
Towards a Semantic Web of
Community, Content and Interactions

Anupriya Ankolekar

CMU-HCII-05-103

September 2005

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Katia P. Sycara, Chair

James D. Herbsleb
Robert E. Kraut

Christopher A. Welty, IBM Watson Research Center

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2005 Anupriya Ankolekar

This work was completed under a grant from the Office of Naval Research, Interoperability of Future Infor-
mation Systems through Context-and Model-based Adaptation, contract number N00014-02-1-0499.

The views and conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of the IBM Corporation, of Intel Corporation,
or the U.S. Government.

Keywords: human-computer interaction, artificial intelligence, computer-supported
cooperative work, semantic web, open source software communities, semantic web appli-
cations

For my parents ...

iv

Abstract

The Web plays a critical role in hosting Web communities, their content
and interactions. A prime example is the open source software (OSS) commu-
nity, whose members, including software developers and users, interact almost
exclusively over the Web. The OSS community constantly generates, shares
and refines content in the form of software code through active interaction
over the Web on code design and bug resolution processes. The knowledge
and implementation experiences around the software content are implicit in
the interactions in the community discussion forums on the Web. The Se-
mantic Web is an envisaged extension of the current Web, in which content is
given a well-defined meaning, through the specification of metadata and on-
tologies, that can be understood by software agents. This increases the utility
of the content and enables information from heterogeneous sources to be in-
tegrated. Although the individual components of a Semantic Web are fairly
well-understood, there is a research gap in the application of Semantic Web to
a specific domain.

This thesis work explores the application of the Semantic Web in the con-
text of a typical OSS community, the OpenACS community, with a focus
on the interactions around the bug resolution process. The research answers
three questions: How to create a Semantic Web around the OSS community,
the software content, and the interactions? How to use the Semantic Web in
the bug resolution process? What is the potential impact of the Semantic Web
on the bug resolution process, and vice versa? To answer these questions, we
developed a prototype Semantic Web system for OSS communities, Dhruv.
Dhruv provides an enhanced semantic interface to bug resolution messages
and recommends related software objects and artifacts. Dhruv uses an inte-
grated model of the OpenACS community, the software, and the Web inter-
actions, which is semi-automatically populated from the existing artifacts of
the community. Comparison of Dhruv’s recommendations with historical bug
resolution data reveals that Dhruv is able to recommend relevant artifacts for
bug resolution messages. A qualitative think-aloud study of Dhruv with Ope-
nACS community members indicates that Dhruv has high potential of being
useful to the OpenACS community. Study participants found the enhanced
semantic interface particularly compelling.

vi

Acknowledgements

This work could not have been possible without the advice and support of so many
people. First and foremost, I would like to thank members of my thesis committee for
their constant guidance along the way. I am thoroughly indebted to them for their advice
and guidance in turning a vague idea into a full dissertation work. Throughout the ups
and downs of the dissertation work, I learnt constantly from my interactions with my
committee.

Katia Sycara, my advisor, supported me throughout my doctoral studies, even as I
wandered through several research areas, trying to find my own research direction. From
Katia, I learnt to think critically about my own research and that of others. I also learnt
the importance of setting goals and deadlines as a means to achieving progress on the
nebulous road to a dissertation. Jim Herbsleb sparked my interest in the workings of open
source software communities. I had several enlightening discussions with him as I scoured
the research landscape in this new area. He was truly a mentor to me, especially in the
early days of my dissertation research, introducing me to the members of the community
and patiently helping me formulate my research direction. I learnt to respect the discipline
and rigor of good research from Robert Kraut. He inspired my interest in group work
and online communities and intelligent, tailored support for them. From the beginning,
Bob maintained a healthy skepticism about the potential of the Semantic Web, which I
found very stimulating. Chris Welty provided me with the most direct support in my
dissertation work, helping me with several subtle aspects of ontologies. Despite being a
remote committee member, he was as involved in the progress of my dissertation as any
other member.

In addition to my committee, I would like to Carolyn Rosé for her guidance in the
text processing aspects of this work. She gave valuable feedback at crucial stages of this
work. I would like to thank the OpenACS/dotLRN community, in particular Carl Robert
Blesius, Michael Steigman and Andrew Grumet, for being so supportive of this work and
sharing their valuable time when it mattered most. I hope to continue working with this
community in the future. I enjoyed being a part of the Retsina Lab and the HCI doctoral
students group, whose members have been always been ready for technical discussions
and for attending my practice talks at short notice. In particular, I enjoyed working with
Naveen Srinivasan, Young-Woo Seo and Joe Giampapa. Massimo Paolucci was always a
great colleague, but has now become a good friend.

In the final days of my thesis work, Catherine Copetas, Sharon Burks and Karen Olack
stood by in the SCS department to offer friendly help in smoothing the administrative
procedures towards graduation and cheer me along. Queenie Kravitz in the HCII made

vii

sure that the HCII had appropriate procedures in place for their first doctoral graduate.
Marliese Bonk provided excellent administrative support in addition to becoming a good
friend. Sumitra Gopal stepped in the last minute to help me find a place to stay in the
crucial final days of my dissertation. Preethi Bhat provided me with wonderful hospitality,
company and friendship in those final days, for which I will always be thankful. I would
also like to thank the Sathe family, who cheerfully hosted me in Washington DC. My
family away from home were the Gujarathi family in Boston, who hosted my stay in
Boston for the user study and accepted my exclusive focus on my dissertation without
question.

I would like to thank my dear friends, Cuihong Li and Kedar Dhamdhere, for their
unwavering support. Without their company, my stay in Pittsburgh would not have been
as pleasant or as meaningful. Above all, I would like to thank my family. My mother,
father and sister were thoroughly involved in my research: cheering me when my research
made good progress and bolstering me when I despaired about ever making any progress.
Without the emotional support of my family, all the efforts of others would have been for
naught.

viii

ix

x

Contents

1 Introduction 1

1.1 Organization . 5

2 The Semantic Web for OSS Communities 7

2.1 Online Professional Communities . 8

2.1.1 Open Source Software Communities 10

2.1.2 The Community . 12

2.1.3 The Interactions . 15

2.1.4 The Content . 22

2.1.5 Challenges . 25

2.2 Semantic Web for Community, Content and Interactions 33

2.2.1 Scenario . 34

2.2.2 Bug Resolution as a Domain for the Semantic Web 40

2.3 Components of a Semantic Web or What Needs to be Created? 43

2.3.1 Metadata . 44

2.3.2 Ontologies and Reasoning . 50

2.3.3 Related Work . 58

2.4 Exploration Context: The OpenACS/dotLRN Community 60

2.4.1 Community . 61

2.4.2 Activity . 62

2.4.3 Community Artifacts . 63

xi

3 Dhruv 69

3.1 Dhruv: A Prototype Semantic Web to Support OSS Bug Resolution . . . 71

3.2 The OpenACS Community Ontology . 72

3.2.1 The Code Ontology . 74

3.2.2 The Bug Ontology . 83

3.2.3 The Interactions Ontology . 87

3.2.4 The Community Ontology . 91

3.3 Generating Metadata . 94

3.3.1 Generating Metadata from Structured Data 95

3.3.2 Generating Metadata from Natural Language Text 96

3.3.3 Issues in Automatic Metadata Generation 99

3.4 Linking Metadata . 101

3.4.1 Identifying Artifacts from Noun Phrases 102

3.4.2 Identifying artifacts from code terms 104

3.4.3 Identifying artifacts from artifact references 111

3.5 Generating Recommendations . 112

3.5.1 Heuristics for generating recommendations 114

3.6 User Interaction with Dhruv . 115

3.6.1 How to use Dhruv? . 115

3.6.2 Generating the Interface . 121

4 Evaluating the Potential Impact of Dhruv 125

4.1 How is the potential impact of the Semantic Web measured? 126

4.2 Discussion of the measures . 127

4.3 Evaluating Dhruv’s recommendations 129

4.3.1 Corpus . 130

4.3.2 Statistics measured . 131

4.3.3 Comparing Cross-links Heuristics 132

4.3.4 Adding learning or evolution of semantic web 137

xii

4.3.5 Text Similarity . 139

4.3.6 Explicitly related bug reports . 140

4.4 Evaluating the Dhruv information interface 143

4.4.1 Study Participants . 143

4.4.2 Study Tasks . 144

4.4.3 Study Results . 146

5 Discussion 169
5.1 Dhruv . 169

5.1.1 Use of the Semantic Web in Dhruv 172

5.1.2 Supporting Open Source Software Communities 174

5.2 Lessons Learnt . 177

5.3 Contributions . 178

5.4 Future Work . 179

xiii

xiv

List of Figures

2.1 Online professional communities . 8

2.2 Community, Content and Interactions in an OSS Community 11

2.3 Each community member has an own understanding of the semantics of
the three layers of the community . 25

2.4 Making people’s semantics explicit . 26

2.5 OpenACS Bug #1511 . 35

2.6 OpenACS Bug #1511 with a Semantic Web 38

2.7 The semantic web reflects the three layers of an OSS community 42

2.8 The OpenACS Homepage . 61

2.9 Screenshot of an OpenACS Forums discussion 64

2.10 Screenshot of an OpenACS Bug Report 65

2.11 Screenshot of an OpenACS Patch Report 67

2.12 Screenshot of the OpenACS CVS Web Interface 68

3.1 Dhruv Creation and Function . 72

3.2 An overview of ontology hierarchy . 73

3.3 A high-level view of the OpenACS software architecture 75

3.4 The Dhruv Code ontology . 78

3.5 The Dhruv Bugs Ontology . 84

3.6 The Dhruv Interactions Ontology . 88

3.7 The Dhruv Community Ontology . 91

3.8 An overview of the metadata generation process 94

xv

3.9 Overview of the process of determining similarity 102

3.10 Bug report #1606 in the OpenACS Bugtracker 116

3.11 Dhruv’s version of OpenACS Bug #1606 118

3.12 Cross-links page for a code term . 119

3.13 Cross-links for a noun phrase . 120

3.14 Message Recommendations . 122

xvi

List of Tables

3.1 Cross-linkage heuristics for each type of software object 105

3.2 Nature of authorship on artifacts . 113

4.1 Precision and Recall for Code Files Using Various Heuristics 134

4.2 Precision and Recall for Bugs, Discussions and Code Files Using Various
Links . 135

4.3 Precision and Recall of File Recommendations For Various Weights of
Learnt links . 138

4.4 Precision and Recall Vary with No. of Recommendations for Code Files
Using Text Similarity . 139

4.5 Precision and Recall For Explicitly Related Bug Reports 140

xvii

xviii

Chapter 1

Introduction

Online professional communities (OPCs) have flourished in conjunction with the rise of
the Web. OPCs are communities of people, who organize themselves and interact pri-
marily through the Web, for work and knowledge sharing. Online professional communi-
ties constantly generate, share and refine information through active interaction over the
Web as part of various community activities. There are essentially two kinds of OPCs.
One type is discussion-oriented communities, which are formed for knowledge sharing,
such as Photo.net [Pho]. In such communities, interactions lead to the implicit capture of
knowledge in the community Web discussion forums [HS02]. The second type of OPCs
are artifact-oriented communities that come together to create artifacts, such as online en-
cyclopædias [Wik] and software programs [MFH00]. In such communities, interactions
consist of decentralized, collaborative refinement of the artifacts being created. A ma-
jor challenge in OPCs is that they generate vast amounts of information as a result of
their interactions, but that information is not well-linked on the basis of its content. Thus,
community members often find it difficult to coordinate and maintain awareness of other
members’ activities, leading to wasted labor and reduced productivity.

The research hypothesis is that increased semantic support will be beneficial to online
professional communities. With the construction of a semantic model of the content of an
online professional community, the interactions of the community and the structure of the

1

community, the activities of the online professional community can be supported.

The Semantic Web [BLHL01] has been proposed and promoted as an enhancement
to the current Web. The Semantic Web vision adds a layer of machine-comprehensible
meta-data over information on the Web and defines ontologies that describe the semantics
of the meta-data. By thus enabling Web information to be automatically processed based
on some representation of its content, Semantic Web technologies can make unstructured
or semi-structured Web information meaningful. In the context of OPCs, they facilitate the
linking of community information and artifacts on the basis of their content and interpre-
tation. This allows for intelligent support of OPCs in terms of providing better awareness
of community interactions and activities.

Thus far, there has been relatively little work in exploring the Semantic Web for OPCs,
since the focus of the Semantic Web effort has been on defining basic infrastructure, such
as ontology languages and its logical foundations. Interest in Semantic Web applications
is now growing, but there are several challenges that must be overcome:

• Generating metadata for existing Web information. Metadata represents the inter-
pretation and distillation of data [Lan88]. However, current metadata tags used on
the Web are primarily structural, such as author and date. More complex data
and discussions require metadata tags that are based more on the content and in-
terpretation of information. Creating metadata is not a natural process and requires
significant amount of work on the part of the individual or process defining the
metadata. However, it is an important process and requires greater attention from
the Semantic Web research community. We cannot expect humans to create meta-
data, so we need intelligent approaches to gather semantics semi-automatically from
the data.

• Transitioning an existing community of knowledge and processes into the Semantic
Web. It is important to understand how online professional communities can exploit
the potential of the Semantic Web and how the Semantic Web can affect community
interactions on the web.

The Semantic Web composed of metadata and ontologies primarily enables the appro-

2

priate interpretation of information on the Web. In addition, the Semantic Web needs an
action-oriented component, that can take appropriate action on the basis of the interpre-
tation provided by the Semantic Web. In the following, we refer to the action-oriented
component as an agent.

We investigate the research hypothesis in the context of open source software (OSS)
communities, which form to develop and maintain software programs and associated ar-
tifacts. Prominent examples of software built by OSS communities includes the Linux
operating system, the Apache web server, the Mozilla web browser and the Perl scripting
language. OSS communities are among the most complex OPCs, because their core task
of software development is an inherently complex activity requiring a substantial amount
of coordination. OSS communities share characteristics of both discussion-oriented and
artifact-oriented communities. By selecting OSS communities for consideration, we can
investigate semantic support for both types of OPCs.

Within OSS communities, we focus on the bug resolution1 activity. Bug resolution
is one of the most difficult software development activities and yet crucial to the quality
of the software produced. Community members typically need to thoroughly understand
the software source code and to be aware of the activities of other community members in
order to resolve a bug. Furthermore, due to its concrete nature, bug resolution is more suit-
able as a research context for development and evaluation purposes than other community
activities.

We explore the application of the Semantic Web in the context of a typical OSS com-
munity, the OpenACS community, with a focus on the interactions around the bug resolu-
tion. We seek to answer three research questions:

1. How to create the Semantic Web for an online professional community?

How can we create a Semantic Web around an OSS community, the software con-
tent of the community, and their interactions? To answer this question, we create

1Within this document, bug resolution refers to the process that the OSS community goes through in
order to identify, understand and fix a bug. It includes additional steps that may be taken to avoid the
occurrence of similar bugs in the future. In contrast, bug fixing denotes the process that a single developer
goes through in order to develop a solution for a recognized bug.

3

a prototype community semantic web for the OpenACS OSS community, called
Dhruv2. To build the prototype, we define ontologies for the content of the com-
munity, its interactions and its members. We process the community information to
generate metadata semi-automatically and use several heuristics to create semantic
links across community objects and artifacts.

2. How to use the Semantic Web in the context of an online professional commu-
nity?

How can we use the Semantic Web in the bug resolution process? To answer this
question, we develop an modified interface to the community bug tracking system
that exposes the Semantic Web information and processing to bug resolution partic-
ipants.

3. What is the potential impact of the Semantic Web on the online professional
community?

What would be the impact of the Semantic Web on the bug resolution process, and
vice versa? In order to answer this question, we ask members of the OpenACS com-
munity to evaluate and assess the enhanced bug resolution interface presented by
Dhruv. In addition, we evaluate its recommendations of related artifacts by compar-
ing them with the artifacts the community actually used in historical bug resolution
instances. Within this, we explore how the Semantic Web can evolve through peo-
ple’s participation in the bug resolution process.

The contributions of this work are to establish the relevance and viability of the Se-
mantic Web to the OSS community and a framework for creating a Semantic Web for a
specific OSS community, through the development of a model and an associated Semantic
Web knowledge base of a typical OSS community, their software content and interac-
tion processes. In addition, we demonstrate that a hybrid approach combining various
information sources and techniques for judging similarity between artifacts leads to better

2In Indian mythology, Dhruv is the north star or pole star, the only stationary point in the sky, around
which the entire universe is said to revolve

4

recommendations by Dhruv compared to ‘purer approaches. We also present four ontolo-
gies for OSS communities and techniques to semi-automatically generate Semantic Web
metadata and heuristics to semantically link various community artifacts and objects.

1.1 Organization

In the next chapter, Chapter 2, we discuss the motivation for constructing a Semantic Web
for OSS communities in detail. In particular, we describe online professional communi-
ties, especially OSS communities, in detail: the content they generate, the interactions and
activities within the community and the roles that various community members take on.
OSS communities face challenges in maintaining accurate and comprehensive documen-
tation, coordinating and maintaining awareness of community activities and in identifying
expertise. We present a scenario of the possibilities presented by a Semantic Web for OSS
communities and discuss how the Semantic Web could address the challenges faced by
OSS communities. Finally, we discuss the individual components of the Semantic Web
required to realize a community Semantic Web. We also examine the related work in this
area and how the Dhruv differs from them.

Having motivated a Semantic Web for OSS communities, we answer the first research
question in Chapter 3. The chapter describes the creation of the community Semantic Web
prototype, Dhruv, and its components, namely various kinds of ontologies, techniques for
semi-automated metadata creation, heuristics to link community objects and artifacts and
heuristics to generate message recommendations from cross-linked objects and artifacts.

In this chapter, we also describe how the various information sources and heuristics are
combined in Dhruv to present an enhanced bug report interface for the community. Thus,
this chapter also answers the second research question of how to use the Semantic Web in
the context of an online professional community.

The final question is answered in Chapter 4, where we present the evaluation of the
Dhruv prototype. We use two different ways to evaluate Dhruv: a comparison of Dhruv’s
recommendations with historical data and a qualitative user study to evaluate Dhruv’s

5

information interface.

In the last chapter, Chapter 5, we discuss the results of the evaluation presented in the
previous chapter and interpret its implications, for the Semantic Web and for the support
of OSS communities. We end with a list of the contributions of this work.

