
New Directions in Inapproximability: Promise
Constraint Satisfaction Problems and Beyond

Sai Sandeep Reddy Pallerla

CMU-CS-22-139

August 2022

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Venkatesan Guruswami, Chair

Anupam Gupta
Ryan O’Donnell

Nikhil Bansal, University of Michigan

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2022 Sai Sandeep Reddy Pallerla

This research was sponsored by Google, The David and Lucille Packard Foundation under award number 200529094A,
and the National Science Foundation under award numbers CCF-1422045, CCF-1563742, CCF-1814603, and CCF-
1908125. The views and conclusions contained in this document are those of the author and should not be interpreted
as representing the official policies, either expressed or implied, of any sponsoring institution, the U.S. government or
any other entity.

Keywords: Approximation Algorithms, Hardness of Approximation, Approximate Graph
Coloring, Promise Constraint Satisfaction Problems, Polymorphisms, Hypergraph Rainbow
Coloring, Semi Definite Programming Relaxations, Set Cover, Vector Bin Packing, Hypergraph
Vertex Cover

To my parents and my sister

iv

Abstract
The field of hardness of approximation has seen a lot of progress in the past three

decades resulting in almost optimal inapproximability results for many computational
problems, including all Constraint Satisfaction Problems(CSPs). However, our under-
standing of inapproximability is still rather limited for some fundamental problems
such as approximate graph coloring, and problems for which approximation algo-
rithms have been widely studied, for example, clustering, packing, and scheduling
problems. In this thesis, we make progress on these questions by studying Promise
CSPs that generalize CSPs, and more abstractly, computational problems with a given
promise, either a solution satisfying a strong property, or a structural guarantee on the
underlying instance.

Promise Constraint Satisfaction Problems (PCSPs) generalize the traditional CSPs
by allowing for a weaker and stronger form for each predicate. PCSPs have received a
lot of attention recently, both on the algorithmic and hardness front, and their study has
led to breakthroughs in approximate graph and hypergraph coloring problems. In this
thesis, we continue that line of work, obtaining new characterization of polynomial
time solvability for several classes of Promise CSPs including Boolean monotone
PCSPs, variants of graph and hypergraph colorings. We also study robust algorithms
for Promise CSPs, and give a dichotomy result characterizing when certain classes
of PCSPs have robust algorithms. More generally, we study combinatorial problems
under a given structural promise – for example, set cover on set systems where every
pair of sets intersect in at most one element. We use inapproximability results on
such structured instances to resolve the approximability of multidimensional packing
problems and scheduling with communication delays.

vi

Acknowledgements

First and foremost, I feel deeply fortunate to work with Venkat. He has been
a wonderful advisor who adapts to the students’ needs, mentoring them closely at
times, and giving them freedom when needed. I am thankful to him for all the
countless hours spent working on research, his superhuman patience, and for being
an inspiration, both as a researcher and a person. Apart from the technical aspects, I
have learned many things working with him, including how to pick problems to work
on and how to ask interesting and important questions—even during the talks, he asks
simple yet deep questions every single time, which I hope I can emulate someday.
He is a treasure trove of ideas, and irrespective of the project stage, be it the early
brainstorming stage or when I am stuck on something or when we are working on a
write-up, after meeting him (mostly virtually, unfortunately), I always end up with
much better clarity and having many new ideas to work on.

I owe my gratitude to other members of my thesis committee: Anupam Gupta,
Ryan O’Donnell, and Nikhil Bansal. Talking to Anupam, with his constant optimism,
is always enlightening. I have benefited from his inspiring teaching style, by attending
his lectures and by being a TA. I am especially grateful to him for going out of his
way to give feedback on how to improve my presentation skills. I had great fun
binge-watching Ryan’s youtube lectures on topics ranging from analysis of Boolean
functions to infinite expander graphs. Reading the lecture notes of a course taught by
Ryan and Venkat at the University of Washington on PCPs during my undergrad was
one of the earliest experiences that helped develop my interest in theoretical computer
science, and I feel privileged to have both Ryan and Venkat on my thesis committee.
I am also indebted to Anupam and Ryan for helping me with my Ph.D. requirements.
I thank Nikhil for his encouragement and for his comments on an early draft that
were greatly helpful. I am thankful to Pravesh Kothari with whom I enjoyed talking
about things, research and otherwise, in the last semester. I am also grateful to Deb
Cavlovich for all the help with administrative matters.

Most of the work in this thesis is a joint work and I am thankful to my collabora-
tors: Joshua Brakensiek, Sami Davies, Mordecai Golin, Varun Gupta, Ravishankar
Krishnaswamy, Janardhan Kulkarni, Amit Kumar, Euiwoong Lee, Jakub Opršal, Arka
Ray, Thomas Rothvoss, Janani Sundaresan, Jakub Tarnawski, Yihao Zhang. While
not every collaboration has led to concrete results, I have thoroughly enjoyed every
discussion and have learned a lot. I also thank Libor Barto, Amey Bhangale, Boris
Bukh, Vincent Cohen-Addad, Florian Frick, Abhishek Shetty, and Xinyu Wu for
helpful discussions.

For the past few years, Pittsburgh has become a home away from home. Having
lived in zero other cities in the US, I still claim that Pittsburgh is one of the best cities
in the US, where you can get everything that a big city offers, without actually feeling
like you’re in one. But the reason it has become home is the people and I am grateful
to the friends here in Pittsburgh: Adithya, without whom I am not sure how I would
have survived the pandemic; other roommates (not all at once) Rawal, Eyan, Namit;
Prashanth, who helped me during the early days when I moved to the US; Sakshi,

vii

who has been incredibly supportive and encouraging (and also introduced me to The
Marvelous Mrs. Maisel); Abhiram, Andrii, Ankush, Anup, Biswa, Karthik, Leqi,
Nirav, Roger, Shilpa, Sitoshna who have been part of my pandemic social bubble
(at various points) and have been there for me through the highs and lows of grad
school. I also had fun group lunch/dinners with Ainesh, Alperen, Jackson, Jeff, Joao,
Jonathan, Madhusudan, Nic, Omar, Peter, Prashanti, Tim, Vijay; with the Microsoft
Research gang at CMU including Anish, Chirags (Gupta and Pabbaraju), Don, Nithin,
Phillip, Rahul, Raut, Suhas; Biking and tennis with Akarsh, Jatin, Mihir, Sol; Avalon
with David, Guillaume, and Marissa.

Before CMU, I spent a wonderful year at Microsoft Research in Bangalore
working with Ravishankar Krishnaswamy. I am grateful to Ravi for his continued en-
couragement and support during grad school. Even before that, during my undergrad,
I am grateful to Ajit Diwan and Nutan Limaye for introducing me to discrete math
and theoretical computer science research.

Finally, I am thankful to my family: my uncle and aunt in Virginia, who have
always been there for me here in the US, and my parents, my sister Navya, and my
cousin Tarak for their unconditional love and encouragement.

viii

Contents

1 Introduction 1
1.1 Promise Constraint Satisfaction Problems (PCSPs) 2
1.2 Multidimensional Packing and Scheduling . 4
1.3 Approximate Hypergraph Vertex Cover and generalized Tuza’s conjecture 5
1.4 Scheduling with non-uniform communication delays 6
1.5 Chapter Credits . 7
1.6 Organization . 7

I Promise Constraint Satisfaction Problems 9

2 Promise Constraint Satisfaction Problems: Introduction 11
2.1 PCSPs and Polymorphisms. 11
2.2 Label Cover . 13

3 Conditional dichotomy of Boolean Ordered PCSPs 15
3.1 Introduction . 15
3.2 Preliminaries . 17
3.3 Algorithm when Shapley values are small . 19
3.4 Hardness Assuming Rich 2-to-1 Conjecture . 21

3.4.1 Shapley value under random 2-to-1 minor 21
3.4.2 Reduction . 25

3.5 Adversarial 2-to-1 minor . 27

4 d-to-1 Hardness of Coloring 3-colorable graphs with O(1) colors 31
4.1 Introduction . 31
4.2 Preliminaries . 33

4.2.1 d-to-1 Conjecture . 33
4.2.2 Low degree influences . 34

4.3 d-to-1 hardness for 3-colorable graphs . 35
4.3.1 Reducing chromatic number to 3 . 35
4.3.2 A symmetric Markov chain supported on disjoint tuples 36
4.3.3 Proof of Theorem 33 . 38

4.4 Reducing multigraph (exact) d-to-1 to (d+ 1)-to-1 conjecture 40

ix

5 Rainbow coloring hardness via low sensitivity polymorphisms 43
5.1 Introduction . 43

5.1.1 Techniques . 44
5.1.2 Prior work on rainbow coloring and related problems 46
5.1.3 Outline . 47

5.2 Preliminaries . 47
5.2.1 Rainbow Coloring PCSP . 47
5.2.2 Complexity measures of functions . 48

5.3 Polymorphisms . 48
5.3.1 Sensitivity vs certificate complexity . 48
5.3.2 Low sensitivity polymorphisms of rainbow coloring 49
5.3.3 High sensitivity polymorphism of RAINBOW(7, 6, 2) 53

5.4 NP-Hardness . 54
5.5 Application: Vector Bin Covering . 57

5.5.1 Problem overview . 57
5.5.2 Hardness of Vector Bin Covering via Rainbow Coloring 58
5.5.3 Proof of Theorem 57 . 59

5.6 Adding equality constraints . 63

6 Robust Algorithms and SDPs for Promise CSPs 65
6.1 Introduction . 65

6.1.1 Robust algorithms . 67
6.1.2 Unique Games based hardness . 69
6.1.3 Minion characterization of basic SDP 71

6.2 Preliminaries . 72
6.3 General Observations . 74

6.3.1 Basic SDP setup . 74
6.3.2 Generic RHS reduction to “not x’ . 75

6.4 Robust Algorithms . 75
6.4.1 CMM is a robust algorithm for MAJ . 75
6.4.2 Warm-up for AT: Oblivious LP rounding algorithm for OR 79
6.4.3 Algorithm for AT . 80
6.4.4 General case for AT . 82

6.5 Unique Games based Hardness . 84
6.5.1 Sphere Ramsey Theory . 86
6.5.2 Absence of sphere coloring . 89

6.6 The SDP minion . 98
6.6.1 SDP Minion Definition . 99
6.6.2 An alternative Basic SDP . 100
6.6.3 From minion homomorphism to SDP rounding algorithm 102
6.6.4 From SDP rounding algorithm to minion homomorphism 102

6.7 Missing Proofs . 103

x

7 Revisiting Alphabet Reduction 109
7.1 Introduction . 109
7.2 Preliminaries . 111

7.2.1 Rectangular relation and the long code 111
7.2.2 Boolean Fourier analysis . 112

7.3 Label Cover to CSP . 113
7.3.1 Long code test . 114
7.3.2 Constraint test . 116
7.3.3 The full test . 118

7.4 CSP to Label Cover . 119
7.5 Derandomization of the gadget decoding . 121

II Structured instances 123

8 Multidimensional Packing and Scheduling Problems 125
8.1 Introduction . 125

8.1.1 Our Results . 126
8.1.2 Related Work . 129
8.1.3 Organization . 130

8.2 Preliminaries . 130
8.3 Vector Bin Packing . 132

8.3.1 Packing Dimension . 132
8.3.2 Packing Dimension of Simple Bounded Set Families 133
8.3.3 Hardness of Vector Bin Packing . 142

8.4 Vector Scheduling . 143
8.4.1 Monochromatic Clique . 143
8.4.2 From Monochromatic Clique to Vector Scheduling 147
8.4.3 Hardness of Vector Scheduling via Balanced Hypergraph Coloring 148
8.4.4 Proof of Lemma 154 . 150

8.5 Hardness of simple k-set cover . 153
8.6 SDP Relaxation of Monochromatic-Clique . 154

8.6.1 Algorithm when B >
√
n . 154

8.6.2 Integrality gap . 155

9 Approximate hypergraph vertex cover and generalized Tuza’s conjecture 157
9.1 Introduction . 157

9.1.1 Fractional Tuza’s conjecture and the algorithmic hypergraph Turán problem158
9.1.2 Vertex cover vs. matching and excluded sub-hypergraphs 159
9.1.3 Vertex cover and set cover on simple hypergraphs 160
9.1.4 Other improved hypergraph vertex cover algorithms 161
9.1.5 Open problems . 161

9.2 Preliminaries . 163
9.3 LP rounding algorithm for AHTP . 164

xi

9.3.1 Color-coding based small vertex cover 164
9.3.2 LP rounding based algorithm for AHTP 165
9.3.3 Analysis of the algorithm and proof of Theorem 161 167
9.3.4 (t, 2)version of AHTP . 169

9.4 Forbidden sub-hypergraphs and Tuza’s conjecture 170
9.4.1 Explicit construction of tent-free hypergraphs 172

9.5 Vertex cover and set cover on simple hypergraphs 173
9.5.1 Vertex cover on simple t-uniform hypergraphs 173
9.5.2 Set Cover on Simple Set Systems . 175

10 Scheduling with non-uniform communication delay 179
10.1 Introduction . 179

10.1.1 Our Techniques . 180
10.1.2 A Brief History of the Communication Delay Problem 182
10.1.3 Discussion and Open Problems . 183
10.1.4 Organization . 183

10.2 Unique Machine Precedence Constraints Scheduling problem 184
10.3 Hardness of Scheduling With Non-Uniform Communication Delays 184
10.4 Conditional Hardness of Scheduling With Precedence Constraints on Related

Machines . 186
10.4.1 Hypothesis of [BN15]mplies superconstant hardness of the UMPS prob-

lem with unit lengths . 191

11 Conclusion 193

xii

List of Figures

3.1 An illustration of the two step minor approach: Here f : {0, 1}6 → {0, 1} is
a Boolean function, f ′ : {0, 1}5 → {0, 1} is a minor of f with respect to the
function π1 : [6] → [5] with π1(i) = max(i − 1, 1), and g is a minor of f ′ with
respect to the function π2 : [5]→ [3] with π2(i) = ⌈ i+1

2
⌉. 21

8.1 An illustration of a sunflower-bouquet set family. Here, S is the family of all the
green colored sets. It is a sunflower-bouquet with core U = {u1, u2, u3}. In the
embedding, we ensure that the ℓ∞ norm of the left red set is greater than 1 in the
first step while the right side red set is handled in the second step. 135

9.1 The 3-tent . 159

10.1 Role of the UMPS problem in our hardness reduction. 181
10.2 Illustration of the reduction from UMPS to non-uniform communication delays.

In the communication delay instance on the right, the dashed arrow precedences
have communication delay C∞ while the normal arrow precedences have commu-
nication delay 0. 185

xiii

xiv

Chapter 1

Introduction

Starting with the celebrated PCP theorem [Aro+98], the study of the hardness of approximation has
played a key role in theory of computing, including results such as Parallel Repetition [Raz98], and
the study of Unique Games Conjecture (UGC) [Kho02b]. This has led to optimal inapproximability
results for various computational problems such as 3-SAT [Hås01], and more generally, all
Constraint Satisfaction Problems [Rag08] (modulo UGC). Despite this progress, our understanding
of approximation algorithms for some problems is lacking, for example, approximate graph
coloring, and problems that have been well studied in the algorithms community such as clustering,
packing, and scheduling problems.

In this thesis, we make progress on these problems by studying computational problems
under a given promise. There are two different kinds of promises on the instances: first, we are
promised that the instance has a solution that satisfies a stronger property while the goal is to find
a solution with a weaker property. For example, given a graph that is promised to be 3-colorable,
can we color it with 6 colors in polynomial time? This is an example of Promise Constraint
Satisfaction Problems (PCSPs) that generalize the classical Constraint Satisfaction Problems
(CSPs) by having weak and strong predicate pairs and the goal is to find a solution satisfying the
weak predicates under the promise that there is a solution satisfying the strong predicate. PCSPs
are a vast generalization of CSPs, capturing problems such as approximate graph and hypergraph
coloring, (2 + ϵ)-SAT [AGH17].

Formally introduced in a work of Austrin, Guruswami, and Hastad [AGH17], there has been a
flurry of works on PCSPs, both on the algorithmic and hardness front. In this thesis, we continue
this line of works. Regarding specific PCSPs, for the approximate graph and hypergraph coloring,
we prove the hardness of O(1)-coloring a 3-colorable graphs [GS20a] under a weaker conjecture,
namely the d-to-1 conjecture of Khot [Kho02b]. Furthermore, we prove improved hardness of
rainbow coloring of hypergraphs [GS20b], and also apply these hardness results to prove almost
optimal hardness results for Vector Scheduling and Vector Bin Covering [San21]. For the Boolean
case, we prove a conditional dichotomy result for monotone Boolean PCSPs [BGS21]. We also
study robust algorithms for PCSPs where the goal is to output a solution satisfying 1 − f(ϵ)

fraction of the constraints on instances promised to be 1− ϵ satisfiable, with f(ϵ)→ 0 as ϵ→ 0.
A different way of studying computational problems under a promise is when the instances

1

themselves have a strong structural property. As a concrete example, consider the set cover
problem where given a set system, the objective is to find the minimum number of sets whose
union is the whole universe of elements. There is lnn-factor approximation algorithm for the
problem, and this is tight [Fei98]. Suppose that the instance has stronger structural property,
namely, that any two sets in the family intersect in at most one element i.e., the underlying set
system is simple – can we get improved algorithms for the problem, or does the same hardness
hold? It turns out that the set cover problem on simple set systems is a useful problem to study,
with connections to several other problems. We prove a hardness result on the set cover problem
on simple set systems and use it to show optimal (up to constants) hardness of approximation for
Vector Bin Packing [San21], whose approximability has been open for more than two decades.
The set cover problem on simple set systems is also closely related to the Tuza’s conjecture
relating to packing and covering of edges of a graph with triangles, and we use the algorithmic
ideas used in the set cover problem to prove the fractional version of the generalized Tuza’s
conjecture [GS22]. Finally, we use the idea of studying computational problems under promise to
resolve the approximability of scheduling with non-uniform communication delays [Dav+22],
where we introduce a problem called Unique Machines Precedence constraints Scheduling
(UMPS) which is a very structured instance of unrelated machine scheduling with precedence
constraints problem.

1.1 Promise Constraint Satisfaction Problems (PCSPs)

As mentioned earlier, Promise Constraint Satisfaction Problems (PCSPs) are a vast generalization
of CSPs, where each predicate now has a weak and strong form. The central question in the study
of PCSPs is whether there exists a complexity dichotomy of CSPs extends to PCSPs i.e. if every
PCSP is either in P or is NP-complete. We first give a historic overview of the CSP dichotomy
theorem. The quest for CSP dichotomy started with a result of Schaefer who proved that every
Boolean CSP is either in P or is NP-Hard [Sch78]. Feder and Vardi [FV98] conjectured that
the same should hold over arbitrary domains as well. They also showed that the then known
algorithmic results all follow by the algebraic closure properties of the CSPs.

This notion was formalized by Jeavons, Cohen, and Gyssens [JCG97; Jea98] and other
works [BJK05] that crystallized the (universal) algebraic approach to CSPs. In the algebraic ap-
proach, the higher-order closure properties obeyed by the predicates, namely their polymorphisms,
are studied. A polymorphism is a function that when applied coordinate-wise to arbitrary satisfy-
ing assignments to the predicate, is guaranteed to produce an output that satisfies the predicate.
For example, consider an arbitrary instance I of the 2-SAT problem over n variables, and suppose
that x, y, z ∈ {0, 1}n are three assignments that satisfy all the constraints in I . Now, if we compute
u ∈ {0, 1}n that is obtained by setting ui = MAJ(xi, yi, zi) for all i ∈ [n], the assignment u
also satisfies all the constraints of I . Thus, the majority function on 3 bits is a polymorphism of
the 2-SAT CSP. On the other hand, for the 3-SAT problem, it is not hard to prove that the only
polymorphisms are the dictator functions. The algebraic approach has been immensely successful
and culminated in the recent resolution of the Feder-Vardi conjecture by Bulatov [Bul17] and

2

Zhuk [Zhu20]. Further, these proofs yield a precise understanding of the mathematical structure
underlying efficient algorithms: if the CSP has a “non-trivial” polymorphisms, the CSP is polytime
solvable, and otherwise, it is NP-complete.

The algebraic approach is the key tool towards establishing such a dichotomy result even for
PCSPs. The Galois correspondence from the CSP world extends to PCSPs, i.e., the polymorphisms
fully capture the computational complexity of the underlying PCSP [Pip02a; BG21a]. This has
been extended to show that just the identities satisfied by the polymorphisms suffice to capture the
computational complexity of the underlying PCSP [Bar+21]. However, the polymorphisms of
PCSPs are much richer, and characterizing which polymorphisms lead to algorithms and which
ones lead to hardness has been a challenging problem. Conceptually, the principal difficulty is that
the polymorphisms for CSPs are closed under composition (hence referred to as clones), whereas
for PCSPs, this is no longer the case. As a result, even in the Boolean case, we do not have a
dichotomy theorem for PCSPs. On the other hand, this richness of PCSPs has motivated a lot of
recent works, both understanding fixed template PCSPs such as variants of graph and hypergraph
colorings [Bar+21; KO19], variants of Boolean PCSPs [AGH17; BŽ21], understanding the power
of various algorithmic techniques for PCSPs [Bra+20; CŽ22b].

In this thesis, we continue this line of works. In particular, we prove the following results
regarding Promise CSPs.

Conditional Dichotomy of Boolean Monotone PCSPs. Towards establishing a potential Boolean
PCSP dichotomy, progress has been made by Ficak, Kozik, Olsák, and Stankiewicz [Fic+19],
who obtained a dichotomy result when each predicate is symmetric. In this work, we study
Boolean PCSPs that contain the simplest non-symmetric predicate, x→ y. We call such Boolean
PCSPs Ordered as we can also view the implication constraint as an ordering requirement x ≤ y.
We show that Ordered Boolean PCSPs exhibit computational dichotomy, assuming the recently
introduced rich 2-to-1 conjecture (which is the perfect completeness analog of the Unique Games
Conjecture) of Braverman, Khot, and Minzer [BKM21].

d-to-1 hardness of Coloring 3-Colorable graphs withO(1) Colors. Approximate graph coloring
is a canonical PCSP, and it is a major open problem to show NP-Hardness of coloring 3-colorable
graphs with O(1) colors. In this work, we prove that the d-to-1 conjecture for any fixed d implies
the hardness of coloring a 3-colorable graph with C colors for arbitrarily large integers C. Here,
the d-to-1 conjecture of Khot [Kho02b] asserts that it is NP-hard to satisfy an ϵ fraction of
constraints of a satisfiable d-to-1 Label Cover instance, for arbitrarily small ϵ > 0. Earlier, the
hardness of O(1)-coloring a 4-colorable graphs is known [DMR09] under the 2-to-1 conjecture,
which is the strongest in the family of d-to-1 conjectures, and the hardness for 3-colorable graphs
is known under a certain “fish-shaped” variant of the 2-to-1 conjecture.

Rainbow Coloring Hardness via low sensitivity polymorphisms. Rainbow coloring of hy-
pergraphs is another PCSP that, for most parameters, is harder than graph coloring, and thus, is
easier to show unconditional NP-Hardness. Furthermore, it serves as a good testbed to analyze the
polymorphisms of a PCSP that is similar to graph coloring. A k-uniform hypergraph is said to be
r-rainbow colorable if there is an r-coloring of its vertices such that every hyperedge intersects all
r color classes. Given as input such a hypergraph, finding a r-rainbow coloring of it is NP-hard

3

for all k ≥ 3 and r ≥ 2. Therefore, one settles for finding a rainbow coloring with fewer colors
(which is an easier task). When r = k (the maximum possible value), i.e., the hypergraph is
k-partite, one can efficiently 2-rainbow color the hypergraph, i.e., 2-color its vertices so that there
are no monochromatic edges. In this work, we consider the next smaller value of r = k − 1, and
prove that in this case, it is NP-hard to rainbow color the hypergraph with q := ⌈k−2

2
⌉ colors. In

particular, for k ≤ 6, it is NP-hard to 2-color (k − 1)-rainbow colorable k-uniform hypergraphs.

Vector Bin Covering. We use the analysis of polymorphisms of rainbow coloring PCSP to prove
the hardness of Vector Bin Covering. Vector Bin Covering is a multidimensional generalization of
Bin Covering. In the d-dimensional Vector Bin Covering instance, the input is a set of n vectors
in [0, 1]d. The objective is to partition these into the maximum number of parts such that in each
part, the sum of vectors is at least 1 in every coordinate. This problem is introduced by Alon
et al. [Alo+98] who gave a O(log d) factor approximation algorithm. On the hardness front,
Ray [Ray21] showed that the 2-dimensional Vector Bin Covering problem is hard to approximate
within a factor of 998

997
. We show Ω

(
log d

log log d

)
hardness for the problem, almost matching the

O(log d) factor algorithm [Alo+98].

Robust algorithms for Promise CSPs. In this work, we study robust algorithms for PCSPs i.e.,
algorithms that output a solution satisfying 1− f(ϵ) fraction of the constraints when the instance
is guaranteed to have a solution satisfying 1− ϵ fraction of constraints, where f(ϵ) goes to 0 as ϵ
goes to 0. We show that if a Boolean folded PCSP contains Majority or Alternating-Threshold1

family of polymorphisms, then it admits a robust algorithm. We also show Unique Games based
hardness of obtaining robust algorithms for a broad class of PCSPs by showing integrality gaps
for basic SDP [Rag08].

Revisiting Alphabet reduction. Along with Gap amplification, Alphabet reduction is a key step
in Dinur’s celebrated proof [Din07] of the PCP Theorem. The alphabet reduction used in [Din07]
is proved via Assignment Testers. In this chapter, we give a simplified proof of alphabet reduction
using a direct test, inspired by reductions between binary PCSPs.

In the rest of the three sections, we give an overview of the multidimensional packing problems,
generalized Tuza’s conjecture, and scheduling with non-uniform communication delay.

1.2 Multidimensional Packing and Scheduling
Vector Bin Packing is a multidimensional generalization of Bin Packing where the input is a
set of n vectors in [0, 1]d and the goal is to partition the vectors into the minimum number of
parts such that in each part, the sum of vectors is at most 1 in every coordinate. Already when
d = 2, the problem is APX-hard [Woe97; Ray21]. On the algorithmic front, the PTAS for Bin
Packing [VL81] easily implies a d+ ϵ approximation for Vector Bin Packing. When d is part of
the input, this is almost tight: there is a lower bound of d1−ϵ shown by [CK04; Chr+17]. When d is

1Alternate-Threshold (AT) is a signed variant of the Majority function. For an odd integer L,
ATL(x1, x2, . . . , xL) = 1, if x1−x2+x3− . . .+xL > 0, and 0 otherwise. If a PCSP Γ contains AT polymorphisms
of all odd arities (for example, (1-in-3-SAT, NAE-3-SAT)), then it can be solved in polynomial time [BG21b].

4

a fixed constant2, much better algorithms are known [CK04; BCS09; BEK16] that get ln d+O(1)

approximation guarantee. However, the best hardness factor (for arbitrary constant d) is still the
APX-hardness result of the 2-dimensional problem due to Woeginger from 1997. Closing this
gap, either by obtaining a O(1) factor algorithm or showing a hardness factor that is a function of
d, has remained a challenging open problem.

We resolve this gap by proving a Ω(log d) asymptotic hardness of approximation when d is a
large constant, matching the ln d+O(1) approximation algorithms [CK04; BCS09; BEK16], up
to constants. We obtain our hardness result via a reduction from the set cover problem on simple
bounded set families – where the underlying set family is simple, each set has a bounded size,
and each element appears in a bounded number of sets. We use this hardness to obtain the above
theorem using a notion of embedding of set systems that we call packing dimension.

Vector Scheduling. Vector Scheduling is another well-studied problem for which the hardness of
approximate graph coloring can be used to obtain almost optimal inapproximability results. In the
d-dimensional Vector Scheduling problem, given a set of n vector jobs in [0, 1]d, and m identical
machines, the objective is to assign the jobs to machines to minimize the maximum ℓ∞ norm
of the load on the machines. Chekuri and Khanna [CK04] introduced the problem as a natural
generalization of Multiprocessor Scheduling and obtained a PTAS for the problem when d is a fixed
constant. When d is part of the input, they obtained a O(log2 d) factor approximation algorithm.
They also showed that it is NP-hard to obtain a C factor approximation algorithm for the problem,
for any constant C. Meyerson, Roytman, and Tagiku [MRT13] gave an improved O(log d) factor
algorithm while the current best factor is O

(
log d

log log d

)
due to Harris and Srinivasan [HS19] and

Im, Kell, Kulkarni, and Panigrahi [Im+19]. We show that these are almost tight by proving that
the problem has no Ω((log d)1−ϵ) factor approximation algorithms assuming NP does not have
quasipolynomial time algorithms. We also relate the problem to balanced hypergraph coloring
PCSP and use this connection to show (albeit weaker) NP-Hardness result.

1.3 Approximate Hypergraph Vertex Cover and generalized
Tuza’s conjecture

A famous conjecture of Tuza [Tuz81; Tuz90] states that the minimum number of edges needed to
cover all the triangles in a graph is at most twice the maximum number of edge-disjoint triangles.
This conjecture was couched in a broader setting by Aharoni and Zerbib [AZ20] who proposed a
hypergraph version of this conjecture and also studied its implied fractional versions. We establish
the fractional version of the Aharoni-Zerbib conjecture up to lower-order terms. Specifically, we
give a factor t/2+O(

√
t log t) approximation based on LP rounding for an algorithmic version of

the hypergraph Turán problem (AHTP). The objective in AHTP is to pick the smallest collection
of (t− 1)-sized subsets of vertices of an input t-uniform hypergraph such that every hyperedge
contains one of these subsets.

2The algorithms are now allowed to run in time nf(d), for some function f .

5

The algorithmic questions arising in the above study can be phrased as instances of vertex
cover on simple hypergraphs, whose hyperedges can pairwise share at most one vertex. We prove
that the trivial factor t approximation for vertex cover is hard to improve for simple t-uniform
hypergraphs. However, for set cover on simple n-vertex hypergraphs, the greedy algorithm
achieves a factor (lnn)/2, better than the optimal lnn factor for general hypergraphs.

1.4 Scheduling with non-uniform communication delays

We study the problem of scheduling jobs with precedence and non-uniform communication delay
constraints on identical machines to minimize the makespan objective function. This classic
model was first introduced by Rayward-Smith [Ray87] and Papadimitriou and Yannakakis [PY90].
In this problem, we are given a set J of n jobs, where each job j has a processing length
pj ∈ Z+. The jobs need to be scheduled on m identical machines. The jobs have precedence
and communication delay constraints, which are given by a partial order ≺. A constraint j ≺ j′

encodes that job j′ can only start after job j is completed. Moreover, if j ≺ j′ and j, j′ are
scheduled on different machines, then j′ can only start executing at least cjj′ time units after j
had finished. On the other hand, if j and j′ are scheduled on the same machine, then j′ can start
executing immediately after j finishes. The goal is to schedule jobs non-preemptively to minimize
the makespan objective function, which is defined as the completion time of the last job. In a
non-preemptive schedule, each job j needs to be assigned to a single machine i and executed
during a contiguous time interval of length pj . In the classical scheduling notation, the problem is
denoted by P | prec, cjk | Cmax.

The problem has received renewed interest lately in the applied community due to its relevance
in data center scheduling problems and large scale training of ML models. [Cho+11; Guo+12;
GCL18; Tar+20]. From a theory perspective, very little was known other than the NP-Hardness of
the problem. On the algorithmic front, recently, Maiti et al. [Mai+20] and Davies et al. [Dav+20;
Dav+21] designed polylogarithmic approximation algorithms for the special case when all the
communication delays are equal. On the hardness front, it remained an open problem whether
the general problem containing arbitrary communication delays (referred to as non-uniform
communication delay scheduling problem) has a constant factor approximation algorithm [SW99b;
Ban17].

We answer this question in the negative by showing that for every ϵ > 0, the the non-uniform
communication delay problem (P | prec, cjk | Cmax) does not admit a polynomial-time (log n)1−ϵ-

approximation algorithm assuming NP ⊈ ZTIME
(
n(logn)O(1)

)
. Our proof of the result follows

via a scheduling problem that we call Unique Machine Precedence constraints Scheduling (UMPS),
which we believe is a fundamental problem on its own.

6

1.5 Chapter Credits
Chapter 4, Chapter 5 and Chapter 9 are based on joint works [GS20a], [GS20b] and [GS22]

respectively, with Venkatesan Guruswami. Chapter 3 and Chapter 6 are based on [BGS21] and an
unpublished work respectively, with Joshua Brakensiek and Venkatesan Guruswami. Chapter 7
is based on [GOS20] a joint work with Venkatesan Guruswami and Jakub Opršal. Chapter 8 is
based on [San21]. Chapter 10 is based on [Dav+22] a joint work with Sami Davies, Janardhan
Kulkarni, Thomas Rothvoss, Jakub Tarnawski and Yihao Zhang.

1.6 Organization
The thesis is divided into two parts.

In the first part, we study Promise CSPs. We start with some formal definitions in Chapter 2.
Then, we prove the conditional dichotomy of Boolean Ordered PCSPs in Chapter 3. We study
the approximate graph coloring and rainbow coloring problems in Chapter 4 and Chapter 5
respectively. The robust algorithms for PCSPs are studied in Chapter 6. Finally, we study the
alphabet reduction in Chapter 7.

In the second part, we study multidimensional packing problems in Chapter 8, generalized
Tuza’s conjecture in Chapter 9, and scheduling with non-uniform communication delay problem
in Chapter 10. We conclude with some open directions in Chapter 11.

7

8

Part I

Promise Constraint Satisfaction Problems

9

Chapter 2

Promise Constraint Satisfaction Problems:
Introduction

In this chapter, we introduce Promise Constraint Satisfaction Problems(PCSPs) formally.

2.1 PCSPs and Polymorphisms.

Constraint satisfaction problems (CSP) have played a very influential role in the theory of
computation, providing an excellent testbed for the development of both algorithmic and hardness
techniques, which then extend to more general settings. A CSP over domain D is specified by a
finite collection of predicates over D. Given an input containing n variables with constraints on
the variables using these predicates, the objective is to identify if we can assign values from D to
the variables that satisfies all the constraints.
Definition 1. (CSP) Given a k-ary relation A : Dk → {0, 1} over a domain D, the Con-
straint Satisfaction Problem(CSP) associated with the predicate A takes a set of variables
V = {v1, v2, . . . , vn} as input which are to be assigned values from D. There are m constraints
(e1, e2, . . . , em) each consisting of ei = ((ei)1, (ei)2, . . . , (ei)k) ⊆ V k that indicate that the corre-
sponding assignment should belong to A. The objective is to identify if there is an assignment
V → D that satisfies all the constraints.

In general, we can have multiple relations A1, A2, . . . , Al, and different constraints can use
different relations. We denote such a CSP by CSP (A1, A2, . . . , Al).

We give some examples of CSPs.
Example 2. Examples of CSPs include

1. 3-SAT: In this problem, the objective is to assign True or False to variables to satisfy a
Boolean formula that is a conjunction of clauses each of which is a disjunction of three
literals. In the above notation, we have two predicates, the 3-ary predicate x∨y∨z together
with allowing negation of variables i.e., the predicate y = x.

2. 2-SAT: This corresponds to the Boolean formula satisfiability problem when each clause
contains two literals.

11

3. 3-coloring. In this problem, given a graph G, the objective is to assign 3 colors to the
vertices of G such that every pair of adjacent vertices are assigned different colors. In the
above notation, we have a single predicate A = {(x, y) : x, y ∈ [3], x ̸= y}.

4. 1-in-3-SAT. In this problem, we are given a set of constraints involving three variables, and
the objective is to assign True or False to the variables such that in constraint, exactly one
variable is assigned True. In the above notation, we have a single predicate A = {(x, y, z) :
x, y, z ∈ {0, 1}, x+ y + z = 1}.

5. NAE-3-SAT. In this problem, we have a set of constraints involving three variables over the
Boolean domain, and the objective is to assign True or False such that in each constraint,
both True and False appear. The predicate is A = {0, 1}n \ {(0, 0, 0), (1, 1, 1)}.

The key computational challenge in the study of CSPs is to characterize the computational
complexity of them i.e., identify which CSPs can be solved in polynomial time, which CSPs are
NP-Hard, and whether every CSP is in P or is NP-Hard. In the above set of examples, 2-SAT
can be solved in polynomial time while the rest of the CSPs are NP-Hard. The formal study of
CSPs was initiated by Schaefer [Sch78] in 1978 when he proved that every Boolean CSP is either
in P or is NP-Complete. Feder and Vardi [FV98] conjectured that the same should hold over
arbitrary domains as well. After a long line of works, the Feder-Vardi conjecture was resolved in
the affirmative by Bulatov [Bul17] and Zhuk [Zhu20] independently.

In this thesis, we study Promise Constraint Satisfaction Problems (PCSPs) that vastly general-
ize CSPs. In the PCSPs, each predicate has a weak and a strong form–given an instance of PCSP
containing n variables with the constraints, the goal is to distinguish between the case that the
stronger form can be satisfied vs. even the weaker one cannot be satisfied. We formally define
Promise Constraint Satisfaction Problems(PCSPs).
Definition 3. (PCSP) In a Promise Constraint Satisfaction Problem PCSP (Γ) over a pair of
domains D1, D2, we have a set of pairs of relations Γ = {(A1, B1), (A2, B2), . . . , (Al, Bl)} such
that for every i ∈ [l], Ai is a subset of Dki

1 and Bi is a subset of Dki
2 . Furthermore, there is a

homomorphism h : D1 → D2 such that for all i ∈ [l] and x ∈ Dki
1 , x ∈ Ai implies h(x) ∈ Bi.

Given a CSP (A1, A2, . . . , Al) instance, the objective is to distinguish between the two cases:
1. There is an assignment to the variables from D1 that satisfies every constraint when viewed

as CSP (A1, A2, . . . , Al).
2. There is no assignment to the variables from D2 that satisfies every constraint when viewed

as CSP (B1, B2, . . . , Bl).
We give some examples of PCSPs.

Example 4. Examples of PCSPs:
1. (c, s)-approximate Graph Coloring. A classical example of PCSP is the approximate graph

coloring, where given a graph G, the goal is to distinguish between the cases that G can
be colored with c colors vs. it cannot be colored with s colors for some c ≤ s. In the
above language, we have predicates A,B where A = {(x, y) : x, y ∈ [c], x ̸= y}, and
B = {(x, y) : x, y ∈ [s], x ̸= y}.

2. (1-in-3-SAT, NAE-3-SAT). Given a 1-in-3-SAT instance that is promised to be satisfiable,
the objective is to assign 0, 1 values to the variables such that each constraint is satisfied as

12

an NAE-3-SAT instance, i.e., both 0 and 1 occur in every constraint.
3. (2 + ϵ)− SAT : Given a CNF formula where each clause has w literals, with the promise

that there is an assignment satisfying ⌈w
2
⌉ − 1 literals in each clause, the objective is to find

a satisfying assignment to the formula.
4. Approximate rainbow coloring of hypergraphs: A k uniform hypergraph is said to be
r-rainbow colorable if there exists a coloring to the vertices such that in each edge, all
the colors appear. Given a k-uniform hypergraph that is promised to be (k − 1)-rainbow
colorable, the objective is to 2-color1 the hypergraph.

The study of PCSPs was formally initiated by Austrin, Guruswami, and Håstad [AGH17].
and since then, there has been a lot of recent interest in PCSPs, including the development of
a systematic theory in [BG21a; Bar+21] and leading to breakthroughs in approximate graph
coloring [Bar+21; KO19; WŽ20]. Similar to CSPs, the key question in the study of PCSPs is to
understand which PCSPs can be solved in polynomial time, which ones are NP-Hard, and if there
is a PCSP dichotomy result. Consider the above example of (1-in-3-SAT, NAE-3-SAT). While the
individual CSPs, namely 1-in-3-SAT and NAE-3-SAT are both NP-hard, the above PCSP indeed
can be solved in polynomial time [BG21a]. On the other hand, (c, s)-approximate graph coloring
is much less understood: it’s only in a recent breakthrough result [Bar+21] that (3, 5)-approximate
graph coloring is shown to be NP-Hard.

As is the case with CSPs, the key tool underlying these results is the universal algebraic
framework where polymorphisms of the PCSP are studied. Polymorphisms capture the closure
properties of the satisfying solutions to the PCSP. More formally, we can define polymorphisms
of a PCSP as follows.
Definition 5. (Polymorphisms) For PCSP (Γ) with Γ = {((A1, B1), (A2, B2),. . ., (Al, Bl))}
where for every i ∈ [l], Ai : [q1]

ki → {0, 1}, Bi : [q2]
ki → {0, 1}, a polymorphism of arity n is a

function f : [q1]
n → [q2] that satisfies the below property for all i ∈ [l]. For all (v1, v2, . . . , vki)

such that for all j ∈ [n], ((v1)j, (v2)j, . . . , (vki)j) ∈ Ai, we have

(f(v1), f(v2), . . . , f(vki)) ∈ Bi

We use Pol(Γ) to denote the family of all the polymorphisms of PCSP (Γ).
We refer the reader to [Bar+21] for an extensive introduction to PCSPs and polymorphisms.

2.2 Label Cover
We now formally define the Label Cover problem that serves as a starting point for most of our
hardness results.
Definition 6. (Label Cover) In the Label Cover instance, we are given a tuple G = ((V,E), R,Ψ)

where
1. (V,E) is a graph on vertex set V with edge set E.
2. Each vertex in V has to be assigned a label from the set Σ = [R] = {1, 2, . . . , R}.
1Rainbow 2-coloring is the same as standard 2-coloring of hypergraphs.

13

3. For every edge e = (u, v) ∈ E, there is an associated relation Ψe ⊆ Σ × Σ. This
corresponds to a constraint between u and v.

A labeling σ : V → Σ satisfies a constraint associated with the edge e = (u, v) if and only if
(σ(u), σ(v)) ∈ Ψe. Given such an instance, the goal is to distinguish if there is a labeling that
can satisfy all the constraints or if no labeling can satisfy a significant fraction of constraints.

The PCP theorem [AS98; Aro+98] together with Raz’s parallel repetition theorem [Raz98]
implies that for every constant ϵ > 0, it is NP-hard to distinguish between the case that a
given Label Cover instance has a labeling that satisfies all the constraints vs. no labeling can
satisfy more than ϵ fraction of the constraints. This hardness result for Label Cover has been
instrumental in showing numerous strong, and sometimes optimal, inapproximability results for
various computational problems.

14

Chapter 3

Conditional dichotomy of Boolean Ordered
PCSPs

3.1 Introduction

Towards establishing a potential Boolean PCSP dichotomy, progress has been made by Ficak,
Kozik, Olsák and Stankiewicz [Fic+19], who obtained a dichotomy result when each predicate
is symmetric. In this chapter, we study Boolean PCSPs that contain the simplest non-symmetric
predicate, x → y. We call such Boolean PCSPs Ordered as we can also view the implication
constraint as an ordering requirement x ≤ y.

Ordered Boolean PCSPs have come under recent study. The work of Petr [Pet20] (inspired by
work of Barto [Bar18b; Bar18a]) considered a special class of Ordered Boolean PCSPs which have
an additional predicate x ̸= y (this corresponds to allowing negations in the constraints) as well
as the requirement that the majority on three bits is not a polymorphism. In this setting Petr was
able to show that such Ordered Boolean PCSPs are NP-hard. However, the approach considered
does not seem immediately extendable to analyzing general Ordered Boolean PCSPs [Bar18a].

The main motivation for studying these PCSPs comes from the fact that adding the additional
x ≤ y predicate is equivalent to restricting the polymorphisms of the PCSPs to be monotone
functions. Monotonicity is an influential theme in the study of Boolean functions and complexity
theory, and understanding the structure of polymorphisms in the monotone case is an impor-
tant (and certainly necessary) subcase towards a general characterization of polymorphisms vs.
tractability for arbitrary Boolean PCSPs. For the special case of Boolean Ordered PCSPs which
include negation constraints, it was conjectured in [Bar18a] that polynomial time tractability is
characterized by the existence of majority polymorphisms of arbitrarily large arity.

Our main result is that Boolean Ordered PCSPs exhibit a dichotomy, under the recently
introduced Rich 2-to-1 Conjecture of Braverman, Khot, and Minzer [BKM21].
Theorem 7. Assuming the Rich 2-to-1 Conjecture, every Ordered Boolean PCSP is either in P or
is NP-Complete. Furthermore, an Ordered PCSP Γ is in P if and only if for every ϵ > 0, there are
polymorphisms of Γ with every coordinate having Shapley value at most ϵ. Equivalently, Γ is in P
if and only if it has threshold polymorphisms of arbitrarily large arity.

15

As a concrete example, recall the PCSP (1-in-3-SAT, NAE-3-SAT) defined in Chapter 2. As
it has threshold polymorphisms of arbitrarily large arity, it remains polynomial time solvable
even after adding the predicate x→ y. However, if we also add another two-variable predicate
x ̸= y, the PCSP no longer has threshold polymorphisms, and by our above result, it becomes
NP-Complete.

We obtain the conditional dichotomy result by analyzing the polymorphisms of the Ordered
PCSPs. The key idea in the algebraic approach to PCSPs is that the PCSP is tractable if the
polymorphisms are close to symmetric, and the PCSP is hard if all the polymorphisms have a small
number of “important” coordinates. More concretely, on the algorithmic front, it has been proved
that symmetric polymorphisms of arbitrarily large arities lead to polynomial time algorithms for
PCSPs [Bra+20]. On the hardness side, if all the polymorphisms depend on a bounded number of
coordinates, then the underlying PCSP is NP-hard [AGH17]. This has been extended to various
other notions, including combinatorial ones such as C-fixing [BG16], and topological ones such
as having a bounded number of coordinates with non-zero winding number [KO19]. In this work,
we study the monotone polymorphisms using analytical techniques.

In particular, we use Shapley value to analyze the monotone polymorphisms. For a monotone
function f : {0, 1}n → {0, 1}, Shapley value of a coordinate i is the probability that on a random
path from {0, 0, . . . , 0} to {1, 1, . . . , 1}, the function value turns from 0 to 1 when we switch
the ith coordinate to 1. Initially studied to understand the power of an individual in voting
systems [SS54], Shapley value has now found applications in various settings, especially in game
theory [Mic+13; NN11]. In our setting, there are two advantages of using Shapley value to study
the polymorphisms. First, it is a relative measure of the importance of a coordinate, as opposed to
other notions of Influence which are absolute. This helps in bounding the number of coordinates
with Shapley value above a certain threshold. Second, it is a versatile measure with combinatorial
and analytical interpretations [DDS17] which helps in proving that Shapley value stays consistent
under function minors1, a key property necessary in both the algorithm and the hardness.

Algorithm Overview. We obtain our algorithmic result by using the Basic Linear Programming
with Affine relaxation (BLP+Affine relaxation), combined with a structural result regarding the
monotone functions with bounded Shapley value. As mentioned earlier, PCSPs with symmetric
polymorphisms of arbitrarily large arities can be solved in polynomial time using the BLP+Affine
relaxation algorithm [Bra+20]. Our main structural result is that Boolean functions with bounded
Shapley value have arbitrarily large threshold functions as minors. Since the set of polymorphisms
of a PCSP are closed under taking minors, this proves that the underlying PCSP Γ has arbitrarily
large threshold functions as polymorphisms, which then implies that Γ is in P. The key tool
underlying our structural result is a result of Kalai [Kal04] that states that under certain conditions,
monotone Boolean functions with arbitrarily small Shapley value have a sharp threshold.

Hardness Overview. We obtain our hardness result assuming the Rich 2-to-1 Conjecture. Braver-
man, Khot, and Minzer [BKM21] introduced the conjecture as a perfect completeness surrogate
of the well known Unique Games Conjecture [Kho02b]. They also proved that the conjecture is

1A minor(formally defined in Section 3.2) of a function f : {0, 1}m → {0, 1} is a function g : {0, 1}n → {0, 1}
of smaller arity n ≤ m obtained from f by identifying sets of variables together.

16

equivalent to Unique Games Conjecture when we relax the perfect completeness requirement. The
reduction from the Rich 2-to-1 Conjecture to PCSPs follows using the standard Label Cover-Long
Code paradigm. The key ingredient in this reduction is a decoding of the Long Codes to a bounded
number of coordinates that is consistent under function minors. We decode each Long Code
function to the coordinates with Ω(1) Shapley value—as the sum of Shapley values of all the
coordinates of any monotone function is equal to 1, there is a bounded number of such coordinates.
We argue about the consistency of this decoding using a structural result that states that under a
uniformly random minor, Shapley value is roughly preserved.

On the necessity of “richness” in 2-to-1 Conjecture. A natural question is whether our hardness
result can be obtained using a weaker assumption such as the 2-to-1 conjecture (whose imperfect
completeness version was recently established [KMS17; Din+18a; Din+18b; KMS18]). We shed
some light on this question by showing that there are monotone Boolean functions f : {0, 1}2n →
{0, 1} and g : {0, 1}n → {0, 1} such that g is a minor of f with respect to the 2-to-1 function
π, both the functions f and g have exactly one coordinate i1, i2 respectively, with Ω(1) Shapley
value, and yet π(i1) ̸= i2. Such an adversarial example is interesting from two angles: first, it
shows that even using the 2-to-1 conjecture, the Shapley value based decoding is not consistent.
Second, it gives an example of agents pairing up maliciously to completely alter the Shapley value.
The underlying phenomenon is that the rich 2-to-1 games have “subcode-covering” property,
which is absent in the standard 2-to-1 games, helping in preserving the consistency of any biased
influence measure such as the Shapley value.

Organization. In Section 3.2, we formally define PCSPs, polymorphisms, and Shapley value. We
present the algorithmic and hardness parts of our dichotomy result in Section 3.3 and Section 3.4
respectively. We present the adversarial example of a 2-to-1 minor that alters the Shapley value
in Section 3.5.

3.2 Preliminaries

Notations. We use [n] to denote the set {1, 2, . . . , n}. For a k-ary relation A ⊆ [q]k, we abuse the
notation and use A both as a subset of [q]k, and also as a predicate A : [q]k → {0, 1}. For a vector
x = (x1, x2, . . . , xn) ∈ {0, 1}n, we use hw(x) to denote

∑n
i=1 xi. For two vectors x, y ∈ {0, 1}n,

we say that x ≤ y if xi ≤ yi for all i ∈ [n]. A Boolean function f : {0, 1}n → {0, 1} is called
monotone if f(x) ≤ f(y) for all x ≤ y.

Boolean Ordered PCSPs and Minors of functions. We formally define Boolean Ordered PCSPs.

Definition 8. (Boolean Ordered PCSP) A PCSP PCSP (Γ) over a pair of domains D1, D2 with
the set of pairs of relations Γ = {(A1, B1), (A2, B2), . . . , (Al, Bl)} is said to be Boolean Ordered
if the following hold.

1. The domains are both Boolean i.e., D1 = D2 = {0, 1}.
2. There exists i ∈ [l] such that Ai = Bi = {(0, 0), (0, 1), (1, 1)}.

17

A crucial property satisfied by the polymorphisms of a PCSP Γ, Pol(Γ) is that the family of
functions is closed under taking minors. We first define the minor of a function formally.
Definition 9. (Minor of a function) For a Boolean function f : [q]n → [q′], the function g :

[q]m → [q′] is said to be a minor of f with respect to the function π : [n]→ [m] if

g(x1, x2, . . . , xm) = f(xπ(1), xπ(2), . . . , xπ(n))∀x1, x2, . . . , xm ∈ [q]

We say that a function g is a minor of f if there exists some π such that g is a minor of f with
respect to π.

We are often interested in 2-to-1 minors. A function g is said to be a 2-to-1 minor of f if there
exists a 2-to-1 function π such that g is a minor of f with respect to π, where 2-to-1 function is
defined below.
Definition 10. (2-to-1 function) A function π : [2n]→ [n] is said to be a 2-to-1 function if

|π−1(i)| = 2 ∀i ∈ [n]

We use F2→1(n) to denote the set of all the 2-to-1 functions from [2n] to [n].
By the definition of the polymorphisms, we can infer that if f ∈ Pol(Γ) for a PCSP Γ, then for

all functions g such that g is a minor of f , we have g ∈ Pol(Γ). Such a family of functions that is
closed under taking minors is called as a minion. We often refer to the family of polymorphisms
of a PCSP as the polymorphism minion.
Shapley value. Let f : {0, 1}n → {0, 1} be a monotone Boolean function. We can view the
monotone Boolean function f as a voting scheme between two parties, and n agents: the winner
of the voting scheme when the ith agent votes for xi ∈ {0, 1} is f(x). The relative power of an
agent in a voting scheme is typically measured using the Shapley-Shubix Index, also known as
Shapley Value.

Informally speaking, the Shapley Value of a coordinate i is the probability that the ith agent
is the altering vote when we start with all zeroes and flip the votes in a uniformly random order.
More formally,
Definition 11. (Shapley value) Let f : {0, 1}n → {0, 1} be a monotone Boolean function. Let
σ ∈ Sn be a uniformly random permutation of [n]. For an integer j ∈ [n], let Pj denote the set of
first j elements of σ i.e., Pj := {σ(1), σ(2), . . . , σ(j)}. The Shapley value Φf (i) of the coordinate
i ∈ [n] is defined as

Φf (i) := Prσ {∃j ∈ [n] : σ(j) = i, f(Pj−1) = 0, f(Pj) = 1}

We also give an alternate definition of Shapley value using the notion of boundary of a
coordinate. For a monotone Boolean function f : {0, 1}n → {0, 1} and coordinate i ∈ [n], let
Bf (i) denote the boundary of the coordinate i i.e.

Bf (i) := {S ⊆ [n] \ {i} : f({i} ∪ S) = 1, f(S) = 0}

By the monotonicity of f , we can infer that Bf (i) satisfies the following sandwich property that
will be useful later.

18

Proposition 12. Let f : {0, 1}n → {0, 1} be a monotone Boolean function and let i ∈ [n].
Then, for every pair of sets S1, S2 ∈ Bf (i) with S1 ⊆ S2, we have S ∈ Bf (i) for all S such that
S1 ⊆ S ⊆ S2.

Proof. By the monotonicity of f , we have f(S∪{i}) ≥ f(S1∪{i}) = 1, and thus, f(S∪{i}) = 1.
Similarly, we have f(S) ≤ f(S2) = 0, and thus, f(S) = 0.

For an index j ∈ {0, 1, . . . , n− 1}, let µf (j)
(i) denote the fraction of subsets of [n] of size j

that are in Bf (i) i.e.

µf (j)
(i) :=

∣∣∣Bf (i) ∩ ([n]j)∣∣∣/(nj).
We can rewrite the definition of Shapley value of the ith coordinate as the following [Web77]:

Φf (i) =

∑n−1
j=0 µf (j)

(i)

n
. (3.1)

3.3 Algorithm when Shapley values are small
In this section, we show that monotone Boolean functions where each coordinate has bounded
Shapley value has arbitrarily large threshold functions as minors, thereby proving the algorithmic
part of our dichotomy result.

Let L be a positive integer and 0 ≤ τ ≤ L be a non-negative integer. We let THRL,τ :

{0, 1}L → {0, 1} be the threshold function on L variables with threshold τ . More formally,

THRL,τ (x) :=

{
1 if hw(x) ≥ τ

0 otherwise.

For a monotone Boolean function f : {0, 1}n → {0, 1} and real number p ∈ [0, 1], let Pp(f)

denote the expected value of f(x) where each element xi, i ∈ [n] is independently set to be 1 with
probability p and 0 with probability 1− p. For every monotone function f , the function Pp(f) is
a strictly monotone continuous function in p on the interval [0, 1]. The value pc = pc(f) at which
Ppc(f) =

1
2

is called the critical probability of f .
Using the Russo-Margulis Lemma [Rus82; Mar74] and Poincaré Inequality, we can show the

following lemma that we need later.
Lemma 13 (Exercise 8.29(e) in [ODo14]). Let f be a non-constant monotone Boolean function
with critical probability pc ≤ 1

2
. Let p1 := 1

(2ν)2
pc for ν > 0. If p1 ≤ 1

2
, then Pp1(f) ≥ 1− ν.

We now define the threshold interval of f .
Definition 14. For a monotone function f and 0 < ϵ < 1

2
, we define Tϵ(f) := p2 − p1, where p2

and p1 are such that Pp1(f) = ϵ, Pp2(f) = 1− ϵ.
Kalai [Kal04] proved the following result regarding monotone Boolean functions.

Theorem 15. For every a, ϵ, γ > 0, there exists δ := δ(a, ϵ, γ) > 0 such that for every monotone
Boolean function f : {0, 1}n → {0, 1} with Φf (i) ≤ δ for all i ∈ [n] and a ≤ pc(f) ≤ 1 − a,
then Tϵ(f) ≤ γ.

19

We will use this result to show that for every monotone function where each coordinate has
bounded Shapley value has arbitrarily large threshold functions as minor.
Lemma 16. For every L ≥ 2, there exists a δ := δ(L) > 0 such that the following holds. For any
monotone Boolean function f : {0, 1}n → {0, 1} with

Φf (i) ≤ δ ∀i ∈ [n]

there exists a positive integer L′ ∈ {L,L+ 1} and a non-negative integer τ such that THRL′,τ is
a minor of f .

Proof. We obtain δ := δ(L) > 0 from Theorem 15 by setting ϵ = 1
2L+1 , γ = a = 1

L3 . Our goal is
to show that for this parameter δ, for every monotone Boolean function f with each coordinate
having Shapley value at most δ, there exists L′ ∈ {L,L+ 1} and τ such that THRL′,τ is a minor
of f .

We assume that f is a non-constant function, else we have a trivial minor by setting τ = 0 or
τ = L′. Let pc be the critical probability of f .
Case 1: pc < a = 1

L3 .
Let p1 = L2pc <

1
L

. Using Lemma 13, we can conclude that Pp1(f) ≥ 1− 1
2L

. As Pp(f) is
monotone, we get that P 1

L
(f) > 1 − 1

2L
. We let g : {0, 1}L → {0, 1} be a uniformly random

minor of f i.e. we choose the function π : [n]→ [L] by choosing each value π(i) uniformly and
independently at random from [L], and we let g to be the minor of f with respect to π.

Note that for every i ∈ [L], the distribution of g({i}) over the random minor g is the same as
sampling a random input to f where we set each bit to 1 with probability 1

L
. As P 1

L
(f) ≥ 1− 1

2L
,

we get that for each i ∈ [L], g({i}) = 1 with probability at least 1− 1
2L

. By union bound, with
probability at least 1

2
, g({i}) = 1 for all i ∈ [L]. As f(0, 0, . . . , 0) = 0, g(ϕ) = 0 as well. Thus,

with probability at least 1
2
, g = THRL,1. Hence, THRL,1 is a minor of f .

Case 2: pc > 1− a = 1− 1
L3 .

Let f † be the Boolean dual of f defined as f †(x) = 1−f(x). Note that Pp(f
†) = 1−P1−p(f)

for all p ∈ [0, 1]. Thus, pc(f †) = 1− pc < a. Using the previous case, we can infer that THRL,1

is a minor of f † with respect to a funtion π : [n] → [L]. The same function π proves that
THR†

L,1 = THRL,L is a minor of f .
Case 3: a ≤ pc ≤ 1− a.

Using Theorem 15, we obtain p1 such that Pp1(f) ≤ ϵ, and Pp1+γ ≥ 1 − ϵ, where ϵ =
1

2L+1 , γ = 1
L3 . As γ < 1

L(L+1)
, there exists L′ ∈ {L,L + 1} and τ ∈ [L′] such that p1 + γ < τ

L′

and p1 > τ−1
L′ . Thus, we get that P τ

L′ (f) > 1 − ϵ and P τ−1
L′

< ϵ. Let g : {0, 1}L′ → {0, 1} be
a uniformly random minor of f i.e. we choose π : [n] → [L′] by setting each value uniformly
and independently at random from [L′] and set g to be the minor of f with respect to π. For a
vector x ∈ {0, 1}L′ with hw(x) = τ , with probability greater than 1− 1

2L+1 , g(x) = 1. Similarly,
for x ∈ {0, 1}L′ with hw(x) = τ − 1, with probability greater than 1 − 1

2L+1 , g(x) = 0. Thus,
with non-zero probability, g(x) = 1 for all x ∈ {0, 1}L′ with hw(x) = τ and g(x) = 0 for all
x ∈ {0, 1}L′ with hw(x) = τ−1. In other words, with non-zero probability, g is equal to THRL′,τ .
Thus, THRL′,τ is a minor of f .

20

1 2 3 4 5 6
f

1 2 3 4 5f ′

1 2 3g

Figure 3.1: An illustration of the two step minor approach: Here f : {0, 1}6 → {0, 1} is a Boolean
function, f ′ : {0, 1}5 → {0, 1} is a minor of f with respect to the function π1 : [6] → [5] with
π1(i) = max(i − 1, 1), and g is a minor of f ′ with respect to the function π2 : [5] → [3] with
π2(i) = ⌈ i+1

2
⌉.

Using the existence of arbitrarily large arity threshold minors, the algorithmic part of our
Dichotomy result follows immediately.
Theorem 17. Let Γ be a Promise CSP template. Suppose that for every ϵ > 0, there exists
a function f ∈ Pol(Γ), f : {0, 1}n → {0, 1} such that Φi(f) ≤ ϵ for all i ∈ [n]. Then,
PCSP(Γ) ∈ P.

Proof. Using Lemma 16, we can conclude that there are infinitely many positive integers L
such that there exists τ ∈ {0, 1, . . . , L} with THRL,τ ∈ Pol(Γ). As the threshold functions are
symmetric2, Pol(Γ) has symmetric polymorphisms of infinitely many arities. Thus, using the
BLP+Affine algorithm of [Bra+20], PCSP(Γ) can be solved in polynomial time.

We remark that the above result is inspired by a special case shown by Barto [Bar18b] that a
Boolean Ordered PCSP is polytime tractable if it has cyclic polymorphisms of arbitrarily large
arities.

3.4 Hardness Assuming Rich 2-to-1 Conjecture
In this section, we prove the hardness part of our dichotomy result. First, we prove that Shapley
value is preserved under uniformly random 2-to-1 minors, and then we use this to show the
hardness assuming the Rich 2-to-1 Conjecture.

3.4.1 Shapley value under random 2-to-1 minor

Let f : {0, 1}2n → {0, 1} be a monotone Boolean function with Φf (1) ≥ λ for some absolute
constant λ > 0. Let g : {0, 1}n → {0, 1} be a minor of f with respect to the uniformly random
2-to-1 function π : [2n]→ [n]. Our goal in this subsection is to show that Eπ[Φg(π(1))] ≥ γ for
some function γ := γ(λ) > 0. We prove this in two steps. (See Figure 3.1)

2A function f : {0, 1}n → {0, 1} is said to be symmetric if it is unchanged by any permutation of the input
variables.

21

1. First, we consider the minor of f , f ′ : {0, 1}2n−1 → {0, 1} obtained with respect to
π1 : [2n] → [2n − 1] where π1(1) = π1(2) = 1, π1(i) = i − 1 ∀i ∈ {3, 4, . . . , 2n}. We
show that Φf ′(1) ≥ λ

2
.

2. Next, we consider a minor g of f ′ obtained with respect to the function π2 : [2n− 1]→ [n]

which has π2(1) = 1 while the rest 2n − 2 values are chosen using a uniformly random
partition of [2n − 2] into n − 1 pairs. We show that Eπ2 [Φg(1)] ≥ γ for some function
γ := γ(λ) > 0.

Note that the process of first taking the f ′ minor and then obtaining g by partitioning [2n − 2]

into n− 1 uniformly random pairs is equivalent to taking a uniformly random 2-to-1 minor of f .
Thus, the two steps together prove the required Shapley value property of the uniformly random
2-to-1 minor.

The first step is captured by the following lemma.
Lemma 18. Let f : {0, 1}2n → {0, 1} and f ′ : {0, 1}2n−1 → {0, 1} be monotone Boolean
functions such that f ′ is a minor of f with respect to the function π1 : [2n]→ [2n− 1] defined as
π1(i) = max(i− 1, 1). If Φf (1) ≥ λ, then Φf ′(1) ≥ λ

2
.

Proof. We recall a bit of notation: let Bf (1) denote the boundary of the coordinate 1 in the
function f i.e. the family of all the sets S ⊆ [2n] \ {1} such that f(S) = 0, f(S ∪ {1}) = 1. For
an integer j ∈ {0, 1, . . . , 2n− 1}, let µf (j)

(1) denote the fraction of subsets of [2n] \ {1} of size
j that are in Bf (1). For ease of notation, we let µ(j) = µf (j)

(1), and µ′(j) = µf ′(j)(1). Consider
a set S ⊆ [2n] \ {1} such that S ∈ Bf (1). Note that

S ′ = {i− 1 : i > 2, i ∈ S}

satisfies S ′ ∈ Bf ′(1). Suppose that S1, S2 ∈ Bf (1) such that |S1| = |S2| = j, S1 ̸= S2 and
2 /∈ S1 ∪ S2. Then, the above definition satisfies S ′

1 ̸= S ′
2, S

′
1, S

′
2 ∈ Bf ′(1) and |S ′

1| = |S ′
2| = j.

This implies that∣∣∣{S : S ∈ Bf (1), |S| = j, 2 /∈ S}
∣∣∣ ≤ ∣∣∣∣Bf ′(1) ∩

(
[2n− 1] \ {1}

j

)∣∣∣∣
Similarly, ∣∣∣{S : S ∈ Bf (1), |S| = j, 2 ∈ S}

∣∣∣ ≤ ∣∣∣∣Bf ′(1) ∩
(
[2n− 1] \ {1}

j − 1

)∣∣∣∣
Summing the two, we obtain that∣∣∣{S : S ∈ Bf (1), |S| = j}

∣∣∣ ≤ ∣∣∣∣Bf ′(1) ∩
(
[2n− 1] \ {1}

j − 1

)∣∣∣∣+ ∣∣∣∣Bf ′(1) ∩
(
[2n− 1] \ {1}

j

)∣∣∣∣
We can rewrite it as(

2n− 1

j

)
µ(j) ≤

(
2n− 2

j

)
µ′(j) +

(
2n− 2

j − 1

)
µ′(j − 1)∀j ∈ [2n− 2]

22

As
(
2n−1

j

)
=
(
2n−2

j

)
+
(
2n−2
j−1

)
for every j ∈ [2n− 2], we get that

µ(j) ≤ µ′(j) + µ′(j − 1)

for all j ∈ [2n− 2]. Also note that µ(0) ≤ µ′(0), and µ(2n− 1) ≤ µ′(2n− 2). Summing over
all these inequalities, we get that∑

j∈{0,1,...,2n−2}

µ′(j) ≥ 1

2

∑
j∈{0,1,...,2n−1}

µ(j) ≥ λ(2n)

2
= nλ

Thus,

Φf ′(1) =

∑
j∈{0,1,...,2n−2} µ

′(j)

2n− 1
≥ λ

2
.

Before proving the second step, we prove the following key lemma regarding the distribution
of the boundary subsets.
Lemma 19. Let f ′ : {0, 1}2n−1 → {0, 1} be a monotone Boolean function such that Φf ′(1) = λ

with λ ≥ 1
n

. For an integer j ∈ {0, 1, . . . , 2n − 2}, let µ′(j) = µf ′(j)(1). Then, there exists an
absolute constant γ := γ(λ) > 0 such that∑n−1

j=0 µ
′(2j)

n
≥ γ

Proof. We prove that there exist constants (depending on λ) c1 < c2, c > 0 such that for all j
such that c1n ≤ j ≤ c2n, we have µ′(j) ≥ c, and c2 − c1 ≥ λ2

2
. This directly implies the required

claim with γ = Ω(cλ2).
For a pair of integers 0 ≤ i < j ≤ 2n− 2, we define the following parameter µ′(i, j) as the

fraction of the pair of subsets (S, T) where S, T ⊆ {2, 3, . . . , 2n − 1}, |S| = i, |T | = j, S ⊆ T

that satisfy S ∈ Bf ′(1), T ∈ Bf ′(1).

µ′(i, j) =
|{(S, T) : |S| = i, |T | = j, S ⊆ T, S ∈ Bf ′(1), T ∈ Bf ′(1)}|(

2n−2
i

)(
2n−2−i

j

)
We first claim that there exist constants (depending on λ) c1 < c2, c > 0 such that µ′(c1n, c2n) ≥

c, and c2 − c1 ≥ λ2

2
. Consider a uniformly random permutation of [2n − 1] \ {1} denoted by

σ = (σ(1), σ(2), . . . , σ(2n − 2)). For an integer j ∈ {0, 1, . . . , 2n − 2}, let Sj be the random
variable that is the union of the prefix of σ containing the first j elements.

Sj := {σ(1), σ(2), . . . , σ(j)}, ∀j ∈ {0, 1, . . . , 2n− 2}.

For each j ∈ {0, 1, . . . , 2n − 2}, the subset Sj is uniformly distributed in
(
[2n−1]\{1}

j

)
. For

j ∈ {0, 1, . . . , 2n− 2}, let Xj be the indicator random variable for the event that Sj ∈ Bf ′(1). By
the definition of µ′(j), we get

E[Xj] = µ′(j) ∀j ∈ {0, 1, . . . , 2n− 2}.

23

Let X = X0 +X1 + . . . +X2n−2 be the number of subsets in the set family (ϕ = S0 ⊂ S1 ⊂
S2 . . . ⊂ S2n−2 = [2n− 1] \ {1}) that are in Bf ′(1). Using Equation (3.1), we get

E[X] = λ(2n− 1).

Using Jensen’s inequality, we get that

E
[(
X

2

)]
≥
(
λ(2n− 1)

2

)
=

1

2
· λ(2n− 1)

(
λ

2
(2n− 2) + nλ− 1

)
≥ λ2

2

(
2n− 1

2

)
wherein the final inequality, we used the fact that λn ≥ 1. Note that for every i < j, the marginal
distribution of (Si, Sj) is the uniform distribution over all the pairs of subsets (S, T) where
S, T ⊆ {2, 3, . . . , 2n − 1}, |S| = i, |T | = j, S ⊆ T . Thus, by the definition of µ′(i, j), we get
that µ′(i, j) = E[XiXj], for 0 ≤ i < j ≤ 2n− 2. Therefore we have

E
[(
X

2

)]
= E

[∑
0≤i<j≤2n−2

XiXj

]
=

∑
0≤i<j≤2n−2

E[XiXj] =
∑

0≤i<j≤2n−2

µ′(i, j)

Thus, ∑
0≤i<j≤2n−2

µ′(i, j) ≥ λ2

2

(
2n− 1

2

)
This implies that the expected value (over i, j) of µ′(i, j) is at least λ2

2
. Thus, with probability

(over i, j) at least λ2

4
, we have µ′(i, j) ≥ λ2

4
. Hence, there exist integers p, q such that q− p ≥ λ2

8
n

and µ′(p, q) ≥ λ2

4
, which proves the required claim with p = c1n, q = c2n, c =

λ2

4
.

Next, we claim that µ′(j) ≥ c for all j such that c1n ≤ j ≤ c2n. Fix an integer j with
c1n ≤ j ≤ c2n. Consider a uniformly random sequence of subsets S1 ⊆ S2 ⊆ S3 ⊆ [2n−1]\{1}
such that |S1| = c1n, |S2| = j, |S3| = c2n. The probability that S1 ∈ Bf ′(1), S3 ∈ Bf ′(1) is
equal to µ′(c1n, c2n) which is at least λ2

4
. Thus, using Proposition 12, with probability at least

λ2

4
, S2 ∈ Bf ′(1). Note that the distribution of S2 is uniform in

(
[2n−1]\{1}

j

)
, and thus, we have

µ′(j) ≥ λ2

4
.

We now prove the second step in the proof.
Lemma 20. Suppose that f ′ : {0, 1}2n−1 is a monotone Boolean function such that Φf ′(1) ≥ λ

with λ ≥ 1
n

. Let g be a random minor of f ′ with respect to π2 : [2n− 1]→ [n] which is obtained
by setting π2(1) = 1, and for every i > 1, we randomly choose j1, j2 ∈ [2n− 1] \ {1} (without
replacements) and set π2(j1) = π2(j2) = i. In other words, we choose a uniformly random
partition of [2n− 1] \ {1} into n− 1 pairs P2, P3, . . . , Pn and set π2(j) = i∀j ∈ Pi. Then, there
exists γ := γ(λ) > 0 such that

Eπ2 [Φg(1)] ≥ γ .

Proof. For ease of notation, we let µ′(j) = µf ′(j)(1) and µg(j) = µg(j)
(1). For a set S ⊆ [n]\{1}

and a function π2 : [2n− 1]→ [n] with π2(1) = 1, and |π−1
2 (i)| = 2 for all i ∈ {2, 3, . . . , n}, let

π−1
2 (S) be the 2|S| sized subset of {2, 3, . . . , 2n− 1} defined as follows:

π−1
2 (S) := {π−1

2 (i) : i ∈ S}

24

For every set S ⊆ {2, 3, . . . , n}, when π2 : [2n− 1]→ [n] is a uniformly random 2-to-1 minor
with π2(1) = 1, and the rest 2n− 2 elements are partitioned into n− 1 pairs uniformly at random,
the set π−1

2 (S) is distributed uniformly in
(
[2n−1]\{1}

2|S|

)
. Also note that S ∈ Bg(1) if and only if

π−1(S) ∈ Bf ′(1). Thus, for every set S ⊆ {2, 3, . . . , n}, the probability that S ∈ Bg(1) (over the
choice of π2) is equal to µ′(2|S|). Summing over all such sets of size j, we get that for every
j ∈ {0, 1, . . . , n− 1}, the expected value of µg(j) is equal to µ′(2j).

Eπ2 [µg(j)] = µ′(2j)∀j ∈ {0, 1, . . . , n− 1}

By using Lemma 19, we can infer that there exists γ = γ(λ) > 0 such that
∑n−1

j=0 Eπ2 [µg(j)] =∑n−1
j=0 µ

′(2j) ≥ γn. Using Equation (3.1), we get

Eπ2 [Φg(1)] = Eπ2

[∑n−1
j=0 µg(j)

n

]
=

∑n−1
j=0 Eπ2 [µg(j)]

n
≥ γ.

Lemma 18 and Lemma 20 together prove that Shapley value behaves well under uniformly
random 2-to-1 minors for monotone Boolean functions.
Lemma 21. Suppose that f : {0, 1}2n → {0, 1} is a monotone Boolean function such that
Φf (1) ≥ λ for some absolute constant λ > 0 with λ ≥ 1

n
. Then, there exists γ := γ(λ) > 0 such

that
Eπ[Φg(π(1))] ≥ γ

where g is a minor of f with respect to the uniformly random 2-to-1 function π.

Proof. Combining Lemma 18 and Lemma 20, we can conclude that for every i ∈ [2n], i > 1,
when π : [2n]→ [n] is a uniformly random 2-to-1 minor conditioned on the fact that π(1) = π(i),
we have Eπ[Φg(π(1))] ≥ γ. Taking average over all the i ∈ [2n], i > 1, we get a proof that the
same inequality holds when π is a uniformly random 2-to-1 minor.

