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Abstract

Given the ever-growing prevalence of online social services, leveraging massive datasets
has become an increasingly important challenge for businesses and end-users alike. Online
services capture a wealth of information about user behavior and platform interactions,
such as who-follows-whom relationships in social networks and who-rates-what-and-when
relationships in e-commerce networks. Since many of these services rely on data-driven
algorithms to recommend content to their users, authenticity of user behavior is paramount
to success. But given anonymity on the internet, how do we know which users and actions
are real or not? This thesis focuses on this problem and introduces new techniques to
effectively and efficiently discern anomalous and fraudulent behavior in online social graphs.
Specifically, we work on three thrusts: plain graphs, dynamic graphs and rich graphs.

Firstly, we focus on plain graphs, in which only static connectivity information is known.
We detail several proposed algorithms spanning the topics of spectral fraud detection in a
single graph, blame attribution between graph snapshots, and structurally diverse graph
summarization. Our FBox algorithm in [SBGF14] identifies link fraudsters in social networks
with over 93% precision and identifies hundreds of thousands of fake accounts, many of
which were yet unsuspended.

Next, we broaden our scope to dynamic graphs, in which we leverage connectivity
information over a span of time. Many online interactions are timestamped, and thus
time and interarrival time between user actions are powerful features which can be used
to discern abnormal behavior. We describe multiple relevant works which describe how
to identify and summarize anomalous temporal graph structures, model interarrival time
patterns in user queries to find anomalous search behavior, and identify “group” anomalies
comprising of users acting in lockstep. Our FLOCK approach in [Sha17] is the first to tackle
the viewbot problem on livestreaming platforms, and finds astroturfed broadcasts and views
with over 90% precision and near-perfect recall.

Lastly, we expand our reach to rich graphs, in which connectivity information is supple-
mented by other attributes, such as time, rating, number of messages sent, etc. Rich graphs
are common in practice, as online services routinely track many aspects of user behavior to
gain multifaceted insights. Multimodal views of data are useful in identifying various types
of anomalies in different subspaces. To this end, we propose works which focus on ranking
anomalies in edge-attributed graphs, and characterizing multimodality of online link fraud.
Our EpGECENTRIC approach in [SBHT 16] uncovers rating patterns in e-commerce datasets
and pinpoints fake reviewers with 87% precision at Flipkart.

The techniques described in this thesis span various disciplines including data mining,
machine learning, network and social sciences and information theory and are practically
applicable to a number of real-world fraud and general anomaly detection scenarios. They are
carefully designed to attain high precision and recall in practice and scale to massive datasets,
including social networks, telecommunication networks, e-commerce and collaboration
networks with up to millions of nodes and billions of edges.
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Chapter 1

Introduction

1.1 Thesis Overview and Contributions

Mining large datasets has become an especially notable focal point in computer science research
in recent years due to the ever-increasing scale and complexity of online systems — an estimated
2.5 exabytes of new data is generated every day' from commercial transactions, social networks,
system log data, electronic sensors and more. This heavily motivates the development of effec-
tive and scalable approaches for extracting patterns from large data sources. In reality, many
data sources can be construed as graphs, which represent interactions between entities such as
humans or computers. Graphs enable modelling of complex phenomena including interactions
between users (who-follows-whom on Twitter), product impressions (who-rates-what on Ama-
zon) and email traffic flow (who-emails-whom in a corporate network). While graph analysis
can give us insights on common interaction patterns such as how users follow each other on a
social network, or how they rate and review products on an e-commerce network, it can also
be a powerful tool for identifying uncommon anomalous behavior including fake or fraudulent
nodes and links used to artificially boost popularity, sockpuppets aiming to spread rumors and
misinformation, and other types of disingenuous cyberattackers. These attackers typically hide
behind the guise of anonymity in order to skew public perception of entities for monetary or
political benefit. Discerning them in a time-effective manner and successfully preventing and
mitigating their actions is therefore an important task. However, there are many associated
challenges with this task which involve usefully leveraging the right kinds of information: How
can we identify anomalous behavior when only structural graph connectivity is known? How
can we additionally leverage temporal information for the same? Furthermore, how can we
also integrate more complex and multifaceted features to enable a holistic approach to anomaly
detection in graphs? This thesis tackles such problems. Our main thesis statement is as follows:

"ttps://www-01.ibm.com/software/data/bigdata/what-is-big-data.html


https://www-01.ibm.com/software/data/bigdata/what-is-big-data.html

Modeling complex facets of social graph interactions such as interconnectivity, temporality
and contextual information can enhance our ability to discern malicious and otherwise
abnormal behavior online.

In this thesis, we develop new means for anomaly detection in graphs in three major thrusts:
mining plain graphs, dynamic graphs and rich graphs. Each of these tasks involves leveraging
different facets of information which reflect various components of user behavior, such as who
they choose to connect with on a social network, how often they make connections and take
actions, and which (if any) contextually abnormal features they exhibit.

1.1.1 Plain Graphs

In some cases, practitioners and data scientists are equipped with only a plain graph, which
describes structural connectivity information between objects in a static snapshot, and must
use this limited amount of information to find anomalous behavior. This task is common in
industrial datasets made available to academics (in which rich features and personally identifiable
information are often stripped for privacy or security reasons), as well as in certain types of
graphs which inherently represent simple phenomena or are the result of limited observational
power. Moreover, plain graph analysis provides the first stepping stone for more sophisticated
analysis on more complex graphs. In this thesis, we detail a number of approaches which can
intelligently utilize this sparse information to identify both abnormal individual and group
connectivity patterns.

Link fraud, in which botnet operators create and use hordes of sockpuppet accounts to inflate
customer popularity (Twitter follows, Facebook page-likes, etc.) is one of the most damaging
types of online fraud, due to its ability to skew public perception and hinder recommendation
algorithms. Traditional approaches to link fraud detection aim to find large synchronized
groups of malicious behavior through matrix factorization algorithms, like Singular Value
Decomposition, applied to the social graph. In Chapter 3, we theoretically and empirically
demonstrate the limits of such algorithms in detecting stealthy attacks that manifest below the
factorization rank (see Figure 1.1a). We further propose the FBox algorithm which finds many
previously uncaught link fraudsters on Twitter. Figures 1.1b and 1.1c give a visual depiction of
FBoX’s reconstruction error plot and one example fraudulent account that was found by our
approach.

Often times, abnormal and suspicious behavior is difficult to detect within a single graph
snapshot. In such cases, a commonly encountered problem is identifying the individual culprits
responsible for drastic change between two snapshots: for example, failure points given two
snapshots of a computer network, or users with abnormal e-mail activity given two snapshots of
an e-mail network. In Chapter 4, we introduce DELTACON-ATTR, a fast and effective approach for
attributing blame to nodes and edges. DELTACON-ATTR measures a node’s culpability according
to the change in influence with respect to neighboring nodes and thus identifies culprits that
match with human intuition.

Complementing the previous chapters which focus on individual anomalies, Chapter 5 shifts fo-
cus to identifying interesting group-wise structures in a plain graph by means of summarization.
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Figure 1.1: FBox catches stealthy link fraudsters. (a) shows the minimum scale of “dense-
subgraph” fraud attacks that traditional methods like SVD can catch based on model rank —
undetectable attack sizes are shaded in red. Notice that even at a considerable factorization
rank k£ = 25, SVD still misses a 960 x 960 attack. (b) shows how FBox separates stealthy link
fraudsters (circled red) from honest users using reconstruction error. (c) shows spammy Tweets
from one such previously uncaught fraudster who had been operating for years, unbeknownst

to Twitter.

Our proposed CONDENSE approach harnesses the power of traditional graph clustering and de-
composition approaches paired with an information theoretic paradigm, and efficiently produces
concise, compressed summaries of large graphs using structures interesting to practitioners
(such as cliques, stars, bipartite cores) which often represent unusual node interactions.

Contributions

* Detecting Stealthy Link-fraud Attacks: In Chapter 3, we characterize the limits of tra-
ditional fraud detection approaches and propose the complementary rFBox algorithm. Our
algorithm attains 93% precision on Twitter users and finds tens of thousands of previously
undetected suspicious accounts.

* Cross-Graph Blame Attribution: In Chapter 4, we introduce DELTACON-ATTR for
pinpointing nodes and edges most responsible for change between graph snapshots. Our
blame attribution approach obeys intuitive principles which competitors violate and
demonstrates practical effectiveness on real e-mail network data.

* Improved Summarization for Large Graphs: In Chapter 5, we propose the CONDENSE
framework for summarizing static graphs, which creates approximate, concise and non-
redundant descriptions of large graphs. CoNDENSE produces only 10% as many structures
as competitors with a 30-50% lower compression rate.

Impact
+ FBox (Chapter 3) was featured in keynotes at WWW 2014, SIAM CSE 2015, ICML 2016,

and HotSoS 2016.



* FBox (Chapter 3) was included in the Multimedia Databases and Data Mining (15-826)
course at Carnegie Mellon University and at a KDD 2015 tutorial on Graph-Based User
Behavior Modeling.

1.1.2 Dynamic Graphs

In domains in which graph objects represent users, such as in e-commerce and social networks,
interactions are often represented as a dynamic graph which changes over time. This stems from
the reality that humans themselves behave differently over time. For example, a who-rates-what
e-commerce graph typically grows over time, as users purchase and rate more products. Similarly,
a social network also changes over time as users follow and unfollow each other depending on
changing interests. Temporal information provides a powerful signal for discerning between
authentic and inauthentic user behavior (for example, a user who rates products consistently 5
seconds apart is likely not behaving normally, and is likely scripted). Our work provides insights
into modeling and incorporating dynamism in graphs to identify abnormal behavior.

In Chapter 6, we study a similar graph summarization problem as in Chapter 5, but in a dynamic
context. Understanding and decomposing the general behavioral makeup of dynamic graphs
is central to both graph understanding and more complex tasks such as individual link predic-
tion and group behavior forecasting. We propose TIMECRUNCH, an information theoretically
grounded approach to concisely summarize large dynamic graphs using a lexicon of common,
interesting temporal structures like bursty cliques, constant stars, etc. TIMECRUNCH is able to
extract coherent temporal structures which match human intuition across a variety of real
datasets and can also be used for graph compression. Figure 1.2 shows several such examples
across a variety of real datasets.

Given that temporal recurrence patterns are themselves complex and poorly understood, we
narrow our focus in the next two chapters to primarily leveraging temporal behavior with
limited focus on connectivity.

Search queries are one of the most common online actions taken by users everyday. The
conventional assumption for queries is that they are submitted independently and thus follow a
constant rate as in a Poisson process. In Chapter 7, we argue that this assumption is false, and
show that users’ query interarrival times are in fact bimodal, corresponding to in-session and
take-off behaviors reflecting whether the user is in the midst of a search session, or just starting
one. We propose the Camel-Log distribution to model bimodal user interarrival times and show
that it achieves better model fit than competitors. Furthermore, we propose Meta-Click to jointly
model Camel-Log parameters and demonstrate how it can be used to detect anomalous querying
behavior and search bots.

Lastly, we shift our focus to link fraud in the livestreaming domain. Livestreaming platforms
provide channels for streamers to freely broadcast their content to viewers across the world, in-
centivizing popularity and high viewership. Unfortunately, this incentive drives the viewbotting
business, in which bot providers give streamers access to tools to generate fake views to their
own channels. In Chapter 8, we provide the first characterization of the viewbotting problem in
livestreaming, and propose the multi-level FLOCK algorithm for identifying fake views. FLOCK
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Figure 1.2: TIMECRUNCH finds coherent, interpretable temporal structures. We show
the reordered subgraph adjacency matrices, over the timesteps of interest, each outlined in gray;
edges are plotted in alternating red and blue, for discernibility.

builds a behavioral model of temporal viewership metrics across many past broadcasts, and
accurately identifies viewbotted broadcasts and constituent fake views by penalizing deviance

from model fit.

Contributions

* Interpretable Dynamic Graph Summarization: In Chapter 6, we tackle the graph

summarization problem in dynamic graphs. Our proposed TIMECRUNCH approach is the
first capable of extracting general temporal graph patterns, and demonstrates successful
pattern extraction and graph compression on several real datasets.

Modeling Interarrival Times in Web Searches: In Chapter 7, we propose a new user-
level model for interarrival times, and a group-level anomaly detection model to find users
with irregular behavior. Our M3A approach better models 78% of AOL search users over
the next best competitor and detects abnormally active search bots.

Catching Fake Views in Livestreaming Platforms: In Chapter 8, we introduce FLOCK,
the first approach for combating fake views on livestreaming platforms. FLOCK achieves
98% precision in detecting viewbotted broadcasts and over 90% precision and 95% recall in
detecting fake views in synthetic attacks.

Impact

+ TiMECRUNCH (Chapter 6) was used for pattern discovery in gene-gene interaction networks
in order to model tumor progression [WPK*17].
* TiMECRUNCH (Chapter 6) was included in the Mining Large-Scale Graph Data (EECS 598)

course at the University of Michigan and the Topics in Data Mining (CS69000-DM1) course
at Purdue University. Furthermore, TIMECRUNCH was featured in the 2016 Carnegie
Mellon University CyLab Partners Conference, the 2017 Army Research Lab Network
Science bootcamp and an SDM 2017 tutorial on Summarizing Large-Scale Graph Data:
Algorithms, Applications and Open Challenges.



* The recording of our TIMECRUNCH (Chapter 6) KDD 2015 presentation has been viewed
over 100 times on YouTube.

* M3A (Chapter 7) is used in production at Google to identify search spammers and abnormal
search behaviors.

* FLOCK (Chapter 8) is used in production at Twitch.tv to combat view astroturfing.

1.1.3 Rich Graphs

Most online services track very rich information about their users to improve user experience
and the quality of user recommendations for products and other users. For example, e-commerce
networks often maintain detailed information about the types of products their users like,
transaction cost, time spent viewing product pages, and product ratings and review text. Similarly,
social networks have information on how often users view each others pages, exchange messages,
endorse each others’ profile statuses and so on. In the presence of rich graphs which capture
several types of details about interactions, we tackle the commensurate challenges of integrating
a multitude of signals to inform our detection algorithms as well as identifying different types
of anomalies.

Conventional unsupervised graph-based anomaly detection approaches have often focused on
identifying densely connected subgraphs, or individuals with abnormal connectivity behavior
given a plain graph. However, leveraging rich information for unsupervised anomaly detection
is still an open problem. In Chapter 9, we devise an information theoretically motivated metric
for ranking the abnormality of nodes based on their adjacent edge-attributes. Our metric offers
intuitive scores, in terms of bits required to explain a node’s behavior in terms of edge-attributes
such as ratings, timestamps, etc. We demonstrate strong performance in detecting fraudulent
raters on e-commerce platforms.

When some domain knowledge is available, fraud detection methods often focus on a single
fraudulent pattern to catch — some approaches look for users forming cliques, others for users
forming bipartite cores, and still others focus on users with a specific abnormality in attribute
values. In Chapter 10, we use honeypots to empirically study fraudster connectivity and attribute
behavior in the rich Twitter ecosystem, and characterize the habits of several different types of link
fraud regimes. We further propose novel discriminative features based on first-order follower
attributes for detecting malicious accounts and show near-ideal classification performance on
our ground-truth dataset. Figure 1.3 shows differences across network structure and attribute
behavior of genuine and (two discovered modes of) fraudulent users.

Contributions
* Ranking Anomalies in Edge-Attributed Graphs: In Chapter 9, we devise a general
abnormality ranking function for nodes in graphs which leverages categorical and numer-
ical edge attributes. Our EDGECENTRIC ranking algorithm is scalable and attains over 90%
precision in detecting fraud over top-ranked users on Flipkart ratings data.
* Characterizing the Multimodality of Link Fraud: In Chapter 10, we identify and char-
acterize the multiple major regimes of link fraud on Twitter using honeypots, and devise



Gen. users Pre. fraud Fre. fraud

; **%x Premium P1
A . 2.5} . “Smart”
A b o e®¢ Freemium (

o > L, . .
a “°Tle®e Genuine Freemium
5 S
+ 15}
C
i Gonui
(a) Visualization | (b) Visualization (c) Visualization o M P2 enuing
& os (“Naive”)
- =l
400 0.0F
00 -0.5 L L L 1 L L
1.0 15 2.0 2.5 3.0 3.5 4.0

Follower Entropy

(d) Diverse attribute behavior

ol ) i
ooooo 0 800 1000 1200 0 100 300 400 500 600

(e) Adjacency (f) Adjacency (g) Adjacency

Figure 1.3: The many faces of fraud: We discover multiple link fraud behaviors, dubbed
freemium (Fre) and premium (Pre), which have different local network and attribute features
compared to genuine users. Nodes are colored by modularity class, and sized proportional to
in-degree in (a)-(c). The associated, reordered adjacency matrices are shown in (e)-(g) — the
vertical line in each spyplot indicates the the central node. Notice the block community structure
in genuine followers compared to the star structure for premium and near-clique structure
for freemium followers. (d) shows differences in attribute entropy over the various behaviors,
showing how fraud patterns skew these distributions away from genuine ones.

discriminative entropy-based features which attain near-ideal classification performance
in discerning genuine from fraudulent users.

Impact
* EpGeCENTRIC (Chapter 9) is used in production at Flipkart to identify ratings fraud.
* EpGgeCeNTRIC (Chapter 9) and our work on link fraud multimodality (Chapter 10) were
both presented at the 2017 Army Research Lab Network Science panel.

1.2 Thesis Organization
We now describe the organization for the rest of the document. Chapter 2 provides basic
background information for commonly used ideas and techniques in this thesis, which may
be helpful for the uninformed or forgetful reader. The next 3 parts (I, II and III) correspond to
works in the plain, dynamic and rich graph themes respectively. Each chapter begins with a
short summary of the motivation and direction of the contained content.

Part I contains works for identifying suspicious link behavior (Chapter 3), cross-graph blame
attribution (Chapter 4), and reducing large graphs to small supergraphs (Chapter 5).
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Part II encompasses works focusing on interpretable dynamic graph summarization (Chapter
6), modeling interarrival times in web searches (Chapter 7), and astroturfing in livestreaming
platforms (Chapter 8).

Part I1I is composed of two works which tackle ranking anomalies in edge-attributed graphs
(Chapter 9) and characterizing multifacetedness of link fraud behaviors (Chapter 10).

Finally, Part IV concludes (Chapter 11) and discusses avenues for future work (Chapter 12).



Chapter 2

Background

Below, we provide brief refreshers/precursors for some key concepts discussed in this thesis.
Further necessary details for understanding these concepts contextually will be presented as
needed throughout the document.

2.1 Graphs

Graphs are the core data structure used to describe social interactions in this dissertation. They
are also called networks — we use these terms interchangeably. Graphs are commonly used
to model connectivity between entities, and typically consist of nodes (also known as vertices)
connected to each other with edges. Nodes represent entities, like humans and computers. Edges
represent actions taken between nodes — for example, edges on the Twitter social network
between users indicate that one user follows another. Graphs are typically denoted G, with
the set of nodes V and edges £. Below, we discuss several relevant definitions that are used
often.

Bipartite Graph: The number of parts of a graph refers to the number of independent sets into
which the nodes can be split. That is, every edge in the graph must touch different parts, and no
edges exist between nodes in the same part. A bipartite graph is thus a graph in which there are
two such parts V; and Vs. Formally, £ C {(u,v)|u € Vi,v € V»}. Some examples of real-world
bipartite graphs include the user-likes-page graph on Facebook, and the user-watches-video graph
on Youtube.

Undirected Graph: In many cases, edges merely represent a mutually established relationship
between two nodes. In such cases, we say that a graph is undirected, by which we mean that the
edges lack directionality. Formally, £ C {(u,v)|u € V,v € V}, and (u,v) € € < (v,u) € £.
Common examples of real-world undirected graphs include mutual friendship networks such
as Facebook, and bipartite (and more generally k-partite) networks in which directionality is
unimportant.

Directed Graph: In some cases, edges represent a directed relationship between two nodes,
in which the existence of an edge (u, v) does not necessitate the existence of (v, u). Formally,



(u,v) € &€ % (v,u) € €. Some well-known examples of these graphs are friendship networks
which do not mandate friend “approval,” such as Instagram and Twitter’s who-follows-whom
graph, or a mobile provider’s who-calls-whom graph.

Multigraph: Above, we have limited our discussions to simple graphs, in which an edge between
two nodes either exists, or does not. In some cases, it is appropriate to define a multigraph
in which edge multiplicity is not boolean, but rather some value in NY. Formally, we denote
a multigraph with G(V, £, m) where m : £ — {(u,v)|u € V,v € V} (m maps each edge to
the pair of nodes it connects). Multigraphs are commonly useful for representing counts of
interactions, such as the user-messages-user graph on Facebook, where each edge between two
users represents a different message.

Hypergraph: When dealing with rich, multimodal data, we are often concerned with complex
interactions that are not restricted to two nodes. A hypergraph generalizes the concept of a graph
to allow for edges between more than two nodes. Formally, we can denote a hypergraph in the
same fashion as a graph, but with the edge set £ containing arbitrarily-sized subsets reflecting
many-node interactions. In this work, we are primarily interested in “limited” hypergraphs
with only k-node edges that reflect connectivity between £ parts, or independent sets of nodes
Vi...Vy. Formally, & C {(uy...ux)|us € Vi...u, € Vi}. This structure is useful when
representing multi-aspect (especially temporal) data such as user-watches-video-at-time, or
user-messages-user-at-time.

Subgraph: Sometimes, we are interested in the edges between a particular subset of nodes
V; C V rather than those of the whole graph. We denote the induced subgraph as G1(V1, &1)
where & is the set of relevant edges {(u,v) € E|u € Vy,v € V. }. Subgraph analysis is used
when studying small portions of a network — one of the most famous types of subgraphs is
called the egonet, which is defined on the nodes adjacent to a central node, or ego.

Matrix Representation: For mathematical convenience, graphs are commonly described using
their adjacency matrices. Formally, a simple graph GG can be described using a |V| x |V| adjacency
matrix A, where (u,v) € £ <+ A, , = land (u,v) ¢ £ <+ A, , = 0. That is, the corresponding
matrix entry is only nonzero if v and v are incident. If G is a multigraph, the value of A, ,
instead reflects the count of edges between u and v. If GG is a k-partite hypergraph, as described
above, A reflects a k-dimensional tensor (multi-dimensional matrix), and A can be subscripted
with k indices to reflect k-node interactions. For example, the value A, ,, ., in a user-watches-
video-at-time hypergraph might reflect the number of times user u watched video v at time
w.

2.2 Clustering

Clustering is a common data mining task with rich prior literature — [AR13] provides an excellent
and thorough overview. The high-level goal of clustering algorithms is to group or partition a
set of n items {i; .. .14, } into some number of k clusters. In some scenarios, each item is meant
to be associated only to a single cluster — this is known as hard clustering. For example, in
unsupervised anomaly detection, we might be interested in classifying a sample as either part
of a “good” cluster or a “bad” cluster, without the possibility for a sample to be mostly good
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but somewhat bad. Alternatively, sometimes soft clustering (also known as fuzzy clustering) is
more appropriate, in which each item can be associated with one or more clusters. For example,
if we tried to cluster individuals based on their left-leaning and right-leaning political beliefs,
we may find it more appropriate to allow each individual to partially belong to the left-leaning
cluster and partially to the right-leaning cluster, due to differences in political alignment (though
some individuals may still fully belong to the left-leaning and right-leaning clusters with no
involvement in the other). Below, we briefly discuss some preliminaries regarding graph and
feature clustering approaches which are discussed in this thesis.

Graph Clustering: In some applications, we are interested in clustering nodes in a graph. For
example, if we know that a social graph is composed of 2 underlying communities or friend
groups, graph clustering can reveal the approximate group memberships by grouping nodes
according to an appropriate criterion. In fact, many algorithms exist for exactly this goal of
community detection [MV13], and use a variety of similarity metrics as criteria for grouping.
Some examples of commonly used criteria for grouping nodes include modularity [PSS*10],
graph cut [KK00], compression cost [CPMF04], and random walk-based similarity [PARS14].
METIS [KKO00], Girvan-Newman [NG04], Louvain [BGLL08] and spectral clustering [AKY99]
are some of the most commonly used algorithms in this space. It is useful to mention that
some of these are hard clustering approaches which involve unique assignment of each node
to a single partition, whereas others are soft clustering approaches which allow a node to be
involved in numerous clusters. We give further background on these as necessary throughout
the thesis.

Feature Clustering: Many times, we are interested in grouping items with arbitrary features,
or attributes without any graph-based context. These problems are often motivated by the
need to find similar items to a given item, or to infer underlying structure of item types. For
example, if we were interested in recommending similar Twitter users to each other, we might
describe each user u with a d-dimensional vector which serves as a compressed representation
of his/her interests, and cluster users together who have a high similarity (or equivalently low
distance) to one another. The most widely used algorithms for general feature clustering are
the traditional k-means algorithm [Ll082], and it’s adaptations including minibatch k-means
[Scu10] and k-means++ [AV07]. These algorithms are simple and interpretable, well-studied and
reasonably scalable in practice. They traditionally aim to minimize the squared-error loss

k
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where C; denotes the set of points in the i'" of k clusters, and w; denotes the centroid of the 7"
cluster. Typically, the objective is minimized using an alternating optimization approach which
involves fixing centroids and updating cluster assignments, and vice versa (note that this is a hard
clustering). It can be shown this procedure converges to a local minimum. One of the biggest
challenges in the use of k-means type approaches is their requirement of the user-specified
parameter k. Often, practitioners are not aware what the “right” value of k£ should be, and
resort to heuristics such as the rule-of-thumb, the elbow method, Silhouette coefficient and more
[KM13]. Unfortunately, these methods typically require manual inspection and testing over
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many k-means executions with varying k, which is often not viable in practice on large datasets.
Alternative approaches such as X -means [PMOO00] and G-means [HEOO03] use more principled
heuristics (information theoretic and statistical test-based, respectively) and iterative splitting
procedures to learn the value of k£ automatically. It has been shown that such approaches tend
to arrive at qualitatively good clusterings and well-approximate the “right” number of clusters
in appropriate scenarios. A similar analogue exists in the soft clustering space, one of the most
popular approaches involves modeling data as the mixture of k£ Gaussian distributions (known
as Gaussian Mixture Modeling [XZC01]) and learning parameters for the Gaussian means and
covariances using expectation-maximization [CG10] - in such cases, [Ras00, BJ*06] provide
non-parametric alternatives for also learning k.

