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Abstract

Intelligent tutoring systems are effective for improving students’ learning outcomes (Bowen et
al., 2013; Koedinger & Anderson, 1997; Pane et al., 2013). However, constructing tutoring sys-
tems that are pedagogically effective has been widely recognized as a challenging problem (Mur-
ray, 1999, 2003). In this thesis, I explore the use of computational models of apprentice learning,
or computer models that learn interactively from examples and feedback, to support tutor devel-
opment. In particular, I investigate their use for authoring expert-models via demonstrations and
feedback (Matsuda et al., 2014), predicting student behavior within tutors (VanLehn et al., 1994),
and for testing alternative learning theories (MacLellan, Harpstead, Patel, & Koedinger, 2016).

To support these investigations, I present the Apprentice Learner Architecture, which posits
the types of knowledge, performance, and learning components needed for apprentice learning
and enables the generation and testing of alternative models. I use this architecture to create two
models: the DECISION TREE model, which non- incrementally learns when to apply its skills,
and the TRESTLE model, which instead learns incrementally. Both models both draw on the
same small set of prior knowledge for all simulations (six operators and three types of relational
knowledge). Despite their limited prior knowledge, I demonstrate their use for efficiently author-
ing a novel experimental design tutor and show that they are capable of achieving human-level
performance in seven additional tutoring systems that teach a wide range of knowledge types
(associations, categories, and skills) across multiple domains (language, math, engineering, and
science).

I show that the models are capable of predicting which versions of a fraction arithmetic and
box and arrows tutors are more effective for human students’ learning. Further, I use a mixed-
effects regression analysis to evaluate the fit of the models to the available human data and show
that across all seven domains the TRESTLE model better fits the human data than the DECISION

TREE model, supporting the theory that humans learn the conditions under which skills apply in-
crementally, rather than non-incrementally as prior work has suggested (Li, 2013; Matsuda et al.,
2009). This work lays the foundation for the development of a Model Human Learner— similar
to Card, Moran, and Newell’s (1986) Model Human Processor—that encapsulates psychological
and learning science findings in a format that researchers and instructional designers can use to
create effective tutoring systems.
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Preface

In this dissertation, I explore the use of computational models of learning from examples and
correctness feedback, what I call apprentice learner models, to aid in the design, building, and
testing phases of tutor development. I also explore the use of human data, collected using tutoring
systems, for evaluating apprentice learner models and guiding a search for models that better
align with human behavior. The work presented was conducted while I was a graduate student
at Carnegie Mellon University.

All of the results in this thesis are new, unpublished work; however, some portions of the
text have been taken from prior publications. In particular, some of the text in Chapter 4 has
been taken from work that was published in collaboration with Erik Harpstead, Eliane Stampfer
Wiese, Menfan Zou, Noboru Matsuda, Vincent Aleven, and Ken Koedinger (MacLellan et al.,
2015). In this work, I was the lead investigator responsible for problem framing, study design,
data collection, analysis, and manuscript preparation. Noboru met with me multiple times to
help frame the work and provided insight into how to evaluate the cognitive models. Mengfan
was an undergraduate research intern who worked with me to developed the original interface for
the experimental design tutor. Eliane and Vincent provided feedback on the original manuscript.
Finally, Ken Koedinger (my advisor) supervised all phases of the work and provided support
with problem framing and manuscript preparation.

A portion of the text from chapter 5 was published in collaboration with Erik Harpstead, Rony
Patel, and Ken Koedinger (MacLellan, Harpstead, Patel, & Koedinger, 2016). In this work, I
was the lead investigator responsible for problem framing, architecture development, simulation
design, data collection, analysis, and manuscript preparation. Erik Harpstead assisted me in
framing the paper for the Educational Data Mining community and in manuscript preparation.
Rony Patel developed the tutor that collected some of the human data, supported me in designing
the simulation study, and helped to prepare the final version of the manuscript. Finally, Ken
Koedinger supervised the entire process and provided support in framing the work and preparing
the manuscript.

Finally, it is worth noting that Erik Harpstead and I have published multiple papers related
to the Trestle algorithm (MacLellan, Harpstead, Aleven, & Koedinger, 2016) and the Rumble-
Blocks domain (Christel et al., 2012). Across these works, Erik and I have been equal part-
ners. However, we have roughly divided our contributions along methodological and application
lines. Erik has taken the lead on papers related to better understanding RumbleBlocks (and more
broadly educational games) and providing insights to instructional designers and game devel-
opers. In contrast, I have taken the lead on method development and evaluation papers and on
exploring the use of our methods for better understanding human learning.
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Chapter 1

Motivation

Intelligent tutoring systems have been shown to improve student learning across multiple do-
mains (Beal et al., 2007; Graesser et al., 2001; Koedinger & Anderson, 1997; Mitrovic et al.,
2002; Ritter et al., 2007; VanLehn, 2011), but designing and building tutoring systems that are
pedagogically effective is difficult and expensive (Murray, 2005). In an ideal world, tutor design
is an iterative process that consists of multiple phases of design, building, and testing. However,
each phase of this design process requires time, expertise, and resources to execute properly,
which, in general, makes tutor development a cost prohibitive endeavor (Murray, 1999). As a
result, many researchers have created tools to support the tutor development process (Aleven,
McLaren, Sewall, & Koedinger, 2006; Murray, 1999, 2003, 2005; Sottilare & Holden, 2013).
Unfortunately, these tools provide little support for the design and testing phases of development
and instead focus primarily on supporting the building phases. They provide capabilities for au-
thoring interfaces and domain content but give little insight into what content should be authored
or tutor effectiveness. Further, while existing tutor authoring tools have been shown to reduce
the expertise requirements and time needed to build a tutor (e.g., Example-Tracing has been
shown to reduce authoring time by as much as 4 times, Aleven et al., 2009), they still struggle to
support non-programmers trying to build tutors for complex domains (MacLellan et al., 2015).
Thus, how technology can support all three phases of the tutor development process (designing,
building, and testing) remains an open research question.

To develop technology to support these phases, I first looked at current tutor development
practices. Instructional designers begin the process in the design phase, where they must address
two high-level questions: what is the material to be taught and how should it be presented? In
theory, designers should work with subject-matter experts to identify relevant domain content
(e.g., using Cognitive Task Analysis techniques, Clark et al., 2008) and draw on prior science of
learning findings (e.g., from the Knowledge-Learning-Instruction framework, Koedinger et al.,
2012) to answer questions about instruction. In practice, however, domain experts and students
are not always accessible for task analyses and existing learning theories are often difficult to
translate into the specific contexts faced when designing a tutor (Koedinger, Booth, & Klahr,
2013)—particularly in situations where multiple instructional factors interact. In these situations,
designers must rely on their prior experiences and self-reflections to guide design decisions.

However, there are pitfalls to using intuition to guide tutor design. For example, Clark et
al. (2008) argue that much of an expert’s knowledge is tacit—as people gain expertise their
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performance improves, but it becomes harder for them to verbally articulate the intermediate
skills they use. Thus, domain experts (and instructional designers) often have “expert blind
spots” regarding the intermediate skills novices need in order to reach proficiency in a particular
domain (Nathan et al., 2001). Additionally, the instruction that designers received when they
were learning may not be the best model for good instruction, and their learning experiences
may not be representative of others. This insight is aptly captured in the instructional design
mantra, “the learner is not like me”.1 However, even if instructional designers remember this
mantra, they still face situations where they have no choice but to rely on their own experiences
to guide design.

Luckily, design is an iterative process, and poor design decisions can be identified and cor-
rected through testing and redesign. The current best practice for testing a tutor design and
improving its pedagogical effectiveness is to conduct a close-the-loop study (Koedinger, Stam-
per, et al., 2013; Liu et al., n.d.); i.e., to create an initial tutor, deploy it in a classroom, analyze
the data from the deployment, use findings from the analysis to redesign the tutor, and deploy
it again to test the effectiveness of the redesign. The close-the-loop approach is essentially a
data-driven cognitive task analysis technique that guides the redesign of both the material being
taught (e.g., the underlying model of skills necessary for domain expertise) and how the material
is being presented (e.g., emphasizing certain steps in the interface or providing more practice on
certain skills). Koedinger et al. (2013) applied this approach to a geometry tutor and showed that
students more quickly achieved mastery in the redesigned tutor. While this approach, and other
similar approaches, like A/B testing (Lomas et al., 2013), are effective for testing and improving
initial tutor designs, closing-the-loop is expensive. Classroom studies take time to arrange and
run, and often multiple classroom study iterations are required to achieve a good tutor design.

Given these current practices, what is needed is a tool that leverages learning science theory
to guide the initial design phase, to support designers in the build process, and to test the peda-
gogical effectiveness of tutor designs without having to run classroom studies. In this thesis, I
explore the use of computational models of human learning from examples and feedback, what I
call apprentice learner models,2 for these purposes (VanLehn et al., 1994). These models encode
problem-solving and learning theory into self-contained computer programs that can simulate
human behavior in a tutoring system, as defined by VanLehn (2006). Similar to how engineers
simulate and test bridge designs using Computer-Aided Design software, instructional designers
can simulate single students or even entire classroom studies (e.g., an A/B test or a close-the-
loop study). These models are similar in spirit to Card, Moran, and Newell’s (1986) Model
Human Processor, which attempted to encapsulate scientific findings from cognitive psychology
in a format that could be used to guide interface design. However, they center the attention on
learning—they might be viewed as Model Human Learners rather than Processors—and attempt
to encapsulate learning science findings in a format that can be used to guide instructional design.

To support the initial design and build phases, apprentice learner models facilitate the ex-
pert model authoring process. Similar to human apprentices (Collins et al., 1987), domain ex-
perts train models by providing them with examples and feedback. These models translate this

1This is Ken Koedinger’s variation of Bonnie John’s user-centered design mantra “the user is not like me.”
2I use this term slightly differently than prior work on learning apprentices (Dent et al., 1992) or apprenticeship

learning (Abbeel & Ng, 2004), which typically centers on learning from examples, but not from feedback.
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instruction into expert models that can power tutoring systems or, more generally, model ex-
pert behavior. Thus, they provide a means for non-programmers to build expert models. Prior
work suggests that these models can enable efficient expert-model authoring (Jarvis et al., 2004;
MacLellan et al., 2015), which should, in theory, make it possible for non-programmers to author
more complex tutoring systems than would be practical with other non-programmer approaches.
Also, unlike authoring tools that provide support for designers to construct expert models di-
rectly, such as Example-Tracing (Aleven et al., 2009) or the Generalized Intelligent Framework
for Tutoring (Sottilare & Holden, 2013), apprentice learner models act as a check against expert
blind spots because they start without any of the target skills and they struggle to acquire them
if key intermediate steps are missing during training. In support of this idea, Li et al. (2013)
showed that skill models discovered by training SIMSTUDENT (a particular model) fit human
data as well as, or better than, expert-constructed skill models across three domains.

These models also support the testing phase of tutor development because they can simulate
students interacting with initial tutor prototypes. The data generated from these simulations has
an identical format to the data generated from real classroom studies (i.e., tutor transaction log
files), so instructional designers can analyze it using existing tools and techniques. For example,
designers might apply learning curve analysis techniques, such as Additive Factors Modeling
(Cen, 2009), to gain insights into which skills will be more difficult for students to learn, so they
can author additional practice problems that exercise challenging skills. Similarly, a designer
might analyze simulated data to test the overall effectiveness of a particular tutor design, or to
compare alternative designs to determine which are most effective for learning. Thus, developers
can analyze simulation data to guide subsequent tutor redesigns, analogous to Koedinger et al.’s
(2013) close-the-loop approach. However, unlike classroom studies, simulation studies can be
performed at a much lower cost and can be easily applied to many alternative tutor designs. Thus,
apprentice learner models can act as a tool to leverage prior learning theory to cost effectively
test and improve initial tutor designs prior to actual classroom deployments.

While prior work has explored how these models, particularly the SIMSTUDENT model
(Jarvis et al., 2004; Li et al., 2014; Matsuda et al., 2014), support the designing and building
phases of tutor development, their capacity for testing tutors has never been explored. In partic-
ular, it is unclear whether existing models will produce behavior that has good agreement with
human behavior. Prior studies with SIMSTUDENT have centered on demonstrating learning ef-
ficiency (Jarvis et al., 2004; Li, Cohen, & Koedinger, 2012; Li et al., 2014; Li, Schreiber, et al.,
2012; Matsuda et al., 2014), which is sensible for the purposes of authoring. However, for the
purposes of supporting tutor design and testing, it is important to model both correct and incor-
rect human behavior. If apprentice learner models are too efficient, then they might overcome
issues that would cause problems for human students, making them less useful as tools for iden-
tifying expert blind spots, detecting likely human bugs, or differentiating which tutor designs
would be better for learning.

Fortunately, there exist many human tutoring system data sets in public repositories, such
as DataShop (Koedinger et al., 2010), that could enable the evaluation of current models and
guide the search for more human-like models. In particular, researchers could evaluate a model
by comparing its simulated behavior within a tutoring system to existing human behavioral data
from a classroom study with the same tutor. Repeating this process with multiple alternative
models would enable researchers to determine which yield behavior that better aligns with the
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human behavior. In isolation, a classroom study will ultimately yield only a single refined tu-
toring system. However, if researchers use data from these classroom studies to discover better
apprentice learner models, then these improved models can support future tutor design.

The ultimate goal of this research program is to produce a high-fidelity computational model
of human learning (i.e., a Model Human Learner) that can predict human behavior in tutoring
systems across a wide range of domains and support tutor development. Towards this end, this
thesis does the following:
• Defines the apprentice learning problem and review prior attempts to solve it (chapter 2);
• Presents the Apprentice Learner Architecture, a theoretical framework that outlines the key

apprentice learning knowledge structures and the learning and performance components
that operate over them (chapter 3);

• Develops the DECISION TREE and TRESTLE models of learning and discusses their rela-
tion to prior models (chapter 3);

• Showcases the efficiency of the DECISION TREE model for authoring an experimental
design tutors (chapter 4);

• Demonstrates the use of both models for predicting the effect of problem ordering on
students’ tutor and posttest performance, making learning curve predictions, and for testing
alternative learning theories using tutor data (chapter 5); and

• Highlights the generality of these models by evaluating their simulation and authoring
capabilities in seven tutors spanning a wide range of content domains (chapter 6).

Although this thesis does not present a Model Human Learner that is consistent with all available
educational data, it makes four key contributions. First, it presents a theory of apprentice learning
that defines a space of potential apprentice learner models and provide an evaluation approach
that could, in future work, lead the to discovery of such a model within this space. Second, it
demonstrates that preliminary models are efficient for authoring tutors that would be difficult to
build with existing approaches (e.g., experimental design or stoichiometry). Third, it demonstrate
that these models are capable of predicting main instructional effects (e.g., the effect of different
problem orderings on learning) and accounting for students’ behavior within a tutor. Finally, it
show that these preliminary models are sufficiently general to learn a wide range of knowledge
types (associations, categories, and skills) across a wide range of domains (Chinese character
learning, RumbleBlocks stability, English article selection, stoichiometry, fraction arithmetic,
boxes and arrows, and equation solving) with a small, fixed set of prior knowledge.
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Chapter 2

Apprentice Learning

Humans learn new skills in a variety of ways. One format in which they regularly engage is
apprentice learning, or learning from the examples and feedback provided by expert instructors.
From the perspective of the learner, there are practical benefits to this approach over more formal
schooling methods, such as lectures. In particular, prior studies of human apprenticeship find
that it situates learned skills within their context of use, whereas lecture-based formats typically
abstract context away—making it harder for students to later retrieve and apply learned skills in
practice (Collins et al., 1987). Additionally, this paradigm is often easier for instructors. Notably,
skill knowledge is typically tacit and thus difficult to verbally communicate (Clark et al., 2008).
In contrast, apprenticeship facilitates a more natural transference of skills because demonstrating
and coaching skills is often much easier for teachers than formalizing and describing them.

These benefits make apprentice learning a natural approach for skill transfer. Authoring tools
equipped with this capability should let developers efficiently author tutors with examples and
feedback, rather than having to formalize and program knowledge directly into a tutor, which
is time consuming and requires programming expertise (Matsuda et al., 2014). Additionally,
tutoring systems utilize this format of instruction; i.e., they provide students with immediate cor-
rectness feedback on their problem-solving steps and examples1 when they are stuck (VanLehn,
2006). Thus, developers should be able to use models of human learning to stimulate student in-
teractions with their tutors, in order to test the pedagogical effectiveness of these systems before
deployment.

2.1 The Problem
In order to build a model that supports tutor authoring and that simulates students, the first step
is to formally define the learning problem. The starting point for my formulation is VanLehn’s
(2006) characterization that apprentice learning within tutors consists primarily of two loops:
an outer loop, in which an instructor selects problems for a student to attempt, and an inner
loop, in which students attempt steps and instructors provide hints and feedback. Figure 2.1
further divides these behaviors into five distinct interactions between the tutor and tutee. The first

1Examples are often referred to as bottom-out hints within the tutoring literature because they are usually pro-
vided to students as the final hint, in a sequence of hints, for a given problem-solving step.
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Figure 2.1: The five apprentice-learning interactions. First the tutor provides the learner with a
step to attempt (I1). In response the learner either attempts to solve the step (I2a) or requests
an demonstration (I2b). If the learner makes an attempt, then the tutor provides feedback on its
correctness (I3a). In the case of a an example request, the tutor provides a demonstration of the
step (I3b). Note, the solid lines denote actions performed by the tutor and the dashed lines denote
actions performed by the tutee.

interaction (I1) corresponds to the outer loop, in which a tutor selects steps for a tutee to perform.
Note that VanLehn (2006) originally characterized the outer loop as selecting problems, not steps,
but the current characterization is slightly more general. In particular, a tutor that selects steps
can achieve identical behavior to a tutor that select problems—by always selecting the successive
steps within a problem. However, it also allows for tutors that can assign students to work on
specific steps within problems, potentially skipping some steps. The other four interactions (I2a,
I2b, I3a, and I3b) correspond to the inner loop. In particular, in response to receiving a step, the
student can either attempt it (I2a) or request an example of how to perform it correctly (I2b). The
tutor then either provides feedback on the student’s attempt (I3a) or an example (I3b), depending
on the student’s action. At the end of this sequence (I1 → I2 → I3), the tutor typically begins
interaction again by providing the student with a new step (e.g., if they got the last step correct) or
the same step again (e.g., if their attempt was incorrect and the tutor wants to give them another
chance).

A key characteristic of these interactions is that they frame apprentice learning as an incre-
mental and interactive process. In other words, learners are given training examples and feedback
sequentially over the course of their problem solving, rather than in a single batch up front. Fur-
ther, the steps, feedback, and examples they receive are chosen by a tutor in response to their
actions. For example, instructors only provide feedback on the steps a student actually attempts,
and, ideally, they select steps that challenge and advance a student’s knowledge, rather than those
that they already know how to solve. Together, these characteristics enable tutors to personalize
each student’s instruction—continuously assessing their skill knowledge and focusing attention
on skills that have the most room for improvement. This personalization is hypothesized to be
one of the key reasons that tutoring systems are so effective for human learning (VanLehn, 2006).

8



Figure 2.2: A visual representation of a step in the Chinese tutor and its accompanying relational
description.

In order to build a model that supports these interactions, the next step is to define the struc-
ture of the information exchanged. During the first interaction, the learner is provided with a
description of a step that the tutor has selected. Although many representations for this descrip-
tion are possible, the current work takes the stance that this description is provided in a relational
representation, such as first-order logic. Figure 2.2 shows an example of a step in a Chinese char-
acter tutor and a relational description.

An important assumption of the current work is that the learner is not explicitly provided
with problem-solving goals (i.e., a partial description of a desirable state).2 However, there is
always an implicit goal during apprentice learning that the student should attempt to take actions
that receive positive feedback and avoid actions that receive negative feedback. Additionally,
information about what a learner should do (i.e., goal information) is typically embedded in the
state description. For example, in Figure 2.2 the student is tasked with translating the provided
Chinese character into English, and the accompanying state description contains this information.
I make this assumption because novice students typically are not aware of explicit goals a priori,
so they must get this information from the provided problem statement. Thus, in addition to
learning new skills, students must learn the mappings between the information available in the
state description and their learned skills.

