. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fer-
gus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information

Processing Systems 30, pages 597–607. Curran Associates, Inc., 2017.

[M+11] Michael W Mahoney et al. Randomized algorithms for matrices and data. Foun-

dations and Trends in Machine Learning, 3(2):123–224, 2011.

[Mah90] Philip J Maher. Some operator inequalities concerning generalized inverses. Illi-

nois Journal of Mathematics, 34(3):503–514, 1990.

[Mah11] Michael W. Mahoney. Randomized algorithms for matrices and data. Found.

Trends Mach. Learn., 3(2):123–224, 2011.

[McS01] Frank McSherry. Spectral partitioning of random graphs. In Proceedings 42nd

IEEE Symposium on Foundations of Computer Science, pages 529–537. IEEE,
2001.

[Meg88] Nimrod Megiddo. On the complexity of polyhedral separability. Discrete & Com-

putational Geometry, 3(4):325–337, 1988.

[MH02] John C Mason and David C Handscomb. Chebyshev polynomials. CRC press,
2002.

[MJG09] Kurt Miller, Michael I Jordan, and Thomas L Griffiths. Nonparametric latent

607

feature models for link prediction. In Advances in neural information processing

systems, pages 1276–1284, 2009.

[MM13a] Xiangrui Meng and Michael W Mahoney. Low-distortion subspace embeddings
in input-sparsity time and applications to robust linear regression. In Proceedings

of the forty-fifth annual ACM symposium on Theory of computing, pages 91–100.
ACM, 2013.

[MM13b] Xiangrui Meng and Michael W. Mahoney. Low-distortion subspace embeddings
in input-sparsity time and applications to robust linear regression. In Symposium

on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4,

2013, pages 91–100, 2013.

[MM14] Brian McWilliams and Giovanni Montana. Subspace clustering of high-
dimensional data: a predictive approach. Data Mining and Knowledge Discovery,
28(3):736–772, 2014.

[MM15] Cameron Musco and Christopher Musco. Randomized block Krylov methods for
stronger and faster approximate singular value decomposition. In Advances in

Neural Information Processing Systems, pages 1396–1404, 2015.

[MM17] Cameron Musco and Christopher Musco. Recursive sampling for the nystrom
method. In Advances in Neural Information Processing Systems, pages 3833–
3845, 2017.

[MM18] Marco Mondelli and Andrea Montanari. On the connection between learn-
ing two-layers neural networks and tensor decomposition. arXiv preprint

arXiv:1802.07301, 2018.

[MMMW21] Raphael A. Meyer, Cameron Musco, Christopher Musco, and David P. Woodruff.
Hutch++: Optimal stochastic trace estimation. In 4th Symposium on Simplicity

in Algorithms, SOSA 2021, Virtual Conference, January 11-12, 2021, pages 142–
155, 2021.

[MR18] Pasin Manurangsi and Daniel Reichman. The computational complexity of train-
ing relu(s). arXiv preprint arXiv:1810.04207, 2018.

[MST15] Aleksander Madry, Damian Straszak, and Jakub Tarnawski. Fast generation of
random spanning trees and the effective resistance metric. In Proceedings of the

twenty-sixth annual ACM-SIAM symposium on Discrete algorithms, pages 2019–
2036. Society for Industrial and Applied Mathematics, 2015.

[MT+11] Michael McCoy, Joel A Tropp, et al. Two proposals for robust pca using semidef-

608

inite programming. Electronic Journal of Statistics, 5:1123–1160, 2011.

[Mut05] S. Muthukrishnan. Data streams: Algorithms and applications. Found. Trends

Theor. Comput. Sci., 1(2), 2005.

[MV10] Ankur Moitra and Gregory Valiant. Settling the polynomial learnability of mix-
tures of gaussians. In 2010 IEEE 51st Annual Symposium on Foundations of Com-

puter Science, pages 93–102. IEEE, 2010.

[MW17a] Cameron Musco and David Woodruff. Is input sparsity time possible for kernel
low-rank approximation? Advances in Neural Information Processing Systems,
30:4435–4445, 2017.

[MW17b] Cameron Musco and David P Woodruff. Sublinear time low-rank approximation
of positive semidefinite matrices. In 2017 IEEE 58th Annual Symposium on Foun-

dations of Computer Science (FOCS), pages 672–683. IEEE, 2017.