6

Chapter 2

The Semantic Web for Open Source
Software Communities

In this chapter, we discuss the motivation for constructing a Semantic Web for OSS com-
munities in detail. In Section 2.1, we describe online professional communities, especially
OSS communities, in detail. Within this section, we discuss the nature of OSS commu-
nities and their members in section 2.1.2, their interactions and activities in section 2.1.3
and the various kinds of content they generate in section 2.1.4. Examination of the ac-
tivities and nature of OSS communities leads us to note several challenges that they face
(section 2.1.5), namely (a) maintaining accurate and comprehensive documentation, (b)
coordinating and maintaining awareness of community activities and finally (c) identify-
ing expertise. In the following Section 2.2, we illustrate these challenges by means of an
actual bug report in a chosen OSS community. We then describe a scenario of the kind
of semantic support that could enhance community processes, leading to more effective
and efficient performance of OSS community activities. In the final section, Section 2.3,
we discuss the individual components of the Semantic Web required to realize a commu-
nity Semantic Web, namely metadata (section 2.3.1) and ontologies (section 2.3.2). We
end this chapter with a discussion of related work in Semantic Web applications (section
2.3.3).

7

2.1 Online Professional Communities

The Web is increasingly becoming a substrate for the formation and sustenance of online
professional communities. There are a wide variety of online professional communities:
ranging from photography to to hardware and software support groups [Pla, Ubu, Moz].
Professionals come together online to share information, experiences and knowledge and
provide technical support to each other on the Web. The professionals are typically highly
qualified in a field and they get together to participate in technical discussions or to pro-
duce technical artifacts. One very successful example of a community which collaborates
for artifact creation is the Wikipedia [Wik] project, a collaboratively constructed online
encyclopædia. The quality and scope of its entry attest to the commitment and profes-
sionalism of its contributors. Online professional communities are thus distinctly different
from recreational or social communities, although they may at times fulfill similar func-
tions for certain individual members.

Figure 2.1: Online professional communities

How do online professional communities collaborate to so successfully? The anatomy
of an online professional community can be viewed as depicted in Figure 2.1. As people

8

interact with each other in the community, their contributed information, knowledge and
experiences get stored in the online community archive. Similarly, collaboratively built
artifacts and the knowledge and experiences of the construction process also become a part
of the community’s content. The archived content thus becomes a valuable resource for
current and future members of the community, a kind of collective good [Mil00]. As the
archive grows through community interactions, it For discussion-oriented communities,
the archive is in fact the primary product of the community. becomes increasingly valuable
for the community.

The community interactions that cause the growth of the community archive typically
take place through a variety of Web media. The most ubiquitous medium is probably
the mailing list, typically archived on the Web. A mailing list is essentially a set of
email addresses that can be collectively sent email. Mailing lists are sometimes the only
means of interaction within an online professional community. This is particularly true
for discussion-based communities. Communities with a website will often also have Web-
based discussion forums. In this case, people use a Web browser to navigate to the forums
and post messages. Most Web discussion forums consist of multiple topic forums, each
with multiple threads. Thus, discussion forums display threaded discussions and allow
people to start a new thread. Recently, chatrooms are becoming increasingly popular
as a means of brief, synchronous interaction, particularly for OSS communities. Some
communities may not use any of these tools, but they all still do provide some means of
interaction. For example, Wikipedia has none of the above discussed interaction media.
However, each page in Wikipedia has a history of past modifications made to the page by
the community and short messages explaining the rationale for the modifications. This is
essentially an interaction medium for the community and controversial pages often have
‘heated histories’.

The most prominent example of online professional communities, however, is prob-
ably open source software (OSS) communities, which form around the source code of
a software program. Despite the complex and interdependent nature of software devel-
opment [KS95], OSS communities have been remarkably successful, with several OSS
software projects comparing very favorably with commercial offerings. Some of the most

9

prominent OSS communities are the Linux operating system [Lin], the Apache software
collection [Apa] and recently, the Firefox web browser [Fir]. OSS communities display
characteristics of both discussion-oriented and artifact-creating communities, because the
communities engage in a complex creation activity which requires a fair amount of coor-
dination through discussion. In the next section, we examine OSS communities and the
nature and means of their collaboration in detail.

2.1.1 Open Source Software Communities

OSS communities form around an open source software program, a software program
whose source code is publicly available. The communities revolve around the program
code, working to develop the program further, to fix bugs (defects in the software), to
provide support on using the program, discuss future evolution of the software and so on.
Essentially, the community performs the whole gamut of software development activities.
The software they work on could be almost anything, from computer operating systems
[Lin] to graphics libraries [XFr] to editors [XEm] to scientific software [R]. The code
could be something written by one of the current or past community members [Lin, Moz]
or a commercial program passed into the open source domain [Ope].

OSS communities are virtual communities and accordingly, interact primarily through
the Web. They use a variety of communication tools, including mailing lists for technical
discussions and support, a bug tracking system for monitoring and fixing bugs, a CVS
code repository for storing a common version of the source code. In addition, communities
often use chat for more real-time communication. Archives of all past activity is usually
available through the community website and can be browsed. Thus, the OSS communities
use the Internet primarily as a communication and storage medium.

The OSS community brings together a loose collection of volunteers: the active de-
velopers of the software, the end-users of the software, and anyone who has an interest
in the software. They organize themselves as a community, creating roles for themselves
and performing administrative functions, such as voting, marketing etc., in addition to
the main software development activities, such as source code design, code implemen-

10

tation, program maintenance etc. Open source software communities face the challenge
of maintaining awareness of other developers so that they can coordinate their own work
with others. Coordination becomes particularly important when taking a long term view
of developer activities. Activity-centric view is crucial to providing adequate support,
particularly since OSS communities have severely restricted communication compared to
co-located software development: they communicate primarily through artifacts and email
discussion.

Thus, like online professional communities, OSS communities can be viewed as hav-
ing three layers (see Figure 2.2): a content layer of software code, bug reports, docu-
mentation etc.; an interactions layer that builds on the content, as people interact through
bug tracking systems and web forums to participate in activities around the code, such as
software development and bug resolution; and finally a community layer that is formed
through the interactions that take place around the content. The community layer contains
people and their various, dynamic roles in the OSS community.

Figure 2.2: Community, Content and Interactions in an OSS Community

11

2.1.2 The Community

Open source software development refers to a kind of geographically-distributed software
development, where strangers from remote corners of the globe collaborate on building
software through the Internet. Who are these people? What brings them together? And
how do they manage to work together without knowing each other?

The members of an open source software community are diverse, comprising profes-
sionals, hobbyists, consultants, students and even researchers themselves. They take on
various roles within the community, such as that of users, developers and contributors.
Users are primarily consumers of the output of the open source project. They use the
software and seek the help of more experienced members of the community, when they
face difficulties or have technical problems in the use or installation of the software or
encounter bugs (defects in the software). Users often seek help by posting a question to a
discussion forum or asking developers directly in the community chatroom. As the prob-
lem is resolved with the help of others in the community, their interaction gets archived
and is available to other users facing the same problem later on.

The help providers are typically so-called contributors or developers. Developers are
usually both consumers and producers of the output. Core developers [vKSL03] are deeply
committed to the project and the community and will often spend significant amounts of
time providing help to users, enhancing the source code, guiding the evolution of the
software by reviewing contributed code and encouraging new contributing members of
the community. Core developers also have the responsibility of selecting a subset of code
contributions to be ‘committed’1 to an ’official’ release of the software.

The people to contribute code to the community are typically technically-oriented users
of the software, who are also interested in the general development of the project. They
are likely to download the most recent (possibly unstable) versions of the software, ac-
tively report bugs, and submit code, either to fix bugs or to provide further enhancements
to the software or to contribute patches. As contributors get more involved in the com-

1The software source code is typically stored in a shared repository. Saving code to the common reposi-
tory is also known as ‘committing the code’. Access to the repository is limited to the core developers.

12

munity, they make take on and receive greater responsibilities, such as commit privileges
and greater say in shaping the source code produced by the community. Most core de-
velopers of the community were newcomers to the community [vKSL03] at one point.
Through their commitment and contribution, achieved recognition and respect from other
community members. As a member of OpenACS explains:

 there are alot of people using openacs to get work done, and when

they can they contribute stuff back.

However, there are often no binding ties between people and the community. Hav-
ing achieved their goals or found greener pastures, community members may gradually
drift away from the community. This is evidenced by the relatively Most open source
developers spend only a couple of years in any given community before moving to other
communities. In addition, most open source developers participate in multiple projects
simultaneously [Gho03].

In general, in OSS communities, the software user community is routinely involved
in critiquing and reviewing the source code of the project. By doing so, they also pro-
vide strong input on code features and implementation design [DGMN02]. It has been
suggested that the primary motivation for people involved in the process is a quest for
knowledge and peer recognition. Recent surveys of open source software developers,
however, suggest that the motivations of individual community members in open source
software development are numerous [Gho03]. Community members may be motivated
by educational goals, such as learning a programming language or gaining experience in
building certain kinds of systems. They may also be ideologically committed to the open
source software movement and desire to participate in an OSS project. Recently, busi-
ness motivations are also coming into the picture, as developers are sometimes paid by
large corporations to participate in OSS projects [IBM]. As a core developer in an OSS
community [Ope] states:

<C> there’s a lot of code here, the categories package is relatively new, and

most of us learn packages as we need them for our client work

13

Many complex OSS projects have spawned consulting companies that customize the
OSS software developed in the community to provide solutions for businesses.

<K> ... I really think that you might find that Claudio has already done some

or all of what you need. They have written the guts of a complete ERP system

and he has just uploaded the code of a version that he has rolled out to clients.

That means it has probably been largely bug...

<K> ...fixed too :-)

Given that it is in the companies’ interest to have the OSS community flourish since
they can then use the community-developed code, such consulting companies often have
a few employees who are prolific contributors to the OSS community.

Given the wildly varying motivations of OSS community members, their involvement
with the project also varies widely. Each member of the community brings his own ex-
periences, knowledge and practices to bear on the project, which is molded and shaped
almost directly from the myriad influences of individual members. Since OSS commu-
nities rely almost exclusively on community members to promote, participate within and
drive the development of open source software [AB02], the collective input of community
members shapes the software, the community and its work processes. Thus, OSS develop-
ment has evolved its own set of Web-based tools and practices [AB02] to suit their unique
environment and each community customizes these to fit their own needs and culture.
Thus, while actors directly shape the output and the processes within the project, they are
themselves influenced by the project environment, existing processes and tools [HS02].

Guided by the changing requirements of the project and their own dynamic prefer-
ences, the contributors and core developers of a community naturally assume various
working roles. The roles that people take on depends mainly on their individual moti-
vations, which drives their perception of the project and their view of the trajectory of the
project. There are little or no compulsion from the community itself on any individual
member to perform any particular work. The roles that people perform include bug fix-
ing, code development, bug triage, code design and writing documentation and are closely
tied to the activities of the community. The particulars of the role depend on people’s un-

14

derstanding of certain portions of code, and the various processes that determine how the
project functions. Community members also progress over time in assuming roles with
greater responsibility as they show long-term commitment and capability in the project.
Thus, community members may start out with bug reporting, then progress to submitting
patches and participating in technical discussions to ultimately becoming a core developer
in the community.

2.1.3 The Interactions

Open source software development typically consists of a series of activities around the
software code [MFH02]. These include the discovery that a bug exists or that new func-
tionality is needed, determining who among the pool of active developers will work on the
issue, identifying a solution to the issue, developing and testing the solution, (if needed)
presenting the code changes to the core committers for review, and committing the code
and documentation to the repository. In fact, it has been suggested that most open source
software projects operate in what would conventionally be regarded as the software main-
tenance and evolution phases of the software lifecycle [HS02]. The original code that
seeds an OSS community is typically developed by individuals or by commercial software
development teams and then contributed to the open source domain. It is rare for an OSS
community to form without any seed code.

In addition to these software development activities, there are several administrative
and support activities associated with maintaining the OSS community. With the OSS
community, there is a strong culture of ‘making it public’, i.e. conducting all community
interactions, such as answering questions, discussing plans and design details and report-
ing on project status, in public locations, such as the community mailing lists and other
discussion forums [GPS04]. Most such explicit interactions in an OSS community are
discussions about some bug or a design detail or the best way to implement a new feature
and any person can freely participate in such discussions.

In order to participate effectively in the above activities, OSS community members
need to understand who is working on what in the community and how their work af-

15

fects other community members. This is also known as group awareness [DB92]. Such
knowledge allows people to coordinate work effectively, anticipate other members’ ac-
tions, discuss tasks and locate help [GG02]. There are three primary ways that an OSS
community maintains such group awareness. These are [GPS04]: reading developer mail-
ing lists, reading real-time chat and watching commits from the code repository. In the
following, we discuss the interactions of the OSS community as they take place around
various interaction tools, namely the code repository, the bug and issues tracking system,
the discussion forums and chatrooms.

Code

At the heart of every open source software project is its code, maintained in a central
repository, usually with the help of a version control system, such as CVS [Cvs]. The
central repository has been conceptualized as a “walled server” [HS02], where the “wall”
is the set of open source collaboration tools and practices that allow anyone to browse
through the code, however, severely restricting the contribution of code to a few core
developers. All the code contributed must pass through one of the core developers with
commit privileges. Once commit privilege has been granted to a developer, though, there is
no restriction on where they can contribute. Developers with commit privileges can work
on any area of the code they wish to. As a developer in Apache put it: “all committers are
responsible for all parts of the code” [GPS04]. As another developer put it [GPS04]:

“Responsibility is a strange concept in a collaborative volunteer project. With

most things there are several people who know their stuff, so there’s no clear

concept of responsibility. The exception is of course where someone’s name

is down against something. For example, I put my name against the <xyz>

package as its maintainer, and so I’m responsible for it. When I commit my

new port, I will be responsible for that.”

The source code therefore provides a setting for community interactions, as various
developers may modify the same code within a (short) time period. Through these inter-
actions, the developers are constantly negotiating a shared understanding of the software

16

code they are developing. The constant interactions between developers result in a contin-
uous redesign of code structures, the code architecture and coordination processes.

Bug resolution

Bug resolution is a very important activity for OSS communities since it determines the
quality of the code produce. It is often also a precursor to an official release of the source
code. As a developer remarks in a message about the official release process of OpenACS2:

Many [bug fixes] came from volunteers and by professional OpenACS coders

in their ”spare time.” The single biggest delay in getting 5.0 shipped has been

getting bugs fixed.

Bugs and feature requests are usually tracked by means of an issue tracking system
such as Bugzilla [Bugb] or the OpenACS Bugtracker [Ope]. Bug fixes or patches are
sometimes also submitted through the bug tracking system. The community is encour-
aged to use the bug tracking systems, since it then becomes a single access-point for all
modifications to be made to the code.

<H> I don’t have cvs access, but I will mail a patch off to the maintainer/author.

. .

 put it in bugtracker!

In most OSS bug tracking tools, each such bug becomes a message board centered on
the issue [HS02]. However, bug fixing is not as exciting as code design and development.
Consequently, it often tends to get neglected. This criticism of a community by a member
is true to varying extents for all OSS communities:

there is a tendency to constantly improve by redoing, and very little improve-

ment of what is already in existence. as a result, old bugs sit and get older, new

bugs are introduced, and the featureset is a hodgepodge of unfinished trinkets.
2Notes on the .LRN release process (from Joel) 01/28/04 09:18 AM

17

Part of the problem is that since the community has collective responsibility for fixing
bugs, no person is explicitly assigned to any bug. Every now and then, for example, before
a software release, people will go through the bugs posted on the bug tracking tool, looking
for bugs they can fix. This places the burden of finding bugs that can be fixed squarely
on the people who can fix them. Thus, there can be a long delay before the bug gets to
the attention of developers who can fix the bug. Of course, if a community member is
really keen to get a bug fixed, they can always specially request help with the bug on the
discussion forums. Community members are generally quite responsive and try to help
out as far as possible.

The bugs that do get submitted to the bug tracking tool may themselves not be genuine
bugs. A common example of an invalid bug is one that cannot be reproduced. Determining
that such bugs are invalid wastes developer time and clutters the bug tracking system. An
OpenACS developer explains the procedure for dealing with such bugs in the community
chat room:

<J> people who are working on bugs should close them or at least comment

that they think they have fixed them... there’s all these open bugs that actually

seem to test OK; so far I haven’t reproduced any bug

<A> J: i hope you’re marking the bugs as ”unable to reproduce” or ”more

info” ... and explaining that you can’t reproduce it/them ...

<A> bump it down from open to whatever state tells the person who reported

the bug in the first place that it’s not going to get acted upon without further

info

<A> that may encourage them to update their copy and check for the error

again - and if it’s really fixed, they can mark the bug as fixed or comment on

it appropriately as well.

<A> then other developers won’t waste time looking at the same bug and

reading it top to bottom only to get to your comment which says it’s not repro-

duceable.

18

Receiving duplicate or invalid bug reports is unfortunately quite common. In the
Apache project, a few dedicated developers would usually go through the bug reports,
mark duplicate bugs, remove mistaken bugs, fix simple bugs quickly, review and commit
patches, and forwarding reports to the developer mailing lists if the bugs are considered
critical [MFH02]. However, not all OSS projects can afford dedicated developers to triage
the bug reports and sorting through the bug reports remains a major problem. As an Ope-
nACS developer explains:

[Triage] entails looking at all incoming bug reports and adjusting priority,

severity (if the reporter got it wrong), and fix by. This bounced around a lot -

the OCT nominally has a rotating monthly triage duty, but that doesn’t seem to

have been super-effective. Mostly random people went in (to the OpenACS.org

bug tracker) and triaged from time to time ...

The responsibility for fixing specific bugs can sometimes bounce between several de-
velopers or groups of developers before eventually being accepted. Sometimes developers
will themselves bring bug reports to the attention of people, who can fix the bugs. Once
the bug has been fixed or the enhancement developed, the bug tracking tool is searched for
similar reports, so that those can also be closed.

Discussion forums and Chat

Although the code and bug reports do offer venues for interaction, by far the most prolific
one are the mailing lists or discussion forums of the project, which are rife with technical
discussions. The discussion forums represent the pulse of the open source software project,
where developers working on different areas of the project report on their work, seek and
provide advice and get updated about developments associated with the project. These
are the place to seek help on a wide variety of things: help with installation problems to
discussions on bugs and design details to proposed extensions to the code and the best way
to implement them.