Once a learner receives a description of a step to work on, they respond with either an attempt
or a request for an example. When making an attempt, the learner specifies the action that should
be taken within the tutor, which for the current work I represent using a Selection-Action-Input
(SAI) triple (Ritter & Koedinger, 1996). For example, given the step in Figure 2.2, the student
might respond with (sai f3 UpdateTextField “small”), which specifies that interface element f3
should be updated with the text “small” (the correct English translation for “ ”). Typically, when
the tutor receives an SAI, it checks its correctness3 and responds with a Step-SAI-Feedback
triple, which contains the relational description of the current step, the SAI from the student,
and the correctness feedback on this SAI. In situations where the learner requests an example,
the tutor also responds with an Step-SAI-Feedback triple, but the SAI is one that is generated
by the tutor, and the feedback is marked as correct (assuming the tutor is providing a correct

2More generally, goals are not modeled as explicit cognitive structure in this work, but future work should
investigate how explicit goals can be incorporated into the current theoretical framework.

3The current work assumes that correctness is Boolean, but in theory it could be a continuous value.
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example). By specifying that the response from the tutor for both the feedback and examples has
the same format (a Step-SAI-Feedback triple), the learner can process them in similar ways. In
particular, receiving feedback on a correct step is analogous to receiving the same correct step as
an example. Also, it is worth noting that even though the current work is theoretically committed
to apprentice learning as an incremental and interactive process, the current formulation supports
non-incremental and non-interactive instruction as well. In particular, an instructor could provide
a student with multiple examples, either positive or negative, at any point within, or outside, of
the typical interactive loops.

One final point that is worth discussing is that steps are the granularity at which tutors provide
feedback, but step size is not necessarily consistent across tutors. At one extreme, tutors might
present problems as a single step and only provide feedback on the final answers. For example, a
tutor might present a student with the problem 3x+2 = 11 and only provide correctness feedback
when they give the correct final answer (x = 3). In this case, a student might need to take multiple
intermediate, non-tutored, actions in order to produce the final answer. In this scenario, when a
student gets feedback, they are faced with the credit-assignment problem (Sleeman et al., 1982);
more specifically, they need to determine which of their intermediate actions are responsible
for their answer’s correctness. At the other extreme, a tutor might present problems with steps
for each intermediate problem-solving action and provide feedback on each. In this scenario, the
student is effectively faced with a supervised learning problem and does not have to handle credit
assignment.

There is an added complication that what constitutes a single action might be different be-
tween learners. For example, updating the answer field with the word “small” in the step shown
in Figure 2.2 might be a single action for most English students. However, for students less expe-
rienced with English keyboards, this might require multiple actions for inputting the individual
letters. In general, VanLehn (2006) hypothesizes that decreasing the grain size of steps is bet-
ter for students learning because it reduces the amount of credit assignment that a student must
perform. However, a super-fine grain size is inefficient because it requires students to process
more feedback for domain-independent skills, such as typing, and draws attention and feedback
away from domain skills, such as Chinese translation. In practice, most tutors assume basic prior
knowledge for skills like typing and choose a step size that usually consists of one to two actions,
depending on a student’s prior knowledge.

2.2 Prior Work
Given this formulation of the problem, I next turn to the literature and review prior models that
conform to it. While there are a number of modeling efforts that fit at least some aspect of the
current formulation, reviewing all of these works is beyond the scope of this thesis. Instead, I
focus on orthogonal methods within the literature and discuss prototypical examples that leverage
these approaches in order to situate the current work. It is important to note that many of these
examples do not attempt to model human learning, but they all utilize apprentice learning in
some form.

The predominant view within the literature is that problem-solving consists of heuristic
search through a problem space (Newell & Simon, 1972), which is typically defined using a
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STRIPS-like representation (Fikes et al., 1972). Within this representation, a problem space is
defined by:
• a state representation (i.e., relations and features) that describe possible states;
• operators, which present as IF-THEN rules for moving from one state to another; and
• goals, which can appear explicitly as partial descriptions of desirable states or implicitly

as black-box tests for assessing whether a particular state achieves the goals.
Given this view, prior work characterizes apprentice learning as the translation of problem-
solving traces (i.e., particular paths through a problem space) and feedback on them into knowl-
edge of the structure of the underlying problem space and how best to search it.

Although most work can be unified under this characterization, the prior work differs on the
source and format of the problem-solving traces used for learning. One common assumption is
that complete traces—consisting of all state-operator pairs—are provided by experts in one batch
upfront. Despite the restrictiveness of this requirement, many systems adopt it. For example,
Abbeel and Ng (2004) explore an approach for learning to solve a variety of common toy AI
problems given anywhere from 100-100,000 complete expert traces for each problem up front.
However, not all systems subscribe to these restrictions. In particular, some systems, such as
LEAP (Mitchell et al., 1985) and ODYSSEUS (Wilkins et al., 1986), relax the constraint that
all of the traces must be provided in one batch. Instead, these systems learn incrementally by
observing human experts over the course of their normal problem solving. Other systems further
relax the requirement that problem-solving traces must be complete. For example, ICARUS (Li
et al., 2009) is capable of learning from traces that lack some of the state-operator pairs, some of
the operators (i.e., that contain only the intermediate states), or both, by filling in the gaps using
means-ends problem solving. Taken to the extreme, this problem-solving approach, and others
like it (Anderson, 1993; Fikes et al., 1972; Laird et al., 1987), enable systems to generate their
own problem-solving traces.

Most systems that get their traces from experts assume that the latter also provide the feed-
back on them. In particular, expert traces are usually implicitly assumed to be correct, although
it is possible for experts to also explicitly label traces as positive or negative. When systems
generate their own traces, however, there is some variation in the source of feedback. Systems
that possess explicit descriptions of problem-solving goals often provide their own feedback by
labeling traces that achieve the goals as correct and those that fail (e.g., dead ends or loops) as
incorrect (Langley, 1985). When systems lack explicit knowledge of goals, they must instead
rely on implicit goal tests (i.e., experts or other black-box sources) to label generated traces. One
challenge faced by these systems is that navigating a problem space without any knowledge of
the goals can be difficult, if not impossible. To overcome this challenge, many systems (Martı́nez
et al., 2015; Nason & Laird, 2005; Tadepalli et al., 2004) leverage feedback on earlier problem
solving to direct search to more promising parts of the space.

Despite variety in the origin and presentation of traces and feedback, once they are in hand
the prior literature has coalesced around a number of methods for translating them into new
problem-solving knowledge. In particular, methods exist for learning operator preference knowl-
edge, learning heuristic operator conditions, learning composite operators, and even learning new
primitive operators. I will review each in turn.

One of the most common types of knowledge extracted from solution traces is operator pref-
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erence knowledge, which describes the operators that should be preferred during search. In
particular, at each state in the problem space, an agent must decide which of its operators to
execute. If the agent is informed and makes good choices, then it will quickly achieve its goals.
However, when an agent is uninformed, then it will spend time exploring unfruitful portions of
the problem space and often fail to solve difficult problems in a reasonable amount of time. To
combat this challenge, prior work explores how to leverage correct and incorrect traces to learn
which operators are preferable in each state. In particular, most systems decompose traces into
their constituent state-operator-feedback triples, which become training data for learning (Slee-
man et al., 1982). Systems using this approach typically label state-operators along successful
paths as correct and those that lead to failures, or sometimes are just off path, as incorrect.

Given these training data, one common type of learned knowledge is operator preference
relations, which specify preferences over potential operators, such as which to accept or reject,
which are good or bad, or which should be tried first (e.g., try Operator-1 before Operator-2).
ELM (Brazdil, 1978) is an early example of a system that learns ordering relations by ana-
lyzing which operators occur before others in experts’ algebra and arithmetic problem-solving
traces. One limitation of this early approach was that learned relations were oblivious to state
information, often resulting in contradictions (i.e., Operator-1 > Operator-2 in some states, but
Operator-1 < Operator-2 in others). Other systems, such as Soar (Laird et al., 1987), correct
this limitation by learning preferences (modeled as selection and rejection rules) that condition
on the current situation (the current problem space, goal, operator, and state in Soar). Another
common type of learned knowledge is operator preference functions, which specify numeric val-
ues (typically reward or cost) over states, operators, or state-operator pairs that determine the
order to expand operators during search. This approach is commonly used in reinforcement-
learning systems, such as the work of Abbeel and Ng (2004), which fits a reward function to
state-operator-feedback triples extracted from expert traces, or Soar-RL (Nason & Laird, 2005),
which utilizes Q-learning to learn a reward function from its own problem solving.

Another kind of knowledge commonly extracted from solution traces is heuristic conditions,
which constrain, beyond their original, legality conditions, the number of situations in which
operators apply—effectively reducing the branching factor of the search. For example, when
playing chess, legality conditions on an agent’s move operator express when they can move a
piece. In contrast, the heuristic conditions express when they should move a piece. The ac-
quisition of this type of knowledge is similar to that of preference knowledge in that solution
traces are decomposed into constituent state-operator-feedback triples, which are then used for
supervised learning. For example, given these triples, LEX (Mitchell & Banerji, 1983) applies
version-space learning and SAGE (Langley, 1985) applies discrimination learning to discover
heuristics for a variety of domains, ranging from Towers of Hanoi to symbolic integration.

Like preference knowledge, heuristic conditions direct search to more promising parts of
the space. However, unlike preferences, they completely exclude operators from consideration
at the onset, which tends to improve search efficiency because evaluating heuristic conditions
is often much faster than computing preferences over all legally-applicable operators (and each
of their bindings). A key limitation of heuristic conditions, though, is that they can sometimes
be over constraining. In particular, incorrect heuristic conditions can make it impossible for
systems to generate their own correct problem-solving traces. Some systems, such as SAGE,
try to avoid this problem by biasing learning towards more general, rather than more specific,
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heuristic conditions, so that operators are only constrained when there is sufficient evidence for
doing so. Additionally SAGE and other systems, such as ACT (Anderson, 1982), retain more
general rules for use when none of the more specific ones apply. This problem is also somewhat
alleviated in circumstances where correct expert traces are available because the training data
they contain can provide the basis for correcting overly-specific conditions.

In addition to learning preference knowledge and heuristic conditions, which change how
an agent searches a problem space, many researchers have investigated how agents might ac-
quire new operators, which change the underlying structure of the space they search. Within this
area, macro-operator learning, or learning operators composed from other operators, is one of the
more common approaches. Systems that engage in this kind of learning compile sequences of
operators that appear in successful problem-solving traces into new operators that can be used in
subsequent search. Many systems, such as STRIPS (Fikes et al., 1972), ODYSSEUS (Wilkins et
al., 1986), and GENESIS (Mooney, 1987) utilize explanation-based learning to construct macro-
operators from successful problem solving. These approaches analyze a given sequence of opera-
tors and determine the minimal conditions that must be met for successful execution of the entire
sequence. Learned operators are more efficient to execute than their constituents because condi-
tion matching only needs to happen once up front, rather than once for each constituent. Other
approaches, such as chunking in Soar (Laird et al., 1987), knowledge compilation in ACT (An-
derson, 1982), and hierarchical task network learning in ICARUS (Li et al., 2009), use different
approaches and representations, but ultimately serve a similar purpose of learning compositional
operator structures. In general, learned macro-operators enable agents to take bigger steps across
the problem space, essentially decreasing the search depth needed to find a solution. However,
sometimes the cost of using new operators outweighs their benefit resulting in worse perfor-
mance (e.g., new operators increase the branching factor of search and make pattern matching
more expensive), something known as the utility problem (Minton, 1990).

One limitation of macro-operators learning is that it requires sufficient knowledge of prim-
itive operators. Most systems assume all primitives are provided, but some researchers have
explored techniques for directly acquiring new primitives from expert4 problem-solving traces.
In general, the work in this areas centers on analyzing the differences between subsequent states
in a trace in order to induce new operators. For example, ALEX (Neves, 1985) learns new
primitive operators by searching for built-in symbol manipulating functions (e.g., insert-after or
string-concatenate) that explain the differences between states. Once it finds functions to explain
the differences—which constitute the THEN part of learned rules—it applies condition learn-
ing techniques to discover the IF part. It is important to note that this technique is analogous
to macro-operator learning where the agent has primitive operators to represent built-in symbol
manipulating functions; however, the approach is slightly different in that it maintains a clear
distinction between domain operators and functions, similar to VanLehn’s (1999) overly-general
operators, and only falls back on the later when necessary. An alternative approach is to directly
learn new functional mappings between states. For example, KnoMic (van Lent & Laird, 2001)
learns new primitive air-combat operators by applying specific-to-general learning to the differ-
ences between states in expert traces (along with specific-to-general learning to acquire condi-

4Generally, it is difficult for an agent to learn primitives from its own problem-solving traces because it does not
have the knowledge necessary to generate them in the first place, although it may be possible.
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tions on these operators). One limitation of this technique is that it requires complete expert
traces that include information about which operators are being applied in each state, so training
data can be appropriately grouped for learning. CASCADE (VanLehn, 1999) overcomes this
limitation by only learning primitive operators with effects that correspond exactly to observed
differences between states (i.e., effects are not generalized). Expert operator annotations are not
required in this case because all pairs of subsequent states that exhibit the same differences are
assumed to be applications of the same primitive operator. VanLehn (1999) provides evidence
that the combination of simple primitive operator learning with macro-operator learning explains
much, although not all,5 of the learning observed in human physics students.

Collectively, this prior research, which often centers on the specific learning subproblems,
begins to form an overall picture of how an agent might engage in apprentice learning. In par-
ticular, an expert provides an a learner with problem-solving traces and feedback, the learner
generates their own traces and feedback, or some combination of the two. Once a learner has
these training data, they can learn four kinds of knowledge:

1. primitive operators, which grow the problem space (increasing branching factor);
2. macro-operators, which enable an agent to take bigger steps through the problem space

(decreasing search depth, but increasing branching factor);
3. heuristic conditions, which specify when an agent should, or should not, consider operators

during search (decreasing the branching factor); and
4. operator preferences, which guide search to more promising portions of the problem space

(typically decreasing overall search).

As these kinds of knowledge have complementary benefits for problem solving, many sys-
tems exist that learn some combination of these knowledge types. One relevant subset of this
work centers on modeling students’ buggy problem-solving knowledge (VanLehn, 1983). Al-
though these systems do not model human learning, they uses apprentice learning to discover
knowledge that explains human behavior. For example, ACM (Langley & Ohlsson, 1984) dis-
covers heuristics that explain students’ erroneous multi-column subtraction behavior. This sys-
tem is provided with a collection of overly-general operators—operators that could hypotheti-
cally explain a student’s behavior, but that only have minimal legality conditions, such as only
type conditions on inputs—and traces of a student’s incorrect problem solving. It then searches
for additional heuristic conditions on the overly-general rules that constrain their application to
the situations observed in the provided traces. These more constrained rules constitute a model of
the buggy knowledge that generated the provided traces. Langley and Ohlsson (1984) show that
this system is capable of discovering heuristics that account for many of the common subtraction
bugs exhibited by human students.

Another line of work centers on human learning. Prototypical examples in this line include
CASCADE (VanLehn et al., 1991) and STEPS (Ur & VanLehn, 1995), which models students
learning physics from self explanation and from a physics tutoring system. Both systems make a
distinction between domain rules (for problem solving) and overly-general rules (for explaining
provided traces, which are correct in this case) and use explanation-based learning to compile
the latter into the former (i.e., they learn domain-specific macro-operators). However, there

5Humans regularly engage in reflective behaviors to test, debug, and optimize their learned rules, something
CASCADE did not model.
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are some differences between the two systems. In particular, CASCADE can learn primitive
operators with constant effects by studying examples, but STEPS cannot. They also differ in
how they direct their problem solving; CASCADE uses preference knowledge it learns from
examples, whereas STEPS learns heuristic conditions from its problem-solving traces.

Another major system in this line of work is SIMSTUDENT (Li et al., 2013; MacLellan et
al., 2015; Matsuda et al., 2009, 2011), which models human learning across multiple tutor do-
mains. Like the other systems, it makes a distinction between functions (i.e., overly-general
rules) and skills (i.e., domain rules), and it discovers new skills by explaining an expert’s steps
using functions and compiling these explanations into new skills (i.e., it learns domain-specific
macro-operators, as in CASCADE and STEPS). SIMSTUDENT also learns conditions on these
skills, but, unlike the other systems, it makes a distinction between learning retrieval patterns
(relational conditions that specify how relevant elements relate to other elements in the state) and
feature conditions (non-relational conditions over elements bound in these retrieval patterns).
This distinction is both practical and theoretical in that separating relational and non-relational
conditions lets it leverage specialized learning approaches for each and to employ separate learn-
ing biases for each (retrieval pattern learning is specific-to-general and feature condition learning
is general-to-specific).

These systems each represent major progress towards modeling humans in apprentice learn-
ing contexts. However, they each perform only a subset of the four types of learning and they
implement different approaches for each. What is needed is a theory that unifies the different
types of learning and provides a means of testing which implementations best align with hu-
man behavior. Additionally, the generality of these prior systems remains unclear. In particular,
how much prior knowledge needs to be authored to employ these systems in new domains? For
example, CASCADE and STEPS focus mainly on physics, but do these models also explain
behavior in language or engineering domains? If so, how much additional prior knowledge must
a researcher (or teacher or domain expert) develop in order to apply them?

SIMSTUDENT has been applied to multiple tutoring domains and, consequently, might have
a better claim to generality. However, each SIMSTUDENT model possesses a specialized set
of domain-specific prior knowledge, suggesting that a would-be user needs to author additional
content for their domain. Li (2013) investigates how to automatically discover prior knowl-
edge using unsupervised learning, but these approaches require access to training data in one
batch upfront, which may not be available for novel domains. Given this limitation, it seems
reasonable for researchers to apply these techniques to learn domain-general prior knowledge,
such as how to parse English sentences or mathematical formulas, but it seems unlikely that
teachers, or other non-technical domain experts, could apply them to authoring domain-specific
knowledge. It seems more feasible for non-technical users to hand author the prior knowl-
edge than to collect/clean-up domain-specific training data and apply unsupervised learning to
them; although, this is an open empirical question. In contrast, while CASCADE and STEPS
focus mainly on physics, they suggest that the combination of access to overly-general prior
knowledge, heuristic condition learning, preference knowledge learning, macro-operator learn-
ing, and primitive operator learning (learning primitives with constant effects) might be sufficient
to model human learning across a wide range of domains. I investigate these ideas in the current
work.
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Chapter 3

The Apprentice Learner Architecture

In this chapter, I present a modular architecture that builds on prior systems, such as ACM, CAS-
CADE, STEPS, and SIMSTUDENT, and unifies their mechanisms and theories. This architec-
ture was designed to support the five apprentice-learning interactions presented in the previous
chapter (see Figure 2.1). In particular, agents within the architecture can receive steps from a
tutor (I1), attempt these steps (I2a) or request examples of how to perform these steps (I2b), and
receive feedback (I3a) or examples (I3b). Given these interactions, the architecture (see Figure
3.1) embodies a theory about the knowledge structures needed to support them and about the
performance and learning components that operate over these structures.1 Beyond these theo-
retical commitments, the framework remains intentionally abstract on implementation specifics
for each component, as different implementations may be preferable in different circumstances.
For example, implementations of the learning components that are good for tutor authoring (e.g.,
that learn efficiently and do not forget) may not be good for simulating students (e.g., if they fail
to produce human-like mistakes) even though apprentice learning occurs in both circumstances.
In this sense, the architecture is similar to other efforts to identify the mechanisms humans use
for learning (Ohlsson, 2011), but it aims to characterize apprentice learning more generally (both
human and computational).

Under this characterization, models are defined as implementation choices for each architec-
tural component as well as initial knowledge configurations. While explaining each component,
I discuss the implementations currently supported by the architecture and, at the end of this chap-
ter, two models that are the focus of the remainder of this thesis. One of the risks of instantiating
theory in computational systems, such as the current architecture and models set within it, is
the introduction of assumptions beyond the target theory. These auxiliary assumptions are of-
ten innocuous, but sometimes they unintentionally provide explanatory power to systems that
incorporate them. To counter this risk, I have attempted to restrict such assumptions primarily
to models and to concentrate the theoretical assumptions in the architecture. However, a clean
division is not possible, so I try to present all major assumptions underlying both the architecture
and the models built within it.

1The architecture is open source and available at https://github.com/cmaclell/apprentice
learner api.
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Figure 3.1: The Apprentice Learner Architecture and its interactions with a tutor. Blue boxes
represent knowledge structures, yellow diamonds represent performance components, and green
circles represent learning components.