2.3 Singular Value Decomposition
Occasionally, it is of interest to represent a high-dimensional matrix with an “approximate” lower
dimensional one. This is a common task in feature extraction [PWWB09] and high-dimensional
clustering [SFS*04], and as we shall see later in the thesis, for anomaly detection. One of the
most common approaches for this task is known as the singular value decomposition (SVD),
which in its fullest form factorizes a general m x n matrix A into three matrices U, 3 and V
such that
A=UxV"

The full-rank decomposition implies that that U is of size m x k, 32 of size £ X k, and V of
size n X k, where k is equal to the rank of A. U and V are unitary matrices, and known as the
left and right singular vectors of A, respectively. ¥ is a diagonal matrix which contains the

non-negative real singular values of A, which are also the square-roots of the eigenvalues of
AA" and ATA.

When k < rank(A), we have a truncated SVD, where
A, =UxVT

and Ay is a k-rank approximation (generally known as a low-rank approximation) of A. The
SVD has many useful theoretical properties, but the most famous one is a consequence of the
Eckart-Young-Mirsky theorem [EY36], which states that || A — Ay ||%<|| A — B ||% for any
k-rank matrix B. This states that the k-rank approximation A obtained via SVD on A is the
best low-rank approximation in terms of difference in Frobenius norm to the original matrix A.
This optimality, combined with efficient methods to compute the SVD, make it a top-contender
for the dimensionality reduction task.

The SVD can also be interpreted as representing the original matrix A as a weighted sum of

rank-1 matrices:
rank(

A)
A= Z O'iuiUZ'T

i=1

where u; is the 7" column of U, v; is the i"* column of V, and o; is the i*" singular value
(“weight”). The resemblance to the original A increases with increasing number of terms (latent
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factors) of the sum, and rank of the intermediate result. The above equality is exact when the
decomposition is full-rank, and approximate when it is truncated.

In practice, these latent factors have shown to be useful in extracting communities, or dense
blocks from the input matrix [PSS™10, JCB™ 14a]. Intuitively, items that project very strongly to
a latent factor are often connected. SVD can help us interpret meaning in large, and complex
matrices. For example, if we consider a matrix of users-purchase-items, we might see that the
first latent factor corresponds to sports enthusiasts who purchase sporting goods, the second
corresponds to gamers who purchase video games and consoles, and so on. In this way, SVD
tries to “explain” as much of the matrix as possible given a budget on matrix rank.

2.4 Minimum Description Length

There are several ways in which one can determine whether one model is a better fit to some
data than another. Model selection principles generally aim to trade-off between the fit and
complexity of the model. Model fit refers to the extent to which the model is able to accurately
describe a certain set of data, whereas model complexity refers to the cost of expressing the model
itself (i.e. in terms of the number of parameters). Various commonly used selection principles
include the Akaike Information Criterion, Bayesian Information Criterion [Kuh04], and the
Minimum Description Length (MDL) principle [Ris78].

In this thesis, we use MDL with some frequency. MDL is driven by the insight is that “any
regularity in a given set of data can be used to compress the data, i.e. to describe it using fewer
symbols than needed to describe the data literally” [Grii05]. In fact, it is a practical version of
Kolmogorov complexity, which refers to the shortest possible description of a string in some
fixed language (and is also unfortunately uncomputable) [Nan10]. MDL provides an information
theoretic perspective on model selection, in which both a model and the model’s description of
some data are seen as a sequence of bits. Informally, the model which gives the shortest possible
description is the best model. Formally, the principle states that given a family of models M
(typically, a parametric family), the best model M € M for data D is given by

argmin L(M) + L(D|M)
MeM
where L(M) refers to the cost in bits of encoding the model (complexity), and L(D|M) is the
cost in bits of encoding the data given the model (fit). Together, the two terms establish a basis
for losslessly reconstructing ) — MDL uses a lossless compression paradigm to enforce fairness
in comparing models.
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Part 1

Mining Plain Graphs
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Based on content published in [SBGF14].

Chapter 3

rBox: Identifying Suspicious Link
Behavior

Exploiting subspace project error to identify
abnormally connected link fraudsters.

How can we discern whether the links or connections of a user in an online social network
are honestly or dishonestly incentivized? Online link fraud hurts the authenticity of social
platforms and paints a deceptive picture about the true popularity of users and products.
Targeting dense subgraphs in the social graph is a common approach to identifying link
fraud, but techniques like spectral decomposition which are commonly employed for this
task are unfortunately biased to detecting only large attacks given the limited expressivity
of low-rank representations. In this chapter, we take an adversarial approach to show the
detection limits of such approaches and propose FBox, a complementary algorithm which
targets a separate class of smaller scale “stealth attacks.” Our method is highly scalable and
shows high efficacy in pinpointing many tens of thousands of suspicious accounts on the
Twitter platform.

3.1 Introduction
In an online network, how can we distinguish honest users from deceptive ones? Since many
online services rely on machine learning algorithms to recommend relevant content to their users,
it is crucial to their performance that user feedback be legitimate and indicative of true interests.
“Fake” links via the use of sockpuppet/bot accounts can enable arbitrary (frequently spammy or
malicious) users and products of varying nature seem credible and popular, thus degrading the
online experience of users. Unsurprisingly, numerous sites such as buy1000followers.co,
boostlikes.com and buyamazonreviews.com exist to provide services such as fake
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Detects stealth attacks Camouflage resistant Offers visualization

SPOKEN b 4 b 4 (4
Spectral subspace plotting X 4 v
CopryCATCH b 4 v X
ObpDBALL X b 4 X
FBox v v 4

Table 3.1: Qualitative comparison between FBox and other link fraud detection methods.

Twitter followers, Facebook page-likes and Amazon product reviews for typically just a few
dollars per one-thousand fake links.

Here we focus exactly on the link-fraud problem. We take an adversarial approach to illustrate
when and how current methods fail to detect fraudsters and design a new complementary
algorithm, FBox, to spot attackers who evade these state-of-the-art techniques. Figure 3.1
showecases several suspicious accounts spotted by FBox— we elaborate on three of them, marked
using the triangle, square and star glyphs. All three are identified as outliers in the FBox Spectral
Reconstruction Map (SRM) shown in Figure 3.1b. The corresponding Twitter profiles are shown
in Figure 3.1c, and further manual inspection shows that all three accounts exhibit suspicious
behavior:

* triangle: it has only 2 tweets but over 1000 followers
* square: it is part of a 50-clique with suspicious names
* star: it posts tweets advertising a link fraud service

Our main contributions are the following:

1. Theoretical analysis: We prove limitations of the detection range of spectral-based
methods.

2. FBox algorithm: We introduce FBox, a scalable method that boxes-in attackers, since it
spots small-scale, stealth attacks which evade spectral methods.

3. Effectiveness on real data: We apply FBox to a real, 41.7 million node, 1.5 billion edge
Twitter who-follows-whom social graph from 2010 and identify many still-active accounts
with suspicious follower/followee links, spammy Tweets and otherwise strange behavior.

Reproducibility: Our codeis availableathttp://www.cs.cmu.edu/~neilshah/code/.
The Twitter dataset is also publicly available as cited in [KLPM10].

3.2 Background and Related Work

We begin by reviewing in detail several of the current state-of-the-art methods in web fraud and
spam detection. Table 3.1 shows a qualitative comparison between various link fraud detection
methods.

18


http://www.cs.cmu.edu/~neilshah/code/

§ T 60924, T T T T T T 300

2415l i - )
4 " 4 250
; Blatant attackers " FI ]

6.18109e-09|
200

! 2.88287e-13

- n

.34457e-171-

6.27108e-221~

. 100
2.924840-261 T 4

+ Stealth atfackers 1.364150-30 {IL

6.36238e-35~

Reconstructed In-degree

6 p L L L L L L L L L
001 -0.005 0 0005y O 0.015 0.02 0.025 64 212 702 2317 7650 25053 83353 275128  9081232.997476+06
In-degree

(a) Spectral subspace plot (b) Proposed ISRM
v 2 1,054 88
sungard54
¥+
sungard53
0 v
sungard52
W+

Lekan Olawole Lowe
Sign up free and Get 400 followers a day

using http://tweeteradder.com

Lekan Olawole Lowe
Get 400 followers a day using
http://www .tweeterfollow.com

(c) Suspicious accounts

*

Figure 3.1: FBox catches stealth attacks which are missed by spectral methods. (a) shows
a spectral subspace plots on the Twitter social graph which identifies blatant attacks (circled
in black) but ignores stealth attackers (circled in red, near the origin). (b) portrays how the
proposed FBox ISRM (In-link Spectral Reconstruction Map) can describe these users by their
reconstruction degree and identifies several with improbably poor reconstruction. (c) shows their
suspicious profiles with matching glyphs (see text for details).

3.2.1 Spectral methods
We classify techniques that analyze the latent factors produced in graph-based eigenanalysis
or matrix/tensor decomposition as spectral methods. These algorithms seek to find patterns in
the graph decompositions to extract coherent groups of users or objects. Prakash et al’s work
on the EigenSpokes pattern [PSS*10] and Jiang et al’s work on spectral subspaces of social
networks [JCB"14b] are two such approaches that we will primarily focus on and which have
been employed on real datasets to detect suspicious link behavior. [YWB11] uses a similar
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analysis of spectral patterns, but focuses on random link attacks (RLAs), which have different
properties than link fraud and therefore produce different patterns.

These works utilize the Singular Value Decomposition (SVD) of the input graph’s adjacency
matrix in order to group similar users and objects based on their projections. Recall that the
SVD of a u X o matrix A is defined as A = UX VT, where U and V are u x u and o X o matrices
respectively containing the left and right singular vectors, and X is a u X o diagonal matrix
containing the singular values of A. Both papers note the presence of unusual patterns (axis-
aligned spokes, tilting rays, pearl-like clusters, etc.) when plotting the singular vectors U; and
Uj for some 7, j < k, where k is the SVD decomposition rank, indicative of suspicious lockstep
behavior between similar users. The authors use these patterns to chip out communities of
similar users from input graphs.

Beyond directly searching for suspicious behavior, spectral methods have been used for a variety
of applications. [MWP™ 14] builds off the above work to use tensor decomposition for network
intrusion detection. [BMFS14] proposes a robust collaborative filtering model that clusters
latent parameters to limit the impact of fraudulent ratings from potential adversaries. [NJW01]
and [HYJT08] propose using eigenvectors of graph decompositions for graph partitioning and
community detection.

Although spectral methods have shown promise in finding large communities and blatantly
suspicious behavior in online networks, they are universally vulnerable given knowledge of the
decomposition rank £ used in a given implementation. All techniques operating on large graphs
use such a parameter in practical implementations given that matrix decompositions are very
computationally expensive [KMPF14]. Previous spectral methods have generally chosen small
values of £ < 100 for purposes of computability. As we will show in Section 3.3, knowledge of
k or the associated singular value threshold (inferrable from sample datasets online) enables an
intelligent adversary to engineer attacks to fall below the detection threshold.

3.2.2 Graph-traversal based methods
A wide variety of algorithms have been proposed to directly traverse the graph to find or stop
suspicious behavior. [SMR08] offers a random walk algorithm for detecting RLAs. [GVK"12]
proposes a PageRank-like approach for penalizing promiscuous users on Twitter, but is unfortu-
nately only shown to be effective in detecting already caught spammers rather than detecting new
ones. [PCWFO07] uses belief propagation to find near-bipartite cores of attackers on eBay.

However, most similar in application is Beutel et al’s CopyCaTcH algorithm to find suspicious
lockstep behavior in Facebook Page Likes [BXG'13]. CopyCATCH is a clustering method that
seeks to find densely connected groups in noisy data through restricted graph traversal, motivated
with the intuition of fraud taking the form of naively created bipartite cores in the input graph.
The algorithm uses local search in the graph to find dense temporally-coherent near-bipartite
cores (TNBCs) given attack size, time window and link density parameters.

Clustering methods like CoryCATCH are able to avoid detection problems caused by camouflage
(connections created by attackers to legitimate pages or people for the purposes of appearing
like honest users) given that they ignore such links if the attacker is party to any TNBC. How-
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ever, identifying the appropriate “minimal attack” parameters is nontrivial. Non-conservative
parameter estimates will result in many uncaught attackers whereas excessively conservative
estimates will result in numerous false positives. From an adversarial point-of-view, we argue
that the cost of incurring false positives and troubling honest users is likely not worth the added
benefit of catching an increased number of attackers after some point. Therefore, an alternative
approach to catch stealth attacks falling below chosen thresholds is necessary.

3.2.3 Feature-based methods

Spam and fraud detection has classically been framed as a feature-based classification problem,
e.g. based on the words in spam email or URLs in tweets. However, [TGSP11] focuses on
malicious Tweets and finds that blacklisting approaches are too slow to stem the spread of
Twitter spam. ODDBALL [AMF10] proposes features based on egonets to find anomalous users
on weighted graphs. [DDS™04] and [LM05] take a game theoretic approach to learning simple
classifiers over generic features to detect spam. While related in the adversarial perspective,
these approaches focus on general feature-based classification as used for spam email, rather
than graph analysis as is needed for link fraud detection.

3.3 An Adversarial Analysis — Our Perspective
In this section, we examine the exploitability of state-of-the-art methods from an adversarial
point-of-view and present lemmas and theorems detailing the limitations of these methods.
Particularly, we demonstrate through theoretical analysis that existing methods are highly
vulnerable to evasion by intelligent attackers. Table 3.2 contains a comprehensive list of symbols
and corresponding definitions used in our paper.

Honest Honest Honest
users users users
Fraudsters Fraudsters Fraudsters|
Honest Customers Honest Customers Honest Customers
objects objects objects
(a) Naive attack (b) Staircase attack (c) Random attack

Figure 3.2: Figures 3.2(a)-(c) show the different types of adversarial attacks we charac-
terize. Note the distinctions between how the fraudulent links would be distributed in the
relevant attack subgraphs.

Given knowledge of the detection threshold used by a certain service, how can an attacker
engineer smart attacks on that service to avoid detection by fraud detection methods?

Formally, we pose the following adversarial problem:
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Symbol Definition

uw and o Number of user and object nodes described by the input graph

U and P Sets of indexed rows and columns corresponding to user and object
nodes in the input graph

A u X o input graph adjacency matrix where A, , = 1 if a link exists
between user node x and object node y

fandc Number of attacker and customer nodes described by the attack graph

5 Number of fraudulent actions each customer node has paid commission
for in the attack graph

FandC Sets of indexed rows and columns corresponding to attacker nodes and
customer nodes in the attack graph

S f x c attack graph adjacency matrix where S, , = 1 if a link exists
between attacker node x and customer node y

k Decomposition rank parameter used by spectral methods

A and o}, | kth largest eigenvalue and singular value of a given matrix (largest
values for k = 1)

m, n and p | Bipartite core size and edge probability parameters used by clustering
methods

Table 3.2: Frequently used symbols and definitions

Problem 3.1: Stealth Attack Engineering

Given an input graph adjacency matrix A, with rows and columns corresponding to users
and objects, engineer a stealth attack which falls just below the minimum sized attack
detectable by spectral methods.

As previously described, most detection methods focus on finding fairly blatant bipartite cores
or cliques in the input graph. Therefore, if an adversary knows the minimum size attack that
detection methods will catch, he can carefully engineer attacks to fall just below that threshold.
For clustering approaches like CoryCATcH, this threshold is clearly set based on input parameters,
and the attacker can simply use fewer accounts than specified to avoid detection. In this setting,
the practitioner will try to set n, m and p as strictly as possible and an adversary will attempt
to add as many edges as possible without creating a detectable temporally coherent bipartite
core.

However, for spectral methods like SPOKEN, the possible attack size for an adversary is unclear.
We argue that from an adversarial perspective, these spectral methods have a detection threshold
based on the input graph’s singular values. For a rank £ SVD used in these methods, this threshold
is governed by the kth largest singular value, 0. In practice, an adversary could estimate oy,
from the results of various experimental attacks conducted at distinct scales, or by conducting
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analysis on publicly available social network data. Once an adversary has such an estimate, we
show that it is easy to conduct attacks on the graph adjacency matrix A that will necessarily lie
below this threshold and avoid detection.

To analyze what type of attacks can evade detection by spectral methods, let us consider that
there are ¢ customers who have each commissioned an attacker with f nodes in his botnet
for s fraudulent actions (page likes, followers, etc.), where s < f. This type of attack can be
considered as an injected submatrix S of size f X ¢, where rows correspond to attacker nodes
(controlled by a single fraudulent operator) in the set of users (F C i/) and the columns represent
customers in the set of objects (C C P). In this formulation, the desired in-degree of all nodes in
Siss.

As described earlier, an attack will only be detected by a spectral algorithm if it appears in the
top k singular values/vectors. Therefore, our goal as an adversary becomes to understand the
spectral properties of our attacks and ensure that they do not project in the rank k£ decomposition.
We can consider the spectral properties of S in isolation from the rest of the graph, as it is well
known that the spectrum of a disconnected graph is the union of the spectra of its connected
components. From this, we deduce that it is sufficient to consider only the representation of
S and ignore the remainder of A when trying to minimize the leading singular value that the
attack contributes to the singular spectrum of A. Therefore, an attack S with leading singular
value o' will go undetected by spectral methods if o' < oy, where oy, is the kth largest singular
value computed for the adjacency matrix A.

Having reduced the problem of adversarial injection to distributing some amount of fraudulent
activity over the f X ¢ matrix S, we next consider several distinct patterns of attack which
characterize types of fraudulent behavior discovered in the analysis of prior work. Specifically,
we explore three fraud distribution techniques: naive, staircase and random graph injections.
Figure 3.2 gives a pictorial representation of each of these types of attacks. We evaluate the
suitability of each attack for an adversary on the basis of the leading singular value that the
pattern generates.

3.3.1 Naive Injection
This is the most notable attack pattern considered in prior work. The naive injection distributes
the sc total fraudulent actions into an s X ¢ submatrix of S. Thus, only s of the f attacker nodes
perform any fraudulent actions, and all fraudulent actions are distributed between these s nodes.
In graph terms, this is equivalent to introducing a s X ¢ complete bipartite core. The leading
singular value characterization of such an attack is as follows:
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Theorem 3.1: Naive Attack Singular Value

The leading singular value of an s X c bipartite core injection is 0y = 4/cs.

Proof. Since S is a full block, where S; ; = 1 foralli < s,j <, SST must be an s x s matrix
where SST;; = cfor all 4,j < s. By the Perron-Frobenius Theorem for non-negative
matrices, the leading eigenvalue of SST ), is bounded by

minz SSTi,j <A< maxz SSTLJ- fori <s

J J

Given that the row sums are equal to cs, \; = cs for SST. Since the singular values of S
are equal to the square roots of the eigenvalues of SST by definition, it follows naturally
that the leading singular value is o1 = /cs for S. [ |

Such an attack corresponds to attackers naively linking the same set of s nodes to each of the
c customers, producing a full block in A. Figure 3.2a shows a visual representation of such an
attack.

3.3.2 Staircase Injection
The staircase injection (discovered in [JCB' 14b]) evenly distributes cs fraudulent actions over
f attacker nodes. However, unlike in the naive method, where each node that performs any
fraudulent actions does so for each of the ¢ customers, the staircase method forces different
subsets of nodes to associate with different subsets of customers. A characterization of the
leading singular value of such an attack is as follows:

24



Theorem 3.2: Staircase Attack Singular Value

The leading singular value of an s, ¢, f staircase injection is o1 = sy/c¢/ f.

Proof. The staircase injection is approximately equivalent (row-sum-wise) to a random
graph-injection of f x ¢ with edge probability p = s/f. The reduction is as follows:
Consider that the in degree of each customer is s by construction of the pattern. Next, note
that by definition of the staircase pattern, the starting row index of a sequence of existing
links (denoted by 1s in cells of the matrix) in a column given the column index ¢; (0-indexed)
is ¢;s mod f. Then, it is apparent that the periodicity of the pattern of starting indices is
t = lem(s, f)/s and the out degree of each fraudster per f x t block can be calculated as
st/ f. Given that t|c, it follows that starting indices are uniformly distributed, ensuring that
the out degree is uniform and equal to (st/f)(c/t) = cs/ f. Note that if f = ¢ (for square
S), the out degree, like the in degree is also equal to s. Also note that the uniformity of in
degrees and out degrees means that each node will have s out of a possible f in-degree
and sc/ f out of a possible ¢ out-degree. Since s/ f = sc¢/(fc), it follows that the staircase
injection can be construed as a random graph injection of f X ¢ with edge probability
p = s/ f. Such a random graph injection has singular value py/fc = s+/c/f (proof given
in Section 3.3.3). |

This distribution results in the S matrix looking like a staircase of links. Figure 3.2b shows a
visual representation of such an attack.

We restrict our analysis here to staircase injections in which all users have equal out degrees o
and equal in degrees 7, though o need not equal 7. When out degrees and in degrees are not equal,
users and objects do not have uniform connectivity properties which complicates calculations.
In particular, we assume that the periodicity of the staircase pattern, given by ¢t = lem(s, f)/s
is such that ¢|c to ensure this criteria. However, for large values of ¢/t, o1 ~ s\/c/_f given
LLN.

3.3.3 Random Graph Injection

The random graph injection bears close resemblance to the near-bipartite core with density p
attack noted in [BXG™13]. The random graph injection distributes ~ sc fraudulent actions over
the f attacker nodes approximately evenly. Figure 3.2c shows a visual representation of such an
attack. This approach assigns each node a fixed probability p = sc/cf = s/ f of performing a
fraudulent operation associated with one of the c customers. Given LLN, the average number of
fraudulent operations per customer will be close to the expected value of s, and as a result the
total number of fraudulent actions will be close to sc. A characterization of the leading singular
value of such an attack is as follows:
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Theorem 3.3

The leading singular value of an s, ¢, f directed random bipartite graph is o1 ~ s\/c/ f.

Proof. Given that probability of an edge between an attacker node and a customer is
p = s/ f, it is apparent that

E(SSTy;) = pPcfori,j < f

since the value of each cell in the f x f matrix SST will be a result of the inner product
of the corresponding row and column vectors of length ¢ with probability p of a nonzero
entry at any ¢ < c. Since each row in SST has f entries,

E() SS™y;) =pcffori < f
J

By the Perron-Frobenius theorem for non-negative matrices, the leading eigenvalue \; of

SST will be bounded by

min » SSTi; < Ay < max »  SSTy;fori < f

J J

Given that the row sums are all approximately equal to p*cf = cs?/f (exactly equal to
cs?/ f if edges in S are perfectly uniformly distributed), the leading eigenvalue is \; ~ cs?/f
for SST. Since the singular values of S are equal to the square roots of the eigenvalues of

SST, it follows naturally that the leading singular value is o, = s1/c/ f for S. |

The random graph injection is similar to the Erdos-Rényi model defined by G(n, p) [ER59],
except we consider a directed graph scenario with cf possible edges. However, as Erdos and
Rényi studied the asymptotic behavior of random graphs, their results are applicable here as
well.

3.3.4 Implications and Empirical Analysis
Thus far, we have discussed three different types of potential attack patterns for a fixed number
of fraudulent actions and theoretically derived expressions concerning the leading singular value
that they contribute to the singular spectrum of A. Two of the attack patterns, the staircase
and random graph injections, produce leading singular values o; of exactly and approximately
5\/c/_f respectively. Conversely, naive injection results in a leading singular value of oy = /cs.
Given these results, it is apparent that naive injection is the least suitable for an adversarial
use, since it will necessarily produce a larger singular value than the other two methods given
that s < f. This result is intuitive: the leading eigenvalue of a matrix is a measure of effective
connectivity, and packing fraudulent actions into a full block matrix results in higher connectivity
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Figure 3.3: Skewed singular value distribution in real networks — spectral (k-rank SVD)
approaches suffer from stealth attacks. (a), (b), (c) and (d) show distributions for corre-
sponding networks which allow stealth attacks capable of significantly impacting local network
structure to go undetected.

than spreading the actions out over a large, sparse matrix. Our results beget two important
conclusions:

1. Fraud detection tools must consider modes of attack other than naive injection — more
intelligent and less detectable means of attack exist and are being used.

2. Given knowledge of the effective singular value threshold o, used by spectral detection
methods, or m, n, p parameter choice for clustering based methods, attackers can easily
engineer attacks of scale up to just below the threshold without consequence.

To demonstrate that this leaves a significant opening for attackers, we analyze the distribution
of singular values for a variety of real world graphs and show just how easy it is to construct
attacks which slip below the radar. In particular, we compute the SVD for six different real world
graphs: Twitter’s who-follows-whom social graph, Amazon’s bipartite graph of user reviews for
products, Netflix’s graph of user reviews for movies, Epinions’s network of who-trusts-whom,
Slashdot’s friends/foe social graph, and Wikipedia’s bipartite graph of votes for administrators.
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’ Graph ‘ Nodes ‘ Edges ‘
Twitter [KLPM10] 41.7 million 1.5 billion

Amazon [ML13] 6m users & 2m products | 29 million
Netflix [Net06] 480k users & 17k videos | 99 million

Epinions [LHK10] 131,828 841,372
Slashdot [LHKIO] 82,144 549,202
Wikipedia [LHK10] 8274 114,040

Table 3.3: Graphs used for empirical analysis

For each graph, we turn it into a binary bipartite graph and compute the SVD for a fixed rank.
The properties of the datasets can be seen in Table 3.3 and the results can be seen in Figure
3.3.

In Figure 3.3a we observe the top k£ = 50 singular values for the Twitter graph. We see that the
largest singular value is over 6000, but as & increases the singular values begin to settle around
1000, with 059 = 960.1. Theorem 3.1 implies that an attacker controlling 960 accounts could
use them to follow 960 other accounts and avoid projecting onto any of the top 50 singular
vectors. Note that Theorem 3.1 also implies that an attacker could add 92 thousand followers to
10 lucky accounts and also go undetected. These are very large numbers of followers that could
significantly shift the perception of popularity or legitimacy of accounts. Common spectral
approaches would fail to detect such attacks.

