Generalized Aliasing as a
Basis for Program Analysis Tools

Robert O’ Callahan
November 2000
CMU-CS-01-124

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA

Submitted in partial fulfillment of the requirements
for the Degree of Doctor of Philosophy

Thesis Committee:
Jeannette Wing (co-chair)
Daniel Jackson (co-chair)

Frank Pfenning
Craig Chambers

Copyright 2001, Robert O’ Callahan

This research was sponsored by the National Science Foundation (NSF) under grant no.
CCR9523972, the Defense Advance Research Projects Agency (DARPA) and Air Force
(USAF) agreement no. F33615-93-1-1330, the Air Force Research Laboratory (AFRL)
under agreement no. F306029720031, and a Microsoft Fellowship.

The views and conclusions contained in this document are those of the author and should
not be interpreted as representing the official policies, either expressed or implied, of the
NSF, DARPA, USAF, AFRL, or the U.S. government.

Keywords:. alias analysis, Java, program analysis, software engineering tools, program
understanding, scalability, polymorphic type inference, polymorphic recursion, object
models, object oriented program analysis, SEMI, VPR

Abstract

Tools for automatic program analysis promise to improve programmer productivity by
searching and summarizing large bodies of code. However, the phenomenon of aliasing —
different names being used to refer to the same data— reduces the effectiveness of simple
textual analyses. Thisdissertation describesthe design of asystem, Ajax, that addressesthis
problem by using semantics-based program analysis as the basis for a number of different
toolsto aid Java programmers.

To enablethe construction of many tools, Ajax imposesaclean separation between analysis
engines that produce aias information and tools that consume it. Analyses are treated as
“black boxes’ satisfying asimple, formal specification given in terms of the semantics of
Java bytecode. Knowing only this specification, one can build many different tools with
only asmall amount of code. Thethesisexploresthe flexibility and efficiency of the design
by describing the construction and evaluation of severa different tools: tools to find dead
code, resolve Javavirtual method calls, statically check Javadowncasts, search for accesses
to objects, and build object models.

To support these tools, Ajax includes a novel static analysis engine for Java called SEMI,
based on typeinference with polymorphic recursion. SEMI providesfully context sensitive
analysis of large programs. Using SEM|I with the downcast checking tool, Ajax can prove
the safety of more than 50% of the downcast instructions in some real-life Java programs,
such as Sun’s bytecode disassembler and the JavaCC parser generator. Ajax isthefirst
system to address this particular task.

One of the key goals of thisthesisisto study issues bearing on the practical utility of static
anaysistoolsfor programmers. This document describes some of the challengesinvolved
in building an analysis system for off-the-shelf Java applications, and suggests some
possible avenues for future research.

Acknowledgements

It almost goeswithout saying that | could not have completed thisthesiswithout the support
and tireless efforts of my advisors, Daniel Jackson and Jeannette Wing. With their help, |

have learned far more during my graduate studies than | ever expected. Not only are they
excellent supervisors and colleagues, but they are also marvellous people with whom | am
fortunate to be acquainted. Thank you!

| am extraordinarily grateful to all my friends and colleaguesin the Carnegie Mellon School
of Computer Science. They have created an environment that is friendly, well-organized,
incredibly stimulating, and designed to allow studentsto focus on learning and getting their
work donerather than dealing with secondary issues. | can honestly say | do not expect ever
again to work in such awonderful setting.

Inthetwo and ahalf years since our marriage, my wife Janet has consistently supported me
in my work and indulged me when it interfered with our lives together. Fortunately such
interference was not too frequent, and her love and companionship have been truly
delightful.

My parents tolerated my obsession with computers from ayoung age, and have also
supported me wholeheartedly during my interminable studenthood. Thanks Mum and Dad!

Much of the joy and support in the lives of Janet and | has come from our walk with God
in the fellowship of the Pittsburgh Chinese Church. | would like to especially thank Y uan
Chou and the other brothers and sisters who provided us with a spiritual home and great
examples of servanthood for Janet and | to follow.

Table of Contents

o 11 T 3
ACKNOWIEOgEMENTS 5
CHAPTER 1 INtroducCtiont e e e e 23
Ll SEHING . .ot 23
111 SoftwareEngineeringand Alias AnalysiS. 23
1.1.2 TheNeed For AliasInformation e 24
1.1.3 Shortcomings of EXisting TOOIS.ot 24
114 ASSUMPLIONS. . . . oottt et et e e et e e e e e 25
LA5 GOa ettt 26
12 APPrOaCh . .o 26
1.2.1 Support For Multiple Toolsand Analyses. i e 26
122 Support FOr Java Programsottt e et e e 28
1.2.3 Simple Context Sensitive ANalysSiSottt 28
124 Distinguishing FEAtUIESottt e e e 29
13 ContribULIONS. 30
14 TheSISOVEIVIEW . ..ottt e e e e e e e e e e e e e e 30
CHAPTER 2 Related WOrko e 33
2.1 INtrOdUCHION . . .o e e e e e e e e e e e e 33
2.2 Program ANalySeSo 33
2.2.1 Distinguishing Analysis Techniques from AnalysisProblems 33
222 Classifying ANalySes . . . oo 34
223 Destribing RESUILS.o 35
2.2.4 Flow Sensitive, Context Insensitive AnalySes.ot 35
2.25 Flow Sensitive, Context Sensitive AnalySeS oottt 37
226 SiMpler ANalySeS. . ..o 39
2.2.7 Flow Insensitive, Context Sensitive ANalySesS.o oot 40
2.2.8 TypeInferencefor Object Oriented Languages.« oot 41
229 CompoSiNg ANAlYSES . . . oo ittt e e 42
2210 AnalysisTOOIKItS.o 42
2.3 Software Engineering TOOISt 43
2.3.1 Software Engineering Tools for Program Understanding 43
2.3.2 Semantics-based Tools For Program Understanding. i, 44
24 Language SEMaNtiCsottt it e e e e 44
CHAPTER 3 TheValue-Point Relation: Separating Analysesfrom Tools. 45
Bl OVEIVIBI . ettt et e e e e 45
3.1.1 Desirability of Simple Semantics.t 45
3.1.2 TheVdaue-Point REIAtion i e 45
3.2 Semantics of theMicro JavaBytecodeLanguage., 46

7

321 Preamble. . ..o 46

322 PrOgraMS. . .ot 47
N T - (= 49
324 INitial Stateo e 50
325 TransitioN RUIES. o 50
3.2.6 Differencesbetween IBC and MJIBC.ottt 51
3.3 TheVauePoint REIAtion. e 55
3.3.1 ByteCcOde EXPreSSIONSottt ettt e e e e 55
3.3.2 TheVaue-Point REIAtion. e 56
34 Generdlizing Alias AnalySiISUSING TaggiNg - -« -« o v v vt e et e e et 57
AL OVEIVIBIW . oottt e e e e e 57
342 TagOed S, . . . oo it 57
343 Tagged Transition RUIES o e 58
3.4.4 Correspondence Between Tagged Semantics and Untagged Semantics 58
345 Correspondence of Trateso ittt e e 63
34.6 Definingthe VPR USING TagSo ittt e e e e 64
3.5 Examplesof UsingtheVaue-Point Relation i, 64
351 FindingWriterstoaField 64
352 Downcast Checkingo 65
3.6 Propertiesof the Value-Point Relation 65
BT EXEBNSIONS . . ottt e 66
CHAPTER 4 Efficient Queriesover theValue-Point Relation................ 69
41 INtrodUCTION . . .o e e e e e e e 69
4.2 AnalySiS Parameters.o 69
4.2.1 Restricting the Domain of the Value-Point Relation 69
4.2.2 Avoiding EXplicit Products 70
423 General Framework 72
424 TOOl Target Datao ettt et e e 73
425 Summary of AnalysiSParameters 73
A3 EXBMPIES . . it 74
431 Finding WriterstoaField 74
432 FindingUnused Fields. 74
4.3.3 Downcast CheCKingottt e 75
434 Method Call RESOIULION oot e e 76
435 LiveCode DEECtiON.ottt et e e 77
4.4 Additiona Features of the Ajax Implementation. 78
441 Query Familiesand Query Fields. 78
442 Incrementality.o 78
443 Code MULBLIONt e e e e e e 79
444 ANalySISSCOPING . . .ottt ettt e e 79
AA5 INEErSECHION. . ..ttt e e e e 79
CHAPTER 5 Implementing the Value-Point Relation With RTA 81
5.1 INtrodUCHIONot e e 81
5.1.1 Introductionto Rapid Type AnalysSiS.ottt 81

512 DecomposSiNg RTA TN AJaX . . . oo vttt et e e e e e e e e e et 82

5.2 Approximating the Value-Point Relation i 83
D21 OVEIVIBW . oottt e e e e e 83
522 Typesfor Bytecode EXPreSSionSo oottt e e 83
523 Computingthe Relation. 84
5.2.4 EXACt Class TYPES . . oottt e ettt e e e e e e e e 85

5.3 Implementing the Ajax Analysisinterface 86
531 TheDataPropagation Graph 87
532 Computing AnalysSiSReSUILSot 89
5.3 EXAMPIE. . . 90
534 ParfOrmanCe.ottt 91
535 Incrementalityo 91

54 RTA++: Tracking TYPECASES.« vttt et ettt e et e et 91
541 MOUVAELION . . .o e 91
5.4.2 Refining the Bytecode Type ASSignmentt 92

CHAPTER 6 TheSEMI Analysis.o s 93

6.1 INtrOdUCHIONo e e e e e e e 93
B.1.1 Chapter OVEIVIEWottt e e e e e e e e e e e e 93
B.1.2 APPrOaCh . . 94
6.1.3 IMPliCAtioNS. 94
6.1.4 Relationship tothe Implementation. it 95
6.1.5 Chapter Organization.ttt 95

6.2 Constraint SYStem oo 96
B.2.1 CONSITAINTS. . . o\ttt ettt et e e e e e e 96

6.2.1.1 ConStraiNnt SITUCIUIES ottt e e e e et e e e e e e 96
6.2.1.2 Reaionshipto TErmMS e 96
B.2.2 SOIULIONS . ..ottt e e e e e 97
B.2.3 REMAIKS. . .ot 98

6.3 TheENCOAING. i e e e 99
6.3.1 INrOdUCTIONot et e e 99
6.3.2 MEthOOS.o 99
6.3.3 Global Variables e 100
6.3.4 ObJeCt ENCOAING. oot e e 101
6.3.5 Method Encoding.o e 102

6.35.1 StaticMethods. 102
6.35.2 Nonstatic Methods. o 102
6.3.5.3 Type Checking/Inference For Nonstatic Methods. 103
6.3.5.4 Treatment Of Polymorphism 104
6.3.5.5 PolymorphismInObject Creation.t 104
6.3.6 Extensible Recordsand Object Classes.t 105
B.3.7 MuUtability. 106
6.3.8 Control FIOWo e 106
6.3.9 ExceptionHandling oo 107

6.4 Initial Constraint Set oot 108

6.4.1 Constraint Variables. e 108

6.4.2 Instance Labels. 108

6.4.3 Component Labelso 109
6.4.4 Program CONStraintS.ottt et e e e e 110
B.45 QUENY CONSITAINES. . . . oottt et et e e e e e e 113
6.4.6 Canonical Constraint Set it e 113
B.4.7 EXAMPIE . o .o 114
6.4.7.1 Initial CONSIIaINISo o ettt e e 114
6.4.7.2 FindingaClosed FOrm. o 114
6.5 Extracting the VPR ApproxXimation.t 116
B.5. 1 OVEIVIBW . oottt e e e e 116
6.5.2 Relating Bytecode ExpressionstoVariables. 117
6.5.3 Constraintsto Support QUEry EXPressionS. oo i e it 122
6.5.3.1 Inadequacy of Program Constraints.ttt 122
6.5.3.2 QUErY CONSIIaINtS. oottt ettt e e e 122
6.6 Implementingthe Ajax Interface. 122
B.6.1 The Graph. 123
6.6.2 Computing AnalySiISRESUILS e 124
6.6.3 Incrementality. e 124
6.7 Proving SOUNONESS.ottt et e e et e e et e e e 124
B.7.1 OVEIVIBW . oottt et e e et e e e 124
B.7. 1.1 SHAOOY. . . oottt it et e e e 124
6.7.1.2 Note: Unique Justification for Transitions., 125
6.7.2 TheCreation FUNCLION o e e 126
6.7.2.1 “Creation” 1ISaAFUNCLION.t e 126
6.7.3 TheCalerStale FUNCLIONo e e 126
6.7.3.1 DeEfiNitiono 126
6.7.3.2 Scopeof Definition 128
6.7.3.3 Nested Call StaCkot 129
6.7.34 Preservation of Caller Stateot 129
6.7.3.5 Method Entry Correspondence.ttt e 130
6.7.4 TheContext FUNCLION. e e e e 130
6.7.4.1 Definition of the Context FUNCtion i 131
6.7.4.2 Preservation of RetUN TYPES.ottt e e e 132
6.7.5 ProvingtheConformance Lemma. ittt 133
B.7.5.0 BasL At . . ottt 135
6.7.5.2 Preservation of Virtual Call Types.ot e 135
6.7.5.3 GlobalsHypothesis. o 137
6.7.5.4 Field DereferenCeso oot 139
6.75.5 Static Field EXPreSSsionS. . . . oottt e e 142
6.7.5.6 CasesFor SIMpPle EXPressionNSottt e 143
6.7.5.7 Reduction FUNCLION e 143
6.7.5.8 SUCCESSION LEMMAL. . . .ottt e e e e 143
6.75.9 Step: Load rUle 144
6.7.5.10 Induction Step: storefUle. 145
6.7.5.11 Induction Step: new rUle. o 146
6.7.5.12 Induction Step: aconst nullrule.......... 147

10

6.7.5.13 Induction Step: bipush rUle. e 147

6.7.5.14 Induction Step: rule for spontaneous exceptionthrow. 147
6.7.5.15 Induction Step: invokestaticrule 147
6.7.5.16 Induction Step: invokevirtualrule 148
6.7.5.17 Induction Step: returnfUle. 149
6.7.5.18 Induction Step: exceptional returnst 151
6.7.5.19 Induction Step: athrow rUle. i 152
6.7.5.20 Induction Step: rulefor exception catching 153
6.7.5.21 Induction Step: getfieldrule 154
6.7.5.22 Induction Step: putfieldrule 155
6.7.5.23 Induction Step: getstaticrule. 155
6.7.5.24 Induction Step: putstaticrule. 156
6.7.5.25 Induction Step: 1addrule. 157
6.7.5.26 Induction Step: 1 fempeg rUlES. . ..ot 157
6.7.5.27 Induction Step: goto TUle oot 158
6.7.5.28 Induction Step: instanceofrUleS. 159
6.7.5.29 Induction Step: checkcastrule. i 159
CHAPTER 7 SEMI Implementationcoo ... 161
7.1 INtrOdUCHION . . .o e e e e e et e e e 161
7.1.1 Solver Specification. 161
7.1.2 Decidability and Performance. e 161
7.1.3 Refined Specification. 162
714 BaSICSIUCIUNE. . . oottt et et e e e e e e e e e e 163
7.2 BasiCAIQOrthmM. . . e 163
7.2.1 Representation of Equality. e 163
7.2.2 Functiona Representation of Componentsand Instances. 163
7.2.3 Component Propagation.ottt e 164
7.2.4 Saving Time By Recording Additional Dirtiness Information 165
7.25 Overview of an Algorithm Step.o 165
7.2.6 TheExtended OcCUrSCheCKot e e 166
727 NONAEtermMiniSM. . ..ot e e e e e 167
7.3 Optimizing the Occurs Check: CIUSLEX'S. oo o e 168
7.31 CoNStraint SITUCIUE. . . . o .ttt et e e e e e e e e e e e e e e e e 168
732 ClUSEIS . .ttt e e 168
7.3.3 Optimizing the Extended Occurs Check Using Clusters., 168
734 Cluster Levels .. oo 169
7.3.5 Optimizing the Extended Occurs Check Using Cluster Levels. 169
7.3.6 Replacing the Extended Occurs Check with a Conservative Approximation............ 170
7.4 Scheduling the Worklist Using Cluster Levels. 170
741 TheScheduling Problem e 170
742 Using Cluster LevelS 170
7.5 Suppressing Components: Advertisements.t 171
7.5.1 UselessComponent Propagationttt e 171
752 HIUSIFAIiON . . oo e e 171
7.5.3 Quasi-closure Conditions.t 172

754 AdVEISEMENES.ottt et e e 173

75 EXAMPIE . . 174
7.5.6 Ensuring Quasi-closure: Fill-in 174
7.5.7 Ensuring Quasi-closure: Detecting ConflictingSources L. 175
758 SimpleExample. 176
759 Advertisement Source Updatest e 176
7510 IMplementation. e 177
T8 GlObalS. .. 178
7.6.1 Handling Program Global Variables 178
7.6.2 Characterization of Constraintsfor Globals., 178
7.6.3 IMplementation. 179
T6.4 EXCEPHONSttt e e 179
7.7 A Faled Optimization: Cut-throughs. 179
7.0 EXAMPIE . e 179
772 CUt-throUgNS. . . .o e e 180
7.8 Reducing the Number of Initial Constraints 180
7.8.1 Dynamic Method Call Resolution e 180
7.8.2 Lazy Method Slot StUFfiNG. oo 181
7.8.3 INStANCE SUPPIESSION . . . o oottt et e et e e e e 181
7.8.4 Disabling Intra-method Polymorphism 181
7.85 Structural ShOrCULS e 181
7.9 Reducing the Number of Inferred Constraints. 182
7.9.1 Component Partitioningt 182
7.10 Suppressing Components: Modality i 183
7001 EXaMPIE . oo e 183
7.10.2 ApProaCh e 183
7.10.3 SOIVEr RUIES . . .ot e 185
7004 EXaMPIE . oo 185
7.10.5 Implementation.t e 185
7.10.6 DetectingUnused Fields 186
7.11 Nondeterministic Virtual Method Calls. 187
7.12 FutureWork and Related WOrKo 187
CHAPTER 8 Analyzing Thelnscrutable 189
8.1 INtrOodUCHION et 189
8.2 Foreignand Unknown Codeot 189
821 FOraign Codeottt e 189
8.22 UNKNOWN COUE.ttt e e e e e e e 190
8.2.3 Possible ApProaches 190
8.3 Salamis: A Specification Language for ForeignCode. 190
8.3.1 The Need For A Separate SpecificationLanguagecoiiiiiiaen... 190
8.3.2 Exampleand OVErVIEWottt e e e e e e e 191
8.3.3 SAl@MIS SYNIAX . . . o ottt 192
8.3.4 Other SAlamiS FeaUIES.ot e e 194
8.3.5 Implementation. o 195
8.4 Salamis SpecCifications. o 195

841 OMISSIONS. . .o ittt ettt e e e e 195

B 2 RISKS. .. ittt 195
8.4.3 Handling Stringsot 196
8.4.4 Other Areas Of INterestot e e 196
8.5 Reflection And Seriaization 197
8.5.1 INtrodUCHioNno e 197
8.5.2 TheReflection SErViCeS.o 197
8.5.3 Reflection Specifications. i 198
8.5.4 Reflection Specification Syntax. 199
8.5.5 Creating The Specifications. e 200
8.5.6 Using Reflection Specifications. e 201
8.6 CONCIUSIONS . . . oottt e e e e 202
CHAPTER 9 Performance. e 203
9.1 INtrodUCHiONo e 203
9.2 Benchmark Environment. e 203
ANt S Y £ 203
9.22 Benchmark Exampleso 203
0.3 T00IS . .ot 206
9.3.1 Virtua Cal ResOIUtION o e 206
9.3.2 LiveCodeldentification i e 209
9.4 Peaformance Of RT A+, L. 210
9.5 Peaformance of SEMI 210
0.5 1 OVEIVIBIN . ottt e e e e 210
9.5.2 Performance of SEMI in Different Configurations. 212
9.5.3 Accuracy of SEMI in Different Configurations. i, 212
9.5.4 Component Partitioning in SEMI 215
9.6 RTA++and SEMI INtersectionttt e e 215
9.6.1 BasiCRESUILSt 215
0.8.2 SEL SIZES. . oottt 219
9.7 Summary of Ajax Performance. 219
9.7.1 Algorithm SEleCtion. 219
9.7.2 Summary ReSUITS.o 219
9.7.3 CONCIUSIONSottt e e e e e e e e e e et e e e e 220
CHAPTER 10 ProvingDowncast Safety. ..., 223
101 INtrodUCLioNo e e e e e 223
10.1.1 Parametric Polymorphismand DOWNCasts oot 223
10.1.2 Using SEMI To Prove Downcasts COMreCto oot e e 223
10.2 TheDowncast Checking TOOIlot e 224
10.2.1 Interfacetothe VPR, 224
10.2.2 Userinterface.o 224
10.3 Quantitative ReSUILS.o e 224
10.3.1 Proving Downcasts Safe Using RTA++ e 224
10.3.2 Proving Downcasts Safe USINg SEMI 225
10.3.3 Proving Downcasts Safe Using SEMI with RTA++ o i 225

13

T10.314 SUMMAIY . .ottt e et e e e e et e e e e e e e e e e 227

10.4 UNresolvable DOWNCASES oo vttt ettt e e e e e e e 228
10.4.1 Confusion INvolVing SUM TYPES oottt e e e 228
10.4.2 “Out Of Band” Dynamic Type Knowledge. 228

105 CONCIUSIONS . . o vttt e e e e e e e e e e e e e e e e e e 229
1051 SUMMAIY ..ottt et et et et et e e e e e e e e e e 229
10.5.2 Other AppliCationS.ot 229
10.5.3 Limitationsof Downcast Checking 229

CHAPTER 11 AjaxObject Models. 231

00 O 1 1T [o 231
11.1.1 Overview of Object MOdelS.o 231
11.1.2 A Definition of Object Models. 233

11.2 Computing Object Modelswith Ajax i e 234
1120 OVEIVIEBW . oottt et e e e e e e e e e e e e e e 234
11.2.2 Computing Heap GraphsWith TheVPR. 237

11221 APProach . . e 237
11222 Mehod . ..o 237
11.2.2.3 COMTECINESS. . . ottt ittt et e e e e e e e e e e 237
11224 SOIULION ..t e e e e e e 238
11.2.25 Implementing Substitutability INRTA++ e 239
11.2.2.6 Implementing Substitutability INSEMI 239
11.2.2.7 Improving The Heap Graph Algorithm 239
11.2.2.8 Reducing Space ConNSUMPLIONttt e e 239
11.2.3 LossdessImprovementtotheMode 243
11.2.3.1 SuperflousLeaf Classes.ot e 243
11.2.3.2 Merging Identical Subgraphs. e 243
1124 User INtErfaCe. . . oottt e e e 244

113 EXAMPIES . oo 244
1131 JavaP EXample. e 244
11,32 CTASEXamMple 246
11.3.3 Improving The Model By Discarding Information 248

11.3.3.1 Removing “LUMPS’ . .. e 248
11.3.3.2 Hiding StringsAnd Other ClasseSot e 248
1134 JessEXample 248

114 CONCIUSIONS . . o vt ettt et e e e e e e e e e e e e e e e e 252
1141 ContribUtiONS oo 252
1142 FUUrEWOIK . . oo e e e 252

CHAPTER 12 A Scanning Tool e 253

121 INtrOQUCTION . . o vt ettt e e e e e e e e e e e e 253

122 TheJGrep TOOl e e e e e e e 253
1221 User INterface. . . oot e 253
1222 IMplementation.t e e 253

123 EXAMPIES . o 254
12.3.1 Checking @an AnOmaly e 254

12.3.2 Checking Field ACCESSES . . . o oottt e e e 255

12,4 CONCIUSIONS . . o .ottt et et e e e e e e e e e e e e e e e e e 256
CHAPTER 13 CoNnClUSIONS.o e e 257
131 SUMMAIY . . oottt et e e e e e e e e e e e e e e e 257
132 OULIOOK . ..o e 258
Bibliography 261
APPENDI X A Polymorphic Recursion, Unrestricted Recursive Types and Principal
YRS ot 271
APPENDIX B Ajax Foreign Code Specifications 275
APPENDI X C Ajax Reflection Specifications 291

15

16

List of Figures

CHAPTER 1 INtrOdUCLION ...ttt s 23
Figure1-1. Example of Java code exhibiting aliaSing........cccceeererererereeee e s 23
Figure 1-2. Example of an Ajax CONfigUrationcocccoeierire e seeneeieie e e s 27
Figure 1-3. Example of an Ajax configuration with COMPOSItiONcccoereeirininiece e 29

CHAPTER 2 Related WOrKccooiiiee ettt s s 33

CHAPTER 3 TheValue-Point Relation: Separating Analysesfrom Tools........... 45
Figure 3-1. The Micro Java Bytecode iNStrUCLioN Set...........ccoceoiririiiieie e e 48
Figure 3-2. Rules defining the transition rel@tion ..o e 52
Figure 3-3. Thelanguage of bytecode EXPreSSIONS.........ccocriiieeriereeiieie e eeeeees e e s e s 55
Figure 3-4. Rules defining the evaluation of bytecode expressions..........ccoeeeereeeseeniene e 56
Figure 3-5. Rules defining the tagged transition relation............ccoveieie e 59
Figure 3-6. Rules defining the evaluation of bytecode expressions in tagged states...................... 64

CHAPTER 4 Efficient Queriesover theValue-Point Relationcccccvvieneenne. 69
Figure4-1. Example of Javacode exhibiting aliaSing........cccceeerererierieneeieie e 71
Figure 4-2. Example of an analysis graph used by the downcast checking tool................cccccee.... 71
Figure 4-3. Example of non-lattice behavior due to interfaces............ccocevveeieenniece e 76

CHAPTER 5 Implementing the Value-Point Relation With RTA........cccccooeienee 81
Figure 5-1. A SIMPIE JAVA PrOGIAM. ..c.ccuuiieeieeeeuieeee ettt et eee e eesee e e eesee e s e eaeeseeseneeeeseeneansens 81
Figure 5-2. Example of abytecode type graph ... e e 85
Figure5-3. A fragment illustrating the need for exact ClassS types.........ccovvvereievrnececen e 86
Figure 5-4. Example of abytecode type graph ...t s 87
Figure 5-5. Example of apropagation graph ..o e e e 88
Figure5-6. A Javaprogramusing instanceof and checkCast .ornnnieeeseesiee e 92

CHAPTER 6 TheSEMI ANAIYSIS......coiiiiiiiiesiie ettt 93
Figure 6-1. Static Method EX8MPIE.......cuiiiiee e e e 102
Figure 6-2. Static Method TranSlationccoueeiiiieire et e 102
Figure 6-3. Nonstatic Method EXamMPIe. ..o e e e 103
Figure 6-4. Nonstatic Method Translation...........coueieieiiieeirire e e e 103
Figure 6-5. Extensible Record EXamMPIE........ooiooiiiiiiie ettt e 105
Figure 6-6. A SiMpPle Java Program....... ..ot e e e eeas 114
Figure 6-7. Rules defining the mapping from bytecode expressions to constraint variables and

COMPONENTS. ...t ettt ettt rtee et ee et se s ss e e e es e e eeeabeess s e e e e ebe e eeeaseesssen s eesreeesneenns 117
Figure 6-8. Rules defining evaluation through COmMPONENtS...........coeiuiierineeieie e 117
Figure 6-9. Rules defining evaluation through iNStanCes...........cccvevireierineee e 118
Figure 6-10. Ruleassigning aground variableto an expression in agiven context..................... 118
Figure 6-11. Rules defining the Creation fUNCLION..........ccoiiiii i 127

CHAPTER 7 SEMI IMPIementationccocoveieeninneineeeeie e 161
Figure 7-2. CloSed CONSIFAINT SEL......ciuiiiiiiie ettt et st ere e e e se e e s e e eae e e e seeeean 172

Figure 7-1. Initial CONSIIAINT SBE ... couiiuiiiie ettt e e et s e eeeseeean 172

Figure 7-3. USe Of adVErtiSEMENLS........oiiiie ettt e e ea e e seeean 174
Figure 7-4. Initial constraint set before fill-in.........coo e 175
Figure 7-5. Advertisement constructed before fill-in ..., 175
Figure 7-6. Advertisement replaced with COMPONENLcooeieiriiiiinieee e e 175
Figure 7-7. ATLE Fill-iN.. et et e e s 175
Figure 7-8. Initial constraints leading to advertisement source conflictocooeieeeiriccce e 177
Figure 7-9. Initia constraints requiring advertisement SoUrce UPdate...........ccoeveeeerrreeneeeencnenn 177
Figure 7-10. Initial constraints requiring advertisement source update............ccooeeveerrrieeeneene 178
Figure 7-11. Advertisement proliferation. ... e 182
Figure 7-12. Advertisement proliferation averted...........coeoeeeireriene e 183
Figure 7-13. Constraint Structures Leading to EXCeSSIVE MEIgingccoceververeveenieieserneeeeeeens 184
Figure 7-14. MOdal ANNOLBLIONS......cc.eoiiiei ettt e et ettt s be et e e eneeneeeen 185
Figure 7-15. QUEIY WIHGEL ... coeee ettt ettt e e e e e es e e nesse e nenes 186
CHAPTER 8 Analyzing Thelnscrutable..........cccccoveiiiie e 189
Figure 8-1. Application code using using Native Methods............coeeiererenene e 191
Figure 8-2. Specification for java.i0.FileInputStream. OPen e e ee e 191
Figure 8-3. Sal@miS gramMENcoieuiieie et eeeree e see et ae e ee e e e e e aen e se e e anees s e e s e eaeeeenan 193
Figure 8-4. Sample reflection SPECIfiCationcooeoieiiieie e e 198
Figure 8-5. Reflection specification grammar............cocererieee e e 199
CHAPTER 9 PerforManCe.........cooiiiiiieeieiecie ettt s 203
Figure 9-1. EXample PrOgram SIZES........coeaeeeereerieeeereeeeiieeee e ee et e e seeseesses e ses e aneesee e e eaeseeean 206
Figure 9-2. Correlation between number of methods and number of classes........ccccoevvieeeieenee. 207
Figure 9-3. Correlation between bytecode bytes and number of methods............ccccceiinieicnenee. 207

Figure 9-4. Correlation between bytecode bytes and number of methods, for application code..208
Figure 9-5. Correlation between number of methods and number of classes, for application code208

Figure 9-6. Memory consumption Of RTA+ ..ottt e se e e s se e 210
Figure 9-7. Time consumption Of RTA++ ...t e e 211
Figure 9-8. Space consumption of SEMI configured for high accuracyc.ccooeveeveieeevnnennne 211
Figure 9-9. Time consumption of SEMI configured for high accuracyccocooeiiviiiie i 212
Figure 9-10. Space consumption of SEMI in four configurations, for live method detection......213
Figure 9-11. Time consumption of different SEMI configurations, for live method detection213
Figure 9-12. Accuracy of SEMI configurations for live method detection............ccocoeeeviinenee 214
Figure 9-13. Accuracy of SEMI configurationsfor virtual method call resolution...................... 214
Figure 9-14. Memory consumption for different component partitioning schemes..................... 216
Figure 9-15. Time consumption for different component partitioning schemes...........ccccevveeenee 216
Figure 9-16. Example Of RTA++ ImMProving SEMI ..o 217
Figure 9-17. Accuracy of three different analyses for virtual call resolutionccccoeveeeeeeenee. 217
Figure 9-18. Accuracy of three different analyses for live method detection............ccccccoceeeennee. 218
Figure 9-19. Timerequired by three different analyses for virtual call resolution 218
Figure 9-20. Space required by three different analyses for virtual call resolution...................... 219
Figure 9-21. Effect of different set sizes on virtual call resolution accuracy.........cccccceeeveeeeeeenees 220
Figure 9-22. Accuracy of the three contending algorithms..........ccoco e 220
Figure 9-23. Time consumption of the three contending algorithms...........cccccoveieiiiiie e 221
Figure 9-24. Space consumption of the three contending algorithms...........ccccooeiiiiiiic e 221
CHAPTER 10 Proving DOWNCAst Safetycccccovirieeniniieneeie s 223

Figure 10-1. Example of a Java generic container requiring dOWNCaStSccceeereeeeeerieneneenens 223
Figure 10-2. Downcasts proven safe using RTA and RTA++ ..o 225
Figure 10-3. Downcasts proven Safe USiNG SEMcouiiiii i e 226
Figure 10-4. Downcasts proven safe using SEMI & RTA++ ..o 226
Figure 10-5. OVErall FESUILSc.eiie ettt ettt sttt ea e eae e seeeean 227
CHAPTER 11 Ajax Object MOES.......cccoviiiiee e 231
Figure 11-1. A class hierarchy object MOoooiiiiiii s 231
Figure 11-2. AN eXxample JAVa PIrOGIaIMcoeiuereeie e reeeesietes e ereetesee e e seese e ben e sesseeneesesses e snesees 232
Figure 11-3. A richer Object MOGELoo i e 232
Figure 11-4. AjaX NEap Graph......cooe oottt e e e e e e eean 235
Figure 11-5. Ajax heap graph with unique field edges (simple object model)c.cccovvnenenneee 235
Figure 11-7. Ajax object model with SUPerclass SUPPreSSIONcoerueeereereeieer e eieeeeeeseeee e 236
Figure 11-6. Ajax object model with classes and inheritance...........coeoevenerininie e 236
Figure 11-8. Basic heap graph construction algorithmccoe e 238
Figure 11-9. Example of substitutability Violationcccooeoiiiriniie e 238
Figure 11-10. More efficient heap graph construction algorithmcccceeoi e viicninnecic e 240
Figure 11-11. Heap graph construction algorithm with reduced peak space consumption 242
Figure 11-12. Example of field retargeting leaving unreachable nodes ... 244
Figure 11-13. Example of merging duplicate subgraphs.............ccoooiirnincnie e 244
Figure 11-14. JavaP ObJECt MOGELcc.oiie e e e e e 245
Figure 11-15. CTASOLJECE MOTEceieiieiee ettt ettt e e e s 247
Figure 11-16. JeSS ODJECE MOELooeieie et e 250
CHAPTER 12 A SCaNNiNG TOOcccoiieiiiie ittt st e 253
Figure 12-1. Output of the creation sites and method callson them clearables object....... 255
Figure 12-2. Accessestothe flags field of BatchEnvironmentooeevnieeeccniene s 256
CHAPTER 13 CONCIUSIONS ..ottt 257

19

20

List of Tables

CHAPTER 1 INtrOUCLIONo 23
CHAPTER 2 RAALEA WOTK ... 33
CHAPTER 3 TheValue-Point Relation: Separating Analysesfrom Tools........... 45
CHAPTER 4 Efficient Queriesover the Value-Point Relationccccccccveeeneenne. 69
CHAPTER 5 Implementing the Value-Point Relation With RTA.......c.ccoeiieens 81
CHAPTER 6 The SEMI ANAIYSIS.......oociiiieiectie ettt st e 93

Table B6-1. INSLTUCION CONSIIAINES.....cc. veeeeeeeeeeeeeeeeee st eesessesseeesesseaseeeeessaeeeeessaannreeessesnsseeseesnanne 111

Table 6-2. A Simple Bytecode Program and itS CONSLIaiNtS..........cceuerereererieseenerie e 115
CHAPTER 7 SEMI Implementationcccoceeiieiiiiiee et 161
CHAPTER 8 Analyzing Thelnscrutable.........ccoooviiieiie e, 189
CHAPTER 9 ParfOrMaNCE.o 203

Table 9-1. Environment SPeCifiCations...........ccuoieieiriei et e 204

Table 9-2. The eXampPle PrOGIAIMS.coui i ieeeeeieeeeeeeeeeeetee st e eeeee e e see e e aeneesee e eneeseesee e esesreseenes 204

Table 9-3. Size statistics for the example ProgramS..... ..o ceveeeiere et e 205
CHAPTER 10 Proving DOWNCASst SAfetycccoceviireriinieieeie e 223
CHAPTER 11 Ajax Object MOAES........cooiiiieececeeccee e 231
CHAPTER 12 A SCaNNiNg TOOIcccoiieiiiiesiiere sttt st 253
CHAPTER 13 CONCIUSIONScoeeeeeeeeeeeeee e 257

21

22

1 Introduction

1.1 Setting

1.1.1 Software Engineering and Alias Analysis

Building large, complex software systemsis difficult. Human beings have limited capacity
to understand and recall the details of such systems. Since computers are adept at handling
large quantities of data, one would expect automatic tools to be useful for helping
programmers to understand large programs.

Indeed, many such toolsdo exist. Program codeispartitioned into filesand organized using
file systems. Data about programs are stored in bug databases [88] and design documents
[70].

Inmy thesis, | focuson toolsthat work directly with program code. A key phenomenon that
makes program code difficult to understand is aliasing: the use of multiple namesto refer
to the same entity. For example, consider the fragment of Java code shown in Figure 1-1.
In this code, areference to the string object “Hello” isstored in s1 and inserted into the
Vector, andthen extracted into s. Thereforethevariables s and s1 arealiased. Likewise
s and s2 are aliased.

static void main () {

String sl = “Hello”;

String s2 = “Kitty”;

Vector v = new Vector(); // Create a new Vector containing
v.addElement (sl); // s1 and s2, and print out its
v.addElement (s2) ; // elements

Integer i1 = new Integer(7);

Vector v2 = new Vector();

v2.addElement (i1) ;

for (Enumeration e = v.elements(); e.hasMoreElements();) {
String s = (String)e.nextElement();
System.out.println(s.length());

Figure 1-1. Example of Java code exhibiting aliasing

Suppose the programmer wants to find out information about the object referred to by s1
— for example, what methods are called on it, and where in the program those calls occur.
It isinsufficient to search the text for the name*“ s1”. The programmer must also examine
s1’saliases— inthiscase, s. In general, whenever the programmer isinterested in

23

properties of data which may be accessed through different names, alias information is
required.

Most tools for understanding code make no attempt to handle aliasing. The programmer
must manually peruse the source codeto discover aiasing relationships and to gather infor-
mation about the referenced data. This thesis describes the design of apractical aias
anaysis system for amodern programming language (Java), and code understanding tools
based on it.

1.1.2 The Need For AliasInformation

Many different questions which arise during programming involve alias information.
Consider these questions that a programmer might ask:!

1. “What kind of objects can be in the container X?”

2. “What does the structure of object X and its contents look like?’

3. “Which methods of object X are invoked, and where are they called?’
4. “Isthisline of code ever executed or not?’

The programmer might specify “object X” by giving, for example, a program location and
the name of avariablein scope at that location.

All of these questions require alias information. Questions 1, 2 and 3 clearly require infor-
mation about objects; collecting thisinformation will require knowledge of which names

refer to the objects of interest. In an object-oriented setting, question 4 also requires alias

information because tracing the flow of control requiresinformation about objectsthat are
targets of method invocations.

Thisthesisdemonstratesthat not only do these questionsrequire aiasinformation, but once
aliasinformation is available in a convenient format, these questions are relatively easy to
answer.

1.1.3 Shortcomings of Existing Tools

Existing practical tools use very simple approximations whenever they need alias infor-
mation. A common and useful approximation isto compare the declared types of variables
to see whether they may be aliases[23]. For example, in Figure 1-1, the vector v andthe
String s cannot be aliases because the Java class hierarchy does not permit any object to
be simultaneoudy astring andavector.

However, code reuse frequently leads to different instances of the sametype being used in
different ways. For example, in Figure 1-1 v and v2 are Vectors, ageneric container
type frequently used in Java. Suppose the programmer wishesto provethat the vector in
Figure 1-1 containsonly strings. Shemust find all aliasesto v and show that the objects
inserted into those Vectors are Strings. An aias analysis based on declared types

1. These questions are all phrased in terms of object-oriented programs, but similar
guestions and observations apply to programs written in C, or any modern programming
language.

24

alone will imply that v and v2 are aliases, and therefore v’'s Vvector might contain
Integers aswell asstrings. Such an analysiswill inaccurately conclude that the
downcast to String might fail.

Researchers have devised much more sophisticated alias analyses. However, the fruits of
thisresearch are not being used by production-line programmers. The motivation for this
thesisis to attack this adoption barrier.

Therefore | have constructed a program analysis system called Ajax. The design goals of
Ajax reflect perceived limitations of previous attempts at implementing analysis tools.

» Scalability
An analysis that produces wonderfully detailed information will be uselessif itis
unable to handle large programs. If a program is small enough to be easily understood
by a programmer, then the programmer does not need an analysis tool.

» Applicability
Many analyses are not useful because they do not deal well with features of modern
programming languages and modern programs, such as

» Higher order control flow and dynamic method dispatch;
» Ubiquitous dynamic memory allocation;

» Large, complex dynamic data structures,

» Multiple levels of data encapsulation;

* Classlibrary code used in multiple contexts

Ajax is designed to handle programs written in a modern language with all these fea-
tures — Java— and is specifically designed to handle these features well.

» Usability
Previous work such as Lackwit [54] erred by exposing the results of analysis very
directly to the user, with little summarization or interpretation. It was often unclear to a
normal programmer how the results should be interpreted. Therefore, instead of build-
ing a single monolithic tool, Ajax is designed to be a platform upon which avariety of
tools can be built, each addressing a particular kind of task or question that the pro-
grammer may pose. The user interface to each tool is customized for its particular func-
tion.

An additional implied design goal isthat Ajax must be powerful enough to be worth using
while meeting the above requirements. At the least, it must discover useful information that
could not be obtained by simple methods based on local reasoning. This thesis shows how
Ajax achieves all these goals smultaneoudly.

1.1.4 Assumptions

Apart from the requirements above, the design of Ajax was constrained by assumptions
about the nature of the solution. These assumptions stemmed from the background of this
work, and have some independent justification, but are not fundamental.

25

* Sound Static Analysis
Ajax is designed to produce static guarantees:. results that are valid for all possible
inputs and executions of the program. Therefore it must use conservative analysis. For
example, when finding the sites of all method invocations on a particular object or set
of objects, it only promises to return a superset of the true sites. One justification for
using sound analysisis that the meaning of the resultsis easier to define; the results do
not need to be qualified by the limits of atest suite or the nature of heuristics used by
the system. Also, for some applications, such as compilation or automatic transforma-
tion, itisintrinsically important that the results be sound. However, an analysis need
not be sound to be useful, so the choice to explore this part of the design space was not
anecessary decision.

* Global Analysis

Ajax analyzes whole programs. The behavior of any unavailable parts must be repre-
sented by specifications. Thisis desirable because behaviors due to component interac-
tions are often the most difficult to understand, and therefore the most useful to be able
to analyze automatically. Also, sound analysis of partial programs requires some sort of
description of the missing parts, or else one must make “worst case” assumptions about
those parts. The quality of the analysisresultsislikely to be severely degraded by such
pessimistic assumptions.

1.1.5Goal

Thegoal of thisthesisisto demonstratethat sound, static, global aliasanalysiscan be
the basisfor toolsthat accurately answer programmers questions about real, large
object-oriented programs.

By “accurately”, | mean that the results are significantly more accurate than those provided
by existing tools.

1.2 Approach

Ajax incorporates several key features to achieve the above goal.

1.2.1 Support For Multiple Tools and Analyses

The key to the design of Ajax isitsdivision into tools and analyses. In Ajax, atool isa
component presenting asingle interface to the user (typically, a programmer), designed to
aid the user in a specific task by providing specific information in a specific way. An
analysisis a component that produces alias information to be consumed by tools. Each
anaysisimplements a simple, fixed, and rigorously defined interface, which presents
aliasing information to toolsin the form of an abstraction called the value-point relation (or
VPR). Thisisillustrated in Figure 1-2.

This design has major benefits:

26

.class
files

Figure 1-2. Example of an Ajax configuration

» Onecan use Ajax to construct one tool for each specific task that requires dias infor-
mation. Ajax is carefully organised so that each tool requireslittle effort to implement.
In particular, unlike some other analysis toolkits such as BANE [28], knowledge of the
semantics of the target language is built into Ajax’s analyses and does not have to be
provided by the tool.

» Ajax offersasuite of different analysis engines. One can select an engine for agiven
problem to achieve an appropriate tradeoff between accuracy and resource consump-
tion. Results show that the appropriate analysis configuration varies significantly
according to the task being addressed. Because the VPR interface isfixed and fully
defined, there are no fundamental restrictions on combining analyses with tools; any
tool will operate correctly with any analysis. A given combination may or may not give
good quality results, but it will give correct results.

» Ajax alowscomposition of analyses. Two analyses can be “intersected” to combine the
best results of both to solve a particular problem. Alternatively, one analysis can be
used as a“preprocessing step” to provide information that will speed up or improvethe
accuracy of another analysis. These capabilities are both crucial to good performance
and accuracy in Ajax. To implement composition, an analysis simply usesthe VPR
interface to consume alias information produced by one or more other analyses. One
such configuration isillustrated in Figure 1-3 below.

Conceptually, the value-point relation is smply the aliasing relation between program
variables (and expressions). The difficult part of the design isdefining aconcrete interface
connecting tools to analyses that allows efficient, simple implementations of both. The
VPR also generalizes alias analysis to provide information about values which are not
object references — e.g., integers. The details are explained in Chapter 3 and Chapter 4.

The design is exercised by constructing multiple analysis engines (see Section 1.2.3
below), and tools for the following tasks:

* Proving the safety of Java downcasts

27

I dentifying dead code

Resolving virtual method calls

» Computing object models

Scanning the program for accesses to objects satisfying certain criteria

1.2.2 Support For Java Programs

As mentioned above, Ajax is designed to handle general Java programs. Java programs
exhibit avariety of “modern” language features that are becoming common:

» Objects— that is, inheritance, dynamic method dispatch, and data abstraction

» Extensive use of class libraries, such asthe Java standard library and the Abstract Win-
dow Toolkit user-interface and graphics library

» Well-defined semantics; the language specification defines the behavior of al Java
code

» Reflection and dynamic loading; Java programs can dynamically load new code at run-
time, and metadata describing and providing access to loaded code and data is exported
to the running program

» Exceptions
» Thread-based concurrency

To smplify the presentation and implementation, Ajax actually processes Java bytecode
programs. This also makes it possible for Ajax to process programs whose source code is
not available.

1.2.3 Simple Context Sensitive Analysis

To give significantly more accurate results than local analyses such as those based on
declared types, an diasanaysismust be able to distinguish between different data accessed
with the same variable/type names. In complex programs, the interesting data are often
constructed and accessed through one or more levels of indirection. For example, in object
oriented programs, patterns such as constructors, abstract factories, and field access
methods are ubiquitous. For these programs, some context sensitive analysisis required.

The goal is not to have the most sophisticated analys's, but rather one that significantly
improves on existing fast analyses by providing context sensitivity. Therefore | chose to
base Ajax’s primary analysis on the ssimplest analysis with a high degree of context sensi-
tivity: Hindley-Milner style polymorphic type inference [49].

Hindley-Milner type inference is the basis for type inference in Standard ML [50]. The
basic idea of applying this procedure to analyze aliasing in Java programs is to erase the
declared types of variables, and perform type inference based only on the type constraints
induced by operators used in the program code. The inferred type information is used to
resolve aliasing questionsin asimilar way to which declared type information is used.
However, inferred types give more precise information than declared types, because the
inferred types can be finer and their type system richer, by virtue of polymorphism. For

28

example, in Figure 1-1 Ajax can automatically prove that the Vvector v containsonly
Strings, and therefore the downcast cannot fail. This example requires context sensitive
analysis (see Section 2.2.2); no other comparable system providesit.

Based on experiences with Lackwit [54], asimilar system for analyzing C programs, |
extended the analysisin several ways:

» The addition of polymorphic recursion [42] prevents loss of polymorphism in the pres-
ence of mutually recursive declarations.

» To better handle Java objects, the analysis treats “ extensible records’ [65] in a clean
way.

* | changed some details of the theory and implementation to improve performance and
better fit Java programs.

These features are extensively discussed and evaluated in thisthesis. The general problem
of type inference with polymorphic recursion can be reduced to the formal problem of
semiunification [42]; for thisreason | cal thisalias analysis engine “ SEMI”.

| also implemented a variant of Rapid Type Analysis[9], an analysis based on reasoning
about the declared types of variables. Figure 1-3 shows an example Ajax configuration
using one instance of SEMI and two instances of RTA. This configuration is explained
further in Section 4.4.5 and Section 9.6.

.class
files

4

Results/
/
/

Code

Figure 1-3. Example of an Ajax configuration with composition

1.2.4 Distinguishing Features
Some unique features distinguish Ajax from all prior work:

» The SEMI analysis engineis the only engine combining full support for the Java lan-
guage, context sendgitivity, and higher-order control flow analysis.

» SEMI istheonly analysis engine for areal programming language that provides poly-
morphic recursion and also distinguishes different fields of structures.

29

» Ajax istheonly analysistoolkit ableto provide aliasing information directly to toolsin
aclean, efficient and analysis-independent way.

» Ajax isthe only system ableto prove the safety of Java downcasts related to generic
data structures (effectively reverse engineering the type parametricity of those struc-
tures).

» Ajax hasthe only object modelling tool able to automatically and soundly “split”
classesin the model.

1.3 Contributions

This thesis makes the following technical contributions:

* Itintroduces and evaluates new techniques for performing generalized context-sensi-
tive alias analysis of Java code. These techniques extend previously published work in
several directions.

* It defines the value-point relation, and usesit to describe a flexible and genera inter-
face for efficiently transmitting generalized alias information from analyses to tools
and other analyses. The ideas behind the value-point relation are not new, but the rela-
tion has not previously been formally specified and used as the basis for an implemen-
tation. Similarly, the interface between tools and analyses formalizes and generalizes
some existing ideas.

* It demonstrates avariety of tools that programmers can use to analyze Java programs,
including atool for building object models and a tool that proves the safety of down-
casts associated with the use of Java generic containers.

* It shows how al the above contributions are achieved in the context of the full Javalan-
guage and realistic Java programs. This context imposes some fundamental difficulties
that must be faced by any system for global static analysis. The thesis explains the dif-
ficulties and how they are addressed by Ajax.

1.4 Thesis Overview
The thesis comprises five major sections.

The first section of the thesisintroduces my work and placesit in the context of other work
on program analysis and software engineering. Chapter 2 surveys the related work and
discussesits relationship to Ajax.

The second section of the thesis explains the architecture of Ajax, in particular the “value-
point relation” interface that separates tools from anayses. In Chapter 3, | introduce the
VPR abstraction and describe how it is used to communicate alias information. It takes
some thought to actually realize this abstraction in away that permits efficient implemen-
tation; the resulting interface is described in Chapter 4. In Chapter 5, | present an extension
of RTA asan example of how an analysis can implement the VPR interface.

The third section of the thesisdescribes Ajax’s SEMI analysis. Chapter 6 formally defines
the analysis over a subset of the Java bytecode language, and proves that the analysisis
sound. Perhaps surprisingly, the proof reveal sthat the soundness of SEMI does not depend

30

on any static type safety properties of the analyzed program; if the classfile can be parsed,
then the code can be correctly analyzed. Chapter 7 describes some of the actual implemen-
tation details, in particular those that aim to improve performance. Unfortunately Java has
some features that are hard to treat with global static analysis; these features are discussed
in Chapter 8.

The fourth section of the thesisis a description of five tools built using Ajax, along with
guantitative and qualitative evaluations of those tools using a suite of example programs.
The example programs — which include “real-life” programs such as javac and some
large GUI applications, along with the standard Javalibrary — are described in Chapter 9.
Chapter 9 also presents quantitative results for two tools. one for resolving dynamic
method invocations, and onefor finding dead code. This chapter focuses on comparing the
effectiveness of different analysis enginesin different configurations. In Chapter 10 |
present and evaluate atool for checking thevalidity of downcasts. Chapter 11 describesthe
implementation and results of atool for producing object models (smilar to storage shape
graphs), which requires the use of multiple VPR queries and some amount of post-
processing. In Chapter 12, | present “JGrep,” asmple tool with a variety of uses, that
simply scans for certain kinds of aliases to expressions specified by the user.

Chapter 13 contains the conclusions of the thesis. In brief, | have achieved the main goal of
thethesis. Ajax performs sound, static, global alias analyss; provides tools to answer
programmers questions using thisinformation; givesresultssignificantly more useful than
those obtainable using previous systems; and is practically applicableto real programsand
problems. However, | have identified some major barriers to adoption for general purpose,
large scale programming. One problem is that the analysisis still not scal able enough;
SEMI consumes too many resources and seems |ess accurate as programs get larger. More
importantly, most real Java programs use language features — such as reflection and
dynamic loading — that are inherently inimical to sound global static analysis.

31

32

2 Rdated Work

2.1 Introduction

Much work has been done in areas related to this thesis. The Ajax analysis engines are
related to work on global flow and closure analysis, alias analysis, and type inference
systems. The Ajax tools are similar to previous systems for program understanding.

Asdiscussed in Section 1.2.1, Ajax separates analyses from tools. Anayses compute
generalized aliasinformation about a program, and tools consume theinformation. Ajax is
the only toolkit able to provide alias information directly to tools in a clean, efficient and
anaysis-independent way.

The SEMI analysisengine also has unique properties. It isdesigned to handlereal programs
using modern features such as objects and many levels of indirection. No other alias
analysis engine combines context sensitivity and higher-order control flow analysis with
full support for amodern programming language and the ability to handleredlistically large
programs. SEMI isalso the only enginefor any language which uses polymorphic recursion
and also distinguishes different fields of structures.

Ajax provides some unique tools to demonstrate its power. Its downcast checking tool is
the only system ableto prove the safety of Javadowncastsrelated to generic data structures
(effectively reverse engineering the type parametricity of those structures). Ajax also
provides the only object modelling tool able to “split” classesin the model both automati-
cally and soundly; see Chapter 11 for details.

2.2 Program Analyses

This section describes related work in program analysis. Section 2.2.1 explainswhy itis
important to distinguish fundamental analysis techniques from the particular problems to
which they are applied. Sections 2.2.2 and 2.2.3 define some terms useful for classifying
analyses, and give some general comments about interpreting the results of work in this
area. The following sections describe the actual related work, clustered according to the
characteristics of each analysis technique.

The final sections deal with work that is not about specific program analysis techniques.
Section 2.2.8 coverstype inference for type checking in programming languages. Section
2.2.9 presentswork on composing analyses, and Section 2.2.10 compares program analysis
toolkits.

2.2.1 Distinguishing Analysis Techniques from Analysis Problems

The problems of “flow analysis,” “closureanayss,” “higher-order control-flow analysis,”
“diasanaysis,” and “concrete type inference” are all closely related, being attempts to

33

automatically and statically characterize the values of program variables. They differ only
in the types of the valuesthey characterize and in the kinds of characterizations they make.

The same basic analysis techniques are often applied to different problems to yield appar-
ently different solutions. For example, aclosure analysisis so called because it determines
which function bodies may be evaluated to by an expression denoting a higher-order
function. Aliasanalysisis so called becauseit determineswhich abstract memory locations
may be evaluated to by an expression denoting a pointer value. However, despite the
different contexts, and often radically different presentation styles, the sametechniques can
be used to solve both problems. (Some alias analysistechniques are applicable only to first-
order code, limiting their utility for closure analysis.)

Prior to Ajax, applying an existing analysis technique to a new problem domain often
required significant effort. For example, researchers first described how to use declared
typeinformation to resolve higher-order control flow [22] and then later showed how to use
the same techniques to perform general alias analysis [23]. Asdiscussed in Section 1.2.1,
Ajax completely separates analyses from problem contexts. In Ajax, matching an analysis
to a problem context is a ssimple runtime configuration decision. No prior work has this

property.
Aswell as adding useful implementation flexibility, the decoupling of analysis techniques
from problem contexts makes for easier comparison of the underlying techniques. For

example, in Chapter 5 | show that the two analyses mentioned above, both based on
declared types and superficially similar, are actually subtly different in precision.

In this discussion, | deemphasize the original context in which work was presented and
focus on underlying techniques.

2.2.2 Classifying Analyses
It is helpful to classify analyses according to whether they possess “flow sensitivity” and/

or “context sensitivity”. Theseterms are used informally and inconsistently in the liter-
ature. | adopt the following definitions:

* Ananalysisisflow senstive if, when expressed in the form of constraints, it usesinclu-
sion (subtype or subset) constraints.

The intuition behind flow sensitivity isthat, considering the program fragment “if x theny
else Z’, aflow senstive analysis can determine that the result is either y or z while still
distinguishing y and z

Many authors use “flow sensitive” to mean that the analysis may produce different results
depending on the ordering of statements within a method or function. However, with this
definition, any analysis can trivially be made flow-sensitive ssmply by converting the
program to single static assignment form (for local variables) as the first phase of the
analysis. Therefore, such a definition does not usefully characterize the analysis technique
itself.

* Ananaysisis context sensitive if, when expressed in the form of constraints, it is possi-
ble for two occurrences of the same program variable to induce equality or inclusion
constraints whose sets of free variables are disjoint.

34

The intuition behind context senditivity is that the information obtained by a context
sensitive algorithm will not necessarily be improved by duplicating code that is used
multipletimesin theanalyzed programs. Thisincludes analyses described as“ polyvariant”
or “polymorphic,” and also some uses of intersection types [59].

Both of these definitions refer to data flow sensitivity, i.e., they describe the kinds of
constraints used to approximate data flow in the program. I am not concerned with control
flow sensitivity.

These crude definitions can be usefully applied to most of the related work. They are used
inconsistently in the literature, and therefore other authors may apply them differently.

2.2.3 Describing Results

| deliberately emphasi ze performance demonstrated in practice over asymptotic worst-case
complexity. Complexity results can be very misleading because real programs almost
always have characteristic properties that prevent them from triggering the worst-case
behavior of many algorithms (ML type inference is the classic example). Unfortunately,
published benchmark results can al so be mideading, because real programs almost aways
have properties (such asinternal code reuse) that are not exhibited by most small
benchmark programs.

Many authorsreport results in terms of the number of abstract locations associated with
load or store operations in the program (i.e., sizes of points-to sets). Unfortunately, this
metric is not very useful, because the domain of abstract locations often varies from
analysisto analysis. Indeed, type inference analyses do not directly define adomain of
abstract locations. Furthermore, it is not clear how the sizes of the setsrelate to the utility
of theresults. An analysis that maps the result of every Cmal1oc operation to the same
abstract location could easily produce very small points-to sets but be absolutely uselessin
practice. Measurements that relate the dynamic behavior of a program to its static approx-
imation, such as the work of Grove et al. [37], are much more useful.

Many of the alias analyses presented below assume that pointed-to memory locations can
have only one outgoing pointer, or in other words, every structure can have only onefield.
For structures with more than onefield, the fields are treated as one and not distinguished.
This can drastically change the performance characteristics of an analysis, because it effec-
tively reduces program data structure shape graphs from branching trees to linear
sequences, and ensures that all recursive structures become pure cycles. This approxi-
mation is so common that it is not always clearly stated.

2.2.4 Flow Sensitive, Context | nsensitive Analyses

One area of analysis where scalability is often an explicit goal isaiasanalysis and related
problems, such as side effect estimation.

Andersen [5] gives asimple flow-sensitive algorithm based on inclusion constraints for
alias anaysis of C programs. It is often thought of as context-sensitive, because passing a
parameter to a called procedureis treated as assignment of the actual parameter to the
formal parameter; flow sensitivity ensuresthat different actual parameters at different call
sites can be distinguished even when they map onto the same formal parameter. Unfortu-
nately the result of acalled procedureis never handled context sensitively; a returned

35

pointer always maps to the same set of abstract locations regardless of the calling context.
Thus, if accessto object fieldsis consistently performed through accessor methods of the
object (asis often the case in Java programs), Andersen’s algorithm is equivalent to
requiring, for each declared field of aclass, asingle abstract storage location that summa-
rizes the contents of every runtime instance of that field.

Inaseriesof reports[30] [75], Aiken and his collaborators describe methods for improving
the performance of inclusion-based analyses such as Andersen’ s algorithm. Thiswork is
amost exclusively aimed at analyzing large C programs and does not consider context
sensitivity. Their work makes Andersen’s algorithm practically applicable to large
programs. Note however that even their most recent results make the “one field per
structure” approximation; thisis especialy significant because their “projection merging”
technique relies on type constructors having small arity.

Rountev, Milanovaand Ryder [66] extend the improved agorithm to model multiplefields
per object, and apply it to Java programs. Their method effectively transforms programsto
first-order code before analysis, using declared type information and analysis of the class
hierarchy to determine possible callees of indirect method calls. They do not attempt to
handle reflection and completely ignore the effects of library code; therefore it is difficult
to interpret their results. In particular, the numbers of methodsthey find to be dead in their
test programs are suspiciously large.

A classic approach to “higher order control flow analysis’ (“CFA”) was presented by
Shivers[71]. Heintze [39] introduced set-based analysis. Both of these techniques can be
thought of as methods for higher-order control flow analysis using inclusion constraints.
Since then, much work has been done to decrease the time and space requirements of these
techniques, especially when some kind of context sensitivity is required.

Heintze and McAllester [41] describe an implementation of CFA that answers certain
guestionsin linear time for programs that have types that are bounded in size. Unfortu-
nately this approach cannot be directly applied to C and Java programs because its
treatment of recursivetypesisbased on ML datatypes. If the entire Object typeweretreated
as one datatype, there would be a great loss of accuracy: it would be impossible to distin-
guish different fields of the same object (other than scalar fields). Thisis because an ML
datatype has afixed pattern of type recursion, so modelling Object with adatatype requires
al fields holding object references to have the same type as the containing object. Heintze
and McAllester's analysis uses type information to guide its approximations for dealing
with recursive types, and in this case it will resort to the gross approximation mentioned
above. Another problem with their method is that extending it with some kind of
polyvariance or polymorphism could lead to serious performance problems.

Flanagan and Felleisen [33] describe an implementation of set-based analysis designed to
handle large programs. It analyzes each component separately, generating a collection of
set congtraints that approximate the behavior of the component, then simplifying the
constraints. Finally the sets of simplified constraints are combined and solved. Thisreduces
theamount of space required to analyze an entire program. The improvement over the basic
algorithm is very impressive, but the largest program analyzed is 18,000 lines of Scheme,
so itisdifficult to draw conclusions about scalability, or about its behavior on object
oriented programs.

36

DeFouw, Grove and Chambers[21] consider aframework of “fast” algorithms posessing
varying degrees of flow sensitivity and ranging from linear to cubic time complexity inthe
size of the program. Sudaresan et al. [76] present new algorithmsin this class, asdo Tip
and Palsberg [80]. All these algorithms could easily and profitably be implemented to
produce VPR approximationsin Ajax.

2.2.5 Flow Sensitive, Context Sensitive Analyses

Ruf [67] compares two flow-sensitive agorithms, one context-sensitive and the other
context-insensitive. The sets of possible locations at each load or store were almost
identical, leading him to conclude that for those benchmarks, context sensitivity was
worthless. However, he suggestsin the paper that those results may not generalizeto larger
programs. (The largest program considered was less than 7,000 lines of C.)

A similar study wasdone by Foster et al. [34]; they concludethat adding context sensitivity
improves the accuracy of aflow insensitive analysis, but not aflow sensitive analysis
(Andersen’ salgorithm). Unfortunately their context-sensitive analyses do not distinguish
memory objects created by the same textual occurrence of “malloc”, and therefore may be
failing to exploit some of the power of context sengitivity (for example, by failing to distin-
guish instances of heap-allocated abstract data types, which Lackwit and Ajax are able to
do). They observe that the main advantage a true context-sensitive algorithm has over a
flow-sensitive algorithm (such as Andersen’ salgorithm) isthat results or “ out parameters’
of function calls can be distinguished in different contexts, and that their C programs do not
exhibit much of thiskind of polymorphism, functions being mostly executed for their side
effects. However, Java and C++ encourage reads of object state to be encapsulated in
accessor methods, so “result polymorphism” is much more common in programsfor these
languages.

Ryder and her collaborators[74] [14] developed a series of algorithmsfor large-scale flow-
sensitive dlias analysis, and embodied them in atoolkit. Their approach is based on the
propagation of “points-to sets’ encoding the aliasing relationships that hold at each
program point. Each points-to set is a set of abstract locations that a pointer may be
referring to. This basic method is extended to handle higher-order code (by dynamically
updating a call graph and incrementally propagating information between new callees and
callers); other extensions are introduced to handle structures, exceptions and other modern
language features. Their most sophisticated general-purpose algorithm which isalso
context-sensitive [14] isonly demonstrated on programs with lessthan 7,000 lines of C++
code. (It does not explicitly handle higher-order code; the programs are first reduced to
first-order by applying class hierarchy analysis.) Also, they have one abstract location for
each occurrence of acall to “malloc” in the source code. Therefore this analysis can never
treat memory allocation context-sensitively, and can never distinguish instances of abstract
data types which are allocated by a common constructor function.

Wilson and Lam [84] give an algorithm for context-sensitive, flow-sensitive aliasanaysis
for C programs that computes abstractions of procedures, called “partial transfer
functions’, that depend on the calling context but can often be reused between calling
contexts (often, only one PTF isever computed for a procedure). Unfortunately, they only
report results for small, mostly numeric applications (no larger than 5,000 lines), though
their results are excellent. Because their PTFs depend on the alias patternsin the calling

37

context, and in particular depend on the actual values of function pointers passed in by the
caller, itisnot clear how much expensive reanaysiswould berequired for larger programs
with complex data structures and/or use of function pointers (object oriented programsfall
into this category). They give no measurements of the quality of the results of their
algorithm. Also, they only analyzed C programs with mostly first-order code.

Cheng and Hwu [16] describe another PTF-based technique that trades off accuracy in
exchange for better scalability. Their system has been successfully used as part of an
optimizing compiler for the C SPEC benchmarks. According to my definitions, it is both
flow sensitive and context sensitive, but it does make a number of approximations that
make it hard to compare with other algorithms. It is unclear how it would fare on object-
oriented programs.

Plevyak’s analysis [63] for object-oriented programs is based on “adaptive splitting,”
which dynamically adds context and flow sensitivity when needed to improve the accuracy
of the analysis on some particular task. The analysisis used as the basis for a number of
optimizations in an optimizing compiler for a Java-like language, ICC++. The analysis
looks promising but, asis often the case, only relative small programs are targeted (up to
25,000 linesin later work [24], which does not report absolute performance results) and
direct comparisons with other systems are difficult.

Grove, Dean, DeFouw and Chambers [37] survey a number of algorithms for “call graph
construction” for object oriented languages. The agorithms studied include those of
Palsberg and Schwartzbach [60], Oxhgj, Palsberg and Schwartzbach [56], and Agesen [1].
The call graph construction problem is essentially the same as higher-order control flow
anayss:. identify the possible targets of an indirect function (or procedure, or method)
invocation. They conclude “our experiments demonstrated that scalability problems
prevent the flow-sensitive algorithms from being applied beyond the domain of small
benchmark [Cecil] programs.” All of the context-sensitive algorithms they consider are
also flow-sengitive. The agorithms performed much better on Java programs, presumably
because Javais not as “pure” an object-oriented language as Cecil and therefore method
dispatches are less ubiquitous.

Their results show that for resolving dispatches, adding flow sensitivity makes more
difference than adding context-sensitivity, if the context-sensitive analysisis also flow
sensitive. Unfortunately it is hard to compare their results to mine, because our systems
make different assumptions. For example, we handle library code differently — see
Chapter 8.

Fahndrich and Aiken [29] describe how to construct an interesting analysis framework that
incorporates inclusion constraints and polymorphism, but uses equational (i.e., flow insen-
sitive) constraints judicioudly to improve the efficiency of the algorithm, where loss of
information is not as important. They apply the framework to the problem of inferring
uncaught exceptionsin ML programs, but provide very little information on the actual
performance of their algorithm.

38

2.2.6 Simpler Analyses

In response to the expense of applying known flow-sensitive or context-sensitive analyses,
researchers have developed fast, but somewhat crude algorithms for answering various
program anaysis questions, mostly in the context of compilation and optimization.

A classic agorithm for determining the possible targets of amethod call is* classhierarchy
analysis.” In astatically typed language, it examines the class that the source program
declared for the object reference in a method call; the run-time class of the object must be
asubclass of the declared class, and so the possible targets of the dispatch are the method
in the declared class (if thereis one), and any overriding method declarations in those
subclasses|[32, 20, both cited in 9]. Even languages such as Smalltalk that lack a static type
discipline can use similar approaches, by computing the set of classes which declare or
inherit a method implementation compatible with the call.

Diwan, Moss and McKinley [22] [23] extend this basic method with intraprocedural flow
analysis and some very simple (context insensitive) interprocedural propagation and
handling of data structures, resulting in an analysis that is still linear in practice. Their
algorithms are quite effective for their benchmarks, but the benchmarks are mostly small.
In their system for resolving dynamic method invocations [22], the only program
(“Trestle”) that consists of more than 20,000 lines of code givestheir second-poorest resullt,
resolving aimost none of the 20% or so dynamic method invocations that are invoked at
monomorphic call sites (i.e., call sites observed alwaysto call the same method implemen-
tation at run-time). Interestingly, they comment that this program is the only one of their
benchmarks that might benefit significantly from context sensitivity.

Bacon and Sweeney [9] extend classhierarchy analysiswith “Rapid Type Analysis,” which
essentially eliminates dead code and classes in C++ programs, by starting with the
assumption that only “main” is called and adding in classes, procedures and methods as
necessary until a safe approximation isreached. The analysisrunsin linear time and gives
good results for many programs, particularly because stripping out entire unused classes
can often improve the results of class hierarchy analysis. However, most of their bench-
marks do not exploit subclass polymorphism, and the benchmarks are mostly small (only
one has more than 20,000 lines of code). An interesting lesson from their work isthat it is
highly desirable for an analysis to ignore code shown to be dead. RTA achieves this by
approximating the set of live methods from below; Ajax generalizes this strategy and uses
it for al its analyses. Also, because of RTA’s simplicity, efficiency and effectiveness, |
have used it as the basis for one of the Ajax analysis engines.

Steensgaard [72] applied a very simple type inference scheme to analyze aliasing for C
programs. Initsoriginal incarnation, it did not distinguish members of the same record, and
it was context and flow insensitive. The ability to distinguish record members was added
in later work [73]. In practice, these schemes scale to very large programs with millions of
lines of code. Other variations have been created which introduce carefully limited flow
sensitivity while retaining scalability [19].

Heintze [40] describes extensions of the equivalence results of Palsberg and O'Keefe [58]
that, among other things, show the equivalence of unification-based type inference (i.e.,
without subtyping) to asimple closure analysis. There are no empirical results, and
polymorphic type systems are not treated. The type system obtained is very similar to that

39

used for binding time analysis by Bondorf and Jargensen [8]. The analysisismore powerful
than Steensgaard's [72], but less powerful than Wright and Cartwright's [85] (see below).

2.2.7 Flow Insensitive, Context Sensitive Analyses

Several researchers have produced flow insensitive, context sensitive program analyses
based on the Hindley-Milner algorithm for inferring polymorphic typesin languages based
onlambdacalculi [49]. Thisagorithm isattractive because of itsexceptional simplicity, its
elegant handling of higher-order code and complex data structures, and its proven
scalability in some contexts, such as type inference for ML [50].

Tofte and Tapin'sregion inference [81] is somewhat similar to the SEMI agorithm used
in Ajax, partly because it uses polymorphic recursion [42]. There are significant differ-
ences, however. Their system is unnecessarily complex (for my purposes) because it
includes effect inference, which | do not need. On the other hand, their treatment of
recursivetypesisinsufficient for my needs becausethey analyze ML programswhich have
explicit datatype declarations describing the recursive types. Their use of polymorphic
recursion is aso limited to the region variables, but my usage is much more general. Also,
my work isin totally different application domains from theirs, so the results are incompa-
rable.

Wright and Cartwright's soft typing system for Scheme [85] handles recursive types,
records, and polymorphism, but it does not distinguish different instances of the same basic
type, which isafundamental requirement for many of my applications. For example, if two
variables both refer to lists of integers, Soft Scheme must assume that the references are
aliased.

Lackwit [54] [55] isa system using polymorphic type inference to perform alias analyis of
large C programs. It wasthe direct predecessor to Ajax. Lackwit’ sanalysisworked well —
analyzing more than 100,000 lines of code in less than 64MB of RAM — and handled
recursive types, structures, and some uses of type casting. However SEMI improves on it
in several ways, as discussed in Section 1.2.3. Also, the design of Ajax as a“tool suite”
stems directly from the shortcomings of Lackwit asan“all in one” tool.

Liang and Harrold [62] constructed asimilar analysisfor C programs by extending Steens-
gaard’ s algorithm. They do not distinguish structure fields or handle higher-order code.
Their test programs have less than 25,000 lines of code.

Fahndrich et al. [31] built an analysissimilar to Lackwit, adding polymorphic recursion and
“polarity” information to instantiation constraints. The polarity information improves
accuracy without much effect on performance. They achieve good scalability resultson C
programs, but their system is not discriminating between the fields of structures, which
avoids some of the performance problems which | had to addressin SEMI. My SEMI
analysis could exploit polarity information in the same way to improve its accuracy.

Pessaux and Leroy [61] created an analysisfor finding uncaught exceptionsin O’ Caml
programs. Previous approaches had used inclusion constraints; they abandoned thesein
favor of unification-based type inference and polymorphic recursion. They have some
interesting comments about the tradeoffsinvolved; they saw little degradation in accuracy,
and were actually able to increase precision because the simpler technology allowed them
to build a more complete analysis. Their analysisisimpressive; they can anayze nearly

40

20,000 lines of (non-object-oriented) O’ Caml code. Because they are interested in recov-
ering only the concrete types of exceptions which can be thrown, their analysis and results
are not directly comparable with systems such as Ajax.

There has been much recent work on specialised alias analyses for Javafor tasks such as
escape analysis and synchronization removal [17] [10] [11] [83] [4]. The analysis most
similar to SEMI is Ruf’s[69]. It computes similar information to Ajax, partitioning object
references into equivalence classes and propagating information from calleesto callersin
a context-sensitive manner. His analysis is much faster than SEMI. Thisis partly because
itisapplied to programs that have already been transformed to be first-order, and it does
not support polymorphic recursion. He also uses several tricksto improve performance for
his particular task. Even when SEMI is configured to reduce the program to first-order
before analysis, and full polymorphic recursion is disabled, Ruf’ sanaysisis still much
faster. Thisindicates that when polymorphic recursion or incremental analysis are not
required, deterministic propagation of summaries along the call graph is much more
efficient than using a general incremental constraint system like SEMI. Lackwit used a
similar single-pass deterministic algorithm to propagate type information from the leaves
of the graph of program declarationsup to theroot, and it also seemsto be much faster than
SEMI.

2.2.8 Type Inferencefor Object Oriented L anguages

Many researchers have devel oped sophisticated typeinference systems, and there has been
much recent work on integrating object-oriented features into languages with type
inference. These systems mostly rely on introducing inclusion (subtyping) constraints, and
their performance is usually not evaluated. Furthermore, as for the soft typing system
discussed above, these inference systems are oriented towards finding type errors and do
not attempt to distinguish values with the same concrete type (e.g., two integers, or two
objects with identical structure).

Although not for object oriented programs, Henglein’ s exposition of type inference for
polymorphic recursion [42] was a mgjor influence on my work and the work of others.

Eifrig, Smith and Trifonov [27] givearich typeinference system for languages with object
oriented features (with support for state and records). Thereis no mention at all of any
implementation or its performance.

Palsberg and O'Keefe [58] provethat acertain simpletypeinference system with recursive
types and subtyping is equivaent to a standard closure analysis. Obviously performance
problems exhibited by flow analyses will carry over to the equivalent type inference
systems, unless we relinquish some expressive power. Context sensitive closure analyses
or polymorphic type systems are not treated.

Palsberg [57] describesatypeinference algorithm for Abadi and Cardelli's object calculus.
The algorithm incorporates subtype constraints, and requires O(n3) time in the worst case
because it computes atransitive closure; empirical results are not reported. It does not
incorporate parametric polymorphism. Because the subtyping rule is based on record
extension (requiring common fields to have the same type), parametric polymorphism
would be required to ensure true context sensitivity.

41

Rémy and Vouillon [65] describe the type system of Objective Caml, which providestype
inference for an object-oriented extension of ML, without the use of subtype constraints.
They use polymorphic row variable types to write functions that are polymorphic over
object types. (Row variables range over a set of unknown fields and their types.) They
require explicit coercions in other situations (e.g., heterogeneous containers). They can
infer recursive types in function and method signatures. Thistype system isvery close to
the type system used by SEMI, except that because their source programs have properly
block-structured declarations, they have no need for polymorphic recursion. Furthermore,
like Wright and Cartwright's Soft Scheme, the system is designed to prove type safety, and
has none of the extensions required to collect other information. Also, the languageis
intended to be class-based, but classtypes are not suitable for my purposes. In my system,
the type inferred for an object of class A may encode information about the subclasses of
A aswéll, since the object could be one of those subclasses. Thisinformation is neither
needed nor alowed in O'Caml, since it breaks modularity and is not useful for
typechecking.

Duggan [25] proposes a type inference procedure for reverse engineering parameterized
types from Java code. His system is significantly more complex than SEMI and Ajax’s
downcast checker, because it is construed as a source-to-source trandation from Java to
“PolyJava’ , an extension of Javawith bounded parameteric polymorphism. Therefore heis
concerned with ensuring that the trandlated code typechecks and has the same semantics as
theoriginal code. Most importantly, he has not implemented the analysis, soitsbehavior in
practice is unknown.

2.2.9 Composing Analyses

Hybrid approachesto closure analysis and alias analysis have been proposed, that combine
traditional flow analysis of abstract valueswith type inference. Ruf [68] and Zhang, Ryder
and Landi [86] [87] suggest similar schemes for alias analysis that first apply afast type
inference analysis, and then use the results to select a subset of the program to be analyzed
with amore expensive flow analysis to obtain more precise information for a certain set of
values. In fact, this approach can actually improve the accuracy of the results because
analyses are often precise or imprecise in different ways, and taking the intersection of the
results can be better than any single set of results. The Ajax framework explicitly supports
thiskind of composition; see Section 4.4.5.

2.2.10 Analysis Toolkits

One of the strengths of Ajax isits modular design, enabling tools for different tasksto be
quickly and easily built using asmple, powerful abstraction of alias information. Two
“state of the art” toolkits for global static analysis are BANE [2] and PAF [74].

BANE [2] providesan enginefor solving term equality and set inclusion constraints. It al'so
supports Hindley-Milner style polymorphism (but not polymorphic recursion). To
implement a task-specific tool using BANE, the implementor must create afront end to
traverse program code and build a set of constraints to be solved. The implementor must
also create a“back end” to interpret the solved constraints in order to solve the problem at
hand. In particular, theimplementor must determine how to expressthe problemin theform
of constraints, and prove that the constraint problem corresponds to the real problem. In

42

contrast, an Ajax tool implementor is provided with the VPR abstraction of semantic infor-
mation, without having to write any front end code, and without having to worry about how
the information was produced. In most cases theimplementor’ s desired information can be
extracted directly from the VPR. The price isthat Ajax can only provide aliasing infor-
mation; BANE could be reused in other contexts.

Like Ajax, PAF[74] computes aliasanalyses of programs. However, it doesnot provide an
abstract interface comparable to the VPR. Instead, the analyses produce “ points-to sets”
listing, for each pointer dereference in the program, the abstract | ocations the pointer could
be pointing to. For atool to use thisinformation, it must encode the meaning of the abstract
locations; this is undesirable because the domain of abstract locations could change
depending on the analysis method being used. It is also undesirable because it places an
unnecessary burden of understanding on the tool implementor. Also, it is not always
efficient to explicitly convert analysis results into points-to sets and then interpret those
sets; the points-to sets can be very large. The VPR is designed to avoid this bottleneck.

2.3 Software Engineering Tools

2.3.1 Software Engineering Toolsfor Program Understanding

There are many tools that address aspects of the program understanding task, some built as
research projects and some as commercial products. Almost exclusively, such tools that
aim to be scalable do not rely on semantics-based analyses, but operate at the lexical or
syntactic level. For example, the products of Imagix Corporation [90] provide a number of
different views and summaries of program source code, all of which rely onlexical and
syntactic information, or on profile information gathered by running the program. The C
Information Abstraction system [15], and its successors and many other similar systems,
essentially treat a program as an abstract syntax tree without assigning meaning to the
syntax elements. In CIA, thisinformation isimported into adatabase, and variousrel ational
gueries can then be used to extract useful information. For example, the tool could rapidly
locate all mentions of a particular field of a given structure type. My work extends these
ideas by providing much richer information about the semantics of the program.

