Code Generation Recovery Log Replay for
In-Memory Database Management Systems

Tianlei Pan

CMU-CS-21-131
June 2021

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Andy Pavlo, Chair
Wenting Ye

Submitted in partial fulfillment of the requirements
for the Fifth Year Master’s Program.

Copyright © 2021 Tianlei Pan



Keywords: Code Generation, Log Replay, Recovery, query compilation



Abstract

Code generation is an optimization technique for improving query execution
throughput by compiling query plans into native code. This technique, however,
leads to design challenges for the recovery system of a database management sys-
tem. The log replay process will be disjoint from the built-in execution engine that
has adapted to operate efficiently on compiled code. This leads to the implementa-
tion of a separate execution engine to deal with the execution of log records, which
can be a huge waste of engineering efforts. To resolve this design conflict between
code generation and database recovery, we present a unified approach to support
both query execution and log replay in a code-generation-based DBMS. We ask the
recovery system to convert log records into compiled code that will be easily ac-
cepted by the execution engine. Our results show that while our approach incurs
a higher performance overhead compared to using a separate execution engine, it
requires much less engineering effort and is superior in index updates.
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Chapter 1

Introduction

Database management system (DBMS) is a category of software that are responsible for stor-
ing data, analyzing data, and interacting with applications. In 1970, E.F. Codd proposed the
relational model of data,

Depending on the use case, a DBMS can focus more on either capturing data or analyzing
data. On-line Analytical Processing (OLAP) DBMSs focus on reading, analyzing and aggregat-
ing data that is less likely to be modified. On the other hand, On-line Transaction Processing
(OLTP) DBMSs support write-heavy transactions that modify the database frequently [6].

Regardless of the type of a DBMS, both OLTP and OLAP DBMSs are susceptible to failures.
The DBMS may shutdown unexpectedly, fail to execute a query, or cease to function due to
corrupted data. These failures threaten the integrity of the database and make the DBMS unre-
liable. Therefore, it is important for a DBMS to distinguish between different kinds of failures
in order to develop mechanisms to maintain integrity.

A DBMS can encounter three types of failures: Transaction Failures, System Failures, and
Media Failures[21]. Transaction Failures are the most common type of DBMS failures. Trans-
action Failures occur when a transaction fails to commit, either at its own request (e.g., logical
errors) or on behalf of the DBMS (e.g., resource unavailability). When a transaction fails, the
system needs to react within its lifetime to prevent data inconsistency [32]. The DBMS needs
to decide whether and how it should undo the changes of the failing transaction. Since a DBMS
is running transactions rapidly while its active, Transaction Failures can occur as much as 100
times per minute[21]. System Failures occur due to hardware failures (e.g., power outage), op-
erating system faults (e.g., insufficient memory) or DBMS exceptions. Each of these trigger
events can cause the DBMS to shutdown unexpectedly and uncontrollably. System Failures
occur less frequently compared to Transaction Failures, but take a much longer time for the
DBMS to recover. The database needs to pinpoint time of failure and what changes the DBMS
failed to record. Media Failures [39] happen when the underlying storage device of a DBMS
fails (e.g., disk head crash, bad sectors). This type of failure causes permanent data loss to the
DBMS. The only way for a DBMS to recover from Media Failures is to restore from a secondary
backup storage.

To handle different types of failures, a DBMS needs to develop a recovery system that will
restart the database correctly in case of failure. A widely adopted recovery system is to combine
write-ahead logging during transaction execution with crash recovery that uses redo (install
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changes to the database) and undo (remove changes from the database) processes, represented
by ARIES[29]. The ARIES (Algorithm for Recovery and Isolation Exploiting Semantics) [32]
protocol is a recovery method developed by IBM in the 1990s. It guarantees database integrity
in the fact of Transaction, System and Media Failures [32]. In ARIES, the DBMS records trans-
action modifications in durable log records before the DBMS propagates changes to a database
page to disk. During crash recovery, the DBMS applies changes from the log records to the
database with redo and undo processes (i.e., log replay) [13].

However, the original ARIES paper focused on disk-based DBMSs. Recently, we have seen a
rapidly increasing number of in-memory DBMSs due to technological advancement in semicon-
ductor memory [16]. Many in-memory DBMSs avoid strictly adhering to the ARIES protocol
for recovery. This is due to the fact that a lot of the concepts in ARIES no longer apply to
in-memory DBMSs. For instance, ARIES uses undo records to revert changes that have been
applied to the database. However, undo records are excessive for many in-memory DBMS re-
covery systems [5, 7, 17, 29, 41]. Performance concerns is another reason why in-memory
DBMSs stray from the ARIES protocol. Logging requires the DBMS to interact with the disk.
Therefore, logging I/O is a major bottleneck for an in-memory DBMS. This prompts in-memory
DBMSs to minimize logging traffic [12]. An example is the recovery of database indexes [12].
Disk-based DBMSs log updates to index structures (e.g., B+ Tree) that allow faster recovery dur-
ing log replay [32]. In comparison, in-memory DBMSs do not log index updates [5, 7, 29, 41]
and choose to reconstruct indexes from scratch during log replay. Despite the differences, many
in-memory DBMSs still use some form of logging [5, 7, 29, 41] in their recovery systems.

In addition to changes in recovery systems, in-memory DBMSs adopt various optimiza-
tion algorithms for their execution engines[22]. These optimizations aim to increase execution
throughput by reducing either the number of instructions that a DBMS executes to run a query,
or the clock cycles per instruction (CPI) [4]. Query compilation/code generation is an impor-
tant optimization technique used by DBMSs to greatly reduce the number of instructions that
the CPU needs to execute[22]. During execution, the DBMS breaks down a query into various
tasks [5, 33]. To speed up the execution of those tasks, the DBMS can compile them into na-
tive code (e.g., C/C++) with an off-shelf compiler[4]. Query compilation leads to faster query
execution because it specializes both the data structures (e.g., hash table) and access methods
of a DBMS towards execution efficiency [33]. Moreover, the compiled code can be optimized
around locality that increases the chance of a data tuple being propagated between operators
in CPU registers[30].

While query compilation succeeds in increasing the execution throughput of a DBMS, it
comes with several drawbacks. Implementing a query compilation system requires additional
knowledge of compiler systems (e.g., LLVM) and huge amounts of engineering work to translate
different execution tasks[22]. The DBMS also generates low-level machine code that is hard to
understand and debug [22].

Moreover, the DBMS recovery system is isolated from the query compilation execution en-
gine (i.e., a component of a DBMS that is responsible for execution). Most of the query compila-
tion DBMSs we have surveyed [5, 14, 33, 35] have no conduits between their recovery systems
and execution pipelines. The recovery system implements its own functionalities to update the
database, but some of these functionalities already exist in the execution engine. For instance,
we mentioned that in-memory DBMSs rebuild the indexes during log replay. When a redo pro-



cess install changes on a table, it also retrieves the indexes on that table and update them (index
update). However, the execution engine has already implemented this index update functional-
ity. As a result, the DBMS contains two implementations that provide identical functionalities.
The number of those functionalities in the recovery system will eventually amount to the scale
of a separate execution engine that is built specifically for log replay.

Therefore, if we can find a way to unify a DBMS’s recovery system and execution engine,
we can drastically reduce engineering overhead. Furthermore, we believe this unification also
increases replay efficiency. Unless the rewritten functionalities in the recovery manager are
executed as native machine code, they will be less efficient compared to those in the execu-
tion engine that uses query compilation. Therefore, if the DBMS allows the recovery system
to invoke functionalities within the execution engine, the log replay process should be more
efficient.

1.1 Contribution

We present a system design that will extend the execution engine to create custom programs
for replaying physical log records. Our design converts log records into a format that the DBMS
can compile into native code to be accepted by the execution engine. We will show that our
approach removes the need for introducing extra implementations into the recovery system for
functionalities that already exist in the execution engine. We will also verify our assumption
that by utilizing the code generation execution engine, the DBMS will have increased log replay
efficiency.

We implement our approach in NoisePage[5], a self-driving in-memory DBMS developed at
Carnegie Mellon University. NoisePage is built in C++ and uses the PostgreSQL wire protocol
for user communication. The DBMS also depends on query compilation for its execution engine.
Our experimental results show that while the code generation recovery approach falls short of
recovery throughput compared to baseline recovery, it is potentially more efficient in index
updates. and has higher scalabiltiy for a table with a larger number of columns.