3.1 Knowledge Structures

Like many prior cognitive systems, the architecture possesses both short- and long-term memo-
ries to support problem solving and learning. In particular, it has a single, short-term, working
memory that describes the current step as provided by the tutor. This memory contains elements
representing particular objects that occur in a given step, such as fields in a tutor interface, and
other information that describes them. This information is stored using a relational representa-
tion, similar to STRIPS (Fikes et al., 1972) or PROLOG. Figure 2.2 shows a simple example of
a step’s encoding in working memory.2 Elements in this memory only exist for the duration of a
single step before they are cleared and the information for the next step is provided and stored.

In addition to short-term memory, the architecture has three long-term memories. The first
contains relational knowledge, which matches against elements in working memory and aug-
ments these elements with additional relations. Table 3.1 shows two examples of relational
knowledge. The first evaluates whether two elements have equal values. If they do, then it aug-
ments working memory to represent this relationship. The second matches all elements with
non-empty, string values, and augments working memory with unigram relations that describe
these elements.

In general, these structures have three components: a head, conditions, and effects, which

2Typically elements also have type information and slightly more complex hierarchical organization.
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Table 3.1: Two examples of relational knowledge. The first evaluates equality of two elements
and the second computes unigram relations. Functions are shown in italics.

Head (value-equality ?x ?y) (unigrams ?x)
Conditions (value ?x ?xv), (value ?y ?yv) (value ?x ?xv), (is-string ?xv), (neq ?xv “”)
Effects (value-equality ?x ?y ((unigram ?x ?w) for ?w in

(eq ?xv ?yv)) (extract-words ?xv))

can contains pattern matching variables (preceded by a “?”) that bind with elements in working
memory. The head contains a name for the knowledge element, as well as arguments that con-
strain how it is applied. In particular, each knowledge structure is evaluated once per a given
binding of its head arguments, ignoring alternative condition matches that share identical head
bindings.3

The conditions determine how pattern matching variables are bound and describe when a par-
ticular piece of knowledge applies. There are two types of conditions: relations and functions.
Both contain pattern matching variables, but relations match against working memory elements
to determine possible bindings for variables, whereas functions are only evaluated after all vari-
ables they refer to are bound. Functions appearing in conditions can return any value, but if they
return the Boolean value False, then the current match fails.

For each successful match, the effects determine how working memory is augmented in re-
sponse. Like conditions, effects can contain relations and functions. However, only variables
bound in the conditions or constants can occur in either. Also, if a function fails to execute (i.e.,
raises an exception), then the match fails. In this regard, they represent a kind of additional
implicit condition; however, they are typically less efficient to evaluate than explicit conditions
because pattern matching can logically exclude whole classes of possible matches whereas func-
tions can only be applied to invalidate matches one match at a time. Relational knowledge is
similar to conceptual knowledge in ICARUS (Langley et al., 2009). However, unlike conceptual
knowledge, the head and effects are kept distinct because effects can produce multiple elements
in working memory, as shown Table 3.1. This type of knowledge is also analogous to primitive
feature knowledge in SIMSTUDENT, but is more expressive. In particular, SIMSTUDENT capa-
bilities that required separate architectural components, such as those for augmenting working
memory with grammar features (Li et al., 2014), can simply be encoded as additional pieces of
relational knowledge (using an approach similar to the unigram knowledge shown in Table 3.1).4

The second kind of long-term knowledge structures, overly-general operators, are domain-
independent primitives for explaining examples. These structures are similar in composition
to relational knowledge—they are described by a head, conditions, and effects, and have an
identical syntax—but they only apply during explanation, when domain skills fail. Table 3.2

3This feature is primarily for efficiency and prevents the systems from entertaining all possible ways to match
conditions if it is not necessary to do so. However, if all pattern matching variables are included in the head, then
all possible matches will be considered.

4Although relational knowledge does support the inference of grammar features from an existing grammar, it
does not currently support grammar learning. However, prior approaches (e.g., Li et al., 2014) could be applied to
generate these grammars.
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Table 3.2: Two examples of overly-general operators. The first adds two values and the second
concatenates them. Italics are used to represent functions.

Head (add ?x ?y) (concatenate ?x ?y)
Conditions (value ?x ?xv), (value ?y ?yv) (value ?x ?xv), (value ?y ?yv)
Effects (value (add ?x ?y) (value (concatenate ?x ?y)

(str-float-add ?xv ?yv)) (str-append ?xv ?yv))

Table 3.3: An example fraction arithmetic skill for adding two numerators.

Skill Label add-numerator
Utility 0.8
Legality (value ?n1 ?n1val),
Conditions (value ?n2 ?n2val),

(value ?an “”)
Heuristic (name ?n1 Numerator1),
Conditions (name ?n2 Numerator2),

(name ?an AnswerNumerator)
Classifier: <learned-classifier>
Effects: (SAI ?an “UpdateField” (str-float-add ?n1val ?n2val)))

shows two examples of these operators, one that adds two values and one that concatenates
them. The first relies on the str-float-add function, which takes a pair of numbers represented
as either two strings or two floats, adds them, then returns the sum in a format that mirrors the
inputs (either a string or float). The second uses str-append, which coerces the values into strings,
concatenates them, and returns the resulting string. Note, if either function raises an exception,
then the operator will fail to execute. These types of operators are analogous to the overly-
general operators that occur in STEPS (Ur & VanLehn, 1995) and CASCADE (VanLehn et al.,
1991) in that they are domain-independent operators with minimal conditions. Thus, they outline
possible computations, but do not specify when these computations should be performed. They
are also analogous to the primitive functions that occur in other systems, such as ELM (Brazdil,
1978) and SIMSTUDENT (Li et al., 2014), in that they often perform a single function. However,
unlike these systems, they support additional conditions that exclude nonsensical bindings of
function arguments, such as attempting to add elements with the wrong types. This feature
greatly improves runtime performance.

The final long-term memory contains domain-specific skills, which are acquired from exam-
ples and feedback. Table 3.3 shows an example of a fraction arithmetic skill for adding numera-
tors. These structures are acquired via apprentice learning and contain six parts. First, they have
a label, which is an optional, non-unique, human-readable name that is useful for interpreting
learned skills and debugging problem-solving traces. Second, they maintain a single numeric
value representing their utility. Like relational knowledge and overly-general operators, skills
have conditions. However, unlike the other types, they distinguish between two types of con-
ditions: legality conditions, which describe when a skill can execute (successful execution also
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depends on all functions in effects evaluating successfully), and heuristic conditions, which de-
scribe when the skill should execute. These later conditions do not need to be met for successful
execution, but constrain when a skill applies. In addition to conditions, skills also have a classi-
fier (e.g., a learned decision tree) that specifies whether the skill should activate given the current
working memory structure and condition bindings. Although classifiers serve a similar purpose
to heuristic conditions, they are less efficient to apply because each potential match is evaluated
individually (unlike heuristic conditions, which leverage their logical representation to efficiently
exclude entire classes of potential matches). In return, however, they have access to a fully bound
state representation when deciding whether a skill applies. Thus, classifiers are analogous to op-
erator preference knowledge for accepting or rejecting operators. Finally, skills have a single
relational effect that triggers an attempt of the current step when deposited in working memory.
This Selection-Action-Input (SAI) effect specifies an interface element (selection), an action to
apply to it (action), and an input to this action (input). One limitation of skills is that they do
not support a hierarchical organization, like those found in other architectures (Carbonell et al.,
1991; Laird et al., 1987; Li et al., 2009). However, skills do refer to overly-general operators and
future work should explore how these operators might be organized hierarchically.

3.2 Performance Components

The architecture includes three performance components that operate over these knowledge
structures. The first handles relational inference, in that it elaborates any steps provided to
the system using available relational knowledge and deposits the result in working memory.
Although alternative approaches are possible, all the models in this thesis utilizes a forward-
chaining approach that applies relational knowledge until quiescence or until a user-specified
depth limit is reached.5 This component matches each piece of knowledge once per depth and
aggregates any new relations that result from successful matches. Once all matching is com-
plete, the new relations are added to working memory, the depth is increased, and the process
is repeated. Inference terminates when the depth limit is reached or when no new elements are
added at a given depth. This process is analogous to the one used by ICARUS (Langley et al.,
2009) for conceptual inference.

Once inference finishes, if the tutor only provided a step to attempt (no accompanying SAI
and feedback), then skill execution begins. This process begins by sorting skills by their utilities
(highest to lowest) and incrementally matching them against the updated working memory. As
soon as a match is found, it is executed to generate an SAI (i.e., an attempt). If no skills match,
then the architecture issues a request for a example. Skill matching differs slightly from rela-
tional inference. Like inference, the conditions (both legality and heuristic) are matched against
working memory. However once a match is found, a skill must also evaluate its classifier to de-
termine if it applies with the current bindings. The classifier takes as input a modified version of
the current working memory structure, where any object symbols (i.e., non-constant elements)
bound to pattern-matching variables from the legality conditions are replaced with new inter-
nal constants that are uniquely determined by the names of the variables (see Figure 3.2). This

5For the relational knowledge in the current work, quiescence is always reached at depth one.
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Figure 3.2: An example of how the current working memory structure, and the current match of
the conditions are used to generate the structure passed to a skill’s classifier. Objects (i.e., non-
constant elements) are colored blue, constants are colored red, and pattern matching variables
are colored purple. All object elements in the current match are replaced with new constants
uniquely determined by the variable they match. Note, constants and unmatched objects remain
unchanged.

renaming scheme ensures that objects matched to the same variables are aligned; for example,
different fields across different examples that match to the ?input variable are made to be identi-
cal for classification. This approach embeds the current match within the classification structure
and enables classifiers that only support simple attribute-value representations to be sensitive to
the current match.6 If classification fails, then pattern matching continues. However, if classifi-
cation succeeds, then the skill fires and its effects are deposited in working memory (after any
functions are evaluated and replaced with their resulting values).

Note, that unlike most production systems, which compute all possible skill matches and then
perform conflict resolution over these matches, the current system front-loads conflict resolution
by selectively matching skills in the order of their utility. This approach is substantially more effi-
cient, particularly when there are a large number of possible matches (e.g., when matching skills
learned in a general-to-specific fashion). However, the current approach is somewhat limited
in terms of its expressiveness because it cannot describe which matches of a particular skill are
preferable to others. Currently, the system treats all matches of a skill as equivalent and executes
the first match found, with matching using depth-first search to bind the most constrained vari-
ables to their least constraining values first, a common constraint-satisfaction heuristic (Russell
& Norvig, 2009).7 However, future work should explore how to incorporate binding preferences
into the pattern-matching process, so that more preferable matches are generated first.

The final performance component, how-search, activates after relational inference in situa-
tions where the tutor has provided an SAI and feedback (i.e., when they are providing examples
or feedback on prior attempts). This component constructs explanations of how the provided SAI
could have been generated given the updated working memory structure. This process is effec-
tively a self-explanation process (see VanLehn et al., 1991) and is similar in spirit to ICARUS’s
use of means-ends analysis to complete partial problem-solving traces provided by experts (Li et

6When using these simple classifiers, each unique relation is treated as a non-relational feature. For example,
(name f3 “Field3”) becomes a Boolean feature with the name ‘(name f3 “Field3”)’.

7When multiple variables are equally constrained, or when possible values are equally constraining, expansion
order is non-deterministic.
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al., 2009). In this case, the expert provides a single SAI (e.g., SAI ”Field1” “UpdateText” “5”) to
be explained. In response, the system applies skill knowledge in a forward-chaining fashion up
to depth one (all skills have a single SAI effect, so search does not need to proceed further) using
the same matching procedure as skill execution.8 However, unlike skill execution, SAI effects
are not added to working memory. Instead, they are compared with the provided SAI and all
skill instantiations that yield the provided SAI are returned as explanations. If no explanations
are found, then the search is repeated a second time, ignoring the skill’s heuristic conditions and
classifier (i.e., skills are matched based only on the legality conditions). This second search ter-
minates as soon as the first skill instantiation that explains the SAI is found; it does not compute
all matching skill instantiations because it is often too expensive to compute them all.

If no explanations are found using the existing skill knowledge, then the component engages
in a forward-chaining search using overly-general operators. For this search, all overly-general
operators are applied to working memory up to a user-specified depth (the models in the current
work expand operators to a depth of two). This procedure is similar to relational inference, but
it keeps track of the depth at which inferred elements are added and the operators that generated
them. Elements that already existed in memory prior to how-search are assigned a depth of zero.
Unlike skills, overly-general operators do not produce SAI effects to compare, so instead the
system searches for any occurrences of the terms in the SAI being explained (e.g., “Field1”,
“UpdateText”, and “5”) in the updated working memory structure. If occurrences of a particular
term are found, then the system selects the shallowest occurrence9 and generates a trace of the
operators that produced the element containing it. If a selected element occurs at depth zero
of working memory, then no operators support it. In these cases, the system generates a trace
containing a special “variablize element” operator, which has a single condition and a single
effect that is a variablized version of the element it supports (see Figure 3.3 for an example).
These discovered traces constitute explanations of the provided SAI. If there are no occurrences
of a particular constant, then the system leaves them unexplained. Once all constants have been
processed, how-search returns the traces it found and terminates. The current implementation
also allows the tutor to provide simple type constraints on the SAI constants (e.g., that “5” must
be a text value). These optional constraints are useful for excluding nonsensical explanations,
such as explaining a text value as the x position of one of the elements in the interface (if it
happened to have “5” as an x position).

3.3 Learning Components
Once how-search has completed, it passes the explanation traces it discovered to the four learning
components, which create and update skills in response. The first component, how-learning, cre-
ates new skills in situations where the explanation traces from how-search contain overly-general
operators. In these cases, the component uses a form of explanation-based generalization (De-
jong & Mooney, 1986) to compile the how-search traces into legality conditions and effects for
a new skill. In particular, how-learning regresses over the trace structures to replace constants

8The tutor can optionally provide a skill label with the SAI and feedback, which restricts the search to only
include skills with the same label.

9If there are multiple occurrences at the shallowest depth, then one is randomly chosen.
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Figure 3.3: An example how-search trace and the resulting skill that is compiled from them. This
skill has a single effect, which is generated by replacing constants in the Selection-Action-Input
(SAI) being explained with the variablized elements that support them, and legality conditions,
which are extracted from the leaves of the explanation structure. The arrowed lines show which
elements support the SAI constants, the double-stroke lines represent unifications, and the single
lines without arrows represent the mappings between conditions and effects.

in the SAI with appropriate variablizations. The variablized SAI becomes the effect for a new
skill. Additionally, this process computes the legality conditions that must be met to successfully
evaluate this new effect. To start this process, all pattern-matching variables that appear across
the trace structure are renamed uniquely to ensure there are no name collisions during regres-
sion. Next, constants in the SAI are replaced with the particular effects elements that explain
them.10 The system then performs a breadth-first regression over the trace structure, replacing all
occurrences of each variable with their unifying elements (for unification details see Dejong &
Mooney, 1986). This process continues to the leaves of the traces, stopping just before replacing
variables with their respective working memory elements, and then the conditions at the leaves
of the traces are extracted as legality conditions for the new skill. Figure 3.3 shows an example
of how-search traces and the skill that is compiled from them. Once a skill has been compiled, it
is added to skill memory and the how-search output is updated to reflect how the new skill (and
its particular instantiations) explains the SAI. Note, if the tutor provided a skill label, then it is
assigned to the newly created skill.

Once skill applications that explain the provided SAI have been identified, either from pre-
existing skills or those just created via how-learning, the where-learning component triggers,
which takes the tutor feedback (positive or negative) and each skill application as input and
updates the heuristic conditions of the underlying skills so that they better cover their positive

10Unexplained SAI are ignored—they are left as constants in the SAI and no conditions are created.
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applications, but not their negative ones.11 There are many possible approaches to relational
condition learning, but all the models in this thesis utilize a very simple tutor-specific learner
that memorizes name-relations that refer to elements bound in the legality conditions of appli-
cations labeled by the tutor as positive. For example, for the compiled skill in Figure 3.3, the
learner might acquire disjunctive12 heuristic conditions given two different positive application:
(name ?a “Field1”), (name ?c “Field2”), (name ?d “Field3”) OR (name ?a “Field1”), (name ?c
“Field2”), (name ?d “Field4”). This simple approach, which learns separate disjuncts for unique
sets of name relations occurring in positive applications, is extremely fast and works surpris-
ingly well in most tutors. However, the approach produces effectively no generalization across
interface elements. To support more powerful generalization, the system could instead use in-
cremental specific-to-general or general-to-specific relational learners. However, pilot studies
suggested these approaches perform only marginally better (in tutoring domains) and take sub-
stantially longer to run, so I did not explore them further.

Once where-learning completes, the system activates its third learning component, when-
learning, which learns heuristic conditions for skills. This component takes the tutor feedback
and each skill application as input. A classification structure is built from each skill instantiation
by duplicating the current working memory structure and replacing objects bound to pattern-
matching variables from the legality conditions with constants uniquely determined by the names
of the variables (see Figure 3.2). Then, each of these structures is paired with the tutor feedback
and passed as training data to a concept learning algorithm. Currently, the system is designed
to support incremental algorithms, such as COBWEB (Fisher, 1987) or TRESTLE (MacLellan,
Harpstead, Aleven, & Koedinger, 2016), but it also has an interface to the Scikit-learn library (Pe-
dregosa et al., 2011), which implements many non-incremental concept learning approaches.13

In order to utilize these non-incremental approaches, the system maintains a separate memory of
all previous training data and, whenever it gets a new datum, it updates this memory and re-learns
an entirely new classifier from all the available examples. Additionally, for any approaches that
do not support relational representations (e.g., COBWEB or any of the Scikit-learn approaches),
each relation is simply treated as a Boolean attribute.

Once the skill classifiers have been updated, the which-learning component activates. This
final component updates each skill’s utility given the available applications and feedback. Cur-
rently, the system updates the utility to reflect the average correctness (i.e., accuracy) of each skill
based on counts of the positive and negative applications of each skill that it maintains. How-
ever, in future work, this system might implement alternative approaches, such as reinforcement
learning.

11When updating a newly created skill, the component first initializes the heuristic conditions as determined by
the particular where-learning strategy.

12Conditions currently only supports top-level disjunction, where each disjunct is separately evaluated at perfor-
mance time.

13I do not believe these non-incremental approaches are good models of human learning, but many of these
approaches have high accuracy, which is desirable for tutor authoring.
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3.4 The DECISION TREE and TRESTLE models

The remainder of this thesis explores two models, the DECISION TREE and TRESTLE models,
cast within the Apprentice Learner Architecture. These models implement the performance and
learning components using the approaches described in the previous two sections, but differ in
their approach to when-learning: the first uses a non-incremental decision tree learner (Pedregosa
et al., 2011; Quinlan, 1986) and the second uses Trestle, an incremental learner (MacLellan,
Harpstead, Aleven, & Koedinger, 2016). Both models are given identical initial knowledge con-
figurations. In particular, they have relational knowledge for inferring equality of values (see
value-equality in Table 3.1), determining editability of interface elements (such as text fields or
drop-down menus), and computing grammar relations on values. The last kind of knowledge is
similar to the unigram knowledge shown in Table 3.1; but instead of extracting words, it parses
the provided value using a pre-trained probabilistic context-free grammar and adds elements de-
scribing generated parse trees to working memory. Specifically, it adds elements representing the
nodes in the parse tree as well as left-tree and right-tree relations that describe how these nodes
relate. Finally, it adds value relations that describe the strings these nodes represent. The proba-
bilistic context-free grammar used by both models was trained on a large corpus of both English
text and math equations, extracted from the “Self Explanation sch a3329ee9 Winter 2008 (CL)”
(Ritter et al., 2007) and “IWT Self-Explanation Study 0 (pilot) (Fall 2008)” datasets downloaded
from DataShop (Koedinger et al., 2010), using the approach described by Li, Schreiber, et al.
(2012).14 In addition to this relational knowledge, both models have overly-general operators for
adding, subtracting, multiplying, dividing, rounding, and concatenating values. Table 3.2 shows
the add and concatenate operators; the other operators are almost identical, but perform their
respective operations.