[MW17c] Cameron Musco and David P. Woodruff. Sublinear time low-rank approximation
of positive semidefinite matrices. In 58th IEEE Annual Symposium on Foundations

of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages
672–683, 2017.

[MW21] Arvind V Mahankali and David P Woodruff. Optimal L1 column subset selection
and a fast PTAS for low rank approximation. In Proceedings of the 2021 ACM-

SIAM Symposium on Discrete Algorithms (SODA), pages 560–578. SIAM, 2021.

[MZ10] Lingsheng Meng and Bing Zheng. The optimal perturbation bounds of the
moore–penrose inverse under the frobenius norm. Linear Algebra and its Ap-

plications, 432(4):956 – 963, 2010.

[Nel11] Jelani Jelani Osei Nelson. Sketching and streaming high-dimensional vectors. PhD
thesis, Massachusetts Institute of Technology, 2011.

[Nes00] Yurii Nesterov. Squared functional systems and optimization problems. In High

performance optimization, pages 405–440. Springer, 2000.

[NN13a] Jelani Nelson and Huy L. Nguyen. OSNAP: faster numerical linear algebra al-
gorithms via sparser subspace embeddings. In 54th Annual IEEE Symposium on

Foundations of Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley,

CA, USA, pages 117–126, 2013.

[NN13b] Jelani Nelson and Huy L. Nguyen. OSNAP: faster numerical linear algebra al-
gorithms via sparser subspace embeddings. In 54th Annual IEEE Symposium on

Foundations of Computer Science, FOCS, pages 117–126. IEEE Computer Soci-

609

ety, 2013.

[O’D14] Ryan O’Donnell. Analysis of boolean functions. Cambridge University Press,
2014.

[Par00] Pablo A Parrilo. Structured semidefinite programs and semialgebraic geometry

methods in robustness and optimization. PhD thesis, California Institute of Tech-
nology, 2000.

[Pea94] Karl Pearson. Contributions to the mathematical theory of evolution. Philosophi-

cal Transactions of the Royal Society of London. A, 185:71–110, 1894.

[Pea94] Barak A. Pearlmutter. Fast exact multiplication by the Hessian. Neural Computa-

tion, 6:147–160, 1994.

[PHL04] Lance Parsons, Ehtesham Haque, and Huan Liu. Subspace clustering for high
dimensional data: a review. Acm sigkdd explorations newsletter, 6(1):90–105,
2004.

[PJAM02] Cecilia M Procopiuc, Michael Jones, Pankaj K Agarwal, and TM Murali. A monte
carlo algorithm for fast projective clustering. In Proceedings of the 2002 ACM

SIGMOD international conference on Management of data, pages 418–427, 2002.

[PPZ+20] William Peebles, John Peebles, Jun-Yan Zhu, Alexei A. Efros, and Antonio Tor-
ralba. The Hessian penalty: A weak prior for unsupervised disentanglement. In
Proceedings of European Conference on Computer Vision (ECCV), 2020.

[PSBR20] Adarsh Prasad, Arun Sai Suggala, Sivaraman Balakrishnan, and Pradeep Raviku-
mar. Robust estimation via robust gradient estimation. Journal of the Royal Sta-

tistical Society: Series B (Statistical Methodology), 82(3):601–627, 2020.

[PV13] Yaniv Plan and Roman Vershynin. Robust 1-bit compressed sensing and sparse
logistic regression: A convex programming approach. IEEE Transactions on In-

formation Theory, 59(1):482–494, 2013.

[PV21] Richard Peng and Santosh Vempala. Solving sparse linear systems faster than ma-
trix multiplication. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete

Algorithms (SODA), pages 504–521. SIAM, 2021.

[RFP10] Benjamin Recht, Maryam Fazel, and Pablo A Parrilo. Guaranteed minimum-rank
solutions of linear matrix equations via nuclear norm minimization. SIAM review,
52(3):471–501, 2010.

[Riv74] Theodore J. Rivlin. The chebyshev polynomials. Wiley, 1974.

610

[Riv20] Theodore J Rivlin. Chebyshev polynomials. Courier Dover Publications, 2020.

[Rou84] Peter J Rousseeuw. Least median of squares regression. Journal of the American

statistical association, 79(388):871–880, 1984.

[RS00] Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by
locally linear embedding. science, 290(5500):2323–2326, 2000.

[RSML18] Patrick Rebentrost, Adrian Steffens, Iman Marvian, and Seth Lloyd. Quantum
singular-value decomposition of nonsparse low-rank matrices. Physical review A,
97(1):012327, 2018.