A similar analysis can be made for the other graphs. Figure 3.3b shows that 059 = 141.6 in the
Amazon review graph. Therefore, attackers could add 140 reviews for 140 products without
projecting onto the top 50 singular vectors. Considering the average product has 12.5 reviews
and a product in the 99*® percentile has 187 reviews, 140 reviews is sufficiently large to sway
perception of a product on Amazon.

As seen in Figure 3.3c, we find that 059 = 309.7 and 0109 = 243.4 for the Netflix ratings graph.
Therefore, attackers could naively add an injection of 240 ratings to 240 videos from 240 accounts
and avoid detection in the top 100 singular vectors.

For the Epinions network, we see in Figure 3.3d that o5y = 31.4. Although this value is much
smaller than that for other graphs, the Epinions network is small and sparse, with the average
user having an in-degree of 6.4. Based on this singular value, an attacker adding 30 edges
(statements of trust or distrust) to 30 users would significantly influence the external view of
those users.

In Slashdot’s friend vs. foe graph, 059 = 23.9, as seen in Figure 3.3d. This means that attackers
could add 23 ratings for 23 users while avoiding spectral detection. Considering that the average
in-degree for accounts in this network is 6.7, adding 23 edges would significantly impact the
perception of a user.

Lastly, we examine the graph of 2794 administrative elections on Wikipedia. As shown in Figure
3.3d, o590 = 17.5. This implies that 17 users could for 17 elections all vote together and avoid
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No Camouflage Camouflage

Blatant Attacks SPOKEN; Spectral subspace plotting;
CopryCATCH CoryCATCH
Stealth Attacks | (proposed) FBox (proposed) FBox

Table 3.4: Types of attacks and suitable detection techniques

detection. In fact, 31% of elections were settled by 17 votes or less. An attacker could also
modify the shape of the attack such that 5 users would each receive 57 votes, enough to win 72%.
Given an attack of this scale, a small group of accounts could cooperate to unfairly rig election
outcomes.

From these examples across a variety of networks, we see that using spectral approaches for
catching fraud leaves a wide opening for attackers to manipulate online graphs.

3.4 Proposed Framework for Fraud Behaviors

As demonstrated in Section 3.3, current detection methods are effective in catching blatant
attacks, but drop in efficacy as the attack size decreases. Though the scale of attacks detected is
defined differently for various datasets given distinct decomposition rank k, such a detectability
cross-over point necessarily exists given the well-defined nature of the singular value produced
by common types of attacks. In this section, we give a broader overview of possible attack
modes and the capabilities of current methods in dealing with them. Table 3.4 illustrates how
current techniques fit into our classification of suitable defenses against four different attack
types and how the proposed FBox algorithm can fill in the remaining holes to provide a more
holistic framework for fraud detection.

The four types of attacks we broach in this work are classified based on two dichotomies — the
scale of attack and the presence of camouflage. The scale of attack concerns whether an attack of
some size defined in terms of the aforementioned s, c and f parameters in the context of a given
dataset (and decomposition rank £ for spectral methods), is detectable or not. The attack could
be staged using any of the fraud distribution patterns discussed in Section 3.3. In the context of
clustering methods, scale is more formally defined by the minimal attack size parameters used.
Camouflage refers to uncommissioned actions conducted by attackers in order to appear more
like honest users in the hopes of avoiding detection. For example, camouflage on Twitter is most
commonly seen as attackers following some honest users for free in addition to paid customers.
Attacks with camouflage are more difficult to detect than those without, given the increased
likelihood of a practitioner to overlook suspicious actions.

3.4.1 Blatant Attack/No Camouflage
Of the four types, blatant attacks without camouflage are the easiest to spot. Blatant attacks
whose singular values are above the threshold o}, and thus appear in the rank-k decomposition
of spectral methods produce spoke-like patterns and can be identified using SPoKEN. It is
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worth noting that SPOKEN is a method to chip out large communities from graphs, and not
necessarily attackers. Verification of the blatant lockstep behavior as fraudulent is required in
this case.

3.4.2 Blatant Attack/Camouflage

Naturally, blatant attacks with camouflage are more difficult to spot than without. Though the
singular values of the attacks are above the threshold o, and the associated singular vectors
appear in the rank-£ decomposition of spectral methods, Jiang et al. showed that rather than
axis-aligned spokes, the spectral subspace plots showed tilting rays. CopyCATcH is also effective
in detecting blatant attacks with camouflage (provided that the parameter choices are sufficiently
large to limit the rate of false positives), given that camouflage is ignored in the case that an
m, n, p near-bipartite core is found for a subset of {/ and P for a fixed snapshot of the input
graph.

3.4.3 Stealth Attack/No Camouflage

As concluded in Section 3.3, current detection schemes are highly vulnerable to stealth attacks
engineered to fall below parameter thresholds of o}, for spectral methods or m, n, p for clustering
methods. To the best of our knowledge, no previous technique has been able to successfully
and effectively identify users involved in these types of attacks. Though stealth attacks may be
individually of lesser consequence to detect than larger cases of fraud, they have the insidious
property of being able to achieve the same number of fraudulent actions in a more controlled and
less detectable manner at the cost of simply creating more fraud-related accounts. In response
to this threat, we propose the FBox algorithm for identifying such attacks in Section 3.5 and
demonstrate its effectiveness in Section 3.6.

3.4.4 Stealth Attack/Camouflage

Given that identifying small scale attacks has thus far been an open problem in the context of
fraud detection, the problem of identifying these with camouflage has also gone unaddressed.
The difficulty in dealing with camouflage is particularly apparent when considering user accounts
with few outgoing or incoming links, as is typically the case with smaller attacks. From the
perspective of a practitioner, it may appear that a truly fraudulent account is mostly honest
but with a few suspicious or uncharacteristic links (insufficient to mark as fraudulent) or
infrequently/unsavvily used due to the small number of total links. We demonstrate in Section 3.6
that FBox is robust to such smart attacks with moderate amounts of camouflage on real social
network data.

3.5 Proposed Algorithm

Thus far, we have seen how existing state-of-the-art techniques have firm effective detection
thresholds and are entirely ineffective in detecting stealth attacks that fall below this threshold.
Given this problem, it is natural to consider the following question — how can we identify
the many numerous small scale attacks that are prone to slipping below the radar of existing
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techniques? In this section, we formalize our problem definition and propose FBox as a suitable
method for addressing this problem.

Algorithm 3.1: rFBox algorithm pseudocode
Input: Input graph adjacency matrix A,
Decomposition rank £,
Threshold 7
.. userCulprits = {}
2 objectCulprits = {}
s outDegrees = rowSum(A)
+ inDegrees = colSum(A)
s (U, X, V] = svd(A, k)
« for each row ¢ in UX do
»  recOutDegs = [[(UX);]|3
s end for
o for each row j in VX do
o recInDegs = [|(VX);]|3
i end for
1 for each unique od in outDegrees do
1. nodeSet = find(outDegrees == od)
. recOutDegSet = recOutDegs(nodeSet)
1. recThreshold = percentile(recOutDegSet, 7)
.~ for each node n in nodeSet do

17 if recOutDegs(n) < recThreshold then
18: userCulprits = userCulprits + n

19: end if

2. end for

2. end for

2 for each unique id in inDegrees do

»  nodeSet = find(inDegrees == id)

x.  recInDegSet = recInDegs(nodeSet)

»  recThreshold = percentile(recInDegSet, 7)
x  for each node n in nodeSet do

o8 if recInDegs(n) < recThreshold then
2 objectCulprits = objectCulprits + n
29: end if
s end for
s end for
» return userCulprits,

objectCulprits
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3.5.1 Problem Formulation
We identify the major problem to be addressed as follows:

Problem 3.2: Stealth Attack Detection

Given an input graph adjacency matrix A, with rows and columns corresponding to users
and objects (could be pages, articles, etc. or even other users), identify stealth attacks
which are undetectable given a desired decomposition rank-k for A (undetectable in that
their singular values fall below the threshold o).

Note that Problem 3.2 is an exact foil to Problem 3.1. In this paper, we primarily focus on
smart attacks which fall below a practitioner-defined spectral threshold, given that a number
of previous works mentioned have tackled the problem of discovering blatant attacks. Given
that this body of work is effective in detecting such attacks, we envision that the best means
of boxing in attackers is a complementary approach to existing methods, as our analysis in
Section 3.4 is indicative of the lack of suitability of a one-size-fits-all technique for catching all
attackers.

3.5.2 Description

As per the problem formulation, we seek to develop a solely graph-based method, which will be
able to complement existing fraud detection techniques by discerning previously undetectable
attacks. In Section 3.3, we demonstrated that smaller attacks are particularly characterized by
comparatively low singular values (below 0}), and thus do not appear in the singular vectors
given by a rank £ decomposition. Assuming an isolated attack which has been engineered to
fall below the detection threshold, the users/objects comprising the attack will have absolutely
no projection onto any of the top-k left and right singular vectors respectively. In the presence
of camouflage, projection of the culprit nodes may increase slightly given some nonzero values
in the corresponding indices in one or more of the vectors. In either case, we note that nodes
involved in these attacks have the unique property of having zero or almost-zero projections
in the projected space. Given this observation, two questions naturally arise: (a) how can we
effectively capture the extent of projection of a user or object? and (b) is there a pattern to how
users or objects project into low-rank subspaces?

In fact, we can address the first question by taking advantage of the norm-preserving property of
SVD given below, which states that the row vectors of a full rank decomposition and associated
projection will retain the same /5 norm or vector length as in the original space. That is, for
k = rank(A),

[As]la = [(UX)s]lz for i < u

In the same fashion, one can apply the norm-preserving property to decomposition of AT to
show

1A%z = [(VE)ll2 for j < o
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Figure 3.4: SRMs show correlation between the reconstruction degree and suspicious-
ness of nodes. (a) and (b) show the SRMs produced from analysis on the Twitter social graph.

Since the /5 norms are preserved in a full rank decomposition, it is obvious that the sum of squares
of components are also preserved. Note that for the 0-1 adjacency matrix A we consider here,
the sum of squares of components of the ith row vector corresponds to the out-degree of user ¢
and the sum of squares of components of the jth column vector corresponds to the in-degree
of object 7 — given these considerations, we define the degree of a node in a given subspace
as the squared /> norm of its link vector in that subspace. Thus, for a full rank decomposition,
the out-degree given by ||A;||% and reconstructed out-degree given by ||[(UX);||3 of user i are
equal. The same can be said for the in-degree and reconstructed in-degree of object j. For rank k
decompositions where k < rank(A) (guaranteed in practical use of spectral methods), we can
show that the true degrees upper bound the reconstructed degrees as follows:

Theorem 3.4: [;-norm Bound for Reconstruction Degree

The reconstruction degree of any node (row) ¢ in a k-rank projection of A, A,,,; is upper
bounded by the true degree of the same node (row) ¢ in A.

Proof. It is sufficient to show that the respective [y norms of row ¢ in A,,,; is upper bounded
by the [, norm of the same row in A, or that A,,,;, < A,. First, observe that when the
projection rank k = rank(A), the reconstruction degree and true degree for row i are
equal - that is, [[A,,; |l2 = ||Ail|2. Since U and V' are unitary, we can rewrite the SVD
formulation A,,,,; = UXVT as A,,,;V = AV = UX and observe that RHS has the same
l> norm as LHS given the norm-preserving property of unitary matrices. Next, note that a
(k + 1)-rank decomposition has the same first & columns as a k-rank decomposition by
the uniqueness (up to sign) of SVD, and thus the same /5 norm for the ith row over the
k-length row vector formed over the first £ entries in the row. Then, any nonzero element
in the (k + 1) column and ** row will increase the I norm of row i as it will contribute
a positive term under the square-root. If the element in the (k + 1) column and i*" row
is 0, then the [, norm of row ¢ remains the same. In either case, the [, norm of row 7 is
non-decreasing with increasing rank, and thus cannot exceed the [; norm of a full-rank
decomposition. ]
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Thus, we can capture the extent of projection of a user by the tuple of his true out-degree and
reconstructed out-degree, and we can capture the extent of projection of an object by the tuple
of its true in-degree and reconstructed in-degree.

We conjecture that due to the different graph connectivity patterns of dishonest and honest
users as well as dishonest and honest objects, their projections in terms of reconstructed degrees
should also vary. Intuitively, dishonest users who either form isolated components or link to
dishonest objects will project poorly and have characteristically low reconstruction degrees,
whereas honest users who are well-connected to real products and brands should project more
strongly and have characteristically higher reconstruction degrees. In fact, we find that in
real data, users and objects have certain ranges in which they commonly reconstruct in the
projected space. Figure 3.4 shows the OSRM (Out-link Spectral Reconstruction Map) and ISRM
(In-link Spectral Reconstruction Map) for a large, multi-million node and multi-billion edge social
graph from Twitter, where we model follower (fan) and followee (idol) behavior. The data is
represented in heatmap form to indicate the distribution of reconstructed degrees for each true
degree. The SRMs indicate that for each true degree, there is a tailed distribution with most
nodes reconstructing in a common range and few nodes reconstructing as we move away from
this range in either direction. Most notably, there are a large number of nodes with degrees
up to the hundreds with an almost-zero reconstruction, depicted by a well separated point
cloud at the bottom of both SRMs. For higher true degree values in the thousands, nodes are
more sparse and rarely project as poorly as for lower true degrees, but many points at these
degree values reconstruct several degrees of magnitude lower than the rest. These observations
serve to substantiate our conjecture that poorly reconstructing nodes are suspicious, but what
about the well reconstructing nodes? Interestingly, we find that nodes which reconstruct on
the high range of the spectrum for a given degree have many links to popular (and commonly
Twitter-verified) accounts. We do not classify such behavior as suspicious in the OSRM context,
as it is common for Twitter users to follow popular actors, musicians, brands, etc. We do not
classify such behavior as suspicious in the ISRM context either, as popular figures tend to more
commonly be followed by other popular figures. At the bottom of the reconstruction spectrum,
however, we most commonly find accounts which demonstrate a number of notably suspicious
behaviors in the context of their followers/followees and the content of their Tweets — more
details are given in Section 3.6.

Based on our intuitive conjecture and empirical verification, we focus our FBox algorithm on
identifying nodes with characteristically poor reconstructed degree in comparison to other
nodes of the same true degree as suspicious. Specifically, we mark the bottom 7 percent of nodes
per fixed degree for both users and objects as culprit nodes. We outline the high-level steps of
FBox in Algorithm 3.1.

3.6 Experiments
3.6.1 Datasets

For our experiments we primarily use two datasets: the who-follows-whom Twitter graph and
the who-rates-what Amazon graph. The Twitter graph was scraped by Kwak et al. in 2010
and contains 41.7 million users with 1.5 billion edges [KLPM10]. We showed the distribution
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Figure 3.5: (a) and (b) show FBox’s strong predictive value and low false-discovery rate
in identifying suspicious accounts.

of singular values in Figure 3.3a. The Amazon ratings graph was scraped in March 2013 by
McAuley and Leskovec [ML13] and contains 29 million reviews from 6 million users about 2
million products. The distribution of singular values can be seen in Figure 3.3b. Our analysis is
conducted both directly and via synthetic attacks.

3.6.2 FBox on real Twitter accounts

To show our effectiveness in catching smart link fraud attacks on real data, we conducted a
classification experiment on data from the Twitter graph. Specifically, we collected the culprit
results for suspicious fans and idols with degree at least 20 (to avoid catching unused accounts)
for seven different values of the detection threshold 7, at 0.5, 1, 5, 10, 25, 50 and 99 percentile.
For each combination of 7 value and user type (fan or idol), we randomly sampled 50 accounts
from the “culprit-set” of accounts classified as suspicious by FBox and another 50 accounts from
the remainder of the graph in a 1:1 fashion, for a total of 1400 accounts. We randomly organized
and labeled these accounts as suspicious or honest (ignoring foreign and protected accounts)
based on several criteria — particularly, we identified suspicious behavior as accounts with some
combination of the following characteristics:

* Suspension by Twitter since data collection

+ Spammy or malicious tweets (links to adware/malware)

* Suspicious username, or followers/followees have suspicious usernames (with common
prefixes/suffixes)

* Very few tweets (<5) but numerous (>20) followees who are themselves suspicious

* Sparse profile but numerous (>20) followees who are themselves suspicious

Figure 3.5 shows how the performance of FBox varies with the threshold 7 for Twitter fans
and idols. As evidenced by the results, FBox is able to correctly discern suspicious accounts
with 0.93+ precision for 7 < 1 for both fans and idols. And as expected, increasing 7 results
in lower precision. As with many informational retrieval and spam detection problems, there
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are an unbounded number of false negatives, making recall effectively impossible to calculate.
Rather, we use the negative precision and observe that it increases as we increase 7. Ultimately,
because FBox is meant to be a complementary method to catch new cases of fraud, we do not
believe that missing some of the attackers already caught by other methods is a major concern.
With these considerations, we recommend conservative threshold values for practitioner use.
On Twitter data, we found roughly 150 thousand accounts classified as suspicious between the
SRMs for 7 = 1.

3.6.3 Complementarity of FBox

As mentioned before, FBox is complementary to spectral techniques and is effective in catching
smart attacks that adversaries could engineer to avoid detection by these techniques. We
demonstrate this claim using both synthetically formulated attacks on the Amazon network as
well as comparing the performance of both FBox and SPOKEN on the Twitter network. In the
first experiment, we inject random attacks of scale 100 (100 x 100) and 400 (400 x 400), each
with density p = 0.5 into the Amazon graph and compare the effectiveness of spectral subspace
plots and SRMs in spotting these attacks. Figure 3.6a shows the spectral subspace plot for the
1st and 15th components of the SVD, corresponding to one naturally existing community and
the blatant attack, respectively. The plot clearly shows nodes involved in the blatant attack as a
spoke pattern, but groups the nodes involved in the small attack along with many honest nodes
that reconstruct poorly in these components at the origin point. However, in Figure 3.6b, we see
that the smaller injection is identified as clearly suspicious with distinct separation from other
legitimate behavior.

We additionally tested both FBox and SPOKEN on a number of injections sizes, each random
attacks with p = 0.5. Figure 3.6c shows the fraction of the attacking fans caught by each
algorithm. As seen in the figure, the two methods are clearly complementary, with FBox catching
all attacks that SPOKEN misses. This verifies the analysis in Section 3.3 and substantiates FBox’s
suitability for catching stealth attacks that produce leading singular value ¢’ < oy.
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Figure 3.6: FBox and SPOKEN are complementary, with FBox detecting smaller stealth
attacks missed by SPOKEN. (a) shows how spectral subspace plots identify blatant attacks but
ignore smaller ones. (b) shows the ISRM plot for the same injections, clearly identifying the
suspiciousness of the smart attack. (c) depicts the complementary nature of FBox and spectral
methods in detecting attacks at various scales.
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In our second experiment, we compared the performance of both FBox and SPOKEN on a sample
of 65743 accounts selected from the Twitter graph. For each of these accounts, we queried the
Twitter API to collect information regarding whether the account was suspended or had posted
Tweets promoting adware/malware (checked via Google SafeBrowsing), and if so we marked
the account as fraudulent. This ground truth marking allows us to unbiasedly measure the
complementarity of FBox and SPOKEN in catching users that are surely malicious. Of these users,
4025 were marked as fraudulent via Twitter (3959) and Google SafeBrowsing (66). For rank
k = 50, SPoKEN produced 8211 suspicious accounts whereas FBox (with 7 = 1) produced 149899.
The user sets identified by both methods were found to be completely distinct, suggesting that
the methods are indeed complementary. Furthermore, FBox identified 1133 suspicious accounts
from the sampled dataset, of which only 347 were caught via Twitter and Google SafeBrowsing,
suggesting that roughly 70% of FBox-classified suspicious accounts are missed by Twitter.
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Figure 3.7: (a), (b) and (c) show FBox’s robustness to moderate amounts of camouflage
for attack sizes of 100, 250 and 500.

3.6.4 FBox in the face of camouflage

One key point in dealing with intelligent attackers is ensuring that FBox is robust in detecting
attacks with moderate amounts of camouflage. To measure our performance in such a setting,
we ran FBox on a variety of attack sizes in our target range and for each attack varied the amount
of camouflage added. In our model, we include camouflage by following honest accounts at
random. For a random attack of size n x n and edge probability p, we vary the percent of idols
of fraudulent fans that are camouflage: for 0% camouflage each fan follows the pn customers
only and for 50% camouflage each attacker node follows pn customers and pn random honest
idols — in general, the percent of camouflage 7 for g camouflage links is defined as ;J(:og We ran
this test for attacks of size 100, 250, and 500 (all below the 095 = 1143.4 detection threshold)
with p = 0.5 on the Twitter graph.

Figure 3.7 demonstrates FBox’s robustness — for all configurations of attack size and camouflage,
we catch all customer idols and over 80% of fraudulent fans. As attack size increases, increased
camouflage is less impactful (intuitively, larger attacks are more flagrant), with FBox catching
over 90% of the fraudulent fans even with 50% camouflage.

Analysis on fame, where customers buying links also have honest links was not conducted.
Customer fame is the analog of attacker camouflage. However, we expect similar results in
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detection of accounts in the presence of fame given the symmetry of SVD and rFBox’s disjoint
user/object reconstruction. However, the presence of fame is less realistic in many applications
— for example, in the Twitter context, it is difficult for a spammy account to get honest fans
whereas fraudulent fans can follow real idols at will.

400
350 | r
300 | s
250 | .
200 | o
150 - s
100 - s
50 | +°
0

Runtime (seconds)

0 10 20 30 40 50 60 70 80 90100
Number of non-zeros (in millions)

Figure 3.8: FBox scales linearly on the size of input data.

3.6.5 Scalability of FBox
The running time of FBox is dominated by the (linear) large matrix-vector multiplication per
iteration of the Lanczos algorithm to compute SVD for large, sparse matrices. Figure 3.8 depicts
the linear runtime of FBox for £ = 25 while varying number of non-zeros.

3.7 Conclusions

In this work, we approached the problem of distinguishing dishonest attackers and their cus-
tomers from honest users in the context of online social network or web-service graphs using a
graph-based approach (using the adjacency matrix representing user/object relationships). Our
main contributions are:

1. Theoretical analysis: We examine several state-of-the-art fraud detection methods from
an adversarial point-of-view and provide theoretical results (Theorems 3.1-3.3) pertaining
to the susceptibility of these methods to various types of attacks.

2. FBox algorithm: We detail FBox, a method motivated by addressing the blind-spots
discovered in theoretical analysis, for detecting a class of stealth attacks which previous
methods are effectively unable to detect.

3. Effectiveness on real data: We apply FBox to a large Twitter who-follows-whom dataset
from 2010 and discover many tens of thousands of suspicious users with over 93% precision
whose accounts remain active to date.

Our experiments show that our method is scalable, effective in detecting a complementary range
of attacks to existing methods and robust to a reasonable degree of camouflage for small and
moderately sized stealth attacks.
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Based on content published in [KSV'15].

Chapter 4

DELTACON-ATTR: Cross-Graph
Blame Attribution

Identifying culprits of connectivity change
between graph snapshots using
influence-based similarity.

How are two graphs different? Which nodes and edges are responsible for the changes
between them? Detection and ranking of changes in graphs is a problem which arises in
numerous settings related to pinpointing anomalous behavior. Notable examples include
tracking physical network interconnectivity and analyzing behavior of users in communica-
tion networks. In this work, we propose DELTACON-ATTR, a complement to the DELTaACoN
graph similarity algorithm, for the change detection and ranking task. DELTACON-ATTR is
principle and agrees with human intuition, scalable and demonstrates practical effectiveness.

4.1 Introduction
Graphs arise naturally in numerous situations; social, traffic, collaboration and computer net-
works, images, protein-protein interaction networks, brain connectivity graphs and web graphs
are only a few examples. A problem that comes up often in all those settings is the following:
how much do two graphs or networks differ in terms of connectivity, and which are the main
node and edge culprits for the difference?

In this work, we tackle this problem on graphs with known node-correspondence (fixed node-set
across graphs). The main focus of this chapter is on the latter problem (blame attribution), in
which the aim is to identify the culprit nodes and edges which are most responsible for the largest
changes in graph structure. The intuition behind our approach is that nodes and edges which are
most culpable for differences between graphs are the ones which most heavily influence changes
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in connectivity. To this end, we leverage the DELTACON algorithm for computing graph similarity
as it is scalable, principled and considerate of connectivity differences [KVF13].

Change detection and blame attribution is a particularly important problem in anomaly detection
scenarios such as detecting changes in the connectivity of a computer network, the behavior of
users in communication networks, or even identifying spammers and bad actors in social media.
Tracking changes in networks over time, spotting anomalies and detecting events is a research
direction that has attracted much interest in previous literature [CBWG11, Nob03, WPT11,
WTPP14]. However, blame attribution is still an open problem as the list of requirements
constantly increases: the exponential growth in graphs, both in number and size, calls for
methods that are not only accurate, but also scalable to graphs with billions of nodes.

In this chapter, we introduce the following contributions:

1. Algorithm: We propose DELTACON-ATTR, a scalable and principled approach for node
and edge-based blame attribution between graphs.

2. Experiments: We detail a number of experiments on synthetic and real datasets and
show that DELTACON-ATTR gives results that agree with human intuition of culpability
and is faster while maintaining comparable accuracy to the prior state-of-the-art.

The rest of this chapter is organized as follows: Section 4.2 includes background on the DELTACoN
approach, Section 4.3 discusses the proposed DELTACON-ATTR approach for blame attribution,
Section 4.4 details experiments on synthetic and real datasets, Section 4.5 surveys prior work
and Section 4.6 concludes.

4.2 Background: DELTACON

In this section, we detail our previously proposed DELTACON [KVFT13] approach for graph
similarity, which DELTACON-ATTR leverages. While the graph similarity problem is not the
main focus in this chapter, the intuition, motivating properties and algorithmic details are highly
relevant for future discourse and are thus included here for the reader’s benefit. Most detailed
proofs have been omitted in this chapter for relevance reasons, but are available in the full-text
of [KSV*15].

