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Abstract

Embedding locations in DHT node 1Ds makes locality explicit and, thereby, enables engineering of the trade-off between careful
placement and randomized load balancing. This paper discusses hierarchical, topology-exposed DHTsand their benefitsfor content
locality, and administrative control and routing locality.
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1 Introduction

Overlay networks based on distributed hash tables (DHTS) (e.g., CAN [12], Chord [17], Pastry [14], and
Tapestry [18]) can provide a scalable, robust data location and request routing substrate for large-scale
distributed applications, such as decentralized storage 2, 8, 15] and content distribution [1]. They map
nodes and content items to the same numeric space, and route requests via this numeric space. Typicaly,
node IDs are assigned randomly, and item keys are assigned to nodes nearby in the numeric space. The
result is excellent load balancing, scalability, and robustness.

The randomness that yields these benefits, however, creates three difficulties. The first is routing lo-
cality: although hop counts can be reduced, stretch of an overlay path, defined as the ratio between the
overlay lookup path cost and the shortest network distance between source and destination, can be quite
high because the overlay topology is not congruent with the physical topology; each overlay hop may tra-
verse the wide-area network. Locality-aware DHTs [11, 12, 14, 18] address this problem with increased
protocol complexity and construction cost. A second difficulty is content locality B]. DHTs intentionally
map items to random locations (via random node ID assignment), causing most key insertions and lookups
to traverse the wide-area network even with efficient routing—even for items with known access localities.
Because wide-area communication is so much more expensive than local-area, balanced load cannot be the
only performance concern. Third, randomized DHTSs lack administrative controls, such as over possible
content locations and who consumes what resources, that can be crucia to practical deployment of many
applications.

This paper promotes an aternate approach, in which node IDs consist of two parts. a location-based
prefix and arandom remainder. Structuring the node ID space to embed topology information directly allows
explicit regional control of content item placement. At the same time, randomizing item keys can retain the
existing properties of DHTs. Theresult isastructured DHT that allows applications using it to decide where
they each sit on a spectrum between locality and randomness.

This paper discusses ways of embedding hierarchies into node 1Ds and the resulting benefits for con-
tent locality, administrative control, and routing locality. Explicit setting of key prefixes allows content to
be assigned to specific regions, as desired, yet be spread randomly within the region. Similarly, prefix-based
routing allows low path stretch directly and, interestingly, can lend itself to Kleinrock and Kamoun's[7] hier-
archical network clustering model for evaluation (rather than Plaxton et a.’s constrained growth model [11]).

2 Structured ID Space

Figure 1 illustrates an example | ocation-based node ID comprised of a prefix with components hierarchically
related to its containing regions and a suffix of randomly generated bits significant only within the leaf
region. The boundaries between prefix components are not identical since the size of each component
should be related to node density of the region it represents. One can construct a hierarchy with an arbitrary
number of levels via prefix division and summarization.

Region| Sub-region Leaf region Random bits

Figure 1: Node ID with hierarchical prefixes

Existing DHT routing algorithms can be applied to a structured ID space. For example, prefix rout-
ing [11, 14, 18] sets up routing entries that share an increasing number of common prefixes with the current
node. Chord-stylel]7] fingers connect to nodes in powersdilistances away. Given a key, DHTs route
lookup messages toward the document root through nodes with IDs increasingly closer to the key.



Hierarchical Partitioning. Region and location can be geographical, topological, administrative or
hybrid depending on the metrics one uses to partition the space. Different metrics and techniques can be
used to partition the network at different levels of the hierarchy to satisfy an individual optimization goal,
e.g., one can use geography to partition the network along continental boundaries first, then partition the AS
peering graphs within each continent.
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Figure 2: Quadtree-based division of space

For simplicity, we use geography to illustrate the partitioning and prefix encoding process. Ir2Figure
geographical regions at each level are divided into four sub-regions, and each is assigned a 2-bit prefix
(00,01, 10, 11) based on their spatial order along a space filling curve (e.g., Hilbert curve); this repeats until
leaf regions of a certain size are reached. The Hilbert curve passes through each region while reflecting their
spatial locality in the high-dimensional physical space, which allows, e.g., a Chordisiytegrlay path
to make consistent physical progress when it makes numeric progress along the ring. For prefix routing,
proximity relations across the numeric space can be discrete since each overlay hop always lands within a
determined region toward the destination (see detailk9 [