[RSW16] Ilya Razenshteyn, Zhao Song, and David P Woodruff. Weighted low rank approxi-
mations with provable guarantees. In Proceedings of the forty-eighth annual ACM

symposium on Theory of Computing, pages 250–263, 2016.

[RV07] Mark Rudelson and Roman Vershynin. Sampling from large matrices: An ap-
proach through geometric functional analysis. Journal of the ACM (JACM),
54(4):21, 2007.

[RV10] Mark Rudelson and Roman Vershynin. Non-asymptotic theory of random ma-
trices: extreme singular values. In Proceedings of the International Congress

of Mathematicians 2010 (ICM 2010) (In 4 Volumes) Vol. I: Plenary Lectures

and Ceremonies Vols. II–IV: Invited Lectures, pages 1576–1602. World Scientific,
2010.

[RWYZ21] Cyrus Rashtchian, David P. Woodruff, Peng Ye, and Hanlin Zhu. Average-case
communication complexity of statistical problems, 2021.

[RWZ20] Cyrus Rashtchian, David P. Woodruff, and Hanlin Zhu. Vector-matrix-vector
queries for solving linear algebra, statistics, and graph problems. In Approxi-

mation, Randomization, and Combinatorial Optimization. Algorithms and Tech-

niques, APPROX/RANDOM 2020, August 17-19, 2020, Virtual Conference, pages
26:1–26:20, 2020.

[RY84] Peter Rousseeuw and Victor Yohai. Robust regression by means of s-estimators.
In Robust and nonlinear time series analysis, pages 256–272. Springer, 1984.

[RY20a] Prasad Raghavendra and Morris Yau. List decodable learning via sum of squares.
In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Al-

gorithms, pages 161–180. SIAM, 2020.

[RY20b] Prasad Raghavendra and Morris Yau. List decodable subspace recovery. In Con-

ference on Learning Theory, pages 3206–3226. PMLR, 2020.

611

[SA14] Hanie Sedghi and Anima Anandkumar. Provable methods for training neural net-
works with sparse connectivity. arXiv preprint arXiv:1412.2693, 2014.

[Saa81] Yousef Saad. Krylov subspace methods for solving large unsymmetric linear sys-
tems. Mathematics of computation, 37(155):105–126, 1981.

[Sar06] Tamas Sarlos. Improved approximation algorithms for large matrices via random
projections. In FOCS, pages 143–152, 2006.

[SAR18] Max Simchowitz, Ahmed El Alaoui, and Benjamin Recht. Tight query complexity
lower bounds for PCA via finite sample deformed wigner law. In Proceedings of

the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018,

Los Angeles, CA, USA, June 25-29, 2018, pages 1249–1259, 2018.

[SC16] Daniel Soudry and Yair Carmon. No bad local minima: Data independent training
error guarantees for multilayer neural networks. arXiv preprint arXiv:1605.08361,
2016.

[Sch38] Isaac J Schoenberg. Metric spaces and positive definite functions. Transactions of

the American Mathematical Society, 44(3):522–536, 1938.

[Sch60] Robert Schatten. Norm ideals of completely continuous operators. 1960.

[SEC14] Mahdi Soltanolkotabi, Ehsan Elhamifar, and Emmanuel J Candes. Robust sub-
space clustering. The annals of Statistics, 42(2):669–699, 2014.

[Sen68] Pranab Kumar Sen. Estimates of the regression coefficient based on kendall’s tau.
Journal of the American statistical association, 63(324):1379–1389, 1968.

[SG07] Mark Steyvers and Tom Griffiths. Probabilistic topic models. Handbook of latent

semantic analysis, 427(7):424–440, 2007.

[Sho87] Naum Z Shor. Quadratic optimization problems. Soviet Journal of Computer and

Systems Sciences, 25:1–11, 1987.

[SJ03] Nathan Srebro and Tommi Jaakkola. Weighted low-rank approximations. In Pro-

ceedings of the 20th International Conference on Machine Learning (ICML-03),
pages 720–727, 2003.

[SJA16] Hanie Sedghi, Majid Janzamin, and Anima Anandkumar. Provable tensor methods
for learning mixtures of generalized linear models. In Artificial Intelligence and

Statistics, pages 1223–1231, 2016.

[SK01] Arora Sanjeev and Ravi Kannan. Learning mixtures of arbitrary gaussians. In
Proceedings of the thirty-third annual ACM symposium on Theory of computing,

612

pages 247–257, 2001.