We structure the remainder of the thesis as follows. In Chapter 2, we provide more back-
ground information on database recovery, code generation, and motivations behind our ap-
proach. In Chapter 3, we present the recovery and code generation architecture in NoisePage
and how we implemented our approach in this DBMS. In Chapter 4, we evaluate our implemen-
tation by comparing it against NoisePage’s builtin recovery system. We discuss related works
in Chapter 5 and conclude our thesis in Chapter 6.






Chapter 2

Background

In this chapter, we discuss more background information on database recovery and code gen-
eration. We then explain how the two components interact within a DBMS and what changes
need to be made for them to cooperate.

2.1 Database Recovery

A DBMS ensures database integrity by satisfying the following conditions:
* Durability of Updates [1]: All the changes made by committed transactions are durable.

* Failure Atomicity [13]: None of the changes made by aborted or failed transactions are

persisted visible after recovery.

Many DBMSs [2, 5, 7, 8, 9, 29, 41] combine logging and recovery protocols to preserve
these two conditions in case of failure. Logging is the action of storing information about
committed transactions on disk, while recovery is the action of restoring the database system
into a consistent state.

The DBMS stores logging information in a special data structure called a log record. A log
record contains physical changes (e.g., changes made to a specific physical address) performed
on the DBMS, or higher-level information (e.g., user-input query). In write-ahead logging [32],
the DBMS records physical database changes in a log file before the DBMS persists the changes
on disk. A transaction is not allowed to commit until the DBMS persists its corresponding log
record.

For disk-based DBMSs, a log record in the log file can be either a redo record or an undo
record [32]. During recovery, a redo record installs the effects of committed transactions, while
an undo record removes the effects on incomplete or aborted transactions. In-memory DBMSs,
on the other hand, do not persist uncommitted changes on disk [5, 7, 17, 29, 41]. This is because
disk-based DBMSs generate dirty pages. These are pieces of modified entries in the database
that reside in the memory, but have not yet been persisted to disk by the DBMS. However,
in-memory DBMSs do not write dirty data to persistent storage [5, 7, 17, 29, 41]. Therefore, in-
memory DBMSs do not generate dirty pages, nor do they need to keep undo records. As a result,
undo records are no longer required for their recovery systems. Moreover, in-memory DBMSs
do not need to generate log records for indexes [12]. During recovery, the DBMS reconstructs

5



Physical Data

Log Record Recovery Manager Row

Insert/Delete

New Index Row

Figure 2.1: Index Update During Recovery.

p

‘ EhEckHCIE ChLeacslfsz?nt } e >
‘ Log Record " Log Record Log Record ‘/ Log Record Log Record ‘ | Log Record Log Record ‘ Log Record ‘
Figure 2.2: Recovery with Log Records and Checkpoints.
"’ UPDATE x SET coll = -coll | Update Plan
\
‘ coll BETWEEN © AND 100 Sequential Scan Plan
Figure 2.3: Physical Plan that corresponds to UPDATE x SET coll = -coll WHERE col1

BETWEEN @ AND 100.

the database with redo records reconstructs and create the indexes simultaneously [7, 29]. For
each redo record, the recovery system finds the table that it modified, then retrieves all of its
indexes from the database catalog ((Figure 2.1). Finally, for each index, the recovery system
either updates it with new values, or remove entries from the index.

Aside from logs, recovery systems can store complete snapshots (i.e., checkpoints) of the
database. The DBMS can decide to take checkpoints based on a certain rule (e.g., timed-interval,
number of transactions). Checkpoints reduce the time required for the database to recover. The
DBMS can directly revert to a previous snapshot without replaying any log records before that
snapshot. DBMSs often store both log records and checkpoints. During recovery, the DBMS
finds its most recent snapshot, then replays any log records that are stored after that snapshot
(Figure 2.2).

2.2 Query Compilation / Code Generation
When a query arrives, the DBMS parses the query into an abstract syntax tree (AST). The opti-

mizer of the DBMS then converts the AST into a physical plan tree. The physical plan represents
how the DBMS will execute the query. It consists of operators that specify physical operations
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Figure 2.4: Query Compilation Architecture.

on the DBMS (e.g., inserting values into a certain memory location). For instance, UPDATE x
SET coll = -col1l WHERE col1l BETWEEN @ AND 100 can be represented by an update plan
tree with a sequential plan as a child (Figure 2.3). The execution engine then uses the plan tree
for execution.

In a DBMS that uses query interpretation, its execution engine (i.e., a component of a DBMS
that is responsible for execution) processes the physical plan by traversing the plan tree. There-
fore, for every query, DBMS needs to follow pointers and resolve branching conditions (e.g., if,
switch statements). This incurs overhead caused from virtual function calls, branch mispredic-
tions and instruction cache misses.

Query compilation eliminates the cost of query interpretation by compiling the physical
plan to machine code that is specific for that query. The machine code of the corresponding
physical plan can then be executed repeatedly by the execution engine, removing any need for
virtual function calls and branching resolutions. Generally, there are two ways of compiling
queries. In the first approach, the DBMS creates source code that is compiled into native code
with an external compiler (e.g., gcc) [23, 25]. This approach is used in Amazon Redshift and
pre-2016 MemSQL [35]. In the second approach, the DBMS first converts physical plan into an
intermediate representation (e.g., LLVM) that follows the grammar of an imperative language.
This approach simplifies the process of converting the physical plan into machine code, as the
intermediate representation form is designed to resemble SQL statements. Moreover, it removes
the need for the DBMS to use the compiler as an external process. This approach is adopted by
NoisePage [30], Hyper [33], Hekaton [14], and SingleStore [35].

2.3 Motivation

While code generation is a powerful optimization technique, it poses design challenges for
the recovery system. Both the execution engine and physical log records perform identical
physical operations on a database table. The native code generated through query compilation
operates directly on physical tables. For physical log records, they are already designed as a
data structure that represents physical changes made to the database. During recovery, the
DBMS simply replays those changes on the table.

However, the recovery system has no means of reusing functions within the execution en-
gine to install physical changes from log records. The execution engine does not accept physical
log records because it follows along the query compilation pipeline. This pipeline transforms
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one logical representation of a query to another, until the query becomes native code. There is
no place for physical log records to exist within this transformation pipeline.

There are two solutions to this problem. One solution is to re-implement functions to install
physical changes on data tables within the recovery system. However, this approach completely
isolates the recovery system from the execution engine. This means that if the recovery system
wishes to use a functionality within the execution engine, it has to rewrite that same function-
ality within the recovery system (Figure 2.1).

The other solution is to integrate physical logging with the execution engine. Figure 2.5
shows four possible paths that allow the execution engine to accept physical log records. Con-
verting the log record directly into native code requires the implementation of a new compil-
ing framework, which makes this option infeasible. Therefore, the closest point where the log
records can reach before entering the execution engine is physical plans. We then reach the
conclusion to convert log records into physical plans. Firstly, compared to raw queries or ab-
stract syntax trees, physical plans are closer to the end of the query compilation pipeline. If we
convert a log record into an abstract syntax tree (AST), the DBMS still needs to do additional
work to convert the AST into a physical plan. Secondly, we will show in later sections that it is
enough for physical plans to represent contents of a log record.

If the DBMS can convert log records into physical plans, the recovery system can rely on
code generation for recovery operation. This code generation recovery approach brings around
several benefits. Firstly, it significantly reduces engineering overhead. Compiling contents of
the log records into machine code allows the recovery system to seamlessly integrate with the
built-in execution engine. We have explained in Section 2.1 that the recovery system needs to
perform extra operations (e.g. Figure 2.1) besides updates to the data tables. These functionali-
ties exist within the execution engine. If we allow the recovery system to reuse existing func-
tionalities by communicating with the execution engine through native code, then the recovery
system no longer needs to implement its own functionalities. Secondly, utilizing the code gen-
eration execution engine provides more efficient functionalities. A function implemented by
the recovery system will not be as efficient as one that exists in the execution engine. For in-
stance, if an index contains expressions (e.g., CREATE INDEX c ON A (cola + colb)), then
the Recovery System needs to implement logic to evaluate those expressions as well.