3.4.2 Reduction
In his celebrated work proposing the Unique Games Conjecture [Kho02a], Khot also proposed
the “2-to-1 conjecture” that the strong hardness of Label Cover holds when all the constraints
of the Label Cover are 2-to-1 functions. The imperfect completeness version of this conjecture
was recently established in a striking sequence of works [KMS17; Din+18a; Din+18b; KMS18].
Braverman, Khot, and Minzer [BKM21] put forth a stronger conjecture that states that the hardness
of Label Cover holds when the distribution of 2-to-1 functions on edges incident on every vertex
u ∈ L is uniform over F2→1.
Definition 22. (Rich 2-to-1 Label Cover instances) We call a Label Cover instance G =

(G,ΣL,ΣR,Π) with G = (L ∪ R,E) being a bipartite graph3 a rich 2-to-1 instance if the
following hold.

3In the definition of the Label Cover problem in Chapter 2, we have assigned the same alphabet to all the vertices
in a Label Cover instance. Here, in the context of bipartite Label Cover instances, we allow different alphabets to the
left and right sides of the graph.

25

1. There exists an integer Σ such that ΣL = [2Σ], ΣR = [Σ], and every projection constraint
Πe, e ∈ E is a 2-to-1 function.

2. For every vertex u ∈ L, the distribution of 2-to-1 functions Pu obtained by first sampling
a uniformly random neighbor v of u, and then picking Πe, e = (u, v), is uniform over
F2→1(Σ).

Conjecture 23. (Rich 2-to-1 Conjecture with Perfect Completeness) [BKM21] For every ϵ > 0,
there exists an integer Σ = Σ(ϵ) such that given a rich 2-to-1 Label Cover instance G, it is
NP-Hard to distinguish between the following.

1. There is a labeling that satisfies all the constraints of G.
2. No labeling can satisfy more than ϵ fraction of the constraints of G.
We are now ready to state the hardness part of our dichotomy. It is proved using the Label

Cover-Long Code framework. This reduction is standard in the PCSP literature, see e.g., [Bar+21].
Theorem 24. Assume the Rich 2-to-1 Conjecture. Let PCSP(Γ) be a Boolean Ordered PCSP
such that there exists an absolute constant λ > 0 with maxi∈[n]Φf (i) ≥ λ for all functions
f : {0, 1}n → {0, 1}, f ∈ Pol(Γ). Then PCSP(Γ) is NP-Hard.

Proof. Let Γ = {(A1, B1), (A2, B2), . . . , (Al, Bl)} be the PCSP under consideration, where each
Ai is a subset of {0, 1}ki for all i ∈ [l], and similarly, each Bi is a subset of {0, 1}ki for all i ∈ [l].
We start from a rich 2-to-1 Label Cover instance G = (G, [2Σ], [Σ],Π) with G = (L ∪ R,E).
For ease of notation, we use Σw to denote 2Σ if w ∈ L, and Σ if w ∈ R. For every vertex
w ∈ L ∪R, we have a set of 2Σw nodes denoted by Lw = {w} × {0, 1}Σw referred to as the long
code corresponding to w. The elements of our output PCSP instance V is the union of all the long
code nodes.

V =
⋃

w∈L∪R

Lw

We add two types of constraints.

1. Polymorphism Constraints. For every i ∈ [l], we add the following constraints using the
pair of predicates (Ai, Bi). For every w ∈ L ∪R, and multiset of vectors x1, x2, . . . , xki ∈
{0, 1}Σw satisfying

(x1
j , x

2
j , . . . , x

ki
j) ∈ Ai ∀j ∈ [Σw],

we add the constraint on the ki nodes {w, x1}, {w, x2}, . . . , {w, xki}.
2. Equality Constraints. For every edge e = (u, v) of the Label Cover instance with the

constraint Πe : [2Σ] → [Σ], we add the following set of equality constraints. For every
x ∈ {0, 1}2Σ and y ∈ {0, 1}Σ such that for all j ∈ [2Σ], xj = yΠe(j), we add an equality
constraint between {u, x} and {v, y} ensuring that the two nodes are assigned the same
value. The fact that we can add the equality constraints follows either by identifying the
variables together, or by observing that the polymorphism minion of any PCSP remains the
same when we add the equality predicate (see Chapter 5).

Completeness. Suppose that there exists a labeling σ that satisfies all the constraints of the Label
Cover instance. For every node {w, x} ∈ V , we assign the dictator function xσ(w) ∈ {0, 1}. By

26

the way we have added the polymorphism constraints, any dictator assignment satisfies them. The
equality constraints are also satisfied as the labeling satisfies all the constraints of G.

Soundness. Suppose that there exists an assignment f : V → {0, 1} that satisfies all the
polymorphism constraints and the equality constraints. Then, we claim that there exists a labeling
σ that satisfies ϵ := ϵ(λ) > 0 fraction of the constraints of the Label Cover instance G.

For a vertex w ∈ L ∪ R, let fw : {0, 1}Σw → {0, 1} denote the function f restricted to Lw.
Note that fw is a polymorphism of the PCSP Γ for all w ∈ L ∪ R. As every polymorphism of
Γ has a coordinate with Shapley value at least λ, for every u ∈ L, we define the set S(u) that is
non-empty as follows:

S(u) = {i ∈ [2Σ] : Φfu(i) ≥ λ}

As
∑

i∈[n] Φf (i) = 1 for all functions f : {0, 1}n → {0, 1}, we have |S(u)| ≤ 1
λ

for all u ∈ L.
As a corollary of Lemma 21, we can conclude that there exists γ = γ(λ) > 0 such that for

every monotone Boolean function f : {0, 1}2Σ → {0, 1} with Φf (i) ≥ λ, when g is a minor
of f with respect to a uniformly random 2-to-1 function π : [2Σ] → [Σ], Φg(π(1)) ≥ γ

2
with

probability at least γ
2
. Note that applying Lemma 21 requires that λ ≥ 1

Σ
. However, even when

λ < 1
Σ

, by picking the coordinate with the largest Shapley value, we can still assume that in
every long code function, there is a coordinate with Shapley value at least 1

2Σ
= Θ(λ), and then

apply Lemma 21. Using this γ, for every v ∈ R, we define the set S(v) as

S(v) =
{
i ∈ [Σ] : Φfv(i) ≥

γ

2

}
By definition, we have |S(v)| ≤ 2

γ
for all v ∈ R. As the Label Cover instance is rich 2-to-1, for

every u ∈ L, when we pick a uniformly random edge e = (u, v) adjacent to u with constraint
Πe : [2Σ]→ [Σ], with probability at least γ

2
, there exist i1 ∈ [2Σ], i2 ∈ [Σ] such that Φfu(i1) ≥ λ,

Φfv(i2) ≥ γ
2
, and Πe(i1) = i2.

We now pick a labeling σ of G by picking uniformly random label from S(w) for allw ∈ L∪R.
By the above argument, for every u ∈ L, the expected number of constraints of G that are adjacent
to u that the labeling σ satisfies is at least γ

2
· λγ

2
. Summing over all u ∈ L, σ satisfies at least

Ω(λγ2) fraction of the constraints of G in expectation. Thus, there exists a labeling to G that
satisfies ϵ = Ω(λγ2) > 0 fraction of the constraints, which completes the proof.

3.5 Adversarial 2-to-1 minor

We construct an example of a 2-to-1 minor where the Shapley value alters completely after taking
the minor.
Theorem 25. Let n ≥ 2 be a positive integer. There exist two monotone Boolean functions
f : {0, 1}2n → {0, 1} and g : {0, 1}n → {0, 1} such that g is a 2-to-1 minor of f with respect to
the 2-to-1 function π : [2n]→ [n] defined as π(i) = ⌈ i

2
⌉. Furthermore,

1. Φg(1) = Ω(1), and Φg(j) = o(1) for all j > 1.
2. Φf (3) = Ω(1), and Φf (i) = o(1) for all i ∈ [2n], i ̸= 3.

27

Proof. Similar to the proof of Theorem 24, we construct the minor function pair in two steps.

1. First, we construct Boolean monotone functions f : {0, 1}2n−1 → {0, 1} and g : {0, 1}n →
{0, 1} such that g is a minor of f with respect to the function π : [2n− 1]→ [n] defined as
π(1) = 1, π(i) = ⌈ i+1

2
⌉ for all i > 1. Furthermore, Φg(1) = Ω(1), and Φg(j) = o(1) for

all j > 1. We also have Φf (2) = Ω(1), and Φf (i) = o(1) for all i ∈ [2n− 1], i ̸= 2.
2. We define the function f ′ : {0, 1}2n → {0, 1} as

f ′(y1, y2, . . . , y2n) = f(y1, y3, . . . , y2n)

Note that g is a minor of f ′ with respect to the 2-to-1 function π : [2n] → [n] defined as
π(i) = ⌈ i

2
⌉. Furthermore, by definition, we have Φf ′(3) = Ω(1), and Φf ′(i) = o(1) for all

i ∈ [2n], i ̸= 3.

Henceforth, our goal is to construct a pair of functions as in the first step above.
We define a partial Boolean function to be a function from {0, 1}n → {0, 1, ?}. A partial

Boolean function on n variables is monotone if for all p ∈ {0, 1}n and q ∈ {0, 1}n such that
p ≤ q, if f(p) = 1, then f(q) = 1, and if f(q) = 0, then f(p) = 0.

Now, consider g : {0, 1}n → {0, 1} to be

g(x) =


1 if

∑n
j=2 xj ≥

51n
100

0 if
∑n

j=2 xj ≤
49n
100

x1 if 49n
100

<
∑n

j=2 xj <
51n
100

By definition, g is a monotone function, and using Equation (3.1), we can infer that Φg(1) =
1
50

,
and Φg(j) <

1
n

for all j > 1.

We now construct f in three steps. Start with f =′?′.

1. (Preserving the minor) First, set the value of entries of f that are of the form
(x1, x2, x2, · · · , xn, xn) as

f(x1, x2, x2, . . . , xn, xn) = g(x1, x2, . . . , xn) ∀x ∈ {0, 1}n

We then extend it both upwards and downwards i.e. if f(p) is set to 1 and p ≤ q, then set
f(q) = 1 as well, and similarly, if f(q) is set to 0, and p ≤ q, then we set f(p) = 0. This
ensures that g is a minor of f and that the partial function f is monotone.

2. (Destroying the influence of 1) Next, we ensure that the Shapley value of the coordinate 1

is low by the following operation: consider all y such that f(y) has not been set in the first
step, y1 = 0 and f(1, y2, · · · , y2n−1) is already set to 1 in the first step. Then set f(y) to be
1. Similarly, if y satisfies y1 = 1 and f(0, y2, · · · , y2n−1) is already set to 0 in the first step,
set f(y) to be 0 if it has not been set in the first step.
We claim that the updated partial function f is still a monotone partial function. Consider
p,q ∈ {0, 1}2n−1 such that p ≤ q. Suppose that f(p) is set to be 1. If it is set in the first
step, as we extended the partial function upwards in the first step, f(q) = 1 as well. If

28

f(p) is set to be 1 in the second step, it implies that f(p′) has been set to 1 in the first step,
where p′ is obtained from p by setting p1 to be 1. Let q′ ∈ {0, 1}2n−1 be obtained from q
by setting q1 = 1. As p′ ≤ q′, f(q′) has been set to 1 in the first step as well. Thus, f(q) is
set to be 1 in the second step. The same argument can be used to show that if f(q) = 0,
then f(p) = 0 as well.

3. (Adding influence to 2) For all y for which f(y) =′?′ set f(y) = y2. The fact that the final
function f is monotone follows from observing that any completion of a partial monotone
function using a monotone function results in a monotone function.

Finally, our goal is to argue about the Shapley value of the coordinates of the function f .
First, we show that the Shapley value of the coordinate 1 in f is o(1). Suppose there exists
p = (0, y2, y3, · · · , y2n−1) and q = (1, y2, y3, · · · , y2n−1) such that f(p) = 0 and f(q) = 1. We
claim that both the values f(p) and f(q) are set in the first step of the above procedure. Suppose
for contradiction that this is not the case. If neither of them is set in the first step, then they will
not be set in the second step either, and in the third step, both of them will be assigned the same
value, a contradiction. If exactly one of them is set in the first step, then in the second step, the
other value would be set to be equal to it, a contradiction as well. Thus, both the values f(p) and
f(q) are set in the first step.

Let B = Bg(1) ⊆ {0, 1}n−1 be the boundary of the coordinate 1 in g. As f(q) is set to be
1 in the first step, there exists x ∈ {0, 1}n such that g(x) = 1 and (x1, x2, x2, · · · , xn, xn) ≤ q.
As x is not less than or equal to p, we can conclude that x1 = 1 and g(0, x2, x3, · · · , xn) =

0. In other words, (x2, x3, · · · , xn) ∈ B. Similarly, there exists x′ such that g(x′) = 0

and (x′1, x
′
2, x

′
2, · · · , x′n, x′n) ≥ p. By the same argument as above, we can conclude that

(x′2, x
′
3, · · · , x′n) ∈ B. Combining the both, we can conclude that there exist x, x′ ∈ B such

that (x2, x2, x3, x3, . . . , xn, xn) ≤ (y2, y3, · · · , y2n−2) ≤ (x′2, x
′
2, x

′
3, x

′
3, . . . , x

′
n, x

′
n). Note that if

the above inequality is true for a (y2, y3, · · · , y2n−2), we directly get that (y2, y3, · · · , y2n−2) is in
the boundary of the coordinate 1 in f .

Observe that the boundary of coordinate 1 in g is the set of vectors (x2, x3, · · · , xn) such that
49
100
n ≤

∑n
j=2 xj ≤

51
100
n. By the previous argument, we can deduce that the boundary B′ = Bf (1)

of the coordinate 1 in f is the set of vectors y = (y2, y3, · · · , y2n−1) that satisfy the following
property: The number of i ∈ [n− 1] such that both y2i = y2i+1 = 1 is at least 49

100
n. Similarly, the

number of i ∈ [n− 1] such that y2i = y2i+1 = 0 is at least 49
100
n. Observe that this implies that we

require that 49
50
n ≤

∑2n−1
j=2 yj ≤ 51

50
n. However, for every integer l such that 49

50
n ≤ l ≤ 51

50
n, when

we sample a uniformly random vector y = (y2, y3, . . . , y2n−1) with
∑2n−1

j=2 yj = l, the probability
that the number of i ∈ [n − 1] such that both y2i = y2i+1 = 1 is at least 49

100
n is o(1

n
). Thus,

using Equation (3.1), we can infer that the Shapley value of the coordinate 1 in f is o(1).
We now show that the coordinate 2 has Ω(1) Shapley value in f . Consider y = (y1, y2, . . . , y2n−1)

such that 49n
50

< hw(y) ≤ 51n
50

. If the number of i such that both y2i = y2i+1 = 1 is less than 49
100
n,

we have (y1, y3, . . . , y2n−1) ∈ Bf (2). However, for every integer l such that 49
50
n ≤ l ≤ 51

50
n, when

we sample a uniformly random y with hw(y) = l, with probability 1− o(1), the number of i such
that both y2i = y2i+1 = 1 is less than 49

100
n. Thus, using Equation (3.1), we can infer that the

Shapley value of the coordinate 2 is Ω(1) in the function f . Finally, by symmetry, we can observe

29

that Φf (i) = Φf (3) for all i ≥ 3, and thus, Φf (i) = o(1) for all i ≥ 3.

30

Chapter 4

d-to-1 Hardness of Coloring 3-colorable
graphs with O(1) colors

4.1 Introduction

Determining if a graph is 3-colorable is one of the classic NP-complete problems. Thus, given
a 3-colorable graph it is NP-hard to color it with 3 colors. The best known polynomial time
algorithms for coloring 3-colorable graphs use about n0.2 colors, where n is the number of vertices
in the graph [KT17]. On the other hand, on the hardness front, we only know that 5-coloring
3-colorable graphs is NP-hard [Bar+21].

This embarrassingly large gap between the hardness and algorithmic results has prompted
the quest for conditional hardness results for approximate graph coloring. The canonical starting
point for most strong inapproximability results is the Label Cover problem. The Unique Games
Conjecture of Khot [Kho02a], which asserts strong inapproximability of Label Cover when
the constraint maps are bijections, has formed the basis of numerous tight hardness results for
problems which have defied NP-hardness proofs. However, the imperfect completeness inherent
in the Unique Games Conjecture makes it unsuitable as the basis for hardness results for graph
coloring, where we want all edges to be properly colored under the coloring.

In [Kho02a], along with the Unique Games Conjecture, Khot introduced the d-to-1 conjecture.
The d-to-1 conjecture says that given a Label Cover instance whose constraint relations are d-to-1
functions, it is NP-hard to decide if there exists a labelling that satisfies all the constraints or no
labelling can satisfy even an ϵ fraction of constraints, for arbitrarily small ϵ > 0. (The key is that
d can be held fixed and achieve soundness ϵ→ 0.) Constraints similar to 2-to-1 also played an
implicit role in the beautiful work of Dinur and Safra on inapproximability of vertex cover [DS05].

Based on the 2-to-1 conjecture, Dinur, Mossel and Regev [DMR09], extending the invariance
principle based techniques of [Kho+07; MOO10], proved the hardness of coloring graphs that are
promised to be 4-colorable with any constant number of colors. Furthermore, they prove the same
for 3-colorable graphs under a certain “fish shaped” variant of the 2-to-1 conjecture. In this work,

31

we prove that the same result can be proved under the weaker assumption of d-to-1 conjecture1,
for some (arbitrarily large) constant d.
Theorem 26. Assume that d-to-1 conjecture is true for some constant d. Then, for every positive
integer t ≥ 3, it is NP-hard to color a 3-colorable graph G with t colors.

We stress that the d-to-1 conjecture insists on perfect completeness (i.e., hardness on satisfiable
instances), and this important feature seems necessary for its implications for coloring problems,
where we seek to properly color all edges. The variant of the 2-to-1 conjecture where one settles
for near-perfect completeness was recently established in a striking sequence of works [KMS17;
Din+18a; Din+18b; KMS18].

The result of [DMR09] in fact shows hardness of finding an independent set of density ϵ in
a 3-colorable graph for arbitrary ϵ > 0 (which immediately implies the hardness of finding a
coloring with 1/ϵ colors). Our result in Theorem 26 above does not get this stronger hardness for
finding independent sets. But it is conditioned on the d-to-1 conjecture for arbitrary d rather than
the specific 2-to-1 conjecture. We note that proving the d-to-1 conjecture for some large d could
be significantly easier than the 2-to-1 conjecture, so Theorem 26 perhaps provides an avenue for
resolving a longstanding challenge concerning the complexity of approximate graph coloring.

Our proof of Theorem 26 is a simple combination of two results. First, following the method-
ology of [DMR09], we prove that the d-to-1 conjecture implies that coloring a 2d-colorable graph
with O(1) colors is NP-hard. The result of [DMR09] is the d = 2 case of this claim. In fact, they
state in a future work section that the d-to-1 conjecture should imply hardness of O(1)-coloring
q-colorable graphs for some large enough q = q(d). However, they did not specify the details of
the reduction or an explicit value of q, and mention determining the dependence of q on d as an
interesting question. Here we show the conditional hardness based on d-to-1 conjecture holds for
q = 2d (achieving q < 2d seems unlikely with the general reduction approach of [DMR09]).

The key technical ingredient necessary for such a reduction is a symmetric Markov chain
on [q]d where transitions are allowed only between disjoint tuples and which has spectral radius
bounded away from 1. We show the existence of such a symmetric Markov chain for q = 2d.
We do so via a connection to matrix scaling, which enables us to deduce the necessary chain
at a conceptual level without messy calculations. Specifically, we use the result [CD72], which
follows from the Sinkhorn-Knopp iterative matrix scaling algorithm [SK67], that if a non-negative
symmetric matrixA has total support then there is a symmetric doubly stochastic matrix supported
on the non-zero entries of A. When A is the adjacency matrix of a graph G, the total support
condition is equivalent to every edge of G belonging to a cycle cover. We describe a graph on [q]d

whose edges connect disjoint tuples and where every edge belongs to a cycle cover.
Our second ingredient is a remarkable yet simple reduction due to Krokhin, Opršal, Wrochna

and Z̆ivný [Kro+20], which exploits the relation between the arc-chromatic number and chromatic
number of a digraph [PR81]. Let b : N → N be defined by b(n) :=

(
n

⌊n/2⌋

)
. Their result then

is that b(t)-coloring b(c)-colorable graphs is polynomial time (in fact logspace) reducible to

1For d-to-1 Label Cover, there are two definitions possible, one where the constraint maps are at most d-to-1 with
each element in the range having at most d pre-images, and one where the constraint maps are exactly d-to-1. In this
chapter, we stick with the exact variant.

32

t-coloring c-colorable graphs. Since b(n) is increasing and b(n) > n for all n ≥ 4, it follows
that a NP-hardness result for O(1)-coloring q-colorable graphs also implies NP-hardness of
O(1)-coloring 4-colorable graphs. Furthermore, the NP hardness of O(1)-coloring of 3-colorable
graphs follows from the above by applying the arc graph reduction twice to K4.

Overview. In Section 4.2, we define the Label Cover problem, and state the d-to-1 conjecture
formally. We also introduce low degree influences that we need later. In Section 4.3, we first
prove the existence of the Markov chain with required properties, and then describe the reduction
from Label Cover to Approximate Coloring. We note that the reduction is in fact exactly the same
one used in [DMR09], the difference being in using a different Markov Chain. For the sake of
completeness, we present the reduction and the preliminaries required.

4.2 Preliminaries
We first formally define the hardness conjectures.

4.2.1 d-to-1 Conjecture

We first state the d-to-1 conjecture. As is the case with [DMR09], we will state and use the
exact d-to-1 variant where the constraint maps have exactly d pre-images for each element in
the range. Khot’s original formulation only required that there are at most d pre-images for each
element in the range. The d-to-1 conjecture becomes stronger for smaller d (so that the 2-to-1
is the strongest form of the conjecture)—this is obvious for the variant where the maps are at
most d-to-1. For the exact variant, if we allow the Label cover graph to have multiple edges, we
can reduce d-to-1 conjecture to (d+ 1)-to-1 conjecture using a simple argument. We present this
reduction in Section 4.4. On that note, we remark without details that our reduction indeed works
with the multigraph variant of d-to-1 conjecture.
Conjecture 27. ((Exact) d-to-1 Conjecture) For every ϵ > 0, given a bipartite Label Cover
instance G = ((V = X ∪ Y,E), (dR,R),Ψ) satisfying the following constraints:

(i) We refer to X as the vertices on the left, and Y as the set of vertices on the right. The
vertices belonging to X are to be assigned labels from [dR] while the vertices in Y are to
be assigned labels from [R].

(ii) The constraints are d-to-1 i.e. for every b ∈ [R], there are precisely d values a ∈ [dR] such
that (a, b) ∈ Ψe for every relation Ψe in the instance.

It is NP-hard to distinguish between the following cases:
1. There is a labeling that satisfies all the constraints in G.
2. No labeling can satisfy more than ϵ fraction of constraints in G.
Similar to the d-to-1 constraints, one can consider d-to-d constraints in the Label Cover. In

order to do so, we define the relation d↔ d on [dR]× [dR]:

d↔ d = {(di− p+ 1, di− q + 1) | 1 ≤ i ≤ R, 1 ≤ p, q ≤ d} .

33

A constraint ψ ⊆ [dR]× [dR] is said to be d-to-d if there exist permutations π1 and π2 on [dR]

such that (a, b) ∈ ψ iff (π−1
1 (a), π−1

2 (b)) ∈ d↔ d.
In [DMR09], it is proved that Conjecture 27 implies the following conjecture.

Conjecture 28. (d-to-d conjecture) For every ϵ > 0 and every t ∈ N, there exists R ∈ N such
that given a Label Cover instance G = ((V,E), dR,Ψ) where all the constraints are d-to-d, it is
NP-hard to distinguish between the following cases:

(i) sat(G) = 1, or
(ii) isatt(G) < ϵ

Here, sat(G) denotes the maximum fraction of constraints satisfied by any labeling. Similarly,
isat(G) denotes the size of the largest set S ⊆ V such that there exists a labeling that satisfies all
the constraints induced on S. The value isatt(G) denotes the size of largest set S ⊆ V such that
there exists a labeling that assigns at most t labels to each vertex that satisfies all the constraints
induced on S. A constraint between u, v is said to be satisfied by labeling assigning multiple
labels to u and v if and only if there exists at least one pair of labels to u and v among the multiple
labels that satisfy the constraint.

4.2.2 Low degree influences
Next, we define the low degree influences that we need later. We refer the reader to [DMR09] for
a comprehensive treatment of the same.

Let α0 = 1, α1, . . . , αq−1 be an orthonormal basis of Rq. We can define the set of functions
αx : [q]n → R, x ∈ [q]n as αx(y) = (αx1(y1), αx2(y2), . . . , αxn(yn)). Observe that these functions
form a basis for the functions from [q]n to R. Let f̂(αx) = ⟨f, αx⟩, where we define the inner
product between functions f, g : [q]n → R as ⟨f, g⟩ = q−n

∑
x∈[q]n f(x)g(x). We define the low

degree influence of f as follows:
Definition 29. For a function f : [q]n → R, the degree k influence of the coordinate i is defined
as follows:

I≤k
i (f) =

∑
x:xi ̸=0,|x|≤k

f̂ 2(αx)

Note that the above definition is independent of the basis α0, α1, . . . , αq−1 that we start with,
as long as α0 = 1. From the above definition, we can infer that for functions f : [q]n → [0, 1], the
sum of low degree influences is bounded by∑

i

I≤k
i (f) ≤ k

For a vector x ∈ [q]dR, let x ∈ [qd]R be the corresponding element in [qd]R i.e.

x = ((x1, x2, . . . , xd), (xd+1, xd+2, . . . , x2d), . . . , (xdR−d+1, xdR−d+2, . . . , xdR))

Similarly, for y ∈ [qd]R, let y denote the inverse of above operation. We can extend this notion
to functions as well: For a function f : [q]dR → R, let the function f : [qd]R → R be defined
naturally by

f(y) = f(y)

34

Similarly, for a function f : [qd]R → R, let f : [q]dR → R be defined as f(x) = f(x).
We need the following lemma:

Lemma 30. For any function f : [q]dR → R and any k ∈ N and i ∈ [R],

I≤k
i (f) ≤

d∑
j=1

I≤dk
di−d+j(f)

Proof. Fix a basis αx of functions from [q]dR → R as above. The functions αx form a basis for
functions from [qd]R → R, where αx(y) = αx(y). Note that f̂(αx) = f̂(αx). Thus we get

∑
i

I≤k
i (f) =

∑
x:xi ̸=(0,0,...,0),|x|≤k

f̂
2

(αx) =
∑

x:xi ̸=(0,0,...,0),|x|≤k

f̂ 2(αx)

≤
∑

x:xi ̸=(0,0,...,0),|x|≤dk

f̂ 2(αx)

≤
d∑

j=1

∑
x:xdi−d+j ̸=0,|x|≤dk

f̂ 2(αx)

=
d∑

j=1

I≤dk
di−d+j(f)

Using the invariance principle and Borell’s inequality, [DMR09] prove the following:
Theorem 31. Let q be a fixed integer, and T be a symmetric Markov chain on [q] with r(T) < 1.
Then for every ϵ > 0, there exists a δ > 0 and a positive integer k such that the following holds:
For every f, g : [q]n → [0, 1] if E[f] > ϵ,E[g] > ϵ and ⟨f, Tg⟩ = 0, then

∃i ∈ [n] : I≤k
i (f) ≥ δ, I≤k

i (g) ≥ δ

where r(T) denotes the second largest eigenvalue (in absolute value) of T .

4.3 d-to-1 hardness for 3-colorable graphs

In this section, we will prove Theorem 26.

4.3.1 Reducing chromatic number to 3

The following lemma is present in [Kro+20] based on a beautiful result concerning the arc-
chromatic numbers of digraphs from [PR81].
Lemma 32. (Theorem 1.8 of [Kro+20]) Suppose there exists q ∈ N such that O(1) coloring
q-colorable graphs is NP-hard. Then, O(1) coloring 3-colorable graphs is NP hard.

35

Let Graph-Coloring(t, c) denote the promise problem of distinguishing if a graph can be
colored with c colors, or cannot even be colored with t colors. The statement is proved by
presenting a reduction from Graph-Coloring(b(t), b(c)) to Graph-Coloring(t, c) in polynomial
time, for the function b(n) :=

(
n

⌊n/2⌋

)
. The reduction works by constructing the arc-graph of the

underlying graphs, and using the property of arc graphs that the chromatic number of the arc
graph can be bounded precisely using the chromatic number of the original graph. Since b is
an increasing function and b(n) > n for all n ≥ 4, setting c = 4 and t large enough proves the
statement claimed in the lemma. The reduction from 4-colorable graphs to 3-colorable graphs is
achieved by applying the arc graph construction twice recursively.

Thanks to Lemma 32, we can restrict ourselves to the weaker goal of proving that O(1)
coloring q-colorable graphs is NP-hard for some fixed constant q assuming Conjecture 27. In
fact, following [DMR09], we prove a stronger statement showing hardness of finding independent
sets of ϵ fraction of vertices for any ϵ > 0. Combined with Lemma 32, this immediately gives us
Theorem 26.
Theorem 33. Suppose that Conjecture 28 is true for a constant d. Then, there exists a constant
q = q(d) such that for every ϵ > 0, given a graph G, it is NP-hard to distinguish the following
cases:

1. G can be colored with q colors.
2. G does not have any independent set of relative size ϵ.

In fact, we can take q = 2d.
In the remainder of the section, we will prove Theorem 33. We next develop the main technical

ingredient that we will plug into the reduction framework of [DMR09] to establish Theorem 33.

4.3.2 A symmetric Markov chain supported on disjoint tuples
A Markov chain T defined on a state space Ω is said to be symmetric if the transition matrix of T
is symmetric, namely for all pairs of states x, y ∈ Ω, the probability of transition from x to y is
equal to the probability of transition from y to x. Symmetry of the Markov chain ensures that
the uniform distribution is stationary which is essential when we compose the Label Cover-Long
Code reduction with the Markov chain. We define the spectral radius r(T) of a symmetric Markov
chain as the second largest eigenvalue in absolute value of its transition probability matrix, i.e., if
1 = λ1 ≥ λ2 ≥ . . . ≥ λq are the eigenvalues, then r(T) = max(|λ2|, |λq|).

We now show the existence of a symmetric Markov Chain T on [q]d with r(T) < 1 if
d ≥ 2, q ≥ 2d. Furthermore, there is a nonzero transition probability between two elements
x, y ∈ [q]d only if the support of x and y are disjoint. In [DMR09], such a Markov Chain is shown
to exist for the values (q, d) = (3, 1), (4, 2).
Lemma 34. Suppose that q, d ∈ N, q ≥ 2d, d ≥ 2. There exists a symmetric Markov chain T on
[q]d such that r(T) < 1. Furthermore, if the transition {x1, x2, . . . , xd} ↔ {y1, y2, . . . , yd} has
positive probability in T , then {x1, x2, . . . , xd} ∩ {y1, y2, . . . , yd} = ϕ.

Proof. We first construct an undirected graph G on [q]d such that there is an edge between
x, y ∈ [q]d only if the support of x and y are disjoint. We then use a matrix scaling algorithm to

36

obtain a symmetric Markov chain T from the adjacency matrix of G. For the resulting Markov
chain to have r(T) < 1, we need that the underlying graph G is connected, and is not bipartite.
Furthermore, for the scaling algorithm to produce a valid Markov chain, we need that every edge
of G is present in a cycle cover, where a cycle cover of a graph is a disjoint union of cycles that
covers every vertex in the graph. Note that we allow trivial 2-cycles in a cycle cover, where we
just take an edge twice.

We say that two multisets x = (x1, x2, . . . , xd), y = (y1, y2, . . . , yd) ∈ [q]d are of the same
type if the following condition holds: for all pairs of indices i, j ∈ [d], xi = xj if and only if
yi = yj and (xi − xj)(yi − yj) ≥ 0. Note that this is an equivalence relation, and thus each
element x ∈ [q]d uniquely determines its type.

Consider the graph G = (V,E) where the vertex set is V = [q]d. We add two kinds of edges
in this graph. We add an edge between every pair of x, y ∈ [q]d that are of the same type, and
have disjoint support. Let the subset of [q]d of elements that are supported on single element be
denoted by S, i.e.,

S = {(1, 1, . . . , 1), (2, 2, . . . , 2), . . . , (q, q, . . . , q)} .

We also add edges between x and y if their support is disjoint, and at least one of x and y belongs
to S.

First, we claim that G is connected. This follows from the fact that the set of nodes in S are
connected to each other, and every vertex in V is adjacent to at least one vertex in S. As q ≥ 4,
the graph is not bipartite (indeed S induces a q-clique). We will now prove that every edge in
this graph is part of a cycle cover. Given an undirected graph on vertex set V , a cycle cover of it
is a function σ : V → V that is bijective, and σ(u) = v only when u and v are adjacent in the
underlying graph.

Towards this, we first prove that for every edge in G between multisets of the same type,
there is a cycle cover that uses that edge. For each type, consider the graph obtained by taking
the vertices as multisets of that type, and with edges between two multisets of the same type if
they are disjoint. Note that for every type, this graph is isomorphic to a Kneser graph KG(q, k)
(for some k ≤ d), whose vertex set corresponds to k-element subsets of [q] and there is an edge
between two subsets if they are disjoint.

By symmetry across the subsets, we can infer that the Kneser graphs are regular. Note that
every regular graph contains a cycle cover: For a regular graph H , consider a bipartite graph H ′

which contains a copy of H on both the left side L, and right side R. There is an edge between
x ∈ L, y ∈ R of H ′ if and only if x, y are adjacent in H . As H is a regular graph, H ′ is a regular
bipartite graph, and thus, contains a perfect matching. This perfect matching in H ′ directly gives
a cycle cover of H . Furthermore, as Kneser graphs are also vertex-transitive, every edge in these
graphs is part of a cycle cover.

Next, we consider edges of G that are between multisets of different types i.e. edges between
multisets x, y where exactly one of x and y is in S. Consider an edge between s ∈ S and x ∈ V \S.
As q ≥ 2d, every multiset in G is adjacent to at least one multiset of the same type. Let y be a
multiset that is adjacent to x in G and is of the same type as x. Let s′ ∈ S be chosen such that

37

it is adjacent to y in G. As S is a complete subgraph of G, s and s′ are adjacent in G. From
the previous argument about edges between multisets of the same type, we can infer that there
is a cycle cover of G where y is mapped to x, and s is mapped to s′. We can modify this cycle
cover by transforming it as follows - (s→ x) can be made part of cycle cover by transforming
(s→ s′), (y → x) to (s→ x), (y → s′) and keeping rest of the cycle cover intact. Thus, we have
proved that every edge of G is part of a cycle cover.

Let A denote the adjacency matrix of the above graph G. Using the Sinkhorn Knopp iterative
algorithm, it is proved in [CD72] that if a non-negative symmetric matrix A has total support, then
there exists a diagonal matrix D such that DAD is a doubly stochastic matrix. A square matrix
A = (aij) of order n is said to have total support if A ̸= 0, and for every nonzero entry aij of
A, there exists a permutation σ of [n] such that σ(i) = j and for all e ∈ [n], ae,σ(e) ̸= 0. When
the matrix A is an adjacency matrix of a graph G, the total support condition translates to the
requirement that every edge in G is part of a cycle cover, a property we have already shown to
hold for the graph G.

Thus, we can apply the above scaling result, and view the resulting matrix B = DAD as the
transition matrix of a Markov chain T . As A and D are symmetric, B is symmetric, i.e., T is
symmetric. As A is connected and no principal diagonal element of D is zero, T is connected as
well. Note that every nonzero element of A stays nonzero in T , and A is not bipartite. The above
two facts combined ensure that the spectral radius r(T) of T is strictly less than 1. We conclude
that there exists a symmetric Markov chain T on state space [q]d that has both the properties: (i)
r(T) < 1, and (ii) there is nonzero probability of transition between two multisets only when
their support is disjoint.

4.3.3 Proof of Theorem 33

Let d be the constant for which Conjecture 27 is true. Thus, Conjecture 28 is true for the same
value d as well. Choose q, T from Lemma 34 such that T is a symmetric Markov chain on [q]d

such that r(T) < 1.
We now reduce the given d-to-d Label Cover instance to the problem of finding independent

sets in q-colorable graphs. To be precise, given a Label Cover instance G = ((V,E), dR,Ψ), we
output a graph G′ = (V ′, E ′) such that

1. Completeness: If G is satisfiable, G′ can be colored with q colors.

2. Soundness: If isatt(G) < ϵ′, then G′ does not have any independent set of size ϵ.
The parameters t and ϵ′ will be set later.

Reduction. Our reduction follows the standard Label Cover Long Code paradigm, and in
particular closely mirrors [DMR09]. We replace each vertex w ∈ V of the Label Cover with a set
fw of [q]dR nodes, each corresponding to a vertex in G′. Consider an edge e = (u, v) where Ψe

is an associated constraint with permutations π1, π2 on [dR] such that (a, b) ∈ Ψe if and only if
(π−1

1 (a), π−1
2 (b)) ∈ d↔ d.

38

We add an edge between (x1, x2, . . . , xdR) ∈ fu and (y1, y2, . . . , ydR) ∈ fv to E ′ if and only if

∀i ∈ [R], T ((xπ1(di−d+1), xπ1(di−d+2), . . . , xπ1(di))↔ (yπ2(di−d+1), yπ2(di−d+2), . . . , yπ2(di))) > 0

Completeness. Suppose σ : V → [dR] be a labeling satisfying all the constraints of the Label
Cover instance G. We color the node (x1, x2, . . . , xdR) ∈ fw with xσ(w) ∈ [q]. We claim that this
is a legit q-coloring of G′. Suppose that we added an edge between x ∈ fu and y ∈ fv. Let x be
colored with xa and y be colored with yb. As (a, b) ∈ Ψ(u,v), we have (π−1

1 (a), π−1
2 (b)) ∈ d↔ d.

Thus, there exist i ∈ [R], 1 ≤ p, q ≤ d such that a = π1(di − d + p) and b = π2(di − d + q).
As we have added an edge between x ∈ fu and y ∈ fv, xa ̸= yb as the Markov chain T has
nonzero probability only between two elements of [q]d with disjoint support. Thus, there exists a
q-coloring of G′ when G is satisfiable.

Soundness. We prove the contrapositive that if G′ has an independent set of relative size ϵ, then
there exists a labeling of G with isatt(G) ≥ ϵ′. Let S ⊆ V ′ be the largest independent set of G′.
We know that |S| ≥ ϵ|V ′|. This implies that in at least ϵ′ = ϵ

2
fraction of the long code blocks, at

least ϵ
2

fraction of nodes belong to S. Let this subset of V be denoted by Z. Our goal is to show
that there exists a small set of labels τ : Z → 2[dR] to which we can decode the vertices in Z such
that all the constraints induced in Z are satisfied by τ .

For every vertex w ∈ Z, we define functions gw : [q]dR → {0, 1} to be the indicator
functions of set S inside the long code blocks corresponding to w i.e. gw(x) = 1 if and only if
x ∈ S. Consider an edge e = (u, v) corresponding to the constraint Ψe induced in Z. Let the
functions f : [q]dR → {0, 1} and g : [q]dR → {0, 1} be defined such that f(xπ1) = gu(x) and
g(yπ2) = gv(y), where π1 and π2 are the permutations underlying the relation Ψe i.e. (a, b) ∈ Ψe

if and only if (π−1
1 (a), π−1

2 (b)) ∈ d↔ d.
We note that ⟨f, Tg⟩ is equal to zero. In other words, suppose that x, y ∈ [q]dR, x ∈ fu, y ∈ fv

are such that

∀i ∈ [R], T ((xdi−d+1, xdi−d+2, . . . , xdi)↔ (ydi−d+1, ydi−d+2, . . . , ydi)) > 0. (4.1)

Then, f(x)g(y) = 0. Suppose for contradiction that there exist x, y ∈ [q]dR satisfying the above
condition, and f(x) = g(y) = 1. Let x′ ∈ fu, y

′ ∈ fv be such that (x′)π1 = x, (y′)π2 = y.
We have gu(x′) = gv(y

′) = 1. That is, both x′ ∈ fu, y
′ ∈ fv are in the independent set S.

However, Equation (4.1) can be rewritten as the following:

∀i ∈ [R], T ((x′π1(di−d+1)), (x
′
π1(di−d+2)), . . . , x

′
π1(di)

)↔ (y′π2(di−d+1), y
′
π2(di−d+2), . . . , y

′
π2(di)

)) > 0.

(4.2)
Note that this is precisely the condition for adding edges in G′. Thus, Equation (4.2) implies that
x′ ∈ fu and y′ ∈ fv are adjacent in E ′, and thus cannot both be part of the independent set S. This
completes the proof that ⟨f, Tg⟩ = 0.

Thus, ⟨f, Tg⟩ is also equal to zero, where f : [qd]R → {0, 1} and g : [qd]R → {0, 1} are the
corresponding functions in [qd]R of f, g. From the definition of Z, E(f) ≥ ϵ

2
and E(g) ≥ ϵ

2
. We

apply Theorem 31 to f and g to deduce that there exists i ∈ [R], a positive integer k = k(ϵ) and

39

δ = δ(ϵ) such that I≤k
i (f) ≥ δ and I≤k

i (g) ≥ δ. This motivates us to define the label set of vertex
w ∈ Z, L(w) as the following -

L(w) := {i ∈ [dR] : I≤dk
i (gw) ≥

δ

d
}

As the sum of k degree influences of all variables is at most k, the size of L(w) is upper bounded
by kd

δ
for every v. Thus, we set the parameter t to be kd

δ
.

The final step is to prove that the labeling L is indeed a valid labeling inside edges induced
in Z. Consider an edge e = (u, v) induced in Z with the constraint relation being Ψe such that
(a, b) ∈ Ψe if and only if (π1(a), π2(b)) ∈ d ↔ d. Our goal is to show that there exist indices
σ1, σ2 ∈ [dR] such that σ1 ∈ L(u), σ2 ∈ L(v) and (σ1, σ2) ∈ Ψe. Using Theorem 31, we can
deduce that there exists i ∈ [R] such that I≤k

i (f) ≥ δ and I≥k
i (g) ≥ δ. Using Lemma 30, we

can conclude that there exist i1, i2 ∈ [dR] such that I≤dk
i1

(f) ≥ δ
d

and I≤dk
i2

(g) ≥ δ
d

such that
(i1, i2) ∈ d ↔ d. Let σ1, σ2 ∈ [dR] be such that i1 = π1(σ1), i2 ∈ σ2. As f(xπ1) = gu(x),
I≤dk

π−1
1 (i1)

(gu) ≥ δ
d
. And thus, σ1 ∈ L(u), and similarly σ2 ∈ L(v). As (i1, i2) ∈ d ↔ d,

(σ1, σ2) ∈ Ψe, which completes the proof.

4.4 Reducing multigraph (exact) d-to-1 to (d + 1)-to-1 conjec-
ture

For the version of d-to-1 conjecture where we only require the constraint maps to be at most d-to-1,
the d-to-1 conjecture trivially implies the (d+ 1)-to-1 conjecture. O’Donnell and Wu [OW09]
remark that no such reduction appears to be known for the exact d-to-1 conjecture. Here we prove
that the exact d-to-1 conjecture implies the exact (d + 1)-to-1 conjecture when the underlying
Label Cover instances are allowed to have parallel edges. We remark that multigraph version
of exact d-to-1 conjecture, which is implied by the simple graph version, also suffices for our
reduction to graph coloring (and indeed all known reductions from d-to-1 Label Cover).

Let G = ((V = X ∪ Y,E), (dR,R),Ψ) be a Label Cover instance such that every constraint
is of d-to-1 structure. We reduce it to G′ = ((V = X ∪ Y,E ′), ((d+ 1)R,R),Ψ′) such that

1. If G is satisfiable, G′ is satisfiable as well.

2. If every labeling violates at least ϵ fraction of constraints in G, then every labeling violates
at least ϵ′ = 2ϵ fraction of constraints in G′.

Reduction. We first change the label set of X from [dR] to [(d+ 1)R]. For every constraint ψ
in G between nodes u ∈ X and v ∈ Y , we replace it with R constraints ψ1, ψ2, . . . , ψR between
u and v in the following way: the relation between old labels is the same as ψ i.e. when x ≤ dR,
(x, y) ∈ ψj for j = 1, 2, . . . , R if and only if (x, y) ∈ ψ. When x > dR, (x, y) ∈ ψj if and only
if R divides (x+ j − y). This ensures that each new label is mapped to a different label in each
of the R new constraints. The constraints are clearly of (d+ 1)− to− 1 form.

40

Completeness. If there is a labeling satisfying all the constraints ofG, the same labeling satisfies
all the constraints in G′ as well.

Soundness. Suppose that there is no labeling satisfying at least ϵ fraction of constraints in G.
Note that this implies that R is at least 1

ϵ
as there is always a labeling satisfying at least 1

R
fraction

of constraints: fix a labeling to the vertices on the left, and assign a label to the vertices in R
uniformly at random from [R]. We claim that there is no labeling satisfying more than 2ϵ fraction
of constraints in G′. Consider an arbitrary labeling of G, σ : V → [(d+ 1)R]. We can divide the
set of edges E ′ of G′ into two parts: the edges (u, v) such that σ(u) ≤ dR and the edges (u, v)
such that σ(u) > dR. Let the set of first type of edges where the left vertex is assigned the new
label be denoted by E1, and the set of second type of edges be denoted by E2. In E1, the fraction
of constraints that can be satisfied by σ is at most 1

R
≤ ϵ. Note that we can get a labeling σ′ of G

by replacing labels of vertices in X with label greater than dR with an arbitrary label in [dR], and
keeping rest of the labels intact. For the edges in E2, the labelings σ and σ′ coincide. As σ′ can
satisfy at most ϵ fraction of constraints of G, σ can only satisfy at most ϵ fraction of overall edges
in E ′. Thus, overall σ satisfies at most ϵ+ 1

R
≤ 2ϵ fraction of constraints in E ′, which proves the

required soundness claim.

41

42

Chapter 5

Rainbow coloring hardness via low
sensitivity polymorphisms

5.1 Introduction

Similar to the Graph coloring problem, hypergraph coloring also received a lot of attention in
Graph Theory and Theoretical Computer Science. Even though there is a simple algorithm to
check if a given graph is 2-colorable or not, checking if a 3-uniform hypergraph can be colored
with two colors so that no hyperedge is monochromatic is one of the classic NP-hard problems.
This raises the question of identifying if 2-coloring is easy on special hypergraphs of interest. For
example, if a k-uniform hypergraph is k-partite, i.e., the vertices can be partitioned into k parts so
that every hyperedge intersects each part, then there are simple algorithms to properly color the
hypergraph with two colors. Suppose we know that a k-uniform hypergraph is promised to be
k − 1-partite, can we color it with two colors?

An equivalent way to formulate this question is in terms of rainbow coloring. A k-uniform
hypergraph is said to be r-rainbow colorable if there is a coloring of vertices with r colors such
that all the r colors appear in every edge. Unlike usual coloring, rainbow coloring becomes harder
as we have more colors. Note that r-partiteness is the same thing as r-rainbow colorability. As
mentioned above, a k-uniform hypergraph that is promised to be k-rainbow colorable can be
efficiently colored with two colors. One big hammer approach for this is to use semidefinite
programming and find a unit vector for each vertex such that sum of the vectors in each edge sum
to zero, and then use random hyperplane rounding. But the 2-coloring can also be performed
by a simple random walk algorithm — start with an arbitrary coloring, and as long as there is a
monochromatic edge, pick an arbitrary one and flip the color of a random vertex in it. This process
will converge to a 2-coloring in a quadratic number of iterations with high probability [McD93].

If we relax the k-rainbow colorability assumption slightly to that of (k−1)-rainbow colorability,
there are no known efficient algorithms for 2-coloring. It is tempting to conjecture that in fact this
task is hard (in fact, even if we are allowed c colors for any constant c; this was shown assuming
the V Label Cover conjecture in [BG17]). If we relax the rainbow colorability assumption further,

43

Austrin, Bhangale and Potukuchi proved that it is NP-hard to 2-color a k-uniform hypergraph
when it is promised to be (k − 2

√
k)-rainbow colorable [ABP20]. They also showed that it is

NP-hard to 2-color a 4-uniform hypergraph even if it is 3-rainbow colorable. In this work, we
focus on hardness results for the (k − 1)-rainbow colorable case, as this promise is the closest to
k-partiteness which makes 2-coloring easy. While we can’t show hardness of 2-coloring, we show
that rainbow coloring with ⌈k−2

2
⌉ colors is hard. Formally, our main result is the following.

Theorem 35. Fix an integer k ≥ 4. Given a k-uniform hypergraph that is promised to be
(k − 1)-rainbow colorable, it is NP-hard to rainbow color it with ⌈k−2

2
⌉ colors.

As a corollary, we also get the following, which extends the similar result of [ABP20] for the
k = 4 case (their techniques did not generalize beyond the 4-uniform case).
Theorem 36. For k ≤ 6, given a k-uniform hypergraph that is promised to be k − 1-rainbow
colorable, it is NP hard to 2-color it.

5.1.1 Techniques

There have been broadly three lines of attack on proving hardness for graph and hypergraph
coloring problems.

The first line of work gives reductions from Label Cover analyzed using Fourier-analytic
techniques of the sort originally pioneered by Håstad [Hås01]. Early applications of this method
showed strong hardness results for coloring 2-colorable hypergraphs of low uniformity with
any constant number of colors [GHS02; Hol02; Kho02a; Sak14]. This approach, augmented
with the invariance principle of [MOO10] and some of its extensions such as [DMR09; Mos10;
Wen13], was used to prove further hardness results for hypergraph coloring [BK10; GL18] and
strong conditional hardness results for graph coloring [DMR09]. These methods usually also
prove a stronger statement about finding independent sets in the graphs or hypergraphs. For
rainbow coloring, it is proved in [GL18] by combining together many of these techniques that
a k/2-rainbow colorable k-uniform hypergraph cannot be colored with any constant number of
colors in polynomial time unless P = NP. While our results in Chapter 4 used the latest PCSP
ideas, the core technique used, however, is this analytical approach.

A less extensive line of work proceeds via combinatorial gadgets that are analyzed using
ideas based on the chromatic number of Kneser graphs and similar results. The first exemplar
of this approach was the hardness of O(1)-coloring 2-colorable 3-uniform hypergraphs shown
in [DRS05]. Unlike the analytic results for 4-uniform hypergraphs mentioned above, this result
does not show hardnes of finding large independent sets. (This was later shown in [KS14] using
the analytic approach, albeit under the d-to-1 conjecture.) A few recent results have revived
this combinatorial approach, by re-deriving and improving some previous hardness results for
hypergraph coloring using simpler proofs [Bha18; ABP19].

The third and most recent line of work adapts the universal algebraic method behind the
complexity classification of constraint satisfaction problems that culminated in the resolution of
the Feder-Vardi CSP dichotomy conjecture [Bul17; Zhu20]. Here, the coloring problem is viewed
as a Promise Constraint Satisfaction Problem (PCSP), and its associated polymorphisms are then

44

analyzed. 1 In the cases when the polymorphisms are severely limited, one can show hardness via
a reduction from Label Cover. The approach to study PCSP using polymorphisms originated in
[AGH17], and was used to show hardness results for graph and hypergraph coloring in [BG16].
The algebraic theory was further developed significantly in [Bar+21] leading among other results
to a proof of NP-hardness of 5-coloring 3-colorable graphs.

In this work, we follow the algebraic approach to prove Theorem 35. Note that rainbow
coloring is a natural Promise Constraint Satisfaction Problem. As proved in [Bar+21; BG21a], as
with normal CSP, the complexity of a promise CSP is captured by its associated polymorphisms.
Recall that polymorphisms of a PCSP are ways to combine multiple solutions of an instance
satisfying the stronger predicate to obtain a solution to the instance satisfying the weaker predicate.
The high level principle behind the algebraic approach is that the problem should be easy when
it has a rich enough set of polymorphisms that include functions with strong symmetries, and
hard when all its polymorphisms are somehow skewed and lack symmetries. This has been fully
established for CSPs — when there are polymorphisms which obey weak near-unanimity, the
CSP is polytime solvable, and otherwise NP-complete.2 The hardness part of this dichotomy is
easier and was known for a while; the much harder algorithmic part was established only recently
in [Bul17; Zhu20].

For promise CSPs, which form a much richer class, our current understanding is rather limited,
for both the algorithmic and hardness sides. It is not clear (to even conjecture) what kind of
lack in symmetries in the polymorphisms might dictate hardness, and how one might show the
corresponding hardness. A simple (but rather limited) sufficient condition for hardness is when
all the polymorphisms are dictators that depend on a single coordinate. In [AGH17], it has been
proved that if all the polymorphisms of a PCSP are juntas3, then the PCSP is NP-hard. This is
the basis of the hardness results for (2 + ϵ)-SAT [AGH17] and 3-coloring graphs that admit a
homomorphism to Ck for any fixed odd integer k [KO19]. The recent hardness of 5-coloring
3-colorable graphs in [Bar+21] proceeds by showing that the absence of arity 6 polymorphisms
with the so-called Olšák symmetry implies NP-hardness, and then verifying that 3 vs. 5-coloring
lacks such polymorphisms.

It turns out that the polymorphisms of rainbow coloring can have Olšák symmetries and be
non-juntas. We will get around this by proving that these polymorphisms are C-fixing in the
sense that there exists a constant number of coordinates and an assignment to them such that
if we fix these coordinates to the assignment, the value of the function is fixed. This is also
studied as certificate complexity in Boolean function analysis [APV16]. We then prove that if the
polymorphisms of a PCSP are C-fixing, then the PCSP is NP-hard.

In order to prove that the polymorphisms have low certificate complexity, we use the connec-
tion between sensitivity and certificate complexity of functions. These two ways of characterizing

1The proof in [DMR09] also implicitly studies polymorphisms and proves that they must have a small number of
coordinates with sizeable influence and thus are not too symmetric. This influence-type characterization interfaces
better with Unique Games or other highly structured forms of Label Cover.

2For the case of Boolean CSPs, the CSP is hard iff all polymorphisms are unary, i.e., either the dictator function
or its complement.

3A C-junta is a function that depends on at most C inputs

45

complexity of functions are well studied in the context of Boolean functions. It is worth em-
phasizing that for our purposes, all we need is to show that low sensitivity (even sensitivity
2 suffices) implies constant certificate complexity, and thus we are not interested in optimal
gaps between sensitivity and certificate complexity. The famous sensitivity vs. block sensitivity
conjecture [Nis89] states that these two parameters are in fact polynomially related. In one of
the earliest works related to this problem, Simon [Sim83] proved that certificate complexity is at
most exponential in sensitivity. We extend this to larger domains, and then use it to prove that the
polymorphisms that we study have low certificate complexity.

The second step is to then use the C-fixing property to show NP-hardness of the PCSP. This
is done by the usual paradigm of reducing from Label Cover using polymorphism tests (better
known as long code tests) of functions associated with vertices of the Label Cover instance. A
more structured form of the C-fixing property, where the C variables are fixed to the same value,
is used in [BG21a] to show NP-hardness of certain Boolean PCSPs. However, in order to prove
NP-hardness using our more general notion of C-fixing, we end up needing stronger properties
of the Label Cover instance. As a result, our reduction is from the smooth Label Cover problem
that was introduced and shown to be NP-hard in [Kho02a], and has found many applications in
inapproximability since.

A natural question is to understand how far we can push these techniques. Our NP hardness
reduction from smooth Label Cover works when the polymorphisms of the PCSP in hand are
C-fixing for some constant C. As k increases, the polymorphisms of PCSP of 2-coloring a
k-uniform hypergraph that is promised to be (k − 1)-rainbow colorable get richer. When k is
at most 6, the polymorphisms are C-fixing. At k = 7, we show that there is a polymorphism
that is not C-fixing for any constant C. In fact, one would need C to be linear in the arity of
polymorphisms which also rules out using smooth Label Cover with very strong soundness.

5.1.2 Prior work on rainbow coloring and related problems

Various notions of approximate coloring with rainbow colorability guarantees have been studied
in the literature. Bansal and Khot [BK10] prove that when the input hypergraph is promised to
be almost k-rainbow colorable, it is Unique Games hard to color it with O(1) colors. Sachdeva
and Saket [SS13] establish NP-hardness of O(1) coloring a k-uniform hypergraph when it is
promised to be almost k

2
-rainbow colorable. This was extended by Guruswami and Lee [GL18] to

perfectly k
2
-rainbow colorable hypergraphs. Guruswami and Saket [GS17] prove similar results

assuming stronger forms of rainbow colorability in the completeness case. In [ABP20], Austrin,
Bhangale and Potukuchi proved that it is NP-hard to 2-color a k-uniform hypergraph when it is
promised to be (k−2

√
k) rainbow colorable. On the other hand, when the hypergraph is promised

to be k −
√
k rainbow colorable, Bhattiprolu, Guruswami and Lee [BGL15] give algorithms to

color the hypergraph with two colors that miscolors at most k−Ω(k) fraction of edges; this beats
the 2k+1 fraction achieved by random coloring that is the best possible for general 2-colorable
hypergraphs [Hås01]. Brakensiek and Guruswami [BG17] put forth a problem called V label
cover (to possibly serve as a perfect completeness variant surrogate for Unique games), and under

46

its conjectured inapproximability proved that it is hard to color a k-uniform (k − 1)-rainbow
colorable hypergraph with O(1) colors.

A related notion of hypergraph coloring is strong coloring where we color a k-uniform
hypergraph with s > k colors such that in any edge, all the k vertices are colored with distinct
colors. Brakensiek and Guruswami [BG16] prove that it is NP-hard to 2-color a k-uniform
hypergraph that is promised to be strongly colorable with ⌈3k

2
⌉ colors. Assuming the V Label

Cover conjecture, it is hard to O(1)-color k-uniform hypergraphs with strong chromatic number
at most k +

√
k [BG17].

5.1.3 Outline

We start with a few notations and definitions in Section 5.2. In Section 5.3, we study polymor-
phisms of rainbow coloring. We first prove a result on sensitivity and certificate complexity and
use it to prove properties of polymorphisms of the PCSP that we are studying. Then, we use these
in Section 5.4 to prove NP hardness. Finally, we use the rainbow coloring of hypergraphs ideas to
show hardness for Vector Bin Covering problem.

5.2 Preliminaries

5.2.1 Rainbow Coloring PCSP

In RAINBOW(k, r, q) problem, the input is a k uniform hypergraph. The goal is to distinguish
between the cases when the hypergraph is rainbow colorable with r colors and when it cannot be
rainbow colorable with q colors. More formally, we can define the problem as below:
Definition 37. (RAINBOW(k, r, q)) In the RAINBOW(k, r, q) promise CSP, q ≤ r ≤ k, we have
a pair of predicates (A,B) defined as follows:

• A : [r]k → {0, 1} : A(x1, x2, · · · , xk) = 1 if and only if {x1, x2, · · · , xk} = [r].
• B : [q]k → {0, 1} : B(y1, y2, · · · , yk) = 1 if and only if {y1, y2, · · · , yk} = [q].
Note that we need q, r to be at most k since we cannot rainbow color a k uniform hypergraph

with more than k colors. We also need the condition that q ≤ r for the promise problem to make
sense: If the hypergraph is r rainbow colorable, we can infer that it is already q < r rainbow
colorable too. Thus, the promise problem is to identify if the hypergraph is r rainbow colorable
or it cannot even be rainbow colorable with q colors. Furthermore, in this work we will be only
dealing with near perfect completeness case when hypergraph is (k − 1)-partite i.e. r = k − 1.

We now direct our attention to polymorphisms of RAINBOW(k, r, q). By definition, the
polymorphisms of hypergraph coloring PCSPs turn out to be colorings of certain tensor product
hypergraphs. Fix n to be arity of the polymorphisms. We can infer that the polymorphisms
of RAINBOW(k, r, q) are proper q-rainbow colorings of the following k uniform hypergraph
RHn(k, r):

• The vertex set of hypergraph is the set V = [r]n.

47

• A k element set (v1, v2, · · · , vk), where each vi ∈ [r]n is an edge if and only if for every
j ∈ [n], the set {(v1)j, (v2)j, · · · , (vk)j} is equal to [r].

That is, a set of k vectors from [r]n forms an edge if in the matrix obtained by plugging these
vectors as rows, all the r elements from [r] occur in every column.

5.2.2 Complexity measures of functions

Finally, we define the notions of sensitivity and C-fixing of functions.
Definition 38. (Sensitivity at x) For a function f : [r]n → [q], and an input x ∈ [r]n, the sensitivity
of f at x, denoted by S(f, x) is defined as the number of coordinates i such that changing x at i
can change the value of f i.e. S(f, x) =

∣∣{i ∈ [n]|∃a : f(x) ̸= f(x : xi ← a)}
∣∣.

Definition 39. (Sensitivity) The sensitivity of a function f : [r]n → [q], denoted by S(f) is defined
as the maximum sensitivity of f over all x in [r]n i.e. S(f) = maxx S(f, x).
Definition 40. (C fixing) A function f from [r]n to [q] is said to be C-fixing for some integer C
if there exists a set S = {s1, s2, · · · , sC} ⊆ [n] and a vector α = {α1, α2, · · · , αC} ⊆ [r]m such
that f(x) = p whenever xsi = αi for all integers 1 ≤ i ≤ t, for some fixed p ∈ [q].

5.3 Polymorphisms

In this section, we will analyze the properties of polymorphisms of rainbow coloring. In order
to do so, we will prove prove that low sensitivity implies low certificate complexity. Using this,
we will establish that the polymorphisms for RAINBOW(k, k − 1, ⌈k−2

2
)⌉ are C-fixing. Along

the way, we will study rainbow colorings of various hypergraphs related to RHn(k, r). Finally,
we will show that our techniques cannot prove hardness of RAINBOW(7, 6, 2) by presenting a
polymorphism that is not C-fixing for any constant C.

5.3.1 Sensitivity vs certificate complexity

We extend a lemma of [Sim83] that proves that if a function has low sensitivity then the function
is C fixing, to larger domains. The proof is along the same lines as the original proof.
Lemma 41. Let f : [r]n → [q] be a function with sensitivity s, and let b ∈ [q] such that f−1(b) is
non empty. Then, |f−1(b)| ≥ rn−s.

Proof. Fix s, and induct on n. The case n = s is trivial. Let x ∈ [r]n be such that f(x) = b. Since
s < n, there is a coordinate in x that is not sensitive. Without loss of generality, let it be 1, and let
x = (x1, y). As the first coordinate is not sensitive for x, we can conclude that f(α, y) = b for all
α ∈ [r].

Consider the set of functions gi : [r]n−1 → [q], gi(u) = f(i,u), i ∈ [r]. Note that for each
such gi, the set g−1

i (b) is non-empty. In addition, for every i ∈ [r], sensitivity of gi is at most the
sensitivity of f . Thus, by induction, we know that each such gi has at least rn−1−s elements u in

48

[r]n−1 such that gi(u) = b. Note that every such u gives f(i,u) = b. By combining over all is, we
can conclude that there are at least r · rn−1−s = rn−s elements x ∈ [r]n such that f(x) = b.

Lemma 42. Let f : [r]n → [q] be a function with sensitivity s < n/2. Then, it is C-fixing for
C = s(r − 1)r2s+1.

Proof. We will actually prove a stronger statement that f is a C-junta. Let the set A denote the
set of coordinates with non-zero influence of f i.e. the coordinates that are sensitive for some
input. Our goal is to upper bound the cardinality of A.

For a function f : [r]n → [q], let the set of sensitive edges E(f) be defined as the set of pairs
of elements x, y ∈ [r]n such that f(x) ̸= f(y), and x, y differ on exactly one coordinate. From the
sensitivity bound on f , we can deduce that

|E(f)| ≤ s(r − 1)rn (5.1)

Fix an arbitrary coordinate i ∈ A. There are elements x, y ∈ [r]n such that xi = α, yi = β, α ̸=
β, f(x) ̸= f(y), and x, y differ only in ith coordinate. Define a function g : [r]n−1 → {0, 1} as
g(z) is 1 if and only if f(α, z) = f(x), and f(β, z) = f(y) where we use the notation (α, z) to
denote the vector in [r]n obtained by inserting α in ith position to z ∈ [r]n−1. Now, since f(α, z)
and f(β, z) are both sensitive to at most s coordinates, g(z) is sensitive to at most 2s coordinates.
Also note that g−1(1) is non-empty. Thus, by Lemma 41, we can conclude that |g−1(1)| is at
least rn−1−2s. In other words, each sensitive coordinate contributes at least rn−2s−1 edges to E(f).
Thus, we can conclude that

|E(f)| ≥ |A|rn−2s−1 (5.2)

Combining Equation (5.1) and Equation (5.2), we get

|A| ≤ s(r − 1)r2s+1 (5.3)

which proves the required claim.

5.3.2 Low sensitivity polymorphisms of rainbow coloring
We now turn our attention towards our main goal in this section: to show that polymorphisms of
RAINBOW(k, k − 1, q) are C-fixing for q = ⌈k−2

2
⌉. As we have already mentioned earlier, the

polymorphisms of rainbow coloring themselves are rainbow colorings of certain tensor product
hypergraphs. To be precise, the n-ary polymorphisms of RAINBOW(k, r, q) are precisely q-
rainbow colorings of RHn(k, r). Thus our new goal is to prove that any integer q ≥ 2, any
q-rainbow coloring of RHn(2q + 2, 2q + 1) is a C-fixing function.

In order to achieve this, we will first define certain hypergraphs similar to RHn(k, r).
Definition 43. Hn(r, s) = (V,E) is a r uniform hypergraph where the vertex set V is equal to
[r]n. A set of vectors (u1,u2, · · · ,ur) is an edge if and only if

1. In every coordinate i ⊆ [n], at least r − 1 elements occur i.e.
∣∣∣⋃j(uj)i

∣∣∣ ≥ r − 1 ∀i ∈ [n].

49

2. All the r elements occur in at least n− s coordinates i.e.
∣∣∣⋃j(uj)i

∣∣∣ = r for at least n− s
choices of i in [n].

The reason behind studying these hypergraphs is that the q-rainbow colorings of RHn(2q +
2, 2q+1) are very closely related to q-rainbow colorings of Hn(2q+1, c) for any absolute constant
c. In fact if we can prove that q-rainbow colorings of Hn(2q + 1, c) are C-fixing, it implies
that q-rainbow colorings of RHn(2q + 2, 2q + 1) are max(C, c)-fixing. This is formally proved
in Lemma 47. Thus our modified objective is to argue that q-rainbow colorings of Hn(2q+1, c) are
C-fixing. In order to do so, we inductively relate q-rainbow colorings of Hn(t, c) and Hn(t−1, c−1).
As a base case, we have the following lemma:
Lemma 44. For all integers q ≥ 2 and n ≥ 1, the hypergraph Hn(2q − 1, 1) cannot be rainbow
colored with q colors.

Proof. We will use induction on q. For the case q = 2, rainbow coloring with 2 colors is the same
as proper coloring the hypergraph with 2 colors. The fact that Hn(3, 1) cannot be two colored
follows from [ABP20] (Lemma 3.2 with d = 3).

Suppose for contradiction that f is a valid q-rainbow coloring of Hn(2q− 1, 1). Let r = 2q− 1

denote the uniformity of the hypergraphs. Consider the set of r vectors in [r]n : {
⋃

i(i, i, · · · , i)}.
As there are at most q < r colors, some two elements of this set should have same f value.
Without loss of generality, let f(r − 1, r − 1, · · · , r − 1) = f(r, r, · · · , r) = c for some c ∈ [q].
Consider the r − 2-uniform hypergraph H = Hn(r − 2, 1). Note that every edge in H together
with u = (r − 1, r − 1, · · · , r − 1) and v = (r, r, · · · , r) forms an edge in Hn(r, 1). Thus, all the
q − 1 colors in [q] \ {c} occur in every edge of coloring of Hn(r − 2, 1) using f . This implies that
we can get a a valid (q − 1)-rainbow coloring of Hn(r − 2 = 2(q − 1)− 1, 1) by restricting f to
[r − 2]n, and replacing the color c using arbitrary color from [q] \ {c}. However, by induction
hypothesis such a coloring cannot exist, and thus we have arrived at contradiction.

Now, we will use this to argue about q-rainbow colorings of Hn(2q + 1, 3) via q-rainbow
colorings of Hn(2q, 2). Consider the hypergraph Hn(2q, 2). A trivial way to q-rainbow color this
hypergraph is to pick a coordinate i ∈ [n], and partition the set [2q] into q disjoint sets of size two,
let’s say A1, A2, · · · , Aq and assign the value p ∈ [q] to f(x) if and only if xi ∈ Ap. It turns out
that this is the only way to q-rainbow color Hn(2q, 2). We prove it in the lemma below:
Lemma 45. Let f be a q-rainbow coloring of Hn(r = 2q, 2). Then, there exists an index i ∈ [n],
sets A1, A2, · · · , Aq ⊆ [r] each of size 2, and mutually disjoint such that f(x) = j iff xi ∈ Aj .

Proof. First we will prove that the sensitivity of f is at most 1. Let x = (x1, x2, · · · , xn) be an
arbitrary vector in [r]n. Consider a r − 1-uniform hypergraph H(x) defined on ([r] \ x1)× ([r] \
x2)× · · · × ([r] \ xn). We add a r − 1 vector set as edge of H(x) if and only if it has at most one
coordinate where there are missing elements i.e. all the [r] \ xi occur in all but one coordinate i,
and in that coordinate, at most one value is missing.

Note that H(x) is isomorphic to Hn(2q − 1, 1). From Lemma 44, we know that H(x) cannot
be rainbow colored with q colors. Thus, when we view f as a coloring of H(x), there is an edge
that has a color missing. Let it be denoted by e = (y1, y2, · · · , yr−1). Let j be the coordinate

50

where there is a missing element in e. If there is no coordinate with missing element, j can be
arbitrary. Without loss of generality, let color 1 ⊆ [q] be missing in e. Note that {x} ∪ e is an
edge of Hn(r, 1), and thus an edge of Hn(r, 2) as well. Since f is a proper q-rainbow coloring of
Hn(2q, 2), we can conclude that f(x) = 1. In fact, we can actually deduce something stronger.
Let y ∈ [r]n such that x and y differ on exactly one coordinate j′ ∈ [r]n, j′ ̸= j. Note that {y} ∪ e
is also a valid edge of Hn(2q, 2) since it has at most two coordinates where there are missing
elements i.e. j′ and j. Thus, f(y) = 1 = f(x). Thus, for every x, in except for one coordinate,
changing the value of the coordinate preserves the value of x. In other words, the sensitivity of f
is at most 1.

Using this, we will now prove that f is a dictator. Let i be an influential coordinate of f
i.e. there exists x, y ∈ [r]n differing only in ith coordinate such that f(x) ̸= f(y). We claim
that f(u) = f(x) for all u ∈ [r]n such that ui = xi, and f(u) = f(y) if ui = yi. We will prove
this by induction on the number of coordinates in which x and u differ excluding i. Since f has
sensitivity at most 1, the only sensitive coordinate of x and y is i. Thus, for any u differing only
in one coordinate from x (other than i) such that ui = xi or yi will have corresponding f value.
Suppose that the statement holds for all u differing from x in t coordinates excluding i.

Now, let u differ from x in t+ 1 coordinates excluding i. We can find v ∈ [r]n,w ∈ [r]n such
that v and x differ in t coordinates excluding i, vi = xi; w and y differ in t coordinates excluding
i, wi = yi, and one of v and w differs from u in at most one coordinate. By induction hypothesis,
f(v) = f(x), f(w) = f(y). Since v and w differ in a single coordinate i, i is the only sensitive
coordinate of v and w. Thus, f(u) is equal to either f(v) or f(w) depending on ui = xi or yi.
This completes the inductive proof.

To complete the proof that f is a dictator, we will use this to show that there cannot be two
influential coordinates. Suppose that there are two influential coordinates i and j. From previous
argument, we can infer that there are assignments i1, i2, j1, j2 ∈ [r] such that assigning these to
corresponding coordinates fixes the value of f . Also note that assigning i as i1 and i2 fixes f to
different values. Similarly, assigning j as j1 and j2 fixes f to different values. This gives rise to
contradiction since if we set coordinate i to i1, f should be fixed irrespective of j is equal to j1 or
j2. Thus, there can be only one influential coordinate for f , or in other words f is a dictator.

Let p be the dictator coordinate of f i.e. there exists a function g : [r]→ [q] such that f(x) =
g(xp). From the definition of the hypergraph Hn(r, 2), for every j ∈ [r], the set {

⋃
i g(xi)} \ g(xj)

should be equal to [q]. This proves that there exists setsA1, A2, · · · , Aq ⊆ [r] each of size two, and
mutually disjoint such that g(α) = j if and only if α ∈ Aj , which proves the required claim.

We finish the chain of inductive arguments by proving a key property of q-rainbow colorings
of Hn(2q + 1, 3).
Lemma 46. Let f : [2q + 1]n → [q] be a q-rainbow coloring of Hn(r = 2q + 1, 3). Then, there
exists an index i ∈ [n], and α ∈ [r] such that S(f, x) ≤ 2 for all x ∈ [r]n such that xi = α.

Proof. Let x = (x1, x2, · · · , xn) ∈ [r]n be an arbitrary vector in [r]n. Similar to the previous
lemma, we define the complement hypergraph associated with x. Consider a r − 1-uniform

51

hypergraph H(x) defined on ([r] \ x1)× ([r] \ x2)× · · · × ([r] \ xn). We add a r − 1 vector set
as edge of H(x) if and only if it has at most two coordinates where there are missing elements
i.e. all the [r] \ xi occur in all but two coordinates i, and in these two coordinates, at least r − 2

values occur. Note that H(x) is isomorphic to Hn(r − 1, 2).

We can view f : [2q+1]n → [q] as a q-rainbow coloring of H(x). If f is not a valid q-rainbow
coloring of H(x), by the same argument as in Lemma 45, we can deduce that S(f, x) ≤ 2. If f is
a valid coloring of H(x), we will use the properties proved in Lemma 45. Let us define a function
g : [r]n → [n] ∪ {⊥} such that for a vector x ∈ [r]n,

1. If f is a valid q-rainbow coloring of H(x), then Lemma 45 implies that there exists a
coordinate i ∈ [n] such that f is a dictator in ith coordinate in H(x). In this case, set
g(x) = i.