These preliminary models were chosen to be similar to the SIMSTUDENT model (Li, 2013;
Matsuda et al., 2007), but different in a number of key respects. In particular, the depth-limited
how-search in the current models (where the shallowest explanations are chosen) is similar to
the iterative-deepening function search used by SIMSTUDENT. However, the current approach
(for both models) is incremental, only searching for explanations of the most recent example,
whereas SIMSTUDENT maintained all prior examples and searched for single explanations that
cover all examples with the same skill label. This non-incremental approach is particularly trou-
blesome when no single explanation exists for all the examples with a particular label. In these
cases, SIMSTUDENT executed iterative deepening to the maximum depth before splitting the
most recent examples off into separate disjuncts (of the same skill label) and repeated iterative
deepening again on these disjuncts. This entire process was repeated each time a new exam-
ple was received. While this non-incremental approach sometimes leads to more concise skills,
the incremental approach almost always converges to the same explanations, is substantially
faster, and aligns better theoretically with other models that use incremental explanation-based
approaches to acquire new skills, such as CASCADE (VanLehn et al., 1991) and STEPS (Ur &
VanLehn, 1995).

The new models also differ from SIMSTUDENT in the approach to where-learning. In par-
ticular, SIMSTUDENT requires the tutor to annotate any fields that are relevant to the current

14This grammar, however, is not part of the theory and could have been built by hand.
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skill applications and learns generalized retrieval patterns for extracting these “foci of attention.”
These patterns are learned in a specific-to-general fashion given positive examples of each focus
of attention.15 In contrast, the new models do not require the tutor to annotate relevant elements
because general patterns for retrieving necessary elements (i.e., the legality conditions) are auto-
matically extracted using explanation-based generalization. Additionally, the name-memorizing
approach from the current model yields identical behavior to the specific-to-general approach for
tutor interfaces where little generalization is necessary. For example, with skills that only apply
in two different situations, both approaches require at least one positive example of each situation
and yield equivalent generalizations. The approaches differ in situations where more generaliza-
tion is necessary, but, as I will show in the following chapters, this mechanism is sufficient for a
wide range of tasks.

Both models differ from SIMSTUDENT in their approach to when-learning. The decision-tree
learner is most similar to SIMSTUDENT, which uses FOIL (Quinlan & Cameron-Jones, 1995) to
induce a classifier given the values of the tutor provided foci of attention. Although FOIL sup-
ports relational learning, this capability is not actually necessary within SIMSTUDENT because
all object mappings are provided by the tutor (the foci of attention) or generated when matching
skills. Thus, a decision tree learning approach that uses grounded relations as features produces
nearly equivalent behavior. The key differences between these models and the TRESTLE model
is that the latter learns incrementally, whereas the former are both non-incremental. Beyond
these differences, SIMSTUDENT’s approach to when-learning also has a few key limitations that
have been addressed in the current models. Specifically, it requires the tutor to annotate interface
elements (i.e., provide foci of attention) and only trains on the values of these elements (e.g., the
text they contain) and features computed over these values. In contrast, the new models do not
require the tutor to annotate elements, and for classification they use the entire working memory
structure, where any objects bound in the legality conditions are replaced with constants uniquely
determined by the variable names. This approach enables the newer models to be sensitive to
both the values of interface elements, as well as how they relate to one another. This additional
information is particularly useful with approaches that explicitly leverage structural and rela-
tional information, such as Trestle, but the renaming scheme also enables algorithms that do not
explicitly support these kinds of information to benefit.

Finally, the new models also share many relations to other previous work. At the architecture-
level, how-learning acquires macro- and primitive operators, where-learning acquires heuristic
conditions, when-learning acquires preference knowledge for accepting or rejecting operators,
and which-learning acquires numeric preference knowledge for ordering operators. Given these
mappings, the architecture unifies much of the previous apprentice learning theory, and it should
be possible to instantiate many of the prior learning models within it. For example, the STEPS
and CASCADE systems use explanation-based learning of correctness for how-learning, which
is similar to the how-learning approach of my models. These prior accounts also use analogical
(CASCADE) and discrimination (STEPS) approaches to learning operator preferences, which
are similar to the approaches used by the TRESTLE (analogical) and DECISION TREE (discrim-

15This approach only uses hierarchical relations between interface elements (a subset of the working memory
structure), so is limited somewhat in its expressiveness. For example, it cannot learn conditions that pertain to the
values of interface elements.
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ination) models. It should also be possible to produce model configurations that are analogous
to ACM (Langley & Ohlsson, 1984) or BUGGY and DEBUGGY (VanLehn, 1983), and support
similar kinds of investigations. In particular, researchers could train agents by providing them
with buggy, rather than correct, student traces, and the agents would induce skill models that
explain students’ buggy behavior.
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Chapter 4

Efficiently Authoring Expert Models: A
Case Study

4.1 Introduction

Now that I have described the Apprentice Learner Architecture, and the models set within it,
I next turn to showcasing how one of the latter, the DECISION TREE model, supports efficient
tutor authoring.1 In prior work, Matsuda et al. (2014) showed that SIMSTUDENT can acquire an
equation solving expert model given demonstrations and feedback. Subsequent work (MacLellan
et al., 2014) estimated the time it would take the average trained developer to author an equation
solving expert model using either SIMSTUDENT or Example-Tracing, a widely used authoring-
by-demonstration approach. This work showed that authoring with SIMSTUDENT takes substan-
tially less time than Example-Tracing because it generalizes from its training, whereas Example-
Tracing does not perform any generalization.

These initial results are promising, but they come with a number of caveats. First, equation
solving is a well-studied tutor domain and, as a result, this prior work was able to provide SIM-
STUDENT with domain-specific prior knowledge (e.g., how to extract coefficients from terms
in the provided equations) that bolstered its efficiency. It remains to be seen how viable this
authoring approach is for domains where domain-specific prior knowledge is unavailable. Ad-
ditionally, for comparison purposes, this prior work ignored one of the key capabilities of the
Example-Tracing approach, namely mass production, which lets authors variablize previously
authored problem-specific content and then instantiate it for many different problems. This ap-
proach is essentially a way for authors to manually generalize Example-Tracing expert models
(called behavior graphs) to all problems that share isomorphic problem spaces. As generaliz-
ability is one of the key dimensions on which SIMSTUDENT outperformed Example-Tracing in
prior work, it is unclear how the two approaches would stack up when authors can use mass
production.

Based on these limitations, the current chapter investigates two questions: (1) is authoring
with simulated students a viable approach when domain-specific knowledge is not available, and

1For clarity, the current chapter only focuses on one model, but the TRESTLE model could also be used for this
purpose.
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(2) how does the approach compare to Example-Tracing with mass production? To investigate
these questions, I describe how to author a novel tutor for experimental design that teaches the
control of variables strategy using both the DECISION TREE model and Example-Tracing, then
evaluate the efficiency of each approach. If the DECISION TREE model can learn this task, then it
suggests that authoring with simulated students is viable even when domain-specific prior knowl-
edge is not available. Additionally, when evaluating the efficiency of authoring with Example-
Tracing, I assume that, whenever possible, mass production happens for free. This optimistic es-
timate of the time needed to mass produce content provides a more aggressive Example-Tracing
benchmark for assessing the DECISION TREE model’s efficiency. After presenting my evalua-
tion of these two expert-model authoring approaches, I conclude the chapter by discussing the
limitations of each approach.

4.2 Experimental Design Task
Prior work has found that the ability to create well-designed experiments using the control of
variables strategy can be improved by direct instruction (Chen & Klahr, 1999), and that tutor-
ing middle school students on this strategy improves their ability to design good experiments
(Sao Pedro et al., 2009). Thus, to demonstrate the authoring capabilities of the DECISION TREE

model and Example-Tracing approaches, I decided use them to author a novel tutor for experi-
mental design.

To coach students in designing good experiments, I created the tutor interface shown in Fig-
ure 4.1, which scaffolds students in constructing two-condition experiments that test the causal
relationship between a particular independent variable and a particular dependent variable. A
problem within this interface presents as a relationship to test (the effect “Burner Heat” on “the
rate ice in a pot will melt”), available independent variables to manipulate (“Burner Heat,” “Pot
Lid,” and “Ice Mass”), and values that these variables can take (the heat can be “high” or “low”,
the lid can be “on” or “off’, and there can be “10g” or “15g” of ice). Within this framework,
the desired system tutors students on how to solve problems using the control of variables strat-
egy, which states that the only way to causally attribute change in a dependent variable is to
manipulate the value of an independent variable while holding all other variables constant. More
specifically, it gives students positive feedback when they pick values for the target independent
variable that differ across conditions and values for non-target independent variables that are the
same across conditions.

Although it appears simple to build an expert model for this task, from an authoring-by-
demonstration perspective it is deceptively challenging. The key difficulty lies in the combinato-
rial nature of problems in this interface. For example, for the problem shown in Figure 4.1 there
are eight unique solutions to the problem. Each solution requires seven steps (setting the six
variable values and pressing the done button). Because the order of variable selection does not
matter, there are then 721 ways to achieve each solution (6! + 1). Thus, there are approximately
5,768 (721 ∗ 8 final solutions) paths each of length 7. This yields 40,376 (5, 768 ∗ 7) correct
actions in the problem space.

This large number of correct actions, even for a simple problem with only three variables,
each with two values, presents a challenge for non-programmers attempting to build an expert
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Figure 4.1: The experimental design tutor interface.

model using approaches that require them to demonstrate all correct ways to solve each problem
(e.g., vanilla Example-Tracing). A common strategy authors use to overcome this problem is to
constrain the number of correct paths by reframing the problem. The following tutor prompts for
the interface in Figure 4.1 highlight how different problem framings affect the number of correct
solutions and paths:

One solution with one path Design an experiment to test the effect of burner heat on the rate
at which ice in a pot will melt by assigning the first legal value to the variables in left to
right, top down order as they appear in the table.

One solution and many paths Design an experiment to test the effect of burner heat on the rate
at which ice in a pot will melt by assigning the first legal value to each variable, starting
with condition 1.

Many solutions each with one path Design an experiment to test the effect of burner heat on
the rate at which ice in a pot will melt by assigning values to variables in left to right, top
down order as they appear in the table.

Many solutions with many paths Design an experiment to test the effect of burner heat on the
rate at which ice in a pot will melt.

These examples highlight how authors can change the number paths that are treated as cor-
rect. It is also possible for them to change the underlying problem space. For example, adding
a fourth variable to the interface in Figure 4.1 would require two more steps per correct path
(setting the variable for each condition), while adding another value to each variable increases
the number of possible options at each step of the solution path. These examples illustrate that
the number of correct actions in the problem space is not an inherent property of the domain,
but rather arises from the author’s design choices about particular problems and how they are
presented.

When building tutors, authors typically have a number of pedagogical and theoretical goals,
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and authoring tools are a means by which these goals are achieved. However, if authoring tools
fail to support authors in achieving these goals, then they are forced to make compromises. For
example, they might be forced to choose problems that are realistic to author, but that are less
pedagogically effective. This challenge can be described in terms of threshold and ceiling, from
research on user interface software tools (Myers et al., 2000). More specifically, the threshold of
a tool refers to how easy it is to learn and start using, while the ceiling refers to how powerful the
tool is for expressing an author’s ideas. I argue that, for authoring tools with low threshold (i.e.,
for non-programmers), the ceiling is not well understood.

4.3 Expert Model Authoring

To investigate the authoring capabilities and efficiency of the DECISION TREE model and Example-
Tracing with mass production, I built an experimental design tutor using each approach. To cre-
ate the tutor interface and author the expert models, I used the Cognitive Tutor Authoring Tools
(CTAT) (Aleven et al., 2009). This toolkit provides a drag-and-drop interface builder, which I
used to create the interface shown in Figure 4.1. The toolkit also supports two modes for author-
ing expert models without programming, Example-Tracing and Simulated Student.2 Next I will
describe how to author the experimental design expert model using each mode.

4.3.1 Authoring with Example-Tracing

When building an Example-Tracing tutor in CTAT, the author simply demonstrates steps directly
in the tutoring interface. These demonstrated steps are then recorded in a behavior graph, which
graphically represents the demonstrated portions of the problem space. Each node in the behavior
graph denotes a state of the tutoring interface, and each link encodes an action that moves the
student from one node to another. Many legal actions might be demonstrated for each state,
creating branches in the behavior graph. Typically an author will demonstrate all correct actions,
but they can also demonstrate incorrect actions, which they label as incorrect or buggy in the
behavior graph. Once a behavior graph has been constructed for a particular problem, the tutoring
system can use it to train students on that problem. In particular, the tutor traces a student’s
actions along the behavior graph and any actions that correspond to correct links are marked
as correct, whereas off-path actions (i.e., that do not appear in the graph) or that correspond to
incorrect or buggy links are marked as incorrect.

Figure 4.2 shows a behavior graph I authored for the experimental design tutor. The particular
prompt chosen has eight unique configurations, so I demonstrated each unique configuration in
the interface (corresponding to the eight paths in the figure). Along each path, the variable values
can be set in any order. However, instead of requiring authors to demonstrate each unique order-
ing, the Example-Tracing approach lets authors specify that groups of actions can be executed in
any order—drastically reducing the number of demonstrations necessary. Using this approach,

2I updated CTAT’s SIMSTUDENT authoring mode, so that it sends all state and interaction information to the
Apprentice Learner Architecture, which runs as a separate process outside of CTAT. This separation should make it
easier to interface other authoring tools and systems with the architecture.
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Figure 4.2: A behavior graph for the experimental design tutor. The colored ellipsoids represent
groups of actions that are unordered.

I specified that the actions to set variable values along each path are unordered (denoted in the
behavior graph by colored ellipsoids).

Once I had successfully authored a behavior graph for the first problem, I next turned to
generalizing it with mass production, so it could support other problems, such as designing an
experiment to determine how the slope of a ramp affects the rate at which a ball will roll down
it (Chen & Klahr, 1999). To create a template for mass production, I first authored the same
problem as before, but instead of entering specific values in the interface, I entered variables,
such as “%(variable1)%” instead of “Burner Heat.” Then I created an Excel spreadsheet that had
a row for each variable and a column for each problem, where each value in the table corresponds
to a particular value for a particular variable in a particular problem. Using CTAT, I then mass
produced my template and spreadsheet, which created separate grounded behavior graphs for
each problem like the one shown in Figure 4.2.

This approach supports different problems that have identical behavior graph structure, such
as replacing all instances of “Burner Heat” with another variable, “Ramp Slope”. However, if a
problem varies in the structure of its behavior graph, such as asking the student to manipulate a
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variable in the second column instead of the first (e.g., “Pot Lid” instead of “Burner Heat”) or
to solve problems with a different number of variables (e.g., letting the burner heat be “high”,
“medium”, or “low”), then a separate mass production template must be authored for each unique
behavior graph structure. Given this limitation, to support experimental design problems with
two conditions and three variables, each with two values, I ultimately had to author three separate
mass production templates, one for each variable column being targeted.

Next, I turn to evaluating the efficiency of the Example-Tracing approach. The completed
model consists of 3 behavior graph templates (one for each of the three variable columns that
could be manipulated). Each graph took 56 demonstrations and required eight unordered ac-
tion groups to be specified. Thus, the complete model required 168 demonstrations and 24
unordered group specifications. Using estimates from a previously developed keystroke-level
model (MacLellan et al., 2014), which approximates the time needed for the average trained
author to perform each authoring action, I estimate that the behavior graphs for the experimen-
tal design tutor would take 26.96 minutes to build using Example-Tracing.3 It is worth noting
that the ability to specify unordered action groups offers substantial efficiency gains—without
it, authoring would require 40,376 demonstrations, or 98.69 hours. Furthermore, with mass pro-
duction, this model can generalize to any set of variables (although the number of variables or
values cannot be changed).

4.3.2 Authoring with the DECISION TREE Model

To author an equivalent tutor using the DECISION TREE model, authors interactively train a
computational agent to perform the task via demonstrations and feedback. In turn, the agent
induces an expert model of the task. Rather than representing expert knowledge using a behavior
graph, this model represents it as skills. Like action links in the behavior graph, skills describe the
correct paths through the problem space. However, they are compositional and often much more
compact. For example, the knowledge encoded in the three behavior graphs for the experimental
design tutor might instead be represented using just three skills: one for setting the value of
a variable to its first value, one for setting the variable value to its second value, and one for
specifying that the problem is done (other skill decompositions are also possible).

For the DECISION TREE model to function, it needs access to a relational representation of
each step in the interface. Fortunately, CTAT supports the ability to automatically generate these
representations from interfaces that were authored using its drag-and-drop tools. In particular, it
generates a representation with elements for each object in the interface (an element for each text
label, text field, and drop-down menu) and relations to describe them (name, type, value) and
how they relate (contains, for elements that contain other elements, and before, which describe
the order elements appear when contained within another). Thus, authoring an interface in CTAT
is essentially a way for non-programmers to author the sensors and effectors through which an
agent perceives and interacts with the world. A key caveat of this approach is that particulars
of how the interface was authored impact the agent’s learning and performance. For example, if

3The keystroke-level model estimates that it takes the average trained expert 8.8 seconds to demonstrate an action
and 5.8 seconds to specify a group of actions as unordered. Additionally, I assumed mass producing problems took
0 seconds.
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Figure 4.3: The DECISION TREE model asking for feedback (left) and for a demonstration
(right).

the author creates the interface using a table (which contains rows and columns, which contain
cells), then CTAT will generate a relational representation that affords generalization over rows
and columns. In contrast, if the author creates a similar interface using multiple text fields,
generalization will not be as easy for the agent, although it is usually still possible.4 When
authoring the experimental design tutor for the current work, I used multiple individual text
labels, text fields, and drop-down menu elements, in order to show that even the worst case
interface structures (i.e., that lack hierarchical structure) are still sufficient for agents to learn and
perform.

Given a tutor interface and its relational representation, authoring an expert model with this
approach is similar to Example-Tracing in that the simulated agent asks the author for a demon-
stration when it does not know how to proceed. However, when it already has an applicable
skill, it executes it, shows the resulting action in the interface, and asks the author to provide
correctness feedback on this action. Given this feedback, it refines its skill knowledge (i.e., its
heuristic conditions, classifier, and utility). Figure 4.3 shows the agent asking for feedback and
a demonstration. A key feature of this approach is that authors do not need to explicitly specify
that actions are unordered—the agent learns general conditions on its skills that implicitly order
its actions. One additional feature of the CTAT’s simulated student mode is that it produces a
behavior graph containing all actions the author has demonstrated or the agent has taken for each
problem. Thus, this approach generates both skills and behavior graphs.

To author an expert model using the DECISION TREE model, I tutored it on a sequence of 20
experimental design problems presented in the tutor interface. Unlike Example-Tracing, I did not
explicitly demonstrate every correct solution for each problem. Instead, the agent solved each
problem a single way, and I provided it with demonstrations and feedback when requested. One

4Future work should explore the supplementation of an agent’s relational knowledge, so it can compute its own
spatial relations, such as left-of, above, and contains.
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Figure 4.4: The average error (top) and cumulative authoring time (bottom) of the DECISION

TREE model given the number of experimental design problems authored.

challenge when authoring with a simulated student is that it is difficult to determine when it has
correctly learned the target skills. This is a problem also faced by teachers when they are trying
to determine whether a human student has learned something correctly and by developers trying
to verify that a program is correctly implemented. To address this problem, I use a solution that
is common to both scenarios—testing the agent on previously unseen problems. In particular,
I incrementally evaluate its performance on each subsequent training problem. The top graph
in Figure 4.4 shows the performance of the agent over the course of the 20 training problems.
This graph provides some insight into when the agent has converged to the correct skills. In
particular, even though the agent solved the seventh problem without mistakes, it seems unlikely
that it has converged because it made mistakes on the sixth and eighth problems. However, it
seems reasonable to assume that it has converged by the end (i.e., after completing six problems
in a row without errors).

One additional complication I encountered during training was that the agent has a tendency
to learn a single correct strategy and then apply it repeatedly (e.g., always setting variables to their
first legal value). To discourage this behavior, I provided demonstrations that displayed a range
of strategies (e.g., sometimes setting variables to their second legal value). This varied training
produced an agent that used multiple strategies. However, I believe this is an authoring problem

36



that should be addressed more fully in future work. In particular, it seems to be an example
of the exploration vs. exploitation tradeoff (Kaelbling et al., 1996), where an agent must decide
between exploiting the strategies it already knows and exploring alternative strategies, potentially
making more mistakes. The DECISION TREE model uses skills’ utilities to determine which to
try first, always executing higher utility skills. This approach encourages the agent to exploit its
knowledge. However, when authoring, it is probably preferable to encourage exploration. One
simple approach would be to uniform randomly select matching skills for execution (rather than
those with the highest utility), which would likely reduce the agent’s initial performance, but
would encourage more exploration of the problem space.