These potential benefits motivate us to design a code generation recovery system based
on conversion from log records to physical plans. In the next chapter, we will present the
implementation of our approach .
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Chapter 3

Method

We now describe how to extend NoisePage’s recovery system and query compilation pipeline to
support log replay with code generation. Our implementation follows the third option shown in
Figure 2.5. We first enable the recovery system to convert log records into compiled native code.
To achieve this, the DBMS needs to interpret the log records into physical plans and prepare
them for compilation. We then extend the execution engine, so it will be able to correctly
execute the native code generated by the recovery system. We further summarize our approach
(Figure 3.1) in two steps:

1. Convert the log records into physical plans and compile them into native code (Recovery
Code Generation).

2. Run the compiled machine code using the execution engine (Recovery Execution) for log
replay.
We implement our approach in NoisePage [5]. NoisePage depends on a recovery system that
uses physical logging schemes. It also adopts query compilation optimization for its execution
engine.

3.1 Recovery System Architecture

To show how we will extend NoisePage’s recovery system, we first present some background
information on the recovery system architecture of NoisePage. NoisePage’s recovery system
consists of three major components: Transaction Manager, Logging Manager, and Recovery
Manager. The Logging Manager interacts with the Transaction Manager to achieve physi-
cal logging, while the Recovery Manager interacts with the Transaction Manager to provide
database recovery.

3.1.1 Transaction Manager

The Transaction Manager is responsible for creating and maintaining database transactions.
NoisePage uses a transaction to perform physical updates on the database and physical logging
to disk. NoisePage’s Transaction Manager uses a multi-versioned delta store [37] that ensures
snapshot isolation [3]. The Transaction Manager allows simultaneous read-write, but does not

11
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Execution Engine

allow write-write conflicts on a per tuple basis. A transaction’s lifecycle starts when the trans-
action begins, and ends after the log manager has serialized its changes to disk.

Each data tuple in NoisePage is uniquely identified through a tuple slot. A tuple slot stores
the offset of a tuple in a data block. It is a combination of: (1) physical memory address of the
block with the tuple, and (2) its offset logical within the block [27]. When the DBMS inserts a
tuple into a table, it creates a new tuple slot that points to a memory location within the table’s
data block. Subsequent updates to the tuple does not create copies of the tuple, but stores delta
information (redo records) about the updates instead [40]. These redo records are essential for
executing log replay correctly. The structure of a redo record is shown later in Figure 3.4.

A transaction uses a buffer (redo buffer) that stores all the delta records that will be generated
in its lifetime [41]. Each redo buffer has a fixed size and is allocated from a centralized memory
pool. Each time a transaction needs to change the contents of the DBMS, it will attempt to
request space from the redo buffer to store a corresponding delta record of the change. If the
redo buffer runs out of space, the transaction will replace the current buffer with a new one
from the memory pool. The redo buffer allows the logging components to process the changes
before the transaction ends.

When a transaction commits, the Transaction Manager creates a commit record that con-
tains a timestamp that refers to the oldest active transaction from the timestamp manager. The
commit record is appended to the redo buffer. The redo buffer is then carried over to the log
manager, where the changes will be serialized to disk. When a transaction aborts, the trans-
action creates an abort record that prevents the Recovery Manager to replay corresponding
records. Abort records are essential to recovery; since the redo buffer is persisted to disk by
the log manager once it is full, it is possible for the DBMS to write some log records from an
aborted transaction to disk. During recovery, the DBMS needs to remove aborted transactions.

3.1.2 Log Manager

The Log Manager (Figure 3.2) is responsible for performing write-ahead logging [32] in NoiseP-
age. Each log record is self-contained and does not require any additional metadata to be re-
played. As we now describe, the Log Manager consists of two separate tasks that run in different
threads: (1) Log Serializer and (2) Log Consumer.

12
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The Log Serializer task receives redo buffers from a transaction once it is full, or when the
transaction decides to commit. The Log Serializer splits the redo buffers into raw memory
segmented into fixed-size buffers. The Log Consumer consumes these buffers for persistence.

The DBMS must serialize log records in the correct order for recovery to perform correctly.
Different transactions can share a same redo buffer that is filled with each of their own log
records. Moreover, it is possible for transactions to appear in a non-serial order relative to
their begin timestamp. However, the log records generated by an individual transaction is
guaranteed to appear in the same order as they were created. This property helps ensure the
snapshot isolation property of NoisePage during log replay.

Log Consumer

Multiple Log Consumers are responsible for consuming buffers supplied by the Log Serializer.
The Log Serializer provides each Log Consumer a copy of the log record buffer to achieve par-
allelism. NoisePage uses two type of log consumers: Disk Log Consumer and Replication Log
Consumer.

The Disk Log Consumer repeatedly polls for new buffers from the log serializer and writes
the changes to disk. To improve performance, disk log consumer uses group commit that allows
a batch of changes to be committed over a time period specified by the user.

The Replication Log Consumer also polls for new buffers. Instead of persisting them to disk,
it sends the new buffers over across the network to database replicas.

3.1.3 Recovery Manager

Figure 3.3 shows the architecture of the Recovery Manager that is responsible for log replay.
The Recovery Manager loads the log records into memory and use them to performs log replay.
NoisePage uses four different record types: redo, delete, commit, abort. The Recovery Man-
ager do not process redo and delete records are immediately. Instead, the Recovery Manager
place redo and delete records inside a deferred changes buffer [36], ordered by their transaction
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Figure 3.4: Log Record.

timestamp. An abort record removes a corresponding redo/delete record from the buffer using
the begin transaction timestamp (Figure 3.4). A commit record initiates a transaction to iterate
over the deferred changes buffer. Once all the Recovery Manager processed all the deferred
changes, it clears the buffer and commits the transaction. The transaction aborts if any log
record is malformed or any replay fails.

Log Record

A physical log record consists of a header, followed by a record body (Figure 3.4). The header
stores metadata about the log record itself. This includes a log record’s record type, size, and
begin timestamp of the transaction (Section 3.1.1). The record body contains physical informa-
tion that is necessary for recovery and varies depending on the record type. Depending on the
value type, the values may be stored in-line or not in-inline. Simple types such as INTEGER,
FLOAT can be stored in-line, while VARLEN entry may store a pointer in the values column that
points to another physical location in the record.

Tuple slots in the log records will no longer be valid memory locations during recovery.
Instead, the Recovery Manager creates an internal mapping from original tuple slots to new
tuple slots. The recovery manager will retrieve the new tuple slots after new values are inserted
into tables. It then maps the old tuple slots to the new tuple slots. The tuple slot mapping allows
the Recovery Manager to apply changes to the correct memory locations in the new memory
environment. For instance, when the Recovery Manager reads in a delete record, it finds the
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Figure 3.6: Projected Row that represents [15, 721, NULL].

new tuple slot within the mapping with the original tuple slot contained in the log record and
performs a delete on the new tuple slot.

While storing tuple slots is sufficient for delete records, redo records require additional data
to perform log replay. For instance, to perform an insert, the redo record must contain the
values to insert. The Log Manager stores these data in a log record’s projected row (Figure 3.5).
A projected row represents a row in a database table. The DBMS can access an individual value
within the projected row by identifying a column id and reading the value using that column’s
value offset. For instance (Figure 3.6), with column ids [1, @, 2], the DBMS can find their values
with the value offset array [0, 4, 8]. In the null bitmap, it shows that only the first two columns
are non-null. This points to the values [721, 15, NULLJ]. And if we reorder them according
the column ids, we get row [15, 721, NULLI.

Replay Step

The Recovery Manager processes each log record differently depending on its record type. Com-
mit and abort records do not change the physical storage of the the database. Therefore, to
simplify, we only need to consider the effects of redo and delete records.
We refer to a replay step as the Recovery manager replaying a single redo record or delete
record. A NoisePage replay step has three different scenarios:
* Insert Replay: The Recovery Manager inserts the values stored within a redo record into
the given tuple slot and updates the indexes.

* Delete Replay: The Recovery Manager deletes the tuple slot specified by a delete record
and updates the indexes.

* Update Replay: The Recovery Manager updates the tuple slot using the values within a
redo record and updates the indexes.

While both insert and update redo records follow the same redo record structure, the Re-
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covery Manager differentiates between them by keeping track of all the tuple slots found in log
records. If the Recovery Manager has never seen a tuple slot inside a redo record before, then the
redo record represents an Insert operation. Otherwise, the Redo Record represents an Update
operation. While NoisePage does not use checkpoints [32] for recovery, we want to point out
that this method will not work if the DBMS loads a checkpoint before log replay. The Recovery
Manager has no means of storing the tuple slots created during checkpoint restoration.