2. If f is not a valid q-rainbow coloring of H(x), let g(x) = ⊥.

First, we will prove that there exists an index i ∈ [n] such that g(x) ∈ {i,⊥} for all x ∈
[r]n. Suppose g(x) = i ∈ [n], and g(y) = j ∈ [n] where x, y ∈ [r]n and i ̸= j. Since
g(x) = i, there exist sets S1, S2, · · · , Sn ⊆ [r] such that f is a dictator on ith coordinate in
S = S1 × S2 × · · · × Sn ⊆ [r]n. In particular, there is a subset A ⊆ Si such that |A| = 2, and
f(x), x ∈ S, is equal to 1 if and only if xi ∈ A. Similarly, there exist sets T1, T2, · · · , Tn ⊆ [r]

such that f is a dictator on jth coordinate in T = T1 × T2 × · · · × Tn ⊆ [r]n. There exists a
subset B ⊆ Tj such that |B| = 2, and f(x), x ∈ T is equal to c ̸= 1 if and only if xj ∈ B for
some c ∈ [q]. Combining the both, let Ui = Si ∩ Ti, |Ui| ≥ r − 2 ∀ i ∈ [n]. We can deduce that
f is a dictator in both i and j coordinates in U = U1 × U2 × · · · × Un. This implies that f is a
constant function in U . Recall that there are two assignments in Si that make f equal to 1 and
two assignments in Tj that make f equal to c ̸= 1. Thus, f(x′) is equal to 1 for some x′ ∈ U and
f(y′) = c ̸= 1 for some y′ ∈ U . This contradicts the fact that f is a constant function in U . Thus,
there exists an index i ∈ [n] such that g(x) is either equal to i or is equal to ⊥ for all x ∈ [r]n.
Without loss of generality let that be the first coordinate i.e. for all x ∈ [r]n, g(x) ∈ {1,⊥}.

Consider the case when g(x) = ⊥ for every x ∈ [r]n. In this case, we know that S(f, x) ≤ 2

for all x ∈ [r]n. In particular, we can set α arbitrary and say that S(f, x) ≤ 2 whenever x1 = α.
So we are only left with the case when there exists a x ∈ [r]n such that g(x) = 1. We will now
prove that there exists α ∈ [r] such that g(x) = ⊥ whenever x1 = α, thus proving the required
sensitivity bound.

Suppose for contradiction that for every α ∈ [r], there exists x ∈ [r]n such that x1 = α, and
g(x) = 1. Consider a pair u, v ∈ [r]n such that u1 = α, v1 = β ̸= α and g(u) = g(v) = 1. Let
u = (u1, u2, · · · , un), Si = [r] \ ui and f is dictator on 1st coordinate in S = S1× S2× · · · × Sn.
There is a function h1 : S1 → [q] such that f(x) = h1(x1) if x ∈ S and |h−1

1 (c)| = 2 ∀c ∈ [q].
Similarly, let v = (v1, v2, · · · , vn), Ti = [r] \ vi and f is dictator on first coordinate in T =

T1 × T2 × · · · × Tn. There is a function h2 : T1 → [q] such that f(x) = h2(x1) if x ∈ T and
|h−1

2 (c)| = 2 ∀c ∈ [q]. Let Ui = Si ∩ Ti. Note that U = U1 × U2 × · · ·Un is non empty and f
is dictator on 1st coordinate in U as well. Note that |Ui| ≥ r − 2 for all i ∈ [n]. Thus, we can
conclude that if γ ∈ U1, then h1(γ) = h2(γ).

52

Applying this to all pairs u, v such that g(u) = g(v) = 1, we can infer that there exists a
function h : [r] → [q] that satisfies the property that for all x ∈ [r]n such that g(x) = 1, let
x = (x1, x2, · · · , xn), Si = [r] \ xi, S = S1×S2× · · · ×Sn, then f(y) = h(y1) for all y ∈ S. As
r = 2q + 1 > 2q, there exists b ∈ [q] such that |h−1(b)| ≥ 3. Let γ ∈ [r] be such that h(γ) ̸= b.
From our assumption that for every α ∈ [r] there exists x ∈ [r]n such that g(x) = 1 and x1 = α,
there exists u ∈ [r]n such that u1 = γ and g(u) = 1. Now, let u = (u1, u2, · · · , un), Si = [r] \ ui,
S = S1×S2×· · ·×Sn, and we know that f(x) = h(x1) if x ∈ S, and

∣∣h−1(c)∩S1

∣∣ = 2∀c ∈ [q].
However, this contradicts the fact that h(u1) = h(γ) ̸= b, and |h−1(b)| = 3. Thus, there exists
α ∈ [r] such that g(x) = ⊥ for all x ∈ [r]n such that x1 = α.

Finally, we will use the previous hypergraph coloring properties to argue about polymorphisms
of rainbow coloring.
Lemma 47. Suppose f : [2q+1]n → [q] is an n-ary polymorphism of RAINBOW(2q+2, 2q+1, q)

i.e. f is a proper q-rainbow coloring of RHn(2q + 2, 2q + 1). Then, there exist constant C = C(q)

independent of n such that f is C-fixing.

Proof. Let r = 2q + 1. Let f : [r]n → [q] be a polymorphism of RAINBOW(2q + 2, 2q + 1, q).
We can view f as a q-rainbow coloring of Hn(r, 3) as the vertex set of RHn(r + 1, r) and of
Hn(r, 3) is equal to [r]n. If it is not a valid q-rainbow coloring, there is an edge in which not
all q colors appear. Let that edge be e = (v1, v2, · · · , vr} and c ∈ [q] be a missing color in
{f(v1), f(v2), · · · , f(vr)}. Since this edge is part of Hn(r, 3), except for 3 values of i, for all
other i, the set

(
(v1)i, (v2)i, · · · , (vr)i

)
is equal to [r]. Let the missing coordinates be the set

S = {i1, i2, i3}. Now consider an element u of [r]n such that it has missing values of e in S. From
the definition of RHn(r + 1, r), we can deduce that the set e ∪ u is an edge of RHn(r + 1, r). Since
f is a valid q-rainbow coloring of RHn(r + 1, r), f(u) is equal to c. Note that this should hold
irrespective of what values u has, in coordinates outside S. This proves that f is C-fixing with
C = 3.

On the other hand if f is a valid q-rainbow coloring of Hn(r, 3), using Lemma 46, we can
deduce that there exists an index i ∈ [n], and α ∈ [r] such that S(f, x) ≤ 2 whenever xi = α.
Now, we can consider a function g : [r]n−1 → [q] which on an input y ∈ [r]n−1, is equal to
f(x), x = y, xi ← α ∈ [r]n i.e. we first insert α in ith position to y and then apply f . Note that g
has sensitivity at most 2. From Lemma 42, we can conclude that g is C-fixing for C = 2(r−1) ·r5.
In other words, g is fixed by assigning values to a set of C indices. This implies that f is also
C ′ = C + 1-fixing since we can first assign ith index to α, then use C-fixing property of g.

5.3.3 High sensitivity polymorphism of RAINBOW(7, 6, 2)

We show that there exists a function f : [6]n → {0, 1} that is a polymorphism of RAIN-
BOW(7, 6, 2) that is not C-fixing for any constant C. We start with a dictator but add just enough
noise such that the function still remains being a polymorphism, but it is no longer C-fixing.
Let wt(x) denote the number of i ∈ [n], i > 1 such that xi = 1. Let S ⊆ [6]n denote the set of

53

x ∈ [6]n such that wt(x) > 2n
3

. Let h : [6]n → {0, 1} be noise function defined below. For a given
x ∈ [6]n, we define f(x) as follows:

1. If x /∈ S
(a) If x1 ≤ 3, f(x) = 0

(b) Else, f(x) = 1

2. Else f(x) = h(x).
A choice of noise function that works is inverting the original function: h(x) is defined as 1 if and
only if x1 ≤ 3.
Proposition 48. The function f : [6]n → {0, 1} defined above is a polymorphism of RAINBOW(7, 6, 2)

and it is not C-fixing for any C < n
3
.

Proof. Any polymorphism of RAINBOW(7, 6, 2) is a proper 2-rainbow coloring of RHn(7, 6).
Recall that rainbow coloring with two colors is the same as standard hypergraph coloring with
two colors.

Polymorphism. In any set of 7 vectors E in [6]n such that all the 6 elements occur in all
the coordinates, at most two vectors can be in S. This is because, in any set of three vectors
in S, there exists a coordinate in which all three values are equal to 1. Thus, there are vectors
x /∈ S with x1 ≤ 3 and vector y /∈ S such that y1 ≥ 3 in E, which together ensures that E is not
monochromatic.

C-fixing. Suppose that there exists a set T = {t1, t2, · · · , tm} ⊆ [n] and (α1, α2, · · · , αm) ⊆
[6]m such that f(x) = b for all x such that xi = αi for all 1 ≤ i ≤ m, for some fixed b ∈ {0, 1}.
We will prove that |T | ≥ n

3
. Suppose for contradiciton that |T | < n

3
. First, if 1 /∈ T , we can set all

coordinates outside T to be equal to β ̸= 1, and in this case f(x) = x1, which cannot be fixed if
1 /∈ T . Thus 1 ∈ T . Next, if all the coordinates outside T are all equal to 1, then f(x) is equal to
noise function, which is different from the case when the rest are equal to β ̸= 1. Thus, if f is
indeed a C-fixing function, for the C-fixing assignment, the value of f should be independent
of the assignment to the coordinates outside T . However, that is not the case as the value of f
changes when we set all the coordinates outside T to be 1 or β ̸= 1.

5.4 NP-Hardness

In this section, we will use the properties of polymorphisms proved so far to argue about NP
hardness of rainbow coloring PCSP. We will prove the below theorem:
Theorem 49. Suppose that there exists a constant C such that for all integers n ≥ 1, every n-ary
polymorphism of RAINBOW(k, k − 1, q) is C-fixing. Then, the corresponding decision problem
RAINBOW(k, k − 1, q) is NP hard.

Before delving into the proof of Theorem 49, we first mention that this theorem together
with Lemma 47 implies Theorem 35. In Lemma 47, we have proved that for every q ≥ 2, the poly-
morphisms of RAINBOW(2q + 2, 2q + 1, q) are C-fixing. This fact combined with Theorem 49

54

implies that RAINBOW(2q + 2, 2q + 1, q) is NP hard for every q ≥ 2. This already proves The-
orem 35 when k is even. In order to prove when k is odd, note that we can use Lemma 45
in Lemma 47 to prove that the polymorphisms of RAINBOW(2q + 1, 2q, q) are C-fixing. We can
combine this with Theorem 49 to prove Theorem 35 when k is odd.

The rest of this section is dedicated to proving Theorem 49. Like various other hardness of
approximation results, we will use the standard label cover with long code framework. We reduce
smooth label cover introduced in [Kho02a] to rainbow coloring PCSP.

First we formally define the gap Label Cover problem below:
Definition 50. ((1, ϵLC) Gap Label Cover) In (1, ϵLC) Gap Label Cover, we are given a Label
Cover instance (G = (L,R,E),Σ,Π), and the goal is to distinguish between the following two
cases:

1. There is a labelling σ : G→ Σ that satisfies all the constraints.
2. No labelling can satisfy ϵLC fraction of constraints.
As mentioned earlier, we need stronger properties of the Label Cover instance that we are

starting with. One such property is smoothness.
Definition 51. (Smoothness) A Label Cover instance (G = (L,R,E),Σ,Π) is said to be (J, ϵ)−
smooth if for any vertex u ∈ L and a set of labels S ⊆ Σ, |S| ≤ J , over a uniformly random
neighbor v ∈ R, Pr(

∣∣⋃
s∈S Πu,v(s)

∣∣ < |S|) ≤ ϵ.
The following is an easier version of Theorem 1.17 in [Wen13].

Theorem 52. For every ϵ, ϵLC > 0 and J ∈ Z+, there exists n = n(ϵ, ϵLC , J) such that (1, ϵLC)
Gap Label Cover with Label size n that is promised to be (J, ϵ)-smooth is NP hard.

Reduction. We start with (1, ϵLC) Gap Label Cover instance (G = (L,R,E),Σ,Π) that is
promised to be (C, ϵ)-smooth, for ϵ and ϵLC to be set later, and output a PCSP instance. Let n
denote the label size n = |Σ|. For each vertex v ∈ L ∪ R, we add a set of nodes Kv of size
[k − 1]n, indexed by n length vectors. We add two types of constraints:

1. Coloring constraints: Inside every vertex of the Label Cover instance, we add the following
constraints among the [k−1]n nodes. We add the constraint that the promise relation should
be satisfied in the set T of k nodes {u1,u2, · · · ,uk} in [k − 1]n, if for every i ∈ [n], the set
{
⋃

j(uj)i} has cardinality k − 1.

2. Equality constraints: For every constraint Πe : u→ v of the Label Cover, we add a set of
equality constraints between nodes u ∈ Ku, v ∈ Kv if for all i ∈ [n], ui = vΠe(i).

Note that the Coloring constraints give rise to rainbow colorings of k uniform hypergraphs. It is yet
unclear how we can justify adding equality constraints. One way to handle the equality constraints
is to have a single node for all the vertices corresponding to equality constraint. However, this
fails if we want to add a coloring constraint that involves two copies of the same vertex. A neater
way to get around this is to argue that adding equality constraints does not change the set of
polymorphisms, and thus the hardness of the predicate remains same with or without equality
constraints. This simple fact is proved in Section 5.6.

Completeness. If the label cover instance is satisfiable, then PCSP instance that is being output
can be satisfied by assignment from [k − 1]. Suppose σ : L ∪R→ Σ is a labelling that satisfies

55

all the constraints of the Label Cover. For every vertex u ∈ Ku corresponding to the vertex
u ∈ L ∪R, we can assign the value uσ(u). In other words, in every long code, we are assigning
corresponding dictator function. The coloring constraints are defined precisely such that this
assignment satisfies the constraints. The equality constraints also follows since the labelling σ
satisfies all the constraints of the Label Cover.

Soundness. If the Label Cover is not ϵLC satisfiable, we need to show that there is no assignment
of the PCSP instance in [q] that satisfies all the constraints. Taking contrapositive, if there is
an assignment in [q] to PCSP instance that satisfies all the constraints, then we will prove that
there is an assignment to the Label Cover instance that can satisfy c fraction of constraints, for an
absolute constant c. Taking ϵLC < c, we can arrive at a contradiction, thus proving that there is no
assignment in [q] to PCSP that satisfies all the constraints.

Let fv : [k − 1]n → [q] denote the assignment to the PCSP instance that satisfies all the
constraints for v ∈ L ∪ R. From the coloring constraints, we can infer that fv is a n-ary
polymorphism of RAINBOW(k, k−1, q). Thus, it is C-fixing for a constant C independent of n.

For every vertex v ∈ L ∪R of the Label Cover instance, we will assign a set of labels A(v).
For vertices v in L, A(v) is the C-fixing set. Since the Label Cover instance is smooth, we
will only consider the constraints where all these labels go to distinct labels on the right under
projections. We can set the smoothness parameter ϵ to be 0.1 for example, and we will be left
with 9

10
fraction of original constraints. We will prove that there is an assignment that satisfies c

fraction of these constraints, for an absolute constant c, which will prove the original soundness
claim. Thus in all the remaining constraints, the set of labels in A(v) go to distinct labels on the
right. Thus, for a vertex v ∈ R, each constraint (u, v) gives rise to C coordinates Πu,v(A(u)).
For these vertices, we set A(v) to be the set of maximal disjoint sets of such a projections of C
coordinates.

In order to prove that there is a good labelling to the Label Cover, we assign a label to every
vertex v from A(v) uniformly at random and prove that it satisfies constant fraction of constraints
with non-zero probability. We will in fact show that the random assignment satisfies a constant
fraction of constraints in expectation. We prove this in two steps. First, we show that for every
constraint (u, v) of the Label Cover, there exists x ∈ A(u), y ∈ A(v) such that Πu,v(x) = y. This
follows from the definitions of A(v) : suppose the projection of A(u) is disjoint from A(v). In
that case, we can add the projection of A(u) to A(v) to get a larger set in v, which contradicts the
fact that A(v) is the maximal such union of disjoint projections. This implies that the uniformly
random labelling satisfies each constraint (u, v) of Label Cover with probability at least 1

|A(u)||A(v)| .

To complete the proof, we need to bound the sizes of A(v). As we have already mentioned,
for v ∈ L, |A(v)| ≤ C. We bound the size of A(v) for vertices v in R using the below lemma.
Lemma 53. Suppose f : [k − 1]n → q is a polymorphism of RAINBOW(k, k − 1, q). Let
A1, A2, · · · , At be mutually disjoint subsets of [n] such that each of them is a C-fixing set of f .
Then, t < k.

56

Proof. First note that all the Ais should fix f to the same value in [q] since otherwise, the vector
u ∈ [k − 1]n that has all the fixing sets in Ais is forced to be equal to multiple colors in [q] at the
same time. Let all the Ais be C-fixing with respect to value b ∈ [q] i.e. for each i ∈ [t], there
exists an assignment to Ai such that if the value of x in Ai is equal to the assignment, then the
value of f(x) is equal to b irrespective of values of coordinates outside Ai. If t ≥ k, we can find
u1,u2, · · · uk such that all [k − 1] occur in every coordinate, and ui has the fixing assignment
of Ai. This implies that f(ui) = b for all i. However, note that {u1,u2, · · · ,uk} is an edge of
RHn(k, k − 1), and thus if f is a polymorphism of RAINBOW(k, k − 1, q), all the [q] elements
should occur in {f(u1), f(u2), · · · , f(uk)}. This is a contradiction since for all i, f(ui) = b.

From the lemma, we can infer that the cardinality ofA(v) for v ∈ R is at most kC. Combining
this with the above, we can deduce that there is an assignment that satisfies 1

kC2 fraction of
constraints, which is a constant fraction of constraints, independent of n.

5.5 Application: Vector Bin Covering

5.5.1 Problem overview

In the Bin Covering problem, the input is a set of n items with size a1, a2, . . . , an. The objective is
to partition them into a maximum number of parts such that in each part, the sum of the items is at
least 1. The problem is a classic NP-Hard problem and admits a Polynomial Time Approximation
Scheme(PTAS) [CJK01]. Vector Bin Covering is a multidimensional variant of Bin Covering.
In this problem, the input is a set of n vectors in [0, 1]d. The objective is to partition these into
the maximum number of parts such that in each part, the sum of vectors is at least 1 in every
coordinate.
Definition 54. (Vector Bin Covering) In the Vector Bin Covering problem, we are given n vectors
v1, v2, . . . , vn ∈ [0, 1]d. The goal is to partition the input vectors into maximum number of parts
A1, A2, . . . , Am such that ∑

j∈Ai

vj ≥ 1d ∀i ∈ [m]

The problem is also referred to as “dual Vector Packing” in the literature. It is introduced by
Alon et al. [Alo+98] who gave a O(log d) factor approximation algorithm. They also gave a d
factor algorithm using a method from the area of compact vector approximation that outperforms
the above algorithm for small values of d. On the hardness front, Ray [Ray21] showed that the
2-dimensional Vector Bin Covering problem is hard to approximate within a factor of 998

997
.

We show Ω
(

log d
log log d

)
hardness, almost matching the O(log d) factor algorithm [Alo+98].

Theorem 55. d-dimensional Vector Bin Covering is NP-hard to approximate within Ω
(

log d
log log d

)
factor.

57

5.5.2 Hardness of Vector Bin Covering via Rainbow Coloring
Our hard instances for Vector Bin Covering are when the vectors are from {0, 1}d. In this setting,
the Vector Bin Covering problem is closely related to the hypergraph rainbow coloring problem.

We now give a simple reduction from approximate rainbow coloring to Vector Bin Covering.
Lemma 56. Given a hypergraph H = (V,E) and a parameter k, there is a polynomial time
reduction that outputs a Vector Bin Covering instance v1, v2, . . . , vn ∈ {0, 1}d with n = |V |, d =

|E| such that
1. (Completeness.) If H is k-rainbow colorable, there is a partition of [n] into k parts
A1, A2, . . . , Ak such that ∑

j∈Ai

vj ≥ 1d ∀i ∈ [k]

2. (Soundness.) If H is not 2-colorable, there is no partition of [n] into A1, A2 such that∑
j∈Ai

vj ≥ 1d ∀i ∈ [2]

Proof. Let n = |V |, d = |E|. We order the edges E as E = {e1, e2, . . . , ed}. We output a set of
vectors V = {v1, v2, . . . , vn} where each vi ∈ {0, 1}d is defined as follows:

(vi)j =

{
1 if i ∈ ej
0 otherwise.

We analyze this reduction:

1. (Completeness.) Suppose that the hypergraph H has a rainbow coloring with k colors
f : V → [k]. We partition [n] into k parts A1, A2, . . . , Ak such that

Ai = {j ∈ [n] : f(j) = i}

Consider an arbitrary integer i ∈ [k]. Note that for every edge e in H , e ∩ Ai ̸= ϕ. Thus,∑
j∈Ai

vj ≥ 1d

2. (Soundness.) Suppose that the hypergraph H has no proper coloring with 2 colors. Then,
we claim that there is no partition of [n] into two parts A1, A2 such that∑

j∈Ai

vj ≥ 1d ∀i ∈ [2]

Suppose for contradiction that there exists A1, A2 with the above property. Consider the
coloring of the hypergraph f : V → [2] as

f(v) =

{
1 if v ∈ A1

2 if v ∈ A2

58

Consider an arbitrary edge el, l ∈ [d] of the hypergraph H . As
∑

j∈Ai
(vj)l ≥ 1 for all

i ∈ [2], there exist v1, v2 ∈ el such that v1 ∈ A1, v2 ∈ A2. Thus, the coloring f is a proper 2
coloring of the hypergraph H , a contradiction.

We combine this reduction with the hardness of approximate rainbow coloring to prove the
hardness of Vector Bin Covering, namely Theorem 55. Note that the dimension of the resulting
vectors in the Vector Bin Covering instance V is equal to the number of edges m = |E| of the
hypergraph H , and the gap in the optimal Bin Covering value of V is equal to k, the number of
colors. Hence, to obtain better inapproximability results for Vector Bin Covering that grow with d,
our goal is to show the hardness of approximate rainbow coloring on hypergraphs with m edges
where the number of colors k is as large a function of m as possible. Towards this, we prove that
it is NP-hard to 2-color a hypergraph with m edges that is promised to be rainbow colorable with
k = Ω

(
logm

log logm

)
colors.

Theorem 57. Given a hypergraph H with m edges, it is NP-hard to distinguish between the
following:

1. (Completeness) H is k-rainbow colorable.
2. (Soundness) H is not 2-colorable.

where k = Ω
(

logm
log logm

)
.

We defer the proof of Theorem 57 to Section 5.5.3.

We now prove the hardness of Vector Bin Covering using Theorem 57.

Proof of Theorem 55. Using Theorem 57 combined with the reduction in Lemma 56, we get that
the following problem is NP-hard. Given a set of n vectors v1, v2, . . . , vn ∈ {0, 1}d, distinguish
between

1. V can be partitioned into k = Ω
(

log d
log log d

)
parts such that in each part, the sum of vectors is

at least 1 in every coordinate.
2. V cannot be partitioned into 2 parts such that in each part, the sum of vectors is at least 1

in every coordinate. In other words, the maximum number of parts into which V can be
partitioned such that in each part, the sum of vectors is at least 1 in every coordinate is equal
to 1.

Thus, it is NP-hard to approximate d-dimensional Vector Bin Covering within k = Ω
(

log d
log log d

)
.

5.5.3 Proof of Theorem 57

Our proof follows the same lines as that of Theorem 49. We present the full proof here for the
sake of completeness.

We first need a slightly different notion of C-fixing for C = 1.

59

Definition 58. (1-fixing [BG16; GS20b]) A function f : [k]n → {0, 1} is said to be 1-fixing if
there exists an index ℓ ∈ [n] and values α, β ∈ [k] such that

f(x) = 0 ∀x : xℓ = α and f(x) = 1∀x : xℓ = β

In the analysis of our reduction later, we need a definition and a lemma from [ABP20].
Definition 59. (The hypergraph Hn

r [k]) The hypergraph Hn
r [k] = (V,E) is a k-uniform hyper-

graph with vertex set as the set of n-dimensional vectors over [k] i.e. V = [k]n. A set of k vectors
v1, v2, . . . , vk form an edge of the hypergraph if

n∑
i=1

∣∣[k] \ {vji : j ∈ [k]}
∣∣ ≤ r

Lemma 60. For every k ≥ 2, the hypergraph Hn
⌊ k
2
⌋[k] is not 2-colorable.

We analyze the polymorphisms of the underlying PCSP used in our reduction.
Lemma 61. Fix k ≥ 3. Suppose f : [k]n → {0, 1} satisfies the below two-coloring property: For
every 2k vectors v1, v2, . . . , v2k ∈ [k]n with

{vji : j ∈ [2k]} = [k]∀i ∈ [n],

we have
{f(vj) : j ∈ [2k]} = {0, 1}.

Then, f is 1-fixing.

Proof. We first prove that there exist ℓ ∈ [n], α ∈ [k], b ∈ {0, 1} such that f(x) = b for all
x ∈ [k]n with xℓ = α. Suppose for contradiction that this is not the case. Then, for every
i ∈ [n], j ∈ [k] there exist vectors xi,j, yi,j ∈ [k]n such that xi,j

i = yi,j
i = j, and f(xi,j) = 0 where

as f(yi,j) = 1.
Let r = ⌊k

2
⌋. We view f : [k]n → {0, 1} as an assignment of two colors to the vertices of the

hypergraph Hn
r [k]. As the hypergraph is not two colorable (Lemma 60), we can infer that there is

an edge of Hn
r [k] all of whose vertices are assigned the same color. In other words, there exist

k vectors v1, v2, . . . , vk ∈ [k]n and b ∈ {0, 1} such that f(vj) = b for all j ∈ [k]. Furthermore,
there are at most r missing values in these vectors i.e.

n∑
i=1

∣∣[k] \ {vj
i : j ∈ [k]}

∣∣ ≤ r

Now, we pick r vectors u1,u2, . . . ,ur (with repetitions if needed) by filling the missing values
using xi,j, yi,j vectors such that

1. f(uj) = b for all j ∈ [r].
2. For every i ∈ [n],

{vj
i : j ∈ [k]} ∪ {uj

i : j ∈ [r]} = [k]

60

By taking the union of {v1, v2, . . . , vk} and {u1,u2, . . . ,ur}, and repeating some vectors, we
obtain 2k vectors w1,w2, . . . ,w2k with f(wj) = b for all j ∈ [2k], and

{wj
i : j ∈ [2k]} = [k] ∀i ∈ [n]

However, this contradicts the two-coloring property of f . Thus, there exist ℓ ∈ [n], α ∈ [k], b ∈
{0, 1} such that f(x) = b for all x ∈ [k]n with xℓ = α.

We now claim that there exists β ∈ [k] such that f(x) = 1− b for all x ∈ [k]n with xℓ = β.
Suppose for contradiction that this is not the case. Then, there exist k vectors v1, v2, . . . , vk such
that vj

ℓ = j for all j ∈ [k], and f(vj) = b for all j ∈ [k]. We now pick vk+1, vk+2, . . . , v2k ∈ [k]n

such that vj
ℓ = α for all j ∈ {k + 1, k + 2, . . . , 2k}, and vj

i = j − k for all i ∈ [n] with i ̸= ℓ, and
j ∈ {k + 1, k + 2, . . . , 2k}. These 2k vectors v1, v2, . . . , v2k satisfy

1. f(vj) = b for all j ∈ [2k].
2. For every i ∈ [n],

{vj
i : j ∈ [2k]} = [k]

contradicting the two-coloring property of f . Thus, there exists β ∈ [k] such that f(x) = 1− b
for all x ∈ [k]n with xℓ = β, completing the proof that f is 1-fixing.

We are now ready to prove Theorem 57. Our hardness result is obtained using a reduction
from the Label Cover problem, similar to Theorem 49.

Reduction. We start with the Label Cover instance G = (V = L ∪ R), E,Σ = ΣL = ΣR,Π)

from Theorem 128 and output a hypergraph H = (V ′, E ′). Let n denote the label size n = |Σ|.
For each vertex v ∈ L∪R, we have a long code containing a set of nodes Kv of size [k]n, indexed
by n length vectors.

1. The vertex set of the hypergraph V ′ is the union of all the long code nodes.

V ′ =
⋃
v∈V

Kv

2. Edges of the hypergraph: For every vertex v ∈ V of the Label Cover instance, we add an
edge in E ′ for each set of 2k vectors {v1, v2, . . . , v2k} in Kv, if

{vj
i : j ∈ [2k]} = [k]∀i ∈ [n]. (5.4)

The number of edges in H is at most

|E ′| ≤ |V |
(
k|Σ|

2k

)
≤ |V |kO(k)

3. Equality constraints: For every constraint Πe : u → v of the Label Cover, we add a set
of equality constraints between nodes x ∈ Ku, y ∈ Kv if for all i ∈ [n], xi = yΠe(i). By
adding an equality constraint between two nodes, we identify the two nodes together and
treat it as a single node. That is, we compute the connected components of the equality

61

constraints graph and identify a single master node for each component. We then obtain a
multi-hypergraph H1 from H by replacing each node with the corresponding master node.
However, a vertex could appear multiple times in an edge inH1. We delete such occurrences
from H1 by setting each edge to be a simple set of the vertices contained in it, and obtain
the final hypergraph H2. We note the following:

(a) There exists a k-rainbow coloring of H , f : V ′ → [k] that respects the equality
constraints i.e. f(x) = f(y) for all pairs of nodes x, y with equality constraints
between them if and only if H2 is k-rainbow colorable.

(b) Similarly, there exists a 2-coloring of H that respects equality constraints if and only
if H2 is 2-colorable.

Finally, the number of edges in H2 is at most the number of edges in H .

Completeness. Suppose that there is a labeling σ : V → Σ that satisfies all the constraints. We
define the coloring f : V ′ → [k] of H as follows. For every node x ∈ Kv, we set the dictatorship
function

f(x) = xσ(v)

By the constraints added in Equation (5.4), the function f is a valid k-rainbow coloring ofH . As σ
satisfies all the constraints of the Label Cover, the coloring f satisfies all the equality constraints.

Soundness. Suppose that there is no labeling σ : V → Σ that satisfies all the constraints in
G. Then we claim that there is no 2-coloring of H that respects all the equality constraints.
Suppose for contradiction that there is a 2-coloring f : V ′ → {0, 1} that respects all the equality
constraints.

Consider a vertex v ∈ V . The function fv : [k]n → {0, 1}, defined as f on Kv satisfies
the conditions in Lemma 61. Thus, fv is 1-fixing for every v ∈ V . Hence, there is a function
L : V → Σ such that for every v ∈ V , fv is 1-fixing on the coordinate L(v). We now claim that
the labeling σ : V → Σ defined as σ(v) = L(v) satisfies all the constraints in G.

Consider an edge e = (u, v), u ∈ L, v ∈ R with the projection constraint Πe : Σ→ Σ. Our
goal is to show that Πe(L(u)) = L(v). Suppose for contradiction that Πe(L(u)) ̸= L(v). By the
1-fixing property of fu, we have αu, βu ∈ [k] such that

fu(x) = 0 ∀x ∈ [k]n : xL(u) = αu and fu(x) = 1∀x ∈ [k]n : xL(u) = βu

Similarly, we have αv, βv ∈ [k] such that

fv(y) = 0 ∀y ∈ [k]n : yL(v) = αv and fv(y) = 1 ∀y ∈ [k]n : yL(v) = βv

By the equality constraints, fu(x) = fv(y) for all x, y ∈ [k]n such that xi = yΠe(i) ∀i ∈ [n]. Let
y′ ∈ [k]n be an arbitrary vector with y′

Πe(L(u))
= αu, y′

L(v) = βv. We choose x′ ∈ [k]n such that
for all i ∈ [n], x′

i = y′
Πe(i)

. Note that x′
L(u) = αu. Thus, fu(x′) = 0 where as fv(y′) = 1. However,

this contradicts the equality constraints.

62

5.6 Adding equality constraints
We will prove that adding equality relation structure does not affect the polymorphisms. By
equality relation structure, we mean (=,=) := (A ⊆ [q1]

2, B ⊆ [q2]
2) where q1 ≤ q2 and

A = {(x, x) : x ∈ [q1]}, B = {(y, y) : y ∈ [q2]}.
Lemma 62. Suppose P = (A1, B1), (A2, B2), · · · , (Am, Bm) is a PCSP template. Let the
template Q be obtained by adding relational structure (A′, B′) := (=,=) to P . Then, under log
space reductions, P is equivalent to Q.

Proof. We will show that P and Q have identical set of polymorphisms. Note that as Q con-
tains all the relations structures in P , polymorphisms of Q are a subset of P . We claim that
the reverse direction also holds because every function is a polymorphism of (=,=). Con-
sider a polymorphism f : [q1]

n → [q2] be an n-ary polymorphism of P . Consider n vectors
v1, v2, · · · , vn such that for all i ∈ [n],

(
(vi)1, (vi)2

)
∈ A′. Note that this implies that for all

i, (vi)1 = (vi)2. Consider the tuple
(
f((v1)1, (v2)1, · · · , (vn)1), f((v1)2, (v2)2, · · · , (vn)2)

)
=(

f((v1)1, (v2)1, · · · , (vn)1), f((v1)1, (v2)1, · · · , (vn)1)
)
∈ B′. Thus, f is a polymorphism of

(=,=) as well which implies that f is a polymorphism of Q. It has already been shown [Pip02b;
BG21b; Bar+21] that if polymorphisms of a PCSP P are a subset of polymorphisms of Q, then Q
is log space reducible to P . Thus, P and Q are equivalent under log space reductions.

63

64

Chapter 6

Robust Algorithms and SDPs for Promise
CSPs

6.1 Introduction

Horn-SAT and 2-SAT are Boolean constraint satisfaction problems (CSPs) that admit simple
combinatorial algorithms for satisfiability. They are both examples of bounded width CSPs, which
means that the existence of locally consistent assignments (which satisfy all local constraints
involving some bounded number of variables, and which are consistent on the intersections)
implies the existence of a global satisfying assignment.1

While the simple local propagation algorithms for Horn-SAT and 2-SAT work when the
instance is perfectly satisfiable, they are not robust to errors—if the given instance is almost
satisfiable, i.e., (1 − ϵ)-satisfiable for ϵ → 0, the local consistency based algorithms do not
guarantee solutions that satisfy almost all the constraints. In a beautiful work, Zwick [Zwi98]
initiated the study of finding “robust” algorithms for Constraint Satisfaction Problems (CSPs),
namely algorithms that output solutions satisfying 1 − f(ϵ) fraction of the constraints when
the instance is guaranteed to be 1 − ϵ satisfiable, where f(ϵ) → 0 as ϵ → 0. Zwick obtained
robust algorithms for 2-SAT using SDP rounding and for Horn-SAT based on LP rounding. The
PCP theorem together with Schaefer’s reductions [Sch78] shows that Boolean CSPs that are
NP-Hard are also APX-hard with perfect completeness, which in particular means that they do not
admit robust satisfiability algorithms. The only other interesting Boolean CSP besides Horn-SAT
and 2-SAT for which satisfiability is polynomial-time decidable is Linear Equations modulo 2.
Håstad [Hås01] in his seminal work showed that even for 3-LIN (when all equations involve just
three variables), for every ϵ, δ > 0, it is NP-Hard to output a solution satisfying 1

2
+ δ fraction of

the constraints even when the instance is guaranteed to have a solution satisfying (1− ϵ) fraction
of the constraints.

Unlike Horn-SAT or 2-SAT, the satisfiability algorithm for 3-LIN is not local, and 3-LIN
does not have bounded width. Thus, for Boolean CSPs, bounded width characterizes robust

1For CSPs, this is equivalent to solvability by O(1) rounds of the Sherali Adams LP hierarchy.

65

satisfiability. For CSPs over general domains, a landmark result in the algebraic approach to CSP
due to Barto and Kozik [BK14b] showed that CSPs that are not bounded width can express linear
equations. A reduction from Håstad’s result then shows that CSPs that are not bounded width do
not admit robust algorithms. Guruswami and Zhou [GZ12] conjectured the converse—namely
that all bounded width CSPs, over any domain, admit robust algorithms. Another work by Barto
and Kozik [BK16] resolved this conjecture in the affirmative, thus giving a full characterization of
CSPs that have robust algorithms.

In this work, we study robust algorithms for PCSPs. Broadly speaking, the study of PCSPs has
been on two fronts: First, understanding which PCSPs can be solved in polynomial time, motivated
by questions such as approximate graph coloring and (2 + ϵ)-SAT. Second, understanding the
power of various algorithms for PCSPs. We initiate the study of robust algorithms for PCSPs
motivated by both these directions. On one hand, robust algorithms are important on their own,
understanding whether there are algorithms that work even with a small noise in the input. On the
other hand, robust algorithms are equivalent to bounded width, O(1) levels of Sherali Adams, and
solvability by basic SDP for CSPs. The question of whether the same holds for PCSPs as well is a
way to understand the power of these algorithmic tools themselves.

As is the case with CSPs, a natural approach to characterize which PCSPs have robust
algorithms is via bounded width of PCSPs. However, it turns out that bounded width for PCSPs
is weaker than having robust algorithms. Concretely, Atserias and Dalmau [AD22] have proved
recently that the PCSP (1-in-3-SAT, NAE-3-SAT) does not have bounded width. As we shall
show later, this PCSP indeed has a robust algorithm. Atserias and Dalmau also proved that this
PCSP indeed can be solved by O(1) levels of Sherali-Adams, and as we shall later, it can also be
solved using the basic SDP.

Having ruled out the connection to bounded width, we study robust algorithms for PCSPs
directly via their polymorphisms. Polymorphisms are closure properties of satisfying solutions to
(Promise) CSPs. As a concrete example, consider the 2-SAT CSP: given an instance I of 2-SAT
over n variables x1, x2, . . . , xn, suppose that u, v,w are three assignments to these variables
satisfying all the constraints in I , then the assignment z that is coordinatewise Majority operation
on three bits, i.e., zi = MAJ(ui, vi, wi) for every i ∈ [n], also satisfies all the constraints in I .
This shows that the Majority function on three variables, or more generally, any odd number of
variables is a polymorphism of the 2-SAT CSP. Similarly, the Parity function on any odd number of
variables is a polymorphism of 3-LIN, whereas there are no non-trivial polymorphisms for 3-SAT.
Polymorphisms are the central objects in the Universal algebraic approach to CSPs [JCG97;
Jea98; BJK05], which has then been extended to PCSPs [BG21b; Bar+21].

At a high level, the existence of non-trivial polymorphisms implies algorithms, and vice-versa.
The key challenge is to precisely characterize which polymorphisms lead to algorithms. It is
known that the polymorphism family of a PCSP fully captures its computational complexity
i.e., if there are PCSPs Γ,Γ′ such that the polymorphism family of Γ, Pol(Γ) is contained in
Pol(Γ′), then Γ′ is formally easier than Γ, i.e., there is a gadget reduction from Γ′ to Γ. It turns
out that this gadget reduction also preserves the existence of robust algorithms. This leads to the
following questions: Which polymorphisms lead to robust algorithms for PCSPs? Can we use the

66

polymorphism characterization of robust algorithms to relate Basic SDP and robust algorithms
for PCSPs?

We make progress on these questions on two fronts: first, for Boolean symmetric2 PCSPs
where we allow negation of variables, we study which polymorphisms lead to robust algorithms,
and which Boolean symmetric PCSPs do not admit robust algorithms. Second, towards under-
standing the power of basic SDP for promise CSPs, we introduce a minionM and show that a
PCSP Γ can be solved by basic SDP if and only if there is a minion homomorphism fromM to
the minon of polymorphisms of Γ.

As is the case with CSPs, if a PCSP is NP-Hard, then it does not admit robust algorithms.
Thus, the above question is relevant only for PCSPs that can be solved in polynomial time. A large
class of PCSPs for which polynomial time solvability has been fully characterized is the Boolean
symmetric PCSPs. In [BG21b], the authors showed that for a Boolean symmetric PCSP Γ with
folding i.e., we allow negating the variables (later this restriction was removed by [Fic+19]), Γ can
be solved in polynomial time if and only if it contains at least one of Alternate-Threshold(AT),
Majority (MAJ) or Parity polymorphisms of all odd arities. While AT and MAJ are noise stable
functions, Parity is highly sensitive to noise i.e., if we perturb each input with a small probability,
the function output changes significantly. In fact, Parity having low noise sensitivity can also be
viewed as one reason why 3-LIN, despite having Parity as polymorphisms, does not admit robust
algorithms. Thus, for Boolean symmetric folded PCSPs, a natural candidate characterization of
robust algorithms is the existence of AT or MAJ polymorphisms.

On the algorithmic front, we prove that this indeed is the case, and on the hardness side,
assuming the Unique Games Conjecture [Kho02a], we show that the absence of AT of MAJ

polymorphisms implies the lack of robust algorithms.

6.1.1 Robust algorithms

Our main algorithmic result is the following.
Theorem 63. Every Boolean folded PCSP Γ that contains AT or MAJ polymorphisms of all odd
arities admits a polynomial time robust algorithm. In particular,

1. If Γ contains MAJ polymorphisms of all odd arities, then for every ϵ > 0, there exists a
polynomial time algorithm that given an instance of Γ that is promised to have a solution
satisfying 1− ϵ fraction of the constraints, outputs a solution satisfying 1− Õ(ϵ 1

3) fraction
of the constraints.3

2. If Γ contains AT polymorphisms of all odd arities, then for every ϵ > 0, there exists a
polynomial time algorithm that outputs a solution satisfying 1− O

(
log log 1

ϵ

log 1
ϵ

)
fraction of

the constraints on an instance promised to have a solution satisfying 1− ϵ fraction of the
constraints.

2A predicate P is symmetric if for every satisfying assignment (x1, . . . , xn) to P , any permutation of that
assignment also satisfies P . For a Boolean predicate whether an assignment satisfies a predicate depends only on the
Hamming weight. A PCSP is said to be symmetric if all the predicates in the template are symmetric.

3Here, Õ hides multiplicative poly logarithmic factors.

67

We obtain our robust algorithms by rounding the basic Semi Definite Programming(SDP)4

relaxation. For the Majority polymorphisms case, we use the same robust algorithm of Charikar,
Makarychev, Makarychev [CMM09] for 2-SAT, with a completely different analysis. The exact
version of 2-SAT has a simple algorithm based on rounding basic SDP: suppose that we have the
predicate x1∨x2. We find vectors v0 and v1, v2 that satisfy the basic SDP constraints. As the basic
SDP has zero error, we get that ⟨v1, v0⟩+ ⟨v2, v0⟩ ≥ 0. This gives a simple rounding algorithm:
we round xi to True if and only if ⟨vi, v0⟩ ≥ 0. This is not a robust algorithm: when there is a
weaker guarantee that ⟨v1, v0⟩+ ⟨v2, v0⟩ ≥ −ϵ, the above rounding can round both variables to
False. Zwick [Zwi98] gave the first robust algorithm for 2-SAT where he does “outward rotation”
where he rotates the vectors v with |⟨v, v0⟩| ≤ ϵ

1
3 by certain angle depending on ⟨v, v0⟩ before

using the above algorithm. [CMM09] gave an algorithm that does the update continuously
instead of a sudden jump at a fixed threshold, that gave an optimal error O(

√
ϵ). We use the same

algorithm as theirs, but the analysis is completely different as we need our analysis to be predicate
independent, and just use the existence of MAJ polymorphisms as a black box.

As a concrete example, consider the PCSP (≥ 2-in-4-SAT, 4-SAT). Here, we are given a
4-SAT instance in which there is an assignment where in at least 1− ϵ fraction of the constraints,
there are at least two literals that are set to be true. Under this promise, can we find an assignment
in polynomial time where in at least 1− f(ϵ) fraction of the constraints, at least one literal is set
to be true, for some function f with f(ϵ)→ 0 as ϵ→ 0? The analysis of [CMM09] for the 2-SAT
problem where they compute the probability of a two dimensional Gaussian with a given mean
and covariance matrix lying in the positive orthant, cannot be easily extended to 4-dimensions.
Instead, we follow a simpler analysis where we choose a single variable in the constraint carefully
and show that with high probability, it gets rounded to True, and thus the predicate is satisfied.
For a general predicate (P,Q), we pick the coordinate by first showing that there is a halfspace
separating the convex hull of P using the fact that (P,Q) contains Majority of all odd arities as
polymorphisms. While our analysis is simpler and more general than [CMM09], we only achieve
an error parameter of Õ

(
ϵ1/3
)
, similar to [Zwi98].

For the Alternating-Threshold (AT) case, we combine these ideas with a random geometric
sampling trick. As a concrete example, consider the PCSP (1-in-3-SAT, NAE-3-SAT). For the
exact case, we can solve the problem using basic SDP via hyperplane rounding: The vectors
v1, v2, v3 satisfy the property that the sum vs = v1 + v2 + v3 is along the direction of v0. Thus,
we pick a hyperplane with a normal vector r that is orthogonal to v0, and round vi to be True if
⟨vi, r⟩ > 0, and False otherwise. For the robust setting, we get that the vector vs’s component
normal to v0 is small. Using this, we design a rounding scheme that is similar to the above, with
the addition that when the vector vi’s component normal to v0 is small enough, we round it to
True or False depending on its component along v0. The final ingredient is a geometric sampling
trick where we sample the ratio of these two metrics randomly from a geometric series.

4Basic SDP(formally described in Section 6.3) is a well studied [Rag08] SDP relaxation of CSPs.

68

6.1.2 Unique Games based hardness

Unlike the algorithms part, in our hardness results, we crucially use the symmetry of the predicates.
Furthermore, we assume that the PCSP contains a single predicate pair Γ = (P,Q) that does not
admit AT or MAJ polymorphisms, and we allow constraints to use negations of variables and
unary constraints that set variables to be True or False. This is equivalent to asserting that the
associated polymorphisms are folded and idempotent.5 We show that for these Boolean symmetric
folded idempotent PCSPs without AT and MAJ polymorphisms, the basic SDP relaxation has an
integrality gap with perfect completeness, which by Raghavendra’s framework connecting SDP
gaps and Unique-Games hardness [Rag08], rules out robust satisfaction algorithms (under the
Unique Games conjecture [Kho02a]).

More formally, we state our main hardness result below.
Theorem 64. For every Boolean symmetric folded idempotent PCSP Γ = (P,Q) such that
ATL1 ,MAJL2 /∈ Pol(Γ) for some odd integers L1, L2, Γ does not admit a robust algorithm
assuming the Unique Games Conjecture.

As mentioned above, our Unique Games hardness (Theorem 64) is based on an integrality gap
for the basic SDP relaxation. Towards this end, we present a general recipe for showing integrality
gaps with respect to basic SDP for Promise CSPs via colorings of the n-dimensional unit sphere.

Consider a simple local rounding scheme for a PCSP Γ = (P,Q): for every n ≥ 1, there is
a fixed rounding function fn : Sn → {−1,+1}. We consider the basic SDP relaxation of Γ and
obtain vx ∈ Rn corresponding to every variable x. We round it to an integral solution where we
map vx to fn(vx). For this to be a valid rounding scheme, whenever a configuration of vectors
V = (v1, v2, . . . , vk) can be assigned to the variables in a constraint, the corresponding integral
values (fn(v1), fn(v2), . . . , fn(vk)) must belong to Q. Note that proving that there are no such
local rounding functions is a necessary step towards showing integrality gaps for the PCSP Γ. By
using compactness arguments, we can show that this is sufficient as well.

As a concrete example, consider the CSP P = 3-LIN: a set of three vectors v1, v2, v3 can
be assigned to a set of vertices x1, x2, x3 of a constraint by the basic SDP if the gram matrix
of these vectors is in the convex hull of the gram matrices of the satisfying assignments to P .
We refer to such a set of three vectors as a P -configuration. For the 3-LIN case, this condition
can be translated to the fact that the three vectors are pairwise orthogonal. Thus, to show that
basic SDP does not solve 3-LIN, it suffices to show that for some integer n, there is no function
f : Sn → {−1,+1} such that whenever v1, v2, v3 ∈ Sn are mutually orthogonal, then there
are odd number of +1s in (f(v1), f(v2), f(v3)). As we allow negation of variables, we also
require such a function f to be folded, i.e., f(−v) = −f(v) for every v ∈ Sn. In fact, it’s easy
to show such a coloring f does not exist: consider a set of three mutually orthogonal vectors
V = (v1, v2, v3) and their negations, V ′ = (−v1,−v2,−v3). Note that both these are a valid
P -configurations, but at least one of (f(v1), f(v2), f(v3)), (f(−v1), f(−v2), f(−v3)) must have
an even number of +1s, completing the proof that there is no such local rounding function.
This corresponds to the textbook Basic SDP integrality gap instance for 3-LIN consisting of the

5We say that a function f : {−1,+1}n → {−1,+1} is folded if f(−x) = −f(x). We say f is idempotent if
f(b, b, . . . , b) = b for every b ∈ {−1,+1}.

69

constraints {(x1, x2, x3), (x1, x2, x3)}.
We can define the P -configurations for an arbitrary PCSP Γ = (P,Q), and use this approach to

show the absence of sphere coloring “respecting” Γ, which in turn implies the required integrality
gap with respect to the basic SDP for Γ. While the P -configurations in the above proof for 3-LIN
are easy to study, in general, proving the absence of sphere coloring is challenging. For example,
consider the PCSP (P,Q) where P = {1, 5}-in-5-SAT, Q = {1, 2, 3, 4, 5}-in-5-SAT. Here, a set
of P -configurations are five unit vectors such that every two distinct vectors have inner product
equal to −1

5
. The sphere coloring problem is then to show that there exists n such that for any

folded f : Sn → {−1,+1}, there exists a set of five vectors in Sn with every pair of them having
inner product equal to −1

5
that are all colored −1.

Such problems where the goal is to find a monochromatic structure in sphere colorings are
studied under the title “sphere Ramsey theory”. In a striking result using tools from combinatorics,
linear algebra, and Banach space theory, Matoušek and Rödl [MR95] proved that every set of
affinely independent vectors V whose circumradius is smaller than 1 is sphere Ramsey—i.e., for
every r, there exists n large enough such that every r-coloring of Sn must have a monochromatic
set U that is congruent to V . This directly answers the above question regarding sphere coloring
of (P,Q) where P = {1, 5}-in-5-SAT, Q = {1, 2, 3, 4, 5}-in-5-SAT.

For an arbitrary Boolean symmetric PCSP Γ = (P,Q), to prove Theorem 64, we first reduce
the problem into a fixed number of templates using the properties of AT and MAJ polymor-
phisms [BG21b]. Then, we use the result of Matoušek and Rödl [MR95], and a connectivity
lemma for configurations to show the absence of sphere colorings for these templates, except for
Γ∗ mentioned in Theorem 64.

Our results highlight a close connection between robust algorithms for PCSPs and being
solved by the basic SDP. For a Promise CSP (P,Q), by being solved by the basic SDP, we mean
that for every instance I of a PCSP Γ has an integral solution satisfying Q if and only if the basic
SDP relaxation using P is feasible on I . In other words, we can use the basic SDP to solve the
decision version of the PCSP Γ. As our algorithms for the AT and MAJ polymorphisms are based
on rounding the basic SDP, we get that every Boolean folded PCSP that contains AT or MAJ

polymorphisms can be solved by the basic SDP. In the proof of Theorem 64, we showed that a
vast majority of Boolean symmetric folded PCSPs without AT or MAJ polymorphisms cannot be
solved by the basic SDP. This suggests a more general relation between the basic SDP and robust
algorithms for PCSPs. Informally, for both the existence of robust algorithms and being solved
by the basic SDP, the underlying requirement is the existence of polymorphism families that are
robust to noise. While our results show that this is true for the PCSPs that we study in this chapter,
we believe this is a more general phenomenon.

Conjecture 65. A PCSP Γ has a polynomial time robust algorithm if and only if Γ can be solved
by the basic SDP.

Note that if there is an integrality gap for Γ with respect to the basic SDP relaxation, then by
Raghavendra’s [Rag08] result, we get that Γ does not have a polynomial time robust algorithm,
assuming the Unique Games Conjecture. This already proves one direction of Conjecture 65.
The other direction is more interesting: can we obtain robust algorithms for PCSPs just using the

70

fact that basic SDP solves them exactly? We also remark that the conjecture is already proven
to be true for CSPs, where the existence of robust algorithms [BK16] and solvability by basic
SDP [TŽ18] are both shown to be equivalent to having bounded width.

6.1.3 Minion characterization of basic SDP

In addition to our concrete characterization of robust algorithms for a subfamily of PCSPs, we
also present a novel algebraic characterization of which PCSPs can be solved via basic SDPs.
Originally, in the study of CSPs, such algebraic characterizations were structured as follows (e.g.,
[Bul17; Zhu20]).

• “Algorithm A solves CSP(Γ), iff there is a polymorphism f ∈ Pol(Γ) with specific proper-
ties.”

A key property of the polymorphisms of a PCSP Γ is that one can take minors by identifying
coordinates. Relationships between a finite set of functions can be captured by identities, but
more advanced relationships can be captured by infinite objects known as minions.

Since the early days of PCSPs, it has been known that a single polymorphism cannot dictate
hardness (c.f., [BG21b]), and thus one must instead consider a sequence of polymorphisms (e.g.,
[Bra+20]):

• “Algorithm A solves PCSP(Γ), if and only if there is an infinite sequence of polymorphism
f1, f2, . . . ∈ Pol(Γ) with specific properties.”

However, in many cases, such a characterization is unfeasible or unwieldy. Instead a more general
characterization, first characterized by [Bar+21], captures the structure of polymorphism via a
minion (formally defined in Section 6.6).

• “Algorithm A solves PCSP(Γ), if and only if there is minion homomorphism fromMA to
Pol(Γ).”

Many recent papers [Bra+20; CŽ22a; CŽ22b] have proven such characterizations in various
contexts. Our contribution to this line of work is showing that the basic SDP can be captured by a
minion, which we callMSDP.
Theorem 66. The exact6 basic SDP solves PCSP(Γ) if and only if there is a minion homomor-
phism fromMSDP to Pol(Γ).

We note that the theorem applies equally to Boolean and non-Boolean PCSPs.
The construction of theMSDP minion is inspired by the vector interpretation of solutions

to the Basic SDP. Each object in the minion is a collection of orthogonal vectors which sum to
a reference vector v0. The minors involve adding groups of vectors together. Having a minion
homomorphism fromMSDP to Pol(Γ) implies that there are polymorphisms of Γ whose minors
behave exactly like combining orthogonal vectors.

Proving Theorem 66 has a few technical hurdles. One challenge is that SDP solutions may
require vectors of an arbitrarily large dimension. In order for these arbitrarily-large dimensional
relationships to be captured in our minion, we have that the families of vectors making upMSDP

6Here ‘exact’ means that we verify that the basic SDP is solved to exact precision, whereas poly(n) bits of
precision is the computational limit. A more thorough discussion of this technicality is in Section 6.6.

71

reside in a (countably) infinite-dimensional vector space. Similar techniques have been used in
other minion constructions [CŽ22a; CŽ22b].

Another challenge that appears specifically unique to our work is that a Basic SDP solution
gives a vector corresponding to each variable, but in order for the proof to go through additional
vectors are needed which correspond to the clauses. [The variable vectors are ”projections” of the
clause vectors.] Obtaining such clauses would typically be done via Sum-of-Squares or a related
routine, but we prove that including such vector clauses are without loss of generality. That is, for
any Basic SDP solution, it can be extended to a solution which includes clause vectors without
modifying the original Basic SDP solution. This gives us enough vector structure to prove that
the minion homomorphism corresponds to the Basic SDP solution.

Path to integrality gaps. As a direct consequence of the minion structure theorem, we can
connect sphere coloring with integrality gaps. By a result of [Bar+21], the minion homomorphism
MSDP → Pol(Γ) is equivalent to finding a satisfying assignment to a “universal” instance of
PCSP(Γ) known as a free structure. In the case that Γ is a Boolean PCSP, this free structure for
MSDP turns out an instance where every possible unit vector is a variable. The clauses correspond
to collections of vectors which satisfying the corresponding basic SDP. For the general theory
of approximation of basic SDPs, similar constructs with sphere coloring being a ‘universal’ gap
have appeared in the literature ([Bra+21]). To make the integrality gaps more self-contained, we
streamline the connection between sphere coloring and integrality gaps in Lemma 86.

Organization. We first start by introducing formal definitions and some general observations
in Section 6.2 and Section 6.3. We provide our algorithmic results (Theorem 63) in Section 6.4
and prove the hardness results (Theorem 64) in Section 6.5. Finally, we study the basic SDP
minion in Section 6.6.

6.2 Preliminaries
Notations. We use [n] to denote the set {1, 2, . . . , n}. For a k-ary relation A ⊆ [q]k, we abuse
the notation and use A both as a subset of [q]k, and also as a predicate A : [q]k → {0, 1}. For
a vector x = (x1, x2, . . . , xn) ∈ {−1,+1}n, we use hw(x) to denote the number of +1s in x,
i.e., hw(x) =

n+
∑n

i=1 xi

2
. For S ⊆ {0, 1, . . . , k}, we use Hamk S to denote {x ∈ {−1,+1}k :

hw(x) ∈ S}. We use NAEk to denote the set Hamk{1, 2, . . . , k − 1}. For vectors x, y ∈ Rn, we
use x · y and ⟨x, y⟩ interchangeably to denote

∑
i xiyi.

Boolean symmetric folded PCSPs. We restrict ourselves to Boolean symmetric folded PCSPs in
this chapter.
Definition 67 (Boolean symmetric folded PCSP). A PCSP Γ = (A1, B1), (A2, B2), . . . , (Al, Bl)

over a pair of domains D1, D2 is said to be Boolean symmetric folded if the following hold:
1. (Boolean) The domains D1 and D2 are both equal to {−1,+1}.
2. (Symmetric) All the relations are symmetric i.e., for every i ∈ [l], and x, y such that

hw(x) = hw(y), we have x ∈ Ai if and only if y ∈ Ai, and similarly, x ∈ Bi if and only if
y ∈ Bi.

72

3. (Folded) We allow negating the variables i.e., there exists i ∈ [l] such that Ai = Bi =

{(−1,+1), (+1,−1)}.
AT and MAJ polymorphisms. We extensively study Alternate-Threshold (AT) and Majority
(MAJ) polymorphisms in this chapter:

1. For an odd integer L ≥ 1 and x ∈ {−1,+1}L, we have

ATL(x) =

{
+1, if x1 − x2 + x3 − . . .+ xL > 0

−1, otherwise.

2. For an odd integer L ≥ 1 and x ∈ {−1,+1}L, we have

MAJL(x) =

{
+1, if x1 + x2 + . . .+ xL > 0

−1, otherwise.

We also use ATL(x1, x2, . . . , xL) for xi ∈ {−1,+1}k (similarly for MAJ) when applying
ATL coordinatewise. For a predicate P ⊆ {−1,+1}k, we use ATL(P) to denote the set⋃

x1,x2,...,xL∈P ATL(x1, x2, . . . , xL). We say that a AT(and resp. MAJ) is in Pol(Γ) if ATL (and
resp. MAJL) is in Pol(Γ) for every odd integer L ≥ 1. For a predicate P ⊆ {−1,+1}k, we use
OAT(P) (and similarly OMAJ(P)) to denote the set

⋃
L∈N, odd ATL(P).

Relaxations of PCSPs. We say that a PCSP Γ′ is a relaxation of another PCSP Γ if Pol(Γ) ⊆
Pol(Γ′). If Γ′ is a relaxation of Γ, then there is a gadget reduction from Γ′ to Γ. More formally, it
is referred to as a positive primitive promise reduction(ppp-reduction) from Γ′ to Γ, or equivalently,
as Γ′ is ppp-definable from Γ.
Definition 68 (ppp-definability of PCSPs([BG21b])). We say that a PCSP Γ′ = (P ′, Q′) contain-
ing a single pair of predicates of arity k is ppp-definable from a PCSP Γ over the same domain
pair if there exists a fixed constant l and a PCSP instance Ψ using Γ (we also allow identifying
variables together) over k + l variables x1, x2, . . . , xk, y1, y2, . . . , yl such that

1. If (x1, x2, . . . , xk) ∈ P ′, then there exist y1, y2, . . . , yl such that (x1, x2, . . . , xk, y1, y2, . . . , yl)
satisfies the strong constraints in Γ.

2. If there exists a satisfying assignment (z1, z2, . . . , zk+l) to the weak constraints in Γ, then
(z1, z2, . . . , zk) ∈ Q′.

More generally, we say that Γ′ is ppp-definable from Γ if every predicate pair in Γ′ is ppp-
definable from Γ. Brakensiek and Guruswami [BG21b] showed that if Γ′ is a relaxation of Γ, then
Γ′ is ppp-definable from Γ. As the ppp-reductions are polynomial time reductions, this shows that
Γ′ can be reduced to Γ in polynomial time. We show that the ppp-reductions also preserve the
existence of robust algorithms.
Lemma 69. Suppose that the PCSP Γ′ over a pair of domains D1, D2 is a relaxation of Γ over
the same domain pair i.e., Pol(Γ) ⊆ Pol(Γ′). If Γ has a polynomial time robust algorithm, then
Γ′ has a polynomial time robust algorithm as well.

Proof. As proved in [BG21b], Γ′ can be ppp-reduced to Γ. Given an instance I ′ of Γ′ over a
set of variables U , we output an instance I of Γ containing |U | original variables and a set of

73

dummy variables. For every constraint Ψ′ using (P ′, Q′) involving the variables u1, u2, . . . , uk
in I ′, we have a set of dummy variables v1, v2, . . . , vl and a set of constraints Ψ using Γ among
{u′1, u′2, . . . , u′k, v1, v2, . . . , vl} as in Definition 68. Let V ′ = U ′ ∪ V denote the set of variables
of I , where U ′ denotes the set of |U | original variables corresponding to U , and V are the set of
dummy variables. We claim that this reduction preserves robust algorithms.

1. (Completeness). Suppose that there exists an assignment χ′ : U → D1 to I ′ satisfying all
the constraints. Then, there is an assignment χ : V → D1 to the dummy variables which
together with assigning χ′ to the original variables satisfies all the constraints in I .

2. (Soundness). Suppose that there is an assignment χ : V ′ → D2 satisfying 1 − ϵ fraction
of the constraints in I . As each dummy constraint set used O(1) constraints, we get that
in at least 1−O(ϵ) constraint sets, all the constraints Ψ are satisfied. This shows that the
assignment χ restricted to U ′ satisfies 1−O(ϵ) fraction of the constraints in I ′.

Elementary properties of Gaussians. We prove a couple of elementary properties of Gaussian
distribution that we use later. First, we prove the following anti-concentration inequality for the
standard Gaussian random variable.
Proposition 70. Suppose that X ∼ N (0, 1) has the standard Gaussian distribution. Then, for
every ϵ ≥ 0,

Pr (|X| ≤ ϵ) ≤ O(ϵ).

Proof. We have

Pr (|X| ≤ ϵ) =

∫ +ϵ

−ϵ

1√
2π
e−

x2

2 dx ≤
∫ +ϵ

−ϵ

1√
2π
dx = O(ϵ).

We also state the following concentration inequality for 1-dimensional Gaussian.
Proposition 71. Suppose that X ∼ N (0, σ2) has Gaussian distribution with variance σ2. Then,
for every t ≥ 0,

Pr (X ≥ t) ≤ e−
t2

2σ2 .

6.3 General Observations

6.3.1 Basic SDP setup
For simplicity when analyzing SDP rounding, we shall use {−1, 1} as our Boolean domain. If it
helps, think of 1 as ‘True’ and −1 as ‘False.’ We shall use bold text for vectors in real space, but
non-bold text for PCSP tuples.

For x ∈ {−1, 1}k, we let vx ∈ Rk+1 be the column vector whose first coordinate is 1 and the
remaining k coordinates are x. We define the KZ vertex [KZ97] at x to be Mx := vxv

T
x . For

74

P ⊆ {−1, 1}k, we let KZ(P) denote the convex closure of {Mx : x ∈ P}. For ϵ > 0, let KZϵ(P)

denote the convex closure of KZ(P) ∪ {ϵMx : x ∈ {−1, 1}k} (that is you have ϵ error).
For an instance Φ of a PCSP Γ on n variables and m clauses, we let (Ai, Bi) be the clause type

for the ith clauses and let Si ⊆ [n] be the subset of variables to which the ith clause is applied.7

The Basic SDP:8

minimize:
m∑
i=1

ϵi

subject to: M ⪰ 0

∀i ∈ {0, 1, . . . , n},Mi,i = 1

∀i ∈ [m],M |Si×Si
∈ KZϵi(Ai).

We say that basic SDP is feasible on Φ if the above objective function is zero on Φ. We say
that the basic SDP solves the PCSP Γ if for every Φ such that the basic SDP is feasible on Φ, there
is an assignment from {−1,+1}n to the variables that satisfies all the m clauses with respect to
the weaker constraints Bis.

6.3.2 Generic RHS reduction to “not x’
Let F be a family of functions (e.g., MAJ of all odd arities). For all x ∈ {−1, 1}k, let Q\x be
shorthand for {−1, 1}k − {x}.
Claim 72. An algorithm A is a robust algorithm for InvPol(F)9 if and only if for all k ≥ 1, P ⊆
{−1, 1}k and x ∈ {−1, 1}k \OF(P), we have that A is a robust algorithm for PCSP(P,Q\x).

Proof. The “only if” direction is trivial as (P,Q\x) ∈ InvPol(F).
For the “if” direction, consider an instance and replace every clause of the form (A,B) with at

most 2k clauses of the form {(A,Q\x) : x ̸∈ B} all on the same set of variables. By assumption,
A is a 1− ϵ vs 1− f(ϵ) robust algorithm for these (A,Q\x) clauses, where f is the maximum of
the tradeoff functions for all (A,Q\x). It is easy to see that the assignment A produces is a 1− ϵ
vs 1 − 2kf(ϵ) algorithm for PCSP(A,B), which is robust as 2k depends only on the choice of
template, which is independent of ϵ.

6.4 Robust Algorithms

6.4.1 CMM is a robust algorithm for MAJ
We show that the robust algorithm of Charikar, Makarychev, and Makarychev [CMM09] for
2-SAT generalizes to every PCSP Γ that has Majority polymorphisms of all odd arities. First, we
recall the algorithm.

7Technically Si is a ”subtuple” not a subset as order matters, but how this is handled will always be obvious.
8This formulation may not make it clear why this is in fact an SDP (i.e., the dependences in ϵi is linear), but this

is the most compact way to say what is really going on.
9We define InvPol(F) to be the set of finite promise templates Γ with F ⊆ Pol(Γ).

75

1. Given an instance of Γ containing n variables, solve the basic SDP and obtain the Gram
matrix M ∈ R(n+1)×(n+1). Let µ be the 0th column of M minus the first entry. Let Σ be the
lower-right [n]× [n] submatrix of M .

2. Sample an n dimensional Gaussian ζ ∼ N (0,Σ). (Note that Σ is PSD.)

3. Set10 γ = (ϵ)
2
3 .

4. For each i ∈ [n], round as follows

xi =

{
+1 ζi ≥ −µi/γ

−1 otherwise.

We shall prove the following analysis guarantee about our algorithm.
Theorem 73. Let Γ be a PCSP such that MAJ ∈ Pol(Γ). Let Ψ be an instance of PCSP(Γ) for
which there is a basic SDP solution with a completeness of 1 − ϵ (i.e., the error value of the
SDP solution is ϵm, where m is the number of clauses). Then, the CMM algorithm above find an
‘integral’ assignment to Ψ which satisfies 1− ÕΓ(ϵ

1/3) fraction of the clauses in expectation.11

We analyze the algorithm clause by clause. Fix a clause using the predicate pair (P,Q). Let
k denote their arity i.e., P,Q ⊆ {−1,+1}k. Suppose that the basic SDP solution satisfies the
constraint with probability 1− c i.e., the local distribution is supported with (1− c) fraction of the
predicates from P . Our goal is to upper bound the probability that the rounded solution violates
the constraint Q by a function of ϵ and c. Using the fact that the expected value of c over all the
constraints is at most ϵ, we get our required robustness guarantee. More formally, we prove the
following
Lemma 74. Let (P,Q) be a clause in the instance Ψ. Presume the basic SDP gives P a value of
1− c, the probability that Q is satisfied by the CMM algorithm is

OΓ

√ϵ+
√

(γ

√
log

1

ϵ
+ 2c) log

1

ϵ
+
c

γ

 .

As the expected value of c over all the constraints is at most ϵ, and using Jensen’s, we get that
the net error probability is Õ

(
ϵ1/3
)
, proving Theorem 73. Thus, it suffices to prove Lemma 74.

By Claim 72, it suffices to find a robust algorithm for PCSP(P,Q\x) where x ̸∈ OMAJ(P).
Observe that CMM is ”sign-symmetric” in the following sense: if a variable is replaced by its

negation then the probabilities that variable are assigned ±1, exactly interchange. Furthermore,
replacing a variable with its negation in a clause (P,Q) does not change whether MAJ ∈
Pol(P,Q). Henceforth, we may assume that Q = {−1,+1}k \ {−1,−1, . . . ,−1} (i.e., x =

(−1,−1, . . . ,−1)).
Let P be the convex hull of P , where the tuples are viewed as vectors in Rk. We prove the

following property about P using the fact that the PCSP (P,Q) has Majority of all odd arities as
polymorphisms.

11We use OΓ to denote a hidden constant which depends on the specific template Γ.

76

Lemma 75. Let P ⊆ {−1,+1}k be a predicate such that (−1,−1, . . . ,−1) ̸∈ OMAJ(P). Then,
there is a hyperplane separating P from the origin: there exists w ∈ Rk, w ≥ 0 and ∥w∥1 = 1

such that for every a ∈ P , ⟨a,w⟩ ≥ 0.

Proof. Consider the following linear program,

maximize: η

subject to:
k∑

i=1

wi = 1

∀a ∈ P, η −
k∑

i=1

aiwi ≤ 0

w ≥ 0

It suffices to prove that the objective of this linear program is non-negative. To do this, we
consider the dual program on variables ν ∈ R and λa ∈ R for a ∈ P :

minimize: ν

subject to: λ ≥ 0 ∧
∑
a∈P

λa = 1 (dual of η)

∀i ∈ [k], ν −
∑
a∈P

aiλa ≥ 0 (dual of w)

As all the coefficients used in the LP are rational, we may assume that ν and λ are rational.
Assume for sake of contradiction that there is a solution to the dual LP with ν < 0. Then, we have
that for all i ∈ [k], ∑

a∈P

aiλa < 0.

Let N be the least common denominator of the λa’s. Consider the set of satisfying assignments
to P where we take 2Nλa copies of a for each a ∈ P . We also add an arbitrary element b of a
to our set. As

∑
a∈P aiλiN < 0 for every i ∈ [k], and

∑
a∈P aiλiN is an integer, we get that for

every i ∈ [k], 2
∑

a∈P aiλaN + b ≤ 0. In other words, when we apply MAJ2N+1 coordinatewise
to this set of assignments in P , we get (−1,−1, . . . ,−1). As (P,Q) contains Majority of all
odd arities as polymorphisms, this implies that the resulting output (−1,−1, . . . ,−1) is in Q, a
contradiction.

Thus, the objective η of the original LP is non-negative, completing the proof.

Now we use this lemma to complete the proof of Lemma 74. Suppose that the basic SDP
solution satisfies the constraint (P,Q) with error equal to c i.e., there is a local distribution of
{−1,+1}k that supports the vectors such that the weight of the assignments not in P is at most
c. Let K = 2k. We have probabilities p1, p2, . . . , pK corresponding to the K local assignments
a1, a2, . . . , aK ∈ {−1,+1}k where each pi ≥ 0 and

∑
i∈[K] pi = 1 such that∑

i∈[K],ai∈P

pi = 1− c

77

Using Lemma 75, we get w ∈ Rk with w ≥ 0 and ∥w∥1 = 1 such that wTai ≥ 0 for all
ai ∈ P . Combining this with the above properties of the basic SDP solution, we get the following.

1. (First moment). We have

wTµ =
∑
i∈[K]

piw
Tai

≥ −c (Using Lemma 75 and −1 ≤ wTai ≤ 1∀i ∈ [K])

2. (Second moment). We have

wTΣw =
∑
i∈K

pi(w
Tai)

2 ≤
∑

i∈K,ai∈P

pi(w
Tai)

2 + c ≤
∑

i∈K,ai∈P

piw
Tai + c ≤ wTµ+ 2c .

We do casework on the value of wTµ. First, consider the case that wTµ ≥ κ = γ
√
log 1

ϵ
. As

∥w∥1=1, and w ≥ 0, there exists i ∈ [k] such that µi ≥ κ. As ζi ∼ N (0, 1), using Proposition 71,
with probability at least 1−

√
ϵ, we have ζi ≥ −µi

γ
. Thus, with probability at least 1−

√
ϵ, the

rounded solution satisfies Q.
Henceforth, we assume wTµ < κ. For notational convenience let t = −µ/

√
ϵ. We have

wT t ≤ c

γ
(6.1)

and wTΣw ≤ κ + 2c. Note that wT ζ ∼ N (0,wTΣw). Thus, using Proposition 71, with
probability at least 1−

√
ϵ, we have that

|wT ζ| ≤ O

(√
(κ+ 2c) log

1

ϵ

)
(6.2)

Note that the rounded solution does not satisfy Q only if t ≥ ζ. We now upper bound the
probability that this can occur. Together with Equation (6.1) and Equation (6.2), t ≥ ζ implies
that

0 ≤ wT (t− ζ) ≤ O

(√
(κ+ 2c) log

1

ϵ
+
c

γ

)
.

Take some coordinate with wi ≥ 1/k and note that

ti − ζi ∈

[
0, O

(√
(κ+ 2c) log

1

ϵ
+
c

γ

)]
,

but this can only happen with probability O
(√

κ+ c log 1
ϵ
+ c√

ϵ

)
using Proposition 70. Thus, the

probability that the rounded solution does not satisfy Q is at most

O

(
√
ϵ+

√
(κ+ 2c) log

1

ϵ
+
c

γ

)
.

This completes the proof of Lemma 74 and Theorem 73.

78

6.4.2 Warm-up for AT: Oblivious LP rounding algorithm for OR

As a stepping-stone for our algorithm for AT presented in the next section, we present a robust
algorithm for the OR polymorphism. Horn-SAT is an example of a (P)CSP for which OR is
a polymorphism. A robust algorithm for Horn-SAT was found previously by Zwick [Zwi98].
(See also the matching hardness result by Guruswami and Zhou[GZ12].) We now present an
algorithm for PCSPs with the OR polymorphism achieving similar guarantees. As mentioned
earlier, besides a polymorphic generalization of the Horn-SAT robust algorithm, our motivation is
a warm-up for the algorithm for AT polymorphism in the next section.

As the OR operator is naturally over the 0/1 basis, we shall assume that the predicates
P,Q ⊆ {0, 1}k for this section.

1. Solve the basic LP and obtain the value yi for each variable i ∈ [n].

2. Let T be a geometric progression with first term 2
√
ϵ, last term 1/(2k) and spacing between

terms is at least k, where k is an upper bound on the maximum clause size of Γ.

3. Sample a uniformly random threshold t ∈ T .

4. For each i ∈ [n], round as follows

xi =

{
1 yi ≥ t

0 otherwise.