4.2.1 DELTACON: Intuition
How can we find the similarity in connectivity between two graphs or, more formally, how can
we solve the following problem?
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Symbol Description

G graph

V,n set of nodes, number of nodes

E,m set of edges, number of edges

sim (G, G2) similarity between graphs Gy and G5

d(G1,Gs) distance between graphs G; and Gy

I n X n identity matrix

A n X n adjacency matrix with elements a;;

D n X n diagonal degree matrix, d; = ) | ; i

L = D — A laplacian matrix

S n X n matrix of final scores with elements s;;

S’ n X g reduced matrix of final scores

€; n x 1 unit vector with 1 in the i** element

Sok n x 1 vector of seed scores for group k

S; n x 1 vector of final affinity scores to node %

g number of groups (node partitions)

€ = 1/(1 4+ max; (d;;)) positive constant (< 1)
encoding the influence between neighbors

DC,, DC DELTACON, DELTACON(

Table 4.1: Symbols and Definitions. Bold capital letters: matrices, lowercase letters with arrows:
vectors, plain font: scalars.

Problem 4.1: DELTACONnNectivity

Given (a) two graphs, G1(V, &) and G5(V, &) with the same node set', V, but different
edge sets &1 and &, and (b) the node correspondence, find a similarity score, sim(G1, Gy) €
[0, 1], between the input graphs. Similarity score of value 0 means totally different graphs,
while 1 means identical graphs.

The obvious way to solve this problem is by measuring the overlap of their edges.

Why does this often not work in practice? It turns out that this measure weights every edge
equally in terms of importance. But, clearly, from the aspect of information flow, a missing edge
from a clique does not play as important role in the graph connectivity as a missing bridge.
So, could we instead measure the differences in the 1-step away neighborhoods, 2-step away
neighborhoods etc.? If yes, with what weight? It turns out that our method does exactly this in
a principled way.

11f the graphs have different, but overlapping, node sets, V; and Vs, we assume that V = V; U Va, and the extra
nodes are treated as singletons.
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4.2.1.1 Fundamental Concept

The first conceptual step of our proposed method is to compute the pairwise node affinities in the
first graph, and compare them with the ones in the second graph. For notational compactness,
we store them in a n X n similarity matrix* S. The s;; entry of the matrix indicates the influence
node 7 has on node j. For example, in a who-knows-whom network, if node 1 is, say, republican
and if we assume homophily (i.e., neighbors are similar), how likely is it that node j is also
republican? Intuitively, node ¢ has more influence/affinity to node j if there are many, short,
heavily weighted paths from node 7 to j.

The second conceptual step is to measure the differences in the corresponding node affinity
scores of the two graphs and report the result as their similarity score.

4.2.1.2 How to Measure Node Affinity?

Pagerank [BP98], personalized Random Walks with Restarts (RWR) [Hav03], lazy RWR [AF02],
and the “electrical network analogy” technique [DS84] are only a few of the methods that
compute node affinities. We could have used Personalized RWR: [I — (1 — ¢)AD7!|3; =
¢ €;,where c is the probability of restarting the random walk from the initial node, €é; the
starting (seed) indicator vector (all zeros except 1 at position ), and §; the unknown Personalized
Pagerank column vector. Specifically, s;; is the affinity of node j with respect to node . For
reasons that we explain next, we chose to use a more recent and principled method, the so-called
Fast Belief Propagation (FABP) [KKK™ 11], and specifically a simplified form of it given by:

[+ D — €Al5; = ¢ (4.1)

where 5; = [s;1, ...5i,]" is the column vector of final similarity/influence scores starting from
the i'" node, € is a small constant capturing the influence between neighboring nodes, I is the
identity matrix, A is the adjacency matrix and D is the diagonal matrix with the degree of node
7 as the d;; entry.

An equivalent, more compact notation, is to use a matrix form, and to stack all the s; vectors
(z=1,...,n)into the n X n matrix S. We can easily prove that

S =[sij] = I+ ¢D —cA] " | (4.2)

4.2.1.3 Why use Belief Propagation?
The reasons we choose BP and its fast approximation with Equation 4.2 are: (a) it is based on
sound theoretical background (maximum likelihood estimation on marginals), (b) it is fast (linear
on the number of edges), and (c) it agrees with intuition, taking into account not only direct
neighbors, but also 2-, 3-, and k-step-away neighbors, with decreasing weight. We elaborate on
the last reason, next:

%In practice, we don’t measure all the affinities (see Section 4.2.2.2 for an efficient approximation).
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Intuition 4.0: Attenuating Neighboring Influence

By temporarily ignoring the term €D in (4.2), we can expand the matrix inversion and
approximate the n X n matrix of pairwise affinities, S, as

S%[I—eA]flml—i—eA—l—ezAQ—i—....

As we said, our method captures the differences in the 1-step, 2-step, 3-step etc. neighborhoods
in a weighted way; differences in long paths have a smaller effect on the computation of the
similarity measure than differences in short paths. Recall that ¢ < 1, and that A* has information
about the k-step paths. Notice that this is just the intuition behind our method; we do not use
this simplified formula to find matrix S.

4.2.1.4 Which properties should a similarity measure obey?
Let G1(V, &) and Go(V, &) be two graphs, and sim(G1, G2) € [0, 1] denote their similarity
score. Then, we want the measure to obey the following axioms:

e Al. Identity property: sim(G1,Gp) =1

o A2. Symmetric property: sim(G1, Ge) = sim(Ga, G1)

o A3. Zero property: sim(G1,Gs) — 0 for n — oo, where (& is the complete graph (X,),
and (3 is the empty graph (i.e., the edge sets are complementary).

Moreover, the measure must be:

(a) intuitive It should satisfy the following desired properties:

P1. [Edge Importance] For unweighted graphs, changes that create disconnected components
should be penalized more than changes that maintain the connectivity properties of the graphs.
P2. [Edge-"Submodularity”] For unweighted graphs, a specific change is more important in a
graph with few edges than in a much denser, but equally sized graph.

P3. [Weight Awareness] In weighted graphs, the bigger the weight of the removed edge is, the
greater the impact on the similarity measure should be.

We also introduce an additional, informal, property:
IP. [Focus Awareness] “Random” changes in graphs are less important than “targeted” changes
of the same extent.

(b) scalable The huge size of the generated graphs, as well as their abundance require a
similarity measure that is computed fast and handles graphs with billions of nodes.

In [KSV'15], we formalize the properties and discuss their satisfiability by our proposed simi-
larity measure theoretically. They are excluded here, as they are not relevant to the main focus
of this chapter.
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4.2.2 DEeLTACON: Details
Now that we have described the high level ideas behind the DELTACoN method, we move on to
the details.

4.2.2.1 Algorithm Description
Let the graphs we compare be G1(V, £;) and G2(V, &). If the graphs have different node sets,
say Vi and V,, we assume that V = V; U V,, where some nodes are disconnected. As mentioned
before, the main idea behind our proposed similarity algorithm is to compare the node affinities
in the given graphs. The steps of our similarity method are:

Step 1 By Equation 4.2, we compute for each graph the n x n matrix of pairwise node affinity
scores (S; and S, for graphs (G; and GG, respectively).

Step 2 Among the various distance and similarity measures (e.g., Euclidean distance (ED),
cosine similarity, correlation) found in the literature, we use the root Euclidean distance (RooTED,
a.k.a. Matusita distance®)

n n

d =RooTED(S1,8:) = | > D (/515 — v/52:7) (4.3)

i=1 j=1

We use the RooTED distance for the following reasons:

1. it is very similar to the Euclidean distance (ED), the only difference being the square root
of the pairwise similarities (s;;),

2. it usually gives better results, because it “boosts” the node affinities* and, therefore, detects
even small changes in the graphs (other distance measures, including ED, suffer from high
similarity scores no matter how much the graphs differ), and

3. satisfies the desired properties P1-P3, as well as the informal property / P.

Step 3 For interpretability, we convert the distance (d) to a similarity measure (stm) via the
formula sim = Fld' The result is bounded to the interval [0,1], as opposed to being unbounded
[0,00).

Notice that the distance-to-similarity transformation does not change the ranking of results in a
nearest-neighbor query.

The straightforward algorithm, DELTACON, (Algorithm 4.1), is to compute all the n? affinity
scores of matrix S by simply using Equation 4.2. We can do the inversion using the Power
Method or any other efficient method.

3Using p'" root instead of square root gives consistent results (for small values of p). Without loss of generality,

we use the Matusita distance, which corresponds to p = 2.
*The node affinities are in [0, 1], so the square root makes them bigger.
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Algorithm 4.1: DELTACON
INPUT: edge files of G1(V, &) and G5(V, &), i.e., Aj and A,
/I'V =V UVy, if V) and V; are the graphs’ node sets
S; =[I+éeD; —eAy]™! // $1,ij: affinity/influence of
So = [+ 2Dy — cAy] ™! //node i to node j in G
d(G1, G5) =RooTED (S1, S»)

return sim(Gth) = m

4.2.2.2 Speeding up: DELTACON
Unfortunately, DELTACON is quadratic (n? affinity scores s;; are computed by using the power
method for the inversion of a sparse matrix) and thus not scalable. Thus, we look for means to
speed up the algorithm.

We present a faster, linear algorithm, DELTACON (Algorithm 4.2), which approximates DELTACON|
and differs in the first step. We still want each node to become a seed exactly once in order to
find the affinities of the rest of the nodes to it; but, here, we have multiple seeds at once, instead
of having one seed at a time. The idea is to randomly divide our node-set into g groups, and
compute the affinity score of each node 7 to group £, thus requiring only n x g scores, which
are stored in the n X g matrix S’ (¢ < n). Intuitively, instead of using the n x n affinity matrix
S, we add up the scores of the columns that correspond to the nodes of a group, and obtain
the n x g matrix S’ (¢ < n). The score s, is the affinity of node i to the k' group of nodes

(k=1,...,9).

Thus, we compute ¢ final scores per node, which denote its affinity to every group of seeds,
instead of every seed node that we had in Equation 4.2. With careful implementation, DELTACON
is linear on the number of edges and groups g - it takes ~ 160sec, on commodity hardware,
for a 1.6-million-node graph. Once we have the reduced affinity matrices S| and S, of the two
graphs, we use the ROOTED, to find the similarity between the n X g matrices of final scores,
where g < n. The pseudocode of DELTACON is given in Algorithm 4.2.

In an attempt to see how our random node partitioning algorithm in the first step fares with
respect to more principled partitioning techniques, we used METIS [KK95]. Essentially, such
an approach finds the influence of coherent subgraphs to the rest of the nodes in the graph -
instead of the influence of randomly chosen nodes to the latter. We found that the METIS-based
variant of our similarity method gave intuitive results for most small, synthetic graphs, but not
for the real graphs. This is probably related to the lack of good edge-cuts on sparse real graphs,
and also the fact that changes within a group manifest less when a group consists of the nodes
belonging to a single community than randomly assigned nodes.

Next we give the time complexity of DELTACON, as well as the relationship between the similarity
scores of DELTACON( and DELTACON.

45



Algorithm 4.2: DELtaACoN
INPUT: edge files of G1(V, &) and G5 (V, &), i.e., Aj and Ay, and
g (groups: # of node partitions)

{Vj}j=1 = random_partition(V, g) //g groups
// estimate affinity vector of nodes¢ = 1,...,n to group k
fork=1— gdo

Sok = 2icy, i

solve [I + eéch — €A4]5, = So

solve [I + €2Dy — €A,]5,, = Sor,
end for
S1=1[511 S1g - Syl Sy =[5 5 ... &

// compare affinity matrices S} and S},

d(G1, G2) =RootED (8, S5)

return sim(G,Gy) = m

g]

Lemma 4.1: Linear Time Complexity of DELTACON

The time complexity of DELTACON, when applied in parallel to the input graphs, is linear
on the number of edges in the graphs, i.e., O(g - maz{my, ms}).

Proof. By using the Power Method [KKK"11], the complexity of solving Equation 4.1 is
O(m;) for each graph (i = 1,2). The node partitioning needs O(n) time; the affinity
algorithm is run ¢ times in each graph, and the similarity score is computed in O(gn)
time. Therefore, the complexity of DELTACON is O((g + 1)n + g(my + m3)), where g is a
small constant. Unless the graphs are trees, |£;| < n, so the complexity of the algorithm
reduces to O(g(my + my)). Assuming that the affinity algorithm is run on the graphs in
parallel, since there is no dependency between the computations, DELTACON has complexity
O(g - max{my,ms}). [ |

[KSV*15] contains more details about the relationships between DELTACON and DELTACON
scores. Specifically, one can use the Cauchy-Swartz inequality to show that DELtaACon upper
bounds DELTaCoNj given fixed input graphs (G; and (5. Intuitively, grouping the nodes blurs
the influence information and makes the nodes seem more similar than originally. The proofs are
excluded here as they are not relevant to this chapter’s main focus. Summarily, DELTACON is a
faster version of DELTACON, which computes node-to-group instead of node-to-node influences
in order to speed up the computation to linear from quadratic complexity.
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4.3 DELTACON-ATTR: Blame Attribution for Nodes and
Edges

Thus far, we have broached the intuition and decisions behind developing DELTACON for calcu-
lating graph similarity. Next, we show how this approach can be leveraged for the purposes of
node and edge-based blame attribution. Practically, this equates to finding out why the graph
changed the way it did and which changes were most important.

Equipped with this information, we can draw conclusions with respect to how certain changes
impact graph connectivity and apply this understanding in a domain-specific context to assign
blame. The resulting findings could also be useful for practitioners to instrument measures to
prevent such changes in the future. Additionally, such a feature can be used to measure changes
which have not yet happened in order to find information about which nodes and/or edges
are most important for preserving or destroying connectivity (useful for stopping the spread
of viruses on a network). In this section, we propose DELTACON-ATTR as a complementary
approach to DELTACoN which enables node and edge-based blame attribution for this very
purpose.

4.3.1 Algorithm Description

4.3.1.1 Node Attribution
Our first goal is to find the nodes which are mostly responsible for the difference between the
input graphs. Let the affinity matrices S} and S/, be precomputed. Then, the steps of our node
attribution algorithm (Algorithm 4.3) can be summarized to:

Step 1 Intuitively, we compute the difference between the affinity of node v to the node groups
in graph A and the affinity of node v to the node groups in graph A,. To that end, we use the
same distance, ROOTED, that we applied to find the similarity between the whole graphs.

Given that the vy, row vector (v < n) of S| and S, reflects the affinity of node v to the remainder
of the graph, the RooTED distance between the two vectors provides a measure of the extent to
which that node is a culprit for change — we refer to this measure as the impact of a node. Thus,
culprits with comparatively high impact are ones that are most responsible for change between
graphs.

More formally, we quantify the contribution of each node to the graph changes by taking
the RooTED distance between each corresponding pair of row vectors in S| and S, as w, for
v=1,...,n per Equation 4.4.

g
w, = RoOTED(S] ,,85,) = | Y (1/5h . — \/h.s)? (4.4)
=1

Step 2 We sort the scores in the n x 1 node impact vector w in descending order and report
the most important scores and their corresponding nodes.
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Algorithm 4.3: DELTACON-ATTR: Node Attribution

INPUT: affinity matrices S/, S},
edge files of G1(V, &) and G5(V, &), i.e., Aj and A,

forv=1—ndo

// If an edge adjacent to the node has changed, the node is responsible:

if Y |A1(v,:) — As(v,:)| > 0 then

w, = RooTED(S ,, S} ,)

end if
end for
[Wsorted, Wsortedndez) = SOrtRows(w, 1, ‘descend’) // sort rows of vector w on column index 1

//(node impact score) by descending value

return [wsm‘tedu wsortedlnde:p]

In reality, a practitioner might only want a partial ranking (the topmost influencers) from the
entire node set. This can be achieved by using a simple energy-based heuristic (i.e.: reporting
the top 80% of changes as per Fukunaga’s heuristic [Fuk90]. In practice, we find that impact
distributions in real graphs are skewed (although the distribution need not be 80-20).

4.3.1.2 Edge Attribution
Complementarily to the node attribution approach, we also developed an edge attribution method
which ranks edge changes (additions and deletions) with respect to the graph changes based on
the affinity scores. The steps of our edge attribution algorithm (Algorithm 4.4) are:

Step 1 We assign each changed edge incident to at least one node in the culprit set an impact
score. This score is equal to the sum of impact scores for the nodes that the edge connects or
disconnects.

Our goal here is to assign edges impact according to the degree that they affect the nodes that
they touch. Since even the removal or addition of a single edge does not necessarily impact
both incident nodes equally, we choose the sum of both nodes’ scores as the edge impact metric.
The intuition is that edges which touch two nodes of moderately high impact would be ranked
higher than those which touch one node of high impact but another of low impact.

Step 2 We sort the edge impact scores in descending order and report the edges in order of
importance.

Analysis of changed edges can reveal important discrepancies from baseline behavior. Specifi-
cally, a large number of added edges or removed edges with individually low impact is indicative
of star formation or destruction, whereas one or a few added or removed edges with individually
high impact are indicative of community expansion or reduction via addition or removal of
certain key bridge edges.
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Algorithm 4.4: DELTACON-ATTR: Edge Attribution

INPUT: adjacency matrices Ay, Ay, culprit set of interest Wsortedrndes,1 ...index and node
impact scores W

forv=1— length(wsortedfndea:,l ...index) do
srcNode = WsortedIndex,v
T = A2,v - Al,v
fork=1—ndo
destNode = k
if 7, = 1 then
edgeSCOTe = WsreNode T WdestNode
append row [srcNode, destNode, ’+’, edgeScore] to E
end if
if Fk = —1 then
edgeSCOTe = WsreNode T WestNode
append row [srcNode, destNode, ’-’, edgeScore] to E
end if
end for
end for
Egorteq = sortrows(E, 4, ’descend’) // sort rows of matrix E on column index 4 (edge impact
// score) by descending value
return E, ;4

4.3.2 Scalability Analysis
Given precomputed S’ and S/, (precomputation is assumed since attribution can only be con-
ducted after similarity computation), the node attribution component of DELTACON-ATTR is
log-linear on the number of nodes, since n influence scores need to be sorted in descending
order. In practice, the linear term is generally more expensive for runtime than the sorting
operation, given the computational expense of calculating the Matusita distance between each
pair of node vectors.

With the same assumptions with respect to precomputed results, the edge attribution portion of
DELTACON-ATTR is also log-linear, but on the sum of edge counts, since m; + my total possible
changed edges need to be sorted. In practice, the number of edges needing to be sorted should
be far smaller, as we only need to concern ourselves with edges which are incident to nodes in
the culprit set of interest. Specifically, the cost of computing impact scores for edges is linear on
the number of nodes in the culprit set k£ and the number of changed edges, but is again paired
with the sorting cost.

4.4 Experiments

In this section, we evaluate DELTACON-ATTR on several synthetic “toy” graphs to ascertain
obeyance of the properties proposed in subsubsection 4.2.1.4 as well as evaluate quantitative
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ranking and classification performance with respect to a competing method. We additionally
report on DELTACON-ATTR’s qualitative performance on a real dataset.

4.4.1 Quantitative Results

DELTACON-ATTR CAD .

Graph A | Graph B edges nodes edges: d for1 =5 nodes Properties
K5 mK5 4 v v v

K5 m2K5 v v v v IP
B10 mB10 U mmB10 4 v v 4 P1, P2, IP
L10 mL10 U mmL10 4 v v 5,6,4 P1,IP
S5 mS5 (4 v (4 1=5 P1,P2
K100 mK100 (4 v (4 (4

K100 w5K100 v (4 (4 (%4 P3
mK100 w5K100 v v (4 (%4 P3
K100 m3K100 v (4 (4 v P3, 1P
K100 m10K100 v v (80,82)=(80,88)=(80,92)*  80,30,88=92" P3, 1P
P100 mP100 v (4 (4 v P1
w2P100 w5P100 v v v v P1, P3
B200 mmB200 v v (4 v P1
w20B200 m3B200 v (4 (4 v P1, P3, 1P
5100 mS100 v (4 (4 1=4 P1, P2
5100 m3S100 v (4 (4 1,81=67=4 P1, P2, 1P
wS100 m35100 v v (1,4),(1,67),(1,81) 1,4=67,81 P1, P3,IP
Custom18 | m2Custom18 v v (18,17),(10,11) 18,17,10,11 P1, P2
Custom18 | m4Custom18b v (4 (4 5=6,17=18 P1,P3

Table 4.2: DELTACON-ATTR obeys all the required properties, while CAD does not. Each
row corresponds to a comparison between graph A and graph B, and evaluates the node and
edge attribution of DELTACON-ATTR and CAD. The right order of edges and nodes is marked in
Figures 4.1 and 4.2. We give the ranking of a method if it is different from the expected one.

We first test DELTACON-ATTR on a number of synthetically created and modified graphs, and
compare it to the state-of-the-art methods. We perform two types of experiments: The first
experiment examines whether the ranking of the culprit nodes by our method agrees with
intuition.

In the second experiment, we evaluate DELTACON-ATTR’s classification accuracy in finding cul-
prits, and compare it to the best-performing competitive approach, CAD’, which was introduced
by Sricharan and Das [SD14] concurrently, and independently from us. CAD uses the idea of
commute time between nodes to define the anomalousness of nodes/edges. In a random walk,
the commute time is defined as the expected number of steps starting at 7, before node 7 is visited
and then node i is reached again. We give a qualitative comparison between DELTACON-ATTR
and CAD in Section 4.5 (Node/Edge Attribution).

SCAD was originally introduced for finding culprit nodes and edges without ranking them. We extended the
proposed method to rank the culprits.
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Figure 4.1: DELTACON-ATTR respects properties P1-P3, and IP. Nodes marked green are
identified as the culprits for the change between the graphs. Darker shade corresponds to higher
rank in the list of culprits. Removed and weighted edges are marked red and green, respectively.

4.4.1.1 Ranking Accuracy
We extensively tested DELTACON-ATTR on a number of synthetically created and modified

graphs, and compared it with CAD. We note that CAD was designed to simply identify culprits
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m2Custom18 m2Custom18b

Figure 4.2: [continued] DELTACON-ATTR respects properties P1-P3, and IP. Nodes marked
green are identified as the culprits for the change between the graphs. Darker shade corresponds
to higher rank in the list of culprits. Removed edges are marked red.

in time-evolving graphs without ranking them. In order to compare it with our method, we
adapted CAD so that it returns ranked lists of node and edge culprits: (i) We rank the culprit
edges in decreasing order of edge score AE; (ii) To each node v, we attach a score equal to the
sum of the scores of its adjacent edges, i.e., 3, c () AE((v, u)), where N (v) are the neighbors
of v. Subsequently, we rank the nodes in decreasing order of attached score.

We give several of the conducted experiments in Table 4.2, and the corresponding graphs in
Figures 4.1 and 4.2. Each row of the table corresponds to a comparison between graph A and
graph B. The node and edge culprits that explain the main differences between the compared
graphs are annotated in Figures 4.1 and 4.2. The darker a node is, the higher it is in the ranked
list of node culprits. Similarly, edges that are adjacent to darker nodes are higher in the ranked
list of edge culprits than edges that are adjacent to lighter nodes. If the returned ranked list
agrees with the expected list (according to the formal and informal properties), we characterize
the attribution of the method correct (checkmark). If there is disagreement, we provide the
ordered list that the method returned. If two nodes or edges are tied, we use “=”. For CAD we
picked the parameter § such that the algorithm returns 5 culprit edges and their adjacent nodes.
Thus, we mark the returned list with “*” if CAD outputs 5 culprits while more exist. For each
comparison, we also give the properties (last column) that define the order of the culprit edges
and nodes.
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Observation 4.1: Adherence to Desiderata

DEeLTACON-ATTR reflects the desired properties P1, P2, P3, and IP, while CAD fails to return
the expected ranked lists of node and edge culprits in several cases.

Next we explain some of the comparisons that we present in Table 4.2:

e K5-mKS5: The pair consists of a 5-node complete graph and the same graph with one
missing edge, (3,4). DELTACON-ATTR considers nodes 3 and 4 top culprits, with equal
rank, due to equivalent loss in connectivity. Edge (3, 4) is ranked top, and is essentially
the only changed edge. CAD finds the same results.

e K5-m2K35: The pair consists of a 5-node complete graph and the same graph with two
missing edges, (3,4) and (3, 5). Both DELTACON-ATTR and CAD consider node 3 the top
culprit, because two of its adjacent edges were removed. Node 3 is followed by 4 and 5,
which are tied since they are both missing one adjacent edge (Property IP). The removed
edges, (3,4) and (3, 5), are considered equally responsible for the difference between the
two input graphs. We observe similar behavior in larger complete graphs with 100 nodes
(K100, and modified graphs mK100, w5K100 etc.). In the case of K100 and m10K100°, CAD
does not return all 13 node culprits and 10 culprit edges because its parameter, J, was set
so that it would return at most 5 culprit edges’.

e B10-mB10 U mmB10: We compare a barbell graph of 10 nodes to the same graph that
is missing both an edge from a clique, (6, 7), and the bridge edge, (5,6). As expected,
DELTACON-ATTR finds 6, 5 and 7 as top culprits, where 6 is ranked higher than 5, since 6
lost connectivity to both nodes 5 and 7, whereas 5 disconnected only from 6. Node 5 is
ranked higher than 7 because the removal of the bridge edge is more important than the
removal of (6, 7) within the second clique (Property P1). CAD returns the same results. We
observe similar results in the case of the larger barbell graphs (B200, mmB200, w20B200,
m3B200).

e L10-mL10 U mmL10: This pair of graphs corresponds to the lollipop graph, L10, and
the lollipop variant, mL10 N mm/L10, that is missing one edge from the clique, as well
as a bridge edge. Nodes 6, 5 and 4 are considered the top culprits for the difference in
the graphs. Moreover, 6 is ranked more responsible for the change than 5, since 6 lost
connectivity to a more strongly connected component than 5 (Property P2). However,
CAD ranks node 5 higher than node 6 despite the difference in the connectivity of the
two components (violation of P2).

e S5, mS5: We compare a 5-node star graph, and the same graph missing the edge (1, 5).
DEeLTACON-ATTR considers 5 and 1 top culprits, with 5 ranking higher than 1, as the edge

®m10K100 is a complete graph of 100 nodes where we have removed 10 edges: (i) 6 of the edges were adjacent
to node 80—(80, 82), (80, 84), (80, 86), (80, 88), (80, 90), (80, 92); (ii) 3 of the edges were adjacent to node 30—
(30, 50), (30,60), (30, 70); and (iii) edge (1,4).