[Sol17] Mahdi Soltanolkotabi. Learning relus via gradient descent. In Advances in Neural

Information Processing Systems, pages 2007–2017, 2017.

[SS11] Daniel A Spielman and Nikhil Srivastava. Graph sparsification by effective resis-
tances. SIAM Journal on Computing, 40(6):1913–1926, 2011.

[ST14] Daniel A Spielman and Shang-Hua Teng. Nearly linear time algorithms for pre-
conditioning and solving symmetric, diagonally dominant linear systems. SIAM

Journal on Matrix Analysis and Applications, 35(3):835–885, 2014.

[SW19] Xiaofei Shi and David P. Woodruff. Sublinear time numerical linear algebra for
structured matrices. In The Thirty-Third AAAI Conference on Artificial Intelli-

gence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelli-

gence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Ad-

vances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27

- February 1, 2019., pages 4918–4925, 2019.

[SWW12] Daniel A Spielman, Huan Wang, and John Wright. Exact recovery of sparsely-
used dictionaries. In Conference on Learning Theory, pages 37–1, 2012.

[SWYZ19] Xiaoming Sun, David P. Woodruff, Guang Yang, and Jialin Zhang. Querying
a matrix through matrix-vector products. In 46th International Colloquium on

Automata, Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras,

Greece, pages 94:1–94:16, 2019.

[SWZ16] Zhao Song, David Woodruff, and Huan Zhang. Sublinear time orthogonal tensor
decomposition. In Advances in Neural Information Processing Systems, pages
793–801, 2016.

[SWZ17] Zhao Song, David P Woodruff, and Peilin Zhong. Low rank approximation with
entrywise l1-norm error. In Proceedings of the 49th Annual ACM SIGACT Sym-

posium on Theory of Computing, pages 688–701, 2017.

[SWZ20] Zhao Song, David P Woodruff, and Peilin Zhong. Average case column subset
selection for entrywise l1-norm loss. arXiv preprint arXiv:2004.07986, 2020.

[Tan19] Ewin Tang. A quantum-inspired classical algorithm for recommendation systems.
In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Com-

puting, pages 217–228. ACM, 2019.

[Tao12] Terence Tao. Topics in random matrix theory, volume 132. American Mathemat-
ical Soc., 2012.

613

[Tao20] Terence Tao. Notes 3a: Eigenvalues and sums of hermitian matrices, 2020.

[TD87] Paul Terwilliger and Michel Deza. The classification of finite connected hyperme-
tric spaces. Graphs and Combinatorics, 3(1):293–298, 1987.

[TDSL00] Joshua B Tenenbaum, Vin De Silva, and John C Langford. A global geomet-
ric framework for nonlinear dimensionality reduction. science, 290(5500):2319–
2323, 2000.

[The92] Henri Theil. A rank-invariant method of linear and polynomial regression analysis.
In Henri Theil’s contributions to economics and econometrics, pages 345–381.
Springer, 1992.

[Tia17a] Yuandong Tian. An analytical formula of population gradient for two-layered
relu network and its applications in convergence and critical point analysis. arXiv

preprint arXiv:1703.00560, 2017.

[Tia17b] Yuandong Tian. Symmetry-breaking convergence analysis of certain two-layered
neural networks with relu nonlinearity. 2017.

[Tso08] Charalampos E Tsourakakis. Fast counting of triangles in large real networks
without counting: Algorithms and laws. In 2008 Eighth IEEE International Con-

ference on Data Mining, pages 608–617. IEEE, 2008.

[TV17] Manolis C Tsakiris and René Vidal. Hyperplane clustering via dual principal
component pursuit. In International conference on machine learning, pages 3472–
3481. PMLR, 2017.

[Val84] Leslie G Valiant. A theory of the learnable. Communications of the ACM,
27(11):1134–1142, 1984.

[Ver10a] Roman Vershynin. Introduction to the non-asymptotic analysis of random matri-
ces. arXiv preprint arXiv:1011.3027, 2010.

[Ver10b] Roman Vershynin. Introduction to the non-asymptotic analysis of random matri-
ces. arXiv preprint arXiv:1011.3027, 2010.

[Ver18] Roman Vershynin. High-dimensional probability: An introduction with applica-

tions in data science, volume 47. Cambridge University Press, 2018.