Theorem 76. Let Γ be a PCSP such that OR ∈ Pol(Γ). Let Ψ be an instance of PCSP(Γ) for
which there is a basic LP solution with a completeness of 1− ϵ. Then, with high probability our
algorithm finds an integral assignment to Ψ which satisfies 1−OΓ(1/ log(1/ϵ)) fraction of the
clauses in expectation.

Proof. Since we assume k is a constant, the size of T is OΓ(1/ log(1/ϵ)). As with the analysis
of MAJ, we fix a single clause (P,Q) and analyze that. In fact, by Markov’s inequality we may
assume that 1−

√
ϵ fraction of the clauses have value at least 1−

√
ϵ.

Since OR ∈ Pol(P,Q), we in fact have that OR ∈ Pol(Q) as well (see [BG21b]). Thus, by
Schaefer’s theorem [Sch78] CSP(Q) and thus PCSP(P,Q) can be ppp-reduced to k-Horn-SAT.
Thus, we assume we are working with k-CNF clauses with at least k − 1 variables negated.

Consider a Horn-SAT clause on variables x1, . . . , xk with value at least 1−
√
ϵ. First assume

none of the variables are negated. Then, we have that y1+y2+ · · ·+yk ≥ 1−
√
ϵ. By pigeonhole,

we must have some yi ≥ (1−
√
ϵ)/k ≥ 1/(2k). Thus, yi ≥ t for all t ∈ T . So the clause must be

satisfied.
Otherwise, without loss of generality assume that x1 is negated. Then, we have that (1− y1) +

y2+· · ·+yk ≥ 1−
√
ϵ. In particular, there exists i ∈ {2, 3, . . . , k} such that yi ≥ (y1−

√
ϵ)/(k−1).

If y1 ≤ 2
√
ϵ, then x1 = 0 with certainty. Otherwise, yi ≥ y1/(2(k − 1)), so there exists at most

one t ∈ T which would round yi to 0 but y1 to 1. Therefore, the probability the clause is satisfied
is at least 1− 1/|T | = 1− 1/ log(1/ϵ). This completes the proof.

79

6.4.3 Algorithm for AT

We now show how to combine ideas for the MAJ and OR algorithms to give an algorithm for
AT, Suppose that Pol(Γ) contains ATL for every odd integer L. We state our algorithm below.

1. Solve the basic SDP and obtain vectors v0, v1, . . . , vn ∈ Rn.

2. Sample a vector ζ ∈ Rn by choosing each coordinate independently from N (0, 1).

3. Choose δ uniformly at random from {p, rp, . . . , rκp} where p = ϵ0.24, and r = κ =

Θ
(

log 1
ϵ

log log 1
ϵ

)
such that rκp = ϵ0.20.

4. For every i ∈ [n], let vi = αiv0 + v′
i, where v′

i is orthogonal to v0. We set xi as follows.

xi =

{
−1, if ⟨ζ, v′

i⟩ ≥ δαi |⟨ζ, v0⟩| .
+1, otherwise.

We show that the above algorithm is a robust algorithm for every PCSP with AT polymor-
phisms.
Theorem 77. Let Γ be a Boolean PCSP such that AT ∈ Pol(Γ). Let Ψ be an instance of PCSP(Γ)
for which there is a basic SDP solution with completeness at least 1 − ϵ. Then, the integeral
solution output by the above algorithm satisfies at least 1−OΓ

(
log 1

ϵ

log log 1
ϵ

)
fraction of constraints

of Ψ.
Theorem 77 together with Theorem 73 completes the proof of Theorem 63.
For ease of notation, we just use O() instead of OΓ() when Γ is clear from the context.

Consider an arbitrary predicate pair {P,Q} with arity k i.e., P ⊆ Q ⊆ {−1,+1}k. As (P,Q)
contains AT of all odd arities as polymorphisms, OAT (P) ⊆ Q. Henceforth, in our analysis, we
assume that Q = OAT (P). Furthermore, by using Markov’s inequality, at least 1−

√
ϵ fraction

of the constraints have SDP error at most
√
ϵ. We restrict our analysis to these constraints with

SDP error c ≤
√
ϵ using and and show that the rounded solution satisfies the predicate Q with

probability at least 1−O
(

log log 1
ϵ

log 1
ϵ

)
.

We study the case when P and Q are symmetric in Section 6.4.3 and handle the general case
in Section 6.4.4. We use the fact that P,Q are symmetric to reduce to a special case. Note that if
Q = {−1,+1}k, we are done. Henceforth, we assume that Q ̸= {−1,+1}k. Using the properties
of symmetric PCSPs with AT polymorphisms proved by Brakensiek and Guruswami [BG21b],
we get the following:
Lemma 78. Suppose that (P,Q) is a symmetric Boolean PCSP with arity k such that ATL is
a polymorphism of (P,Q) for every odd integer L, and P ⊆ Q ⊆ {−1,+1}k, Q ̸= {−1,+1}k.
Then, either of the two following conditions hold:

1. P = Q and P ⊆ {(−1,−1, . . . ,−1), (+1,+1, . . . ,+1)}.
2. There exists l ∈ {1, 2, . . . , k−1} such that P = Hamk{l}, andQ = Hamk{1, 2, . . . , k−1}.

Proof. Using Claim 4.6 in [BG21b], if Hamk{l1, l2} ⊆ P where l1 ̸= l2, {l1, l2} ̸= {0, k}, we
get that Q = {−1,+1}k, a contradiction. Thus, either P = Hamk{l} for some l ∈ {0, 1, . . . , k}

80

or P = Hamk{0, k}. If P ⊆ Hamk{0, k}, we get that P = Q. If not, then P = Hamk{l}
for l ∈ {1, 2, . . . , k − 1}, and by the same Claim 4.6 in [BG21b], we get that Q = OAT (P) =

Hamk{1, 2, . . . , k − 1}.

We consider the case when P = Q and P ⊆ Hamk{0, k}.
Lemma 79. For every constraint (P,Q) where P = Q, P ⊆ Hamk{0, k} such that the basic SDP
has error at most

√
ϵ on a constraint using (P,Q), the above algorithm succeeds with probability

1−O
(

log log 1
ϵ

log 1
ϵ

)
.

We defer the proof of Lemma 79 to Section 6.7.
For the rest of the section, we assume that there exists l ∈ {1, 2, . . . , k − 1} such that

P = Hamk{l}, and Q = NAEk. More generally, we assume that there exist w ∈ Rk, b ∈ R
such that wi > 0∀i ∈ [k],

∑
iwi > |b|, and w · a = b for all a ∈ P . Here, for the case when

P = Hamk{l}, we can take w = (1, 1, . . . , 1) and b = 2l − k.
First, we prove some properties of the basic SDP vectors v1, v2, . . . , vk corresponding to

the variables used in the constraint. As is the case with the MAJ algorithm, we have K = 2k

probabilities p1, p2, . . . , pK corresponding to the assignments a1, a2, . . . , aK ∈ {−1,+1}k such
that ∑

i∈K,ai∈P

pi ≥ 1−
√
ϵ

We use the basic SDP properties to get the following. Let vs =
∑

i∈[k]wivi, and let vs = αv0+ v′
s,

where ⟨v0, v′
s⟩ = 0.

1. (First moments). We have

α =
∑
i∈[k]

wiαi =
∑
i∈[k]

wi⟨vi, v0⟩ =
∑
i∈[K]

piw · ai = b+ κ

where |κ| = O(
√
ϵ).

2. (Second moments). We have

∥vs∥22 =
∑
i,j∈[k]

wiwj⟨vi, vj⟩ =
∑
i∈[K]

pi(ai · w)2 = b2 + κ′

where |κ′| = O(
√
ϵ).

Thus, we get ∥v′
s∥

2
2 = ∥vs∥22 − α2 = (b2 + κ′)− (b+ κ)2 which is at most O(

√
ϵ).

We are now ready to analyze the algorithm. We consider two cases separately:

Case 1. Suppose that there exists i ∈ [k] such that ∥v′
i∥2 ≥ kδr2. We claim that in this case, the

rounded solution satisfies Q with probability at least 1−O(1
r
).

Note that ⟨ζ, v′
j⟩ ∼ N (0,

∥∥v′
j

∥∥2
2
) for every j ∈ [k]. Suppose that we have

∥∥v′
j

∥∥ ≥ δr2 for
some j ∈ [k]. Using Proposition 70, this implies that |⟨ζ, v′

j⟩| ≥ rδ with probability at least
1 − 1

r
. Furthermore, as ⟨ζ, v0⟩ ∼ N (0, 1), using Proposition 71, we get that |⟨ζ, v0⟩| ≤ r with

probability at least 1−O(ϵ). Thus, with probability at least 1−O(1
r
), xj is set to be equal to +1

if ⟨ζ, v′
j⟩ > 0, and −1 otherwise.

81

Hence, in order to show that the rounded solution satisfies Q, it suffices to show that there
exist i1, i2 ∈ [k] such that |⟨ζ, v′

i1
⟩| ≥ δr, |⟨ζ, v′

i2
⟩| ≥ δr, and ⟨ζ, v′

i1
⟩ and ⟨ζ, v′

i2
⟩ have opposite

signs. As ∥v′
i∥2 ≥ kδr2, with probability at least 1−O(1

r
), we have that |⟨ζ, v′

i⟩| ≥ kδr. Recall
that ∥v′

s∥2 ≤ ϵ0.25 ≤ δ. Thus, |⟨ζ, v′
s⟩| ≤ rδ with probability at least O(1

r
). As |⟨ζ, v′

i⟩| ≥ kδr,
there exists i′ ∈ [k], i′ ̸= i such that |⟨ζ, v′

i′⟩| ≥ kδr, and ⟨ζ, v′
i⟩ and ⟨ζ, v′

i′⟩ have opposite signs.
Thus, with probability at least 1−O(1

r
), i and i′ are rounded to different values, which implies

that the rounded solution satisfies Q.
Case 2. Suppose that for every i ∈ [k], we have ∥v′

i∥2 ≤
δ

2r2
.

As ⟨ζ, v′
i⟩ ∼ N (0, ∥v′

i∥
2
2), using Proposition 71, we get that with probability at least 1−O(1

r
),

for every i ∈ [k], |⟨ζ, v′
i⟩| ≤ δ

2r
. On the other hand, using Proposition 70, we have that |⟨ζ, v0⟩| ≥

1
r

with probability at least 1 − 1
r
. Furthermore, As α2

i + ∥v′
i∥

2
2 = 1 for every i ∈ [k], we get

that |αi| ≥ 1 − δ ≥ 1
2

for every i ∈ [k]. Thus, with probability at least 1 − O(1
r
), for every

i ∈ [k], xi is set to be +1 if αi ≤ 0, and −1 otherwise. Combining this with the fact that∑
iwiαi = b + O(

√
ϵ), and that

∑
iwi > b and

∑
iwi > −b, for small enough ϵ, we get the

rounded solution has variables assigned +1 and −1.
Completing the proof. We finish the proof by showing that with probability at least 1−O(1

r
), at

least one of the above two cases hold. None of the above two cases hold if for some i ∈ [k], we
have

δ

2r2
< ∥v′

i∥2 < kδr2

Or equivalently,
∥v′

i∥2
kr2

< δ < ∥v′
i∥2 2r

2

This holds with probability at most O(1
r
) for every value of ∥v′

i∥ as we are picking δ from
{p, rp, . . . , rκp} uniformly at random.

6.4.4 General case for AT
For a vector w ∈ Rk, define sgn(w)i to be −1 if wi ≤ 0 and +1 otherwise. Define ΓAT to be the
following family of weighted hyperplane predicates:

ΓAT := {(Pw,b := {x ∈ {−1,+1}k : w · x = b},
Qw,b := {−1,+1}k \ {sgn(w),− sgn(w)}) : b ∈ Q,w ∈ (Q \ {0})k,
w. sgn(w) > b,−w. sgn(w) < b}

We observe that these predicates indeed have AT of all odd arities as polymorphisms.
Claim 80. AT ∈ Pol(ΓAT)

Proof. Fix b ∈ Q and w ∈ (Q \ {0})k. Let (Pw,b, Qw,b) be the corresponding predicate for
these values. It sufficies to show that AT ∈ Pol(Pw,b, Qw,b). Fix an odd arity L and pick
x1, . . . , xL ∈ Pw,b. Observe that

AT(x1, . . . , xL) = sgn(x1 − x2 + · · ·+ xL).

82

Further, w · (x1 − x2 + · · · + xL) = b. This implies that sgn(x1 − x2 + · · · + xL) ̸= sgn(w) as
otherwise,

b = w · (x1 − x2 + · · ·+ xL) ≥ w · sgn(w) > b.

where we used the fact that the absolute value of each entry in x1 − x2 + . . . + xL is at least 1.
By a similar argument, sgn(x1 − x2 + · · ·+ xL) ̸= − sgn(w). Thus, AT(x1, . . . , xL) ∈ Qw,b, as
desired.

Note that our algorithm in the previous subsection gives a robust algorithm for these predicates
as well. Henceforth, we reduce arbitrary Boolean PCSPs containing AT of all odd arities to these
predicates via ppp reductions that preserve robust algorithms.

Let Γconst be the PCSP where constants can be specified. That is {({−1}, {−1}), ({+1}, {+1})}.
Theorem 81. Let Γ be any PCSP for which AT ∈ Pol(Γ). Then, there is a ppp-reduction from Γ

to ΓAT ∪ Γconst.
Note that the analysis in Section 6.4.3 shows that our algorithm is a robust algorithm for

ΓAT. Furthermore, Lemma 79 shows that our algorithm is a robust algorithm for Γconst as well.
Together with Theorem 81, we get that our algorithm is a robust algorithm for every PCSP that
contains AT of all odd arities as polymorphisms.

To prove Theorem 81, we need to use the following lemma implicit in [BG21b]. We present
the proof in Section 6.7 for the sake of completeness.
Lemma 82. Let P be a predicate such that there is non-trivial dependence in each coordinate (i.e.,
for each xi, there exist assignements with xi = −1 and xi = +1). Then, OAT(P) = {sgn(x− y) :
x, y ∈ Aff(P),∀i, xi ̸= yi}, where Aff(P) is the affine hull of P .

Proof of Theorem 81. Fix a pair of predicates (P,Q) ∈ Γ. It sufficies to show that there is a
PPP-reduction from (P,Q) to ΓAT ∪ Γconst. If P has coordinates of fixed value, we can use a
gadget reduction from Γconst to simulate these values. Thus, we assume that P has non-trivial
dependence in each coordinate, and thus we apply Lemma 82 to get that Q ⊇ OAT(P) =

{sgn(x − y) : x, y ∈ Aff(P),∀i, xi ̸= yi}. We may without loss of generality assume that
Q = {sgn(x− y) : x, y ∈ Aff(P),∀i, xi ̸= yi}.

For every x ∈ {−1,+1}k \ Q, we find w, b such that (Pw,b := {x ∈ {−1,+1}k : w · x =

b}, Qw,b := {−1,+1}k \ {sgn(w),− sgn(w)}) satisfy P ⊆ Pw,b and sgn(w) = x. By applying
this for every x ∈ {−1,+1} \Q, we get a set of predicate pairs (P1, Q1), (P2, Q2), . . . , (PL, QL)

with L ≤ 2k such that

1. P ⊆ Pi for every i ∈ [L].
2. (Pi, Qi) ∈ ΓAT for every i ∈ [L].
3.
⋂

i∈[L]Qi = Q.

This directly gives a ppp-reduction from (P,Q) to ΓAT .
Henceforth, our goal is to show that for every x ∈ {−1,+1}k \Q, we can find w, b such that

(Pw,b := {x ∈ {−1,+1}k : w · x = b} satisfies P ⊆ Pw,b, w · sgn(w) > b,w · sgn(w) > −b
and sgn(w) = x. Without loss of generality, we can assume that x = (+1,+1, . . . ,+1). Fix an
arbitrary vector x ∈ P such that x /∈ {(−1,−1, . . . ,−1), (+1,+1, . . . ,+1)}. Such a vector is

83

guaranteed to exist as P does not contain x and has non-trivial dependence on each coordinate.
Let H be a subspace of Rk defined as follows:

H := {y− x : y ∈ Aff(P)}

As x /∈ OAT (P), using Lemma 82, we get that for every z ∈ H , sgn(z) ̸= x, or in other words,
there is no z ∈ H with zi > 0 for all i ∈ [k]. Using Claim 83, we can obtain w such that w · y = 0

for all y ∈ H , and wi > 0 for all i ∈ [k]. This shows that w · y = b for every y ∈ P , where
b = w · x satisfies

∑
iwi > b,

∑
iwi > −b.

Claim 83. Let H be a subspace of Rk such that there is no y ∈ H with yi > 0 for all i. Then,
there exists w with wi > 0 for all i and w · y = 0 for all y ∈ H .

Proof. Since H and the positive orthant are both convex bodies, there exists v ∈ Rk and b ∈ R
such that for all w in the positive orthant, w · v > b and for all y ∈ H , y · v ≤ b. Taking the limit
as w → 0, we have that b ≤ 0. Further, since H is a subspace passing through the origin, we
must have that b = 0 and that y · v = 0 for all y ∈ H . Thus, v is normal to H . Note that v has all
coordinates positive as v ·w > 0 for all w in the positive orthant.

6.5 Unique Games based Hardness

In this section, we prove Theorem 64.
First, we use the analysis of AT and MAJ polymorphisms for symmetric PCSPs with folding

and idempotence in [BG21b] to show that we can relax Γ into one of five candidate PCSP types.
Lemma 84. Let Γ = (P,Q) be a Boolean symmetric folded idempotent PCSP such that
MAJL1 ,ATL2 /∈ Pol(Γ) for some odd integers L1, L2. Then, there exists a PCSP Γ′ = (P,Q)

that is a relaxation of Γ that is equal to either of the following:
1. k is even, and Γ1 = (P,Q), P = Hamk{k2}, Q = Hamk{0, 1, . . . , k} \ {b} where b ∈
{1, k − 1}.

2. k is odd, Γ2 = (P,Q), P = Hamk{l, k+1
2
}, Q = Hamk{0, 1, 2, . . . , k − 1}, where l ≤ k−1

2
.

3. Γ3 = (P,Q), P = Hamk{l, k}, Q = Hamk{1, 2, . . . , k}, where l ̸= 0, l ≤ k−1
2

.
4. Γ4 = (P,Q), P = Hamk{l}, Q = Hamk{0, 1, . . . , k}\{0, k−1} where l ∈ {1, 2, . . . , k−

1}, l ≤ k−1
2

.
5. Γ5 = (P,Q), P = Hamk{1, k}, Q = Hamk{0, 1, . . . , k}\{b} for arbitrary b ∈ {0, 1, . . . , k}.
We defer the proof of Lemma 84 to Section 6.7.
We show that the PCSPs Γ1, Γ2,Γ3,Γ4 and Γ5 do not have robust algorithms by showing

integrality gaps for the basic SDP relaxation of them. Raghavendra’s result for CSPs [Rag08]
shows that integrality gaps for the basic SDP relaxation can be translated to Unique Games
Conjecture(UGC) [Kho02a] based inapproximability results. In fact, his result is verbatim
applicable to Promise CSPs as well.

84

Theorem 85 (Special case of [Rag08] for PCSPs when the completeness value of SDP is 1).
Suppose that for a Promise CSP Γ, there is a finite integrality gap for the basic SDP i.e., there is a
finite instance I of Γ where basic SDP error is zero but I is not satisfiable by Γ, even using the
weak form of the constraints. Then, there exists a constant s < 1 that is a function of Γ, I such
that for every ϵ > 0, assuming the Unique Games Conjecture, given an instance of Γ, there is no
polynomial time algorithm to distinguish between the two cases:

1. (Completeness) There exists an assignment that satisfies 1− ϵ fraction of the strong con-
straints.

2. (Soundness) No assignment satisfies s fraction of the weak constraints.
To obtain integrality gaps for the basic SDP relaxation for a PCSP, we study colorings of

the n dimensional sphere Sn that satisfies certain properties. First, we define certain notations
that we need. For a predicate P ⊆ {−1,+1}k, we say that a set of vectors V = {v1, v2, . . . , vk}
are a P -configuration with respect to another vector v0 if the Gram matrix of v0, v1, . . . , vk is in
KZ(P). Fix a vector v0 and we say that a coloring f : Sn → {−1,+1} respects the PCSP (P,Q)

if for every P -configuration V = {v1, v2, . . . , vk} with respect to v0, we have that the colors of
the vectors satisfy Q, i.e.,

(f(v1), f(v2), . . . , f(vk)) ∈ Q

More generally, we say that a coloring f : Sn → D2 respects a PCSP Γ over a pair of domains
D1, D2 if it respects every predicate pair in Γ.

We show that the absence of such sphere coloring respecting Γ for some finite n gives an
integrality gap for basic SDP relaxation of Γ.
Lemma 86. For every PCSP Γ over a pair of domains (D1, D2), the Basic SDP solves PCSP(Γ)
if and only if for every n ≥ 1, there exists a coloring f : Sn → D2 that respects Γ.

Proof. Via a compactness12 argument (e.g., like the De Brujin-Erdos theorem [BE51], for more
details see Remark 7.13 of [Bar+21] or [CŽ22a]), we can infer that there is a coloring f : Sn → D2

respecting Γ if and only if for every finite subset S ⊆ Sn, there exists a coloring fS : S → D2

that respects Γ.
First, assume that the Basic SDP solves PCSP(Γ). For any finite subinstsance S ⊂ Sn, we

construct an instance I of Γ where we add a constraint over Pi using the variables xv1 , . . . , xvri

corresponding to the vectors V = (v1, v2, . . . , vri) if V is a Pi-configuration. We have that
xv 7→ v is a valid SDP solution. Thus, there exists an assignment to the variables that satisfies
I , or equivalently, there exists fS : S → D2 that respects the PCSP Γ. And thus, there exists a
coloring f : Sn → {−1,+1} that respects Γ.

Second, fix an integer n ≥ 1 and assume that there exists a coloring f : Sn → D2 that respects
Γ. We seek to show that the Basic SDP solves PCSP(Γ). Take an arbitrary instance I of PCSP(Γ)
such that there is a solution to Basic SDP with objective value zero. Thus, there exists a dimension
n and a mapping x 7→ vx of the variables to n-dimensional SDP vectors. By setting x to f(vx)

for each variable x, we get an assignment satisfying all the constraints in I . Thus, the Basic SDP
solves Γ.

12We assume the axiom of choice.

85

Theorem 85 together with Lemma 86 shows that if a PCSP Γ over a pair of domains (D1, D2)

does not admit a sphere coloring f : Sn → D2 that respects Γ for some positive integer n, then,
Γ does not admit a robust algorithm, assuming the Unique Games Conjecture. Thus, our goal
is to show that the PCSPs mentioned in Lemma 84 do not admit sphere coloring that respects
them. While we fail to achieve this for Γ1 and Γ4, for the rest of the PCSPs, we show the absence
of sphere coloring, which in turn implies Unique Games based hardness of obtaining robust
algorithms.

In the rest of this section, we first prove a lemma regarding sphere Ramsey theory that we will
use later. Then, we show that the earlier mentioned PCSPs do not have folded sphere coloring
respecting them, thus showing that they don’t admit robust algorithms. We remark that as we
restrict ourselves to Boolean folded PCSPs, we only study the colorings f : Sn → {−1,+1} that
are folded i.e., f(−x) = −f(x).

6.5.1 Sphere Ramsey Theory

For a finite set S ⊆ Rn+1, we use ρ(S) to denote the sphere of the smallest radius that contains S
as a subset. Matoušek and Rödl [MR95] proved the following:
Theorem 87. Let S be the set of vertices of a simplex such that ρ(S) < 1. Then, for every
positive integer r ≥ 2, there exists n0 := n0(S, r) such that for every n ≥ n0, for every partition
f : Sn → [r], there exists S ′ ⊆ Sn that is monochromatic and is congruent to S.

We will use this to show the following lemma regarding sphere colorings.
Lemma 88. Fix an integer k ≥ 3 and r ≥ 2. There exists n0 := n0(k) such that for every n ≥ n0

and coloring f : Sn → [r] and γ ∈ R with −1
k−1

< γ < 1, there exists a monochromatic set of
vectors V = {v1, v2, . . . , vk} ⊆ Sn such that vi · vj = γ for every i ̸= j.

Proof. Consider an arbitrary set S = {u1,u2, . . . ,uk} of k unit vectors in Sn such that ui ·uj = γ

for every i ̸= j. Such a set S is guaranteed to exist when n is large enough. We show that the
vectors are affinely independent: suppose for contradiction that there exists reals c1, c2, . . . , ck not
all zero,

∑
i ci = 0 and

∑
i ciui = 0. We have

0 = u1 ·

(∑
i

ciui

)
= c1 + γ(c2 + . . .+ ck) = c1 + γ(−c1)

implying that c1 = 0. The same argument shows that ci = 0 for all i ∈ [k], a contradiction.
As S is affinely independent, they can be viewed as vertices of a simplex. Furthermore, the

set of vectors can be embedded on a sphere of radius strictly smaller than 1: let α ∈ R such that
0 < α < 2

k
, and let us =

∑
i∈[k] ui, c = αus. We have

∥us∥22 =
∑
i

∥ui∥22 + 2
∑
i ̸=j

ui · uj = k +
k(k − 1)

γ

86

Note that

∥ui − c∥22 = ∥ui∥22 + ∥c∥
2
2 − 2c · ui

= 1 + α2(k +
k(k − 1)

γ
)− 2α(1 + (k − 1)γ)

= 1− k(1 + (k − 1)γ)α

(
α− 2

k

)
which is strictly smaller than 1 when 0 < α < 2

k
. Thus, all the vectors are on a sphere centered at

c and radius strictly smaller than 1, implying that ρ(S) < 1. Now, we can use Theorem 87 on S
and f to obtain the required set of vectors V .

While Theorem 87 is applicable to a wide range of sets S, we sometimes need to apply it to
sets S that do not form a simplex or have ρ(S) = 1. Towards this, we use the “Spreads” based
idea in [MR95] to obtain a version of Theorem 87 directly for certain sets S where Theorem 87 is
not applicable.

We use the following notion of Spread vectors from [MR95]. For an integer n, a vector
a ∈ Rk, and a set J ⊆ [n] of cardinality k with J = {j1, j2, . . . , jk}, we let

Spreadn(a, J) =
k∑

i=1

aieji

where e1, e2, . . . , en is an orthonormal basis of Rn. For a set I ⊆ [n], we let

Spreadn(a, I) = {Spreadn(a, J) : J ⊆ I, |J | = k}

We get the following as a direct application of the hypergraph Ramsey theorem.
Lemma 89. ([MR95]) For every a ∈ Rk, n, k, there exists N such that in any coloring f :

SpreadN(a, [N]) → [r], there exists I with |I| = n such that SpreadN(a, I) is monochromatic
with respect to f , i.e., ∃p ∈ [r] such that f(v) = p for all v ∈ SpreadN(a, I).

Lemma 89 implies the following immediately.
Corollary 90. Suppose that U = {u1,u2, . . . ,uk} be a set of k unit vectors such that ui ∈
SpreadN(a, [N])∀i ∈ [k] for an integer N , and a vector a ∈ RN with ∥a∥2 = 1. Then there exists
n0 := n0(U, a, N) such that for every n ≥ n0, r, for every sphere coloring f : Sn → [r], there
exists a set of k vectors V = {v1, . . . , vk} that are all colored the same, and vi · vj = ui · uj for
every i, j ∈ [k].

We use Corollary 90 to obtain a couple of lemmas regarding sphere colorings. For ease of
notation, we call a set of k unit vectors V = {v1, v2, . . . , vk} to be k-regular if vi · vj = − 1

k−1
for

every i ̸= j.
Lemma 91. Fix an integer k ≥ 2. There exists n0 := n0(k) such that for every n ≥ n0 and folded
coloring f : Sn → {−1,+1}, there exist a k-regular set of vectors V = {v1, v2, . . . , vk} ⊆ Sn

such that exactly k − 1 vectors in V are colored −1.

87

Proof. We construct a set of k unit vectors V = {v1, v2, . . . , vk} in SpreadN(a, [N]) such that
{v1, v2, . . . , vk−1,−vk} is a k-regular set, where N, a depend only on k, and ∥a∥2 = 1. Us-
ing Corollary 90, we can infer that in the coloring f , there exist k vectors V = {v1, v2, . . . , vk}
that are all assigned the same color, such that {v1, v2, . . . , vk−1,−vk} is a k-regular set. As f is
folded, this implies that there is a k-regular set in which exactly k − 1 vectors are assigned the
color −1.

Thus our goal is to construct k unit vectors V = {v1, v2, . . . , vk} in SpreadN(a, [N]) such that
{v1, v2, . . . , vk−1,−vk} is a k-regular set. Or equivalently, we construct the vectors v1, v2, . . . , vk−1 ∈
SpreadN(a, [N]) and vk ∈ SpreadN(−a, [N]) such that {v1, . . . , vk} is a k-regular set. We set
γ = 1√

2(k−1)
and a = (γ,−γ, γ,−γ, . . . ,−γ) ∈ R2(k−1). We set vi = Spreadn(a, Ji), i ∈

[k − 1], vk = Spread(−a, Jk) where J1, J2, . . . , Jk such that |Ji| = 2(k − 1) for every i ∈ [k].
We obtain these sets by induction on k. First, we consider the base case when k = 2. In this case,
we set J1 = J2 = {1, 2} and N = 2 suffices. The vectors are the following:

v1 = (γ,−γ)
v2 = (−γ, γ)

where γ = 1√
2
. Note that the above two vectors are a 2-regular set, and v1 ∈ Spread2(a, [2]), v2 ∈

Spread2(−a, [2]) with a = (γ,−γ). Now, suppose that J1, J2, . . . , Jk, N are such that vi =

SpreadN(a, Ji), i ∈ [k − 1], vk = SpreadN(−a, Jk) satisfy the property that {v1, v2, . . . , vk} is a
k-regular set with a = (γ,−γ, . . . , γ,−γ) ∈ R2(k−1), γ = 1√

2(k−1)
. We construct J ′

1, J
′
2, . . . , J

′
k+1

such that v′
i = SpreadN ′(a′, J ′

i), i ∈ [k], v′
k+1 = SpreadN ′(−a′, Jk+1) satisfy the property that

{v′
1, v′

2, . . . , v′
k+1} is a (k + 1)-regular set with a′ = (γ′,−γ′, . . . , γ′,−γ′) ∈ R2k, γ′ = 1√

2k
.

1. For every i ∈ [k − 1], we obtain J ′
i from Ji by adding two new elements.

J ′
i = Ji ∪ {N + 2i, N + 2i+ 1}

This ensures that v′
i · v′

j = −(γ′)2 for every i, j ∈ [k − 1], i ̸= j.
2. We obtain Jk+1 from Jk by adding two new elements.

Jk+1 = Jk ∪ {N + 1, N + 2k}

This ensures that v′
i · v′

k+1 = −(γ′)2 for every i ∈ [k − 1].
3. Finally, we set Jk.

Jk = {N + 1, N + 2, . . . , N + 2k}

This ensures that v′
i · v′

k = −(γ′)2 for every i ∈ [k + 1], i ̸= k.

We illustrate our construction by obtaining the vectors for the case when k = 3 and k = 4:

v1 = (α,− α, 0,α, −α,0)
v2 = (0,0, α,− α, α,− α)
v3 = (−α,α, −α,0, 0,α)

88

v1 = (β,− β, 0,β, −β,0, 0,β, −β,0, 0,0)

v2 = (0,0, β,− β, β,− β, 0,0, 0,β, −β,0)
v3 = (0,0, 0,0, 0,0, β,− β, β,− β, β,− β)
v4 = (−β,β, −β,0, 0,β, −β,0, 0,0, 0,β)

where α = 1
2

and β = 1√
6
.

As the pairwise inner product of every pair in {v′
1, v′

2, . . . , v′
k+1} is equal to −(γ′)2 = − 1

k
, we

get that these set of vectors are a (k + 1)-regular set, completing the inductive proof.

6.5.2 Absence of sphere coloring
First, we show the absence of sphere coloring respecting Γ1 using Lemma 91.
Lemma 92. Fix an even integer k ≥ 4. There exists an integer n0 such that for every n ≥ n0,
there is no folded f : Sn → {−1,+1} that respects Γ1 = (P,Q), P = Hamk{k2}, Q =

Hamk{0, 1, . . . , k} \ {b} where b ∈ {1, k − 1}.

Proof. Suppose for contradiction that such a folded f exists. Fix a vector v0 ∈ Sn. We get the
P -configuration of vectors v1, v2, . . . , vk such that the gram matrix of v0, v1, . . . , vk is a uniform
convex combination from the vertices of KZ(P). The vectors satisfy this if we have

1. (First moments.) vi · v0 = 0 for every i ∈ [k].

2. (Second moments.) vi · vj =
2(

k
2
2)−

k2

4

(k2)
= −1

k−1
.

We restrict ourselves to vectors orthogonal to v0, and apply Lemma 91 to obtain a set of k vectors
v1, v2, . . . , vk such that vi · vj =

−1
k−1

and exactly k − 1 of {v1, v2, . . . , vk} are colored −1. By
negating these vectors if needed, we get a set of k vectors v1, v2, . . . , vk such that vi · vj =

−1
k−1

and exactly b of {v1, v2, . . . , vk} are colored +1. Thus, there exists a P -configuration of vectors
whose f value contains exactly b +1s, a contradiction.

We show the absence of sphere coloring respecting Γ2, Γ3 and Γ4 using Lemma 88.
Lemma 93. Fix an odd integer k ≥ 3 and integer l : 0 ≤ l ≤ k−1

2
. There exists an integer n0 such

that for every n ≥ n0, there is no folded f : Sn → {−1,+1} that respects Γ2 = (P,Q), P =

Hamk{l, k+1
2
}, Q = Hamk{0, 1, 2, . . . , k − 1}.

Proof. Fix v0 ∈ Sn. The P -configuration that we consider is a set of vectors v1, v2, . . . , vk such
that the gram matrix of v0, v1, . . . , vk is obtained by first sampling i ∈ {l, k+1

2
} where we set

i =

{
l with probability 1

1−s
k+1
2

with probability −s
1−s

where s = l − (k − l) < 0. Then, we sample a uniformly random vertex from KZ(Hamk{i}).
We obtain the following properties:

89

1. (First moments). vi · v0 = 0 for every i ∈ [k].
2. (Second moments). vi · vj = γ for every i ̸= j. Furthermore, we get that −1

k
≤ γ < 1.

Now, restricting ourselves to the vectors in Sn that are orthogonal to v0, and using Theorem 87,
we get that there exists a P -configuration of vectors that are all colored the same. By taking the
negation of these vectors if needed, we get our required claim.

Lemma 94. Fix integers k, l such that 0 < l ≤ k−1
2

. Then, there exists an integer n0 such that for
every n ≥ n0, there is no folded f : Sn → {−1,+1} that respects Γ3 = (P,Q), P = Hamk{l, k},
Q = Hamk{1, 2, . . . , k}, where l ̸= 0, l ≤ k−1

2
.

Proof. Fix v0 ∈ Sn. We pick the P -configuration along the same lines as in Lemma 93. We
sample i ∈ {l, k} with

i =

{
l with probability k

k−s

k with probability −s
k−1

where s = l− (k− l) < 0. As before, we sample a uniformly random vertex from KZ(Hamk{i}).
We get

1. (First moments). vi · v0 =
(

k
k−s

)
s
k
+
(−s
k−s

)
1 = 0 for every i ∈ [k].

2. (Second moments). For every i ̸= j ∈ [k], we get

vi · vj =

(
k

k − s

) (l
2

)
+
(
k−l
2

)
− l(k − l)(

k
2

) +

(
−s
k − s

)
1

The function
(
l
2

)
+
(
k−l
2

)
− l(k − l) is a decreasing function when l ∈ [1, k−1

2
]. When l =

k−1
2

, the value of it is equal to −1
k

. Thus, we get that for every 1 ≤ l ≤ k−1
2

, we get that(
l
2

)
+
(
k−l
2

)
− l(k − l) ≥ −1

k
. Thus, we get that

vi · vj = γ

for every i ̸= j, and −1
k
< γ < 1. We restrict ourselves to vectors in Sn that are orthogonal

to v0, and applying Theorem 87, we get that for any coloring f : Sn → {−1,+1}, there is a
monochromatic P -configuration that we described. By negating the vectors if needed, we get our
required proof.

Lemma 95. Fix integers k ≥ 3, l ∈ {1, . . . , k − 1}, l ≤ k−1
2

. There exists integer n0 such that for
every n ≥ n0, there does not exist coloring f : Sn → {0, 1} that is folded i.e., f(−x) = −f(x),
and respects the PCSP Γ4 = (P,Q), P = Hamk{l}, Q = Hamk{0, 1, . . . , k} \ {0, k − 1}.

Proof. We partition the predicate P into P1 and P−1 depending on the value of the first element,
i.e.,

Pi = {x ∈ P : x1 = i}, i ∈ {−1,+1}

We pick the P -configuration as follows: sample i from {−1,+1} uniformly at random, then,
sample a uniformly random vertex from KZ(Pi). We get

90

1. (First moments). By our choice of Pis, we get that

v1 · v0 = 0

By using symmetry of the rest of the variables, we get that

vi · v0 =
2l − k
k − 1

∀i ∈ {2, 3, . . . , k}.

For ease of notation, let α = 2l−k
k−1

.
2. (Second moments). We get

v1 · vi =
−1
k − 1

∀i ∈ {2, 3, . . . , k}.

vi · vj =
(2l − k)2 − (k − 2)

(k − 1)(k − 2)
∀i, j ∈ {2, 3, . . . , k}, i ̸= j

For ease of notation, let β = (2l−k)2−(k−2)
(k−1)(k−2)

.

We collect the following fact for later use:∥∥∥∥∥
k∑

i=1

vi

∥∥∥∥∥
2

= k + 2
∑

i,j∈[k],i ̸=j

vi · vj

= k + 2
∑

i∈{2,...,k}

v1 · vi + 2
∑

i,j∈{2,...,k},i ̸=j

vi · vj

= k + 2(k − 1)
−1
k − 1

+ (k − 1)(k − 2)
(2l − k)2 − (k − 2)

(k − 1)(k − 2)

= (2l − k)2.

Thus, we get ∥∥∥∥∥
k∑

i=1

vi

∥∥∥∥∥ = k − 2l (6.3)

Our goal is to show that there exists n0 such that for every n ≥ n0, for every folded sphere
coloring f : Sn → {−1,+1} and v0 ∈ Sn, there exists a set of k vectors V = {v1, v2, . . . , vk}
that satisfy the above first and second moments, and exactly b vectors in V are colored +1, where
b ∈ {0, k − 1}. For i ∈ [k], let v′

i be the component of vi orthogonal to v0:

v′
i = vi − (vi · v0)v0, i ∈ [k]

Note that ∥v′
i∥ =

√
1− α2 for i ∈ {2, . . . , k} and ∥v′

1∥ = 1. We let ui =
v′i
∥v′i∥

. We have

ui · uj =
v′
i · v′

j

1− α2

=
(vi − αv0) · (vj − αv0)

1− α2

=
β − α2

1− α2
∀i, j ∈ {2, . . . , k}, i ̸= j.

91

For ease of notation, γ = β−α2

1−α2 .
Using Equation (6.3), we get the following bound on γ that we will use later.
We have

k − 2l =

∥∥∥∥∥
k∑

i=1

vi

∥∥∥∥∥
=

∥∥∥∥∥v1 +
k∑

i=2

v′
i + α(k − 1)v0

∥∥∥∥∥
=

∥∥∥∥∥u1 +
√
1− α2

k∑
i=2

ui + (2l − k)v0

∥∥∥∥∥
As ui · v0 = 0 for every i ∈ [k], we get that

u1 +
√
1− α2

k∑
i=2

ui = 0

Thus, ∥∥∥∥∥
k∑

i=2

ui

∥∥∥∥∥
2

=
1

1− α2

On the other hand, ∥∥∥∥∥
k∑

i=2

ui

∥∥∥∥∥
2

= k − 1 + 2
∑

i,j∈{2,...,k},i ̸=j

ui · uj

= k − 1 + (k − 1)(k − 2)γ

Thus, we get

γ =
1

(1− α2)(k − 1)(k − 2)
− 1

k − 2
(6.4)

We apply Lemma 88 on the following coloring of the sphere. For a vector u ∈ Sn such that
u · v0 = 0, let f ′ : Sn−1 → {−1,+1}2 be defined as

f ′(u) =
(
f
(
αv0 +

√
1− α2u

)
, f
(
αv0 −

√
1− α2u

))
Using Lemma 88 on f ′ combined with the fact that γ > −1

k−2
obtained from Equation (6.4), we

can infer that there exist k − 1 unit vectors u1,u2, . . . ,uk−1 ∈ Sn such that ui · v0 = 0 for all i,
ui · uj = γ for all i ̸= j and f ′(ui) = f ′(uj) for all i ̸= j, i, j ∈ [k − 1].

We define v(1)
1 , v(1)

2 , . . . , v(1)
k , v(2)

1 , . . . , v(2)
k as follows. For i ∈ {2, 3, . . . , k}, we let

v(1)
i = αv0 +

√
1− α2ui−1

v(2)
i = αv0 −

√
1− α2ui−1

92

We let

v(1)
1 = −

∑k−1
i=1 ui∥∥∥∑k−1
i=1 ui

∥∥∥
and v(2)

1 = −v(1)
1 . We now prove that the set of vectors v(1)

1 , v(1)
2 , . . . , v(1)

k and the set of vectors
v(2)
1 , v(2)

2 , . . . , v(2)
k are a P -configuration with first and second moments as computed earlier, where

we sampled i from {−1,+1} uniformly at random and sampled a uniformly random vertex from
KZ(Pi).

1. (First moments). As ui · v0 = 0 for all i ∈ [k − 1], we get that

v(1)
1 · v0 = v(2)

1 · v0 = 0

and
v(1)
i · v0 = v(2)

i · v0 = α ∀i ∈ {2, . . . , k}
2. (Second moments). We have

v(1)
1 · v

(1)
i = −

(
∑k−1

j=1 uj) · (αv0 +
√
1− α2ui−1)∥∥∥∑k−1

j=1 uj

∥∥∥
=

√
1− α2

k − 1
−

(
∑k−1

j=1 uj) · (
∑k−1

j=1 uj)∥∥∥∑k−1
j=1 uj

∥∥∥
= −
√
1− α2

k − 1

∥∥∥∥∥
k−1∑
j=1

uj

∥∥∥∥∥
= −
√
1− α2

k − 1

√
k − 1 + 2

(k − 1)(k − 2)

2
γ

= −
√
1− α2

k − 1

√
1

1− α2
Using Equation (6.4)

=
−1
k − 1

∀i ∈ {2, 3, . . . , k}.

Furthermore,

v(1)
i · v

(1)
j = (αv0 +

√
1− α2vi) · (αv0 +

√
1− α2vj)

= α2 + (1− α2)γ

= β ∀i, j ∈ {2, 3, . . . , k}, i ̸= j

Similarly, we have

v(2)
1 · v

(2)
i =

(
∑k−1

j=1 uj) · (αv0 −
√
1− α2ui−1)∥∥∥∑k−1

j=1 uj

∥∥∥ =
−1
k − 1

∀i ∈ {2, 3, . . . , k}.

v(2)
i · v

(2)
j = (αv0 −

√
1− α2vi) · (αv0 −

√
1− α2vj)

= α2 + (1− α2)γ = α2 + (1− α2)γ = β ∀i, j ∈ {2, 3, . . . , k}, i ̸= j

93

Thus, the set of vectors v(1)
1 , v(1)

2 , . . . , v(1)
k and the set of vectors v(2)

1 , v(2)
2 , . . . , v(2)

k are a P -
configuration. As f ′(u1) = f ′(u2) = . . . = f ′(uk−1), we can infer that f(v(1)

2) = f(v(1)
3) = . . . =

f(v(1)
k) and f(v(2)

2) = f(v(2)
3) = . . . = f(v(2)

k). Furthermore, as v(1)
1 = −v(2)

1 and f is folded, we
can infer that f(v(1)

1) = −f(v(2)
1 . Thus, there exists p ∈ {1, 2} such that f(v(p)

1) = −1. Thus,
there are either 0 or k − 1 vectors among v(p)

1 , v(p)
2 , . . . ,p(1)

k that are colored +1 according to f ,
contradicting the fact that f respects the PCSP (P,Q).

Finally, we show the absence of sphere coloring for Γ5.
Lemma 96. Fix integers k ≥ 3, b ∈ {0, 1, . . . , k} \ {1, k}. There exists integer n0 such that for
every n ≥ n0, there does not exist coloring f : Sn → {0, 1} that is folded i.e., f(−x) = −f(x),
and respects the PCSP Γ5 = (P,Q), P = Hamk{1, k}, Q = Hamk{0, 1, . . . , k} \ {b}.

We dedicate the rest of the section to proving Lemma 96. We pick the configuration of vectors
along the same lines as in Lemma 93. Fix v0 ∈ Sn. The P -configuration that we study is a set of
vectors v1, v2, . . . , vk that is obtained by first sampling i ∈ {1, k} such that

i =

{
1 with probability k

2k−2

k with probability k−2
2k−2

Then, we sample a uniform point from KZ(Hamk{i}). We get the following properties:
1. (First moments). vi · v0 =

(
k

2k−2

)
2−k
k

+
(

k−2
2k−2

)
1 = 0 for every i ∈ [k].

2. (Second moments). For every i ̸= j ∈ [k], we get

vi · vj =

(
k

2k − 2

) (k−1
2

)
− (k − 1)(
k
2

) +

(
k − 2

2k − 2

)
1 =

k − 3

k − 1

For ease of notation, let α = k−3
k−1

. Furthermore, by restricting ourselves to vectors in Sn that
are orthogonal to v0, we just focus on P -configurations that are a set of k unit vectors all of whose
pairwise inner product is equal to α. We refer to these set of vectors i.e., a set V of k unit vectors
v1, v2, . . . , vk ∈ Sn an α-configuration if the inner product of every pair of them is equal to α.
Given the folded sphere coloring f , our goal is to show that there is an α-configuration of vectors
V among which exactly b of them are assigned +1.

Unlike the earlier studied PCSPs, here, the setting when b = 0 is relatively straightforward,
simply because α ≥ 0. α ≥ 0 implies that there are an arbitrarily large number of unit vectors (as
we can pick n to be large enough) all of whose pairwise inner product is equal to α. In particular,
we pick a set of 2k − 1 unit vectors all of whose pairwise inner product is equal to α. Among
those, k of them are colored the same according to f . By taking the negation of these if needed,
we can infer that there are α-configurations that are all colored +1, and also α-configurations that
are all colored −1.

Before delving further, we handle the case when α = 0 i.e., when k = 3. In this case, we just
pick a set of k unit vectors that are all orthogonal to each other and their negations. Note that
these are 2k pairwise orthogonal vectors where exactly k of them are colored +1 according to f .

94

Thus, we can pick k pairwise orthogonal vectors from this set where exactly b of them are colored
+1 according to f . Henceforth, we assume that α > 0.

To show that there are α-configurations that have exactly b vectors that are colored +1, we
show a connectivity lemma (Lemma 99) where we prove that between any two α-configurations,
there exists a path using Ok,α(1) α-configurations where we change a single vector at each step
in the path. As there is an α-configuration where all are k vectors are colored +1, and the
α-configuration obtained by negating these vectors where all the vectors are colored −1, the
connectivity lemma then shows that for every b ∈ {0, 1, . . . , k}, there exists an α-configuration
that has exactly b vectors that are colored +1.

We first prove the following simplified version of the connectivity lemma that we use to
prove Lemma 99.
Lemma 97. Given an α-configuration U = {u1,u2, . . . ,uk} ⊆ Sn, and a unit vector w ∈ Sn

that is orthogonal to each vector in U , there exists L := L(k, α) and a set of α-configurations
V1, V2, . . . , VL such that

1. The consecutive configurations differ in a single vector i.e.,|Vi ∩ Vi+1| = k − 1 for every
i ∈ [L− 1].

2. Final configuration contains w i.e., w ∈ VL, and the initial configuration V1 is equal to U .

Proof. We prove the lemma by studying the inner product of w with an α-configuration V , which
is equal to all zeroes initially when V = U , and changing V one vector at a time such that the
inner product of V with w eventually reaches all αs. Towards this end, for an α-configuration V ,
we define the matrix (k + 1)× (k + 1) matrix I(V,w) = [v1v2 . . . vkw]T [v1v2 . . . vkw] defined as
follows:

I(V,w)i,j =


⟨vi, vj⟩ if 1 ≤ i, j ≤ k.

⟨vi,w⟩ if i = k + 1, 1 ≤ j ≤ k.

⟨w, vj⟩ if j = k + 1, 1 ≤ i ≤ k.

⟨w,w⟩ = 1, if i = j = k + 1.

Starting with I(V,w) where V = U , our goal is to change one vector in V at a time so that
we eventually reach a configuration where the last column in I(V,w) is equal to (α, α, . . . , α, 1).
Note that changing one vector in V corresponds to changing a single value in the last column
(and the corresponding value in the last row) in I(V,w). We show that the opposite direction also
holds i.e., by changing a single value in the last column (and the corresponding value in the last
row) of I(V,w), we obtain a new matrix that is I(V ′,w) with V ′ being different from V only in a
single vector, as long as the new matrix is positive semidefinite.

Claim 98. Suppose that A is a m × m real symmetric positive semidefinite matrix with A =

UTU with U = [u1u2 . . . um] where ui ∈ Rn with n ≥ m, and A′ is another real symmetric
positive semidefinite matrix such that A′ and A differ only in A1,2 = A2,1. Then, there exists
U ′ = [u′

1u2 . . . um] such that A′ = (U ′)TU ′.

Proof. As A′ is a positive semidefinite matrix, there exist v1, v2, . . . , vm ∈ Rn such that A′ =

V TV where V = [v1v2 . . . vm]. Let A[2 : m] is a (m− 1)× (m− 1) submatrix of A excluding

95

the first row and the column i.e., A[2 : m]i,j = Ai+1,j+1. We define the corresponding submatrix
of A′ as A′[2 : m]. Note that A[2 : m] = A′[2 : m]. Let U [2 : m] = [u2u3 . . . um], and
similarly, let V [2 : m] = [v2v3 . . . vm]. Note that A[2 : m] = U [2 : m]TU [2 : m], and
A′[2 : m] = V [2 : m]TV [2 : m]. However, as A[2 : m] = A′[2 : m], we can infer that there exists
a unitary n× n matrix H such that U [2 : m] = HV [2 : m]. Now, setting U ′ = HV , we get the
required matrix U ′ with A′ = (U ′)TU ′.

Thus, our goal is to obtain a series of (k + 1)× (k + 1) real symmetric positive semidefinite
matrices M1,M2, . . . ,ML such that

1. M1 = I(U,w).
2. The diagonal entries of Mi for every i ∈ [L] are all equal to 1.
3. All the off diagonal entries of ML are equal to α.
4. For every i ∈ [L− 1], Mi and Mi+1 differ only in one element in the last column (and the

corresponding element in the last row).

Towards this end, for ϵ ≥ 0, 0 ≤ γ ≤ α, and d ∈ [k], we define the (k + 1) × (k + 1) matrix
M(γ, ϵ, d) as follows:

M(γ, ϵ, d)i,j =


1, if i = j.

α, if 1 ≤ i, j ≤ k.

γ + ϵ, if i = k + 1, 1 ≤ j ≤ d or j = k + 1, 1 ≤ i ≤ d.

γ, if i = k + 1, d+ 1 ≤ j ≤ k or j = k + 1, d+ 1 ≤ i ≤ k.

Note that IU,w =M(0, 0, k), and our goal ML is equal to M(α, 0, k). We define the sequence
of positive semidefinite matricesM(0, 0, k),M(0, ϵ, 1),M(0, ϵ, 2), . . . ,M(0, ϵ, k),M(ϵ, ϵ, 1),M(ϵ, ϵ, 2), . . . ,M(ϵ, ϵ, k), . . . ,M(α−
ϵ, ϵ, k). Note that at each step, we change a single element in the last column (and the correspond-
ing element in the last row).

The final step is to show that when we set ϵ ≤ 1−α
k

, M(γ, ϵ, d) is positive semidefinite for
every d ∈ [k], 0 ≤ γ ≤ α. This follows from a simple calculation.

xTM(γ, ϵ, d)x = γ(
k+1∑
i=1

xi)
2 + (α− γ)(

k∑
i=1

xi)
2 + (1− α)

k∑
i=1

x2i + (1− γ)x2k+1 + ϵ(xk+1)(
d∑

i=1

xi)

≥ (1− α)
k+1∑
i=1

x2i + ϵ(xk+1)(
d∑

i=1

xi)

≥
(
1− α
k

)(
k

k+1∑
i=1

x2i −

∣∣∣∣∣(xk+1)(
d∑

i=1

xi)

∣∣∣∣∣
)
≥ 0 .

Now, we prove the connectivity lemma.
Lemma 99. Fix an integer k ≥ 2 and 0 < α < 1. Suppose that U and V are two α-configurations
in Sn. Then, there exists n0 := n0(k, α), and L := L(k, α) such that as long as n ≥ n0, there
exist α-configurations V1, V2, . . . , VL such that

96

1. The end points are U and V i.e., U = V1, V = VL.
2. Any two consecutive configurations differ in exactly one vector i.e., |Vi ∩ Vi+1| = k − 1 for

every i ∈ [L− 1].

Proof. We use induction on k. First, we consider the case when k = 2. Let U = {u1,u2},
and V = {v1, v2} be two α-configurations. Consider an arbitrary vector w that is orthogonal
to all the vectors in U and V . Such a w is guaranteed to exist when n is large enough. Now,
using Lemma 97, we can infer that there exists a configuration W = {w,w′} such that there is a
path of length Oα(1) from U to W , and from V to W . Thus, there exists a path of length Oα(1)

from U to V .
Assume that the proof holds for k − 1, and we are given the configurations U and V

consisting of k vectors each. We choose a vector w that is orthogonal to each of the vec-
tors in U and V . Using Lemma 97, there are configurations X = {w,x1,x2, . . . ,xk−1} and
Y = {w,y1,y2, . . . ,yk−1} such that there is a path of length Oα,k(1) from U to X and from V

to Y . Now, our goal is to show that there is a path from X to Y of length Oα,k(1). We achieve
this by restricting ourselves to components orthogonal to w of the (k − 1)-sized configurations
X ′ = {x′

1,x
′
2, . . . ,x

′
k−1} and Y ′ = {y′

1,y
′
2, . . . ,y

′
k−1}, where x′

i = xi − ⟨xi,w⟩w for each
i ∈ [k − 1] (and similarly for y′

i. Note that X ′ and Y ′ are (α − α2) configurations, and by
the induction hypothesis, there exists a path from X ′ to Y ′ using only vectors orthogonal to w.
Adding the component along w, we get a path from X to Y of length Oα,k(1), finishing the
proof.

We are now ready to prove Lemma 96.

Proof. Suppose for contradiction that there exists a coloring f : Sn → {0, 1} that is folded
and respects the PCSP Γ5. Consider an arbitrary set of vectors {v1,v2, . . . ,v2k−1} that are
all orthogonal to v0, and have pairwise inner product α. Such a set is guaranteed to exist as
α ≥ 0. There exists a set of k vectors among these that are all assigned the same color in f . Let
these form the configuration U , and the set of negations of these vectors be the configuration
V . Using Lemma 99, there exists a path from U to V where we change a single vector in each
step. Note that the endpoints of the path have 0 and k vectors assigned +1 respectively. Since we
change at most one vector at a time, there exists a configuration where we have exactly b 1s, a
contradiction.

Lemma 92, Lemma 93, Lemma 94, Lemma 95 and Lemma 96 together with Lemma 84, The-
orem 85 and Lemma 86 finish the proof of Theorem 64.

Explicit Construction. We give an explicit construction of an integrality gap instance for
Γ5 = (P,Q), P = Hamk{1, k}, Q = Hamk{0, 1, . . . , k} \ {b} for arbitrary b ∈ {0, 1, . . . , k}.
Let L be a large constant (depends on k, to be set later). We have n = 2k− 1+

(
2k−1
k

)
L variables

xi : i ∈ [2k − 1], x
(i)
S : i ∈ [L], S ⊆ [2k − 1], |S| = k. Our constraints are the following:

for every subset S ⊆ [2k] with |S| = k and S = {i1, i2, . . . , ik}, we pick L new variables

97

x
(1)
S , x

(2)
S , . . . , x

(L)
S . The constraints are

{xi1 , xi2 , . . . , xik}, {xi2 , xi3 , . . . , xik , x
(1)
S }, {xi3 , . . . , x

(1)
S , x

(2)
S }, . . . , {x

(L−k+1)
S , . . . , x

(L)
S },

{x(L−k+2)
S , . . . , x

(L)
S , xi1}, {x

(L−k+3)
S , . . . , xi1 , xi2}, . . . , {xi1 , xi2 , . . . , xik}.

We choose L to be the constant factor from Lemma 99 with α = k−3
k−1

. The idea is that when
all the variables in the constraint {xi1 , xi2 , . . . , xik} are all set to be True, all the variables in
{xi1 , xi2 , . . . , xik}, and as there are a series of constraints between them where we alter a single
variable, there must exist a constraint where there are exactly b variables that are set to True.

Formally, we show that this instance does not satisfy Q = Hamk{0, 1, . . . , k} \ {b}. Suppose
for contradiction that there is an assignment that satisfies all the constraints. Since there are
2k − 1 variables x1, x2, . . . , x2k−1, at least k of them are set to be true. If not, then at least k of
the negated variables are set to be true. This implies that there is a sequence of constraints where
the endpoints are assigned all True and all False, and at every point, we change a single variable.
This implies that there is a constraint where there are exactly b variables that are set to True, a
contradiction.

We now show that the instance has a basic SDP solution with zero error. Set v1, v2, . . . , v2k−1 ∈
Sn to the variables x1, x2, . . . , x2k−1 such that vi · v0 = 0, and vi · vj = α for every i ̸= j. Such a
set of vectors is guaranteed to exist as n is large enough, and α ≥ 0. Finally, we use Lemma 99 to
set the vectors v(i)

S for every S ⊆ [2k − 1], |S| = k, i ∈ [L].

6.6 The SDP minion
As previously mentioned, polymorphisms are a powerful tool for understanding the computational
complexity of PCSPs. However, beyond some of the simplest classes of PCSPs, individually
classifying the complexity based on specific polymorphisms can be unwieldy. Instead, one often
looks to higher-level structure between classes of polymorphisms, which is captured by the notion
of minions (also called clonoids) [Bar+21].
Definition 100. A minion M is a family of sets M1,M2, . . ., where Mi are the objects are
arity i. For every pair of positive integers i and j and map π : [i] → [j], there exists a map
/π :Mi →Mj known as a minor map. Further, these minor maps commute: (fπ)/π

′
= f /π′◦π.

The most commonly discussed minion is the polymorphisms Pol(Γ) of a PCSP Γ. In this case
the minors correspond to the identification of coordinates. Given a function f of arity i and a map
π : [i]→ [j], we have that

f /π(x1, . . . , xj) = f(xπ(1), xπ(2), . . . , xπ(i)).

It is straightforward to verify that the minor maps commute in the specified manner.
However, the ‘objects’ of a minion need not correspond to mathematical functions. The

following are a few known examples:
• The trivial minionMtriv has that every arity has a single object: Mi = {e}. All minor

maps are thus the ”trivial” map.

98

• The dictator minion (or projection minion)Mdict has eachMi = [i]. The minor maps are
then application of π: k/π = π(k).

• The Basic LP minionMBLP has eachMi = {(p1, . . . , pi) : p1, p2, . . . , pi ≥ 0, p1 + · · ·+
pi = 1} be the probability distributions on i elements. The minor maps combine elements
of the probability distribution which map to the same value. That is,

(p1, . . . , pi)
/π =

 ∑
π(k)=1

pk, . . . ,
∑

π(k)=j

pk

 .

In order to better understand the complexity of PCSPs, we relate the polymorphic minions to
other minions like the ones mentioned above. We can determine the relationship between minions
via minion homomorphisms.
Definition 101. A minion homomorphism ψ :M→N between two minions consists of maps
ψi :Mi → Ni such that these maps commute with the respective minor maps ofM and N . That
is, for all f ∈Mi and π : [i]→ [j], we have that

ψj(f
/π) = ψi(f)

/π

The key theorem about the Basic LP minion is the following.
Theorem 102 ([Bar+21]). The Basic LP solves a PCSP Γ if and only ifMBLP 7→ Pol(Γ).

6.6.1 SDP Minion Definition

Like how the the BLP minion corresponds to probability distributions, the SDP minion we
construct corresponds to SDP vectors. Similar techniques have been used in other minion
constructions [CŽ22a].

Let Rω be infinite sequences of real numbers which are eventually 0 (and thus can be thought
of as the union R1 ∪ R2 ∪ R3 ∪ ...). It’s not hard to see that Rω is an inner product space.

We now define the minionMSDP whose k-arity symbol is a list of k vectors (w1, . . . ,wk) in
Rω. When convenient, we shall think of the whole object as a matrix W ∈ Rk×ω.

We impose the following conditions on the vectors:
1. For all i, j ∈ [k] with i ̸= j, wi ·wj = 0.

2.
∑

i∈[k] ∥wi∥22 = 1.
Observe that the second condition is equivalent to ∥

∑
i∈[k] wi∥2 = 1.

The minors ofMSDP are not too surprising, given W ∈M(k)
SDP and a map π : [k]→ [ℓ], W /π

is the matrix in W ′ ∈ Rℓ×ω where w′
i :=

∑
j∈π−1(i) wj .

Claim 103. MSDP is a minion.

Proof. First, for each W ∈M(k)
SDP and a map π : [k]→ [ℓ] we verify that W ′ := W /π ∈M(ℓ)

SDP.

99

First, fix i ̸= i′ ∈ [ℓ]. We have that

w′
i ·w′

i′ =

 ∑
j∈π−1(i)

wj

 ·
 ∑

j′∈π−1(i′)

wj′


=

∑
j∈π−1(i)
j′∈π−1(i′)

wj ·wj′

= 0

Further, ∑
i′∈[ℓ]

w′
i′

 ·
∑

i′∈[ℓ]

w′
i′

 =

∑
i∈[k]

wi

 ·
∑

i∈[k]

wi

 = 1.

Thus, W /π ∈M(ℓ)
SDP.

The only remaining condition to check is that minors commute. Consider π : [a]→ [b] and
η : [b]→ [c]. Also consider. Let U ∈ M(a)

SDP, V ∈ M(b)
SDP, and W ∈ M(c)

SDP such that V = U/π

and W = V /η. We seek to verify that W = U/(η◦π). For all i ∈ [c], we have that

wi =
∑

i′∈η−1(i)

vi′

=
∑

i′∈η−1(i)

∑
i′′∈π−1(i′)

ui′′

=
∑

i′′∈(η◦π)−1(i)

ui′′ ,

as desired.

The goal of this section is to prove the following theorem
Theorem 104. If the exact13 basic SDP solves PCSP(A,B) if and only ifMSDP → Pol(A,B)

6.6.2 An alternative Basic SDP
We now present a modified basic SDP for which it is easier to make our arguments. We shall use
notation similar to that of the [CŽ22a].

Let (A,B) be a PCSP template. Let X be an instance of PCSP(A,B). We let A be the
domain of A, etc., so X is the variables of X. We let RA be the set of relations of A (or ”clause
types”). We let RX be the constraints of X.

13By ‘exact’ we mean an SDP solution that perfectly satisfies all the constraints. This is not feasible in principle as
infinite precision is needed in the computed SDP matrix (c.f., [Fre04]). In practice, SDP solutions can be computed
to poly(n) bits of precision precision, which we would consider to be a 1− 1/2poly(n)-robust solution. For PCSPs,
it is unknown if there is a difference between exact, 1− 1/2poly(n)-robust and 1−O(1) robust.

100

A basic SDP solution to X for PCSP(A,B) is a collection of vectors ux,a ∈ Rω for all
x ∈ X, a ∈ A as well as vx,a ∈ Rω for x ∈ RX and a ∈ sR(x) (which is defined to be the set of
the valid assignments to the clause x) with the following properties:14

1. For all x ∈ X , Ux := (ux,a : a ∈ A) ∈M(A)
SDP.

2. For all x ∈ RX, Vx := (vx,a : a ∈ sR(x)) ∈M(A)
SDP.

3. For all x ∈ RX with arity k and i ∈ [k] and a ∈ A, we have that

uxi,a =
∑

a∈sR(x)
ai=a

vx,a.

Equivalence with traditional basic SDP

The traditional basic SDP does not specify vectors vx,a. Rather, the traditional basic SDP
keeps track of a probability distribution λx on assignments to x. And for any pairs of variable,
assignment pairs (xi, ai), (xj, aj), we have that

uxi,ai · uxj ,aj = Pr
a∼λx

[ai = ai ∧ aj = aj].

Clearly any solution to our Basic SDP is a solution to that basic SDP, as the probability λx(a) is
precisely ∥vx,a∥2, and the above linear condition checks out as a property of the vectors.

The other direction is more tricky. Assume we have a traditional basic SDP solution. Recall
that each ux,a ∈ Qω. Since there are finitely many vectors, there exists some N ∈ N such that
each u has its support within the first N coordinates. Provisionally assign v̂x,a to be

√
λx(a) · ei,

where i > N are chosen uniquely for each clause-assignment pair. As there are finitely many
clause-assignment pairs, all of these are in Qω.

However, it is obvious the v̂’s won’t be compatible with the u’s as they are in trivially-
intersecting vector spaces. However, we can define over all suitable choices of i ∈ [k] and
a ∈ A,

ûxi,a :=
∑

a∈sR(x)
ai=a

v̂x,a

It is not hard to see that uxi,ai · uxj ,aj = ûxi,ai · ûxj ,aj for all suitable choices of xi, ai, xj, aj .
For a fixed x, let V̂x ⊆ Qω be the subspace spanned by v̂x,a and ux,a for the x ∈ x. Note that

each û is also in V̂x. Since the û’s and the u’s have the same dot products, there is a rigid rotation
ψ : V̂x → V̂x which sends each û(x,a) to u(x,a).

Define vx,a = ψ(v̂x,a). Then, observe that

uxi,a = ψ(ûxi,a) =
∑

a∈sR(x)
ai=a

ψ(v̂x,a) =
∑

a∈sR(x)
ai=a

vx,a,

as desired. Thus, the two SDP formulations are equivalent.
14Usually, there is a special vector v0, but we can omit it without changing the power of the algorithm. This will

be more convenient for the analysis.

101

6.6.3 From minion homomorphism to SDP rounding algorithm
First we show the ”easy” direction that the minion homomorphism implies that the basic SDP
solves PCSP(A,B).
Theorem 105. IfMSDP → Pol(A,B), then the basic SDP solves PCSP(A,B).

Proof. Fix X and an exact SDP solution MX with corresponding vectors ux,a and vx,a (and
Ux, Vx) with the prescribed properties. Let ψ :MSDP → Pol(A,B) be the minion homomor-
phism.

Define the assignment f : X → B to be ψ(Ux)(a : a ∈ A). Unpacking this, ψ(Ux) ∈
Pol(A,B) is of arity A, so we just plug in the coordinates of A listed in a canonical order. For
any clause x, we know that b := ψ(Vx)(a : a ∈ sR(x)) satisfies RB. Thus, it suffices to show
that bi = f(xi) for all i ∈ k.

Let πi : RA → A which maps a to ai. It is straightforward to show that condition (3) of the
basic SDP implies that Ux = (Vx)/πi

. Thus, since ψ is a minion homomorphism,

f(xi) = ψ(Ux)(a : a ∈ A) = ψ(Vx)/πi
(a : a ∈ A) = ψ(Vx)i(a : a ∈ sR(x)) = bi,

as desired. Thus, the exact basic SDP solves PCSP(A,B).

6.6.4 From SDP rounding algorithm to minion homomorphism
We now prove the converse.
Theorem 106. If the basic SDP solves PCSP(A,B), thenMSDP → Pol(A,B)

Proof. We adopt the proof technique of [CŽ22a]. Let F ⊂ MSDP be any finite subset. Let F
be an instance of PCSP(A,B) whose variables F = F ∩M(A)

SDP – the arity-A elements of F .
The clauses RF are on k-tuples (W1, . . . ,Wk) of F for which there is Z ∈ F ∩M(RA)

SDP with the
following property. For all i ∈ [k], let πi : RA → A be the ith coordinate projection map. Then,
Wi = Z/π.

If we can show that the rational basic SDP solves F , then we know that F→ B (by definition
of the rational basic SDP solving PCSP(A,B). Then, via a argument (e.g., like the De Brujin-
Erdos theorem [BE51], for more details see Remark 7.13 of [Bar+21] or [CŽ22a], etc.) this
implies that free structure15 FMSDP

(A)→ B which implies thatMSDP → Pol(A,B). Thus, it
suffices to construction a rational basic SDP solution to F.

The remainder of the proof writes itself. For every W ∈ F and a ∈ A, let uW,a = wa (the ath
column of W). Likewise, for every clause τ on (W1, . . . ,Wk) via Z ∈ F ∩M(RA)

SDP and a ∈ sR(Z)
(that is a valid solution to the clause indexed by Z), we let vτ,a = Za.

We then need to check conditions 1-3. Conditions 1 and 2 are verbatim from W,Z ∈MSDP.
Condition 3 is precisely that Wi = Z/πi

.
Since all the vectors have rational coordinates, the dot product matrix of these vectors is a

rational basic SDP solution. That is, the rational basic SDP solves F, soMSDP → Pol(A,B).

15See [Bar+21] for a precise definition.

102

This completes the proof of Theorem 104

6.7 Missing Proofs
Proof of Lemma 79. We first consider the case when k = 1. Without loss of generality, let
P = Q = {+1}, and we use v1 = αv0 + v′

1 to denote the SDP vector corresponding to the
variable used in the constraint. As the basic SDP has error at most

√
ϵ, we get that

α1 ≥ 1−
√
ϵ

As α2
1 + ∥v′1∥

2
2 = 1, ∥v′1∥ ≤ O(ϵ0.25). Thus, using Proposition 71, we get that ⟨ζ, v′

1⟩ ≤ O(ϵ0.25r)

with probability at least 1− e−r2

2 ≥ 1−
√
ϵ. On the other hand, using Proposition 70, we get that

|⟨ζ, v0⟩| ≥ 1
r

with probability at least 1− 1
r
. This implies that

δα1|⟨ζ, v0⟩| ≥
δ

2r

Thus, with probablity at least 1−O(1
r
), we have

⟨ζ, v′
1⟩ ≤ O(ϵ0.25r) <

δ

2r
≤ δα1|⟨ζ, v0⟩|

Hence, with probability at least 1−O(1
r
), we round the variable to +1.

We now consider the general case when k ≥ 2. Note that the above proof for k = 1 holds when
P = Hamk{0} or when P = Hamk{k}. We are left with the setting when P = Hamk{0, k}. In
order to show that our algorithm is a robust algorithm for this PCSP, it suffices to show that all the
elements in the predicates are rounded to the same value with high probability. Consider i, j ∈ [k].
We show that the probability that the variables xi and xj get rounded to different values is at most
O
(
1
r

)
. Using the union bound over all the

(
k
2

)
pairs of indices, we get our required claim.

We first collect useful properties using the fact that the basic SDP is supported with probability
at least 1− c on P .

1. (First moment.) We have
|µi − µj| ≤ 2c.

2. (Second moment.) We have
⟨vi, vj⟩ ≥ 1− 2c

Using this, we get ∥∥v′
i − v′

j

∥∥2
2
= vi − vj + (αj − αi)v0

≤ ∥vi − vj∥22 + (αi − αj)
2

≤ O(c).

Thus,
∥∥v′

i − v′
j

∥∥ ≤ O(
√
c).

103

As earlier, we assume that c is at most
√
ϵ.

Recall that our goal is to upper bound the probability that xi and xj are rounded to different
values. Without loss of generality, suppose that xi is rounded to +1, and xj is rounded to −1. We
get that

⟨ζ, v′
i⟩ ≥ δαi|⟨ζ, v0⟩|

⟨ζ, v′
j⟩ < δαj|⟨ζ, v0⟩|

Using Proposition 71, we can infer that

|⟨ζ, v′
i⟩ − ⟨ζ, v′

j⟩| ≤ O(r
√
c)

with probability at least 1− 1
r
.

We consider two cases: first, when |αi| ≤ 1
2
. As α2

i + ∥v′
i∥

2
2 = 1, and |αi − αj| ≤ 2c, we get

that
∥∥v′

j

∥∥ = Ω(1). In this case, we have

⟨ζ, v′
j⟩ ≥ ⟨ζ, v′

i⟩ −O(r
√
c)

≥ δαi|⟨ζ, v0⟩| −O(r
√
c)

Thus, we have
⟨ζ, v′

j⟩ ∈ [δαi|⟨ζ, v0⟩| −O(r
√
c), δαj|⟨ζ, v0⟩|]

Here, ⟨ζ, v′
j⟩ ∈ [p, q] where q − p ≤ O(δr) +O(r

√
c) ≤ O(δr). However, as

∥∥v′
j

∥∥ ≥ Ω(1), this
happens with probability at most O(δr).

Now, suppose that |αi| ≥ 1
2
. We have

δαi|⟨ζ, v0⟩| ≥ δαj|⟨ζ, v0⟩| − 2δc|⟨ζ, v0⟩|

However, as ⟨ζ, v0⟩ ∼ N (0, 1), we have |⟨ζ, v0⟩| ≤ r with probability at least 1−
√
ϵ. Thus, with

probability at least 1−
√
ϵ, we have

⟨ζ, v′
i⟩ ≥ δαi|⟨ζ, v0⟩| ≥ ⟨ζ, v′

j⟩ − 2δcr

We have δαi|⟨ζ, v0⟩| ∈ [p, q] where q − p ≤ O(δcr) + O(r
√
c). However, this happens with

probability at most O(r
√
c

δ
) ≤ O(1

r
).

Proof of Lemma 82. Suppose that a = sgn(x − y) for x, y ∈ Aff(P), and xi ̸= yi∀i ∈ [k]. By
modifying the affine combinations slightly, we can assume that x and y are a rational affine
combinations of P while still preserving the fact that a = sgn(x− y). . In other words, there exist
p1, p2, . . . , pK , q1, q2, . . . , qK ∈ Q such that

∑
i∈[K] pi =

∑
i∈[K] qi = 1, and x =

∑
i∈[K] piai,

y =
∑

i∈[K] qiai, where {−1,+1}k = {a1, a2, . . . , aK}. Let N be a positive integer such that we

can write pi =
p′i
N
, qi =

q′i
N

where p′i, q
′
i are integers for every i ∈ [K].

