
Automatic Representation Changes

in Problem Solving

Eugene Fink

June 1999

CMU-CS-99-150

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:

Herbert A. Simon, Jaime G. Carbonell, Manuela M. Veloso,
and Richard E. Korf (University of California at Los Angeles).

The work was sponsored by the Defense Advanced Research Projects Agency (DARPA) via the Navy,

under grant F33615-93-1-1330, and the Air Force Research Laboratory, under grant F30602-97-1-0215. The

author's views and conclusions should not be interpreted as policies of DARPA or the U.S. government.

Keywords: Machine learning, problem solving, planning, automatic problem reformu-
lation, primary e�ects, abstraction, prodigy.

Contents

I Introduction 1

1 Motivation 3

1.1 Representations in problem solving . 4
1.1.1 Informal examples . 4
1.1.2 Alternative de�nitions of representation 6
1.1.3 Representations in the Shaper system 8
1.1.4 The role of representation . 12

1.2 Examples of representation changes . 13
1.2.1 Tower-of-Hanoi Domain . 14
1.2.2 Constructing an abstraction hierarchy 16
1.2.3 Selecting primary e�ects . 19
1.2.4 Partially instantiating operators . 21
1.2.5 Choosing a problem solver . 22

1.3 Related work . 23
1.3.1 Psychological evidence . 23
1.3.2 Automating representation changes 24
1.3.3 Integrated systems . 25
1.3.4 Theoretical results . 26

1.4 Overview of the approach . 27
1.4.1 Architecture of the system . 28
1.4.2 Speci�cations of description changers 30
1.4.3 Search in the space of representations 32

1.5 Extended abstract . 33

2 Prodigy search 39

2.1 prodigy system . 40
2.1.1 History . 40
2.1.2 Advantages and drawbacks . 41

2.2 Search engine . 43
2.2.1 Encoding of problems . 43
2.2.2 Incomplete solutions . 45
2.2.3 Simulating execution . 46
2.2.4 Backward chaining . 47
2.2.5 Main versions . 49

i

ii CONTENTS

2.3 Extended domain language . 53

2.3.1 Extended operators . 53

2.3.2 Inference rules . 55

2.3.3 Complex types . 58

2.4 Search control . 60

2.4.1 Avoiding redundant search . 61

2.4.2 Knob values . 64

2.4.3 Control rules . 66

2.5 Completeness . 67

2.5.1 Limitation of prodigy means-ends analysis 68

2.5.2 Clobbers among if-e�ects . 71

2.5.3 Other violations of completeness . 72

2.5.4 Completeness proof . 76

2.5.5 Performance of the extended solver 77

2.5.6 Summary of completeness results . 78

II Description changers 79

3 Primary e�ects 81

3.1 Search with primary e�ects . 82

3.1.1 Motivating examples . 83

3.1.2 Main de�nitions . 84

3.1.3 Search algorithm . 87

3.2 Completeness of primary e�ects . 88

3.2.1 Completeness and solution costs . 88

3.2.2 Condition for completeness . 92

3.3 Analysis of search reduction . 95

3.4 Automatically selecting primary e�ects . 98

3.4.1 Selection heuristics . 99

3.4.2 Instantiating the operators . 103

3.5 Learning additional primary e�ects . 112

3.5.1 Inductive learning algorithm . 114

3.5.2 Selection heuristics and state generation 118

3.5.3 Sample complexity . 120

3.6 abtweak experiments . 124

3.6.1 Controlled experiments . 125

3.6.2 Robot world and machine shop . 128

3.7 prodigy experiments . 132

3.7.1 Domains from abtweak . 132

3.7.2 Sokoban puzzle and strips world . 136

3.7.3 Summary of experimental results . 140

CONTENTS iii

4 Abstraction 148

4.1 Abstraction in problem solving . 148

4.1.1 History of abstraction . 149

4.1.2 Hierarchical problem solving . 150

4.1.3 E�ciency and possible problems . 152

4.1.4 Avoiding the problems . 154

4.1.5 Ordered monotonicity . 156

4.2 Hierarchies for the prodigy domain language 157

4.2.1 Additional constraints . 157

4.2.2 Abstraction graph . 161

4.3 Partial instantiation of predicates . 166

4.3.1 Improving the granularity . 166

4.3.2 Instantiation graph . 168

4.3.3 Basic operations . 173

4.3.4 Construction of a hierarchy . 174

4.3.5 Level of a given literal . 180

4.4 Performance of the abstraction search . 182

5 Other enhancements 191

5.1 Abstracting the e�ects of operators . 191

5.2 Evaluation of the enhanced abstraction . 194

5.3 Identifying the relevant literals . 204

5.4 Experiments with goal-speci�c descriptions 206

6 Summary of work on description changers 216

6.1 Library of description changers . 216

6.1.1 Interactions among description changers 219

6.1.2 Description changes for speci�c problems and problem sets 220

6.2 Primary e�ects and abstraction . 222

6.2.1 Automatic selection and use of primary e�ects 222

6.2.2 Improvements to the learning algorithm 223

6.2.3 Abstraction for the full prodigy language 225

6.3 Unexplored description changes . 227

6.3.1 Removing unnecessary operators . 228

6.3.2 Replacing operators with macros . 230

6.3.3 Generating new predicates . 232

6.4 Toward a theory of description changes . 233

6.4.1 Systematic approach to the design of changer algorithms 234

6.4.2 Framework for the analysis of description changers 234

6.4.3 Analysis of speci�c descriptions . 235

iv CONTENTS

III Top-level control 237

7 Generation and use of multiple representations 239

7.1 Use of problem solvers and description changers 240

7.1.1 Elements of the domain description 240

7.1.2 Domain descriptions . 243

7.1.3 Problem solvers . 245

7.1.4 Description changers . 247
7.1.5 Representations . 248

7.1.6 Control center . 249

7.2 Generalized description and representation spaces 250

7.2.1 Descriptions, solvers, and changers 251

7.2.2 Description space . 254

7.2.3 Representation space . 257

7.3 Utility functions . 259

7.3.1 Gain function . 260

7.3.2 Additional constraints . 261

7.3.3 Representation quality . 263

7.3.4 Use of multiple representations . 264

7.3.5 Summing gains . 265

7.4 Simplifying assumptions and the user's role 266

7.4.1 Simplifying assumptions . 267

7.4.2 Role of the user . 269

8 Statistical selection among representations 271

8.1 Selection task . 271

8.1.1 Previous and new results . 272

8.1.2 Example and general problem . 273

8.2 Statistical foundations . 275

8.3 Computation of the gain estimates . 279

8.4 Selection of a representation and time bound 283

8.4.1 Choice of candidate bounds . 284
8.4.2 Setting a time bound . 285

8.4.3 Selecting a representation . 287

8.5 Selection without past data . 289

8.5.1 Initial time bounds . 290

8.5.2 Computation of initial bounds . 291

8.5.3 Drawbacks of the default bounds . 292

8.5.4 Other initial decisions . 294

8.6 Empirical examples . 295

8.6.1 Extended transportation domain . 295

8.6.2 Phone-call domain . 296

8.7 Arti�cial tests . 299

CONTENTS v

9 Extensions to the statistical technique 305

9.1 Problem-speci�c gain functions . 305
9.1.1 Example of problem-speci�c estimates 305

9.1.2 General case . 307

9.2 Use of problem size . 309

9.2.1 Dependency of time on size . 309

9.2.2 Scaling of past running times . 312

9.2.3 Results in the transportation domain 314

9.2.4 Experiments with arti�cial data . 316

9.3 Similarity among problems . 317

9.3.1 Similarity hierarchy . 318

9.3.2 Choice of a group in the hierarchy . 320

9.3.3 Examples of using similarity . 323

10 Preference rules 326

10.1 Preferences and preference rules . 326

10.1.1 Encoding and application of rules . 326

10.1.2 Types of rules . 328

10.2 Counting rules . 330

10.3 Testing rules . 333

10.4 Preference graphs . 336

10.4.1 Full preference graph . 337

10.4.2 Reduced preference graph . 338

10.4.3 Constructing the reduced graph . 340

10.4.4 Modifying the reduced graph . 343

10.5 Use of preferences . 345

11 Summary of work on the top-level control 348

11.1 Delaying the change of representations . 348

11.1.1 Suspension and cancellation rules . 349

11.1.2 Expected performance of changer operators 353

11.2 Collaboration with the human user . 357
11.2.1 User interface . 357

11.2.2 Main tools . 358

11.3 Contributions and open problems . 366

11.3.1 Architecture for changing representations 366

11.3.2 Search among descriptions and representations 367

11.3.3 Evaluation model . 369

11.3.4 Statistical selection . 370

11.3.5 Other selection mechanisms . 371

11.3.6 Expanding the description space . 372

11.3.7 Summary of limitations . 372

11.3.8 Future research directions . 373

vi CONTENTS

IV Empirical results 374

12 Machining Domain 377

12.1 Selection among domain descriptions . 377
12.2 Selection among problem solvers . 386
12.3 Di�erent time bounds . 394

13 Sokoban Domain 400

13.1 Choice among three alternatives . 400
13.2 Larger representation space . 409
13.3 Di�erent time bounds . 416

14 Extended Strips Domain 421

14.1 Small-scale selection tasks . 421
14.2 Large-scale tasks . 432
14.3 Di�erent time bounds . 439

15 Logistics Domain 444

15.1 Choosing a description and solver . 444
15.2 Space of twelve representations . 452
15.3 Di�erent time bounds . 458

CONTENTS vii

Abstract

The purpose of our research is to enhance the e�ciency of AI problem solvers by automating
representation changes. We have developed a system that improves description of input
problems and selects an appropriate search algorithm for each given problem.

Motivation Researchers have accumulated much evidence of the importance of appro-
priate representations for the e�ciency of AI systems. The same problem may be easy or
di�cult, depending on the way we describe it and on the search algorithm we use. Previ-
ous work on automatic improvement of problem description has mostly been limited to the
design of individual learning algorithms. The user has traditionally been responsible for the
choice of algorithms appropriate for a given problem.

We present a system that integrates multiple description-changing and problem-solving
algorithms. The purpose of our work is to formalize the concept of representation, explore
its role in problem solving, and con�rm the following general hypothesis:

An e�ective representation-changing system can be constructed out of three parts:

� a library of problem-solving algorithms;

� a library of algorithms that improve problem description by static analysis and learning;

� a top-level control module that selects appropriate algorithms for each given problem.

Representation-changing system We have supported this hypothesis by building a sys-
tem that improves representations in the prodigy problem-solving architecture. The library
of problem solvers consists of several search engines available in the prodigy architecture.
The library of description changers comprises novel algorithms for selecting primary e�ects,
generating abstractions, and discarding irrelevant elements of a problem encoding. The con-
trol module chooses and applies appropriate description changers, stores and reuses new
descriptions, and selects problem solvers.

Improving problem description The implemented system includes seven static-analysis
and learning algorithms for improving description of a given problem. First, we formalize the
notion of primary e�ects of operators, and give two algorithms for identifying primary e�ects.
Second, we extend the theory of abstraction search to the prodigy domain language, and
describe two techniques for abstracting preconditions and e�ects of operators. Third, we
present auxiliary algorithms that enhance the power of abstraction, by identifying relevant
features of a problem and generating partial instantiations of operators.

Top-level control We de�ne a space of possible representations of a given problem, and
view the task of changing representation as search in this space. The top-level control
mechanism guides the search, using statistical analysis of previous results, user-coded control
rules, and general heuristics. First, we formalize the statistical problem involved in �nding an
e�ective representation and derive a solution to this problem. Then, we describe control rules
for selecting representations, and present a mechanism for the synergetic use of statistical
techniques, control rules, and heuristics.

viii CONTENTS

Acknowledgments

The reported work was a result of my good fortune of being a student at Carnegie Mellon
University, which gave me freedom and support to pursue my inquiries. I gratefully acknowl-
edge the help of my advisors, co-workers, and friends, who greatly contributed to my work
and supported me during six long years of my graduate studies.

My greatest debt is to Herbert Alexander Simon, Jaime Guillermo Carbonell, and Maria
Manuela Magalh~aes de Albuquerque Veloso, who provided so much stimulating ideas, guid-
ance, and advice to my research that it is no longer possible to segregate the ideas of the
thesis exploration into those that were theirs, those of the author, and those developed
jointly.

They guided me through my years in the graduate school, and provided invaluable help
and support in all aspects of my work, from the strategic course of my research to minute
details of implementation and writing. They helped me to broaden my knowledge and, at
the same time, stay focussed on my thesis research.

I am grateful to Derick Wood, Qiang Yang, and Jo Ebergen, who guided my research
before I entered Carnegie Mellon. Derick Wood and Qiang Yang also supervised my work
during the three summers that I spent away from Carnegie Mellon, after entering the Ph.D.
program. They taught me research and writing skills, which proved invaluable in my thesis
work.

I am also grateful to my undergraduate teachers of math and computer science, especially
to my advisor Robert Rosebrugh, who led me through the woods of my coursework and
encouraged me to pursue a graduate degree.

I would like to thank my �rst teachers of science, Maria Yurievna Filina, Nikolai Moisee-
vich Kuksa, and Alexander Sergeevich Golovanov. Back in Russia, they introduced me into
the wonderful world of mathematics, developed my taste for learning and research, and gave
an impetus to my career.

I am thankful to Richard Korf for his valuable comments on my thesis research and
writing. I have also received thorough feedback from Catherine Kaidanova, Henry Rawley,
and Karen Haigh.

I have done my work in the stimulating research environment of the prodigy group. I
fondly remember my meetings and discussions with members of the group, including Jim
Blythe, Daniel Borrajo, Michael Cox, Rujith DeSilva, Rob Driskill, Karen Haigh, Vera
Kettnaker, Craig Knoblock, Erica Melis, Steven Minton, Alicia P�erez, Paola Rizzo, Yury
Smirnov, Peter Stone, and Mei Wang1. My special thanks are to Jim Blythe, who helped
me to understand prodigy code and adapt it for my system. I also thank Yury Smirnov
for his feedback and constructive criticism.

Svetlana Vainer, a graduate student in mathematics, aided me in constructing the sta-
tistical model used in my system. She helped me to acquire the necessary background and
guided me through the forest of statistical derivations. Evgenia Nayberg, a �ne-arts student,
assisted me in designing some illustrations.

I have received a lot of support and encouragement from fellow graduate students, Claud-
son Bornstein, Tammy Carter, Karen Haigh, Nevin Heintze, Bob Monroe, Henry Rawley,
and Po-Jen Yang1. I am especially thankful to Nevin Heintze for his help to adapt to the

CONTENTS ix

environment of the Computer Science Department during my �rst year of studies, and for
encouraging me to write a thesis proposal during my third year; to Karen Haigh, for her
support in understanding the American culture; and to Henry Rowley and Bob Monroe, for
their help with innumerable software problems.

I am grateful to my parents, who provided help and support all through my studies, in
spite of their original negative attitude toward my immigration and intensive scienti�c work.

Finally, I thank my friends outside of the Computer Science. Natalie Gurevich, Alex
Gurevich, and Lala Matievsky played especially important role in my life. They encouraged
me to immigrate from Russia and helped me to form my priorities and objectives. I have
received much support and encouragement from my other ex-Russian friends, Catherine
Kaidanova, Natalia Kamneva, Alissa Kaplunova, Alexander Lakher, Irina Martynov, Alex
Mikhailov, Evgenia Nayberg, Michael Ratner, and Viktoria Suponiskaya1. I am also thankful
to my Canadian friends, Elverne Bauman, Louis Choiniere, Margie Roxborough, Marty
Sulek, Alison Syme, and Linda Wood1, who helped me to learn and accept the culture of
Canada and the United States.

1The names are in the alphabetical order.

Part I

Introduction

1

Chapter 1

Motivation

Could you restate the problem? Could you restate it still di�erently?

| George Polya [1957], How to Solve It.

The performance of all reasoning systems crucially depends on problem representation: the
same problem may be easy or di�cult to solve, depending on the way we describe it. Re-
searchers in psychology, cognitive science, arti�cial intelligence, and many other areas have
accumulated much evidence on the importance of appropriate representations for human
problem solvers and AI systems.

In particular, psychologists have found out that human subjects often simplify hard prob-
lems, by changing their representation, and that the ability to �nd an appropriate problem
reformulation is a crucial skill for mathematicians, physicists, economists, and experts in
many other areas. AI researchers have demonstrated the impact of changes in problem de-
scription on the performance of search systems, and showed the need for automating problem
reformulation.

Although researchers have long realized the importance of e�ective representations, they
have done little investigation in this area, and the notion of \good" representations has re-
mained at an informal level. The human user has traditionally been responsible for providing
appropriate problem descriptions, as well as for selecting search algorithms that e�ectively
use these descriptions.

The purpose of our work is to automate the process of revising problem representation in
AI systems. We formalize the concept of representation, explore its role in problem solving,
and develop a system that evaluates and improves representations in the prodigy problem-
solving architecture.

The work on the system for changing representations has consisted of two main stages,
described in Parts II and III. First, we outline a framework for the development of algorithms
that improve problem descriptions, and apply it to designing several novel algorithms. Sec-
ond, we construct an integrated AI system, which utilizes the available description improvers
and prodigy problem-solving algorithms. The system is named Shaper, for its ability to
change the shape of problems and their search spaces. We did not plan this name to be an
acronym; however, it may be retroactively deciphered as Synergy of Hierarchical Abstraction,
Primary E�ects, and other Representations. The central component of the Shaper system

3

4 CHAPTER 1. MOTIVATION

is a top-level control module, which selects appropriate algorithms for each given problem.
We begin by explaining the concept of representations in problem solving (Section 1.1),

illustrating their impact on problem complexity (Section 1.2), and reviewing the previous
work on representation changes (Section 1.3). We then outline our approach to the automa-
tion of representation improvements (Section 1.4) and give a summary of the main results
(Section 1.5).

1.1 Representations in problem solving

Informally, a problem representation is a certain view of a problem and approach to solving it,
which determines the e�ciency of search for a solution. Scientists have considered di�erent
formalizations of this concept, and its exact meaning varies across research contexts. The
representation of a problem in an AI system may include the initial encoding of the problem,
data structures for storing relevant information, production rules for drawing inferences
about the problem, and heuristics that guide the search for a solution.

We explain the meaning of representation in our research and introduce related terminol-
ogy. First, we give informal examples that illustrate this notion (Section 1.1.1). Second, we
review several alternative formalizations (Section 1.1.3) and de�ne the main notions used in
the work on the Shaper system (Section 1.1.2). Third, we discuss the role of representation
in problem solving (Section 1.1.4).

1.1.1 Informal examples

We consider two examples that illustrate the reasons for using multiple representations. In
Section 1.2, we will give a more technical example, which involves representation changes in
the prodigy architecture.

Representations in geometry

Mathematicians have long developed the art of constructing and �ne-tuning sophisticated
representations, which is one of their main tools for addressing complex research tasks [Polya,
1957]. For example, when a scientist works on a hard geometry problem, she usually tries
multiple approaches, such as pictorial reasoning, analytical techniques, trigonometric deriva-
tions, and computer simulations.

These approaches di�er not only in the problem encoding, but also in the operations for
transforming its encoding, as well as in related mental structures and high-level strategies
[Qin and Simon, 1992]. For example, the mental techniques for analyzing geometric sketches
are very di�erent from the methods for solving trigonometric equations.

A mathematician may have to try many alternative representations of the given problem,
and go back and forth among promising approaches [Kaplan and Simon, 1990]. For instance,
she may consider several pictorial representations, then try analytical techniques, and then
give up on her analytical model and go back to one of the pictures.

If several di�erent representations provide useful information about the problem, the
mathematician may use them in parallel and combine the resulting inferences. This syner-

1.1. REPRESENTATIONS IN PROBLEM SOLVING 5

getic use of alternative representations is a standard mathematical technique. In particular,
proofs of geometric results often include equations along with pictorial arguments.

Search for an appropriate representation is based on two main processes: retrieval or con-
struction of candidate representations, and evaluation of their utility. The �rst process may
involve look-up of a matching representation in the library of available strategies, modi�ca-
tion of an \almost" matching representation for use with the new problem, or development
of a completely new approach. For example, the mathematician may re-use an old sketch,
draw a new one, or even devise a new framework for solving this type of problems.

After constructing a new representation, the mathematician estimates its usefulness for
solving the problem. If the representation does not look promising, she may prune it right
away, or store it as a back-up alternative; for example, she may discard the sketches that
clearly do not help. Otherwise, she tries to use the representation in problem solving and
evaluates the usefulness of the resulting inferences.

To summarize, di�erent representations of a given problem support di�erent inference
techniques, and the choice among them determines the e�ectiveness of the problem-solving
process. Construction of an appropriate representation may be a di�cult task, which requires
search in a certain space of alternative representations.

Driving directions

We next give an example of representation changes in everyday life, and show that the choice
of representation may be important for simple tasks. In this example, we consider the use
of directions for driving to an unfamiliar place.

Most drivers employ several standard techniques for describing a route, such as a sketch
of the streets that form the route, pencil marks on a city map, and verbal directions for
reaching the destination. When a driver chooses one of these techniques, she commits to
certain mental structures and strategies. For instance, if the driver navigates by a map, then
she has to process pictorial information and use imagery for matching it to the real world.
On the other hand, the execution of verbal instructions requires discipline in following the
described steps and attention to the relevant landmarks.

When the driver selects a representation, she should consider her goals, the e�ectiveness of
alternative representations for achieving these goals, and the related trade-o�s. For instance,
she may describe the destination by its address, which is a convenient way for recording it
in a notebook or quickly communicating to others; however, the address alone may not
be su�cient for �nding the place without a map. The use of accurate verbal directions is
probably the most convenient way for reaching the destination, without stopping to look at
the map. On the other hand, the map may help to identify points of interest close to the
route; moreover, it becomes an invaluable tool if the driver gets lost.

If an appropriate representation is not available, the driver may construct it from other
representations. For example, if she has the destination address, then she may �nd a route
on the map, and then write down directions that help to follow this route. When people
consider these representation changes, they often weigh the expected simpli�cation of the
task against the cost of performing the changes. For instance, even if the driver believes that
written directions facilitate the trip, she may decide they are not worth the writing e�ort.

6 CHAPTER 1. MOTIVATION

A representation...

� includes a machine language for the description of reasoning tasks and a speci�c en-
coding of a given problem in this language [Amarel, 1968].

� is the space expanded by a solver algorithm during its search for a solution [Newell
and Simon, 1972].

� is the state space of a given problem, formed by all legal states of the simulated world
and transitions between them [Korf, 1980].

� \consists of both data structures and programs operating on them to make new infer-
ences" [Larkin and Simon, 1987, page 67].

� determines a mapping from the behavior of an AI system on a certain set of inputs
to the behavior of another system, which performs the same task on a similar set of
inputs [Holte, 1988].

Figure 1.1: Di�erent de�nitions of representation, in arti�cial intelligence and cognitive science;

note that these de�nitions are not equivalent, and thus they give rise to di�erent formal models.

To summarize, this example shows that people employ multiple representations not only
for complex problems, but also for routine tasks. When people repeatedly perform some
task, they develop standard representations and routine techniques for constructing them.
Moreover, the familiarity with the task facilitates the selection among available representa-
tions.

1.1.2 Alternative de�nitions of representation

Even though AI researchers agree in their intuitive understanding of representation, they
have not yet developed a standard formalization of this notion. We review several formal
models, used in arti�cial intelligence and cognitive science, and discuss their similarities and
di�erences; in Figure 1.1, we summarize the main de�nitions.

Problem formulation

Amarel [1961; 1965; 1968] was �rst to point out impact of representation on the e�ciency of
search algorithms. He considered some problems of reasoning about actions in a simulated
world, and discussed their alternative formulations in the input language of a search algo-
rithm. The discussion included two types of representation changes: modifying the encoding
of a problem and translating it to di�erent languages.

In particular, he demonstrated that a speci�c formulation of a problem determines its
state space, that is, the space of possible states of the simulated world and transitions between
them. We illustrate this notion in Figure 1.7 (page 17), which shows the full space of the
Tower-of-Hanoi puzzle. Amarel pointed out that the e�ciency of problem-solving algorithms

1.1. REPRESENTATIONS IN PROBLEM SOLVING 7

depends on the size of the state space, as well as on the allowed transitions, and that change
of a description language may help to reveal hidden properties of the simulated world.

Van Baalen [1989] adopted a similar view in his doctoral work on a theory of represen-
tation design. He de�ned a representation as a mapping from concepts to their syntactic
description in a formal language and implemented a program that automatically improves
descriptions of simple reasoning tasks.

Problem space

Newell and Simon [1972] investigated the role of representation in human problem solving.
In particular, they observed that the human subject always encodes a given task in a problem
space, that is, \some kind of space that represents the initial situation presented to him, the
desired goal situation, various intermediate states, imagined or experienced, as well as any
concepts he uses to describe these situations to himself"(Human Problem Solving, page 59).

They de�ned a representation as the subject's problem space, which determines partial
solutions considered by the human solver during his search for a complete solution. This
de�nition is applicable not only to human subjects but also to AI systems, since all problem-
solving algorithms are based on the same principle of searching among partial solutions.

Observe that the problem space may di�er from the state space of the simulated world.
In particular, the subject may disregard some of the allowed transitions and, on the other
hand, consider impossible world states. For instance, when people work on hard versions of
the Tower of Hanoi, they sometimes attempt illegal moves [Simon et al., 1985]. Moreover, the
problem solver may abstract from the search among world states and use some alternative
view of partial solutions (for example, see the textbook by Rich and Knight [1991]). In
particular, the search algorithms in the prodigy architecture explore the space of transition
sequences (see Section 2.2), which is very di�erent from the space of world states.

State space

Korf [1980] described a formal framework for changing problem representations and used it
in designing a system for automatic improvement of the initial representation. He developed
a language for describing search problems, and de�ned a representation as a speci�c encoding
of a given problem in this language. The encoding includes the initial state of the simulated
world and operations for transforming the state; hence, it de�nes the state space of the
problem.

Korf has pointed out the correspondence between the problem encoding and the resulting
state space, which allowed him to view a representation as a space of named states and
transitions between them. This view underlies his techniques for changing representation.
In particular, he has de�ned a representation change as a transformation of the state space,
and considers two main types of transformations, called isomorphism and homomorphism.
An isomorphic representation change involves renaming the states without a�ecting the
structure of the space. On the other hand, a homomorphic transformation is a reduction of
the space, by abstracting some states and transitions.

Observe that Korf's notion of representation does not include the behavior of a problem-
solving algorithm. Since performance depends not only on the state space, but also on the

8 CHAPTER 1. MOTIVATION

search strategies, a representation in his model does not uniquely determine the e�ciency of
problem solving.

Data and programs

Simon suggested a general de�nition of representation as \data structures and programs
operating on them," and used it in the analysis of reasoning with pictorial representations
[Larkin and Simon, 1987]. When describing the behavior of human solvers, he viewed their
initial encoding of a given problem as a \data structure," and the available productions for
modifying it as \programs." Since the problem encoding and rules for changing it determine
the subject's search space, this view is similar to the earlier de�nition in Human Problem

Solving.

If we apply Simon's de�nition in other research contexts, the notions of data structures
and programs may take di�erent meanings. The general concept of \data structures" en-
compasses any form of a system's input and internal representation of related information.
Similarly, the term \programs" may refer to any strategies and procedures for processing a
given problem and constructing its solution.

In particular, when considering an AI architecture with several search engines, we may
view the available engines as \programs" and the information passed among them as \data
structures." We will use this approach to formalize representation changes in the prodigy
system.

System's behavior

Holte [1988] developed a framework for analysis and comparison of learning systems, which
included rigorous mathematical de�nitions of task domains and their alternative represen-
tations. He considered representations of domains rather than speci�c problems, which
distinguished his view from the earlier de�nitions.

A domain in Holte's framework includes a set of certain elementary entities, a collection
of primitive functions that describe the relations among entities, and legal compositions of
primitive functions. For example, we may view the world states as elementary objects and
transitions between them as primitive functions. A domain speci�cation may include not
only a description of reasoning tasks, but also a particular behavior of an AI system on these
tasks.

A representation is a mapping between two domains that encode the same reasoning tasks.
This mapping may describe a system's behavior on two di�erent encodings of a problem.
Alternatively, it may show the correspondence between the behavior of two di�erent systems
that perform the same task.

1.1.3 Representations in the Shaper system

The previous de�nitions of representation have been aimed at the analysis of its role in
problem solving, but researchers have not applied theoretical results to automating repre-
sentation changes. Korf utilized his formal model in the development of a general-purpose

1.1. REPRESENTATIONS IN PROBLEM SOLVING 9

A problem solver is an algorithm that performs some type of reasoning task. When we
invoke this algorithm, it inputs a given problem and performs search for a solution, which
results in either solving the problem or reporting a failure.

A problem description is an input to a problem solver. In most systems, it includes
a list of allowed operations, available objects, initial state of the world, logical statement
describing the goals, and possibly some heuristics for guiding the search.

A domain description is the part of the problem description that is common for a certain
class of problems. It usually does not include speci�c objects, initial state, and goal.

A representation is a domain description with a problem solver that uses this description.
A representation change may involve improving a description, selecting a new solver, or both.

A description changer is an algorithm for improving domain descriptions. When we invoke
the changer algorithm, it inputs a given domain and modi�es its description.

A system for changing representations is an AI system that automatically improves
domain descriptions and matches them with appropriate problem solvers.

Figure 1.2: De�nitions of the main objects in the Shaper system; these notions underlie our

formal model, aimed at developing an AI architecture for automatic representation changes.

system for improving representations, but encountered several practical shortcomings of the
model, which prevented complete automation of search for appropriate representations.

Since the main purpose of our work is the construction of a fully automated system, we
develop a di�erent formal model, which facilitates the work on Shaper. We follow Simon's
view of representation as \data structures and programs operating on them;" however, the
notion of data structures and programs in the Shaper system di�ers from their de�nition
in the research on human problem solving [Newell and Simon, 1972]. We summarize our
terminology in Figure 1.2.

The Shaper system uses prodigy search algorithms, which play the role of \programs"
in Simon's de�nition. We illustrate the functions of a solver algorithm in Figure 1.3(a):
given a problem, the algorithm searches for its solution, and either �nds some solution or
terminates with a failure. In Chapter 7, we will discuss two main types of failures: exhausting
the available search space and reaching a time bound.

A problem description is an input to the solver algorithm, which encodes a certain reason-
ing task. This notion is analogous to Amarel's \problem formulation," which is a part of his
de�nition of representation. The solver's input must satisfy certain syntactic and semantic
rules, which form the input language of the algorithm.

When the initial description of a problem does not obey these rules, we have to translate it
into the input language before applying the solver [Paige and Simon, 1966; Hayes and Simon,
1974]. If a description satis�es the language rules but causes a long search for solution, we
may need to modify it for e�ciency reasons.

A description-changing algorithm is a procedure for converting the initial problem de-
scription into an input to a problem solver, as illustrated in Figure 1.3(b). The conversion
may serve two goals: (1) translating the problem into the input language of the problem

10 CHAPTER 1. MOTIVATION

(c) Changing the domain description.

(a) Use of a problem-solving algorithm.

solver
problemdescription

changerof the domain
initial description new description

of the domain

solver
problem

of the problem
new descriptiondescription

changerof the problem
initial description

problem
instance

solution
or failuresolver

problemdescription of
the problem

(b) Changing the problem description before application of a problem solver.

Figure 1.3: Description changes in problem solving: a changer algorithm generates a new descrip-

tion and then a solver algorithm uses it to search for a solution.

solver and (2) improving performance of the solver.

The Shaper system performs only the second type of description changes. In Figure 1.4,
we show the three main categories of these changes: decomposing the initial problem into
smaller subproblems, enhancing the description by adding relevant information, and replac-
ing the original problem encoding with a more appropriate encoding.

Note that there are no clear-cut boundaries between these categories. For example,
suppose that we apply some abstraction procedure (see Section 1.2), which determines the
relative importance of di�erent problem features, and then uses important features in con-
structing an outline of a solution. We may view it as enhancement of the initial description
with the estimates of importance. Alternatively, we may classify abstraction as decomposi-
tion of the original problem into two subproblems: constructing a solution outline and then
turning it into a complete solution.

A problem description in the prodigy architecture consists of two main parts, a domain
description and problem instance. The �rst part comprises the properties of a simulated
world, which is called the problem domain. For example, if we apply prodigy to solve the
Tower-of-Hanoi puzzle (see Section 1.2.1), then the domain description speci�es the legal
moves in this puzzle. The second part encodes a particular reasoning task, which includes
an initial state of the simulated world and a goal speci�cation. For example, a problem
instance in the Tower-of-Hanoi Domain consists of the initial positions of all disks and their
desired �nal positions.

The prodigy system �rst parses the domain description and converts it into internal
structures that encode the simulated world. Then, prodigy uses this internal encoding in
processing speci�c problem instances. Observe that the input description determines the

1.1. REPRESENTATIONS IN PROBLEM SOLVING 11

description
changer

initial
description

subproblem

subproblem

subproblem

(a) Decomposing a problem into subproblems: We may often simplify a reasoning
task by breaking it into smaller subtasks. For example, a driver may subdivide search for an
unfamiliar place into two stages: getting to the appropriate highway exit and then �nding
her way from the exit. In Section 1.2.2, we will give a technical example of problem decom-
position, based on an abstraction hierarchy.

initial
description

description
changer and

information
deduced

initial
description

(b) Enhancing a problem description: If some important information is not explicit
in the initial description, we may deduce it and add to the description. If the addition of
new information a�ects the problem-solving behavior, we view it as a description change.
For instance, a mathematician may enhance a geometry sketch by an auxiliary construction,
which reveals hidden properties of the geometric object. As another example, we may im-
prove performance of prodigy by adding control rules.

description
changer

initial
description description

alternative

(c) Replacing a problem description: If the initial description contains unnecessary
data, then improvements may include not only addition of relevant information, but also
deletion of irrelevant data. For example, a mathematician may simplify her sketch by eras-
ing some lines. In Section 5.3, we will describe a technique for detecting irrelevant features
of prodigy problems.

Figure 1.4: Main categories of description changes: We may (a) subdivide the original problem

into smaller reasoning tasks, (b) extend the initial description with additional knowledge, and

(c) replace the given problem encoding with a more e�ective encoding.

12 CHAPTER 1. MOTIVATION

system's internal encoding of the domain; thus, the role of domain descriptions in our model
is similar to that of \data structures" in the general de�nition.

When using a description changer, we usually apply it to the domain encoding and utilize
the resulting new encoding for solving multiple problem instances (see Figure 1.3c). This
strategy reduces the computational cost of description improvements, since it allows us to
amortize the running time of the changer algorithm over several problems.

A representation in the Shaper system consists of a domain description and a problem-
solving algorithm that operates on this description. Observe that, if the algorithm does
not make any random choices, then the representation uniquely de�nes the search space for
every problem instance. This observation relates our de�nition to Newell and Simon's view
of representation as a search space.

We use this de�nition in our work on a representation-changing system, which automates
the two main tasks involved in improving representations. First, it analyzes and modi�es
the initial domain description, with the purpose of improving the search e�ciency. Second,
it selects an appropriate solver algorithm for the modi�ed domain description.

1.1.4 The role of representation

Researchers have used several di�erent frameworks for de�ning and investigating the concept
of representation. Despite these di�erences, most investigators have reached consensus on
the main qualitative conclusions:

� The choice of a representation a�ects the complexity of a given problem; both human
subjects and AI systems are sensitive to changes in the problem representation

� Finding the right approach to a given problem is often a di�cult task, which may
require a heuristic search in a space of alternative representations

� Human experts employ advanced techniques for construction and evaluation of new
representations, whereas amateurs often try to utilize the original problem description

Alternative representations di�er in explicit information about properties of the problem
domain. Every representation hides some features of the domain, and highlights other fea-
tures [Newell, 1965; Van Baalen, 1989; Peterson, 1994]. For example, when a mathematician
describes a geometric object by a set of equations, she hides visual features of the object and
highlights some of its analytical properties.

Explicit representation of important information enhances performance of problem-solving
systems. For instance, if a student of mathematics cannot solve some problem, the teacher
may help her by pointing out the relevant features of the task [Polya, 1957]. As another
example, we may improve e�ciency of an AI system by encoding useful information in con-
trol rules [Minton, 1988], macro operators [Fikes et al., 1972], or an abstraction hierarchy
[Sacerdoti, 1974].

On the other hand, explicit representation of irrelevant data may have a negative e�ect.
In particular, when a mathematician tries to utilize some seemingly relevant properties of a
given problem, she may attempt a wrong approach.

1.2. EXAMPLES OF REPRESENTATION CHANGES 13

If we provide irrelevant information to an AI system and do not mark this information
as unimportant for the current task, then the system attempts to use it, which takes extra
computation and often leads to exploring useless branches of the search space. For example,
if we allow use of unnecessary extra operations, then the branching factor of search increases,
which usually results in a larger search time [Stone and Veloso, 1994].

Since problem-solving algorithms di�er in their use of available information, they perform
e�ciently with di�erent domain descriptions. Moreover, the utility of explicit knowledge
about the domain may depend on a speci�c problem instance. We usually cannot �nd a
\universal" description, which works well for all solver algorithms and problem instances.
The task of constructing good descriptions has traditionally been left to the user.

The relative performance of solver algorithms also depends on speci�c problems. Most
analytical and experimental studies have shown that di�erent search techniques are e�ective
for di�erent classes of problems, and no solver algorithm can consistently outperform all its
competitors [Minton et al., 1994; Stone et al., 1994; Knoblock and Yang, 1994; Knoblock
and Yang, 1995; Smirnov, 1997]. To ensure e�ciency, the user has to make an appropriate
selection among the available algorithms.

To address the representation problem, researchers have designed a number of learning
and static-processing algorithms, which deduce hidden properties of a given domain, and use
it to improve the domain description. For example, they constructed systems for learning
control rules [Mitchell et al., 1983; Minton, 1988], replacing operators with macros [Fikes
et al., 1972; Korf, 1985a], abstracting unimportant features of the domain [Sacerdoti, 1974;
Knoblock, 1993], and reusing past problem-solving episodes [Hall, 1987; Veloso, 1994].

These algorithms are themselves sensitive to changes in problem encoding, and their
ability to learn useful information depends on the initial description. For instance, most
systems for learning control rules require a certain generality of predicates in the domain
encoding, and become ine�ective if we use too speci�c or too general predicates [Etzioni and
Minton, 1992; Veloso and Borrajo, 1994].

As another example, abstraction algorithms are very sensitive to the description of avail-
able operators [Knoblock, 1994]. If the operator encoding is too general, or the domain
includes unnecessary operations, then they fail to construct an abstraction hierarchy. In
Section 1.2, we will illustrate such failures and discuss related description improvements.

To ensure the e�ectiveness of learning algorithms, the user normally has to perform two
manual tasks. First, she needs to decide which algorithms are appropriate for the current
domain. Second, she may have to adjust the initial domain description for the selected
algorithms. An important next step in AI research is to develop a system that automatically
accomplishes these tasks.

1.2 Examples of representation changes

All AI systems are sensitive to description of the input problems. If we use an inappropriate
domain encoding, then even simple problems may become hard or unsolvable. Researchers
have noticed that novices often construct ine�ective domain descriptions, because intuitively
appealing encodings are often inappropriate for AI problem solving.

14 CHAPTER 1. MOTIVATION

On the other hand, expert users prove pro�cient in �nding good descriptions; however,
the construction of a proper domain encoding is often a di�cult task, which requires not
only familiarity with the system, but also creativity and experimentation with alternative
encodings. The user usually begins with a semi-e�ective description and tunes it, based on
the results of problem solving. If the user does not provide a good domain encoding, then
automatic improvements are essential for e�cient problem solving.

To illustrate the need for description changes, we present a puzzle domain, whose standard
encoding is inappropriate for prodigy (Section 1.2.1). We then show modi�cations to the
initial encoding that drastically improve e�ciency (Sections 1.2.1{1.2.4) and discuss the
choice of an appropriate problem solver (Section 1.2.5). The Shaper system is able to
perform these improvements automatically.

1.2.1 Tower-of-Hanoi Domain

We consider the Tower-of-Hanoi puzzle, shown in Figure 1.5, which has proved di�cult for
most problem-solving algorithms, as well as for human subjects. It long served as one of the
tests for AI systems, but gradually acquired a negative connotation of a \toy" domain. We
utilize this puzzle to illustrate basic description changes in the Shaper system; however, we
will use larger domains for empirical evaluation of the system.

The puzzle consists of three vertical pegs and several disks of di�erent sizes. Every disk
has a hole in the middle, and we may stack several disks on a peg (see Figure 1.5a). The
rules allow us to move disks from peg to peg, one disk at a time; however, the rules do not

allow placing any disk above a smaller one. In Figure 1.7, we show the complete state space
of the three-disk puzzle.

When using a classical AI system, we have to specify predicates for describing states of the
simulated world (for example, see the AI textbook by Nilsson [1980]). If the Tower-of-Hanoi
puzzle has three disks, then we may describe its states with three predicates, which denote the
positions of the disks: (small-on <peg>), (medium-on <peg>), and (large-on <peg>), where <peg>
is a variable that denotes an arbitrary peg. We obtain literals describing a speci�c state by
substituting the appropriate constants for variables. For instance, the literal (small-on peg-1)

means that the small disk is on the �rst peg.

The legal moves are encoded by production rules for modifying the world state, which are
called operators. The description of an operator consists of precondition predicates, which
must hold before its execution, and e�ects, which specify predicates that are added to or
deleted from the world state upon the execution. In Figure 1.5(b), we give an encoding of
all allowed moves in the three-disk puzzle. This encoding is based on the prodigy domain
language, described in Sections 2.2 and 2.3; however, we slightly deviate from the exact
prodigy syntax, in order to improve readability.

The <from> and <to> variables in the operator description denote arbitrary pegs. When
a problem-solving algorithm uses an operator, it instantiates the variables with speci�c
constants. For example, if the solver algorithm needs to move the small disk from peg-1

to peg-2, then it can execute the operator move-small(peg-1,peg-2) (see Figure 1.5c). The
precondition of this operator is (small-on peg-1), that is, the small disk must initially be on
peg-1. The execution results in deleting (small-on peg-1) from the current state and adding

1.2. EXAMPLES OF REPRESENTATION CHANGES 15

(a) Tower-of-Hanoi puzzle.

<to><from> <to><from> <to><from>

move-medium(<from>, <to>)

Eff:

Pre: (medium-on <from>)

add (medium-on <to>)

not (small-on <to>)
del (medium-on <from>)

not (small-on <from>)

Eff:

Pre:

not (medium-on <from>)

add (large-on <to>)

not (medium-on <to>)
del (large-on <from>)

not (small-on <to>)

(large-on <from>)
not (small-on <from>)

move-large(<from>, <to>)
(small-on <from>)Pre:

Eff:

add (small-on <to>)
del (small-on <from>)

move-small(<from>, <to>)

(b) Encoding of operations in the three-disk puzzle.

(small-on peg-1)
(medium-on peg-1)
(large-on peg-1)

Initial State

peg-1 peg-2 peg-3

(medium-on peg-1)
(large-on peg-1)

New State

(small-on peg-2)

peg-1 peg-2 peg-3

move-small
(peg-1, peg-2)

(c) Example of executing an instantiated operator.

Figure 1.5: Tower-of-Hanoi Domain and its encoding in the prodigy architecture. The player

may move disks from peg to peg, one at a time, without ever placing a disk on top of a smaller one.

The traditional task is to move all disks from the left-hand peg to the right-hand (see Figure 1.6).

16 CHAPTER 1. MOTIVATION

number of a problem mean
1 2 3 4 5 6 time

without abstraction 2.0 34.1 275.4 346.3 522.4 597.4 296.3
using abstraction 0.5 0.4 1.9 0.3 0.5 2.3 1.0

Table 1.1: prodigy performance on six problems in the three-disk Tower-of-Hanoi Domain. We

give running times in seconds, for problem solving without and with the abstraction hierarchy.

(small-on peg-2).

In Figure 1.6, we show the encoding of a classic problem in the Tower-of-Hanoi Domain,
which requires moving all three disks from peg-1 to peg-3, and give the shortest solution to
this problem. The initial state of the problem corresponds to the left corner of the state-space
triangle in Figure 1.7, whereas the goal state is the right corner.

1.2.2 Constructing an abstraction hierarchy

Most AI systems solve a given problem by exploring the space of partial solutions, rather
than expanding the problem's state space. That is, the nodes in their search space represent
incomplete solutions, which may not correspond to paths in the state space (for example,
see the review article by Weld [1994]).

This strategy allows e�cient reasoning in large-scale domains, which have intractable
state spaces; however, it causes a major ine�ciency in the Tower-of-Hanoi Domain. For
example, if we apply prodigy to the problem in Figure 1.6, then the system considers more
than hundred thousand partial plans during its search for a solution, which takes ten minutes
on a Sun 5 computer.

We may signi�cantly improve performance by using an abstraction hierarchy [Sacer-
doti, 1974], which enables the system to subdivide problems into simpler subproblems. To
construct a hierarchy, we assign di�erent levels of importance to predicates in the domain
encoding. In Figure 1.8(a), we give the standard hierarchy for the three-disk Tower of Hanoi.

The system �rst constructs an abstract solution at level 2 of the hierarchy, ignoring the
positions of the small and medium disk. We show the state space of the abstracted puzzle in
Figure 1.8(b) and its solution in Figure 1.8(c). Then, prodigy steps down to the next lower
level and inserts operators for moving the medium disk. At this level, the system cannot add
new move-large operators, which limits its search space. We give the level-1 search space
in Figure 1.8(d) and the corresponding solution in Figure 1.8(e). Finally, the system shifts
to the lowest level of the hierarchy and inserts move-small operators, thus constructing the
complete solution (see Figures 1.8f and 1.8g).

In Table 1.1, we give the running times for solving six Tower-of-Hanoi problems, without
and with abstraction. We have obtained these results using a Lisp implementation of the
prodigy search, on a Sun 5 machine; they show that abstraction drastically reduces search.

Knoblock [1994] has investigated abstraction problem solving in prodigy and developed
the alpine system, which automatically assigns importance levels to predicates. We have
extended Knoblock's technique and implemented the Abstractor algorithm, which serves as
one of the description changers in the Shaper system.

1.2. EXAMPLES OF REPRESENTATION CHANGES 17

(small-on peg-1)
Initial State

(small-on peg-3)
(medium-on peg-3)
(large-on peg-3)

peg-1 peg-2 peg-3peg-1 peg-2 peg-3

(medium-on peg-1)
(large-on peg-1)

Goal State

(a) Encoding of the problem.

move-large
(peg-1,peg-3)

move-medium
(peg-2,peg-3)

move-small
(peg-2,peg-1)
move-smallmove-medium

(peg-1,peg-2)
move-small
(peg-3,peg-2)(peg-1,peg-3)

move-small
(peg-1,peg-3)

(b) Shortest solution.

Figure 1.6: Example of a problem instance in the Tower-of-Hanoi Domain: We need to move all

three disks from peg-1 to peg-3. The optimal solution to this problem comprises seven steps.

Figure 1.7: State space of the three-disk Tower of Hanoi: We illustrate all possible con�gurations

of the puzzle (circles) and legal transitions between them (arrows). The initial state of the problem

in Figure 1.6 is the left corner of the triangle, and the goal is the right corner.

18 CHAPTER 1. MOTIVATION

important

level 1

level 2

level 0

(large-on <peg>)

(medium-on <peg>)

(small-on <peg>) less

more
important

(a) Abstraction hierarchy of predicates.

(peg-1,peg-3)
move-small move-medium

(peg-1,peg-2)
move-small
(peg-3,peg-2)

move-large
(peg-1,peg-3) (peg-2,peg-1)

move-small move-medium
(peg-2,peg-3)

move-small
(peg-1,peg-3)

(f) State space at level 0.

(g) Solution at level 0.

initial state goal state

initial state goal state

(d) State space at level 1.

move-medium
(peg-2,peg-3)

move-medium
(peg-1,peg-2)

move-large
(peg-1,peg-3)

(e) Solution at level 1.

Initial State Goal State

move-large
(peg-1,peg-3)

(c) Solution at level 2.
(b) State space at level 2.

initial state goal state

Figure 1.8: Abstraction problem solving in the Tower-of-Hanoi Domain, with a three-level hierar-

chy (a). First, the system disregards the small and medium disk, and solves the simpli�ed one-disk

puzzle (b, c). Then, it inserts the missing movements of the medium disk (d, e). Finally, it steps

down to the lowest level of abstraction and adds move-small operators (f, g).

1.2. EXAMPLES OF REPRESENTATION CHANGES 19

number of a problem mean
1 2 3 4 5 6 time

without primary e�ects 85.3 1.1 505.0 > 1800:0 31.0 172.4 > 432:4
using primary e�ects 0.5 1.2 16.6 144.8 77.5 362.5 100.5
primaries and abstraction 0.5 0.3 2.5 0.2 0.2 3.1 1.1

Table 1.2: prodigy performance in the extended Tower-of-Hanoi Domain, which allows two-disk

moves. We give the running times in seconds for three di�erent domain descriptions: without

primary e�ects, with primary e�ects, and using primary e�ects along with abstraction. The results

show that primary e�ects not only reduce the search, but also allow the construction of an e�ective

abstraction hierarchy.

1.2.3 Selecting primary e�ects

Suppose that we deviate from the standard rules of the Tower-of-Hanoi puzzle and allow
moving two disks together (see Figure 1.9a). The new operators enable us to construct
shorter solutions for most problems. For example, we can move all three disks from peg-1 to
peg-3 in three steps (Figure 1.9b).

This change in the rules simpli�es the puzzle for humans, but it makes most problems
harder for the prodigy system. The availability of extra operations results in a higher
branching factor, thus increasing the size of the expanded search space. Moreover, Abstractor
fails to generate a hierarchy for the domain with two-disk moves. In Table 1.2, we give the
results of using the extended set of operators to solve the six sample problems (see the �rst
row of running times). For every problem, we set a 1800-second limit for the search time,
and the system ran out of time on problem 4.

To reduce the branching factor, we may select primary e�ects of some operators and force
the system to use these operators only for achieving their primary e�ects. For example, we
may indicate that the main e�ect of the move-sml-mdm operator is the new position
of the medium disk. That is, if the system's only goal is moving the small disk, then
it must not consider this operator. Note that an inappropriate choice of primary e�ects
may compromise completeness, that is, make some problems unsolvable; we will describe
techniques for ensuring completeness in Section 3.2.

In Figure 1.9(c), we list the primary e�ects of the two-disk moves. The use of the selected
primary e�ects improves the system's performance on most sample problems (see the middle
row of Table 1.2); more importantly, it enables Abstractor to build the three-level hierarchy,
which reduces search by two orders of magnitude (see the last row).

The Shaper system includes an algorithm for selecting primary e�ects, called Margie1,
which automatically performs this description change. The Margie algorithm is integrated
with Abstractor: it chooses primary e�ects with the purpose of improving the quality of
abstraction.

1The Margie procedure (pronounced m�ar'g�e) is named after my friend, Margie Roxborough. Margie and

her husband John invited me to stay at their place during the Ninth CSCSI Conference in Vancouver, where

I gave a talk on related research results. This algorithm is not related to the margie system (m�ar'j�e) for

parsing and paraphrasing simple stories in English, implemented by Schank et al. [1975].

20 CHAPTER 1. MOTIVATION

<to><from> <to><from> <to><from>

move-med-lrg(<from>, <to>)

Eff:

Pre: (medium-on <from>)
(large-on <from>)

add (medium-on <to>)

not (small-on <to>)
not (small-on <from>)

add (large-on <to>)

del (medium-on <from>)

del (large-on <from>)

move-sml-lrg(<from>, <to>)

Eff:

Pre: (small-on <from>)
(large-on <from>)

add (small-on <to>)

not (medium-on <to>)
not (medium-on <from>)

add (large-on <to>)

del (small-on <from>)

del (large-on <from>)

move-sml-mdm(<from>, <to>)
(small-on <from>)Pre:

Eff:

add (small-on <to>)

(medium-on <from>)

del (medium-on <from>)
add (medium-on <to>)

del (small-on <from>)

(a) Encoding of two-disk moves.

move-med-lrg
(peg-1,peg-3)

move-small
(peg-2,peg-3)(peg-1,peg-2)

move-small

(b) Solution to the example problem.

operators primary e�ects

move-sml-mdm(<from>,<to>) del (medium-on <from>), add (medium-on <to>)

move-sml-lrg(<from>,<to>) del (large-on <from>), add (large-on <to>)

move-mdm-lrg(<from>,<to>) del (large-on <from>), add (large-on <to>)

(c) Selection of primary e�ects.

Figure 1.9: Extension to the Tower-of-Hanoi Domain, which includes operators for moving two

disks at a time, and the selected primary e�ects of these additional operators.

1.2. EXAMPLES OF REPRESENTATION CHANGES 21

(b) Examples of using the general predicate in the encoding of operators and problems.

(small-on <peg>)
(medium-on <peg>)
(large-on <peg>)

(on <disk> <peg>)
(on small <peg>)
(on medium <peg>)
(on large <peg>)

(a) Replacing the predicates with a more general one.

<disk>(forall
(on <disk> peg-3))

Goal State

peg-1 peg-2 peg-3

Eff:

Pre:

add (on large <to>)
del (on large <from>)

(on large <from>)
move-large(<from>, <to>)

not (on <disk> <from>)
not (on <disk> <to>))

(forall <disk> other than large

<to><from> <to><from>

level 1

level 2

level 0

(on large <peg>)

(on medium <peg>)

(on small <peg>)

(c) Hierarchy of partially instantiated predicates.

Figure 1.10: General predicate (on <disk> <peg>) in the encoding of the Tower-of-Hanoi Domain.

This predicate enables the user to utilize quanti�cations in describing operators and goals, but it

causes a failure of the Abstractor algorithm. The system has to generate partial instantiations of

(on <disk> <peg>) before invoking Abstractor.

1.2.4 Partially instantiating operators

The main drawback of the Abstractor algorithm is its sensitivity to syntactic features of a do-
main encoding. In particular, if the domain includes too general predicates, then Abstractor

may fail to construct a hierarchy.

For instance, suppose that the human user replaces the predicates (small-on <peg>),
(medium-on <peg>), and (large-on <peg>) with a more general predicate (on <disk> <peg>), which
allows greater exibility in encoding operators and problems (see Figure 1.10a). In particu-
lar, it enables the user to utilize universal quanti�cations (see the examples in Figure 1.10b).

Since the resulting description contains only one predicate, the abstraction algorithm
cannot generate a multi-level hierarchy. To remedy this problem, we may construct partial
instantiations of (on <disk> <peg>) and apply Abstractor to build a hierarchy of these instan-
tiations (see Figure 1.10c). We have implemented a description-changing algorithm, called

22 CHAPTER 1. MOTIVATION

number of a problem mean
1 2 3 4 5 6 time

savta with depth bound 0.51 0.27 2.47 0.23 0.21 3.07 1.13
w/o depth bound 0.37 0.28 0.61 0.22 0.21 0.39 0.35

saba with depth bound 5.37 0.26 > 1800:00 2.75 0.19 > 1800:00 > 601:43
w/o depth bound 0.45 0.31 1.22 0.34 0.23 0.51 0.51

Table 1.3: Performance of savta and saba in the extended Tower-of-Hanoi Domain, with primary

e�ects and abstraction. We give running times in seconds, for search with and without a depth

bound. The data suggest that savta without a time bound is the most e�cient among the four

search techniques, but this conclusion is not statistically signi�cant.

Re�ner, that generates partially instantiated predicates for improving the e�ectiveness of
Abstractor.

1.2.5 Choosing a problem solver

The e�ciency of search depends not only on the domain description, but also on the choice
of a solver algorithm. To illustrate importance of a solver, we consider the application of
two di�erent search strategies, called savta and saba, to problems in the extended Tower-
of-Hanoi Domain.

Veloso and Stone [1995] developed these two strategies for guiding prodigy search (see
Section 2.2.5). Experiments have shown that the relative performance of savta and saba
varies across domains, and the choice between them may be essential for e�cient problem
solving. We consider two di�erent modes of using each strategy: with a bound on the
search depth and without limiting the depth. A depth bound helps to prevent an extensive
exploration of inappropriate branches in the search space; however, it also results in pruning
some solutions from the search space, which may have a negative e�ect on performance.
Moreover, if a bound it too tight, it may lead to pruning all solutions, thus compromising
the system's completeness.

In Table 1.3, we give the results of applying savta and saba to six Tower-of-Hanoi prob-
lems. These results show that savta without a time bound is more e�ective than the other
three techniques; however, the evidence is not statistically signi�cant. In Section 8.4, we
will describe a method for estimating the probability that a selected problem-solving tech-
nique is the best among the available techniques. We may apply this method to determine
the chances that savta without a time bound is indeed the most e�ective among the four
techniques; its application gives the probability estimate of 0.47.

If we apply Shaper to many Tower-of-Hanoi problems, then it can accumulate more
data on performance of the candidate strategies before adopting one of them. The system's
control module combines exploitation of the past performance information with collecting
additional data. First, the Shaper system applies heuristics for rejecting inappropriate
search techniques; then, the system experiments with promising search algorithms, until it
accumulates enough data for identifying the most e�ective algorithm.

Note that we have not accounted for solution quality in evaluating prodigy performance

1.3. RELATED WORK 23

in the Tower-of-Hanoi Domain. If the user is interested in near-optimal solutions, then
Shaper has to analyze the trade-o� between running time and solution quality, which may
result in selecting di�erent domain descriptions and search strategies. For instance, a cost
bound reduces the length of generated solutions, which may be a fair payment for the increase
in search time. As another example, search without an abstraction hierarchy usually yields
better solutions than abstraction problem solving. In Chapter 8, we will describe a statistical
technique for evaluating trade-o�s between speed and quality.

1.3 Related work

We next summarize previous results on representation changes, which include psychologi-
cal experiments (Section 1.3.1), AI techniques for reasoning with multiple representations
(Sections 1.3.2 and 1.3.3), and theoretical frameworks (Section 1.3.4).

We will later describe some other directions of past research, related to speci�c aspects of
our work. In particular, we will give the history of the prodigy architecture in Section 2.1.1,
outline the previous research on abstraction problem solving in Section 4.1.1, and review the
work on automatic evaluation of problem solvers in Section 8.1.1.

1.3.1 Psychological evidence

The choice of an appropriate representation is one of the main themes of Polya's famous
book How to Solve It. Polya showed that the selection of an e�ective approach to a problem
is a crucial skill for a student of mathematics. Gestalt psychologists also paid particular
attention to reformulation of problems [Duncker, 1945; Ohlsson, 1984].

Recent explorations in cognitive science have yielded much evidence that con�rms Polya's
pioneering insight. Researchers have demonstrated that changes in a problem description
a�ect the problem di�culty, and that performance of human experts in many areas depends
on their pro�ciency in constructing a representation that �ts a given task [Gentner and
Stevens, 1983; Simon, 1989; Gentner and Stevens, 1983].

Newell and Simon [1972] studied the role of representation during their investigation
of human problem solving. They observed that human subjects always construct some
representation of a given problem before searching for a solution: \Initially, when a problem
is �rst presented, it must be recognized and understood. Then, a problem space must
be constructed or, if one already exists in LTM, it must be evoked. Problem spaces can
be changed or modi�ed during the course of problem solving" (Human Problem Solving,
page 809).

Simon [1979; 1989] continued the investigation of representations in human problem
solving and studied their role in a variety of cognitive tasks. In particular, he tested the
utility of di�erent mental models in the Tower-of-Hanoi puzzle. Simon [1975] noticed that
most subjects gradually improved their mental representations, in the process of solving the
puzzle.

Hayes and Simon [1974; 1976; 1977] investigated the e�ect of isomorphic changes in task
description on subjects' reasoning. Speci�cally, they analyzed hard isomorphs of the Tower
of Hanoi [Simon et al., 1985] and found out that \changing the written problem instructions,

24 CHAPTER 1. MOTIVATION

without disturbing the isomorphism between problem forms, can a�ect by a factor of two
the times required by subjects to solve a problem" (Models of Thought, volume I, page 498).

Larkin and Simon [1981; 1987] explored the role of multiple mental models in solving
physical and mathematical problems, with a particular emphasis on pictorial representations.
They observed that mental models of skilled scientists di�er from those of novices, and that
expertly constructed models are crucial for solving scienti�c problems. Qin and Simon [1992]
came to a similar conclusion during their experiments on the use of imagery in understanding
special relativity.

Kook and Novak [1991] also explored alternative representations in physics. They imple-
mented the apex program, which used multiple representations of physics problems, handled
incompletely speci�ed tasks, and performed transformations among several types of repre-
sentations. Their conclusions about the signi�cance of appropriate representation in expert
reasoning agreed with Simon's results.

Kaplan and Simon [1990] explored representation changes in solving the Mutilated-
Checkerboard problem. They noticed that the participants of their experiments �rst tried
to utilize the initial representation and then searched for a more e�ective approach. Ka-
plan [1989] implemented a production system that simulated the representation shift of
successful human subjects.

Tabachneck [1992] studied the utility of pictorial reasoning in economics, and showed that
the right mental models are essential for economics problems. She then implemented the
CaMeRa production system, which modeled human reasoning with multiple representations
[Tabachneck-Schijf et al., 1997].

Boehm-Davis et al. [1989], Novak [1995], and Jones and Schkade [1995] recently demon-
strated the importance of representations in software development. Their results con�rmed
that people are sensitive to changes in problem description, and that improvement of the
initial description is often a di�cult task.

The reader may �nd a detailed review of past results in Peterson's [1996] collection of
recent articles on reasoning with multiple representations. It includes several di�erent views
on the role of representation, as well as evidence on importance of representation changes in
physics, mathematics, economics, and other areas.

1.3.2 Automating representation changes

AI researchers recognized the signi�cance of representation back in the early Sixties, in the
very beginning of their work on automated reasoning systems. In particular, Amarel [1960;
1968; 1971] discussed the e�ects of representation on the behavior of search algorithms, using
the Missionaries-and-Cannibals problem to illustrate his main points. Newell [1965; 1966]
showed that the complexity of reasoning in some games and puzzles strongly depends on the
representation and emphasized that \hard problems are solved by �nding new viewpoints;
i.e., new problem spaces" (On the Representations of Problems, page 19).

Later, Newell with several other researchers implemented the Soar system [Laird et al.,
1987; Tamble et al., 1990; Newell, 1992], capable of utilizing multiple descriptions of a
problem domain to facilitate search and learning; however, their system did not generate new
representations. The human operator was responsible for constructing domain descriptions

1.3. RELATED WORK 25

and providing guidelines for their e�ective use.
Larkin et al. [1988] took a similar approach in their work on the fermi expert system,

which accessed several di�erent representations of task-related knowledge and used them in
parallel. This system required the human operator to provide appropriate representations of
the input knowledge. The authors of fermi encoded \di�erent kinds of knowledge at di�erent
levels of granularity" and demonstrated that \the principled decomposition of knowledge
according to type and level of speci�city yields both power and cross-domain generality"
(fermi: A Flexible Expert Reasoner with Multi-Domain Inferencing, page 101).

Research on automatic change of domain description has mostly been limited to design
of separate learning algorithms that perform speci�c types of improvements. Examples
of these special-purpose algorithms include systems for replacing operators with macros
operators [Korf, 1985b; Mooney, 1988; Cheng and Carbonell, 1986; Shell and Carbonell,
1989], changing the search space by learning heuristics [Newell et al., 1960; Langley, 1983]

and control rules [Minton et al., 1989b; Etzioni, 1993; Veloso and Borrajo, 1994; P�erez, 1995],
generating abstraction hierarchies [Sacerdoti, 1974; Knoblock, 1994], and replacing a given
problem with a similar simpler problem [Hibler, 1994].

The authors of these systems have observed that utility of most learning techniques varies
across domains, and their blind application may worsen e�ciency in some domains; however,
researchers have not automated selection among available learning systems and left it as the
user's responsibility.

1.3.3 Integrated systems

The Soar architecture comprises a variety of general-purpose and specialized search algo-
rithms, but it does not have a top-level procedure for selecting an algorithm that �ts a
given task. The classical problem-solving systems, such as sipe [Wilkins, 1988], prodigy
[Carbonell et al., 1990; Veloso et al., 1995], and ucpop [Penberthy and Weld, 1992; Weld,
1994], have the same limitation: they allow alternative search strategies, but do not include
a central mechanism for selecting among them.

Wilkins and Myers [1995; 1998] have recently addressed this problem and constructed
the Multiagent Planning Architecture, which supports integration of multiple planning and
scheduling algorithms. The available search algorithms in their architecture are arranged
into groups, called planning cells. Every group has a top-level control procedure, called a
cell manager, which analyzes an input problem and selects an algorithm for solving it. Some
cell managers are able to break the given task into subtasks and distribute them among
several algorithms.

The architecture includes advanced software tools for incorporating diverse search al-
gorithms, with di�erent domain languages; thus, it allows a synergetic use of previously
implemented AI systems. Wilkins and Myers have demonstrated the e�ectiveness of their
architecture in constructing centralized problem-solving systems. In particular, they have
developed several large-scale systems for Air Campaign Planning.

Since the Multiagent Planning Architecture allows the use of diverse algorithms and
domain descriptions, it provides an excellent testbed for the study of search with multiple
representations; however, its current capabilities for automated representation changes are

26 CHAPTER 1. MOTIVATION

very limited.
First, the system has no general-purpose control mechanisms, and the human operator

has to design and implement a specialized manager algorithm for every planning cell. Wilkins
and Myers have used �xed selection strategies in the implemented cell managers, and have
not augmented them with learning capabilities.

Second, the system has no tools for the inclusion of algorithms that improve domain
descriptions, and the user must either hand-code all necessary descriptions or incorporate a
mechanism for changing descriptions into a cell manager. The authors of the architecture
have implemented several specialized techniques for decomposing an input problem into
subproblems, but have not considered other types of description changes.

Minton [1993a; 1993b; 1996] has investigated the integration of constraint-satisfaction
programs and designed the multi-tac system, which combines a number of generic heuristics
and search procedures. The system's top-level module explores the properties of a given
domain, selects appropriate heuristics and search strategies, and combines them into an
algorithm for solving problems in this domain.

The main component of multi-tac's top-level module is an inductive learning mecha-
nism, which tests the available heuristics on a collection of problems and utilizes the accu-
mulated data to select among them. It guides a beam search in the space of the allowed
combinations of heuristics and search procedures.

The system synthesizes e�cient constraint-satisfaction algorithms, which usually perform
on par with manually con�gured programs and exceed the performance of �xed general-
purpose strategies. The major drawback is signi�cant learning time: when the top-level
module searches for an e�cient algorithm, it tests candidate procedures on hundreds of
sample problems.

Yang et al. [1998] have recently begun development of an architecture for integration of AI
planning techniques. Their architecture, called plan++, comprises tools for implementing,
modifying, and re-using the main elements of planning systems. The purpose is to modularize
typical planning algorithms, construct a large library of search modules, and use them as
building blocks for new algorithms.

Since the e�ectiveness of most planning techniques varies across domains, the authors of
plan++ intend to design software tools that enable the user to select appropriate modules
and con�gure them for speci�c domains. The automation of these tasks is one of the main
open problems, which is closely related to our work on representation improvements.

1.3.4 Theoretical results

Researchers have developed theoretical frameworks for some special cases of description
changes, including abstraction, replacement of operators with macros, and learning control
rules; however, they have done little study of the common principles that underlie di�erent
types of changer algorithms. The results in developing a formal model of representation
are also limited, and the general notion of useful representation changes has remained at an
informal level.

Most theoretical models are based on the analysis of a generalized search space. When
investigating some description change, researchers usually identify its e�ects on the search

1.4. OVERVIEW OF THE APPROACH 27

space of a solver algorithm, and estimate the resulting reduction in the algorithm's running
time. This technique helps to determine the main desirable properties of a new description.

In particular, Korf [1985a; 1985b; 1987] investigated the e�ects of macro operators on the
state space, and demonstrated that well-chosen macros may exponentially reduce the search
time. Etzioni [1992] analyzed the search space of backward-chaining algorithms and showed
that inappropriate choice of macro operators or control rules may worsen performance. He
then derived a condition under which macros reduce the search, and compared the utility of
macro operators with that of control rules.

Cohen [1992] developed a mathematical framework for analysis of macro-operator learn-
ing, explanation-based generation of control rules, and chunking. He applied the learning
theory to analyze mechanisms for saving and reusing solution paths, and described a series
of learning algorithms that provably improve performance.

Knoblock [1991; 1994] explored the bene�ts and limitations of abstraction, identi�ed
conditions that ensure search reduction, and used them in developing an algorithm for au-
tomatic generation of abstraction hierarchies. Bacchus and Yang [1992; 1994] lifted some
of the assumptions underlying Knoblock's analysis and presented a more general evaluation
of abstraction search. They studied the e�ects of backtracking across abstraction levels,
demonstrated that it may impair e�ciency, and described a technique for avoiding it.

Giunchiglia and Walsh [1992] proposed a general model of reasoning with abstraction,
which captured and generalized most of the previous frameworks. They de�ned an abstrac-
tion as a certain mapping between axiomatic formal systems, investigated the properties of
this mapping, and classi�ed the main abstraction techniques.

A generalized model for improving representation was suggested by Korf [1980], who
formalized representation changes based on the notions of isomorphism and homomorphism
of state spaces (see Section 1.1.3). Korf utilized the resulting formalism in his work on
automatic representation improvements; however, his model did not address \a method
for evaluating the e�ciency of a representation relative to a particular problem solver and
heuristics to guide the search for an e�cient representation for a problem" (Toward a Model

of Representation Changes, page 75), whereas such heuristics are essential for developing an
e�ective representation-changing system.

1.4 Overview of the approach

The review of previous work has shown that the results are still very limited. The main open
problems are (1) design of AI systems capable of performing a wide range of representation
changes and (2) development of a uni�ed theory of reasoning with multiple representations.

The work on the Shaper system is a step toward addressing these two problems. We
have developed a framework for evaluating available representations, and formalized the
task of �nding an appropriate representation as search in the space of alternative domain
descriptions and matching solver algorithms. We have applied this framework to designing
a system that automatically performs several types of representation improvements.

The system comprises a collection of problem-solving and description-changing algo-
rithms, and a top-level control module that selects and invokes appropriate algorithms (see

28 CHAPTER 1. MOTIVATION

Description
changers

control
Top-level

solvers
Problem

Figure 1.11: Integration of solver and changer algorithms: The Shaper system includes a top-level

module, which analyzes a given problem and selects appropriate algorithms for solving it.

Figure 1.11). The most important result of our research is the control mechanism for in-
telligent selection among available algorithms and representations. We use it to combine
multiple learning and search algorithms into an integrated AI system.

We now explain the main architectural decisions that underlie Shaper (Section 1.4.1),
outline our approach to development of changer algorithms (Section 1.4.2), and briey de-
scribe search in a space of representations (Section 1.4.3).

1.4.1 Architecture of the system

According to our de�nition, a system for changing representations has to perform two main
functions: (1) improvement of the initial problem description and (2) selection of an
algorithm for solving the problem. The key architectural decision underlying the Shaper
system is the distribution of the �rst task among multiple changer algorithms. For instance,
the description improvement in Section 1.2 has involved three algorithms, Re�ner, Margie,
and Abstractor.

The centralized use of separate algorithms di�erentiates our system from Korf's mecha-
nism for improving representations. It also di�ers from the implementation of description-
improving cell managers in the Multiagent Planning Architecture.

Every changer algorithm explores a certain space of modi�ed descriptions, until �nding
a new description that improves the system's performance. For example, Margie searches
among alternative selections of primary e�ects, whereas Re�ner explores a space of di�erent
partial instantiations.

The top-level module of the Shaper system coordinates the application of description-
changing algorithms. It explores a more general space of domain descriptions, using changer
algorithms as operators for expanding nodes in this space. The system thus combines the
low-level search by changer algorithms with the centralized high-level search. This two-
level search prevents a combinatorial explosion in the number of candidate representations,
described by Korf [1980].

The other major function of the top-level procedure is selection of problem-solving algo-
rithms for the constructed domain descriptions. To summarize, Shaper consists of three
main parts, illustrated in Figure 1.11:

Library of problem solvers: The system uses search algorithms of the prodigy

1.4. OVERVIEW OF THE APPROACH 29

E�ciency: The primary criterion for evaluating representations in the Shaper system is
the e�ciency of problem solving, that is, the average running time of the solver algorithm.

Near-completeness: A change of representation must not cause a signi�cant violation of
completeness, that is, most solvable problems should remain solvable after the change. We
measure the completeness violation by the percentage of problems that become unsolvable.

Solution quality: A representation change should not result in signi�cant decline of solution
quality. We usually de�ne the quality as the total cost of operators in a solution, and evaluate
the average increase in solution costs.

Figure 1.12: Main factors that determine the quality of a representation; we have developed a

general utility model that uni�es these factors and enables the system to make trade-o� decisions.

architecture. We have composed the solver library from several di�erent con�g-
urations of prodigy's general search mechanism.

Library of description changers: We have implemented seven algorithms
that compose Shaper's library of changers. They include procedures for select-
ing primary e�ects, building abstraction hierarchies, generating partial and full
instantiations of operators, and identifying relevant features of the domain.

Top-level control module: The functions of the control mechanism include
selection of description changers and problem solvers, evaluation of new repre-
sentations, and reuse of the previously generated representations. The top-level
module comprises statistical procedures for analyzing past performance, heuris-
tics for choosing algorithms in the absence of past data, and tools for manual
control.

The control mechanism does not rely on speci�c properties of solver and changer algo-
rithms, and the user may readily add new algorithms; however, all solvers and changers must
use the prodigy domain language and access relevant data in the central data structures of
the prodigy architecture.

We evaluate the utility of representations along three dimensions, summarized in Fig-
ure 1.12: the e�ciency of search, the number of solved problems, and the quality of the
resulting solutions [Cohen, 1995]. The work on changer algorithms involves decisions on
trade-o�s among these factors. We allow a moderate loss of completeness and decline of
solution quality in order to improve e�ciency. In Section 7.3, we will describe a general
utility function that uni�es the three evaluation factors.

Observe that, when evaluating the utility of a new representation, we have to account for
the overall time for improving a domain description, selecting a problem solver, and using
the resulting representation to solve given problems. We consider the system e�ective only if
this overall time is smaller than the time for solving the problems with the initial description
and some �xed solver algorithm.

30 CHAPTER 1. MOTIVATION

1.4.2 Speci�cations of description changers

The current version of Shaper includes seven description changers. We have already men-
tioned three of them: an extended version of the alpine abstraction generator, called Ab-

stractor; the Margie algorithm, which selects primary e�ects; and the Re�ner procedure,
which generates partial instantiations of operators.

Every changer algorithm in the Shaper system performs a speci�c type of description
change and serves a certain purpose. For example,Margie selects primary e�ects of operators,
with the purpose of increasing the number of levels in the abstraction hierarchy.

When implementing a changer algorithm, we must decide on the type and purpose of the
description changes performed by the algorithm. The choice of a type determines the space
of alternative descriptions explored by the algorithm, whereas the purpose speci�cation helps
to develop techniques for search in this space. We also need to analyze interactions of the
new algorithm with other changer and solver algorithms. Finally, we have to identify the
parts of the domain description that compose the algorithm's input.

These decisions form a high-level speci�cation of a changer algorithm. We use speci-
�cations to summarize and systematize the main properties of description changers, thus
separating them from implementation techniques. These summaries of main decisions have
proved a useful development tool and facilitated our work. In Part II, we will give speci�ca-
tions for all seven description changers.

When making the high-level decisions, we must ensure that they de�ne a useful class of
description changes and lead to an e�cient algorithm. We compose a speci�cation from the
following �ve parts:

Type of description change. When designing a new algorithm, we �rst have to decide
on the type of description change. For instance, the Abstractor algorithm improves the
domain description by generating an abstraction hierarchy. As another example, Margie is
based on selecting primary e�ects of operators.

In Figure 1.13, we summarize the types of description changes used in Shaper. Note
that this list is only a small sample from the space of approaches to improving domain
descriptions. We will briey discuss some other improvements in Section 6.4.1.

Purpose of description change. Every changer algorithm in the Shaper system
serves a speci�c purpose, such as reducing the branching factor of search, constructing an
abstraction hierarchy with certain properties, or improving the e�ectiveness of other descrip-
tion changers. We express this purpose by a heuristic function for evaluating the quality of
a new description. For example, we may evaluate the performance of Margie by the number
of levels in the resulting abstraction hierarchy: the more levels, the better. We also specify
certain constraints that describe necessary properties of newly generated descriptions. For
example, the Margie algorithm must preserve the completeness of problem solving, which
limits its freedom in selecting primary e�ects.

To summarize, we view the purpose of a description improvement as maximizing a speci�c
evaluation function, while satisfying certain constraints. This formal speci�cation of the
purpose shows exactly in which way we improve description, and helps to evaluate the
results of applying the changer algorithm. Note that the overall e�ectiveness of our approach
depends on the choice of an appropriate evaluation function, which must correlate with the

1.4. OVERVIEW OF THE APPROACH 31

Selecting primary e�ects of operators: Choosing certain \important" e�ects of opera-
tors, and using operators only for achieving their important e�ects (Sections 3.4.1 and 3.5).

Generating an abstraction hierarchy: Decomposing the set of predicates in a domain
encoding into several subsets, according to their \importance" (Sections 4.1, 4.2, and 5.1).

Generating more speci�c operators: Replacing an operator with several more speci�c
operators, which together describe the same actions. We generate speci�c operators by in-
stantiating variables in the original operator description (Section 3.4.2).

Generating more speci�c predicates: Replacing a predicate in a domain encoding with
more speci�c predicates, which together describe the same set of literals (Section 4.3).

Identifying relevant features (literals): Determining which features of a domain de-
scription are relevant to the current task and ignoring the other features (Section 5.3).

Figure 1.13: Types of description changes in the current version of Shaper; we plan to add more

techniques in the future (see the list of other description improvements in Figure 6.7, page 227).

resulting e�ciency improvements.

Use of other algorithms. The description-changing algorithm may use subroutine
calls to some problem solvers or other description changers. For example, Margie calls the
Abstractor algorithm to construct hierarchies for the chosen primary e�ects. It repeatedly
invokes Abstractor for alternative selections of primary e�ects, until �nding a satisfactory
selection.

Required input. We identify the elements of domain description that must be a part
of the changer's input. For example, Margie has to access the description of all operators in
the domain.

Optional input. Finally, we specify the additional information about the domain that
may be used in changing description. If this information is available, then the changer
algorithm utilizes it to generate a better description; otherwise, the algorithm uses some
default assumptions. The optional input may include restrictions on the allowed problem
instances, useful knowledge about domain properties, and advice of the human user.

For example, we may specify constraints on the allowed problems as an optional input
to the Margie algorithm. Then, Margie passes these constraints to Abstractor, which utilizes
them in building hierarchies (see Section 5.3). As another example, the user may pre-select
some primary e�ects of operators. Then, Margie preserves this pre-selection and chooses
additional primary e�ects (see Section 5.1).

We summarize the speci�cation of the Margie algorithm in Figure 1.14; however, this spec-
i�cation does not account for advanced features of the prodigy domain language. In Sec-
tion 5.1, we will extend it and describe the implementation of Margie in the prodigy
architecture.

32 CHAPTER 1. MOTIVATION

Type of description change: Selecting primary e�ects of operators.

Purpose of description change: Maximizing the number of levels in Abstractor's hierarchy,
while ensuring completeness of problem solving.

Use of other algorithms: The Abstractor algorithm, which constructs hierarchies for the
selected primary e�ects.

Required input: Description of all operators in the domain.

Optional input: Restrictions on the allowed goal literals; pre-selected primary and side e�ects.

Figure 1.14: Simpli�ed speci�cation of the Margie algorithm. We use speci�cations to summarize

the main properties of changers, thus abstracting them from the details of implementation.

which changer to apply?
to which old description?

construct a description

which solver to apply?

construct a new description or use an old one?

use an available description

with which description?

apply the selected apply the selected
description changer problem solver

Figure 1.15: Top-level decisions in the Shaper system: The control module applies changer

algorithms to improve the domain description, and then chooses an appropriate solver algorithm.

1.4.3 Search in the space of representations

When the Shaper system inputs a new problem, the control module has to determine a
strategy for solving it, which involves several high-level decisions (see Figure 1.15):

1. Can Shaper solve the problem with the initial domain description? Alternatively, can
the system re-use one of the previously generated descriptions?

2. If not, what are the necessary improvements to the initial description? Which changer
algorithms can make these improvements?

3. Which of the available search algorithms can e�ciently solve the given problem?

These decisions guide the construction of a new representation, which consists of an
improved description and matching solver. For example, if we encode the Tower-of-Hanoi
Domain using the general predicate (on <disk> <peg>) and allow the two-disk moves, the
control procedure will apply three description changers, Re�ner, Margie, and Abstractor,
and then select an e�ective problem solver (see Figure 1.16).

1.5. EXTENDED ABSTRACT 33

selecting
a solver

abstraction
effects and

primary
applying
Refinerinitial

description instantiated
partially

operators

applying
Margie

effects
of primary
selection Abstractor

applying
SAVTA with

primary effects
and abstraction

Figure 1.16: Representation changes in the Tower-of-Hanoi Domain (see Section 1.2): The top-level
module applies three description changers and then identi�es the most e�ective problem solver.

When Shaper searches for an e�ective representation, it performs two main tasks: gen-
erating new representations and evaluating their utility (see Figure 1.17). The �rst task
involves improving the available descriptions and pairing them with appropriate solvers.

The top-level module selects and applies changer algorithms, using them as basic steps
for expanding a space of alternative descriptions (see Figure 1.18a). After generating a new
domain description, the top-level procedure chooses solver algorithms for this description.
If the procedure identi�es several matching algorithms, then it pairs each of them with the
new description, thus constructing several representations (see Figure 1.18b).

The system evaluates the available representations in two steps (see Figure 1.17). First,
it applies heuristics for estimating their relative utility and eliminates ine�ective represen-
tations. We have provided several general heuristics and implemented a mechanism that
enables the user to add domain-speci�c heuristics. Second, the system collects experimental
data on performance of the remaining representations, and applies statistical analysis to
select the most e�ective domain description and solver algorithm.

The exploration of the representation space is computationally expensive, because it
involves execution of changer algorithms and evaluation of representations on multiple test
problems. We therefore need to develop e�ective heuristics that guide the search in this
space and allow the construction of good representations in feasible time.

1.5 Extended abstract

The main results of our work on Shaper include development of several description changers,
construction of a general-purpose control module, and empirical evaluation of the system in
the prodigy architecture. The presentation of these results is organized in four parts, as
shown in Figure 1.19.

Part I includes the motivation for our research (Chapter 1) and description of the
prodigy search (Chapter 2). In Part II, we present algorithms for using primary e�ects
and abstraction, as well as auxiliary procedures that improve the performance of these algo-
rithms.

Then, in Part III, we describe the top-level control mechanism, which explores a space of
alternative representations. Finally, in Part IV, we give the results of testing the Shaper
system and compare its performance to that of �xed description changers.

We now give a more detailed overview of the main results and summarize the material of
every chapter. In Figure 1.19, we illustrate the dependencies among the contents of di�erent
chapters.

34 CHAPTER 1. MOTIVATION

pruning ineffective
representationsproblem solvers for the

generated descriptions

heuristic selection ofapplication of
description changers of performance data for the

remaining representations

collection and analysis

available representations
evaluation of the

representations
construction of new

SEARCH FOR AN EFFECTIVE

REPRESENTATION

computationally
expensive

computationally
expensive

Figure 1.17: Main operations involved in exploring the space of representations: The Shaper

system interleaves generation of new representations with testing of their performance.

desc-0

desc-1

changer-1
applying

changer-2
applying

desc-2

changer-3

desc-3

applying with
desc-2

solver-3

with
desc-0

solver-1
with

desc-0

solver-2

with
desc-3

solver-1
with

desc-3

solver-4

space of representationsspace of descriptions

Figure 1.18: Expanding the representation space: The control module invokes changer algorithms

to generate new domain descriptions, and combines solvers with the resulting descriptions.

1.5. EXTENDED ABSTRACT 35

11
Summary of

control
the top-level

II Description changers

III Top-level control

9

technique

Extensions to
the statistical

I Introduction

Motivation
search

Prodigy
2

selection among
representations

Statistical
8

7
Generation and
use of multiple
representations

10
Preference

rules

IV Empirical
results

Summary of
description
changers

6

4

effects
Primary

3

Abstraction

5

enhancements
Other

1

13
Sokoban

Machining
12

15
Logistics

14

Domain

Extended
Strips

Domain

Domain

Domain

Figure 1.19: Reader's guide: Dependencies among the material of di�erent chapters. The large

rectangles show the four main parts of the presentation, whereas the small rectangles are chapters.

Part I: Introduction

The purpose of the introduction is to explain the problem of automatic representation
changes, motivate the work on this problem, and present the background results that underlie
our explorations.

We have emphasized importance of �nding appropriate representations, described previ-
ous research on automating this task, and summarized the goals of our work. In Chapter 2,
we will describe the prodigy architecture, which serves as a testbed for the development
and evaluation of our system for changing representations.

Chapter 1: Motivation

We have explained the concept of representation, discussed its role in problem solving, and
argued the need for an AI system that generates and evaluates multiple representations.
We have also reviewed past work on representation changes, identi�ed the main research
problems, and outlined our approach to addressing some open problems.

To illustrate the role of representation, we have given an example of representation
changes in prodigy, using the Tower-of-Hanoi puzzle. This example has demonstrated
the functions of the Shaper system, which improves prodigy domain representations.

36 CHAPTER 1. MOTIVATION

Chapter 2: Prodigy search

The prodigy system is based on a combination of goal-directed reasoning with simulation of
operator execution. Researchers have implemented a series of search algorithms that utilize
this technique; however, they have provided few formal results on the common principles
underlying the developed algorithms.

We formalize the prodigy search, elucidate some techniques for improving its e�ciency,
and show how di�erent strategies for controlling search complexity give rise to di�erent
versions of the system. In particular, we demonstrate that prodigy is not complete and
discuss advantages and drawbacks of its incompleteness. We then develop a complete algo-
rithm, which is almost as fast as prodigy and solves a wider range of problems.

Part II: Description changers

We investigate two techniques for reducing complexity of goal-directed search: identifying
primary e�ects of operators and generating abstraction hierarchies. These techniques en-
able us to develop a collection of e�ciency-improving algorithms, which compose Shaper's
library of description changers.

We test the developed algorithms in several domains and demonstrate that they enhance
performance of the prodigy system. We also discuss the drawbacks of the implemented
speed-up techniques and point out some restrictions on their use.

Chapter 3: Primary e�ects

The use of primary e�ects of operators allows us to improve search e�ciency and solution
quality in many domains. We formalize this technique and provide analytical and empirical
evaluation of its e�ectiveness.

First, we present a criterion for choosing primary e�ects, which guarantees e�ciency and
completeness, and describe algorithms for automatic selection of primary e�ects. Second, we
experimentally demonstrate their e�ectiveness in two backward-chaining systems, prodigy
and abtweak.

Chapter 4: Abstraction

We describe abstraction for the prodigy system, present algorithms for automatic gen-
eration of abstraction hierarchies, and give empirical con�rmation of their e�ectiveness in
reducing search.

First, we review Knoblock's alpine system, which constructs hierarchies for a limited
domain language, and extend it for the advanced language of prodigy. Second, we give an
algorithm that improves e�ectiveness of the abstraction generator, by partially instantiating
predicates in the domain encoding.

Chapter 5: Other enhancements

We present two techniques for enhancing utility of primary e�ects and abstraction. First,
we describe a synergy of the abstraction generator with the procedure for selecting primary

1.5. EXTENDED ABSTRACT 37

e�ects, and demonstrate that it leads to better hierarchies.
Second, we give an algorithm for adjusting the domain description to given classes of

problems. It identi�es the features of the simulated world that are relevant to a speci�c
problem type, and then the system utilizes them to choose appropriate primary e�ects and
abstraction.

Chapter 6: Summary of work on description changers

We review the main results of the work on description-changing algorithms in the Shaper
system. In particular, we summarize the interactions among the implemented algorithms
and discuss the role of problem-speci�c information in improving domain descriptions.

In addition, we outline some directions for future research, which include implementation
of other changer algorithms and work on a general theory of description changes. First, we
consider several unexplored types of description improvements and give examples of their
application in prodigy. Second, we discuss some steps toward a general framework for
developing and evaluating changer algorithms.

Part III: Top-level control

We develop a system, called Shaper, for the automatic generation and use of multiple
domain descriptions. When Shaper faces a new problem, it �rst improves the problem
description and then selects an appropriate solver algorithm.

The system's central part is the top-level control module, which chooses appropriate
changer and solver algorithms, stores and re-uses descriptions, and accumulates performance
data. We describe the structure of the control module and its access to other parts of
the system, present techniques for automatic selection among the available algorithms and
domain descriptions, and discuss the main limitations of the implemented system.

Chapter 7: Generation and use of multiple representations

We lay a theoretical groundwork for a synergy of multiple description changers and problem
solvers in a uni�ed system. First, we discuss the task of improving domain descriptions and
selecting appropriate solvers, formalize it as search in the space of available representations,
and de�ne the main elements of the representation space. Second, we develop a utility model
for evaluating a representation-changing system. Third, we identify the limitations of our
theory and their e�ects on the Shaper system.

We apply the theoretical results to constructing the system's \control center," which
provides access to the available algorithms. It consists of data structures and procedures that
support exploration of the representation space. The control center forms the intermediate
layer between the system's algorithms and the top-level decision mechanism.

Chapter 8: Statistical selection among representations

We consider the task of choosing among the available representations and formalize the
statistical problem involved in evaluating their performance. We then present a learning

38 CHAPTER 1. MOTIVATION

algorithm that gathers performance data, evaluates representations, and chooses an appro-
priate representation for each given problem. The algorithm also selects a time bound for
search with the chosen representation, and interrupts the solver upon reaching the bound.

We give results of applying this algorithm to select among prodigy problem solvers. We
also describe controlled experiments with arti�cially generated performance data.

Chapter 9: Extensions to the statistical technique

We extend the statistical procedure to account for properties of speci�c problems, which
allow a more accurate performance evaluation. We test it in the prodigy system and on
arti�cially generated data, and demonstrate the resulting improvement in selection accuracy.

The extended learning algorithm accounts for problem-speci�c utility functions, adjusts
the performance data to the estimated problem sizes, and utilizes information about simi-
larity among problems.

Chapter 10: Preference rules

We describe heuristic rules for identifying an e�ective representation, which supplement the
statistical evaluation. We then present techniques for resolving conicts among multiple
rules and for synergy of rules with the statistical algorithm.

The human operator may provide rules that encode initial knowledge about relative per-
formance of di�erent representations. She may also use rules for implementing additional
learning mechanisms, as well as for controlling the trade-o� between exploitation and explo-
ration in statistical learning.

Chapter 11: Summary of work on the top-level control

We present some extensions to the control module, and then summarize the key results of
developing the Shaper system. The major implemented extensions include (1) a mecha-
nism for selecting among changer algorithms and (2) a collection of tools for optional user
participation in the top-level control.

First, we describe the extension mechanisms and discuss their role. Then, we review
the main parts of the top-level control and summarize the techniques underlying each part.
Finally, we list the limitations of Shaper and point out related directions of future work.

Part IV: Results

We give the results of applying the Shaper system to a variety of problems in four di�erent
domains: a model of a machine shop (Chapter 12), Sokoban puzzle (Chapter 13), extended
strips world (Chapter 14), and prodigy Logistics Domain (Chapter 15).

The experiments have con�rmed that the system's control module almost always selects
the right description changers and problem solvers, and that its performance is not sensitive
to features of speci�c domains.

Chapter 2

Prodigy search

Newell and Simon [1961; 1972] developed the means-ends analysis technique during their
work on the General Problem Solver (gps), back in the early days of arti�cial intelligence.
Their technique combined goal-directed reasoning with forward chaining from the initial
state. The authors of later systems [Fikes and Nilsson, 1971; Warren, 1974; Tate, 1977]

gradually abandoned forward search and began to rely exclusively on backward chaining.

Researchers investigated several types of backward chainers [Minton et al., 1994] and
discovered that least commitment improves the e�ciency of goal-directed reasoning, which
gave rise to tweak [Chapman, 1987], abtweak [Yang et al., 1996], snlp [McAllester
and Rosenblitt, 1991], ucpop [Penberthy and Weld, 1992; Weld, 1994], and other least-
commitment problem solvers.

Meanwhile, prodigy researchers extended means-ends analysis and designed a family of
problem solvers based on the combination of goal-directed backward chaining with simulation
of operator execution. The underlying strategy is a special case of bidirectional search [Pohl,
1971]. It has given rise to several versions of the prodigysystem, including prodigy1,
prodigy2, nolimit, prodigy4, and flecs.

The developed algorithms keep track of the domain state that results from executing parts
of the currently constructed solution, and use the state to guide the goal-directed reasoning.
Least commitment proved ine�ective for this search technique, and Veloso developed an
alternative strategy, based on instantiating all variables as early as possible.

Experiments have demonstrated that prodigy search is an e�cient procedure, a fair
match to least-commitment systems and other successful problem solvers. Moreover, the
prodigy architecture has proved a valuable tool for the development of learning techniques,
and researchers have used it in constructing a number of systems for the automated acqui-
sition of control knowledge.

We have utilized this architecture in the work on the representation changes and con-
structed the Shaper system as an extension to prodigy. In particular, Shaper's library
of problem solvers is based on prodigy search algorithms. We therefore describe these
algorithms before presenting Shaper.

First, we review the past work on the prodigy system and discuss advantages and draw-
backs of the developed search techniques (Section 2.1). Then, we describe the foundations
of these techniques and their use in di�erent versions of prodigy (Section 2.2), as well as

39

40 CHAPTER 2. PRODIGY SEARCH

version year authors

prodigy1 1986 Minton and Carbonell
prodigy2 1989 Carbonell, Minton, Knoblock, and Kuokka
nolimit 1990 Veloso and Borrajo
prodigy4 1992 Blythe, Wang, Veloso, Kahn, Perez, and Gil
flecs 1994 Veloso and Stone

Table 2.1: Main versions of the prodigy architecture. The work on this problem-solving archi-

tecture continued for over ten years, and gave rise to a series of novel search strategies.

the main extensions to the basic search engine (Sections 2.3 and 2.4). Finally, we report
the results of a joint investigation with Blythe on the completeness of the prodigy search
technique (Section 2.5).

2.1 prodigy system

The prodigy system went through several stages of development, over the course of ten
years, and gradually evolved into an advanced architecture, which supports a variety of
search and learning techniques. We give a brief history of its development (Section 2.1.1)
and summarize the main features of the resulting search engines (Section 2.1.2).

2.1.1 History

The history of the prodigy architecture (see Table 2.1) began circa 1986, when Minton and
Carbonell implemented prodigy1, which became a testbed for their work on control rules
[Minton, 1988; Minton et al., 1989a]. They concentrated on explanation-based learning of
control knowledge and left few records of the original search engine.

Minton, Carbonell, Knoblock, and Kuokka used prodigy1 as a prototype in their work
on prodigy2 [Carbonell et al., 1990], which supported an advanced language for describing
problem domains [Minton et al., 1989b]. They demonstrated the system's e�ectiveness in
scheduling machine-shop operations [Gil, 1991; Gil and P�erez, 1994], planning a robot's ac-
tions in an extended strips world [Minton, 1988], and solving a variety of smaller problems.

Veloso [1989] and Borrajo developed the next version, called nolimit, which signi�-
cantly di�ered from its predecessors. In particular, they added new branching points, which
made the search near-complete, and introduced object types for specifying possible values
of variables. Veloso demonstrated the e�ectiveness of nolimit on the previously designed
prodigy domains, as well as on large-scale transportation problems.

Blythe, Wang, Veloso, Kahn, P�erez, and Gil developed a collection of techniques for
enhancing the search engine and built prodigy4 [Carbonell et al., 1992]. In particular,
they provided an e�cient technique for instantiating operators [Wang, 1992], extended the
use of inference rules, and designed advanced data structures to improve the e�ciency of
the low-level implementation. They also implemented a friendly user interface and tools for
adding new learning mechanisms.

2.1. PRODIGY SYSTEM 41

Veloso and Stone [1995] implemented the flecs algorithm, an extension to prodigy4
that included an additional decision point and new strategies for exploring the search space,
and demonstrated that their strategies often improved the e�ciency.

The prodigy architecture provides ample opportunities for the application of speed-up
learning, and researchers have used it to develop and test a variety of techniques for the
automated e�ciency improvement. Minton [1998] designed the �rst learning module for the
prodigy architecture, which automatically generated control rules. He demonstrated the
e�ectiveness of integrating learning with prodigy search, which stimulated work on other
e�ciency-improving techniques.

In particular, researchers have designed modules for explanation-based learning [Etzioni,
1990; Etzioni, 1993; P�erez and Etzioni, 1992], inductive generation of control rules [Veloso
and Borrajo, 1994; Borrajo and Veloso, 1996], abstraction search [Knoblock, 1993], and
analogical reuse of problem-solving episodes [Carbonell, 1983; Veloso and Carbonell, 1990;
Veloso and Carbonell, 1993a; Veloso and Carbonell, 1993b; Veloso, 1994]. They also in-
vestigated techniques for improving the quality of solutions [P�erez and Carbonell, 1993;
P�erez, 1995], learning unknown properties of the problem domain [Gil, 1992; Carbonell and
Gil, 1990; Wang, 1994; Wang, 1996], and collaborating with the human user [Joseph, 1992;
Stone and Veloso, 1996; Cox and Veloso, 1997a; Cox and Veloso, 1997b; Veloso et al., 1997].

The reader may �nd a summary of prodigy learning techniques in the review papers
by Carbonell et al. [1990] and Veloso et al. [1995]. These research results have been major
contributions to the study of machine learning; however, they have left two notable gaps.
First, prodigy researchers tested the learning modules separately, without exploring their
synergetic use. Even though preliminary attempts to integrate learning with abstraction
gave positive results [Knoblock et al., 1991a], the researchers have not pursued this direction.
Second, there has been no automated techniques for deciding when to invoke speci�c learning
modules. The user has traditionally been responsible for the choice among available learning
systems. Addressing these gaps is among the goals of our work on the Shaper system.

2.1.2 Advantages and drawbacks

The prodigy architecture is based on two major design decisions, which di�erentiate it
from other problem-solving systems. First, it combines backward chaining with simulated
execution of relevant operators. Second, it fully instantiates operators in early stages of
search, whereas most classical systems delay the commitment to a speci�c instantiation.

The backward-chaining procedure selects operators relevant to the goal, instantiates
them, and arranges them into a partial-order solution. The forward chainer simulates the
execution of these operator and gradually constructs a total-order sequence of operators.
The system keeps track of the simulated world state, which would result from executing this
sequence.

The problem solver utilizes the simulated world state in selecting operators and their
instantiations, which improves the e�ectiveness of goal-directed reasoning. In addition,
prodigy learning modules use the state to identify reasons for successes and failures of
the search algorithm.

Since prodigy uses fully instantiated operators, it e�ciently handles a powerful domain

42 CHAPTER 2. PRODIGY SEARCH

language. In particular, it supports the use of disjunctive and quanti�ed preconditions,
conditional e�ects, and arbitrary constraints on the values of operator variables [Carbonell
et al., 1992]. The solver utilizes the knowledge of the world state in choosing appropriate
instantiations.

On the ip side, early commitment to full instantiations and speci�c execution order
leads to a large branching factor, which results in gross ine�ciency of breadth-�rst search.
The problem solver uses depth-�rst search and relies on heuristics for selecting appropriate
branches of the search space, which usually leads to �nding suboptimal solutions. If the
heuristics prove misleading, the solver expands wrong branches and may fail to �nd a solu-
tion. When a problem has no solution, a large branching factor becomes a major handicap:
prodigy cannot exhaust the available space in reasonable time.

A formal comparison of prodigy with other search systems is still an open problem;
however, multiple experimental studies have con�rmed that prodigy search is an e�cient
strategy [Stone et al., 1994]. Experiments also revealed that prodigy and backward chainers
perform well in di�erent domains. Some tasks are more suitable for execution simulation,
whereas others require standard backward chaining. Veloso and Blythe [1994] identi�ed some
domain properties that determine which of the two strategies is more e�ective.

Kambhampati and Srivastava [1996a; 1996b] investigated common principles underlying
prodigy and least-commitment search. They developed a framework that generalizes these
two types of goal-directed reasoning and combines them with direct forward search. They
implemented the Universal Classical Planner (ucp), which can use all these search strategies;
however, the resulting general algorithm has many branching points, which give rise to an
impractically large search space. The main open problem is development of heuristics that
would e�ectively use the exibility of ucp to guide the search.

Blum and Furst [1997] constructed graphplan, which uses the domain state in a di�er-
ent way. They implemented propagation of constraints from the initial state of the domain,
which enables their system to identify some operators with unsatis�able preconditions. The
system then discards these operators and uses backward chaining to construct a solution
from the remaining operators. graphplan performs forward constraint propagation prior
to the search for a solution. Unlike prodigy, it does not use forward search from the initial
state.

The relative performance of prodigy and graphplan also varies from domain to do-
main. The graphplan algorithm has to generate and store all possible instantiations of
all operators before searching for a solution, which often causes a combinatorial explosion;
thus, prodigy usually faster than graphplan in large-scale domains. On the other hand,
graphplan wins in small-scale domains that require extensive search.

Researchers recently applied prodigy to robot navigation and discovered that its exe-
cution simulation is useful for interleaving search with real execution. In particular, Blythe
and Reilly [1993a; 1993b] explored techniques for planning routes of a household robot in a
simulated environment. Stone and Veloso [1996] constructed a mechanism for user-guided
interleaving of problem solving and execution.

Haigh and Veloso [1996; 1997; 1998a; 1998b] built a system that navigates xavier, a
real robot at Carnegie Mellon University. Haigh [1998] integrated this system with xavier's
low-level control procedures, and demonstrated its e�ectiveness in planning and guiding the

2.2. SEARCH ENGINE 43

robot's high-level actions.
Their interleaving algorithms begin the real-world execution before prodigy completes

the search for a solution, thus eliminating some backtracking points in the search space. This
strategy involves the risk of bringing the robot to a deadend or even into an inescapable trap.
To avoid such traps, Haigh and Veloso restricted the use of their system to domains with
reversible actions.

2.2 Search engine

We next describe the basics of prodigy search; the description is based on the results of
joint work with Veloso on formalizing the main principles underlying the prodigy system
[Fink and Veloso, 1996]. All versions of the system are based on the algorithm described
here; however, they di�er from each other in the decision points used for backtracking, and
in the general heuristics for guiding the search.

We present the foundations of the prodigy domain language (Section 2.2.1), encoding of
intermediate incomplete solutions (Section 2.2.2), and the algorithm that combines backward
chaining with execution simulation (Sections 2.2.3 and 2.2.4). We delay the discussion of
techniques for handling disjunctive and quanti�ed preconditions until Section 2.3. After
describing the search engine, we discuss di�erences among the main versions of prodigy
(Section 2.2.5).

2.2.1 Encoding of problems

We de�ne a problem domain by a set of object types and a library of operators that act
on objects of these types. The prodigy language for describing operators is based on the
strips domain language [Fikes and Nilsson, 1971], extended to express conditional e�ects,
disjunctive preconditions, and quanti�cations.

An operator is de�ned by its preconditions and e�ects. The preconditions of an operator
are the conditions that must be satis�ed before its execution. They are represented by a
logical expression with negations, conjunctions, disjunctions, and universal and existential
quanti�ers. The e�ects are encoded as a list of predicates added to or deleted from the
current state of the domain upon the execution.

We may specify conditional e�ects, also called if-e�ects, whose outcome depends on the
domain state. An if-e�ect is de�ned by its conditions and actions. If the conditions hold,
the e�ect changes the state, according to its actions. Otherwise, it does not a�ect the state.

The e�ect conditions are represented by a logical expression, in the same way as operator
preconditions; however, their meaning is somewhat di�erent. If the preconditions of an
operator do not hold in the state, then the operator cannot be executed. On the other hand,
if the conditions of an if-e�ect do not hold, we may execute the operator, but the if-e�ect
does not change the state.

The actions of an if-e�ect are predicates, to be added to or deleted from the state; that
is, their encoding is identical to that of unconditional e�ects. We refer to both unconditional
e�ects and if-e�ect actions as simple e�ects. When we talk about \e�ects" without explicitly
referring to if-e�ects, we mean simple e�ects.

44 CHAPTER 2. PRODIGY SEARCH

<pack>: type Package
<place>: type Place

unload(<pack>, <place>)

Eff:

Pre: (in-truck <pack>)
(truck-at <place>)

Place

Type Hierarchy

VillageTown

Package

<pack>: type Package
<place>: type Place

(truck-at <place>)

load(<pack>, <place>)

Eff:

Pre: (at <pack> <place>)

<to>: type Place
(truck-at <from>)

leave-town(<from>, <to>)

Pre:

Eff:

<from>: type Town
<to>: type Place

leave-village(<from>, <to>)

Pre:

Eff:

<from>: type Village

(extra-fuel)
(truck-at <from>)

(truck-at <place>)
Eff:

fuel(<place>)
<place>: type Town
Pre:

cushion(<pack>)

Eff:

<pack>: type Package

add (extra-fuel)

del (in-truck <pack>)
add (at <pack> <place>)

add (truck-at <to>)
del (truck-at <from>)add (truck-at <to>)

del (truck-at <from>)

(if (fragile <pack>)
add (broken <pack>))

del (at <pack> <place>)
add (in-truck <pack>)

del (fragile <pack>)

Figure 2.1: Encoding of a simple trucking world in the prodigy domain language. The Trucking

Domain is de�ned by a hierarchy of object types and a library of six operators.

In Figure 2.1, we give an example of a simple domain. Note that the syntax of this
domain description slightly di�ers from the prodigy language [Carbonell et al., 1992], for
the purpose of better readability. The domain includes two types of objects, Package and
Place. The Place type has two subtypes, Town and Village. We use types to limit the allowed
values of variables in the operator description.

A truck carries packages between towns and villages. The truck's fuel tank is su�cient
for only one ride. Towns have gas stations, so the truck can refuel before leaving a town. On
the other hand, villages do not have gas stations; if the truck comes to a village without a
supply of extra fuel, it cannot leave. To avoid this problem, the truck can get extra fuel in
any town.

We have to load packages before driving to their destination and unload afterwards. If a
package is fragile, it gets broken during loading. We may cushion a package by soft material,
which removes the fragility and prevents breakage.

A problem is de�ned by a list of object instances, an initial state, and a goal statement.
The initial state is a set of literals, whereas the goal statement is a condition that must hold
after executing a solution. A complete solution is a sequence of instantiated operators that
can be executed from the initial state to achieve the goal. We give an example of a problem
in Figure 2.2. The task in this problem is to deliver two packages from town-1 to ville-1. We
may solve it as follows: \load(pack-1,town-1), load(pack-2,town-1), leave-town(town-1,ville-1),
unload(pack-1,ville-1), unload(pack-2,ville-1))."

The initial state may include literals that cannot be added or deleted by operators, called
static literals. For example, if the domain did not include the fuel operator, then (extra-fuel)

2.2. SEARCH ENGINE 45

pack-1, pack-2: type Package

ville-1: type Village
town-1: type Town

Set of Objects

Goal Statement

(at pack-2 ville-1)
(at pack-1 ville-1)

ville-1

town-1

(at pack-2 town-1)
(truck-at town-1)

(at pack-1 town-1)

Initial State

ville-1

Figure 2.2: Encoding of a problem in the Trucking Domain, which includes a set of object instances,

initial world state, and goal statement; the task is to deliver two packages from town-1 to ville-1.

would be a static literal. If all instantiations of a predicate are static literals, we say that
the predicate itself is static. Since no operator sequence can a�ect these literals, the goal
statement should be consistent with the static elements of the initial state. Otherwise, the
problem is unsolvable and the system reports failure without search.

2.2.2 Incomplete solutions

Given a problem, most problem-solving systems begin with the empty set of operators and
modify it until a solution is found. Examples of modi�cations include adding an operator,
instantiating or constraining a variable in an operator, and imposing an ordering constraint.
The intermediate sets of operators are called incomplete solutions. We view them as nodes in
the search space of the solver algorithm. Each modi�cation of a current incomplete solution
gives rise to a new node, and the number of possible modi�cations determines the branching
factor of the search.

Researchers have explored a variety of structures for representing an incomplete solution.
In particular, it may be a sequence of operators [Fikes and Nilsson, 1971] or a partially
ordered set [Tate, 1977]. Some problem solvers fully instantiate the operators, whereas other
solvers use the uni�cation of operator e�ects with the corresponding goals [Chapman, 1987].
Some systems mark relations among operators by causal links [McAllester and Rosenblitt,
1991], and others do not explicitly maintain these relations.

In prodigy, an incomplete solution consists of two parts, a total-order head and tree-
structured tail (see Figure 2.3). The root of the tail's tree is the goal statement G, the other
nodes are fully instantiated operators, and the edges are ordering constraints.

The tail is built by a backward chainer, which starts from the goal statement and adds
operators, one by one, to achieve goal literals and preconditions of previously added oper-
ators. When the algorithm adds an operator to the tail, it instantiates the operator, that
is, replaces all the variables with speci�c objects. The preconditions of a fully instantiated
operator are a conjunction of literals, where every literal is an instantiated predicate.

The head is a sequence of instantiated operators that can be executed from the initial
state. It is generated by the execution-simulating algorithm described in Section 2.2.3. The

46 CHAPTER 2. PRODIGY SEARCH

gap

I C G

head tail

State State
Current

Statement
GoalInitial

Figure 2.3: Representation of an incomplete solution: It consists of a total-order head, which can

be executed from the initial state, and a tree-structured tail constructed by a backward chainer.

The current state C is the result of applying the head operators to the initial state I.

gap

(pack-2,
unload

ville-1)

unload

ville-1)
(pack-1,

(at pack-1

(at pack-2
ville-1)

ville-1)

Current StateInitial State

town-1)

town-1)
(at pack-2

(truck-at

(in-truck
pack-1)

(pack-1,
load

town-1)

town-1)

town-1)

(at pack-1
town-1)

(at pack-2

(truck-at

Goal Statement

Figure 2.4: Example of an incomplete solution in the Trucking Domain: The head consists of a

single operator, load; the tail comprises two unload operators, linked to the goal literals.

state C achieved by executing the head is the current state. In Figure 2.4, we illustrate an
incomplete solution for the example trucking problem.

Since the head is a total-order sequence of operators that do not contain variables, the
current state C is uniquely de�ned. The backward chainer, responsible for the tail, views C
as its initial state. If the tail operators cannot be executed from the current state C, then
there is a \gap" between the head and tail. The purpose of problem solving is to bridge
this gap. For example, we can bridge the gap in Figure 2.3 by a sequence of two operators,
\load(pack-2,town-1), leave-town(town-1,ville-1)."

2.2.3 Simulating execution

Given an initial state I and a goal statement G, prodigy begins with the empty head and
tail, and modi�es them, step by step, until it builds a complete solution. Thus, the initial
incomplete solution has no operators and its current state is the same as the initial state,
C = I.

At each step, prodigy can modify the current incomplete solution in one of two ways
(see Figure 2.5). First, it can add an operator to the tail (operator t in the picture), to
achieve a goal literal or a precondition of another operator. Tail modi�cation is a job of the
backward-chaining algorithm, described in Section 2.2.4.

Second, prodigy can move some operator op from the tail to the head (operator x in the
picture). The preconditions of op must be satis�ed in the current state C. The operator op
becomes the last operator of the head, and the current state is modi�ed according to the
e�ects of op. The search algorithm usually has to select among several operators that can

2.2. SEARCH ENGINE 47

I C G
x

y
zs

I Cs G
x

y
z

t
I s GzC’x y

Applying an operator (moving it to the head)Adding an operator to the tail

Figure 2.5: Modifying an incomplete solution: prodigy either adds a new operator to the tail

tree (left), or moves one of the previously added operator to the head (right).

be moved to the head; thus, it needs to decide on the order of executing these operators.
Intuitively, we may imagine that the system executes the head operators in the real world

and has already changed the world from its initial state I to the current state C. If the tail
contains an operator whose preconditions are satis�ed in C, then prodigy applies this
operator and further changes the state. Because of this analogy with the real-world changes,
moving an operator from the tail to the head is called the application of the operator;
however, this term refers to simulating an operator application. Even if the execution of the
head operators is disastrous, the world does not su�er: the search algorithm backtracks and
tries an alternative execution sequence.

When the system applies an operator to the current state, it begins with the deletion
e�ects, and removes the corresponding literals from the state; then, it performs addition of
new literals. Thus, if the operator adds and deletes the same literal, the net result is adding
it to the state.

For example, suppose that the current state includes the literal (truck-at town-1), and
prodigy simulates the application of leave-town(town-1,town-1), whose e�ects are \del
(truck-at town-1)" and \add (truck-at town-1)." The system �rst removes this literal from
the state description, and then adds it back. If the system processed the e�ects in the oppo-
site order, it would permanently remove the truck's location, thus obtaining an inconsistent
state.

An operator application is the only way of updating the head. The system never inserts
a new operator directly into the head, which means that it uses only goal-relevant operators
in the forward chaining. The search terminates when the head operators achieve the goals;
that is, the goal statement G is satis�ed in C. If the tail is not empty at that point, it is
dropped.

2.2.4 Backward chaining

We next describe the backward-chaining procedure that constructs the tree-structured tail
of an incomplete solution. When the problem solver invokes this procedure, it adds a new
operator to the tail, for achieving either a goal literal or a precondition literal of another tail
operator. Then, it establishes a link from the newly added operator to the literal achieved by
this operator, and adds the corresponding ordering constraint. For example, if the incomplete
solution is as shown in Figure 2.4, then the procedure may add the operator load(pack-2,ville-

48 CHAPTER 2. PRODIGY SEARCH

Goal Statement

(at pack-1
ville-1)town-1)

(truck-at

pack-1)
(in-truck

pack-1)
(in-truck

town-1)
(truck-at

unload

ville-1)
(pack-1,

(pack-2,
unload

ville-1)

(at pack-2
ville-1)

Current State

town-1)
(at pack-2

town-1)
(truck-at

pack-1)
(in-truck

town-1)
(at pack-2

town-1)
(truck-at

load

town-1)
(pack-2,

Figure 2.6: Example of the tail in an incomplete solution to a trucking problem. First, the

backward chainer adds the unload operators, which achieve the two goal literals. Then, it inserts

load to achieve the precondition (in-truck pack-1) of unload(pack-2,ville-1).

load

ville-1)
(pack-2, pack-2)

(in-truckload

town-1)
(pack-2, pack-2)

(in-truck

load

<place>)
(<pack>, pack-2)

(in-truck

Figure 2.7: Instantiating a newly added operator: If the set of objects is as shown in Figure 2.2,

prodigy can generate two alternative versions of load for achieving the subgoal (in-truck pack-2).

1) to achieve the precondition (in-truck pack-2) of unload(pack-2,ville-1) (see Figure 2.6). If
the backward chainer uses an if-e�ect of an operator to achieve a literal, then the e�ect's
conditions are added to the preconditions of the instantiated operator.

prodigy tries to achieve a literal only if it is not true in the current state C and has

not been linked to any tail operator. Unsatis�ed goal literals and preconditions are called
subgoals. For example, the tail in Figure 2.6 has two identical subgoals, marked by italics.

Before inserting an operator into the tail, the solver fully instantiates it, that is, sub-
stitutes all free variables of the operator with speci�c object instances. Since the prodigy
domain language allows the use of disjunctive and quanti�ed preconditions, instantiating an
operator may be a di�cult problem. The system uses a constraint-based matching procedure
that generates all possible instantiations [Wang, 1992].

For example, suppose that the backward chainer uses an operator load(<pack>,<place>)
to achieve the subgoal (in-truck pack-2) (see Figure 2.7). First, prodigy instantiates the
variable <pack> with the instance pack-2 from the subgoal literal. Then, it has to instantiate
the other free variable, <place>. Since the domain has two places, town-1 and ville-1, the
variable has two possible instantiations, which give rise to di�erent branches in the search
space (Figure 2.7).

In Figure 2.8, we summarize the search algorithm, which explores the space of incomplete
solutions. The Operator-Application procedure builds the head and maintains the current
state, whereas Backward-Chainer constructs the tail.

2.2. SEARCH ENGINE 49

The algorithm includes �ve decision points, which give rise to di�erent branches of the
search space. It can backtrack over the decision to apply an operator (Line 2a), and over
the choice of an \applicable" tail operator (Line 1b). It also backtracks over the choice of
a subgoal (Line 1c), an operator that achieves it (Line 2c), and the operator's instantiation
(Line 4c). We summarize the decision points in Figure 2.9.

Note that the �rst two choices (Lines 2a and 1b) enable the problem solver to consider
di�erent orderings of head operators. These two choices are essential for solving problems
with interacting subgoals; they are analogous to the choice of ordering constraints in least-
commitment algorithms.

2.2.5 Main versions

The algorithm in Figure 2.9 has �ve decision points, which allow exible selection of opera-
tors, their instantiations, and order of their execution; however, these decisions give rise to a
large branching factor. The use of built-in heuristics, which eliminate some of the available
choices, may reduce the search space and improve the e�ciency. On the negative side, such
heuristics prune some solutions and may direct the search to a suboptimal solution, or even
prevent �nding any solution. Determining appropriate restrictions on the solver's choices is
one of the major research problems.

Even though the described algorithm underlies all prodigy versions, from prodigy1 to
flecs, the versions di�er in their use of decision points and built-in heuristics. Researchers
investigated di�erent trade-o�s between exibility and reduction of branching. They gradu-
ally increased the number of available decision points, from two in prodigy1 to all �ve in
flecs. We outline the use of the backtracking mechanism and its evaluation in the prodigy
architecture.

The versions also di�er in some features of the domain language, in the use of learning
modules, and in the low-level implementation of search mechanisms. We do not discuss these
di�erences; the reader may learn about them from the review article by Veloso et al. [1995].

prodigy1 and prodigy2

The early versions of prodigy had only two backtracking points: the choice of an operator
(Line 2c in Figure 2.8) and the instantiation of the selected operator (Line 4c). The other
three decisions were based on �xed heuristics, which did not give rise to multiple search
branches. The algorithm preferred operator application to adding new operators (Line 2a),
applied the tail operator that had been added last (Line 1b), and achieved the �rst unsatis�ed
precondition of the last added operator (Line 1c). This algorithm generated suboptimal
solutions and sometimes failed to �nd any solution.

For example, consider the prodigy2 search for the problem in Figure 2.2. The solver
adds unload(pack-1,ville-1) to achieve (at pack-1 ville-1), and load(pack-1,town-1) to achieve
the precondition (in-truck pack-1) of unload (see Figure 2.10a). Then, it applies load and
adds leave-town(town-1,ville-1) to achieve the precondition (truck-at ville-1) of unload (Fig-
ure 2.10b). Finally, prodigy applies leave-town and unload (Figure 2.10c), thus bringing
only one package to the village.

50 CHAPTER 2. PRODIGY SEARCH

Base-prodigy

1a. If the goal statement G is satis�ed in the current state C, then return the head.

2a. Either

(i) Backward-Chainer adds an operator to the tail,

(ii) or Operator-Application moves an operator from the tail to the head.

Decision point: Choose between (i) and (ii).

3a. Recursively call Base-prodigy on the resulting incomplete solution.

Operator-Application

1b. Pick an operator op, in the tail, such that

(i) there is no operator in the tail ordered before op,

(ii) and the preconditions of op are satis�ed in the current state C.

Decision point: Choose one of such operators.

2b. Move op to the end of the head and update the current state C.

Backward-Chainer

1c. Pick a literal l among the current subgoals.

Decision point: Choose one of the subgoal literals.

2c. Pick an operator op that achieves l.

Decision point: Choose one of such operators.

3c. Add op to the tail and establish a link from op to l.

4c. Instantiate the free variables of op.

Decision point: Choose an instantiation.

5c. If the e�ect that achieves l has conditions,

then add them to the operator preconditions.

Figure 2.8: Foundations of the prodigy search algorithm: The Operator-Application procedure

simulates execution of operators, whereas Backward-Chainer selects operators relevant to the goal.

2a. Decide whether to apply an operator
or add a new operator to the tail

Base-PRODIGY

operator
apply add new

operator

1c. Choose an unachieved literal1b. Choose an operator to apply

4c. Choose an instantiation for
the variables of the operator

that achieves this literal
2c. Choose an operator

Backward-ChainerOperator-Application

Figure 2.9: Main decision points in the prodigy search engine, summarized in Figure 2.8. Every

decision point allows backtracking, thus giving rise to multiple branches of the search space.

2.2. SEARCH ENGINE 51

town-1)
(pack-1,
loadtown-1)

(at pack-1

(a)

town-1)
(pack-1,
load

town-1)

(truck-at
town-1)

(at pack-1

(at pack-2

town-1)

Current State

(pack-1,
unload

ville-1)
(town-1,

leave-
town

ville-1)
(c)

FAILURE

town-1)
(at pack-2

Current State

town-1)
(pack-1,
load

(b) (town-1,

leave-
town

ville-1)
(truck-at
town-1)

(in-truck
pack-1)

(truck-at
town-1) (pack-1,

unload

ville-1)

(at pack-1
ville-1)

(at pack-2
ville-1)

Goal
Statement

(truck-at
ville-1)

(in-truck
pack-1)

(pack-1,
unload

ville-1)

(at pack-1
ville-1)

(at pack-2
ville-1)

Goal
Statement

(truck-at
ville-1)

(in-truck
pack-1)

(truck-at
town-1)

Initial State

(at pack-1
town-1)

town-1)

(truck-at
town-1)

(at pack-2

Figure 2.10: Incompleteness of prodigy2: The system fails to solve the trucking problem in

Figure 2.2. Since the prodigy2 search algorithm always prefers the operator application to adding

new operators, it cannot load both packages before driving the truck to its goal destination.

Since the algorithm uses only two backtracking points, it does not consider loading two
packages before the ride or getting extra fuel before leaving the town; thus, it fails to solve
the problem. This example demonstrates that the prodigy2 system is incomplete, that is, it
may fail on a problem that has a solution. The user may improve the situation by providing
domain-speci�c control rules, which enforce di�erent choices of subgoals in Line 1c. Note
that prodigy2 does not backtrack over these choices, and an inappropriate control rule
may cause a failure. This approach often allows the enhancement of performance; however,
it requires the human operator to assume the responsibility for completeness and solution
quality.

nolimit and prodigy4

During the work on the nolimit system, Veloso added two more backtracking points, de-
laying the application of tail operators (Line 2a) and choosing a subgoal (Line 1c), and

52 CHAPTER 2. PRODIGY SEARCH

town-1)
(pack-2,
loadtown-1)

(pack-2,
unload

ville-1)(truck-at
ville-1)

pack-2)
(truck-at
town-1)

(at pack-2

(pack-1,
unload

ville-1)(truck-at
ville-1)

(in-truck
pack-1)town-1)

(pack-1,
loadtown-1)

(at pack-1

town-1)

(town-1,

leave-
town

ville-1)

(truck-at
town-1)

(truck-at

4

1

(at pack-1
ville-1)

(at pack-2
ville-1)

Goal
Statement

2

3

5 (in-truck
applied
first

applied
second

Initial State

(at pack-1
town-1)

town-1)

(truck-at
town-1)

(at pack-2

Figure 2.11: Example of ine�ciency in the prodigy4 system; the boldface numbers, in the upper

right corners of operators, mark the order of adding operators to the tail. Since the prodigy4

algorithm always applies the last added operator, it attempts to apply leave-town before one of

the load operators, which leads to a deadend and requires backtracking.

later prodigy4 inherited these points. On the other hand, prodigy4 makes no decision in
Line 1b: it always applies the last added operator. The absence of this decision point does
not rule out any solutions, but sometimes negatively a�ects the search time.

For instance, if we use prodigy4 to solve the problem in Figure 2.2, it may generate
the tail shown in Figure 2.11, where the numbers show the order of adding operators. We
could now solve the problem by applying the two load operators, the leave-town operator,
and then both unload operators; however, the solver cannot use this application order. The
system applies leave-town before one of the load operators, which leads to a deadend. It
then has to backtrack and construct a new tail, which allows the right order of applying the
operators.

flecs

The flecs algorithm has all �ve decision points, but it does not backtrack over the choice of
a subgoal (Line 1c), which means that only four points give rise to multiple search branches.
Since backtracking over these points may produce an impractically large space, Veloso and
Stone [1995] implemented general heuristics that further limit the space.

They experimented with two versions of the flecs algorithm, called savta and saba,
which di�er in their choice between adding an operator to the tail and applying an operator
(Line 2a). savta prefers to apply tail operators before adding new ones, whereas saba tries
to delay their application.

Experiments have demonstrated that the greater exibility of prodigy4 and flecs usu-
ally gives an advantage over prodigy2, despite the larger branching factor. The relative
e�ectiveness of prodigy4, savta, and saba depends on the speci�c domain, and the right
choice among these algorithms is often essential for performance [Stone et al., 1994].

Veloso has recently �xed a minor bug in the implementation of saba, which sometimes led
to inappropriate search decisions; however, she has not yet reported empirical evaluation of
the corrected algorithm. Note that we employed the original version of saba in experiments
with the Shaper system, since the bug has been found after the completion of our work.

2.3. EXTENDED DOMAIN LANGUAGE 53

<pack>: type Package
<place>: type Place

cushion(<pack>, <place>)

Eff:

Pre: (or (at <pack> <place>)

del (fragile <pack>)
(in-truck <pack>))

(a) Disjunction.

Goal Statement

(b) Existential quantification.

(c) Universal quantification.

(exists <pack> of type Package
(at <pack> ville-1))

(forall <pack> of type Package
(at <pack> ville-1))

Goal Statement

Figure 2.12: Examples of disjunction and quanti�cation in the prodigy domain language. The

user may utilize these constructs in precondition expressions and goal statements.