3.2 Recovery Code Generation

In this section, we introduce how we integrate the NoisePage’s recovery system with its code
generation pipeline. We first provide an overview on how NoisePage employs code generation
for query execution. We then show how the Recovery Manager converts redo and delete records
into physical plans that can be accepted by the code generation pipeline for compilation.

3.2.1 Code Generation Pipeline

The DBMS interprets a query, parses it into an AST and converts it into a physical plan tree. A
plan tree consists of plan nodes and specifies how the DBMS should execute the query on the
physical level of the database.

Code generation is responsible for compiling physical plans into machine code. The code
generation pipeline in NoisePage follows from the data-centric compilation approach[33]. The
DBMS feeds each plan node into a matching plan translator. Each plan translator correspond to
a plan node in the original plan tree. For instance, an insert plan node has a matching insert plan
translator; a delete plan node has a matching delete plan translator. A plan translator converts
a physical plan tree/node into an operator pipeline. The operator pipeline contains an ordered
collection of relational operators (e.g. insert, get table row), ended with a pipeline breaker (e.g.,
sort tuples, creating a hash table). The execution engine only materializes the pipeline results
when it encounters a pipeline breaker.

NoisePage then compiles each operator pipeline into a customized imperative language
(TPL) [24, 30]. The DBMS then compiles each function of a query inside TPL into bytecode
(TBC). The DBMS can choose to interpret the bytecode with a built-in virtual machine, or fur-
ther compile it into an LLVM module. The execution engine can either interpret TBC, or run
the compiled LLVM module (Figure 3.7).

We further demonstrate the process of query compilation through the example in Figure 3.8.
To run the query DELETE FROM x WHERE col BETWEEN a AND b, the DBMS needs to first
do a sequential scan to find out the columns to delete. It then performs a delete operation on
those columns. The DBMS represents these two operations in a delete plan node that includes
a sequential scan plan node as a child. The DBMS then translates the plan node into an oper-
ator pipeline that specifies how each operation will be executed in the DBMS. After this, the
DBMS compiles the operator pipeline into machine code. Each function inside the machine
code matches to an operation code function inside the execution engine. When the execu-
tion engine runs the compiled code, it invokes its corresponding operation code functions. For
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Figure 3.8: Code Generation of DELETE FROM x WHERE col BETWEEN a AND b

instance, @tableDelete corresponds to a C++ function OpStorageInterfaceTableDelete (a
delete operation on a tuple slot of a table) in the execution engine.

3.2.2 Replay Conversion

We consider each type of replay as a form of SQL statement that the DBMS convert into native
code through the code generation process discussed above, as shown in Figure 3.9. We further
divide the code generation process for a log record into three steps: (1) plan generation (creating
the physical plan node), (2) plan translation (translating the plan into operator pipelines), and
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Figure 3.10: Conversion from an Insert Redo Record into an Insert Plan Node. The tuple slot
provided by the redo record is discarded.

(3) compilation.

In plan generation, the Recovery Manager converts each replay process (insert/update/delete
replay) into a corresponding plan node. In plan translation, the Recovery Manager uses match-
ing plan translators to convert physical plans into operator pipelines. Once the Recovery Man-
ager has the operator pipeline, it can then use the compiler to generate machine code for exe-
cution.

Insert Replay Conversion

Insert plan nodes correspond to INSERT statements. We can represent an insert redo record as
the SQL statement INSERT INTO x VALUES y.

Figure 3.10 shows the conversion from an insert redo record into an insert plan node. The
Recovery Manager retrieves metadata (e.g., table id, column ids) from the redo record and the
database catalog. The redo record’s projected row contains values for insert (Figure 3.5). A redo
record stores those values as constants (e.g., integer, float, double). The Recovery Manager then
feeds those constants into the insert plan node. This conversion requires no changes to the plan
nodes, nor to the operator pipelines.
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Delete Replay Conversion

Delete plan nodes correspond to DELETE statements. DELETE statements require specifications
on where the DBMS should perform delete operations (e.g., WHERE clause in Figure 3.8), unless
a DELETE statement wants to delete everything from a table. Therefore, a delete plan node
requires a child plan node to function. It uses its child plan node to figure out which tuple slot
to delete.

However, a delete record’s tuple slot, combined with the tuple mapping from the Recovery
Manager, already points to the tuple slot to delete. In this case, there is no need for the plan node
to go through the child node and resolve the tuple slot for deletion. Moreover, delete records
do not contain values like a redo record does (Figure 3.4). The delete plan needs to use those
values to delete them from the indexes. Therefore, we need to provide the operator pipeline
with a projected row that contains values that correspond to the row of the tuple slot from the
Recovery Manager.

We change the behavior of the operator pipeline as follows (Figure 3.11): (1) remove the step
to look for a new delete tuple slot, (2) retrieve the delete slot supplied by the Recovery Manager
during execution, and (3) use the projected row provided by the Recovery Manager for index
updates.

Update Replay Conversion

Update plan nodes correspond to UPDATE statements. Similar to DELETE statements, update
plan nodes require child plan nodes. An update operator pipeline expects SET clauses returned
from the child node (e.g., sequential scan). These SET clauses, however, describe higher-level
logical operations (i.e., update a column with a certain value or expression) that are expensive to
construct. On the other hand, redo records contain low-level physical information (i.e., update
a tuple slot with a certain value). Therefore, the Recovery Manager cannot create SET clauses
from redo records.

We therefore perform the following changes (Figure 3.12): (1) extend the update plan node
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Figure 3.12: Conversion from an Update Redo Record into an Update Plan Node. SET clauses
and child plan nodes inside the update plan node are discarded.

to accept primitive values like an insert plan node does, (2) modify the operator pipeline to
process the constant values instead of SET clauses during a replay step (Figure 3.12), (3) remove
the step for update operator pipeline to find out the update tuple slot, and (4) retrieve the update
tuple slot from the Recovery Manager.

3.3 Recovery Execution

We explained in Section 3.2.2 that we modified deletes/update operator pipelines to retrieve
database objects (e.g., tuple slots, projected row) from the Recovery Manager. We modify the
execution engine to achieve this. The execution engine is responsible for running the compiled
query. Inside the execution engine, the compiled query invokes different operation codes (e.g.,
OpStoragelnterfaceTableDelete in Figure 3.8) that correspond to operators in the operator
pipeline. Since we modified the operator pipelines earlier, we now need to change operation
codes to read in objects from the Recovery Manager.

3.3.1 Replay Execution

We first use the Recovery Manager to set the required tuple slots and projected row into a
log record. Before the execution engine runs the query, the Recovery Manager needs to setup a
preparation context for execution. In NoisePage, an execution context encapsulates information
that is supplied by upper layers of the DBMS (e.g. access to the database catalog, the transaction
running the query to execute, database memory pool). We pass the log record from the Recovery
Manager into the execution context.

During recovery, we modify functions within the execution engine so that they will use the
objects provided by the Recovery Manager through the execution context (Figure 3.13).
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Figure 3.13: Execution engine functions can access objects from the Recovery Manager
through an Execution Context.

3.4 Caching Optimization

Our implementation for code generation searches for table metadata and re-compiles the native
code every time the Recovery Manager reads in a new log record. This is very inefficient and
requires egregious amounts of memory access and copy. We can use caching techniques to
reduce this performance overhead.

3.4.1 Metadata

Most of the metadata search overhead is from the replay conversion step. For each table, the
DBMS needs to figure out its relevant metadata. These operations require frequent lookup into
the database catalog. However, all of those metadata are bound to a fixed database and table id.
Therefore, the DBMS can cache those metadata with a hash table and re-use them for the same
table.

Physical to Logical Column Mapping

The Recovery Manager maintains a mapping from physical column ids to logical column ids
for each table. This is required because the column ids recorded in the log records are physical
ids. On the other hand, query compilation expects logical column ids because the execution
engine is designed to work with upper layers of a DBMS. The Recovery Manager generates this
mapping by accessing the database catalog.

Column Value Type Mapping

For redo records, the Recovery Manager also maintains a mapping from each column to its
corresponding SQL value type (e.g., INTEGER, FLOAT, VARLEN). The Recovery Manager uses
this mapping to copy the values out of each redo record into an insert/update plan node.
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Catalog Access

It is costly for the Recovery Manager to repeatedly read from the database catalog. Profiling
results show that a single operation to retrieve catalog access can account for 10% of total
instructions of a replay step. Therefore, the Recovery Manager uses a hash table to keep track
of catalog readers.