Let S be a multiset of {−1,+1}k where we take union over all i ∈ [K], p′i copies of ai,
assign them a sign sgn(p′i), and q′i copies of ai, assign them a sign sgn(−q′i). As we have

104

∑
i∈[K] p

′
i =

∑
i∈[K] q

′
i, we get that there are equal number of vectors in S that are assigned +1

sign and equal number of them that are assigned −1. Let z denote the signed sum of all vectors
(including repetitions) in S. Note that sgn(z) = sgn(x− y). As each element of z is an integer,
we get that the absolute value of each coordinate in z is at least 1. Furthermore, we can take
multiple copies of S to ensure that the absolute value of each coordinate in z is at least 2. Now,
we add an arbitrary element of P with sign +1 to S. Note that we still have that the signed sum of
S i.e., the updated z satisfies sgn(z) = sgn(x− y). Furthermore, z = x1 − x2 + . . .+ xL where
each xi ∈ P . Thus, a = sgn(x− y) = sgn(w) = sgn(x1 − x2 + . . .+ xL) ∈ OAT (P). Thus,

{sgn(x− y) : x, y ∈ Aff(P),∀i, xi ̸= yi} ⊆ OAT (P)

To prove the other direction, suppose that a ∈ OAT (P). That is, a = sgn(x1 − x2 + . . .+ xL).
Let S be a multiset of x1, x2, . . . , xL with the corresponding sign as in the summation. As P
is non-trivial in every coordinate i.e., for every i ∈ [k], there exist assignments x in P where
xi = +1, and similarly, x′ ∈ P where x′i = −1. By adding vectors with both signs +1 and −1,
we can assume that S is non-trivial in every coordinate while still preserving the fact that the sign
vector of the signed sum of S is equal to sgn(a). We modify S while still preserving this property
to ensure that the signed sum of vectors in S has absolute value at least 2 in every coordinate.

As there are odd number of vectors in S, the signed sum of the vectors has absolute value at
least 1 in every coordinate. Fix a vector xi ∈ S. Create two copies of every other vector in S (with
the same sign as the original). Note that this operation does not alter the sign vector of the signed
sum of the vectors in S. We can repeat this process at most 2k times to ensure that in the final
multiset S, the signed sum has absolute value at least 2 in every coordinate. Finally, we add an
arbitrary vector with sign −1 to S, to ensure that there are equal number of vectors with +1 and
−1 sign in S. Overall, we get that there are x1, x2, . . . , xN ∈ P and y1, y2, . . . , yN ∈ P such that

a = sgn(x1 + . . .+ xN − y1 − . . .− yN) = sgn

(
1

N
x1 + . . .+

1

N
xN −

1

N
y1 − . . .−

1

N
yN

)
Thus, we get that a ⊆ {sgn(x− y) : x, y ∈ Aff(P),∀i, xi ̸= yi}, completing the proof that

OAT (P) ⊆ {sgn(x− y) : x, y ∈ Aff(P),∀i, xi ̸= yi}

Proof of Lemma 84. We extensively use the properties of AT,MAJ polymorphisms of symmetric
PCSPs, and ppp-reductions between symmetric folded PCSPs proved in [BG21b].

Consider (P,Q) ∈ Γ be of arity k such that MAJL1 ,ATL2 /∈ Pol(Γ) for some odd integers
L1, L2. Note that P ⊈ {(−1,−1, . . . ,−1), (+1,+1, . . . ,+1)} as in that case OMAJ(P) = P ⊆
Q, contradicting the fact that MAJ /∈ Pol(P,Q). Thus, there exists l ∈ {1, 2, . . . , k − 1} such
that Hamk{l} ⊆ P .

Case 1. We first consider the case when P = Hamk{l}. As MAJ ⊈ Pol(P,Q), there exists
b ∈ {0, 1, . . . , k} such that Hamk{b} /∈ Q and Hamk{b} ⊆ OMAJ(P).

Suppose that b /∈ {0, k}. Let Q′ = {−1,+1}k \Hamk{b}. By definition, MAJ ⊈ Pol(P,Q′).
As OAT(Hamk{l}) = Hamk{1, 2, . . . , k− 1}, we get that AT ⊈ Pol(P,Q′). Thus, we get (P,Q)

105

where P = Hamk{l}, Q = Hamk{0, 1, . . . , k} \ {b} where b ∈ {1, 2, . . . , k − 1} \ {l}. Note
that MAJ,AT /∈ Pol(P,Q). We now relax this PCSP furthermore, updating P,Q, l, k, b while
preserving the following two properties:

1. At every step, P = Hamk{l}, Q = Hamk{0, 1, . . . , k} \ {b} where b ∈ {1, 2, . . . , k− 1} \
{l}.

2. MAJ,AT /∈ Pol(P,Q).

As OMAJ(P) = Hamk{0, 1, . . . , k} ∩ {2l − k + 1, · · · , 2l − 1}, and b ∈ OMAJ(P), we get that
b ∈ {2l − k + 1, · · · , 2l − 1} ∩ {0, · · · , k}. Furthermore, as b > 0, we get that l > 1. Similarly,
we get that l < k − 1. This also implies that k ≥ 4 as l ∈ {1, . . . , k − 1}.

We use the following two tools to relax the PCSP:

1. Given a PCSP P = Hamk{l}, Q = Hamk{0, 1, . . . , k} \ {b} where b ∈ {1, 2, . . . , k− 1} \
{l}, then the PCSP P ′ = Hamk−1{l}, Q = Hamk−1{0, 1, . . . , k} \ {b} is a relaxation of
(P,Q) (Claim 4.2 of [BG21b]). As long as b < k − 1 and b ̸= 2l − k + 1, this relaxation
preserves the above two properties.

2. Given a PCSP P = Hamk{l}, Q = Hamk{0, 1, . . . , k} \ {b} where b ∈ {1, 2, . . . , k −
1} \ {l}, then the PCSP P ′ = Hamk−1{l − 1}, Q = Hamk−1{0, 1, . . . , k} \ {b − 1} is
a relaxation of (P,Q) (Claim 4.4 of [BG21b]). As long as b > 1 and b ̸= 2l − 1, this
relaxation preserves the above two properties.

Now, we relax the PCSP using the above two steps. As k is decreasing at every step, this procedure
terminates at some point. Then, either of the two conditions hold:

1. b = 1, b = 2l − k + 1. In this case, we get that l = k
2

and b = 1. Thus, (P ′, Q′) is a
relaxation of Γ where P ′ = Hamk{k2}, Q = Hamk{0, 1, . . . , k} \ {1} where k is even and
is at least 4.

2. b = k − 1, b = 2l − 1. In this case, we get that l = k
2

and b = k − 1. Thus, (P ′, Q′) is a
relaxation of Γ where P ′ = Hamk{k2}, Q = Hamk{0, 1, . . . , k} \ {k − 1} where k is even
and is at least 4.

Suppose that there is no b /∈ {0, k} such that Hamk{b} ⊆ OMAJ(P) \Q. As OMAJ(P) ⊈ Q,
by negating the variables if needed, we can assume that Hamk{0} ∈ OMAJ(P) \Q. Furthermore,
there exists b ∈ {1, 2, . . . , k − 1} such that Hamk ⊈ Q as OAT(P) ⊈ Q. Thus, we obtain a
relaxation (P,Q) of the original PCSP such that P = Hamk{l}, Q = Hamk{1, . . . , k} \ {b}
where l, b ∈ {1, 2, . . . , k− 1}, b > 2l− 1. By using the first type of relaxation used above (Claim
4.2 of [BG21b]), we obtain a new relaxation such that P = Hamk{l}, Q = Hamk{0, 1, . . . , k} \
{0, k − 1} where l ∈ {1, 2, . . . , k − 1}, l ≤ k−1

2
.

Case 2. There exist l ̸= l′ such that Hamk{l, l′} ⊆ P . Recall that P ⊈ Hamk{0, k}. This implies
that OAT(P) = Hamk{0, 1, . . . , k}. Hence, we can get a relaxation (P,Q′) of the original PCSP
such that Q = Hamk{0, 1, . . . , k} \ {b} such that Hamk{b} /∈ OMAJ(P).

For ease of notation, let P = Hamk S, where S ⊆ {0, 1, . . . , k}. First, consider the case
when minS = 0,maxS = k. As mentioned earlier, we know that there exists l ∈ {1, 2, . . . , k −
1} such that Hamk{l} ∈ P . Thus, we can reduce the existing PCSP to (P,Q) where P =

106

Hamk{0, l, k}, Q = Hamk{0, 1, . . . , k} \ {b} where b /∈ {0, l, k}. We consider three cases
separately:

1. Suppose that l ≤ k−1
2

. In this case, we have a relaxation (P,Q) where P = Hamk{l, k}
and Q = Hamk{0, 1, . . . , k} \ {b} where b /∈ {l, k}. Note that this relaxation does not
contain AT or MAJ as polymorphisms.

2. Suppose that l = k
2
. In this case, we have a relaxation (P,Q) where P = Hamk{l} and

Q = Hamk{0, 1, . . . , k} \ {b} where b /∈ {0, l, k}. This also doesn’t have AT and MAJ as
polymorphisms. Furthermore, we have shown earlier that we can relax this further to earlier
mentioned three PCSPs.

3. Suppose that l ≥ k+1
2

. In this case, we have a relaxation (P,Q) where P = Hamk{0, l} and
Q = Hamk{0, 1, . . . , k} \ {b} where b /∈ {0, l}. Note that this relaxation does not contain
AT or MAJ as polymorphisms.

Thus, we have a relaxation (P,Q) of the original PCSP where P = Hamk{l, l′}, Q = Hamk{0, 1, . . . , k}\
{b} such that l < l′, {l, l′} ̸= {0, k}, b ∈ OMAJ(P). We end up with the same relaxation when
{minS,maxS} ≠ {0, k}.

If {l, l′} = {1, k} or {0, k − 1}, we get a relaxation of the original PCSP where P =

Hamk{1, k}, Q = Hamk{0, 1, . . . , k}\{b}, and we are done. If not, we get a series of relaxations
of the original PCSP maintaining the two below properties:

1. P = Hamk{l, l′} with l < l′ and {l, l′} ̸= {0, k} and Q = Hamk{0, 1, . . . , k} \ {b}. We
also assume that {l, l′} ≠ {1, k} and {l, l′} ≠ {0, k − 1}.

2. AT,MAJ /∈ Pol(P,Q).

As with the earlier case, we update the PCSP using the two relaxations below:

1. We get P ′ = Hamk−1{l, l′} andQ = Hamk−1{0, 1, . . . , k}\{b} using Claim 4.2 of [BG21b].
For this to be a valid relaxation preserving the above properties, we need that l′ ̸= k, b ̸= k

and b ̸= 2l − k + 1.
2. We get P ′ = Hamk−1{l − 1, l′ − 1} and Q = Hamk−1{0, 1, . . . , k} \ {b− 1} using Claim

4.4 of [BG21b]. For this to be a valid relaxation preserving the above properties, we need
that l ̸= 0, b ̸= 0 and b ̸= 2l′ − 1.

As the arity of the predicates is decreasing at each step, this process terminates in finite steps.
When we are unable to obtain a new relaxation using the above procedures, one of the following
must be true.

1. l′ = k, b = 0. In this case, we have a PCSP (P,Q) where P = Hamk{l, k}, Q =

Hamk{1, 2, . . . , k}, where l ̸= 0, l ≤ k−1
2

.
2. b = k, l = 0. This can be relaxed to the above by negating the variables.
3. b = k, b = 2l′ − 1. We have l′ = k+1

2
. In this case, we have PCSP (P,Q) where

P = Hamk{l, k+1
2
}, Q = Hamk{0, 1, 2, . . . , k − 1}, where l ≤ k−1

2
.

4. We have b = 2l − k + 1, b = 0. In this case, we can relax to the above by negating the
variables.

107

Thus, we have relaxed the original PCSP into either of the following PCSPs.

1. k is even, and P = Hamk{k2}, Q = Hamk{0, 1, . . . , k} \ {b} where b ∈ {1, k − 1}.
2. k is odd, P = Hamk{l, k+1

2
}, Q = Hamk{0, 1, 2, . . . , k − 1}, where l ≤ k−1

2
.

3. P = Hamk{l, k}, Q = Hamk{1, 2, . . . , k}, where l ̸= 0, l ≤ k−1
2

.
4. P = Hamk{l}, Q = Hamk{0, 1, . . . , k} \ {0, k − 1} where l ∈ {1, 2, . . . , k − 1}, l ≤ k−1

2
.

5. P = Hamk{1, k}, Q = Hamk{0, 1, . . . , k} \ {b} for arbitrary b.

108

Chapter 7

Revisiting Alphabet Reduction

7.1 Introduction
Constraint Satisfaction Problem (CSP) is a canonical NP-complete problem. Assuming P ̸= NP,
no polynomial time algorithm can find a satisfying assignment to a satisfiable CSP instance. If
we are happy with the easier goal of satisfying a 1− o(1) fraction of constraints, does there exist
an efficient algorithm to do so? Answering this in the negative, the fundamental PCP theorem
[Aro+98; AS98] implies that for some fixed integers k, q ≥ 2 and c < 1, it is NP-hard to find
an assignment satisfying a fraction c of constraints in a satisfiable CSP of arity k over alphabet
{0, 1, . . . , q − 1}. Further this result holds for the combinations (q, k) = (2, 3) and (3, 2). The
PCP theorem lies at the center of a rich body of work that has yielded numerous inapproximability
results, including many optimal ones.

The PCP theorem was originally proved using algebraic techniques such as the low-degree test
and the sum-check protocol. In a striking work, Dinur [Din07] gave an alternative combinatorial
proof of the PCP theorem. Her proof works by amplifying the ‘Unsat value’ of a CSP instance —
the fraction of constraints any assignment should violate. The goal is to show that it is NP-hard
to distinguish if the Unsat value of a CSP instance is equal to 0 or at least a constant c > 0.
Starting with a NP-hard problem such as 3-coloring with m constraints, we can already deduce
that it is NP-hard to identify if Unsat value is equal to 0 or at least 1/m. The Unsat value is
increased slowly and iteratively via two steps — gap amplification and alphabet reduction. In gap
amplification, we incur a constant factor blow up in the size of the instance, and get a constant
factor improvement in the Unsat value. However, this step also blows up the alphabet size. To
alleviate this, alphabet reduction brings back the alphabet size to an absolute constant while
losing a constant factor in the Unsat value (and blows up the instance size by a constant factor).
Combining both the steps, we can increase the Unsat value by a constant factor (say 2) incurring
a constant factor blow up in the size of the instance. Repeating this logm times proves the PCP
theorem.

In this chapter, we revisit the alphabet reduction step. Dinur implemented this step by an
“inner” PCP construction, which is in effect a gadget reducing a specific predicate ψ to be tested
to a collection Ψ of constraints over a fixed (say Boolean) alphabet, such that if ψ is unsatisfiable,

109

then a constant fraction of constraints of Ψ must be violated by any assignment.1 This inner PCP
is then applied to all constraints in the CSP instance (say G) produced by the gap amplification
step. The collection of inner PCPs as such only ensure that each constraint of G is individually
satisfiable, which is not very meaningful. To ensure that the inner PCPs together ensure that the
constraints of G are all satisfiable by a single consistent assignment, error-correcting codes are
used to encode the purported assignments to the variables of G. The inner PCP is also replaced by
an Assignment Tester that ascertains whether the specific assignment given by these encodings
satisfies the predicate ψ being checked.

The key observation driving this work is that instead of designing the inner PCP for arbitrary
constraints (as in Dinur’s paper), we can first reduce the CSP instance G produced by gap
amplification to a Label Cover instance. Label Cover is a special kind of CSP which has arity
2, and whose underlying relations are functions (so the value of one of the variables in each
constraint is determined by the value taken by the other variable in that constraint). Conveniently
for us, we also observe that Dinur’s gap amplification step in fact already produces a CSP with
this Label Cover structure, allowing us to skip the reduction step.2 We can thus focus on alphabet
reduction when the CSP we are reducing from has the Label Cover structure, and is over a fixed,
albeit large, alphabet. We then follow the influential Label Cover and Long Code framework,
originally proposed in [BGS98] and strengthened in [Hås01] and since then applied in numerous
works on inapproximability, to reduce the CSP obtained from gap amplification, now viewed
as Label Cover, to a Boolean CSP. Finally, we reduce the Boolean CSP back to a Label Cover
instance (see Section 7.4) that can be plugged in as input to the gap amplification step.

Our main result is the following, which can be viewed as reproving a case of alphabet reduction
from [DR06; Din07].
Theorem 107. There is a polynomial time reduction from Label Cover with soundness 1− δ to
a fixed template CSP with soundness 1− Cδ for an absolute constant C > 0.

We analyze our reduction using Fourier analysis as pioneered by Håstad [Hås01]. Usually,
in this framework, we reduce from low soundness Label Cover to strong (and at times optimal)
soundness of CSP. But here we start with a high soundness Label Cover, and we reduce to high
soundness CSP.

We highlight a couple of differences from previous works that make our proof easier:

• We have the freedom to choose any CSP rather than trying to prove inapproximability of
a CSP. We choose the following 4-ary predicate R in our reduction: (u, v, w, x) ∈ R if and
only if u ̸= v ∨ w ̸= x. This predicate appears in [Hås01] in the context of proving optimal
hardness for NAE-4SAT.

• In [Hås01] and [BGS98], the objective is to prove optimal inapproximability, or at least to

1While this might seem circular, as this is what the PCP reduction is trying to accomplish in the first place, the
key is that this inner reduction can be highly inefficient (even triply exponential blow up is okay!), as it is applied to a
constraint of constant size.

2Technically, the gap amplification step produces a version of Label Cover whose constraints are rectangular
rather than functions, but this is a minor difference that can be easily accommodated in reductions from Label Cover.

110

get good soundness. However, our present goal is to prove ‘just’ a nontrivial soundness.
(On the other hand, we also start with high soundness Label Cover.) This allows us to use
a very convenient test distribution leading to a simple analysis.

• We remark that a similar statement as Theorem 107 can be also deduced using [BGS98,
Section 4.1.1]. We believe that the test presented in this chapter is more direct since we
benefit from ideas in [Hås01].

• It is possible to perform alphabet reduction using the Hadamard code instead of the long
code as described in [GO05; RS07]; the latter [RS07], similarly to our proof, avoids explicit
use of Assignment Testers.

• Long code tests correspond exactly to testing whether a function is a polymorphism of
the corresponding CSP, and as such corresponds to gadget reductions in the algebraic
approach to CSP (see e.g. [BKW17]). The PCP theorem surpasses these algebraic (gadget)
reductions; this is even more evident when extending the scope from CSPs to promise
constraint satisfaction problems (PCSPs) as there are PCSPs that can be shown to be
NP-hard by using PCP theorem via a natural reduction through Label Cover, but cannot be
shown to be NP-hard using only algebraic reductions [AGH17; Bar+21]. In this sense, the
present work shows that this strength of the PCP theorem comes from the Gap Amplification
step.

Alphabet Reduction is an essential step in both the original proof of the PCP theorem as well
as Dinur’s proof and deserves further attention. Our proof of alphabet reduction bypasses the
concept of Assignment Testers and is more intuitive in our opinion as it is nothing but a gadget
reduction. Our proof is elementary using only Parseval’s identity from Fourier Analysis over
the hypercube. Dinur’s analysis used the Friedgut-Naor-Kalai theorem [FKN02] about Boolean
functions with most of the Fourier mass at level 1. We believe that this makes our proof more
accessible to readers that are new to PCPs. We also hope that this material might be useful in
teaching the proof of PCP theorem as it relies only on techniques that any such basic course would
cover anyway.

Outline

We start by formally defining CSP, Label Cover, and other preliminaries in Section 7.2. Then, in
Section 7.3, we prove the main reduction from Label Cover to CSP. In Section 7.4, we show how
the reduction can be used in the alphabet reduction step of Dinur’s proof.

7.2 Preliminaries

7.2.1 Rectangular relation and the long code

In this chapter, we view the Label Cover problem as a binary CSP with the relations being
projections. More generally, we consider Label Cover instances where the relations are rectangular.

111

Definition 108 (Rectangular relation). A relation R ⊆ A×B is said to be rectangular if there is
a set C and functions π : A→ C and σ : B → C such that (a, b) ∈ R if and only if π(a) = σ(b).
Equivalently, R is rectangular if for all a, a′ ∈ A and b, b′ ∈ B such that (a, b) ∈ R, (a, b′) ∈ R,
and (a′, b) ∈ R, we have (a′, b′) ∈ R.

Long code is often used in conjunction with the Label cover problem to obtain inapproximabil-
ity results. Loosely speaking, the long code is the longest (error-correcting) code over the Boolean
alphabet that does not repeat bits. It is constructed as follows: the long code is a Boolean code of
length 2n which encodes a value i ∈ [n] into a tuple pi whose k-th coordinate, k < 2n, is the i-th
least significant digit of k in binary.

The long code be also described in another way: we view a Boolean tuple of length 2n as
an n-ary function p : {0, 1}n → {0, 1} (each coordinate of the tuple encodes one value of p). In
this perspective, the code words of the long code are functions pi defined as pi(x1, . . . , xn) = xi.
These functions are often called dictators.

We also remark that in the conjunction with the long-code, a rectangular constraint can
be expressed as an identity. More precisely, given a rectangular relation R ⊆ [n] × [m], say
R = {(i, j) : π(i) = σ(j)} for some π : [n]→ [k] and σ : [m]→ [k], then the long codes pi and
pj of values i, j satisfy

pi(xπ(1), . . . , xπ(n)) = pj(xσ(1), . . . , xσ(m))

for all x1, . . . , xk ∈ {0, 1} if and only if (i, j) ∈ R. This is a key property of rectangular relations
that is used implicitly in our proof.

7.2.2 Boolean Fourier analysis
As usual in Boolean Fourier analysis, we treat TRUE as −1 and FALSE as +1. In particular, in this
notation, ‘negation’ is expressed as ¬x = −x, ‘xor’ x⊕ y is expressed as x⊕ y = xy, and ‘or’ is
the expressed by the following function:

x ∨ y =

{
−1 if x = −1 or y = −1, and

1 otherwise.

We will use all the same symbols to denote the coordinatewise (or bitwise) application of these
functions to tuples, e.g. (x1, x2)⊕ (y1, y2) = (x1y1, x2y2).

We define an inner product space on functions from {−1,+1}n → R as ⟨f, g⟩ = Ex[f(x)g(x)].
For a set α ⊆ [n], let

χα(x1, . . . , xn) =
∏
i∈α

xi.

The set of such functions form an orthonormal basis for all functions from {−1,+1}n to R in the
above defined inner product space. Moreover, if α ̸= ∅, then Ex[χα(x)] = 0.
Definition 109 (Fourier expansion). Given a function f : {−1,+1}n → R, we can thus write it
uniquely as a linear combination of this basis—

f =
∑
α⊆[n]

f̂(α)χα

112

The real quantities f̂(α) are called the Fourier coefficients of f . We abuse the notation f̂(i) to
denote f̂({i}).

The following simple but crucial identity follows from the definitions and is all that we will
need in our analysis.
Theorem 110 (Parseval’s Identity). For each Boolean valued function f , i.e., f : {−1,+1}n →
{−1,+1}, ∑

α⊆[n]

f̂(α)2 = 1.

Connection to the long code

We remark, that the function χ{i} corresponds to a valid long code: the function pi encoding the
value i. Also observe that there is a connection between the natural distance defined by the inner
product ⟨f, g⟩ on Boolean functions and relative Hamming distance of f and g: This is thanks to
the fact that if x, y ∈ {−1, 1} then x = y if and only if xy = 1, and consequently, the relative
Hamming distance of f to the long code word pi = χ{i} can be expressed as

(
1− f̂(i)

)
/2. This

means that the closest valid long code to a function f is the pi for which f̂(i) is maximal.
These ideas are manifested in the common strategy in rounding a Boolean function f to a long

code: First make sure that coefficients f̂(α) for large sets α are small enough, then decode to a
value i that belongs to a small-enough (ideally 1-element) set α with a large-enough f̂(α).

7.3 Label Cover to CSP

This section describes our gadget reduction from Label Cover to CSP(R) where R is the 4-ary
relation over Boolean domain defined as

R = {(x, x′, z, z′) | x ̸= x′ ∨ z ̸= z′}.

Theorem 111. There exists absolute constant C such that given a Label Cover instance (not
necessarily bipartite) G = (V,E,Σ,Π) with rectangular constraints, there is a reduction from G

that outputs an instance I of CSP(R) such that size(I) = O(size(G)) and
• If G is satisfiable, then I is satisfiable as well.
• If no labeling can satisfy 1− δ fraction of constraints of G, then no assignment can satisfy
1− Cδ fraction of constraints in I for all δ.

Since the domain of CSP(R) is Boolean, the above reduces from an alphabet Σ of arbitrary
size to the alphabet of size 2. We note that the constant in O(size(G)) above hides exponential
dependency on |Σ|.

We describe the reduction as a probabilistic checker of a solution to G encoded using a long
code, i.e., the proof contains for each u ∈ V a word fu : {−1, 1}|Σ| → {−1, 1}. In other words,
we design the test in such a way that if s : V → Σ is a solution to G, then the assignment
fu 7→ ps(u) passes the test. This will then immediately give the completeness of the reduction.

113

The test is as follows: Sample an edge e = (u, v) from E uniformly at random, and then with
equal probability do one of the following

1. run a long code test inside fu;

2. run a long code test inside fv;

3. run a constraint test between fu and fv.
We describe the long code test and the constraint test below. Both query the respective tables of
fu and fv at some 4 bits that are generated by a certain randomized algorithm, and then check
whether these 4 Boolean values satisfy the predicate R defined above.

This checker can be viewed as a gadget reduction in the following sense: We replace each
vertex u ∈ V with 2|Σ| Boolean variables labeled by fu(x) for x ∈ {−1, 1}|Σ| (we see an
assignment to such variables as a function fu : {−1, 1}|Σ| → {−1, 1}), and each edge e = (u, v)

with a set of weighted 4-ary constraints on fu and fv, each involving the relation R and some 4

values of fu and fv (the result is therefore an instance of CSP(R)). These constraints depend only
on the relation Πe.

To simplify some notation, we assume Σ = [n]. We also assume that the tables for fu’s are
folded so fu is forced to satisfy f(−x) = −f(x). This is a standard technique. Such a folding
is ensured by including only one variable of each pair x,−x, and if the test queries fu at the bit
corresponding to some x that is not included, the bit f(−x) is queried instead, and the value is
negated. As a consequence of this folding, we have to allow for negation of variables in CSP(R).
An important and useful consequence of this is that all ‘even’ Fourier coefficients of f vanish,
i.e., f̂(β) = 0 for all β such that |β| is even. We remark that folding can be avoided in the
construction of the gadget. Nevertheless, it considerably simplifies the calculations below. Further,
for calculations, it is useful to view R as a predicate ρ : {±1}4 → {0, 1} defined as

ρ(x, x′, z, z′) = 1− (xx′ + 1)(zz′ + 1)

4
.

It is easy to check that ρ(x, x′, z, z′) = 1 if and only if (x, x′, z, z′) ∈ R.
Let us now describe the two probabilistic checkers.

7.3.1 Long code test
The long code test has on input a table of a function f (= fu or fv), and it is supposed to check
whether this function is a code word of the long code, i.e., there is i such that f = pi. We design
the test so that all these words pass with probability 1. Since we are only using the predicate R,
this further limits possible checks. In fact, we include all checks of the form f(x1, x2, x3, x4) ∈ R
that are passed by all dictators.3

Long code test. Given f : {−1, 1}n → {−1, 1} to test against being a long code word.
Choose x, y, z, µ ∈ {−1, 1}n uniformly at random. Test whether

(f(x), f(x⊕ (µ ∨ y)), f(z), f(z ⊕ (µ ∨ ¬y))) ∈ R. (7.1)
3Any function that passes any such test with probability 1 is called a polymorphism of R, see also [BKW17].

114

Note that for all x, y, z, µ ∈ {−1, 1}, (x, x⊕(µ∨y), z, z⊕(µ∨¬y)) ∈ R. This implies that any
dictator function passes the test with probability 1, and therefore provides the completeness of the
test. We also note that this test can give some false positives, e.g. the function −pi : x 7→ −pi(x)
passes the test with probability 1, but is not a long code word. It is in fact a negation of the word
pi. It can be checked that all functions that pass are either long code words, or their negations. In
the decoding, we simply decode the above function f to i.

The following lemma bounds the probability that the test accepts in the means of the Fourier
coefficients. We remark, that since we want to ensure that f is as close to a valid long code as
possible, the probability should decrease as the coefficients f̂(α) for α ̸= {i} increase. Indeed,
the lemma states that this is the case.
Lemma 112. Assuming that f is folded, the probability the long code test accepts is at most

1− 3

16

∑
|α|>1

f̂(α)2.

Proof. Assume f(x) =
∑

α f̂(α)χα(x). The probability that the test accepts is

Ex,y,z,µρ(f(x),f(x⊕ (µ ∨ y)), f(z), f(z ⊕ (µ ∨ ¬y))) (7.2)

= Ex,y,z,µ

[
1−

(
f(x)f(x⊕ (µ ∨ y) + 1

)(
f(z)f(z ⊕ (µ ∨ ¬y)) + 1

)
4

]
=

3

4
− 1

4
Ex,y,µf(x)f(x⊕ (µ ∨ y))− 1

4
Ey,z,µf(z)f(z ⊕ (µ ∨ ¬y))

− 1

4
Ex,y,z,µf(x)f(x⊕ (µ ∨ y))f(z)f(z ⊕ (µ ∨ ¬y))

We further simplify this expression one term at a time.

Ex,y,µf(x)f(x⊕ (µ ∨ y)) = Ex,y,µ

∑
α,β

f̂(α)f̂(β)χα(x)χβ(x⊕ (µ ∨ y)) (7.3)

=
∑
α,β

f̂(α)f̂(β)Ex[χα(x)χβ(x)]Ey,µ[χβ(µ ∨ y)]

=
∑
α

f̂(α)2Ey,µ[χα(y ∨ µ)] =
∑
α

f̂(α)2(−1/2)|α|.

The third equality follows since χα and χβ are orthogonal if α ̸= β. The last equality follows from
the fact that Ey,µ[y∨µ] = (−1) · 3/4+1 · 1/4 = −1/2 and coordinates are chosen independently.
Similarly, we get that

Ey,z,µf(z)f(z ⊕ (µ ∨ ¬y)) =
∑
α

f̂(α)2(−1/2)|α|. (7.4)

Moving to the next term, we get

Ex,y,z,µf(x)f(x⊕ (µ ∨ y))f(z)f(z ⊕ (µ ∨ ¬y))

=
∑
α,β

f̂(α)2f̂(β)2Ey,µχα(µ ∨ y)χβ(µ ∨ ¬y) =
∑

α∩β=∅

f̂(α)2f̂(β)2(−1/2)|α∪β|. (7.5)

115

The last equality follows since Ey,µ[(µ ∨ y) ⊕ (µ ∨ ¬y)] = Ey,µ[¬µ] = 0 and Ey,µ[µ ∨ y] =
Ey,µ[µ ∨ ¬y] = −1/2. The overall acceptance probability is then

3

4
− 1

2

∑
α

f̂(α)2(−1/2)|α| − 1

4

∑
α∩β=∅

f̂(α)2f̂(β)2(−1/2)|α∪β|

= 1− 1

2

∑
α

f̂(α)2
(
(−1/2)|α| + 1/2

)
− 1

4

∑
α∩β=∅

f̂(α)2f̂(β)2(−1/2)|α∪β| (7.6)

where for the last equality, we used Parseval’s identity. Further, we assumed that f is folded,
and therefore f̂(α) = 0 for all α such that |α| is even. Restricting the sums to α and β with odd
cardinality, and using that for such disjoint α and β, |α ∪ β| is even, the last expression of (7.6)
can be bounded from above by

1− 1

2

∑
|α|>1

f̂(α)2 (3/8)− 1

4

∑
α∩β=∅

f̂(α)2f̂(β)2(1/2)|α∪β| ≤ 1− 3

16

∑
|α|>1

f̂(α)2 (7.7)

which concludes the proof.

7.3.2 Constraint test
The constraint test has on input tables for functions f and g corresponding to some u and v such
that (u, v) ∈ E, and it is supposed to test (assuming f and g are correct long code words) whether
the values these functions encode satisfy the constraint given by a rectangular relation Πe. We
construct the test in a similar way as the long code test: We test functions f and g in 4 bits in such
a way that long code words encoding satisfying values pass. In contrast with the long code test,
we do not include all such tests, but only a selection; in particular, we include only tests that query
two values from each function.

We assume that the constraint relation Πe is given by π, σ : [n]→ [m] such that (i, j) ∈ Πe if
and only if π(i) = σ(j), and we denote by yπ the vector in {−1, 1}n such that yπ(i) = y(π(i)).

Constraint test. Given f, g : {−1, 1}n → {−1, 1} to test against satisfying a constraint Πe

given by (i, j) ∈ Πe if and only if π(i) = σ(j) for fixed π, σ : [n]→ [m]. Choose x, z ∈ {−1, 1}n
and y ∈ {−1, 1}m uniformly at random, and test whether

(f(x), f(x⊕ yπ), g(z), g(z ⊕ (¬y)σ)) ∈ R. (7.8)

Note that if both f and g are dictators, say f = pi and g = pj , such that π(i) = σ(j) = k then
the above test accepts with probability 1. Indeed, the tuple gets evaluated to

(x(i), (x⊕ yπ)(i), z(j), (z ⊕ (¬y)σ)(j)) = (x(i), x(i)⊕ y(k), z(j), z(j)⊕ ¬y(k))

which is in R for all x, y and z. This provides the completeness of the test.
In the analysis below, we will use the following notation.

116

Definition 113. Let α ⊆ [n] and π : [n] → [m], we denote by π[α] the subset of [m] defined by
π[α] = {k : |π−1(k) ∩ α| is odd}.

The goal of the constraint check is to ensure that functions f , g which are far from valid long
codes that encode values satisfying the constraint pass with low probability. Unfortunately, the test
gives a lot of false positives: it accepts any pair of functions χα and χβ such that π[α] = σ[β] with
probability 1.4 This is nevertheless good-enough since the long code test provides that relevant α
and β contain only one element, and π[{i}] = σ[{j}] if and only if π(i) = σ(j).

Naturally, the pairs of α and β with π[α] = σ[β] will appear in the analysis below. A
useful fact that will simplify the computation below is that

∏
i∈α xπ(i) =

∏
i∈π[α] xi, for all

x1, . . . , xm ∈ {−1, 1}, which implies that

χα(x
π) = χπ[α](x).

Lemma 114. Given that both f and g are folded, the probability that the consistency test accepts
is at most

1− 1

4

∑
i,j:π(i) ̸=σ(j)

f̂(i)2ĝ(j)2.

Proof. We can compute the acceptance probability in the same way as before, i.e., as

3

4
− 1

4
Ex,y[f(x)f(x⊕ yπ)]−

1

4
Ez,y[g(z)g(z ⊕ (¬y)σ)]

− 1

4
Ex,y,z[f(x)f(x⊕ yπ)g(z)g(z ⊕ (¬y)σ)] (7.9)

We have

Ex,y[f(x)f(x⊕ yπ)] =
∑
α

f̂(α)2Ey[χα(y
π)] =

∑
α

f̂(α)2Ey[χπ[α](y)] = 0 (7.10)

where the last equality holds since |α| is odd, and consequently π[α] ̸= ∅. Similarly, Ex,z[g(z)g(z⊕

4We note that π[α] = σ[β] is equivalent to χα(xπ(1), . . . , xπ(n)) = χβ(xσ(1), . . . , xσ(n)) for all x ∈ {−1, 1}m.

117

(¬y)σ)] vanishes. Thus the probability that the test accepts is

3

4
− 1

4
Ex,y,zf(x)f(x⊕ yπ)g(z)g(z ⊕ (¬y)σ) (7.11)

=
3

4
− 1

4

∑
α,β

f̂(α)2ĝ(β)2Ey[χα(y
π)χβ(−yσ)]

=
3

4
+

1

4

∑
α,β

f̂(α)2ĝ(β)2Ey[χα(y
π)χβ(y

σ)]

=
3

4
+

1

4

∑
α,β

f̂(α)2ĝ(β)2Ey[χπ[α](y)χσ[β](y)]

=
3

4
+

1

4

∑
α,β:π[α]=σ[β]

f̂(α)2ĝ(β)2

= 1− 1

4

∑
α,β:π[α] ̸=σ[β]

f̂(α)2ĝ(β)2

where the second equality follows from |β| being odd, and the last equality follows from the
Parseval’s identity. Since π(i) = σ(j) implies that π[{i}] = σ[{j}], the claim follows.

7.3.3 The full test

Putting the analysis of the two tests together we get the following.
Lemma 115. Given that both f and g are folded, the probability that the joint test accepts is at
most

1− 1

16

(∑
|α|>1

f(α)2 +
∑
|β|>1

g(β)2 +
∑

i,j:π(i) ̸=σ(j)

f̂(i)2ĝ(j)2
)

Proof. Follows directly from Lemmas 112 and 114.

Finally, we are ready to prove the main theorem of this section.

Proof of Theorem 111. The completeness follows in a straightforward way from the two com-
ments after the description of the tests. We prove the soundness. Suppose that the test passes with
probability 1− δ. We will show that this implies that there is an assignment to the Label Cover
instance that satisfies (1− 16δ)-fraction of constraints.

Our decoding is as follows: for a node v ∈ V , decode v to i ∈ Σ with probability proportional
to f̂v(i)2. Intuitively, we decode to the value i with higher probability if f is closer to the code
word pi = χ{i} or its negative −pi (see also Section 7.2.2). We will show that in expectation, this
decoding satisfies at least 1− 16δ fraction of constraints, which proves that there exists a labeling
that satisfies at least 1− 16δ fraction of constraints.

Let 1− δe denote the probability that the test passes when we pick edge e. As test passes with
probability 1− δ, we know that Ee[δe] = δ. Suppose that we pick e = (u, v) with f and g being

118

the functions corresponding to u and v respectively. From the above lemma, we have that

1− δe ≤ 1− 1

16

(∑
|α|>1

f̂(α)2 +
∑
|β|>1

ĝ(β)2 +
∑

i,j:π(i)̸=σ(j)

f̂(i)2ĝ(j)2
)
, (7.12)

and therefore,
16δe ≥

∑
|α|>1

f̂(α)2 +
∑
|β|>1

ĝ(β)2 +
∑

i,j:π(i)̸=σ(j)

f̂(i)2ĝ(j)2. (7.13)

The probability that our decoding satisfies edge e of Label Cover is at least∑
i,j:π(i)=σ(j)

f̂(i)2ĝ(j)2 = 1−
∑
α,β

|α|>1, or |β|>1, or α={i} and β={j} and π(i)̸=σ(j)

f̂(α)2ĝ(β)2 (7.14)

≥ 1−
∑
α,β

|α|>1

f̂(α)2ĝ(β)2 −
∑
α,β
|β|>1

f̂(α)2ĝ(β)2 −
∑
i,j

π(i)̸=σ(j)

f̂(i)2ĝ(j)2

= 1−
∑
|α|>1

f̂(α)2 −
∑
|α|>1

ĝ(α)2 −
∑

i,j:π(i) ̸=σ(j)

f̂(i)2ĝ(j)2

≥ 1− 16δϵ

where the first equality follows from Perseval’s identity. Thus, the expected number of constraints
satisfied by the labeling is at least Ee[1− 16δe] = 1− 16δ which proves the required claim with
C = 1/16.

Theorem 107 is stated without the assumption that the constraints are rectangular. This slightly
more general version follows from Theorem 111 by a standard reduction which we describe below,
in the proof of Theorem 116.

7.4 CSP to Label Cover
In this section, we recall the basic structure of Dinur’s proof of PCP Theorem, and show how
the previous reduction can be used in the alphabet reduction step of Dinur’s proof. The resulting
proof requires a gap amplification step for which we refer to Dinur’s paper [Din07].

We first prove that the previous reduction can be combined with standard reductions to get
back Label Cover from the CSP.
Theorem 116 (Alphabet reduction). Given a Label Cover instance G = (V,E,Π,Σ0) with
rectangular constraints, there is a polynomial time reduction that outputs another Label Cover
instance with rectangular constraints G′ = (V ′, E ′,Π′,Σ) with alphabet size Σ such that |Σ| is
an absolute constant, size(G′) = O(size(G)) and

• If G is satisfiable, then G′ is satisfiable as well.
• If every labeling violates δ fraction of constraints of G, then every labeling violates Cδ

fraction of constraints in G′ for an absolute constant C.

119

Proof. We first convert the Label Cover instance G to a CSP instance I as in Theorem 111. The
CSP instance can be converted to bipartite Label Cover using standard clause-variable Label-
coverization technique. We include the proof here for the sake of completeness. We have n vertices
x1, x2, . . . , xn corresponding to the variables of I on the left L, and m vertices corresponding to
constraints C1, C2, . . . , Cm of I on the right R. The label set is binary on the left, and satisfying
assignments (at most 16) on the right corresponding to the possible assignments to four variables
in the constraint. We add an edge between u ∈ L and v ∈ R if xu ∈ Cv. The constraint on this
edge enforces that the assignment to xu is consistent with the assignment Cv assigns to xu.

If there is a satisfying labeling to G, there is a satisfying assignment to I . Using this, we
can assign the variables on the left the satisfying assignment, and the corresponding assignment
to tuples for the vertices of constraints on the right, and thus get a satisfying assignment to G′.
Suppose that every labeling violates at least δ fraction of constraints of G. From Theorem 111,
every assignment violates at least Cδ fraction of constraints in I . Suppose there is a labeling
to G′ that satisfies δ′ fraction of constraints. Consider the assignment obtained by this labeling
on the left. This assignment violates at least Cδm number of constraints in I . Note that this
should violate at least Cδm constraints in G′ and thus δ′ ≥ C ′δ for an absolute constant C ′. The
constraints are in fact projections, and thus are rectangular too.

In order for us to use this as Composition step in the PCP of Dinur, we need the final
observation that the output of Gap Amplification applied to a CSP with rectangular constraints
results in a Label Cover with rectangular constraints. Dinur achieves gap amplification by ‘graph
powering’ which is described more formally below.
Definition 117 (Constraint Graph Powering). Given a d-regular Label Cover (a.k.a. Constraint
graph) G = (V,E,Σ,Π), we obtain t-th power of it Gt = (V,E ′,Σ′,Π′) as follows:

• Vertices. The vertices in Gt are the same as vertices in G.
• Edges. u and v are connected by k parallel edges in E ′ if there are exactly k paths of length
t between u and v in G.

• Alphabet. The alphabet of Gt is Σd⌈t/2⌉ . A value a ∈ Σd⌈t/2⌉ is interpreted as assigning
values a : Γ(u)→ Σ to d⌈t/2⌉ elements from Σ. This value is treated as u’s opinion on Γ(u),
the set of all vertices within ⌈t/2⌉ distance from u.

• Constraints. An edge (u, v) ∈ E ′ is satisfied by a, b ∈ Σd⌈t/2⌉ if and only if the following
holds: there is an assignment σ : Γ(u)∪Γ(v)→ Σ that satisfies every constraint c(e) where
e ∈ E ∩ (Γ(u)× Γ(v)), and such that

∀u′ ∈ Γ(u), σ(u) = au′ ; ∀v′ ∈ Γ(v), σ(v) = bv′

where au′ (and respectively bv′) is the value a (and resp. b) assigned to u′ (and resp. v′).
The output Gt is also a binary CSP, and hence can be viewed as a Label Cover. We claim

that if every constraint of G is rectangular, then every constraint of Gt is rectangular as well. Let
e = (u, v) be an edge in E ′ with constraint relation as Re. Suppose (a, b), (a′, b), (a, b′) ∈ Re.
This implies that for all (u′, v′) ∈ E ∩ (Γ(u)× Γ(v)) with constraint relation ce,

(au′ , bv′), (a
′
u′ , bv′), (au′ , b′v′) ∈ Rce .

120

Since Rce is rectangular, (a′u′ , b′v′) ∈ Rce as well. As this holds for all such u′ and v′, (a′, b′) ∈ Re,
thus proving that Re is a rectangular relation.

Combined with the preprocessing step, the gap amplification theorem of Dinur can be rewritten
as follows.

Theorem 118 (Gap amplification). Fix a parameter t. Given a Label Cover G = (V,E,Π,Σ)

where Σ is an absolute constant, there is a polynomial time reduction to output a rectangular
Label Cover instance G′ = (V ′, E ′,Π′,Σ′) with the alphabet size |Σ′| = c(|Σ|, t) such that

• If G is satisfiable, G′ is satisfiable as well.
• If every labeling violates at least δ fraction of the constraints of G, then every labeling

violates at least Ω(δ
√
t) fraction of the constraints of G′.

Choosing t large enough constant and iterating Theorem 116 and Theorem 118 log(m) times
proves the PCP theorem.

7.5 Derandomization of the gadget decoding

In this appendix, we provide a derandomization of the decoding used in Theorem 111. This
requires only a little additional argument. The idea is, instead of decoding to i with probability
f̂(i)2, to decode to the i with the largest f̂(i)2. We set if to be such i. In this light, the reduction
can be analyzed by analyzing completeness and soundness of the gadget separately without
considering the rest of the instance. The following lemma then shows that the gadget has perfect
completeness and soundness 99% not depending on the parameters n and m (the alphabet sizes),
π and σ.

Lemma 119. There is a gadget with inputs n, m, k, π : [n]→ [k], and σ : [m]→ [k] that produces
an instance of CSP(R) with variables f(a1, . . . , an) and g(a1, . . . , am) such that

1. if π(i) = σ(j) then pi and pj satisfy all the constraints, and

2. if at least 99% of the constraints are satisfied, then π(if) = σ(ig).

Proof. First, we bound the probability that the test accepts. For the long code test, starting with
the first expression in (7.7), we obtain the following bound.

1− 1

2

∑
|α|>1

f̂(α)2 (3/8)− 1

4

∑
α∩β=∅

f̂(α)2f̂(β)2(1/2)|α∪β|

≤1− 3

16

∑
|α|>1

f̂(α)2 − 1

16

∑
i ̸=j

f̂(i)2f̂(j)2

For the consistency test, we use the bound from Lemma 114. Thus the overall probability that the

121

whole test accepts is at most

1− 1

16

∑
|α|>1

f̂(α)2 − 1

48

∑
i ̸=j

f̂(i)2f̂(j)2 − 1

16

∑
|α|>1

ĝ(α)2 − 1

48

∑
i ̸=j

ĝ(i)2ĝ(j)2

− 1

12

∑
i,j:π(i)̸=σ(j)

f̂(i)2ĝ(j)2.

Given that the acceptance probability is at least 99% > 1− 1/96, we get that∑
|α|>1

f̂(α)2 ≤ 1/6 (7.15)

∑
i ̸=j

f̂(i)2f̂(j)2 ≤ 1/2 (7.16)∑
|α|>1

ĝ(α)2 ≤ 1/6 (7.17)

∑
i ̸=j

ĝ(i)2ĝ(j)2 ≤ 1/2 (7.18)∑
i,j:π(i)̸=σ(j)

f̂(i)2ĝ(j)2 ≤ 1/8 (7.19)

From Parseval’s identity and (7.15), we get that 1 ≥
∑

i f̂(i)
2 ≥ 5/6. Recall that if is such i

that f̂(i)2 is maximal. Then using the above and (7.16), we obtain that

f̂(if)
2 ≥ f̂(if)

2
∑
i

f̂(i)2 ≥
∑
i

f̂(i)4 =
∑
i,j

f̂(i)2f̂(j)2 −
∑
i ̸=j

f̂(i)2f̂(j)2

≥ (5/6)2 − 1/2 = 4/9. (7.20)

Similarly, from (7.17) and (7.18), we get ĝ(ig)2 ≥ 4/9. Finally, since f̂(if)2ĝ(ig)2 ≥ (4/9)2 >

1/8, we have that π(if) = σ(ig) otherwise (7.19) cannot be true.

Theorem 111 can be also directly obtained from this lemma albeit with a worse constant than
in the above proof: Let C = 1% and assume that δ < 1. Given that the resulting CSP instance
has an assignment fails no more than Cδ-fraction of the constraints, we derive that in at least
(1− δ)-fraction of the gadgets, no more than C-fraction of constraints are unsatisfied. Lemma 119
then shows that the assignment s : u 7→ ifu is an assignment of the Label Cover instance that
satisfies all the constraints corresponding to these gadgets. This completes the proof.

122

Part II

Structured instances

123

Chapter 8

Multidimensional Packing and Scheduling
Problems

8.1 Introduction

Bin Packing and Multiprocessor Scheduling (also known as Makespan Minimization) are some of
the most fundamental problems in Combinatorial Optimization. They have been studied intensely
from the early days of approximation algorithms and have had a great impact on the field. These
two are packing problems where we have n jobs with certain sizes, and the objective is to pack
them into bins efficiently. In Bin Packing, each bin has unit size and the objective is to minimize
the number of bins, while in Multiprocessor Scheduling, we are given a fixed number of bins and
the objective is to minimize the maximum load in a bin. These problems are well understood in
terms of approximation algorithms: both the problems are NP-hard, and have a Polynomial Time
Approximation Scheme (PTAS) [VL81; HS87].

In this chapter, we study the approximability of the multidimensional generalizations of these
problems. The corresponding problems are Vector Bin Packing and Vector Scheduling. Apart
from their theoretical importance, these problems are widely applicable in practice [Spi94; ST12;
Pan+11] where the jobs often have multiple dimensions such as CPU, Hard disk, memory, etc.

In the Vector Bin Packing problem, the input is a set of n vectors in [0, 1]d and the goal is to
partition the vectors into the minimum number of parts such that in each part, the sum of vectors
is at most 1 in every coordinate. The problem behaves differently from Bin Packing even when
d = 2: Woeginger [Woe97] proved1 that there is no asymptotic2 PTAS for 2-dimensional Vector
Bin Packing, assuming P ̸= NP. On the algorithmic front, the PTAS for Bin Packing [VL81]
easily implies a d + ϵ approximation for Vector Bin Packing. When d is part of the input, this

1Very recently, Ray [Ray21] found an oversight in Woeginger’s original proof and gave a revised APX hardness
proof for the problem.

2The asymptotic approximation ratio (formally defined in Section 8.2) of an algorithm is the ratio of its cost and
the optimal cost when the optimal cost is large enough. All the approximation factors mentioned in this chapter for
Vector Bin Packing are asymptotic.

125

is almost tight: there is a lower bound of d1−ϵ shown by [CK04]3. When d is a fixed constant4,
much better algorithms are known [CK04; BCS09; BEK16] that get ln d+O(1) approximation
guarantee. However, the best hardness factor (for arbitrary constant d) is still the APX-hardness
result of the 2-dimensional problem due to Woeginger from 1997.

Closing this gap, either by obtaining a O(1) factor algorithm or showing a hardness factor that
is a function of d, has remained a challenging open problem. It is one of the ten open problems in
a recent survey on multidimensional scheduling problems [Chr+17]. It also appeared in a recent
report by Bansal [Ban17] on open problems in scheduling. In fact, to the best of our knowledge,
super constant integrality gap instances for the configuration LP relaxation of the problem were
also not known. For the integer instances i.e. when the vectors are from {0, 1}d (which are the
hard instances for Vector Scheduling and Vector Bin Covering), there is an asymptotic PTAS
since there are Od(1) item types.

In the Vector Scheduling problem, given a set of n vector jobs in [0, 1]d, and m identical
machines, the objective is to assign the jobs to machines to minimize the maximum ℓ∞ norm
of the load on the machines. Chekuri and Khanna [CK04] introduced the problem as a natural
generalization of Multiprocessor Scheduling and obtained a PTAS for the problem when d is a fixed
constant. When d is part of the input, they obtained a O(log2 d) factor approximation algorithm.
They also showed that it is NP-hard to obtain a C factor approximation algorithm for the problem,
for any constant C. Meyerson, Roytman, and Tagiku [MRT13] gave an improved O(log d) factor
algorithm while the current best factor is O

(
log d

log log d

)
due to Harris and Srinivasan [HS19] and

Im, Kell, Kulkarni, and Panigrahi [Im+19]. The algorithm of Harris and Srinivasan [HS19] works
for the more general setting of unrelated machines where each job can have a different vector load
for each machine. However, no super constant hardness is known even in this unrelated machines
setting.

8.1.1 Our Results

We prove almost optimal hardness results for both the multidimensional problems discussed
above.

Vector Bin Packing

For the Vector Bin Packing problem, we prove a Ω(log d) asymptotic hardness of approximation
when d is a large constant, matching the ln d+O(1) approximation algorithms [CK04; BCS09;
BEK16], up to constants.
Theorem 120. There exists an integer d0 and a constant c > 0 such that for all constants d ≥ d0,
d-dimensional Vector Bin Packing has no asymptotic c log d factor polynomial time approximation
algorithm unless P = NP.

3[CK04] actually give d
1
2−ϵ hardness, but it has been shown later (see e.g., [Chr+17]) that a slight modification

of their reduction gives d1−ϵ hardness.
4The algorithms are now allowed to run in time nf(d), for some function f .

126

We obtain our hardness result via a reduction from the set cover problem on certain structured
instances. In the set cover problem, we are given a set system S ⊆ 2V on a universe V , and the
goal is to pick the minimum number of sets from S whose union is V . Observe that Vector Bin
Packing is a special case of the set cover problem with the vectors being the elements and every
maximal set of vectors whose sum is at most 1 in every coordinate (known as “configurations”)
being the sets. In fact, in the elegant Round & Approx framework [BCS09; BEK16], the Vector
Bin Packing problem is viewed as a set cover instance, and the algorithms proceed by rounding the
standard set cover LP. Towards proving the hardness of Vector Bin Packing, we ask the converse:
Which families of set cover instances can be cast as d-dimensional Vector Bin Packing?

We formalize this question using the notion of packing dimension of a set system S on a
universe V : it is the smallest integer d such that there is an embedding f : V → [0, 1]d such that a
set S ⊆ V is in S if and only if ∥∥∥∥∥∑

v∈S

f(v)

∥∥∥∥∥
∞

≤ 1

If a set system has packing dimension d, then the corresponding set cover problem can be
embedded as a d-dimensional Vector Bin Packing instance. However, it is not clear if the hard
instances of the set cover problem have a low packing dimension. Indeed the instances in the
(1− ϵ) lnn set cover hardness [Fei98] have a large packing dimension that grows with n, which
we cannot afford as we are operating in the constant d regime. We get around this by starting our
reduction from highly structured yet hard instances of set cover. In particular, we study simple
bounded set systems which satisfy the following three properties:

1. The set system is simple5 i.e., every pair of sets intersect in at most one element.

2. The cardinality of each set is at most k, a fixed constant.

3. Each element in the family is present in at most ∆ = kO(1) sets.
Kumar, Arya, and Ramesh [KAR00] proved that simple set cover i.e., set cover with the restriction
that every pair of sets intersect in at most one element, is hard to approximate within Ω(log n).
We observe that by modifying the parameters slightly in their proof, we can obtain the Ω(log k)

hardness of simple bounded set cover.
We prove that simple bounded set systems have packing dimension at most kO(1). Thus, the

Ω(log k) simple bounded set cover hardness translates to Ω(log d) hardness of Vector Bin Packing
when d is a constant. Note that the optimal value of the set cover instances can be made arbitrarily
large in terms of k by starting with a Label Cover instance with an arbitrarily large number of
edges. Thus, our Vector Bin Packing hardness holds for asymptotic approximation as well.

Our upper bound on the packing dimension is obtained in two steps: First, we write the given
simple bounded set system as an intersection of (k∆)O(1) structured simple bounded set systems
on the same universe, and then we give an embedding using (k∆)O(1) dimensions bounding the
packing dimension of these structured simple bounded set systems. This idea of decomposition
into structured instances is inspired from a work of Chandran, Francis, and Sivadasan [CFS08]
where an upper bound on the Boxicity of a graph is obtained in terms of its maximum degree. We

5Simple set families are also known as linear set families.

127

believe that the packing dimension of set systems is worth studying on its own, especially in light
of its close connections to the notions of dimension of graphs such as Boxicity.

Vector Scheduling

For the Vector Scheduling problem, we obtain a Ω ((log d)1−ϵ) hardness under NP ⊈ ZPTIME
(
n(logn)O(1)

)
,

almost matching the O
(

log d
log log d

)
algorithms [HS19; Im+19].

Theorem 121. For every constant ϵ > 0, assuming NP ⊈ ZPTIME
(
n(logn)O(1)

)
, d-dimensional

Vector Scheduling has no polynomial time Ω ((log d)1−ϵ)-factor approximation algorithm when d
is part of the input.

We obtain the hardness result via a reduction from the Monochromatic Clique problem. In the
Monochromatic-Clique(k,B) problem, given a graph G = (V,E) with |V | = n and parameters
k(n) and B(n), the goal is to distinguish between the case when G is k-colorable and the case
when in any assignment of k-colors to vertices of G, there is a clique of size B all of whose
vertices are assigned the same color. When B = 2, this is the standard graph coloring problem.
Note that the problem gets easier as B increases. Indeed, when B >

√
n, we can solve the

problem in polynomial time by computing the Lovász theta function of the complement graph.
We are interested in proving the hardness of the problem for B as large a function of n as possible,
for some k. For example, given a graph that is promised to be k colorable, can we prove the
hardness of assigning k colors to the vertices of the graph in polynomial time where each color
class has maximum clique at most B = log n?

The Monochromatic Clique problem was defined formally by Im, Kell, Kulkarni, and Pani-
grahi [Im+19] in the context of proving lower bounds for online Vector Scheduling. It was also
used implicitly in the ω(1) NP-hardness of Vector Scheduling by Chekuri and Khanna [CK04].
They proved (implicitly) that Monochromatic Clique is NP-hard when B is an arbitrary constant
using a reduction from n1−ϵ hardness of graph coloring. We observe that the same reduction
combined with better hardness of graph chromatic number [Kho01] proves the hardness of
Monochromatic Clique when B = (log n)γ , for some constant γ > 0 under the assumption that
NP ⊈ ZPTIME

(
n(logn)O(1)

)
.

We then amplify this hardness to B = (log n)C , for every constant C > 0. Our main idea in
this amplification procedure is the notion of a stronger form of Monochromatic Clique where given
a graph and parameters k,B,C, the goal is to distinguish between the case that G is k colorable
vs. in any kC coloring of G, there is a monochromatic clique of size B. It turns out that the
graph coloring hardness of Khot [Kho01] already proves the hardness of this stronger variant of
Monochromatic clique when B = (log n)γ for any constant C. We then use lexicographic product
of graphs to amplify this result into the hardness of original Monochromatic Clique problem with
B = (log n)C for any constant C under the same assumption that NP ⊈ ZPTIME

(
n(logn)O(1)

)
.

This directly gives the required hardness of Vector Scheduling using the reduction in [CK04].

The Vector Scheduling problem is also closely related to the Balanced Hypergraph Coloring
problem where the input is a hypergraph H and a parameter k, and the objective is to color the

128

vertices of H using k colors to minimize the maximum number of times a color appears in an
edge. We use this connection to improve upon the NP-hardness of the problem:
Theorem 122. For every constant C > 0, d-dimensional Vector Scheduling is NP-hard to
approximate within Ω

(
(log log d)C

)
when d is part of the input.

Consider the case when each vector job is from {0, 1}d. In this setting, we can view each
coordinate as an edge in a hypergraph, and each vector corresponds to a vertex of the hypergraph.
The goal is to find a m-coloring of vertices of the hypergraph i.e., an assignment of the vectors
to m machines to minimize the maximum number of monochromatic vertices in an edge, which
directly corresponds to the maximum load on a machine.

This problem of coloring a hypergraph to ensure that no color appears too many times in
each edge is known as Balanced Hypergraph Coloring. Guruswami and Lee [GL18] obtained
strong hardness results for this problem when k, the uniformity of the hypergraph is a constant,
using the Label Cover Long Code framework combined with analytical techniques such as the
invariance principle. However, when k is super constant, the invariance principle based methods
give weak bounds as the soundness of the Label Cover has to be at least exponentially small in
k. Recently, using combinatorial tools to analyze the gadgets instead of the standard analytical
techniques, improvements have been obtained for various hypergraph coloring problems [Bha18;
ABP19] in the super-constant inapproximability regime. We follow the same route and use
combinatorial tools to analyze the gadgets in the Label Cover Long Code framework and obtain
better hardness of Balanced Hypergraph Coloring in the regime of super-constant uniformity k.
The key combinatorial lemma used in our analysis was proved recently by Austrin, Bhangale, and
Potukuchi [ABP20] using a generalization of the Borsuk-Ulam theorem.

The NP-hardness of Vector Scheduling follows directly from the hardness of Balanced Hyper-
graph Coloring using the above-described reduction. This NP-hardness result uses near-linear
size Label Cover hardness results [MR10; DS14]. By using the standard Label Cover hardness
obtained by combining PCP Theorem and Parallel Repetition in the same reduction, we also prove
an intermediate result bridging the above two hardness results for Vector Scheduling.
Theorem 123. There exists a constant γ > 0 such that assuming NP ⊈ DTIME

(
nO(log logn)

)
,

d-dimensional Vector Scheduling is hard to approximate within Ω ((log d)γ) when d is part of the
input.

8.1.2 Related Work

Online Algorithms. Multidimensional packing problems have been extensively studied in the on-
line setting. For the d-dimensional Vector Bin Packing, the classical First-Fit algorithm [Gar+76]
gives O(d) competitive ratio, and Azar, Cohen, Kamara, and Shepherd [Aza+13] recently gave
an almost matching Ω (d1−ϵ) lower bound. For the d-dimensional Vector Scheduling, Im, Kell,
Kulkarni, and Panigrahi [Im+19] gave a O

(
log d

log log d

)
competitive online algorithm and proved a

matching lower bound.

Geometric variants. There are various natural geometric variants of Vector Bin Packing that have
been studied in the literature. A classical problem of this sort is the 2-dimensional Geometric Bin

129

Packing, where the input is a set of rectangles that need to be packed into the minimum number of
unit squares. After a long line of works, Bansal and Khan [BK14a] gave a 1.405 factor asymptotic
approximation algorithm for the problem. On the hardness front, Bansal and Sviridenko [BS04]
showed that the problem does not admit an asymptotic PTAS, and this APX hardness result has
been generalized to several related problems by Chlebı́k and Chlebı́ková [CC06]. We refer the
reader to the excellent survey [Chr+17] regarding the geometric problems.

8.1.3 Organization
We first define the multidimensional problems and the Label Cover problem formally in Sec-
tion 8.2. Next, we prove the hardness results for Vector Bin Packing and Vector Scheduling
in Section 8.3, Section 8.4 respectively.

8.2 Preliminaries

Notations. We use [n] to denote the set {1, 2, . . . , n}. We use 1d to denote the d-dimensional
vector (1, 1, . . . , 1). For two d-dimensional real vectors a and b, we say that a ≥ b if ai ≥ bi for
all i ∈ [d]. For a graph G, we let ω(G), α(G), χ(G) be the largest clique size, largest independent
size, and the chromatic number of G respectively. A set system or set family S on a universe V is
a collection of subsets of V .

Problem Statements. We give formal definitions for the problems that we study.
Definition 124. (Vector Bin Packing) In the Vector Bin Packing problem, the input is a set of n
rational vectors v1, v2, . . . , vn ∈ [0, 1]d. The objective is to partition [n] into minimum number of
parts A1, A2, . . . , Am such that ∥∥∥∑

j∈Ai

vj

∥∥∥
∞
≤ 1 ∀i ∈ [m]

Definition 125. (Vector Scheduling) In the Vector Scheduling problem, the input is a set of n
rational vector jobs v1, v2, . . . , vn ∈ [0, 1]d, and m identical machines. The objective is to assign
the jobs to machines i.e. partition [n] into m parts A1, A2, . . . , Am to minimize the makespan
which is defined as the maximum ℓ∞ load on a machine.

max
i∈[m]

∥∥∥∑
j∈Ai

vj

∥∥∥
∞

Asymptotic Approximation. For the Bin Packing problem, it is NP-Hard to identify if all the
vectors can be packed into 2 bins or need 3 bins. This already proves that the problem is NP-hard
to approximate within 3

2
as per the usual notion of multiplicative approximation ratio. However,

this is less interesting as there are much better asymptotic approximation algorithms for the
problem which get (1+ ϵ)-factor approximation when the optimal value is large enough, for every
positive constant ϵ > 0.

130

Even for the Vector Bin Packing problem, the performance of an algorithm is typically
measured in the asymptotic setting. We give the formal definition [Chr+17] of asymptotic
approximation ratio of an algorithm A for the Vector Bin Packing problem.
Definition 126. (Asymptotic Approximation Ratio) The asymptotic approximation ratio ρ∞A of an
algorithm A for the Vector Bin Packing problem is

ρ∞A = lim sup
n→∞

ρnA, ρ
n
A = sup

I∈I

{
A(I)

OPT(I)
: OPT(I) = n

}
where I denotes the set of all possible Vector Bin Packing instances.

All the results mentioned in this chapter regarding Vector Bin Packing are with respect to the
asymptotic approximation ratio.

Label Cover. We define the Label Cover problem:
Definition 127. (Label Cover) In an instance of the Label Cover problem G = (V = L ∪
R,E,ΣL,ΣR,Π) with |ΣL| ≥ |ΣR|, the input is a bipartite graph L ∪ R with constraints on
every edge. The constraint on an edge e is a projection Πe : ΣL → ΣR. We say a labeling
σ : V → ΣL ∪ ΣR satisfies the constraint on the edge e = (u, v) if Πe(σ(u)) = σ(v). The
objective is to find a labeling σ : V → ΣL ∪ ΣR that satisfies as many constraints as possible.

By a simple reduction from the 3-SAT problem, we can prove that Label Cover is NP-hard
when ΣL and ΣR are constants (See e.g., Lemma 4.2 in [BG16]).
Theorem 128. Given a Label Cover instance when ΣL = ΣR = [6], it is NP-hard to identify if it
has a labeling that satisfies all the constraints.

The real use of Label Cover, however, lies in its strong hardness of approximation. PCP
Theorem [Aro+98] combined with Raz’s parallel repetition [Raz98] yields the following strong
inapproximability of Label Cover problem.
Theorem 129. There exists an absolute constant c > 1 such that for every integer n and
ϵ > 0, there is a reduction from 3-SAT instance I over n variables to Label Cover instance
G = (V = L ∪R,E,ΣL,ΣR,Π) with |V | ≤ nO(log(1

ϵ)), |ΣL| ≤
(
1
ϵ

)c satisfying the following:
1. (Completeness.) If I is satisfiable, there exists a labeling to G that satisfies all the con-

straints.
2. (Soundness.) If I is not satisfiable, no labeling can satisfy an ϵ fraction of the constraints of
G.

3. (Biregularity.) The graph L ∪ R,E is biregular with degrees on either side bounded by
poly

(
1
ϵ

)
.

Furthermore, the running time of the reduction is poly
(
n, 1

ϵ

)
.

Moshkovitz-Raz [MR10] proved the following hardness of near linear size Label Cover.
Theorem 130. There exist absolute constants c, c′ > 1 such that for every n and ϵ > 0, there
is a reduction from 3-SAT instance I over n variables to Label Cover instance G = (V =

L ∪R,E,ΣL,ΣR,Π) with |V | ≤ n1+o(1)
(
1
ϵ

)c, |ΣL| ≤ 2(
1
ϵ)

c′

satisfying the following:
1. (Completeness.) If I is satisfiable, there exists a labeling to G that satisfies all the con-

straints.

131

2. (Soundness.) If I is not satisfiable, no labeling can satisfy an ϵ fraction of the constraints of
G.

3. (Biregularity.) The graph L ∪R,E is biregular with degrees on either side poly
(
1
ϵ

)
.

Furthermore, when ϵ is a constant, the running time of the reduction is poly(n).

8.3 Vector Bin Packing
In this section, we prove the hardness of approximation of Vector Bin Packing. First, we define
the packing dimension of a set family and bound the packing dimension of simple set families.
Next, we combine this upper bound with the hardness of set cover on simple bounded set systems
to prove Theorem 120.

8.3.1 Packing Dimension
For a set family S on a universe V , we define the packing dimension pdim(S) below. For a
function f : V → [0, 1]K and a set S ⊆ V , we let f(S) denote the vector f(S) =

∑
v∈S f(v).

Definition 131. For a set family S on a universe V , the packing dimension pdim(S) is defined as
the smallest positive integer K such that there exists an embedding f : V → [0, 1]K that satisfies
the following property: For every set S ⊆ V , S is in the family S if and only if

∥f(S)∥∞ ≤ 1.

If no such embedding exists, we say that pdim(S) is infinite.
For a set family S to have finite packing dimension i.e. for an embedding f : V → [0, 1]K

realizing the above condition to exist requires two conditions:
1. The set family is downward closed i.e. for every S ∈ S and T ⊆ S, T ∈ S as well.

2. For every element v ∈ V , there is a set S ∈ S with v ∈ S. We call a set family S on a
universe V non-trivial if for every v ∈ V , there is a set S ∈ S with v ∈ S.

On the other hand, any set system that satisfies the above two conditions i.e. being downward
closed and non-trivial has a finite packing dimension. Before proving this statement, we first
prove the following simple but useful proposition.
Proposition 132. For a pair of set families S1 and S2 defined on the same universe V such that
pdim(S1) and pdim(S2) are finite,

pdim(S1 ∩ S2) ≤ pdim(S1) + pdim(S2)

Proof. Let K1 = pdim(S1) and K2 = pdim(S2). Suppose that f1 : V → [0, 1]K1 be such that
for every set S ⊆ V ,

∥f1(S)∥∞ ≤ 1

if and only if S ∈ S1. Similarly, let f2 : V → [0, 1]K2 be such that for every set S ⊆ V ,

∥f2(S)∥∞ ≤ 1

132

if and only if S ∈ S2. Consider the function f : V → [0, 1]K1+K2 defined as f(v) = (f1(v), f2(v)).
Then, for every set S ⊆ V , ∥f(S)∥∞ ≤ 1 if and only if ∥f1(S)∥∞ ≤ 1 and ∥f2(S)∥∞ ≤ 1. Thus,
for every set S ⊆ V , ∥f(S)∥∞ ≤ 1 if and only if S ∈ S1 and S ∈ S2, or equivalently, if
S ∈ S1 ∩ S2. Hence, the packing dimension of S1 ∩ S2 is at most K1 +K2.

For a set S ⊆ V , let S↑ be the family of sets T ⊆ V such that S ⊆ T . Similarly, let S↓ be the
family of sets T ⊆ V such that T ⊆ S. For a set system S , we let S↑ (resp. S↓) denote the union
of S↑ (resp. S↓) over all S ∈ S.

Consider a set S ⊆ V with |S| > 1. For the set family 2V \ S↑, we have the embedding
f : V → [0, 1] defined as

f(v) =

{
1
|S| +

1
|S|2 , if v ∈ S

0 otherwise.

This shows that pdim(2V \ S↑) ≤ 1 for all S ⊆ V with |S| > 1. Note that we have

S =
⋂
S/∈S

2V \ S↑

for every downward closed set system S. Combined with Proposition 132, we obtain that for
every non-trivial downward closed family S on a universe V , pdim(S) ≤ 2|V |.

We are interested in the classes of set families for which there is an efficient embedding with
packing dimension being independent of |V |. In particular, the class of set families that we study
are bounded set families where each set has cardinality at most k, and each element appears in at
most ∆ sets. We can show that such bounded set families that are downward closed and non-trivial
have packing dimension at most (k∆)O(∆). Together with the Ω(log k) hardness [Tre01] of k-set
cover where each set has cardinality at most k, a fixed constant and each element appearing in
(log k)O(1) sets, this packing dimension bound gives the hardness of (log d)Ω(1) for the Vector Bin
Packing problem when d is a large constant. Unfortunately, the exponential dependence on ∆ is
necessary for the packing dimension of bounded set systems, and thus, this approach does not
yield the optimal Ω(log d) hardness of Vector Bin Packing.

Instead of using arbitrary bounded set families, we bypass this barrier by using simple bounded
set families. Recall that a set family is called simple if any two distinct sets in the family intersect
in at most one element. It turns out that for simple bounded set families i.e. simple set families S
where each set has cardinality at most k, and each element appears in at most ∆ sets, the packing
dimension of S↓ can be upper bounded by (k∆)O(1). Together with the Ω(log k) hardness of
simple k-set cover (proved in Section 8.5), we get the optimal Ω(log d) hardness of Vector Bin
Packing when d is a large constant. In the next subsection, we prove the packing dimension upper
bound, and we use this upper bound to prove the hardness of Vector Bin Packing in Section 8.3.3.

8.3.2 Packing Dimension of Simple Bounded Set Families
The main embedding result that we prove is that the downward closure of simple set systems
where each set has cardinality k and each element appears in at most ∆ sets has packing dimension
at most polynomial in k,∆.

133

Theorem 133. Suppose that S is a simple non-trivial set system on a universe V where each set
has cardinality at most k ≥ 2 and each element appears in at most ∆ sets. Then,

pdim(S↓) ≤ (k∆)O(1)

Furthermore, an embedding realizing the above can be found in time polynomial in |V |.
We prove the embedding result by writing the set family S↓ as an intersection of (k∆)O(1)

structured set families each of which has packing dimension at most (k∆)O(1). We can then upper
bound the packing dimension of S↓ using Proposition 132. The structured set systems we study
are sunflower-bouquets, which are a disjoint union of sunflowers6 that have a single element as
the kernel. The formal definition of the sunflower-bouquet set families is below. See Figure 8.1
for an illustration.
Definition 134. (Sunflower-bouquets) A simple set system S on a universe V is called a sunflower-
bouquet with core U ⊆ V, U ̸= ϕ if the following hold.

1. Every set S ∈ S satisfies |S ∩ U | = 1. Furthermore, for every u ∈ U , there is a set S ∈ S
with u ∈ S.

2. For any pair of sets S1, S2 ∈ S with S1 ∩ S2 ̸= ∅, we have S1 ∩ U = S2 ∩ U = S1 ∩ S2.

We now give an efficient embedding for a sunflower-bouquet S on a universe V with core
U ⊆ V, U ̸= ϕ. The motivation behind this lemma is to upper bound the packing dimension of
the set system T ↓ = S↓ ∪ {S ⊆ V \ U : |S| ≤ k}.
Lemma 135. Fix an integer k ≥ 2. Let S be a simple set family defined on a universe V that is a
sunflower-bouquet with core U . Furthermore, each set in the family has cardinality at most k and
each element appears in at most ∆ sets. Then, there exists an embedding f : V → [0, 1]K that
satisfies

(A) For every set S ∈ S,
∥f(S)∥∞ ≤ 1.

(B) For every set S /∈ S↓ with S ∩ U ̸= ∅,

∥f(S)∥∞ > 1.

(C) For every set S ⊆ V with S ∩ U = ∅ and |S| ≤ k,

∥f(S)∥∞ ≤ 1.

(D) For every set S ⊆ V with |S| > k,

∥f(S)∥∞ > 1.

with K = (k∆)O(1). Furthermore, such an embedding can be found in time polynomial in |V |
given S .

6A sunflower is a collection of sets S1, S2, . . . , Sr whose pairwise intersection is constant i.e., there exists U such
that U = Si ∩ Sj for all i, j ∈ [r], i ̸= j. This constant intersection U is called the kernel of the sunflower.