Load Balance and Prefix Encoding. The prefix coding scheme above results in a skewed node dis-
tribution in the numeric space, since capacity varies across regions. A node is responsible for storing keys
mapped onto the range between its previous identifier and its own. Assuming a uniform key distribution, a
SW node in Figur@ will assume higher load, since it owns a longer segment and thus more keys.
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Figure 3: Load-balanced Prefixes

To achieve a uniform node distribution, one can allocate prefixes to regions with corresponding segment
lengths proportional to their node density and capacity, as illustrated in Bi@)reising prefix encoding
algorithms 6, 9, 16]; such region sizing is explored in our technical rep@f].[] Region prefixes can
be recursively divided and summarized at any location, following an IPv4 subnet and supernet analogy;
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prefixes that can be summarized must represent sites adjacent in network topology so that a single route
provides reachability to all nodes sharing that prefix. Figsleows regions with 2-bit prefixes.

Decentralization. The partition of regions and prefix assignment at each level of the hierarchy might
be a centralized algorithm, but the overall scheme can be decentralized since each region is responsible
for its own sub-partition and prefix assignment. Only a small number of top-level regions need to obtain
prefixes from a central authority, and a delegatable method similar to the allocation of network numbers can
be adopted. More over, communication for node joins and leaves can be contained within i&yions [

3 Improving Content L ocality

Our envisioned DHT infrastructure interprets the document key as a concatenation of two strings: a prefix
that has a semantic (e.g., region) meaning and a suffix of random bits. Applications can exploit the semantics
of key prefixes to control data placement. For example, embedding a content publisher’s location prefix in
keys for local weather updates will map keys to nodes (document roots) within the publisher's domain,
while the random bits help spread keys (and weather data) across the leaf domain for load distribution.
Alternatively, applications can ignore the prefix and choose a completely random document key to spread
popular items across the entire Internet. This section discusses support for replication and consequences of
explicit placement.

Replication. Applications use replication for various purposes, including availability, durability, per-
formance, and load manageme2jtd, 15]. To achieve effective replication, an application decides its policy
and the system creates a unique replica root set, i.e., a set of replica keys, for each unique document key.
For example, assume that a university has a volume of documents (e.g., technical reports) that they want
to replicate both to speed up access and to improve availability, they could make arrangements with other
organizations to replicate contents in their subnets. Replica keys can be generated by replacing high order
bits of the unique document key by the location prefixes of peering organizations. A copy of the document
can also be placed at the document root, i.e. the node corresponding to the unique document key.

A key challenge becomes how clients can find the prefix for an appropriate replica or a set of candidate
replicas. One option is to use search engines (e.g., google) or other content discovery Sj/&igesnjve
high-level names such as attribute-value pairs to both a document key and its associated replica root set.
Other approaches can yield the same associations. Once the client has a list of replica keys, it can use
proximity in the ID space to identify the closest replica. For certain scenarios, the encoding of a replica
root set can be very simple; sdd] for some examples. Each replica can support further replication, e.g.,
through caching, to address dynamic workloads and flash crowds.

The Good Kind of Load Imbalance. Traditional DHTs randomize node IDs, and thus key locations,
which can balance load but tends to place most keys remote relative to clients accessing them. While we keep
node distribution, especially those that handle cross-domain lookups, uniform, as discussed i,Sextion
allow key distribution to be skewed for the controlled data placement. For this discussion, we partition DHT
communication in a region into four categories: internal (requests on local keys), inbound (external requests
on local keys), outbound (internal requests to remote keys), and transit (external traffic routed through nodes
in the region to nodes elsewhere in the DHT). Note that requests on keys include both insertions and lookups.
Also note that local keys can correspond to both keys generated locally and mapped locally, or keys that are
generated remotely but replicated locally. Similarly, remote keys refer to both keys generated remotely and
mapped remotely, and keys generated locally but mapped to remote locations.