[VMS05] Rene Vidal, Yi Ma, and Shankar Sastry. Generalized principal component anal-
ysis (gpca). IEEE transactions on pattern analysis and machine intelligence,
27(12):1945–1959, 2005.

[VN37] John Von Neumann. Some matrix-inequalities and metrization of matric space.

614

1937.

[VN18] Namrata Vaswani and Praneeth Narayanamurthy. Static and dynamic robust pca
and matrix completion: A review. Proceedings of the IEEE, 106(8):1359–1379,
2018.

[VW04] Santosh Vempala and Grant Wang. A spectral algorithm for learning mixture
models. Journal of Computer and System Sciences, 68(4):841–860, 2004.

[WA16] Yining Wang and Anima Anandkumar. Online and differentially-private tensor
decomposition. In Advances in Neural Information Processing Systems, pages
3531–3539, 2016.

[Wai19] M.J. Wainwright. High-Dimensional Statistics: A Non-Asymptotic Viewpoint.
Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge Uni-
versity Press, 2019.

[Web03] Marcus Weber. Clustering by using a simplex structure. 2003.

[Wed72] Per-Ake Wedin. Perturbation bounds in connection with singular value decompo-
sition. BIT Numerical Mathematics, 12(1):99–111, 1972.

[Wei05] Sanford Weisberg. Applied linear regression, volume 528. John Wiley & Sons,
2005.

[Woo14a] David P. Woodruff. Sketching as a tool for numerical linear algebra. Foundations

and Trends in Theoretical Computer Science, 10(1-2):1–157, 2014.

[Woo14b] David P. Woodruff. Sketching as a tool for numerical linear algebra. Foundations

and Trends® in Theoretical Computer Science, 10(1–2):1–157, 2014.

[WT10] Daniela M Witten and Robert Tibshirani. A framework for feature selection in
clustering. Journal of the American Statistical Association, 105(490):713–726,
2010.

[WWZ14] Karl Wimmer, Yi Wu, and Peng Zhang. Optimal query complexity for estimat-
ing the trace of a matrix. In Automata, Languages, and Programming - 41st In-

ternational Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014,

Proceedings, Part I, pages 1051–1062, 2014.

[XCS10] Huan Xu, Constantine Caramanis, and Sujay Sanghavi. Robust PCA via outlier
pursuit. arXiv preprint arXiv:1010.4237, 2010.

[XFS+10] Eric P Xing, Wenjie Fu, Le Song, et al. A state-space mixed membership
blockmodel for dynamic network tomography. The Annals of Applied Statistics,

615

4(2):535–566, 2010.

[Yao77] Andrew Chi-Chin Yao. Probabilistic computations: Toward a unified measure
of complexity. In Proceedings of the 18th Annual Symposium on Foundations of

Computer Science, SFCS ’77, pages 222–227, Washington, DC, USA, 1977. IEEE
Computer Society.

[YBLG17] Hao Yin, Austin R. Benson, Jure Leskovec, and David F. Gleich. Local higher-
order graph clustering. In Proceedings of the 23rd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pages 555–564. ACM,
2017.

[YGKM20] Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael Mahoney. PyHessian:
Neural networks through the lens of the Hessian, 2020.

[YL15] Jaewon Yang and Jure Leskovec. Defining and evaluating network communities
based on ground-truth. Knowl. Inf. Syst., 42(1):181–213, 2015.

[YP21] Chenyang Yuan and Pablo A Parrilo. Maximizing products of linear forms, and the
permanent of positive semidefinite matrices. Mathematical Programming, pages
1–12, 2021.

[YPCC16] Xinyang Yi, Dohyung Park, Yudong Chen, and Constantine Caramanis. Fast al-
gorithms for robust PCA via gradient descent. In Advances in neural information

processing systems, pages 4152–4160, 2016.

[YZ16] Ming Yuan and Cun-Hui Zhang. On tensor completion via nuclear norm mini-
mization. Foundations of Computational Mathematics, 16(4):1031–1068, 2016.

[ZAX12] Jun Zhu, Amr Ahmed, and Eric P Xing. Medlda: maximum margin supervised
topic models. Journal of Machine Learning Research, 13(Aug):2237–2278, 2012.

[ZFIM12] Amy Zhang, Nadia Fawaz, Stratis Ioannidis, and Andrea Montanari. Guess who
rated this movie: Identifying users through subspace clustering. arXiv preprint

arXiv:1208.1544, 2012.