Murphy and Notkin devel oped somelexical analysesthat are particularly efficient and easy
to customize [51]. Duetoitslexical nature, their tool can be moreflexible (for example, it
can analyze programs written in multiple languages), and will be more efficient in most
cases. Its strength is aso its weakness. By operating purely at the lexical level, it cannot
address semantic queries with the precision or soundness of semantics-based analysis.

The same researchers' Reflection Model Tool (“RMT”) [52] allows the results of a static
analysis to be presented at a more abstract level than the code, such as an architecture
diagram, and to be compared to the expectations that the user hasfor that level. It assumes
that the result of the source code analysisis a graph, and produces diagrams to show how
the abstracted graph differs from that expected. RMT is independent of the tool used to
analyze the source code, and my tools could be used in that role.

Bowdidge and Griswold's “ Star Diagram” tool [7] and its successors aid in encapsul ating
abstract datatypes, by presenting aspecial view of the program that focuses on a particul ar
variable. They assume that there is a single variable to be abstracted, but they discuss

43

extending their method to operate on data structures with multipleinstances. They consider
operating on all data structures of a certain type, but comment “ The potential shortcoming
of this approach isthat two datastructures of the same representation type, particularly two
arrays, might be used for sufficiently different purposesthat they are not really instances of
the same type abstraction.” Ajax and SEMI solve this problem.

The Womble object modelling tool [46] uses syntactic analysis, intraprocedural analysis,

heuristics and built-in knowledge of the Java classlibrary to produce object models[70] of
Java programs. It is not sound; its object models can fail to reveal class relationships that

actually exist inthe program. In contrast, the Ajax object modelling tool is sound, and can
accurately “split” classes without being given any special information other than the code.
See Chapter 11 for more details.

2.3.2 Semantics-based Tools For Program Under standing

The majority of work from the software engineering community that tries to capture truly
semantic information is concerned with slicing [82] [78] — that is, the identification of a
subset of aprogram that completely determines the value of a given variable at a given
program point. This kind of information may be useful for testing, debugging and other
applications. Unfortunately, most efforts to date have failed to achieve any kind of
scalability or to operate on realistic languages and programs. The most realistic dicing tool
availableis Grammatech’s CodeSurfer product [89]. CodeSurfer analyzes C programs and
relies on Andersen’ s algorithm to resolve aliasing in order to compute more accurate
dataflow graphs. My work shows that aias information itself can be used to solve several
problems of interest to the software engineering community.

The Anno Domini tool [26] uses monomorphic, unification-based type inference to
compute “Y 2K” type information for datain COBOL programs. Anno Domini isatool
designed to support one task very well. Ajax is designed to enable cheap construction of
many such “domain specific’ tools.

2.4 Language Semantics

This thesis presents a soundness proof for SEM|I, which requires specification of the
semantics of the source language — in this case, alarge subset of Java bytecode. The
semantics presented here are a correction and simplification of the work of Qian [64]. In
contrast with other semanticsfor Javabytecode, my semantics are completely dynamic and
rather “lax”. There are no static checks, and the only run-time checks are those necessary
to ensure deterministic and sensible execution. Thisis because Ajax is not concerned with
verifying the static safety of Java bytecode; in fact, the soundness proofs demonstrate that
SEMI can soundly analyze bytecode which violates any and all static safety constraints.

However, it is also true that the techniques that underly Ajax, and SEMI in particular, can
be useful in performing static typechecking of bytecode. | have donesomework in thisarea
[53], but it is beyond the scope of thisthesis.

3 TheValue-Point Relation:
Separating Analyses from
Tools

3.1 Overview

The design of Ajax separates analyses, which produce alias information, from tools, which
consume the information. This chapter presents a high level functional specification of the
interface between tools and analyses. Chapter 4 describes details of the interface which
allow analyses and tools to work together efficiently.

3.1.1 Desirability of Simple Semantics

In previous systems, alias information is encoded in formats specific to the analysis used.
For example, many analyses compute “ points-to” sets. For a pointer variable or expression
in a program, such an algorithm computes a static set of abstract locations; each abstract
location represents one or more real memory locations that the variable may point to at run
time. A tool that interprets points-to sets requires knowledge of the abstraction mapping,
which varies from analysis to analysis. Furthermore, in practice, an analysis will compute
points-to information for some subset of the pointer variables and expressionsin the
program; tools need to know exactly which subset, or be ableto specify it inadvance. If the
analysis treats the program in some intermediate form, tools need to understand the same
format.

This dependence on details of specific analyses prevents arbitrary combination of analyses
with tools. Moreimportantly, it also increases the cost of tool construction evenif only one
anaysisis provided. Tool designers must understand details of the analysis, and this
knowledge must be encoded in the tool code.

Therefore, | propose that an interface between tools and analyses should reveal aslittle as
possible of the mechanism of the analysis. The specification of the interface presented to a
tool, written out purely in terms of the semantics of the programming language, should be
as simple as possible.

3.1.2 The Value-Point Relation

The value-point relation (VPR) is a well-defined abstract property of Java bytecode
programs, encoding generalized adliasinformation. The VPR for a given program is static;
it summarizesall possible executions of the program. An analysisis required to compute a
conservative approximation to the VPR, that is, any relation that includes the VPR.

45

The VPR isdefined directly in terms of the Java bytecode language (“JBC”). A full formal
definition would require complete semanticsfor JBC, the definition of whichisbeyond the
scope of thisthesis. Instead, the VPR isdefined in terms of a subset language, “Micro” Java
bytecode (“MJBC”), for which | provide complete semantics.

3.2 Semantics of the Micro Java Bytecode L anguage

This section formally defines the semantics of MJBC. Both natural (untagged) and tagged
semantics are given. The style is small-step operational semantics.

3.2.1 Preamble
The MJBC language was originally based on Qian’s formalization of a JBC subset [64].

Thereisno single syntactic entity corresponding to a“ JBC program”. At any given moment
at run time, there isa set of classfilesthat have been loaded into the virtual machine. New
classfiles could be added at any time, for example, from a user-specified location in the
Internet. To avoid issues of unknown code and dynamic loading, the MJBC semantics
assume that the set of classfilesisfixed and that this set constitutes the entire program. |
abstract away the classfile format and the linkage process, and consider a program to be a
tuple of sets and functions representing the information in the class files after parsing and
linking.

These sets and functions are described in terms of some basic types:
» Classldentifier, the type of abstract namesfor classes.

» Methodldentifier, the type of abstract names for methods.

» Fieldidentifier, the type of abstract names for fields.

In the Java Virtual Machine, a Classldentifier corresponds to afully qualified class name
paired with areference to the class|oader that loaded it. A Methodldentifier correspondsto
amethod signature including a method name, a return type and alist of parameter types
(because overloading is resolved at compile time). A Fieldldentifier corresponds to the
name of afield paired with the classin which it was declared — an object can have multiple
fields of the same name, inherited from different classes.

Classldentifier has adistinguished subset ErrorClassIDs, representing the classes of excep-
tions thrown by the runtime system (e.g. OutOfMemoryError or
NullPointerException).

There are also some frequently used compound types:

* Methodimpl = Classldentifier x Methodldentifier
Values of thistype identify method implementations. The Classldentifier isthe class
that implements the method, and the Methodl dentifier names the implemented method.
The following projection functions are useful :

MethodlmplClass(classID, methodI D) = classID
MethodlmplName(classl D, methodI D) = methodI D

46

* CodelLoc = Methodimpl x Z
This is the type of code locations. The MethodImpl identifies the method body, and the
integer is an offset within the method’s code. Only non-negative offsets are actually
used. The following projection functions are useful:

Codel ocM ethod(method, offset) = method
Codel ocOffset(method, offset) = offset

The addition operator is overloaded at +: CodelLoc x Z — Codeloc as follows:

(method, offset) + disp = (method, offset + disp)

Some of the runtime structures use lists. The empty list iswritten as“e” and list consing is
written as“::”. For example, 3::2::1::¢ denotes alist of the first three positive integers.

The empty finite map iswritten as “[]”. The extension of afinite map M with a mapping
from kto viswritten “M[k — Vv]”.

3.2.2 Programs
A programis atuple of several components:

* Main : Methodlmpl
This is the identifier of the method that starts the program; it is the static method main
of some class.

 [nitFields : Classldentifier — (Fieldldentifier — InitValue)
This maps each class in the program to the initial values of the fields when an object of
that class is created. Thus it encodes which fields are present in any given class as well
as their default values (zero for scalars, null for object references). InitFields is not
defined for classes which cannot be instantiated (i.e., interfaces or abstract classes).
InitValue is simply either “0” or “null”; complicated initialization expressions are
actually executed in each object’s constructor.

* InitSaticFields : Fieldldentifier — InitVaue
Thisfinite map assigns an initial value to each static field in the program.

* SubclassesOf . Classldentifier — P(Classldentifier)
This returns the set of subclasses of the class. If the class is actually an interface, its
subinterfaces and the classes implementing it are included. The subclass relation is
reflexively and transitively closed.

» Dispatch : Classldentifier x Methodldentifier — Methodlmpl
This partial function maps a class and a method signature to the implementation called
when the method is invoked on an object of the given class.

 Instruction : CodeLoc — Inst
This maps code locations to the instructions at those locations. The set of instructions
Inst is described in Figure 3-1. Except as noted, the names of the instructions are the
same as the names of their counterparts in the official Java Virtual Machine specifica-
tion.

47

Inst ::=aconst null

bipush byte

iadd

load index (standsfor aload*, iload* forms)

store index (standsfor astore*, istore* forms)

if cmpeq offset (standsfor if icmpeq, if acmpeq)
goto offset

return (standsfor ireturn, areturn)

new classiD

| getfieldfiddID

| putfieldfiedID

| getstaticfiedID

| putstatic fiediD

| invokevirtual methodlD

| invokestatic methodlmpl

| checkcast classID
|

|

instanceof classID
athrow

Figure 3-1. The Micro Java Bytecode instruction set

* CatchBlockOffset : CodeLoc x Classldentifier — Z
This partial function gives the code offset of the handler invoked when an exception of
a given class is thrown at a specified program point. It is undefined if the exception
should be propagated to the calling method. This function is computed from “catch
region” information stored in the class files.

Theingtruction aconst null pushesanull reference onto the working stack. The
bipush instruction pushes an integer constant onto the stack. The i add instruction pops
to integers of f the working stack, adds them, and pushes the result back onto the stack. The
load and store instructions are used to move val ues between the local variable file and
the working stack. Theinstruction 1 £ cmpeq branchesif the top of the stack iszero. The
goto instruction transfers control to another instruction within amethod. Programs use the
return instruction to terminate the invocation of the current method and return avalueto
the caller. The new instruction creates a new object instance of the given class. The
getfieldandputfield instructionsread and writethe given field of the object
indicated by the reference on top of the working stack. Similar instructions getstatic
and putstatic read and write static fields; no object reference is required. The
invokevirtual instruction performs adynamic method call to the method with
signature methodID as implemented by the object whose reference is the first method
parameter. The invokestatic instruction performs a static function call to the given
method. Both of the method invocation instructions take the top two elements of the
working stack as the parametersto the callee method. The checkcast instruction tests
whether the object referred to by the top of the working stack is a subclass of the class
specified in theinstruction (or null); if it is, then no action istaken and the object reference
remains on the working stack, but if it isnot avalid subclass, an exception isthrown. Alter-
natively, instanceof performsasimilar check and then stores the result in a boolean

48

value on top of the stack. The check isdifferent because instanceof returnsfaseif the
argument is null. The athrow instruction raises an exception; on entry to the instruction,
the top of stack holds areference to the exception object to be raised.

The instruction set was designed to be an expressive subset of the VM instructions, with
some streamlining, e.g., there are no per-datatype variants of 1oad/store instructions,
and all methods take exactly two parameters. (I chose two parameters because the first
parameter isusually the this parameter used for dispatch, and for completenessit seems
helpful to have another parameter that is not used for dispatch.) Almost al the interesting
behaviorsof Javabytecode instructions are captured in thisinstruction set, with the notable
omission of bytecode subroutines, which are of no importance in practice.

MJBC does not define any static constraints on the program beyond the syntactic
constraints imposed by the above definitions. In this respect it is much more lenient than
the VM. Thisisuseful because it shows that the definitions and proofs presented in this
thesis are independent of any particular static type discipline for VM bytecode.

3.2.3 State
The description of state requires some additional basic types:

» ObjectReference, the type of heap locations.
* NullRef, the type of the null reference. There isjust one value of thistype, “null”.

The type of values is defined as:
Value = Z + ObjectReference + NullRef

Thereisanatura embedding of InitValue into Vaue that maps 0 to the 0 in Z, and maps
null to the null in NullRef.

The semantic rules require some additional compound types.

» HeapObj = Classldentifier x (Fieldldentifier — Vaue)
A heap maps object references to values of this type. Heap objects retain their dynamic
class (used to dispatch virtual methods), and the current values of their fields. The fol-
lowing projection functions are useful:

» HeapObjClass(classID, fields) = classID
» HeapObjFields(classID, fields) = fields

» SackFrame = CodeLoc x Value list x (Z — Value)
A tuple of the form (pc, S, .£) represents the saved state of a calling method.

» pcisthelocation of the method call instruction that transferred control to the callee.
» /Zisthe saved local variables of the calling method, defined bel ow.
* sisthe saved working stack of the calling method, defined below.
A program state = is a record of the form
[mode: mode, pc: pc, wstack: S, locals: £, mstack: 4, heap: #, globals:]

where

49

» mode € { RUNNING, THROWING }
THROWING indicates that the program is in the process of throwing an exception.

* pc: CodelLoc
Thisisthe location of the next instruction to be executed.

* S : Valuelist
The working stack is used to evaluate expressions, and islocal to the currently execut-
ing method. When an exception is being thrown, the stack contains a single element —
a reference to the exception object being thrown.

e £:Z—Vdue
Thelocal variablefileisafinite map recording the state of the local variables. In JBC
and MJBC, local variables are numbered, not named. In MJBC all methods take two
parameters, so on entry to a method, £ has mappings for local variables 0 and 1, hold-
ing the actual values of the parameters.

« 4: StackFramelist
Thisisthe method invocation stack, recording the saved state of the methods above the
currently executing method in the call stack.

» # . ObjectReference — HeapObj
The heap is afinite partial map from object references to the stored objects.

* ¢ Fieldldentifier — Value
The globals are afinite map from each static field (i.e., global variable) to its value.

To make semantic rules shorter and more readable, state records are written in the form
[elem; — valuey, ..., elem, — value,, p]

where p is avariable denoting arbitrary values for the additional elements. However,

whenever the element mode is given avaue by p, then the valueis required to be RUNNING;

thisis convenient because most patterns matching a state record are only applicable when
the machine isin the RUNNING state.

3.2.4 |nitial State
Theinitial stateis

[mode: RUNNING, pc: (Main, 0), wstack: €, locals: [], mstack: €, heap: [],
globals: InitStaticFields]

MJBC does not define any notion of termination; it is not needed for the purposes of this
thesis.

3.2.5 Transition Rules

The transition relation is a relation over states. It contains an element 5| => &, if and only
if in one step, the program in state =, can progress to state =,.

In general a given state = can transition to more than one possible E,, because certain
exceptions can be “spontaneously” raised at any time, by transition rule (21). (In the Java
Virtual Machine, such exceptions can occur when the virtual machine runs out of memory

50

or encounters some other kind of critical error.) When aprogram encounters aruntime error
(e.g., it triesto pop an empty stack), no normal transitionis possible. However, the program
isnever “stuck” because it can aways make a transition by raising a spontaneous
exception. This models the raising of exceptions in response to runtime errors — both
errors that would normally caught by static checks, and errors that cannot be caught stati-
cally such asfailed checkcast instructionsthrowingaClassCastException.

The transition rules are given in Figure 3-2.

The exception throwing and handling mechanism requires some explanation. When an
exception isthrown (rules (20) and (21)), the current working stack is cleared and a
reference to the exception object is pushed onto it. The state switchesto THROWING mode.
In THROWING mode, at each step, control either transfersto an exception handler within the
current method (rule (22)), or leavesthe current method to continue exception throwing at
the caler (rule (23)). In the latter case, the new pc is the location of the method call
instruction, rather than its successor asin the case of a normal return. Thisis necessary for
acatch block enclosing the method call instruction to correctly catch the exception. The
state switches back to RUNNING mode when the exception is caught by a handler.

3.2.6 Differences between JBC and MJBC

The following features of full JBC have been omitted or abstracted away in MIBC: threads
and their associated synchronization operations, arrays, scalar types other than int, finite
precision/finite bit-width arithmetic, access control (via packages, public, private
and protected), native methods, the fact that instructions have variable lengths,
complex control instructions such as 1ookupswitch and tableswitch, variations on
simple instructions such as wide, instructions with the same semantics that vary only in
the types of their arguments (which exist to aid the Java bytecode verifier), convenience
instructions for manipulating the stack such as dup, the full suite of arithmetic operators,
the specialized method invocation instructions invokespecial and
invokeinterface, methods that return void, methods that take more or less than two
parameters, bytecode subroutines, the runtime error exceptions thrown by various instruc-
tions (e.g., Nul1lPointerException), garbage collection and finalization, multiple
classloaders, details of the class file format, and dynamic loading.

However, it does have the stack-based instruction set, local variables, integer and object
types (with classes and interfaces), exceptions (both explicitly and implicitly thrown) and
exception handling, dynamic type checks, and virtual and static methods and fields. The
JBC does not have constructors, since these are reduced to method calls at the bytecode
level; therefore MJIBC does not have constructors either.

The features abstracted away in MJIBC to simplify the formal presentation are still handled
by the Ajax implementation. Most of the features are straightforward. Chapter 8 discusses
issues related to native code and dynamic loading.

The Java Virtual Machine callsthe finalize () methodson objectsasthey are garbage
collected. This can happen at any time after the object becomes garbage. Ajax modelsthis
asacaltofinalize () onevery object that can happen at any time. Thisisslightly more
general than the actual behavior, but none of the implemented or contemplated analyses
would be sensitive enough to detect the difference.

51

Instruction(pc) = aconst null

[pc: pc, wstack: S, p] = [pc: pc + 1, wstack: null :: 5, p]

Instruction(pc) = bipush byte

[pc: pc, wstack: S, p] = [pc: pc + 1, wstack: byte:: 5, p]

Instruction(pc) = iadd

[pc: pC, wstack: V4 i1V, 11 S, p] = [pc: pCc + 1, wstack: (V4 +V,) i1 S, p]

Instruction(pc) = load index

[pc: pc, wstack: S, locals: £, p] = [pc: peC + 1, wstack: £(index) :: S, locals: £, p]

Instruction(pc) = store index

[pc: pc, wstack: v 2 8, locals: £, p] = [pc: pCc + 1, wstack: S, locals: £[index — V], p]

Instruction(pc) = if cmpeq offset
vz0

[pc: pc, wstack: Vii S, p] = [pc: pCc + 1, wstack: S, p]

Instruction(pc) = if cmpeq offset
v=0

[pc: pc, wstack: V i: 8, p] = [pc: pc + offset, wstack: S, p]

Instruction(pc) = goto offset

[pc: pC, p] = [pc: pc + offset, p]

Instruction(pc) = return

[pc: pc, wstack: v :: S, locals: £, mstack: (pC’, S', <) :: 4, p]
=> [pc: pc’ + 1, wstack: v i1 S, locals: £, mstack: 4, p]

@

@

©)

4

®)

©)

™

®)

©)

Figure 3-2. Rules defining the transition relation

52

Instruction(pc) = new classID

ref ¢ dom #
(10

[pc: pc, wstack: S, heap: #, p|]
=> [pc: pc + 1, wstack: ref :: S, heap: #[ref — (classID, InitFields(classID))], p]

Instruction(pc) = getfield fieldlD

(11)
[pc: pc, wstack: ref @ S, heap: #, p]
= [pc: pc + 1, wstack: HeapObjFields(#(ref)) (fieldID) :: 5, heap: #, p]

Instruction(pc) = putfield fieldlD
classID = HeapObjClass(#(r ef))
fields = HeapObjFields(#(ref))

fieldID e dom InitFields(classID) 1)

[pc: pc, wstack: v :: ref :: S, heap: %, p]
=> [pc: pC + 1, wstack: S, heap: #[ref — (classID, fields[fieldID — v])], p]

Instruction(pc) = getstatic fieldlD 13

[pc: pc, wstack: S, globas: g, p] => [pc: pc + 1, wstack: 4(fieldID) :: &, globas: &, p]

Instruction(pc) = putstatic fieldlD

fieldID € dom ¢ 14

[pc: pc, wstack: v i: S, globals: &, p]
=> [pc: pc + 1, wstack: S, globals: Z[fieldID — v], p]

Instruction(pc) = invokevirtual methodlD
pc’ = (Dispatch(HeapObjClass(#(v)), methodI D), 0)

(15)
[pc: pc, wstack: v, i1 v i S, locals: £, mstack: 4, heap: #, p]

=> [pc: pc’, wstack: €, locals: [0 — vy, 1 — v4], mstack: (pC, S, £) :: 4, heap: #, p]

Figure 3-2. Rules defining the transition relation

53

Instruction(pc) = invokestatic methodlmpl
pc’ = (methodimpl, 0)

[pc: pC, wstack: v 12 Vg i1 S, locals: £, mstack: 4, p]
=>[pc: pc’, wstack: €, locals: [0 = v, 1 — v], mstack: (PC, S,.4) :: 4, p]

Instruction(pc) = checkcast classiD
ref = null v HeapObj Class(#(ref)) € SubclassesOf(classID)

[pc: pc, wstack: ref @ S, heap: #, p] = [pc: pC + 1, wstack: ref :: S, heap: #, p|]

Instruction(pc) = instanceof classID
HeapObjClass(#(ref)) € SubclassesOf(classID)

[pc: pc, wstack: ref @ S, heap: #, p] = [pc: pc + 1, wstack: 1 :: S, heap: #, p|]

Instruction(pc) = instanceof classID
ref = null v HeapObjClass(#(ref)) ¢ SubclassesOf(classID)

[pc: pc, wstack: ref @ &, heap: #, p] = [pc: pc + 1, wstack: 0 :: S, heap: #, p|]

Instruction(pc) = athrow
ref = null

[mode: RUNNING, pc: pc, wstack: ref :: S, p]
=>[mode: THROWING, pc: pC, wstack: ref :: €, p]

classID < ErrorClassIiDs
ref ¢ dom #
obj = (classID, InitFields(classIiD))

[mode: RUNNING, pc: pC, wstack: S, heap: %, p]
=> [mode: THROWING, pc: pC, wstack: ref :: €, heap: #[ref — obj], p]

handler = CatchBlockOffset((method, offset), HeapObjClass(#(ref)))

[mode: THROWING, pc: (method, offset), wstack: ref :: €, heap: #, p|]
=> [mode: RUNNING, pc: (method, handler), wstack: ref :: €, heap: #, p]

(16)

(17)

(18)

(19)

(20)

(21)

(22)

Figure 3-2. Rules defining the transition relation

54

((method, offset), HeapObjClass(#(ref))) ¢ dom CatchBlockOffset

£23)
[mode: THROWING, pc: pC, wstack: r'ef :: €, locals: £, mstack: (PC’, S', £') :: 4, heap: #, p|]
=> [mode: THROWING, pc: pC’, wstack: I'ef :: €, locals: &', mstack: 4, heap: #, p]

Figure 3-2. Rules defining the transition relation

The most significant issue is threads. Ajax uses the definition of the VPR presented here,
but assumes that a program state includes a list of thread stacks, and that the semantics of
JBC include non-deterministic context switching transitions. Handling threads has no
practical consequences for the implementation of Ajax, because the analysesimplemented
in Ajax to date are oblivious to the order in which statements are executed (as far as the
heap is concerned, which is where all inter-thread interference occurs).

3.3 The Value-Point Relation

3.3.1 Bytecode Expressions

To describe the properties of a program, it isuseful to be able to name values such as stack
elements and local variables at particular program points. Thus | define asmall language
of “bytecode expressions’, shown in Figure 3-3.

BExp .= pc: BExpPath
BExpPath = BExpRoot BExpFields
BExpRoot ::= stack-n

| local-n

| FieldID

| exn

BExpFields ::= .FieldlD BExpFields

|

Figur e 3-3. The language of bytecode expressions

A bytecode expression includes a code location for context; a BEXpRoot designating a stack
element, local variable, static field or currently-throwing exception; and an optional list of
fields to be dereferenced. Each FieldID is fully qualified by the name of the class the field
is declared in.

Given a program state, a bytecode expression can be evaluated to a value. An expression
may not evaluate to any value if an object does not have an appropriate field, or a stack or
local variable does not exist, or the state’s program counter is not at the location specified
in the expression. The rules for evaluating an expression B in state =, giving a partial
judgement of the form (Z, B) ™ v, are given in Figure 3-4.

55

(24)
([mode: RUNNING, pc: pC, wstack: v i@ ... 11 v, it S, p],pc: stack-n) ™ v,
Ln)=v -
([mode: mode, pc: pc, locals: £, p], pc: local-n) ™ v
(26)
([mode: THROWING, pc: pC, wstack: v i: €, p],pc: exn) ™ v
g(staticField) = v @
([mode: mode, pc: pc, globals: 4, p], pc: staticField) = v
([mode: mode, pc: pc, heap: #, p], pc : €XP) ™ u
HeapObjFields(#(«))(field) = v)
([mode: mode, pc: pc, heap: #, p], pc: exp. field) = v

Figur e 3-4. Rules defining the evaluation of bytecode expressions

Therulefor stack-n extractsthe n-th element of the stack, if the program is not throwing
an exception. Therulefor 1ocal-n extractsthe n-th local variable; local variables are
available whether or not the program is throwing an exception. The exn expression is
available only when the program is throwing an exception; the currently throwing
exception is stored on the top of the stack. The values of static fields are extracted from the
static field map. Field dereference expressions first evaluate the dereferenced expression;
if that returns avalue, then it islooked up in the heap and the field of the resulting object is
extracted.

3.3.2 The Value-Point Relation
A trace T of a program P is a sequence of states <X, ..., &, > such that = is the initial
program state for program P, and VO<i<n. =, _, = E,.

Let e; and e, be bytecode expressions. Define the value-point relation <> p of a program P
asfollows:
€| <>péy iff
Jatrace I'of P and states &; and E; in 7, such that (5;, e;) ™ v and (Z;, e;) = v for
some value v, where v is not equal to null.

Informally, two bytecode expressions are related if there is acommon value v that both
expressions evaluate to. If v is an object reference, then the two expressions are aliased.
Such aviscaled awitness value.

Null values are not permitted as witnesses because aliasing is only induced when the two
expressions refer to actual objects.

56

3.4 Generalizing Alias Analysis Using Tagging

3.4.1 Overview

The VPR as defined above does not only relate expressions yielding object references. It
can also relate expressions yielding scalar values (integers, in MJBC). However,
computing a sound approximation to the definition above would require analysis of arith-
metic, which is difficult to do efficiently. The definition would also not be very useful,
because most pairs of expressions take on overlapping ranges of values (including, e.g.,
Zero).

A more useful definition distinguishes express ons having the same value by an accident of
arithmetic from expressions yielding values copied from some common source. Concep-
tually, scalar values can be treated as “boxed” and alias analysis performed on the box
objects. Thisenablestracking of the propagation and use of scalar values aswell as objects.

Formally, we construct an “instrumented” semantics for MJBC associating labels with
values. The labels, called tags, are similar to object references. When a scalar valueis
“created” by using a constant or performing arithmetic, a fresh tag is generated and
associated with the value to form a tagged value. Two tagged values may have the same
actual value but different tags. For example, two expressions may both evaluate to tagged
values of zero, but with different tags, indicating that the values were not obtained from a
common source.

Tags on non-null object references are superfluous, because two equal object references
must have the same tag; the MJBC semantics never reuse a heap location once it has been
allocated. However, all values are tagged for the sake of uniformity.

3.4.2 Tagged State
Tags are drawn from an infinite uninterpreted set, Tag.

Tagged values are defined as
* Value=Value x Tag
The following projection function is useful:
» Vad(value, tag) = value
The following derived types follow immediately:
» HeapObj = Classldentifier x (Fieldldentifier — Value)
» SackFrame = Codel oc x Value list x (Z — Value)
A tagged program state is arecord of theform
[mode: mode, pc: pc, wstack: S, locals £, mstack: 4, heap: #, globals: &, used: used]
where
* mode : { RUNNING, THROWING }
* pc: CodelLoc

57

S : Value list
e £:Z— \Vaue

4. StackFrame list
» # . ObjectReference — HeapObj
» ¢ Fieldldentifier — Value

» used: P(Tag)
This part of the state records all the tags that have been allocated so far in the execution.
Thisis used to help generate unique fresh tags. This set is always finite.

| define the projection functions Mode, PC, W3tack, Locals, Globals, MStack, Heap and
Used to return the corresponding component of atagged state.

Theinitial tagged stateis

[mode: RUNNING, pc: (Main, 0), wstack: €, locals: [], mstack: €, heap: [],
globals: InitStaticFields, used: range Initial Tags]

wherelnitial Tags isany bijection from the domain of InitStaticFields (the static fields used
by the program) to some subset of Tag. InitStaticFieldsis defined to have the same domain
as InitStaticFields, and

InitStaticFields(f) = (InitStaticFields(f), Initial Tag(f)

In other words, in theinitia state, every global variableisinitialized to zero or null, each
with a unique tag.

3.4.3 Tagged Transition Rules
The inference rules defining the tagged transition relation are given in Figure 3-5.

These rules are almost identical to the untagged transition rules. There are two sets of
differences. Whenever anew valueiscreated (by aconst null, bipush, iadd, new,
instanceof, or aruntime exception throw), afresh tag t is chosen nondeterministically
and associated with the new value. Also, whenever the actual value of atagged valueis
required, aVal projection isinserted.

3.4.4 Correspondence Between Tagged Semantics and Untagged
Semantics

Define the function Untag from tagged states to untagged states as follows:

Untag([mode mode, pc: pc, wstack: S, locals. £, mstack: 4, heap: #, globals. &, used: used)])
= [mode: mode, pc: pe, wstack: Untagg(S), locals: Untag, (£), mstack:

heap: Untagy (%), globals: Untags(4)]

In other words, Untag just strips off all the tags from the state.
It is also useful to define Untag,,(p) to untag partial records p.

58

Instruction(pc) = aconst null
¢ ¢ used

[pc: pc, wstack: S, used: used, p]
= [pc: pc + 1, wstack: (null, 7) :: 8, used: used U {¢}, p]

Instruction(pc) = bipush byte
t ¢ used

[pc: pc, wstack: S, used: used, p]
= [pc: pc + 1, wstack: (byte, 7) i S, used: used U {7}, p]

Instruction(pc) = iadd
t ¢ used

[pc: pC, wstack: V4 11V, @i S, used: Used, p]

= [pc: pc+ 1, wstack: (Val(vy) +Val(Vv,), 1) S, used: used U {1}, p]

Instruction(pc) = load index

[pc: pc, wstack: S, locds: £, p] = [pc: pc + 1, wstack: £(index) :: S, locals: £, p]

Instruction(pc) = store index

[pc: pc, wstack: v i 8, locals: £, p] = [pc: pc + 1, wstack: S, locals: £[index — v], p]

Instruction(pc) = if cmpeq offset
va(v)=0

[pc: pc, wstack: V:: S, p] = [pc: pCc + 1, wstack: S, p]

Instruction(pc) = if cmpeq offset
va()=0

[pc: pc, wstack: Vi 8, p] = [pc: pc + offset, wstack: S, p]

Instruction(pc) = goto offset

[pc: pC, p] = [pc: pe + offset, p]

(29)

(30)

(31)

(32)

(33)

(34)

(3%)

(36)

Figur e 3-5. Rules defining the tagged transition relation

59

Instruction(pc) = return

(37)
[pc: pc, wstack: v i1 S, locals: £, mstack: (pC’, S', £') :: 4, p]
= [pc: pc’ + 1, wstack: v i1 S, locals: £, mstack: 4, p]

Instruction(pc) = new classID
r ¢ dom#
dom fields = dom tags = dom InitFields(classID)
Vf e dom fields. fields(f) = (InitFields(classID)(y), tags(f))
=#|r — (classID, fields)]
({1} w range tags) M used = &
1 ¢ range fags
tags isabijection

(38)
[pc: pc, wstack: S, heap: #, used: Used, p|]

= [pc: pc + 1, wstack: (1, 7) i S, heap: #, used: used U {7} w range fags, p|]

Instruction(pc) = getfield fieldlD 39)

[pc: pc, wstack: ref i S, heap: %, p]
= [pc: pc + 1, wstack: HeapObjFields(z(Val (ref)))(fieldID) :: 8, heap: #, p|]

Instruction(pc) = putfield fieldliD

classiID = HeapObjClass(#(Val (ref)))
fields = HeapObjFields(z(Val (ref)))
fieldID € dom InitFields(classID)

(40)
[pc: pc, wstack: v i: ref i S, heap: %, p|]
= [pc: pc + 1, wstack: S, heap: #[Va (ref) — (classID, fields[fieldID — v])], p]

Instruction(pc) = getstatic fieldlD

(41)
[pc: pc, wstack: 8, globas: &, p] = [pc: pc + 1, wstack: 4(fieldID) :: g, globds: &, p]

Instruction(pc) = putstatic fieldlD
fieldID € dom &

(42)
[pc: pc, wstack: v i: S, globals: &, p]
= [pc: pc + 1, wstack: S, globals: Z[fieldlD — v], p]

Figure 3-5. Rules defining the tagged transition relation
60

Instruction(pc) = invokevirtual methodlD
pc’ = (Dispatch(HeapObj Class(z(Val (v,))), methodI D), 0)

(43)
[pc: pc, wstack: v, i1 v i S, locals: £, mstack: 4, heap: #, p]

= [pc: pc’, wstack: €, locals: [0 — vy, 1 — v4], mstack: (PC, S, £) :: 4, heap: %, p]

Instruction(pc) = invokestatic methodlmpl
pc’ = (methodimpl, 0)

(44)
[pc: pC, wstack: v 12 Vg i1 S, locals: £, mstack: 4, p]

= [pc: pc’, wstack: €, locals: [0 — v, 1 — v4], mstack: (PC, S, £) 1 4, p]

Instruction(pc) = checkcast classiD
Val(ref) = null v HeapObjClass(#(Va (ref))) € SubclassesOf(classl D)

(45)
[pc: pc, wstack: ref :: 8, heap: #, p] = [pc: pc + 1, wstack: ref :: S, heap: #, p |

Instruction(pc) = instanceof classID
HeapObjClass(#(Val (ref))) € SubclassesOf(classID)
t ¢ used

(46)
[pc: pc, wstack: ref @ 8, heap: #, used, p]
= [pc: pc+ 1, wstack: (1, 7) =1 8, heap: #, used U {7}, p]

Instruction(pc) = instanceof classID
Val (ref) = null v HeapObjClass(#(Val (ref))) ¢ SubclassesOf(classlD)

{ ¢ used
(47)

[pc: pc, wstack: ref @ 8, heap: %, used, p]
= [pc: pc + 1, wstack: (0, 7) :: S, heap: #, used U {¢}, p]

Instruction(pc) = athrow
Val (ref) = null

(48)
[mode: RUNNING, pc: pc, wstack: ref :: 8, p]
=> [mode: THROWING, pc: pC, wstack: Ief :: g, p]

Figur e 3-5. Rules defining the tagged transition relation

61

classID € ErrorClassIDs
r ¢ dom#
dom fields = dom tags = dom InitFields(classiD)
Vf e dom fields. fields(f) = (InitFields(classID)(f), tags(f))
=#|r — (classID, fields)]
({1} w range tags) M used = &
1 ¢ range rags
tags isabijection

(49)
[mode: RUNNING, pc: pC, wstack: S, heap: #, Used, p]
=> [mode: THROWING, pc: pC, wstack: (I, £) :: €, heap: #, used U {¢}, p]
handler = CatchBlockOffset((method, offset), HeapObj Class(#(V al (ref)))) 50)
[mode: THROWING, pc: (method, offset), wstack: ref :: €, heap: #, p|]
=> [mode: RUNNING, pc: (method, handler), wstack: ref :: €, heap: #, p]
((method, offset), HeapObjClass(#(Val (ref)))) ¢ dom CatchBlockOffset (51)

[mode: THROWING, pc: pC, wstack: ref :: €, locals: £, mstack: (PC’, S, £') :: 4, heap: #, p]
=> [mode: THROWING, pc: pC’, wstack: I'ef :: €, locals: £, mstack: 4, heap: %, p]

Figure 3-5. Rules defining the tagged transition relation

The following two lemmas express the fact that executions in the tagged semantics mirror
executations in the untagged semantics.

Lemma3-1. VE,, 5,. E; =2 E, = Untag(&,) = Untag(E,)

The proofs are by case analysis of the hypothesized transition relation. | present one case
for the proof of each lemmato illustrate the form of the proofs.

Proof of Lemma 3-1: Suppose £, = E, and consider the case in which the transition is
justified by the 1 add rule. From the i add tagged transition rule,

E; = [pc: pc, wstack: V4 iV, it S, used: used, p]
E, = [pc: pc + 1, wstack: (Val(vy) +Val(v,), 1) 1 S, used: used U {7}, p]
Instruction(pc) = iadd

Then

Untag(Z,) = [pc: pc, wstack: Val(v,) :: Val(v,) :: Untag(s), Untagp(p)]
Untag(Z,) = [pc: pc + 1, wstack: Val (v;) + Va(v,) :: Untag(S), Untagp(p)]

62

Hence Untag(Z,) => Untag(E,) asrequired.
Proof of Lemma 3-2: Suppose Untag(Z,) => =, and consider the iadd case.
Untag(Z,) = [pc: pC, wstack: V; @2V, 1 S, p]
E, = [pc: pc+ 1, wstack: (V4 +V,) i1 S, p]
Instruction(pc) = iadd
By the definition of Untag, £, must be of the form
E, = [pc: pc, wstack: Uy @2 U, :: S, used: used, p']
where
va(uy) = vy
va(u,) = v,
Untagg(s) = s
Untag (p") = p
Now let t be any tag such that 7 ¢ used. Such atag always exists because the set of tagsis
infinite and the used set is always finite. Set

E, = [pc: pc + 1, wstack: (Val(u,) +Val(u,), 7) :: S, used: used w {7}, p']

Then Untag(Z,) = &, and £; => E,, asrequired.

3.4.5 Correspondence of Traces
Define Untagy over traces as follows:

Untagr(<&,, ..., Z,>) = <Untag(Z), ..., Untag(E,)>.

Lemma 3-3. For any tagged trace 7; Untag(7) isatrace. Furthermore, for any trace 7,
there is atagged trace 7 such that Untag(7) = T-

Proof: The proofs are by induction on the length of the traces.

Consider atagged trace 7" = <&, ..., &,>. For n = 1, Untagy(7) = <Untag(Z,)>. From the
definition of theinitial state &, it followsthat Untag(E,) istheinital state for the untagged
semantics, hence <Untag(E)> is atrace.

Forn > 1, by theinduction hypothesis<Untag(Z,), ..., Untag(E,,.;)> isatrace. Itisrequired
to provethat Untag(Z,, _ ;) => Untag(E,)) . Thisfollowsimmediately fromZ, _, == and
Lemma 3-1.

Now consider an untagged trace 7' = <&, ..., &,>. Forn =1, set I' = <Ey> to be theinitial
state for the tagged semantics. As above, Untagt(7) = <Ep>=T.

For n > 1, by the induction hypothesis there exists atagged trace 7 = <&, ..., Z,_1> such
that <Untag(Z), ..., Untag(g,,.;)> = <&y, ..., &,.1>. Substituting Untag(Z,, ;) = &, _;

and =, _, =& intoLemma3-2, oneobtains 3Z,. Untag(E,) =5 ANE, _ =& .
Setting 7'= <&, ..., Z,> then givesthe required result.

63

3.4.6 Defining the VPR Using Tags

Figure 3-6 defines evaluation of bytecode expressions in tagged states. The rules are
analogous to the rules for untagged states. The only significant difference is that in
Figure 3-6, in the rule for field dereferences, the object expression is evaluated to yield the
tagged value (u,), where u is the actual object reference and 7 is the tag, and the tag is
ignored.

(52)
mode: RUNNING, pc: PC, wstack: vy @2 v, I 8, plpc:stack-n) ™ v
R 0 n P n
L) = v (53)
([mode: mode, pc: pc, locals: £, p], pc: local-n) ™ v
(54)
([mode: THROWING, pc: pC, wstack: v i: €, p],pc: exn) ™ v
g(staticField) = v (55)
([mode: mode, pc: pc, globals: &, p], pc: StaticField) = v
([mode: mode, pc: pc, heap: #, p], pc: exp) ™ (u, 1)
HeapObjFieds(#(u))(field) = v (56)
([mode: mode, pc: pc, heap: #, p], pc: exp. field) = v
Figure 3-6. Rules defining the evaluation of bytecode expressions in tagged states
A tagged trace T of a program P is a sequence of tagged states <&, ..., Z,> such that &,

is the initial program state for program P, and VO<i<n. 5, ;=E..

Let e and e, be bytecode expressions. Define the value-point relation <> p of a program P
asfollows:

e <>p e iff
J a tagged trace I of P and tagged states E; and Z; in 7, such that (E;, e;) ™ (u, 7) and
(E;, e3) ™ (u, 1) for some tagged value (u, 1), where u is not equal to null.

Thisisthe definition actually used in the remainder of the thesis, including the rest of this
chapter.

3.5 Examples of Using the Value-Point Relation

This section presents some examples of extracting useful information from the VPR.

3.5.1 Finding Writersto a Field

Consider the following problem:

“Given a program P and the pc of a get field instruction, find all code locations pc’ of
the put field instructions that put values into the field being read.”

64

This question can be formalized as the following set comprehension:

{pc'|Jatrace Tof P=<&E,, ..., 5>

dp, q, objref, 8, val, 5, field, p. Va(objref) # null A

Ep = [pc: pc, wstack: objref :: S, p] A Instructionp(pc) = get £ield field A

E, = [pc: pc’, wstack: val :: objref :: ', p] A Instructionp(pc’) =putfield field }

Thisset isequal to

{ pc’ | Afield pc:stack-0<>ppc':stack-1A
Instructionp(pc) = get £ield field A Instructionp(pc’) = put field field }

Thetranglation erases all mention of dynamic properties, summarizing them with the static
VPR.

3.5.2 Downcast Checking
Consider the following problem:

“Find all program locations pc corresponding to checkcast instructions which might
fail ”

This can be formulated as

{ pc|Jatrace Tof P=<E,, ..., &> dp, objref, S, #, class, p. Va(objref) # null A
E, = [pc: pc, wstack: objref :: S, heap: #, p] A

Instructionp(pc) = checkcast class A

HeapObjClass(#(Val (objref))) ¢ SubclassesOf(class) }

This can be rewritten to use the value-point relation:

{ pc| Ipc’, class, class.
pc:stack-0ppc’:stack-0 A
Instructionp(pc) = checkcast class A
Instructionp(pc’'—1) = new class’ A
class’ ¢ SubclassesOf(class) }

In this example, the tranglation is exact; adowncast is safe if and only if some instruction
creates an object which reaches the downcast instruction and which is incompatible with
the required bound. Thus, if the true value-point relation is known, the unsafe downcasts
can be determined precisely. Of course, in general an analysis can only compute an approx-
imation to the true relation.

3.6 Properties of the Value-Point Relation

The VPR is symmetric. It is not reflexive, because expressions in dead code cannot be
related to anything. It is not transitive either, in general. To see this, suppose B <>p B, and
By <>p B3. The definition of the VPR implies that for some choice of variables,

(E;, B1) ™ v, (§), By) ™ v, (E, By) ™ u, and (E;, B3) ™ u. Theimportant fact isthat it is
possible for v to not equal u (when E; &), so there is no way in general to justify a
relationship between B and B5. For example, consider this fragment of code:

65

if (b) { x = vy; } else { x = z; }

Let B, bey, B, be x and B; be z, all evaluated after this statement. Then this code may
execute oncewith b true, inducing B <»>p B,, and then execute again with b false, inducing
B, <>p B3, but y need never equal z.

The VPR does not explicitly encode any information about data dependence or the
direction of dataflow. B <>p B, means that B, and B, can get the same value, but nothing
is revealed about whether the value appears at B or B, first. In fact, it may be that no def-
use chain leads from B, to B, or vice versa — they may both be at the end of def-use chains
leading back to a common source. However, it is possible to make inferences about data
dependence in an important common case: when one of the Bs corresponds to the result of
a value creation operation, such as the result of a new instruction. In this case it is clear that
the value originated at the creation operation. This seems to be sufficient for many appli-
cations. Defining a relation representing true directional data dependence would require a
much more complicated definition than for the VPR.

The VPR has limited context information. For example, if B, <>p B, and the bytecode
expressions are both located in the same method, there is no way to determine whether the
two states justifying the relationship actually occur during the same call to the method or
during different calls to the method. For some applications, such as alias analysis for code
motion, the tool is only interested in finding aliases that appear during the same call to a
method, or even during the same iteration of aloop. Thus, these applications suffer aloss
of accuracy using the VPR.

The VPR issimple and does not encode information about context, or scalar values, or
control dependence, or many other aspects of program behavior that can be captured by
static analysis. However, all these aspects can be used to improve the accuracy of animple-
mentation of a VPR anaysis. For example, although the VPR itself encodes only limited
context information, SEMI uses context sensitive analysisto produce a better VPR approx-
imation.

The VPR isundecidable. In general, an analyzer can only compute a conservative approx-
imation to the VPR. As stated above, a conservative approximation is smply any relation
whose pairs are a superset of the pairs of the true relation. In this thesis, I write an approx-
imation relation for program P as <>p.

3.7 Extensons

Many toolswould benefit from the ability to specify tighter context constraints, such asthe
MayEqual formulation of Boyland and Greenhouse [12]. Thisis an obvious candidate for
future work.

Other tools require dightly different semantics for the value-point relation. For example,
for some applicationsit isuseful to consider valuesto berelated if they are ever compared.
This could be added to the dynamic semantics by having comparisons unify the tags of the
operands. Static analyses would then have to be adjusted to compute the correct relation-
ships. Ajax has been adapted to thistask, but that work is beyond the scope of this thesis.
Other applications require the computed VPR approximation to satisfy certain structural

66

invariants, so that the tool can perform its own processing efficiently. An example of this
is the object modelling tool in Chapter 11.

Thetrace T in the definition of the VPR isrequired to range over all possible executions of
the program, which impliesthat any truly conservative approximation to the VPR will bea
static analysis. However, if that requirement isrelaxed so that T only ranges over some
given finite set of executions (e.g. some actual runs of the program that were recorded),
then the VPR can be computed by dynamic analysis. The “dynamic VPR’ can be used by
the same set of tools as the static version, except that the results of the tools must be inter-
preted more carefully; they are true only for the executions recorded.

67

68

4 Efficient Queriesover the
Value-Point Relation

4.1 Introduction

In the previous chapter, | defined the value-point relation as an abstraction of a program,
generated by some analysis and consumed by some tool. That discussion focused on the
mathematical properties of therelation. In practice, the analysis cannot simply compute an
explicit relation and passit to thetool, because therelationisinfinite. Instead, the tool must
pass certain parameters to the analysis indicating which parts of the relation must be
computed. In fact, for efficiency, some of the tool’ s computations over the relation often
need to performed by the analysis on the tool’ s behalf, in order to exploit analyis-specific
structure. These computations are also expressed as parameters to the analysis.

The nature of this parameterization determines which analysis and tool combinations will
be efficient in practice. In this chapter, | describe the parameters supported by Ajax and
their motivation. | also describe some general strategies used by analyses and tools to
exploit the parameters.

4.2 Analysis Parameters

Thefollowing sections explain the issuesthat need to be addressed by the parameterization
scheme, and how eachissueisaddressedin Ajax. Section 4.2.5 summarizesthe parameters.

4.2.1 Restricting the Domain of the Value-Point Relation

Any redlistic program admits an infinite number of different bytecode expressions. For
example, for any n one can form a meaningful expression involving a sequence of nfield
dereferences. The value-point relation is defined over all pairs of bytecode expressions —
not just those that appear in the program — and thereforetherelationisinfinite. In practice,
however, tools generally only consider a finite number of bytecode expressions.

Therefore, the smplest and most important parameter is a restriction on the domain of the
relation. A tool restricts the domain by explicitly specifying two sets of bytecode expres-
sions, sources Sand targets T. The analysis computes the value-point relation projected
onto S x T. Because the sets are given explicitly, they must be finite.

Section 3.5.1 showed how atool could usethe VPR to find all writersto afield. That tool
would set

S={pc:stack-0}
T={pc’:stack-1 | Instructionp(pc’) = putfield field}

69

The example in Section 3.5.2 determines whether afield is always empty. It uses

S={ pc:stack-0.field}

T={ pc’: stack-0 | Instructionp(pc’~1) = new class v
Instructionp(pc’—1) = instanceof class v
Instructionp(pc’-1) = iadd v
(Instructionp(pc’~1) =bipushnAn=0)}

The downcast checking example in Section 3.5.2 would set

S={ pc:stack-0 | Instructionp(pc—1) = new class }
T ={ pc': stack-0 | Instructionp(pc’) = checkcast class }

Since the value-point relation is symmetric, the source and target sets are interchangeable
at this point in the exposition. The extensions described below break this symmetry.

4.2.2 Avoiding Explicit Products

The downcast checking example shows that, for some applications, both the Sand T sets
are likely to be proportional in size to the size of the program. If the analysis generates an
explicit projection of therelationinto S x T, the size of the result could grow quadratically
in the size of the program — especialy if the analysisis not very precise.

However, many tools postprocess the projected relation to compute some final result that
is much smaller than the relation itself. For example, the downcast checker computes just
onebit of information per element of T — whether or not the downcast is safe. Furthermore
any scalable analysis must be able to represent itsinternal datain space subquadratic inthe
size of the program. For efficiency, Ajax maps the tool’ s computation directly onto the
internal data structures of the analysis, without requiring an explicit representation of the
VPR approximation. Of course this must be done with only minimal assumptions about the
form of that structure.

To thisend, | adapted and generalized an idea from Heintze and McAllester’s work on
subtransitive control flow analysis [41]. Theideaisto suppose that the implementation of
the analysis builds a directed graph G with the following properties:

» Thereisamap Gg from S to the nodes of G.
* Thereisamap Gt from T to the nodes of G.
« Theanalysisindicates s<>p ¢ if and only if there is path from Gg(s) to Gy(t) in G.

In Chapter 5 and Section 6.6 | explain how such agraph is constructed by RTA and SEMI
respectively.

Many tools can exploit this graph structure. Suppose a tool needs to compute:
{(LF[{seS|sopt}])|te T}

where F is some function specific to thetool. Then if F satisfies a certain lattice-like

condition described below, the set of results can be computed by exploiting the graph.

Conceptually, each node corresponding to asource sisfirst associated with aninitial value
F[{ s}]. These values are then propagated along the graph edges and merged when they

70

meet at nodes. The result for each target t is read from the final value associated with the
node corresponding to t. This processis similar in flavor to dataflow analysis.

For example, consider the downcast checking tool. Let the function F be defined as:
FI{ pci:stack-0, pcy: stack-0, ..., pcyi stack-01}]
= the most specific common superclass of the classes instantiated at
per-1, peo-1, . pel

Consider the code in Figure 4-1. A ssimple dataflow analysis would produce the graph in
Figure 4-2.

static void main () {

Object = new Integer();

Object = new String("Hello");
Object = new String("Kitty"):;
Object
if (...
Object
if (...
Object
if (...
Object
Object
(Integer

~

{ d=a; } else { d = Db; }

]
Il

b; } else { e = ¢; }

~

—_—

f =d; } else { £
ay

Il
(]

-5~~~ 0 00 0 9

e;

I3

I3

ool

)
(Integer)
(String)i

I3

Figure 4-1. Example of Java code exhibiting aliasing

S, (hnew String)

, S3(new String)
String

String

S; (new Integer)

t; (checkcast Integer)

String

Object t> (checkcast String)

t, (checkcast Integer)

Figure 4-2. Example of an analysis graph used by the downcast checking tool

The downcast checking system finds three new instructionsin the program, corresponding
t0's, S, and s3, and three checkcast instructions, corresponding to tq, t,, and t3, as
shown. For each node N in the graph, it computes F applied to the set of the s; that reach N.

71

This can be done efficiently because the value of F at each node (other than a source node)
can be computed from the F of its predecessorsin the graph — it is the most specific
common superclass of the classes at the predecessors. The computed F values are under-
lined.

Once the downcast checker has determined the most specific common superclass of the
classes of the objects that may reach a given downcast instruction, it compares that super-
class with the bound specified in the checkcast instruction. If the actua superclassisa
subclass of the bound (or equal to it) then the cast cannot fail. If the actual superclassisnot
asubclass of the bound, then the analysis hasidentified at |east one class whose objects
appear to reach the downcast instruction but which is not compatible with the bound. For
more details, see Chapter 10.

This approach improves efficiency because the space required is only linear in the size of
theanalysis graph, instead of proportional to the product of the size of Sand the size of T.

It istempting to assign semantics to the graphs. For example, it seems natural to interpret
Figure 4-2 asadataflow graph, in which objects of various classesflow from their creation
sitesto the sites of the downcast instructions, and the nodes represent intermediate sitesin
def-use chains. This interpretation may be correct for some analyses, but it would be
mistaken in general. Without referring to a specific analysis, all one can say about the
graphsisthat they are encodings of the computed VPR approximation, as defined above —
“s<>p tif and only if there is path from Gg(s) to Gy(t) in G”.

4.2.3 General Framework

The lattice-like property required of Fis quite ssimple. There must exist a binary function
Dy such that, for any two sets of source bytecode expressions P and Q,

F[P 0] = Dy(F[PL, FIOD

The existence of this merge operator ensures that the result of F can be constructed incre-
mentally.

Rather than passing graph structures from analysesto tools across the Ajax interface, Ajax
tools pass their F functions to the analyses. This reduces the burden on tool implementors.

A tool revealsits F function to analyses by passing in the following parameters:
» Thetype D of intermediate data — F’ sresult type
» Themerge operator Dy, : D xD — D
» Theidentity Dg = F[{}]
* Theinitial assignment D, : S— D, such that D,(s) = F[{ s}]
These parameters fully determine F, for F can be computed as follows:
F[{ }] = Dg
Fl{s} w01 = Dy(D(s), F[OD

The correctness of thiscomputation followsfrom thelattice-like property of F, by induction
over the size of F'sargument set.

72

The lattice-like property imposes severa conditions on these parameters. In the proofs
below | assume that F is surjective, i.e., that for every element d of D thereisaset P such
that F[P] = d. Thisis ensured by an appropriate choice of D.

* Dy must be commutative:
D (FIPL FIOD = F[Pw Q] = F[QwP] = Dy(FIO], FLP])
» Dy must be associétive:

Du(FLP), Dy (FIQL FIRD) = F[P U (Q VW R)] = F[(Pw O)UR]
= Du(Du(FLPL FLOD, FIRD)

» Dy must be idempotent:
Du(FLPL FLP]) = F[P O P] = F[P]
* Dg must be an identity for Dy;:

FIO] = F[{} v Q] = Dy(F[{}], FIQ) = Dy(Dg, F[OD)

In practice, it has not been difficult to identify the appropriate F function and D parameters
for each tool. In fact, a small set of F functions has proved to be sufficient for a variety of
tools. Many tools use the same F function and distinguish themselves by varying the Sand
T sets. Some examples are shown below in Section 4.3.

4.2.4 Tool Target Data

Sections4.2.2 and 4.2.3 describe how analyses compute F-valuesfor each expressionin the
target set T. However, the expressions T themselves are generally of no interest to atool.
For example, the downcast checker isonly interested in the location of the downcast
instruction. Therefore each tool specifies amap Tg associating tool target data with each
target expression. The analysis computes

{(d,F[{seS|reTsopirTg(t)=d}])|d e range Tg}

To compute aresult for a given tool target datum, the analysis merges the resultsfor all
target expressions associated with the datum.

In the absence of tool target data, most tools would need to maintain their own maps from
target expressionsto datathey find meaningful. The tool target data mechanism factors out
this code into a shared module. Target dataare also useful when atool associates the same
datum with more than one expression, because merging is automatically performed. The
Ajax live code detector exploits this feature, as explained in Section 4.3.5 below.

4.2.5 Summary of Analysis Parameters
Thisisthefind list of parameters:

» A finite set S of source expressions
» Afiniteset T of target expressions

» A function F described by four parameters:

73

A type D of intermediate data
* A mergeoperator D), : D x D — D satisfying the conditions of Section 4.2.3
* Anidentity Dg satisfying the conditions of Section 4.2.3
e Aninitial assgnmentD,: S— D

* A typeR of target data

* Atool targetdatamap Tr: T > R

The analysis defines
F[{ }] = Dg
Fl{s} w01 = Dy(D(s), F[OD

The analysis then computes the result of the query:
{(d,F[{s€S|teTsoptnTr(t)=d}])|derange Tg}

4.3 Examples

4.3.1 Finding Writerstoa Field

Section 3.5.1 presents an example VPR query to find which instructions write valuesinto
afield. This query only needsto determine which target expressions are related to agiven
single source expression. The output of thetool isalist of the locations of those expres-
sions.

The query parameters are simple. The function F returnstrue if the input set is non-empty
(i.e., contains the source expression) and false otherwise.

S={pc:stack-0}

T={ pc':stack-1|Instructionp(pc’) = putfield field }

D ={ true, fase}

Dy(@a by =avb

DE =false

D|(pc: stack-0) =true

R = CodelLoc

Tr(pc’: stack-1) =pcC
The analysisreturns “true”’ for the program locations whose target expressions are related
to the source expression. The tool prints out these locations.

4.3.2 Finding Unused Fields

The tool discussed in Section 3.5.2 determines whether agiven get field instruction
always returns zero or null. Consider an extension of that tool to check all getfield

instructions simultaneoudly. Thistool needs to compute one bit of information for each
getfield ingruction, so we makethe get field instructionsthe targets.

74

S={pc':stack-0| Instructionp(pc’—1) = new class v
Instructionp(pc’—1) = instanceof class v
Instructionp(pc’-1) = iadd v
(Instructionp(pc’~1) =bipushnAn=0)}

T ={ pc:stack-0.field | Instructionp(pc) = getfield field }

D ={ true, fase}

Dy(a b)=avb

DE = false

D,(pc": stack-0) =true

R = CodelL oc

Tr(pc: stack-0.field) = pc

Similarly to the previous example, the analysisreturns“true” for the locationswhose target
expressions are related to any of the source expressions. These are the locations of the
getfield instructionsthat might not return zero or null. The tool outputs the locations
for which the analysis returns “false”.

4.3.3 Downcast Checking
These are the analysis parameters for the downcast checker:

S={ pc:stack-0| Instructionp(pc—1) = new class }

T={ pc’: stack-0 | Instructionp(pc’) = checkcast class }

D isthe class lattice for P (see below)

Dy isthejoin operationin D

Dg isthe bottom element in D

D,(pc: stack-0) = class, where Instructionp(pc—1) = new class
R = CodeL oc

Tr(pc’: stack-0) =pc’

The class lattice for program P is P’ s Java class hierarchy, including interfaces, extended
toformalattice. The standard class hierarchy doesnot form alatticefor two reasons. It does
not have a*“ bottom” element to serve as the identity for ajoin operation, and therefore we
add a synthetic bottom element. Also, two classes may not have a unique most specific

common superclass, such as classes ClassP and ClassQ in the hierarchy of Figure 4-3.

To complete the lattice, we add elements representing the intersections of sets of classes
and interfaces. In this example, the most specific common superclassof ClassP and
ClassQ isthe synthetic intersection class“ClassA m InterfaceR”.

For each checkcast instruction, the result of the analysisis the most specific common
superclass of al the classes of objects subjected to the checkcast instruction. If this
superclassisasubclass (or equal to) the bound specified in the checkcast instruction,
then the downcast is safe, otherwise it may fail.

75

Object

A N

ClassA InterfaceB

ClassP ClassQ

Figure 4-3. Example of non-lattice behavior due to interfaces

4.3.4 Method Call Resolution

Consider atool designed to resolve dynamic method callsthrough agiven method signature
M. For each dynamic method call site, the tool determines whether there is exactly one
possible callee, and if so, which method it is. Dynamic method call sites with only one
possible callee can be converted into direct calls by a compiler, resulting in faster method
call code and possibleinlining of the callee.

Because the tool computes information for each call site, the call sites are the targets. (In
general, whenever the tool’ s query can be phrased in the form “for every X, compute Y”,
the choices for X determine the set of targets T.) At each site, the target expression is the
object reference upon which the call is dispatched. The source expressions are the results
of thenew instructionsthat create objectsimplementing M. By determining which of those
sources are related to the receiving object at acall site, the call can beresolved, or found to
be unresolvable.

Instead of collecting the completelist of source expressionsrelated to eachtarget, itismore
efficient to extract just the salient information. We associate with each source expression
the method implementing M in the new object. Thetool collectsthe set of methods reaching
each call site.

Observethat if aset of callee methods at acall site has more than one el ement, then the call
cannot be statically resolved and the exact contents of the set are not used. Therefore each
set can be abstracted to one of the following values:

» Theempty set, indicating that there isno receiving object. Thisimpliesthat the call site
isin dead code or the receiving object reference is aways null.

» A singleton method, indicating that there is at most one receiving method implementa-
tion. The call site can be resolved to the given method.

» Thevaue“many”, indicating that the set of possible method implementations may
have more than one element. The call site cannot be resolved to a single method.

This abstraction is essentially the optimization proposed by Heintze and McAllester [41].

Let Implementorsp(M) denote the set of all methods implementing M. Thetool uses the
following parameters:

76

S={ pc:stack-0 | Instructionp(pc—1) = new class }

T ={ pc’:stack-1|Instructionp(pc’) = invokevirtual M} (stack-1 refers
to the receiving object in the call to M)

D ={ &, many } u Implementorsp(M)

Du (9, X) =Dy (%, D) =X
Dy (many, X) = Dy (X, many) = many

Dp(%, X) = x
Dy (X, y) = many, when x =y
DE =

D,(pc: stack-0) =impl, where Instructionp(pc—1) = “new class”, and class's
implementation of M has identifier impl

R = CodelLoc

Tr(pc' : stack-n)=pc

The tool outputs a D value for each invokevirtual instruction specifying method
signature M. If thevalueis &, then theinstruction is never reached. If thevalueis“many”,
then the instruction cannot be statically resolved. Otherwise the value is the name of the
only possible callee method.

Section 4.4.1 describes how thistool is extended to examineall invokevirtual
instructions simultaneoudly.

4.3.5 Live Code Detection

Consider atool to find the live implementations of a given method signature M. Such a
“live code detector” is rather smilar to the method call resolver in the previous section,
because proper identification of which methods are live requires some resolution of
dynamic method calls. However, the live code detector collectsinformation about methods
rather than call sites. Therefore the tool target data are the method implementations; the
result returned for each method is“true” if it may belive, or “false” if it must be dead. The
parameters are:

S={ pc’': stack-n|Instructionp(pc’) = invokevirtual M}, wheren istheindex
of the receiving object in the list of parameters of acall to M

T ={ pc: stack-0 | Instructionp(pc—1) = new class }

D ={ true, fase}

Dy(a b)y=avb

DE = false

D,(pc": stack-n) =true

R = CodelLoc

Tr(pc: stack-0) =impl, where Instructionp(pc—1) = “new class”, and class's
implementation of M has identifier impl

In asense, this query propagates “liveness’ from call sites to method implementations,
whereas the method call resolver propagates method implementations to call sites.

7

Thisis an example of atool which associates the same target datum with more than one
target expression. A method implementationisliveif A isinvoked on any object which
inherits that method implementation.

The analysis specified here does not detect all live methods. Calls to static methods must
be detected separately. In Java, thereisalso an invokespecial instruction which calls
non-static methods using static dispatch.

4.4 Additional Featuresof the Ajax Implementation

4.4.1 Query Familiesand Query Fields

The examplesin Sections 4.3.4 and 4.3.5 show how to perform method call resolution or
live code detection for a specific method signature M. To perform thesetasksfor al method
signatures, it suffices to perform a separate query for each signature encountered in the
program. Other tools also need to make many queries varying only their S, T, D,, and T
parameters.

For greater efficiency and convenience, Ajax alows the remaining parameters — R, D,
Dy, and Dg — to be treated as a unit, a query family. Each query family defines an index
type, |, so that queries belonging to each query family are indexed by elementsof 1. In the
examples above, the elements of | are the method signatures M. Ajax is designed to allow
aquery family to easily manipulate its collection of queries through the index elements.
Each instance of an analysis can efficiently support many different query families and
many queries within each family.

4.4.2 Incrementality

Ajax is highly incremental. New code can be added to the analyzed program at any time,
in response to program modifications or environmental changes. The resultsof theanayses
and tools are updated to reflect the dynamic changes. Thisrequirestwo elaborations of the
VPR interface presented in this chapter.

The query parameters S, T, D, and Tg cannot be explicitly stated a priori, because the sum
of “all the code that might ever be live” isill-defined or impractically large (for example,
it includes the entire Java class library, which is very large). Therefore whenever anew
method is added to the “live program,” the Ajax system calls back into the tool, notifying
it of the existence of the new method. The tool responds by extending itsS, T, D,, and T
parameterswith the expressions whose locations are in the new method. The analyses must
be capable of handling such dynamic updatesto the parameters. For the Ajax analyses, this
was tricky to implement but not conceptually difficult.

Expressions in dead methods are not related to any other expressions, even themselves.
Therefore, if atool isnever notified of the existence of a method, the results for target
expressionsin that method aretrivially equal to Dg. In practice, tools have special handling
for unreachable source or target expressions. In the“find writersto afield” example, if the
source expression specifying the field isin unreachable code, it is preferable to report that
fact to the user rather than to report that there are no writers to the field.

78

Sincethe results of an analysis can change when the analyzed program changes, resultsare
reported to atool using acallback. When the analysis computes anew result for atool target
datum, it reports the datum and result pair to the tool through the callback. In fact, the
analyses report results even before the analysisis complete; this results can be superceded
by subsequent callbacks. Ajax makes no guarantees of any relationship between these
“progressive results’ and the final result for atarget datum. However, the progressive
results can be used for advisory purposes, such as displaying progress to auser. When an
analysiscompletes, it signalsthetool that thelast reported resultsfor each tool target datum
are sound.

4.4.3 Code Mutation

Ajax supports changes being made to the program during analysis, and even after analysis
hascompleted. If analysishasalready completed, then the resultsare updated progressively
until completionis signalled again. Many tools are not persistently attached to the program
being analyzed, and terminate after the first compl ete results have been delivered.

The implementation of code mutation is quite simple: for each changed, live method,
another “live method” notification is sent to the analysis. It is up to each analysisto decide
how to handle multiple live method notifications for a single method. The analysesimple-
mented in Ajax generate new constraints for the new code and add them to the existing set
of constraints (i.e., old constraints are not revoked). Thisis smple and does not penalize
the common case in which code is not mutated.

4.4.4 Analysis Scoping

No analysis for Java can attempt to analyze all available code, because the standard
libraries are so large that performance would be unacceptable. The code to be analyzed
must be identified as part of the analysis. A natural approach isto compute a fixed point
from below: start by assuming that just one“main” method islive, analyzeit, discover other
methods that may be called, add those to the set of live methods, analyze those new
methods, and so on.

Ajax’sincremental analysis makes this simple. A live code detection tool is instantiated,
just asdescribed in Section 4.3.5. It maintains a set of methods currently thought to belive;
Thissetisinitialized to a“main” method by the tool environment. The analysis then runs
and reports results to the live code detection tool, which adds new live methodsto the live
method set. The analysisis notified of these new live methods, computes new results,
reports them to the tool s, and the cycle continues. Thismeansthat typically an Ajax system
is configured with two tools: alive method detection tool to control the scope of the
analysis, and the tool that the user is actually interested in.

This approximation of the set of live methods from below is frequently seen in prior work,
for example RTA [9]. Ajax extends this work by factoring out the approximation and
applying it to any analysis.

445 Intersection

A natural extension of the framework presented above is to extend the operations on the
intermediate data D to make it atrue lattice; i.e., to provide a meet operator Dy corre-

79

sponding to set intersection. Thisrequires an additional lattice-like property of thetool’ sF
function:

F[P ~ Q] = Dy(F[P], FIOD)

Thisis useful for analyses that compute two or more different, but individually sound,

approximations to the value-point relation. The intersection of two sound approximations
to thetruerelation is also a sound approximation to the true relation. In other words, given
relations <>1p and <>,p, the relation <>p defined ass<>p t=s<>1p t A S<>op tisasound
approximation to the truth, and potentially more accurate than either of the input relations.

Now consider implementing the Ajax interface with such an analysis, and computing the F
values for atool:

{(,Fl{seS|sopn}D|teT}

= {(t,F[{se S|s<ptrs<pi}])|te T}

= {(,F[{seS|s<qptini{seS|scpt})|te T}

= {(4, Dy(Fl{s € S| s o1p 3, F{s € S|s Sop 13 | 1€ T}

Therefore, it sufficesto computethe F valuesfor thetwo relations separatel y and then apply
the meet operator.

It isstraightforward to implement a functor that takes a set of Ajax analyses and combines
them in thisway. Of course, tools must provide a suitable meet operator. The examples
above which use boolean values as their intermediate data can use the boolean “and”
operator as the meet.

The example using the Java class lattice explicitly represents the meet of two classesas an
“intersection class” of the two classes. The representation of intersection classes can often
be simplified by exploiting facts about the Java class hierarchy. For example, an inter-
section class containing two non-interface classes is empty unless one of the classesisa
(possibly indirect) superclass of the other, because multiple inheritanceisonly allowed for
interfaces.

Of the examples in this chapter, the method call resolution tool presents the most diffi-
cultiesin defining a suitable meet operator. The problem isthat when both of the operands
of the meet are “many”, the precise result cannot be determined. The operator must return
“many”. Thisis a safe approximation, but the analysis parameters that we introduced for
efficiency are now causing us to lose information. For example, the sets{ M4, M, } and

{ M,, M3} both map to the abstract value “many”; their intersection could be represented
with the abstract singleton { M, }, but this cannot be computed from the abstract values
alone. In thissituation, the results returned to the tool may vary from run to run depending
on the order of analysis computations, even if the underlying analyses compute the same
VPR approximationsin each run.

80

5 Implementing the Value-
Point Relation With RTA

5.1 Introduction

5.1.1 Introduction to Rapid Type Analysis

Bacon and Sweeney proposed Rapid Type Analysis [9] as afast agorithm for resolving
dynamic method callsin statically typed object oriented programs; it was originally applied
to C++ programs. RTA uses static type information to resolve dynamic method calls as
follows: given avirtual call to method mof object referencev, find C,, the static class of v,
and compute the set Sof all subclasses of C,, including C,, itself. Soundness of the static
type implies that these classes are a superset of the possible classes that v can have at run-
time. Thereforeif every classin Simplementing muses the same implementation of m, the
call can be statically resolved to that implementation.

Asdescribed, thisisalso known as Class Hierarchy Analysis[32]. However, RTA addsan
important extension to improve accuracy without harming efficiency. Consider the Java
program in Figure 5-1.

abstract class Super {
abstract void m();
static int n;

1

class Subl extends Super {
void m() { n = 1; }

1

class Sub2 extends Super {
volid m() { n = 2; }

1

class Main {
volid f() { new Sub2(); }
void main (String[] args) { Super v = new Subl(); v.m(); }

Figure5-1. A simple Java program

CHA determines that v has two possible implementations of m, one from Sub1 and one
from sub2, andthereforethecall v.m () cannot beresolved. However, RTA observesthat
the method f () isnever called and no object of class Sub?2 is ever created, and therefore
v'sonly possible implemention of m isfrom Sub1; the call is resolved.

Inthisexample, RTA starts by assuming that Main .main istheonly live method and that
no classes are instantiated. It examines the body of Main .main and discoversthat Sub1

81

isinstantiated and there is a dynamic method call to Super .m. At thispoint sub1 isthe
only classin the set of instantiated classes, so the only possible implementor of Super .m
iIssubl .m, whichisadded to the live method set. Then Sub1 . misexamined, which does
not add any new methods or instantiated classes. Now that all the live methods have been
examined, the algorithm terminates.

The efficacy of CHA is based on the observation that in most object oriented programs,
many overridable methods in fact have only one implementation. These include methods
in an abstract interface that has only one implementation, and methods in a class that has
no subclasses. RTA extends CHA to exploit the fact that even when thereis more than one
implementation available, many programs will only use one implementation.

Both the RTA and CHA algorithms were originally tailored to the problem of resolving
dynamic method calls. In Ajax, the technique underlying RTA is generalized away from
any particular problem and used to generate VPR information in response to arbitrary
gueries. For example, the Ajax implementation of RTA can be used to produce information
similar to that produced by the “type based alias analysis’ of Diwan et al. [23].

By decoupling the analysisfrom its applications, Ajax makes differences between analyses
more apparent. For example, it becomes clear that Diwan et al.’s basic “type based alias
analysis’ isactually slightly less precise than RTA, because it lacks an analogue of “exact
classtypes’ (see Section 5.2.4). Thedifferenceswere previously obscured because both the
analyses and their applications varied in tandem.

5.1.2 Decomposing RTA in Ajax
In Ajax, RTA isrestructured into four distinct activities:

1. Computation of the set of live methods
2. Computation of the set of instantiated classes

3. Construction of an approximation to the value-point relation using static type informa-
tion and the set of instantiated classes

4. Application of the value-point relation to determine the callees of dynamic method
cals

Section 4.4.4 explains how for all analyses, Ajax computes a live method set using a
bottom-up fixpoint procedure, just as RTA does. This subsumes the first and fourth activ-
ities above.

Computing the set of instantiated classes from the set of live methodsistrivial. We smply
scan the method bodiesfor occurrences of the new instruction and note the class parameter
of each such instruction.

The subject of this chapter isthethird activity: using static typeinformation and knowledge
of the set of instantiated classes to implement the Ajax analysis interface.

Section 5.2 describes how thisinformation is used to approximate the value-point relation.
Section 5.3 shows how to structure the computation to support the efficient analysis param-
eters described in Section 4.2. The chapter concludes with discussion of some extensions.

82

5.2 Approximating the Value-Point Relation

5.2.1 Overview

Abstractly, the task of any Ajax analysisis to determine whether a given pair of bytecode
expressions (B4, B,) isin the value-point relation. The decision must be conservative; if
there is any uncertainty, the analysis must assume that the pair isin the relation. The RTA
analysisreceives asinput a set L of the methods in the program that it must assume to be
live. It dso has access to the program, so it can compute the class hierarchy.

The basic ideais to find static types for B, and B,, and then compare the types to decide
whether it is possible for a value to conform to both of them simultaneously. These two
steps are elucidated in the next two subsections.

In this section | discuss the analysis in the context of full Java bytecode rather than the
MJBC subset language, because MJBC does not define a static type discipline analogous
to the Java Virtual Machine' s “verification” procedure and the Java type system. RTA
depends on the existence and soundness of such atype system.

5.2.2 Typesfor Bytecode Expressions

Each bytecode expression B; isapair (1;, €) consisting of a program location |; and an
expression e, to be evaluated at that location. In principle, it is not difficult for Ajax RTA
to compute static types for the expressions, because the Java Virtua Machine computes
them while type checking Java bytecode [48].

A full explanation of Java bytecode type reconstruction and verification is beyond the
scope of thisthesis. Such an explanation can befound in references such asthe Java Virtual
Machine Specification [48]. Simply put, the type reconstruction algorithm performsintra-
procedural dataflow analysis, propagating facts about the types of values along data flow
paths. The sources of type information are type annotations on the bytecode instructions.

Ajax RTA has some requirements that are not met by the standard bytecode verification
algorithm.

» Ajax RTA differsfrom the standard JVM verifier in the way it merges object types at
control flow merge points. In order to obtain dightly better accuracy for RTA, instead
of moving up the class hierarchy to the most specific common superclass of the classes
being merged, Ajax creates a union type of the two types. For example, suppose Sub1
and sub2 are both subclasses of class Super. If astack element has object type Sub1
along one path and type Sub2 along another path, the standard Java verifier will give
the element type Super a the point where the paths merge. Ajax will give the element
the set of types{ Sub1, Sub2 }, interpreted as the union of those two types. If Super
has additional subclasses, then this union type is more precise than the type Ssuper.

» The use of polymorphic bytecode subroutines can require an assignment of more than
one possible type to a value-point. In particular, if the location is within a subroutine
and the expression refersto alocal variable that the subroutine does not touch, the sub-
routine may be called from multiple contexts that give different typesto that variable.
Ajax RTA uses dataflow analysis to compute union types for this case.

83

» Expressions may denote local variables or stack elements in contexts where they have
not yet been initialized. In this case the “union set” of typesis set to be empty, which
eventually causes the analysisto report that such expressions are not related to any
expression.

» For an expression denoting the field of an object, Ajax RTA simply uses the declared
type of thefield. (Field names in a bytecode expression are always fully qualified with
the name of the class declaring the field, and are therefore unambiguous.) Therefore
Ajax computes avalid type even if the expression refersto afield of an uninitialized
variable. This behavior is sound, although it may lead to unnecessary pairsin the VPR
approximation. In practice accuracy does not suffer, because tools do not use such
expressions. (Java bytecode verification usually ensures that code cannot use unitial-
ized variables, and tools usually refer to variables at instructions where they are used or
defined.)

» Wherethe constant null occursin the bytecode, we assign it the empty type set, because
null values do not induce relationshipsin the VPR.

5.2.3 Computing the Relation

Suppose two expressions B, and B, have union sets of Java bytecodetypes S; and S,
respectively. If they are related in the VPR, then at run-time there isanon-null value v
appearing at both expressions. Thus, v must conform to at least one static type from S; and
at least one static type from S,. Ajax checks all pairsof types(s;, sp) inS; ® S, to seeiif
there could be such av conforming to both typess; and s,. If such apair doesnot exist, then
there can be no relationship between the expressions; otherwise RTA assumes they are
related and includesthe pair inits VPR approximation. This strategy is efficient in practice
because each set usually contains only one element; the special cases of polymorphic
subroutines and merging different object types are rare. If one of the setsis empty, the
algorithm yields the correct result: the expressions are not related.

Now the problem has reduced to the following: given two Java bytecode types s; and s,,
can there be anon-null run-time value conforming to both s; and s,?

To determine the answer, Ajax constructs a directed acyclic graph representing the
hierarchy of Java bytecode types. Figure 5-2 is an example. Thereisaroot, Top, the
supertype of all other types. The primitivetypes int, long, float,and double areadl
distinct. Thereis aspecia type for bytecode return addresses, which arise when the Java
try/finally construct iscompiled into bytecode jsr and ret instructions. The Java
class hierarchy isinserted into the type graph, rooted at class Ob-ject. Interfaces such as
Serializable areaso treated as types, which meansthat classes can have multiple
direct supertypes, asshownby string and Component inthe example. Each type repre-
senting aclass (but not an interface) islabelled to indicate whether or not any objects with
that dynamic class can actually be created by the program. In the example, the instantiated
types are shown in bold. Primitive types and return addresses are always considered to be
instantiated.

If arun-time value conforms to static types s, and s,, then its “run-time type” must be an
instantiated type. Therefore the intersection of the subgraphs rooted at s; and s, must
contain at least one instantiated type. In other words, if there is no instantiated type

84

Top

int lon float double
g Object Address

ItemSelectable Z)(Serlallzable

Component String

¥\

List Label

Figure 5-2. Example of a bytecode type graph

reachable from both s; and s,, then no non-null run-time value can conform to both s; and
S).

Figure 5-2 shows that no non-null value conformsto both TtemSelectable and
Serializable,norObject andReturn Address.Ontheother hand, there may be

anon-null value conforming to both Serializable and Component; it must bea
Label.

Thesmaller primitivetypesboolean, byte, short and char, donot occur inthe graph
because the Java Virtual Machine treatsthem as intsinternally; the precisetypeissignif-
icant only when the value is loaded or stored in an object field or array. Therefore Ajax
RTA treats these types asidentical to int.