Since open source software is built and maintained by large groups of people, it is

19

important for developers to understand what others in the group are doing and what they
know to work successfully in groups [TSL93]. Due to the public nature of community
discussions, all developers implicitly becomes peripheral participants in all discussions
[GPS04]. By ‘overhearing’ other conversations and by seeing who is talking about what,
people know of each other’s expertise and history of interactions [Smi02]. This lets them
know who the right person to talk to is and help route other queries for help:

 sorry I don’t have the categories package memorized yet.

<C> jeff or timo could answer your questions better

As a peripheral passive participant in discussions, people also keep track of the main
issues and what was discussed by whom:

<D> okay, B will know. There’s a link somewhere... I’ve seen it discussed

here

Mailing lists and chat also allow people to directly reach the experts in an area, simply
by initiating discussion. Since messages are sent to the whole group, the right people
identify themselves by responding and participating in the discussion [GPS04].

By far the most important part of what happens on discussion lists is question an-
swering. Although everyone has access to the source code, the code does not reflect the
unwritten design choices and principles underlying the implementation of the software.
Since an OSS community always consists of a large proportion of new comers, who are
still learning the ropes, veterans in the community then act as mentors and explain such
design detail information in great detail. Like mentors in the industry [Ber93], the veterans
will often answer much more than the initial question. They will emphasize the purpose
of a function, how it interacts with other procedures in the system, rules such as when
and what values are expected by certain parameters. Such information is hard, if not im-
possible, to find purely by studying the source code. In addition, experienced community
members will provide rationale for implementation decisions, compare related software
objects and expound on performance issues, exception behavior etc. Thus, discussions are
a vital storehouse of knowledge and experiences.

20

Discussion forums and chat rooms are somewhat similarly used. In addition to tech-
nical discussions, both these channels are used to discuss whether a problem is a bug or
not.

<A> B: should i file a bug?

 sure!

So, discussion in forums can precede or be contemporaneous with activity and discus-
sion in the bug tracking system. Discussion forums and chat are also used to ask and learn
about procedures and standard operating practices of the community:

 actually to submit a new package you should post on the forums about

it.

 that will let you know if anyone is interested

This also allows community members to be aware of the activities of individual mem-
bers, thus helping avoid redundant work. However, there is ultimately no infallible way
to avoid duplicate work. The community relies on the vigilance of individual members to
make sure that no one else has already done the work they are currently doing. Unlike dis-
cussion forums, chat rooms are also used for real-time coordination between developers.
Therefore, such interactions are common:

<E> hi B

 hey

 where am I supposed to be looking at your code?

<A> B: hey... i have a question for ya.

<C> actually I was hoping to see B here

Chat rooms are also used for real-time code discussion and development, although it
is admittedly harder to discuss code implementation over chat than in person.

21

 what would the code look like?

 this be alot easier if we were in the same room.

 but let’s see what we can do.

2.1.4 The Content

The many kinds of OSS community interactions generate a huge amount of explicitly
captured content, in the form of discussions, documentation, bug resolution activities etc.
in addition to the code itself. The community archive of content is the core nucleus around
which the entire community revolves. The community forms around the content, draws
from the content and contributes back to the content.

Despite the numerous kinds of content produced as a result of OSS community inter-
actions, the most salient artifact and the most authoritative representation of the state of
the project is the software source code [AB02], which is stored in a common repository,
usually through ‘Concurrent Versions System’ (CVS) [Cvs]. However, there are several
challenges to the smooth extension and refinement of the source code by the community:

1. Understanding the source code plays a large part in fixing bugs and producing en-
hancements to the software. The open source developer must understand the soft-
ware and its relationship to the domain, requirements, design, end users, documen-
tation, comments, other maintainers, future changes, etc. In fact, most developers
in conventional software development spend as much as half their time in meet-
ings (understanding what each other are doing and what things need to be done) for
exactly this reason. Furthermore, during the time they spend doing maintenance,
60% or more is spent searching through the source code for the information they
require to understand and complete their task [Sel90]. As a result, maintainers typ-
ically rely on the documentation and comments in the source code to guide them in
understanding the software [Wel95, AB02].

2. In addition to the source code, many OSS communities do have some entry-level
documentation for new community members. However, such explicit documenta-

22

tion is rarely very comprehensive due to the high level of effort required by OSS
community members to prepare this with no direct benefit to the documentation
authors themselves. Good documentation does benefit a community by making it
easier for new community members to use and contribute to the source code. Its
importance in attracting new community members is well-recognized by the devel-
opers themselves:

<A> if you write docs, you’ll make the toolkit friendly, you’ll get users,

which will give you more contributions (in terms of cash and code)...

which in turn will get more people, some of which will be willing to doc-

ument their contributed code or fixes.

3. Despite such recognition, writing documentation is usually low on the priority list

of core community members, because of the pressure to produce new code and
release it. On the other hand, most OSS developers are very conscious of value
of source code comments as a means of communicating the intent of the code to
other developers. The source code comments are therefore often the best form of
documentation available, barring discussion messages discussed below.

4. Since open source software projects typically experience high turnover [Gho03], the
code is often designed, implemented and maintained by different groups of people.

Thus, each new developer needs to understand not only what the original designers
and implementors of the software did, but also the changes made by previous de-
velopers as part of the maintenance of the system [Wel95]. The new developer then
re-interprets the requirements for the software and adds his own modifications. The
layering of such modifications can lead to contradictions, to bugs even in code that
was problem-free before.

5. Perhaps even more so than in traditional software development, the code repository

commit logs become absolutely vital to keeping track of who is modifying the source

code and where in the source code the modification is taking place. Many developers
subscribe to commit log notifications. Whenever any change is made to the code
base, these developers are sent an email with details of the change. The CVS system

23

allows developers committing changes to associate a message explaining the nature
and reason for the modification. These commit log comments are always used by
OSS community members and are an important way of reporting their actions to
the community at large. In fact, Gutwin et al. [GPS04] found that the five primary
sources of awareness information in an OSS community were: package maintainers,
code repository logs, issues and bug trackers, asking other developers and project
documentation.

Given that discussions play such a major role in the community (see Section 2.1.3), the
messages in mailing lists and discussion forums often perform an implicit role of provid-
ing documentation. The documentation is more of a semi-structured ’stream of conscious-
ness’ [HS02], in the sense that the discussions are situated in numerous threads within
topic- or issue-specific mailing lists. Community members often summarize some of the
discussion content into documentation and FAQs on an ongoing basis.

As we have seen, community activities are distributed over several tools and artifacts,
which are not closely linked. People do refer to artifacts in their discussions, by inserting
deictic references [DB03] in the messages they write. Since the entire community archive
is accessible through a Web browser, these references are often HTML links. The links
could refer to archived discussion threads, bug reports, CVS commit logs, source code
files or documentation. In fact, because the community archive is Web browsable, each
of these artifacts cab potentially have embedded HTML links to each other. Community
members do at times make use of this facility to insert links manually. Sometimes, the
tools themselves are constructed so as to support this linking process. For example, a bug
tracking system used by the OpenACS community, Bugtracker [Buga], has a patch tracker,
which, upon creation of the patch itself, prompts for the bug report the patch is fixing. If
a developer mentions a bug report, then the bug report and patch are automatically linked
and presented together.

24

2.1.5 Challenges

We discussed how the community layer is very fluid in section 2.1.2. People participate
within the community based on their own personal needs and requirements, which makes
the interactions of the community very spontaneous and unpredictable. As a result, the
content layer in Figure 2.2 is very dynamic, yet usually somewhat haphazardly developed.
Some areas of the code may receive significantly more attention than others, depending on
the interest of the community as a while.

Figure 2.3: Each community member has an own understanding of the semantics of the
three layers of the community

Within such a complex, dynamic environment, people participate in the community
based on their understanding of the semantics of the community (who talks to whom, who
does what, who knows about what), the content (which bugs fix which code, how does the
code structure fit together, why was this code implemented this way) and the interactions
(who said what, who did what). Through long-term participation in the community, people

25

gain an ever-finer understanding of the three OSS community layers. This understanding
of the community, content and interactions, as shown in Figure 2.3, is therefore different
for each community member and modulates their interactions with the rest of the commu-
nity. This has two implications. First, this semantics may not be available to those who
have had little interaction in the community, for instance, new community members. Sec-
ondly, the semantics is not shared. It is fragmented into the minds of community members.

Most of the semantics is not reflected directly by information in the three layers. It
is contained solely in the minds of community members. If people’s semantics of the
information in the three layers could be expressed explicitly and associated with the infor-
mation, it would make the information much more meaningful (see Figure 2.4).

Figure 2.4: Making people’s semantics explicit

Making community semantics more explicit would enable new community members
to make use of it without having to acquire it gradually. This would make their interac-
tions with the community more meaningful and less wasteful. Furthermore, the explicit

26

semantics would lend itself to machine-processing. Making people’s semantics accessible
to machines allows them to process the community archive, mine it and present informa-
tion to the community in a much more intelligent and contextually-appropriate manner
than is currently taking place. In other words, the OSS community’s web of information
can become a semantic web of information.

In the following subsections, we discuss several challenges for OSS communities and
how the semantic web can ameliorate each of these challenges.

Documentation

The lack of adequate documentation is a long-term problem hounding many OSS com-
munities. Many OSS community members are interested in a particular OSS software
and want to contribute to it. However, new developers find it difficult to understand the
semantics of the code. For example, they are stumped by the lack of clear tutorials or
documentation appropriate for beginners. As this new developer in OpenACS laments:

<A> i wish i knew what a category subtree was....

<A> i’m reasonably sure i want to use them

<A> but just can’t be sure whether i do or don’t, and worse yet, if i did, how

to.

By persistently browsing the code or through trial and error, some OSS developers do
manage to learn how to use the software. The same developer again:

<A> and you guys sure do make the coolest part of the damn toolkit impossi-

ble to find

<A> i just discovered util_user_message

<A> wow. it’s like brilliant.

<A> it’s like, completely undocumented.

 A: oh no, you disccovered our secret

 it is documented

27

 in ad_returnredirect

 @ http://mark.stosberg.com/Tech/darcs/cvs_switch/

In this case, they may find what they were looking for is partially documented some-
where, but was just not accessible when they needed it. The documentation is fragmented
and there is no link from where they were looking to where the documentation actually
exists. As developer A continues:

<A> B: ugh, yeah - documented, as a comment on a pseudo-random manual

page.

Even if code does have documentation, it may not be satisfactory for new developers.
Code documentation is only written through people volunteering to write documentation.
This happens much less than would be required for full-fledged documentation. As devel-
oper B quips:

 you’ll notice there aren’t a legion of volunteers fixing the documentation.

...
 got any brilliant ideas how to get people to write documentation?

Getting people to write documentation is difficult and may not even be required. Cer-
tainly, the current situation in OSS communities could be ameliorated by accessing the
documentation implicitly present in discussion forums and chat logs. As discussed previ-
ously, a significant portion of the documentation is anyway collated by community mem-
bers from the community discussions. Instead of waiting for and relying on people to do
so, the semantic web can go right to the source of the documentation, the discussions, and
collate them automatically. As developer A exclaims:

<A> as painful as it may be - i think it’s worth dumping this notion of the

code is the comment...

28

Instead, the notion of ‘the discussion is the documentation’ may be the right way to go.
Due to the dynamic and prolific nature of discussion forums, many things get discussed
repeatedly with new information added every time. If discussions about the same topic
were linked together, a developer seeking information on a topic could browse all the
discussions on that topic. At present, the discussions are not easy to search through. As
the value of archived community conversation increases [Mil00], so does the need for
better ways to browse and search the contents.

Although there are community members, who are reasonably satisfied with current
procedure of documentation:

<H> with good use of grep i find that i rarely need real docs. . .but a kind of

overview of a package wouldn’t be a bad idea.

most programmers are unhappy about it. If OSS developers still rely on the documen-
tation and comments in the source code to guide them in understanding the software, as
happens in traditional software development [Wel95, AB02], it may be because the dis-
cussions are not adequately performing role of providing documentation. As developer A
continues about comments in the source code:

<A> it’s nice for generating man pages for individual procs, but it fools peo-

ple into thinking they are documenting their package when they are just writ-

ing docs for the API.

 I think we have mountains of [in-code] documentation that doesn’t help

 and are missing all the stuff we need.

...
<G> api docs are okay, but boy does it need more detail

Coordination and Awareness of Community Activities

Most OSS activities involve interactions about multiple artifacts and take place via a num-
ber of interaction tools [GPS04]. One reason for this is that various components of OSS

29

activities involve examining different kinds of information, such as bug report data or dis-
cussion messages. Most OSS tools, like most desktop applications, present a data-centric
view rather than an activity-centric view. People in an OSS community thus commonly
need to refer each other to information in a different tool, as the following snippet of
OpenACS chat room logs illustrates:

 (also what did you think of the stuff I posted about forums, I think it does

pretty much what you want already)

<M> I didn’t know that you posted

<M> have to read that

 oh :)

 yeah do that. it should be in the log.

Different tools also target different audiences. For example, in the OpenACS commu-
nity, a majority of community members browse and post in the discussion forums. A much
smaller proportion of community members participate in the chat rooms, as the following
snippets of chat room logs reveal:

 I’d rather you ask on the forums

 since you’d get a better response apparently all the smart people are

taking the day off of IRC :)

...

 I think you have enough information to post to the forums, and get feed-

back

The main reason why people need to constantly switch between tools is that the tools
and the artifacts contained within are not linked together semantically. In every different
tool, people need to browse through or search for information relating to the same topic all
over again. In essence, community information is organized chronologically and disjointly
in the archive of each tool. In terms of the community semantic web, people need to go
back and browse the history to find important or relevant information themselves, because

30

the semantics of the information is only comprehensible to people. More often than not,
people don’t go back.

Much of the information related to a topic is therefore lost in the depths of the archives
if it was authored sufficiently before the present moment. Consequently, although the
community archive as a whole is a huge repository of content, communities have difficulty
in deriving maximum benefit from the archive. For example, there are indications that the
current search functionality and documentation are insufficient to cater to developer needs:

<Z> and openacs.org certainly needs a better search

<M> and faster

 M: its slow because noone uses it :)

...

<A> uhmm.. is there any way to search in bug tracker?

<G> bug tracker needs a few features i think :)

<A> does it REALLY not have search?

The current situation could be considerably ameliorated by adopting an activity-centric
view of the community interactions instead of the current data-centric view. By linking
semantically related information across artifacts, a community semantic web can support
task-oriented organization of information. In addition, a community semantic web can
present semantically related contextual information for each interaction. This information
can draw from the history of community interactions and support a better interpretation of
the interaction in the context of previous community interactions.

Previous research on coordination in OSS communities [GPS04] has found that de-
velopers want improved access to their archives. In interviews with OSS developers from
various communities, they found that tools that link related conversational streams are par-
ticularly desired, because it would allows conversations to be seen in the context of work
artifacts. If we consider each conversation within two related conversational streams to
provide better context for the interpretation of the other, then the lack of an activity-centric
view is a much more general problem.

31

Ducheneaut et al. [DW05] reviewed previous research on email and developed a num-
ber of recommendations for future directions of email. They suggest that contextual data
could be fruitfully integrated into email. Some of the contextual data suggested includes
interaction histories of people and results from a search query about a person. In partic-
ular, for email in an organization, there is a wealth of data about how work is (or should
be) organized, by connecting to organizational charts and documents. This data should be
accessible from email, providing a context for interpretation of exchanges. In the situation
of OSS communities, we can similarly argue that the wealth of information in previous
interactions and in the software code should be accessible from individual interactions to
provide a context for interpretation of the discussion.

The Taskmaster [BDH+05, HH97] provides a task-centric view to email and link to-
gether information related to a task, such as files and chat logs. Users of the system could
explicitly include an artifact in the current task. The system would then present all artifacts
semantically related to a task together. In the context of email, it is possible for users to
explicitly relate files to messages. This is not applicable in the OSS setting. In particular,
Taskmaster does not use archived information to link related files.

Essentially, the problem at hand is a retrieval problem, but we remember far more
about documents we use than is evident in retrieval facilities [Lan88]. As discussed by
Ducheneaut et al. [DW05], there is reason to believe that what is remembered about mes-
sages and interactions includes the meaning of their content, contextual information such
as what they look like, what one was doing at the time, associated concurrent events and
the time of message receipt or composition in terms of message conversations. However,
current retrieval facilities only make use of a fraction of these contextual cues. A com-
munity semantic web can support retrieval of artifacts in the community archive through
numerous paths, as it can enable a greater number of cues to be encoded and presented.
As [Lan88] concludes: information that is logically related to the required memory will
not succeed in eliciting recall unless it is also related to the way in which that information
was interpreted: we need a richer set of metadata.

OSS community members constantly try to improve their work processes and, although
it remains unimplemented, the idea of cross-linking shows up within their discussions too:

32

<M> for what do you plan?

<H> making things easier for people.

<H> interfaces back into the system from comments and the like. . .

<H> fg. say someone wants to talk about a bug in a forum posting they could

do something like: in <bug number=1>bug #1</bug> it says. . .

<H> and that would automatically turn that into a proper link into the bug

tracker.

Identifying Expertise

New members of the community often find it difficult to identify the experts in the commu-
nity. Previous research [Smi02] has argued for the creation and use of social meta-data for
communities. Long-term community members are aware of the experts in a given area by
monitoring people’s activities in the community over a long period of time. A community
semantic web can facilitate this process by aggregating information about people’s activi-
ties already recorded on the community website. By capturing information about people’s
activities, the community semantic web can then identify experts on certain topics or areas
of code and recommend them to newcomers.

The challenges discussed thus far are primarily true for large and active OSS commu-
nities, where there are lots of people and numerous interactions that are difficult to keep
track. There are probably far more OSS communities that are small or relatively inactive
and do not face such challenges. However, such communities face other challenges, for
example that of reaching more people, which is not the focus of this work.

2.2 Semantic Web for Community, Content and Interac-
tions

The Web as a collaboration platform facilitates the communication, interaction and stor-
age of the interactions within the OSS community. It functions essentially as a storage

33

and communication medium. The Semantic Web, by enabling meaningful, processible
content, has a very different role to play in OSS communities. Instead of being a pas-
sive participant in all these processes, the Semantic Web can be an active entity, a virtual

actor, working alongside the developers. A virtual actor would interact with other devel-
opers, process and recognize various kinds of interactions, suggest actions on the basis of
these and remember and bring past interactions to the developers’ attention, thus enabling
developers to work better together.