2.3 Extended domain language

The prodigy domain language is an extension of the strips language [Fikes and Nilsson,
1971]. The strips system used a limited description of operators, and prodigy researchers
added several advanced features, which allowed encoding of large-scale domains. The new
features included complex preconditions and goal expressions (Section 2.3.1), inference rules,
(Section 2.3.2), and exible use of object types (Section 2.3.3).

2.3.1 Extended operators

The prodigy domain language allows complex logical expressions in operator preconditions,
if-e�ect conditions, and goal statements. They may include not only negations and conjunc-
tions, but also disjunctions and quanti�cations. The language also enables the user to specify
the costs of operators, which serve as a measure of solution quality.

Disjunctive preconditions

To illustrate the use of disjunction, we consider a variation of the cushion operator, given
in Figure 2.12(a). In this example, we can cushion a package when it is inside or near the
truck.

When prodigy instantiates an operator with disjunctive preconditions, it generates an
instantiation for one element of the disjunction and discards all other elements. For example,
if the solver has to cushion pack-1, it may choose the instantiation (at pack-1 town-1), which
matches (at <pack> <place>), and discard the other element, (in-truck <pack>).

If the initial choice does not lead to a solution, the solver backtracks and considers the in-
stantiation of another element. For instance, if the selected version of the cushion(o)perator
has proved inadequate, prodigymay discard the �rst element of the conjunction, (at <pack>
<place>), and choose the instantiation (in-truck pack-1) of the other element.

54 CHAPTER 2. PRODIGY SEARCH

Quanti�ed preconditions

We illustrate the use of quanti�ers in Figures 2.12(b) and 2.12(c). In the �rst example, the
solver has to transport any package to ville-1. In the second example, it has to deliver all
packages to the village.

When the problem solver instantiates an existential quanti�cation, it selects one object of
the speci�ed type. For example, it may decide to deliver pack-1 to ville-1, thus replacing the
goal in Figure 2.12(b) by (at pack-1 ville-1). If the chosen object does not lead to a solution,
prodigy backtracks and tries another one. When instantiating a universally quanti�ed
expression, the solver treats it as a conjunction over all matching objects.

Instantiated operators

The prodigy language allows arbitrary logical expressions, which may contain multiple
levels of negations, conjunctions, disjunctions and quanti�cations. When adding an opera-
tor to the tail, the problem solver generates all possible instantiations of its preconditions
and chooses one of them. If the solver backtracks, it chooses an alternative instantiation.
Every instantiation is a conjunction of literals, some of which may be negated; it has no
disjunctions, quanti�cations, or negated conjunctions.

Wang [1992] has designed an advanced algorithm for generating possible instantiations of
operators and goal statements. In particular, she developed an e�cient mechanism for prun-
ing inconsistent choices of objects and provided heuristics for selecting the most promising
instantiations.

Costs

The use of operator costs allows us to measure the quality of complete solutions. We assign
nonnegative numerical costs to instantiated operators, and de�ne a solution cost as the sum
of its operator costs. The lower the cost, the better the solution.

The authors of the original prodigy architecture did not provide support for operator
costs, and usually measured the solution quality by the number of operators. P�erez [1995]
has implemented a mechanism for using operator costs during her exploration of control
rules for improving solution quality; however, she did not incorporate costs into the main
version.

We re-implemented the cost mechanism during the work on the Shaper system. In
Figure 2.13, we give an example of cost encoding. For every operator, the user speci�es a
Lisp function, whose arguments are operator variables. Given speci�c object instances, the
function returns the corresponding cost, which must be a nonnegative real number. If the
operator cost does not depend on the instantiation, it may be speci�ed by a number rather
than a function. If the user does not encode a cost, then by default it is 1.

The example in Figure 2.13(a) includes two cost functions, called leave-cost and load-

cost. We give pseudocode for these functions (Figure 2.13b) and their real encoding in the
prodigy system (Figure 2.13c).

The cost of driving between two locations is linear in the distance, determined by the
miles function. The user may specify distances by a matrix or by a list of initial-state

2.3. EXTENDED DOMAIN LANGUAGE 55

leave-town(<from>, <to>)
<from>: type Town
<to>: type Place

. . .

Cost: leave-cost(<from>,<to>)

<pack>: type Package
<place>: type Place

load(<pack>, <place>)

. . .

Cost: load-cost(<place>)

cushion(<pack>)

. . .
<pack>: type Package

5Cost:

(if (eq (type-name (prodigy-object-type <place>)) ’Village)
4 3)

(defun leave-cost (<from> <to>)
(+ (* 0.2 (miles <from> <to>)) 5))

(defun load-cost (<place>)

(a) Use of cost functions and constant costs.

(b) Pseudocode of the cost functions. (c) Actual LISP functions.

leave-cost (<from>,<to>)
+ 5..0.2

(<place>)
If <place> is of type Village,

then, return 4; esle, return 3.

Return

load-cost

miles(<from>,<to>)

Figure 2.13: Encoding of operator costs: The user may specify a constant cost value or, alterna-

tively, a Lisp function that inputs operator variables and returns a nonnegative real number. If the

description of an operator does not include a cost, prodigy assumes that it is 1.

literals, and should provide the appropriate look-up procedure. The loading cost depends
on the location type; it is larger in villages. Finally, the cost of the cushion operator is
constant.

When the problem solver instantiates an operator, it calls the corresponding function
to determine the cost of the resulting instantiation. If the returned value is negative, the
system signals an error. Note that, since incomplete solutions consist of fully instantiated
operators, the solver can determine the cost of every intermediate solution.

2.3.2 Inference rules

The prodigy language supports two mechanisms for changing the domain state, operators
and inference rules, which have identical syntax but di�er in semantics. Operators encode
actions that change the world, whereas rules point out implicit properties of the world state.

Example

In Figure 2.14, we show three inference rules for the Trucking Domain. In this example,
we have made two modi�cations to the original domain description (see Figure 2.1). First,
the cushion operator adds (cushioned <pack>) instead of deleting (fragile <pack>), and the
add-fragile rule indicates that uncushioned packages are fragile. Thus, the user does not
have to specify fragility in the initial state.

Second, the domain includes the type County and the predicate (within <place> <county>).
Note that this predicate is static, that is, it is not an e�ect of any operator or inference
rule. We use the add-truck-in rule to infer the county of the truck's current location. For
example, if the truck is at town-1, and town-1 is within county-1, then the rule adds (truck-in

56 CHAPTER 2. PRODIGY SEARCH

PlacePackage County

VillageTown

Eff: add (truck-in <county>)

<place>: type Place
<county>: type County

(within <place> <county>)
Pre: (truck-at <place>)

Inf-Rule add-truck-in(<place>, <county>)
<pack>: type Package

(within <place> <county>)
Eff:

Pre: (at <pack> <place>)

add (in <pack> <county>)

<place>: type Place
<county>: type County

Inf-Rule add-in(<pack>, <place>, <county>)

Type Hierarchy

cushion(<pack>)

Eff:

<pack>: type Package
add (cushioned <pack>)

not (cushioned <pack>)
Eff:

<pack>: type Package
Pre:

add (fragile <pack>)

Inf-Rule add-fragile(<pack>)

Figure 2.14: Encoding of inference rules in the prodigy domain language. These rules point out

indirect results of changing the world state; their syntax is identical to that of operators.

(within
town-1
county-1)

town-2
county-2)

(within

Initial State

town-1)
(truck-at

(town-1,
leave-town

town-2)
town-1)

(truck-at (town-2,
add-truck-in

county-2)

(truck-at
town-2)

county-2)
town-2

(within
(truck-in

county-2)

Goal Statement

Figure 2.15: Use of an inference rule in backward chaining: prodigy links the add-truck-in rule

to the goal literal, and then adds leave-town to achieve the rule's precondition (truck-at town-2).

county-1) to the current state. Similarly, we use add-in to infer the current county of each
package.

Use of inferences

The encoding of inference rules is the same as that of operators, which may include disjunctive
and quanti�ed preconditions, and if-e�ects; however, the rules have no costs and their use
does not a�ect the overall solution cost.

The use of inference rules is also similar to that of operators: the problem solver adds an
instantiated rule to the tail, for achieving the selected subgoal, and applies the rule when its
preconditions hold in the current state. We illustrate it in Figure 2.15, where the solver uses
the add-truck-in rule to achieve the goal, and then adds leave-town to achieve a rule's
precondition.

If the system applies an inference rule and later adds an operator that invalidates the
rule's preconditions, then it removes the rule's e�ects from the state. For example, the
inference rule in Figure 2.16(a) adds (truck-in town-2) to the state. If the system then applies

2.3. EXTENDED DOMAIN LANGUAGE 57

(town-2,
add-truck-in

county-2)
(town-2,
leave-town

town-3)
(town-1,
leave-town

town-2)

town-3)
(truck-at

(within . . .)
(within . . .)
(within . . .)

Current State

(within
town-1
county-1)

town-3
county-3)

(within

town-2
county-2)

(within

town-1)
(truck-at

Initial State

(town-2,
add-truck-in

county-2)
(town-1,
leave-town

town-2)

(truck-in
county-2)

town-2)
(truck-at

(within . . .)
(within . . .)
(within . . .)

Current State

(b)

(a)

Figure 2.16: Cancelling the e�ects of an inference rule upon the negation of its preconditions:

When prodigy applies leave-town(town-2,town-3), it negates the precondition (truck-at town-2)

of the add-truck-in rule; hence, the system removes the e�ects of this rule from the current state.

leave-town (Figure 2.16b), it negates the preconditions of add-truck-in and, hence, cancels
its e�ects. This semantics di�ers from the use of operators, whose e�ects remain in the state,
unless deleted by opposite e�ects of other operators.

Eager and lazy rules

The Backward-Chainer algorithm selects rules at its discretion and may disregard unwanted
rules. On the other hand, if some inference rule has an undesirable e�ect, it should be applied
regardless of the solver's choice. For example, if pack-1 is not cushioned in the initial state,
the system should immediately add (fragile pack-1) to the state.

When the user encodes a domain, she has to mark all rules that have unwanted e�ects.
When the preconditions of a marked rule hold in the current state, the system applies it at
once, even if it is not in the tail. The marked inference rules are called eager rules, whereas
the others are lazy rules. Note that Backward-Chainer may use both eager an lazy rules, and
the only special property of eager rules is their forced application in the matching states. If
the user wants Backward-Chainer to disregard some eager rules, she may provide a control
rule that prevents their use in the tail.

Truth maintenance

When the prodigy system applies an operator or inference rule, it updates the current state
and then identi�es the previously applied rules whose preconditions no longer hold. If the
system �nds such rules, it modi�es the state by removing their e�ects. If some rules that

58 CHAPTER 2. PRODIGY SEARCH

remain in force have if-e�ects, the system must check the conditions of every if-e�ect, which
may also lead to modi�cation of the state. Next, prodigy looks for an eager rule whose
conditions hold in the resulting state. If the system �nds such a rule, then it applies the rule
and further changes the state.

If inference rules interact with each other, then this process may involve a chain of rule
applications and cancellations. It terminates when the system gets to a state that does
not require applying a new eager rule or removing e�ects of old rules. This chain of state
modi�cations, which does not involve search, is similar to the �ring of productions in the
Soar system [Laird et al., 1986; Golding et al., 1987].

Blythe designed an e�cient truth-maintenance procedure, which keeps track of all ap-
plicable inference rules and controls the described forward chaining. The solver invokes this
procedure after each application of an operator or inference rule from the tail.

If the user provides inference rules, she has to ensure that the resulting inferences are
consistent. In particular, a rule must not negate its own preconditions. If two rules may
be applied in the same state, they must not have opposite e�ects. If a domain includes
several eager rules, they should not cause an in�nite cyclic chain of forced application. The
prodigy system does not check for such inconsistencies, and an inappropriate rule set may
cause unpredictable results.

2.3.3 Complex types

We have already explained the use of a type hierarchy (see Figure 2.1), which de�nes object
classes and enables the user to specify the allowed values of variables in operator precon-
ditions, conditions of if-e�ects, and goal statements. For example, the possible values of
the <from> variable in leave-town include all towns, but not villages. The early versions
of the prodigy system did not support a type hierarchy. Veloso designed a typed domain
language during her work on nolimit, and the authors of prodigy4 further developed the
mechanism for using types.

A type hierarchy is a tree, whose nodes are called simple types. For instance, the hierarchy
in Figure 2.1 has �ve simple types: Package, Town, Village, Place, and the root type that
includes all objects. We have illustrated the use of simple types in the operator encoding;
however, they often do not provide su�cient exibility.

For example, consider the type hierarchy in Figure 2.17 and suppose that truck may
get in extra fuel in a town or city, but not in a village. We cannot encode this constraint
with simple types, unless we de�ne an additional type. The prodigy language includes a
mechanism for de�ning complex constraints, through disjunctive and functional types.

Disjunctive types

We illustrate the use of a disjunctive type in Figure 2.17, where it speci�es the possible values
of <from> and <place>. The user speci�es a disjunctive type as a set of simple types; in our
example, it includes Town and City. When the problem solver instantiates the corresponding
variable, it uses an object that belongs to any of these types. For instance, the system may
use the leave-town operator for departing from a town or city.

2.3. EXTENDED DOMAIN LANGUAGE 59

(truck-at <place>)
Eff:

fuel(<place>)
<place>: type (or Town City)
Pre:

add (extra-fuel)

PlacePackage

TownCity Village

Type Hierarchy

<to>: type Place
(truck-at <from>)

leave-town(<from>, <to>)

Pre:

Eff:

<from>: type (or Town City)

add (truck-at <to>)
del (truck-at <from>)

State

Figure 2.17: Disjunctive type: The <from> and <place> variables are declared as (or Town City),

which means that they may be instantiated with objects of two simple types, Town and City.

(b) Pseudocode for the function.

(c) Actual LISP function.

(truck-at <from>)

leave-town(<from>, <to>)

Pre:

Eff:

<from>: type (or Town City)

add (truck-at <to>)
del (truck-at <from>)

<to>: type Place
connected(<from>,<to>)

(<from>, <to>)
If <from> = <to>,

then return False;
else, return True.

(a) Use of a functional type.

(defun connected (<from> <to>)

connected

(not (eq <from> <to>)))

Figure 2.18: Functional type: When prodigy instantiates leave-town, it ensures that <from>

and <to> are connected by a road. The user has to implement a boolean Lisp function for testing

the connectivity. We give an example function, which de�nes the fully connected graph of roads.

Functional types

We give an example of a functional type in Figure 2.18, where it limits the values of the <to>
variable. The description of a functional type consists of two parts: a simple or disjunctive
type, and a boolean test function. The system �rst identi�es all objects of the speci�ed simple
or disjunctive type, and then eliminates the objects that do not satisfy the test function. The
remaining objects are the valid values of the declared variable. In our example, the valid
values of the <to> variable include all places that have road connections with the <from>

location.

The boolean function is an arbitrary Lisp procedure, whose arguments are the operator
variables. The functionmust input the variable described by the functional type. In addition,
it may input variables declared before this functional type; however, the function cannot
input variables declared after it. For example, we use the <from> variable in limiting the
values of <to>; however, we cannot use the <to> variable as an input to a test function for
<from>, because of the declaration order.

For instance, if every place is connected with every other place except itself, then we
use the test function given in Figure 2.18(b). The domain encoding must include a Lisp
implementation of this function, as shown in Figure 2.18(c).

60 CHAPTER 2. PRODIGY SEARCH

Use of test functions

When the system instantiates a variable with a functional type, it identi�es all objects of the
speci�ed simple or disjunctive type, prunes the objects that do not satisfy the test function,
and then selects an object from the remaining set. If the user speci�es not only functional
types but also control rules, which further limit suitable instantiations, then the generation
of instantiated operators becomes a complex matching problem. Wang [1992] investigated
it and developed an e�cient matching algorithm.

Test functions may use any information about the current incomplete plan, other nodes
in the search space, and the global state of the system, which allows unlimited exibility
in constraining operator instantiations. In particular, they enable us to encode functional
e�ects, that is, operator e�ects that depend on the current state.

Generator functions

The system also supports the use of generator functions in the speci�cation of variable types.
These functions generate and return a set of allowed values, instead of testing the available
values. The user has to specify a simple or disjunctive type along with a generator function.
When the system uses the function, it checks whether all returned objects belong to the
speci�ed type and prunes the extraneous objects.

In Figure 2.18, we give an example that involves both a test function, called positive, and
a generator function, decrement. In this example, the system keeps track of the available
space in the trunk. If there is no space, it cannot load more packages. We use the generator
function to decrement the available space after loading a package. The function always
returns one value, which represents the remaining space.

When the user speci�es a simple or disjunctive type used with a generator function,
she may de�ne a numerical type that includes in�nitely many values. For instance, the
Trunk-Space type in Figure 2.18 may comprise all natural numbers. On the other hand, the
generator function always returns a �nite set. The prodigy manual [Carbonell et al., 1992]

contains a more detailed description of in�nite types.

2.4 Search control

The e�ciency of problem solving depends on the search space and the order of expanding
nodes of the space. The nondeterministic prodigy algorithm in Figure 2.32 de�nes the
search space, but does not specify the exploration order. The algorithm has several decision
points (see Figure 2.33), which require heuristics for selecting appropriate branches of the
search space.

The prodigy architecture includes a variety of search-control mechanisms, which com-
bine general heuristics, domain-speci�c experience, and advice by the human user. Some
of the basic mechanisms are an integral part of the search algorithm, hard-coded into the
system; however, most mechanisms are optional, and the user can enable or disable them at
her discretion.

2.4. SEARCH CONTROL 61

PlacePackage

TownCity Village

County

Type Hierarchy

If <old-space>
positive

then return True;
else, return False.

(<old-space>)

Test Function

<pack>: type Package

Pre: (at <pack> <place>)

(if (fragile <pack>)
add (broken <pack>))

del (at <pack> <place>)

load(<pack>,<place>,
<old-space>,<new-space>)

<new-space>: type Trunk-Space

<old-space>: type Trunk-Space
<place>: type Place

positive(<old-space>)

decrement(<old-space>)

(truck-at <place>)

Eff:

(empty <old-space>)

add (in-truck <pack>)
del (empty <old-space>)
add (empty <new-space>)

If
(<old-space>)decrement

then signal an error;
else, return {

<old-space>

<old-space>

Generator Function

(defun decrement (<old-space>)

(defun positive (<old-space>)
(> <old-space> 0)

Actual Lisp Functions

= 0,

> 0,

- 1 }.

(list (- <old-space> 1))

objects
0 4321

Trunk-Space

Figure 2.19: Generator function: The user provides a Lisp function, called decrement, which

generates instances of <new-space>; these instances must belong to the speci�ed type, Trunk-Space.

We outline some control mechanisms, including heuristics for avoiding redundant search
(Section 2.4.1), main knobs for adjusting the search strategy (Section 2.4.2), and the use of
control rules to guide the search (Section 2.4.3). The reader may �nd an overview of other
control techniques in the article by Blythe and Veloso [1992], which explains dependency-
directed backtracking in prodigy, the use of limited look-ahead, and some heuristics for
choosing appropriate subgoals and instantiations.

2.4.1 Avoiding redundant search

We describe three basic techniques for eliminating redundant branches of the search space.
These techniques improve the performance in almost all domains and, hence, they are hard-
coded into the search algorithm, which means that the user cannot turn them o�.

62 CHAPTER 2. PRODIGY SEARCH

(pack-1,
ville-1)

unload

(truck-at
ville-1)

(in-truck
pack-1)load

(pack-1,
ville-1)(truck-at

ville-1)

Initial State Goal

ville-1)
(at pack-1

Statement

town-1)
(at pack-1

(truck-at
town-1)

ville-1)
(at pack-1

Figure 2.20: Goal loop in the tail: The precondition (at pack-1 ville-1) of the load operator is the

same as the goal literal; hence, the solver has to backtrack and choose another operator.

l
l

x

z
y

Figure 2.21: Detection of goal loops: The backward changer compares the precondition literals of

a newly added operator z with the links between z and the goal statement. If some precondition l

is identical to one of the link literals, then the solver backtracks.

Goal loops

We present a mechanism that prevents prodigy from running in simple circles. To illustrate
it, consider the problem of delivering pack-1 from town-1 to ville-1 (see Figure 2.20). The solver
�rst adds unload(pack-1,ville-1) and then may try to achieve its precondition (in-truck pack-1)

by load(pack-1,ville-1); however, the precondition (at pack-1 ville-1) of load is identical to the
goal and, hence, achieving it is as di�cult as solving the original problem.

We call it a goal loop, which arises when a precondition of a newly added operator is
identical to the literal of some link on the path from this operator to the goal statement.
We illustrate it in Figure 2.21, where thick links mark the path from a new operator z to
the goal. The precondition l of z makes a loop with an identical precondition of x, achieved
by y.

When the problem solver adds an operator to the tail, it compares the operator's precon-
ditions with the links between this operator and the goal. If the solver detects a goal loop, it
backtracks and tries either a di�erent instantiation of the operator or an alternative operator
that achieves the same subgoal. For example, the solver may generate a new instantiation
of the load operator, load(pack-1,town-1).

State loops

The problem solver also watches for loops in the head of an incomplete solution, called state

loops. Speci�cally, it veri�es that the current state di�ers from all previous states. If the
current state is identical to some earlier state (see Figure 2.22a), then the solver discards
the current incomplete solution and backtracks.

We illustrate a state loop in Figure 2.22, where the application of two opposite operators,
load and unload, leads to a repetition of an intermediate state. The solver would detect
this redundancy and either delay the application of unload or use a di�erent instantiation.

2.4. SEARCH CONTROL 63

(b) Example of a loop.

I C C

(at pack-1
town-1)

town-1)

(truck-at
town-1)

(at pack-2

town-1)
(pack-1,
load

town-1)
(pack-2,
load

town-1)
(pack-2,
unload

town-1)
(at pack-2

(truck-at
town-1)

(in-truck
pack-1)

town-1)
(at pack-2

(truck-at
town-1)

(in-truck
pack-1)

State
Initial

State
Intermediate

State
Current

(a) State loop.

Figure 2.22: State loops in the head of an incomplete solution: If the current state C is the same

as one of the previous states, then the problem solver backtracks. For example, if prodigy applies

unload(pack-2,town-1) immediately after load(pack-2,town-1), then it creates a state loop.

Satis�ed links

Next, we describe the detection of redundant tail operators, illustrated in Figure 2.23. In this
example, prodigy is solving the problem in Figure 2.2, and it has constructed the tail shown
in Figure 2.23(a). Note that the literal (truck-in ville-1) is a precondition of two di�erent oper-
ators in this solution, unload(pack-1,ville-1) and unload(pack-2,ville-1). Thus, they introduce
two identical subgoals, and the solver adds two copies of the operator leave-town(town-
1,ville-1) to achieve these subgoals.

Such situations arise because prodigy links each tail operator to only one subgoal, which
simpli�es the maintenance of links. When the solver applies an operator, it detects and skips
redundant parts of the tail. For example, suppose that it has applied the two load operators
and one leave-town, as shown in Figure 2.23(b). The precondition (truck-in ville-1) of the
tail operator unload now holds in the current state, and the solver skips the tail operator
leave-town, linked to this precondition.

When a tail operator achieves a precondition that holds in the current state, we call the
corresponding link satis�ed. We show this situation in Figure 2.24(a), where the precondi-
tion l of x is satis�ed, which makes the dashed operators redundant.

The problem solver keeps track of satis�ed links, and updates their list after each mod-
i�cation of the current state. When the solver selects a tail operator to apply (line 1b
in Figure 2.8) or a subgoal to achieve (line 1c), it ignores the tail branches that support
satis�ed links. Thus, it would not consider the dashed operators in Figure 2.24 and their
preconditions.

If the algorithm applies the operator x, it discards the dashed branch that supports a
precondition of x (Figure 2.24b). This strategy allows the deletion of redundant operators
from the tail. Note that the solver discards the dashed branch only after applying x. If it
decides to apply some other operator before x, it may delete l, in which case dashed operators
become useful again.

64 CHAPTER 2. PRODIGY SEARCH

Initial State

town-1)

(truck-at
town-1)

(at pack-1

(at pack-2

town-1)

pack-2)

pack-1)

(truck-at
town-2)

(in-truck

(in-truck

Current State

(pack-1,
unload

ville-1)

(town-1,

leave-
town

ville-1)
(pack-2,
unload

ville-1)

(town-1,

leave-
town

ville-1)town-1)
(pack-2,
load

town-1)
(pack-1,
load

(at pack-1
ville-1)

(at pack-2
ville-1)

Goal
Statement

town-1)
(pack-1,
load

(pack-1,
unload

ville-1)
(town-1,

leave-
town

ville-1)

town-1)
(pack-2,
load

(pack-2,
unload

ville-1)
(town-1,

leave-
town

ville-1)

(a)

(b)

Figure 2.23: Satis�ed link: After the solver has applied three operators, it notices that all pre-

conditions of unload(pack-2,ville-1) hold in the current state; hence, it omits the tail operator

leave-town, which is linked to a satis�ed precondition of unload.

2.4.2 Knob values

The prodigy architecture includes several knob variables, which allow the user to adjust
the search strategy to a current domain. and changes in their values may have a drastic
impact on performance. Some of the knobs are numerical values, such as the search depth,
whereas others specify the choices among alternative techniques and heuristics. We list some
of the main knob variables, which were used in our experiments with the Shaper system.

Depth limit

The user usually limits the search depth, which results in backtracking upon reaching the
pre-set limit. If the system explores all branches of the search space to the speci�ed depth and
does not �nd a solution, then it terminates with failure. Note that the number of operators
in a solution is proportional to the search depth; hence, limiting the depth is equivalent to
limiting the solution length.

After adding operator costs to the prodigy language, we provided a knob for limiting
the solution cost. If the system constructs a partial solution whose cost is greater then the
limit, it backtracks and considers an alternative branch. If the user bounds both search
depth and solution cost, the solver backtracks upon reaching either limit.

2.4. SEARCH CONTROL 65

(a)

(b)

x
l

l
y

yx

Figure 2.24: Identi�cation of satis�ed links: The solver keeps track of all link literals that are

satis�ed in the current state, and disregards the tail operators that support these satis�ed literals.

The e�ect of these bounds varies across domains and speci�c problems. Sometimes, they
improve not only solution quality but also e�ciency, by preventing a long descent into a
branch that has no solutions. In other domains, they cause an extensive search instead of
fast generation of a suboptimal solution. If the search space has no solution within the
speci�ed bound, then the system fails to solve the problem, which means that a depth limit
may cause a failure on a solvable problem.

Time limit

By default, the problem solver runs until it either �nds a solution or exhausts the available
search space. If it takes too long, the user may enter a keyboard interrupt or terminate the
execution.

Alternatively, she may pre-set a time limit before invoking the solver and then the system
automatically interrupts the search upon reaching this limit. We will analyze the role of time
limits in Chapter 7.

The user may also bound the number of expanded nodes in the search space, which causes
an interrupt upon reaching the speci�ed node number. If she limits both running time and
node number, then the search terminates after hitting either bound.

Search strategies

The system normally uses depth-�rst search and terminates upon �nding any complete
solution. The user has two options for changing this default behavior. First, prodigy
allows breadth-�rst exploration; however, it is usually much less e�cient than the default
strategy. Moreover, some heuristics and learning modules do not work with breadth-�rst
search.

Second, the user may request all solutions to a given problem. Then, the solver explores
the entire search space and outputs all available solutions, until it exhausts the space, gets
a keyboard interrupt, or reaches a time or node bound. The system also allows search for
an optimal solution. This strategy is similar to the search for all solutions; however, when
�nding a new solution, the system reduces the cost bound and then looks only for better
solutions. If the solver gets an interrupt, it outputs the best solution found by that time.

66 CHAPTER 2. PRODIGY SEARCH

and
and

(truck-at <place>) holds in the current state
<place> if of type Town

Then select instantiating <from> with <place>

If (truck-at <to>) is the current subgoal
and leave-town(<from>,<to>) is used to achieve it If (truck-at <place>) is a subgoal

Then reject the subgoal (truck-at <place>)

and (in-truck <pack>) is a subgoal

(b) Reject Rule(a) Select Rule

Figure 2.25: Examples of control rules, which encode domain-speci�c heuristics for guiding

prodigy search. The user may provide rules that represent her knowledge about the domain.

Moreover, the system includes several mechanism for automatic construction of control heuristics.

2.4.3 Control rules

The e�ciency of depth-�rst search crucially depends on the heuristics for selecting appro-
priate branches of the search space, as well as on the order of exploring these branches. The
prodigy architecture provides a general mechanism for specifying search heuristics, in the
form of control rules. These rules usually encode domain-speci�c knowledge, but they may
also represent general domain-independent techniques.

A control rule is an if-then rule that speci�es appropriate branching decisions, which may
depend on the current state, subgoals, and other features of the current incomplete solution,
as well as on the global state of the search space. The prodigy domain language provides
a mechanism for hand-coding control rules. In addition, the architecture includes several
learning mechanisms for automatic generation of domain-speci�c rules. The development of
these mechanisms has been one of the main goals of the prodigy project.

The system uses three rule types, called select, reject, and prefer rules. A select rule points
out appropriate branches of the search space. When its applicability conditions match the
current incomplete solution, the rule generates one or more promising choices. For example,
consider the control rule in Figure 2.25(a). When the problem solver uses the leave-town
operator for moving the truck to some destination, the rule indicates that the truck should
go there directly from its current location.

A reject rule determines inappropriate choices and removes them from the search space.
For instance, the rule in Figure 2.25(b) indicates that, if prodigy has to load the truck and
drive it to a certain place, then it should delay driving until after loading.

Finally, a prefer rule speci�es the order of exploring branches, without pruning any of
them. For example, we may replace the select rule in Figure 2.25 with an identical prefer
rule, which would mean that the system should �rst try going directly from the truck's
current location to the destination, but keep the other options open for later consideration.
For some problems, this rule is more appropriate than the more restrictive select rule.

At every decision point, the system identi�es all applicable rules and uses them to make
appropriate choices. First, it uses an applicable select rule to choose candidate branches of
the search space. If the current incomplete solution matches several select rules, the system
arbitrarily selects one of them. If no select rules are applicable, then all available branches
become candidates. Next, prodigy applies all reject rules that match the current solution
and prunes every candidate branch indicated by at least one of these rules. Note that select
and reject rules sometimes prune branches that lead to a solution; hence, they may prevent

2.5. COMPLETENESS 67

the system from solving some problems.
After using select and reject rules to prune branches at the current decision point,

prodigy applies prefer rules to determine the order of exploring the remaining branches. If
the system has no applicable prefer rules, or the applicable rules contradict each other, then
it relies on general heuristics for selecting the exploration order.

If the system uses numerous control rules, matching of their conditions at every decision
point may take signi�cant time, which sometimes defeats the bene�ts of the right selection
[Minton, 1990]. Wang [1992] has implemented several techniques that improve the matching
e�ciency; however, the study of the trade-o� between matching time and search reduction
remains an open problem.

2.5 Completeness

A search algorithm is complete if it �nds a solution for every solvable problem. This notion
does not involve a time limit, which means that an algorithm may be complete even if it
takes an impractically long time for some problems.

Even though researchers used the prodigy search engine in multiple studies of learning
and search, the question of its completeness had remained unanswered for several years.
Veloso demonstrated the incompleteness of prodigy4 in 1995. During the work on Shaper,
we further investigated completeness issues, in collaboration with Blythe.

The investigation showed that, to date, all prodigy algorithms had been incomplete;
moreover, it revealed the speci�c reasons for their incompleteness. Then, Blythe implemented
a complete solver by extending the prodigy4 search engine. We compared it experimentally
with the incomplete system, and demonstrated that the extended algorithm is almost as
e�cient as prodigy and solves a wider range of problems [Fink and Blythe, 1998]. We now
report the results of this work on completeness.

We have already shown that prodigy1 and prodigy2 do not interleave goals and some-
times fail to solve very simple problems. nolimit, prodigy4, and flecs use a more exible
strategy, and they fail less frequently. Veloso and Stone [1995] proved the completeness of
flecs using simplifying assumptions, but their assumptions hold only for a limited class of
domains.

The incompleteness of prodigy is not a major handicap. Since the search space of most
problems is very large, a complete exploration of the space is not feasible, which makes any
problem solver \practically" incomplete. If incompleteness comes up only in a fraction of
problems, it is a fair payment for e�ciency.

If we achieve completeness without compromising e�ciency, we get two bonuses. First,
we ensure that the system solves every problem whose search space is su�ciently small for
complete exploration. Second, incompleteness may occasionally rule out a simple solution
to a large-scale problem, causing an extensive search instead of an easy win. If a solver is
complete, it does not rule out any solutions and is able to �nd such a simple solution early
in the search.

The incompleteness of means-ends analysis in prodigy comes from two sources. First,
the problem solver does not add operators for achieving preconditions that are true in the
current state. Intuitively, it ignores potential troubles until they actually arise. Sometimes,

68 CHAPTER 2. PRODIGY SEARCH

it is too late and the solver fails because it did not take measures earlier. Second, prodigy
ignores the conditions of if-e�ects that do not achieve any subgoal. Sometimes, such e�ects
negate goals or preconditions of other operators, which may cause a failure.

We achieve completeness by adding crucial new branches to the search space. The main
challenge is to minimize the number of new branches, in order to preserve e�ciency. We
describe a method for identifying the crucial branches, based on the use of the informa-
tion learned in failed old branches, and give an extended search algorithm (Sections 2.5.1
and 2.5.2). We believe that this method will prove useful for developing complete versions
of other search algorithms.

The extended domain language of prodigy has two features that aggravate the com-
pleteness problem (Section 2.5.3), which are not addressed in the extended algorithm. First,
eager inference rules may mislead the goal-directed reasoner and cause a failure. Second,
functional types allow the reduction of every computational task to a prodigy problem,
and some problems are undecidable.

We prove that the extended algorithm is complete for domains that have no eager infer-
ence rules and functional types (Section 2.5.4). Then, in Section 2.5.5, we give experimental
results on the relative performance of prodigy4 and the extended solver. We conclude with
the summary and discussion of the main results (Section 2.5.6).

2.5.1 Limitation of prodigy means-ends analysis

gps, prodigy1, and prodigy2 were not complete because they did not explore all branches
in their search space. The incompleteness of later algorithms has a deeper reason: they do
not try to achieve tail preconditions that hold in the current state.

For example, suppose that the truck is in town-1, pack-1 is in ville-1, and the goal is to
get pack-1 to town-1. The only operator that achieves the goal is unload(pack-1,town-1), so
prodigy begins by adding it to the tail (see Figure 2.26a). The precondition (truck-at town-1)
of unload is true in the initial state. The problem solver may achieve the other precondition,
(in-truck pack-1), by adding load(pack-1,ville-1). The precondition (at pack-1 ville-1) of load is
true in the initial state, and the other precondition is achieved by leave-town(town-1,ville-1),
as shown in Figure 2.26(a).

Now all preconditions are satis�ed, and the solver's only choice is to apply leave-town
(Figure 2.26b). The application leads straight into an inescapable trap, where the truck is
stranded in ville-1 without a supply of extra fuel. The algorithm may backtrack and consider
di�erent instantiations of load, but they will eventually lead to the same trap.

To avoid such traps, a solver must sometimes add operators for achieving literals that
are true in the current state and have not been linked with any tail operators. Such lit-
erals are called anycase subgoals. The challenge is to identify anycase subgoals among the
preconditions of tail operators.

A simple method is to view all preconditions as anycase subgoals. Veloso and Stone [1995]
considered this approach in building a complete version of their flecs search algorithm; how-
ever, it proved to cause an explosion in the number of subgoals, leading to gross ine�ciency.

Kambhampati and Srivastava [1996b] used a similar approach to ensure the completeness
of the Universal Classical Planner. Their system may add operators for achieving precondi-

2.5. COMPLETENESS 69

(a)

(b)

Goal

(truck-at
town-1) (truck-at

ville-1)
(town-1,

leave-
town

ville-1)

(at pack-1
ville-1)

ville-1)
(pack-1,
load

(in-truck
pack-1)

(truck-at
town-1)

(pack-1,
unload

town-1)
(at pack-1

town-1)

(truck-at
town-1)

(at pack-1
ville-1)

Initial State
Statement

Goal

(at pack-1
town-1)

Initial State
Statement

(truck-at
town-1)

(at pack-1
ville-1)

(truck-at
town-1)

(at pack-1
ville-1)

(town-1,

leave-
town

ville-1)

Current State

ville-1)
(pack-1,
load

(pack-1,
unload

town-1)

Figure 2.26: Incompleteness of means-ends analysis in the prodigy system: The solver does not

consider fueling the truck before the application of leave-town(town-1,ville-1). Since the truck

cannot leave ville-1 without extra fuel, prodigy fails to �nd a solution.

not l l x

l x l x

l is anycasel is not anycase

l x

(d)

(a)

(b)

(c)

Figure 2.27: Identifying an anycase subgoal: When prodigy adds a new operator x (a), the pre-

conditions of x are not anycase subgoals (b). If some application negates a precondition l of x (c),

the solver marks l as anycase and expands the corresponding new branch of the search space (d).

tions that are true in the current state, if the preconditions are not explicitly linked to the
corresponding literals of the state. Even though this approach is more e�cient than viewing
all preconditions as anycase subgoals, it considerably increases branching and often makes
search impractically slow.

A more e�ective solution is based on the use of information learned in failed branches of

the search space. Let us look again at Figure 2.26. The problem solver fails because it does
not add any operator to achieve the precondition (truck-at town-1) of unload, which is true
in the initial state. The solver tries to achieve this precondition only when the application of
leave-town has negated it; however, after the application, the precondition can no longer
be achieved.

We see that means-ends analysis may fail when some precondition is true in the current
state, but is later negated by an operator application. We use this observation to identify
anycase subgoals: a precondition or a goal literal is an anycase subgoal if, at some point of

the search, an application negates it.

70 CHAPTER 2. PRODIGY SEARCH

Goal

(in-truck
pack-1)

(truck-at
town-1)

(pack-1,
unload

town-1)
(at pack-1

town-1)

(truck-at
town-1)

(at pack-1
ville-1)

Initial State
Statement

(truck-at
ville-1)

(at pack-1
ville-1)

(town-1,

leave-
town

ville-1) ville-1)
(pack-1,
load

(ville-1,

leave-
village

town-1)
(town-1)
fuel

(truck-at
ville-1)

fuel)
(extra-

(truck-at
town-1)

(truck-at
town-1)

Figure 2.28: Achieving the subgoal (track-at town-1), which is satis�ed in the current state.

First, the solver constructs a three-operator tail, shown by solid rectangles. Then, it applies the

leave-town operator and marks the precondition (truck-at town-1) of unload as an anycase sub-

goal. Finally, prodigy backtracks and adds the two dashed operators, which achieve this subgoal.

In Figure 2.27, we illustrate a technique for identifying anycase subgoals in Figure 2.27.
Suppose that the problem solver adds an operator x, with a precondition l, to the tail (node a
in the picture). The solver creates the branch where l is not an anycase subgoal (node b).
If, at some descendent, an application of some operator negates l and if it was true before
the application, then l is marked as anycase (node c). If the solver fails to �nd a solution
in this branch, it eventually backtracks to node a. If l is marked as anycase, the problem
solver creates a new branch, where l is an anycase subgoal (node d).

If several preconditions of x are marked as anycase, the solver creates the branch where
they all are anycase subgoals. Note that, during the exploration of this new branch, the
algorithm may mark some other preconditions of x as anycase. If it again backtracks to
node a, then it creates a branch where the newly marked preconditions are also anycase
subgoals.

Let us see how this mechanism works for the example problem. The solver �rst assumes
that the preconditions of unload(pack-1,town-1) are not anycase subgoals. It builds the tail
shown in Figure 2.26 and applies leave-town, negating the precondition (truck-at town-1) of
unload. The solver then marks this precondition as anycase.

Eventually, the algorithm backtracks, creates the branch where (truck-at town-1) is an
anycase subgoal, and uses the operator leave-village(ville-1,town-1) to achieve this sub-
goal (see Figure 2.28). The problem solver then constructs the tail shown in Figure 2.28,
which leads to the solution \fuel(town-1), leave-town(town-1,ville-1), load(pack-1,ville-1),
leave-village(ville-1,town-1), unload(pack-1,town-1)" (note that the precondition (truck-at
ville-1) of leave-village is satis�ed after applying leave-town).

When the solver identi�es the set of all satis�ed links (Section 2.4.1), it does not includes
anycase links into this set; hence, it never ignores the tail operators that support anycase
links. For example, consider the tail in Figure 2.28: the anycase precondition (truck-at town-1)

of unload holds in the state, but the solver does not ignore the operators that support it.
We also have to modify the detection of goal loops, described in Section 2.4.1. For

instance, consider again Figure 2.28: the precondition (truck-at town-1) of fuel makes a loop
with the identical precondition of unload; however, the solver should not backtrack.

Since this precondition of unload is an anycase subgoal, it must not cause goal-loop
backtracking. We use Figure 2.21 to generalize this rule: if the precondition l of x is an
anycase subgoal, then the identical precondition of z does not make a goal loop.

2.5. COMPLETENESS 71

Initial State

(truck-at
town-1)

(at pack-1
town-1)

pack-1)

pack-1)

(broken

(broken
(fragile
pack-1)

town-1)
(at pack-1

(truck-at
town-1)

(pack-1,
load

town-1)

Goal Statement

pack-1)
(in-truck

not
(broken
pack-1)

Current State

Initial State

(truck-at

(fragile

(at pack-1

town-1)

pack-1)

town-1) (in-truck
pack-1)

Goal Statement

(pack-1,
load

town-1) not
(broken
pack-1)

(at pack-1

(truck-at

town-1)

town-1)

(a)

(b)

Figure 2.29: Failure because of a clobber e�ect: The application of the load operator results in

the breakage of the package, and no further actions can undo this damage.

2.5.2 Clobbers among if-e�ects

In Figure 2.29, we illustrate another source of incompleteness: the use of if-e�ects. The goal
is to load fragile pack-1, without breaking it. The problem solver adds load(pack-1,town-1)
to achieve (in-truck pack-1). The preconditions of load and the goal \not (broken pack-1)"
hold in the current state (Figure 2.29a), and the solver's only choice is to apply load. The
application causes the breakage of pack-1 (Figure 2.29b), and no further search improves the
situation. The solver may try other instances of load, but they also break the package.

The problem arises because an e�ect of load negates the goal \not (broken pack-1);" we
call it a clobber e�ect. The application reveals the clobber, and the solver backtracks and
tries to �nd another instance of load, or another operator, which does not cause clobbering.
If the clobber e�ect has no conditions, backtracking is the only way to remedy the situation.

If the clobber is an if-e�ect, we can try another alternative: negate its conditions [Ped-
nault, 1988a; Pednault, 1988b]. It may or may not be a good choice; perhaps, it is better to
apply the clobber and then re-achieve the negated subgoal. For example, if we had a means
for repairing a broken package, we could use it instead of cushioning. We thus need to add
a new decision point, where the algorithm determines whether it should negate a clobber's
conditions.

Introducing this new decision point for every if-e�ect will ensure completeness, but may
considerably increase branching. We avoid this problem by identifying potential clobbers
among if-e�ects. We detect them in the same way as anycase subgoals. An e�ect is marked as

a potential clobber if it actually deletes some subgoal in one of the failed branches. The deleted
subgoal may be a literal of the goal statement, an operator precondition, or a condition of

72 CHAPTER 2. PRODIGY SEARCH

do not worry about e

(c)

e
x(b)

ex

(d)
cond
not

e
x

negate e’s conditions

e
x(a)

Figure 2.30: Identifying a clobber e�ect. When the solver adds a new operator x (a), it does not try

to negate the conditions of x's if-e�ects (b). When applying x, prodigy checks whether if-e�ects

negate any subgoals that were true before the application (c). If an if-e�ect e of x negates some

subgoal, the solver marks e as a clobber and adds the respective branch to the search space (d).

an if-e�ect that achieves another subgoal. Thus, we again use information learned in failed
branches to guide the search.

We illustrate the mechanism for identifying clobbers in Figure 2.30. Suppose that the
problem solver adds an operator x with an if-e�ect e to the tail, and that this operator is
added for the sake of some other of its e�ects (node a in Figure 2.30); that is, e is not linked
to a subgoal. Initially, the problem solver does not try to negate e's conditions (node b). If,
at some descendent, x is applied and its e�ect e negates a subgoal that was true before the
application, then the solver marks e as a potential clobber (node c). If the solver fails to
�nd a solution in this branch, it backtracks to node a. If e is now marked as a clobber, the
solver adds the negation of e's conditions, cond, to the operator's preconditions (node d). If
an operator has several if-e�ects, the solver uses a separate decision point for each of them.

In the example of Figure 2.29, the application of load(pack-1,town-1) negates the goal
\not (broken pack-1)" and the problem solver marks the if-e�ect of load as a potential clobber
(see Figure 2.31). Upon backtracking, the solver adds the negation of the clobber's condition
(fragile pack-1) to the preconditions of load. The solver uses cushion to achieve this new
precondition and generates the solution \cushion(pack-1), load(pack-1,town-1)."

We have implemented the extended search algorithm, called rasputin1, which achieves
anycase subgoals and negates the conditions of clobbers. Its main di�erence from prodigy4
is the backward-chaining procedure, summarized in Figure 2.32. We show its main decision
points in Figure 2.33, where thick lines mark the points absent in prodigy.

2.5.3 Other violations of completeness

The prodigy system has two other sources of incompleteness, which arise from the advanced
features of the domain language. We have not addressed them in our work; hence, the use
of these language features may violate the completeness of the extended algorithm.

1The Russian mystic Grigori Rasputin used the biblical parable of the Prodigal Son to justify his de-

bauchery. He tried to make the story of the Prodigal Son as complete as possible, which is similar to our

goal. Furthermore, his name comes from the Russian word rasputie, which means decision point.

2.5. COMPLETENESS 73

Initial State

(truck-at

(at pack-1

town-1)

town-1)

(pack-1,
load

town-1)

do not worry about delete the conditions of
(broken pack-1)(broken pack-1)

(pack-1,
load

town-1)

(broken
pack-1)

(pack-1,
load

town-1)
(broken
pack-1)

(pack-1)
cushion

(pack-1,
load

town-1)

town-1)

pack-1)

town-1)

(at pack-1

(truck-at

(fragile

(pack-1,
load

town-1)

(in-truck
pack-1)

Goal Statement

not(broken
pack-1) (broken

pack-1)

(at pack-1

(truck-at

town-1)

town-1)

(fragile
pack-1)

FAILURE

Figure 2.31: Negating a clobber. When load is applied, its if-e�ect clobbers one of the goal literals.

The solver backtracks and adds the cushion operator, which negates the conditions of this if-e�ect.

Eager inference rules

If a domain includes eager rules, the system may fail to solve simple problems. For exam-
ple, consider the rules in Figure 2.14 and the problem in Figure 2.34(a), and suppose that
add-truck-in is an eager rule. The truck is initially in town-1, within county-1, and the goal
is to leave this county.

Since the preconditions of add-truck-in hold in the initial state, the system applies it
at once and adds (truck-in county-1), as shown in Figure 2.34(b). If we applied the opera-
tor leave-town(town-1,town-2), it would negate the rule's preconditions, which would cause
the deletion of (truck-in county-1). In other words, the application of leave-town would
immediately solve the problem.

The system does not �nd this solution because it inserts new operators only when they
achieve some subgoal, whereas the e�ects of leave-town do not match the goal statement.
Since the domain has no operators with a matching e�ect, the problem solver terminates
with failure.

To summarize, the solver sometimes has to negate the preconditions of eager rules that
have clobber e�ects, but it does not consider this option. We plan to implement the negation
of clobber rules as in the future.

74 CHAPTER 2. PRODIGY SEARCH

rasputin-Back-Chainer
1c. Pick a literal l among the current subgoals.

Decision point: Choose one of the subgoal literals.

2c. Pick an operator or inference rule step that achieves l.
Decision point: Choose one of such operators and rules.

3c. Add step to the tail and establish a link from op to l.
4c. Instantiate the free variables of step.

Decision point: Choose an instantiation.

5c. If the e�ect that achieves l has conditions,
then add them to step's preconditions.

6c. Use data from the failed descendants to identify anycase preconditions of step.
Decision point: Choose anycase subgoals among the preconditions.

7c. If step has if-e�ects not linked to l, then:
use data from the failed branches to identify clobber e�ects;
add the negations of their conditions to the preconditions.

Decision point(s): For every clobber, decide whether to negate its conditions.

Figure 2.32: Backward-chaining procedure of the rasputin problem solver; it includes new deci-

sion points (lines 6c and 7c), which ensure completeness of prodigy means-ends analysis.

1c. Choose an unachieved literal

2c. Choose an operator or inference
rule that achieves this literal

3c. Choose an instantiation
for its variables

6c. Choose anycase subgoals
among its preconditions

7c. For every clobber effect, decide
whether to negate its conditions

Figure 2.33: Main decision points in rasputin's backward-search procedure, summarized in Fig-

ure 2.32; thick lines show the decision points that di�erentiate it from prodigy (see Figure 2.8).

2.5. COMPLETENESS 75

(within town-1 county-1)
(within town-2 county-2)

(truck-at town-1)
Initial State

(a) Example problem: the truck has to leave county-1.

town-1, town-2: type Town
county-1, county-2: type County

Set of Objects

not (truck-in county-1)

Goal Statement

(b) Application of an inference rule.

Initial State

town-2

(truck-at
town-1)

(within
town-1
county-1)

county-2)

(within

town-2

town-1
county-1)

county-2)

(within

(within
county-1)

(truck-in
town-1)

(truck-at

Current State

(town-1,
add-truck-in

county-1)

Goal Statement

(truck-in
county-1)

not

Figure 2.34: Failure because of an eager inference rule: The prodigy solver does not attempt to

negate the preconditions of the rule add-truck-in(town-1,county-1), which clobbers the goal.

Type Hierarchy

Root-Type

op(<var>)

Eff:

<var>: type Root-Type

add (pred <var>)
test(<var>)

Set of Objects
obj: type Root-Type

Goal Statement
(pred obj)

Figure 2.35: Reducing an arbitrary decision task to a prodigy problem; the test function is a

Lisp procedure that encodes the decision task. Since functional types allow encoding of undecidable

problems, they cause incompleteness of prodigy search.

Functional types

We next show that functional types enable the user to encode every computational decision
task as a prodigy problem. Consider the arti�cial domain and problem in Figure 2.35. If
the object obj satis�es the test function, then the solver uses the operator op(obj) to achieve
the goal; otherwise, the problem has no solution.

The test function may be any Lisp program, which has full access to all data in the
prodigy architecture. This exibility allows the user to encode any decision problem,
including undecidable and semi-decidable tasks, such as the halting problem.

Thus, we may use functional types to specify undecidable prodigy problems, and the
corresponding completeness issues are beyond the scope of classical search. A related open
problem is de�ning restricted classes of useful functions, which do not cause computational
di�culties, and ensuring completeness for these functions.

76 CHAPTER 2. PRODIGY SEARCH

step 4step 32stepstep 1

2step step 4

step 3step 1

Figure 2.36: Converting a shortest complete solution into a tail: We link every subgoal to the last

operator or inference rule that achieves it, and use these links to construct a tree-structured tail.

2.5.4 Completeness proof

If a domain has no eager inference rules, then the extended problem solver is complete. To
prove it, we show that, for every solvable problem, some sequence of choices in the solver's

decision points leads to a solution.

Suppose that a problem has a (fully instantiated) solution \step
1
; step

2
; step

3
; :::; stepn,"

where every step is either an operator or a lazy inference rule, and that no other solution
has fewer steps. We begin by de�ning clobber e�ects, subgoals, and justi�ed e�ects in the
complete solution.

A clobber is an if-e�ect such that (1) its conditions do not hold in the solution and (2) if
we applied its actions anyways, they would make the solution incorrect.

A subgoal is a goal literal or precondition such that either (1) it does not hold in the
initial state or (2) it is negated by some prior operator or inference rule. For example, a
precondition of step3 is a subgoal if either it does not hold in the initial state or it is negated
by step

1
. Every subgoal in a correct solution is achieved by some operator or inference rule;

for example, if step
1
negates a precondition of step

3
, than step

2
must achieve it.

A justi�ed e�ect is the last e�ect that achieves a subgoal or negates a clobber's conditions.
For example, if step1, step2, and step3 all achieve some subgoal precondition of step4, then
the corresponding e�ect of step

3
is justi�ed, since it is the last among the three.

If a condition literal in a justi�ed if-e�ect does not hold in the initial state, or if it is
negated by some prior step, we consider it a subgoal. Note that the de�nition of such a
subgoal is recursive: we de�ne it through a justi�ed e�ect, and a justi�ed e�ect is de�ned in
terms of a subgoal in some step that comes after it.

Since we consider a shortest solution, each step has at least one justi�ed e�ect. If we
link each subgoal and each clobber's negation to the corresponding justi�ed e�ect, we may
use the resulting links to convert the solution into a tree-structured tail, as illustrated in
Figure 2.36. If a step is linked to several subgoals, we use only one of the links in the tail.

We now show that the extended algorithm can construct this tail. If no subgoal holds
in the initial state and the solution has no clobber e�ects, then the tail construction is
straightforward. The nondeterministic algorithm creates the desired tail by always calling
Backward-Chainer rather than applying operators, choosing subgoals that correspond to the
links of the desired solution (see Line 1 in Figure 2.32), selecting the appropriate operators
and inference rules (Line 2), and generating the right instantiations (Line 4).

If some subgoal literal holds in the initial state, the problem solver �rst builds a tail that
has no operator linked to this subgoal. Then, the application of some step negates the literal,
and the solver marks it as an anycase subgoal. The algorithm can then backtrack to the
point before the �rst application and choose the right operator or inference rule for achieving
the subgoal. Similarly, if the solution has a clobber e�ect, the algorithm can detect it by

2.5. COMPLETENESS 77

applying operators and inference rules. The problem solver can then backtrack to the point
before the applications and add the right step for negating the clobber's conditions. Note
that, even if the solver always makes the right choice, it may have to backtrack for every
subgoal that holds in the initial state and also for every clobber e�ect.

Eventually, the algorithm constructs the desired tail and no head. It may then produce
the complete solution by always deciding to apply, rather than adding new tail operators,
and selecting applicable steps in the right order.

2.5.5 Performance of the extended solver

We tested the rasputin solver in three domains and compared its performance with that
of prodigy4. We present data on the relative e�ciency of the two problem solvers and
demonstrate that rasputin solves more problems than prodigy4.

We �rst give experimental results for the prodigy Logistics Domain [Veloso, 1994]. The
task in this domain is to construct plans for transporting packages by vans and airplanes.
The domain consists of several cities, each of which has an airport and postal o�ces. We
use airplanes for carrying packages between airports, and vans for delivery from and to
post o�ces within cities. This domain has no if-e�ects and does not give rise to situations
that require achieving anycase subgoals; thus, prodigy4 performs better than the complete
algorithm.

We ran both problem solvers on �fty problems of various complexities. These problems
di�ered in the number of cities, vans, airplanes, and packages. We randomly generated
initial locations of packages, vans, and airplanes, and destinations of packages. The results
are summarized in Figure 2.37(a), where each plus (+) denotes a problem instance. The
horizontal axis shows prodigy's running time and the vertical axis gives rasputin's time
on the same problems. Since prodigy wins on all problems, all pluses are above the diagonal.
The ratio of rasputin's to prodigy's time varies from 1.20 to 1.97; its mean is 1.45.

We ran similar tests in the prodigy Process-Planning Domain [Gil, 1991], which also
does not require negating e�ects' conditions or achieving anycase subgoals. The task in this
domain is to construct plans for making mechanical parts with speci�ed properties, using
available machining equipment. The ratio of rasputin's to prodigy's time in this domain
is between 1.22 and 1.89, with the mean at 1.39.

We next show results in an extended version of our Trucking Domain. We now use
multiple trucks and connect towns and villages by roads. A truck can go from one place
to another only if there is a road between them. We experimented with di�erent numbers
of towns, villages, trucks, and packages. We randomly generated road connections, initial
locations of trucks and packages, and destinations of packages.

In Figure 2.37(b), we summarize the performance of prodigy and rasputin on �fty
problems. The twenty-two problems denoted by pluses (+) do not require the clobber nega-
tion or anycase subgoals. prodigy outperforms rasputin on these problems, with a mean
ratio of 1.27.

The fourteen problems denoted by asterisks (�) require the use of anycase subgoals or the
negation of clobbers' conditions for �nding an e�cient solution, but can be solved ine�ciently
without it. rasputin wins on twelve of these problems and loses on two. The ratio of

78 CHAPTER 2. PRODIGY SEARCH

0.1 1 10
0.1

 1

10
(a) Logistics Domain.

PRODIGY (CPU sec)

R
A

S
P

U
T

IN
 (

C
P

U
 s

ec
)

0.1 1 10
0.1

 1

10
(b) Trucking Domain.

PRODIGY (CPU sec)

R
A

S
P

U
T

IN
 (

C
P

U
 s

ec
)

Figure 2.37: Comparison of rasputin and prodigy, in the (a) Logistics world and (b) Trucking

Domain. The horizontal axes give the search times of the prodigy solver, whereas the vertical

axes show the e�ciency of rasputin on the same problems. Pluses (+) and asterisks (�) mark the

problems solved by both algorithms, whereas circles (o) are the ones solved only by rasputin.

prodigy's to rasputin's time varies from 0.90 to 9.71, with the mean at 3.69. This ratio
depends on the number of required anycase subgoals: it grows with the number of such
subgoals.

Finally, the circles (o) show the sixteen problems that cannot be solved without anycase
subgoals and the negation of clobbers. prodigy hits the 10-second time limit on some of
these problems and terminates with failure on the others, whereas rasputin solves all of
them.

2.5.6 Summary of completeness results

We have extended prodigy search, in collaboration with Blythe. The new algorithm is
complete for a subset of the prodigy domain language. The full language includes two
features that may violate completeness: eager inference rules and functional types. To
our knowledge, the extended solver is the �rst complete algorithm among general-purpose
problem-solving systems that use means-ends analysis. It is about 1.5 times slower than
prodigy4 on the problems that do not require negating clobbers' conditions and achieving
anycase subgoals; however, it solves problems that prodigy cannot solve.

We developed the extended solver in three steps. First, we identi�ed the speci�c reasons
for incompleteness of previous systems. Second, we added new decision points to eliminate
these reasons, without signi�cantly increasing the search space. Third, we implemented a
search algorithm that explores the branches of the old search space �rst, and extends the
search space only after failing to �nd a solution in the old space's branches. We conjecture
that this three-step approach may prove useful for enhancing other incomplete algorithms.

The extended solver uses information from failed branches in its decisions, which means
that it must perform depth-�rst search. We cannot use breadth-�rst or best-�rst search;
however, breadth-�rst search in prodigy is impractically slow anyways, due to a large
branching factor.

Part II

Description changers

79

Chapter 3

Primary e�ects

The use of primary e�ects in goal-directed search is an e�ective approach to reducing the
problem-solving time. The underlying idea is to identify important e�ects of every operator
and apply operators only for achieving their important e�ects. Intuitively, an e�ect is not
important if it may be achieved by some other, cheaper operator.

For example, the main e�ect of lighting a �replace is to heat the house; we call it a
primary e�ect. If we have lamps in the house, then illumination is not an important result
of using the �replace. We may view it as a side e�ect, which means that we would not light
the �replace just for illuminating the room.

If a problem solver considers only the operators whose primary e�ects match the current
subgoal, and ignores operators with matching side e�ects, then it explores fewer branches
of the search space, which may result in a signi�cant e�ciency improvement. Researchers
have long recognized the advantages of this technique and incorporated it in a number of AI
systems.

For example, Fikes and Nilsson [1971; 1993] used primary e�ects to improve the quality
of solutions generated by the strips planner. Wilkins [1984] distinguished between main
and side e�ects in sipe and utilized this distinction in simplifying conict resolution. Yang
et al. [1996] provided a mechanism for specifying primary e�ects in their abtweak system.

Researchers have also used primary e�ects to improve the e�ectiveness of abstraction
problem solving. In particular, Yang and Tenenberg [1990] employed a combination of
abstraction and primary e�ects to improve the e�ciency of the abtweak search engine.
Knoblock [1994] utilized primary e�ects in the automatic generation of abstraction hier-
archies. We investigated the relationship between primary e�ects and abstraction, in col-
laboration with Yang, and developed an algorithm for automatically abstracting e�ects of
operators [Fink and Yang, 1992a].

Despite the importance of primary e�ects, this notion long remained at an informal level
and researchers did not explore the properties of search with primary e�ects. In particular,
they did not characterize appropriate selections of primary e�ects. The human user remained
responsible for identifying important e�ects, which required experience and familiarity with
the speci�c domain. An unexperienced user could provide an inappropriate selection of
primary e�ects, thus causing incompleteness or ine�ciency.

We have studied the use of primary e�ects, in collaboration with Yang, which has led

81

82 CHAPTER 3. PRIMARY EFFECTS

to a formalization of their role in problem solving, and development of algorithms for the
automatic selection of appropriate e�ects [Fink and Yang, 1997]. This work has revealed that
primary e�ects may exponentially improve the e�ciency, but choosing them appropriately
is often a di�cult task, whereas an improper selection can cause three major problems.

First, it may compromise completeness, that is, cause a failure on a solvable problem.
For example, if the �replace is the only source of light, but illumination is not its primary
e�ect, then we cannot solve the problem of illuminating the room. Second, primary e�ects
may cause generating unnecessarily costly solutions. For example, electric lamps may prove
more expensive than �rewood. Third, the use of primary e�ects may increase the search
depth, which sometimes results in an exponential increase of the search time, despite the
reduction of the branching factor.

The results of the work with Yang has been twofold. First, we have formalized the reasons
for incompleteness and generating costly solutions, and derived a condition for avoiding these
problems. Second, we have applied this result to design an inductive learning algorithm that
automatically selects primary e�ects. The formal analysis shows that the resulting selection
exponentially reduces search and ensures a high probability of completeness. We have used
the abtweak system to test the developed techniques, and con�rmed analytical predictions
with empirical results.

When developing the Shaper system, we implemented search with primary e�ects in
prodigy4 and adapted the abtweak learning techniques for the prodigy architecture.
The main di�erence from the work with Yang is the use of primary e�ects with depth-�rst
search, as opposed to abtweak's breadth-�rst strategy. We have also extended the learner
to the richer domain language of the prodigy system.

We report the results of the joint work with Yang on primary e�ects in abtweak, and
their extension for the prodigy architecture. First, we explain the use of primary e�ects
in goal-directed reasoning (Section 3.1), derive the condition for preserving completeness
(Section 3.2), and analyze the resulting search reduction (Section 3.3).

Then, we describe the automatic selection of primary e�ects, using heuristics and a
learning algorithm. A fast heuristic procedure produces an initial selection of primary e�ects
(Section 3.4), and then the inductive learner revises the initial selection, to ensure that it
does not compromise completeness and allows the system to �nd near-optimal solutions
(Section 3.5).

Finally, we describe experiments on search with the resulting primary e�ects, which
con�rm the analytical predicted search reduction. The empirical results demonstrate that
the appropriate choice of primary e�ects may lead to an exponential e�ciency improvement.
The �rst series of experiments is in the abtweak system, which uses breadth-�rst search
(Section 3.6). The second series is on the use of primary e�ects with the depth-�rst search
of the prodigy architecture (Section 3.7).

3.1 Search with primary e�ects

We describe the use of primary e�ects in goal-directed reasoning and discuss the related
trade-o� between e�ciency and solution quality. In the work on primary e�ects, we measure

3.1. SEARCH WITH PRIMARY EFFECTS 83

(a) Example of a connected world.

breakgo

(b) Operators.

Figure 3.1: Simple robot world: The robot may go through doorways and break through walls. If

all rooms are connected, then we view change of the robot's position as a side e�ect of break.

the quality of a solution by the total cost of its operators, which is a special case of the
quality functions in the generalized analysis of representations (see Section 7.3).

We give motivating examples (Section 3.1.1), formalize the notion of primary e�ects
(Section 3.1.2), and explain their role in backward chaining. The described techniques work
for most goal-directed problem solvers, including backward-chaining systems and prodigy
algorithms; however, they are not applicable to forward-chaining algorithms.

3.1.1 Motivating examples

We have used the �replace example in explaining the notion of primary e�ects and now give
two more informal examples, which illustrate the two main uses of primary e�ects: reducing
the search time and improving the solution quality. We will later formalize these examples
and use them in describing the search with primary e�ects.

Robot world

First, we describe a simple version of the strips world [Fikes and Nilsson, 1971], which
includes a robot and several rooms (see Figure 3.1a). The robot can go between two rooms
connected by a door, as well as break through the wall to an adjacent room, thus creating a
new doorway (Figure 3.1b).

Suppose that the robot world is connected, that is, it has no regions completely sur-
rounded by walls, and the robot can accomplish every location change by a series of go
operators (Figure 3.1a). Then, we can view the location change as a side e�ect of the break
operator, which means that we use this operator only for the purpose of making new door-
ways. If the only goal is to move the robot to a certain room, then the problem solver
disregards break and uses go operators. This restriction reduces the branching factor and
may improve the e�ciency of search (see Section 3.3).

Machine shop

Next, consider a machine shop that allows cutting, drilling, polishing, painting, and other
machining operations, and suppose that a problem solver has to generate plans for producing
parts of di�erent quality. The production of higher-quality parts requires more expensive
operations.

The solver may use expensive operations to make low-quality parts, which sometimes
simpli�es the search but leads to generating suboptimal solutions. For example, it may

84 CHAPTER 3. PRIMARY EFFECTS

choose a high-precision drilling operation instead of normal drilling, which would result in a
costly solution.

The use of primary e�ects enables the system to avoid such situations. For example, we
may view making a hole as a side e�ect of high-quality drilling, and the precise position of
the hole as its primary e�ect. Then, the problem solver chooses high-quality drilling only
when precision is important. In Section 3.6.2, we give a formal description of this domain and
present experiments on the use of primary e�ects to select appropriate machining operations.

3.1.2 Main de�nitions

We extend the robot example, encode it in the prodigy domain language, and use this
example to illustrate the main notions related to search with primary e�ects.

The extended domain includes a robot, a ball, and four rooms (see Figure 3.2a). To
describe its current state, we have to specify the location of the robot and the ball, and
list the pairs of rooms connected by doors. We therefore use three predicates for encoding
domain states, (robot-in <room>), (ball-in <room>), and (door <from> <to>) (Figure 3.2c). For
example, the literal robot-in room-1 means that the robot is in room-1, ball-in room-4 means
that the ball is in room-4, and door room-1 room-2 means that room-1 and room-2 are connected
by a doorway.

The robot may go between two rooms connected by a door, carry the ball, throw it
through a door into an adjacent room, or break through a wall. We encode these actions by
four operators, given in Figure 3.2(d). In addition, the domain includes the inference rule
add-door (Figure 3.2e), which ensures that every door provides a two-way connection, that
is, (door <from> <to>) implies (door <to> <from>).

For example, consider the problem with the initial state shown in Figure 3.2(a) and the
goal to get the ball into room-3. The robot can achieve it by breaking through the wall into
room-4 and then throwing the ball into room-3: \break(room-3,room-4), throw(room-4,room-

1)" (see Figure 3.4).
The operators in the robot domain have constant costs (Figure 3.2d), which is a special

case of using cost functions (see Section 2.3.1). We measure the quality of a solution by the
total cost of its operators: the smaller the cost, the better the solution. An optimal solution

to a given problem is a complete solution that has the lowest cost.
For instance, suppose that the problem solver needs to move the robot from room-1 to

room-4, and it achieves this goal using three go operators, \go(room-1,room-2), go(room-

2,room-3), go(room-3)room-4," with the total cost of 2 + 2 + 2 = 6. This solution is not
optimal, since the same goal can be achieved by the operator break(room-1,room-4), with a
cost of 4.

If an operator has several e�ects, we may choose certain important e�ects among them
and use the operator only for achieving these important e�ects. The chosen e�ects of the
operators are its primary e�ects, and the others are side e�ects. For example, we may
view (door <from> <to>) as a primary e�ect of break(<from>,<to>), and (robot-in <to>) as its
side e�ect. Note that we choose primary e�ects not only among the simple e�ects of an
operator, but also among its conditional e�ects. If a conditional e�ect has several actions,
we may divide them into primary and side actions (see the syntax of conditional e�ects in

3.1. SEARCH WITH PRIMARY EFFECTS 85

(c) State description.

(a) Map of the robot world.

room-4

room-3

room-1

room-2

room-1
room-2 room-4

room-3

objects

Type Hierarchy

Room

(b) Objects and their type.

(robot-in room-1)
(ball-in room-4)

(door room-2 room-1)
(door room-1 room-2)

(door room-2 room-3)
(door room-3 room-2)
(door room-3 room-4)
(door room-4 room-3)

<from>, <to>: type Room
Pre:

Eff:

go(<from>, <to>)

(door <from> <to>)
(robot-in <from>)

del (robot-in <from>)

2
add (robot-in <to>)

Cost:

<from>, <to>: type Room
Pre:

carry(<from>, <to>)

Eff: del (robot-in <from>)

(robot-in <from>)
(ball-in <from>)
(door <from> <to>)

del (ball-in <from>)
add (robot-in <to>)

Cost: 3
add (ball-in <to>)

(d) Library of operators.

(door <to> <from>)
Eff:

<from>, <to>: type Door
Pre:

add (door <from> <to>)

Inf-Rule add-door(<from>, <to>)

(e) Inference rule.

<from>, <to>: type Room
Pre:

Eff:

break(<from>, <to>)

(robot-in <from>)
del (robot-in <from>)
add (robot-in <to>)

Cost: 4
add (door <from> <to>)

<from>, <to>: type Room
Pre:

throw(<from>, <to>)

Eff: del (ball-in <from>)

(robot-in <from>)
(ball-in <from>)
(door <from> <to>)

Cost: 2
add (ball-in <to>)

Figure 3.2: Robot Domain. We give an example of a world state (a), the encoding of this state in

the prodigy language (b,c), and the list of operators and inference rules (d,e). The robot's actions

include going between rooms, carrying and throwing a ball, and breaking through walls.

Section 2.2.1).

Inference rules may also have primary and side e�ects, which limits their use in backward
chaining. For example, if the e�ect of add-door is a side e�ect (see Figure 3.2), then
prodigy never adds it to the tail. On the other hand, primary e�ects do not a�ect the
forced application of eager inference rules.

Note that, if an eager inference rule has no primary e�ects, then the Backward-Chainer
procedure disregards it, but the system applies it in the forced forward chaining. Thus, if the
human operator wants to prevent the utilization of eager rules in goal-directed reasoning,
she should use only side e�ects in their encoding. On the other hand, if an operator or lazy
rule has no primary e�ects, then the system completely ignores it.

We now de�ne the notion of primary-e�ect justi�cation, which characterizes solutions
constructed with the use of primary e�ects. It is similar to the de�nition of justi�cation

86 CHAPTER 3. PRIMARY EFFECTS

l
GI xy

Figure 3.3: De�nition of justi�ed e�ects: If a literal l is a precondition of x and an e�ect of y, and

no operator or inference rule between x and y has an identical e�ect, then l is a justi�ed e�ect of x.

room-1)

Initial State

room-4)
(room-1,
break

(room-4,
throw

room-3)
(ball-in

room-3)

Statement

room-4,

(robot-in

(door

room-4)

room-3)

(ball-in
room-4)

Goal

(robot-in room-1)
(ball-in room-4)

(door room-2 room-1)
(door room-1 room-2)

(door room-2 room-3)
(door room-3 room-2)
(door room-3 room-4)
(door room-4 room-3)

(robot-in

(room-4,
throw

room-3)
(ball-in

room-3)

Statement
(robot-in
room-4)

Goal

room-2)
(room-1,
go

room-1,
room-2)

room-1)
(door

(robot-in

room-3)
(room-2,
go

room-2,
room-3)

room-2)
(door

(robot-in

room-4)
(room-3,
go

room-3,
room-4)

room-3)
(door

(robot-in

room-4,
room-3)

room-4)
(door

(ball-in

Initial
State

(a) Using the

(b) Using a sequence of

operator to get into room-4.

go operators.

break

Figure 3.4: Two solutions for moving the ball into room-3 (see Figure 3.2a). To reach the ball,

the robot may either break the wall between room-1 and room-4 (a), or go around through room-2

and room-3 (b). Arrows show the achievement of the goal literal and operator preconditions.

by Knoblock et al. [1991], in their formal model of abstraction. This notion is independent
of speci�c problem solvers, which enables us to identify general properties of search with
primary e�ects and derive conditions for its completeness.

We have already de�ned a justi�ed e�ect of an operator or inference rule in a complete
solution (see Section 2.5.4). Recall that an e�ect literal is called justi�ed if it is the last
e�ect that achieves a subgoal or negates the conditions of a clobber. Informally, it means
that the literal is necessary for the correctness of the solution. We illustrate this notion in
Figure 3.3, where l is a precondition of x and a justi�ed e�ect of y.

Note that an e�ect literal may be justi�ed even if it holds before the execution of
the operator. To repeat the related example from Section 2.5.4, consider some solution
step

1
; step

2
; :::; stepn and suppose that step

1
, step

2
, and step

3
all achieve some precondition

of step4. Then, the corresponding e�ect literal of step3 is justi�ed, since it is the last among
them, whereas the identical e�ects of step

1
and step

2
are not justi�ed.

To illustrate justi�cation, we again consider the task of bringing the ball to room-3 and
its solution in Figure 3.4(a). The (robot-in room-4) e�ect of break and the (robot-in room-4)

e�ect of throw are justi�ed, whereas the other e�ects are not.

A complete solution is primary-e�ect justi�ed if every operator and every lazy rule has a
justi�ed primary e�ect. Informally, it means that no operator or inference rule is used for its

3.1. SEARCH WITH PRIMARY EFFECTS 87

operators primary e�ects

go(<from>,<to>) add (robot-in <to>)

carry(<from>,<to>) add (ball-in <to>)

throw(<from>,<to>) add (ball-in <to>)

break(<from>,<to>) add (door <from> <to>)

add-door(<from>,<to>) |

(a)

operators primary e�ects

go(<from>,<to>) del (robot-in <from>), add (robot-in <to>)

carry(<to>,<from>) add (ball-in <to>)

throw(<from>,<to>) del (ball-in <from>), add (ball-in <to>)

break(<from>,<to>) add (door <from> <to>)

add-door(<from>,<to>) |

(b)

Table 3.1: Selections of primary e�ects for the Robot Domain, shown in Figure 3.2. Observe that

the �rst selection does not allow prodigy to achieve deletion goals, such as \not (robot-in room-1)."

side e�ects. We discussed properties of justi�ed solutions in an article on improving solution
quality [Fink and Yang, 1992b].

For example, suppose that the primary e�ects are as shown in Table 3.1(a), in particular,
(robot-in <to>) is a primary e�ect of go and a side e�ect of break. Then, the solution in
Figure 3.4(a) is not primary-e�ect justi�ed, because it does not utilize the primary e�ect of
the break operator. On the other hand, the solution with go operators in Figure 3.4(b) is
justi�ed.

3.1.3 Search algorithm

We now explain the role of primary e�ects in goal-directed reasoning and discuss the cor-
responding modi�cations to the prodigy search engine. When adding a new operator to
the current incomplete plan, a problem solver selects it among the operators whose primary
e�ects match the current subgoal; however, after inserting the selected operator into the
solution, the solver may utilize its side e�ects to achieve other subgoals. If the solver uses
inference rules in backward chaining, then the same restrictions apply to the choice of match-
ing rules. This general principle underlies the abtweak and prodigy implementations of
search with primary e�ects.

In Figure 3.5, we give a modi�cation of the prodigy backward-chainer, restricted to the
use of operators with matching primary e�ects, which di�ers from the original unrestricted
procedure only in Step 4c (see Figure 2.8). We do not modify the other two procedures of
the search engine, Base-prodigy and Operator-Application (see Figure 2.8).

For example, suppose that the primary e�ects are as shown in Table 3.1(a) and consider
a problem with two goals, (door room-1 room-4) and (ball-in room-3), as shown in Figure 3.6.

88 CHAPTER 3. PRIMARY EFFECTS

The unrestricted procedure would consider two alternatives for achieving the �rst subgoal:
the break operator and the add-door rule. On the other hand, Prim-Back-Chainer uses
break and disregards the other alternative, because add-door has no primary e�ects.

When the problem solver applies an operator, it uses both primary and side e�ects in
updating the current state, and may later utilize useful side e�ects. For example, suppose
that the solver applies the break operator and then adds throw(room-4,room-3) to achieve
the other goal, (ball-in room-3) (Figure 3.6b). Since break achieves the precondition (robot-in

room-4) of throw, prodigy can apply the throw operator, thus solving the problem. Thus,
the system uses two e�ects of break (see Figure 3.6c), one of which is a side e�ect.

Since prodigy selects an operator for achieving one of its e�ects, and does not consider
other e�ects until its application, the appropriate utilization of multiple e�ects is often a
di�cult problem, which may require advanced heuristics or control rules. This need for
control knowledge is a general problem of goal-directed reasoning, unrelated to the use of
primary e�ects.

The abtweak system chooses operators whose primary e�ects match current subgoals,
but it has a di�erent mechanism for utilizing other e�ects. After inserting an operator
into an incomplete solution, the system may unify its e�ects with matching subgoals and
impose the corresponding ordering constraints. For example, it may add the break and
throw operators for achieving the two subgoals, and then unify a side e�ect of break
with the corresponding precondition of throw (see Figure 3.7). The reader may �nd a
description of this algorithm in the articles on the abtweak system [Yang et al., 1996;
Yang and Murray, 1994; Fink and Yang, 1997].

Observe that, if all e�ects of all operators and inference rules are primary, then their use
is identical to the search without primary e�ects. This rule holds for all problem solvers that
support the use of primary e�ects, including prodigy and abtweak.

3.2 Completeness of primary e�ects

The utility of primary e�ects depends crucially on an appropriate selection mechanism. We
discuss possible problems of search with primary e�ects and methods for avoiding them
(Section 3.2.1). In particular, we derive a condition for ensuring completeness of search
(Section 3.2.2), which underlies the algorithm for learning primary e�ects (see Section 3.5).

3.2.1 Completeness and solution costs

Primary e�ects reduce the search space and usually lead to pruning some solution branches.
An inappropriate selection of primary e�ects may result in pruning all solutions, thus causing
a failure on a solvable problem.

For example, consider the robot domain with the primary e�ects given in Table 3.1(a)
and suppose that the robot has to vacate room-1, that is, the goal is \not (robot-in room-1)."
The robot may achieve it by going to room-2, or by breaking into room-3 or room-4; however,
if a problem solver uses only primary e�ects, it will not �nd a solution, because \del (robot-in
<room>)" is not a primary e�ect of any operator. To preserve completeness, we have to select
additional primary e�ects, as shown in Table 3.1(b).

3.2. COMPLETENESS OF PRIMARY EFFECTS 89

Prim-Back-Chainer

1c. Pick a literal l among the current subgoals.
Decision point: Choose one of the subgoal literals.

2c. Pick an operator or inference rule step
that achieves l as a primary e�ect.

Decision point: Choose one of such operators.

3c. Add step to the tail and establish a link from step to l.
4c. Instantiate the free variables of step.

Decision point: Choose an instantiation.

5c. If the e�ect achieving l has conditions,
then add them to step's preconditions.

Figure 3.5: Backward-chaining procedure that uses primary e�ects. When adding a new step to

the tail, the Prim-Back-Chainer algorithm chooses among the operators and inference rules whose

primary e�ects match the current subgoal (see line 2c).

(robot-in room-1)
(ball-in room-4)

(door room-2 room-1)
(door room-1 room-2)

(door room-2 room-3)
(door room-3 room-2)
(door room-3 room-4)
(door room-4 room-3)

Initial State

room-1)
room-4)
(room-1,
break

(robot-in

Statement
Goal

room-1
room-4)

(door

(ball-in
room-3)

(room-4,
throw

room-3)
room-4

(robot-in

(door

room-4)

room-3)

(ball-in
room-4)

Statement
Goal

room-1
room-4)

(door

(ball-in
room-3)

room-1)
room-4)
(room-1,
break

(room-4,
throw

room-3)
room-4

(robot-in

(door

room-4)

room-3)

(ball-in
room-4)(robot-in

Initial
State Statement

Goal

room-1
room-4)

(door

(ball-in
room-3)

Initial
State

room-4)
(room-1,
break

(c) Complete
solution

the first goal
(a) Achieving

the second goal
(b) Achieving

Figure 3.6: prodigy search with primary e�ects. Note that break is the only operator that

achieves the �rst goal as a primary e�ect. Similarly, throw is the only match for the second goal.

90 CHAPTER 3. PRIMARY EFFECTS

(robot-in room-1)
(ball-in room-4)

(door room-2 room-1)
(door room-1 room-2)

(door room-2 room-3)
(door room-3 room-2)
(door room-3 room-4)
(door room-4 room-3)

Initial State Statement
Goal

room-1
room-4)

(door

(ball-in
room-3)

(<from>,
throw

room-3)
<from>

(robot-in

(door

<from>)

room-3)

(ball-in
<from>)

Statement
Goal

room-1
room-4)

(door

(ball-in
room-3)throw

room-3)
room-4

(robot-in

(door

room-4)

room-3)

(ball-in
room-4)

Initial
State

room-1)
room-4)
(room-1,
break

(robot-in

room-1)
room-4)
(room-1,
break

(robot-in

(room-4,

Figure 3.7: abtweak search with primary e�ects.

We discuss two factors the determine the completeness of search with primary e�ects:
the existence of a primary-e�ect justi�ed solution and the solver's ability to �nd it.

Complete selections

If every solvable problem in a domain has a primary-e�ect justi�ed solution, we say that the
selection of primary e�ects is complete. Finding a selection with this property is essential
for the overall completeness of problem solving. For example, the choice of primary e�ects
given in Figure 3.1(a) is incomplete, which causes a failure on some problems. On the other
hand, the selection in Figure 3.1(b) is complete.

Observe that the de�nition of a complete selection is independent of a speci�c planning
algorithm. Also note that, if the selection comprises all e�ects of all operators and inference
rules, then it is trivially complete, which implies that every domain has at least one complete
selection.

Primary-e�ect complete search

If a problem solver uses primary e�ects and can solve every problem that has a primary-
e�ect justi�ed solution, then it is called primary-e�ect complete. The prodigy search engine
does not satisfy this condition. On the other hand, the extended algorithm of Section 2.5 is
primary-e�ect complete, if the domain does not include eager inference rules and functional
types. The proof is similar to the completeness proof in Section 2.5.4.

3.2. COMPLETENESS OF PRIMARY EFFECTS 91

(robot-in room-1)
(ball-in room-4)

(door room-2 room-1)
(door room-1 room-2)

(door room-2 room-3)
(door room-3 room-2)
(door room-3 room-4)
(door room-4 room-3)

Initial State

room-2)
(room-1,
go

Statement
Goal

room-1)
(robot-in

room-2)

(robot-in
not

room-4,
room-3)

room-1)
(robot-in

(door

Figure 3.8: Solution that requires backtracking over the choice of a subgoal; the thick arrow marks

the justi�ed primary e�ect.

Note that, if all e�ects are primary, then a solver with this completeness property �nds
a solution for every solvable problem; hence, primary-e�ect completeness implies standard
completeness. The reverse of this observation does not hold: a complete search algorithm
may not be primary-e�ect complete.

For example, consider the extended solver and suppose that we disable the backtracking
over the choice of a subgoal in Line 1c (see Figure 2.32). This modi�cation preserves the
standard completeness but compromises primary-e�ect completeness.

To illustrate the resulting incompleteness, consider the primary e�ects in Table 3.1(a) and
the problem with two goals, \not (robot-in room-1)" and \(robot-in room-2)." This problem
has a simple primary-e�ect justi�ed solution, given in Figure 3.8; however, the modi�ed
algorithm may fail to solve it. If the algorithm begins by choosing the �rst goal, it does not
�nd a matching primary e�ect and terminates with failure.

Cost increase

Even if primary e�ects do not compromise completeness, their use may result in pruning all
optimal and near-optimal solutions from the search space, and lead to �nding a poor-quality
solution.

For example, suppose that the robot is initially in room-4 and the goal is (door room-1 room-

4). The optimal solution to this problem utilizes the inference rule: \break(room-4,room-1),
add-door(room-1,room-4)." If the problem solver uses add-door in backward chaining, it
may construct the tail given in Figure 3.9(a), which leads to the optimal solution.

Now suppose that the solver uses the primary e�ects given in Table 3.1(b). Since the
add-door rule has no primary e�ects, the solver chooses break(room-1,room-4) for achieving
the goal, constructs the tail in Figure 3.9(b), and produces the solution \go(room-4,room-

3), go(room-3,room-2), go(room-2,room-1), break(room-1,room-4)," which is the best primary-
e�ect justi�ed solution.

In this example, the minimal cost of a primary-e�ect justi�ed solution is 2+2+2+4 = 10,
whereas the cost of the optimal solution is 4. The ratio of these costs, 10=4 = 2:5, is called
the cost increase for the given problem. Intuitively, it measures the deterioration of solution
quality due to the use of primary e�ects.

92 CHAPTER 3. PRIMARY EFFECTS

(a) Backward chaining without primary effects.

Statement
Goal

room-1,
(door

room-4)room-4,
room-3)

room-4)
(door

(robot-in

room-3)
(room-4,
go

room-3,
room-2)

room-3)
(door

(robot-in

room-2)
(room-3,
go

room-2,
room-1)

room-2)
(door

(robot-in

room-1)
(room-2,
go

room-1)
(robot-in

room-4)
(room-1,
break

(room-1,
room-4)

add-door
room-4,

(door

room-1)

Statement
Goal

room-1,
(door

room-4)room-4)
room-1)
(room-4,
break

(robot-in

(b) Backward chaining using primary effects.

Figure 3.9: Tails that lead to (a) the optimal solution and (b) the best primary-e�ect justi�ed

solution.

3.2.2 Condition for completeness

To ensure overall search completeness, we have to provide a complete selection and a primary-
e�ect complete solver. The �rst of the two requirements is the main criterion for selecting
appropriate primary e�ects. We now derive a condition for satisfying this requirement, which
not only ensures the completeness of a selection, but also limits the cost increase. We will
use this condition in designing an algorithm that selects primary e�ects.

Replacing sequence

Consider some fully instantiated operator or inference rule, which we will call step, an initial
state I that satis�es the preconditions of step, and the goal of achieving all side e�ects
of step and preserving all features of the initial state that are not a�ected by step. Formally,
this goal is the conjunction of the side e�ects of step and the initial-state literals una�ected
by step.

We give an algorithm for computing this conjunction in Figure 3.10. Since the resulting
goal is a function of step and I, we denote it by G(step; I). Note that the goal does not
include the primary e�ects of step and does not require preserving the features of the state
a�ected by the primary e�ects.

If a problem solver applies step to the initial state, it achieves all goal literals; however,
this solution is not primary-e�ect justi�ed. A replacing sequence of operators and inference
rules is a primary-e�ect justi�ed solution that achieves the goal G(step; I) from the same
initial state I; that is, it achieves all side e�ects of step and leaves unchanged the other
literals of I.

For example, consider the fully instantiated operator break(room-1,room-4), with side
e�ects \del (robot-in room-4)" and add (robot-in room-1)," and the state in Figure 3.2, which
satis�es the operator's preconditions. For this operator and initial state, we may construct
the replacing sequence \go(room-1,room-2), go(room-2,room-3), go(room-3,room-4)," which is

3.2. COMPLETENESS OF PRIMARY EFFECTS 93

Generate-Goal(step; I)
The input includes an instantiated operator or inference rule, step,

and an initial state I that satis�es the preconditions of step.

Create a list of literals, which is initially empty.
For every side-e�ect literal side of step:

If step adds this literal,
then add side to the list of literals.

If step deletes this literal,
then add \not side" to the list of literals.

For every literal init of the initial state I:
If step does not add or delete this literal,

then add side to the list of literals.
Return the conjunction of all literals in the list.

Figure 3.10: Generating the goal G(step; I) of a replacing sequence. When the algorithm processes

the e�ect literals of step, it considers all simple e�ects and the if-e�ects whose conditions hold in

the state I.

a primary-e�ect justi�ed solution that achieves both side e�ects of break, and does not add
or delete other literals.

The cost of the cheapest replacing sequence is called the replacing cost of step in the initial
state I. For example, the cheapest replacing sequence for break(room-1,room-4) consists of
three go operators; hence, its replacing cost is 6.

Note that the replacing cost may be smaller than the cost of step. For example, sup-
pose that the carry(<from>,<to>) operator has two primary e�ects, \del (ball-in <from>)" and
\add (ball-in <to>)," and consider its instantiation carry(room-1,room-2). The one-operator
replacing sequence \go(room-1,room-2)" has a cost of 2, which is smaller than carry's cost
of 3.

Completeness condition and its proof

We state a completeness condition in terms of replacing sequences:

Completeness: Suppose that, for every fully instantiated operator and in-
ference rule, and every initial state that satis�es its preconditions, there is a
primary-e�ect justi�ed replacing sequence. Then, the selection of primary e�ects
is complete.

Limited cost increase: Suppose that there is a positive real value C such that,
for every instantiated operator op and every initial state, the replacing cost is at
most C � cost(op). Suppose further that, for every inference rule and every state,
the replacing cost is 0. Then, the cost increases of all problems in the domain
are at most max(1; C).

94 CHAPTER 3. PRIMARY EFFECTS

The proof is based on the observation that, given a problem and its optimal solution, we
may substitute all operators and inference rules with corresponding replacing sequences. We
thus obtain a primary-e�ect justi�ed solution, whose cost is at most C times larger than that
of the optimal solution. To formalize this observation, we consider an arbitrary problem,
with an optimal solution \step

1
; step

2
; :::; stepn," and construct its primary-e�ect justi�ed

solution.

Suppose that the completeness condition holds, that is, we can �nd a replacing sequence
for every operator and inference rule. If stepn is not primary-e�ect justi�ed, we substitute
it with the cheapest replacing sequence. If stepn�1

is not primary-e�ect justi�ed in the
resulting solution, we also substitute it with the cheapest replacing sequence. We repeat this
operation for all other operators and inference rules, considering them in the reverse order,
from stepn�2

to step
1
. Observe that, when we replace some stepi, all steps after it remain

primary-e�ect justi�ed, which implies that the replacement of all steps in the reverse order
leads to a primary-e�ect justi�ed solution.

Now suppose that the condition for limited cost increase also holds. Then, for every
replaced operator and inference rule stepi, the cost of the replacing sequence is at most
C � cost(stepi), which implies that the total cost of the primary-e�ect justi�ed solution is at
most max(1; C) � (cost(step1) + cost(step2) + ::: + cost(stepn)).

Use of the completeness condition

The completeness condition suggests a technique for selecting primary e�ects: we should
consider instantiated operators and states that satisfy their preconditions, and ensure that
we can always �nd a replacing sequence. Search through all instantiated operators and initial
states is usually intractable; however, we can guarantee a high probability of completeness
by considering a small random selection of operator instantiations and states. We use this
probabilistic approach to design a learning algorithm that selects primary e�ects of operators
(Section 3.5).

If the domain has no eager inference rules, and problems may have any initial states
and goal statements, then the described condition is not only su�cient but also necessary
for completeness. That is, if some operator or inference rule, in some initial state, has no
replacing sequence, then the use of primary e�ects compromises the completeness.

On the other hand, if we restrict the allowed goals, then we may be able to select fewer
primary e�ects without sacri�cing completeness. For example, if the robot never has to
vacate a room, then \del (robot-in <room>)" need not be a primary e�ect of any operator. In
Section 5.3, we will discuss some methods of selecting primary e�ects for restricted goals.

Avoiding redundant e�ects

We are interested in �nding a minimal selection of primary e�ects that ensures completeness
and a small cost increase. A primary e�ect is redundant if we can demote it to a side e�ect
without compromising completeness or increasing solution costs.

For example, if the operator carry(<from>,<to>) has two primary e�ects, \add (ball-in

<to>)" and \del (ball-in <from>)," then the latter e�ect is redundant. Demoting it to a side

3.3. ANALYSIS OF SEARCH REDUCTION 95

e�ect of carry does not a�ect the costs of primary-e�ect justi�ed solutions, because the
solver may use the cheaper operator throw for achieving the same result.

Redundant e�ects increase the branching factor of search without reducing search depth
or improving solution quality, and avoiding them is one of the main goals in designing an
algorithm for learning primary e�ects.

3.3 Analysis of search reduction

We present an analytical comparison of search e�ciency with and without the use of primary
e�ects. The purpose of the analysis is to estimate the search reduction for backward-chaining
solvers, and identify the factors that determine the utility of primary e�ects. We show that
the use of primary e�ects reduces the branching factor, but increases the search depth, and
that e�ciency depends on the trade-o� between these two factors.

The comparison is an approximation based on several simplifying assumptions about
properties of the search space, similar to the analysis of abstraction search by Korf [1987]
and Knoblock [1991]. Even though real domains usually do not satisfy these assumptions,
experimental results con�rm the analytical predictions (see Sections 3.6 and 3.7).

Simplifying assumptions

When a solver algorithm works on a problem, it expands a tree-structured search space,
whose nodes correspond to intermediate incomplete solutions, and the solver's running time
is proportional to the number of nodes in the expanded space [Minton et al., 1991]. We
estimate the space size for search with and without primary e�ects, and use these estimates
to analyze the utility of primary e�ects.

For simplicity, we assume that the domain does not include inference rules, which means
that Prim-Back-Chainer uses only operators in constructing the tail. When adding a new
operator to achieve some subgoal, the algorithm may use any operator with a matching
primary e�ect. To estimate the number of matching operators, we denote the number of
nonstatic predicates in the domain by N and the total number of primary e�ects in all
operators by PE, which stands for \primary e�ects;" that is, we count the number of primary
e�ects, #(Prim(op)), of each operator op and de�ne PE as the sum of these numbers:

PE =
X
op

#(Prim(op)):

A nonstatic predicate gives rise to two types of subgoals, adding and deleting its instantia-
tions; hence, the average number of operators that match a subgoal is PE

2�N . If we assume that
the number of matching operators is the same for all additions and deletions of nonstatic
predicates, then it is exactly PE

2�N .
After selecting an operator, the problem solver has to pick its instantiation and then

choose the next subgoal. In addition, the solver may apply some of the tail operators. These
choices lead to expanding multiple new branches of the search space; we denote their number
by BF, which stands for \branching factor." Since the full decision cycle of prodigy includes

96 CHAPTER 3. PRIMARY EFFECTS

1. The domain has no inference rules.
2. The number of matching operators is the same for all subgoals.
3. The overall branching factor BF of instantiating a new operator, applying tail

operators, and choosing a subgoal is constant throughout the search.
4. All operators have the same cost.

Figure 3.11: Simplifying assumptions.

PE total number of primary e�ects in all operators
E total number of all e�ects in all operators
N number of nonstatic predicates in the problem domain
BF overall branching of instantiating a new operator, applying operators,

and choosing the next subgoal
C cost increase of problem solving with primary e�ects
n number of operators in the solution found without primary e�ects

Figure 3.12: Summary of the notation in the search-reduction analysis.

choosing an operator for the current subgoal, instantiating it, applying some tail operators,
and choosing the next subgoal (see Figure 2.9), it gives rise to BF � PE

2�N new branches.
To estimate the branching factor without the use of primary e�ects, we de�ne E as the

total number of all e�ects in all operators:

E =
X
op

#(Prim(op)) +
X
op

#(Side(op)):

Then, the branching factor of the prodigy decision cycle is BF � E
2�N .

Finally, we assume that all operators have the same cost. The main assumptions are
listed in Figure 3.11, and the notation used in the analysis is summarized in Figure 3.12 (the
last two symbols in Figure 3.12 are introduced in the next few paragraphs).

Exponential e�ciency improvement

First, we consider search without primary e�ects and assume that the resulting solution
comprises n operators. Since the branching factor of a decision cycle is BF � E

2�N , we conclude
that the number of nodes representing one-operator incomplete solutions is BF � E

2�N , the
number of nodes representing two-operator solutions is (BF � E

2�N)
2, and so on. The total

number of nodes is

1 + BF � E

2 �N + (BF � E

2 �N)2 + :::+ (BF � E

2 �N)n =
(BF � E

2�N)
n+1 � 1

BF � E
2�N � 1

: (3.1)

Now suppose that the problem solver uses primary e�ects and the cost increase is C, that
is, the resulting solution has C �n operators, which translated into the proportional increase

3.3. ANALYSIS OF SEARCH REDUCTION 97

of the search depth. The branching factor of adding an operator with a matching primary
e�ect is BF � PE

2�N ; hence, the number of nodes is

(BF � PE
2�N)

C�n+1 � 1

BF � PE
2�N � 1

: (3.2)

We next determine the ratio of running times of search with and without primary e�ects.
Since the running time is proportional to the number of nodes in the search space, the time
ratio is determined by the ratio of search-space sizes:

((BF � PE

2�N)
C�n+1 � 1)=(BF � PE

2�N � 1)

((BF � E
2�N)

n+1 � 1)=(BF � E
2�N � 1)

� (BF � PE

2�N)
C�n

(BF � E
2�N)

n
=

(BF � PE

2�N)
C

BF � E
2�N

!n

: (3.3)

If we denote the base of this exponent by r:

r =
(BF � PE

2�N)
C

BF � E
2�N

=
2 �N
E � BF �

�
PE � BF
2 �N

�C
; (3.4)

then we may rewrite Expression 3.3 for the time ratio as rn, which shows that the saving in
running time grows exponentially with the solution length n.

Conditions for e�ciency improvement

Primary e�ects improve the e�ciency only if r < 1, which means that 2�N
E�BF �(PE �BFN

)C < 1. We
solve this inequality with respect to C and conclude that primary e�ects improve performance
when

C <
logE + logBF� log(2 �N)

logPE+ logBF� log(2 �N)
: (3.5)

Observe that E > PE, which implies the right-hand side of Inequality 3.5 is larger than 1.
Therefore, if primary e�ects do not cause a cost increase, that is C = 1, then their use reduces
the running time. This observation, however, does not imply that we should minimize the
cost increase: primary e�ects with a signi�cant cost increase sometimes give a greater search
reduction.

We can draw some other conclusions from the expression for r (Equation 3.4). The base
of the exponent in this expression, PE �BF

N
, is the branching factor of the search with primary

e�ects and, therefore, it is larger than 1. We conclude that r grows with an increase of C,
which implies that the time savings increase with a reduction of C. Also, r grows with an
increase of PE and, therefore, the time savings increase with a reduction of the number of

primary e�ects PE.

The e�ciency depends on the tradeo� between the number of primary e�ects PE and
the cost increase C: as we select more primary e�ects, PE increases. whereas C decreases.
To minimize r, we have to strike the right balance between C and PE. Observe that the
branching factor of search is proportional to PE, and the search depth is proportional to C.
Therefore, the choice of additional primary e�ects increases branching, but reduces the depth.

We also conclude from Equation 3.4 that redundant e�ects worsen the performance.
Recall that a primary e�ect is redundant if we can demote it to a side e�ect without increasing
solution costs. The demotion of a redundant e�ect decreases E without increasing C and,
hence, reduces the search space.

98 CHAPTER 3. PRIMARY EFFECTS

Discussion of the assumptions

Even though the derivation is based on several strong assumptions, the main conclusions
usually remain valid even when the search space does not have the assumed properties.
In particular, the relaxation of Assumptions 1 and 4 in Figure 3.11 does not change the
quantitative result (see Expression 3.3), though it requires a more complex de�nition of
the BF value. We conjecture that Assumption 2 may also be lifted, if we suppose that the
use of primary e�ects does not change the distribution of subgoals.

The described estimation of the time ratio works not only for prodigy search, but also for
most backward-chaining solvers, including least-commitment systems. In particular, we have
applied it to the search space of tweak [Fink and Yang, 1995] and obtained the identical
expression for the time ratio (see Expression 3.3), but the BF value in that derivation had a
di�erent meaning. Since tweak creates a new node of the search space by inserting a new
operator or imposing a constraint on the order of executing old operators, we have de�ned
BF as the number of di�erent ways to impose constraints after inserting an operator.

We have estimated the total number of nodes up to the depth of the solution node.
If a problem solver uses breadth-�rst search, it visits all of them; however, prodigy uses
depth-�rst strategy and may explore a much smaller space. Its e�ective branching factor is
the average number of alternatives considered in every decision point, which depends on the
frequency of backtracking [Nilsson, 1971]. This factor is usually proportional to the overall
branching factor of the search space, which leads us to the same time-ratio estimate, with
BF adjusted to account for the smaller e�ective branching.

The key assumption is that the e�ective branching factor of the decision cycle, BF � PE

2�N ,
is proportional to the number of primary e�ects, PE. If a domain does not satisfy it, then we
cannot use Expression 3.3 to estimate the search reduction. Advanced heuristics and control
rules may signi�cantly reduce the e�ective branching of search without primary e�ects, which
invalidates the estimate of the time ratio.

In particular, if primary e�ects do not reduce the e�ective branching, then they do not
improve the e�ciency. For example, if a depth-�rst solver always �nds a solution without
backtracking, then primary e�ects do not reduce its search. On the other hand, it may
bene�t from the use of primary e�ects that improve the solution quality (see the experiments
in Section 3.7).

To summarize, the analysis has shown that an appropriate choice of primary e�ects
signi�cantly reduces the search, whereas poorly selected e�ects may exponentially increase
the search time. Experiments support this conclusion for most domains, even when the
search space does not satisfy the assumptions of the analysis. We will present empirical
results for abtweak's breadth-�rst search (Section 3.6) and for the depth-�rst prodigy
algorithm (Section 3.7).

3.4 Automatically selecting primary e�ects

We describe an algorithm that automatically chooses primary e�ects of operators and in-
ference rules, by static analysis of the domain description. The selection technique is based
on simple heuristics, which usually lead to generating a near-complete selection of primary

3.4. AUTOMATICALLY SELECTING PRIMARY EFFECTS 99

e�ects; however, they do not guarantee completeness.
If problem solving with the resulting selection reveals its incompleteness, then the system

either discards the selection or chooses additional primary e�ects. In Section 3.5, we will
describe a learning algorithm that selects more e�ects and ensures a high probability of
completeness.

First, we present the Chooser algorithm, which combines several heuristics for selecting
primary e�ects (Section 3.4.1). Second, we give the Matcher algorithm, which generates
all possible instantiations of operators and inference rules, and improves the e�ectiveness of
Chooser (Section 3.4.2). Both algorithms belong to Shaper's library of description changers.

3.4.1 Selection heuristics

We present a heuristic algorithm, called Chooser, which processes a list of operators, and
generates a selection of primary and side e�ects. The purpose of this algorithm is to construct
a selection that reduces the branching factor, without a signi�cant violation of completeness.

The human user has two options for a�ecting the choice of primary e�ects. First, she
may specify a desirable limit C on the cost increase. The algorithm utilizes this limit in the
heuristic selection of primary e�ects; however, it does not guarantee that the cost increase
of all problems will be within the speci�ed bound C.

Second, the human operator has an option to pre-select some primary and side e�ects,
before applying the Chooser algorithm. If an e�ect is not pre-selected as primary or side,
then we call it a candidate e�ect. In particular, if the user does not provide any pre-selection,
then all e�ects of operators and inference rules are candidate e�ects.

The algorithm preserves the initial pre-selection, and chooses additional primary e�ects
among the candidate e�ects. If some candidate e�ects do not become primary, then problem
solvers treat them in the same way as side e�ects. In other words, prodigy search algorithms
do not distinguish between candidate and side e�ects.

We summarize the speci�cation of the Chooser description changer in Figure 3.13 and
show the algorithm that satis�es this speci�cation in Figure 3.14. We do not give pseudocode
for two procedures, Choose-Delete-Operator and Choose-Delete-Inf-Rule, as they are very
similar to Choose-Add-Operator and Choose-Add-Inf-Rule.

The description changer consists of two parts: Choose-Initial and Choose-Extra. The �rst
part is the main algorithm, which generates an initial selection of primary and side e�ects.
The second module is an optional procedure for choosing additional primary e�ects, which
may be disabled by the user. Note that these two modules may select primary e�ects not
only among simple e�ects, but also among actions of if-e�ects.

Generating initial selection

The Choose-Initial algorithm ensures that every nonstatic predicate is a primary e�ect of
some operator or inference rule. This condition is necessary for completeness of problem
solving with primary e�ects: if some predicate were not selected as a primary e�ect, then
the solver algorithm would be unable to achieve it.

For every nonstatic predicate pred that is not a primary e�ect in the user's pre-selection,
the algorithm looks for some operator with a candidate e�ect pred, and makes pred a primary

100 CHAPTER 3. PRIMARY EFFECTS

Type of description change: Selecting primary e�ects of operators and inference rules.

Purpose of description change: Minimizing the number of primary e�ects, while ensuring
near-completeness and a limited cost increase.

Use of other algorithms: None.

Required input: Description of the operators and inference rules.

Optional input: Preferable cost-increase limit C; pre-selected primary and side e�ects.

Figure 3.13: Speci�cation of the Chooser algorithm.

operators primary e�ects

(a) Pre-selection by the human user.
carry(<from>,<to>) add (ball-in <to>)

(b) Choose-Initial: Initial selection of primary e�ects.
go(<from>,<to>) del (robot-in <from>)

add (robot-in <to>)

throw(<from>,<to>) del (ball-in <from>)

break(<from>,<to>) add (door <from> <to>)

(c) Choose-Extra: Heuristic selection of extra e�ects.
add-door(<from>,<to>) add (door <from> <to>)

(d) Completer: Learned primary e�ects.
throw(<from>,<to>) add (ball-in <to>)

Table 3.2: Steps of selecting primary e�ects.

e�ect of this operator. If the predicate is not a candidate e�ect of any operator, then the
algorithm makes it a primary e�ect of some inference rule.

If the user has speci�ed a desired limit C on the cost increase, then the algorithm takes
it into account when choosing an operator for achieving pred (see the Choose-Add-Operator
procedure in Figure 3.14). First, the algorithm �nds the cheapest operator that achieves pred,
whose cost is denoted \min-cost" in the pseudocode. Then, it identi�es the operators whose
cost is within C �min-cost, and chooses one of them for achieving pred as a primary e�ect.

Example of an initial selection

Consider the application of the Choose-Initial algorithm to the Robot Domain in Figure 3.2.
We assume that the desired cost-increase limit is C = 1:5, and the user has pre-selected \add
(ball-in <to>)" as a primary e�ect of the carry operator (see Table 3.2a).

3.4. AUTOMATICALLY SELECTING PRIMARY EFFECTS 101

Chooser(C)
The algorithm optionally inputs a desired cost-increase limit C, whose default value is in�nity.

It also accesses the operators and inference rules, with their pre-selected primary and side e�ects.

Call Choose-Initial(C), to generate an initial selection of primary e�ects.
Optionally call Choose-Extra, to select additional primary e�ects.

Choose-Initial(C) | Ensure that every nonstatic predicate is a primary e�ect.

For every predicate pred in the domain description:
If some operator adds pred,

then call Choose-Add-Operator(pred,C).
If some operator or inference rule adds pred,

and no operator adds it as a primary e�ect,
then call Choose-Add-Inf-Rule(pred).

If some operator deletes pred,
then call Choose-Del-Operator(pred,C).

If some operator or inference rule deletes pred,
and no operator deletes it as a primary e�ect,

then call Choose-Del-Inf-Rule(pred).

Choose-Add-Operator(pred; C) | Ensure that pred is a primary e�ect of some operator.

Determine the cheapest operator that adds pred; let its cost be min-cost.
If some operator, with cost at most C �min-cost, adds pred as a primary e�ect,

then terminate (do not select a new primary e�ect).
If there are operators, with cost at most C �min-cost, that add pred as a candidate e�ect,

then select one of these operators, make pred its primary e�ect, and terminate.
If some operator, with cost larger than C �min-cost, adds pred as a primary e�ect,

then terminate (do not select a new primary e�ect).
If there are operators, with cost larger than C �min-cost, that add pred as a candidate e�ect,

then select one of these operators, make pred its primary e�ect, and terminate.

Choose-Add-Inf-Rule(pred) | Ensure that pred is a primary e�ect of some inference rule.

If some inference rule adds pred as a primary e�ect,
then terminate (do not select a new primary e�ect).

If there are inference rules that add pred as a candidate e�ect,
then select one of these rules, make pred its primary e�ect, and terminate.

Choose-Extra | Ensure that every operator and inference rule has a primary e�ect.

For every operator and inference rule in the domain description:
If it has candidate e�ects, but no primary e�ects,

then select one of its candidate e�ects as a new primary e�ect.

Figure 3.14: Heuristic selection of primary e�ects: Choose-Initial generates an initial selection

of primary and side e�ects, and then Choose-Extra selects additional primary e�ects. We do not

give pseudocode for the Choose-Delete-Operator and Choose-Delete-Inf-Rule procedures, which are

analogous to Choose-Add-Operator and Choose-Add-Inf-Rule.

102 CHAPTER 3. PRIMARY EFFECTS

Suppose that the algorithm �rst selects an operator for achieving the e�ect \add (robot-in

<to>)." The cheapest operator that has this e�ect is go(<from>,<to>), whose cost is 2. Thus,
the algorithm will try to �nd an operator, with a candidate e�ect \add robot-in," whose cost
is at most 1:5 � 2 = 3. The domain includes two operators that satisfy this condition, go and
carry.

If the user does not provide a heuristic for selecting among available operators, then
Choose-Initial picks the cheapest operator with a matching candidate e�ect. Thus, the algo-
rithm selects the go operator for adding robot-in as a primary e�ect. Similarly, it selects the
go operator for achieving \del robot-in," throw for \del ball-in," and break for \add door."
We summarize the resulting selection in Table 3.2(b).

Optional heuristics

When the Choose-Initial algorithm picks an operator for achieving pred as a primary e�ect,
it may have to select among several matching operators. For example, if the algorithm
chooses an operator for \add robot-in," with cost at most 3, then it must choose between
go and carry. We have implemented three optional heuristics for selecting among several
operators. The user may include them in the Choose-Initial procedure or, alternatively,
provide her own heuristics.

Choosing an operator without primary e�ects: If some operator, with a candidate
e�ect pred, has no primary e�ects, then the algorithm selects this operator and marks pred
as its primary e�ect. This heuristic ensures that most operators have primary e�ects; thus,
it is e�ective for domains that do not include unnecessary operators.

Preferring an operator with weak preconditions: When the Choose-Initial al-
gorithm uses this heuristic, it looks for the operator with the weakest preconditions that
achieves pred. This strategy helps to reduce the search, but it may negatively a�ect the
solution quality. For example, suppose that we employ it for choosing primary e�ects in the
Robot Domain, with the cost-increase limit C = 2. Then, the algorithm chooses the break
operator for adding robot-in as a primary e�ect, because the preconditions of this operator
are weaker than that of go and carry. The resulting selection forces a problem solver to
use break for moving the robot between rooms; thus, it reduces the search, but leads to
constructing costly plans.

Improving the quality of the abstraction hierarchy: If the system utilizes primary
e�ects in abstraction problem solving, then the abstraction hierarchy may depend on the
selected e�ects. We have implemented a selection heuristic, for the Choose-Initial algorithm,
that improves the quality of the resulting hierarchy. In Section 5.1, we will describe this
heuristic and use it to combine Chooser with an abstraction algorithm.

Choosing additional e�ects

The optional Choose-Extra procedure selects additional primary e�ects, to ensure that every
operator and every inference rule has at least one primary e�ect (see Figure 3.14). If the user
believes that the domain description has no unnecessary operators, then she should enable
this procedure.

3.4. AUTOMATICALLY SELECTING PRIMARY EFFECTS 103

For every operator and rule that has no primary e�ects, Choose-Extra algorithm promotes
one of its candidate e�ects to a primary e�ect. For example, if we apply Choose-Extra to
the Robot Domain with the initial selection given in Table 3.2(a,b), then it will select the
e�ect \add (door <from> <to>)" of the add-door inference rule as a new primary e�ect (see
Table 3.2c).

The Choose-Extra procedure includes two heuristics for selecting a primary e�ect among
several candidate e�ects. First, it chooses e�ects that add predicates, rather than deletion
e�ects. For example, if the go operator did not have primary e�ects, then the algorithm
would choose \add (robot-in <from>)," rather than \del (robot-in <to>)," as its new primary
e�ect. Second, it prefers predicates achieved by the fewest number of other operators.

If we use Chooser in conjunction with an abstraction generator, then we disable these
two heuristics and instead employ a selection technique that improves the quality of the
resulting abstraction hierarchy (see Section 5.1).

Running time

We next give the time complexity of the Choose-Initial and Choose-Extra algorithms, which
does not include the complexity of optional heuristics for selecting among available operators
and candidate e�ects. If the user adds complex heuristics to the Chooser algorithm, they
may signi�cantly increase the running time.

The running time depends on the total number of all e�ects, in all operators and inference
rules, and on the number of nonstatic predicates in the domain description. We denote the
total number of e�ects by E, and the number of nonstatic predicates by N (see Figure 3.12).

For each predicate pred, the Choose-Initial algorithm invokes four procedures. First, it
calls Choose-Add-Operator and Choose-Del-Operator, whose running time is proportional to
the total number of e�ects in all operators. Then, it applies Choose-Add-Inf-Rule and Choose-
Del-Inf-Rule, whose time is proportional to the number of inference-rule e�ects. Thus, the
complexity of executing all four procedures is O(E), and the overall time for processing all
nonstatic predicates is O(E � N). Finally, the complexity of the Choose-Extra procedure is
O(E), which implies that the overall running time of the Chooser algorithm is O(E �N).

We have implemented Chooser in Common Lisp and timed its execution on a Sun 5
machine. The Choose-Initial procedure takes about (E � N) � 10�4 seconds, whereas the
execution time of Choose-Extra is approximately E � 6 � 10�4 seconds.

3.4.2 Instantiating the operators

We have described an algorithm for selecting primary e�ects of uninstantiated operators
and inference rules. We now point out some drawbacks of the selection heuristics and then
describe a technique for eliminating these drawbacks.

The main shortcoming of the heuristics for processing uninstantiated operators is their
sensitivity to syntactic features of a speci�c domain encoding. In particular, if we use
too general predicates in the description of operators, Chooser may produce an insu�cient
selection of primary e�ects.

To illustrate this problem, we consider the Robot Domain (see Figure 3.2) and replace
the predicates (robot-in <room>) and (ball-in <room>) in the description of operators with a

104 CHAPTER 3. PRIMARY EFFECTS

(in <thing> <part>)
(robot-in <room>)
(ball-in <room>)

(in robot <room>)
(in box <room>)

room-1
room-2 room-4

room-3

Room Thing

robot ball

Type Hierarchy

objects

(a) Replacing two predicates with a more general one.

operators primary e�ects

Pre-selection by the human user.

carry(<from>,<to>) add (in ball <to>)

Choose-Initial: Initial selection of primary e�ects.

go(<from>,<to>) del (in robot <from>)

break(<from>,<to>) add (door <from> <to>)

Choose-Extra: Heuristic selection of extra e�ects.

throw(<from>,<to>) add (in ball <from>)
add-door(<from>,<to>) add (door <from> <to>)

(b) Resulting incomplete selection.

Figure 3.15: Generating an incomplete selection of primary e�ects, due to the use of general

predicates. To avoid this problem, we need to apply the Matcher algorithm, which generates all

instantiations of the operators and inference rules, before running Chooser.

general predicate (in <thing> <room>), where <thing> is either robot or ball (see Figure 3.15a).
If the user has pre-selected \add (in <thing> <to>)" as a primary e�ect of carry, then Chooser

constructs the selection given in Figure 3.15(b).

Note that, since we use a general predicate for encoding the e�ects (in robot <room>)

and (in ball <room>), the algorithm does not distinguish between these two e�ects; hence, it
generates an incomplete selection, which does not include primary e�ects for adding (in robot

<room>) and deleting (in ball <room>).

If the costs of some operators in the domain description are not constant, the system needs
to estimate their cost ranges and then utilize these ranges in choosing primary e�ects. The
use of general operators may result in wide ranges, which negatively a�ect the e�ectiveness
of selection heuristics. For example, if the user speci�es a generalized operator for going
between rooms and breaking through walls (Figure 3.16), with cost range from 2 to 4, then
Chooser cannot determine whether moving the robot is cheaper than carrying the ball.

We may avoid these problems by constructing all instantiations of the available operators
and inference rules, and applying the Chooser algorithm to select primary e�ects of the
resulting instantiations. We illustrate the use of this technique in the Robot Domain, discuss
its main advantages and shortcomings, and then describe an algorithm that instantiates
operators and inference rules.

After Chooser has processed the instantiations, we may optionally convert the resulting
selection of primary e�ects to the corresponding selection for uninstantiated operators. In
Figure 3.17, we give a simple conversion procedure, which loops through operators and infer-
ence rules, and marks their primary e�ects. We denote the currently considered operator or
inference rule by stepu, where the subscript \u" stands for \uninstantiated." The procedure
identi�es the e�ects of stepu that are primary in at least one instantiation, and marks them
all as primary e�ects of stepu itself.

3.4. AUTOMATICALLY SELECTING PRIMARY EFFECTS 105

<from>, <to>: type Room
Pre:

Eff:

go-or-break(<from>, <to>)

(robot-in <from>)
del (robot-in <from>)
add (robot-in <to>)
(if (not (door <from> <to>))

Cost function:

add (door <from> <to>))

If (door <from> <to>),
then, return 2; else, return 4.

Figure 3.16: A general operator for moving the robot; it has a wide cost range, from 2 to 4, which

reduces the e�ectiveness of heuristics for choosing primary e�ects.

Generalize-Selection

For every uninstantiated operator and inference rule stepu:
For every candidate e�ect of stepu:

If this e�ect is primary in some instantiation,
Then make it a primary e�ect of stepu.

Figure 3.17: Converting a fully instantiated selection of primary e�ects to the corresponding

selection for the uninstantiated operators. We may optionally apply this procedure after choosing

primary e�ects of the operator instantiations. The procedure marks an e�ect of stepu as primary

if and only if it has been chosen as a primary e�ect in at least one instantiation of stepu.

Example of instantiating the operators

We consider a simpli�ed version of the Robot Domain, which does not include the break
operator and add-door inference rule, and suppose that the room layout is as shown in
Figure 3.2(a). We give static predicates that encode this layout in Figure 3.18 and list all
instantiated operators in Figure 3.19.

Observe that the list does not include infeasible instantiations, such as go(room-1,room-4)

or throw(room-1,room-3). Also note that the preconditions of the instantiated operators do
not include static literals, which always hold for the given room layout.

Suppose that the user has marked \add (in <thing> <to>)" as a primary e�ect of carry and
invoked Chooser to select other primary e�ects. If the algorithm processes the instantiated
operators, it generates the selection given in Table 3.3.

We may then apply the Generalize-Selection procedure, which chooses the corresponding
primary e�ects of uninstantiated operators, thus constructing the selection in Table 3.4.
Note that the resulting selection is similar to that in Table 3.2, despite the use of a more
general predicate in the operator description.

106 CHAPTER 3. PRIMARY EFFECTS

operators primary e�ects

Pre-selection by the human user.
carry(room-1,room-2) add (in robot room-2)

carry(room-2,room-1) add (in robot room-1)

carry(room-2,room-3) add (in robot room-3)

carry(room-3,room-2) add (in robot room-2)

carry(room-3,room-4) add (in robot room-4)

carry(room-4,room-3) add (in robot room-3)

Choose-Initial: Initial selection of primary e�ects.

go(room-1,room-2) del (in robot room-1)

add (in robot room-2)

go(room-2,room-1) del (in robot room-2)

add (in robot room-1)

go(room-2,room-3) del (in robot room-2)

add (in robot room-3)

go(room-3,room-2) del (in robot room-3)

add (in robot room-2)

go(room-3,room-4) del (in robot room-3)

add (in robot room-4)

go(room-4,room-3) del (in robot room-4)

add (in robot room-3)

throw(room-1,room-2) del (in ball room-1)

throw(room-2,room-3) del (in ball room-2)

throw(room-3,room-4) del (in ball room-3)

throw(room-4,room-3) del (in ball room-4)

Choose-Extra: Heuristic selection of extra e�ects.

no additional primary effects

Table 3.3: Primary e�ects of the fully instantiated operators, selected by the Chooser algorithm.

operators primary e�ects

carry(<from>,<to>) add (in ball <to>)

go(<from>,<to>) del (in robot <from>)

add (in robot <to>)

throw(<from>,<to>) del (in ball <from>)

Table 3.4: Primary e�ects of uninstantiated operators in the simpli�ed Robot Domain, which

correspond to Chooser's selection for the instantiated domain description (see Table 3.3).

3.4. AUTOMATICALLY SELECTING PRIMARY EFFECTS 107

room-4

room-3

room-1

room-2

(door room-3 room-4)

(door room-1 room-2)
(door room-2 room-3)

Static Literals
(door room-2 room-1)
(door room-3 room-2)
(door room-4 room-3)

room-1, room-2, room-3, room-4: type Room
robot, ball: type Thing

Set of Objects

Figure 3.18: Encoding of the room layout in the simpli�ed Robot Domain.

Advantages and drawbacks

The described example illustrates both advantages and shortcomings of processing the in-
stantiated operators. The main advantage is the reduction of Chooser's sensitivity to a
speci�c domain encoding. In addition, the system may generate instantiations for a partic-
ular class of problems, thus enabling the Chooser algorithm to construct a problem-speci�c
selection of primary e�ects. The utilization of problem-speci�c information often helps to
improve the e�ciency of search with primary e�ects.

For example, consider the Robot Domain and suppose that we need to solve several
problems in which there is no ball. To generate an appropriate selection of primary e�ects,
we remove the ball from the set of objects given in Figure 3.18. Then, the system prunes
all instantiations of throw and carry, and Chooser does not select primary e�ects of these
two operators.

On the negative side, the instantiation technique has two major drawbacks. First, the
human operator must supply a list of the allowed object instances, and the resulting selection
may be inappropriate for solving problems with other instances. Thus, the technique works
only for domains with a �nite set of objects.

Second, the generation of all instantiations may lead to a combinatorial explosion. To
reduce the number of instantiated operators, the algorithm exploits information about static
features of the domain and prunes most of the infeasible instantiations; however, it does not
guarantee the complete elimination of unexecutable operators.

Generating feasible instantiations

We next present the Matcher algorithm, which inputs a list of the available objects, and
generates instantiated operators and inference rules. If the human operator speci�es static
literals that hold in the initial states of all problems, the algorithm utilizes them for pruning
infeasible instantiations. We say that the speci�ed literals have known truth values, whereas
the values of the other literals are unknown.

We show the speci�cation of Matcher in Figure 3.20 and give pseudocode in Figure 3.21.
When Matcher processes an operator or inference rule, denoted stepu in the pseudocode, it
generates all instantiations of stepu that match the given static literals. In Figure 3.23, we
illustrate the processing of the go operator in the simpli�ed Robot Domain. Recall that the
simpli�ed domain has no break operation; hence, the predicate (door <from> <to>) is static.

108 CHAPTER 3. PRIMARY EFFECTS

Pre:

Eff:

Pre:

Eff:

Pre:

Eff:

throw(room-1, room-2)
Pre:

Eff:

Pre:

Eff:

Pre:

Eff:

Pre:

Eff:

Pre:

Eff:

Pre:

Eff:

Pre:

Eff:

Pre:

Eff:

go(room-1, room-2)
Pre:

Eff:

carry(room-1, room-2)
Pre:

Eff:

Pre:

Eff:

Pre:

Eff:

Pre:

Eff:

Pre:

Eff:

Pre:

Eff:

go(room-2, room-1)

go(room-2, room-3)

add (robot-in room-3)

go(room-3, room-2)

go(room-3, room-4)

go(room-4, room-3)

throw(room-2, room-1)

throw(room-2, room-3)

throw(room-3, room-2)

throw(room-3, room-4)

throw(room-4, room-3)

carry(room-2, room-1)

carry(room-2, room-3)

carry(room-3, room-2)

carry(room-3, room-4)

carry(room-4, room-3)

(in robot room-1)
del (in robot room-1)
add (in robot room-2)

(in robot room-2)
del (in robot room-2)
add (in robot room-1)

(in robot room-2)
del (in robot room-2)

(in robot room-3)
del (in robot room-3)
add (in robot room-2)

(in robot room-3)
del (in robot room-3)
add (in robot room-4)

(in robot room-4)
del (in robot room-4)
add (in robot room-3)

(in robot room-1)
(in ball room-1)

del (in ball room-1)
add (in ball room-2)

(in robot room-2)
(in ball room-2)

del (in ball room-2)
add (in ball room-3)

(in robot room-3)
(in ball room-3)

del (in ball room-3)
add (in ball room-4)

(in robot room-2)
(in ball room-2)

del (in ball room-2)
add (in ball room-1)

(in robot room-3)
(in ball room-3)

del (in ball room-3)
add (in ball room-2)

(in robot room-4)
(in ball room-4)

del (in ball room-4)
add (in ball room-3)

(in robot room-1)
(in ball room-1)

del (in robot room-1)
add (in robot room-2)
del (in ball room-1)
add (in ball room-2)

(in robot room-2)
(in ball room-2)

del (in robot room-2)
add (in ball room-3)
del (in ball room-2)
add (in ball room-3)

(in robot room-3)
(in ball room-3)

del (in robot room-3)
add (in robot room-4)
del (in ball room-3)
add (in ball room-4)

(in robot room-2)
(in ball room-2)

del (in robot room-2)
add (in robot room-1)
del (in ball room-2)
add (in ball room-1)

(in robot room-3)
(in ball room-3)

del (in robot room-3)
add (in robot room-2)
del (in ball room-3)
add (in ball room-2)

(in robot room-4)
(in ball room-4)

del (in robot room-4)
add (in robot room-3)
del (in ball room-4)
add (in ball room-3)

Figure 3.19: Fully instantiated operators in the simpli�ed Robot Domain, which has no break

operation and add-door inference rule. We show only feasible instantiations, which can be executed

in the given room layout (see Figure 3.18).