Array typesrequire special treatment. Every array type (e.g. String []) hasan associated
classin the Javabytecode, but the array classes do not capture the full subtyping properties
of arrays. Every array classisasubclassof Object,Cloneable,andSerializable,
SO every array type is a subtype of these types. However, every array of type T[] isalsoa
subtype of s [] when T isasubtype of s. (This subtyping relationship is not semantically
reasonable — in fact it is unsound without dedicated run-time checks — but the Java
Virtual Machine does allow avariable with static type s [] to refer to an object of type

T []1.) These covariant subtyping relationships are not reflected in the JBC class hierarchy.
Ajax RTA adds these relationships to the graph separately.

The Tor type isincluded because some situations arise where the type of an expressionis
not known. This can happen when expressions refer to native code specifications — see
Section 8.3.5.

5.2.4 Exact Class Types

In general, when avariable with a class type C occurs in a Java bytecode program, we
conclude that its value is an object of class C or any subclass of C. However, when the
variable is the direct result of anew operation, we know that it is precisely the class

85

specified in the new instruction. In this case, we give the variable an exact classtype “C-
Only”. The only values conforming to this static type are objects of class C and no other.

Thisextension isnecessary in order for Ajax RTA to be asaccurate astraditional RTA. To
seethis, suppose Ajax RTA isused with thetype graph of Figure 5-2 to resolvethe dynamic
method call s.hashCode () inthe program fragment in Figure 5-3.

void f(String s, Object o) {
s.hashCode () ;
o0.hashCode () ;

. X = new Object(); y = new String(); z = new Label();

Figure5-3. A fragment illustrating the need for exact class types

The query triesto resolve the method call by collecting all classes C such that the result of
a“new C” instruction isrelated to the variable s. Those classes are the possible recelvers
of the method call.

Without exact class types, the static type of s isString, and the static types of x and vy
are Object and String respectively. Because Object and String can have anon-
null value in common (namely, any String), Ajax RTA would conclude that s isrelated
to both sites, and therefore both Object and String can receive the method call.
Because they have different implementationsof hashCode, thecall to s.hashCode ()
would not be resolved.

With exact class types, the static type of s isstill String, but the static types of new
Object andnew String aretheexact classtypes“Object-Only” and“String-
Only”. Object-Only does not have any non-null valuesin common with String.
Therefore, the only new site matching s isnew String, and the call isresolved as
expected.

The changes to the type graph are simple: Every inexact class type C that isinstantiated
gains anew subtype, “C-Only”. C-Only has no subtypes and its sole supertype is C. The
instantiation annotations are changed to indicate that exact class types are instantiated
directly but inexact class types are not. The graph in Figure 5-2 is transformed into the
graph of Figure 5-4.

5.3 Implementing the Ajax Analysis I nterface

The previous section specifies the approximation to the value-point relation computed by
Ajax RTA. This section describes an efficient implementation of the Ajax analysis
interface using this approximation.

Recall that the interface specifies the following parameters to the analysis:
» A type D of intermediate data to be propagated
» A typeR of tool target data

86

Top

int lon float double
g Object Address

“////////////::jelt—\:;;\‘\
ItemSelectable Serializable

Component String
List Label String-only
Label-Only

Figur e 5-4. Example of a bytecode type graph

» An associative, commutative, idempotent binary “merge” operator Dy, : D x D — D
with identity element Dg

» A set Sof source expressions from which data will be propagated
» A set T of target value-points to which datawill be propagated
* Aninitial assignment of intermediate datato source expressonsD, : S— D
* A map from target expressionsto tool target data T : T - R
The analysis computes:
{(d,F[{s € S|3teTsoptATr(t) =d}]) |d e range Tg}
where
F[{ }1 = Dg
F[P o O] = Dy(F[P], FLOD
F[{s}] = D(s)

Thisis computed efficiently using an extension of the subtype graph.

5.3.1 The Data Propagation Graph

Supposethat the original type graph given above consists of typesY with asubtyperelation
Y qp- (If y1 hasasubtypey, then (y,, ¥,) € Yq,,.) Let Y| bethe subset of the'Y which are
actualy instantiated. Ajax RTA constructs a new propagation graph with nodes

Py = {IntjteY}u{Out-t|te Y}
and edges

87

Pe = {(n-y, In-y,) [(Y, ¥2) € Yt
O {(OUt-y5, OU-Yy) | (Y1, ¥) € Y} (I, OUt-y) [y € Y 3

Informally, we make a copy of the subtype graph, flip the copy upside down, and then paste
it below the original graph with edges connecting original nodes to their copies, but only
for the nodes corresponding to typesthat are actually instantiated. The graph in Figure 5-4
is transformed into the graph shown in Figure 5-5.

int long float double Return
ObjeCt Address
Ob ect— ly
ItemSelectable Serializable
Component String

¥\

List Label | String-only

Label-Only
S I I T R I n
Label-Only Out
List Label String-only
Component String
ItemSelectable Serializable
Object-0O ly/
\/
1nt long float double Object Return
\ Address

TOP

Figur e 5-5. Example of a propagation graph

88

Lemma: Let “:” be the relation between expressions and their RTA types, as explained in
Section 5.2.2. RTA relates s<> t if and only if thereis a path from In-j to Out-j; where
S:jgandt: j;.

Proof: The RTA approximation to the val ue-point relation defines s <> t to mean that there
is an instantiated type w and typesj, j; such that wis a subtype of jqand j;, S: jgand t : j;.
Thisimpliesthat in the original type graph thereisapath fromjstow and fromj; tow. Thus
in the propagation graph there is a path from In-j5 to In-w and from Out-w to Out-j;. There
is an edge from In-w to Out-w because w is instantiated. Thus thereis a path from In-j5 to
Out-j;.

Now suppose there is a path from In-j5 to Out-j; where s : jgand t : j;. There must exist an
edge in the path connecting In-w to Out-w’ for some w and w'. All such edges are of the
form (In-y, Out-y) whereyisaninstantiated type, thereforew =w’" and wisaninstantiated
type. Furthermore thereis a path from In-j4 to In-w; this path passes only through In nodes
(because there are no edges from any Out node back to an In node). Thisimpliesthat there
isapath from jgto win the original graph, which means wisasubtype of js. Likewise, the
path from Out-w to Out-j; impliesthereisapath from j; to win the original graph, meaning
w is also a subtype of j;. Combining all these facts about w showsthat RTA will conclude
s t.

5.3.2 Computing Analysis Results

Now Ajax computes an assignment A of intermediate data D to the nodes of the propa-
gation graph, satisfying the following for all nodesyy:

A(y) = F{D|(s)|se SA PathFrom(In-j,y) nsij }
Theideaisto start by assigning theinitial datato each associated node, and then propagate

the data along the graph edges, merging the incoming data at each node. An exampleis
given below.

Ajax computes A iteratively asfollows:
Ao(y) = F{D|(s)|se SAln-j, =ynrsij}
An1(Y) = FHAP [(P, Y) € Pej w {A()D)

Initially A isset to theinitial data associated with the In nodes. At each iteration, the value
at each node is updated from the values at all the node’ s predecessors. The loop terminates

when . 1(y) = A (Y).
The result of the analysisis then:

{(d,FI{AG) |3t e T.Tr(1) =d ~tj,}]) | d e range T}

For each tool target datum d, thislast pass collects and merges the values from each graph
node associated with atarget expression associated with d.

The correctness of this result follows immediately from the lemmain Section 5.3.1.

89

5.3.3 Example

Consider the problem of determining the callees of the dynamic method callsin the
program fragment in Figure 5-3, using the graph in Figure 5-5. The query is set up as
follows:

Anintermediate datum is a set of implementations of hashcode. TheclassLabel
inheritsits hashcode method from Ob-ject, and therefore there are only two distinct
implementations of hashcode: Object.hashCode and String.hashcode.

D =P({ Object.hashCode, String.hashCode})

DI\/I =u

D=9

S={ xa statementx = ..., ya staementy = ...,za statementz = ...}
T={ s a statement s . hashCode (), o a statement o . hashCode () }

R ={ statement s.hashCode (), statement o . hashCode () }

Tr Maps each expression to the statement it occursin

Theinitial datum assignment mapstheresult of each new instruction to theimplementation
of hashcode used by the created object:

D, =[x - { Object.hashCode}, y > { String.hashCode },
z —{ Object.hashCode }]

Theinitial A is
Ag =[In-Object-Only — { Object.hashCode},

In-String-Only — { String.hashCode },
In-Label-Only — { Object.hashCode }]

All types not explicitly mapped are mapped to the empty set.

These values are propagated down the graph, using set union to merge them at nodes with
multiple incoming edges. The fina value of A is:

A =[In-Object-Only — { Object.hashCode },
In-String-Only — { sString.hashCode},

In-Label-Only — { Object.hashCode },

Out-Object-Only — { Object.hashCode },
Out-String-Only — { string.hashCode },
Out-Label-Only — { Object.hashCode },

Out-Label —» { Object.hashCode },

Out-Component — { Object.hashCode },

Out-String —> { String.hashCode },
Out-Serializable > { String.hashCode },

Out-Object —» { Object.hashCode, String.hashCode},
Out-Top — { ObJject.hashCode, String.hashCode }]

90

Thus Ajax RTA determines that the call to s.hashCode has possible receivers
A(Out-String) ={ String.hashCode }, and thecall to o . hashCode has possible
receivers A(Out-Object) ={ Object.hashCode, String.hashCode }. Thatis, the
statement s . hashCode () will alwayscall theimplementationinthe st ring class(and
could be replaced by astatic method call), but the statement o . hashCode () may cal the
implementation in the St ring class or the implementation in the Object class.

5.3.4 Performance

Ajax RTA implements the above algorithm using aworklist. The number of steps required
issimply the number of times an element of A ischanged. Typically atool choosesits Dy,
operator so that the data at a node can only change a small number of times before reaching
afixed point. If Dy, isthought of as alattice join operator, then the tool should choose a
latticewith asmall height. If the height isindeed bounded by asmall constant, thenthetime
to compute A's fixed point is proportional to the size of the propagation graph, whichis
roughly proportional to the size of the program. If the sizes of the Sand T setsare aso
proportional to the size of the program, the whole algorithm runsin linear time.

Quantitative performance measurements of thisimplementation of RTA are presented in
Section 9.4.

5.3.5 Incrementality

The algorithm described hereis quite smple. However, the implementation is nontrivial
because many of the inputs are updated dynamically, and the analysis must update its
results dynamically in response. In particular:

» Thelive method set can increase at any time, which means that new classes may be
found to have instances.

» The set of classesin the program can increase at any time, as they are loaded on
demand. This means that classes can acquire new subclasses.

» Atanytime, atool can addtoits Sset and T set and corresponding D, and Ty entries.

None of theseissueshave amajor impact on performance, but they significantly complicate
the implementation, because new nodes and edges are added to the propagation graph
during processing.

5.4 RTA++: Tracking Typecases

5.4.1 Motivation

Java lacks a “typecase” statement or expression. Instead, the programmer must use a
combination of instanceof and downcaststo first test whether an object belongsto a
certain class, and then downcast the object reference if it belongs to the class. Figure 5-6
shows an example; similar patterns occur frequently in many programs. The
instanceof guard ensures that the downcast is completely safe.

| have extended Ajax RTA to provethat these downcasts are safe. The resulting analysisis
caled “RTA++".

91

class C {
Object fieldn;
Object fieldB;
public boolean equals (Object x) {
if (x instanceof C) {
Cc = (C)x;
return c.fieldA.equals(fieldn)
&& c.fieldB.equals (fieldB);
} else {
return false;

}

Figure5-6. A Javaprogram using instanceof and checkcast

5.4.2 Refining the Bytecode Type Assignment

Theideaisto improve the accuracy of the procedure of Section 5.2.2, which assigns static
Javatypesto expressions. In Figure 5-6, the occurrence of x inside the i £ body will be
assigned the Javatype C. Theanalysisthen concludesthat x can only be aliased to instances
of C or its subclasses; with this information, the Ajax downcast checking tool proves that
the downcast is safe.

The improved static type assignment requires some simple intraprocedural data flow
analysis. First, Ajax RTA computes “must alias’information for all local variables and
stack elements, using value numbering. For each boolean variable or stack element, Ajax
also determines whether the value correspondsto theresult of an instanceo £ operation,
and if so, which variable and class were tested.

The basic algorithm for computing static Javatypes for value-points uses standard forward
dataflow analysis. For each instruction, there is a“transfer function” describing how the
types of variables and stack elements at the successor instruction(s) depend on the types of
the variables and stack elements at the current instruction. In the RTA++ agorithm, the
transfer function corresponding to a conditional branch checks to see whether the branch
conditionistheresult of an instanceof. If so, theninthe“branch taken” caseall known
aliasesto the tested variable are known to be instances of the tested class. Thisfact is used
to narrow the types assigned to the aliased variables at the successor instruction.

Similar techniques have been used by J T compilers[18] to reduce the overhead of
instanceof/checkcast pairs.

This technique could also improve the accuracy of other tools using Ajax RTA, but in
practice the effect is only noticeable for the downcast checking tool.

92

6 TheSEMI Analysis

6.1 Introduction

6.1.1 Chapter Overview

Previouswork [54] investigated using Hindley-Milner style polymorphic type inference to
extract aV PR-likerelation from C programs. This thesis extends that work by introducing
an analysiswith new features, including support for Java bytecode programs. Thisanalysis
iscalled SEMI (short for “semiunification”). SEMI combines the following features:

» A flexible and robust framework based on type inference with polymor phic recursion.

* A number of modes and optimizations allowing varying tradeoffs between time, space
and accuracy.

» A formal model in terms of the Micro Java Bytecode language and the value-point rela-
tion.

» A proof of soundnessin terms of the model.

* Animplementation within the Ajax framework which allows SEMI to be used with a
variety of tools, and in combination with other analyses such as RTA. (However, SEMI
is completely independent of the other analyses.)

Standard analyses based on type inference are based on constraints. They define alanguage
of terms, including variables standing for terms, and a language of constraints holding
between terms. Syntax driven rules specify the construction of an initial constraint set for
any given program. The constraints are solved to find canonical or minimal solutions, i.e.,
assignments of termsto variables. Theinference system is constructed so that the solutions
represent certain invariants of the program.

SEMI follows asimilar pattern. However, to ssmplify the presentation, SEMI does not use
terms; term structures are encoded using “ component constraints’, and information about
term constructors is omitted. In SEMI, constraints hold only between atomic variables. A
SEMI variable can be thought of as the inferred type of a program variable. More
discussion of this presentation is given below in Section 6.2.1.2.

Although SEMI isinspired by type inference, and it is useful to apply intuitions about type
inference to help understand SEMI, SEMI is not in fact a type inference algorithm.
Formally, it is nothing more than a system for computing an approximation to the value-
point relation. Nevertheless, in this chapter | use the word “type” to refer to information
computed by SEMI. Javatypes are largely irrelevant to SEMI, and my use of the word
“type” never refers to Java types unless explicitly noted.

93

This chapter gives aformal specification for SEMI, as applied to the Micro Java Bytecode
language, and a proof that any algorithm satisfying the specification computes a conser-
vative approximation to the VPR. The details of theimplementation are deferred to the next
chapter.

6.1.2 Approach

| have chosen to present a direct proof of soundness in terms of MJBC, rather than trans-
lating to and from amoretraditional lambdalanguage and doing the proof in aconventional
setting. Consequently, the proof israther long and the style may be unfamiliar. However, a
proof in aconventional setting would also berather difficult, because even after translation
the system would contain the following features:

» Higher-order functions

» Polymorphic functions

» Unrestricted recursion (declarations not block-structured)
* Records

* Row-polymorphism (record types polymorphic over a set of “unknown” additional
fields)

» Polymorphic recursion
* Mutable references

» Exceptions

» Soft typing

Specifying and proving the correctness of the analysisdirectly in terms of MJBC a so keeps
the formal presentation closer to the actual implementation.

6.1.3 Implications

This chapter does not merely confirm facts already believed. It also revealsthat the
analysis places no static constraints on the program whatsoever. Even though the imple-
mentation assumesthat the Java program passes bytecode verification and istherefore stati-
cally well-typed according to the Java language rules, the system presented here does not.
In other words, SEMI could be implemented without making any assumptions about the
target program.

Thisisuseful in practice, because it meansthat variations in the static verification policies
of different virtual machines have no impact on SEMI. It is aso useful because it means
that Ajax could be applied to ill-formed programs, such as programs undergoing modifica-
tions— provided those programs can be trandated into bytecode.

Notethat according to the semantics of MJBC, the execution of aprogram which would not
be statically well-typed according to Java may reach a state in which no normal transition
is possible. For example, a program may attempt to fetch afield when the top of the

working stack does not contain an object reference. However, according to the semantics,
a spontaneous exception throw is always possible. This implies that a program will never

94

“get stuck”; when no normal transition is possible, it will simply throw a spontaneous
exception. Of course, if the exception is not caught, the method call stack will unwind and
the program will eventually halt due to the uncaught exception.

Thisisredistic, as many VMs can report type errors during execution, when code is
dynamically and lazily linked. SEMI can account for such behavior.

6.1.4 Relationship to the Implementation

The constraints and rules described here are almost the same as those implemented in
SEMI, for the subset of Java bytecode corresponding to MJBC.

One small but significant departure of this formalism from the implementation is the
treatment of one constraint for the new instruction. (See footnote “a’ below, on page 112.)
| believe that the implemented constraint is correct, but it would require significant
additional work to extend the proof system to accommodate it.

SEMI’ s implementation incorporates a number of optimizations that mean some of the
constraints here never arise. For example, exceptions and the globals object are
“globalized” (see Section 7.6), and no instance constraints are ever applied to them. When
only oneinstance of aparticular variableis possible, SEMI replaces the instance constraint
with an equality, which gives the same results and saves time and space. (Intuitively, if
there is only one instance of a polymorphic value, it may as well not be polymorphic.)
These optimizations are applied in the constraint generation phase, so the constraint gener-
ation code does not correspond closely to the description here. For details, see Chapter 7.

6.1.5 Chapter Organization

Section 6.2 describesthe sets of constraints used by SEMI, and definesa* closed form” for
these setsthat representsasol ution to the constraints. All discussion of how to produce such
aclosed form is deferred to Chapter 7. Section 6.3 presents an informal overview of how
SEMI treats Java programs, by trandating Java bytecode examples into a functional
language whose standard typing rules would induce similar constraints to SEMI’s.
Section 6.4 definesthe initial constraint set for an MJBC program and presents a compl ete
example of aprogram and its analysis using constraints. In Section 6.5 the relationship
between the VPR and constraint sets is formally defined. The definition requires some
auxiliary judgements, which are defined and some properties of which are proved. The
implementation of the Ajax tool interface using SEMI is discussed in Section 6.6.

The remainder of the chapter is Section 6.7, which proves that any closed constraint set
givesriseto asound VPR approximation. Thisissimilar to a proof of soundness of atype
system, but rather different in flavor due to the non-traditional setting. This section, and
part of Section 6.5, contain agreat deal of rather dense mathematics. The casual reader
should focus on the statements of lemmas and theorems, which describe the invariants of
SEMI that make it sound.

95

6.2 Constraint System

6.2.1 Constraints

6.2.1.1 Constraint Structures
The SEMI solver uses the following structures:

V — the set of variables
These can be thought of as type variables. Each program variable (or in general, each
bytecode expression) has a SEM| variable associated with it.

L — the set of component labels (e.g., param, result, fielda)
SEMI treats these as abstract entities and assigns no meaning to them. They areused in
component constraints,

| — the set of instance labels

Each instance label represents a program site at which a polymorphic value is being
used. SEMI treats them as abstract entities and assigns no meaning to them. They are
used in instance constraints.

C — aset of constraints of the following kinds:

“u=v" — an equality constraint expressing the fact that the two variables u and v
are to be considered identical. In the presence of such a constraint, two bytecode
expressions which are mapped to constraint variables # and v respectively will be
considered related in the value-point relation.

“u >, v’ — a component constraint expressing the fact that variable #’s component
with label c is variable v. These constraints can be thought of as encoding the struc-
ture of terms. They are used to relate types of object references to the types of their
fields, and also the types of methods to the types of their parameters and results.

(13

u X; V' — an instance constraint expressing the fact that variable #’s instance 7 is
variable v. Intuitively, v can be thought of as the i’th copy of «. In the presence of
such a constraint, two bytecode expressions mapping to variables # and v respec-
tively will be considered related in the value-point relation.

If the constraint # <; v is present in a set, then I write “v is an instance of #” and “u 1s a
source of V. The set should be clear from context. If “u [>.V” is in a set, then I write “v is
a component of #”” and “u is a parent of V.

The rules that assign an initial constraint set to a program are given in Section 6.4.

6.2.1.2 Relationship to Terms

Toillustrate the relationship between standard polymorphic recursion [42] and this setting,
consider the following code, expressed in atyped lambda calculus. Thisis afunction to
swap the two elements of a pair.

AX. (snd(x), fst(x))

96

where “fst” and “snd” are the standard projection operations on pairs. While performing
type inference with polymorphic recursion, the following constraint arises for the type of
“snd” itself, when we consider the invocation of the operator “snd”:

Thisrepresentsthefact that the type of “snd”, whichisknownto be (t,, t;) = t; (wheretg
and t, aretype variables standing for arbitrary types), is instantiated at program point Z;
to some currently unknown function type u; — u, (whereu, and u, are also type variables
standing for arbitrary types). (Z, would be the program point of the call to the “snd”
function.) In other words, thetype u; — U, isconstrainted to be a polymorphic instance of

(tp, t)) = 4.
This constraint on terms could be trand ated into the following set of SEMI constraints:

{Tsnd Dparam Tsnd-p7 Tsnd-p DtupIeO t07 Tsnd-p Dtuplel t17 Tsnd D> result t17 Tsnd $Zl v,
v Dparam U, V Presut u2}

Notethat the terms have been decomposed into variablesrelated by component constraints.
This has required the introduction of new variables Tg,g, Tgng.p, @d v to represent the
compound terms and subterms (t,, t;) - t;, (ty, t;) and u; — u, respectively. The term
constructors have disappeared entirely. Thisiswhy SEMI isnot suitable asatypeinference
system; it can never detect conflicts between type constructors. In a situation where term
unification would fail due to constructor mismatch, SEMI assigns different kinds of
components to the same variable. For example, it might infer that a variable has both
“tuple-n” and* param” components, asif the variable were both atuple and afunction. This
isin fact an advantage for SEMI; it will never reject a program as unsuitable for analysis.
(In other words, SEMI is a*“soft typing” system [85].)

The advantage of the SEMI representation isthat it isvery simple, yet carries all the infor-
mation required to perform theanalysis. Itsparticular advantageisin representing recursive
structures, which are very common in thiskind of analysis; standard term representations
need to be extended with recursive constructs such as “ut. T”, where “t” occurs free in T,
meaning the solution to the fixpoint equation “t = T(t)”.

6.2.2 Solutions

A solution to a constraint set C is another constraint set C* suchthat C < C" and (' is
closed. A closed constraint set can be thought of asa set in which all implicit relationships
implied by the constraints are stated explicitly. A VPR approximation can be efficiently
computed from such aset. C isclosed if it satisfies the conjunction of the following condi-
tions. (¢, u, v and w range over constraint variables)

» Equality closure: equality constraintsin a closed set possess the usual properties of
symmetry, transitivity and substitutional equivalence.
Vibu. {tzuycC>{u=t}cC
Vibuv.{tzu,u=vicC=>{r=zvicC
Vi,u,v,e. {t=zu,t>, vicC=>{upr_ vicC
Vi,u,v,e. {tzu,v> tycC=>{v>, uycC
Viu,v,i. {tzu,t ;vicC=>{ug,vicC

97

Viu,v,i. {tzu,v;1}cC=o>{vg,upcC

Equality ismeant to be reflexive, but it is troublesome to require reflexivity constraints
as explicit elements of the constraint set. The obviousrule Vu. {u# = u} = C isunde-
sirable because it requires C to contain an infinite number of constraints. A more com-
plex definition is possible, but in fact there is no need for explicit reflexivity
constraints, so they are not required to be in the set.

» Component uniqueness: a variable has at most one distinct component with a given
label.
Vi,u,v,e. {i> u,i> vicC=>{u=zvicC

* Instance uniqueness. avariable has at most one distinct instance with a given label.
Viu,v,i. i, u,t;vicC=>{uz=vicC

» Component propagation: if a variable has a component v, then its instances also have
the component.
Vi,u,v,c,i. {i>, u,t ;vicC=>3aw. {vp, wicC

* Instance propagation: instance relationships propagate to matching components.
Vi,u,v,w,c,i. {t>, u,t L, v,vp> wicCo{ux,wycC

Given any finite set of constraints C, there is always afinite solution set ¢’ such that

C c " and (" isclosed. For example, the set ' could be C with equality constraints
added between all variables mentioned in C, and all instance and component relationships
holding between all the variables. Thiswould be a correct solution, but not avery useful
one because the induced value-point relation would relate every pair of bytecode expres-
sions.

A morerealistic strategy isto interpret the closure rules as production rules. At each step,
if the set of constraintsis not closed, the algorithm selects arule whose hypothesisis
satisfied but whose consequent is not and adds the constraint required to satisfy the conse-
guent. Unfortunately, this algorithm does not terminate for practical examples.

Discussion of the actual SEMI algorithm is deferred to Chapter 7. In this chapter, | treat it
as a black box and show that given an appropriate set of initial constraints, any closed
solution gives rise to a conservative approximation of the value-point relation.

6.2.3 Remarks

Simplifications of the closure rules give rise to a number of previously studied analyses.
For example, if one takes only the equality closure rules plus two rules below forcing
components and instances to be degenerate, one obtains a s mple monomorphic, struc-
tureless type inference analysis similar to Steensgard’ s [72]:

Vi,u,v,c. {i>, uycC=>f{u=tycC

Viu,v,i. i, uycC=>{u=t3cC
If onetakesonly the equality rules and the component uniquenessrule, and forcesinstances
to be degenerate, then one obtains a monomorphic type inference analysis with structures.

Thissystem essentially performssimpleterm unification. Cyclesinthe graph of component
constraints are allowed, and correspond to recursive type terms.

98

With the full treatment of polymorphic instance constraints as described, the system corre-
sponds to type inference with polymorphic recursion using semiunification, again with
recursivetermsallowed. (Theterm “polymorphic recursion” meansthat cyclesin the graph
of instance constraints are allowed, such as when a polymorphic function recursively calls
itself and passes in one of its original parameters.)

In general it is not possible to compute a*“most general” or “principal” closed constraint
set. Thisisdiscussed further in Section 7.1.2.

6.3 The Encoding

6.3.1 Introduction

SEMI generatesaset of initial constraintsdirectly from abytecode program and then solves
them to find a closed form. However, the procedure can be viewed conceptually asatrans-
lation from the bytecode language into an extended lambda calculus, followed by gener-
ation of type constraintsfor the trand ated code, followed by solution of thetype constraints
toyield inferred types. Here |l provide an informal description of SEMI from thelatter point
of view.

6.3.2 Methods

Each Java bytecode method declaration is trandated to a function declaration. Each
function can take multiple parameters directly — no currying is used. The implicit “this’
parameter of non-static methods becomes an explicit parameter in the trandation.
Functions return two values: the value returned normally by the method, and the thrown
exception, if any. Methods that return nothing (“void”’) have areturn vaue in the trans-
lation, but the valueis alwaysignored. (In the formal MJBC semantics, every function
returns a value, so thisissue does not arise.)

Therefore this method that adds 3 to x

int add3(int x) { load x; bipush 3; iadd; ireturn; }
translates to the equivalent of

fun add3(this, x) = (x + 3, ..)

The*“...” indicates that there is no value for the exception; its type is unconstrained. This
means that, after type inference, the type of the exception will be a unique type variable.
SEMI will conclude that the exception is not related in the VPR to any other value, as one
would hope, since there isin fact no exception. (Obvioudly “...” precludes the trandated
code from being executable, but that is not a problem.) (A sum type could be used instead
of apair, to indicate that only one of the alternativesispossible, but thisleadsto essentially

the same type constraints.)

Methods are assigned function types. The above method would be assigned the following
13 type” :
adda3: Va,b,e. (a)— (b,€)

99

The intuition behind the interpretation of these typesisthat if two variables can be inferred
to have different types, then they cannot be aliased in the VPR sense. If they are always
inferred to have the same type, then they may be aliased.

Even though the x parameter’sreal typeis int, we assign it atype variable so that we can
compare its type meaningfully with the types of other variables which also hold integers.
For example, here we can see that the value returned by add3 isanew integer, different
from the parameter. (We can also see that the parameter and result are both different from
whatever exception may be thrown by add3.)

In SEMI, theseinferred types become atomic constraint variables connected by component
constraints as discussed in Section 6.2.1.2. For example, the above type would be repre-
sented as

add3: T, where the constraint set contains
{ Trpaam-0@ T Dresit B, T >exn €}

6.3.3 Global Variables

Global variables (Java “static fields’) are passed into all functionsin an extrarecord
parameter. Each dot of the record corresponds to one global variable. For example, the
method

int getGlobal () {
getstatic globalVar; ireturn;

}
translates to the equivalent of

fun getGlobal (globals) =
(globals.globalVar, ..)

The function ssimply performs the assignment and then returns no result and no exception.
The following type signature would be inferred for this function:

getGlobal: Va,e, p. ({ globaVar:a; p})— (a,€)

This signature requires globals to have afield globalVvar of type a, which must be
the same type as the result. The polymorphic type variable p, sometimes referred to as a
“row variable’, represents the types of an unknown set of other fields of globals (i.e,
other global variables). This signature allows the other global variables to have any type.

This treatment of globals means that all function bodies are closed, i.e., refer only to
variables defined locally or available as parameters, or to other functions. Therefore, inthe
typeinferred for each function, every type variable can be polymorphically generalized. (In
the language of Hindley-Milner typeinference, every type variable isfree in the enclosing
type environment.)

If global variables were instead declared as variables in the enclosing environment, e.g.,

let globalVar = ref 0 in
fun getGlcobal() = (globalVar, ..)

then the type signatures would be

100

globalVar: a
getGlobal: Ve. 00— (a,e)

Theexpressonref 0 indicatesthat g1lobalVar ismutableand thereforeitstype cannot
be polymorphically generalized; usage of globalVar indifferent contexts may refer to
the same runtime value, and therefore g1 obalvVar must have the sametypeainall
contexts. Similarly, in the type inferred for getGlobal, a cannot be polymorphically
generaized becauseit is constrained to the type of globalVar.

The two strategies actually produce the same analysis results, because even when each
function takes the global variable record as a polymorphic parameter, there isreally only
one global variable record in the program and one “canonical” typefor thisrecord (itstype
in the program’sma in function). This“top level” type isapolymorphic instance of every
other type for the global variable record. Lemma 6-21 below and Section 7.6 explain this
in more detail.

For smplicity, SEMI uses explicit global variable passing, so that every type variablein a
function signatureis polymorphically generalized. Theimplementation performs optimiza-
tionsfor types (such as the types of global variables) that have only one meaningful
instance; thisisdiscussed in Section 7.6. In therest of this section the global variable
passing isignored for the sake of brevity.

The “row variables’ do not occur in SEMI’s constraints. They areimplicit. For example,
the above method would be given the following constraints:
getGlobal: T
where the constraint set contains

{ T >giobals Tglobals Tglobals >globalvar & T Dresuit & T >exn € }

6.3.4 Object Encoding
Java objects are treated as extensible records, each similar to the “global variables’ record.
Each slot of the record contains either afield or a method. For example, the code
int getX () {
load this; getfield fieldX; return;
}
would trandate to (ignoring the globals object for now)

fun getX (this) =
(this.fieldX, ..)

Thiswould get type signature
getX: Va,d, p. ({ fieldX:a; p}) > (a,d)

Here this isdeconstructed into arecord containing field £ ie1dX of type a and some set
of other fields of types p. Effectively, this function and its type say nothing about what
other fieldsof this there may be. Any object containing a fieldx can bepassedin. In
fact, any object at all can be passed in, and the type inference algorithm will infer that it
contains £ ie1dX. This“row polymorphism” avoids any need for subtype polymorphism
in this type system. (This complete reliance on row polymorphism distinguishes this type

101

system from the type system of O’ Caml [65], where row polymorphism is available but
explicit classes and subtyping are usually used instead.) It also helps reduce the sizes of
typesinferred for functions, because only fields actually used by the function are given
typesin the function’ s signature.

Field names are dways fully qualified with the name of the classin which they are
declared, so two fields of different classes which happen to have the same name are never
confused in the translation.

The Java class of an object is never represented in the tranglation or in the type inference
system. The implications of this are discussed in the following sections. Tools based on
SEMI can recover classinformation using the VPR, thisis discussed in Chapter 10 and
elsewhere.

6.3.5 Method Encoding

6.3.5.1 Static Methods

Static methods are treated as normal functions. A call to astatic method is translated into a
direct call to the appropriate function. For example, the code in Figure 6-1 would be trans-
lated to the equivalent of the code in Figure 6-2.

static int addOne (int x) {
load x; bipush 1; iadd; ireturn;
}
static int addOneWrapper (int vy) {
load y; invokestatic addOne; ireturn;

}

Figure 6-1. Static Method Example

fun addOne (x) =
(x + 1, ..)

fun addOneWrapper (y) =
(addOne (y), ..)

Figure 6-2. Static Method Translation

Because the function addone isapolymorphic value, itsusein addOneWrapper IS
assigned a fresh polymorphic instance of the type of addone. All calls to static methods
are treated polymorphically. (In other words, static method calls are analyzed with calling-
context sengitivity.) Intuitively, thisis safe because (being closed) distinct callsto addone
are completely independent and cannot communicate except through the caller’s
environment.

6.3.5.2 Nonstatic Methods

Nonstatic methods — that is, methods involved in dynamic dispatch — are encoded by
treating them as functions assigned to the dots of objects when those objects are created.
For example, the code in Figure 6-3 would be trand ated to the equivalent of the codein
Figure 6-4.

102

class MyObj {
int fieldX;
int MyObj getX (MyObj this) ({
load this; getfield MyObj fieldX; ireturn;
}
}
static int getter (Object o) {
load o©o; invokevirtual getX; ireturn;
}
static int main() {
new MyObj; invokestatic getter; ireturn;

}

Figure 6-3. Nonstatic Method Example

fun MyObj getX (this) =
(this.MyObj fieldX, ..)
fun getter (o) = (o.getX) (0)
fun main() =
let obj = { getX: MyObj getX; MyObj fieldX: 0; }
in getter (obj)
Figure 6-4. Nonstatic Method Translation

The following types areinferred:

MyObj getX: Va,e, p. ({ MyObj_fidldX: a; p}) = (a, e)

getter: Vb, e, p. () — (b,e)wherer={ getX: (1) - (b, e); p}

ob7 (inmain): uwhereu={ getX: (#) — (c, e); MyObj_fieldX: c; p}
(for somec, e, p)

Note that objects containing methods usually have recursive types, because the type of the
this parameter in each method type is usually the same asthe object type.

Another example of the treatment of virtual method calls, expressed directly in the
constraint language of SEMI, is given below in Section 6.4.7.

6.3.5.3 Type Checking/l nference For Nonstatic M ethods
Given the above types and assuming standard type checking rules, it is straightforward to
show that the types are consistent with the code and each other.

For example, to typecheck getter, we observe that the type of o is¢, and therefore the
typeof o.getX is(f) — (b, e). Inthecall to o . getX, weindeed pass in a parameter of
type ¢ (o). Furthermore, the result returned from getX hastype (b, e), which correctly
matches the return type of getter.

Notethat getter istypechecked (and can have its type inferred) independently of any
information about thecalleeinthecall to getX (MyObj getX). All that isrequired isthat
the type of the getX method recorded in the type of getter’s o parameter is consistent
with the actual usage of that method within getter. The type information recorded for

103

getX inthetype signature of getter effectively describes how the method is used by
getter.

To check thetype of obj inmain, observethat it constrained both by the initialization of
ob7j asanew MyObj object and by obj being passed as a parameter to getter. The
initialization of ob7j requires obj’Sstype u to be the type of an object containing a getX
method and aMyOb3j fieldX field. Furthermore, thetype of the ge tX method within u
must be a polymorphic instance of the type of MyObj getX (whichis“Va, e, p.

({ MyOnbj_fieldX: a; p}) — (a, e)”). If no method call was made on the object, we could
therefore just set u ={ getX: ({ MyObj_fieldX: c, p}) — (c, e); MyODbj_fieldX: d; p'} (for
somec, d, e, p, pP).

However, the type of obj isalso constrained by thecal to getter (obj). Thiscal
requires u to be some polymorphic instance of getter’s parameter typet, wheres =

{ getX: (£) > (b, e); p}. Because the parameter type of t's getX method ist itself, the
parameter type of u's getX method is also required to be u itself. Unifying this constraint
with the constraints mentioned above requires u to be of the form { getX: (#) — (c, e);
MyObj_fiddX:c; p}.

Note also that the type signature of getter promisesthat its result has the same type (b)
astheresult of its object parameter’s ge t X method. Thereforeinmain we learn that the
result of the call to getter will have typec.

6.3.5.4 Treatment Of Polymor phism

Thecal to getter inmain istreated polymorphically; the caler’s parameter and result
typesare required to be some polymorphic instance of the callee’ stypes. On the other hand
the call to getX from getter isnot treated polymorphically; the caller and callee types
must be identical.

Thetechnical reason for thisdistinction isthat we can only polymorphically generalizetype
variables that are not bound in the current type environment. All the type variablesin the
type assigned to get ter are polymorphically generalized, because they do not occur
anywhere outside the definition of getter. (Intuitively, this means that the assignment of
typesto these variablesisindependent of anything outside get t er, and therefore different
types can be chosen for each use of getter.) Onthe other hand, in getter, thetype
variablesin thetype of the callee o . ge tX are bound in the type environment; in particular
they occur inside get ter’ sparameter type. (Intuitively, this meansthat the assignment of
typesto thesetypevariablesisconstrained by the caller of get ter. For example, thecaller
of getter might passin an object whose ge tX method always returns an integer.
Obvioudly it would be unsafe to allow getter to choose different return types for each
cal to getX.)

6.3.5.5 Polymorphism In Object Creation

When an object is created, such aswhen ob 7 iscreated inmain, itsfield and method dots
areawaysiniitalized with constant values— either zero scalar values, or the functionsthat
implement the methods supported by the object. The usage of these constant valuesis
always treated polymorphically. Therefore if a method implementation is inherited into
multiple classes, which are instantiated at multiple sites, the references to the method

104

implementation at each site can be given distinct types. Similarly, fields of objects of the
same class created at different sites can be given distinct types.

6.3.6 Extensible Records and Object Classes

Consider the code in Figure 6-5. This example demonstrates the use of subclass polymor-
phism with subclasses having distinct fields.

class SuperObj {
abstract int getX (SuperObj this);
}
class MyObj {
int fieldX;
int getX (MyObj this) {
load this; getfield MyObj fieldX; ireturn;
}
}
class YourObj {
int otherX;
int getX (YourObj this) {
load this; getfield YourObj otherX; ireturn;
}
}
static int getter (SuperObj obj) {
load obj; invokevirtual getX; ireturn;
}
static int main() {
if .. then new MyObj else new YourObj;
invokevirtual getX; ireturn;

}

Figure 6-5. Extensible Record Example

The following types are inferred:

MyObj getX: Va,e, p. ({ MyObj_fieldX: a; p}) = (a, e)

YourObj getX:Vb, e, p. ({ YourObj_otherX: b; p}) — (b, e)

getter: Ve,e, p.o (f) > (c,e) wheret ={ getX: (1) = (c, e); p}

objectinmain: uwhereu={ getX: (#) — (c, e); MyObj_fieldX: c;
YourObj_otherX: c; p} (for somec, e, p)

In generdl, if Javadeclaresavariable to be of class C (here, Superob7), then any fields
and methods belonging to C or any subclass of C (here, MyObj and YourObj) can appear
in the type inferred for the variable. This can lead to the dightly counterintuitive situation
where variables having the least constraining Java types (e.g., variables of type Object)
have the most complex inferred types.

105

6.3.7 Mutability

Global variables and fields of objects are mutable. However, in the type system | have not
distinguished mutable and immutable ots of records. The distinction isirrelevant because
whenever aslot of arecord is accessed, the record has a monomorphic type and therefore
thetype of the dot ismonomorphic. Thustwo accessesto the same slot of arecord, whether
reads or writes, always get the same type for the slot. (The fatal error would beto treat a
mutable slot of a record as polymorphic; we might store avalue in the dot with one type,
retrieve the value with another type, and thus destroy soundness.)

6.3.8 Control Flow

Internally, a Java bytecode method is simply an array of bytecode instructions with
arbitrary control flow between them. SEMI treats each bytecode instruction as alocal
function which takes the values of the current working stack and local variables as param-
eters, and callsthe successor instruction(s) astail calls. Eachlocal functionreturnsthefinal
result of the method and its thrown exception.

The stack ispassed asalist, so that “ push” operationsbecome*cons’ and “pop” operations
become “head/tail”. Local variables are passed in arecord.

A method executes by calling the local function for the first instruction, with method
parameters placed into local variables (as required by the Java bytecode semantics).

For example, the method
int add3(int x) { load x; bipush 3; iadd; return; }
translates to

fun add3(this, x) =
let fun £ O(st, (v0, vl)) =
f 1(vO::st, (vO, vl))
and fun f 1(st, (vO0, vl)) = £
and fun f 2 (a::b::st, (v0, vl
and fun f 3(v::st, (v0, vl))
in £ O0([], {#0: this; #1: x})

The encoding issimple and regular.

2(3::s8t, (v0, vl))
) = £ 3((atb)::st, (vO, vl))
(v, ..)

)

All kinds of control flow are easily handled. The method
static int isequal (int x, int vy) {
0: load 0; 1: load 1; 2: if cmpeq 6;
3: bipush 0; 4: store 2; 5: goto 8;
6: bipush 1; 7: store 2;
8: load 2; 9: return; }

translates to

106

fun isequal (x, y) =
let fun £ O(st, (vO0, vl1, v2)) = £ 1(vO::st, (v0O, vl, v2))
and fun f 1(st, (v0, vl, v2)) = £ 2(vl::st, (v0O, vl, v2))
and fun f 2(vl::vO0::st, 1ls) =
if vl = v0 then £ 6(st, 1ls) else £ 3(st, 1ls)

and fun f 3(st, 1s) = £ 4(0::st, 1s)

and fun f 4(a::st, (vO0, vl, v2)) = £ 5(st, (v0, vl, a))
and fun f 5(st, 1s) = f 8(st, 1s)

and fun f o(st, 1s) = £ 7(1l::st, 1ls)

and fun f 7(b::st, (v0, vl, v2)) = £ 8(st, (v0, vl, b))
and fun f 8 (st (vO, vl1, v2)) = £ 9(vZ2::st, (vO, vl, v2))
and fun f 9(v::st) = (v, ..)

These calls between instructions could be treated polymorphically. In theory some
accuracy might be gained because at control flow merge points, the state along each
incoming control flow edge could be given adifferent type, each an instance of the type of
the state at the destination instruction. In practice this increased accuracy has not proved
useful, and even with some obvious optimizations (e.g., only allow polymorphism for calls
to instructions representing control flow merge points), it has proved prohibitively
expensive. Thereforein practice SEMI treatsthese transfers monomorphically (making the
types of the actual parameters and results equal to the types of the formal parameters and
results, rather than instances of those types). However, in the description below, | use
polymorphic constraints for instruction transfers to show that they are sound.

However, even under monomorphismit is still the case that a stack location or local
variable can be given different types at different program points. For example, local
variable #2 is has a different type after it is assigned to the type it had before assignment.
This has the same effect as trandating the program into Single Static Assignment form
before performing the analysis, but it arises naturally from the encoding.

6.3.9 Exception Handling

Exception handling is performed in away similar to other control transfers. In each method,
every instruction which might throw an exception, or receive a propagated exception
(whichisactually all instructions, because the virtual machine can throw an “internal error”
exception at any instruction), can transfer control to any applicable exception handlers
defined in the method. The trand ation does not specify when an exception is thrown; for a
giveninstruction, the choice of whether to throw an exception or continue normal execution
is always considered to be nondeterministic (unless the instruction is an unconditional
athrow instruction). Control transfer to an exception handler puts the current exception
object onto the top of the working stack, as specified by the Java bytecode semantics.

Most methods do not have any explicit exception handlers. However, al methods must be
able to propagate thrown exceptions to the caller. Each instruction which can throw an
exception (or receive apropagated exception) can nondeterministically chooseto return the
exception value immediately as the method result, thus propagating the exception. The
following code shows an example of such behavior:

107

fun callAll () =
let (resultl, exnl) = calll/()
in 1f ? then (.., exnl) else
let (result2, exn2) = call2(resultl)
in 1f ? then (.., exn2) else
(result2, ..)

6.4 Initial Constraint Set
Consider aprogram P in the Micro Java Bytecode language, as defined in Section 3.2.2.

6.4.1 Constraint Variables
The set of initial constraints for P makes use of the following variables:

* S the variable for the working stack on entry to instruction pc
The stack isalist, so its variable can have two components: “head”, representing the
top of the stack, and “tail”, representing the rest of the stack.

« L, thevariable for the local variable file on entry to instruction pc
Thelocal variables are indexed by number, so L ,. has numbered components, one for
each local variable used.

* Xy the variable for the exception thrown by the code starting at pc

* G, thevariablefor the global variables on entry to instruction pc
This variable has one component for each static field in the program.

* R, thevariable for the value that the code at pc eventually returns from the method

* S)pe L'yt thevariables for the state on leaving instruction pc

* N_.usp: the variable representing the prototypical object of class classID

* Mysetnodrmpr: the variable representing the type of the method methodImpl

* Ty laber: Variables used by the instruction at pe for internal purposes

* Neiassip methoarp: the variable representing the type of inherited method methodID in
class classiD

* Newssip fietarp: the variable representing the type of field fieldID in class classID
* Nearp: the variable representing the type of static field fie/dlD

» Err: the variable representing the exceptions which may be thrown spontaneously by
the virtual machine

* Sexn-pe-classip’ these variables represent the new stack on transfer to an exception han-
dler when exception classID isthrown at pc

6.4.2 Instance Labels
SEMI uses the following instance labels:

108

* pc-pc’: an instance representing the use of (transfer of control to) one instruction from
another.
SEMI treats each instruction as a function; transferring control from one instruction to
another corresponds a call to the destination instruction’s function, passing in the cur-
rent local variables, working stack elements and global variables as parameters. These
“functions’ do not return until the entire method returns; the returned value isthe result
of the method. The functions are treated as polymorphic, so different information can
be inferred for an instruction for each incoming control path.

* pc: aninstance representing the use of a static method (when pc corresponds to an
invokestatic instruction) or the creation of anew object (when pc corresponds to
anew ingtruction).

A method can be thought of as a polymorphic function. Note that global variables are
treated as the fields of a “globals object” which is passed as a parameter to every such
function, so every such function is self-contained and has no references to any environ-
ment. A static call to amethod isadirect invocation of the function, and so gets anew
polymorphic instance. Creation of an object can be thought of as cloning a prototype
object, and aso gets a new polymorphic instance.

» classID-methodID: an instance representing the inheritance of a method implementa-
tion by aclass.
Each prototype object for a class can be thought of as arecord, with one ot for each
signature of the methods implemented by the class. The putative definition of the proto-
type assigns the function associated with each inherited method implementation to the
dot for its signature. Since one method implementation can be inherited into multiple
classes, each class which uses a method implementation gets a new polymorphic
instance of the method.

* err-pc: an instance representing the creation of a spontaneously thrown exception at a
particular program point.
Thisis similar to the instance induced when an object is created by new.

* er-classID: an instance representing the creation of a new object when a spontaneous
exception is thrown.
A spontaneous exception creates an object which has one of many possible classes. The
variable “Err” represents the type of an object which could be any one of these classes,
and therefore “Err” is an instance of the object prototype for each spontaneous excep-
tion class. Each of these instances needs a different label, err-classiD.

6.4.3 Component Labels
I make use of the following component labels:

e param-i: a parameter to a method.

» globals: the global variables passed into a method.

 result: the result returned by a method.

» exn: the exception thrown by a method (essentially, an alternative result).

e j:aloca variable index.

109

fieldID: afield dot of an object.

methodID: amethod slot of an object.

head: the head element of a stack, treated as alist.
tail: the tail of a stack.

6.4.4 Program Constraints
The set of initial constraints assigned to an MJBC program is given as

InitialConstraints(P) =
(u { ICongtraints(pc) | pc € dom Instruction })

U (v { MInvocation(methodimpl) | (methodimpl, 0) € dom
Instruction })

U (v { MDispatch(classID, methodID) | (classID,
methodID) € dom Dispatch })

U (v { IFdds(classID) | classID € dom InitFields})

v (v { CatchConstraints(pc, classID) | (pc, classID) € dom
CatchBlockOffset })

v (“{ { Gmain, 0) > fietarp Npetarp } | fieldID €
dom InitStaticFields })

U (U{ { Err <erpe Xpe } | pe € dom Instruction })

- w{{ Nclass[D Serr-classID Err} | classID €

ErrorClassiDs})

This definition uses severa functions:

» |Constraints(pc) isapartia function that assignsto each pc the initial constraints

induced by the instruction at pc. IConstraintsis defined by the rulesin Table 6-1.
MInvocation computes the constraints needed to hook up the type of a method body m
to the types at the method definition.

Minvocation(m) = {M > aram-0 Tm, 00’ M., > param-1 Tm, p1> M., > globals G(m, 0)}

- {Mm > exn ><(m, 0)° Mm > result R(m, 0) I‘(m, 0) >o Tm, p0> I‘(m, 0) B>1 Tm, pl}>

MDispatch computes the constraints needed to implant the type of the method imple-
mentation methodID into the type of the prototype object for class classiD.

MDispatch(classID, methodID) =

{M Dispatch(classID, methodID) LelassID-methodID Nclass]D,method[D’
Nclass[D D> methodID Nclass[D,method[D }

I Fields computes constraints ensuring that every object field has atype.

IFields(classID) =
{ Netassip Dﬁe‘laUD Nclass]D,ﬁeld[D |ﬁeld]D € dom InitFields(classiD) }

110

I nstruction(pc)

| Constraints(pc)

aconst null

{ S'pc > tail Spc’ S ne+1 > head Tpc,v }
w Succ(pe, petl, Sy, Lye)

bipush byte { Spe Btail Sper Spe+1 Bhead Tpe |
w Succ(pe, petl, Sy, L)
iadd { ¢ Dtail T pe,tls Tpc,tl D> tail Tpc,tZ’ S'pc >tail Tpc,tZ’
Spc+1 >head T peN }
w Succ(pe, petl, Sy, L)
load index { Lpc Dindex T pe.v Spc D> tail spc: S'pc > head Tpc,v }
v SUCC(pc petl, Spe Ly
store index { pe D> tail SpC’ Spc Dhead JRE I— ¢ Pindex Tpc,v } u

{LpetiTpeilie LocaINameS(pc) Ni#index}
{ Lpe>;i Ty | i € LocalNames(pc) A i # index }
SUCC(pc petl, Spe L'ye)

if cmpeq offset

{ Spetail Spe §

U SUCC(pc petl, Spe Lpes Gpes Xper Rye)

w Succ(pe, (Codel ocMethod(pc), oﬁsez) Spes pc)
goto offset Succ(pe, (CodelocMethod(pc), offset), S,e, L)
return { Spe >head Rpe §
new classiD { Spe Pl spc: Spe+1 Phead Tpevs Netassip <pe Tpew §

w Succ(pe, petl, Sy, pc)a

getfieldfiddID

{ ¢ Pail T pe,ts S pe P head Tpc,obj! Tpc,obj > fieldID Tpc v
Spc > head Tpc v S'pc > tail Tpc,t }

w Succ(pe, petl, Sy, L)

putfieldfiddID

{ Spc D> tail Tpc,t’ Spc > head Tpc v Tpc,t D>l S'pc’
Tpct > head T pe,0bjs Tpc,obj Dfe‘laUD Tpc,v }
w Succ(pe, pc+1 Sper Lpe)

getstatic fiddID

{G Dfe‘laUD pev Spc > tail Spca S'pc > head Tpc,v }
U SUCC(pc petl, Spe Ly

putstatic fiddiD

{ Spe >tail Sper Spe >head Tpevw Gpe >fieddip Tpev |
v SUCC(pc pc+1 Sper Lpe)

invokevirtual

methodl D

{ Dtall pe,tls Spc > head Tpc,vl’ Tpc t1 Ptail Tpc,tZ’
Tpc,tl > head Tpc,VO! Tpc,VO »> methodID Tpc me

S'pe Btail Tpetor S'pe DheaolT er)

o MethOdca”(pe,m pc V0 Tpc,vl’ Gpc’ ch’ T cr)
w Succ(pe, petl, Sy, Lye)

Table 6-1. Instruction Constraints

111

Instruction(pc) | Constraints(pc)

invokestatic { ¢ Dtail T pe,tl Spc > head Tpc vl Tpc t1 Ptail Tpc,tZ’
methodimpl Tpc,tl > head Tpc,VO! Mmethod]mpl Spe Tpc m>

S'pc Dail T pet2s s'pc Dhead T pe,r }

_ MethodCall(T e Toewor Tpewts Gper Xpes Tper)

p pc
w Succ(pe, petl, Sy, Lye)

checkcast classiID Succ(pe, petl, Sy, L)
instanceof classiID { Spe >tail Tpetr Spe >tail Tpeits Sper1 >head Tpew |

U SUCC(pc pc+1 Sper Lpe)

athrow { Sy >head Xpe }

Table 6-1. Instruction Constraints

a. The object’stype variable is plugged into Spert instead of S pes because for the
proofs, we need the field and method components of the variable to appear at S,.+1.
The implementation instead has S, >neqqg Ty - The discrepancy can probably be
corrected by adding “post-state” expressions to the expression syntax and extend-
ing the soundness proof to cover them.

CatchConstraints gives constraints capturing the control flow for exceptions of class
classID thrown at pc and caught in the method.

CatchConstraints(pc, classID) =
Succ(pe, (Codel ocMethod(pc), CatchBlockOffset(pe, classID)), S exn-pe-ciassipr L pe)

w{ S'@(n-pc-class[D > head ch H

The last three sets of constraints are:

Constraints ensuring that every static field has a type.

Constraints expressing the possibility that an exception may be spontaneoudy thrown
from at any instruction.

Constraints specifying that the spontaneoudy thrown exceptions are objects of the
classes found in the ErrorClassi Ds.

Therulesin Table 6-1 use the following functions:

LocalNames computes the indices of the local variables used in method. LocalNamesis
used to make sure the values of all local variables are carried forward correctly when
one of them is overwritten by a store instruction.

LocalNames(method) =
{index | 3i. Ingtruction(method, i) € {1oad index, store index}}

Succ computes the constraints that arise along control flow paths within a method,
when oneinstruction isasuccessor of another in the control flow graph. Succ treats the
transfer of control from one instruction to the next asif it were afunction call, so that

112

the instruction at firom performs a“tail cal” to the instruction at 7o to do the rest of the
computation for the current method. S and 7. are the types for the working stack and the
local variables respectively that are passed into 7o.

Succ(from, to, S, L) =

{Sto ifrom-to S’ Lto ifrom-to L’ Gto ifrom-to Gfrom’ Xto ifrom-to Xfrom} -
{Rto $from-l‘o Rfrom}

» MethodCall computes the constraints needed to hook up a method call at acall site. M
isthetype for the method being called. P0 and P/ arethe types of the parameters being
passed in. G isthe type of the globals object being passed in. X and R are the types of
the exception and normal result returned, respectively.

MethodCall(A, PO, P1, G, X, R) =

{MDparam-O PO:MDparam-l PI:MDgIobals GﬁMDexn XﬁMDresultR}

6.4.5 Query Constraints

Additional constraints must be added to the set C to support queriesover arbitrary bytecode
expressions. These constraints depend on the queried expressions, and are detailed below
in Section 6.5.3.2.

6.4.6 Canonical Constraint Set
C isacanonical constraint set if

Vu,v.fu=vicC=u = v.
Given aclosed constraint set A,
Lemma 6-1. Let a closed constraint set N be given. Let M be a map from variables to
variables such that

Vu,v.{fu=vi}cNvu=veoMu) = MW)

M selects one representative element from each equivalence class. Such a map exists for
any choice of N, becausethe closure of N impliestherelation = isanequivaencerelation
in N (lacking only reflexivity, which | restore with the digunction).

Let C be defined as;

C = {M(t) >, M) | {t>, u} =N}

U M) < M) | {t <, u} S N3

U {M(@{) = M) | t € dom M}
(C replaces each variable in N with the representative of its equivalence class.) Then C is
trivially canonical. Furthermore, C is closed.
Proof: | prove the closure condition that {# >, u, 7>, v} < C implies {u =v} cC.
Suppose {7 >, u,t>, v}y < C.Then

113

0w, Vo= M) A= M) At = M) Av = M) where
{ro v, ">, vcN
By definition of A,
M) =M")=>{ ="} Nl =1
In either case of the disjunction,
{ro v, >, vVichN
By closure of N,
{u'=v' N
Thisgives
M) = M(),i.e,u = v andtherefore {fu =v} c C
The other closure conditions follow similarly. [

The remainder of this chapter deals with canonical closed constraint sets. This eliminates
the need to explicitly deal with equivalence constraints.

6.4.7 Example
The Java code in Figure 6-6 would generate bytecode as shown in Table 6-2.

class X {

X £(X a) { return this; }
static X g(X ¢, X d) { return c.f(d); }
static X main(X b) { return g(new X (), b); }

Figure6-6. A Simple Java Program

For this program, one might ask “can main’s result equal the new X object it creates?” We
shall see how this question is answered by computing initial constraints (shown in Table 6-
2) and then finding a closed form.

6.4.7.1 Initial Constraints

The constraints shown in Table 6-2 have been simplified from the real constraintsin order
to make the example simultaneoudly tractable and interesting. In particular, al the
“successor instance” constraints have been replaced with equalities, which have then been
eliminated by substitution. All of the constraints within methods relating to the stack (S)
and local variable (L) variables have been solved and eliminated. All constraintsrelating to
global variables and exceptions are irrelevant and have been elided.

6.4.7.2 Finding a Closed Form
SEMI would close the constraint set by generating additional constraints, as follows:

The equality constraints within £ give
{ Mt D> result Tf,pO 3.

114

Bytecode Induced Initial Constraints
class X { M <x.¢ Nx ¢ Cx >rNxr

f(this, pl) { Mf Dparam-O Tf,pO Mf Dparam-l Tf,pl
Mf D>result R(f,O)
load this;
return; R(f,O) = Tf,pO
}
static g(p0, l\/[g D> param-0 Tg,pO Mg > param-1 Tg,pl
g Vresult T3 (g,0)
0: load pO
1: load pl

. . Tepo >t Tg2)m Te.2)m Pparam-0 Tg po
! invokevirtual £;
T(g,2),m Dparam-l Tg,pl

3. return; T (e.2).m >result R(g.0)
} .
? tatic Minain > param-0 Tmain,po Minain >result R(main,O)
main (p0) {
new X; Cx %(main,O) T(main,O) R
load pO0;
. invokestatic Mg < (main.2) T(main,Z),m T(main,Z),m > param-0 T(main,O),V
gy
T(main,Z),m > param-1 Tmain,pO
3. return;

T(main,Z),m D> result R(main,O)

Table 6-2. A Simple Bytecode Program and its Constraints
We propagate components of M to Ny ¢ (using M <x.r Nx p), getting
{ NX,f Dparam-O v, NX,f Dresult V } (for some v where Tf,pO $X,f V)~

Now we propagate Ny + and its components to the instance of Cy inmain (using
CX %(main,O) T(main,O),V)! yleldl ng
{ T main,0),v £S5 8 >param-0 V', S Doyt V' (for some s and v where Ny ¢ < (main,0) 8

and v X(main,0) V).

In other words, we know inmain that the object’s £ method aliasesitsfirst parameter and
result. Now we need to work on g. The constraints for g contain{ T, 0 > T(g 2) m,
T(g.2).m >param-0 Te.p0s T(g.2).m Presult Rig,0) - S0 inside g, we know that we pass p0 into
p0’s £ method, and the result of that method is returned from g. We do not assume
anything else about f here.

We propagate g’ s constraints to ma in, obtaining

{ Tg,pO i(main,2) T(main,O),V , R(g,O) i(main,2) R(main,O) }
From here we get

115

{ T(main,O),V >ru, u Dparam-O T(main,O),V , U Presult R(main,O) } (for some u where
T (e.2).m <(main,2) W)-

Now Tmain.0y,v 1 U and T main 0).v 1 S Tequire us to set
{u=s}
In other words, we have “discovered” the implementation of f that g uses.

From the param-0 components of u and s, we get

{ V' =Tmangy: V' = Rmang }
Thus

{ Rimaino) = Tmaino)v -
Because the result of new X in main is assigned type T(main,o)’v, the conclusion is that the
result of main may be the new X.

6.5 Extracting the VPR Approximation

In this section, | consider a canonical closed constraint set C, with associated map M
mapping from the original variables to the variables of C, and a pair of bytecode expres-
sions e and e, and show how SEMI decides whether e and e, are related in the VPR
approximation.

6.5.1 Overview

Below, | define ajudgement (e, x) — (u, X') that relates a bytecode expression e in some
context ¥ to a SEMI variable # with some “leftover context” x’, which is a suffix of ¥. A
context is a sequence of instance labels. For first-order code, it corresponds to a call stack,
each label naming a method call site or an instruction transition (recall that instruction
transitions are treated as tail calls).

The SEMI variable « is referred to as the ground type of the expression in the context. A
ground typeisobtained by first ignoring the context and computing the basetypet assigned
tothe expression by SEMI, for example, thetype variable assigned to alocal variable. Then
we follow the chain of instances starting at 7 and labelled by the instance labelsin the
context x asfar as possible, to obtain #, the “most specific’ instance of t in context x .

The “leftover context” x’ is the suffix of x that was not dereferenced; it represents the
outermost context at which some instance of 7 appears. For example, when # occurs as part
of the type of aglobal variable, the leftover context is empty because an instance of u will
occur at thetop level.

The analysis concludes e; <> e, if and only if
Ju, X1, X5, X1, %5 (€4, %1) = (1, X1") A (€9, X5) = (1, %5)

Theideaisthat « is the type of awitness value that causes e; and e, to be related. The
expressions are related if there is some plausible type « that is an instance (in any contexts)
of both of the base types of e; and e,.

116

6.5.2 Relating Bytecode Expressionsto Variables

The inference rules in Figures 6-7, 6-8 and 6-9 define judgements of the form “e — u {(¢)”
(the “expression decomposition” relation), “# {c) — u’” (the “component evaluation”
relation), and “(#’, X) —> (v, X¥')” (the “instance evaluation” relation). These judgements
are combined in Figure 6-10 to form the judgement “(e, X) — (v, X¥')”. In this section I
prove a number of simple structural properties of these relations.

pc:stack-0— Spc<head e

pc:exn —>ch<8>

pc:stack—(n—l)—)SpC<(_:'> n>0

pc:stack-n— Spc<tail nch

pc:local-n— ch<n e

pe:statickield — G, (staticField :: €)

pe:exp—>ulcyii..iic e

pe:exp.fiedd > ulcy ... iic; i field . €)

Figure 6-7. Rules defining the mapping from bytecode expressions to constraint variables and components

u{e) > u

fu> u"}cC u'{c)—>u

uic..cy—>u

Figure 6-8. Rules defining evaluation through components

The expression decomposition relation maps a bytecode expression e to a representation of
its base type, given as a basic type variable u (one of S, G, X, or L, for some pc),
and a sequence of component labels ¢ that must be followed from u to reach the base type
for e. The component evaluation relation then takes # and dereferences the chain of
component labels to reach a variable #’ corresponding to the actual base type of e. Finally
the instance evaluation relation finds the most specific instance of #" in context X’ .

The rest of this subsection proves several formal properties of these evaluation relations.
Many of them are generalizations of the closure properties of constraint sets.

117

fug,u'}cC (W, x)—>@W,X)

(u,iix) > (u',x)

Vu'.u;u ¢ C

(u,i2x) > (u,i::%)

(u,e) > (u,)

Figure 6-9. Rules defining evaluation through instances

e>ulc) Mw)c) >u @', x)—> v, x)
(e,x) > (v,X)

Figure 6-10. Rule assigning a ground variable to an expression in a given context
Lemma 6-2. Existence property. Instance evaluation is total:
Vu,x. v, x'. (u,x) > (v,Xx")

Proof: The proof is by induction on the length of x. The base caseistrivial with x = ¢
and v = u. For theinduction step, suppose x = i ::x"; either Vu'. u <; u’ ¢ C or

Ju'. {u X, u'} < C. Intheformer case, theresultistrivial withv = #, ¥’ = x.Inthe
latter case, the induction hypothesis gives (u', x”") — (v, ¥') for some v, ¥’ and the result
follows. |

Lemma 6-3. Uniqueness properties. Each of therelationsis a (partial) function.

Proof: Itisclear that exactly onerulefrom Figure 6-7 appliesfor each bytecode expression
e. Therefore:

Ve, u,u',c,c’'.e >u{cyne—>u{cy=u=unc =7¢c

Exactly one rule from Figure 6-8 applies for each «{c) . (Notethat if {# >_ u'} C and
{u>_,u"} < C thenby closureof C, {#' = u"} c C andhence ' = u".) Therefore:

Yu,c,v,v'.ul{c) >vaui{cy>v =v =1

Exactly one rule from Figure 6-9 appliesfor each (u, x) . (Notethat if {u <, #'} < C and
{u X, u"}cC thenbyclosureof C, {#' ="} c C andhence u’ = u".) Therefore:

’ A 24

Vu, x, v, v'. (0, x) > (", XIA (0, x) > (V,X")=>v =y AX =X
Putting these together gives:
Ve, x,v,v'.(e,X) > (0, x) A (e, x) > (V,X")=>v =V AX =X" |

Lemma 6-4. Component transitivity property. Component evaluation respects
concatenation of component lists.

118

Yu,c,c’,v.ul{c®c) >ve It ul(c) >tnt{c) —>v

Proof: The proof is by induction on the length of ¢. Thebase case ¢ = ¢ istrivial, with
t = u. For the induction step, suppose ¢ = c¢:: ¢’ . Intheforward direction, we have
u{c:c"®c)—>v.Thisrequires {u >, u'} c Cru'{c" @) — v By theinduction
hypothesis, 3¢. u'{(¢") >t A t{c"y > v.Butthen u{c::¢""y — ¢, asrequired.

In thereversedirection, we have 3¢. u{c :: ¢""y —> t A t{¢"y — v. Thisrequires
{u>,u'}cCAu'(c")—t.Bytheinduction hypothesis, »'(¢” @ ¢’y — v. Then
ul{c:.c"®cy —>v,asrequired. [|

Lemma 6-5. Instance suffix property. In instance evaluation, the leftover context isa
suffix of theinitial context. When the difference between those contextsisitself used as
the context for evaluation, the resulting leftover context is empty.

Yu,x,u',x'. (u,x) > @, x')= (I, y.x =y B A(u,y) > (v, €))

Proof: The proof is by induction on the length of x . For thebasecase x = ¢, theresultis
trivial, with v = # and y = ¢. For the induction step, suppose x = i :: x". Then either
Vu".u ;u'" ¢ Cor Ju'. {u <, u"} < C.Intheformer case, theresult istrivial with
v=u,X =Xxandy = e.Inthelatter case, we have (#”,x"") — («', x") . The induction
hypothesisgives v, y. x" =y @ X' A (u",y) > (v,€). Then

x=(y)®x Au,iy)—> (v,e),asrequired (substituting i :: y for y). |
Lemma 6-6. Component propagation property. Components propagate along instance
chains.

Vu,x,u',v,c. (u,x) > (v,e)n{un, u'}cC=
., x)y=>0e)n{vp> VvVicO)

This property can beillustrated using the following diagram. In all the illustrations repre-
senting constraint sets, nodes represent variables. A dashed edge represents an instance

constraint, or (asinthis case) a sequence of instance constraints. A solid edge represents a
component constraint, or asequence of component constraints. The edgesare labelled with
their instance or component labels; the nodes are |abelled with the names of the variables.

Any closed set containing the left-hand component must also contain the right-hand
component.

Proof: The proof is by induction on the length of x . For thebasecase x = ¢, theresultis
trivial, with v = » and v' = «’. For the induction step, suppose ¥ = i:: X" . Thenfor
some ¢, {u X, 1} < C and (1, x'") = (v, €). By closure of C, there exists 7 such that

119

{t>, 7} cCand {u' <, ¢} < C.By theinduction hypothesis,
(X)) >V, e)a{v >, v < C.ltfollowsimmediately that (v, i x'") > (v, €),
asrequired. [

Lemma 6-7. Instance transitivity property.
Yu,x,u". (u,x) > (', e) = (V¥',v,w. (4, x ®x") > (v, w) = (', X)) > (v,w))

This property can beillustrated using the following diagram:

’

U
X —» ¥

o T T = = — - v
YO -

The small i indicates that the instance chains converge at v, in both cases yielding the

same leftover instances w .

Proof: The proof is by induction on the length of x . For thebasecase x = ¢, theresultis
trivial, with = »'. For the induction step, suppose ¥ = i :: X" . Then for some ¢,
{u<x,t}cCand(t,x'") > (',). By theinduction hypothesis,

vi,v,w. (,X" DX')—> (v,w) < (v, X") —> (v, w). Suppose (', x") — (v, w); then

(1, X" ®x")— (v,w) andhence (u,i:: X" ®Xx') — (v, w), asrequired. On the other hand,
suppose (¢, X" ® x') — (v, w); then (', X") > (v, w) asrequired. |

Lemma 6-8. I nstance conver gence property. Suppose that u, «', s, s, ¢ are given such
that {u >, s,u" >.s"} = C.Supposealsothat (u,x) = (v,w), (v, %) = (v,w), and
(s,x) > (1, w"), for somegiven v, w, t,w'. Then (s',X") — (1, w").

This can be illustrated as follows:

% -
u_ — ——— — -
— - c
X -
—~
c_ - ’/~’_,_>tw,
X — — — — ~
S —"//d - 14
’ e
u e
Y
X
e
¢ e
e
e

Note how the instance evaluations of # and #’ in contexts x and x’ terminate at v with
leftover instances w , but evaluation of s and s’ in the same contexts may “go past” v's
corresponding component. (This can happen because v/ may have some instances that v
does not have. Conceptually, v could be the type of something that islocal to afunction,
but which has a component v’ that escapes to awider context.) The important result here
isthat even though the evaluations of s and s* do not necessarily yield v', they do yield
the same resullt.

120

Proof: The proof isasfollows: By Lemma 6-5 (instance suffix), there exist y, y* such that
Yx=y@wa(y)—>Wwe)adx =y ®wAa(u',y') > (v,e). By Lemma6-6
(component propagation), 3v'. (s,) = (V',e) A {v >_. v} < C. Then by Lemma6-7
(instance transitivity), Vr,z. (s,y ®w) > (r,2) < (V',w) — (r, z) . Thisimplies

O, w)—>(,w).

By another application of component propagation,

(7)) > (", e)A{v >, v'} < C. Because Cisclosed and canonical, v = V'
(being matching components of v). Thus (s’, ') — (v,) . Invoking instance transitivity,
Vr,z. (8, ®@w) > (r,z) < (V,w) > (r,z). But (v, w) > (¢, w") and therefore
(s, Dw) > (r,w),l.e (s,%x) > (1,w') asrequired. |

Lemma 6-9. Generalized instance conver gence property.

Supposethat u, u', s, s, ¢ aregiven such that #{c) —> s A u'{¢) — s’ . Suppose aso that
(u,x) > (v,w), (', %) > (v,w),and (s, x) — (1,w") for somegiven v,w, ¢, w". Then
(5", X") = (1, W').

_ v o _
x w
v _ o - = = — — _
~
—, ~ ¢
_ X -
C ~
— // ’/‘—”_—’d ZW'
X — - — — P
S ‘—"//d s 14
’ e
u e
— ~ !
C P X
e
~
'V~

Proof: The proof is by induction on the length of ¢. The base caseisvacuouswith # = s
and ¥’ = s’. For the induction step, suppose ¢ = ¢ :: ¢’. Then

dr, v {u>, r,u >, 1"} cCar{c)y >snr{c)—s". Bytheexisence property
(Lemma6-2), ', w'". (r,x) > (v', w'"). Applying Lemma 6-8 (instance convergence),
(r',x")y — (v',w"). Then applying the induction hypothesis, (s’, x') — (7, w'). |
Lemma 6-10. I nstance propagation property.

Vu,e,v,u'.u{c) >vafu ;,u'} cC=> @V ')y >vaiv L, vVicO)

Proof: The proof is by induction on the length of ¢. Itistrivially truefor ¢ = €, with
v=wuandv = u'.Supposec = c::¢'.Thenforsome«” wehave {u >, u"} c C and
u"{c"y »>v.Byclosureof C, 3t. {u" <; t,u’ >, t} — C. Theinduction hypothesisyields
ey > v a{v L, vVicC.Thenu'(¢) - v asrequired. [

121

6.5.3 Congtraintsto Support Query Expressions

6.5.3.1 Inadequacy of Program Constraints
The analysisrequires variables to be associated with arbitrary bytecode expressions. This
may not be possible using only the constraints that are derived from the program.

For example, consider the following method m:

static void m(Foo f) { System.out.println(“Hello Kitty”); }

Suppose some tool requires SEMI to decide whether

m#0:f.fieldA <> m#0:f.fieldB isinthe VPR. (The syntax “m#0” denotes
bytecode offset 0 in method m.) The method m does not mention £, and therefore there are
no constraints naming the componentsof f inthe context of m. Therefore, although one can
Show m#0:f.fieldA — Lm#O (0:: fieldan), Lm#O (0:: fielda) doesnot evaluate to
any ground variable. If this Situation were to stand, then the analysis would incorrectly
deduce that the two expressions are not related, when in fact they may be.

6.5.3.2 Query Constraints

To solvethisproblem, SEMI takesasinput aset O of bytecode expressions required for the
query, and decides ¢, <> e, only for those e, in Q. For each expression e in Q, constraints
are added to the constraint set , ensuring that for any context x, (e, x) — («', X’) holds
forsome ', x'.

Formally, for each e in O, compute# and ¢4, ..., ¢, suchthat e — u{c, i ...l ¢, 1 g).
Choose fresh variables v, ..., v, , and add the constraints
{u[>ClVD\H_DCZVZ.",vk_l[>Ckvk}to]%'ThenAdOO<cl::m::ck::8>—9AdO%).ﬂf

k = 0,thenset v, = u andtheresult holds.) Thus we have, for any context x , and for all
einQ, e — u{c) andu{cy — v forsomeu, c,v. Fromabove, Vx. 31, x". (v,x) = (1, X').
Therefore, in summary:

Ve e Q. Vx.dt,x'. (e,x) > (1,X)

6.6 Implementing the Ajax I nterface

The previous section specifies the approximation to the value-point relation computed by
SEMI. This section describes an efficient implementation of the Ajax interface using this
approximation. | describe how the Ajax interface isimplemented in terms of agiven closed
constraint set; SEMI’s algorithm for computing a closed constraint set is described in the
next chapter.

Recall that the Ajax APl specifies the following parametersto the analysis:
» A type D of intermediate data to be propagated
» A typeR of tool target data

» An associative, commutative, idempotent binary “merge” operator Dy, : D xD — D
with identity element Dg

122

* A set Sof source value-points from which datawill be propagated
» A set T of target value-points to which datawill be propagated
* Aninitial assignment of intermediate data to source value-pointsD, : S— D
* A map from target expressionsto tool target data T : T - R
The analysis computes:
Me T.D,{Dy(S)|se SAset}

Thisis computed efficiently using a graph, smilar to the method used by RTA
(Section 5.3).

Note that the set of bytecode expressions Q used above in Section 6.5.3.2 can be taken
simply asthe union of Sand T.

Multiple queries are treated separately. The intermediate data computations described
below arelocal to each query.

6.6.1 The Graph
SEMI constructs a propagation graph with nodes

P, = {Int|te Variables(C)} w {Out-t |t € Variables(C)}

and edges
Pr=A{(nu,Inv)|Ji. {u X, vicC}
w {(Out-v, Out-u) | Ji. {u L, vy < C}

U {(In-, Out-7) | t € Variables(C)}

Lemma 6-11. Path invariant. SEMI relates e, <> e, if and only if thereis a path from
In-uto Out-v where e; — u'{c), u'{c) > u,e, - vi{d),and v'{d) —» v forsome u, v,
w,v,e,d.

Intuitively, the two base typesfor the expressions have acommon instance type if and only

if there is a path from one base type to the other in the propagation graph (which is essen-
tially two copies of the instance graph pasted together).

Proof: Suppose that SEMI relates e, <> e, . Then
317 il, iz, x1'7 X'Z'. (el7 il) % (Z7 Xl') /\ (e27 X'z) % (Z7 iz')
From the uniqueness properties of the relations, we have (u, x;) — (¢, ¥,") and
(v, %,) > (1, %)) . (Theexistence of u, v, u’, V', ¢, d follows from the added query
constraints, as discussed above in Section 6.4.5.) It follows that thereisa path in the graph

from In-u to In-z and from Out-7 to Out-v. There is an edge from In-7 to Out-z. Therefore,
there is a path from In-« to Out-v.

Conversely, supposethereisapath from In-u to Out-v. There must exist an edgein the path
connecting In-7 to Out-# for somet and ¢ . All such edges are of the form (In-z, Out-¢),

123

therefore ¥ = ¢. Furthermorethereisapath from In-uto In-t; thispath passes only through
In nodes (because there are no edges from any Out node back to an In node). Thisimplies
that for some sequence of instances x, , (u, x;) — (¢, €). Similarly thereis path from Out-
tto Out-v and for some x,,, (v, x,) — (7, €) . Therefore

(e1, ¥1) = (1,€) A (e,, %5) — (1, €) and SEMI will conclude s<> t. [

6.6.2 Computing Analysis Results

The results are computed efficiently over the graph using almost exactly the same
algorithm asfor RTA (Section 5.3.2). The only difference isthe way in which expressions
are mapped to nodes in the graph.

The assignment A over graph nodes is computed iteratively as follows:
Agy) = Dy ADg(S)|se SATu,c,u'.s >u' {c)nu'{¢c)>unrny=Inu)}
An 1Y) = Dy ({4,(P) [(B, Y) € P} v {4,(N})
The algorithm terminateswhen 4, , 1(y) = 4,(y). Theresult of the analysisis then:

{(d,FI{A(G) |3t e T.Tr(1) =d ~tj,}]) | d e range T}

6.6.3 Incrementality

The algorithm for computing the closed constraint set isincremental, in the sense that
adding new constraintsto the initial set (e.g., in response to changes in the input program)
will cause new constraints to be added to the closed result set. This processis discussed
further in Chapter 7.

This means that new edges and nodes are added to an existing propagation graph. The
results are updated incrementally in response to changes in the graph and in the analysis
parameters, in much the same way as the RTA implementation operates (Section 5.3.5).

Because incremental extensionsto theinitial constraints are supported, thereisactually no
need to know the set O of query expressions in advance. Whenever anew query expression
isencountered, it is added to O and everything is updated appropriately.

6.7 Proving Soundness

6.7.1 Overview

6.7.1.1 Strategy
Suppose atagged trace 7'= <&, ..., Z,> is given.
In Section 6.7.2 below, we define a function Creation(v) mapping each tagged value v

occurring inthetraceto apair (i, ') . Theideaisthat thefirst occurrenceof visin state &,
and can be obtained by evaluating ¢’ in that state.

In Section 6.7.4 we define a function Context(7), mapping each state index i to a context
associated with state =;. This context can be thought of as identifying, for each method in
the call stack, which of the polymorphic instances of the method is active. The definition

124

of the Context function requires an auxiliary CallerState function, defined in Section 6.7.3.
CallerState(k) finds the state at which the “current method” executing in state =, was
invoked.