2.2.1 Scenario

To illustrate the possibilities offered by the Semantic Web, we present a case study of bug
resolution in a given community, OpenACS. We consider bug resolution because it is one
of the most complex activities within OSS, involving awareness of the most different kinds
of artifacts and people’s activities.

In illustrate the role of the Semantic Web as a virtual actor in OSS communities, let us
examine a series of interactions associated with a bug in OpenACS, a typical OSS project.
The interactions around this bug are fairly typical of bug resolution processes in OSS
communities.

OpenACS Bug #1511

Right after a major release of the .LRN/OpenACS software [Ope] in late December 2004,
a bug (Bug #1511) was discovered in the File Storage package. This component allowed
users to share files with each other. The bug produced a ”Content not found” error when
users attempted to download files in default folders created by the software. This was a
critical bug, since a fundamental functionality of the File Storage functionality was broken.

The bug was first noticed on 21st January 2005 and then again on 12th February 2005.
The bug report was opened on 14th February, commented on and a potential fix was posted
on the 23rd of February. On 27th February, a duplicate bug was filed by a core developer,
Dirk. On 28th February, this bug was recognized as being a duplicate of #1511. Dirk

34

15
11

15
67

D
is

c
1

12
th

 F
eb

24
th

 F
eb

3r
d

 M
ar

7t
h

 M
ar

D
is

c
3

16
th

 F
eb

20
th

 F
eb

28
th

 F
eb

D
is

c
2

IR
C

Su
re

sh
 p

o
st

s
p

ro
b

le
m

 o
n

 fo
ru

m
C

ar
o

lin
e

al
so

 re
p

o
rt

s
p

ro
b

le
m

s,

es
p

. w
it

h
 W

im
p

y
Po

in
t.

W
h

ic
h

ve

rs
io

n
 o

f f
ile

-s
to

ra
g

e?
Su

re
sh

 c
la

ri
fie

s
ve

rs
io

n

Su
re

sh
 fi

le
s

b
u

g
D

av
e

as
ks

 to
 c

h
ec

k
w

h
et

h
er

fil
e

h
as

 s
am

e
n

am
e

an
d

 t
it

le

D
av

e
as

ks
 to

 c
h

ec
k

fil
en

am
e

is

 s
am

e
as

 t
it

le
Su

re
sh

 c
o

n
fir

m
s

an
d

 n
o

te
s

 l
iv

e
ve

rs
io

n
s

o
f f

ile
 h

av
e

 t
h

e
p

ro
b

le
m

Su
re

sh
 p

o
st

s
d

o
w

n
lo

ad
 li

n
k

w

o
rk

ar
o

u
n

d

22
n

d
 M

ar

A
n

u
p

ri
ya

 p
o

st
s

a
fix

 a
n

d

re

p
o

rt
s

o
n

 fo
ru

m

D
ir

k
fil

es
 b

u
g,

 p
o

st
s

d

et
ai

ls

A
n

u
p

ri
ya

 li
n

ks
 to

 1
51

1

Jo
el

 e
d

it
s

b
u

g
D

ir
k

as
ks

 o
n

 IR
C

 a
n

d
 d

o
es

an
 a

n
al

ys
is

 o
f b

u
g

La
rs

 d
is

cu
ss

es
 b

u
g

 a
s

to
 b

e
 f

ix
ed

 fo
r n

ex
t

re
le

as
e

D
ir

k
p

o
st

s
a

fix

O
la

 re
m

ar
ks

 t
h

at
 fi

x
m

ay

b

re
ak

 `r
el

at
iv

e
lin

ki
n

g’

3/
1

2/
12

2/
14

2/
22

2/
27

2/
14

2/
23

2/
28

3/
2

D
ir

k
as

ks
 O

la
 h

o
w

 to
 fi

x
b

u
g

O
la

 s
u

g
g

es
ts

 A
n

u
p

ri
ya

’s
fix

D
ir

k
as

ks
 fo

r e
xp

la
n

at
io

n
 o

f

A
n

u
p

ri
ya

’s
fix

D
ir

k
ap

p
lie

s
A

n
u

p
ri

ya
’s

fix

3/
3

3/
5

O
la

 c
h

ec
ks

 t
h

e
b

u
g

 is
 fi

xe
d,

m
ar

ks
 t

h
e

b
u

g
 a

s
re

so
lv

ed

an

d
 c

lo
se

s
it

M
at

th
ia

s
p

o
in

ts
 o

u
t

th
at

 `r
el

at
iv

e
lin

ki
n

g’
 is

 b
ro

ke
n

3/
6

D
ir

k
as

ks
 a

b
o

u
t

`r
el

at
iv

e
lin

ki
n

g’
O

la
 fi

xe
s

`r
el

at
iv

e
lin

ki
n

g’
Su

re
sh

 a
sk

s
fo

r l
o

ca
l p

at
ch

O
la

 re
p

lie
s

w
it

h
 a

 lo
ca

l p
at

ch

29
th

 A
p

r

3/
4

B
u

g
 m

en
ti

o
n

ed
 in

 d
is

cu
ss

io
n

o
n

 h
o

w
 to

 m
an

ag
e

O
p

en
A

C
S

an

d
 .L

RN
 re

le
as

es

Fi
gu

re
2.

5:
O

pe
nA

C
S

B
ug

#1
51

1

35

recognized the problem to be critical and immediately began work on it on 1st March. He
did not consider the reported fix to be a good solution. He consulted with other developers
on the community chat rooms, made a diagnosis and made a fix for the bug, different from
the first fix reported. This was reported on a separate discussion, where bugs hindering
the latest release of the software were being discussed. His fix was picked up by Ola,
a developer who had worked with the File Storage package earlier. On 2nd March, Ola
pointed out that Dirks fix might break some required functionality relative linking and
suggests using the first fix reported. Dirk fixed the bug as per Olas instructions on 3rd
March. Ola checked the fix on 5th March, marks the bug as resolved and closes the bug.
The same day, Matthias pointed out that the latest fix breaks relative linking. Dirk asked
about what relative linking is on 6th March. At this point, Ola stepped in, fixed the bug and
explained his fix. On 9th March, the bug was finally closed as resolved by the submitter.
The bug sparked off several discussions about the architecture of the File Storage package,
which are still ongoing3. The history of this bug is summarized in Figure 2.5.

The bug itself required a relatively simple modification to fix, but it took almost a
month-and-a-half to fix. Many of the challenges discussed in Section 2.1.5 showed up
here in the lengthy resolution of the bug. To begin with, the information and interactions
relating to the bug were located in multiple artifacts with no links. Thus, a duplicate bug
was filed. Discussions relating to the bug took place in a discussion forum, which was only
linked explicitly later on by one of the developers. As we shall see in the next section, there
were several discussions on the same topic as the bug, that were never picked up by the
participants of this bug resolution.

The bug was noticed first by someone without expertise in the area of the bug. This
led to several iterations of invalid fixes and discussions with an expert, Ola, before the bug
was fixed. Bugs that have been fixed by people without expertise in the area of the bug
should probably be checked by people with expertise in the relevant area. Not knowing
who the experts are unnecessarily prolongs the time until the bug is fixed. Finally, the lack
of appropriate documentation also had a role to play in the unfolding of this bug. Dirk did
not know what ‘relative linking’ is and there is no available reference documentation to

3The latest post to the discussion was on 29th April.

36

explain what the ‘relative linking’ functionality is and which files it is affected by.

In the next section, we discuss a possible alternate time line of the resolution of the
same bug that would be possible if the proposed Semantic Web support were in place. In
particular, we shall see how the semantic web can address the challenges we’ve identified.

OpenACS Bug #1511 with a Semantic Web Agent

Given a Semantic Web platform, functioning as a virtual actor, processing the reports and
interacting with the developers, the resolution of the bug may have taken quite a different
course. It is, of course, difficult to predict how the developers and users might have used
the Semantic Web platform, but some possibilities are sketched below.

• As reports of problems or bug symptoms come in, the Semantic Web agent links
reports together and to code. In some cases, a person might tell it what the report is
about, in others, it might be able to automatically infer from the classification from
the text of the report.

Individual problems can be presented together with other related problem reports.
So, problems reported in bug reports and discussion forums do not appear to be
isolated, but instead form a large salient group. Furthermore, an actor will not just
see related problem reports, but also related interactions in other discussion forums.
This will also enable duplicate bugs to be noticed significantly earlier.

In the case of Bug #1511, the problem reports of Matthew, Suresh, Caroline would
appear together with the bug filed by Suresh. When Dirk attempts to file a new
bug, the Semantic Web brings these interactions to his attention. Dirk can then look
at the forum posts and Suresh’s bug and realize that his bug is a duplicate. Other
developers browsing through the discussions or bug reports will notice that there are
a number of unresolved discussions associated with either of the posts, pointing to a
potential bug that is being overlooked.

• Once the number of related reports has risen above a certain threshold, the Semantic
Web agent can alert people who are potential bug-fixers

37

1511

1567

D
isc 4

12th
 Feb

24th
 Feb

3rd
 M

ar
7th

 M
ar

D
isc 6

16th
 Feb

20th
 Feb

28th
 Feb

D
isc 5

IR
C

Su
resh

 p
o

sts p
ro

b
lem

 o
n

 fo
ru

m
SW

 lin
ks h

is p
o

st to
 M

atth
ew

’s
Su

resh
 n

o
tes th

at th
e p

ro
b

lem
 is th

e sam
e, ch

ecks th
e versio

n
 in

fo
 an

d
 m

arks h
is p

o
st as a

 sym
p

to
m

 o
f th

e sam
e b

u
g

Su
resh

 files b
u

g
 an

d
 lin

ks to
 h

is p
o

st
SW

 n
o

tes b
u

g, lin
ks M

atth
ew

’s p
o

st
 as sym

p
to

m
s

SW
 id

en
tifies as D

ave, O
la an

d
 Lars

 as p
o

ten
tial b

u
g

-fixers, alerts th
em

 o

f th
e n

ew
 b

u
g

 an
d

 u
p

d
ates

 th
e b

u
g

 rep
o

rt to
 sh

o
w

 th
is

D
ave asks to

 ch
eck filen

am
e

 is sam
e as title

Su
resh

 co
n

firm
s an

d
 n

o
tes

 live versio
n

s o
f file h

ave
 th

e p
ro

b
lem

Su
resh

 tells SW
 ab

o
u

t th
e n

ew
 in

fo
rm

atio
n

 ab
o

u
t th

e b
u

g

Su
resh

 p
o

sts d
o

w
n

lo
ad

 lin
k

 w
o

rkaro
u

n
d

 an
d

 tells SW

22n
d

 M
ar

A
n

u
p

riya p
o

sts a fix an
d

 rep

o
rts o

n
 fo

ru
m

A
n

u
p

riya tells SW
 ab

o
u

t
 h

er d
iag

n
o

sis o
f th

e b
u

g
 an

d
 th

e p
ro

p
o

sed
 fix

SW
 m

arks fix as p
o

ten
tial

 fix an
d

 alerts b
u

g
-fixers

D
irk files b

u
g, p

o
sts

 d
etails

SW
 lin

ks b
u

g
 to

 1511
D

irk realises h
is b

u
g

 is
 a d

u
p

licate an
d

 clo
ses

Lars d
iscu

sses b
u

g
 as fixed

3/1

2/12

2/14

2/22

2/27

2/14
2/23

O
la su

g
g

ests A
n

u
p

riya’s fix
D

irk im
p

lem
en

ts fix
SW

 asks to
 ch

eck relative
 lin

kin
g

 n
o

t b
ro

ken
D

irk rep
o

rts fix b
reaks

 relative lin
kin

g
 an

d
 asks

 Lars to
 h

an
d

le it

3/5

O
la takes o

n
 b

u
g, fixes it,

 m
arks it as reso

lved, clo
ses it

O
la tells th

e SW
 h

is d
iag

n
o

sis
 an

d
 w

h
y th

e o
th

er fixes w
ere

 in
co

rrrect

5th
 A

p
r

3/4

B
u

g
 m

en
tio

n
ed

 in
 d

iscu
ssio

n

 o
n

 h
o

w
 to

 m
an

ag
e O

p
en

A
C

S
 an

d
 .LRN

 releases

21st JanD
isc 3

M
atth

ew
 rep

o
rts p

ro
b

lem
 w

ith

 d
efau

lt fo
ld

ers an
d

 tells SW

 th
at th

is is a file sto
rag

e p
ro

b
lem

SW
 asks M

atth
ew

 fo
r d

etails, like
 versio

n
, erro

r m
essag

e

29th
 A

p
r

16th
 M

ay 03
17th

 Feb
 03

D
isc 1

D
isc 2

D
isc 7

4/5

D
ave starts d

iscu
ssio

n
 o

n
 h

o
w

 to

 ch
an

g
e U

RLs in
 File Sto

rag
e to

 avo

id
 su

ch
 p

ro
b

lem
s

1/21

5/16

2/17

O
la rep

o
rts th

at h
e h

as a p
ro

p
o

sal
 fo

r relative lin
kin

g, w
h

ich
 is

 d
iscu

sses in
 d

etail su
b

seq
u

en
tly

SW
 g

u
esses th

at th
e d

iscu
ssio

n
 is

 ab
o

u
t file sto

rag
e an

d
 relative

 lin
kin

g
O

la co
n

firm
s an

d
 ad

d
s th

at th
is

 th
read

 p
ro

p
o

ses a im
p

lem
en

-
 tatio

n

C
arl rep

o
rts th

e n
eed

 fo
r relative

 lin
kin

g
 an

d
 th

ere is a d
iscu

ssio
n

 w
ith

 o
th

er d
evelo

p
ers o

n
 th

e
 n

eed
 an

d
 im

p
lem

en
tatio

n
 o

f
 relative lin

kin
g

Fro
m

 th
e m

essag
es, SW

 g
u

esses
 th

e d
iscu

ssio
n

 is ab
o

u
t file sto

rag
e

C
arl co

n
firm

s th
is an

d
 refin

es b
y

 ad
d

in
g

 th
at th

e d
iscu

ssio
n

 refers
 to

 a n
ew

 featu
re

D
irk d

isag
rees w

ith
 A

n
u

p
riya’s d

iag
n

o
sis

 an
d

 co
m

es u
p

 w
ith

 o
w

n
 d

iag
n

o
sis an

d
 fix

D
irk sees th

at h
is fix ch

an
g

es
 co

d
e fo

r relative lin
kin

g
 an

d
 read

s o
th

er m
aterial ab

o
u

t it
D

irk asks Lars ab
o

u
t fix

Figure
2.6:O

penA
C

S
B

ug
#1511

w
ith

a
Sem

antic
W

eb

38

The Semantic Web remembers who worked on similar bugs or related code in the
past. When someone reports a problem, it can be brought to the attention of the
person who is likely to have most knowledge of this code. So, when Suresh filed
the bug, the Semantic Web could suggest that Ola might be the person to contact, as
Ola worked on the code recently. At the same time, Ola is sent a notification about
the bug report filed. When Dirk attempts to file the bug, he too sees that Ola is the
person to contact about this bug. Thus, even if he decides to fix it, he can directly
ask Ola for advice and help. The responsibility for the bug can then be shared with
a domain expert, such as Ola. This also increases the chances of a quicker, more
correct diagnosis of the problem.

• The Semantic Web can gather information about the bug and present it to the bug-
fixer.

When either Dirk decides to fix the bug, he can see that the code is associated with
several features, including one called ‘relative linking’. He knows that if he makes
changes there that it might break some of those features. The Semantic Web provides
him with history and information about the features and also shows who added them,
so Dirk can check with relevant people before making a change.

• When developers report on the resolution of a bug, they also markup and link their
comments for the Semantic Web. This way, the bug and other discussions enrich the
Semantic Web itself.

There were forum discussions in early 2003 on the implementation of relative linking
that were particularly relevant to the bug, but were missed by Dirk, when addressing the
problem. Although Ola suspected that the fix might break relative linking, he did not
realize that relative linking was indeed broken.

Even searching through the project documentation might not have revealed the discus-
sions. The bug was discussed as part of critical bugs pending resolution before a major
release on a discussion forum. Since the bug was a small part of long discussion, formu-
lating the right query to retrieve such information is nontrivial.

39

The Semantic Web can be thought of as informating [Zub88] the OSS community. A
technology informates when it not only produces actions, ”but also produces a voice that
symbolically renders events, objects and processes so that they become visible, knowable
and sharable in a new way. . . . It provides a deeper level of transparency to [underly-
ing productive and administrative] activities that had been either partially or completely
opaque.”

2.2.2 Bug Resolution as a Domain for the Semantic Web

In this work, we consider OSS bug resolution as the focal activity to examine the creation
of a semantic web. In this section, we explore the characteristics of bug resolution that
make it a good candidate activity. Although we have no concrete knowledge of how open
source developers approach and fix bugs, there has been much research in software engi-
neering about how software developers, in general, try to resolve bugs [Wel95]. Under-
standing the software program is crucial for resolving bugs in the program [Wel95, KA86].
When programmers try to understand a program, they essentially try to answer four dif-
ferent kinds of questions [Let86]. Two kinds of questions refer to the semantics of the
software that are easily located in the community archive. Namely, ‘What is a given vari-
able or procedure?’ and ‘Why is this functionality implemented in this particular way?’

To answer these questions, programmers often rely on beacons [GC91], sets of features
that typically indicate the presence of a particular data structure or operation in the source
code. Beacons provide the link between the process of verifying hypotheses and the actual
source code. So what are beacons? Are they semantic concepts implemented in the source
code or structural elements of the code itself? Meaningful identifier names, in particular,
procedure and variable names have been shown to aid comprehension and significantly
reduce the time required for to understand a program [GC91]. This is because meaningful
name are highly indicative of the procedure or variable’s actual function, so programmers
can rely on them when trying to understand a program. In addition, procedure names
are easily located in the code due to most programming languages’ syntax and formatting
conventions [Bro83, Wie86].

40

A number of cognitive studies of developers trying to understand a program have
shown that developers essentially realize plans in their programs [SLPL86, SSO87]. When
plans are not implemented in localized regions of code, they hinder the recognition of
the plan behind the program [SL86]. Consequently, developers resolving bugs spend
up to 60% of their time spent performing simple searches across entire software system
[BDS+90]. The need for such searches is the delocalization of information in general
[Wel97]. More often than not, the information required to understand a section of code
is found elsewhere, before or after in the file, in a different file or different directory. As
[Wel97] argues, for large software systems, whose source code is spread out over a large
number of files in a deep and complex directory structure, even simple searches can be-
come difficult and time-consuming.