Having successfully authored a skill model using this approach, I next turned to evaluating
its efficiency. While authoring, I tabulated the number of demonstrations and feedback actions
that I performed. Using these tabulations and the keystroke-level model from my prior work
(MacLellan et al., 2014), I estimate that it would take the average trained expert 9.19 minutes
to author an expert model for experimental design by tutoring the DECISION TREE model,5

approximately one third of the time it takes to author the same tutor with Example-Tracing (about
27 minutes). Additionally, the bottom graph in Figure 4.4 shows the cumulative authoring time
over the course of the 20 training problems. This curve is steeper at the beginning because
the agent mainly requests demonstrations then. In contrast, by the end of training the agent
only requests feedback, which takes much less time (2.4 vs. 8.8 seconds per request). One
limitation of the current model is that it requests something from the author on every step (either
a demonstration or feedback), so the cumulative authoring time curve never levels off. Future
work should explore when the agent can stop requesting feedback on skill applications it is
confident are correct. Such an approach might further reduce the authoring time.

4.4 Discussion
My primary finding is that both approaches support the construction of an experimental design
tutor expert model, even though the DECISION TREE model did not have any prior knowledge
specific to the domain. This high-level result suggests an affirmative answer to my first research
question, whether authoring with simulated students is a viable approach even when domain-
specific knowledge is not available. However, the current domain does not require any overly-
general operators. For example, all input values (e.g., “High”) are directly explained in terms of
the available drop-down menu options (e.g., the first option). Thus, the primary challenge in this
domain is to determine when the agent should pick the particular menu options (i.e., to discover
the correct heuristic conditions and classifier). For tasks where the agent must construct more
substantial explanations of demonstrations, it must have sufficient overly-general operators. I
would argue that the six overly-general operators (add, subtract, multiply, divide, round, and
concatenate) possessed by the current agent are reasonably general and support tutor authoring
across a wide range of domains, and I will present evidence for this claim in later chapters.

5The original keystroke-level model estimates that, for SIMSTUDENT, it takes 10.4 seconds to provide a demon-
stration and 2.4 seconds to provide feedback. However, unlike SIMSTUDENT, the DECISION TREE model does not
require authors to specify foci of attention, so demonstrating an action takes the same amount of time as Example-
Tracing (8.8 seconds).
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However, if the agent ever encounters a domain where it does not have sufficient overly-general
operator knowledge, then it might not be able learn effectively. In the absence of this prior
knowledge, the agent simply memorizes unexplained constants, which enables it to successfully
learn problem-specific models similar to those acquired by Example-Tracing (i.e., it does not
generalize beyond the demonstrations).

My second key result is that authoring the experimental design tutor using the DECISION

TREE model took about one third of the time needed for the Example-Tracing approach, even
when I assumed that mass production takes zero time. More specifically, the Example-Tracing
approach consisted of authoring three behavior graph templates (one for each variable column
being targeted), which I estimated would take the average trained expert about 27 minutes to
author. An author could use these templates to mass produce any new problem, as long as
they have three variables, each with two values. In contrast, the simulated student approach
consisted of tutoring the DECISION TREE model on 20 experimental design problems, which
I estimated would take approximately 9.2 minutes for the average trained expert. Overall this
finding suggests that expert models can be efficiently authored by training simulated students.
Further, the answer to my second research question is that authoring the experimental design
tutor is more efficient with the DECISION TREE model than with Example-Tracing, even when
using mass production.

Despite these promising initial results, I did encounter a number of issues when authoring
with the agent. First, it was difficult to know when it had correctly learned the target skills,
which differs from Example-Tracing where the completeness of the behavior graphs is always
explicit. However, sometimes the behavior graphs are so complex that it is difficult to keep
track of what has and has not been demonstrated. In the current work, I determined when the
agent had correctly learned the skill by evaluating its performance during training. However,
one complication of this assessment is that an agent can perform well using a single strategy,
without knowing other strategies. The goal of training is to author an expert model that can tutor
all of the strategies, not just one. To ensure that the agent learned all of the strategies, I had
to explicitly demonstrate them to the agent, but future work should explore how to encourage
the agent to explore multiple strategies such as having it randomly execute matching skills rather
than executing those with the highest utility. This approach would let it discover these alternative
strategies on its own, rather than requiring an author to explicitly demonstrate them.

From a pedagogical point of view, it is unclear whether alternative strategies need to be mod-
eled in a tutor. Waalkens et al. (2013) have explored this topic by implementing three versions
of an Algebra equation solving tutor, each with progressively more freedom in the number of
paths that students can take to a correct solution. They found that the amount of freedom did not
have an effect on students’ learning outcomes, but argue that tutors should still support multiple
strategies. There is some evidence that the ability to use and decide between different strate-
gies is linked with improved learning (Schneider et al., 2011) and subsequent work (Tenison &
MacLellan, 2014) has suggested that students only exhibit strategic variety if they are given prob-
lems that favor different strategies. Regardless of whether multiple strategies are pedagogically
necessary, it is important that available tools support them so that these research questions can
be further explored.

Finally, it is important to point out that although the agent-discovered skill model would
not immediately support additional variables or values, it could be easily extended to support
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these cases with further training. In particular, adding a new variable would likely only require
a few additional problems, so the where-learner can see that the current skills apply to the new
drop-down menus. Similarly, updating an agent’s model to support a new value would also only
require a few problems, so the agent can learn when the new value should be selected. In contrast,
when using Example-Tracing, adding a new variable would require an author to construct four
new graphs, one for each column and adding a new variable would require the author to re-create
the three graphs. In both cases the behavior graphs would be bigger. It is important to note that
training the agent to support these new situations should not require the author to retrain the agent
from scratch. One final feature of the skill model is that it is general enough to tutor a student
on new variables and values even if they are not known in advance, whereas the behavior graph
must be pre-generated when using Example-Tracing. This level of generality could be useful in
inquiry-based learning environments (Gobert & Koedinger, 2011), where students could bring
their own variables and values.

4.5 Conclusions
The results of my case study suggest that Example-Tracing and tutoring the DECISION TREE

model are both viable approaches for non-programmers to create tutors. More specifically, I
found that the agent-based approach was more efficient for authoring the experimental design
tutor. However, this approach comes with a number of challenges related to ensuring that the au-
thored model are both correct and complete, and it remains to be seen whether non-programming
authors are comfortable navigating these challenges. In contrast, Example-Tracing was simple
to use and it was clear that the authored models were complete, but it took almost three times
longer to use. Overall, this analysis supplements prior work showing that Example-Tracing is
good for authoring a wide range of problems for which non-programmers might want to build
tutors (Aleven et al., 2009). However, authoring with the DECISION TREE model shows great
promise as a more efficient approach—particularly for tutors that require multiple, complex,
mass-production templates.

My analysis also identified situations where these approaches encounter difficulties. The
Example-Tracing approach has mechanisms for dealing with unordered actions, but it struggles
as the overall number of final solutions increases because each unique solution must still be
demonstrated. Conversely, the DECISION TREE model has difficulties when there are multiple
correct strategies. In these cases, it has a tendency to learn a single strategy and to apply it
repetitively. This behavior has been observed in other programming-by-demonstration systems,
and there exist techniques for demonstrating alternative strategies (McDaniel & Myers, 1999).
Another approach would give the agent problems that favor different strategies to encourage
variety, similar to tutoring real students (Tenison & MacLellan, 2014).

My findings also shed light on the thresholds and ceilings (Myers et al., 2000) of existing tutor
authoring approaches. For example, hand authoring an expert model has a high threshold (hard to
learn), but also a high ceiling (you can model almost anything with enough time and expertise).
Example-Tracing, on the other hand, has a low threshold and a comparatively low ceiling (for
problems with requiring many complex mass-production templates), though my results suggest
the ceiling is higher than one might think. Functionality for specifying that actions in a behavior
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graph are unordered and mass producing content greatly amplify Example-Tracing. By contrast,
the agent-based approach has a threshold similar to Example-Tracing, but it has a much higher
ceiling because of its ability to generalize.

In conclusion, this work demonstrated the use of Example-Tracing and the DECISION TREE

model for authoring a novel experimental design tutor. Additionally, my evaluation of these two
approaches for this authoring task extended the prior work on authoring tutors with simulated
students (MacLellan et al., 2014; Matsuda et al., 2014). In particular, my results showed that
authoring with simulated students is viable even when domain-specific knowledge is unavail-
able. Further, they suggest that the approach can be more efficient than Example-Tracing, even
when taking into account mass production. This work further advances the goal of developing a
tutor authoring approach that is as easy to use as Example-Tracing (low threshold), but that is a
powerful as hand authoring (high ceiling).
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Chapter 5

Predicting Student Behavior and Testing
Learning Theory

5.1 Introduction

In the previous chapter, I showed that apprentice learner models can support tutor authoring.
However, it is still difficult for developers to build tutoring systems that are effective for learning.
Fortunately, one branch of Educational Data Mining (EDM) research leverages data to improve
our theoretical understanding of how people learn (Baker & Inventado, 2014; Romero & Ventura,
2010) and this developers can leverage this understanding to guide tutor design. Analogous to
how data from the Large Hadron Collider, which was motivated by a strong theory, can be used
to gain insights into physical laws, educational data can provide insights into the mechanisms
underlying student learning. Although early EDM work explores this idea (Anderson et al.,
1989; Ur & VanLehn, 1995), recent EDM research trends center on using statistical methods
to discover the domain skills students learn within tutors (i.e., knowledge-component models)
and estimating which skills students know based on their performance (i.e., knowledge tracing)
(Baker & Inventado, 2014). While these research directions are important, the availability of
educational data makes the EDM community well poised to contribute substantially towards our
theoretical understanding of human learning.

Although many widely used predictive models of learning, such as Bayesian Knowledge
Tracing (Corbett & Anderson, 1995) and Additive Factors Model (Cen et al., 2006), rely on exist-
ing theories of human learning, such as the chunking theory of learning (Newell & Rosenbloom,
1981), researchers rarely apply these techniques to educational data with the aim of improving
psychological theory. Further, there are a number of barriers to using educational data for this
purpose. First, many EDM approaches are only loose approximations of the theories on which
they are based. For example, the Additive Factors Model predicts that improvements in human
performance will follow a single logistic function, whereas many previous theories states that the
improvements should follow a power function (Heathcote et al., 2000). Second, EDM models
do not reflect the current state of learning theory. For example, recent studies of skill acquisi-
tion actually suggest that improvements should follows three distinct power functions, one for
each phase of cognitive skill acquisition (Tenison & Anderson, 2015), rather than a single logis-
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Figure 5.1: A depiction of how psychological theories, models, and behavior relate. Researchers
use theories to generate models, which simulate behaviors that researchers compare to human
behaviors. Researchers then use behavioral differences to inform future models and theories.

tic function. This disconnect between theories and models makes it difficult to draw inferences
about the underlying theories given the fit of models to data. By more tightly connecting EDM
models to psychological theory, we can leverage educational data to improve our understanding
of the mechanisms behind human learning and, in turn, use these theories to improve predictions
of student behavior.

To more tightly link a theory to models, researchers can develop computational theories
(Newell, 1973), which describe the mechanisms that produce observed phenomena. Within this
paradigm, a model presents as a specific implementation of these mechanisms that can be exe-
cuted to simulate behavior, which then can be compared with observed behavior to test both the
model and the underlying theory. The objective is not only to explain or “fit” relationships to
observed data, but also, to predict relationships before data are observed. Figure 5.1 shows the
iterative relationship between theories, models, and behaviors. I argue that this approach should
be central to the field of EDM.

In the current chapter, I demonstrate the use of apprentice learner models for theory-driven
prediction of student behavior. Unlike prior models of student performance, such as Additive
Factors Model and its variants, apprentice learner models explain the mechanisms students use to
acquire new knowledge from instruction. This mechanistic description lets one simulate learner
behavior within an instructional environment and use the results to predict human behavior.
Rather than arriving at a general conclusion, say that students learn differently from positive
and negative feedback, this approach lets one explore possible explanations for the mechanisms
driving these results.

Leveraging this capability, I use the Apprentice Learner Architecture to test two alternative
theories of learning, in order to show how the architecture also supports theory development. The
first, which corresponds roughly to SIMSTUDENT’s theory of learning (Li et al., 2014), posits
that humans learn when to apply skills non-incrementally; i.e., they relearn to classify the appli-
cability of skills in light of all available training data. Although this theory seems implausible for
lifelong learning, there is some evidence that, at least for the duration of a single equation solving
tutoring session, it explains some errors that humans make (Matsuda et al., 2009). In contrast,
the second theory posits that humans learn the conditions for skill application incrementally; i.e.,

42



they update how they classify skills given only the most recent training datum. This second the-
ory seems more psychologically plausible and better aligns with other computational theories of
learning (Feigenbaum & Simon, 1984; Fisher & Yoo, 1993; Langley, 1985).

To test these theories, I instantiated two models within the architecture: the DECISION TREE

model and the TRESTLE model. The key difference is that the first uses a non-incremental
decision-tree learner (Pedregosa et al., 2011; Quinlan, 1986) for when-learning, whereas the
other uses Trestle (MacLellan, Harpstead, Aleven, & Koedinger, 2016), an incremental catego-
rization tree learner. In all other respects the models are identical—they have the same prior
knowledge and implementations for the other components.1 This variation is reasonably simple
and not particularly contentious, but prior models of human learning have adopted the assump-
tion that humans learn when to apply skills non-incrementally (Li et al., 2014), so it seemed like
a good initial test for of the general research approach.

To evaluate these models and test the theories underlying them, I use them to predict human
behavior in a fraction arithmetic tutor that manipulated the order students received problems
(Patel et al., 2016). Given this predicted behavior, I assess which models are capable of predicting
the main instructional effects and which have better agreement with the human behavior. Using
this approach, I provide evidence to support two claims:

1. Both models predict the main experimental effects of the problem ordering manipulation.
2. The incremental TRESTLE model better explains human behavior than the non-incremental

DECISION TREE model.

Given these initial computational models and my data-driven theory development approach
(see Figure 5.1), my ultimate goal is to develop a model that is consistent with available edu-
cational data sets, such as those found in DataShop (Koedinger et al., 2010) and other similar
repositories. The development of such a model is possible under the assumption that differences
in students’ behavior are primarily due to differences in their experiences and prior knowledge
(Matsuda et al., 2009), rather than differences in the mechanisms they use for learning.2

To pursue this goal, the general research program consists of generating different models
of human learning using the Apprentice Learner Architecture, then connected them to the same
intelligent tutoring systems that logged the data found on Datashop, and finally comparing the the
behavior of these models in these tutors to human behavior. By analyzing differences between
the models and humans, researchers can revise the underlying models and theories to reduce
these differences and repeat the process. The following sections describe one iteration of this
general research program, focusing on the fraction arithmetic tutor and one data set it collected.
They describe how to stimulate student learning in this tutor and use simulation data to predict
the human behavior. Additionally, they demonstrate the use of human data for testing which
model (and theory) is better supported by the data. Finally, they discuss the implications of my
results and potential directions for research.

1See chapter 3 for more details on these models.
2Under this view, individuals might have slightly different parameters for the same mechanisms; for example,

individuals might have different thresholds for how widely or deeply they search when explaining an example.
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Figure 5.2: The fraction arithmetic tutor interface used by the human students (left) and the iso-
morphic, machine-readable interface used by the simulated agents (right). If the current fractions
need to be converted to a common denominator, then students must check the “I need to convert
these fractions before solving” box before performing the conversion. If they do not need to be
converted, then they enter the result directly in the answer fields (without using the conversion
fields).

5.2 The Fraction Arithmetic Tutor

For my simulations, I used the “Fraction Addition and Multiplication, Blocked vs. Interleaved”
data set accessed via DataShop. Patel et al. (2016) collected these data during a classroom
experiment to determine whether blocking or interleaving different types of fraction arithmetic
problems produced better learning. These log data were generated by 79 students solving 24
fraction addition problems (ten with same denominators and 14 with different denominators) and
24 fraction multiplication problems in the tutor interface shown on the left in Figure 5.2. Some
characteristics of this tutor are worth mentioning because they affect learning. First, it required
students to check the “I need to convert these fractions before solving” box before even making
the fields necessary for conversion visible. Additionally, for fraction addition problems that
required conversion, the only strategy the tutor accepted for computing a common denominator
was multiplying the denominators of the provided fractions (other common denominators were
labeled by the tutor as incorrect).

Students in this data set were divided randomly into two conditions, blocked and interleaved.
The students in the blocked condition received three blocks of problems: fraction addition prob-
lems with same denominators, then fraction addition problems with different denominators, and
then fraction multiplication problems. The order of the problems within each block was random-
ized for each student. In contrast, the students in the interleaved condition received a random
ordering of all problems with different types intermixed. This experiment was designed to test
whether interleaving different types problems are better for learning than the blocking approach
suggested by the Common Core State Standards (i.e., fraction addition with same denominators,
then different, then fraction multiplication). The main finding of this experiment is that students
in the blocked condition have better performance during learning, but students in the interleaved
condition have better scores on a posttest taken after training (Patel et al., 2016). The aim of the
current chapter is show that both the DECISION TREE and TRESTLE models predict these main
effects, but that the TRESTLE model better accounts for human behavior.
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5.3 Simulation Approach

In order to simulate human behavior in the fraction arithmetic tutor, I created an instance of each
model (i.e., an agent) for each student and connected them to a machine-readable version of the
tutor (shown on the right in Figure 5.2). This isomorphic tutor provides each agent with the
same order of problems that the respective human student received. It is important to note that
agents are not forced to take the same actions as their respective humans, so a tutor is necessary
to provide the agents with appropriate hints and feedback during their training as the log data
alone is not enough to conduct the simulation.

For my simulations, I created a new machine-readable version of the fraction arithmetic tutor.
Creating this tutor consisted of authoring the tutor interface and behavior graphs to power it using
the Cognitive Tutor Authoring Tools (CTAT) (Aleven, McLaren, Sewall, & Koedinger, 2006).
The primary reason for creating a new tutor, rather than trying to interface with the original one,
was to take advantage of software I had developed for interfacing CTAT with the Apprentice
Learner Architecture. This software automatically trains each agent using the CTAT tutor and
generates the appropriate relational representations for each tutor step.3 Although authoring a
new tutor takes effort, this approach works even when access to the original tutor is not available.
Additionally, I have found it to be an invaluable part of understanding the peculiarities of each
task. For example, I originally assumed that the fraction arithmetic tutor supported multiple
strategies for computing the common denominator, but in understanding the tutor well enough
to recreate it (through studying the log data and speaking with the author of the original tutor), I
discovered that it only supported a single strategy.

Despite these benefits, there is a key limitation to this approach: it is challenging to create a
completely isomorphic interface. In the current simulation, the human tutor hides the fields for
converting fractions until the student checks the “I need to convert these fractions before solving”
box, but the machine-readable tutor never hides them because the software interface between
CTAT and the Apprentice Learner Architecture does not support hidden fields. The implication
of this difference is that the simulated students can make errors (i.e., trying to convert fractions
before hitting the conversion box) that are impossible in the human tutor. In general, there is a
trade off between minimizing such differences and minimizing development time. In the current
case, I ran preliminary simulations and found that the simulated agents rarely make these errors,
so I proceeded without developing support for hidden fields.

In addition to tutored problems, the human students also took a posttest to assess their fraction
arithmetic knowledge after using the tutor. This assessment was administered directly in the tutor,
with the correctness feedback disabled. When working on these problems, students could enter
any values in the text fields and they could check the “I need to convert these fractions before
solving” box, which would reveal the conversion fields regardless of whether conversion was
necessary. At any point in the problem, students could press the done button and advance to the
next problem. Patel et al. (2016) assessed students in terms of the percentage of problems they
solved correctly. Because the posttest was administered within the tutor, the simulated agents
could take it after completing all the tutored problems. When agents took the posttest, hints and

3The original tutor was authored in CTAT, but it used a newer HTML5 interface and my existing software only
supports Java interfaces.
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Figure 5.3: The average tutor (left) and posttest (right) accuracy in the fraction arithmetic tutor,
separated by condition. The lines and whiskers denote the 95% confidence intervals.

feedback were disabled. If they got all the steps correct, then they were marked as getting the
entire problem right and advanced to the next problem. However, if they made any mistakes, then
they were immediately marked as getting the problem wrong and moved to the next problem. As
with the humans, I assessed the simulated agents in terms of the percentage of problems solved
correctly.