Section 6.7.5 proves the following conformance lemma:

Vi,e,v,u,x'. (E, e) ™ v A (e, Context(i)) = (u,x') =
3i', e’ Cregtion(v) = (', e’) A i' <i A (€', Context(i')) — (u, X')

Theideaisthat given an expression evaluating to avalue in a particular state, we can ook
back to where the value was created and determine the expression’ s ground type in terms
of that creation state.

Soundnessisacorollary of thislemma. By definition, two expressions related by the VPR
must give the same value when evaluated in some pair of states. Applying the conformance
lemmatwice, oncefor each expressioninitsassociated state, we show that the ground types
of the expressions are both equal to the ground type of the value, and therefore equal to each
other. Thus we can be sure that SEMI relates the two expressions.

Formally, suppose e, <> e, where e, e, € O . Then by definition thereis a tagged trace 1’
and states Z; and E; in 7'such that (£, ;) = v and (Ej, e,) ™ v for some tagged v.

Choose u, x;" suchthat (e,, Context(i)) — (u, ;") and u,, x," suchthat
(e,, Context(y)) — (u,, X,") (they must exist according to Section 6.5.3.2). Then by the
conformance lemma,

3i', e'. Creation(v) = (i", e') ni" <in (e, Context(i')) — (uq, X1")
Ji", e". Creation(v) = (i",e") Ni" <j ~ (e", Context(i")) = (u5, X5')

In Section 6.7.2.1 below, | show that Creation isafunction—i.e, i = i and e’ = e”.
Therefore u; = u, and ;" = %,’ (Lemma6-3). Thusthe analysis concludes e, <> e,,.

6.7.1.2 Note: Unique Justification for Transitions
Many of the proofs perform acase analysisof atransition £, = E. , ; . Thisdependson the

fact that, given two states related in thisway, there is dways exactly one inference rule
justifying the transition.

To see that thisis so consider the mode fields of the states =, and E, . ;. There are four
possibilities:

Mode(Z,) | Mode(Z, , ;)
THROWING | THROWING | “Exception return” isthe only applicable rule.

THROWING | RUNNING “Exception catch” isthe only applicable rule.
RUNNING | THROWING | “ Spontaneous exception throw” isthe only applicablerule.

RUNNING | RUNNING The applicable rule is uniquely determined by the value of
Instruction(PC(Z,))) .

125

6.7.2 The Creation Function

The creation function is defined by the rules given in Figure 6-11. 1T demonstrate two
important properties: that it is a function, and that it is defined for all tagged values that
appear in the trace.

6.7.2.1“Creation” Isa Function
Lemma 6-12. For some arbitrary v, suppose that Creation(v) = (i, ¢) and
Creation(v) = (i’,e').Weshowthat i = i/ ande = e'.

Proof: From the definition of the Creation function, (£, ¢) = v and (E,, e") ™ v.

If i =i = 0, thene must be of the form (Main, 0) : staticField and e’ of theform
(Main, 0) : staticField . Then Tag(v) = InitaTag(staticField) = InitaTag(staticField’),
hence staticField = staticField by the fact that Initia Tag is defined to be a bijection.

If i = 0 buti’> 0, then Tag(v) € Used(E,), and then Tag(v) € Used(E, _,), since

Vi, i'. i<i' = Used(E)) c Used(E,) . thisfact iseasily observed from the transition rules.
But given that Creation(v) = (i’, ¢'), for each rule that canjustify =, _, == .., thereisa
congtraint that Tag(v) ¢ Used(Z, _,) . Therefore this situation isimpossible. Similar
reasoning excludes i" = 0 with i > 0.

Consider i > 0 and i > 0. Then Tag(v) ¢ Used(E, _;) A Tag(v) ¢ Used(E, _,) , but
Tag(v) € Used(E;) A Tag(v) € Used(E,) , therefore

Tag(v) € U%d@j) A Tag(v) € Used(E;) foral j>i andj>i". Thereforei'—1 <i and
i-1l<i,ie,i=1.

Now consider thetransition 2, _; == .. If itisjustified by one of the rules for

aconst null,bipush, iadd, or instanceof,thene = ¢’ = PC(E):stack-0.

If thetransition isjustified by therulefor new, and e # €', then one of e or e’ must be of
theform PC(E)) : stack-0. field . Without loss of generality, suppose

e = PC(E,): stack-0.field. Then there are two cases, ¢’ = PC(E)): stack-0 oOr

e’ = PC(E) :stack-0.field where field # field' . Consulting the transition rule, the
former case isimpossible because Tag(v) = ¢ = tags(field) violatesthe condition

t ¢ range tags . The latter caseisimpossible because Tag(v) = tags(field) = tags(field')
violates the condition that 7ags is abijection.

The same reasoning applies to the case in which the transition is justified by therule for
spontaneous exception throws, exceptthat e = PC(E,) : exn. field ande’ = PC(E)) : exn
ore’ = PC(E):exn.field . [

6.7.3 The Caller State Function

6.7.3.1 Definition
The CalerState function determines at which state in a trace a method invocation began:

CdlerState(k) = max {i |i <k A Jframe. MStack(E,) = frame :: MStack(E)) }

126

= E. justified by rulefor aconst null

1

(EV PC(EZ) : Stack—o) L 2RV

Creation(v) = (i, PC(§,) : stack-0)

= 2. justified by rulefor bipush byte

1

(EV PC(EZ) : Stack—o) L 2RV

Creation(v) = (i, PC(E,) : stack-0)

E,_1=E; judtified by rulefor iadd

(EV PC(EZ) : Stack—o) L 2RV

Creation(v) = (i, PC(§,) : stack-0)

= =. justified by rulefor new classiD
(EV PC(EZ) : Stack—o) L 2RV

Creation(v) = (i, PC(§,) : stack-0)

I[x]

i—-1

I[x]

i—-1

1

(Qﬁ FC(EZ) H StaCk—O _ﬁeld) i v
Creation(v) = (i, PC(E)) : stack-0. field)

= E. justified by rulefor new classID

= E,; justified by rulefor instanceot classiD
(EV PC(EZ) : Stack—o) L 2RV

Creation(v) = (i, PC(§,) : stack-0)

= =, justified by rule for spontaneous exception throw

1
(E,, PC(E) :exn) ™ v

|[x]

i—1

Creation(v) = (i, PC(§,) : exn)

Figure 6-11. Rules defining the Creation function

127

1= &, justified by rule for spontaneous exception throw
(EV PC(EZ) cexn ,ﬁeld) L 2RV

Creation(v) = (i, PC(E,) : exn . field)

(Eg, (Main, 0) : staticField) » v
Creation(v) = (0, (Main, 0) : staticField)
Figure 6-11. Rules defining the Creation function

It computes the state number i which called into the method active at state 4, by finding the
most recent state at which the call stack was one element shorter than the current call stack.

Thisfunctionis used below to define the Context function. Here we prove some “obvious’
but useful properties of the CallerState function that are required below. These properties
arereally invariants of the MJBC semantics ensuring that the call stack and the program
counter behave in adisciplined way.

6.7.3.2 Scope of Definition
CallerState is defined whenever the run time stack is nonempty (i.e., the current method
was called by some other method).

Lemma 6-13. The function CallerState is defined for all & such that MStack(E,) # ¢ .
Proof: To prove this, it sufficesto prove that the set
{i|i<k A Iframe. MStack(E,) = frame - MStack(E,) }
isnonempty if MStack(Z,) # . Thisis shown by induction on 4.
For k = 0, MStack(E,) = «.

For k> 0, consider thetrangition £, _, == E, . If the transition was not justified by arule
for method invocation, method return, or exception return, then
MStack(Z, _;) = MStack(E,) and the result follows from the induction hypothesis.

If the transition was a method return or exception return, then
MStack(Z, _,) = f:: MStack(E,) for somef, and therefore MStack(Z, _ ;) # € . Applying
theinduction hypothesis, CallerState(k — 1) isdefined. Therefore there exists an j such that

j <k—=1ndframe. MStack(E, _,) = frame . MStack(Ej)

Hence M Stack(gj) = MStack(Z,) . Then, using the induction hypothesis again, if
MStack(Z,) = MStack@j) # ¢, then

{i|i<jnIframe. MStack(Ej) = frame ;> MStack(E,) } # ©
{i|i<knIframe. MStack(E,) = frame :: MStack(E)) } = @

If the transition was a method invocation, then for some £,
MStack(Z,) = f:: MStack(Z, _,) . Then the set

128

{i|i<kn Iframe. MStack(E,) = frame :: MStack(E,) } contains £ —1 andis
nonempty. [

6.7.3.3 Nested Call Stack

The call stack for the current state is a suffix of the call stack in every state during the
lifetime of the current method invocation. In other words, the call stack may grow
downward dueto this method calling into another method, but the current activation record
and the records above it on the stack are not popped or modified. We only need to prove
thisfor states between the current state and the invocation of the current method.
Lemma6-14. If ¢ = CdlerState(k) then

Vi.c<i<k= (MStack(E,) isasuffix of MStack(E))) .

Proof: The proof is by inductionon 4 —i.
For k—i = 0O, theresultistrivia.

Now consider £—i = p where the induction hypothesisholdsfor k—i = p—1. Thatis,
assume ¢ < i< k and MStack(E,) is asuffix of MStack(E, . ;) . Consider the transition

=) =)
Eii2i+l'

If thetransitionisnot justified by arulefor method invocation, method return, or exception
return, then MStack(E,) = MStack(E, , ;) and it follows immediately that
MStack(Z,) isasuffix of MStack(Z,) .

If the trangition is a method return or exception return, then
MStack(Z,) = f:: MStack(E, , ;) for somef, and again the result follows immediately.

If the transition isamethod invocation, then for somef, MStack(E, , ;) = f:: MStack(E)) .
By the induction hypothesis, either MStack(E, , ;) = MStack(Z,) or MStack(E,) isa
proper suffix of MStack(E, , ;) . Inthe latter case, MStack(Z,) is asuffix of MStack(E)) .
In the former case, one obtains MStack(E,) = f:: MStack(E,) . But then i is an element of
theset {i' | i’ <k A Jframe. MStack(E,) = frame :: MStack(E,)} and i > ¢, contradicting
the definition of c. |

6.7.3.4 Preservation of Caller State

The activation record on top of the call stack reflects the state just before we began the
current method invocation.

Lemma6-15. If ¢ = CdlerState(k) and MStack(Z,) = (pc, S, £) :: 7 then

E. = [pc: pc, wstack: S, locals: £, mstack: 4, p] for some value of p.

Proof: By the nested call stack lemma, MStack(Z,) is asuffix of MStack(E. , ;) . By the
definition of ¢, Jframe. MStack(E,;) = frame :: MStack(E,) . Therefore MStack(Z,) isa
proper suffix of MStack(E.. , ;) , implying that thetransition £, = = . , ; must be amethod
call. The method call rules guarantee that MStack(Z. , ;) = (pc, S, £) :: 4 where

E. = [pc: pc, wstack: S, locals: £, mstack: 4, p] . Since MStack(E,) = frame :: 4 and
MStack(E,) isasuffix of (pc, 5,£) :: 7, it followsthat MStack(E,) = (pc, 5, £) :: 2.1

129

6.7.3.5 Method Entry Correspondence

On beginning the current method invocation, the program counter was set to bytecode
offset zero of the current method. The important thing to prove is that the method
invocation actually invoked the same method as the current method.

Lemma6-16. If ¢ = CdlerState(k) then PC(Z. , ;) = (CodeLocMethod(PC(Z,)), 0).

Proof: The proof isby inductionon £ —c. Since k> c¢,thebasecaseisk = c+ 1. Let
(m, offset) = PC(E, , ;). Then CodeL ocMethod(PC(Z,)) = m . Furthermorethe
transition E. => &, , ; isamethod call, and therefore offser = 0, asrequired.

Now suppose ¢ = CallerState(k) and consider the transition =, _; == &5, . Whenever
MStack(Z, _;) = MStack(E,) then thetransition rule also requires

Codel ocMethod(PC(E, _,)) = CodeLocMethod(PC(Z,)) , and then the result follows
from the induction hypothesis.

If the transition was a method invocation, then for some f
MStack(Z,) = f:: MStack(E, _,) . Butthat implies ¢ = CallerState(k) = k—1, which
only occurs in the base case.
If the transition was a method return or exception return, then
MStack(E, _;) = (PC(E)) —x, S, £) :: MStack(E,) for some s, £, wherex = 0 for
exceptiona returnsand x = 1 for normal returns. Let d = CallerState(k — 1) . By preser-
vation of caller state (Lemma 6-15), PC(E) = PC(E,) —x and
MStack(Z,) = MStack(E,) . Thisalso gives
Codel ocMethod(PC(Z,))) = CodelLocMethod(PC(Z,)) . Furthermore, by the nested call
stack lemma (Lemma 6-14),

Vi.d<i<k—-1= MStack(g,) isasuffix of MStack(Z))

Therefore

CallerState(k) = max {i | i <k A Iframe. MStack(E,) = frame :: MStack(E)) }
= max {i|i<d A Iframe. MStack(E,) = frame :: MStack(Z,) }

But MStack(Z,) = MStack(E,) and therefore
CdlerState(k) = max {i | i <d A Iframe. MStack(E,) = frame - MStack(E,)) }

That is, CallerState(k) = CallerState(d) = ¢. Now we appeal to the induction hypothesis
appliedto d. [

6.7.4 The Context Function

The Context function maps a state index to alist of instance labels, identifying exactly
which polymorphic instance of each currently active method was invoked.

130

6.7.4.1 Definition of the Context Function
The Context function is defined inductively asfollows:

Context(0) = ¢
For i > 0, Context(7) depends on the form of the transition 5, _; =Z..
Case: Thetrangitionisjustified by therulefor invokestatic.
Context(7) = PC(E,_,) :: Context(i — 1)
Case: Thetrangitionisjustified by therulefor invokevirtual.

Then E, _, isof theform [pc: pc, wstack: v4 i: v i1 S, locals: £, mstack: 4, heap: #, p], and
Instruction(pc) = invokevirtual methodID . Let (i, e) = Creation(v,) and
classID = HeapObjClass(z(Val (vy))) . Now consider thetransition £, _, =&, . Ifitis
justified by the rule for new, set

Context(7) = classID-methodID :: PC(E, _,) :: Context(i")

Otherwiseitisjustified by the rule for spontaneous exception throws, since that isthe only
other creating rule which adds a mapping for Val(v,) to #. Set

Context(7) = classID-methodID :: err-classID . err-PC(E, _,) :: Context(i")
Case: Thetrangitionisjustified by the rule for return.
Context(7) = (PC(E,) —1)-PC(E)) :: Context(CallerState(i — 1))

CdlerState(i — 1) iswell-defined because MStack(E, _;) must be nonempty for the
return to execute successfully.

Case: Thetrangitionisjustified by the rule for exceptional returns.
Context(i) = Context(CalerState(i — 1))

The reason for the asymmetry between normal and exceptional returnsis that a normal
return transfers control to the instruction following the method invocation, but an excep-
tional return does not.

Case: Thetrangitionisjustified by arule for exception throws (either an execution of
athrow or a spontaneous exception throw)..

Context(i) = Context(i — 1)

Exception throw transitions ssimply change the state from RUNNING to THROWING and do
not themselves transfer control.

Case: All other transitions induce the following rule:

Context(7) = PC(E,_,)-PC(E)) :: Context(i —1)

131

6.7.4.2 Preservation of Return Types

Thislemma proves that the return type Ry, and the type X, of any thrown exception at
some instruction pc map correctly to the actual return type and exception type of the
method.

Lemma 6-17. The return type and thrown exception type inferred for amethod
correspond to the return type and exception type actually used in all contexts.

Vi,m,c. m = CodeLocMethod(PC(E))) A ¢ = CallerState(i) =
Jw. Context(i) = w ® Context(c + 1)
A (M(RPC(;_)): w) > (MR,). &) A (M(X F’C(E,-))’ w) > (M(X,,, 0> €)

Proof: The proof is by inductionon i —c.

Thefact ¢ = CalerState(i) implies ¢ <i. Thereforethe base caseisi = ¢+ 1. Set
w = g, andtheresultistrivial, noting PC(Z, , ;) = (m, 0) by the method entry corre-
spondence lemma (Lemma 6-16).

Now consider thetransition 2, ; == &,

Case: Thetransition is an exception throw. Then PC(E, _;) = PC(E,) and
Context(7) = Context(i —1). Also MStack(ZE, _;) = MStack(Z;) implying
¢ = CdlerState(i) = CalerState(i — 1) . We apply the induction hypothesis to get

Jw. Context(i — 1) = w & Context(c + 1)
N (M(RF’C(E,-_l))’ w)—> (M(R(m, o)): €) A (M(XPC(E,-_D)’ w)—> (M(X(m, o)): €)

Thisis equivaent to the desired result.

Case: Thetransitionisthe normal execution of aninstruction other than invokestatic,
invokevirtual or return. Thenlet pc = PC(E,_;) and pc’ = PC(E)); then
CodeL ocMethod(pc) = CodelL ocMethod(pc’) , and

Context(i) = pc-pc’ :: Context(i — 1) . Also MStack(pc) = MStack(pc’) implying

¢ = CdlerState(i) = CalerState(i — 1) . We apply the induction hypothesis to get

Jw’. Context(i — 1) = w’ @ Context(c + 1)
ANMR,), W) > (MR,), €) A (M(X,,), W) > (M(X,, o), €)

The executed instruction induces the constraints Succ(pc, pc’, s, [) for some s and /.
Therefore {M(Rpc,) Lpe-pe’ M(Rpc),M(ch,) < M(ch)} cC.Setw = pc-pc’ :w'.
Then Context(i) = w @ Context(c + 1) and

(MR,,.), W) > (M(R,, o)), €) A (M(X,,.), w) > (M(X,, o)), €)
asrequired.

pe-pc’

Case: The transition was a method invocation. Then for some f
MStack(Z,) = f:: MStack(E, _,) . But that implies ¢ = CallerState(7) = i —1, which
only occurs in the base case, so this case cannot occur.

132

Case: The transition was a method return or exceptional return. Then

MStack(E, ;) = (PC(E) —x, S, £) :: MStack(E,) for some s, £, wherex = 0O for
exceptiona returnsand x = 1 for normal returns. Let d = CallerState(i — 1) . By preser-
vation of caler state, PC(E,) = PC(E,) —x and MStack(E ;) = MStack(E,) . Thisalso
givesm = CodelocMethod(PC(E,)) = CodelLocMethod(PC(ZE)) . Furthermore, by the
nested call stack lemma, Vi'. d <i' <k—1 = MStack(E,) isasuffix of MStack(Z,) .
Therefore ¢ = CallerState(i) = CallerState(d) . Now we appeal to the induction
hypothesis applied to d, yielding

Jw’. Context(d) = w’ @ Context(c + 1)

A (M(RF’C(E[;,-))’ W) > (MR,), €) A (M(XPC(Ed))ﬂ W) = (M(X,, 0))> €)
If the transition was an exceptional return, then PC(Z,) = PC(E,) and
Context(i) = Context(d) ; the required result is obtained by setting w = w'.

Otherwise the transition was anormal return. Then PC(E) = PC(E,) -1 and
Context(7) = (PC(E,) —1)-PC(g,) :: Context(CallerState(i — 1)) . The method invocation
instruction at d induces the constraints Succ(PC(Z,) , PC(E)), s, /) for some s and /.
Therefore

MRece)) < (pog) -1)-peE) MRecg) - 1)
MXeog)) Xipog)-1-ro) MXpog) -1 =€
Setw = (PC(E) —-1)-PC(E,)) ::w'. Then
Context(i) = w @ Context(c + 1)
(M(Rpcg)), W) > (M(R,,, 0), 8) A (M(Xpgg)), W) > (M(X,, o)), €) .

6.7.5 Proving the Conformance Lemma
Lemma 6-18. To reprise Section 6.7.1.1, the conformance lemma states:

Vi,e,v,u,Xx'. (§; e) ™ v A (e, Context(i)) = (u, x) =

3i', e'. Cregtion(v) = (', e’) A i' <i n (€', Context(i')) — (u, x)

The proof is by induction on i. The induction hypothesisis strengthened to note that, in
every state, the ground type for the global variable record isthe type given to it at the
beginning of Main:

Vi. ((M(GPC@)), Context(i)) — (M(G(,\,I ain, O)), €)

AVe,v,u,X'. (§;,e) ™ v (e, Context(i)) = (u, x) =

3i’, e’ Cregtion(v) = (', e’) A i' <i n (€', Context(i")) — (u, X))
The base caseis proved in Section 6.7.5.1. Itistrivial.
For the induction step, | assume the hypothesisistrue for i < £ and prove it true for
i=k+1.

133

The basic strategy to provetheinduction result isto show that most transitions 2, = 5, , ;
“preservetypes’ by extending the context with an instance label (corresponding to method
call or intra-method control flow) and by making the types of local variables (and stack
locations) at the old code | ocation appropriate instances of the types of local variables (and
stack locations) at the new code location. This ensures that the ground type obtained for e
evaluated in Context(k + 1) isthe same aswhenitisevaluated in Context(k) , and we can
appeal to the induction hypothesis to show that it is the correct (u, x).

Thisis not possible for all transitions, because most transitions change the program state,
and therefore for some expressions e the value obtained by evaluating e in the new state
differs from the result of evaluating e in the old state. Typically these cases are proved by
showing that the initial constraints require the type of e to be related to the type of some
other expression e’, where e’ in the old state evaluates to the same value as e in the new
state. This allows us to again appeal to the induction hypothesis.

Some other cases require different techniques. For example, transitions that create new
values provetheresult by appealing directly to the definition of Creation, without resorting
to the induction hypothesis. As another example, the return instruction truncates the
Context for the current state back to the Context of the caller; this case requiresthe “ preser-
vation of return types” Lemma 6-17 from above, as well as other machinery.

In Section 6.7.5.3 we provethe first part of the induction result itself:

(M(GPC@+ 1)), Context(i)) —> (M(G(,\,I ain, O)),). The proof isrelatively simple because it
does not depend on e and only requires a case analysis of the transition £, == 5, _ 4 .
Furthermore, only a few transitions modify global variables.

Section 6.7.5.4 proves the rest of the induction result for expressions e of the form
PC(E, , 1) :exp .f, assuming it holds for PC(E, , ;) : exp . This step also requires case
anaysisof £, = 5, , ;. Again, most of the cases are easy because most transitions do not
modify object fields.

Section 6.7.5.5 proves the result for expressions of the form PC(E, , ;) : staticField .
Again, only afew transitions modify static fields.

The smple expressionsreferring to stack and local variablesrequire the most work, and are
handled in Section 6.7.5.6 and following sections. For these expressions, we perform acase
analysis of the form of the transition and then break down the expression type within each
transition, according to the manner in which stack and local variables are modified by the
transition. (Almost every transition modifies the working stack or local variablesin some
way.)

The proof is smplified by codifying the strategy described above (which relates the
expression e to some expression e’, where e’ in the old state evaluates to the same value
ase in the new state) using a“reduction function” (Section 6.7.5.7) mapping e to ¢’ . The
proof also uses a “succession lemma’ (Section 6.7.5.8), which captures the invariants

134

induced by the use of the Succ function in the initial constraints. Nevertheless for each
transition, some case analysis of the form of ¢ is required.

One key supporting lemmais proved in the context of the induction hypothesis: Lemma 6-
19in Section 6.7.5.2. Thislemmashows that at the invocation of avirtual method, the type
of the method body actually invoked matches the type assigned to the method at the
invocation site, in the sense that they have the same set of ground types. (It is not neces-
sarily the case that oneisan instance of the other.) Thisis used to show that virtual method
calls and returns preserve types. This lemma follows by showing that the type assigned to
the object at the invocation site matches the object’ stype at its creation, which is a conse-
guence of theinduction hypothesis.

6.7.5.1 Base Case
Thebasecaseisi = 0. Suppose (£, ¢) ™ v . By the definition of atrace,

2 = [mode: RUNNING, pc: (Main, 0), wstack: €, locals: [], mstack: €, heap: [],
globals: InitStaticFields, used: range Initial Tags]

In this state, expressions of the form pc: stack-n and pc: Llocal-n do not evaluate to
anything. Also, since the heap is empty, expressions of the form pc: exp . field do not
evaluate to anything. Therefore e must be of the form (Main, 0):staticField. Therefore
Creation(v) = (0,e),i.e.i" = 0 =i ande’ = e; noting that PC(Z,) = (Main, 0) and
Context(0) = ¢ givesthe induction result.

6.7.5.2 Preservation of Virtual Call Types
Lemma 6-19. The typesinferred for a virtual method implementation match up with the

typesinferred at each call site.

Vi, methodID, methodImpl, c, v, V', u, x.

E,=2E g ni<kalngruction(PC(E))) = invokevirtual methodlD
A PC(E, , 1) = (methodlmpl, 0) A Mode(Z,) = Mode(E,; , 1) = RUNNING
/\M(TPC@),VO) (methodID :: c: gy > Vv A {M(I\/Imethod]mpl) >.vV3icC
—

((v, Context(i)) — (u, x) < (v', Context(i + 1)) — (u, X))

Proof: Then E; isof theform [pc: pc, wstack: v4 :: v i1 S, locals: £, mstack: 4, heap: #, p] .
Let (i',e") = Creation(vy) and class/D = HeapObjClassz(Val (v,))) . We then let

pc’ = PC(E,, 1) = (methodlmpl, O), where

methodImpl = Dispatch(classID, methodID) .

Let pc” = PC(E, _,).Consider thetransition £, _; = E... Thetransition adds amapping
for v, inthe heap, therefore the transition is either an execution of new or a spontaneous

exception throw. In Lemma 6-20 below, we show that in either case, for some
w,s,s',s", ¢c,e —>s'{(cy,s'(¢c)y—s",s" (methodID :.c:ey—s and (V,w)— (s,€)

135

where Context(i + 1) = w @ Context(i") . Thismeansthat the created object, in the context
inwhich it is created, has atype sfor the given component c of the object’ s method
methodID, and sis an instance of the type v/ we observe for the method’s component in
state =,

=i+1

The constraints for the invokevirtual instruction include

{ Spc D tail Tpc,tl’ Spc > head Tpc,vl’ Tpc,tl D>l Tpc,tZ’ Tpc,tl > head Tpc,VO’

Tpc,VO > methodID Tpc,ma Tpc, m Dglobals Gpc }
We have (&, pc:stack-1) ™ vy, pc:stack-1 —>(S,, tail :: head :: €), and
(M(Spc), tail :: head :: €) —>M(Tpc, vo) - Now, for some ', X',
(M(Tpc, vo)> context(i)) — (', X") and then (pc : stack-1, Context(i)) — (', X") . By the
induction hypothesis, (e’, Context(i")) — (u', "), i.e. (s”, Context(i")) — (u',X") . It is
valid to apply the induction hypotheses because i < k.

Now assume (v, Context(i)) — (u, x) . Applying the generalized instance convergence
property with ¢ = methodID :: c :: € gives (s, Context(i")) — (u, x¥) . Then, recalling
V', w) — (s,€), we have (v, w @ Context(i")) > (u, %), i.e.

(v', Context(i + 1)) — (u, X).

Conversely, assuming (v, Context(i + 1)) — (u, x), i.e. (v, w @ Context(i")) — (u, x),
and knowing (v', w) — (s, €), the instance transitivity property shows

(s, Context(i")) — (u, x) . Applying the generalized instance convergence property with
¢ = methodID :: c :: e gives (v, Context(i)) — (u, x) . |
Lemma 6-20. Sub-lemma of Lemma 6-19: For some i, s, s, 5", ¢: ¢’ — s'{¢),

s'(c)y —> 5", 8" {methodID :: c: ey —s and (v',w) — (s, €) where

Context(i + 1) = w @ Context(i") .

Proof: The proof is by a case analysis of the transition £, _; == Z.,, introduced above.

Case: Thetrangition £, _; => E, isjudtified by therulefor new. Then PC(E,;) = pc” +1
and Context(i + 1) = classID-methodID : pc" :: Context(i")

The constraints for new give

{ S'pc” D> tail Spc”a Spc”+l > head Tpc”,v: Nclass[D ipc” Tpc”,v y o
Succ(pc”, pc"'+1, S, L)
’ ’ pc’ Epe

We dso havetheinitia constraints

{ Mmethod[mpl iclass[D-method]D Nclass]D,method]D’ Nclass[D D> methodID Nclass[D,method]D }
Because v, hasamapping inthe heap, ¢’ = PC(E,) : stack-0 (the other expressions
created by new do not have heap mappings.). Now
PC(E;):stack-0 >S5, (headie) and M(S,,.. ,) <head ::e) > T . .

136

From the program constraints and the assumption {M(M,,,.j,,irmp) >, V'3 < C, We get
V', classID-methodID :: pc" ::€) — (s,) for some s, where
M(Tpc,,,v) (methodID > c: e) —>s.

Soweset w = classID-methodID ::pc'" ::e,¢ = head:ig, s = S

e + 1, and

o —
S - pC”,V'

Case: Thetrangition £, _, == E, isjustified by the rule for spontaneous exception throws.
Then PC(E,) = pc"” and
Context(i + 1) = classID-methodID :: err-classID :: err-pc'’’ :: Context(i") .

Therdevant initial constraints are

{ Err ierr-pc” ch”! Nclass[D <err-classID Err, M Dispatch(classiD, methodID) LclassID-
methodlD Nclass]D,method[D’ Nclass[D D> methodID Nclass[D,method[D }

Thus (M(GPC@+ 1)), classID-methodID . err-classID . err-PC(E, _4) ::€) = (s,) for
some s, where M(X pc,,) {(methodID :: globals::) — s.

Because v, hasamapping inthe heap, ¢’ = PC(E,) :exn (the other expressions created
do not have heap mappings.). Now PC(E,) : exn — X per (g) and X per (g) > X per

From the program constraints and the assumption {M(M,,,.j,,imp) >, V'3 < C, We get
(v, classID-methodID :: err-classID . err-PC(E,, _;) :: €) = (s, €) for some s, where
ch,, {methodID .. c:.€) —>s.

Soweset w = classID-methodID :: err-classID :: err-PC(E, _4) iie, ¢ = ¢, and

s =" = ch,,. [

6.7.5.3 Globals Hypothesis
Here we prove the global variables “ground type” invariant that we used to strengthen the
induction hypothesis

Lemma 6-21. Consider the cases governing the form of Context(4 + 1) . For each case we
show

(M(GPC(EM)), Context(k + 1)) > (M(Gpzin, 0)- &) -
Proof: The proof is by a case analysis of the form of thetransition £, == &5, _ ;.
Case: Thetrandgition E, = &, , ; isjudtified by therulefor invokestatic,
Then

Context(k + 1) = PC(E,) :: Context(k)

Let methodImpl = Codel ocMethod(PC(E, , ;)) . By theinduction hypothesis,
(M(Gpgg,), Context(k)) = (G(yain, o), €) - The invokestatic instructioninducesthe
constraintsin :

137

{ Mysetodimpt Spc@) TreE), ms Muetodimpt > globals Cregg,)
Trc), m Pgiobais Croe,) 1
By closure of C, {M(Gpgg,, ») <rcE) M(Gpcgy)y cC.
Therefore
(M(GPC(EM)), Context(k + 1)) > (M(Gpzin, 0)- &) -
Case: Thetrangitionisjustified by therulefor invokevirtual.
Choose methodID such that Instruction(PC(E,)) = invokevirtual methodID , and
methodlmpl suchthat PC(E, , ;) = (methodlmpl, 0).Set ¢ = globals, i = k,
Vv = M(GPC@+ 1)) andv = M(GPC@)) . Theintial constraints contain
M etnodimpt ™ globas Crcz, ,) Tre@y, m Bglobas Cre(z,) Tre@), vo B memodip Crc(z,)}
Also, by the induction hypothesis, (M(GPC(gk)): Context(k)) —> (M(G(,\,I ain, O)), €).
Now we appeal to the preservation of virtual call types (Lemma 6-19) to obtain
(M(Gpgg, ,), Context(k + 1)) —> (M(Gy4n, o)), €)
Case: Thetrangition isjustified by the rule for return.
Then
Context(k + 1) = (PC(E, , 1) —1)-PC(E, . 1) :: Context(CallerState(k))

Let pc = PC(Ecyiasaer) - Therulefor return implies PC(E, , ;) = pc +1, using an
application of Lemma 6-15 regarding preservation of caller state.

By theinduction hypothesis, (M(GPC), Context(CalerState(k))) — (M(G(,\,I an, 0)), g). The
method invocationinstructions both induce the constraints Succ(pe, pe+1, S, L ,0), which
include

{Gpe 1 S(Po(gr. 9 -1)-PeE,) Cpel
Therefore

(M(GPC(EM)), Context(k + 1)) > (M(G(\14n, 0))> €)
Case: Thetrangitionisjustified by the rule for exceptional returns.
Then

Context(k + 1) = Context(CallerState(k))

Let pc = PC(Ecqiersiaey) - Therulefor exceptional returnsimplies PC(Z, , ;) = pc. But
then M(GPC@M)) = M(GPC@@JMM@)) ; applying the induction hypothesis gives

(M(GPC(ECMQM)))’ Context(CallerState(k))) — (M(G\zn, 0))> €)
Thisisidentical to the required result, taking the equalities into account.

Case: Thetrangitionisjustified by arule for exception throws.

138

Then
Context(k + 1) = Context(k)
The two exception throw transition rules guarantee PC(E,) = PC(E, , ;) . Therefore
applying the induction hypothesis gives
(M(Gpeqg,)- Context(k)) — (M(Gyn, o):)
Case: All other transitions induce the following rule:
Context(k + 1) = PC(E,)-PC(E, ,) :: Context(k)
Let pc = PC(E,) andpc’ = PC(E,,4)-
By the induction hypothesis, (M(GPC), Context(k)) — (M(G(Main, O)), €). Therulesfor

these trangitions all require the execution of an instruction which induces the constraints

Succ(pe, pe’, S pe, L) — except for the rule for exception catch. The exception catch rule
requires handler = CatchBlockOffset((method, offset), HeapObj Class(#(ref))) where
pc’ = (method, handler) and pc = (method, offser) for some offser . But then the

constraints Succ(pe, pe’, S'exn-pe-ciassinr Lpe) @€ intheinitial constraints. In either case,

and therefore

(M(G,.), Context(k + 1)) = (M(Gyain, 0)- €) |

6.7.5.4 Field Dereferences
Now we prove Lemma 6-18 for expressions e of the form PC(E, , ;) :exp . f.

The rules for expression evaluation require that for some value of ref,

(B + 1. PCE, 1) :exp) ™ ref and v = HeapObjFields(Heap(E, ,)(Val(ref))(f) . Letp
be defined as

p = min {i |v = HeapObjFields(Heap(E,)(Val(r¢/))(/) }
Notethat p > 0 because Heap(E,) isempty, and p <k + 1. Therefore

v = HeapObj Fields(Heap(Ep _p(Va(ref)))(#) . Inspection of the tagged transition rules
shows that there are three rules that could change the mapping for Val(ref) from state

—

g, ,lostae = therulefor new, therulefor spontaneous exception throws, and therule
for putfield. In each case, the changed field(s) require

f € dom InitFields(HeapObjClass(#(Val (ref)))) .
Let pc = PC(Ep_l).
We can use the induction hypothesis to obtain

WVou' (B, 1, PC(EL 4 1) rexp) ™ vV A(PC(E, , 1) : exp, Context(k + 1)) — (v, x') =
3i', e'. Creation(v') = (i", e’) i’ <k + 1 A (€', Context(i")) — (', X)

139

Wehave (E, , 1, PC(E, . 1) : exp) ™ ref. Also,

(PC(E; 4 1) : exp . f, Context(k + 1)) — (u, x) requires, for some s, ¢, 7',
PC(E,,q) :exp.f>1{c® (f: e)) Where PC(E,) :exp = 1{C),
M@ {c® (f::e)) >t ,and (¢, Context(k + 1)) - (u, x).

By Lemma 6-6, there exists ¢’ such that M(?)(¢c) —> ' and ¢"'{f::e) > ,i.e.
{t'">,1}c C.By Lemma6-2, thereexist #'", ¥ such that

(7, Context(k + 1)) — (u"",x"") . Thus PC(E, , ;) : exp = (u"', x"") and

Creation(ref) = (i, e') ni' <k + 1 A (e, Context(i")) — (u", x'") for some i’ e’ .
Therest of theinduction hypothesisis proven using acase split on theform of the transition

— —

Qp -1 = Qp .

Case: E,_1=2E, isjustified by the rule for new classiD, where

classID = HeapObjClass(#(Val (ref))).

Then (£, PC(EP) :stack-0) = ref and (E_, PC(EP) :stack-0.f) ™ v, giving
Creation(v) = (p, PC(EP) :stack-0.f) and Creation(ref) = (p, PC(EP) :stack-0)
by definition.

It remains to be shown that (PC(EP) :stack-0.f, Context(p)) — (u, x) . From above, we
have Creation(ref) = (i', e’) ni' <k + 1 A (&', Context(i")) — (u"', x'") for some ', e’ .
But because Creation is afunction (Lemma 6-12), we have i’ = p and

e = PC(EP) :stack-0, giving (PC(EP) :stack-0, Context(p)) — (#"',x"") . Therefore
for somes, {M(Spc +1) Dheag 53 < C and (s, Context(p)) — (u", x"").

The new instruction induces these constraintsin N:

{ S'pc D> tail spw Spc +1 Phead Tpc,V’ NclassID $pc Tpc,v }

U{ TpevrTpe rt w Succlpe, petl, Sy, L)

Theseimply {S,. .1 Shead Tpe,v> Tpe,v 7 Tpe,pd €N, Whichin turnimply

{M(S,. 1) Pheeg M(T . \), M(T . \) >, M(T,.)} < C.Clearly
PC(E,):stack-0.f—> S, ,(head:: f::€)

M(S,.) <head:: fie) > M,)
Thus all that remains to be proved is (M(Tpc, f) Context(p)) — (u, x).
Thefacts {M(S,., 1) Dhea 5} = C and
{M(Spc+ 1) > head M(TPC, V),M(Tpc, v) DfM(TpC, f)} cC gives = M(TPC, v) and
{s>,M(T,.)}cC.Abovewe showed (s, Context(p)) — (u", x"),
(7, Context(k + 1)) — (u, x), (', Context(k + 1)) — (¢, x""), and {r" >} < C. Now
we can invoke the instance convergence property (Lemma 6-8) to obtain the required

(M(T e, f) Context(p)) — (u, x)

C,V

Case: E, 1=E, isjustified by therulefor putfieldf.

140

Then (E, -1 PC(EP_]_) :stack-1) ™ ref and (E,-1 PC(EP_]_) :stack-0)=v.We
show that (PC(EP _4q):stack-0, Context(p — 1)) — (u, X) ; the main result then follows
immediately by appealing to the induction hypothess.

The put field instruction induces these constraintsin &V:

{ spc Dl Tpc,t! Spc > head Tpc,V! Tpc,t D tail S'pa Tpc,t > head Tpc,obj! Tpc,obj Dprc,v y o
Succ(pe, pct+l, S'pc, ch)

Clearly then, PC(Ep_l) :stack-1— Spc<tail >head ::e) and

M(S,)(tail :: head :: €) - M(T,,). Therefore for some r, z, we have

(M(Tpc, Obj), Context(p — 1)) — (r,z), and

(PC(EP _4q):stack-1, Context(p — 1)) — (r, z) . By the induction hypothesis,

3i", e". Cregtion(ref) = (i"",e") ni" <i n (e, Context(i"”)) — (r,z) . But then i = /'

ande” = ¢ ,andindeed r = ',z = x".

Lets = M(Tpc, Obj) . Then {s DfM(TpC, W3 < C and (s, Context(p —1)) — (u", x"").
From the preamble to this section (6.7.5.4), (¢, Context(k + 1)) — (u,),

(7", Context(k + 1)) > (v",x""), and {r" >y C. The instance convergence property
gives (M(Tpc, v, context(p —1)) — (u, x). Theputfield constraints show

PC(EP _q):stack-0— Spc (head ::) andM(SpC) (head :: &) —>M(Tpc, v) - Putting these
together gives

PC(E

—p—l) :stack-0 — (u, X)

Case: g,

Then (Ep, PC(EP) :exn) = ref and (£, PC(EP) zexn.f) ™ v, giving
Creation(v) = (p, PC(EP) :exn.f) and Creation(ref) = (p, PC(EP) :exn) by

definition.

1= E, isjustified by the rule for spontaneous exception throw.

It remains to be shown that (PC(EP) :exn.f, Context(p)) — (u, x) . From above, we have
Creation(ref) = (i, e') ni' <k + 1A (e, Context(i")) — (u", x'") for some ', e’ . But
because Creation is afunction (Lemma6-12), wehave i’ = p and e’ = PC(EP) texn,
giving (PC(EP) :exn, Context(p)) — (#"', X""). Therefore

(M(Wpc), Context(p)) — (u"",x"").

Theinitial constraints require of N:

{ Err ierr-pc WpC’ Wpc %@(n-pc ch b ud Nclass[D err-classID Err} o

{ Netassip Df Nclass]D,f }
Thereforefor somesome s’ , {M(Wpc) > s'} < C.Clearly PC(EP) texn.f—> Wpc (f:ie)
and M(Wpc) (f::e) > s". Thusall that remainsto be proved is (s’, Context(p)) — (u, x).

To recap, | have {M(Wpc) >s'ycC, (M(WPC), Context(p)) — (u"',x""),
(7, Context(k + 1)) — (u, x), (', Context(k + 1)) — (¢, x""), and {7" >} < C. Now

141

| can invoke the instance convergence property (Lemma 6-8) to obtain
(s', Context(p)) — (u,), asrequired.

6.7.5.5 Static Field Expressions
Suppose e isof theform PC(E, , ,) : staticlield . Then the rules for expression evaluation

require v = Globas(g, , ;)(statickield) . We also have the assumption
(PC(E, , 1) : statickield, Context(k + 1)) — (u, x), implying for some 7,
PC(E, , 1) : staticField — GPC(5k+) (staticField :: €) ’M(GPC(gk+ 1)) (staticField > e) > t,
and (7, Context(k + 1)) — (u, x).
We have already proven that (M(GPC@+ 1)), Context(k + 1)) — (M(G(,\,I ain, O)), g). Then
by the component propagation property,
. (¢, Context(k + 1)) = (v, &) A AM(G\iain, 0) P staticriera V'3 S C
Thisimpliesuz = v andx = &.
Let p be defined as
p = min {i|v = Globas(Z))(staticField) }
Clearly O<p<k+1.
If p = 0O then, by the definition of Creation and the initial state =,
Creation(v) = ((Main, 0) : staticField) . Now
((Main, 0) : staticField) — M(G 4, o)) staticField :: g)
M(G\1ain, o) (staticField 2 e) —v" and (v, &) — (v, &) ; therefore, asrequired,
((Main, 0): staticField, Context(0)) — (v', €)

Suppose p > 0. Then Global s@p _q)(staticField) = v . The only transition which can
change the mapping of & isthe execution of aputstatic staticField instruction. The
rule for that instruction requires E,_1 = [pc: pc, wstack: v 12 S, p] for some pc, p, 5.
Therefore (E,_1,pc:stack-0) ™ v.

This instruction induces the constraints

{ Spe tail Sper Spe Phead Tpevo Gpe PieldiD Tpev |
Therefore pc:stack-0 - Spc (head ::) and M(Spc) (head :: &) —>M(Tpc, v -
Applying the induction hypothesis gives (M(Gpc), Context(p — 1)) = (M(Gpain, 0))- €) -
Then applying the component propagation property with
{M(G,.) ™ gyasicrrieia M(T e)} < C gives

I, (M(Tpc, v, context(p —1)) - (v',) A {M(G(Main, 0)) > aicrieid V3 < C

Thereforev” = v'. Combining theabovegives (pc: stack-0, Context(p — 1)) — (v, €).
Now we appeal to the induction hypothesisat p — 1 to directly obtain the required result.

142

6.7.5.6 Cases For Smple Expressions

The remaining cases prove the induction result for the simple expressions of the form
stack-m, local-m and exn, for each form of transition. Therest of thischapter proves
those cases, ordered by the form of the transition. For most instructions, the strategy isto
map the expression evaluated after transition to an expression evaulated before transition,
and show that their values are the same and their types are suitably related.

6.7.5.7 Reduction Function
For each case, | define a partial function R : BExpRoot — BExpRoot satisfying the
following conditions:

Vexp,v. (Ey 11, PC(E, 1 1) :exp) = v = (B, PC(E)) : R(exp)) ™ v

Yexp,u,X.
(PC(E, 1) : exp, Context(k + 1)) — (u, x) = (PC(E,) : exp, Context(k)) — (u, x)

For those exp onwhich R isdefined, weimmediately obtain (£,, PC(E,) : R(exp)) = v and
(PC(E,) : exp, Context(k)) — (u, x); the required result follows immediately from the
induction hypothesis.

Inall the cases, we set pc = PC(E,).

6.7.5.8 Succession Lemma

Lemma 6-22. Thislemmais very helpful for showing the preservation of types during
normal control flow. It statesthat if an instruction does not modify the value of a stack
variable or local variable (implying that it only transfers control within the current
method), then the type is preserved.

Vexp,j, S, L. (PC(E,) : exp, PC(Ej)-PC(Ek+ 1) -+ Context(7)) — (u, x)

A exp #exn A SUCC(PC@].), PCE,,).5. L) N

= 3r,¢,s,1. PC(E, , 1) :exp = t{c) ns{c) > 1 A (T, Context(;)) = (u, X)
A s = M(F(exp, S', L")

Here F isdefined as follows:

F(stack-m, S, L") =8,
F(local-m, S, L") =L,
Notethat Fisnot defined for the expression exn; the expression exp can only be exn when
the abstract machine isin exception-handling mode.

Proof: By definition, (PC(E, .) : exp, PC@].)-PC(Ek+ 1) -+ Context(k)) — (u, x)
requires PC(E, , 1) : exp > t{¢), M(H){¢) > " and
(7", PC(EJ.)-PC(E,C+ 1) -- Context(k)) — (u, x) forsomez,c, 1.

143

Consider the two cases for exp; we show that in both cases, {7 <PC@J_)_PC@M) sy N
where s = M(F(exp, S'pc, L'pc)) .

Case: exp = stack-m.Thent = Spg y ands = M(S',) . Wehave

{Spc(gkﬂ) <PC(EJ-)-PC(E;¢+1) Sy < SUCC(PC(EJ.), PC(E, 4 1), 5, L")

Case: exp = local-m.Thens = L ands = M(L',). Wehave

{Leci,,) SPC(E)-PCE,. 1) L'} < Succ(PC(E)), PC(E 4 1), 8, L")

Now by the instance propagation property (Section 6-10), there exists ¢ such that

s{cy >t and {1’ <PC(5j)-PC(5k+1) '}y < C.Thisimplies (¢, Context(k)) — (u, X), as
required. [

6.7.5.9 Step: 1oadrule
Therulefor 1oad gives

Instruction(pc) = load index
Z, = [pc: pc, wstack: S, locals: £, p]
E.+1 = [pcpc+ 1, wstack: £(index) :: S, locds: £, p].

ThefunctionRis;

R(stack-m) = stack-(m-1) m>0
R(stack-0) = local-index
R(local-n) = local-n

Now consider the different cases for exp. Because R is defined for all stack-m and
local-n, thisproof sufficesto guarantee the induction hypothesis. Note that exp cannot
be exn since the machineisin state RUNNING.

N contains the constraints

{ ch > index Tpc,v: S'pc D>l spc: S'pc > head Tpc,v } w Succ(pe, petl, S'pa ch)
We also have Context(k + 1) = pc-(pc + 1) :: Context(k) and therefore
(PC(E, 4 ¢) : exp, pc-(pc + 1) :: Context(k)) — (u, X) . Thisimpliesthat

ar, ¢, s, 1. PC(E, . 1) :exp > t{c) ns{c) =1 A (F, Context(k)) — (u, ¥)

A s = M(F(exp, S'pc, ch, Gpc))
Case: exp = stack-m,m>0.Then R(exp) = stack-(m—1).

The evaluation rules show £(index) :: s isof theform vy ... :iv 1S wherev, = v.
Therefores = vy iy, 08 and (E, pc:stack-(m—1)) = v, = v, asrequired.
In this case we apply the succession lemma (6-22) with ¢ = Spc+l and

¢ = tail ::...:: tal :: head :: €, withm occurrencesof “tail”. Also, s = M(S'pc) . Therefore
M(S'pc) (¢)y — 1 where (¢, Context(k)) — (u,) ; this impliesM(SpC) (¢"y >t ,where

¢ = tal :: ¢'. Thesequence ¢’ has m — 1 tails, therefore

144

PC(E,) : stack-(m—1) —>M(Spc + 1) {c") . All together then,

(PC(E,) : stack-(m —1), Context(k)) — (u, X) asrequired.

Case: exp = stack-0.Then R(exp) = local-index.

The evaluation rules show £(index) :: s isof theform vy ... i v, 1 S" where

Vo = v = Z(index). Therefore (£, pc:1local-index) = £(index) = v, asrequired.
Inthiscaser = S, ,, and¢ = head::e. Also, s = M(S). Therefore

M(S'pc)<(‘:> —>M(TPC, weletr = M(Tpc, v) - This, plusthe congtraintsin ~, implies
M(ch) (index)y — 1. Also, PC(E,) : local-index —>M(ch) (index :: €) ; al together
then, (PC(E,) : 1ocal-index, Context(k)) — (u, X) asrequired.

Case: exp = local-n.Then R(exp) = local-n.

The evaluation rules show £(n) = v. Therefore (E;, pc: local-n) ™ L(n) = v, as
required.

Inthiscaser = L, ., andc = n:e.Also, s = M(L,). Therefore M(L ,)<¢) > 1.
Also, PC(E,) : local-n —>M(ch)<é> ; al together then,

(PC(E,) : 1ocal-n, Context(k)) — (u, x) asrequired.

6.7.5.10 Induction Step: store rule
Therulefor store gives

Instruction(pc) = store index
Z, = [pc: pc, wstack: V' i1 S, locals: £, p]
Er+1 = [pc:pc+ 1, wstack: S, locals: Z[index: V'], p] .

ThefunctionRis;

R(stack-m) = stack-(m+1)
R(1local-index) = stack-0
R(local-n) = local-n n # index

Now consider thedifferent casesfor exp. Because Risdefined for all BExpRootsother than
exn, this proof suffices to guarantee the induction hypothesis.

N contains the constraints

{ spc D> tail S'pa Spc > head Tpc,v: L'pc > index Tpc,v y o

{ L'pe>; Tpei|i € LocalNames(pc) A i # index } w

{ Lye>; Tpei |7 € LocalNames(pc) A i # index } w Succ(pe, pe+l, Sy, L))
We also have Context(k + 1) = pc-(pc + 1) :: Context(k) and therefore
(PC(E, ; 1) : exp, pc-(pc + 1) . Context(k)) — (u, X) . Thisimpliesthat

ar, ¢, s, 1. PC(E, . 1) :exp > t{c) ns{c) =1 A (F, Context(k)) — (u, x)
A s = M(F(exp, S'pc, ch, Gpc))

145

Case: exp = stack-m.Then R(exp) = stack-(m+1).

The evaluation rulesshow s isof theform vy ... iy, 0 5" where v, = v. Therefore
Stack(E,) = v ivgi.uv, S and (§,, pc:stack-(m+ 1)) = v, = v,asrequired.
In this case | apply the succession lemma (6-22) with 7 = Spc +1 and

¢ = tail ::...:: tail :: head :: €, withm occurrencesof “tail”. Also, s = M(S'pc) . Therefore
M(S'pc)<(‘:> -1 thisimpliesM(SpC)<é'> — 1", where ¢’ = tail :: ¢. The sequence ¢ has
m + 1 tails, therefore PC(E,) : stack-(m + 1) —>M(Spc+ 1) <&’y . All together then,
(PC(E,) : stack-(m + 1), Context(k)) — (u, X) asrequired.

Case: exp = local-index.Then R(exp) = stack-0.

The evaluation rulesshow V' = v. Therefore (£, pc: stack-0) = V' = v, asrequired.
| apply the succession lemma (6-22) with ¢ = ch+l and ¢ = index :: €. Also,

s = M(L'pc).ThereforeM(L'pC)<é> —>t,et = M(Tpc, v) - This, plusthe constraintsin
N, impliesM(SpC) (head ::e) - 1 .Also, PC(E,) : pc: stack-0 —>M(Spc) (head :: g); dl
together then, (PC(E,) : pc: stack-0, Context(k)) — (u, X) asrequired.

Case: exp = local-n,where n# index. Then R(exp) = local-n.

The evaluation rules show £(n) = v. Therefore (E;, pc: local-n) ™ L(n) = v, as
required.

Inthiscaser = L, ., and¢ = n:e.Also,s = M(L",). Therefore M(L’,) (c) > ¢
and 7 = M(Tpc,) - This, plusthe congtraintsin &, impliesM(LpC)<n ey >t Also,

PC(E,):local-n —>M(ch) (n . g); al together then,
(PC(E,) : 1ocal-n, Context(k)) — (u, x) asrequired.

6.7.5.11 Induction Step: new rule
Therulefor new gives

Instruction(pc) = new classiD
Z, = [pc: pc, wstack: S, locals: £, p]
Hi+q = [pc:pc+ 1, wstack: ref .. S, locals: £, p]

ThefunctionRis;

R(stack-m) = stack-(m-1) m>0
R(stack-0) is undefined
R(local-n) = local-n

For the expressions on which R is defined, the proof of R’ s correctnessisidentical to the
casesfor 1oad, and is not repeated here.

For exp = stack-0, Creation(v) = (k+1, (pc+ 1):stack-0) by the definition of
Creation; thus the induction result istrivialy satisfied.

146

6.7.5.12 Induction Step: aconst _nullrule
The proof for this case isthe same as for the new rule.

6.7.5.13 Induction Step: bipush rule
The proof for this case isthe same as for the new rule.

6.7.5.14 Induction Step: rule for spontaneous exception throw
The rule for spontaneous exception throw gives

classID e ErrorClassiDs
Z, = [mode: RUNNING, pc: pC, wstack: S, locals: £, p]
;.1 = [mode: THROWING, pc: pC, wstack: ref i €, locals: £, p] .

Furthermore Context(k) = Context(k + 1).

ThefunctionRis;

R(stack-m) is undefined
R(exn) is undefined
R(local—n) = local-n

Case: exp = stack-m.

This case cannot occur because stack expressions do not evaluate to anything in the
THROWING state.

Case: exp = local-n.Then R(exp) = local-n.

The evaluation rules show £(n) = v. Therefore (E;, pc: local-n) ™ L(n) = v.
Furthermore, since PC(E,) = pc = PC(E, , ;) and Context(k) = Context(k + 1),
(PC(E,) : 1ocal-n, Context(k)) — (u, x) . The result then follows from the induction
hypothesis.

Case: exp = exn.

Risundefined for pc:exn. However (&, , 1, pc:exn) v implies
Creation(v) = (k+ 1, pc:exn); thusthe induction result istrivially satisfied.
6.7.5.15 Induction Step: invokestaticrule

Therulefor invokestatic gives

Instruction(pc) = invokestatic methodlmpl

Z, = [pc: pc, wstack: v, 11 vq i1 S, locals: £, mstack: 4, p]

Ei 41 = [pc pc’, wstack: €, locals: [0: vy, 1: v4], mstack: (pC, S, £) :: 4, p]
pc’ = (methodimpl, 0)

Furthermore, Context(k + 1) = pc :: Context(k) . The induced constraints include

147

{ Dtall pe,tls S ¢ Phead Tpc,vl’ Tpc,tl D>tail Tpc,tZ’ Tpc,tl ™ head Tpc,VO’

M T T

method[mpl Spe Tpc m> Tpc, m Dparam-o pe,vO? T pe,m Dparam-l Tpc, vl }

Theinitial constraints also contain
{Mmethodlmpl Dparam-O Tmethodlmpl, p0- Ivlme’[hodlmpl Dparam-l Tmethodlmpl, pl
ch’ >0 Tmethodlmpl, p0- ch’ >1 Tmethodlmpl, pl}

ThefunctionRis;

R(local-n) = stack-(1-n) O<mn<1
R(exp) is undefined otherwise
Case: exp = stack-m. Thiscase cannot occur because WStack(E, , ;) = «.

Case: exp = local-n.Then R(exp) = stack-(1—n).

Inthiscasen mustbeOor 1and v = v, . Then the evaluation rules show that
(B, pc:stack-(1-n)) ™ v, = v.

Now, (pc’: local-n, Context(k + 1)) — (u, x) impliesthat
(M(T rethodimpl, pr)»> PC 1 Context(k)) — (u, x) . Combining thiswith

{M(M methodl mpl) Dparam n M(Tmethodlmpl, pn)7 M(M methodlmpl) $pc M(Tpc, m)7
M(Tcm) l>para‘noj\/[()}QC

pe, Vn

gives {M(T rethodimpl, pr) $pe M(T e vi) 3 < C. Therefore
(M(T), Context(k)) — (u, X).

If » = O then pc: stack-(1-n)— Spc<tail > head ::) and

M(S,)(tail ::head ::€) > M(T .). Otherwisen = 1,

pC:stack—(l—n)—)S <head €) andM(S . <head :: g) —>M(Tpc,v1)- Either way,
(pc: stack-(1—n), Context(k)) — (u,x). The result then follows directly from the
induction hypothesis.

pec, Vn

6.7.5.16 Induction Step: invokevirtual rule
Therulefor invokevirtual gives

Instruction(pc) = invokevirtual methodlD

E, = [pc: pC, wstack: v 1 vy i1 S, locals: £, mstack: 4, p]

Ei 41 = [pc pc’, wstack: €, locals: [0: vy, 1: v4], mstack: (pC, S, £) :: 4, p]
where pc’ = (methodimpl, 0).

The induced constraints include

{ Dtall pe,tls S ¢ P head Tpc,v1! Tpc,tl D> tail T pet2s Tpc,tl ™ head Tpc,VO! Tpc,VO

Dmethoa?]D pem S pe > tail Tpc,tZ’ S'pc > head Tpc r Tpc, m Dparem-O Tpc, V0!

Tpc, m Dparam-l Tpc, vl }

148

Theinitial constraints also contain

{Mmethodlmpl Dparam-O Tmethodlmpl, p0- Ivlme’[hodlmpl Dparam-l Tmethodlmpl, pl
ch’ >0 Tmethodlmpl, p0- ch’ >1 Tmethodlmpl, pl}

ThefunctionRis;

R(local-n) = stack-(1-n) O<mn<1
R(exp) is undefined otherwise
Case: exp = stack-m . Thiscase cannot occur because WStack(E, , ;) = «.

local-n.Then R(exp) = stack-(1-—n).

Case: exp

Inthiscasen mustbeOor 1and v = v, . Then the evaluation rules show that
(B, pc:stack-(1—-n)) ™ v, = v.

Now, (pc’: local-n, Context(k + 1)) — (u, x) impliesthat
(M(Tmethod,mp,, pn)7 Context(k + 1)) — (u, x) . Apply the preservation of virtual call types
lemma, setting ¢ = param-n, v = T andv' = T ahodimpl, pr» 91VING

pe,Vn
(M(T e, vn)s context(k)) — (u, x) .

If » = O then pc: stack-(1-n) —> Spc<tail - head ::) and

M(S,)(tail :: head ::€) > M(T .). Otherwisen = 1,

pc: stack-(1—n) —> Spc (head :: &) and M(Spc) (head :: &) —>M(Tpc,v1) . Either way,
(pc: stack-(1—n), Context(k)) — (u, x) . The result then follows directly from the
induction hypothesis.

6.7.5.17 Induction Step: return rule
Therulefor return gives

Instruction(pc) = return
Z, = [pc: pe, wstack: V' i1 S, locals: £, mstack: (PC”’, S', £") i1 4, p]
Zi4q = [pe:pc” + 1, wstack: v' i1 S, locals: £, mstack: 4, p]

Let ¢ = CalerState(k) and pc’ = PC(Z,) . Thetrangition £, => E ., ; must be an appli-
cationof invokestatic or invokevirtual, becauseonly those rules extend 7.
Therefore Instruction(pc’) = invokevirtual methodlD or

Instruction(pc’) = invokestatic methodlmpl . |nthelatter case,

methodImpl = CodelLocMethod(PC(E, , ;)); in the former case, define

methodImpl = CodelocMethod(PC(E, | ,)).

In either case, N contains the constraints

{ spc’ D> tail Tpc’,tl! spc’ > head Tpc’,vli Tpc’,tl D> tail Tpc’,tZ! Tpc’,tl > head Tpc’,VO!

s'pc’ D> tail Tpc’,tZ’ s'pc’ >head Tpc’,r y o MethOdca”(Tpc,m’ Tpc,VO’ Tpc,vl’ Gpc’ Wpc’
! ! !

Tpc’r) w Succ(pc’, pc’'+1, S pers ch,)

149

Note also that Context(k + 1) = pc’-(pc’ + 1) :: Context(c) .

By the lemma governing preservation of caller state (Lemma 6-15),
. = [pc pc”, wstack: v/ 1V i1 S, locals: £, mstack: 4, p] . Thisimplies pc’ = pc”.

Case: exp = local-n forsomen.
Thenv = £ (n), and therefore (£, pc’: exp) ™ v.

Inthiscasel apply the successionlemma(6-22) at j = ¢ withz = ch'+1 andc = n:e.
Also, s = M(ch,).ThereforeM(LpC,)<é> — 1 .Also, PC(E,): local-n —>M(ch,)<(‘:>;
all together then, (PC(E,) : 1ocal-n, Context(c)) — (u,). Applying the induction
hypothesis setting i = ¢ givesthe required result.

Case: exp = stack-m forsomem > 0.

The evaluation rulesshow v' :: 8’ isof theform vy ... iy 1 5" wherev, = v.
Therefore s’ = vy ..y, 2 S”. Now
MStack(E,) = v Vg8 =V vgivy iy, 137, therefore

(E., pC :stack-(m+1))™v = v.

We apply the succession lemma (6-22) at j = ¢ with ¢ = Spc'+l and and

¢ = tail ::...::tail :: head :: e, with m occurrences of “tail”. Also, s = M(S'pc,).
Therefore M(S'pc,)<é> 1. ThisimpliesM(Spc,)<(‘:'> — 1 ,where¢’ = tal ::c.
Therefore PC(E,) : stack-(m + 1) —>M(Spc,) (c"y. All together then,

(PC(E,) : stack-(m + 1), Context(c)) — (u, X).

Applying the induction hypothesis setting i = ¢ givesthe required result.
Case: exp = stack-0.

Thenv = ', and therefore (E,, pc: stack-0) » v. | will prove that
(pc: stack-0, Context(k)) — (u, x); the correctness of this case then follows immedi-
ately using the induction hypothesis.

From (PC(E, , ;) : stack-0, Context(k + 1)) — (u, X) and the induced constraints, it
followsthat PC(E; , 1) : stack-0 > S, (head 1 &), M(S,. , ;) (head ::¢) — and
(7, Context(k + 1)) — (u, x), for some .

Wealso have {M(S,.. , 1) <, (per + 1) M(S,0), M(S,,1) Dpeag M(T e)} < C by the
induced constraints. Therefore {7 <., +1) M(Tpe ()} < C and then

(M(Tpc,,), Context(c)) — (u, x).

We apply the preservation of return types lemma (Section 6.7.4.2) at i = k&, obtaining
Jw. Context(k) = w ® Context(c + 1) A (M(R,,.), W) = (M(R ,emodimpl, 0))- €) -

Now pc:stack-0 —> Spc (head :: €) . The constraint induced by the return instruction is
{M(S,.) Dreag M(R,)} = C,ie. M(S,) (head ::e) - M(R,) . Wejust obtained
MR,,.), W) = MR ,cinodmmpl, 0))- €) - All that remains to be shown is

(M(R(methodlmpl, O)), Context(c + 1)) — (u, x) .

150

Consider the case in which the method was invoked by invokestatic. Then
Context(c +1) = pc':: Context(c) . The constraints { M. odmmpr <pe Tpe' ms
T oo m Dresut Tper,r § are induced by the rule for‘ 1‘nvo]‘<esjcat1c Therefore
{M(R(method[mpl 0)) <per M(Tpc,’)} < C. Combining this with

(M(T ..), Context(c)) — (u, X) gives (M(R,,.cinodmpi, 0)> CONtext(c +1)) — (u, X) as

required.

Consider the case in which the method was invoked by invokevirtual. Choose
methodID such that Instruction(pc’) = invokevirtual methodID . Set ¢ = result,

i =c,v' = MR emodimpl, 0) @dv = M(T,). Theintial constraints contain
{Mmethodlmpl ™ result R(method]mpl, 0)> Tpc’, m P result Tpc’, r Tpc’,vO > methodID Tpc’, m} - Now
we appeal to the preservation of virtual call types (Lemma 6-19), applied to

(M(T e,), Context(c)) — (u, X), toobtain (M(R .. odmpi, 0))> CONtext(c + 1)) — (u, x),
asrequired.

pc,r

6.7.5.18 Induction Step: exceptional returns
The rule for exceptional returns gives

E, = [mode: THROWING, pc: pC, wstack: I'ef :: €, locals: £, mstack: (pC”', S', L") :: 4, p]
.1 = [mode: THROWING, pc: pc”’, wstack: Ief :: €, locals: £, mstack: 4, p]

Let ¢ = CalerState(k) and pc’ = PC(Z,) . Thetrangition £, => E ., ; must be an appli-
cationof invokestatic or invokevirtual, becauseonly those rules extend 7.
Therefore Instruction(pc’) = invokevirtual methodlD or

Instruction(pc’) = invokestatic methodlmpl . |nthelatter case,

methodlmpl = CodelLocMethod(PC(E, , ;)); in the former case, define

methodlmpl = CodelocMethod(PC(E, , ;)) . In either case, N contains

{ Dtall pc tl Spc’ ™ head Tpc’,vl’ Tpc’,tl D>tail Tpc’,tZ’ Tpc’,tl ™ head Tpc’,VO’
spc’ D> tail T ' 121 s'pc’ >head Tpc’ r y
MethOdca”(pe,my pc vO: Tpc,vl! GpC’ WpC’ T pe r)

Note also that Context(k + 1) = err-pc :: Context(c) .

By the lemma governing preservation of caller state (Lemma 6-15),
E. = [pc: pc”, wstack: v'q :1 V' i1 S, locals: £, mstack: 4, p] . Thisimplies pc” = pc’.

Case: exp = stack-m.

This case cannot occur because stack expressions do not evaluate to anything in the
THROWING state.

Case: exp = local-n forsomen.

Thenv = £ (n), and therefore (£, pc’: exp) » v. From
(PC(E; 4 1) : Local-n, Context(k + 1)) — (u, x), and observing that
Context(k + 1) = Context(c) and PC(E,,,) = PC(E,), clearly

151

(PC(E,) : 1ocal-n, Context(c)) — (u,) . Applying the induction hypothesis setting
i = ¢ givestherequired result.

Case: exp = exn.

Then v = ref, and therefore (£, pc: exn) » v. | will prove that
(pc : exn, Context(k)) — (u, x) ; the correctness of this case then follows immediately
using the induction hypothesis.

From (PC(E, , ;) : exn, Context(k + 1)) — (u, x) and the induced constraints, it follows
that PC(E, , 1) :exn — ch, (g) where (M(ch,), Context(k + 1)) — (u, x).

| apply the preservation of return typeslemma (Section 6.7.4.2) at i = k, obtaining
Jw. Context(k) = w ® Context(c + 1) A (M(X,,.), W) = (M(X ,.ctmodimpi, 0))> €) -

Now pc:exn — ch<e> . All that remains to be shown is
(M(X(metho dlmpl, O)), Context(c + 1)) — (u, x).

Consider the case in which the method was invoked by invokestatic. Then
Context(c +1) = pc':: Context(c) . The constraints { M. odmmpr <pe Tpe' ms

T oo mPen Xpe) areinduced by the rule for invokestatic. Therefore
{M(X(methodlmpl, 0)) <pe M(X pc,)} c C. Combining this with

(M(X,..), Context(c)) — (u,) gives (M(X ,,.cnodmpi, 0)> CONtEXt(c + 1)) — (u, X) as
required.

Consider the case in which the method was invoked by invokevirtual. Choose

methodID such that Instruction(pc’) = invokevirtual methodID.Set ¢ = exn,
i=c¢,V = MX emodmpl, 0) @d v = M(X). Theintia constraints contain

{Mmethodlmpl > exn X(method]mpl, 0) Tpc’, m Pexn ch’7 Tpc’, vO P methodiD Tpc’, m} - Now |
appeal to the preservation of virtual call types, applied to (M(X pc’)7 Context(c)) — (u, x),

to obtain (M(X ,.codmpi, 0))» CONtext(c + 1)) — (u, x) , as required.

6.7.5.19 Induction Step: athrow rule
Therulefor athrow gives

Instruction(pc) = athrow

Z, = [mode: RUNNING, pc: pC, wstack: V' :: S, locals: £, p]

Z; 41 = [mode: THROWING, pc: pC, wstack: V' :: €, locals: £, p]
Furthermore Context(k) = Context(k + 1), and the induced constraint is
{S,c Dhead Xyt -

ThefunctionRis;

R(stack-m) is undefined
R(exn) = stack-0
R(local-n) = local-n

152

Case: exp = stack-m.Then R(exp) = stack-m.

This case cannot occur because stack expressions do not evaluate to anything in the
THROWING state.

Case: exp = exn. Then R(exp) = stack-0.
The evaluation rulesshow v = v' and therefore (£, pc:stack-0) =V = v.

Now, (pc : exn, Context(k + 1)) — (u, x) impliesthat (X0 Context(k)) — (u, x) . But
since {M(S,,) >peag M(X,,) } < C, itfollowsthat (pc: stack-0, Context(k)) — (u, x).
The result then follows directly from the induction hypothesis.

Case: exp = local-n.

The proof for this caseisidentical to the proof for the corresponding case for spontaneous
exception throws.

6.7.5.20 Induction Step: rule for exception catching
The rule for exception catching gives

E, = [mode: THROWING, pc: (method, offset), wstack: ref :: g, locals: £, p]
Z.+1 = [mode: RUNNING, pc: (method, handler), wstack: ref :: €, locals: £, p]

where for some classID, handler = CatchBlockOffset((method, offset), classiD) .

The theinitia constraints contain
SUCC((meZhod, Oﬁ%el)a (melh()d! handler), Sr@(n-(method, offset)-classID: L(method, oﬁset)) o
{ Sr@(n-(method, offser)-classID > head X(method, offser) 3.

ThefunctionRis:

R(stack-m) is undefined m>0
R(stack-0) = exn
R(local-n) = local-n

We also have Context(k + 1) = (method, offset)-(method, handler) :: Context(k) .
Case: exp = stack-m.

Since (E, , ;, (method, handler): stack-m) v, v = ref andm = 0. Then
R(exp) = exn. Therulesfor evaluation give (£,, (method, offset) : exn) » v.
Now, ((method, handler) : stack-0, Context(k + 1)) — (u, X¥) impliesthat for some ¢,

{M(S1rethod, handier)) Bhead 13 < € and
(7, (method, offset)-(method, handler) :: Context(k)) — (u, ¥). We also have

{M(S(method, handler)) $(method, offset)-(method, handler) M(S'exn-(method, offset)-classID)} cC.
Therefore, for some 7',

{1 X (method, offset)-(method, handler) ©'s M(S exn-(method, offset)-classip) >head I3 < C - INdeed,

153

1" = M(X method, offset)) - Therefore (M(X menod, offset))> CONtext(k)) — (u, x). Thisimplies
((method, offset) : exn, Context(k)) — (u, ¥) . The result then follows from the induction
hypothesis.

Case: exp = local-n.

The proof of this caseisidentical to that for the corresponding case for 1oad.
6.7.5.21 Induction Step: getfieldrule

Therulefor getfield gives

Instruction(pc) = getfield fieldlD

E,. = [pc: pc, wstack: ref :: S, heap: %, locals: £, p]

Ei+1 = [pc pc+ 1, wstack: HeapObjFields(z(Val (ref)))(fieldID) :: S, heap: #, locds: £, p]
Also, the induced constraints are

{ Dtarl pets S ¢ >head T pe,0bj Tpc obj Dfe‘laUD T peV S'pc ™ head Tpc \%

Spc Dtail T pet y o SUCC(pc pC+1 Spcr chr Gpcr chr R c)
ThefunctionRis:

R(stack-m) = stack-m m>0
R(stack-0) = stack-0.fieldID
R(local-n) = local-n

Case: exp = stack-m,m>0.Then R(exp) = stack-m.

The evaluation rules show HeapObjFields(#(Val(ref)))(fieldID) :: 5 isof theform

Vo nvy v, 8 wherey, ' = v. Therefore

MStack(E,) = ref v v, 8 and (§, pc:stack-m) v, ' = v, asrequired.
In this case | apply the succession lemma (6-22) with 7 = Spc +1 and

¢ = tail ::...::tail :: head :: €, with m > O occurrences of “tail”. Also, s = M(S'pc).
Therefore M(S'pc) (¢) > " where (¢, Context(k)) — (u, x); thisimplies

M(Tpc, p{cy =1 ,wherec = tal ::¢’. Then M(Spc)<(‘:> —1.Also

PC(E,) : stack-m —>M(Spc) (c) . All together then,

(PC(E,) : stack-m, Context(k)) — (u, x); the result followsimmediately from the
induction hypothesis.

Case: exp = stack-0.Then R(exp) = stack-0.fieldID .

The evaluation rules give v = HeapObjFields(z(Val (ref)))(fieldiD) and

(E,, pc:stack-0. fieldID) ™ v.

Inthiscase | apply the succession lemma (6-22) with ¢ = S ,pandc = head: e.Also,
s = M(S') - ThereforeM(S' J<head::e) - ¢ where (z' Context(k))—>(u ¥); this
implies ¢ = M(Tpc, v - Furthermore

154

PC(Ey) : stack-0. fieldID — S, (head :: fieldID :: &) and

M(Spc) (head :: fieldID :: €y — M(TPC, v) - All together then, _ .

(PC(E,) : stack-0. fieldID, Context(k)) — (u, x) ; the result follows immediately from
the induction hypothesis.

Case: exp = local-n.

The proof of this case isidentical to that for the corresponding case for 1oad.

6.7.5.22 Induction Step: putfieldrule
Therulefor putfield gives

Instruction(pc) = putfield fieldlD
. = [pc: pc, wstack: V' i ref o S, locds: £, p]
Zi .1 = [pe:pc+ 1, wstack: S, locals: £, p]

The induced constraints are

{ spc Dl Tpc,t! Spc > head Tpc,V! Tpc,t D tail S'pa Tpc,t > head Tpc,obj!

Tpc,obj Dﬁe‘laUD Tpc,v } w Succ(pe, petl, S'pC! ch’ Gpc’ ch’ Rpc)

ThefunctionRis;

stack-(m + 2)

local-n

R(stack-m)
R(local-n)

Case: exp = stack-m.Then R(exp) = stack-(m + 2).

The evaluation rulesshow g isof theform vy v i v "0 8" wherev, ' = v.
Therefore MStack(Z,) = v refivy .y, 5 and

(E;, pc:stack-(m+2))=v, ' = v,asrequired.

In this case | apply the succession lemma (6-22) with 7 = Spc +1 and

¢ = tail ::...::tail :: head :: e, with m occurrences of “tail”. Also, s = M(S'pc).
Therefore M(S'pc) (¢) > " where (¢, Context(k)) — (u, x) ; thisimplies

M(Spc)<tail ctal ey > 7. Also PC(E)) : stack-(m + 2) —>M(Spc)<tail ctal).
All together then, (PC(E,) : stack-(m + 2), Context(k)) — (u, x); the result follows
immediately from the induction hypothesis.

Case: exp = local-n.

The proof of this case isidentical to that for the corresponding case for 1oad.
6.7.5.23 Induction Step: getstaticrule

Therulefor getstatic gives

Instruction(pc) = getstatic staticField
Z, = [pc: pc, wstack: S, globals: Z, locals: £, p]
Ei 11 = [pcpc+ 1, wstack: g(statickield) :: S, globals: &, locals: £, p]

155

The induced constraints are

{G > staticField |, pev S pe Pl spc: S'pc > head Tpc,v y o

SUCC(pc petl, Spe e, Gper Xper Rye)-

ThefunctionRis;

R(stack-m) = stack-(m-1) m>0
R(stack-0) = staticField
R(local-n) = local-n

Case: exp = stack-m,m>0.Then R(exp) = stack-m.

The proof for this caseisidentical to that for the corresponding case for 1oad.

Case: exp = stack-0.Then R(exp) = staticField .

The evaluation rulesgive v = g(staticField) and therefore (Z,, pc : staticField) ™ v .

Inthiscase | apply the succession lemma (6-22) with ¢ = Spc+l and ¢ = head:: ¢.Also,
s = M(S'pc) . Therefore M(S'pc) (head ::) — ¢ where (¢, Context(k)) — (u,) ; this
implies ¢ = M(T e, v) - Furthermore, PC(Z,) : staticField — Gpc<szazicField ey and
M(Gpc) (staticField ::) —> M(Tpc, v) - All together then,

(PC(E,) : staticField, Context(k)) — (u, x) ; theresult followsimmediately from the

induction hypothesis.

Case: exp = local-n.

The proof of this caseisidentical to that for the corresponding case for 1oad.
6.7.5.24 Induction Step: putstaticrule

Therulefor putstatic gives

Instruction(pc) = putstatic fieldID
Z, = [pc: pc, wstack: V' i1 S, locals: £, p]
Zi .1 = [pe:pc+ 1, wstack: S, locals: £, p]

The induced constraints are

{ Spe Ptail Sper Spe Phead Tpevo Gpe PieddiD Tpew + Y

SUCC(pc petl, Spe Lie, Gpes Xpes Ry).

ThefunctionRis;

R(stack-m)
R(local-n)

stack-(m+1)

local-n

Case: exp = stack-m.Then R(exp) = stack-(m+1).

The proof for this caseisidentical to that for the corresponding case for store.

156

Case: exp = local-n.

The proof of this caseisidentical to that for the corresponding case for 1oad.

6.7.5.25 Induction Step: iaddrule
Therulefor iadd gives

Instruction(pc) = iadd classID
Z, = [pc: pc, wstack: V; 11V, i1 S, locals: £, p]
Eir1 = [pcpc+ 1, wstack: (Val(vy) + Val(Vv,), 1) :: S, locds: £, p]
The induced constraints are
{ Spc D>l Tpc,tl’ Tpc,tl D> tail Tpc,tZ’ S'pc D>l Tpc,tZ’ S'pc > head Tpc,v yu
Succ(pe, pct+l, S'pc, ch, Gpc, ch, Rpc)
ThefunctionRis:

R(stack-m) = stack-(m+1) m>0
R(stack-0) is undefined
R(local-n) = local-n

Case: exp = stack-m.Then R(exp) = stack-(m+1).
The evaluation rules show (Val (v,) + Va(v,), 7) :: 8 isof theform

Vo nvy v, 8 wherey, ' = v. Therefore
MStack(E,) = vy vy iv) oy 8 and (5, pcistack-(m+1))=v ' = v,as
required.

In this case | apply the succession lemma (6-22) with 7 = Spc +1 and

¢ = tail ::...::tail :: head :: €, with m > O occurrences of “tail”. Also, s = M(S'pc).
Therefore M(S'pc) (¢) > " where (¢, Context(k)) — (u, x). Thisimpliesthat ¢ is of the
formtail :: ¢/ WhereM(TpC,) () — t'.ThisinturnimpliesM(SpC)<tai| ctal ey >t
Also PC(Z,) : stack-(m + 1) —>M(Spc) (tall :: ¢y . All together then,

(PC(E,) : stack-(m + 1), Context(k)) — (u,) ; theresult followsimmediately from the
induction hypothesis.

Case: exp = stack-0.

Then Creation(v) = (k+ 1, (pc +1):stack-0) by the definition of Creation, so the
induction result is satisfied.

Case: exp = local-n.

The proof of this case isidentical to that for the corresponding case for 1oad.

6.7.5.26 Induction Step: i fcmpeqgrules
Therulesfor i fcmpeq give

157

Instruction(pc) = if cmpegq Offset
Z, = [pc: pc, wstack: V' i1 S, locals: £, p]
2,41 = [pc: pc’, wstack: S, locals: £, p]

whereeither pc’ = pc+ 1 or pc’ = (CodeLocMethod(pc), offset) .
The induced constraints are

{ Spe >tal S)pe } o Succ(pe, petl, Sy, Ly,
Succ(pc (CodeLocMethod(pc) offset), Sy,

Gper Xpes Rye) U

Lyer Gpes xpc, Ry0).

