Dynamic Mesh Refinement with Quad Trees and
Off-Centers

Umut A. Acar Bendt Hudson

April 20, 2007
CMU-CS-07-121

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

Many algorithms exist for producing quality meshes wheninipet point cloud is knowm priori. However,
modern finite element simulations and graphics applicatioeed to change the input set during the sim-
ulation dynamically. In this paper, we show a dynamic alfponi for building and maintaining a quadtree
under insertions into and deletions from an input point setny fixed dimension. This algorithm runs in
O(lg L/s) time per update, wherte/sis the spread of the input. The result of the dynamic quadtaeebe
combined with a postprocessing step to generate and nram&mplicial mesh under dynamic changes in
the same asymptotic runtime. The mesh output by the dyndgocittam is of good quality (it has no small
dihedral angle), and is optimal in size. This gives the firsietoptimal dynamic algorithm that outputs
good quality meshes in any dimension. As a second resultywandize the quadtree postprocessing tech-
nique of Har-Peled andngor for generating meshes in two dimensions. When costpwsth the dynamic
guadtree algorithm, the resulting algorithm yields gyatiteshes that are the smallest known in practice,
while guaranteeing the same asymptotic optimality guaesat

¥ Toyota Technological Institute at Chicago

This work was supported in part by the National Science Fatiod under grants ACI 0086093, CCR-0085982 and CCR-
0122581.

Keywords: Computational Geometry, Mesh Refinement, Dynamic AlgarghSelf-Adjusting Compu-
tation

1 Introduction

In many applications, we need teeshor atriangulatea domain consisting of points and features by split-
ting it into triangles such that all elements of the domaie epvered by a union of triangles. Meshes
are typically used to interpolate a continuous functiongay of various purposes such as finite element
simulations or graphics. A subtantial amount of researchideen performed on thetatic meshing prob-
lem [Che89, BEG90, MV92, Rup95, She98, ...] which assumes twatriput domain is known a priori.
We are interested in thgynamic meshing problemhich permits the input to be changed. For the purpose
of this paper, we assume that the input consists of pointshatdhe input can be changed by inserting new
points and deleting existing points.

To be broadly applicable, a dynamic meshing algorithm matsfy the properties satisifed by state-
of-the artstatic meshing algorithms; the dynamic setting in turn imposestiat@l requirements. These
properties concern the relationship between input, andtiyeut, the quality of the output, and workie
ciency. First the algorithm must yienformingmeshesi.e., all points in the input must appear as a corner
of a triangle in the ouput. Second, the output musgjbed quality i.e., the internal angles of the triangles
in the output must be bounded away from 28T hird, the ouput must bgize competitivd.e., the number
of triangles in the output must be as small as possible. Rptiré algorithm must béwvork) gficient i.e.,
it should preprocess the input quickly. Fifth, the algaritmust beesponsivei.e., it should respond to in-
sertions and deletions by updating its output quickly. Fynd is often desired that the output of a dynamic
meshing algorithm baistory independeni.e., the output mesh is equal to a mesh of the current input set
and does not depend on the history of the operations (ingeaitid deletions performed).

These properties can be broadly placed in two categoriesetrequired by the application (conformity,
good quality output, size optimality, and history indepemce) and those that concern performance (work
efficiency and size optimiality). One major application for imeg is in the Finite Element Method (FEM)
of scientific computing [Joh87, for example]. In FEM simidats, mesh quality is important because it
determines the simulation error [BA76]; the number of eletaén the mesh is important because it deter-
mines the simulation runtime; the size of the smallest efgriseimportant because it defines the length of
the timestep. Furthermore, some applications (}l@85] require that the size of mesh elements be locally
determined by the properties of the input such as the loa#ilife size; it is then important that the output be
faithful to the input. The last two concerns motivate a ne@dfstory independence: that the output depend
only on the current set of points and not the sequence of tipesgoerformed to obtain that input set.

The meshing problem has been studied extensively sinces19%@e first meshing algorithms that
could generate provably good quality meshes using only atanhfactor more elements (e.g., simplices)
than optimal only emerged in the early 1990s, with work froer8 Eppstein, and Gilbert [BEG90]. The
Bern-Eppstein-Gilbert algorithm was later extended te¢hand higher dimensions by Mitchell and Vava-
sis [MV92, MV00]. Both these solutions run in tin@nlg n + m), wheren is the number of input points,
andm s the number of output elements in the optimal result. Tlrtgue uses guadtree subdivisign
and warps the vertices of the mesh in a postprocess, triatigglin a final step. A number of postpro-
cesses have been conceived, the most recent of which pmodueghes smaller than any other published
technique [HRJ05]. The time bound is optimal, due to a sorting lower boumitle size of the mesh they
output is also provably within a constant factor of optimal.

Our results. To state our results, we start with a few definitions for chmazing the input. As usual,
n is the number of points in the input (in the dynamic case, thesnumber of points in the current input,
irrespective of history and future). We assume that the lestgbossible mesh has exaathyertices in the

output. L is the diameter of the point set, asds the distance between the closest pair, so liiiatis the
spreadof the input. Finallyd is the dimensionality of space. We consideio be a constant, which allows
us to hide terms exponential in the dimension from the asgtigst none of the results mentioned in this
paper or its references directly apply to high-dimensigrablems. Generallygd will be 2 or 3; however,
our results apply in any fixed dimension.