5.4 Model Evaluation

5.4.1 Instructional Effect Prediction

After simulating every student in the data set using each model, I conducted two evaluations
using the human and simulated data. First, I examined the overall effect of instructional condition
(blocked vs. interleaved) on both tutor and posttest performance for the humans and the two
models. Figure 5.3 shows the overall tutor and posttest performance by condition for each type
of agent (humans and the models). Both models successfully predict the effect of condition
on both tutor performance and posttest (via logistic regression on tutor performance and linear
regression on posttest performance). In particular, the humans have higher tutor performance
in the blocked condition (z = 6.663, p < 0.01), and both the DECISION TREE (z = 3.799,
p < 0.01) and TRESTLE (z = 12.53, p < 0.01) models predict this effect. In contrast, humans
have higher posttest performance in the interleaved condition (t = 1.86, p < 0.06) and both the
DECISION TREE (t = 17.73, p < 0.01) and TRESTLE (t = 6.938, p < 0.01) models predict this
reversal.

These results support my claim that both models can predict the effect of a problem ordering
manipulation; i.e., that humans in the blocked condition will do better in the tutor, but worse
on the posttest. This finding suggests that, even though the models differ in their approach to
when-learning, their shared mechanisms for the other performance and learning components are
sufficient to predict these main effects. The results also indirectly support the models’ underlying
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Figure 5.4: Overall learning curves for the humans and the two models in the fraction arithmetic
tutor (left) and the model residuals plotted by opportunity (right). Model residuals are computed
by subtracting the model prediction from the actual human performance (for a particular stu-
dent on a particular opportunity of a particular skill). For model residuals, the 95% confidence
intervals are also shown.

assumption that student behavior is primarily a factor of their experiences and prior knowledge,
rather than difference in their learning and performance mechanisms.

5.4.2 Learning Curve Prediction

For the second analysis, I computed the error on each learner’s first attempts of each step and
generate overall learning curves using these values. In particular, I labeled each step in both the
human and simulated data sets by the skill, or knowledge component (Koedinger et al., 2012),
that it exercised. In this case, I labeled them by the field that was being updated (which roughly
corresponds to the application of a particular skill) for each problem type.4 Then, for each first
attempt (the first time performing a particular step on a problem), I computed the prior number
of opportunities a student has had to exercise the same skill and plotted the average error on first
attempts (across all skills) by the number of prior practice opportunities.

The result of this process is the three learning curves shown in the left graph of Figure 5.4:
one for the humans and one for each model. Unlike models that generate predictions by fitting a
function to the student data, such as the Additive Factors Model, the learning curves generated by
these models constitute parameter-free predictions of the human students’ performance. There
are a number of characteristics of these curves that are worth noting. First, there is a large
difference between the models and humans on earlier opportunities. This suggests that many
human students have prior knowledge of how to perform fraction arithmetic—they get more than
50% of the steps correct on the first practice opportunity. In contrast, the simulated agents start
without any fraction arithmetic skills. However, by the fifth practice opportunity the performance
of the humans and the models has begun to converge. Further, after the eighth opportunity, the
DECISION TREE model consistently outperforms the humans, whereas the TRESTLE model more
closely approximates the human performance. This difference in performance between the two

4This model, called the “Field” model, is currently the best fitting knowledge-component model on DataShop.
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models at the higher practice opportunities is due to the different when-learning implementations
and suggests that the TRESTLE model is a better approximation of the human behavior.

To ensure that these results are not simply a side effect of averaging over students and steps,
the right graph of Figure 5.4 shows the model residuals plotted by opportunity. Model residuals
were generated by subtracting each model’s prediction (for a particular student on a particular
opportunity of a particular skill) from the corresponding human student’s performance. These
residuals represent the average agreement between the humans and models on specific items.
The key result of this analysis is that it agrees with my initial analysis of the learning curves.
Mainly, both models are different from the humans on the first five practice opportunities, but the
TRESTLE model better agrees on the higher opportunities (i.e., the residuals are closer to zero).

5.4.3 Theory Testing
To quantitatively evaluate which of the two models better accounts for human behavior, I fit two
linear mixed-effects binomial regressions using the lme4 package in R (Bates et al., 2015), one
for each model. Each regression has two fixed effects, one for the respective model prediction and
one for the number of prior practice opportunities, a random intercept and slope (for prior practice
opportunities) for each skill, and a random intercept for each student.5 These regressions assess
the explanatory power of the models, properly accounting for the non-independence of model
residuals within each opportunity, skill, and student, similar to a repeated measures ANOVA.

These regression models show that the TRESTLE model (AIC = 9512.8, BIC = 9566.7)
better fits the human data than the DECISION TREE model (AIC = 9521.3, BIC = 9575.2) in
terms of both AIC and BIC.6 Further, this difference in model fits is significant (via a likelihood
ratio test, χ2(0) = 8.49, p < 0.01). These results support the claim that the TRESTLE model
has better agreement with the human data than the DECISION TREE model. They also support
the theory that humans learn the conditions under which skills apply in an incremental, rather
than non-incremental, fashion—even within the span of a single tutor session. It is worth noting,
however, that the model’s when-learning approaches also differ in other regards (e.g., probabilis-
tic vs. discrete). Even though it is unlikely that these other differences account for the different
model fits, future work should explore these possibilities.

5.5 General Discussion
I have argued that the results of my simulation study support my two key claims. In particular,
(1) both models predict the main experimental effects of a problem ordering manipulation and
(2) the TRESTLE model better explains the human data. To support the first claim, I showed that,
like the humans, both models have better tutor performance in the blocked condition, but better
posttest performance in the interleaved condition. One caveat is that the models only qualitatively
predict the experimental effect. They do not predict the absolute tutor and posttest scores for

5The corresponding R lme4 regression formula is: human.performance ∼ model.prediction + opportunity + (1
+ opportunity | skill) + (1|student).

6Although the absolute AIC and BIC scores have no meaningful interpretation, a lower score means the model
fits better.
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each student because they do not currently model the students’ prior knowledge. Thus, one
promising direction for future work would be to explore how to properly account for students’
prior knowledge in order to improve the quantitative predictions. For example, the simulated
agents might be pre-trained on additional fraction arithmetic problems, where the number of
pre-training problems is proportional to the respective human student’s pretest score.

In my second analysis, I showed that both models generate reasonable parameter-free learn-
ing curve predictions. To my knowledge, these results are the first example in the EDM literature
of how student performance can be predicted in a completely theory-driven way without having
to fit the models to the student data first. However, for earlier practice opportunities, both models
predict that human performance should be much worse than the performance actually observed
in the human data. As just mentioned, these differences are likely due to the prior fraction arith-
metic skills that the human students bring to the tutoring system, which are not currently being
accounted for in my models. In theory, the models are predicting what the human performance
would look like if the students did not have any prior fraction arithmetic skills. While these ex-
aggerated error rates might be useful for detecting transitions between skills, such as when using
learning curve analysis to develop knowledge-component models (Corbett & Anderson, 1995),
they also suggest an opportunity for improvement (e.g., by taking into account each student’s
prior knowledge).

Given the human and simulated learning curve data, I next turned to evaluating which of the
two models better accounts for variation in the human behavior. For this evaluation, I performed
a mixed-effects regression analysis, which showed that the TRESTLE model better explains the
variation in student performance across students, skills, and opportunities. This latter result
supports the theory that humans learn the conditions under which skills apply incrementally,
rather than non-incrementally and provides an example of how my general research approach
supports theory testing and revision.

5.6 Conclusions and Future Work
The results of this study have been encouraging, but they do not mean that the Apprentice Learner
Architecture and the models cast within it offer a complete account of human learning. However,
they do suggest the framework is flexible enough to support new hypotheses about learning and
provides ways to test these hypotheses. In future work, I plan to explore several variations of the
current theory and invite the community to extend it to explain other phenomena.

One affordance of the Apprentice Learner Architecture is that it facilitates a search among
alternative theories and models. Not unlike existing techniques for searching the space of do-
main models (Cen et al., 2006), a search among alternative apprentice learner models would
let researchers explore several hypotheses of human learning. For example, it is questionable
whether how-, where-, when-, and which-learning are the correct combination of internal com-
ponents. It may be that the TRESTLE model’s when-learning approach is sufficient for both
where- and when-learning, which would suggest that the current distinction between where- and
when-learning is unnecessary and that a single learning component might produce more human-
like simulated data. Alternatively, it could be argued that the architecture is incomplete because it
has a fixed set of relational knowledge, rather than updating its relational knowledge given new
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experiences. This argument implies that a learning component for updating relational knowl-
edge, effectively a what-learner, should be included in the architecture (Li et al., 2014). Beyond
merging or adding architectural components, each component could be instantiated using dif-
ferent approaches. For example, the current where-learning approach carries out effectively no
generalization, in that it memorizes the field names used in positive examples, but future models
might explore more human-like approaches, such as learning heuristic conditions in a general-to-
specific fashion (Langley, 1985). Exploring all of these possibilities could be framed as a search
task over different models within the architecture to find those that generate the most human-like
behavior.

This chapter compared model and human error rates, but the Apprentice Learner Architec-
ture allows for finer-grained evaluation. Rather than comparing simulated and human learners
on whether they performed a step correctly, researchers could compare learners in terms of their
literal response on a step. This type of comparison would support the evaluation of theories of
student misconceptions and lets researchers explore how misconceptions affect the particular re-
sponses students make, similar to the prior work on modeling student bugs (Langley & Ohlsson,
1984; VanLehn, 1983). Similarly, in this study I only compared performance on first attempts,
because this is a common convention in EDM, but the high-fidelity simulation data would let
me examine learner behavior beyond the first attempt. Ultimately, a unified theory of apprentice
learning should account for all of the behaviors learners exhibit on their path to mastery.

As I have stated previously, I view the current state of the Apprentice Learner Architecture
as incomplete. There are several aspects of learning that the architecture does not try to explain,
such as the effects of delayed feedback (Schmidt & Bjork, 1992), the impacts of metacognition
(Aleven, McLaren, Roll, & Koedinger, 2006), and the behavior of collaborative learners (Olsen
et al., 2015). Crucially, however, the architecture is not fundamentally incompatible with these
ideas. For example, which-learning, which updates skills’ utilities, might utilize a reinforcement
learning scheme to back-propagate correctness from delayed feedback. The role of metacogni-
tion might be accounted for with a more nuanced variation of a recognize-act cycle that takes
into account metacognitive decisions. Finally, instantiating multiple apprentice learner models
within the same environment and allowing them to generate demonstrations for each other could
serve as an initial computational model of collaborative learning. These are just a few examples
of how the structure of the architecture could be augmented to incorporate and test additional
learning theories.

In conclusion, this chapter provided an initial proof of concept for my proposed research
program (see Figure 5.1) and showed that the Apprentice Learner Architecture supports both
theory-driven prediction of human behavior and data-driven theory development. Additionally, it
constituted a first step towards a complete computational theory of apprentice learning. Not only
do I believe that EDM can improve our fundamental theories of learning, but that it is uniquely
positioned to do so. Using my proposed approach, researchers can use every tutored learning
data set in the canon of EDM to test and advance learning theories. I hope that other EDM
researchers will also see the potential of the Apprentice Learner Architecture and the proposed
research paradigm, and I look forward to working with them to further develop our collective
understanding of human learning.
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Chapter 6

Cross-Domain Evaluation of Apprentice
Learner Models

6.1 Introduction

In the previous two chapters, I showed that apprentice learner models can support tutor authoring,
behavior prediction, and theory testing. In this chapter, I endeavour to convince the reader that
my two preliminary models (the DECISION TREE and TRESTLE models) are general enough to
support these pursuits across a wide range of tutoring domains, even though they draw on a small,
fixed set of relational knowledge and overly-general operators. It is impossible to prove that these
models will be able to support these applications in any tutor, so I instead focus on demonstrating
their use in seven tutoring systems that teach different kinds of knowledge across a wide range
of domains that include language, math, engineering, and science. I hope that this presentation
will make clear the wide applicability of the current models and provide some insight into their
current limitations. It is worth mentioning that this focus on generality and demonstrating func-
tionality runs counter to the mainstream literature, which typically emphasizes stronger results
in just one or a few domains.

To support a claim of generality, I have chosen to highlight the ability of these models to
acquire knowledge across the types outlined in the Knowledge-Learning-Instruction framework
(Koedinger et al., 2012), which characterizes knowledge in terms of whether it has constant or
variable stimuli and responses.1 Although almost all stimuli and responses are variable in some
respect, this distinction is meant to capture the qualitative distinction between minor variability,
such as the use of different fonts for a word, from more substantial variability, such as the use of
different words.

Within this framework, I have chosen to simulate humans in tutoring systems that teach asso-
ciations, categories, skills, or combinations of these types. Associations involve knowledge that
has a constant stimulus and constant response (e.g., respond with the constant “small” whenever
presented with the constant “ ”). Slightly more general are categories, which encode knowledge
with a variable stimulus and a constant response (e.g., respond with the constant “stable” when-

1This framework also distinguishes between knowledge that is explicit or implicit and that does or does not have
a rationale, but I only focus on implicit knowledge without a rationale in the current work.

51



ever presented with a tower of blocks that is symmetrical, has a wide base, and has a lower center
of mass). Finally, skills represent knowledge with a variable stimulus and a variable response
(e.g., whenever presented with any two numbers with a plus sign between them respond with
their sum).

Demonstrating that my computational models support these different types of knowledge
suggests that they will apply more broadly to other tutoring systems that utilize these types.
Additionally, Koedinger, Corbett, and Perfetti (2012) go on to hypothesize links between these
knowledge types (e.g., associations) and the learning processes (e.g., fluency building) and in-
structional principles (e.g., spaced practice) that support them. I hope that future work will use
my computational models to test these hypothesized links.

In addition to showing that these models are able to learn different kinds of knowledge, the
goal of this chapter is to replicate the findings of the previous two chapters across multiple do-
mains. Towards this end, it first investigates whether the two models can predict human behavior
across multiple tutoring systems. Next, it evaluates the two models using student data from all
seven domains to determine which better aligns with human behavior. The previous chapter
found that the TRESTLE model better accounts for human behavior than the DECISION TREE

and a replication of this finding will further demonstrate the use of these models for theory test-
ing and provide stronger evidence to support the theory that humans incrementally learn when
to apply skills, rather than non-incrementally—as the SIMSTUDENT model of learning assumes
(Li, 2013). Finally, this chapter evaluates the authoring efficiency of the models in all seven
domain and compares their efficiency with Example-Tracing.

Before presenting the results of these investigations, the chapter describes the seven tutors
investigated in this study as well as the details of the human data collected with these tutors. In
order to simulate learning across these systems, it was necessary to construct machine-readable
versions of each tutors. The chapter reviews each of these isomorphic systems and notes dis-
crepancies between the human and machine versions of the tutors. Next, the chapter reviews the
general simulation approach, presents the results of simulations across the seven tutors, and dis-
cusses the general implications of these results. Finally, it discusses conclusions and directions
for future work.

6.2 Tutoring Systems
To demonstrate the generality of my apprentice learner models, I applied them to seven tutoring
systems that have human data available in DataShop (Koedinger et al., 2010): the Chinese char-
acter tutor (Pavlik et al., 2008), the article selection tutor (Wylie et al., 2009), the RumbleBlocks
stability tutor (MacLellan, Harpstead, Aleven, & Koedinger, 2016), the fraction arithmetic tu-
tor (Patel et al., 2016), the boxes and arrows tutor (Lee et al., 2015), the stoichiometry tutor
(McLaren et al., 2006), and the equation solving tutor (Ritter et al., 2007). These tutors were
selected because they teach multiple types of knowledge and span a wide range of content do-
mains. Thus, a finding that the models support the three applications explored in the previous two
chapters (tutor development, behavior prediction, and theory testing) across all seven domains is
strong evidence for the generality of the models.

The previous chapter already presents the fraction arithmetic tutor, and the human data col-
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lected in it, so other than mentioning that it teaches categories for labeling whether conversion is
needed and skills for performing the arithmetic, I will exclude it from my discussion here. This
leaves six new tutoring systems (interfaces shown in Figure 6.1) that I will review in turn.

First, the Chinese character tutor is essentially a sophisticated flashcard program that tasks
students with translating particular characters into either English or Pinyin. The tutor, which
focuses on teaching students associations (i.e., knowledge with a constant stimulus and constant
response), was designed to use an optimized spacing model to improve students’ retention of
knowledge. For my simulations, I used human data from the “Chinese Radical Transfer Fall
2007” data set accessed via DataShop. These data were collected from 94 students who used the
tutor as part of their Chinese I university level course, within which they were asked to complete
15 minutes of training within the tutor per unit over the course of the entire semester (Pavlik et
al., 2008). When students opened the tutor, they could choose between the “Optimized” version
of the tutor, which used the optimized spacing model, and the “Flashcard” version of the tutor,
which randomly ordered practice of either all the available characters or just the characters from
a user-selected unit. This latter version also removed items that students got right from the
practice “deck” for the current session. Over the semester the tutor presented the students with
555 unique character-translation pairs, and logged 61,323 steps. Pavlik et al. (2008) showed
students’ performance improves as they use the tutor, but they found no effect of tutor version
(optimized or flashcard) on learning gains.

The next tutor is the article selection tutor, which scaffolds students in selecting the cor-
rect article (a, an, or the) for English sentences (e.g., teaching students when to say a book vs.
the book). This tutor teaches students category knowledge, which encodes a variable stimu-
lus (different English sentences) and constant response (particular English articles). Given this
tutor, I used human data from the “IWT Self-Explanation Study 0 (pilot) (Fall 2008) (tutors
only)” DataShop data set, which was collected as part of an experiment to test the effect of
self-explanation on students’ ability to select the correct English articles. For this experiment,
61 adult students, who were learning English as a second language, were randomly assigned to
three versions of the tutor: one that simply tutored them on choosing the correct English articles,
one that also asked them to self-explain the correct answer to each problem in a free-response

Figure 6.1: The interfaces for the six tutoring systems that collected the human data used in the
current study in addition to data from the fraction arithmetic tutor from the previous chapter.
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box, and one that instead asked them to choose one of multiple tutor-provided explanations for
the correct answer to each problem. Wylie et al. (2009) found that all three versions of the tu-
tor produced significant pre-posttest learning gains but found no difference in learning between
versions that included self-explanation prompts and those that did not. For my simulations, I
only used data from the 27 students assigned to the no self-explanation condition, because my
computational models cannot currently respond to self-explanation prompts. Within the tutor,
these students solved 84 article selection problems, yielding 3,696 steps.

The third system is the RumbleBlocks stability tutor, which teaches students to categorize the
stability of towers of blocks produced in the RumbleBlocks game (Christel et al., 2012). Like
the article selection tutor, it supports students’ acquisition of category knowledge; e.g., multiple
towers (variable stimulus) map to “stable” (constant response). The data for my simulations were
collected from Mechanical Turk for the purpose of evaluating Trestle (MacLellan, Harpstead,
Aleven, & Koedinger, 2016). A key characteristic of this tutor is that it did not tell the human
students they were labeling the stability of towers, so they would be unable to bring their prior
knowledge about stability to bear on the task. In particular, students labeled each tower as either
“Category 1” or “Category 2”, which, unknown to the students, corresponded to either “stable”
or “not stable” (to avoid bias due to ordering, the particular category that mapped to “stable”
was randomized for each student). Students were never told what the categories meant, but
were provided correctness feedback on their categorizations. The 20 students in this data set
each classified 30 towers producing a total of 600 steps. MacLellan, Harpstead, Aleven, and
Koedinger (2016) reported that students’ performance improves as they use the tutor.

The fourth tutor is for boxes and arrows problems, which each contains three numbers, two
operators (+, −, × or /), and one arrow that points to the empty field (e.g., 3 + 2− > 7 − ).
There are two types of problems, easy and hard problems, distinguished by the color of the
arrow (my descriptions use − > to denote easy problems and => to denote hard problems). In
both cases, students try to enter the correct number in the empty field and are given correctness
feedback. For the easy problems, the correct answer is computed by performing the arithmetic
specified in the top boxes (i.e., the arithmetic to the left of the arrow in my example, 3 + 2) and
putting the result in the empty field. In contrast, for the hard problems, the correct answer is
produced by entering a value in the empty box that makes the arithmetic in the bottom boxes
(7− ) equal to the value in the top boxes that is on the opposite side as the empty box (3). For
example, the correct answer to 3+ 2 => 7− is 4 because 7− 4 = 3. To be clear, the rules for
solving these problems are intentionally arbitrary and the primary challenge students face in this
tutor is discovering the correct rules given the feedback.