Our envisioned DHT offers informed applications the opportunity to assign keys so as to explicitly
place items in specific regions. In particular, if items are placed in the same region as their clients (e.g.,
through replication), all associated communication will be internal. Although this may create imbalance, it
is the good kind—internal traffic is usually much more efficient than non-internal traffic. Placing content



near its clients significantly reduces the amount of outbound traffic and, for other regions, reduces the
amount of transit and inbound traffic. The result is lower aggregate demand on network interconnection
bottleneck points, such as intranet-to-Internet uplinks. Unless per-request server loads are large relative to
wide-area communication costs, converting internal traffic to outbound (which still generates intra-region
network traffic) would be strictly bad, even if the region’s network is overloaded.

Of course, items for which the clients are not localized or not known should be assigned random
keys, so as to spread them globally or across a certain region. Between the local placement and global
replication, there exists a spectrum of tradeoff space for constrained load balance across regions of various
scope. Applications that make bad placement decisions, or that encounter unexpected hot spots, should
address them via the same replication and caching techniques used in existing DHT-based system designs.
In the end, the transit traffic that traverses the wide-area networks will remain load-balanced (due to uniform
node distribution), while most of the traffic is localized and, thus, internal.

4 Routing

By assuming Kleinrock and Kamoun'g] [hierarchical network clustering model, we are able to guarantee

low path stretch at low protocol complexity and low routing table construction cost. This model is more
intuitive than the bounded growth mod&lL] assumed in certain locality-aware DHEs 11] to guarantee
constant stretch. Furthermore, these DHTSs require greater protocol complexity since nodes need to do
probes into the networks for optimal neighbor selection.

In their classic paper?], Kleinrock and Kamoun argued for the scaling properties of hierarchical
routing: for a very large network, enormous routing table reduction may be achieved with essentially no
increase in network path length. They cluster nodes recursively into a hierarchy where fadtyaker is
defined recursively as a set of le\él — 1) clusters; this leads to a tree representation as shown in Bigure
(a), where internal tree nodes represent clusters. They assume that all clusters at the same level are of equal
degree and that a path exists between any pair of nodes. The diameter ¥ &wel cluster is upper
bounded by a quantity that decrease% akecreases. Finally, any cluster contains a shortest path between
any pair of nodes within that cluster.
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Figure 4: Prefix routing and its natural hierarchy

Prefix routing L1, 14, 18] uses a similar idea for routing table reduction (framN) to O(log N))
using a numeric hierarchy that forms a tree as in Figurén a structured-ID space, the underlying nu-
meric hierarchy that clusters nodes based on common prefixes satisfy the constraint on hierarchy defined in
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Kleinrock: clusters at the same level have the same degree and their diameters are bounded to a quantity
that decreases as one goes down the tree, following the construction as in Selttienest of Kleinrock’s
assumptions can also be made with prefix routing: a logical connection between any pair of hodes exists
and the overlay path stays within a region once it reaches there. Hence, under the assumpgtiqretiof [
lengths are bounded within a constant factor of shortest physical paths without requiring nodes individually
probe the network to find a nearest neighbor. For Chord-style routing, the relative low stretch is achieved
via space filling curves (in a geometric space) as in Figae

Finally, in current DHTS, every nodecan be the exchange node of its clusters at different levels, since
that responsibility is randomized over the entire set of nodes in each clasthange here means that
appears in the routing table of some other nodes for reaalsnguster at levek. Seel9] for discussions
of benefits and heuristics for reducing the entire set of nodes in a cluster to a robust subset as exchange
nodes for that cluster.