ThefunctionRis;

R(stack-m)
R(local-n)

stack-(m+1)

local-n

Case: exp = stack-m.

The proof for this case isidentical to that for the corresponding case for store. The
successor lemmais applicable regardless of which branch is taken.
Case: exp = local-n.

The proof of this caseisidentical to that for the corresponding case for 1o0ad. The
successor lemmais applicable regardless of which branch is taken.

6.7.5.27 Induction Step: goto rule
Therulesfor goto give

Instruction(pc) = goto offset

Z, = [pc: pc, wstack: S, locals: £, p]

. +1 = [pc: (CodelocMethod(pc), offser), wstack: S, locals: £, p]
The induced constraints are

Succ(pe, (CodeL ocMethod(pc), offset), Sy, L pes Gper Xper Rye)
ThefunctionR s

R(stack-m) = (stack-m)

R(local-n) = local-n

Case: exp = stack-m.

The evaluation rulesshow g isof theform vy v, i v "0 8" wherev, " = v.

: - —_ n 4 = I
Therefore (£, pc:stack-m)=v "= v, asrequired.

In this case | apply the succession lemma (6-22) with ¢ = Spc +1 and
¢ = tail ::...::tail :: head :: €, with m occurrences of “tail”. Also, s = M(S'pc).
Therefore M(S'pc) (¢) > 1" where (¢, Context(k)) - (u, x) . Also

158

PC(E,) : stack-m —>M(Spc) (c) . All together then,

(PC(E,) : stack-m, Context(k)) — (u, x) ; the result followsimmediately from the
induction hypothesis.

Case: exp = local-n.

The proof of this case isidentical to that for the corresponding case for 1oad.

6.7.5.28 Induction Step: instanceof rules
Therulesfor instanceof give

Instruction(pc) = instanceof fieldlD
E,. = [pc: pc, wstack: ref :: S, locals: £, p]
Hi+q = [pe:pc+ 1, wstack: (', 7) i1 S, locals: £, p]

for some value of v'.

The induced constraints are

{ spc Dl Tpc,t! S'pc D> tail Tpc,t! S'pc > head Tpc,v y o

Succ(pe, pct+l, S'pc, ch, Gpc, ch, Rpc)

ThefunctionRis;

R(stack-m) = stack-m m>0
R(stack-0) is undefined
R(local-n) = local-n

Case: exp = stack-m,m>0.Then R(exp) = stack-m.

The proof for this case is the same as the proof for the corresponding case for the
getfieldrule

Case: exp = stack-0.

Then Creation(v) = (k+ 1, (pc + 1):stack-0) by the definition of Creation, so the
induction result istrivialy satisfied.

Case: exp = local-n.
The proof of this case isidentical to that for the corresponding case for 1oad.

6.7.5.29 Induction Step: checkcast rule
The proof for this case isthe same as for the goto rule. A successful checkcast does

not change the state in any way.

159

160

7 SEMI Implementation

7.1 Introduction

Chapter 6 describes the SEMI constraint system and how it is used to derive safe approxi-
mationsto the value-point relation. That chapter assumes the existence of an algorithm for
deriving a closed set of constraints from agiveninitial set. In this chapter, | describe such
an algorithm, as implemented in Ajax’s SEMI analysis engine.

First | describe the basic algorithm, and then | present a series of improvementsto the
algorithm that improve its performance. | also discuss some changes to the algorithm that
| tried and rejected because they decreased performance.

Finally, | discuss some changes to the constraint generation phase that smplify theinitial
constraint set while leading to the same results.

7.1.1 Solver Specification

Given aninitial constraint set C,, the job of the solver issimply to find a closed set C
containing C,.

C, represents constraintsinduced by the program under analysis. C represents an extension
of those constraints into a complete and consistent description of the “types’ in the
program.

Notethat such a C always exists. For example, given C,;, we can add constraints making all
variables equal and making all component and instance relationships hold between all
variables. (The resulting set is finite because only the variables, component labels and
instance labels that occur in C; need be considered.) Effectively thisgivesall expressions
the sametype. In practice this result would not be useful — it is preferable to retain distinc-
tions between types whenever possible. However, this example illustrates that implemen-
tations of the specification can trade off accuracy for performance.

7.1.2 Decidability and Performance

Henglein [42] shows that the problem of finding aprincipal (i.e., most genera) typeis
undecidable in the general setting of polymorphic recursion. However, in practice all
examples seem tractable. In fact, Henglein’ s algorithm is reported to be quite efficient at
inferring types for functional programs.

SEMI issimilar to Henglein’ s algorithm and likewise has no guarantee of termination. (In
fact, because SEMI can infer recursive types, the situation is theoretically even more dire
than for Henglein’ s algorithm: typable programs exist that have no principal types. See
Appendix A for details.) However, nonterminating cases have always been traced back to
errorsin the solver implementation. Because the worst cases may not even terminate,

161

efficiency depends on the characteristics of “average case” programs. Therefore we must
measure performance and precision empirically.

In fact, the problem of finding a closed constraint set is not the same problem as finding
principal types. As noted above, there is no unique solution to the problem of finding a
closed set, and atrivial closed set can aways be found. However, for the sake of precision
we want the analysis to distinguish types whenever possible, just as we do when inferring
principal types.

7.1.3 Refined Specification

The SEMI analysis engine extracts an approximate val ue-point relation from the closed set
C. Thisreation isthe only function of C that is used. Therefore we can relax the specifi-
cation of the engineto allow it to produce any set C' that (for agiven set Q of query expres-
sions) gives the samerelation as that derived from a closed set C. | will call suchaset C'
guasi-closed with respect to Q. This relaxation enables many optimizations.

The analysis engine actually computes a propagation graph from the constraint set and not
adirect approximation to the value-point relation (see Section 6.6.1). However, as shown
in Section 6.6, the results computed over the graph are completely determined by the
approximate value-point relation defined for the constraint set. Thereforeif C' inducesthe
same approximate relation, the results obtained from the propagation graph on C' will be
be the same as the results for C' s graph.

From the definition of the approximate value-point relation in Section 6.5.1, the analysis
concludes e <> e, if and only if

Ju, X1, X5, X1, %5 (€4, %1) = (1, X1") A (€9, X5) = (1, %5)
By the instance transitivity property (Lemma6-7), thisis equivalent to
Ju, X1, X,. (€1, X7) = (1, €) A (€9, X5) = (1, €)

Let M be a map from bytecode expressions to constraint variables, defined as M(e) = u
where 3¢, u'. e > u'{c) nu'{¢) —> u. M(e) isdefined for all expressionsin the query set
Q; thisis guaranteed by the precautionsin Section 6.4.5. Then the analysis concludes

e| <> e, if and only if

Ju, x4, 5. (M(eq), X1) = (1, €) A (M(e,), X5) = (u, €)
From these definitions, it follows that C'is quasi-closed if there exists a C such that
 Cisclosed
» Ccontains C,

e Vv e Variables(Cy). Ju, Xy, x,. (£, x1) = (u,€) A (v,X,) = (u, €) in Cif and only if
Ju, xq, X,. (1, X)) => (u,€) A (v, X5) = (u,€) in C',

1. For this reason, we could guarantee termination by timing out and falling back to an algorithm that is
guaranteed to terminate. SEMI does not do this, however; choosing a suitable timeout interval and selecting
an algorithm to fall back on appear to be rather complex problems.

162

7.1.4 Basic Structure

This chapter describes a series of algorithms leading up to the full SEMI algorithm, each
more sophisticated than the last. All the algorithms commence with theinitial constraint set
C, and add constraints to the set until it is closed (or quasi-closed).

Because the addition of new constraints to the set is a fundamental operation in the
algorithms, it is not difficult to extend these algorithms to be incremental. One can add to
theinitial constraint set C; at any time and then continue to add derived constraints until
reaching (quasi-) closure.

7.2 Basic Algorithm

The basic algorithm presented in this section corresponds to Henglein' s type inference
procedure [42].

The general procedure isto start with a set of initial constraints (the input) and repeatedly
add constraints to the set until it reaches closed form (the output). Thisis complicated by
thefact that theinitial constraint set can increase during processing, and the new constraints
can be observed by tools as soon as they are added (i.e., the results are reported incremen-
tally).

Therefore, inreality, the SEMI solver takes aset of constraintsasinput. If the set isalready
in closed form, it reports termination, otherwise it adds some constraints to the set and
reports the changesin the output of the analysis. The added constraints are chosen to move
the set “closer” to closure; that is, if the constraint set output by one step is always used as
the input to the next step, the algorithm should terminate (although as discussed above, we
cannot guarantee that it will terminate).

7.2.1 Representation of Equality

Like every algorithm of this kind, the SEMI solver uses a representation of the constraint
set that avoids explicit equality constraints. Whenever aconstraint of theform“a = 5" is
encountered or produced, it isdiscarded, and the solver substitutesb for a (or afor b) inal
other constraints. This can beimplemented efficiently by treating each variable asan equiv-
alence class and employing the union-find algorithm to merge equivalence classes.

7.2.2 Functional Representation of Components and I nstances

The component consistency rule guarantees that for a given variable # and component label
c, there is at most one v such that 7 >, v (after taking into account equivalencies). Thus the
component constraints are represented as a curried partial function F, : V>L — V.

Likewise the instance constraints are represented as F : V. —>1— V.

In the implementation, each variable v has two hash tables associated with it, one repre-
senting F (v) and the other F (v).

When a variable v is substituted for # because # and v have been made equal, #’'sL — V
component map is merged into v’s L — V component map. The tricky part of this process
is that for each / in the intersection of their domains, the variable F_ («)(/) is made equal to

163

the variable F_(v)(/); thus, the merge procedure can invoke itself recursively. The
procedure corresponds to term unification.

The algorithm also merges #’s I — V instance map into v’s I — V instance map. This is
similar to the case of the component maps, and can also result in recursive merge calls.

7.2.3 Component Propagation

The above normalization procedures ensure that the constraint set is always closed under
all rules except for the component and instance propagation rules.

We treat the remaining rules as production rules:
» Component propagation

Upon detecting { 7 <;u, t>.v } < C for some 7, u, v, 7 and ¢, add a new variable w and
constraint # >, w (unless there is already a w such that u >, w).

* Instance propagation

Upon detecting { t < u, t>c.v, u>.w} < Cfor somet, u, v, w, i and c, add a constraint
v < W (if not already present).

These are implemented using a worklist. The algorithm maintains a list of “dirty”
component constraints (e.g. “f >.v”) that must be checked by the component propagation
rule. All component constraints in C; start off in the dirty list. Whenever a new component
constraint is added to Cy, it is added to the dirty list. Whenever a variable 71s substituted for
another variable w, all the components of 7 that do not already appear in w are made dirty,
and likewise all the components of w that do not already appear in 7 are made dirty.
Formally:

{to.v|{t>,vicCA(CIu {w>,u}cC)}u
{wo . v|{wpvicCAa(Ju {t>,u}cC)}

Also, whenever an instance constraint 7 <; # is added, all the components of 7 and # are
made dirty.

During each iteration of the solver, it pulls one dirty component constraint 7 >, v from the
dirty list. Then for each # and 7 such that { 7 <; # } < C, the two production rules are
checked. Also, for each # and 7 such that { # ;7 } < C, the second production rule is
checked, swapping u# with ¢ and v with w S0 that the actual rule checked is

* Upondetecting{ u<t,u>.w, t>.v} < Cforsomet, u, v, w, i and c, add a constraint
w < Vv (if not already present).

Note that when checking thisrule, since u and ¢ are known, there can be at most one appli-
cable w.

Iteration continues until the worklist of dirty component constraints is empty. Upon termi-
nation, the constraint set is closed.

When an equality constraint is processed by applying a substitution to the entire constraint
set, the same substitution is applied to the elements of the worklist. Of course, thisis done
efficiently using a union-find data structure.

164

7.2.4 Saving Time By Recording Additional Dirtiness Information

For some variables 7 there may be many # such that 7 <; # or # <; . When a dirty component
11>, v is being processed, it can be slow to scan all the instances # such that 7 <; # and all
the sources # such that # <; 7. Therefore for each dirty component 7 >, v, we maintain a list
of all the 7 <; # and u ¥; 7 that need to be inspected in conjunction with the 7> v constraint.
For every situation in which a component constraint may become dirty, there is an
associated set of instance and source constraints that will need to be inspected.

When a new component constraint 7 > v is added, all constraints of the form 7 <; # and
u X; t need to be inspected in conjunction with 7>, v.

When a variable 7 is substituted for variable w, then for each 7 >, v such that { 1>.v } c C
A(Ju. {w >, u} < C),all constraints of the form w <; and # <; w need to be inspected
in conjunction with 7 >, v. Likewise, for eachw >, v suchthat { wi>_v } c C A

(—3u. { t>.u } < C), all constraints of the form 7 ; # and v ; f need to be inspected in
conjunction with w >, v.

Whenever an instance constraint 7 <; is added, then for each 7>, v in C, the instance
constraint <; # must be inspected in conjunction with 7 > v. Also, foreach# >, vin C, the
source constraint 7 ; # must be inspected in conjunction with u >, v.

This additional bookkeeping greatly improves runtime, while adding some space overhead.

7.2.5 Overview of an Algorithm Step
An iteration of the solver proceeds as follows:

1. Remove a dirty component constraint 7 . v from the worklist, with its associated sets
of dirty source constraints S and dirty instance constraints|.

2. For each dirty source constraint # <; 7in S, wehave { # £; ¢, 71>.v } < C. Each produc-
tion rule has premises of the form P < C. For each rule, and for each instantiation of the
free variables of P such that { v <;#,t>,.v } < P and P c C, SEMI appliesthe rule to
obtain a set of constraints that must be included in the new constraint set. Each new
constraint not already in the set is added and the dirty worklist is updated appropriately.

3. For each dirty instance constraint 7 <; # inl, wehave { t <; u, 1>, v } < C. For each
production rule, and for each instantiation of the free variables of the rule’s premises P
suchthat { # ; u, 1>, v } € P and P c C, SEMI applies the rule to obtain a set of con-
straints to add, as above.

For eachrule, it is easy to determine the possible valuesof Pgiventhat { u <7, 1>.v } <
Por{tgu,t>,.v}cP.

Consider the component propagation rule. Pisof theform { ¢ <;7, g >_s }. When checking
dirty instances, we have { 1 <, u, t>.v } < P. Theonly possibility isP={ 1t <;u, 1>,V },
so the consequence of the rule is Iw. {u >, w} < C. When checking dirty sources, we
have { u <;t,t>,.v } < P. The only possibility is P = { u £; ¢, 1 >, v }, but then since P is
of the form { ¢ <;r,g>,.s }, wemusthaveu =rand P={ K, ,1>.v }. In this case the
consequence of the rule (Iw. {7 > w} < C) is already satisfied with w = v, and so this
case need not be checked.

165

Consider the instance propagation rule. Z isof theform { g <; 7, g>.s,r>.z }. When
checking dirty instances, we have { 1 <; u, >, v } < P. The only possibility isthat P =
{t;u,t>,.v,ur.z} for somez. Sinceu and ¢ are known, there can only be one possible
value for w and it can be found by inspecting C, i.e., P is completely determined. When
checking dirty sources, we have { # <;t, 1 >,.v } < P and the only possibility is that P =
{u g, u>cs, 1>, v } for somes. Againu« and c are known, so thevalue of s is determined.

Subsequent sections describe enhancements to the basic algorithm which introduce new
rules, but in each caseit isjust as easy to determine how the variables of therulesareto be
instantiated.

7.2.6 The Extended Occurs Check

It is easy to construct constraint sets for which this algorithm does not terminate.
Furthermore, these sets do arise in practice.

For example, consider the set { T¢> oquit T, Tr < T, }- This could arise from an analysis of
the following program:

£f() { return £; }

f’sresult is an instance of £. (This is a contrived example. Real examples in Java are more
complicated, e.g., a method M that returns a reference to a new object which contains M.)

Suppose we apply the above algorithm to this constraint set:

» Apply component propagation to { T¢D> equit Tp T T} §:
add T, and constraint { T, > .t T1 }

* Apply instance propagation to { Te>resutt Tr Te < T Tr Dresure T 3
add constraint { T, <; Ty }

* Apply component propagation to { T, >requt T1, Tr < T
add T, and constraint { T| D>equit T2 }

* Apply instance propagation to { T, > equit T1 Tr <i T, T1 Dresuit T2 }:
add constraint { T; ; T, }

In type inference, the type of £ would be an infinite term:
void — (void — (void — ...))

Thisrecursive typeis not valid in Henglein’s scheme; therefore his algorithm detects this
situation and reports failure. He calls this detection the “ extended occurs check”. (Itis
analogous to the occurs check performed during term unification.) In terms of the SEMI
formalism, the extended occurs check fires whenever, for some sets of variables t; and u;:

{ 0 <ig Uy, -5 Upel i Uy, Dcompl ly, -5 by Dcompn Uy ycC

This means that the extended occurs check is applicable whenever we have a variable t;
with a transitive instance u,, which isalso transitively a component of t;.

When the extended occurs check firesin SEMI, the solver simply forms a recursive type
by adding the constraint 7, = u,,, and continues. In the example, the extended occurs check

166

detectsthe constraints { T
expansion.

T, T¢<; T, } and addsthe constraint T, = T, , halting the

result

Notethat adding thisequality forcesvariablesto be equal that do not necessarily need to be
equal according to the initial constraints. Thisiswhy SEMI does not compute a most
generd (i.e., principal) solution. The demonstration of non-existence of principal typesin
Appendix A isbased on asimilar example.

The implementation of the SEMI solver performs an extended occurs check whenever the
instance propagation rule adds a new instance constraint <; uto C. It sets u,,_; =1, u,, = u,
and i, = 7, and then searches the component and instance graphs for a variable 7| satistying
the check. Any such variables found are bound to #. The search proceeds by first scanning
the instance graph backwards, finding all candidate #;s that are transitive sources of ¢
(including # itself), and for each candidate, scanning its components transitively looking for
u.

This check could easily be changed from worst case O(NZ) time, where N is the number of
variables, to O(N) time, smply by finding all transitive sources of t first, storing themina
hashtable-based set, then scanning all of t’ s transitive parents (variables that havet asa
transitive component) and testing for membership in the set. In practice, however, the
average numbers of transitive instances, sources, components or parentsthat a variable has
areall very large, and acheck that islinear time in any of these quantitiesis prohibitively
expensive (since the extended occurs check is performed frequently). Therefore SEMI uses
amore complex approach, described below, which builds on the basic algorithm above. It
turns out that with the help of those optimizations, the worst case O(NZ) version performs
significantly better.

7.2.7 Nondeter minism

The agorithm presented here isnondeterministic, asare all the following elaborations and
the implementation itself. There is always flexibility in choosing the order in which to
remove constraintsfrom the worklist. Different orderings can lead to different results of the
algorithm, because the extended occurs check may fire at different times and induce
different equality constraints.

The implementation also produces non-deterministic results because it is written in Java,
and Java s semantics does not fully define the behavior of the implementation. In
particular, the “identity hash code” of an object is not defined by the Java language speci-
fication. The identity hash code is returned by the default implementation of
Object.hashCode (); theonly requirement is that it always return the same value for
any given object. When the same program is run multiple times on the same Javavirtual
machine implementation, the identity hash codes assigned to its objects are often observed
to vary between runs. This leads to observable variations in behavior, because the enumer-
ation order of the elements of hash tables and related data structures depends on the values
of the identity hash codes.

In practice, Ajax almost always returns the same results for multiple runs of agiven query.

167

7.3 Optimizing the Occurs Check: Clusters

The naive approach to performing the extended occurs check can be sped up by exploiting
the structure of constraintsinduced by a Javaprogram (or any program that haslayersinits
architecture, i.e., amost all programs).

7.3.1 Congtraint Structure
SEMI generates instance constraints from a Java program in the following situations:

* A method body M, makes a“static” call to another method M, (M, depends on M,).
» A method body M, creates anew object of aclass C (M4 depends on C).

» A method body M, isinstalled in the dynamic dispatch table of aclass C (C dependson
My).

Due to the layered structure of most programs, the graph of dependenciesis*® mostly”
acyclic. (However, the IDK class library itself contains a number of surprisingly complex
cycles, so it isimportant to be able to handle cycles well.)

7.3.2 Clusters

Normally (i.e., in the absence of acycle of mutually recursive dependencies), the variables
associated with parameters, local variables, results, and intermediate values within agiven
method, and variables which are components of those variables, are related only by
component constraints. I nstance constraints (and only instance constraints) relate these
variablesto variables associated with other methods. Similarly, inaclasstherearevariables
associated with the method dots, and avariable for the prototype object of the class, which
are related to each other by component constraints only. Instance constraints relate these
variablesto variablesin the methods that create objects of the class, and to variablesin the
method bodies used by the class.

The SEMI solver explicitly captures this structure. The variables are partitioned into
abstract clusters; the partition is written R : V — X (where X is the set of cluster labels).
The only required property of R is that if 71>, # 1s a constraint, then R(#) = R(x). In other
words, all variables related by only component constraints are in the same cluster.
Typically, Java programs give rise to a large number of small clusters (one cluster per
method).

It is not strictly necessary to have R be the most refined partition possible, but that is easy
to implement and gives the best results. That is, if # and # are not related by any chain of
component constraints, ignoring direction, then R(?) = R(u).

The implementation maintains the cluster map dynamically, taking account of variable
merging and the introduction of new constraints.

7.3.3 Optimizing the Extended Occurs Check Using Clusters

The cluster map is used to short-circuit the subroutine that computes “Is « a transitive
component of 17" If R(u) # R(#;), then the result must be false. Since clusters are generally
small and numerous, and following an instance constraint usually leads to another

168

(different) cluster, R() # R(#;) almost always holds during the extended occurs check
search.

7.3.4 Cluster Levels

Unfortunately, even scanning all transitive sources of a variable and performing a constant-
time check for each istoo expensive, given the frequency with which extended occurs
checks are performed.

SEMI resolves this problem by explicitly capturing the “mostly acyclic” structure of the
inter-cluster instance graph. The instance constraints are projected onto the clusters; i.e.,
the clusters are assembled into a directed graph G such that for each 7 <; u, (R(?), R(u)) is
an edge in G. Then the graph is partitioned into strongly connected components, called
cluster levels. This partition is written S : X — Z, where Z is the set of cluster level labels.
By definition, G projected onto cluster levels is acyclic (excluding self-loops). The fact that
G itself is “mostly acyclic” means that most cluster levels contain just one cluster.

The implementation maintains the cluster levels dynamically, asthe underlying constraint
system changes. SEMI does this efficiently, but the implementation is tricky because
detecting cycles can be expensive. It is helpful to delay cycle detection until the cluster
levels are required to be in aconsistent (acyclic) state (i.e., until the next extended occurs
check). SEMI maintainsa“dirty” bit for each cluster level, indicating that it may be part of
acycle of cluster levels because of the addition of new instance constraints incident to the
cluster level. When acyclicity is required, the algorithm performs aworst-case linear time
traversal of the cluster level graph — a depth-first search backwards along the instance
edges, starting from the dirty cluster levels. Any cycles found are recorded. Finally, the
cluster levelsin each cycle are merged. It requires care to make sure that all cyclesare
detected, since the straightforward depth-first search algorithm for cycle detection isonly
guaranteed to find one cycle (assuming a cycle exists).

In SEMI, the cost of maintaining the cluster levelsis usualy negligible and never the
performance bottleneck.

7.3.5 Optimizing the Extended Occurs Check Using Cluster Levels

The cluster level map is used to optimize the subroutine that scans the source graph for al
candidate t;S that are transitive sources of t.

The extended occurs check subroutine receives 7 and # where u is an instance of 7. Therefore
every candidate 7 has u as a transitive instance. Now suppose for some candidate t;,
S(R(u)) # S(R(#;)). There must be a path from S(R(#;)) to S(R(%)) in the instance graph
projected onto the cluster levels, because there is a path from #; to # in the instance graph.
Because the cluster level instance graph is acyclic, there cannot be a path from S(R(#)) to
S(R(#;)). Therefore, for all transitive sources s of 7;, S(R(s)) # S(R(«)) and therefore

R(s) = R(u), because otherwise we would have an instance path from S(R(s)) = S(R(«)) to
S(R(#))).

Therefore, whenever the extended occurs check subroutine detects S(R(u)) = S(R(#1)), #;’s
sources need not be searched. In practice this prunes the search tremendously. In particular,
if S(R(#)) = S(R(?)) then neither 7 nor its sources need be checked; the entire check takes
constant time.

169

In the specia casein which there are no recursive dependencies in the original program,
theinstance graph projected onto clustersisacyclic, i.e., Sisone-to-one. Then the extended
occurs check always completes in constant time. In other words, this optimization ensures
that the extended occurs check only incurs a cost (apart from the cost of maintaining the
clusters and cluster levels) when polymorphic recursion is actually being used.

7.3.6 Replacing the Extended Occurs Check with a Conservative
Approximation

In the case S(R(u#)) = S(R(?)), instead of performing the rest of the extended occurs check,
one could simply add the equality constraint # = # . The new instance constraint 7 <; # 1S
reduced to a self-loop in the instance graph, which forestalls the nonterminating behavior
that the extended occurs check is designed to prevent. This approach is similar to the
Hindley-Milner algorithm, which (interpreted in this context) prohibits any polymorphism
constraints within a cluster level. This behavior can lead to smaller constraint sets because
of the “unnecessary” equalities that are introduced, which improves performance but does
yield a noticeable decrease in accuracy for some applications of the analysis.

7.4 Scheduling the Worklist Using Cluster Levels

It turns out that the acyclic cluster level graph isuseful for tasks other than optimizing the
extended occurs check.

7.4.1 The Scheduling Problem

Components propagate from sourcesto instances, but not the other way around. Therefore
as changes are made to constraints at the “bottom” of the instance graph, they tend to
“bubble up” to instances. It improves performance to do as much work as possible at the
bottom of the instance graph before making changes further up the graph, by reducing the
number of times each component is visited or examined.

7.4.2 Using Cluster Levels

A cluster level /is “dirty” if there is a component constraint in the worklist of the form
1>, u, where S(R(?)) = 1.

Whenever SEMI chooses a component constraint from the worklist, it chooses a constraint
t >, u where the cluster level S(R(?)) has no dirty cluster levels below it in the instance
graph projected onto the cluster levels. Such a constraint is guaranteed to exist because the
cluster level instance graph is acyclic.

Making this choice efficiently istricky, but requires negligible time and space in the SEM|
implementation. The dirty component constraints are stored on the worklist indexed by
cluster levels; the problem reducesto finding an appropriate cluster level towork on. SEMI
explicitly records the dirtiness of each cluster level. It aso cachestwo factsin each cluster
level: whether it isknown that thereisat least one dirty cluster level below it inthe cluster
level instance graph, and whether it is known that there are no dirty cluster levels below it
in the graph. In practice, this cache can be updated and invalidated efficiently in response
to changes in dirty state and changes in the underlying constraint set.

170

The system keeps alist of dirty cluster levels, separated into two parts: the set of dirty
cluster levels that are known to have no dirty cluster levels below them on the projected
instance graph (the “ready list”), and the rest (the “blocked list”). When a constraint is
selected fromtheworkligt, if theready list is non-empty then acluster level ischosen from
it and one of the cluster level’ sdirty constraintsis selected.

If theready listisempty, then acluster level | ischosen from the blocked list. The agorithm
performs a depth-first search of the cluster level instance graph, backwards from |, from
instancesto sources. During thissearch, each visited cluster level ismarked aseither having
dirty cluster levelsbelow it, or not. If not, then the visited cluster level is moved from the
blocked list to the ready list. The acyclicity of the cluster level instance graph guarantees
that after this procedure, at least one dirty cluster level will be found with no dirty cluster
levels below it (unless there are no dirty cluster levelsleft, in which case the algorithm
terminates).

7.5 Suppressing Components. Advertisements

7.5.1 Useless Component Propagation

Suppose F is a function in the program for which we infer a large “type”, Tg. This means
that Ty is the root of a large graph of component constraints. At every use of F (a direct call
or the use of F to fill a slot in a method table), a new instance i of Ty is created, and a
constraint Ty <; 71s added. The component propagation rule will effectively copy the
transitive components of Ty, (1.e., the component graph under Tg) to the instance. Often,
however, much of this structure will not be used. For example, consider this Java code:

Foo x = bar();
println(x.kitty);

Given the code for bar, the analysis may work out some complex type structure for its
return value, including information about the various methods and fields of x. All this
information will be propagated to the caller, but only one field is used, and therefore the
rest of the information is irrelevant.

Furthermore, suppose bar is implemented as a wrapper:

Foo bar() { return baz(5); }

Such constructs are common, and defeat purely local schemes for suppressing useless
structure.

7.5.2 lllustration

Consider the constraint set Q shown in Figure 7-1. This diagram and the diagrams that
follow represent constraint sets as graphs. Nodes correspond to variables. A constraint of
the form 7 >, u is displayed as a solid edge from #'s node to #’s node labelled with > .. A
constraint of the form 7 <; u 1s displayed as a dotted edge from #’s node to #’s node labelled
with ¥;.

171

Figure 7-1. Initial constraint set

T represents the type of some compound object with an instance i and further instances
and k. Assume Q containstheinitial constraint set, C,. The basic algorithm extends Q to the
closed set C shown in Figure 7-2.

Figure 7-2. Closed constraint set

The basic algorithm reaches C by copying T's component tree to all the instances, and
connecting the components with instance relationships.

7.5.3 Quasi-closure Conditions

These new components are al unnecessary — Q is, in fact, quasi-closed. To see this,
consider two variablesin C;, uand v. We must show that u and v arerelated in Q if and only
if they arerelated in C.

172

The notation “u < v" means that there is a chain of instance constraints from u to v.
There are two cases:

* Suppose # and v are not related in C. Then —3x. # <o x A v Z¢ x. It follows that
—3x. u Ko x AV XX, since Cis a superset of Q. Therefore u and v are not related in Q.

* Suppose # and v are related according to C. Then Jx. # X x A v X x. We show that
Jp. u <o p A v g p, by induction on the length of the shortest chain of instances just-
fiying u Z¢ x.

Regardless of the length of the chain, if x occurs in Q, then # < x A v X x, since the
chains of instances justifying # <¢ x and v < x are also in Q. (In other words, every
instance constraint in C that holds between variables in Q is is already in Q.) Thus the
induction hypothesis holds, setting p = x.

If the length of the chain is zero, then x = #, hence x 1s in Q and the hypothesis holds.
If x is not in Q, then it must be a child variable of one of the new component con-
straints. Each such variable has a unique predecessor P,. in C such that P, < x. The
chains # ¢ x and v X x must have length at least one, since x is not in Q and therefore
does not equal # or v. Therefore the last link of each chain must be P, < x. Therefore,
u Xc Py A v < P, alsoholds. By the induction hypothesis, 3p. u <op A v g p.

This argument can be generalized. A general set Q is quasi-closed over C; if:

1. Equalities have been eliminated from Q, and it is closed under the instance and compo-
nent consistency rules (guaranteed by my representation).

2. Q contains C,.
3. Qisclosed under the instance propagation rule.

that { ur>.w } Q.
S.Forallt,u, c,v,if tLqun{t>.vicQbut{ur, w} isnot in Q for any w, then the
set { x| w,pyLqua{xyxp.w cQa-@z {y>.z;cQi={1}
Conditions 1 and 2 are fundamental. Conditions 3 and 4 are required to justify the“xin Q”
part of the proof; they require Q to be closed except possibly for some unexpanded
instances of compound structures. Condition 5 isrequired to justify the*xnot in Q” part of

the proof; it ensures that if a component ¢ is not propagated to u, then there is a unique
instance-chain predecessor that has a real component that we can fall back to.

4. Forall t,u, v, c,x,y,if tLqu nuovna{1>.x, v,y } CQ,then thereis aw such

7.5.4 Advertisements

The system reaches this state by propagating components lazily. When the component
propagation rule fires, it actually propagates an advertisement, representing the possibility
of a component being present in the instance. An advertisement is a pair: the parent
variable, v, and a component label, ¢, written v &.. These advertisements are propagated
along the instance graph using two rules:

» Advertisement propagation from component
Upon detecting { # <;u, t>.v } < Cforsomet u, v,iand ¢, add u b,.

173

» Advertisement propagation from advertisement
Upon detecting { # ; u, 1.} < Cforsomet, u,iand ¢, add u b,.

If avariablet already has a component c, then it does not need an advertisement for the
same component.

» Redundant advertisement suppression
Upon detecting { 75, 1>,.v } < C for some 7, v and ¢, delete 7 &,..

These rules replace the component propagation rule. They guarantee that quasi-closure
conditions 1, 2 and 3 hold upon termination.

7.5.5 Example

Consider Figure 7-3. Instead of copying T’ s entire component tree, we have added adver-
tissments for T's immediate components.

_ —
N7
_wr Be/ Pd
_ -~ <
Pe Bd \:k\
Be Ba

Figure 7-3. Use of advertisements

7.5.6 Ensuring Quasi-closure: Fill-in

To satisfy quasi-closure condition 4, the algorithm “fillsin” an advertisement that hasareal
component above it in the instance graph:

* Advertisement fill-in
Upon detecting { # <; u, t&,, u>,.w } < C for some#, v and w, add 7 >, v, where vis a
fresh variable.

For example, consider theinitia set shown in Figure 7-4.

SEMI adds an advertisement between T and U, as shown in Figure 7-5. Thefill-in rule will
ensure that the advertisement is replaced with areal component, as shown in Figure 7-6.
The instance propagation rule will then ensure that the instance chain from T, to U, is
completed, as shown in Figure 7-7.

174

— =
Si_ - T 5
T - — - o~ U
> >
T U,
Figure 7-4. Initial constraint set before fill-in
%1/ - T - - gj
T - — B o~ U
> >
T Uq
Figure 7-5. Advertisement constructed before fill-in
Si_ - Tl g
T - — 7 I U
I>C
> >
T U,
Figur e 7-6. Advertisement replaced with component
Si_ -7 T <
T - — - o~ U
I>C
>c _ - >
T — - U,

Figure 7-7. After fill-in

7.5.7 Ensuring Quasi-closure: Detecting Conflicting Sources

To satisty quasi-closure condition 5, each advertisement is associated with an adver-
tisement source, s, that records the variable the advertisement is derived from. The adver-

175

tisement is written 7 &, [s]. Quasi-closure condition 5 becomes the “unique source
condition”:
If the advertisement u &, [s] exists, then
{x[FwyixryLcuxp.wcCAVzy>. 27 C)j={s}

The advertisement rules are extended:

» Advertisement propagation from component
Upon detecting { 7 <; u, t>.v } < Cforsomet, u, v,i and ¢, add u & [1].

» Advertisement propagation from advertisement
Upon detecting { 7 <; u, t&,.[s] } < Cforsomet, u,s,iand ¢, add u &, [s].

* Redundant advertisement suppression
Upon detecting { &, [s], >.v } < C for some ¢, v, s and ¢, delete 7 &, [s].

» Advertisement fill-in
Upon detecting { 7 <; u, &, [s],u >, w } < C for some 7, u, s and w, add 7 >, v, where v
is a fresh variable.

When a conflict arises — two advertisements for the same component show different
sources — we collapse the advertisements and make areal component.

» Conflicting advertisement detection
Upon detecting { 7. [s], 1&,.[r] } < C for some 7, s, ¢ and 7, where r # s, create a new
w and add 7 >, w.

Thisruletestsfor the inequality of two variables. This can be tricky because variables can
become equal during the run of the algorithm, but in fact it only means that conflicts may
be detected that in the end may not be “true” conflicts. Since replacing an advertisement
with areal component is always a conservative operation (possibly hurting performance,
but never correctness), thisis not a problem.

The conflicting advertisement rule guarantees that upon termination, the unique source
condition is satisfied.

7.5.8 Simple Example
For example, consider the C; in Figure 7-8.
The algorithm propagates advertisements from U and T to V, but since U # T, the conflict

detection rule fires and a real component is created for V. This is necessary to make the
result quasi-closed.

7.5.9 Advertisement Source Updates

The conflicting advertisement detection rule aloneis not satisfactory, however. Consider
the example in Figure 7-9.

Suppose the agorithm propagates an advertisement from T to V and then W, and then
propagates an advertisement from U to V. (This schedule might be chosen because of
additional constraints not shown.) Now at V there are conflicting advertisements, with
sourcesU and T. The algorithm createsareal component at V. Theresulting stateis shown

176

C

Figure 7-8. Initial constraints leading to advertisement source conflict

U
> ~ - v
_ ¥
Uc éi// s N
T - —
D¢
Tc

Figure 7-9. Initia constraints requiring advertisement source update

in Figure 7-10. Next the algorithm propagates an advertisement for that component to W.
Now there are conflicting advertisementsat W, with sources T and V, so a new component
must also be created at W. This is suboptimal because W could simply have an adver-
tisement with source V.

To avert such situations, it sufficesto destroy the advertisements that could be affected by
anew component; they will be regenerated with correct source information, if possible.

» Advertisement source update
Upon detecting { 1 &.[s],y>.z } < Cforsome?,s,y, zand ¢, where s <), ¥ <¢ f and
s #y, delete “1 &, [s]”.

7.5.10 I mplementation

Advertisement constraints are easily added by treating them as a degenerate kind of
component. Propagation and fill-in detection are implemented by allowing advertisements
as well as components to be on the dirty worklist. Conflicting advertisement detection is
straightforward to implement and is done eagerly.

177

C

I>C — —~ V\ <
§] %i - - T \\\k — W
C T - - l> \‘
— C
B> [U]
I>C

Figure 7-10. Initial constraints requiring advertisement source update

The advertisement source update is difficult to implement efficiently. The straightforward
implementation can destroy and recreate many advertisements each time a component is
added. SEMI usesan alternative representation for the sourcefield of an advertisement. An
advertisement for c at t records a“bottleneck variable” v such that every instance chain
from the true source sto t passes through v. v may be s, or it may be some instance of s, in
which case v also has an advertisement for ¢ (and itsown bottleneck variable, etc). Thetrue
source sfor t can be found quickly; itiseither v, or it isv'strue source. When visnot s,
components may be added along the path from s to v without having to update the infor-
mation cached in the advertisement at t.

7.6 Globals

7.6.1 Handling Program Global Variables

It is straightforward to encode a program’ s global variables (“static fields’ in Java) in the
constraint system presented. They can be treated asasingle “globals’ object with onefield
for each variable, which is passed into each function as a parameter. However, thisis not
very efficient because global sinformation must be copied into each method type. It ismuch
more efficient, and no less accurate, to have just one variable representing the globals
object and one copy of theinformation for the global variables. Lemma 6-21 showsthat this
isno less accurate. The lemma states that the information inferred for the globals object in
any context is always the same.

7.6.2 Characterization of Constraintsfor Globals

In terms of the constraints, a constraint variable v in an initial set C; can be said to be global
if, for all closed sets C containing C, 3g.Vy. v X¢ y = ¥ < g This means that there is a
“top level” constraint variable g representing all instances of the global data. Lemma 6-21
shows that the constraint variables corresponding to static fields in the bytecode have this

property.

178

It iseasy to see that an instance of aglobal constraint variable is also global. Furthermore,
acomponent of a global constraint variable is also global, because al instance chains
propagate down the component constraint.

Suppose that global constraint variables 7 and u are related according to the VPR approxi-
mation derived from a quasi-closed constraint set (Section 7.1.3). Then Ix. # K x Au L x.
Choose g suchthat Vy. r <c y = ¥ <¢ g Then x X¢ g, and therefore # < g. This implies
that g and u are related according to the VPR. Thus, #’s global representative g behaves
identically to 7 in the VPR. We can unify all global constraint variables with their global
representatives without changing the derived VPR.

7.6.3 Implementation

SEMI marks constraint variables corresponding to static Javavariables as global and gives
these constraint variables special treatment:

e If7>.vandis global then v is marked global.

» When aglobal constraint variable is unified with another constraint variable, the result-
ing variable is marked global.

» If7<;uandis global, then the algorithm sets 7 = «# and deletes the instance constraint.
This leads to # being marked global.

* Global variables do not belong to any cluster or cluster level. The cluster invariant is
modified to “if 7>, v and v is not global then 7 and v belong to the same cluster”. The
scheduler keeps a separate list of dirty constraints on global variables and always pro-
cesses them last, when no dirty clusters are available.

7.6.4 Exceptions

SEMI encodes exceptions thrown by methods as auxiliary result components of method
types. Inrea Javaprograms, asfar as SEMI can tell any exception thrown by amethod may
propagate to the top level. (Thisis because catch clauses that catch all exceptions always
rethrow the caught exception, and in the case of selective catch clauses SEMI cannot distin-
guish between the exceptions that are caught and the exceptions that are not caught.) This
means that variables corresponding to thrown exceptions (or their components) satisfy the
same constraint property given abovefor variables corresponding to global data. Therefore
SEMI uses the “globalization” optimization for variables corresponding to thrown excep-
tions. This technique causes no loss of precision, and in practice the savings in space and
time are significant.

7.7 A Failed Optimization: Cut-throughs

7.7.1 Example
Consider the following program:

179

Foo f1() { return new Foo(); }
Foo f£2() { return £1(); }

Foo £3() { return £2(); }

. £3()

Any necessary components of the new Foo will be propagated to the call site for £3. The
variables corresponding to the results of £2 and £1 will also get copies of the components.
This is unsatisfying because handling these semantically meaningless layers of abstraction
could exact a significant cost in time and space for the solver.

7.7.2 Cut-throughs

I attempted to resolve this problem by introducing a notion of a “cut-through instance”: a
single instance constraint that summarizes a chain of instance constraints. In the example,
a single cut-through instance could connect the result of “new Foo” with the result of £3.
This meant that the components of the object need not be expanded in the results of £2 and
£1.

It was very difficult to implement. A large amount of bookkeeping was required to ensure
consistency, and it was tricky to implement efficiently. To make the implementation
tractable, | had to carefully restrict the circumstances in which cut-through edges could be
used. Unfortunately, experiments showed that on real examples cut-through instanceswere
hardly ever being used. | do not recommend introducing this style of optimization, and
SEMI does not performit.

7.8 Reducing the Number of Initial Constraints

7.8.1 Dynamic Method Call Resolution

In SEMI, “virtual” method calls are usually more costly to treat than static method calls
becausetheinferred type of the method will often be copied into the types of many objects.
Therefore it is advantageous to apply a preprocessing step to reduce as many dynamic
method calls as possible to static ones. Thisisimplemented in SEMI by allowing an Ajax
analysis to be specified as an optional parameter; SEMI will issue a query using this
analysis, and use the results to resolve as many dynamic method calls as possible.

For this strategy to be useful, the subordinate analysis should be significantly cheaper than
SEMI. My experiments use RTA++ for this purpose.

Ajax providesincremental updatesto the results of an analysis. For adynamic method call
resolution query, this means that a call site with multiple possible callees will initialy be
reported as “dead” (callee set isempty), then reported as “ statically resolvable’ (callee set
isasingleton), and then reported as “unresolvable’ (callee set has two or more elements).
Because SEMI does not support revocation of constraints, if it were to observe the “ stati-
cally resolvable’ state and immediately add appropriate constraints for static method
invocation, it would then not be able to revoke them if the state changed in the future to
indicate“unresolvable”’. Thiswould not harm correctness, but it would reduce accuracy. To
avoid this problem, the subordinate analysis is run to completion before SEMI usesits
results.

180

Thistechnique a so improves both performance and accuracy. Accuracy improves because
the statically resolved method call istreated polymorphically rather than monomorphically.

7.8.2 Lazy Method Slot Stuffing

The initial constraints install an instance of each method implementation’ s signature into
the signature for each class C which uses that method implementation. The SEMI imple-

mentation delays installing such an instance until it has been determined that that class's

method slot may actually be used, i.e., an invokevirtual instruction cals the appro-

priate method on aclassthat is a superclass of (or equal to) C. Thus, nonstatic methods of
aclass which are not actually called will usually not contribute to C' sinferred type infor-
mation; this vastly reduces the amount of work for SEMI.

The determination of which nonstatic methods may actually be called takes advantage of
the information recovered for dynamic method call resolution.

7.8.3 I nstance Suppression

If apolymorphic value in the program has only one instance, one loses no accuracy by
treating it asif it were not polymorphic. Suppose the label for the instanceisi. Then all
instance constraints labelled i can be replaced with equality constraints. This can greatly
reduce the number of variables and constraints in the system. This optimization isused in
the following situations:

* Instructions with only one predecessor in the control-flow graph for their method need
not be treated polymorphically. This provides a vast saving.

» Methods called from only one call site, wherethe callee is statically known, need not be
treated polymorphically. The information required to implement thisis gathered in
much the same way as for dynamic method call resolution, discussed above.

» Classescreated at only one site need not be treated polymorphically.

7.8.4 Disabling I ntra-method Polymor phism

Asmentioned in Section 6.3.8, control transfers within a method are modelled as function
calls, and instructions at control flow merge points can be treated as polymorphic functions
with multiple callers (one caller for each incoming control flow path). In practice, however,
allowing such instructions to be treated polymorphically provides little or no accuracy
benefit, and imposes a significant burden on performance. Therefore | have turned this
option off for al my experiments; all control transfers are treated non-polymorphically.

7.8.5 Structural Shortcuts

In the formal presentation, | have sets of variables for the stack (S), local variablefile (L),
and global variabletable (G). The former two sets of variables can be (and are) eliminated,
along with the component constraints binding them to particular stack and local variable
elements, by “pre-solving” those constraints. In the implementation this amountsto aform
of def-use analysis, and greatly reduces the number of constraints generated. (However,
since these constraints are always local to a method, the overall performance impact may
be limited.) This optimization is performed even when intra-method polymorphismis

181

enabled; in that case, the constraint generator “manually” adds the correct instance
constraints that would have been propagated from the constraints on the Ssand Ls.

The globalization optimization described above in Section 7.6 facilitates the removal of
explicit variables and constraints for the global variable table. Variables for individual
globals are resolved directly to their top-level variables, and no constraints involving the
Gs need be recorded.

7.9 Reducing the Number of Inferred Constraints

7.9.1 Component Partitioning

Consider a Java class C with anumber of (possibly inherited) fields or methods, and a
constraint variable v, which in some traces corresponds to objects of class C. The variable
v may have a number of component congtraints, asillustrated in Figure 7-11. Each
component constraint generates an advertisement at each instance.

Figure 7-11. Advertisement proliferation

Suppose we partition the fields of C. We then replace a direct component constraint for a

field with apair of constraints, one identifying the partition, and one identifying the actual

field within the partition. Continuing the above example, suppose that there are two equal-
sized partitions. The result is shown in Figure 7-12.

If asingle partitioning schemeis used consistently everywhere, the results obtained will be
identical to those obtained by the simple constraint system. As this example shows, the
partitioned component constraints may require fewer advertisements to be generated,
although more component constraints are required.

A simple and natural partitioning scheme isto have one partition for each Java class and
assign the component constraint for afield or method to the class in which that field or
method is declared. A more elaborate scheme would be to form a hierarchy of partitions
corresponding to the class hierarchy of the program.

Section 9.5.4 compares performance results for the different schemes. The smple parti-
tioning scheme is superior to the elaborate scheme, and is also superior to no partitioning.

182

Figure 7-12. Advertisement proliferation averted
7.10 Suppressing Components. Modality

7.10.1 Example
Consider the following Java code:

Foo x = b ? new Bar () : new Baz();
println(x.kitty);

The advertisement algorithm does not perform well on this code. Consider Figure 7-13.
Suppose T, is the constraint variable associated with x. For each dynamically dispatched
method m defined in both classes Bar and Baz, T, will get two advertisements for
component m, one from Bar and one from Baz. If the method implementations are
different, then the advertisements will have conflicting sources, so the structure of the
method’s inferred type will be expanded (forming the unification of the types of Bar’sm
and Baz’s m). This can result in a large number of unnecessary constraints.

7.10.2 Approach

SEMI annotates component constraints with mode information indicating how that
component is used. A component constraint is written 71>, u, 1 >, u, t Dcd u,ort DCCd u.
The superscript “c” means that the component is used in “constructor” mode. The super-
script “d” means that the component is used in “destructor” mode. The superscript “-
means that the component is not used in any mode. “cd” means that the component is used

in both modes.

The idea comes from the realm of functional languages. In that domain, component
constraints are associated with the use of type constructors, such as the arrow type for
functions. The type rules for these languages have two forms. one form that introduces a
new occurrence of the constructor (“constructor mode’), e.g., the “lambda’ rule for
creating a new function, and another form that eliminates an occurrence of the constructor
and uses the components (“ destructor mode”), e.g., the “app” rule for applying afunction.
Theintuition | rely onisthat if acomponent is not used in both constructor and destructor
modes, then no useful information istransmitted through it. For example, if afunction type

183

Figure 7-13. Constraint Structures L eading to Excessive Merging

isintroduced through the “lambda’ rule but is never subject to the “app” rule, then it does
not matter what its components are. Similarly, if thereisan “app” with no corresponding
“lambda’ then the components do not matter. (In this case, the code performing the appli-
cation must be dead.)

When SEMI gathers constraints from the original Java bytecode program, it adds mode
annotations to the component constraints as follows:

* Installing amethod implementation into a new object type adds a component constraint
in constructor mode.

» Calling avirtual method in an object type adds a component constraint in destructor
mode.

» Writing afield of an object type adds a component constraint in constructor mode.
» Reading afield of an object type adds a component constraint in destructor mode.

» Calling amethod adds parameter and result component constraints to the method type
in destructor mode.

» Declaring amethod adds parameter and result component constraints to the method
type in constructor mode.

This mode information changes the interface to the solver and its specification. The
relevant changeisin the definition of closure. The following parts of the definition of
closure are altered:

e Component propagation rule
Components propagate through instances, with nondecreasing modes:

{tut>""vicC=>3wm {u"" wramcm'}cC

The benefit of modes is that we can safely inhibit some instance propagation.

184

* Instance propagation rule
{tgu s vus"" wicCA@yzugeyn{yplz1cO)={vgwicC
The instance constraint is only propagated to the component if there is some transitive
instance of the component constraint that is used in both constructor and destructor
mode. Otherwise the instance constraint need not be propagated.

7.10.3 Solver Rules

The solver rules given in previous sections remain in force. Rules that match a component
constraint match any mode annotation. Rules that add component constraints add
constraints with the “no mode” annotation. We introduce a separate rule to propagate
annotation information:
* Mode propagation

Upon detecting {t<u,t>""vu Dcm’w tcCforsomet, u, v, i, c,w, mand m’

replace “u >/ w” with “u >~ " w”.

* Instance propagation
Upon detecting { # <;u, t>.""v,ur>,w } < C for some 7, u, v, w, i, ¢, and m,
ity zucyny DCCd z, then add constraint v ; w (if not already present).

7.10.4 Example
The example above is transformed to the following:

Figure 7-14. Modal Annotations

7.10.5 Implementation

These rules are not difficult to implement, and cost very little in time and space. Mode
propagation takes place along with the other work on each dirty constraint from the
worklist. The instance propagation check is performed very efficiently by tracking, for each

185

>, v, whether there is an instance of the component with the “cd” annotation; this
“instance mode” information is propagated from instances to sources.

7.10.6 Detecting Unused Fields

Supposethat Fisafield of someclass, and e isabytecode expression, wherein sometraces
e evaluates to real objects, but none of those objects ever have thefield F. Because SEMI
issound, it will determine that the relation “e <> ¢” holds. This means that SEMI has a
translation for e into some constraint variable z. Now consider checking the relation

“e.F < e.F”. SEMI will trand ate both occurrences of “e.F” into some constraint variable v
such that « ¢ v. SEMI will therefore concludethat “e.F <> e.F” holds, even though it does
not hold in the true relation (because the assumptionsindicate that “e.F’ never evaluatesto
any value). For some analyses, such as object modelling (see Chapter 11), it isimportant to
be able to detect that such fields are actually unused.

The SEMI solution isillustrated in Figure 7-15.

_—

d o - o /
>qQ I 4
o - I -

- Nclass[D
DQd DQC

Figure 7-15. Query widget

Supposethat we have two expressions e, and e,, wheree, mapsto constraint variable » and
e, maps to constraint variable v. The two expressions are related because # and v have a
common instance z. However, instead of taking # and v to be the constraint variables for the
expressions, | insert the “ Q-d-constraints’ indicated in boxes, and assign #’ and v' asthe
constraint variables for the expressions. Also, for each constraint variable N ;. repre-

senting the prototypical object of each class, | insert the “ Q-c-constraints” indicated in the
box. Q isasingle predefined component and instance label.

Now if, in fact, e; and e, can both evaluate to asingle real object, then the soundness of
SEMI guarantees that for some classID there will be a chain of instances leading from
N7as57p 10 the common instance 7. Therefore will have acomponent “¢ >Q°d w” for some
w, and instance chains will be created leading from #’ tow and from v' to w. Therefore
SEMI’s analysis of the instance graph will deduce that e, and e, are related.

On the other hand, if e; and e, do not evaluate to any actual objects, then there may be no
such classID such that ¢ is transitively an instance of N;,.7p- 1N that case 7 will have the
component “¢ DQd w”, 1.e., the constructor mode will not be present. Therefore instance

186

chains will not be created leading from #’ tow or from v’ tow, and SEMI will not deduce
that e; and e, are related.

7.11 Nondeterministic Virtual Method Calls

A large contributor to the size of the constraint setsis the presence of structures corre-
sponding to “method types’ in the signatures of objects. Thisisadirect consequence of the
way SEMI encodes virtually-invoked methods: as first-class functions carried in the dots
of objects. The burden of having method types in object signatures can be eliminated by
encoding each virtual method call as anondeterministic call to one of the possible callees
for that call site. The set of callees at each call site can be determined by some simpler
algorithm (e.g., RTA++).

Thistransformation effectively reducesthe program to first-order code, and allowsAjax to
handle significantly larger examples. Of course, the penalty isthat the analysis results may
be of lower quality because higher-order control flow is not tracked as effectively. On the
other hand, accuracy can improve for some examples, because at each virtual call site we
can use afresh polymorphic instance of the type of the callee. In the standard mode,
because the callee is extracted from a slot of an object passed in as a parameter, its type
cannot be used polymorphically. In practicewefind that accuracy does decrease somewhat.
The effects are quantified in Chapter 9.

Ajax does not actually generate transformed representations of programs. SEMI is
configured with an arbitrary “ preparatory” analysis, and then issues queries against the
perparatory analysis to compute the sets of possible callees at each call site.

7.12 Future Work and Related Work

Each of these optimizations (except for cut-throughs) made significant improvementsto the
performance of Ajax. However, there are additional possibilitiesfor optimizing the system.
For example, there seem to be further opportunities to reduce space by implicitly repre-
senting some instance/component constraints and reconstructing them on demand.
However, SEMI already seems too complex, and the generality of the constraint system
seems to slow it down, especially compared to non-constraint-based polymorphic type
inference systems [69] [54]. It remains unclear which strategies offer the best opportunities
for future performance improvements.

Other researchers[31] have described how to improve the accuracy of thiskind of analysis
by labelling polymorphic instance constraints as “ positive” and/or “negative”, encoding a
simple kind of directionality information. For example, function results are instantiated
with “positive” instance constraints, and function arguments are instantiated with
“negative’ instance constraints. This feature could easily be added to SEMI.

The SEMI agorithm is superficially similar to other analysis engines based on
polymorphic recursion [31], since they are all based on Henglein’s algorithm. However,
SEMI isthe only engine that attempts to combine polymorphic recursion with handling of
structures with multiple fields. The presence of types with a high degree of “fan-out” in
their representation graphs motivates many of the improvementsto SEMI.

187

188

8 Analyzing Thelnscrutable

8.1 Introduction

This chapter discusses several featuresof Javathat pose fundamental problemsto practical,
sound, whole-program static analysis, and presents Ajax’ s strategies for dealing with them:

» Foreign and unknown code
* Reflection and serialization

* TheJavastring “constant pool”

8.2 Foreign and Unknown Code

8.2.1 Foreign Code

One goal of Ajax isto produce sound results: The results of an analysis must account for
all possible runtime behaviors of the program. | have described methods for such analysis
of programs which are completely described by Java bytecode. However, al real Java
programs depend on the behavior of components that are not described by Java code. For
example, the standard Java class library depends on “native code” librariesfor some of its
functionality.

In many languages and environments foreign code is essentially subservient, providing
support to themain system but influencing it only in limited ways. For example, all realistic
languages provide input and output routines. However, the effects of smple routines like
“print astring” and “read astring” are easily accounted for: “print astring” can beignored,
and “read a string” can be treated as code that creates a String object and fills it with an
unknown number of unknown characters.

In Java, interaction between foreign code and Java code is much richer. Foreign code in
standard libraries such as the Abstract Window Toolkit modifies Java-visible data
(including variables holding object references, affecting aliasing), calls Java methods, and
creates new Java objects. If these behaviors are ignored, then some of the program’slive
methods will appear to be dead, and some of the program’ sinstantiated classes will appear
not to be instantiated.

Foreign code a so initializesthe Javaenvironment and transfers control to the Javaprogram
in an appropriate state. This code can be complex for programs packaged as “applets’ or
“serviets’.

189

8.2.2 Unknown Code

The question of how to handle “foreign code” generalizesimmediately to the question of
how to handle “unknown code,” which may be foreign or may smply be Java code that is
inaccessible to the analysis. For example, some tasks require that an application be
anayzed independently of the implementation of the Javalibraries. One such task is
stripping dead code from an application being packaged for execution on multiple different
Java virtual machines, each with its own implementation of the standard libraries [79].

Ajax requires accessto all Java bytecode for aprogram. The solutionsthat | discussin this
chapter are only applied to foreign code. However, the techniques and most of the
discussion are certainly applicable to unknown code and modular analysisin general.

8.2.3 Possible Approaches

One approach is simply to make “worst case” assumptions about foreign code. Unfortu-
nately, foreign code is almost al-powerful in Java. Most foreign code interacts with the
Java virtual machine through the prescribed “ Java Native Interface”, but that interface
allows the code to do ailmost anything. Some foreign code bypasses JNI and accesses Java
program state directly. Therefore, if one makes worst case assumptions about the behavior
of foreign code, little can be known about the behavior of Java programs.

Another approach isto make pessimistic assumptions about foreign code, tempered with
“redlistic” assumptionslimiting the code’ s behavior. For example, we may assume that the
foreign code used by the standard Javalibraries has no knowledge of user application code,
and will therefore not create application objects, modify the state of such objectsor directly
call methods on those objects. However, this assumption does not help us analyze the
standard Javalibraries. It isalso possiblefor applications to pass knowledge — such asthe
names of application classes and methods— down into the standard libraries, that can then
be used to violate assumptions about reasonableness.

The latter approach is feasible, but very conservative, making it difficult to evaluate the
effectiveness of the actual analysis engines and Ajax tools. Therefore | have taken athird
approach: manual specification of the behavior of al foreign code.

8.3 Salamis: A Specification Language for Foreign Code

8.3.1 The Need For A Separ ate Specification Language

One way to specify foreign code is to write a Java bytecode “ dummy implementation” of
each foreign subroutine. My previous system, Lackwit, took this approach of writing
dummy implementationsin C. This has the advantage of requiring little or no work on the
part of the analysis implementor, and providing afamiliar language to the specification
writer.

Experience with Lackwit revealed a serious problem with this approach: it is difficult to
write dummy implementations, because it is unclear which implementation details are
relevant to the analysis and which are not. Thisis true even when the specification writer
is the same person who implemented the analysis. Use of multiple complex analyses
exacerbates the problem.

190

Therefore | created a dedicated specification language for foreign code, called Salamis!.
Salamis has limited expressivity; for example, there is no arithmetic, and conditional
branches are completely nondeterministic. The specification writer is forced to abstract
away from details which are irrelevant to most large scale analyses.

To reduce the effort required for parsing and analysis, | made the language as simple as
possible.

8.3.2 Example and Overview
Consider the Java code fragment in Figure 8-1.

FileDescriptor myFD = new FileDescriptor():;

FileInputStream stream = new FileInputStream(myFD) ;
stream.open();

Figure8-1. Application code using using native methods

Supposethe programmer wishesto find code that modifiesher ¥i1eDescriptor object.
TheFileDescriptor ismodified by the native method FileInputStream. open,
but this knowledge is only available in native code specifications.

Figure 8-2 shows some code from the standard library code specification that defines the
behavior of the native method open intheclass java.io.FileInputStream.

_stringconst () {
return = java.lang.String#internstr;
1
makeIOException () {
STR = _stringconst();
EXN = new Java.lo.IOException;
jJava.lio.IOException.<init> (EXN) ;
jJava.lio.IOException.<init> (EXN, STR):;
return = choose EXN;

}

jJava.lio.FileInputStream.open (THIS, NAME) {
FD = THIS java.io.FileInputStream. fd;
NEW_OS FD = choose;
FD java.io.FileDescriptor.fd := NEW_OS FD;
throw = makeIOException();

Figure8-2. Specification for java.io.FileInputStream. open

Each block delimited by braces defines a Salamis function. Each Salamis function either
defines a native method with afully qualified method name, such as

1. “Salamis’ isthe name of theisland on which Ajax is said to have been buried.

191

“Java.lo.FileInputStream.open”, or definesan internal function, such as
“makeIOException”, to be used by other specifications.

Statements within blocks are delimited by semicolons. Each statement evaluates a ssimple
expression, with the result optionally assigned to some local variable (using the syntax
“A=B").

Theexpresson“FD = THIS java.io.FileInputStream.fd” readsthe contents
of the fdfielddeclaredinjava.io.FileInputStreamfromtheobject referredto by
THIS, and storestheresulting referenceinlocal variable FD. Notethat in Salamisall “this’
parameters are explicit. There is no syntactic distinction between static and non-static
methods. Note also that all method and field names are fully qualified with the name of
their class; thisavoids the need to have any static typeinformation associated with Salamis
local variables.

The statement “NEW_0OS_FD = choose;” creates an undetermined scalar value and
storesit inthe local variable NEwW _0S_FD. This statement models the retrieval of some
unknown file descriptor value from the operating system.

Thestatement“FD java.io.FileDescriptor.fd := NEW OS FD;” storesthe
valueof NEW OS FD intothe £d field of the object referenced by FD. Syntactically, this
isactually an “store expression” that is not assigned into any local variable. Note that the
fd field hereis different to the field read above. Also note that writing “ FD
java.lio.FileDescriptor.fd := choose;” directly would be syntactically
invalid, because every statement has exactly one expression.

The constructor of FileInputStream caled in Figure 8-1 internally setsthe stream’s
fd fieldtomyFD. Static analysisthen reveasthat myFD’sown £d field can be modified
by thecal to FileInputStream.open. Thisinformation is reported to the
programmer.

8.3.3 Salamis Syntax

The grammar of Salamisis presented in Figure 8-3. Apart from the literal stringsshownin
the grammer, the only tokens are Identifiers and quoted Strings.

The core of the language is the expressions:
» Object creation, e.g.,

new java.io.IOException

The object constructor must be called explicitly in a separate statement.

» Nondeterministic choice, e.g.,
choose EXN
The result of the expression is chosen nondeterministically from the comma-separated
list of operands. In this example thereis only one operand, so the expression smply
evaluates to the value of EXN. If the list is empty, then the result is afresh, unknown
scalar value.

192

CompilationUnit::=Function*
Function = Name (ldentifiers) { Satement }
Identifier

Identifier . Name
Identifier # Name

Name

Identifiers = ldentifier

| Identifier , Identifiers
Satement = Labe? goto ldentifiers ;

| Label? Definition? Expression ;
Label = ldentifier :
Definition = |dentifier =
Expression ::= new Name

choose ldentifiers?

I dentifier? Name

Identifier? Name : = Identifier
Name (Identifiers?) Sring?
catch (Name?) Identifiers

Figur e 8-3. Salamis grammar

* Object field access, e.g.,
THIS java.io.FileInputStream.fd
This expression extracts the value of the named field from the object referred to by the
operand. Thefirst operand isomitted if and only if thefield is static.

* Object field assignment, e.g.,
FD java.io.FileDescriptor.fd := NEW OS FD
The value of the field is set to the second operand. The first operand is omitted if and
only if thefield is static.

* Method cdll, e.g.,
java.io.IOException.<init> (EXN)
The named method is called with the provided parameters. If the methodisstatic,
private, acongtructor (method hamed <init>), or final, then a static method
call isused, otherwise adynamic method call isused. Theresult of the expressionisthe
value returned by the method, if any.
An optional quoted string is allowed. This string contains the Java type signature of the
method to call, in Javabytecodeformat (e.g., " ([C) V" for amethod taking an array of
characters and returning void). Using this signature, Salamis can unambiguously call
overloaded methods. Note that the JVM requires native methods to be uniquely named,
so there is no need to define overloaded methods in Salamis.

193

» Salamisfunction call, e.q.,
_stringconst ()
Thisis syntactically the same as a method call, but no class name is present in the
method name. All Salamis function calls are static (i.e., Salamis functions are not first-
class).

» Exception catching, e.g.,
BYTE = java.io.ObjectInputStream.readByte (THIS) ;
catch (java.lang.Throwable) BYTE
This expression catches exceptions which are subclasses of Throwab1e and thrown
by the statement assigning BYTE. The result of the expression is any caught exception.
If not caught, exceptions are not propagated through Salamis code; they are ssimply
ignored. Therefore exceptions must be explicitly propagated from callee to caler. If no
class bound is given, all exceptions are caught.

» Thereisonekind of statement that is not an expression: “goto”, e.g.,
goto B, 5, ¢, 1, J, 4, F, D, L
Control istransferred to one of the labelled statements. Statements are |abelled by
prepending them with the label name and a colon.

8.3.4 Other Salamis Features

The value of the special local variable“return” isreturned by each function or method. The
value of thelocal variable “throw” isthe thrown exception, if any. Salamis specifications
do not specify whether an exception isthrown or the method (or function) returnsnormally.

Every statement that does not assign to alocal variable is conditional; it may or may not
actually execute. ThereforeinmakeIOException, it isunspecified whether one, both,
or none of the TOException constructors (methods named <init>) are executed.

Sometimesiit is necessary to associate values with objects that do not belong in the fields
declared for the object in Java. One exampleisthe lengths of arrays. For such cases,
Salamis supports synthetic “ specification only” fields (called “ spec fields’). Static spec
fields are also supported, e.g., java.lang.String#internstr above refersto the
global spec variable “internstr”. Thisfields are not declared anywhere; conceptually, they
are simply created as needed when accessed.

All updatesto object fieldsin Salamis are treated as conditional; The previous value of the
field may persist. Thus many of the Salamis specifications use a single object referencein
aspec field to refer to awhole collection of objects. For example,
java.lang.String#internstr refersto one of the entire collection of interned string
objects; whether there is one or many isirrelevant to any analysis, because the semantics
of Salamis are the same in either case.

Array accesses are treated by identifying the elements of an array object with special spec
fields of the object, depending on the type of the array: #intarrayelement,
#longarrayelement, #floatarrayelement, #doublearrayelement, and
#farrayelement (for arraysof object references). Arraysof bytes, shorts, and characters
have their contents mapped to #intarrayelement.

194

Sometimesit isnecessary to refer to the names of array classes. Theseare giventheinternd
JavaVirtua Machinenames(e.g., [T for anarray of integers, [Ljava.lang.Object;
for an array of objects).

8.3.5 Implementation

Salamiscodeiscompiled into Javadatastructures by asimplefront end. The data structures
are then serialized into “ specification resources’ that are located and loaded by Ajax at
anaysistime.

When an analysis encounters live foreign code, it looks up the specification and then
analyzes the specification directly. In other words, al analyses have to be able to analyze
Java code and also Salamis specifications. In practice thisis not too difficult, althoughiitis
rather cumbersome and |leads to some duplication of code.

Thisapproach also requires the language of bytecode expressionsto be extended to include
Salamisvariables. Tools aso have to be extended to scan Salamis specifications aswell as
Java bytecode.

8.4 Salamis Specifications

Appendix B presents the Salamis specifications for the portion of the VM classlibrary
used by my examples.

8.4.1 Omissons

The specifications cover only the foreign code exercised by my test applications, which
includes the example applications for my thesis plus some other applications. Also, they
specify the code used by only the Windowsimplementation of the Sun JDK 1.1. Other IDK
versions and implementations on other platforms use different Javalibraries, whichrely on
different foreign code, and may therefore need different Salamis specifications. Even given
these limitations, there are over 2,500 lines of specifications covering such complex areas
asthe Java Abstract Window Toolkit, which manages the interaction between Java and the
underlying Windows graphical user interface toolkit.

There are afew places where it isimpossible or undesirable to specify the foreign code
adequately. The most important such areais the reflection services, which are discussed
below.

8.4.2 Risks

The behavior of foreign code used by the Javalibrariesis difficult to deduce. Much of it is
internal to the library implementation, and much of the rest is under-documented. | have
proceeded by reverse-engineering the Javalibrary bytecode, and by observing the behavior
of the Java Virtual Machine. This approach is difficult and error-prone. Even with access
to the VM source code, thistask would till be difficult; the VM anditslibrariesare large
and complicated pieces of code.

It isimpossible in principleto rigoroudly prove that the specifications actually match the
behavior of the foreign code. In practice it is also difficult to test for conformance. My
testing consisted of running live code analyses using the specifications and comparing the

195

results to profile data gathered by running the example programs in the JVM; profiled
methods that are declared dead by the analysis clearly indicate bugs, either in the specifi-
cations or the analysisitself. | found many incompl ete specifications this way. However, it
is difficult to achieve high confidence in the completeness of the specifications.

8.4.3 Handling Strings

One quirk in the semantics of the VM shows up in the specification of certain String
methods. The VM maintainsaset of String objectscalled “interned Strings’: at
runtime, each possible string of characters has at most one corresponding “interned
String” object. When aJVM instruction accesses astring constant, it returns areference
totheinterned String for that string of characters. Also, it is possible to obtain the
interned St ring for an arbitary string, by callingthemethod String.intern (). This
facility isprovided to save space, and to allow interned st r i ngsto be compared for string
equality merely be comparing the object references.

The unfortunate result in Ajax is that every object reference that could refertoastring
constant must be related in the VPR to every other object reference that could refer to a
String constant. | model this behavior faithfully in order to satisfy the definition of the
VPR. Furthermore, some programs can depend on it in practice, for example when object
references are compared. Thisis why the Salamis example above gets St ring constants
fromthe global #internstr specfield. The bytecode instructions that fetch references
to String constants aso get the reference from this field. In many cases it would make
sense to relax this behavior and support unsound handling of Strings.

8.4.4 Other Areas Of Interest

The Salamis code for sun. awt.windows.WToolkit.eventLoop isparticularly
interesting. Thismethod runsindefinitely onaspecial AWT thread, pulling eventsfrom the
Windows event queue and processing them. It responds to the native Windows events by
calling methods on Java“ peer” objects associated with each underlying Windowsinterface
object. If the callbacks are not modelled correctly, then the peer object methods appear
never to be invoked, and large chunks of a program’s code may never be triggered.

Much of the Salamis code is devoted to ensuring that appropriate exceptions are potentially
thrown by each method. Also, there isa special function magicexn, which returnsone
of the exceptions which may be raised at any time by the Java Virtual Machine (e.g.,
VirtualMachineError). Thisfunction isused by the analysesto ensure that code
which can catch such exceptionsis handled soundly; the result of thisfunction is added to
the set of objects which may be caught by the code. The magicexn function also
includes exceptions for run-time errorsthat can occur so commonly that they might aswell
be thrown anywhere, such asArrayIndexOutOfBoundsException,
NullPointerException andClassCastException. (These arethe exceptions
belonging to the set ErrorClassiDsin the MJBC language; see Section 3.2.5.) Thisresults
in no loss of accuracy with the existing Ajax analyses, because they do not accurately
capture which exceptions can be thrown by which methods.

196

8.5 Reflection And Serialization

8.5.1 Introduction

Anespecialy interesting application of foreign codeisthe standard Javareflection library.
It allows programsto query and manipul ate the elements of a Javaprogram at run time. For
example, aprogram can obtain, asastring, the name of the class of any object. Conversely,
given the name of a class asastring, it can create an object of the class. It can obtain alist
of the names of the fields and methods of an object, and other information about those
members. It can even call the methods and modify the fields by name.

Reflection is extremely powerful and useful, and it iswidely used by real programs. Many
important Java programming paradigms depend on it (for example, Java Beans). Unfortu-
nately, it isamost completely impervious to static analysis.

A specialized form of reflection is Java serialization — afacility for storing and retrieving
object structures from abyte stream. Serialization usesreflection to traverse the contents of
objects without requiring the user to write traversal code for each class.

8.5.2 The Reflection Services

Reflection is not an esoteric feature used by just afew applications. In fact, the Java
libraries themselves depend on it. For example, the Sun JDK library reads the name of the
current locale from atext file, prependsit with the string
sun.io.CharToByteConverter, andthenloadsthe classwiththat nameand creates
an object of the class.

Many applications, including some of the applications| chosefor my benchmark suite, al'so
depend on reflection internally. (The benchmark applications are described in the next
chapter, in Section 9.2.2.) For example, the Ladybug specification checker tool [44] hasa
user interface shell wrapped around an abstract formula solution engine. The Ul shell
accesses the engine through a Java interface, and has no compile-time dependence on any
particular implementation of theinterface. At runtime, L adybug uses reflection to |oad the
engine class by name and create an object of that class. The object isdowncast into a
reference to the engine interface, and can then be used by the user interface shell. This
pattern of using reflection to break compile-time dependencies is quite common.

Another interesting use of reflection isin the Jess expert system shell [35]. Jess interprets
rule sets, which are essentially programs. These programs can contain directives to create
and manipul ate Java objects; these directives are interpreted by Jess by simply passing
them down to the Javareflection API (along with some wrapping and unwrapping between
Java object references and Jess data). By this simple mechanism, the full power of the Java
platformisavailableto Jess programs. Clearly, static analysis of Jess alonein the presence
of these directivesis no longer possible; one would have to analyze Jess in combination
with the Jess rules being interpreted. When | use Jess as one of my example programs for
thisthesis, | assume that these particular directives are not used.

Of course, Java s original source of popularity was that it can dynamically load and run
code from arbitrary sources. This ability depends on the use of reflection. It also requires

197

the use of ClassL oaders, but ClassL oaders do not present any real problemsfor Ajax above
and beyond the difficulties of reflection.

Another, rather obscure, use of reflection is built into the Javacompiler. The Javalanguage
construct ClassName. class obtainsthe metaclass C1ass object for the class named
“ClassName”. The Sun Java compiler implements this feature by compiling in acall to
Class.forName (*ClassName”), along with some caching of the return valueto
speed up cases where the expression is evaluated frequently.

8.5.3 Reflection Specifications

Ajax allowsthe programmer to manually provide specifications describing how a program
uses reflection, e.g., which classes it can create instances of and which methodsit can call
using the reflection API. Appendix C gives the actual specifications used in the experi-
ments.

Reflection specifications describe a set of reflective methods, the methods that perform
reflection operations. For each reflective method, the specificationslist the caller methods,
and for each caller, the specifications enumerate the classes, methods or fieldsit may access
through the callee reflection method. For example, consider Figure 8-4.

Java.lang.reflect.Constructor.newInstance [
Javafig.gui.ModularEditor.handleCommandCallback {
class=javafig.commands.*
}
ajax.tools.benchmarks.GeneralBenchmark.makePrintSinkStream {
class=java.io.PrintStream

}

Figur e 8-4. Sample reflection specification

Figure 8-4 specifiesthat constructor.newInstance isreflective. (Thismethod creates
anew object using aconstructor chosen at run time.) The specification states that there are
only two callers of thisreflective method. Thefirst caller, handleCommandCallback,
only uses the method to create objects of classes whose fully qualified names start with
“Javafig.commands.” The second caller usesit only to create objects of class
java.io.PrintStream. Notethat onceagainevery class, method andfield nameisfully
gualified with the declaring class name and package.

This specification format has two advantages. Ajax can check during analysis that every
caller to areflective method isactually listed in the specifications, and issue warningswhen
unknown callers are found. Thisisan essentia aid to locating al uses of reflectionin a
program. Also, the usage of reflection can be computed based on the methods that Ajax
findsto belive; dead code that uses reflection does not impact the analysis. This meansthat
one specification file can describe the reflection behavior of the Javalibraries and a set of
user applications. The only other analysis system with documented support for reflection
specifications, Jax [79], only allows the programmer to specify one list of methods and
classes accessed via reflection, and does not alow the programmer to specify which
program methods perform reflective actions; thus it does not have these advantages.

198

Another advantage of thisformat is that wrappers around reflective methods can be added
to the specifications as a new reflective method. Thisallowsits callersto be easily located
and reported by Ajax.

Ajax has a separate mechanism to handle the compiler generated useof Class. forName
discussed above. During analysis, it detectswhen Class. forName iscaled with a
constant string parameter, and adds the named classto the list of classes which are
reflected. Therefore uses of the C1assName. class expression do not need to be listed
in the reflection specifications.

8.5.4 Reflection Specification Syntax

The syntax is very simple. The example above demonstrates almost all the syntactic
features of the language. A reflective method can have an arbitrary number of callees, and
each callee can specify an arbitrary number of “reflectiontargets’. A reflective method and
its callees are specified as fully qualified method names; if disambiguation of overloaded
methods is required, the method name can be extended with alist of parameter types and
guoted as a string. The grammar is given in Figure 8-5. Asfor Salamis, the tokens are the
literal strings occuring in the grammer, plus Identifiers and quoted Strings.

ReflectionSpec::= Refl ectiveMethod*
ReflectiveMethod::=MethodName { Caller* }

MethodName::= Name
| String

Name = ldentifier
| Identifier . Name

Caller ::= Name { ReflectionTarget* }
ReflectionTarget::=TargetType = TargetSpec

TargetType := class
| field
| method
| serialized

TargetSpec ;= WildcardName
| WildcardName < Name

WildcardName::= Name
| Name.?*
| * .?Name

Figure 8-5. Reflection specification grammar

199

Reflection targets identify the classes, methods or fields that may be referenced by the
reflective operation. There are four kinds of reflection targets:

* Classes

* Methods

» Fields

» Serialized Classes

None of the examples | have analyzed use field reflection.

The* serialized class’ targets are used to specify which classes of objects may beread from
storage using the ObjectInputStream deseriaization machinery. If aclassisa
“serialized class’ target, then instances of that class may be returned from calls to
ObjectInputStream.readObject. TheObjectInputStream constructoris
treated as a reflective method; callers of the constructor specify which classes they will
deserialize using the stream. Strictly speaking the constructor is not a reflective method,
because objects are not deserialized and created until readObject iscalled on the
stream. However it ismore helpful to identify creators of object input streams than readers
of objects from those streams.

The language supports two shorthand ways to specify reflection targets, corresponding to
ways that reflection is frequently used in practice:

» Wildcard names, e.g.,
javafig.commands.*
This means any class (or method) whose fully qualified name starts with
“javafig.commands.” Wildcards need not beintrailing positions, e.g.,
“* Handler” isallowed. Ajax searches through al the available classes, methods or
fieldsto find the ones whose names match the pattern. These patterns are very useful
because programs often prepend or append some constant string to a variable before
passing a name to the reflection API.

* Interface constraints, e.g.,
jess.*<jess.Test
This means any class matching the pattern “ jess . *” which implements the named
interface jess . Test. Thisisalso very useful because programs creating objects via
reflection usually require those objects to satisfy some known interface.

Serialized class targets undergo additional processing. Every serialized class target must
implement the java.io.Serializable interface, or it will beignored. Also, for
every field of aserialized classwhichisnot marked t ransient, thefield’sdeclared class
is added as a serialized class target. (This is because Java seriaization automatically
serializes such fields.) Similarly, if an array classis serialized, then the array content class
isalso serialized.

8.5.5 Creating The Specifications

Writing reflection specifications requires some reverse engineering of the reflection-using
code. | used acombination of dynamic and static methods. | ran the example programs and
noted which classes were loaded and which methods were called. | also examined the

200

bytecode (and source code, when available) and determined which classes and methods
could be accessed.