"The input graphs are symmetric. If edge (a, b) is considered culprit, CAD returns both (a, b) and (b, a), which
have the same anomalousness score.
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removal caused a loss of connectivity from node 5 to all the peripheral nodes of the star,
2, 3,4, and the central node, 1. CAD considers nodes 1 and 5 equally responsible, ignoring
the difference in the connectivity of the components (violation of P2). Similar results are
observed in the comparisons between the larger star graphs-5100, mS100, m35100, wS100.

e Custom18-m2Custom18: The ranking of node culprits that DELTACON-ATTR finds is 11,
10, 18, and 17. The nodes 11 and 10 are considered more important than the nodes 18 and
17, as the edge removal (10, 11) creates a large connected component and a small chain of
4 nodes, while the edge removal (17, 18) leads to a single isolated node (18). Node 10 is
higher in the culprit list than node 11 because it loses connectivity to a denser component.
The reasoning is similar for the ranking of nodes 18 and 17. CAD does not consider the
differences in the density of the components, and leads to a different ranking of the nodes.

e Custom18-m2Custom18: The ranking of node culprits that DELTACON-ATTR returns is
5, 6, 18, and 17. This is in agreement with properties P1 and P3, since the edge (5, 6) is
more important than the edge (17, 18). Node 5 is more responsible than node 6 for the
difference between the two graphs, as node 5 ends up having reduced connectivity to a
denser component. This property is ignored by CAD, which thus results in different node
ranking.

As we observe, in all the synthetic and easily controlled examples, the ranking of the culprit
nodes and edges that DELTACON-ATTR finds agrees with intuition.

4.4.1.2 Classification Accuracy
To further evaluate the accuracy of DELTACON-ATTR in classifying nodes as culprits, we perform
a simulation-based experiment and compare our method to CAD. Specifically, we set up a
simulation similar to the one that was introduced in [SD14].

We sample 2000 points from a 2-dimensional Gaussian mixture distribution with four compo-
nents, and construct the matrix P € R?%00%2090 yith entries p(, j) = exp ||i — j]|, for each pair
of points (¢, 7). Intuitively, the adjacency matrix P corresponds to a graph with four clusters
that have strong connections within them, but weaker connections across them. By following
the same process and adding some noise in each component of the mixture model, we also build
a matrix QQ, and add more noise to it, which is defined as:

R — 0 with probability 0.95
Y Yugy ~U(0,1)  otherwise,

where U(0,1) is the uniform distribution in (0, 1). Then, we compare the two graphs, G4
and G, to each other, which have adjacency matrices A = Pand B = Q + (R + R')/2,
respectively. We consider culprits (or anomalous) the inter-cluster edges for which R;; # 0,
and the adjacent nodes. According to property P1, these edges are considered important (major
culprits) for the difference between the graphs, as they establish more connections between
loosely coupled clusters.

Conceptually, DELTACON-ATTR and CAD are similar because they are based on related meth-
ods [KKK"11] (Belief Propagation and Random Walk with Restarts, respectively). As shown in
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Figure 4.3: DELTACON-ATTR ties the state-of-the-art with respect to accuracy. Each plot
shows the ROC curves for DELTACON-ATTR and CAD for different realizations of two synthetic
graphs. The graphs are generated from points sampled from a 2-dimensional Gaussian mixture

distribution with four components.

Figure 4.3, the simulation described above corroborates this argument, and the two methods
have comparable performance — i.e., the areas under the ROC curves are similar for various
realizations of the data described above. Over 15 trials, the AUC of DELTACON-ATTR and CAD

is 0.9922 and 0.9934, respectively.
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Observation 4.2: Accuracy on Graphs with Good Cuts

Both methods are very accurate in detecting nodes that are responsible for the differences
between two highly-clustered graphs (Property P1).

4.4.1.3 Runtime
The amount of time taken for DELTACON-ATTR is trivial even for large graphs, given that the
necessary affinity matrices are already in memory from the DELTACON similarity computation.
Specifically, node and edge attribution are log-linear on the nodes and edges, respectively, given
that sorting is unavoidable for the task of ranking.

To compare the runtime of DELTACON-ATTR with the runtime of CAD, we perform the runtime
experiment that the authors ran in [SD14]. Specifically, we generate sparse uniformly distributed
random and symmetric matrices of n = O(107) nodes, and sparsity level % Over 10 trials, the
combined runtime of DELTACON and DELTACON-ATTR is 4.01 minutes on average on a less
powerful machine® than the one used in [SD14], while the reported time for CAD is 5 minutes
on average. Thus, our method is faster than CAD, while having comparable or better accuracy
on small and large synthetic datasets.

4.4.2 Qualitative Results

We employed DELTACON-ATTR to analyze the ENRON dataset, which consists of emails sent
among employees at ENRON over a span of more than two years. The dataset was introduced
in [KY04] and contains 36,692 nodes representing email addresses both internal and external
to Enron along with 367,662 edges representing e-mail communications. Of these, we ignored
e-mail addresses outside of the Enron corporate network, restricting our focus to employees. Fur-
thermore, we restrict application of DELTACON-ATTR to the months of May 2001 and February
2002, which are the most anomalous months according to DELTACON applied on a month-to-
month scale. Based on the node and edge culprit rankings produced as a result, we drew several
real-world conclusions as listed below, involving key players in the ENRON financial scandal.

May 2001:

e Top Influential Culprit: John Lavorato, the former head of Enron’s trading operations and
CEO of Enron America, connected to ~50 new nodes in this month.

e Second Most Influential Culprit: Andy Zipper, VP of Enron Online, maintained contact
with all those from the previous month, but also connected to 12 new people.

8The source code of [SD14] is not yet available, while we have implemented their naive algorithm which is
cubic. To make a more fair comparison between the two methods, we reproduced the experiment that the authors
described, ran only our method, and compared the runtime of DELTACON to the reported runtime of CAD. For this
experiment we used a 64-bit 2.8GHz single quad core AMD Opteron (tm) Processor 854 with 32GB RAM, while the
authors of CAD used a 64-bit 2.3 GHz dual quad core Dell Precision T7500 desktop with 32GB RAM.
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e Third Most Influential Culprit: Louise Kitchen, another employee (President of ENRON
Online) lost 5-6 connections and made 5-6 connections. Most likely, some of the connec-
tions she lost or made were very significant in terms of expanding/reducing her office
network.

February 2002:

o Top Influential Culprit: Liz Taylor lost 51 connections this month but made no new ones -
it is reasonable to assume that she likely quit the position or was fired.

e Second Most Influential Culprit: Louise Kitchen (third culprit in May 2001) made no new
connections, but lost 22 existing ones.

e Third Most Influential Culprit: Stan Horton (CEO of Enron Transportation) made 6 new
connections and lost none. Some of these connections are likely significant in terms of
expanding his office network.

e Fourth, Fifth and Sixth Most Influential Culprits: Employees Kam Keiser, Mike Grigsby
(former VP for Enron’s Energy Services) and Fletcher Sturm (VP) all lost many connections
and made no new ones. Their situations were likely similar to those of L. Taylor and
L. Kitchen.

4.5 Related Work

We categorize relevant prior literature into two main areas: anomaly detection, and blame
attribution. We give the related work in each area, and mention what sets our method apart.

Anomaly Detection. Anomaly detection in static graphs has been studied using various data
mining and statistical techniques [ATK14, KC10, ACK" 12, LKKF13, KLKF14]. Detection of
anomalous behaviors in time-evolving networks is more relevant to our work, and is covered
in the surveys [ATK14, RSK"15]. A non-inclusive list of works on temporal graph anomaly
detection follows. [MGF11], [KPF12] and [MWP™14] employ tensor decomposition to identify
anomalous substructures in graph data in the context of intrusion detection. Henderson et
al. propose a multi-level approach for identifying anomalous behaviors in volatile temporal
graphs based on iteratively pruning the temporal space using multiple graph metrics [HERF*10].
CopyCatch [BXG'13] is a clustering-based MapReduce approach to identify lockstep behav-
ior in Page Like patterns on Facebook. Akoglu and Faloutsos use local features and the node
eigen-behaviors to detect points of change — when many of the nodes behave differently -, and
also spot nodes that are most responsible for the change point [AF10]. Finally, [SD14] monitors
changes in the commute time between all pairs of nodes to detect anomalous nodes and edges in
time-evolving networks. All these works use various approaches to detect anomalous behaviors
in dynamic graphs, though they are not based on the similarity between graphs, which is the
focus of our work.

Blame Attribution. Some of the anomaly detection methods discover anomalous nodes, and
other anomalous structures in the graphs. In a slightly different context, a number of techniques
have been proposed in the context of node and edge importance in graphs. PageRank, HITS
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[Kle99b] and betweenness centrality (random-walk-based [New05] and shortest-path-based
[Fre77]) are several such methods for the purpose of identifying important nodes. [TPER"12]
proposes a method to determine edge importance for the purpose of augmenting or inhibiting
dissemination of information between nodes. To the best of our knowledge, this and other
existing methods focus only on identifying important nodes and edges in the context of a single
graph. In the context of anomaly detection, [AF10] and [SD14] detect nodes that contribute
mostly to change events in time-evolving networks.

Among these works, the most relevant to ours are the methods proposed by [AF10] and [SD14].
The former —which is based on [IKIK04]- extracts node features, computes an “eigen”-behavior
per node, and spots changes each node’s behavior over time. Therefore, the method relies
on the selection of features (e.g., in-degree, out-degree, edge weights, number of triangles).
Moreover, because of the focus on local egonet features, it may not distinguish between small
and large changes in time-evolving networks, and it also tends to return a large number of false
positives [SD14]. At the same time, and independently from us, Sricharan and Das proposed
CAD [SD14], a method which defines the anomalousness of edges based on the commute
time between nodes. The commute time is the expected number of steps in a random walk
starting at ¢, before node j is visited and then node i is reached again. This method is closely
related to DELTACON-ATTR as Belief Propagation and Random Walks with Restarts (the core
idea behind CAD) are equivalent under certain conditions [KKK " 11]. However, the methods
work in different directions: DELTACON-ATTR first identifies the most anomalous nodes, and
then defines the anomalousness of edges as a function of the outlierness of the adjacent nodes;
CAD first identifies the most anomalous edges, and then defines all their adjacent nodes as
anomalous without ranking them. Our method does not only find anomalous nodes and edges
in a graph, but also ranks them in decreasing order of anomalousness (which can be used for
guiding attention to important changes).

4.6 Conclusion

In this work, we tackled the problem of node- and edge-based blame attribution between
two graphs with known node correspondence. To this end, we proposed DELTACON-ATTR,
an effective and scalable blame attribution approach which leverages the DELTACON graph
similarity algorithm and adheres to a number of intuitive desiderata such as edge importance,
edge “submodularity,” weight awareness and focus awareness. Our approach meets these
criteria while other state-of-the-art competitors do not. We demonstrates intuitiveness and
adherence to the aforementioned properties on a variety of synthetic graphs, and further
demonstrate comparable anomaly detection performance to state-of-the-art approaches while
also maintaining a shorter runtime. Finally, we show some qualitative results and interesting
findings upon applying DELTACON-ATTR to the ENRON e-mail dataset which signal abnormal
changes in connectivity across key months of the ENRON scandal.
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Based on content published in [LSK15, LSSK]

Chapter 5

CoNDENSE: Reducing Large
Graphs to Small Supergraphs

Harnessing the power of various graph
decomposition methods for summarization.

Given the increasing size and scale of graphs, summarizing and routing attention to their
most important and relevant components is a key task. In this chapter, we propose a new
state-of-the-art graph summarization algorithm called CoNDENSE which summarizes an
input graph using approximate "super-graphs" conditioned on a set of diverse, predefined
structural patterns. Our method can incorporate a variety of summary-assembly methods
including traditional clustering and partitioning algorithms, efficiently integrate and au-
tomatically annotate their outputs, and produce interpretable and sparse visualizations of

large graphs.

5.1 Introduction

In an era of continuous generation of large amounts of data, summarization techniques are
increasingly crucial as they abstract away noise, help uncover patterns, and hence inform
human decision processes. In this paper, we focus on the summarization of graphs, which
are powerful structures that capture a number of phenomena from communication between
people to interactions between neurons in our brains. Graph summarization methods lead to
the reduction of data volume, speedup of graph algorithms, improved storage and query time,
and interactive visualization. The graph mining community has mainly studied summarization
techniques for the structure of static, plain graphs [CKL*09, NRS08] and to a smaller extent,
methods for attributed or dynamic networks [SKZ"15].
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(a) Prior work [KKVF14a]. (b) Our method: CONDENSE-STEP.

Figure 5.1: AS-Oregon supergraphs: CONDENSE generates simpler and more compact
supergraphs. Yellow, red, and green nodes for stars, cliques, and bipartite cores, respectively.

We focus on summarizing the structure of a given large-scale network by selecting a small set
of its most informative structural patterns. Inspired by recent work [NRS08, KKVF14a], we
formulate graph summarization as an information-theoretic optimization problem in search of
local structures that collectively minimize the description length of the graph.

We introduce CoNDENSE (CONditional Diversified Network Summarization), a unified, edge-
overlap-aware graph summarization method that summarizes a given graph with approximate
“supergraphs” conditioned on diverse, predefined structural patterns. An example is shown in
Figure 5.1, where the (super)nodes in subfigure 5.1b correspond to sets of nodes in the original
graph. Specifically, the predefined patterns include structures that have well-understood graph-
theoretical properties and have been found in many real-world graphs [kle99a, AGMF14, FFF99,
PSST10]: cliques, stars, bipartite cores, chains, and patterns with skewed degree distribution.
Our approach selects the patterns that minimize the description of the graph in terms of num-
ber of bits. Our work effectively addresses three main shortcomings of prior summarization
work [KKVF14a], namely: (i) heavy dependence on the structural pattern discovery method and
its intrinsic bias towards star-like structures; (ii) inability to handle edge-overlapping patterns
in the summary, leading to redundancy; and (iii) heuristic dependence on the order in which
structures are considered for inclusion in the summary. Our proposed unified approach effec-
tively handles these issues and results in robust and compact summaries with 5 — 10x fewer
structural patterns (or supernodes), up to 50% better compression and better node coverage of
the input graph.

CoNDENSE has three main modules that tackle the above-mentioned shortcomings: (i) A unified
structural pattern discovery module leverages the strengths of various popular graph clustering
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methods (e.g., Louvain [BGLL08], METIS [KK99]) to address the structural biases that each
method introduce in the graph summary; (i) A Minimum Description Length-based (MDL)
formulation with a penalty term effectively minimizes redundancy in edge coverage by the
structural patterns included in the summary, thereby promoting higher node coverage. This term
is paramount when the candidate structural patterns have significant edge overlap, such as in
the case of our unified structure discovery module; (iii) An iterative, multi-threaded, and divide-
and-conquer-based summary assembly module reduces even more bias during the summary
creation process by being independent of the order in which the candidate structural patterns
are considered. This parallel module is up to 53 faster than its serial version (on a 6-core
machine). Additionally, we show how CoNDENSE can be further used for visual interpretation
and summarization of large graphs with an approximate supergraph creation module which
depicts a large graph concisely using few structural (possibly overlapping) “supernodes” and
“superedges” between them.

Our contributions in this paper are as follows:

e Approach: We introduce CONDENSE, an effective unified, edge-overlap-aware graph sum-
marization approach with a powerful parallel summary assembly module (k-STEP) that creates
compact and easy-to-understand graph summaries with high node coverage and low redun-
dancy.

e Novel Metric: We propose a way to leverage CONDENSE as a proxy to compare graph
clustering methods with respect to their summarization performance on large, real-world
graphs, complementing the usual evaluation metrics in the related literature (e.g., modularity,
conductance).

e Experiments: We present a thorough empirical analysis on real networks to evaluate the
summary quality and runtime, and study the properties of seven clustering methods.

5.2 Related Work and Background

Our work is related to graph summarization methods, MDL, and graph clustering. We review
each of these topics in turn.

Graph Summarization. Most research efforts focus on plain graphs and can be broadly
classified as group-based [LT10, RGMO03], compression-based [CKL 09, NRS08], simplification-
based, influence-based, and pattern-based [CH94]. Dynamic graph summarization has been
studied to a much smaller extent [SKZ*15]. Most related to our work are the ideas of node
grouping and graph compression. Built on these ideas, two representative methods, MDL-
SUMMARIZATION [NRS08] and VoG [KKVF14a], are MDL-based summarization methods that
compress the graphs by finding near-structures (e.g., (near-) cliques, (near-) bipartite cores).
MDL-sUMMARIZATION, which iteratively combines neighbors into supernodes as long as it helps
with minimizing the compression cost, includes mostly cliques and cores in the summaries,
and has high runtime complexity. On the other hand, VoG finds structures by employing
StasHBURN [KF11a] (explained below) and hence is particularly biased towards stars. Moreover,
it creates summaries (i.e., lists of structures) using a greedy heuristic on a pre-ordered set of
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structures (cf. Section 5.4.3). Unlike these methods, CONDENSE performs ensemble pattern
discovery, handles edge-overlapping structures, and its summary assembly is robust to the struc-
ture ordering. Thus, it leads to more compact and less biased summaries, creates approximate
and easy-to-understand supergraphs, and can be used as a proxy to evaluate clustering methods
in a novel way.

MDL in Graph Mining. Many data mining problems are related to summarization and pat-
tern discovery, and, thus, to Kolmogorov complexity [FM07], which can be practically imple-
mented by the MDL principle [Ris83]. Applications include clustering [CV05], community
detection [CPMF04], pattern discovery in static and dynamic networks [KKVF14a, SKZ*15],
and more.

Graph Clustering. Graph clustering and community detection are of great interest to many
domains, including social, biological, and web sciences [GN02, BKM 108, For10]. Here, we
leverage several graph clustering methods to obtain diversified graph summaries, since each
method is biased toward certain types of structures, such as cliques and bipartite cores [BGLLO0S,
KK99, YL13] or stars [KF11a]. Unlike existing literature [LLM10] where clustering methods are
compared with respect to classic quality measures, we also propose to use CONDENSE as a vessel
to evaluate the methods’ summarization power. We leverage seven decomposition methods,
which we compare quantitatively in Table 5.1:

o SLASHBURN [KF11a] is a node reordering algorithm initially developed for graph compression.
It performs two steps iteratively: (i) It removes high-centrality nodes from the graph; (ii)
It reorders nodes such that high-degree nodes are assigned the lowest IDs and nodes from
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Z /M el 4 = — «
: S 3| 3 . T |
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a 3 3 = 2 S =
s > = =) &} Q Q
: 2 5 = z Z .
4 = =
Overlapping v X X X v v v
Clusters
Cliques Many Many Many Many Some Many Many
Stars Many Some Some Some Many Some Some
Bipartite Cores Some Few Many Some Some Few Few
Chains Few Few Few Few Few Few Few
Hyperbolic Few Few Few Few Many Few Few
Structures
. 52
Complexity O(t(m +nlogn)) | O(nlogn) | O(m +nk) | O(m - k) O(k(rh;h)])()g h O(d-n-t) | O(t(m+n))
h
Summarization Excellent Very Good Good Good Poor Good Poor
Power

Table 5.1: Qualitative comparison of the graph clustering techniques included in CoNDENSE.
Symbols: n = number of nodes, m = number of edges, k = number of clusters/partitions, ¢t =
number of iterations, d = average degree, h(m;) = number of nodes (edges) in hyperbolic
structure.
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disconnected components get the highest IDs. The process is repeated on the giant connected
component. We leverage this process by identifying structures from the egonet of each high-
centrality node, and the disconnected components, as subgraphs.

e LouvaiN [BGLL08] is a modularity-based partitioning method for detecting hierarchical
community structure. The method is iterative: (i) Each node is placed in its own community.
Then, the neighbors j of each node 7 are considered, and 7 is moved to j's community if the move
produces the maximum modularity gain. The process is applied repeatedly until no further gain
is possible. (ii) A new graph is built whose supernodes represent communities, and superedges
are weighted by the sum of weights of links between the two communities. The algorithm
typically converges in a few passes.

e SPECTRAL clustering refers to a class of algorithms that utilize eigendecomposition to identify
community structure. We utilize one such spectral clustering algorithm [Hes], which partitions
a graph by performing k-means clustering on the top-£ eigenvectors of the input graph. The
idea behind this clustering is that nodes with similar connectivity have similar eigen-scores in
the top-k vectors and form clusters.

e METIS [KK99] is a cut-based k-way multilevel graph partitioning scheme based on multilevel
recursive bisection (MLRB). Until the graph size is substantially reduced, it first coarsens the
input graph by grouping nodes into supernodes iteratively such that the edge-cut is preserved.
Next, the coarsened graph is partitioned using MLRB, and the partitioning is projected onto the
original input graph G through backtracking. The method produces £k roughly equally-sized
partitions.

e HYyCoM [AGMF14] is a parameter-free algorithm that detects communities with hyperbolic
structure. It approximates the optimal solution by iteratively detecting important communities.
The key idea is to find in each step a single community that minimizes an MDL-based objective
function given the previously detected communities. The iterative procedure consists of three
steps: community candidates, community construction, and matrix deflation.

e BicCram [YL13] is a scalable overlapping community detection method. It is built on the
observation that overlaps between communities are densely connected. By explicitly modeling
the affiliation strength of each node-community pair, the latter is assigned a nonnegative latent
factor which represents the degree of membership to the community. Next, the probability of
an edge is modeled as a function of the shared community affiliations. The identification of
network communities is done by fitting BicCrLaAM to a given undirected network G.

e KCBC [LSK15] is inspired by the k-cores algorithm [GTV11] that unveils densely connected
structures. A k-core is a maximal subgraph for which each node is connected to at least k
other nodes. KCBC iteratively removes k-cores starting by setting & equal to the maximum core
number (max value k for which the node is present in the resulting subgraph) across all nodes.
Each connected component in the induced subgraphs is identified as a cluster, and is removed
from the original graph. The process is repeated on the remaining graph.
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Other clustering methods that we considered (e.g., Weighted Stochastic Block Model or WSBM)
are not included in CoNDENSE due to scalability. For instance, WSBM took more than a week to
finish on our smallest dataset.

5.3 CoNDENSE: Proposed Model

We formulate the graph summarization problem as a graph compression problem. Let G(V, &)
be a graph with n = |V| nodes and m = |€| edges, without self-loops. The Minimum Description
Length (MDL) problem, which is a practical version of Kolmogorov Complexity [FM07], aims to
find the best model M in a given family of models M for some observed data D such that it
minimizes L(M) + L(D|M), where L(M) is the description length of M in bits and L(D|M)
is the description length of D which is encoded by the chosen model M (see Chapter 2 for more
background on MDL). Table 5.2 provides the definitions of the recurrent symbols used in this
section.

We consider summaries in the model family M, which consists of all possible permutations
of subsets of structural patterns in (). One option is to populate {2 with the frequent patterns
that occur in the input graph (in a data-driven manner), but frequent subgraph mining is NP-
complete and does not scale well. Moreover, even efficient approximate approaches are not
applicable to unlabeled graphs and can only handle small graphs with a few tens or hundreds

Notation Description

GV, E), A graph, and its adjacency matrix

V,n=|V| node-set and number of nodes of G, resp.

E,m=|E| edge-set and number of edges of G, resp.

k # of clusters or communities or patterns

t # of iterations

h, mp, size of hyperbolic community, and # of edges in it, resp.

d average degree of nodes in G

Rslash # of hub nodes to slash per iteration in SLASHBURN

fe,be, st, ch, hs full clique, bipartite core, star, chain, hyperbolic structure, resp.

| fel, |bel, |st], |ch|, |hs|]  number of nodes in the corresponding structure
Q predefined set of structural pattern types

M a model or summary for G

s structure in M

S|, |s] cardinality of set S and number of nodes in s, resp.

s, |]s]]” # existing and non-existing edges of A that s describes

E error matrix, E =M @ A, where @ is exclusive OR

O edge-overlap penalty matrix

L(G, M) # of bits to describe model M, and G using M
L(M),L(O), L(s) # of bits to describe M, the edge overlap O, and structure s

Table 5.2: Major symbols and definitions.
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of nodes. To circumvent this problem, we choose set {2 with five patterns that are common in
real-world static graphs [kle99a, AGMF14], correspond to interesting real behaviors, and can
(approximately) describe a wide range of structural patterns: stars (st), full cliques (fc), bipartite
cores (bc), chains (ch), and hyperbolic structures with skewed degree distribution (hs). Under
the MDL principle, any approximate structures (e.g., near-cliques) can be easily encoded as
their corresponding exact structures (e.g., fc) with some errors. Since many communities have
hyperbolic structure [AGMF14] and it cannot be expressed as a simple composition of the other
structural patterns in {2, we consider it separately. Motivated by real-world discoveries, we focus
on structures that are commonly found in networks, but our framework is not restricted to them;
it can be readily extended to other, application-dependent types of structures as well.

Formally, we tackle the following problem:

Problem 5.1: Overlap-Aware Summarization

Given a graph GG with adjacency matrix A and structural pattern types €2, we seek to find
the model M that minimizes the encoding length of the graph and the redundancy in edge
coverage:

L(G,M) = L(M)+ L(E) + L(O) (5.1)

where M is A’s approximation induced by M, E = M @® A is the error matrix to correct for
edges that were erroneously described by M, & is exclusive OR, and O is the edge-overlap
matrix to penalize edges covered by many patterns.

Model M induces a supergraph with each s € M as an (approximate) supernode, and weighted
superedges between them. Before we further formalize the task of encoding the model, the
error matrix, and the edge-overlap penalty matrix, we provide a visual illustration of our MDL
objective.