[ZJS19] Banghua Zhu, Jiantao Jiao, and Jacob Steinhardt. Generalized resilience and ro-
bust statistics. arXiv preprint arXiv:1909.08755, 2019.

[ZJS20] Banghua Zhu, Jiantao Jiao, and Jacob Steinhardt. Robust estimation via general-
ized quasi-gradients. arXiv preprint arXiv:2005.14073, 2020.

[ZLJ16] Yuchen Zhang, Jason D Lee, and Michael I Jordan. l1-regularized neural net-
works are improperly learnable in polynomial time. In International Conference

on Machine Learning, pages 993–1001, 2016.

616

[ZSJ+17] Kai Zhong, Zhao Song, Prateek Jain, Peter L Bartlett, and Inderjit S Dhillon.
Recovery guarantees for one-hidden-layer neural networks. arXiv preprint

arXiv:1706.03175, 2017.

[ZWR+18] Zhihui Zhu, Yifan Wang, Daniel Robinson, Daniel Naiman, Rene Vidal, and
Manolis Tsakiris. Dual principal component pursuit: Improved analysis and effi-
cient algorithms. Advances in Neural Information Processing Systems, 31, 2018.

617

	Introduction
	Establishing Tractability of Learning Latent Models
	Nearly Optimal Algorithms for Learning Latent Models
	Roadmap of the Thesis

	I Establishing Tractability of Latent Models
	Outlier-Robust Clustering of Non-Spherical Mixtures
	Introduction
	Preliminaries
	Clustering Mixtures of Reasonable Distributions
	Outlier-Robust Clustering of Reasonable Distributions
	Fully Polynomial Algorithm via Recursive Partial Clustering
	Outlier-Robust Covariance Estimation in Frobenius Distance
	Reasonable Distributions
	Sum-of-Squares Toolkit
	Total Variation vs Parameter Distance for Gaussian Distributions
	Typical Samples are Good with High Probability
	Polynomial Approximators for Thresholds
	TV-Close Subgaussian Distributions with Arbitrarily Far Parameters

	Robustly Learning a Mixture of k Arbitrary Gaussians
	Introduction
	Preliminaries
	List-Recovery of Parameters via Tensor Decomposition
	Robust Partial Cluster Recovery
	Spectral Separation of Thin Components
	Robust Proper Learning: Proof of Theorem 67
	More Efficient Robust Partial Cluster Recovery
	Getting poly()-close in TV Distance: Proof of Theorem 68
	Robust Parameter Recovery: Proof of Theorem 69
	Omitted Proofs
	Bit Complexity Analysis

	Robustly Linear Regression
	Introduction
	Preliminaries
	Robust Certifiability and Information Theoretic Estimators
	Robust Regression in Polynomial Time
	Lower bounds
	Bounded Covariance Distributions
	Robust Identifiability for Arbitrary Noise
	Efficient Estimator for Arbitrary Noise
	Proof of Lemma 4.2.4

	List-Decodable Subspace Recovery
	Introduction
	Technical Overview
	Preliminaries
	Algorithm
	Certifiable Anti-Concentration
	Appendix

	Learning a Two-Layer Neural Network
	Introduction
	Exact solution when rank(A) = k
	NP-Hardness
	A Polynomial Time Exact Algorithm for Gaussian Input
	A Polynomial Time Algorithm for Gaussian input and Sub-Gaussian Noise
	A Fixed-Parameter Tractable Exact Algorithm for Arbitrary Weight Matrixs
	A Fixed-Parameter Tractable Algorithm for Arbitrary Non-Adversarial Noise
	A Polynomial Time Algorithm for Exact Weight Recovery with Sparse Noise

	II Nearly Optimal Algorithms for Learning Latent Models
	Low-Rank Approximation with 1/1/3 Matrix-Vector Products
	Introduction
	Additional Related Work
	Preliminaries
	Algorithms for Schatten-p LRA
	Query Lower Bounds
	Extending Prior Work on Lower Bounds
	Low Rank Approximation of Matrix Polynomials
	Improved Streaming Bounds

	PSD Low-Rank Approximation
	Introduction
	Preliminaries and Notation
	Relative Error PSD Low-Rank Approximation
	Robust Low-Rank Approximation

	Learning a Latent Simplex in Truly Input-Sparsity Time
	Introduction
	Connection to Stochastic Models
	Technical Overview
	Full Analysis
	Connection to Spectral Low-Rank Approximation
	Empirical Evaluation

	Bibliography