3.4. AUTOMATICALLY SELECTING PRIMARY EFFECTS 109

Type of description change: Generating fully instantiated operators and inference rules.

Purpose of description change: Producing all feasible instantiations, while avoiding the in-
stantiations that can never be executed.

Use of other algorithms: None.

Required input: Description of the operators and inference rules; all possible values of the
variables in the domain description.

Optional input: Static literals that hold in the initial states of all problems.

Figure 3.20: Speci�cation of the Matcher algorithm.

Matcher

The algorithm inputs a set of the available object instances,

as well as a list of static literals that hold in all problems.

It also accesses the description of operators and inference rules.

For every uninstantiated operator and inference rule stepu:
1. Apply the Remove-Unknown procedure (see Figure 3.22) to the preconditions of stepu.

(The procedure simpli�es the preconditions, by pruning predicates with unknown truth values.)

2. For every if-e�ect of stepu,
apply Remove-Unknown to simplify the conditions of the if-e�ect.

3. Generate all possible instantiations of the resulting simpli�ed version of stepu.
4. Convert them to the corresponding instantiations of the original version of stepu.
5. For every instantiation of stepu,

delete literals with known truth values from the preconditions of the instantiation.

Figure 3.21: Generating all feasible instantiations of operators and inference rules.

First, the algorithm simpli�es the precondition expression of stepu, by removing all pred-
icates with unknown truth values (see Line 1 in Figure 3.21). Similarly, it simpli�es the
condition expressions of all if-e�ects in stepu (Line 2). For instance, when the algorithm
processes the go operator, it prunes the (in robot <room>) precondition (see Figure 3.23b).

We give a detailed pseudocode for the Remove-Unknown function (see Figure 3.22), which
deletes predicates with unknown values from a boolean expression. Note that the expres-
sion may include conjunctions, disjunctions, negations, and quanti�cations. The function
recursively parses the input expression, identi�es predicates with unknown truth values, and
replaces them by boolean constants. If a predicate is inside an odd number of negations,
then Remove-Unknown replaces it by false; otherwise, the predicate is replaced by true. This
simpli�cation procedure preserves all feasible instantiations of the original boolean expres-
sion. That is, if an instantiation satis�es the initial expression in at least one domain state,
then it also satis�es the simpli�ed expression.

Second, the Matcher algorithm generates all possible instances of the simpli�ed version
of stepu (Line 3). We use a standard instantiation procedure, which recursively parses the

110 CHAPTER 3. PRIMARY EFFECTS

Remove-Unknown(bool-exp, negated)

The input includes a boolean expression, bool-exp,

as well as a boolean value negated, which is `true'

if bool-exp is inside an uneven number of negations.

In addition, the algorithm accesses the list of static

literals with known truth values.

Determine whether the expression bool-exp

is a predicate, conjunction, disjunction,

negation, or quanti�ed expression.

Call the appropriate subroutine (see below),

and return the resulting expression.

Remove-Predicate(pred, negated)

The function inputs a predicate, denoted pred.

If the truth values of pred are unknown,

then return :negated (that is, `true' or `false').

Else, return pred (that is, the unchanged predicate).

Remove-From-Conjunction(bool-exp, negated)

The function inputs a conjunctive expression, bool-exp;

that is, bool-exp has the form `(and sub-exp sub-exp...).'

New-Exps := ;.

For every term sub-exp of the conjunction bool-exp:

new-exp := Remove-Unknown(sub-exp, negated).

If new-exp is false, then return false

(do not process the remaining terms).

If new-exp is not true or false

(that is, it is an expression with variables),

then New-Exps := New-Exps \ fnew-expg.

If New-Exps is ;, then return true.

Else, return the conjunction of all terms in New-Exps.

Remove-From-Disjunction(bool-exp, negated)

The function inputs a disjunctive expression, bool-exp;

that is, bool-exp has the form `(or sub-exp sub-exp...).'

New-Exps := ;.

For every term sub-exp of the disjunction bool-exp:

new-exp := Remove-Unknown(sub-exp, negated).

If new-exp is true, then return true

(do not process the remaining terms).

If new-exp is not true or false

(that is, it is an expression with variables),

then New-Exps := New-Exps \ fnew-expg.

If New-Exps is ;, then return false.

Else, return the disjunction of all terms in New-Exps.

Remove-From-Negation(bool-exp, negated)

The function inputs a negated expression, bool-exp;
that is, bool-exp has the form `(not sub-exp).'

Let sub-exp be the expression inside the negation.

new-exp := Remove-Unknown(bool-exp; :negated).

If new-exp is true or false, then return :new-exp

(that is, the function returns `false' or `true').

Else, return the negation of new-exp.

(that is, it returns an expression with variables).

Remove-From-Quanti�cation(bool-exp, negated)

The function inputs a boolean expression, bool-exp,

with universal or existential quanti�cation.

Let sub-exp be the expression inside the quanti�cation.

new-exp := Remove-Unknown(bool-exp, negated).

If new-exp is true or false, then return new-exp.

Else, return the quanti�cation of new-exp.

Figure 3.22: Deletion of the predicates with unknown truth values from a boolean expression. The

Remove-Unknown procedure inputs an expression, which encodes either operator preconditions or

if-e�ect conditions, and recursively processes its subexpressions. The procedure may return true,

false, or an expression with variables. The auxiliary boolean parameter, denoted negated, indicates

whether the current subexpression is inside an odd number of negations. When the Matcher

algorithm invokes Remove-Unknown, it sets the initial value of negated to false.

3.4. AUTOMATICALLY SELECTING PRIMARY EFFECTS 111

robot, ball: type Thing
room-1, room-2, room-3, room-4: type Room

Set of Objects

Static Literals
(door room-2 room-1)
(door room-3 room-2)
(door room-4 room-3)

(door room-1 room-2)
(door room-2 room-3)
(door room-3 room-4)

(d) Construction of all operator instantiations.

(e) Deletion of the precondtion literals with known truth values.

Eff:

Pre:

go(<from>, <to>)
(in robot <from>)
(door <from> <to>)

del (in robot <from>)
add (in robot <to>)

(a) Input of theMatcheralgorithm: Available object instances,
literals with known truth values, and an operator description.

Eff:

Pre:

go(<from>, <to>)
(door <from> <to>)

del (in robot <from>)
add (in robot <to>)

<to>
room-1
room-2
room-3
room-2
room-3
room-4

room-2
room-3
room-4
room-1
room-2
room-3

<from>

(c) Generation of all matching
instantiations of variables.

truth values from the precondtion expression.
(b) Removal of the predicates with unknown

go(room-1, room-2)

Eff:

(door room-1 room-2)
del (in robot room-1)
add (in robot room-2)

Pre: (in robot room-1)

go(room-1, room-2)

Eff:

(door room-1 room-2)
del (in robot room-1)
add (in robot room-2)

Pre: (in robot room-1)
go(room-1, room-2)

Eff:

(door room-1 room-2)
del (in robot room-1)
add (in robot room-2)

Pre: (in robot room-1)
go(room-1, room-2)

Eff:

(door room-1 room-2)
del (in robot room-1)
add (in robot room-2)

Pre: (in robot room-1)

go(room-1, room-2)

Eff:

(door room-1 room-2)
del (in robot room-1)
add (in robot room-2)

Pre: (in robot room-1)
go(room-1, room-2)

Eff:

(door room-1 room-2)
del (in robot room-1)
add (in robot room-2)

Pre: (in robot room-1)

Pre:

Eff:

Pre:

Eff:

go(room-2, room-3)

add (robot-in room-3)

go(room-3, room-4)
(in robot room-2)

del (in robot room-2)
(in robot room-3)

del (in robot room-3)
add (in robot room-4)

go(room-1, room-2)
Pre:

Eff:

(in robot room-1)
del (in robot room-1)
add (in robot room-2)

Pre:

Eff:

Pre:

Eff:

Pre:

Eff:

go(room-2, room-1) go(room-3, room-2) go(room-4, room-3)
(in robot room-2)

del (in robot room-2)
add (in robot room-1)

(in robot room-3)
del (in robot room-3)
add (in robot room-2)

(in robot room-4)
del (in robot room-4)
add (in robot room-3)

Figure 3.23: Constructing the instantiations of the go operator in the simpli�ed Robot Domain.

112 CHAPTER 3. PRIMARY EFFECTS

precondition expression and if-e�ect conditions, and outputs all instances of stepu that match
the given static literals. In Figure 3.23(c), we give a table of all variable instantiations for the
go operator. Then, the algorithm constructs the corresponding instances of the full version
of stepu (Line 4), as illustrated in Figure 3.23(d).

Third,Matcher removes the static literals with known truth values from the preconditions
of the resulting instances of stepu (Line 5). For example, it removes the break literals
from the instantiated go operators, as shown in Figure 3.23(e). Note that the resulting
instantiations of go are identical to those in Figure 3.19.

Running time

We now determine the time complexity of generating the instantiations and selecting their
primary e�ects. The complexity depends on the total number of e�ects, in all generated
instantiations of operators and inference rules, and the total number of nonstatic literals in
the instantiated domain descriptions. We denote the number of all instantiated e�ects by Ei

and the number of nonstatic literals by Ni, where the subscript \i" stands for \instantiated."
The running time of the Matcher algorithm is proportional to the total number of instan-

tiated e�ects. The per-e�ect time depends on the complexity of precondition expressions; in
our experiments, it ranged from 1 to 5 milliseconds. Thus, the total time for instantiating
all operators and inference rules is within Ei � 5 � 10�3 seconds.

The complexity of applying the Chooser algorithm to the instantiated domain description
is O(Ei � Ni). Finally, an e�cient implementation of Generalize-Selection algorithm takes
O(Ei) time. Thus, the overall time complexity of generating all instantiations, choosing their
primary e�ects, and constructing the corresponding selection for uninstantiated operators is
O(Ei �Ni). In practice, these procedures take up to (Ei + 60) �Ni � 10�4 seconds.

3.5 Learning additional primary e�ects

The Chooser algorithm may signi�cantly improve the e�ciency of search; however, the se-
lected primary e�ects sometimes cause two serious problems. First, the resulting selection
is not immune to incompleteness and, second, its use may lead to a large cost increase.

For example, suppose that the robot and the ball are in room-1, and the goal is to move
the ball to room-2 and keep the robot in room-1. We may achieve it by throw(room-1,room-2);
however, if the solver uses primary e�ects selected by Chooser (see Table 3.2a{c), it will not
consider this solution, because the new position of the ball is not a primary e�ect of throw.
Instead, it will �nd a costlier solution, \carry(room-1,room-2), go(room-2,room-1)."

To address this problem, we have developed an inductive learning algorithm, called Com-
pleter, that chooses additional primary e�ects and ensures a high probability of completeness
and limited cost increase. This algorithm also serves as a description changer in the Shaper
system. The main drawback of Completer is its signi�cant learning time, which may prove
larger than the time for solving individual problems without primary e�ects; however, we
usually amortize it over multiple problem instances.

The learner inputs a selection of primary e�ects, produced by either the human user
or the Chooser algorithm, and the user-speci�ed limit C on the cost increase. The input

3.5. LEARNING ADDITIONAL PRIMARY EFFECTS 113

Type of description change: Selecting primary e�ects of operators and inference rules.

Purpose of description change: Minimizing the number of primary e�ects, while ensuring
that the cost increase is no larger than the user-speci�ed bound C.

Use of other algorithms: A problem solver (prodigy or abtweak), which constructs re-
placing sequences; a generator of initial states.

Required input: Description of the operators and inference rules; limit C on the allowed cost
increase.

Optional input: Pre-selected primary and side e�ects; set of initial states.

Figure 3.24: Speci�cation of the Completer algorithm.

selection usually consists of primary and candidate e�ects; however, it may also include
pre-selected side e�ects.

The algorithm tests the completeness of the input selection, by solving a collection of
simple problems. If the selection proves incomplete or does not satisfy the cost-increase limit,
it promotes some candidate e�ects to primary e�ects. Recall that problem solvers do not

di�erentiate between unpromoted candidate e�ects and side e�ects. Thus, all unpromoted
e�ects become side e�ects upon the completion of learning.

The completeness test is based on the condition given in Section 3.2.2. For every operator
and inference rule, the algorithm generates several initial states that satisfy its preconditions
and tries to construct primary e�ect-justi�ed replacing sequences for these states. If Com-
pleter cannot �nd replacing sequences within the user-speci�ed cost increase, it concludes
that the current selection is incomplete and promotes some candidate e�ects.

The Completer algorithm does not choose new primary e�ects among the pre-selected
side e�ects. Thus, if the user speci�es inappropriate side e�ects, the algorithmmay be unable
to generate a complete selection. We have provided an option for testing the completeness
of the �nal selection, which helps the user to detect possible problems with the manual pre-
selection of side e�ects. On the other hand, an expert user may purposefully specify side
e�ects that prevent completeness. For example, she may sacri�ce completeness for e�ciency
or generate a selection for a limited subclass of problems.

The learning algorithm has to use some backward-chaining solver, which searches for
replacing sequences. We experimented with the use of prodigy and tweak search algo-
rithms. In addition, Completer needs some procedure for generating random initial states
or, alternatively, access to a library of previously encountered domain states. We summarize
the speci�cation of Completer in Figure 3.24.

We use the theory of probably approximately correct learning in developing an algorithm
that satis�es this speci�cation. First, we present the learning algorithm (Section 3.5.1) and
discuss some heuristics for improving its e�ectiveness (Section 3.5.2). Then, we derive the
sample complexity of the algorithm, that is, the number of learning examples required for
ensuring a high probability of completeness and limited cost increase.

114 CHAPTER 3. PRIMARY EFFECTS

3.5.1 Inductive learning algorithm

We describe a technique for testing the completeness of the initial selection and learning
additional primary e�ects, which ensure a high probability of completeness. We explain
the use of two special parameters for specifying the required probability of learning an
appropriate selection, give the learning algorithm, and illustrate its application to the Robot
Domain.

Probability of success

The input of the learning algorithm includes not only the initial selection of primary e�ects
and the limit C on the allowed cost increase, but also two probability values, � and �.
These values are standard parameters of the probably approximately correct (PAC) learning
[Valiant, 1984], which determine the probability requirements for the success of inductive
learning. We briey describe the meaning of � and � before presenting the learning algorithm.
In Section 3.5.3, we give a detailed explanation of their use in the sample-complexity analysis.

The � value determines the required probability of completeness and limited cost increase.
The learning algorithmmust ensure that a randomly selected solvable problem has a primary-
e�ect justi�ed solution, within the cost increase C, with probability at least 1� �. In other
words, at most � of all solvable problems may become unsolvable due to the use of primary
e�ects.

The � value determines the likelihood of success of the inductive learning. The probability
that at most � of all solvable problems may become unsolvable must be at least 1 � �. To
summarize, the learning algorithm ensures with probability at least 1 � � that a primary-
e�ect complete solver is able to �nd solutions, within the cost increase C, to 1 � � of all
solvable problems.

Learning loop

In Figure 3.25, we give the inductive learning algorithm, which loops through the available
operators and inference rules and selects new primary e�ects among their candidate e�ects.
The selection of additional primary e�ects is based on the derived completeness condition (see
Section 3.2.2). When the algorithm processes stepu, it generates multiple learning examples
and uses them to identify missing primary e�ects of stepu. A learning example consists of an
initial state I, satisfying the preconditions of stepu, and a matching instantiation of stepu,
denoted stepi (where \i" is for \instantiated").

The Learn-Example procedure of Completer (see Figure 3.25) constructs and processes a
learning example. The construction of an example consists of two steps. First, the learner
invokes a procedure for generating random initial states, which returns a state that satis�ed
stepu's preconditions (see Step 1b). We will discuss the techniques for producing initial states
in Section 3.5.2. Second, Completer uni�es the preconditions of stepu with the literals of the
resulting state and generates a matching operator instantiation (see Step 2b). If multiple
instantiations of stepu match the state, then the learner randomly chooses one of them.

After constructing a learning example, the algorithm uses it to test the completeness of
the current selection (Steps 3b and 4b). The algorithm calls the Generate-Goal procedure (see

3.5. LEARNING ADDITIONAL PRIMARY EFFECTS 115

Completer(C; �; �)

The algorithm inputs the allowed cost increase, C, and the success-probability parameters, � and �.

It also accesses the operators and inference rules, with their pre-selected primary and side e�ects.

For every uninstantiated operator and inference rule stepu:

1a. Determine the required number m of learning examples,

which depends on stepu, �, and � (see Section 3.5.3).

2a. Repeat m times:

If stepu has no candidate e�ects,

then terminate the processing of stepu and go to the next operator or inference rule.

Else, call Learn-Example(stepu; C), to generate and process a learning example.

Learn-Example(stepu; C)

1b. Call the initial-state generator, to produce a state I that satis�es the preconditions of stepu.

2b. Generate a full instantiation stepu, denoted stepi, that matches the initial state I.

3b. Call Generate-Goal(stepi; I), to produce the goal G(stepi; I) of a replacing sequence.

4b. Call the problem solver, to search for a replacing sequence with a cost at most C � cost(stepu).

5b. If the solver fails, select some candidate e�ect of stepu as a new primary e�ect.

Figure 3.25: Inductive learning of additional primary e�ects.

Figure 3.10) to construct the corresponding goal G(stepi; I) and then invokes the available
problem solver, to construct a primary-e�ect justi�ed replacing sequence. The solver searches
for a replacing sequence within the cost limit C � cost(stepi), which bounds the search depth.

If the solver fails to construct a primary-e�ect justi�ed sequence, then the current se-
lection is incomplete and the learning algorithm chooses some candidate e�ect of stepu as a
new primary e�ect (Step 5b). In Section 3.5.2, we will discuss some heuristics for selecting
among the candidate e�ects.

When we use Completer in the abtweak system, the problem solver performs a best-
�rst search for a replacing sequence, and either �nds a primary-e�ect justi�ed replacement
or reaches the cost bound. The explored space is usually small, because of a low cost limit.
The time for processing an example on a Sun 1000 computer varied from a few milliseconds
to half second, depending on the domain.

When we use a prodigy system for the generation of replacing sequences, it performs
a heuristic depth-�rst search. When the solver reaches the cost limit, it backtracks and
considers a di�erent branch of the search space. If the learning example has no replacing
sequence, the solver continues the search until it explores the entire search space. This
exploration sometimes takes signi�cant time, because of a large branching factor.

To avoid this problem, the user may provide a time bound for the processing of a learning
example. She may specify a constant bound or, alternatively, a Lisp function that computes a
bound for every example. If prodigy reaches a time bound, it returns failure, and Completer
selects a new primary e�ect. This strategy reduces the learning time, but it may result in
selecting redundant primary e�ects.

116 CHAPTER 3. PRIMARY EFFECTS

The number of learning examples, m, depends on the user-speci�ed parameters � and
�, which determine the required probability of generating a complete selection (see Step 1a
of Completer). The smaller the values of � and �, the larger the number of examples. In
addition,m depends on the number of candidate e�ects of stepu. We will derive an expression
for computing m in Section 3.5.3.

The Completer algorithm usually uses the required number m of learning examples in
processing stepu (see Step 1b); however, if Completer promotes all candidate e�ects of stepu
to primary e�ects, without considering all m examples, then it terminates the processing
and moves on to the next operator or inference rule.

Example of learning

We consider the application of the learning algorithm to the Robot Domain (see Figure 3.2),
with the initial selection produced by the Chooser algorithm, as shown in Table 3.2(a{c).
We assume that the maximal allowed cost increase is C = 2, and that the algorithm �rst
considers the throw operator, whose candidate e�ect in the initial selection is the new
position of the ball.

Suppose that Completer generates the initial state shown in the left of Figure 3.26(a) and
the matching operator instantiation throw(room-1,room-2). It then invokes the Generate-

Goal procedure, which produces the goal given in the right of Figure 3.26(a). This goal
includes moving the ball to room-2, which is the candidate e�ect of throw, as well as leaving
the robot in room-1 and preserving all doorways, which is the part of the initial state that
has to remain unchanged.

The learning algorithm calls the problem solver to generate a primary-e�ect justi�ed
solution, with a cost at most C � cost(throw) = 2 � 2 = 4. The solver fails to �nd a solution
within this cost limit, because the cheapest replacing sequence, which is \carry(room-1,room-

2), go(room-2,room-1)," has a cost of 5. After this failure, Completer chooses the candidate
e�ect of the throw operator, ball-in, as a new primary e�ect. If the operator had several
candidate e�ects, the algorithm could choose any of them; however, throw has only one
candidate e�ect.

Now suppose that Completer considers the break operator, chooses an initial state with
the robot in room-4, and generates the matching instantiation break(room-4,room-1) (see
Figure 3.26(b). The candidate e�ect of this operator is the new position of the robot and,
thus, Completer considers the problem of moving the robot from room-4 to room-1, within
the cost limit C � cost(break) = 2 � 4 = 8. The solver algorithm �nds a replacing sequence
\go(room-4,room-3), go(room-3,room-2), go(room-2,room-1)," with a cost of 6, and the learning
algorithm does not choose a new primary e�ect of break.

We summarize the steps of choosing primary e�ects for the Robot Domain in Table 3.2
and show the resulting selection in Table 3.5. This selection is complete and ensures a limited
cost increase. For the world map used in the learning examples (see Figure 3.2a), the cost
increase is within 1.5.

3.5. LEARNING ADDITIONAL PRIMARY EFFECTS 117

(ball-in room-1)
(robot-in room-1)

(door room-2 room-1)
(door room-1 room-2)

(door room-2 room-3)
(door room-3 room-2)
(door room-3 room-4)
(door room-4 room-3)

room-4

room-3

room-1

room-2

room-4

room-3

room-1

room-2

Initial state Goal statement

(ball-in room-2)
(robot-in room-1)

(door room-2 room-1)
(door room-1 room-2)

(door room-2 room-3)
(door room-3 room-2)
(door room-3 room-4)
(door room-4 room-3)

(a) Example for throw.

(b) Example for break.

(robot-in room-1)

(door room-2 room-1)
(door room-1 room-2)

(door room-2 room-3)
(door room-3 room-2)
(door room-3 room-4)
(door room-4 room-3)

room-4

room-3

room-1

room-2

room-4

room-3

room-1

room-2

Initial state Goal statement

not (robot-in room-3)
(robot-in room-3)

(door room-2 room-1)
(door room-1 room-2)

(door room-2 room-3)
(door room-3 room-2)
(door room-3 room-4)
(door room-4 room-3)

Figure 3.26: Learning example.

118 CHAPTER 3. PRIMARY EFFECTS

operators primary e�ects

go(<from>,<to>) del (robot-in <from>), add (robot-in <to>)

carry(<to>,<from>) add (ball-in <to>)

throw(<from>,<to>) del (ball-in <from>), add (ball-in <to>)

break(<from>,<to>) add (door <from> <to>)

add-door(<from>,<to>) add (door <from> <to>)

Table 3.5: Automatically selected primary e�ects in the Robot Domain.

3.5.2 Selection heuristics and state generation

We discuss several heuristics used in the Completer algorithm and then describe a technique
for generating random initial states.

Choice among candidate e�ects

When Completer cannot �nd a replacing sequence, it often has to select a new primary e�ect
among several candidate e�ects. An inappropriate choice may increase the redundancy,
which a�ects the e�ciency of problem solving. The development of e�ective heuristics for
selecting among available candidate e�ects is an open problem. We have used two selection
techniques, which usually help to avoid redundancy, especially in large-scale domains.

The �rst technique enables the algorithm to prune some of the inappropriate choices, by
analyzing partial solutions to the replacing problem. The underlying idea is to identify the
candidate e�ects that can be achieved by replacing sequences. When the problem solver fails
to �nd a replacing sequence for some learning example (stepi; I), it may construct incomplete
solutions that achieve some candidate e�ects of stepi. Then, Completer selects a new primary
e�ect among unachieved candidate e�ects.

For example, suppose that the learning algorithm processes the operator break(<from>,<to>),
with the only primary e�ect \add (door <from> <to>)," and that the maximal allowed cost
increase is C = 1. Suppose further that the algorithm constructs the learning example given
in Figure 3.26(b) and calls the problem solver to �nd a replacing sequence, with cost limit 4.
The solver fails to �nd a primary-e�ect justi�ed replacement; however, it may construct an
incomplete solution \go(room-4,room-3)," which achieves one of break's candidate e�ects,
\not (robot-in room-4)." Then, the Completer algorithm selects the other candidate e�ect,
\add (robot-in <to>)," as a new primary e�ect.

In Section 5.1, we will describe the second selection technique, which guides the choice
among the unachieved candidate e�ects. This heuristic technique is based on the relationship
between primary e�ects and abstraction in problem solving. It enables Completer to choose
primary e�ects that enhance the e�ectiveness of abstraction search. The resulting selections
usually correspond to human intuition. Moreover, if we use an automatic abstraction gener-
ator (see Chapter 4), then the selected primary e�ects improve the quality of the resulting
abstractions.

3.5. LEARNING ADDITIONAL PRIMARY EFFECTS 119

Order of processing operators

The learned selection of primary e�ects may depend on the order of processing operators
and inference rules. We tested several ordering heuristics and decided to process operators
in increasing order of their costs. We used this processing order in most experiments, and
demonstrated that it usually helps to avoid redundant primary e�ects. Note that, since
inference rules have no cost, the learning algorithm processes them before operators.

An intuitive justi�cation is based on the observation that the problem solver mostly uses
cheap operators in the construction of replacing sequences. If we may use some operator
or inference rule step

1
in a primary-e�ect justi�ed replacement of step

2
, then the learning

algorithm should process step
1
before step

2
, in order to use the newly selected primary e�ects

of step
1
in the generation of replacing sequences for step

2
. Since the algorithm usually uses

cheap operators in replacing sequences for more expensive operators, it should begin by
processing cheap operators.

If the cost of an operator depends on an instantiation, then the Completer algorithm has
to determine the range of possible costs, and use this range in the cost comparison. If the
system uses the Matcher algorithm in generating the initial selection of primary e�ects, then
it gets all possible instantiations of every operator and determines the exact cost ranges.

Otherwise, Completer generates learning examples for all operators before ordering the
operators, and uses the corresponding instantiations to estimate the cost ranges. For every
operator stepu, it constructsm learning examples, which includem instantiations of stepu (see
Figure 3.25). Then, the algorithm determines the cost range of the resulting instantiations,
and uses it as an estimate of stepu's cost range.

After the algorithm determines the cost ranges for all operators, it uses these ranges to
determine the processing order. We consider step

1
cheaper then step

2
only if the maximal

cost of step1 is smaller than the minimal cost of step2. This cost comparison determines a
partial order of operators in the domain.

If two operators have the same cost, or their relative cost depends on speci�c instantia-
tions, then we use a di�erent heuristic for their ordering: the learning algorithm processes
them in increasing order of the number of their candidate e�ects. That is, if step

1
has fewer

candidate e�ects than step2, then the algorithm processes step1 before step2. We also use
this heuristic for ordering inference rules, which have no costs.

This heuristic is based on the observation that, if the learning algorithm selects a new
primary e�ect among multiple candidate e�ects of an operator or inference rule, it may select
a redundant e�ect. The larger the number of candidate e�ects, the higher the probability
of making an inappropriate choice. If the algorithm �rst selects primary e�ects of inf

1

and uses them in the construction of replacing sequences for inf
2
, it reduces the number

of alternatives in selecting a new primary e�ect of inf 2, thus lowering the probability of
choosing a redundant e�ect.

Generating initial states

When the learning algorithm processes an operator or inference rule, it uses matching initial
states to construct learning examples. Therefore, we have to provide a procedure for the
generation of initial states, which inputs an uninstantiated operator or inference rule, stepu,

120 CHAPTER 3. PRIMARY EFFECTS

and constructs a random initial state, based on some probability distribution over the set of
all states that satisfy the preconditions of stepu. The distribution should correspond to the
probabilities of encountering these states during problem solving.

The development of general techniques for generating consistent domain states is an
open research area, closely related to the automatic construction of sample problems for
various learning algorithms. We have not investigated this area; however, we have provided
a procedure that uses previously generated solutions to construct a library of initial states.
If the system has access to a collection of past problem-solving episodes, the user may apply
this procedure to generate learning examples.

For every available solution, the procedure determines its initial state and all intermediate
states, and stores them in the library. When adding a state to the library, we record the
operator or inference rule applied to this state in the solution. We then index all states by
the applicable operators and rules, and utilize this indexing for fast retrieval of states that
satisfy the preconditions of stepu.

If the system does not have a library of past solutions for the current domain, then the
user has to design a procedure that generates initial states for this domain. We implemented
state generators for several domains and used them in most experiments. Alternatively,
the user may hand-code a set of initial states for every operator and inference rule. If she
provides fewer then m states for some operator or inference rule, the learning algorithm uses
all available states and warns the user that the selection may not satisfy the completeness
requirements.

3.5.3 Sample complexity

When the Completer algorithm learns primary e�ects of an operator or inference rule stepu, it
considers m initial states that satisfy the preconditions of stepu. The value of m depends on
the success-probability parameters, � and �, and on the number of candidate e�ects of stepu.

To determine the appropriate m value, we use the framework of probably approximately

correct learning, which is usually abbreviated as PAC learning. This framework is a sub-
�eld of computational learning theory [Anthony and Biggs, 1992; Drastal et al., 1994 1997;
Haussler, 1988; Natarajan, 1991; Carbonell, 1990], aimed at estimating the required number
of learning examples. The dependency between m and the values of � and � is called the
sample complexity of the learning algorithm.

We de�ne an approximately correct selection of primary e�ects, which ensures that oper-
ators and inference rules almost always have replacing sequences, and derive a dependency
between m and the probability of learning an approximately correct selection. This result
allows the computation of the m value from the user-speci�ed parameters, � and �. We then
discuss the dependency between sample complexity and learning time.

PAC learning

Suppose that we apply the learning algorithm to select primary e�ects of some uninstantiated
operator or inference rule stepu, with j candidate e�ects. The algorithm randomly chooses m
states that satisfy the preconditions of stepu, generates instantiations of stepu that match the
chosen states, and calls a problem solver to �nd primary-e�ect justi�ed replacing sequences.

3.5. LEARNING ADDITIONAL PRIMARY EFFECTS 121

m number of learning examples for selecting primary e�ects of stepu
s number of candidate e�ects of stepu before learning
�s error of the PAC learning for stepu's selection of primary e�ects
�s probability that the error of stepu's selection is larger than �s
� maximal allowed probability of failure to solve a randomly chosen problem
� maximal allowed probability of generating an inappropriate selection
n length of an optimal solution to a randomly chosen problem
nmax maximal possible length of an optimal solution

Figure 3.27: Summary of the notation in the sample-complexity analysis.

The selected initial states and instantiations of stepu are learning examples. Formally,
every example is a pair (stepi; I), where stepi is a full instantiation of stepu and I is an initial
state satisfying the preconditions of I. The algorithm selects learning examples from the set
of all possible examples, using a certain probability distribution over this set.

We assume that the chance of choosing an instantiation stepi and initial state I during
the learning process is equal to the chance of generating the same instantiation of stepu and
applying it to the same state I during problem solving. This assumption, called the station-
arity assumption of PAC learning [Valiant, 1984], is essential for analyzing the probability
of completeness.

When the problem solver cannot �nd a replacing sequence, the learner selects one of the
candidate e�ects of stepu as a new primary e�ect. The resulting selection of primary e�ects
depends on the chosen initial states and instantiations of stepu. Since stepu has j candidate
e�ects, it allows 2j di�erent selections. Every selection is a hypothesis of the PAC learning,
and the set of 2j possible selections is the hypothesis space.

If the problem solver can �nd a replacing plan for an instantiated operator stepi and initial
state I, within the cost limit C � cost(stepi), then the current selection of primary e�ects is
consistent with the learning example (stepi; I). Note that selecting additional primary e�ects
does not violate consistency; therefore, the learned selection is consistent with allm examples
chosen by the algorithm; however, it may not be consistent with other possible examples.

The error of the PAC learning for stepu is the probability that the learned selection of
stepu's primary e�ects is not consistent with a randomly selected learning example. The
selection is approximately correct if the error is no larger than a certain small positive value,
�s, where the index \s" stands for stepu.

In Figure 3.27, we summarize the notation used in the analysis of the PAC learning. We
have already de�ned the �rst three symbols, and will introduce the remaining notation in
the following derivation of the sample complexity.

Probability of approximate correctness

The Completer algorithm randomly choosesm examples from the set of all learning examples.
Since the selection of primary e�ects is consistent with these m examples, we intuitively
expect that it is also consistent with most other examples. If the value of m is su�ciently
large, the learned selection is likely to be approximately correct.

122 CHAPTER 3. PRIMARY EFFECTS

Blumer et al. [1987] formalized this intuition and derived an upper bound for the prob-
ability that the results of learning are not approximately correct. This bound depends on
the number m of chosen examples and the size of the hypothesis space. For the space of 2j

hypotheses, the probability of learning an incorrect hypothesis is at most

2j � (1� �s)
m:

The learning results are probably approximately correct if this probability is no larger
than a certain small value, denoted �s:

2j � (1� �s)
m � �s: (3.6)

This expression is the classical inequality of PAC learning, which enables us to determine
the required number m of learning examples. The following condition on the value of m
ensures the satisfaction of Inequality 3.6 [Blumer et al., 1987]:

m � 1

�s
� ln 2

j

�s
=

1

�s
� (ln 1

�s
+ j � ln 2): (3.7)

Thus, if the m value of the operator or inference rule stepu satis�es this inequality, then the
learned selection of stepu's primary e�ects is probably approximately correct.

Number of initial states

We now relate the required numberm of learning examples to the user-speci�ed parameters, �
and �, of the Completer algorithm (see Section 3.5.1). Recall that � determines the complete-
ness requirement for an appropriate selection of primary e�ects: it is the maximal allowed
probability of failure to solve a randomly selected problem, within the cost increase C, when
using the learned primary e�ects. The � value is the allowed probability of generating an
inappropriate selection, that is, failing to satisfy the completeness requirement.

First, we assume that the learning algorithm has found an approximately correct selection
of primary e�ects for every operator and inference rule, and estimate the probability of failing
to solve a random problem. We express the failure probability through �s and use this result
to determine the dependency between � and �s.

Suppose that the �s value is the same for all operators and inference rules, a problem solver
uses the learned primary e�ects to solve some randomly chosen problem, and an optimal
solution to this problem consists of n steps. If every operator and inference rule stepi in
the optimal solution has a primary-e�ect justi�ed replacing sequence, with a cost no larger
than C � cost(stepi), then the problem has a primary-e�ect justi�ed solution within the cost
increase C (see the proof of the completeness condition in Section 3.2.2).

The probability that every step has a replacing sequence is at least (1� �s)
n; hence, the

probability that the problem has no primary-e�ect justi�ed solution is at most

1� (1� �s)
n � n � �s:

This expression estimates the probability of failure due to the use of primary e�ects, which
must be no larger than the user-speci�ed parameter �:

n � �s � �: (3.8)

3.5. LEARNING ADDITIONAL PRIMARY EFFECTS 123

Next, we estimate the probability of learning an inappropriate selection of primary e�ects
and derive the dependency between � and �s. We suppose that the �s value is the same for
all operators and inference rules, and denote the total number of operators and rules by s.

If the learning algorithm has not found an approximately correct selection of primary
e�ects for some operator, then the overall selection may not satisfy the completeness re-
quirement. The probability that some operator has inappropriate primary e�ects is at most

1� (1� �s)
s � s � �s:

This result is an upper bound for the probability of generating an inappropriate selection,
which must be no larger than the � parameter:

s � �s � �: (3.9)

We rewrite Inequality 3.8 as 1

�s
� n

�
and Inequality 3.9 as 1

�s
� s

�
, and substitute these lower

bounds for 1

�s
and 1

�s
into Inequality 3.6:

m � n

�
� (ln s

�
+ j � ln 2 = n

�
� (ln 1

�
+ ln s+ j � ln 2): (3.10)

The computation of them value in the Completer algorithm is based on Inequality 3.10. Since
the optimal-solution length n depends on a speci�c problem, we have to use its estimated
maximal value in computing m. If this length is at most nmax for all possible problems, then
the following value of m satis�es Inequality 3.10:

m =
�
nmax

�
� (ln 1

�
+ ln s+ j � ln 2)

�
: (3.11)

The learning algorithm prompts the user to estimate the maximal length of an optimal
solution and uses Equality 3.11 to determine the number m of learning examples. If the user
does not provide the value of nmax, then the algorithm uses the default upper bound, which
is currently set to 20.

Thus, the number of examples for stepu depends on the user-speci�ed parameters � and �,
as well as on the number j of stepu's candidate e�ects, the total number s of operators and
inference rules in the domain, and the estimated limit nmax of optional-solution lengths.
This dependency of m on the success-probability parameters, � and �, is called the sample
complexity of the learning algorithm.

Learning time

The learning time of the Completer algorithm is proportional to the total number of learning
examples, for all operators and inference rules. If we use Expression 3.11 to determine
the m value for each operator and rule, then the total number of examples, M , is roughly
proportional to the total number of candidate e�ects:

M =
X
op

mop +
X
inf

minf

124 CHAPTER 3. PRIMARY EFFECTS

=
X
op

�
nmax

�
� (ln 1

�
+ ln s+ jop � ln 2)

�
+
X
op

�
nmax

�
� (ln 1

�
+ ln s + jinf � ln 2)

�

� nmax

�
� (ln 1

�
+ ln s) +

nmax

�
� (
X
op

ln(jop + 1) +
X
inf

ln(jinf + 1)):

For example, consider the automatic selection of primary e�ects in the Robot Domain. After
the use of the Chooser algorithm, the total number of remaining candidate e�ects is 6 (see
Table 3.2a{c). If we apply the Completer algorithm with � = � = 0:2 and nmax = 5, then the
overall number of learning examples is M = 185.

When Completer processes a learning example, it invokes a problem solver to search for
a replacing sequence, which may take signi�cant time. The processing time depends on the
domain and maximal allowed cost increase C, as well as on the speci�c example. For the
Lisp implementation of prodigy on a Sun 5, the time for processing an example varies from
0.01 to 0.1 seconds, which means that the overall learning time is usually one or two orders
of magnitude larger than Chooser's running time.

The choice between applying the Completer algorithm and using Chooser's selection
depends on the desired trade-o� between speed and accuracy of selecting primary e�ects. If
a domain includes large-scale problems or a large number of small problems, then the learned
selection signi�cantly reduces search and justi�es the learning time. On the other hand, if
the domain does not require extensive search, we may be better o� without learning.

We have used a conservative worst-case analysis to derive the sample complexity of
Completer, which has shown the need for a large number of learning examples. On the
other hand, experiments have demonstrated that the algorithm usually needs many fewer
examples for generating a complete selection. We conjecture that the average-case sample
complexity is smaller than the derived worst-case result, and that we can further reduce it
by an intelligent selection of learning examples; however, providing a tighter bound for the
complexity is an open problem.

3.6 abtweak experiments

We present a series of experiments on the use of automatically selected primary e�ects in
the abtweak system, which explores the search space in breadth-�rst order. We performed
these experiments in collaboration with Yang, to demonstrate that primary e�ects exponen-
tially reduce search [Fink and Yang, 1995]. In Section 3.7, we describe similar experiments
in the prodigy system, which uses depth-�rst search.

The domain language of abtweak is similar to the basic domain language described
in Section 2.2.1, which is less powerful than the full prodigy language. It does not allow
the use of object types, disjunctive and quanti�ed preconditions, conditional e�ects, and
inference rules. We thus used conjunctive goals and operators with conjunctive preconditions
in constructing experimental problems.

We have implemented the algorithm for selecting primary e�ects and used it with the
abtweak system, developed by Yang et al. [1996]; both the selection algorithm and abtweak
have been coded in Lisp. We have run the experiments using Allegro Common Lisp on a
Sun 1000 computer. We �rst describe experiments with arti�cial domains (Section 3.6.1),

3.6. ABTWEAK EXPERIMENTS 125

and then give the results for an extended version of the robot world and for a manufacturing
domain (Section 3.6.2).

3.6.1 Controlled experiments

We consider a family of arti�cial domains, similar to the domains developed by Barrett and
Weld [1994] for evaluating the e�ciency of least-commitment systems. These domains have a
number of features that can be varied independently, which enables us to perform controlled
experiments.

Arti�cial domains

We de�ne a problem by s + 1 initial-state literals, init0; init2; :::; inits, and a conjunctive
goal statement that includes s literals, goal0; goal2; :::; goals�1. The variable name \s" stands
for the \size of a problem," which is one of the controlled features. The domain contains
s operators, op0; op2; :::; ops�1, where every operator opi has the single precondition initi+1

and k + 1 e�ects, which include deleting the initial-state literal initi and adding the goal
literals goali; goali+1

; :::; goali+k�1
. The goal literals are enumerated modulo s; that is, a more

rigorous notation for e�ects of opi is goali mod m; goal(i+1) mod m; :::; goal(i+k�1) mod s.
For example, suppose that the goal statement includes six literals, that is, s = 6. If

k = 1, then every operator opi adds one goal literal, goali, and the solution has to contain all
six operators: \op0op1; op2; op3; op4; op5." If k = 3, then every operator adds three literals;
in particular op0 achieves goal0, goal1, and goal2; and op3 achieves goal3, goal4, and goal5. In
this case, an optimal solution comprises two operators: \op

0
; op

3
."

Controlled features

The arti�cial domains allow us to vary the following problem features:

Goal size: The goal size is the number of goal literals, s. The length of an optimal solution
changes in proportion to the number of goal literals.

E�ect overlap: The e�ect overlap, k, is the average number of operators achieving the
same literal. In terms of the analysis in Section 3.3, we may express the overlap as the
ratio of the total number of operator e�ects, E, and the number of nonstatic literals,N ;
that is, k = E=N .

Cost Variation: The cost variation is the statistical coe�cient of variation of the operator
costs, that is, the ratio of the standard deviation of the costs to their mean. Intuitively,
it is a measure of the relative di�erence among operator costs.

We vary these three features in controlled experiments. Although the domains are arti�cial,
they demonstrate some important characteristics of real-world problems: �rst, if the goal
size increases, the length of the optimal solution also increases; second, if the e�ect overlap
increases, then every operator achieves more goal literals and the solution length decreases.

126 CHAPTER 3. PRIMARY EFFECTS

Varying solution lengths

First, we describe experiments that show the dependency of the search reduction on the
optimal solution length, that is, on the number of operators in an optimal solution. We
plotted this dependency for di�erent values of the e�ect overlap and cost increase.

We varied the goal size s from 1 to 20 and constructed conjunctive goal statements by
randomly permuting the literals goal

1
; goal

2
; :::; goals. We used domains with two di�erent

values of the e�ect overlap, 3 and 5. Note that we did not consider an overlap of 1, because
then all e�ects would have to be primary and, hence, the use of primary e�ects would not
a�ect the search.

We �rst applied the abtweak system to all problems without using primary e�ects, and
discarded the problems that took more than sixty seconds. Thus, the experimental results
are for the problems solved within one minute. For an e�ect overlap of 3, the optimal-solution
lengths of such problems varied from one to seven operators; for an overlap of 5, the optimal
solutions were up to four operators.

We then applied the algorithm for selecting primary e�ects and used the resulting selec-
tions in problem solving. We experimented with two di�erent cost-increase values, C = 2
and C = 5, and two di�erent values of � and �, which were � = � = 0:2 and � = � = 0:4. In
addition, we considered cost assignments with three di�erent values of the cost variation: 0,
0.4, and 2.4.

Dependency of the savings on the solution length

The results of the experiments are presented in Figures 3.28 and 3.29: we give the running
times of abtweak without primary e�ects (\w/o prim") and with the use of the learned
primary e�ects (\with prim"). The graphs show the dependency of the search time (vertical
axis) on the length of an optimal solution (horizontal axis); note that the time scale is
logarithmic. Every point in each graph is the average running time for ten di�erent problems,
and the vertical bars show the 95% con�dence intervals.

The search with primary e�ects yielded solutions to all problems, within the user-speci�ed
cost increase. The time reduction varied depending on the goal size, e�ect overlap, cost in-
crease, and cost variation; however, it was signi�cant in all cases. The experiments demon-
strated that the time savings grow exponentially with an increase in the solution length.
These results con�rmed the rn estimate of the search-reduction ratio, where n is the length
on an optimal solution (see Section 3.3). The r value in the arti�cial experiments depended
on the e�ect overlap, varying from 0.3 to 0.6.

Varying e�ect overlap

Next, we consider the e�ciency improvement for di�erent e�ect overlaps. Recall that the
e�ect-overlap value is de�ned as the average number of operators achieving the same literal.
We vary this value from 2 to 6, and consider three di�erent cost variations: 0, 0.4, and 2.4. In
Figure 3.30, we present the running times of the abtweak system without primary e�ects
(\w/o prim") and with the use of primary e�ects (\with prim"), for every e�ect overlap and

3.6. ABTWEAK EXPERIMENTS 127

0.001

0.01

0.01

1

10

100

1 2 3 4 5 6

R
un

ni
ng

 T
im

e
(C

PU
 s

ec
)

Length of an Optimal Solution

w/o prim
with prim

0.001

0.01

0.1

1

10

100

1 2 3 4

R
un

ni
ng

 T
im

e
(C

PU
 s

ec
)

Length of an Optimal Solution

w/o prim
with prim

E�ect overlap is 3, cost increase C is 5, E�ect overlap is 5, cost increase C is 5,
cost variation is 0, and � = � = 0:2. cost variation is 0, and � = � = 0:2.

0.001

0.01

0.1

1

10

100

1 2 3 4 5 6 7

R
un

ni
ng

 T
im

e
(C

PU
 s

ec
)

Length of an Optimal Solution

w/o prim
with prim

0.001

0.01

0.1

1

10

100

1 2 3 4

R
un

ni
ng

 T
im

e
(C

PU
 s

ec
)

Length of an Optimal Solution

w/o prim
with prim

E�ect overlap is 3, cost increase C is 5, E�ect overlap is 5, cost increase C is 5,
cost variation is 0.4, and � = � = 0:2. cost variation is 0.4, and � = � = 0:2.

0.001

0.01

0.1

1

10

100

1 2 3 4 5 6 7

R
un

ni
ng

 T
im

e
(C

PU
 s

ec
)

Length of an Optimal Solution

w/o prim
with prim

0.001

0.01

0.1

1

10

100

1 2 3 4

R
un

ni
ng

 T
im

e
(C

PU
 s

ec
)

Length of an Optimal Solution

w/o prim
with prim

E�ect overlap is 3, cost increase C is 5, E�ect overlap is 5, cost increase C is 5,
cost variation is 2.4, and � = � = 0:2. cost variation is 2.4, and � = � = 0:2.

Figure 3.28: Dependency of running time on the length of an optimal solution, for search without

and with primary e�ects in arti�cial domains. We give results for di�erent e�ect overlaps (3 and

5) and cost variations (0, 0.4, and 2.4).

128 CHAPTER 3. PRIMARY EFFECTS

0.001

0.01

0.1

1

10

100

1 2 3 4 5 6 7

R
un

ni
ng

 T
im

e
(C

PU
 s

ec
)

Length of an Optimal Solution

w/o prim
with prim

0.001

0.01

0.1

1

10

100

1 2 3 4

R
un

ni
ng

 T
im

e
(C

PU
 s

ec
)

Length of an Optimal Solution

w/o prim
with prim

E�ect overlap is 3, cost increase C is 2, E�ect overlap is 5, cost increase C is 2,
cost variation is 2.4, and � = � = 0:2. cost variation is 2.4, and � = � = 0:2.

0.001

0.01

0.1

1

10

100

1 2 3 4 5 6 7

R
un

nn
in

g
T

im
e

(C
PU

 s
ec

)

Length of an Optimal Solution

w/o prim
with prim

0.001

0.01

0.1

1

10

100

1 2 3 4

R
un

ni
ng

 T
im

e
(C

PU
 s

ec
)

Length of an Optimal Solution

w/o prim
with prim

E�ect overlap is 3, cost increase C is 5, E�ect overlap is 5, cost increase C is 5,
cost variation is 2.4, and � = � = 0:4. cost variation is 2.4, and � = � = 0:4.

Figure 3.29: Dependency of running time on the optimal-solution length (continued). We consider

di�erent values of e�ect overlap (3 and 5) and cost increase C (2 and 5).

cost variation. The results show that the use of primary e�ects improves the performance
for all e�ect overlaps, although the time savings are smaller for large overlaps.

3.6.2 Robot world and machine shop

We now illustrate the e�ectiveness of using primary e�ects for two other tasks: planning a
robot's actions and choosing appropriate operations in a machine shop. The �rst domain is an
extension of the robot-world example. The second domain is a formalization of a motivating
example in Section 3.1.1. These experiments also demonstrated exponential improvement,
but the r value was closer to 1 than in the arti�cial domain.

3.6. ABTWEAK EXPERIMENTS 129

0.1

1

10

100

2 3 4 5 6

Running

Time
(CPU sec)

E�ect Overlap

All operators have the same cost;

that is, the cost variation is 0.

w/o prim 33 3

3
3

3

with prim �

� �
�

� �
0.1

1

10

100

2 3 4 5 6

E�ect Overlap

Operators have di�erent costs,

with the cost variation 0.4.

w/o prim 3
3

3
3

3

3

with prim �

� � � �
�

0.1

1

10

100

2 3 4 5 6

Running
time

(CPU sec)

E�ect Overlap

Operators have di�erent costs,

with the cost variation 2.4.

w/o prim 3

3 3 3 3
3

with prim �

� � � � �

Figure 3.30: Dependency of the running time on the e�ect overlap.

Extended Robot Domain

We consider an extended robot world (see Figure 3.31a), where the robot can move among
di�erent locations within a room, go through a door to another room, open and close doors,
and climb tables; however, it cannot break through walls.

The domain comprises ten operators, which include two operators for opening and closing
doors, four operators for travelling among locations and rooms, with or without a box, and
four operators for climbing up and down the table.

In Figure 3.31(b), we give the encoding of two table-climbing operators, where the
climb-up operator is for getting onto a table without a box, and carry-up is for climbing
with a box. For convenience, we use the same domain language as in other examples, even
though the abtweak syntax for operator description di�ers from the prodigy syntax.

We applied the learning algorithm to chose primary e�ects, with the cost-increase limit
C = 5, and � = � = 0:1. In Figure 3.31(c), we show the selected primary e�ects of all
operators, as well as their side e�ects and costs. Observe that the selection matches human
intuition: for every box-moving operation, the change in the position of the box is a primary

130 CHAPTER 3. PRIMARY EFFECTS

e�ect, and the change in the robot's position is a side e�ect.

We applied the problem solver to several problems of di�erent complexity, using the
initial state in Figure 3.31(a), with both doors being closed, and randomly generated goal
statements. The performance results are given in Table 3.6, which includes the running
time and branching factor of search without primary e�ects (\w/o prim") and with their use
(\with prim").

The selected primary e�ects noticeably improved the e�ciency of abtweak. Moreover,
search with primary e�ects yielded optimal solutions to all problems, despite the high cost-
increase limit. The r value in these experiments is approximately 0.9, that is, the ratio of
search times with and without primary e�ects is about 0:9n.

Machining Domain

We next give results for a machining domain, similar to the domain used by Smith and
Peot [1992] in their analysis of problem solving with abstraction. The Machining Domain
includes a simpli�ed version of cutting, drilling, polishing, and painting operations from the
prodigy Process-Planning Domain [Gil, 1991].

The domain includes eight operators, which encode low-quality and high-quality opera-
tions; the production of high-quality parts incurs higher costs. In Figure 3.33, we list the
e�ects and costs of the operators. The order of performing these operations is essential:
cutting operators destroy the results of drilling, polishing, and painting; similarly, drilling
destroys polishing and painting. The problem solver has to choose between low and high
quality, and �nd the right ordering of operations.

We ran the learning algorithm with C = 1 and � = � = 1, and it selected the primary
e�ects given in Figure 3.33. The resulting selection prevents the use of costly operations
when the quality is not essential, thus forcing the right choice between low and high quality.

Note that the selected primary e�ects include not only adding but also deleting liter-
als. The deletion e�ects are redundant, because the problems in this domain never include
destructive goals. This example demonstrates that, if we restrict the allowed goals, the
completeness condition of Section 3.2.2 may prove too strong. To avoid this problem, the
user may pre-select all deletion e�ects as side e�ects, thus preventing their promotion to
primary.

In Figure 3.32, we summarize the performance results for one hundred randomly gener-
ated problems. The graph shows the running times, with and without the use of primary
e�ects, and the 95% con�dence intervals. The search with primary e�ects yielded optimal
solutions to all problems and gave a signi�cant time saving, which grew exponentially with
the solution length.

The r value for the Machining Domain is about 0.8, that is, the search-time ratio is
approximately 0:8n. Even though r is larger than in the arti�cial experiments, the search-
time ratio is in the same range, from 0.1 to 0.01, because solutions in the Manufacturing
Domain are longer than in the arti�cial domains.

3.6. ABTWEAK EXPERIMENTS 131

carry-up(<box>, <table>)
Prim:

Cost: 4

del (on-floor <box>)

del (robot-on-floor)
add (on <box> <table>)

add (robot-on <table>)
Side:

carry-down(<box>, <table>)
Prim:

Cost: 4

del (on <box> <table>)

del (robot-on <table>)
add (on-floor <box>)

add (robot-on-floor)
Side:

Prim:

1Cost:

climb-down(<table>)
del (robot-on <table>)
add (robot-on-floor)

Prim:

1Cost:

climb-up(<table>)
del (robot-on-floor)
add (robot-on <table>)

Prim:

1Cost:

close(<door>)
del (open <door>)
add (closed <door>)

Prim:

1Cost:

open(<door>)
del (closed <door>)
add (open <door>)

(c) Effects and costs of all operators.

Prim:

1Cost:

del (robot-at <from-loc>)
add (robot-at <to-loc>)

go-within-room
(<from-loc> <to-loc> <room>)

Prim:

2Cost:

del (robot-in <from-room>)
add (robot-in <to-room>)

go-thru-door
(<from-room> <to-room> <door>)

(b) Table-climbing operators.

Pre:

Eff:

(robot-on-floor)
(robot-at <table>)

del (robot-on-floor)

1
add (robot-on <table>)

Cost:

climb-up(<table>)

(robot-at <table>)Pre:

carry-up(<box>, <table>)

Eff: del (robot-on-floor)

(at <box> <table>)
(on-floor <box>)

del (on-floor <box>)
add (robot-on <table>)

Cost: 4
add (on <box> <table>)

(robot-on-floor)

door-b

room-3room-1

table-3table-1

table-2

room-2

(a) Map of the robot world.

Prim:

Cost: 2

del (at <box> <from-loc>)

del (robot-at <from-loc>)
add (at <box> <to-loc>)

add (robot-at <to-loc>)
Side:

carry-within-room
(<box>, <from-loc>, <to-loc>, <room>)

(<box>, <from-room>, <to-room>, <door>)
del (in <box> <from-room>)

del (robot-in <from-room>)
add (in <box> <to-room>)

add (robot-in <to-room>)

carry-thru-door

Prim:

Cost: 4

Side:

door-a

box-1

box-2

Figure 3.31: Extended Robot Domain.

Goal Statement Optimal Solution Run Time (CPU sec) Mean Branching Factor

length cost w/o prim with prim w/o prim with prim

1 (robot-on table-2) 1 1 0.03 0.02 1.5 1.0

2 (open door-a) 2 2 0.09 0.09 2.0 1.4

3 (robot-in room-1) 3 4 0.15 0.13 1.7 1.3

4 (on box-1 table-1) 5 9 0.55 0.36 2.3 1.3

5 (robot-on table-3) 5 6 0.57 0.37 2.0 1.3

6 (and (robot-on table-1) 6 7 2.25 1.16 2.1 1.4

(closed door-a))
7 (and (on box-2 table-1) 7 11 4.65 2.52 2.3 1.4

(open door-b))
8 (at box-2 table-2) 7 13 6.20 2.76 2.1 1.3

9 (on box-2 table-2) 8 17 15.09 4.41 2.1 1.4

Table 3.6: Performance of abtweak in the Robot Domain, without and with primary e�ects.

132 CHAPTER 3. PRIMARY EFFECTS

0.001

0.01

0.1

1

10

100

8 10 12 14 16 18 20

R
un

ni
ng

 T
im

e
(C

PU
 s

ec
)

Length of an Optimal Solution

w/o prim
with prim

Figure 3.32: abtweak performance in the Machining Domain, without and with primary e�ects.

3.7 prodigy experiments

We next give empirical results on utilizing primary e�ects, selected by the Chooser and
Completer algorithms, in the prodigy system. Unlike abtweak, it performs a depth-�rst
exploration of the available search space, and usually �nds suboptimal solutions. We may
force the search for a near-optimal solution by setting a cost bound, which prevents the
construction of solutions with larger costs (see Section 2.4.2).

Since cost bounds limit the search depth, they a�ect not only the solution quality but
also the time of problem solving. Their e�ect depends on the domain, as well as on speci�c
problem instances, and may vary from a signi�cant e�ciency improvement to an exponential
increase in the search time. We give results for problem solving with di�erent cost bounds,
as well as without any bound, on a Sun 5 machine.

The results demonstrate that automatically selected primary e�ects improve the e�ciency
of the prodigy depth-�rst search, both with and without cost bounds. Moreover, they
sometimes guide the system to �nding lower-cost solutions. We describe experiments in two
domains exported from abtweak (Section 3.7.1) and in two traditional prodigy domains
(Section 3.7.2), and then conclude with a discussion of the results (Section 3.7.3).

3.7.1 Domains from abtweak

We give results of applying the prodigy search engine to problems in two abtweak do-
mains, described in Section 3.6.2, and show that primary e�ects improve the performance of
prodigy in both domains.

Extended Robot Domain

We applied prodigy to the nine problems given in Table 3.6, without and with primary
e�ects. For every problem, we ran the prodigy search algorithm without a cost bound,
and then with two di�erent cost bounds. The �rst cost bound was twice the cost of the

3.7. PRODIGY EXPERIMENTS 133

cut-roughly(<part>)
Prim:

Cost: 1

add (cut <part>)

del (drilled <part>)
del (finely-cut <part>)

del (finely-drilled <part>)Side:

del (polished <part>)
del (finely-polished <part>)

cut-finely(<part>)
Prim:

2

add (finely-cut <part>)

del (drilled <part>)
add (cut <part>)

del (finely-drilled <part>)

Side:

del (polished <part>)
del (finely-polished <part>)

Cost:

del (painted <part>)
del (finely-painted <part>)

del (painted <part>)
del (finely-painted <part>)

Prim:

1

polish-roughly(<part>)
add (polished <part>)

Cost:

Prim:

2

polish-finely(<part>)
add (finely-polished <part>)
add (polished <part>)Side:

Cost:

del (painted <part>)
del (finely-painted <part>)Side: del (finely-painted <part>)

del (finely-polished <part>)
del (painted <part>)

Prim:

1

paint-roughly(<part>)
add (painted <part>)
del (finely-painted <part>)

Cost:

Prim:

2

paint-finely(<part>)
add (finely-painted <part>)
add (painted <part>)Side:

Cost:

del (finely-polished <part>)
del (polished <part>)

del (finely-polished <part>)
Side: del (polished <part>)

drill-roughly(<part>)
Prim:

Cost: 1

add (drilled <part>)

del (polished <part>)
del (finely-drilled <part>)

Side:

drill-finely(<part>)
Prim:

Cost: 2

add (finely-drilled <part>)

del (polished <part>)
add (drilled <part>)

del (finely-polished <part>)

Side:

del (finely-polished <part>)
del (painted <part>)
del (finely-painted <part>)

del (painted <part>)
del (finely-painted <part>)

Figure 3.33: E�ects and costs of operators in the Machining Domain.

134 CHAPTER 3. PRIMARY EFFECTS

No Cost Bound Loose Bound Tight Bound
w/o prim with prim w/o prim with prim w/o prim with prim

1 62.71 0.04 0.06 0.04 0.05 0.04
2 142.26 0.06 3.55 0.06 0.23 0.06
3 > 1800:00 0.08 219.43 0.09 1.14 0.09
4 > 1800:00 0.16 > 1800:00 0.17 41.32 0.16
5 > 1800:00 0.15 > 1800:00 0.15 51.98 0.14
6 > 1800:00 6.54 > 1800:00 6.62 173.83 0.39
7 > 1800:00 2.67 > 1800:00 2.49 > 1800:00 3.43
8 > 1800:00 > 1800:00 > 1800:00 > 1800:00 > 1800:00 > 1800:00
9 > 1800:00 > 1800:00 > 1800:00 > 1800:00 > 1800:00 > 1800:00

Table 3.7: Performance of prodigy in the Extended Robot Domain. We give running times

in seconds, for problem solving without primary e�ects (\w/o prim") and with their use (\with

prim"). For every problem, we �rst ran the search algorithm without a cost bound, and then

with two di�erent bounds. The \loose" cost bound was computed as twice the cost of the optimal

solution, whereas the \tight" bound equaled the optimal cost.

optimal solution; we call it a loose bound. The second bound, called tight, was exactly equal
to the optimal cost. We manually determined the optimal cost for each problem, and set
the appropriate bounds. When the system did not �nd a solution within 1800 seconds, we
interrupted the search.

We give the running times in Table 3.7, which shows that primary e�ects drastically
improve the e�ciency of the prodigy depth-�rst search: the time-saving factor in most
cases is greater than 500. The r value varies from less than 0.1 in the experiments without
a cost bound to approximately 0.4 in problem solving with the optimal-cost bounds.

Search with primary e�ects yielded optimal solutions to problems 1 through 6, regardless
of the cost bound. When solving problem 7 without the tight bound, prodigy produced
a solution that is one step longer than optimal, with a cost of 12 (versus the optimal cost
of 11). The system did not �nd any solutions to the last two problems, 8 and 9, within the
1800-second time limit.

Machining Domain

We next demonstrate the utility of primary e�ects for prodigy search in the Machining
Domain (see Figure 3.33). We have applied the system to a hundred problems, with a
600-second time limit for each problem.

In Figure 3.34, we summarize the results of search without a cost bound. Speci�cally,
we give the running time and solution quality, for problem solving without primary e�ects
(solid lines) and with the use of primary e�ects (dashed lines), and use vertical bars to mark
95% con�dence intervals. The dotted line in Figure 3.34(a) shows the mean costs of optimal
solutions.

The system successfully solved all problems within the time limit, and primary e�ects
did not improve the e�ciency; however, they enabled the search algorithm to �nd better
solutions. The cost-reduction factor ranged from 1.2 to 1.6, with the mean at 1.37.

3.7. PRODIGY EXPERIMENTS 135

8 10 12 14 16 18
0

0.2

0.4

0.6

0.8
(a) Efficiency of problem solving.

length of an optimal solution

ru
nn

in
g

tim
e

(C
P

U
 s

ec
)

8 10 12 14 16 18
0

20

40

60

(b) Quality of the resulting solutions.

length of an optimal solution

so
lu

tio
n

co
st

Figure 3.34: prodigy performance in the Machining Domain, without a cost bound. We show the

results of problem solving without primary e�ects (solid lines) and with their use (dashed lines),

as well as the mean cost of optimal solutions (dotted line).

8 10 12 14 16 18
0.1

 1

 10

100

1000
(a) Efficiency of problem solving.

length of an optimal solution

ru
nn

in
g

tim
e

(C
P

U
 s

ec
)

8 10 12 14 16 18
0

20

40

60

(b) Quality of the resulting solutions.

length of an optimal solution

so
lu

tio
n

co
st

8 10 12 14 16 18
0%

20%

40%

60%

80%

100%

(c) Percentage of unsolved problems.

length of an optimal solution

Figure 3.35: prodigy performance in the Machining Domain, without primary e�ects (solid lines)

and with the use of primary e�ects (dashed lines). For every problem, we use a loose cost bound,

equal to the doubled cost of the optimal solution.

136 CHAPTER 3. PRIMARY EFFECTS

In Figure 3.35, we present the results of problem solving with loose cost bounds. For every
problem, the bound was set to the doubled cost of the optimal solution. We computed the
optimal costs prior to this experiment, using a domain-speci�c procedure that exhaustively
searched for the optimal solution to each problem. The cost bounds forced prodigy to
produce better solutions; however, they signi�cantly increased the search complexity, and
the system failed to solve some problems within the time bound.

We give the mean running times in Figure 3.35(a), where the time scale is logarithmic.
We use all running times in constructing this graph, including the time spent on the unsolved
problems. For most problems, the use of primary e�ects reduces the search time by more
than two orders of magnitude; the r value is about 0.6.

In Figure 3.35(b), we show the mean solutions costs, for the problems solved within the
time limit. Primary e�ects reduce the cost by a factor of 1.1 to 1.3, with the mean at 1.22.
Finally, we give the percentage of unsolved problems in Figure 3.35(c).

We also applied the prodigy search algorithm with tight cost bounds to the hundred
machining problems, thus forcing it to search for optimal solutions; however, the system did
not �nd an optimal solution to any of the problems within the allowed time limit.

3.7.2 Sokoban puzzle and strips world

We next demonstrate the utility of automatically selected primary e�ects in two other do-
mains, Sokoban puzzle and extended strips world, which have long served as a benchmark
for learning and search techniques in the prodigy system.

Sokoban domain

The Sokoban puzzle is a one-player game, apparently invented in 1982 by Hiroyuki Imabayashi,
the president of Thinking Rabbit Inc. (Japan). Janghanns and Schaefer [1998; 1999a, 1999b]
have recently explored search techniques for Sokoban problems, and implemented a collection
of heuristics and learning algorithms designed speci�cally for this puzzle.

Since prodigy is a general-purpose system, which is not �ne-tuned for Sokoban, it
is much less e�ective than the specialized algorithms by Janghanns and Schaefer. Even
though Shaper's description changers improve the e�ciency of prodigy search, they cannot
compete with advanced hand-coded heuristics,

The prodigy version of Sokoban consists of a rectangular grid, obstacles that block some
squares of the grid, a bulldozer that drives among the other squares, and pieces of rock. In
Figure 3.36(a), we show an example state of this world and give its encoding in the prodigy
domain language.

The bulldozer occupies one square of the grid and can drive to any of the adjacent empty
squares (see Figure 3.36d); however, it cannot enter a square with an obstacle or rock. If
the bulldozer is next to a rock, and the square on the other side of the rock is empty, then
the dozer may push the rock to this empty square, as shown in Figure 3.36(e). The goal of
the puzzle is to deliver the rocks to certain squares.

The Sokoban Domain in the prodigy system includes two object types, given in Fig-
ure 3.36(b), and eight operators, listed in Figure 3.36(c). The �rst four operators are for

3.7. PRODIGY EXPERIMENTS 137

(a) Example of a world state.

2

1 3

1

3

4

2 4

(blocked 2 3)

(at rock-b 2 3)

(at rock-a 1 4)

(dozer-at 1 3)

(blocked 4 1)

(blocked 2 4)

(b) Types of objects.

objects
. . . max

Coordinate

Type Hierarchy

1 2

Rock

drive-down(<x>,<y>)
drive-up(<x>,<y>)
drive-left(<x>,<y>)
drive-right(<x>,<y>)

move-down(<rock>,<x>,<y>)
move-up(<rock>,<x>,<y>)
move-left(<rock>,<x>,<y>)
move-right(<rock>,<x>,<y>)

(c) List of operators.

<y>

<y+1>

<x> drive-down(<x>,<y>)

add (dozer-at <x> <y>)

<x>: type Coordinate

no-rock(<x>,<y>)

<y>: type Coordinate

del (dozer-at <x> <y+1>)Eff:

1

<y+1>: type Coordinate
increment(<y>)

Cost:

Pre: not (blocked <x> <y>)

(dozer-at <x> <y+1>)
not (blocked <x> <y+1>)

<x>: type Coordinate

no-rock(<x>,<y>)

<y>: type Coordinate

<x-1>: type Coordinate
decrement(<x>)

<x-2>: type Coordinate
decrement(<x-1>)

Pre: not (blocked <x> <y>)
not (blocked <x-1> <y>)
not (blocked <x-2> <y>)
(ball-at <x-1> <y>)
(dozer-at <x-2> <y>)

add (at <rock> <x> <y>)
del (dozer-at <x-2> <y>)
add (dozer-at <x-1> <y>)

del (at <rock> <x-1> <y>)Eff:

2Cost:

move-right(<rock>,<x>,<y>)

<y>

<x-1><x-2> <x>

(d) Operator for changing the bulldozer’s position.

(e) Operator for moving a rock.

Generator Functions

If there is some rock at
no-rock

else, return True.
then return False;

in the current state of the world,
(<x>,<y>)

Test Function

If
decrement

then return the empty set;
else, return {

<coordinate> = 0,

- 1 }.

(<coordinate>)

<coordinate>

If
then return the empty set;
else, return {

<coordinate>
(<coordinate>)

<coordinate>

increment
= max,

+ 1 }.

(f) Functions in the encoding of operators.

(<x>,<y>)

Figure 3.36: Sokoban puzzle and its encoding in the prodigy domain language.

138 CHAPTER 3. PRIMARY EFFECTS

changing the dozer's position, whereas the other four are for moving rocks. We give the full
encoding of two operators, drive-down and move-right, in Figures 3.36(d) and 3.36(e).
Note that the domain includes two generator functions, decrement and increment, for deter-
mining the coordinates of adjacent squares.

The Sokoban puzzle has proved di�cult for the prodigy system, as well as for other
general-purpose problem solvers. If the user does not provide a specialized set of control
rules, then prodigy can solve only very simple problems in this domain. We demonstrate
that primary e�ects enhance the system's ability to solve Sokoban problems. In Section 4.4,
we will show results of utilizing these primary e�ects in the generation of an abstraction
hierarchy for the Sokoban domain.

In Figure 3.37, we give the automatically selected primary e�ects of all eight operators,
as well as their side e�ects. To test the e�ectiveness of this selection, we applied prodigy
to 320 problems, with four di�erent grid sizes: 4�4, 6�6, 8�8, and 10�10.

In Figure 3.38, we give the results of problem solving without primary e�ects (solid lines)
and with their use (dashed lines), for each of the four grid sizes. The graphs show the
percentage of problems solved by di�erent time bounds, from 1 to 60 seconds. For example,
if we used the 10-second time limit in solving 4�4-grid problems without primary e�ects,
then prodigy would solve 8% of them (see the solid line in Figure 3.38a). Similarly, if we
used the 10-second bound in solving these problems with primary e�ects, then the system
would solve 68% (see the dashed line in the same graph).

When conducting these experiments, we used a 600-second time limit for every problem;
however, we do not plot the results for bounds larger that 60 seconds, because further increase
of the allowed time has little e�ect on the percentage of solved problems. In particular, if we
raise the time bound from 60 to 600 seconds, then prodigy solves only three more problems,
out of 320.

The results con�rm that the selected primary e�ects improve the e�ciency of solving
Sokoban problems. When the system utilizes primary e�ects, it solves �ve times more
problems. We have also compared the search time with and without primary e�ects, and
found that primary e�ects signi�cantly reduce search for most problems. The time-saving
factor varies from 1 (no time reduction) to more than 100.

We did not limit the solution costs in these experiments, and the system produced sub-
optimal solutions to almost all problems. For most problems, the resulting costs were larger
than the doubled costs of the optimal solutions. The use of primary e�ects neither improved
nor hurt the solution quality. We tried to improve the quality by setting cost bounds, but
they caused failures on almost all problems, both with and without primary e�ects.

Extended strips domain

The strips Domain is a large-scale robot world, designed by Fikes and Nilsson [1971; 1993]
during their work on the strips system. Later, prodigy researchers designed an extended
version of this domain and used it for the evaluation of several learning and search techniques
[Minton, 1988; Knoblock, 1993; Veloso, 1994].

Even though the strips world and the abtweak Robot Domain (see Figure 3.31) are
based on similar settings, the encoding of the Extended strips Domain di�ers from that

3.7. PRODIGY EXPERIMENTS 139

Prim:

Side:

move-down(<rock>,<x>,<y>)
Prim:

Side:

move-up(<rock>,<x>,<y>)
Prim:

2Cost:

Side:

move-left(<rock>,<x>,<y>) move-right(<rock>,<x>,<y>)

Prim:

1Cost:

drive-down(<x>,<y>)
Prim:

1Cost:

drive-up(<x>,<y>)
Prim:

1Cost:

drive-left(<x>,<y>)
Prim:

1Cost:

drive-right(<x>,<y>)

add (dozer-at <x> <y>)
del (dozer-at <x> <y+1>)

add (dozer-at <x> <y>)
del (dozer-at <x> <y-1>)

add (dozer-at <x> <y>)
del (dozer-at <x+1> <y>)

add (dozer-at <x> <y>)
del (dozer-at <x-1> <y>)

add (at <rock> <x> <y>)
del (at <rock> <x> <y+1>)

add (dozer-at <x> <y+1>)
del (dozer-at <x> <y+2>)

add (at <rock> <x> <y>)
del (at <rock> <x> <y-1>)

del (dozer-at <x> <y-2>)
add (dozer-at <x> <y-1>)

del (at <rock> <x+1> <y>)
add (at <rock> <x> <y>)
del (dozer-at <x+2> <y>)
add (dozer-at <x+1> <y>)

Cost: 2Cost: 2

Prim:

2Cost:

Side:

del (at <rock> <x-1> <y>)
add (at <rock> <x> <y>)
del (dozer-at <x-2> <y>)
add (dozer-at <x-1> <y>)

Figure 3.37: E�ects and costs of operators in the Sokoban Domain.

0 20 40 60
0%

20%

40%

60%

80%

100%
(a) 4 x 4 grid.

time bound (CPU sec)

su
cc

es
s

ra
te

0 20 40 60
0%

20%

40%

60%

80%

100%
(b) 6 x 6 grid.

time bound (CPU sec)

0 20 40 60
0%

5%

10%

15%

20%
(c) 8 x 8 grid.

time bound (CPU sec)

su
cc

es
s

ra
te

0 20 40 60
0%

5%

10%

15%

20%
(d) 10 x 10 grid.

time bound (CPU sec)

Figure 3.38: prodigy performance in the Sokoban Domain, without primary e�ects (solid lines)

and with the use of primary e�ects (dashed lines). We show the percentage of problems solved by

di�erent time bounds, from 1 to 60 seconds. We did not limit solution costs in Sokoban experiments,

and the system produced suboptimal solutions to most problems.

140 CHAPTER 3. PRIMARY EFFECTS

of the abtweak domain, which causes di�erent behavior of most learning and search algo-
rithms. In addition, the strips domain describes a richer setting, with more object types
and operations, than its abtweak analog.

We give the object types, predicates, and operators of the Extended strips Domain
in Figure 3.39, show an example of a domain state in Figure 3.40, and list e�ects and
costs of all operators in Figures 3.41 and 3.42. The domain includes ten types of objects,
twelve predicates, and twenty-three operators, some of which have universally quanti�ed
e�ects. The robot may travel among rooms, open and close doors, lock and unlock doors by
appropriate keys, pick up and put down small things, and push large things.

We evaluated the system's performance on a hundred problems instainces, which were
composed from hand-coded initial states, including the state given in Figure 3.40, and ran-
domly generated goal statements. For every problem, we ran the search algorithm three
times: without a cost bound, with the loose bound, and with the tight bound. Recall that
the loose cost bound is twice the cost of the optimal solution, whereas the tight bound is
equal to the optimal cost; we used a domain-speci�c procedure to �nd the optimal costs.

First, we applied prodigy to the hundred test problems without primary e�ects, using
the 600-second time limit for every problem. The system solved only two problems in the
experiments with the tight cost bounds, and no problems at all without the tight bounds.

Then, we tested prodigy with the automatically selected primary e�ects. We show the
selection of e�ects in Figures 3.41 and 3.42, and summarize the test results in Figure 3.43.
The system solved seventy-eight problems in the experiments without cost bounds (see the
solid line in Figure 3.43), seventy-�ve problems with the loose bounds (dashed line), and
forty-one problems with the tight bounds (dotted line). Moreover, most of the solved prob-
lems took less than a second; thus, primary e�ects improved the e�ciency by at least three
orders of magnitude.

When prodigy runs with the tight cost bounds, it produces optimal solutions to all
solved problems. On the other hand, search without the tight bounds usually yields costlier
solutions. In Figure 3.44, we plot the lengths of the solutions to strips problems, generated
without the tight cost bounds, and compare them with the lengths of the optimal solutions.
Since the constructed solutions are longer than the optimal ones, the plotted dots are above
the diagonal. In Figure 3.45, we give a similar comparison of the solution costs. For most
problems, the lengths and costs of the constructed solutions are within a factor of 1.7 from
optimal.

Finally, we compare the quality of solutions found without cost bounds and that of
solutions constructed with the loose cost bounds (see Figure 3.46). This comparison is based
on the seventy-�ve problems that were solved in both cases. For two of these problems, the
search with the loose bounds yielded slightly better solutions. For the other problems, the
use of these bounds did not a�ect the quality.

3.7.3 Summary of experimental results

The empirical results have demonstrated that the automatically selected primary e�ects
improve the performance of backward-chaining algorithms. When we use this speed-up
technique with abtweak's breadth-�rst algorithm, it reduces the branching factor of search

3.7. PRODIGY EXPERIMENTS 141

(c) Operators.

(connects <door> <room>)
(fits <key> <door>)

(status <door> <status>)

(robot-at <thing>)
(robot-at <door>)
(robot-in <room>)

(arm-empty)

(next-to <thing> <other-thing>)
(in <thing> <room>)

(next-to <thing> <door>)
(next-to <door> <thing>)

(holding <small>)

(b) Predicates in the domain encoding.

open(<door>)
close(<door>)

unlock(<door>)
lock(<door>)

opening and closing a door

locking and unlocking a door,
with an appropriate key

go-aside(<room>)

go-to-stable(<stable>, <room>)
go-to-large(<large>, <room>)
go-to-small(<small>, <room>)

go-to-door(<door>, <room>) going to a door, within a room

going to a new location, where there are no things

going to a stable, large, or
small thing, within a room

put-near-door(<small>, <door>, <room>)

put-near-stable(<small>, <stable>, <room>)
put-near-large(<small>, <large>, <room>)
put-near-small(<small>, <other-small>, <room>)

put-aside(<small>, <room>)

move-aside(<small>, <room>)

pick-up(<small>, <room>)

moving a small thing away from the robot’s current location

picking up a small thing from the floor

putting a small thing in a new location, away from other things

putting a small thing near a door

putting a small thing near a stable,
large, or another small thing

push-to-door(<large>, <door>, <room>)
push-to-stable(<large>, <stable>, <room>)
push-to-large(<large>, <other-large>, <room>)
push-to-small(<large>, <small>, <room>)

push-aside(<large>, <room>)

pushing a large object to a door, within a room

pushing a large thing to a new location, away from all other things

pushing a large thing to a stable, another
large, or small thing, within a room

push-thru-door(<large>, <door>, <from-room>, <to-room>)
go-thru-door(<door>, <from-room>, <to-room>) going and pushing a large thing

through a door to another room

Key Item

Small

MovableStable

Thing

Large

Room Door Status

closed
locked

open

objects

Type Hierarchy

(a) Types of objects.

Figure 3.39: Extended strips Domain in the prodigy system.

142 CHAPTER 3. PRIMARY EFFECTS

door-a door-b

door-ddoor-e

door-cdoor-f

key-c

key-b
box-1

box-2

key-a window-2window-1 window-3

window-4window-5window-6

can-1 can-2

room-1 room-2 room-3

room-4room-5room-6

box-3

box-4

window-1, wondow-2, wondow-3, window-4, window-5, window-6: type Stable
box-1, box-2, box-3, box-4: type Large
can-1, can-2: type Item

room-1, room-2, room-3, room-4, room-5, room-6: type Room
door-a, door-b, door-c, door-d, door-e, door-f: type Door

key-a, key-b, key-c: type Key
open, closed, locked: type Status

(status door-a locked)
(status door-b closed)
(status door-c closed)
(status door-d closed)
(status door-e closed)
(status door-f closed)

(connects door-d room-4)
(connects door-d room-5)
(connects door-e room-5)
(connects door-e room-6)
(connects door-f room-6)
(connects door-f room-1)

(fits key-a room-a)
(fits key-b room-b)
(fits key-c room-c)
(in key-a room-1)
(in key-b room-2)
(in key-c room-3)

(in box-2 room-2)
(next-to box-1 box-2)
(next-to box-2 box-1)

(in box-1 room-2)

(next-to box-4 box-3)
(next-to box-3 box-4)

(in box-3 room-5)
(in box-4 room-5)

(in can-1 room-4)
(in can-2 room-4)
(next-to can-1 can-2)
(next-to can-2 can-1)

(robot-in room-1)
(robot-at window-1)
(arm-empty)

(in window-6 room-6)

(in window-1 room-1)
(in window-2 room-2)
(in window-3 room-3)
(in window-4 room-4)
(in window-5 room-5)

(connects door-c room-4)

(connects door-a room-1)
(connects door-a room-2)
(connects door-b room-2)
(connects door-b room-3)
(connects door-c room-3)

(c) Encoding of the world state.

(a) Map of the world.

(b) Set of objects.

Figure 3.40: Example of an initial state in the Extended strips Domain.

3.7. PRODIGY EXPERIMENTS 143

Prim:

1Cost:

open(<door>)
del (status <door> closed)
add (status <door> open)

Prim:

1Cost:

close(<door>)
del (status <door> open)
add (status <door> closed)

Prim:

2Cost:

add (status <door> locked)
del (status <door> closed)Side:

lock(<door>)
Prim:

2Cost:

unlock(<door>)
del (status <door> locked)
add (status <door> closed)

1

(forall <other> of type (or Thing Door)

pick-up(<small>, <room>)
del (arm-empty)Prim:

del (in <small> <room>)

del (next-to <other> <small>))
add (holding <small>)
(forall <other> of type (or Thing Door)Side:

del (next-to <small> <other>))
Cost:

1

del (holding <thing>)

Prim:

add (robot-at <thing>)
add (arm-empty)

Cost:

Side:

add (in <thing> <room>)

add (next-to <small> <other-small>)
add (next-to <other-small> <small>)

put-near-small
(<small>, <other-small>, <room>)

1

add (arm-empty)

Prim:

Cost:

Side:

del (holding <small>)
add (in <small> <room>)

add (robot-at <small>)

put-aside(<small>, <room>)

Side:
del (robot-at <other>))

Cost: 2

add (robot-at <door>)
(forall <other> of type (or Thing Door)

go-to-door(<door>, <room>)
Prim:

Side:
del (robot-at <other>))

Cost: 2

(forall <other> of type (or Thing Door)
Prim: add (robot-at <small>)
go-to-small(<small>, <room>)

3

del (robot-in <from-room>)

Cost:

Prim:

add (robot-in <to-room>)

go-thru-door
(<door>, <from-room>, <to-room>)

Side:
del (robot-at <other>))

Cost: 2

(forall <other> of type (or Thing Door)
Prim: add (robot-at <large>)
go-to-large(<large>, <room>)

(forall <other> of type (or Thing Door)Prim:
del (robot-at <other>))

Cost: 2

go-aside(<room>)

Side:
del (robot-at <other>))

Cost: 2

(forall <other> of type (or Thing Door)
Prim:

go-to-stable(<stable>, <room>)
add (robot-at <stable>)

1

del (holding <thing>)

Prim:

add (robot-at <thing>)
add (arm-empty)

Cost:

Side:

add (in <thing> <room>)

add (next-to <small> <large>)
add (next-to <large> <small>)

put-near-large
(<small>, <large>, <room>)

1

del (holding <thing>)

add (next-to <small> <door>)Prim:

add (next-to <door> <small>)

add (robot-at <thing>)
add (arm-empty)

Cost:

Side:

add (in <thing> <room>)

put-near-door
(<small>, <door>, <room>)

1

del (holding <thing>)

Prim:

add (robot-at <thing>)
add (arm-empty)

Cost:

Side:

add (in <thing> <room>)

add (next-to <small> <stable>)
add (next-to <stable> <small>)

put-near-stable
(<small>, <stable>, <room>)

1

(forall <other> of type (or Thing Door)Prim:

(forall <other> of type (or Thing Door)Side:

Cost:

move-aside(<small>, <room>)

del (next-to <small> <other>))

del (next-to <other> <small>))

Figure 3.41: E�ects and costs of operators in the Extended strips Domain (also see Figure 3.42).

144 CHAPTER 3. PRIMARY EFFECTS

Prim:
del (next-to <large> <other>))

push-to-door(<large>, <door>, <room>)

add (robot-at <door>)
del (robot-at <other>))

(forall <other> of type (or Thing Door)

(forall <other> of type (or Thing Door)
del (next-to <other> <large>))

add (next-to <large> <door>)
add (next-to <door> <large>)

add (robot-at <large>)
4Cost:

Side: (forall <other> of type (or Thing Door)

push-to-stable(<large>, <stable>, <room>)

del (robot-at <other>))

add (robot-at <large>)
4Cost:

Side:
del (next-to <large> <other>))

(forall <other> of type (or Thing Door)

(forall <other> of type (or Thing Door)
del (next-to <other> <large>))

(forall <other> of type (or Thing Door)

Prim: add (next-to <large> <stable>)
add (next-to <stable> <large>)

add (robot-at <stable>)
del (robot-at <other>))

add (robot-at <large>)
4Cost:

Side:
del (next-to <large> <other>))

(forall <other> of type (or Thing Door)

(forall <other> of type (or Thing Door)
del (next-to <other> <large>))

(forall <other> of type (or Thing Door)

Prim: add (next-to <large> <other-large>)
add (next-to <other-large> <large>)

add (robot-at <other-large>)

push-to-large
(<large>, <other-large>, <room>)

del (robot-at <other>))

add (robot-at <large>)
4Cost:

Side:
del (next-to <large> <other>))

(forall <other> of type (or Thing Door)

(forall <other> of type (or Thing Door)
del (next-to <other> <large>))

(forall <other> of type (or Thing Door)

Prim:

push-to-small(<large>, <small>, <room>)
add (next-to <large> <small>)
add (next-to <small> <large>)

add (robot-at <small>)

(forall <other> of type (or Thing Door)Prim:

Side:

push-aside(<large>, <room>)

del (robot-at <other>))

add (robot-at <large>)
Cost: 4

del (next-to <other> <large>))

(forall <other> of type (or Thing Door)
del (next-to <large> <other>))

(forall <other> of type (or Thing Door)

6

del (robot-in <from-room>)

Prim:

Cost:

Side:

del (in <large> <from-room>)
add (in <large> <to-room>)

add (robot-in <to-room>)

push-thru-door
(<large>, <door>,
<from-room>, <to-room>)

Figure 3.42: E�ects and costs of operators in the Extended strips Domain (also see Figure 3.41).

0.1 1 10 100
0%

20%

40%

60%

80%

100%

time bound (CPU sec)

su
cc

es
s

ra
te

Figure 3.43: prodigy performance in the Extended strips Domain, with primary e�ects. We

show the percentage of problems solved by di�erent time bounds, for search without cost bounds

(solid line), with loose bounds (dashed line), and with tight bounds (dotted lines). If the system

does not utilize primary e�ects, then it almost always fails to �nd a solution within 600 seconds.

Speci�cally, it solves 2% of the problems if we set tight cost bounds, and no problems at all without

tight bounds.

3.7. PRODIGY EXPERIMENTS 145

0 20 40 60
0

10

20

30

40

50

60

(a) No cost bound.

optimal length

le
ng

th
 o

f c
on

st
ur

ct
ed

 s
ol

ut
io

n

0 20 40 60
0

10

20

30

40

50

60

(b) Loose bound.

optimal length

le
ng

th
 o

f c
on

st
ur

ct
ed

 s
ol

ut
io

n

Figure 3.44: Solution lengths in the Extended strips Domain. We give the results of using primary

e�ects without cost bounds and with the loose bounds. The vertical axes show the lengths of the

generated solutions, whereas the horizontal axes give the optimal lengths for the same problems.

0 50 100
0

20

40

60

80

100

120

(a) No cost bound.

optimal cost

co
st

 o
f c

on
st

ru
ct

ed
 s

ol
ut

io
n

0 50 100
0

20

40

60

80

100

120

(b) Loose bound.

optimal cost

co
st

 o
f c

on
st

ru
ct

ed
 s

ol
ut

io
n

Figure 3.45: Solution costs in the Extended strips Domain.

0 20 40 60
0

10

20

30

40

50

60

(a) Solution length.

loose bound

no
 c

os
t b

ou
nd

0 50 100
0

20

40

60

80

100

120

loose bound

no
 c

os
t b

ou
nd

(b) Solution cost.

Figure 3.46: Comparison of the solution quality in the experiments without cost bounds and those
with the loose cost bounds. The system utilized primary e�ects in all these experiments. We plot

(a) solution lengths and (b) solution costs, for the problems solved in both cases.

146 CHAPTER 3. PRIMARY EFFECTS

and leads to an exponential e�ciency improvement. In the prodigy system, primary e�ects
not only reduce the search time but also help to improve the solution quality.

In theory, the use of primary e�ects may increase the costs of resulting solutions (see
Section 3.2); however, we have not observed the cost increase in any of the abtweak and
prodigy experiments, and conjecture that it rarely happens in practice.

We have demonstrated that the Chooser and Completer algorithms accurately identify
the important e�ects of operators, which correspond to human intuition. Note, however, that
they improve performance only if some operators do have unimportant e�ects. Otherwise,
Completer marks all e�ects as primary and, thus, does not reduce the search space.

For example, consider the prodigy Logistics Domain, constructed by Veloso [1994] for
testing her analogical-reasoning system. The domain includes eight types of objects, six
operators, and two inference rules; we show the object types and operator e�ects in Fig-
ure 3.47. The problems in this domain require constructing plans for transporting packages
among post o�ces and airports, located in di�erent cities. The system may use vans for the
transportation within cities, and planes for carrying packages between airports.

The operators in the Logistics Domain do not have unimportant e�ects. That is, if we
mark some e�ects as side, then the resulting selection causes incompleteness. Thus, the
Completer algorithm promotes all e�ects of all operators to primary e�ects, and the use of
this selection does not a�ect the system's performance.

The Logistics world is not the only prodigy domain whose operators have no unim-
portant e�ects. The system's collection of domains includes several other simulated worlds
with this property, such as the standard Tower-of-Hanoi puzzle (see Section 1.2.1), Briefcase
problems [Pednault, 1988b], and Process-Planning Domain [Gil, 1991].

We summarize the results of prodigy experiments with primary e�ects in Table 3.8.
The Chooser and Completer algorithms improved the e�ciency of search in the four domains
marked by the upward arrows (*). The time-reduction factor varied from 1 to 200 in the
Machining domain, and exceeded 500 in the other three domains.

Primary e�ects improved the solution quality in the Machining Domain, and did not
a�ect the quality in the Robot world and Sokoban puzzle. When we applied prodigy

without primary e�ects to the strips problems, it could not generate solutions in feasible
time; thus, we have no data on the cost reduction in the Extended strips domain.

3.7. PRODIGY EXPERIMENTS 147

<from>, <to>: type Airport
Eff:

add (at <plane> <to>)
del (at <plane> <from>)

<plane>: type Plane

fly-plane
(<plane>, <from>, <to>)

<pack>: type Package

del (at <pack> <airport>)Eff:

load-plane
(<pack>, <plane>, <airport>)

<airport>: type Airport
<plane>: type Plane

add (in <pack> <plane>)

<pack>: type Package

del (in <pack> <plane>)Eff:

unload-plane
(<pack>, <plane>, <airport>)

<airport>: type Airport
<plane>: type Plane

add (at <pack> <airport>)

Type Hierarchy

Transport

PlaneVan Post Airport

PlacePackage City

<from>, <to>: type Place
Eff:

add (at <van> <to>)

<van>: type Van

del (at <van> <from>)

drive-van
(<van>, <from>, <to>)

<pack>: type Package

del (at <pack> <place>)Eff:

load-van
(<pack>, <van>, <place>)

<place>: type Place
<van>: type Van

add (in <pack> <van>)

<pack>: type Package

del (in <pack> <van>)Eff:

unload-van
(<pack>, <van>, <place>)

<place>: type Place
<van>: type Van

add (at <pack> <place>)

Figure 3.47: E�ects of operators in the Logistics Domain. If we apply the Chooser and Completer

algorithms to this domain, then they promote all e�ects to primary. Thus, the resulting selection

has no side e�ects and, hence, it does not improve performance.

Domain Overall Search-Time Solution-Cost
Result Reduction Reduction

Extended Robot * > 500 none
Machining * 1{200 1.2{1.4
Sokoban * > 500 none
Extended strips * > 500 |
Logistics � | |

Table 3.8: Results of testing the prodigy search engine with primary e�ects. The automatically

selected e�ects improved performance in the �rst four domains, marked by the upward arrow (*),

and did not a�ect search in the Logistics Domain. For every domain, we give the time-reduction

factor, that is, the ratio of search time without primary e�ects to that with primary e�ects. For

the Machining Domain, we also give the cost-reduction factor. Note that we cannot evaluate the

cost reduction in the strips domain, since prodigy was unable to solve strips problems without

primary e�ects.

Chapter 4

Abstraction

Abstraction is the oldest and best-studied approach to changing representations, whose in-
ception dates back to the early days of arti�cial intelligence. Researchers have used it in a
wide variety of AI architectures, as well as in many systems outside of AI.

The central idea of this approach is to identify important aspects of a given problem,
construct an outline of a solution, which ignores less signi�cant aspects, and then use it to
guide the search for a complete solution. We may de�ne multiple levels of abstraction and
move from level to level, constructing more and more detailed outlines.

The applications of this approach take di�erent shapes, from general techniques for sim-
plifying search spaces to highly specialized abstractions in domain-speci�c systems, and their
performance varies widely across systems and domains. The proposed analytical models give
disparate e�ciency predictions for speci�c abstraction techniques; however, researchers agree
that a proper use of abstraction may enhance almost all search and reasoning systems.

In the early Seventies, Sacerdoti experimented with abstraction in backward chaining.
He hand-coded relative importance of operator preconditions and used it to automate the
construction of solution outlines. This approach proved e�ective, and AI researchers applied
similar techniques in later systems.

In particular, Knoblock adapted it for use in an early version of prodigy. He then
developed an algorithm for automatic assignment of importance levels to preconditions. The
algorithm reduced the system's dependency on the human user; however, it was sensitive to
syntactic features of the domain encoding and often required the user to adjust the encoding.

We extended Knoblock's technique and used it in the Shaper system. In particular, we
adapted the abstraction generator to the richer domain language of prodigy4 and made
it less sensitive to the domain encoding. We explain the use of abstraction in backward-
chaining systems (Section 4.1), describe abstraction algorithms in Shaper (Sections 4.2
and 4.3), and present experiments on their performance (Section 4.4).

4.1 Abstraction in problem solving

We describe abstraction search and a method for automatic generation of abstractions. First,
we overview the history of related research (Section 4.1.1). Then, we explain the use of
abstraction in classical problem solvers (Section 4.1.2) and discuss its advantages and draw-

148

4.1. ABSTRACTION IN PROBLEM SOLVING 149

backs (Section 4.1.3). Finally, we outline Knoblock's technique for abstracting operator
preconditions (Section 4.1.5).

4.1.1 History of abstraction

Researchers have developed multiple abstraction techniques and used them in a number of
systems. We briey review the work on abstraction in classical problem solving, which is
closely related to our results. The reader may �nd a more extensive description of past
results in the works of Knoblock [1993], Giunchiglia and Walsh [1992], and Yang [1997], as
well as in the textbook by Russell and Norvig [1995]. A good source of recent results is the
Proceedings of the Symposium on Abstraction, Reformulation and Approximation [Lowry,
1992; Van Baalen, 1994; Levy and Nayak, 1995; Ellman and Giunchiglia, 1998].

Newell and Simon [1961; 1972] introduced abstraction in their work on gps, the �rst AI
problem solver. Their system constructed a high-level plan for solving a problem and used
it to guide the search. They tested it in the automated construction of propositional proofs
and showed that abstraction reduced the search.

Sacerdoti [1974] extended their technique and used it to develop abstrips, which com-
bined abstraction with the strips planner [Fikes and Nilsson, 1971]. Given a problem, the
system constructed an abstract solution by achieving \important" goals and operator pre-
conditions. Then, it re�ned the solution by inserting operators for less important subgoals.
Sacerdoti partially automated the assignment of importance levels to operator preconditions;
however, his technique often produced inappropriate assignments [Knoblock, 1992] and the
system depended on the user for �nding an e�ective abstraction.

Following the lead of gps and abstrips, researchers used abstraction in other systems,
including nonlin [Tate, 1976; Tate, 1977], noah [Sacerdoti, 1977], molgen [Ste�k, 1981],
and sipe [Wilkins, 1984; Wilkins, 1988; Wilkins et al., 1995]. All these systems required the
user to provide an appropriate abstraction.

Goldstein designed a procedure that automatically generated abstractions for gps, and
demonstrated its utility for several puzzles, including Fool's Disk, Tower of Hanoi, and Mon-
key and Bananas [Goldstein, 1978; Ernst and Goldstein, 1982]. His procedure constructed
a table of transitions among main types of world states, and used it to subdivided the
exploration of the state space into several levels.

Christensen [1990] developed a more general technique for automatic abstraction. His
algorithm, called pablo, determined the length of operator sequences for achieving potential
subgoals and assigned greater importance to the subgoals that required longer sequences.
Unruh and Rosenbloom [1989; 1990] devised a di�erent method of generating abstractions,
for look-ahead search in the Soar architecture [Laird et al., 1987].

Knoblock [1993] added abstraction search to the prodigy2 system [Minton et al., 1989b].
He then developed the alpine algorithm, which automatically abstracted preconditions of
operators. Blythe implemented a similar technique in a later version, prodigy4; however,
he did not extend alpine to the richer domain language of prodigy4.

Yang et al. [1990; 1996] developed the abtweak planner, an abstraction version of
tweak [Chapman, 1987], and used alpine to generate importance assignments for their
planner. Then, Bacchus and Yang [1991; 1994] implemented the highpoint algorithm, an

150 CHAPTER 4. ABSTRACTION

extension to alpine that produced abstractions with stronger properties.
Smith and Peot [1992] analyzed the use of alpine with the snlp planner [McAllester

and Rosenblitt, 1991] and argued that Knoblock's abstraction is not e�ective for least-
commitment search; however, their argument did not account for positive results of abtweak
experiments.

Holte et al. [1994; 1996a; 1996b] considered a di�erent approach to generating abstrac-
tions. Their system expanded the full search space for a given domain and represented it as
a graph. It then used the resulting graph to construct an abstract space. The analysis of
the explicit space gave an advantage over other systems and led to the generation of better
abstractions. Moreover, it was applicable to a wider range of search algorithms. On the
negative side, it worked only for small search spaces.

Several researchers investigated theoretical properties of abstraction and developed for-
mal models of its use in problem solving [Korf, 1980; Giunchiglia and Walsh, 1992]. The
proposed models di�er in underlying assumptions, and the estimates of e�ciency vary from
very optimistic [Korf, 1987; Knoblock, 1991] to relatively pessimistic [B�ackstr�om and Jons-
son, 1995]; however, the researchers agree on two qualitative conclusions. First, an appro-
priate abstraction almost always reduces search. Second, a poor choice of abstraction may
drastically impair e�ciency.

4.1.2 Hierarchical problem solving

We may de�ne abstraction by assigning importance levels to literals in the domain descrip-
tion. This method works for all classical problem solvers. To illustrate it, we describe
abstraction for the Drilling Domain in Figure 4.1.

This domain is a simpli�ed version of drilling and painting operations in the prodigy
Process-Planning Domain [Gil, 1991; Gil and P�erez, 1994]. The drill press uses two types of
drill bits, a spot drill and a twist drill. A spot drill makes a small spot on the surface of a
part. This spot guides the movement of a twist drill, which makes a deeper hole.

When painting a part, we have to remove it from the drill press. If a part has been
painted before drilling, then the drill press destroys the paint. On the other hand, if we
make a surface spot and then paint the part, then the spot disappears; however, painting
does not remove deeper holes. Thus, we should paint after the completion of drilling.

We use natural numbers to encode the importance of literals in a domain, and partition
literals into groups by their importance, as shown in Figure 4.2. The resulting partition
is called an abstraction hierarchy; each group of equally important literals is a level of
the hierarchy. The topmost level usually comprises the static literals, which encode the
unchangeable features of the state. Recall that a literal is static if no operator adds or
deletes it.

A hierarchical problem solver begins by �nding a solution at the highest nonstatic level,
ignoring the subgoals below it. For example, consider the problem in Figure 4.3, which
requires drilling and painting a given part. The solver may start by constructing the abstract
solution in Figure 4.4(a). In this example, it achieves all subgoals at level 2 and ignores
lower-level subgoals.

After constructing an abstract solution, the problem solver re�nes it at the next lower

4.1. ABSTRACTION IN PROBLEM SOLVING 151

(c) Library of operators.

Pre:

<drill-bit>: type Drill-Bit

Prim:

Side:

add (no-drill)

remove-drill(<drill-bit>)

<drill-bit>

<part>

Part

Type Hierarchy

Drill-Bit

(a) Drill press.

(b) Types of objects.

(holds-drill <drill-bit>)

del (holds-drill <drill-bit>)

<drill-bit>: type Drill-Bit
Pre: (no-drill)
Prim:

Side: del (no-drill)

put-drill(<drill-bit>)

add (holds-drill <drill-bit>)

Pre:

<part>: type Part

Prim:

Side:

add (no-part)

remove-part(<part>)

(holds-part <part>)

del (holds-part <part>)

<part>: type Part
Pre: (no-part)
Prim:

Side:

put-part(<part>)

del (no-part)
add (holds-part <part>)

<drill-bit>: type Drill-Bit
Pre:

<part>: type Part

Prim: add (has-spot <part>)
Side:

drill-spot(<part>, <drill-bit>)

(spot-drill <drill-bit>)
(holds-drill <drill-bit>)
(holds-part <part>)

del (painted <part>)

<drill-bit>: type Drill-Bit
Pre:

drill-hole(<part>, <drill-bit>)
<part>: type Part

(twist-drill <drill-bit>)
(has-spot <part>)
(holds-drill <drill-bit>)
(holds-part <part>)

add (has-hole <part>)
del (has-spot <part>)

Prim:

Side:

del (painted <part>)

<part>: type Part
Pre:

Prim:

Side:

paint-part(<part>)

not (holds-part <part>)
(painted <part>)
del (has-spot <part>)

Figure 4.1: Drilling Domain.

level 0

level 1

level 3

level 2

(no-part)

(no-drill)
important

more
important(twist-drill <drill-bit>)

(spot-drill <drill-bit>)

(has-spot <part>) (painted <part>)

(holds-part <part>)

(holds-drill <drill-bit>) less

static literals

(has-hole <part>)

Figure 4.2: Abstraction hierarchy in the Drilling Domain.

152 CHAPTER 4. ABSTRACTION

Set of Objects

part-1: type Part

drill-1, drill-2: type Drill-Bit

Initial State

(no-part)

(no-drill)(twist-drill drill-1)

(spot-drill drill-2)

Goal Statement

(painted part-1)

(has-hole part-1)

Figure 4.3: Problem in the Drilling Domain.

level, that is, inserts operators for achieving lower-level subgoals. In Figure 4.4(b), we show
a re�nement of the example solution at level 1. The solver continues to move down the
hierarchy, re�ning the solution at lower and lower levels, until it �nally achieves all subgoals
at level 0. In Figure 4.4(c), we show a low-level solution for the example problem.

The re�nement process preserves the operators of the abstract solution, as well as their
relative order. The process may involve signi�cant search, since the inserted operators intro-
duce new subgoals and the solver has to achieve them. For example, consider the operator
put-drill(drill-1) in Figure 4.4(c), inserted in the process of the low-level re�nement. Its
precondition (no-drill) becomes a new low-level subgoal and the solver achieves it by adding
remove-drill(drill-2).

If the problem solver fails to �nd a re�nement, it backtracks to the previous level and
constructs a di�erent abstract solution. Observe that, if a problem has a solution at level 0,
then there is an abstract solution and sequence of re�nements that leads to it. Therefore,
the use of abstraction does not compromise the completeness of a problem solver.

4.1.3 E�ciency and possible problems

Korf [1987] described a simple model of search, which shows why abstraction improves e�-
ciency. His analysis implies that the improvement should be exponential in the number of
levels. Knoblock [1991; 1993] developed an alternative model, which gives the same e�ciency
estimate. Speci�cally, he showed that abstraction linearly reduces the search depth; since
the search time is usually exponential in depth, it results in exponential time reduction.

Both models use optimistic assumptions and overestimate the time reduction; however,
multiple experiments have con�rmed that abstraction reduces search and the reduction grows
with the number of levels [Sacerdoti, 1974; Knoblock, 1993; Yang et al., 1996; Tenenberg,
1988]. Experiments also demonstrated that e�ciency crucially depends on the properties of
a speci�c hierarchy, and that an inappropriate abstraction may result in gross ine�ciency
[Bacchus and Yang, 1992; Smith and Peot, 1992]. We now outline the main causes of such
ine�ciency.

4.1. ABSTRACTION IN PROBLEM SOLVING 153

(twist-drill

drill-2)

drill-1)

(spot-drill

(no-drill)

(no-part)

levels
lower

levels

Initial State Goal Statement

(painted
part-1)

(has-hole
part-1)

drill-hole
(part-1,
drill-1)

part-1)
(has-spot

(holds-drill
drill-1)

(holds-part
part-1)

2 and 3

(a) Level 2: Abstract solution.

(b) Level 1: Intermediate refinement.

levels

lower
level

(holds-drill
drill-1)

(holds-part
part-1)

(holds-part
part-1)

(holds-drill
drill-1)

part-1)
(has-spot

drill-spot
(part-1,
drill-2)

drill-hole
(part-1,
drill-1)

(twist-drill

drill-2)

drill-1)

(spot-drill

(no-drill)

(no-part)

(painted
part-1)

Goal Statement

(has-hole
part-1)paint

(part-1) 1-3

(holds-part
part-1)

not

Initial State

put-part
(part-1)

drill-hole
(part-1,
drill-1)

paint
(part-1)

put-drill
(drill-1)

remove-
part
(part-1)

remove-
drill
(drill-2)

drill-spot
(part-1,
drill-2)

put-drill
(drill-2)

(c) Level 0: Complete solution.

Statement
Goal

State
Initial

Figure 4.4: Abstract solution and its re�nements. We italicize subgoals at the current level of

abstraction and show lower-level subgoals by the usual font. Thick rectangles mark operators

inherited from higher levels, whereas thin rectangles show operators inserted at the current level.

Backtracking across levels

A hierarchical problem solver may construct an abstract solution that has no re�nement.
For instance, if both drill bits in the example problem were twist drills, the solver could still
produce the abstract solution in Figure 4.4(a), but it would fail to re�ne this solution. After
failing to �nd a re�nement, the problem solver backtracks to a higher level and constructs a
di�erent abstract solution. For example, if the Drilling Domain had a means for making holes
without a spot drill, the solver would eventually �nd the corresponding abstract solution.

Bacchus and Yang [1992; 1994] analyzed backtracking across abstraction levels and
demonstrated that it causes an exponential increase in search time. Frequent failures to
�nd a re�nement can make hierarchical problem solving less e�cient than search without
abstraction.

154 CHAPTER 4. ABSTRACTION

Intermixing abstraction levels

When a problem solver constructs a re�nement, it may insert an operator that adds or
deletes a high-level literal, thus invalidating the abstract solution. The solver then has to
insert operators that restore correctness at the high level. Thus, it has to intermix high-
level and low-level search, which signi�cantly reduces the e�ectiveness of abstraction. This
situation di�ers from backtracking to a higher level: the solver inserts additional operators
into the abstract solution, rather than abandoning it and producing an alternative solution.

To avoid this intermixing, we may prohibit the use of operators with abstract-level e�ects
in constructing re�nements; however, this restriction eliminates some re�nements and causes
more frequent backtracking across levels.

Generating long solutions

Hierarchical problem solving usually yields longer solutions than search without abstraction.
In particular, if we use abstraction with an admissible solver, it compromises the admissibil-
ity; that is, the solver loses the ability to �nd optimal solutions.

For instance, consider the drilling problem in Figure 4.5(a). A hierarchical solver may
construct the abstract solution given in Figure 4.5(b) and then re�ne it as shown in Fig-
ure 4.5(c). In this example, the problem solver has found a shortest solution at level 1 and
its shortest re�nement at level 0; however, the resulting low-level solution is not optimal.
An admissible search would give a shorter solution, as shown in Figure 4.5(d).

If the utility of problem solving depends on solution quality, then an increase in solu-
tion length may result in lower overall performance, despite the reduction in running time.
Furthermore, the search depth is usually proportional to the solution length, and the search
time grows exponentially with depth (for example, see the analysis by Minton et al. [1991;
1994]). In some cases, hierarchical search generates unreasonably long solutions, causing
gross ine�ciency [B�ackstr�om and Jonsson, 1995].

4.1.4 Avoiding the problems

We have discussed the three main problems with abstraction search. The increase in the
number of levels may exponentially reduce the search at each level, but it may also aggravate
the problems. We illustrate this trade-o� in Figure 4.6.

Knoblock [1990; 1993] developed an algorithm, called alpine, for generating hierarchies
that never cause intermixing of levels. This property was named ordered monotonicity.

Abstraction hierarchies that satis�es it are called ordered hierarchies. Experiments have
con�rmed that ordered monotonicity improves the e�ciency of prodigy [Knoblock, 1993;
Knoblock et al., 1991a; Carbonell et al., 1992], abtweak [Yang et al., 1996], and other
classical systems; however, its enforcement reduces the number of levels and often leads to
\collapsing" all literals into a single level.

Bacchus and Yang [1991; 1994] designed the highpoint system, which generates abstrac-
tions with a stronger property. It ensures that the hierarchy satis�es ordered monotonicity,
and that every abstract solution has a re�nement; thus, the solver never backtracks across

4.1. ABSTRACTION IN PROBLEM SOLVING 155

level 2

level 1

level 0

intermediate refinement. (d) Shortest solution.

drill-hole (part-1, drill-1)

(part-2, drill-1)drill-hole

drill-spot (part-2, drill-2)

drill-hole (part-1, drill-1)

(part-2, drill-1)drill-hole put-part (part-2)
remove-part

drill-hole (part-1, drill-1)

put-part (part-1)
put-drill(drill-1)
remove-part
remove-drill

drill-spot (part-2, drill-2)

put-part (part-2)
put-drill(drill-2)

(part-2, drill-1)drill-hole drill-hole (part-1, drill-1)

put-part (part-1)

remove-part

(part-2, drill-1)drill-hole

put-drill(drill-1)

remove-drill

drill-spot (part-2, drill-2)

put-part (part-2)

put-drill(drill-2)

(part-2)

(drill-2)
(drill-2)
(part-2)

(part-1)

(c) Low-level refinement.
(b) Abtract solution and its

drill-1, drill-2: type Drill-Bit
part-1, part-2: type Part

Set of Objects

(has-hole part-2)
(has-hole part-1)
Goal Statement

(a) Problem.

(spot-drill drill-2)

(twist-drill drill-1)

(has-spot part-1)

(no-drill)

(no-part)

Initial State

Figure 4.5: Example of compromising admissibility: Hierarchical search yields an eleven-operator

solution (c), whereas a shortest solution has nine operators (d). Rectangles in the re�ned solu-

tions (b, c) mark operators inherited from the higher levels of abstraction.

levels. To enforce these properties, the system imposes several rigid constraints on the ab-
straction levels of literals, and often fails to �nd a hierarchy that satis�es them; however,
when highpoint does �nd a hierarchy, it usually gives better results than alpine's abstrac-
tion.

To our knowledge, nobody has investigated admissible abstractions in classical problem
solving and there is no technique to generate hierarchies that allow �nding near-optimal
solutions. If we use alpine or highpoint, the resulting solutions may be exponentially
longer than optimal [B�ackstr�om and Jonsson, 1995].

In Figure 4.6, we illustrate the relative properties of abstrips [Sacerdoti, 1974], alpine,

less backtracking

shorter solutions
less level intermixing

ABSTRIPS ALPINE
more levels

HIGHPOINT

Figure 4.6: Trade-o� in the construction of hierarchies.

156 CHAPTER 4. ABSTRACTION

and highpoint. We have followed Knoblock's approach to resolving this trade-o�: the
Shaper system uses ordered hierarchies and maximizes the number of levels within the
constraints of ordered monotonicity.

4.1.5 Ordered monotonicity

We review Knoblock's technique for generating ordered hierarchies. It is based on the fol-
lowing constraints, which determine the relative importance of preconditions and e�ects in
fully instantiated operators:

For every instantiated operator op:

� if prim1 and prim2 are primary-e�ect literals of op,
then level(prim

1
) = level(prim

2
)

� if prim is a primary-e�ect literal and side is a side-e�ect literal,
then level(prim) � level(side)

� if prim is a primary-e�ect literal and prec is a nonstatic precondition literal,
then level(prim) � level(prec)

For example, the hierarchy in Figure 4.2 satis�es these constraints. Note that all three
inequalities involve primary e�ects. If an operator has no primary e�ects, then it requires
no constraints, as the system never uses it in problem solving.

Knoblock et al. [1991] demonstrated that these constraints guarantee ordered monotonic-
ity for backward-chaining algorithms, as well as for prodigy search; however, this result is
not applicable to forward chainers. We next give an outline of their proof.

When a problem solver re�nes an abstract solution, it inserts operators for achieving
low-level literals. The new operators may a�ect higher levels in two ways. First, they may
add or delete high-level literals and invalidate the abstract solution. Second, they may have
high-level preconditions that become new abstract subgoals.

If the hierarchy satis�es the constraints, then neither situation can arise. The �rst two
inequalities ensure that the new operators have no high-level e�ects, and the last inequality
implies that they do not introduce high-level subgoals. Thus, the problem solver does not
intermix the re�nement process with the abstract-level search.

Knoblock observed that the inequalities do not provide a necessary condition for ordered
monotonicity. In some domains, they overconstrain the hierarchy and lead to an unnecessary
reduction in the number of levels. He described several heuristics for relaxing the constraints.
We found a technique for further relaxation, and identi�ed necessary and su�cient condi-
tions for constructing ordered hierarchies [Fink and Yang, 1993]. The relaxation improves
the abstraction in some domains, but the percentage of such domains is low. We did not
implement this technique in Shaper.

We have described constraints for instantiated operators. If the system uses them, it
has to generate all instantiations, which may cause a combinatorial explosion. To avoid
this problem, Knoblock implemented an algorithm that constructs a hierarchy of predicates
rather than literals, by imposing constraints on the preconditions and e�ects of operators.

4.2. HIERARCHIES FOR THE PRODIGY DOMAIN LANGUAGE 157

Then, the system determines the level of a literal by its predicate name; thus, if literals have
the same name, they belong to the same level.

Note that the precondition predicates of an operator include all predicates from the pre-
condition expression, in particular, those from disjunctive and universally quanti�ed subex-
pressions. The system does not impose constraints on the static predicates. Recall that we
view a predicate as static if all corresponding literals are static.

The resulting constraints are stronger than the constraints for instantiated operators;
hence, they also ensure ordered monotonicity. On the negative side, they may cause over-
constraining and collapse of the hierarchy. The burden of avoiding such situations is on the
user, who has to select proper predicates for encoding the domain.

To illustrate overconstraining, we consider the Drilling Domain (Figure 4.1) and replace
the predicates (has-spot <part>), (has-hole <part>), and (painted <part>) with a more general
predicate (has <feature> <part>), where <feature> can be spot, hole, or paint (see Figure 4.7a).
Then, we cannot separate levels 1 and 2 of the hierarchy in Figure 4.2 and have to use fewer
levels (Figure 4.7b).

As a more extreme example, we can encode the domain using two general predicates:
(pred-0 <name-0>) replaces the predicates with no arguments and (pred-1 <name-1> <thing>)

replaces the one-argument predicates (see Figure 4.7c). The <name-0> and <name-1> variables
range over the names of the original predicates, whereas the values of <thing> are drill bits
and parts. Then, the algorithm cannot separate predicates into multiple abstraction levels;
hence, it fails to generate any hierarchy.

We have reviewed a technique for constructing problem-independent hierarchies. Knoblock
also designed a variation of his algorithm that generates abstractions for speci�c problems.
We will consider the use of problem-speci�c hierarchies in Section 5.3.

4.2 Hierarchies for the prodigy domain language

alpine was designed for a limited sublanguage of the prodigy architecture. In particular, it
did not handle if-e�ects and inference rules. We present an extended set of constraints, which
accounts for all features of the prodigy language (Section 4.2.1), and give an algorithm for
generating hierarchies (Section 4.2.2).

4.2.1 Additional constraints

We describe constraints for if-e�ects and then discuss the use of eager and lazy inference
rules in hierarchical problem solving.

If-e�ects

Since prodigy uses the actions of if-e�ects in the same way as simple e�ects (see Sec-
tions 2.2.4 and 3.1.3), they require the same constraints; however, we also have to constrain
the levels of if-e�ect conditions.

158 CHAPTER 4. ABSTRACTION

objects
hole paintspot

(no-drill)
(no-part) (pred-0 no-part)

(pred-0 no-drill)
Pred-Name

Name-0

no-part

no-drill holds-part
painted
has-holetwist-drill

spot-drill
has-spot

holds-drill
objects

Type Hierarchy

Drill-BitPart

Thing

Name-1

(has <feature> <part>)

Drill-BitPart Feature

Type Hierarchy

(c) Describing the domain with two general predicates,
which results in the complete collapse of the hierarchy.

(has spot <part>)
(has hole <part>)
(has paint <part>)

(twist-drill <drill-bit>)
(spot-drill <drill-bit>)
(has-spot <part>)
(has-hole <part>)
(painted <part>)
(holds-part <part>)
(holds-drill <drill-bit>)

(pred-1 twist-drill <drill-bit>)
(pred-1 spot-drill <drill-bit>)
(pred-1 has-spot <part>)
(pred-1 has-hole <part>)
(pred-1 painted <part>)
(pred-1 holds-part <part>)
(pred-1 holds-drill <drill-bit>)

(pred-0 <name-0>)

(pred-1 <name-1> <thing>)

(no-drill)

(no-part)

(twist-drill <drill-bit>)

(spot-drill <drill-bit>)

(has <feature> <part>)

(holds-part <part>)

(holds-drill <drill-bit>)

(has-spot <part>)
(has-hole <part>)
(painted <part>)

(a) Replacing three predicates with a more general one. (b) Resulting hierarchy, which has fewer levels.

Figure 4.7: Collapse of an ordered hierarchy due to the use of general predicates.

If the system uses an operator for achieving a primary action of some if-e�ect, then it adds
the conditions of this if-e�ect to the operator's preconditions and views them as subgoals.
Therefore, nonstatic conditions require the same constraints as preconditions:

� if prim is a primary action and cnd is a nonstatic condition of an if-e�ect,
then level(prim) � level(cnd)

We summarize all constraints in Figure 4.8(a), where the term \e�ect" refers to both
simple e�ects and actions of if-e�ects. To illustrate their use, we consider an extended
version of painting in the Drilling Domain, which allows the choice of a color. We encode
it by two operators, pick-paint and paint-part, given in Figure 4.9(a). The �rst operator
does not add any constraints, because it contains only one predicate. The second operator
requires the following constraints:

For primary e�ects:
level(painted) = level(part-color)

For side e�ects:
level(painted) � level(has-spot)
level(painted) � level(part-color)

4.2. HIERARCHIES FOR THE PRODIGY DOMAIN LANGUAGE 159

(a) Constraints for an operator:

For every two primary e�ects, prim
1
and prim

2
:

level(prim
1
) = level(prim

2
).

For every primary e�ect prim and side e�ect side:
level(prim) � level(side).

For every primary e�ect prim and nonstatic precondition prec:
level(prim) � level(prec).

For every primary action prim and nonstatic condition cnd of an if-e�ect:
level(prim) � level(cnd).

(b) Constraints for an inference rule:

For every two primary e�ects, prim1 and prim2:
level(prim

1
) = level(prim

2
).

For every primary e�ect prim and side e�ect side:
level(prim) � level(side).

For every primary e�ect prim and nonstatic precondition prec:
level(prim) = level(prec).

For every side e�ect side and nonstatic precondition prec:
level(side) � level(prec).

For every primary action prim and nonstatic condition cnd of an if-e�ect:
level(prim) = level(cnd).

For every side action side and nonstatic condition cnd of an if-e�ect:
level(side) � level(cnd).

Figure 4.8: Constraints on the literal levels in an ordered abstraction hierarchy.

For preconditions:
level(painted) � level(holds-part)
level(part-color) � level(holds-part)

For if-e�ect conditions:
level(part-color) � level(paint-color)

Eager inference rules

prodigy may use eager inference rules in backward chaining, in the same way as operators
(see Section 2.3.2); thus, they inherit all operator constraints. In addition, it uses these rules
in forward chaining from the current state, which poses the need for additional constraints.

When the system applies an eager rule to the current state, it must not add or delete

160 CHAPTER 4. ABSTRACTION

Type Hierarchy

Drill-BitPart Color

(a) Painting operators.

<new-color>, <old-color>: type Color
Pre:

Prim:

Side:

<part>: type Part
paint-part(<part>)

del (paint-color <old-color>))

Prim:

Side:

pick-paint(<new-color>)
<new-color>, <old-color>: type Color

add (paint-color <new-color>)
(if (paint-color <old-color>)

not (holds-part <part>)
(painted <part>)
(if (paint-color <new-color>)

add (part-color <part> <color>))
del (has-spot <part>)
(if (part-color <part> <old-color>)

del (part-color <part> <old-color>))

(b) Inference rules.

Pre:

(no-part)

(no-drill)

Prim: add (idle)

Inf-Rule

Pre:

Side:

<part>: type Part
<old-color>: type Color

Inf-Rule
add-idle

del-color(<part>, <old-color>)

not (painted <part>)
(part-color <part> <old-color>)

del (part-color <part> <old-color>)

Figure 4.9: Extensions to the Drilling Domain.

any literals above the current level of abstraction. Therefore, the e�ects of the rule must be
no higher in the hierarchy than its nonstatic preconditions. Similarly, the actions of each
if-e�ect must be no higher than its conditions:

For every inference rule inf :

� if e� is an e�ect and prec is a nonstatic precondition of inf ,
then level(e�) � level(prec)

� if e� is an action and cnd is a nonstatic condition of an if-e�ect,
then level(e�) � level(cnd)

We combine these inequalities with the operator constraints (see Figure 4.8a) and obtain
the constraint set in Figure 4.8(b). For example, consider the inference rules in Figure 4.9(b).
The �rst rule says that, if the drill press has neither a drill bit nor a part, then it is idle.
The second rule ensures that unpainted parts have no color; it �res when drilling destroys
the paint. These rules give rise to the following constraints:

Inf-Rule add-idle:
level(idle) = level(no-drill)
level(idle) = level(no-part)

Inf-Rule del-color:
level(part-color) � level(part-color)

4.2. HIERARCHIES FOR THE PRODIGY DOMAIN LANGUAGE 161

Type of description change: Generating an abstraction hierarchy.

Purpose of description change: Maximizing the number of levels, while ensuring ordered
monotonicity.

Use of other algorithms: None.

Required input: Description of the operators and inference rules.

Optional input: Selection of primary e�ects.

Figure 4.10: Speci�cation of the Abstractor algorithm.

Lazy inference rules

Since prodigy uses lazy rules in backward chaining, they also inherit the operator con-
straints; however, the treatment of their e�ects di�ers from that of operator e�ects and
requires additional constraints.

If the system moves a lazy rule from the tail to the head and later applies an operator
that invalidates some preconditions of the rule, then it cancels the rule's e�ects; that is, it
removes all e�ects of the rule from the current state (see Section 2.3.2). This removal must
not a�ect higher levels of abstraction; therefore, the e�ects of a lazy rule must be no higher
in the hierarchy than its preconditions. Similarly, if an operator application invalidates
conditions of some if-e�ect of a rule, then the system cancels the actions of this if-e�ect.
Thus, the actions of an if-e�ect must be no higher than its conditions. We conclude that
lazy inference rules require the same constraints as eager rules (see Figure 4.8b).

4.2.2 Abstraction graph

We now describe the Abstractor algorithm, an extension to alpine that generates ordered
hierarchies for the full domain language of prodigy. It is one of the description changers in
the Shaper system.

The purpose of Abstractor is to generate a hierarchy that satis�es the constraints in
Figure 4.8 and has as many levels as possible. It constructs a problem-independent hierarchy;
that is, the resulting abstraction works for all problem instances in the domain.

The algorithm builds a hierarchy for a speci�c selection of primary e�ects. If it has
no information about primary e�ects, then it assumes that all e�ects are primary. This
assumption ensures ordered monotonicity, but may result in overconstraining the hierarchy.
We summarize the speci�cation of Abstractor in Figure 4.10.

The algorithm generates a hierarchy of predicates; that is, it places all literals with a com-
mon predicate name on the same level. We have also constructed a problem-speci�c version
that operates with instantiated operators and generates a hierarchy of literals, but have not
included it in the Shaper system. This version uses the Matcher algorithm (Section 3.4.2),
which produces all instantiated operators.

162 CHAPTER 4. ABSTRACTION

Add-Operator(op)

Pick a primary e�ect prim of op.

For every other primary e�ect other-prim of op:

Add an edge from prim to other-prim.

Add an edge from other-prim to prim.

For every side e�ect side of op:

Add an edge from prim to side.

For every nonstatic precondition prec of op:

Add an edge from prim to prec.

For every if-e�ect if-e� of op:

If if-e� has some primary action:

For every nonstatic condition cnd of if-e� :

Add an edge from prim to cnd.

Add-Side-Rule(inf)

For every e�ect side of inf :

For every nonstatic precondition prec of inf :

Add an edge from prec to side.