An Illustrative Example. Figure 5.2 shows the original adjacency matrix A of an input graph,
which is encoded as (i) M (the matrix that is induced by the model M ), and (ii) the error matrix E
(which captures additional/missing edges that are not properly described in M ). In this example,
there are 6 structures in the model (from the top left corner to the bottom right corner: a star, a large
clique, a small clique, a bipartite core, a chain, and a hyperbolic structure), where the cliques and
the bipartite core have overlapping nodes and edges.

5.3.1 Encoding the Model
To fully describe a model M € M for the input graph G, we encode it as L(M):

|M|+\Q\—1>

L(M) = Ly(|M| + 1) + log ( Q-1

+ 3" (~logPr(a(s) | M)+ L(s))  (5.2)

seM

where in the first two terms we encode the number of structural patterns in M using Rissanen’s
optimal encoding for integers [Ris83] and the number of patterns per type in €2, respectively.
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Figure 5.2: An illustration of MDL encoding of a toy graph.

Then, for each structure s € M, we encode its type z(s) using optimal prefix codes [CT06], and
its connectivity L(s). Next, we introduce the MDL encoding per type of structure in €2.

e Stars: A star consists of a “hub” node connected to two or more “spoke” nodes. We encode it
as:

n—1
L(st) = Ly(|st| — 1) + logan + lon(\st! B 1) (5.3)

where we encode in order the number of spokes, the hub ID (we identify it out of 7 nodes using
an index over the combinatorial number system), and the spoke IDs.

o Cliques: A clique is a densely connected set of nodes with:

L(0) = Lu(lfel) + tome ., ) 69

where we encode its number of nodes followed by their IDs.

e Bipartite Cores: A bipartite core consists of two non-empty sets of nodes, L and R, which
have edges only between them, and L N R = (). Stars are a special case of bipartite cores with
|L| = 1. The encoding cost is given as:

L(be) = Ln(|L|) + Ln(|R]) + logs QZ’) + logs (,20, (5.5)

where we encode the number of nodes in L and R followed by the node IDs in each set.

e Chains: A chain is a series of nodes that are linked consecutively-e.g. node-set {a, b, ¢, d} in
which a is connected to b, b is connected to ¢, and ¢ is connected to d. Its encoding cost, L(ch),
is:
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[ch|
L(ch) = Lu(|ch| — 1) + ) _loga(n — i + 1) (5.6)

i=1
where we encode its number of nodes, followed by their node IDs in order of connection.

e Hyperbolic Structures: A hyperbolic structure or community [AGMF14] has skewed degree
distribution which often follows a power law with exponent between -0.6 and -1.5. The encoding
length of a hyperbolic structure hs is given as:

L(hs) = 7+ Ln(|hs|) + logy ( ) +1ogy (|A(hs)]) + [[hsl|lx + [|hs||'ly (5.7)

n
|hs|

where we first encode the power-law exponent (using Rissanen’s encoding [Ris83] for the
integer part, the number of decimal values, and the decimal part) with r bits, followed by the
number of nodes and their IDs. Then, we encode the number of edges in the structure (=| A (hs)]),
and use optimal prefix codes, ly, [1, for the missing (||hs||") and present (|| hs||) edges, respectively.

Specifically, [y = —log((||hs||/(||hs]| + ||hs||")), and [; is defined similarly.

5.3.2 Encoding the Errors
Given that M is a summary, and M is only an approximation of A, we also need to encode
errors of the model. For instance, a near-clique is represented as a full clique in the model, and,
thus, contributes some edges to the error matrix (i.e., the missing edges from the real data).
We encode the error E = M & A in two parts, ET and E~, since they likely follow different
distributions [KKVF14a]. The former encodes the edges induced by M which were not in the
original graph, and the latter the original edges that are missing in M:

LET) = logo([ET]) + [[ET||L + |[E¥]| D (5.8)
L(ET) = log(|E7[) + [[E7[|L + |[E7 'l (5.9)

where we encode the number of 1s in E* (or E7), followed by the actual 1s and 0s using optimal
prefix codes (as before).

5.3.3 Encoding the Edge-Overlap Penalty

Several of the graph decomposition methods that we consider (e.g., SLaAsHBurN, KCBC in
Table 5.1) generate edge-overlapping patterns. The MDL model we have presented so far
naturally handles node overlaps—if two structures consist of the same large set of nodes, only
one of the them will be chosen during the encoding cost minimization process, because their
combination would lead to higher encoding cost. However, up to this point, the model considers
a binary state for each edge: that is, an edge is described by the model M, or not described by it.
This can lead to summaries with high redundancy in edge coverage and low node coverage, as
excessively repeated edge coverage is not penalized.
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To explicitly handle extensive edge overlaps in the graph summaries, we add an extra penalty
term, L(O), in the optimization function in Equation (5.1). We introduce the matrix O, which
maintains the number of times each edge is described by M, i.e., the number of selected structures
in which the edge occurs. We encode the description length of O as:

L(0) =1log,(|O]) + [|O]|l + ||O[['lo + > Lu(lo) (5.10)
0€€(0)

where we first encode the number of distinct overlaps, and then use the optimal prefix code to
encode the number of the present and missing entries in O. As before, [ and [, are the lengths
of the optimal prefix codes for the present and missing entries, respectively. Finally, we encode
the weights in O using the optimal encoding for integers Ly [Ris83]. We denote with £(O) the
set of non-negative entries in matrix O.

The introduction of the overlap term in the optimization function inherently leads to better
node coverage of the graph. Intuitively, a new structure with high edge overlap to an existing
structure is commensurately penalized under this scheme for repeating some of the existing
structure’s edges. This results in choosing structures which explain different regions of the
graph without excessively repeating edges, biasing the solution away from redundancy.

Our proposed edge-overlap aware encoding can effectively handle a model family M that
consists of subsets of node- and edge-overlapping structural patterns, and can choose a model
M that describes the input graph well, and also minimizes redundant modeling of nodes and
edges.

54 CoNDENSE: Our Proposed Algorithm

Based on the model from Section 5.3, we propose CONDENSE, an ensemble, edge-overlap-aware
algorithm that summarizes a graph with a compact supergraph consisting of a diverse set
of structural patterns (e.g., fc, hs). COoNDENSE consists of four modules, which we give in
Algorithm 5.1 and describe in detail next.

5.4.1 Module A: Unified Pattern Discovery Module

As we mentioned, earlier, in our formulation, we consider summaries in the model family M,
which consists of all possible permutations of subsets of structural patterns in €2 (e.g., a summary
with 10 full cliques, 3 bipartite cores, 5 stars and 9 hyperbolic structures). Towards this goal,
the first step is to discover subgraphs in the input graph. These can then be used to build its
summary. To find the ‘perfect’ graph summary, we would need to generate all possible (2")
patterns for a given graph G, and then, from all possible (22") combinations of these patterns
pick the set that minimizes Equation (5.1). This is intractable even for small graphs. For example,
for n = 100 nodes, there are more than 2"°"lion (1 nonillion = 10*) possible summaries. We
reduce the search space by considering patterns that are found via graph clustering methods,
and are likely to fit well the structural patterns in (2.
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Algorithm 5.1: CONDENSE
1: Input: graph G, parameters of clustering methods in Module A

// Module A: Pattern discovery: Discovery of a diverse set of patterns P.
P = S1AsHBURN (G, hgjasn) U LouvalN (G, 7) U SPECTRAL (G, k) U METIS (G, k)

//Module B: MDL-based structural pattern identification as full cliques, bipartite cores, stars,
// chains and hyperbolic structures.
forge P
forw € Q
// e.g., hub identification in star structure w="st’ (Section 5.4.2)
10: 7(g,w) = ‘best’ representation of g as structure type w
11: /1 s: type of structure for pattern g using its best representation (g, w)

R A

U HyCoM (G) U BicCram (G) U KCBC (G) {discussion of parameters in Sec. 5.5}

122 s=argmingeg Ly(gw(9,w) = argmingeofL(w) + L(ES) + L(E;)} {using Eq. (5.3)-(5.7)}

13: //Module C: Overlap-aware summary assembly by employing STEP or its faster variants
(Section 5.4.3).

14: M = argmin L(G, M) = argmin{L(M) + L(E) + L(O)} {Eq. (5.1),(5.2),(5.8)-(5.10)}

15: // Module D: Approximate supergraph Gs(Vg, £s) creation conditional on the discovered
patterns
16: // (supernodes linked via weighted superedges).

17: Vg ={s e M} {supernodes = structures in M}
18: Eg = {(si, 55, wi;) | wij = [{u,v}], node u € s;, node v € 5,7 # j} {superedges}

19: return approximate supergraph Gs(Vs, £s) (summary M)

The literature is rich in graph clustering methods [BGLL08, KK99, YL13, KF11a]. However,
each approach is biased towards specific types of structures, which are most often cliques
and bipartite cores. Choosing a decomposition method to generate patterns for the summary
depends on the domain, the expected patterns (e.g., mainly clique- or star-like structures), and
runtime constraints. To mitigate the biases introduced to the summary by individual clustering
methods, and consider a diverse set of candidate patterns, we propose a unified approach that
leverages seven existing clustering methods: SLASHBURN, Louvain, SpEcTrAaL, METIS, HyCoM,
BigCraMm, and KCBC (which we described in Sec. 5.2). In Table 5.1, we present the qualitative
advantages, disadvantages, and biases of the methods. Specifically, SLaAsHBURN tends to provide
excellent graph coverage and biased summaries in which stars dominate. Conversely, most other
approaches produce primarily full cliques and stars, and some bipartite cores. HyCoM finds
mainly hyperbolic communities with skewed degree distributions.

Our proposed unified approach (Algorithm 5.1, lines 2-4) is expected to lead to summaries with
a better balanced set of structures (i.e., a good mix of exact and approximate cliques, bipartite
cores, stars, chains and hyperbolic structures), and lower encoding cost than any standalone
graph clustering method. At the same time, it is expected to take longer to generate all the
patterns (although the clustering methods can trivially run in parallel), and the search space
for the summary becomes larger—equal to the union of all the subgraphs that the clustering
methods generate.
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In the experimental evaluation, we use CONDENSE to empirically compare the impact of these
methods on the summary quality and evaluate their summarization power.

5.4.2 Module B: Structural Pattern Identification Module

This module (Algorithm 5.1, lines 5-12) identifies and assigns an identifier structural pattern in
(2 to all the subgraphs found in module A. In other words, this module seeks to characterize
each cluster with its best-suited pattern in Q = {fc, st,bc,ch, hs}. Let g be the induced
graph of a pattern generated in Step 1, and w be a pattern in (2. Following the reasoning in
Section 5.3, we use MDL as a selection criterion. To model g with w, we first model g with its
best representation as structure type w (explained in detail next), (g, w), and define its encoding
cost as Ly(g.(9,w) = L(w) + L(g|w) = L(w) + L(E}) + L(E, ), where E} and E; encode the
erroneously modeled and unmodeled edges of g. The pattern type in w that leads to the smallest
MDL cost is used as the identifier of the corresponding subgraph ¢ (lines 11-12 in Alg. 5.1).

Finding the best representation (g, w). Per pattern type w, each pattern g can be represented by
a family of structures—e.g., we can represent g with as many bipartite cores as can be induced
on all possible permutations of ¢’s nodes into two sets L (left nodeset) and R (right nodeset) .
The only exception is the full clique (fc) pattern, which has a unique (unordered) set of nodes. To
make the problem tractable, we use the graph-theoretical properties of the pattern types in €2 in
order to choose the representation of g which minimizes the incorrectly modeled edges.

Specifically, we represent g as a star by identifying its highest-degree node as the hub and
all other nodes as spokes. Representing ¢ as a bipartite core reduces to finding the maximum
bipartite pattern, which is NP-hard. To scale-up the computation, we approximate it with
semi-supervised classification with two classes L and R, and the prior information that the
highest-degree node belongs to L and its neighbors to R. For the classification, we use Fast
Belief Propagation [KKK ™ 11] with heterophily between neighbors. Similarly, representing g as
a chain reduces to finding its longest path, which is also NP-hard. By starting from a random
node, we perform Breadth First Search two times, and end on nodes v; and v,, respectively.
Then, we consider the path v; to v, (based on BES), and perform local search to further expand
it. For the hyperbolic structures, we used power-law fitting (http://tuvalu.santafe.edu/
~aaronc/powerlaws/ by Clauset et al.). Lines 7-10 in Algorithm 5.1 succinctly describe the
search of the best representation r for every subgraph g and pattern type w.

5.4.3 Module C: Structural Pattern Selection Module

This module is key for creating compact summaries and is described in lines 13-14 of Alg. 5.1.
Ideally, we would consider all possible combinations of the previously identified structures and
pick the subset that minimizes the encoding cost in Equation (5.1). If | S| structures have been
found and identified in the previous steps, finding the optimal summary from 2! possibilities is
not tractable. For reference, we have seen empirically that graphs with about 100,000 nodes, have
over 50K structures. The optimization function is neither monotonic nor submodular, in which
case a greedy hill climbing approach would give a (1 — %)—approximation of the optimal.

Instead of considering all possible combinations of structures for the summary, prior work has

proposed GNF, a heuristic that considers the structures in decreasing order of “local” encoding

benefit and includes in the model the ones that help further decrease the graph’s encoding
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cost L(G, M). The local encoding benefit [KKVF14a] is defined as L(g,0) — L(g,w), where
L(g, () represents the encoding of g as noise (i.e., empty model). Although it is efficient, its
output summary and performance heavily depend on the structure order. To overcome these
shortcomings and obtain more compact summaries, we propose a new structural pattern selection
method, STEP, as well as a faster serial version and three parallel variants: STEP-P, STEP-PA, and
K-STEP.

o STEP. This method iteratively sifts through all the structures in § and includes in the summary
the structure that decreases the cost in Equation (5.1) the most, until no structure further
decreases the cost. Formally, if S; is the set of structures that have not been included in the
summary at iteration 7, STEP chooses structure s; s.t.
s; = argmin L(G, M;_, U {s})
SES;
where M;_; is the model at iteration i — 1, and My = () is the empty model. CONDENSE with
SteP finds up to 30% more compact summaries than baseline methods, but its quadratic runtime
O(|S|?) makes it less ideal for large datasets with many structures S produced by module A.

Therefore, we propose four methods that significantly reduce STEP’s runtime while maintaining
its summary quality.

e STEP-P. The goal of STEP-P is to speed up the computation of STEP by iteratively solving
smaller, “local” versions of STEP in parallel. STEP-P begins by dividing the nodes of the graph
into p partitions using METIS. Next, each candidate structural pattern is assigned to the partition
with the maximal node overlap. STEp-P then iterates until convergence, with each iteration
consisting of two phases:

1. Parallelize. In parallel, a process is spawned for each partition and is tasked with finding the
structure that would lower the encoding cost in Eq. (5.1) the most out of all the structures
in its partition. For any given partition, there may be no structure that lowers the global
encoding cost.

2. Sync. From all structures returned in phase 1, the one that minimizes Equation (5.1) the
most is added to the summary. If no structure reduces the encoding cost, the algorithm has
converged. If not, phase 1 is repeated.

e STEP-PA. In addition to parallelizing STEP, we introduce the idea of “inactive” partitions,
which is an optimization designed to reduce the number of processes that are spawned by
STEP-P. STEP-PA differs from STEP-P by designating every partition of the graph as active, then
if a partition fails x times to find a structure that lowers the cost in Equation (5.1), that partition
is declared inactive and is not visited in future iterations. Thus, the partitions with structures
not likely to decrease the overall encoding cost of the model get x chances (e.g. 3) before being
eventually ruled out, effectively reducing the number of processes spawned for each iteration of
STEP-PA after the first z iterations.

e K-STEP. The pseudocode of this variant is given in Algorithm 5.2. k-STEP further speeds
up STEP while maintaining high-quality summaries. This algorithm has two phases: the first
applies STEP-P K times (lines 3-5) to guarantee that the initial structural patterns included in the
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summary are of good quality. The second expands the summary by building local solutions of
STEP-P per active partition (lines 8-9). If a partition does not return any solution, it is flagged as
inactive (lines 10-11). For the partitions that returned non-empty solutions, the best structure
per partition is added into a temporary list (line 13), and a parallel “glocal” step applies STEP-P
over that list and populates the summary (lines 14-16). We refer to this step as “glocal” because
it is a global step within the local stage. The local stage is repeated until no active partitions are

left.

Algorithm 5.2: k-STEP

1: Input: graph G(V, £); list of structures S; P partitions; K iterations

2: ActivePartitions = {1, ..., P} {all partitions are active}

3: // Stage 1: Global

4: fori=1:K

5 run STEP-P () {summary of K structures}

6: // Stage 2: Local Stage

7: repeat:

8 for p € ActivePartitions: {2.1: Local sub-stage }

9 s = run STEP-P-Parallelize() {s = best structure in p}
10: if s=10 {no structure returned}
11: ActivePartitions.remove(p) {partition p is inactive}
12: else
13: bestStructs.add(s) {s is candidate for M}

{p remains active}

14:  repeat: {in parallel, add structures to M}
15: run STEP-P-Sync(bestStructs) {2.2: Glocal sub-stage }

16:  until bestStructs = () or Eq. (5.1) is minimized
17: until ActivePartitions = ()

18: return M

5.4.4 Module D: Approximate Supergraph Creation Module

In the empirical analysis (Section 3.6), we show that STEP results in graph summaries with up
to 80-90% fewer structures than the baselines, and thus can be leveraged for tractable graph
visualization. The last and fourth module of CoNDENSE (Algorithm 5.1, lines 15-18), instead
of merely outputting a list of structures, creates an “approximate” supergraph which gives a
high-level but informative view of large graphs. An exact supergraph, Gs(Vs, Es), of a graph
G(V, ) consists of a set of supernodes Vs = P(V) which is a power set (i.e., family of sets)
over V and a set of superedges £s. The superweight is often defined as the sum of edge weights
between the supernodes’ constituent nodes.

Unlike most prior work, CONDENSE creates “approximate,” yet powerful supergraphs: (i) the
supernodes do not necessarily correspond to a set of nodes with the same connectivity, but to rich
structural patterns (including hyperbolic structures and chains); (ii) the supernodes may have
node overlap, which helps to pinpoint bridge nodes (i.e., nodes that span multiple communities);
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(iii) the supernodes may show deviations from the perfect corresponding structural patterns
(i.e., they correspond to near-structures).

Definition 5.1: CONDENSE Approximate Supergraph

A ConDENSE approximate supergraph of G is a supergraph with supernodes that cor-
respond to possibly-overlapping structural patterns in (). These patterns are approximations
of clusters in G.

In other words, the CONDENSE supergraphs consist of supernodes that are fc, st, ch, bc, and hs.
To obtain an approximate supergraph, we map the structural patterns returned in module C to
approximate supernodes. Then, for every pair of supernodes, we add a superedge if there were
edges between their constituent nodes in )V and set its superweight equal to the number of such
(unweighted) edges, as shown in line 18 of Algorithm 5.1.

To evaluate the edge overlap in the summaries, and hence the effectiveness of our overlap-
aware encoding, we use the normalized overlap metric. The normalized overlap between two
supernodes is their Jaccard similarity. It is 0 if the supernodes do not share any nodes, and
close to 1 if they share many nodes compared to their sizes. Although it is not the focus of the
current paper, the CONDENSE supergraphs can be used for visualization and potentially for
approximation of algorithms on large networks (without specific theoretical guarantees, at least
in the general form).

5.4.5 CoNDENSE: Complexity Analysis

We discuss the complexity of CONDENSE by considering each module separately:

The first module has complexity O(m + nk), which corresponds to SPECTRAL. However, in
practice, HyCoM is often slower than SPECTRAL, likely due to implementation differences (JAVA
vs. MATLAB). The complexity of this module can be lowered by selecting the fastest methods.
Module B is linear on the number of edges of the discovered patterns. Given that they are
overlapping, the computation of L(G, M) is done in ' = O(|M|? + m), which is O(m) for
real graphs with | M|? << m. In module C, STEP has complexity O(|S|* x T'), where S is the
set of labeled structures. STEP-P and STEP-PA are O(¢ x % x T'), where p is the number of
METIS partitions (‘active’ partitions for STEP-PA) and ¢ is the number of iterations. K-STEP is a
combination of STEP-P and a local stage, so it runs in O (K X BE o Tty x (p'sf +D2 pive) X T),
where 1 is the iterations of its local stage. Finally, the supergraph (module Da) can be generated

in O(m).

5.5 Empirical Analysis

We conduct thorough experimental analysis to answer three main questions:

* How effective is CONDENSE?
* Does it scale with the size of the input graph?
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Name Nodes Edges Description

EUmail [LK14] 265,214 420,045 EU uni. email comm.
Enron [LK14] 80,163 288,364 Enron email comm.
AS-Caida [LK14] 26,475 106,762 BGP routing table
AS-Oregon [LK14] 13,579 37,448 Router connections
Choc 2,899 5,467 Co-editor wiki graph

Table 5.3: Summary of graphs used in our experiments.

* How do the clustering methods compare in terms of summarization power?

Setup. We ran experiments on the real graphs given in Table 5.3. As far as the parameter setting
for the clustering methods is concerned, for SLASHBURN, we choose the number of hub nodes to
slash per iteration hg,s, = 2 in order to achieve better granularity of clusters. For Louvain,
we choose resolution 7 = 0.0001 as it generates comparable number of clusters with other
clustering methods for all our datasets. For SPECTRAL and METIS, the number of clusters k
are set to y/n/2 according to a rule of thumb [SMO"03], where n is the number of nodes in
the graph. As for other clustering methods, they are parameter-free hence no need to set up
parameters. Unless otherwise specified, we followed the same rule of thumb for setting the
number of input METIS partitions p for all the STEP variants. In subsections 5.5.1 and 5.5.2, we
set the number of chances © = 3 for STEP-PA.

5.5.1 Effectiveness of CONDENSE
Ideally, we want a summary to be: (i) concise, with a small number of structures/supernodes;
(ii) minimally redundant, i.e., capturing dependencies such as overlapping supernodes, but
without overly encoding overlaps; and (iii) covering in terms of nodes and edges. Our proposed
method, CONDENSE, constitutes an (almost) unbiased way of analyzing the structure of a given
graph. How does it fare in terms of these properties? To answer the question, we perform
experiments on the real data in Table 5.3.

Baselines. The first baseline is VoG [KKVF14a], which we describe in Section 5.2. For our ex-
periments, we used the code that is online at https://github.com/GemsLab/VoG_Graph_
Summarization. The second baseline is our proposed method, CONDENSE, combined with the
GNF heuristic (described in Section 5.4.3) from prior literature.

A1l. Conciseness. In Table 5.4, we compare our proposed method (for different selection
methods) and the baselines with respect to their compression rates, i.e., the percentage of bits
needed to encode a graph with the composed summary over the number of bits needed to encode
the corresponding graph with an empty model/summary (that is, all the edges are in the error
matrix). In parentheses, we also give the total number of structures in the summaries. We see
that compared to the baselines, CONDENSE with the STEP variants gives significantly more
compact summaries, with 30%-50% lower compression rate and about 80-90% fewer structures.
The STEP variants give comparable results in summarization power.
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ConNDENSE ConNDENSE with STEP Variants
Dataset || VoG [KKVFi4a] GNF STEP | STEP-P | STEP-PA | K-STEP
Choc 88%(101) 88%(101) 56%(24) | 56%(24) | 56%(21) | 56%(22)
AS-Oregon 71%(400) 69%(379) 35%(41) | 35%(41) | 35%(35) | 35%(36)
AS-Caida - 71%(572) || 42%(51) | 42%(51) | 42%(46) | 44%(60)
Enron 75%(2330) 74%(2044) - 26%(50) | 25%(201) | 25%(218)
EUmail - 65%(1440) - - - 59%(15%)

Table 5.4: CoNDENSE: Compression rate with respect to the empty model. In parentheses,
number of structures in the corresponding summary. A “-” means that the corresponding
method was terminated after 4 days. Notice that CoNDENSE with STEP variants achieves better
graph compression with even fewer structures than alternatives.

“In the interest of time, the summary size was limited to 15.

| Dataset | VoG [KKVF14a] | CONDENSE |
Choc 900 (0.04) 74 (0.029)
AS-Oregon 15875 (0.047) 126 (0.026)
AS-Caida - 382 (0.018)
Enron 447052 (0.02) 509 (0.015)
EUmail - 0

Table 5.5: Overlapping supernode pairs and average similarity in parentheses. A “-” means
that the corresponding method was terminated after 4 days. Notice that CONDENSE produces
structures with less overlap, leading to better visualization and interpretability.

A2. Minimal Redundancy. In Figures 5.1 and 5.3, we visualize the supergraphs for AS-Oregon
and Choc, which are generated from the selected structures of VoG and CONDENSE-STEP. It
is clear that the CoNDENSE supergraphs are significantly more compact. In Table 5.5, we also
provide information about the number of overlapping supernode pairs and their average Jac-
card similarity, as an overlap quantifier (in parentheses). For brevity, we only give results for
K-STEP, since the results of the rest STEP-series are similar. We observe that CONDENSE has
significantly fewer supernode overlaps, and the overlaps are smaller in magnitude. We also note
that the overlap encoding module achieves 10-20% reduction in overlapping edges, showing its
effectiveness for minimizing redundancy.

A3. Coverage. We give the summary node/edge coverage (as a ratio of the original) for different
assembly methods in Figure 5.4. We observe that the baselines have better edge coverage
than the STEP variants, which is expected as they include significantly more structures in their
summaries. However, in most cases, K-STEP and STEP-PA achieve better node coverage than the
baselines. Taking into account the desired property for summary conciseness, CONDENSE with
STEP variants has better performance, balancing coverage and summary size well.
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(a) Original graph (b) VoG [KKVF14a] (c) CoNDENSE-STEP

Figure 5.3: CONDENSE-STEP generates more compact supergraphs. b-c: The full super-
graphs of Choc by VoG-GNF, and CONDENSE-STEP, respectively. Yellow for stars, red for cliques,
green for bipartite cores. The edge weights correspond to the number of inter-supernode edges.
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Figure 5.4: STEP variants have better node coverage over alternatives, and handle the
summary coverage-conciseness trade-off well. Marker size corresponds to the graph size.