For my simulations, I used data from the “Box and Arrow Tutor Data (Turk Study)” data
set on DataShop. Lee et al. (2015) collected these data from Mechanical Turk as part of an
experiment to investigate how different properties of boxes and arrows problems affect learning
when no instructional support is provided. Students were randomly assigned to tutors that pro-
vided them either with constrained problems (where the correct rule produces a whole number
and the incorrect rule does not) or unconstrained problems (where both the correct and incorrect
rules produce whole numbers). Instruction within both tutors was blocked and students were
randomly assigned to either receive all of the hard problems first or all of the easy problems first.
A majority of the human students solved the easy problems correctly on the first attempt. In
contrast, only a few students get their first attempt on the hard problems correct because they are
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specifically designed to make it difficult for students to use their prior knowledge. Thus, for my
analysis, I trained the agents on all the problems, but only analyzed their performance on the hard
problems, because my models do not take into account prior knowledge, which seems to plays a
major role in their initial performance on easy problems.2 This subset of the data contains 202
students solving 32 hard problems, for a total of 3,232 steps.

Lee et al. (2015) found that students in the constrained condition had better performance
across both easy and hard problems. An analysis of this data shows that this effect holds just
for the hard problems as well (z = −4.601, p < 0.01), via a mixed-effect regression analysis
(Bates et al., 2015) with fixed effects for condition and practice opportunity, a random intercept
and slope (practice opportunity) for each skill (there was a skill for each type of arithmetic
operation—add, subtract, multiply, or divide—that students performed), and a random intercept
for each student.3

Next is the stoichiometry tutor, which coaches students in how to convert values of one unit
into values of another unit. This tutors students on unit, molecular, solution, and composition
stoichiometry conversions. As part of these conversions, it also teaches students how to label the
types of conversions they are performing, to properly cancel their units, and to round their an-
swers to a specified number of significant digits. Thus, the tutor teaches students both categories
(e.g., to label the type of conversion) and skills (e.g., to compute the answer). For my simulation
study, I used the ’StoichStudy-WE-ErrEx-PS-TPS’ data set from DataShop, which was collected
as part of a 2× 2 experiment that tested the effect of worked examples (tutored problems only or
tutored problems plus worked examples) and personalized language (impersonal instruction or
personal instruction) on learning within the stoichiometry tutor. McLaren et al. (2006) showed
that all four versions of the tutor produced pre-posttest learning gains, but neither worked exam-
ples nor personalized instruction had any effect on these gains. I only simulated the subset of
students in the control condition (tutored problems only with impersonal instruction), because
simulating students in the other conditions would have required me to develop additional simula-
tion capabilities (e.g., for intermixing examples with tutored practice). This subset contained 71
students solving 11 problems, producing a total of 79,581 steps. Problems in this subset were of
six different types: unit conversion; unit and molecular conversion; molecular and composition
conversion; unit, molecular, and composition conversion; two molecular and one composition
conversion; and unit, composition, and solution concentration conversion. Problems were pre-
sented in an order that increased the number of necessary conversions (one conversion, then
two conversions, then three conversions) and the types of conversions possible (unit, molecular,
composition, and solution).

The last system is the equation solving tutor,4 which guides students in solving two-step
linear equations with a single variable. This tutor presents students with eight different types
of problems that vary in which side the variable initially appears (left or right), which term the
variable occurs in on a given side (first or second), and the types of operations that need to be
performed to solve the problem (subtract then multiply or subtract then divide). When presented

2Half of the simulated agents received prior training on easy problems, which require different skills.
3The R lmer4 regression formula is correctness ∼ condition + opportunity + (1 + opportunity|skill) +

(1|student).
4Here I will refer to it as the equation solving tutor for clarity, but it is actually a part of Carnegie Learning’s

Cognitive Tutor.
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with a problem, students first choose a transformation to perform (e.g., subtract from both sides),
then they choose an amount for that transformation (e.g., subtract 9 from both sides). Finally,
they apply the transformation—updating both the left and right sides of the equation. This tutor
teaches students a combination of both categories (e.g., picking the correct transformation to
perform) and skills (e.g., performing the transformations). The human data for my simulations
was downloaded from the “Self Explanation sch a3329ee9 Winter 2008 (CL)” (Ritter et al.,
2007) data set in DataShop, which contains data from 71 students solving 2501 unique problems,
producing a total of 10,052 steps. One complication of this data set is that approximately half
of the tasks (intermixed throughout their practice) are strategy problems, where the student only
selects the transformations and the tutor performs them. For example, on one of these problems
a student might specify the “subtract from both sides” transformation with the amount “9” and
the tutor would automatically subtract 9 from both sides and update the left and right sides of
the equation. During my simulations, the agents trained on all the problems, but they always
performed all their own actions (the tutor did not perform any calculations for them). However,
during my analysis, I only used the subset of the human data where they performed their own
actions, which contained 4,568 steps.5

6.3 Simulation Approach
To test if the DECISION TREE and TRESTLE models support behavior prediction and theory test-
ing across these seven tutors, I employed the simulation approach taken in the previous chapter.
For every student I created an instance of both the DECISION TREE and the TRESTLE mod-
els6 and connected these agents to machine-readable versions of the tutors used by the human
students. These isomorphic tutors provided each agent with the same problems that the respec-
tive human students received, in the same order. Finally, I logged all of the transactions agents
generated in these systems.7

Tutors were needed to train the agents because they were not restricted to taking the same
actions as their corresponding students (e.g., the agent might make different mistakes than the
human or solve the problem using a different strategy). Additionally, the machine-readable tutors
automatically generated relational representations of each step during problem solving. There
was one notable exception for the RumbleBlocks stability tutor. Each step in this tutor was a
single binary choice (“Category 1” or “Category 2”) and the relational representation and correct
category for each step were already available in the log data, so it was not necessary to author
a new tutor to simulate learning. Thus, for the current simulation study, I had to author the five
new tutors shown in Figure 6.2. I reused the fraction arithmetic tutor from the previous chapter.

I authored each of these tutors using the Cognitive Tutor Authoring Tools (CTAT) (Aleven,
McLaren, Sewall, & Koedinger, 2006). I created the interfaces using CTAT’s drag-and-drop
interface builder and authored behavior graphs for each of the problems in the human data sets

5This subset does includes the steps where students choose the transformations on the strategy problems.
6The stoichiometry tutor had so many interface elements that TRESTLE ran very slowly, so I disabled structure

mapping in order to improve runtime.
7All of the simulated data sets are available in DataShop in the “Apprentice Learner Architecture Simulated

Students Datasets” project.
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Figure 6.2: Interfaces for the five new machine-readable tutors used to train simulated agents.
The RumbleBlocks stability task did not require a tutor and I reused the machine-readable frac-
tion arithmetic tutor from the previous chapter.

using Example-Tracing (Aleven et al., 2009). When authoring these interfaces and behavior
graphs, I did my best to maintain a close alignment between the human and machine tutors,
but this was not always possible and a number of discrepancies exist between the human and
machine versions of the tutors. Some differences were due to a lack of access to the original
tutors or screenshots of them. I often had to reverse engineer the tutors behavior using only the
available log data and descriptions of the original tutors as a guide. This was the case for the
Chinese character tutor, where I only guessed that the original interface looked similar to the one
used in the MoFaCTS system, which was created by the same author (Pavlik et al., 2016) and
is shown in Figure 6.1. In general, minor differences, like the additional descriptive text in the
machine version of the Chinese character tutor, should have no impact on the simulated agents’
learning or performance.

However, some differences exist that could affect learning. For example, in the machine
version of the article selection tutor, agents do not have access to menu options, which contain
a list of possible English articles from which they could choose. Instead, they only find out
about possible English articles once the tutor has demonstrated them. Additionally, the tutor
for humans presents the drop-down menu in the training sentence, whereas the machine tutor
has a separate text field outside the sentence. This latter difference impacts the simulated agents’
ability to parse the sentence; specifically, agents have relational knowledge for parsing an English
sentence presented as a single string and could not parse the training sentence if it was broken
into separate strings (to the left and right of the drop-down menu). Future work might extend
agents to cover these relatively minor differences, so I did not spend the additional development
time needed to perfectly align these tutor experiences.

Perhaps more troublesome, though, are the differences between the original and machine-
readable versions of the stoichiometry and equation solving tutors. In stoichiometry, the agents
do not have prior knowledge sufficient for parsing key information out of textual directions, such
as the molecular weight of a particular compound. To overcome this limitation, I replaced the
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textual problem descriptions with interface elements that contain information that humans can
easily extract from the text. Additionally, humans had access to tables containing unit conversion
information outside of the tutor, so I included tutor fields that provided this relevant information.
Human students were also directly instructed to use the Microsoft Windows calculator in order
to perform the actual calculations (e.g., multiplying all numerators and dividing by all denom-
inators). In contrast, the simulated agents received no such instruction and did not have access
to a calculator. The result is that many simulated agents struggled to explain the final answer
because the correct explanation required them to perform how-search beyond their current depth
limit of two; e.g., multiplying four numerators and dividing by four denominators would require
a depth limit of three.8 In contrast, humans are taught (in an instructional video) a procedure for
entering numerators and denominators into their calculator (outside the tutor) and copying the
result into the tutor interface.

In equation solving, there are also many meaningful differences between the original and
machine-readable versions of the tutor. First, the human tutor was highly dynamic—new fields
would appear in response to students’ actions. Additionally, some of the steps were performed
by the tutor, rather than the student. Finally, the students were allowed to take legal algebraic
actions that were off-path (they got negative feedback, but the tutor let them continue). These
factors made building an equivalent machine version difficult. Ultimately, I modified a version
of the SIMSTUDENT algebra tutor interface (MacLellan et al., 2014; Matsuda et al., 2014) to
include separate fields for the transformation and amount.9 This final machine tutor presented
all fields at once (i.e., fields were not hidden and then later revealed), made agents perform all
the steps (no tutor performed steps), and did not let students take off-path actions. In general, I
found minimizing the difference between the simulated and human students’ experiences to be
one of the biggest challenges of my thesis work. As my models are premised on the assumption
that variation in human behavior is due primarily to differences in their prior knowledge and
experiences, good alignment is essential. As I show in the next section, the agreement between
the human and simulated agents is worse in the domains where more differences exist and where
students could use more of their prior knowledge.

6.4 Model Evaluation

6.4.1 Overall and Asymptotic Performance

The data generated from these simulations affords the same analyses taken in the previous two
chapters. In order to demonstrate the generality of these models, I attempted to replicate the
previous findings across all seven tutor domains. In particular, that apprentice learner models
support tutor development, behavior prediction, and theory testing. To assess the tutor develop-
ment capabilities of these models across the seven tutor domains, I first looked at the overall and
asymptotic performance of the two models. Additionally, I computed the overall and asymptotic

8Using the current how-search approach, all operators are applied at each depth in parallel, so a depth of three,
not eight, is required.

9The SIMSTUDENT interface has agents enter both the transformation and amount as a single string, but the
human interface has students enter them separately.
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Figure 6.3: The overall (opaque) and asymptotic (semi-transparent) accuracy for each type of
agent in each tutor. The 95% confidence intervals are shown for the overall accuracy. The
asymptotic accuracy was computed by fitting a mixed-effect regression model to each data set
and using it to predict the performance on the practice opportunity where at least 95% of the data
had been observed. This approach gives an estimate of the accuracy achieved in each tutor by
the end of training (over all students and skills).

performance of humans in each of these tutors as a baseline for evaluating the performance of
the two models. These results are shown in Figure 6.3.

To compute asymptotic performance, I labeled each step in both the human and simulated
data sets by the skill or knowledge component (Koedinger et al., 2012) it exercised. Then, for
each first attempt (the first time performing a particular step on a problem), I computed the prior
number of opportunities a student had to exercise the same skill. Using these values, I fit a
linear mixed-effects binomial regression model to each data set (Bates et al., 2015), which had a
single fixed effect for practice opportunity, a random intercept and slope (practice opportunity)
for each skill, and a random intercept for each student.10 Then, for each data set, I used the fixed-
effects estimates for the intercept and opportunity to predict performance for the average student
and skill on the opportunity where at least 95% of the data for the respective data set had been
observed. These asymptotic accuracies, which are plotted in Figure 6.3 as semi-transparent bars,
represent the performance for the average student and skill at the end of practice in each tutor.
It is worth noting that I chose a threshold of 95% because some skills were practiced by some

10This model is similar to a repeated measures ANOVA and analogous to the Additive Factors Model (Cen, 2009).
It is represented using the R lme4 formula correctness ∼ opportunity + (1 + opportunity|skill) + (1|student).
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students much more than others. A threshold of 100% would equate to evaluating the accuracy
for all skills at the maximum practice opportunity observed across all students and skills. In
contrast, a threshold of 95% covers most of the students and skills, but is more flexible with
respect to ignoring students and skills with an unusually high number of practice opportunities.

In terms of overall performance across all tutor steps, humans generally have higher scores
than the DECISION TREE model, which generally has higher performance than the TRESTLE

model. However, some exceptions exist. For example, TRESTLE outperforms the DECISION

TREE model in the Chinese character tutor, and both models have slightly higher performance
than humans on RumbleBlocks and boxes and arrows. It is worth noting that these latter tutors
were the ones specifically designed to minimize the effect of students’ prior knowledge, putting
humans on an equal playing field with the models. The stoichiometry and equation solving
tutors show the biggest differences in performance between agents and humans, likely because
these tutors have the biggest differences between the human and machine versions of the tutors.
Additionally, human students probably bring more prior knowledge in these tutors. For example,
humans had already completed a unit on one-step linear equations before using the equation
solving tutor. In general, these results extend previous work with SIMSTUDENT (Li, 2013),
which showed that domain-specific models can learn to solve easier problems in article selection,
fraction arithmetic, equation solving.11

The situation is different for the asymptotic accuracies. For Chinese characters, article se-
lection, fraction arithmetic, and stoichiometry, both the DECISION TREE and TRESTLE models
seem to have learned the target skills by the end of training. However, of these four domains,
humans only seem to have mastered two—Chinese character and fraction arithmetic. For Rum-
bleBlocks, I find that the TRESTLE model does best—likely because Trestle leverages the rela-
tional structure for this task. For boxes and arrows, the DECISION TREE model outperforms both
humans and the TRESTLE model. Apparently the DECISION TREE model’s non-incremental ap-
proach to when-learning performs better on this task. In contrast, TRESTLE produces asymptotic
behavior that is more similar to the humans. Finally, in equation solving, the TRESTLE model
performs worse asymptotically than both the DECISION TREE model and the humans. This
lower performance may have something to do with the way that Trestle leverages the relational
structure of parse tree features for equations. In this case, the relations might be leading it astray.
In general, these results support a domain-general version of the claim that these apprentice
learner models can support tutor authoring. In particular, they show that even though the simu-
lated agents perform worse than humans overall, by the end of training they are able to achieve
human-level performance or better in all but the equation solving tutor.

6.4.2 Instructional Effect Prediction

Given these overall results, I next looked at testing both models’ capabilities for predicting the
effects of instructional manipulations. In the previous chapter, I showed that both models predict
the effect of problem ordering on tutor and posttest performance in fraction arithmetic. Of the
new data sets, the only testable instructional manipulation was in boxes and arrows, which varied
whether students received constrained or unconstrained training problems. On constrained prob-

11These prior models were trained with an easier subset of the problems from the current simulations.
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lems, the correct rule produces an integer value, but the incorrect rule produces a non-integer
value. For the unconstrained problems, however, both correct and incorrect rules produce integer
values. Lee et al. (2015) found that students learn better when presented with constrained prob-
lems across both the easy and hard problems. To test if my models predict this effect, I first tested
to ensure this effect holds with the humans for just the hard problems as I did not analyze per-
formance on the easy problems. To test for this effect, I used a mixed-effect binomial regression
analysis (Bates et al., 2015) with fixed effects for condition (constrained or unconstrained) and
practice opportunity, a random intercept and slope (for practice opportunity) for each skill, and
a random intercept for each student.12 This analysis, which is similar to the repeated-measures
ANOVA used by Lee et al. (2015), shows that the effect of condition holds just for the hard
problems as well (z = −4.601, p < 0.01). Next, I applied the same statistical test to both of
the simulated data sets, which shows that the TRESTLE model successfully predicts this effect
z = −8.278, p < 0.01, but the DECISION TREE model does not z = 1.098, p > 0.27. Although
the earlier results suggest that the DECISION TREE model has better performance, this result
suggest that the TRESTLE model better predicts human behavior. Interestingly, Lee et al. (2015)
hypothesize that students do better with constrained problems because the correct rule is easier
to compute. However, correct and incorrect rules are equally easy for both models, suggesting
that it is not the difficulty of computation that is driving these results. Instead, my findings sug-
gest that problem ordering and interference, due to different distractor numbers and operators
in the unconstrained problems, are responsible. The DECISION TREE model is less affected by
problem ordering and interference, so it does not show this effect.

6.4.3 Learning Curve Prediction

Next, I generated learning curves to replicate the behavior prediction results from the previous
chapter across all seven domains. Similar to the learning curves from chapter 5, the left graph
of Figure 6.4 shows the average error on the first attempts at each step given the practice oppor-
tunity for both the humans and the two models. Note, these learning curves averages over all
tutors, students, skills, and steps (for the individual learning curves for each tutor see appendix
A). Although the overall performance results (Figure 6.3) sometimes suggest that the DECISION

TREE model has performance closer to humans, these learning curves show this is an artifact
of averaging initially worse performance with subsequently better performance. In contrast, the
TRESTLE model starts off worse (like the other model), but converges to the human performance,
rather than exceeding it. Further, the learning curves suggest that TRESTLE actually performs
slightly better than the DECISION TREE model initially, even though its when-learning approach
is non-incremental. What is striking is that the TRESTLE model appears to predict human perfor-
mance quantitatively at higher practice opportunities. These findings generally support the claim
that it better accounts for human behavior than the DECISION TREE model.

To verify that these findings are not an artifact of averaging over multiple tutors, students,
and skills, I also plotted residuals of both models for each opportunity, see the right graph of
Figure 6.4. I generated these residuals by subtracting each model’s prediction, for a particular

12The R lmer4 regression formula is correctness ∼ condition + opportunity + (1 + opportunity|skill) +
(1|student).
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Figure 6.4: Learning curves for humans and the two models across seven tutoring systems (left)
and the model residuals plotted by practice opportunity (right). Model residuals are computed by
subtracting the model prediction from the actual human performance for a particular student on
a particular opportunity of a particular skill. For model residuals, the 95% confidence intervals
are also shown.

student on a particular opportunity of a particular skill from the corresponding human student’s
performance. These residual curves agree with the learning curves and show that, in general,
the TRESTLE residuals are closer to zero than the DECISION TREE residuals, suggesting that it
better predicts human behavior on specific steps.

6.4.4 Theory Testing

To replicate the prior theory testing results across the seven tutor domains, I fit a linear mixed-
effects binomial regressions to the simulated data from each model (Bates et al., 2015), to test
which one better better accounts for human behavior. Like my previous analysis of the fraction
arithmetic data, each regression has two fixed effects, one for the respective model prediction and
one for the number of prior practice opportunities, a random intercept and slope (for prior practice
opportunities) for each skill, and a random intercept for each student. However, this analysis also
included random intercepts for each tutor to account for the correlation of predictions within the
same tutor.13 This analysis shows that the TRESTLE model (AIC = 85255, BIC = 85331) better
fits the human data than the DECISION TREE model (AIC = 85638, BIC = 85714). A likelihood
ratio test also reveals that the fit of the TRESTLE model is significantly better (χ2(0) = 383.57,
p < 0.01). These results extend the findings from the fraction arithmetic tutor, showing that the
TRESTLE model has better agreement with the human data across all seven domains. This finding
provides more evidence for the theory that humans learn the conditions for skill application
incrementally, rather than non-incrementally.