For every if-e�ect if-e� of inf :

For every action side of if-e� :

For every nonstatic condition cnd of if-e� :

Add an edge from cnd to side.

Add-Prim-Rule(inf)

Pick a primary e�ect prim of inf .

For every other primary e�ect other-prim of inf :

Add an edge from prim to other-prim.

Add an edge from other-prim to prim.

For every side e�ect side of inf :

Add an edge from prim to side.

For every nonstatic precondition prec of inf :

Add an edge from prim to prec.

Add an edge from prec to prim.

For every if-e�ect if-e� of inf :

If if-e� has some primary action:

For every nonstatic condition cnd of if-e� :

Add an edge from prim to cnd.

Add an edge from cnd to prim.

If if-e� has no primary actions:

For every action side of if-e� :

For every nonstatic condition cnd of if-e� :

Add an edge from cnd to side.

Figure 4.11: Adding constraint edges.

Encoding of constraints

We encode the constraint set by a directed graph [Knoblock, 1993], as illustrated in Fig-
ure 4.14(a). The nonstatic predicates are nodes of this graph, and the constraints are its
edges. If the level of some predicate pred1 must be no smaller than that of pred2, then the
algorithm adds an edge from pred1 to pred2. If the two predicates must be on the same level,
then it adds two edges, from pred

1
to pred

2
and from pred

2
to pred

1
.

This encoding allows e�cient grouping of nodes by their levels, as well as �nding the
order of the resulting groups (for example, see the algorithms book by Aho et al. [1974] or
the textbook by Cormen et al. [1990]).

Constraint edges for an operator

If an operator has no primary e�ects, it requires no constraints. For an operator with primary
e�ects, we apply the Add-Operator algorithm in Figure 4.11, which imposes the constraints
shown in Figure 4.12(a). It picks one of the primary-e�ect predicates and uses this predicate
as a \pivot" node for adding constraints; in the picture, the pivot e�ect is shown by an oval.

The algorithm adds edges from the pivot predicate to every other primary e�ect, as
well as opposite edges from other primary e�ects to the pivot. In Figure 4.12, we mark
primary e�ects by thick circumferences; note that they include both simple e�ects and

4.2. HIERARCHIES FOR THE PRODIGY DOMAIN LANGUAGE 163

actionsconds
conditional effects

nonstatic
preconds

actionsconds

nonstatic
preconds

without primary effects.
(c) Inference rule(a) Operator.

with primary effects.
(b) Inference rule

simple effectssimple effects

conditional effects

effects

nonstatic
preconds

conditional

effects
simple

Figure 4.12: Constraint edges in the abstraction graph. We show preconditions and if-e�ect

conditions by black circles, primary e�ects by thick circumferences, and side e�ects by thin circum-

ferences. An oval marks the pivot e�ect, selected arbitrarily among the primary e�ects.

actions of if-e�ects. Then, the algorithm adds edges from the pivot to all side e�ects (thin
circumferences) and to all nonstatic preconditions (black circles). Finally, for every if-e�ect
with primary actions, it adds edges from the pivot to the nonstatic conditions of the if-e�ect
(also black circles). The resulting set of constraints is equivalent to the system of inequalities
in Figure 4.8(a). We show the constraint edges for the paint-part operator in Figure 4.13(a).

Edges for an inference rule

If an inference rule has primary e�ects, we impose constraints using the Add-Prim-Rule

algorithm in Figure 4.11; the resulting edges are given in Figure 4.12(b). The algorithm
picks a pivot predicate among the primary e�ects, and adds edges from it to all other e�ects
and all nonstatic preconditions, as well as opposite edges from primary e�ects and nonstatic
preconditions to the pivot.

For every if-e�ect with primary actions, the algorithm connects its nonstatic conditions
with the pivot by \two-way" edges. For an if-e�ect without primary actions, it adds edges
from every nonstatic condition to every action. The resulting constraints are equivalent to
the inequalities in Figure 4.8(b). We illustrate them for the add-idle rule in Figure 4.13(b).

If a lazy inference rule has no primary e�ects, then the problem solver never uses it, which
means that the rule requires no constraints. For an eager inference rule without primary
e�ects, we apply the Add-Side-Rule algorithm (Figure 4.11). First, it inserts constraint edges
from every nonstatic precondition to every e�ect. Then, for each if-e�ect, it adds edges from
every nonstatic condition to every action. We show these edges in Figure 4.8(c) and illustrate
them for the del-paint rule in Figure 4.13(c).

164 CHAPTER 4. ABSTRACTION

no-drill

no-part
idle

add-idleInf-Rule

painted

part-color part-color

Inf-Rule del-color

(b)

(c)

paint-part

part-colorpaint-color

part-colorpart-color

holds-part

(a)

has-spot

painted

Figure 4.13: Some constraint edges in the Drilling Domain.

(a) Graph of constraints.

paint-color
holds-part

no-part

idle

holds-drill

has-hole

painted

part-color

no-drill

(b) Strongly connected components.

paint-color

has-hole

holds-part

no-part

part-color

painted no-drill

idle

holds-drill

(c) Enumeration of components.

has-spot painted
part-color

0

1

3

4
static level

twist-drill spot-drill

2

holds-drill
no-drill idle no-part

paint-color

has-hole
has-spot has-spot

holds-part

Figure 4.14: Generating an abstraction graph and ordered hierarchy for the Drilling Domain.

Construction of the hierarchy

After adding edges for all operators and inference rules, we obtain a graph that encodes all
constraints, as shown in Figure 4.14(a). For every two predicates pred1 and pred2, the graph
contains a path from pred

1
to pred

2
if and only if level(pred

1
) � level(pred

2
). In particular, if

there is a path from pred
1
to pred

2
and back from pred

2
to pred

1
, then they are on the same

level. Therefore, the strongly connected components of the graph correspond to the levels
of the hierarchy [Knoblock, 1994].

The system identi�es the components of the graph, thus grouping the predicates by
levels, as illustrated in Figure 4.14(b). The resulting encoding of the hierarchy is called an
abstraction graph. We use it for the storage of abstraction hierarchies, as well as for the
comparison of alternative hierarchies, described in Section 7.1.1.

Before using the hierarchy in problem solving, the system enumerates its levels and adds

4.2. HIERARCHIES FOR THE PRODIGY DOMAIN LANGUAGE 165

Abstractor

Create a graph whose nodes are nonstatic predicates, with no edges.
For every operator op in the domain:

If op has some primary e�ect,
then call Add-Operator(op).

For every inference rule inf in the domain:
If inf has some primary e�ect,

then call Add-Prim-Rule(inf).
If inf is an eager rule without primary e�ects,

then call Add-Side-Rule(inf).
Identify strongly connected components of the graph.
Topologically sort the components; enumerate them accordingly.

Figure 4.15: Constructing the abstraction graph.

the static level (see Figure 4.14c). The enumeration must be consistent with edges between
components: if there is an edge from level1 to level2, then level1 > level2. If the graph allows
several enumerations, we may use any of them. The system applies topological sorting to
the components of the abstraction graph and numbers them in the resulting order.

In Figure 4.15, we summarize the algorithm for constructing an ordered hierarchy, called
Abstractor. It adds constraint edges for all operators and inference rules, identi�es abstrac-
tion levels, and orders them by topological sorting.

Running time

To analyze the time complexity of Abstractor, we denote the number of e�ect predicates in
an operator or inference rule by e, and the number of nonstatic preconditions, along with
if-e�ect conditions, by p. The complexity of adding constraint edges for an operator is linear,
O(e+ p). If an inference rule has primary e�ects, and all its if-e�ects have primary actions,
then the complexity of adding the corresponding constraints is also O(e+p). Otherwise, the
time for processing the rule is superlinear, O(e � p).

We de�ne E as the total number of e�ects in all operators and inference rules, and P as
the total number of preconditions and if-e�ect conditions:

E =
X
op

eop +
X
inf

einf ;

P =
X
op

pop +
X
inf

pinf :

If all inference rules have primary e�ects, and all their if-e�ects have primary actions, then
the complexity of adding all edges is O(E + P). If not, the complexity is superlinear;
however, such situations rarely occur in practice and do not result in signi�cant deviations
from linearity.

Finally, we denote the number of nonstatic predicates in the domain by N . The abstrac-
tion graph contains N nodes; hence, the time for identifying and sorting its components

166 CHAPTER 4. ABSTRACTION

is O(N2) (see the text by Cormen et al. [1990]). Thus, the overall running time is close
to O(E + P +N2).

We have implemented the Abstractor algorithm in Common Lisp and tested it on a Sun 5
computer. Its execution time is approximately (11 �E+11 �P +6 �N2) � 10�4 seconds, which
is negligibly small in comparison with problem-solving time.

4.3 Partial instantiation of predicates

The e�ectiveness of Abstractor depends on the user's choice of predicates for the domain
encoding, and an inappropriate choice may cause a collapse of the hierarchy. We illustrated
this problem for the DrillingDomain (Figures 4.1 and 4.2), where the use of general predicates
may reduce the number of abstraction levels (Figure 4.7a,b) or even lead to complete collapse
(Figure 4.7c).

We say that the hierarchy in Figures 4.2 is �ner-grained than that in Figure 4.7(b), which
means that we may obtain the second hierarchy from the �rst one by merging some of the
abstraction levels. In other words, every level of the hierarchy in Figures 4.2 is a subset of
some level in Figure 4.7(b).

Knoblock [1993] showed that �ne granularity is a desirable property, since it improves
the e�ciency of abstraction search, as long as the increase in the number of levels does not
compromise ordered monotonicity. Yang et al. [1996] came to the same conclusion during
their work on the abtweak system. Experiments with Shaper have also re-con�rmed the
utility of �ne-grained ordered hierarchies.

To reduce the system's dependency on the human user, we have developed a description
changer that improves the granularity of Abstractor's hierarchy. It identi�es predicates that
cause unnecessary constraints, and replaces them with more speci�c predicates. We give
an informal overview of this technique (Section 4.3.1), describe the data structures and
algorithms for improving the quality of ordered hierarchies (Sections 4.3.1{4.3.4), and then
present a procedure for determining the levels of given literals in the improved hierarchy
(Section 4.3.5).

4.3.1 Improving the granularity

We begin with a review of previous techniques for increasing the number of abstraction
levels, which were used with the alpine algorithm. Then, we introduce the new technique,
implemented in the Shaper system.

Full and partial instantiation

After Knoblock noted that general predicates may cause a collapse of alpine's hierarchy, he
found two alternatives for preventing this problem. The �rst approach is based on generating
all possible instances of nonstatic predicates. The system invokes an instantiation procedure,
similar to the Matcher algorithm (see Section 3.4.2), and then builds a hierarchy of the
resulting literals.

4.3. PARTIAL INSTANTIATION OF PREDICATES 167

(robot-on-floor)

(on-floor box-1)
(on-floor box-2)

(within <location> <room>)

level 0

level 1

(not instantiated)
static level

(on box-1 table-1)
(on box-1 table-2)
(on box-1 table-3)
(on box-2 table-1)
(on box-2 table-2)
(on box-2 table-3)

(at box-2 table-1)
(at box-2 table-2)
(at box-2 table-3)
(at box-2 door-a)
(at box-2 door-b)

(at box-1 table-1)
(at box-1 table-2)
(at box-1 table-3)
(at box-1 door-a)
(at box-1 door-b)

(in box-2 room-1)
(in box-2 room-2)
(in box-2 room-3)

(in box-1 room-1)
(in box-1 room-2)
(in box-1 room-3)

(robot-in room-1)
(robot-in room-2)
(robot-in room-3)

(robot-on table-1)
(robot-on table-2)
(robot-on table-3)

(robot-at table-1)
(robot-at table-2)
(robot-at table-3)
(robot-at door-a)
(robot-at door-b)

level 0

(twist-drill <drill-bit>)

(spot-drill <drill-bit>)

(holds-part part-1) (holds-drill drill-1) (no-part)

(no-drill)(holds-part part-2) (holds-drill drill-2)

(has hole part-1)

(has spot part-1) (has paint part-1)

level 2

level 1

(not instantiated)
static level

(open door-a)
(open door-b)

(closed door-b)
(closed door-a)

(has spot part-2) (has paint part-2)

(has hole part-2)

(b) Abstraction for the Extended Robot world.

(a) Abstraction for the Drilling Domain.

Figure 4.16: Examples of fully instantiated abstraction hierarchies. The �rst hierarchy is for

Drilling problems with two drill bits and two parts. The other is for the Robot world in Fig-

ure 3.31(a) (page 131), which includes two boxes, three rooms, two doors, and three tables.

For example, if we apply this procedure to the Drilling Domain with the general predicate
has (see Figure 4.7a), it may generate the hierarchy shown in Figure 4.16(a). As another
example, its application to the Robot world in Figure 3.31 (page 131) would lead to a three-
level hierarchy, given in Figure 4.16(b).

The instantiation technique completely eliminates unnecessary constraints caused by gen-
eral predicates; however, it has two drawbacks that may lead to a major ine�ciency in large
domains. First, the system faces a combinatorial explosion in the number of literals, which
may result in prohibitive time and space requirements for processing an abstraction graph.
Second, it cannot produce a problem-independent abstraction, because object instances vary
across problems. For example, the hierarchy in Figure 4.16(b) is not suitable for solving
problems with three boxes.

The alternative approach is to \instantiate" predicates with low-level types, that is, with

168 CHAPTER 4. ABSTRACTION

leaves of the type hierarchy. For instance, we may replace the nonstatic predicates at and
robot-at in the Robot Domain with four more speci�c predicates (see Figure 4.17b), and
then build the abstraction hierarchy given in Figure 4.17(c). We call this technique a partial
instantiation of general predicates.

To give another illustration of this technique, suppose that we apply it to the Logistics
Domain, introduced in Section 3.7.3 (see Figure 3.47 on page 147). Recall that problems in
this domain involve the delivery of packages among locations in di�erent cities. The system
will replace the two nonstatic predicates, at and in, with eight more speci�c predicates
(Figure 4.18b), and then generate a four-level hierarchy (Figure 4.18c).

This partial-instantiation procedure takes much less time and space than the construc-
tion of a literal hierarchy, but it is not immune to explosion in the number of predicates.
Furthermore, the instantiation of predicates with leaf types does not always prevent a col-
lapse of abstraction levels. For example, if we apply it to the Drilling Domain with the
predicate (has <feature> <part>), then Abstractor will produce the three-level hierarchy in Fig-
ure 4.7(b). To build a four-level hierarchy, the system would have to replace <feature> with
speci�c instances.

Minimal partial instantiation

We have illustrated a major trade-o� in constructing ordered hierarchies: general predicates
allow fast generation and compact storage of an abstraction graph, whereas a full or partial
instantiation helps to produce a �ner-grained hierarchy. The Shaper system includes an
algorithm for �nding the right partial instantiation, which prevents unnecessary constraints
without causing a combinatorial explosion (see the speci�cation in Figure 4.20). We named
this algorithm Re�ner, for its ability to re�ne the generality of predicates in a domain
description.

The algorithm constructs a hierarchy of literals, but it does not represent literals explic-
itly. The encoding of the abstraction graph comprises sets of literals, subset relationships
between them, and constraints on their abstraction levels (see Figure 4.21); we call it an
instantiation graph. The encoding size is proportional to the total number of preconditions
and e�ects of all operators in the domain.

The system analyzes the abstraction graph and generates the minimal partial instan-
tiation of predicates that prevents over-constraining of the hierarchy. For example, the
application of this technique to the Drilling, Robot, and Logistics Domains leads to con-
structing the hierarchies in Figure 4.19. The implemented procedure is suitable not only
for generating problem-independent hierarchies, but also for problem-speci�c abstraction
(see Section 5.3). We describe the encoding of an instantiation graph, basic operations for
modifying the graph, and their use in constructing a hierarchy of literals.

4.3.2 Instantiation graph

The structure of instantiation graphs is similar to constraint graphs described in Section 4.2.2
(see the example in Figure 4.14). The nodes of a graph are sets of nonstatic literals, and the
edges are constraints on their relative importance, which determine abstraction levels. The

4.3. PARTIAL INSTANTIATION OF PREDICATES 169

(within <location> <room>)

(on <box> <table>)

(on-floor <box>)(in <box> <room>)

(robot-in <room>)

(closed <door>)

(open <door>)
level 0

level 1
(at <box> <location>)
(at <box> <location>)

(robot-at <table>)
(robot-at <door>)

(robot-on-floor)

(robot-on <table>)

static level
(not refined)

(c) Herarchy of refined predicates.

(at <box> <location>)
(at <box> <table>)
(at <box> <door>)

(robot-at <location>)
(robot-at <table>)
(box-at <door>)

(b) Refinement of nonstatic predicates.

Door Table

RoomBox

Type Hierarchy

Location

(a) Types of objects.

Figure 4.17: Partial instantiation in the Extended Robot Domain (Figure 3.31): The system

\instantiates" nonstatic predicates with leaf types, and then arranges them into a hierarchy.

(at <pack> <post>)
(at <pack> <airport>)

(at <van> <airport>)
(at <van> <post>)

(at <plane> <airport>)
(at <plane> <post>)

(in <pack> <van>)
(in <pack> <plane>)(in <pack> <transport>)

(at <pack-or-transport> <place>)

(b) Refinement of predicates.

(at <pack> <post>)

(at <pack> <airport>)

(in <pack> <van>)

(in <pack> <plane>)

(at <plane> <airport>)

(at <van> <post>) (at <van> <airport>)

(within <place> <city>)

(within <van> <city>)

(c) Abstraction hierarchy.

level 0

level 1

level 2

Package Transport

Post AirportPlane

Place City

Type Hierarchy

Van

(a) Types of objects.

static level
(not refined)

Figure 4.18: Partial instantiation in the Logistics Domain, given in Figure 3.47 (page 147).

170 CHAPTER 4. ABSTRACTION

(no-part)

(no-drill)

(holds-part <part>)

(holds-drill <drill-bit>)

(has spot <part>) (has paint <part>)

(has hole <part>)

(spot-drill <drill-bit>)

(twist-drill <drill-bit>)

level 0

level 1

level 3

level 2

(robot-on <table>)

(robot-on-floor)

(within <location> <room>)

(on <box> <table>)

(on-floor <box>)

(at <box> <location>)

(in <box> <room>)

(robot-in <room>)

(robot-at <location>) (closed <door>)

(open <door>)
level 0

level 1

level 2

(at <plane> <airport>)

(within <place> <city>)

(within <van> <city>)

(at <pack> <place>)

(in <pack> <transport>)

(at <van> <place>) level 0

level 1

level 2

level 3
static level

(a) Drilling abstraction.

(b) Robot abstraction.

(c) Logistics abstraction.

static level

static level

Figure 4.19: Results of applying the Re�ner algorithm to (a) Drilling Domain with the predicate

(has <feature> <part>), (b) Extended Robot world, and (c) Logistics Domain. The system generates

the minimal instantiation of predicates that prevents a collapse of abstraction levels.

4.3. PARTIAL INSTANTIATION OF PREDICATES 171

Type of description change: Generating more speci�c predicates.

Purpose of description change: Maximizing the number of levels in Abstractor's ordered
hierarchy, while avoiding too speci�c instantiations.

Use of other algorithms: The Abstractor algorithm, which generates abstraction hierarchies
based on partially instantiated predicates.

Required input: Description of the operators and inference rules.

Optional input: Selection of primary e�ects; instance lists for some variables.

Figure 4.20: Speci�cation of the Re�ner algorithm.

main di�erence is that literal sets in an instantiation graph may not be disjoint, that is, a
given literal may belong to several nodes. The graph encoding consists of two main parts
(see Figure 4.21): a collection of literal sets, with links denoting subset relationships, and a
graph of strongly connected components, with constraint edges between them.

Sets of literals

The nodes of an instantiation graph are typed predicates, which represent literal sets (see
Figure 4.21a). A node is de�ned by a predicate name and list of argument types, where each
element of the list is a simple type, disjunctive type, or speci�c object instance. Recall that
a disjunctive type is a union of several simple types, which encompasses the instances of all
these simple types (see Section 2.3.3). For example, the �rst argument of the predicate (at

<pack-or-transport> <place>) is the disjunctive type (or Package Transport).
We view a typed predicate as the set of its full instantiations, and de�ne a subset re-

lationship and intersection of predicates by analogy with sets. Speci�cally, a predicate is a
subset of another one if every possible instantiation of the �rst predicate is also an instanti-
ation of the second. For example, (has hole <part>) is a subset of (has <feature> <part>) (see the
Drilling Domain), and (at <pack> <airport>) is a subset of (at <pack> <place>) (Logistics Do-
main). Similarly, two predicates intersect if they have common instantiations, that is, some
literals match both of them. For example, the predicate (at <transport> <airport>) intersects
with (at <van> <place>).

When Re�ner generates a graph, it identi�es all subset relationships among nodes and
marks them by directed links. For example, the graph in Figure 4.21(a) includes a subset
link from (at <park> <airport>) to (at <park> <place>), shown by a dashed arrow.

Components and constraints

The edges of the graph determine relative positions of typed predicates in the abstraction
hierarchy, and strongly connected components correspond to abstraction levels. The sys-
tem constructs the hierarchy by a sequence of modi�cations to a component graph (see
Figure 4.21b), which consists of connected components and constraint edges between them.

The Re�ner algorithm initially creates a separate component for every node of the in-
stantiation graph, and then searches for cycles of constraint edges. When the algorithm

172 CHAPTER 4. ABSTRACTION

(at <pack> <place>)(at <pack> <airport>)

(in <pack> <van>)(in <pack> <plane>)

(at <plane> <airport>) (at <plane> <airport>) (at <van> <place>)

(at <pack> <airport>) (at <pack> <place

(in <pack> <plane>) (in <pack> <van>)

(at van-1 post-1)
(at van-1 airport-1)

(at van-1 airport-2)

(at pack-2 post-1)

(at pack-1 post-1)

(in pack-2 van-1)

(at plane-1 airport-1)

(in pack-2 plane-1)
(in pack-1 plane-1)

(at plane-1 airport-2)

(at pack-1 airport-2)

(at pack-2 airport-1)

(at pack-2 airport-2)

(at pack-1 airport-1)

(in pack-1 van-1)

(c) Example of an implicit literal graph.

(b) Component graph.

(at <van> <place>)

(a) Sets of literals.

Figure 4.21: Instantiation graph for the Logistics Domain. The encoding of the graph includes

(a) nonstatic typed predicates with subset links between them, and (b) a graph of components with

constraint edges. It corresponds to (c) an implicit graph of constraints among fully instantiated

predicates. The dashed line shows a subset link, whereas solid lines are constraint edges.

4.3. PARTIAL INSTANTIATION OF PREDICATES 173

identi�es a cycle, it merges all components that form this cycle, that is, replaces them with
a single large component. We will further describe the procedure for combining components
in Section 4.3.4.

We view the component graph as a compact representation of an implicit literal graph,
whose nodes include all instances of nonstatic predicates. This implicit graph of literals
has an edge from l1 to l2 if the instantiation graph includes an edge from one of the com-
ponents that contain l1 to some component containing l2. For example, suppose that the
Logistics world consists of two airports, one postal o�ce, one airplane, one van, and two
packages. Then, the component graph in Figure 4.21(b) corresponds to the literal graph in
Figure 4.21(c).

If some typed predicate is in a cycle of constraint edges, then the literal graph includes
paths from every instance of this predicate to every other instance; hence, all its instances
must be on the same abstraction level. The system detects predicates that belong to con-
straint cycles, called looped predicates, and uses this information to simplify the component
graph. On the other hand, if a predicate is not looped, then Re�ner may distribute its
instances among several levels of abstraction.

Encoding of directed graphs

The described data structure includes two directed graphs: a graph of subset links, which is
acyclic and transitively closed, and a component graph, whose edges are ordered-monotonicity
constraints. We represent each directed graph by both adjacency matrix and adjacency lists;
the reader may �nd an explanation of these structures in the text by Cormen et al. [1990].
Moreover, for each node we store two adjacency lists, which point to its incoming and out-
going edges.

The adjacency matrix enables Re�ner to check the presence of an edge between two given
nodes in constant time, whereas the lists support a fast identi�cation of all nodes that are
adjacent to a speci�ed node. The size of this data structure is proportional to the squared
number of typed predicates in the instantiation graph.

4.3.3 Basic operations

We next describe three basic procedures on a graph of predicates: verifying a subset re-
lationship between two typed predicates, checking whether given predicates intersect, and
propagating constraints from a predicate to its subset. The Re�ner algorithm invokes the
�rst two procedures to initialize an instantiation graph, and applies the third operation
during the following simpli�cation of the graph.

To simplify the description of these algorithms, we assume that all argument types are
disjunctive, that is, we consider simple types to be one-element disjunctions. Furthermore,
if a type disjunction includes speci�c object instances along with simple types, then we
view each instance as a simple type, which can be instantiated with only one object. In
Figure 4.22, we summarize the notation for main elements of the instantiation graph.

174 CHAPTER 4. ABSTRACTION

pred typed predicate, which serves as a node of the instantiation graph
disj-type disjunctive type, which is an argument type in some predicate
simple-type simple type or object instance, which is part of a disjunctive type
compt strongly connected component of the instantiation graph
compt[pred] component that contains a given predicate pred
(compt

1
; compt

2
) constraint edge from the �rst to the second component

Figure 4.22: Notation in the pseudocode of the Re�ner algorithm, in Figures 4.23, 4.25, and 4.26.

Subset and intersection tests

We summarize the procedures for checking the subset relationship and intersection of two
typed predicates in Figure 4.23. The �rst procedure is called Predicate-Subset (see the left
column in Figure 4.23), and the other is Predicate-Intersection (see the �rst two functions
in the right column).

The subset-test algorithm veri�es that given predicates have the same name and equal
number of arguments, and that every argument type in the �rst predicate is a subset of
the corresponding type in the second predicate. The intersection test also compares argu-
ment types; speci�cally, it veri�es that every type in the �rst predicate intersects with the
corresponding type in the second one.

Observe that both algorithms have to test the subtype relationship between simple types.
To speed-up this operation, the system pre-computes the transitive closure of the type hier-
archy and stores it as an adjacency matrix, which allows a constant-time subtype test.

The overall running time of Predicate-Subset and Predicate-Intersection depends on the
number a of arguments in the given predicates, as well as on the number of simple types in
each disjunction. If the maximal length of a type disjunction is d, then the complexity of
both procedures is O(a � d2).

Inheritance of constraint edges

Consider two typed predicates, pred
1
and pred

2
, that belong to distinct components, and

suppose that pred1 is a subset of pred2 (see Figure 4.24a). Then, we may copy all incoming
and outgoing edges of pred

2
's component to pred

1
's component, as shown in Figure 4.24(b),

without a�ecting the structure of the implicit literal graph. We say that pred1 inherits the
constraint edges of pred2.

The insertion of inherited edges helps to simplify the component graph, without over-
constraining the abstraction hierarchy. We present a procedure for performing this operation,
called Copy-Edges, in Figure 4.23. Its running time is proportional to the number of incoming
and outgoing edges of pred

2
's component.

4.3.4 Construction of a hierarchy

The system builds an abstraction hierarchy in three steps, summarized in Figure 4.25:
(1) generating an initial graph, which consists of nonstatic typed predicates and constraints

4.3. PARTIAL INSTANTIATION OF PREDICATES 175

Predicate-Subset(pred1; pred2)

Return true if pred1 is a subset of pred2, that is, every

instantiation of pred1 is also an instantiation of pred2.

If pred1 and pred2 have di�erent names,

or di�erent number of arguments,

then return false.

Let a be the number of arguments in pred1 and pred2.

Repeat for i from 1 to a:

Let disj-type1 be the ith argument type in pred1,

and disj-type2 be the ith type in pred2.

If not Disj-Type-Subset(disj-type1; disj-type2),

then return false.

Return true.

Disj-Type-Subset(disj-type1; disj-type2)

Check whether disj-type1 is a subtype of disj-type2.

For every simple-type1 in disj-type1:

If not Simple-Type-Subset(simple-type1; disj-type2),

then return false.
Return true.

Simple-Type-Subset(simple-type1; disj-type2)

Check whether simple-type1 is a subtype of disj-type2.

For every simple-type2 in disj-type2:

If either simple-type1 and simple-type2 are identical

or simple-type1 is a subtype of simple-type2;

then return true.

Return false.

Predicate-Intersection(pred1; pred2)

Return true if pred1 intersects pred2, that is, some in-

stantiation of pred1 is also an instantiation of pred2.

If pred1 and pred2 have di�erent names,

or di�erent number of arguments,

then return false.

Let a be the number of arguments in pred1 and pred2.

Repeat for i from 1 to a:

Let disj-type1 be the ith argument type in pred1,

and disj-type2 be the ith type in pred2.

If not Disj-Type-Intersection(disj-type1; disj-type2),

then return false.

Return true.

Disj-Type-Intersection(disj-type1; disj-type2)

Check whether disj-type1 intersects disj-type2, that is,

whether these types have common instances.

For every simple-type1 in disj-type1:

For every simple-type2 in disj-type2:

If simple-type1 and simple-type2 are identical,

or simple-type1 is a subtype of simple-type2,

or simple-type2 is a subtype of simple-type1,

then return true.

Return false.

Copy-Edges(compt1; compt2)

Ensure that the �rst component inherits all incoming

and outgoing edges of the second component.

For every incoming edge (other-compt; compt2):

If other-compt and compt1 are distinct,

and there is no edge (other-compt; compt1),

then add this edge it to the graph.

For every outgoing edge (compt2; other-compt):

If other-compt and compt1 are distinct,

there is no edge (compt1; other-compt),

then add this edge to the graph.

Figure 4.23: Basic operations on the instantiation graph: a subset test for typed predicates, a

similar intersection test, and a function for propagating constraints in the component graph.

176 CHAPTER 4. ABSTRACTION

compt1

pred2

pred1

compt1

(a) (b)

compt22compt

Figure 4.24: Propagation of constraint edges: If a typed predicate pred1 is a subset of a predicate

pred2, then the component of pred1 inherits all edges from the component of pred2. We show the

inherited constraints by thick lines.

Re�ner

Build the initial constraint graph, whose nodes are typed predicates (Figure 4.27a).
Call Identify-Subsets (Figure 4.27b) and then Initialize-Components (Figure 4.27c).
Repeat the computation until Add-Subset-Edges returns false:

Call Combine-Components and then Add-Subset-Edges (Figure 4.27d{i).

Figure 4.25: Building a hierarchy of partially instantiated predicates. The algorithm generates a

constraint graph of nonstatic predicates, determines subset relationships between predicates, and

�nds strongly connected components.

on their levels, (2) adding subset links and initializing the component graph, and (3) iden-
tifying the strongly connected components. We give pseudocode for the main procedures in
Figure 4.26 and illustrate the construction in Figure 4.27.

Initial constraint graph

The �rst step of Re�ner is similar to that of Abstractor (Section 4.2.2): it creates a graph
of typed predicates and adds constraint edges for all operators and inference rules (see the
algorithm in Figure 4.11 and the illustration of constraints in Figures 4.12, on pages 162
and 163). The nodes of the initial graph correspond to e�ects and nonstatic preconditions
of operators. For example, the e�ects of load-van in the Logistics Domain (see Figure 3.47)
give rise to nodes (at <pack> <place>) and (in <pack> <van>).

The graph may have cyclic edges, which point from a node to itself. Note that, if some
typed predicate pred has a cyclic edge (pred; pred), then all instances of this predicate must
be on the same level of abstraction. In Figure 4.27(a), we show the initial constraint graph
for the Logistics Domain.

4.3. PARTIAL INSTANTIATION OF PREDICATES 177

Identify-Subsets

For every two distinct predicates, pred
1
and pred

2
, in the instantiation graph:

Call Predicate-Subset(pred
1
; pred

2
) and Predicate-Subset(pred

2
; pred

1
),

to test the subset relationship between these two predicates.
If both tests return true (pred

1
and pred

2
are identical):

Make pred
1
inherit all incoming and outgoing edges of pred

2
.

If there is an edge between pred
1
and pred

2
, in either direction,

then add the cyclic edge (pred
1
; pred

1
).

Remove pred
2
from the instantiation graph.

Else, if pred
1
is a subset of pred

2
:

Add a subset link from pred
1
to pred

2
.

Else, if pred
2
is a subset of pred

1
:

Add a subset link from pred
2
to pred

1
.

Else, if Predicate-Intersection(pred
1
; pred

2
):

Add two constraint edges: from pred
1
to pred

2
and from pred

2
to pred

1
.

(These constraints ensure that pred1 and pred2 will be in the same component.)

Initialize-Components

For every predicate pred in the graph:
Create a one-element component containing pred.
If the graph includes the cyclic constraint edge (pred; pred),

then mark pred as a looped predicate.
For every constraint edge (pred1; pred2) in the graph:

If pred1 and pred2 are distinct (it is not a cyclic edge),
then add the corresponding edge from compt[pred

1
] to compt[pred

2
].

Combine-Components

Identify strongly connected components of the constraint graph (Figure 4.27d,g),
and combine old components into the resulting new components (see Figure 4.27e,h).

For every predicate pred in the graph:
If compt[pred] contains more than one predicate,

then mark pred as looped (it is in some loop of constraint edges).

Add-Subset-Edges

For every predicate pred in the graph:
For every predicate sub-pred that is a subset of pred:

If pred and sub-pred are in the same component:
Remove sub-pred from the graph (Figure 4.27i).

Else, if pred is looped:
Add the edges (compt[pred]; compt[sub-pred]) and (compt[sub-pred]; compt[pred]).
(Thus, ensure that pred and sub-pred will be in the same component; see Figure 4.27f).

Else:
Call Copy-Edges(compt[sub-pred]; compt[pred]).
If there is an edge between compt[pred] and compt[sub-pred]), in either direction,

then mark sub-pred as a looped predicate.
Return true if the function has added at least one new edge, and false otherwise.

Figure 4.26: Subroutines of the Re�ner algorithm, given in Figure 4.25.

178 CHAPTER 4. ABSTRACTION

(at <plane>
<airport>)

(a) (b)

(c) (d)

(in <pack>
<plane>)

<airport>)
(at <pack>

(in <pack>
<van>)

(at <pack>
<place>)

(at <van>
<place>)

(at <plane>
<airport>)

(at <plane>
<airport>)

(in <pack>
<plane>)

<airport>)
(at <pack>

(in <pack>
<van>)

(at <pack>
<place>)

(at <van>
<place>)

(in <pack>
<van>)

(in <pack>
<plane>)

<airport>)
(at <pack>

(at <plane>
<airport>)

(at <pack>
<place>)

(at <van>
<place>)

(in <pack>
<plane>)

<airport>)
(at <pack>

(at <plane>
<airport>)

(in <pack>
<van>)

(at <pack>
<place>)

(at <van>
<place>)

(in <pack>
<plane>)

<airport>)
(at <pack>

(at <plane>
<airport>)

(in <pack>
<van>)

(at <pack>
<place>)

(at <van>
<place>)

(e)

(in <pack>
<plane>)

<airport>)
(at <pack>

(in <pack>
<van>)

(at <pack>
<place>)

(at <van>
<place>)

(f)

(in <pack>
<plane>)

<airport>)
(at <pack>

(at <plane>
<airport>)

(in <pack>
<van>)

(at <pack>
<place>)

(at <van>
<place>)

(in <pack>
<plane>)

<airport>)
(at <pack>

(at <plane>
<airport>)

(in <pack>
<van>)

(at <pack>
<place>)

(at <van>
<place>)

(in <pack>
<plane>)

<airport>)
(at <pack>

(at <plane>
<airport>)

(in <pack>
<van>)

(at <van>
<place>)

(g) (h)

(i)

Figure 4.27: Application of Re�ner to the Logistics Domain; we show the constraint edges by solid

lines, and the subset link by dashes. The algorithm (a) generates an initial graph, (b) adds subset

links, (c) makes one-element components, (d{h) combines strongly connected components, and

(i) removes redundant predicates.

4.3. PARTIAL INSTANTIATION OF PREDICATES 179

Subsets and initial components

The next step is identi�cation of subsets and intersections among typed predicates (see the
Identify-Subsets procedure in Figure 4.26). We apply the Predicate-Subset and Predicate-

Intersection test to every pair of nodes in the graph, and add the appropriate subset links.
In Figure 4.27(b), we show the link added to the Logistics graph.

If the system �nds a pair of intersecting predicates, neither of which is a subset of the
other, then it inserts a two-way constraint edge between them, thus ensuring that they are
on the same abstraction level. This operation may over-constrain the hierarchy, but it rarely
causes a collapse of levels. It did not induce any unnecessary constraints in the experimental
domains.

After completing the subset and intersection tests, Re�ner initializes the component
graph, by creating a separate component for every predicate (see Initialize-Components in
Figure 4.26). The algorithm does not copy cyclic edges to the new graph; instead, it marks
the nodes with these edges as looped predicates. In Figure 4.27(c), we give the initial
component graph for the Logistics domain, where all predicates are looped.

Strongly connected components

The �nal stage of the construction is �nding the connected components of the instantia-
tion graph (see Figure 4.26d{i). The system repetitively applies two procedures, Combine-
Components and Identify-Subsets, summarized in Figure 4.26. The �rst procedure identi�es
the strongly connected components, formed by constraint edges (Figure 4.27d), and modi�es
the component graph (Figure 4.27e).

The other procedure iterates trough the typed predicates and propagates constraints
to their subsets. If pred is a looped predicate, then the algorithm adds two-way constraints
between pred and its subsets, thus ensuring that they are on the same level (see Figure 4.26f).
Otherwise, it calls Copy-Edges to add the appropriate constraints for pred's subsets.

Running time

The construction of an initial graph (Step 1 in Figure 4.27) has the same complexity as the
similar step of Abstractor. Its running time is usually O(E+P), where E is the total number
of e�ects in all operators and inference rules, and P is the total number of preconditions
and if-e�ect conditions; however, if some inference rules have no primary e�ects, then the
time complexity may be superlinear (see Section 4.2.1 for more details). When we run the
implemented algorithm on a Sun 5 machine, the execution of Step 1 takes about (P + E) �
14 � 10�4 seconds.

The time of Step 2 depends on three factors: the number N of typed predicates in the
initial graph, the maximal number a of arguments in a predicate, and the maximal length d

of a type disjunction. The complexity of the Identify-Subsets procedure is O(a �d2 �N2), and
that of Initialize-Components is O(N2). In practice, these two procedures together take up
to O(2 � a � d2 + 5) �N2 � 10�4 seconds.

Finally, we observe that the algorithmmakes at mostN iterations at Step 3, because every
iteration reduces the number of components. The running time of Combine-Components is

180 CHAPTER 4. ABSTRACTION

O(N2), and the time of Add-Subset-Edges is O(N3); hence, the worst-case complexity of
Step 3 is O(N4). We conjecture that its complexity can be improved, by a more e�cient
propagation of constraint edges. We have not investigated this problem because empirical
results have proved better than the worst-case estimate. The execution time of Step 3 is
usually proportional to N2, speci�cally, it varies from N2 � 10�3 to N � 3 � 10�3 seconds.

4.3.5 Level of a given literal

When prodigy performs a hierarchical search, it uses the component graph to determine the
levels of instantiated preconditions of operators and inference rules. For every precondition
literal, the system �nds a matching typed predicate in the graph, and looks up the level of
its component.

If a literal matches several typed predicates, the system selects the most speci�c predicate
among them, which is a subset of all other matching predicates. For example, if (at <pack>
<airport>) and (at <pack> <place>) were in di�erent components, then it would determine the
level of the literal (at pack-1 airport-1) by the component of (at <pack> <airport>).

We present a data structure for a fast computation of literal levels, illustrated in Fig-
ure 4.28, and outline procedures for constructing and using this structure.

Sorting the typed predicates

The system constructs a sorted array of predicate names, where each entry points to a list of
all typed predicates with the corresponding name. For example, the at entry in Figure 4.28
points to a list of two predicates, (at <plane> <airport>) and (at <van> <place>).

If all predicates in a list belong to the same component, the system replaces them with a
more general predicate, de�ned by name without argument types. For example, it replaces (in
<pack> <plane>) and (in <pack> <van>) in the Logistics graph with the generalized predicate in.
On the other hand, if predicates with a common name are in several di�erent components,
the system topologically sorts their list according to the subset relationship; that is, if pred1
is a subset of pred2, then pred1 precedes pred2 in the sorted list.

In Figure 4.29, we give the procedure for generating an array of predicate lists, called Sort-
Predicates. Its running time depends on the number N of nonstatic typed predicates, and on
the number S of subset links. The worst-case complexity of Sort-Predicates is O(N �lgN+S),
and its execution time on a Sun 5 is up to (2 �N + 3 � S) � 10�5 seconds.

After applying Sort-Predicates, the system sorts and enumerates the components of the
instantiation graph, which gives rise to an abstraction hierarchy (see Figure 4.28). Finally,
it adds the static level and inserts static predicates into the array.

Finding and hashing components

The Find-Component procedure, summarized in Figure 4.29, looks up the component of a
given literal. If the graph includes only one predicate with the matching name, the look-up
time is O(lgN); in practice, it takes up to 3 � 10�5 seconds.

On the other hand, if the procedure has to search through a list of several predicates
with this name, then it incurs additional cost, which depends on the length L of the list, as

4.3. PARTIAL INSTANTIATION OF PREDICATES 181

(at <plane> <airport>)

static level
within

in

0

1

2

3

(at <van> <place>)

(at <plane> <airport>)

within

in

Sorted array of predicate lists

Abstraction hierarchy

(at <van> <place>)

in withinat

Figure 4.28: Data structure for determining the abstraction levels of literals. The system con-

structs a sorted array of predicate names, where each entry contains a list of typed predicates with

a common name. Every predicate points to its component in the instantiation graph, and the

component's number indicates the abstraction level.

Sort-Predicates

For every predicate name in the instantiation graph:
If all predicates with this name are in the same component:

Replace them with a single generalized predicate,
which is de�ned by name without argument types.

Create a one-element list containing the generalized predicate.
Else (these predicates are in several di�erent components):

Topologically sort them according to the subset relationship.
Store the resulting list of sorted predicates

(for every two predicates, if pred
1
is a subset of pred

2
,

then pred
1
is before pred

2
in the sorted list).

Create an array of the generated lists
(each list contains all predicates with a certain name).

Sort the lists into the alphabetical order of names (see Figure 4.28).

Find-Component(l)
The literal l must be an instance of some predicate in the graph.

Identify the list of predicates with the matching name.
If it contains a single predicate pred, then return compt[pred].
For every pred from the list, in the subset-to-superset order:

If Predicate-Subset(l; pred), then return compt[pred].

Figure 4.29: Identifying the components of given literals. The �rst procedure constructs an array of
predicates, illustrated in Figure 4.29, and the other uses the array to look up a literal's component.

182 CHAPTER 4. ABSTRACTION

well as on the number a of the literal's arguments, and on the maximal length d of a type
disjunction in the predicate list. The complexity of this additional computation is O(a �d �L),
and its empirical time is within a � d � L � 5 � 10�5 seconds.

We have also implemented a procedure for hashing the output of Find-Component, which
improves the e�ciency of repeated look-ups. The system creates a separate hash table for
every predicate list that has more than one element. For example, it will create a table for
the list of at predicates in the Logistics Domain. After �nding the component of a given
literal, the system stores it in the corresponding table, using the literal as a key. The time
for adding or retrieving a hash entry varies from 10�5 to 3 � 10�5 seconds.

4.4 Performance of the abstraction search

We have tested the e�ciency of abstraction search in the prodigy system, using the same
�ve domains as in the experiments with primary e�ects (see Section 3.7). The Abstractor

algorithm constructed multi-level hierarchies for the Robot world, Sokoban puzzle, and Lo-
gistics world; however, it failed in the other two domains. The resulting abstraction improved
the performance in the �rst two domains, and gave mixed results in the Logistics Domain.

Extended Robot Domain

We �rst describe results in the Extended Robot world, exported from the abtweak system
(see Figure 3.31 in page 131). If the Abstractor algorithm does not use primary e�ects, then it
fails to construct a multi-level hierarchy for this domain. On the other hand, if the algorithm
utilizes the automatically selected e�ects, then it generates the abstraction hierarchy given
in Figure 4.30. The top level of this hierarchy comprises the static information, the middle
level contains the predicates that specify the locations of boxes, and the low level includes
the robot's position and the state of the doors.

We tested prodigy on the nine problems listed in Table 3.7 (page 134). For every
problem, we �rst ran the search algorithm without a cost bound, and then with two di�er-
ent bounds. The loose cost bound was twice the optimal solution cost, whereas the tight
bound equaled the optimal cost. The abstraction improved the e�ciency of solving the four
problems that require moving boxes; it did not a�ect the search on the other �ve prob-
lems. In Table 4.1, we give the times for solving the box-moving problems, without and
with abstraction; note that the search algorithm utilized primary e�ects in both cases. The
time-reduction factor in these experiments varied from 1 to almost 10000.

The use of the abstraction hierarchy did not a�ect solution quality. In all cases, the
system generated the same solutions without and with abstraction. When the system ran
without time bounds, it produced optimal solutions to problems 1{6 and near-optimal so-
lutions to the other three problems. We show the lengths of the resulting solutions in Fig-
ure 4.31(a), and the solution costs in Figure 4.31(b). The loose cost bounds did not improve
the quality: when the system ran with these bounds, it generated the same solutions to all
problems. Finally, search with the tight bounds yielded optimal solutions to problems 1{8
and failed on problem 9.

4.4. PERFORMANCE OF THE ABSTRACTION SEARCH 183

(robot-on <table>)

(robot-on-floor)

(within <location> <room>)

(on <box> <table>)

(on-floor <box>)

(at <box> <location>)

(in <box> <room>)

(robot-in <room>)

(robot-at <location>) (closed <door>)

(open <door>)
level 0

level 1

level 2

Door Table

RoomBox

Type Hierarchy

Location

(b) Abstraction hierarchy.
(a) Types of objects.

Figure 4.30: Abstraction hierarchy in the Extended Robot Domain. The Abstractor algorithm

generated this hierarchy for problem solving with primary e�ects, given in Figure 3.31.

No Cost Bound Loose Bound Tight Bound
w/o abs with abs w/o abs with abs w/o abs with abs

4 0.16 0.13 0.17 0.14 0.16 0.15
7 2.67 1.26 2.49 1.31 3.43 1.56
8 > 1800:00 0.19 > 1800:00 0.21 > 1800:00 1660.54
9 > 1800:00 0.26 > 1800:00 0.26 > 1800:00 > 1800:00

Table 4.1: Performance in the Extended Robot Domain, on the four problems that involve the

moving of boxes (see Table 3.7 on page 134 for the list of problems). We give running times in sec-

onds, for search without abstraction (\w/o abs") and with the automatically generated abstraction

(\with abs"). For every problem, we �rst ran prodigy without a cost bound, and then with two

di�erent bounds.

0 2 4 6 8
0

2

4

6

8

(a) Solution lengths.

optimal length

le
ng

th
 o

f c
on

st
ru

ct
ed

 s
ol

ut
io

n

0 5 10 15 20
0

5

10

15

20
(b) Solution costs.

optimal cost

co
st

 o
f c

on
st

ru
ct

ed
 s

ol
ut

io
n

Figure 4.31: Solution quality in the Extended Robot Domain. The system generated optimal

solutions to six problems, denoted by pluses (+), and constructed near-optimal solutions to the

other three problems, marked by circles (o).

184 CHAPTER 4. ABSTRACTION

Sokoban Domain

The Sokoban puzzle has been described in Section 3.7.2 (see Figures 3.36 and 3.37). We
now give the results of abstraction search in this domain. The application of the Abstractor
algorithm yielded a three-level hierarchy, given in Figure 4.32. Note that Abstractor has to
utilize primary e�ects for generating this abstraction. If the algorithm has no information
about primary e�ects, then it fails to construct a hierarchy.

We applied the system to the same 320 problems as in the experiments of Section 3.7.2,
with no cost bounds. The results of abstraction search are summarized in Figure 4.32 (see
the dashed lines). We also show the system's performance with primary e�ects and no

abstraction (solid lines), as well as the results of problem solving without primary e�ects
(dotted lines).

The use of abstraction increased the percentage of solved problems, especially for larger
grids, and did not a�ect the solution quality. The time-reduction factor varied from 1 to
greater than 100. We also experimented with 600-second time bounds, but this ten-fold
increase in search time had little e�ect on the percentage of solved problems. Speci�cally,
the system solved �ve more problems with abstraction, and three more problems without
abstraction.

Logistics Domain

We next give results in the Logistics Domain (see Figure 3.47 on page 147), designed by
Veloso [1994] during her work on the analogical reasoning in the prodigy system. Logistics
problems have proved di�cult for general-purpose problem solvers, and the domain has
become a traditional benchmark for testing prodigy and other AI systems.

The operators in this domain do not have unimportant e�ects; hence, the Chooser and
Completer algorithms do not improve the system's performance. On the other hand, Ab-
stractor constructs a four-level hierarchy (see Figure 4.34) and reduces the search complexity.

We have tested the resulting abstraction on �ve hundred problems of various complexity,
with di�erent numbers of cities, vans, airplanes, and packages. We �rst experimented without
cost bounds and then with heuristically computed bounds. The computation of cost bounds
was based on the number of packages and cities, and the resulting bounds were near-tight:
they ranged from the tight bounds to 50% greater than tight.

The results of problem solving without cost bounds are summarized Figure 4.35, and
those with the use of heuristic bounds are given in Figure 4.36. We show the percentage of
problems solved by di�erent time bounds, without an abstraction hierarchy (solid lines) and
with the four-level hierarchy (dashed lines). In Figure 4.37, we give two di�erent graphs for
the same results, which show the dependency between the problem size and the percentage
of unsolved problems.

When we did not limit solution costs, the abstraction noticeably increased the percentage
of solved problems; the time-reduction factor varied across problems, ranging from 1 to
greater than 100. On the other hand, hierarchical search gave very little advantage in the
experiments with cost bounds: it reduced the running time in some cases and increased it
in other cases; the percentage of problems solved without abstraction was close to that with
abstraction.

4.4. PERFORMANCE OF THE ABSTRACTION SEARCH 185

(dozer-at <x> <y>)

(blocked <x> <y>)

(at <rock> <x> <y>)

level 0

level 1

level 2

Figure 4.32: Abstraction in the Sokoban Domain, for the primary e�ects given in Figure 3.37.

0 20 40 60
0%

20%

40%

60%

80%

100%
(a) 4 x 4 grid.

time bound (CPU sec)

su
cc

es
s

ra
te

0 20 40 60
0%

20%

40%

60%

80%

100%
(b) 6 x 6 grid.

time bound (CPU sec)

0 20 40 60
0%

10%

20%

30%

40%
(c) 8 x 8 grid.

time bound (CPU sec)

su
cc

es
s

ra
te

0 20 40 60
0%

10%

20%

30%

40%
(d) 10 x 10 grid.

time bound (CPU sec)

Figure 4.33: Performance in the Sokoban Domain. We plot the percentage of problems solved by

di�erent time bound, in three series of experiments: with primary e�ects and abstraction hierarchy

(dashed lines); with primary e�ects and no abstraction (solid lines); and without primary e�ects

(dotted lines).

186 CHAPTER 4. ABSTRACTION

(at <plane> <airport>)

(within <place> <city>)

(within <van> <city>)

(at <pack> <place>)

(in <pack> <transport>)

(at <van> <place>) level 0

level 1

level 2

level 3

Package Transport

Post AirportPlane

Place City

Type Hierarchy

Van

(a) Types of objects.

(b) Abstraction hierarchy.

Figure 4.34: Abstraction hierarchy in the Logistics Domain.

The use of the abstraction hierarchy had no signi�cant e�ect on solution quality. We give
the comparison of solution lengths and costs in Figures 4.38 and 4.39, where solid lines show
the solution quality without abstraction, and the dashed lines give the results of hierarchical
search. Note that this comparison involves only the problems that were solved both with
and without abstraction.

Summary

The empirical results have con�rmed that ordered abstraction hierarchies are an e�ective tool
for reducing search. Thus, if the Abstractor algorithm constructs a hierarchy, it usually im-
proves e�ciency. On the negative side, the algorithm often fails to generate a multi-level hier-
archy. The e�ciency improvement in our experiments is similar to that in Knoblock's [1994]
experiments with alpine, and to the results of using abstraction in the abtweak system
[Yang et al., 1996].

We summarize the experimental results in Table 4.2, where the upward arrows (*) denote
e�ciency improvement, the two-way arrow (m) indicates mixed results, and dashes ({) mark
the domains that do not allow the construction of ordered hierarchies.

The automatically generated hierarchies improved the system's performance in the Ex-
tended Robot Domain and Sokoban Domain. When we used abstraction for solving Logistics
problems without cost bounds, it also improved the e�ciency. On the other hand, when
we used it with near-tight bounds, the results varied from a hundred-fold reduction to a
hundred-fold increase of the search time.

Even though abstraction may increase solution costs, it did not have this e�ect in any
of the test domains. On the other hand, it did not improve the quality either. This result is
di�erent from Knoblock's [1993] experiments, which showed a moderate quality improvement
in most domains.

4.4. PERFORMANCE OF THE ABSTRACTION SEARCH 187

0 20 40 60
0%

20%

40%

60%

80%

100%

(a) 1 package.

time bound (CPU sec)

su
cc

es
s

ra
te

0 20 40 60
0%

20%

40%

60%

80%

100%

(b) 2 packages.

time bound (CPU sec)

0 20 40 60
0%

20%

40%

60%

80%

100%
(c) 3 packages.

time bound (CPU sec)

su
cc

es
s

ra
te

0 20 40 60
0%

20%

40%

60%

80%

100%
(d) 4 packages.

time bound (CPU sec)

0 20 40 60
0%

20%

40%

60%

80%

100%
(e) 5 packages.

time bound (CPU sec)

su
cc

es
s

ra
te

Figure 4.35: Performance in the Logistics Domain, without cost bounds. We show the percentage

of problems solved by di�erent time bounds, without an abstraction hierarchy (solid lines) and with

the automatically generated abstraction (dashed lines).

188 CHAPTER 4. ABSTRACTION

0 20 40 60
0%

20%

40%

60%

80%

100%
(a) 1 package.

time bound (CPU sec)

su
cc

es
s

ra
te

0 20 40 60
0%

20%

40%

60%

80%

100%
(b) 2 packages.

time bound (CPU sec)

0 20 40 60
0%

20%

40%

60%

80%

100%
(c) 3 packages.

time bound (CPU sec)

su
cc

es
s

ra
te

0 20 40 60
0%

20%

40%

60%

80%

100%
(d) 4 packages.

time bound (CPU sec)

0 20 40 60
0%

20%

40%

60%

80%

100%
(e) 5 packages.

time bound (CPU sec)

su
cc

es
s

ra
te

Figure 4.36: Performance in the Logistics Domain, with heuristically computed cost bounds. We

give results without abstraction (solid lines) and with the use of abstraction (dashed lines).

4.4. PERFORMANCE OF THE ABSTRACTION SEARCH 189

1 2 3 4 5
0%

20%

40%

60%

80%

100%

number of packages

(a) No cost bounds.

1 2 3 4 5
0%

20%

40%

60%

80%

100%

number of packages

(b) With cost bounds.

Figure 4.37: Percentage of Logistics problems that were not solved within 60 seconds. We show

this percentage for search without abstraction (solid lines) and with the use of the automatically

generated hierarchy (dashed lines).

1 2 3 4 5
0

5

10

15

(a) Lengths of the resulting solutions.

number of packages

so
lu

tio
n

le
ng

th

1 2 3 4 5
0

10

20

30

40

50

60

(b) Costs of the resulting solutions.

number of packages

so
lu

tio
n

co
st

Figure 4.38: Quality of Logistics solutions generated without cost bounds. We plot the dependency

of solution lengths and costs on the number of delivered packages, for problem solving without

abstraction (solid lines) and with the use of abstraction (dashed lines).

1 2 3 4 5
0

5

10

15

(a) Lengths of the resulting solutions.

number of packages

so
lu

tio
n

le
ng

th

1 2 3 4 5
0

10

20

30

40

50

60

(b) Costs of the resulting solutions.

number of packages

so
lu

tio
n

co
st

Figure 4.39: Solution quality in the Logistics experiments with cost bounds.

190 CHAPTER 4. ABSTRACTION

Domain Overall Search-Time Solution-Length Solution-Cost
Result Reduction Reduction Reduction

without primary e�ects

Extended Robot � | | |
Machining � | | |
Sokoban � | | |
Extended Strips � | | |
Logistics m 0.01{100 none none

using primary e�ects

Extended Robot * 1{10000 none none
Machining � | | |
Sokoban * 1{100 none none
Extended strips � | | |

Table 4.2: Summary of problem solving with abstraction hierarchies. The upward arrow (*)

indicates that abstraction improved the performance, whereas the two-way arrow (m) marks the

domain with mixed results. When we used the Abstractor algorithm without primary e�ects, it

constructed a multi-level hierarchy only in the Logistics Domain. The utility of this hierarchy varied

across problems: it reduced the search time in some cases, and increased it in other cases. When

we applied Abstractor with the automatically selected primary e�ects, it generated hierarchies for

two other domains, and signi�cantly improved the performance in both domains.

Chapter 5

Other enhancements

We describe two procedures for enhancing the power of abstraction and give empirical evi-
dence of their utility. The �rst technique is aimed at choosing primary e�ects that improve
the quality of an abstraction hierarchy. We outline a heuristic for selecting appropriate ef-
fects, which is based on a synergy of Chooser with Abstractor (Section 5.1), and show that
it reduces search in the Machining Domain and Extended strips world (Section 5.2).

The second technique enables the system to construct specialized domain descriptions
for a given problem, which are often more e�ective than general-purpose descriptions (Sec-
tion 5.3). We show that specialized primary e�ects and abstraction improve the e�ciency
in three out of the �ve test domains (Section 5.4).

5.1 Abstracting the e�ects of operators

The procedure for abstracting e�ects is a result of joint work with Yang, aimed at improving
performance of the abtweak system. The underlying idea is to increase the number of
abstraction levels, by choosing appropriate primary e�ects [Fink and Yang, 1992a]. We have
extended it to the domain language of prodigy4, and implemented a heuristic for selecting
primary e�ects, called Margie, which has been one of Shaper's description changers.

Recall that, if a domain encoding has no primary e�ects, then the Abstractor algorithm
assigns the same importance level to all e�ects of an operator or inference rule (see Sec-
tion 4.1.5). Intuitively, the algorithm may abstract some preconditions of an operator, but
does not abstract its e�ects. If the system �rst invokes Chooser and Completer, it may be
able to abstract side e�ects of operators and inference rules; however, the resulting selec-
tion of primary e�ects does not always support the construction of a multi-level hierarchy.
For example, if we apply Chooser to the Machining Domain, it generates the selection in
Figure 5.5(a), which leads to the collapse of a hierarchy.

We may often remedy the situation by modifying the choice of primary e�ects, without
compromising the completeness of search. For instance, if Abstractor utilizes the modi�ed
selection in Figure 5.5(b), then it generates a two-level hierarchy (see Figure 5.5c). As
another example, the application of Chooser and Completer in the Extended strips Domain
leads to the primary e�ects in Figures 3.41 and 3.42 (pages 143 and 144), which do not allow
ordered abstraction. On the other hand, the modi�cation illustrated in Figure 5.10 gives rise

191

192 CHAPTER 5. OTHER ENHANCEMENTS

Type of description change: Selecting primary e�ects of operators and inference rules.

Purpose of description change: Maximizing the number of levels in Abstractor's ordered
hierarchy, while ensuring near-completeness and a limited cost increase.

Use of other algorithms: The Abstractor algorithm, which builds hierarchies for the selected
primary e�ects.

Required input: Description of the operators and inference rules.

Optional input: Preferable cost-increase limit C; pre-selected primary and side e�ects.

Figure 5.1: Speci�cation of the Margie algorithm.

to the hierarchy in Figure 5.11.

The purpose of theMargie algorithm is to choose primary e�ects that improve the quality
of abstraction. It inputs the encoding of operators and inference rules, and may optionally
utilize pre-selected primary e�ects and a desirable cost increase (see the speci�cation in
Figure 5.1). Its implementation is based on the Chooser algorithm, combined with a version
of Abstractor that produces hierarchies for intermediate selections of primary e�ects.

Recall that, when Chooser picks an operator for achieving some predicate, it may have
to select among several matching operators (see the Choose-Initial procedure in Figure 3.14,
page 101). Similarly, when choosing an additional primary e�ect of some operator, it may
need to select among several candidate e�ects (see Choose-Extra in Figure 3.14).

The Margie algorithm prefers the choices that maximize the number of abstraction lev-
els. When selecting among matching operators or among candidate e�ects, it generates an
abstraction graph for each alternative, and makes the choice that results in the maximal
number of components. If several choices lead to the same number, the system prefers the
graph with fewer constraint edges, thus reducing the chances of a collapse after selecting
more e�ects.

To sum up,Margie consists of the Chooser algorithm and the two procedures in Figure 5.2,
Select-Step and Select-E�ect, which serve as Chooser's selection heuristics. Note that it does
not ensure the completeness of search with primary e�ects; hence, we need to call Completer
after the execution of Margie.

For example, consider the application of the Margie algorithm to the extended Tower-
of-Hanoi Domain, which comprises the six operators given in Figures 1.5(b) and 1.9(a) (see
pages 15 and 20). First, the algorithm invokes the Choose-Initial procedure, which marks all
e�ects of move-small, move-medium, and move-large as primary. After Margie makes
these choices, the abstraction graph is as shown in Figure 5.3(a). Second, the Choose-

Extra subroutine picks primary e�ects of the other three operators: move-sml-mdm,
move-sml-lrg, and move-med-lrg (see Figures 1.9a).

When Choose-Extra processes move-sml-mdm, the choice is between \add small" and
\add medium." If \add small" is selected as a primary e�ect, then Abstractor must ensure that
level(small) � level(medium); hence, it adds a new constraint edge (see Figure 5.3b), which
reduces the number of components. On the other hand, if \add medium" is primary, then
Abstractor does not add new constraints to the graph. Since the goal is to maximize the

5.1. ABSTRACTING THE EFFECTS OF OPERATORS 193

Select-Step(Steps; pred)
The procedure inputs a list of operators and inference rules, denoted Steps, with a common

candidate e�ect pred. It chooses an operator or rule that should achieve pred as a primary e�ect.

step
best

:= none (selected operator or inference rule)

n-compts
best

:= 0 (corresponding number of components in the abstraction graph)

n-edges
best

:= 0 (corresponding number of constraint edges between components)

For every operator and inference rule step in Steps:
Call Evaluate-Choice(step; pred) to determine corresponding n-compts and n-edges

If Better-Choice(n-compts; n-edges; n-compts
best

; n-edges
best

)
then step

best
:= step

n-compts
best

:= n-compts

n-edges
best

:= n-edges

Return step
best

Select-E�ect(step;Preds)
The procedure inputs an operator or inference rule, step, and a list of its

candidate e�ects, Preds. It chooses an e�ect that should be primary.

pred
best

:= none (selected e�ect)

n-comptsbest := 0
n-edgesbest := 0
For every e�ect pred in Preds:

Call Evaluate-Choice(step; pred) to determine corresponding n-compts and n-edges

If Better-Choice(n-compts; n-edges; n-compts
best

; n-edges
best

)
then pred

best
:= pred

n-comptsbest := n-compts

n-edges
best

:= n-edges

Return predbest

Evaluate-Choice(step; pred)
Temporarily promote pred to a primary e�ect of step.
Call Abstractor to generate a hierarchy for the current selection

(it does not distinguish between candidate and side e�ects).
Let n-compts be the number of components in the resulting graph,

and n-edges be the number of constraint edges between components.
Demote pred back to a candidate e�ect.
Return n-compts and n-edges.

Better-Choice(n-compts; n-edges; n-compts
best

; n-edges
best

)
If either n-compts > n-comptsbest,

or n-compts = n-compts
best

and n-edges < n-edges
best

,
then return true.

Else, return false.

Figure 5.2: Selection heuristics for Margie, aimed to maximize the number of abstraction levels.

Note that, since the Margie procedure invokes Abstractor to generate hierarchies for the selected

primary e�ects, it produces an ordered abstraction hierarchy (see Section 4.1.5).

194 CHAPTER 5. OTHER ENHANCEMENTS

large-on

medium-on small-on

(b) Suboptimal graph.

level 1

level 2

level 0

(large-on <peg>)

(medium-on <peg>)

(small-on <peg>)

(c) Abstraction hierarchy.

medium-on small-on

large-on

(a) Optimal graph.

Figure 5.3: Intermediate abstraction graphs (a,b) and �nal hierarchy (c) in the extended Tower-

of-Hanoi Domain. The Margie algorithm uses intermediate graphs to evaluate alternative choices

of primary e�ects, and prefers the choices that result in more levels.

number of components, Margie prefers the \add medium" e�ect. Then, it applies the same
technique tomove-sml-lrg andmove-med-lrg, and chooses \add large" as a primary e�ect
of both operators.

After running theMargie algorithm, we apply Completer to choose additional e�ects, and
obtain the selection shown in Figure 1.9(c). Finally, we invoke Abstractor, which utilizes the
resulting selection to construct a three-level hierarchy, given in Figure 5.3(c).

5.2 Evaluation of the enhanced abstraction

We have empirically evaluated the e�ectiveness of Margie, using the same simulated worlds
as in the experiments with primary e�ects (Section 3.7) and abstraction (Section 4.4). For
every world, we have compared the utility of three di�erent domain descriptions, illustrated
in Figure 5.4.

The �rst of these descriptions is the result of applyingMargie, Completer, and Abstractor

(see Figure 5.4a). When we apply the Completer algorithm for constructing this description,
it utilizes Margie for choosing among candidate e�ects. The second description includes
primary e�ects and abstraction generated without the Margie algorithm (see Figure 5.4b).
Finally, the third one is the original domain encoding, which has no primary e�ects or
abstraction.

The Margie algorithm improved performance in the Machining Domain and Extended
stripsWorld. On the other hand, when we appliedMargie in the other three domains, it se-
lected the same primary e�ects as the Chooser algorithm; thus, it did not a�ect performance
in these domains.

Machining domain

We �rst give the results for the Machining Domain, introduced in Section 3.6.2. If the
system does not use Margie in this domain, then the selected primary e�ects do not allow
the generation of an ordered abstraction hierarchy. We have shown this selection of e�ects
in Figure 3.33 (page 133). We partially reproduce it in Figure 5.5(a), which contains the
four operators that cause the collapse of the hierarchy.

On the other hand, if we apply the Margie algorithm, then it chooses the primary e�ects
given in Figure 5.5(b), which allow the construction of a two-level hierarchy (see Figure 5.5c).

5.2. EVALUATION OF THE ENHANCED ABSTRACTION 195

new description
of the domain

problem
instance

new description
of the domain

problem
instance

solver
problem

Chooser

Margie

Abstractor

Abstractor

Completer

Completer

solver
problem

solver
problem

(c)

(b)

(a)

initial description

initial description

of the domain

of the domain

of the domain
initial description

problem
instance

Figure 5.4: Evaluating the utility of the Margie algorithm. We compare three problem-solving

strategies: (a) search withMargie's abstraction hierarchy; (b) use of abstraction generated without

Margie; and (c) search without primary e�ects and abstraction.

Note that the only di�erence from the previous selection is the choice of an operator for
deleting (polished <part>).

In Figure 5.6, we give the results of problem solving without a cost bound. The graphs
show the running time and solution quality in three series of experiments: using the two-level
abstraction (see the dashed lines), with primary e�ects and no abstraction (solid lines), and
without primary e�ects (dotted lines).

Abstraction improved the running time and enabled the system to �nd optimal solutions
to all problems. The time-reduction factor ranged from 1.3 to 1.6, with a mean of 1.39,
whereas the factor of solution-cost reduction was between 1.3 and 1.5, with an average of
1.42.

In Figure 5.7, we show the analogous results for search with loose cost bounds. Recall
that the loose bound for a problem is equal to the doubled cost of the optimal solution.
These bounds did not a�ect performance of abstraction search; however, they increased
the problem-solving time in the other two cases (see Figure 5.7(a), where the time scale is
logarithmic). For most problems, abstraction improved the search time by a factor of 1.3
to 2.0, and reduced the solution cost by a factor of 1.3 to 1.5.

We also ran the solver algorithm with tight cost bounds, thus forcing it to search for
optimal solutions. The results of abstraction search were identical to that without cost
bounds. On the other hand, when the system ran without abstraction, it did not �nd an
optimal solution to any of the problems within the 600-second time limit.

196 CHAPTER 5. OTHER ENHANCEMENTS

cut-roughly(<part>)
Prim: add (cut <part>)

del (drilled <part>)
del (finely-cut <part>)

del (finely-drilled <part>)Side:

del (polished <part>)
del (finely-polished <part>)
del (painted <part>)
del (finely-painted <part>)

drill-roughly(<part>)
Prim: add (drilled <part>)

del (polished <part>)
del (finely-drilled <part>)

Side: del (finely-polished <part>)
del (painted <part>)
del (finely-painted <part>) Prim:

paint-roughly(<part>)
add (painted <part>)
del (finely-painted <part>)

del (finely-polished <part>)
Side: del (polished <part>)

Prim:

polish-roughly(<part>)
add (polished <part>)

Side: del (finely-painted <part>)

del (finely-polished <part>)
del (painted <part>)

(a) Selection of primary effects withoutMargie.

(polished <part>)

(painted <part>)

(drilled <part>)

(cut <part>)

(c) Abstraction hierarchy.

(finely-polished <part>)

(finely-painted <part>)

(finely-drilled <part>)

(finely-cut <part>)

level 0

level 1

cut-roughly(<part>)
Prim: add (cut <part>)

del (drilled <part>)
del (finely-cut <part>)

del (finely-drilled <part>)Side:

del (polished <part>)
del (finely-polished <part>)
del (painted <part>)
del (finely-painted <part>)

drill-roughly(<part>)
Prim: add (drilled <part>)

del (polished <part>)
del (finely-drilled <part>)

Side:

del (finely-polished <part>)
del (painted <part>)
del (finely-painted <part>) Prim:

paint-roughly(<part>)
add (painted <part>)
del (finely-painted <part>)

del (finely-polished <part>)Side:

del (polished <part>)

Prim:

polish-roughly(<part>)
add (polished <part>)

Side: del (finely-painted <part>)

del (finely-polished <part>)
del (painted <part>)

(b) Selection with the use of Margie.

Figure 5.5: Primary e�ects of the low-quality operations in the Machining Domain. If we do not

use Margie, then these operations cause the collapse of the ordered abstraction hierarchy. On the

other hand, the e�ects selected by Margie allow the construction of a two-level hierarchy.

5.2. EVALUATION OF THE ENHANCED ABSTRACTION 197

8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

length of an optimal solution

ru
nn

in
g

tim
e

(C
P

U
 s

ec
)

(a) Efficiency of problem solving.

8 10 12 14 16 18
0

20

40

60

length of an optimal solution

so
lu

tio
n

co
st

(b) Quality of the resulting solutions.

Figure 5.6: Performance in the Machining Domain, without a cost bound. We plot the results in

three series of experiments: with Margie's primary e�ects and abstraction hierarchy (dashed lines);

with Chooser's e�ects and no abstraction (solid lines); and without primary e�ects (solid lines).

The vertical bars mark the 95% con�dence intervals.

8 10 12 14 16 18
 0.1

 1

 10

100

1000
(a) Efficiency of problem solving.

length of an optimal solution

ru
nn

in
g

tim
e

(C
P

U
 s

ec
)

8 10 12 14 16 18
0

20

40

60

(b) Quality of the resulting solutions.

length of an optimal solution

so
lu

tio
n

co
st

Figure 5.7: Performance in the Machining Domain, with abstraction (dashed lines), without ab-

straction (solid lines), and without primary e�ects (dotted lines). For every problem, we use a loose

cost bound, which is twice the optimal solution cost.

198 CHAPTER 5. OTHER ENHANCEMENTS

Extended strips domain

We have described the strips world in Section 3.7.2, and demonstrated that the Chooser

and Completer algorithms select appropriate primary e�ects for this domain; however, the
resulting selection does not enable Abstractor to build a multi-level hierarchy. On the other
hand, Margie constructs a slightly di�erent selection, which leads to the generation of a
four-level abstraction. We show the di�erences between the two selections in Figure 5.8 and
the resulting hierarchy in Figure 5.9(b).

In Figure 5.10, we summarize the system's performance with the four-level hierarchy
(dashed lines) and without abstraction (solid lines). The graphs show the results in three
series of experiments: without cost bounds, with loose bounds, and with tight bounds. These
results show that Margie's hierarchy reduces the search time, regardless of the cost bound.

We give a di�erent graphical summary of the same results in Figure 5.11, where every
point denotes a problem. The horizontal axes show the search time withMargie's abstraction,
whereas the vertical axes give the search time without abstraction on the same problems. The
plot includes not only the solved problems, but also the problems that caused an interrupt
upon reaching a 600-second limit. The abstraction search is faster for most problems and,
thus, most points are above the diagonal. The ratio of the search time without abstraction
to that with abstraction varies from 0.1 to more than 1000.

When the solver ran without tight bounds, it yielded suboptimal solutions to most prob-
lems; however, the lengths and costs of the resulting solutions were within a factor of 1.7 from
optimal. In Figure 5.12, we show the solution lengths in the experiments with abstraction,
and compare them to that without abstraction. This comparison is based on the problems
that were solved in both cases. In Figure 5.13, we give a similar plot for the solution costs.

The results show that the application of Margie leads to a small improvement in the
average solution quality, even though it does not a�ect the quality for a majority of problems.
The length-reduction factor ranges from 0.8 to 1.7, with a mean of 1.08, and the cost-
reduction factor is between 0.9 and 1.5, with a mean of 1.06.

If we do not apply Chooser or Margie, and run the system without any selection of
primary e�ects, then its performance is very poor. prodigy solves only 2% of the problems
when searching with tight cost bounds, and no problems at all without tight bounds.

Summary

The experiments have demonstrated that the Margie algorithm enhances the e�ectiveness of
the abstraction generator. Speci�cally, this algorithm enabled the system to construct hier-
archies in the Machining Domain and Extended strips world, which improved performance
in both domains (see Table 5.1). On the other hand, Margie did not a�ect the system's
behavior in the other three domains.

Note that Margie's abstractions not only reduced the search time, but also led to a
moderate improvement of solution quality. This result di�ers from the experiments with the
Abstractor algorithm (see Section 4.4), which did not a�ect solution costs. On the other hand,
the observed improvement con�rms Knoblock's [1993] results, which showed that abstraction
may reduce the solution length.

5.2. EVALUATION OF THE ENHANCED ABSTRACTION 199

1

(forall <other> of type (or Thing Door)

pick-up(<small>, <room>)
del (arm-empty)Prim:

del (in <small> <room>)

del (next-to <other> <small>))
add (holding <small>)
(forall <other> of type (or Thing Door)Side:

del (next-to <small> <other>))
Cost:

(forall <other> of type (or Thing Door)Prim:

Side:

push-aside(<large>, <room>)

del (robot-at <other>))

add (robot-at <large>)
Cost: 4

del (next-to <other> <large>))

(forall <other> of type (or Thing Door)
del (next-to <large> <other>))

(forall <other> of type (or Thing Door)

Prim:
del (next-to <large> <other>))

push-to-door(<large>, <door>, <room>)

add (robot-at <door>)
del (robot-at <other>))

(forall <other> of type (or Thing Door)

(forall <other> of type (or Thing Door)
del (next-to <other> <large>))

add (next-to <large> <door>)
add (next-to <door> <large>)

add (robot-at <large>)
4Cost:

Side: (forall <other> of type (or Thing Door)

1

(forall <other> of type (or Thing Door)Prim:

(forall <other> of type (or Thing Door)Side:

Cost:

move-aside(<small>, <room>)

del (next-to <small> <other>))

del (next-to <other> <small>))

Margie. (a) Selection without

1

pick-up(<small>, <room>)
del (arm-empty)Prim:

(forall <other> of type (or Thing Door)
del (next-to <small> <other>))

Cost:

del (next-to <other> <small>))

del (in <small> <room>)
add (holding <small>)
(forall <other> of type (or Thing Door)Side:

(b) Selection with the use ofMargie.

Prim:

push-to-door(<large>, <door>, <room>)

add (robot-at <door>)
del (robot-at <other>))

add (robot-at <large>)
4Cost:

(forall <other> of type (or Thing Door)

Side:

add (next-to <large> <door>)
add (next-to <door> <large>)

del (next-to <large> <other>))
(forall <other> of type (or Thing Door)

del (next-to <other> <large>))

(forall <other> of type (or Thing Door)

Prim:
del (next-to <large> <other>))

(forall <other> of type (or Thing Door)

Side:

del (next-to <other> <large>))
(forall <other> of type (or Thing Door)

del (robot-at <other>))

Cost: 4
add (robot-at <large>)

push-aside(<large>, <room>)
(forall <other> of type (or Thing Door)

1

(forall <other> of type (or Thing Door)Prim:

(forall <other> of type (or Thing Door)

Cost:

move-aside(<small>, <room>)

del (next-to <small> <other>))

del (next-to <other> <small>))

Figure 5.8: Primary e�ects of some operators in the Extended strips Domain. (a) If we apply

Chooser and Completer, then the resulting selection leads to the collapse of the hierarchy. (b) The

Margie algorithm chooses di�erent e�ects of the illustrated operators, and enables alpine to build

a four-level hierarchy (see Figure 5.9).

200 CHAPTER 5. OTHER ENHANCEMENTS

(b)

(a)

Key Item

Small

MovableStable

Thing

Large

Room Door Status

closed
locked

open

objects

Type Hierarchy

(robot-at <stable>)

(robot-at <large>)

(in <large> <room>)

(connects <door> <room>) (fits <key> <door>)(in <stable> <room>)

level 0

level 1

level 2

level 3

(status <door> <status>)

(holding <small>) (arm-empty)

(next-to <thing> <door>)

(next-to <thing> <other-thing>)

(next-to <door> <thing>)

(robot-at <small>)

(robot-at <door>)

(in <small> <room>)

(robot-in <room>)

Figure 5.9: Abstraction in the Extended strips domain. We (a) show the object types in this

domain, and (b) give the abstraction hierarchy based on Margie's selection of primary e�ects.

Domain Overall Search-Time Solution-Length Solution-Cost
Result Reduction Reduction Reduction

Extended Robot � | | |
Machining * 1.3{2.0 1.3{1.5 1.3{1.5
Sokoban � | | |
Extended strips * 0.1{1000 0.8{1.7 0.9{1.5
Logistics � | | |

Table 5.1: Results of evaluating the Margie algorithm: We compared the search with Chooser's

and Margie's primary e�ects (see Figure 5.4a,b). The application of Margie improved performance

in two domains, marked by the upward arrow (*), and did not a�ect search in the other domains.

5.2. EVALUATION OF THE ENHANCED ABSTRACTION 201

0.1 1 10 100
0%

20%

40%

60%

80%

100%
(a) No cost bound.

time bound (CPU sec)

su
cc

es
s

ra
te

0.1 1 10 100
0%

20%

40%

60%

80%

100%
(b) Loose bound.

time bound (CPU sec)

0.1 1 10 100
0%

10%

20%

30%

40%

50%
(c) Tight bound.

time bound (CPU sec)

su
cc

es
s

ra
te

Figure 5.10: Performance in the Extended strips Domain, with Margie's primary e�ects and

abstraction (dashed lines), and with Chooser's e�ects and no abstraction (solid lines). We show

the percentage of problems solved by di�erent time bounds, for search (a) without cost bounds,

(b) with loose bounds, and (c) with tight bounds.

202 CHAPTER 5. OTHER ENHANCEMENTS

0.1 1 10 100
0.1

1

10

100

(a) No cost bound.

with Margie (CPU sec)

w
/o

 M
ar

gi
e

(C
P

U
 s

ec
)

0.1 1 10 100
0.1

1

10

100

(b) Loose bound.

with Margie (CPU sec)

w
/o

 M
ar

gi
e

(C
P

U
 s

ec
)

0.1 1 10 100
0.1

1

10

100

(b) Tight bound.

with Margie (CPU sec)

w
/o

 M
ar

gi
e

(C
P

U
 s

ec
)

Figure 5.11: Comparison of the search times in the experiments without abstraction and those

withMargie's abstraction. SinceMargie improves performance, most points are above the diagonal.

5.2. EVALUATION OF THE ENHANCED ABSTRACTION 203

0 20 40 60
0

10

20

30

40

50

60

(a) No cost bound.

with Margie

w
/o

 M
ar

gi
e

0 20 40 60
0

10

20

30

40

50

60

(b) Loose bound.

with Margie

w
/o

 M
ar

gi
e

Figure 5.12: Solution lengths in the Extended strips Domain. We give the results of using primary

e�ects without abstraction (vertical axes) and with Margie's abstraction (horizontal axes).

0 50 100
0

20

40

60

80

100

120

(a) No cost bound.

with Margie

w
/o

 M
ar

gi
e

0 50 100
0

20

40

60

80

100

120

(b) Loose bound.

with Margie

w
/o

 M
ar

gi
e

Figure 5.13: Solution costs in the Extended strips Domain.

204 CHAPTER 5. OTHER ENHANCEMENTS

5.3 Identifying the relevant literals

We have considered description improvers that do not utilize information about particular
problems. When they produce a new description, prodigy may employ it for all problems
in the current domain. For example, if we apply Chooser and Completer to the Machining
Domain, they select the primary e�ects given in Figure 5.18(a), which are suitable for solving
any machining problem.

The use of problem-speci�c knowledge often allows more e�ective improvements. For
example, suppose that we need a domain description for machining tasks that do not have
destructive goals, such as \not polished" or \not painted." Then, we may modify the selection
of primary e�ects, as shown in Figure 5.18(b), and construct a three-level abstraction (see
Figure 5.18c).

An attempt to solve inappropriate problems with a specialized description may lead
to ine�ciency or gross incompleteness. For example, if we employ the primary e�ects in
Figure 5.18(b) for a problem with destructive goals, prodigy will terminate with a failure.
Thus, the system may not be able to amortize the cost of a specialized description change over
multiple problems; however, the implemented changers usually incur small computational
costs and do not require amortization.

Knoblock [1994] explored problem-speci�c improvements during his work on the alpine
abstraction generator. He designed a procedure for pinpointing the literals relevant to the
goals of a speci�c problem, and extended alpine to utilize this information. The extended
version built a hierarchy of relevant literals, and ignored the other literals.

We have applied Knoblock's technique to description changes in the Shaper system.
Speci�cally, we have implemented an algorithm for identifying relevant literals, called Re-

lator, which is an extension to Knoblock's procedure. Furthermore, we enabled Chooser,
Completer, Abstractor, and Margie to use the resulting relevance data. We give an outline
of Relator; the reader may �nd more details in Knoblock's [1993] thesis.

Formally, a literal is relevant if it may become a subgoal during search for a solution (see
Section 2.2.4). The purpose of Relator is to compile a literal set that includes all potential
subgoals, while excluding irrelevant literals. For example, suppose that the system needs a
specialized description for a drilling problem with the goal (has-spot part-1) (see the domain
encoding in Figure 4.1, page 151). Then, the relevance set includes has-spot, spot-drill, holds-
drill, holds-part, no-drill, and no-part.

The Relator algorithm inputs a list of goals, along with the encoding of operators and
inference rules, and identi�es all literals that may be relevant to achieving the goals. If the
user pre-selects side e�ects of some operators, the algorithm utilizes these extra data. We
give a speci�cation of Relator in Figure 5.14 and pseudocode in Figure 5.15.

The algorithm �nds all operators that match the goals, and inserts their preconditions
into the relevance set. Then, it recursively identi�es the preconditions of the operators that
achieve the newly added literals. For example, suppose that we call Relator for the goal has-
spot in the Drilling Domain. First, the algorithm determines that the drill-hole operator
achieves this goal, and inserts its preconditions, spot-drill, holds-drill, and holds-part, into the
relevance set. Then, Relator identi�es the put-drill and put-part operators, which match
the newly added literals, and inserts their preconditions, no-drill and no-part, into the set.

5.3. IDENTIFYING THE RELEVANT LITERALS 205

Type of description change: Identifying relevant literals.

Purpose of description change: Minimizing the set of selected literals, while including all
relevant literals.

Use of other algorithms: None.

Required input: Description of the operators and inference rules; list of goal predicates, which
may be partially instantiated.

Optional input: Pre-selected side e�ects.

Figure 5.14: Speci�cation of the Relator algorithm.

Relator(Goals)
The algorithm inputs a list of goals and returns the set of relevant literals.

It accesses the operators and inference rules, with pre-selected side e�ects.

New-Literals := Goals (newly added literals)

Relevance-Set := Goals (set of relevant literals)

Repeat while New-Literals is not empty:
Add-Literals := Add-Relevant(New-Literals)
New-Literals := Add-Literals� Relevance-Set

Relevance-Set := Relevance-Set [New-Literals

Return Relevance-Set

Add-Relevant(New-Literals)
For every literal l in New-Literals:

For every operator and inference rule step that achieves l:
If l is not pre-selected as a side e�ect of step,

then add the preconditions of step to New-Literals.
Return New-Literals.

Figure 5.15: Identifying the relevant literals for a given list of goals.

206 CHAPTER 5. OTHER ENHANCEMENTS

Relator
new goal-specific

descriptionAbstractorCompleterChooserof the domain
initial description

(a)

(b)

of the domain
initial description new goal-independent

descriptionAbstractorCompleterChooser

Figure 5.16: Experiments on the e�ectiveness of the Relator algorithm. We test the utility of

goal-speci�c abstraction and primary e�ects (a), and compare it with the performance of a goal-

independent version (b).

5.4 Experiments with goal-speci�c descriptions

The evaluation of the Relator algorithm involved two series of experiments. First, we mea-
sured the time of problem solving with goal-speci�c abstractions and primary e�ects (see
Figure 5.16a). Second, we compared these results with the e�ciency of analogous goal-
independent descriptions (Figure 5.16b).

The Relator algorithm allowed the generation of �ner-grained hierarchies for the Ma-
chining Domain, Sokoban puzzle, and strips world. On the other hand, it did not a�ect
performance in the Robot world and Logistics Domain. The goal-speci�c descriptions gave
mixed results, from a thousand-fold speed-up to a sharp increase of the search time; however,
improvements were more frequent then negative results.

Extended Robot Domain

If the system does not utilize the Relator algorithm in the Robot Domain, then it selects the
primary e�ects given in Figure 3.31 (page 131), and then generates a three-level abstraction
hierarchy (see Figure 4.30 on page 183). On the other hand, the application of Relator leads
to selecting fewer primary e�ects and constructing �ner-grained hierarchies.

For example, suppose that we need abstraction for problems that have no negation goals
and, thus, do not require the deletion of literals. The Relator algorithm enables the system
to select relevant primary e�ects, shown in Figure 5.17(a), which allow the construction of
a six-level hierarchy (Figure 5.17b).

We tested this hierarchy on the nine problems from Table 3.6 (see page 131), and com-
pared it with the goal-independent version (see Table 5.2). The six-level hierarchy reduced
the search time on problems 6 and 9, caused an increase in running time on problem 7, and
performed identically to goal-independent abstraction in the other six cases.

The Relator algorithm did not a�ect the solution quality. In all nine cases, the system
generated the same solutions with the goal-speci�c and goal-independent hierarchy. We
showed the lengths and costs of these solutions in Figure 4.31 (see page 183).

5.4. EXPERIMENTS WITH GOAL-SPECIFIC DESCRIPTIONS 207

Prim:

open(<door>)
add (open <door>)
del (closed <door>)Side:

carry-down(<box>, <table>)
Side: del (on <box> <table>)

del (robot-on <table>)
add (on-floor <box>)

add (robot-on-floor)

carry-up(<box>, <table>)
Prim: add (on <box> <table>)

del (robot-on-floor)
del (on-floor <box>)

add (robot-on <table>)

Side:

Side:

climb-down(<table>)
del (robot-on <table>)
add (robot-on-floor)

Prim:

climb-up(<table>)
add (robot-on <table>)
del (robot-on-floor)Side:

Prim:

close(<door>)
add (closed <door>)
del (open <door>)Side:

(a) Example of a problem-specific selection of primary effects.

Prim: add (at <box> <to-loc>)

del (robot-at <from-loc>)
del (at <box> <from-loc>)

add (robot-at <to-loc>)

carry-within-room

Side:

Prim: add (robot-at <to-loc>)
del (robot-at <from-loc>)Side:

(<box>, <from-loc>, <to-loc>, <room>)

(<from-loc> <to-loc> <room>)
go-within-room

add (in <box> <to-room>)

del (robot-in <from-room>)
del (in <box> <from-room>)

add (robot-in <to-room>)

carry-thru-door

Prim:

Side:

(<box>, <from-room>, <to-room>, <door>)

Prim: add (robot-in <to-room>)
del (robot-in <from-room>)

go-thru-door

Side:

(<from-room> <to-room> <door>)

(at <box> <location>)(in <box> <room>)

(open <door>)

(closed <door>)

(on-floor <box>) (robot-on-floor)

(b) Problem-specific abstraction hierarchy.

(within <location> <room>)

(on <box> <table>)

(robot-on <table>)

(robot-in <room>)

(robot-at <location>)
level 1

level 2

level 0

level 3

level 4

level 5

Figure 5.17: Results of using Relator in the Extended Robot Domain. The improved description

is suitable for solving all problem that have no deletion goals. If we allowed any goals, the system

would generate the three-level hierarchy in Figure 4.30 (page 183).

208 CHAPTER 5. OTHER ENHANCEMENTS

No Cost Bound Loose Bound Tight Bound
indep spec indep spec indep spec

6 2.66 0.91 2.61 0.90 0.27 0.24
7 1.26 3.08 1.31 3.11 1.56 1.68
9 0.26 0.26 0.26 0.26 > 1800:00 571.14

Table 5.2: Performance in the Extended Robot Domain, on problems 6, 7, and 9 from Table 3.6.

We give search times for a goal-independent abstraction hierarchy (\indep"), and the corresponding

times for goal-speci�c abstraction (\spec").

Machining Domain

The goal-independent selection of primary e�ects in the Machining Domain includes dele-
tion e�ects (see Figure 5.18a), which cause the collapse of the ordered abstraction. The
Relator algorithm prevents this problem: It helps to construct a selection with fewer e�ects
(Figure 5.18b), which leads to a three-level hierarchy (Figure 5.18c).

In Figure 5.19, we summarize the results of search without cost bounds. Speci�cally, we
give the search time and solution costs, for problem solving with goal-speci�c abstraction
and primary e�ects (dashed lines), with goal-independent selection of primary e�ects (solid
lines), and without primary e�ects (dotted lines). In Figure 5.20, we give analogous results
for problem solving with loose cost bounds.

The goal-speci�c abstraction reduced the search time for all problems. The reduction
factor varied from 1.5 to 2.3, and its mean value was 1.74. Furthermore, when the search
algorithm utilized abstraction, it found optimal solutions to all machining problems. The
factor of solution-cost reduction ranged from 1.6 to 1.8, with a mean of 1.69.

Extended strips Domain

In Section 3.7.2, we described the goal-independent application of Chooser and Completer

to the strips Domain. The resulting selection of primary e�ects (see Figures 3.41 and 3.42)
signi�cantly reduced the search time, but did not allow the construction of an ordered hierar-
chy. The Relator algorithm enables the system to select fewer primary e�ects and construct
an eight-level abstraction hierarchy, given in Figure 5.21(b), which works for problems that
have no deletion goals.

In Figure 5.22, we give the results of problem solving with the goal-speci�c hierarchy
(dashed lines) and without abstraction (solid lines). The graphs show the percentage of
problems solved by di�erent time bounds. In Figure 5.23, we show an alternative summary
of the same results.

When we used abstraction without cost bounds and with tight bounds, it slightly in-
creased the number of problems solved within 600 seconds; however, it had the opposite
e�ect in the experiments with loose bounds. These changes in the percentage of solved
problems were not statistically signi�cant. The ratio of the search times with and without
abstraction varied widely from problem to problem, ranging from less than 0.001 to greater
than 1000.

On the other hand, the goal-speci�c hierarchy gave a statistically signi�cant improvement

5.4. EXPERIMENTS WITH GOAL-SPECIFIC DESCRIPTIONS 209

cut-roughly(<part>)
Prim: add (cut <part>)

del (drilled <part>)
del (finely-cut <part>)

del (finely-drilled <part>)Side:

del (polished <part>)
del (finely-polished <part>)
del (painted <part>)
del (finely-painted <part>)

drill-roughly(<part>)
Prim: add (drilled <part>)

del (polished <part>)
del (finely-drilled <part>)

Side: del (finely-polished <part>)
del (painted <part>)
del (finely-painted <part>) Prim:

paint-roughly(<part>)
add (painted <part>)
del (finely-painted <part>)

del (finely-polished <part>)
Side: del (polished <part>)

Prim:

polish-roughly(<part>)
add (polished <part>)

Side: del (finely-painted <part>)

del (finely-polished <part>)
del (painted <part>)

cut-roughly(<part>)
Prim: add (cut <part>)

del (drilled <part>)
del (finely-drilled <part>)
del (polished <part>)
del (finely-polished <part>)
del (painted <part>)
del (finely-painted <part>)

drill-roughly(<part>)
Prim: add (drilled <part>)

del (polished <part>)
del (finely-polished <part>)
del (painted <part>)
del (finely-painted <part>) Prim:

paint-roughly(<part>)
add (painted <part>)

Side:

del (polished <part>)

Prim:

polish-roughly(<part>)
add (polished <part>)

Side:

del (finely-painted <part>)
del (painted <part>)Side: Side:del (finely-cut <part>) del (finely-drilled <part>)
del (finely-polished <part>)

del (finely-polished <part>)

del (finely-painted <part>)

(b) Example of a problem-specific selection.

(cut <part>) (finely-cut <part>)

(drilled <part>) (finely-drilled <part>)

(polished <part>)

(painted <part>)

(finely-polished <part>)

(finely-painted <part>)
level 0

level 1

level 2

(c) Problem-specific abstraction hierarchy.

(a) Problem-independent selection of primary effects.

Figure 5.18: E�ects of the low-quality operations in the Machining Domain. When the system

generates a goal-independent description, the selected primary e�ects do not allow abstraction (a).

On the other hand, Relator enables the system to select fewer primary e�ects (b) and build a

multi-level hierarchy (c).

210 CHAPTER 5. OTHER ENHANCEMENTS

8 10 12 14 16 18
0

0.2

0.4

0.6

0.8
(a) Efficiency of problem solving.

length of an optimal solution

ru
nn

in
g

tim
e

(C
P

U
 s

ec
)

8 10 12 14 16 18
0

20

40

60

(b) Quality of the resulting solutions.

length of an optimal solution

so
lu

tio
n

co
st

Figure 5.19: Performance in the Machining Domain, without cost bounds. We give the results

of problem-speci�c description improvements (dashed lines) and analogous problem-independent

improvements (solid line), as well as the results of search with the initial description (dotted lines).

The vertical bars show the 95% con�dence intervals.

8 10 12 14 16 18
0.1

 1

 10

100

1000
(a) Efficiency of problem solving.

length of an optimal solution

ru
nn

in
g

tim
e

(C
P

U
 s

ec
)

8 10 12 14 16 18
0

20

40

60

(b) Quality of the resulting solutions.

length of an optimal solution

so
lu

tio
n

co
st

Figure 5.20: Performance in the Machining Domain, with loose cost bounds. The legend is the

same as in Figure 5.19; however, the running-time scale is logarithmic.

5.4. EXPERIMENTS WITH GOAL-SPECIFIC DESCRIPTIONS 211

(b)

(robot-at <stable>)

level 0

level 1

(status <door> <status>)

(holding <small>) (arm-empty)

(robot-at <small>)

(robot-at <door>)

(in <small> <room>)

(robot-in <room>)

(next-to <door> <small>)(next-to <small> <door>)

(next-to <stable> <small>)(next-to <small> <stable>)

(next-to <small> <other-small>)

(connects <door> <room>)

level 2

level 3

level 4

level 5

level 6

level 7

(next-to <large> <thing>)

(in <stable> <room>) (fits <key> <door>)

(robot-at <large>)

(in <large> <room>) (next-to <large> <door>)

(next-to <door> <large>)

(a)

Key Item

Small

MovableStable

Thing

Large

Room Door Status

closed
locked

open

objects

Type Hierarchy

(next-to <thing> <large>)

Figure 5.21: Goal-speci�c abstraction in the Extended strips domain. We show the object types

in this domain (a), and give an improved abstraction hierarchy (b).

212 CHAPTER 5. OTHER ENHANCEMENTS

0.1 1 10 100
0%

20%

40%

60%

80%

100%
(a) No cost bound.

time bound (CPU sec)

su
cc

es
s

ra
te

0.1 1 10 100
0%

20%

40%

60%

80%

100%
(b) Loose bound.

time bound (CPU sec)

0.1 1 10 100
0%

10%

20%

30%

40%

50%
(c) Tight bound.

time bound (CPU sec)

su
cc

es
s

ra
te

Figure 5.22: Results in the Extended strips Domain, with goal-speci�c abstraction and primary

e�ects (dashed lines), and with goal-independent e�ects and no abstraction (solid lines). We show

the percentage of problems solved by di�erent time bounds, for search without cost bounds (a),

with loose bounds (b), and with tight bounds (c).

5.4. EXPERIMENTS WITH GOAL-SPECIFIC DESCRIPTIONS 213

0.1 1 10 100
0.1

1

10

100

(a) No cost bound.

with abstraction (CPU sec)

w
/o

 a
bs

tr
ac

tio
n

(C
P

U
 s

ec
)

0.1 1 10 100
0.1

1

10

100

(b) Loose bound.

with abstraction (CPU sec)

w
/o

 a
bs

tr
ac

tio
n

(C
P

U
 s

ec
)

0.1 1 10 100
0.1

1

10

100

(c) Tight bound.

with abstraction (CPU sec)

w
/o

 a
bs

tr
ac

tio
n

(C
P

U
 s

ec
)

Figure 5.23: Comparison of the search times in the experiments without abstraction (vertical axes)
and those with problem-speci�c abstraction (horizontal axes).

214 CHAPTER 5. OTHER ENHANCEMENTS

0 20 40 60
0

10

20

30

40

50

60

(a) No cost bound.

with abstraction

w
/o

 a
bs

tr
ac

tio
n

0 20 40 60
0

10

20

30

40

50

60

with abstraction

w
/o

 a
bs

tr
ac

tio
n

(b) Loose bound.

Figure 5.24: Solution lengths in the Extended strips Domain. We give the results for the goal-

independent description (vertical axes) and goal-speci�c descriptions (horizontal axes).

0 50 100
0

20

40

60

80

100

120

(a) No cost bound.

with abstraction

w
/o

 a
bs

tr
ac

tio
n

0 50 100
0

20

40

60

80

100

120

with abstraction

w
/o

 a
bs

tr
ac

tio
n

(b) Loose bound.

Figure 5.25: Solution costs in the Extended strips Domain.

of solution quality. In Figure 5.24, we compare the solution lengths in the experiments with
and without abstraction, using the problems solved in both cases. In Figure 5.25, we give an
analogous comparison of solution costs. The length-reduction factor varies from 0.9 to 1.7,
and its mean value is 1.07, whereas the cost reduction is between 0.9 and 1.5, with a mean
of 1.05.

Summary

The Relator algorithm helped to identify relevant primary e�ects and generate �ner-grained
hierarchies; however, the resulting e�ciency improvements were surprisingly modest. The use
of problem-speci�c abstractions reduced the search times and solution costs in the Machining
Domain, but gave mixed results in the simulated robot worlds (see Table 5.3).

The experiments have shown that an increase in the number of abstraction levels does not

5.4. EXPERIMENTS WITH GOAL-SPECIFIC DESCRIPTIONS 215

Domain Overall Search-Time Solution-Length Solution-Cost
Result Reduction Reduction Reduction

Extended Robot m 0.4{3.1 none none
Machining * 1.5{2.3 1.6{1.8 1.6{1.8
Sokoban � | | |
Extended strips m 0.001{1000 0.9{1.7 0.9{1.5
Logistics � | | |

Table 5.3: Summary of experiments with the Relator algorithm: We compared the e�ectiveness

of goal-speci�c and goal-independent description improvements (see Figure 5.16). The application

of Relator improved e�ciency in Machining Domain, gave mixed results in the Robot and strips

worlds, and did not a�ect the performance in Sokoban and Logistics Domains.

always improve e�ciency. This observation is di�erent from the results of Knoblock [1993],
who reported that �ner-grained hierarchies give better performance, and that identi�cation
of goal-relevant literals is often essential for e�cient abstraction.

Chapter 6

Summary of work on description

changers

An immediate research direction is to investigate the integration of these dif-

ferent learning strategies within prodigy. This will entail further work on

incorporating other learning methods into the nonlinear planner framework.

|Manuela M. Veloso [1994], Planning and Learning by Analogical Reasoning.

We have described a collection of algorithms that modify prodigy domain descriptions and
speed up the problem-solving process. The algorithms proved e�ective in most experimental
domains; however, the underlying techniques are heuristic, and they do not guarantee an
improvement. In the worst case, their use may lead to an exponential increase in search
time. In Figure 6.1, we summarize the results of testing these algorithms in �ve domains.

We now discuss the main results of the work on speed-up techniques and outline some
directions for future research. First, we give a list of the implemented algorithms and de-
scribe interactions among them (Section 6.1). Then, we summarize the methods for selecting
primary e�ects and generating abstraction hierarchies (Sections 6.2), and discuss some un-
explored description changes (Sections 6.3). Finally, we point out some research problems
related to the development of new description changers (Section 6.4).

6.1 Library of description changers

We have developed seven algorithms for the automatic improvement of domain descriptions,
which form the foundation of the Shaper system. These algorithms use four main types of
description changes: selecting primary e�ects, building abstraction hierarchies, partially or
fully instantiating elements of the domain description, and identifying the literals relevant
to the current task.

In Figure 6.1, we give a summary of the description-changing algorithms, divided into
two groups. The �rst group comprises the main description changers, which improve the
performance of problem-solving algorithms. It includes four algorithms for choosing primary
e�ects and generating abstraction hierarchies.

216

6.1. LIBRARY OF DESCRIPTION CHANGERS 217

Domain Primary Ordered Abstraction Abstraction Identi�cation of

E�ects (Chapter 4) of E�ects Relevant Literals

(Chapter 3) w/o prims with prims (Sec. 5.1 and 5.2) (Sec. 5.3 and 5.4)

Extended Robot * � * � m

Machining * � � * *

Sokoban * � * � �

Extended strips * � � * m

Logistics � m � � �

Notation:

* positive results: the technique improved performance on almost all test problems

m mixed results: the technique reduced search in some cases, but increased it in other cases

� no e�ect on the performance: the technique did not a�ect the system's behavior

� no experiments: since operators in the Logistics Domain have no unimportant e�ects,

we cannot test abstraction with primary e�ects in this domain

Table 6.1: Summary of experiments with the speed-up techniques in �ve di�erent domains. The

table comprises the \Overall Result" columns from Tables 3.8, 4.2, 5.1, and 5.3.

The second group contains the auxiliary description changers, which enhance the ef-
fectiveness of the main changers. The algorithms of this group analyze the structure of a
problem domain and extract information for improving the quality of the primary-e�ect se-
lections and abstraction hierarchies. The auxiliary algorithms do not directly improve the
problem-solving performance and, hence, we always use them in conjunction with the main
description changers.

The utility of description-improving algorithms depends on the resulting search reduction
and changes in solution quality. We consider an algorithm e�ective if it reduces search by a
signi�cant factor, and the savings grow with problem complexity. If the use of a description
changer leads to generating lower-quality solutions, then the time savings should justify the
loss of quality. We have described the trade-o� between running time and solution quality
in problem solving with primary e�ects and abstraction. In Section 7.3, we will formalize
this trade-o� and derive a utility function for the evaluation of description changers.

We have demonstrated that the changer algorithms usually improve the performance;
however, they do not guarantee improvement, and the resulting description changes some-
times impair e�ciency or cause an unacceptable decline in solution quality. Therefore, a
representation-changing system must have a top-level control module, which selects appro-
priate description changers, tests the results of their application, and prunes ine�ective
domain descriptions. We will describe the control module of the Shaper system in Part III.

We next describe two main types of interactions among the changer algorithms (Sec-
tion 6.1.1) and review techniques for utilizing problem-speci�c information in generating
new domain descriptions (Section 6.1.2).

218 CHAPTER 6. SUMMARY OF WORK ON DESCRIPTION CHANGERS

Primary e�ects and abstraction

Chooser: Heuristic selection of primary e�ects (Section 3.4.1)

The Chooser algorithm selects primary e�ects of operators and inference rules, for improving the ef-

�ciency of backward chaining. It uses several simple heuristics, aimed at ensuring near-completeness

and limiting the increase in solution costs. The selection algorithm is very fast, but it does not

guarantee completeness of search with the chosen primary e�ects.

Completer: Learning additional primary e�ects (Section 3.5)

The Completer algorithm learns additional primary e�ects, to ensure a required probability of

completeness and limited cost increase. On the negative side, it takes signi�cant time and needs a

hand-coded generator of initial states. We use the PAC-learning probability parameters, � and �,

to control the trade-o� between completeness probability and learning time.

Abstractor: Building an abstraction hierarchy (Section 4.2)

The Abstractor algorithm is an advanced version of the alpine abstraction generator, extended to

construct hierarchies for the full domain language of the prodigy4 system. It imposes constraints

on the relative importance of predicates in the description of operators and inference rules, and

uses these constraints to abstract some preconditions and side e�ects.

Margie: Abstracting e�ects of operators and inference rules (Section 5.1)

The Margie algorithm combines the automatic selection of primary e�ect with the construction of

an ordered abstraction hierarchy, thus abstracting unimportant e�ects. It uses heuristics for select-

ing primary e�ects and a dynamic version of Abstractor, which e�ciently generates hierarchies for

multiple alternative selections.

Auxiliary description changers

Matcher: Instantiating operators and inference rules (Section 3.4.2)

The Matcher algorithm generates all possible instantiations of operators and inference rules, for

given object instances and static features of the initial state. When processing an operator or

inference rule, Matcher instantiates its variables one by one, and prunes subexpressions that do

not a�ect the overall truth value. We use the resulting instantiations to improve the e�ectiveness

of Chooser and Margie, which select primary e�ects.

Re�ner: Partial instantiation of predicates (Section 4.3)

The Re�ner algorithm generates a partial instantiation of predicates, for use in abstraction graphs

and relevance sets. When we combine this algorithm with Abstractor, it �nds a minimal instan-

tiation that does not cause a collapse of abstraction levels. Similarly, when we use Re�ner in

identifying relevant literals, it produces a minimal instantiation that prevents over-generalization.

Relator: Identifying relevant literals (Section 5.3)

The Relator module consists of two algorithms for identifying relevant features of a domain. The

�rst algorithm pre-processes the domain description and encodes the relationships among literals

as a relevance graph. The second algorithm inputs a collection of goals and uses the relevance graph

to determine which literals are relevant to achieving these goals. We use the resulting relevance

information to enhance the performance of Chooser, Abstractor, and Margie.

Figure 6.1: Summary of description-changing algorithms in the Shaper system.

6.1. LIBRARY OF DESCRIPTION CHANGERS 219

Chooser:

Completer:

Abstractor:

Margie:

Primary effects and abstraction

Heuristic selection of primary effects

Learning additional primary effects

Building an abstraction hierarchy

Abstracting effects of operators

Matcher:

Relator:

Refiner:

Auxiliary description changes

Instantiating operators and inference rules

Partial instantiation of predicates

Identifying relevant literals

(a) List of description changers.

(c) Order of applying changers to a domain.

Margie

Chooser
Completer Abstractorordescription

initial
description
improvedRelator

Chooser Completer Margie

Abstractor Relator

Matcher Refiner

TOP-LEVEL CONTROL

(b) Subroutine calls among changers.

Prodigy
solvers

Figure 6.2: Interactions among description-changing algorithms; we boldface the names of the

main description changers, and use the standard font for the auxiliary changer algorithms.

6.1.1 Interactions among description changers

A description changer may interact with other changer algorithms in two ways: through sub-
routine calls and by utilizing the output of previously applied algorithms. In Figure 6.2(b),
we show all subroutine calls among the changer algorithms. For example, if we apply the
Matcher algorithm, then it invokes two other changers, Matcher and Abstractor. We also
show the top-level control module, described in Part III, which selects and invokes appropri-
ate description changers. Note that it does not directly call two auxiliary changers, Matcher

and Re�ner.
The second type of interaction is the sequential application of multiple changer algorithms

to the same domain description, which allows some algorithms to use the results of previous
description changes. For example, if we apply the Abstractor algorithm after Chooser and
Completer, then it utilizes the selected primary e�ects in generating an abstraction hierarchy.

The interactions among description changers determine the appropriate application order.

220 CHAPTER 6. SUMMARY OF WORK ON DESCRIPTION CHANGERS

For instance, if we use Chooser and Abstractor to improve a domain description, then we �rst
apply the Chooser algorithm, which enables Abstractor to use the resulting primary e�ects.
As another example, we should not apply Margie after Completer, since it will cancel the
learned primary e�ects and produce a new selection.

In Figure 6.2(c), we show the appropriate order of applying description changers. When
generating a description for a speci�c goal set, we apply the Relator algorithm before all
other changers. We may apply either Chooser or Margie for selecting primary e�ects, and
then Completer for improving the selection. When using an abstraction hierarchy, we apply
the Abstractor algorithm after selecting primary e�ects.

Note that we do not have to use all description changers. We may skip any steps in
Figure 6.2(c), but we should not change their order. We use this order in constructing �xed
sequences of changers, described in Section 7.1, which serve as operators for expanding the
space of alternative domain descriptions.

6.1.2 Description changes for speci�c problems and problem sets

If the user provides restrictions on the allowed problem instances, then changer algorithms
can utilize them to improve the domain descriptions. This option allows the generation of
new descriptions for speci�c problems or groups of problems.

The use of problem-speci�c information helps to improve performance; however, it limits
the use of the resulting descriptions. If some problems do not satisfy the restrictions, then
problem solving with these descriptions may lead to incompleteness, gross ine�ciency, or
even construction of incorrect solutions.

The utility of a problem-speci�c description depends on the time for generating it, the
resulting performance advantage over the problem-independent version, and the number of
problems that satisfy the restrictions. In particular, the total time savings on all matching
problems should be larger than the time of the description change.

In Figure 6.3(a), we summarize the problem-speci�c information used in the Shaper
system. The auxiliary description changers access this information directly and use it to
pre-process the domain description, whereas the main changers utilize the results of the
pre-processing. We illustrate the access to the problem-speci�c restrictions in Figure 6.3(b),
where the boldface font marks the main changer algorithms. Finally, in Figure 6.3(d), we
show which changers utilize which restrictions.

For example, the Matcher changer uses information about static features of the initial
state and available object instances to pre-process the domain description. Relator inputs
restrictions on goal literals and identi�es all other literals relevant to goal achievement. On
the other hand, the Chooser algorithm does not directly access problem-speci�c restrictions;
however, it uses the pre-processing results of Matcher and Relator, thus utilizing knowledge
of static literals, available objects, and allowed goals.

Note that the procedure for generating random initial states is not a description changer;
however, it also supports the use of problem-speci�c data. If the user provides a procedure
that produces random states for a certain collection of problems, then it allows the selection
of primary e�ects for solving these speci�c problems.

6.1. LIBRARY OF DESCRIPTION CHANGERS 221

� Lists of possible instances of variables in the domain description

� Static literals that hold in the initial states of all problems

� Probability distribution over all possible states of the domain

� Restrictions on the literals that can be used in goal statements

(a) Optional problem-speci�c restrictions.

Matcher

Chooser Margie Completer

Abstractor

Relator generator
state

sample states

restrictions on
goal literals Refiner

instance lists for
variablessome

instance lists for
variablesall

static features
of initial state

probability
distribution of

(b) Access to restrictions on problem instances.

instance static distribution goal
lists features of states literals
Primary e�ects and abstraction

Chooser + + +
Completer + + +
Abstractor + +
Margie + + +

Auxiliary description changers

Matcher + +
Re�ner +
Relator + +

(c) Utilization of available restrictions.

Figure 6.3: Use of problem-speci�c information in changing domain descriptions.

222 CHAPTER 6. SUMMARY OF WORK ON DESCRIPTION CHANGERS

6.2 Primary e�ects and abstraction

The main description-improving techniques in the current version of the Shaper system
include the selection of primary e�ects and generation of abstraction hierarchies (see Fig-
ure 6.1). We summarize the main results on the inductive learning of primary e�ects (Sec-
tion 6.2.1 and 6.2.2) and discuss the implemented extensions of Knoblock's abstraction al-
gorithm (Section 6.2.3).

6.2.1 Automatic selection and use of primary e�ects

We have formalized the use of primary e�ects in problem solving, described algorithms for
the automatic selection of primary e�ects, and gave an analytical and empirical evaluation
of the resulting search reduction.

The evaluation has shown that the use of primary e�ects leads to a signi�cant e�ciency
improvement, and that the savings in search time grow exponentially with problem complex-
ity. On the other hand, an improper selection of primary e�ects may increase search time,
compromise completeness, and cause the generation of unnecessarily costly solutions.

We have presented a condition for ensuring the completeness of primary e�ects and
identi�ed the factors that determine the search reduction. The most important factor is the
cost increase C, which determines the trade-o� between the e�ciency of problem solving
and the cost of the resulting solutions. If C = 1, then primary e�ects improve e�ciency
without compromising solution quality. A larger cost increase leads to generating suboptimal
solutions, but it may give a more signi�cant e�ciency improvement.

We have used the completeness condition to develop an inductive learning algorithm for
selecting primary e�ects of operators, which guarantees a high probability of completeness
and limited increase in solution costs. The experiments have con�rmed that the algorithm
chooses appropriate primary e�ects, which exponentially reduce the search.

The selection algorithms allow the user to control the trade-o� between the time for
selecting primary e�ects and the quality of the resulting selection. The Chooser algorithm
uses fast heuristics for selecting primary e�ects, but it may compromise completeness of
search. If we use Chooser's selection, the system has to verify its e�ectiveness in improving
the performance of problem solvers. We will describe performance-testing techniques in
Part III. If the selection proves ine�ective, the system either discards it or invokes Completer
to learn additional primary e�ects. We will describe techniques for testing the performance
in Part III.

The Completer algorithm learns additional primary e�ects, to ensure completeness and
limited cost increase. The learning process takes signi�cant time, which is usually larger than
the time for solving individual problems without primary e�ects; however, we may amortize
it over multiple problems in a domain. The user may specify the desired trade-o� between
completeness probability and learning time, by setting the success-probability parameters of
inductive learning, � and �.

6.2. PRIMARY EFFECTS AND ABSTRACTION 223

6.2.2 Improvements to the learning algorithm

We next discuss two open problems related to the automatic selection of primary e�ects:
improving the sample complexity of the learning algorithm, and the automatic demotion of
redundant primary e�ects.

Reducing the sample complexity

The main drawback of the Completer algorithm is its sample complexity, which results in
long learning times. We outline two approaches to reducing the sample complexity, which
may become a subject of future work. Note that we did not use them in the current imple-
mentation.

The �rst approach is reducing the hypothesis space, that is, the space of allowed selections
of primary e�ects. Recall that the sample complexity of inductive learning linearly depends
on the logarithm of the hypothesis-space size (see Inequality 3.7). We have assumed that the
learning algorithm searches among all possible selections of primary e�ects. Therefore, if an
operator or inference rule stepu has j candidate e�ects, then the corresponding number
of hypotheses is 2j. This assumption led to Expression 3.11 for the worst-case sample
complexity.

To reduce the number of hypotheses, we may enumerate the candidate e�ects of stepu,
from e�1 toe�j, and force the learning algorithm to promote them in this order. That is, the
algorithm selects e�1 after the �rst failure to �nd a replacing sequence, e�2 after the second
failure, and so on. The number of promoted e�ects is between 0 and j, which means that
the algorithm generates one of j + 1 possible selections.

Thus, the size of the reduced hypothesis space is j + 1. If the total number of operators
and inference rules is s, the estimated maximum of optimal-solution lengths is nmax, and the
success-probability parameters are � and �, then the required number of learning examples
for stepu is

m =
�
nmax

�
� (ln 1

�
+ ln s + ln(j + 1))

�
: (6.1)

The resulting reduction in the number of examples depends on the number j of candidate
e�ects. For example, suppose that the number of operators in the domain is s = 10, the
maximal length of an optimal solution is nmax = 10, and the PAC-learning parameters are
� = � = 0:2. Then, the dependency between j and m is as shown in Figure 6.4(a), where the
solid line is for the full hypothesis space, and the dashed line is for the reduced space. The
reduction factor grows with increasing j, as shown in Figure 6.4(b).

On the negative side, the �xed order of promotions prevents the use of selection heuristics
and often leads to choosing redundant primary e�ects. We may control the trade-o� between
the use of heuristics and the complexity reduction, by adjusting the restrictions on the allowed
selections of primary e�ects. Exploring this trade-o� and �nding the right restrictions is an
open problem

The second approach to reducing the learning time is the generation of appropriate
examples, which give a steeper learning curve than random examples. For instance, we
considered two learning examples for the Robot Domain in the end of Section 3.5.1, and
used them to construct a complete selection of primary e�ects. In this case, the right choice

224 CHAPTER 6. SUMMARY OF WORK ON DESCRIPTION CHANGERS

2 4 6 8 10
0

100

200

300

400
(a) Sample complexity.

number of candidate effects

nu
m

be
r

of
 e

xa
m

pl
es

2 4 6 8 10
0

0.5

1

1.5

2

2.5

3
(b) Complexity reduction.

number of candidate effects

re
du

ct
io

n
fa

ct
or

Figure 6.4: Reduction of sample complexity, for s = 10, nmax = 10, and � = � = 0:2. We

show (a) the dependency between the number j of candidate e�ects and the number m of learning

examples, for the full hypothesis space (dashed line) and the reduced space (dash-and-dot line), as

well as (b) the dependency between j and the reduction factor (solid line).

of examples eliminated the need for a large sample. The construction of an intelligent
example generator is an open research direction, related to the automatic construction of
training problems in other learning systems.

De-selection of primary e�ects

The Chooser and Completer algorithms do not demote primary e�ects. After they have
chosen some candidate e�ect as a new primary e�ect, it remains primary throughout the
learning process and becomes a part of the �nal selection, even though later choices of
primary e�ects can make it redundant. Moreover, some e�ects may become redundant if
the user either sets a higher limit C for the allowed cost increase, or modi�es the domain
description, for example, by adding new operators or revising inference rules. To avoid the
problem of redundancy, we need an algorithm for identifying and demoting the unnecessary
e�ects.

In Figure 6.5, we give a tentative algorithm for de-selecting redundant e�ects, which
loops through all primary e�ects in the current selection and tests their redundancy. When
processing a primary e�ect, the algorithm demotes it to a candidate e�ect and then calls
the Test-Completeness procedure, which checks the completeness of the resulting selection.
If this procedure does not �nd an example demonstrating incompleteness, then the e�ect
remains demoted.

Determining the appropriate number m0 of learning examples is an open problem. Note
that a large number of examples may not guarantee a high probability of completeness,
because some de-selected e�ects may become necessary after demoting e�ects of other op-
erators. To restore completeness, we have to re-apply the Completer algorithm, which may
select additional primary e�ects among the demoted e�ects.

6.2. PRIMARY EFFECTS AND ABSTRACTION 225

De-Select-E�ects(C; �; �)
The algorithm inputs the allowed cost increase, C, and the success-probability parameters, � and �.

It also accesses the operators and inference rules, with the old selection of primary e�ects.

Determine the required number m0 of learning examples,
which depends on the PAC-learning parameters, � and �.

For every uninstantiated operator and inference rule stepu:
For every primary e�ect e� of stepu:

Demote e� to a side e�ect of stepu.
If Test-Completeness(stepu; C; n

0) returns false,
then promote e� back to a primary e�ect.

Test-Completeness(stepu; C;m
0)

Repeat m0 times:
Produce a state I that satis�es the preconditions of stepu.
Generate a full instantiation stepi that matches the state I.
Produce the goal G(stepi; I) of a replacing sequence.
Search for a replacing sequence with a cost at most C � cost(stepu).
If the search fails, then return false (the selection is not complete).

Return true (the selection is probably complete).

Figure 6.5: De-selection of redundant primary e�ects.

We have no empirical results on the performance of the de-selection algorithm. Since
completeness does not depend on the value of m0, we conjecture that the algorithm will per-
form well with a small number of learning examples; however, the following use of Completer
incurs high computational costs, which may outweigh the bene�ts of the improved selection.

Closely related problems include the design of faster de-selection techniques, as well as
the investigation of the trade-o� between their running time and the resulting e�ciency
improvements. Another related problem is the development of procedures that automati-
cally evaluate the trade-o� between the branching factor and solution cost, and select an
appropriate cost-increase limit C.

6.2.3 Abstraction for the full prodigy language

We have extended Knoblock's technique for generating abstraction hierarchies and designed
the Abstractor algorithm, which constructs abstractions for the full domain language of the
prodigy4 system. The algorithm imposes constraints on the abstraction levels of precon-
ditions and e�ects, encodes these constraints as an abstraction graph, and then converts the
graph into a hierarchy of predicates.

We then showed the relationship between primary e�ects and abstraction, and used it
to develop the Margie algorithm, which combines the automatic selection of primary e�ects
with the generation of an abstraction hierarchy. We also designed two auxiliary description

226 CHAPTER 6. SUMMARY OF WORK ON DESCRIPTION CHANGERS

(twist-drill drill-1)
Initial State

(no-drill) (no-part)

(has-hole part-1)
(painted part-1)

Goal Statement

part-1: type Part
drill-1: type Drill-Bit

Set of Objects

causes backtracking.
(a) Drilling problem that

(spot-drill <drill-bit>)

(holds-drill <drill-bit>) (no-drill)

(has-spot <part>) (painted <part>)

(twist-drill <drill-bit>)

(has-hole <part>)

(no-part)(holds-part <part>)

levels 1 and 2
merged

static literals

level 0

(b) Modified abstraction hierarchy.

Figure 6.6: Modifying the hierarchy in the Drilling Domain, to prevent backtracking across levels.

changers for improving the quality of abstraction, Re�ner and Relator. The Re�ner algorithm
�nds the right partial instantiation of predicates, thus preventing the use of over-general
predicates, without the risk of a combinatorial explosion. The Relator procedure enables the
abstraction generator to ignore irrelevant predicates.

The running time of abstraction algorithms is small in comparison with problem-solving
time. We tested the resulting abstractions in several domains and demonstrated that they
usually reduce search, but may cause the construction of unnecessarily lengthy solutions.

The abstraction generators exploit the syntactic properties of the domain description,
which makes them sensitive to a speci�c encoding of operators and inference rules, and
minor syntactic changes may a�ect the quality of the abstraction hierarchy. The two aux-
iliary algorithms reduce the dependency on syntactic features of the domain, but do not
eliminate it.

The main open problem is the development of abstraction techniques that use semantic
analysis of the domain properties. An e�ective semantic technique should be insensitive to
minor isomorphic changes of the domain encoding. Another related problem is extending
the classical abstraction techniques for use with other types of search systems and domain
languages.

We plan to investigate semantic techniques for revising the abstraction graph in the pro-
cess of problem solving. As a �rst step, we have designed a learning algorithm that eliminates
backtracking across abstraction levels. The algorithm observes the problem-solving process,
detects backtracking episodes, and merges the corresponding components of the abstraction
graph.

For example, suppose that we use an abstraction problem solver in the Drilling Domain,
described in Section 4.1.2, with the abstraction hierarchy given in Figure 4.2. We consider
a problem of drilling and painting a mechanical part, similar to the example in Figure 4.3;
however, we now do not allow the use of a spot drill. We give the encoding of this new
problem in Figure 6.6(a).

The problem solver �rst constructs the abstract solution given in Figure 4.4 and then
tries to re�ne it at level 1, which causes a failure and backtracking to level 2. The learning

6.3. UNEXPLORED DESCRIPTION CHANGES 227

Removing operators: Identifying unnecessary operators and deleting them from the do-
main description (Section 6.3.1).

Generating macro operators: Replacing some operators in the domain description with
macros constructed from these operators (Section 6.3.2).

Generating new predicates: Replacing some predicates in the domain description
with new ones, constructed from conjunctions and disjunctions of the old predicates (Sec-
tion 6.3.3).

Figure 6.7: Some description changes that has not been used in the Shaper system. We plan to

explore them and incorporate into the system, as a part of future work.

algorithm detects this backtracking and merges level 1 with level 2, thus producing the
abstraction hierarchy in Figure 6.6(b), and the solver switches to the use of this new hierarchy.

Thus, the learning algorithm ensures that every abstract solution has a low-level re-
�nement, by reducing the number of levels in the hierarchy. It improves the abstraction
hierarchy in the process of problem solving, without a preliminary learning stage.

We have no empirical results on the e�ectiveness of this algorithm in reducing search.
Experiments with Abstractor have shown that backtracking to higher levels causes a signif-
icant increase in search time. We therefore conjecture that the elimination of backtracking
would improve performance, despite the reduction in the number of levels.

Bacchus and Yang [1994] developed a di�erent method to prevent backtracking across
levels, and used it in the highpoint abstraction generator. Their algorithm uses rigid
syntactic constraints on the relative importance of predicates, which often result in over-
constraining and collapse of the hierarchy. It is also more sensitive to the encoding details
than the Abstractor algorithm. On the positive side, the highpoint algorithm is very fast,
and the resulting hierarchy does not require modi�cation in the process of problem solving.

6.3 Unexplored description changes

The current library of description-changing algorithms is quite small, which limits the capa-
bilities of the Shaper system. We intend to construct a larger library and use it to evaluate
the scalability of Shaper's top-level control. In particular, we may extend the library by
adding some learning systems developed for the prodigy architecture, such as analogy
[Veloso, 1994] and hamlet [Veloso and Borrajo, 1994].