What other properties do the various summaries have? What are the main structures found in
different types of networks (e.g., email vs. routing networks)? In Table 5.6, we show the number
of in-summary structures per type. We note that no chains and hyperbolic structures were
included in the summaries of the networks that we show here (although some were found by
the pattern discovery module, and there are synthetic examples in which they are included in
the final summaries). This is possibly because stars are extreme cases of hyperbolic structures,
and the encoding of (approximate) hyperbolic structures is of the same order, yet often more
expensive than the encoding of stars with errors. As for chains, they are not ‘typical’ clusters
found by popular clustering methods, but rather by-products of the decomposition methods
that we consider. Moreover, given that the chain encoding considers the sequence of node IDs,
and errors in the real data increase the encoding cost, very often encoding them in the error
matrix yields better compression. One observation is that STEP gives less biased summaries than
the baselines. For email networks, we see that stars are dominant (e.g., users emailing multiple
employees that do not contact each other, administrators sending e-mails to large mailing lists,
etc.), with several of cliques and bipartite cores too. For routing networks (AS-Caida and
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Dataset VoG [KKVF14a] || CoNDENSE-GNF STEPC0Tl;iSS-EPVTt;ITSETPE-;XaTmIIz;TEP
Choc [0,101,0] [1,100,0] [21,30] | [21,3,0] | [20,1,0] [21,1,0]
AS-Oregon [1,399,0,] [19,355,5] [27.13.1] | [27.13.1] | [26,9,0] [26,10,0]
AS-Caida - [2,557,13] [38,7.6] | [38.7,6] | [37.54] [43,12,5]
Enron [2,2323,5] [160,1676,208] - [45,2,3] | [60,108,33] | [61,124,33]
EUmail - [0,1261,179] - - - [15,0,0]

Table 5.6: CONDENSE: Number of structures per type in the summaries in the format [ fc, st, bc],
for VoG we have [ fc + nc, st, bc + nb], where nc is near-clique and nb is near-bipartite core.
The CoNDENSE summaries are more balanced, without a specific pattern type dominating in
all the graphs. In the interest of time, we find the top-50 and top-15 structures for Enron and
EUmail, respectively. A “-” means that the corresponding method was terminated after 4 days.

AS—-Oregon), we mostly see cliques between communities of autonomous systems, and a few
stars and bipartite cores. In collaboration networks, cliques are the most common structures.
VoG and CoNDENSE-GNF are biased towards stars, which exceed the other structures by an
order of magnitude. Overall, CONDENSE fares well with respect to the desired properties for
graph summaries.

5.5.2 Runtime Analysis of CONDENSE
We give the runtime of pattern discovery and the STEP methods in Figure 5.5. “Discovery”
represents the maximum time of the clustering methods, and “Disc.-Fast” corresponds to the
slowest among the fastest methods (KCBC, Louvain, METIS, BicCrLaMm). We ran the experiment
on an Intel(R) Xeon(R) CPU E5-1650 at 3.50GHz, and 256GB memory.

We see that the fast unified discovery is up to 80 x faster than the original one. As expected,
STEP is the slowest method. The parallel variants STEP-P, STEP-PA, and K-STEP are more scalable,
with K-STEP being the most efficient. Taking into account the similarity of the heuristics in
both conciseness and coverage, Figure 5.5 further suggests that k-STEP is the best-performing
heuristic given that it exhibits the shortest runtime.
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Figure 5.5: Runtime vs. # of edges: K-STEP is more
and scales to larger graphs.

efficient than the other methods,

77



Dataset | STEP-P | STEP-PA || K-STEP

Choc 1 0.9886 0.9667
AS-Oregon 1 0.9704 0.9285
1
1

AS—-Caida 0.9865 0.8238
Enron 0.5012* 0.446¢

Table 5.7: Agreement of STEP and its variants. They approximate STEP quite well.

?Agreement based on the top-50 structures for efficiency reasons.

5.5.3 Sensitivity Analysis of CONDENSE: Agreement between STEP

and STEP-variants

Our analysis so far has shown that k-STEP leads to the best combination of high compression and
low runtime compared to the other methods. But how well does it approximate STEP in terms of
the generated summary? To answer this question, we evaluate the “agreement” between the
generated summaries, which in this section we view as ordered lists of structures based on the
iteration they were included in the final summary (which defines the rank of each structure).
Since popular rank correlation measures, such as Spearman’s p, Kendall’s 7, only work on
permuted lists or lists of the same length, while the generated summaries can have different
constituent structures and lengths, we propose AG as a measure of agreement. This measure
effectively handles summaries of different lengths, and penalizes with different, adaptive weights
‘rank’ disagreement between structures included in both summaries, and disagreement for
missing structures from one summary. Let M; and M, be the two summaries, and rank(s, M;)
be the ranking of structure s in summary M; (i.e., the order in which it was included in the
summary while minimizing Eq. (5.1)). We define the agreement of the two summaries as:

AG(My, My) =1 —1/Z[aD + (1 — a/2)Dy + (1 — o/2) Dy]

where D = >\ ~y, [Tank(s, My) — rank(s, M2)| is the rank disagreement for structures
that are in both summaries, D1 = 3.y nagy [([M2| + 1) — rank(s, M;)] is the disagreement
for structures in M; but not in M,, D, is defined analogously to capture structures in M,
but not in M. Finally, Z is a normalization factor that guarantees that AG isin [0,1]: Z =
(1= 9) > senr (M| + 1) — rank(s, M1)| + 3 cpp, [(|M1] 4 1) — rank(s, Mz)|. AG = 1 means
identical summaries, while 0 completely different summaries. In order to penalize more the
structures that appear in one summary but not in the other, we set & = 0.3 (the results are
consistent for other values of ). In Table 5.7, we give the agreement between STEP and its faster
variants. As a side note, the agreement with VoG is almost 0 in all the cases. As expected, STEP-P
produces the same summaries as STEP, while STEP-PA and k-STEP preserve the agreement
well.
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5.5.4 Sensitivity to the number of partitions
All parallel variants of STEP take p METIS partitions as input. To analyze the effects of varying
p on runtime and agreement, we ran K-STEP and increased p from 12 to 96 in increments of
12.

We only give the results on AS-Oregon, since other datasets lead to similar results. We observe
that while agreement is robust, runtime decreases as p increases and especially so with the
smaller values of p. This observation is consistent with our motivation for parallelizing STEP:
by decreasing the number of structures in any given partition, the “local” subproblems of STEP
become smaller and thus less time-consuming. Figure 5.6a shows the effect of the number of
partitions on runtime and agreement, both averaged over three trials.

5.5.5 Sensitivity of STEP-PA
We also experimented with varying the number of “chances” allowed for partitions in the STEP-PA
variant. STEP-PA speeds up STEP-P by forcing partitions to drop out after not returning structures
for a certain number of attempts (r). However, while giving partitions fewer chances can speed
up the algorithm, smaller values of z can compromise compression and agreement.

In Figure 5.6b, we give the agreement and runtime of STEP-PA on Choc and AS-Oregon
setting = {1,2,3,4,5}. We found that both runtime and agreement increased with z, and
plateaued after x = 3. This suggests that forcing partitions to drop out early, while better
for runtime, can lead to the loss of candidate structures that may be useful for compression
later.

5.5.6 CoNDENSE as a Clustering Evaluation Metric
Given the independence of STEP from the structure ordering, we use CONDENSE to evaluate the
different clustering methods and give their individual compression rates in Table 5.8. For number
and type of structures we give our observations based on AS-Oregon (Figure 5.7), which is
consistent with other datasets. As we see in the case of AS-Oregon, SLASHBURN mainly
finds stars (136 out of 138 structures); Louvain, SPECTRAL, KCBC, and BicCraM reveal mostly
cliques (9/9, 15/17, 9/9, and 28/29, respectively); METIS has a less biased distribution (18 cliques,
12 stars), and HyCoM, though looks for hyperbolic structures, tends to find structures more
concisely described as cliques in our experiments (45 out of 52 structures). Also, SLASHBURN

Dataset Clustering Methods
SLASHBURN | LouvaiIN | SPECTRAL | METIS | HYCoM | BicCrLam | KCBC
Choc 88% 99% 99% 100% 100% 87% 78%
AS-Oregon 76% 94% 82% 85% 98% 83% 65%
AS-Caida 70% 100% 100% 98% 98% 91% 74%

Table 5.8: CoNDENSE as an evaluation metric: Compression rate of clustering methods with
respect to the empty model (i.e., percentage of bits for encoding the graph given the chosen
model vs. the empty model).
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Figure 5.6: The agreement is robust to the number of partitions and chances, while
runtime decreases with more partitions and is unaffected by number of chances.

and BicCraM discover more structural patterns than other methods, which partially explains
their good compression rate in Table 5.8. One notable takeaway from these results is that
decomposition methods traditionally do not find chains and hyperbolic structures, which is
likely both a function of traditional notions of “community” behavior as well as a reflection on
the difficulty of identifying such structures automatically.

We perform an ablation study to evaluate the graph clustering methods in the context of
summarization. Specifically, we create a leave-one-out unified model for each clustering method
and evaluate the contribution of each clustering method to the final summary. The results are
shown in Table 5.9. We see that LouvAIN appears to be the most important method: when
included, it contributes the most; and when dropped, the compression rate reduces (worse). When
KCBC is dropped, SLASHBURN gets to the top, but LouvaIn also has considerable contribution. In
the missing-LouvaIN case, the contribution gets redistributed among other clustering methods
to make up for it, this effect differs by dataset, e.g., METIS gets boosted for AS-Oregon, while
it is SPECTRAL for Choc.
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# structures

Figure 5.7: Number of structures found by various clustering methods for AS-Oregon.
Transparent/solid rectangles for before/after the structure selection step. Notation: fc: full
clique, st: star, ch: chain, bc: bipartite core, hs: hyperbolic structure.

Clustering || Compression Contribution per Method
Method Rate SLAsHBURN | LouvaIN | SPECTRAL | METIS | HrCoM | BicCram | KCBC

SLASHBURN 22% - 63% 10% 7% 7% 0 13%
LouvaiN 30% 30% - 16% 45% 0 3% 7%
SPECTRAL 22% 32% 51% - 3% 0 0 14%
METIS 22% 34% 46% 5% - 2% 0 12%
HyCoM 22% 35% 48% 3% 3% - 0 13%
BicCLam 22% 34% 46% 2% 2% 2% - 12%
KCBC 25% 50% 35% 6% 2% 2% 6% -

Table 5.9: Ablation study for AS-Oregon. LouvaiN and SLASHBURN contribute most to the
CoNDENSE summaries.

In terms of runtime, for modules A and B (pattern discovery and identification), SPECTRAL and
HyCoM take the longest time, while KCBC, Louvain, METIS, and BicCLAM are the fastest
ones, with SLASHBURN falling in the middle. For Module C (summary assembly), the trade-off
between runtime and candidate structures is given in the complexity analysis (Appendix 5.4.5).
In practice, HyCoM usually takes the longest time, followed by SPECTRAL and SLASHBURN.

5.6 Conclusion

In this work we proposed CONDENSE, a method that summarizes large graphs as small, ap-
proximate and high-quality supergraphs conditioned on diverse pattern types. CoONDENSE
features a new selection method, STEP, which generates summaries with high compression and
node coverage. However, this comes at the cost of increased runtime, which we addressed by
introducing faster parallel approximations to STEP. We provided a thorough empirical analysis of
CoNDENSE, and contributed a novel evaluation of clustering methods in terms of summarization
power, complementing the literature that focuses on classic quality measures. We showed that
each clustering approach has its strengths and weaknesses and make different contributions to
the final summary. Moreover, CONDENSE leverages their strengths, handles edge-overlapping
structures, and shows results superior to baselines, including significant improvement in the
bias of summaries with respect to the considered pattern types.
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Ideally without the constraint of time, we naturally recommend the application of as many
clustering methods in Module A of CoNDENSE. On the other hand, to deal with the additional
complexity of having more structures, we recommend choosing faster clustering methods or
a mixture of fast and “useful” methods (depending on the application at hand) that contribute
good structures, as shown in our analysis.
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Part 11

Mining Dynamic Graphs
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Based on content published in [SKZ"15].

Chapter 6

TIMECRUNCH: Interpretable
Dynamic Graph Summarization

Identifying temporal structures and
recurrence patterns in dynamic graphs
with a compression paradigm.

Many real-world occurrences can be aptly represented as dynamic graphs which represent
interactions over time. While many previous works tackle the problem of extracting structure
from static graphs via clustering or partitioning, few such tools exist in the dynamic case.
In this chapter, we propose TIMECRUNCH, an unsupervised method which aims to concisely
summarize dynamic graphs using a lexicon of temporal structures which describe recurrence
patterns and graph connectivity. TIMECRUNCH scalably extracts interpretable temporal
structures from real-world graphs with millions of nodes and edges and demonstrates that
such graphs do in fact exhibit rich temporal structures.

6.1 Introduction

Given a large phonecall network over time, how can we describe it to a practitioner with
just a few phrases? Other than the traditional assumptions about real-world graphs involving
degree skewness, what can we say about the connectivity? For example, is the dynamic graph
characterized by many large cliques which appear at fixed intervals of time, or perhaps by
several large stars with dominant hubs that persist throughout? Our work aims to answer these
questions, and specifically, we focus on constructing concise summaries of large, real-world
dynamic graphs in order to better understand their underlying behavior.

This problem has numerous practical applications. Dynamic graphs are ubiquitously used
to model the relationships between various entities over time, which is a valuable feature in
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(a) 40 users of Yahoo! Messen-
ger forming a constant near clique
with unusually high 55% density,
over 4 weeks in April 2008.
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network, forming a periodic star,
over the last week of December
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(c) 43 collaborating biotechnol-
ogy authors forming a ranged
near clique in the DBLP network,
jointly publishing through 2005-
2012.

Figure 6.1: TIMECRUNCH finds coherent, interpretable temporal structures. We show
the reordered subgraph adjacency matrices, over the timesteps of interest, each outlined in gray;
edges are plotted in alternating red and blue, for discernibility.

almost all applications in which nodes represent users or people. Examples include online social
networks, phone-call networks, collaboration and coauthorship networks and other interaction
networks.

Though numerous graph algorithms suitable for static contexts such as modularity-based com-
munity detection, spectral clustering, and cut-based partitioning exist, they do not offer direct
dynamic counterparts. Furthermore, the traditional goals of clustering and community detection
tasks are not quite aligned with the endeavor we propose. These algorithms typically produce
groupings of nodes which satisfy or approximate some optimization function. However, they do
not offer characterization of the outputs — are the detected groupings stars or chains, or perhaps
dense blocks? Furthermore, the lack of explicit ordering in the groupings leaves a practitioner
with limited time and no insights on where to begin understanding his data.

In this work, we propose TIMECRUNCH, an effective approach to concisely summarizing large,
dynamic graphs which extend beyond traditional dense and isolated “cavemen” communities.
Our method works by leveraging MDL (Minimum Description Length) in order to identify and
appropriately describe graphs over time using a lexicon of temporal phrases which describe
temporal connectivity behavior. Figure 6.1 shows several interesting results found from applying
TiIMECRUNCH to real-world dynamic graphs.

* Figure 6.1a shows a constant near-clique with 55% density of 40 users in the Yahoo!
messaging network over 4 weeks in April 2008. These users are likely bots messaging
each other in an effort to appear normal and avoid suspension.

* Figure 6.1b depicts a periodic star of 111 callers in the phone-call network of a large,
anonymous Asian city during the last week of December 2007. Notice that the star behavior
oscillates over time - specifically, odd-numbered timesteps have stronger star structure
than the even-numbered ones. Furthermore, the appearance of the star is strongest on
Dec. 25th and 31st, corresponding to major holidays.
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* Lastly, Fig. 6.1c shows a ranged near clique of 43 authors in the DBLP network who jointly
published in biotechnology journals such as Nature and Genome Research from 2005-2012,
agreeing with intuition as works in this field typically have many co-authors. The first
and last timesteps serve only to demarcate the range of activity.

In this work, we seek to answer the following informally posed problem:

Problem 6.1: (Informal) Dynamic Graph Summarization

Given a dynamic graph, find a set of possibly overlapping temporal subgraphs to concisely
describe the given dynamic graph in a scalable fashion.

Our main contributions are as follows:

1. Problem Formulation: We show how to define the problem of dynamic graph under-
standing in in a compression context.

2. Effective and Scalable Algorithm: We develop TIMECRUNCH, a fast algorithm for dy-
namic graph summarization.

3. Practical Discoveries: We evaluate TIMECRUNCH on multiple real, dynamic graphs and
show quantitative and qualitative results.

Reproducibility: Our code for TIMECRUNCH is open-sourced at www . cs . cmu.edu/~neilshah/
code/timecrunch.tar.

6.2 Related Work

The related work falls into three main categories: static graph mining, temporal graph mining,
and graph compression and summarization. Table 6.1 gives a visual comparison of TIMECRUNCH
with existing methods.

Static Graph Mining. Most works find specific, tightly-knit structures, such as (near-) cliques

and bipartite cores: eigendecomposition [SBGF14] (as we saw in Chapter 3, cross-associations [CPMF04],
modularity-based optimization methods [NG04, BGLL08]. Dhillon et al. [DMMO03] propose in-
formation theoretic co-clustering based on mutual information optimization. However, these
approaches have limited vocabularies and are unable to find other types of interesting struc-

tures such as stars or chains. [KK00, KG10] propose cut-based partitioning, whereas [AKY99]
suggests spectral partitioning using multiple eigenvectors — these schemes seek hard clustering

of all nodes as opposed to identifying communities, and are not usually parameter-free. Sub-

due [CH94] and other fast frequent-subgraph mining algorithms [JWP*05] operate on labeled
graphs. Our work involves unlabeled graphs and lossless compression.

Temporal Graph Mining. [AY05] aims at change detection in streaming graphs using pro-
jected clustering. This approach focuses on anomaly detection rather than finding recurrent
temporal patterns. GraphScope [SFPY07] uses graph search for hard-partitioning of temporal
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Graph partitioning[KK00, KG10, AKY99] X X X v X X X v X
Community detection[SBGF14, NG04, BGLL08] X X X ¢ X X X
TiMECRUNCH v v v v Vv Vv Vv Vv V

Table 6.1: Feature-based comparison of TIMECRUNCH with alternative approaches.

graphs to find dense temporal cliques and bipartite cores. Com2 [APG™ 14] uses CP/PARAFAC
tensor decomposition with MDL for the same. [FFL*08] uses incremental cross-association for
change detection in dense blocks over time, whereas [PJZ05] proposes an algorithm for mining
cross-graph quasi-cliques (though not in a temporal context). These approaches have limited
vocabularies and do not offer temporal interpretability. Dynamic clustering [XKH11] aims to
find stable clusters over time by penalizing deviations from incremental static clustering. Our
work focuses on interpretable structures, which may not appear at every timestep.

Graph Compression and Summarization. SlashBurn [KF11a], as we previously discussed in
Chapter 5, is a recursive node-reordering approach which leverages run-length encoding for
graph compression. [TZHH11] uses structural equivalence to collapse nodes/edges to simplify
graph representation. These approaches do not compress the graph for pattern discovery, nor
do they operate on dynamic graphs. VoG [KKVF14b] uses MDL to label subgraphs in terms
of a vocabulary on static graphs, consisting of stars, (near) cliques, (near) bipartite cores and
chains. CoNDENSE (introduced in Chapter 5) improves upon VoG by reducing redundancy and
improving graph coverage, allowing for multiple graph decomposition algorithms and producing
more concise summaries. However, both these approaches only apply to static graphs and do
not offer clear extension to dynamic graphs. Our work proposes a suitable lexicon for dynamic
graphs, uses MDL to label temporally coherent subgraphs and proposes an effective and scalable
algorithm for finding them.

6.3 Problem Formulation
In this section, we give the first main contribution of our work: formulation of dynamic graph
summarization as a compression problem, using MDL. For clarity, see Table 6.2 for a reference
of the recurrent symbols used in this section.
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Symbol Definition

G, A dynamic graph and adjacency tensor resp.
V.n node-set, # of nodes of G resp.

E,m edge-set, # of edges of GG resp.

G., A, 2" timestep, adjacency matrix of G resp.

Epymy edge-set and # of edges of GG, resp.

A set of temporal signatures

Q set of static identifiers

) lexicon, set of temporal phrases ® = A x ()
X Cartesian set product

M;s model M, temporal structure s € M resp.
1S cardinality of set S

|| # of nodes in structure s

u(s) timesteps in which structure s appears
v(s) temporal phrase of structure s, v(s) € ®
st, ch star, chain resp.

fe,nc full, near clique resp.

bc, nb full, near bipartite core resp.

o,c oneshot, constant resp.

r,p, f ranged, periodic, flickering resp.

M approximation of A induced by M

E error matrix E=M © E

— exclusive OR

L(G, M) # of bits used to encode M and G given M
L(M) # of bits to encode M

Table 6.2: Frequently used symbols and definitions

The Minimum Description Length (MDL) principle aims to be a practical version of Kolmogorov
Complexity [LVV90], often associated with the motto Induction by Compression. MDL states
that given a model family M, the best model M € M for some observed data D is that which
minimizes L(M) + L(D|M), where L(M) is the length in bits used to describe M and L(D|M)
is the length in bits used to describe D encoded using M. MDL enforces lossless compression
for fairness in the model selection process. Refer to Chapter 2 for more detail on MDL.

We focus on analysis of undirected dynamic graphs using fixed-length, discretized time intervals.
However, our notation will reflect the treatment of the problem as one with a series of individual
snapshots of graphs, rather than a tensor, for readability purposes. We consider a dynamic
graph G(V, ) with n = |V| nodes, m = || edges and ¢ timesteps, without self-loops. Here,
G =U,G.(V,E&,), where G, and E, correspond to the graph and edge-set for the = timestep.
The ideas proposed in this work, however, can easily be generalized to other types of dynamic

graphs.
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For our summary, we consider the set of temporal phrases ® = A x (), where A corresponds
to the set of temporal signatures, {2 corresponds to the set of static structure identifiers and x
denotes Cartesian set product. Though we can include arbitrary temporal signatures and static
structure identifiers into these sets depending on the types of temporal subgraphs we expect to
find in a given dynamic graph, we choose 5 temporal signatures which we anticipate to find in real-
world dynamic graphs [APG " 14] : oneshot (o), ranged (r), periodic (p), flickering (f) and constant
(c), and 6 very common structures found in real-world static graphs [KKR"99, SBGF14] - stars
(st), full and near cliques (fc, nc), full and near bipartite cores (bc, nb) and chains (ch) . Summarily,
we have the signatures A = {o,r,p, f, c}, static identifiers Q = {st, fc, nc, be,nb, ch} and
temporal phrases ® = A x (). We will further describe these signatures, identifiers and phrases
after formalizing our objective.

In order to use MDL for dynamic graph summarization using these temporal phrases, we next
define the model family M, the means by which a model M € M describes our dynamic graph
and how to quantify the cost of encoding in terms of bits.

6.3.1 Using MDL for Dynamic Graph Summarization
We consider models M € M to be composed of ordered lists of temporal graph structures with
node, but not edge overlaps. Each s € M describes a certain region of the adjacency tensor A
in terms of the interconnectivity of its nodes. We will use area(s, M, A) to describe the edges
(1,7,x) € A which s induces, writing only area(s) when context for M and A is clear.

Our model family M consists of all possible permutations of subsets of C, where C = U,C,
and C, denotes the set of all possible temporal structures of phrase v € ® over all possible
combinations of timesteps. That is, M consists of all possible models M, which are ordered
lists of temporal phrases v € ® such as flickering stars (fst), periodic full cliques (pfc), etc.
over all possible subsets of )V and G - - - G;. Through MDL, we seek the model M € M which
best mediates between the encoding length of the model M and the adjacency tensor A given
M.

Our fundamental approach for transmitting the adjacency tensor A via the model M is described
next. First, we transmit M. Next, given M, we induce the approximation of the adjacency tensor
M as described by each temporal structure s € M - for each structure s, we induce the edges in
area(s) in M accordingly. Given that M is a summary approximation to A, M # A most likely.
Since MDL requires lossless encoding, we must also transmit the error E = M & A, obtained
by taking the exclusive OR between M and A. Given M and E, a recipient can construct the
full adjacency tensor A in a lossless fashion.

Thus, we formalize the problem we tackle as follows:
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Problem 6.2: Minimum Dynamic Graph Description

Given a dynamic graph GG with adjacency tensor A and temporal phrase lexicon P, find
the smallest model M which minimizes the total encoding length

L(G, M) = L(M) + L(E)

where E is the error matrix computed by E = M & A and M is the approximation of A
induced by M.

In the following subsections, we further formalize the task of encoding the model M and the
error matrix E.

6.3.2 Encoding the Model
To fully describe a model M € M, we have the following:

M|+ |® -1
L(M) = LN<|M|+1>+zog2(’ '|¢'_1'| )

+ Y (=logaP(v(s)| M) + L(c(s)) + L(u(s)))

seM

We begin by transmitting the total number of temporal structures in M using Ly, Rissanen’s
optimal encoding for integers greater than or equal to 1 [Ris78]. Next, we optimally encode
the number of temporal structures for each phrase v € ® in M. Then, for each structure s,
we encode the type v(s) for each structure s € M using optimal prefix codes [CT06], the
connectivity ¢(s) and the temporal presence of the s, consisting of the ordered list of timesteps
u(s) in which s appears.

In order to have a coherent model encoding scheme, we next define the encoding for each phrase
v € ® such that we can compute L(c(s)) and L(u(s)) for all structures in M. The connectivity
c(s) corresponds to the edges in area(s) which are induced by s, whereas the temporal presence
u(s) corresponds to the timesteps in which s is present. We consider the connectivity and
temporal presence separately, as the encoding for a temporal structure s described by a phrase v
is the sum of encoding costs for the connectivity of the corresponding static structure identifier
in €2 and its temporal presence as indicated by a temporal signature in A.