13The corresponding R lme4 regression formula is: human.performance ∼ model.prediction + opportunity + (1
+ opportunity | skill) + (1|student) + (1|tutor).
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6.4.5 Expert-Model Authoring Efficiency

Having demonstrated the use of the models for tutor authoring, behavior prediction, and theory
testing. I next analyzed the simulation data to investigate the efficiency of the two models for the
purposes of authoring (similar to the efficiency analysis in chapter 4). These data contain counts
of the number of examples and feedback that the tutors provided to each agent. By treating
each tutoring systems as a stand-in for a human author, I was able to compute the number of
demonstration and feedback interactions necessary to train each simulated agents and evaluate
the time it would take an average trained developer to train the agents. Additionally, each of the
machine-readable tutoring systems was built using Example-Tracing, so it was straightforward
to evaluate the efficiency of this alternative approach for comparison purposes.

When analyzing the efficiency of these authoring techniques, I used the approach from chap-
ter 4. In particular, I used the Keystroke-Level Model (KLM) from my previous work (MacLellan
et al., 2014) to estimate the time it would take a trained, error-free, author to build expert mod-
els for the seven tutors using either simulated students or Example-Tracing. This estimates that
demonstrating an action in the tutor interface takes approximately 8.8 seconds using either the
simulated student or Example-Tracing approach.14 The model also estimates that specifying a
group of unordered actions (when Example-Tracing) takes 5.8 seconds and providing feedback
(when training simulated agents) takes 2.4 seconds. Finally, I assume that mass production takes
zero seconds.

When building the seven tutors using Example-Tracing, I authored 586 behavior graphs for
the Chinese character tutor (one mass production template containing two demonstrations links),
84 graphs for the article selection tutor (one template containing two demo links), 64 graphs for
the boxes and arrows tutor (two templates, each containing two demo links), 84 graphs for frac-
tion arithmetic tutor (three templates containing 22 demo links), 16 graphs for the stoichiometry
tutor (eight templates containing 897 demo links and 30 unordered action groups), and 1357
graphs for the equation solving tutor (six templates containing 54 demo links and 24 unordered
action groups). I did not create a new RumbleBlocks tutor, but for the current analysis, I esti-
mated that it would require 139 behavior graphs (two templates containing two demo links). I
multiplied these counts by the appropriate estimate from the KLM, to estimate how long it would
take the average trained author to build the behavior graph templates for each tutor. The results
of these calculations are shown in Figure 6.5.

To estimate the time needed for each of the simulated student approaches, I tabulated the total
amount of examples and feedback that were provided to all of the simulated students across all
of the simulations. Then, using the KLM, I estimated the total amount of time needed to train
each agent. Finally, I averaged these estimates to generate the results shown in Figure 6.5.

In contrast to the previous results in experimental design, this analysis shows that for all do-
mains except stoichiometry, it is substantially more efficient to author the expert model using
Example-Tracing. This unexpected finding suggests that one approach is not always better than
the other, as chapter 4 and previous work (MacLellan et al., 2014) would suggest. A closer in-
spection of stoichiometry and the other domains shows that each of the behavior graphs in this

14The original model predicted 10.4 seconds for SIMSTUDENT demonstrations because it required authors to
provide foci of attention. However, demonstrating with the the current models does not require these foci, so it is
identical to demonstrating in Example-Tracing.
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Figure 6.5: The estimated amount of time (in minutes) it would take the average trained author to
build an expert model for each of the seven tutors using either Example-Tracing or one of the two
simulated student models. Both simulated student approaches are shown with 95% confidence
intervals. These estimates were generated by tabulating the number of authoring actions required
by each approach and converting these counts into an overall time estimate using a keystroke-
level model (MacLellan et al., 2014).

tutor are complex, requiring hundreds of demonstrations, and most problems had different behav-
ior graph structure, so they required separate mass production templates. These characteristics
make this tutor similar to the experimental design tutor, which I have already shown is more effi-
cient to author using the simulated student models. These results suggest that for tutors that have
simple behavior graph structure (i.e., has a small number of solutions and solution paths) and that
have problems with identical behavior graph structure (i.e., benefit from mass production), then
it is more efficient to author the expert model using Example-Tracing. However, when authoring
tutors with more complex behavior graph structures and that require multiple mass production
templates, authoring with simulated students is more efficient.

It is also possible that these results are an artifact of the assumptions adopted in the efficiency
analysis. In particular, the KLM assumes that authors are error free in their authoring, which is
very optimistic. When authoring the behavior graphs for my simulations, I made many mistakes
and it took me substantially longer to author these tutors. For example, authoring the behavior
graphs for the article selection tutor alone took me at least three full eight-hour days of authoring,
and this was after a week of planning the appropriate behavior graph structure. When authoring
more complicated graphs, I often made mistakes that would not be apparent until the end, and
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I would have to re-author the entire graph.15 In contrast, mistakes will decrease the simulated
agents’ performance, but they should be able to recover from these mistakes given more training
(i.e., the author does not have to retrain the agent from the beginning).

The KLM also fails to take into account preparation and planning time. In particular, I found
it challenging to author behavior graph templates (with variables rather than specific values)
directly. Typically, before authoring a template, I would author a complete behavior graph for
one or two specific problems, and then think about how I could author a template that would
generalize both problems. Ignoring the time spent planning, if I added the demonstrations needed
for these preliminary behavior graphs to my estimates, it would double or triple the authoring
time. In contrast, training the simulated agents only required me to provide demonstrations and
feedback on specific problems, which seemed to require less preparation and planning.

Additionally, the authoring time results show that expert models with a lot of unique problem
content, such as hundreds of Chinese characters and their translations, take substantially longer
to build with the simulated agent approaches. This is likely due to the assumption that mass
production takes zero seconds, an unrealistic assumption. I aimed to show that, even in the
best case, for tutors requiring complicated graph structure like stoichiometry and experimental
design, authoring with simulated agent models is still more efficient than Example-Tracing with
mass production. However, this assumption has a side effect of hiding how long mass production
actually takes. At the very least, it requires the author to input content for each problem into an
Excel spreadsheet, which I suspect would be comparable to demonstrating the specific problem
content to the simulated agents.

Finally, one key challenge with the simulated agents is determining if they have acquired
correct and complete expert models. To overcome this challenge in practice, authors could track
a simulated agent’s performance during training and stop training only once it has achieved an
acceptable level of performance. Applying a similar idea to the simulation data, the asymptotic
accuracy results (see Figure 6.3) suggest that agents in the Chinese characters, article selection,
fraction arithmetic, and stoichiometry tutors have mostly converged to 100% correct. How-
ever, in the RumbleBlocks, boxes and arrows, and equation solving tutors, agents achieve lower
asymptotic accuracies, suggesting they might need more training. The towers in the Rumble-
Blocks tutor are non-deterministically labeled using a free-body physics simulator, so the model
will never be able to achieve 100% accuracy. In boxes and arrows, agents only received four ex-
amples for each skill, and clearly more training is necessary to learn the correct skills. Similarly,
the equation solving tutor had not converged and would require more training before one could
consider it finalized.

Overall, these results provide the most rigorous evaluation of authoring tutors with simulated
agents to date, replicating the findings of the previous two chapters across seven tutor domains.
They provide insight into when authoring with simulated agents is preferable to authoring with
Example-Tracing, such as when multiple complex behavior graphs are required. Moreover, they
show that the DECISION TREE and TRESTLE models can successfully learn skills across the
seven tutor domains, even though they draw on a fixed set of domain-general prior knowledge.

15If the errors were minor, then it might be possible to edit the graph rather than re-creating it. However, for
more complex graphs, it was often difficult to verify that all errors had been corrected and it was typically easier to
re-create the graphs correctly than to try to edit them
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6.5 Discussion and Conclusions
The results of this chapter further support the claims I make in the previous two chapters. First,
they indicate that building expert models by training simulated agents is viable even when
domain-specific knowledge is not available. In this case, both the TRESTLE and DECISION

TREE approaches can efficiently learn expert models for the Chinese character, RumbleBlocks,
article selection, fraction arithmetic, and stoichiometry tutors as determined by asymptotic accu-
racy. Further, these approaches appear to be effective in the other tutors (boxes and arrows and
equation solving), but more training would be necessary for them to learn correct and complete
expert models. In either case, the results demonstrate that domain-specific knowledge is not
necessary for successful tutor authoring.

For the second authoring claim, that training simulated agents is an efficient authoring ap-
proach comparable to Example-Tracing with mass production, the results were generally posi-
tive. However, it appears that neither approach strictly dominates the other. For tutors that require
only a few solutions and paths per problem, the Example-Tracing approach appears to be more
efficient. In contrast, for tutors that require multiple complex behavior graphs with many solu-
tions and paths per problem, such as the experimental design and stoichiometry tutors, authoring
with simulated agents appears to yield better efficiency.

The results from this chapter extend the behavior prediction and theory testing results from
chapter 5. More specifically, they show that the TRESTLE model predicts the effect of problem
type (constrained or unconstrained) on performance in the boxes and arrows tutor. In contrast,
the DECISION TREE model outperform humans in this tutor and did not predict this effect. Addi-
tionally, the chapter shows that the models can predict students’ learning curves across multiple
domains. Both models start initially worse than the humans, but the TRESTLE model converges
to human performance, whereas the DECISION TREE model exceeds humans. These results pro-
vide evidence that TRESTLE better approximates humans, with a regression analysis showing
that the TRESTLE model better explains human behavior across all seven tutors. Collectively,
these findings support the theory that humans learn when to apply skills incrementally, rather
than non-incrementally, as the SIMSTUDENT model of learning assumes.

In conclusion, this chapter demonstrates the general capabilities of my models. Even though
they draw on a small, fixed set of domain-general prior knowledge, they can learn and perform
across seven tutoring systems that vary in types of knowledge (associations, categories, and
skills) and domain content (language, math, engineering, and science). The findings from this
chapter support my overarching claim that apprentice learner models are general-purpose tools
capable of supporting the design, building, and testing phases of tutor development. Addition-
ally, this work constitutes a proof of concept for a research program that generates and tests
computational models of learning.
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Chapter 7

Conclusions and Future Work

In this thesis, I explore the use of apprentice learning models, or computer models that learn
from examples and feedback, for supporting tutor development, behavior prediction, and theory
testing. To support these investigations, I first developed a computational theory of apprentice
learning. In particular, chapter 2 defines the apprentice learning problem and reviews prior work
that has attempted to solve it and chapter 3 presents the Apprentice Learner Architecture, a the-
oretical framework that unifies the theories and mechanisms from prior work and supports the
construction of alternative learner models. Additionally, chapter 3 describes two novel models
of apprentice learning, the DECISION TREE and TRESTLE models. Given these models, I next
turned to exploring their applications. Chapter 4 analyzes the DECISION TREE model’s abil-
ity to author an expert model for experimental design and chapter 5 explores the use of both
models for predicting student behavior in a fraction arithmetic tutor. Additionally, chapter 5
demonstrates the use of students’ tutor data for evaluating which of the two models better ex-
plain human behavior. Finally, chapter 6 highlights the generality of these models by replicating
these capabilities across seven tutors that teach multiple kinds of knowledge across a wide range
of domains.

Across this work, I have endeavoured to convince the reader of four main claims. In particu-
lar, that apprentice learner models:
• Support efficient expert-model authoring;
• Predict student behavior;
• Facilitate theory testing; and,
• Are domain-general tools.

Additionally, I have tried to provide evidence for the meta-level claim that the Apprentice Learner
Architecture unifies prior learning models and supports model development. This chapter re-
views each claim and the meta-level claim, the evidence to support them, and discusses limita-
tions and directions for future work related to each claim.

Support Efficient Expert-Model Authoring
First, I set out to show that apprentice learning models can support efficient authoring of tu-
tor expert models, even when they lack domain-specific prior knowledge. To support the effi-
ciency aspect of this claim, chapter 2 shows that authoring an experimental design tutor using
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the DECISION TREE model takes about one third of time it takes to author an equivalent tutor
using Example-Tracing, even when assuming that mass production (a technique for generalizing
Example-Tracing content to new problems) takes zero time to use. A similar analysis in chap-
ter 6, however, suggest that one approach is not always better than the other. In particular, it
shows that Example-Tracing is more efficient for six out of the seven tutor domains analyzed
(stoichiometry was more efficient with the DECISION TREE model). A closer analysis of the dif-
ferences between the stoichiometry and experimental design tutors and the other tutors suggests
that authoring with simulated agents is preferable for tutors with complex problem spaces (i.e.,
those with many possible solutions and many alternative paths to each solution). In contrast, for
simpler domains, Example-Tracing appears to be a more efficient approach. However, the analy-
sis leading to these conclusions assumes that mass production takes zero additional time, which
is an unrealistic assumption (in favor of Example-Tracing). Thus, future work should explore
how to incorporate the cost of mass producing content into the authoring time evaluation. Ad-
ditionally, the current evaluation ignores Example-Tracing’s formula editing capabilities, which
lets developers use formulas to reduce the number of behavior graph demonstrations needed. Al-
though one might argue that use of this capability requires specialized authoring expertise, future
work should explore how authoring with simulated agents compares to Example-Tracing when
developers can also use this capability.

To support the claim that these models can support authoring even when they lack domain-
specific prior knowledge, chapter 2 shows that the DECISION TREE model is able to learn an
expert model for experimental design, even though it does not utilize any prior knowledge spe-
cific to this domain. Further, chapter 6 shows both models can be applied to seven different
tutors (achieving human-level performance in most domains) despite the models lacking prior
knowledge specific to many of the domains (e.g., Chinese characters and RumbleBlocks). These
results suggest an affirmative to my claim. Despite these positive findings, prior knowledge is
still useful for improving learning efficiency and future work should explore the discovery and
use of other relational knowledge and overly-general operators that can enhance agents’ learn-
ing, such as relational knowledge for text-adjacency and overly-general recursive and successor
operators.

Predict Student Behavior
My second high-level claim is that apprentice learning models support the testing of alternative
tutor designs and can predict which designs will be more effective for learning. To support this
claim, I first showed that both the TRESTLE and DECISION TREE models are able to successfully
predict which problem orderings (blocked or interleaved) will be yield better tutor and posttest
performance in a fraction arithmetic tutor (chapter 5). Additionally, I showed that the TRESTLE

model is able to successfully predict that students trained with constrained problems in the boxed
and arrows tutor will have better performance than those trained with unconstrained problems
(chapter 6). Finally, I showed that both models are able to generate reasonable parameter-free
learning curve predictions for seven different tutors (chapter 6). To my knowledge, these results
provide the first examples of the use of apprentice learner models for parameter-free prediction
of learning behavior. However, one key limitation of the current models is that they do not take
into account students’ relevant prior experience or knowledge, which may results in systematic
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discrepancies between human and simulated behavior; e.g., simulated agents always have 100%
error on their first opportunity, whereas humans do not. Thus, future work should explore how
to initialize prior knowledge for each model. One straightforward possibility is to explore the
extent to which student individual differences at the first opportunity can be simply modeled as
differences in the number prior unobserved practice opportunities they have experienced.

Facilitate Theory Testing

My third high-level claim is that researchers can use human data, collected by tutoring systems,
to evaluate apprentice learner models and guide a search for models and theories that better align
with human behavior. Chapter 5 provides the initial evidence to support this claim by showing
the use of regression analysis to determine which of the two models better accounts for variation
in the human data (the TRESTLE model). Additionally, this chapter shows that the simulated
learning curves for the TRESTLE model converge to human performance, whereas those for the
DECISION TREE model exceed human performance. Chapter 6 verifies that these findings hold
across seven tutor domains and also shows that the TRESTLE model can predict the results of an
instructional manipulation that the DECISION TREE model cannot (in boxes and arrows).

These results indicate that student data can distinguish between models that instantiate al-
ternative theories of learning, and in my case, that humans appear to learn when skills apply
incrementally (forming generalizations along the way) rather than in batch (storing prior exam-
ples and recomputing generalizations). This finding supports my high-level claim and suggests
real promise for the general program of research wherein theory is advanced by testing alter-
natives across multiple human learning data sets. Future work should apply this approach to
test other theories of human learning, such as whether where- and when-learning are distinct
mechanisms.

Are Domain-General Tools

My fourth high-level claim is that these models are domain general and can model learning of
multiple knowledge types across a wide range of domains, even though they draw on a small,
fixed set of prior knowledge. Domain generality applies to all three claims above (that these
models support tutor development, behavior prediction, and theory testing), but is distinctive in
that many efforts to model learning (e.g., Ur & VanLehn, 1995; VanLehn et al., 1991) are eval-
uated using one or a few domains. Chapter 6 provides the main evidence to support this claim
by showing that the two models support authoring, prediction, and theory testing across seven
different tutors. Moreover, these tutors teach a wide range of knowledge types and cover multi-
ple content domains, suggesting that the true generality of the models is greater than explicitly
demonstrated. One limitation of the current work is that it focuses on modeling learning in tutor-
ing systems, rather than educational technologies more broadly. Future work should explore how
to extend the current models beyond tutors to other learning environments, such as educational
games (see Harpstead, 2017) and programming environments.
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Unify Prior Models and Support Model Development
Collectively, this work supports my final, meta-level claim that the Apprentice Learner Archi-
tecture unifies prior learning theory and mechanisms and supports model development. Prior
cognitive architectures facilitate cross-domain models of reasoning and problem solving while
committing to a particular set of learning mechanisms (ICARUS, ACT-R, and Soar), whereas the
Apprentice Learner Architecture is arguably more flexible with respect to learning mechanisms
and facilitates cross-domain models of learning. The primary evidence to support this claim is
that the architecture supported the development of two novel models of apprentice learning. One
of the models (DECISION TREE) combines components from prior apprentice learning mod-
els in novel ways (a STEP-like how-learning approach and a SIMSTUDENT-like when-learning
approach). In contrast, the other model (TRESTLE) uses a novel when-learning approach not pre-
viously explored in the apprentice learning literature. Analogous to how Mendeleev’s periodic
table of elements supports the organization and discovery of chemical elements, the Apprentice
Learner Architecture supports the organization and discovery of learning models. A major limi-
tation of the current work, however, is its emphasis on learning in tasks where problem-solving
subgoals can be retrieved from the external display of progress. Towards the development of a
unified theory of learning and problem solving, future work should explore the integration of the
current architecture with existing cognitive architectures that emphasize reasoning and problem
solving. Additionally, the current architecture should be extended to support domains where
multiple alternative solution paths and/or subgoals must be mentally maintained.

In conclusion, this thesis makes contributions to the fields of human-computer interaction, ed-
ucational data mining, artificial intelligence, psychology, and the learning sciences. It explores
how early work on the Model Human Processor (Card et al., 1986), which aimed to encapsulate
findings from psychology in a format that could be utilized by interface designers, might be ex-
tended to learning; in particular, it demonstrates progress towards a Model Human Learner that
encapsulates learning science findings in a format that can be utilized by instructional designers.
To fulfill this vision, I developed a framework for integrating existing artificial intelligence and
machine learning approaches (the Apprentice Learner Architecture) and used it to develop two
new models of learning (DECISION TREE and TRESTLE). Finally, I demonstrated the applica-
tions of these models for tutor authoring, behavior prediction, and theory testing, and introduced
a general research program that can be used to test and improve theoretical models of human
learning. This work lays the foundation for the ultimate discovery of a Model Human Learner
that can support tutor developers and explain available educational data.
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Appendix A

Supplementary Learning Curves
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Figure A.1: Overall learning curves for the humans and the two models in the Chinese character
tutor.
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Figure A.2: Overall learning curves for the humans and the two models in the article selection
tutor.
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Figure A.3: Learning curves for humans and the two models on the “a” skill in the article selec-
tion tutor.
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Figure A.4: Learning curves for humans and the two models on the “an” skill in the article
selection tutor.
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Figure A.5: Learning curves for humans and the two models on the “the” skill in the article
selection tutor.
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Figure A.6: Overall learning curves for the humans and the two models in the RumbleBlocks
tutor.
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Figure A.7: Overall learning curves for the humans and the two models in the boxes and arrows
tutor on the hard problems.
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Figure A.8: Overall learning curves for the humans and the two models in the boxes and arrows
tutor on the easy problems. These simulation results are excluded from the other analyses be-
cause performance on easy problems is highly dependent on prior knowledge, which the models
do not take into account.
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Figure A.9: Overall learning curves for the humans and the two models in the stoichiometry
tutor.
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Figure A.10: Overall learning curves for the humans and the two models in the equation solving
tutor.
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