134

u1 u2 u3

Figure 8.1: An illustration of a sunflower-bouquet set family. Here, S is the family of all the green
colored sets. It is a sunflower-bouquet with core U = {u1, u2, u3}. In the embedding, we ensure
that the ℓ∞ norm of the left red set is greater than 1 in the first step while the right side red set is
handled in the second step.

Proof. Let U = {u1, u2, . . . , um}. We can partition V \ U into V0, V1, . . . , Vm with

Vi =
⋃

S∈S:ui∈S

S \ {ui}

for all i ∈ [m]. Here, S restricted to {ui} ∪ Vi is a sunflower set system with a single element
ui as the kernel for every i ∈ [m]. As each set in S has cardinality at most k and each element
appears in at most ∆ sets, we get that |Vi| ≤ k∆ for all i ∈ [m]. For every i ∈ [m], we order the
elements of Vi as {vi,1, vi,2, . . . , vi,k∆} (with repetitions if needed).

We construct the final embedding f as a concatenation of embeddings with smaller dimensions
f := (f0, g, g

′) where f0 : V → [0, 1]2, g : V → [0, 1]K1 and g′ : V → [0, 1]K2 all satisfy the
conditions (A) and (C). In other words, for every set S ⊆ V satisfying either S ∈ S or S∩U = ϕ

and |S| ≤ k, we have ∥f0(S)∥∞ ≤ 1, ∥g(S)∥∞ ≤ 1, and ∥g′(S)∥∞ ≤ 1. Note that for a set
S ⊆ V , we have

∥f(S)∥∞ = max(∥f0(S)∥∞ , ∥g(S)∥∞ , ∥g′(S)∥∞)

Thus, if f0, g, g′ satisfy the conditions (A) and (C), the final embedding f also satisfies the
conditions (A) and (C). Furthermore, the parameters K1 and K2 are chosen such that the final
dimension of f , 2 +K1 +K2 is at most (k∆)O(1).

First, we define the embedding f0 : V → [0, 1]2 that satisfies the conditions (A) and (C) with
the additional property that for every set S ⊆ V with |S| > k, or if S ∩U ̸= ϕ and S ∩V0 ̸= ϕ, or
if |S ∩ U | > 1, we have ∥f0(S)∥∞ > 1. We obtain this by a simple two-dimensional embedding

135

as follows:

f0(v) =


(
1, 1

k

)
, if v ∈ U(

1
k
, 1
k

)
, if v ∈ V0(

0, 1
k

)
otherwise.

We can verify that f0 satisfies the conditions (A) and (C). Furthermore, suppose that ∥f0(S)∥∞ ≤
1 for a set S ⊆ V . Then, we can obtain the following observations that we will use later.

1. As f0(v)1 = 1 for all v ∈ U , |S ∩U | ≤ 1. As f0(v)1 = 1
k

for all v ∈ V0, if S ∩U ̸= ∅, then
S ∩ V0 = ∅.

2. As f0(v)2 = 1
k

for all v ∈ V , |S| ≤ k. Thus, for every set S ⊆ V such that |S| > k, we
have ∥f0(S)∥∞ > 1, and hence, ∥f(S)∥∞ > 1. This already proves the condition (D) of
the lemma.

Overview of rest of the proof. We now restrict our attention to sets S ⊆ V such that |S| ≤
k, S ∩ V0 = ϕ, and |S ∩ U | ≤ 1. Our goal is to find an embedding for these sets that satisfies the
conditions (A), (B), and (C). This is the technically challenging part of the proof and requires
setting various coordinates carefully to encode the properties of the set system. We break this down
into two steps: eliminating the “cross-sunflower” sets, and pinning down the “intra-sunflower”
sets. We give an overview of the ideas used in the two steps before presenting the full proof.

1. The cross-sunflower sets are the sets S ⊆ V that contain ui for some i ∈ [m], but also
intersect another sunflower i.e., S ∩ Vi′ ̸= ϕ for an i′ ̸= i. Note that such a set S satisfies
S /∈ S↓ and S ∩ U ̸= ϕ, and thus, to satisfy the condition (B), we need to ensure that
∥f(S)∥∞ > 1 for such sets. We achieve this by constructing an embedding g : V → [0, 1]K1

that satisfies the conditions (A) and (C) and has ∥g(S)∥∞ > 1 for all cross-sunflower sets.
We illustrate the idea used in constructing this embedding using a toy example. Suppose
that we have a set of pairs of elements (u1, v1), (u2, v2), . . . , (un, vn), and let their union be
denoted by W = {u1, v1, u2, v2, . . . , un, vn}. Our goal is to find an embedding g : W →
[0, 1]2 such that

(a) ∥g(ui) + g(vi)∥∞ ≤ 1 for all i ∈ [n].
(b) ∥g(ui) + g(vj)∥∞ > 1 for all i, j ∈ [n], i ̸= j.

We construct this embedding by choosing n distinct real numbers α1, α2, . . . , αn ∈ (0, 1)

and setting g(ui) = (αi, 1 − αi) and g(vi) = (1 − αi, αi) for all i ∈ [m]. Note that
∥g(ui) + g(vj)∥1 = 2 for all i, j, and thus, ∥g(ui) + g(vj)∥∞ = 1 if and only if g(ui) +
g(vj) = (1, 1), or equivalently, when i = j. The actual construction extends this idea with
two differences: first, the Vis could have more than one element, and we use the pairs
idea multiple times to account for this, and second, we need to ensure that the sum of the
embedding of any k elements in V \ (U ∪ V0) has ℓ∞ norm at most 1, and thus, we need to
choose the embedding of ui to be (αi, 2− 1

k
− αi) and set αi ∈ (1− 1

k
, 1).

2. The intra-sunflower sets are the sets S ⊆ V such that ui ∈ S and S ⊆ Vi ∪ {ui} for some
i ∈ [m]. We need to ensure that every intra-sunflower set S such that S /∈ S↓ satisfies
∥f(S)∥∞ > 1. We achieve this by constructing an embedding g′ : V → [0, 1]K2 that

136

satisfies the conditions (A), (C) and has ∥g′(S)∥∞ > 1 for every intra-sunflower set S such
that S /∈ S↓.
Fix an i ∈ [m]. For every intra-sunflower set S ⊆ {ui} ∪ Vi with ui ∈ S and S /∈ S↓,
we use a single dimensional embedding gS : V → [0, 1] that satisfies the conditions (A)
and (C) but has ∥gS(S)∥∞ > 1 . We achieve this by setting gS(ui) = 1 − |S|−1

k
+ ϵ, and

gS(v) = 1
k

for every v ∈ Vi ∩ S, and gS(v) = 0 for all v ∈ V \ S, where ϵ < 1
k

is a
small positive constant. Note that ∥gS(T)∥ ≤ 1 for every set T such that T ⊉ S, and since
gS(v) ≤ 1

k
for all v ∈ V \ U , the embedding gS satisfies the conditions (A) and (C).

We can construct such a single dimensional embedding for every intra-sunflower set S /∈ S↓

and take their concatenation to obtain the required embedding g′. However, there could
be exponential (in k,∆) number of such intra-sunflower sets S ⊆ {ui} ∪ Vi, ui ∈ S such
that S /∈ S↓. We get around this issue by observing that we need the single dimensional
embedding only for minimal intra-sunflower sets that don’t belong to S↓. In fact, as the set
system S↓ restricted to {ui} ∪ Vi is a sunflower with single element ui as the kernel, we
can deduce that every minimal intra-sunflower set S with S /∈ S↓ is of the form {ui, x, y}
where x, y ∈ Vi. Thus, we can construct the single dimensional embedding for such sets
and take their concatenation to obtain the required embedding g′ with dimension at most
|Vi|2 ≤ (k∆)2.

As every set S ⊆ V such that S ∩ V0 = ϕ, |S ∩ U | = 1 is either a cross-sunflower set or an
intra-sunflower set, the two steps together prove that f = (f0, g, g

′) satisfies the conditions (A),
(B) and (C).

We now present the full formal proof of the two steps.

Step-1. Eliminating the cross-sunflower sets. In the first step, our goal is to find an embedding
g : V → [0, 1]K1 with K1 = 2k∆ such that

1. g satisfies the conditions (A) and (C) i.e. for every set S ∈ S , ∥g(S)∥∞ ≤ 1, and for every
set S ⊆ V with S ∩ U = ϕ and |S| ≤ k, ∥g(S)∥∞ ≤ 1.

2. For every “cross-sunflower” set S ⊆ V with ui ∈ S for some i ∈ [m], and S ∩ Vi′ ̸= ϕ for
i′ ∈ [m], i′ ̸= i, we have ∥g(S)∥∞ > 1.

We achieve this by setting g = (f1, . . . , fk∆), where each fl : V → [0, 1]2, l ∈ [k∆] satisfies the
conditions (A) and (C), and overall, the embedding g satisfies the second condition above.

We choose m distinct rational numbers α1, . . . , αm with 1− 1
k
< αi < 1 for all i ∈ [m]. We

define the embeddings fl : V → [0, 1]2, l ∈ [k∆] as follows. Consider an l ∈ [k∆].

1. For i ∈ [m], we set

fl(ui) =

(
αi, 2−

1

k
− αi

)
2. For i ∈ [m] and vi,j ∈ Vi, we set fl(vi,j) = (0, 0) if vi,j ̸= vi,l. We set

fl(vi,l) =

(
1− αi, αi +

1

k
− 1

)
137

3. For v ∈ V0, we set fl(v) = (0, 0).

We verify that these embeddings satisfy the conditions (A) and (C). Fix an l ∈ [k∆].

(A) Consider a set S ∈ S. Let i ∈ [m] be such that {ui} = S ∩ U . We have

fl(S) =
∑
v∈S

fl(v)

≤
∑

v∈{ui}∪Vi

f(v)

= fl(ui) + fl(vi,l)

=

(
αi, 2−

1

k
− αi

)
+

(
1− αi, αi +

1

k
− 1

)
= (1, 1).

(C) This follows directly from the fact that ∥fl(v)∥1 ≤
1
k

for all l ∈ [k∆] and v ∈ V \ U .

Let g : V → [0, 1]2k∆ be defined as g = (f1, . . . , fk∆). As each of the individual embeddings
satisfies (A) and (C), g also satisfies the conditions (A) and (C).

Let S ⊆ V \ V0, |S ∩ U | = 1 be such that

∥g(S)∥∞ ≤ 1.

i.e. ∥fl(S)∥∞ ≤ 1 for all l ∈ [k∆]. Suppose that S∩U = {ui}. Then, we claim that S ⊆ {ui}∪Vi.
Suppose for contradiction that this is not the case, and there exists vi′,l ∈ Vi′ with i′ ̸= i, i′ ∈ [m]

and l ∈ [k∆] such that vi′,l ∈ S. We have

fl(S) =
∑
v∈S

fl(v)

≥ fl(ui) + fl(vi′,l)

=

(
αi, 2−

1

k
− αi

)
+

(
1− αi′ , αi′ +

1

k
− 1

)
= (1 + αi − αi′ , 1 + αi′ − αi)

As αi ̸= αi′ , ∥fl(S)∥∞ > 1, a contradiction. Thus, for every set S ⊆ V such that ui ∈ S,
S ∩ Vi′ ̸= ϕ for some i′ ̸= i, we have ∥g(S)∥∞ > 1.

Step 2. Pinning down the intra-sunflower sets. In the second step, our goal is to find an
embedding g′ : V → [0, 1]K2 with K2 = (k∆)2 such that

1. g′ satisfies the conditions (A) and (C).
2. For every i ∈ [m] and “intra-sunflower” set S ⊆ {ui} ∪ Vi such that ui ∈ S and S /∈ S↓,

we have ∥g′(S)∥∞ > 1.

138

We achieve this by setting g′ = (g1, g2, . . . , g(k∆)2)) where each gl, l ∈ [(k∆)2] satisfies the
conditions (A) and (C), and the overall function g′ satisfies the second condition above.

For every i ∈ [m], we order all the pairs of distinct elements x, y ∈ Vi as {Vi,1, Vi,2, . . . , Vi,(k∆)2}
(with repetitions if needed). The upper bound on the number of such pairs is obtained using the
fact that |Vi| ≤ k∆ for all i ∈ [m].

We define the embeddings gl : V → [0, 1], l ∈ [(k∆)2] below. Fix an l ∈ [(k∆)2].

1. Consider an i ∈ [m]. We have two different cases:
(a) If Vi,l ∪ {ui} ∈ S↓, we set gl(ui) = 0 and gl(v) = 0 for all v ∈ Vi.
(b) If Vi,l ∪{ui} /∈ S↓, we set gl(v) = 1

k
for all v ∈ Vi,l, and gl(v) = 0 for all v ∈ Vi \ Vi,l.

We set
gl(ui) = 1− 2

k
+

1

k2

2. For all v ∈ V0, we set gl(v) = 0.

We now verify that these embeddings satisfy the conditions (A) and (C). Fix an integer
l ∈ [(k∆)2].

(A) Consider a set S ∈ S. Let {ui} = S ∩ U . If {ui} ∪ Vi,l ∈ S↓, gl(v) = 0 for all v ∈ S, and
thus we have |gl(S)| ≤ 1. Now suppose that {ui} ∪ Vi,l /∈ S↓. This implies that Vi,l is not a
subset of S. As |Vi,l| = 2, |Vi,l ∩ S| ≤ 1. We get∑

v∈S

gl(v) = gl(ui) +
∑

v∈S∩Vi

gl(v)

= gl(ui) +
∑

v∈S∩Vi,l

gl(v)

≤ gl(ui) +
1

k

= 1− 2

k
+

1

k2
+

1

k
≤ 1

(C) This follows from the fact that gl(v) ≤ 1
k

for all v ∈ V \ U .

Suppose that a set S ⊆ V satisfies S ⊆ {ui} ∪ Vi for some i ∈ [m], and ui ∈ S, S /∈ S↓.
Then, we claim that ∥g′(S)∥∞ > 1. Suppose for the sake of contradiction that ∥g′(S)∥∞ ≤ 1.
Then, we have gl(S) ≤ 1 for all l ∈ [(k∆)2]. Let S = {ui, s1, s2, . . . , sp} where sj ∈ Vi for all
j ∈ [p]. Note that for every v ∈ Vi, there is exactly one set S(v) ∈ S such that v ∈ S(v) and this
set S(v) satisfies ui ∈ S(v). This follows from the definition of Vi and the fact that the set family
S is a sunflower-bouquet.

We now claim that S(sj1) = S(sj2) for all j1, j2 ∈ [p]. Suppose for contradiction that there
exist j1, j2 ∈ [p] with S(sj1) ̸= S(sj2). This implies that {ui, sj1 , sj2} /∈ S↓ as otherwise, if there
exists T ∈ S such that {ui, sj1 , sj2} ⊆ T , we have S(sj1) = S(sj2) = T . Let l ∈ [(k∆)2] be such
that Vi,l = {sj1 , sj2}. As Vi,l ∪ {ui} /∈ S↓, we have gl(v) = 1

k
for all v ∈ Vi,l and

gl(ui) = 1− 2

k
+

1

k2

139

Thus, we get that ∑
v∈S

gl(v) = gl(ui) +
∑

v∈S\{ui}

gl(v)

= gl(ui) +
∑
v∈Vi,l

gl(v)

= 1− 2

k
+

1

k2
+

2

k
= 1 +

1

k2

contradicting the fact that gl(S) ≤ 1. This completes the proof that S(sj1) = S(sj2) for all
j1, j2 ∈ [p]. Thus, there exists a set S(s1) ∈ S such that S ⊆ S(s1), which implies that S ∈ S↓, a
contradiction. Thus, for every set S ⊆ V such that ui ∈ S, S ⊆ {ui} ∪ Vi for some i ∈ [m] and
∥g′(S)∥∞ ≤ 1, we have S ∈ S↓.

Final embedding. We define the final embedding f : V → [0, 1]2+2k∆+(k∆)2 as f = (f0, g, g
′).

As each of these embeddings satisfies the conditions (A) and (C), the final embedding f also
satisfies the conditions (A) and (C).

Suppose that ∥f(S)∥∞ ≤ 1 for a set S ⊆ V . Then, ∥f0(S)∥∞ ≤ 1, ∥g(S)∥∞ ≤ 1 and
∥g′(S)∥∞ ≤ 1. Condition (D) follows immediately as ∥f0(S)∥∞ ≤ 1 implies that |S| ≤ k.

We now return to condition (B). Suppose that S ⊆ V with S ∩U ̸= ∅ satisfies ∥f(S)∥∞ ≤ 1.
Our goal is to show that S ∈ S↓. We have already deduced from ∥f0(S)∥∞ ≤ 1 that |S ∩ U | ≤ 1.
As S ∩ U ̸= ϕ, we have |S ∩ U | = 1, and by using ∥f0(S)∥∞ ≤ 1 again, we get that S ∩ V0 = ϕ.
Let S ∩ U = {ui}. As ∥g(S)∥∞ ≤ 1, using the argument in the first step, we can conclude that
S ∩ Vi′ = ϕ for all i′ ̸= i. Thus, S ⊆ {ui} ∪ Vi. By using the argument in the second step,
∥g′(S)∥∞ ≤ 1 implies that S ∈ S↓.

Note that our construction is explicit, and we have a polynomial time algorithm to output the
required embedding. The dimension of the embedding is 2 + 2k∆ + (k∆)2, which is at most
(k∆)O(1).

As a corollary, we bound the packing dimension of the set family

T ↓ = S↓ ∪ {S ⊆ V \ U : |S| ≤ k}.

Corollary 136. Suppose that T is a set family defined on a universe V with

T = S ∪ {S ⊆ V \ U : |S| ≤ k}

where S ⊆ 2V is a sunflower-bouquet with core U . Furthermore, each set in S has cardinality at
most k ≥ 2 and each element appears in at most ∆ sets in S. Then,

pdim(T ↓) ≤ (k∆)O(1)

Furthermore, an embedding realizing this packing dimension can be found in time polynomial in
|V | given S.

140

Proof. As S is a sunflower-bouquet, from Lemma 135, there exists an embedding f : V → [0, 1]K

that satisfies the conditions (A), (B), (C) and (D) with K = (k∆)O(1). Conditions (A) and (C)

together imply that
∥f(S)∥∞ ≤ 1

for all S ∈ T . Note that
T ↓ = S↓ ∪ {S ⊆ V \ U : |S| ≤ k}.

Suppose that S ⊆ V is a subset of V with S /∈ T ↓. If S∩U = ϕ, then |S| > k, which implies that
∥f(S)∥∞ > 1 using condition (D). If S ∩ U ̸= ϕ, then S /∈ S↓ which implies that ∥f(S)∥∞ > 1

using condition (B). Thus, ∥f(S)∥∞ ≤ 1 if and only if S ∈ T ↓.

We are now ready to prove our main embedding result i.e. Theorem 133.

Proof of Theorem 133. We define a graph G = (V,E) as follows: two elements u, v ∈ V are
adjacent in G if there exist sets S1, S2 ∈ S (not necessarily distinct) such that u ∈ S1, v ∈
S2, S1 ∩ S2 ̸= ∅. As the cardinality of each set in S is at most k and each element of V is present
in at most ∆ sets, the maximum degree of a vertex in G can be bounded above as

∆(G) ≤ k(k − 1)∆2

Thus, the chromatic number of G is at most L = χ(G) ≤ k(k − 1)∆2 + 1 ≤ k2∆2. Using the
greedy coloring algorithm, we can partition V into L non-empty parts U1, U2, . . . , UL such that
each Uj is a independent set in G. For every j ∈ [L], as Uj is an independent set in G, we have

1. For every set S ∈ S, |S ∩ Uj| ≤ 1.
2. Any two sets S1, S2 ∈ S with S1 ∩ Uj ̸= ∅, S2 ∩ Uj ̸= ∅ and S1 ∩ S2 ̸= ∅ satisfy
S1 ∩ Uj = S2 ∩ Uj = S1 ∩ S2.

We now define the set families S1,S2, . . . ,SL as follows:

Sj = {S ∈ S : S ∩ Uj ̸= ∅} ∪ {S ⊆ V \ Uj : |S| ≤ k}

We claim that
⋂

j∈[L] S
↓
j = S↓. First, consider an arbitrary set S ∈ S↓ and an integer j ∈ [L]. As

|S| ≤ k, irrespective of S intersects Uj or not, S ∈ S↓
j . Thus, S↓ ⊆ S↓

j for all j ∈ [L]. Consider
a non-empty set S /∈ S↓. As U1, U2, . . . , UL is a partition of V , there exists a j ∈ [L] such that
S ∩ Uj ̸= ∅. As S /∈ S↓, S /∈ S↓

j . This implies that⋂
j∈[L]

S↓
j = S↓

Using Proposition 132, in order to bound the packing dimension of S↓, it suffices to bound the
packing dimension of S↓

j , j ∈ [L].
Fix an integer j ∈ [L] and consider the set family S↓

j . It is defined on the universe V and there
exists a non-empty subset Uj ⊆ V such that

Sj = S ′
j ∪ {S ⊆ V \ Uj : |S| ≤ k}

141

with
S ′
j = {S ∈ S : S ∩ Uj ̸= ∅}.

Here, S ′
j is a simple set system which satisfies the following properties:

1. Each set in S ′
j has cardinality at most k ≥ 2 and each element appears in at most ∆ sets in

S ′
j .

2. Every set S ∈ S ′
j satisfies |S ∩ Uj| = 1. As S is non-trivial, for every u ∈ Uj , there exists a

set S ∈ S ′
j with u ∈ S.

3. For every pair of sets S1, S2 ∈ S ′
j with S1 ∩ S2 ̸= ϕ, S1 ∩ Uj = S2 ∩ Uj = S1 ∩ S2.

In other words, the set family S ′
j is a sunflower-bouquet with core Uj . Using Corollary 136,

we get that pdim(S↓
j) ≤ (k∆)O(1) for all j ∈ [L], which completes the proof.

8.3.3 Hardness of Vector Bin Packing

We show that for large enough constant d, Vector Bin Packing is hard to approximate within
Ω(log d). Our hardness is obtained via the hardness of set cover on simple bounded instances.

In the set cover problem, the input is a set family S on a universe V with |V | = n. The
objective is to pick the minimum number of sets {S1, S2, . . . , Sm} ⊆ S from the family such that
their union is equal to V . The greedy algorithm where we repeatedly pick the set that covers the
maximum number of new elements achieves a lnn approximation factor. Fiege [Fei98] proved a
matching hardness of (1− ϵ)(lnn). On set systems where each pair of sets intersect in at most
one element i.e. simple instances, Ω(log n) hardness of set cover is proved by Kumar, Arya, and
Ramesh [KAR00]. We observe that by changing the parameters slightly, their reduction also
implies the same hardness on instances where the maximum set size is bounded:
Theorem 137. (Set Cover on simple bounded instances) There exists an integer B0 such that
for every constant B ≥ B0, the Set Cover problem on simple set systems in which each set has
cardinality at most B is NP-hard to approximate within Ω(logB). Furthermore, in the hard
instances, each element occurs in at most O(B) sets.

The details of the parameter modification appear in Section 8.5.

We combine this set cover hardness with the bound on the packing dimension of simple set
systems to prove the hardness of Vector Bin Packing.

Proof of Theorem 120. We prove the result by giving an approximation preserving reduction
from the NP-hard problem of set cover on simple bounded set systems. Let S be the set system
from Theorem 137 defined on a universe V . Note that each set in the family has cardinality at
most k = B and each element in the universe appears in at most ∆ = O(B) sets. We now output
a set V of |V | vectors in [0, 1]d such that

1. (Completeness.) If there is a set cover of size m in S , there is a packing of V using m bins.
2. (Soundness.) If there is no set cover of size m′ in S , there is no packing of V using m′ bins.

142

We use Theorem 133 to compute an embedding f : V → [0, 1]d in polynomial time such that

∥f(S)∥∞ ≤ 1

if and only if S ∈ S↓, with d = (k∆)O(1) = BO(1). Our output Vector Bin Packing instance is the
set of vectors f(v), v ∈ V .

V = {f(v) : v ∈ V }

Completeness. Suppose that there exist sets S1, S2, . . . , Sm ∈ S whose union is V . Then, we
use m bins with the vectors {f(vj) : j ∈ Si} in the ith bin. A vector might appear in multiple
bins, but we can arbitrarily pick one bin for each vector while still maintaining the property that
in each bin, the ℓ∞ norm of the sum of the vectors is at most 1.

Soundness. Suppose that the minimum set cover in S has cardinality at least m′ + 1. Then, we
claim that the set of vectors V needs m′+1 bins to be packed. Suppose for contradiction that there
is a vector packing with m′ bins. In other words, there exists a partition of V into B1, B2, . . . , Bm′

such that ∥f(Bi)∥∞ ≤ 1 for all i ∈ [m′]. As ∥f(Bi)∥∞ ≤ 1, Bi ∈ S↓ for all i ∈ [m′]. That is, for
every i ∈ [m′], there exists a set Si ∈ S such that Bi ⊆ Si. This implies that {S1, S2, . . . , Sm′} is
a set cover of V , a contradiction.

As the original bounded simple set cover problem is hard to approximate within Ω(logB) =

Ω(log d), the resulting Vector Bin Packing is hard to approximate within Ω(log d). Furthermore, in
the hard instances, the optimal value i.e. the minimum number of bins needed to pack the vectors
can be made arbitrarily large, and thus, the hardness applies to the asymptotic approximation
ratio.

8.4 Vector Scheduling

8.4.1 Monochromatic Clique
In the Monochromatic Clique problem, given a graph G = ([n], E) and a parameter k(n), the
objective is to assign k colors to the vertices of G so as to minimize the largest monochromatic
clique. More formally, we study the following decision version of the problem.
Definition 138. (Monochromatic-Clique(k,B)) In the Monochromatic-Clique(k,B) problem,
given a graph G = (V,E) with |V | = n and parameters k(n), B(n), the goal is to distinguish
between the following:

1. (YES case) The chromatic number of G is at most k.
2. (NO case) In any assignment of k colors to the vertices of G, there is a clique of size B, all

of whose vertices are assigned the same color.
It generalizes the standard k-Coloring problem, which corresponds to the case when B = 2.

Note that the problem gets easier as B increases. Indeed, when B >
√
n, we can solve the

problem in polynomial time using the canonical SDP relaxation. We present this algorithm and an
almost matching integrality gap in Section 8.6.

143

On the hardness front, we now prove that Monochromatic-Clique(k,B) is hard when
B = (log n)C , for any constant C. We achieve this in two steps: First, we observe that the existing
chromatic number hardness results already imply the hardness of monochromatic clique when
B = (log n)γ for some constant γ > 0. Next, we amplify this hardness by using lexicographic
graph product.

Basic Hardness

We start with a couple of basic Ramsey theoretic lemmas from [CK04].
Lemma 139. For a graph G = (V,E) with |V | = n, if ω(G) ≤ B, then α(G) ≥ n

1
B .

Lemma 140. For a graph G = (V,E) with |V | = n, if ω(G) ≤ B, then χ(G) ≤ O(n1− 1
B log n).

We can use the above lemmas to prove that if the chromatic number of a graph is large enough,
then in any assignment of k colors to the vertices of the graph, there is a large monochromatic
clique.
Lemma 141. For every constant ϵ > 0, if a graph G = (V,E) with |V | = n satisfies χ(G) ≥
k n
2(logn)α for some integer k and 0 < α < 1, then in any assignment of k colors to V , there is a

monochromatic clique of size B = Ω((log n)1−α−ϵ).

Proof. Suppose for contradiction that there is an assignment of k colors V without a monochro-
matic clique of size B. Using Lemma 140, the subgraphs corresponding to each of the k color
classes has chromatic number at most

O(n1− 1
B log n) =

n

2Ω((logn)α+ϵ)
log n <

n

2(logn)α

colors. Thus, the whole graph has chromatic number at most k n
2(logn)α colors, a contradiction.

Khot [Kho01] proved that assuming NP ⊈ ZPTIME
(
n(logn)O(1)

)
, the chromatic number of

graphs is hard to approximate within a factor of n

2(logn)1−γ for an absolute constant γ > 0. More
formally, he proved the following:
Theorem 142. ([Kho01]) There exists a constant γ > 0, a function k = k(n), and a randomized
reduction that takes as input a 3-SAT instance I on n variables and outputs a graph G = (V,E)

with |V | = N = 2logn
O(1)

such that
1. (Completeness) If I is satisfiable, χ(G) ≤ k.
2. (Soundness) If I is not satisfiable, with probability at least 1

2
, χ(G) > k N

2(logN)1−γ .

Futhermore, the reduction runs in time poly(N) = 2(logn)
O(1)

.
We observe that Khot’s chromatic number hardness immediately gives (log n)Ω(1) hardness of

Monochromatic Clique.
Lemma 143. There exists a constant γ > 0, a function k = k(n) such that the following holds.
Assuming NP ⊈ ZPTIME

(
n(logn)O(1)

)
, given a graph G = ([n], E), there is no n(logn)O(1)

time
algorithm for Monochromatic-Clique(k,B) when B = Ω((log n)γ).

144

Proof. Using Khot’s reduction, we get that there exists an absolute constant γ > 0 such that
assuming NP ⊈ ZPTIME

(
n(logn)O(1)

)
, given a graph G = ([n], E) and a parameter k(n), there

is no n(logn)O(1) time algorithm to distinguish between the following:

1. (Completeness) χ(G) ≤ k.
2. (Soundness) χ(G) > k n

2(logn)1−γ .

Using Lemma 141, the Soundness condition implies that in any assignment of k colors to G, there
is a monochromatic clique of size Ω ((log n)γ−ϵ), for any constant ϵ > 0. Thus, given a graph G
and a parameter k, assuming NP ⊈ ZPTIME

(
n(logn)O(1)

)
, there is no n(logn)O(1) time algorithm

to distinguish between the following:

1. (Completeness) χ(G) ≤ k.
2. (Soundness) In any assignment of k colors to the vertices of G, there is a monochromatic

clique of size Ω((log n)γ
′
).

for any constant γ′ < γ.

Amplification using Lexicographic Product

We cannot directly amplify the hardness of the Monochromatic-Clique problem by taking graph
products as we cannot preserve the chromatic number and also amplify the largest clique in an
assignment of k colors at the same time. We get around this issue by defining a harder variant of
Monochromatic Clique called Strong Monochromatic Clique and then amplifying it.
Definition 144. (Strong Monochromatic-Clique(k,B,C)) In the Strong Monochromatic-
Clique(k,B,C), given a graph G and parameters k(n), B(n), C, the goal is to distinguish
between the following two cases:

1. (YES case) The chromatic number of G is at most k.
2. (NO case) In any assignment of kC colors to the vertices of G, there is a monochromatic

clique of size B.
We now observe that the chromatic number hardness of Khot [Kho01] implies the same

hardness as Lemma 143 for Strong Monochromatic Clique as well.
Lemma 145. There exists a constant γ > 0 and a function k = k(n) such that for every constant
C ≥ 1, the following holds. Assuming NP ⊈ ZPTIME

(
n(logn)O(1)

)
, there is no n(logn)O(1)

time
algorithm for Strong Monochromatic-Clique(k,B,C) when B = Ω((log n)γ).

Proof. Note that the function k in Theorem 142 satisfies k = o
(
2(logN)1−γ

)
. Thus, we can

replace the soundness condition in Theorem 142 with χ(G) ≥ kC N

2C(logN)1−γ . Using Lemma 141,
this implies that in any assignment of kC colors to the vertices of G, there is a monochromatic
clique of size Ω((logN)γ−ϵ), where ϵ > 0 is an absolute constant. The hardness of Strong
Monochromatic Clique then follows along the same lines as Lemma 143.

145

We amplify the hardness of Strong Monochromatic-Clique(k,B,C) to Monochromatic-
Clique(kC , BC) using the lexicographic product of graphs. First, we define lexicographic product
and prove some properties of it.
Definition 146. (Lexicographic product of graphs) Given two graphs G and H , the Lexicographic
graph product G ·H has vertex set V (G)×V (H), and two vertices (u1, v1), (u2, v2) are adjacent
if either (u1, u2) ∈ E(G) or u1 = u2 and (v1, v2) ∈ E(H).

The lexicographic product can be visualized as replacing each vertex of G with a copy of
H and forming complete bipartite graphs between copies of vertices adjacent in G. For ease of
notation, we let G2 = G ·G. More generally, for an integer n that is a power of 2, we define Gn

as taking the above lexicographic product of G with itself recursively log n times.
Lemma 147. Let n ≥ 2 be a power of 2. If χ(G) ≤ k, then χ(Gn) ≤ kn.

Proof. We prove that χ(G2) ≤ k2, and the statement follows by induction on n. If f : G→ [k]

is a proper k-coloring of G, then the coloring f ′(u, v) = (f(u), f(v)) is a proper k2-coloring of
G×G.

Lemma 148. Let n ≥ 2 be a power of 2. Suppose that in any assignment of k colors to the
vertices of G, there is a monochromatic clique of size B. Then, in any assignment of k colors to
the vertices of Gn, there is a monochromatic clique of size Bn.

Proof. We prove the statement for n = 2 and the lemma follows by induction on n. Let
f : V (G2) → [k] be a given assignment. For a vertex v ∈ G, consider the assignment gv :

V (G)→ [k] defined as gv(u) = f(v, u). As every assignment of k colors to the vertices of G has
a monochromatic clique of size B, there is a color α(v) ∈ [k] and a clique S(v) ⊆ V (G) with
|S(v)| ≥ B such that gv(u) = α(v) for all u ∈ S(v), or in other words, f(v, u) = α(v) for all
u ∈ S(v). Note that such a set S(v) and α(v) exist for v ∈ V (G). The function α : V (G)→ [k]

can also be visualized as an assignment of k colors to the vertices of G, and thus there is a
monochromatic clique T of size at least B with respect to this assignment. The set

{S(v) : v ∈ T}

is a monochromatic clique of size B2 with respect to f in G.

By using the lexicographic product, we can get a polynomial time reduction from Strong
Monochromatic Clique to Monochromatic Clique.
Lemma 149. For every constant C ≥ 1 that is a power of 2, there exists a polynomial time
reduction from Strong Monochromatic-Clique(k,B,C) to Monochromatic-Clique(kC , BC).

Proof. Given a graph G as an instance of Strong Monochromatic-Clique(k,B,C), we compute
the graph G′ = GC . We claim that solving Monochromatic-Clique(kC , BC) on G′ solves the
original Strong Monochromatic Clique problem.

1. (Completeness.) Suppose that χ(G) ≤ k. Then, by Lemma 147, χ(G′) ≤ kC .

146

2. (Soundness.) Suppose that in any assignment of kC colors to the vertices of G, there is a
monochromatic clique of size B. Then, by Lemma 148, in any assignment of kC colors to
the vertices of G′, there is a monochromatic clique of size BC .

Putting everything together, we obtain the following hardness of Monochromatic Clique.
Theorem 150. For every constant C > 0, there exists a function k = k(n) such that the
following holds. Assuming NP ⊈ ZPTIME

(
n(logn)O(1)

)
, there is no n(logn)O(1)

time algorithm

for Monochromatic-Clique(k,B) when B = Ω
(
(log n)C

)
.

Proof. The proof follows directly by combining Lemma 145 and Lemma 149.

8.4.2 From Monochromatic Clique to Vector Scheduling

We now prove Theorem 121 using the above hardness of Monochromatic Clique.

Proof of Theorem 121. The reduction from Monochromatic-Clique(k,B) to Vector Scheduling
is (implicitly) proved in [CK04]. We present it here for the sake of completeness. Given a graph
G = (V = [n], E), parameters k and B, we order all the B-sized cliques of G as T1, T2, . . . , Td
with d ≤ nB. We define a set of n vectors v1, v2, . . . , vn of dimension d with

(vi)j =

{
1 if i ∈ Tj
0 otherwise.

The instance of the Vector Scheduling has these n vectors as the input and the number of machines
is equal to k.

We analyze the reduction.

1. (Completeness.) Suppose that there exists a proper k-coloring of G, c : V → [k]. We assign
the vector vi to the machine c(i). For every j ∈ [d], all the B vectors that have 1 in the jth
dimension are assigned to distinct machines. Thus, the makespan of the scheduling is at
most 1.

2. (Soundness.) Suppose that in any assignment of k colors to the vertices of G, there is a
monochromatic clique of size B. In this case, the makespan of the scheduling is at least B.

We set B = (log n)C for a large constant C to be set later. We choose k from Theorem 150
such that assuming NP ⊈ ZPTIME

(
n(logn)O(1)

)
, there is no n(logn)O(1) time algorithm for

Monochromatic-Clique(k,B). By the above reduction, we can conclude that there is no polyno-
mial time algorithm that approximates the resulting Vector Scheduling instances within a factor
of B = (log n)C . As d ≤ nB, we get that log d ≤ (log n)C+1, and B ≥ (log d)1−

1
C+1 . Setting

C = 1
ϵ
− 1, we get that d-dimensional Vector Scheduling has no polynomial time Ω((log d)1−ϵ)

approximation algorithm assuming NP ⊈ ZPTIME
(
n(logn)O(1)

)
, for every constant ϵ > 0.

147

Remark 151. In [Im+19], Im, Kell, Kulkarni, and Panigrahi also study the ℓr-norm minimization
of Vector Scheduling where the objective is to minimize

max
k∈[d]

(
m∑
i=1

(Lk
i)

r

) 1
r

where Lk
i denotes the load on the machine i on the kth dimension. They gave an algorithm with an

approximation ratio O
((

log d
log log d

)1− 1
r

)
. Our reduction from Monochromatic Clique gives almost

optimal hardness for this variant as well: we get the hardness of Ω
(
(log d)1−

1
r
−ϵ
)

assuming

NP ⊈ ZPTIME
(
n(logn)O(1)

)
, for every constant ϵ > 0.

8.4.3 Hardness of Vector Scheduling via Balanced Hypergraph Coloring
Observe that the resulting Vector Scheduling instances in the above reduction satisfy a stronger
property: the vectors are from {0, 1}d. In the setting where the vectors are from {0, 1}d, the
Vector Scheduling problem is closely related to the Balanced Hypergraph Coloring problem. In
this problem, given a hypergraph H and an integer k, the objective is to assign k colors to the
vertices of H minimizing the maximum number of monochromatic vertices in an edge. More
formally, we study the following decision version of the problem.
Definition 152. (Balanced Hypergraph Coloring.) In the Balanced Hypergraph Coloring problem,
given a s-uniform hypergraph H and parameters k and c < s, the objective is to distinguish
between the following:

1. There is an assignment of k colors to the vertices of H such that in every edge, each color
appears at most c times.

2. The hypergraph H has no proper coloring with k colors i.e., in any assignment of k colors
to the vertices of H , there is an edge all of whose s vertices are assigned the same color.

We give a simple reduction from Balanced Hypergraph Coloring to Vector Scheduling.
Lemma 153. Given a s-uniform hypergraph H = (V ′ = [n′], E ′) and parameters k, c, there
is a polynomial time reduction that outputs a Vector Scheduling instance I over n′ vectors
v1, v2, . . . , vn′ ∈ {0, 1}d on m′ machines with m′ = k, d = |E ′| such that

1. (Completeness.) If there is an assignment of k colors to the vertices of H such that each
color appears at most c times in every edge, then there is a scheduling of I with makespan
at most c.

2. (Soundness.) If H has no proper coloring with k colors, then in any scheduling of I , the
makespan is at least s.

Proof. Let d = |E ′|. Order the edges of the hypergraph H as e1, e2, . . . , ed. We define the set of
vectors v1, v2, . . . , vn′ ∈ {0, 1}d as follows:

(vi)j =

{
1 if i ∈ ej
0 otherwise.

148

We set the number of machines m′ to be equal to the number of colors k. There is a natural
correspondence between the assignment of k-colors to the vertices of H f : V ′ → [k], and the
scheduling where we assign the vector vi to the machine f(i). We now analyze our reduction.

1. (Completeness.) If there exists an assignment of k colors f : V ′ → [k] where each color
appears at most c times in each edge, we assign the vector vi, i ∈ [n′] to the machine f(i).
In any dimension j ∈ [d], at most c vectors vi with (vi)j = 1 are scheduled on any machine.
Thus, in any machine, the total load in each dimension is at most c.

2. (Soundness.) If there exists a vector scheduling f : [n] → [m′] with makespan strictly
smaller than s, assign the color f(i) to the ith vertex of the hypergraph. In any edge of the
hypergraph, each color appears fewer than s times as the makespan is smaller than s. Thus,
f : V ′ → [k] is a proper k-coloring of the hypergraph H .

We prove the hardness results for Vector Scheduling, namely Theorem 122 and Theorem 123
by combining this reduction with the hardness of Balanced Hypergraph Coloring. Note that the
dimension of the resulting instances in the above reduction is equal to m, the number of edges in
the hypergraph H , and the ratio of the makespans in the completeness and soundness is equal to s

c
.

Thus, our goal is to prove the hardness of the Balanced Hypergraph Coloring problem where s
c

is
as large as possible, as a function of m, the number of edges in the underlying hypergraph.

Towards this, we first give a reduction from the Label Cover problem to the Balanced Hyper-
graph Coloring problem.
Lemma 154. Fix an odd prime number k ≥ 3 and let ϵ = 1

k8
. Given a Label Cover instance

G = (V = L ∪R,E,ΣL,ΣR,Π), there is a polynomial time reduction that outputs a k2 uniform
hypergraph H = (V ′, E ′) with |V ′| ≤ |L|k|ΣL| such that

1. (Completeness) If G is satisfiable, there is an assignment of k colors to the vertices of H
such that in every edge, each color occurs at most 2k times.

2. (Soundness) If no labeling to G can satisfy an ϵ fraction of the constraints, then H has no
proper k-coloring, that is, in any assignment of k colors to the vertices of H , there is an
edge all of whose vertices are assigned the same color.

Furthermore, |E ′| is at most |R|∆kk|ΣL|k2 where ∆ is the maximum degree of a vertex v ∈ R.
We defer the proof of Lemma 154 to Section 8.4.4.

Using Lemma 154, we can prove the hardness of Balanced Hypergraph Coloring via Label
Cover hardness results. We obtain two different hardness results for the Balanced Hypergraph
Coloring problem, one under NP ⊈ DTIME

(
nO(log logn)

)
and another NP-hardness result, by

using two different hardness results for the Label Cover problem. These two hardness results
prove Theorem 123 and Theorem 122 respectively, using Lemma 153.

First, using the standard Label Cover hardness obtained using PCP Theorem [Aro+98] com-
bined with Raz’s Parallel Repetition theorem [Raz98], we get the following hardness of Balanced
Hypergraph Coloring.
Theorem 155. Assuming NP ⊈ DTIME

(
nO(log logn)

)
, there is no polynomial time algorithm

for the following problem. Given a k2-uniform hypergraph H = (V ′, E ′) with m = |E ′| and
k = (logm)Ω(1), distinguish between the following:

149

1. There is an assignment of k colors to the vertices of H such that in any edge of the
hypergraph, each color appears at most 2k times.

2. The hypergraph H has no proper k coloring.

Proof. By setting ϵ = 1
k8

in Theorem 129, we have a reduction from the 3-SAT problem on n
variables to the Label Cover problem G = (V = L ∪ R,E,ΣL,ΣR,Π) with soundness ϵ and
|V | ≤ nO(log k), |ΣL| ≤ kO(1) and ∆ ≤ kO(1). Using Lemma 154, we can reduce this Label Cover
instance to a Balanced Hypergraph Coloring instanceH = (V ′, E ′) with |V ′| ≤ nO(log k)2k

O(1) and
|E ′| ≤ nO(log k)2k

O(1) . We set k = (log n)Ω(1) such that |V ′| = nO(log logn) and |E ′| = nO(log logn)

to obtain the required hardness of Balanced Hypergraph Coloring.

The proof of Theorem 123 follows immediately from Theorem 155 and Lemma 153.

Next, using the hardness of near linear sized Label Cover due to Moshkovitz and Raz [MR10],
we obtain the following NP-hardness of Balanced Hypergraph Coloring.
Theorem 156. For any constant C ≥ 1, given a k2 uniform hypergraph H = (V ′, E ′) with
m = |E ′| and k = (log logm)C , it is NP-hard to distinguish between the following:

1. There is an assignment of k colors to the vertices of H such that in any edge of the
hypergraph, each color appears at most 2k times.

2. The hypergraph H has no proper k coloring.

Proof. By setting ϵ = 1
k8

in Theorem 130, we can reduce a 3-SAT instance over n variables
to a Label Cover instance G = (V = L ∪ R,E,ΣL,ΣR,Π) with soundness ϵ and |V | ≤
n1+o(1)kO(1), |ΣL| ≤ 2k

O(1) , ∆ = kO(1). By using Lemma 154, we can reduce the Label Cover

instance to a Balanced Hypergraph Coloring instance H = (V ′, E ′) with |V ′| ≤ n1+o(1)22
kO(1)

and |E ′| at most n1+o(1)22
kO(1)

. We set k = (log log n)Ω(1) to obtain |V ′| = O(n2), |E ′| = O(n2).
Dinur and Steurer [DS14] gave an improvement to [MR10]–in the new Label Cover hardness,

the alphabet size |ΣL| can be taken to be 2(
1
ϵ)

γ

for every constant γ > 0. Using this improved
Label Cover hardness, we can set k = (log log n)C for any constant C ≥ 1 in the hardness of
Balanced Hypergraph Coloring.

The proof of Theorem 122 follows immediately from Theorem 156 and Lemma 153.

Finally, we remark that if the structured graph version of the Projection Games Conjec-
ture [Mos15] holds, Lemma 154 and Lemma 153 together prove that d-dimensional Vector
Scheduling is NP-hard to approximate within a factor of (log d)Ω(1).

8.4.4 Proof of Lemma 154

We follow the standard Label Cover-Long Code framework–see e.g.,[ABP20].

Reduction. For ease of notation, let n = |ΣL|. For every node v ∈ L of the Label Cover instance,
we have a set of kn vertices denoted by fv = {v} × [k]n. The vertex set of the hypergraph is
V ′ =

⋃
v∈L fv.

150

For every u ∈ R, and k distinct neighbors of u, v1, v2, . . . , vk ∈ L with projection constraints
πi : [ΣL]→ [ΣR], i ∈ [k], consider the set of k2 vectors xi,j for i ∈ [k], j ∈ [k] which satisfy the
following: For every β ∈ ΣR, and for all α1, α2, . . . , αk ∈ ΣL such that πi(αi) = β for all i ∈ [k],
we have ∣∣{(i, j)|xi,j

αi
= p}

∣∣ ≤ 2k ∀p ∈ [k] (8.1)

For every such set of k2 vectors, we add the edge {(vi, xi,j) : 1 ≤ i, j ≤ k} to E ′. We can observe
that |V ′| ≤ |L|k|ΣL| and

|E ′| ≤ |R|
(
∆

k

)(
k|ΣL|

k

)k

≤ |R|∆kk|ΣL|k2 .

Completeness. Suppose that there exists an assignment σ : V → Σ that satisfies all the constraints
of the Label Cover instance G. We color the set of vertices fv in the long code corresponding to
the vertex v ∈ L with the dictator function on the coordinate σ(v) i.e. for every x ∈ fv, we assign
the color

c ({v, x}) = xσ(v)

We can observe that this coloring satisfies the property that in every edge e ∈ E ′, each color
appears at most 2k times.

Soundness. Suppose that there is a proper k-coloring c : V ′ → [k] of the hypergraph H i.e. in
every edge e = {v1, v2, . . . , vk2}, we have

|{c(v1), c(v2), . . . , c(vk2)}| > 1

Our goal is to prove that there is a labeling to the Label Cover instance that satisfies at least ϵ = 1
k8

fraction of constraints.
We need the following lemma proved by Austrin, Bhangale, Potukuchi [ABP20] using a

generalization of Borsuk-Ulam theorem.
Lemma 157. (Theorem 5.2 of [ABP20]) For every odd prime k and n ≥ k3, in any k-coloring of
[k]n, c : [k]n → [k], there is a set of k vectors x1, x2, . . . , xk that are all assigned the same color
such that

{x1
i , x

2
i , . . . , x

k
i } = [k]

for at least n− k3 distinct coordinates i ∈ [n].
Using this lemma, for every v ∈ L, we can identify a set of vectors xv,1, xv,2, . . . , xv,k ∈ fv

such that all these vectors have the same color i.e. c({v, xv,i}) = c′(v) for all v ∈ L, i ∈ [k]

for some function c′ : L → [k]. Furthermore, there are a set of coordinates S(v) ⊆ [n] with
|S(v)| ≤ k3 such that

{xv,1
i , xv,2

i , . . . , xv,k
i } = [k]

for every i ∈ [n] \ S(v).
For a set S ⊆ ΣL and a function π : ΣL → ΣR, we use π(S) to denote the set {π(i) : i ∈ S}.

We now prove a key lemma that helps in the decoding procedure.

151

Lemma 158. Let u ∈ R be a node on the right side of the Label Cover instance. There are a
set of labels S(u) ⊆ ΣR such that |S(u)| ≤ k5, and for every v ∈ L that is a neighbor of u with
projection constraint π : ΣL → ΣR, we have S(u) ∩ π(S(v)) ̸= ϕ.

Proof. Fix a node u ∈ R on the right side of the Label Cover instance. Let v1, v2, . . . , vl ∈ L
be the neighbors of u in the Label Cover instance corresponding to the projection constraints
π1, π2, . . . , πl respectively. As |S(vi)| ≤ k3 for all i ∈ [l], and the constraints πi are projections,
we have |πi(S(vi))| ≤ k3 for all i ∈ [l]. Among these l subsets πi(S(vi)) of ΣR, let the maximum
number of pairwise disjoint subsets be denoted by l′. Without loss of generality, we can assume
that S = {πi(S(vi)) : i ∈ [l′]} is a pairwise disjoint family of subsets.

We define the set S(u) as follows:

S(u) =
⋃
i∈[l′]

πi(S(vi))

As S is a family of maximum pairwise disjoint subsets, we have S(u) ∩ πi(S(vi)) ̸= ϕ for all
i ∈ [l]. Our goal is to bound the size of S(u), which we achieve by bounding l′.

We claim that l′ ≤ k(k − 1). Suppose for contradiction that l′ > k(k − 1). This implies that
there are l′ > k(k − 1) nodes v1, v2, . . . , vl′ all adjacent to u such that πi(S(vi)), i ∈ [l′] are all
pairwise disjoint. Thus, there exists a color ℓ ∈ [k] and a set of k nodes w1, w2, . . . , wk adjacent
to u corresponding to the projection constraints π′

1, π
′
2, . . . , π

′
k such that c′(wi) = ℓ for all i ∈ [k],

and the k sets π′
i(S(wi)) are pairwise disjoint.

Using this, we can construct a set of vectors xi,j, 1 ≤ i, j ≤ k defined as xi,j = xwi,j which
satisfy the following properties:

1. All these vectors are colored the same:

c({wi, xi,j}) = ℓ ∀1 ≤ i, j ≤ k

2. For every i ∈ [k],
{xi,1

i′ , x
i,2
i′ , . . . , x

i,k
i′ } = [k]

for every i′ ∈ [n] \ S(wi).

We claim that these set of vectors satisfy the condition in Equation (8.1). Fix a β ∈ ΣR, and
α1, α2, . . . , αk ∈ ΣL such that π′

i(αi) = β for all i ∈ [k]. As the family of subsets π′
i(S(wi)) is a

pairwise disjoint family, we can infer that there exists at most one i ∈ [k] such that αi ∈ S(wi).
Note that if αi /∈ S(wi), then

{xi,j
αi

: j ∈ [k]} = [k].

Thus, we have ∣∣{(i, j)|xi,j
αi

= p}
∣∣ ≤ 2k ∀p ∈ [k].

Thus, the set of vectors {(wi, xi,j) : 1 ≤ i, j ≤ k} is indeed an edge of E ′. As all these vectors are
colored the same color ℓ, we have arrived at a contradiction to the fact that c is a proper k-coloring
of H .

Hence, we can conclude that l′ ≤ k(k − 1), and thus, |S(u)| ≤ k(k − 1)k3 < k5.

152

Now, consider the labeling σ : L→ ΣL, where σ(v), v ∈ L is chosen uniformly at random
from S(v). Similarly, let σ : R → ΣR is chosen uniformly at random from S(u), u ∈ R.
Using Lemma 158, we can infer that for every edge e = (v, u) in the Label Cover, this labeling
satisfies the edge e with probability at least 1

|S(v)||S(u)| ≥
1
k8

. By linearity of expectation, this
labeling satisfies at least 1

k8
fraction of the constraints in expectation. Hence, with positive

probability, the labeling satisfies at least 1
k8

fraction of the constraints. This concludes the proof
of soundness that if H has a proper k coloring, then there exists a labeling to G that satisfies at
least 1

k8
fraction of the constraints.

8.5 Hardness of simple k-set cover

The hardness result of Kumar, Arya, and Ramesh [KAR00] is obtained from the Label Cover
problem using a partition gadget along the lines of the reduction of Lund and Yannakakis [LY94].
The set families in the reduction in [LY94] have large intersections. [KAR00] get around this by
using two main ideas:

1. They use a different partition system wherein each partition is a disjoint union of a large
(super constant) number of sets instead of just 2 sets in [LY94].

2. They use multiple sets for each label assignment to a vertex of the Label Cover, unlike a
single set corresponding to each label of each vertex in [LY94].

As [KAR00] were proving a Ω(log n) hardness of the set cover, the universe size of the
partition system is chosen to be the same as the number of vertices in the Label Cover instance.
This forces the set sizes to be very large. We can get around this issue by simply defining the
partition system on a set of size B, where B is a large constant. This also has an added benefit
that we no longer require sub-constant hardness from the Label Cover instances, thus giving us
NP-hardness directly. This observation is used by Trevisan [Tre01] to obtain lnB −O(ln lnB)

NP-hardness of set cover on instances where each set has cardinality at most B, from Feige’s
(1− ϵ) lnn set cover hardness [Fei98].

We now describe the parameter modifications in full detail. Let B be a large constant.
We start our reduction from Label Cover instances with soundness γ = 1

32β2 log2 B
where β is

an absolute constant to be fixed later.
Theorem 159. ([Aro+98; Raz98]) Given a Label Cover instance defined on a bipartite graph
G = (V,E) with left alphabet ΣL and right alphabet ΣR, it is NP-hard to distinguish between the
following:

1. (Completeness). There exists a labeling σ : V → ΣL ∪ ΣR that satisfies all the constraints.
2. (Soundness). No labeling to V can satisfy more than γ fraction of the constraints.

Furthermore the instances satisfy the following properties:
1. The alphabet sizes d = |ΣL| and d′ = |ΣR| are both upper bounded by (logB)O(1).
2. The maximum degree deg of G is upper bounded by (logB)O(1).
Following the convention in [KAR00], we assume that the number of vertices on the left side

in G is equal to that on the right side of G, and we denote this number by n′.

153

We now construct a partition system P on a universe N of size B. The system P has
d′× (deg+1)× d partitions. Each partition has m = B1−ϵ parts, where ϵ is a small constant to be
fixed later. The partition system is divided into d′ groups each containing (deg+ 1)× d partitions.
Each group is further organized into deg + 1 subgroups each of which contains d partitions. Let
Pg,s,p denote the pth partition in the sth subgroup of the gth group and Pg,s,p,k denote the kth set
in Pg,s,p where g ∈ [d′], s ∈ [deg + 1], p ∈ [d], k ∈ [m]. The partition system satisfies the four
properties in Section 4 of [KAR00], the only difference being that the universe N now has size B
instead of n′. Thus, the covering property (Property 4 in [KAR00]) now states that any covering
of N with βm logB sets should contain at least 3m

4
sets from the same partition. Such a partition

system is shown to exist for large enough B in [KAR00] using a randomized construction. They
also derandomize the construction. But for our setting, as B is a constant, we just need to show
the existence of such a partition system.

We reduce the Label Cover instance in Theorem 159 to a set cover instance SC by the same
construction as in [KAR00]: we have a partition system corresponding to each edge of the Label
Cover instance, and the union of the elements in the partition systems is the element set of SC.
The sets in SC, Ck(v, a) are defined exactly as in [KAR00]. The cardinality of each set is at most
B′ = deg ×B ≤ B2. Each element is present in at most md = O(B) sets. The fact that SC is a
simple set system follows from Lemma 1 of [KAR00]. By Lemma 2 in [KAR00], if there is a
labeling of the Label Cover instance, then there is a set cover of size n′m in SC. If there is a set
cover of size β

2
n′m logB in SC, then there is a labeling of G that satisfies γ fraction of constraints.

The proof of this soundness follows along the same lines as Lemma 3 of [KAR00], with the only
difference being that we now define the good edges as edges having #(e) ≤ βm logB.

8.6 SDP Relaxation of Monochromatic-Clique
We consider the following SDP relaxation of the graph coloring problem on G = (V,E):

Minimize k

⟨ui, ui⟩ = 1 ∀i ∈ V

⟨ui, uj⟩ ≤
−1
k − 1

∀(i, j) ∈ E

The optimal solution to this SDP is referred to as the vector chromatic number χv(G) of the graph
G. It is equivalent to the Lovasz theta function of the complement of G. We have the following
sandwich property due to [Knu94]:

ω(G) ≤ χv(G) ≤ χ(G)

8.6.1 Algorithm when B >
√
n

There is a simple algorithm for the Monochromatic-Clique(k,B) problem when B > k: We
compute χv(G) in polynomial time, and we check if χv(G) ≤ k. In this case, there is no clique of

154

size B in G, and we output YES. If χv(G) > k, then the graph cannot be colored with k colors,
and in this case, we output NO.

Note that if k(B − 1) ≥ n, there is always an assignment of k colors to the vertices of the
graph without a clique of size B, thus the problem is trivial.

8.6.2 Integrality gap
The above algorithm proves that in any graph with vector chromatic number at most k, there is an
assignment of k colors to the vertices that has monochromatic clique of size at most

√
n. We now

prove that this cannot be significantly improved:
Theorem 160. For n large enough, there exists a graph G = (V,E) with n vertices, and a
parameter k such that

1. χv(G) ≤ k.
2. In any assignment of k colors to the vertices of G, there is a monochromatic clique of size
nΩ(1).

Proof. We first prove the following: for large enough n, there exists a graph G on n vertices, and
an integer k such that

1. ϑ(G) ≤ k.
2. In any assignment of k colors to the vertices of the graph G, there exists a monochromatic

independent set of size B = nΩ(1).

Our construction is a probabilistic one: we sample G from G(n, p) with p = 1√
n

. It has been
proved [Juh82] that the Lovasz theta function of this random graph satisfies

ϑ(G) ≤ 2n
3
4 + Õ(n

1
3 log n)

with high probability. We set k = 3n
3
4 . For large enough n, with high probability, we have

ϑ(G) ≤ k.
Furthermore, the random graph G(n, p) with p = o(n− 2

5) has no K6 with high probability(See

e.g., [FK15]). Thus, using Lemma 139, we can infer that in any subset of size n
1
4

3
, there is an

independent set of size at least n
1
24

2
. Hence, in any assignment of k colors to the vertices of the

graph G, there is a monochromatic independent set of size nΩ(1). Taking the complement, we get
a graph with the required properties.

155

156

Chapter 9

Approximate hypergraph vertex cover and
generalized Tuza’s conjecture

9.1 Introduction

The relationship between minimum vertex covers and maximum matchings of graphs and hyper-
graphs is a fundamental and well-studied topic in combinatorics and optimization. Even though
the worst-case factor t gap between the two parameters cannot be improved on arbitrary t-uniform
hypergraphs, there are some interesting special cases where the ratio between these quantities is
smaller. A classic example of this phenomenon is the König’s theorem on bipartite graphs, where
the sizes of minimum vertex covers and maximum matchings are equal.

For the case of t = 3, a notorious open problem capturing this gap on special 3-uniform
hypergraphs is Tuza’s conjecture[Tuz81; Tuz90], which states that in any graph, the number
of edges required to hit all triangles is at most twice the maximum number of edge-disjoint
triangles. For a hypergraph H , let us denote by τ(H) and ν(H) the sizes of the minimum vertex
cover and maximum matching respectively. Tuza’s conjecture is then equivalent to the statement
τ(H) ≤ 2 · ν(H) for any 3-uniform hypergraph H obtained by taking the edges of a graph G as
its vertices, and the triangles of G as its (hyper)-edges. (Taking G = K4 shows that the factor 2
is best possible.) The conjecture has been verified for various classes of graphs such as graphs
without K3,3-subdivision [Kri95], graphs with maximum average degree less than 7 [Pul15],
graphs with quadratic number of edge disjoint triangles [HR01; Yus12], graphs with treewidth at
most 6[BFG19], and random graphs in the Gn,p model [BCD20; KP20]. On general graphs, the
current best upper bound on the ratio is a factor of 2.87 due to Haxell [Hax99].

Aharoni and Zerbib [AZ20] introduced an extension of Tuza’s conjecture to hypergraphs of
larger uniformity. This generalized Tuza’s conjecture states that for any t-uniform hypergraph
H , the minimum vertex cover τ(H ′) of H ′ = H(t−1) is at most

⌈
t+1
2

⌉
times that of the maximum

matching ν(H ′). Here, for a t-uniform hypergraph H = (V,E), the (t− 1)-blown-up hypergraph
H ′ = H(t−1) is a t-uniform hypergraph whose vertices are the set of all (t − 1) sized subsets
that are contained in at least one edge of H , and corresponding to every edge e in H , all the
(t−1)-sized subsets of e form an edge inH ′. Tuza’s conjecture is a special case of their conjecture

157

when t = 3 and H has hyperedges corresponding to the triangles in a graph. As is the case with
the original Tuza’s conjecture, the conjectured value of

⌈
t+1
2

⌉
is the best possible gap: when

H is the complete t-uniform hypergraph on (t + 1) vertices, the (t − 1)-blown-up hypergraph
H ′ = H(t−1) has ν(H ′) = 1 and τ(H ′) =

⌈
t+1
2

⌉
.

9.1.1 Fractional Tuza’s conjecture and the algorithmic hypergraph Turán
problem

A first step towards non-trivially bounding τ(H) in terms of ν(H) for hypergraphs H from some
structured family of hypergraphs is proving its fractional version, i.e., obtaining the same upper
bound on the ratio between τ(H) and ν∗(H), the fractional maximum matching size. By LP
duality, this is equivalent to bounding the ratio between τ(H) and τ ∗(H), the fractional vertex
cover value. As ν(H) ≤ ν∗(H) = τ ∗(H) ≤ τ(H) for any hypergraph H , establishing the
fractional version is a necessary step toward bounding τ(H)/ν(H). Note that understanding
the extremal ratio between τ and τ ∗ on a given family of hypergraphs is equivalent to bounding
the integrality gap of the natural linear programming relaxation of vertex cover on that class of
hypergraphs.

Krivelevich[Kri95] proved the fractional version of Tuza’s conjecture that τ(H(2)) ≤ 2τ ∗(H(2))

for any 3-uniform hypergraph H . A multi-transversal version of Krivelevich’s result is proved in
a recent work [Cha+20]. In this work, we prove the fractional version of the generalized Tuza’s
conjecture (upto o(t) factors), establishing a non-trivial upper bound on the LP integrality gap for
(t− 1)-blown-up hypergraphs.

Theorem 161. For any t-uniform hypergraph H , τ (H ′) ≤
(

t
2
+ 2
√
t ln t

)
τ ∗ (H ′), where τ(H ′)

and τ ∗(H ′) are respectively the size of the minimum vertex cover and minimum fractional vertex
cover of the blown-up hypergraph H ′ = H(t−1). Furthermore, there is an efficient algorithm to
approximate vertex cover on (t− 1)-blown-up hypergraphs within a t

2
+ 2
√
t ln t factor.

The vertex cover problem on (t− 1)-blown-up hypergraphs is also intimately connected to the
famous Hypergraph Turán Problem [Tur41; Tur61] in extremal combinatorics. In the Hypergraph
Turán Problem, the goal is to find the minimum size of a family F ⊆

(
[n]
t−1

)
of subsets of [n] with

cardinality (t− 1) such that for every subset S of [n] of size t, there exists a set T ∈ F such that
T is a subset of S. The best known upper bound is due to [Sid97]: there exists a family F ⊆

(
[n]
t−1

)
of size O(log t

t
)
(

n
t−1

)
such that for every subset S of [n] of size t, there exists a subset T ∈ F such

that T is contained in S. On the other hand, the lower bound situation is rather dire, with only
second-order improvements [CL99; LZ09] over the trivial 1

t

(
n

t−1

)
lower bound.

Note that the Hypergraph Turán Problem is precisely the minimum vertex cover problem on
H(t−1) when H is the complete t-uniform hypergraph. Thus, for a general hypergraph H , finding
vertex covers on the blown-up hypergraph H(t−1) can be viewed as an algorithmic version of the
Hypergraph Turán problem.
Problem 162. (Algorithmic Hypergraph Turán Problem (AHTP)) Given a t-uniform hyper-
graph H = (V = [n], E), find the minimum size of a family F ⊆

(
[n]
t−1

)
of subsets of V of size

(t− 1) such that for every hyperedge e ∈ E, there exists T ∈ F such that T is a subset of e.

158

Figure 9.1: The 3-tent

The problem is a generalization of the minimum vertex cover on graphs, which corresponds to
the case t = 2. As AHTP can be cast as a vertex cover problem on t-uniform hypergraphs, there
is a trivial factor t approximation algorithm for this problem. We prove Theorem 161 by obtaining
an improved algorithm for AHTP based on rounding the standard LP relaxation on H ′ = H(t−1).

We now briefly describe this rounding approach. First, using threshold rounding, we argue
that one may focus on the case when the LP solution does not have any variables that are assigned
values greater than 2

t
. Let S be the set of vertices of H ′ that are assigned non-zero LP value. The

thresholding procedure ensures that every hyperedge e ∈ E(H ′) intersects with S in at least t
2

vertices. We can bound the cardinality of S from above by t ·OPT using the dual matching LP,
where OPT is the cost of the optimal LP solution. Our goal then becomes finding a vertex cover
of size at most about |S|

2
. We achieve this by a color-coding technique: we randomly assign a color

from {0, 1} to each vertex of H independently. Most edges of H are almost balanced under this
coloring, in the sense that each color appears at least t/2− o(t) times. We then use this balance
property to find a small vertex cover in H ′.

9.1.2 Vertex cover vs. matching and excluded sub-hypergraphs

The generalized Tuza’s conjecture concerns the relationship between τ and ν on the (t−1)-blown-
up hypergraphs. There have been some works in the literature on the gap between τ and ν on other
structured class of hypergraphs. An outstanding result of this type is Aharoni’s proof [Aha01] that
τ(H) ≤ 2ν(H) for all tripartite 3-uniform hypergraphs H . Aharoni and Zerbib [AZ20] asked
if there is a structural explanation that unites the generalized Tuza’s conjecture and the above
result—for example, does the exclusion of a certain substructure in the hypergraph H imply better
gaps between τ(H) and ν(H). A particular substructure they studied is the “tent” subhypergraph
(Figure 9.1).

They observed that both tripartite hypergraphs and 2-blown-up 3-uniform hypergraphs cannot
contain the tent as a subhypergraph, and asked whether a generalization of Tuza’s conjecture might
hold for 3-uniform hypergraphs that exclude tents. If this is the case, it could give a common
structural explanation of the existence of small vertex covers in 3-uniform hypergraphs.

In this work, we answer this question in the negative. We prove that that there are hypergraphs
H on n vertices that exclude tents with τ(H) ≥ (1 − o(1))n. Since ν(H) ≤ n/3 trivially, this
shows that the ratio τ/ν can approach 3 on tent-free 3-uniform hypergraphs, and the extension of
Tuza’s conjecture as raised in [AZ20] does not hold. More generally, one might ask if there is
some collection of hypergraphs which are excluded from blown-up hypergraphs whose absence

159

implies a non-trivial gap between τ and ν. In fact, we prove a stronger statement showing that
there is no 3-uniform hypergraph family F (that is absent from blown-up hypergraphs) whose
exclusion alone could imply Tuza’s conjecture. Our result applies for larger uniformity t and the
fractional version of Tuza’s conjecture.
Theorem 163. For every ϵ > 0 and every finite family of t-uniform hypergraphs F such that no
hypergraph fromF appears in any (t−1)-blown-up hypergraphH ′ = H(t−1), there is a t-uniform
hypergraph T such that T does not contain any hypergraph from F but τ(T) ≥ (t− ϵ)ν(T) (and
in fact τ(T) ≥ (t− ϵ)τ ∗(T)).

The above result rules out the possibility of a “local” proof of Tuza’s conjecture. Our
construction is a probabilistic one, first sampling each edge of the hypergraph independently with
certain probability, and then removing all the copies of hypergraphs in F . Using the fact that the
family F satisfies certain sparsity requirements [FM08; BFM10], we can conclude that there is no
large independent set in this construction.

We also provide an explicit construction that answers the tent-free question of [AZ20]: our
counterexample is the hypergraph T with vertex set [3]n for large enough n and edges being the
set of combinatorial lines. By the density Hales Jewett Theorem [FK91; Pol12], there is no large
independent set in T , and using the structure of combinatorial lines, we can prove that T does not
have any tent.

9.1.3 Vertex cover and set cover on simple hypergraphs

As mentioned earlier, AHTP is a special case of vertex cover on t-uniform hypergraphs. In fact,
the blown-up hypergraph H(t−1) is a simple1 hypergraph: any two edges intersect in at most one
vertex. This is simply because any two distinct t-sized subsets of [n] intersect in at most one
(t− 1)-sized subset. Simple hypergraphs have been well studied in Graph Theory, especially in
the context of Erdős-Faber-Lovász conjecture [Erd81; Erd88] which has been recently proved in a
breakthrough result [Kan+21], Ryser’s conjecture [Fra+17] and chromatic number of bounded
degree hypergraphs [DLR95; FM13].

A natural question is whether we can obtain an approximation ratio smaller than t for vertex
cover on simple hypergraphs. However,Theorem 163 shows that the natural LP has an integrality
gap approaching t on simple, and indeed a lot more structured, hypergraphs. But perhaps there
are other algorithms that beat the trivial factor t approximation for this problem. We prove that
this is not the case, and in fact, vertex cover on simple hypergraphs is as hard as vertex cover on
general t-uniform hypergraphs.
Theorem 164. For every ϵ > 0, unless NP ⊆ BPP, no polynomial time algorithm can approxi-
mate vertex cover on simple t-uniform hypergraphs within a factor of t− 1− ϵ. Under the Unique
Games conjecture, the inapproximability factor improves to t− ϵ.

We also study the set cover problem on simple set families where any two sets in the family
intersect in at most one element. Equivalently, we want to pick the minimum number of edges
to cover all vertices in a simple hypergraph. Kumar, Arya, and Ramesh [KAR00] proved that

1Simple hypergraphs are also referred to as linear hypergraphs.

160

set cover problem on simple set systems is hard to approximate within a Ω(lnn) factor. While
this is within constant factor of the lnn approximability of set cover on general set systems, it
is natural to wonder if the set cover problem on simple systems is as hard as the same problem
on general set systems. Contrary to the vertex cover problem, it turns out that simplicity of the
set family does help in getting an improved approximation factor for the set cover—in fact, the
greedy algorithm itself delivers such an approximation.
Theorem 165. For set cover on simple set systems over a universe of size n, the greedy algorithm
achieves an approximation ratio lnn

2
+ 1. Further, there are simple set systems where the greedy

algorithm is off by a factor exceeding lnn
2
− 1.

Interestingly, the dual Maximum Coverage problem, where the goal is to cover as many
elements as possible with a specified number of sets, does not become easier on simple set systems
and is hard to approximate within a factor exceeding (1− 1/e) [CKL21], the factor achieved by
the greedy algorithm on general set systems. In [CKL20], the authors conjecture the hardness of
achieving an approximation factor beating (1− 1/e) even for the Maximum Coverage version of
AHTP, and call this the Johnson Coverage Hypothesis. They show that this hypothesis implies
strong inapproximability results for fundamental clustering problems like k-means and k-median
on Euclidean metrics. For example, they showed that the hypothesis implies that k-median is hard
to approximate within a factor of 1.73 on ℓ1 metrics, matching the best hardness factor on general
metrics due to Guha and Khuller [GK99].

9.1.4 Other improved hypergraph vertex cover algorithms

Algorithms beating the trivial factor t approximation have been obtained for the vertex cover
problem on some other families of t-uniform hypergraphs. In his doctoral thesis, Lovász [Lov75]
gave a LP rounding algorithm to obtain a factor t

2
approximation for vertex cover on t-uniform

t-partite hypergraphs. This algorithm is shown to be optimal under the Unique Games Conjecture
by Guruswami, Sachdeva, and Saket [GSS15], and an almost matching NP-hardness is also
shown. Aharoni, Holzman, and Krivelevich [AHK96] generalized the above algorithmic result
to other class of hypergraphs which have a partition of vertices obeying certain size restrictions.
A factor t

2
approximation algorithm has also been obtained on subdense regular t-uniform

hypergraphs [Car+12].
For the problem of covering all paths of length t (t-Path Transversal), Lee [Lee19] gave a

factor O(log t) approximation. For covering all copies of the star on t vertices, i.e., K1,t−1, a
factor O(log t) approximation is given in [GL17], and this is tight by a simple reduction from
dominating set on degree t graphs. Covering 2-connected t-vertex pattern graphs (in particular
t-cliques or t-cycles) is as hard as general t-uniform hypergraph vertex cover [GL17].

9.1.5 Open problems

A number of intriguing questions and directions come to light following our work, and we mention
a few of them below.

The most obvious question is whether our algorithm for AHTP can be improved and yield

161

approximation ratios smaller than t/2. Can stronger LP relaxations like Sherali-Adams help
in this regard? On the hardness side, essentially nothing is known. There is a straightforward
approximation preserving reduction from vertex cover on graphs to AHTP, but this only shows the
hardness of beating a factor of 2. Can one show a better inapproximability factor? We do not know
any good lower bound on the integrality gap of the LP either—for example, we do not know the
existence of a hypergraph H for which τ(H(t−1))/τ ∗(H(t−1)) grows with t. A natural candidate
is the complete t-uniform hypergraph on n vertices for which de Cain conjectured [Cae94]
that in fact, τ(H(t−1))/τ ∗(H(t−1)) grows with t. However, this is precisely the lower bound of
hypergraph Turán problem, and is perhaps very hard to resolve. On the algorithmic side, obtaining
o(log t) approximation algorithm for AHTP would lead to improvements on the hypergraph Turán
problem: On the complete hypergraph instance, either the algorithm outputs a family F ⊆

(
[n]
t−1

)
of size o

(
log t
t−1

) (
n
t

)
that covers every subset of size t, or gives a certificate that any such family

should have size at least ω
(
1
t

) (
n

t−1

)
. In the first case, we get an improvement on the upper bound

of hypergraph Turán problem, and in the second case, we resolve de Cain’s conjecture.
Similar to the (t− 1)-blown-up hypergraphs, one can define the k-blown-up hypergraph of

a t-uniform hypergraph—which will be a
(
t
k

)
-uniform hypergraph—and study the vertex cover

problem on it. A special case of this problem when k = 2 is the analog of Tuza’s problem for
larger cliques, i.e., covering all copies of t-cliques in a graph by the fewest possible edges. Our
algorithm for AHTP extends to this setting, and in particular gives an algorithm with ratio t2/4
for the k = 2 case, beating the trivial

(
t
2

)
factor (see Section 9.3.4 for details). Can one achieve a

o(t2) factor algorithm? A simple reduction from vertex cover on t-uniform hypergraphs shows an
inapproximability factor of t−O(1), but can one show hardness or integrality gaps of ω(t)?