6.3.2.1 Encoding Connectivity
In this section, we describe how to compute the encoding cost L(c(s)) for the connectivity for
each type of static structure identifier in our identifier set 2. The encoding costs are defined
similarly to Chapter 5, which focuses on summarizing plain graphs.
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Stars: A star is characteristic of a single “hub” node connected to a set of 2 or more “spoke”
nodes. We compute L(st) of a star st as follows:

n—1
L(st) = Ln(|st| — 1)+ logan + logs (|St| B 1)
First, we identify the number of spokes of the star. Next, we identify the hub out of n nodes
using an index over the combinatorial number system. Lastly, we identify the spokes from the
remainder.

Cliques: Cliques are comprised of densely connected sets of nodes. For a full clique fc, in
which all nodes are directly connected to all other nodes in the clique, we give the cost L(fc) as
follows:

L(fe) = LN(|fC|)+log2(|;Lc|>

In this case, we encode the number of nodes in the clique followed by their ids. Note that as
M is an approximation of (G, fc need not actually be a full clique in G. If only a few edges of
the full clique are not present in (, it may be worthwhile from a compression standpoint to
describe it as such. In this case, each falsely represented edge will add to the error cost E. Errors
in connectivity encoding will be elaborated on in Sec. 6.3.3.1.

Less dense near-cliques are still interesting from a graph understanding perspective, provided
they stand out from the background. For a near clique nc, we give L(nc) as follows:

Line) = Luln]) +zng( "

|ne|

) + logs(|area(nc)|)
+l[ncllpy + [lncll’po

Here, we encode the number of nodes and their ids as in the full clique case. However, we addition-
ally encode the edges in the near clique by encoding the number of total edges in area(nc) by opti-
mal prefix codes. We use ||nc|| and ||nc||’ to denote the counts for existing and non-existing edges
in area(nc). Then, p, = —log([[nc||/([[nc|| + [[nc]')) and po = —log([[nc||'/(|Inc|| + [[nc['))
represent the length of the optimal prefix codes for the existing and non-existing edges respec-
tively. Intuitively, the more sparse or dense the near clique is, the cheaper its encoding becomes.
As the encoding in this case is exact, we do not add any edges to E.

Bipartite Cores: Bipartite cores consist of non-empty, non-intersecting node-sets L and R
for which there only exist edges from L and R, but not within L or R. Note that stars can be
construed as a fixed case of bipartite cores in which |L| = 1. The encoding cost L(bc) for a full
bipartite core bc is as follows:

L(fb) = LN<|L|>+LN<IRI>+1092(|Z|)“092<|2|)

In this case, we encode the number of nodes in L and R followed by the node ids in each
set.
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As with near cliques, near bipartite cores are also interesting if they stand out from the back-
ground. In this case, encoding is given analogously as follows:

n n
L(nb) = Ln(|L|)+ Ln(|R]) + loge (\L|) + logs (|R|)
+loga(|area(nb)|) + [|nbl|p1 + [[nd]| po

Furthermore, as with near-cliques, encoding in this case is exact so we do not add any edges to

E.

Chains: A chain is characterized by series of nodes in which each node has an edge connecting
it to the next node — for example, consider the node-set {1, 2, 3,4} in which 1 is connected to 2,
2 is connected to 3, and 3 is connected to 4. Given the right permutation, a perfect chain in an
undirected graph will have edges only along two diagonals of the adjacency matrix. For a chain
ch, we have the encoding cost L(ch) as follows:

|ch|

L(ch) = Ly(lch] —1)+ Z loga(n —i+1)

=1

We first encode the number of nodes in the chain, followed by their node ids in order of
connection.

While in this chapter, we only discuss the above set of basic graph structures, any arbitrary graph
pattern can be similarly handled provided that we carefully derive an expression to losslessly
encode its connectivity.

6.3.2.2 Encoding Temporal Presence
For a given phrase v € @, it is not sufficient to only encode the connectivity of the underlying
static structure. We must also encode the temporal presence u(s), consisting of a set of ordered
timesteps in which s appears, for each structure. In this section, we describe how to compute
the encoding cost L(u(s)) for each of the temporal signatures in the signature set A.

We note that describing a set of timesteps u(s) in terms of temporal signatures in A is yet another
model selection problem for which we can leverage MDL. As with connectivity encoding, labeling
u(s) with a given temporal signature may not be precisely accurate — however, any mistakes will
add to the cost of transmitting the error. Errors in temporal presence encoding will be further
detailed in Sec. 6.3.3.2.

Oneshot: Oneshot structures appear at only one timestep in G - - - G; — that is, |u(s)| = 1.
These structures represent graph anomalies, in the sense that they are non-recurrent interactions
which are only observed once. The encoding cost L(o) for the temporal presence of a oneshot
structure o can be written as:

L(o) = logs(t)

As the structure occurs only once, we only have to identify the timestep of occurrence from the
t observed timesteps.
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Ranged: Ranged structures are characterized by a short-lived existence. These structures appear
for several timesteps in a row before disappearing again — they are defined by a single burst of
activity. The encoding cost L(r) for a ranged structure r is given by:

L0) = Inlluls)) + fom 3

We first encode the number of timesteps in which the structure occurs, followed by the timestep
ids of both the start and end timestep marking the span of activity.

Periodic: Periodic structures are an extension of ranged structures in that they appear at fixed
intervals. However, these intervals are spaced greater than one timestep apart. As such, the
same encoding cost function we use for ranged structures suffices here. That is, L(p) for a
periodic structure p is given by L(p) = L(r).

For both ranged and periodic structures, periodicity can be inferred from the start and end
markers along with the number of timesteps |u(s)|, allowing reconstruction of the original

u(s).

Flickering: A structure is flickering if it appears only in some of the (¢ - - - GG; timesteps, and
does so without any discernible ranged/periodic pattern. The encoding cost L( f) for a flickering
structure f is as follows:

L) = Laluo +tom( 1)

We encode the number of timesteps in which the structure occurs in addition to the ids for the
timesteps of occurrence.

Constant: Constant structures persist throughout all timesteps. That is, they occur at each
timestep G - - - G without exception. In this case, our encoding cost L(c) for a constant structure
¢ is defined as L(c) = 0. Intuitively, information regarding the timesteps in which the structure
appears is “free,” as it is already given by encoding the phrase descriptor v(s).

6.3.3 Encoding the Errors
Given that M is a summary and the M induced by M is only an approximation of A, it is
necessary to encode errors made by M. In particular, there are two types of errors we must
consider. The first is error in connectivity — that is, if area(s) induced by structure s is not
exactly the same as the associated patch in A, we encode the relevant mistakes. The second is
the error induced by encoding the set of timesteps u(s) with a fixed temporal signature, given
that u(s) may not precisely follow the temporal pattern used to encode it.

6.3.3.1 Encoding Errors in Connectivity
We encode the error tensor E = M & A as two different pieces — specifically, we encode E*
and E~ where the former refers to the area of A which M models and M includes extraneous
edges not present in the original graph, and the latter consists of the area of A which M does
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not model and therefore does not describe. Our reasoning for encoding these two separately
is that they likely have different error distributions. Given that near cliques and near bipartite
cores are encoded exactly per our model, we ignore the associated areas when encoding E*.
The encoding for E™ and E~, denoted as L(E") and L(E ™) respectively is as follows:

LET) = log2(|ET]) + [[E7[lpr + [[E7|['po
LET) = log:([E7[) + [[E”[|pr + [[E7['po

In both cases, we encode the number of 1s in E™ (or E7), followed by the actual 1s and 0s using
optimal prefix codes.

6.3.3.2 Encoding Errors in Temporal Presence
For encoding errors induced by identifying u(s) as one of the temporal signatures, we turn
to optimal prefix codes applied over the error distribution for each structure s. Given the
information encoded for each signature type in A, we can reconstruct an approximation (s) of

the original timesteps u(s) such that |u(s)| = |u(s)|. Using this approximation, the encoding
cost L(e,(s)) for the error e, (s) = u(s) — u(s) is defined as:
Les) = 3 (logs(k) + logac(k) + c(k)py)
keh(ew(s))

where h(e,(s)) denotes the set of elements with unique magnitude in e, (s), c(k) denotes the
count of element & in e, (s) and pj, denotes the length of the optimal prefix code for k. For each
magnitude error, we encode the magnitude of the error, the number of times it occurs and the
actual errors using optimal prefix codes. Using the model in conjunction with temporal presence
and connectivity errors, a recipient can first recover the u(s) for each s € M, approximate A
with M induced by M, produce E from E* and E~, and finally recover A losslessly through
A=MaE.

Remark: For a dynamic graph G of n nodes, the search space M for the best model M € M is
intractable, as it consists of all permutations of all possible temporal structures over the lexicon
®, over all possible subsets over the node-set V and over all possible graph timesteps G - - - G;.
Furthermore, M is not easily exploitable for efficient search. As a result, we propose several prac-

tical approaches for the purpose of finding good and interpretable temporal models/summaries
for G.

6.4 Proposed Method: TIMECRUNCH
Thus far, we have described our strategy of formulating dynamic graph summarization as a
problem in a compression context for which we can leverage MDL. Specifically, we have detailed
how to encode a model and the associated error which can be used to losslessly reconstruct the
original dynamic graph GG. Our models are characterized by ordered lists of temporal structures
which are further classified as phrases from the lexicon ® - that is, each s € M is identified by
a phrase p € ® — over the node connectivity ¢(s) (an induced set of edges depending on the
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Algorithm 6.1: TIMECRUNCH

1: Generating Candidate Static Structures: Generate static subgraphs for each GG; - - - G,
using traditional static graph decomposition approaches.

2: Labeling Candidate Static Structures: Label each static subgraph as a static structure
corresponding to the identifier x € (2 which minimizes the local encoding cost.

3. Stitching Candidate Temporal Structures: Stitch the static structures from G - - - G,
together to form temporal structures with coherent connectivity behavior and label them
according to the the phrase p € ® which minimizes temporal presence encoding cost.
Populate the candidate set C.

4: Composing the Summary: Compose a model M of important, non-redundant temporal
structures which summarize GG using the VANn1LLA, ToP-10, ToP-100 and STEPWISE heuristics.
Choose M associated with the heuristic that produces the smallest total encoding cost.

static structure identifier st, fc, etc.) and the associated temporal presence u(s) (ordered list
of timesteps captured by a temporal signature o, 7, etc. and deviations) in which the temporal
structure is active, while the error consists of those edges which are not covered by M, or the
approximation of A induced by M.

Next, we discuss how we find good candidate temporal structures to populate the candidate set
C, as well as how we find the best model M with which to summarize our dynamic graph. The
pseudocode for our algorithm is given in Alg. 6.1 and the next subsections detail each step of
our approach.

6.4.1 Generating Candidate Static Structures
TiIMECRUNCH takes an incremental approach to dynamic graph summarization. Our approach
begins by considering potentially useful subgraphs over static graphs G; - - - G;. Sec. 6.2 mentions
several such algorithms for community detection and clustering including EigenSpokes, METIS,
SlashBurn, etc. Summarily, for each GGy - - - Gy, a set of subgraphs F is produced.

6.4.2 Labeling Candidate Static Structures

Once we have the set of static subgraphs from G - - - Gy, F, we next seek to label each subgraph
in F according to the static structure identifiers in {2 that best fit the connectivity for the given
subgraph. That is, for each subgraph construed as a set of nodes £ € V for a fixed timestep,
does the adjacency matrix of £ best resemble a star, near or full clique, near or full bipartite core
or a chain? To answer this question, we leverage the encoding scheme discussed in Sec. 6.3.2.1:
we try encoding the subgraph £ using each of the static identifiers in {2 and label it with the
identifier z € (2 which minimizes the encoding cost.

Consider the model w which consists of only the subgraph £ and a yet to be determined static
identifier. In practice, instead of computing the global encoding cost L(G, w) when encoding £
as each static identifier in €2 to find the best fit, we compute the local encoding cost defined as

L(w)+ L(E})+ L(E;) where L(E}) and L(E_) indicate the encoding costs for the extraneous
and unmodeled edges for the subgraph L respectively. This is done for purpose of efficiency
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- intuitively, however, the static identifier that best describes £ is independent of the edges
outside of L.

The challenge in this labeling step is that before we can encode L as any type of identifier, we
must identify a suitable permutation of nodes in the subgraph so that our model encodes the
correct edges. For example, if £ is a star, which is the hub? Or if £ is a bipartite core, how can
we distinguish the parts?

For stars, we identify the highest-degree node as the hub and all other nodes as spokes. For near
and full bipartite cores, finding the right permutation can be reduced to finding the maximum
bipartite subgraph, which is equivalent to finding the maximum cut and is NP-hard. As a result,
we use a heuristic approach which formulates the problem as a two-class classification task. To
this end, we initialize L to contain the highest-degree node in £, and R to contain its neighbors.
We then use Fast Belief Propagation [KKK ™ 11] with heterophily (assuming connected nodes
belong to different classes) to propagate the class labels and determine L and R. For near and
full cliques, any permutation is equally good. Lastly, for chains, finding the right permutation is
equivalent to finding the longest path, which is NP-hard. As a result, we again employ a heuristic
approach in which we select a node in £ at random, use BFS to find the furthest node away, and
repeat with the resulting node while extending the chain through local search iteratively. For
both near cliques and bipartite cores, we do not encode E\. and E, as L(nc) and L(nb) encode
the relevant edges exactly.

6.4.3 Stitching Candidate Temporal Structures

Thus far, we have a set of static subgraphs F over G; - - - G; labeled with the associated static
identifiers which best represent subgraph connectivity (from now on, we refer to F as a set of
static structures instead of subgraphs as they have been labeled with identifiers). From this set,
our goal is to find meaningful temporal structures — namely, we seek to find static subgraphs
which have the same patterns of connectivity over one or more timesteps and stitch them
together. Thus, we formulate the problem of finding coherent temporal structures in G as a
clustering problem over /. Though there are several criteria we could use for clustering static
structures together, we employ the following based on their intuitive meaning: two structures in
the same cluster should have (a) substantial overlap in the node-sets composing their respective
subgraphs, and (b) exactly the same, or similar (full and near clique, or full and near bipartite
core) static structure identifiers. These criteria, if satisfied, allow us to find groups of nodes that
share interesting connectivity patterns over time.

Conducting the clustering by naively comparing each static structure in F to the others will
produce the desired result, but is quadratic on the number of static structures and is thus
undesirable from a scalability point of view. Instead, we propose an incremental approach using
repeated rank-1 Singular Value Decomposition (SVD) for clustering the static structures, which
offers linear time complexity on the number of edges m in G.

We begin by defining B as the structure-node membership matrix (SNMM) of GG. B is defined to be
of dimensions |F| x |V|, where B, ; indicates whether the ith row (structure) in F (B) contains
node j in its node-set. Thus, B is a matrix indicating the membership of nodes in V to each
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of the static structures in /. We note that any two equivalent rows in B are characterized by
structures that share the same node-set (but possibly different static identifiers). As our clustering
criteria mandate that we cluster only structures with the same or similar static identifiers, in
our algorithm, we construct 4 SNMMs - B, B.;, By and B, corresponding to the associated
matrices for stars, near and full cliques, near and full bipartite cores and chains respectively.
Now, any two equivalent rows in B,; are characterized by structures that share the same-node
set and the same, or similar static identifiers, and analogue for the other matrices. Next, we
utilize SVD to cluster the rows in each SNMM, effectively clustering the structures in F.

Recall that the rank-k SVD of an m x n matrix A factorizes A into 3 matrices — the m x k
matrix of left-singular vectors U, the k x k diagonal matrix of singular values 3 and the n x k
matrix of right-singular vectors V, such that A = UX VT, A rank-k SVD effectively reduces
the input data into the best k-dimensional representation, each of which can be mined separately
for clustering and community detection purposes. However, one major issue with using SVD in
this fashion is that identifying the desired number of clusters k upfront is a non-trivial task. To
this end, [PSB13] evidences that in cases where the input matrix is sparse, repeatedly clustering
using k rank-1 decompositions and adjusting the input matrix accordingly approximates the
batch rank-%k decomposition. This is a valuable result in our case — as we do not initially know
the number of clusters needed to group the structures in F, we eliminate the need to define %
altogether by repeatedly applying rank-1 SVD using power iteration and removing the discovered
clusters from each SNMM until all clusters have been found (when all SNMMs are fully sparse
and thus deflated). However, in practice, full deflation is unneeded for summarization purposes,
as most “important” clusters are found in early iterations due to the nature of SVD. For each of
the SNMMs, the matrix B used in the (i + 1) iteration of this iterative process is computed
as
Bi+1 — Bz o Igi o BZ

where G; denotes the set of row ids corresponding to the structures which were clustered
together in iteration 4, / 9 denotes the indicator matrix with 1s in rows specified by G; and
o denotes the Hadamard matrix product. This update to B is needed between iterations, as
without subtracting out the previously-found cluster, repeated rank-1 decompositions would
find the same cluster ad infinitum and the algorithm would not converge.

Although this algorithm works assuming we can remove a cluster in each iteration, the question
of how we find this cluster given a singular vector has yet to be answered. First, we sort
the singular vector, permuting the rows by magnitude of projection. The intuition is that the
structure (rows) which projects most strongly to that cluster is the best representation of the
cluster, and is considered a base structure which we attempt to find matches for. Starting from
the base structure, we iterate down the sorted list and compute the Jaccard similarity, defined as
J(Ly,Ly) = |L£1 N La|/| L1 U Ly] for node-sets £ and L, between each structure and the base.
Other structures which are composed of the same, or similar node-sets will also project strongly
to the cluster, and be stitched to the base. Once we encounter a series of structures which fail
to match by a predefined similarity criterion, we adjust the SNMM and continue with the next
iteration.
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Having stitched together the relevant static structures, we label each temporal structure using
the temporal signature in A and resulting phrase in ® which minimizes its encoding cost using
the temporal encoding framework derived in Sec. 6.3.2.2. We use these temporal structures to
populate the candidate set C for our model.

6.4.4 Composing the Summary

Given the candidate set of temporal structures C, we next seek to find the model M which
best summarizes G. However, actually finding the best model is combinatorial, as it involves
considering all possible permutations of subsets of C and choosing the one which gives the
smallest encoding cost. As a result, we propose several heuristics that give fast and approximate
solutions without entertaining the entire search space. To reduce the search space, we associate
with each temporal structure a metric by which we measure quality, called the local encoding
benefit. The local encoding benefit is defined as the ratio between the cost of encoding the given
temporal structure as error and the cost of encoding it using the best phrase (local encoding
cost). Large local encoding benefits indicate high compressibility, and thus meaningful structure
in the underlying data. Our proposed heuristics are as follows:

VaniLra: This is the baseline approach, in which our summary contains all the structures from
the candidate set, or M = C.

Top-k: In this approach, M consists of the top £ structures of C, sorted by local encoding
benefit.

STEPWISE: This approach involves considering each structure of C, sorted by local encoding
benefit, and adding it to M if the global encoding cost decreases. If adding the structure to M
increases the global encoding cost, the structure is discarded as redundant or not worthwhile
for summarization purposes.

In practice, TIMECRUNCH uses each of the heuristics and identifies the best summary for G as
the one that produces the minimum encoding cost.

6.5 Experiments
In this section, we evaluate TIMECRUNCH and seek to answer the following questions: Are
real-world dynamic graphs well-structured, or noisy and indescribable? If they are structured,
how so — what temporal structures do we see in these graphs and what do they mean? Lastly, is
TiIMECRUNCH scalable?

6.5.1 Datasets and Experimental Setup
For our experiments, we use 5 real dynamic graph datasets — they are summarized in Table 6.3
and described below.

Enron: The Enron e-mail dataset is publicly available. It contains 20 thousand unique links
between 151 users based on e-mail correspondence, over 163 weeks (May 1999 - June 2002).
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Graph Nodes Edges Timesteps

Enron [SA04] 151 20 thousand 163 weeks
Yahoo—-IM [Yah] 100 thousand 2.1 million 4 weeks
Honeynet 372 thousand 7.1 million 32 days
DBLP [dbl14] 1.3 million 15 million 25 years
Phonecall 6.3 million  36.3 million 31 days

Table 6.3: Dynamic graphs used for empirical analysis

Yahoo! IM: The Yahoo—IM dataset is publicly available. It contains 2.1 million sender-receiver
pairs between 100 thousand users over 5709 zip-codes selected from the Yahoo! messenger
network over 4 weeks starting from April 1st, 2008.

Honeynet: The Honeynet dataset is not publicly available. It contains information about
network attacks on honeypots (i.e., computers which are left intentionally vulnerable to attackers)
It contains source IP, destination IP and attack timestamps of 372 thousand (attacker and
honeypot) machines with 7.1 million unique daily attacks over a span of 32 days starting from
December 31st, 2013.

DBLP: The DBLP computer science bibliography is publicly available, and contains yearly
co-authorship information, indicating joint publication. We used a subset of DBLP spanning
25 years, from 1990 to 2014, with 1.3 million authors and 15 million unique author-author
collaborations over the years.

Phonecall: The Phonecall dataset is not publicly available. It describes the who-calls-whom
activity of 6.3 million individuals from a large, anonymous Asian city and contains a total of
36.3 million unique daily phonecalls. It spans 31 days, starting from December 1st, 2007.

In our experiments, we use SlashBurn for generating candidate static structures, as it is scalable
and designed to extract structure from real-world, non-“cavemen” graphs. We note that including
other graph decomposition methods can only improve results given MDL. Furthermore, when
clustering each sorted singular vector during the stitching process, we move on with the next
iteration of matrix deflation after 10 failed matches with a Jaccard similarity threshold of 0.5 -
we choose 0.5 based on experimental results which show that it gives the best encoding cost
and balances between excessively terse and overlong (error-prone) models. Lastly, we run
TiMECRUNCH for a total of 5000 iterations for all graphs (each iteration uniformly selects one
SNMMs to mine, resulting in 5000 total temporal structures), except for the Enron graph which
is fully deflated after 563 iterations and the Phonecall graph which we limit to 1000 iterations
for efficiency.

6.5.2 Quantitative Analysis
In this section, we use TIMECRUNCH to summarize each of the real-world dynamic graphs from
Table 6.3 and report the resulting encoding costs. Specifically, evaluation is done by comparing
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TiMECRUNCH

Graph ORIGINAL

(bits) vVaniLLa Tor-10 Tor-100 STEPWISE
Enron 86,102 89% (563)  88% 81% 78% (130)
Yahoo-IM 16,173,388 97% (5000)  99% 98% 93% (1523)
Honeynet 72,081, 235 82% (5000)  96% 89% 81% (3740)
DBLP 167,831, 004 97% (5000)  99% 99% 96% (1627)
Phonecall 478,377,701  100% (1000) 100%  99% 98% (370)

Table 6.4: TIMECRUNCH finds temporal structures that can compress real graphs. ORIGINAL
denotes the cost in bits for encoding each graph with an empty model. Columns under TIME-
CrUNCH show relative costs for encoding the graphs using the respective heuristic (size of model
is parenthesized). The lowest description cost is bolded.

the compression ratio between encoding costs of the resulting models to the null encoding
(OrIGINAL) cost, which is obtained by encoding the graph using an empty model.

We note that although we provide results in a compression context, compression is not our main
goal for TIMECRUNCH, but rather the means to our end for identifying suitable structures with
which to summarize dynamic graphs and route the attention of practitioners. For this reason,
we do not evaluate against other, compression-oriented methods which prioritize leveraging
any correlation within the data to reduce cost and save bits. Other temporal clustering and
community detection approaches which focus only on extracting dense blocks are also not
compared to for similar reasons.

In our evaluation, we consider (a) ORIGINAL and (b) TIMECRUNCH summarization using the
proposed heuristics. In the OrIGINAL approach, the entire adjacency tensor is encoded using the
empty model M = (). As the empty model does not describe any part of the graph, all the edges
are encoded using L(E~). We use this as a baseline to evaluate the savings attainable using
TiMECRUNCH. For summarization using TIMECRUNCH, we apply the VanirLA, Top-10, Top-100
and STEPWISE model selection heuristics. We note that we ignore small structures of <5 nodes
for Enron and <8 nodes for the other, larger datasets.

Table 6.4 shows the results of our experiments in terms of encoding costs of various sum-
marization techniques as compared to the ORIGINAL approach. Smaller compression ratios
indicate better summaries, with more structure explained by the respective models. For example,
STEPWISE was able to encode the Enron dataset using just 78% of the bits compared to 89%
using VANILLA. In our experiments, we find that the STEPWISE heuristic produces models with
considerably fewer structures than VANILLA, while giving even more concise graph summaries
(Fig. 6.2). This is because it is highly effective in pruning redundant, overlapping or error-prone
structures from the candidate set C, by evaluating new structures in the context of previously
seen ones.
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Encoding Cost vs. Model Size
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Figure 6.2: TIMECRUNCH-STEPWISE summarizes Enron using just 78% of ORIGINAL’s
bits and 130 structures, compared to 89% and 563 structures of TIMECRUNCH-VANILLA
by pruning unhelpful structures from the candidate set.

Observation 6.1: Structure in Dynamic Graphs

Real-world dynamic graphs are not unstructured. TIMECRUNCH gives better encoding cost
than ORIGINAL, indicating the presence of temporal graph structure.

6.5.3 Qualitative Analysis
In this section, we discuss qualitative results from applying TIMECRUNCH to the graphs mentioned
in Table 6.3.

Enron: The Enron graph is characteristic of many periodic, ranged and oneshot stars and
several periodic and flickering cliques. Periodicity is reflective of office e-mail communications
(e.g. meetings, reminders). Figure 6.3a shows an excerpt from one flickering clique which
corresponds to the several members of Enron’s legal team, including Tana Jones, Susan Bailey,
Marie Heard and Carol Clair — all lawyers at Enron. Figure 6.3b shows an excerpt from a
flickering star, corresponding to many of the same members as the flickering clique - the center
of this star was identified as the boss, Tana Jones (Enron’s Senior Legal Specialist). Note that
the satellites of the star oscillate over time. Interestingly, the flickering star and clique extend
over most of the observed duration. Furthermore, several of the oneshot stars corresponds to
company-wide emails sent out by key players John Lavorato (Enron America CEO), Sally Beck
(COO) and Kenneth Lay (CEO/Chairman).
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