We give a mesh refinement algorithm that run®©iimlg L/s) time to preprocess a static point set with
points. The preprocessing step yields a quality mesh, asided above. After the preprocessing step, the
input can be changed by inserting new points and deletirgfiegipoints. To each such change, the algo-
rithm responds irD(Ig L/s) time by updating the output mesh. The algorithm is histodependent with
respect to the preprocessing-step: the output mesh isddetat the mesh that would have been obtained by
performing a preprocessing step from scratch. The algorttius guarantees that the output retains all its
guarantees regardless of the operation sequence.

The response time @d(Ig L/s) is optimal in two senses: first, the output mesh may, in thesivcase,
change byO(Ig L/s). Second, under the assumption that the input has polyhepri@ad, the response time
is O(Ig n), matching the lower bound based on sorting. We believetieaproposed algorithm is the first
optimal-time dynamic mesh refinement algorithm with outguality and size guarantees.

To solve the dynamic meshing problem, we first show how to dyra the construction of a so-called
balanced quad-treBEG90]. Having produced a dynamic balanced quad-treerigthgo, we show how
to dynamize a postprocess to produce a quality simplicilhmé&he original post-processes described in
the early quad-tree papers produce meshes that, in praatedarger than subsequently discovered mesh
refinement approaches based on Delaunay refinement [Shef85R For two dimensions, a recent result
of Har-Peled andJngdr [HRU05] describes a more complicated post-process that ahige smallest
meshes known—Shewchuk has integrdtedjor's technique in recent versions of his well-knowrengle
software and finds it reduces the mesh size by another 40%fmversual approactng04]. Our history-
independent dynamization simulates this algorithm eyaatid thus will achieve the same output size.

In order to dynamize the algorithms, we make very minor medifbns to them — we specify the order of
some operations that the original authors left arbitratyentapplyself-adjusting computatiojAica05a]. In
self-adjusting computation, after a static algorithm is@xed with some input, any of the computation data
can be changed and the output can be updated by runmhgrege propagatiomlgorithm. At a high-level,
the change-propagation algorithm updates the output agithihe algorithm is executed from-scratch on the
changed input, but only re-executes the parts of the cortipaténat depend on the changed data. Previously
the approach has been applied to a reasonably broad rangebtdéms for both dynamizing and kinetizing
various algorithms [ABTO07, ABTV06, ABBTO06]. Self-adjusti-computation yields a dynamic algorithm
that guarantees that dynamized algorithm is correct, ipstmlependent, and composable. Composibility
and history-independence are critical to combining ouiadlyic quadtree algorithm with the postprocessing
technique for Har-Peled aridngor: without these the bounds would break. For programas s$atisfy
a so-calledmonotonicitycondition, the time for dynamic changes depends ontthee stability of the
algorithm. To obtain our results, we show that both the qued-algorithm and the postprocesses satisfy
the monotonicity conditions, and we bound their trace &tgbi

Related work. A number of authors have considered the dynamic mesh refimepneblem [NvdS04,
MBF04, CGS06, and references, for example], especiallystwgical simulation applications (where a
scalpel cut introduces new features) and in fracture sifioms. Published solutions either either do not
guarantee mesh size, or do not guarantee quality. Nonerofgharantee runtime, though for some solutions
itis, at least in practice, faster than linear time to chahgeopology of the mesh. The relatetbving mesh

[] [J
[] [)]
[] []]
[]
[]
[] []]
Input Balanced quad-tree ffocenter mesh

Figure 1: An illustration of our dynamized quadtree aldurit showing the dierences between two static
runs. Under self-adjusting computation, the total workeltmupdate from one input to the other is linear
in the change between the two. Section 4 bounds the chanpe latanced quad-tree, whereas Section 5
bounds the change in the output mesh. Both a®(ig L/s), whereL is the diameter of the space aaths

the distance between the nearest pair of input points.

problem where all the points in the mesh move through time, has bttackad both in practice [Bak01,
e.g.] and theoretically [LD98, e.g.] in a huge number of works, mostly with applicatiorcomputational
fluid dynamics. However, all current moving mesh approadhks at least linear time.

We apply self-adjusting computation [Aca05a] to dynamizsadic algorithm. Our algorithms could
be dynamized using other techniques instead. For exameleti@hs can be handled lazily by delaying
the removal of the deleted point until afSciently large (near-linear) number of points are deleted| a
then remeshing from scratch. Such an algorithm can be mable ®ze-optimal and, in an amortized
sense, has near-optimal response time. However, it is aseauwt history independent. Even if this is
appropriate for the reader’s application (it is not for thege have in mind), the reader will be interested in
our analysis to bound the time to perform a dynamic insertionother class of dynamization techniques
include those for order-decomposable search problems8Qvea his approach, however, only applies to
divide-and-conquer algorithms. It is not clear how to riesthe algorithms we dynamize here in a divide-
and-conquer framework: splitting a cell can cause spijtanother cell that is arbitrarily far away, which
seems to contravene any division possibilities.

Eppsteinet al. reported on the dynamization of a quad-tree [EGSO05] usiigkadtrees. To establish
their fast query and update times, they must cleverly cosgpagvay uninteresting quad-tree cells and main-
tain a hierarchy of trees. However, even if we used skip qaeadtas our backing data structure, we would
still need the analysis in this paper to show we can quicklintaa the balance condition on the quadtree,
and to show how to update the output mesh: dynamizing theriyimtg data structures is not the hard part
of dynamic mesh refinement.