We also plan to continue the development of new description changers, which may include
not only general-purpose learning algorithms, but also specialized changers for some large-
scale domains. The domain-speci�c algorithms will enable the system to perform more
e�ective description improvements in selected domains. For example, we may design a
changer algorithm that simpli�es transportation problems by selecting appropriate hubs.

In particular, we intend to explore the description changes listed in Figure 6.7, and
construct both general-purpose and specialized algorithms for performing these changes in
the Shaper system. To illustrate the utility of these description improvements, we give

228 CHAPTER 6. SUMMARY OF WORK ON DESCRIPTION CHANGERS

delivery to the same moon to di�erent moons mean

1 pack 2 packs 3 packs 4 packs 2 packs 3 packs

with extra y operations 0.1 107.9 > 1800:0 > 1800:0 12.2 > 1800:0 > 920:0

without extra operations 0.1 0.8 4.6 52.5 0.2 0.4 9.8

Table 6.2: prodigy running times (in seconds) for six problems in the Three-Rocket Domain. The

results show that the deletion of unnecessary instances of the y operator reduces the search time

by two orders of magnitude.

examples of their use in a simple transportation domain (Section 6.3.1) and in the Tower-
of-Hanoi domain (Sections 6.3.2 and 6.3.3).

6.3.1 Removing unnecessary operators

In Chapter 1, we have observed that the use of unnecessary extra operators may worsen
the performance of a problem solver. For instance, if we add two-disk moves to the Tower-
of-Hanoi puzzle, then the prodigy system needs more time for solving this puzzle (see
Section 1.2.3.

Veloso gave a more dramatic example that illustrates the same point. She constructed
the Three-Rocket Domain, where unnecessary operations increase the search time by two
orders of magnitude. The domain includes a planet, three moons, three rockets, and several
packages (see Figure 6.8a). Initially, all rockets and packages are on the planet. Every rocket
can carry any number of packages to any moon; however, it cannot return from the moon.
The task of a problem solver is to �nd a plan for delivering certain packages to certain moons.
We do not care about the �nal locations of rockets, as long as every package has reached its
proper destination. In Figures 6.8(b) and 6.8(c), we show two problems and their solutions.
In the �rst problem, we have to send three boxes to moon-1, whereas the second problem
requires delivering boxes to three di�erent moons.

The domain description in Figure 6.8(a) causes an extensive search [Stone and Veloso,
1994]. The prodigy system tries to use the same rocket for multiple ights, which causes
the exploration of irrelevant branches of the search space. If we increase the number of
moons and rockets, the problem-solving time grows exponentially. To improve the e�ciency,
we construct all instantiations of the y operator and then remove unnecessary instances
from the domain description. For example, we may replace the general y operation with
three more speci�c operations, given in Figure 6.8(d). These new operators explicitly encode
the knowledge that each rocket can y only once.

Thus, we have removed some actions from the domain description, leaving a subset of
actions su�cient for solving all delivery problems. The new description enables prodigy
to construct transportation plans with little search. In Figure 6.8, we show the resulting
reduction of problem-solving time, for six di�erent problems. When using the general y
operator, the prodigy system solved three problems and hit the 1800-second time bound on
three other problems. After we deleted the unnecessary instances of y, the system solved
all problems within 60 seconds.

6.3. UNEXPLORED DESCRIPTION CHANGES 229

(at <pack> <place>)Pre:

Eff:

<place>: type Place
<rocket>: type Rocket
<pack>: type Package

(at <rocket> <place>)

load(<pack>,<rocket>,<place>)

del (at <pack> <place>)
add (in <pack> <rocket>)

(in <pack> <rocket>)Pre:

Eff: del (in <box> <rocket>)

unload(<pack>,<rocket>,<place>)

<place>: type Place
<rocket>: type Rocket
<pack>: type Package

add (at <box> <place>)

(at <rocket> <place>)
Pre:

Eff:

add (at <rocket> <moon>)

<moon>: type Moon
<rocket>: type Rocket
fly(<rocket>,<moon>)

del (at <rocket> planet)
(at <rocket> planet)

(a) Three-Rocket Domain.

rocket-2 rocket-3rocket-1 packages

P2

P3 P4

P1

moon-2
moon-3moon-1

Type Hierarchy

Moon

moon-1 moon-1
moon-1

planet

Planet

objects

DiskPackage

(d) Search-saving encoding of the operation.fly

(at rocket-1 planet)Pre:

Eff:

add (at rocket-1 moon-1)

fly(rocket-1, moon-1)

del (at rocket-1 planet)
Pre:

Eff:

Pre:

Eff:

fly(rocket-3, moon-3)fly(rocket-2, moon-2)
(at rocket-2 planet)

del (at rocket-2 planet)
add (at rocket-2 moon-2)

(at rocket-3 planet)
del (at rocket-3 planet)
add (at rocket-3 moon-3)

load (pack-1, rocket-1, planet)

Solution

load

load

fly

unload

unload

unload

(pack-2, rocket-1, planet)

(pack-3, rocket-1, planet)

(rocket-1, moon-1)

(pack-1, rocket-1, moon-1)

(pack-2, rocket-1, moon-1)

(pack-3, rocket-1, moon-1)

(b) Delivery of three packages to the same moon.

(at rocket-1 planet)
(at rocket-2 planet)
(at rocket-3 planet)

(at pack-2 planet)
(at pack-3 planet)

(at pack-1 planet)

Initial State

(at pack-2 moon-1)
(at pack-3 moon-1)

Goal Statement

(at pack-1 moon-1)

(c) Delivery of three packages to different moons.

(at rocket-1 planet)
(at rocket-2 planet)
(at rocket-3 planet)

(at pack-2 planet)
(at pack-3 planet)

(at pack-1 planet)

Initial State

(at pack-2 moon-2)
(at pack-3 moon-3)

(at pack-1 moon-1)

Goal Statement

fly

unload

load

fly

unload

load

fly(rocket-1, moon-1)

unload

load (pack-1, rocket-1, planet)

(pack-1, rocket-1, moon-1)

(pack-2, rocket-2, planet)

(rocket-2, moon-2)

(pack-2, rocket-2, moon-2)

(pack-3, rocket-3, planet)

(rocket-3, moon-3)

(pack-3, rocket-3, moon-3)

Solution

Figure 6.8: Removing unnecessary operators in the Three-Rocket Domain: Initial description

causes an extensive search, whereas the new encoding of the y operation enables prodigy to

solve delivery problems with little search.

230 CHAPTER 6. SUMMARY OF WORK ON DESCRIPTION CHANGERS

number of a problem mean

1 2 3 4 5 6 time

standard domain description 2.0 34.1 275.4 346.3 522.4 597.4 296.3

use of a hand for moving disks 0.6 0.6 3.9 11.7 1.5 2.8 3.5

trays in place of pegs 35.1 4.2 > 1800:0 > 1800:0 479.0 > 1800:0 > 986:4

standard desc. with abstraction 0.5 0.4 1.9 0.3 0.5 2.3 1.0

Table 6.3: prodigy performance on six problems in the Tower-of-Hanoi Domain, using di�erent

domain descriptions. We give running times in seconds for the standard domain encoding (see

Figure 6.9a), domain with a hand for moving disks (Figure 6.9b), Holte's domain with trays in

place of pegs (Figure 6.9c), and standard encoding with an abstraction hierarchy.

6.3.2 Replacing operators with macros

The learning of macro operators is one of the oldest approaches to improving domain de-
scriptions, which dates back to the gps problem solver [Newell et al., 1960] and strips

system [Fikes et al., 1972]. Researchers have applied this approach in many AI systems and
observed that simple techniques for generating macro operators usually give disappointing
results [Minton, 1985; Etzioni, 1992].

On the other hand, a synergetic use of macros with other description changes often helps
to improve performance. For instance, Korf [1985a,1985b] integrated macro operators with
an implicit use of abstraction and primary e�ects. Yamada and Tsuji [1989] utilized macros
in conjunction with heuristics for selecting appropriate operators. The authors of the Soar
system developed an advanced strategy for learning macros, called chunking, and combined
it with mechanisms for partially instantiating learned macros and deleting unnecessary in-
stances [Laird et al., 1986; Tamble et al., 1990]. In the Shaper system, we may use a
generator of macro operators as an auxiliary mechanism for improving the e�ectiveness of
other description changers.

For instance, consider the description of the Tower-of-Hanoi puzzle in Figure 6.9(b).
According to this domain encoding, we use a robot hand for moving disks in the puzzle, and
the standard move consists of two steps: picking a disk from its initial location and putting
it onto another peg. Note that the Abstractor algorithm fails to generate a hierarchy for this
version of the puzzle, because the predicate (in-hand <disk>) requires additional constraints
and causes the hierarchy to collapse into a single level.

We may convert this version of the puzzle into the standard description (see Figure 6.9a)
by replacing the operators with two-step macros, as shown in Figure 6.10. The conver-
sion simpli�es the domain description and allows us to discard the in-hand predicate, but it
does not improve e�ciency of search. Surprisingly, this simpli�cation causes a signi�cant
worsening of performance (see Table 6.3).

On the other hand, if we use macro operators in conjunction with abstraction, then they
enable us to reduce the problem-solving time. After we construct the macros and eliminate
the in-hand predicate, Abstractor generates the usual three-level hierarchy (see Figure 6.10c),
which improves the e�ciency of prodigy search. We give the results of using this hierarchy
in the last row of Table 6.3.

6.3. UNEXPLORED DESCRIPTION CHANGES 231

objects

Type Hierarchy

medium

Disk

small large
peg-3

Peg

peg-1 peg-2

Pre:

Eff:

add (on small <to>)

move-small(<from>, <to>)
<from>, <to>: type Peg

(on small <from>)
del (on small <from>) Eff:

Pre: (on medium <from>)

add (on medium <to>)

not (on small <to>)
del (on medium <from>)

not (on small <from>)

move-medium(<from>, <to>)
<from>, <to>: type Peg

Eff:

Pre:

not (on medium <from>)

add (on large <to>)

not (on medium <to>)
del (on large <from>)

not (on small <to>)

(on large <from>)
not (on small <from>)

move-large(<from>, <to>)
<from>, <to>: type Peg

(a) Standard description.

Pre:

Eff:

not (in-hand small)

<from>: type Peg

not (on medium <from>)

del (on large <from>)
add (in-hand large)

not (in-hand medium)

(on large <from>)

pick-large(<from>)

not (on small <from>)
Pre:

Eff:

(on medium <from>)

del (on medium <from>)
add (in-hand medium)

not (in-hand small)
not (in-hand large)

pick-medium(<from>)
<from>: type Peg

not (on small <from>)

del (on small <from>)

Pre:

Eff:

(on small <from>)

add (in-hand small)

not (in-hand medium)
not (in-hand large)

pick-small(<from>)
<from>: type Peg

(c) Trays in place of pegs.

Disk

small

Small Medium

medium large
objects

Type Hierarchy

tray-1

tray-3
tray-2

Pre:

Eff:

<from>, <to>: Tray
move-large(<from>, <to>)

(clear <to>)

add (clear <from>)
del (clear <to>)

Pre:

Eff:

<from>, <to>:

(clear <to>)

add (clear <from>)

move-small(<from>, <to>)

del (clear <to>)

type (or Medium Large Tray)

Pre:

Eff:

(on large <to>)

put-large(<to>)
<to>: type Peg

add (on large <to>)

not (on small <to>)

del (in-hand large)
not (on medium <to>)

Pre:

Eff:

(on small <to>)

put-small(<to>)
<to>: type Peg

del (in-hand small)
add (on small <to>)

Pre:

Eff:

(on medium <to>)

put-medium(<to>)
<to>: type Peg

del (in-hand medium)
add (on medium <to>)

not (on small <to>)

(b) Use of a hand for moving disks.

tray-1 tray-2 tray-3

Pre:

Eff:

<from>, <to>:
move-medium(<from>, <to>)

(clear <to>)

add (clear <from>)
del (clear <to>)

type (or Large Tray)

peg-1 peg-2 peg-3

medium
largesmall

objects

Disk

peg-3
peg-2peg-1

Peg

Type Hierarchy

peg-1 peg-2 peg-3

Tray

Large

(upon small <from>)

del (upon small <from>)

(upon medium <from>)

del (upon medium <from>)

add (upon small <to>)add (upon small <to>)

(upon large <from>)

del (upon large <from>)

add (upon large <to>)

Figure 6.9: Alternative descriptions of the Tower-of-Hanoi Domain.

232 CHAPTER 6. SUMMARY OF WORK ON DESCRIPTION CHANGERS

(on large <peg>)

(on medium <peg>)

(on small <peg>)

(c) Abstraction hierarchy based on macro operators.

pick-small(<from>) put-small(<to>)
move-small

(<from>, <to>)

pick-large(<from>) put-large(<to>)
move-small

(<from>, <to>)

(a) Sequences of original operators. (b) Corresponding macros.

pick-medium(<from>) put-medium(<to>)
move-small

(<from>, <to>)

Figure 6.10: Replacing operators with macros in the Tower-of-Hanoi domain given in Figure 6.9(b).
This description change does not reduce search by itself; however, it enables the Abstractor algo-

rithm to construct a three-level abstraction hierarchy.

6.3.3 Generating new predicates

When the human operator encodes a new domain, she has to specify predicates for represent-
ing states of the simulated world. The choice of predicates determines the explicit features
of the state description, and a�ects the performance of search and learning algorithms.

In particular, Holte has observed that most abstraction algorithms are sensitive to the
user's selection of predicates. To illustrate this observation, he has considered the version of
the Tower-of-Hanoi domain in Figure 6.9(c), with trays in place of pegs.

Note that the meaning of the upon predicate in this domain di�ers from that of the on

predicate in the standard description. If a disk is the largest in a stack, than it is upon the
tray; otherwise, it is upon the next larger disk. The (clear <disk>) predicate means that <disk>
is the topmost in a stack, that is, there is no smaller disks above it; similarly, (clear <tray>)
means that the speci�ed tray is empty. For example, if all three disks are stacked on the
�rst tray, then we encode the state as follows:

(upon large tray-1) (clear small)

(upon medium large) (clear tray-2)

(upon small medium) (clear tray-3)

6.4. TOWARD A THEORY OF DESCRIPTION CHANGES 233

(a) Use of conjunctions and disjunctions.

(b) Use of recursion.

(or (upon small <tray>)
(and (upon medium <tray>)

(upon small medium))
(and (upon large <tray>)

(upon small large))
(and (upon large <tray>)

(upon medium large)
(upon small medium)))

(and (above <other-disk> <tray>)
(or (upon <disk> <tray>)

(upon <disk> <other-disk>)))

(upon large <tray>)

(or (upon medium <tray>)
(and (upon large <tray>)

(upon medium large)))

(on large <tray>) =

(on medium <tray>) =

(on large <tray>) =

(on <disk> <tray>) =

Figure 6.11: De�ning new predicates for the Tower-of-Hanoi domain given in Figure 6.9(c). The

resulting predicates allow the conversion to the standard encoding of the puzzle (see Figure 6.9a),

which improves the e�ciency and enables further improvement through the use of abstraction.

Although this description of the Tower-of-Hanoi puzzle is isomorphic to other versions
of the puzzle, it makes most problems hard for the prodigy system. We show the resulting
running times in the next-to-last row of Table 6.3; note that prodigy solves only three
problems within a 1800-second time bound. Moreover, the changer algorithms in the current
version of the Shaper system fail to improve the domain description.

To remedy this situation, we need to develop a changer algorithm that generates ap-
propriate new predicates, de�ned through conjunctions and disjunctions of old ones, and
uses them to construct a new description of operators. For example, we may de�ne the on

predicate in the Tower-of-Hanoi domain through partial instantiations of the upon predicate,
as shown in Figure 6.11(a), which allows the conversion of Holte's domain description into
the standard description.

Note that we may use recursion to construct a more general de�nition of (on <disk> <tray>),
given in Figure 6.11(b), which is valid for an arbitrary number of disks. The development of
algorithms that use recursion and other advanced techniques in problem reformulation is a
challenging research problem [Schmid and Wysotzki, 1996; M�uhlpfordt and Schmid, 1998].

6.4 Toward a theory of description changes

Researchers have implemented many systems that automatically improve domain descrip-
tions, by static analysis and learning (see the review of related work in Section 1.3.2); how-
ever, they have done little investigation of the common principles underlying these systems.

234 CHAPTER 6. SUMMARY OF WORK ON DESCRIPTION CHANGERS

An important research direction is the development of general methods for the design and
evaluation of description-changing mechanisms.

We summarize preliminary results of developing a framework for the development of
changer algorithms (Section 6.4.1), and then outline two open problems related to the anal-
ysis of representation improvements. First, we point out the need for standard techniques
that allow the evaluation of new description changers and problem solvers (Section 6.4.2).
Second, we discuss the use of analytical techniques for estimating the utility of speci�c
domain descriptions (Section 6.4.3).

6.4.1 Systematic approach to the design of changer algorithms

The design and implementation of e�ective description-changing algorithms is usually a
complex research task, and there are no standard techniques or guidelines for approaching
this task. The related open problems include formalizing the methods used in the work
on changer algorithms, developing a systematic approach to the implementation of these
algorithms, and applying this approach to designing new description changers.

We have described a technique for specifying important properties of description changers
(see Section 1.4.2), which is the �rst step toward a general framework for the development
and analysis of description-changing mechanisms in a variety of AI systems. Although our
speci�cations are semi-informal, they simplify the task of designing description changers and
evaluating their performance. In particular, they help to abstract the major decisions in the
development of a changer algorithm from details of implementation. When constructing a
new changer, we �rst determine its desirable properties, and then implement a learning or
static-analysis algorithm with those properties.

We intend to formalize the structure and language of speci�cations, study methods for
determining which speci�cations describe useful description changes, and techniques for im-
plementing changer algorithms according to speci�cations. We also plan to apply these
techniques to constructing new description changers for use in the Shaper system.

A more challenging problem is to develop a system that automatically generates new de-
scription changers, which may include the construction of algorithms according to the user's
speci�cation, as well as the learning of description-changing techniques by analyzing exam-
ples of alternative domain descriptions. This research direction is related to Minton's [1996]
recent work on the automated construction of constraint-satisfaction programs.

6.4.2 Framework for the analysis of description changers

We may estimate the utility of a representation-changing algorithm by analyzing its ef-
fect on the search space of a problem solver. In particular, researchers have applied this
approach in evaluating the e�ciency of search with macro operators [Korf, 1987; Etzioni,
1992], abstraction hierarchies [Knoblock, 1991; Bacchus and Yang, 1992], and control rules
[Cohen, 1992], as well as in comparing alternative commitment strategies [Minton et al., 1991;
Knoblock and Yang, 1994]. The search-space analysis helps to predict the performance of a
speed-up technique before implementing it.

We used a similar approach to analyzing the e�ciency of search with primary e�ects

6.4. TOWARD A THEORY OF DESCRIPTION CHANGES 235

and predicted an exponential e�ciency improvement. The analysis revealed the factors that
a�ect the trade-o� between problem solving time and solution quality. Experiments on the
use of primary e�ects in abtweak and prodigy con�rmed the analytical predictions.

Even though researchers have analyzed several types of description changes, they have not
developed a general framework for the evaluation of search-reduction techniques. We plan to
generalize the previous analytical results and apply them to the evaluation of new changer
algorithms. The long-term purpose of this work is the development of standard formal
methods for estimating the e�ciency improvements, as well as combining these methods
with empirical evaluation techniques.

We also intend to address the main drawbacks of previous analytical techniques. First,
the developed techniques sometimes do not provide su�cient accuracy, leading to disparate
predictions of the search reduction. For instance, the proposed estimates for ordered ab-
straction vary from exponential speed-up [Knoblock, 1991] to gross ine�ciency [Smith and
Peot, 1992].

Second, the analysis of classical problem solvers usually does not address the trade-o�
between their search time and solution quality. We made a �rst step to bridging this gap in
the evaluation of primary e�ects, which shows the trade-o� between search reduction and
solution costs.

Third, researchers usually estimate problem-solving time by the number of nodes in the
search space. This technique gives accurate predictions for the e�ciency of breadth-�rst
search; however, it is less e�ective for the analysis of depth-�rst systems, which often �nd
a solution after exploring a small portion of the available space. Observe that the analysis
of search with primary e�ects has the same drawback and, hence, the analytical predictions
often di�er from empirical results on the use of primary e�ects in prodigy.

6.4.3 Analysis of speci�c descriptions

Most analytical techniques are aimed at evaluating the average-case e�ectiveness of descrip-
tion changers. An important related problem is the evaluation of speci�c domain descrip-
tions. For example, we may need to estimate the utility of a speci�c abstraction hierarchy
or selection of primary e�ects. The Shaper system allows the use of evaluation heuristics
in selecting appropriate descriptions, and accurate heuristics may signi�cantly improve the
system's performance.

We give preliminary results on the analytical evaluation of the chosen primary e�ects.
The evaluation is based on Inequality 3.5, which gives an approximate condition for search
reduction (see Section 3.3). Recall that this condition is based on the comparison of the
cost increase C with an expression that includes four other characteristics of the domain
(see Figure 3.12): the total number PE of primary e�ects, the number E of all e�ects, the
number N of nonstatic predicates, and the branching factor BF. The use of primary e�ects
improves the e�ciency if

C <
logE + logBF� log(2 �N)

logPE+ logBF� log(2 �N)
:

After selecting primary e�ects, the Shaper system may compute the �ve values used
in this inequality and check whether the selection satis�es the e�ciency condition. It can

236 CHAPTER 6. SUMMARY OF WORK ON DESCRIPTION CHANGERS

readily determine the values of PE, E, and N , in one pass through the domain encoding.
To estimate the average branching factor BF, the system has to analyze the search spaces
of several problems.

The computation of the average cost increase C requires a modi�ed version of the Com-
pleter algorithm, which constructs replacing sequences for a collection of learning examples
and returns the mean of the resulting cost increases. Note its running time is much greater
than the time required to estimate the other four values.

For example, suppose that we apply this analysis to the Robot Domain in Figure 3.2 (see
Section 3.1.2), with the primary e�ects given in Table 3.5. The total number of primary
e�ects is PE = 7, the number of all e�ects is E = 10, the number of nonstatic predicates
is N = 3, and the average cost increase C is close to 1. The average branching factor BF
depends on a speci�c solver and its search heuristics; in most cases, it is between 2 and 20.
These values satisfy the condition for the search reduction, which implies that the selected
primary e�ects improve performance.

The described evaluation has several drawbacks and requires further improvements. In
particular, the technique for estimating the cost increase C takes signi�cant time and requires
a generator of learning examples. Furthermore, we have derived Expression 3.5 by analyzing
the size of the available search space, and it may give inaccurate results for depth-�rst
problem solvers.

Part III

Top-level control

237

Chapter 7

Generation and use of multiple

representations

Every problem-solving e�ort must begin with creating a representation for the

problem|a problem space in which the search for the solution can take place.

| Herbert A. Simon [1996], The Sciences of the Arti�cial.

We have reviewed problem-solving algorithms in the prodigy system (Chapter 2), and
described learning and static-analysis algorithms for changing the descriptions of prodigy
domains (Part II). We now present top-level tools for the centralized, synergetic use of the
available algorithms and then discuss a utility model for evaluating their e�ectiveness.

The top-level tools form the system's \control center," which allows the human operator
to use problem-solving and description-changing algorithms. We also use the control center as
the intermediate layer between the system's algorithms and the top-level learning mechanism
that automatically controls these algorithms.

We will describe the automatic control of the system in Chapters 8{10. The control
mechanism selects appropriate description changers and problem solvers, and accesses them
through the same set of top-level tools as the human user. We provide additional user tools
that allow sharing of responsibilities between the human operator and automatic control.

We begin by describing the top-level operations in the Shaper system, including spec-
i�cation of initial domain descriptions, application of changer algorithms to generate new
descriptions, and use of prodigy search algorithms with available domain descriptions to
solve problems (Section 7.1).

We then abstract from speci�c features of the prodigy architecture and develop a gener-
alized model of generating and using multiple domain descriptions (Section 7.2). We utilize
this model in constructing the automatic-control mechanism, which is independent of speci�c
prodigy features and can be applied in other problem-solving systems.

We also develop a general model for evaluating the results of problem solving, which
allows many di�erent types of utility functions (Section 7.3). We apply this model to statis-
tical analysis of the system's performance, which underlies the automatic selection of solver
algorithms and domain descriptions.

Finally, we discuss the simplifying assumptions that underlie both the Shaper system

239

240 CHAPTER 7. GENERATION AND USE OF MULTIPLE REPRESENTATIONS

and the abstract model of problem solving with multiple descriptions (Section 7.4). We also
review the role of the human user in providing the initial knowledge and guiding the system's
search for e�ective representations.

7.1 Use of problem solvers and description changers

We describe the use of problem-solving and description-changing algorithms in the Shaper
system. We consider the generation and storage of domain descriptions, their use in con-
structing new representations, and problem solving with the resulting representations. We
also discuss the use of conditions that limit the applicability of the available algorithms and
domain descriptions. We summarize the tools available to the user for manual control of the
system, and identify the subset of these tools used by the automatic-control mechanism.

We �rst describe the storage of multiple domain descriptions and the basic operations
on descriptions (Sections 7.1.1 and 7.1.2). We then describe the use of problem-solving
and description-changing algorithms (Section 7.1.3 and 7.1.4), and the construction of new
representations (Section 7.1.5). Finally, we summarize the main top-level operations (Sec-
tions 7.1.6).

7.1.1 Elements of the domain description

We have de�ned a problem description as an input to a problem solver. A domain description

is the part of the problem description common for all problems in the domain. The prodigy
system allows the user to store the encoding of a domain in a separate \domain" �le, and to
input speci�c problems by loading the rest of their description from \problem" �les.

We have presented the main elements of a prodigy domain description in Chapter 2,
and Sections 3.1.2 and 4.1.2; it includes object types, operators, inference and control rules,
primary e�ects, and an abstraction hierarchy.

The Shaper system uses multiple domain descriptions in problem solving. We have
considered the generation and improvement of three elements of the description: primary
e�ects, abstraction, and control rules. These elements can vary from one description to
another. We do not allow multiple versions of the other description elements in the current
implementation of Shaper; thus, the object types, operators, and inference rules are the
same in all alternative descriptions of a domain.

We have introduced this limitation because the implemented description changers do not
modify object types, operators, or inference rules. We use the limitation only in de�ning
data structures for storing alternative descriptions, which is a part of the lower layer in the
system's implementation. The other mechanisms do not rely on this restriction, and we can
readily extend the system to allow automatic changes of other description elements.

Storage and use of description elements

The prodigy system keeps the domain description in a large \central" data structure, which
contains all six elements of the description, as well as the current problem and the state of
the system.

7.1. USE OF PROBLEM SOLVERS AND DESCRIPTION CHANGERS 241

If we use multiple versions of a description element, we keep them in separate data
structures. We have implemented structures for the separate storage of primary e�ects,
abstraction, and control-rule sets. If we need to use a new description element in problem
solving, we �rst incorporate it into the central domain description.

For example, suppose that we need to use a new abstraction in problem solving, and the
domain data structure currently contains a di�erent abstraction. We �rst extract the current
abstraction from the domain structure and store it separately. We then incorporate the new
abstraction into the domain description and solve problems with the resulting description.

We have developed procedures for incorporating new elements into the domain data
structure, as well as for extracting elements of the central domain description and storing
them separately. We have also implemented procedures for comparing description elements
and for loading the user's speci�cation of new elements, which we outline next.

Detecting identical elements

We have designed algorithms for detecting identical primary e�ects, abstraction graphs, and
control-rule sets. We use them to compare alternative description elements, generated by
di�erent changer algorithms. The detection of identical descriptions improves the accuracy
of the statistical performance analysis, used for the automatic selection of representations.

The identity test for primary-e�ect selections is a simple e�ect-by-e�ect comparison. If
some e�ect is primary in one selection but not in the other, then the selections are distinct.

We detect identical abstractions by comparing the corresponding abstraction graphs,
which have been described in Chapter 4.2.2. We �rst check whether the graphs have the
same number of components and their components are pairwise identical. If the graphs pass
this test, we then check whether the transitive closures of the graphs have the same edges.

The comparison of control-rule sets is less reliable. We have not provided a means for
checking the equivalence of two control rules. The system detects the identity of two sets
only if they are composed of the same rules. If two sets contain distinct control rules, they
are considered di�erent even if their rules are equivalent.

Note that checking the equivalence of control rules is a complex problem. The conditions
of prodigy control rules often include calls to Lisp functions, and therefore the general case
of the comparison problem is undecidable.

Other comparison operations

We also provide operations for checking whether a primary-e�ect selection is a subset of
another selection, whether an abstraction graph is �ner-grained than another graph, and
whether a control-rule set belongs to another set. We use these operations to construct
conditions of heuristic preference rules for selecting among available representations; we will
describe these rules in Chapter 10.

We say that a selection of primary e�ects is a subset of another selection if every primary
e�ect of the �rst selection is also primary in the second one. The test procedure compares
two selections e�ect by e�ect.

We say that an abstraction graph is �ner-grained than another graph if we can construct
the second graph from the �rst one by adding new edges and then collapsing connected com-

242 CHAPTER 7. GENERATION AND USE OF MULTIPLE REPRESENTATIONS

Test-Finer-Granularity(Abs1,Abs2)
1. Verify that Abs1 has at least as many components as Abs2.
2. For every strongly connected component of Abs1,

verify that it is a subset of some component of Abs2.
3. For every two components of Abs1,

if there is a path joining these components in Abs1,
then verify that either

� they are subsets of the same component of Abs2 or
� there is a path joining their respective superset components in Abs2.

Figure 7.1: Checking whether an abstraction graph Abs1 is �ner-grained than a graph Abs2;

if at least one of the tests gives a negative result, then Abs1 is not �ner-grained than Abs2.

ponents. To put it more formally, for every two literals l1 and l2 in the domain description,
if there is a path from l1 to l2 in the �rst graph, then there is also a path from l1 to l2 in the
second graph. Since edges of the abstraction graph encode constraints on the abstraction
levels of literals, a �ner-grained graph imposes fewer constraints and may allow the construc-
tion of a hierarchy with more levels. In Section 4.3, we have discussed the notion of �ner
granularity in more detail.

In Figure 7.1, we outline an algorithm that checks whether an abstraction graph Abs1
is �ner-grained than another graph Abs2. If at least one of the tests listed in Figure 7.1
gives a negative result, then Abs1 is not �ner-grained, and the algorithm terminates with
the negative answer.

The algorithm is based on testing whether strongly connected components of Abs1 are
subsets of Abs2's components. Recall that we represent an abstraction graph as a collection
of strongly connected components, with edges between them (see Section 4.2.2). Every
component of a graph encodes a set of literals. This representation allows a fast test of the
subset relationship between a component of Abs1 and a component of Abs2. Note that Step 1
of the algorithm is for e�ciency; it is not needed for correctness of the test.

Finally, we provide a procedure that checks whether a set of control rules is contained in
another set; that is, every rule from the �rst set is also in the second one. Since the system
cannot check the equivalence of two rules, it identi�es the subset relationship only if the
larger set contains all the same rules, not merely equivalent ones.

Loading the user's speci�cations

We extended the prodigy domain language to allow the speci�cation of multiple primary-
e�ect selections, abstractions, and control-rule sets, in a domain-encoding �le. When loading
the domain, the system creates a library of the speci�ed description elements. The user may
later specify additional elements and add them to the library. The stored description elements
are used in constructing domain descriptions.

7.1. USE OF PROBLEM SOLVERS AND DESCRIPTION CHANGERS 243

7.1.2 Domain descriptions

We next disucss the storage and use of multiple descriptions in the Shaper system. The
storage mechanism is based on the fact that descriptions di�er only in primary e�ects,
abstraction, and control rules. We store these three elements for each of the multiple de-
scriptions. The other, invariant parts of the domain description are stored in the central
data structure that represents the domain.

When using a description to solve some problem or generate a new description, we �rst
incorporate the corresponding primary e�ects, abstraction, and control rules into the central
data structure. We then use a solver or changer algorithm with the updated data structure.

The mechanism does not require storing a separate copy of the domain structure for
each description and, thus, it allows signi�cant memory savings. Its main drawback is the
limitation on the changeable parts of the description, which reduces the system's exibility.

Description triples

A description triple is a data structure that includes a selection of primary e�ects, an ab-
straction hierarchy, and a set of control rules. We store alternative domain description in
the form of such triples.

Some of the three slots in a description triple may be empty. If the primary-e�ect slot
is empty, then all e�ects are considered primary, which is equivalent to problem solving
without the use of primary e�ects. If the abstraction slot is empty, then the abstraction has
one level, which means problem solving without abstraction. Finally, if the control-rule slot
is empty, then the solver algorithm does not use control rules.

We have provided a procedure for incorporating a description triple into the domain data
structure. The procedure �rst adds the three elements to the domain structure; it then
processes the updated structure to improve the e�ciency of using the resulting description.
We have also implemented a procedure that extracts the three current description elements
from the domain structure and stores them as a new triple.

In addition, we have provided a procedure for detecting identical description triples. The
procedure performs element-by-element comparison of triples, using the element-identity
tests. The test of description identity is sound, but not complete. The incompleteness
results from the system's inability to recognize equivalent control rules.

Finally, we implemented a user-interface command for de�ning new description triples, by
combining elements from the library of the user-speci�ed primary-e�ect selections, abstrac-
tion hierarchies, and control-rule sets. This command allows the user to add new domain
descriptions to the system's collection of alternative descriptions.

Applicability conditions

We often construct new descriptions for a speci�c class of problems. The use of such a
specialized description for other problems may lead to ine�ciency, incompleteness, or even
an execution error. Specialized descriptions may be speci�ed by the user or generated au-
tomatically. For example, if we apply Abstractor to construct a hierarchy for a limited goal
set, then we cannot use the new hierarchy in solving problems with other goals.

244 CHAPTER 7. GENERATION AND USE OF MULTIPLE REPRESENTATIONS

We use applicability conditions to encode the limitations on the use of descriptions. We
de�ne an applicability condition for every description triple. If a problem does not satisfy
a triple's condition, we should not use this description in solving it. If the human operator
tries to use the description anyways, the system gives a warning and asks for con�rmation.

An applicability condition consists of three parts: a set of allowed goals, a set of static
literals, and a collection of Lisp functions that input a prodigy problem and return true or
false. A problem satis�es the condition if the following three restrictions hold:

1. All goals of the problem belong to the set of allowed goals.
2. The problem's initial state contains all static literals speci�ed in the condition.
3. All functions from the third part of the condition return true for this problem.

The system generates automatically the �rst two parts of an applicability condition;
however, the user may also specify or modify them. These two parts allow the system to
restrict the goals and static properties of the domain, and use the restrictions in constructing
an abstraction hierarchy and selecting primary e�ects.

If the goal-set slot of an applicability condition is empty, then a problem may have any
goals. Similarly, if the static-literal slot is empty, then there is no restriction on a problem's
initial state.

The third part of an applicability condition is for additional user-speci�ed restrictions.
The user encodes her limitations on appropriate problems in the form of Lisp functions.

We have implemented a procedure for constructing a conjunction of several applicability
conditions. The goal set in the conjunction condition is the intersection of the goal sets in
original conditions, the static-literal set is the union of the original sets, and the function
list is the union of function lists.

We have also provided an extension to the prodigy language for de�ning the applicability
conditions of user-speci�ed description triples, and implemented a user-interface command
for modifying the conditions of automatically generated descriptions.

Construction history

The system generates new descriptions by applying changer algorithms to old descriptions.
After constructing a new description, Shaper stores it as a triple and adds a record on the
\construction history." The record includes the changer algorithm that generated the new
description, the old triple to which the algorithm was applied, and the construction time.
We also add the new triple to the old triple's list of \child" descriptions.

Sometimes, the application of di�erent changer algorithms to di�erent domain descrip-
tions results in the construction of the same new description. The system then stores multiple
records, which encode all construction histories.

We may use construction records to trace the full history of a description. Suppose that
the system has applied several changer algorithms in a row and thus produced a series of
descriptions. If we need to determine the history of the last description in the series, we use
construction records to trace all intermediate descriptions, the changers used to generated
them, and the overall running time. We use this information in selecting problem solvers,
and in deciding which changer algorithms can make further improvements.

7.1. USE OF PROBLEM SOLVERS AND DESCRIPTION CHANGERS 245

7.1.3 Problem solvers

A problem solver in the Shaper system is an algorithm that inputs a problem, domain de-
scription, and time bound, and then searches for a solution to a problem. A solver terminates
when it �nds a solution, exhausts its search space, or hits the time bound.

The top-level evaluation and control mechanism allows the use of any problem-solving
algorithms in the system. The current implementation, however, supports only algorithms
that use the prodigy data structures; in practice, it limits us to the use of prodigy search
engines.

We used this limitation only in the lower-layer procedures that control the application of
solver algorithms. The other parts of Shaper do not rely on this restriction, and the imple-
mentation of more general application procedures would allow the use of solver algorithms
from other problem-solving systems.

We now outline the use of problem solvers in Shaper. In particular, we describe �xed
sequences of changer and solver algorithms, and conditions that limit the applicability of
solver algorithms.

Solver algorithms and sequences

We constructed multiple problem solvers by setting di�erent values of the knob variables
that determine the behavior of prodigy's general search engine. We have described the
main knobs in Section 2.4.2; they control the use of decision points, backtracking, trade-o�
between backward and forward chaining, operator and goal preferences, and search depth.

A problem solver in Shaper must not have knob variables; that is, the user must �x
all knob values when de�ning a solver. If the user needs to employ several di�erent knob
settings, she has to de�ne several solvers.

The input of a solver algorithm consits of a problem, description triple, and time bound.
The user has the option to omit a time bound, in which case the algorithm may run inde�-
nitely long. If it does not �nd a solution or exhaust the search space in reasonable time, the
user has to invoke the keyboard interrupt.

We often perform a series of problem-speci�c description changes before applying a solver.
For example, we may select primary e�ects for a speci�c problem, generate an abstraction
for the problem's goal set, and then apply a solver algorithm.

We thus apply a sequence of changer algorithms followed by a solver algorithm. We may
de�ne a �xed sequence of algorithms, which includes several problem-speci�c changers and
a solver, and apply it to di�erent problems. We call it a solver sequence.

Note that the application of a solver sequence is similar to the application of a solver
algorithm. The sequence inputs a problem, description, and time bound, and attempts to
�nd a solution. If the system hits the time bound during the execution of algorithms in the
sequence, it terminates the execution. If one of the changer algorithms fails to produce a
new description, the system also terminates the execution of the sequence.

The top-level control operations do not distinguish between solver sequences and \simple"
solvers. In other words, we view these sequences as special cases of problem solvers. We will
say more about the use of solver sequences in Section 7.2.1.

246 CHAPTER 7. GENERATION AND USE OF MULTIPLE REPRESENTATIONS

Restricting domain descriptions

We often use solvers that work only for speci�c classes of domain descriptions. For example,
if a solver algorithm is based on the use of abstraction, then it requires descriptions with
an abstraction hierarchy. On the other hand, if a solver sequence includes an abstraction
generator, we should apply it to descriptions without a hierarchy.

For every solver algorithm and solver sequence, we may specify a condition that limits
appropriate descriptions. We check the triple that encodes the description, as well as its
construction history. The condition consists of �ve parts:

1. Speci�ed description elements; that is, the slots of a triple that must not be empty.
2. Elements not speci�ed in a triple; that is, the slots that must be empty.
3. Changer algorithms used in constructing a description or its predecessors.
4. Changers not used in constructing a description or its predecessors.
5. A Lisp function that inputs a description and returns true or false.

We use a description only if it satis�es all �ve parts of the condition. That is, all elements
speci�ed in Part 1 are present in the description and all elements of Part 2 are absent; all
changers listed in Part 3, and none of the changers listed in Part 4, have been used in
constructing the description; and the function in Part 5 returns true for the description.

For example, we may specify that the description must have primary e�ects and abstrac-
tion, but not control rules; that we must have used Abstractor and Chooser, but not Margie,
in generating the description; and that it has to satisfy a test function that encodes several
additional constraints.

When specifying a condition, we may skip any of its �ve parts. For example, we may
omit the restriction on the changers used in generating the description. The system uses
only the explicitly speci�ed parts of the condition in selecting appropriate descriptions.

Restricting problems

We may further limit the use of a solver algorithm or solver sequence by restricting the
problems to which we apply it. The encoding of this restriction is similar to the applicability
condition of a domain description. The restriction consists of three parts: a set of allowed
goals; a set of static literals that must hold in a problem's initial state; and a Lisp function
that inputs a description triple and prodigy problem, and returns true or false.

Note that the third part di�ers in two ways from the applicability condition of a domain
description. First, we use one test function rather than a collection of functions. We never
need to compute a conjunction of solvers' restrictions, which makes the use of a single test
function more convenient. Second, the test function inputs not only a problem but also a
description.

When we use a solver with some speci�c description, we have to compute the conjunction
of their applicability conditions. We have implemented a procedure that performs this com-
putation in two steps. First, it makes the solver's condition more speci�c, by substituting
the speci�ed description into the test function. Second, it generates the conjunction of the
resulting speci�c condition and the description's applicability condition.

7.1. USE OF PROBLEM SOLVERS AND DESCRIPTION CHANGERS 247

We have developed an extension to the prodigy language that allows the user to encode
a restriction on appropriate domain descriptions and problems. If the user later tries to use
a solver with a description or problem that does not satisfy the restriction, the system gives
a warning and asks for con�rmation.

7.1.4 Description changers

A description changer is an algorithm that inputs a domain description and time bound,
and tries to construct a new description by improving the original one. A changer terminates
when it generates a new description, �nds out that it cannot improve the input description,
or runs out of time.

We explain the role of description changers in Shaper, de�ne sequences of changer
algorithms, and discuss conditions that limit the applicability of changers.

Changer algorithms and sequences

We have presented several novel algorithms for improving domain descriptions in Part II. We
constructed Shaper's description changers by setting speci�c values of the knob variables
in these algorithms.

A description changer in Shaper must not have knob variables; that is, the user must
�x all knob values when de�ning a changer. A changer's only inputs are a description triple
and time bound; the bound speci�cation is optional. Note that all changer algorithms in
Part II terminate in polynomial time. In practice, they usually take much less time than
problem solving, and their invocation without a time bound never results in excessively long
execution.

We may arrange several changer algorithms in a sequence and always use them together.
We call this arrangement a changer sequence. When we apply a changer sequence, the
system consecutively executes its algorithms. It returns the �nal description and discards
the intermediate descriptions. If some algorithm in the sequence fails to construct a new
description, then the system terminates the execution of the sequence and returns failure. If
the system hits the time bound, it also terminates the execution of the sequence. We may
specify a bound for the overall sequence, as well as bounds for individual algorithms in the
sequence.

Note that the application of a changer sequence is similar to the application of a changer
algorithm. The sequence inputs a description triple and time bound, and attempts to gener-
ate a new description. The top-level control does not distinguish between changer sequences
and \simple" changers. We will say more about the use of changer sequences in Section 7.2.1.

Problem-speci�c changers

Some changer algorithms use information about a speci�c given problem to generate a more
e�ective representation. For example, problem-speci�c versions of Chooser andMargie utilize
the knowledge of a problem's goals, static literals, and available instances of domain variables.

248 CHAPTER 7. GENERATION AND USE OF MULTIPLE REPRESENTATIONS

A problem-speci�c changer inputs a description triple, current problem, and, optionally,
a time bound. If it successfully generates a new description, the system uses it only for
solving the current problem. We use such changers to construct solver sequences.

Shaper does not reuse the resulting descriptions for solving other problems. After
applying a solver sequence, the system discards all generated descriptions and keeps only
the resulting solution.

Restricting input descriptions

We usually need to limit the applicability of changer algorithms and changer sequences.
For example, we should apply Abstractor only if the current description has no abstraction
hierarchy; similarly, we should use Chooser only if we have not yet selected primary e�ects.
We thus restrict descriptions that can be an input to a changer. We encode this restriction in
the same way as a solver's condition for limiting the appropriate descriptions (see page 246).

If the system has used a changer in constructing some description, then it will not apply
the changer again to this description. This default restriction prevents Shaper from apply-
ing the same changer several times in a row. If this restriction is not appropriate in some
situations, the user may overwrite it.

Restricting the applicability of generated descriptions

Some changer algorithms can utilize a restriction on possible problems in generating new
descriptions. For example, Abstractor can generate a description for a limited goals set, and
Margie uses information about �xed static literals.

We may include such a restriction in the speci�cation of a description changer. If the
behavior of the underlying algorithm depends on knob variables, we have to set appropriate
knob values, which enable the algorithm to take advantage of the speci�ed restrictions.

We encode this restriction in the same way as a solver's restriction on appropriate prob-
lems. That is, we may specify a set of allowed goals; a set of static literals that must hold in
a problem's initial state; and a Lisp function that inputs a description triple and prodigy
problem, and returns true or false.

After a changer generates a new description, we have to construct an applicability con-
dition for this description. We compute it as the conjunction of two other conditions. The
�rst condition in the conjunction is the changer's problem restriction. The second one is the
applicability condition of the description that we have used as the changer's input.

7.1.5 Representations

Informally, a representation is a speci�c approach to solving a problem or collection of
problems, which determines the actions during the search for a solution. Researchers used
this intuition in formulating several alternative de�nitions of a representation. For example,
Larkin and Simon [1987] de�ned it as data structures and programs operating on them, and
Korf [1980] as a space of world states (see Section 1.1.2 for the discussion of main de�nitions).
We now formalize the notion of representations in our model.

7.1. USE OF PROBLEM SOLVERS AND DESCRIPTION CHANGERS 249

Representations in Shaper
A representation in the Shaper system is a domain description with a problem solver that
uses the description. If the solver is does not make any random choices, the representation
uniquely determines the search space for every problem and the order of expanding nodes in
this space.

The system automatically constructs representations, by pairing the available solvers with
domain descriptions. For every solver, it identi�es all descriptions that match the solver's
condition and generates the corresponding representations. Shaper uses not only simple
solvers but also solver sequences in constructing representations. The user has an option to
prune some representations. Moreover, she may pair solvers with descriptions that do not

match their conditions, thus creating additional representations.

Applicability conditions

We may limit the use of a representation by an applicability condition, encoded in the same
way as conditions for domain descriptions (see Section 7.1.2). If the human operator applies
the representation to a problem that does not satisfy this condition, the system signals a
warning.

When pairing a solver with a description, Shaper constructs the conjunction of their
applicability conditions and uses it as a condition for the resulting representation. In Sec-
tion 7.2.3, we will describe the generation of representations and their conditions in more
detail. As usual, the user has an option to modify the generated conditions by hand.

7.1.6 Control center

The main top-level operations in the Shaper system include applying a problem solver,
specifying a domain description, and using a changer algorithm to generate an improved
description. These three operations form the core of the system's \control center."

The user accesses the system through procedures that perform the three main operations.
These procedures enable the user to specify domain descriptions, invoke the automatic im-
provement of descriptions, and use the resulting descriptions in problem solving.

Shaper's automatic-control mechanism, which will be described in Chapters 8{10, also
accesses solvers and changers through these top-level procedures. The automatic control
uses two of the three main operations: application of solver algorithms and use of changers
to improve domain descriptions.

Applying a problem solver

The �rst operation is the application of a solver algorithm, to �nd a solution to a prodigy
problem. We have to specify a solver, problem, description triple, and, optionally, a time
bound. The system incorporates the triple's elements into the domain data structure, and
then calls the solver algorithm, which uses the resulting domain description to search for a
solution. After the solver's termination, the system adds the result to the library of problem-
solving episodes.

250 CHAPTER 7. GENERATION AND USE OF MULTIPLE REPRESENTATIONS

The automatic-control mechanism uses the solver and description from one of the avail-
able representations, and limits the search time by a �nite bound; the problem must satisfy
the applicability condition of the representation. We will describe methods for automatic
selection of a representation and time bound in Chapters 8 and 9.

The human user may choose any solver and description for solving a problem. If the
selected solver and description do not belong to any of the available representations, or the
problem does not satisfy their applicability condition, then the system will warn the user
and ask for con�rmation.

Specifying a description

The second operation is the speci�cation of a description triple. The user �rst de�nes
description elements and then combines them into triples. She may specify descriptions
in the domain-encoding �les and add more descriptions later, in the process of using the
domain. The automatic control does not use this operation.

The system needs at least one initial description, since it can generate new descriptions
only by applying changers to old ones. If the user does not specify any descriptions, the
system constructs the default description without primary e�ects, abstraction, and control
rules.

Generating a new description

Finally, the third operation is the use of a description changer, to generate a new description.
We have to specify a changer, its input description triple, and, optionally, time bound. The
system incorporates the triple's elements into the domain data structure, and then calls the
changer algorithm to improve the resulting description.

If the algorithm successfully changes the description, the system stores the resulting
primary e�ects, abstraction, and control rules as a new triple. Then, the system generates the
applicability condition for the new description and makes a record of the construction history.
Finally, it identi�es the solvers whose applicability conditions match the new description and
creates a new representation for each of these solvers.

The automatic-control mechanism applies a changer only if the input description satis�es
its applicability condition. The mechanism does not provide a time bound and thus allows
the changer to run until its own termination. Note that all implemented changers in the
Shaper system have polynomial time complexity; in practice, they always terminate in
reasonable time.

The human user may apply a changer even if the input description does not satisfy its
conditions. The system then gives a warning and asks to con�rm the application. After the
application, the user may delete some of the new representations.

7.2 Generalized description and representation spaces

We have described the role of problem solvers and description changers in Shaper. The
problem solvers in Shaper are prodigy search algorithms; the description changers are the

7.2. GENERALIZED DESCRIPTION AND REPRESENTATION SPACES 251

learning and static-analysis algorithms designed to improve the performance of prodigy
search. The top-level use of these algorithms, however, is not speci�c to prodigy. We
can implement multiple descriptions, solvers, and changers in other planning and problem-
solving systems, and use them in the same way. Moreover, if several di�erent problem-
solving architectures use the same domain language, we may view their search algorithms as
alternative problem solvers and combine them into a common system.

Suppose that we de�ne a data structure for storing multiple domain descriptions in
some problem-solving architecture, and implement several problem-solving and description-
changing algorithms. We may then abstract from the underlying architecture and view
descriptions, solvers, and changers as basic low-level objects, with certain axiomatic proper-
ties.

This abstraction enables us to de�ne a space of descriptions and develop methods for
search in this space. We will design algorithms for search in the space of descriptions and use
them for automating the selection of appropriate problem solvers and description changers.
The selection algorithms are not prodigy-speci�c; we may use them in other systems.

We begin by de�ning the properties of descriptions, solvers, and changers in our abstract
model (Section 7.2.1). We then use these properties to formalize the notion of a description
space (Section 7.2.2). Finally, we show how a description space gives rise to a representation
space and discuss the use of these spaces (Section 7.2.3).

7.2.1 Descriptions, solvers, and changers

We consider four main types of objects in the study of representation changes: problems,
domain descriptions, problem solvers, and description changers. We also use conditions that
restrict the applicability of descriptions, solvers, and changers. We now identify the basic
properties of these objects, which are necessary for the analysis of generalized descriptions
and representations. We will discuss the limitations of objects with these properties and the
simplifying assumptions of the analysis in Section 7.4.

Domain descriptions

A description is a speci�c domain encoding, used for solving problems in the domain. We
may limit the use of a description by a condition on the relevant problems. Formally, a
condition is a boolean function, p-cond(prob), de�ned on the problems in the domain. If this
boolean value for a problem is false, we do not use the description to solve the problem.

For example, suppose that we have used Abstractor to construct a hierarchy for a limited
set of goals. The p-cond function then checks that a problem's goals belong to the set. If
the goals are not in the set, we do not use that hierarchy to solve the problem.

Problem solvers

A solver is an algorithm that searches for a solution to a speci�ed problem. The algorithm
inputs a domain description and a problem, and runs until it either solves the problem or
exhausts the search space without �nding a solution. The former outcome is called success

252 CHAPTER 7. GENERATION AND USE OF MULTIPLE REPRESENTATIONS

and the latter is failure. If the search space is in�nite and the algorithm never �nds a
solution, it may run forever.

We sometimes view a solver execution as a call to the Apply-Solver procedure, which
inputs a solver, description, and problem, and then \supervises" the solver application:

Apply-Solver

Inputs: solver, description, problem.
Possible outcomes: �nding a solution, failure termination, in�nite execution.

Since real-world algorithms cannot run forever, we may have to interrupt a solver that
has run too long. Recall that prodigy search algorithms allow us to specify an interrupt
time bound. We will describe the use of time bounds in Section 7.2.3.

Solver operators

We may restrict the use of a solver by two conditions. The �rst condition limits domain
descriptions used with the solver. Formally, it is a boolean function, d-cond(desc), de�ned on
the domain descriptions. The second condition limits problems for each description. Thus,
it is a function of a description and problem, dp-cond(desc; prob). We can apply a solver to
a problem prob with a description desc only when both functions evaluate to true.

A solver operator is a solver together with the two conditions that determine its ap-
plicability. We denote it by a triple (solver; d-cond; dp-cond). These conditions are hard
constraints, aimed to avoid inappropriate use of the solver. We will describe soft constraints,
for encoding solver-selection preferences, in Chapter 10.

Problem-independent description changers

A problem-independent changer is an algorithm that inputs a domain description and con-
verts it into a new description. It constructs a description for solving multiple problems,
rather than for one speci�c problem. The algorithm may successfully generate a new de-
scription or terminate with failure. For example, Abstractor terminates with failure if the
hierarchy collapses into a single level.

Some changers allow us to specify a restriction on the problems that can be solved with
a new description. A changer then uses this restriction in generating a description. For
example, Abstractor can use the limitation on the allowed goals, and Chooser utilizes the
information about static predicates. We may then use the resulting description only for
solving problems that satisfy the restriction.

The description changers used in the Shaper system always terminate. Unlike problem
solvers, they never result in in�nite execution. For this reason, we do not consider the
run-forever possibility in their analysis.

We view a changer execution as a call to the Apply-Indep-Changer procedure, which
inputs a changer, initial description, and restriction on the problems, and then applies the
changer to the description:

Apply-Indep-Changer

Inputs: description changer, initial description, restriction on the problems.
Possible outcomes: generating a new description, failure termination.

7.2. GENERALIZED DESCRIPTION AND REPRESENTATION SPACES 253

Problem-speci�c description changers

A problem-speci�c changer generates a new description for solving a given problem instance.
The knowledge of the problem often enables the algorithm to construct a better description.
The downside is that we cannot re-use the description; we discard it after solving the problem.
We use the Apply-Spec-Changer procedure to supervise the execution of problem-speci�c
changers:

Apply-Spec-Changer

Inputs: changer, initial description, problem.
Possible outcomes: generating a new description, failure termination.

Changer operators

We may restrict the use of a problem-independent changer by two conditions. The �rst
condition, d-cond(desc), limits input descriptions. We apply the changer only to domain
descriptions that satisfy this condition. The second condition, dp-cond(desc,prob), limits the
problems that we solve with a newly generated description.

A changer operator is a changer together with the two conditions, denoted by a triple
(changer; d-cond; dp-cond). We use only problem-independent changers in operators.

Suppose that we apply a changer operator to some description desc, and the applicability
of desc is limited by some condition p-cond. If desc satis�es d-cond, we apply the changer to
desc, with the restricting condition formed by the conjunction of dp-cond and p-cond. We
use the new description only for problems that satisfy the conjunction of the two conditions,
dp-cond(desc; prob) ^ p-cond(prob).

The role of changer operators in the automatic exploration of alternative descriptions
is similar to the role of classical operators in prodigy search. The conditions of changer
operators are hard constraints, which rule out inappropriate description changes. We will
describe the use of preferences in Chapter 10.

Solver sequences

We may use a solver operator that contains a sequence of one or more problem-speci�c
changers and a problem solver. When applying this operator to solve a problem, we �rst
execute the changers, which make several consecutive description changes, and then use the
solver with the �nal description.

A sequence of several problem-speci�c changers with a solver at the end is called a solver
sequence. Note that a solver sequence satis�es our de�nition of a solver: if we apply it to
solve a problem, it may output a solution, fail (if some changer or the solver fails), or run
forever (if the solver runs forever). We do not include the intermediate descriptions in the
output, since we cannot use them for other problems.

We therefore view a solver sequence as a type of solver, and do not distinguish it from a
\simple" solver in the study of methods for constructing and selecting representations.

254 CHAPTER 7. GENERATION AND USE OF MULTIPLE REPRESENTATIONS

Changer sequences

A changer sequence is a sequence of problem-independent changers. The application of the
sequence involves executing the changers in order, thus making several consecutive descrip-
tion changes. The output of the application is the �nal description.

The behavior of a sequence is similar to the behavior of a problem-independent changer:
it may generate a new description or terminate with failure (if one of the changers fails). We
therefore do not distinguish between changer sequences and simple changers.

7.2.2 Description space

When we load a prodigy domain into Shaper, the system constructs initial descriptions
of the domain, and forms a library of changer operators for use in this domain, according to
the user's speci�cation. If the user does not specify initial descriptions, the system uses the
basic default description as the only initial description.

Shaper generates new descriptions by applying changer operators �rst to initial de-
scriptions and then to newly generated ones. The description space of a domain is the set
of all descriptions that Shaper can potentially generate, using the available changer opera-
tors. The search in this space involves the construction of new descriptions and their use in
problem solving.

The descriptions that have already been generated form the expanded part of the space.
We now review the data stored for the expanded space and describe the addition of new
descriptions. We will then present the construction of representations from the generated
descriptions and their use in problem solving.

Description nodes

We store the expanded part of the description space as a collection of nodes. A node consists
of a description, the applicability condition for this description, and some information about
the history of creating it. We create a new node by applying a changer operator to one of
the old nodes. We may apply a changer only if the description in the old node satis�es the
operator's condition. We say that the newly generated node is a child of the old node.

A node's history information includes pointers to the parent node, to the operator that
generated the node, and to all children (if any). We use this information in the conditions of
solver and changer operators, since the applicability of solvers and changers often depends
on the history of constructing a description.

Identity testing

The application of di�erent changers may sometimes result in generating the same descrip-
tion. When adding a description node, we check whether its description is di�erent from
descriptions in the other nodes.

If the new description is identical to some old description, we merge the new node with
the old one. The result of the merge is a node with the same description, whose applicability
condition is the disjunction of the original nodes' conditions. The merged node inherits

7.2. GENERALIZED DESCRIPTION AND REPRESENTATION SPACES 255

children from the old node and parents from both old and new node. Note that the resulting
node may have multiple parents.

The identity test in Shaper is sound but not complete. The system recognizes identical
abstraction hierarchies and selections of primary e�ects, but it may not detect identical
control rules (see Section 7.1.1). Shaper may thus create two distinct nodes with identical
descriptions, though it rarely occurs in practice. The only negative e�ect of this situation is
a decrease in the accuracy of the description-quality statistics (see Chapter 8).

Rejection rules

We allow the use of rejection rules, which prune some nodes from the description space. The
user may specify a set of rules for all domains and additional rules for each speci�c domain.

Formally, a rejection rule is a boolean function, whose argument is a description node.
If it returns true, we do not add the node to the space. The rejection may depend on the
node's description, applicability condition, and history of constructing the node.

After generating a description node, Shaper �res the rejection rules. If the node matches
some rule, the system does not add it to the expanded space.

Comparison rules

We also use rules that compare description nodes with each other and prune nodes with infe-
rior descriptions. Formally, a comparison rule is a boolean function, better-node(node1; node2),
whose arguments are two distinct description nodes. If it returns true, then the description
of node1 is de�nitely better than that of node2, and we prune node2 from the expanded space.

We consider the \better-than" relationship transitive. Suppose that, according to the
comparison rules, node1 is better than node2 and node2 is better than node3. We then
assume that node1 is better than node3, even if no rule compares them directly. We thus
prune both node2 and node3.

If node1 is better than node2 and node2 is better than node1, we assume that the utility of
the two descriptions is very similar, and we may prune either of them. If the \better-than"
relationship forms a longer loop, we prune all but one nodes of the loop.

After generating a new description node, Shaper compares it with the old nodes. If some
old node is better than the new one, Shaper does not add the new node to the expanded
space. If some old node is worse then the new one, the system makes the old node inactive.

Shaper does not use inactive descriptions in problem solving or in generating new de-
scriptions; however, it does not remove them from the description space. This approach
enables us to preserve the structure of the expanded space, as well as the statistics on prob-
lem solving with inactive descriptions, accumulated before their inactivation.

Summary of generating a node

The Make-Description algorithm in Figure 7.2 is the summary of applying a changer op-
erator. The algorithm inputs an operator and a description node. The operator includes
a description changer, denoted changer, a condition for its applicability, d-cond, and a re-
striction dp-cond on the problems to be solved with the new description. The initial node

256 CHAPTER 7. GENERATION AND USE OF MULTIPLE REPRESENTATIONS

Make-Description(changer; d-cond; dp-cond; init-desc; p-cond)
1. If desc does not satisfy d-cond, then terminate.
2. De�ne applicability condition new-p-cond such that, for every prob,

new-p-cond(prob) = p-cond(prob) ^ dp-cond(desc; prob).
3. Call Apply-Indep-Changer(changer; init-desc; new-p-cond).
4. If it fails to produce a new description, then terminate;

Else it returns some description new-desc.
5. If some old node has a description identical to new-desc, and some condition old-p-cond,

then replace its condition with old-p-cond _ new-p-cond,
add a parent pointer to the initial node, and terminate.

6. Make a node new-node, with description new-desc, condition new-p-cond,
and parent pointer to the initial node.

7. If new-node matches some rejection rule, then mark new-node \rejected."
8. For every old node, old-node:

For every comparison rule, with condition better-node:
If better-node(old-node; new-node), then mark new-node \rejected;"
Else, if better-node(new-node; old-node), then inactivate old-node.

9. If new-node is marked \rejected," then terminate.
10. Add new-node to the expanded description space.
11. Call Make-Reps(new-desc; new-p-cond).

Figure 7.2: Applying changer operator (changer; d-cond; dp-cond) to initial node (init-desc; p-cond).

includes a domain description, init-desc, and a restriction p-cond on the problems that can
be solved with the node's description.

The algorithm �rst checks whether the initial description satis�es the condition of the
changer operator (step 1 of the algorithm). If it does, the changer generates a new description
node (steps 2{4). If some old node already has this description, the algorithm modi�es the
node's condition and history, and then terminates (step 5). Otherwise, it makes a new node
(step 6).

The application of rejection and comparison rules may result in discarding the new node
or inactivating some old nodes (steps 7{9). Even if we reject the new node, we inactivate the
old nodes that are worse than the new one, according to the comparison rules. We therefore
have to �re all comparison rules even when rejecting the new node.

Rejection and comparison rules are hard constraints, designed to prune description nodes.
We do not use soft preference constraints for selecting among nodes; however, we allow use of
preferences in selecting among representations, which are constructed from the descriptions.

After adding a new node to the description space (step 10), Shaper generates representa-
tions based on the node's description (step 11). The construction and use of representations
is the subject of Section 7.2.3.

The Shaper system is able to keep multiple domains in memory and interleave problem
solving in di�erent domains. The system expands a completely separate description space for
every domain. The simultaneous use of several domains enables the system to accumulate

7.2. GENERALIZED DESCRIPTION AND REPRESENTATION SPACES 257

some \historical" experience on the generation and use of descriptions, and transfer this
experience across domains (Sections 10.2 and 11.1).

7.2.3 Representation space

We next formalize the use and construction of representations in our abstract model. The
representation space of a domain is the set of representations that the system can potentially
generate, based on the domain's description space and available problem solvers.

Use of representations

We view a representation as a triple (desc; solver; p-cond), where the �rst element is a de-
scription, the second is a solver, and the third is a boolean function, de�ned on the problems
in the domain, that determines the applicability of the representation. If the p-cond function
returns false for a problem, we do not use the representation to solve the problem.

Since the use of a representation may result in an in�nite execution of the solver, we
always set a �nite time bound and interrupt the solver upon reaching this bound.

We view the use of a representation as a call to the Apply-Rep procedure, which inputs
a representation, problem, and time-bound, and then uses the solver and description from
this representation to solve the problem. We refer to the use of this procedure as applying a
representation to a problem or running a representation on a given problem.

This procedure may give four di�erent outcomes. First, Apply-Rep may reject the prob-
lem, if it does not match the representation's applicability condition. Second, the solver may
�nd a solution; we call it a successful termination or simply success. Third, it may termi-
nate with failure after exhausting the search space. Finally, the procedure may interrupt
the solver upon reaching the time bound. We now give a summary of the procedure's inputs
and outcomes:

Apply-Rep

Inputs: representation, problem, time bound.
Possible outcomes: �nding a solution, failure termination,

rejecting the problem, time-bound interrupt.

Note that successes, failures, and rejections occur before reaching a time bound, and thus
they do not require an external interrupt of the solver algorithm. We sometimes refer to
these three outcomes as termination outcomes, to distinguish them from interrupts. This
distinction becomes important in the statistical analysis of the performance of available
representations (see Chapter 8).

Failures, rejections, and interrupts

A failure outcome shows the absence of a solution in the solver's space, which may be useful
information. In particular, if the solver is complete, failure means that the problem has no
solution. Thus, a failure outcome may be more valuable than a rejection or interrupt. This
situation is di�erent from the application of changer operators. A failure of a changer does

258 CHAPTER 7. GENERATION AND USE OF MULTIPLE REPRESENTATIONS

not give any information that we utilize later. We thus do not distinguish between failures
and rejections resulting from the changer applications.

A representation may contain a solver sequence rather than a simple solver. Recall that
a sequence consists of several problem-speci�c changers and a problem solver. If we use
such a representation, one of the changers may fail to generate a description, resulting in
an unsuccessful outcome. We view such an outcome as a rejection, rather than a failure,
because it does not indicate the absence of a solution in the solver's search space.

In Shaper, the time for rejecting a problem is usually much less than the time for
other outcomes; however, sometimes it is not the case. The use of complex functions in
applicability conditions, as well as problem-speci�c changers that frequently fail, may result
in signi�cant rejection times. We therefore must consider a possibility of time loss due to
rejections in the analysis of the system's behavior.

If the use of a representation has resulted in an interrupt, Apply-Rep returns the expanded
part of the problem's search space. If we later try to solve the problem with the same
representation and larger time bound, we may continue the expansion of the space, rather
than starting from scratch. This reuse of spaces, however, is limited by the memory available
for storing them.

Constructing representations from a description

The generation of new representations parallels the expansion of the description space. Af-
ter adding a new description node, say (desc; p-cond), the Shaper system produces the
corresponding representations, by combining the description with available solver operators.

For every solver operator (solver; d-cond; dp-cond), the system checks whether the new
description desc matches the operator's condition d-cond. If it does, the system makes a rep-
resentation (desc; solver; new-p-cond), which contains the new description and the operator's
solver. The applicability condition new-p-cond is de�ned as the conjunction of the node's
condition and the solver's condition for this description:

For every prob, we have new-p-cond(prob) = p-cond(prob) ^ dp-cond(desc; prob).

If a description does not match any solver operators, it does not give rise to any repre-
sentations. Such a description is not used in problem solving, but it may be an intermediate
step in constructing other descriptions.

Rejection and comparison rules

We allow the use of rejection and comparison rules to prune representations. The semantics
of these rules is the same as that of the rules for pruning description nodes.

If a new representation matches a rejection rule, or if it is worse than some old represen-
tation according to a comparison rule, we discard it. If an old representation is worse than
a new one, we inactivate the old representation and do not use it in problem solving. If we
inactivate some description node (see the Make-Description algorithm in Figure 7.2), then
we also inactivate all representations that contain it.

We use not only pruning rules, but also several types of preference rules in selecting
among representations. We will describe the use of preferences in Chapter 10.

7.3. UTILITY FUNCTIONS 259

Make-Reps(desc; p-cond)
For every solver operator (solver; d-cond; dp-cond):

If desc satis�es d-cond, then:
De�ne applicability condition new-p-cond such that, for every prob,

new-p-cond(prob) = p-cond(prob) ^ dp-cond(desc; prob).
De�ne representation new-rep as (desc; solver; new-p-cond).
Call Add-Rep(new-rep).

Add-Rep(new-rep)
If new-rep matches some rejection rule, then mark new-rep \rejected."
For every old representation, old-rep:

For every comparison rule, with condition better-rep:
If better-rep(old-rep; new-rep), then mark new-rep \rejected;"
Else, if better-rep(new-rep; old-rep), then inactivate old-rep.

If new-rep is not marked \rejected," then add it to the expanded representation space.

Figure 7.3: Generating representations for a new description node (desc; p-cond).

Summary of generating representations

We summarize the algorithm for generating new representations in Figure 7.3. Shaper
invokes this algorithm after creating a new description node, with description desc and
applicability condition p-cond. The algorithms add representations that correspond to the
new node.

The pseudocode in Figures 7.2 and 7.3 does not include the inactivation of old representa-
tions that follows the inactivation of a description node. Shaper performs this inactivation
when executing the last line of step 8 in the Make-Description algorithm.

If the Shaper system interleaves problem solving in several domains, then it keeps
a separate description space and solver-operator library for every domain and, hence, it
expands a completely separate representation space for each domain.

7.3 Utility functions

We describe general utility functions for evaluating the results of problem solving, which
enable us to formalize the notions of problem-solving e�ectiveness and representation quality.
They provide a means for an objective comparison of di�erent representations. We use these
utility measures in developing statistical methods for selection among representations.

We evaluated the use of primary e�ects and abstractions along three dimensions: the
number of solved problems, the running time, and the cost of resulting solution plans. The
use of utility functions combines these dimensions and allows us to decide whether a gain
along some dimension compensates a loss along another.

260 CHAPTER 7. GENERATION AND USE OF MULTIPLE REPRESENTATIONS

7.3.1 Gain function

We assume that an application of a problem-solving algorithm may result in one of four
outcomes. First, the algorithm may �nd a solution to a problem. Second, it may terminate
with failure, after exhausting the available search space without �nding a solution. Third, we
may interrupt the algorithm, if it has reached some pre-set time bound without termination.
Finally, the algorithm may reject the problem without trying to solve it. For example, the
Shaper system rejects a problem when the goals do not belong to the limited goal set used
in constructing the current representation.

Intuitively, we have to pay for the running time of the algorithm, and we get a reward if
it �nds a solution. The payment for the time may depend on a speci�c problem; the reward
depends on the problem and solution. The overall gain is a function of a problem, time, and
the result of problem solving. Note that we call it a gain function, rather than using a more
generic term utility function, to avoid confusion with other utility measures.

We denote this function by gain(prob; time; result), where prob is the problem, time is
the running time, and result is the result. The latter may be some solution to the problem,
or one of the three unsuccessful outcomes: termination with failure (denoted fail), interrupt
upon hitting a time bound (intr), or the algorithm's rejection of the problem (reject). Note
that fail, intr, and reject are not variables and, hence, we do not italicize them.

The speci�cation of a particular gain function is the user's responsibility. The function
encodes the value of di�erent problem-solving outcomes for the user. It gives the user a
means to communicate her value judgments to the system.

We assume that the gain function is de�ned for all problems in a domain, all time values,
and all possible outcomes. We impose four constraints on the possible gain function, which
determine the necessary basic properties of problem-solving gains.

1. The gain decreases with time:

For every prob, result, and time1 < time1, we have
gain(prob; time1; result) � gain(prob; time2; result).

2. If we interrupt the system or reject a problem without spending any running time,
then the gain is zero:

For every prob, we have gain(prob; 0; intr) = gain(prob; 0; reject) = 0.

3. The interrupt gives the same gain as the rejection of a problem, if the running time is
the same in both cases:

For every prob and time, we have
gain(prob; time; intr) = gain(prob; time; reject).

4. The gain of solving a problem or failing upon the exhaustion of the search space is at
least as large as the gain of the interrupt after the same running time:

For ever prob, time, and soln,
(a) gain(prob; time; soln) � gain(prob; time; intr),
(b) gain(prob; time; fail) � gain(prob; time; intr).

7.3. UTILITY FUNCTIONS 261

Note that we do not assume that gain is a continuous function of time. A gap in the
function may represent a decrease in a solution's value upon reaching a deadline. Also note
that a failure may give a larger gain than an interrupt. For example, a failure of a complete
solver tells us that the problem has no solution, and this information may be worth extra
gain.

Constraint 2 means that the gain of doing nothing is exactly zero. Since we always
have a do-nothing option, negative gain is never desirable. Constraints 1 and 2 imply that
interrupts and rejections never give a positive gain. Constraints 2 and 4 ensure that the gain
of instantly �nding a solution is nonnegative.

We de�ne a relative quality of solutions in terms of the gain function. Suppose that soln1
and soln2 are two di�erent solutions for some problem, prob.

soln1 has higher quality than soln2 if, for every time,
gain(prob; time; soln1) � gain(prob; time; soln2).

This relationship between solutions is a partial order. If soln1 gives larger gains than soln2
for some running times and lower gains for others, then neither of them has higher quality
than the other. For example, a conference paper may be more valuable than a technical
report if it is �nished before the deadline, but less valuable past the deadline.

7.3.2 Additional constraints

We now discuss extra constraints on gain functions, used in some derivations. We do not

assume that they hold for all gain functions. We will specify explicitly which of these
constraints are needed in speci�c derivations.

5. As the running time approaches in�nity, the gain approaches negative in�nity. In other
words, the gain has no �nite lower bound:

For every prob and result, and for every negative real value g,
there is time such that gain(prob; time; result) � g.

Informally, it means that we cannot buy in�nite running time for a �nite payment. For
every problem and solution, there is a \threshold" time such that the gain is positive if the
running time is smaller than the threshold, and negative otherwise.

6. Failure termination upon exhausting the search space gives the same gain as an inter-
rupt after the same running time:

For every prob and time, we have
gain(prob; time; fail) = gain(prob; time; intr).

We use this constraint when a problem solver is incomplete, and the exhaustion of its search
space does not mean that the problem in unsolvable.

7. If soln1 gives a larger gain than soln2 for zero running time, it gives a larger gain for
all other times:

262 CHAPTER 7. GENERATION AND USE OF MULTIPLE REPRESENTATIONS

For every prob, time, soln1, and soln2,
if gain(prob; 0; soln1) � gain(prob; 0; soln2),
then gain(prob; time; soln1) � gain(prob; time; soln2).

Suppose that this constraint holds for a domain. Since gain is a real-valued function, we can
compare the quality of any two solutions to a given problem. In other words, In other words,
for every problem in the domain, the problem's solutions are totally ordered by their quality.
We may then de�ne a function quality(prob; result) that provides a numerical measure of the
solution quality. The function must satisfy the following conditions, for every problem prob

and every two results of solving it, result1 and result2:

� quality(prob; intr) = 0.

� If, for every time value, gain(prob; time; result1) = gain(prob; time; result2),
then quality(prob; result1) = quality(prob; result2).

� If, for some time value, gain(prob; time; result1) > gain(prob; time; result2),
then quality(prob; result1) > quality(prob; result2).

The quality value of every result is no smaller than that of an interrupt; therefore, quality
values are nonnegative.

Most Shaper's domains have natural quality measures that satisfy these conditions. For
example, suppose that we use the measure described in Section 2.3.1; that is, we evaluate
a solution by the total cost of its operators. Suppose further that, for each problem prob,
there is some maximal acceptable cost, costmax(prob), and solutions with larger costs are not
satisfactory. We may de�ne a quality function as

quality(prob; soln) = costmax(prob)� cost(soln):

If we use some quality measure, we may de�ne problem-solving gain as a function of
problem, running time, and solution quality, gainq(prob; time; quality). This function must
satisfy the following condition:

For every prob, time, and result,
gainq(prob; time; quality(prob; result)) = gain(prob; time; result).

We �rst observe that this function is well-de�ned:

If quality(prob; result1) = quality(prob; result2), then we have
gainq(prob; time; quality(prob; result1)) = gainq(prob; time; quality(prob; result2));

therefore, the imposed condition speci�es exactly one value of gainq for each triple of prob,
time, and quality. We also note that gain is an increasing function of quality:

If quality
1
� quality

2
, then gainq(prob; time; quality1) � gainq(prob; time; quality1).

We next consider another constraint on gain, which is stronger than Constraint 7; that
is, this new constraint implies Constraint 7.

7.3. UTILITY FUNCTIONS 263

8. We can decompose the gain into the payment for running time and the reward for
solving a problem:

For every prob, time, and result, we have
gain(prob; time; result) = gain(prob; time; intr) + gain(prob; 0; result).

The �rst term in the decomposition is the payment for time; it is nonpositive. The second
term is the reward, which is nonnegative. If this constraint holds, we may de�ne the quality
function as quality(prob; result) = gain(prob; 0; result); then, gainq is linear on the solution
quality:

gainq(prob; time; quality) = gain(prob; time; intr) + quality:

9. The sum payment for two interrupted runs that take time1 and time2 is the same as
the payment for a run that takes time1 + time2:

For every prob, time1, and time2, we have
gain(prob; time1; intr)+gain(prob; time2; intr) = gain(prob; time1+time2; intr).

This constraint implies that the interrupt gain is proportional to time:

gain(prob; time; intr) = time � gain(prob; 1; intr):

The value of gain(prob; 1; intr) represents the price of a unit time. If we use Constraints 8
and 9 together, we get the following decomposition of the gain function:

gain(prob; time; intr) = time � gain(prob; 1; intr) + gain(prob; 0; result):

7.3.3 Representation quality

We now derive a utility function for evaluating a representation. The quality of a represen-
tation depends not only on the representation itself, but also on a gain function, choice of
time bounds, and distribution of problems.

We consider a �xed representation and suppose that we do not use time bounds. We
assume that the problem solver never makes random choices. Thus, for every problem
prob, the representation uniquely determines the running time, time(prob), and the result
of problem solving, result(prob). Since we do not interrupt the solver, time(prob) may be
in�nite. The result may be a solution, failure, rejection, or in�nite run.

If we use a time bound B in solving prob, then the running time and result are as follows:

time0 = min(B; time(prob))

result0 =

(
result(prob); if B � time(prob)
intr; if B < time(prob)

Thus, the choice of a bound B determines the time and result; therefore, it determines the
gain. We denote the function that maps problems and bounds into gains by gain0:

gain0(prob; B) = gain(prob; time0; result0): (7.1)

264 CHAPTER 7. GENERATION AND USE OF MULTIPLE REPRESENTATIONS

Since programs in the real world cannot run forever, we must always set a �nite time
bound. We will describe Shaper's heuristics for choosing a bound in Chapters 8 and 9.
The heuristics determine a function that maps every prob into a time bound B(prob). The
gain of solving prob is then gain0(prob; B(prob)).

If the gain function satis�es Constraint 7 of Section 7.3.2 and we use a quality measure
quality(prob; result), we can de�ne gain0 in terms of the solution quality. First, suppose that
we use a �xed representation without time bounds. Then, for every prob, the representation
uniquely determines the solution quality:

qualityp(prob) =

(
quality(prob; result(prob)); if time(prob) is �nite
quality(prob; intr); if time(prob) is in�nite

If we use a time bound B, it determines a di�erent quality value; we denote this value by
quality0:

quality0(prob; B) =

(
qualityp(prob); if B � time(prob)
quality(prob; intr); if B < time(prob)

We can now express gain0 through the function gainq, de�ned in Section 7.3.2:

gain0(prob; B) = gainq(prob; time
0; quality0(prob; B)) (7.2)

We de�ne a representation utility by averaging the gain over all problems [Koenig, 1997].
We denote the set of problems in a domain by P and assume that it is �nite or countably
in�nite. We also assume a �xed probability distribution on P , which determines the chance
of encountering each problem. For every prob, the distribution de�nes some probability
p(prob). The sum of these probabilities,

P
prob2P p(prob), is 1.

If we select a problem at random, according to the probability distribution, then the
expected problem-solving gain is as follows:

G =
X

prob2P
p(prob) � gain0(prob; B(prob)): (7.3)

We use G as a utility function, which allows us to evaluate the representation and bound-
selection heuristics. It uni�es the three quality dimensions, which include near-completeness,
running time, and solution quality.

7.3.4 Use of multiple representations

The Shaper system generates multiple representations of a problem domain, and uses learn-
ing techniques (Chapters 8 and 9) and heuristics (Chapter 10) to select a representation for
each given problem. We generalize Equation 7.3 to de�ne a utility function for the use of a
�xed collection of representations.

We denote the number of available representations by k. The gain function may depend
on the representation, so we consider k distinct gain functions, gain1; :::; gaink. Since dif-
ferent representations require di�erent choices of time bounds, we also consider the use of k
distinct bound-selection functions, B1; :::; Bk. When we solve a problem prob with represen-
tation i (where 1 � i � k), we set the time bound Bi(prob) and use the gain function gaini
to estimate the resulting gain.

7.3. UTILITY FUNCTIONS 265

For every representation i, we may de�ne the function gain0i, in the same way as we
have de�ned gain0 in Section 7.3.3. The gain of solving prob with representation i is then
gain0i(prob; Bi(prob)).

The representation-selection techniques, used in the system, determine a function that
maps every problem prob into some representation i(prob), where 1 � i(prob) � k.

When solving prob, we �rst identify the corresponding representation i(prob) and then
choose the time bound Bi(prob)(prob). If we select a problem at random, according to a
probability distribution P , then the expected gain is as follows:

G =
X

prob2P
p(prob) � gain0i(prob)(prob; Bi(prob)(prob)): (7.4)

Note that this equality holds not only for �nite, but also for countably in�nite collections
of representations; however, we will consider only �nite collections in developing Shaper's
techniques for selecting representations.

We have assumed that the selection of a representation and bound takes very little
computation and does not reduce the overall gain. We will show experimentally that this
assumption holds in Shaper (see Section 8.3). If the selection takes considerable time, we
need to adjust Equation 7.4 to account for the cost of computing i(prob) and Bi(prob)(prob).

The utility value G depends on the gain function, probability distribution, choice of
representation, and time bound. The �rst two parameters are properties of the world, and
the system has no control over them.

The Shaper system gets the user-speci�ed gain function as a part of the input and
gradually learns the probability distribution in the process of problem solving. Shaper's
top-level control algorithms choose a representation and adjust bound-selection heuristics to
maximize the expected gain.

7.3.5 Summing gains

When we solve several problems or �nd several solutions to the same problem, we are inter-
ested in the overall gain. We now discuss the rules for determining the total gain.

Suppose that we apply problem-solving algorithms to problems prob1; prob2; :::; probn. We
may use di�erent representations and gain functions in solving these problems. We denote
the time for solving probi by timei, the result by resulti, and the corresponding gain function
by gaini.

A. If prob
1
; prob

2
; :::; probn are all distinct,

the total gain is
Pn

i=1
gaini(probi; timei; resulti).

We use this rule in the Shaper system, even though it does not always hold in the real
world. For example, if two problems are parts of a larger problem, solving one of them may
be worthless without solving the other. On the other hand, if either part readily gives a key
to the larger problem, solving one of them may be no less valuable then solving both.

If we try to solve a problem with di�erent representations, and all attempts except one
result in an interrupt or rejection, the total gain is also the sum of the individual gains:

266 CHAPTER 7. GENERATION AND USE OF MULTIPLE REPRESENTATIONS

B. If result1; result2; :::; resultn�1 for some prob are all interrupts and rejections,
the total gain of solving prob is

Pn
i=1

gaini(prob; timei; resulti).

We cannot use this rule if two di�erent runs result in �nding a solution or exhausting
the search space. For example, if two runs give the same solution, the rule would count the
reward twice. We use additional constraints on the gain function to de�ne the total gain in
such cases.

Suppose that the gain function satis�es Constraint 6; that is, the failure gain is equal to
the rejection gain. We then use Rule B for summing the gain when one run gives a solution
and all others result in failures, interrupts, and rejections. If we do not use Shaper for
�nding a second solution to an already solved problem, then Rules A and B always enable
us to compute the total gain.

If we allow search for multiple solutions to a problem, we need Constraints 6 and 8 for
de�ning the total gain. We compute the total payment for time as the sum of payments
for individual runs, and the reward for solving a problem as the maximum of rewards for
individual solutions:

C. If result1; result2; :::; resultn are all for the same problem prob,
the total gain is

Pn
i=1

gaini(prob; timei; intr) + maxni=1
gaini(prob; 0; resulti).

This rule is also a simpli�cation, which may not hold in the real world, since obtaining mul-
tiple solutions to a problem is sometimes more valuable than �nding only the best solution.

If we use description-changing algorithms, we include the payment for their use in the
total-gain computation. Since a description changer does not solve any problems, its \gain"
is negative. The potential reward is the gain of problem solving with a new description.

We assume that the gain of applying a changer is a function of the initial description
and running time, gainc(desc; time), and that this function has the same properties as the
interrupt gain of problem solvers:

� For every desc, we have gainc(desc; 0) = 0

� If time1 < time2, then gainc(desc; time1) � gainc(desc; time2)

The gain does not depend on the result of a description change; however, the result a�ects
the consequent problem-solving gains.

We compute the total gain by summing all description-changing gains and adding them
to the total problem-solving gain. This rule is analogous to Rules A and B for totaling the
gains of problem solving.

7.4 Simplifying assumptions and the user's role

We have formalized the use of description and representation spaces, and described general
gain functions for evaluating the system's performance. This generalized model allows us
to abstract from speci�c features of prodigy. We use it to design a search engine for the
exploration of the representation space. We can use this engine in many di�erent problem-
solving systems, and for the automatic selection among available systems.

7.4. SIMPLIFYING ASSUMPTIONS AND THE USER'S ROLE 267

The mechanism for guiding the representation search is based on the statistical analysis of
past performance (Chapters 8 and 9) and several types of preference rules (Chapter 10). The
automatic statistical analysis enables the system to learn the performance of the available
representations and select the most e�ective among them. When statistical data are not
su�cient, the system relies on the preference rules.

We now discuss the simplifying assumptions, which limit the applicability of the devel-
oped model (Section 7.4.1). We then describe the role of the human user in guiding Shaper,
and summarize her responsibilities and options (Section 7.4.2).

7.4.1 Simplifying assumptions

We divide the assumptions into three groups. First, we review the simpli�cations used to
formalize the representation space. Second, we summarize the assumptions that underlie the
evaluation model and statistical analysis of the performance. Third, we introduce additional
assumptions, used in selecting representations and time bounds.

Behavior of solvers and changers

We begin by reviewing the assumptions that underlie the generalized model of search in
description and representation spaces (Section 7.2).

First, we have assumed that solvers and changers are be sound; that is, they always
produce correct solutions and valid domain descriptions.

Second, solvers do not use any-time behavior. That is, a solver �nds a solution and
terminates, rather than outputting successively better solutions. We may readily extend
the representation-space model and evaluation methods for any-time algorithms; however,
Shaper's statistical analysis does not account for such algorithms.

If a solver does not �nd a solution, it may terminate with failure, hit a time bound, or
reject a problem. We allow a rejection by the solver itself or by its applicability condition.
Even though the rejection time is usually very small compared to problem solving, we do
not neglect it in the analysis.

Description changers also do not use any-time behavior. A changer generates a new
description or fails. We do not distinguish between a changer's failures and rejections.

Performance analysis

We now review the assumptions underlying the evaluation model (Section 7.3), which is
based on Constraints 1{4 (Section 7.3.1) and Rules A{C for summing gains (Section 7.3.5).

We assume the availability of functions that provide an exact (or su�ciently accurate)
gain computation for every problem-solving episode. The statistical analysis of performance
does not account for the time of the gain computation, nor for the time of the analysis
itself. We thus consider the time of these operations negligible. Their actual running time
in Shaper is smaller than that of problem solving by two orders of magnitude (see Sec-
tions 9.2.2 and 9.3.2).

268 CHAPTER 7. GENERATION AND USE OF MULTIPLE REPRESENTATIONS

Since the Shaper system does not run solvers and changers in parallel, we have de�ned
utility only for the sequential application of algorithms. The use of parallelism would require
a signi�cant extension to the evaluation model.

The statistical analysis is valid only if the performance of representations does not
change over time, which requires two assumptions. First, we use the stationarity assumption
[Valiant, 1984]; that is, we suppose that the distribution of problems does not change over
time. Second, we assume that the performance of a representation does not improve due to
learning. Shaper may use learning to construct a representation, but the system does not
improve the representation further in the process of problem solving.

Some prodigy algorithms do not satisfy this assumption. For example, the analogy
solver [Veloso, 1994] accumulates and reuses search episodes, and its e�ciency improves
with solving more problems. We may use such algorithms in Shaper, but the statistical
analysis does not take the e�ciency improvement into account. The system underestimates
the e�ectiveness of these solvers, judging by their initial performance, and may favor the use
of other algorithms.

Even if solvers do not use learning, the system's overall performance improves over time.
The improvement comes from generating new descriptions and applying statistical analysis
to select e�ective descriptions and solvers.

We have assumed that the solvers do not make any random choices, which simpli�es the
evaluation model (Section 7.3.3). This assumption is not required for the statistical analysis.
We readily extend the model to randomized algorithms, by viewing every possible behavior
on a problem as a separate problem-solving episode.

Additional assumptions

We introduce some assumptions that simplify the selection and use of representations. We
plan to investigate their relaxation as a part of future work.

First, Shaper views solvers as black boxes; it calls a selected solver and then \passively"
waits for a termination or elapse of a pre-set time. The system does not provide any guidance
or performance analysis during the solver execution. In particular, we do not use the dynamic
adjustment of the time bound based on the �ndings during the solver's run.

Second, we do not interrupt description changers. The implemented changers always
terminate in �nite time. Moreover, their running time is polynomial, which allows us to
predict it much more accurately than solvers' search time. We therefore run changers without
time bounds.

Third, we assume that the system faces one problem at a time. Thus, it does not have
to select among available problems or decide on the order of solving them. The choice
among problems would require the comparison of gain estimates for di�erent problems. The
ordering should also depend on the possibility of transferring experience from one problem
to another.

Finally, Shaper does not interleave the use of di�erent representations in solving a
problem, even though interleaving search techniques is sometimes more e�ective than trying
them one after another.

7.4. SIMPLIFYING ASSUMPTIONS AND THE USER'S ROLE 269

7.4.2 Role of the user

The Shaper system automates the construction and use of domain descriptions, and the
selection among problem solvers; however, it relies on the user for certain initial knowledge.
We discuss the user's role and options in guiding the system.

First and foremost, the user must encode domains in the prodigy language [Carbonell et
al., 1992], and provide problem-solving and description-changing algorithms. The prodigy
architecture includes a number of solvers [Stone and Veloso, 1994; Veloso et al., 1995; Fink
and Blythe, 1998], as well as the changers described in Part II. The user may construct
additional solvers and changers by adjusting the knobs of the existing algorithms, or provide
her own new algorithms.

We have discussed some methods and general guidelines for designing new algorithms
that improve domain descriptions (see Section 1.4.2); however, the development of novel
algorithms is usually a complex research problem. Future work may include automatic con-
struction of new solvers and changers, which is a challenging and largely unexplored research
area. Minton [1996] has made some steps in this direction, in his work on automatically con-
�guring constraint-satisfaction algorithms.

Second, the user must specify gain functions for all solvers and changers. The gain func-
tions provide information on the value of solving problems and cost of executing Shaper's
algorithms. In other words, they encode the user's value judgments. We have extended the
prodigy language for specifying these functions and implemented a procedure for verifying
their compliance with the constraints of Section 7.3.

The rest of the user's input is optional; it includes solver and changer operators, control
rules, initial descriptions, estimates of problem complexity, information on problem similar-
ity, and sample problems used in learning.

The speci�cation of solver and changer operators includes arranging the available al-
gorithms into sequences and providing applicability conditions for these sequences. The
purpose of applicability conditions, as well as rejection and comparison rules, is to prune
parts of description and representation spaces. The operator conditions and pruning rules
form hard constraints for guiding Shaper's search.

The user may also provide preference rules, which encode soft constraints. We describe
the main types of preference rules and mechanisms for their use in Chapter 10. Some of
these rules incorporate simple learning techniques.

We extended the prodigy language for de�ning global operators and control rules, as well
as additional operators and rules for speci�c domains. If the user does not specify operators,
Shaper does not use algorithm sequences, and assumes that all solvers and changers are
always applicable.

We encoded several operators based on the implemented solvers and changers, as well
as control rules for use of these operators. An extension to the library of algorithms would
require additional operators and rules. Future work may include automatic generation of
solver and changer sequences, applicability conditions, and control rules. In particular, we
may try to adapt techniques for learning macros [Korf, 1985b; Shell and Carbonell, 1989;
Driskill and Carbonell, 1996], operator preconditions [Gil, 1992; Wang, 1996], and control
rules [Minton, 1988; Borrajo and Veloso, 1996] to use in the description space.

270 CHAPTER 7. GENERATION AND USE OF MULTIPLE REPRESENTATIONS

If the user provides her own domain descriptions, Shaper uses them to form initial nodes
in the description space. A speci�cation of a domain description includes an abstraction
hierarchy, selection of primary e�ects, and set of prodigy control rules. If the user does not
specify descriptions, Shaper creates an initial node with the \basic" description, which has
no abstraction, primary e�ects, or control rules.

The user may provide procedures for estimating problem complexity and similarity be-
tween problems. The system utilizes this information in its performance analysis. We have
not investigated methods for learning complexity estimates or similarity.

Finally, the user may give a collection of \easy" sample problems, or a function that
generates such problems, for testing the performance of representations before solving hard
problems (Section 10.3).

Chapter 8

Statistical selection among

representations

Good ideas are based on past experience.

| George Polya [1957], How to Solve It.

Problem-solving gain depends on four factors: the gain function, the probability of encoun-
tering each problem, the representation, and the strategy for selecting time bounds (see
Equation 7.4). The system has control over the last two factors, representation and time
bound. The system's control module makes three types of top-level decisions, which deter-
mine the e�ectiveness of problem solving:

1. when to generate new representations;
2. which of the available representations to use for each given problem;
3. what time bound to set for the selected representation.

We now describe statistical techniques for selecting among available representations and
setting time bounds. Then, in Section 11.1, we will describe a mechanism for deciding when
to generate new representations. Shaper uses these techniques to navigate the space of
possible representations. The implemented procedures for choosing representations are very
fast, and their computational cost is usually negligible compared to that of solver and changer
algorithms.

First, we formalize the statistical problem of estimating the expected performance of
a representation (Section 8.1). Then, we derive a solution to this problem (Sections 8.2
and 8.3) and show how to use it in selecting a representation and time bound (Sections 8.4
and 8.5). Finally, we give experimental results that con�rm the e�ectiveness of the selection
algorithm (Section 8.6 and 8.7).

8.1 Selection task

We begin with an outline of our results (Section 8.1.1), and then formalize the selection task
in the Shaper system (Section 8.1.2).

271

272 CHAPTER 8. STATISTICAL SELECTION AMONG REPRESENTATIONS

8.1.1 Previous and new results

Researchers have long realized the importance of automatic evaluation and selection of search
methods, and developed techniques for various special cases of this problem. In particu-
lar, Horvitz described a framework for evaluating algorithms based on trade-o�s between
computation cost and solution quality, and used this framework in automatic selection of
sorting algorithms [Horvitz, 1988]. Breese and Horvitz designed a decision-theoretic algo-
rithm that evaluates di�erent methods of belief-network inference and selects the optimal
method [Breese and Horvitz, 1990]. Hansson and Mayer [1989], and Russell [1990] applied
related evaluation and selection techniques to the problem of choosing promising branches
of a search space.

Russell, Subramanian, and Parr formalized a general problem of selecting among alter-
native problem-solving methods, and used dynamic programming to solve some special cases
of this problem [Russell et al., 1993]. Minton developed an inductive learning system that
con�gures constraint-satisfaction programs, by selecting among alternative search strategies
[Minton, 1996; Allen and Minton, 1996].

Hansen and Zilberstein studied trade-o�s between running time and solution quality
in simple any-time algorithms, and designed a dynamic-programming technique for decid-
ing when to terminate search [Hansen and Zilberstein, 1996]. Mouaddib and Zilberstein
developed a similar technique for hierarchical knowledge-based algorithms [Mouaddib and
Zilberstein, 1995].

We found that the previous results are not applicable to selecting representations in the
Shaper system, because the developed techniques rely on the analysis of a su�ciently large
sample of past performance data. When we apply prodigy search engines to a new domain
or generate new representations, we usually have little or no prior data. Acquisition of
su�cient data is often impractical, because experimentation may prove signi�cantly more
expensive than solving given problems.

We have therefore developed a novel selection technique, which makes the best use of the
available data, even when they do not provide an accurate estimate. We describe a learning
algorithm that accumulates data on the performance of available representations, in the
process of problem solving, and uses these data to select the representation that maximizes
the expected gain.

We also consider the task of setting a time bound for the chosen representation. The
previous results for deciding on the time of terminating any-time algorithms are not ap-
plicable to this task, because prodigy problem solvers do not use any-time behavior and
do not satisfy the assumptions used in past studies. We provide a statistical technique for
selecting time bounds, and demonstrate that determining an appropriate bound is as crucial
for e�cient problem solving as choosing the right representation.

The described techniques are aimed at selecting a representation and time bound before

solving a given problem. We do not provide a mechanism for switching a representation or
revising the selected bound during the search for a solution. Developing a revision mechanism
is an important open problem.

We begin by formalizing the statistical problem of estimating the expected problem-
solving gain (Section 8.1.2). We derive a solution to this problem (Sections 8.2 and 8.3),

8.1. SELECTION TASK 273

show how to use it in selecting a representation and time bound (Sections 8.4), and discuss
heuristics for making a selection in the absence of statistical data (Section 8.5). Then, we
give results from using the developed selection technique (Sections 8.6 and 8.7). Note that
we do not need a perfect estimate of the expected gain; we only need accuracy su�cient for

selecting the right representation and near-optimal time bound.

The statistical technique of Sections 8.2{8.6 chooses a representation and bound that
maximize the average gain, but it does not adjust its choice to a speci�c problem. In terms
of Section 7.3.4, this limitation means that it chooses a �xed representation i and bound B

(see Equation 7.4). It does not construct a function i(prob) for selecting a representation
and functions B1(prob); :::; Bk(prob) for selecting time bounds.

In Chapter 9, we will lift this limitation and describe extensions to the statistical tech-
nique, which account for speci�c problem features. We will describe the use of an estimated
problem size and similarity between problems.

In Chapter 10, we will present an alternative general mechanism for choosing representa-
tions, based on the use of preference rules, and describe its synergy with statistical learning.
We use this mechanism to implement several selection techniques, including learning of pref-
erences, evaluation of representations by solving special test problems, and the use of human
advice.

8.1.2 Example and general problem

We now give an example of a situation where we need to select a representation by analyzing
past performance data. We then generalize this example and state the statistical problem
of choosing from available representations. We use the evaluation model of Section 7.3 in
formalizing the problem.

Suppose that we use the prodigy system to construct plans for transporting packages by
vans between di�erent locations in a city [Veloso, 1994]. We consider the use of three di�erent
representations. The �rst of them is based on the use of the savta search algorithm [Veloso
and Stone, 1995], described in Section 2.2.5, with control rules designed by Veloso [1994]
and P�erez [1995]. The savta algorithm applies the selected actions to the current state of
the simulated transportation world as early as possible; we call the representation based on
this algorithm Apply.

The second representation uses the saba algorithm (see Section 2.2.5) with the same
set of control rules. Since saba delays the application of the selected actions and forces
more emphasis on the backward search [Veloso and Stone, 1995], we call this representation
Delay. Finally, the third representation, called Abstract, uses a combination of savta with
the problem-speci�c version of the Abstractor algorithm, outlined in Section 5.3. Abstractor
constructs an abstraction hierarchy for each given problem, and savta uses the resulting
hierarchy in problem solving.

If we use one of these representations to solve a problem, we may get one of three
outcomes: the system may solve the problem; it may terminate with failure, after exhausting
the available search space; or it may interrupt the search for a solution, upon reaching the
time bound. Apply, Delay, and Abstract are applicable to all problems in the transportation
domain, and they never give the fourth possible outcome, a rejection of the problem.

274 CHAPTER 8. STATISTICAL SELECTION AMONG REPRESENTATIONS

time (sec) and outcome # of # time (sec) and outcome # of

Apply Delay Abstract packs Apply Delay Abstract packs

1 1.6 s 1.6 s 1.6 s 1 16 4.4 s 68.4 s 4.6 s 4

2 2.1 s 2.1 s 2.0 s 1 17 6.0 s 200.0 b 6.2 s 6

3 2.4 s 5.8 s 4.4 s 2 18 7.6 s 200.0 b 7.8 s 8

4 5.6 s 6.2 s 7.6 s 2 19 11.6 s 200.0 b 11.0 s 12

5 3.2 s 13.4 s 5.0 s 3 20 200.0 b 200.0 b 200.0 b 16

6 54.3 s 13.8 f 81.4 s 3 21 3.2 s 2.9 s 4.2 s 2

7 4.0 s 31.2 f 6.3 s 4 22 6.4 s 3.2 s 7.8 s 4

8 200.0 b 31.6 f 200.0 b 4 23 27.0 s 4.4 s 42.2 s 16

9 7.2 s 200.0 b 8.8 s 8 24 200.0 b 6.0 s 200.0 b 8

10 200.0 b 200.0 b 200.0 b 8 25 4.8 s 11.8 f 3.2 s 3

11 2.8 s 2.8 s 2.8 s 2 26 200.0 b 63.4 f 6.6 f 6

12 3.8 s 3.8 s 3.0 s 2 27 6.4 s 29.1 f 5.4 f 4

13 4.4 s 76.8 s 3.2 s 4 28 9.6 s 69.4 f 7.8 f 6

14 200.0 b 200.0 b 6.4 s 4 29 200.0 b 200.0 b 10.2 f 8

15 2.8 s 2.8 s 2.8 s 2 30 6.0 s 19.1 s 5.4 f 4

Table 8.1: Performance of Apply, Delay, and Abstract on thirty transportation problems.

In Table 8.1, we give the results of solving thirty transportation problems, with each
of the three representations. We denote successes by s, failures by f , and interrupts upon
hitting the time bound by b. Note that our data in this example are only for illustrating
the selection problem, and not for the purpose of a general comparison of these three search
techniques. Their relative performance may be very di�erent in other domains. In particular,
the control rules in the transportation domain were developed for savta, which gives it an
advantage over saba.

Even though each representation outperforms the others on at least one transportation
problem (see Table 8.1), a glance at the data reveals that Apply's performance in this domain
is probably the best among the three. We use statistical analysis to con�rm this intuitive
conclusion and to estimate its statistical signi�cance. We also show how to select a time
bound for the chosen representation.

If we identify several distinct problem types in a domain, we may discover that di�erent
types require di�erent representations and time bounds. In other words, the appropriate
choice of a representation may depend on the properties of a problem. We will analyze such
situations in Section 9.3.

We suppose that the user has speci�ed some gain function, and that we have sample
data on the past performance of every representation. We need to select a representation
and time bound that maximize the expected gain G, determined by Equation 7.3.

We can estimate the expected gain for all candidate representations and time bounds,
using past performance data, and select the representation and bound that give the largest
estimate. We distinguish between past terminations and interrupts in deriving the estimate,
but we do not make any distinction among the three types of terminations (successes, fail-
ures, and rejections). We thus consider the following statistical problem.

Problem: Suppose that a representation terminated on n problems, called pt1; :::; ptn, and

8.2. STATISTICAL FOUNDATIONS 275

gave an interrupt (upon hitting a time bound) on m problems, called pb
1
; :::; pbm. The termi-

nation times were t1; :::; tn and the corresponding results were result1; :::; resultn; the interrupt

times were b1; :::; bm. Given a gain function and a time bound B, estimate the expected gain

and determine the standard deviation of the estimate.

The termination results, denoted result1; :::; resultn, may include solutions, failures, and re-
jections. On the other hand, all interrupts by de�nition give the same result, denoted intr.

We need a gain estimate that makes the best use of the available data, even if these data
are not su�cient for statistical signi�cance. We cannot ask for more data, since experimen-
tation is usually much more expensive than solving a given problem. In addition, we should
ensure that statistical computations take little time, especially since the statistical model
does not account for this addition to the overall problem-solving time.

We now give an example of a gain function; we will use this function to evaluate gains in
the transportation domain. Suppose that we get a certain reward R for solving a transporta-
tion problem, and that we have to pay for each second of running time. In this example, if
the system solves a given problem, the overall gain is (R � time). If the system fails or hits
a time bound, it is (�time). Thus, the gain is a linear function of time:

For every prob, time, and soln,
(a) gain(prob; time; soln) = R� time,
(b) gain(prob; time; fail) = �time,
(c) gain(prob; time; intr) = �time.

We assume that this gain function is the same for all three representations in the transporta-
tion example.

Suppose that we choose one of the three representations and use some �xed time bound B.
For each prob, the representation uniquely determines the (�nite or in�nite) running time un-
til termination, time(prob). If we use the example gain function, we may rewrite Equation 7.1
as follows:

gain0(prob; B) =

8><
>:

R� time; if B � time(prob) and the outcome is success
�time; if B � time(prob) and the outcome is failure
�B; if B < time(prob)

We need to select the representation and time bound B that maximize the expected value
of gain0(prob; B).

8.2 Statistical foundations

We now derive a solution to the statistical problem. That is, we evaluate the results of
problem solving with a �xed representation and time bound, and determine the estimate of
the expected gain and the standard deviation of the estimate.

We assume, for convenience, that the termination and interrupt times are sorted in
increasing order; that is, t1 � t2 � ::: � tn and b1 � b2 � ::: � bm. We �rst consider the
case where the time bound B is no larger than the lowest of the past time bounds; that is,

276 CHAPTER 8. STATISTICAL SELECTION AMONG REPRESENTATIONS

10 100
−20

0

20

40

60

APPLY

time bound

ex
pe

ct
ed

 g
ai

ns

10 100
−20

0

20

40

60

DELAY

time bound
10 100

−20

0

20

40

60

ABSTRACT

time bound

Figure 8.1: Dependency of the expected gain on the time bound, for a reward of 10.0 (dash-and-dot
lines), 30.0 (dashed lines), and 100.0 (solid lines). The dotted lines show the standard deviation of

the expected gain for the 100.0 reward.

B � b1. We denote the number of termination times that are no larger than B by c; that is,
tc � B < tc+1.

We estimate the expected gain by averaging the gains that would be obtained in the past,
if we used the time bound B for all problems. The problem solver would terminate without
hitting the time bound on the problems pt

1
; :::; ptc, earning the gains gain(pt1; t1; result1),...,

gain(ptc; tc; resultc). It would hit the time bound on ptc+1
; :::; ptn, resulting in the negative

gains gain(ptc+1; B; intr),..., gain(ptn; B; intr). It would also hit the bound on pb1; :::; pbm,
resulting in the negative gains gain(pb

1
; B; intr),..., gain(ptm; B; intr). The estimate of the

expected gain is equal to the mean of these n+m gain values:

Pc
i=1

gain(pti; ti; resulti) +
Pn

i=c+1
gain(pti; B; intr) +

Pm
j=1

gain(pbj; B; intr)

n +m
: (8.1)

For example, suppose that we solve transportation problems with Abstract, and that
we use the example gain function with reward R = 30:0. The gain of solving a problem
is (30:0 � time) and the negative gain of a failure or interrupt is (�time). If we apply
Equation 8.1 to estimate the gain for the bound B = 6:0, using the data in Table 8.1, we
�nd that the expected gain is 6.0. If we raise the bound to 8.0, the expected gain becomes
11.1.

In Figure 8.1, we show the dependency of the expected gain on time bound for our three
representations. We give the dependency for three di�erent values of the reward R, 10.0
(dash-and-dot lines), 30.0 (dashed lines), and 100.0 (solid lines).

Since we have computed the mean gain for a randomly selected sample of problems,
it may be di�erent from the mean of the overall population. We estimate the standard
deviation of the expected gain using the formula for the deviation of a sample mean:

vuut SqrSum� Sum2

n+m

(n +m) � (n+m� 1)
; (8.2)

8.2. STATISTICAL FOUNDATIONS 277

where

Sum =
Pc

i=1
gain(pti; ti; resulti) +

Pn
i=c+1

gain(pti; B; intr) +
Pm

j=1
gain(pbj; B; intr),

SqrSum =
Pc

i=1
gain(pti; ti; resulti)

2 +
Pn

i=c+1
gain(pti; B; intr)

2 +
Pm

j=1
gain(pbj; B; intr)

2.

This formula is an approximation based on the Central Limit Theorem, which states that
the distribution of sample means is close to normal (see, for example, Mendenhall's textbook
[1987]). The accuracy of the approximation improves with sample size; for thirty or more
sample problems, it is near-perfect.

For example, if we use Abstract with reward 30.0 and time bound 6.0, the standard
deviation of the expected gain is 2.9. In Figure 8.1, we use dotted lines to show the standard
deviation of the gain estimate for the 100.0 reward, for all three representations. The lower
dotted line is \one standard deviation below" the estimate, and the upper line is \one
standard deviation above."

We have so far assumed that B � b1. We now consider the case when B is larger than
d of the past interrupt times; that is, bd < B � bd+1. We cannot use b1; b2; :::; bd directly
in the gain estimate, because the use of the time bound B would cause the problem solver
to run beyond these old bounds. The collected data do not tell us the results of solving
the corresponding past problems with the time bound B. We estimate these results by \re-
distributing" the probabilities of reaching these low time bounds among the other outcomes.

If we had not interrupted the problem solver at b1 in the past, it would have terminated
at some larger time or hit a larger time bound. We may estimate the expected gain using
the data on the past problem-solving episodes in which the solver ran beyond b1. We get
this estimate by averaging the gains for all the larger-time outcomes of problem solving.
To incorporate this averaging into the computation, we remove b1 from the sample and
distribute its chance to occur among the larger-time outcomes.

To implement this re-distribution, we assign weights to all past outcomes. Initially, the
weight of every outcome is 1. After removing b1, we distribute its weight among all the
larger-than-b1 outcomes. If the number of such outcomes is a1, each of them gets the weight
of 1 + 1

a1
. Note that b2; :::; bd are all larger than b1, and thus they all get the new weight.

We next remove b2 from the sample and distribute its weight, which is 1 + 1

a1
, among

the larger-than-b2 outcomes. If the number of such outcomes is a2, then we increase their
weights by (1 + 1

a1
) � 1

a2
; that is, their weights become (1 + 1

a1
) � (1 + 1

a2
). We repeat the

distribution process for all the interrupt times smaller than B; that is, for b3; :::; bd.
We illustrate the re-distribution technique using the data on Abstract's performance (see

Table 8.1). Suppose that we interrupted Abstract on problem 4 after 4.5 seconds of the
execution and on problem 7 after 5.5 seconds, thus obtaining the data shown in Table 8.2(a),
and that we need to estimate the gain for B = 6:0. This bound B is larger than two interrupt
times.

We �rst have to distribute the weight of b1. In this example, b1 is 4.5 and there are 21
problems with larger times. We remove 4.5 from the sample data and increase the weights
of the larger-time outcomes from 1 to 1 + 1

21
= 1:048 (see Table 8.2b). We next perform the

distribution for b2, which is 5.5. The table contains 15 problems with larger-than-b2 times.
We distribute b2's weight, 1.048, among these 15 problems, thus increasing their weight to
1:048 + 1:048

15
= 1:118 (Table 8.2c).

278 CHAPTER 8. STATISTICAL SELECTION AMONG REPRESENTATIONS

Abstract's

time

1 1.6 s

2 2.0 s

3 4.4 s

4 4.5 b

5 5.0 s

6 81.4 s

7 5.5 b

8 200.0 b

9 8.8 s

� � �

29 10.2 f

30 5.4 f

(a)

�!

weight time

1.000 1.6 s

1.000 2.0 s

1.000 4.4 s

{ {

1.048 5.0 s

1.048 81.4 s

1.048 5.5 b

1.048 200.0 b

1.048 8.8 s

� � �

1.048 10.2 f

1.048 5.4 f

(b)

�!

weight time

1.000 1.6 s

1.000 2.0 s

1.000 4.4 s

{ {

1.048 5.0 s

1.118 81.4 s

{ {

1.118 200.0 b

1.118 8.8 s

� � �

1.118 10.2 f

1.048 5.4 f

(c)

Table 8.2: Distributing the weights of interrupt times among the larger-time outcomes.

We have thus removed the interrupt times b1; b2; :::; bd from the sample, and assigned
weights to the termination times and remaining interrupt times. We denote the resulting
weights of the termination times t1; :::; tc by u1; :::; uc; recall that these termination times are
no larger than B. All termination and interrupt times larger than B have the same weight,
which we denote by u�. Note that the sum of the weights is equal to the number of problems
in the original sample; that is,

Pc
i=1

ui + (n+m� c� d) � u� = n+m.
We have obtained n +m � d weighted times. We use them to compute the estimate of

the expected gain, which gives us the following expression:Pc
i=1 ui � gain(pti; ti; resulti) + u� �

Pn
i=c+1 gain(pti; B; intr) + u� �

Pm
j=d+1 gain(pbj ; B; intr)

n+m
: (8.3)

Similarly, we use the weights in computing the standard deviation of the gain estimate:vuut SqrSum� Sum2

n+m

(n +m) � (n+m� d� 1)
; (8.4)

where

Sum =
Pc

i=1 ui � gain(pti; ti; resulti) + u� �
Pn

i=c+1 gain(pti; B; intr) + u� �
Pm

j=d+1 gain(pbj; B; intr),

SqrSum =
Pc

i=1 ui�gain(pti; ti; resulti)
2+u��

Pn
i=c+1 gain(pti; B; intr)2+u��

Pm
j=d+1 gain(pbj; B; intr)2.

The application of these formulas to the data in Table 8.2(c), for Abstract with reward 30.0
and time bound 6.0, gives the expected gain 6.1 and the standard deviation 3.0.

If B is larger than the largest of the past bounds (that is, B > bm) and the largest time
bound is larger than all past termination times (that is, bm > tn), then the re-distribution
procedure does not work. We need to distribute the weight of bk among the larger-time
outcomes, but the sample has no such outcomes. In this case, the data are not su�cient for
the statistical analysis because we do not have any past experience with large enough time
bounds.

8.3. COMPUTATION OF THE GAIN ESTIMATES 279

8.3 Computation of the gain estimates

We now describe an algorithm that computes the gain estimates and their deviations ac-
cording to Equations 8.3 and 8.4, for multiple values of the time bound B.

We have assumed in deriving the gain estimate that we try to solve each problem once,
and do not return to the same problem later. In practice, if we have interrupted the search,
we may later return to the same problem and continue the search from the point where we
have stopped. Note that we need to store the expanded search space in order to continue
the search later. Thus, the reuse of the previously expanded spaces requires extra memory,
but it may save signi�cant time.

We develop a gain-estimate algorithm that takes into account the reuse of expanded
spaces. We modify the equations for the gain estimate and its deviation, to account for the
space reuse, and then give the pseudocode for statistical computations.

Suppose that we have tried to solve a problem prob in the past and hit a time bound Bo

(where the subscript \o" stands for \old"). We may store the complete space of the inter-
rupted search, or part of the space, expanded until reaching some bound bo, where bo � Bo.
If we reuse the space expanded by the time bo, we refer to bo as the reused time.

Assume that, if we did not reuse an old search space, then the running time until ter-
mination on prob would be time(prob). If we reuse the search space expanded by bo, the
running time until termination is time(prob)� bo.

Now suppose that we are solving prob again, with the same representation and a new
time bound B. We measure time from the beginning of the �rst problem-solving attempt.
That is, if we reuse the space expanded in time bo, then the new search begins at time bo
and reaches the bound at time B; the running time of the new problem-solving attempt is
bounded by (B � bo). Since we know that the representation hits the bound Bo without
solving the problem, we must set a large bound for the new attempt; that is, B > Bo.

We modify Equation 7.1 for solving a problem with time bound B and reused time bo:

gain0(prob; B) =

(
gain(prob; time(prob)� bo; result(prob)); if B � time(prob)
gain(prob; B � bo; intr); if B < time(prob)

We next determine the expected value of the problem-solving gain, based on the past
performance data. First, we remove the previous interrupted attempt to solve the given
problem from the performance data. We denote the termination times in the resulting
sample by t1; :::; tn and interrupt times by b1; :::; bm.

We denote the number of past termination times that are no larger than Bo by e; that is,
te � Bo < te+1. Note that, since Bo < B, we have e � c. We know that time(prob) > Bo and,
hence, we must not use the past termination times t1; :::; te in computing the expected gain.
We remove these times from the sample, and use the remaining termination times te+1; :::; tn
and interrupt times b1; :::; bm to estimate the gain. Thus, the sample now comprises (n+m�e)
past outcomes.

We apply the estimation technique of Section 8.2 to the reduced sample. If some inter-
rupt times b1; :::; bd are smaller than B, we distribute their weights among the larger-time
outcomes. We denote the resulting weights of the termination times te+1; :::; tc by u

0
e+1

; :::; u0c,
and the weight of all other times by u0�. The sum of all weights is equal to the number of

280 CHAPTER 8. STATISTICAL SELECTION AMONG REPRESENTATIONS

c number of the already processed termination times;

the next termination time to process will be tc+1

d number of the already processed interrupt times

h number of the already processed time bounds

u weight assigned to the times that are larger than the current time bound Bh+1

T Sum weighted sum of the gains for the processed terminations;

that is,
Pc

i=e+1
u0i � gain(pti; ti � bo; resulti)

I Sum unweighted sum of the interrupt gains for the current bound Bh+1;

that is,
Pn

i=c+1
gain(pti; B � bo; intr) +

Pm
j=d+1

gain(pbj ; B � bo; intr)

Sum weighted sum of the gains for all sample problems, for the current bound Bh+1

T SqrSum weighted sum of the squared gains for the processed terminations;

that is,
Pc

i=e+1
u0i � gain(pti; ti � bo; resulti)

2

I SqrSum unweighted sum of the squared interrupt gains for the bound Bh+1

SqrSum weighted sum of the squared gains for all sample problems, for the bound Bh+1

Figure 8.2: Variables used in the gain-estimate algorithm in Figure 8.3.

problems in the reduced sample; that is,
Pc

i=e+1
u0i + (n +m� c� d) � u0� = n +m � e. We

compute the estimate of the expected gain as follows:Pc
i=e+1 u

0
i �gain(pti; ti�bo; resulti)+u0� �

Pn
i=c+1 gain(pti; B�bo; intr)+u0� �

Pm
j=d+1 gain(pbj ; B�bo; intr)

n+m� e
:

(8.5)

The standard deviation of this estimate isvuut SqrSum� Sum2

n+m�e
(n +m� e) � (n+m� e� d� 1)

; (8.6)

where

Sum =
Pc

i=e+1
u0i � gain(pti; ti � bo; resulti) + u0� �

Pn
i=c+1

gain(pti; B � bo; intr)

+u0� �
Pm

j=d+1
gain(pbj; B � bo; intr);

SqrSum =
Pc

i=e+1
u0i � gain(pti; ti� bo; resulti)

2+u0� �
Pn

i=c+1
gain(pti; B� bo; intr)

2

+u0� �
Pm

j=d+1
gain(pbj; B � bo; intr)

2:

We now describe the computation of the gain estimate and its deviation, for multiple
candidate bounds B1; :::; Bl. We list the variables used in the computation in Figure 8.2 and
give the pseudocode in Figure 8.3.

The algorithm determines weights and computes gain estimates in one pass through
the sorted list of termination times, interrupt times, and time bounds. When processing a
termination datum, the algorithm increments the sum of the weighted gains and the sum
of their squares. When processing an interrupt datum, the algorithm modi�es the weight
value. When processing a time bound, the algorithm uses the accumulated sums of gains
and squared gains to compute the gain estimate and deviation for this bound.

Note that we execute Step 2 of the algorithm at most n � e times, Step 3 at most m
times, and Step 4 at most l times. We compute one value of the gain function at Step 2, and

8.3. COMPUTATION OF THE GAIN ESTIMATES 281

Estimate-Gains

The input of the algorithm includes: the gain function gain; the sorted list of termination times

te+1; :::; tn, with the corresponding problems pte+1; :::; ptn and results resulte+1; :::; resultn; the sorted

list of interrupt times b1; :::; bm, with the corresponding problems pb1; :::; pbm; a sorted list of candidate

time bounds B1; :::; Bl; and the reused time bo. The variables used in the computation are described in

Figure 8.2.

Set the initial values:

c := e; d := 0; h := 0

u := 1; T Sum := 0; T SqrSum := 0

Repeat the computations until �nding the gains for all time bounds; that is, until h = l:

1. Select the smallest among the following three times: tc+1, bd+1, and Bh+1.

2. If the termination time tc+1 is selected, increment the related sums:

T Sum := T Sum+ u � gain(ptc+1; tc+1 � bo; resulti)

T SqrSum := T SqrSum+ u � gain(ptc+1; tc+1 � bo; resulti)
2

c := c+ 1

3. If the interrupt time be+1 is selected:

If no termination times are left (that is, c = n),

then terminate (the data are not su�cient to estimate the gains for the remaining bounds).

Else, distribute the interrupt's weight among the remaining times, by incrementing u and d:

u := u+ u � n+m�e�c�d
n+m�e�c�d�1

d := d+ 1

4. If the time bound Bh+1 is selected:

First, compute the unweighted sum of interrupt gains and the sum of their squares:

I Sum :=
Pn

i=c+1 gain(pti; Bh+1 � bo; intr) +
Pm

j=d+1 gain(pbj ; Bh+1 � bo; intr)

I SqrSum :=
Pn

i=c+1 gain(pti; Bh+1 � bo; intr)
2 +

Pm
j=d+1 gain(pbj; Bh+1 � bo; intr)

2

Next, compute the overall sums of the sample-problem gains and their squares:

Sum := T Sum+ u � I Sum

SqrSum := T SqrSum+ u � I SqrSum

Now, compute the gain estimate and deviation, for the bound Bh+1:

Gain estimate: Sum
n+m�e

Estimate deviation:

r
SqrSum�Sum2=(n+m�e)
(n+m�e)�(n+m�e�d�1)

Finally, increment the number of processed bounds:

h := h+ 1

Figure 8.3: Computing the gain estimates and estimate deviations.

282 CHAPTER 8. STATISTICAL SELECTION AMONG REPRESENTATIONS

n+m�e�d di�erent values at Step 4. If the time complexity of computing the gain function
is Comp(gain), than the overall complexity of the algorithm is O(l �(n+m�e) �Comp(gain)).

The computation of I Sum and I SqrSum in Step 4 is the most time-consuming part of
the algorithm; however, we may signi�cantly speed up this computation for some common
special cases of the gain function. We consider two special cases, which allow us to compute
the gain estimates in linear time.

First, suppose that the interrupt gains do not depend on a speci�c problem; that is, we
have an interrupt gain function gain

i
(time) such that:

For every prob and time,
gain(prob; time; intr) = gain

i
(time).

We then compute I Sum and I SqrSum in constant time:

I Sum = (n +m� c) � gaini(Bh+1 � bo),
I SqrSum = (n+m� c) � gain

i
(Bh+1 � bo)

2.

Since we execute Step 4 at most l times, we need to compute at most l values of gain
i
and,

hence, the overall time complexity of the algorithm is O((l + n � e) � Comp(gain) + m).
In particular, if the computation of the gain function takes constant time, then the overall
complexity is linear, O(l + n+m� e).

Next, we consider a gain function that satis�es Constraints 8 and 9 of Section 7.3.2.
Then, the interrupt gain is proportional to the running time:

gain(prob; time; intr) = time � gain(prob; 1; intr):

We use this property in computing the values of I Sum and I SqrSum:

I Sum = (Bh+1 � bo) �
�Pn

i=c+1
gain(pti; 1; intr) +

Pm
j=d+1

gain(pbj; 1; intr)
�
,

I SqrSum = (Bh+1 � bo) �
�Pn

i=c+1
gain(pti; 1; intr)

2 +
Pm

j=d+1
gain(pbj; 1; intr)

2

�
.

We denote the four summation terms in this computation as follows:

Sumc =
Pn

i=c+1
gain(pti; 1; intr),

SqrSumc =
Pn

i=c+1
gain(pti; 1; intr)

2,

Sumd =
Pm

j=d+1
gain(pbj; 1; intr),

SqrSumd =
Pm

j=d+1
gain(pbj; 1; intr)

2.

We may pre-compute these sums, for all values of c and d, before executing the statistical
algorithm. We present pseudocode for �nding them in Figure 8.4; its time complexity is
O((m+ n� e) � Comp(gain)).

We use the pre-computed sums at Step 4 of the statistical algorithm, which allows us
to �nd the values of I Sum and I SqrSum in constant time. The overall complexity of the
algorithm, including the pre-computation, is O((m + n � e) � Comp(gain) + l). If we can
compute each gain value in constant time, then the complexity is O(l + n+m� e).

Before calling the statistical algorithm, we need to sort the termination times, interrupt
times, and time bound. We also need to remove the times t1; :::; te from the sample of past

8.4. SELECTION OF A REPRESENTATION AND TIME BOUND 283

Pre-Compute-Sums(gain; pte+1; :::; ptn; pb1; :::; pbm)

Set the initial values:

Sumn := gain(ptn; 1; intr); SqrSumn := gain(ptn; 1; intr)
2

Summ := gain(pbm; 1; intr); SqrSumm := gain(pbm; 1; intr)
2

Repeat for c from n� 1 downto e:

Sumc := Sumc+1 + gain(ptc; 1; intr)

SqrSumc := SqrSumc+1 + gain(ptc; 1; intr)
2

Repeat for d from m� 1 downto 1:

Sumd := Sumd+1 + gain(pbd; 1; intr)

SqrSumd := SqrSumd+1 + gain(pbd; 1; intr)
2

Figure 8.4: Pre-computing the sums of interrupt gains.

data. The complexity of these operations is O((l + n+m) � log(l + n+m)), but in practice
they take much less than the rest of the computation.

We implemented the algorithm in Common Lisp and tested it on a Sun 5, the same
computer as we used for running problem solvers and description changers. For the example
gain function described in the end of Section 8.1.2, the running time of the implemented
algorithm is about (l + n+m) � 3 � 10�4 seconds.