3.4.2 Compiled Query

A major benefit of query compilation is that the execution engine can reuse the compiled query.
If the contents of a physical plan node remains unchanged, then there is no need to reconstruct
the physical plan every time the Recovery Manager processes a log record. For instance, we
only need to create a new delete plan node if we receive a delete record with a new database
and table id.

We can cache each type of replay separately and use a combination of database and table
id as unique identifiers. The Recovery Manager can re-use cached queries. However, the query
cache needs to be updated if the table schema associated with the compiled query is modified.
For instance, if a table is dropped, the query cache should remove all queries related to that
table from the cache.

Parameterization

Caching is trickier for replay types that need to transfer values into plan nodes. We mentioned
in Section 3.2.2 that insert/update needs to copy primitive values from the redo records into
plan nodes. In some DBMSs, however, the plan nodes expect primitive values in some wrapper
objects [18, 22] referred to as expressions. In NoisePage, the corresponding expression for
primitive values is a constant value expression. As a result, the Recovery Manager needs to
reconstruct a constant value expression for each new value.

A solution to this is to parameterize the constant value expression given to an insert/update
plan node. We can represent an insert replay as INSERT INTO x VALUES ?. The Recovery Man-
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ager caches the plan nodes that contains parameter expressions. The parameters expressions
only contain value type information, but do not contain any actual values. During run-time, the
execution context passes in primitive values from the Recovery Manager into the plan node.
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Chapter 4

Experimental Evaluation

We now evaluate the performance of our code generation recovery. The experiments focus
on comparing the performance difference between our code generation recovery method and
baseline recovery. Each experiment has two phases: the preparation phase and the recovery
phase. During the preparation phase, we use three operations to generate log records:

« INSERT — Insert Redo Record: Create a random row with random values and insert
into a random table.

* UPDATE — Update Redo Record: For a random row from a random table, update a
random tuple slot with a random value.

* DELETE — Delete Record: For a random row from a random table, delete a random tuple
slot.

We run these operations randomly for some number of times during the preparation phase.
During the recovery phase, we load the log records into memory from disk on demand and
replay them with the Recovery Manager. We then measure the performance of only the replay
step in our throughput measurement experiments.

We conduct all the experiments on a machine with the following specifications:
+ OS: Ubuntu 20.04
+ CPU: Intel(R) Xeon(R) Gold 5218R CPU @ 2.10GHz
2 sockets, 20 cores/socket, 40 threads/socket
* RAM: 188 GB

We use Google Benchmark for our test setup. Google Benchmark is a C++ library that
provides code snippets similar to unit tests [28]. We implement our experiments using the
Google Benchmark framework to count the number of transactions per second a DBMS can
execute. We enable data collection only when recovery starts.

We use Callgrind for our test result analysis. Callgrind is a profiling tool that records func-
tion calls history in a program [11]. The collected data consists of the number of instructions
executed per function, the functions’ relationship to source code, and caller/callee relationship
between functions. We use Callgrind on the NoisePage binary to record this data. We then use
the profile data to analyze the instructions overhead breakdown within the log replay process.
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Statements Ratio Baseline Throughput Codegen Throughput
100% Insert 1.12 x 10* txns/s 6.00 x 10? txns/s

Table 4.1: Insert Replay Throughput. Baseline recovery executes 53% more transactions per
second than code generation recovery.

Functionality IR% Normalized IR% Description

Query Execution 79.35 81.7 Executes the insert replay query.

Execution Context Initialization  9.35 9.62 Initializes an execution context (Figure 3.13) for query execution.
Value Copies 6.19 6.37 Copy values from a redo record into a physical plan.

Cache Access 2.26 2.32 Reading and writing values/queries into hash table caches.
Compile 0.03 0.03 Compiling the insert replay query.

Table 4.2: Callgrind breakdown on an Insert Replay step. IR (instructions read) refers
to the number of instructions read in total by the selected function during a certain function
execution.

Function IR% Normalized IR% Description
Storagelnterfacelnit 29.88 74.4% Initializes a Storage Interface.
StoragelnterfaceTableInsert 6.00 14.9% Inserts a tuple into a table.
StoragelInterfaceFree 2.76 6.87% Deallocates a Storage Interface.
StoragelnterfaceGetTablePR 1.40 3.48% Retrieves a table’s projected row.
Other 0.12 0.35%

Table 4.3: Callgrind breakdown on the Query Execution step of an Insert Replay step.
IR (instructions read) refers to the number of instructions read in total by the selected function
during a certain function execution.

4.1 Table Recovery

Log replay generates transactions through commit records (Section 3.1.2). Therefore, we can
use transactions throughput to measure the performance of the recovery phase.

The table starts with an initial table size of 10° tuples. During the preparation phase, we
run five insert/update/delete statements for each transaction, with a total of 10° transactions.
Each table uses a single column that is INTEGER data type.

4.1.1 Insert

We first measure the throughput (number of transactions executed per time period) of Insert
Replays against the baseline recovery performance on a single table. The Recovery Manager
uses only code generation insert replay implementation for recovery.
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Results show that the code generation throughput is 47% slower than the baseline imple-
mentation. To investigate this, we run the NoisePage binary with the Callgrind tool and only
enable data collection during recovery. We collect the instructions read percentage (IR%) for
different function calls that occurred during recovery. To facilitate comparison, we normalized
those percentages to reflect each function’s IR overhead relative to others. Table 4.2 shows a
breakdown of the instructions read percentage reported by Callgrind.

* Query Execution refers to the process of the execution engine running the compiled
replay query. This is where the DBMS performs the a recovery replay step and should
take up most of the overhead.

+ Execution Context Initialization is a preparation phase for query execution. In NoiseP-
age, it creates an execution context (Figure 3.13) that is necessary for execution. An execu-
tion context encapsulates information that is supplied by upper layers of the DBMS (e.g.,
access to the database catalog, the transaction running the query to execute, database
memory pool).

* Value Copies refers to the step where the Recovery Manager copies values from redo
records into an insert/update physical plans. Value copies can potentially take up a lot of
overhead as the number of columns of a table increases.

* Cache Access occurs whenever the Recovery Manager tries perform reads/writes on a
metadata/compiled query hash table.

+ Compile step refers to the compilation of an insert/delete/update replay query. Compi-
lation should take little time, since most of the queries reside in the cache.

The profiling result in Table 4.2 explains that 81.7% of the slow down comes from the query
execution step of the compiled query. This is expected, as the compiled query represents an
insert replay. Therefore, the execution of the query should take up most of the time during an
insert replay step. Execution context initialization and value copies together also account for
16% of the total overhead. This overhead is unavoidable, since the DBMS needs the execution
context to execute the query and the values to construct physical plan nodes.

The composition of query execution shows that 74.4% of the overhead comes from Stor-
agelnterfacelnit (Table 4.3), which is a function that initializes a storage interface. The stor-
age interface object points to a database table and provides access to its columns, projected
rows, and indexes. It allows the execution engine to manipulate over a database table to per-
form an insert, delete or update. In NoisePage, every time the execution engine begins executing
an insert/delete/update pipeline, it first creates the storage interface object. The construction
of this object proves to be expensive. Therefore, the main overhead of insert code generation
recovery comes from execution initialization. We also believe that the percentage of this over-
head should remain similar for the next two experiments, since the initialization of the storage
interface does not depend on the type of operation that the DBMS is executing.

We further study the performance difference between the baseline insert replay and code
generation insert replay by inspecting their implementations. To perform an insert replay in
baseline recovery, the Recovery Manager only needs to (1) initialize a new redo record for in-
sert by copying from the original redo record, (2) insert the new redo record into the table, and
(3) update indexes. In step (1), baseline recovery only needs to copy the entire redo record.
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Statements Ratio  Baseline Throughput Codegen Throughput

90% Insert, 10% Delete 1.12 x 10* txns/s 1.08 x 10* txns/s
75% Insert, 25% Delete 1.11 x 10* txns/s 1.07 x 10* txns/s
50% Insert, 50% Delete 1.09 x 10* txns/s 9.31 x 10° txns/s

Table 4.4: Delete Replay Throughput. Code generation recovery throughput falls behind
baseline recovery throughput by 10% on average.