QUADTREEREFINE(P: point set, L: real, d: int) | appWork(C: cell)
1 Associate P with the cell [O,L]¢ 1 Append ¢ to Wygyq
d ; d
i ||f<_[o|gL|_] is crowded then { appWork([O,L]%) } spLITALLOM: cell set)
4 while (W >0) do 2 mewcells —0
. 3 while (W not empty) do
5 while ((W|=0) do { decrement | }
4 dequeue ¢ from W,
6 spLITALL(W)
7 increment | > (G} « spL1T(C)
6 append each ¢ to newcells
spLiT(C: cell) 7 while (newcells not empty) do
8 Split ¢ into 29 new, smaller cells {c} 8 dequeue ¢, from newcells
9 for (each point p contained by c) do 9 if (¢ is crowded) then { appWork(() }
10 associate p with the ¢ that contains it 10 for (each neighbour ¢ of ¢) do
11 return {c} 11 if (Ic/| = 4lc) then { appWork(C) }

Figure 2: The quadtree refinement algorithm, modified frormBEppstein, and Gilbert [BEG90].

2 Balanced Quadtrees

Balanced quadtrees yield a hierachical subdivision of faees intocells i.e., hypercubes in the specified
dimension. Having created a balanced quadtree of a set wifsing post-processing step can be applied to
produce a good-quality mesh of the input. In this sectionpresent a modification of the original algorithm
of Bern, Eppstein, and Gilbert [BEG90].

A cell is a hypercube in the specified dimension. Importing dlefinitions of Berret al., we say that
a cellc is self-crowdedf it contains two or more input point. A cetl is crowded by a neighbour df ¢
contains exactly one point, ard contains are least one point. We say that a cetrésvdedif it is self-
crowded or is crowded by a neighbor. We say that ac@&lunbalancedf it has a neighbourc’ such that
Icl/Ic’| > 4. We say that a quadtreebslancedif all unsplit cell are balanced and are not self-crowded or
crowded.

Figure 2 shows our quadtree algorithm. In essence, ouridigois a restatement of Beet al.in which
we more carefully specify the ordering of some operatioas was left undefined in the original work. The
ordering was unimportant to their setting, but it is critif@ our proof of the response time bounds. The
algorithm starts with a bounding box (square) of the the fpe@t, with side length.. It maintains a setV
of work items, i.e., cells to split, and a mapping from eadhtoehe set of input points that it contains. The
work-setW is partitioned into Ig- buckets such that the buckéf is a queue containing the cells of size
exactly 2. The main loop maintains a fingkin order to quickly find the largest non-empty bucket.

The algorithm proceeds in rounds. In each round, it chodeeset of the largest cells on the workset
and splits all of them using therLitALL function. ThespLitALL first splits each cell in the bucked by
calling seLir. ThespLit function splits the cell into ®sub-cells and updates the cell-to-points mapping. The
spLITALL function then enqueues the newly-created crowded or untediacells into the work set by calling
ApbbpWork, which is only a function in order for us to easily refer tolitaughout the paper. The function
ApbWork is the only operation that causes communication across @éetleed, only an unbalanced cell can
be added more that once to the workset (ffedéent neighbours). We discuss later the implications af thi
operation. At the end of one round of split operations pentt byspLiTALL the algorithm increments the
main loop’s finger, sincerLItALL may have unbalanced some cells that are larger than thepcelli®usly
being processed.

2.1 Structural Results

Lemma 2.1 During the algorithm, unprocessed crowded cells (if ang®xre all of the size of the smallest
cells in the mesh.

Proof Initially, this is trivially true (there is only one cell ihe mesh). Later, consider the cetl that
was split to create a crowded cell Clearly,c* was itself crowded, and thus by induction was the smallest
cell in the mesh. Now, we have destroyefdand all its equally-sized cells, and replaced them withsagl
half the size. These new cells must be the smallest cellssimmiash. Until we split these crowded cells,
any further splits must all be balance splits. A cell can didyunbalanced if it is four times larger than its
neighbour, thus balance splits cannot reduce the size citiadlest cell. =

Lemma 2.2 After a round of splitting crowded cells, until the next rduof splitting crowded cells, | in-
creases by exactly one every round.

Proof When splitting the crowded cells, we know that all cells ie thesh are balanced: there are no
smaller cells, and any larger cells, if unbalanced, wouldlyna work setW. with I’ > | was non-empty, a
contradiction. The crowded cells may cause unbalanced, eeith size corresponding fo+ 1, but not of
sizel + 2 because such cells would already be unbalanced, a cartivadi =

Lemma 2.3 At all points in the algorithm, every cell ¢ has at mogtl{Pneighbours tof sized|c’| < |c| <
0.25c|.

Proof The proof that the size does notfér much is immediate from the prior lemma. The proof that
this implies a bounded number of neighbours is by a volumé&ipgargument. The constant is precisely
60-49 w

2.2 Size and quality guarantees

To obtain the size and quality guarantees, we can use ang stahdard postprocesses published in Bérn
al. or Mitchell and Vavasis [BEG90, MV00]. Given that our alghm is just a specific ordering consistent
with the schema given by the prior results, we inherit the sind quality guarantees. For example, we
can show that all the simplices have aspect ratio at least somstant that depends only on the dimension,
and not on the input point set. Furthermore, we can show thang all Steiner triangulations that respect
that aspect ratio bound and in which all the input points appbe size of the triangulation output by the
guadtree algorithm and its postprocess is within a consaatdr of optimal. In fact, the bound is stronger:
at any pointp in the domain, we know that the cell that contambas size within a constant factor of the
local feature size gb (the distance fronp to the second-nearest input point).