In general, our work brings to the fore challenges about covering graph structures by edges,
on both the algorithmic and hardness fronts. On the hardness side, we seem to have essentially
no techniques to show strong inapproximability results, as the known PCP techniques where one
naturally associates vertices with proof locations do not seem to apply. As mentioned earlier,
covering all copies of a t-vertex pattern graph H with vertices is as hard to approximate as general
t-uniform hypergraph vertex cover when H is 2-connected [GL17].

Our structural results show that the LP integrality gap (and therefore also the vertex cover
to matching ratio) remains close to t on hypergraphs that exclude subgraphs absent in (t − 1)-
blown-up hypergraphs, and thus no “local” proof of Tuza-type conjectures is possible. Are
there interesting families of t-uniform hypergraphs F such that vertex cover admits non-trivial
approximation (with ratio less than t) on F-free t-uniform hypergraphs?

For the maximization version of AHTP, where we seek to pick a specified number (t−1)-sized
subsets to cover the largest number of edges in a t-uniform hypergraph, is there an algorithm that
beats the (1 − 1/e) factor (achieved by greedy for the general Max Coverage problem)? The
Johnson Coverage Hypothesis of [CKL20] asserts that for any ϵ > 0, a (1−1/e+ϵ)-approximation
is hard to obtain for t large enough compared to ϵ.

We have considered covering problems in this work, and there are interesting questions
concerning the dual packing problems as well. For instance, what is the approximability of
packing edge-disjoint copies, of say t-cliques, in a graph? This is a special case of the matching

162

problem on 2-blown-up hypergraphs. For the maximum matching problem on general k-uniform
hypergraphs, also known as k-set packing, Cygan [Cyg13] gave a local search algorithm that
achieves an approximation factor of k+1

3
+ ϵ for any constant ϵ > 0. Can we get better algorithms

for the maximum matching problem on blown-up hypergraphs?
On the hardness front, k-set packing is inapproximable to a Ω(k/ log k) factor [HSS06].

Known inapproximability results for the independent set problem on graphs with maximum
degree k [AKS11; Cha16] imply that the maximum matching problem on k-uniform simple
hypergraphs is hard to approximate within a Ω

(
k

log2 k

)
factor. Could maximum matching on

simple hypergraphs be easier to approximate than general hypergraphs?

Organization. In Section 9.2, we introduce some notation and definitions. In Section 9.3, we
describe and analyze our algorithm for AHTP and prove Theorem 161. Then, in Section 9.4,
we prove that the analog of (generalized) Tuza’s conjecture does not hold based only on local
forbidden sub-hypergraph characterizations, proving Theorem 163, and also giving an explicit
construction for the tent-free case posed in [AZ20]. Finally, in Section 9.5, we consider simple
hypergraphs and prove Theorems 164 and 165.

9.2 Preliminaries

Notation. We use [n] to denote the set {1, 2, . . . , n}. We use Zn to denote the set {0, 1, . . . , n−
1}. For a set S and an integer 1 ≤ k ≤ |S|, we use

(
S
k

)
to denote the family of all the k-sized

subsets of S. A hypergraph H ′ = (V ′, E ′) is called a subhypergraph of H = (V,E) if V ′ ⊆ V

and E ′ ⊆ E ′. For a hypergraph H = (V,E), we use τ(H), ν(H) to denote the size of the
minimum vertex cover and the maximum matching respectively. Similarly, we use τ ∗(H) to
denote the minimum fractional vertex cover of H:

τ ∗(H) = min

{∑
v∈V

xv : xv ∈ R≥0 ∀v ∈ V,
∑
v∈e

xv ≥ 1 ∀e ∈ E

}

We define the k-blown up hypergraph formally:
Definition 166. For a t-uniform hypergraph G = (V,E) and for an integer 1 ≤ k < t, we define
the k-blown up hypergraph H = G(k) = (V ′, E ′) as follows:

1. The vertex set V ′ ⊆
(
V
k

)
is the set of all k-sized subsets of V that are contained in an edge

of G:
V ′ = {U : U ⊆ V, |U | = k,∃e ∈ E : U ⊆ e}

2. For every edge e ∈ E, we include in E ′ all the k-sized subsets of e, so that

E ′ =

{
e′ : e′ =

(
e

k

)
, e ∈ E

}
We will need the following Chernoff bound:

163

Lemma 167. (Multiplicative Chernoff bound) Suppose X1, X2, . . . , Xn are independent random
variables taking values in {0, 1}. Let X = X1 +X2 + . . . +Xn, and let µ = E[X]. Then, for
any 0 ≤ δ ≤ 1,

Pr(X ≤ (1− δ)µ) ≤ e−
δ2µ
2 .

9.3 LP rounding algorithm for AHTP
In this section, we present our algorithm for the AHTP and prove Theorem 161. Given a t-uniform
hypergraph G as an input to the AHTP, let H = G(t−1) be the (t− 1)-blown-up hypergraph of G.

9.3.1 Color-coding based small vertex cover
We first prove a lemma that in any (t− 1)-blown-up hypergraph H = ([n], E), there is a vertex
cover of size at most O(log t

t
)n using a color-coding argument. This lemma illustrates the color-

coding idea well, and is also useful later in the context of structural characterization of the
blown-up hypergraphs. This lemma is not used in the main algorithm, and the reader can skip
to Section 9.3.2 for the algorithm.
Lemma 168. SupposeG = ([n], E(G)) is a t-uniform hypergraph andH = G(t−1) = (V (H), E(H)).
Then, there exists a randomized polynomial time algorithm that outputs a vertex cover of H with
expected size at most |V (H)|

(
2 ln t
t

+O
(
1
t

))
.

Proof. Our algorithm is based on the color-coding technique used to get upper bounds for the
hypergraph Turán problem [KR83; Sid95]. Let P =

⌈
t−1
2 ln t

⌉
. Color each vertex of G with

c : [n]→ [P] uniformly independently at random. For v ∈ V (H) and i ∈ [P], let Ci(v) denote
the number of nodes of v that are colored with i, i.e., Ci(v) := |{j ∈ v : c(j) = i}|.

We define a function f : V (H)→ ZP as

f(v) = C1(v) + 2C2(v) + . . .+ (P − 1)C(P−1)(v) mod P

For an element i ∈ ZP , let f−1(i) denote the set {v ∈ V (H) : f(v) = i}. Let p ∈ ZP be such
that |f−1(p)| ≤ |f−1(i)| for all i ∈ ZP . Note that by definition, |f−1(p)| ≤ |V |

P
. Let U ⊆ V (H)

be defined as follows:

U = {v : v ∈ V (H),∃i ∈ [P] such that Ci(v) = 0}

We claim that S = f−1(p) ∪ U is a vertex cover of H . Consider an arbitrary edge e =

{v1, v2, . . . , vt} ∈ E(H). Let the corresponding edge in G be equal to e(G) =
⋃

j∈[t] vj =

(u1, u2, . . . , ut) ∈ E(G) where u1, u2, . . . , ut are elements of [n]. Without loss of generality, let
vj = e(G) \ {uj}. For a color i ∈ [P], let Ci(e) = |{j ∈ [t] : c(uj) = i}|. We consider two cases
separately:

1. First, if there exists a color i ∈ [P] such that Ci(e) = 0, then for every j ∈ [t], Ci(vj) = 0,
and thus, for every j ∈ [t], vj ⊆ U , and thus, e ∩ S ̸= ϕ.

164

2. Suppose that for every color i ∈ [P], Ci(e) > 0. We define f(e) ∈ ZP as

f(e) = C1(e) + 2C2(e) + . . .+ (P − 1)C(P−1)(e) mod P

Note that for every j ∈ [t], we have

f(vj) = f(e)− c(uj) mod P

As the size of {c(u1), c(u2), . . . , c(ut)} is equal to P , the size of the set {f(v1), f(v2), . . . , f(vt)}
is equal to P as well. Thus, there exists a j ∈ [t] such that f(vj) = p which implies that
vj ∈ S.

Thus, our goal is to upper bound the expected value of |S|. Note that P ≤ t−1
ln t

. By taking
union bound over all the colors, we get

E[U] ≤ P

(
1− 1

P

)t−1

|V (H)| ≤ t− 1

ln t
e−2 ln t|V (H)| ≤

(
1

t ln t

)
|V (H)| ≤ O

(
1

t

)
|V (H)|

Thus, the expected value of S is at most |f−1(p)|+E[|U |] which is at most
(
2 ln t
t−1

+O
(
1
t

))
|V (H)|.

9.3.2 LP rounding based algorithm for AHTP

Consider the standard LP relaxation for vertex cover in H:

Minimize
∑

v∈V (H)

xv

such that
∑
v∈e

xv ≥ 1 ∀e ∈ E(H); and xv ≥ 0 ∀v ∈ V (H)

Let x be an optimal solution to the above Linear Program, and let OPT =
∑

v∈V (H) xv. Let
S ⊆ V (H) be the set of vertices that are assigned positive LP value i.e.

S = {v ∈ V (H) : xv > 0}

We need a lemma relating |S| and OPT:
Lemma 169. The cardinality of S is at most t ·OPT.

Proof. Consider the dual of the vertex cover LP:

Maximize
∑

e∈E(H)

y(e)

such that
∑
e∋v

y(e) ≤ 1 ∀v ∈ V (H); and y(e) ≥ 0 ∀e ∈ E(H)

165

Let y be an optimal solution to the above matching LP. By LP-duality, we get
∑

e∈E(H) ye = OPT.
Recall that for all v ∈ S, xv ̸= 0. By the complementary slackness conditions, we get that for all
v ∈ S,

∑
e∋v ye = 1. Summing over all v ∈ S, we obtain

|S| =
∑
v∈S

∑
e∋v

ye ≤ t
∑

e∈E(H)

ye = t ·OPT.

In general, OPT could be much smaller than |V (H)|, and thus we cannot use Lemma 168
directly to obtain algorithm for AHTP. However, we can obtain a simple (t− 1)-factor approxima-
tion algorithm for AHTP using Lemma 168, extending the proof of fractional Tuza’s conjecture
of Krivelevich [Kri95]. We consider two different cases:

1. Suppose that there is a vertex v ∈ V (H) such that xv = 0. Consider an arbitrary edge
e ∈ E(H) with v ∈ e. As

∑
u∈e xu ≥ 1, we can infer that there is a vertex v′ ∈ e such that

xv′ ≥ 1
t−1

. We round v′ to 1 i.e. add v′ to our vertex cover solution, delete all the edges
containing v′ and recursively proceed.

2. Suppose that for every vertex v ∈ V (H), we have xv > 0. In this case, using Lemma 168,
we can find a vertex cover of size O(log t

t
)|V (H)|, which can be bounded above by

O(log t)OPT using Lemma 169.
We now describe a randomized algorithm to round the LP to obtain an integral solution whose
expected size is at most

(
t
2
+ 2
√
t ln t

)
OPT. As is evident from the second case in the above

(t− 1)-factor algorithm, the problem is easy when the set of vertices S ⊆ V (H) with non-zero
LP value is large. Instead of considering the two different cases based on whether S = V (H) or
not, we take a more direct approach by finding a vertex cover of size

(
1
2
+ o(1)

)
|S|. Combined

with Lemma 169, we get our required approximation guarantee.
For ease of notation, let t′ = t

2
+ 2
√
t ln t. Our first step is to round all the variables above a

certain threshold to 1 (Algorithm 1). However, we need to do it recursively to ensure that we can
bound the optimal value of the remaining instance.

Algorithm 1 Recursive thresholding for AHTP
1: Let γ = 1

t′
.

2: Let x be an optimal solution of the LP and let V ′ = {v : xv ≥ γ}.
3: Let U = V ′.
4: while V ′ is non-empty do
5: Delete V ′ from V (H), and delete all the edges e ∈ E(H) that contain at least one vertex
v ∈ V ′.

6: Solve the LP with updated H . Update x to be the new LP solution.
7: Update V ′ = {v ∈ V (H) : xv ≥ γ}. Update U ← U ∪ V ′.

8: Output U and the updated H .

166

Let the final updated hypergraph H when Algorithm 1 terminates be denoted by H ′. Let the
optimal cost of the solution x for the vertex cover on H ′ be denoted by OPT′. We prove that the
size of the vertex cover output by the algorithm is not too large:
Lemma 170. When the above recursive thresholding algorithm (Algorithm 1) terminates, we
have |U | ≤ t′ ·

(
OPT−OPT′).

Proof. We will inductively prove the following: after line 6 in the while loop of the algorithm,
|U | ≤ t′ · (OPT−OPTnew) where OPTnew is the cost of the current optimal solution x. Let x′

is the optimal solution before deleting V ′ from H . Let OPTold be the cost of the solution x′. By
inductive hypothesis, we have |U | − |V ′| ≤ t′ · (OPT−OPTold).

We claim that |V ′| ≤ t′ · (OPTold −OPTnew). As x is an optimal vertex cover of H , we have
that x′ restricted to H has cost at least OPTnew. This implies that

∑
v∈V ′ x′v ≥ OPTold−OPTnew.

As each x′v, v ∈ V ′ is at least 1
t′

, we obtain the required claim.

We are now ready to state our main algorithm for the AHTP. The input to the algorithm is a
t-uniform hypergraph G, and the output is a vertex cover for the hypergraph H = G(t−1).

Algorithm 2 Main algorithm
1: Apply Algorithm 1 to obtain U and let H ′ = (V (H ′), E(H ′)) be the updated H . Let x be an

optimal solution of the vertex cover LP on H ′ with xv ≤ γ for all v ∈ V (H ′).
2: Let S ⊆ V (H ′) be defined as S = {v : V (H ′) : xv > 0}.
3: Let δ =

√
4 ln t
t−1

.
4: Color the vertices [n] of G using c : [n]→ {0, 1} uniformly and independently at random.
5: For a vertex v ∈ S and a color i ∈ {0, 1}, let Ci(v) denote the number of nodes that are

colored with the color i i.e. ▷ Recall that S ⊆ V (H ′) ⊆
(
[n]
t−1

)
.

Ci(v) = |{j ∈ v : c(j) = i}|

6: Let S ′ ⊆ S be defined as the set of vertices in S where the discrepancy between two colors is
high:

S ′ =

{
v ∈ S : ∃i ∈ {0, 1} : Ci(v) ≤ (1− δ)t− 1

2

}
7: We now define a function f : S → {0, 1} as f(v) = C1(v) mod 2.
8: For i ∈ {0, 1}, let f−1(i) denote the set of all the vertices v ∈ S such that f(v) = i.
9: Let p ∈ {0, 1} be such that |f−1(p)| ≤ |f−1(1− p)|.

10: Let T ⊆ S be defined as T = S ′ ∪ f−1(p).
11: Output T ∪ U .

9.3.3 Analysis of the algorithm and proof of Theorem 161

We will first prove that Algorithm 2 indeed outputs a valid vertex cover of H .

167

Lemma 171. T ∪ U is a vertex cover of H .

Proof. It suffices to prove that T is a vertex cover of H ′.
Consider an arbitrary edge e = (v1, v2, . . . , vt) ∈ E(H ′) corresponding to the edge e(G) =

∪j∈[t]vj = {u1, u2, . . . , ut} ∈ E(G). Since xv ≤ γ for all v ∈ V (H ′), we can deduce that
|e ∩ S| ≥ 1

γ
= t′.

Our goal is to show that there exists j ∈ [t] such that vj ∈ T . We consider two separate cases:

Case 1: If there is a color i ∈ {0, 1} such that there are at most (1− δ) t−1
2

nodes of color i in
e(G), then for all j ∈ [t], Ci(vj) ≤ (1− δ) t−1

2
. Since e∩ S is non-empty, there exists j ∈ [t] such

that vj ∈ S. By definition of S ′, this implies that vj ∈ S ′ as well, and thus e ∩ T ̸= ϕ.

Case 2: Suppose that in the coloring c, both the colors 0, 1 occur at least (1 − δ) t−1
2

times in
e. Let e′ = e ∩ S and let k = |e′| ≥ t′. Without loss of generality, let e′ = {v1, v2, . . . , vk}. For
every j ∈ [k], let vj = e(G) \ {uj} for uj ∈ [n]. First, we claim that t− k < (1− δ) t−1

2
. We have

t− k − (1− δ)t− 1

2
≤ t− t′ − (1− δ)t− 1

2
=
t

2
− 2
√
t ln t−

(
1−

√
4 ln t

t− 1

)
t− 1

2

=
1

2

(
t− 4

√
t ln t− (t− 1) + 2

√
(t− 1) ln t

)
≤ 1

2

(
1− 2

√
t ln t

)
< 0

Since each color occurs at least (1− δ) t−1
2

times in e(G), using the above, we can infer that

|{c(u1), c(u2), . . . , c(uk)}| ≥ 2.

We define the value f(e) in the same fashion as we have defined f(v) for v ∈ S: For i ∈ {0, 1},
let Ci(e) denote the number of nodes j ∈ [t] such that c(uj) = i, and let f(e) = C1(e) mod 2.
Using this definition, we get

f(vj) = f(e)− c(uj) mod 2 ∀j ∈ [k].

As {c(u1), c(u2), . . . , c(uk)} = {0, 1}, we have {f(v1), f(v2), . . . , f(vk)} = {0, 1} as well.
Thus, there exists j ∈ [k] such that f(vj) = p, which proves that vj ∈ f−1(p) ⊆ T .

Note that the expected number of nodes of each color i ∈ {0, 1} in a vertex v = (u1, u2, . . . , ut−1) ∈
S is equal to t−1

2
. The set S ′ is the set of vertices of S where there is a color that occurs much

fewer than its expected value. We prove that this happens with low probability:
Lemma 172. The expected cardinality of S ′ is at most 2

t
|S|.

Proof. Let v = (u1, u2, . . . , ut−1) ∈ S be an arbitrary vertex in S, where u1, u2, . . . , ut−1 are
elements of [n]. For a color i ∈ {0, 1}, let the random variable X(i) denote to the number of
nodes j ∈ [t − 1] such that c(uj) = i. We can write X(i) =

∑
j∈[t−1]X(i, j), where X(i, j)

is the indicator random variable of the event that c(uj) = i. We have µ = E[X(i)] = t−1
2

.
Using multiplicative Chernoff bound (Lemma 167), we can upper bound the probability that
X(i) ≤ (1− δ) t−1

2
by

Pr
(
X(i) ≤ (1− δ)t− 1

2

)
≤ e−

δ2(t−1)
4

168

For the choice δ =
√

4 ln t
t−1

, the above probability is at most 1
t
. By applying union bound over the

two colors and adding the expectation over all the vertices in S, we obtain the lemma.

Finally, we bound the expected size of the output of the algorithm:

Lemma 173. The expected cardinality of T ∪ U is at most
(

t
2
+ 2
√
t ln t

)
·OPT.

Proof. Note that by definition, |f−1(p)| ≤ |S|
2

. We bound the expected size of the output of the
algorithm T ∪ U as

E[|T ∪ U |] ≤ E[|T |] + E[|U |] ≤ E[|S ′|] + 1

2
|S|+ E[|U |]

≤
(
1

2
+

2

t

)
|S|+ E[|U |] (Using Lemma 172)

≤
(
t

2
+ 2

)
OPT’ + E[|U |] (Using Lemma 169)

≤
(
t

2
+ 2
√
t ln t

)
OPT (Using Lemma 170) .

Lemma 171 and Lemma 173 together imply Theorem 161.

9.3.4 (t, 2)version of AHTP

An interesting generalization of AHTP is the (t, k)-version, the problem of vertex cover on the
k-blown-up hypergraph H = G(k) for a t-uniform hypergraph G, for an arbitrary 1 ≤ k < t. The
case of k = 1 is the standard vertex cover on t-uniform hypergraphs, and k = t− 1 is the AHTP.
Note that there is a trivial

(
t
k

)
-factor approximation algorithm for this problem as it can be cast as

an instance of vertex cover on a
(
t
k

)
-uniform hypergraph. The above algorithm can be shown to

achieve a
(
t
k

)
c(k) approximation guarantee for the general problem where c(k) → 1

2
+ o(1) as

k → t− 1.
We now turn our attention to the interesting case of k = 2. When the hypergraph G consists

of t-cliques in a graph, the vertex cover problem on G(2) is the generalization of Tuza’s problem
where we try to hit all t-cliques with the fewest possible edges. Note that in this case, the trivial
hypergraph vertex cover algorithm achieves a

(
t
2

)
-factor approximation. We describe how a

simplified version of our algorithm can be used to get a t2

4
-factor guarantee: Let H = G(2) =

(V (H), E(H)), and we iteratively solve the Vertex Cover LP on H to round all the vertices with
value at least 4

t2
. In the remaining instance, we let S ⊆ V (H) to be the vertices of H that are

assigned non-zero LP value i.e. S = {v ∈ V (H) : xv > 0}. We use a color coding function
c : [n]→ {0, 1} picked uniformly and independently at random, and we output all the vertices
T = {{i, j} ∈ S : c(i) = c(j)}. The expected size of T is at most 1

2

(
t
2

)
OPT ≤ t2

4
OPT as the

cardinality of S is at most
(
t
2

)
OPT.

169

We now argue that T is indeed a vertex cover of H . Consider an edge e = {vi,j : i ̸= j ∈
[t]} ∈ E(H) corresponding to the edge e′ = (u1, u2, . . . , ut) ∈ E(G). Recall that every element
of e corresponds to a subset of size 2 of e′, and thus, without loss of generality, let vi,j = {ui, uj}
for all i, j ∈ [t]. As xvi,j <

4
t2

for all i, j ∈ [t], there are greater than t2

4
pairs of indices i, j such

that xvi,j > 0, or equivalently, vi,j ∈ S. Thus, |e ∩ S| > t2

4
. For every function c : [t]→ {0, 1},

the number of pairs of indices i ̸= j ∈ [t] such that c(i) ̸= c(j) is at most t2

4
. Thus, there are at

least
(
t
2

)
− t2

4
pairs of indices i ̸= j ∈ [t] such that c(ui) = c(uj). As |e ∩ S| > t2

4
, there exists a

pair of indices i ̸= j ∈ [t] such that vi,j ∈ S, c(ui) = c(uj), which implies that vi,j ∈ T . Thus,
for every edge e ∈ E(H) of H , there exists an element v ∈ e such that v ∈ T , which completes
the proof that T is a vertex cover of H .

As a corollary of the algorithm, we deduce that for all hypergraphs H = G(2) of a t-uniform
hypergraph G,

τ(H) ≤ t2

4
τ ∗(H)

This proves the fractional version of a conjecture due to Aharoni and Zerbib [AZ20] (Conjecture
1.4) for the case when k = 2.

9.4 Forbidden sub-hypergraphs and Tuza’s conjecture

Since AHTP is the problem of vertex cover on H = G(t−1) for a given t-uniform hypergraph
G, an interesting question is to characterize the t-uniform hypergraphs H that can arise as the
blown-up hypergraph G(t−1) of some t-uniform hypergraph G. A very simple necessary condition
is that the hypergraph H should be simple. However, this is not sufficient—there are simple
t-uniform hypergraphs H that cannot be written as H = G(t−1) for any G. For example, the t-tent
hypergraph (Definition 174) is a simple hypergraph, but cannot be written as a (t− 1)-blown-up
hypergraph. A natural question in this context is the following:

Is there a finite set of hypergraphsF such that every hypergraph that does not have any
member of F as a sub-hypergraph can be represented as G(t−1) for some t-uniform
hypergraph G?

In addition to its inherent structural interest, the above question can shed light on Tuza’s conjecture.
Recall that Aharoni and Zerbib[AZ20] proposed a generalization of Tuza’s conjecture stating that
τ
(
G(2)

)
≤ 2 · ν

(
G(2)

)
for all 3-uniform hypergraphs G. They suggested that understanding the

structure of blown-up hypergraphs, and specifically, the sub-hypergraphs that it excludes might be
a promising approach to establish this conjecture. In particular, they observed that the blown-up
hypergraphs do not contain “tents” as a sub-hypergraph.
Definition 174. A t-tent (Figure 9.1) is a set of four t-uniform edges e1, e2, e3, e4 such that

1. ∩3i=1ei ̸= ϕ.
2. |e4 ∩ ei| = 1 for all i ∈ [3].
3. e4 ∩ ei ̸= e4 ∩ ej for all i ̸= j ∈ [3].

170

In [AZ20], the authors pose the following question. Note that an answer in the affirmative
would resolve Tuza’s conjecture, and in fact its above generalization that τ

(
G(2)

)
≤ 2ν

(
G(2)

)
for all 3-uniform hypergraphs G.
Problem 175. Is it true that for every 3-uniform hypergraphH without a 3-tent, τ(H) ≤ 2·ν(H)?

We answer this question in the negative. In fact, we prove a stronger statement that there can
be no forbidden substructure-based Tuza’s theorem.
Theorem 176. Let F = {F1, F2, . . . , Fℓ} be an arbitrary set of t-uniform hypergraphs such that
for every t-uniform hypergraph G, the blown-up hypergraph G(t−1) does not contain any Fi ∈ F
as a sub-hypergraph.

Then, for every ϵ > 0, there exists a hypergraph H ′ that does not contain any member of F as
a sub-hypergraph and which satisfies τ(H ′) ≥ (t− ϵ)τ ∗(H ′) ≥ (t− ϵ)ν(H ′).

By setting F to be the single 3-tent hypergraph, we obtain a counterexample to Problem 175.
Furthermore, when t = 3, the construction we give to prove Theorem 176 will belong to the class
of 3-uniform hypergraphs H obtained from a given graph G with the vertex set of H being the
edge set of G, and every triangle in G forming an edge in H . Thus, there is no “local” proof of
Tuza’s conjecture that uses only substructure properties of the underlying hypergraph.

We call a hypergraph non-trivial if it has at least two edges. Before we prove the above
theorem, we use a definition from [FM08].
Definition 177. Let F be a non-trivial t-uniform hypergraph. Then,

ρ(F) = max
F ′⊆F

e′ − 1

v′ − t

where F ′ is a non-trivial subhypergraph of F with e′ > 1 edges and v′ vertices.
We now return to the proof of Theorem 176.

Proof. (of Theorem 176) We will first prove that ρ(Fi) >
1

t−1
for all i ∈ [ℓ]. Suppose for

contradiction that there exists a t-uniform hypergraph Fi ∈ F such that ρ(Fi) ≤ 1
t−1

. Without loss
of generality, we can assume that Fi is connected. Order the edges of Fi as {e1, e2, . . . , em} such
that for every j > 1, ej ∩ (e1 ∪ e2 ∪ . . .∪ ej−1) ̸= ϕ. For every j ≥ 1, let F ′

j be the subhypergraph
induced by {e1, e2, . . . , ej}. As ρ(Fi) ≤ 1

t−1
, we can infer that for every j > 1,

|E(F ′
j)| − 1

|V (F ′
j)| − t

≤ 1

t− 1

which implies that |V (F ′
j)| ≥ (t − 1)|E(F ′

j)| + 1 = (t − 1)j + 1. As |V (F ′
j)| = |V (F ′

j−1)| +
t − |ej ∩ (e1 ∪ e2 ∪ . . . ∪ ej−1)|, we get that |V (F ′

j)| ≤ |V (F ′
j−1)| + t − 1, which combined

with the above shows that the inequality is in fact tight for every j > 1. Thus, for every
j > 1, |V (F ′

j)| = |V (F ′
j−1)|+ t− 1, which implies that for every j > 1,

|ej ∩ (e1 ∪ e2 ∪ . . . ∪ ej−1)| = 1.

We now construct a t-uniform hypergraph H such that Fi is isomorphic to H(t−1). We
construct the hypergraph H inductively via H1, H2, . . . , Hm = H such that H(t−1)

j is isomorphic

171

to F ′
j for all j ∈ [m]. First, we set the hypergraph H1 to be equal to the t-uniform hypergraph on

t vertices with a single edge. H1 is trivially isomorphic to F ′
1. Assume by inductive hypothesis

that there is a hypergraph Hk such that F ′
k is isomorphic to H(t−1)

k for some k ∈ [m − 1]. Let
ϕ : F ′

k → H
(t−1)
k be the isomorphism between the two hypergraphs. The hypergraph F ′

k+1 is
obtained from F ′

k by adding an edge ek+1 such that ek+1 intersects with F ′
k in exactly one vertex

v ∈ V (F ′
k). Recall that the vertex set of H(t−1)

k is the set of subsets of vertices of Hk of size t− 1.
Thus, ϕ(v) = {(p1, p2, . . . , pt−1)} for a set of vertices p1, p2, . . . , pt−1 ∈ V (Hk). We construct
Hk+1 by introducing a new vertex v′ and adding the edge {v′, p1, p2, . . . , pt−1} to the hypergraph
Hk. Thus, H(t−1)

k+1 is obtained from H
(t−1)
k by adding single edge that intersects with H(t−1)

k at
exactly one vertex, that is {p1, p2, . . . , pt−1}. Hence, H(t−1)

k+1 is isomorphic to F ′
k+1, completing

the proof. This proves that there exists a t-uniform hypergraph H = Hm such that Fi = H(t−1),
contradicting the fact that no (t− 1)-blown-up hypergraph contains Fi as a subhypergraph.

Thus, ρ(Fi) >
1

t−1
for all i ∈ [ℓ]. Let ρ = mini∈[ℓ] ρ(Fi) >

1
t−1

. Consider a random t-uniform
hypergraph H ′ on n vertices sampled by picking each edge independently with probability
p = n− 1

ρ . We now delete the edges in a maximal collection of edge disjoint copies of members of
F from H ′. It has been proved [BFM10; FM08] that the maximum independent set α(H ′) of this
construction satisfies

α(H ′) ≤ Õ
(
n

1
(t−1)ρ

)
with high probability. Thus, there exists a t-uniform hypergraph H ′ with n vertices without any
substructure from F such that τ(H ′) ≥ (1− o(1))n. Since for any t-uniform hypergraph H ′ on n
vertices, ν(H ′) ≤ τ ∗(H ′) ≤ 1

t
n, this proves the claimed factor (t − ϵ) gap between τ(H ′) and

τ ∗(H ′) for every positive constant ϵ > 0.

9.4.1 Explicit construction of tent-free hypergraphs

We now describe an explicit hypergraph giving negative answer to Problem 175. Our counterex-
ample is a hypergraph with vertex set [3]n for large enough n and the edge set is the set of all
combinatorial lines that we formally define below:
Definition 178. (Combinatorial lines in [3]n) A set of three distinct vectors u = (u1, u2, . . . , un), v =

(v1, v2, . . . , vn), w = (w1, w2, . . . , wn) ∈ [3]n forms a combinatorial line if there exists a subset
S ⊆ [n] such that

1. For all i ∈ [n] \ S, ui = vi = wi.
2. There exist three distinct integers u′, v′, w′ ∈ [3] such that for all i ∈ S, ui = u′, vi =

v′, wi = w′.
We will use the following seminal result about combinatorial lines:

Theorem 179. (Density Hales Jewett Theorem [FK91],[Pol12]) For every positive integer k and
every real number δ > 0 there exists a positive integer DHJ(k, δ) such that if n ≥ DHJ(k, δ) and
A is any subset of [k]n of density at least δ, then A contains a combinatorial line.

We now give a proof of Theorem 163.

172

Proof. The hypergraph that we useH = (V,E) has V = [3]n for n large enough to be set later, and
the edges are all the combinatorial lines in [3]n. First, we claim that the above defined hypergraph
does not have a 3-tent. Suppose for contradiction that there are edges e1, e2, e3, e4 satisfying
the properties of Definition 174. Let u = (u1, u2, . . . , un) ∈ e4 ∩ e1, v = (v1, v2, . . . , vn) ∈
e4 ∩ e2, w = (w1, w2, . . . , wn) ∈ e4 ∩ e3. Note that e4 = {u, v, w}. Thus, there exists a subset
S ⊆ [n] such that for all i ∈ [n] \S, ui = vi = wi. Without loss of generality, we can also assume
that for all i ∈ S, ui = 1, vi = 2, wi = 3.

Let x = (x1, x2, . . . , xn) ∈ e1 ∩ e2 ∩ e3. Note that {x, u} ⊆ e1, {x, v} ⊆ e2, {x,w} ⊆ e3.
Consider an arbitrary element p ∈ S, and without loss of generality, let xp = 1. Thus, we have that
xp = 1, vp = 2 and both x, v share the combinatorial line e2. This implies that there exist a subset
S2 ⊆ [n] such that for all i ∈ [n] \ S2, xi = vi and for all i ∈ S2, xi = 1, vi = 2. Similarly, there
exists a subset S3 ⊆ [n] such that for all i ∈ [n] \ S3, xi = wi and for all i ∈ S3, xi = 1, wi = 3.

Note that S2 ⊆ S. Suppose for contradiction that there exists j ∈ S2 \ S. Then, we have
vj = 2, xj = 1. However, since vi = wi for all i ∈ [n] \ S, we get that wj = 2, and thus, j /∈ S3,
which implies that xj = wj = 2, a contradiction. Thus, S2 ⊆ S, and similarly S3 ⊆ S. We can
also observe that S2 ̸= S since in that case, x = u which cannot happen since |e4 ∩ e2| = 1. By
the same argument on e3, we can deduce that S3 ̸= S. As S2 is a strict subset of S, there exists
j ∈ S \ S2. As vi = xi for all i ∈ [n] \ S2, xj = vj = 2. As j ∈ S, we have wj = 3. However, as
wj ̸= xj , this implies that j ∈ S3, which then implies that xj = 1, a contradiction.

Now, we will prove that for large enough n, τ(H) > (3 − ϵ)ν(H). Let N = 3n. Since the
cardinality of V is equal to N , we have ν(H) ≤ N

3
. We apply Theorem 179 with k = 3, δ = ϵ

3
,

and set n ≥ DHJ(k, δ). Thus, we can infer that in any subset T ⊆ V of size ϵ
3
N , there

exists an edge of H fully contained in T . Thus, we get that τ(H) > (1 − ϵ
3
)N , which gives

τ(H) > (3− ϵ)ν(H).

9.5 Vertex cover and set cover on simple hypergraphs

As mentioned earlier, the edges in a (t− 1)-blown-up hypergraph of a t-uniform hypergraph can
intersect on at most one element, so such hypergraphs are simple. In this section, we will take a
step back and address to what extent improved approximation algorithms are possible for vertex
cover on simple hypergraphs. We will also consider the dual problem, of covering the vertices
by the fewest possible hyperedges, namely the set cover problem, on simple hypergraphs but
without any restriction on the size of the hyperedges. Note that a hypergraph is simple if and only
if the edge-vertex incidence bipartite graph does not contain a copy of K2,2. Thus, a hypergraph is
simple if and only if its dual is simple.

9.5.1 Vertex cover on simple t-uniform hypergraphs

We now prove Theorem 164 which shows that simple hypergraphs are still rich enough to preclude
a non-trivial approximation to vertex cover. Our hardness is established using a reduction from

173

the general problem of vertex cover on t-uniform hypergraphs. In particular, we use the following
result:
Theorem 180. ([Din+05]) For every constant ϵ > 0 and t ≥ 3, the following holds: Given a
t-uniform hypergraph G = (V,E), it is NP-hard to distinguish between the following cases:

1. Completeness: G has a vertex cover of measure 1+ϵ
t−1

.
2. Soundness: Any subset of V of measure ϵ contains an edge from E.
We give a randomized reduction from Theorem 180 to Theorem 164. The approach is similar

to the one used in [GL17] for showing the inapproximability of H-Transversal in graphs. It was
also used in the recent tight hardness for Max Coverage on simple set systems [CKL21].

Let us instantiate Theorem 180 with ϵ replaced by ϵ′ = ϵ
4
, and let the resulting hypergraph

be denoted by G. Now, given this t-uniform hypergraph G = (V,E), we output a t-uniform
hypergraph H = (V ′, E ′) as follows: Let n = |V |,m = |E|. We have integer parameters
B,P depending on ϵ, t, n,m to be set later. The vertex set of H is V ′ = V × [B]–we have a
cloud of B vertices v1, v2, . . . , vB in V ′ corresponding to every vertex v ∈ V . For every edge
e = (v1, v2, . . . , vt) ∈ E, we pick P edges e1, e2, . . . , eP with ei = ((v1)i, (v2)i, . . . , (vt)i) and
add them to E ′, where for each j ∈ [t] and i ∈ [P], (vj)i is chosen uniformly and independently
at random from (vj)

1, (vj)
2, . . . , (vj)

B. Thus, so far, we have added mP edges to E ′.
We first upper bound the expected value of the number of pairs of edges in E ′ that intersect in

more than one vertex. Order the edges in E ′ as e1, e2, . . . , emP . Let X denote the random variable
that counts the number of pairs of edges in E ′ that intersect in more than one vertex. For every pair
of indices i, j ∈ [mP], let the random variable Xij be the indicator variable of the event that the
edges ei and ej of E ′ intersect in greater than one vertex. Note that the edges in E corresponding
to ei and ej have at most t vertices in common. Thus, the probability that ei and ej intersect in at
least two vertices is upper bounded by

(
t
2

)
1
B2 . Summing over all the pairs i, j, we get

E[X] ≤
(
mP

2

)(
t

2

)
1

B2
≤ m2t2P 2

B2
.

By Markov’s inequality, with probability at least 9
10

, X is at most 10m2t2P 2

B2 .
We consider all the pairs of edges that intersect in more than one vertex in E ′, and arbitrarily

delete one of those edges. Let the resulting set of edges be denoted by E ′′ . The final hypergraph
resulting in this reduction is H = (V ′, E

′′
). Note that H is indeed a simple hypergraph. We will

prove the following:
1. (Completeness) If G has a vertex cover of measure µ, then there is a vertex cover of measure
µ in H .

2. (Soundness) If every subset of V of measure ϵ′ contains an edge from E, then with proba-
bility at least 4

5
, every subset of V ′ of measure ϵ contains an edge from E

′′ .

Completeness. If G has a vertex cover of size µn, then picking all the vertices in V ′ in the
cloud corresponding to these vertices ensures that H has a vertex cover of size µnB. Thus, in the
completeness case, there is a vertex cover of measure µ in H .

174

Soundness. Suppose that every ϵ′ measure subset of V contains an edge from E. Our goal is to
show that with probability at least 4

5
, every ϵ measure subset of V ′ contains an edge from E

′′ . We
first prove the following lemma:
Lemma 181. With probability at least 9

10
over the choice of E ′, the following holds: For every

edge e = (v1, v2, . . . , vt) ∈ E, and every subset S ⊆ V ′ such that for each i ∈ [t], S contains at
least ϵ

4
B vertices from {v1i , v2i , . . . , vBi }, there exists an edge e′ ∈ E ′ all of whose vertices are in

S.

Proof. The probability that there exists an edge e = (v1, v2, . . . , vt) and a subset S which contains
at least ϵ

4
B vertices from each cloud and does not contain any edge from E

′ is at most

m2tB
(
1−

(ϵ
4

)t)P

≤ m2tB−log e ϵtP
4t ≤ 1

10

when P = maB where a := a(t, ϵ) = 4t+2t
ϵt

.

Using the above lemma, we can conclude that with probability at least 4
5
, X ≤ 10m2t2P 2

B2 =

10m4t2a2 and for every edge e ∈ E and every subset S ⊆ V ′ such that for each i ∈ [t], S contains
at least ϵ

4
B vertices from {v1i , v2i , . . . , vBi }, there exists an edge e′ ∈ E ′ all of whose vertices are

in S. We claim that this implies that with probability at least 4
5
, every ϵ measure subset of V ′

contains an edge of E ′′ . Consider an arbitrary subset U ⊆ V ′ such that |U | ≥ ϵnB. We choose B
large enough such that t(10m4t2a2) ≤ ϵ

2
nB. Thus, the set of the vertices W in the edges deleted

from E ′ to obtain E ′′ has cardinality at most ϵ
2
nB.

Let U ′ = U \W . Note that all the edges in U ′ that are in E ′ are present in E ′′ as well. As
U ′ has a measure of at least ϵ

2
in V ′, for at least ϵ

4
n vertices v in V , U ′ should contain at least ϵ

4

fraction of the vertices in the cloud {v1, v2, . . . , vB}. Since otherwise, the cardinality of U ′ is at
most

(
n− ϵn

4

)
· ϵB

4
+ ϵn

4
· B < ϵnB

2
, a contradiction. By Lemma 181, we can deduce that there

exists an edge e ∈ E ′ all of whose vertices are in U ′, which implies that the edge e is in E ′′ as
well. This proves that in the soundness case, with probability at least 4

5
, there exists an edge in

every ϵ measure subset of V ′.
This completes the proof of Theorem 164. Under the Unique Games Conjecture [Kho02a],

the hardness of vertex cover in t-uniform hypergraphs can be improved to t− ϵ. We remark that
we can get the same hardness for simple hypergraphs by our reduction.

9.5.2 Set Cover on Simple Set Systems
In the set cover problem, there is a set family S ⊆ 2X on a universe X = [n], and the goal is
to cover the universe [n] with as few sets from the family as possible. The greedy algorithm
where we repeatedly pick the set that covers the maximum number of new elements achieves a
lnn-factor approximation algorithm for the problem, and this is known to be optimal. We consider
the same problem under the restriction that the family S is a simple set system i.e. for every
i ̸= j, |Si ∩ Sj| ≤ 1. Surprisingly, in contrast with the hardness result for vertex cover, simplicity
of the set family helps in achieving better approximation factor for the set cover problem.

175

Theorem 182. (Theorem 165 restated) The greedy algorithm achieves a
(
lnn
2

+ 1
)
-approximation

guarantee for the set cover problem on simple set systems over a universe of size n. Furthermore,
the bound is essentially tight for the greedy algorithm—there is a simple set system on which the
approximation factor of greedy exceeds (lnn

2
− 1).

Proof. First, we prove the upper bound. Let the optimal solution size be equal to k i.e. there
is T = {S1, S2, . . . , Sk} ⊆ S such that the union of sets in T is equal to [n]. For every set
S ∈ S \ T , |S ∩ Si| ≤ 1 by the simplicity of the set system, and thus, we get that

∀S ∈ S \ T , |S| ≤ k. (9.1)

We now consider two different cases:

1. Suppose that k ≥
√
n. We recall that the greedy algorithm in fact achieves a log |Smax|-

factor approximation algorithm for set cover on general instances where |Smax| is the size
of the largest set in the family. Thus, after the greedy algorithm picks t sets each of which
cover at least

√
n new elements, in the remaining instance, we have |Smax| ≤

√
n. As there

are k sets that cover the remainining instance, the greedy algorithm picks at most k lnn
2

sets
after picking the t sets. As each of the t sets cover at least

√
n new elements, t ≤

√
n.

Overall, the total number of sets used by the greedy algorithm is equal to

t+ k
lnn

2
≤
√
n+ k

lnn

2
≤
(
1 +

lnn

2

)
k

2. Suppose that k <
√
n. In this case, using (9.1), we can infer that there are at most k sets

with size at least k in the family. Thus, after the greedy algorithm picks k sets, in the
remaining instance, each set has size at most k, and thus, greedy algorithm picks at most
k ln k sets. Overall, the total number of sets picked by the greedy algorithm is equal to

k + k ln k ≤ k + k
lnn

2
=

(
1 +

lnn

2

)
k

Thus, in both the cases, the greedy algorithm picks at most k
(
1 + lnn

2

)
sets.

A hard instance for the greedy algorithm. We now prove that the above bound is tight for the
greedy algorithm. Fix a large integer k, and let n = k2, X = [n]. We first add k sets to the family
S S1, S2, . . . , Sk where Sj = {(j− 1)k+1, (j− 1)k+2, . . . , jk}. Note that these k sets together
cover the whole universe X . We view the universe X as k blocks, with the j’th block comprising
of the set Sj .

We now add m = (k − 1) ln k additional pairwise disjoint sets T1, T2, . . . , Tm to S such that
the greedy algorithm picks the set Ti in the i’th iteration. We choose the sets Ti, i ∈ [m], as
follows:

1. For j ∈ [k], let the set Xj be the uncovered elements of the block Sj . Let aj = |Xj| for all
j ∈ [k]. We initially set Xj = Sj for all j ∈ [k].

2. At every iteration i ∈ [m]:

176

(a) Sort the elements {a1, a2, . . . , ak} such that aα1 ≥ aα2 ≥ . . . ≥ aαk
where (α1, α2, . . . , αk)

is a permutation of [k]. Let p = aα1 ≤ k be the largest number of uncovered elements
in a block.

(b) Let P = {α1, α2, . . . , αp}. For l ∈ [p], let ul ∈ [n] be equal to the largest element in
Xαl

.
ul = max{b | b ∈ Xαl

}

We set
Ti = {ul | l ∈ [p]}

Furthermore, we set Xαl
= Xαl

\ ul for all l ∈ [p]. We also update aj, j ∈ [k] as
aj = |Xj| for all j ∈ [k].

In the above procedure to output the sets Ti, i ∈ [m], the cardinality of |Ti| ≥ |Ti+1| for all i.
Furthermore, in the ith iteration of the above procedure, the cardinality of Ti is at least the number
of elements in any block that are not covered yet. This ensures that the greedy algorithm in the ith
iteration picks the set Ti. Furthermore, as the sets Tis are all mutually disjoint, and intersect each
block at most once, the resulting set system is indeed a simple set system.

Our goal is to prove that after all the m sets are picked, there are still uncovered elements in
[n]. For an integer i ∈ [m], we let si ∈ [n] denote the number of elements not covered by the
greedy algorithm before the set Ti is picked. For i ∈ [m], the size of the set Ti picked by the
greedy algorithm in the ith iteration is equal to the largest number of uncovered elements in a
block i.e. the value of aα1 in the ith iteration. Based on the updating procedure followed above,
we can infer that this value is equal to |Ti| =

⌈
si
k

⌉
. This follows from the fact that at any iteration

of the above procedure, the sorted values aα1 and aαk
satisfy aα1 ≤ aαk

+ 1.
We have s1 = n = k2, and

si+1 = si − |Ti| = si −
⌈si
k

⌉
≥ si

(
1− 1

k

)
− 1

By setting ti = si + k for i ∈ [m], we get

ti+1 ≥ ti

(
1− 1

k

)
Thus, we get

tm+1 ≥ t1

(
1− 1

k

)m

= (k2 + k)

(
1− 1

k

)(k−1) ln k

≥ (k2 + k) exp

(
−

1
k

1− 1
k

(k − 1) ln k

)
(Using 1− x ≥ e

−x
1−x ∀ 0 ≤ x < 1)

= k + 1

177

Thus, sm+1 ≥ 1, which proves that there are elements that are not covered after the greedy
algorithm uses m = (k − 1) ln k sets. This completes the proof that there are simple set systems
on n elements with k =

√
n sets covering all the elements where as the greedy algorithm picks at

least (k − 1) ln k ≥ k
(
lnn
2
− 1
)

sets.

178

Chapter 10

Scheduling with non-uniform
communication delay

10.1 Introduction

We study the problem of scheduling jobs with precedence and non-uniform communication delay
constraints on identical machines to minimize the makespan objective function. This classic
model was first introduced by Rayward-Smith [Ray87] and Papadimitriou and Yannakakis [PY90].
In this problem, we are given a set J of n jobs, where each job j has a processing length
pj ∈ Z+. The jobs need to be scheduled on m identical machines. The jobs have precedence
and communication delay constraints, which are given by a partial order ≺. A constraint j ≺ j′

encodes that job j′ can only start after job j is completed. Moreover, if j ≺ j′ and j, j′ are
scheduled on different machines, then j′ can only start executing at least cjj′ time units after j
had finished. On the other hand, if j and j′ are scheduled on the same machine, then j′ can start
executing immediately after j finishes. The goal is to schedule jobs non-preemptively to minimize
the makespan objective function, which is defined as the completion time of the last job. In a
non-preemptive schedule, each job j needs to be assigned to a single machine i and executed
during a contiguous time interval of length pj . In the classical scheduling notation, the problem is
denoted by P | prec, cjk | Cmax.1 A closely related problem is P∞ | prec, cjk | Cmax, where the
scheduler has access to an unbounded number of machines.

Scheduling jobs with precedence and communication delays has been studied extensively
over many years [Ray87; PY90; MK97; HM01; TY92; HLV94; Gir+08]. Furthermore, due to
its relevance in datacenter scheduling problems and large-scale training of ML models, there
has been a renewed interest in more applied communities; we refer the readers to [Cho+11;
Guo+12; HCG12; Shy+18; Zha+12; Zha+15; Luo+16; Nar+19; Mir+17; GCL18; JZA19; Tar+20].
However, from a theoretical standpoint, besides NP-hardness results, very little was known in

1We adopt the convention of [Gra+79; VLL90], where the respective fields denote: (1) machine environment:
Q for related machines, P for identical machines, (2) job properties: prec for precedence constraints; cjk for
communication delays; c when all the communication delays are equal to c; pj = 1 for the unit-length case, (3)
objective: Cmax for minimizing makespan.

179

terms of the algorithms for the problem until the recent work by Maiti et al. [Mai+20] and Davies
et al. [Dav+20; Dav+21]. These very recent papers designed polylogarithmic approximation
algorithms for the special case when all the communication delays are equal. We survey these
results in Section 10.1.2. In fact, the problems of scheduling jobs with communication delays
are some of the well-known open questions in approximation algorithms and scheduling theory,
and have resisted progress for a long time. For this reason, the influential survey by Schuur-
man and Woeginger [SW99b] and its recent update by Bansal [Ban17] list understanding the
approximability of the problems in this space as one of the top-10 open questions in scheduling
theory.

In particular, an open problem in these surveys asks if the non-uniform communication
delay problem on identical machines, even assuming an unbounded number of machines (P∞ |
prec, cjk | Cmax), admits a constant-factor approximation algorithm. We answer this question in
the negative.

Theorem 183. For every constant ϵ > 0, assuming NP ⊈ ZTIME
(
n(logn)O(1)

)
, the non-uniform

communication delay problem (P∞ | prec, cjk | Cmax) does not admit a polynomial-time
(log n)1−ϵ-approximation algorithm.

We remark that our hard instances contain only two distinct values of communication delays
(essentially 0 and∞). Furthermore, as P∞ | prec, cjk | Cmax, the problem with an unbounded
number of machines, is a special case of P | prec, cjk | Cmax, where the number of machines is
specified, our theorem also implies the same hardness for P | prec, cjk | Cmax.

10.1.1 Our Techniques

Our hardness result is obtained using a reduction via a problem we call Unique Machines
Precedence constraints Scheduling (UMPS). In this problem, there are m machines and n jobs
j1, j2, . . . , jn with precedence relations between them. Each job jl has length p(l) and can be
scheduled only on a unique machine M(l) ∈ [m]. The objective is to schedule the jobs non-
preemptively on the corresponding unique machines, respecting the precedence relations, so as to
minimize the makespan objective function. Our proof of Theorem 183 proceeds via two steps:

1. First we show a reduction from an instance I of the UMPS problem to an instance I ′ of
the non-uniform communication delay problem. The key step is to make sure that the set
of jobs J(i) that need to be scheduled on machine i in I do not get scheduled on multiple
machines in I ′. We achieve this by introducing a dummy job j∗i and introducing precedence
constraints from all jobs in J(i) to j∗i and a very large communication delay. This ensures
that J(i) and j∗i are scheduled on the same machine in I ′, although this machine need not
be i. Despite this, we show that any valid schedule of I ′ can be mapped back to a feasible
schedule of I , with almost the same makespan. Our reduction creates only two types of
communication delays and works for the unit-length case.

2. Next we observe that the UMPS problem generalizes the classical job shops problem (see
e.g. [Law+93; LMR94; MS11]), whose approximation is well understood [SSW94; CS00;
Gol+01; FS02]. The logarithmic hardness result for the acyclic job shops problem by

180

Job shops
Unique Machine Prece-
dence constraints
Scheduling (UMPS)

Scheduling with non-
uniform communication
delay

Figure 10.1: Role of the UMPS problem in our hardness reduction.

Mastrolilli and Svensson [MS11] implies a logarithmic hardness of the UMPS problem.
We remark that the hardness result of [MS11] only works when jobs have lengths, and
hence our Theorem 183 only applies to the setting where jobs have lengths.

In hindsight, our proof of Theorem 183 is surprisingly simple. However, the main conceptual
contribution of our proof is in identifying the UMPS problem as a central problem that has
implications for the hardness of various scheduling problems. Furthermore, the UMPS problem,
which can be viewed as a generalization of the job shop scheduling model or as a highly restricted
version of multidimensional scheduling with precedences, or as a restricted assignment problem
with precedence constraints, is a fundamental problem to study on its own, both from a theoretical
perspective and also from a practical point of view. We believe the UMPS problem is a key
intermediate step towards resolving several long-standing open problems in scheduling theory.
We make the following two conjectures regarding the approximability of UMPS.
Conjecture 184. There exists a constant ϵ < 1 such that it is NP-hard to approximate UMPS
within a factor of nϵ, even when all jobs have unit lengths, where n is the number of jobs.
Conjecture 185. There exists an absolute constant C ≥ 1 such that the following holds. For
every constant ϵ > 0, it is NP-hard to approximate UMPS within a (log n)1−ϵ-factor, even when
the number of machines m is at most (log n)C and all the jobs have unit lengths, where n is the
number of jobs.

Our second main contribution is to show that the above conjectures imply hardness results for
various problems. In particular, Conjecture 185 implies logarithmic hardness for scheduling with
precedences on related machines, another top-10 problem in scheduling theory [SW99b; Ban17]
and in the approximation algorithm book of Shmoys and Williamson [WS11].

Theorem 186. Assuming Conjecture 185 and NP ⊈ DTIME
(
n(logn)O(1)

)
, there exists an ab-

solute constant γ > 0 such that the problem of scheduling related machines with precedences
(Q | prec | Cmax) has no polynomial-time O ((logm)γ)-factor approximation algorithm.

Previously, Bazzi and Norouzi-Fard [BN15] introduced a k-partite hypergraph partition
problem whose hardness implies a superconstant hardness for scheduling with precedences on
related machines. Our reduction uses the same idea of job replication as [BN15], while our
soundness analysis is technically more involved. We also show that the hypothesis of [BN15]
implies a superconstant hardness of the UMPS problem. Thus, our problem can be viewed as a
weaker version of the hypothesis of [BN15] with the same implication towards the hardness of
related machines. Furthermore, stronger hardness of the UMPS problem implies better (almost
optimal) hardness results for the related machines scheduling problem.

Finally, we note that Conjecture 184 implies that precedence-constrained scheduling (even

181

without communication delays) is very hard to approximate when generalized to the restricted
assignment setting or unrelated machines.

Our confidence in the above conjectures stems from the fact that existing techniques, both the
classical jobshops algorithms [LMR94] and the recent LP-hierarchies-based algorithms [Mai+20;
Dav+20] fail to give non-trivial approximation guarantees for the UMPS problem. Furthermore,
a candidate hard instance for the problem is a layered instance, where there are precedences
between jobs j1 ≺ j2 only if j1 can be scheduled on the machine i and j2 can be scheduled on the
machine i+ 1. These layered instances are closely related to the k-partite partitioning hypothesis
of [BN15] and the integrality gap instances [Mai+20] for the problem of scheduling with uniform
communication delays.

10.1.2 A Brief History of the Communication Delay Problem

In this subsection, we give a brief overview of the literature on the problem of scheduling with
communication delays.

Scheduling with precedences. Scheduling with precedences to minimize makespan (P|prec|Cmax)
is a classic combinatorial optimization problem and is a special case of the communication delay
problem with c = 0 for all pairs of jobs. In one of the earliest results in the scheduling theory,
Graham’s list scheduling algorithm [Gra66] was shown to be a 2-factor approximation for the
problem. Recently, Svensson [Sve10] gave a matching hardness of approximation result assuming
(a variant of) the Unique Games Conjecture [BK09]. When the number of machines is a constant,
a series of recent works have obtained (1 + ϵ)-approximation in nearly quasi-polynomial time
[LR16; Gar18; Kul+20; Li21].

Uniform communication delay setting. The problem becomes much harder with commu-
nication delays, even when all the communication delays are equal. This problem is denoted
by P | prec, c | Cmax and is referred to as scheduling with uniform communication delays. In
this setting, Graham’s list scheduling algorithm obtains a (c + 1)-factor approximation. This
was improved to 2/3 · (c+ 1) by Giroudeau et al. [Gir+08] in the case when the jobs have unit
lengths (P∞ | prec, pj = 1, c ≥ 2 | Cmax). In recent concurrent and independent works, poly-
logarithmic-factor approximation algorithms have been obtained for the uniform communication
delays problem P | prec, c | Cmax by Maiti et al. [Mai+20] and Davies et al. [Dav+20; Dav+21].

On the hardness front, when c = 1, Hoogeveen, Lenstra and Veltman [HLV94] showed that
the problem P∞ | prec, pj = 1, c = 1 | Cmax is NP-hard to approximate to a factor better than
7/6. The result has been generalized for c ≥ 2 to (1 + 1/(c+ 4))-hardness [Gir+08].2

Scheduling with non-uniform communication delay. We do not know of any algorithm for
the non-uniform communication delays (P∞ | prec, cjk | Cmax) problem. On the hardness side,

2Papadimitriou and Yannakakis [PY90] claim a 2-hardness for P∞ | prec, pj = 1, c | Cmax, but give no proof.
Schuurman and Woeginger [SW99b] remark that “it would be nice to have a proof for this claim”.

182

the best hardness known is the above small constant hardness of the uniform communication delay
setting. While our main result shows logarithmic hardness for this problem, it is conceivable that
it admits a polylog-approximation algorithm, although our conjectures suggest otherwise.

Duplication model. Scheduling with communication delays problem has also been studied
in the duplication model, where we allow jobs to be duplicated (replicated), i.e., executed on
more than one machine to avoid communication delays. In this easier model, for the general
P∞ | prec, pj, cjk, dup | Cmax problem, there is a simple 2-factor approximation algorithm by
Papadimitriou and Yannakakis [PY90]. On the other hand, [PY90] also show the NP-hardness
of P∞ | prec, pj = 1, c, dup | Cmax. Note that the O(1)-approximation algorithm for the version
with duplication is in sharp contrast to our hardness result (Theorem 183) illustrating that the
problem is significantly harder without duplication.

10.1.3 Discussion and Open Problems

While we make progress on the hardness of approximation of scheduling with non-uniform
communication delay, the main conceptual contribution of this work is initiating the formal study
of the UMPS problem. When jobs have lengths, the problem does not admit a polylogarithmic
approximation. However, much less is known for the unit-length case. We now mention a few
open problems in this direction.

1. The key open problem is to prove (or disprove) Conjecture 185. A positive resolution of the
conjecture would prove the hardness of scheduling related machines with precedences, a
long-standing open problem in scheduling theory. By the same reduction as in the proof
of Theorem 183, Conjecture 185 also implies a logarithmic hardness of approximation
for the non-uniform communication delay problem even when the jobs have unit lengths
(P∞ | prec, pj = 1, cjk | Cmax).

2. On the other hand, obtaining good approximation algorithms for the UMPS problem would
be even more exciting. Is Conjecture 184 true, or is there a polylog-factor approximation
algorithm for the unit-length case?

10.1.4 Organization

The rest of the chapter is organized as follows. We first formally define the UMPS problem and
relate it to the jobshops problem in Section 10.2. We then use the hardness of the UMPS problem
to prove Theorem 183 in Section 10.3. Finally, in Section 10.4, we show that Conjecture 185
implies an improved hardness of related machine scheduling with precedences and that the
hypothesis of [BN15] implies a superconstant hardness of the UMPS problem with unit lengths.

183

10.2 Unique Machine Precedence Constraints Scheduling prob-
lem

We first formally define the Unique Machine Precedence constraint Scheduling (UMPS) problem.

Definition 187. (Unique Machine Precedence constraint Scheduling) In the Unique Machine
Precedence constraint Scheduling (UMPS) problem, the input is a set of m machines and n
jobs j1, j2, . . . , jn with precedence relations between them. Furthermore, each job jl can be
scheduled only on a fixed machine M(l) ∈ [m], and takes p(l) time to complete. The jobs should
be scheduled non-preemptively, i.e., once a machine starts processing a job jl, it has to finish it
before processing other jobs. The objective is to schedule the jobs on the corresponding machines
in this non-preemptive manner while respecting the precedence relations, so as to minimize the
makespan.

We note that the UMPS problem is a generalization of the classical jobshops problem that we
formally define below.
Definition 188. (Job shops) In the jobshops problem, the input is a set of n jobs to be processed
on a set M of m machines. Each job j consists of µj operations O1,j, O2,j, . . . , Oµj ,j . Operation
Oi,j must be processed for pi,j units of time without interruptions on the machine mi,j ∈ M ,
and can only be scheduled if all the preceding operations Oi′,j, i

′ < i have finished processing.
The objective is to schedule all the operations on the corresponding machines to minimize the
makespan.

Note that jobshops problem is a special case of the UMPS problem, corresponding to the case
when the precedence DAG is a disjoint union of chains. The jobshops problem has received a lot of
attention and played an important role in the development of key algorithmic techniques [Law+93;
LMR94]. On the hardness front, Mastrolilli and Svensson showed almost optimal hardness results
for the problem in a breakthrough result [MS11].

Theorem 189. For every constant ϵ > 0, assuming NP ⊈ ZTIME
(
n(logn)O(1)

)
, there is no

polynomial-time (log n)1−ϵ-factor approximation algorithm for the jobshops problem, where n is
the total number of operations in the given jobshops instance.

As a corollary, we obtain the following hardness result.

Corollary 190. For every constant ϵ > 0, assuming NP ⊈ ZTIME
(
n(logn)O(1)

)
, there is no

polynomial-time (log n)1−ϵ-factor approximation algorithm for the UMPS problem.

10.3 Hardness of Scheduling With Non-Uniform Communica-
tion Delays

We now give a reduction from the UMPS problem to the non-uniform communication delay
problem, thereby proving the hardness of the non-uniform communication delay problem. We
restate the theorem for convenience.

184

j1

j2

j3

j4

j5

j6

j7

j8

J(1) J(2) J(3)

j′1

j′2

j′3

j′4

j′5

j′6

j′7

j′8

j∗1 j∗2 j∗3

Figure 10.2: Illustration of the reduction from UMPS to non-uniform communication delays. In
the communication delay instance on the right, the dashed arrow precedences have communication
delay C∞ while the normal arrow precedences have communication delay 0.

Theorem 183. For every constant ϵ > 0, assuming NP ⊈ ZTIME
(
n(logn)O(1)

)
, the non-uniform

communication delay problem (P∞ | prec, cjk | Cmax) does not admit a polynomial-time
(log n)1−ϵ-approximation algorithm.

Reduction. Let I be an instance of the UMPS problem with n jobs j1, j2, . . . , jn, andmmachines.
Furthermore, each job jl has a processing time p(l) and can be scheduled only on the machine
M(l) ∈ [m]. For an index i ∈ [m], let J(i) ⊆ {j1, j2, . . . , jn} denote the set of jobs that can be
scheduled on the machine i.

Roughly speaking, our idea in the reduction is to output a non-uniform communication delay
instance where we force the jobs in J(i) to be scheduled on the same machine, for every i ∈ [m].
We achieve this by adding a set of m dummy jobs j∗1 , j

∗
2 , . . . , j

∗
m and adding precedences with

very large communication delay from all the jobs in J(i) to j∗i for every i ∈ [m]. More formally,
we define an instance I ′ of the non-uniform communication delay problem as follows. First, we
choose a large integer C∞ = n

∑n
l=1 p(l). There are n+m jobs in I ′: a set of n jobs j′1, j

′
2, . . . , j

′
n

such that for each l ∈ [n], the processing time of j′l is equal to p(l), and a set {j∗1 , j∗2 , . . . , j∗m} of
m dummy jobs, each with processing time 1. For every precedence relation ju ≺ jv in the original
instance I , there is a precedence relation j′u ≺ j′v in I ′ with communication delay 0. Finally, for
every i, and every job jl ∈ J(i), there is a precedence relation j′l ≺ j∗i with communication delay
C∞.

Completeness. Suppose that there is a schedule for I with makespan at most L. Then, we
claim that there is a schedule for I ′ with makespan at most L + 1. We use m machines and
schedule the job j′l on the machine M(l) in the same time slot used by the schedule for I . As the
communication delay of the precedences among the jobs {j′1, j′2, . . . , j′n} is zero, we can schedule
these jobs using m machines with makespan at most L. Now, after all the jobs {j′1, j′2, . . . , j′n}
have been scheduled, we schedule the job j∗i in the machine i, for every i ∈ [m]. As we are
scheduling all the jobs in J(i) and j∗i on the same machine for every i ∈ [m], we incur no
communication delay when we are scheduling the dummy jobs, and we can schedule all the

185

dummy jobs j∗1 , j
∗
2 , . . . , j

∗
m simultaneously in the time slot between L and L+ 1.

Soundness. Suppose that there is a schedule for I ′ with makespan at most L. Then, we claim that
there is a schedule for I with makespan at most L as well.

Note that there is a trivial schedule for I where we schedule each job one by one after
topologically sorting them, that has a makespan of

∑n
j=1 p(j). Thus, henceforth, we assume that

L ≤
∑n

j=1 p(j). For an index i ∈ [m], let J ′(i) be the subset of jobs in I ′ whose corresponding
jobs in I are to be scheduled on the machine i:

J ′(i) := {j′l :M(l) = i} .

We claim that in the schedule for I ′ with makespan at most L, for every i ∈ [m], all the jobs in
J ′(i) must be scheduled on the same machine. Suppose for the sake of contradiction that this is
not the case. If there are jobs j′l1 and j′l2 such that M(l1) =M(l2) = i are scheduled on different
machines i1, i2 in the schedule for I ′, at least one of j′l1 and j′l2 is scheduled on a different machine
than j∗i . However, as there are precedence relations j′l1 ≺ j∗i and j′l2 ≺ j∗i with communication
delay C∞, at least one of the precedence relations has to wait for the communication delay, and
thus, the makespan is at least C∞ > L, a contradiction.

Thus, for every i ∈ [m], all the jobs in J ′(i) are processed on the same machine in I ′. This
implies that at any point of time, at most one job from J ′(i) is being processed, for every i ∈ [m].
Using this observation, we output a schedule for I: for every job jl ∈ J(i), we schedule jl in the
same time slot used by the job j′l in the schedule for I ′. By the above observation, every machine
i ∈ [m] is used at most once at any time point. Furthermore, as the schedule for I ′ respects the
precedence conditions, the new schedule for I also respects the precedence conditions. Note that
the makespan of this schedule for I is equal to L. This completes the proof that there exists a
schedule for I with makespan at most L, if there exists a schedule for I ′ with makespan at most L.

This completes the proof of Theorem 183. We remark that the same reduction also proves a
(log n)1−ϵ-factor inapproximability of the bounded-machines version P | prec, cjk | Cmax of the
non-uniform communication delay problem.

10.4 Conditional Hardness of Scheduling With Precedence
Constraints on Related Machines

In this section, we first prove that Conjecture 185 implies improved hardness of scheduling related
machines with precedences.

We begin by formally defining the scheduling related machines with precedences problem
(Q | prec | Cmax).
Definition 191. (Scheduling related machines with precedences) In the scheduling related ma-
chines with precedences problem, the input is a set of m machinesM and a set of n jobs J
with precedences among them. Furthermore, each machine i has speed si ∈ Z+, and each job j
has processing time pj ∈ Z+, and scheduling the job j on machine i takes pj

si
units of time. The

186

objective is to schedule the jobs on the machines non-preemptively respecting the precedences
constraints, to minimize the makespan.

An algorithm with O(logm) approximation guarantee for the problem was given indepen-
dently by Chudak and Shmoys [CS99], and Chekuri and Bender [CB01]. On the hardness side, a
hardness factor of 2 follows from the identical machines setting [Sve10], assuming a variant of the
Unique Games Conjecture. Furthermore, Bazzi and Norouzi-Fard [BN15] put forth a hypothesis
on the hardness of a k-partite graph partitioning problem, which implies a super constant hardness
of the scheduling related machines with precedences problem.

We now prove that Conjecture 185 implies poly logarithmic hardness of scheduling related
machines with precedences problem.

Theorem 186. Assuming Conjecture 185 and NP ⊈ DTIME
(
n(logn)O(1)

)
, there exists an ab-

solute constant γ > 0 such that the problem of scheduling related machines with precedences
(Q | prec | Cmax) has no polynomial-time O ((logm)γ)-factor approximation algorithm.

Reduction. Our reduction is essentially the same reduction as in [BN15] where the authors
obtained conditional hardness of the related machine scheduling with precedences problem
assuming the hardness of a certain k-partite graph partitioning problem. However, our soundness
analysis needs more technical work.

We start with an instance I of the UMPS problem with n unit sized jobs j1, j2, . . . , jn and m
machines, and every job jl can only be scheduled on the machine M(l) ∈ [m]. Furthermore, we
let J(i) ⊆ [n], i ∈ [m] denote the set of all the jobs that can be scheduled on the machine i.

We now output an instance I ′ of the related machine scheduling problem. We choose a
parameter κ = 10n3m. For every l ∈ [n], we have a set Jl of κ2(m−M(l)) jobs in I ′. The
processing time of each of these jobs is equal to κM(l)−1. For every i ∈ [m], we haveMi, a set of
κ2(m−i) machines, each with speed κi−1. Furthermore, for every precedence constraint ju ≺ jv in
I , we have j′l1 ≺ j′l2 for every j′l1 ∈ Ju and j′l2 ∈ Jv.

Completeness. Suppose that there is a scheduling of I with makespan equal to L. Then, we claim
that there is a scheduling of I ′ with makespan at most L as well. Note that all the jobs in Jl can
be scheduled on the machinesMM(l) in unit time. We obtain a scheduling of I ′ by assigning the
jobs Jl to the machinesMM(l) in the time slot used in I to schedule the job jl. This scheduling
of I ′ is indeed a valid scheduling, and has a makespan of at most L.

Soundness. We prove the soundness part in the lemma below.
Lemma 192. Suppose that there is a scheduling of I ′ with makespan L. Then, we will show that
there is a scheduling of I with makespan at most 2L.

Proof. Note that there is a trivial scheduling of I where we schedule jobs in a topological sort
one by one, with makespan equal to n. Thus, henceforth, we assume that L ≤ n.

Let γ = 1
10n2 . We claim that for every l ∈ [n], at most γκ2(m−M(l)) jobs in Jl are processed

by machines that do not belong toMM(l) in the scheduling I ′. The proof of this claim follows
from Lemma 1 of [BN15], and we present it here for the sake of completeness. Fix an index
l ∈ [n], and for ease of notation, let i = M(l). First, as each job in Jl has length κi−1, and the

187

processing speed of each machine inMj, j < i is at most κj−1 ≤ κi−2, no job in Jl is scheduled
on machines inMj , j < i, as the makespan of I ′ is at most n < κ. Now, consider an integer
j ∈ [m], j > i. There are κ2(m−j) machines inMj , and they have a processing speed of κj−1.
Thus, in time L ≤ n, they can process at most

n · κ2(m−j) · κj−1

κi−1
≤ n

κ
· κ2(m−i)

jobs of Jl. Taking union over all j > i, we get that at most

nm

κ
· κ2(m−i) ≤ 1

10n2
κ2(m−i)

jobs in Jl are processed by machines outsideMi. In other words, for every job jl of I , at most γ
fraction of the jobs in Jl are processed by machines outsideMM(l).

Now, consider a scheduling of the jobs in I ′ where for every l ∈ [n], we get rid of the jobs in
Jl that are processed by machines outsideMM(l). After removing the jobs processed by other
machines, we still have that for every l ∈ [n], at least 1− γ fraction of the jobs in Jl are processed.
Also observe that since we are only deleting some jobs, the makespan of the new scheduling is at
most L as well. Recall that processing each job in Jl takes unit time on the machines inMM(l).

Using this observation, we obtain a fractional scheduling of I in time L as follows. For every
l ∈ [n] and t ∈ [L], define the variable xl,t to be the fraction of the jobs of Jl that are scheduled by
the machinesMM(l) in the time slot t. By the above discussion, we get the following properties
of this fractional scheduling.

1. Every job l ∈ [n] is almost fully processed. For every l ∈ [n], we have

L∑
t=1

xl,t ≥ 1− γ

2. Every machine is used only for processing a single unit of job in a time slot.∑
l∈J(i)

xl,t ≤ 1 ∀i ∈ [m], t ∈ [L].

3. If there is a precedence constraint jl1 ≺ jl2 in I , l2’s processing is done only in the time
slots after l1 is fully processed. More formally,

xl1,t > 0⇒ xl2,t′ = 0∀t′ ≤ t

We will now show that the fractional scheduling implies that the instance I has an integral
scheduling with makespan at most O(L), thereby proving the Lemma. We will prove this in two
steps: first, we modify the fractional scheduling to obtain another fractional scheduling with better
structure, and then next, we use this to obtain the integral scheduling.

For a job l ∈ [n], define the starting time tsl and the end time tel as the minimum and the
maximum times at which l is being processed.

tsl = min{t : xl,t > 0} , tel = max{t : xl,t > 0}

188

Note that if we have jl1 ≺ jl2 , tsl2 > tel1 . We now modify the fractional scheduling to ensure that
each machine processes the job with the lowest ending time first, from the available set of the
jobs. More formally, for a machine i ∈ [m], consider the pair of jobs l1, l2 ∈ J(i) and time slot
t ∈ [L] satisfying the following conditions.

(C1) The job l1 has lower ending time: tel1 < tel2 , or tel1 = tel2 and l1 < l2.
(C2) The job l1 can be processed on the time slot t, but the job l2 is processed instead of finishing

the job l1:
tsl1 ≤ t < tel1 , xl2,t > 0

If there are jobs l1, l2 and time slot t satisfying these conditions, we swap the processing times, and
process the job l1 in the time slot t instead of l2. More formally, let t′ > t be such that xl1,t′ > 0.
Let y = min(xl1,t′ , xl2,t). We obtain a new fractional scheduling by setting

xl1,t′ = xl1,t′ − y , xl1,t = xl1,t + y

xl2,t′ = xl2,t′ + y , xl2,t = xl2,t − y

Note that the operation does not increase the ending time of either job and does not decrease
the starting time of either job and thus, results in a valid fractional scheduling respecting the
precedence conditions. We repeat the swapping operations until there is no triple i, j, t left where
both (C1) and (C2) are true. We also update the starting and ending times of the jobs tsl and tel
appropriately when we apply the swapping operations.

Next, we apply another transformation to the fractional scheduling by filling the empty slots
in the machines, if there are any. More formally, consider a time slot t ∈ [L] and job l ∈ [n] such
that the following hold.

(D1) The time slot t is not fully utilized: ∑
l′∈J(M(l))

xl′,t < 1

(D2) The job l can be scheduled on the time slot t instead of leaving the machine idle: tsl ≤ t < tel .