To address these issues, Brachman et al. [BDS+90] developed the notion of a Software
Information System (SIS). An SIS indexes the software source code and stores relation-
ships that are frequently searched for by software developers during software maintenance.
In OSS communities, supporting bug resolution also requires a great understanding of the
semantics of the content of developer messages and the context of the project and the ac-
tions of developers. Thus, the community semantic web essentially performs the same
function as an SIS, but encompasses a greater variety of information, such as bug reports
and discussion messages. The community semantic web is therefore much broader in
scope.

The envisioned community semantic web (Figure 2.7) thus essentially identifies rele-
vant community resources that could be useful for the resolution of a bug. These resources
include artifacts, such as other bug reports, discussion messages, commit log comments
and source code files, as well as people who have expertise in the area of the bug.

There are several requirements to realize the community semantic web sketched thus
far. To begin with, we need a way to describe the semantics of information on the Web,
namely the bug reports, discussion messages, documentation, source code files and com-
mit logs. Given metadata about information in the OSS community artifacts, we then need
a way to relate metadata about different artifacts to each other. In other words, the Seman-
tic Web needs to be able to express the relationships between various artifacts through their

41

Figure 2.7: The semantic web reflects the three layers of an OSS community

42

metadata. By expressing metadata and their relationships in a machine-processable man-
ner, we enable the automatic processing, classification and presentation of the artifacts. In
addition, in order to interpret the semantics of community interactions, we require natural
language processing to process the communication artifacts of a community. Finally, we
need information retrieval techniques to retrieve communication artifacts when supporting
bug resolution.

2.3 Components of a Semantic Web or What Needs to be
Created?

The Semantic Web is an extension of the current web in which information is

given well-defined meaning, better enabling computers and people to work in

cooperation [BLHL01].

The Semantic Web is a major initiative, spearheaded by the W3C Consortium [w3c], to
enable Web content ”to be shared and reused across application, enterprise and community
boundaries” [Sem]. The Web is an excellent medium for the storage and communication
of human-comprehensible information. The Semantic Web allows semantic metadata to
be attached to Web content, such that the content can be processed and reasoned about
by software agents. Currently, the Web is best-suited for human-to-human communica-
tion. Supporting human activities on the Web, such as collaborative work, requires that
machines also be able to comprehend content on the Web. Instead of training machines to
understand natural language, the Semantic Web approach develops languages to express
information in a machine-processable form [BL98]. Information on the Web is augmented
with documents that explicitly describe relationships between Web resources and contain
semantic information intended for automated processing [BLCS99]. While the idea of
machine-comprehensible metadata is not new, the Semantic Web is the first large-scale
effort to attempt to realize machine-comprehensible metadata for the Web.

A Semantic Web consists of several components: metadata to refer to and exchange
knowledge about Web resources, ontologies that enable the expression of complex rela-

43

tionships between Web resources, inference engines and rules that enable new information
to be inferred from that already expressed, and agents, which harness the above compo-
nents to perform complex actions for people. In the following, we discuss each of the
components of a Semantic Web, the existing standards and what needs to be done for the
component in the context of this work.

2.3.1 Metadata

Information about resources on the Web is known as metadata, which literally stands for
‘data about data’. The metadata for an object or resource can be any descriptive informa-
tion about the object, including information that is useful to interpret and use the object,
such as descriptions of the purpose or utility of the object and representations of the con-
tent of the object. For example, object metadata can include the creation date of the object,
what the object contains, where (and how) it is stored etc. Metadata associated with files
and documents typically comprises the title, the subject, author, publication or modifica-
tion date, size, format etc.

On the Web, metadata is used to provide information about documents and content
items that is typically not displayed on-screen. This information can then be used by
software such as search engines, aggregation and presentation applications. For example,
search engines on the Web typically weight the keywords in the metadata of a Web page
higher than the actual content of Web pages. Metadata can also be used for presentation
purposes. A common example is the Cascading Style Sheets (CSS) [CSS] standard, which
uses simple metadata for describing the presentation of Web page elements. Metadata is
therefore becoming particularly important in XML-based Web applications.

Metadata is typically structured, especially in the context of managing electronic data,
as on the Web. Structured metadata is typically in the form of labeled fields. For example,
metadata about books in a library catalog is usually stored in fields such as ‘author’, ‘title’
and ‘publisher’. On the Web, structured data is stored in metadata annotation tags. For
example, in an HTML document, the document title is marked up as

<title>Radha’s Homepage</title>

44

where the tags <title> and </title> are the start and end tags respectively,
marking the start and end of the document title.

In the Semantic Web, not all the information with metadata is expressed as text on
Web pages. Thus, we require a more generalized way of specifying metadata. Expressing
metadata about Web information requires essentially a ability to refer to things on the Web
and an ability to make statements about them.

Information on the Semantic Web is referred to through a URI (Uniform Resource
Identifier) [URI], which is a Web identifier that can refer to any Web resource. URIs may
refer to documents, resources, to people, and indirectly to anything on the Web. A URI
is essentially a simple text string, similar to URLs, which specify the location of a Web
resource. An example of a URI is:

http://infomesh.net/2001/swintro/

The second requirement for expressing metadata about Web information is a way to
make statements about Web resources. This is the functionality provided by RDF (Re-
source Description Format) [LS99]. RDF enables people to make statements about Web
resources, using a simple language of URI triples. For illustration, consider the RDF/XML
4 fragment below, which states that the URI mentioned in the previous paragraph identifies
a Web resource. The Web resource has been created by Sean B. Palmer and is entitled ‘The
Semantic Web: An Introduction’.

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:dc="http://purl.org/dc/elements/1.1/"

xmlns:foaf="http://xmlns.com/0.1/foaf/" >

<rdf:Description rdf:about="http://infomesh.net/2001/swintro/">

<dc:creator rdf:parseType="Resource">

<foaf:name>Sean B. Palmer</foaf:name>

4RDF is a general-purpose language for representing information in the Web. RDF/XML refers to the
RDF information expressed in XML syntax [DB04]. There are several other syntax languages for RDF, such
as Turtle [Bec04], a text syntax for RDF, and N-Triples [GDB04].

45

</dc:creator>

<dc:title>The Semantic Web: An Introduction</dc:title>

</rdf:Description>

</rdf:RDF>

The lines 1 and 10 define the XML fragment as using RDF tags. Lines 1-3 also declare
three namespaces used in the fragment rdf, dc and foaf, which are each declared by
the prefix ‘xmlns:’. The namespace rdf points to a document located at

http://www.w3.org/1999/02/22-rdf-syntax-ns#

This document contains the definition of the RDF tag set. The namespaces dc and foaf
refer to the Dublin Core and FOAF (Friend of a Friend) tagset respectively. The Dublin
Core is a metadata standard (set of tags) for describing digital objects (including web-
pages), usually expressed in XML [Dub04]. For example, the tag dc:title and dc:
creator identifies the title of the Web resource and the person who authored it. Seman-
tic Web tags are usually of the format [namespace]:[tagname] and we shall follow
the convention throughout this document.

Annotations tags such as these are already common within the Web community; wit-
ness the numerous news and weblogging sites offering RSS (RDF Site Summary) [RSS]
feeds. RSS is an RDF-based5 format for syndicating news-like content, such as new items
from news sites and posts on personal weblogs. RSS-aware programs, such as news ag-
gregators, check the RSS feed for changes and can react to the changes appropriately, for
example by displaying new items or alerting the user to a new post at a particular site.
This enables people to monitor a large number of websites with minimal overhead. RSS
aggregators are becoming particularly widespread in the weblogging community. Weblog-
gers often keep track of new postings to other people’s weblogs. When the posts are made
infrequently, though, it is quite tiresome for people to continually check the weblog. With
RSS, the news aggregators can poll the weblog and notify when any changes are made.

5The RSS specification is not yet a standard. Thus, although one version is based on RDF, there are
several other handcrafted languages promoted by certain companies or software [Pil02].

46

Web entities can also be virtual representations of real entities, such as people. We-
bloggers6 are increasingly using the metadata tag set, FOAF (Friend of a Friend) [BM04],
which provides a simple set of tags, that enables the description of people, their interests,
acquaintances and friends. The following fragment of FOAF7 illustrates the use of FOAF
for specifying people and their acquaintances.

<foaf:Person>

<foaf:name>Leigh Dodds</foaf:name>

<foaf:knows>

<foaf:Person>

<foaf:name>Dan Brickley</foaf:name>

<rdfs:seeAlso

rdf:resource="http://rdfweb.org/people/danbri/foaf.rdf"/>

</foaf:Person>

</foaf:knows>

</foaf:Person>

The above fragment describes a Person, whose name is Leigh Dodds and who knows
another Person, called Dan Brickley. Further information about the Person called Dan
Brickley can be found at http://rdfweb.org/people/danbri/foaf.rdf. A
number of tools process and display FOAF data, such as the FOAFnaut [FOAc], which
provides a simple social network-like visualisation of FOAF data.

Challenges in Widespread Metadata Use

Although large-scale metadata adoption could usher in a new way of interaction with the
Web, there are several challenges that must be overcome before metadata use is widespread.
The first issue is that of creating metadata for Web information. There are several tools

6A weblog, web log or simply a blog, is a web journal application which contains periodic posts on a
common webpage [Web]. A weblogger is an author of a weblog.

7excerpted from http://rdfweb.org/topic/UsingFoafKnows

47

that assist user creation of metadata. However, placing the burden of metadata creation on
users is clearly an approach that does not scale well for large number of Web resources. In
addition, many Web resources are created and changed dynamically. It is therefore natural
to require that the metadata for these resources is also created and updated automatically.
For some standardized sets of metadata tags, such as RSS and FOAF, there are several
tools [FOAa, FOAb, Mov, Blob, Bloa] that facilitate the metadata creation. For example,
the automatic creation of an RSS feed for weblog posts is now a standard feature in most
weblogging software applications. However, standards with supporting metadata creation
tools are few and far between. Most standards, though, lack widely-available tools to help
people create metadata.

Recent research has considered the problem of metadata creation. The research can
be divided into two areas: one that explores intelligent user support for metadata creation
and the other that stresses automatic generation of metadata. Automatic generation of
metadata is straightforward if the underlying data to be marked up is highly structured.
Such data may stored in a relational database and presented via HTML pages on the Web.
In this case, as [HP02] suggest, RDF annotations can be generated dynamically along with
the HTML pages. The data model in the database provides an initial tag set for the data.
The tag set can later be modified and the RDF generation process appropriately changed.
This is essentially the approach followed by the RSS feed generation software.

In some cases, the information to be modeled may be highly structured, but there may
be no underlying database or it may not be accessible to the metadata generation process.
An alternate approach to automatic annotation [MYR03] thus relies on structural analysis
of an HTML page to identify individual data elements of the Web page. Given suitable
text in the Web page tags or a tag set hierarchy with a mapping from a set of HTML
presentation tags to a label, this method can generate annotations automatically for the
most part. Such an approach is particularly well-suited for OSS tool-specific Webpages.
There are a small set of bug tracking systems and version control systems popular in the
OSS community. Most of these tools have a Web interface that is frequently used by the
community. Web pages generated by these tools have low variability in surface structure.
They are therefore a prime use case for an automatic annotation approach that uses Web

48

page structure to intelligently generate annotations.

Most of the information on the Web is, however, unstructured. Automatic metadata
generation is much more difficult for unstructured information. Research therefore typi-
cally focusses on providing semi-automatic annotation. In other words, providing intel-
ligent annotation support to the user. The KIM platform [KPO+03], for example, uses
information extraction techniques to extract certain types of information, such as people,
places, dates etc. and annotate them automatically. Annotating more general types of
information has been explored [BHS02, CDF+00], primarily by using machine learning
techniques to learn information extraction for the Web.

In this work, we use a hybrid metadata generation approach. Our approach includes
structural analysis of tool-specific HTML pages to extract and markup the structured data
contained in the bug tracking system and the CVS repository. Our approach additionally
uses information extraction techniques to extract structured domain-specific terms such as
software source code elements, from unstructured text. Finally, the approach uses natural
language processing to identify potential terms in unstructured natural language text. This
combination approach is applied to the historical artifacts of the community (as discussed
in Section 2.2). We generate the metadata automatically as far as possible, necessarily
trading off some amount of precision to enable automation (see Section 3.3). This is par-
ticularly true when extracting potential terms in unstructured natural language text. Au-
tomatic generation of metadata, especially induced solely by the data itself is necessarily
shallow in its scope and prone to errors. The way these issues play up in the context of
this work will be discussed in detail in Section 3.3.3.

A closely related problem to metadata generation is that of metadata use. Unless there
are compelling uses of metadata, interest in generating annotations remains low and ex-
isting annotations and annotation tools are limited. However, much of the proposed use
of metadata and tools to process metadata rely on the existence of lots of annotations, a
chicken-and-egg problem. One way out is an approach like Semblog [OTH+04], which
provides an integrated end-user oriented environment for gathering, authoring and pub-
lishing information and builds on basic metadata tag sets, like RSS and FOAF. Semblog
points to the possibilities of the Semantic Web, but focusses primarily on the mechanics

49

of publishing facilitated by the Semantic Web, such as aggregation of content and locating
people with similar interests.

In this work, we tie the use of semantic metadata with semi-automatically generated
metadata within Dhruv. Changes in the generated metadata change the information in-
terface presented by Dhruv. Thus a basic skeleton of a generate-and-use cycle is already
present in Dhruv. The community needs not go through any additional effort to generate
or find uses for the metadata. It is only when the ontologies are to be extended or the meta-
data generation process needs to be modified that the community needs to put in effort. If
other OSS communities follow suit, there will already be lots of annotated data that is used
within individual communities. Then the potential and need for tools that aggregate data
from several communities will arise.

2.3.2 Ontologies and Reasoning

RDF provides a simple datatyping-like model to represent Web content, closely related
to the relational database model [BL02]. However, RDF on its own does not make Web
information more meaningful to machines, any more than knowing the column names of
a relational database might. In order to relate various metadata tags to each other, such as
that between a Book and an Author, we require a mechanism to specify the relationships
between metadata tags. This is provided by an ontology.

An ontology8 is controlled vocabulary for the formal description of conceptual ob-
jects and relations between them [BJ04]. The objects and their relationships are assumed
to exist within some domain of interest. Ontologies can include glossaries, taxonomies
and thesauri and complex typing of concepts and relationships, but normally have greater
expressivity and stricter rules than these tools. A formal ontology is a controlled vo-

8The field of ontologies has its roots in philosophy, where its focus is on the fundamentally different
categories of things that can exist, essentially on defining the essence and meaning of being. In computer
science, an ontology is the attempt to formulate an exhaustive and rigorous conceptual schema within a given
domain, a typically hierarchical data structure containing all the relevant entities and their relationships
and rules (theorems, regulations) within that domain. The fundamental role of an ontology is to support
knowledge sharing and reuse.

50

cabulary expressed in an ontology representation language. Ontologies resemble faceted
taxonomies but use richer semantic relationships among terms and attributes, as well as
strict rules about how to specify terms and relationships. The vocabulary is used to make
queries and assertions. Ontological commitments are agreements to use the vocabulary in
a consistent way for knowledge sharing. Because ontologies do more than just control a
vocabulary, they are thought of as knowledge representation. The oft-quoted definition of
an ontology is ”the specification of a conceptualization of a knowledge domain” [Gru93].

In the Semantic Web architecture, an ontology gives a shared and precise definition
to RDF annotations. Several ontology languages have been developed to define the an-
notations in semantic markup. The earliest languages were OIL [FvHH+01] and DAML
[HvHPS01], followed by DAML+OIL [HM00] and most recently, OWL (Web Ontology
Language) [DCvH+02]. OWL has been developed by the W3C Web Ontololgy Working
Group and is a W3C Recommendation. OWL builds on the RDF schema and now also
uses XML as syntax.

The OWL standard consists of three languages, in ascending expressivity: OWL Lite,
OWL DL and OWL Full. OWL Lite and OWL DL are based on a logic framework called
description logic. OWL Lite is the least expressive of the three, but this is compensated
by the existence of efficient reasoning services for it [HPS03]. OWL DL provides more
constructors than OWL Lite and extends the use of some of the constructors in OWL Lite.
It is closer to a standard description logic. OWL DL has been carefully designed to keep
reasoning decidable, although there are still no known algorithms that can reason over all
of OWL DL. OWL Full is the most expressive and most compatible with RDF semantics,
but inference in OWL Full is undecidable.

In the following, we focus solely on OWL DL, primarily because it provides the
best tradeoff between expressivity and reasoning power. Henceforth, when we refer to
OWL, we shall always be referring specifically to OWL DL, unless indicated otherwise.
OWL Lite was too restrictive for our use, mainly because it does not allow building
classes through intersection, union and complement. To illustrate the use of OWL, con-
sider the following OWL fragment [SWM04]. It defines two atomic classes in a vocab-
ulary, Country and Person. Furthermore, it defines Student as being a subclass of

51

Person.

<owl:Class rdf:ID="Country"/>

<owl:Class rdf:ID="Person"/>

<owl:Class rdf:ID="Student">

<rdfs:subClassOf rdf:resource="#Person" />

</owl:Class>

Having defined these classes, the following fragment describes an individual USA as
being a member of Country.

<Country rdf:ID="USA" />

In addition to classes and subclasses, OWL can be used to describe relations between
classes (e.g. disjointness), cardinality, equality, richer typing of properties, characteristics
of properties (e.g. symmetry), and enumerated classes [MvH04]. These are discussed in
greater detail in the next section.

Formal definition of OWL Ontologies

OWL has a formal basis in description logic[BCM+03]. It is difficult to determine the
requirements for a web ontology language given the paucity of existing applications to
learn from, however, description logic is thought to have the right balance of expressivity
and efficiency for the Web [BHS05]. Description logics are a family of knowledge rep-
resentation formalisms that represent the knowledge of an application domain through a
knowledge base comprising a terminology and a world description. OWL DL is based
on the description logic SHOIN (D) [HPS03]. Formally, a description logic knowledge
base (KB) comprises two components, the TBox and the ABox. The TBox specifies the ter-

minology or vocabulary of an application domain and the ABox contains assertions about
individuals in terms of the terminology. An OWL ontology can contain both TBox axioms
and ABox assertions.