8.4 Selection of a representation and time bound

We describe the use of the statistical estimate to choose among representations and to
determine appropriate time bounds. We provide heuristics for combining the exploitation of
past experience with exploration of new alternatives, and for making a choice in the absence
of past data.

The basic technique is to estimate the gain for a number of time bounds, for each available
representation, and select the representation and time bound that maximize the gain. For
instance, if we solve problems in the transportation domain and use the example gain function
with reward 30.0, than the best choice is Apply with the time bound 11.6, which gives the
expected gain of 14.0. This choice corresponds to the maximum of the dashed lines in
Figure 8.1. If the expected gain for all time bounds is negative, than we are better o� not
solving the problem at all. For example, if the only available representation is Delay and the
reward is 10.0 (see the dash-and-dot line in Figure 8.1), we should skip the problem.

We describe a technique for incremental learning of the performance of available repre-
sentations. We may begin problem solving with no data on the performance of available
representations, or with some sample of past results. We accumulate additional data as we
solve more problems. For each new problem, we use statistical estimates to select a repre-
sentation and time bound. After using the selected representation, we add the result to the
performance data.

Note that we have to choose a representation and time bound even if we have no past

284 CHAPTER 8. STATISTICAL SELECTION AMONG REPRESENTATIONS

experience. Also, we sometimes need to deviate from the maximal-expectation choice in
order to explore new opportunities. If we began with no past data and always used the
selection that maximizes the expected gain, we would be stuck with the representation that
yielded the �rst positive gain, and we would never choose a time bound higher than the �rst
termination time.

The use of the statistical estimates in incremental learning causes a deviation from rig-
orous statistics: the resulting termination and interrupt times are not independent, because
the representation and time bound used for each problem depend on the times for solving
the previous problems. In spite of this violation of rigor, the technique gives good results in
practice.

We have not constructed a statistical model for combining exploitation and exploration.
Instead, we provide a heuristic solution, which has worked well for selecting representations
in the Shaper system. We �rst describe the choice of candidate time bounds, for which
we estimate problem-solving gains (Section 8.4.1). We consider the task of learning an
appropriate time bound for a �xed representation (Section 8.4.2), and then show how to
select a representation (Section 8.4.3).

8.4.1 Choice of candidate bounds

We have described a statistical algorithm that estimates gains for a �nite list of candidate
time bounds (see Figure 8.3). We thus need to select candidate bounds based on the available
performance data.

We use past termination times as candidate time bounds, and compute expected gains
only for these bounds. If we computed the gain for some other time bound B, we would
get a smaller estimate than for the closest lower termination time ti, where ti < B < ti+1.
Extending the time bound from ti to B would not increase the number of terminations on
the past problems and, hence, it would not increase the gain estimate.

If some of the previously solved problems gave negative gains, we prune the corresponding
termination times from the selection of candidate bounds. To put it formally, suppose that
the data sample contains a termination time ti, with the corresponding problem pti and
resulti. If gain(pti; ti; resulti) � 0, then we do not use ti as a candidate bound, because this
bound would give a smaller gain estimate than ti�1.

Now suppose that we have tried to solve some problem in the past and hit a time
bound Bo, and that we need to estimate gains for a new attempt to solve this problem.
Then, all candidate bounds must be larger than Bo. Thus, if te � Bo < te+1, we use only
te+1; :::; tn as candidate bounds. If we reuse the expanded search space, with the reused
time bo, then we modify the condition for pruning the termination times that give negative
gains: gain(pti; ti � bo; resulti) � 0.

We multiply the selected bounds by 1.001, in order to avoid the chance of interrupting
the solver too early because of rounding errors. If several candidate bounds are \too close"
to each other, we drop some of them, to reduce the computation. In our implementation,
we consider two bounds too close if they are within the factor of 1.05 from each other.

We summarize the algorithm for generating candidate bounds in Figure 8.5. We used
this algorithm to select time bounds for constructing the graphs in Figure 8.1.

8.4. SELECTION OF A REPRESENTATION AND TIME BOUND 285

Generate-Bounds(gain; te+1; :::; tn; pte+1; :::; ptn; resulte+1; :::; resultn; bo)

Set the initial values:

Bounds := ; (list of candidate bounds)

B := 0 (largest generated bound; 0 if none)

Repeat for i from e+ 1 to n:

If ti � 1:05 �B and gain(pti; ti � bo; resulti) > 0, then:

B := 1:001 � ti

Bounds := Bounds [fBg

Figure 8.5: Generating candidate time bounds, based on the past termination times.

8.4.2 Setting a time bound

We consider the use of a �xed representation to solve a sequence of problems, and describe
a technique for learning an appropriate time bound in the process of problem solving. To
illustrate the use of this technique, we learn time bounds for Apply, Delay, and Abstract in
the transportation domain.

If we have no previous data on using a representation, we set some default bound. We
will discuss heuristics for selecting this initial bound in Section 8.5.1. If we use the example
gain function, described in the end of Section 8.1.2, we set an initial bound equal to the
reward R. This heuristic is based on the observation that, for prodigy search engines,
the probability of solving a problem, say, within the next second, usually declines with the
passage of search time. If a solver has not terminated within half a minute, chances are it
will not �nd a solution in the next half minute either. Thus, if the reward is 30.0 and the
solver has already run for 30.0 seconds, it is time to interrupt the search.

Now suppose that we have accumulated some performance data, which enable us to
determine the time bound that maximizes the gain estimate. To encourage exploration, we
select the largest bound whose gain estimate is \not much di�erent" from the maximum. Let
us denote the maximal estimate by gmax and its standard deviation by �max. Suppose that the
estimate for some bound is g and its deviation is �. Then, the expected di�erence between
the gain g and the maximal gain is gmax � g. If we assume that the estimates are normally

distributed, then the standard deviation of the expected di�erence is
q
�2
max

+ �2. Note that
this estimate of the deviation is an approximation, because the distribution for small samples
may be Student's rather than normal, and because gmax and g are not independent variables,
as they are computed from the same data.

We say that g is \not much di�erent" from the maximal gain if the ratio of the expected
di�erence to its deviation is bounded by some constant. In most experiments, we set this
constant to 0.1, which tends to give good results:

gmax � gq
�2
max

+ �2

� 0:1:

We thus select the largest time bound whose gain estimate g satis�es this condition. We

286 CHAPTER 8. STATISTICAL SELECTION AMONG REPRESENTATIONS

10 20 30
0

5

10

15

20

25

30

APPLY

problem’s number

ru
nn

in
g

tim
e

an
d

bo
un

ds

10 20 30
0

5

10

15

20

25

30

DELAY

problem’s number
10 20 30

0

5

10

15

20

25

30

ABSTRACT

problem’s number

Figure 8.6: Results of incremental learning of a time bound: running times (solid lines), time

bounds (dotted lines), and maximal-gain time bounds (dashed lines). The successes are marked by

circles and the failures by pluses.

have also experimented with other constants, from 0.02 to 0.5, for bounding gmax�gp
�2
max

+�2
. We

describe the results of these experiments in Sections 12.3, 13.3, 14.3, and 15.3.
In Figure 8.6, we present the results of this selection strategy, with the bounding con-

stant 0.1. In this experiment, we determine time bounds for the transportation domain; we
use the example gain function with a reward of 30.0. We apply each of the three representa-
tions to solve the thirty transportation problems from Table 8.1. The horizontal axes show
the number of a problem, from 1 to 30, and the vertical axes are the running time. The
dotted lines show the selected time bounds and the dashed lines mark the time bounds that
give the maximal gain estimates. The solid lines show the running times; they touch the
dotted lines where the system hits the time bound. The successfully solved problems are
marked by circles and the failures are shown by pluses.

Apply's total gain is 360.3, which gives an average of 12.0 per problem. If we used the
maximal-gain time bound, 11.6, for all problems, the average gain would be 14.0 per problem.
Thus, the use of incremental learning has yielded a near-optimal gain, in spite of the initial
ignorance. The time bounds used with this representation (dotted line) converge to the
estimated maximal-gain bounds (dashed line), since the deviations of the gain estimates
decrease as we solve more problems. Apply's estimate of the maximal-gain bound, after
solving all problems, is 9.6. This estimate di�ers from the 11.6 bound, based on the data
in Table 8.1, because the use of bounds that ensure a near-maximal gain has prevented
su�cient exploration.

Delay's total gain is 115.7, or 3.9 per problem. If we used the data in Table 8.1 to �nd
the optimal bound, which is 6.2, and solved all problems with this bound, we would earn
5.7 per problem. Thus, the incremental-learning gain is about two-thirds of the gain that
could be obtained based on advance knowledge. Finally, Abstract's total gain is 339.7, or
11.3 per problem. The estimate based on Table 8.1 gives the bound 11.0, which would result
in earning 12.3 per problem. Unlike Apply, both Delay and Abstract have found the optimal
bound.

Note that the main \losses" in incremental learning occur on the �rst ten problems, when

8.4. SELECTION OF A REPRESENTATION AND TIME BOUND 287

the past data are not su�cient for selecting an appropriate time bound. After this initial
period, the choice of a time bound becomes close to the optimal.

Also note that the choice of a time bound converged to the optimal in two out of three
experiments. Further tests have shown that insu�cient exploration prevents �nding the
optimal bound in about half of all cases. If we encourage more exploration by increasing
the upper limit for gmax�gp

�2
max

+�2
, then the selected bound converges to the optimal more often;

however, the overall performance worsens due to larger time losses on unsolved problems.
The total time of the statistical computations while solving the thirty problems is 0.26

seconds, which makes less than 0.01 per problem. This time is negligible in comparison
with the problem-solving time, which averages at 6.5 seconds per problem for Apply, 7.7 per
problem for Delay, and 7.1 per problem for Abstract.

8.4.3 Selecting a representation

We next describe the use of incremental learning to select an appropriate representation,
from the pool of available representations.

If we have no data on the performance of some representation, we always select this
unknown representation. The optimistic use of the unknown encourages exploration during
early stages of learning. In Section 8.5.4, we will discuss the motivation underlying this ex-
ploratory strategy. If we have no data on several representations, we use preference heuristics
to select among them (Chapter 10); if there is no applicable heuristics, we make a random
selection.

If we have past performance data for all representations, we �rst select a time bound for
each representation, using the technique of Section 8.4.2, and determine the gain estimates
and their standard deviations for the selected time bounds. Then, for every representation,
we estimate the probability that it is the best among the available representations. Finally,
we make a weighted random selection; the chance of choosing a representation is equal to
the probability that it is the best. This probabilistic selection results in a frequent use
of representations that perform well, but it also encourages some exploratory use of poor
performers.

We now describe a technique for estimating the probability that a representation is the
best. Suppose that we have k di�erent representations. We select one of them, whose
gain estimate is g and deviation of the estimate is �, and compare it with the other available
representations. Recall that we compute g from the sample of past performance data, for the
selected time bound. We denote the expected problem-solving gain, for the selected bound,
by G; we have de�ned this value in Equation 7.3. Then, g is an unbiased statistical estimate
of G. Finally, we denote the gain estimates of the other representations by g1; :::; gk�1 and
the corresponding deviations by �1; :::; �k�1.

First, suppose that we know the exact value of G; that is, we know the mean gain
computed over the population of all possible problems (see Equation 7.3). The selected
representation is the best if G is larger than the expected gains of the other available repre-
sentations. We use the statistical z-test to determine the probability that G is the largest
among the expected gains.

We begin by �nding the probability that G is greater than the expected gain of another

288 CHAPTER 8. STATISTICAL SELECTION AMONG REPRESENTATIONS

representation i, whose gain estimate is gi and deviation is �i. The expected di�erence
between the two gains is G � gi, and the standard deviation of the di�erence is �i. The
z value is the ratio of the expected di�erence to its standard deviation; that is, z = G�gi

�i
.

The z-test converts this value into the probability that the expected gain for the selected
representation is larger than that for representation i. Note, however, that the z-test uses the
value of G, which cannot be found from the sample data. We denote the resulting probability
by pi(G).

We next determine the probability p(G) that G is larger than the expected gains of all
other representations. If the gain estimates g1; :::; gk�1 are independent, the probabilities
p1(G); :::; pk�1(G) are also independent, and we compute p(G) as their product:

p(G) =
k�1Y
i=1

pi(G):

Since we cannot compute G from the available data, we need to use its estimate g in
the statistical computation. The distribution of the possible values of G is approximately
normal, with mean g and standard deviation �; that is, its probability density function is as
follows:

f(G) =
e�(G�g)2=(2�2)

� �
p
2�

:

To determine the probability p that the selected representation is the best, we integrate
over possible values of G:

p =
Z 1

�1
p(G) � f(G) dG =

Z 1

�1

k�1Y
i=1

pi(G) � e
�(G�g)2=(2�2)

� �
p
2�

dG : (8.7)

Note that we have used two simplifying assumptions to derive this expression. First, we
have assumed that the sample means g; g1; :::; gk�1 are normally distributed. If we compute
these values from small samples of past data, their distributions may not be normal. Second,
we have considered the distributions of g; g1; :::; gk�1 to be independent. If we use incremental
learning, then the choice of a representation for each problem depends on the representations
used for the previous problems, and the data samples collected for di�erent representations
are not independent.

Even though Equation 8.7 is an approximation, it is satisfactory for the learning algo-
rithm. We use the probability p only for our \occasional exploration" heuristic, which does
not require high accuracy in determining the exploration frequency. We implemented the
computation of p using numerical integration on the interval from g � 4� to g + 4�, with
step 0:1�. That is, we approximate the integral by the following sum:

pbest =
40X

j=�40

k�1Y
i=1

pi(g + 0:1j�) � e
�(0:1j�)2=(2�2)

10 �
p
2�

: (8.8)

For example, suppose that we need to select among Apply, Delay, and Abstract based on
the data in Table 8.1. We select bound 13.1 for Apply, which gives a gain estimate of 13.5
with a deviation of 3.3; bound 5.3 for Delay, with a gain estimate of 5.3 and its deviation

8.5. SELECTION WITHOUT PAST DATA 289

10 20 30 40 50 60 70 80 90

0

10

20

30

problem’s number

ru
nn

in
g

tim
e

Figure 8.7: Results of incremental selection of a representation and time bound, on ninety trans-

portation problems. The graph shows the running times (solid line), successes (o) and failures (+),

and the selection made among Apply (o), Delay (x), and Abstract (�).

3.0; and bound 13.2 for Abstract, with a gain of 11.2 and deviation 3.2. We use Equation 8.8
to determine the probability that Apply is better than the other two representations, which
gives us 0.68. Similarly, the probability that Delay is best is 0.01, and Abstract's chance
of being best is 0.31. We now choose one of the representations randomly; the chance of
choosing each representation equals its probability of being the best.

We show the results of using this strategy in the transportation domain, for the example
gain function with the reward of 30.0, in Figure 8.7. In this experiment, we �rst use the thirty
problems from Table 8.1 and then sixty additional transportation problems. The horizontal
axis shows the number of a problem and the vertical axis is the running time. We mark
successes by circles and failures by pluses. The rows of symbols below the curve show the
choice of a representation: a circle for Apply, a cross for Delay, and an asterisk for Abstract.

The total gain is 998.3, which gives an average of 11.1 per problem. The overall time of
the statistical computations is 0.78, or about 0.01 per problem. The selection converges to
the use of Apply with the time bound 12.7, which is optimal for this set of ninety problems.
If we used the �nal selection on all the problems, we would earn 13.3 per problem. Note that
the convergence is slower than in the bound-selection experiments (see Figure 8.6), because
we test each representation only on about a third of all problems.

8.5 Selection without past data

When the system faces a new problem domain, it has no past performance data. Thus, it
needs to select the initial representation and time bound without performance analysis. It
also has to decide when to switch from this initial selection to incremental learning.

We provide general heuristics for these decisions, and allow the user to overwrite them
with domain-speci�c heuristics. We have not used statistics in developing the general heuris-
tics; improving them is an open problem, which requires an analytical or empirical investi-
gation of initial choices.

We discuss methods for determining initial time bounds (Section 8.5.1), describe a heuris-

290 CHAPTER 8. STATISTICAL SELECTION AMONG REPRESENTATIONS

tic computation of these bounds (Section 8.5.2), and identify some of their drawbacks (Sec-
tion 8.5.3). Then, we give heuristics for switching to incremental learning and for the initial
choice of representation (Section 8.5.4).

8.5.1 Initial time bounds

We describe the user's options for specifying the computation of initial bounds, and present
the system's default heuristic for this computation.

User-speci�ed bounds

The user may provide Lisp procedures that determine initial time bounds, which take prece-
dence over the default heuristic. She may specify a separate procedure for each domain and
each gain function. The procedure inputs a representation and, optionally, a speci�c prob-
lem; it must output a positive real value. If the value does not depend on the representation
and problem, the user may specify it by a number rather than a procedure.

Alternatively, the user may provide initial-bound procedures that are applicable to mul-
tiple domains and gain functions. These procedures input not only a representation and
problem, but also a domain and gain function. For every such procedure, the user may
specify a condition that limits its applicability. If several procedures are applicable for the
same domain and gain, the system chooses one of them at random.

Default bounds

We next describe a general heuristic for computing initial time bounds, used in the absence
of domain-speci�c heuristics.

Note that the incremental-learning procedure never considers time bounds that are larger
than the initial bound (see Section 8.4.2); therefore, the initial choice should overestimate

the optimal bound. On the other hand, an unnecessarily large initial bound may cause high
losses at the beginning of learning (for example, see Figures 8.6 and 8.7).

The system chooses an initial bound B that satis�es the following condition, for all
problems in the domain and all possible results; this condition almost always gives a larger-
than-optimal bound:

gain(prob; B; result) � 0: (8.9)

We now give an informal justi�cation for this heuristic. Note that, if we get a negative
gain for solving a problem, then we should have skipped the problem rather than solving
it. On the other hand, a larger-than-B time bound would encourage the system to solve
negative-gain problems. Thus, the optimal bound should be no larger than B.

If the payment for time is linear, we may provide additional intuitive support. For
prodigy search engines, the probability of solving a problem, say, within the next second,
usually declines with the passage of search time. If the system has not solved the problem
within B seconds, chances are it will not �nd a solution after running for B more seconds.
On the other hand, possible rewards for solving the problem are smaller than the cost of a
B-second run. Thus, if the system has already reached the bound B, it is time to interrupt
the search.

8.5. SELECTION WITHOUT PAST DATA 291

We enforce a global upper limit on all time bounds, which is currently set to 1800.0
seconds, that is, thirty minutes. The system never goes over this limit, even if Inequality 8.9
requires a larger bound.

The reason for this particular limit is the memory requirements of prodigy. We have
run the system on a Sun 5 computer with 256-megabyte memory, which can support thirty
to forty minutes of search. If the search engine runs longer, it exhausts the available memory
and causes and error termination.

Note, however, that the use of some global limit would be essential even if the system
did not cause memory problems. The purpose of this limit is to prevent impractically large
initial bounds, which may lead to huge losses.

8.5.2 Computation of initial bounds

We describe two techniques for computing initial time bounds, based on Inequality 8.9. The
�rst technique is for linear gain functions, which satisfy Constraints 8 and 9 of Section 7.3.2.
The second technique is for gains de�ned through solution quality.

In practice, most gain functions fall into one of these two categories. If a function does
not belong to either category, then the system uses the maximal allowed bound, 1800.0
seconds, which may result in signi�cant initial losses.

Linear gain function

If problem-solving gain satis�es Constraints 8 and 9, then the user may specify it by two
functions: the payment for a unit time, pay(prob), and the reward for solving the problem,
R(prob; result). The system computes the gain as follows:

gain(prob; time; result) = �time � pay(prob) +R(prob; result):

For this speci�cation of a gain function, Shaper computes the initial bound B through
the minimum of pay and maximum of R, taken over all problems:

B =
maxR(prob; result)

min pay(prob)
:

The resulting bound satis�es Inequality 8.9 for all problems.
If pay and R are not constants, the user should provide some means for determining the

minimum of pay and the maximum of R. If she does not, the system computes pay for several
problems and uses the minimum of the resulting values as an approximation of the overall
minimum. Similarly, it �nds the R values for several problems and uses their maximum.

Gain de�ned through quality

If gain satis�es Constraint 7 of Section 7.3.2, then the user may specify a solution-quality
function, quality(prob; result), and express gain through quality, gainq(prob; time; quality).
Given this speci�cation, the system can compute a time bound that satis�es Inequality 8.9
for a speci�c given problem, though not for all problems.

292 CHAPTER 8. STATISTICAL SELECTION AMONG REPRESENTATIONS

The computation requires the use of an upper bound on solution quality for a given
problem; we denote this bound by qual-bd(prob). The user should provide a means for
�nding such a bound. In practice, most quality functions have a readily computable bound.
For example, if we de�ne the quality through the total cost of operators in the plan (see
Section 7.3.2), then we compute its upper bound as the quality of a zero-cost solution.

Observe that the function gainq(prob; time; qual-bd(prob)) is an upper bound on prob's
gain, for each speci�c running time. Therefore, if a time bound B satis�es the following
equation, then it also satis�es Inequality 8.9:

gainq(prob; B; qual-bd(prob)) = 0:

The function gainq is a decreasing function of time (see Constraint 1 in Section 7.3.1),
which allows us to solve the equation numerically, by a binary search. The system searches
for B between 0 and the 1800.0-second limit. If the solution to the equation is greater than
1800.0, the system chooses the 1800.0 bound.

Shaper computes an initial bound by �nding bounds for several available problems and
taking their maximum. That is, it uses the maximum over a sample of problems instead of
the overall maximum. We specify the sample size by a knob variable, which is currently set
to 10.

8.5.3 Drawbacks of the default bounds

The described heuristic usually gives reasonable initial bounds; however, it has several draw-
backs, which sometimes result in generating inappropriate bounds. We discuss some situa-
tions where the heuristic gives undesirable results.

Too large bounds

If the gain function does not satisfy Constraint 5, then the gain of solving some problems may
be positive for arbitrarily large running time, which means that Inequality 8.9 has no solution
and the heuristic suggests unbounded search. The system then enforces the 1800.0-second
bound, but it often proves unnecessarily large.

If Constraint 5 holds, the inequality has a solution for every problem; however, the bound
that satis�es it for all problems may be impractically large because of outliers. If the domain
has in�nitely many problems, their common bound may be in�nite. The system avoids such
situations by �nding a bound that satis�es a sample of problems rather than all problems.

Too small bounds

Occasionally, the heuristic underestimates the optimal bound. We illustrate this possibility
with an arti�cial example, using the linear gain function de�ned in Section 8.1.2, with the
reward of 2.5. If the system solves a problem, the gain is (2:5�time); otherwise, the negative
gain is (�time). We show this function in Figure 8.8(a).

Suppose that the probability of solving a randomly selected problem in exactly 1.0 second
is 1/2, the chance of solving it in 2.0 seconds is 1/4, the chance that it takes 3.0 seconds

8.5. SELECTION WITHOUT PAST DATA 293

42

1/2

1/4

probability
of solving

running time 42

1/2

1/4

expected
gain

time bound

(b) (c)

42

-2

0

2

gain

running time

success

no success

(a)

Figure 8.8: Problem distribution that causes underestimation of the optimal bound.

is 1/8, and so on (see Figure 8.8b). If we set the time bound to n seconds, the expected
gain is 1

2
� (1� 1

2n
), as shown in Figure 8.8(c). Thus, the expected gain monotonically grows

with time bound, which means that the system should not bound the search; however, the
heuristic would impose a bound of 2.5 seconds.

In Section 8.6.1, we will give a more practical example of underestimating the optimal
bound, in the prodigy Logistics Domain, where the initial bound proves smaller than
optimal by a factor of 1.08. We could avoid most underestimations if we increased the
heuristic bounds by some pre-set constant factor; however, it would also increase the losses
due to unnecessarily large initial bounds.

Nonlinear gain

The initial-bound heuristic does not account for the shape of nonlinear gain functions and
may give misleading results for such functions. For example, consider the nonlinear function
in Figure 8.9(a). According to this function, the payment for a unit time becomes smaller
after 4.0 seconds of execution:

gain =

8>>><
>>>:

4:0� time; if success and time � 4:0
�time; if interrupt and time � 4:0
4:0� (time

4
+ 3:0); if success and time > 4:0

�(time
4

+ 3:0); if interrupt and time > 4:0

Suppose that the system solves all problems, the search always takes a natural number
of seconds, and it is never longer than eight seconds. If all eight running times are equally
likely (see Figure 8.9b), then the dependency of the expected gain on bound is as shown in
Figure 8.9(c), and the optimal bound is 8.0 seconds (or more).

The heuristic, however, gives an initial bound of 4.0 seconds, because it does not account
for the reduction in the cost of a unit time. Intuitively, if the system has run for 4.0 seconds,
it should continue execution, to take advantage of the cost reduction. Developing a heuristic
that identi�es such situations is an open problem.

294 CHAPTER 8. STATISTICAL SELECTION AMONG REPRESENTATIONS

gain

0
4 6 82 running

time 0
4 6 82 bound

time

expected
gain

1/8

8

probability
of solving

42 6

running
time

(a) (b) (c)

2

4

-2

-4

1

-1

1/2

-1/2
success

no success

Figure 8.9: Nonlinear gain function that causes underestimation of the optimal bound.

8.5.4 Other initial decisions

We now discuss two other decisions that must be made at the beginning of the statistical
exploration. First, the system has to determine when to switch from the initial time bound
to incremental learning of the bound. Second, it has to select the order of exploring new
representations.

Switching to incremental learning

When a representation has no past data, the system uses it with the initial time bound
until successfully solving two problems, and then switches to incremental learning. If the
representation gives only interrupts and failures, the system gives up on it after a pre-set
number of trials. By default, the system gives up after seven trials without any success or
after �fteen trials with only one success.

The user has an option to overwrite these knob values. She may indicate that the system
must switch to learning after a di�erent number of successes, and that it must give up after
a di�erent number of unsuccessful trials. She may either specify these numbers as constants
or provide Lisp procedures that compute them for each given domain, representation, and
gain function.

Alternatively, the user may provide a boolean Lisp function that determines when to
start learning. The system invokes this function before solving each new problem, until it
signals the beginning of learning. Similarly, the user may specify a Lisp function that signals
when to give up on a poorly performing representation.

Note that the role of this give-up function is di�erent from pruning rules. The system
applies pruning rules to discard some of the newly generated representations, before using
them in problem solving (see Sections 7.2.2 and 7.2.3). On the other hand, the give-up
function identi�es representations that have proved ine�cient during problem solving.

Exploring new representations

The system accumulates initial data for all available representations before switching to
incremental learning. If the data for some representation are not su�cient for statistical

8.6. EMPIRICAL EXAMPLES 295

selection of a time bound, the system chooses this unexplored representation for solving the
next problem. If several representations have insu�cient data, the system chooses among
them at random.

This optimistic use of the unknown encourages exploration during early stages of learn-
ing. If the number of problems in a domain is signi�cantly larger than the number of
representations, then early identi�cation of e�ective representations justi�es the cost of the
exploration.

On the other hand, if we need to solve only a few problems, the exploration may prove too
costly. A better strategy is to try only the most promising representations and disregard the
others. The default exploration procedure does not consider this strategy; however, the user
may limit the exploration by providing appropriate rejection and comparison rules, which
prune undesirable representations (see Sections 7.2.2 and 7.2.3). She may also provide pref-
erence rules, described in Chapter 10, which control the exploration. For example, they may
enforce a speci�c exploration order or delay experimenting with unpromising representations.

8.6 Empirical examples

We have shown the e�ectiveness of statistical selection in a simple transportation domain. We
now give results of using this technique in two other domains. First, we describe experiments
with an extension of the transportation domain (Section 8.6.1). Second, we determine how
long one should wait on the phone, before hanging up, when there is no answer (Section 8.6.2).

8.6.1 Extended transportation domain

We consider transportation problems that require the use of airplanes and vans [Veloso,
1994]. We use planes for transporting packages between cities, and vans for local delivery
within cities. The relative performance of Apply, Delay, and Abstract on such problems di�ers
from their performance in the simple domain used in Sections 8.1{8.4. In Table 8.3, we give
the results of applying each of the three representations to thirty problems.

We use the example gain function with a reward R = 400:0; that is, the gain of solving a
problem is (400�time), and the negative gain of a failure or interrupt is (�time). We present
the results of incremental learning of a time bound in Figure 8.10. The Apply learning gives
a gain of 110.1 per problem and eventually selects a bound of 127.5. The optimal bound for
this set of problems is 97.0. If we used the optimal bound for all problems, we would earn
135.4 per problem.

Delay earns 131.1 per problem and chooses a bound of 105.3 at the end of the learning
process. The actual optimal bound for Delay is 98.4, the use of which on all problems would
give a per-problem gain of 153.5. Finally, Abstract earns 243.5 per problem and chooses a
bound of 127.6. The optimal bound for Abstract is 430.8, which would give a per-problem
gain of 255.8.

Even though the bound learned for Abstract is much smaller than optimal (127.6 ver-
sus 430.8), the resulting gain is close to optimal. The reason is that, in this experiment, the
dependency of expected gain on time bound has a long plateau, and the choice of a bound
within the plateau does not make much di�erence.

296 CHAPTER 8. STATISTICAL SELECTION AMONG REPRESENTATIONS

time (sec) and outcome # of # time (sec) and outcome # of

Apply Delay Abstract packs Apply Delay Abstract packs

1 4.7 s 4.7 s 4.7 s 1 16 35.1 s 21.1 s 6.6 f 2

2 96.0 s 9.6 f 7.6 f 2 17 60.5 s 75.0 f 13.7 s 2

3 5.2 s 5.1 s 5.2 s 1 18 3.5 s 3.4 s 3.5 s 1

4 20.8 s 10.6 f 14.1 s 2 19 4.0 s 3.8 s 4.0 s 1

5 154.3 s 31.4 s 7.5 f 2 20 232.1 s 97.0 s 9.5 f 2

6 2.5 s 2.5 s 2.5 s 1 21 60.1 s 73.9 s 14.6 s 2

7 4.0 s 2.9 s 3.0 s 1 22 500.0 b 500.0 b 12.7 f 2

8 18.0 s 19.8 s 4.2 s 2 23 53.1 s 74.8 s 15.6 s 2

9 19.5 s 26.8 s 4.8 s 2 24 500.0 b 500.0 b 38.0 s 4

10 123.8 s 500.0 b 85.9 s 3 25 500.0 b 213.5 s 99.2 s 4

11 238.9 s 96.8 s 76.6 s 3 26 327.6 s 179.0 s 121.4 s 6

12 500.0 b 500.0 b 7.6 f 4 27 97.0 s 54.9 s 12.8 s 6

13 345.9 s 500.0 b 58.4 s 4 28 500.0 b 500.0 b 16.4 f 8

14 458.9 s 98.4 s 114.4 s 8 29 500.0 b 500.0 b 430.8 s 16

15 500.0 b 500.0 b 115.6 s 8 30 500.0 b 398.7 s 214.8 s 8

Table 8.3: Performance in the extended transportation domain.

Note that Abstract's optimal bound is larger than the initial bound (430.8 versus 400.0).
Since the learning algorithm never sets a bound higher than the initial one, the use of this
initial bound prunes the optimal bound from consideration. This experiment illustrates the
imperfection of the heuristic for selecting an initial time bound.

We show the results of incremental selection of a representation in Figure 8.11. In this
experiment, we �rst use the thirty problems from Table 8.3 and then sixty additional prob-
lems. The representation converges to the choice of Abstract with a time bound of 300.6,
and gives a gain of 207.0 per problem. The best choice for this set of problems is the use
of Abstract with a time bound of 517.1, which would give a per-problem gain of 255.8. We
identi�ed this optimal choice in a separate experiment, by running every representation on
all ninety problems.

8.6.2 Phone-call domain

We next illustrate the use of the statistical technique in a very di�erent domain. We apply
it to select a time bound when calling a friend on the phone. The algorithm determines how
many seconds (or rings) one should wait for an answer before handing up.

In Table 8.4, we give the time measurements on sixty phone calls, rounded to 0.05 seconds.
We made these calls to sixty di�erent people at their home numbers. We measured the time
from the beginning of the �rst ring, skipping the static silence of the connection delays. A
success occurred when our party answered the phone. A reply by an answering machine was
considered failure.

We �rst consider the gain function that gives (R� time) for a success and (�time) for a
failure or interrupt. We thus assume that the caller is not interested in leaving a message,
which means that a reply by a machine gets a reward of zero. The reward R for reaching

8.6. EMPIRICAL EXAMPLES 297

10 20 30
0

100

200

300

400

APPLY

problem’s number

ru
nn

in
g

tim
e

an
d

bo
un

ds

10 20 30
0

100

200

300

400

DELAY

problem’s number
10 20 30

0

100

200

300

400

ABSTRACT

problem’s number

Figure 8.10: Incremental learning of time bounds in the extended transportation domain: running

times (solid lines), time bounds (dotted lines), and maximal-gain time bounds (dashed lines). The

successes are marked by circles and the failures by pluses.

10 20 30 40 50 60 70 80 90

0

100

200

300

400

problem’s number

ru
nn

in
g

tim
e

Figure 8.11: Selection of a representation in the extended transportation domain: the running

times (solid line), successes (o) and failures (+), and the selection made among Apply (o), Delay (x),

and Abstract (�).

the other party may be determined by the time that the caller is willing to wait in order to
talk now, as opposed to hanging up and calling again later.

In Figure 8.12(a), we show the dependency of the expected gain on time bound, for the
rewards of 30.0 (dash-and-dot line), 90.0 (dashed line), and 300.0 (solid line). The optimal
bound for the 30.0 and 90.0 rewards is 14.7 (three rings); the optimal bound for the 300.0
reward is 25.5 (�ve rings).

If the caller plans to leave a message, then the failure reward is not zero, though it may
be smaller than the success reward. We denote the failure reward by Rf and de�ne the gain
as follows:

gain =

8><
>:

R � time; if success
Rf � time; if failure
�time; if interrupt

In Figure 8.12(b), we show the expected gain for the success reward of 90.0 with three
di�erent failure rewards, 10.0 (dash-and-dot line), 30.0 (dashed line), and 90.0 (solid line).

298 CHAPTER 8. STATISTICAL SELECTION AMONG REPRESENTATIONS

time # time # time # time # time

1 5.80 f 13 11.45 f 25 11.30 f 37 26.70 f 49 10.05 s

2 8.25 s 14 3.70 s 26 10.20 f 38 6.20 s 50 6.50 s

3 200.00 b 15 7.25 s 27 4.15 s 39 24.45 f 51 15.10 f

4 5.15 s 16 4.10 s 28 14.70 s 40 29.30 f 52 25.45 s

5 8.30 s 17 8.25 s 29 2.50 s 41 12.60 s 53 20.00 f

6 200.00 b 18 5.40 s 30 8.70 s 42 26.15 f 54 24.20 f

7 9.15 s 19 4.50 s 31 6.45 s 43 7.20 s 55 20.15 f

8 6.10 f 20 32.85 f 32 6.80 s 44 16.20 f 56 10.90 s

9 14.15 f 21 200.00 b 33 8.10 s 45 8.90 s 57 23.25 f

10 200.00 b 22 200.00 b 34 13.40 s 46 4.25 s 58 4.40 s

11 9.75 s 23 10.50 s 35 5.40 s 47 7.30 s 59 3.20 f

12 3.90 s 24 14.45 f 36 2.20 s 48 10.95 s 60 200.00 b

Table 8.4: Waiting times (seconds) in sixty phone-call experiments.

10 100

0

50

100

150

(a) gains w/o failure rewards

time bound

ex
pe

ct
ed

 g
ai

ns

10 100

0

50

100

150

(b) gains with failure rewards

time bound

Figure 8.12: The dependency of the expected gain on the time bound in the phone-call domain:

(a) for the rewards of 30.0 (dash-and-dot line), 90.0 (dashed line), and 300.0 (solid line); (b) for

the success reward of 90.0 and failure rewards of 10.0 (dash-and-dot line), 30.0 (dashed line), and

90.0 (solid line).

The optimal bound for the 10.0 failure reward is 26.7 (�ve rings); for the other two rewards,
it is 32.9 (six rings).

In Figure 8.13, we show the results of selecting a time bound incrementally, for the 90.0
success reward and zero failure reward. The learned time bound converges to the optimal
bound, 14.7. The average gain obtained during the learning process is 38.9 per call. If we
used the optimal bound for all calls, we would earn 41.0 per call.

The experiments in the transportation domain and phone-call domain show that the
learning algorithm usually �nds a near-optimal time bound after solving twenty or thirty
problems, and that the gain obtained during learning is close to optimal.

8.7. ARTIFICIAL TESTS 299

5 10 15 20 25 30 35 40 45 50 55
0

10

20

30

90

call’s number

w
ai

tin
g

tim
e

an
d

bo
un

ds

Figure 8.13: Incremental learning of a time bound in the phone-call domain.

8.7 Arti�cial tests

We now present a series of experiments with arti�cially generated values of success and
failure times. The \running times" in these experiments are the values produced by a
random-number generator. The arti�cial data enable us to perform controlled experiments
with known distributions.

The learning mechanism has proved e�ective for all tested distributions. The experiments
have demonstrated that the gain obtained during incremental learning is usually close to
optimal. We have not found a signi�cant di�erence in performance for di�erent distributions.

We use the linear gain function with a reward R = 100:0 in all experiments; that is, the
success gain is (100:0� time) and the negative gain of a failure or interrupt is (�time). We
consider the following four distributions of success and failure times:

Normal: The normal distribution of success and failure times corresponds to the situa-
tion where the running time for most problems is close to some \typical" value, and
problems with much smaller or much larger times are rare.

Log-Normal: The distribution of times is called log-normal if time logarithms are dis-
tributed normally. Intuitively, this distribution occurs when the \complexity" of most
problems is close to some typical complexity and the problem-solving time grows ex-
ponentially with complexity.

Uniform: The times are distributed uniformly if they belong to some �xed interval and all
values in this interval are equally likely; thus, there is no \typical" running-time value.

Log-Uniform: The logarithms of running times are distributed uniformly. Intuitively, the
complexity of problems is within some �xed interval, and running time is exponential
in complexity.

For each of the four distribution types, we ran multiple tests, varying the values of the
following parameters:

Success and failure probabilities: We varied the probabilities of success, failure, and
in�nite looping.

300 CHAPTER 8. STATISTICAL SELECTION AMONG REPRESENTATIONS

Mean and deviation: We experimented with di�erent values of the mean and standard
deviation of success-time and failure-time distributions.

Length of the problem sequence: We tested the incremental-learning mechanism on se-
quences of 50, 150, and 500 problems.

We ran �fty independent experiments for each setting of the parameters and averaged
their results. Thus, every graph with arti�cial-test results (Figures 8.14{8.19) shows the
average of �fty experiments.

Since the learning technique has proved e�ective in all these tests, as well as in selecting
among representations in the Shaper system, we conjecture that it also works well for most
other distributions. We plan to experiment with a wider variety of distributions and identify
situations in which the technique does not give good results, as a part of future work.

Experiments with short and long problem sequences

We present the results of learning a time bound on sequences of �fty and �ve hundred
problems. The success probability in these experiments is 1/2, the failure probability is 1/4,
and the probability of in�nite looping is also 1/4. The mean of success times is 20.0 and
their standard deviation is 8.0; the failure-time mean is 10.0 and the standard deviation is
4.0. We experimented with all four distribution types. For each distribution, we ran �fty
experiments and averaged their results.

In Figure 8.14, we summarize the results for �fty-problem sequences. The horizontal axes
in all graphs show the number of a problem in a sequence. In the top row of graphs, we give
the average per-problem gain obtained up to the current problem. The circles mark the gain
that the system would obtain if it knew the distribution in advance and used the optimal
time bound for all problems. The vertical bars show the width of the distribution of gain
values obtained in di�erent experiments. Each bar covers two standard deviations up and
down, which means that 95% of the experiments fall within it.

In the middle row of graphs, we show the selected time bounds. In the bottom row, we
give the system's estimates of the optimal time bound (recall that the selected bounds are
larger than optimal, to encourage exploration). The crosses mark the values of the optimal
time bounds. Note that the system's estimates of the optimal bounds converge to their real
values.

In Figure 8.15, we present similar results for 500-problem sequences. In these exper-
iments, per-problem gains come closer to the optimal values, but still do not reach them.
The di�erence between the obtained and optimal gains comes from losses during early stages
of learning and from the use of larger-than-optimal bounds.

Varying success and failure probabilities

We give the results of learning a time bound for di�erent probabilities of success and failure.
The means and standard deviations of the success and failure times are the same as in the
previous experiments.

We summarize the results in Figure 8.16. The top row of graphs is for a solver that
succeeds, fails, and goes into an in�nite loop equally often; that is, the probability of each

8.7. ARTIFICIAL TESTS 301

0 50
0

20

40

60

normal
pe

r−
pr

ob
lem

 ga
in

0 50
0

20

40

60

se
lec

ted
 bo

un
d

0 50
0

20

40

60

op
tim

al
bo

un
d

0 50
0

20

40

60

log−normal

0 50
0

20

40

60

0 50
0

20

40

60

0 50
0

20

40

60

uniform

0 50
0

20

40

60

0 50
0

20

40

60

0 50
0

20

40

60

log−uniform

0 50
0

20

40

60

0 50
0

20

40

60

Figure 8.14: Per-problem gains (top row), time bounds (middle row), and estimates of the optimal

time bounds (bottom row) for incremental learning on �fty-problem sequences. The crosses mark

the optimal time bounds and the circles show the expected gains for the optimal bounds.

0 500
0

20

40

60

normal

pe
r−

pr
ob

lem
 ga

in

0 500
0

20

40

60

se
lec

ted
 bo

un
d

0 500
0

20

40

60

op
tim

al
bo

un
d

0 500
0

20

40

60

log−normal

0 500
0

20

40

60

0 500
0

20

40

60

0 500
0

20

40

60

uniform

0 500
0

20

40

60

0 500
0

20

40

60

0 500
0

20

40

60

log−uniform

0 500
0

20

40

60

0 500
0

20

40

60

Figure 8.15: Per-problem gains (top row), time bounds (middle row), and estimates of the optimal

time bounds (bottom row) for incremental learning on 500-problem sequences.

302 CHAPTER 8. STATISTICAL SELECTION AMONG REPRESENTATIONS

0 50
0

50

100

normal

su
cc

 1
/3

,
fa

il 1
/3

0 50

0

50

100

su
cc

 1
/2

,
fa

il 1
/2

0 50

0

50

100

su
cc

 1
/2

,
fa

il 0

0 50
0

50

100

log−normal

0 50

0

50

100

0 50

0

50

100

0 50
0

50

100

uniform

0 50

0

50

100

0 50

0

50

100

0 50
0

50

100

log−uniform

0 50

0

50

100

0 50

0

50

100

Figure 8.16: Per-problem gains (solid lines), time bounds (dotted lines), and estimates of the

optimal time bounds (dashed lines) for di�erent success and failure probabilities. The crosses mark

the optimal time bounds and the circles show the expected gains for the optimal bounds. We give

the values of success probability (\succ") and failure probability (\fail") to the left of each row.

outcome is 1/3. In the middle row of graphs, we give the results for a solver that succeeds
half of the time and fails half of the time, and never goes into an in�nite loop. Finally, the
bottom row is for a solver that succeeds half of the time and loops forever otherwise.

The solid lines show the average per-problem gain up to the current problem; the dotted
lines are the selected time bounds; and the dashed lines are the estimates of the optimal
bound. The crosses mark the optimal time bounds, and the circles are the expected gains
for the optimal bounds.

Note that, when the probability of in�nite looping is zero (the middle row), any large
time bound gives near-optimal results, because we never need to interrupt a solver. Thus,
the system never changes the initial time bound and gets near-optimal gains from the very
beginning.

Varying the means of time distributions

We now vary the mean value of failure times. We keep the mean success time equal to 20.0
(with standard deviation 8.0), and experiment with failure means of 10.0 (with deviation 4.0),
20.0 (with deviation 8.0), and 40.0 (with deviation 16.0). We give the results in Figure 8.17.

The gains for normal and log-normal distributions come closer to the optimal values
than the gains for uniform and log-uniform distributions. This observation suggests that the
learning technique works better for the �rst two distributions. The di�erence, however, is
not statistically signi�cant.

8.7. ARTIFICIAL TESTS 303

0 50
0

20

40

60

80
normal

fai
l m

ea
n i

s 1
0.0

0 50
0

20

40

60

80

fai
l m

ea
n i

s 2
0.0

0 50
0

20

40

60

80

fai
l m

ea
n i

s 4
0.0

0 50
0

20

40

60

80
log−normal

0 50
0

20

40

60

80

0 50
0

20

40

60

80

0 50
0

20

40

60

80
uniform

0 50
0

20

40

60

80

0 50
0

20

40

60

80

0 50
0

20

40

60

80
log−uniform

0 50
0

20

40

60

80

0 50
0

20

40

60

80

Figure 8.17: Per-problem gains (solid lines), time bounds (dotted lines), and estimates of the

optimal time bounds (dashed lines) for di�erent mean values of failure times. The mean of success

times is 20.0 in all experiments.

0 100
0

5

10

15

20
normal

pe
r−

pr
ob

le
m

 g
ai

n

0 100
0

0.5

1

se
le

ct
io

n
pr

ob
.

0 100
0

5

10

15

20
log−normal

0 100
0

0.5

1

0 100
0

5

10

15

20
uniform

0 100
0

0.5

1

0 100
0

5

10

15

20
log−uniform

0 100
0

0.5

1

Figure 8.18: Incremental selection among three representations, where the average gain for the

�rst representation is 10% larger than that for the second one and 20% larger than that for the

third one. We show the average per-problem gains (the top row of graphs) and the probability of

selecting each representation (the bottom row).

304 CHAPTER 8. STATISTICAL SELECTION AMONG REPRESENTATIONS

0 100
0

5

10

15

normal

pe
r−

pr
ob

le
m

 g
ai

n

0 100
0

0.5

1

se
le

ct
io

n
pr

ob
.

0 100
0

5

10

15

log−normal

0 100
0

0.5

1

0 100
0

5

10

15

uniform

0 100
0

0.5

1

0 100
0

5

10

15

log−uniform

0 100
0

0.5

1

Figure 8.19: Incremental selection among three representations, where the average gain for the

�rst representation is 30% larger than that for the second one and 60% larger than that for the

third one.

Selection of a representation

Finally, we show the results of incremental selection among three representations, on 150-
problem sequences. In the �rst series of experiments, we adjusted mean success and failure
times in such a way that the optimal per-problem gain for the �rst representation was
10% larger than that for the second representation and 20% larger than that for the third
representation.

We give the results in Figure 8.18. In the top row of graphs, we show the average per-
problem gain. In the bottom row, we give the probability of choosing each representation, for
the experiments without and with problem sizes. The distance from the bottom of the graph
to the lower curve is the probability of selecting the �rst representation, the distance between
the two curves is the chance of selecting the second representation, and the distance from
the upper curve to the top is the third representation's chance. The graphs show that the
probability of selecting the �rst representation (which gives the highest gain) increases during
the learning process. The probability of selecting the third (worst-performing) representation
decreases faster than that of the second representation.

In the second series of experiments, the optimal gain of the �rst representation was
30% larger than that of the second representation and 60% larger than that of the third
representation. We give the results in Figure 8.19. Note that the probability of selecting the
�rst representation grows much faster, due to the larger di�erence in the expected gains.

Chapter 9

Extensions to the statistical technique

We have considered the task of selecting a representation and time bound that will work
well for most problems in a domain, and developed a statistical technique for this task. If
we have additional information about a given problem, we can adjust the selection to this
problem. We utilize problem-speci�c information in estimating expected gains, and then use
the resulting estimates to choose a representation and time bound.

First, we describe the construction and use of problem-speci�c gain functions (Sec-
tion 9.1). Second, we take into account estimated problem complexity (Section 9.2) and
similarity among problems (Section 9.3).

9.1 Problem-speci�c gain functions

We have assumed in the statistical analysis that the user speci�es a real-valued gain function,
gain(prob; time; result), de�ned for all problems, running-time values, and problem-solving
results. We have used it in deriving statistical estimates in Sections 8.2 and 8.3. If this
function satis�es certain conditions, we may construct a problem-speci�c gain function and
use it to compute gain estimates for the given problem.

We �rst illustrate the use of this technique for the example gain function. We then
generalize the developed technique and state conditions for its applicability (Section 9.1.2).

9.1.1 Example of problem-speci�c estimates

We explain the use of problem-speci�c estimates for the linear gain function de�ned in
Section 8.1.2. If the system successfully solves a problem, the gain is (R � time); if it fails
or hits the time bound, the negative gain is (�time). We assume, for simplicity, that the
system never rejects a problem.

Suppose that some problems are more important than others, and the user speci�es
di�erent reward values for di�erent problems. In other words, the user provides a function
R(prob), which maps problems into their rewards.

Assume that a representation solved ns problems, failed on nf problems, and gave an
interrupt onm problems. The success times were ts1; :::; tsns, with the corresponding rewards

305

306 CHAPTER 9. EXTENSIONS TO THE STATISTICAL TECHNIQUE

R1; :::; Rns, the failure times were tf
1
; :::; tfnf , and the interrupt times were b1; :::; bm. Note

that we disregard the rewards of the unsolved problems.
We can use Equation 8.3 to estimate the expected gain for a speci�c time bound B. We

denote the number of success times that are no larger than B by cs, the number of failure
times no larger than B by cf, and the number of interrupts no larger than B by d. We
distribute the weights of b1; :::; bd among the larger-time outcomes (see Section 8.3), and
denote the weights of ts1; :::; tsns by us1; :::; usns, the weights of tf

1
; :::; tfnf by uf

1
; :::; ufnf ,

and the weight of all other times by u�. We substitute these values into Equation 8.3 and
get the following estimate of the expected gain:

Pcs
i=1

usi � (Ri � tsi) +
Pcf

i=1
ufi � (�tfi) + u� � (ns+ nf+m� cs� cf� d) � (�B)

ns+ nf+m
: (9.1)

Next suppose that we �x some reward R� and use it for all problems. That is, the gain
of solving any problem is now (R� � time). If we use Equation 8.3 to �nd a gain estimate
for this �xed reward, we get the following expression:

Pcs
i=1

usi � (R� � tsi) +
Pcf

i=1 ufi � (�tfi) + u� � (ns+ nf+m� cs� cf� d) � (�B)
ns+ nf+m

: (9.2)

Now assume that the rewards change from problem to problem and we need to compute
the gain estimate for a speci�c problem, whose reward isR�. If we use Equation 9.1, we get an
estimate for a randomly selected problem. On the other hand, Equation 9.2 incorporates the
problem-speci�c knowledge of the reward value, and thus it gives a more accurate estimate
for the given problem.

We use Equation 9.2 to determine expected gains for speci�c problems; however, we can
do it only if the reward function R(prob) does not correlate with the problem complexity.
We formalize this condition in terms of the correlation between rewards and running times.

We de�ne time(prob) as a (�nite or in�nite) running time on prob without a time bound.
The outcome of problem solving without a bound may be a success, failure, or in�nite run.
We divide the problems into three groups, according to the outcomes, and use this division
to state applicability conditions:

Condition 9.1 We use Equation 9.2 if the following two conditions hold:

1. The reward R(prob) does not correlate with time(prob).

2. The mean reward of the success-outcome problems is equal to the mean reward of the

failure-outcome problems and to that of the in�nite-run problems.

We always assume that these two conditions are satis�ed, unless we have opposite informa-
tion. We avoid the problem-speci�c computation only when we can show, with statistical
signi�cance, that one of the conditions does not hold.

If Condition 9.1 is not satis�ed, Equation 9.2 may give misleading results, which worsen
the system's performance. For example, suppose that the system successfully solves all
problems and the reward perfectly correlates with the running time, speci�cally, R(prob) =

9.1. PROBLEM-SPECIFIC GAIN FUNCTIONS 307

0:9 � time(prob). Then, for every problem prob, the gain of solving it is negative, �0:1 �
time(prob).

If we apply the problem-independent gain computation (Equation 9.1) to past perfor-
mance data, it gives negative gain estimates for all nonzero time bounds. The system
determines that the best course is to avoid problem solving, which prevents further losses.

On the other hand, if we apply the problem-speci�c computation, we average past running
times and disregard past rewards (see Equation 9.2). We then get high gain estimates for
problems with large rewards, and negative estimates for problems with small rewards. These
misleading estimates cause the system to solve problems with larger-than-average rewards,
which leads to additional losses.

9.1.2 General case

We now extend the problem-speci�c evaluation to more general gain functions. The extension
is based on the use of the solution-quality function, described in Section 7.3.2.

We have derived the problem-speci�c estimate of Section 9.1.1 by substituting a �xed
problem into the gain function. To compute an estimate for a given problem prob�, we replace
the general gain expression (R(prob) � time) by the problem-speci�c function (R(prob�) �
time).

We cannot use the substitution for a general gain function, gain(prob; time; result), be-
cause the gain depends not only on the problem but also on the speci�c solution to the
problem. The function gain(prob�; time; result) is de�ned only for the solutions of prob�, and
does not allow the computation of the gains for the problems in a data sample.

To construct a problem-speci�c function, we assume that gain(prob; time; result) sat-
is�es Constraint 7 of Section 7.3.2. Then, we can de�ne a measure of solution quality,
quality(prob; result), and express the gain in terms of quality, gainq(prob; time; quality). We
obtain a problem-speci�c function by substituting prob� into gainq, and use it to derive a
problem-speci�c version of Equation 8.3, which gives us the following gain estimate:

Sum

n+m
; (9.3)

where

Sum =
Pc

i=1
ui �gainq(prob�; ti; quality(pti; resulti))+u� �

Pn
i=c+1

gain(prob�; B; intr)

+u� �
Pm

j=d+1
gain(prob�; B; intr).

We use the same gain values in the problem-speci�c version of Equation 8.3, which gives
us the standard deviation of the resulting estimate:

vuut SqrSum� Sum2

n+m

(n +m) � (n+m� d� 1)
; (9.4)

where Sum is the same as in Equation 9.3 and

308 CHAPTER 9. EXTENSIONS TO THE STATISTICAL TECHNIQUE

SqrSum =
Pc

i=1
ui�gainq(prob�; ti; quality(pti; resulti))2+u��

Pn
i=c+1

gain(prob�; B; intr)
2

+u� �
Pm

j=d+1
gain(prob�; B; intr)

2.

Next, we give problem-speci�c versions of Equations 8.5 and 8.6. We use these equations
if we have tried to solve prob� in the past and interrupted the solver at some bound Bo. We
assume that e of the past terminations are no larger than Bo, that is, te � Bo < te+1. We
allow the reuse of the previously expanded search space, and denote the reused time by bo.
We compute the expected gain for prob� as follows (see Section 8.3 for a detailed description
of the notation):

Sum

n+m� e
; (9.5)

where

Sum =
Pc

i=e+1
u0i � gainq(prob�; ti � bo; quality(pti; resulti))

+u0� �
Pn

i=c+1
gain(prob�; B � bo; intr)

+u0� �
Pm

j=d+1
gain(prob�; B � bo; intr):

The standard deviation of this estimate isvuut SqrSum� Sum2

n+m�e
(n +m� e) � (n+m� e� d� 1)

; (9.6)

where Sum is the same as in Equation 9.5 and

SqrSum =
Pc

i=e+1
u0i � gainq(prob�; ti � bo; quality(pti; resulti))

2

+u0� �
Pn

i=c+1
gain(prob�; B � bo; intr)

2

+u0� �
Pm

j=d+1
gain(prob�; B � bo; intr)

2:

We now state the applicability condition for these equations, in terms of the gain's cor-
relation with running time and solution quality. We de�ne time(prob) as the running time
on prob without a time bound, and quality(prob) as the quality for the corresponding result,
which may be a solution, failure, rejection, or in�nite run.

Condition 9.2 We use problem-speci�c estimates if, for every �xed pair of time and quality

values, time� and quality�, the following three conditions hold:

1. The gain function gainq(prob; time�; quality�) does not correlate with time(prob).

2. For the success-outcome problems, the gain function gainq(prob; time�; quality�) does

not correlate with qualityp(prob).

3. The mean value of gainq(prob; time�; quality�) for the success-outcome problems is equal
to its mean value for the failure-outcome problems, to that for the rejection-outcome

problems, and to that for the in�nite-run problems.

Even though the use of Condition 9.2 gives good practical results, it is neither necessary
nor su�cient for ensuring unbiased problem-speci�c estimates. Finding a more accurate
applicability condition is an open problem, which we plan to address in the future.

9.2. USE OF PROBLEM SIZE 309

9.2 Use of problem size

If the system can estimate the relative sizes of problems, then it can improve performance
by adjusting the choice of a representation and time bound to the problem size.

We de�ne a problem size as an easily computable positive value that correlates with the
problem complexity: the larger the value, the longer it usually takes to solve the problem.
Finding an accurate measure of complexity is often a di�cult task; however, many domains
have features that provide at least a rough complexity estimate. For example, in the trans-
portation domain, we may estimate the problem complexity by the number of packages to be
delivered. In the rightmost column of Tables 8.1 and 8.3, we show the number of packages
in each of the sample problems.

Note that measures of a problem size are usually domain-speci�c, and the choice of a
good measure is the user's responsibility. We allow the user to specify di�erent size measures
for di�erent representations.

We apply least-squares regression to �nd an approximate dependency between problem
size and running time (Section 9.2.1) and use this dependency in estimating the expected
gains (Section 9.2.2). We give the results of using size in the transportation domain (Sec-
tion 9.2.3) and then test the regression technique on arti�cial data (Section 9.2.4).

9.2.1 Dependency of time on size

We describe the use of linear regression to �nd the dependency between the sizes of sample
problems and the times required to solve them. We use three separate regressions: the �rst
regression for the success times, the second one is for the failure times, and the third is for
the rejection times.

In Shaper, success usually occurs after exploring a small part of the search space,
whereas failure requires the exploration of the entire space, and the dependency of the success
time on the problem size is quite di�erent from that of the failure time. The rejection times
are di�erent from both success and failure times, because we usually perform the rejection
test by a separate procedure, which does not use the system's search engines.

We allow the user to enable some of the three regressions and turn o� the others. In
particular, we usually do not use regression for rejection times, because, in most cases, the
time for rejection tests is either negligibly small or constant.

We assume that the dependency of time on size is either polynomial or exponential. If
it is polynomial, than the logarithm of time depends linearly on the logarithm of size; for
an exponential dependency, the time logarithm depends linearly on size. We thus use linear
regression to �nd both polynomial and exponential dependencies.

We use the least-squares technique to perform regression. In Figure 9.1(a) and 9.1(b),
we give the regression formulas for a polynomial dependency between size and time; the
regression for an exponential dependency is similar. We denote the number of sample prob-
lems by n, the problem sizes by size1; :::; sizen, and the corresponding running times by
time1; :::; timen.

We evaluate the regression results using the t-test. The t value in this test is the ratio
of the estimated slope of the regression line to the standard deviation of the slope estimate.

310 CHAPTER 9. EXTENSIONS TO THE STATISTICAL TECHNIQUE

(a) Approximate dependency of the running time on the problem size:
log time = �+ � � log size;
that is, time = e� � size�.

(b) Regression coe�cients:

� =
P

n

i=1
log sizei�log timei�SizeSum�TimeSum=n

SizeSqrSum�SizeSum2=n
,

� = TimeSum

n
� � � SizeSum

n
,

where
TimeSum =

Pn
i=1

log timei,
SizeSum =

Pn
i=1

log sizei,
SizeSqrSum =

Pn
i=1

(log sizei)
2.

(c) The t value, for evaluating the regression accuracy:

t-value = �
TimeDev

�
q
SizeSqrSum � SizeSum2

n
,

where
TimeDev =

q
1

n�2
�
�P

n

i=1
(log timei)2 � TimeSum2

n
� � � (

P
n

i=1
log sizei � log timei � SizeSum�TimeSum

n
)

�
.

Figure 9.1: Regression coe�cients and t value for the polynomial dependency of time on size.

We give the formula for computing this value in Figure 9.1(c). The TimeDev value in this
formula is the standard deviation of time logarithms. It shows how much, on average, time
logarithms deviate from the regression line.

The t-test converts the t value into the probability that the use of regression gives no
better prediction of running time than ignoring the sizes and simply taking the mean; in
other words, it is the probability that regression does not help. This probability is called
the P value; it is a function of the t value and the number n of sample problems. When
the regressed line gives a good �t to the sample data, the t value is large and the P value is
small.

In Figure 9.2, we give the results of regressing the success times for the sample trans-
portation problems from Table 8.1; we do not show failure regression. The top three graphs
give the polynomial dependency of the success time on the problem size; the bottom graphs
are for the exponential dependency. The horizontal axes show the problem sizes (that is,
the number of packages), and the vertical axes are the times. The circles show the sizes and
times of the problem instances; the solid lines are the regression results. For each regression,
we give the t value and the corresponding interval of the P value.

We use regression only if the P value is smaller than a certain bound. In our experiments,
we set this bound to 0.2; that is, we used problem size only for P < 0:2. This test ensures
that we use size only if it provides a good correlation with problem complexity. If the size
measure proves inaccurate, then the gain-estimate algorithm ignores sizes. We use the 0.2
bound rather than more \customary" 0.05 or 0.02 because an early detection of a dependency
between size and time is more important for the overall e�ciency than establishing a high
certainty of the dependency.

For example, all three polynomial regressions in the top row of Figure 9.2 pass the P < 0:2

9.2. USE OF PROBLEM SIZE 311

 1 10
 1

10

100
APPLY

t = 4.2, P < 0.01

po
ly

no
m

ia
l d

ep
en

de
nc

y

 1 10
 1

10

100
DELAY

t = 1.6, 0.1 < P < 0.2
 1 10

 1

10

100
ABSTRACT

t = 3.5, P < 0.01

5 10 15
 1

10

100

t = 3.8, P < 0.01

ex
po

ne
nt

ia
l d

ep
en

de
nc

y

5 10 15
 1

10

100

t = 0.5, P > 0.2
5 10 15

 1

10

100

t = 3.3, P < 0.01

Figure 9.2: The dependency of the success time on the problem size. The top graphs show the

regression for a polynomial dependency, and the bottom graphs are for an exponential dependency.

test. The exponential regressions for Apply and Abstract also satisfy this condition. On the
other hand, the exponential regression for Delay fails the test (see the middle bottom graph
in Figure 9.2).

The choice between polynomial and exponential regression is based on the t-test results:
we prefer the regression with the larger t value. In the example of Figure 9.2, the polynomial
regression wins for all three representations.

The user has an option to select between the two regressions herself. For example, she
may insist on the use of the exponential regression. We also allow the user to set a regression
slope. This option is useful when the human operator has a good notion of the slope value
and the past data are not su�cient for an accurate estimate. If the user speci�es a slope,
the algorithm uses her value in regression; however, it compares the user's value with the
regression estimate of Table 9.1, determines the statistical signi�cance of the di�erence, and
gives a warning if the user's estimate is o� with high probability.

Note that the least-squares regression and the related t-test make quite strong assump-
tions about the nature of the distribution. First, for problems of �xed size, the distribution
of the time logarithms must be normal; that is, time must be distributed log-normally. Sec-
ond, for all problem sizes, the standard deviation of the distribution must be the same.
Regression, however, usually provides a good approximation of the dependency between size
and time, even when these assumptions are not satis�ed.

The computational complexity of regression is linear in the number of data points. For

312 CHAPTER 9. EXTENSIONS TO THE STATISTICAL TECHNIQUE

 1 10
 1

10

100

problem size

ru
nn

in
g

tim
e

Figure 9.3: Scaling two success times (o) and a failure time (+) of Delay to a 3-package problem.

n terminations and m interrupts, the implemented Lisp procedure on a Sun 5 performs
both polynomial and exponential regression, along with the related t-tests, in approximately
(n+m) � 7 � 10�4 seconds.

During the incremental learning, the system does not perform regression from scratch
for each new problem. Instead, it stores the sums used in regression computation (see
Figure 9.1), and updates them incrementally, after adding each new problem to the sample.
The system updates the sums, recomputes the regression coe�cients, and �nds the new
t-values in constant time, about 8 � 10�4 seconds in total.

9.2.2 Scaling of past running times

The use of the problem size in estimating the gain is based on \scaling" the times of sample
problems to a given size. We illustrate it in Figure 9.3, where we scale Delay's times of a
1-package success, an 8-package success, and an 8-package failure for estimating the gain
on a 3-package problem (the 3-package size is marked by the vertical dotted line). To scale
a problem's time to a given size, we draw the line with the regression slope through the
point representing the problem (see the solid lines in Figure 9.3), to the intersection with
the vertical line through the given size (the dotted line). The ordinate of the intersection is
the scaled time.

If the size of the problem is sizeo, the running time is timeo, and we need to scale it to
size, using a regression slope �, then we compute the scaled time time as follows:

Polynomial regression:
log time = log timeo + � � (log size� log sizeo);

that is, time = timeo �
�
size
sizeo

��
.

Exponential regression:
log time = log timeo + � � (size� sizeo);
that is, time = timeo � exp(� � (size� sizeo)).

We use the slope of the success regression in scaling success times (see the lines through
circles in Figure 9.3), the slope of the failure regression in scaling failures (the line through
pluses), and the slope of the rejection regression in scaling rejection times. The slope for
scaling an interrupt time should depend on whether the system would succeed, fail, or reject

9.2. USE OF PROBLEM SIZE 313

running
time

n = 2s

problem size

Figure 9.4: Computation of ns for an interrupt point: the system scales all successes times (o)

and the interrupt time (�) to a �xed size, using the success slope.

the problem if we did not interrupt it; however, we do not know which of these three outcomes
would occur.

We \distribute" each interrupt point among success, failure, and rejection slopes, accord-
ing to the probabilities that the continuation of the execution would result in the respective
outcomes. We thus break an interrupt point into three weighted points, whose total weight
is 1.

To determine the three weights, we may scale the success, failure, and rejection times
in the data sample to the size of the problem that caused the interrupt. The weights are
proportional to the number of successes, failures, and rejections that are larger than the
interrupt time. If the number of larger success times is ns, the number of larger failures is nf ,
and that of larger rejections is nr, then the corresponding weights are ns

ns+nf+nr
,

nf
ns+nf+nr

,

and nr
ns+nf+nr

.

The implemented computation of ns, nf , and nr is somewhat di�erent, for e�ciency
reasons. The algorithm does not scale success, failure, and rejection times to every interrupt
point; instead, it scales them to some �xed size, and then scales interrupt points to the same
size. In Figure 9.4, we illustrate the computation of ns. Note that the algorithm scales every
interrupt three times: it uses the success slope for determining ns, the failure slope for nf ,
and the rejection slope for nr.

After scaling the times of the sample problems to a given size, we use the technique of
Sections 8.2 and 8.3 to compute the gain estimate and its standard deviation (see Equa-
tions 8.5 and 8.6). The only di�erence is that we reduce the second term in the denominator
for the standard deviation by 2, because the success and failure regressions reduce the num-
ber of degrees of freedom of the sample data. Thus, we modify Equation 8.6 and compute
the deviation as follows:

vuut SqrSum� Sum2

n+m�e
(n +m� e) � (n+m� e� d� 3)

: (9.7)

The running time of the scaling procedure is proportional to the number of data points.
The Lisp implementation on a Sun 5 scales a termination point in 2 � 10�4 seconds and
distributes an interrupt in 6 � 10�4 seconds. Thus, for a sample of n terminations and m

interrupts, the scaling time is (2 � n + 6 �m) � 10�4 seconds.

314 CHAPTER 9. EXTENSIONS TO THE STATISTICAL TECHNIQUE

10 100
−20

0

20

40

60

80

1 package

time bound

ex
pe

ct
ed

 g
ai

ns

10 100
−20

0

20

40

60

80

3 packages

time bound
10 100

−20

0

20

40

60

80

10 packages

time bound

Figure 9.5: Dependency of Apply's expected gain on time bound in the simple transportation

domain, for rewards of 10.0 (dash-and-dot lines), 30.0 (dashed lines), and 100.0 (solid lines). The

dotted lines show the standard deviation for the 100.0 reward.

We now give the overall running time of the statistical computation, for the example
gain function from Section 8.1.2. The computation includes polynomial and exponential
regression, related t-tests, scaling the sample times to a given problem size, and determining
the expected gains for l time bounds. If the system performs regression from scratch, the
total time is (3 � l + 9 � n+ 13 �m) � 10�4 seconds. If it incrementally updates the regression
coe�cients and t-values, then the time is (3 � l + 2 � n+ 8 �m + 8) � 10�4 seconds.

9.2.3 Results in the transportation domain

We illustrate the use of size by experiments in the transportation domain. We use the
number of packages to be delivered as a measure of the problem size, and estimate problem-
solving gains for speci�c sizes. In Figure 9.5, we show the dependency of the expected
gain on time bound when using Apply on 1-package, 3-package, and 10-package problems.
We computed this dependency for the simple transportation domain with the example gain
function (Section 8.1.2), using the performance data in Table 8.1.

If we use problem size in the incremental-selection experiments of Sections 8.4 and 8.6,
we get larger gains in all eight experiments. In Table 9.1, we give the per-problem gains in
these experiments, with and without size.

The results demonstrate that the use of problem size increases the gain, though not by
much. In Section 9.2.4, we show that the use of regression gives a more signi�cant gain
increase when running times better correlate with problem size. The average running time
of regression and scaling is 0.03 seconds per problem. Thus, the time of the statistical
computation for using problem size is much smaller than the resulting gain increase.

In Figure 9.6, we give a more detailed comparison of gains with and without regression,
for the bound-selection experiments of Section 8.4. The horizontal axes show the number
of a problem, from 7 to 30. We skip the �rst six problems, because the algorithm does not
use size in selecting the time bounds for these problems: it has not yet accumulated enough
data for regression with su�ciently small P value.

9.2. USE OF PROBLEM SIZE 315

w/o sizes with sizes

transportation by vans (Section 8.4)

Apply's bound selection 12.0 12.2

Delay's bound selection 3.9 4.7

Abstract's bound selection 11.3 11.9

selection of a representation 11.1 11.8

transportation by vans and airplanes (Section 8.6)

Apply's bound selection 110.1 121.6

Delay's bound selection 131.1 137.4

Abstract's bound selection 243.5 248.3

selection of a representation 207.0 215.6

Table 9.1: Per-problem gains in the learning experiments, with and without the use of size.

10 20 30
10

12

14

16

18

20
APPLY

problem’s number

av
er

ag
e

ga
in

s

10 20 30
0

2

4

6

8

10
DELAY

problem’s number
10 20 30

10

12

14

16

18

20
ABSTRACT

problem’s number

Figure 9.6: Average per-problem gains without regression (dotted lines) and with regression (solid

lines), during incremental learning of a time bound.

The vertical axes show the average per-problem gain up to the current problem. For
example, the left end of the curve shows the average gain for the �rst seven problems, and
the right end gives the average for all thirty problems. The gain declines for problems 20
to 30 because these problems happen to be harder, on average, than the �rst twenty problems
(see Table 8.1). The dotted lines give the average gains without the use of problem size, and
the solid lines are for the gains obtained with regression.

The graphs show that the use of problem size usually, though not always, provides a small
improvement in performance. The apparent advantage of regression in Delay's learning is
mostly due to the choice of low time bounds for problems 9 and 10, which cannot be solved
in feasible time. This luck in setting low bounds for two hard problems is not statistically
signi�cant. If the algorithm does not use problem size, it hits the time bounds of 16.9 and
14.0 on these problems (see Figure 8.6) and falls behind in its per-problem gain.

316 CHAPTER 9. EXTENSIONS TO THE STATISTICAL TECHNIQUE

0 50
0

10

20

normal

co
rre

lat
ion

 is
 0.

9

0 50
0

10

20

co
rre

lat
ion

 is
 0.

6

0 50
0

10

20

co
rre

lat
ion

 is
 0

0 50
0

10

20

log−normal

0 50
0

10

20

0 50
0

10

20

0 50
0

10

20

uniform

0 50
0

10

20

0 50
0

10

20

0 50
0

10

20

log−uniform

0 50
0

10

20

0 50
0

10

20

Figure 9.7: Per-problem gains with the use of size (solid lines) and without size (dashed lines), for

di�erent correlations between size logarithms and time logarithms.

9.2.4 Experiments with arti�cial data

We test the regression technique on arti�cially generated values of running times. The
experimental setup is the same as in the arti�cial tests of Section 8.7. That is, we use
the linear gain function with a reward R = 100:0, and consider four types of running-time
distribution: normal, log-normal, uniform, and log-uniform. The experiments demonstrate
that regression improves the performance when there is a correlation between time and size,
and does not worsen the results when there is no correlation.

Selecting a time bound

We give the results of learning a time bound on 50-problem sequences, for di�erent time dis-
tributions and di�erent correlations between time and size, and compare the gains obtained
with and without regression.

Problem sizes in this experiment are natural numbers from 1 to 10, selected randomly.
The logarithms of mean success and failure times are proportional to the problem-size log-
arithms. We adjusted the standard-deviation values to obtain desired correlations between
time logarithms and size logarithms. We used the correlation of 0.9 in the �rst series of
experiments and 0.6 in the second series. Finally, we ran a series of experiments with zero
correlation; the mean times in this series were the same for all problem sizes.

We give the results in Figure 9.7, where solid lines show the average per-problem gains
with regression, and the dashed lines give the gains obtained without regression. The use of
regression improves the performance and the improvement is greater for larger correlations. If
there is no correlation, the system disregards the results of regression and performs identically
with and without size.

9.3. SIMILARITY AMONG PROBLEMS 317

0 100
0

5

10

15

20

25

normal

pe
r−

pr
ob

lem
 ga

ins

0 100
0

0.5

1

pr
ob

. w
/o

siz
es

 0 100

0

0.5

1

 p
ro

b.
w/

 si
ze

s

0 100
0

5

10

15

20

25

log−normal

0 100
0

0.5

1
0 100

0

0.5

1

0 100
0

5

10

15

20

25

uniform

0 100
0

0.5

1
0 100

0

0.5

1

0 100
0

5

10

15

20

25

log−uniform

0 100
0

0.5

1
0 100

0

0.5

1

Figure 9.8: Incremental selection among three representations, where the average gain for the �rst

representation is 10% larger than that for the second one and 20% larger than that for the third

one. We show the average per-problem gains in the experiments with and without regression (the

top row of graphs), and the probability of selecting each representation (the other two rows).

Choosing a representation

We next show the results of the incremental selection among three representations, with
the same distributions as in the representation-selection experiments of Section 8.7 (see
Figures 8.18 and 8.19). We present two series of experiments, with 150-problem sequences.

In the �rst series, the optimal gain for the �rst representation is 10% larger than that for
the second representation and 20% larger than that for the third one. We summarize the
results in Figure 9.8. The top row of graphs shows the average per-problem gain with the
use of problem size (solid lines) and without size (dotted lines). The other two rows give the
probability of choosing each representation, in the experiments with and without size.

In the second series, the optimal gain of the �rst representation is 30% larger than that
of the second one and 60% larger than that of the third one. We give the results of this
series in Figure 9.9.

9.3 Similarity among problems

We have estimated the expected gain by averaging the gains of all sample problems. If we
know which of them are similar to a new problem, we may improve the estimate accuracy
by averaging only the gains of these similar problems.

We encode similarity among problems by a hierarchy of problem groups (Section 9.3.1),
and use this hierarchy in estimating expected gains (Section 9.3.2). We illustrate it by
experiments in the transportation and phone-call domain (Section 9.3.3).

318 CHAPTER 9. EXTENSIONS TO THE STATISTICAL TECHNIQUE

0 100
0

5

10

15

20

25

normal

pe
r−

pr
ob

lem
 ga

ins

0 100
0

0.5

1

pr
ob

. w
/o

siz
es

 0 100
0

0.5

1

 p
ro

b.
w/

 si
ze

s

0 100
0

5

10

15

20

25

log−normal

0 100
0

0.5

1
0 100

0

0.5

1

0 100
0

5

10

15

20

25

uniform

0 100
0

0.5

1
0 100

0

0.5

1

0 100
0

5

10

15

20

25

log−uniform

0 100
0

0.5

1
0 100

0

0.5

1

Figure 9.9: Incremental selection among three representations, with and without regression. The

average gain for the �rst representation is 30% larger than that for the second one and 60% larger

than that for the third one.

time (sec) and outcome # of # time (sec) and outcome # of

Apply Delay Abstract conts Apply Delay Abstract conts

1 2.3 s 2.3 s 2.1 s 1 6 200.0 b 200.0 b 10.1 f 8

2 3.1 s 5.1 s 4.1 s 2 7 3.2 s 3.2 s 3.2 s 2

3 5.0 s 20.2 s 4.8 s 3 8 24.0 s 200.0 b 26.3 s 8

4 3.3 s 8.9 s 3.2 s 2 9 4.8 s 86.2 s 3.4 s 4

5 6.7 s 36.8 s 6.4 s 4 10 8.0 s 200.0 b 9.4 s 6

Table 9.2: Performance of Apply, Delay, and Abstract on ten container-transportation problems.

9.3.1 Similarity hierarchy

We describe similarity by a tree-structured similarity hierarchy. The leaf nodes of the hier-
archy are groups of similar problems. The other nodes represent weaker similarity among
groups. We assume that each problem belongs to exactly one group, and that determining
a problem's group takes little computational time.

For example, we may divide the transportation problems into within-city and between-
city deliveries. We extend this example by a new type of problem, which involves the
transportation of containers within a city. A van can carry only one container at a time,
which sometimes makes container delivery harder than package delivery. In Table 9.2, we
give the performance of Apply, Delay, and Abstract on ten container-transportation problems.
If we subdivide within-city problems into package deliveries and container deliveries, we get
the similarity hierarchy shown in Figure 9.10(a).

The construction of a hierarchy is presently the user's responsibility. We plan to address
the problem of learning a hierarchy automatically in future work. We allow the user to
construct a separate hierarchy for each representation or a common hierarchy for all repre-

9.3. SIMILARITY AMONG PROBLEMS 319

(a) Similarity hierarchy

(vans & planes)
between cities

delivery

succ dev:
fail dev:

domain

succ dev:
fail dev:

within city

succ dev:
fail dev:

between cities

succ dev:
fail dev: Unknown

succ dev:
fail dev:

packages

1.08
0.37

0.64
0.23

0.38

0.69
0.29

0.73
0.08

within city
(vans only)

delivery

containers
delivery ofdelivery of

extended

domain
transportation

containerspackages

succ dev:
fail dev:

1.39

domain

0.38

0.92
0.27

succ dev:
fail dev:

packages

succ dev:
fail dev:

0.86
0.44

within city

succ dev:
fail dev:

1.60
0.33

between cities

succ dev:
fail dev:

0.75
Unknown

containers

(b) ABSTRACT’s deviations w/o regression (c) ABSTRACT’s deviations with regression

Figure 9.10: Similarity hierarchy and the deviations of Abstract's success and failure logarithms.

sentations. We also allow the use of di�erent problem-size measures for di�erent groups of
problems.

We may estimate the similarity of problems in a group by the standard deviation of the
logarithms of running times, computed for the sample problems that belong to the group:

TimeDev =

vuut 1

n� 1
�

nX
i=1

(log timei)2 �
(
Pn

i=1
log timei)2

n

!
: (9.8)

We compute the deviations separately for successes and failures, and use these values as
a heuristic measure of the hierarchy's quality. In the current implementation, we do not

include the rejection-time deviations into the quality measure, because rejection times do
not depend on problem groups in any of Shaper's domains.

The smaller the success and failure deviations for the leaf groups, the better the user's
hierarchy. If some deviation value is larger than a pre-set threshold, the system gives a
warning. In the implementation, we set this threshold to 2.0.

If we use regression, we apply it separately to each group of the similarity hierarchy. If
regression con�rms the dependency between problem size and time, we compute the deviation
of time logarithms by a di�erent formula, given in the last line of Figure 9.1.

For example, the deviation values for Abstract in the transportation domain are as shown
in Figure 9.10. We give the deviations computed without regression in Figure 9.10(b), and
the deviations for gain estimates with regression in Figure 9.10(c). The values show that
within-city problems are more similar to each other than between-city problems.

Note that the deviations of the logarithms do not change if we multiply all times by the
same factor, which means that they do not depend on the speed of a speci�c computer that
executes the code. Also, the deviation values do not change, on average, with the addition
of more problems to the sample.

320 CHAPTER 9. EXTENSIONS TO THE STATISTICAL TECHNIQUE

9.3.2 Choice of a group in the hierarchy

We may estimate the expected gain for a new problem by averaging the gains of the sample
problems that belong to the same leaf group. Alternatively, we may use a larger sample
from one of its ancestors. The leaf group has less data than its ancestors, but the deviation
of these data is smaller. We need to analyze this trade-o� when selecting between the leaf
group and its ancestors. Intuitively, we should use ancestral groups during early stages of
incremental learning, and move to leaf groups after collecting more data.

We present a heuristic (rather than a statistical technique) for selecting between a group
and its parent, based on two tests. The �rst test is aimed at identifying the di�erence
between the distribution of the group's problems and the distribution of the other problems
in the parent's sample. If the two distributions prove di�erent, we use the group rather than
its parent for estimating the problem-solving gain. If not, we perform the second test, to
determine whether the group's sample provides a more accurate performance estimate than
the parent's sample. We now describe the two tests in detail.

If we do not use regression, then the �rst test is the statistical t-test that determines
whether the mean of the group's time logarithms di�ers from the mean of the other time
logarithms in the parent's sample. We perform the test separately for successes and failures.
In our experiments, we consider the means di�erent when we can reject the null-hypothesis
that they are equal with 0.75 con�dence. If we use regression and it con�rms the dependency
between size and time, then we use a di�erent t-test. Instead of comparing the means of time
logarithms, we determine whether the regression lines are di�erent with con�dence 0.75.

A statistically signi�cant di�erence for either successes or failures is a signal that the
distribution of the group's running times di�ers from the distribution for the other problems
in the group's parent. Therefore, if we need to estimate the gain for a new problem that
belongs to the group, the use of the parent's sample may bias the prediction. We thus should
use the group rather than its parent.

For example, suppose that we use the data in Tables 8.1, 8.3, and 9.2 with the hierarchy
in Figure 9.10(a), and we need to estimate Abstract's gain on a new problem that involves
the delivery of packages within a city. We consider the choice between the corresponding
leaf group and its parent. In this example, we do not use regression.

The estimated mean of the success-time logarithms for the package-delivery problems is
4.07, and the standard deviation of this estimate is 0.20. The estimated mean for the other
problems in the parent group, which are the container-delivery problems, is 4.03, and its
deviation is 0.16. The di�erence between the two means is not statistically signi�cant. Since
the container-transportation sample has only one failure, we cannot estimate the deviation
of its failure logarithms; therefore, the di�erence between the failure-logarithm means is also
considered insigni�cant.

If we apply regression to this example and use the t-test to compare the regression
slopes, it also shows that package-transportation and container-transportation times are not
signi�cantly di�erent.

The second test is the comparison of the standard deviations of the mean estimates for
the group and its parent. The deviation of the mean estimate is equal to the deviation of
the time logarithms divided by the square root of the sample size, TimeDevp

n
. We compute

9.3. SIMILARITY AMONG PROBLEMS 321

it separately for success times and failure times. We use this value as an indicator of the
sample's accuracy in estimating problem-solving gain: the smaller the value, the greater the
accuracy. This indicator accounts for the trade-o� between the deviation of the running-time
distribution and the sample size. It increases with an increase in the deviation and decreases
with an increase in the sample size.

If the group's deviation of the mean estimate is smaller than that of the group's parent,
for either successes or failures, then the group's sample is likely to provide a more accurate
gain estimate; thus, we prefer the group to its parent. On the other hand, if the parent's
mean-estimate deviation is smaller for both successes and failures, and the comparison of
the group's mean with that of the other problems of the parent sample has not revealed a
signi�cant di�erence, then we use the parent to estimate the gain for a new problem.

Suppose that we apply the second test to the group selection for estimating Abstract's
gain on within-city package delivery. The standard deviation of the mean estimate of the
success-time logarithms, for the corresponding leaf group, is 0.20; the deviation for its parent
is 0.16. The deviation of the mean estimate of the failure-time logarithms is also smaller for
the parent. Since the �rst test has not revealed a signi�cant di�erence between the group's
times and the other times in the parent's sample, we prefer the use of the parent.

After selecting between the leaf group and its parent, we use the same two tests to
choose between the resulting \winner" and the group's grandparent. We then compare the
new winner with the great-grandparent, and so on. In our example, we need to compare the
selected parent group with the top-level node (see Figure 9.10a). After applying the �rst test,
we �nd out that the mean of the group's success logarithms is 4.03, and the corresponding
mean for the other problems in the top node's sample is 5.39. The di�erence between these
means is statistically signi�cant. We thus prefer the group of within-city problems to the
top-level group.

In Figure 9.11, we summarize the algorithm for selecting a group of the similarity hier-
archy. It inputs the leaf group of a given problem and returns an ancestor group for use
in estimating the problem-solving gains. Note that, for every ancestor group, the algorithm
has to determine several sums over its size and time values. We use the following sums in
statistical computations of the procedures Test-1 and Test-2:Pn

i=1
sizei

Pn
i=1

size2i
Pn

i=1
log sizei

Pn
i=1

(log sizei)
2

Pn
i=1

log timei
Pn

i=1
(log timei)

2
Pn

i=1
sizei � log timei

Pn
i=1

log sizei � log timei
We compute these sums separately for successfully solved problems and for failures. When

performing Test-1, we use not only the sums for the group's problems, but also the sums of
the other problems in the group's parent.

We store all these sums for every group of the hierarchy, and update them incrementally.
When adding a new problem to the past performance data, we increment the sums of the
corresponding leaf group and all its ancestors. Thus, the running time for adding a problem
is proportional to the depth of the hierarchy; that is, its complexity is O(depth). We use the
pre-computed sums in statistical tests, which allows the computation of Test-1 and Test-2

in constant time. Thus, the time complexity of Select-Group is also O(depth).
We measured the execution time for a Lisp implementation on a Sun 5 computer, using

the example gain function in the incremental learning. The statistical computation for each

322 CHAPTER 9. EXTENSIONS TO THE STATISTICAL TECHNIQUE

Select-Group(Leaf-Group)

The input is a leaf group of a similarity hierarchy; the output is the selected ancestor group.

Set the initial values:

Current-Group := Leaf-Group

Best-Group := Leaf-Group

Repeat while Current-Group is not the root of the hierarchy:

If Test-1(Current-Group) and Test-2(Best-Group;Parent(Current-Group)),

then Best-Group := Parent(Current-Group)

Current-Group := Parent(Current-Group)

Return Best-Group

Test-1(Group)

The test returns true if the distribution of the group's problems is not signi�cantly di�erent from the

distribution of the other problems in the parent's sample.

If a t-test con�rms that either

� the success times of Group di�er from the other success times in Parent(Group), or

� the failure times of Group di�er from the other failure times in Parent(Group),

then return false;

Else, return true.

(We apply one of the following two t-tests:

If we use size and the regression is statistically signi�cant for both sets of time values,

then we determine whether the regression lines are di�erent with con�dence 075;

Else, we determine whether the means of time logarithms are di�erent with con�dence 075.)

Test-2(Group1;Group2)

Here Group2 is an ancestor of Group1. The test returns true if Group2 provides a more accurate

estimate than Group1 for both the expected success time and the expected failure time.

Set the following values:

ns1;nf1: the number of successes (ns1) and failures (nf1) in Group1
ns2;nf2: the number of successes and failures in Group2
S TimeDev1;F TimeDev1: the TimeDev values for successes and failures in Group1
S TimeDev2;F TimeDev2: the TimeDev values for Group2

(We use one of the following two expressions for computing a TimeDev value:

If we use size and the regression is statistically signi�cant,

then we apply the formula in the last line of Figure 9.1;

Else, we compute it using Equation 9.8.)

Perform the test:

If S TimeDev2
ns2

<
S TimeDev1

ns1
and F TimeDev2

nf
2

<
F TimeDev1

nf
1

,

then return true;

Else, return false.

Figure 9.11: Selecting a group of a similarity hierarchy for the gain-estimate computation.

9.3. SIMILARITY AMONG PROBLEMS 323

using leaf using the heuristic

groups top group group selection

without the use of problem size

Apply's bound selection 11.8 10.5 12.1

Delay's bound selection 7.0 4.7 7.5

Abstract's bound selection 19.5 18.1 19.5

selection of a representation 13.1 11.1 13.4

with the use of problem size

Apply's bound selection 16.3 11.1 16.8

Delay's bound selection 12.1 5.2 12.0

Abstract's bound selection 22.6 18.4 22.6

selection of a representation 19.4 13.7 21.0

Table 9.3: Per-problem gains in learning experiments, for di�erent group-selection techniques.

new problem includes performing the necessary regressions, selecting a group, scaling the
times of this group to the size of the new problem, and determining the expected gains for
l time bounds. It also includes adding the results of solving the problem to the past data.
The total time of these operations is about (3 � l + 2 � n + 8 �m+ 22 � depth) � 10�4 seconds.
This time is still very small compared to prodigy's problem-solving time.

We have considered several alterations of the described group-selection heuristic in our
experiments. In particular, we tried replacing the deviation of time logarithms with the
deviation of times divided over their mean. In most cases, the use of this measure led to
the same selection. We also tried to use either success or failure times, rather than both
successes and failures. This alternative proved to be a less e�ective strategy. When successes
are much more numerous than failures, which happens in most domains, the results of using
successes and ignoring failures are near-identical to the results of using both success and
failures; however, when the number of successes and failures is approximately equal, the use
of both successes and failures gives better performance.

9.3.3 Examples of using similarity

We give results of using a similarity hierarchy in selecting representations and time bounds.
We describe experiments in the transportation and phone-call domain, and show that the
use of similarity increases problem-solving gains in both domains.

Transportation domain

We present the results of using the similarity hierarchy of Figure 9.10, and compare them
with the results obtained without a hierarchy. We ran the bound-selection experiments on
a sequence of seventy transportation problems, which was constructed by interleaving the
problem sets of Tables 8.1, 8.3, and 9.2. We then ran experiments on choosing among Apply,
Delay, and Abstract, using a sequence of 210 problems.

In Table 9.3, we give the mean per-problem gains obtained in these experiments. In the
�rst column, we show the results of using only leaf groups in estimating the gains. In the

324 CHAPTER 9. EXTENSIONS TO THE STATISTICAL TECHNIQUE

outcomes
of calls to F

10.15 f

7.50 s

11.65 f

10.15 f 7.55 s

12.40 f

7.45 s

6.80 s 2.60 s

6.70 s

7.60 s

8.10 s

6.05 s

4.95 s

7.90 s 9.70 s

2.85 s

of calls to C
outcomesoutcomes

of calls to A

2.30 s

1.95 s

2.55 s

2.75 s

3.10 s

2.05 s

3.20 s

2.50 s
200.0 b

200.0 b

200.0 b

outcomes
of calls to B

1.05 s 3.25 s

1.85 s 17.20 s

200.0 b

200.0 b

2.30 s

4.85 s

200.0 b

0.50 s

8.30 s
7.15 s

2.05 s
7.40 s
9.05 s

20.10 f

19.75 f

1.70 s
7.80 s

6.05 s
8.35 s
8.75 s
9.65 s

19.30 f

outcomes
of calls to D

mean:
deviation:
mean’s dev:

successes failures

NONE

calls to an office phone

0.19

0.92
0.89

mean:
deviation:
mean’s dev:

mean:
deviation:
mean’s dev:

successes failures

0.09
0.55

1.84

0.11
0.32

2.72

calls to a home phone

mean:
deviation:
mean’s dev:

failures

0.11
0.32

2.72
0.72

0.10

1.55mean:
deviation:
mean’s dev:

successes

all phone calls

failures

calls to A

mean:
deviation:
mean’s dev:

successes

NONE

0.06
0.18

0.92

failures

mean:
deviation:
mean’s dev:

successes

NONE

calls to B

0.43
1.13

0.92

failures

calls to C

mean:
deviation:
mean’s dev:

successes

0.14
0.44

1.77

NONE

1.81

0.18
0.60

mean:
deviation:
mean’s dev:

failures

calls to D

0.01
0.02

2.98

mean:
deviation:
mean’s dev:

successes

mean:
deviation:
mean’s dev:

failures

calls to E

mean:
deviation:
mean’s dev:

successes

0.17
0.50

1.89

0.08
0.11

2.98 mean:
deviation:
mean’s dev:

failures

mean:
deviation:
mean’s dev:

successes

calls to F

2.02
0.007

0.004

0.05
0.20

2.40

outcomes

5.60 s

8.85 s

9.70 s

5.45 s

9.90 s

21.25 f

8.10 s

2.45 s

18.30 f
4.15 s

of calls to E

11.25 s

Figure 9.12: Similarity hierarchy and call outcomes in the phone-call domain.

second column, we give the results of using the top-level group for all estimates, which means
that we do not distinguish among the three problem types. The third column contains the
results of using the similarity hierarchy, with our heuristic for the group selection.

We �rst ran the experiments using both success and failure times in the group selection,
and then re-ran them using only success times. In all eight cases, the results of using both
successes and failures were identical to the results of using successes.

The experiments demonstrate that the use of the complete hierarchy gives larger gains
than either the leaf groups or the top-level group; however, the improvement is not large.

Phone-call domain

We next use a similarity hierarchy in selecting a time bound for phone calls. We consider
the outcomes of sixty-three calls to six di�erent people. We phoned two of them, say A and
B, at their o�ce phones; we phoned the other four, C, D, E, and F , at their homes. We
show the similarity hierarchy and the call outcomes in Figure 9.12.

For each group in the hierarchy, we give the estimated mean of success and failure time
logarithms (\mean"), the deviation of the time logarithms (\deviation"), and the deviation

9.3. SIMILARITY AMONG PROBLEMS 325

of the mean estimate (\mean's dev"). The mean of success-time logarithms for calls to o�ces
is signi�cantly di�erent from that for calls to homes, which implies that the distribution of
o�ce-call times di�ers from the distribution of home-call times.

The mean success logarithms for persons A and B are not signi�cantly di�erent from
each other. Similarly, the success means of C, D, and E do not di�er signi�cantly from the
mean of the home-call group. On the other hand, the success mean of F is signi�cantly
di�erent from the mean for the other people in the home-call group, implying that the time
distribution for F di�ers from the rest of its parent group. Finally, the failure-logarithm
means of D, E, and F are all signi�cantly di�erent from each other.

We ran incremental-learning experiments on these data with the success reward of 90.0
and zero failure reward. An experiment with the use of the leaf groups for all gain estimates
yielded a gain of 57.8 per call. We then ran an experiment using the home-call and o�ce-call
groups for all estimates, without distinguishing among di�erent people within these groups,
and obtained an average gain of 56.3. We next used the top-level group for all estimates,
which yielded 55.9 per call. Finally, we experimented with the use of our heuristic for
choosing between the leaf groups and their ancestors based on the means and deviations
of time logarithms; the gain in this experiment was 59.8 per call. If we knew the time
distributions in advance, determined the optimal time bound for each leaf group, and used
these optimal bounds for all calls, then the average gain would be 61.9.

The phone-call experiments have con�rmed that a similarity hierarchy improves perfor-
mance, though not by much. Note that the gain obtained with the hierarchy is signi�cantly
closer to the optimal than the gain from the use of leaf groups or the top-level group.

Chapter 10

Preference rules

The Shaper system allows the use of heuristic rules in selecting representations. We have
already discussed rejection and comparison rules, which prune ine�ective descriptions and
representations (see Sections 7.2.2 and 7.2.3). We now introduce preference rules, which
generate judgments about performance of the remaining representations, without pruning
any of them.

The preference-rule mechanism provides a general means for developing top-level control
strategies, to supplement statistical learning. We use preference rules to encode the initial
knowledge about relative performance of representations and to implement simple learning
techniques. This mechanism also allows the user to control the trade-o� between exploitation
and exploration in statistical learning.

The system uses preference rules in conjunction with the statistical analysis of past
performance. When Shaper has little performance data, it mostly relies on the preferences;
after accumulating more data, it switches to the statistical analysis.

We present the encoding and application of preference rules (Section 10.1), and two
learning mechanisms implemented through preference rules (Sections 10.2 and 10.3). Then,
we describe storage of generated preference judgments and resolution of conicts between
them (Section 10.4). Finally, we discuss techniques for combining preference rules with
statistical selection (Section 10.5).

10.1 Preferences and preference rules

We �rst describe the syntax and semantics of preference rules (Section 10.1.1), and then
overview the main types of these rules (Section 10.1.2).

10.1.1 Encoding and application of rules

We present the encoding of preference rules and their use to compare representations. We
begin by de�ning the notion of a preference, which is an instance of representation com-
parison, and then present a mechanism for generating preferences. Finally, we discuss some
constraints that we follow in constructing preference rules.

326

10.1. PREFERENCES AND PREFERENCE RULES 327

Add-Preference(prefer-rep; priority; certainty; rep
1
; rep

2
)

If prefer-rep(rep
1
; rep

2
), then:

Compute the certainty, cert := certainty(rep
1
; rep

2
).

If cert > 0:5,
then add the preference (rep

1
; rep

2
; cert; priority(rep

1
; rep

2
));

Else, add the preference (rep
2
; rep

1
; 1� cert; priority(rep

1
; rep

2
)).

Figure 10.1: Application of a preference rule; representations rep1 and rep2 must be distinct.

Preferences

A preference is an expectation that a certain domain representation, rep
1
, should be better

than another representation, rep2. The system may rely on this expectation when it does
not have past data for the statistical comparison of rep1 and rep2.

We represent the reliability of a preference by two values, called priority and certainty.
The priority is a natural number that serves for resolving conicts among preferences. If
the system gets preferences that contradict each other, it chooses among them according to
their priorities. We will give the conict-resolution algorithm in Section 10.4.3.

The certainty is an approximate probability that the expectation is correct, that is,
rep1 is indeed better than rep2. This probability value must be no smaller than 0.5, because
otherwise rep

2
would be preferable to rep

1
. The system uses certainties to control the trade-o�

between exploitation and exploration in early stages of statistical learning (see Section 10.5).
Note that certainties are not used in conict resolution.

We denote a preference by a quadruple (rep
1
; rep

2
; prior; cert), where rep

1
and rep

2
are

two speci�c representations, prior is a priority (natural number), and cert is a certainty
(between 0.5 and 1).

Rule encoding

A preference rule is a heuristic for generating preferences, which inputs two distinct repre-
sentations and determines whether one of them is better than the other.

We encode a rule by an applicability condition, prefer-rep(rep1; rep2), and two functions,
priority(rep

1
; rep

2
) and certainty(rep

1
; rep

2
). The condition determines whether we can use

the rule to compare the given representations. When the rule is applicable, the �rst function
returns the priority of the preference, and the second function gives its certainty. If the
resulting certainty value is larger than 0.5, then rep

1
is preferable to rep

2
; if it is smaller, the

system generates the opposite preference. If the certainty is exactly 0.5, the rule is considered
inapplicable. We summarize the algorithm for applying a preference rule in Figure 10.1.

Preference rules provide less accurate comparison of representations than statistical selec-
tion; in particular, they do not account for gain functions, properties of speci�c problems, or
a probability distribution of problems in a domain. These limitations simplify the design and
encoding of preference rules, and enable us to develop fast procedures for use of preferences.

We allow the user to add new rules, as well as delete or modify old rules, in the process of
solving problems. These operations require the appropriate revisions of previously generated

328 CHAPTER 10. PREFERENCE RULES

preferences; we discuss them in Section 10.4.1.

Antisymmetry and consistency

A well-designed preference rule should not generate conicting preferences. In particular,
if the application of a rule to some pair of representations produces a preference, then its
application to the reversed pair should not produce a di�erent preference.

We may avoid such conicts by enforcing the following property of the applicability
conditions:

Antisymmetry

For every condition prefer-rep, and representations rep
1
and rep

2
,

prefer-rep(rep
1
; rep

2
) is false or prefer-rep(rep

2
; rep

1
) is false.

That is, if a rule is applicable to a pair of representations, then it is not applicable to the
reversed pair.

Antisymmetry is convenient for avoiding simple conicts of a rule with itself, but it
sometimes proves too restrictive. We may enforce a weaker property, which also prevents
conicts:

Consistency

For every rule (prefer-rep,priority,certainty), and representations rep
1
and rep

2
,

if prefer-rep(rep1; rep2) and prefer-rep(rep2; rep1) are both true, then
(a) priority(rep

1
; rep

2
) = priority(rep

2
; rep

1
) and

(b) certainty(rep1; rep2) = 1� certainty(rep2; rep1).

We found these constraints useful for designing preference rules, and used either Anti-
symmetry or Consistency in each of the experimental domains. Note, however, that these
properties are recommendations rather than requirements, and their violation does not re-
sult in errors or unresolvable conicts. The user may enforce or disregard either property,
at her discretion.

We provide an optional procedure for verifying these properties during the application of
preference rules. The human operator may use it to monitor the violations of Antisymmetry
or Consistency.

10.1.2 Types of rules

We currently use three types of preference rules in the Shaper system: user rules, counting
rules, and testing rules. User rules are completely speci�ed by the human operator, whereas
the other two types allow limited learning.

User rules

We extended the prodigy domain language to allow speci�cation of preference rules. This
extension enables the human operator to encode her knowledge and combine it with auto-
matic statistical selection.

10.1. PREFERENCES AND PREFERENCE RULES 329

When encoding a rule, the user provides its applicability condition, priority, and cer-
tainty. The condition is a Lisp function that inputs two representations and returns true or
false. It may take into account not only the structure of the representations, but also their
construction history (see Section 7.1.2).

We built a small library of functions that are often used to construct applicability condi-
tions for prodigy representations. In particular, we implemented procedures for detecting
identical primary e�ects, abstraction hierarchies, and control-rule sets. We also provided
functions for checking whether a selection of primary e�ects is a subset of another selection,
an abstraction is �ner grained than another abstraction, and a control-rule set belongs to
another set. We have described these procedures in Section 7.1.1.

The priority speci�cation is a Lisp function that inputs two representations and returns
a priority value. If the priority of a preference rule does not depend on the speci�c repre-
sentations, the user may specify it by a natural number rather than a function. If the user
does not specify priority, the system uses the default value. For user rules, this default is 0,
the lowest priority.

The certainty is also speci�ed by a Lisp function or a number; certainty values must be
reals between 0 and 1. If the user does not provide this speci�cation, the system uses the
default value, which is presently set to 2/3.

The user may provide preference rules for speci�c domains, as well as multi-domain rules.
She may restrict the applicability of every multi-domain rule to a certain group of domains,
by coding a Lisp function that inputs a pointer to a domain and determines whether the
rule is applicable in this domain.

Counting and testing rules

If the user speci�es the applicability condition of a rule, the system can automatically learn
its certainty. If the resulting certainty is larger than 0.5, then the �rst representation in
every matching pair is preferable to the second one; otherwise, the system prefers the second
representation. We use two di�erent mechanisms for learning certainties, which give rise to
counting rules and testing rules.

A counting rule is a simple mechanism for computing certainty from past performance
data. When the system applies such a rule, it identi�es the pairs of old representations
that match the rule's condition, and uses statistical analysis of past performance to com-
pare representations in these pairs. It determines the percentage of pairs in which the �rst
representation gives larger gains than the second one, and uses this percentage as the rule's
certainty. For example, suppose that the procedure has identi�ed four pairs of old represen-
tations that match the applicability condition, and determined that the �rst representation is
better than the second one in three of these pairs. Then, the system sets the rule's certainty
to 0.75.

A testing rule compares representations by their performance on a collection of test
problems. When two representations match the condition of a testing rule, the system applies
them to solve a sequence of small problems, and determines the percentage of problems on
which the �rst representation outperforms the second one. This percentage becomes the
certainty of the resulting preference. For example, if the �rst representation has won on

330 CHAPTER 10. PREFERENCE RULES

three out of four test problems, the system prefers it to the second one with certainty 0.75.
We must ensure that test problems take much less time than real problems. Otherwise, the
time saved by making the right selection may prove smaller than the time spent for testing.

The user should specify not only applicability conditions but also priorities of counting
and testing rules. By default, priorities of counting rules are higher than user-rule priori-
ties and lower than testing-rule priorities. A rule may be used in a speci�c domain or in
multiple domains. If a counting rule is applicable to multiple domains, then the system
determines its certainty based on the data accumulated in all domains. We now give a more
detailed description of counting and testing rules, and present algorithms for computing their
certainty.

10.2 Counting rules

Suppose that the human operator has identi�ed some condition relevant to the e�ciency of
representations, but she does not know whether it implies good or poor performance. For
example, an experienced operator should know that abstraction a�ects e�ciency; however,
she may not know whether it helps or hurts in a speci�c domain.

Then, she may encode a counting preference rule based on this condition. When the
human operator provides such a rule, she does not specify the direction and certainty of
preferences. The system automatically determines the certainty, after accumulating some
performance data. To compute the rule's certainty, Shaper identi�es the matching pairs of
old representations, and counts the pairs in which the �rst representation gives larger gains
than the second one.

Counting rules are usually more reliable than user rules; however, the system cannot apply
them until it accumulates relevant data. We describe the computation of the certainties and
priorities of counting rules.

Certainty computation

To �nd the certainty of a counting rule, the system identi�es all pairs of representations
that match the rule's condition. For each pair, it tries to determine which of the two
representations performed better in the past. When the available data are not su�cient for
identifying the better representation, Shaper skips the pair.

Suppose that the �rst representation wins in nw pairs and loses in nl pairs. If neither of
these values is zero, we compute the rule's certainty as nw

nw+nl
. If nl is zero, we compute it as

nw
nw+1

rather than using the \absolute" certainty of 1. Similarly, if nw is zero, the certainty is
1

1+nl
. If the data are not enough for determining the better representation in any pair, then

both nw and nl are zero, and the system does not use the rule until it accumulates more
data.

Comparison of representations

The comparison of the representations in a pair is based on their expected gains. The
system uses past data to estimate the optimal time bound and the mean gain for this bound

10.2. COUNTING RULES 331

(see Sections 8.3 and 8.4), and chooses the representation with the larger gain. If the two
gains prove equal, Shaper skips the pair. We do not use problem sizes in comparing
representations; thus, gains are averaged over all possible sizes. Since the system �nds the
optimal expected gains in the course of statistical learning, it does not have to run statistical
computations when applying counting rules.

By default, the system does not test statistical signi�cance of the di�erence between
expected gains. This default allows the computation of certainty with little performance
data, in early stages of learning. The user has an option to enforce a signi�cance test. She
may specify the required con�dence value for a domain, as well as for individual counting
rules. When the di�erence does not prove signi�cant, Shaper concludes that the available
data are insu�cient and skips the pair.

Counting procedures

We summarize the procedures for use of counting rules in Figure 10.2. The Add-Pairs

procedure identi�es the pairs of representations that match the conditions of counting rules.
For every condition prefer-rep, it stores the matching pairs in pairs[prefer-rep]. When the
system adds a new representation, it invokes this procedure to determine new matching
pairs.

The Count-Certainty procedure computes the certainty of a speci�c counting rule. For
every matching pair, it calls Use-Pair to compare the two representations. Then, it counts
the number of wins and losses by the �rst representation, and determines the percentage
of wins. When the system gets new performance data, it invokes Count-Certainty to re-
compute rule certainties, and then updates the certainties of all generated preferences.

The Use-Pair procedure inputs two representations and compares their expected gains,
computed for the optimal time bounds. If the comparison does not pass the statistical z-
test, the procedure returns tie. The minimal passing z-value, denoted min-z, depends on the
user's con�dence requirement. By default, the system sets min-z to zero and does not check
statistical signi�cance.

Global certainty

When Shaper works with multiple domains, it creates a separate representation space for
every domain. We apply control heuristics and learning techniques to individual domains,
and usually do not transfer learned knowledge across domain boundaries. Only two of
Shaper's learning mechanisms transfer experience among di�erent domains. We now de-
scribe one of them, for computing the certainty of counting rules. The other mechanism,
presented in Section 11.1, is for analyzing the performance of description changers.

Suppose that a counting rule is applicable in multiple domains, and the current domain
does not have enough data for the certainty computation. If the system has computed the
rule's certainties in some other domains, it can determine a global certainty of the rule. The
system uses this certainty until accumulating domain-speci�c data, and then computes a
local certainty.

Suppose that the rule's certainty is strictly larger than 0.5 in mw domains and strictly
smaller than 0.5 in ml domains. That is, mw is the number of domains where the system

332 CHAPTER 10. PREFERENCE RULES

Add-Pairs(new-rep)
For every counting preference rule, with condition prefer-rep:

For every active old representation, old-rep:
If prefer-rep(new-rep; old-rep),

then pairs[prefer-rep] := pairs[prefer-rep] [f(new-rep; old-rep)g.
If prefer-rep(old-rep; new-rep),

then pairs[prefer-rep] := pairs[prefer-rep] [f(old-rep; new-rep)g.

Count-Certainty(prefer-rep)
The input is the condition of a counting rule.

Set the initial values:

nw := 0 (number of wins by rep
1
)

nl := 0 (number of losses by rep1)

For every pair (rep
1
; rep

2
) in pairs[prefer-rep]:

Call Use-Pair(rep
1
; rep

2
).

If it returns win, then nw := nw + 1.
If it returns loss, then nl := nl + 1.

Compute the certainty:

min(nw; 1)

min(nw; 1) + min(nl; 1)

Use-Pair(rep
1
; rep

2
)

Determine the gain for the �rst representation:

If rep1 has no performance data, then return tie.
Else, �nd the expected gain, g1, and its deviation, �1.

Determine the gain for the second representation:

If rep
2
has no performance data, then return tie.

Else, �nd the expected gain, g2, and its deviation, �2.

Compare the gains:

If jg1�g2jp
�2
1
+�2

2

� min-z, then return tie.

If g1 > g2, then return win; else, return loss.

Figure 10.2: Use of counting rules: Identi�cation of matching pairs and certainty computation.

10.3. TESTING RULES 333

prefers the �rst representation of a matching pair, and ml is the number of domains with
the opposite preference. Then, the global certainty is mw

mw+ml

. If mw or ml is zero, we treat
it in the same way as in the local-certainty computation. If ml is zero, then the certainty is
mw

mw+1
; if mw is zero, then it is 1

1+ml

; �nally, if both mw and ml are zero, the system does not
compute a global certainty.

When the user encodes a rule, she may specify its initial certainty. Then, the system
uses this certainty until it accumulates enough data for computing a global certainty. When
the rule's certainty switches from initial to global, the system updates the certainties of all
generated preferences. When the certainty in the current domain switches from global to
local, it also updates the preference certainties.

User-speci�ed priorities

The priority of a counting rule may depend on whether the system uses global or local
certainty. Accordingly, the user may provide two priority functions.

When the system uses global certainty, it applies the �rst function to compute the pri-
orities of preferences. After switching to local certainty, it applies the second function to
re-compute their priorities. The re-computation must not reduce the priorities of preferences.
In other words, the priority value for the local certainty must be no smaller than that for the
global certainty. When the system detects a violation of this condition, it signals a warning.

Default priorities

We �rst describe the computation of the default priority for global certainties. This default
value is greater than the priorities of all user rules in the domain. To compute it, the system
determines the maximum of user-rule priorities, and adds 1.

Since the user may specify priorities by functions, their maximal values may not be
known. In this case, the system determines the maximal priority of the generated preferences,
and uses it instead of the overall maximum. If some user rule generates a preference with
a greater priority, the system increases the maximum and then updates the priorities of
counting preferences.

The computation of the default priority for local certainties is similar. Its value is greater
than all user-rule priorities and all global-certainty priorities. Thus, the system determines
the maximum of all these priorities, and increases it by 1.

10.3 Testing rules

We next describe testing rules, which provide a mechanism for evaluating the performance
of representations on small problems, before solving real problems. The user has to provide
the applicability conditions of testing rules (see Section 10.1.1). The system then compares
the performance of matching representations on test problems. These rules are usually more
reliable than counting and user rules, though less reliable than statistical selection.

The main drawback of testing rules is their computational cost. We must ensure that
the time for solving test problems is smaller than the resulting savings on real problems.

334 CHAPTER 10. PREFERENCE RULES

Note that we cannot amortize the computational cost over a long sequence of real problems,
because the system discards all preferences after the initial stage of statistical learning.

We present a procedure that applies testing rules and computes the certainty of the
resulting preferences. We then discuss the role of the human operator and her options in
tuning this procedure.

Certainty computation

When two representations match a testing rule, the system compares their performance on
a series of test problems. For each problem, it determines which representation gives the
greater gain. If the �rst representation wins nw times and loses nl times, the certainty of
preferring it is nw

nw+nl
; however, if nl = 0, the system sets the certainty to nw

nw+1
rather than 1;

similarly, if nw = 0, the certainty is 1

1+nl
.

We summarize the certainty computation in Figure 10.3. Note that the procedure does
not count ties, for example, when both representations hit the time bound. It also disregards
the problems that result in rejection by either representation.

If Shaper applies a testing rule several times, it uses the same collection of problems
for all applications. It may use di�erent collections for di�erent rules, or the same common
collection for all rules, at the user's discretion. The system stores the results of solving test
problems, for every representation. If later comparisons involve the same representation, it
retrieves old results rather than solving the same problems anew.

Test problems

The human operator has to supply test problems. For every rule, she speci�es either a
collection of problems or a procedure that generates them on demand. She should ensure
that the problems take little computation and provide a fair performance comparison.

The system has no means for producing test problems automatically. Development of a
domain-independent generator of sample problems is an unexplored direction of AI research,
relevant to many learning systems.

Gain function

By default, the gain function for test problems is the same as the function for real problems.
The user has an option to provide a di�erent gain measure. Sometimes, this option allows
us to improve the testing accuracy.

If the real gain function is not known during testing, the system uses the following linear
function, where the reward R is strictly larger than the time bound:

gain(prob; time; result) =

8><
>:

R� time; if success
�time; if failure
�R; if interrupt

According to this function, success always gives a positive gain. We have not de�ned gain
for rejections, because the system does not use them in comparing representations.

10.3. TESTING RULES 335

Test-Certainty(rep
1
; rep

2
; probs)

The input includes two representations, rep
1
and rep

2
,

and a collection of test problems, probs.

Set the initial values:

nw := 0 (number of wins by rep
1
)

nl := 0 (number of losses by rep
1
)

For every prob in probs:

Determine a time bound B for solving prob.
Call Use-Problem(rep

1
; rep

2
; prob; B).

If it returns win, then nw := nw + 1.
If it returns loss, then nl := nl + 1.

Compute the certainty:

min(nw; 1)

min(nw; 1) + min(nl; 1)

Use-Problem(rep1; rep2; prob; B)

Test the �rst representation:

Apply rep1 to prob, with the time bound B.
If the result is a rejection, then return tie.
Else, determine the problem-solving gain, g1.

Test the second representation:

Apply rep
2
to prob, with the time bound B.

If the result is a rejection, then return tie.
Else, determine the problem-solving gain, g2.

Compare the gains:

If g1 > g2, then return win.
If g1 < g2, then return loss.
Else, return tie.

Figure 10.3: Computing the preference certainty for a testing rule.

336 CHAPTER 10. PREFERENCE RULES

Number of problems

We use a knob to specify the default number of problems for testing representations. Its
current value is 10; that is, when two representations match a testing rule, the system
compares them on ten problems. If the number of available problems is smaller, the system
uses all of them. When the user encodes a testing rule, she may specify a di�erent number
of tests.

Default time bounds

We next describe the computation of time bounds for test problems. These bounds must
ensure that the testing time is much smaller than the time for solving real problems.

Shaper determines the initial bound B for real problems (see Section 8.5.1), and limits
the testing time by a certain fraction of B. The coe�cient for computing this limit through B
is a knob, currently set to 0.5; that is, the testing-time limit is T = 0:5 �B.

When the system compares two representations on n problems, it sets the time bound
to T

2�n , which ensures that the overall testing time is at most T . If Shaper solves some
problems faster, it may spend more time on the remaining tests, so it re-sets the bound
accordingly. If the system has solved some problems during previous comparisons, it re-
trieves the past results rather than solving them anew, and allocates more time for the other
problems.

User-speci�ed bounds

The user has an option to provide di�erent default bounds for speci�c domains, as well as
explicit bounds for individual testing rules. For each rule, she may specify either a �xed
bound or a function that computes a bound for each problem.

If the user provides a time bound and does not specify the number of test problems, the
system solves problems until it reaches the time limit T . It stops at T even if it has used
less than ten problems. If the user sets both a time bound and a problem number, then the
system disregards the limit T .

Default priority

The default priority of testing rules is larger than all priorities of counting and user rules. To
compute this default, the system determines the maximum of all counting and user priorities,
and increases it by 1. If the system later revises the estimated maximum, then it updates the
priorities of all testing preferences. The update procedure is the same as for the priorities of
counting rules (see Section 10.2).

10.4 Preference graphs

A preference graph is a data structure for storage, e�cient access, and analysis of generated
preferences. It is a directed graph, whose nodes are representations or groups of representa-
tions, and edges are preferences.

10.4. PREFERENCE GRAPHS 337

For every problem domain, the system maintains a full preference graph and reduced

preference graph. The �rst graph comprises all preferences, whereas the second graph is the
result of pruning duplicate preferences and resolving conicts. The system uses the reduced
graph in selecting preferable representations and in controlling an early stage of statistical
learning (see Section 10.5).

We �rst describe the full graph and its use for storing preferences (Section 10.4.1). We
then present the reduced graph (Section 10.4.2) and give algorithms for its construction
(Sections 10.4.3 and 10.4.4).

10.4.1 Full preference graph

The system stores the results of applying preference rules in the full preference graph. The
available representations are nodes of this graph, and all generated preferences are its edges.
Note that the full graph may contain multiple edges connecting the same pair of nodes.

Some representations in the full graph may be inactive (see Sections 7.2.2 and 7.2.3),
which means that they are no longer used in problem solving. We do not compare an
inactive representation with other representations; however, we use its incoming and out-
going preference edges to identify transitive preferences (see Section 10.4.3). If an inactive
representation has no incoming or no outgoing edges, we remove it from the graph.

The system modi�es the full preference graph after adding a new representation, inacti-
vating an old representation, adding a new preference rule, or deleting or modifying an old
rule. We now consider each of these modi�cations.

Adding and inactivating representations

When Shaper generates a new representation (see the algorithm in Figure 7.3), it adds the
corresponding node to the full preference graph. The system applies the available preference
rules to compare the new representation with active old representations and adds appropriate
preferences. We give pseudocode for this procedure, called Add-Rep-Node, in Figure 10.4;
the procedure calls the Add-Preference function, presented in Figure 10.1.

If an old representation becomes inactive, the system checks whether the corresponding
node of the preference graph has both incoming and outgoing edges. If not, the system
removes the node from the graph.

Adding and removing preference rules

When the user adds a new preference rule, the system applies it to compare active represen-
tations and adds the resulting preferences. If the user removes an old rule, Shaper deletes
the corresponding preferences and then removes inactive nodes that no longer have incoming
or outgoing edges. In Figure 10.4, we present these procedures, called Add-Pref-Rule and
Remove-Pref-Rule.

When applying a preference rule, the system stores pointers from the rule to the resulting
preferences. These pointers allow fast identi�cation of all preferences that correspond to the
rule, which improves the e�ciency of the rule removal.

338 CHAPTER 10. PREFERENCE RULES

Add-Rep-Node(new-rep)
For every active old representation, old-rep:

For every preference rule, (prefer-rep; priority; certainty):
Call Add-Preference(prefer-rep; priority; certainty; new-rep; old-rep).
Call Add-Preference(prefer-rep; priority; certainty; old-rep; new-rep).

Add-Pref-Rule(prefer-rep; priority; certainty)
For every active representation, rep

1
:

For every other active representation, rep
2
:

Call Add-Preference(prefer-rep; priority; certainty; rep
1
; rep

2
).

Remove-Pref-Rule

For every preference (rep
1
; rep

2
; prior; cert) that corresponds to this rule:

Remove this preference from the preference graph.
If rep

1
is inactive, and it has no outgoing edges,

then remove the representation rep
1
from the graph.

If rep2 is inactive, and it has no incoming edges,
then remove the representation rep

2
from the graph.

Figure 10.4: Modi�cation of the full preference graph.

Modifying preference rules

If the user modi�es the condition of a rule, the system treats it as a removal of the old rule
and addition of a new one. That is, it deletes the corresponding old preferences and then
applies the modi�ed rule to all pairs of active representations.

On the other hand, if the user makes changes to the priority and certainty function
of a rule, and does not alter the condition, then the system modi�es the corresponding
old preferences rather than re-applying the rule. In particular, it may have to change the
directions of some preferences.

10.4.2 Reduced preference graph

The full graph comprises all generated preferences, which may form conicts. Some of the
preferences may be unreliable because of low certainty. The system pre-processes the graph
before using it to select representations: it prunes the low-certainty preferences, resolves
conicts, and identi�es groups of equally preferable representations. These operations result
in constructing a new graph, called the reduced preference graph.

Main features

We begin by listing the main properties of the reduced graph, which di�erentiate it from the
full graph and allow e�cient selection of preferable representations.

10.4. PREFERENCE GRAPHS 339

First, the nodes of the reduced graph are groups of representations. When the system
judges several representations equally preferable, it combines them in a group and views it
as a single node. The edges of the graph are preferences between groups.

Second, the certainties of all preferences are above some pre-set threshold, which equals
2/3 in the current implementation. Moreover, the graph has no multiple edges connecting
the same pair of nodes. That is, for every two nodes, there is at most one preference edge
between them.

Third, the reduced graph is acyclic, that is, preference edges do not form loops. The
system eliminates loops in two steps: it removes the edges that conict with higher-priority
preferences and then combines equal-preference representations into groups. Edges of the
reduced graph have certainties, but no priorities. We discard priorities because their only
purpose is resolving conicts, and the graph has no conicting preferences. We denote a
preference without a priority by a triple (rep1; rep2; cert).

Outline of the construction

We next outline the main operations for converting the full preference graph into the reduced
graph, which include pruning low-certainty and duplicate edges, resolving conicts, and
identifying equally preferable representations.

Low-certainty edges If the certainty of some edges is smaller than the 2/3 threshold,
the system prunes them, as illustrated in Figure 10.5(a).

Multiple edges If several preference edges connect the same two nodes in the same
direction, then the system keeps the highest-priority edge and prunes the other edges. If
several edges have this highest priority, the system keeps the one with the highest certainty.
Note that the priority takes precedence: the system prunes lower-priority edges even if they
have larger certainty. We show the deletion of multiple edges in Figure 10.5(b), where thicker
edges have higher priorities and numbers show certainties.

Simple conicts If two opposite edges with di�erent priorities connect the same two
nodes, we say that they form a simple conict. The system resolves it by removing the
lower-priority edge, as shown in Figure 10.5(c). If opposite edges have the same priority, the
system does not remove either of them.

Path conicts Suppose that, for some preference edge (rep
1
; rep

2
; prior; cert), there is

an opposite multi-edge path from rep2 to rep1, and the priorities of all edges in this path are
strictly greater than prior. We call this situation a path conict and resolve it by pruning
the edge from rep

1
to rep

2
, as illustrated in Figure 10.5(d). We distinguish between simple

and path conicts for e�ciency reasons: it enables us to develop faster algorithms, described
in Section 10.4.3.

Preference groups The preference graph may have loops even after resolving all simple
and path conicts. We consider the representations in a loop to be equally preferable. The
system identi�es groups of equally preferable representations and then determines preferences
between these groups. We give an example of such groups in Figure 10.5(e).

340 CHAPTER 10. PREFERENCE RULES

0.70.7

0.5 0.6

(a) Low-certainty edges. (b) Multiple edges.

(c) Simple conflict.

(e) Preference groups.

(d) Path conflict.

0.9

0.7

0.80.8

Figure 10.5: Main operations for constructing the reduced preference graph: pruning low-priority

and multiple edges, resolving conicts, and identifying preference groups. We show higher-priority

preferences by thicker lines and specify certainties by numbers.

10.4.3 Constructing the reduced graph

We describe a technique for constructing the reduced preference graph, which involves the
generation of two intermediate graphs, called simple and transitive graphs. The �rst in-
termediate graph is the result of pruning \undesirable" edges. The second graph is the
transitive closure of preferences, which serves to identify path conicts. We illustrate the
main steps of the construction in Figure 10.6.

The algorithms for building the reduced graph rely on the priorities of edges and make
little use of certainties. We have restricted the use of certainties because, in most cases,
they are only a rough approximation of actual probabilities. A more advanced treatment of
certainties is an open problem.

Simple graph

The construction begins with the removal of low-certainty edges, multiple edges, and sim-
ple conicts (see Figures 10.5a{c). In Figure 10.7, we give an algorithm that performs the
removal and outputs the resulting new graph, called the simple preference graph (see Fig-
ure 10.6b). The nodes of the new graph are the same as in the full graph, and its edges are
a subset of the full graph's edges.

The algorithm uses two matrices,max-prior andmax-cert, indexed on the representations.

10.4. PREFERENCE GRAPHS 341

(a) Full graph.

(c) Transitive graph.

(b) Simple graph.

(e) Reduced graph. (f) Reduced graph(d) Simple graph
without multiple edges.without conflicts.

Figure 10.6: Steps of generating the reduced graph. We show preferences with certainty at least 2/3

by solid lines, and low-certainty preferences by dashed lines; thicker lines denote higher priorities.

The �rst matrix is for computing the maximal priority of multiple preference edges, and the
second is for the maximal certainty of the highest-priority edges.

To analyze the time complexity, we denote the number of representations by k and the
number of preferences in the full graph by mf . The complexity of Steps 1 and 4 is O(k

2) and
that of Steps 2 and 3 is O(mf). In the implementation, we replaced the matrices with more
complex structures and reduced the complexity of Steps 1 and 4 to O(min(k2; mf)), but the
practical reduction of running time proved insigni�cant.

Note that the removal of multiple edges and simple conicts is an e�ciency measure.
Skipping it would not violate the correctness of the subsequent construction, but may sig-
ni�cantly slow down the computation of the transitive closure.