It uses this copy directly as the log record for this replay step. Meanwhile, code generation
recovery needs to iterate over each value inside the redo record, cast them to the correct type,
and copy the casted values into a new array. These operations result in the additional value
copies overhead. Baseline recovery also does not need any execution initialization and cache
access that are specific to code generation recovery. In step (2), baseline recovery is performing
the same operation as StorageInterfaceTableInsert. While for code generation recovery,
it performs additional work aside from StorageInterfaceTableInsert to construct and de-
struct the storage interface. This accounts for 89.3% of the total IR overhead and proves to be the
main bottleneck for code generation recovery. For step (3), the tables used in the experiments
do not contain indexes. We will verify the effects of indexes in later sections.

4.1.2 Delete

We then measure throughput of Delete Replays against the baseline. The Recovery Manager
uses code generation delete replay implementation for recovery.

Code generation throughput results of Delete Replays are much closer to the baseline (90%
to 95%), compared to those of Insert Replays. A delete operation does not require value copies
from a redo record. This avoids the value copy overhead that is persistent in insert replay
recovery.

Moreover, comparing to an insert operation, a delete operation is also more lightweight.
For an insert replay, its operator pipeline needs to loop over all the values and resolve the tuple
slot for insertion. As shown in Section 3.2.2, we removed the step for a delete operator pipeline
to look for a new tuple slot and allows it to retrieve the tuple slot directly during execution. A
delete operator pipeline also does not need to loop over any values, since it directly deletes the
tuple slot provided during execution.

The Callgrind results in Tables 4.5 and 4.6 show that, similar to an insert operation, a delete
operation is heavily bottlenecked by execution initialization (StorageInterfaceInit). Both
insert and delete replays have similar IR% (74% vs 76%) of execution initialiation overhead. On
the other hand, the delete operation (StorageInterfaceTableDelete) itself accounts for only
9.81% of the total overhead. This matches our expectations. As we explained earlier, delete
replays are more lightweight than insert replays. An insert (StoragelnterfaceTableInsert) costs
18.16% overhead, which is larger than the overhead (9.81%) from a delete (StorageInterface-
TableDelete).

We further examine the differences between baseline delete replay and code generation
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Functionality IR% Normalized IR% Description

Query Execution 90.40% 91.46% Executes the delete replay query.

Execution Context Initialization  3.70% 3.74% Initializes an execution context (Figure 3.13) for query execution.
Delete Record Initialization 4.22% 4.27% Initializes a new delete record to be used during execution.
Cache Access 0.36% 0.36% Reading and writing values/queries into hash table caches.
Compile 0.17% 0.17% Compiling the delete replay query.

Table 4.5: Callgrind breakdown on a Delete Replay step. IR (instructions read) refers
to the number of instructions read in total by the selected function during a certain function
execution.

Operation Code IR% Normalized IR% Description
Storagelnterfacelnit 24.35 76.27% Initializes a Storage Interface.
StoragelnterfaceTableDelete 5.80 18.16% Deletes a tuple from a table.
StoragelInterfaceFree 1.55 4.85% Deallocates a Storage Interface.
Other 0.13 0.41%

StorageInterfaceGetTablePR  0.10 0.31% Retrieves a table’s projected row.

Table 4.6: Callgrind breakdown on the Query Execution step of a Delete Replay step.
IR (instructions read) refers to the number of instructions read in total by the selected function
during a certain function execution.

delete replay to understand the drop in recovery throughput. To perform a delete replay in
baseline recovery, the Recovery Manager needs to: (1) use the tuple slot in the delete record to
generate a new delete record, (2) collect the table’s column ids and fetch the values that reside
in the tuple slot to perpare for index updates, (3) delete from the table, and (4) delete from the
indexes. Code generation recovery does step (1) and (2) in delete record initialization, which
only takes up 4.27% IR%. The main performance difference comes in step (3). In baseline re-
covery, step (3) is equivalent to executing StorageInterfaceTableDelete. In code generation
recovery, it needs to do additional work to create and free the storage interface object for each
delete replay.

4.1.3 Update

Finally, we measure throughput of Update Replays against the baseline. The Recovery Manager
uses only code generation update replay implementation for recovery. The performance of an
Update Replay is similar to an Insert Replay, as they both require copying values into their
physical plans. Therefore, due to execution initialization overhead, code generated updates are
more heavyweight compared to the baseline insert and update operations.

The throughput measurement results demonstrate the effect of execution initialization over-
head. As the proportion of update statements increases, we notice a consistent drop in the code
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Statements Ratio = Baseline Throughput Codegen Throughput

90% Insert, 10% Update 1.15 x 10* txns/s 7.46 x 10° txns/s
75% Insert, 25% Update 1.15 x 10* txns/s 7.31 x 10° txns/s
50% Insert, 50% Update 1.15 x 10* txns/s 6.68 x 10° txns/s

Table 4.7: Update Replay Throughput. Code generation recovery throughput falls behind
baseline recovery (from 64.9% to 58.1%) as the percentage of update statements increases.

Functionality IR% Normalized IR% Description

Query Execution 80.08 83.50% Executes the update replay query.

Execution Context Initialization  9.41 9.81% Initializes an execution context (Figure 3.13) for query execution.
Retrieving Record Values 4.98 5.19% Copy values from a redo record into a physical plan.

Cache Access 1.27 1.32 % Reading and writing values/queries into hash table caches.
Compile 0.18 0.18 % Compiling the update replay query.

Table 4.8: Callgrind breakdown on an Update Replay step. IR (instructions read) refers
to the number of instructions read in total by the selected function during a certain function
execution.

Function IR% Normalized IR% Description
Storagelnterfacelnit 29.84 72.50% Initializes a Storage Interface.
StoragelnterfaceTableUpdate 8.42 20.46% Updates a tuple of a table.
StoragelnterfaceFree 2.78 6.75% Deallocates a Storage Interface.
Other 0.12 0.29%

Table 4.9: Callgrind breakdown on the Query Execution step of an Update Replay step.
IR (instructions read) refers to the number of instructions read in total by the selected function
during a certain function execution.

generation throughput. When the preparation statements consist of 10% updates, code genera-
tion recovery throughput is 64.9% of baseline recovery throughput. As the percentage of update
statements increases, baseline recovery throughput remains the same. However, code genera-
tion recovery throughput is only 58.1% of baseline recovery throughput when the percentage
of update statements reaches 50%. This is because as the percentage of update statements in-
creases, the Recovery Manager needs to perform more code generation recovery updates. In
turn, their performance overhead becomes an increasing cost for the log replay process and
results in less throughput.

Callgrind results in Tables 4.8 and 4.9 show that an update operation is also spending most
of its time on query execution (83.5%) and creating the Storage Interface (72.5%). On the other
hand, the update operation (StorageInterfaceTableUpdate) accounts for only 20.46%. This
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reflects that while updating a table is fast, the update replay is also burdened by execution
initialization overhead. In fact, all the operations (insert/update/delete) have similar IR% for
StorageInterfacelInit. This shows that this overhead is consistent and remains unaffected
by the type of replay operations.

Similar to insert replays, overhead from value copies and execution context initialization
accounts for 16%. Again, this overhead is unavoidable because the execution engine needs the
execution context to run the update replay query, and the Recovery Manager needs the values
to create an update physical plan.

We look into the implementation differences between baseline update replay and code gen-
eration replay to comprehend previous results. To perform an update replay in baseline recov-
ery, the Recovery Manager performs the following operations: (1) initialize a new redo record
for update by copying from the original redo record, (2) update the table with the new redo
record, and (3) update indexes. In step (1), baseline recovery only needs to copy the redo record.
While in code generation recovery, it needs to extract and copy values as we explained earlier
for insert replays. Step (2) is equivalent to StorageInterfaceTableUpdate. On the other hand,
code generation recovery still needs to construct/destruct the storage interface object, and this
step takes up 79.25% IR%.

In summary, combined with results from Sections 4.1.1 and 4.1.2, we confirm that execution
preparing/executing queries is the main bottleneck of code generation recovery. During replay
execution, the execution engine is repeatedly creating and removing the storage interface; this
results in reduced recovery throughput. In NoisePage, the execution initialization overhead
comes from creating the storage interface object. To reduce this execution initialization over-
head, however, we need to rewrite the storage layer of NoisePage. Therefore, this is out of scope
for our discussion.