52

The terminology defines relevant concepts of the domain (such as the classes Country
and Person above). In the following, we use the terms ‘concept’ and ‘class’ interchange-
ably. More formally, the TBox consists of concepts, which denote a set of individuals, and
roles, which denote a binary relationship between individuals [BCM+03]. Concepts and
roles can be atomic or complex. Atomic concepts and roles are drawn from two disjoint
alphabets of symbols. Complex descriptions of concepts can be built by using concept
constructors such as conjunction, disjunction and negation over atomic and complex con-
cepts. For example, the term C u D is the intersection or conjunction of concepts C and
D and denotes the set of all individuals that belong to both C and D. All concepts ex-
pressions have a set-theoretic interpretation. The term C u D is therefore equivalent to
the first-order logic statement C(x) ∧D(x), where the variable x ranges over all the indi-
viduals in the interpretation and C(x) is true for all individuals that belong to the concept
C. Such descriptions can be assigned names in the TBox, amounting to a concept defini-
tion. For instance, a Parent may be defined as the union of the concepts Mother and
Father [BCM+03]:

Parent ≡ Mother t Father

In OWL DL, a concept can also be defined by enumerating its instances; this is known as
an enumerated class.

Similarly, new roles can be defined using the inverse role constructor. For example,
Male ≡ Female−. One of the more unusual features of description logics are value re-

strictions, which describe relationships between concepts. For example, a value restriction
of the form ∀R.C states that all individuals that are in relationship R with a given concept
are instances of class C. The individuals in relationship R with a given concept are also
known as role fillers. In other words, the value restriction ∀R.C states that all fillers of
role R must be members of concept C. The existential restriction ∃R.C is analogously de-
fined. Together, these role restrictions allow one to define a Parent as someone who has
a child (hasChild), who is a Person and all who children are members of Person:

Parent ≡ ∃ hasChild.Person u ∀ hasChild.Person

Another kind of role restrictions are number restrictions, which restrict the cardinality

53

of role fillers. To illustrate, the definition

MotherWithManyChildren ≡ Mother u > 3hasChild

describes a MotherWithManyChildren as being a Mother with at least 3 children.

The world description or ABox uses concepts from the terminology to assert concept
and role properties of individuals occurring in the domain. The former are typically called
membership assertions or concept assertions. For example,

(Female u Person)(Jane)

describes an individual Jane as being a female person. Similarly, role assertions such as

hasChild (Jane, Julie)

state that the individual Jane has a child, the individual Julie.

The OWL DL description logic has a set-theoretic semantics, such that concepts are
interpreted as a set of individuals and roles as sets of pairs of individuals. Atomic concepts
are therefore interpreted subsets of the interpretation domain and complex concepts are in-
terpreted as the set of all individuals satisfying the concept description. The interpretation
domain may be infinite, which distinguishes OWL DL from database modeling languages,
which always assume a finite domain, namely the objects in the database. Another dis-
tinguishing feature of description logics is the open-world assumption, as explained in
[BCM+03]:

While a database instance represents exactly one interpretation, namely the
one where classes and relations in the schema are interpreted by objects and
tuples in the instance, an ABox represents many different interpretations,
namely all its models. As a consequence, absence of information in a database
instance is interpreted as negative information, while absence of information
in an ABox only indicates lack of knowledge.

Thus, the open-world semantics of OWL is quite different from the closed-world seman-
tics of databases and affects the way queries is answered. In addition, OWL deviates from

54

many description logic semantics by not making the unique names assumption. Thus,
distinct individual names may refer to the same individual. Objects may explicitly be
equated using the construct sameAs. Objects can also be explicitly distinguished us-
ing the differentFrom and AllDifferent constructs. The rationale behind this
assumption is there are several ways to refer to the same object on the Web.

Reasoning and Inference

Reasoning is a mechanism to infer implicitly represented knowledge from the knowledge
explicitly contained in a knowledge base [BCM+03]. As a description logic, OWL has
been designed to support classification of concepts and individuals, a common inference
in many applications of intelligent information processing systems.

The classification of concepts determines subclass-superclass relations between con-
cepts, also known as subsumption and expressed as C v D. Checking subsumption is the
problem of checking whether C always denotes a subset of the set denoted by D. Another
basic reasoning task on concept expressions is concept satisfiability, whether a concept
C always denotes the empty set ∅. This problem can be reduced to checking whether
C is subsumed by the empty concept. Other TBox reasoning tasks are equivalence and
disjointness of concepts.

The basic inference task for an ABox is instance checking, whether a given individual
is an instance of a specified concept [BCM+03]. Other ABox reasoning tasks build upon
instance checking. These are consistency, whether each concept in the knowledge base
has at least one instance; realization, which finds the most specific concept an individual
object is an instance of; and retrieval, which finds all instances of a given concept in the
knowledge base.

The primary function of the reasoner is to return answers to queries. Reasoners typi-
cally use the structure of the class definitions (structural subsumption) [BPS94] or tableau-
based methods [SSS91] for inference [BCM+03]. Tableau reasoners are the currently
among the most efficient description logic reasoners. In particular, Racer [HM01] and
FaCT [Hor98] are two of the most well-recognized description logic reasoners for OWL.

55

In this work, we primarily used Racer because of its efficiency.

A number of other tools are available for OWL. There are editors like Protege [NSC+01]
and SWOOP [KPH05] to create ontologies in OWL, ontology validators such as OWL Val-
idator [Val] that ensure that an ontology is a valid OWL ontology and APIs such as the
OWL API [OWL] and Jena [Jen] to provide programming access to OWL ontologies.

Rules

Description logics allow knowledge to be expressed in terms of concepts and world de-
scriptions. However, there are more general kinds of knowledge that cannot be expressed
within description logics. A simple example is “if an individual is known to be an instance
of C, then it is also known to be an instance of D” [BCM+03]. This is an example of a
rule. Rules can trigger changes in the knowledge base. For example, given a rule “All
students eat only junk food”, if the knowledge base knows that Peter is a student, then the
processing of the above rule asserts in the knowledge base that Peter eats only junk food.

There have been a number of proposals to augment OWL knowledge bases with rules,
such as the Semantic Web Rule Language (SWRL) [HPSB+03] and OWL Rules [HPS04],
SWRL being the more established of the two. SWRL enables an OWL knowledge base to
be combined with Horn logic rules. A SWRL rule is in the form of an implication form
between an antecedent and a consequent, such that whenever the conditions specified in
the antecedent hold, then the conditions specified in the consequent must also hold. There
are a number of rule engines that have been developed or adapted for the Semantic Web,
such as Jena [Jen] and Jess [KR03].

Rules for the Semantic Web is however an area that is still in flux and is far from
mature. Due to this, we did not use Semantic Web rules directly, but hard-coded rule-like
reasoning within Dhruv. Once Semantic Web rules are established, it would be simple to
switch over to using them.

56

Challenges to Semantic Web Ontologies

”The real power of the Semantic Web will be realized when people create
many programs that collect Web content from diverse sources, process the in-
formation and exchange the results with other programs. The effectiveness
of such software agents will increase exponentially as more machine-readable
Web content and automated services (including other agents) become avail-
able.” [BLHL01]

Despite the comprehensive ground work, there remain several challenges and unre-
solved issues in using ontologies and reasoning for the Semantic Web.

There is lingering discussion [dBLPF05] about the right kind of ontology language
for the Semantic Web and whether there should even just be a single one. Proponents
of an alternate ontology language tend to question the appropriateness of the open-world
assumption for Semantic Web and prefer DB-like answers. In particular, they favor logic
programming based languages, such as F-Logic [KLW95] and Flora [Flo]. Logic pro-
gramming languages are typically less expressive than description logic based languages,
but can easily handle large numbers of instances. [GHVD03]. In this work, we opted for
the most mature contender for ontology languages, OWL. One of the latent questions we
seek to explore in this work is the expressivity of ontologies required for a community
semantic web.

The capabilities, syntax and semantics of Web ontologies have been researched for
a while and there are reasonably robust solutions in existence. However, there has been
much less focus on actual domain-specific ontologies, which hinder the development of a
full Semantic Web. There are a few large ontologies that have been expressed in OWL,
particularly in the biology domain like the NCI Thesaurus [NCI] and the Gene Ontology
[GO]. In general, though, the lack of sufficient domain-specific ontologies is a major
hurdle besetting the greater acceptance of the Semantic Web.

In particular, there are no existing ontologies for online communities, besides the
FOAF ontology for describing social networks. Therefore, as part of this work we need to

57

create ontologies for the OSS community. The ontologies will form one of the contribu-
tions of this work.

2.3.3 Related Work

The individual components of a Semantic Web, such as metadata, ontologies, rules, rea-
soning engines and agents, have been developed and refined over the past few years and
are fairly well-understood at this stage. However, the Semantic Web is still at an early
stage. It is not here yet. As in the case of the Web, its future depends largely on the kinds
of compelling applications that exist.

There are a few applications of the Semantic Web variously to email and personal infor-
mation [MEG+03], personal information management [QHK03] and for browsing through
marked-up Web content [DDM03] and e-learning. Haystack [QHK03]is an end-to-end Se-
mantic Web application for personal information management. The concept is similar to
that of the community semantic web, but it focusses on managing the personal information
of a single user. Magpie [DDM03] is a browser that exposes the semantic metadata of a
Webpage to the end-user through right-clicks. Mangrove [MEG+03] is a ‘semantic email
system’. By augmenting email with simple metadata (e.g. yes/no for replies), an agent can
process multiple emails and summarize the replies. Mangrove is a relatively lightweight
extension of an existing communication mechanism that is commonly associated with the
Web. It is possible that the data collated by the Mangrove semantic email agent be pre-
sented as semantic information on the Web. However, to our knowledge, that has not been
explored.

Most of the above related work (save Haystack) assumes the existence of domain on-
tologies and present tools to process information on their basis. However, there is a re-
search gap in the application of Semantic Web to a specific domain, especially a dynamic
domain constantly changing due to interactions of the Web community. Although indi-
vidual components of the Semantic Web are well-developed, there is a need for more
application knowledge of the Semantic Web. How can the Semantic Web be used by a
Web community? What does it take to create a Semantic Web for an existing community?

58

How does the introduction of the Semantic Web change the interactions of the commu-
nity? How do community interactions enrich the Semantic Web itself? The proposed
work attempts to address this research gap.

Almost two decades ago, Otis Elevators developed Otisline [MS86], a computer ap-
plication developed to improve Otis Elevators’ responsiveness to its service customers.
Otisline maintained a database of service requests, which was updated to maintain data
on actions necessary to repair elevators. This database was used to reduce callback time
to a third of the industry average and additionally, allowed the management to allocate
resources to locations with recurring problems and by engineering to spot trends that indi-
cated elevator design problems. When Otisline received a service request, it would log all
the important information and dispatch a service mechanic to make the call. Before taking
the call, the mechanic could quickly view the problem and all the associated information in
the database. After resolving the problem, the mechanic would report to Otisline about the
steps taken to repair the elevator. Similarly, the Semantic Web can match bugs to people
and assist during the bug resolution phase by bringing relevant experiences to the fore.

An example closer to the open source software development context is Hipikat [CM03].
Hipikat is an Eclipse plug-in [Ecl], which builds a group memory out of all the artifacts
in an open source project. Then, someone viewing the code or bugs is presented with in-
formation that is considered similar using information retrieval techniques. Hipikat differs
from the approach presented here in that it focusses on the single-developer process of
solving a bug. My focus is on the multi-developer bug resolution processes that take place
beyond the actual fixing of the bug.

Another research similar in spirit is the Living Memory [Cas00] [Cas] project, which
explored the role of memory in physical communities, who live and work in a particular
neighborhood. The project aimed to provide community members with means to capture,
share and explore their collective memory as well as develop mechanisms for people to
update their collective memory. The research took a vastly different approach by building
physical devices that enabled people to capture and share memories associated with a
physical location. In this work, the emphasis is on constructing a logical interface for
people to access and interact with their shared memory.

59

Claimaker [LUM+02] explicitly models the rhetorical relations between claims in re-
lated papers, thus modeling readers’ interpretations of the core content of papers. This
allows for inter-document queries, but requires a lot of work from people to explicitly
markup the claims of papers and whether it supports of challenges. Research shows that
people are typically loath to do this. In this work, we take a mostly-automatic approach
where system tries to learn as much as it can in the background from people’s actions and
statements.

McBride argues in his paper [McB02] that successful Semantic Web adoption requires
that practical applications, simple and error-tolerant software, open source infrastructure
and applications that can be developed now. Most of these requirements are covered by
the proposed work.

Ultimately, something like [LTT+03] is required to provide a collaborative, community-
oriented ontology server in an open environment. The larger OSS community itself needs
to have control of its ontologies and manage them on its own. This does require some
expertise on the part of the community. It may be that there will be special roles for
knowledge modeling, just as many OSS projects now have some people that perform the
graphic design work for the community.

2.4 Exploration Context: The OpenACS/dotLRN Com-
munity

To guide the exploration and creation of a Semantic Web for OSS communities, we fo-
cus on supporting a single OSS community, the OpenACS/dotLRN open source soft-
ware community [Ope]. The OpenACS/dotLRN community has formed around the open
source OpenACS (Open Architecture Community System) toolkit, for building scalable,
community-oriented web applications. OpenACS provides the foundation for many web
applications, including the open source dotLRN e-learning platform [Dot], and many web-
sites, including Greenpeace [gre]. The dotLRN platform has been adopted by several
major school and universities, including the MIT Sloan School of Management and the

60

University of Heidelberg. The dotLRN community is fairly large and contributes a sig-
nificant amount of code back into the OpenACS community. Therefore, we refer to both
communities together as the OpenACS/dotLRN community.

Figure 2.8: The OpenACS Homepage

2.4.1 Community

The OpenACS/dotLRN community is particularly suitable as a context for this exploratory
research for several reasons, social and technical. First of all, it is a large, active and di-
verse community, in comparison to other open source software communities, with around

61

1700 members, although there are less than 100 active members at any time. The aware-
ness burden is therefore particularly acute here for community members as they must keep
abreast of a great variety of artifacts and the activities of numerous community mem-
bers. The community includes consultants, web developers and administrators, students
and through dotLRN, several university staff too. Some members of the community, espe-
cially the university staff, are paid to work on OpenACS/dotLRN, whereas others, espe-
cially consultants, work on OpenACS/dotLRN to improve their own Web products. Due
to the community’s close link with research and academia, it is very receptive to research
conducted on their platform. The OpenACS platform itself originates from the doctoral
dissertation research of one of its founding members.

The OpenACS9 platform is technically suitable for this research, because it incorpo-
rates software development tools, such as the OpenACS Bugtracker, which integrates dif-
ferent aspects of their development environment. The homegrown BugTracker, for exam-
ple, is an issue tracking software, but unlike many other open source bug tracking software,
also links bugs with the patches that fixed them. In addition, the OpenACS community re-
quires people to register at the community website, before participating in community
activities. Thus, community members have mostly unique identities on the OpenACS
website, making it easy to track the activities of individual community members. In other
open source software communities without such a registration requirement, determining
and collating people’s multiple identities is itself an arduous first step of conducting re-
search.

2.4.2 Activity

In addition to choosing an OSS community for our exploration, we need to also focus on
a specific activity in OSS communities, in this case, bug resolution. As discussed in the
previous chapter, bug resolution is one of the most complex activities in an OSS com-
munity and indeed in software development itself. It requires community members to

9Henceforth, OpenACS/dotLRN will be abbreviated as OpenACS. Thus, by mentioning the OpenACS
community, we are actually referring to the OpenACS/dotLRN community.

62

possess a solid understanding of the software source code, to be aware of the activities of
other community members, as well as maintain awareness of ongoing and past commu-
nity discussions and bug reports. All of these could potentially inform and influence the
resolution of a bug. Thus, bug resolution could benefit from the Semantic Web’s ability to
bring semantically related artifacts together.

Supporting bug resolution is also likely to be beneficial to the OSS community for
several reasons. To begin with, timely and correct bug resolution is crucial to maintaining
the quality of the software being produced. Community members take great pains to report
bugs, diagnose and fix them as soon as they can. This keeps the software usable and reflects
well on the community. However, bug resolution is also one of the least exciting activities.
Community members are primarily volunteers, who work on OpenACS in their spare time.
Their primary interest is in adding new functionality, so bug resolution is often drudgery to
them. By supporting the bug resolution process and helping community members resolve
bugs, Dhruv can be particularly useful to open source software communities. It provides
a good entry point for Semantic Web systems into online Web community work.

2.4.3 Community Artifacts

The OpenACS community makes use of various kinds of artifacts. The community con-
ducts its work via Web-based forums (Forums), chat rooms, a bug, issues and patches
tracker (BugTracker), a source code repository and change tracker (CVS) and source code
documentation. The OpenACS website links to all of these. In order to scope of data
sources to be examined, we restrict ourselves to information contained in the Forums,
Bugtracker and CVS. We next discuss each of these briefly in the context of OpenACS.

OpenACS Forums

The OpenACS Forums provide a means for threaded discussions in the community. The
OpenACS Forums contains several topic-based forums, such as OpenACS Development,
for developers working on the OpenACS code base, and OpenACS Q&A, an OpenACS

63

Figure 2.9: Screenshot of an OpenACS Forums discussion

64

user support forum. Each forum has a number of threads and each thread has multiple mes-
sages. Figure 2.9 shows the screenshot of an OpenACS forum thread with two messages
in the OpenACS Development forum. The subject of the thread is “How to prevent
empty string -> NULL conversion”. In the following, we will often refer to OpenACS
Forums discussion threads simply as ‘forum discussions’.

OpenACS Bugtracker

Figure 2.10: Screenshot of an OpenACS Bug Report

The OpenACS Bugtracker allows all attributes of a bug report and the discussion
around a bug to be gathered in a single bug report. An example of a bug report in the

65

OpenACS Bugtracker can be in Fig. 2.10. The upper section of the bug report lists the
attributes of the bug. These attributes are discussed in detail in Section 3.2.2, when the
bugs ontology is presented. The lower section of the bug report, titled‘Description’ is es-
sentially a unthreaded discussion specifically around the bug report. In the example shown
in the figure, the discussion has two bug report messages. Each bug report message is as-
sociated with a date on which the message was posted, and an action, such as ”Opened”
or ”Resolved (Fixed)”. This allows community members to perform an action on the bug
report and leave a message explaining the action.