Transitive graph

The identi�cation of path conicts (see Figure 10.5d) is based on the construction of the tran-
sitive preference graph, which is the transitive closure of the simple graph (see Figure 10.6c).
The nodes of this new graph are the same as in the simple graph, whereas its edges are a
superset of the simple graph's edges, de�ned as follows:

For every two representation nodes rep
1
and rep

2
,

if the simple graph has some path from rep
1
to rep

2
,

then the transitive graph has an edge from rep1 to rep2.

Edges of the transitive graph have priorities, but no certainties. Their priorities are
determined by the path priorities in the simple graph. The priority of a path is the minimal

342 CHAPTER 10. PREFERENCE RULES

Build-Simple-Graph

1. Set the initial values:
For every representation rep

1
:

For every other representation rep
2
:

max-prior[rep
1
; rep

2
] := 0

max-cert[rep
1
; rep

2
] := 0

2. Compute the maximal priorities:
For every preference (rep

1
; rep

2
; prior; cert) in the full graph:

If prior > max-prior[rep
1
; rep

2
] and cert � 2=3,

then max-prior[rep1; rep2] := prior.

(For every rep
1
and rep

2
, the max-prior[rep

1
; rep

2
] value is now equal

to the maximal priority of preference edges from rep1 to rep2.)

3. Compute the maximal certainties:
For every preference (rep

1
; rep

2
; prior; cert) in the full graph:

If prior = max-prior[rep1; rep2] and cert > max-cert[rep1; rep2],
then max-cert[rep

1
; rep

2
] := cert.

(For every rep1 and rep2, the max-cert[rep1; rep2] value is now equal to the

maximal certainty of the highest-priority preference edges from rep1 to rep2.)

4. Build the simple graph:

Create a graph with the same representations as in the full graph, and no preferences.
For every representation rep

1
:

For every other representation rep
2
:

If max-cert[rep
1
; rep

2
] � 2=3 (certainty above the threshold)

and max-prior[rep
1
; rep

2
] � max-prior[rep

2
; rep

1
] (no simple conict),

then add the preference (rep1; rep2;max-prior[rep1; rep2];max-cert[rep1; rep2]).

Remove-Conicts

For every preference (rep1; rep2; prior; cert) in the simple graph:
If the transitive graph has an edge from rep

2
to rep

1
and its priority is larger than prior,

then remove the preference (rep1; rep2; prior; cert) from the simple graph.

Figure 10.7: Construction of the simple preference graph.

10.4. PREFERENCE GRAPHS 343

rep1 rep 2

(1)

(2)

(3) (3)
(4)

(3)(2)

(2)

Figure 10.8: Example of a transitive preference, where the numbers denote edge priorities (not

certainties). The priorities of paths from rep1 to rep2 are 1, 2, and 3. The priority of the resulting

transitive preference is the maximum of the path priorities, which is 3.

priority of its edges, and the priority of the transitive edge from rep
1
to rep

2
is the maximum

of the priorities of paths from rep
1
to rep

2
. For example, the graph in Figure 10.8 has three

paths from rep
1
to rep

2
, two of which share an edge. Their priorities are 1, 2, and 3, and the

priority of the resulting transitive edge is 3.
The construction of a transitive graph and computation of its edge priorities is a special

case of the all-pairs algebraic-path problem [Carre, 1971; Lehmann, 1977], solved by general-
ized shortest-path algorithms (for example, see the textbook by Cormen et al. [1990]). If the
simple graph has k representations and ms preferences, the complexity of constructing the
transitive graph is O(k2 � log k+k �ms), which is the most time-consuming step in generating
the reduced preference graph.

The system uses the transitive graph to detect path conicts of the simple graph. We
give an algorithm for resolving path conicts in Figure 10.7, and illustrate the results of its
execution in Figure 10.5(d). The complexity of the algorithm is O(ms).

Reduced graph

After removing conicts, the system identi�es groups of equally preferable representations
(see Figure 10.6e). By de�nition, these groups are strongly connected components of the
simple graph, and the complexity of their identi�cation is O(k +ms) (see the textbook by
Cormen et al. [1990]).

The system creates the reduced graph, whose nodes are the resulting groups and whose
edges are all between-group edges of the simple graph, as shown in Figure 10.6(e). Finally,
the system removes multiple edges of the resulting graph, using the same algorithm as for
constructing the simple graph (see Figure 10.7), which takes O(ms) time. We show the
resulting graph in Figure 10.6(f). After constructing this graph, the system discards edge
priorities, since they are no longer needed for conict resolution.

The overall time complexity of all steps, including the construction of the simple, transi-
tive, and reduced graphs, is O(mf+k

2�log k+k�ms), where k is the number of representations,
mf is the number of edges in the full graph, and ms is the number of edges in the reduced
graph.

10.4.4 Modifying the reduced graph

We described the algorithms for updating the full preference graph in Section 10.4.1. They
include addition and inactivation of representations, as well as addition, removal, and mod-

344 CHAPTER 10. PREFERENCE RULES

Update-Transitive-Graph(new-rep)
For every old representation old-rep

1
:

For every other old representation old-rep
2
:

If there are transitive preferences from old-rep
1
to new-rep and from new-rep to old-rep

2
:

Let prior be the smaller of the priorities of these two preferences.
If there is no preference from old-rep

1
to old-rep

2
,

then add this preference and set its priority to prior.
If there is a preference from old-rep

1
to old-rep

2
and its priority is below prior,

then set the priority of this preference to prior.

Figure 10.9: Updating preference edges between old nodes of the transitive graph.

i�cation of preference rules. When the system updates the full graph, it has to propagate
the changes to the simple, transitive, and reduced graphs.

We have not developed algorithms for propagating the results of addition, removal, or
modi�cation of preference rules. If the system makes any of these changes to the full prefer-
ence graph, it constructs the other graphs from scratch. Usually, these changes occur much
less frequently than addition and inactivation of representations, and their e�ciency is not
essential to the overall performance.

If the system adds a new representation to the full graph (see the Add-Rep-Node algorithm
in Figure 10.4), it updates the other graphs rather than constructing them anew. First,
Shaper adds the new node to the simple graph and determines its incoming and outgoing
edges, using a procedure similar to Build-Simple-Graph in Figure 10.7. This procedure
processes only the newly added preference edges of the full graph, which are adjacent to the
new node. We denote the number of these new edges by mnew; the time complexity of the
procedure is O(mnew).

After modifying the simple graph, Shaper updates the transitive graph, in two steps.
First, it computes all incoming and outgoing transitive edges of the new node, and their
priorities. This computation is a special case of the single-source algebraic path problem,

which takes O(k + ms) time. Second, the system updates transitive edges between old
representations, using the procedure in Figure 10.9. The complexity of this procedure is
O(k2).

Then, Shaper resolves path conicts in the simple graph, using the Remove-Conicts
algorithm in Figure 10.7; it takes O(ms) time. Finally, the system constructs the reduced
graph; it performs this construction from scratch, in O(k+ms) time. The overall complexity
of adding the new representation to the simple, transitive, and reduced graphs is O(mnew +
k2).

If an old representation becomes inactive, the system may remove it from the full pref-
erence graph (see Section 10.4.1). When it happens, Shaper also removes the inactive
representation and its adjacent edges from the other preference graphs. The complexity of
this operation is O(k).

10.5. USE OF PREFERENCES 345

10.5 Use of preferences

A well-constructed set of preference rules can serve as an autonomous mechanism for select-
ing representations; however, its e�ectiveness would depend on the human operator, who
provides the rules. Moreover, it would disregard some relevant information, such as speci�c
gain functions and similarity among problems. We now describe a combination of prefer-
ences with statistical learning, which eliminates these limitations and gives better results
than either mechanism alone.

Spreading the exploration

If we use statistical learning without preference rules, the system begins with eager explo-
ration: it accumulates performance data for all available representations (see Section 8.5.4).
This strategy allows early identi�cation of e�ective representations, but it usually results
in large initial losses. The system amortizes these losses over subsequent problems. If the
domain has many more problems than representations, the initial exploration pays o�. On
the other hand, if we end up solving only a few problems, the exploration may signi�cantly
reduce the overall gain.

The use of preference rules allows us to spread the exploration process, rather than
trying all representations early on. If the system solves a long sequence of problems, the
overall exploratory losses are no smaller than in the eager exploration; however, they are not
concentrated at the beginning of the sequence.

For each new problem, the system needs to choose between exploring a new representation
and using a representation with known performance. In case of exploration, it has to choose
among the unexplored representations. The system makes these choices by analyzing the
reduced preference graph. We describe an algorithm for making these choices and then
discuss the resulting exploration process.

Choosing a representation

We consider a representation unexplored as long as the system uses it with the initial time
bound, before accumulating enough data for statistical learning (see Section 8.5.4). A node
in the reduced graph is unexplored if it contains at least one unexplored representation.

The system identi�es the unexplored nodes that do not have incoming edges from other
unexplored nodes. We call them fringe nodes; intuitively, they are the most preferable
among unexplored nodes. We illustrate this notion in Figure 10.10, where white circles are
unexplored nodes and grey circles are the other nodes. We mark the fringe nodes by thick
lines.

Suppose that some fringe nodes do not have any incoming edges; that is, the preferences
give no evidence that these nodes are worse than any other nodes. For example, the graph
in Figure 10.10(a) has two such nodes. Then, the system picks one of the unexplored
representations in these nodes and uses it in problem solving. As long as the graph has such
fringe nodes, the system eagerly explores their representations and does not use statistical
selection.

346 CHAPTER 10. PREFERENCE RULES

(a)

0.7 0.90.8

(b) (c)

Figure 10.10: Fringe nodes in the reduced preference graph. We show unexplored nodes by

white circles, mark fringe nodes among them by thicker lines, and specify the certainties of some

preferences by numbers.

Now suppose that all fringe nodes have incoming edges, as shown in Figure 10.10(b). For
every fringe node, the system computes the maximal certainty of incoming preference edges;
this value is an estimated probability that the node's representations are less e�ective than
the best representation with known performance. In Figure 10.10(b), these estimates are 0.8
(left) and 0.9 (right).

The system chooses the fringe node with the lowest estimate. Intuitively, it is the most
promising of the unexplored nodes. If there are several lowest-estimate nodes, the system
picks one of them. In our example, it selects the node whose estimate is 0.8.

Finally, the system decides between using a representation with known performance and
trying an unexplored representation. It makes a weighted random decision; the probability
of using a known representation is equal to the estimate of the chosen fringe node. In
our example, this probability is 0.8. If the random decision favors a representation with
known performance, the system invokes the statistical-learning mechanism to select one
such representation. Otherwise, it uses one of the unexplored representations from the
chosen fringe node.

We summarize the selection procedures in Figure 10.11. Estimate-Node inputs an un-
explored node, checks whether it is on the fringe, and determines the node's estimate, that
is, the maximal certainty of incoming preferences. If the input node is not on the fringe, it
returns 1. If the node has no incoming preferences, it returns 0. Choose-Node identi�es the
fringe node with the lowest estimate. If the graph has no unexplored nodes, it returns an
estimate of 0. Finally, Choose-Rep makes the weighted random decision and then chooses a
representation.

For every new problem, the system invokes the Choose-Rep procedure to select a repre-
sentation. Thus, Shaper interleaves statistical learning with exploration. We next outline
the resulting learning process.

Exploration process

When Shaper faces a new domain, it eagerly experiments with preferable representations,
until it accumulates initial data for all nodes that do not have incoming preference edges.

10.5. USE OF PREFERENCES 347

Choose-Rep

Call Choose-Node to select chosen-node and determine min-estimate.
With probability min-estimate,

invoke statistical learning to choose among explored representations.
Else, pick an unexplored representation from chosen-node.

Choose-Node

chosen-node := none; min-estimate := 1
For every unexplored node, unexp-node:

estimate := Estimate-Node(unexp-node)
If estimate < min-estimate,

then chosen-node := unexp-node; min-estimate := estimate.
If estimate = 0,

then return (chosen-node; 0) (it has no incoming preferences).
Return (chosen-node;min-estimate) (it has some incoming preferences).

Estimate-Node(unexp-node)
estimate := 0
For every incoming preference, (other-node; unexp-node; cert):

If other-node is unexplored,
then return 1 (unexp-node is not a fringe node).

If cert > estimate,
then estimate := cert.

Return estimate (unexp-node is a fringe node).

Figure 10.11: Selection among available representations.

Then, the system begins to interleave the exploration with statistical learning. It experi-
ments with less and less promising representations, and eventually collects initial data for all
representations. The exploration process slows as the system moves to less preferable nodes.

The speed of the exploration depends on the conditions and certainties of preference rules.
If the preferences provide a near-total order of nodes, they signi�cantly delay experiments
with unpromising representations. For example, the graph in Figure 10.11(c) would result
in slower exploration than that in Figure 10.11(b). Large certainties also delay exploration.

The system may add new representations or modify preference rules, which results in
changes to the preference graph and causes deviations from the described exploration scheme.
In particular, if Shaper adds representations that do not have incoming edges, it eagerly
explores their performance.

Chapter 11

Summary of work on the top-level

control

We have presented a detailed report on the development of an AI system for constructing and
evaluating new representations. To our knowledge, this work is the �rst attempt to build
a general-purpose engine for the automatic coordination of multiple learning and search
algorithms.

The report covers the three central parts of the Shaper system: tools for maintaining
the description and representation spaces (Chapter 7), statistical procedures for evaluat-
ing representations (Chapters 8 and 9), and a mechanism for utilizing preference heuristics
(Chapter 10).

We now outline two other essential parts: a procedure for choosing among the available
representation changes (Sections 11.1) and a collection of tools for the optional user partici-
pation in the top-level control (Section 11.2). The current implementation of these parts is
an ad-hoc solution, which has a number of limitations and requires support of an experienced
human operator.

Then, we review the key architectural decisions underlying the Shaper system and the
main results of developing the control module (Section 11.3). We also point out several
important limitations of the system and outline some directions for future research.

11.1 Delaying the change of representations

The exploration of a representation space involves two types of top-level decisions: (1) when
to generate new representations and (2) which of the available representations to use. We
have described a collection of statistical and symbolic techniques for making the second
decision (see Chapters 8{10); however, we have not addressed the �rst type of top-level
decisions. The development of a general-purpose mechanism for deciding when to apply
changer algorithms is an important open problem, and we plan to investigate it in the
future.

By default, the system generates all possible representations before solving any problems.
This eager strategy encourages exploration in early stages of statistical learning. If the
number of problems is much larger than the number of generated representations, then early

348

11.1. DELAYING THE CHANGE OF REPRESENTATIONS 349

selection of e�ective representations justi�es the cost of expanding the full representation
space.

The human user has an option to overwrite the default strategy by encoding suspension

and cancellation rules, which guide the expansion of the representation space. Suspension
rules delay the application of changer algorithms, and cancellation rules may later prune
some of the delayed description changes. The user may specify a collection of general rules
for all domains, as well as speci�c rules for each domain.

We explain the semantics of suspension and cancellation rules, and give an algorithm for
using these rule and resolving conicts among them (Section 11.1.1). Then, we outline a
statistical technique for predicting the performance of changer operators, and discuss its role
in selecting the appropriate description changes (Section 11.1.2).

11.1.1 Suspension and cancellation rules

We begin by describing rules that postpone the application of changer operators. Then,
we outline a similar mechanism for delaying the use of newly generated representations.
Finally, we discuss the frequency of re-checking the applicability conditions of the suspended
representation changes.

Suspension rules

A suspension rule consists of two boolean functions, denoted cn-cond(changer-op,node) and
suspend-change(changer-op,node), which have identical arguments: the �rst argument is a
changer operator, and the second one is a description node. Recall that a changer operator
consists of a description-changing algorithm and its applicability conditions (Section 7.2.1),
whereas a description node comprises a domain description along with some additional in-
formation about its generation and use (Section 7.2.2).

The user encodes the two boolean functions by Lisp procedures, which may access any
information about the global state of the Shaper system. The �rst function is the condition
for using the suspension rule. If cn-cond(changer-op,node) returns false, then the rule gives no
information about applying changer-op to node. On the other hand, if cn-cond returns true,
then the second function provides a suspension test: if suspend-change(changer-op,node) is
true, then the system should delay the application of changer-op to node; otherwise, it should
immediately apply the changer operator.

When Shaper generates a new description node, it �rst identi�es the applicable changer
operators and then determines whether some of them should be delayed. For every operator,
the system invokes all available suspension rules. If at least one rule indicates the need for
immediate application, then Shaper applies the changer operator. If some rules indicate
the need for delay and no rule suggests immediate application, then Shaper delays the
application. Finally, if the system �nds no rules with matching conditions, then by default
it immediately applies the operator.

If Shaper has delayed the application of some changer operators, then it periodically
re-invokes the matching suspension rules, to determine whether the delay is over. When at
least one rule prompts the immediate use of a suspended operator, the system applies the
operator.

350 CHAPTER 11. SUMMARY OF WORK ON THE TOP-LEVEL CONTROL

Note that, since the Lisp functions in a suspension rule utilize the global state of the
system, their output may change over time. In particular, the suspend-change function may
cause the suspension of a changer operator at the beginning of statistical learning, and trigger
its application in a later stage. For example, a suspension rule may prompt the generation
of a new domain description after solving a certain number of problems, or after �nding out
that the old descriptions give poor results.

Cancellation rules

The purpose of cancellation rules is to prune the suspended description changes that have
become obsolete. For example, if the available domain descriptions have proved e�ective,
then cancellation rules may prevent the delayed generation of new descriptions.

Formally, a cancellation rule is a boolean function, cancel-change(changer-op,node), whose
arguments are a changer operator and a description node. If this function returns true, then
the Shaper system never applies changer-op to node. If the system has suspended some
description changes, then it periodically invokes the available cancellation rules and prunes
the matching changes.

In Figure 11.1, we give two algorithms for utilizing the available suspension and can-
cellation rules, which are called Check-Changers and Recheck-Changers. When Shaper
generates a new description node, it calls the Check-Changers procedure to identify the ap-
plicable changer operators. First, the procedure identi�es all applicable operators and stores
them in the node's applicability list. Then, it invokes the suspension rules, which delay the
application of some operators, and applies the unsuspended operators. The procedure uses
the Make-Description function, described in Section 7.2.2 (see Figure 7.2), for applying the
appropriate changer operators.

The Recheck-Changers procedure is for re-visiting the delayed description changes. The
system periodically calls this procedure for every description node that has suspended oper-
ators in the applicability list. First, the procedure invokes the available cancellation rules,
which prune obsolete changer operators. Then, it re-iterates through the suspension rules,
which may trigger the application of some operators.

Suspension of new representations

After applying a changer operator, the Shaper system combines the resulting domain
description with matching problem solvers, thus producing new representations (see Sec-
tion 7.2.3). The human operator may provide rules for delaying the use of newly generated
representations and, thus, postponing the exploration process for these representations. In
addition, she may specify rules for cancellation of delayed representations.

A suspension rule for representations consists of two Lisp functions, r-cond(rep) and
suspend-rep(rep), which input a representation and return true or false. The role of these
functions is analogous to that of cn-cond and suspend-change: the �rst function is the condi-
tion for using the rule, whereas the second is a suspension test. If both functions return true,
then the system delays the use of the representation. A cancellation rule for representations
is also a boolean Lisp function, whose argument is a representation. The system utilizes
cancellation rules for pruning suspended representations.

11.1. DELAYING THE CHANGE OF REPRESENTATIONS 351

Check-Changers(node)
For every changer operator, changer-op:

If node matches the applicability condition of changer-op,
then add changer-op to node's applicability list.

For every changer operators, changer-op:
If node matches the applicability condition of changer-op,

then call Check-Change(changer-op,node).

Check-Change(changer-op,node)
For every cancellation rule, cancel-change:

If cancel-change(changer-op,node),
then delete changer-op from node's applicability list and terminate.

For every suspension rule, (cn-cond; suspend-change):
If cn-cond(rep) and not suspend-change(rep) (apply the changer),

then call Make-Description(changer-op,node),
remove changer-op from the applicability list, and terminate.

If cn-cond(rep) and suspend-change(rep) (suspend the application),
then mark changer-op in node's applicability list as \suspended."

If changer-opis not marked \suspended,"
then call Make-Description(changer-op,node),

remove changer-op from the applicability list, and terminate.

Recheck-Changers(node)
For every changer operator, changer-op, in node's applicability list:

Call Recheck-Change(changer-op,node).

Recheck-Change(changer-op,node)
For every cancellation rule,

If cancel-change(changer-op,node),
then delete changer-op from node's applicability list and terminate.

For every suspension rule, (cn-cond; suspend-change):
If cn-cond(rep) and not suspend-change(rep) (apply the changer),

then call Make-Description(node,node),
remove changer-op from the applicability list, and terminate.

Figure 11.1: Delaying the application of changer operators. The Check-Changers procedure iden-

ti�es the changer operators applicable to a new description node, and then uses the available rules

to suspend some of these operators. The Recheck-Changers procedure re-invokes the suspension

and cancellation rules for the suspended operators. Both procedures call the Make-Description

function, given in Figure 7.2 (page 256), for executing the selected changer operators.

352 CHAPTER 11. SUMMARY OF WORK ON THE TOP-LEVEL CONTROL

Check-Rep(rep)
If the representation rep matches some cancellation rule, then terminate.
For every suspension rule, (r-cond; suspend-rep):

If r-cond(rep) and not suspend-rep(rep) (add the representation to the space),
then call Add-Rep(rep) and terminate.

If r-cond(rep) and suspend-rep(rep) (suspend the representation),
then mark the representation rep as \suspended."

If rep is marked \suspended,"
then add it to the list of suspended representations.

Else, call Add-Rep(rep).

Recheck-Rep(rep)
If the representation rep matches some cancellation rule,

then delete rep from the list of suspended representation and terminate.
For every suspension rule, (r-cond; suspend-rep):

If r-cond(rep) and not suspend-rep(rep) (add the representation to the space),
then call Add-Rep(rep), delete rep from suspended representations, and terminate.

Figure 11.2: Suspending and unsuspending new representations. The Check-Rep procedure invokes

the suspension and cancellation rules for a newly generated representation, whereas Recheck-Rep

re-invokes the rules for a suspended representation. These procedures use the Add-Rep function,

given in Figure 7.3 (page 259), for adding the new representation to Shaper's space of available

representations.

In Figure 11.2, we summarize the two main procedures for suspending, unsuspending, and
cancelling representations. After the system has generated a new representation, it calls the
Check-Rep procedure, which loops through the available rules. If Check-Rep does not suspend
or cancel the newly generated representation, then it invokes the Add-Rep procedure (see
Figure 7.3 in Section 7.2.3), which adds the new representation to the expanded space. For
every suspended representation, the system periodically invokes the Recheck-Rep procedure,
which re-iterates through the cancellation and suspension rules.

Note that the role of cancellation rules di�ers from that of rejection rules, described in
Sections 7.2.2 and 7.2.3. The system repeatedly invokes cancellation rules for suspended
representations, and the output of these rules may change over time, depending on the
global state of the system. On the other hand, it invokes rejection rules only once for each
representation (see the Add-Rep algorithm in Figure 7.3), and their output should not change
over time.

Frequency of re-invoking the rules

The system invokes the Recheck-Changers and Recheck-Rep procedures after each problem-
solving episode, that is, after every application of solver algorithms. In addition, Shaper
calls these two procedures (1) after applying a changer operator or cancelling a suspended

11.1. DELAYING THE CHANGE OF REPRESENTATIONS 353

operator, (2) after unsuspending or cancelling a representation, and (3) after discarding an
old representation because of unfavorable statistical data.

The execution of suspension and cancellation rules usually takes much less time than the
application of solvers; hence, the repetitive calls to Recheck-Changers and Recheck-Rep do
not slow down the system. If the human operator constructs rules that do take signi�cant
computational time, she may enforce a less frequent re-invocation of these rules.

In Figure 11.3, we summarize the options for specifying the frequency of using suspension
and cancellation rules. The user may utilize any combination of these options to set the
default frequency for a problem domain, as well as frequencies of re-invoking speci�c rules.

For example, if a rule's output does not change after failed and interrupted attempts to
solve a problem, then we should restrict its invocation to successful problem-solving episodes.
As another example, if the rule's output does not depend on the accumulated statistical data,
then we should disable its re-invocation after any problem-solving episodes.

11.1.2 Expected performance of changer operators

When the user speci�es a condition for delaying the application of some changer operator, she
may need to account for the expected performance of this operator. The main performance
factors include the probability of successful application, time to execute the operator, and
expected utility of the resulting domain description.

Recall that a changer operator may comprise several changer algorithms, and its appli-
cation involves the successive execution of these algorithms (see Section 7.2.1). If one of the
changer algorithm fails to generate a new description, then the application procedure skips
the remaining algorithms and returns a failure. Since all description changers in the Shaper
system terminate in reasonable time, the top-level module never interrupts their execution.

The system includes statistical procedures for estimating the success probability of changer
operators and their expected running time, which proved useful for constructing the condi-
tions of suspension and cancellation rules. On the other hand, we have yet to address the
problem of predicting the expected utility of a new description. We describe the implemented
statistical functions and discuss related directions for future work.

Success probability

The system estimates the success probability for a changer operator by the percentage of
its past successes in the current domain. For example, if Shaper has applied the opera-
tor �ve times and succeeded in four cases, then the chance of success is 0.8. The estimate
function returns not only this probability value, but also the number of past operator appli-
cations, which allows the user to judge the accuracy of the estimated value. The system also
keeps similar statistics for description-changing algorithms, and the user may utilize success
probabilities of individual algorithms in constructing suspension rules.

Note that Shaper does not use the success chances of individual description changers
in computing the probabilities for changer operators. We experimented with estimating the
chances of an operator's success by multiplying the probabilities of the changer algorithms
that form the operator; however, this technique proved inaccurate, because the success prob-
abilities are not independent.

354 CHAPTER 11. SUMMARY OF WORK ON THE TOP-LEVEL CONTROL

Re-invocation after a problem-solving episode

By default, the system re-invokes all suspension and cancellation rules after every application
of solver algorithms. When the human operator encodes a new rule, she may completely
disable its use after problem-solving episodes. Alternatively, she may enforce a less frequent
re-invokation, using any combination of the following three options:

� re-invoke after successfully solving a problem
� re-invoke after failure to solve a problem
� re-invoke after interrupting a problem solver

The system also supports the option of re-visiting a rule only after the use of a matching
description. If the human user enables this restriction for a rule that delays description
changes, then Shaper will re-invoke the rule for a pair (changer-op; node) only after run-
ning some solver with node's description. Similarly, if the user chooses this option for a rule
that suspends or cancels representations, then the rule will �re for a representation rep only
after problem solving with rep's domain description.

Re-invocation after applying or cancelling a changer operator

By default, Shaper re-invokes the available rules after every application of a changer op-
erator and every cancellation of a suspended operator. The human user may disable the
invocation of a rule in either of these cases, or in both cases.

Furthermore, when the user constructs a rule for delaying description changes, she may indi-
cate that it �res only after the use of a matching operator. Then, the system will re-invoke
the rule for a pair (changer-op; node) only when applying changer-op to another node.

Re-invocation after adding or pruning a representation

The Shaper system also re-iterates through the suspension and cancellation rules after each
of the following operations:

� unsuspending a representation and adding it to the expanded space
� cancelling one of the previously suspended representations
� dropping a representation that has proved ine�ective (see Section 8.5.4)

The user may disable the re-invocation of a rule in any of these three cases. Furthermore,
she may restrict the system to invoking the rule only after unsuspending or pruning a rep-
resentation with a matching domain description.

Figure 11.3: Options for controlling the re-invocation frequency of suspension and cancellation

rules. The human operator may use these options to set the default frequency for a domain, and

to adjust the frequencies of individual rules.

11.1. DELAYING THE CHANGE OF REPRESENTATIONS 355

Expected running time

The strategy for predicting execution times is di�erent from the computation of success
probabilities. The system estimates the running times of individual description changers,
and then uses them to compute the expected times for changer operators. This strategy
proved more accurate than simple averaging of the past running times of changer operators.
Moreover, it enables Shaper to utilize past data from other domains in computing time
estimates for the current domain.

The system keeps the mean running times of all description changers, as well as the
standard deviations of the mean estimates. After each application of a changer algorithm,
Shaper updates the corresponding mean and deviation values. The current version of
the statistical procedure does not distinguish between success and failure times. Since the
running time of most changer algorithms in the Shaper system does not depend on the
outcome of their application, we have not implemented a separate estimation of success and
failure times.

The statistical procedure determines the expected computational time of a changer op-
erator by summing the times of the corresponding description changers. Suppose that the
operator includes k changer algorithms, their estimated mean times are t1; t2; :::; tk, and
the standard deviations of these mean estimates are �1; �2; :::; �k. Then, we compute an
operator's running time and deviation as follows:

t = t1 + t2 + ::: + tk;

� =
q
�2
1 + �2

2 + ::: + �2

k:

The resulting value is an unbiased time estimate for the successful application of the
operator. On the other hand, if the operator comprises more than one changer algorithm,
then this value may overestimate the mean failure time: If one of the k algorithms fails to
generate a new description, then the system does not apply the remaining algorithms and,
thus, the operator's running time should be less than t. Developing a more accurate estimate
of the failure time is an open problem.

Use of complexity estimates

The human user may provide Lisp functions for evaluating the expected computational
complexity of description changes, which improve the accuracy of time estimates for changer
algorithms. The role of these functions is similar to problem-size estimates in computing the
expected problem-solving time (see Section 9.2).

A complexity-estimate function inputs a domain description and returns a positive value,
which should correlate with the time of applying a changer algorithm to this description.
The user may specify a default complexity function for a domain, as well as more accurate
functions for speci�c changer algorithms.

The statistical procedure applies least-square regression to �nd a linear dependency be-
tween complexity estimates and running times, and then performs t-tests to check the sta-
tistical signi�cance of the regression (see the description of the t-test in Section 9.2.1). If
the dependency passes the signi�cance test, the system utilizes it in estimating running

356 CHAPTER 11. SUMMARY OF WORK ON THE TOP-LEVEL CONTROL

domain 1

for domain 2
hierarchy

user’s

for domain 3
hierarchy

user’s

for domain 1
hierarchy

user’s

domain 1 domain 3domain 2

for domain 2
hierarchy

user’s

for domain 3
hierarchy

user’s

for domain 1
hierarchy

user’s

domain 2 domain 3

all domains

(a) (b)

Figure 11.4: Similarity hierarchies for estimating the time of description changes. By default,

the system builds a multi-domain hierarchy (a). If the human operator disables the transfer of

experience among domains, then the system uses a separate similarity hierarchy for each domain (b).

times of changer operators. If it does not pass the test, then Shaper disregards complexity
estimates.

We have analyzed the time complexity of all changer algorithms in the current version
of the Shaper system (see Part II), and the derived expressions allow the construction of
very accurate estimate functions. For example, the running time of the Chooser algorithm
depends on total number E of all e�ects, in all operators and inference rules, and on the
number N of nonstatic predicates; speci�cally, the time is proportional to E � (N + 6) (see
Section 3.4.1). Thus, we have implemented a complexity-estimate function that determines
E and N , and then returns the value E � (N + 6).

Similarity hierarchy

The system also supports the utilization of similarity hierarchies in computing the expected
running time. This technique is based on the encoding of similarity among domain de-
scriptions by a tree-structured hierarchy, whose leaf nodes represent the groups of similar
descriptions. The encoding is analogous to the similarity hierarchies for estimating problem-
solving gains (see Section 9.3).

When Shaper needs to estimate the time for changing a description, it identi�es the
corresponding leaf group in the hierarchy and then selects the appropriate ancestor group,
using the technique of Section 9.3.2. The statistical procedure utilizes the data in the selected
group to compute the expected running time of the changer algorithm.

By default, the system constructs the similarity hierarchy shown in Figure 11.4. The
root group of this hierarchy comprises the performance data from all domains, whereas the
second-level groups are for individual domains. If the user provides hierarchies for speci�c
domains, then Shaper links them to the corresponding second-level groups (see the dashed
rectangles in Figure 11.4).

The system allows the user to construct a common hierarchy for all changer algorithms
or, alternatively, a separate hierarchy for each algorithm. It also supports the use of di�erent

11.2. COLLABORATION WITH THE HUMAN USER 357

complexity-estimate functions for di�erent similarity groups.
The resulting similarity hierarchy allows the transfer of experience across domains: if

Shaper has no performance data for the current domain, then it utilizes data from other
domains. If the human operator believes that cross-domain transfer is not appropriate for
some changer algorithm, then she may disable this transfer, which causes removal of the root
group from this algorithm's hierarchy (see Figure 11.4b).

Related problems

The main open problem is to develop a general statistical mechanism for guiding the expan-
sion of the description space, and to integrate it with the use of suspension and cancellation
rules. The purpose of this mechanism is to automate the three top-level decisions:

1. when to generate new domain descriptions;
2. which description changes to perform;
3. whether to suspend some representations.

To address this problem, we plan to develop a function for estimating the utility of
potential new descriptions. The function must determine whether the application of a given
changer operator would produce an e�ective description, and whether it could be better than
all previous descriptions.

We also need to design a control procedure, which will analyze the statistical predictions
and make the top-level decisions. It has to take into account the past performance of solver
and changer algorithms, as well as the expected suspensions and cancellations. The control
mechanism should apply a changer operator only if the predicted performance improvement
outweighs the application costs. Furthermore, it should identify the description changes that
promise the most signi�cant improvements, and delay the other changes.

11.2 Collaboration with the human user

The developed mechanism for generating and using new descriptions is fully automated, that
is, it can process all given problems and explore the representation space and without human
assistance. The user has to encode domains and problems, provide a library of solvers and
changers, and specify a gain function. After providing these data, she may pass control to
the Shaper system, which will select and invoke appropriate algorithms.

If the human operator wants to share responsibilities with the system, she may optionally
participate in the top-level control. The system's interface allows her to undertake any
control decisions, and leave the other decisions to the system. We outline the structure and
role of the interface (Section 11.2.1), and then describe its main parts (Section 11.2.2).

11.2.1 User interface

The Shaper interface serves four main purposes: speci�cation of problem-solving tasks
and related initial knowledge; inspection of the intermediate results and top-level decisions;

358 CHAPTER 11. SUMMARY OF WORK ON THE TOP-LEVEL CONTROL

manual selection of representations, changer operators, and time bounds; collection of per-
formance data and evaluation of the system's e�ectiveness.

The current version of the interface has a number of limitations and requires substantial
improvements. It is based on a library of ad-hoc tools for an expert user, developed in the
process of debugging and testing the system. The user interacts with Shaper by entering
text-based commands in the Lisp window, and some advanced interface options require the
implementation of small Lisp procedures. The help messages are limited, and serve only as
reminders for an experienced user. Despite these limitations, the implemented interface has
proved to be a convenient instrument for controlling the system, studying its behavior, and
collecting empirical results.

The manual control of Shaper comprises three groups of interface commands. The �rst
group is for supplying initial knowledge, providing additional information in later stages of
the problem-solving process, and manually correcting and enhancing intermediate results.
The second collection of tools allows the human operator to inspect the initial information,
new representations, accumulated performance data, and results of statistical learning.

Finally, the last group is for invoking the top-level control module and imposing restriction
on its decisions. The control mechanism chooses solvers and changers, calls the selected
algorithms, and stores and analyzes the results of their execution. After each application of
a solver or changer operator, the system outputs a brief summary of the results, called the
trace, which helps the user to keep track of Shaper's progress and its key decisions.

By default, the top-level module runs until processing all input problems; however, the
system has several options for specifying conditions for early termination, and later re-
invoking the control mechanism. The user may utilize these options to \step" through the
problem-solving process. Furthermore, she may modify intermediate results, revise heuristics
for guiding the system, or supply additional knowledge.

11.2.2 Main tools

We now give a more detailed description of the interface tools. We begin with the mechanism
for specifying search tasks and related initial knowledge (see Figures 11.5 and 11.6), then
outline tools for inspecting the search results (Figures 11.7 and 11.8), and �nally explain the
user's options for guiding selection of solvers and changers (Figures 11.9-11.11).

Initializing and modifying the system's global state

The global state of the Shaper system includes domains and problems, solver and changer
operators, gain functions, representation spaces, user-speci�ed heuristics, accumulated re-
sults of problem solving, and other relevant data. The interface includes tools for initializing
Shaper's state and later modifying intermediate states.

The system supports an extended version of the prodigy domain language, which serves
for specifying search tasks, utility functions, representations, and related heuristics (see
Figure 11.5). The user has to create �les with encoding of initial data, and load them into
the system. She may later load additional �les, with extra tasks or new heuristics, as well as
modify and re-load the original �les. For example, the user may input a new domain after

11.2. COLLABORATION WITH THE HUMAN USER 359

Shaper has processed all problems in the initial domains. As another example, she may
input additional solver operators, and then modify and re-load preference rules.

The interface also includes a mechanism for specifying some objects directly from the
command line, without writing them into a �le, as well as tools for deleting old domains and
inactivating obsolete representations. Finally, it supports back-up and retrieval of interme-
diate states. In Figure 11.6, we summarize the options for modifying the global state.

Inspecting top-level decisions and intermediate results

When the control module is active, it outputs a real-time trace of its choices and main results
(see Figure 11.7). The user has no control over the contents of the trace, which is a drawback
of the current implementation; however, the system includes an option for turning o� the
trace output.

After Shaper has reached a termination condition, the user may get more details about
the search results. We have implemented a library of functions for inspecting the global state,
which can supply a wide range of data, from high-level summary of the system's performance
to the contents of speci�c data structures. In Figure 11.8, we give a brief description of the
inspection tools.

Invoking solvers, changers, and the control module

The user can either manually invoke individual problem solvers and description changers, or
pass the control to the automatic top-level module. Furthermore, when the control module
is inactive, she may modify generated representations and their applicability conditions.

To invoke a solver, the user speci�es a representation, problem, and time bound. She
may skip the bound speci�cation, and then the system will automatically determine an
appropriate time limit. Similarly, she can manually invoke a description improvement, by
specifying a changer operator, initial description, and time bound.

When the user starts the automatic control mechanism, she may select the order of
processing problems, restrict the allowed choices of representations, specify time bounds for
some representations, and provide guidance for selecting and applying changer operators
(see Figures 11.9 and 11.10). In addition, she may de�ne a condition for terminating the
problem-solving process. When the system's global state satis�es this condition, the top-level
module will halt and pass the control back to the user. We list the options for specifying
termination conditions in Figure 11.11.

The user may also halt the problem-solving process by the Lisp keyboard interrupt,
which causes immediate termination. In this case, the Shaper discards the results of the
un�nished application of a solver or changer operator. If the interrupt occurs during the
update of the global state, between solver applications, then it may cause an inconsistency
of the global state; however, the probability of this situation is very low, because the Lisp
procedure for completing the update consists of several assignment operations and takes less
than ten microseconds. We have not addressed the engineering problem of implementing a
completely safe interrupt.

360 CHAPTER 11. SUMMARY OF WORK ON THE TOP-LEVEL CONTROL

Domain language

The Shaper system supports a collection of tools for describing domains, problems, and related initial knowledge.

These tools extend the prodigy domain language and enable the human user to specify the following information:

Domains and problems: A domain encoding includes a type hierarchy, operators, and inference rules (Sec-

tions 2.2.1 and 2.3.2); the user may provide several alternative encodings of the same domain. A problem instance is

speci�ed by an object list, initial state, and goal statement (Sections 2.2.1).

Control rules: The user may construct heuristic rules for guiding the prodigy search (Section 2.4.3). She may

provide specialized rules for every domain, as well as a set of global rules.

Primary e�ects and abstraction: A domain encoding may include multiple selections of primary e�ects (Sec-

tion 3.1.2) and multiple abstraction hierarchies (Section 4.1.2), which give rise to alternative descriptions. All

hierarchies must satisfy the ordered-monotonicity property (Section 4.1.4).

Domain descriptions: A description consists of a pointer to a domain encoding and four optional �elds, which

include a selection of primary e�ects, abstraction hierarchy, set of control rules, and restrictions on the allowed

problems (Section 7.1.2).

Solver and changer operators: A solver operator consists of a problem-solving algorithm and two conditions

for its applicability (Section 7.2.1). It may also include a sequence of problem-speci�c changers, which improve

a problem description before the invocation of the solver algorithm. A changer operator comprises a sequence of

problem-independent description changers and two applicability conditions, similar to a solver's conditions. The user

may need to specify knob parameters of solver and changer algorithms utilized in the operators.

Gain functions: The gain computation may be speci�ed by a three-argument Lisp function, which inputs a prodigy

problem, running time, and search outcome, and returns the gain value; it must satisfy Constraints 1{4, given in

Section 7.3.1. If gain linear decreases with time (see Constraints 7{9 in Section 7.3.2), then the user may provide a

di�erent encoding, which consists of the reward function and unit-time cost.

Size functions and similarity hierarchies: A size function is encoded by a Lisp procedure, which inputs a

prodigy problem and returns a real-valued estimate of the problem complexity (Section 9.2.1). A similarity hier-

archy consists of similarity groups, arranged into a tree, and a Lisp function that identi�es the matching leaf group

for every given problem (Section 9.3.1). When the user encodes a similarity group, she may optionally include a size

function. In addition, she may specify �xed regression slopes for success and failure times.

Initial time bounds: When the system has no past data for determining the appropriate time bounds, it utilizes

general heuristics for limiting the search time (Section 8.5.1). The human operator may provide Lisp procedures

that determine initial bounds, which take precedence over the default heuristics.

Rejection and comparison rules: The user may provide heuristic rules for pruning ine�ective descriptions and

representations (Sections 7.2.2 and 7.2.3). The applicability conditions of these rules are encoded by Lisp functions.

Preference rules: A preference rule consists of three functions, which determine its applicability, priority, and

certainty (Section 10.1.1). The system supports three types of preference heuristics: user rules, counting rules, and

testing rules (Section 10.1.2). If the human operator constructs testing rules, she has to supply a collection of test

problems or a Lisp procedure for generating them.

Suspension and cancellation rules: The human operator speci�es these rules by boolean Lisp functions, with

appropriate arguments (Section 11.1.1).

Figure 11.5: Main elements of the extended prodigy language.

11.2. COLLABORATION WITH THE HUMAN USER 361

Speci�cation of search tasks and related data

The system supports a collection of tools for de�ning the problem-solving tasks and related heuristics, updating them

in later stages, controlling the main parameters of the global state, and manually modifying intermediate results.

Domains, problems, and other initial data

The human user has the following options for the speci�cation of problem-solving tasks and related initial knowledge:

� Load �les that encode domains, problems, descriptions, solver and changer operators, and heuristic rules (see

Figure 11.5); the user may always add new �les, as well as modify and re-load old ones

� Discard some of the previously loaded domains or problems; when discarding a domain, the system deletes

the corresponding description and representation space, along with all performance data

� De�ne a new gain function and add it to the library of available functions

Global state of the Shaper system

The interface includes commands for activating and inactivating Shaper's control mechanism, saving and retrieving

the learned information, and switching between gain functions:

� Turn on or o� the top-level control module; when it is o�, the human operator can invoke solvers and changers,

but the system does not store performance data or new descriptions

� Save the global state of the system, which includes all domains and problems, expanded description and

representation spaces, and accumulated performance data; the user may later restore the saved state

� Reset the system to its initial state, that is, discard the generated descriptions and accumulated performance

data, for all domains; the user may also reset the representation space of a speci�c domain, or discard the

performance data of a speci�c representation

� Change the current domain or Switch to a new gain function; note that the system does not restart statistical

learning after the change of a gain function, since it may utilize the accumulated data for computing the

expected value of the new function (see Section 8.3)

Elements of the representation space

Finally, the interface provides several options for adding and modifying elements of representation spaces:

� Construct a new domain description, by specifying a selection of primary e�ects, abstraction hierarchy, and

collection of control rules; the system adds it to the description space and then generates the corresponding

representations

� Specify a new representation, by pairing a domain description with a solver operator; the user can perform

this operation even if the description does not match the operator's applicability condition

� Modify the applicability conditions of a solver operator, changer operator, or representation

� Inactivate some descriptions or representations; the user may also reactivate and unsuspend representations

Figure 11.6: Interface tools for specifying initial data and modifying the system's state.

362 CHAPTER 11. SUMMARY OF WORK ON THE TOP-LEVEL CONTROL

Trace output

The system outputs a trace of its operations, which allows the human user to keep track of the main top-level

decisions. The trace includes data about the application of solvers, changers, and heuristic rules.

Solving a problem

When Shaper needs to solve a problem, it selects a representation and time bound, applies the chosen representation,

and then outputs the following trace information:

� Name of the prodigy problem

� Selected representation, which includes a domain description and solver sequence; the system outputs the

name of the description and the names of all algorithms in the solver sequence

� Selected time bound, expected problem-solving gain for this bound, and estimated optimal bound

� Information about reusing an old search space, speci�cally, the size and expansion-time of the reused space;

Shaper outputs this data if it has tried to solve the current problem in the past, with the same representation,

and stored the expanded space

� Running time and outcome of the problem-solving attempt; the outcome may be a success, failure, rejection

of the problem, or interrupt upon hitting the time bound

� Length and cost of the solution; the system gives this information only for successful problem-solving attempts

� Resulting gain, which may depend on the representation, problem, outcome, running time, and solution quality

Constructing a new description

The system applies a changer sequence to some old domain description, then �nds solver operators that match the

newly generated description, and constructs the corresponding representations. Finally, it applies user-speci�ed rules

for rejecting or suspending inappropriate representations. The trace includes the following information:

� Name of the old domain description

� Names of all algorithms in the changer sequence applied to the old description; if the user has speci�ed a time

limit for executing the sequence, then the system also outputs this limit

� Running time and outcome of the description-changing attempt; the outcome may be a success, failure to

generate a new description, or interrupt upon reaching the time limit

� Name assigned to the newly generated description; the system outputs this information only in case of success

� List of the corresponding new representations, divided into three groups: (1) the ones added to the represen-

tation space, (2) the rejected ones, and (3) the suspended ones; for every representation, the system shows

its solver sequence

� Gain of executing the changer sequence, which may depend on the algorithms in the sequence, initial descrip-

tion, and running time; recall that this \gain" is always negative, since changers incur computational costs

without solving any problems

Pruning or suspending a representation

The system noti�es the human operator about the results of utilizing comparison, suspension, and cancellation rules;

speci�cally, it shows

� inactivated representations, after applying a comparison rule

� unsuspended representations, after re-invoking a suspension rule

� cancelled representations, after re-invoking a cancellation rule

For every such representation, Shaper outputs the name of the corresponding domain description and the names of

all algorithms in the solver sequence.

Figure 11.7: Contents of the trace output, which shows Shaper's top-level decisions.

11.2. COLLABORATION WITH THE HUMAN USER 363

Inspection tools

The mechanism for inspecting the system's global state includes three groups of commands:

� The �rst group comprises several tools for accessing high-level information about the available domains,

generated representations, and problem-solving results

� The second collection of commands allows the expert user to get more details; in particular, she may check

the performance data, statistical evaluation of representations, and results of applying heuristic rules

� Finally, the third group consists of procedures for inspecting and analyzing the contents of all data structures

in the implemented system; its purpose is to support low-level manual control and debugging

These tools enable the user to examine the following objects, intermediate results, and top-level decisions:

Main objects

� Domains, problems, solver and changer operators, and gain functions

� Size functions, similarity hierarchies, and heuristic rules

� Primary e�ects, abstraction hierarchies, and control rules

� Domain descriptions and representations, along with their construction history

� Structure of the expanded description and representation spaces

Search results

� Accumulated performance data, for representations and changer algorithms

� Generated solutions, along with their lengths, costs, and other related data

� Summary of results, including the number of solved problems, total gain and running time, and so on

Heuristic decisions

� Evaluation of problem sizes and estimated complexity of description changes

� Initial choices of time bounds and the number of trials before switching to the statistical computation of bounds

� Structure of the preference graphs and the resulting heuristic selection of representations

Statistical estimates

� For each representation: Probability of choosing it, exploratory and optimal time bound, and expected gain

� For each changer algorithm: Success probability, expected running time, and deviation of the time estimate

� For each similarity group: Regression slopes, t and P values, and deviations of time logarithms

� For each similarity hierarchy: Evaluation of groups in the hierarchy and the choice of appropriate groups

Figure 11.8: Interface tools for examining initial knowledge, search results, and statistical data.

364 CHAPTER 11. SUMMARY OF WORK ON THE TOP-LEVEL CONTROL

Manual control of problem solving

When the user passes the control to the system's top-level module, she can optionally specify the order of solving

the input problem, de�ne constraints on the choice of representations, and supply her own mechanism for setting

time bounds.

Problems

The choice of problems and their ordering may a�ect the learning curve and overall gain; however, we have not

automated these decisions. By default, the system processes problems according to their order in the input queue.

The human operator has three options for selecting and re-ordering problems. These options are mutually exclusive,

that is, they cannot be used together.

Problem sequence: If the user provides a list of problem names, then Shaper will process the speci�ed

problems in order, and halt upon reaching the end of the list.

Choice function: Another option is to implement a Lisp procedure for selecting problems, which takes no

arguments and returns either a problem name or the termination signal. The system will call it after every

problem-solving attempt, to get the next problem.

Test function: Finally, the third alternative is to provide a function for rejecting inappropriate problems,

which inputs the pointer to a problem and returns true or false. The system will use the default processing

order, but skip the rejected problems.

In addition, the human operator can completely disable problem solving, that is, disallow the application of solver

algorithms, thus forcing Shaper to concentrate on description changes.

Representations

The user may impose �ve constraints on the choice of representations. The system selects among the representations

that satisfy all speci�ed conditions, and disregards the other choices.

Allowed (or disallowed) representations: If the user inputs a list of allowed representations, then Shaper will

not consider any other choices. Alternatively, the user may specify a list of disallowed representations.

Allowed (or disallowed) solver operators: The system will choose among the representations that include the

speci�ed solver operators, and ignore the ones with disallowed solvers.

Allowed (or disallowed) descriptions: This restriction will rule out the representations that are based on

disallowed domain descriptions.

Problem-independent test: The user may provide a test function, which inputs a representation and returns

true or false, and then Shaper will disregard the representations that fail the test.

Problem-speci�c test: The control mechanism can also utilize a two-argument test function, which inputs a

representation along with a given problem and determines whether the representation is �t for this problem.

Time bounds

If the human operator does not trust Shaper with the choice of time limits, then she can utilize three options for

setting her own limits:

Speci�c bounds: First, she may set �xed time limits for some representations, and then Shaper will use the

speci�ed limits for all problems solved with these representations.

Bound computation: The second option is to provide a Lisp procedure for setting time limits, which inputs a

representation and problem, and either returns a time bound or signals that it is unable to choose a bound.

Common bound: Finally, the system can use a common �xed bound with all representations and problems.

If the human operator utilizes all three options, then speci�c �xed bounds take precedence over the function for

computing time limits, whereas the common bound has the lowest priority.

Figure 11.9: Options for manual selection of problems, representations, and time bounds.

11.2. COLLABORATION WITH THE HUMAN USER 365

Restrictions on description changes

The system has a switch for turning on and o� the mechanism for expanding the description space. If it is o�, then

Shaper utilizes the available representations and does not construct new ones. When the user turns it on, she can

impose three constraints on the use of description changers.

Allowed (or disallowed) changer operators: The user may provide a list of allowed operators, and then Shaper

will not apply any other changers; an alternative option is to specify disallowed operators.

Allowed (or disallowed) initial descriptions: This restriction limits the use of old domain descriptions in

constructing new ones. The system will apply changer operators only to the allowed old descriptions.

Test function: The control module can utilize a user-speci�ed test procedure, which inputs a description and

changer operator, and determines whether the operator is suitable for improving this description.

In addition, the user may set time limits for some description changers. The mechanism for specifying these limits

is similar to that for problem solvers: the system can utilize �xed bounds or a function for computing them.

Figure 11.10: Options for restricting the application of changer operators.

Termination conditions

The human user may apply Shaper to a speci�c sequence of problems, restrict the allowed CPU time, limit the

desired gain, and encode additional termination conditions by a boolean Lisp function. The system checks all

conditions after every application of a solver or changer, and stops the execution in any of the following situations:

� Processing all problems of the given sequence; if the user does not specify a sequence, then Shaper handles

problems according to their order in the queue

� Processing a pre-set number of problems from the queue; the user may specify this number only if she does

not provide a problem sequence

� Spending the alloted CPU time; note that the system checks this condition only between solver applications

and, hence, the last solver may run over the alloted limit

� Reaching the threshold on the total gain; the user may specify two threshold values, positive and negative, and

then the system stops when the cumulative gain either rises to the positive limit or falls to the negative one

� Satisfying the termination condition speci�ed by a Lisp function; when the human operator designs this

function, she may utilize any information about the global state of the system

In addition, the human operator can halt the system by a keyboard interrupt. If the system gets an interrupt, it

immediately terminates the search and loses the results of the last problem-solving or description-changing attempt.

Figure 11.11: Conditions for halting the automatic control module.

366 CHAPTER 11. SUMMARY OF WORK ON THE TOP-LEVEL CONTROL

control
Top-level

Rep-changing

Description
solvers
Problem Library of

generated
descriptions

mechanism

changers

Figure 11.12: Architecture of the Shaper system.

11.3 Contributions and open problems

We have constructed a collection of description-changing algorithms and a top-level control
module. In Chapter 6, we summarized the results of developing description changers for
the prodigy architecture. We now discuss the contributions of our work on the top-level
control and identify some open problems.

We review the overall control architecture (Sections 11.3.1 and 11.3.2), the utility model
for evaluating the system's performance (Section 11.3.3), and the main control mechanisms
(Sections 11.3.4{11.3.6). We summarize the main limitations of these mechanisms (Sec-
tion 11.3.7) and propose some directions for future research (Section 11.3.8).

11.3.1 Architecture for changing representations

We have developed a mechanism for automatic representation changes, which performs two
major tasks: given a problem, it selects a problem solver and, if necessary, improves the do-
main description before calling the solver. The system accumulates a library of descriptions,
and reuses them for solving new problems.

The Shaper system comprises problem-solving engines, description changers, the top-
level control module, and a library of domain descriptions. The changers and top-level
module compose the mechanism for changing representations. We summarize Shaper's
architecture in Figure 11.12. This architecture integrates multiple solver and changer algo-

rithms, and allows the use of competing search algorithms in a uni�ed system.

Observe that there is no de�nite boundary between problem solvers and domain descrip-
tions. For example, we may view control rules that guide prodigy search (see Section 2.4.3)
as part of a solver algorithm or as a description element. The choice of a speci�c bound-
ary is an architectural decision: we �x some search-control parameters to construct solver
algorithms, and allow modi�cation of other parameters by description changers.

The architecture in Figure 11.12 underlies all our results; however, we conjecture that
there are other architectures for automated representation improvement. Major open prob-
lems include identifying limits of the proposed architecture and developing other types of
representation-changing systems.

11.3. CONTRIBUTIONS AND OPEN PROBLEMS 367

changer operators

Selection of

Automatic control

operators
Changer

Manual control

Solver
operators

Description
space

Representation

space for given problems
Representations

Statistical
evaluation

Preference
rules

Selection of representations

Figure 11.13: Architecture of the top-level control module.

11.3.2 Search among descriptions and representations

The top-level control is based on the concept of description and representation spaces. The
main objects in these spaces are solver operators, changer operators, description nodes, and
representations (see Section 7.2).

We give the architecture of the control module in Figure 11.13, where we show parts of the
system by rectangles, and input and output data by ovals. The algorithm for expanding the
description space is based on a collection of user-speci�ed rules for selecting changer operators
(see Section 11.1). The system constructs representations by pairing new domain descriptions
with appropriate solver operators. Then, it identi�es an appropriate representation for each
given problem, using statistical performance evaluation (Chapters 8 and 9) and preference
rules (Chapter 10). The human user has the option of participating in selection of description
changers and representations.

In Figure 11.14, we show the main decision points of the control module. When we input
a new problem, Shaper enters this decision cycle and runs until solving the problem or
deciding to skip it.

The current system does not have two important decision points, shown in Figure 11.15
by thick lines. First, after constructing a new description, Shaper should intelligently select
solver operators suitable for this description (see Figure 11.15a). Presently, it uses all solver
operators whose conditions match the description. Second, when the system fails to solve a
given problem, it should decide between solving the problem with another old representation
and constructing a new representation (Figure 11.15b). Presently, Shaper does not consider
the generation of new representations at this point of the decision cycle, and delays it until
processing the next problem.

The system uses intelligent changer algorithms to generate new domain descriptions;
hence, it constructs potentially good descriptions and skips a vast majority of \junk" de-
scriptions. For this reason, the number of representations that Shaper can generate for a
particular domain is relatively small, usually within a few hundred. A small representation

368 CHAPTER 11. SUMMARY OF WORK ON THE TOP-LEVEL CONTROL

solve or skip the problem?
which representation to use?

with what time bound?

solve

use the selected
representation
and time bound

wait for the next problem

solve the problem

selection of representations

interrupt
failure or

skip

success

success

to which old description?

which changer to apply?

changer operator

apply the selected

construct a description

generate the corresponding

representations

failure

solve the problem or construct a new description?

selection of changer operators

input a problem

Figure 11.14: Decision cycle of the control module.

(a) (b)

success

changer operator

apply the selected

which solvers to use

with the new description?

generate the corresponding

representations

solve or skip the problem?
which representation to use?

with what time bound?

solve

use the selected
representation
and time bound

solve the problem

interrupt
failure or

solve problem or construct description?

Figure 11.15: Missing decision points.

11.3. CONTRIBUTIONS AND OPEN PROBLEMS 369

space is an important advantage over Korf's model, which requires the exploration of a huge
space of all possible representations [Korf, 1980].

The exploration of a representation space is expensive, because the execution of changer
algorithms takes signi�cant time and the evaluation of new representations requires prob-
lem solving. Note that the system does not use backtracking in exploring description and
representation spaces. Therefore, if the user does not provide rejection or comparison rules,
the system stores and evaluates all generated representations. Designing more e�ective ex-
ploration techniques is an important problem.

The developed model does not rely on any speci�c properties of prodigy solvers; how-
ever, we have used two assumptions that limit its generality. First, all solver and changer
algorithms use the same input language. If we allowed multiple input languages, we would
have to add a library of language-conversion algorithms and provide a mechanism for their
use in expanding the description space. The choice of representations would depend not
only on the e�ciency considerations but also on the language of given problems. Note that
this extension would be necessary for the integrated use of search engines from di�erent
problem-solving architectures.

Second, we do not improve old descriptions incrementally in the process of problem
solving. For example, we do not revise old abstractions or primary e�ects after failed solving
attempts. The incremental modi�cation of descriptions would pose several open problems,
including propagation of modi�cations to the corresponding representations, backtracking
over inappropriate modi�cations, and statistical evaluation of the modi�cation quality.

11.3.3 Evaluation model

We have proposed a model for evaluating problem solvers, which uni�es three main dimen-
sions of performance: the number of solved problems, running time, and solution quality.
We have considered a generalized gain function and used the expected problem-solving gain
as the uni�ed performance measure.

The evaluation model is very general; it allows the comparison of any two competing
search algorithms. The performance measure, however, depends not only on an algorithm
itself, but also on the domain, problem distribution, gain function, and bound-selection
strategy. This dependency formalizes the observation that no search technique is universally
better than others [Minton et al., 1991; Knoblock and Yang, 1994; Veloso and Blythe, 1994].
The relative performance of problem solvers depends on a speci�c domain, as well as on the
user's value judgments.

The model di�ers in two important ways from the use of asymptotic complexity bounds in
the algorithm theory. First, the performance measure shows the average-case behavior, not
the worst case. Second, this model is for empirical evaluation of performance. We determine
the expected gains by testing solvers on sample problems rather than by algorithm analysis.

Note that the performance estimate does not directly depend on the completeness of a
problem solver. If the search hits a time bound, the negative gain is the same whether the
problem has no solution, the solver did not have enough time, or it could not �nd a solution
because of incompleteness. In other words, we do not distinguish between the system's
incompleteness and its inability to solve problems in feasible time.

370 CHAPTER 11. SUMMARY OF WORK ON THE TOP-LEVEL CONTROL

The developed model has several limitations, which we plan to address in the future.
First, we have assumed that all solvers are sound, and that the user provides a numerical
gain function, de�ned for all possible outcomes. Lifting these assumptions would require a
signi�cant extension to the evaluation and statistical-selection technique. In particular, if
the user cannot construct a gain function, the system needs to elicit the utility in the process
of problem solving [Ha and Haddawy, 1997].

Second, the arithmetic mean of possible gains is not always an adequate performance
measure. For example, when �nancial experts evaluate risky transactions, they use more
sophisticated averaging functions, such as the geometric mean of possible gains or the ratio
of the expected gain to its standard deviation (see, for instance, the textbook by Hull [1997]).
As another example, the user may be interested in reducing the risk of losses rather than
maximizing the expected gains.

Third, our rules for summing gains do not apply to some practical situations. We have
already discussed the main limitations of each rule (see Section 7.3.5). Note also that we
have not considered parallel execution of problem solvers, which would require a di�erent
gain summation.

11.3.4 Statistical selection

We have stated the task of selecting among representations as a statistical problem, derived
an approximate solution, and demonstrated its e�ectiveness in selecting appropriate rep-
resentations and time bounds. Selection takes little computation and its running time is
usually negligible compared to problem-solving time.

We developed a learning algorithm for selecting representations, which combines the
exploitation of past experience with the exploration of new alternatives. The algorithm
accumulates performance data in the process of problem solving, and its selection accuracy
grows with experience. Note that we do not separate the learning stage from the use of the
learned knowledge.

The selection technique has proved e�ective for all tested distributions of problem-solving
times. It gives good results even when distributions do not satisfy the assumptions of the
statistical analysis. The algorithm can use an approximate measure of problem sizes and
information about similarity between problems to improve selection accuracy; however, the
improvement depends on the user's pro�ciency in providing an accurate size measure and
de�ning groups of similar problems.

The developed technique is independent of speci�c search engines and problem domains;
in particular, it does not rely on any special properties of prodigy solvers. We can use
the learning algorithm in any AI system that o�ers a choice among multiple search engines,
uses alternative domain descriptions, or allows selection of appropriate values of \knob" pa-
rameters. The technique is equally e�ective for small and large-scale domains. Even though
AI problem solving provided the motivation for our work, the statistical model extends to
situations outside AI, as illustrated by the phone-call example.

The model raises many open problems, which include relaxing the simplifying assump-
tions, improving the rigor of the statistical derivations, accounting for more features of
real-world situations, and improving the heuristics used with the statistical estimates. We

11.3. CONTRIBUTIONS AND OPEN PROBLEMS 371

also plan to work on further improvement of the e�ciency of statistical computations.
To make the model more exible, we need to provide a mechanism for switching the

representation and revising the time bound in the process of search for a solution. In addition,
we plan to study the use of any-time solver algorithms, as well as solvers whose performance
improves with experience, which will require an extension to the statistical model. We also
need to allow interleaving of problem solving with several promising representations, as well
as running competing representations on parallel processors.

If problem solving is not much slower than statistical computations, then we need to
account for the running time of statistical procedures in estimating the expected gain. In
particular, we may have to decide whether the use of size and similarity provides su�cient
improvement to justify the extra running time.

We also intend to replace some heuristics with more rigorous techniques. In particular,
we need to provide statistical models for selecting time bounds in the absence of past data
(see Section 8.5), optimizing trade-o�s between exploitation and exploration (Sections 8.4.2
and 8.4.3), and selecting appropriate groups of a similarity hierarchy (Section 9.3.2).

To enhance the use of similarity, we should allow multiple inheritance among groups and
make appropriate extensions to the group-selection heuristics. Finally, we need to provide
a means for constructing a similarity hierarchy automatically, to minimize the deviation of
time logarithms (see Figure 9.1c) within groups.

11.3.5 Other selection mechanisms

We have constructed an alternative selection mechanism, based on the use of preference
rules, which is also independent of speci�c problem-solving engines. This mechanism is a
means for developing control strategies. We have used it for encoding the user's knowledge
(Section 2.3.3), learning the relative performance of representation classes (Section 10.2),
and comparing representations by testing them on small problems (Section 10.3).

We intend to use preference rules in developing other learning techniques, for more ef-
�cient selection of representations. In particular, we need to develop methods for learning
applicability conditions of preference rules. We also plan to construct a central library of ad-
vanced preference heuristics, which improve the system's performance in most domains, and
develop specialized heuristics for some large-scale domains. Note, however, that the current
conict-resolution method limits the generality of the preference mechanism. Developing a
more exible method is an important open problem.

We can use preference rules without statistical selection; however, the combination of the
two mechanisms gives better results than either mechanism alone. Their synergy enables
us to merge semantic knowledge with incremental learning. We use statistical evaluation as
the main selection mechanism, and invoke preference rules when statistical data are insuf-
�cient. In particular, we use preferences to control the trade-o� between exploitation and
exploration. Preference rules usually improve the performance in the early stages of learning,
whereas statistics becomes more important in a longer run.

We have provided tools for optional user participation in the construction and selection
of representations. The user can make any part of the required decisions, and leave the other
decisions up to the system. If the user's choices go against past experience, the system gives

372 CHAPTER 11. SUMMARY OF WORK ON THE TOP-LEVEL CONTROL

a warning and asks for con�rmation. This scheme enables the user to share responsibilities
with the system; thus, it allows the synergy of human intuition with automatic control.

Presently, only an experienced user can take part in the top-level control, as she has to
learn the structure of description and representation spaces, and keep track of the system's
decisions. Related open problems include developing a better interface, providing advanced
tools for user participation, and optimizing the division of responsibilities between the human
operator and the system.

11.3.6 Expanding the description space

The mechanism for guiding the application of changer operators is an integral part of the
Shaper system, and it plays a signi�cant role in the overall performance; however, we have
done little work on the automation of this task, and the implemented control procedure relies
on the user-speci�ed rules. If the human operator does not provide rules for delaying the
change of descriptions, then the system expands the entire description space before solving
any problems.

We constructed basic tools for use of suspension and cancellation rules (Section 11.1.1),
and designed a statistical procedure for evaluating changer operators (Section 11.1.2). We
have assumed that all changer algorithms terminate in feasible time, and that they do not

generate invalid domain descriptions; that is, the resulting description never leads to incor-
rect solutions or execution errors. Furthermore, the control mechanism is e�ective only if
the problem-solving time is not negligible in comparison with the running time of changer
operators.

Related problems include extending the rule-based control mechanism and developing
advanced tools for the construction of new rules. We also plan to design a repository of
advanced domain-independent heuristics for guiding the expansion of description spaces. A
more general problem is the development of a statistical-learning technique for selecting
changer operators, which would replace the system's dependency on the human user.

11.3.7 Summary of limitations

We emphasized that the top-level control does not rely on speci�cs of the prodigy problem-
solving architecture; however, we used some general properties of prodigy in making as-
sumptions about solver and changer algorithms. We rely on these assumptions, which limit
the generality of the control mechanism. We have already discussed most of the prodigy-
related assumptions, and now give their summary.

� Problem solvers run much longer than statistical computations and, hence, we may
neglect the time of statistical analysis

� Description changers always terminate in reasonable time and, hence, the system does
not have to interrupt their execution

� An input language for describing domains and problems is the same for all solver and
changer algorithms

11.3. CONTRIBUTIONS AND OPEN PROBLEMS 373

� The system does not incrementally improve representations in the process of problem
solving; in particular, if it uses learning to generate a new description, the learning
stage is separated from the utilization of the learned knowledge in problem solving

� In most domains, the system solves a large number of problems and accumulates enough
data for statistical selection; if some domains include only a few problems, we need to
provide e�ective preference rules for these domains

11.3.8 Future research directions

We have summarized the main contributions and reviewed open problems related to speci�c
contributions. We now discuss some other directions for future work.

We have assumed that the execution of solvers and changers is sequential, and that the
system gets one problem at a time. The use of parallelism is an important research direction,
which may require signi�cant extensions to the utility model, structure of description and
representation spaces, and selection mechanisms.

If the Shaper system gets several problems at once, it has to decide on the order
of solving them. If Shaper does not have time to solve all input problems, it has to
identify the ones that give large gains and skip low-gain problems. These decisions require
an enhancement of the statistical evaluation.

Even though all solver and changer algorithms in Shaper are domain-independent, the
top-level control allows the use of domain-speci�c algorithms. We expect that a large library
of specialized problem solvers and description changers would give much better results than
a small collection of general algorithms. We conjecture that Shaper's control is scalable
to a large library of algorithms; however, it may require an extension to the preference-rule
mechanism and development of other mechanisms to supplement statistical selection.

We have proposed a formal model of problem solving with multiple representations.
The future challenges include further investigation of the role of representation, as well as
studies of formal properties of representation changes, such as soundness, completeness, and
admissibility. We aim to develop a uni�ed theory that will subsume our current formalism,
Korf's model of representation transformations [Korf, 1980], and Simon's view of cognitive
representations [Larkin and Simon, 1987; Kaplan and Simon, 1990; Tabachneck-Schijf et al.,
1997], as well as theories of abstraction [Knoblock, 1993; Giunchiglia and Walsh, 1992] and
macro operators [Korf, 1985b; Cohen, 1992; Tadepalli and Natarajan, 1996].

Part IV

Empirical results

374

376

I used to be solely responsible for the quality of my work, but now my computer

shares the responsibility with me.

| Herbert A. Simon, personal communications.

The experiments with the main components of Shaper have con�rmed e�ectiveness of the
described techniques. We have tested primary e�ects (Sections 3.6 and 3.7), abstractions
(Sections 4.4 and 5.2), and goal-speci�c descriptions (Section 5.4), and demonstrated that
they help to reduce search times and solution costs. We have also experimented with the
statistical selection mechanism, which has proved e�ective for a variety of distributions (Sec-
tions 8.6, 8.7, and 9.2).

The subject of the next four chapters is an empirical evaluation of the integrated system.
We apply Shaper to the Machining problems (Chapter 12), Sokoban puzzle (Chapter 13),
strips world (Chapter 14), and Logistics tasks (Chapter 15). The experiments do not

include the Robot Domain, because it contains too few problems and, hence, does not allow
for statistical learning. We consider a variety of representation spaces and gain functions,
and demonstrate the system's ability to identify appropriate search strategies.

We composed solver libraries from three versions of the prodigy search engine. Specif-
ically, the libraries include savta and saba, as well as the linear search engine, whose
behavior is similar to prodigy2 (see Section 2.2.5). We constructed solver algorithms by
combining these three engines with cost-bound heuristics, which limit the search depth.

For each domain and gain function, we plot Shaper's gains on a series of problems,
and show that the system's performance gradually improves with experience. Note that the
order of problems in the series is always random; we do not arrange them by di�culty, or
by any other criterion.

The gain measurements account not only for the search time, but also for the cost of
processing statistical data and selecting a solver algorithm. That is, the system measures
the overall time for choosing and applying a solver; however, the selection time has been
negligibly small in all experiments. In fact, if we ignored it and re-plotted the graphs, the
shift of the gain curves would be smaller than their thickness.

The empirical results have re-con�rmed the power of the developed approach and showed
that the utility of the control mechanism does not depend on speci�c properties of domains,
solver algorithms, or gain functions. The Shaper system has correctly identi�ed the appro-
priate representations and time bounds in almost all cases.

Note that we did not use the experimental domains during the development and imple-
mentation of Shaper, nor \�ne-tuned" the system for any of them. Since the developed
techniques have proved e�ective in all four domains, we expect them to be equally e�ective
for other problem-solving tasks.

The presentation of empirical results consists of four chapters, which correspond to the
four test domains. In Chapter 12, we explain the design of experiments and give the results
of applying Shaper to the Machining Domain. Then, we describe similar tests in the other
three domains (Chapters 13{15); the reader may browse the report of these tests in an
arbitrary order.

Chapter 12

Machining Domain

We �rst apply Shaper to a simple model of a machine shop, described in Section 3.6.2.
All problems in this domain are solvable, and they never cause a failure of prodigy search.
Moreover, if we do not set a tight cost bound, then prodigy �nds a solution in feasible
time; that is, there is no risk of in�nite looping.

12.1 Selection among domain descriptions

Suppose that the system includes only one search engine, savta, and it runs without cost
bounds. We may apply changer algorithms to construct new descriptions of the Machining
Domain, and then Shaper will select the description that maximizes savta's expected
gains.

In Figure 12.1, we show a collection of solver and changer operators constructed from
the available algorithms. Recall that a solver operator consists of a search algorithm and
applicability conditions (see Section 7.2.1). It may also include procedures for problem-
speci�c description improvements. On the other hand, a changer operator is a sequence of
problem-independent changers, along with conditions for their applicability.

The control module applies changer operators to the initial encoding of the Machining
Domain and constructs two new descriptions, as shown in Figure 12.2. The �rst description
is based on a selection of primary e�ects, given in Figure 3.33 (page 133), and the second
one is a combination of primary e�ects with abstraction (see Figure 5.5 in page 5.5). Then,
the system pairs the descriptions with solver operators, thus producing four representations.
We describe the results of statistical selection among them, for several utility functions.

Linear gain functions

We begin with simple gain functions, which linearly depend on three factors: the number
of goals in a problem, denoted n-goals, search time, and solution cost. Since machining
problems never cause failures, we do not distinguish between failure and interrupt outcomes
in de�ning the gains.

First, we experiment with a function that decreases with the running time, and does not

377

378 CHAPTER 12. MACHINING DOMAIN

Abstractor

Applicability conditions:
Description has no abstraction hierarchy

Applicability conditions:
Description has no primary effects,

and no abstraction hierarchy

Margie Completer Abstractor

Chooser Completer

Applicability conditions:
Description has no primary effects
Abstractor has not been applied

Applicability conditions:
Description has no primary effects,

and no abstraction hierarchy

Relator AbstractorChooser w/oSAVTA
cost bound

w/oSAVTA
cost bound

No applicability conditions

(b) Changer operators. (a) Solver operators.

Figure 12.1: Solver and changer operators in the experiments on choosing a description. We show

the sequences of algorithms that comprise these operators, and their applicability conditions.

prim

w/oSAVTA
cost boundMargie

Abstractor
Completer

prim and
hierarchy

w/oSAVTA
cost bound

initial

initial

w/oSAVTA
cost bound

cost bound
w/oSAVTA

Chooser
Relator

Abstractor

initial
dash-and-dot lines

dashed lines

prim

Completer
Chooser

prim and
hierarchy

lower dotted lines

space of representationsspace of descriptions
upper dotted lines

Figure 12.2: Description and representation space in the Machining Domain. The system uses the

operators in Figure 12.1 to expand this space. Note that the Abstractor operator does not produce

new descriptions, because the hierarchy collapses to a single level. The small-font subscriptions

refer to the legend in Figures 12.3{12.6, which show the performance of each representation.

12.1. SELECTION AMONG DOMAIN DESCRIPTIONS 379

account for the other factors:

gain =

(
0:5� time; if success
�time; if failure or interrupt

(12.1)

Second, we consider the situation when the gain mostly depends on the number of goals and
solution cost, whereas its dependency on the running time is negligible:

gain =

(
2 � n-goals� cost� 0:01 � time; if success and cost < 2 � n-goals
�0:01 � time; otherwise

(12.2)

Finally, we give the results of using a gain function that accounts for all three factors:

gain =

(
4 � n-goals� cost� 50 � time; if success and cost < 4 � n-goals
�50 � time; otherwise

(12.3)

We performed two experiments with each of these functions. First, the Shaper system
was applied to sequences of �fty problems; then, it ran on ten-times longer sequences. In
each case, the system started without prior performance data, and gradually identi�ed an
appropriate representation and time bound. We present a graphical summary of these tests
(Figures 12.3 and Figure 12.4), and then compare the system's cumulative gains with the
optimal gains (Table 12.1).

Short problem sequences

We give the results of �fty-problem experiments in Figure 12.3, where the top row of graphs
shows the system's behavior with Function 12.1, the middle row contains the results of using
Function 12.2, and the bottom row is for Function 12.3. The horizontal axes of these graphs
show the number of a problem in a sequence, from 1 to 50, and the vertical axes are the gain
values.

For every function, we give the raw empirical data in the left-hand graph, which shows
the gain on each problem, and provide alternative views of the same data in the other two
graphs. The solid line in the middle graph is the result of smoothing the raw curve, that is,
averaging the gain values over �ve-problem intervals: we plot the mean gain for problems 1{5,
the mean for 6{10, and so on.

The solid curve on the right is analogous to the arti�cial-test graphs in Section 8.7: it
shows the cumulative per-problem gain, obtained up to the current problem. For instance,
the cumulative value for 10 is the mean gain on the �rst ten problems, and the value for 50
is the mean on all �fty problems.

The broken lines illustrate the performance of the four available representations, without
time bounds. For each representation, we plot the results of applying it to all �fty problems.
In particular, the dashed curves show the behavior of the goal-speci�c abstraction, with
unlimited search time, which is the optimal strategy for all three gain functions.

The results con�rm that Shaper's performance gradually improves with experience;
however, it does not converge to the optimal strategy, because the learning sequences are
not su�ciently long. We next present experiments with larger problem samples, which enable
Shaper to identify the best representation and time bound.

380 CHAPTER 12. MACHINING DOMAIN

Long problem sequences

In Figure 12.4, we illustrate the results of applying Shaper to 500-problem sequences, and
compare them with the performance of each representation. The left-hand graphs contain
smoothed gain curves, which are similar to that in Figure 12.3; however, we now average the
gains over ten-problem intervals. The curves on the right show the cumulative per-problem
gains.

The system converged to the optimal choice of a representation in all three cases, after
processing about a hundred problems. After �nding the best strategy, Shaper occasion-
ally experimented with less e�ective representations (see Section 8.4), which caused minor
deviations from optimal performance.

Discontinuous gain functions

We next give results of choosing representations for three nonlinear functions, and demon-
strate that complex functions do not confuse the selection mechanism. In the �rst series of
tests, Shaper earns a reward only for optimal solutions:

gain =

(
0:5� time; if the solver �nds an optimal solution
�time; otherwise

(12.4)

In the second series, we reward the system for solving a given problem by a deadline, and
penalize for missing the deadline:

gain =

(
1:0; if success and time � 0:5
�1:0; otherwise

(12.5)

Finally, Shaper has to select appropriate representations for a complex discontinuous func-
tion, which depends on the problem di�culty, search time, and solution quality:

gain =

8>>><
>>>:

4 � n-goals; if success and time � 0:3
4 � n-goals� 50 � time; if success and 0:3 < time � 0:5
4 � n-goals� cost� 50 � time; if success, time > 0:5, and cost < 4 � n-goals
�50 � time; otherwise

(12.6)
The system successfully identi�ed the optimal strategy for each of these functions. We

summarize the results of processing �fty-problem sequences in Figure 12.5, and the results
for longer sequences in Figure 12.6. Observe that the nonlinear functions did not confuse
Shaper; in fact, the choice of the right strategy required less data than in the experiments
with linear gains.

Summary

We have demonstrated Shaper's ability to choose appropriate domain descriptions and
time bounds in the Machining Domain. The system usually converges to the right strategy
after processing �fty to a hundred problems; however, it may su�er signi�cant losses in the
beginning, when trying alternative representations.

12.1. SELECTION AMONG DOMAIN DESCRIPTIONS 381

problem sequences optimal
short long gain

Function 12.1 0.148 (80%) 0.177 (96%) 0.184
Function 12.2 3.91 (55%) 6.67 (93%) 7.17
Function 12.3 10.3 (53%) 17.1 (88%) 19.4
Function 12.4 0.115 (63%) 0.176 (96%) 0.184
Function 12.5 0.680 (68%) 0.956 (96%) 1.000
Function 12.6 38.6 (85%) 44.6 (99%) 45.2

Table 12.1: Cumulative per-problem gains and their comparison with the optimal values. We

list the average gains on the short problem sequences (Figures 12.3 and 12.5), and on the long

sequences (Figures 12.4 and 12.6). For each gain value, we give the corresponding percentage of

the optimal gain.

In addition, Shaper may incur minor losses in later stages, during its occasional at-
tempts to employ ine�ective representations. The purpose of these attempts is to verify the
accuracy of the available data; their frequency gradually diminishes with the accumulation
of additional data (see Section 8.4).

The learning mechanism proved equally e�ective for a variety of gain functions; in fact,
we were not able to devise a function that would cause signi�cantly worse performance. The
behavior of the learner on Machining problems was very similar to the arti�cial tests of
Section 8.7.

In Table 12.1, we summarize the cumulative per-problem gains, obtained on short and
long sequences. If the system had a prior knowledge of the optimal strategy for each utility
function, then it would earn the gain values given in the rightmost column. The cumulative
gains on the �fty-problem sequences range from 53% to 85% of the optimal values, whereas
the gains on the long sequences are between 88% and 99% of optimal.

382 CHAPTER 12. MACHINING DOMAIN

0 20 40

−0.2

−0.1

0

0.1

0.2

0.3

detailed gain curve

problem’s number

ga
in

s

0 20 40

−0.2

−0.1

0

0.1

0.2

0.3

smoothed gain curve

problem’s number
0 20 40

−0.2

−0.1

0

0.1

0.2

0.3

average per−problem gains

problem’s number

(a) Gain linearly decreases with the running time (Function 12.1).

0 20 40
0

2

4

6

8

10

12

detailed gain curve

problem’s number

ga
in

s

0 20 40
0

2

4

6

8

10

12

smoothed gain curve

problem’s number
0 20 40

0

2

4

6

8

10

12

average per−problem gains

problem’s number

(b) Gain mainly depends on the solution quality (Function 12.2).

0 20 40
−30

−20

−10

0

10

20

30

detailed gain curve

problem’s number

ga
in

s

0 20 40
−30

−20

−10

0

10

20

30

smoothed gain curve

problem’s number
0 20 40

−30

−20

−10

0

10

20

30

average per−problem gains

problem’s number

(c) Gain depends on both running time and solution quality (Function 12.3).

Figure 12.3: Performance of Shaper on sequences of �fty Machining problems, with linear gain

functions. The system chooses among four representations, illustrated in Figure 12.2, and deter-

mines appropriate time bounds. We give the gains on each of the �fty problems (left), as well as

smoothed gain curves (middle) and cumulative per-problem gains (right).

We plot not only the system's gains (solid lines), but also the performance of each available

representation with no time bound. Speci�cally, the graphs illustrate the behavior of standard

prodigy search (dash-and-dot lines), primary e�ects (lower dotted lines), abstraction search (up-

per dotted lines), and goal-speci�c abstraction (dashed lines). We do not show the lower dotted

curves for Function 12.1, because they completely coincide with the dash-and-dot curves.

12.1. SELECTION AMONG DOMAIN DESCRIPTIONS 383

0 100 200 300 400

−0.2

−0.1

0

0.1

0.2

0.3

smoothed gain curve

problem’s number

ga
in

s

0 100 200 300 400

−0.2

−0.1

0

0.1

0.2

0.3

average per−problem gains

problem’s number

(a) Gain linearly decreases with the running time (Function 12.1).

0 100 200 300 400
0

2

4

6

8

10

12

smoothed gain curve

problem’s number

ga
in

s

0 100 200 300 400
0

2

4

6

8

10

12

average per−problem gains

problem’s number

(b) Gain mainly depends on the solution quality (Function 12.2).

0 100 200 300 400
−30

−20

−10

0

10

20

30

problem’s number

ga
in

s

smoothed gain curve

0 100 200 300 400
−30

−20

−10

0

10

20

30

problem’s number

average per−problem gains

(c) Gain depends on both running time and solution quality (Function 12.3).

Figure 12.4: Performance on 500-problem sequences in the Machining Domain, with linear gain

functions. For every function, we give the smoothed gain curve (solid lines, left) and cumulative

per-problem gains (solid lines, right). In addition, we show the performance of each representation

without time bounds (broken lines), using the legend of Figure 12.3.

384 CHAPTER 12. MACHINING DOMAIN

0 20 40

−0.6

−0.4

−0.2

0

0.2

0.4
detailed gain curve

problem’s number

ga
in

s

0 20 40

−0.6

−0.4

−0.2

0

0.2

0.4
smoothed gain curve

problem’s number
0 20 40

−0.6

−0.4

−0.2

0

0.2

0.4
average per−problem gains

problem’s number

(a) System gets a reward only for the optimal solution (Function 12.4).

0 20 40

−1

−0.5

0

0.5

1

detailed gain curve

problem’s number

ga
in

s

0 20 40

−1

−0.5

0

0.5

1

smoothed gain curve

problem’s number
0 20 40

−1

−0.5

0

0.5

1

average per−problem gains

problem’s number

(b) Gain is a discontinuous function of running time (Function 12.5):
It is 1.0 if a problem is solved by the deadline, and �1:0 otherwise.

0 20 40

−20

0

20

40

60

detailed gain curve

problem’s number

ga
in

s

0 20 40

−20

0

20

40

60

problem’s number

smoothed gain curve

0 20 40

−20

0

20

40

60

problem’s number

average per−problem gains

(c) Gain is a complex discontinuous function (Function 12.6), which cannot be de-
composed into the payment for running time and the reward for solving a problem.

Figure 12.5: Results of applying Shaper to �fty-problem sequences, with discontinuous gain

functions. The graphs include the raw gain curves (left), smoothed curves (middle), and cumulative

gains (right); the legend is the same as in Figure 12.3. We do not show the lower dotted lines

(search with primary e�ects) for Functions 12.1 and 12.1, because these lines are identical to the

dash-and-dot curves (standard prodigy search).

12.1. SELECTION AMONG DOMAIN DESCRIPTIONS 385

0 100 200 300 400

−0.6

−0.4

−0.2

0

0.2

0.4
smoothed gain curve

problem’s number

ga
in

s

0 100 200 300 400

−0.6

−0.4

−0.2

0

0.2

0.4
average per−problem gains

problem’s number

(a) System gets a reward only for the optimal solution (Function 12.4).

0 100 200 300 400

−1

−0.5

0

0.5

1

smoothed gain curve

problem’s number

ga
in

s

0 100 200 300 400

−1

−0.5

0

0.5

1

average per−problem gains

problem’s number

(b) Gain is a discontinuous function of running time (Function 12.5).

0 100 200 300 400

−20

0

20

40

60

smoothed gain curve

problem’s number

ga
in

s

0 100 200 300 400

−20

0

20

40

60

problem’s number

average per−problem gains

(c) Gain is a complex discontinuous function (Function 12.6).

Figure 12.6: Results for sequences of 500 problems, with discontinuous gain functions. The graphs
include the smoothed gain curves (left) and cumulative per-problem gains (right).

386 CHAPTER 12. MACHINING DOMAIN

12.2 Selection among problem solvers

We next present experiments with a library of four problem solvers (see Figure 12.8), which
are based on the savta and saba search engines. Two solvers perform depth-�rst search
without a cost bound, whereas the other two utilize a loose bound, which approximates the
doubled cost of an optimal solution. We did not include the linear version of prodigy,
because its behavior in the Machining Domain proved identical to the behavior of savta.

The heuristic for computing a cost bound is a function of the goal statement; it accounts
for the number of goals and for the required quality of machining operations. Recall that
the system may choose between rough and �ne operations (see Figure 3.33 on page 133); a
rough operator incurs a cost of 1, whereas a �ne operator is twice as expensive.

We divide the goal literals into two groups: e�ects of rough operators, such as drilled and
polished, and �ne e�ects, such as �nely-polished. If the number of literals in the �rst group is
n-rough, and that in the other group is n-�ne, then the loose cost bound is

2 � n-rough+ 4 � n-�ne:

Four solver operators

If the Shaper system runs with the four solver operators in Figure 12.7, and no description
changers, then it generates the four representations illustrated in Figure 12.8. We evaluated
the system's ability to choose among them, for Functions 12.1, 12.2, and 12.6.

We give the results in Figures 12.11 and 12.12, where solid lines mark the system's
performance, and broken lines show the behavior of each representation. The gains of saba
without cost bounds turned out to be identical to its gains with loose bounds (dashed lines);
however, Shaper had no prior knowledge of this identity, and needed to test both strategies.

The best choice for Functions 12.1 and 12.6 is the saba algorithm. On the other hand,
if the system applies Function 12.2 to compute the gains, it should not solve any problems,
because all available algorithms give negative results, regardless of the time bound. The
system adopts the right strategy in all three cases, after processing about twenty problems.

Sixteen representations

We now consider a larger library of solver operators, illustrated in Figure 12.9, which includes
not only the four search algorithms, but also their synergy with problem-speci�c changers.
In addition, Shaper utilizes the changer library in Figure 12.1(b), which leads to generating
sixteen representations (see Figure 12.10).

No applicability
conditions

No applicability
conditions

No applicability
conditions

w/oSAVTA
cost bound

No applicability
conditions

withSAVTA
cost bound

w/oSABA
cost bound

withSABA
cost bound

Figure 12.7: Basic solver operators, which are applicable with every domain description. We con-

structed them from the two main versions of the prodigy4 search engine, called savta and saba.

12.2. SELECTION AMONG PROBLEM SOLVERS 387

dash-and-dot lines

initial

w/oSAVTA
cost bound

initial initialinitial

withSAVTA
cost bound

w/oSABA
cost bound cost bound

withSABA

dashed lines

space of descriptions

initial

space of representations

dotted lines dashed lines

Figure 12.8: Representations constructed without changer operators. The system pairs the solvers

(Figure 12.7) with the initial description, which does not include primary e�ects or abstraction.

The small-font subscriptions refer to the corresponding gain curves in Figures 12.11 and 12.12.

No applicability conditions

No applicability conditions

No applicability conditions

No applicability conditions

Relator AbstractorChooser

Relator AbstractorChooser

Relator AbstractorChooser

Relator AbstractorChooser

Applicability conditions:
Description has no primary effects,

and no abstraction hierarchy

w/oSABA
cost bound

withSABA
cost bound

withSAVTA
cost bound

w/oSAVTA
cost bound

w/oSABA
cost bound

withSABA
cost bound

withSAVTA
cost bound

w/oSAVTA
cost bound

Applicability conditions:
Description has no primary effects,

and no abstraction hierarchy

Applicability conditions:
Description has no primary effects,

and no abstraction hierarchy

Applicability conditions:
Description has no primary effects,

and no abstraction hierarchy

Figure 12.9: Extended set of solver operators for the Machining Domain. We use this set with the

library of description changers given in Figure 12.1(b).

388 CHAPTER 12. MACHINING DOMAIN

w/oSAVTA
cost bound

withSAVTA
cost bound

w/oSABA
cost bound cost bound

withSABA

w/oSAVTA
cost bound

withSAVTA
cost bound

w/oSABA
cost bound cost bound

withSABA

w/oSAVTA
cost bound

withSAVTA
cost bound

w/oSABA
cost bound cost bound

withSABA

initial

Chooser
Relator

Abstractor

initial

Chooser
Relator

Abstractor

initial

Chooser
Relator

Abstractor

initial

Chooser
Relator

Abstractor

initial

w/oSAVTA
cost bound

withSAVTA
cost bound

w/oSABA
cost bound cost bound

withSABA

space of descriptions space of representations

initial initial initialinitial

prim prim prim prim

hierarchy
prim and

hierarchy
prim and

hierarchy
prim and

hierarchy
prim and

prim and
hierarchy

prim

Completer
Chooser

Margie

Abstractor
Completer

Figure 12.10: Large representation space for the Machining Domain. The system utilizes all solvers

in Figure 12.9 and changers in Figure 12.1(b), which give rise to sixteen alternative representations.

We give the results of incremental selection among them in Figures 12.13 and 12.14.

12.2. SELECTION AMONG PROBLEM SOLVERS 389

problem sequences optimal
short long gain

Function 12.1 0.112 (61%) 0.176 (96%) 0.184
Function 12.2 �0.0044 | �0.0004 | 0
Function 12.6 36.8 (82%) 44.5 (99%) 45.1

Table 12.2: Average per-problem gains in the solver-selection experiments (Figures 12.11

and 12.12). We summarize the results of processing short and long problem sequences, and convert

each result into a percentage of the optimal gain.

representation space optimal
large small gain

short problem sequences

Function 12.1 0.009 (5%) 0.148 (80%) 0.196
Function 12.2 5.11 (71%) 3.91 (55%) 7.17
Function 12.6 33.8 (75%) 38.6 (85%) 45.2

long problem sequences

Function 12.1 0.158 (86%) 0.177 (96%) 0.184
Function 12.2 6.93 (97%) 6.67 (93%) 7.17
Function 12.6 44.1 (98%) 44.6 (99%) 45.2

Table 12.3: Average gains in the experiments with the large space, which comprises sixteen rep-

resentations (Figures 12.13 and 12.14). We also give the results of using a smaller space, with only

four representations (Figures 12.3{12.6), and the performance of the best available strategy.

We plot the system's gains in Figures 12.13 and 12.14 (solid lines), and compare them
with the results of choosing among four domain descriptions (dash-and-dot lines) and among
four problem solvers (dotted lines). We also show the utility of savta with problem-speci�c
descriptions and no cost bounds, which has proved the best strategy.

When the system selects among the sixteen representations, or among the four descrip-
tions, it identi�es this strategy. On the other hand, if Shaper employs the four solver
algorithms without changers, then it cannot improve the description and, hence, converges
to a less e�ective strategy (dotted lines).

Summary

The tests with multiple solvers have re-con�rmed the system's ability to identify the right
strategy, with moderate initial losses. In Table 12.2, we list the cumulative per-problem gains
in the solver-selection experiments. The performance is similar to the results of choosing a
description (see Table 12.1), and to the controlled experiments of Section 8.7.

In Table 12.3, we summarize the gains obtained with a space of sixteen representations,
and compare them with the results of selecting among four descriptions. When Shaper
expands the larger space, it evaluates more representations and incurs greater initial losses.

This increase in losses, however, was surprisingly modest. The system rejected most of
the representations in the very beginning of the learning sequence. It then performed a more
thorough comparison of near-optimal strategies, which did not cause signi�cant deviations
from ideal performance.

390 CHAPTER 12. MACHINING DOMAIN

0 20 40

−0.4

−0.2

0

0.2

detailed gain curve

problem’s number

ga
in

s

0 20 40

−0.4

−0.2

0

0.2

smoothed gain curve

problem’s number
0 20 40

−0.4

−0.2

0

0.2

average per−problem gains

problem’s number

(a) Gain linearly decreases with the running time (Function 12.1).

0 20 40
−0.02

−0.01

0

detailed gain curve

problem’s number

ga
in

s

0 20 40
−0.02

−0.01

0

smoothed gain curve

problem’s number
0 20 40

−0.02

−0.01

0

average per−problem gains

problem’s number

(b) Gain mainly depends on the solution quality (Function 12.2).

0 20 40

−40

−20

0

20

40

60

detailed gain curve

problem’s number

ga
in

s

0 20 40

−40

−20

0

20

40

60

smoothed gain curve

problem’s number
0 20 40

−40

−20

0

20

40

60

average per−problem gains

problem’s number

(c) Gain is a discontinuous function of time and solution quality (Function 12.6).

Figure 12.11: Selection among four problem solvers, shown in Figure 12.7. We apply the system

to �fty-problem sequences, with no prior performance data. The graphs include the raw results

(left), smoothed curves (solid lines, middle), and cumulative per-problem gains (solid lines, right).

Furthermore, we give the performance of every solver, with no time limit. Speci�cally, we plot

the results of applying savta without cost bounds (dash-and-dot lines), savta with loose cost

bounds (dotted lines), and saba (dashed lines). The behavior of the saba algorithm without cost

bounds is identical to that with loose bounds.

12.2. SELECTION AMONG PROBLEM SOLVERS 391

0 100 200 300 400

−0.4

−0.2

0

0.2

smoothed gain curve

problem’s number

ga
in

s

0 100 200 300 400

−0.4

−0.2

0

0.2

problem’s number

average per−problem gains

(a) Gain linearly decreases with the running time (Function 12.1).

0 100 200 300 400
−0.02

−0.015

−0.01

−0.005

0

smoothed gain curve

problem’s number

ga
in

s

0 100 200 300 400
−0.02

−0.015

−0.01

−0.005

0

problem’s number

average per−problem gains

(b) Gain mainly depends on the solution quality (Function 12.2).

0 100 200 300 400

−40

−20

0

20

40

60

smoothed gain curve

problem’s number

ga
in

s

0 100 200 300 400

−40

−20

0

20

40

60

average per−problem gains

problem’s number

(c) Gain is a discontinuous function of time and solution quality (Function 12.6).

Figure 12.12: Selection among the four solver operators, on sequences of 500 problems. We give

the smoothed gain curves (solid lines, left) and cumulative gains (solid lines, right), as well as the

performance of each available representation without time bounds (broken lines).

392 CHAPTER 12. MACHINING DOMAIN

0 20 40

−0.4

−0.2

0

0.2

detailed gain curve

problem’s number

ga
in

s

0 20 40

−0.4

−0.2

0

0.2

smoothed gain curve

problem’s number
0 20 40

−0.4

−0.2

0

0.2

average per−problem gains

problem’s number

(a) Gain linearly decreases with the running time (Function 12.1).

0 20 40
0

2

4

6

8

10

12

detailed gain curve

problem’s number

ga
in

s

0 20 40
0

2

4

6

8

10

12

problem’s number

smoothed gain curve

0 20 40
0

2

4

6

8

10

12

problem’s number

average per−problem gains

(b) Gain mainly depends on the solution quality (Function 12.2).

0 20 40

−40

−20

0

20

40

60

detailed gain curve

problem’s number

ga
in

s

0 20 40

−40

−20

0

20

40

60

smoothed gain curve

problem’s number
0 20 40

−40

−20

0

20

40

60

average per−problem gains

problem’s number

(c) Gain is a discontinuous function of time and solution quality (Function 12.6).

Figure 12.13: Problem solving with sixteen alternative representations (see Figure 12.10). The

system processes a set of �fty problems, and gradually selects appropriate representations and

bounds. The graphs contain the raw gain data (left), smoothed gains (solid lines, middle), and

cumulative results (solid lines, right).

We compare these data with the results on two smaller-scale tasks: choice among the four

representations in Figure 12.2 (dash-and-dot lines), and selection among the solvers in Figure 12.7

(dotted lines). We also show the performance of savta with goal-speci�c abstraction and no time

bounds (dashed lines), which is the best strategy for all three gain functions.

12.2. SELECTION AMONG PROBLEM SOLVERS 393

0 100 200 300 400

−0.4

−0.2

0

0.2

smoothed gain curve

problem’s number

ga
in

s

0 100 200 300 400

−0.4

−0.2

0

0.2

average per−problem gains

problem’s number

(a) Gain linearly decreases with the running time (Function 12.1).

0 100 200 300 400
0

2

4

6

8

10

12

problem’s number

ga
in

s

smoothed gain curve

0 100 200 300 400
0

2

4

6

8

10

12

problem’s number

average per−problem gains

(b) Gain mainly depends on the solution quality (Function 12.2).

0 100 200 300 400

−40

−20

0

20

40

60

smoothed gain curve

problem’s number

ga
in

s

0 100 200 300 400

−40

−20

0

20

40

60

average per−problem gains

problem’s number

(c) Gain is a discontinuous function of time and solution quality (Function 12.6).

Figure 12.14: Applying the system to 500-problem sequences, with the large representation space

(solid lines). We also plot the performance of the best available strategy (dashed lines), and the

results of using the smaller spaces (the other broken lines); the legend is the same as in Figure 12.13.

394 CHAPTER 12. MACHINING DOMAIN

12.3 Di�erent time bounds

When Shaper tests the available representations, it sets larger-than-optimal time bounds,
which facilitate exploration. The system includes a knob parameter for controlling the
exploratory bounds. We review the role of this parameter and evaluate the utility of di�erent
knob settings.

Exploration knob

In Section 8.4.2, we have described a three-step mechanism for choosing a time bound. First,
the statistical module estimates the optimal bound and computes the expected gain gmax,
as well as its standard deviation �max. Second, it considers larger bounds, and estimates the
gain g and deviation � for each bound. Third, it identi�es the maximal bound whose gain
is \not much di�erent" from optimal. By default, Shaper considers g su�ciently close to
gmax if

gmax�gp
�2
max

+�2
� 0:1; thus, it selects the largest time bound that satis�es this condition.

The human user has the option of changing the limit on the gmax�gp
�2
max

+�2
ratio. If this limit

is less than 0.1, then Shaper chooses bounds that are closer to the estimated optimum;
hence, it incurs smaller losses during the early stages of learning, but may fail to identify the
globally optimal bound. This strategy is e�ective for short problem sequences, which do not
allow the amortization of losses. On the other hand, a large limit causes a more thorough
exploration, at the expense of greater initial losses.

We tried several settings of this exploration knob and found out that the overall perfor-
mance is surprisingly insensitive to changes in the knob value. The optimal setting varies
across domains, gain functions, and problem sequences; however, the default always gives
near-optimal results.

Small and large bounds

First, we re-ran the sixteen-representation experiments (see Figure 12.8) for two smaller
values of the exploration knob, 0.02 and 0.05. In Figures 12.15 and 12.16, we plot the
di�erences between the resulting gains and the default-knob gains. The performance was
very similar to the default case, and the changes in the cumulative gains were negligibly
small.

Second, we tested two larger knob values, 0.2 and 0.5, and again observed a close-to-
default behavior (see Figures 12.17 and 12.18). Since prodigy was able to solve all machin-
ing problems in feasible time, large exploratory bounds did not cause high initial losses. The
experiments with other domains have revealed a more signi�cant impact of the exploration
knob on Shaper's gains (see Sections 13.3, 14.3, and 15.3).

Summary

In Table 12.4, we sum up the dependency of average gains on the exploration knob, and
convert the results of various settings into the percentages of the default gains. In most
cases, the changes in the knob value a�ected the cumulative gain by less than a percent.

12.3. DIFFERENT TIME BOUNDS 395

small knob values default large knob values
0.02 0.05 0.1 0.2 0.5

short problem sequences

Function 12.1 0.008 (89%) 0.009 (100%) 0.009 0.011 (122%) 0.008 (89%)
Function 12.2 5.113 (100%) 5.113 (100%) 5.113 5.113 (100%) 5.113 (100%)
Function 12.6 33.50 (99%) 33.84 (100%) 33.80 33.84 (100%) 33.76 (100%)

long problem sequences

Function 12.1 0.159 (101%) 0.161 (102%) 0.158 0.156 (99%) 0.160 (101%)
Function 12.2 6.963 (100%) 6.961 (100%) 6.931 6.957 (100%) 6.943 (100%)
Function 12.6 43.97 (100%) 43.84 (99%) 44.13 44.13 (100%) 44.07 (100%)

Table 12.4: Dependency of the cumulative per-problem gains on the exploration knob. We list

the average gains for di�erent knob values, and give the corresponding percentages of the default-

strategy gains, rounded to whole percents.

The only notable exception was the �fty-problem experiment with Function 12.1, which
revealed a possibility of 22% improvement on the default behavior (�rst line of Table 12.4);
however, note that the absolute gain di�erence was not signi�cant. Since the cumulative
gain was close to zero, due to initial losses, the small absolute improvement translated into
a large percentage. If Shaper processes more problems, it accumulates a larger gain, and
the relative improvement becomes small (see the results for 500 problems).

396 CHAPTER 12. MACHINING DOMAIN

0 20 40

−0.1

−0.05

0

0.05

0.1

0.15
detailed difference curve

problem’s number

ga
in

 d
iff

er
en

ce
s

0 20 40

−0.1

−0.05

0

0.05

0.1

0.15
smoothed difference curve

problem’s number
0 20 40

−0.01

0

0.01

average per−problem diffs

problem’s number

(a) Gain linearly decreases with the running time (Function 12.1).

0 20 40

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

detailed difference curve

problem’s number

ga
in

 d
iff

er
en

ce
s

0 20 40

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

smoothed difference curve

problem’s number
0 20 40

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

average per−problem diffs

problem’s number

(b) Gain mainly depends on the solution quality (Function 12.2).

0 20 40

−15

−10

−5

0

detailed difference curve

problem’s number

ga
in

 d
iff

er
en

ce
s

0 20 40

−15

−10

−5

0

problem’s number

smoothed difference curve

0 20 40

−0.8

−0.6

−0.4

−0.2

0

problem’s number

average per−problem diffs

(c) Gain is a discontinuous function of time and solution quality (Function 12.6).

Figure 12.15: Performance with small values of the exploration knob, on sequences of �fty prob-

lems. The solid lines show the di�erences between the gains with the knob value 0.02 and that with

the value 0.1. Similarly, the dashed lines mark the di�erences between the 0.05-knob gains and the

0.1-knob gains. We plot the di�erence for each of the �fty problems (left), as well as smoothed

curves (middle) and cumulative per-problem di�erences (right).

12.3. DIFFERENT TIME BOUNDS 397

0 100 200 300 400

−0.1

−0.05

0

0.05

0.1

0.15
smoothed difference curve

problem’s number

ga
in

 d
iff

er
en

ce
s

0 100 200 300 400
−0.015

−0.01

−0.005

0

0.005

0.01

0.015
average per−problem differences

problem’s number

(a) Gain linearly decreases with the running time (Function 12.1).

0 100 200 300 400

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

smoothed difference curve

problem’s number

ga
in

 d
iff

er
en

ce
s

0 100 200 300 400

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

average per−problem differences

problem’s number

(b) Gain mainly depends on the solution quality (Function 12.2).

0 100 200 300 400

−15

−10

−5

0

smoothed difference curve

problem’s number

ga
in

 d
iff

er
en

ce
s

0 100 200 300 400

−0.8

−0.6

−0.4

−0.2

0

average per−problem differences

problem’s number

(c) Gain is a discontinuous function of time and solution quality (Function 12.6).

Figure 12.16: Performance with the knob values 0.02 and 0.05, on sequences of 500 problems.

We plot the smoothed gain-di�erence curves (left) and cumulative per-problem di�erences (right),

using the legend of Figure 12.15.

398 CHAPTER 12. MACHINING DOMAIN

0 20 40

−0.1

−0.05

0

0.05

0.1

0.15
detailed difference curve

problem’s number

ga
in

 d
iff

er
en

ce
s

0 20 40

−0.1

−0.05

0

0.05

0.1

0.15

problem’s number

smoothed difference curve

0 20 40

−0.01

0

0.01

problem’s number

average per−problem diffs

(a) Gain linearly decreases with the running time (Function 12.1).

0 20 40

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

detailed difference curve

problem’s number

ga
in

 d
iff

er
en

ce
s

0 20 40

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

smoothed difference curve

problem’s number
0 20 40

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

average per−problem diffs

problem’s number

(b) Gain mainly depends on the solution quality (Function 12.2).

0 20 40

−15

−10

−5

0

detailed difference curve

problem’s number

ga
in

 d
iff

er
en

ce
s

0 20 40

−15

−10

−5

0

smoothed difference curve

problem’s number
0 20 40

−0.8

−0.6

−0.4

−0.2

0

average per−problem diffs

problem’s number

(c) Gain is a discontinuous function of time and solution quality (Function 12.6).

Figure 12.17: Processing �fty-problem sequences with large values of the exploration knob. The

solid lines show the di�erences between the 0.5-knob gains and the default gains. Similarly, the

dashed curves illustrate the di�erence between the knob value 0.2 and the default setting.

12.3. DIFFERENT TIME BOUNDS 399

0 100 200 300 400

−0.1

−0.05

0

0.05

0.1

0.15
smoothed difference curve

problem’s number

ga
in

 d
iff

er
en

ce
s

0 100 200 300 400
−0.015

−0.01

−0.005

0

0.005

0.01

0.015
average per−problem differences

problem’s number

(a) Gain linearly decreases with the running time (Function 12.1).

0 100 200 300 400

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

smoothed difference curve

problem’s number

ga
in

 d
iff

er
en

ce
s

0 100 200 300 400

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

average per−problem differences

problem’s number

(b) Gain mainly depends on the solution quality (Function 12.2).

0 100 200 300 400

−15

−10

−5

0

smoothed difference curve

problem’s number

ga
in

 d
iff

er
en

ce
s

0 100 200 300 400

−0.8

−0.6

−0.4

−0.2

0

average per−problem differences

problem’s number

(c) Gain is a discontinuous function of time and solution quality (Function 12.6).

Figure 12.18: Results for sequences of 500 problems, with large knob values. We plot the gain-

di�erence curves for the values 0.5 (solid lines) and 0.2 (dashed lines).

Chapter 13

Sokoban Domain

The Sokoban puzzle (see Section 3.7.2) is harder than the Machining Domain and causes
the expansion of larger search spaces. It includes problems that require impractically long
search, as well as some unsolvable problems. Furthermore, its encoding is based on functional
types, which occasionally lead to incompleteness of prodigy search.

In most cases, prodigy cannot �nd near-optimal solutions to Sokoban problems, and
the enforcement of cost bounds may result in gross ine�ciency; hence, we apply the available
search engines without cost limits. The use of primary e�ects and abstraction helps to reduce
the search time (see Sections 3.7.2 and 4.4). On the other hand, goal-speci�c description
changes have proved useless, and we have not utilized the Relator algorithm in the Sokoban
experiments.

13.1 Choice among three alternatives

We begin with small-scale selection tasks, which require the evaluation of three alternative
representations. The Shaper system has to �nd appropriate search strategies for the gain
functions in Figure 13.1, which do not account for the solution quality.

First, we consider a linear dependency of gain on running time, with a �xed reward for
solving a problem:

gain =

(
10� time; if success
�time; if failure or interrupt

(13.1)

Then, we experiment with a discontinuous gain function, and show that this discontinuity
does not have a negative e�ect on the learning process:

gain =

(
20� time� btimec; if success
�time� btimec; if failure or interrupt

(13.2)

Finally, Shaper needs to identify the right strategy for a linear dependency of gain on the
logarithm of running time:

gain =

(
5� ln(time+ 1); if success
� ln(time+ 1); if failure or interrupt

(13.3)

400

13.1. CHOICE AMONG THREE ALTERNATIVES 401

0

gain

5

-5

10 20

no success

run
time

run
time

run
time

(a) Function 13.1 (b) Function 13.2 (c) Function 13.3

0
10 20

gain

10

-10

no success

5

-5

success

0

gain

20

10

-20

10 20

no success

5

-5

15

-15

-10

success

success

Figure 13.1: Gain functions in the Sokoban experiments. Note that we do not account for the

solution quality, and do not distinguish between failure terminations and interrupts.

Selecting a domain description

The �rst experiment involves the linear search engine and three changer operators, as
shown in Figure 13.2(a,b). The system inputs the domain description given in Figure 3.36
(page 137), which has no primary e�ects or abstraction, and constructs two new descrip-
tions (see Figure 13.2c). One of them is based on the primary e�ects given in Figure 3.37
(page 139), and the other is the abstraction in Figure 4.32 (page 185).

The graphs in Figures 13.4 and 13.5 comprise the results of selecting a representation
and time bound for each of the gain functions (solid lines). We also show the behavior of
the three available representations, with the optimally chosen bounds (broken lines).

The system identi�ed the right description and time limit in all three cases. The local
maxima of gains between problems 50 and 100 (see the right-hand graphs in Figure 13.5)
were due to a random uctuation in problem di�culty: Shaper encountered several easy
tasks, which resulted in unusually high gains.

Selecting a problem solver

The next experiment was based on the algorithm library illustrated in Figure 13.3(a), which
included three search engines and no changer operators. We provided a domain encoding
with both primary e�ects and abstraction, and Shaper paired it with the three available
engines, thus obtaining three representations (see Figure 13.3b). The results of choosing
among them are summarized in Figures 13.6 and 13.7.

The system found appropriate solvers and time bounds for Functions 13.2 and 13.3;
however, it made a wrong choice for Function 13.1. When Shaper ran with this function,

402 CHAPTER 13. SOKOBAN DOMAIN

Abstractor

 representations
space of

(c) Expanded spaces.(b) Changer operators.

w/oLINEAR
cost bound

w/oLINEAR
cost bound

prim

prim and
hierarchy

Margie

Abstractor
Completer

prim

space of descriptions

Margie Completer Abstractor

Applicability conditions:
Description has no abstraction hierarchy

Applicability conditions:
Description has no primary effects,

and no abstraction hierarchy

Abstractor

Applicability conditions:
Description has no primary effects
Abstractorhas not been applied

Chooser Completer

dotted lines

dashed lines

initial

dash-and-dot lines

w/oLINEAR
cost bound

initial

(a) Solver operator.

No applicability conditions

w/oLINEAR
cost bound

Completer
Chooser

prim and
hierarchy

Figure 13.2: Solver and changer operators in the experiments on choosing a domain description,

and the resulting space of representations. Note that the application of Abstractor to the initial

description does not lead to a multi-level hierarchy. On the other hand, when the system in-

vokes Abstractor after selecting primary e�ects, it produces the same hierarchy as Margie. The

subscriptions specify the corresponding gain curves in Figures 13.4 and 13.5.

it correctly identi�ed linear as the best solver, but converged to a suboptimal time limit
(1.62 seconds), which led to noticeably smaller gains than the optimal bound (3.02 seconds).

Summary

The system selected the right representation in all experiments, and found an appropriate
time bound in all but one case. The learning curves are similar to that in the Machining
Domain. In particular, the speed of converging to an e�ective strategy is the same in both
domains: Shaper usually adopts the right behavior after solving �fty to a hundred problems.

In Table 12.1, we list the average per-problem gains for each of the learning sequences, and
compare them with the results of applying the optimal search strategies. The percentage
values of cumulative gains are smaller than in the Machining Domain (see Table 12.1),

13.1. CHOICE AMONG THREE ALTERNATIVES 403

space of descriptions space of representations

w/oSABA
cost bound

dotted lines

w/oLINEAR
cost bound

dashed lines dash-and-dot lines

No applicability
conditions

No applicability
conditions

No applicability
conditions

w/oSABA
cost bound

w/oSAVTA
cost bound

(a) Solver operators.

(b) Expanded spaces.

w/oLINEAR
cost bound

w/oSAVTA
cost bound

prim and
hierarchy

prim and
hierarchy

prim and
hierarchy

prim and
hierarchy

Figure 13.3: Solver operators for the Sokoban Domain, which correspond to three search engines in
the prodigy architecture. The system pairs them with a given domain description, which includes

primary e�ects and abstraction, and thus expands a space of three representations. The small-font

subscriptions refer to the gain curves in Figures 13.6 and 13.7.

404 CHAPTER 13. SOKOBAN DOMAIN

choice among optimal
descriptions solvers gain

short problem sequences

Function 13.1 0.625 (37%) 0.245 (14%) 1.711
Function 13.2 2.989 (99%) 0.886 (29%) 3.007
Function 13.3 0.689 (56%) 0.249 (20%) 1.240

long problem sequences

Function 13.1 0.610 (76%) 0.421 (52%) 0.802
Function 13.2 1.940 (88%) 1.939 (88%) 2.213
Function 13.3 0.477 (85%) 0.371 (66%) 0.563

Table 13.1: Cumulative per-problem gains in the experiments with small representation spaces.

We summarize the results of choosing among three descriptions (Figures 13.4 and 13.5), and among

three search engines (Figures 13.6 and 13.7). For every cumulative value, we show the corresponding

percentage of the optimal gain.

primary primary e�ects
e�ects and abstraction

search reduction > 500 > 5000
gain-increase factor

Function 13.1 1.1 1.8
Function 13.2 1.7 2.3
Function 13.3 1.1 2.7

Table 13.2: Time savings due to primary e�ects and abstraction, and the respective growth of gains.
Note that a huge search-reduction factor translates into a modest increase in cumulative gains.

due to greater initial losses. Since many Sokoban problems require infeasibly long search,
experimentation with large time bounds incurs high losses during the early stages of learning.

Running time versus gains

The experiments have shown that a drastic reduction of search time may not lead to a
proportional upsurge of expected gain. Recall that primary e�ects increase the speed of
solving Sokoban problems by three orders of magnitude (Section 3.7.2), and their synergy
with abstraction gives an even greater improvement (Section 4.4). On the other hand, the
resulting gain increase is relatively modest: the improvement factor ranges from 1.1 to 2.7
(see Table 13.2).

Intuitively, a much faster procedure is not necessarily much better in practice. For exam-
ple, a software company usually cannot achieve a sharp growth of pro�ts by purchasing faster
machines. In many cases, a speed increase gives little practical advantage. For instance, the
user of a word processor would hardly bene�t from a fast computer.

The results of applying Shaper to other domains have supported this intuition: the
gain-increase factor has always been less than 5. Moreover, we have not been able to design
any utility function that would cause a much larger increase in cumulative gain.

13.1. CHOICE AMONG THREE ALTERNATIVES 405

0 20 40

−5

0

5

10

detailed gain curve

problem’s number

ga
in

s

0 20 40

−5

0

5

10

smoothed gain curve

problem’s number
0 20 40

−1

0

1

2

average per−problem gains

problem’s number

(a) Gain linearly decreases with the running time (Function 13.1).

0 20 40

−10

−5

0

5

10

15

20

detailed gain curve

problem’s number

ga
in

s

0 20 40

−10

−5

0

5

10

15

20

problem’s number

smoothed gain curve

0 20 40

−2

0

2

4

problem’s number

average per−problem gains

(b) Gain is a discontinuous function of time (Function 13.2).

0 20 40

−2

0

2

4

6
detailed gain curve

problem’s number

ga
in

s

0 20 40

−2

0

2

4

6

problem’s number

smoothed gain curve

0 20 40

−0.5

0

0.5

1

1.5

problem’s number

average per−problem gains

(c) Gain linearly decreases with the logarithm of time (Function 13.3).

Figure 13.4: Selection among three domain descriptions (see Figure 13.2). We plot the raw

results for �fty-problem sequences (left), as well as smoothed gain curves (solid lines, middle) and

cumulative gains (solid lines, right). In addition, the graphs show the optimal performance of the

available representations, which include the standard prodigy search (dash-and-dot lines), primary

e�ects (dots), and abstraction (dashes). Note that we do not show the dash-and-dot curves for

Function 13.1, because they are identical to the dotted lines.

406 CHAPTER 13. SOKOBAN DOMAIN

0 100 200 300 400

−5

0

5

10

smoothed gain curve

problem’s number

ga
in

s

0 100 200 300 400

−1

0

1

2

average per−problem gains

problem’s number

(a) Gain linearly decreases with the running time (Function 13.1).

0 100 200 300 400

−10

−5

0

5

10

15

20

problem’s number

ga
in

s

smoothed gain curve

0 100 200 300 400

−2

0

2

4

problem’s number

average per−problem gains

(b) Gain is a discontinuous function of time (Function 13.2).

0 100 200 300 400

−2

0

2

4

6

problem’s number

ga
in

s

smoothed gain curve

0 100 200 300 400

−0.5

0

0.5

1

1.5

problem’s number

average per−problem gains

(c) Gain linearly decreases with the logarithm of time (Function 13.3).

Figure 13.5: Performance on 500-problem sequences, with three alternative descriptions. We give

the smoothed gain curves (solid lines, left) and cumulative per-problem gains (solid lines, right),

as well as the optimal behavior of each description (broken lines).

13.1. CHOICE AMONG THREE ALTERNATIVES 407

0 20 40

−5

0

5

10

detailed gain curve

problem’s number

ga
in

s

0 20 40

−5

0

5

10

smoothed gain curve

problem’s number
0 20 40

−1

0

1

2

average per−problem gains

problem’s number

(a) Gain linearly decreases with the running time (Function 13.1).

0 20 40

−10

−5

0

5

10

15

20

detailed gain curve

problem’s number

ga
in

s

0 20 40

−10

−5

0

5

10

15

20

smoothed gain curve

problem’s number
0 20 40

−5

0

5

10

average per−problem gains

problem’s number

(b) Gain is a discontinuous function of time (Function 13.2).

0 20 40

−2

0

2

4

6
detailed gain curve

problem’s number

ga
in

s

0 20 40

−2

0

2

4

6
smoothed gain curve

problem’s number
0 20 40

−0.5

0

0.5

1

1.5
average per−problem gains

problem’s number

(c) Gain linearly decreases with the logarithm of time (Function 13.3).

Figure 13.6: Processing �fty-problem sequences and choosing among three search engines (see

Figure 13.3). The graphs include the raw gains (left), smoothed curves (middle), and cumulative

results (right). We also show the optimal performance of linear (dashed lines), savta (dotted

lines), and saba (dash-and-dot lines). We do not plot the dash-and-dot curves for Function 13.1,

because they completely coincide with the dotted curves.

408 CHAPTER 13. SOKOBAN DOMAIN

0 100 200 300 400

−5

0

5

10

smoothed gain curve

problem’s number

ga
in

s

0 100 200 300 400

−1

0

1

2

average per−problem gains

problem’s number

(a) Gain linearly decreases with the running time (Function 13.1).

0 100 200 300 400

−10

−5

0

5

10

15

20

smoothed gain curve

problem’s number

ga
in

s

0 100 200 300 400

−5

0

5

10

average per−problem gains

problem’s number

(b) Gain is a discontinuous function of time (Function 13.2).

0 100 200 300 400

−2

0

2

4

6
smoothed gain curve

problem’s number

ga
in

s

0 100 200 300 400

−0.5

0

0.5

1

1.5
average per−problem gains

problem’s number

(c) Gain linearly decreases with the logarithm of time (Function 13.3).

Figure 13.7: Results for sequences of 500 problems, with a library of three search engines. We

give the smoothed curves (left) and cumulative per-problem gains (right).

13.2. LARGER REPRESENTATION SPACE 409

13.2 Larger representation space

If Shaper utilizes the changer operators in Figure 13.2(b) along with the solvers in Fig-
ure 13.3(a), then it generates nine alternative representations, illustrated in Figure 13.8. We
give the results of choosing among them, and compare the system's gains with the perfor-
mance on the two smaller-scale tasks.

Simple gain functions

The Shaper system found the right representation and time bound for all three gain func-
tions described in Section 13.1. In Figures 13.9 and 13.10, we present the resulting gains
(solid lines), and compare them with the outcomes of choosing among three descriptions
(dash-and-dot lines) and among three search engines (dotted lines). The graphs also show
the behavior of the optimal strategies (dashed lines), which are based on the linear algo-
rithm with primary e�ects and abstraction.

Note that, when Shaper utilizes nine representations, it converges to the optimal strat-
egy after processing 150 to 200 problems, whereas the choice among three alternatives re-
quires at most a hundred problems. Moreover, the larger selection task causes higher initial
losses, because the system begins by testing all representations with large time bounds.

Distinguishing failures from interrupts

We next consider more complex functions, which di�erentiate failure terminations from in-
terrupts. The �rst of them is a linear dependency on search time, with a partial reward for
a failure termination:

gain =

8><
>:

10� time; if success
5� time; if failure
�time; if interrupt

(13.4)

The second test involves a variable reward, which is proportional to the area of the Sokoban
grid. Thus, the system gets more points for solving harder problems:

gain =

8><
>:

area� time; if success
0:5 � area� time; if failure
�time; if interrupt

(13.5)

Finally, the third gain function is the product of the grid size and linear dependency on time.
In this case, a large-scale Sokoban problem may lead not only to a big reward, but also to a
signi�cant loss:

gain =

8><
>:

area � (10� time); if success
area � (5� time); if failure
�area � time; if interrupt

(13.6)

The system found the right strategy for each of the three functions (see Figures 13.11
and 13.12), and its behavior proved similar to that with the simpler gain functions. The
results re-con�rm that the large representation space causes slower convergence and greater
initial losses than the two smaller spaces.

410 CHAPTER 13. SOKOBAN DOMAIN

prim prim prim

Margie

Abstractor
Completer Abstractor

space of representationsspace of descriptions

w/oSABA
cost bound

w/oLINEAR
cost bound

w/oSAVTA
cost bound

w/oSABA
cost bound

w/oLINEAR
cost bound

w/oSAVTA
cost bound

initial

Completer
Chooser

initial initialinitial

w/oSABA
cost bound

w/oLINEAR
cost bound

w/oSAVTA
cost bound

prim and
hierarchy

prim and
hierarchy

prim and
hierarchy

prim and
hierarchy

prim

Figure 13.8: Space of nine representations in the Sokoban Domain. The system applies the changer

algorithms given in Figure 13.2(b), and then pairs the domain descriptions with the solvers in

Figure 13.3(b). We show the results of choosing among these representations in Figures 13.9{13.12.

Summary

The system converged to the right choice of a representation and time bound in all six
cases, and its performance proved stable across di�erent gain functions. In Table 13.3,
we summarize the cumulative gains and compare them with the analogous data for smaller
representation spaces. Observe that the learning behavior is similar to that in the Machining
Domain (Section 12.2) and to the arti�cial tests (Section 8.7).

13.2. LARGER REPRESENTATION SPACE 411

selection among optimal
nine three three gain

representations descriptions solvers (dashed lines)

(solid lines) (dash-and-dot lines) (dotted lines)

short problem sequences

Function 13.1 �0:077 | 0.625 (37%) 0.245 (14%) 1.711
Function 13.2 �2:876 | 2.989 (99%) 0.886 (29%) 3.007
Function 13.3 �0:762 | 0.689 (56%) 0.249 (20%) 1.240
Function 13.4 0.172 (10%) 0.699 (41%) 1.361 (80%) 1.711
Function 13.5 3.70 (32%) 6.43 (56%) 4.17 (36%) 11.43
Function 13.6 25.5 (97%) 25.5 (97%) 25.7 (98%) 26.2

long problem sequences

Function 13.1 0.330 (41%) 0.610 (76%) 0.421 (52%) 0.802
Function 13.2 1.169 (53%) 1.940 (88%) 1.939 (88%) 2.213
Function 13.3 0.334 (59%) 0.477 (85%) 0.371 (66%) 0.563
Function 13.4 0.382 (48%) 0.407 (51%) 0.747 (93%) 0.802
Function 13.5 6.82 (77%) 7.50 (85%) 7.59 (86%) 8.78
Function 13.6 15.1 (83%) 17.8 (98%) 17.8 (98%) 18.1

Table 13.3: Average per-problem gains in the experiments with the space of nine representations

(see Figures 13.9{13.12). We compare them with the analogous data for the two smaller spaces,

and convert each gain value into a percentage of the optimal gain.