2.3 Blame argument

Definition 2.4 If a new cell ¢ is crowded by a point p in;®@r in a neighbour of ¢ then weblame the split
of g on p. Inductively, if a split of a cell’dlamed on p causes a cell ¢to become unbalanced, we blame
the split of ¢ on p.

Note that a cell may blame its splitting on many points; irtjeewill always blame at least two points.

Lemma 2.5 Assume p is blamed for the split of a cell c. Thiedl| € O(|c]).

5

Proof If cis being split for crowding, thep is either withinc or is in a neighbouc’ of ¢, and|c’| = |c|.
Thusl|lpd| < [cl.

If cis being split for balance, then we can follow the causalrchizat leads to a cetf that was split for
crowding byp. Label the chairt; with ¢cg = c andck = ¢’. Because of the balance condition, we know that
Icil = 2|ci,1] and thugc| = 24c|.

The distance we can travel along the chain is maximized ittian follows the diagonal of the cells,
a total distance of*2v2|c’|. Finally, ¢’ either containg or neighbours an equal-sized cell that contgins
Thus the distance fromto cis at most (2 V2 + 1)|c|.

In other words||pd] < (V2+1)c]. m

Lemma 2.6 Any point p is blamed for at most(fg L/s) splits.

Proof Given a size clask we know that any cell of size' 2hat is blamed orp must have distance at
mostO(2). A simple packing argument shows that there must thus be®l) splits in size claskthat are
blamed onp. Because the algorithm does not overrefine, ther@®8#el / s) size classes. =

2.4 Runtime

There are two components to the runtime of the algorithm:cthst of splitting the cells, and the cost of
maintaining the mapping between points and cells. Each oliamed forO(Ig L/ s) splits, so there are a
total of at mostO(nlg L/s) splits. If a split relocates a point, there are two postieg: the split is due to
crowding, in which case the point is blamed for the split;fw split is due to balance, in which case there
is at most one point in the cell. In the former case, the costt@ftelocation can be charged to the point in
the usual manner. In the latter case, the cost can be charded $plit itself since it is only constant extra
work.

3 Self-Adjusting Computation

Theself-adjusting computatio(6AC) model [Aca05a] enables dynamizing static algorittammatically

by relying on achange-propagation algorithito update the output when the input changes. The asymptotic
complexity of change propagation can be bound by analyziegrace stabilityof the algorithm under a
change—in this paper , we consider inserting or deletingpmmet from the input. In this section, we state
some definitions that our analysis (Section 4.2) relies onbFevity and to draw on the reader’s intuition, we
paraphrase from the more precise definitions in Acar’s pitasien [Aca05a] and present the main stability
or update theorem that change propagation time can be bgustalkility and a priority-queue overhead for
certain programs.

Definition 3.1 (Traces [Aca05a, Definition 8]) Thetrace is an ordered, rooted tree that describes the ex-
ecution of a program P on an input. Every node corresponds fianation call, and is labeled with the
name of the function; its arguments; the values it read froemry; and the return values of its children.
A parent-child relationship represents a caller-calle¢atenship.

Definition 3.2 (Cognates and Trace Distance [Aca05a, Defiimin 12]) Given two traces T and Tof a
program P, a hode & T is acognate of a node ve T’ if u and v have equal labels. Theace distance
between T and Tis equal to the symmetric giitrence between the node-sets of T andi.€., distance is
IT| +|T’| — 2/C| where C is the set of cognates of T and T

Definition 3.3 (Monotone Programs [Aca05a, Definition 15])Let T and T be the trace of a program
with inputs that dffer by a single insertion or deletion. We say Rhisnotone if operations in T happen in
the same order as their cognates ihduring a pre-order traversal of the traces.

The change-propagation algorithm relies on a priority @utewypropagate the change in the correct order.
The main theorem of Acar [Aca05b] states that for monotongams, the time for change-propagation is
the same as the trace distance if the priority-queue overt@abe bounded by a constant. For the theorem,
we say that a program {3(f(n))-stable for some input change, if the distance between the tra¢cds of
the program with inputs andl’, wherel’ is obtained from by applying the change, is bounded®yf (n)).
Note that stability is symmetric: insertions and deletians indistinguishable.

Theorem 3.4 (Update time [Aca05a, Theorem 34])f a program P is monotone under a single inser-
tion/deletion, and is Qf (n))-stable, and if the priority queue can be maintained if1JQime per operation,
then change-propagation after an inserfideletion takes ¢f (n)) time.

4 Dynamic Quad-Tree Analysis

The remainder of the analysis is devoted to showing thatrusidgle-point insertions and deletions, our Par-
allel Quad-Tree Refinement algorithm is monotone &g L/ s)-stable, and that using a standard priority
queue will takeO(1) time per PQ operation under these updates.

4.1 Monotonicity

Before proceeding to establish monotonicity, we must fiesbdr to noticing that the same unbalanced cell
can be added to the queue repeatedly, by several neighlamrcss traces, it may be added by the same
neighbour but in a dierent round. To sidestep these issues, we tag theotidork call with distinguishing
information: the name of the cell that witnessed the imbadaand the number of the round.

Throughout this sectionly and Ty are two traces of @pTreeRerNE; U andv are nodes offy, with
round-pairr andr’ respectively; and finally andv are their cognates i (if any). We need to prove that
if u<vthenu<v.