If there is a time slot t and job l such that the above two conditions hold, we fill the empty
slot in the time slot t by processing the job l. Let t′ > t be such that xl,t′ > 0. Let y =

min(xl,t′ , 1−
∑

l′∈J(M(l)) xl′,t). We set

xl,t = xl,t + y , xl,t′ = xl,t′ − y

We repeat these operations iteratively until no empty slots can be filled. Similar to the previous
case, we update the starting and ending times of the jobs appropriately.

After the two types of operations, we obtain a fractional scheduling with the following property:
at every time slot t, for a machine i ∈ [m], let Si,t be the set of jobs that can be scheduled on i in
the time slot t:

Si,t := {l ∈ J(i) : tsl ≤ t ≤ tel }

189

We sort the jobs in Si,t as {l1, l2, . . . , lk} by increasing order of ending times, and breaking ties
based on the index. The fractional scheduling greedily schedules the jobs l1, l2, . . . , in that order.
More formally, we have

xl1,t =
L∑

t′=1

xl1,t′ −
t−1∑
t′=1

xl1,t′

and

xl2,t = min
(
1− xl1,t,

L∑
t′=1

xl2,t′ −
t−1∑
t′=1

xl2,t′
)

and so on.
Our goal is to show that in this final fractional scheduling that we obtained, each machine

schedules at most two jobs in any time slot. In order to prove this, we first define the following
parameter, Pi,t, the amount of jobs partially completed in the machine i by the time t.

Pi,t =
∑

l∈J(i):tel>t

t∑
t′=1

xl,t′

We claim that for every i ∈ [m], t ∈ [L], we have Pi,t ≤ γt. Fix a machine i ∈ [m]. We will prove
the claim by induction on t.

1. Base case when t = 1. If no job is processed by the machine i in the time slot t = 1,
the claim is trivially satisfied. Else, let l1 be the job in J(i) with the lowest ending time,
breaking ties by the lowest index. Note that the fractional scheduling fully schedules the
job l1 in the time slot t = 1. As each job is processed for at least 1− γ duration, we get that
Pi,1 is at most γ.

2. Inductive proof. Suppose that the claim holds for all t′ ≤ t and consider the time slot t+ 1.
For ease of notation, let S = Si,t+1 be the set of jobs that can be processed on the machine i
in the time slot t+1. If S is empty, the inductive claim trivially holds. Else, let l ∈ S be the
job with the lowest ending time (breaking ties by the least index). Note that the modified
fractional scheduling finishes the job l in the time slot t + 1. Let x′l,t denote the amount
of the job l that is processed by time t i.e., x′l,t =

∑t
t′=1 xl,t. The amount of jobs that are

partially finished at the end of time slot t+ 1 is at most

Pi,t+1 ≤ Pi,t − x′l,t + (1− xl,t+1)

≤ Pi,t + γ ≤ (t+ 1)γ

We will now show that every machine processes at most 2 jobs in a time slot. Consider a
machine i ∈ [m] and time slot t ∈ [L]. Let Si,t := {l1, l2, . . . , lk}. By the previous claim, we
know that at most (t− 1)γ portion of the job lu is finished before time t, for every u ∈ [k]. Note
that (t− 1)γ ≤ Lγ ≤ 1

10n
. Thus, the greedy fractional scheduling can only schedule at most two

jobs, as each of them takes at least 1− 1
10n

time. Finally, using this observation, we can duplicate
every time slot to obtain an integral scheduling of I with makespan at most 2L.

190

Parameter analysis. The number of machines in the related machines scheduling instance
is M = κO(m) = nO(m), while the hardness gap is (log n)1−ϵ′ for every ϵ′ > 0. By setting
ϵ′ appropriately, we get a hardness of (logM)Ω(1) for the scheduling related machines with
precedences problem.

10.4.1 Hypothesis of [BN15]mplies superconstant hardness of the UMPS
problem with unit lengths

Bazzi and Norouzi-Fard [BN15] introduced the following hypothesis and proved that it implies a
superconstant hardness for scheduling related machines with precedences.
Hypothesis 193 ([BN15]). For every ϵ, δ > 0 and constant integers k,Q > 0, the following
problem is NP-hard. Given a k-partite graph G = (V1, V2, . . . , Vk, E1, E2, . . . , Ek−1) with
|Vi| = n for all 1 ≤ i ≤ k, and Ei being the set of edges between Vi and Vi+1 for every 1 ≤ i < k,
distinguish between the two cases:

1. (YES case) Every Vi can be partitioned into Vi,0, Vi,1, . . . , Vi,Q−1 such that
• There is no edge between Vi,j1 and Vi+1,j2 for all 1 ≤ i < k, j1 > j2 ∈ [Q].
• |Vi,j| ≥ (1−ϵ)

Q
n for all i ∈ [k], j ∈ [Q].

2. (NO case) For every 1 < i ≤ k, and any two sets S, T with S ⊆ Vi, T ⊆ Vi−1, |S| = |T | =
δn, there is an edge between S and T .

We now prove that the above hypothesis implies that it is NP-hard to obtain a constant factor
approximation algorithm for the UMPS problem, even when all the jobs have unit length.

Reduction. Given an instance of k-partite problem I , we output an instance I ′ of the UMPS
problem as follows: there are n′ = nk unit sized jobs in I ′, one job corresponding to each vertex
of G. There are k machines, and all the jobs in Vi, i ∈ [k] can only be scheduled on the machine i.
For every edge e = (u, v) in the graph such that u ∈ Vi, v ∈ Vi+1, we have a precedence condition
u ≺ v in I ′. We choose the parameter Q = k, and δ = ϵ = 1

k
.

Completeness. Suppose that the YES case of Hypothesis 193 holds i.e., there is a partition of
Vi into Vi,0, Vi,1, . . . , Vi,Q−1 respecting the two conditions above. Then, we claim that there is a
scheduling of I ′ with makespan at most 3n. For every machine i ∈ [k], we schedule the jobs in
Vi,0 (in arbitrary order), and then the jobs in Vi,1 (in arbitrary order) and so on. However, we start
the execution of the jobs in Vi,0 at time ti, and then, execute the jobs in Vi,l immediately after the
execution of the jobs in Vi,l−1 for all l ≥ 1. The parameters ti, i ∈ [k] are chosen such that for
every pair of jobs u, v with u ≺ v, u is guaranteed to have scheduled before v. In particular, we
choose ti = (i− 1)n

(
ϵ+ 1

Q

)
.

We now prove that this results in a valid scheduling that respects the precedence conditions.
Consider a pair of jobs u, v such that u ∈ Vi, v ∈ Vi+1 such that u ≺ v. As the k-partite graph
satisfies the YES condition, we have integers j1, j2 such that u ∈ Vi,j1 and v ∈ Vi+1,j2 , and j1 ≤ j2.
Note that u is processed by time at most

tu = ti + |Vi,0|+ |Vi,1|+ . . .+ |Vi,j1|

191

Furthermore, v is processed only after time

tv = ti+1 + |Vi+1,0|+ |Vi+1,1|+ . . .+ |Vi+1,j2−1|

We have

tv − tu = ti+1 + |Vi+1,0|+ |Vi+1,1|+ . . .+ |Vi+1,j2−1| − (ti + |Vi,0|+ |Vi,1|+ . . .+ |Vi,j1 |)

= n

(
ϵ+

1

Q

)
+ |Vi+1,0|+ |Vi+1,1|+ . . .+ |Vi+1,j2−1| − (n− |Vi,j1+1|+ |Vi,j1+2|+ . . .+ |Vi,Q−1|)

≥ n

(
ϵ+

1

Q

)
+ j2

(1− ϵ)n
Q

−
(
n− (Q− j1 − 1)(1− ϵ)n

Q

)
≥ n

(
ϵ+

1

Q

)
+ j1

(1− ϵ)n
Q

−
(
j1
(1− ϵ)n

Q
+ ϵn+

(1− ϵ)n
Q

)
≥ 0

Thus, the schedule is a valid scheduling of I ′. The makespan of this scheduling is at most
tk + n = (k − 1)n

(
ϵ+ 1

Q

)
+ n ≤ 3n.

Soundness. Suppose that the NO case of Hypothesis 193 holds. We claim that in this case, the
makespan of I ′ is at least (1 − 2δ)kn. For every i ∈ [k], let si denote the time at which the
machine i has finished (1− δ)n jobs of Vi. For an index i ∈ [k], let S(i) ⊆ Vi denote the set of
jobs that are not processed by the time si. By the definition of si, we have |S(i)| ≥ δn. By the NO
case of Hypothesis 193, we get that there are at least (1− δ)n jobs in Vi+1 that have dependencies
in S(i). Note that all these jobs can be scheduled only after si. Thus, we get

si+1 ≥ si + (1− 2δ)n ∀i ∈ [k − 1]

Summing over all i, we get that the makespan of the scheduling is at least (1− 2δ)kn, which is at
least kn

2
when k ≥ 4. By choosing k large enough, this completes the proof that assuming Hypoth-

esis 193, it is NP-hard to obtain a O(1) factor approximation algorithm for the UMPS problem
when the jobs have unit lengths.

192

Chapter 11

Conclusion

We conclude by mentioning a few directions for further research.

Boolean PCSP Dichotomy. Can we show that every Boolean PCSP is either in P or is NP-Hard?
Problem 194. When can a Boolean PCSP Γ be solved in polynomial time? Is it true that every
Boolean PCSP can be solved in polynomial time or is NP-Hard?

For the case of CSPs (on general domains), a CSP has a polynomial time algorithm if and
only if it has a cyclic1 polymorphism of arity at least 3. The hardness part was proved in the early
2000s itself [BJK05] and proving the algorithmic part was the main challenge [Bul17; Zhu20].
However, for Promise CSPs, even in the Boolean case, we do not have a candidate characterization
of polymorphisms that leads to polynomial time algorithms.

On the algorithmic side, the best result is that symmetric polymorphisms of arbitrarily large
arity lead to algorithms [Bra+20] using a combination of the basic LP relaxation and the affine
relaxation. Could it be true that using the basic SDP relaxation together with the affine relax-
ation gives an optimal algorithm for all Boolean PCSPs? We shed some light on this question
in Chapter 6 where we study the power of the basic SDP relaxation for PCSPs. But our result
applies to the basic SDP alone, and a potential avenue to understand the power of basic SDP
together with the Affine relaxation to study the minionMSDP+Aff such that a PCSP Γ can be
solved by the basic SDP relaxation together with the affine relaxation if and only if there is a
minion homomorphism2 fromMSDP+Aff to Pol(Γ).

On the hardness side, as seen in Chapter 3, the rich 2-to-1 conjecture [BKM21] could be of
help in obtaining improved NP-Hardness results. In Chapter 3, we showed that when the Boolean
PCSP contains the predicate x ≤ y, i.e., when the polymorphisms are all monotone functions, if
every polymorphism contains a coordinate of high Shapley influence, then the underlying PCSP
is NP-Hard (under the rich 2-to-1 conjecture). Can we extend this result to arbitrary Boolean
functions using a suitable generalization of Shapley influence?

NP-Hardness of Approximate Graph Coloring. Despite great progress on Promise CSPs,
1A function f of arity l ≥ 2 is said to be cyclic if f(x1, x2, . . . , xl) = f(x2, x3, . . . , xl, x1) = . . . =

f(xl, x1, . . . , xl−1) for every x1, x2, . . . , xl.
2A Minion homomorphism f :M1 →M2 (formally defined in Chapter 6) is a mapping that preserves the arity

of the elements and also commutes with taking minors.

193

we still do not know if it is NP-Hard to 6-color a 3-colorable graph in polynomial time. More
generally, let (c, s)-approximate graph coloring be the computational problem of coloring a graph
that is promised to be c-colorable with s colors.
Problem 195. Prove that (3, s)-approximate graph coloring is NP-Hard for every constant s ≥ 3.

In Chapter 4, we have proved that d-to-1 conjecture [Kho02b] for any constant d implies
that it is NP-Hard to color a 3-colorable graphs with O(1) colors, thus resolving Problem 195.
The imperfect completeness version of d-to-1 conjecture when d = 2 was proved recently in a
breakthrough series of works [KMS17; Din+18b; Din+18a; KMS18]. However, their result starts
with the hardness of linear equations as a starting point, and thus, does not extend to the case
when the problem has perfect completeness. Can we obtain a proof of d-to-1 (perhaps with larger
d) conjecture by using a different problem as a starting point, and studying analogous objects to
Grassman graphs of [KMS18]?

A different approach to Problem 195 is using the PCSP machinery developed recently. Barto,
Bulin, Krokhin, Opršal [Bar+21] proved that 5-coloring a 3-colorable graph is NP-Hard. They
achieve this by showing that there is a minion homomorphism from the polymorphisms of this
PCSP to the polymorphisms of O(1)-coloring a 2-colorable 3-uniform hypergraphs. By the result
of Dinur, Regev, Smyth [DRS05], it is NP-Hard to color a 2-colorable 3-uniform hypergraph with
O(1) colors, thus implying the hardness of (3, 5)-approximate graph coloring. Approximate graph
coloring is a special case of a more general graph homomorphism problem where the input is a pair
of graphs H1, H2 such that there is a homomorphism H1 → H2, given an input graph G with the
promise that G→ H1, can we find a homomorphism G→ H2? (c, s)-approximate graph coloring
is the case when H1 = Kc, H2 = Ks. Recently, Krokhin, Opršal, Wrochna, Zivny [Kro+20]
proved the NP-Hardness of the graph homomorphism problem when H1 = Cl, H2 = K2 for
every odd integer l ≥ 3. A possible avenue towards proving Problem 195 is to generalize their
techniques for the case when H2 is a larger clique.

Robust algorithms for PCSPs. In Chapter 6, we initiated the study of robust algorithms for
PCSPs. Characterizing which PCSPs is interesting on its own, but more so in connection with the
power of SDP algorithms for PCSPs (Conjecture 65).

The main goal is to answer the following question:
Problem 196. Which Promise CSPs have Robust Algorithms? Is it the same class as Promise
CSPs that can be solved by the basic SDP relaxation?

As we proved in Chapter 6, the existence of robust algorithms for a PCSP is characterized
by its polymorphisms. We have shown that having AT or MAJ polymorphisms of all odd arities
leads to algorithms. On the other hand, the CSP 3-LIN, which has Parity polymorphisms of all
odd arities, does not admit a robust algorithm. This begs the question: which polymorphism
families lead to robust algorithms? Intuitively, the polymorphisms should be robust to noise, and
the challenge is to precisely characterize the notion of noise stability that leads to algorithms and
incorporate it into the robust algorithms.

On the hardness side, proving integrality gaps for the basic SDP relaxation and using Raghaven-
dra’s [Rag08] framework is a general technique to show robust hardness. Using Lemma 86, we
can reduce the problem of finding integrality gaps for the basic SDP of a PCSP to finding sphere

194

colorings f : Sn → [r] satisfying certain structural properties. We have used results from sphere
Ramsey theory to answer such questions, leading to robust hardness for some classes of PCSPs,
but the general problem of finding specific structures in sphere colorings is wide open.

Inapproximability of Related Machines Scheduling with Precedences. In the related machine
scheduling, there are n jobs with processing times p1, p2, . . . , pn with precedence constraints
between them. That is, we are given a DAG over these jobs and if there is an edge from job
j1 to j2, the processing of j2 can only begin after j1 finishes. There are m machines, each with
speed si, i ∈ [m]. A job j on a machine i takes time pj

si
. The objective is to schedule the jobs

on the machines to minimize the makespan. The problem admits a logm factor approximation
algorithm [CB01; CS99]. On the hardness side, the best known inapproximability is a factor
2 [Sve10; BK09], assuming a variant of the Unique Games Conjecture. Whether we can get aO(1)
approximation algorithm for the problem remained a long-standing open problem in scheduling
theory, and has been asked in multiple influential surveys [SW99a; Ban17; WS11].
Problem 197. Is there an O(1) factor approximation algorithm for related machine scheduling
with precedences problem?

As we proved in Chapter 10, improved hardness of the Unique Machine Precedence Scheduling
(UMPS) problem Conjecture 185 implies poly logarithmic hardness of scheduling related ma-
chines with precedences problem. A potential avenue to showing the hardness of the UMPS prob-
lem is via using the rich 2-to-1 conjecture [BKM21] in the framework of Bansal and Khot [BK09].

195

196

Bibliography

[ABP19] Per Austrin, Amey Bhangale, and Aditya Potukuchi. “Simplified inpproximability
of hypergraph coloring via t-agreeing families”. In: CoRR abs/1904.01163 (2019).
arXiv: 1904.01163.

[ABP20] Per Austrin, Amey Bhangale, and Aditya Potukuchi. “Improved Inapproximability of
Rainbow Coloring”. In: Proceedings of the 2020 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2020. 2020, pp. 1479–1495.

[AD22] Albert Atserias and Vı́ctor Dalmau. “Promise Constraint Satisfaction and Width”.
In: Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA). SIAM. 2022, pp. 1129–1153.

[AGH17] Per Austrin, Venkatesan Guruswami, and Johan Håstad. “(2+ϵ)-SAT Is NP-hard”.
In: SIAM J. Comput. 46.5 (2017), pp. 1554–1573.

[Aha01] Ron Aharoni. “Ryser’s Conjecture for Tripartite 3-Graphs”. In: Comb. 21.1 (2001),
pp. 1–4.

[AHK96] Ron Aharoni, Ron Holzman, and Michael Krivelevich. “On a Theorem of Lovász on
Covers in tau-Partite Hypergraphs”. In: Combinatorica 16.2 (1996), pp. 149–174.

[AKS11] Per Austrin, Subhash Khot, and Muli Safra. “Inapproximability of Vertex Cover
and Independent Set in Bounded Degree Graphs”. In: Theory Comput. 7.1 (2011),
pp. 27–43.

[Alo+98] Noga Alon, Yossi Azar, János Csirik, Leah Epstein, Sergey V. Sevastianov, Arjen
P. A. Vestjens, and Gerhard J. Woeginger. “On-Line and Off-Line Approximation
Algorithms for Vector Covering Problems”. In: Algorithmica 21.1 (1998), pp. 104–
118.

[APV16] Andris Ambainis, Krišjānis Prūsis, and Jevgēnijs Vihrovs. “Sensitivity Versus Cer-
tificate Complexity of Boolean Functions”. In: Proceedings of the 11th International
Computer Science Symposium on Computer Science — Theory and Applications -
Volume 9691. CSR 2016. St. Petersburg, Russia, 2016, pp. 16–28.

[Aro+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.
“Proof Verification and the Hardness of Approximation Problems”. In: J. ACM 45.3
(1998), pp. 501–555.

[AS98] Sanjeev Arora and Shmuel Safra. “Probabilistic Checking of Proofs: A New Charac-
terization of NP”. In: Journal of the ACM 45.1 (1998), pp. 70–122.

197

https://arxiv.org/abs/1904.01163

[AZ20] Ron Aharoni and Shira Zerbib. “A generalization of Tuza’s conjecture”. In: Journal
of Graph Theory 94.3 (2020), pp. 445–462.

[Aza+13] Yossi Azar, Ilan Reuven Cohen, Seny Kamara, and F. Bruce Shepherd. “Tight bounds
for online vector bin packing”. In: Symposium on Theory of Computing Conference,
STOC’13. 2013, pp. 961–970.

[Ban17] Nikhil Bansal. “Scheduling Open Problems: Old And New.” In: MAPSP 2017
www.mapsp2017.ma.tum.de/MAPSP2017-Bansal.pdf (2017).

[Bar+21] Libor Barto, Jakub Bulı́n, Andrei A. Krokhin, and Jakub Opršal. “Algebraic Ap-
proach to Promise Constraint Satisfaction”. In: J. ACM 68.4 (2021), 28:1–28:66.

[Bar18a] Libor Barto. Personal communication. 2018.
[Bar18b] Libor Barto. “Cyclic operations in promise constraint satisfaction problems”. In:

Dagstuhl workshop The Constraint Satisfaction Problem: Complexity and Approx-
imability, Schloss Dagstuhl, Germany (2018). Available at https://www2.
karlin.mff.cuni.cz/˜barto/Articles/Barto_Dagstuhl18.
pdf.

[BCD20] Patrick Bennett, Ryan Cushman, and Andrzej Dudek. Closing the Random Graph
Gap in Tuza’s Conjecture Through the Online Triangle Packing Process. 2020. arXiv:
2007.04478 [math.CO].

[BCS09] Nikhil Bansal, Alberto Caprara, and Maxim Sviridenko. “A New Approximation
Method for Set Covering Problems, with Applications to Multidimensional Bin
Packing”. In: SIAM J. Comput. 39.4 (2009), pp. 1256–1278.

[BE51] NG de Bruijn and P Erdos. “A colour problem for infinite graphs and a problem in
the theory of relations”. In: Indigationes Mathematicae 13 (1951), pp. 371–373.

[BEK16] Nikhil Bansal, Marek Eliáš, and Arindam Khan. “Improved Approximation for
Vector Bin Packing”. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2016. 2016, pp. 1561–1579.

[BFG19] Fábio Botler, Cristina G. Fernandes, and Juan Gutiérrez. “On Tuza’s Conjecture for
Triangulations and Graphs with Small Treewidth”. In: Proceedings of the tenth Latin
and American Algorithms, Graphs and Optimization Symposium, LAGOS 2019,
Belo Horizonte, Brazil, June 2-7, 2019. Vol. 346. Electronic Notes in Theoretical
Computer Science. Elsevier, 2019, pp. 171–183.

[BFM10] Tom Bohman, Alan M. Frieze, and Dhruv Mubayi. “Coloring H-free hypergraphs”.
In: Random Struct. Algorithms 36.1 (2010), pp. 11–25.

[BG16] Joshua Brakensiek and Venkatesan Guruswami. “New Hardness Results for Graph
and Hypergraph Colorings”. In: 31st Conference on Computational Complexity,
CCC 2016. 2016, 14:1–14:27.

[BG17] Joshua Brakensiek and Venkatesan Guruswami. “The Quest for Strong Inapprox-
imability Results with Perfect Completeness”. In: Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM
2017, August 16-18, 2017, Berkeley, CA, USA. 2017, 4:1–4:20.

198

https://www2.karlin.mff.cuni.cz/~barto/Articles/Barto_Dagstuhl18.pdf
https://www2.karlin.mff.cuni.cz/~barto/Articles/Barto_Dagstuhl18.pdf
https://www2.karlin.mff.cuni.cz/~barto/Articles/Barto_Dagstuhl18.pdf
https://arxiv.org/abs/2007.04478

[BG21a] Joshua Brakensiek and Venkatesan Guruswami. “Promise Constraint Satisfaction:
Algebraic Structure and a Symmetric Boolean Dichotomy”. In: SIAM J. Comput.
50.6 (2021), pp. 1663–1700.

[BG21b] Joshua Brakensiek and Venkatesan Guruswami. “Promise Constraint Satisfaction:
Algebraic Structure and a Symmetric Boolean Dichotomy”. In: SIAM J. Comput.
50.6 (2021), pp. 1663–1700.

[BGL15] Vijay V. S. P. Bhattiprolu, Venkatesan Guruswami, and Euiwoong Lee. “Approx-
imate Hypergraph Coloring under Low-discrepancy and Related Promises”. In:
Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, APPROX/RANDOM 2015. 2015, pp. 152–174.

[BGS21] Joshua Brakensiek, Venkatesan Guruswami, and Sai Sandeep. “Conditional Di-
chotomy of Boolean Ordered Promise CSPs”. In: 48th International Colloquium on
Automata, Languages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow,
Scotland (Virtual Conference). Vol. 198. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2021, 37:1–37:15.

[BGS98] Mihir Bellare, Oded Goldreich, and Madhu Sudan. “Free Bits, PCPs, and Nonapproximability-
Towards Tight Results”. In: SIAM J. Comput. 27.3 (1998), pp. 804–915.

[Bha18] Amey Bhangale. “NP-Hardness of Coloring 2-Colorable Hypergraph with Poly-
Logarithmically Many Colors”. In: 45th International Colloquium on Automata,
Languages, and Programming. 2018, 15:1–15:11.

[BJK05] Andrei A. Bulatov, Peter Jeavons, and Andrei A. Krokhin. “Classifying the Com-
plexity of Constraints Using Finite Algebras”. In: SIAM J. Comput. 34.3 (2005),
pp. 720–742.

[BK09] Nikhil Bansal and Subhash Khot. “Optimal Long Code Test with One Free Bit”.
In: 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2009, October 25-27, 2009, Atlanta, Georgia, USA. IEEE Computer Society, 2009,
pp. 453–462.

[BK10] Nikhil Bansal and Subhash Khot. “Inapproximability of Hypergraph Vertex Cover
and Applications to Scheduling Problems”. In: Automata, Languages and Program-
ming, 37th International Colloquium, ICALP 2010, Bordeaux, France, July 6-10,
2010, Proceedings, Part I. 2010, pp. 250–261.

[BK14a] Nikhil Bansal and Arindam Khan. “Improved Approximation Algorithm for Two-
Dimensional Bin Packing”. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2014. 2014, pp. 13–25.

[BK14b] Libor Barto and Marcin Kozik. “Constraint Satisfaction Problems Solvable by Local
Consistency Methods”. In: J. ACM 61.1 (2014), 3:1–3:19.

[BK16] Libor Barto and Marcin Kozik. “Robustly Solvable Constraint Satisfaction Prob-
lems”. In: SIAM J. Comput. 45.4 (2016), pp. 1646–1669.

[BKM21] Mark Braverman, Subhash Khot, and Dor Minzer. “On Rich 2-to-1 Games”. In:
12th Innovations in Theoretical Computer Science Conference, ITCS 2021. Vol. 185.
LIPIcs. 2021, 27:1–27:20.

199

[BKW17] Libor Barto, Andrei Krokhin, and Ross Willard. “Polymorphisms, and How to Use
Them”. In: The Constraint Satisfaction Problem: Complexity and Approximabil-
ity. Vol. 7. Dagstuhl Follow-Ups. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2017, pp. 1–44.

[BN15] Abbas Bazzi and Ashkan Norouzi-Fard. “Towards Tight Lower Bounds for Schedul-
ing Problems”. In: Algorithms - ESA 2015 - 23rd Annual European Symposium,
Patras, Greece, September 14-16, 2015, Proceedings. Vol. 9294. Lecture Notes in
Computer Science. Springer, 2015, pp. 118–129.

[Bra+20] Joshua Brakensiek, Venkatesan Guruswami, Marcin Wrochna, and Stanislav Živný.
“The Power of the Combined Basic Linear Programming and Affine Relaxation
for Promise Constraint Satisfaction Problems”. In: SIAM J. Comput. 49.6 (2020),
pp. 1232–1248.

[Bra+21] Joshua Brakensiek, Neng Huang, Aaron Potechin, and Uri Zwick. “On the mysteries
of MAX NAE-SAT”. In: Proceedings of the 2021 ACM-SIAM Symposium on Discrete
Algorithms (SODA). SIAM. 2021, pp. 484–503.

[BS04] Nikhil Bansal and Maxim Sviridenko. “New approximability and inapproximability
results for 2-dimensional Bin Packing”. In: Proceedings of the Fifteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2004. 2004, pp. 196–203.

[Bul17] Andrei A. Bulatov. “A Dichotomy Theorem for Nonuniform CSPs”. In: 58th IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2017. IEEE Com-
puter Society, 2017, pp. 319–330.

[BŽ21] Alex Brandts and Stanislav Živný. “Beyond PCSP(1-in-3, NAE)”. In: 48th Inter-
national Colloquium on Automata, Languages, and Programming, ICALP 2021,
July 12-16, 2021, Glasgow, Scotland (Virtual Conference). Vol. 198. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021, 121:1–121:14.

[Cae94] D. de Caen. “The current status of Turán’s problem on hypergraphs”. In: Extremal
Problems for Finite Sets 1991, Bolyai Soc. Math. Stud., Vol. 3, pp. 187–197, János
Bolyai Math. Soc., Budapest (1994).

[Car+12] Jean Cardinal, Marek Karpinski, Richard Schmied, and Claus Viehmann. “Approx-
imating vertex cover in dense hypergraphs”. In: Journal of discrete algorithms 13
(2012), pp. 67–77.

[CB01] Chandra Chekuri and Michael A. Bender. “An Efficient Approximation Algorithm
for Minimizing Makespan on Uniformly Related Machines”. In: J. Algorithms 41.2
(2001), pp. 212–224.

[CC06] Miroslav Chlebik and Janka Chlebikova. “Inapproximability Results for Orthogonal
Rectangle Packing Problems with Rotations”. In: Algorithms and Complexity, 6th
Italian Conference, CIAC 2006. 2006, pp. 199–210.

[CD72] J Csima and B.N Datta. “The DAD theorem for symmetric non-negative matrices”.
In: Journal of Combinatorial Theory, Series A 12.1 (1972), pp. 147–152.

[CFS08] L. Sunil Chandran, Mathew C. Francis, and Naveen Sivadasan. “Boxicity and maxi-
mum degree”. In: J. Comb. Theory, Ser. B 98.2 (2008), pp. 443–445.

200

[Cha+20] Parinya Chalermsook, Samir Khuller, Pattara Sukprasert, and Sumedha Uniyal.
“Multi-transversals for Triangles and the Tuza’s Conjecture”. In: Proceedings of the
2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City,
UT, USA, January 5-8, 2020. Ed. by Shuchi Chawla. SIAM, 2020, pp. 1955–1974.

[Cha16] Siu On Chan. “Approximation Resistance from Pairwise-Independent Subgroups”.
In: J. ACM 63.3 (2016), 27:1–27:32.

[Cho+11] Mosharaf Chowdhury, Matei Zaharia, Justin Ma, Michael I. Jordan, and Ion Stoica.
“Managing data transfers in computer clusters with orchestra”. In: Proceedings of
the ACM SIGCOMM 2011 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications, Toronto, ON, Canada, August 15-19,
2011. ACM, 2011, pp. 98–109.

[Chr+17] Henrik I. Christensen, Arindam Khan, Sebastian Pokutta, and Prasad Tetali. “Ap-
proximation and online algorithms for multidimensional bin packing: A survey”. In:
Comput. Sci. Rev. 24 (2017), pp. 63–79.

[CJK01] János Csirik, David S. Johnson, and Claire Kenyon. “Better approximation algo-
rithms for bin covering”. In: Proceedings of the Twelfth Annual Symposium on
Discrete Algorithms, 2001. 2001, pp. 557–566.

[CK04] Chandra Chekuri and Sanjeev Khanna. “On Multidimensional Packing Problems”.
In: SIAM J. Comput. 33.4 (2004), pp. 837–851.

[CKL20] Vincent Cohen-Addad, Karthik C.S., and Euiwoong Lee. “On Approximability of
k-means, k-median, and k-minsum Clustering”. In: Manuscript (2020).

[CKL21] Vincent Cohen-Addad, Karthik C. S., and Euiwoong Lee. “On Approximability of
Clustering Problems Without Candidate Centers”. In: Proceedings of the ACM-SIAM
Symposium on Discrete Algorithms. To appear. 2021.

[CL99] Fan Chung and Linyuan Lu. “An upper bound for the Turán number t3(n, 4)”. In:
Journal of Combinatorial Theory, Series A 87.2 (1999), pp. 381–389.

[CMM09] Moses Charikar, Konstantin Makarychev, and Yury Makarychev. “Near-optimal al-
gorithms for maximum constraint satisfaction problems”. In: ACM Trans. Algorithms
5.3 (2009), 32:1–32:14.

[CS00] Artur Czumaj and Christian Scheideler. “A new algorithm approach to the general
Lovász local lemma with applications to scheduling and satisfiability problems
(extended abstract)”. In: Proceedings of the Thirty-Second Annual ACM Symposium
on Theory of Computing, May 21-23, 2000, Portland, OR, USA. ACM, 2000, pp. 38–
47.

[CS99] Fabián A. Chudak and David B. Shmoys. “Approximation Algorithms for Precedence-
Constrained Scheduling Problems on Parallel Machines that Run at Different Speeds”.
In: J. Algorithms 30.2 (1999), pp. 323–343.

[Cyg13] Marek Cygan. “Improved Approximation for 3-Dimensional Matching via Bounded
Pathwidth Local Search”. In: 54th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2013, Berkeley, CA, USA. 2013.

201

[CŽ22a] Lorenzo Ciardo and Stanislav Živný. “CLAP: A New Algorithm for Promise CSPs”.
In: Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA). SIAM. 2022, pp. 1057–1068.

[CŽ22b] Lorenzo Ciardo and Stanislav Živný. “The Sherali-Adams Hierarchy for Promise
CSPs through Tensors”. In: CoRR abs/2203.02478 (2022). arXiv: 2203.02478.

[Dav+20] Sami Davies, Janardhan Kulkarni, Thomas Rothvoss, Jakub Tarnawski, and Yihao
Zhang. “Scheduling with Communication Delays via LP Hierarchies and Clustering”.
In: To appear at 61st Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2020), 16-19 November 2006, Durham, North Carolina, USA, Proceedings
(2020).

[Dav+21] Sami Davies, Janardhan Kulkarni, Thomas Rothvoss, Jakub Tarnawski, and Yihao
Zhang. “Scheduling with Communication Delays via LP Hierarchies and Clustering
II: Weighted Completion Times on Related Machines”. In: Proceedings of the 2021
ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference,
January 10 - 13, 2021. Ed. by Dániel Marx. SIAM, 2021, pp. 2958–2977.

[Dav+22] Sami Davies, Janardhan Kulkarni, Thomas Rothvoss, Sai Sandeep, Jakub Tarnawski,
and Yihao Zhang. “On the Hardness of Scheduling With Non-Uniform Commu-
nication Delays”. In: Proceedings of the 2022 Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA). SIAM. 2022, pp. 316–328.

[DDS17] Anindya De, Ilias Diakonikolas, and Rocco A. Servedio. “The Inverse Shapley value
problem”. In: Games Econ. Behav. 105 (2017), pp. 122–147.

[Din+05] Irit Dinur, Venkatesan Guruswami, Subhash Khot, and Oded Regev. “A New Multi-
layered PCP and the Hardness of Hypergraph Vertex Cover”. In: SIAM J. Comput.
34.5 (2005), pp. 1129–1146.

[Din+18a] Irit Dinur, Subhash Khot, Guy Kindler, Dor Minzer, and Muli Safra. “On non-
optimally expanding sets in Grassmann graphs”. In: Proceedings of the 50th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2018, ACM, 2018,
pp. 940–951.

[Din+18b] Irit Dinur, Subhash Khot, Guy Kindler, Dor Minzer, and Muli Safra. “Towards a
proof of the 2-to-1 games conjecture?” In: Proceedings of the 50th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2018, ACM, 2018, pp. 376–
389.

[Din07] Irit Dinur. “The PCP theorem by gap amplification”. In: Journal of the ACM 54.3
(2007), p. 12.

[DLR95] Richard A. Duke, Hanno Lefmann, and Vojtech Rödl. “On Uncrowded Hypergraphs”.
In: Random Struct. Algorithms 6.2/3 (1995), pp. 209–212.

[DMR09] Irit Dinur, Elchanan Mossel, and Oded Regev. “Conditional Hardness for Approxi-
mate Coloring”. In: SIAM J. Comput. 39.3 (2009), pp. 843–873.

[DR06] Irit Dinur and Omer Reingold. “Assignment Testers: Towards a Combinatorial Proof
of the PCP Theorem”. In: SIAM J. Comput. 36.4 (2006), pp. 975–1024.

202

https://arxiv.org/abs/2203.02478

[DRS05] Irit Dinur, Oded Regev, and Clifford D. Smyth. “The Hardness of 3-Uniform Hyper-
graph Coloring”. In: Combinatorica 25.5 (2005), pp. 519–535.

[DS05] Irit Dinur and Samuel Safra. “On the Hardness of Approximating Minimum Vertex
Cover”. In: Annals of Mathematics 162.1 (2005), pp. 439–485.

[DS14] Irit Dinur and David Steurer. “Analytical approach to parallel repetition”. In: Sympo-
sium on Theory of Computing, STOC 2014. 2014, pp. 624–633.

[Erd81] Paul Erdős. “On the combinatorial problems which I would most like to see solved”.
In: Combinatorica 1.1 (1981), pp. 25–42.

[Erd88] Paul Erdös. “Problems and Results in Combinatorial Analysis and Graph Theory”.
In: Graph Theory and Applications, Proceedings of the First Japan Conference on
Graph Theory and Applications (1988), pp. 81–92.

[Fei98] Uriel Feige. “A Threshold of ln n for Approximating Set Cover”. In: J. ACM 45.4
(1998), pp. 634–652.

[Fic+19] Miron Ficak, Marcin Kozik, Miroslav Olsák, and Szymon Stankiewicz. “Dichotomy
for Symmetric Boolean PCSPs”. In: 46th International Colloquium on Automata,
Languages, and Programming, ICALP 2019. Vol. 132. LIPIcs. 2019, 57:1–57:12.

[FK15] Alan Frieze and Michał Karoński. Introduction to Random Graphs. Cambridge
University Press, 2015.

[FK91] H. Furstenberg and Y. Katznelson. “A density version of the Hales-Jewett theorem.”
English. In: J. Anal. Math. 57 (1991), pp. 64–119. ISSN: 0021-7670; 1565-8538/e.

[FKN02] Ehud Friedgut, Gil Kalai, and Assaf Naor. “Boolean functions whose Fourier trans-
form is concentrated on the first two levels”. In: Adv. in Applied Math. 29 (2002),
pp. 427–437.

[FM08] Alan M. Frieze and Dhruv Mubayi. “On the Chromatic Number of Simple Triangle-
Free Triple Systems”. In: Electron. J. Comb. 15.1 (2008).

[FM13] Alan M. Frieze and Dhruv Mubayi. “Coloring simple hypergraphs”. In: J. Comb.
Theory, Ser. B 103.6 (2013), pp. 767–794.

[Fra+17] Nevena Francetic, Sarada Herke, Brendan D. McKay, and Ian M. Wanless. “On
Ryser’s conjecture for linear intersecting multipartite hypergraphs”. In: Eur. J. Comb.
61 (2017), pp. 91–105.

[Fre04] Robert M Freund. “Introduction to semidefinite programming (SDP)”. In: Mas-
sachusetts Institute of Technology (2004), pp. 11–12. URL: https://ocw.
mit.edu/courses/6-251j-introduction-to-mathematical-
programming-fall-2009/08bbc2660764c4f61bde5363ae134339_
MIT6_251JF09_SDP.pdf.

[FS02] Uriel Feige and Christian Scheideler. “Improved Bounds for Acyclic Job Shop
Scheduling”. In: Comb. 22.3 (2002), pp. 361–399.

[FV98] Tomás Feder and Moshe Y. Vardi. “The Computational Structure of Monotone
Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group
Theory”. In: SIAM J. Comput. 28.1 (1998), pp. 57–104.

203

https://ocw.mit.edu/courses/6-251j-introduction-to-mathematical-programming-fall-2009/08bbc2660764c4f61bde5363ae134339_MIT6_251JF09_SDP.pdf
https://ocw.mit.edu/courses/6-251j-introduction-to-mathematical-programming-fall-2009/08bbc2660764c4f61bde5363ae134339_MIT6_251JF09_SDP.pdf
https://ocw.mit.edu/courses/6-251j-introduction-to-mathematical-programming-fall-2009/08bbc2660764c4f61bde5363ae134339_MIT6_251JF09_SDP.pdf
https://ocw.mit.edu/courses/6-251j-introduction-to-mathematical-programming-fall-2009/08bbc2660764c4f61bde5363ae134339_MIT6_251JF09_SDP.pdf

[Gar+76] M. R. Garey, Ronald L. Graham, David S. Johnson, and Andrew Chi-Chih Yao.
“Resource Constrained Scheduling as Generalized Bin Packing”. In: J. Comb. Theory,
Ser. A 21.3 (1976), pp. 257–298.

[Gar18] Shashwat Garg. “Quasi-PTAS for Scheduling with Precedences using LP Hierar-
chies”. In: 45th International Colloquium on Automata, Languages, and Program-
ming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic. 2018, 59:1–59:13.

[GCL18] Yuanxiang Gao, Li Chen, and Baochun Li. “Spotlight: Optimizing Device Placement
for Training Deep Neural Networks”. In: Proceedings of the 35th International Con-
ference on Machine Learning. Vol. 80. Proceedings of Machine Learning Research.
Stockholmsmässan, Stockholm Sweden: PMLR, 2018, pp. 1676–1684.

[GHS02] Venkatesan Guruswami, Johan Håstad, and Madhu Sudan. “Hardness of Approxi-
mate Hypergraph Coloring”. In: SIAM J. Comput. 31.6 (2002), pp. 1663–1686.

[Gir+08] Rodolphe Giroudeau, Jean-Claude König, Farida Kamila Moulai, and Jérôme Palaysi.
“Complexity and approximation for precedence constrained scheduling problems
with large communication delays”. In: Theor. Comput. Sci. 401.1-3 (2008), pp. 107–
119.

[GK99] Sudipto Guha and Samir Khuller. “Greedy strikes back: Improved facility location
algorithms”. In: Journal of algorithms 31.1 (1999), pp. 228–248.

[GL17] Venkatesan Guruswami and Euiwoong Lee. “Inapproximability ofH-Transversal/Packing”.
In: SIAM J. Discret. Math. 31.3 (2017), pp. 1552–1571.

[GL18] Venkatesan Guruswami and Euiwoong Lee. “Strong Inapproximability Results
on Balanced Rainbow-Colorable Hypergraphs”. In: Combinatorica 38.3 (2018),
pp. 547–599.

[GO05] Venkatesan Guruswami and Ryan O’Donnell. The PCP Theorem and Hardness of Ap-
proximation: Notes on Lectures 7–9. https://courses.cs.washington.
edu/courses/cse533/05au/. 2005.

[Gol+01] Leslie Ann Goldberg, Mike Paterson, Aravind Srinivasan, and Elizabeth Sweedyk.
“Better Approximation Guarantees for Job-Shop Scheduling”. In: SIAM J. Discret.
Math. 14.1 (2001), pp. 67–92.

[GOS20] Venkatesan Guruswami, Jakub Opršal, and Sai Sandeep. “Revisiting Alphabet Re-
duction in Dinur’s PCP”. In: Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, APPROX/RANDOM 2020, August 17-19,
2020, Virtual Conference. Vol. 176. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2020, 34:1–34:14.

[Gra+79] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. “Optimization
and approximation in deterministic sequencing and scheduling: a survey”. In: Ann.
Discrete Math. 4 (1979), pp. 287–326.

[Gra66] R. L. Graham. “Bounds for Certain Multiprocessing Anomalies”. In: Bell System
Technical Journal 45.9 (1966), pp. 1563–1581.

[GS17] Venkatesan Guruswami and Rishi Saket. “Hardness of Rainbow Coloring Hyper-
graphs”. In: 37th IARCS Annual Conference on Foundations of Software Technology

204

https://courses.cs.washington.edu/courses/cse533/05au/
https://courses.cs.washington.edu/courses/cse533/05au/

and Theoretical Computer Science, FSTTCS 2017, December 11-15, 2017, Kanpur,
India. 2017, 33:33–33:15.

[GS20a] Venkatesan Guruswami and Sai Sandeep. “d-To-1 Hardness of Coloring 3-Colorable
Graphs with O(1) Colors”. In: 47th International Colloquium on Automata, Lan-
guages, and Programming, ICALP 2020, July 8-11, 2020, Saarbrücken, Germany
(Virtual Conference). Vol. 168. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2020, 62:1–62:12.

[GS20b] Venkatesan Guruswami and Sai Sandeep. “Rainbow Coloring Hardness via Low
Sensitivity Polymorphisms”. In: SIAM J. Discret. Math. 34.1 (2020), pp. 520–537.

[GS22] Venkatesan Guruswami and Sai Sandeep. “Approximate Hypergraph Vertex Cover
and generalized Tuza’s conjecture”. In: Proceedings of the 2022 Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA). SIAM. 2022, pp. 927–944.

[GSS15] Venkatesan Guruswami, Sushant Sachdeva, and Rishi Saket. “Inapproximability of
Minimum Vertex Cover on k-Uniform k-Partite Hypergraphs”. In: SIAM J. Discret.
Math. 29.1 (2015), pp. 36–58.

[Guo+12] Zhenyu Guo, Xuepeng Fan, Rishan Chen, Jiaxing Zhang, Hucheng Zhou, Sean
McDirmid, Chang Liu, Wei Lin, Jingren Zhou, and Lidong Zhou. “Spotting code
optimizations in data-parallel pipelines through PeriSCOPE”. In: Presented as part
of the 10th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 12). 2012, pp. 121–133.

[GZ12] Venkatesan Guruswami and Yuan Zhou. “Tight Bounds on the Approximability of
Almost-Satisfiable Horn SAT and Exact Hitting Set”. In: Theory Comput. 8.1 (2012),
pp. 239–267.

[Hås01] Johan Håstad. “Some optimal inapproximability results”. In: J. ACM 48.4 (2001),
pp. 798–859.

[Hax99] Penny E. Haxell. “Packing and covering triangles in graphs”. In: Discret. Math.
195.1-3 (1999), pp. 251–254.

[HCG12] Chi-Yao Hong, Matthew Caesar, and P Brighten Godfrey. “Finishing flows quickly
with preemptive scheduling”. In: ACM SIGCOMM Computer Communication Re-
view 42.4 (2012), pp. 127–138.

[HLV94] J. A. Hoogeveen, Jan Karel Lenstra, and Bart Veltman. “Three, four, five, six, or
the complexity of scheduling with communication delays”. In: Oper. Res. Lett. 16.3
(1994), pp. 129–137.

[HM01] C. Hanen and A. Munier. “An approximation algorithm for scheduling dependent
tasks on m processors with small communication delays”. In: Discrete Applied
Mathematics 108.3 (2001), pp. 239–257.

[Hol02] Jonas Holmerin. “Vertex cover on 4-regular hyper-graphs is hard to approximate
within 2-epsilon”. In: Proceedings on 34th Annual ACM Symposium on Theory of
Computing. 2002, pp. 544–552.

[HR01] Penny E. Haxell and Vojtech Rödl. “Integer and Fractional Packings in Dense
Graphs”. In: Comb. 21.1 (2001), pp. 13–38.

205

[HS19] David G. Harris and Aravind Srinivasan. “The Moser-Tardos Framework with Partial
Resampling”. In: J. ACM 66.5 (2019), 36:1–36:45.

[HS87] Dorit S. Hochbaum and David B. Shmoys. “Using dual approximation algorithms
for scheduling problems theoretical and practical results”. In: J. ACM 34.1 (1987),
pp. 144–162.

[HSS06] Elad Hazan, Shmuel Safra, and Oded Schwartz. “On the complexity of approximating
k-set packing”. In: Computational Complexity 15.1 (2006), pp. 20–39.

[Im+19] Sungjin Im, Nathaniel Kell, Janardhan Kulkarni, and Debmalya Panigrahi. “Tight
Bounds for Online Vector Scheduling”. In: SIAM J. Comput. 48.1 (2019), pp. 93–
121.

[JCG97] Peter Jeavons, David A. Cohen, and Marc Gyssens. “Closure properties of con-
straints”. In: J. ACM 44.4 (1997), pp. 527–548.

[Jea98] Peter Jeavons. “On the Algebraic Structure of Combinatorial Problems”. In: Theor.
Comput. Sci. 200.1-2 (1998), pp. 185–204.

[Juh82] Ferenc Juhász. “The asymptotic behaviour of Lovász’ theta-function for random
graphs”. In: Comb. 2.2 (1982), pp. 153–155.

[JZA19] Zhihao Jia, Matei Zaharia, and Alex Aiken. “Beyond Data and Model Parallelism
for Deep Neural Networks”. In: Proceedings of the 2nd SysML Conference, SysML
’19. Palo Alto, CA, USA, 2019.

[Kal04] Gil Kalai. “Social Indeterminacy”. In: Econometrica 72.5 (2004), pp. 1565–1581.
[Kan+21] Dong Yeap Kang, Tom Kelly, Daniela Kühn, Abhishek Methuku, and Deryk Os-

thus. A proof of the Erdős-Faber-Lovász conjecture. 2021. arXiv: 2101.04698
[math.CO].

[KAR00] V. S. Anil Kumar, Sunil Arya, and H. Ramesh. “Hardness of Set Cover with Intersec-
tion 1”. In: Automata, Languages and Programming, 27th International Colloquium,
ICALP 2000, Geneva, Switzerland, July 9-15, 2000, Proceedings. Vol. 1853. Lecture
Notes in Computer Science. Springer, 2000, pp. 624–635.

[Kho+07] Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. “Optimal
Inapproximability Results for MAX-CUT and Other 2-Variable CSPs?” In: SIAM J.
Comput. 37.1 (2007), pp. 319–357.

[Kho01] Subhash Khot. “Improved Inaproximability Results for MaxClique, Chromatic Num-
ber and Approximate Graph Coloring”. In: 42nd Annual Symposium on Foundations
of Computer Science, FOCS 2001. 2001, pp. 600–609.

[Kho02a] Subhash Khot. “Hardness results for coloring 3-colorable 3-uniform hypergraphs”.
In: The 43rd Annual IEEE Symposium on Foundations of Computer Science, FOCS
2002. IEEE. 2002, pp. 23–32.

[Kho02b] Subhash Khot. “On the power of unique 2-prover 1-round games”. In: Proceedings
on 34th Annual ACM Symposium on Theory of Computing, STOC 2002. ACM, 2002,
pp. 767–775.

206

https://arxiv.org/abs/2101.04698
https://arxiv.org/abs/2101.04698

[KMS17] Subhash Khot, Dor Minzer, and Muli Safra. “On independent sets, 2-to-2 games, and
Grassmann graphs”. In: Proceedings of the 49th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2017, ACM, 2017, pp. 576–589.

[KMS18] Subhash Khot, Dor Minzer, and Muli Safra. “Pseudorandom Sets in Grassmann
Graph Have Near-Perfect Expansion”. In: 59th IEEE Annual Symposium on Foun-
dations of Computer Science, FOCS 2018. IEEE Computer Society, 2018, pp. 592–
601.

[Knu94] Donald E. Knuth. “The Sandwich Theorem”. In: Electron. J. Comb. 1 (1994).
[KO19] Andrei A. Krokhin and Jakub Opršal. “The Complexity of 3-Colouring H-Colourable

Graphs”. In: 60th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2019. IEEE Computer Society, 2019, pp. 1227–1239.

[KP20] Jeff Kahn and Jinyoung Park. Tuza’s Conjecture for random graphs. 2020. arXiv:
2007.04351 [math.CO].

[KR83] K. H. Kim and F. W. Roush. “On a problem of Turán”. In: Studies in Pure Math-
ematics: To the Memory of Paul Turán. Basel: Birkhäuser Basel, 1983, pp. 423–
425.

[Kri95] Michael Krivelevich. “On a conjecture of Tuza about packing and covering of
triangles”. In: Discret. Math. 142.1-3 (1995), pp. 281–286.

[Kro+20] Andrei A. Krokhin, Jakub Opršal, Marcin Wrochna, and Stanislav Živný. “Topology
and adjunction in promise constraint satisfaction”. In: Electron. Colloquium Comput.
Complex. (2020), p. 40.

[KS14] Subhash Khot and Rishi Saket. “Hardness of Finding Independent Sets in 2-Colorable
and Almost 2-Colorable Hypergraphs”. In: Proceedings of the 25th Annual ACM-
SIAM Symposium on Discrete Algorithms. 2014, pp. 1607–1625.

[KT17] Ken-Ichi Kawarabayashi and Mikkel Thorup. “Coloring 3-Colorable Graphs with
Less Than n1/5 Colors”. In: J. ACM 64.1 (Mar. 2017).

[Kul+20] Janardhan Kulkarni, Shi Li, Jakub Tarnawski, and Minwei Ye. “Hierarchy-Based
Algorithms for Minimizing Makespan under Precedence and Communication Con-
straints”. In: Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020. SIAM, 2020,
pp. 2770–2789.

[KZ97] Howard J. Karloff and Uri Zwick. “A 7/8-Approximation Algorithm for MAX
3SAT?” In: 38th Annual Symposium on Foundations of Computer Science, FOCS
’97, Miami Beach, Florida, USA, October 19-22, 1997. IEEE Computer Society,
1997, pp. 406–415.

[Law+93] Eugene L Lawler, Jan Karel Lenstra, Alexander HG Rinnooy Kan, and David B
Shmoys. “Sequencing and scheduling: Algorithms and complexity”. In: Handbooks
in operations research and management science 4 (1993), pp. 445–522.

[Lee19] Euiwoong Lee. “Partitioning a graph into small pieces with applications to path
transversal”. In: Math. Program. 177.1-2 (2019), pp. 1–19.

207

https://arxiv.org/abs/2007.04351

[Li21] Shi Li. “Towards PTAS for Precedence Constrained Scheduling via Combinato-
rial Algorithms”. In: Proceedings of the 2021 ACM-SIAM Symposium on Discrete
Algorithms (SODA). SIAM. 2021, pp. 2991–3010.

[LMR94] Frank Thomson Leighton, Bruce M. Maggs, and Satish Rao. “Packet Routing and
Job-Shop Scheduling in O(Congestion + Dilation) Steps”. In: Comb. 14.2 (1994),
pp. 167–186.

[Lov75] Láslzó Lovász. “On minmax theorems of combinatorics, Doctoral thesis”. In: Math-
ematiki Lapok 26 (1975).

[LR16] E. Levey and T. Rothvoss. “A (1+epsilon)-approximation for makespan scheduling
with precedence constraints using LP hierarchies”. In: Proceedings of the 48th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge,
MA, USA, June 18-21, 2016. 2016, pp. 168–177.

[Luo+16] Shouxi Luo, Hongfang Yu, Yangming Zhao, Sheng Wang, Shui Yu, and Lemin Li.
“Towards practical and near-optimal coflow scheduling for data center networks”.
In: IEEE Transactions on Parallel and Distributed Systems 27.11 (2016), pp. 3366–
3380.

[LY94] Carsten Lund and Mihalis Yannakakis. “On the Hardness of Approximating Mini-
mization Problems”. In: J. ACM 41.5 (1994), pp. 960–981.

[LZ09] Linyuan Lu and Yi Zhao. “An Exact Result for Hypergraphs and Upper Bounds for
the Turán Density of Kr

r+1”. In: SIAM J. Discret. Math. 23.3 (2009), pp. 1324–1334.
[Mai+20] Biswaroop Maiti, Rajmohan Rajaraman, David Stalfa, Zoya Svitkina, and Aravindan

Vijayaraghavan. “Scheduling Precedence-Constrained Jobs on Related Machines
with Communication Delay”. In: To appear at 61st Annual IEEE Symposium on
Foundations of Computer Science (FOCS 2020) (2020).

[Mar74] G. A. Margulis. “Probabilistic characteristics of graphs with large connectivity (in
Russian)”. In: Probl. Pered. Inform. 10 (1974), pp. 101–108.

[McD93] Colin McDiarmid. “A Random Recolouring Method for Graphs and Hypergraphs”.
In: Combinatorics, Probability and Computing 2.3 (1993), pp. 363–365.

[Mic+13] Tomasz P. Michalak, Aadithya V. Karthik, Piotr L. Szczepanski, Balaraman Ravin-
dran, and Nicholas R. Jennings. “Efficient Computation of the Shapley Value for
Game-Theoretic Network Centrality”. In: J. Artif. Intell. Res. 46 (2013), pp. 607–650.

[Mir+17] Azalia Mirhoseini, Hieu Pham, Quoc V Le, Benoit Steiner, Rasmus Larsen, Yuefeng
Zhou, Naveen Kumar, Mohammad Norouzi, Samy Bengio, and Jeff Dean. “De-
vice placement optimization with reinforcement learning”. In: Proceedings of the
34th International Conference on Machine Learning-Volume 70. JMLR. org. 2017,
pp. 2430–2439.

[MK97] A. Munier and J.C. König. “A Heuristic for a Scheduling Problem with Communi-
cation Delays”. In: Operations Research 45.1 (1997), pp. 145–147.

[MOO10] Elchanan Mossel, Ryan O’Donnell, and Krzysztof Oleszkiewicz. “Noise stability of
functions with low influences: invariance and optimality”. In: Annals of Mathematics
171 (2010), pp. 295–341.

208

[Mos10] Elchanan Mossel. “Gaussian Bounds for Noise Correlation of Functions”. In: Geo-
metric and Functional Analysis 19 (2010), pp. 1713–1756.

[Mos15] Dana Moshkovitz. “The Projection Games Conjecture and the NP-Hardness of ln
n-Approximating Set-Cover”. In: Theory Comput. 11 (2015), pp. 221–235.

[MR10] Dana Moshkovitz and Ran Raz. “Two-query PCP with subconstant error”. In: J.
ACM 57.5 (2010), 29:1–29:29.

[MR95] Jiřı́ Matoušek and Vojtěch Rödl. “On Ramsey sets in spheres”. In: Journal of Com-
binatorial Theory, Series A 70.1 (1995), pp. 30–44.

[MRT13] Adam Meyerson, Alan Roytman, and Brian Tagiku. “Online Multidimensional Load
Balancing”. In: Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM 2013. 2013, pp. 287–302.

[MS11] Monaldo Mastrolilli and Ola Svensson. “Hardness of Approximating Flow and Job
Shop Scheduling Problems”. In: J. ACM 58.5 (2011), 20:1–20:32.

[Nar+19] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N. Devanur, G. Ganger,
P. Gibbons, and M. Zaharia. “PipeDream: Generalized Pipeline Parallelism for DNN
Training”. In: Proc. 27th ACM Symposium on Operating Systems Principles (SOSP).
Huntsville, ON, Canada, Oct. 2019.

[Nis89] N. Nisan. “CREW PRAMs and Decision Trees”. In: Proceedings of the Twenty-first
Annual ACM Symposium on Theory of Computing. STOC ’89. ACM, 1989, pp. 327–
335.

[NN11] Ramasuri Narayanam and Yadati Narahari. “A Shapley Value-Based Approach to
Discover Influential Nodes in Social Networks”. In: IEEE Trans Autom. Sci. Eng.
8.1 (2011), pp. 130–147.

[ODo14] Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014.
[OW09] Ryan O’Donnell and Yi Wu. “Conditional hardness for satisfiable 3-CSPs”. In:

Proceedings of the 41st Annual ACM Symposium on Theory of Computing. 2009,
pp. 493–502.

[Pan+11] Rina Panigrahy, Kunal Talwar, Lincoln Uyeda, and Udi Wieder. “Heuristics for
Vector Bin Packing”. 2011. URL: https://www.microsoft.com/en-us/
research/publication/heuristics-for-vector-bin-packing/.

[Pet20] Jan Petr. Monotone functions avoiding majorities. Undergraduate Thesis. Univerzita
Karlova, Matematicko-fyzikalni fakulta. 2020.

[Pip02a] Nicholas Pippenger. “Galois theory for minors of finite functions”. In: Discrete
Mathematics 254.1-3 (2002), pp. 405–419.

[Pip02b] Nicholas Pippenger. “Galois theory for minors of finite functions”. In: Discrete
Mathematics 254.1 (2002), pp. 405–419.

[Pol12] D.H.J. Polymath. “A new proof of the density Hales-Jewett theorem”. In: Annals of
Mathematics 175.3 (May 2012), pp. 1283–1327.

[PR81] S. Poljak and V. Rödl. “On the arc-chromatic number of a digraph”. In: Journal of
Combinatorial Theory, Series B 31.2 (1981), pp. 190–198.

209

https://www.microsoft.com/en-us/research/publication/heuristics-for-vector-bin-packing/
https://www.microsoft.com/en-us/research/publication/heuristics-for-vector-bin-packing/

[Pul15] Gregory J. Puleo. “Tuza’s Conjecture for graphs with maximum average degree less
than 7”. In: Eur. J. Comb. 49 (2015), pp. 134–152.

[PY90] Christos H. Papadimitriou and Mihalis Yannakakis. “Towards an Architecture-
Independent Analysis of Parallel Algorithms”. In: SIAM J. Comput. 19.2 (1990),
pp. 322–328.

[Rag08] Prasad Raghavendra. “Optimal algorithms and inapproximability results for every
CSP?” In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing,
Victoria, British Columbia, Canada, May 17-20, 2008. ACM, 2008, pp. 245–254.

[Ray21] Arka Ray. “There is no APTAS for 2-dimensional vector bin packing: Revisited”.
In: CoRR abs/2104.13362 (2021). arXiv: 2104.13362.

[Ray87] Victor J. Rayward-Smith. “UET scheduling with unit interprocessor communication
delays”. In: Discret. Appl. Math. 18.1 (1987), pp. 55–71.

[Raz98] Ran Raz. “A Parallel Repetition Theorem”. In: SIAM J. Comput. 27.3 (1998),
pp. 763–803.

[RS07] Jaikumar Radhakrishnan and Madhu Sudan. “On Dinur’s proof of the PCP theorem”.
In: Bull. Amer. Math. Soc. 44 (2007), pp. 19–61.

[Rus82] Lucio Russo. “An approximate zero-one law”. In: Z. Wahrscheinlichkeitstheorie und
Verwandte Gebiete 61.1 (1982), pp. 129–139.

[Sak14] Rishi Saket. “Hardness of Finding Independent Sets in 2-Colorable Hypergraphs and
of Satisfiable CSPs”. In: Proceedings of the 29th IEEE Conference on Computational
Complexity. 2014, pp. 78–89.

[San21] Sai Sandeep. “Almost Optimal Inapproximability of Multidimensional Packing
Problems”. In: 62nd IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2021, Denver, CO, USA, February 7-10, 2022. IEEE, 2021, pp. 245–256.

[Sch78] Thomas J. Schaefer. “The Complexity of Satisfiability Problems”. In: Proceedings
of the 10th Annual ACM Symposium on Theory of Computing, STOC 1978. ACM,
1978, pp. 216–226.

[Shy+18] Ayan Shymyrbay, Arshyn Zhanbolatov, Assilkhan Amankhan, Adilya Bakambekova,
and Ikechi A Ukaegbu. “Meeting Deadlines in Datacenter Networks: An Analysis
on Deadline-Aware Transport Layer Protocols”. In: 2018 International Conference
on Computing and Network Communications (CoCoNet). IEEE. 2018, pp. 152–158.

[Sid95] Alexander Sidorenko. “What we know and what we do not know about Turán
numbers”. In: Graphs Comb. 11.2 (1995), pp. 179–199.

[Sid97] Alexander Sidorenko. “Upper Bounds for Turán Numbers”. In: J. Comb. Theory,
Ser. A 77.1 (1997), pp. 134–147.

[Sim83] Hans-Ulrich Simon. “A tight Ω(loglog n)-bound on the time for parallel RAMs
to compute nondegenerated boolean functions”. In: Foundations of Computation
Theory. Springer Berlin Heidelberg, 1983, pp. 439–444.

[SK67] Richard Sinkhorn and Paul Knopp. “Concerning nonnegative matrices and doubly
stochastic matrices”. In: Pacific Journal of Mathematics 21.2 (1967), pp. 343–348.

210

https://arxiv.org/abs/2104.13362

[Spi94] Frits CR Spieksma. “A branch-and-bound algorithm for the two-dimensional vector
packing problem”. In: Computers & operations research 21.1 (1994), pp. 19–25.

[SS13] Sushant Sachdeva and Rishi Saket. “Optimal Inapproximability for Scheduling
Problems via Structural Hardness for Hypergraph Vertex Cover”. In: Proceedings of
the 28th Conference on Computational Complexity, CCC 2013, K.lo Alto, California,
USA, 5-7 June, 2013. 2013, pp. 219–229.

[SS54] L. S. Shapley and Martin Shubik. “A Method for Evaluating the Distribution of
Power in a Committee System”. In: American Political Science Review 48.3 (1954),
pp. 787–792.

[SSW94] David B. Shmoys, Clifford Stein, and Joel Wein. “Improved Approximation Algo-
rithms for Shop Scheduling Problems”. In: SIAM J. Comput. 23.3 (1994), pp. 617–
632.

[ST12] Hadas Shachnai and Tami Tamir. “Approximation schemes for generalized two-
dimensional vector packing with application to data placement”. In: J. Discrete
Algorithms 10 (2012), pp. 35–48.

[Sve10] Ola Svensson. “Conditional hardness of precedence constrained scheduling on
identical machines”. In: Proceedings of the 42nd ACM Symposium on Theory of
Computing, STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010. ACM,
2010, pp. 745–754.

[SW99a] P. Schuurman and G. Woeginger. “Polynomial time approximation algorithms for
machine scheduling: ten open problems”. In: Journal of Scheduling 2.5 (1999),
pp. 203–213.

[SW99b] P. Schuurman and G. J. Woeginger. Polynomial time approximation algorithms for
machine scheduling: Ten open problems. 1999.

[Tar+20] Jakub Tarnawski, Amar Phanishayee, Nikhil R. Devanur, Divya Mahajan, and Fanny
Nina Paravecino. Efficient Algorithms for Device Placement of DNN Graph Opera-
tors. 2020. arXiv: 2006.16423 [cs.LG].

[Tre01] Luca Trevisan. “Non-approximability results for optimization problems on bounded
degree instances”. In: Proceedings on 33rd Annual ACM Symposium on Theory of
Computing, 2001. 2001, pp. 453–461.

[Tur41] Paul Turán. “On an extremal problem in graph theory”. In: Mat. Fiz. Lapok 48
(1941), pp. 436–452.

[Tur61] Paul Turán. “Research Problem”. In: Közl MTA Mat. Kutató Int. 6 (1961), pp. 417–
423.

[Tuz81] Zsolt Tuza. “Conjecture”. In: Finite and Infinite Sets Proc. Colloq. Math. Soc. Janos
Bolyai (1981), p. 888.

[Tuz90] Zsolt Tuza. “A conjecture on triangles of graphs”. In: Graphs Comb. 6.4 (1990),
pp. 373–380.

[TY92] R. Thurimella and Y. Yesha. “A scheduling principle for precedence graphs with
communication delay”. In: International Conference on Parallel Processing 3 (1992),
pp. 229–236.

211

https://arxiv.org/abs/2006.16423

[TŽ18] Johan Thapper and Stanislav Živný. “The Limits of SDP Relaxations for General-
Valued CSPs”. In: ACM Trans. Comput. Theory 10.3 (2018), 12:1–12:22.

[VL81] Wenceslas Fernandez de la Vega and George S. Lueker. “Bin packing can be solved
within 1+epsilon in linear time”. In: Comb. 1.4 (1981), pp. 349–355.

[VLL90] B. Veltman, B.J. Lageweg, and J.K. Lenstra. “Multiprocessor scheduling with com-
munication delays”. In: Parallel Computing 16.2 (1990), pp. 173–182.

[Web77] Robert Weber. Probabilistic Values for Games. Cowles Foundation Discussion
Papers 471R. Cowles Foundation for Research in Economics, Yale University, 1977.

[Wen13] Cenny Wenner. “Circumventing d-to-1 for Approximation Resistance of Satisfi-
able Predicates Strictly Containing Parity of Width at Least Four”. In: Theory of
Computing 9.23 (2013), pp. 703–757.

[Woe97] Gerhard J. Woeginger. “There is no Asymptotic PTAS for Two-Dimensional Vector
Packing”. In: Inf. Process. Lett. 64.6 (1997), pp. 293–297.

[WS11] David P. Williamson and David B. Shmoys. The Design of Approximation Algo-
rithms. USA: Cambridge University Press, 2011.

[WŽ20] Marcin Wrochna and Stanislav Živný. “Improved hardness for H-colourings of G-
colourable graphs”. In: Proceedings of the 2020 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2020. SIAM, 2020, pp. 1426–1435.

[Yus12] Raphael Yuster. “Dense Graphs With a Large Triangle Cover Have a Large Triangle
Packing”. In: Comb. Probab. Comput. 21.6 (2012), pp. 952–962.

[Zha+12] Jiaxing Zhang, Hucheng Zhou, Rishan Chen, Xuepeng Fan, Zhenyu Guo, Haox-
iang Lin, Jack Y Li, Wei Lin, Jingren Zhou, and Lidong Zhou. “Optimizing data
shuffling in data-parallel computation by understanding user-defined functions”. In:
Presented as part of the 9th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 12). 2012, pp. 295–308.

[Zha+15] Yangming Zhao, Kai Chen, Wei Bai, Minlan Yu, Chen Tian, Yanhui Geng, Yim-
ing Zhang, Dan Li, and Sheng Wang. “Rapier: Integrating routing and scheduling
for coflow-aware data center networks”. In: 2015 IEEE Conference on Computer
Communications (INFOCOM). IEEE. 2015, pp. 424–432.

[Zhu20] Dmitriy Zhuk. “A Proof of the CSP Dichotomy Conjecture”. In: J. ACM 67.5 (2020),
30:1–30:78.

[Zwi98] Uri Zwick. “Finding Almost-Satisfying Assignments”. In: Proceedings of the Thirti-
eth Annual ACM Symposium on the Theory of Computing, Dallas, Texas, USA, May
23-26, 1998. Ed. by Jeffrey Scott Vitter. ACM, 1998, pp. 551–560.

212

	1 Introduction
	1.1 Promise Constraint Satisfaction Problems (PCSPs)
	1.2 Multidimensional Packing and Scheduling
	1.3 Approximate Hypergraph Vertex Cover and generalized Tuza’s conjecture
	1.4 Scheduling with non-uniform communication delays
	1.5 Chapter Credits
	1.6 Organization

	I Promise Constraint Satisfaction Problems
	2 Promise Constraint Satisfaction Problems: Introduction
	2.1 PCSPs and Polymorphisms.
	2.2 Label Cover

	3 Conditional dichotomy of Boolean Ordered PCSPs
	3.1 Introduction
	3.2 Preliminaries
	3.3 Algorithm when Shapley values are small
	3.4 Hardness Assuming Rich 2-to-1 Conjecture
	3.4.1 Shapley value under random 2-to-1 minor
	3.4.2 Reduction

	3.5 Adversarial 2-to-1 minor

	4 d-to-1 Hardness of Coloring 3-colorable graphs with O(1) colors
	4.1 Introduction
	4.2 Preliminaries
	4.2.1 d-to-1 Conjecture
	4.2.2 Low degree influences

	4.3 d-to-1 hardness for 3-colorable graphs
	4.3.1 Reducing chromatic number to 3
	4.3.2 A symmetric Markov chain supported on disjoint tuples
	4.3.3 Proof of Theorem 33

	4.4 Reducing multigraph (exact) d-to-1 to (d+1)-to-1 conjecture

	5 Rainbow coloring hardness via low sensitivity polymorphisms
	5.1 Introduction
	5.1.1 Techniques
	5.1.2 Prior work on rainbow coloring and related problems
	5.1.3 Outline

	5.2 Preliminaries
	5.2.1 Rainbow Coloring PCSP
	5.2.2 Complexity measures of functions

	5.3 Polymorphisms
	5.3.1 Sensitivity vs certificate complexity
	5.3.2 Low sensitivity polymorphisms of rainbow coloring
	5.3.3 High sensitivity polymorphism of Rainbow(7,6,2)

	5.4 NP-Hardness
	5.5 Application: Vector Bin Covering
	5.5.1 Problem overview
	5.5.2 Hardness of Vector Bin Covering via Rainbow Coloring
	5.5.3 Proof of Theorem 57

	5.6 Adding equality constraints

	6 Robust Algorithms and SDPs for Promise CSPs
	6.1 Introduction
	6.1.1 Robust algorithms
	6.1.2 Unique Games based hardness
	6.1.3 Minion characterization of basic SDP

	6.2 Preliminaries
	6.3 General Observations
	6.3.1 Basic SDP setup
	6.3.2 Generic RHS reduction to ``not ''

	6.4 Robust Algorithms
	6.4.1 CMM is a robust algorithm for MAJ
	6.4.2 Warm-up for AT: Oblivious LP rounding algorithm for OR
	6.4.3 Algorithm for AT
	6.4.4 General case for AT

	6.5 Unique Games based Hardness
	6.5.1 Sphere Ramsey Theory
	6.5.2 Absence of sphere coloring

	6.6 The SDP minion
	6.6.1 SDP Minion Definition
	6.6.2 An alternative Basic SDP
	6.6.3 From minion homomorphism to SDP rounding algorithm
	6.6.4 From SDP rounding algorithm to minion homomorphism

	6.7 Missing Proofs

	7 Revisiting Alphabet Reduction
	7.1 Introduction
	7.2 Preliminaries
	7.2.1 Rectangular relation and the long code
	7.2.2 Boolean Fourier analysis

	7.3 Label Cover to CSP
	7.3.1 Long code test
	7.3.2 Constraint test
	7.3.3 The full test

	7.4 CSP to Label Cover
	7.5 Derandomization of the gadget decoding

	II Structured instances
	8 Multidimensional Packing and Scheduling Problems
	8.1 Introduction
	8.1.1 Our Results
	8.1.2 Related Work
	8.1.3 Organization

	8.2 Preliminaries
	8.3 Vector Bin Packing
	8.3.1 Packing Dimension
	8.3.2 Packing Dimension of Simple Bounded Set Families
	8.3.3 Hardness of Vector Bin Packing

	8.4 Vector Scheduling
	8.4.1 Monochromatic Clique
	8.4.2 From Monochromatic Clique to Vector Scheduling
	8.4.3 Hardness of Vector Scheduling via Balanced Hypergraph Coloring
	8.4.4 Proof of Lemma 154

	8.5 Hardness of simple k-set cover
	8.6 SDP Relaxation of Monochromatic-Clique
	8.6.1 Algorithm when B2̂>n
	8.6.2 Integrality gap

	9 Approximate hypergraph vertex cover and generalized Tuza's conjecture
	9.1 Introduction
	9.1.1 Fractional Tuza's conjecture and the algorithmic hypergraph Turán problem
	9.1.2 Vertex cover vs. matching and excluded sub-hypergraphs
	9.1.3 Vertex cover and set cover on simple hypergraphs
	9.1.4 Other improved hypergraph vertex cover algorithms
	9.1.5 Open problems

	9.2 Preliminaries
	9.3 LP rounding algorithm for AHTP
	9.3.1 Color-coding based small vertex cover
	9.3.2 LP rounding based algorithm for AHTP
	9.3.3 Analysis of the algorithm and proof of Theorem 161
	9.3.4 -version of AHTP

	9.4 Forbidden sub-hypergraphs and Tuza's conjecture
	9.4.1 Explicit construction of tent-free hypergraphs

	9.5 Vertex cover and set cover on simple hypergraphs
	9.5.1 Vertex cover on simple t-uniform hypergraphs
	9.5.2 Set Cover on Simple Set Systems

	10 Scheduling with non-uniform communication delay
	10.1 Introduction
	10.1.1 Our Techniques
	10.1.2 A Brief History of the Communication Delay Problem
	10.1.3 Discussion and Open Problems
	10.1.4 Organization

	10.2 Unique Machine Precedence Constraints Scheduling problem
	10.3 Hardness of Scheduling With Non-Uniform Communication Delays
	10.4 Conditional Hardness of Scheduling With Precedence Constraints on Related Machines
	10.4.1 Hypothesis ofimplies superconstant hardness of the UMPS problem with unit lengths

	11 Conclusion