An OpenACS patch report looks similar to an OpenACS bug report. Fig. 2.11 shows
a screenshot of the overview page of the OpenACS Bugtracker patch reports. OpenACS
Bugtracker bug reports have a similar page solely for bug reports.

OpenACS CVS repository

The OpenACS CVS repository has a Web interface that allows people to browse the CVS
repository through a Web browser. A screenshot of the OpenACS CVS Web interface
is shown in Figure 2.12. The figure shows the commit logs for the file file.adp in
the package file-storage. The commits to the file are sorted, with the most recent
commit on top. Each commit includes a brief commit log message which explains the
changes made by the commit to the OpenACS code base. Each commit log also has links
that allow people to view the version of the file after the commit has been made. This
allows community members to view the modifications committed directly from the Web
browser without first downloading a local copy of the file. The Web interface to the CVS
repository is an important tool for any community member who needs to examine the
source code. It is therefore often referred to in the bug reports and forum discussions.

66

Figure 2.11: Screenshot of an OpenACS Patch Report

67

Figure
2.12:Screenshotofthe

O
penA

C
S

C
V

S
W

eb
Interface

68

Chapter 3

Dhruv: Supporting Bug Resolution in
Open Source Software Communities

In this chapter, we describe the creation of the community Semantic Web prototype, Dhruv,
motivated in the previous chapter. Dhruv performs two functions with respect to OSS bug
resolution. First, it provides an enhanced semantic interface to messages posted during
bug resolution. The enhanced interface allows community members to click on selected
highlighted terms within the message, taking them to a cross-links page, which furnishes
greater detail on the clicked term. The cross-links page primarily presents semantically
related information about the term in the system and suggests related artifacts. Second,
Dhruv provides a number of message recommendations of people, source code files, bug
reports and discussions for each bug report message. These recommendations are deter-
mined by taking into account the semantic cross-links of each of the highlighted terms in
the message.

In order to perform these two functions, Dhruv requires various components:

1. Ontologies of the content, interactions and community: To begin with, Dhruv re-
quires an ontology that describes the structure of the project and provides a basis
for determining how artifacts are related. We model all three layers of content, in-
teractions and community of OpenACS, presented in Section 3.2. The content layer

69

is modeled in two ontologies, the code ontology (see Section 3.2.1) and the bugs
ontology (see Section 3.2.2). These ontologies enable us to determine the location
and context of given software objects and related bug reports. Essentially, these on-
tologies help identify the semantic context of a bug report message. The interactions
ontology, presented in Section 3.2.3, describes the structure of interactions around
bug reports, files and discussions in an OSS community. Using the interactions on-
tology, Dhruv can identify people who are experts in the area of the bug. Finally,
the community ontology, presented in Section 3.2.4, describes the various roles in
the community. Knowing the roles of people in the community, Dhruv can recom-
mend people appropriate to their roles in the community. Thus, someone who has
expertise in the area of the bug, but has never modified a file or submitted a patch, is
likely to have the in-depth knowledge of the code required for fixing a bug.

2. Metadata about various community artifacts: Dhruv needs to identify meaningful
terms and concepts within the community artifacts, namely the source code and the
interaction messages of the community. There are two kinds of metadata: (a) ref-
erences to code, files, packages, error traces, other bug reports and discussions, and
(b) semantic concepts expressed as a technical vocabulary or jargon that is meaning-
ful to community members. These extracted terms are highlighted by Dhruv within
the message. In section 3.3, we discuss how these two types of metadata are auto-
matically extracted and used to populate the ontologies created in section 3.2. In
particular, we discuss the generation of metadata of type (a) from structured content
in section 3.3.1 and metadata of type (b) from natural language text in Section 3.3.2.
Finally, we discuss some of the issues that arise when attempting to generate meta-
data automatically for the OpenACS community in Section 3.3.3. The ontologies
created in the previous step are used to provide the semantic context of the metadata
of a bug report message.

3. Heuristics to automatically link related objects and artifacts: Having generated
metadata for various kinds of software objects and community artifacts, Dhruv can
now use the ontology relations created in the first step to identify the semantic con-
text of the metadata generated in the previous step. This context consists of metadata

70

from the ontologies and related artifacts as determined by text similarity. We call the
artifacts identified by the context of an extracted term the cross-links for the term.
The cross-links for each extracted term in the message is presented in a cross-links
page. The highlighted terms and cross-links pages together represent the enhanced
semantic interface provided by Dhruv. We present various heuristics for generating
cross-links for terms in Section 3.4. In particular, we discuss the heuristics Dhruv
uses to identify artifacts and objects from noun phrases (Section 3.4.1), from code
terms (Section 3.4.2) and from references to other artifacts (Section 3.4.3).

4. Recommendation procedures to suggest related artifacts during bug resolution: Given
the semantic context or cross-links for message terms, Dhruv can now generate mes-
sage recommendations. Dhruv gathers all the cross-links for a message and then
prunes and ranks the list of artifacts using a number of heuristics. In Section 3.5, we
discuss the heuristics for generating recommendations from the cross-links created
in Section 3.4.

3.1 Dhruv: A Prototype Semantic Web to Support OSS
Bug Resolution

The core idea of Dhruv is to realize a prototype Semantic Web to support bug resolution
in the OpenACS community. Dhruv supports bug resolution in two ways. Dhruv captures
metadata about various artifacts created as part of the development history of OpenACS.
It then presents related metadata to the developers in a natural way as they attempt to fix
bugs. In addition, Dhruv suggests artifacts that are likely to be relevant to a developer
working on a community activity, such as resolving OpenACS bug reports.

As discussed in the previous chapter, Chapter 2, Dhruv essentially forms a knowledge
base with concept relations and instances. It uses its knowledge of OpenACS artifacts to
form an OpenACS project memory that links related artifacts. OpenACS artifacts include
the source code and documentation, discussion forum messages, bug and patch reports,
and chat logs.

71

define ontologies

gather instance data

define similarity

generate message recommendations

generate interface

generate term recommendations

Figure 3.1: Dhruv Creation and Function

The creation and function of Dhruv, outlined in Figure 3.1, will be described in the
rest of the chapter. The first step in creating Dhruv involves creating the ontologies that
are part of Dhruv’s knowledge base by examining the artifact sources that the ontologies
model. The next stage involves gathering instance data to populate the Dhruv ontology
concepts and roles. Having created a knowledge base with an ontology and metadata, the
following stage creates links between instances that are semantically related. Dhruv uses
the metadata and links to present useful background information to an OpenACS commu-
nity member in a natural way. In addition, Dhruv uses the links to make recommendations
for related artifacts.

3.2 The OpenACS Community Ontology

The OpenACS Community Ontology used by Dhruv has been designed to support a de-
veloper attempting to resolve a bug. For a given bug report, the developer must be able to
query Dhruv for related bug reports and forum discussions. In addition, Dhruv should be
able to indicate (roughly) the area of code where the bug is likely to be located and other
developers who have expertise in that area of code. Such developers are likely to be able
to help resolve the bug.

The top-level OpenACS ontology essentially consists of four sub-ontologies, shown
in Figure 3.2. The purpose of the ontologies is to model the structures of the three layers
of the OpenACS community, enabling artifacts and information from various parts of the

72

project to be linked. The content layer of the OpenACS Community is modeled through
the code ontology, which describes the project source code, and the bugs ontology, which
describes submitted bug and patch reports and their attributes. These two ontologies are
connected, because code files modeled in the code ontology contain bugs that are modeled
in the bugs ontology. The interactions layer of the OpenACS Community is modeled by
the interactions ontology, which covers the various kinds of interactions and discussions
that take place on the project website. These often refer to the bug reports and source code
of the OpenACS Community. Finally, the community ontology describes the people in
the OpenACS Community and various roles they assume within the community. These
roles are determined through their interactions within the community and consequently,
the community ontology builds on the interactions ontology.

Community

Code Bugs

Interactions

Community

Interactions

Content

Figure 3.2: An overview of ontology hierarchy

The OpenACS Community ontology has been segmented into the four sub-ontologies
for various reasons. The sub-ontologies reflect the three-layered online professional com-
munity framework of content, interactions and community. The content layer ontology
has been further sub-divided into the code and bug ontologies, since they are sufficiently
different domains, each meriting its own ontology for clarity. Each of the ontologies are
relatively modular and are consequently usable for the most part independently of each

73

other. The Semantic Web is intended to accommodate multiple ontologies. Segmenting
the OpenACS Community ontology allows us to explore the use of multiple ontologies for
a single setting, albeit non-rigorously.

Due to the multiple ontologies in use for the OpenACS community, in the following
we use the convention ont:concept to refer to a class concept defined in an ontology
ont.

We construct the artifact ontology in OWL (Web Ontology Language) DL, so named
due to its correspondence with description logic, a decidable fragment of first-order logic
that possesses desirable computational properties for reasoning1. However, unlike OWL,
we make the unique names assumption, that two different names always refer to two dif-
ferent individuals. Although this assumption may not hold in general on the Web, it sim-
plifies reasoning considerably and most DL reasoners, including RACER, make the same
assumption by default. We therefore only need to explicitly assert that two individuals are
equivalent, a case that occurs relatively infrequently in our context.

3.2.1 The Code Ontology

The OpenACS ontology is intended to support for bug resolution, but its core models the
software source code and its evolution. The source code is the most important artifact
in understanding and resolving bugs. All bugs occur somewhere in the source code and
the ensuing discussion around the bug also takes place in referential context of the source
code. The software source code ontology is therefore the most critical portion of the
ontology, since it models the source code, which is key to interpreting the semantics of
other artifacts, especially message-based artifacts.

The OpenACS architecture and organization must be understood in order to design the
software code ontology appropriately. In the next section, we give a brief overview of the
OpenACS architecture and then proceed to describe the OpenACS code ontology.

1Unlike database reasoning, OWL makes an open world assumption, i.e. things left unspecified are
assumed to be unknown.

74

OpenACS Architecture and Organization

OpenACS/dotLRN Foundation

OpenACS Packages

SQL

TCL

WWW

Figure 3.3: A high-level view of the OpenACS software architecture

The OpenACS software is organized as a toolkit, from which a number of tools can
be chosen and put together to realize a Web community application. A very high-level
view of its architecture is shown in Fig. 3.3. There are numerous packages which build
on a common foundation. Each of the packages provides a functionality or tool, such as
Web forums, shared file repository, a web log and so on. There are around 170 maintained
packages in the OpenACS/dotLRN software platform. In the following, we briefly discuss
the internal architecture of an OpenACS package and its organization of files. This will
turn out to be important when we consider the file recommendations made by Dhruv.

Each OpenACS package is internally organized according to the model-view-controller
(MVC) architecture. This is also reflected in the organization of the source code. Each
package has three sub-directories: sql to store the code that implements the package
model, tcl to store the code (primarily in the programming language TCL) that imple-
ments the controller and www to store the code that implements the view or graphical
interface of the application.

75

Within each package, the model is implemented through database manipulation code,
typically stored in SQL files. OpenACS maintains separate database scripts for two pop-
ular relational databases: Oracle, a commercial product and PostgreSQL, another open
source software product. Scripts that implement the same functionality, but are meant for
different databases are differentiated by directory. Thus, the sql directory has two subdi-
rectories, oracle and postgresql, which contain source code for the corresponding
databases.

The tcl directory of a package contains the code to implement the package controller.
Each TCL file in the package can have a corresponding XQL file, which stores in XML
Query Language format, the database queries made by functions in the TCL file. For
example, the following are a set of related files found in the tcl directory of the forums
package.

message-procs.tcl

message-procs.xql

message-procs-oracle.xql

message-procs-postgresql.xql

The file message-procs.tcl contains the TCL code to implement forum message
functionality, such as creating and editing a forum message. For this, the TCL func-
tions need to access the database to create and update the messages table. Database
queries, whose syntax is independent of database are stored in message-procs.xql
and database-dependent queries are stored in the files message-procs-oracle.xql
and message-procs-postgresql.xql respectively.

The Web interface of each package is implemented by code stored in the www directory.
OpenACS applications are typically database-driven websites. Therefore, the web inter-
face of individual packages is implemented through HTML pages that are dynamically
generated based on a Web pages template and the contents of an underlying database. The
Web page templates are written in ADP (AOLserver Dynamic Page) and the code that dy-
namically populates them is written in TCL. The file organization once again reflects this
connection, so the following two files in the www directory of the forums package are

76

related.

message-view.adp

message-view.tcl

The file message-view.adp contains the ADP template for viewing forum messages
and the file message-view.tcl contains the TCL code responsible for querying the
database (through functions in the tcl directory) and passing the results onto the ADP
file.

With an understanding of the OpenACS architecture, we can now describe the code
ontology. The OpenACS code ontology has about 24 concepts and 19 properties. The
subclass hierarchy of concepts in the code ontology is shown in Fig. 3.4. The root con-
cept, owl:Thing, is a top-level class, containing all instances in the knowledge base.
A direct subclass of owl:Thing is the concept community:Resource, which rep-
resents all artifacts and people in the community and will be elucidated further in sec-
tion 3.2.4. Here, we discuss a direct subclass of community:Resource, namely
code:SoftwareObject, which represent the top-level class for all software objects
in the OpenACS code base.

In the following, we discuss each of the subclasses of code:SoftwareObject in
detail.

Package

OpenACS packages are modeled through the code:OACSPackage class, which is a
subclass of the concept code:Package. Instances of code:OACSPackage represent
a particular tool in the OpenACS toolkit, such as forums, calendar or photo-album.
Another subclass of code:Package is code:OraclePackage, which represents a
’package’ object in the Oracle database and contains a set of Oracle function definitions.
There is no corresponding object in PostgreSQL.

77

code: requiresPackage

code: hasC
om

m
it

bugs: hasA
uthor

code: refersToBug

code: refersToPatch

code: refersTo

code: containsFileO
rD

ir

code: containsFile

code: containsFunction

code: fileC
ontains

code: hasParam
eter

code: hasPart
code: hasVariable

code: logsM
essage

o
w

l: Th
in

g

co
m

m
u

n
ity: R

eso
u

rce

co
d

e: In
d

ex

co
d

e: V
iew

co
d

e: Tab
le

co
d

e: Trig
g

er

co
d

e: Packag
e

co
d

e: So
ftw

areO
b

ject

co
d

e: Variab
le

co
d

e: Q
u

ery

co
d

e: Sto
rag

eU
n

it

co
d

e: File

co
d

e: D
irecto

ry

co
m

m
u

n
ity: Perso

n

co
d

e: N
am

esp
ace

co
d

e: O
raclePackag

e

co
d

e: D
B

O
b

ject

co
d

e: C
o

d
eB

lo
ck

co
d

e: M
essag

eK
ey

co
d

e: O
A

C
SPackag

e

co
d

e: Fu
n

ctio
n

co
d

e: Lo
g

M
essag

e
co

d
e: Param

eter

co
d

e: C
o

m
m

en
t

in
teractio

n
s: In

teractio
n

Item

b
u

g
s: B

u
g

R
ep

o
rt

b
u

g
s: Patch

R
ep

o
rt

in
teractio

n
s: C

o
m

m
it

Figure
3.4:T

he
D

hruv
C

ode
ontology

78

Code Block

The concept code:CodeBlock is a container class, describing software objects con-
taining a set of actions to be executed. In OpenACS, there are primarily two kinds of such
objects, functions (modeled by code:Function) and files (modeled by code:File).
In OpenACS, functions are written in either TCL or SQL. TCL functions drive the website
processing and page display, while SQL functions are for specialized database function-
ality. In addition to functions, OpenACS also uses files as containers for actions. For
example, the ADP files.

Namespace

OpenACS functions are organized into namespaces, which are represented in the code
ontology by the concept code:Namespace. Namespaces can be nested. By knowing
in which namespace a function belongs, we can find related functions by looking at other
functions in the namespace. The namespace also provides a higher-level description.

Variables

Variables within functions are modeled through the concept code:Variable, which
has two specializations code:Parameter and code:MessageKey. The concept
code:Parameter represents variables whose scope is local to a function. Message
keys, on the other hand, are special global variables, representing package parameters.
They are often used to implement localization.

Database Objects

The concept code:DBObject models OpenACS software objects that are associated
with a database. Thus, subclasses of code:DBObject include the class code:Table,
which models a relational table in OpenACS. code:OraclePackage, discussed above,
is also a database object and is therefore a subclass of code:DBObject. The other

79

two subclasses of code:DBObject are code:Index and code:Trigger, which
represent database indices and triggers, respectively.

Query

The concept code:Query models database queries made by TCL functions. If the TCL
functions are located in a file file.tcl, then the queries are always located in a file
file.xql. Instances of class code:Query are linked to instances of code:Function
through two properties: the object property code:invokedBy and its inverse property
code:invokesQuery.

Comment

The concept code:Comment models software code comments within a source code file.
An instance of code:Comment may be a documentation comment for a function or
namespace, such as

This procedure, given a content item and a privilege,

checks to see if there are any children of the item on

which the user does not have that privilege. It returns

0 if there is any child item on which the user does not

have the privilege. It returns 1 if the user has the

privilege on every child item.

or an inline comment such as

FIXME: db blob get file is failing when i use bind

variables

code:Comment also has a functional datatype property hasCommentText, which
links an instance of code:Comment to the textual string of the comment.

80

Log Messages

In analogy to the concept code:Comment, the concept code:LogMessage models
logging messages within a source codefile. During the running of the OpenACS system,
these logging messages are written to a log file and are typically used by developers and
users to understand the internal state of the OpenACS system. This is usually helpful in
diagnosing why and how the system reached an erroneous state. Community members
encourage people filing bug reports, where the system returns an error, to include relevant
portions of the log file in the bug report. In the line of code below, the first word ns_log
is a keyword indicating that a log message should be printed of type Warning with the
message Multiple ... script.

ns log Warning "Multiple definitions of ad page contract

filter "$name" in $script and $prior script"

We model the textual component of the message as a string, which is linked to by an in-
stance of code:LogMessage through the functional datatype property
code:hasLogMessageText. The types of log messages are not modeled in our on-
tology, since these primarily signal the severity of a problem to other developers. Log
message types are not currently used by Dhruv.

In addition to these software objects, the code ontology also contains the concept
code:StorageUnit, which refers to the files and directories where particular blocks
of code are stored. Individual commits made by people to files are modeled through the
concept code:Commit.