The specifications | produced use two simplifications to reduce the number of possible
classesthat may beloaded. Firgt, the character set locale nameis assumed to be “Cpl1252”,
the Windows L atin character set. Secondly, the locale is assumed to be US English. If all
available character sets and locales are alowed, the very large amount of code loaded to
support them totally dominates the size of my example programs, and most configurations
of SEMI are quite impractical.

8.5.6 Using Reflection Specifications

Reflective methods ultimately depend on foreign code. (The reflective methods that appear
in the Javalibrary are actually wrappers around foreign methods that do the real work.) |
have written Salamis specifications for those foreign methods that take care of mundane
aspects such as throwing exceptions, and delegate the essential reflective operationsto a
special set of foreign functions. These functions are:

* ReflectionHandler makeObjectAndCallZeroArgConstructor
Creates an instance of some reflected class with a constructor that takes no arguments,
and invokes that constructor on the object.

* ReflectionHandler makeObjectAndCallArbitraryConstructor
Creates an instance of some reflected class and invokes one of the constructors on the
object; the parameters to the constructor are passed to thisfunction as an array.

* ReflectionHandler callArbitraryMethod
Calls areflected method on some object. The parameters are passed into this function
asan array.

* ReflectionHandler makeSerializedObject
Creates an instance of a serialized non-array class. No constructor is invoked.

* ReflectionHandler makeSerializedArray
Creates an instance of a serialized array class.

* ReflectionHandler assignSerializedField
Thisisactually afamily of functions, one per primitive type and onefor Object.
Given an object and avalue of the appropriate type, it sets one of the serialized fields of
the object to the given value.

* ReflectionHandler getSerializedField
Thisisactually afamily of functions, one per primitive type and onefor Object.
Given an object, it returns the value of one of the serialized fields of the object with the

appropriate type.

* ReflectionHandler invoke readObject
Given an object which hasaprivate readObject method implementing custom
serialization behavior, this function calls that method on the object.

201

* ReflectionHandler invoke writeObject
Given an object whichhasaprivate writeObject method implementing custom
serialization behavior, this function calls that method on the object.

Since none of my examples use reflection to modify object fields (other than for serial-
ization), | did not build support for that functionality.

These functions cannot be specified statically in Salamis code because they depend on
knowing the set of reflected classes, methods, and serialized classes. Instead, their specifi-
cationsare generated dynamically. Asanalysis progresses and live methods are discovered,
they are looked up in the reflection specification. Any induced reflected classes, methods
or serialized classes are added to a global list of reflected entities. Whenever thislist is
updated, Ajax generates new specifications for the primitive reflection functions. (Ajax
analyses support code mutation, so they can handle changesin the specificationsevenif the
reflection functions have already been analyzed.)

8.6 Conclusions

Java programs have rich interactions with their environment. These interactions must be
modelled accurately to achieve sound and accurate analysis. Unfortunately, thisis very
difficult to do; the details of the environment are inaccessible, incomprehensible, and
subject to change. Even worse, the environment providesreflection facilitiesallowing Java
programs to modify their own behavior in ways that are opague to static analysis.

Ajax addresses these concerns by providing ways to specify the environment and a
program’ sreflective behavior. These mechanismswork, but they can be laboriousfor both
the tool implementor and user. More serioudly, any attempt to specify the environment and
reflective behavior seems doomed to be fragile, for the reasons explained above.

Although these concerns can be tightly constrained or eliminated in some domains (e.g.,
embedded systems), general purpose systems design is moving in the direction of more of
these kinds of problems. Distributed systems, dynamism and introspection areincreasingly
likely to be the norm. Even embedded systems are increasingly likely to be attached to
networks and to exhibit these features — for example, the Jini “ smart devices” framework
depends on them. Static analysis cannot ignore this challenge.

202

O Performance

9.1 Introduction

This chapter describes the resource consumption and accuracy of the basic analyses
RTA++ and SEMI for some simple applications: resolving virtual method calls and identi-
fying each program’ slive code. The focusis on measured performance rather than
theoretical estimates or bounds, because performance depends crucially on the character-
istics of the programs being analyzed.

The results report accuracy in terms of application metrics (e.g., the number of virtual call
sitessuccessfully resolved toasinglecallee). Metricsinternal to ananalysisalgorithm (e.g.,
the average size of points-to sets) can be useful for diagnosing the behavior of a particular
algorithm, but are not as useful for comparing different analysis algorithms.

Before | describe the performance of the algorithms, | describe the suite of example
programs and the test setup. It is difficult to measure the sizes of the programs, partly
because it is difficult to describe precisely what code constitutes each program. Thisis
interesting because it also makes whole-program static analysis hard.

One goal of thisthesiswasto test the scalability of SEMI-style analysis applied to Java
programs. My results show that treating methods as functions passed around in records
imposes asignificant penalty, and prevents the largest examples from being treated within
the resource limits | have set. However, this treatment can handle some large and inter-
esting programs, including the Ajax system itself with al the libraries on which it depends.

Ajax has many tunable parametersthat can alter the accuracy and resource consumption of
the sytem. In my results here, and in subsequent chapters, | focus on proving or disproving
specific hypotheses rather than attempting to characterize completely the performance of
the system in al possible configurations.

9.2 Benchmark Environment

9.2.1 System
Table 9-1 gives the specifications of the machine running the test.

9.2.2 Benchmark Examples

| use asuite of ten benchmark programs, described in Table 9-2. Each program isanalyzed
in conjunction with the libraries provided in Sun’s JDK 1.1.7. These programs cover a
range of sizes and programming styles.

203

CPU 500MHz Pentium 11

RAM 256MB

Swap Space 600MB

Java VM Sun JDK 1.3.0, Hotspot Client VM
Java Heap Size 192MB

Operating System Windows NT 4.0, Service Pack 5

Table 9-1. Environment specifications

Program Name Description

Ajax The downcast checking tool of my analysis system

CTAS The Connection Manager for aprototypeair traffic control system,
in atest harness, from Daniel Jackson’sgroup at MIT [43]

Jar The JAR compressed archive manager from Sun’s JDK 1.1.7

Java2HTML Converts Java source code to pretty HTML, from Rustan Leino at
DEC/Compag SRC

JavaC The Java source-to-bytecode compiler from Sun’s JDK 1.1.7

JavaCC The Java Compiler Compiler from Sun Labs, version 0.8prel
(similar to Yacc)

JavaFI G The JavaFI G 1.3.4 drawing editor from Universitaet Hamburg

JavaP The Java bytecode disassembler supplied with Sun’s JDK 1.1.7

Jess Java Expert System Shell version 4.4, from Sandia National Labs
[35]

Ladybug The Ladybug specification checker, by Craig Damon at CMU [44]

Table 9-2. The example programs

Table 9-3 records the program sizes. Measuring the size of a program in this context is

perplexing. The first difficulty isthat only four of the programs — Ajax, CTAS, Jess and
Java2HTML — come with complete source code, so measures such as “lines of code” are
inapplicable.

More serioudly, for each example, the code actually analyzed is neither a superset nor a
subset of the code comprising the “application.” (By “application,” | mean abody of code
that one downloads and installs as aunit.) In most cases the analyzed code is much larger
than the application code, because Ajax analyzes adl libraries on which the application
depends, as well as the application itself. On the other hand, Ajax only analyzes the code
that it detects to be live. Some applications, such as Ajax and JavaFI G, consist of several
independently runnable programs; therefore, whichever program is analyzed, a significant
amount of the application code falls outside the program. For Jar, JavaP and JavaC thereis
no clear boundary between the application and the JDK libraries, and the separation into
application and library code is somewhat arbitrary.

204

Name App. App. App. App. Total Live | Total Live | Total Live
Sour ce Classes Methods | Bytecode | Classes Methods | Bytecode
Lines Bytes Bytes
Ajax 45,086 505 3,145 | 171,237 537 3,463 | 197,398
CTAS 6,909 60 365| 17,350 283 1,527 | 86,523
Jar N/A 8 85 6,142 304 1,752 | 104,979
Java2HTML 543 5 32 2,498 101 388| 12,316
JavaC N/A 122 948 | 68,859 417 2,817 | 192,528
JavaCC N/A 134 1,975| 250,653 161 1,322| 170,741
JavaFI G N/A 175 2,139 | 170,655 496 3,902 | 250,725
JavaP N/A 58 S577| 52,215 143 705| 32,026
Jess 36,366 173 821| 51,468 383 1,854 | 110,526
Ladybug ~57,000 389 3,109 | 238,755 731 5,277 | 346,491

Table 9-3. Size statistics for the example programs

Some features of the example programs skew these statistics. Ajax and JavaCC contain
JavaCC-generated code, although Ajax’ sgenerated code isnot actually analyzed. L adybug
contains code generated by adifferent parser generator, JavaCUP. Thus, the characteristics
of these programs are partly determined by the design of the parser generator. These
characteristics may be different to the characteristics of “handwritten” code, but it is
important and interesting to examine both handwritten and machine generated code.

Another problem isthat static “ classinitializer” methods are often unlike other methodsin
the program. The Java bytecode format has no way to represent an initialized array;
therefore all constant arrays are constructed at run time within the class' static initializer.
Usually at least five bytes of bytecode instructions are required per array element. Thus,
many classinitializer methods are huge compared to other methods, and in some programs
they dominatethe overall bytecodeinstruction count. All resultsin thisthesisexclude static
classinitializer methods from statistics about methods. In particular, the method countsand
bytecode byte countsin Table 9-3 exclude static classinitializer methods. This does mean
that some legitimate code is excluded from the reports, but it improves the meaningfulness
of the results overall. These omissions are only in the reporting of results — the analyses
take the behavior of the static classinitializers fully into account.

In Table 9-3, the “Tota Live Classes’ number issimply the number of classes containing
at least one method body which Ajax determinesto be live. The “Total Live Methods’
records the number of method bodies determined to be live (excluding static class initial-
izers), and the “Total Live Bytecode Bytes’ isthe sum of the sizes of those methods. Here
the set of live methods was computed using the “RTA++" analysis. (Other analyses
compute smaller sets of live methods.)

JavaF| G and L adybug are the only two applicationsthat usethe AWT user interfacelibrary,
and that library accountsfor much of the code that is pulled in from outside the application.

205

Figure 9-1 showsthe size of each example program, asthe number of live methods. Figures
9-2 and 9-3 show that the number of live methodsisareasonably good measure of program
size, being well correlated with the number of classes and number of bytes of bytecode
instructions for each program. This correlation isimproved by the fact that the programs
share agreat dea of code (the JDK libraries).

6000

5000 -
4000 - —
3000 -

2000 -

"MAN NN

Example Program

Number of Methods

Figure 9-1. Example program sizes

Figure 9-4 shows that, considering only code outside the JDK library, the correlation
between bytecode bytes and number of methodsis till nearly linear, except that Ajax has
unusually small methods and JavaCC has unusually large ones.

Figure 9-5 shows that for application code, the number of methods per class varies greatly.

9.3 Tools

In this chapter, | consider two tools: virtual method call resolution and live code identifi-
cation. Other tools and their performance are discussed in later chapters. Here | focus on
comparing the performance of different algorithms and configurations.

9.3.1 Virtual Call Resolution

Virtual call resolution is the problem of determining, for each virtual method invocation
Site, a superset of the actual method bodies that may be invoked by the call. This chapter
examines the performance of the virtual call resolution technique described in

Section 4.3.4.

206

6000

5000 -

4000 -

3000 -

Method Count

2000 -

1000 -

0 200 400 600 800

Class Count

Figure 9-2. Correlation between number of methods and number of classes

400000

350000 -

300000 -

250000 -

200000 -

150000 -

Bytecode Count

100000 -

50000 -

0

0 1000 2000 3000 4000 5000 6000
Method Count

Figure 9-3. Correlation between bytecode bytes and humber of methods

The virtual call resolution tool scans each live method found by the analysis and identifies
the occurrences of invokevirtual and invokeinterface instructions. Each such

207

400,000
350,000 |
300,000 |
250,000 -
200,000 -

150,000 -

Bytecode Count

100,000 -

50,000 -

0 B T T T T T T
0 500 1000 1500 2000 2500 3000 3500
Method Count

Figur e 9-4. Correlation between bytecode bytes and number of methods, for application code

6000

5000 -

4000 1
y = 7.4004

3000 ° ¢

Method Count

2000 - o« °

1000 -

0 T T T T
0 100 200 300 400 500 600

Class Count

Figure 9-5. Correlation between number of methods and humber of classes, for application code

208

instruction is considered a “virtual method invocation site”, unless the callee method is
declared final oritsdeclaring classis final, inwhich caseitisignored (being trivial
to resolve statically). For each site, the tool collects and outputs the set of possible callee
method implementations. Section 4.3.4 describes how sets with more than one element are
abstracted to asingle “many” value. In the implementation, the threshold is configurable;
the entire set of possible callees can be retrieved by setting it to alarge integer.

Notethat callsto private methods, constructors, static methods, and superclass
methods (viasuper) al usethe invokestaticor invokespecial instructionsand
so areignored by the virtual call resolver.

The tool summarizesits results by reporting three numbers:
» The number of virtual method invocation sites found.
» The number of sitesresolved, i.e., the number of siteswith zero or one possible callees.

* The number of sites dead, i.e., the number of siteswith zero callees. A dead Siteis
either never executed or else, whenever it is executed, the object reference used for dis-
patch is aways null (and therefore an exception is thrown).

The key accuracy metric istheratio of the first two numbers: the percentage of sites
resolved.

As discussed above, because of the frequently anomal ous nature of classinitializer
methods, sites within classinitializer methods are not included in the statistics.!

9.3.2 Live Code I dentification

Live code identification is the task of determining a set of method bodies that is a superset
of the actual method bodies that may be executed by the program. (Alternatively, it can be
thought of asthetask of determining a set of method bodiesthat are guaranteed never to be
executed by the program.) This chapter benchmarks the V PR-based technique described in
Section 4.3.5.

The tool summarizesits results by reporting two numbers:
» The number of dead method bodies found in the application code
» Thetotal number of method bodies found in the application code

The ratio of these two numbersisthe key accuracy metric here: the percentage of methods
in the application found to be dead.

Classinitializer methods are counted in these statistics because they cannot significantly
skew the results.

The resultsfor thistask do not vary much across analyses. A simple analysissuch as RTA
seemsto get close to the “true’ set of live methods, so thereislittle room for improvement.

1. Oneexampleistheclassinitiaizer for theclass sun. io.CharacterEncoding, which contains 411
virtual callsto Hashtable.put. Thiswould account for more than half of the virtual call sitesin some
examples.

209

9.4 Performance of RTA++

Figure 9-6 shows the memory required for Ajax to analyze the example programs with
RTA++ for the two tasks of virtual method call resolution and live code identification.
Figure 9-7 showsthetimetaken. RTA++isfast in each case. Thetwotaskshave similar
resour ce r equirements.

40
= 35
S 30 -
N 25 -
? 20 -
%15—
s |_I|_I |_I |_I
=9 il
07 T T \|_.\ T T T T T
ot S rz,\ @’ O C)O \0 Q S O
A SO A\ < @&
w & 0o}) BQ))
G &Q\ NN @ N4 »‘b&

N
Example Program

O LiveMethodDetector m VirtualCallResolver

Figure 9-6. Memory consumption of RTA++

The quality of the RTA++ resultsis presented later, in comparison with the results for
SEMI.

9.5 Performance of SEMI

9.5.1 Overview

Figure 9-8 showsthe amount of memory used by SEMI ina*high accuracy” configuration,
for both the virtual call resolution and live code identification tasks. Figure 9-9 showsthe
time taken. The missing barsindicate that the analysis did not terminate within three hours.

All configurations of SEMI presented in this chapter use RTA++ to resolve virtual method
invocations where possible before applying SEMI (see Section 7.8.1). In this “high
accuracy” configuration, SEMI performs precise analysisfor the remaining virtual method
calls but turns off full polymorphic recursion; this decision is explained below.

These results also show that using SEMI, differencesin the resour ce requir ements of
the two tools are more pronounced. The reason is that the tool-specific data are propa-
gated over much larger graphs for SEMI than for RTA++.

210

140

120
w
g 100
= 801
© 60 -
g
& 40
0 n T T T |_- T T T |_. T
¥ S rz,\ @’ O C)O \0 Q (])
& \s N S R4 L K 2 >
» K S N R R S
5‘0
Example Program
O LiveMethodDetector m VirtualCallResolver
Figure 9-7. Time consumption of RTA++
140
~ 120 -
~ 100 -
(]
— 80 a
& 60 -
(]
40 |—I
sl |
0 . T T T I—. T T |_. T
¥ S rz,\ @’ O C)O \0 Q (])
& «¥ N S 2 F &
‘ﬁ é Q\ 5‘2} Ry R 5‘2} BQ’ 80
s«zﬁ& ¥ v

Example Program

O LiveMethodDetector B VirtualCallResolver

Figur e 9-8. Space consumption of SEMI configured for high accuracy

211

6000
5000 -
4000 -
3000 -
2000 -

1000 - |_I
0 o 0 I—I |

Elapsed Time (s)

a S d O o O R % (0}
Q Y N > @) > N
ﬁ é q\;s bfb BiA(b Qé(B‘DQ BQ) 2§0
N\ N A
N2

Example Program

O LiveMethodDetector m VirtualCallResolver

Figure 9-9. Time consumption of SEMI configured for high accuracy

9.5.2 Performance of SEMI in Different Configurations
Now | consider configuring SEMI for reduced accuracy but greater efficiency. Figure 9-10

shows the memory consumption for live method detection using all combinations of the
PolyRec and HighOrder options. Figure 9-11 shows the time used.

» When PolyRec is enabled, full polymorphic recursion is used. Otherwise polymorphic
recursion is mostly suppressed (see Section 7.3.6).

* When HighOrder is enabled, virtual method calls are analyzed by the precise tech-
niques described in Chapter 6, otherwise the program is treated as first-order by SEMI,
using RTA++ to compute all the possible callees of each virtua call site (see
Section 7.11).

Thetechniquedescribed in Section 7.11for transforming the programsto first-order
code significantly reducesthe resour ce usage, making some lar ge examplestractable
that were previously intractable. Abandoning full polymor phic recursion reduces
resour ce requirements with HighOrder enabled, but gives mixed resultswith
HighOrder disabled.

9.5.3 Accuracy of SEMI in Different Configurations

The settings of the PolyRec and HighOrder options affect the accuracy of the analysis.
Figure 9-12 shows results for live method detection. Figure 9-13 shows results for virtual
call resolution.

212

200
180 - —
160 -
140 -
120
100 -
80 -

Max Heap Size (MB)

& O d N O L OO R 5 P
@ ¥ K O K KNG
ARl SO N O RV
$ v

Example Program

@ None m PolyRec O HighOrder O HighOrder+PolyRec

Figure 9-10. Space consumption of SEMI in four configurations, for live method detection

Elapsed Time (s)
—
WhOOoNOOOO
OO0 000 O
OO0 O0O00O00O0 O
O OO0 O0OO0O0OO0OO0O

L L L L L L L
]

C e

2000 -
1000 -
0’ \'___'_'\I_H_I_|\ \|_i \'—._'_'\ \'_m\ L
¥ S » @’ O O N Q S)
A & o L L R & >
» A& & O & @& ¥ ¥
¢ 4‘5‘3\ Yo @ Y &P
N2

Example Program

@ None m PolyRec O HighOrder O HighOrder+PolyRec

Figure 9-11. Time consumption of different SEMI configurations, for live method detection

213

70.00%
60.00% - M M
50.00% -
40.00% -
30.00% -

20.00% -
10.00% -
0.00% + |_I_|_| [T |_I_|_| ’_L
o

Dead Methods Found

o S rz,\ @’ O C)O N Q S O
O &Y K 2 (< ° ? >
Ll S RN N X
¢} 5 X RN N3 N \/fbb
N

Example Program

@ None B PolyRec O0HighOrder OO0 HighOrder+PolyRec

Figure 9-12. Accuracy of SEMI configurations for live method detection

95.00% - I

90.00% -] o x ull
85.00% -
80.00% -
75.00% -
70.00% -

65.00% - "I
60.00% - ‘
RN S V¢
P Y K R
LalN¢ &Q* NN ¢
N\
5‘0

Virtual Call Sites Resolved

Example Program

@ None B PolyRec O0HighOrder O HighOrder+PolyRec

Figure 9-13. Accuracy of SEMI configurations for virtual method call resolution

214

A large number of dead methods are found in the application code of Ajax, CTAS, Jar,
JavaCC, JavaFI G and JavaP. In these examples, the “application code”’ actually comprises
severa different programs, only one of which is analyzed by Ajax.

The results for virtual call resolution show a slight anomaly: turning off full polymorphic
recursion actually improves accuracy for Jess. Normally, restricting polymorphic recursion
can only decrease accuracy. In this case, dight variations in the order of constraint
processing determine whether callsto System.err.println areresolved or not.

Restricting polymor phic recursion does not significantly affect accuracy for either
live method detection or virtual call resolution.

Different SEMI configurations produce little variation in the results for live method
detection.

For virtual call resolution, enabling HighOrder significantly improves accur acy.
Many virtual method call sites do have more than one possible callee, so even an oracle
would resolve fewer than 100% of virtual call sites. Therefore, an improvement from (for
example) 88% to 89% of call sitesresolved is significant, asit should be considered a
reduction of at least 10% in the number of resolvable but unresolved call sites.

Using HighOrder never decreases accuracy in practice. Section 7.11 explainswhy this
might not necessarily be so.

9.5.4 Component Partitioning in SEMI

In Section 7.9.1, | claimed that component partitioning improved the performance of
SEMI, in particular when object field components were partitioned according to the
declaring classof each field. Figure 9-14 showsthe memory consumption of three different
configurations of SEMI applied to the live method detection problem. Figure 9-15 shows
the time consumption. The configurations all use PolyRec but not HighOrder, and each
configuration uses a different partitioning scheme.

Clearly, “by class’ uses about the same amount of memory as having no partitioning. “By
hierarchy” (see Section 7.9) uses substantially more in most cases. Furthermore, “ by
hierarchy” is often much sower and “by class’ isusually fastest, sometimes significantly
faster than “none’”.

Theseresultsverify the claim that partitioning object field componentsaccordingtothe
declaring class of each field isa good idea.

9.6 RTA++ and SEM I I ntersection

9.6.1 Basic Results

Ajax can be configured to compute the intersection of the results of two analyses, and the
result is guaranteed to be at least as accurate as each analysis applied separately. Because
RTA++ischeap, intersecting it with SEMI is not much more expensive than running SEM|I
alone. Theresulting analysisis denoted “SEMI1 & RTA++".

Figure 9-17 compares the accuracy of SEMI & RTA++, SEMI, and RTA++, using neither
HighOrder nor PolyRec, for virtual call resolution. The results show that SEMI &

215

200
180 -
160 -
140 -
120 -
100 -
80 -
60 -

sl mw wlll

O
(< A‘b &

> N
R \?&

Max Heap Size (MB)

«‘?‘ PN A‘Z’ &
© &Q\ NG 3,04

N
Example Program

@ None W By class OBy hierarchy

Figure 9-14. Memory consumption for different component partitioning schemes

Eap e Time ()
o
(=]
o

2000
1000 h
0 - _,_.=_=._,_|:ﬂ_| : =Ml l—ﬂ |
\Z
«z‘J/ Yog oy

N

Example Program

@ None W By class OBy hierarchy

Figure 9-15. Time consumption for different component partitioning schemes

RTA++ issignificantly more accuratethan SEMI for thistask, and SEMI isusually
mor e accur ate than RTA++.

216

RTA++ improves on SEMI because RTA++ can use information about downcasts that
SEMI ignores. For example, consider the code in Figure 9-16. SEMI cannot accurately
encode the downcast in the type system; downcasts are treated as identity functions.
Therefore SEMI infers the same type for s, i, the contents of v, and s2, and SEMI
concludes that s2 and i may be aliased. However, using the Java type information with
RTA++, itisclear that s2 and i are not aliased.

void myMethod (Vector v, String s, Integer 1) {

v.addElement (.. 2 s : 1),
if () Ao
String s2 = (String)v.elementAt (0);

Figure 9-16. Example Of RTA++ Improving SEMI

Figure 9-18 gives the same results for live method detection. Thistask hasthe same
pattern asvirtual call resolution but, asbefore, the differ ences are much smaller. v

100 00 —

000 -

8 00 A -]
8000
00 -
000
6 00 - I'H
6000 -
)

Example Program

a Sie e
|

a

m TA OSEMIOSEMI & TA

Figure 9-17. Accuracy of three different analyses for virtual call resolution

Figure 9-19 gives the time used for virtual call resolution, for the three analysis. Figure 9-
20 gives the space consumed. SEM| & RTA++ isnot much mor e expensive than
running SEM1 alone.

217

000

6000 - = -
000 | []

4000 -

3000 -

2000 - I_H

1000

Example Program

ea Me

m TA OSEMIOSEMI & TA

Figure 9-18. Accuracy of three different analyses for live method detection

Anay i Time ()
()]
o
(=]
o

4000 -
2000 -
0 — T |_|_| T T T '_'_| T '_|_| T
o S X @V O OO \Y Q % O
& @ PN e & & F
Al S @& & ¢ ¥ S
$ & P
N

Example Program

m TA OSEMIOSEMI & TA

Figure 9-19. Time required by three different analyses for virtua call resolution

218

Memory (MB)

| IHIHL
O L& o O

@ K 5‘04 N &0
) NN N

Example Program

B RTA++ OSEMI @ SEMI & RTA++

Figure 9-20. Space required by three different analyses for virtual call resolution

9.6.2 Set Sizes

Asdiscussed in Section 4.3.4 and Section 4.4.5, the accuracy of an intersection-based
analysis can depend on the maximum size of the data sets allowed by the set abstraction
function. Figure 9-21 shows the results of SEMI & RTA++ using different set sizes.
Changing the set size has no practical effect on the accuracy of SEMI & RTA++,

9.7 Summary of Ajax Performance

9.7.1 Algorithm Selection

Based on the results above, it is clear that the intersection analysis SEMI & RTA++ is
preferred over SEMI. It isaso clear that, for these tools, polymorphic recursion can be
turned off (Section 7.3.6) with little accuracy penalty. SEMI’ s handling of higher-order
code should be enabled if the program being analyzed is not too large.

9.7.2 Summary Results

Now | compare the three algorithms RTA++, SEMI & RTA++ with HighOrder, and SEMI
& RTA++ without HighOrder. Figure 9-22 shows the accuracy results for virtual call
resolution. Figure 9-23 shows the space requirements and Figure 9-24 showsthe time used.
SEMI isfar more expensive than RTA++ for large programs, but produces much
better results.

219

100.00% —
95.00% - B
90.00% - B I
85.00% - _
80.00% -
75.00% -
70.00% -
65.00% -
60.00% + T

Virtual Call Sites Resolved

Example Program

O Set Size 1 @ Set Size 2 OSet Size 4 OSet Size 8

Figure 9-21. Effect of different set sizes on virtua call resolution accuracy

 100.00% _

S 95.00% - M

2 90.00% - 1 A -

X 85.00% -

2 80.00% |

= 75.00% -

O

= 70.00% |

£ 65.00% -

= 60.00% - & SEm SL
R S VRN CREN CRRNC P - S TR
CHIPA SO M & F O
Lol SN A 2T N M RN\

@ @& ¥ o oy &
N

Example Program

B RTA++ OSEMI & RTA++ O SEMI(HighOrder) & RTA++

Figure 9-22. Accuracy of the three contending algorithms

9.7.3 Conclusions

Clearly, SEMI is not scalable enough to handle very large programs. The limiting factor is
time. However, it does handle realistically-sized programs, and it provides a major

220

12000
__ 10000 - _
)
.g 8000 -
|_
‘» 6000 -
g
= 4000 -
c
< 2000 -
0 — T |_|_| T T T [T I—|_| T
& 2 ¢ & O O 0 R o)
A S P\ R CRE AN »
Ll Q@& 0 @ ¢ ¥ P
N2
Example Program
B RTA++ @SEMI & RTA++ O SEMI(HighOrder) & RTA++
Figure 9-23. Time consumption of the three contending algorithms
140 -
— 120 {
m —
= 100 -
3 80
]
> 60 -
o
a J—H J—H
§ J_H J_H L
20 I
0 7] T T T i_l_l T I T T T m T T
ot S & N L O O R o)
S AN © 07« ° & >
Ll S N N T
¢} Q,A‘{’L @ N3 N \/,bb
N

Example Program

B RTA++ @ SEMI & RTA++ O SEMI(HighOrder) & RTA++

Figur e 9-24. Space consumption of the three contending algorithms

221

improvement over RTA for resolving virtual method calls. The task of identifying dead
application codeis well solved by RTA and little improvement seems to be possible there.

222

10 Proving Downcast Safety

10.1 Introduction

10.1.1 Parametric Polymor phism and Downcasts

Java lacks parametric polymorphism. Data structures such as containers, which would be
parametrically polymorphic if the language permitted, are usually implemented by
replacing the parameter type with some “generic” type which is asupertype of the possible
instantiations of the parameter type. For example, aJavacontainer classusually holdsrefer-
ences to objects of class Object. Methods to insert objects into the collection take a
parameter of class Ob-ject, and methods to extract objects return a value of class

Object.
For example, consider Figure 10-1. Theclass java.util.Vector declaresthe

methods addElement and elementAt, among others. To store and retrieve objects of
aparticular known class, such as String in this case, one must use downcasts.

class Vector {
public Vector() { ... }
public final synchronized void addElement (Object obj) { ... }
public final synchronized Object elementAt (int index) { ... }

}

static void main(String[] args) {

Vector v = new Vector():;
v.addElement (args[0]);
String s = (String)v.elementhAt (0);

Figure 10-1. Example of a Java generic container requiring downcasts

Without the downcast to String, the code will not compile because the result of
elementAt isnot knowntobeassignabletoastring object reference. Theinformation
needed to prove the assignment safe without the downcast would normally be expressed
using parametric polymorphism, but cannot be expressed in Java' s type system.

10.1.2 Using SEM| To Prove Downcasts Correct

SEMI iseffectively atype inference system with parametric polymorphism. SEMI can
reconstruct type parametricity information that Java’ s type system cannot express. The
most straightforward application isto prove that certain downcasts will always succeed. In
the example above, Ajax will prove that the downcast to St ring aways succeeds. A

223

compiler or run-time system could use this information to eliminate run-time checks
associated with the downcast. The programmer is assured that the types of elementsin the
container are consistent with expectations.

The rest of this chapter presents the design of the Ajax downcast checking tool, which is
simple given the Ajax infrastructure. | present some quantitative results on the efficacy of
the downcast checker on my example programs. These results al so include someinteresting
comparisons between different analysis configurations. | also discuss some of the
especially interesting or problematic pieces of code in the examples. | conclude with a
comparison of Ajax downcast checking to support for parametric polymorphism in the
language, and a discussion of some other similar waysto use Ajax.

10.2 The Downcast Checking Tool

10.2.1 Interfacetothe VPR

Section 4.3.3 presentsthe design of aV PR-based tool for proving downcasts safe. The tool
selects aset of occurrences of downcast instructions for analysis; by default, it chooses all
the downcasts in the program code found to be live. Then, using the VPR, for each
downcast instruction it computes an upper bound in the Java class hierarchy for the classes
of all objects that occur as operands to the downcast instruction. This bound is compared
to the class specified by the downcast; if the bound is equal to or is a subclass of the
specified class, the downcast is reported to be safe.

10.2.2 User Interface

The downcast checking tool is exceptionally simpleto use. The user specifiesthe program
to be analyzed by giving a*“class path” and the name of the “main” class. The tool then
prints out alist of al the downcasts that were found in live code. For each downcast, the
tool prints out the location (method name and instruction offset), the class specified by the
instruction, the bound actually detected by the analysis, and whether or not the downcast is
proven safe.

10.3 Quantitative Results

10.3.1 Proving Downcasts Safe Using RTA++

Section 5.4 describes how RTA is extended with intraprocedural flow analysisto track the
useof instanceof in conditional expressions, in order to refine the type information
known about variablesat certain program points. Thisinformation can be used to provethe
downcast safe in the common “typecase” idiom in Java. For example, given the code

if (x instanceof C) {
Cc= (C)x;

224

it iseasy for the Ajax downcast checking tool, using RTA++, to prove that the downcast is
safe. Whilethistechnique has been used by others[18], its effectiveness has not previously
been published.

Figure 10-2 shows the percentage of live downcasts proven safe using basic RTA and the
RTA++ extension. The results indicate that RTA++ is effective for many programs. Note
that even basic RTA can sometimes prove a downcast safe, for example when an abstract
class has only one concrete subclass and we downcast from the abstract class to the
subclass.

35.00%
30.00% -
25.00% -

20.00% -
15.00% -
10.00% -
5.00% -
0.00% -

Downcasts Proven Safe

I SN Y CR CRAC I S TR
F Y Y @O S
» K & © & @& ¥ ¥
o . (9;2* I \9&
N

Example Program

O RTA BRTA++

Figure 10-2. Downcasts proven safe using RTA and RTA++

10.3.2 Proving Downcasts Safe Using SEM |

Figure 10-3 shows the results of using SEMI in its four configurations (with or without
HighOrder and PolyRec).

In most cases, SEM| aloneisableto prove moredowncasts safe than RTA++, although
we will see below that the downcastsit proves safe are different from the ones RTA++ can
prove safe. As shown for the toolsin the previous chapter, unrestricted polymorphic
recursion is not helpful if HighOrder is enabled. However, when HighOrder isdisabled,
the situation isdifferent: unrestricted polymor phic recursion significantly improves
downcast checking.

10.3.3 Proving Downcasts Safe Using SEM| with RTA++

Taking theintersection of theinformation obtained by SEMI with that obtained by RTA++,
as described in Section 4.4.5, gives the best of both worlds. Figure 10-4 shows the results
of usng SEMI & RTA++ (with full polymorphic recursion) compared to SEMI or RTA++
alone.

225

Downcasts Proven Safe

60.00%
50.00% -
40.00% -
30.00% -
20.00% -
10.00% -
0.00% -

< v O O Y
‘{?’+ «?*% NP & ,§<\ A‘g & @‘Q

v g L@ ¥
NS
Example Program
O RTA++ m SEMI(None)
O SEMI(PolyRec) O SEMI(HighOrdern)
m SEMI(PolyRec+HighOrder)
Figure 10-3. Downcasts proven safe using SEMI
Anomaly
70.00% /
5 60.00% - _
n
S 50.00% _ a
&5 40.00% -
£ 30.00% -
S 20.00% -
2
2 10.00% - H H_H m
0.00% A BH T]
- B S\ . S e S o)
RS NP R (G @ & N
Lol @& O & @& WP
@) 5@& ¥ @ N N \/,bb

Example Program

ERTA++ O SEMI(PolyRec) @ SEMI(PolyRec) & RTA++

Figure 10-4. Downcasts proven safe using SEMI & RTA++

226

One can see that thenumber of downcasts proven safe by SEMI & RTA++ iscloseto
the sum of the downcasts proven safe by SEMI| and RTA++. Thisisunsurprising. To a
rough approximation, RTA++ resolves downcastsintroduced because Javalacks sum types
(see Section 5.4.1), and SEMI resolves downcasts introduced because Javalacks type
parametricity.

Thereis an oddity in the resultsfor the Java2ZHTML example: SEMI & RTA++ obtainsa
worse percentage of downcasts proven safe than RTA++ aone. Thisis because
Java2HTML isavery small program; RTA++ finds only fifteen live downcasts and proves
four of them safe, but SEMI & RTA++ finds only thirteen live downcasts, proving two of
them safe. That is, SEMI & RTA++ proved that two of RTA++'s safe downcasts are
actually dead code, and excluded them from its results.

10.3.4 Summary

Figure 10-5 shows the overall results using the best analyses available. The results for
SEMI(HighOrder+PolyRec) & RTA++ are almost identical to those for SEMI(HighOrder)
& RTA++.

70.00%
60.00% - _]
50.00% -
40.00% -
30.00% -

20.00% -

10.00% - (H

0.00% ; I'|_|
A 2 < N\ O O O Q % (o)
& C,}v N\ N e é(\ RN - :\0\\

Downcasts Proven Safe

Example Program

B RTA++ O SEMI(PolyRec) & RTA++ 00 SEMI(HighOrder) & RTA++

Figure 10-5. Overal results

For somelarge, realistic programs— Jar, JavaCC, and JavaP — Ajax isableto prove
the safety of morethan 50% of the downcasts.

Unfortunately, the accuracy seemsto deteriorate as programs get larger. Many fewer
downcasts are resolved in JavaC, JavaFl G and Ladybug than in the other programs. From
these results, it is hard to tell whether thisis because of the kind of code people writein
larger programs, or whether there is some more subtle reason. Anecdotal evidence suggests

227

that larger programs are more likely to contain sections of “difficult” code that destroy the
guality of the analysis results in anon-local way. Thisis discussed further below.

10.4 Unresolvable Downcasts

| have aready mentioned the kind of code for which SEMI & RTA++ can prove downcast
safety. In this section | focus on some negative examples — usage patterns for downcasts
that SEMI & RTA++ isunable to handle.

10.4.1 Confusion Involving Sum Types

A useful exampleis Sun’s Java disassembler JavaP. Analyzed by SEMI & RTA++ with
polymorphic recursion and higher-order treatment, it isfound to have 38 live downcasts of
which 21 are proven safe.

One of the downcasts not proven safeis at offset 8 in
sun.tools.util.LoadEnvironment.getClassDeclaration. This
downcast is applied after extracting an object from aHashtable containing
ClassDeclarations TheproblemisthatthesameClassDeclaration objectsare
also placed into a container of general “constant pool items”, which include strings,
Integers and other constants. The unification behavior of SEMI leadsit to concludethat
those other constants may also be present in the Hashtable. Thisisone example of a
common class of problems: the use of sum typesin one context causes inaccuracy in
another context. Most of the failures to resolve downcasts in JavaP can be traced back to
this problem with the * constant pool”.

Flow sensitive analysis techniques could help to reduce the damage caused by the use of
such sums.

10.4.2 “ Out Of Band” Dynamic Type Knowledge

Another generally common problem that occurs in JavaP is the use of special knowledge
to discriminate sum types. For example, JavaP code often assumes that certain constant
pool items have certain types, based on arithmetic invariants governing indices into the
constant pool array (e.g., two halves of a 64-bit value are always stored at consecutive
locationsin the array). It then downcasts to the known type without any guarding
instanceof check.

Another example is the method

sun.tools.java.MethodType.equalArguments (sun.tools.java.Type)

The parameter isdowncast to aMe thod T ype without checking, because other code estab-
lishes a precondition that the parameter isindeed aMethodType. Propagating such
invariants interprocedurally would require more sophisticated analysis than that provided
by Ajax.

228

10.5 Conclusions

10.5.1 Summary

The Ajax downcast checking tool is able to prove more than half of the downcasts correct
for some real programs. However, as programs get larger the accuracy decreases. This
appears to be because as the program gets larger, there is an increasing chance of encoun-
tering some code idiom that pollutestheresultsfor alarge fraction of the program. The use
of sumsis often the culprit.

10.5.2 Other Applications

Proving the safety of downcasts could be useful for Java run-time systems as well as
programmers. Many Java programs could be sped up by eliminating the run-time checks.

Another use of thistechnology would be to reverse engineer type parametricity in existing
Java programs, in order to translate them into alanguage that supports parametericity such
as Generic Java[13]. It would not be difficult to implement such atool based on the tools
| have already built.

10.5.3 Limitations of Downcast Checking

Checking downcasts is not the only use of type parametricity information, and checking
downcasts does not produce all the benefitsthat alanguage with parametric polymorphism
provides. For example, in Javaitiscommon toimplement aset usingaHashtable where
objects are put into the Hashtable, and the presence of keysistested using a method
returning a boolean value, but no object extraction (and downcasting) ever occurs.
Downcast checking will say that everything is safe even if all sorts of different objects are
added to the set. In a language with parametric polymorphism, the user could declare the
desired element type and the language would detect any usage inconsistent with the decla-
ration.

A completely automatic tool cannot detect such errors. Without user annotations, or at |east
some heuristics, it isimpossible to determine the intended type parametricity of a data
structure. If such annotations were available, then it would be easy to design an Ajax tool
to check them.

229

230

11 Ajax Object Models

11.1 Introduction

In this chapter, | describe what object models mean in Ajax, and how Ajax can construct
them. Then | present examples taken from real programs, and discuss the advantages and
disadvantages of using Ajax to construct these object models.

11.1.1 Overview of Object M odels

An object model isa graph-based abstraction of a set of program states. In thisthesis, each
node represents a collection of runtime objects that occur in the states. Edges represent
relationships between the collections, such as class inheritance and field reference.

For example, Figure 11-1 shows an object model for the program in Figure 11-2. A dotted
edgeindicates aninheritance relationship. A solid linerepresentsafield edge, labelled with
the name of the referring field. Each node is labelled with the class name of the objects it
represents. For example, from this diagram we can see at aglance that X hastwo fields
referring to Y objects, some of which may actually be of class z.

contents

Figure 11-1. A class hierarchy object model

This object model was obtained directly from the program’s class declarations. However,
more elaborate object models are possible and useful. For example, Figure 11-3 shows
another object model for the same program. This object model reveals more information,
such asthe fact that X’s y1 and y2 fields both refer specifically to objects of class Y and
not Z. Thisinformation cannot be obtained from the class declarations alone; different
objects of class Y must be represented by different nodes.

231

class X {

Y yl1;
Y y2;
X() |
yl = new Y (this);
y2 = new Y(... ? new Z() : this);
}
static void main(String[] args) {
X X = new X():

}
}

class Y {
Object contents;
Y (Object p) {
contents = p;
}
}
class 7Z extends Y {
String s = “Football”;
z() |
super(s);

}

Figure 11-2. An example Java program

Object

contents

YII

Figure 11-3. A richer object model

An object model is adirected graph. Each node in the graph is associated with a set of
runtime objects. There are two kinds of edges: field edges, labelled with field names, and
inheritance edges, which are unlabelled. A field edge from A to B labelled F indicates that
at least one of A’s objects has afield F containing areference to an object in B. An inher-
itance edge from A to B indicates that B’ s objects are a subset of A’s objects.

232

The class hierarchy of a Java program can be interpreted as an object model. Each node
correspondsto aclass C, and isassociated with the set of objects of class C or some subclass
of C. Field edges are drawn from C’ s node to the nodes corresponding to the declared class
types of the object reference fields declared in C. Inheritance edges are drawn from each
classto its subclasses.

Object modelsvisualize the structure of a program’ sdata. In object-oriented programs, the
structure of the datareflectsthe overall organization of the program. Programmers can use
object models to capture this organization graphically.

An object model can be thought of as a static projection of all possible runtime heap states
of a program.

11.1.2 A Definition of Object M odels

Thefollowing definition is asflexible as possible to accommodate various i deas about what
an object model is, how it can be constructed, and how it can be used.

The class hierarchy object model has the following properties:

1. Thefield edges are sound; field relationshipsin al program states are reflected in the
model. Formally, if in some program state an object O, has afield F containing a refer-
ence to object O,, and O, and O, are represented in the model (i.e., they are associated
with at least one node), then there are nodes A and B and afield edgefrom A to B
labelled F such that O, is associated with A and O, is associated with B.

For example, in Figure 11-3, inthe final program state, x . v2 refersto an object associ-
ated withthe Y’ 7 node. Since the object x is associated with node X, an edge labelled
y2 must be drawn from node X (or node Object)tonodey’ ’.

2. Inheritance edges obey the subset relationship: if O, isassociated with node A, and
thereis an inheritance edge from A to B, then O; is associated with node B.

In Figure 11-3, all objects associated with node Z must also be associated with the Y
node and the Object node.

3. Every object has a“most specific” node: if O isassociated with nodes A and B, then
thereis anode C such that O is associated with C and there is a path in the inheritance
edgesfromA toCandfromBtoC

The most specific node for x in the example isthe node labelled X. Thereisapath from
the other node associated with x (Ob7ject) to the most specific node.

4. If thereisafield edge E from A to B labelled F, and a node C such that thereisa path in
the inheritance edges from C to A, and C has an outgoing field edge labelled F, then A
equals C and that edge is E itself.

For example, it would not be permissible to have an edge emanating from node Y
labelled s, unless the s-edge emanating from node Z was del eted.

233

We take these properties as definitional, and call any graph satisfying them an object
model. Property 1 is useful because it assigns meaning to the field edges of the graph —
more precisely, it assigns meaning to the absence of field edges in the graph. Properties 2
and 3 impose structure on the associations between nodes and objects; in particular
property 3 means that given a map from each object to its “most specific’ node (e.g., its
class), we can find all the nodes associated with any given object. Property 4 guarantees
that each field of an object maps to at most one edge in the model.

The class hierarchy model has the following additional “completeness’ properties.

5. Objects are complete: given an object O, containing afield F, anode A such that O, is
associated with node A, and an object O, such that O,.F = O,, then for some node B
thereis an edge in the model from A to B labelled F.

6. All objectsareincluded: given an object O,, thereisanode A such that O isassociated
with node A.

A useful object model need not satisfy these properties. The object models created by Ajax
satisfy property 5 but not property 6.

11.2 Computing Object Modelswith Ajax

Ajax includes an object modelling tool based on the VPR. Building object modelsrequires
extensive post-processing of the raw value-point relation. This section describes this
processing, first giving the series of steps required, and then elaborating on the difficult

steps.

11.2.1 Overview

Previous work on object model construction [46] starts with a class hierarchy and applies
transformations to obtain more refined models. In contrast, Ajax builds a refined object
model and then applies transformations to simplify the model.

o Ajax first constructs a smple model that uses no inheritance edges and does not obey
property 4 (unique field edges). The model associates each object with at most one
node. This model is ssimply a conservative static approximation to the heap graph
reachable from agiven set of “root objects’, specified by bytecode expressions pro-
vided by the user. Property 5 (“object completeness’) is obeyed, but not property 6
(because not al objects are included). The construction of this heap graph is described
in more detail in Section 11.2.2.

Figure 11-4 gives this basic model for the program in Figure 11-2. The root objects are
the objects evaluated to by the expression x in the ma in method. Note that the node
“some other Y” has two outgoing edges labelled contents, violating property 4.

* Next, asimple object model is obtained from the heap graph by merging nodes in order
to satisfy property 4. That is, whenever we have anode A with two outgoing field edges
labelled F to nodes B and C, we merge nodes B and C and del ete one of thefield edges.

In the example, Ajax merges the X and Z nodes; see Figure 11-5.

234

1
Root —y——>

some string somex [somevy
contents

\\XL
some other Y

contents contents

N contents

some z

Figure 11-4. Ajax heap graph

some String somey
vyl contents
contents
contents / some other Y
3 some Z some X yZ

Figure 11-5. Ajax heap graph with unique field edges (simple object model)

* Inthenext pass, each node explodesinto a set of subnodes, one for each class of objects
associated with the node and one for each of their superclasses. An inheritance edgeis
introduced between each class and its superclass. The origin of each field edge is set to
the subnode for the classin which the field is declared. The target is the subnode of the
original target node for the classthe field is declared as.

See Figure 11-6. The rounded boxes group the subnodes extracted from each origina
node. For example, the node “some Z, some X” is exploded into four nodes: one for
class z, onefor class X, and one each for their superclasses Y and Object. The edge
for field y1 hasitsorigin at the subnode for X, because field y1 is declared in class X.
The edge points to the subnode for class Y because y1 isdeclared asclass .

» Sometimesthetarget of afield edgeis known to be of a more specific class than the
declared class. (Thisinformation is obtained by a separate Ajax query to compute the
most specific common superclass of the target objects.) Thefield edge is retargeted to
the more specific class.

For example, in Figure 11-6, zZ'sfield contents isknownto containonly Strings.
The edge is updated to point to the St ring node.

235

Object

Object ‘w;

Object | ‘\‘ K
g \
| . contents v \

BRI

String ! ontents

> , /
: 4 i /,>Y

Object

Figure 11-6. Ajax object model with classes and inheritance

* InFigure 11-6, three of the Ob-ject nodesare not useful because the only edges inci-
dent to them are outgoing inheritance edges. All such nodes are deleted, giving
Figure 11-7. Since this can create more nodes incident only to outgoing inheritance
edges, the operation is repeated until no applicable nodes remain. Other pruning can
also be performed at this stage; thisis discussed in more detail in Section 11.2.3.

contents

contentsg

contents

Figure 11-7. Ajax object model with superclass suppression

236

Inafina (optional) pass, Ajax identifiesisomorphic subgraphs within the model and
merges them to save space. Figure 11-7 does not contain any isomorphic subgraphs,
thereforeit isthe graph produced by Ajax for the example program. Thisisthe same model
shown in Figure 11-3.

11.2.2 Computing Heap Graphs With The VPR

Thefirst step isto construct a heap graph. Clearly the VPR is not a natural encoding of a
heap graph; we must extract a heap graph using Ajax queries.

11.2.2.1 Approach
Suppose a“root expression” exp is given. This expression can be chosen by the user as
described in Section 11.2.4.

Ajax constructs a heap graph with aroot node representing the objects to which exp
evaluates. Then, for each field name F in the program, it checks whether exp . F <> exp . F.
If not, then the objectsfor the root node never haveafield F, or their Ffields alwayscontain
null. Otherwise Ajax adds afield edge labelled F, emanating from the root node and
pointing to anew node— the node representing objects evaluated to by “exp.F’. We repeat
this procedure, taking each new node and adding outgoing edges for its fields, building a
tree representing the objects reachable from the root objects.

Many nodes in the tree may correspond to overlapping (or identical) sets of objects.
Thereforewetest, for each pair of nodes, whether the expressions associated with the nodes
are related by the value-point relation. If the expressions are related then we merge the
nodes. This means that the tree may become a general graph.

11.2.2.2 Method
The procedureis shown in Figure 11-8.

Itisimpractical to build such atree and then subsequently merge the nodes. Theinitial tree
issmply toolarge, and in the case of cyclic datastructures, it may even beinfinite. Instead,
before creating a new node (label 3), Ajax checksto see whether the node’s expressionis
related to any of the expressions associated with already existing nodes (label 1). If so then
the new node need not be created; the matching existing node is used instead (label 2).

11.2.2.3 Correctness

Using the standard value-point relation, the above procedure is not sound. It assumes that
when two nodes are related in the VPR, they have exactly the same behavior. More
precisely, the agorithm above is only correct if the VPR has the substitutability property:

Ve, ey e10e,>(Ve.ey e e, e)n (Ve Foe e e, ' ee)
Thismeansthat if e; and e, are related, substitution of one for the other does not change
whether an expression pair isin the VPR.

This property is not implied by the definition of the VPR. Consider the examplein
Figure 11-9. Accordingtothe VPR, f:x <> f:y and f:y.length <> f:1en. However,
substituting x for v, f:x.length <> £:1en doesnot hold. Informally, the reason is that

237

Initialize the graph G to contain a single node, the root
Let M be a map from G’s nodes to expressions
Initialize the map M to map the root node to exp
Repeat {
For each field F in the program ({
For each node N1 in G {
If M(N1).F <-> M(N1).F is in the VPR {
1: For each node N2 in G {
If M(N1).F <-> M(N2) 1is in the VPR {
If there is no edge from N1 to N2 labelled F {
2: Add to G an edge from N1 to N2 labelled F
}
}
}
If N1 has no outgoing edge labelled F {
3: Create a new node N
Extend M with a mapping from N to M(N1).F
Add to G an edge from N1 to N labelled F
}

}

}
} Until G does not change

Figure 11-8. Basic heap graph construction algorithm

static void f(Object x, Object y, int len) {
1
static void main(String[] args) {

String[] zoo = { “lion”, “tiger” };

f(zoo, zoo, args.length):;

f(zoo, args, args.length);

Figure 11-9. Example of substitutability violation

the two antecedent relation pairs hold in different contexts, so no conclusion can be drawn
from their conjunction.

11.2.2.4 Solution

Therefore, the object modelling tool notifies the analysis that it must produce aVPR
approximation satisfying the substitutability property. For increased flexibility, the tool
specifiesaprogram point / at which expressions must be substitutable; all other expressions
need not be substitutable. The exact property demanded is:

Vey, e, lej <> e, =

(Ve,F.lie). F<> e e, F<e)n (Ve lieg<r e ey e)
This suffices because all queriesrequired to build the heap graph are based on one or more
root expressions, which are al at the same program point. Limiting the property to one

program point means that other queries using the same VPR approximation (e.g., the
liveness query used to limit the scope of the analysis) are not seriously impacted.

238

11.2.2.5 Implementing Substitutability In RTA++

It is easy to enforce substitutability in RTA++. We simply assign the static bytecode type
Top to any expression of the form /:e , where / is the program point where substitutability
isrequired. Thisensuresthat every such expressionisrelated to al other expressionsin the
computed VPR.

This approximation is not particularly useful, becauseitimplies /:e, <> /:e, regardless of
the valuesof e; and e,, so using RTA++ aone, the heap graph will collapse to a point.
Unfortunately it is necessary. For suppose that for some e, /:e has Javatype Object.
(Theexistence of such an e isalmost certainin practice.) Thenfor any e; and e, suchthat
l:e; and [:e, have Javaclasstypes, RTA++ will give l:e <> Ie; and I:e <> [:e,. The
substitutability property then requiresthat /:e, <> l:e,.

Therefore RTA++ aoneisnot suitable asthe analysis engine for the Ajax object modeling
tool.

11.2.2.6 Implementing Substitutability In SEMI

Suppose that /:e; and /:e, both map to SEMI constraint variables that have no instance
constraints emanating from them. Thenin SEMI, /:e, <> l:e, if and only if /:e; and /:e,
map to the same congtraint variable. If indeed they map to the same constraint variable, the
substitutability property is satisfied for /:e; and /e, , because SEMI’s VPR isafunction
of the constraint variables mapped to by the expressions.

Therefore, to enforce the substitutability property in SEMI, | force all expressions of the
form /:e to have no instance constraints emanating from them, by forcing their constraint
variables to be global (see Section 7.6.3).

11.2.2.7 Improving The Heap Graph Algorithm

The algorithm described above israther inefficient. The implementation of the object
modelling tool speedsit up by exploiting the power of the Ajax interface. The algorithmis
presented in Figure 11-10.

Theimproved algorithm uses a series of iterations. It maintains aset of “fringe” nodes, the
nodes added in the last iteration (set T). At each step, the fields of the fringe nodes are
examined and potential new target nodes for those fields are created (Iabel 1). A new node
that isrelated to an existing node is merged into the existing node (Iabel 2). New nodesthat
are related to each other are merged (label 4). New nodes that are not even related to
themselves are deleted (label 3). (Thefield never refersto any objects.) Surviving new
nodes are added to the graph (label 5) and become the new fringe set.

11.2.2.8 Reducing Space Consumption

The above agorithm exploits the Ajax interface, but peak memory usage can still be very
large: accumulating the compl ete set of source nodes matching each target node can require
space quadratic in the number of candidate new nodes.

Another improvement to the algorithm reduces peak space consumption. The basic ideais
to compute just one or two elements of the set of source nodes reaching each target node.
Thisisenough information to merge nodes. The query repeats several times, merging nodes

239

Initialize the graph G to contain a single node, the root
Let S (the fringe set) contain the root node
Let M be a map from G’s nodes to expressions
Initialize the map M to map the root node to exp
While S is nonempty {
Let T be the new fringe set, initially empty
Let T M be an empty map from T’s nodes to expressions
Let P be an empty map from nodes to sets of (node, field) pairs
// P(n) records edges to be created pointing into node n

For each nonstatic field F in the program ({
For each element S e of S {
1: Create a new node N
Add N to T
Extend T M with a mapping from N to M(S_e).F
Extend P with a mapping from N to {(S5_ e, F)}

// Begin query processing
Run a query with the following parameters:

sources = T M
targets = MU T M
R = results = for each target node, the set of source nodes

whose expressions are related to the target node’s expression

// Bny new nodes that are related to existing nodes are
// replaced by the existing nodes
For each node G e in G {
Extend P with a mapping from G e to {}
For each element T e of R(G e) {
If T e is still in T then {
2: Extend P with a mapping from G e to P(T_e) U P(G_e)
Delete the mapping for T e from P
Delete T e from T and T M

Figure 11-10. More efficient heap graph construction algorithm

240

For each node T e in T {
// New nodes that aren’t even related to themselves are dead
If R(T _e) is empty then ({

3: Delete T e from T and T M
Delete the mapping for T e from P
} else {

For each element T r of R(T_e) {
If T r is still in T and T _r is not equal to T e {
4: // Merge T r into T e because they’re related
Extend P with a mapping from T e to P(T_e) U P(T_r)
Delete the mapping for T r from P
Delete T r from T and T M
}
}
}
}
// End query processing

Let 5 =T
For each node N in the domain of P {
Extend M with a mapping from N to T M(N)
For each element (S e, F) of P(N) ({
5: Add an edge to G from S e to N labelled F
}
}
}

Figure 11-10. More efficient heap graph construction algorithm

after each iteration, until the algorithm converges to the same state it would have reached
in one step of the previous algorithm.

There are two kinds of queries. Each query is parameterized by a set of source expressions
and a set of target expressions. For each target expression e, the first kind of query
computes and returns a source expression e, suchthat e; <> e,, or returns “unknown” if
no such e, exists. The second kind of query computes and returns two distinct source
expressions e, and e; suchthat e; <> e, and e, <> e5 (it may also return just one
expression or “unknown” if two such expressions do not exist). These queries areimple-
mented in the Ajax framework similarly to the abstract set query in Section 4.3.4, except
that when a set overflows its bound, its current contents are remembered and propagated.
For example, for the second kind of query, theresult of { e, } mergedwith{ e5, ¢, } could
be abstracted to “at least { e,, e5 }”.

Note that if intersection operations are applied to this*bounded set” query data, we may
have aresult consisting of an “overflowing” set but with no elements known to be in the
set. (For example, consider the intersection of the abstract set “at least { e, }” with the
abstract set “at least { e, }”; theresult can only be“at least {}”.) Thisinformation is not
useful to the heap graph algorithm. Therefore this implementation of the object modeling
tool does not work with multiple intersecting analyses.

The query processing of the above algorithm is modified as shown in Figure 11-11. In
practice few iterations of the inner loop are required.

241

// Begin query processing
Run a query of the first kind with the following parameters:

sources = T M
targets = MU T M
R = results = for each target node, 0-1 source nodes

whose expressions are related to the target node’s expression

// Bny new nodes that are related to existing nodes are
// replaced by the existing nodes
For each node G e in G {
Extend P with a mapping from G e to {}
For each element T e of R(G e) {
If T e is still in T then {
Extend P with a mapping from G e to P(T_e) U P(G_e)
Delete the mapping for T e from P
Delete T e from T and T M

For each node T e in T {
// New nodes that aren’t even related to themselves are dead
If R(T _e) is empty then ({
Delete T e from T and T M
Delete the mapping for T e from P
} else {
For each element T r of R(T_e) {
If T r is still in T and T _r is not equal to T e {
// Merge T r into T e because they’re related
Extend P with a mapping from T e to P(T_e) U P(T_r)
Delete the mapping for T r from P
Delete T r from T and T M

Figure 11-11. Heap graph construction a gorithm with reduced peak space consumption

242

Repeat {
Run a query of the second kind:

sources = T M
targets = T M
R = results = for each target node, 0-2 source nodes

whose expressions are related to the target node’s expression

For each node T e in T {
For each element T r of R(T_e) {
If T r is still in T and T _r is not equal to T e {
// Merge T r into T e because they’re related
Extend P with a mapping from T e to P(T_e) U P(T_r)
Delete the mapping for T r from P
Delete T r from T and T M
}
}
}
} until R(T e) = { T e } for every T e in T
// End query processing

Figure 11-11. Heap graph construction a gorithm with reduced peak space consumption

11.2.3 Losdess mprovement to the M odel

After constructing the heap graph and elaborating it with class and field information, the
object model may contain superfluous nodes that can be eliminated.

11.2.3.1 Superflous L eaf Classes

Field edges can be retargeted from their declared classes to some actual class that is more
specific than the declared class. In the example of Figure 11-12, the analysis engine may
suggest that the name field refersto an abstract object which could bean Integer or a
String, butsincethename fieldisdeclaredtobeastr ing and no other fieldsreference
the abstract object, the name field isretargeted to St ring. This can leave nodes such as
Integer which are not reachable, i.e., no field edge pointsto the class or any of its super-
classes or subclasses.

Such nodes can never correspond to real objects in the program, so they can be deleted. In
the example, the Tnteger subclass can be removed. (The Object superclass can then
also be hidden.) These nodes can occur because of inaccuracy in the underlying analysis
engine.

11.2.3.2 Merging I dentical Subgraphs

Consider the example on the left hand side of Figure 11-13. Suppose a programmer isinter-
ested in discovering the Java types of the objects that may be (indirectly) referenced by
Orb, and which field dereference paths are involved.

Clearly it is unnecessary to distinguish the two Vectors for thistask — the fact that the
twoVectors arenot aliasedisnot important. In this case, one can save space in the model
by merging identical subgraphs. The Ajax object modeling tool provides this as an option.
The above example would be reduced as shown in Figure 11-13.

243

[
class Package { name Packagqg | name Package
String name;
e |
} Object | Object
| .
/ ~ | i ~
N N
y a B | A
Integeq String | Integer String
[

Figure 11-12. Example of field retargeting leaving unreachable nodes

g i

|
|
|
|
|
Vector Vector Box | Vector Box
|
|
|
|
|

\ !

String String String

Figure 11-13. Example of merging duplicate subgraphs

11.2.4 User Interface

The Ajax object modeling tool has a simple user interface. The user specifies the program
to be analyzed by giving the “class path” and the name of the “main” class. By default, the
tool uses as root expressions all the local variables at the last instruction in the main class
reachable by non-exceptional control flow. The user can specify an explicit root expression
instead, if desired. Thetool computes the model and outputs the resultsin aformat suitable
for processing by AT& T'sdot tool for graph layout [36].

11.3 Examples

11.3.1 JavaP Example

Figure 11-14 shows the object model produced by Ajax applied to Sun’s JavaP disas-
sembler tool. Isomorphic subgraphs have not been merged. Thisexample clearly showsthe
strengths and limitations of the Ajax object modeling tool.

This model uses the default set of root expressions — all thelocal variables at the last
instruction in JavaP .main reachable by non-exceptional control flow. The tool usesthe
SEMI analysis.

244

N\

5 wenyesol

son ‘M g

[aaum]

e

e S e Y

D

uopesp | PRl

srcpsey

ssamps

teppiay

srcpsey

sassen

wawaiaiELE

ELe)

o

PT—

o

\\’_5

W | wssasimancssn.

ssammous

o [[pouwomzons]

wsagindinopasayng

Figure 11-14. JavaP object model

245

The figure shows multiple occurrences of the Hashtable class. Each Hashtable has
anaray of HashtableEntries,andeachHashtableEntry hasakey andvalue. In
Java, the keys and values are declared as Objects, but in most cases Ajax has been able
to resolve them to specific classes, revealing the actual keys and values of each Hashtable.
For example, wecan seethat LocalEnvironment .packages isaHashtable mapping
Identifiersto Packages (inthe dashed outline).

On the left hand side of the model are a number of occurrences of stream-related classes.
This part of the model reveals, for example, that the JavaP object’'soutput fieldisa
PrintWriter wrappingan QutputStreamWriter wrappingaPrintStream
wrapping aBufferedOutputStream wrappingaFileOutputStream (as
indicated by thefat dashed arrows). Each of these Writer or Stream objectscontainsanout
field referencing the Writer or Stream it wraps. None of these rel ationships are apparent
from the Java class declarations aone, because the out fields are ssimply declared as
Writer or OutputStreamn.

On the right hand side of the model is an Object node with many edges leading into it,
e.g., fromthe key and value fields of several Hashtables. Here the analysis was not
powerful enough to distinguish the objectsreferenced by theincoming fieldsor to precisely
determine their classes. The model reveals only that the referenced objects are either
Strings, Numbers, FieldDefinitions, ClassDeclarations, or subclasses
of one of those classes. Thisis aproblem that becomesincreasingly severe asthe analyzed
programs grow: imprecision in the analysis leads to afew nodes covering avery large
number of different kinds of run-time objects. Field edges that |ead to such nodes do not
convey much useful information.

A fundamental problem revealed by this exampleisthat this graph is about as large asone
can usefully lay out and read. It has 96 nodes and 157 edges, and JavaPisarelatively small
Java program. As graphs get larger, it becomes rapidly more difficult to visualize themin
areasonable way.

11.3.2 CTAS Example

Figure 11-15 showsthe object model produced by Ajax applied to the CTASexample. The
setup is the same asfor the previous example. This graph has 122 nodes and 166 edges.

This model reveals some interesting facts, e.g., that the postRecvHandlers,
sendHandlers and mainRecvHandlers of HandlerManager areal empty.
(They are used by other applications based on this code, but not by the test program under
analysis.) Themodel revealsthat ConnectionManager.socketQueueisavVector
of sockets, andisableto distinguish many different usesof CTAS sHandlerTable
class.

On the negative side, again thereis an Object node covering alarge number of different
kinds of objects, that seem to be unrelated but which are not being distinguished by the
analysis.

246

aiosenan0 | | auaiien)

ol

@ e [aen \aen \aren B @

o = [e]][] o]
b E E e \ aw \ pee \ pilospmo | py ju
TEoTIBI e e F

15. CTAS object model
247

Figure 11

11.3.3 Improving The M odel By Discarding | nformation

11.3.3.1 Removing “Lumps’

Ajax object models for large programs are often crippled by the “large lump” problem,
wherethe analysis creates one or more Obj ect nodes covering alarge number of different
kinds of objects that are not truly related. These “lumps’ cause the model’s graph to be
overconstrained, making it difficult to lay out and obscuring useful information.

One way to extract some useful information from these modelsis to detect and remove
inaccurate “lumps’ from the model graph. A useful heuristic is to remove nodes corre-
sponding to abstract objects whose most specific known superclassis Object and which
have many incoming edges. The field edges|eading to such nodes are annotated to indicate
that the referent of the field is not known. Nodes with many incoming edges especially
impede comprehensible graph layout using hierarchy-based layout toolssuch asdot, soit
is especially advantageous to remove them.

This approach sacrifices some information in the hope that some of the remaining infor-
mation may still be useful to the user. A model that presents some information in ausable
form is more useful than an incomprehensibly large model.

11.3.3.2 Hiding Strings And Other Classes

Asdescribed in Section 8.4.3, most referencesto St ring objects are aliased because they
may refer to String objects extracted from the * constant pool”. Thus, in an object model,
most fields of type St ring lead to acommon node. This clutters the graph layout with a
large number of long edges. Furthermore, few programmers are interested in disambigu-
ating string references even when thisis possible. Therefore the Ajax object modeling
tool can optionally remove the common St r ing node and annotate relevant field edgesto
indicate that the referent is some unknown string.

The same technique can also be useful for other classes. The Ajax object modeling tool
allows the user to explicitly specify an arbitrary set of classesto be elided; optionally, all
subclasses of a specified class can be elided.

11.3.4 Jess Example

Figure 11-16 illustrates these techniques applied to an object model for the Java Expert
System Shell example. To produce amodel of manageable size, the details of the stream-
related classesare elided by thetool using the techniques describedin Section 11.3.3.2. The
rulesfor elision are specified manually. In this case the rules are:

248

249

10l00

] o

6uns

Bupsoop w fers w

[iwarog] woito [wotosssa] [o0] wsko weko ko polio fiszuarol]
- QE qmz; ﬂi

weansindino 1%®Iq0 weldo walgo welao [lreyo

oo fow

anen \ anfen

(o
(uawe pAeIre
Buing
yep W puweu W eRQIUBWae
fomn] sws s
Bupu g w spey W |aweu W Bursoop™w
eaoibpal »S1RIPQA| weansnduipaiayng

10l00

1040

i’ f— s
- o | p] [omorc] o I j:@%@m [rp—— sy (i) _ [z e ———
1
ael e Ele=2 aqer eRQIBWap aqer TIVOVAYE [sifw e aqer — .MQFEEWW— el aqer
o] = o ~ax bie] o] |] wmvsnanes o] o
[Goeyprw_Nomeesw Asw o g

TIvovAYL

Figure 11-16. Jess object model

250

»algo

Jreouny"w

pesanien| waldo

AveUw S weweppheire

hewop/ee

uewajpkele

10120 W

wala0

eADRIGO” W
wousphelre
uows afelre
pAw welao waldo
eADRIGO W Ireouny”w
waupp/feire eRQIBUBP wawajekele

wawapkelR

o [Jommmen] o]

fen09lq0 W

pARIW

auibue W Wowop/eie

sButpuiq w

INT3.1TepoN| [3NONTaPON|

(031T9pON|

103 1T8pON|

|

vﬂ\mz:mui Tscmuazi TﬁCmSL Tmisag TEEEEL TEEE&L TEEEEL TwszEz

wowop/ese

o]

wored w

=

erQUBWR

o]

Iy

wlgo iy
anpen

19000 Ui

howepfeie i

[Anuze

prequewsp /o

priduaye

anpe

U el

auibus™w e

[1Anuzeige

al

jolqeise

suomeA e W

Leowrs s

SuBE W

t model

) €CI

11-16. Jess ob|

Figure

251

» Elide al lumps with more than seven incoming edges.
* Elidedl strings.

e Elideall subclasses of InputStream.

e Elideall subclasses of OutputStream.

Asin the previous examples, this example reveal s the contents of many of the container
objects. It aso reveas some information that may be surprising; for example, the Rete’s
m clearables Vector isawaysempty. Also, thereare (at least) two distinct instances
of the Jesp engine object.

This graph contains 189 nodes and 243 edges. The corresponding complete graph (without
any node elision) contains 885 nodes and 1173 edges. The complete graph is much too
complex to be automatically laid out in a comprehensible way. Therefore, although this
reduced graph contains less information, in practice it is much more useful because its
information is much more accessible.

This example shows one remaining problem with Ajax object models: it reveals
unimportant implementation details of library classes. For example, the details of the
implementation of Hashtable arerevealed, when it would be better to simply show that
Hashtables contain keysand values.

11.4 Conclusions

11.4.1 Contributions

Using the Ajax VPR, it is possible to construct heap graphs and object models. However,
inaccuracies in the analysis and the sheer size of the graphs produced can cripple the
usefulness of these graphs. Simple pruning countermeasures result in graphs that contain
accessible, useful and surprising information, even for large programs. This information
cannot be easily automatically obtained using other techniques, especially those that rely
on declared class information.

The Ajax VPR is not the ideal abstraction to use for computing heap graphs. Extensive
postprocessing isrequired. A tool with direct accessto SEMI’ s constraint structureswould
be more efficient. Given the Ajax infrastructure, however, it seemed to be less work to
compute the heap graphs from the VPR than to bypass the VPR and hook into the SEMI
implementation.

11.4.2 Future Work

One major remaining problem with these modelsis that they have no notion of scope. In
particular, they expose the implementation of library data structures. Instead it would be
preferable to only show classes and fields visible to the user. On the other hand, sometimes
information about private fields is useful to the user — for example, the key and value
fieldsof HashtableEntry convey very useful information. Heuristics or other
techniques to resolve this problem are an interesting area for future inquiry.

252

12 A Scanning Tool

12.1 Introduction

Programmers are adept at using simple tools such as “grep” to scan programs. More
advanced cross-referencing and scanning tools such as class browsers, indexed full-text
search engines, and hyperlinked source browsers such as LXR [91], are also very popular.
However, none of these tools are semantics-based; they use syntactic or lexical infor-
mation.

Using the Ajax analysis toolkit, it isnot difficult to build ssimilar toolsthat utilize semantic
information about the program. To demonstrate this, | built a ssimple example called
“JGrep”, and used it to reverse engineer some of the example programs.

12.2 The JGrep Tool

12.2.1 User Interface

JGrep hasasimple “command line” interface, although it would betrivial to incorporateit
into agraphical or Web-based interface such as LXR. The user specifies the program to
analyze, and a program expression (including a code location). The expression need not
actually occur in the program text. JGrep reports information about all the objects which
might be returned as the result of the expression at the given location.

Four kinds of information are returned:
* New sites: all program locations where the objects are created.

» Call sites: al program locations where one of the objectsis passed as the “this’ param-
eter to amethod call.

* Read sites: al program locations where afield of one of the objectsis read.
» Write sites: all program locations where afield of one of the objectsiswritten.

Since Ajax performs conservative analysis, some spurious sites may be returned along with
the true Sites.

The user can control which kinds of sites are returned, using command line options.

12.2.2 Implementation

JGrep is easy to implement using the Ajax toolkit. It comprises 462 lines of code.
Collecting the setsof sitesisasimple application of the value-point relation. The source set
Sisasingleton set containing the user-specified expression, and the target set T contains
expressionsfor al the sites the user isinterested in:

253

* New: Theresults of all “new” instructions, i.e., the top of the operand stack at the
instruction after each new, newarray, anewarray andmultinewarray instruc-
tion.

» Call: The stack element representing the “this’ operand at every invokevirtual,
invokespecial and invokeinterface instruction.

* Read: Thetop of the operand stack at each get field instruction.
» Write: Thetop of the operand stack at each put field instruction.

The“intermediate data”’ propagated by the analysis are boolean values, initially set to false
and then set to true for the solitary source expression and all expressions reachable from it
intheanalyzer’ sgraph. For each target expression receiving the value“true’, thetool prints
out the code location associated with that expression — i.e., the location of the “ new”
instruction, the “call” instruction, the get field instruction or theputfield
instruction.

JGrep currently accepts and prints code locations as the fully qualified name of a method

and abytecode offset withinthat method, e.g.,“ jess .Main.main#373:1ocal-9" —
local variable9inclass jess .Main, methodmain, bytecode offset 373. It would be easy
— and highly desirable — to input and output source line numbers and source-level expres-
sions instead.

JGrep currently reanalyzes the program for every query, which meansthat thereisalarge
delay between posing a query and receiving an answer. However, it would be easy to have
JGrep run the analysis engine once and then answer a succession of queries.

12.3 Examples

12.3.1 Checking an Anomaly
The object model for Jess presented in Section 11.3.4 shows that the Rete’s

m clearables Vector isawaysempty. To investigate further, one simply submitsto
JGrep an expression corresponding to a path to the desired node in the object model:

jess.Main.main#373:1local-9, jess.Jesp.m engine,
jess.Rete.m clearables

This expression specifes local variable 9 at offset 373 in the method ma in in class
jess.Main, areference to the Jesp application object, followed by two field derefer-
ences: first, the dereference of fieldm engine declaredinclass jess. Jesp, to get the
Rete engine, and then the dereference of fieldm _clearables inclassjess.Rete.

The“New” and “Call” sites output are shown in Figure 12-1.

The single “NEW” siterevealsimmediately that the vector iscreated inRete’s
constructor (jess.Rete.<init>). Thecdlto java.util.Vector.elements
shows that the vector’s elements are scanned in the method Rete.clear (). Thecal
tojava.util.Vector.removeAllElements indicatesthat itisemptiedin
Rete.clear (). Thereare no calsto methods that add elementsto the vector.

254

CALL to method void java.lang.Object.<init> ()
Offset 1 in method void java.util.Vector.<init>(int, int)
CALL to method void java.util.Vector.<init>(int, int)
Offset 3 in method void java.util.Vector.<init>(int)
CALL to method void java.util.Vector.<init>(int)
Offset 3 in method void java.util.Vector.<init>()
NEW of class java.util.Vector:
Offset 182 in method void jess.Rete.<init>(jess.ReteDisplay)
CALL to method void java.util.Vector.<init> ()
Offset 186 in method void jess.Rete.<init>(jess.ReteDisplay)
CALL to method java.util.Enumeration java.util.Vector.elements/()
Offset 67 in method void jess.Rete.clear()
CALL to method void java.util.Vector.removeAllElements ()
Offset 249 in method void jess.Rete.clear()

Figure 12-1. Output of the creation sites and method callsonthem clearables object

Thisinformation is helpful because it indicates to the programmer that if there were any
elementsinthevector, they could only beused inthemethod Rete. clear. Therefore
further investigation of this anomaly should focus on that method. If such investigation
provesthat anemptym clearables isbenign, then the entirefield can be removed and
we can be sure that no other code will be affected.

This example illustrates the power of the SEMI analysis; asimpler analysis such as RTA
would not have been able to distinguish the different vectors used in the program.
Running “grep” over the Jess sources finds 43 occurrences of the name Vector, 5 occur-
rences of thename removeRA11Elements, 27 occurrences of the name elements, 34
occurrences of the name el ementAt, and 22 occurrences of the name addE1ement. It
would require significant effort to sort through these occurrences to find the three sites
specifically operatingonthem clearables Vector.

12.3.2 Checking Field Accesses

In JavaC, thereisaclass BatchEnvironment with apublic f1ags field. It is natural
to wonder whether and how thisfield is accessed — is there an abstraction violation
occurring, and in what form? JGrep provides the answer, using a query for the read and
write accesses to the objects denoted by the expression:

sun.tools.javac.BatchEnvironment.<init>
(Java.io.QutputStream, sun.tools.java.ClassPath,
sun.tools.javac.ErrorConsumer) #0

:local-0

This expression denotes the “this’ objects of the most general constructor for
BatchEnvironment. Theresultsfor the f1ags field are shown in Figure 12-2.

All the accesses are from one of three methods;

sun.tools.javac.Main.compile (read and written)
sun.tools.Jjavac.BatchEnvironment.getFlags (read only)

sun.tools.javac.BatchEnvironment.reportError (read and written)

255

READ from field "flags" of class sun.tools.javac.BatchEnvironment:
Offset 742 in method boolean
sun.tools.javac.Main.compile(java.lang.Stringl[])

WRITE to field "flags" of class sun.tools.javac.BatchEnvironment:
Offset 714 in method boolean
sun.tools.javac.Main.compile(java.lang.Stringl[])

WRITE to field "flags" of class sun.tools.javac.BatchEnvironment:
Offset 749 in method boolean
sun.tools.javac.Main.compile(java.lang.Stringl[])

READ from field "flags" of class sun.tools.javac.BatchEnvironment:
Offset 708 in method boolean
sun.tools.javac.Main.compile(java.lang.Stringl[])

READ from field "flags" of class sun.tools.javac.BatchEnvironment:
Offset 1 in method int sun.tools.javac.BatchEnvironment.getFlags ()

READ from field "flags" of class sun.tools.javac.BatchEnvironment:
Offset 216 in method void

sun.tools.javac.BatchEnvironment. reportError(java.lang.Object, int,

jJava.lang.String, java.lang.String)

WRITE to field "flags" of class sun.tools.javac.BatchEnvironment:
Offset 222 in method void

sun.tools.javac.BatchEnvironment. reportError(java.lang.Object, int,

jJava.lang.String, java.lang.String)

WRITE to field "flags" of class sun.tools.javac.BatchEnvironment:
Offset 92 in method void

sun.tools.javac.BatchEnvironment. reportError(java.lang.Object, int,

jJava.lang.String, java.lang.String)

READ from field "flags" of class sun.tools.javac.BatchEnvironment:
Offset 86 in method void

sun.tools.javac.BatchEnvironment. reportError(java.lang.Object, int,

jJava.lang.String, java.lang.String)

Figure 12-2. Accessestothe flags field of BatchEnvironment

Note that this example does not particularly benefit from SEMI. The same results are
obtained using Ajax’s RTA engine, because there is really only one instance of
BatchEnvironment used inthe program.

12.4 Conclusions

Using the alias information obtained by Ajax, it is easy to write ssimple and useful search
tools. Thesetoolsimprove on thefunctionality available from lexical and syntactic toolsin
anatural way. Additional postprocessing could improve the utility of the results, but even
the simplest approaches are useful. Thereis significant scope for new searching and visual -
ization tools based on these techniques.

256

13 Conclusions

13.1 Summary

Ajax demonstrates that sound, static, global alias analysis can be used as the basis for a
variety of software engineering tools. Thesetools produce interesting and nontrivial results
that cannot be obtained by other existing methods.

The Ajax design showsthat it is practical to separate analysis implementations from tools
that consume alias information. The specification for an analysis engine is semantically
simple, as defined by the value-point relation, but powerful enough to enable cheap
construction of awide range of tools. The interface is also efficient; for most configura-
tions, the scalability of the system is constrained by the scalability of the underlying
analysis and not by the overhead of the VPR interface. The exception is the object
modelling tool. It takes asignificant amount of code and execution resourcesto reconstruct
a“heap graph” from the VPR, and also requires a strengthened definition of the VPR.