It is not surprising for baseline recovery to be faster than code generation recovery. One of
the benefits of physical logging is that it provides fast recovery compared to logical logging [12].
The DBMS can update the database with simple table functions (index/delete/update). On the
other hand, code generation recovery is similar to logical logging in that it requires the DBMS
to re-execute the query (physical plan) during recovery. This means that unless code genera-
tion recovery has access to certain functions that are more efficient than those implemented
in baseline recovery, it is impossible for code generation recovery throughput to catch up with
baseline recovery throughput. We explore some of those functions in the next sections.

4.2 Index Reconstruction

Most in-memory DBMS do not log indexes to disk [5, 7, 29, 41]. Instead, these DBMSs recon-
struct indexes during log replay. However, this introduces design problems for an execution
engine that interacts with compiled code. The recovery system needs to implement function-
ally redundant code to replay the indexes.

In the baseline recovery architecture, the Recovery Manager implements a custom index
update function that is independent from the query execution engine. This custom index update
function first locates the indexes for a log record’s table. It then loops over the indexes and
performs the following operations for each index: (1) rebuild a projection row for the index, (2)
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Figure 4.1: Recovery with Indexes.

Functionality IR% Normalized IR% Description

Index Update 96.23 96.3% Update indexes affected by the insert replay.
Insert 3.11 3.11% Execute an insert replay.

Other (e.g., tuple map access) 0.57 0.59%

Table 4.10: Callgrind breakdown on Baseline Index Recovery. The associated table has 10
indexes. IR (instructions read) refers to the number of instructions read in total by the selected
function during a certain function execution.

compute offset and copy the each value from the log record’s table into the projected row, and
(3) insert/delete the projected row from the index.

The code generation approach, however, uses the DBMS’s built-in execution engine for in-
dex updates. While both the baseline index update and the execution index update implemen-
tations follow the same logic, the execution version receives additional the benefits exclusive
to code generation. By compiling the index update function, the DBMS reduces function jumps
and branch mispredictions within the index update loop. This improves the efficiency of step
(2) for index update. Therefore, we believe that as the number of indexes increases, the perfor-
mance gap between baseline and the code generation approach will diminish.

For this experiment, we focus on the comparison for index recovery and avoid as much
overhead from other operations as possible. Therefore, we go for a much lighter insert setup.
However, some of the overhead is still unavoidable (e.g., insert value copies, Storage Interface
construction/destruction). We create an empty table with a single column with an INTEGER
data type. We execute 10° transactions to insert random integers into the table. For each data
point, we create an increasing number of indexes for the table.

Results in Figures 4.1a and 4.1b show that as the number of indexes increases, the gap be-
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Operation Code IR% Normalized IR% Description

StoragelnterfacelndexInsertUnique 33.77 37.9% Insert into an index.
StoragelInterfacelnit 32.22 36.2% Initializes a Storage Interface.
StoragelInertfaceGetIndexPR 20.95 23.5% Retrieves an index’s projected row.
StoragelnterfaceTablelnsert 1.46 1.63% Insert a tuple into a table.
StoragelnterfaceTablFree 0.39 0.43% Deallocates a Storage Interface.
StoragelnterfaceGetTablePR 0.25 0.3% Retrieves a table’s projected row.
Other 0.02 0.02%

Table 4.11: Callgrind breakdown on a Query Execution step of Code Generation Index
Recovery. The target table has 10 indexes. The query execution step accounts for 96% IR for
a single replay step. IR (instructions read) refers to the number of instructions read in total by
the selected function during a certain function execution.

tween the baseline and code generation implementation steadily decreases. Note that without
any indexes, the gap between baseline and code generation is around 2 x, which matches the
results from Table 4.1. To verify whether the decreasing gap is due to difference in implementa-
tion, we use Callgrind to breakdown both baseline recovery and code generation recovery. The
Callgrind results show that index updates account for 96.3% of total instructions in the base-
line implementation (Table 4.10). On the other hand, for the code generation approach, index
update accounts for 37.9% + 23.5% = 61.4% of total instructions (Table 4.11). This percentage
difference shows that code generation recovery uses a more efficient index update function.
We also noticed that as the number of indexes increases, the overhead from the StoragelIn-
terfacelnit becomes less significant. In Table 4.11, it accounts for only 36.2 IR%, compared to
the index insert step that takes up 37.9 IR%. This is because this initialization overhead does not
scale with the number of indexes. As a result, it gives code generation recovery an advantage
when the number of indexes is high; it is able to compensate for the execution initialization
overhead by using a more efficient index update function.

In conclusion, our analysis indicates that the code generation requires less overhead to pre-
pare for an insert index operation. Hence, if the recovery execution can maintain a constant
execution initialization overhead, code generation recovery can potentially outperform base-
line recovery when the table has large number of indexes by compensating its initialization
overhead with a more efficient index update implementation. We further verify this in the next
experiment.

4.3 Scaling Number of Columns

Our test results with indexes have shown the potential strengths of code generation recovery.
Besides indexes, we believe code generation recovery will also be more efficient compared to
baseline recovery on a table with a higher number columns. The execution engine has access
to more efficient function implementations compared to the Recovery Manager. If we scale the
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Figure 4.2: Recovery (100% Insert) with Scaling Number of Columns. As the number of
columns increases, the throughput difference between code generation recovery and baseline
recovery increases.

Functionality IR% Normalized IR% Description

Query Execution 47.78 50.13% Executes the update replay query.

Retrieving Record Values 45.84 48.09% Copy values from a redo record into a physical plan.

Execution Context Initialization  1.37 1.44% Initializes an execution context (Figure 3.13) for query execution.
Cache Access 0.31 0.33 % Reading and writing values/queries into hash table caches.
Compile 0.01 0.01 % Compiling the update replay query.

Table 4.12: Callgrind breakdown on an Insert Recovery step with 50 columns. IR (in-
structions read) refers to the number of instructions read in total by the selected function during
a certain function execution.

table with higher number of columns, this can potentially reduce the performance gap between
the two implementations. To verify our assumption, we performed two tests: (1) An insert
recovery test with the same setup as in Section 4.1.1 that scales with the number of columns,
and (2) an index recovery test with the same setup in Section 4.2, but we fix the number of
indexes to be 10 and scale the table by the number of columns.

Results from the insert test (Figure 4.2) show that code generation recovery failed to shorten
the throughput performance gap. Our Callgrind analysis (Table 4.12) shows that as the number
of columns increase, the value copies overhead of an insert replay also increases. At 50 columns,
value copies account for 48.09 IR%, where query execution only accounts for 50.13 IR%. This is
because the value copies overhead scales with the number of columns. For a code generation
insert/update replay, it needs to go over each value in the projected row, cast the value to the
correct type, and copy that value into a new array to insert into a physical plan. Therefore,
if there are more columns, then the value copies step needs to iterate over more values. On
the other hand, baseline recovery does not contain value copies step. It only needs to copy the
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Figure 4.3: Index Reconstruction with Scaling Number of Columns. The associated ta-
ble uses 10 indexes. As the number of columns increases, the throughput gap between code
generation recovery and baseline recovery decreases.

entire redo record to generate a new log record. While the overhead of this copy still scales
with the number of columns, baseline recovery does not need to iterate over every column of
a log record. This difference in implementation leads to a wider gap between baseline recovery
and code generation recovery as the number of columns increases.

The index recovery test showed that for index recovery, a higher number of columns have
a positive effect in decreasing the gap between code generation recovery and baseline recovery
(Figure 4.3). As the number of columns approaches 50, code generation index recovery and
baseline index recovery reaches the same level of performance. As we have shown in Section
4.2, code generation uses a more efficient index update function, as it is a compiled version of the
index update in baseline recovery. Therefore, while both the overhead of both implementations
scales with the number of columns, code generation index update will incur less overhead in the
long run because it is more efficient by reducing branch mispredictions and avoiding function
jumps within loops. Combined with the results from Tables 4.10 and 4.11, we conclude that the
gap shortens because the Recovery Manager has access to a more efficient implementation of
index update.
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Chapter 5

Related Work

In this section, we discuss DBMSs with recovery systems and code generation architectures
that differ from our method assumptions. We then show whether and how our code generation
approach applies to them.