412 CHAPTER 13. SOKOBAN DOMAIN

0 20 40

−5

0

5

10

detailed gain curve

problem’s number

ga
in

s

0 20 40

−5

0

5

10

smoothed gain curve

problem’s number
0 20 40

−1

0

1

2

average per−problem gains

problem’s number

(a) Gain linearly decreases with the running time (Function 13.1).

0 20 40

−10

−5

0

5

10

15

20

detailed gain curve

problem’s number

ga
in

s

0 20 40

−10

−5

0

5

10

15

20

smoothed gain curve

problem’s number
0 20 40

−5

0

5

10

average per−problem gains

problem’s number

(b) Gain is a discontinuous function of time (Function 13.2).

0 20 40

−2

0

2

4

6
detailed gain curve

problem’s number

ga
in

s

0 20 40

−2

0

2

4

6
smoothed gain curve

problem’s number
0 20 40

−0.5

0

0.5

1

1.5

average per−problem gains

problem’s number

(c) Gain linearly decreases with the logarithm of time (Function 13.3).

Figure 13.9: Choosing a representation for simple gain functions, illustrated in Figure 13.1. The

system generates nine representations (see Figure 13.8), and gradually identi�es the most e�ective

among them. We plot Shaper's gains (solid lines) and compare them with the results on two

smaller tasks: selection among three descriptions (dash-and-dot lines), and choice of a solver (dotted

lines). In addition, the graphs show the optimal performance of linear search with abstraction

(dashed lines), which is the best available strategy.

13.2. LARGER REPRESENTATION SPACE 413

0 100 200 300 400

−5

0

5

10

smoothed gain curve

problem’s number

ga
in

s

0 100 200 300 400

−1

0

1

2

average per−problem gains

problem’s number

(a) Gain linearly decreases with the running time (Function 13.1).

0 100 200 300 400

−10

−5

0

5

10

15

20

smoothed gain curve

problem’s number

ga
in

s

0 100 200 300 400

−5

0

5

10

average per−problem gains

problem’s number

(b) Gain is a discontinuous function of time (Function 13.2).

0 100 200 300 400

−2

0

2

4

6
smoothed gain curve

problem’s number

ga
in

s

0 100 200 300 400

−0.5

0

0.5

1

1.5

average per−problem gains

problem’s number

(c) Gain linearly decreases with the logarithm of time (Function 13.3).

Figure 13.10: Processing sequences of 500 problems, with the space of nine alternative representa-
tions (solid lines). We compare the resulting gains with the analogous data for the smaller spaces

(dotted and dash-and-dot lines), and with the behavior of the most e�ective representation (dashes).

414 CHAPTER 13. SOKOBAN DOMAIN

0 20 40

−5

0

5

10

detailed gain curve

problem’s number

ga
in

s

0 20 40

−5

0

5

10

smoothed gain curve

problem’s number
0 20 40

−1

0

1

2

average per−problem gains

problem’s number

(a) Gain is a linear function of problem-solving time,
with a partial reward for a failure (Function 13.4).

0 20 40

−60

−40

−20

0

20

40

60

detailed gain curve

problem’s number

ga
in

s

0 20 40

−60

−40

−20

0

20

40

60

smoothed gain curve

problem’s number
0 20 40

−15

−10

−5

0

5

10

15

average per−problem gains

problem’s number

(b) Reward is proportional to the size of the Sokoban grid (Function 13.5).

0 20 40
−200

0

200

400

600

800

1000

detailed gain curve

problem’s number

ga
in

s

0 20 40
−200

0

200

400

600

800

1000

smoothed gain curve

problem’s number
0 20 40

−10

0

10

20

30

40

50

average per−problem gains

problem’s number

(c) Gain is a complex function of time and grid size (Function 13.6).

Figure 13.11: Identifying an appropriate representation for Functions 13.4{13.6. The graphs

include the results of utilizing all nine representations (solid lines), as well as the performance with

the two smaller spaces (dotted and dash-and-dot lines).

13.2. LARGER REPRESENTATION SPACE 415

0 100 200 300 400

−5

0

5

10

smoothed gain curve

problem’s number

ga
in

s

0 100 200 300 400

−1

0

1

2

average per−problem gains

problem’s number

(a) System gets a partial reward for a failure (Function 13.4).

0 100 200 300 400

−60

−40

−20

0

20

40

60

smoothed gain curve

problem’s number

ga
in

s

0 100 200 300 400

−15

−10

−5

0

5

10

15

average per−problem gains

problem’s number

(b) Reward is proportional to the size of the Sokoban grid (Function 13.5).

0 100 200 300 400
−200

0

200

400

600

800

1000

smoothed gain curve

problem’s number

ga
in

s

0 100 200 300 400
−10

0

10

20

30

40

50

average per−problem gains

problem’s number

(c) Gain is a complex function of time and grid size (Function 13.6).

Figure 13.12: Processing 500-problem sequences with Functions 13.4{13.6. We show the results

for the large representation space (solid lines) and two small ones (dotted and dash-and-dot lines).

416 CHAPTER 13. SOKOBAN DOMAIN

13.3 Di�erent time bounds

The last Sokoban experiment involves several alternative values of the exploration knob,
which controls the computation of time bounds (see Section 12.3). Recall that an increase
of the knob value leads to a more thorough evaluation of the available search strategies, for
the expense of larger time losses.

We have analyzed the system's behavior with the value 0.1 of the exploration knob
(Section 13.2), and now give the results of performing the same tasks with other knob
settings. The tests involve two simple dependencies of gain on the search time (Functions 13.1
and 13.3), as well as a more complex utility model (Function 13.6).

The graphs in Figures 13.13 and 13.14 show the outcome of running Shaper with small
knob values, 0.02 and 0.05. Speci�cally, we plot the di�erences between the resulting gains
and the default performance. In Figures 13.15 and 13.16, we give similar di�erence curves
for the tests with large knob values, 0.2 and 0.5. The spikes of the solid curves in Fig-
ures 13.13(a), 13.14(c), 13.15(a), and 13.16(b) are due to random uctuations in problem
di�culty.

The experiments have shown that the value 0.1, which is the default setting, usually
ensures a near-optimal behavior of the learning mechanism (see Table 13.4). The only
exception was a �fty-problem experiment with Function 13.1, when the default yielded worse
results than all other settings.

Observe that, when the system ran with the values 0.02 and 0.05, it failed to �nd an
e�ective strategy for Function 13.3. The control module picked the right representation, but
then chose a too small time bound (0.03 seconds), which proved much less e�ective than the
optimal limit (7.21 seconds). This observation illustrates the \danger" of small knob values,
which may hinder the exploration.

small knob values default large knob values
0.02 0.05 0.1 0.2 0.5

short problem sequences

Function 13.1 0.171 | 0.171 | �0:077 0.171 | 0.023 |
Function 13.3 �0:756 | �0:759 | �0:762 -0.762 | �0:762 |
Function 13.6 25.46 (100%) 25.46 (100%) 25.46 25.46 (100%) 25.46 (100%)

long problem sequences

Function 13.1 0.370 (112%) 0.323 (98%) 0.330 0.422 (128%) 0.262 (79%)
Function 13.3 0.085 (25%) 0.079 (24%) 0.334 0.334 (100%) 0.334 (100%)
Function 13.6 14.67 (97%) 15.13 (100%) 15.12 15.12 (100%) 15.12 (100%)

Table 13.4: Summary of the experiments with di�erent values of the exploration knob. We give

the cumulative per-problem gains and the respective percentages of the default-strategy results.

13.3. DIFFERENT TIME BOUNDS 417

0 20 40

−10

−5

0

5

10

detailed difference curve

problem’s number

ga
in

 d
iff

er
en

ce
s

0 20 40

−10

−5

0

5

10

smoothed difference curve

problem’s number
0 20 40

−2

−1

0

1

2

average per−problem diffs

problem’s number

(a) Gain linearly decreases with the running time (Function 13.1).

0 20 40
−1.5

−1

−0.5

0

0.5

detailed difference curve

problem’s number

ga
in

 d
iff

er
en

ce
s

0 20 40
−1.5

−1

−0.5

0

0.5

smoothed difference curve

problem’s number
0 20 40

−0.6

−0.4

−0.2

0

0.2

0.4

average per−problem diffs

problem’s number

(b) Gain linearly decreases with the logarithm of time (Function 13.3).

0 20 40

−15

−10

−5

0

detailed difference curve

problem’s number

ga
in

 d
iff

er
en

ce
s

0 20 40

−15

−10

−5

0

smoothed difference curve

problem’s number
0 20 40

−3

−2

−1

0

average per−problem diffs

problem’s number

(c) Gain is a complex function of time and grid size (Function 13.6).

Figure 13.13: Statistical learning with small values of the exploration knob. The solid curves

represent the di�erences between the results with the knob value 0.02 and that with the value 0.1.

The dashed curves show the di�erences between the 0.05-knob gains and the 0.1-knob gains.

418 CHAPTER 13. SOKOBAN DOMAIN

0 100 200 300 400

−10

−5

0

5

10

smoothed difference curve

problem’s number

ga
in

 d
iff

er
en

ce
s

0 100 200 300 400

−2

−1

0

1

2

average per−problem differences

problem’s number

(a) Gain linearly decreases with the running time (Function 13.1).

0 100 200 300 400
−1.5

−1

−0.5

0

0.5

smoothed difference curve

problem’s number

ga
in

 d
iff

er
en

ce
s

0 100 200 300 400

−0.6

−0.4

−0.2

0

0.2

0.4

average per−problem differences

problem’s number

(b) Gain linearly decreases with the logarithm of time (Function 13.3).

0 100 200 300 400

−15

−10

−5

0

smoothed difference curve

problem’s number

ga
in

 d
iff

er
en

ce
s

0 100 200 300 400

−3

−2

−1

0

average per−problem differences

problem’s number

(c) Gain is a complex function of time and grid size (Function 13.6).

Figure 13.14: Results of processing 500 problems with small values of the exploration knob. The

graphs include the smoothed gain-di�erence curves (left) and cumulative di�erences (right).

13.3. DIFFERENT TIME BOUNDS 419

0 20 40

−10

−5

0

5

10

detailed difference curve

problem’s number

ga
in

 d
iff

er
en

ce
s

0 20 40

−10

−5

0

5

10

smoothed difference curve

problem’s number
0 20 40

−2

−1

0

1

2

average per−problem diffs

problem’s number

(a) Gain linearly decreases with the running time (Function 13.1).

0 20 40
−1.5

−1

−0.5

0

0.5

detailed difference curve

problem’s number

ga
in

 d
iff

er
en

ce
s

0 20 40
−1.5

−1

−0.5

0

0.5

smoothed difference curve

problem’s number
0 20 40

−0.6

−0.4

−0.2

0

0.2

0.4

average per−problem diffs

problem’s number

(b) Gain linearly decreases with the logarithm of time (Function 13.3).

0 20 40

−15

−10

−5

0

detailed difference curve

problem’s number

ga
in

 d
iff

er
en

ce
s

0 20 40

−15

−10

−5

0

smoothed difference curve

problem’s number
0 20 40

−3

−2

−1

0

average per−problem diffs

problem’s number

(c) Gain is a complex function of time and grid size (Function 13.6).

Figure 13.15: Performance with large knob values. We show the di�erences between the 0.5-knob

gains and the default-knob gains (solid lines), as well as the analogous di�erences for the 0.2-knob

experiments (dashed lines).

420 CHAPTER 13. SOKOBAN DOMAIN

0 100 200 300 400

−10

−5

0

5

10

smoothed difference curve

problem’s number

ga
in

 d
iff

er
en

ce
s

0 100 200 300 400

−2

−1

0

1

2

average per−problem differences

problem’s number

(a) Gain linearly decreases with the running time (Function 13.1).

0 100 200 300 400
−1.5

−1

−0.5

0

0.5

smoothed difference curve

problem’s number

ga
in

 d
iff

er
en

ce
s

0 100 200 300 400

−0.6

−0.4

−0.2

0

0.2

0.4

average per−problem differences

problem’s number

(b) Gain linearly decreases with the logarithm of time (Function 13.2).

0 100 200 300 400

−15

−10

−5

0

smoothed difference curve

problem’s number

ga
in

 d
iff

er
en

ce
s

0 100 200 300 400

−3

−2

−1

0

average per−problem differences

problem’s number

(c) Gain is a complex function of time and grid size (Function 13.6).

Figure 13.16: Processing long problem sequences, with large values of the exploration knob.

Speci�cally, we give the di�erence curves for the knob values 0.5 (solid lines) and 0.2 (dashed curves).

Chapter 14

Extended Strips Domain

The strips world is larger than the other test domains: it includes ten object types and
twenty-three operators (see Figures 3.39{3.42 on pages 141{3.42). Its problem library con-
tains a variety of search tasks, which range from very simple to unsolvable.

We tested the Shaper system with two linear utility functions (see Figure 14.1a,b), and
with a nonlinear dependency of gain on the running time and solution quality (Figure 14.1c).
The changer library was the same as in the other domains: it included algorithms for choosing
primary e�ects and abstraction, illustrated in Figure 14.2(b). The solver library comprised
the linear, savta, and saba algorithms, combined with alternative cost-bound heuristics
and problem-speci�c description changers.

14.1 Small-scale selection tasks

We consider limited libraries of solver and changer operators, which give rise to small repre-
sentation spaces. The system has to choose among domain descriptions (Figure 14.2), search
algorithms (Figure 14.3b), and cost-bound heuristics (Figure 14.3c).

Four descriptions

The �rst solver library comprises the linear algorithm and its synergy with problem-speci�c
changers (see Figure 14.2a). The system employs these two solvers, along with the standard
library of changers (Figure 14.2b), and produces four representations (Figure 14.2c). The
Chooser and Completer algorithms select the primary e�ects shown in Figures 3.41 and 3.42
(pages 143 and 144), and Margie generates the description illustrated Figure 5.8 and 5.9
(pages 199 and 200).

The results of processing �fty-problem sequences are summarized in Figure 14.4, and
the results for longer sequences are in Figure 14.5. The graphs include the learning curves
(solid lines), as well as the behavior of three �xed strategies: search with primary e�ects
(dots), abstraction problem solving (dashes), and goal-speci�c abstraction (dash-and-dot
lines). Note that we have tested the �xed strategies with the optimal time bounds.

The search without primary e�ects yields negative gains, for all three utility functions,
and we do not show its behavior in the graphs. Thus, improvements to the initial domain

421

422 CHAPTER 14. EXTENDED STRIPS DOMAIN

(a) Gain function is a linear dependency on problem-solving time:

gain =

(
1� time; if success
�time; if failure or interrupt

(14.1)

(b) Gain linearly decreases with running time and solution cost:

gain =

(
100� cost� 50 � time; if success and cost < 100
�50 � time; otherwise

(14.2)

(c) Gain is a nonlinear function of time and solution cost,
with a partial reward for a failure termination:

gain =

8>>><
>>>:

100� cost � time; if success and cost < 50
100� 50 � time; if success and cost � 50
50� 50 � time; if failure
�50 � time; if interrupt

(14.3)

Figure 14.1: Utility computation in the Extended strips domain. We �rst tested the system with

linear gain functions (a,b), and then with a continuous nonlinear function (c).

description are essential for obtaining positive results.
The problem-independent abstraction proved more e�ective than the other descriptions,

for all three gain functions. When the system ran with the linear functions, it converged to
using the abstraction with appropriate time bounds. On the other hand, when we tested
Shaper with Function 14.3, it chose the second best description, which caused a suboptimal
performance.

Three search engines

The second solver library consists of the linear, savta, and saba algorithms, without cost
bounds. The system inputs a description with primary e�ects and abstraction, and pairs it
with the solvers, thus expanding a space of three representations (see Figure 14.3a).

The resulting gains are summarized in Figures 14.12 and 14.13: we show the learning
curves (solid lines), as well as the performance of each solver with the optimal time bound
(broken lines). The outcome is similar to the previous experiment: Shaper �nds the right
strategy for Functions 14.1 and 14.2, but chooses the second best solver for Function 14.3.

Three cost bounds

Next, we experiment with three versions of the linear search engine. The �rst version
runs without cost bounds; the second one utilizes loose bounds, which are twice larger than
the optimal-cost estimates; and the third employs tight bounds, which closely approximate
the optimal costs. The control module uses these solvers with the input description, which
includes primary e�ects and abstraction (see Figure 14.3b).

14.1. SMALL-SCALE SELECTION TASKS 423

withLINEAR
cost bound

No applicability conditions

(b) Changer operators. (a) Solver operators.

Relator AbstractorChooser withLINEAR
cost bound

Applicability conditions:
Description has no primary effects,

and no abstraction hierarchy

(c) Expanded spaces.

initial

initial

cost bound
w/oLINEAR

Chooser
Relator

Abstractor

initialprim

Completer
Chooser

space of representationsspace of descriptions

prim

not shown

dotted lines

dashed lines

dash-and-dot lines

prim and
hierarchy

Margie

Abstractor
Completer

w/o
cost bound
LINEAR

w/o
cost bound
LINEAR

prim and
hierarchy

w/o
cost bound
LINEAR

Applicability conditions:
Description has no abstraction hierarchy

Margie Completer Abstractor

Abstractor

Applicability conditions:
Description has no primary effects,

and no abstraction hierarchy

Applicability conditions:
Description has no primary effects
Abstractor has not been applied

Chooser Completer

Figure 14.2: Description space in the strips Domain and the result of pairing the descriptions with
the linear search engine. The system employs two solver operators (a), along with the standard

changer library (b), and generates four representations (c). Note that the goal-independent version

of Abstractor fails to generate a multi-level hierarchy. The subscriptions in the representation space

specify the corresponding curves in Figures 14.4 and 14.5.

424 CHAPTER 14. EXTENDED STRIPS DOMAIN

space of descriptions space of representations

w/oSABA
cost bound

dotted lines

w/oLINEAR
cost bound

dashed lines dash-and-dot lines

w/oSAVTA
cost bound

prim and
hierarchy

prim and
hierarchy

prim and
hierarchy

prim and
hierarchy

(a) Alternative search engines, without cost bounds (subscriptions refer to Figures 14.6 and 14.7).

w/oLINEAR
cost bound

withLINEAR
loose bound

withLINEAR
tight bound

space of descriptions space of representations

dotted linesdashed lines dash-and-dot lines

prim and
hierarchy

prim and
hierarchy

prim and
hierarchy

prim and
hierarchy

(b) linear engine, with alternative cost bounds (subscriptions refer to Figures 14.8 and 14.9).

Figure 14.3: Experiments without description changers. The �rst task is to identify the most

e�ective search engine (a), and the other is to choose a technique for limiting the search depth (b).

The system pairs the available solver operators with a given domain description, which includes

primary e�ects and abstraction, and evaluates the resulting representations.

14.1. SMALL-SCALE SELECTION TASKS 425

choice among optimal
descriptions solvers cost bounds gain

short problem sequences

Function 14.1 0.048 (17%) 0.144 (50%) 0.162 (56%) 0.288
Function 14.2 11.1 (50%) 18.7 (84%) 8.8 (39%) 22.3
Function 14.3 34.5 (55%) 52.1 (83%) 44.5 (71%) 62.6

long problem sequences

Function 14.1 0.164 (68%) 0.182 (76%) 0.214 (89%) 0.240
Function 14.2 14.4 (71%) 18.4 (91%) 18.3 (91%) 20.2
Function 14.3 40.6 (69%) 50.8 (87%) 54.5 (93%) 58.6

Table 14.1: Summary of experiments with small spaces, which involve choices among four domain

descriptions (Figures 14.4 and 14.5), three solver algorithms (Figures 14.6 and 14.7), and three

heuristics for setting cost bounds (Figures 14.8 and 14.9). We list the average per-problem gains

and the respective percentages of the optimal-strategy gains.

We present the learning results in Figures 14.8 and 14.9 (solid lines), and compare them
with the optimal performance of each algorithm (broken lines). The system converges to the
right choice of a solver and time bound in all three cases.

Summary

The control module found appropriate strategies for the linear gain functions; however, it
was confused by the more complex function, and made a suboptimal choice in two out of
three cases. This outcome was surprising, since the system successfully dealt with nonlinear
utility models in other domains. We have not studied functions that confuse the statistical
mechanism, and plan to analyze their properties as a part of the future work.

The learning behavior was similar to the results in the Machining and Sokoban domain:
Shaper incurred major losses in the very beginning of the learning process, and then per-
formed a more thorough evaluation of near-optimal strategies, which caused little deviation
from ideal performance. The system converged to its �nal choice of a strategy after solving
50 to 200 problems.

In Table 14.1, we summarize the cumulative gains and indicate the respective percentages
of the the optimal-strategy gains. The percentage values for short problem sequences range
from 17% to 84%, and the long-sequence values are between 68% and 93%, which is similar
to the Sokoban results.

426 CHAPTER 14. EXTENDED STRIPS DOMAIN

0 20 40

−1

−0.5

0

0.5

1

detailed gain curve

problem’s number

ga
in

s

0 20 40

−1

−0.5

0

0.5

1

smoothed gain curve

problem’s number
0 20 40

−0.5

0

0.5

average per−problem gains

problem’s number

(a) Gain linearly decreases with the running time (Function 14.1).

0 20 40

−100

−50

0

50

100

detailed gain curve

problem’s number

ga
in

s

0 20 40

−100

−50

0

50

100

smoothed gain curve

problem’s number
0 20 40

−60

−40

−20

0

20

40

average per−problem gains

problem’s number

(b) Gain decreases with the time and solution cost (Function 14.2).

0 20 40

−100

−50

0

50

100

150

detailed gain curve

problem’s number

ga
in

s

0 20 40

−100

−50

0

50

100

150

smoothed gain curve

problem’s number
0 20 40

−60

−40

−20

0

20

40

60

80
average per−problem gains

problem’s number

(c) Gain is a nonlinear function of time and cost (Function 14.3).

Figure 14.4: Incremental selection of an e�ective domain description, for the linear algorithm

without a cost bound. The graphs comprise the raw learning curves for �fty-problem sequences

(left), as well as the smoothed curves (middle) and cumulative gains (right).

In addition, they include the performance of three �xed strategies with the optimal time limits:

search with primary e�ects (dotted lines), abstraction (dashed lines), and goal-speci�c descriptions

(dash-and-dot lines). We do not show the results of search with the initial domain description,

which would lead to negative \gains" regardless of the time bound.

14.1. SMALL-SCALE SELECTION TASKS 427

0 100 200 300 400

−1

−0.5

0

0.5

1

smoothed gain curve

problem’s number

ga
in

s

0 100 200 300 400

−0.5

0

0.5

average per−problem gains

problem’s number

(a) Gain linearly decreases with the running time (Function 14.1).

0 100 200 300 400

−100

−50

0

50

100

smoothed gain curve

problem’s number

ga
in

s

0 100 200 300 400

−60

−40

−20

0

20

40

average per−problem gains

problem’s number

(b) Gain decreases with the time and solution cost (Function 14.2).

0 100 200 300 400

−100

−50

0

50

100

150

smoothed gain curve

problem’s number

ga
in

s

0 100 200 300 400
−60

−40

−20

0

20

40

60

80
average per−problem gains

problem’s number

(c) Gain is a nonlinear function of time and cost (Function 14.3).

Figure 14.5: Behavior on long problem sequences, with four alternative descriptions. We plot the

smoothed curves (left) and cumulative per-problem gains (right), using the legend of Figure 14.4.

428 CHAPTER 14. EXTENDED STRIPS DOMAIN

0 20 40

−1

−0.5

0

0.5

1

detailed gain curve

problem’s number

ga
in

s

0 20 40

−1

−0.5

0

0.5

1

smoothed gain curve

problem’s number
0 20 40

−0.5

0

0.5

average per−problem gains

problem’s number

(a) Gain linearly decreases with the running time (Function 14.1).

0 20 40

−100

−50

0

50

100

detailed gain curve

problem’s number

ga
in

s

0 20 40

−100

−50

0

50

100

smoothed gain curve

problem’s number
0 20 40

−60

−40

−20

0

20

40

average per−problem gains

problem’s number

(b) Gain decreases with the time and solution cost (Function 14.2).

0 20 40

−100

−50

0

50

100

150

detailed gain curve

problem’s number

ga
in

s

0 20 40

−100

−50

0

50

100

150

smoothed gain curve

problem’s number
0 20 40

−60

−40

−20

0

20

40

60

80
average per−problem gains

problem’s number

(c) Gain is a nonlinear function of time and cost (Function 14.3).

Figure 14.6: Choosing among the three search engines, without cost bounds. We compare the

learning results (solid lines) with the optimal performance of linear (dashes), savta (dots), and

saba (dash-and-dot lines).

14.1. SMALL-SCALE SELECTION TASKS 429

0 100 200 300 400

−1

−0.5

0

0.5

1

smoothed gain curve

problem’s number

ga
in

s

0 100 200 300 400

−0.5

0

0.5

average per−problem gains

problem’s number

(a) Gain linearly decreases with the running time (Function 14.1).

0 100 200 300 400

−100

−50

0

50

100

smoothed gain curve

problem’s number

ga
in

s

0 100 200 300 400

−60

−40

−20

0

20

40

average per−problem gains

problem’s number

(b) Gain decreases with the time and solution cost (Function 14.2).

0 100 200 300 400

−100

−50

0

50

100

150

smoothed gain curve

problem’s number

ga
in

s

0 100 200 300 400
−60

−40

−20

0

20

40

60

80
average per−problem gains

problem’s number

(c) Gain is a nonlinear function of time and cost (Function 14.3).

Figure 14.7: Results of applying Shaper to long problem sequences, with the library of three

search engines. We show the system's gains (solid lines) and the optimal performance of each

available engine (broken lines), using the legend of Figure 14.6.

430 CHAPTER 14. EXTENDED STRIPS DOMAIN

0 20 40

−1

−0.5

0

0.5

1

detailed gain curve

problem’s number

ga
in

s

0 20 40

−1

−0.5

0

0.5

1

smoothed gain curve

problem’s number
0 20 40

−0.5

0

0.5

average per−problem gains

problem’s number

(a) Gain linearly decreases with the running time (Function 14.1).

0 20 40

−100

−50

0

50

100

detailed gain curve

problem’s number

ga
in

s

0 20 40

−100

−50

0

50

100

smoothed gain curve

problem’s number
0 20 40

−60

−40

−20

0

20

40

average per−problem gains

problem’s number

(b) Gain decreases with the time and solution cost (Function 14.2).

0 20 40

−100

−50

0

50

100

150

detailed gain curve

problem’s number

ga
in

s

0 20 40

−100

−50

0

50

100

150

smoothed gain curve

problem’s number
0 20 40

−60

−40

−20

0

20

40

60

80
average per−problem gains

problem’s number

(c) Gain is a nonlinear function of time and cost (Function 14.3).

Figure 14.8: Selection among three heuristics for controlling the search depth of the linear

algorithm. These heuristics include unbounded search (dashed lines), loose cost bounds (dotted

lines), and tight bounds (dash-and-dot lines).

14.1. SMALL-SCALE SELECTION TASKS 431

0 100 200 300 400

−1

−0.5

0

0.5

1

smoothed gain curve

problem’s number

ga
in

s

0 100 200 300 400

−0.5

0

0.5

average per−problem gains

problem’s number

(a) Gain linearly decreases with the running time (Function 14.1).

0 100 200 300 400

−100

−50

0

50

100

smoothed gain curve

problem’s number

ga
in

s

0 100 200 300 400

−60

−40

−20

0

20

40

average per−problem gains

problem’s number

(b) Gain decreases with the time and solution cost (Function 14.2).

0 100 200 300 400

−100

−50

0

50

100

150

smoothed gain curve

problem’s number

ga
in

s

0 100 200 300 400
−60

−40

−20

0

20

40

60

80
average per−problem gains

problem’s number

(c) Gain is a nonlinear function of time and cost (Function 14.3).

Figure 14.9: Incremental selection of a cost-bound heuristic for the linear search engine, on long

problem sequences; the legend corresponds to that in Figure 14.8.

432 CHAPTER 14. EXTENDED STRIPS DOMAIN

14.2 Large-scale tasks

We now describe two experiments with larger spaces, which demonstrate scalability of the se-
lection technique. First, the system runs with six solver operators and the standard changers.
Then, it employs a still bigger library, which requires choosing among thirty-six alternatives.

Twelve representations

If Shaper runs with the solver operators in Figure 14.10 and the changer library in Fig-
ure 14.2(b), then it expands a space of twelve representations (Figure 14.11). The control
module identi�es the right representation and time bound for each gain function, after pro-
cessing 150 to 300 problems (see the dotted lines in Figures 14.12 and 14.13).

We compare the learning curves with a smaller-scale experiment (dash-and-dot lines),
which involves the four representations in Figure 14.2, and with the best available strategy
(dashed lines), which is based on the linear algorithm with goal-independent abstraction.

Thirty-six representations

The larger library comprised eighteen solver operators: it included not only the operators
in Figure 14.10, but also their combinations with the heuristic for setting loose cost bounds,
and with the tight-bound heuristic. The control module paired the initial description with all
eighteen operators, and the other two descriptions with nine solvers, thus obtaining thirty-six
representations.

No applicability conditions

No applicability conditions

No applicability conditions

Relator AbstractorChooser

Relator AbstractorChooser

Relator AbstractorChooser

Applicability conditions:
Description has no primary effects,

and no abstraction hierarchy

w/oSABA
cost bound

w/oSABA
cost bound

Applicability conditions:
Description has no primary effects,

and no abstraction hierarchy

Applicability conditions:
Description has no primary effects,

and no abstraction hierarchy

w/oSAVTA
cost bound

w/oSAVTA
cost bound

w/oLINEAR
cost boundw/oLINEAR

cost bound

Figure 14.10: Library of six solver operators for the strips domain, which includes the three search
engines without cost bounds, as well as their synergy with goal-speci�c description changers.

14.2. LARGE-SCALE TASKS 433

w/oSAVTA
cost bound

w/oSAVTA
cost bound

initial

initial initial

Chooser
Relator

Abstractor

initial

w/oSABA
cost bound

space of descriptions

initial initialinitial

prim prim prim

hierarchy
prim and

hierarchy
prim and

hierarchy
prim and

prim and
hierarchy

prim

Completer
Chooser

Margie

Abstractor
Completer

w/oSABA
cost bound

Chooser
Relator

Abstractor
w/oSAVTA

cost bound

w/oSABA
cost bound

w/oSABA
cost bound

w/oLINEAR
cost bound

w/oLINEAR
cost bound

w/oLINEAR
cost bound

w/oSAVTA
cost bound

Chooser
Relator

Abstractor
w/oLINEAR

cost bound

space of representations

Figure 14.11: Space of twelve representations in the strips domain. The system utilizes the three

solver operators in Figure 14.10, along with the three changer operators in Figure 14.2(b).

434 CHAPTER 14. EXTENDED STRIPS DOMAIN

selection among optimal
thirty-six twelve reps four gain

representations w/o cost bounds descriptions (dashed lines)

(solid lines) (dotted lines) (dash-and-dot lines)

short problem sequences

Function 14.1 �0:128 | �0:104 | 0.048 (17%) 0.288
Function 14.2 �29:5 | �17:4 | 11.1 (50%) 22.3
Function 14.3 �6:3 | 10.6 (17%) 34.5 (55%) 62.6

long problem sequences

Function 14.1 0.108 (45%) 0.145 (60%) 0.164 (68%) 0.240
Function 14.2 11.7 (58%) 14.8 (73%) 14.4 (71%) 20.2
Function 14.3 38.5 (66%) 43.9 (75%) 40.6 (69%) 58.6

Table 14.2: Cumulative per-problem gains in the experiments with the large representation space,

and the analogous results for two smaller-scale tasks. The parenthesized notes in the column

headings refer to the curves in Figures 14.12 and 14.13.

The system correctly determined that the linear solver with abstraction and no cost
bounds was the best choice for all three gain functions, and found the right time limits for
the linear functions. When Shaper ran with the nonlinear utility model, it chose a wrong
time limit (0.92 seconds), which was smaller than optimal (1.55 seconds).

In Figures 14.12 and 14.13, we give the learning curves (solid), and compare them with
the optimal strategy (dashes) and with two smaller selection tasks (dotted and dash-and-dot
lines). In Figures 14.14 and 14.15, we compare the same curves with the results of Sec-
tion 14.1. Observe that the large representation space causes greater initial losses and slower
convergence: the system processes 300 to 500 problems before choosing its �nal strategy.

Summary

The tests con�rmed Shaper's ability to choose from a sizable suite of candidate strategies.
The learning behavior was similar to large-scale experiments in other domains: the control
module discarded most representations in the beginning of a learning sequence, and then
gradually selected among near-optimal strategies, which did not cause signi�cant losses.

In Table 14.2, we list the cumulative gains obtained with the space of thirty-six represen-
tations, and compare them with the results for smaller spaces. Observe that the large space
caused signi�cant losses on short sequences of problems; however, when Shaper processed
longer sequences, it amortized the initial losses and obtained good overall results.

14.2. LARGE-SCALE TASKS 435

0 20 40

−1

−0.5

0

0.5

1

detailed gain curve

problem’s number

ga
in

s

0 20 40

−1

−0.5

0

0.5

1

smoothed gain curve

problem’s number
0 20 40

−0.5

0

0.5

average per−problem gains

problem’s number

(a) Gain linearly decreases with the running time (Function 14.1).

0 20 40

−100

−50

0

50

100

detailed gain curve

problem’s number

ga
in

s

0 20 40

−100

−50

0

50

100

smoothed gain curve

problem’s number
0 20 40

−60

−40

−20

0

20

40

average per−problem gains

problem’s number

(b) Gain decreases with the time and solution cost (Function 14.2).

0 20 40

−100

−50

0

50

100

150

detailed gain curve

problem’s number

ga
in

s

0 20 40

−100

−50

0

50

100

150

smoothed gain curve

problem’s number
0 20 40

−60

−40

−20

0

20

40

60

80
average per−problem gains

problem’s number

(c) Gain is a nonlinear function of time and cost (Function 14.3).

Figure 14.12: Comparison of three incremental-learning tasks, which include selection among

all thirty-six representations (solid), among the twelve alternatives in Figure 14.11 (dotted), and

among the four domain descriptions in Figure 14.2 (dash-and-dot). In addition, the graphs show

the behavior of the best available representation, with the optimal time bound (dashes).

436 CHAPTER 14. EXTENDED STRIPS DOMAIN

0 100 200 300 400

−1

−0.5

0

0.5

1

smoothed gain curve

problem’s number

ga
in

s

0 100 200 300 400

−0.5

0

0.5

average per−problem gains

problem’s number

(a) Gain linearly decreases with the running time (Function 14.1).

0 100 200 300 400

−100

−50

0

50

100

smoothed gain curve

problem’s number

ga
in

s

0 100 200 300 400

−60

−40

−20

0

20

40

average per−problem gains

problem’s number

(b) Gain decreases with the time and solution cost (Function 14.2).

0 100 200 300 400

−100

−50

0

50

100

150

smoothed gain curve

problem’s number

ga
in

s

0 100 200 300 400
−60

−40

−20

0

20

40

60

80
average per−problem gains

problem’s number

(c) Gain is a nonlinear function of time and cost (Function 14.3).

Figure 14.13: Comparing the three incremental-selection tasks of di�erent scale (see Figure 14.12),
on longer problem sequences. We plot the results of utilizing large representation space (solid lines),

two smaller spaces (dotted and dash-and-dot lines), and optimal representation (dashed lines).

14.2. LARGE-SCALE TASKS 437

0 20 40

−1

−0.5

0

0.5

1

detailed gain curve

problem’s number

ga
in

s

0 20 40

−1

−0.5

0

0.5

1

smoothed gain curve

problem’s number
0 20 40

−0.5

0

0.5

average per−problem gains

problem’s number

(a) Gain linearly decreases with the running time (Function 14.1).

0 20 40

−100

−50

0

50

100

detailed gain curve

problem’s number

ga
in

s

0 20 40

−100

−50

0

50

100

smoothed gain curve

problem’s number
0 20 40

−60

−40

−20

0

20

40

average per−problem gains

problem’s number

(b) Gain decreases with the time and solution cost (Function 14.2).

0 20 40

−100

−50

0

50

100

150

detailed gain curve

problem’s number

ga
in

s

0 20 40

−100

−50

0

50

100

150

smoothed gain curve

problem’s number
0 20 40

−60

−40

−20

0

20

40

60

80
average per−problem gains

problem’s number

(c) Gain is a nonlinear function of time and cost (Function 14.3).

Figure 14.14: Processing short problem sequences with a space of thirty-six representations. We

plot the learning curves (solid) and the analogous data for three small-scale tasks: choice among four

descriptions (dash-and-dot), three search engines (dots), and three time-bound heuristics (dashes).

438 CHAPTER 14. EXTENDED STRIPS DOMAIN

0 100 200 300 400

−1

−0.5

0

0.5

1

smoothed gain curve

problem’s number

ga
in

s

0 100 200 300 400

−0.5

0

0.5

average per−problem gains

problem’s number

(a) Gain linearly decreases with the running time (Function 14.1).

0 100 200 300 400

−100

−50

0

50

100

smoothed gain curve

problem’s number

ga
in

s

0 100 200 300 400

−60

−40

−20

0

20

40

average per−problem gains

problem’s number

(b) Gain decreases with the time and solution cost (Function 14.2).

0 100 200 300 400

−100

−50

0

50

100

150

smoothed gain curve

problem’s number

ga
in

s

0 100 200 300 400
−60

−40

−20

0

20

40

60

80
average per−problem gains

problem’s number

(c) Gain is a nonlinear function of time and cost (Function 14.3).

Figure 14.15: Running Shaper on long sequences of problems, with thirty-six representations

(solid lines) and with smaller spaces (broken lines); the legend is the same as in Figure 14.14.

14.3. DIFFERENT TIME BOUNDS 439

14.3 Di�erent time bounds

We re-ran the large-scale tests with di�erent settings of the exploration knob, using the
same experimental setup as in the other domains (see Section 12.3). The results of using
small knob values are given in Figures 14.16 and 14.17, and the data for large values are in
Figures 14.18 and 14.19. For each knob setting, the graphs show the di�erence between the
resulting performance and the default behavior.

The tests con�rmed that the default setting gives near-optimal results (see Table 14.3).
The largest deviation from the optimum was in the experiment with Function 14.3, when a
larger knob value lead to a 6% increase in the total gains (see the bottom row of Table 14.3).

Note that the exploration knob does not a�ect the system's behavior in the beginning
of a learning sequence (see the left-hand graphs in Figures 14.16 and 14.18). The control
module initially employs a heuristic for choosing time bounds, which does not depend on
a knob setting (see Section 8.5.1), and switches to the statistical computation only after
accumulating preliminary data.

small knob values default large knob values
0.02 0.05 0.1 0.2 0.5

short problem sequences

Function 14.1 �0:119 | �0:150 | �0:128 �0:119 | �0:124 |
Function 14.2 �33:0 | �32:9 | �29:5 �29:1 | �29:7 |
Function 14.3 �9:68 | �10:46 | �6:27 �7:14 | �6:35 |

long problem sequences

Function 14.1 0.106 (98%) 0.088 (81%) 0.108 .110 (102%) 0.096 (89%)
Function 14.2 9.3 (79%) 10.1 (86%) 11.7 10.5 (90%) 8.9 (76%)
Function 14.3 33.5 (87%) 37.6 (98%) 38.5 40.9 (106%) 39.2 (102%)

Table 14.3: Average per-problem gains for �ve di�erent values of the exploration knob. For each

positive gain, we indicate the corresponding percentage of the default-strategy gain.

440 CHAPTER 14. EXTENDED STRIPS DOMAIN

0 20 40

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

detailed difference curve

problem’s number

ga
in

 d
iff

er
en

ce
s

0 20 40

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

smoothed difference curve

problem’s number
0 20 40

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

average per−problem diffs

problem’s number

(a) Gain linearly decreases with the running time (Function 14.1).

0 20 40

−60

−40

−20

0

20

40
detailed difference curve

problem’s number

ga
in

 d
iff

er
en

ce
s

0 20 40

−60

−40

−20

0

20

40
smoothed difference curve

problem’s number
0 20 40

−6

−4

−2

0

2

4
average per−problem diffs

problem’s number

(b) Gain decreases with the time and solution cost (Function 14.2).

0 20 40

−100

−50

0

50

detailed difference curve

problem’s number

ga
in

 d
iff

er
en

ce
s

0 20 40

−100

−50

0

50

smoothed difference curve

problem’s number
0 20 40

−10

−5

0

5

average per−problem diffs

problem’s number

(c) Gain is a nonlinear function of time and cost (Function 14.3).

Figure 14.16: Experiments with small values of the exploration knob. The solid lines represent

the di�erences between the 0.02-knob results and 0.1-knob results. Similarly, the dashed lines mark

the di�erences between the 0.05-knob and 0.1-knob gains.

14.3. DIFFERENT TIME BOUNDS 441

0 100 200 300 400

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

smoothed difference curve

problem’s number

ga
in

 d
iff

er
en

ce
s

0 100 200 300 400

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

average per−problem differences

problem’s number

(a) Gain linearly decreases with the running time (Function 14.1).

0 100 200 300 400

−60

−40

−20

0

20

40
smoothed difference curve

problem’s number

ga
in

 d
iff

er
en

ce
s

0 100 200 300 400

−6

−4

−2

0

2

4
average per−problem differences

problem’s number

(b) Gain decreases with the time and solution cost (Function 14.2).

0 100 200 300 400

−100

−50

0

50

smoothed difference curve

problem’s number

ga
in

 d
iff

er
en

ce
s

0 100 200 300 400

−10

−5

0

5

average per−problem differences

problem’s number

(c) Gain is a nonlinear function of time and cost (Function 14.3).

Figure 14.17: Results of processing long problem sequences with the knob values 0.02 and 0.05.

442 CHAPTER 14. EXTENDED STRIPS DOMAIN

0 20 40

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

detailed difference curve

problem’s number

ga
in

 d
iff

er
en

ce
s

0 20 40

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

smoothed difference curve

problem’s number
0 20 40

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

average per−problem diffs

problem’s number

(a) Gain linearly decreases with the running time (Function 14.1).

0 20 40

−60

−40

−20

0

20

40
detailed difference curve

problem’s number

ga
in

 d
iff

er
en

ce
s

0 20 40

−60

−40

−20

0

20

40
smoothed difference curve

problem’s number
0 20 40

−6

−4

−2

0

2

4
average per−problem diffs

problem’s number

(b) Gain decreases with the time and solution cost (Function 14.2).

0 20 40

−100

−50

0

50

detailed difference curve

problem’s number

ga
in

 d
iff

er
en

ce
s

0 20 40

−100

−50

0

50

smoothed difference curve

problem’s number
0 20 40

−10

−5

0

5

average per−problem diffs

problem’s number

(c) Gain is a nonlinear function of time and cost (Function 14.3).

Figure 14.18: Testing large knob values on �fty-problem sequences. We plot the di�erences between

the 0.5-knob gains and default-knob gains (solid lines), and similar di�erence curves for the 0.2-knob

tests (dashed lines).

14.3. DIFFERENT TIME BOUNDS 443

0 100 200 300 400

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

smoothed difference curve

problem’s number

ga
in

 d
iff

er
en

ce
s

0 100 200 300 400

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

average per−problem differences

problem’s number

(a) Gain linearly decreases with the running time (Function 14.1).

0 100 200 300 400

−60

−40

−20

0

20

40
smoothed difference curve

problem’s number

ga
in

 d
iff

er
en

ce
s

0 100 200 300 400

−6

−4

−2

0

2

4
average per−problem differences

problem’s number

(b) Gain decreases with the time and solution cost (Function 14.2).

0 100 200 300 400

−100

−50

0

50

smoothed difference curve

problem’s number

ga
in

 d
iff

er
en

ce
s

0 100 200 300 400

−10

−5

0

5

average per−problem differences

problem’s number

(c) Gain is a nonlinear function of time and cost (Function 14.3).

Figure 14.19: Applying Shaper with the knob values 0.5 and 0.2 to long sequences of problems.

Chapter 15

Logistics Domain

The last series of experiments is based on the prodigy Logistics domain [Veloso, 1994],
which comprises eight object types, six operators, and two inference rules (see Figure 3.47
on page 147). Recall that Logistics problems involve delivery of packages, by vans and
airplanes; all of them are solvable, but some require hours of prodigy search.

First, we experimented with linear dependencies of gain on the running time, solution
quality, and problem size (see Figure 15.1a{c). Then, we tested the system's ability to deal
with nonlinear utility models, using the \unnatural" gain functions in Figure 15.1(d{f).

15.1 Choosing a description and solver

We conducted small-scale experiments with two representation spaces, illustrated in Fig-
ures 15.2 and 15.3. First, Shaper ran with the linear solver and standard library of
changers (see Figure 15.2a), and expanded a space of two descriptions (Figure 15.2b). The
abstraction hierarchy in the new description was as shown in Figure 4.34 (page 186). We
tested the selection mechanism with the linear gain functions, and it chose the right descrip-
tion and time bound for each function (see Figures 15.4 and 15.6).

The second experiment involved a library of three search engines, without cost bounds.
We added the abstraction hierarchy to the domain encoding and ran the system without

changer operators, thus obtaining the representations in Figure 15.3. The control module
correctly determined that linear was the best solver, and found a proper time limit for
each utility function (see Figures 15.6 and 15.7).

In Table 15.1, we summarize the cumulative gains and compare them with the optimal-
strategy results. The gains on the short problem sequences varied from 53% to 84% of
optimal, whereas the long-sequence results were at least 84%. The system converged to
the right strategy after processing thirty to a hundred problems, which was similar to its
behavior in other domains.

The Logistics tests have con�rmed that a signi�cant e�ciency improvement usually does
not translate into a proportional gain increase. The use of abstraction resulted in ten-fold to
hundred-fold search reduction on most problems (see Section 4.4), but the respective growth
of the optimal-strategy gains was much smaller (see Table 15.2).

444

15.1. CHOOSING A DESCRIPTION AND SOLVER 445

Linear gain functions

(a) Gain linearly decreases with the problem-solving time:

gain =

(
1� time; if success
�time; if failure or interrupt

(15.1)

(b) Gain depends on the search time and solution cost:

gain =

(
100� cost� 50 � time; if success and cost < 100
�50 � time; otherwise

(15.2)

(c) Reward is proportional to the number of delivered packages:

gain =

(
50 � n-packs� cost� 50 � time; if success and cost < 50 � n-packs
�50 � time; otherwise

(15.3)

Arti�cial functions

(d) Gain linearly decreases with the cube of the running time:

gain =

(
1� time3; if success
�time3; if failure or interrupt

(15.4)

(e) Shaper has to �nd a solution with cost less than 50:

gain =

(
2� time; if success and cost < 50
�time; otherwise

(15.5)

(f) Payment for the unit time is proportional to the number of packages:

gain =

(
4� n-packs � time; if success
�n-packs � time; if failure or interrupt

(15.6)

Figure 15.1: Utility computation in the Logistics Domain. The small-scale selection tasks (see

Section 15.1) are based on three linear functions for calculating gains. The experiments with a

larger space (see Section 15.2) involve not only linear dependencies, but also arti�cial functions,

which test Shaper's capability of adapting to complex utility models.

446 CHAPTER 15. LOGISTICS DOMAIN

 representations
space of

(b) Expanded spaces.(a) Changer operators.

space of descriptions

Margie Completer Abstractor

Applicability conditions:
Description has no primary effects,

and no abstraction hierarchy

initial

dash-and-dot lines

w/oLINEAR
cost bound

initial

w/oLINEAR
cost bound

dashed lines

hierarchy

hierarchy

Abstractor

Applicability conditions:
Description has no abstraction hierarchy

Abstractor

Applicability conditions:
Description has no primary effects
Abstractor has not been applied

Chooser Completer

Figure 15.2: Changer operators in the experiments on selecting a domain description (a), and the

expanded representation space (b). The Abstractor algorithm builds a four-level hierarchy, whereas

the other changers fail to generate new descriptions.

hierarchy

space of descriptions space of representations

w/oSABA
cost bound

dotted lines

w/oLINEAR
cost bound

dashed lines dash-and-dot lines

w/oSAVTA
cost bound

hierarchyhierarchy hierarchy

Figure 15.3: Running the system without changer operators. The control mechanism combines

the three search engines with a given domain description, which includes an abstraction hierarchy.

15.1. CHOOSING A DESCRIPTION AND SOLVER 447

choice among optimal
descriptions solvers gain

short problem sequences

Function 15.1 0.325 (77%) 0.225 (53%) 0.424
Function 15.2 13.6 (75%) 13.9 (77%) 18.1
Function 15.3 55.4 (84%) 54.6 (83%) 65.7

long problem sequences

Function 15.1 0.397 (95%) 0.360 (87%) 0.416
Function 15.2 21.6 (95%) 19.1 (84%) 22.8
Function 15.3 58.3 (97%) 54.2 (90%) 60.1

Table 15.1: Average per-problem gains in the small-scale selection experiments (Figures 15.4{15.7),

and the corresponding percentages of the optimal-strategy results.

gain
increase

Function 15.1 4.2
Function 15.2 1.3
Function 15.3 1.8

Table 15.2: Increase in the cumulative gains due to abstraction. We specify the increase factor

for each of the three utility functions. Observe that the growth of gains is much smaller than the

time-saving factor, which is usually between 10 and 100.

448 CHAPTER 15. LOGISTICS DOMAIN

0 20 40

−1

−0.5

0

0.5

1

detailed gain curve

problem’s number

ga
in

s

0 20 40

−1

−0.5

0

0.5

1

smoothed gain curve

problem’s number
0 20 40

−0.4

−0.2

0

0.2

0.4

0.6
average per−problem gains

problem’s number

(a) Gain linearly decreases with the running time (Function 15.1).

0 20 40

−50

0

50

100

detailed gain curve

problem’s number

ga
in

s

0 20 40

−50

0

50

100

smoothed gain curve

problem’s number
0 20 40

−20

0

20

40

average per−problem gains

problem’s number

(b) Gain decreases with the time and solution cost (Function 15.2).

0 20 40

−50

0

50

100

150

200

detailed gain curve

problem’s number

ga
in

s

0 20 40

−50

0

50

100

150

200

smoothed gain curve

problem’s number
0 20 40

−20

0

20

40

60

80

100

average per−problem gains

problem’s number

(c) Reward depends on the number of packages (Function 15.3).

Figure 15.4: Choosing between the initial description and abstraction. The graphs include the

learning curves (solid), the results of using the initial description with the optimal time bound

(dash-and-dot), and the optimal behavior of abstraction search (dashes).

15.1. CHOOSING A DESCRIPTION AND SOLVER 449

0 100 200 300 400

−1

−0.5

0

0.5

1

smoothed gain curve

problem’s number

ga
in

s

0 100 200 300 400

−0.4

−0.2

0

0.2

0.4

0.6
average per−problem gains

problem’s number

(a) Gain linearly decreases with the running time (Function 15.1).

0 100 200 300 400

−50

0

50

100

smoothed gain curve

problem’s number

ga
in

s

0 100 200 300 400

−20

0

20

40

average per−problem gains

problem’s number

(b) Gain decreases with the time and solution cost (Function 15.2).

0 100 200 300 400

−50

0

50

100

150

200

smoothed gain curve

problem’s number

ga
in

s

0 100 200 300 400

−20

0

20

40

60

80

100

average per−problem gains

problem’s number

(c) Reward depends on the number of packages (Function 15.3).

Figure 15.5: Processing long problem sequences, with the two alternative descriptions. We plot

the smoothed gain curves (left) and cumulative gains (right), using the legend of Figure 15.4.

450 CHAPTER 15. LOGISTICS DOMAIN

0 20 40

−1

−0.5

0

0.5

1

detailed gain curve

problem’s number

ga
in

s

0 20 40

−1

−0.5

0

0.5

1

smoothed gain curve

problem’s number
0 20 40

−0.4

−0.2

0

0.2

0.4

0.6
average per−problem gains

problem’s number

(a) Gain linearly decreases with the running time (Function 15.1).

0 20 40

−50

0

50

100

detailed gain curve

problem’s number

ga
in

s

0 20 40

−50

0

50

100

smoothed gain curve

problem’s number
0 20 40

−20

0

20

40

average per−problem gains

problem’s number

(b) Gain decreases with the time and solution cost (Function 15.2).

0 20 40

−50

0

50

100

150

200

detailed gain curve

problem’s number

ga
in

s

0 20 40

−50

0

50

100

150

200

smoothed gain curve

problem’s number
0 20 40

−20

0

20

40

60

80

100

average per−problem gains

problem’s number

(c) Reward depends on the number of packages (Function 15.3).

Figure 15.6: Choosing among the search engines, without cost bounds. We give the learning curves

(solid), and the optimal performance of linear (dashes), savta (dots), and saba (dash-and-dot).

15.1. CHOOSING A DESCRIPTION AND SOLVER 451

0 100 200 300 400

−1

−0.5

0

0.5

1

smoothed gain curve

problem’s number

ga
in

s

0 100 200 300 400

−0.4

−0.2

0

0.2

0.4

0.6
average per−problem gains

problem’s number

(a) Gain linearly decreases with the running time (Function 15.1).

0 100 200 300 400

−50

0

50

100

smoothed gain curve

problem’s number

ga
in

s

0 100 200 300 400

−20

0

20

40

average per−problem gains

problem’s number

(b) Gain decreases with the time and solution cost (Function 15.2).

0 100 200 300 400

−50

0

50

100

150

200

smoothed gain curve

problem’s number

ga
in

s

0 100 200 300 400

−20

0

20

40

60

80

100

average per−problem gains

problem’s number

(c) Reward depends on the number of packages (Function 15.3).

Figure 15.7: Applying Shaper to long problem sequences, with a library of three search engines.

The graphs comprise the results of incremental selection (solid lines), as well as the optimal behavior

of each search algorithm (broken lines); the legend is the same as in Figure 15.6.

452 CHAPTER 15. LOGISTICS DOMAIN

15.2 Space of twelve representations

We now consider a library of six solvers, which include not only the basic search engines, but
also their synergy with a heuristic for computing loose cost bounds. The heuristic procedure
estimates the cost of an optimal solution and sets a twice larger bound, thus limiting the
depth of prodigy search. The system employs the six solvers along with the changers in
Figure 15.2(a), and constructs the twelve representations in Figure 15.8.

We �rst experimented with the linear gain functions (Figures 15.9 and 15.10), and then
with the arti�cial functions (Figures 15.11 and 15.12). The linear algorithm with abstrac-
tion and no cost bounds proved more e�ective than the other representations, and Shaper
chose it in all cases. Furthermore, the system found proper time bounds for Functions 15.1{
15.5; however, it underestimated the optimal bound for Function 15.6, and the selected time
limit (0.99 seconds) gave noticeably worse results than optimal (1.15 seconds).

The convergence was slower than in the other domains: Shaper found the right strategy
after processing 300 to 500 problems; however, the percentage values of the cumulative
gains (see Table 15.3) were no smaller than in the Sokoban and strips domain. The slow
convergence was due to several close-to-optimal representations, which caused the control
module to \hesitate" among them. Since the system discarded ine�ective strategies during
the early stages of learning, its later hesitation had little e�ect on performance.

selection among optimal
twelve two three gain

representations descriptions solvers (dashed lines)

(solid lines) (dash-and-dot lines) (dotted lines)

short problem sequences

Function 15.1 �0:314 | 0.325 (77%) 0.225 (53%) 0.424
Function 15.2 3.4 (25%) 13.6 (75%) 13.9 (77%) 18.1
Function 15.3 12.3 (22%) 55.4 (84%) 54.6 (83%) 65.7
Function 15.4 0.071 (16%) 0.339 (75%) 0.432 (95%) 0.454
Function 15.5 0.074 (15%) 0.274 (55%) 0.398 (79%) 0.501
Function 15.6 0.083 (5%) 1.388 (84%) 1.262 (77%) 1.646

long problem sequences

Function 15.1 0.268 (64%) 0.397 (95%) 0.360 (87%) 0.416
Function 15.2 14.1 (62%) 21.6 (95%) 19.1 (84%) 22.8
Function 15.3 37.7 (63%) 58.3 (97%) 54.2 (90%) 60.1
Function 15.4 0.365 (70%) 0.454 (87%) 0.498 (96%) 0.521
Function 15.5 0.423 (70%) 0.385 (64%) 0.582 (96%) 0.605
Function 15.6 0.712 (44%) 1.511 (92%) 1.529 (94%) 1.634

Table 15.3: Summary of the incremental-learning results in the Logistics Domain. We list the

average per-problem gains and the respective percentages of the optimal gains. The parenthetical

notes in the column headings refer to Figures 14.14{14.13.

15.2. SPACE OF TWELVE REPRESENTATIONS 453

initial

cost bound
withSABAwithSAVTA

cost bound

initial

initial

w/oSAVTA
cost bound

initial

w/oLINEAR
cost bound

initial

w/oSABA
cost bound

initial

withLINEAR
cost bound

hierarchy

hierarchyhierarchy hierarchy

hierarchyhierarchy hierarchy

initial

Abstractor

space of representationsspace of descriptions

w/oSABA
cost bound

withLINEAR
cost bound

w/oSAVTA
cost bound

w/oLINEAR
cost bound

withSAVTA
cost bound cost bound

withSABA

Figure 15.8: Large representation space in the Logistics Domain. The system generates an ab-

straction hierarchy, and then combines the initial and new description with six solver operators.

454 CHAPTER 15. LOGISTICS DOMAIN

0 20 40

−2

−1.5

−1

−0.5

0

0.5

1

detailed gain curve

problem’s number

ga
in

s

0 20 40

−2

−1.5

−1

−0.5

0

0.5

1

smoothed gain curve

problem’s number
0 20 40

−1

−0.5

0

0.5

average per−problem gains

problem’s number

(a) Gain linearly decreases with the running time (Function 15.1).

0 20 40

−50

0

50

100

detailed gain curve

problem’s number

ga
in

s

0 20 40

−50

0

50

100

smoothed gain curve

problem’s number
0 20 40

−20

0

20

40

average per−problem gains

problem’s number

(b) Gain decreases with the time and solution cost (Function 15.2).

0 20 40

−100

−50

0

50

100

150

200

detailed gain curve

problem’s number

ga
in

s

0 20 40

−100

−50

0

50

100

150

200

smoothed gain curve

problem’s number
0 20 40

−50

0

50

100

average per−problem gains

problem’s number

(c) Reward depends on the number of packages (Function 15.3).

Figure 15.9: Selection of search strategies for the linear gain functions. The graphs show Shaper's

behavior with a space of twelve representations (solid lines), as well the results of choosing among

two descriptions (dash-and-dot lines) and among three search engines (dotted lines). In addition,

we plot the performance of the optimal strategy, which is based on the linear algorithm, with

abstraction and no cost bounds.

15.2. SPACE OF TWELVE REPRESENTATIONS 455

0 100 200 300 400

−2

−1.5

−1

−0.5

0

0.5

1

smoothed gain curve

problem’s number

ga
in

s

0 100 200 300 400

−1

−0.5

0

0.5

average per−problem gains

problem’s number

(a) Gain linearly decreases with the running time (Function 15.1).

0 100 200 300 400

−50

0

50

100

smoothed gain curve

problem’s number

ga
in

s

0 100 200 300 400

−20

0

20

40

average per−problem gains

problem’s number

(b) Gain decreases with the time and solution cost (Function 15.2).

0 100 200 300 400

−100

−50

0

50

100

150

200

smoothed gain curve

problem’s number

ga
in

s

0 100 200 300 400

−50

0

50

100

average per−problem gains

problem’s number

(c) Reward depends on the number of packages (Function 15.3).

Figure 15.10: Processing long problem sequences with the large representation space (solid lines),

and the analogous data for the two small spaces (dotted and dash-and-dot lines).

456 CHAPTER 15. LOGISTICS DOMAIN

0 20 40
−1

−0.5

0

0.5

1

1.5

detailed gain curve

problem’s number

ga
in

s

0 20 40
−1

−0.5

0

0.5

1

1.5

smoothed gain curve

problem’s number
0 20 40

−0.4

−0.2

0

0.2

0.4

0.6

0.8
average per−problem gains

problem’s number

(a) Gain linearly decreases with the cube of time (Function 15.4).

0 20 40

−1

−0.5

0

0.5

1

1.5

2

detailed gain curve

problem’s number

ga
in

s

0 20 40

−1

−0.5

0

0.5

1

1.5

2

smoothed gain curve

problem’s number
0 20 40

−0.5

0

0.5

1

average per−problem gains

problem’s number

(b) System gets a reward only for a low-cost solution (Function 15.5).

0 20 40
−6

−4

−2

0

2

4

detailed gain curve

problem’s number

ga
in

s

0 20 40
−6

−4

−2

0

2

4

smoothed gain curve

problem’s number
0 20 40

−3

−2

−1

0

1

2

average per−problem gains

problem’s number

(c) Gain depends on the search time and problem size (Function 15.6).

Figure 15.11: Choosing representations for the arti�cial utility functions. We present the results

of utilizing the space of twelve representations (solid lines), the system's behavior with the smaller

spaces (dotted and dash-and-dot lines), and the performance of the best available strategy (dashes);

the legend corresponds to that in Figure 15.10.

15.2. SPACE OF TWELVE REPRESENTATIONS 457

0 100 200 300 400
−1

−0.5

0

0.5

1

1.5

smoothed gain curve

problem’s number

ga
in

s

0 100 200 300 400

−0.4

−0.2

0

0.2

0.4

0.6

0.8
average per−problem gains

problem’s number

(a) Gain linearly decreases with the cube of time (Function 15.4).

0 100 200 300 400

−1

−0.5

0

0.5

1

1.5

2

smoothed gain curve

problem’s number

ga
in

s

0 100 200 300 400

−0.5

0

0.5

1

average per−problem gains

problem’s number

(b) System gets a reward only for a low-cost solution (Function 15.5).

0 100 200 300 400
−6

−4

−2

0

2

4
smoothed gain curve

problem’s number

ga
in

s

0 100 200 300 400
−3

−2

−1

0

1

2

average per−problem gains

problem’s number

(c) Gain depends on the search time and problem size (Function 15.6).

Figure 15.12: Results of processing long problem sequences, with the arti�cial gain functions. We

give the learning curves (solid, dotted, and dash-and-dot lines), as well as the performance of the

most e�ective representation (dashed lines), using the same legend as in Figures 15.9{15.11.

458 CHAPTER 15. LOGISTICS DOMAIN

15.3 Di�erent time bounds

Experiments with alternative values of the exploration knob con�rmed that the default
setting usually ensures near-optimal performance. For each value, we re-ran the tests of
Section 15.2 with Functions 15.1, 15.3, and 15.6. We present the di�erence curves for small
knob values in Figures 15.13 and 15.14, similar curves for large values in Figures 15.15
and 15.16, and the cumulative gains in Table 15.4.

The optimal choice of a knob value depended on a gain function and problem sequence;
however, the default setting usually gave satisfactory results. The main exception was the
short-sequence test with Function 15.6, when the default gains were almost thrice smaller
than the results with other knob settings; however, the absolute di�erence in gains was not
signi�cant. Since the total gain was close to zero, this small di�erence appeared as a large
relative improvement over the default behavior.

small knob values default large knob values
0.02 0.05 0.1 0.2 0.5

short problem sequences

Function 15.1 �0:338 | �0:319 | �0:314 �0:323 | �0:373 |
Function 15.3 14.3 (80%) 16.1 (90%) 17.8 10.2 (57%) 13.9 (78%)
Function 15.6 0.090 (108%) 0.201 (242%) 0.083 0.221 (266%) 0.233 (281%)

long problem sequences

Function 15.1 0.050 (19%) 0.256 (96%) 0.268 0.227 (85%) 0.173 (65%)
Function 15.3 42.0 (91%) 41.5 (90%) 46.2 44.8 (97%) 44.7 (97%)
Function 15.6 0.491 (69%) 0.653 (92%) 0.712 0.802 (113%) 0.918 (129%)

Table 15.4: Summary of tests with �ve alternative settings of the exploration knob. For each knob

value, we list the resulting average gains and the respective percentages of the default-setting gains.

15.3. DIFFERENT TIME BOUNDS 459

0 20 40

−1.5

−1

−0.5

0

0.5

1

1.5

detailed difference curve

problem’s number

ga
in

 d
iff

er
en

ce
s

0 20 40

−1.5

−1

−0.5

0

0.5

1

1.5

smoothed difference curve

problem’s number
0 20 40

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

average per−problem diffs

problem’s number

(a) Gain linearly decreases with the running time (Function 15.1).

0 20 40

−200

−100

0

100

200
detailed difference curve

problem’s number

ga
in

 d
iff

er
en

ce
s

0 20 40

−200

−100

0

100

200
smoothed difference curve

problem’s number
0 20 40

−10

−5

0

5

average per−problem diffs

problem’s number

(b) Reward depends on the number of packages (Function 15.3).

0 20 40
−4

−2

0

2

4

detailed difference curve

problem’s number

ga
in

 d
iff

er
en

ce
s

0 20 40
−4

−2

0

2

4

smoothed difference curve

problem’s number
0 20 40

−0.4

−0.2

0

0.2

0.4

average per−problem diffs

problem’s number

(c) Gain depends on the search time and problem size (Function 15.6).

Figure 15.13: Tests with small values of the exploration knob, on �fty-problem sequences. The

graphs show the di�erences between the gains with the knob value 0.02 and that with the value 0.1

(solid lines), as well as the di�erences between the 0.05-knob and 0.1-knob gains (dashed lines).

460 CHAPTER 15. LOGISTICS DOMAIN

0 100 200 300 400

−1.5

−1

−0.5

0

0.5

1

1.5

smoothed difference curve

problem’s number

ga
in

 d
iff

er
en

ce
s

0 100 200 300 400

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

average per−problem differences

problem’s number

(a) Gain linearly decreases with the running time (Function 15.1).

0 100 200 300 400

−200

−100

0

100

200
smoothed difference curve

problem’s number

ga
in

 d
iff

er
en

ce
s

0 100 200 300 400
−10

−5

0

5

average per−problem differences

problem’s number

(b) Reward depends on the number of packages (Function 15.3).

0 100 200 300 400
−4

−2

0

2

4

smoothed difference curve

problem’s number

ga
in

 d
iff

er
en

ce
s

0 100 200 300 400
−0.4

−0.2

0

0.2

0.4

average per−problem differences

problem’s number

(c) Gain depends on the search time and problem size (Function 15.6).

Figure 15.14: Processing 500-problem sequences with the small knob values. We give the di�erence

curves for the knob value 0.02 (solid), and the analogous curves for the value 0.05 (dashes).

15.3. DIFFERENT TIME BOUNDS 461

0 20 40

−1.5

−1

−0.5

0

0.5

1

1.5

detailed difference curve

problem’s number

ga
in

 d
iff

er
en

ce
s

0 20 40

−1.5

−1

−0.5

0

0.5

1

1.5

smoothed difference curve

problem’s number
0 20 40

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

average per−problem diffs

problem’s number

(a) Gain linearly decreases with the running time (Function 13.1).

0 20 40

−200

−100

0

100

200
detailed difference curve

problem’s number

ga
in

 d
iff

er
en

ce
s

0 20 40

−200

−100

0

100

200
smoothed difference curve

problem’s number
0 20 40

−10

−5

0

5

average per−problem diffs

problem’s number

(b) Reward depends on the number of packages (Function 15.3).

0 20 40
−4

−2

0

2

4

detailed difference curve

problem’s number

ga
in

 d
iff

er
en

ce
s

0 20 40
−4

−2

0

2

4

smoothed difference curve

problem’s number
0 20 40

−0.4

−0.2

0

0.2

0.4

average per−problem diffs

problem’s number

(c) Gain depends on the search time and problem size (Function 15.6).

Figure 15.15: Experiments with large knob values, on short sequences of problems. We plot the

di�erences between the 0.5-knob and 0.1-knob gains (solid), as well as the di�erences between the

0.2-knob and 0.1-knob results (dashes).

462 CHAPTER 15. LOGISTICS DOMAIN

0 100 200 300 400

−1.5

−1

−0.5

0

0.5

1

1.5

smoothed difference curve

problem’s number

ga
in

 d
iff

er
en

ce
s

0 100 200 300 400

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

average per−problem differences

problem’s number

(a) Gain linearly decreases with the running time (Function 15.1).

0 100 200 300 400

−200

−100

0

100

200
smoothed difference curve

problem’s number

ga
in

 d
iff

er
en

ce
s

0 100 200 300 400
−10

−5

0

5

average per−problem differences

problem’s number

(b) Reward depends on the number of packages (Function 15.2).

0 100 200 300 400
−4

−2

0

2

4

smoothed difference curve

problem’s number

ga
in

 d
iff

er
en

ce
s

0 100 200 300 400
−0.4

−0.2

0

0.2

0.4

average per−problem differences

problem’s number

(c) Gain depends on the search time and problem size (Function 15.6).

Figure 15.16: Applying Shaperwith the knob values 0.5 (solid) and 0.2 (dashes) to long sequences.

Concluding remarks

A book is never �nished, it is only published; therefore, I am solely responsible

for all errors and omissions.

| Derick Wood [1993], Data Structures, Algorithms, and Performance.

The most important contribution of the reported work is a general-purpose architecture for
improving and evaluating representations in AI problem solving. This work has been a com-
bination of theoretical and empirical investigations: it has involved mathematical analysis,
design of learning and search algorithms, pilot experiments with alternative heuristics, imple-
mentation of the Shaper system, and empirical evaluation of Shaper's main components.

The developed system is based on two general principles, proposed by Simon during his
investigations of human problem solving:

1. \A representation consists of both data structures and programs operating on them"
[Larkin and Simon, 1987]. Thus, a representation change may involve not only modi-
�cation of the data structures that describe a problem, but also selection of an appro-
priate search procedure. Finding the right match of a domain description and search
algorithm is essential for e�cient problem solving.

2. \The same processes that are ordinarily used to search within problem space can be
used to search for problem space (problem representation)." When a system operates
with multiple representations, its behavior \could be divided into two segments, al-
ternating between search for a solution in some problem space and search for a new
problem space" [Kaplan and Simon, 1990].

We have implemented Shaper in Allegro Common Lisp and integrated it with the
prodigy4 system. The overall size of the code is about 60,000 lines, which includes the
prodigy search algorithms (20,000 lines), description changes (15,000), and control module
(25,000).

Architectural decisions

The key architectural decisions underlying Shaper follow from Simon's two principles. We
de�ned a representation as a combination of a domain description and solver procedure, and
subdivided the process of representation change into the generation of a new description
and selection of a solver. The system explores the space of di�erent domain representations,

463

464 CHAPTER 15. LOGISTICS DOMAIN

using changer algorithms as operators for the expansion of this space. It alternates between
the construction of new representations and their application to problem solving.

The evaluation of the available representations is based on a general utility model, which
accounts for the percentage of solved problems, e�ciency of search, and quality of the re-
sulting solutions. We used this model in developing a statistical technique for automated
selection of e�ective representations. Furthermore, we integrated the statistical procedure
with several heuristic mechanisms that guide the search in the representation space.

The work on the Shaper system has led to the following results, which correspond to
the main components of the system:

� Automatic choice and utilization of primary e�ects in AI problem solving

� Abstraction mechanism for the full prodigy language, and its synergy with the algo-
rithms for choosing primary e�ects

� Tools for the centralized access to problem solvers, changer algorithms, and domain
descriptions; these tools form the system's \control center," which maintains the space
of representations

� Statistical analysis of the past performance and estimation of expected search time;
the estimate procedure accounts for problem sizes and similarity among problems

� Automated exploration of the representation space and selection of e�ective represen-
tations; the exploration module utilizes not only statistical estimates, but also several
types of user-speci�ed heuristic rules

Advantages and limitations

The control architecture does not rely on properties of speci�c problem solvers and de-
scription changers. We may use it with any collection of learning and search algorithms
that have a common input language and satisfy certain general assumptions, summarized in
Section 7.4.1.

On the other hand, the current implementation of this architecture is based on the
prodigy data structures; hence, we cannot port it to other problem-solving systems without
rewriting the code. The construction of a portable, system-independent version of the control
mechanism is an important engineering problem.

The generation of new representations involves search at three di�erent levels. The
description changers form the base of this three-level hierarchy. Every changer algorithm
searches in its own limited space of description improvements, and chooses potentially good
descriptions from this space. For example, Chooser and Completer explore a space of alter-
native selections of primary e�ects, Abstractor searches for a �ne-grained ordered hierarchy,
and Re�ner operates with alternative partial instantiations of predicates.

The second level is the expansion of the global description space. The control module
invokes changer algorithms to generate new nodes of this space, and employs heuristic rules
to guide the expansion order. Finally, the third level involves selecting solver algorithms
and pairing them with appropriate domain descriptions. This hierarchical structure of the

15.3. DIFFERENT TIME BOUNDS 465

Shaper system limits the size of description and representation spaces. It prevents the
combinatorial explosion in the number of candidate representations, reported by Korf.

The problem-solving power of the developed architecture is limited by the capabilities
of the embedded solver and changer algorithms. The control module learns to make the
best use of the available algorithms, but it cannot go beyond their potential. For example,
Shaper is unable to learn macro operators or control rules, because it does not include
appropriate description changers. Similarly, it cannot outperform the fastest of the available
problem solvers.

To our knowledge, the only system without similar limitations is Korf's [1980] universal
engine for generating new representations, which systematically expands the huge space of
all isomorphic and homomorphic transformations of a given problem, and can potentially
perform any representation improvement.

The human operator has a number of options for extending the Shaper system. In
particular, she may add new algorithms to the system's library of solvers and changers, de�ne
applicability conditions for the available algorithms, hand-code domain descriptions, provide
heuristic rules for guiding the search in the representation space, implement procedures for
estimating problem di�culty, and supply training problems.

The system supports a wide range of utility functions for evaluating representations,
and the user may construct complex gain functions that encode her value judgments. The
top-level control procedure searches for representations that maximize the expected gains.
The human operator has an option to take part in the search process and guide some of the
top-level decisions.

The control module has several knob parameters, which a�ect the behavior of the statisti-
cal learner, utilization of preference rules, decisions in the absence of relevant past data, and
resolution of conicts among di�erent mechanisms for selecting representations. We de�ned
default values of the knob variables, and implemented an interface procedure for inspecting
and adjusting the knobs, which enables the human operator to tune the system; however,
experiments have shown that Shaper's behavior is surprisingly insensitive to most knob
values, as long as they are within appropriate ranges.

Empirical evaluation

We have evaluated the e�ectiveness of Shaper in several di�erent domains, with a wide
variety of problems and gain functions. The empirical results have con�rmed the feasibility
of our approach to changing representations, and demonstrated the main properties of the
developed algorithms:

� Primary e�ects and ordered abstraction are powerful tools for reducing search, but
their impact varies across domains, ranging from a thousand-fold speed-up to a sub-
stantial slow-down; thus, the system's performance depends on the choice among the
implemented search-reduction tools

� The statistical learner always chooses an optimal or near-optimal combination of a
domain description, solver algorithm, and time bound; the e�ectiveness of the learning

466 CHAPTER 15. LOGISTICS DOMAIN

procedure does not depend on the properties of speci�c solvers, domains, or utility
functions

� Control heuristics enhance the system's performance in the initial stages of statisti-
cal learning, when the accumulated performance data are insu�cient for an accurate
selection of representations

The Shaper system is less e�ective than human problem solvers in most large-scale
domains; it outperforms people only on some puzzles, such as Tower of Hanoi. This limitation
is due to the state of the art: general-purpose search systems do not scale to complex
reasoning tasks, and prodigy is no exception. Since Shaper is limited by the capabilities
of prodigy search algorithms, it cannot compete with human subjects.

On the other hand, a separate evaluation of the control module has shown that it is more
e�ective than human experts. In particular, we have compared the system's selections of
algorithms and time bounds to manual choices by prodigy researchers. The automated
control has led to greater cumulative gains, especially for complex utility functions.

The evaluation of the control architecture has two major limitations, which restrict the
generality of the empirical results. First, we have tested this architecture only in the prodigy
system. The control techniques have proved insensitive to the behavior of particular prodigy
representations, and we hypothesize that they will work equally well with other AI systems.
Preliminary support for this hypothesis comes from the controlled experiments with arti�-
cially generated values of problem-solving times. The arti�cial tests have demonstrated that
the statistical learner is e�ective for a wide range of search-time distributions.

Second, we have constructed only a small library of solvers and changers; hence, Shaper
usually expands a small representation space. The number of candidate representations in
the described experiments has varied from two to thirty-six. Thus, the empirical evaluation
has provided little data on the scalability of the control techniques.

Applying the developed techniques to a larger library of AI algorithms is an important
research direction. In particular, we intend to test Shaper's control module in the Multia-
gent Planning Architecture [Wilkins and Myers, 1998], which supports centralized access to
a large collection of diverse search engines.

Future challenges

The described results is one of the �rst steps in exploring two broad subareas of arti�cial
intelligence: (1) automated improvement of problem representations and (2) coordination
of multiple AI algorithms. We have shown a close relationship between these subareas and
proposed an approach to addressing them; however, this work is only a beginning, which
leaves many unanswered questions.

The main open problems include implementing a portable version of the control archi-
tecture, improving and extending control mechanisms, and building an extensive library of
learning and search engines, which may include both general and domain-speci�c algorithms.
The system's performance depends on the availability of appropriate algorithms; in particu-
lar, a large library of diverse description changers is essential for the automatic adaptation
to new domains.

15.3. DIFFERENT TIME BOUNDS 467

Note that we have not tried to construct a universal changer engine, which would explore
all types of feasible description improvements. We conjecture that search for e�ective repre-
sentations is an inherently complex problem, which cannot be solved by a single all-purpose
algorithm.

A grand challenge is to build a software architecture that integrates thousands of AI
engines and domain descriptions, much in the same way as an operating system integrates
�le-processing programs. It must provide standard protocols for the communication among
learning and search procedures, and support routine inclusion of new domains, AI algorithms,
control techniques, and interface tools.

Wilkins and Myers [1998] have recently made a major step toward addressing this grand
problem. They have built a software architecture that supports the synergetic use of diverse
search procedures, collected from di�erent AI systems. On the negative side, their archi-
tecture does not allow inclusion of description changers and has no general-purpose control
mechanisms. Thus, the human operator must optimize the domain descriptions and imple-
ment specialized control procedures. We plan to integrate this architecture with Shaper's
control algorithms, which may be another important step toward a large-scale system for
improving representations.

Other major challenges include developing a uni�ed theory of search with multiple rep-
resentations, automating the synthesis of specialized description-improving procedures, and
investigating the representation changes performed by human problem solvers.

We hypothesize that the cognitive architecture for constructing new representations is
similar to the Shaper system; that is, the human mind includes solver and changer al-
gorithms, and techniques for choosing among them. We also conjecture that the human
problem solver employs a wide variety of highly specialized changer algorithms, arranged by
areas of knowledge, as well as some more general algorithms. The related studies by Simon
and his colleagues provide preliminary support for these conjectures.

Bibliography

[Aho et al., 1974] Alfred A. Aho, John E. Hopcroft, and Je�rey D. Ullman. The Design and

Analysis of Computer Algorithms. Addison-Wesley Publishers, Reading, MA, 1974.

[Allen and Minton, 1996] John A. Allen and Steven Minton. Selecting the right heuristic
algorithm: Runtime performance predictors. In Gordon McCalla, editor, Advances in

Arti�cial Intelligence: The Eleventh Biennial Conference of the Canadian Society for

Computational Studies of Intelligence, pages 41{53, Berlin, Germany, 1996. Springer.

[Allen et al., 1992] John A. Allen, Pat Langley, and Stan Matwin. Knowledge and regular-
ity in planning. In Proceedings of the AAAI 1992 Spring Symposium on Computational

Considerations in Supporting Incremental Modi�cation and Reuse, pages 7{12, 1992.

[Amarel, 1961] Saul Amarel. An approach to automatic theory formation. In Heinz M.
Von Foerster, editor, Principles of Self-Organiation: Transactions. Pergamon Press, New
York, NY, 1961.

[Amarel, 1965] Saul Amarel. Problem solving procedures for e�cient syntactic analysis. In
ACM Twentieth National Conference, 1965.

[Amarel, 1968] Saul Amarel. On representations of problems of reasoning about actions. In
Donald Michie, editor, Machine Intelligence 3, pages 131{171. American Elsevier Publish-
ers, New York, NY, 1968.

[Amarel, 1971] Saul Amarel. Representations and modeling in problems of program for-
mation. In Bernard Meltzer and Donald Michie, editors, Machine Intelligence 6, pages
411{466. American Elsevier Publishers, New York, NY, 1971.

[Anthony and Biggs, 1992] Martin Anthony and Norman Biggs. Computational Learning

Theory. Cambridge University Press, 1992.

[Bacchus and Yang, 1991] Fahiem Bacchus and Qiang Yang. The downward re�nement
property. In Proceedings of the Twelfth International Joint Conference on Arti�cial Intel-

ligence, pages 286{291, 1991.

[Bacchus and Yang, 1992] Fahiem Bacchus and Qiang Yang. The expected value of hier-
archical problem-solving. In Proceedings of the Tenth National Conference on Arti�cial

Intelligence, 1992.

468

BIBLIOGRAPHY 469

[Bacchus and Yang, 1994] Fahiem Bacchus and Qiang Yang. Downward re�nement and the
e�ciency of hierarchical problem solving. Arti�cial Intelligence, 71(1):43{100, 1994.

[B�ackstr�om and Jonsson, 1995] Christer B�ackstr�om and Peter Jonsson. Planning with ab-
straction hierarchies can be exponentially less e�cient. In Proceedings of the Fourteenth

International Joint Conference on Arti�cial Intelligence, pages 1599{1604, 1995.

[Barrett and Weld, 1994] Anthony Barrett and Dan Weld. Partial order planning: Evaluat-
ing possible e�ciency gains. Arti�cial Intelligence, 67(1):71{112, 1994.

[Blum and Furst, 1997] Avrim L. Blum and Merrick L. Furst. Fast planning through plan-
ning graph analysis. Arti�cial Intelligence, 90(1{2):281{300, 1997.

[Blumer et al., 1987] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K.
Warmuth. Occam's razor. Information Processing Letters, 24:377{380, 1987.

[Blythe and Reilly, 1993a] Jim Blythe and W. Scott Reilly. Integrating reactive and deliber-
ative planning in a household robot. In AAAI Fall Symposium on Instantiating Real-World

Agents, 1993.

[Blythe and Reilly, 1993b] Jim Blythe and W. Scott Reilly. Integrating reactive and deliber-
ative planning for agents. Technical Report CMU-CS-93-155, School of Computer Science,
Carnegie Mellon University, 1993.

[Blythe and Veloso, 1992] Jim Blythe and Manuela M. Veloso. An analysis of search tech-
niques for a totally-ordered nonlinear planner. In Proceedings of the First International

Conference on AI Planning Systems, pages 13{19, 1992.

[Boehm-Davis et al., 1989] D. A. Boehm-Davis, R. W. Holt, M. Koll, G. Yastrop, and R. Pe-
ters. E�ects of di�erent database formats on information retrieval. Human Factors,
31:579{592, 1989.

[Borrajo and Veloso, 1996] Daniel Borrajo and Manuela Veloso. Lazy incremental learning
of control knowledge for e�ciently obtaining quality plans. Arti�cial Initelligence Review,
10:1{34, 1996.

[Breese and Horvitz, 1990] John S. Breese and Eric J. Horvitz. Ideal reformulation of belief
networks. In Proceedings of the Sixth Conference on Uncertainty in Arti�cial Intelligence,
pages 64{72, 1990.

[Carbonell and Gil, 1990] Jaime G. Carbonell and Yolanda Gil. Learning by experimenta-
tion: The operator re�nement method. In R. S. Michalski and Y. Kodrato�, editors, Ma-

chine Learning: An Arti�cial Intelligence Approach, pages 191{213. Morgan Kaufmann,
Palo Alto, CA, 1990.

[Carbonell et al., 1990] Jaime G. Carbonell, Craig A. Knoblock, and Steven Minton.
prodigy: An integrated architecture for planning and learning. In Kurt VanLehn, editor,
Architectures for Intelligence. Erlbaum, Hillside, NJ, 1990.

470 BIBLIOGRAPHY

[Carbonell et al., 1992] Jaime G. Carbonell, Jim Blythe, Oren Etzioni, Yolanda Gil, Robert
Joseph, Dan Kahn, Craig A. Knoblock, Steven Minton, Alicia P�erez, Scott Reilly,
Manuela M. Veloso, and Xuemei Wang. prodigy4.0: The manual and tutorial. Technical
Report CMU-CS-92-150, School of Computer Science, Carnegie Mellon University, 1992.

[Carbonell, 1983] Jaime G. Carbonell. Learning by analogy: Formulating and generalizing
plans from past experience. In Ryszard S. Michalski, Jaime G. Carbonell, and Tom M.
Mitchell, editors, Machine Learning: An Arti�cial Intelligence Approach. Tioga Publish-
ers, Palo Alto, CA, 1983.

[Carbonell, 1990] Jaime G. Carbonell, editor. Machine Learning: Paradigms and Methods.
MIT Press, Boston, MA, 1990.

[Carre, 1971] B. A. Carre. An algebra for network routing problems. Journal of the Institute
of Mathematics and Its Applications, 7:273{294, 1971.

[Chapman, 1987] David Chapman. Planning for conjunctive goals. Arti�cial Intelligence,
32:333{377, 1987.

[Cheng and Carbonell, 1986] Patricia W. Cheng and Jaime G. Carbonell. The fermi sys-
tem: Inducing iterative macro-operators from experience. In Proceedings of the Fifth

National Conference on Arti�cial Intelligence, pages 490{495, 1986.

[Christensen, 1990] Jens Christensen. A hierarchical planner that generates its own abstrac-
tion hierarchies. In Proceedings of the Eighth National Conference on Arti�cial Intelligence,
pages 1004{1009, 1990.

[Cohen et al., 1994] William W. Cohen, Russell Greiner, and Dale Schuurmans. Probabilis-
tic hill-climbing. In S.J. Hanson, T. Petsche, M. Kearns, and R.L. Rivest, editors, Compu-
tational Learning Theory and Natural Learning Systems, volume II, pages 171{181. MIT
Press, Boston, MA, 1994.

[Cohen, 1992] William W. Cohen. Using distribution-free learning theory to analyze
solution-path caching mechanisms. Computational Intelligence, 8(2):336{375, 1992.

[Cohen, 1995] Paul R. Cohen. Empirical Methods for Arti�cial Intelligence. MIT Press,
Cambridge, MA, 1995.

[Cormen et al., 1990] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. In-
troduction to Algorithms. MIT Press, Cambridge, MA, 1990.

[Cox and Veloso, 1997a] Michael T. Cox and Manuela M. Veloso. Controlling for unexpected
goals when planning in a mixed-initiative setting. In E. Costa and A. Cardoso, editors,
Progress in Arti�cial Intelligence: Eighth Portuguese Conference on Arti�cial Intelligence,
pages 309{318. Springer-Verlag, Berlin, Germany, 1997.

BIBLIOGRAPHY 471

[Cox and Veloso, 1997b] Michael T. Cox and Manuela M. Veloso. Supporting combined hu-
man and machine planning: An interface for planning by analogical reasoning. In D. B.
Leake and E. Plaza, editors, Case-Based Reasoning Research and Development: Second In-
ternational Conference on Case-Based Reasoning, pages 531{540. Springer-Verlag, Berlin,
Germany, 1997.

[Drastal et al., 1994 1997] George A. Drastal, Russell Greiner, Stephen J. Hanson, Michael
Kearns, Thomas Petsche, Ronald L. Rivest, and Jude W. Shavlik, editors. Computational
Learning Theory and Natural Learning Systems, volume I{IV. MIT Press, Boston, MA,
1994{1997.

[Driskill and Carbonell, 1996] Robert Driskill and Jaime G. Carbonell. Search control in
problem solving: A gapped macro operator approach. Unpublished Manuscript, 1996.

[Duncker, 1945] K. Duncker. On problem solving. Psychological Monographs, 58:1{113, 1945.

[Ellman and Giunchiglia, 1998] Tom Ellman and Fausto Giunchiglia, editors. Proceedings of
the Symposium of Abstraction, Reformulation and Approximation, 1998.

[Ernst and Goldstein, 1982] George M. Ernst and Michael M. Goldstein. Mechanical dis-
covery of classes of problem-solving strategies. Journal of the American Association for

Computing Machinery, 29(1):1{23, 1982.

[Erol et al., 1994] Kutluhan Erol, James Handler, and Dana S. Nau. Htn planning: Com-
plexity and expressivity. In Proceedings of the Twelfth National Conference on Arti�cial

Intelligence, pages 1123{1128, 1994.

[Etzioni and Minton, 1992] Oren Etzioni and Steven Minton. Why EBL produces overly-
speci�c knowledge: A critique of the prodigy approaches. In Proceedings of the Ninth

International Workshop on Machine Learning, pages 137{143, 1992.

[Etzioni, 1990] Oren Etzioni. A Structural Theory of Explanation-Based Learning. PhD
thesis, School of Computer Science, Carnegie Mellon University, 1990. Technical Report
CMU-CS-90-185.

[Etzioni, 1992] Oren Etzioni. An asymptotic analysis of speedup learning. In Proceedings of

the Ninth International Conference on Machine Learning, pages 137{143, 1992.

[Etzioni, 1993] Oren Etzioni. Acquiring search control knowledge via static analysis. Arti-
�cial Intelligence, 62(2):255{301, 1993.

[Fikes and Nilsson, 1971] Richard E. Fikes and Nils J. Nilsson. strips: A new approach to
the application of theorem proving to problem solving. Arti�cial Intelligence, 2:189{208,
1971.

[Fikes and Nilsson, 1993] Richard E. Fikes and Nils J. Nilsson. strips, a retrospective.
Arti�cial Intelligence, 2:227{232, 1993.

472 BIBLIOGRAPHY

[Fikes et al., 1972] Richard E. Fikes, Peter E. Hart, and Nils J. Nilsson. Learning and
executing generalized robot plans. Arti�cial Intelligence, 3(4):251{288, 1972.

[Fink and Blythe, 1998] Eugene Fink and Jim Blythe. A complete bidirectional planner. In
Proceedings of the Fourth International Conference on AI Planning Systems, pages 78{84,
1998.

[Fink and Veloso, 1996] Eugene Fink and Manuela M. Veloso. Formalizing the prodigy
planning algorithm. In M. Ghallab and A. Milani, editors, New Directions in AI Planning,
pages 261{271. IOS Press, Amsterdam, Netherlands, 1996.

[Fink and Yang, 1992a] Eugene Fink and Qiang Yang. Automatically abstracting e�ects of
operators. In Proceedings of the First International Conference on AI Planning Systems,
pages 243{251, 1992.

[Fink and Yang, 1992b] Eugene Fink and Qiang Yang. Formalizing plan justi�cations. In
Proceedings of the Ninth Conference of the Canadian Society for Computational Studies

of Intelligence, pages 9{14, 1992.

[Fink and Yang, 1993] Eugene Fink and Qiang Yang. Forbidding preconditions and ordered
abstraction hierarchies. In Proceedings of the AAAI 1993 Spring Symposium on Founda-

tions of Automatic Planning, pages 34{38, 1993.

[Fink and Yang, 1995] Eugene Fink and Qiang Yang. Planning with primary e�ects: Ex-
periments and analysis. In Proceedings of the Fourteenth International Joint Conference

on Arti�cial Intelligence, pages 1606{1611, 1995.

[Fink and Yang, 1997] Eugene Fink and Qiang Yang. Automatically selecting and using
primary e�ects in planning: Theory and experiments. Arti�cial Intelligence, 89:285{315,
1997.

[Foulser et al., 1992] D. E. Foulser, Ming Li, and Qiang Yang. Theory and algorithms for
plan merging. Arti�cial Intelligence, 57:143{182, 1992.

[Gentner and Stevens, 1983] Dedre Gentner and Albert L. Stevens, editors. Mental Models,
Hillside, NJ, 1983. Lawrence Erlbaum Associates.

[Gil and P�erez, 1994] Yolanda Gil and Alicia P�erez. Applying a general-purpose planning
and learning architectures to process planning. In Proceedigs of the AAAI 1994 Fall

Symposium on Planning and Learning, pages 48{52, 1994.

[Gil, 1991] Yolanda Gil. A speci�cation of process planning for prodigy. Technical Report
CMU-CS-91-179, School of Computer Science, Carnegie Mellon University, 1991.

[Gil, 1992] Yolanda Gil. Acquiring Domain Knowledge for Planning by Experimentation.
PhD thesis, School of Computer Science, Carnegie Mellon University, 1992. Technical
Report CMU-CS-92-175.

BIBLIOGRAPHY 473

[Giunchiglia and Walsh, 1992] Fausto Giunchiglia and Toby Walsh. A theory of abstraction.
Arti�cial Intelligence, 57:323{389, 1992.

[Golding et al., 1987] Andrew G. Golding, Paul S. Rosenbloom, and John E. Laird. Learning
general search control from outside guidance. In Proceedings of the Tenth International

Joint Conference on Arti�cial Intelligence, pages 334{337, 1987.

[Goldstein, 1978] Michael M. Goldstein. The Mechanical Discovery of Problem-Solving

Strategies. PhD thesis, Computer Engineering Department, Case Western Reserve Uni-
versity, 1978.

[Ha and Haddawy, 1997] Vu Ha and Peter Haddawy. Problem-focused incremental elicita-
tion of multi-attribute utility models. In Proceedings of the Thriteenth Conference on

Uncertainty in Arti�cial Intelligence, pages 215{222, 1997.

[Haigh and Veloso, 1996] Karen Zita Haigh and Manuela M. Veloso. Interleaving planning
and robot execution for asynchronous user requests. In Proceedings of the International

Conference on Intelligent Robots and Systems, 1996.

[Haigh and Veloso, 1997a] Karen Zita Haigh and Manuela M. Veloso. High-level planning
and low-level execution: Towards a complete robotic agent. Autonomous Agents, 1997.

[Haigh and Veloso, 1997b] Karen Zita Haigh and Manuela M. Veloso. Interleaving planning
and robot execution for asynchronous user requests. Autonomous Robots, 5(1):79{95, 1997.

[Haigh and Veloso, 1998] Karen Zita Haigh and Manuela M. Veloso. Planning, execution
and learning in a robotic agent. In Proceedings of the Fourth International Conference on

AI Planning Systems, pages 120{127, 1998.

[Haigh, 1998] Karen Zita Haigh. Situation-Dependent Learning for Interleaved Planning and
Robot Execution. PhD thesis, School of Computer Science, Carnegie Mellon University,
1998. Technical Report CMU-CS-98-108.

[Hall, 1987] Rogers P. Hall. Understanding analogical reasoning: Computational approaches.
Arti�cial Intelligence, 39:39{120, 1987.

[Hansen and Zilberstein, 1996] Eric A. Hansen and Shlomo Zilberstein. Monitoring the
progress of anytime problem-solving. In Proceedings of the Fourteenth National Conference
on Arti�cial Intelligence, pages 1229{1234, 1996.

[Hansson and Mayer, 1989] Othar Hansson and Andrew Mayer. Heuristic search and ev-
idential reasoning. In Proceedings of the Fifth Workshop on Uncertainty in Arti�cial

Intelligence, pages 152{161, 1989.

[Haussler, 1988] David Haussler. Quantifying inductive bias: AI learning algorithms and
Valiant's learning framework. Arti�cial Intelligence, 36:177{221, 1988.

474 BIBLIOGRAPHY

[Hayes and Simon, 1974] John R. Hayes and Herbert A. Simon. Understanding written
problem instructions. In L. W. Gregg, editor, Knowledge and Cognition, pages 167{200.
Lawrence Erlbaum Associates, Potomac, MD, 1974.

[Hayes and Simon, 1976] John R. Hayes and Herbert A. Simon. The understanding process:
Problem isomorphs. Cognitive Psychology, 8:165{190, 1976.

[Hayes and Simon, 1977] John R. Hayes and Herbert A. Simon. Psychological di�erence
among problem isomorphs. In N. J. Castellan, D. B. Pisoni, and G. R. Potts, editors,
Cognitive Theory. Lawrence Erlbaum Associates, Hillside, NJ, 1977.

[Hibler, 1994] David Hibler. Implicit abstraction by thought experiments. In Proceedings of

the Workshop on Theory Reformulation and Abstraction, pages 9{26, 1994.

[Holte et al., 1994] Robert C. Holte, C. Drummond, M. B. Perez, Robert M. Zimmer, and
Alan J. MacDonald. Searching with abstractions: A unifying framework and new high-
performance algorithm. In Proceedings of the Tenth Conference of the Canadian Society

for Computational Studies of Intelligence, pages 263{270, 1994.

[Holte et al., 1996a] Robert C. Holte, T. Mkadmi, Robert M. Zimmer, and Alan J. MacDon-
ald. Speeding up problem solving by abstraction: A graph-oriented approach. Arti�cial

Intelligence, 85:321{361, 1996.

[Holte et al., 1996b] Robert C. Holte, M. B. Perez, Robert M. Zimmer, and Alan J. Mac-
Donald. Hierarchical A�: Searching abstraction hierarchies e�ciently. In Proceedings of

the Fourteenth National Conference on Arti�cial Intelligence, pages 530{535, 1996.

[Holte, 1988] Robert C. Holte. An Analytical Framework for Learning Systems. PhD thesis,
Arti�cial Intelligence Laboratory, University of Texas at Austin, 1988. Technical Report
AI88-72.

[Horvitz, 1988] Eric J. Horvitz. Reasoning under varying and uncertain resource constraints.
In Proceedings of the Seventh National Conference on Arti�cial Intelligence, pages 111{
116, 1988.

[Hull, 1997] John C. Hull. Options, Futures, and Other Derivatives Securities. Prentice Hall,
Upper Saddle River, NJ, third edition, 1997.

[Jones and Schkade, 1995] Donald R. Jones and David A. Schkade. Choosing and trans-
lating between problem representations. Organizational Behavior and Human Decision

Processes, 61(2):214{223, 1995.

[Joseph, 1992] Robert L. Joseph. Graphical Knowledge Acquisition for Visually-Oriented

Domains. PhD thesis, School of Computer Science, Carnegie Mellon University, 1992.
Technical Report CMU-CS-92-188.

[Junghanns and Schae�er, 1992] Andreas Junghanns and Jonathan Schae�er. Sokoban: Im-
proving the search with relevance cuts. Journal of Theoretical Computing Science, 1992.
To appear.

BIBLIOGRAPHY 475

[Junghanns and Schae�er, 1998] Andreas Junghanns and Jonathan Schae�er. Single-agent
search in the presence of deadlocks. In Proceedings of the Sixteenth National Conference

on Arti�cial Intelligence, pages 419{424, 1998.

[Junghanns and Schae�er, 1999] Andreas Junghanns and Jonathan Schae�er. Domain-
dependent single-agent search enhancements. In Proceedings of the Sixteenth International
Joint Conference on Arti�cial Intelligence, 1999.

[Kambhampati and Srivastava, 1996a] Subbarao Kambhampati and Biplav Srivastava. Uni-
fying classical planning approaches. Technical Report 96-006, Deptartment of Computer
Science, Arizona State University, 1996.

[Kambhampati and Srivastava, 1996b] Subbarao Kambhampati and Biplav Srivastava. Uni-
versal classical planner: An algorithm for unifying state-space and plan-space planning.
In M. Ghallab and A. Milani, editors, New Directions in AI Planning, pages 261{271. IOS
Press, Amsterdam, Netherlands, 1996.

[Kaplan and Simon, 1990] Craig A. Kaplan and Herbert A. Simon. In search of insight.
Cognitive Psychology, 22:374{419, 1990.

[Kaplan, 1989] Craig A. Kaplan. switch: A simulation of representational change in the
Mutilated Checkerboard problem. Technical Report C.I.P. 477, Department of Psychology,
Carnegie Mellon University, 1989.

[Knoblock and Yang, 1994] Craig A. Knoblock and Qiang Yang. Evaluating the trade-o�s in
partial-order planning algorithms. In Proceedings of the Tenth Conference of the Canadian
Society for Computational Studies of Intelligence, pages 279{286, 1994.

[Knoblock and Yang, 1995] Craig A. Knoblock and Qiang Yang. Relating the performance
of partial-order planning algorithms to domain features. SIGART Bulletin, 6(1), 1995.

[Knoblock et al., 1991a] Craig A. Knoblock, Steven Minton, and Oren Etzioni. Integrating
abstraction and explanation-based learning in prodigy. In Proceedings of the Ninth

National Conference on Arti�cial Intelligence, pages 541{546, 1991.

[Knoblock et al., 1991b] Craig A. Knoblock, Josh Tenenberg, and Qiang Yang. Characteriz-
ing abstraction hierarchies for planning. In Proceedings of the Ninth National Conference

on Arti�cial Intelligence, pages 692{697, 1991.

[Knoblock, 1990] Craig A. Knoblock. Learning abstraction hierarchies for problem solving.
In Proceedings of the Eighth National Conference on Arti�cial Intelligence, pages 923{928,
1990.

[Knoblock, 1991] Craig A. Knoblock. Search reduction in hierarchical problem solving. In
Proceedings of the Ninth National Conference on Arti�cial Intelligence, pages 686{691,
1991.

[Knoblock, 1992] Craig A. Knoblock. An analysis of abstrips. In Proceedings of the Second

International Conference on Arti�cial Intelligence Planning Systems, 1992.

476 BIBLIOGRAPHY

[Knoblock, 1993] Craig A. Knoblock. Generating Abstraction Hierarchies: An Automated

Approach to Reducing Search in Planning. Kluwer Academic Publishers, Boston, MA,
1993.

[Knoblock, 1994] Craig A. Knoblock. Automatically generating abstractions for planning.
Arti�cial Intelligence, 68:243{302, 1994.

[Koenig, 1997] Sven Koenig. Goal-Directed Acting with Incomplete Information. PhD thesis,
School of Computer Science, Carnegie Mellon University, 1997. Technical Report CMU-
CS-97-199.

[Kolodner, 1984] Janet L. Kolodner. Retrieval and Organization Strategies in Conceptual

Memory: A Computer Model. Lawrence Erlbaum Associates, Hillsdale, NJ, 1984.

[Kook and Novak, 1991] Hyung Joon Kook and Gordon S. Novak. Representation of mod-
els for expert problem solving in physics. IEEE Transactions on Software Engineering,
3(1):48{54, 1991.

[Korf, 1980] Richard E. Korf. Toward a model of representation changes. Arti�cial Intelli-
gence, 14:41{78, 1980.

[Korf, 1985a] Richard E. Korf. Learning to Solve Problems by Searching for Macro-

Operators. Putnam Publishing Inc., Boston, MA, 1985.

[Korf, 1985b] Richard E. Korf. Macro-operators: A weak method for learning. Arti�cial

Intelligence, 26(1):35{77, 1985.

[Korf, 1987] Richard E. Korf. Planning as search: A quantitative approach. Arti�cial Intel-
ligence, 33:65{88, 1987.

[Kuokka, 1990] Daniel R. Kuokka. The Deliberative Integration of Planning, Execution, and

Learning. PhD thesis, School of Computer Science, Carnegie Mellon University, 1990.
Technical Report CMU-CS-90-135.

[Laird et al., 1986] John E. Laird, Paul S. Rosenbloom, and Allen Newell. Chunking in Soar:
The anatomy of a general learning mechanism. Machine Learning, 1:11{46, 1986.

[Laird et al., 1987] John E. Laird, Allen Newell, and Paul S. Rosenbloom. Soar: An archi-
tecture for general intelligence. Arti�cial Intelligence, 33:1{64, 1987.

[Langley, 1983] Pat Langley. Learning e�ective search heuristics. In Proceedings of the Eighth
International Joint Conference on Arti�cial Intelligence, pages 419{421, 1983.

[Larkin and Simon, 1981] Jill Larkin and Herbert A. Simon. Learning through growth of
skill in mental modeling. In Proceedings of the Third Annual Conference of the Cognitive

Science Society, 1981.

[Larkin and Simon, 1987] Jill H. Larkin and Herbert A. Simon. Why a diagram is (some-
times) worth ten thousand words. Cognitive Science, 11:65{99, 1987.

BIBLIOGRAPHY 477

[Larkin et al., 1988] Jill H. Larkin, Frederick Reif, Jaime G. Carbonell, and Angela
Gugliotta. fermi: A exible expert reasoner with multi-domain inferencing. Cognitive

Psychology, 12:101{138, 1988.

[Lehmann, 1977] D. J. Lehmann. Algebraic structures for transitive closure. Theoretical

Computer Science, 4:59{76, 1977.

[Levy and Nayak, 1995] Alon Y. Levy and P. Pandurang Nayak, editors. Proceedings of the
Symposium of Abstraction, Reformulation and Approximation, 1995.

[Lowry, 1992] Michael R. Lowry, editor. Proceedings of the Workshop on Change of Rep-

resentation and Problem Reformulation. NASA Ames Research Center, 1992. Technical
Report FIA-92-06.

[Van Baalen, 1989] Je�rey Van Baalen. Toward a Theory of Representation Design. PhD
thesis, Arti�cial Intelligence Laboratory, Masschusetts Institute of Technology, 1989. Tech-
nical Report 1128.

[Van Baalen, 1994] Je�rey Van Baalen, editor. Proceedings of the Workshop on Theory

Reformulation and Abstraction. Computer Science Department, University of Wyoming,
1994. Technical Report 123.

[McAllester and Rosenblitt, 1991] David A. McAllester and David Rosenblitt. Systematic
nonlinear planning. In Proceedings of the Ninth National Conference on Arti�cial Intelli-

gence, pages 634{639, 1991.

[Mendenhall, 1987] WilliamMendenhall. Introduction to Probability and Statistics. Duxbury
Press, Boston, MA, seventh edition, 1987.

[Minton et al., 1989a] Steven Minton, Jaime G. Carbonell, Craig A. Knoblock, Dan R.
Kuokka, Oren Etzioni, and Yolanda Gil. Explanation-based learning: A problem-solving
perspective. Arti�cial Intelligence, 40:63{118, 1989.

[Minton et al., 1989b] Steven Minton, Dan R. Kuokka, Yolanda Gil, Robert L. Joseph, and
Jaime G. Carbonell. prodigy2.0: The manual and tutorial. Technical Report CMU-CS-
89-146, School of Computer Science, Carnegie Mellon University, 1989.

[Minton et al., 1991] Steven Minton, John Bresina, and Mark Drummond. Commitment
strategies in planning: A comparative analysis. In Proceedings of the Twelfth International
Joint Conference on Arti�cial Intelligence, pages 259{261, 1991.

[Minton et al., 1994] Steven Minton, John Bresina, and Mark Drummond. Total-order and
partial-order planning: A comparative analysis. Journal of Arti�cial Intelligence Research,
2:227{262, 1994.

[Minton, 1985] Steven Minton. Selectively generalizing plans for problem-solving. In Proceed-
ings of the Ninth International Joint Conference on Arti�cial Intelligence, pages 596{599,
1985.

478 BIBLIOGRAPHY

[Minton, 1988] Steven Minton. Learning Search Control Knowledge: An Explanation-Based

Approach. Kluwer Academic Publishers, Boston, MA, 1988.

[Minton, 1990] Steven Minton. Quantitative results concerning the utility of explanation-
based learning. Arti�cial Intelligence Journal, 42:363{391, 1990.

[Minton, 1993a] Steven Minton. An analytical learning system for specialized heuristics.
In Proceedings of the Thirteenth International Joint Conference on Arti�cial Intelligence,
1993.

[Minton, 1993b] Steven Minton. Integrating heuristics for constraint satisfaction problems:
A case study. In Proceedings of the Eleventh National Conference on Arti�cial Intelligence,
1993.

[Minton, 1996] Steven Minton. Automatically con�guring constraint satisfaction programs:
A case study. Constraints: An International Journal, 1:7{43, 1996.

[Mitchell et al., 1983] Tom M. Mitchell, Paul E. Utgo�, and Ranan B. Banerji. Learning
by experimentation: Acquiring and re�ning problem-solving heuristics. In Ryszard S.
Michalski, Jaime G. Carbonell, and Tom M. Mitchell, editors, Machine Learning: An

Arti�cial Intelligence Approach, pages 163{190. Tioga Publishers, Palo Alto, CA, 1983.

[Mooney, 1988] Raymond J. Mooney. Generalizing the order of operators in macro-operators.
In Proceedings of the Fifth International Conference on Machine Learning, pages 270{283,
San Mateo, CA, 1988. Morgan Kaufmann.

[Mouaddib and Zilberstein, 1995] AbdelillahMouaddib and Shlomo Zilberstein. Knowledge-
based anytime computation. In Proceedings of the Fourteenth International Joint Confer-

ence on Arti�cial Intelligence, pages 775{781, 1995.

[M�uhlpfordt and Schmid, 1998] Martin M�uhlpfordt and Ute Schmid. Synthesis of recursive
functions with interdependent parameters. In Proceedings of the Workshop on Applied

Learning Theory, pages 132{139, Kaiserslautern, Germany, 1998.

[Natarajan, 1991] Balas K. Natarajan. Machine Learning: A Theoretical Approach. Morgan
Kaufmann, San Mateo, CA, 1991.

[Newell and Simon, 1961] Allen Newell and Herbert A. Simon. GPS, a program that sim-
ulates human thought. In H. Billing, editor, Lernende Automaten, pages 109{124. R.
Oldenbourg, Munich, Germany, 1961.

[Newell and Simon, 1972] Allen Newell and Herbert A. Simon. Human Problem Solving.
Prentice Hall, Englewood Cli�s, NJ, 1972.

[Newell et al., 1960] Allen Newell, J. C. Shaw, and Herbert A. Simon. A variety of intelligent
learning in a general problem solver. In Marshall C. Yovits, editor, International Tracts
in Computer Science and Technology and Their Applications, volume 2: Self-Organizing
Systems, pages 153{189. Pergamon Press, New York, NY, 1960.

BIBLIOGRAPHY 479

[Newell, 1965] Allen Newell. Limitations of the current stock of ideas about problem solving.
In A. Kent and O. Tualbee, editors, Electronic Information Handling. Spartan Books,
Washington, DC, 1965.

[Newell, 1966] Allen Newell. On the representations of problems. In Computer Science

Research Reviews. Carnegie Institute of Technology, Pittsburgh, PA, 1966.

[Newell, 1992] Allen Newell. Uni�ed theories of cognition and the role of Soar. In J. A.
Michon and A. Aky�urek, editors, Soar: A Cognitive Architecture in Perspective, pages
25{79. Kluwer Academic Publishers, Netherlands, 1992.

[Nilsson, 1971] Nils J. Nilsson. Problem-Solving Methods in Arti�cial Intelligence. McGraw-
Hill, New York, NY, 1971.

[Nilsson, 1980] Nils J. Nilsson. Principles of Arti�cial Intelligence. Morgan Kaufmann, San
Mateo, CA, 1980.

[Novak, 1995] Gordon S. Novak. Creation of views for reuse of software with di�erent data
representations. IEEE Transactions on Software Engineering, 21(12):993{1005, 1995.

[Ohlsson, 1984] S. Ohlsson. Restructuring revisited i: Summary and critique of the gestalt
theory of problem solving. Scandinavian Journal of Psychology, 25:65{78, 1984.

[Paige and Simon, 1966] Je�ery M. Paige and Herbert A. Simon. Cognitive processes in
solving algebra word problems. In B. Kleinmuntz, editor, Problem Solving. John Wiley &
Sons, New York, NY, 1966.

[Pednault, 1988a] Edwin P. D. Pednault. Extending conventional planning tecnhiques to
handle actions with context-dependent e�ects. In Proceedings of the Seventh National

Conference on Arti�cial Intelligence, pages 55{59, 1988.

[Pednault, 1988b] Edwin P. D. Pednault. Synthesizing plans that contain actions with
context-dependent e�ects. Computational Intelligence, 4:356{372, 1988.

[Penberthy and Weld, 1992] J. Scott Penberthy and Daniel S. Weld. ucpop: A sound, com-
plete, partial-order planner for ADL. In Proceedings of the Third International Conference

on Knowledge Representation in Reasoning, pages 103{114, 1992.

[Peot and Smith, 1993] Mark A. Peot and David E. Smith. Threat-removal strategies for
partial-order planning. In Proceedings of the Eleventh National Conference on Arti�cial

Intelligence, pages 492{499, 1993.

[P�erez and Carbonell, 1993] M. Alicia P�erez and Jaime G. Carbonell. Automated acquisition
of control knowledge to improve the quality of plans. Technical Report Technical Report
CMU-CS-93-142, School of Computer Science, Carnegie Mellon University, 1993.

480 BIBLIOGRAPHY

[P�erez and Etzioni, 1992] M. Alicia P�erez and Oren Etzioni. dynamic: A new role for
training problems in EBL. In D. Sleeman and P. Edwards, editors, Proceedings of the

Ninth International Conference on Machine Learning, San Mateo, CA, 1992. Morgan
Kaufmann.

[P�erez, 1995] M. Alicia P�erez. Learning Search Control Knowledge to Improve Plan Quality.
PhD thesis, School of Computer Science, Carnegie Mellon University, 1995. Technical
Report CMU-CS-95-175.

[Peterson, 1994] Donald Peterson. Re-representation and emergent information in three
cases of problem solving. In Arti�cial Intelligence and Creativity, pages 81{92. Kluwer
Academic Publishers, Dordrecht, Netherlands, 1994.

[Peterson, 1996] Donald Peterson, editor. Forms of Representation, Exeter, United King-
dom, 1996. Intellect Books.

[Pohl, 1971] Ira Pohl. Bi-directional search. In Bernard Meltzer and Donald Michie, editors,
Machine Intelligence 6, pages 127{140. American Elsevier Publishers, New York, NY,
1971.

[Polya, 1957] George Polya. How to Solve It. Doubleday, Garden City, NY, second edition,
1957.

[Qin and Simon, 1992] Yulin Qin and Herbert A. Simon. Imagery and mental models in
problem solving. In N. Hari Narayanan, editor, Proceedings of the AAAI 1992 Spring

Symposium on Reasoning with Diagrammatic Representations, Palo Alto, CA, 1992. Stan-
ford University.

[Rich and Knight, 1991] Elain Rich and Kevin Knight. Arti�cial Intelligence. McGraw-Hill,
New York, second edition, 1991.

[Russell and Norvig, 1995] Stuart J. Russell and Peter Norvig. Arti�cial Intelligence: A

Modern Approach. Prentice Hall, Englewood Cli�s, NJ, 1995.

[Russell et al., 1993] Stuart J. Russell, Devika Subramanian, and Ronald Parr. Provably
bounded optimal agents. In Proceedings of the Thirteenth International Joint Conference

on Arti�cial Intelligence, pages 338{344, 1993.

[Russell, 1990] Stuart J. Russell. Fine-grained decision-theoretic search control. In Pro-

ceedings of the Sixth Conference on Uncertainty in Arti�cial Intelligence, pages 436{442,
1990.

[Sacerdoti, 1974] Earl D. Sacerdoti. Planning in a hierarchy of abstraction spaces. Arti�cial
Intelligence, 5(2):115{135, 1974.

[Sacerdoti, 1977] Earl D. Sacerdoti. A Structure for Plans and Behavior. Elsevier Publishers,
Amsterdam, Netherlands, 1977.

BIBLIOGRAPHY 481

[Schank et al., 1975] Roger C. Schank, Neil M. Goldman, Charles J. Rieger III, and Christo-
pher K. Riesbeck. Inference and paraphrase by computer. Journal of the Association for

Computing Machinery, 22(3):309{328, 1975.

[Schmid and Wysotzki, 1996] Ute Schmid and Fritz Wysotzki. Induction of recursive pro-
gram schemes. In Proceedings of the Tenth European Conference on Machine Learning,
pages 214{226, 1996.

[Shell and Carbonell, 1989] Peter Shell and Jaime G. Carbonell. Towards a general frame-
work for composing disjunctive and iterative macro-operators. In Proceedings of the

Eleventh International Joint Conference on Arti�cial Intelligence, 1989.

[Simon et al., 1985] Herbert A. Simon, K. Kotovsky, and J. R. Hayes. Why are some prob-
lems hard? Evidence from the Tower of Hanoi. Cognitive Psychology, 17:248{294, 1985.

[Simon, 1975] Herbert A. Simon. The functional equivalence of problem solving skills. Cog-
nitive Psychology, 7:268{288, 1975.

[Simon, 1979] Herbert A. Simon. Models of Thought, volume I. Yale University Press, New
Haven, CT, 1979.

[Simon, 1989] Herbert A. Simon. Models of Thought, volume II. Yale University Press, New
Haven, CT, 1989.

[Simon, 1996] Herbert A. Simon. The Sciences of the Arti�cial. MIT Press, Cambridge,
MA, third edition, 1996.

[Smirnov, 1997] Yury V. Smirnov. Hybrid Algorithms for On-Line Search and Combinato-

rial Optimization Problems. PhD thesis, School of Computer Science, Carnegie Mellon
University, 1997. Technical Report CMU-CS-97-171.

[Smith and Peot, 1992] David E. Smith and Mark A. Peot. A critical look at Knoblock's
hierarchy mechanism. In Proceedings of the First International Conference on AI Planning

Systems, pages 307{308, 1992.

[Ste�k, 1981] Mark Ste�k. Planning with constraints (molgen: Part 1). Arti�cial Intelli-
gence, 16(2):111{140, 1981.

[Stone and Veloso, 1994] Peter Stone and Manuela M. Veloso. Learning to solve complex
planning problems: Finding useful auxiliary problems. In Proceedings of the AAAI 1994

Fall Symposium on Planning and Learning, pages 137{141, 1994.

[Stone and Veloso, 1996] Peter Stone and Manuela M. Veloso. User-guided interleaving of
planning and execution. In M. Ghallab and A. Milani, editors, New Directions in AI

Planning, pages 103{112. IOS Press, Amsterdam, Netherlands, 1996.

[Stone et al., 1994] Peter Stone, Manuela M. Veloso, and Jim Blythe. The need for di�erent
domain-independent heuristics. In Proceedings of the Second International Conference on

AI Planning Systems, pages 164{169, 1994.

482 BIBLIOGRAPHY

[Tabachneck-Schijf et al., 1997] Hermina J. M. Tabachneck-Schijf, Anthony M. Leonardo,
and Herbert A. Simon. CaMeRa: A computational model of multiple representations.
Cognitive Science, 21(3):305{350, 1997.

[Tabachneck, 1992] Hermina J. M. Tabachneck. Computational Di�erences in Mental Rep-

resentations: E�ects of Mode of Data Presentation on Reasoning and Understanding. PhD
thesis, Department of Psychology, Carnegie Mellon University, 1992.

[Tadepalli and Natarajan, 1996] Prasad Tadepalli and Balas K. Natarajan. A formal frame-
work for speedup learning from problems and solutions. Journal of Arti�cial Intelligence
Research, 4:445{475, 1996.

[Tamble et al., 1990] Milind Tamble, Allen Newell, and Paul S. Rosenbloom. The problem
of expensive chunks and its solution by restricting expressiveness. Machine Learning,
5:299{348, 1990.

[Tate, 1976] Austin Tate. Project planning using a hierarchical nonlinear planner. Technical
Report 25, Department of Arti�cial Intelligence, University of Edinburg, 1976.

[Tate, 1977] Austin Tate. Generating project networks. In Proceedings of the Second Inter-

national Joint Conference on Arti�cial Intelligence, pages 888{900, 1977.

[Tenenberg, 1988] Josh D. Tenenberg. Abstraction in Planning. PhD thesis, Department of
Computer Science, University of Rochester, 1988. Technical Report 250.

[Unruh and Rosenbloom, 1989] Amy Unruh and Paul S. Rosenbloom. Abstraction in prob-
lem solving and learning. In Proceedings of the Eleventh International Joint Conference

on Arti�cial Intelligence, pages 681{687, 1989.

[Unruh and Rosenbloom, 1990] Amy Unruh and Paul S. Rosenbloom. Two new weak
method incerements for abstraction. In Proceedings of the Workshop on Automatic Gen-

eration of Approximations and Abstractions, 1990.

[Valiant, 1984] Leslie G. Valiant. A theory of the learnable. Communications of the ACM,
27:1134{1142, 1984.

[Veloso and Blythe, 1994] Manuela M. Veloso and Jim Blythe. Linkability: Examining ca-
sual link commitments in partial-order planning. In Proceedings of the Second Interna-

tional Conference on AI Planning Systems, pages 170{175, 1994.

[Veloso and Borrajo, 1994] Manuela M. Veloso and Daniel Borrajo. Learning strategy knowl-
edge incrementally. In Proceedings of the Sixth International Conference on Tools with

Arti�cial Intelligence, pages 484{490, New Orleans, LA, 1994.

[Veloso and Carbonell, 1990] Manuela M. Veloso and Jaime G. Carbonell. Integrating anal-
ogy into a general problem-solving architecture. In M. Zemankova and Z. Ras, editors,
Intelligent Systems, pages 29{51. Ellis Horwood, Chichester, United Kingdom, 1990.

BIBLIOGRAPHY 483

[Veloso and Carbonell, 1993a] Manuela M. Veloso and Jaime G. Carbonell. Derivational
analogy in prodigy: Automating case acquisition, storage, and utilization. Machine

Learning, 10:249{278, 1993.

[Veloso and Carbonell, 1993b] Manuela M. Veloso and Jaime G. Carbonell. Towards scaling
up machinge learning: A case study with derivational analogy in prodigy. In M. Ze-
mankova and Z. Ras, editors, Machine Learning Methods for Planning, pages 233{272.
Morgan Kaufmann, San Mateo, CA, 1993.

[Veloso and Stone, 1995] Manuela M. Veloso and Peter Stone. flecs: Planning with a
exible commitment strategy. Journal of Arti�cial Intelligence Research, 3:25{52, 1995.

[Veloso et al., 1995] Manuela M. Veloso, Jaime G. Carbonell, M. Alicia P�erez, Daniel Bor-
rajo, Eugene Fink, and Jim Blythe. Integrating planning and learning: The prodigy
architecture. Journal of Experimental and Theoretical Arti�cial Intelligence, 7(1):81{120,
1995.

[Veloso et al., 1997] Manuela M. Veloso, Alice M. Mulvehill, and Michael T. Cox. Rationale-
supported mixed-initiative case-based planning. In Proceedings of the Fifteenth National

Conference on Arti�cial Intelligence, pages 1072{1077, 1997.

[Veloso, 1989] Manuela M. Veloso. Nonlinear problem solving using intelligent casual com-
mitment. Technical Report CMU-CS-89-210, School of Computer Science, Carnegie Mel-
lon University, 1989.

[Veloso, 1994] Manuela M. Veloso. Planning and Learning by Analogical Reasoning.
Springer-Verlag, 1994.

[Wang, 1992] Xuemei Wang. Constraint-based e�cient matching in prodigy. Technical
Report Technical Report CMU-CS-92-128, School of Computer Science, Carnegie Mellon
University, 1992.

[Wang, 1994] Xuemei Wang. Learning planning operators by observation and practice. In
Proceedings of the Second International Conference on AI Planning Systems, pages 335{
340, 1994.

[Wang, 1996] Xuemei Wang. Learning Planning Operators by Observation and Practice.
PhD thesis, School of Computer Science, Carnegie Mellon University, 1996. CMU-CS-96-
154.

[Warren, 1974] D. H. D. Warren. warplan: A system for generating plans. Technical
Report Memo 76, Department of Computational Logic, University of Edinburg, 1974.

[Weld, 1994] Daniel S. Weld. An introduction to least commitment planning. AI Magazine,
15(4):27{61, 1994.

[Wilkins and Myers, 1995] David E. Wilkins and Karen L. Myers. A common knowledge
representation for plan generation and reactive execution. Journal of Logic and Compu-

tation, 5(6):731{761, 1995.

484 BIBLIOGRAPHY

[Wilkins and Myers, 1998] David E. Wilkins and Karen L. Myers. A multiagent planning ar-
chitecture. In Proceedings of the Fourth International Conference on Arti�cial Intelligence

Planning Systems, pages 154{162, 1998.

[Wilkins et al., 1995] David E. Wilkins, Karen L. Myers, J. D. Lowarance, and L. P. Wesley.
Planning and reacting in uncertain and dynamic environments. Journal of Experimental
and Theoretical Arti�cial Intelligence, 7(1):197{227, 1995.

[Wilkins, 1984] David E. Wilkins. Domain-independent planning: Representation and plan
generation. Arti�cial Intelligence, 22(3):269{301, 1984.

[Wilkins, 1988] David E. Wilkins. Practical Planning: Extending the Classical AI Planning
Paradigm. Morgan Kaufmann, San Mateo, CA, 1988.

[Wood, 1993] Derick Wood. Data Structures, Algorithms, and Performance. Addison-Wesley
Publishers, Reading, MA, 1993.

[Yamada and Tsuji, 1989] Seiji Yamada and Saburo Tsuji. Selective learning of macro-
operators with perfect causality. In Proceedings of the Eleventh International Joint Con-

ference on Arti�cial Intelligence, pages 603{608, 1989.

[Yang and Murray, 1994] Qiang Yang and Cheryl Murray. An evaluation of the temporal
coherence heuristic in partial-order planning. Computational Intelligence, 10(3):245{267,
1994.

[Yang and Tenenberg, 1990] Qiang Yang and Josh Tenenberg. abtweak: Abstracting a
non-linear, least-commitment planner. In Proceedings of the Eighth National Conference

on Arti�cial Intelligence, pages 204{209, Boston, MA, 1990.

[Yang et al., 1996] Qiang Yang, Josh Tenenberg, and Steve Woods. On the implementation
and evaluation of abtweak. Computational Intelligence, 12(2):295{318, 1996.

[Yang et al., 1998] Qiang Yang, Philip Fong, and Edward Kim. Design patterns for planning
systems. In Proceedings of the 1998 AIPS Workshop on Knowledge Engineering and

Acquisition for Planning: Bridging Theory and Practice, pages 104{112, 1998.

[Yang, 1997] Qiang Yang. Intelligent Planning: A Decomposition and Abstraction Based

Approach. Springer-Verlag, Berlin, Germany, 1997.