Ajax also showsthat it is possible to implement the VPR interface using very different
analyses — RTA, based on declared language types, SEMI, based on polymorphic type
inference, and a hybrid analysis based on the “intersection” of these two analysis engines.
The strong separation between analyses and tools ensures that all tools work correctly
regardless of the analysis configuration. The analysis technique can be selected at runtime
according to the desired accuracy for the task at hand and the execution resources available.
For example, for finding the set of possibly live methods, RTA isusually good enough, but
SEMI is much better for resolving virtual method calls, abeit more expensive.

The VPR interface also enables easy composition of analyses. It istrivial to build an
anaysis that computes the intersection of the results of two or more other analyses. Ajax
can also provide* sequential composition”; for example, SEMI can use someother arbitrary
analysis to compute the call graph it uses to reduce programs to first order.

SEMI shows that type inference with polymorphic recursion can usefully be applied to
large Java programs, especially if the programis conservatively reduced to first-order code
before the application of SEMI. | have proven SEMI sound with respect to asimplified —
but still very rich— model of the Java bytecode, and shown that SEMI can even analyze
programs which do not conform to the static safety checks usually performed by Java.
SEMI provides a significant improvement in accuracy over a wide range of tools and
example programs, and well capturesimplicit type parametricity in Javaprograms, proving
alarge percentage of downcasts safe in most programs. However, SEMI isless accuratein
larger programs, because imprecision in analyzing one part of the code spillsover into other
parts of the code. Although SEMI can indeed analyze some large programs (Ladybug
having over 5,000 methods), its scalability in terms of resource consumption and accuracy
still leaves much to be desired.

257

Polymorphic recursion plays an interesting role in SEMI. | have described several
techniques required to make the SEMI implementation of polymorphic recursion practical.
The benefits of polymorphic recursion vary by tool: in the virtual call resolution tool,
polymorphic recursion improves accuracy only alittle, but for checking downcasts,
unrestricted polymorphic recursion improves accuracy a great deal — but only when the
program isinitially reduced to first order. The generality of the SEMI constraint solving
engine seemsto limit its performance compared to other systems based on Hindley-Milner
type inference [54] [69].

My work shows that composing RTA and SEMI by intersection is very useful. RTA isso
cheap that performance is not noticeably affected, and for many tools the combined
analyses are significantly more accurate than either analysis alone.

Most of the Ajax tools were easy and cheap to build. Of all thetools, | personally feel that
the most immediately useful is“JGrep”, having used it myself to reverse-engineer some of
the example programs for which source code isnot available. It isvery useful to be able to
track down all accesses to one instance of acommonly reused class. The object modelling
tool demonstrates that starting with alias information and transforming it into an object
model can produce more precise models than existing techniques, which start with a class
hierarchy model and improve its precision using heuristics or other analysis [46].

Accounting for the behavior of non-Javacode—i.e., native code and reflection — required
agreat deal of work. Thisis an important problem because real programs (especialy the
standard Java libraries) use these features often, and in avariety of ways. Ajax provides
thorough handling of non-Java code by accepting specifications describing how non-Java
code is used by the application. However, unavailability of the whole program remains a
fundamental problem.

13.2 Outlook

There are many possible future directions for this work:

» SEMI istoo dow at analyzing very large programs. It may be possible to reimplement a
similar analysis to achieve much higher performance, perhaps using adesign similar to
Ruf’s escape analysis for Java[69]. Alternatively, it may be possible to design asim-
pler analysis with some of the desirable features of SEMI.

» SEMI’s accuracy degrades as program size increases. Addressing this may required
improved anaysis techniques. Some limited flow-sensitive analysis might improve
accuracy, as might tighter integration of language type information into SEMI’s com-
putations. One improvement that would be amost certain to provide increased accu-
racy would be the introduction and use of “parity annotations” on instance constraints,
as described by Fahndrich, Rehof and Das [31].

* It would be very interesting to implement more analyses in the Ajax framework. Ajax
provides agreat deal of infrastructure to make it easier to implement analyses. Ajax
also provides atool suite; once an analysis has been implemented, it can be immedi-
ately applied to awide range of problems. Analysis composition isalso very easy in
Ajax, and can compensate for weaknesses in one particular analysis technique. Also,

258

because Ajax provides a single description of the behavior of non-Java code and afixed
specification of sound analysis results, it is both easy and fair to compare the accuracy
and performance of different analyses implemented in Ajax.

* The VPR isnot the ultimate abstraction of program behavior. It has very limited
expression of context: for example, it isimpossibleto ask whether two expressionsin a
method get the same value during the same invocation of the method. It is also impossi-
ble to specify that an expression should apply not just at a particular program point, but
also when its method has a particular caller. SEMI can capture some of thisinforma-
tion. The VPR could be extended to allow this information to be communicated to
tools.

» The VPR could also be extended to accomodate different behaviors of tagsin the
tagged bytecode semantics. For example, one might wish to have addition take two
operands with the same tag and return a result with the same tag as the operands. Thus
an expression referring to the result of an addition would match an expression referring
to one of the operands. Thiswould allow Ajax to address additional tasks.

» Moretools could easily be built in the Ajax framework. Accessible alias analysis opens
up many possibilities for new tools for various programmer tasks.

» Sound, global, static analysis of Java programsis inherently difficult because Java pro-
grams use Java features that are not amenabl e to static analysis, such as reflection. Fur-
thermore, modern software environments consist of dynamically configured
components, often interacting over channels not amenable to static analys's, e.g., by
exchanging XML data. Thus many applications are not amenable to sound global static
analysis.

* It may be necessary to perform local static analysis. In particular, it would be inter-
esting to make “worst case” assumptions about missing code and then measure the
accuracy of the resulting analyses. It would aso be interesting to introduce “reason-
able” heuristics to approximate the behavior of missing code and then measure anal-
ysis accuracy.

* Itiseasy to change the definition of the VPR to quantify over some fixed finite set of
program traces (e.g., some program traces that have actually been obtained by run-
ning the program) instead of all traces. An Ajax analysis could compute a precise
VPR for aprogram by running it on test data and recording the execution. The exist-
ing Ajax tools would be immediately usable with this dynamic analysis.

| predict that in the forseeable future, tasks such as program understanding, which do not
absolutely require sound static analysis of code, will best be addressed by other means, such
as dynamic analysis or unsound static analysis. Tasks which do require sound static
analysis, such as compilers or verification tools, will need to perform local analysis of
individual components, relying on whatever explicit (run time checkable) annotations exist
at component boundaries to specify the behavior of “external” code.

259

260

[1]

[2]

3]

[4]

[5]

[6]

[7]

(8]

Bibliography

O. Agesen. The Cartesian Product Algorithm: Simple And Precise Type Inference
Of Parametric Polymorphism. Proceedings of the 9th European Conference on
Object-Oriented Programming, Aarhus, Denmark, August 1995, Springer-Verlag
LNCS 952, pp. 2-26.

A. Aiken, M. Fahndrich, J. Foster and Z. Su. A Toolkit For Constructing Type- And
Constraint-Based Program Analyses. Proceedings of the Second International
Workshop on Typesin Compilation, Kyoto, Japan, March 1998, Springer-Verlag
LNCS 1473, pp. 78-96.

A. Aiken and E. Wimmers. Type Inclusion Constraints And Type Inference. Pro-
ceedings of the International Conference on Functional Programming Languages
and Computer Architecture, Copenhagen, Denmark, June 1993, pp. 31-41.

J. Aldrich, C. Chambers, E. Gun Sirer, and S. Eggers. Static Analyses For Eliminat-
ing Unnecessary Synchronization From Java Programs. Proceedings of the 6th
International Static Analysis Symposium, September 1999, Springer-Verlag LNCS
1694, pp. 19-38.

L. Andersen. Program Analysis and Specialization For The C Programming Lan-
guage. Technical Report 94-19, University of Copenhagen, Copenhagen, Denmark,
1994.

J. Ashley and R. Dybvig. A Practical And Flexible Flow Analysis For Higher-Order
Languages. ACM Transactions on Programming Languages and Systems, Volume
20, No. 4, July 1998, pp. 845-868.

R. Bowdidge and W. Griswold. Automated Support For Encapsulating Abstract
Data Types. Proceedings of the ACM Conference On Foundations of Software
Engineering, New Orleans, USA, December 1994, pp. 97-110.

A. Bondorf and J. Jargensen. Efficient Analyses For Realistic Off-line Partial Eval-
uation. Journal of Functional Programming, Volume 3, No. 3, July 1993, pp. 315-
346.

261

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

D. Bacon and P. Sweeney. Fast Static Analysis Of C++ Virtual Function Calls. Pro-
ceedings of the ACM SIGPLAN "96 Conference on Object-Oriented Programming
Systems, Languages and Applications, San Jose, USA, October 1996, pp. 324-341.

B. Blanchet. Escape Analysis For Object-Oriented Languages: Application To Java.
Proceedings of the ACM SIGPLAN "99 Conference on Object-Oriented Program-
ming Systems, L anguages and Applications, Denver, USA, November 1999, pp. 20-
34.

J. Bogda and U. Hélzle. Removing Unnecessary Synchronization In Java. Proceed-
ings of the ACM SIGPLAN '99 Conference on Object-Oriented Programming Sys-
tems, Languages and Applications, Denver, USA, November 1999, pp. 35-46.

J. Boyland and A. Greenhouse. May Equal: A New Alias Question. Presented at the
Intercontinental Workshop on Aliasing in Object Oriented Systems, Lisbon, Portu-
gal, June 1999.

G. Bracha, M. Odersky, D. Stoutamire and P. Wadler. Making The Future Safe For
The Past: Adding Genericity To The Java Programming Language. Proceedings of
the ACM SIGPLAN '98 Conference on Object-Oriented Programming Systems,
Languages and Applications, Vancouver, Canada, October 1998, pp. 183-200.

R. Chatterjee, B. Ryder and W. Landi. Relevant Context Inference. Proceedings of
the 26th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, San Antonio, USA, January 1999, pp. 133-146.

Y.-F. Chen, M. Nishimoto, and C. Ramamoorthy. The C Information Abstraction
System. | EEE Transactions on Software Engineering, Volume 16, No. 3, March
1990, pp. 325-334.

B. Cheng and W. Hwu. Modular Interprocedural Pointer Analysis Using Access
Paths: Design, Implementation, And Evaluation. Proceedings of the ACM SIG-
PLAN "00 Conference on Programming Language Design and Implementation,
Vancouver, Canada, June 2000, p. 57-69.

J. Choi, M. Gupta, M. Serrano, V. Sreedhar and S. Midkiff. Escape Analysis For
Java. Proceedings of the ACM SIGPLAN '99 Conference on Object-Oriented Pro-
gramming Systems, Languages and Applications, Denver, USA, November 1999,
pp. 1-19.

262

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

M. Cierniak, G. Lueh and J. Stichnoth. Practicing JUDO: Java Under Dynamic
Optimizations. Proceedings of the ACM SIGPLAN ’ 00 Conference on Program-
ming Language Design and | mplementation, Vancouver, Canada, June 2000, pp. 13-
26.

M. Das. Unification-Based Pointer Analysis With Directional Assignments. Pro-
ceedings of the ACM SIGPLAN ' 00 Conference on Programming Language Design
and Implementation, Vancouver, Canada, June 2000, pp. 35-46.

J. Dean, D. Grove, and C. Chambers. Optimization Of Object-Oriented Programs
Using Static Class Hierarchy Analysis. Proceedings of the 9th European Conference
on Object-Oriented Programming, Aarhus, Denmark, August 1995, Springer-Verlag
LNCS 952, pp. 77-101.

G. DeFouw, D. Grove and C. Chambers. Fast Interprocedural Class Analysis. Pro-
ceedings of the 25th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, San Diego, USA, January 1998, pp. 222-236.

A. Diwan, J. Moss, and K. McKinley. Simple And Effective Analysis Of Statically-
Typed Object-Oriented Programs. Proceedings of the ACM SIGPLAN '96 Confer-
ence on Object-Oriented Programming Systems, L anguages and Applications, San
Jose, USA, October 1996, pp. 292-305.

A. Diwan, J. Moss, and K. McKinley. Type-Based Alias Analysis. Proceedings of
the ACM SIGPLAN ’98 Conference on Programming Language Design and Imple-
mentation, Montreal, Canada, June 1998, pp. 106-117.

J. Dolby and A. Chien. An Automatic Object Inlining Optimization And Its Evalua-
tion. Proceedings of the ACM SIGPLAN ’'00 Conference on Programming Lan-
guage Design and I mplementation, Vancouver, Canada, June 2000, pp. 345-357.

D. Duggan. Modular Type-Based Reverse Engineering Of Parameterized TypesIn
Java Code. Proceedings of the ACM SIGPLAN '99 Conference on Object-Oriented
Programming Systems, Languages and Applications, Denver, USA, November
1999, pp. 97-113.

P. Eidorff, F. Henglein, C. Mossin, H. Niss, M. Sgrensen and M. Tofte.
AnnoDomini: From Type Theory To Year 2000 Conversion Tool. Proceedings of the
26th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, San Antonio, USA, January 1999, pp. 1-14.

263

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

J. Eifrig, S. Smith, and V. Trifonov. Sound Polymorphic Type Inference For Objects.
Proceedings of the ACM SIGPLAN "95 Conference on Object-Oriented Program-
ming Systems, Languages and Applications, Austin, USA, October 1995, pp. 169-
184.

M. Fahndrich. BANE: A Library for Scalable Constraint-Based Program Analysis.
PhD Thes's, Computer Science Division, University of California, Berkeley, USA,
March 1999.

M. Fahndrich and A. Aiken. Program Analysis Using Mixed Term And Set Con-
straints. Proceedings of the 4th International Static Analysis Symposium, September
1997, Springer-Verlag LNCS 1302, pp. 114-126.

M. Fahndrich, J. Foster, Z. Su and A. Aiken. Partial Online Cycle Elimination In

Inclusion Constraint Graphs. Proceedings of the ACM SIGPLAN '98 Conference
on Programming Language Design and I mplementation, Montreal, Canada, June

1998, pp. 85-96.

M. Fahndrich, J. Rehof and M. Das. Scalable Context-Sensitive Flow Analysis
Using Instantiation Constraints. Proceedings of the ACM SIGPLAN 00 Conference
on Programming Language Design and I mplementation, Vancouver, Canada, June
2000, pp. 253-263.

M. Fernandez, Simple And Effective Link-Time Optimization Of Modula-3 Pro-
grams. Proceedings of the ACM SIGPLAN '95 Conference on Programming Lan-
guage Design and Implementation, La Jolla, USA, June 1995, pp. 103-115.

C. Flanagan and M. Felleisen. Componential Set-Based Analysis. ACM Transac-
tions on Programming Languages and Systems, Volume 21, No. 2, March 1999, pp.
370-416.

J. Foster, M. Fahndrich and A. Aiken. Polymorphic Versus Monomorphic Flow-
Insensitive Points-To Analysis For C. Proceedings of the 7th International Static
Analysis Symposium, September 2000, Springer-Verlag LNCS 1824, pp. 175-198.

E. Friedman-Hill. Jess, The Java Expert System Shell. Technical Report SAND98-
8206 (revised), Distributed Computing Systems, Sandia National Laboratories, Liv-
ermore, California, January 2000.

264

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

E. Gansner and S. North. An Open Graph Visualization System And Its Applica-
tions To Software Engineering. Software Practice and Experience, Volume 30, No.
11, September 2000, pp. 1203-1233.

D. Grove, G. DeFouw, J. Dean and C. Chambers. Call Graph Construction In
Object-Oriented L anguages. Proceedings of the ACM SIGPLAN 97 Conference on
Object-Oriented Programming Systems, Languages and A pplications, Atlanta,
USA, October 1997, pp. 108-124.

D. Gifford, P. Jouvelot, J. Lucassen, and M. Sheldon. FX-87 Reference Manual.
Technical Report MIT/LCS/TR-407, MIT Laboratory for Computer Science, Bos-
ton, USA, September 1987.

N. Heintze. Set-Based Analysis Of ML Programs. Proceedings of the ACM Confer-
ence on Lisp and Functional Programming, Orlando, USA, June 1994, pp. 306-317.

N. Heintze. Control-Flow Analysis And Type Systems. Proceedings of the 2nd
Static Analysis Symposium, September 1995, Springer-Verlag LNCS 983, pp. 189-
206.

N. Heintze and D. McAllester. Linear-Time Subtransitive Control Flow Analysis.
Proceedings of the ACM SIGPLAN "97 Conference on Programming Language
Design and Implementation, Las Vegas, USA, June 1997, pp. 261-272.

F. Henglein. Type Inference With Polymorphic Recursion. ACM Transactions on
Programming Languages and Systems, Volume 15, No. 2, April 1993, pp. 253-289.

D. Jackson and J. Chapin. Redesigning Air-Traffic Control: A Case Study In Soft-
ware Design. |EEE Software, Volume 17, No. 3, May/June 2000, pp. 63-70.

D. Jackson, S. Jhaand C. Damon. Isomorph-Free Model Enumeration. ACM Trans-
actions on Programming Languages and Systems, Volume 20, No. 2, March 1998,
pp. 302-343.

D. Jackson and E. Rollins. Abstractions Of Program Dependencies For Reverse
Engineering. Proceedings of the ACM Conference On Foundations of Software
Engineering, New Orleans, USA, December 1994, pp. 2-10.

D. Jackson and A. Waingold. Lightweight Extraction Of Object Models From Byte-
code. Proceedings of the 1999 International Conference on Software Engineering,
Los Angeles, USA, May 1999, pp. 194-202.

265

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

S. Jagannathan and S. Weeks. A Unified Treatment Of Flow AnalysisIn Higher-
Order Languages. Proceedings of the 22nd Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, San Francisco, USA, January
1995, pp. 393-407.

T. Lindholm and F. Yellin. The Java Virtual Machine Specification, Second Edition.
Addison Wedley, 1997.

R. Milner. A Theory Of Type Polymorphism In Programming. Journal of Computer
and System Sciences, Volume 17, 1978, pp. 348-375.

R. Milner, M. Tofte and R. Harper. The Definition Of Standard ML. MIT Press,
1990.

G. Murphy and D. Notkin. Lightweight Source Model Extraction. Proceedings of
the ACM Conference On Foundations of Software Engineering, Washington DC,
USA, October 1995, pp. 116-127.

G. Murphy and D. Notkin. Software Reflexion Models: Bridging The Gap Between
Source And High-Level Models. Proceedings of the ACM Conference On Founda-
tions of Software Engineering, Washington DC, USA, October 1995, pp. 18-28.

R. O’ Cdlahan. A Simple, Comprehensive Type System For Java Bytecode Subrou-
tines. Proceedings of the 26th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, San Antonio, USA, January 1999, pp. 70-
78.

R. O'Callahan and D. Jackson. Lackwit: A Program Understanding Tool Based On
Type Inference. Proceedings of the 1997 International Conference on Software
Engineering, Boston, USA, 1997, p. 338-348.

R. O'Cdlahan and D. Jackson. Lackwit: Large-Scale Analysis Of C Programs Using
Type Inference. Technical Report CMU-CS-96-130, Carnegie Mellon University
Computer Science Department, 1996.

N. Oxhgj, J. Palsberg and M. Schwartzbach. Making Type Inference Practical. Pro-
ceedings of the 6th European Conference on Object-Oriented Programming, Utre-
cht, The Netherlands, June 1992, Springer-Verlag LNCS 615, pp. 329-349.

J. Palsberg. Efficient Inference Of Object Types. Information and Computation, VVol-
ume 123, No. 2, 1995, pp. 198-209.

266

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

J. Palsberg and P. O'Keefe. A Type System Equivalent To Flow Analysis. ACM
Transactions on Programming Languages and Systems, Volume 17, No. 4, July
1995, pp. 576-599.

J. Palsberg and C. Pavlopoulou. From Polyvariant Flow Information To I ntersection
And Union Types. Proceedings of the 25th Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, San Diego, USA, January 1998,
pp. 197-208.

J. Palsberg and M. Schwartzbach. Object-Oriented Type Inference. Proceedings of
the ACM SIGPLAN '91 Conference on Object-Oriented Programming Systems,
Languages and Applications, Phoenix, USA, October 1991, pp. 146-161.

X. Leroy and F. Pessaux. Type-Based Analysis Of Uncaught Exceptions. ACM
Transactions on Programming Languages and Systems, Volume 22, No. 2, March
2000, pp. 340-377.

D. Liang and M. Harrold. Efficient Points-to Analysis For Whole-Program Analy-
sis. Proceedings of the ACM Conference On Foundations of Software Engineering,
Toulouse, France, September 1999, Springer-Verlag LNCS 1687, pp. 199-215.

J. Plevyak. Optimization Of Object-Oriented And Concurrent Programs. PhD The-
sis, University of llinois at Urbana-Champaign, Urbana, Illinois, 1996.

Z. Qian. A Formal Specification Of Java Virtual Machine Instructions. Technical
Report, Universitat Bremen, Bremen, Germany, November 1997.

D. Rémy and J. Vouillon. Objective ML: A Simple Object-Oriented Extension Of
ML. Proceedings of the 24th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, Paris, France, January 1997, pp. 40-53.

A. Rountev, A. Milanova, and B. Ryder. Points-to Analysis For Java Using Anno-
tated Inclusion Constraints. Technical Report DCS-TR-417, Department of Com-
puter Science, Rutgers University, Piscataway, USA, July 2000.

E. Ruf. Context-Insensitive Alias Anaysis Reconsidered. Proceedings of the ACM
SIGPLAN '95 Conference on Programming Language Design and Implementation,
LaJolla, USA, June 1995, pp. 13-22.

267

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

E. Ruf. Partitioning Data Flow Analysis Using Types. Proceedings of the 24th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, Paris, France, January 1997, pp. 15-26.

E. Ruf. Effective Synchronization Removal For Java. Proceedings of the ACM SIG-
PLAN 00 Conference on Programming Language Design and | mplementation, Van-
couver, Canada, June 2000, pp. 208-218.

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy and W. Lorensen. Object Oriented
Modeling And Design, Prentice Hall, 1991.

O. Shivers. Control Flow Analysis In Scheme. Proceedings of the ACM SIGPLAN
'88 Conference on Programming Language Design and |mplementation, Atlanta,,
USA, June 1988, pp. 164-174.

B. Steensgaard. Points-To Analysis In Almost Linear Time. Proceedings of the 23rd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, St. Petersburg Beach, USA, January 1996, pp. 32-41.

B. Steensgaard. Points-To Analysis By Type Inference Of Programs With Structures
And Unions. Proceedings of the 1996 International Conference on Compiler Con-
struction, Springer-Verlag LNCS 1060, April 1996, pp. 136-150.

P. Stocks, B. Ryder, and W. Landi. Comparing Flow- And Context-Sensitivity On
The Modification-Side-Effects Problem. Technical Report DCS-TR-335, Depart-
ment of Computer Science, Rutgers University, August 1997.

Z. Su, M. Féhndrich and A. Aiken. Projection Merging: Reducing Redundancies In
Inclusion Constraint Graphs. Proceedings of the 27th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, Boston, USA, Jan-
uary 2000, pp. 81-95.

V. Sundaresan, L. Hendren, C. Razafimahefa, R Valee-Rai, P. Lam, E. Gagnon, C.
Godin. Practical Virtual Method Call Resolution For Java. Proceedings of the ACM
SIGPLAN '00 Conference on Object-Oriented Programming Systems, Languages
and Applications, Minneapolis, USA, October 2000, pp. 264-280.

J.-P. Tapin and P. Jouvelot. The Type And Effect Discipline. Proceedings of the
7th IEEE Symposium on Logic in Computer Science, |EEE Computer Society
Press, Santa Cruz, USA, 1992, pp. 162-173.

268

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

F. Tip. A Survey Of Program Slicing Techniques. Journal of Programming Lan-
guages, Vol. 3, No. 3, September 1995, pp. 121-189.

F. Tip, C. Laffra, P. Sweeney and D. Streeter. Practical Experience With An Applica-
tion Extractor For Java. Proceedings of the ACM SIGPLAN '99 Conference on
Object-Oriented Programming Systems, Languages and Applications, Denver,
USA, November 1999, p. 292-305.

F. Tip and J. Palsberg. Scalable Propagation-Based Call Graph Construction Algo-
rithms. Proceedings of the ACM SIGPLAN 00 Conference on Object-Oriented Pro-
gramming Systems, L anguages and A pplications, Minneapolis, USA, October 2000,
pp. 281-293.

M. Tofte and J.-P. Taplin. Implementation Of The Typed Call-By-Value A-Calculus
Using A Stack of Regions. Proceedings of the 21st Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, Portland, USA,
January 1994, pp. 188-201.

M. Weiser. Program Slicing. | EEE Transactions on Software Engineering, Volume
10, No. 7, July 1984, pp. 352-357.

J. Whaley and M. Rinard. Compositional Pointer And Escape Analysis For Java
Programs. Proceedings of the ACM SIGPLAN "99 Conference on Object-Oriented
Programming Systems, Languages and Applications, Denver, USA, November
1999, pp. 187-206.

R. Wilson and M. Lam. Efficient Context-Sensitive Pointer Analysis For C Pro-
grams. Proceedings of the ACM SIGPLAN "95 Conference on Programming Lan-
guage Design and Implementation, La Jolla, USA, June 1995, pp. 1-12.

A. Wright and R. Cartwright. A Practical Soft Type System For Scheme. Proceed-
ings of the 1994 ACM Conference on Lisp and Functional Programming, Orlando,
Florida, June 1994, pp. 250-262.

S. Zhang, B. Ryder, and W. Landi. Program Decomposition For Pointer Aliasing: A
Step Towards Practical Analyses. Proceedings of the 4th Annual ACM Symposium
on the Foundations of Software Engineering, San Francisco, USA, October 1996,
pp. 81-92.

269

[87] S.Zhang, B. Ryder and W. Landi. Experiments With Combined Analysis For
Pointer Aliasing. Proceedings of the ACM SIGPLAN Workshop on Program Analy-
sisfor Software Tools and Engineering, Montreal, Canada, June 1998, pp. 11-18.

[88] Bugzilla Project Home Page.
http://www.mozilla.org/projects/bugzilla

[89] CodeSurfer Home Page.
http://www.codesurfer.com

[90] Imagix Corporation Home Page

http://www.imagix.com

[91] Linux Cross Reference
http://1xr.linux.no

270

Appendix A: Polymor phic Recursion, Unrestricted
Recursive Typesand Principal Types

Consider a standard lambda language with a type system having polymorphic recursion and
unrestricted (1) recursive types. I prove that there exist typable program terms that have no
principal type.

A.1l Intuition

In the setting of n-recursive types, a type T for a term £ is principal iff T is a type of f and
every type of f is equivalent to an instance of T, where type equivalence means that the
(possibly infinite) regular labelled trees corresponding to the types are identical.

Consider the following function, written in ML-like syntax:
fun £ (a, b) = £ b

Thisfunction is typable using polymorphic recursion and unrestricted recursive types, but
thereis no principa type. A list of valid typesis below. All free variables are assumed to
be universally quantified.

(ut.vxt)y—u
wx (W vxIt)—>u
xx(wx(urvxit)—>u

Informally we could write these types as “(v, (v, (v, ...))) > u”, “(w, (v, (v, (v, ...)))) > u”,
and “(x, (w, (v, (v, (v, ...))))) — . This leads to the intuition that the principal type would
need to have an unbounded number of quantified variables — but such types do not exist.

A.2 Proof

Moreformally, suppose T isthe principal type of thefunction £ given above. We show that
thisleadsto a contradiction.

Let m be the number of free variablesin T. Define
Jo= . vxt
anwn ><Jn-l (n>0)
Foralln, J,, > u s a type of £. This is easily shown by induction on #.

Therefore there is a substitution S such that S(T) is equivalent toJ,, — u. J,, — # has more
free variables than T, therefore, there is a free variable of T (referred to as ¢) such that S
maps e to a term equivalent to a subterm of J,,, — u containing at least two free variables. |
will refer to the latter subterm as the “expansion term”. These are the subterms of J,, — #,
modulo equivalence:

1.J,—>u
2. u
3. J,(1<1<m)

271

4. w;(1<1<m)
S.v
6. ur.vxt

Cases 2, 4, 5 and 6 do not contain at least two free variables, hence cannot be the expansion
term. Case 1 cannot be the expansion term, for then T = e, asingle free variable, which is
not a type of £. Therefore the expansion term is J; (for some 7, 1 <1 <m).

Let S' be the same substitution as S except that e is mapped to “int”. S'(T) is equivalent to
the tree for J,, — u with one or more subtrees equivalent to J; replaced by “int”. But since
w; occurs just once in the tree for “J,, — u”, there is only one such subtree — the actual
occurrrence of J; introduced by the production rules. Therefore S'(T) = K,, — u# where

Ki =int
Kn T Wy X Kn-l (n > O)

It is easy to see that this is not a type of f, violating the assumption that T is a principal type.

A.3 Comments

The principal type T of aterm in Henglein’ stype system isalso a valid type of the term
when the type system has recursive types. The reason that principal typing failsis because
the addition of recursive types may allow new typesfor the term which are not instances of
T.

272

273

274

Appendix B: Ajax Foreign Code Specifications

| provide the complete text of the foreign code specifications used by Ajax. They cover a
large part of the JDK 1.1 classlibrary for Windows, but not all of thelibrary. | providethe
specifications to indicate how extensive they are and how much modelling is required.
Also, the curious reader can see how | modelled the behavior of specific functions.

/* Special definitions used by the SEMI analyzer.

These definitions are used by the SEMI analyzer and by
other native code specifications.

These may not have constraints generated for them
using the normal path (guided by the liveness query);
SEMI may Jjust decide to generate its own constraints for
them as needed. We do this so that the details of how
they are used are kept internal to SEMI.

*/

makeCharArray () {
VALUE = new [C;
java.lang.Object.<init>(VALUE) ;
LEN = choose;
VALUE java.lang.Object#arraylength := LEN;

L: CH = choose;
VALUE java.lang.Object#intarrayelement := CH;
goto L, N;

N: return = choose VALUE;
}

accessStringChars (STR) {
STR java.lang.String.value;
STR Jjava.lang.String.offset;
STR java.lang.String.count;
}

makeIntArray () {
VALUE = new [I;
java.lang.Object.<init>(VALUE) ;
LEN = choose;
VALUE java.lang.Object#arraylength := LEN;

L: I = choose;
VALUE java.lang.Object#intarrayelement := I;
goto L, N;

N: return = choose VALUE;

makeByteArray () {
VALUE = new [B;
java.lang.Object.<init>(VALUE) ;
LEN = choose;
VALUE java.lang.Object#arraylength := LEN;

L: B = choose;
VALUE java.lang.Object#intarrayelement := B;
goto L, N;

N: return = choose VALUE;

makeString () {
VALUE = makeCharArray();
STR = new Jjava.lang.String;
Java.lang.String.<init>(STR, VALUE) "([C)V";
return = choose STR;

}

mungeStrings (STR1, STR2) {
VALUE = makeCharArray();
goto L1, L2, N;

Ll: CHARS = STRl Jjava.lang.String.value;
goto R;

L2: CHARS = STR2 java.lang.String.value;

R: CH = CHARS Jjava.lang.Object#intarrayelement;

VALUE java.lang.Object#intarrayelement := CH;
goto L1, L2, N;

N: STR = new java.lang.String;
java.lang.String.<init>(STR, VALUE) " ([C)V";
return = choose STR, STR1, STR2;

}

initStringconst () {
STR = makeString();
java.lang.String#internstr := STR;

}
/* Exception functions */

/* _stringconst is invoked to generate a String constant
used by one of the ldc* instructions.

It's also used in native code specifications. */
_stringconst () {

return = java.lang.String#internstr;

}

/* _magicexn is invoked at the start of a catch block to
generate all the exceptions that could be caught there.
*/
_magicexn() {

goto LO, L1, L2, L3, L4, L5, L6, L7, L8, L9, L1O,
L11, Liz, L13, L14, 115, Lle, L18, L19, L20, L21, L22,
L23, L24, L25;

LO:
STR = _stringconst();
EXN = new Jjava.lang.VirtualMachineError;
java.lang.VirtualMachineError.<init>(EXN) ;
java.lang.VirtualMachineError.<init>(EXN, STR);
goto L;

Ll:
STR = _stringconst();
EXN = new Java.lang.LinkageError;
java.lang.LinkageError.<init>(EXN) ;
java.lang.LinkageError.<init>(EXN, STR);
goto L;

L2:
STR = _stringconst();
EXN = new Jjava.lang.NullPointerException;
java.lang.NullPointerException.<init>(EXN);
java.lang.NullPointerException.<init>(EXN, STR);
goto L;

L3:
STR = _stringconst();

EXN = new Jjava.lang.ArrayIndexOutOfBoundsException;
INT = choose; // not linked to the actual array
// index used
java.lang.ArrayIndexOutOfBoundsException.<init> (EXN) ;
Java.lang.ArrayIndexOutOfBoundsException.<init>(EXN,
INT) "(I)V";
Java.lang.ArrayIndexOutOfBoundsException.<init>(EXN,
STR) "(Ljava.lang.String;)V";
goto L;
Li:
STR = _stringconst();
EXN = new Jjava.lang.ArrayStoreException;
java.lang.ArrayStoreException.<init> (EXN);
java.lang.ArrayStoreException.<init>(EXN, STR);

goto L;

L5:
STR = _stringconst();
EXN = new Jjava.lang.ArithmeticException;
Java.lang.ArithmeticException.<init>(EXN);
java.lang.ArithmeticException.<init>(EXN, STR);
goto L;

L6:
STR = _stringconst();

275

STR)

L7:

L8:

STR)

L9:

L10:

L1l:

L12:

L13:

L14:

L15:

Ll6G:

L18:

L19:

STR)

L20:

L21:

L22:

EXN = new Jjava.lang.NegativeArraySizeException;
java.lang.NegativeArraySizeException.<init>(EXN) ;
java.lang.NegativeArraySizeException.<init> (EXN,

goto L;

STR = _stringconst();

EXN = new Jjava.lang.ClassCastException;
java.lang.ClassCastException.<init>(EXN) ;
java.lang.ClassCastException.<init>(EXN, STR);
goto L;

STR = _stringconst();

EXN = new Jjava.lang.IllegalMonitorStateException;
java.lang.IllegalMonitorStateException.<init>(EXN) ;
java.lang.IllegalMonitorStateException.<init> (EXN,

goto L;

EXN = new Jjava.lang.ThreadDeath;
java.lang.ThreadDeath.<init>(EXN) ;
goto L;

STR = _stringconst();

EXN = new Jjava.lang.InternalError;
java.lang.InternalError.<init>(EXN) ;
java.lang.InternalError.<init>(EXN, STR);
goto L;

STR = _stringconst();

EXN = new Jjava.lang.OutOfMemoryError;
Jjava.lang.OutOfMemoryError.<init>(EXN) ;
Java.lang.OutOfMemoryError.<init>(EXN, STR);
goto L;

STR = _stringconst();

EXN = new Jjava.lang.StackOverflowError;
Jjava.lang.StackOverflowError.<init>(EXN) ;
java.lang.StackOverflowError.<init>(EXN, STR);
goto L;

STR = _stringconst();

EXN = new Jjava.lang.UnknownError;
Java.lang.UnknownError.<init>(EXN) ;
java.lang.UnknownError.<init>(EXN, STR);
goto L;

STR = _stringconst();

EXN = new Jjava.lang.AbstractMethodError;
java.lang.AbstractMethodError.<init>(EXN) ;
java.lang.AbstractMethodError.<init>(EXN, STR);
goto L;

STR = _stringconst();

EXN = new Jjava.lang.ClassCircularityError;
java.lang.ClassCircularityError.<init>(EXN) ;
java.lang.ClassCircularityError.<init>(EXN, STR);
goto L;

STR = _stringconst();

EXN = new Jjava.lang.ClassFormatError;
java.lang.ClassFormatError.<init>(EXN) ;
java.lang.ClassFormatError.<init>(EXN, STR);
goto L;

STR = _stringconst();

EXN = new Jjava.lang.IllegalAccessError;
java.lang.IllegalhAccessError.<init>(EXN) ;
Java.lang.IllegalhAccessError.<init>(EXN, STR);
goto L;

STR = _stringconst();

EXN = new Jjava.lang.IncompatibleClassChangeError;
Java.lang.IncompatibleClassChangeError.<init> (EXN) ;
java.lang.IncompatibleClassChangeError.<init> (EXN,

goto L;

STR = _stringconst();

EXN = new Jjava.lang.InstantiationError;
java.lang.InstantiationError.<init>(EXN) ;
java.lang.InstantiationError.<init>(EXN, STR);
goto L;

STR = _stringconst();

EXN = new Jjava.lang.NoClassDefFoundError;
java.lang.NoClassDefFoundError.<init>(EXN) ;
java.lang.NoClassDefFoundError.<init>(EXN, STR);
goto L;

STR = _stringconst();
EXN = new Jjava.lang.NoSuchFieldError;

java.lang.NoSuchFieldError.<init>(EXN) ;
java.lang.NoSuchFieldError.<init>(EXN, STR);
goto L;

L23:
STR = _stringconst();
EXN = new Jjava.lang.NoSuchMethodError;
Jjava.lang.NoSuchMethodError.<init> (EXN) ;
java.lang.NoSuchMethodError.<init>(EXN, STR);
goto L;

L24:
STR = _stringconst();
EXN = new Jjava.lang.UnsatisfiedLinkError;
Java.lang.UnsatisfiedLinkError.<init>(EXN);
java.lang.UnsatisfiedLinkError.<init>(EXN, STR);
goto L;

L25:
STR = _stringconst();
EXN = new Jjava.lang.VerifyError;
java.lang.VerifyError.<init>(EXN);
java.lang.VerifyError.<init>(EXN, STR);
goto L;

L: return = choose EXN;

/* _wrapclassinitializerexn is invoked when a class
initializer method <clinit> is

called. Any exception thrown by <clinit> is passed
through here to simulate the

fact that the VM translates it to an
ExceptionInInitializerError. */
_wrapclassinitializerexn (REALEXN) {

STR = _stringconst();

EXN = new Jjava.lang.ExceptionInInitializerError;

java.lang.ExceptionInInitializerError.<init>(EXN);

java.lang.ExceptionInInitializerError.<init>(EXN,
REALEXN) "(Ljava.lang.Throwable;)V";

java.lang.ExceptionInInitializerError.<init>(EXN,
STR) "(Ljava.lang.String;)V";

return = choose EXN;

}

makeIOException() {
STR = _stringconst();
EXN = new Jjava.lo.IOException;
Java.lo.IOException.<init>(EXN) ;
java.lo.IOException.<init>(EXN, STR);
return = choose EXN;

/* Java.lo.ObjectInputStream */

java.lo.ObjectInputStream.loadClass0(C, NAME) {
return = java.lang.Class.forName (NAME) ;

}

makeInvalidClassException (CLASS) {
STR = _stringconst();
CNAME = _stringconst();
EXN = new Jjava.lo.InvalidClassException;
Java.lo.InvalidClassException.<init>(EXN, CNAME);
Java.lo.InvalidClassException.<init>(EXN, CNAME,
STR) ;
return = choose EXN;

makeStreamCorruptedException () {
STR = _stringconst();
EXN = new Jjava.lo.StreamCorruptedException;
java.lo.StreamCorruptedException.<init>(EXN) ;
java.lo.StreamCorruptedException.<init>(EXN, STR);
return = choose EXN;

}

java.lo.ObjectInputStream.inputClassFields (THIS, OBJ,
CLASS, FIELDS) {
FIELD = FIELDS Jjava.lang.Object#arrayelement;

goto B, S, C, 1, J, Z, F, D, L;

B: BYTE = java.io.ObjectInputStream.readByte (THIS);
EXN1 = catch (Jjava.lang.Throwable) BYTE;
ReflectionHandler assignSerializedFieldBYTE(OBJ,

CLASS, BYTE):
goto DONE;

S: SHORT = Jjava.lo.ObjectInputStream.readShort (THIS) ;
EXN1 = catch (Jjava.lang.Throwable) SHORT;
ReflectionHandler assignSerializedFieldSHORT (OBJ,

CLASS, SHORT);
goto DONE;

C: CHAR = java.lo.ObjectInputStream.readChar (THIS) ;

276

EXN1 = catch (Jjava.lang.Throwable) CHAR;

ReflectionHandler assignSerializedFieldCHAR(OBJ,
CLASS, CHAR):

goto DONE;

I: INT = java.io.ObjectInputStream.readInt (THIS);
EXN1 = catch (Jjava.lang.Throwable) INT;
ReflectionHandler assignSerializedFieldINT (OBJ,

CLASS, INT):
goto DONE;

J: LONG = java.lo.ObjectInputStream.readLong(THIS) ;
EXN1 = catch (Jjava.lang.Throwable) LONG;
ReflectionHandler assignSerializedFieldLONG(OBJ,

CLASS, LONG);
goto DONE;

Z: BOOL = java.lo.ObjectInputStream.readBoolean (THIS) ;
EXN1 = catch (Jjava.lang.Throwable) BOOL;
ReflectionHandler assignSerializedFieldBOOL(OBJ,

CLASS, BOOL);
goto DONE;

F: FLOAT = java.lo.ObjectInputStream.readFloat (THIS) ;
EXN1 = catch (Jjava.lang.Throwable) FLOAT;
ReflectionHandler assignSerializedFieldFLOAT (OBJ,

CLASS, FLOAT);
goto DONE;

D: DOUBLE = java.io.ObjectInputStream.readDouble (THIS) ;
EXN1 = catch (Jjava.lang.Throwable) DOUBLE;
ReflectionHandler assignSerializedFieldDOUBLE (OBJ,

CLASS, DOUBLE);
goto DONE;

L: OBJECT = java.lo.ObjectInputStream.readObject (THIS) ;
EXN1 = catch (Jjava.lang.Throwable) OBJECT;
ReflectionHandler assignSerializedFieldOBJECT (OBJ,

CLASS, OBJECT);

DONE:
EXN2 = makeClassNotFoundException();
EXN3 = makeInvalidClassException(CLASS) ;
EXN4 = makeStreamCorruptedException();
throw = choose EXN1, EXN2, EXN3, EXN4;

}

java.lo.ObjectInputStream.allocateNewObject (ACLASS,
INITCLASS) |
OBJ = ReflectionHandler makeSerializedObject (ACLASS);
EXN1 = makeInstantiationException();
EXN2 = makeIllegalhccessException();
throw = choose EXN1, EXN2;
return = choose OBJ;

}

java.lo.ObjectInputStream.allocateNewArray (ARRAYCLASS,
LENGTH) {
OBJ =
ReflectionHandler makeSerializedArray (ARRAYCLASS) ;
return = choose OBJ;

}

java.lo.ObjectInputStream.invokeObjectReader (THIS, OBRJ,
CLASS) {

I0 = ReflectionHandler invoke readObject (OBJ, CLASS,
THIS) ;

EXN1 = catch (Jjava.lang.Throwable) IO;
EXN2 = makeClassNotFoundException();
EXN3 = makeInvalidClassException(CLASS) ;
EXN4 = makeStreamCorruptedException();
throw = choose EXN1, EXN2, EXN3, EXN4;

}

/* Java.lo.ObjectOutputStream */

java.lo.0ObjectOutputStream.outputClassFields (THIS, OBRJ,
CLASS, FIELDS) {
FIELD = FIELDS Jjava.lang.Object#arrayelement;

goto B, S, C, 1, J, Z, F, D, L;

B: BYTE = ReflectionHandler getSerializedFieldBYTE(OBJ,
CLASS) ;

I0 = java.lo.0ObjectOutputStream.writeByte (THIS,
BYTE) ;

EXN1 = catch (Jjava.lang.Throwable) IO;

goto DONE;

S: SHORT =
ReflectionHandler getSerializedFieldSHORT (OBJ, CLASS);

I0 = java.lo.ObjectOutputStream.writeShort (THIS,
SHORT) ;

EXN1 = catch (Jjava.lang.Throwable) IO;

goto DONE;

C: CHAR = ReflectionHandler getSerializedFieldCHAR(OBJ,
CLASS) ;

I0 = java.lo.ObjectOutputStream.writeChar (THIS,
CHAR) ;

EXN1 = catch (Jjava.lang.Throwable) IO;

goto DONE;

I: INT = ReflectionHandler getSerializedFieldINT(OBJ,
CLASS) ;
I0 = java.io.ObjectOutputStream.writeInt (THIS, INT);
EXN1 = catch (Jjava.lang.Throwable) IO;
goto DONE;

J: LONG = ReflectionHandler getSerializedFieldLONG(OBJ,
CLASS) ;

I0 = java.lo.ObjectOutputStream.writeLong (THIS,
LONG) ;

EXN1 = catch (Jjava.lang.Throwable) IO;

goto DONE;

Z: BOOL = ReflectionHandler getSerializedFieldBOOL(OBJ,
CLASS) ;

I0 = java.lo.0ObjectOutputStream.writeBoolean (THIS,
BOOL) ;

EXN1 = catch (Jjava.lang.Throwable) IO;

goto DONE;

F: FLOAT =
ReflectionHandler getSerializedFieldFLOAT (OBJ, CLASS);
I0 = java.lo.ObjectOutputStream.writeFloat (THIS,
FLOAT) ;
EXN1 = catch (Jjava.lang.Throwable) IO;
goto DONE;

D: DOUBLE =
ReflectionHandler getSerializedFieldDOUBLE (OBJ, CLASS);
I0 = java.lo.0ObjectOutputStream.writeDouble (THIS,
DOUBLE) ;
EXN1 = catch (Jjava.lang.Throwable) IO;
goto DONE;

L: OBJECT =
ReflectionHandler getSerializedFieldOBJECT (OBJ, CLASS);
I0 = java.lo.0ObjectOutputStream.writeObject (THIS,
OBJECT) ;
EXN1 = catch (Jjava.lang.Throwable) IO;

DONE:
EXN2 = makeInvalidClassException (CLASS);
throw = choose EXN1, EXN2;

}

java.lo.ObjectOutputStream.invokeObjectWriter (THIS, OBJ,
CLASS) {

I0 = ReflectionHandler invoke writeObject (OBJ, CLASS,
THIS) ;

throw = catch (java.lang.Throwable) IO;

/* Java.lo.ObjectStreamClass */

java.lo.ObjectStreamClass.getClasshAccess (C) {
return = java.lang.Class.getModifiers (C);

}

java.lo.ObjectStreamClass.getMethodSignatures (C) {
return = makeConstStringArray();

}

java.lo.ObjectStreamClass.getMethodAccess (C, SIG) {
return = choose;

}

java.lo.ObjectStreamClass.getFieldSignatures (C) {
return = makeConstStringArray();

}

java.lo.ObjectStreamClass.getFieldAccess (C, SIG) {
return = choose;

}

java.lo.ObjectStreamClass.getFields0(C) {
LIST = new [Ljava.lo.ObjectStreamField;
java.lang.Object.<init>(LIST);
LEN = choose;
LIST java.lang.Object#arraylength := LEN;

277

L: VALUE = new Jjava.lo.ObjectStreamField;

NAME = _stringconst();

T = choose;

O = choose;

TS = _stringconst();

java.lo.ObjectStreamField.<init>(VALUE, NAME, T, O,

TS);
LIST java.lang.Object#arrayelement := VALUE;
goto L, N;

N: return = choose LIST;

}

java.lo.ObjectStreamClass.getSerialVersionUID(C) {
return = choose;

}

Jjava.lo.ObjectStreamClass.hasWriteObject (C) |
return = choose;

}
/* Java.lo.FileDescriptor */

java.lo.FileDescriptor.initSystemFD(FD, DESC) {
FD java.lo.FileDescriptor.fd := DESC;
return = choose FD;

}

java.lo.FileDescriptor.valid() {
return = choose;

}

java.lo.FileDescriptor.sync () {
EXN = new Jjava.lo.SyncFalledException;
STR = _stringconst();

Jjava.lo.SyncFailledException.<init>(EXN, STR);
throw = choose EXN;
}

/* Java.lo.FileInputStream */

java.lo.FileInputStream.open (THIS, NAME) {
FD = THIS Jjava.lo.FileInputStream.fd;
NEWFD = choose;
FD java.lo.FileDescriptor.fd := NEWFD;
throw = makeIOException();

makeInterruptedIOException () {
STR = _stringconst();
EXN = new Jjava.lo.InterruptedIOException;
Java.lo.InterruptedIOException.<init>(EXN) ;
java.lo.InterruptedIOException.<init>(EXN, STR);
NUM = choose;
EXN java.lo.InterruptedIOException.bytesTransferred
= NUM;
return = choose EXN;

java.lo.FileInputStream.read (THIS) {
return = choose;
EXN1 = makeIOException();
EXN2 = makeInterruptedIOException();
throw = choose EXN1, EXN2;
FD = THIS Jjava.lo.FileOutputStream.fd;
OSFD = FD java.io.FileDescriptor.fd;

}

java.lo.FileInputStream.readBytes (THIS, B, OFF, LEN) {
return = choose LEN;
EXN1 = makeIOException();
EXN2 = makeInterruptedIOException();
throw = choose EXN1, EXN2;
FD = THIS Jjava.lo.FileOutputStream.fd;
OSFD = FD java.io.FileDescriptor.fd;

java.lo.FileInputStream.skip (THIS, N) {
return = choose N;
throw = makeIOException();
FD = THIS Jjava.lo.FileOutputStream.fd;
OSFD = FD java.io.FileDescriptor.fd;

}

java.lo.FileInputStream.available (THIS) |
return = choose;
throw = makeIOException();
FD = THIS Jjava.lo.FileOutputStream.fd;
OSFD = FD java.io.FileDescriptor.fd;

java.lo.FileInputStream.close (THIS) {
throw = makeIOException();
FD = THIS Jjava.lo.FileOutputStream.fd;
OSFD = FD java.io.FileDescriptor.fd;

/* Java.lo.FileOutputStream */

java.lo.FileOutputStream.open (THIS, NAME) {
FD = THIS Jjava.lo.FileOutputStream.fd;
NEWFD = choose;
FD java.lo.FileDescriptor.fd := NEWFD;
throw = makeIOException();

}

java.lo.FileOutputStream.openhAppend (THIS, NAME) {
FD = THIS Jjava.lo.FileOutputStream.fd;
NEWFD = choose;
FD java.lo.FileDescriptor.fd := NEWFD;
throw = makeIOException();

}

java.lo.FileOutputStream.write (THIS, B) {
EXN1 = makeIOException();
EXN2 = makeInterruptedIOException();
throw = choose EXN1, EXN2;
FD = THIS Jjava.lo.FileOutputStream.fd;
OSFD = FD java.io.FileDescriptor.fd;

java.lo.FileOutputStream.writeBytes (THIS, B, OFF, LEN)
EXN1 = makeIOException();
EXN2 = makeInterruptedIOException();
throw = choose EXN1, EXN2;
FD = THIS Jjava.lo.FileOutputStream.fd;
OSFD = FD java.io.FileDescriptor.fd;
}

java.lo.FileOutputStream.close (THIS) {
throw = makeIOException();
FD = THIS Jjava.lo.FileOutputStream.fd;
OSFD = FD java.io.FileDescriptor.fd;

}

/* java.io.File */

Jjava.lo.File.lastModifiedO (THIS) {
return = choose;

}

java.lo.File.lengthO (THIS) {
return = choose;

}

Jjava.lo.File.exists0 (THIS) {
return = choose;

}

Jjava.lo.File.canWriteO (THIS) {
return = choose;

}

java.lo.File.canRead0O (THIS) {
return = choose;

}

Jjava.lo.File.1sF1le0 (THIS) {
return = choose;

}

java.lo.File.isDirectory0 (THIS) {
return = choose;

}

Java.lo.File.mkdir0 (THIS) {
return = choose;

}

Jjava.lo.File.deleteO (THIS) {
return = choose;

}

Java.lo.File.rmdir0 (THIS) {
return = choose;

}

java.lo.File.renameToO (THIS, DEST) {
PATH = DEST Jjava.lo.File.path;
THIS java.lo.File.path := PATH;
return = choose;

278

makeDynamicStringArray () {
LIST = new [Ljava.lang.String;
java.lang.Object.<init>(LIST);
LEN = choose;
LIST java.lang.Object#arraylength := LEN;

L: STR = makeString();
LIST java.lang.Object#arrayelement := STR;
goto L, N;

N: return = choose LIST;

makeConstStringArray () {
LIST = new [Ljava.lang.String;
java.lang.Object.<init>(LIST);
LEN = choose;
LIST java.lang.Object#arraylength := LEN;

L: STR = _stringconst();
LIST java.lang.Object#arrayelement := STR;
goto L, N;

N: return = choose LIST;

}

java.lo.File.1list0 (THIS) {
return = makeDynamicStringArray();

}

java.lo.File.canonPath (THIS) {
CURPATH = THIS Jjava.lo.File.path;
STR = makeString();
return = mungeStrings (CURPATH, STR);

java.lo.File.isAbsolute (THIS) {
return = choose;

}
/* Java.lo.RandomhccessFile */

java.lo.RandomhccessFile.open (THIS, NAME, WRITEABLE) |
FD = THIS Jjava.lo.RandomhccessFile.fd;
NEWFD = choose;
FD java.lo.FileDescriptor.fd
throw = makeIOException();

= NEWFD;

java.lo.RandombccessFile.read (THIS) |
return = choose;
EXN1 = makeIOException();
EXN2 = makeInterruptedIOException();
throw = choose EXN1, EXN2;

}

java.lo.RandomhccessFile.readBytes (THIS, B, OFF, LEN)
return = choose LEN;
EXN1 = makeIOException();
EXN2 = makeInterruptedIOException();
throw = choose EXN1, EXN2;
}

java.lo.RandomhccessFile.write (THIS, B) |
EXN1 = makeIOException();
EXN2 = makeInterruptedIOException();
throw = choose EXN1, EXN2;

}

java.lo.RandomhccessFile.writeBytes (THIS, B, OFF, LEN)
EXN1 = makeIOException();
EXN2 = makeInterruptedIOException();
throw = choose EXN1, EXN2;

}

java.lo.RandomhccessFile.getFilePointer (THIS) |
return = choose;
throw = makeIOException();

}

java.lo.RandomhccessFile.seek (THIS, POS) |
throw = makeIOException();

}

java.lo.RandomhccessFile.length (THIS) |
return = choose;
throw = makeIOException();

java.lo.RandombccessFile.close (THIS) |
throw = makeIOException();

}

{

/* java.lang.Object */

java.lang.Object.hashCode (THIS) {
HASH = THIS java.lang.Object#identity;
return = choose HASH;

}

java.lang.Object.getClass (THIS) {
return = makeClass();

}

java.lang.Object.clone (THIS) {
STR = _stringconst();
EXN1 = new Jjava.lang.CloneNotSupportedException;
java.lang.CloneNotSupportedException.<init> (EXN1);
java.lang.CloneNotSupportedException.<init>(EXNI,
STR) ;
throw = choose EXNI1;
return = choose THIS;

}

makeIllegalMonitorStateException() {
STR = _stringconst();
EXN = new Jjava.lang.IllegalMonitorStateException;
java.lang.IllegalMonitorStateException.<init>(EXN);
java.lang.IllegalMonitorStateException.<init>(EXN,
STR) ;
return = choose EXN;

java.lang.Object.notify (THIS) {
throw = makeIllegalMonitorStateException();
}

java.lang.Object.notifyAll (THIS) {
throw = makeIllegalMonitorStateException();
}

java.lang.Object.walt (THIS, TIMEOUT) {
throw = makeIllegalMonitorStateException();
}

java.lang.Object.walt (THIS, TIMEOUT) {
EXN1 = makeIllegalMonitorStateException();
STR = _stringconst();
EXN2 = new Jjava.lang.IllegalArgumentException;
Java.lang.IllegalArgumentException.<init>(EXN1);

Java.lang.IllegalArgumentException.<init>(EXN1, STR);

STR = _stringconst();
EXN3 = new Jjava.lang.InterruptedException;
java.lang.InterruptedException.<init>(EXN3);
java.lang.InterruptedException.<init>(EXN3, STR});
throw = choose EXN1, EXN2, EXN3;

}

/* java.lang.Math */

java.lang.Math.sin(A) {
return = choose;

}

java.lang.Math.cos (&) {
return = choose;

}

Jjava.lang.Math.tan (&) {
return = choose;

}

java.lang.Math.asin(A) {
return = choose;

}

java.lang.Math.acos (A) {
return = choose;

}

java.lang.Math.atan (&) {
return = choose;

}

Java.lang.Math.exp (A) {
return = choose;

}

Jjava.lang.Math.log (&) {
return = choose;

}

java.lang.Math.sqrt (&) {
return = choose;

279

} STR = _stringconst();
java.lang.IllegalThreadStateException.<init>(EXN);

java.lang.Math.IEEERemainder (F1, F2) | java.lang.IllegalThreadStateException.<init>(EXN,

return = choose; STR) ;
1 throw = choose EXN;

java.lang.Thread.run (THIS) ;

java.lang.Math.ceil (A) { 1

return = choose;
} // not sure what this does

java.lang.Thread.isInterrupted (THIS, CLEAR) {

java.lang.Math.floor (&) { return = choose;

return = choose; }

}
java.lang.Thread.isAlive (THIS) {
java.lang.Math.rint (A) { return = choose;
return = choose; }
}
java.lang.Thread.countStackFrames (THIS) {
java.lang.Math.atan2 (A, B) { return = choose;
return = choose; }
}
java.lang.Thread.setPriority0 (THIS, PRIORITY) {
java.lang.Math.pow (A, B} { 1
return = choose;
1 java.lang.Thread.stop0 (THIS) {
}
/* java.lang.Float */
java.lang.Thread.suspend0 (THIS) {
java.lang.Float.floatToIntBits (FLOAT) | 1
return = choose;
1 java.lang.Thread.resume0 (THIS) {
}
java.lang.Float.intBitsToFloat (BITS) {

return = choose; java.lang.Thread.interrupt0 (THIS) {
} }
/* java.lang.Double */ /* java.lang.Compiler */
java.lang.Double.doubleToLongBits (DOUBLE) { java.lang.Compiler.initialize () {
return = choose; }

}

java.lang.Compiler.compileClass (C) {
java.lang.Double.longBitsToDouble (BITS) | return = choose;
return = choose; }

}

java.lang.Compiler.compileClasses (CS) {

java.lang.Double.valueOf0 (S) { return = choose;
EXN = new Jjava.lang.NumberFormatException; }
STR = _stringconst();
Jjava.lang.NumberFormatException.<init> (EXN) ; java.lang.Compiler.commmand (C) {
Jjava.lang.NumberFormatException.<init>(EXN, STR); return = choose;
throw = choose EXN; 1
return = choose;
1 java.lang.Compiler.enable () {

}
/* Java.lang.Throwable */
java.lang.Compiler.disable () {

java.lang.Throwable.fillInStackTrace (THIS) { 1
TRACE = choose;
THIS java.lang.Throwable.backtrace := TRACE; /* java.lang.Win32Process */
return = choose THIS;
1 Java.lang.Win32Process.exitValue () {
result = choose;
/* This doesn't really work. The printStackTrace0 }
documentation says that the STREEM should have a
println(char[]) method, but we don't know what class it's Java.lang.Win32Process.waltFor () {
in, so how can we call it? We probably need lots of extra result = choose;
ugly support to get this really right. For now we Jjust }
ignore the STREAM. */
java.lang.Throwable.printStackTrace0 (THIS, STREAM) | Jjava.lang.Win32Process.destroy () {
} }
/* Java.lang.Thread */ java.lang.Win32Process.create (CMD, ENV) {
accessStringChars (CMD) ;
java.lang.Thread.currentThread () { accessStringChars (ENV) ;
T = java.lang.Thread#currentthread; }
return = choose T;
1 Java.lang.Win32Process.close () {
}
java.lang.Thread.yleld () {
} /* java.lang.Runtime */
java.lang.Thread.sleep (MILLIS) { java.lang.Runtime.exitInternal (THIS, STATUS) {
EXN = new Jjava.lang.InterruptedException; }
STR = _stringconst();
java.lang.InterruptedException.<init>(EXN) ; java.lang.Runtime.runFinalizersOnExit0 (THIS, VALUE) {
java.lang.InterruptedException.<init>(EXN, STR); }
throw = choose EXN;
1 java.lang.Runtime.execInternal (THIS, CMDARRAY, ENVP) {
PROCESS = new Jjava.lang.Win32Process;
java.lang.Thread.start (THIS) { Java.lang.Win32Process.<init>(PROCESS, CMDARRAY,
EXN = new Jjava.lang.IllegalThreadStateException; ENVP) ;

280

return = choose PROCESS;
}

java.lang.Runtime.freeMemory (THIS) {
return = choose;

}

java.lang.Runtime.totalMemory (THIS) {
return = choose;

}

java.lang.Runtime.gc (THIS) {
}

java.lang.Runtime.runFinalization (THIS) {

}

java.lang.Runtime.traceInstructions (THIS, ON) {

}

java.lang.Runtime.traceMethodCalls (THIS, ON) {
}

java.lang.Runtime.initializelinkerInternal (THIS) {
return = java.lang.String#internstr;

}

java.lang.Runtime.buildLibName (THIS, PATHNAME,
{
BUF = new java.lang.StringBuffer;
java.lang.StringBuffer.<init>(BUF,
"(Ljava.lang.String;)V";
STR = java.lang.String#internstr;
java.lang.StringBuffer.append (BUF, STR)
"(Ljava.lang.String;)Ljava.lang.StringBuffer;";
java.lang.StringBuffer.append (BUF, FILENAME)
"(Ljava.lang.String;)Ljava.lang.StringBuffer;";
STR = java.lang.String#internstr;
java.lang.StringBuffer.append (BUF, STR)
"(Ljava.lang.String;)Ljava.lang.StringBuffer;";
return = java.lang.StringBuffer.toString(BUF);

PATHNAME)

}

java.lang.Runtime.loadFileInternal (THIS,
return = choose;

FILENAME) {

}

/* java.lang.String */
java.lang.String.intern(THIS) {
goto Y, N;

Y: Jjava.lang.String#internstr := THIS;

N: return = java.lang.String#internstr;

}
/* java.lang.System */

java.lang.System.currentTimeMillis () {
// this just returns an arbitrary fresh value
return = choose;

}

java.lang.System.identityHashCode (OBJ) {
HASH = OBJ java.lang.Object#identity;
return = choose HASH;

}

// This one might need to be changed.
might call
// Properties.read
java.lang.System.initProperties (PROPS) {
PROP = makeString();
STR = makeString();
java.util.Hashtable.put (PROPS,
return = choose PROPS;

In particular,

PROP, STR);

java.lang.System.setIn0 (IN) {
java.lang.System.in := IN;

}

java.lang.System.setOut0 (OUT) {
java.lang.System.out := OUT;
}

java.lang.System.setErr0 (ERR) {
java.lang.System.err := ERR;
}

java.lang.System.setIn0 (IN) {
java.lang.System.in := IN;

FILENAME)

it

}

java.lang.System.arraycopy (FROM, FROMOFF, TO, TOOFF, LEN)

{
VAL = FROM java.lang.Object#arrayelement;
TO java.lang.Object#arrayelement := VAL;
VAL = FROM java.lang.Object#intarrayelement;
TO java.lang.Object#intarrayelement := VAL;
VAL = FROM java.lang.Object#floatarrayelement;
TO java.lang.Object#floatarrayelement := VAL;
VAL = FROM java.lang.Object#longarrayelement;
TO java.lang.Object#longarrayelement := VAL;
VAL = FROM java.lang.Object#doublearrayelement;
TO java.lang.Object#doublearrayelement := VAL;
}

/* java.lang.Class */

makeClass () {
CLASS = new Jjava.lang.Class;
java.lang.Class.<init>(CLASS) ;
java.lang.Class#internclass := CLASS;
return = java.lang.Class#internclass;

makeSigner () {
return = java.lang.Class#internsigner;

}

makeClassArray () {
CS = new [Ljava.lang.Class;
java.lang.Object.<init>(CS);
LEN = choose;
CS java.lang.Object#arraylength := LEN;

L: C = makeClass();
CS java.lang.Object#arrayelement := C;
goto L, N;

N: return = choose CS;
makeField (CLASS) {

FIELD = new Jjava.lang.reflect.Field;
java.lang.reflect.Field.<init>(FIELD);

FIELD java.lang.reflect.Field.clazz CLASS;
SLOT = choose;

FIELD java.lang.reflect.Field.slot := SLOT;
NAME = _stringconst();

FIELD java.lang.reflect.Field.name := NAME;

TYPE = makeClass();
FIELD java.lang.reflect.Field.type := TYPE;

java.lang.Field#internfield := FIELD;
return = java.lang.Field#internfield;

makeMethod (CLASS) {
METHOD = new java.lang.reflect.Method;
java.lang.reflect.Method.<init> (METHOD) ;

METHOD java.lang.reflect.Method.clazz CLASS;
SLOT = choose;

METHOD java.lang.reflect.Method.slot := SLOT;
NAME = _stringconst();

METHOD java.lang.reflect.Method.name := NAME;

RETURNTYPE = makeClass();

METHOD java.lang.reflect.Method.returnType :=
RETURNTYPE;

PARAMETERTYPES = makeClassArray();

METHOD java.lang.reflect.Method.parameterTypes :=
PARAMETERTYPES;

EXCEPTIONTYPES = makeClassArray();

METHOD java.lang.reflect.Method.exceptionTypes :=
EXCEPTIONTYPES;

MODS = choose;

METHOD java.lang.reflect.Constructor#mods := MODS

java.lang.reflect.Method#internmethod := METHOD;
return = java.lang.reflect.Method#internmethod;

makeConstructor (CLASS) {

CONSTRUCTOR = new Jjava.lang.reflect.Constructor;

java.lang.reflect.Constructor.<init>(CONSTRUCTOR)

CONSTRUCTOR Jjava.lang.reflect.Constructor.clazz
CLASS;

SLOT = choose;

CONSTRUCTOR Jjava.lang.reflect.Constructor.slot :=
SLOT;

PARAMETERTYPES = makeClassArray();

281

CONSTRUCTOR

java.lang.reflect.Constructor.parameterTypes :=
PARAMETERTYPES;

EXCEPTIONTYPES = makeClassArray():
CONSTRUCTOR

java.lang.reflect.Constructor.exceptionTypes :=
EXCEPTIONTYPES;

MODS

CONS

MODS = choose;

CONSTRUCTOR Jjava.lang.reflect.Constructorfmods :=
java.lang.reflect.Constructor#internconstructor :=

TRUCTOR;
return =

java.lang.reflect.Constructor#internconstructor;

}

makeInstantiationException() {

STR = _stringconst();

EXN = new Jjava.lang.InstantiationException;
java.lang.InstantiationException.<init>(EXN);
java.lang.InstantiationException.<init>(EXN, STR);
return = choose EXN;

makeIllegalAccessException() {

}

STR = _stringconst();

EXN = new Jjava.lang.IllegalAccessException;
Java.lang.IllegalhAccessException.<init>(EXN);
java.lang.IllegalhAccessException.<init>(EXN, STR);
result = choose EXN;

makeIllegalArgumentException () {

}

STR = _stringconst();
EXN = new Jjava.lang.IllegalArgumentException;
java.lang.IllegalArgumentException.<init>(EXN) ;

Java.lang.IllegalArgumentException.<init>(EXN, STR);

result = choose EXN;

makeInvocationTargetException (CATCH) {

STR = _stringconst();
EXN = new

java.lang.reflect.InvocationTargetException;

java.lang.reflect.InvocationTargetException.<init>(EXN) ;

java.lang.reflect.InvocationTargetException.<init> (EXN,
CATCH) ;

java.lang.reflect.InvocationTargetException.<init> (EXN,

CATCH, STR);

}

result choose EXN;

makeClassNotFoundException () {

}

STR = _stringconst();

EXN = new Jjava.lang.ClassNotFoundException;
java.lang.ClassNotFoundException.<init>(EXN) ;
java.lang.ClassNotFoundException.<init>(EXN, STR);
return = choose EXN;

java.lang.Class.forName (NAME) {

}

throw = makeClassNotFoundException();
return = makeClass ()

java.lang.Class.newInstance (CLASS) {

ReflectionHandler makeObjectAndCallZeroArgConstructor (CLA

s8);

}

OBJ =

EXN1 = makeInstantiationException();
EXN2 = makeIllegalhccessException();
throw = choose EXN1, EXN2;

return = choose OBJ;

java.lang.Class.isInstance (C) {

}

return = choose;

java.lang.Class.isAssignableFrom(C) {

}

return = choose;

java.lang.Class.isInterface(C) {

}

return = choose;

java.lang.Class.isArray (C) {

return = choose;

}

java.lang.Class.isPrimitive(C) {
return = choose;

}

java.lang.Class.getName (C) {
STR = _stringconst();
return = choose STR;

java.lang.Class.getClassLoader (C) {
return = makeClassLoader () ;

}

java.lang.Class.getSuperclass (C) {
return = makeClass();

}

java.lang.Class.getInterfaces (C) {
return = makeClassArray();

}

java.lang.Class.getComponentType (C) {
return = makeClass();

}

java.lang.Class.getModifiers (C) {
return = choose;

}

java.lang.Class.getSigners (C) {
0S = new [Ljava.lang.Object;
java.lang.Object.<init>(0S);
LEN = choose;
0S java.lang.Object#arraylength := LEN;

L: O = makeSigner();
0S java.lang.Object#arrayelement := O;
goto L, N;

N: return = choose 0S;

}

java.lang.Class.setSigners (0S) {

L: O = 0S Jjava.lang.Object#arrayelement;
java.lang.Class#internsigner := O;
goto L, N;

N: return = choose;

java.lang.Class.getPrimitiveClass (NAME) {
return = makeClass();

}

java.lang.Class.getDeclaringClass (C) {
return = makeClass();

}

java.lang.Class.getClasses (C) {
return = makeClassArray();

}

java.lang.Class.getFields0 (THIS, WHICH) {
FS = new [Ljava.lang.reflect.Field;
Jjava.lang.Object.<init>(FS);
LEN = choose;
FS java.lang.Object#arraylength := LEN;

L: F = makeField(THIS);
FS java.lang.Object#arrayelement := F;
goto L, N;

N: return = choose FS;

java.lang.Class.getField0 (THIS, NAME, WHICH) {
STR = _stringconst();
EXN = new Jjava.lang.NoSuchFieldException;
Jjava.lang.NoSuchFieldException.<init> (EXN) ;
java.lang.NoSuchFieldException.<init>(EXN, STR);
throw = choose EXN;

return = makeField(THIS);
}

java.lang.Class.getMethods0 (THIS, WHICH) {
MS = new [Ljava.lang.reflect.Method;
Jjava.lang.Object.<init>(MS);
LEN = choose;

282

MS java.lang.Object#arraylength := LEN;

L: M = makeMethod (THIS) ;
MS java.lang.Object#arrayelement := M;
goto L, N;

N: return = choose MS;

makeNoSuchMethodException () {
STR = _stringconst();
EXN = new Jjava.lang.NoSuchMethodException;
Jjava.lang.NoSuchMethodException.<init> (EXN) ;
java.lang.NoSuchMethodException.<init>(EXN, STR);
return = choose EXN;

}

java.lang.Class.getMethodO (THIS, NAME, PARAMETERTYPES,
WHICH) {

throw = makeNoSuchMethodException () ;

return = makeMethod (THIS) ;
}

java.lang.Class.getConstructors0 (THIS, WHICH) {
CS = new [Ljava.lang.reflect.Constructor;
java.lang.Object.<init>(CS);
LEN = choose;
CS java.lang.Object#arraylength := LEN;

L: C = makeConstructor (THIS) ;
CS java.lang.Object#arrayelement := C;
goto L, N;

N: return = choose CS;

java.lang.Class.getConstructor0 (THIS, PARAMETERTYPES,
WHICH) {

throw = makeNoSuchMethodException () ;

return = makeConstructor (THIS) ;

/* Java.lang.ClassLoader */

makeClassLoader () {
return = java.lang.ClassLoader#internloader;

java.lang.ClassLoader.init (THIS) {
java.lang.ClassLoader#internloader := THIS;

}

java.lang.ClassLoader.defineClass0 (THIS, NAME, DATA,
OFFSET, LENGTH) {
return = makeClass();

}

java.lang.ClassLoader.resolveClass0 (THIS, C) {
}

java.lang.ClassLoader.findSystemClass0 (THIS, NAME) {
throw = makeClassNotFoundException();
return = makeClass ()

java.lang.ClassLoader.getSystemResourceAsStream0 (THIS,
NAME) {
URL = java.lang.ClassLoader.getSystemResource (NAME) ;
return = java.net.URL.openStream(URL) ;

java.lang.ClassLoader.getSystemResourceAsName0 (THIS,
NAME) {
return = 75tringcon5t();

}
/* Java.lang.reflect.Constructor */

java.lang.reflect.Constructor.getModifiers (THIS) |
return = THIS Jjava.lang.reflect.Constructorf#mods;

}

java.lang.reflect.Constructor.newlInstance (THIS, ARGS) |
ARGS java.lang.Object#arraylength;
OBJ =

ReflectionHandler makeObjectAndCallArbitraryConstructor (A

RGS) ;
CATCH = catch (java.lang.Throwable)
EXN1 = makeInstantiationException();
EXN2 = makeIllegalhccessException();
EXN3 = makeIllegalArgumentException();
EXN4 = makeInvocationTargetException (CATCH) ;

OBJ;

throw = choose EXN1, EXN2, EXN3, EXN4;
return = choose OBJ;

}
/* Java.lang.reflect.Method */

java.lang.reflect.Method.getModifiers (THIS) {
return = THIS Jjava.lang.reflect.Method#mods;
}

java.lang.reflect.Method.invoke (THIS, TARGET, ARGS) {

ARGS java.lang.Object#arraylength;

OBJ = ReflectionHandler callArbitraryMethod (TARGET,
ARGS) ;

CATCH = catch (Jjava.lang.Throwable) OBJ;

EXN2 = makeIllegalhccessException();

EXN3 = makeIllegalArgumentException();

EXN4 = makeInvocationTargetException (CATCH) ;

throw = choose EXN2, EXN3, EXN4;

return = choose OBJ;

}
/* Java.util.ResourceBundle */

java.util.ResourceBundle.getClassContext () {
return = makeClassArray();

}
/* Java.util.zip.Inflater */

Java.util.zip.Inflater.setDictionary (THIS, B, OFF, LEN)
THIS Jjava.util.zip.Inflater.strm;

NEWNEEDDICT = choose;

THIS java.util.zip.Inflater.needsDictionary :=
NEWNEEDDICT;
}

Java.util.zip.Inflater.inflate (THIS, B, OFF, LEN) {
THIS Jjava.util.zip.Inflater.strm;

VAL = choose;

B java.lang.Object#intarrayelement := VAL;

NEWLEN = choose;

THIS java.util.zip.Inflater.len := NEWLEN;
NEWTOTALIN = choose;

THIS java.util.zip.Inflater#totalln := NEWTOTALIN;
NEWTOTALOUT = choose;

THIS java.util.zip.Inflater#totalOut := NEWTOTALOUT;
NEWOFF = choose;

THIS Jjava.util.zip.Inflater.off := NEWOFF;
NEWFINISHED = choose;

THIS java.util.zip.Inflater.finished := NEWFINISHED;

NEWNEEDDICT = choose;
THIS java.util.zip.Inflater.needsDictionary :=
NEWNEEDDICT;

EXN = new Jjava.util.zip.DataFormatException;
STR = _stringconst();
Java.util.zip.DataFormatException.<init>(EXN);
Java.util.zip.DataFormatException.<init>(EXN, STR);
throw = choose EXN;

}

Java.util.zip.Inflater.getAdler (THIS) {
THIS Jjava.util.zip.Inflater.strm;

return = choose;

}

Java.util.zip.Inflater.getTotalIn(THIS) {
THIS Jjava.util.zip.Inflater.strm;

return = THIS Java.util.zip.Inflater#totalln;
}

Java.util.zip.Inflater.getTotalOut (THIS) {
THIS Jjava.util.zip.Inflater.strm;

return = THIS Jjava.util.zip.Inflater#totalOut;
}

Java.util.zip.Inflater.reset (THIS) {
THIS Jjava.util.zip.Inflater.strm;

NEWTOTALIN = choose;

THIS java.util.zip.Inflater#totalln := NEWTOTALIN;
NEWTOTALOUT = choose;

THIS java.util.zip.Inflater#totalOut := NEWTOTALOUT;
NEWFINISHED = choose;

THIS java.util.zip.Inflater.finished := NEWFINISHED;

NEWNEEDDICT = choose;

283

THIS java.util.zip.Inflater.needsDictionary :=
NEWNEEDDICT;
}

Java.util.zip.Inflater.end (THIS) {
THIS Jjava.util.zip.Inflater.strm;
}

Java.util.zip.Inflater.init (THIS, NOWRAP) {
STRM = choose;
THIS java.util.zip.Inflater.strm := STRM;
Java.util.zip.Inflater.reset (THIS) ;

}

/* Java.util.zip.Deflater */

accessDeflater (THIS) {
THIS Jjava.util.zip.Deflater.setParams;
THIS Jjava.util.zip.Deflater.strm;
THIS Jjava.util.zip.Deflater.finish;
THIS Jjava.util.zip.Deflater.level;
THIS Jjava.util.zip.Deflater.strategy;

FALSE = choose;
THIS java.util.zip.Deflater.setParams := FALSE;
}

java.util.zip.Deflater.setDictionary (THIS, B, OFF, LEN)
accessDeflater (THIS) ;
}

Java.util.zip.Deflater.deflate (THIS, B, OFF, LEN) {
accessDeflater (THIS) ;

VAL = choose;

B java.lang.Object#intarrayelement := VAL;

NEWLEN = choose;

THIS java.util.zip.Deflater.len := NEWLEN;
NEWTOTALIN = choose;

THIS java.util.zip.Deflater#totalln := NEWTOTALIN;
NEWTOTALOUT = choose;

THIS java.util.zip.Deflater#totalOut := NEWTOTALOUT;
NEWOFF = choose;

THIS java.util.zip.Deflater.off := NEWOFF;

NEWFINISHED = choose;

THIS java.util.zip.Deflater.finished := NEWFINISHED;

return = choose;

}

Java.util.zip.Deflater.getAdler (THIS) |
accessDeflater (THIS) ;

return = choose;

}

Java.util.zip.Deflater.getTotalIn(THIS) {
accessDeflater (THIS) ;

return = THIS Jjava.util.zip.Deflater#totalln;
}

Java.util.zip.Deflater.getTotalOut (THIS) {
accessDeflater (THIS) ;

return = THIS Jjava.util.zip.Deflaterf#totalOut;
}

Java.util.zip.Deflater.reset (THIS) {
accessDeflater (THIS) ;

NEWTOTALIN = choose;

THIS java.util.zip.Deflater#totalln := NEWTOTALIN;
NEWTOTALOUT = choose;

THIS java.util.zip.Deflater#totalOut := NEWTOTALOUT;
NEWFINISHED = choose;

THIS java.util.zip.Deflater.finished := NEWFINISHED;

}

Java.util.zip.Deflater.end (THIS) {
accessDeflater (THIS) ;
}

Java.util.zip.Deflater.init (THIS, NOWRAP) {
STRM = choose;
THIS Jjava.util.zip.Deflater.strm := STRM;
java.util.zip.Deflater.reset (THIS) ;

/* Java.util.zip.CRC32 */

java.util.zip.CRC32.update (THIS, B, OFF, LEN) {

{

VAL = choose;
THIS Jjava.util.zip.CRC32.crc := VAL;

B java.lang.Object#intarrayelement;

Java.util.zip.CRC32.updatel (THIS, B) {
VAL = choose;
THIS Jjava.util.zip.CRC32.crc := VAL;
}

/* Java.awt.lmage.ColorModel */

Jjava.awt.lmage.ColorModel.deletepData (THIS) {
}

/* sun.awt.windows.WToolkit */

sun.awt.windows.WToolkit.init (THIS, EVENTTHREAD /*
java.lang.Thread */) {
}

sun.awt.windows.WToolkit.eventLoop (THIS) {
T: goto EA, EB, EC, ED, EE, EF, EG, EH, EI, EJ, EK, EL,
EM, EN, EY, EZ, EO, E1, E2, E3, E4, E5, E6, EXIT;