Lemma 4.1 Trace nodes from gerent rounds are processed in monotone order across traces.

Proof Given thatu andv are cognates, they share roundsimilarly u andv share round’. Sinceu
precedey, r <r’. m

The only question remaining is the order of items within awbu We show by an inductive argument
that it is also monotone:

Lemma 4.2 Trace nodes from the same round occur in monotone order sitrases.

Proof The order of trace nodes within a round is defined by the orfleelts on theW, queue being
processed. The order of cells in round 0 is clearly monottrexe is only one initial cell to split. Inductively,
assume all cells in all prior rounds were processed moncatipibetween trace$g and T;. Then their
correspondingpLits were called in the same order in both traces. Thereforestitdren generated by the
splits were processed (#rLiTALL) in the same order in both traces. Finally, their correspunaopWork
calls occurred in the same order in both traces. Note thatdkt statement uses the fact that we only count
as cognatesppWork calls with the same causer. m

7

4.2 Trace Stability

Assume the inputs to tracdg and T, differ only in that tracel; has one additional poirp. We want

to show that onlyO(Ig L/s) trace nodes dlier between the two traces. There are two interesting kinds of
nodes: abpWork and point relocation (from Line 10 ofLit). Any other kind of node is in one-to-one
correspondence with ampWork node, so counting those two types idfsient.

Lemma 4.3 The set ofabbWork calls is Qg L/s)-stable.

Proof If an abpWork call is being executed ifi; but notTy, then a celk was split, which then caused
the algorithm to find either (a) a chilg of cis crowded that was not previously crowded, or (b) a neighbou
¢ of cis unbalanced that was not previously unbalanced. In case ither containg or is a neighbour
of a cell that containg. Thusc; can be blamed op. In case (b), eithec was a newly crowded cell (in
which casec is blamed ornp as per case (a)), @was unbalanced by another c€ll By induction,c” must
have been blamed gn and sacis. Thereforeg is blamed orp.

Any cell c is only named inO(1) calls toabpWork: if ¢ is crowded, there is exactly one call;dfis
unbalanced, there may be up to one per neighbour, but the@(hy neighbours o€ throughout the life of
the algorithm.

Finally, Lemma 2.6 shows th@tcan only be blamed fd®(Ig L/s) splits; thus it can only be blamed for
O(lg L/s) new calls toabpWoRrk.

Conversly, amppWork call executed ifTg but not inTy1 can only be because the corresponding cell was
split in T1 earlier than inTy. We know can blame the earlier split gnand again this can only happ@iql)
times sincec hasO(1) neighbours. =

Lemma 4.4 Point relocation work is {Ig L/s)-stable.

Proof Every pointis reassigned at masflg L/s) times during the algorithm. Therefore, the computa-
tion to reassign the poim being added or removed @(Ig L/s)-stable.

There are two reasons a point can be reassigned: eithenigigtiowded cell being split, or it is in an
uncrowded but unbalanced cell being split. A reassignmeattd a crowded celt can only be re-executed
if the point p was either in the celt or in a neighbour’ of c. Furthermore, we know that there was exactly
one other point irc or ¢’ — otherwise the algorithm would split regardless of the pneg or absence @k
and thespuit call would be a cognate, not re-executed. Meanwhile, anglaniced cell can only reassign at
most one point.

In other words, if a split reassigns any points, it reassayastly one point. The set of splits@XIg L/ s)-
stable, and thus so is the set of point reassignmenta.

4.3 Priority Queue costs

Finally, we need to show that onl®(1) trace nodes are in the change propagation priority qa¢aay
time. We know from prior proofs that during change propagationly O(1) trace nodes are processed in
any size class. Furthermore, at most 3 size classes are quéu® at any one time: the current size class;
unbalanced cells in one size class larger, if any; and crdwd#s which may be in a smaller size class.

4.4 Main Result

Theorem 4.5 TheQuapTreeRerINE algorithm, sequentialized and dynamized as describedrintain a
balanced quad-tree over a point set in any fixed dimensioreuady sequence of single-point additions

8

and removals. Lefy and P11 be the point sets before and after an update; let snin(s, s1) and n =
max(Pol, |P1]). Then our dynamic algorithm runs in time(IgL/s) and uses a history-independent data
structure of size (higL/s).

Proof The Lemmata of the present Section show thatfdreeReriNE is O(Ig L/ s)-stable, monotone,
and can be dynamized using a constant-time priority quauddéachange propagation algorithm. Therefore,
Theorem 3.4 applies and yields the time bound and histompeaddence.

History-independence further implies that the data stinecis topologically identical to one that results
from inserting then points of?; one by one. Give our time bound, we know that we cam dwsertions in
O(nlg L/s) time. Clearly, we cannot use more space than time, whidds/eur space bound. =

5 Generating small meshes in 2d

The meshes output by the postprocess described in SecB@rewithin a constant factor of optimal size
and of the best possible quality. In practice however, theysabstantially larger than than those output
by Ruppert refinement [Rup95], and unlike in Ruppert refingtniney do not fier the user of the mesh
any control of the desired quality bountlingér [Ung04] described a way of choosing what he called an
off-center given a bad-quality triangle (one with a small angle), we o®sert a Steiner point so that the
shortest edge of the triangle forms a triangle with tifecenter that exactly achieves the quality threshhold.
In theory, df-centers yield optimal-size meshes. In practidécenter meshes are the smallest known. Har-
Peled andJngdr [HRUO05] then showed how to uséfecenters to post-process a balanced quad-tree in order
to simultaneously achieve the time bounds from quadtredénmgsind the small output size fronffaenter
meshing. We show here how to dynamize the Har-Peled amgbr postprocess. Due to space constraints,
we leave the full details to the Appendix A.