5.1 Recovery

To begin with, our method does not extend to DBMSs that do not have logging architectures.
We cannot apply our log record conversion logic to those systems. For instance, Facebook’s
Scuba [17] proposed a recovery system that uses shared memory to persist data between pro-
cesses. On database shutdown, Scuba copies data directly from memory heap to shared memory.
On restart, Scuba retrieves stored DBMS memory from shared memory. This recovery system
does not depend on log records, so we cannot apply our approach to such systems.

Our code generation approach focuses on DBMSs that use physical logging for recovery.
However, there are DBMSs that use other logging schemes, such as logical logging and phys-
iological logging [19]. For instance, VoltDB [29] uses a variant of logical logging known as
command logging. The DBMS records transactions instead of physical table changes in the log
records. Nevertheless, those log records still correspond to insert, delete, or update operations
on the DBMS table. Therefore, we can still apply our log record conversion process to VoltDB’s
recovery framework. However, since the log records already contain transactions, there is no
need for the recovery system to prepare them for code generation. The DBMS can simply exe-
cute the transactions to proceed with recovery.

Amazon Redshift stores raw SQL statements [20] executed by users in its log records. In
this case, there is also no need for the DBMS to use our code generation recovery approach, be-
cause the DBMS can directly parse and execute stored SQL statements with its execution engine.

MySQL uses physiological logging that stores database page number, operation code (e.g.
insert/delete/update at a offset), and data tuples [8]. These log records contain sufficient infor-

mation to support code generation recovery: the operation code allows the recovery system to
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construct corresponding physical plans, and the data tuples provide values for these physical
plans.

In differential logging [26], the recovery system stores log records that represents the dif-
ference between a before image (a copy of the table record before it is changed by a transaction)
and an after image (a copy of the table record after it is changed by a transaction). The DBMS
uses an XOR function to compute the difference between the before and after images and stores
that difference into a log record. While differential logging is a form of physical logging, we
cannot apply our code generation recovery approach to this logging scheme. Since each log
record only contains differential information, it is impossible for the recovery system to inter-
pret an individual differential log. Therefore, there is no way to convert a differential log into a
physical plan.

Many in-memory DBMSs also implement parallel recovery to reduce recovery time [12].
Hekaton [7] uses a thread per core architecture to handle parallel insertion of the data from
log records. SiloR [41] parallelizes recovery by using an epoch system and value logging that
allows the recovery system to process log records in arbitrary order. During replay, the re-
covery system uses multiple log processors to replay log records from newest to oldest. Our
code generation recovery approach might introduce extra overhead for parallelization This is
because.the recovery system needs to access multiple hash tables (Section 3.4) that are nec-
essary for executing compiled queries. This means that with multiple recovery threads, they
need to read and modify those hash tables concurrently. All of the hash tables use keys based
on database and table ids. Unless the recovery threads manage to operate on separate tables,
the recovery system needs to install extra latches on the hash tables. As as result, this incurs
performance bottlenecks for parallel recovery.

DBMSs use checkpoints for their recovery systems to reduce database recovery time [7, 38,
41]. Since NoisePage does not support checkpoint recovery, we did not mention how we would
incorporate checkpoint for code generation recovery. With checkpoint recovery, the database
restores itself to a previous checkpoint and replays log records afterwards [32]. To incorporate
code generation recovery, a DBMS needs to wait after it loads the checkpoint. The DBMS can
then start converting log records into physical plans for execution as described in our approach.
For in-memory DBMSs, loading checkpoints requires the DBMS to copy large data blocks from
disk into memory. The DBMS then scans the tables to rebuild indexes. In this case, the recovery
system still needs to use/implement an index update function. While code generation recovery
cannot reduce data copy overhead, it allows the DBMS to use the built-in index update in the
execution engine for this index reconstruction step.

5.2 Code Generation

NoisePage code generation uses an embedded compiler (LLVM) running in the same process [31].
However, there are systems that depend on external compilers for code generation (e.g., Ama-
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zon Redshift, HIQUE, LegoBase). In those systems, the DBMS emits source code to an external
compiler that generates machine code [23, 25]. Our code generation recovery approach is ag-
nostic to the compilation layer of the DBMS. It only requires changes to physical plans and ex-
ecution functions. HIQUE converts physical plans into query- and hardware-specific C source
code and compiles with gcc compiler into a shared library file [25]. The query executor then
dynamically loads the shared library file to evaluate the query. To implement code generation
recovery for HIQUE, we convert log records into HIQUE’s physical plans. Since the shared li-
brary file is linked with the DBMS, we can modify functions within HIQUE’s execution engine
to complete the implementation for code generation recovery.

Amazon Redshift [20] rewrites the query plan to generate compiled C++ code on the leader
node of a database cluster. The leader node then sends the compiled binaries and query param-
eters to compute nodes. The compute nodes execute the binary with the parameters and send
results back to the leader node for final aggregations. This means that the leader node will be
responsible for updating the final physical contents of the database. To use code generation
recovery, we first provide the leader node with our converted replay physical plan. We provide
additional information (e.g., tuple slot) as parameters. The leader then performs the execution
as usual to finish log replay.

In our implementation, we also showed that because NoisePage converts physical plans into
operator pipelines, we need to modify its operator pipelines to ensure correctness. NoisePage
implements operator pipelines to delay tuple materialization and allow a data tuple to stay in
the CPU registers as long as possible [33]. However, our code generation recovery approach
does not depend on the concept of operator pipelines that is specific to NoisePage. We must
modify the operator pipelines in NoisePage because they are interpretations of physical plans.
We now describe how we can apply code generation to DBMSs that transforms physical plans
into other representations [10, 15, 20, 23, 25, 34]. Hekaton [15] uses an imperative syntax tree
to generate C code. It then compiles the C code with Visual C/C++ compiler and linker to gen-
erate a DLL file. An OS loader then links the DLL file at runtime. The imperative syntax tree
is generated from a mixed abstract tree (MAT) that is able to represent query plans [15]. The
functionality of MATs is close to that of the physical plan nodes in NoisePage. Therefore, to
apply our code generation recovery, the DBMS can start by converting log records into MATs.
Because the imperative syntax tree is an interpretation of the MATSs, we also need to modify the
conversion process from MAT to impertaive syntax trees. Finally, we modify execution func-
tions inside the DBMS’s execution engine to pass in additional information (e.g. tuple slots)
during execution.

SingleStore [10] converts physical plans into MemSQL Plan Language (MPL) that is de-
signed specifically for SingleStore. The DBMS compiles MPL into machine code with LLVM.
Since the DBMS generates MPL from physical plans, we need to modify the conversion process
from physical plans to MPL. Another approach is to convert log records direclty into MPL. This
is because MPL relational operations (e.g. index seek, scalar operations) and is sufficient for
representing a log record. The DBMS then only needs to change its execution engine to sup-
port code generation recovery.
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Oracle Timesten [34] does not transform its physical plans into other representations, but
passes them directly to its code generator for compilation. The only changes we need to make
then is to convert the log records into physical plans and modify the DBMS’s execution engine.
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Chapter 6

Conclusion and Future Work

We presented a code generation recovery approach for in-memory DBMSs. Our method inte-
grates the code generation execution engine with the recovery system by converting log records
into physical plans and compiling them into native code. We provided an overview of the log-
ging and query compilation architecture of NoisePage. We then showed how we implemented
our approach within NoisePage. Finally, we evaluated our approach with throughput experi-
ments. The results show that while code generation recovery has worse recovery throughput
compared to NoisePage’s baseline recovery, it offers less engineering overhead and is more
efficient in processing index updates.

We confirmed that the execution initialization for compiled queries is the main bottleneck
for code generation recovery in NoisePage. A possible solution to this is to cache reusable ob-
jects that are repeatedly initialized during query execution. We will explore on more solutions
to this problem and continue to improve our code generation recovery based on our current im-
plementation in NoisePage. We also believe it will be valuable to evaluate our code generation
recovery against a recovery system that implements a logical logging scheme (e.g., VoltDB).
We explained in the Related Works section that it is excessive for DBMSs that use logical log-
ging to adopt code generation recovery. On the other hand, physical logging allows for faster
recovery compared to logical logging, but it incurs extra engineering effort for query compila-
tion DBMSs. Code generation recovery serves as a middle-ground between logical and physical
logging: it removes the extra engineering effort for physical logging, but also slows down the
recovery process. Hence, a comparison between logical logging recovery and code generation
recovery will provide us with important insights on how to further improve code generation
recovery.
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