EA: TARGET = sun.awt.windows.WComponentPeer#allPeers;
ACTION = choose;
sun.awt.windows.WChoicePeer.handleAction (TARGET,

ACTION) ;
goto T;

EB: TARGET = sun.awt.windows.WComponentPeer#allPeers;
sun.awt.windows.WButtonPeer.handlefction (TARGET) ;
goto T;

EC: TARGET = sun.awt.windows.WComponentPeer#allPeers;
AMT = choose;
sun.awt.windows.WScrollbarPeer.lineUp (TARGET, AMT);
goto T;

ED: TARGET = sun.awt.windows.WComponentPeer#allPeers;
AMT = choose;
sun.awt.windows.WScrollbarPeer.lineDown (TARGET, AMT);
goto T;

EE: TARGET = sun.awt.windows.WComponentPeer#allPeers;
AMT = choose;
sun.awt.windows.WScrollbarPeer.pageUp (TARGET, AMT);
goto T;

EF: TARGET = sun.awt.windows.WComponentPeer#allPeers;
AMT = choose;
sun.awt.windows.WScrollbarPeer.pageDown (TARGET, AMT);
goto T;

EG: TARGET = sun.awt.windows.WComponentPeer#allPeers;
AMT = choose;
sun.awt.windows.WScrollbarPeer.dragBegin (TARGET,

AMT) ;
goto T;

EH: TARGET = sun.awt.windows.WComponentPeer#allPeers;
AMT = choose;
sun.awt.windows.WScrollbarPeer.draghbsolute (TARGET,

AMT) ;
goto T;

EI: TARGET = sun.awt.windows.WComponentPeer#allPeers;
AMT = choose;
sun.awt.windows.WScrollbarPeer.dragEnd (TARGET, AMT);
goto T;

EJ: TARGET = sun.awt.windows.WMenultemPeer#menultemPeers;
CODE = choose;
sun.awt.windows.WMenultemPeer.handleAction (TARGET,

CODE) ;
goto T;

EK: TARGET = sun.awt.windows.WComponentPeer#allPeers;
sun.awt.windows.WFileDialogPeer.handleCancel (TARGET) ;
goto T;

EL: TARGET = sun.awt.windows.WComponentPeer#allPeers;
STR = makeString();

sun.awt.windows.WFileDialogPeer.handleSelected (TARGET,
STR) ;
goto T;

EM: TARGET = sun.awt.windows.WComponentPeer#allPeers;

284

EXIT:

sun.awt.windows.WWindowPeer.postFocusOnActivate (TARGET) ; choose;
goto T; }
EN: TARGET = sun.awt.windows.WComponentPeer#allPeers; sun.awt.windows.WToolkit.getComboHelghtOffset () {
sun.awt.windows.WTextFieldPeer.handlefction (TARGET) ; return = choose; /* int */
goto T; }
EY: TARGET = sun.awt.windows.WComponentPeer#allPeers; sun.awt.windows.WToolkit.makeColorModel () {
X = choose; BITS = choose;
Y = choose;
W = choose; RMASK = choose;
H = choose; GMASK = choose;
sun.awt.windows.WComponentPeer.handleRepaint (TARGET, BMASK = choose;
X, Y, W, H); AMASK = choose;
goto T; M1l = new java.awt.lmage.DirectColorModel;
java.awt.lmage.DirectColorModel.<init>(M1, BITS,
EZ: TARGET = sun.awt.windows.WComponentPeer#allPeers; RMASK, GMASK, BMASK, AMASK);
X = choose;
Y = choose; SIZE = choose;
W = choose; CMAP = makeByteArray();
H = choose; START = choose;
sun.awt .windows.WComponentPeer.handleExpose (TARGET, HASALPHA = choose;
X, Y, W, H); TRANS = choose;
goto T; M2 = new java.awt.lmage.IndexColorModel;
Jjava.awt.lmage.IndexColorModel.<init>(M2, BITS, SIZE,
EO: TARGET = sun.awt.windows.WComponentPeer#allPeers; CMAP, START, HASALPHA, TRANS) "(II[BIZI)V";
X = choose;
Y = choose; return = choose M1, M2;
W = choose; }
H = choose;
sun.awt.windows.WComponentPeer.handlePaint (TARGET, X, sun.awt.windows.WToolkit.getScreenResolution (THIS) {
Y, W, H); return = choose; /* int */
goto T; }
El: CLIPBOARD = sun.awt.windows.WToolkit#theClipboard; sun.awt.windows.WToolkit.getScreenWidth (THIS) {
return = choose; /* int */
sun.awt.windows.WClipboard.lostSelectionOwnership (CLIPBOA 1
RD) ;
goto T; sun.awt.windows.WToolkit.getScreenHeight (THIS) {
return = choose; /* int */
E2: EVT = new Jjava.awt.event.KeyEvent; }
TARGET = sun.awt.windows.WComponentPeer#allPeers;
TARGET = TARGET sun.awt.windows.WObjectPeer.target; sun.awt.windows.WToolkit.sync (THIS) {
ID = choose; }
WHEN = choose;
MODS = choose; sun.awt.windows.WToolkit.beep (THIS) {
KEYCODE = choose; }
KEYCHAR = choose;
Jjava.awt.event.KeyEvent.<init>(EVT, TARGET, ID, WHEN, sun.awt.windows.WToolkit.loadSystemColors (THIS,
MODS, KEYCODE, KEYCHAR); COLORARRAY /* int[] */) {
goto POST; COLORARRAY Java.lang.Object#arraylength;
VAL = choose;
E3: EVT = new Jjava.awt.event.MouseEvent; COLORARRAY java.lang.Object#intarrayelement := VAL;
TARGET = sun.awt.windows.WComponentPeer#allPeers; }
TARGET = TARGET sun.awt.windows.WObjectPeer.target;
ID = choose; /* sun.awt.windows.WObjectPeer */
WHEN = choose;
MODS = choose; sun.awt.windows.WObjectPeer.initIDs () {
X = choose; }
Y = choose;
CLICKS = choose; /* sun.awt.windows.WComponentPeer */
POPUP = choose;
java.awt.event.MouseEvent.<init>(EVT, TARGET, ID, makePoint (X, Y) {
WHEN, MODS, X, Y, CLICKS, POPUP); X = choose;
goto POST; Y = choose;
P = new Jjava.awt.Point;
El: EVT = new Jjava.awt.event.WindowEvent; Java.awt.Polnt.<init>(P, X, Y);
TARGET = sun.awt.windows.WComponentPeer#allPeers; return = choose P;
TARGET = TARGET sun.awt.windows.WObjectPeer.target; }
ID = choose;
Java.awt.event.WindowEvent.<init>(EVT, TARGET, ID); sun.awt .windows.WComponentPeer. beginvValidate (THIS) {
goto POST; }
E5: TARGET = sun.awt.windows.WComponentPeer#allPeers; sun.awt.windows.WComponentPeer.endValidate (THIS) {
}
sun.awt.windows.WTextComponentPeer.valueChanged (TARGET) ;
goto T; sun.awt.windows.WComponentPeer.start (THIS) {
X = choose;
EG: EVT = new Jjava.awt.event.FocusEvent; Y = choose;
TARGET = sun.awt.windows.WComponentPeer#allPeers; THIS sun.awt.windows.WComponentPeer#X := X;
TARGET = TARGET sun.awt.windows.WObjectPeer.target; THIS sun.awt.windows.WComponentPeer#Y := Y;
ID = choose; sun.awt.windows.WComponentPeer$allPeers := THIS;
ISTMP = choose; }
java.awt.event.FocusEvent.<init>(EVT, TARGET, ID,
ISTMP) ; sun.awt.windows.WComponentPeer.idispose(THIS) {
goto POST; }
POST: sun.awt.windows.WComponentPeer.disable (THIS) {
sun.awt.windows.WToolkit.postEvent (EVT) ; 1
goto T;

sun.awt.windows.WComponentPeer.enable (THIS) {

sun.awt.windows.WComponentPeer.hide (THIS) |

sun.awt.windows.WComponentPeer.show(THIS) |

sun.awt.windows.WComponentPeer.reshape (THIS, X, Y, W, H)

e

THIS sun.awt.windows.WComponentPeer#X :=
THIS sun.awt.windows.WComponentPeer#Y :=

<

sun.awt.windows.WComponentPeer.getLocationOnScreen (THIS)

X = THIS sun.awt.windows.WComponentPeer#X;
Y = THIS sun.awt.windows.WComponentPeer#Y;
P = new Jjava.awt.Point;
Java.awt.Polnt.<init>(P, X, Y);

return = choose P;

sun.awt.windows.WComponentPeer.setCursor (THIS, CURSOR) {

sun.awt.windows.WComponentPeer.setFont (THIS, FONT) {
}

sun.awt.windows.WComponentPeer.setZOrderPosition (THIS,
COMPONENT) {
}

sun.awt .windows.WComponentPeer. setBackground (THIS,
COLOR) {
}

sun.awt .windows.WComponentPeer. setForeground(THIS,
COLOR) {
}

sun.awt.windows.WComponentPeer.addNativeDropTarget (THIS)
{
}

sun.awt.windows.WComponentPeer.removeNativeDropTarget (THI
s)

}

sun.awt.windows.WComponentPeer.nativeHandleEvent (THIS,
EVENT) {

}

sun.awt.windows.WComponentPeer.requestFocus (THIS) |

}
/* sun.awt.windows.WWindowPeer */
sun.awt.windows.WWindowPeer.create (THIS, PARENT) {

PDATA = choose;
THIS sun.awt.windows.WObjectPeer.pData := PDATA;

sun.awt.windows.WWindowPeer. setResizable(THIS, BOOL) {

sun.awt.windows.WWindowPeer. setTitle(THIS, STR) {

sun.awt .windows.WWindowPeer.toBack (THIS) {

sun.awt .windows.WWindowPeer.toFront (THIS) {

sun.awt.windows.WWindowPeer.updateInsets (THIS, INSETS) {

sun.awt.windows.WWindowPeer.getContainerElement (THIS,
CONTAINER, INDEX) {

return = java.awt.Container.getComponent (CONTAINER,
INDEX) ;
}

/* sun.awt.windows.WFramePeer */

sun.awt.windows.WFramePeer.create (THIS, PARENT) {
PDATA = choose;

THIS sun.awt.windows.WObjectPeer.pData := PDATA;
STATE = choose;
THIS sun.awt.windows.WFramePeerf#state := STATE;

sun.awt.windows.WFramePeer.getState (THIS) {
return = THIS sun.awt.windows.WFramePeer#state;

sun.awt.windows.WFramePeer.75etIconImage(THIS, REP) {

sun.awt.windows.WFramePeer.getSysIconHeight (THIS) {
return = choose;

sun.awt.windows.WFramePeer.getSysIconWidth (THIS) {
return = choose;

sun.awt.windows.WFramePeer.pSetIMMOption (THIS, STR) {

sun.awt.windows.WFramePeer.reshape (THIS, X, Y, W, H) {
sun.awt.windows.WComponentPeer.reshape (THIS, X, Y, W,

sun.awt.windows.WFramePeer.setIconImageFromIntRasterData (
THIS, BITS, DATAWIDTH, PIXHEIGHT, PIXWIDTH) {
}

sun.awt.windows.WFramePeer.setMenuBar0 (THIS, MENUBZR) {
}

sun.awt.windows.WFramePeer.setState (THIS, STATE) {
THIS sun.awt.windows.WFramePeer#state := STATE;

}

/* sun.awt.windows.WDialogPeer */

sun.awt.windows.WDialogPeer.create (THIS, PARENT) {

PDATA = choose;
THIS sun.awt.windows.WObjectPeer.pData := PDATA;

sun.awt.windows.WDialogPeer.showModal (THIS) {
sun.awt.windows.WDialogPeer.endModal (THIS) {
sun.awt.windows.WDialogPeer.pSetIMMOption (THIS, STR) {
}

/* sun.awt.windows.WFileDialogPeer */

sun.awt.windows.WFileDialogPeer.initIDs () {

}

sun.awt.windows.WFileDialogPeer.show (THIS) {

}
sun.awt.windows.WFileDialogPeer.targetSetDirectory NoClie
ntCode (THIS, DIALOG, STR) {

DIALOG java.awt.FileDialog.file := STR;
}
sun.awt.windows.WFileDialogPeer.targetSetFile NoClientCod
e (THIS, DIALOG, STR) {

DIALOG java.awt.FileDialog.dir := STR;
}
/* sun.awt.windows.WCanvasPeer */
sun.awt.windows.WChoicePeer.create (THIS, PARENT) {

PDATA = choose;
THIS sun.awt.windows.WObjectPeer.pData := PDATA;

sun.awt.windows.WChoicePeer.addItem (THIS, STR, INDEX) {

sun.awt.windows.WChoicePeer.remove (THIS, INDEX) {

sun.awt.windows.WChoicePeer.select (THIS, INDEX) {

sun.awt.windows.WCholcePeer.reshape (THIS, X, Y, W, H) {
sun.awt.windows.WComponentPeer.reshape (THIS, X, Y, W,

/* sun.awt.windows.WCanvasPeer */

286

sun.awt.windows.WCanvasPeer.create (THIS, PARENT) {
PDATA = choose;
THIS sun.awt.windows.WObjectPeer.pData := PDATA;
}
/* sun.awt.windows.WMenultemPeer */
sun.awt.windows.WMenultemPeer.create (THIS, MENU) {
PDATA = choose;

THIS sun.awt.windows.WObjectPeer.pData := PDATA;
sun.awt.windows.WMenultemPeerf#menultemPeers := THIS;

sun.awt.windows.WMenultemPeer. dispose(THIS) {

sun.awt.windows.WMenuItemPeer.isetLabel(THIS, STR) {

sun.awt.windows.WMenultemPeer.enable (THIS, BOOL) {

sun.awt.windows.WMenultemPeer.initIDs () {

/* sun.awt.windows.WMenuPeer */

sun.awt.windows.WMenuPeer.createMenu(THIS, MENUBAR) {

PDATA = choose;
THIS sun.awt.windows.WObjectPeer.pData

PDATA;

sun.awt.windows.WMenuPeer.createSubMenu (THIS, MENU) {
PDATA = choose;
THIS sun.awt.windows.WObjectPeer.pData := PDATA;

sun.awt.windows.WMenuPeer.addSeparator (THIS) {

sun.awt.windows.WMenuPeer.delItem (THIS, INDEX) {

/* sun.awt.windows.WMenuBarPeer */

sun.awt.windows.WMenuBarPeer.create (THIS, FRAME) {
PDATA = choose;
THIS sun.awt.windows.WObjectPeer.pData := PDATA;
}

sun.awt.windows.WMenuBarPeer.addMenu (THIS, MENU) {
}

sun.awt.windows.WMenuBarPeer.delMenu(THIS, INDEX) {
}

/* sun.awt.windows.WCheckboxMenultemPeer */

sun.awt.windows.WCheckboxMenultemPeer.setState (THIS,
BOOL) {
}

/* sun.awt.windows.WTextComponentPeer */

sun.awt.windows.WTextComponentPeer.enableEditing (THIS,
BOOL) {
}

sun.awt.windows.WTextComponentPeer.getSelectionStart (THIS

return = THIS
sun.awt.windows.WTextComponentPeer$selectfrom;

sun.awt.windows.WTextComponentPeer.getSelectionEnd (THIS)

return = THIS
sun.awt.windows.WTextComponentPeer$selectto;

sun.awt.windows.WTextComponentPeer.select (THIS, FROM, TO)

THIS sun.awt.windows.WTextComponentPeer#selectfrom :=
FROM;

THIS sun.awt.windows.WTextComponentPeerf#selectto :=
TO;
}

sun.awt.windows.WTextComponentPeer.getText (THIS) |
return = THIS
sun.awt.windows.WTextComponentPeer$text;

}

sun.awt.windows.WTextComponentPeer.setText (THIS, STR) {
THIS sun.awt.windows.WTextComponentPeer#text := STR;
}

sun.awt.windows.WTextComponentPeer.initIDs () {

}
/* sun.awt.windows.WTextAreaPeer */

sun.awt.windows.WTextAreaPeer.create (THIS, PARENT) {
PDATA = choose;
THIS sun.awt.windows.WObjectPeer.pData := PDATA;
}

sun.awt.windows.WTextAreaPeer.insertText (THIS, STR, POS)
{
TEXT = THIS sun.awt.windows.WTextComponentPeer#text;
NEWTEXT = mungeStrings (TEXT, STR);
THIS sun.awt.windows.WTextComponentPeer$text :=
NEWTEXT;
}

sun.awt.windows.WTextAreaPeer.replaceText (THIS, STR,
FROM, TO) {
TEXT = THIS sun.awt.windows.WTextComponentPeer#text;
NEWTEXT = mungeStrings (TEXT, STR);
THIS sun.awt.windows.WTextComponentPeer$text :=
NEWTEXT;
}

/* sun.awt.windows.WTextFieldPeer */

sun.awt.windows.WTextFieldPeer.create (THIS, PARENT) {
PDATA = choose;
THIS sun.awt.windows.WObjectPeer.pData := PDATA;
}

sun.awt.windows.WTextFieldPeer.setEchoCharacter (THIS, CH)
{
}

/* sun.awt.windows.WLabelPeer */
sun.awt.windows.WLabelPeer.create (THIS, PARENT) {

PDATA = choose;
THIS sun.awt.windows.WObjectPeer.pData := PDATA;

sun.awt.windows.WLabelPeer.setAlignment (THIS, ALIGN) {

sun.awt.windows.WLabelPeer.setText (THIS, STR) {
}

/* sun.awt.windows.WCheckboxPeer */
sun.awt.windows.WCheckboxPeer.create (THIS, PARENT) {
PDATA = choose;

THIS sun.awt.windows.WObjectPeer.pData := PDATA;
}

sun.awt.windows.WCheckboxPeer.setCheckboxGroup (THIS,
GROUP) {
}

sun.awt.windows.WCheckboxPeer.setLabel (THIS, STR) {
}

sun.awt.windows.WCheckboxPeer.setState (THIS, BOOL) {
}

/* sun.awt.windows.WButtonPeer */
sun.awt.windows.WButtonPeer.create (THIS, PARENT) {

PDATA = choose;
THIS sun.awt.windows.WObjectPeer.pData := PDATA;

sun.awt.windows.WButtonPeer.initIDs () {
sun.awt.windows.WButtonPeer.setLabel (THIS, STR) {
}

/* sun.awt.windows.WListPeer */

sun.awt.windows.WListPeer.create (THIS, PARENT) {
PDATA = choose;

THIS sun.awt.windows.WObjectPeer.pData := PDATA;
MAXWIDTH = choose;
THIS sun.awt.windows.WListPeer#maxwidth := MAXWIDTH;

287

}

sun.awt.windows.WListPeer. addItem(THIS, STR, INDEX,
WIDTH) {
goto Y, N;
Y: THIS sun.awt.windows.WListPeerf#maxwidth := WIDTH;
N: choose;
}
sun.awt.windows.WListPeer.addItem0 (THIS, STR, INDEX,
WIDTH) {
goto Y, N;
Y: THIS sun.awt.windows.WListPeerf#maxwidth := WIDTH;
N: choose;
}
sun.awt.windows.WListPeer.delItems (THIS, FROM, TO) {
}
sun.awt.windows.WListPeer.setMultipleSelections (THIS,
BOOL) {
}
sun.awt.windows.WListPeer.select (THIS, INDEX) {
}
sun.awt.windows.WListPeer.deselect (THIS, INDEX) {
}
sun.awt.windows.WListPeer.isSelected (THIS, INDEX) {
return = choose;
}
sun.awt.windows.WListPeer.makeVisible (THIS, INDEX) {
}
sun.awt.windows.WListPeer.updateMaxItemWidth (THIS) {
}
sun.awt.windows.WListPeer.getMaxWidth (THIS, WIDTH) {

return THIS sun.awt

.windows.WListPeer#maxwidth;

/* sun.awt.windows.WClipboard */

sun.

sun.

sun.

sun.

awt .windows.WClipboard.getClipboardText (THIS) {
goto N, R;

STR = makeString();

THIS sun.awt.windows.WClipboardftext := STR;

return

THIS sun.awt.windows.WClipboard#text;

awt .windows.WClipboard.init () {

awt .windows.WClipboard.setClipboardObject (THIS, OBJ)

sun.awt.windows.WToolkit#theClipboard
THIS sun.awt.windows.WClipboard#text

= THIS;
OBJ;

awt .windows.WClipboard.setClipboardText (THIS, STRSEL)

sun.awt.windows.WToolkit#theClipboard := THIS;

DATA = STRSEL
Jjava.awt.datatransfer.StringSelection.data;

THIS sun.awt.windows.WClipboardftext := DATA;

}

/* sun.awt.windows.WColor */

sun.

}

awt .windows.WColor.getDefaultColor (INDEX) {
return choose;

/* sun.awt.windows.WFontMetrics */

sun.

}

sun.

awt .windows .WFontMetrics.initIDs () {

awt.windows.WFontMetrics.init (THIS) {

INTS = makeIntArray();

THIS sun.awt.windows.WFontMetrics.widths := INTS;
V = choose;

THIS sun.awt.windows.WFontMetrics.ascent := V;

A choose;

288

THIS sun.awt.
A choose;
THIS sun.awt.
A choose;
THIS sun.awt.
V = choose;
THIS sun.awt.
A choose;
THIS sun.awt.
V = choose;
THIS sun.awt.
A choose;
THIS sun.awt.

windows.WFontMetrics.descent

windows.WFontMetrics.leading

windows.WFontMetrics.height

windows.WFontMetrics.maxAscent

windows.WFontMetrics.maxDescent

windows.WFontMetrics.maxHeight

windows.WFontMetrics.maxAdvance

}

sun.awt.windows.WFontMetrics
INDEX, LEN) {
return

.bytesWidth(THIS, BYTES

choose;

}

sun.awt.windows.WFontMetrics.
INDEX, LEN) {
return

charsWidth (THIS, CHARS

choose;

}

sun.awt.windows.WFontMetrics.
return choose;

stringWidth (THIS, STR)

}

sun.awt.windows.WFontMetrics
FONTDESC) {
return = choose;

.needsConversion (FONT,

}

sun.awt.windows.WFontMetrics.
FONT, FONTDESC, BOOL, CHARS,
return choose;

getMFCharSegmentWidth (
FROM, TO, SEGS, LEN) {

}
/* sun.awt.windows.WDefaultFontCharset */

sun.awt.windows.WDefaultFontCharset.initIDs () {

}

sun.awt .windows.WDefaultFontCharset.canConvert (THIS

{

return choose;

/* sun.awt.windows.WPrintJob */

sun.awt.windows.WPrintJob.initIDs () {

}

sun.awt.windows.WPrintJob.

}

newPage (THIS) {

sun.awt.windows.WPrintJob.

}

flushPageImpl (THIS) {

sun.awt.windows.WPrintJob.

}

endImpl (THIS) {

/* sun.awt.windows.WGraphics */

sun.awt.windows.WGraphics.initIDs () {
}
sun.awt.windows.WGraphics.checkNoDDraw () {
return = choose;
}
sun.awt.windows.WGraphics.createFromComponent (THIS,

PDATA = choose;
THIS sun.awt.windows.WGraphics.pData

PDATA;

.awt.windows.WGraphics.createFromGraphics (THIS,
PDATA choose;
THIS sun.awt.windows.WGraphics.pData

PDATA;

.awt.windows.WGraphics.createFromHDC (THIS, HDC)
PDATA choose;
THIS sun.awt.windows.WGraphics.pData

PDATA;

.awt.windows.WGraphics.createFromPrintJob (THIS,
PDATA = choose;
THIS sun.awt.windows.WGraphics.pData

PDATA;

’

’

THIS,

, CH)

COMP)

JOB)

sun.awt.windows.WGraphics.devDrawhArc (THIS, X, Y, W, H,

sun.awt.windows.WGraphics.disposeImpl (THIS) { FROM, TO) {
} }
sun.awt.windows.WGraphics.W32LockViewResources (THIS, sun.awt.windows.WGraphics.devFillArc (THIS, X, Y, W, H,
DATA, VIEWX, VIEWY, VIEWW, VIEWH, LOCKMETHOD) { FROM, TO) |
return = choose; }

}
sun.awt.windows.WGraphics.devDrawLine (THIS, X, Y, X2, Y2)

sun.awt.windows.WGraphics.W32UnLockViewResources (THIS, {
DATA) | }
return = choose;
1 sun.awt.windows.WGraphics.devDrawOval (THIS, X, Y, W, H) {

}
sun.awt.windows.WGraphics.getClipBounds (THIS) {

X = choose; sun.awt.windows.WGraphics.devFil1lOval (THIS, X, Y, W, H) {
Y = choose; }
W = choose;
H = choose; sun.awt.windows.WGraphics.devDrawPolygon (THIS, XS, YS,
RECT = new Jjava.awt.Rectangle; COUNT) {
java.awt.Rectangle.<init>(RECT, X, Y, W, H); }
return = choose RECT;
} sun.awt.windows.WGraphics.devFillPolygon (THIS, XS, YS,
COUNT) {
sun.awt.windows.WGraphics.changeClip(THIS, X, Y, W, H, }
BOOL) {
} sun.awt.windows.WGraphics.devDrawPolyline (THIS, XS, YS,
COUNT) {
sun.awt.windows.WGraphics.removeClip(THIS) { 1

sun.awt.windows.WGraphics.devDrawRect (THIS, X, Y, W, H) {
sun.awt.windows.WGraphics.clearRect (THIS, X, Y, W, H) { 1

sun.awt.windows.WGraphics.devFillRect (THIS, X, Y, W, H) {
sun.awt.windows.WGraphics.drawRect (THIS, X, Y, W, H) { 1

sun.awt.windows.WGraphics.devDrawRoundRect (THIS, X, Y, W,

sun.awt.windows.WGraphics.fillRect (THIS, X, Y, W, H) { H, RX, RY) {
} }
sun.awt.windows.WGraphics.drawLine (THIS, X, Y, X2, Y2) { sun.awt.windows.WGraphics.devFillRoundRect (THIS, X, Y, W,
} H, RX, RY) {
}
sun.awt.windows.WGraphics.copyhArea (THIS, X, Y, W, H, DX,
DY) { sun.awt.windows.WGraphics.devFillSpans (THIS, ITERATOR,
} LONG) {

}
sun.awt.windows.WGraphics.drawhArc (THIS, X, Y, W, H, FROM,

TO) { sun.awt.windows.WGraphics.devPrint (THIS, COMPONENT) {
} }
sun.awt.windows.WGraphics.fillArc (THIS, X, Y, W, H, FROM, sun.awt.windows.WGraphics.drawSFChars (THIS, CHARS, FROM,
TO) { TO, X, Y) {
} }
sun.awt.windows.WGraphics.drawOval (THIS, X, Y, W, H) { sun.awt.windows.WGraphics.drawMFCharsSegment (THIS, FONT,
} FONTDESC, CHARS, FROM, TO, X, Y) |

return = choose;
sun.awt.windows.WGraphics.fil10val (THIS, X, Y, W, H) { }
}

sun.awt.windows.WGraphics.drawMFCharsConvertedSegment (THI

sun.awt.windows.WGraphics.drawPolygon (THIS, XS, YS, S, FONT, FONTDESC, BYTES, LEN, X, Y) {
COUNT) { return = choose;
} }
sun.awt.windows.WGraphics.fillPolygon (THIS, XS, YS, sun.awt.windows.WGraphics.drawBytes (THIS, BYTES, FROM,
COUNT) { TO, X, Y) {
1 return = choose;

}
sun.awt.windows.WGraphics.drawPolyline (THIS, XS, YS,

COUNT) { sun.awt.windows.WGraphics.drawBytesWidth (THIS, BYTES,
} FROM, TO, X, Y) |
return = choose;

sun.awt.windows.WGraphics.drawRoundRect (THIS, X, Y, W, H, }
RX, RY) |
1 sun.awt.windows.WGraphics.drawCharsWidth (THIS, CHARS,

FROM, TO, X, Y) |
sun.awt.windows.WGraphics.fillRoundRect (THIS, X, Y, W, H, return = choose;
RX, RY) | }

}
sun.awt.windows.WGraphics.drawStringWidth (THIS, STR, X,
sun.awt.windows.WGraphics.print (THIS, COMPONENT) { vy |
1 return = choose;
}
sun.awt.windows.WGraphics.devClearRect (THIS, X, Y, W, H)

{ sun.awt.windows.WGraphics.pSetFont (THIS, FONT) {

} }

sun.awt.windows.WGraphics.devCopyhrea (THIS, X, Y, W, H, sun.awt.windows.WGraphics.pSetForeground (THIS, COLOR) {
DX, DY) { }

sun.awt.windows.WGraphics.setPaintMode (THIS) {

289

sun.awt.windows.WGraphics.pSetPaintMode (THIS) |

}

sun.awt.windows.WGraphics.setXORMode (THIS, COLOR) {
}

sun.awt.windows.WGraphics.pSetXORMode (THIS, COLOR) {
}

sun.awt.windows.WGraphics.setOrigin(THIS, X, Y) {

}

sun.awt.windows.WGraphics.imageCreate (THIS, IMAGE) |{

}
/* sun.awt.image.ImageRepresentation */

sun.awt.lmage.ImageRepresentation.offscreenInit (THIS,
COLOR) {
}

sun.awt.lmage.ImageRepresentation.disposeImage (THIS)

}

convertPixel (CM, DATA) {
PIXEL = DATA Jjava.lang.Object#intarrayelement;
Jjava.awt.lmage.ColorModel.getAlpha (CM, PIXEL);
Java.awt.lmage.ColorModel.getRed (CM, PIXEL);
Jjava.awt.lmage.ColorModel.getGreen (CM, PIXEL);
Java.awt.lmage.ColorModel.getBlue (CM, PIXEL);
}

sun.awt.lmage.ImageRepresentation.

v, W, H, CM, BYTES, OFF, LEN) {
convertPixel (CM, BYTES);

}

sun.awt.lmage.ImageRepresentation.setIntPixels (THIS,

v, W, H, CM, INTS, OFF, LEN) {
convertPixel (CM, INTS);

}

finish (THIS,

sun.awt.lmage.ImageRepresentation. BOOL)

}

sun.awt.lmage.ImageRepresentation.
v, COLOR) |
}

imageDraw (THIS, G,

sun.awt.lmage.ImageRepresentation.imageStretch (THIS,
X, Y, W, H, FROMX, FROMY, FROMW, FROMH, COLOR) {
}

/* sun.awt.image.OffScreenImageSource */

sun.awt.lmage.0ffScreenImageSource.sendPixels (THIS) |
CONSUMER = THIS

sun.awt.lmage.0ffScreenImageSource.theConsumer;
L: X = choose;
Y = choose;
W = choose;
H = choose;
CM = sun.awt.windows.WToolkit.makeColorModel () ;
BYTES = makeByteArray();
OFF = choose;
LEN = choose;
Jjava.awt.lmage.ImageConsumer.setPixels (CONSUMER, X,
Y, W, H, CM, BYTES, OFF, LEN)
"(IIIILjava.awt.image.ColorModel; [BII)V";
goto L, EX;
EX: choose;
}
/* sun.awt.image.JPEGImageDecoder */
sun.awt.lmage.JPEGImageDecoder.readlmage (THIS, STREAM,
BYTES) {
N: INPUT = makeByteArray():
OFF = choose;
LEN = choose;
BYTE = java.io.InputStream.read(STREAM, BYTES, OFF,
LEN) ;
EXN1 = catch (Jjava.lang.Throwable) BYTE;
DATA = choose;
BYTES java.lang.Object#intarrayelement := DATA;
goto N, EX;

{

setBytePixels (THIS, X,

X,

{

X,

G,

EX:

}

STR = _stringconst();
ERR = sun.awt.lmage.JPEGImageDecoder.error (STR);
EXN2 = catch (Jjava.lang.Throwable) ERR;

throw = choose EXN1, EXN2;

/* sun.awt.image.GifImageDecoder */

sun.awt.lmage.GifImageDecoder.parselmage (THIS, X, Y, W,

H, BOOL,

N:

FLAGS, HEADER, OUTPUT,
INPUT = makeByteArray():
OFF = choose;

LEN = choose;

RESULT =

M)

sun.awt.lmage.GlfImageDecoder.readBytes (THIS, INPUT, OFF,
LEN) ;

EX:
}

290

DATA = choose;

OUTPUT java.lang.Object#intarrayelement := DATA;

goto N, EX;

return = choose;

Appendix C: Ajax Reflection Specifications

Here | provide the complete text of the reflection specifications used by Ajax. They cover

the examples | used for thisthesis.

java.lang.Class.newInstance [
ajax.analyzer.test.ReflectionTest.main {
class=ajax.analyzer.test.ReflectionTest
}
sun.io.CharToByteConverter.getDefault |
class=sun.io.CharToByteCpl252
sun.io.CharToByte*

sun.ilo.ByteToCharConverter.getDefault |
class=sun.io.ByteToCharCpl252
sun.io.ByteToChar*

sun.ilo.ByteToCharConverter.getConverter [
class=sun.io.ByteToCharCpl252
sun.io.ByteToChar*
}
java.net.URL.getURLStreamHandler {
class=*.Handler
}
java.net.InetAddress.<clinit> {
class=java.net.*InetAddressImpl
}
java.security.Security.getImpl {
class=sun.security.provider.*
}
java.security.Provider.loadProvider {
class=sun.security.provider.Sun
}
java.util.ResourceBundle.findBundle {
class=java.text.resources.DateFormatZoneData
java.text.resources.DateFormatZoneData*

class=java.text.resources.DateFormatZoneData_en

class=Jjava.text.resources.LocaleElements
java.text.resources.LocaleElements*
class=java.text.resources.LocaleElements_en
}
sun.security.x509.AlgorithmId.buildAlgorithmId {

class=sun.security.*<sun.security.x509.AlgorithmId
}
sun.security.x509.X509Key.buildx509Key {
class=sun.security.x509.X509Key
}
Java.awt.Toolkit.getDefaultToolkit {
class=sun.awt.windows.WToolkit
}
ladybug.engine.FormulaSolver.createSolver |
class=ladybug.selenum.createSolver
}
sun.awt.SunToolkit.<init> {
class=java.awt.EventQueue

sun.awt.windows.WFontPeer.getFontCharset |
class=sun.io.CharToByteCpl252

sun.awt.windows.WFontMetrics.getMFStringWidth {
class=sun.io.CharToByteCpl252

sun.awt.windows.WGraphics.drawMFChars |
class=sun.io.CharToByteCpl252

}

ladybug.parse.Formula.createPeer {

}

ladybug.parse.Term.createPeer {

jess.Main.main {
class=jess.StringFunctions
class=jess.PredFunctions
class=jess.MultiFunctions
class=jess.MiscFunctions
class=jess.MathFunctions
class=jess.BagFunctions
class=Jjess.reflect.ReflectFunctions
class=Jjess.view.ViewFunctions

}

jess.Funcall.loadIntrinsics {
class=jess.Assert
class=jess.Retract

class=Jess.
class=jess.Printout
class=jess.ExtractGlobal
class=jess.Open
class=jess.Close
class=jess.Foreach
class=jess.Read
class=jess.Readline
class=Jjess.GensymStar
class=jess.While
class=Jjess.If
class=Jess.

RetractString

class=Jjess.And
class=Jess.
class=jess.Or
class=Jjess.Eq

class=jess.EgStar
class=jess.Equals
class=jess.NotEquals

class=jess.Gt
class=jess.Lt
class=jess
class=Jess.
class=jess

.GtOrEq
LtOrEq
.Neq

-Mod
class=jess.Plus
class=jess.Times
class=jess.Minus
class=jess.Divide
class=jess.SymCat
class=jess.LoadFacts
class=jess.SaveFacts
class=jess.AssertString
class=jess.UnDefrule
class=Jjess.Try

}

jess.LoadPkg.call {
class=jess.*<Jjess.Userpackage

}

jess.LoadFn.call {
class=Jjess.*<Jjess.Userfunction

}

jess.SetStrategy.call {
class=Jjess.*<Jjess.Strategy

}

"jess.NodeTest.addTest (int, int, int, jess.Value)"
class=jess.*<jess.Test

}

jess.Rete.<init> {
class=Jjess.depth

}

]

java.lang.Class.forName [
ajax.analyzer.test.ReflectionTest.main {
class=ajax.analyzer.test.ReflectionTest

}

ajax.tools.benchmarks.GeneralBenchmark.makePrintSinkStrea

m {

291

class=Jjava.lo.OutputStream
class=Jjava.lo.PrintStream
}
sun.lo.CharToByteConverter.getConverterClass {
class=sun.io.CharToByteCpl252 #
sun.io.CharToByte*
}
sun.lo.ByteToCharConverter.getConverterClass {
class=sun.ilo.ByteToCharCpl252 #
sun.ilo.ByteToChar*
}
java.lo.ObjectStreamClass.<clinit> {
class=java.lo.Serializable
class=java.lo.Externalizable
}
java.net.URL.getURLStreamHandler {
class=*.Handler

{

} class=jess.*<jess.Test

java.net.InetAddress.<clinit> { 1
class=java.net.*InetAddressImpl jess.Rete.<init> {

} class=Jjess.depth

Jjava.security.Security.getImpl { }

class=sun.security.provider.*]
}
java.security.Provider.loadProvider { java.lang.Class.getConstructor [
class=sun.security.provider.Sun javafig.gui.ModularEditor.handleCommandCallback {
} }
sun.security.x509.AlgorithmId.buildAlgorithmId {
ajax.tools.benchmarks.GeneralBenchmark.makePrintSinkStrea
class=sun.security.*<sun.security.x509.AlgorithmId m {
} }
sun.security.x509.X509Key.buildX509Key {]
class=sun.security.x509.X509Key

1 java.lang.reflect.Constructor.newlInstance [
Java.awt.Toolkit.getDefaultToolkit { Javafig.gui.ModularEditor.handleCommandCallback {
class=sun.awt.windows.WToolkit class=Jjavafig.commands.*

} }

ladybug.engine.SchemaSolver.solverClasses |

class=ladybug.selenum.SelEnumSolver ajax.tools.benchmarks.GeneralBenchmark.makePrintSinkStrea
} m {
sun.awt.SunToolkit.<init> { class=Jjava.lo.PrintStream
class=java.awt.EventQueue 1

} 1

sun.awt.windows.WFontPeer.getFontCharset [

class=sun.io.CharToByteCpl252 java.lang.Class.getMethod [
1 ajax.analyzer.test.ReflectionTest.main {
Javafig.objects.Fighttribs.<clinit> { method=ajax.analyzer.test.ReflectionTest.*
class=Jjava.awt.geom.AffineTransform }
1 ajax.analyzer.test.ReflectionTest.hello {
jess.Main.main { method=ajax.analyzer.test.ReflectionTest.*
class=jess.StringFunctions }
class=jess.PredFunctions Javafig.guil.ModularEditor.call {
class=jess.MultiFunctions method=javafig.gui.ModularEditor.doCancel

ess.MiscFunctions method=javafig.gui.ModularEditor.dolUndo
ess.MathFunctions .gui.ModularEditor.doRedo
ess.BagFunctions .gul.ModularEditor.doFlushUndoStack

ess.reflect.ReflectFunctions method=javafig.gui.ModularEditor.doDeleteAll
class=Jjess.view.ViewFunctions
} method=javafig.gui.ModularEditor.doCopyToClipboard
jess.Funcall.loadIntrinsics { method=javafig.gui.ModularEditor.doCutToClipboard
class=jess.Assert
.Retract method=javafig.gui.ModularEditor.doPasteFromClipboard
.RetractString javafig.gul.ModularEditor.doCreateCircle
.Printout method=javafig.gui.ModularEditor.doCreateEllipse
class=jess.ExtractGlobal
class=jess.Open method=javafig.gui.ModularEditor.doCreateRectangle
.Close
.Foreach method=javafig.gui.ModularEditor.doCreateRoundRectangle
class=Jjess.Read method=javafig.gui.ModularEditor.doCreatePolyline
class=jess.Readline method=javafig.gui.ModularEditor.doCreatePolygon
class=Jjess.GensymStar method=javafig.gui.ModularEditor.doCreateSpline
class=jess.While
class=Jjess.If method=javafig.gul.ModularEditor.doCreateClosedSpline

class=Jess. method=javafig.gui.ModularEditor.doCreateBezier

class=Jjess.And method=javafig.gul.ModularEditor.doCreateClosedBezier
class=jess.Not method=javafig.gui.ModularEditor.doCreateArc
.0r method=javafig.gui.ModularEditor.doCreateImage
.Eq .gul.ModularEditor.doCreateText
.EgStar .gul.ModularEditor.doCreatelLink
.Equals .gul.ModularEditor.doCreateCompound
class=jess.NotEquals method=javafig.gui.ModularEditor.doBreakCompound
class=jess.Gt method=javafig.gui.ModularEditor.doMoveObject
class=jess.Lt method=javafig.gui.ModularEditor.doCopyObject
class=Jjess.GtOrEq method=javafig.gui.ModularEditor.doDeleteObject
.LtOrEq method=javafig.gui.ModularEditor.doMovePoint
.Neq method=javafig.gui.ModularEditor.doInsertPoint
.Mod method=javafig.gui.ModularEditor.doCutPoint
class=jess.Plus method=javafig.gui.ModularEditor.doMirrorXObject
class=jess.Times method=javafig.gui.ModularEditor.doMirrorYObject
.Minus method=javafig.gui.ModularEditor.doScaleObject
.Divide method=javafig.gul.ModularEditor.doAlignObjects
class=jess.SymCat
class=jess.LoadFacts method=javafig.gui.ModularEditor.doSnapObjectToGrid
class=jess.SaveFacts method=javafig.gui.ModularEditor.doConvertObject
class=jess.AssertString method=javafig.gul.ModularEditor.doResizeText
class=jess.UnDefrule method=javafig.gui.ModularEditor.doUpdate
class=Jjess.Try method=javafig.gui.ModularEditor.doCancelUpdate
} method=javafig.gui.ModularEditor.enableUpdateAll
jess.LoadPkg.call { method=javafig.gul.ModularEditor.enableUpdateNone
class=Jjess.*<Jjess.Userpackage
} method=javafig.gui.ModularEditor.enableUpdateInvert
jess.LoadFn.call { method=javafig.gui.ModularEditor.doEditObject
class=Jjess.*<Jjess.Userfunction
} method=javafig.gul.ModularEditor.doEditGlobalAttributes
jess.SetStrategy.call { method=javafig.gui.ModularEditor.doZoomRegion
class=Jjess.*<Jjess.Strategy method=javafig.gui.ModularEditor.doZoomIn
} method=javafig.gui.ModularEditor.doZoomOut
"jess.NodeTest.addTest (int, int,int, jess.Value)" { method=javafig.gul.ModularEditor.doZoomll

292

method=javafig.qgui.
method=javafig.qgui.
method=javafig.qgui.
method=javafig.qgui.

method=javafig.qgui.

method=javafig.
method=javafig.
method=javafig.
method=javafig.
method=javafig.
method=javafig.
method=javafig.
method=javafig.
method=javafig.
method=javafig.
method=javafig.
method=javafig.
method=javafig.
method=javafig.

gui.
gui.

gui

gui.

gui

gui.

gui

gui.
gui.
gui.
gui.
gui.
gui.
.ModularEditor.

gui

ModularEditor.

ModularEditor.

ModularEditor.

ModularEditor.

ModularEditor.

ModularEditor.
ModularEditor.
.ModularEditor.
ModularEditor.
.ModularEditor.
ModularEditor.
.ModularEditor.
ModularEditor.
ModularEditor.
ModularEditor.
ModularEditor.

ModularEditor
ModularEditor

doPanHome
doPanLeft
doPanRight
doPanUp
doPanDown
doSetGridNone
doSetGridCoarse
doSetGridMedium
doSetGridFine
doSetNoSnap
doSetSnapl2
.doSetSnapli
.doSetSnapl8
doSetUnitsInches

doSetUnitsMillimeter
doSetUnitsXfigMillimeter
doSnaphAllObjectsToGrid
doClearUserColors

doWriteHadesResource

method=javafig.gui.ModularEditor.doRedraw

method=javafig.gui.ModularEditor.doStartNewDrawing
method=javafig.gui.ModularEditor
method=javafig.gui.ModularEditor
method=javafig.gui.ModularEditor
method=javafig.gui.ModularEditor

.doSelectFile
.doMergeFile
.doSelectURL
.doMergeURL

method=javafig.gui.ModularEditor.handleParserCallback

method=javafig.gui.ModularEditor.handleParserMergeCallbac

k

method=javafig.gui.ModularEditor.handleCommandCallback

method=javafig.qgui.
method=javafig.qgui.
method=javafig.qgui.
method=javafig.qgui.
method=javafig.qgui.
method=javafig.qgui.
method=javafig.
method=javafig.
method=javafig.

method=javafig.
method=javafig.

method=javafig.
method=javafig.
method=javafig.
method=javafig.
method=javafig.
method=javafig.
method=javafig.
method=javafig.
method=javafig.

gui.

gui

gui.

gui

gui.
gui.
gui.
gui.
gui.
ModularEditor.
ModularEditor.
ModularEditor.
ModularEditor.
ModularEditor.
ModularEditor.

gui.
gui.

gui

gui.

gui

ModularEditor.
.ModularEditor.
ModularEditor.
.ModularEditor.
ModularEditor.
ModularEditor.

ModularEditor

ModularEditor.
ModularEditor.

ModularEditor

ModularEditor.
.ModularEditor.
ModularEditor.
.ModularEditor.

doQuit
doSaveFile
doSaveFileAs
doSaveToConsole
doPrintViaAWT
doPrintUndoStack
.doPrintClipboard
doPrintObjects
doShowMessages

doShowAboutDialog
doShowLicenseDialog
doShowDeadlockDialog
doShowChangesDialog
doShowMouseButtonDialog

doShowShortcutKeysDialog

.doShowFagDialog
doShowHelpDialog
doShowDemoGold
doShowDemoHouse
doShowDemoWatch

method=javafig.gui.ModularEditor.doShowDemoCircuit
method=javafig.guil.ModularEditor.doShowDemoLayout

method=javafig.gul.ModularEditor.doShowDemoPictures

method=javafig.gui.ModularEditor.doShowDemoRotated

method=javafig.gui.ModularEditor.doShowDemoUnicode

method=javafig.gui.ModularEditor.doShowDemoWelcome

}

Javafig.gul.EditTextDialog.getStatusMessage |
method=javafig.*.getStatusMessage

}

Javafig.gul.EditPolylineDialog.getStatusMessage |
method=javafig.*.getStatusMessage

}

Javafig.gul.EditEllipseDialog.getStatusMessage |
method=javafig.*.getStatusMessage

}

Javafig.gul.EditTriggerDialog.getStatusMessage |
method=javafig.*.getStatusMessage

}

Javafig.gul.EditImageDialog.getStatusMessage |
method=javafig.*.getStatusMessage

}

Javafig.guil.EditRectangleDialog.getStatusMessage |

method=javafig.*.getStatusMessage
}

Javafig.gul.EditGlobalAttributesDialog.getStatusMessage {
method=javafig.*.getStatusMessage
}
Javafig.commands.ZoomRegionCommand. execute {
method=javafig.*.doZoomRegion
}
]

java.lang.reflect.Method.invoke [
ajax.analyzer.test.ReflectionTest.main {
method=ajax.analyzer.test.ReflectionTest.*

}

ajax.analyzer.test.ReflectionTest.hello {
method=ajax.analyzer.test.ReflectionTest.*

}

Javafig.guil.ModularEditor.call {
method=javafig.gui.ModularEditor.
method=javafig.gui.ModularEditor.
method=javafig.gui.ModularEditor.
method=javafig.gui.ModularEditor.
method=javafig.gui.ModularEditor.

doCancel

doUndo

doRedo
doFlushUndoStack
doDeleteAll

method=javafig.gui.ModularEditor.doCopyToClipboard
method=javafig.gui.ModularEditor.doCutToClipboard

method=javafig.gui.ModularEditor.doPasteFromClipboard
method=javafig.gui.ModularEditor.doCreateCircle
method=javafig.gui.ModularEditor.doCreateEllipse

method=javafig.gui.ModularEditor.doCreateRectangle

method=javafig.gui.ModularEditor.doCreateRoundRectangle
method=javafig.gui.ModularEditor.doCreatePolyline
method=javafig.gui.ModularEditor.doCreatePolygon
method=javafig.gui.ModularEditor.doCreateSpline

method=javafig.gul.ModularEditor.doCreateClosedSpline
method=javafig.gui.ModularEditor.doCreateBezier

method=javafig.gul.ModularEditor.doCreateClosedBezier
method=javafig.gui.ModularEditor.doCreateArc
method=javafig.gui.ModularEditor.doCreateImage
method=javafig.gui.ModularEditor.doCreateText
method=javafig.gui.ModularEditor.doCreatelLink
method=javafig.gui.ModularEditor.doCreateCompound
method=javafig.gui.ModularEditor.doBreakCompound
method=javafig.gui.ModularEditor.doMoveObject
method=javafig.gui.ModularEditor.doCopyObject
method=javafig.gui.ModularEditor.doDeleteObject
method=javafig.gui.ModularEditor.doMovePoint
method=javafig.gui.ModularEditor.doInsertPoint
method=javafig.gui.ModularEditor.doCutPoint
method=javafig.gui.ModularEditor.doMirrorXObject
method=javafig.gui.ModularEditor.doMirrorYObject
method=javafig.gui.ModularEditor.doScaleObject
method=javafig.gul.ModularEditor.doAlignObjects

method=javafig.gui.ModularEditor.doSnapObjectToGrid
method=javafig.gui.ModularEditor.doConvertObject
method=javafig.gul.ModularEditor.doResizeText
method=javafig.gui.ModularEditor.doUpdate
method=javafig.gui.ModularEditor.doCancelUpdate
method=javafig.gui.ModularEditor.enableUpdateAll
method=javafig.gul.ModularEditor.enableUpdateNone

method=javafig.gui.ModularEditor.enableUpdateInvert
method=javafig.gui.ModularEditor.doEditObject

method=javafig.gul.ModularEditor.doEditGlobalAttributes
method=javafig.gui.ModularEditor.doZoomRegion
method=javafig.gui.ModularEditor.doZoomIn
method=javafig.gui.ModularEditor.doZoomOut
method=javafig.gul.ModularEditor.doZoomll
method=javafig.guil.ModularEditor.doPanHome
method=javafig.gui.ModularEditor.doPanLeft
method=javafig.gui.ModularEditor.doPanRight
method=javafig.gui.ModularEditor.doPanUp
method=javafig.gui.ModularEditor.doPanDown
method=javafig.gui.ModularEditor.doSetGridNone
method=javafig.gui.ModularEditor.doSetGridCoarse
method=javafig.gui.ModularEditor.doSetGridMedium
method=javafig.gui.ModularEditor.doSetGridFine
method=javafig.gui.ModularEditor.doSetNoSnap
method=javafig.gul.ModularEditor.doSetSnapl2
method=javafig.gul.ModularEditor.doSetSnapll
method=javafig.gul.ModularEditor.doSetSnapl8
method=javafig.gul.ModularEditor.doSetUnitsInches

method=javafig.gui.ModularEditor.doSetUnitsMillimeter

293

method=javafig.gui.ModularEditor.doSetUnitsXfigMillimeter
method=javafig.gui.ModularEditor.doSnapAllObjectsToGrid
method=javafig.gui.ModularEditor.doClearUserColors

method=javafig.gul.ModularEditor.doWriteHadesResource
method=javafig.gui.ModularEditor.doRedraw

method=javafig.gui.ModularEditor.doStartNewDrawing
method=javafig.gul.ModularkEditor.doSelectFile
method=javafig.gul.ModularkEditor.doMergeFile

avafig.gul.ModularEditor.doSelectURL

method=javafig.gui.ModularkEditor.doMergeURL

method=javafig.gui.ModularEditor.handleParserCallback

method=javafig.gui.ModularEditor.handleParserMergeCallbac
k

method=javafig.gui.ModularEditor.handleCommandCallback
method=javafig.gul.ModularEditor.doQuit

Java.util.SystemClassLoader.loadClass {
}
]

Java.util.SystemClassLoader.loadClass [

]

java.lo.ObjectInputStream.<init> [
ajax.Jjbc.util.salamis.SalamisCodeLoader.readCode {
serialized=ajax.jbc.util.salamis.*
serialized=ajax.Jjbc.util.*
serialized=java.util.Hashtable

.security.provider.IdentityDatabase.fromStream {
serialized=sun.security.*
serialized=java.security.*

sun.awt.windows.WFontPeer.getFontCharset [

]

method=javafig.
method=javafig.
method=javafig.
avafig.
method=javafig.
method=javafig.
method=javafig.
method=javafig.

gui.
gui.
gui.
gui.
gui.

gui

gui.
gui.

ModularEditor.
ModularEditor.
ModularEditor.
ModularEditor.
ModularEditor.
.ModularEditor.

ModularEditor
ModularEditor

doSaveFile
doSaveFileAs
doSaveToConsole
doPrintViaAWT
doPrintUndoStack
doPrintClipboard

.doPrintObjects
.doShowMessages

method=javafig.gui.ModularEditor.

method=javafig.qgui.
method=javafig.qgui.
method=javafig.qgui.
method=javafig.qgui.

method=javafig.qgui.

ModularEditor.
ModularEditor.
ModularEditor.
ModularEditor

ModularEditor.

doShowAboutDialog
doShowLicenseDialog
doShowDeadlockDialog

doShowChangesDialog

.doShowMouseButtonDialog

doShowShortcutKeysDialog

method=javafig.
method=javafig.
method=javafig.
method=javafig.
method=javafig.

gui

gui.
gui.
gui.
gui.

.ModularEditor.

ModularEditor

doShowFagDialog

.doShowHelpDialog
ModularEditor.
ModularEditor.
ModularEditor.

doShowDemoGold
doShowDemoHouse
doShowDemoWatch

method=javafig.gui.ModularEditor.doShowDemoCircuit
method=javafig.gul.ModularkEditor.doShowDemoLayout

method=javafig.gui.ModularEditor
method=javafig.gui.ModularEditor
method=javafig.gui.ModularEditor

method=javafig.gui.ModularEditor

.doShowDemoPictures

.doShowDemoRotated

.doshowbDemoUnicode

.doShowDemoWWelcome

}

Javafig.gul.EditTextDialog.getStatusMessage |
method=javafig.*.getStatusMessage

}

Javafig.gul.EditPolylineDialog.getStatusMessage |
method=javafig.*.getStatusMessage

}

javafig.gui.EditEllipseDialog.getStatusMessage |
method=javafig.*.getStatusMessage

}

Javafig.gul.EditTriggerDialog.getStatusMessage |
method=javafig.*.getStatusMessage

}

javafig.gui.EditImageDialog.getStatusMessage {
method=javafig.*.getStatusMessage

}

Jjavafig.gul.EditRectangleDialog.getStatusMessage |
method=javafig.*.getStatusMessage

}

Javafig.guil.EditGlobalAttributesDialog.getStatusMessage |
method=javafig.*.getStatusMessage
}
Javafig.commands.ZoomRegionCommand. execute |
method=javafig.*.doZoomRegion
}
]

"java.lang.ClassLoader.defineClass (java.lang.String, byte[
],int,int)" [

]

java.lang.ClassLoader.findSystemClass [

294

	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Setting
	1.1.1 Software Engineering and Alias Analysis
	1.1.2 The Need For Alias Information
	1.1.3 Shortcomings of Existing Tools
	1.1.4 Assumptions
	1.1.5 Goal

	1.2 Approach
	1.2.1 Support For Multiple Tools and Analyses
	1.2.2 Support For Java Programs
	1.2.3 Simple Context Sensitive Analysis
	1.2.4 Distinguishing Features

	1.3 Contributions
	1.4 Thesis Overview

	2 Related Work
	2.1 Introduction
	2.2 Program Analyses
	2.2.1 Distinguishing Analysis Techniques from Analysis Problems
	2.2.2 Classifying Analyses
	2.2.3 Describing Results
	2.2.4 Flow Sensitive, Context Insensitive Analyses
	2.2.5 Flow Sensitive, Context Sensitive Analyses
	2.2.6 Simpler Analyses
	2.2.7 Flow Insensitive, Context Sensitive Analyses
	2.2.8 Type Inference for Object Oriented Languages
	2.2.9 Composing Analyses
	2.2.10 Analysis Toolkits

	2.3 Software Engineering Tools
	2.3.1 Software Engineering Tools for Program Understanding
	2.3.2 Semantics-based Tools For Program Understanding

	2.4 Language Semantics

	3 The Value-Point Relation: Separating Analyses from Tools
	3.1 Overview
	3.1.1 Desirability of Simple Semantics
	3.1.2 The Value-Point Relation

	3.2 Semantics of the Micro Java Bytecode Language
	3.2.1 Preamble
	3.2.2 Programs
	3.2.3 State
	3.2.4 Initial State
	3.2.5 Transition Rules
	3.2.6 Differences between JBC and MJBC

	3.3 The Value-Point Relation
	3.3.1 Bytecode Expressions
	3.3.2 The Value-Point Relation

	3.4 Generalizing Alias Analysis Using Tagging
	3.4.1 Overview
	3.4.2 Tagged State
	3.4.3 Tagged Transition Rules
	3.4.4 Correspondence Between Tagged Semantics and Untagged Semantics
	3.4.5 Correspondence of Traces
	3.4.6 Defining the VPR Using Tags

	3.5 Examples of Using the Value-Point Relation
	3.5.1 Finding Writers to a Field
	3.5.2 Downcast Checking

	3.6 Properties of the Value-Point Relation
	3.7 Extensions

	4 Efficient Queries over the Value-Point Relation
	4.1 Introduction
	4.2 Analysis Parameters
	4.2.1 Restricting the Domain of the Value-Point Relation
	4.2.2 Avoiding Explicit Products
	4.2.3 General Framework
	4.2.4 Tool Target Data
	4.2.5 Summary of Analysis Parameters

	4.3 Examples
	4.3.1 Finding Writers to a Field
	4.3.2 Finding Unused Fields
	4.3.3 Downcast Checking
	4.3.4 Method Call Resolution
	4.3.5 Live Code Detection

	4.4 Additional Features of the Ajax Implementation
	4.4.1 Query Families and Query Fields
	4.4.2 Incrementality
	4.4.3 Code Mutation
	4.4.4 Analysis Scoping
	4.4.5 Intersection

	5 Implementing the Value- Point Relation With RTA
	5.1 Introduction
	5.1.1 Introduction to Rapid Type Analysis
	5.1.2 Decomposing RTA in Ajax

	5.2 Approximating the Value-Point Relation
	5.2.1 Overview
	5.2.2 Types for Bytecode Expressions
	5.2.3 Computing the Relation
	5.2.4 Exact Class Types

	5.3 Implementing the Ajax Analysis Interface
	5.3.1 The Data Propagation Graph
	5.3.2 Computing Analysis Results
	5.3.3 Example
	5.3.4 Performance
	5.3.5 Incrementality

	5.4 RTA++: Tracking Typecases
	5.4.1 Motivation
	5.4.2 Refining the Bytecode Type Assignment

	6 The SEMI Analysis
	6.1 Introduction
	6.1.1 Chapter Overview
	6.1.2 Approach
	6.1.3 Implications
	6.1.4 Relationship to the Implementation
	6.1.5 Chapter Organization

	6.2 Constraint System
	6.2.1 Constraints
	6.2.1.1 Constraint Structures
	6.2.1.2 Relationship to Terms

	6.2.2 Solutions
	6.2.3 Remarks

	6.3 The Encoding
	6.3.1 Introduction
	6.3.2 Methods
	6.3.3 Global Variables
	6.3.4 Object Encoding
	6.3.5 Method Encoding
	6.3.5.1 Static Methods
	6.3.5.2 Nonstatic Methods
	6.3.5.3 Type Checking/Inference For Nonstatic Methods
	6.3.5.4 Treatment Of Polymorphism
	6.3.5.5 Polymorphism In Object Creation

	6.3.6 Extensible Records and Object Classes
	6.3.7 Mutability
	6.3.8 Control Flow
	6.3.9 Exception Handling

	6.4 Initial Constraint Set
	6.4.1 Constraint Variables
	6.4.2 Instance Labels
	6.4.3 Component Labels
	6.4.4 Program Constraints
	6.4.5 Query Constraints
	6.4.6 Canonical Constraint Set
	6.4.7 Example
	6.4.7.1 Initial Constraints
	6.4.7.2 Finding a Closed Form

	6.5 Extracting the VPR Approximation
	6.5.1 Overview
	6.5.2 Relating Bytecode Expressions to Variables
	6.5.3 Constraints to Support Query Expressions
	6.5.3.1 Inadequacy of Program Constraints
	6.5.3.2 Query Constraints

	6.6 Implementing the Ajax Interface
	6.6.1 The Graph
	6.6.2 Computing Analysis Results
	6.6.3 Incrementality

	6.7 Proving Soundness
	6.7.1 Overview
	6.7.1.1 Strategy
	6.7.1.2 Note: Unique Justification for Transitions

	6.7.2 The Creation Function
	6.7.2.1 “Creation” Is a Function

	6.7.3 The CallerState Function
	6.7.3.1 Definition
	6.7.3.2 Scope of Definition
	6.7.3.3 Nested Call Stack
	6.7.3.4 Preservation of Caller State
	6.7.3.5 Method Entry Correspondence

	6.7.4 The Context Function
	6.7.4.1 Definition of the Context Function
	6.7.4.2 Preservation of Return Types

	6.7.5 Proving the Conformance Lemma
	6.7.5.1 Base Case
	6.7.5.2 Preservation of Virtual Call Types
	6.7.5.3 Globals Hypothesis
	6.7.5.4 Field Dereferences
	6.7.5.5 Static Field Expressions
	6.7.5.6 Cases For Simple Expressions
	6.7.5.7 Reduction Function
	6.7.5.8 Succession Lemma
	6.7.5.9 Step: load rule
	6.7.5.10 Induction Step: store rule
	6.7.5.11 Induction Step: new rule
	6.7.5.12 Induction Step: aconst_null rule
	6.7.5.13 Induction Step: bipush rule
	6.7.5.14 Induction Step: rule for spontaneous exception throw
	6.7.5.15 Induction Step: invokestatic rule
	6.7.5.16 Induction Step: invokevirtual rule
	6.7.5.17 Induction Step: return rule
	6.7.5.18 Induction Step: exceptional returns
	6.7.5.19 Induction Step: athrow rule
	6.7.5.20 Induction Step: rule for exception catching
	6.7.5.21 Induction Step: getfield rule
	6.7.5.22 Induction Step: putfield rule
	6.7.5.23 Induction Step: getstatic rule
	6.7.5.24 Induction Step: putstatic rule
	6.7.5.25 Induction Step: iadd rule
	6.7.5.26 Induction Step: ifcmpeq rules
	6.7.5.27 Induction Step: goto rule
	6.7.5.28 Induction Step: instanceof rules
	6.7.5.29 Induction Step: checkcast rule

	7 SEMI Implementation
	7.1 Introduction
	7.1.1 Solver Specification
	7.1.2 Decidability and Performance
	7.1.3 Refined Specification
	7.1.4 Basic Structure

	7.2 Basic Algorithm
	7.2.1 Representation of Equality
	7.2.2 Functional Representation of Components and Instances
	7.2.3 Component Propagation
	7.2.4 Saving Time By Recording Additional Dirtiness Information
	7.2.5 Overview of an Algorithm Step
	7.2.6 The Extended Occurs Check
	7.2.7 Nondeterminism

	7.3 Optimizing the Occurs Check: Clusters
	7.3.1 Constraint Structure
	7.3.2 Clusters
	7.3.3 Optimizing the Extended Occurs Check Using Clusters
	7.3.4 Cluster Levels
	7.3.5 Optimizing the Extended Occurs Check Using Cluster Levels
	7.3.6 Replacing the Extended Occurs Check with a Conservative Approximation

	7.4 Scheduling the Worklist Using Cluster Levels
	7.4.1 The Scheduling Problem
	7.4.2 Using Cluster Levels

	7.5 Suppressing Components: Advertisements
	7.5.1 Useless Component Propagation
	7.5.2 Illustration
	7.5.3 Quasi-closure Conditions
	7.5.4 Advertisements
	7.5.5 Example
	7.5.6 Ensuring Quasi-closure: Fill-in
	7.5.7 Ensuring Quasi-closure: Detecting Conflicting Sources
	7.5.8 Simple Example
	7.5.9 Advertisement Source Updates
	7.5.10 Implementation

	7.6 Globals
	7.6.1 Handling Program Global Variables
	7.6.2 Characterization of Constraints for Globals
	7.6.3 Implementation
	7.6.4 Exceptions

	7.7 A Failed Optimization: Cut-throughs
	7.7.1 Example
	7.7.2 Cut-throughs

	7.8 Reducing the Number of Initial Constraints
	7.8.1 Dynamic Method Call Resolution
	7.8.2 Lazy Method Slot Stuffing
	7.8.3 Instance Suppression
	7.8.4 Disabling Intra-method Polymorphism
	7.8.5 Structural Shortcuts

	7.9 Reducing the Number of Inferred Constraints
	7.9.1 Component Partitioning

	7.10 Suppressing Components: Modality
	7.10.1 Example
	7.10.2 Approach
	7.10.3 Solver Rules
	7.10.4 Example
	7.10.5 Implementation
	7.10.6 Detecting Unused Fields

	7.11 Nondeterministic Virtual Method Calls
	7.12 Future Work and Related Work

	8 Analyzing The Inscrutable
	8.1 Introduction
	8.2 Foreign and Unknown Code
	8.2.1 Foreign Code
	8.2.2 Unknown Code
	8.2.3 Possible Approaches

	8.3 Salamis: A Specification Language for Foreign Code
	8.3.1 The Need For A Separate Specification Language
	8.3.2 Example and Overview
	8.3.3 Salamis Syntax
	8.3.4 Other Salamis Features
	8.3.5 Implementation

	8.4 Salamis Specifications
	8.4.1 Omissions
	8.4.2 Risks
	8.4.3 Handling Strings
	8.4.4 Other Areas Of Interest

	8.5 Reflection And Serialization
	8.5.1 Introduction
	8.5.2 The Reflection Services
	8.5.3 Reflection Specifications
	8.5.4 Reflection Specification Syntax
	8.5.5 Creating The Specifications
	8.5.6 Using Reflection Specifications

	8.6 Conclusions

	9 Performance
	9.1 Introduction
	9.2 Benchmark Environment
	9.2.1 System
	9.2.2 Benchmark Examples

	9.3 Tools
	9.3.1 Virtual Call Resolution
	9.3.2 Live Code Identification

	9.4 Performance of RTA++
	9.5 Performance of SEMI
	9.5.1 Overview
	9.5.2 Performance of SEMI in Different Configurations
	9.5.3 Accuracy of SEMI in Different Configurations
	9.5.4 Component Partitioning in SEMI

	9.6 RTA++ and SEMI Intersection
	9.6.1 Basic Results
	9.6.2 Set Sizes

	9.7 Summary of Ajax Performance
	9.7.1 Algorithm Selection
	9.7.2 Summary Results
	9.7.3 Conclusions

	10 Proving Downcast Safety
	10.1 Introduction
	10.1.1 Parametric Polymorphism and Downcasts
	10.1.2 Using SEMI To Prove Downcasts Correct

	10.2 The Downcast Checking Tool
	10.2.1 Interface to the VPR
	10.2.2 User Interface

	10.3 Quantitative Results
	10.3.1 Proving Downcasts Safe Using RTA++
	10.3.2 Proving Downcasts Safe Using SEMI
	10.3.3 Proving Downcasts Safe Using SEMI with RTA++
	10.3.4 Summary

	10.4 Unresolvable Downcasts
	10.4.1 Confusion Involving Sum Types
	10.4.2 “Out Of Band” Dynamic Type Knowledge

	10.5 Conclusions
	10.5.1 Summary
	10.5.2 Other Applications
	10.5.3 Limitations of Downcast Checking

	11 Ajax Object Models
	11.1 Introduction
	11.1.1 Overview of Object Models
	11.1.2 A Definition of Object Models

	11.2 Computing Object Models with Ajax
	11.2.1 Overview
	11.2.2 Computing Heap Graphs With The VPR
	11.2.2.1 Approach
	11.2.2.2 Method
	11.2.2.3 Correctness
	11.2.2.4 Solution
	11.2.2.5 Implementing Substitutability In RTA++
	11.2.2.6 Implementing Substitutability In SEMI
	11.2.2.7 Improving The Heap Graph Algorithm
	11.2.2.8 Reducing Space Consumption

	11.2.3 Lossless Improvement to the Model
	11.2.3.1 Superflous Leaf Classes
	11.2.3.2 Merging Identical Subgraphs

	11.2.4 User Interface

	11.3 Examples
	11.3.1 JavaP Example
	11.3.2 CTAS Example
	11.3.3 Improving The Model By Discarding Information
	11.3.3.1 Removing “Lumps”
	11.3.3.2 Hiding Strings And Other Classes

	11.3.4 Jess Example

	11.4 Conclusions
	11.4.1 Contributions
	11.4.2 Future Work

	12 A Scanning Tool
	12.1 Introduction
	12.2 The JGrep Tool
	12.2.1 User Interface
	12.2.2 Implementation

	12.3 Examples
	12.3.1 Checking an Anomaly
	12.3.2 Checking Field Accesses

	12.4 Conclusions

	13 Conclusions
	13.1 Summary
	13.2 Outlook

	Bibliography
	[1] O. Agesen. The Cartesian Product Algorithm: Simple And Precise Type Inference Of Parametric P...
	[2] A. Aiken, M. Fähndrich, J. Foster and Z. Su. A Toolkit For Constructing Type- And Constraint-...
	[3] A. Aiken and E. Wimmers. Type Inclusion Constraints And Type Inference. Proceedings of the In...
	[4] J. Aldrich, C. Chambers, E. Gun Sirer, and S. Eggers. Static Analyses For Eliminating Unneces...
	[5] L. Andersen. Program Analysis and Specialization For The C Programming Language. Technical Re...
	[6] J. Ashley and R. Dybvig. A Practical And Flexible Flow Analysis For Higher-Order Languages. A...
	[7] R. Bowdidge and W. Griswold. Automated Support For Encapsulating Abstract Data Types. Proceed...
	[8] A. Bondorf and J. Jørgensen. Efficient Analyses For Realistic Off-line Partial Evaluation. Jo...
	[9] D. Bacon and P. Sweeney. Fast Static Analysis Of C++ Virtual Function Calls. Proceedings of t...
	[10] B. Blanchet. Escape Analysis For Object-Oriented Languages: Application To Java. Proceedings...
	[11] J. Bogda and U. Hölzle. Removing Unnecessary Synchronization In Java. Proceedings of the ACM...
	[12] J. Boyland and A. Greenhouse. May Equal: A New Alias Question. Presented at the Intercontine...
	[13] G. Bracha, M. Odersky, D. Stoutamire and P. Wadler. Making The Future Safe For The Past: Add...
	[14] R. Chatterjee, B. Ryder and W. Landi. Relevant Context Inference. Proceedings of the 26th An...
	[15] Y.-F. Chen, M. Nishimoto, and C. Ramamoorthy. The C Information Abstraction System. IEEE Tra...
	[16] B. Cheng and W. Hwu. Modular Interprocedural Pointer Analysis Using Access Paths: Design, Im...
	[17] J. Choi, M. Gupta, M. Serrano, V. Sreedhar and S. Midkiff. Escape Analysis For Java. Proceed...
	[18] M. Cierniak, G. Lueh and J. Stichnoth. Practicing JUDO: Java Under Dynamic Optimizations. Pr...
	[19] M. Das. Unification-Based Pointer Analysis With Directional Assignments. Proceedings of the ...
	[20] J. Dean, D. Grove, and C. Chambers. Optimization Of Object-Oriented Programs Using Static Cl...
	[21] G. DeFouw, D. Grove and C. Chambers. Fast Interprocedural Class Analysis. Proceedings of the...
	[22] A. Diwan, J. Moss, and K. McKinley. Simple And Effective Analysis Of Statically- Typed Objec...
	[23] A. Diwan, J. Moss, and K. McKinley. Type-Based Alias Analysis. Proceedings of the ACM SIGPLA...
	[24] J. Dolby and A. Chien. An Automatic Object Inlining Optimization And Its Evaluation. Proceed...
	[25] D. Duggan. Modular Type-Based Reverse Engineering Of Parameterized Types In Java Code. Proce...
	[26] P. Eidorff, F. Henglein, C. Mossin, H. Niss, M. Sørensen and M. Tofte. AnnoDomini: From Type...
	[27] J. Eifrig, S. Smith, and V. Trifonov. Sound Polymorphic Type Inference For Objects. Proceedi...
	[28] M. Fähndrich. BANE: A Library for Scalable Constraint-Based Program Analysis. PhD Thesis, Co...
	[29] M. Fähndrich and A. Aiken. Program Analysis Using Mixed Term And Set Constraints. Proceeding...
	[30] M. Fähndrich, J. Foster, Z. Su and A. Aiken. Partial Online Cycle Elimination In Inclusion C...
	[31] M. Fähndrich, J. Rehof and M. Das. Scalable Context-Sensitive Flow Analysis Using Instantiat...
	[32] M. Fernandez, Simple And Effective Link-Time Optimization Of Modula-3 Programs. Proceedings ...
	[33] C. Flanagan and M. Felleisen. Componential Set-Based Analysis. ACM Transactions on Programmi...
	[34] J. Foster, M. Fähndrich and A. Aiken. Polymorphic Versus Monomorphic Flow- Insensitive Point...
	[35] E. Friedman-Hill. Jess, The Java Expert System Shell. Technical Report SAND98- 8206 (revised...
	[36] E. Gansner and S. North. An Open Graph Visualization System And Its Applications To Software...
	[37] D. Grove, G. DeFouw, J. Dean and C. Chambers. Call Graph Construction In Object-Oriented Lan...
	[38] D. Gifford, P. Jouvelot, J. Lucassen, and M. Sheldon. FX-87 Reference Manual. Technical Repo...
	[39] N. Heintze. Set-Based Analysis Of ML Programs. Proceedings of the ACM Conference on Lisp and...
	[40] N. Heintze. Control-Flow Analysis And Type Systems. Proceedings of the 2nd Static Analysis S...
	[41] N. Heintze and D. McAllester. Linear-Time Subtransitive Control Flow Analysis. Proceedings o...
	[42] F. Henglein. Type Inference With Polymorphic Recursion. ACM Transactions on Programming Lang...
	[43] D. Jackson and J. Chapin. Redesigning Air-Traffic Control: A Case Study In Software Design. ...
	[44] D. Jackson, S. Jha and C. Damon. Isomorph-Free Model Enumeration. ACM Transactions on Progra...
	[45] D. Jackson and E. Rollins. Abstractions Of Program Dependencies For Reverse Engineering. Pro...
	[46] D. Jackson and A. Waingold. Lightweight Extraction Of Object Models From Bytecode. Proceedin...
	[47] S. Jagannathan and S. Weeks. A Unified Treatment Of Flow Analysis In Higher- Order Languages...
	[48] T. Lindholm and F. Yellin. The Java Virtual Machine Specification, Second Edition. Addison W...
	[49] R. Milner. A Theory Of Type Polymorphism In Programming. Journal of Computer and System Scie...
	[50] R. Milner, M. Tofte and R. Harper. The Definition Of Standard ML. MIT Press, 1990.
	[51] G. Murphy and D. Notkin. Lightweight Source Model Extraction. Proceedings of the ACM Confere...
	[52] G. Murphy and D. Notkin. Software Reflexion Models: Bridging The Gap Between Source And High...
	[53] R. O’Callahan. A Simple, Comprehensive Type System For Java Bytecode Subroutines. Proceeding...
	[54] R. O'Callahan and D. Jackson. Lackwit: A Program Understanding Tool Based On Type Inference....
	[55] R. O'Callahan and D. Jackson. Lackwit: Large-Scale Analysis Of C Programs Using Type Inferen...
	[56] N. Oxhøj, J. Palsberg and M. Schwartzbach. Making Type Inference Practical. Proceedings of t...
	[57] J. Palsberg. Efficient Inference Of Object Types. Information and Computation, Volume 123, N...
	[58] J. Palsberg and P. O'Keefe. A Type System Equivalent To Flow Analysis. ACM Transactions on P...
	[59] J. Palsberg and C. Pavlopoulou. From Polyvariant Flow Information To Intersection And Union ...
	[60] J. Palsberg and M. Schwartzbach. Object-Oriented Type Inference. Proceedings of the ACM SIGP...
	[61] X. Leroy and F. Pessaux. Type-Based Analysis Of Uncaught Exceptions. ACM Transactions on Pro...
	[62] D. Liang and M. Harrold. Efficient Points-to Analysis For Whole-Program Analysis. Proceeding...
	[63] J. Plevyak. Optimization Of Object-Oriented And Concurrent Programs. PhD Thesis, University ...
	[64] Z. Qian. A Formal Specification Of Java Virtual Machine Instructions. Technical Report, Univ...
	[65] D. Rémy and J. Vouillon. Objective ML: A Simple Object-Oriented Extension Of ML. Proceedings...
	[66] A. Rountev, A. Milanova, and B. Ryder. Points-to Analysis For Java Using Annotated Inclusion...
	[67] E. Ruf. Context-Insensitive Alias Analysis Reconsidered. Proceedings of the ACM SIGPLAN '95 ...
	[68] E. Ruf. Partitioning Data Flow Analysis Using Types. Proceedings of the 24th Annual ACM SIGP...
	[69] E. Ruf. Effective Synchronization Removal For Java. Proceedings of the ACM SIGPLAN '00 Confe...
	[70] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy and W. Lorensen. Object Oriented Modeling And ...
	[71] O. Shivers. Control Flow Analysis In Scheme. Proceedings of the ACM SIGPLAN '88 Conference o...
	[72] B. Steensgaard. Points-To Analysis In Almost Linear Time. Proceedings of the 23rd Annual ACM...
	[73] B. Steensgaard. Points-To Analysis By Type Inference Of Programs With Structures And Unions....
	[74] P. Stocks, B. Ryder, and W. Landi. Comparing Flow- And Context-Sensitivity On The Modificati...
	[75] Z. Su, M. Fähndrich and A. Aiken. Projection Merging: Reducing Redundancies In Inclusion Con...
	[76] V. Sundaresan, L. Hendren, C. Razafimahefa, R Vallee-Rai, P. Lam, E. Gagnon, C. Godin. Pract...
	[77] J.-P. Talpin and P. Jouvelot. The Type And Effect Discipline. Proceedings of the 7th IEEE Sy...
	[78] F. Tip. A Survey Of Program Slicing Techniques. Journal of Programming Languages, Vol. 3, No...
	[79] F. Tip, C. Laffra, P. Sweeney and D. Streeter. Practical Experience With An Application Extr...
	[80] F. Tip and J. Palsberg. Scalable Propagation-Based Call Graph Construction Algorithms. Proce...
	[81] M. Tofte and J.-P. Taplin. Implementation Of The Typed Call-By-Value l-Calculus Using A Stac...
	[82] M. Weiser. Program Slicing. IEEE Transactions on Software Engineering, Volume 10, No. 7, Jul...
	[83] J. Whaley and M. Rinard. Compositional Pointer And Escape Analysis For Java Programs. Procee...
	[84] R. Wilson and M. Lam. Efficient Context-Sensitive Pointer Analysis For C Programs. Proceedin...
	[85] A. Wright and R. Cartwright. A Practical Soft Type System For Scheme. Proceedings of the 199...
	[86] S. Zhang, B. Ryder, and W. Landi. Program Decomposition For Pointer Aliasing: A Step Towards...
	[87] S. Zhang, B. Ryder and W. Landi. Experiments With Combined Analysis For Pointer Aliasing. Pr...
	[88] Bugzilla Project Home Page. http://www.mozilla.org/projects/bugzilla
	[89] CodeSurfer Home Page. http://www.codesurfer.com
	[90] Imagix Corporation Home Page http://www.imagix.com
	[91] Linux Cross Reference http://lxr.linux.no

	Appendix A: Polymorphic Recursion, Unrestricted Recursive Types and Principal Types
	A.1 Intuition
	A.2 Proof
	A.3 Comments

	Appendix B: Ajax Foreign Code Specifications
	Appendix C: Ajax Reflection Specifications