The algorithm proceeds as follows: iteratively, in ordemfrsmallest to largest quadtree cell, the algo-
rithm considers every input poirg in a given cell, then searches neighbouring cells for antippint g.
Having found such a pair of points, it checks whether thes tisird pointr such thatpqr is a Delaunay
triangle, andpqgr has good quality. If there is no suchthen pqis a termedoosepair. The algorithm
constructs an appropriateusing the €f-center, and inserts this which is now treated as an input point.
During this routine, the quadtree serves the purpose obpuiifig the point location (fop andq) and range
queries (forr, if it exists).

As a final post-process, we can again use the technique thgténom the smallest cell to the largest
and using the quadtree for point location to compute the g triangulation in linear time.

We deviate in only one respect from the original algorithnHaf-Peled andngor: they left undefined
the order of operations pairs within a size class. To esfaldur stability bounds, we require that they be
done in FIFO order. This should be reminiscent of our modificeof the Bernet al. algorithm.

Given that our algorithm performs the same steps as thenatiglgorithm, the correctness, size optimal-
ity (and in-practice performance), and static runtime af modified HPU algorithm immediately follow.
Dynamic stability is all that is left to establish. The argemh (detailed in the Appendix) is reminiscent of
the dynamic stability argument for the quadtree itself: whrék a notion oblamefor off-centers upon input
points, and prove a packing lemma:

Lemma 5.1 (Off-centers pack) Let r be an g-center that blames an input point p. Thiep| € @(NN(r))
where NNFr) is the nearest neighbour of r when r is inserted.

Theorem 5.2 Given a dynamic point st e [1/3,2/3]? and a radiugedge ratiop > 1, we can dynamically
maintain a mesh of the desired quality using within a (in pice small) constant factor of the optimal
number of Steiner vertices. Each addition to or deletiomfrthe input point set can be performed in
O(lg L/s) time.

Proof Using self-adjusting computation, run the dynamicallgbé quadtree algorithm described ear-
lier, and use that as input to the dynamically-stable HPUWpgposess described in this section. Upon a point
addition or deletion, we know from Theorem 4.5 that the questipdates i©(Ig L/s) time. Each cell is
only readO(1) times by the postprocess, so propagating the quadtie®gek through the postprocess is
fast. Finally, HPU is itselfO(Ig L/s)-stable, by the previous packing lemma. We omit the morioityrand
priority queue arguments for brevity. m

6 Conclusions

In this paper, we showed a dynamic algorithm, for maintgjrarbalanced quadtree in arbitrary dimension.
The algorithm is optimal for a large class of inputs (inpuithvpolynmomial spread), yields size-optimal
meshes, and is history-independent. The algorithm is dddby applying self-adjusting-computation tech-
niques to dynamize an algorithm for generating quadtreesbélleve this is the first dynamic algorithm for
computing meshes in optimal time. As a second result, we gay@mamization of the Har-Peled ablagor
technique for postprocessing quadtrees([}l8B] to obtain size-optimal meshes that are the smallestkno
in practice. Based on the history independence, and colifitysproperties of our dynamic quadtree algo-
rithm, composing the two results yield a technique for dyitafty generating and maintaining practically
small 2-d meshes in optimal time for inputs with polynomiptead. Since meshes are required in many
application domains, we expect that our results will findleggions in a number of aread (e.g., scientific
computing, CAD design, and streamjngt-of-core meshing).

The algorithm that we give here only handles inputs pointsnioti input-features such as segments or
polygons. Even in the static case, handling input featwelifiicult: the first time-optimal algorithm that
can handle features was discovered very recently [HMPOGPBIFL As with the quadtree algorithm, this
algorithm has a data dependency depto@f L/s). We therefore hope to be able to use the techniques in
this paper to dynamize that algorithm and thus handle mareticated geometries.

References

[ABBTO06] Umut A. Acar, Guy E. Blelloch, Matthias Blume, andadat Tangwongsan. An experimental
analysis of self-adjusting computation. Rroceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementat2006.

[ABTO7] Umut A. Acar, Guy E. Blelloch, and Kanat Tangwongsakinetic 3d convex hulls via self-
adjusting computation (an illustration). ACM Symposium on Computational Geometry
(SCG) 2007.

[ABTV06] Umut A. Acar, Guy E. Blelloch, Kanat TangwongsamdaJorge L. Vittes. Kinetic algorithms
via self-adjusting computation. Technical Report CMU-@%&4115, Department of Computer
Science, Carnegie Mellon University, March 2006.

10

[Aca05a]
[Aca05h]
[BA76]
[Bako1]

[BEG90]

[CGS06]
[Che89]

[EGSO05]

[HMPO6]
[HMPO7]
[HPUO5]
[Joh87]

[LT U98]

[MBF04]

MV92]

[MVOO]

Umut A. Acar. Self-Adjusting ComputationPhD thesis, Department of Computer Science,
Carnegie Mellon University, May 2005.

Umut A. Acar. Self-Adjusting ComputationPhD thesis, Department of Computer Science,
Carnegie Mellon University, May 2005.

Ivo BabuSka and A. K. Aziz. On the Angle Condition ihe Finite Element MethodSIAM
Journal on Numerical Analysid3(2):214-226, April 1976.