5 Evaluation

To verify the routing locality property, we run simulations using real Internet data to compare stretch in a
geometric ID space against a random ID space. The smaller set contains 103 nodes across the US from
NLANR'’s AMP project (http://watt.nlanr.net/); the large dataset contains 869 nodes with IP randomly cho-
sen from the entire address space, located across five continents but concentrated in North America and
Europe. Through GNPL[)], each node is assigned a coordinate frod¥-@imensional Euclidean space,

where geometric distances between nodes approximate their network distances. We patrtition the geometric
space recursively and generate a Hilbert curve to align regions along a numeric ring, with segment size pro-
portional to the node density for each region; a random ID is assigned to a node from its region. This results
in a uniform node distribution. Tableshows the latency statistics and number of Euclidean dimensions
used to approximate the two data sets.

Table 1: Data set

| Scheme | nodes| min (ms)| max (ms)| ave (ms)| N |
NLANR 103 15 336 69.6| 5
Random IP| 869 0.15 1745 181 7

Table 2: Stretch results: (1) for NLANR and (2) for Random IP set

\ Scheme | Avg. | Median| 10%| 90% |
Chord in GID (1) 511 240 1.12| 10.34
Chrod in RID (1) 6.88 3.60| 1.21| 14.98

Chord in GID space (2)| 6.25 3.44| 1.56| 12.02
Chord in RID space (2)| 10.16 5.70| 1.97| 20.32

Prefix Routing in GID (1)| 2.62 1.74| 1.01| 4.56
Prefix Routing in RID (1), 4.70 2.30| 1.03| 9.93
Prefix Routing in GID (2)| 3.53 244| 1.32| 6.60
Prefix Routing in RID (2)| 6.76 3.79| 1.49| 13.35

Figure5 shows the CDF comparison of stretch between Chord-style routing and prefix routing on a
random ID (RID) space and a geometric ID space (GID). TAklenmarizes the stretch statistics. For both
datasets and both types of DHT routings, stretch is reduced significantly in the geometric ID space.
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Figure 5:We run a static (no node joins or leaves) simulation and compute stretch based on Euclidean distances. In
(a), we compare the stretch of Chord-style routing on random IDs vs. on a geometric location-based ID space. CDF is
over all the pair-wise delays. In (b), we did the same comparison for prefix routing that is not locality-aware.
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Figure 6:For locality-aware prefix routing, we allow each node to prébeodes from a prefix range randomly when
selecting a neighbor. For GID-based prefix routing, routing table entries are randomly selected from the prefix range.
We compute the stretch for 10000 randomly selected source-destination pairs.

To compare with locality-aware prefix routing algorithms in a random ID space (RP-based), we con-
structed a larger data set by treating each node in NLANR as a representative node and added 100 nodes
with small distances to this node to simulate a two-tier hierarchy: under each university, a set of 100 nodes
as its subnet is added. As such, we have a network of 10403 nodes. G-@umpares prefix routing on a
geometric ID space (GID-based), where a neighbor is randomly selected from its prefix range, and RP-based
prefix routing, where for each prefix in the routing table, a random séf obdes from the prefix range
are probed to measure their relative distances (latencies) to current node and the closest one is chosen. The
CDF results show that, with more probes, RP-based prefix routing approaches GID-based; When 16 probes
are used, the average stretches are comparable in two schemes, but RP-based has much longer tail, which
indicates the difficulty at optimizing its last hops.



6 Reated Work

Rather than having each node probe the network for proximity information independdnitl®, [14, 1§,

we abstract distance to build a structured ID space. We achieve low stretch in overlay paths at low complex-
ity. CAN [12, 13] explored topology-aware ID assignment by clustering nodes that are physically close to
the same virtual coordinate space. CAN focused more on reducing routing latency than building a structured
ID space that enables content locality. They did not address the load balancing issue caused by skewed node
distribution in the physical networks. Current replica placement algoritByig][rely on randomness to

spread replicas across geographical areas; explicit naming via encoding of a replica root set provides much
more control. Finally, SkipNet4] uses string names to cluster nodes and control data placement within
certain administrative domains. Our content locality scheme is more flexible and applies to different met-
ric spaces such as geometric and topological. In addition, no bound on path stretch can be guaranteed in
SkipNet.

7 Summary

This paper promotes a new approach to node ID assignment, with prefixes based on location within DHTSs.
Doing so simplifies routing locality and enables explicit content locality, while retaining existing DHT
properties for non-local documents.
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