Timothy J. Baker. Mesh movement and metamorphodis. 10th International Meshing
Roundtablepages 387-396, 2001.

Marshall Bern, David Eppstein, and John R. GilbeRrovably Good Mesh Generation. In
31st Annual Symposium on Foundations of Computer Sgipages 231-241. IEEE Computer
Society Press, 1990.

Narcis Coll, Marité Guerrieri, and J. Antoni Sedla. Mesh modification under local domain
changes. Ii5th International Meshing Roundtableages 39-56, 2006.

L. Paul Chew. Guaranteed-quality triangular meshechnical Report 89—983, Department of
Computer Science, Cornell University, 1989.

David Eppstein, Michael T. Goodrich, and Jonathhergy Sun. The skip quadtree: a sim-
ple dynamic data structure for multidimensional data.2list Symposium on Computational
Geometrypages 296—305, 2005.

Benoit Hudson, Gary Miller, and Todd Phillips. $p&aVoronoi Refinement. IRroceedings of
the 15th International Meshing Roundtappeges 339-356, Birmingham, Alabama, 2006.

Benoit Hudson, Gary L. Miller, and Todd Phillips.p&se Parallel Delaunay Refinement. In
19th ACM Symposium on Parallelism in Algorithms and Araititees 2007.

Sariel Har-Peled and Alpéingor. A time-optimal Delaunay refinement algorithm in tdie
mensions. IrR1st Symposium on Computational Geomeaiages 228-236, 2005.

Claes Johnson.Numerical solutions of partial gierential equations by the finite element
method Cambridge University Press, 1987.

X.-Y. Li, S.-H. Teng, and AUngdr. Simultaneous refinement and coarsening: adapshimg
with moving boundaries. lidth International Meshing Roundtablpages 201-210, Dearborn,
Mich., 1998.

Neil Molino, Zhaosheng Bao, and Ron Fedkiw. A virtuede algorithm for changing mesh
topology during simulation. I8IGGRAPH2004.

Scott A. Mitchell and Stephen A. Vavasis. Quality Me&eneration in Three Dimensions. In
Proceedings of the Eighth Annual Symposium on Computadti@eametry pages 212-221,
1992.

Scott A. Mitchell and Stephen A. Vavasis. Quality rhegeneration in higher dimensiorSIAM
Journal on Computing29(4):1334-1370, 2000.

11

[NvdS04]

[Ove81]
[Rup95]

[She9s]

[Ung04]

Han-Wen Nienhuys and A. Frank van der Stappen. Alrey approach to interactive cutting in
triangulated surfaces. Fifth International Workshop on Algorithmic FoundationsRobotics
2004.

Mark H. Overmars. Dynamization of order decomptesatet problems. J. Algorithms
2(3):245-260, 1981.

Jim Ruppert. A Delaunay refinement algorithm forlgy&-dimensional mesh generatiod.
Algorithms 18(3):548-585, 1995.

Jonathan Richard Shewchuk. Tetrahedral Mesh @&émeiby Delaunay Refinement. Rro-
ceedings of the Fourteenth Annual Symposium on Compustigeometry pages 86—95, Min-
neapolis, Minnesota, June 1998. Association for Compuaghinery.

Alper Ungor. Qf-centers: A new type of Steiner point for computing sizeirpt quality-
guaranteed Delaunay triangulations.LIATIN, pages 152-161, 2004.

12

DYNHPU(P € [1/3,2/3]%, p)

1 Construct a balanced quadtree Q7

2 Rescale so that the size of the smallest cell is 1; let L be the largest cell.
3 for (i=0 to IgL) do

4 enqueue all cells of size 2' into Q

5 for (i=0 to IgL) do

6 while (Q; is non-empty)

7 collect all loose pairs pg where p is an active vertex in a cell on Q
8

empty Q;
9 for each collected pq
10 if pq is no longer loose then skip pq
11 compute the off-center r of pq
12 add r to the smallest cell c such that (a) ¢ contains r, (b) |c|>2, (c) Gowlcl < prll < Cyplcl
13 append C to Qqq
14 if pgq is still loose, repeat
15

Figure 3: A dynamically-stable version of the Har-Peled Engor [HRU05] algorithm. The key dierence

is that we define more carefully the ordering of items on thekwqpueue. We also require the use of a
dynamically-stable balanced quadtree algorithm suchva€)D. Note that Line 14 is triggered only fqis
loose from both left and right.

A Generating small meshes in 2d

We use the following terms from Har-Peled addgor. Most of the following definitions define an orien-
tation; we write the definitions for the counterclockwisewg orientation and leave the reader to perform
appropriate substitutions to define the clockwise (cw)\ejant.

Definition A.1 (Leaf) Given a pair of points p and g, take a point ¢ such tlegt = |cq = p|pdg|, and|pqgd
forms a counterclockwise cycle. Tbaw-leaf of pq is the disc [, p|pq).

Definition A.2 (Loose pair) A pair pq isccw-loose if the ccw-leaf is empty of any points. A pair pq is
looseif it is either ccw-loose or cw-loose.

Definition A.3 (Crescent) Given a pair pqg, let ¢ be the point on the ccw-leaf of pq thaaithiest from p
and g. Theccw-crescent of pq is the portion of the disc @, |pd) with the ccw-leaf removed.

Definition A.4 (Off-center) Let pq be a ccw-loose pair pg. If the ccw-crescent of pq is gntpén the
ccw-gffcenter of pq is the point ¢ from the definition of the crescent. If tbe-crescent is non-empty, take
the point p such that disc that circumscribes p, pnd g is empty. Thecw-gffcenter is the center of that
disc.

Defir_1_ition A.5 (Active point) A point p isactive if it may form a loose pair with another active point. See
[HPUO5, Lemmata 4.8-4.11] for proofs and technical definiticd@aly (1) points are active in any cell of
a balanced quadtree.

We present our modification of the Har-Peled &iayor algorithm in Figure 3. &xHPU takes as input
the point set, a radiyisdge quality boung@ > /2, and a dynamic quadtree. It produces as output a list of
points. We can use a modification oixEHPU to produce the Delaunay triangulation in time linearhie t

13

output size: to decide that a paigis not loose requires finding a poihin the leaf ofpg such thatpqtis
Delaunay.

The algorithm proceeds as follows: iteratively, roughlyonder from smallest to largest loose pair, the
algorithm identifies a loose pair and inserts if6a@enter (or both fi-centers, if it is loose from both sides).
It uses the quadtree for two purposes: to order the loose @airwithin a constant factor), and to test
for looseness. We deviate in one respect from the origirgrithm of Har-Peled andingér: they left
undefined the order of loose pairs within a size ciadsnes 7-15), whereas to establish Lemma A.8 we
require that they be done in FIFO order. In essence, we simptacessing; in parallel.

Given that our algorithm performs the same steps as thenatigigorithm, the correctness, size op-
timality (and in-practice performance), and static rumtiof our DrxHPU algorithm immediately follow.
Dynamic stability is all that is left to establish. The argemhwill be reminiscent of the dynamic stability
argument for EnQT: we show that any input poirg can only be blamed 0®(1) off-center insertions for
any value of.

Definition A.6 (Insertion radius) Theinsertion radius of an gf-center r, denotedR(r), is the distance
from r to its nearest neighbour at the time r was inserted.

Lemma A.7 (The insertion radius is large) Consider a loose pair pg and theirffecenter r. Then the
insertion radius of r follow2p|pq > IR(r) > p|pg.

Proof There are two cases: (1) if there is a vertéxthe crescent, thenis the circumcenter gbgt. By
definition, pqt is Delaunay: its circumdisc is empty of any other points. réfare, IR¢) = R(pqt). Also,
becauseqis loose,pgt must have bad radifedge ratioR(pqt)/|pg > p, or equivalently IR() > p|pq.

If instead the crescent is empty, theis the farthest point on the flower @fg, and we know that the
crescent ofpqis empty of points. The crescent pf has radiugpr|, which shows that IR} = |pr|. From
the Pythagorean theorem, we can compute)IR(pr| > p|pg.

In either caser, p, andgall lie on a circle of radius at mogtpq, and thus can be separated by no more
than twice that distance. =

Lemma A.8 (Loose pairs grow geometrically) After every iteration of th®ynHPUwhile loop, the size of
the smallest remaining loose pair in iteration i of the foofogrows by a factor at leagt

Proof Let s;j be the length of the shortest loose pair at the beginningeftthiteration of the while
loop in iterationi of the for loop. Consider a loose pair seen at the end of iteraj, but not seen at the
beginning of the iteration. Such a loose pair must includeast one newfé-centerr; if it is a pair made
of two new dt-centers, let be the newer one. Thaffecenter issued from a loose pair of length at lesyst
By Lemma A.7, the nearest neighbourrak at distance at leaglsj; in particular, its partner in the loose
pair must be at least that far. m

Lemma A.9 (Loose pairs don’t grow too fast) All loose pairs processed in iteration i of the for loop have
length in®(2").

Proof The upper and lower bounds were proven beforel(Ja®, Lemmata 4.3, 4.7]. =
Definition A.10 (Blame for off-centers) An gf-center rdirectly blames a point p if r issues from a loose

pair around p. Transitively, indirectly blames those that p blames.

14

Lemma A.11 (Off-centers pack) Let r be an g-center that blames a point p. Thep| € O(IR(r)).

Proof That IR{) < |rp]is trivial: the insertion radius af is empty of points.

If r directly blamesp, then this is restating Lemma A.7.

If r directly blames a poing that transitively blameg, then by the triangle inequality, we hajr@| <
Irgl+|gpl. We know thatrg| = IR(r) by definition. We can inductively assume that there is a @& such
that|pg < kIR(q). Thus,|rp| < IR(r) + kIR(q). It remains to bound IRY) in terms of IR¢€); this follows
from Lemma A.7. Thusyp| < (1 + k/p) IR(r). For anyp > 1,k is a constant witlk = p/(p —1). =

Finally, we can state the overall result:

Theorem A.12 Under self-adjusting computatio@ynHPU runs in (g L/s) time per addition to or re-
moval from the input point set.

Proof By Theorem 4.5, maintaining the dynamic quad tree tabggL/s) time per update.

Using Lemma A.11 in an area packing argument, at g4) off-centers in iteratiom blame any input
point p. Therefore, at mogD(Ig L/s) off-centers of any iteration blamg Every df-center insertion reads
at mostO(1) input or Steiner points, ard(1) cells of the quadtree.

For brevity, we elide the monotonicity argument, which iseegially identical to that in Section 4.1.

Again using the fact that every while loop iteration@1)-stable, and using the fact (derived from
Lemma A.9) that we onlyfectO(1) iterations of NHPU at a time, the priority queue costs ofHPU
areO(1) per operation. m

15