Several kinds of reasoning capabilities were envisioned for the code ontology, which
influence its design. These are:

• Identifying concepts that appear in bug reports. Certain concepts, such as variable
names, function names and log messages, are likely to appear in bug reports and
provide valuable hints about the code that is involved in producing the bug. These

81

concepts should be modeled by the ontology in order to link from information in
a bug report to areas in the code that cause the bug. The code ontology therefore
contains concepts, such as code:LogMessage and code:Comment, and prop-
erties, such as code:hasLabel and code:hasCommentText.

• Tracing invocation dependencies for code. The run-time behavior of code depends
on its control flow structure and invocations of other functions and procedures. Al-
though the behavior of a procedure may depend on the context within which it is
invoked or on the procedures it invokes in turn, these dependencies are difficult to
trace for someone unfamiliar with the code. The code ontology therefore models the
procedure invocations within the code, both to present a localized view of code con-
nected by control flow and to identify which areas of code are affected by a particular
bug. This is achieved by the property code:invokes and its two subproperties
code:invokesFunction and code:invokesQuery.

• Identifying people who committed changes to code. The evolution of a code base is
logged in CVS commit logs as commits made by developers to various files. It is im-
portant to model commits in our ontology to be able to locate people who have often
committed to a particular file and are likely to have expertise in the code contained
in the file. Consequently, our ontology contains a concept code:Commit, which
has the following properties: code:hasCommit, code:hasCommitter,
code:committedOnDate and code:hasCommitText, which points to the
log message associated with the commit. In case the commit was made in response
to a bug or a patch report, this is captured through the property code:refersToBug
or code:refersToPatch.

In order to support the last reasoning task above, we also model the storage structure

of the code. Code packages and procedures are usually distributed across several files. In
order to connect commits performed on files, to actual blocks of code, the ontology models
storage structure of the code, i.e. the file(s) in which a procedure (or package) is located.
This is achieved through the concepts of code:File and code:Directory and the
properties code:fileContains and code:hasFileOrDir.

82

Many of the concepts, such as code:Function and code:Table, do not model
the real-world objects, such as functions and tables, completely. For example, they do
not model columns of the table and return values of functions. However, this is inconse-
quential, since comprehensive modeling is not required by any of the reasoning tasks and
is in fact detrimental to efficient use of the concepts. The purpose of the code ontology
is therefore primarily to model the location, type and partof relations for significant code
objects.

3.2.2 The Bug Ontology

The bugs ontology is the other portion of modeling the content layer. The bugs ontology
models the information in the OpenACS Bugtracker: the bug reports, their attributes and
the discussions around them. The bugs ontology is much simpler than the code ontology,
containing 11 concepts and 15 properties, as shown in Fig.3.5. The classes and properties
in the ontology are explained below in detail:

Bug and Patch Reports

The core classes in the bugs ontology are bugs:Report and its two direct subclasses
are bugs:BugReport and bugs:PatchReport. These represent a bug report and a
patch report respectively, filed in the OpenACS Bugtracker.

Report Attributes

Each report can have several attributes, describing various characteristics of the report.
Report attributes are modeled through the concept bugs:ReportAttributes. The
OpenACS BugTracker makes use primarily of three attributes priority, resolution and
severity. These are modeled as classes bugs:Priority, bugs:Resolution and
bugs:Severity and are linked to the report through the functional object properties
bugs:hasPriority, bugs:hasResolution and hasSeverity respectively.

83

bugs: reportForC
om

ponent
bugs: hasSum

m
ary

bugs: assignedTo
bugs: resolvedBy

bugs: subm
ittedBy

bugs: hasPatch
bugs: fixesBug

bugs: hasStatus

bugs: hasSeverity

bugs: hasResolution

bugs: hasPriority

bugs: hasPatch
 C

ontent
bugs: fixForVersion
bugs: fixedInVersion

o
w

l: Th
in

g

b
u

g
s: Patch

R
ep

o
rt

b
u

g
s: R

ep
o

rt

in
teractio

n
s: In

teractio
n

Item

co
m

m
u

n
ity: R

eso
u

rce

co
m

m
u

n
ity: Perso

n

b
u

g
s: B

u
g

R
ep

o
rt

b
u

g
s: R

ep
o

rtStatu
s

b
u

g
s: B

u
g

Statu
s

b
u

g
s: Patch

Statu
sb

u
g

s: R
eso

lu
tio

n

b
u

g
s: R

ep
o

rtA
ttrib

u
tes

b
u

g
s: Prio

rity

b
u

g
s: Severity

Figure
3.5:T

he
D

hruv
B

ugs
O

ntology

84

There are three different levels of priority for each bug report, which represents the
urgency with which the bug should be resolved. These levels are modeled as instances of
the class bugs:Priority. The base level is bugs:Normal, which denotes normal
priority for the bug. A bug report that is more serious, may be designated to be fixed
before the next release of the software, i.e. it would have priority bugs:MustFix. The
highest level of priority is denoted by the level bugs:Urgent for bugs which must be
fixed immediately, because they are blocking other work on the system.

The severity of each bug report represents the criticality of the bug. Like the priority of
a bug, the severity of a bug is modeled by the class bugs:Severity, with the six levels
of severity modeled as instances of this class. A bug may be simply an issue of aesthetics,
in which case, it is noted as having severity bugs:Cosmetic. A bug may otherwise be
bugs:Trivial to resolve or an bugs:Inconvenience if a workaround exists that
addresses the bug. If a core functionality of a package is broken, then the bug is marked
as bugs:FunctionBroken. If a core functionality of the OpenACS system is broken
or the system crashes and for bugs involving data loss or security, the bug is marked as
being bugs:Critical. If nothing is broken, the bug may be marked as merely an
bugs:Enhancement.

Report Status

Most of the above attributes of a bug report also carry over to a patch posted to the bug
report. However, the status of bug reports, modeled by bugs:BugStatus, and patch
reports, modeled by bugs:PatchStatus, are markedly different and are discussed
below. They are linked to the bug or patch report through the functional object property
bugs:hasStatus.

Unresolved bug reports are in the state bugs:Open. If a solution has been found for
the bug, the bug report is marked as bugs:Resolved and once the solution has been
verified by the person who reported the bug, the bug report is marked as bugs:Closed.
People are encouraged to state the reason why a bug report is considered resolved or
closed. If the bug was fixed, the bug report may then be noted as being either

85

bugs:Closed_Fixed or bugs:Resolved_Fixed. If the bug report is deemed to
report the same bug as another bug report, it will be noted as being an instance of one of
the classes bugs:Closed_Duplicate or bugs:Resolved_Duplicate. If it has
been decided that the bug report does not really represent a bug and is the way the software
is expected to function, the bug report will be marked as either bugs:Closed_ByDesign
or bugs:Resolved_ByDesign.

Finally, bug reports may not be reproducible in a test environment (in which case, they
are marked as bugs:Closed_NotReproducable or as
bugs:Resolved_NotReproducable) or their resolution may simply be postponed
to a later date (bugs:Closed_Postponed or bugs:Resolved_Postponed).

Patch reports are much simpler and may be in only four different states. They are either
bugs:Open, bugs:Deleted, bugs:Accepted or bugs:Refused. A patch may
be deleted, for example, because a more comprehensive patch exists elsewhere. Patches
can also be refused, if they do not resolve the bug or cause other problems to arise. If the
patch is appropriate and fixes the bug, it is accepted.

Various attributes of reports have been modeled by subclasses of the class
bugs:ReportAttributes. These attributes are captured mainly to be able to define
rules over the ontologies some time in the future. An example of such a rule might be ’For
a bugs:BugReport with bugs:urgent bugs:Priority in bugs:Component
ACS-Authentication, always mark John as relevant.’

As with the code ontology, there are a few reasoning tasks that have been envisioned
for the bugs ontology. It is often helpful for a developer to know who committed changes
in the near past. Some of these changes are likely to have introduced a bug. In addition,
the developer may also want to know which developers are likely to have expertise in the
area of the bug. Both of these questions can be answered by examining the commit logs
for the code that produces the bug. While it can be very difficult to identify the relevant
people exactly, the Dhruv knowledge base can determine the people who made changes
to code referred to in the bug. Using the code ontology, Dhruv can link bugs to units of
code by identifying code concepts that appear in the bug report. Dhruv can then identify

86

the people who committed to the files that contain the units of code.

3.2.3 The Interactions Ontology

On top of the code ontology and the bugs ontology, lies the interactions ontology, which
models community interactions around artifacts. The interactions ontology therefore mod-
els people’s actions on bug reports and on discussion forums. This ontology captures the
semantics of the interactions layer and is shown in Figure 3.6.

In the interactions ontology, interactions are modeled as follows: individual artifacts
or interaction items may have interaction:Messages made by instances of the class
community:Person. Each instance of interactions:Message is differentiated
into several types, such as interactions:OpenMessage, which refers to the action
performed on the artifact by posting the message. These concepts are discussed in detail
below.

Interaction Items

An interaction item represents an artifact, an instance of community:Resource, around
which an interaction may take place. The class interactions:InteractionItem
has three direct subclasses interactions:DiscThread, bugs:Report and the
class code:File. The classes bugs:Report and code:File have been discussed
previously and support interactions in the form of discussions around bug reports and
commit sequences on files respectively. The class interactions:DiscThread rep-
resents the set of all discussion threads in the OpenACS Forums.

Each instance of the class interactions:InteractionItem is linked to the
interactions around it through the functional object property
interactions:hasMessageSequence. The interactions are represented through
the class interactions:MessageSequence, which is discussed next.

87

interactions: situatedIn

interactions: posted
interactions: postedBy

interactions: initiated
interactions: initiatedBy

interactions: inM
essageSequence

interactions: hasM
essage

interactions: inReplyTo

interactions: postedO
n

interactions: hasM
essageText

interactions: hasSubject
interactions: initiatedO

n

o
w

l: Th
in

g

in
teractio

n
s: O

p
en

M
essag

e

in
teractio

n
s: M

essag
eSeq

u
en

ce

in
teractio

n
s: R

eso
lveM

essag
e

in
teractio

n
s: Ed

itM
essag

e

in
teractio

n
s: In

teractio
n

Seq
u

en
ceM

essag
e

in
teractio

n
s: C

o
m

m
en

tM
essag

e

in
teractio

n
s: M

essag
e in
teractio

n
s: In

teractio
n

Lo
catio

n

in
teractio

n
s: C

lo
seM

essag
e

in
teractio

n
s: C

o
m

m
it

in
teractio

n
s: In

teractio
n

Item

b
u

g
s: R

ep
o

rt

co
d

e: File

co
m

m
u

n
ity: Perso

n

co
m

m
u

n
ity: R

eso
u

rce

in
teractio

n
s: D

iscTh
read

Figure
3.6:T

he
D

hruv
Interactions

O
ntology

88

Messages and Message Sequences

The classes interactions:Message and interactions:MessageSequence

are represent individual messages and sequences of messages respectively. The class
interactions:Message has several object and datatype properties describing the
various attributes of a message. A message is interactions:postedBy a person
and interactions:postedOn a particular date. The message has a text string as sub-
ject, linked to by sinteractions:hasSubject. The message might have started a
new discussion or it may be interactions:inReplyTo another instance of the class
interactions:Message In the latter case, both messages are linked by the object
property interactions:inMessageSequence to the same instance of the class
interactions:MessageSequence. Each message also has an associated message
text, of type string, linked to by the functional datatype property
interactions:hasMessageText.

Message Types

There are several kinds of messages in OpenACS discussions, which are modeled as sub-
classes of interactions:Message. By representing the various classes of messages
in the interactions ontology, we are able to classify people into various kinds.

Messages can be of six types:

• interactions:OpenMessage is a message that initiates a discussion. It is
the first message in any interaction sequence and has no message that it is in reply
to. This message may be posted to an instance of bugs:Report or the class
interactions:DiscThread.

• interactions:CommentMessage is a message that is in reply to another mes-
sage on a bugs:Report or a interactions:DiscThread.

• interactions:EditMessage is a message that is posted only to bugs:Report.
It is used to edit some of the attributes of the bug or patch report.

89

• interactions:ReassignMessage is a message posted to a bugs:BugReport,
indicating that the resolution of the bug report has been assigned to a new person.

• interactions:ReopenMessage is a message posted to a bugs:BugReport,
indicating that a bug report previously thought to have been resolved or even closed
has been reopened, because the bug still persists.

• interactions:ResolveMessage is a message that is only posted to an in-
stance of the class bugs:BugReport and is used to indicate that the bug in ques-
tion is considered to be fixed.

• interactions:CloseMessage is a message that usually follows a message
of type interactions:ResolveMessage and indicates that the bug report is
formally closed. This is usually done by the person who sent the OpenMessage,
i.e. the person who first noticed the problem, after verifying that the bug is indeed
fixed.

• code:Commit is a message that is posted to a code:File as part of a commit
log.

Bug report comments are modeled because they contain valuable information that elab-
orates on the bug, its symptoms, possible fixes and trade-offs. Such information is very
useful, for example, to a developer wishing to fix a similar bug. In addition, bug comments
indicate the people who participated in the resolution of the bug and are therefore likely to
have some expertise in the area of the bug.

Similarly, comments or messages posted on web-based discussion forums are also
modeled, since they may contain information that a developer needs to be aware of while
fixing bugs.

90

3.2.4 The Community Ontology

On top of the interactions ontology, lies the community ontology, which models the on-
line community in terms of the people taking part in the community interactions around
artifacts and their roles. The community ontology therefore captures the semantics of the
community layer and is shown in Figure 3.7.

owl: Thing

community:

isMemberOf

community:
hasResource

community:

isRelatedTo

community: hasEmailAddress
community: hasID

community: DeveloperPerson

community: ContributerPersoncommunity: BugFixerPerson

community: BugReporterPerson

community: Website

community: Resource

community: Person

community: UserPerson

community: Community

Figure 3.7: The Dhruv Community Ontology

There are three key classes in the community ontology. Firstly, the class
community:Community, which contains numerous community:Resources and a
number of instances of class community:Person.

91

Community

The class community:Community represents an online community. An instance of
community:Community is linked to several shared resources through the object prop-
erty community:hasResource.

Resources

The concept community:Resource represents all resources that can be used for sup-
port or help by the community. These are primarily community artifacts, such as source
code files, bug reports, discussion threads and people. Resources could potentially include
external websites and discussions, but they are out of the scope of this work. The class
community:Resource has four subclasses: community:Person, which represents
a community member; code:SoftwareObject, which represents all OpenACS ob-
jects and interactions:InteractionItem, which represents all artifacts with in-
teractions around them, i.e. bug reports, discussion threads, source code files etc.

People

The concept community:Person represents a member of an online community, linked
to an instance of community:Community through the object property isMemberOf.
A community:Person can have multiple associated email-addresses and multiple com-
munity identifiers. These are represented by the two following datatype properties:
community:hasEmailAddress and community:hasID respectively.

The community ontology is also linked to the FOAF ontology [BM04]. In particular,
every instance of community:Person is also a foaf:Person. At the moment, this
subclass relationship is not utilized. However, tools built for FOAF can also make use
of the OpenACS community:Person information. As more ontologies are defined
within the Semantic Web, the OpenACS ontologies can be linked with additional external
ontologies, increasing the usefulness of the OpenACS ontologies.

92

A community member can have several roles in the community, especially in an open
source software community. A person could be a user of the software, an occasional con-
tributor of code or a core developer. These roles of community members are represented
by subclasses of community:Person. They are:

• community:UserPerson is a person who has used or attempted to use the soft-
ware and has had some interaction with the community. Thus, anyone who has
posted a message in the community is classified as a user of the software. Note that
this does not include users who might lurk around without participating in commu-
nity interactions. They are anyway invisible to the community and cannot function
as a resource.

• community:BugReporterPerson is a person who has filed at least one bug
report and thus initiated a discussion around the bug. Bug reporters are users who
have a higher level of commitment to the software, to the extent of actively partici-
pating in improving its quality.

• community:BugFixerPerson is a person who has resolved or fixed at least
one bug. Bug fixers have demonstrated commitment and some level of competence
in the software by fixing existing bugs.

• community:ContributerPerson is a person who has submitted at least one
patch report. A patch report may be filed to fix an existing bug, in which case the
contributor is essentially a bug fixer. However, patch reports are also used by periph-
eral community members to contribute code and enhancements to the community.
Thus, the category of contributor encompasses bug fixers, but goes beyond them.

• community:DeveloperPerson is a person who is a core community member
and has commit privileges in the community. Thus, an instance of the class
community:DeveloperPerson is someone who has committed at least once
to the shared code base. Developers are often also responsible for the technical
direction of the community.

93

3.3 Generating Metadata

Having defined classes and roles in the OpenACS ontology, namely the TBox, we can now
consider how to define the instances that populate these classes, namely the ABox. These
instances are gathered from the artifacts, namely source code files, CVS commit logs, bug
and patch reports and discussion threads.

Community Artifacts

Structured Information Natural Language Text

RDF Extracted Terms

parsing

RDF Converter
Minorthird
Mixup Rules

Figure 3.8: An overview of the metadata generation process

A schematic of the metadata generation process is shown in Fig. 3.8. The meta-
data generation process uses a combination of hand-written parsing rules and information
extraction patterns. We attempted to generate the instance data automatically as far as
possible. There are several reasons for this. Firstly, it would be infeasible to define all the
instances in the ontology manually. This is true for any ontology that aims to capture any
sizable domain. Although it requires some upfront effort to teach a system like Dhruv to
acquire data automatically, once the system is functioning, the incremental effort of data
generation on the ontology developers and users is negligible.

By restricting ourselves to automatic instance acquisition, we also limit ourselves to
capturing information, that is high in structural semantics, but may be relatively shallow
in its interpretational semantics. For the purposes of this exploratory study, though, this

94

restriction is not severe. Important instances not captured automatically can always be
added manually to the ABox. Naturally, the decision to acquire instances automatically has
influenced the design of the TBox to an extent, in that only those concepts and properties
were retained, whose instances could be determined automatically.

The artifacts used in the metadata generation process are:

• Software source code from OpenACS packages. We only used considered TCL,
SQL, XQL and ADP files. HTML files and additional glue code in OpenACS was
not taken into account.

• CVS commit logs for the OpenACS packages’ source code.

• Bug reports submitted in the OpenACS Bugtracker.

• Patch reports submitted to the OpenACS Bugtracker.

• Discussion threads in the OpenACS Web Forums.

3.3.1 Generating Metadata from Structured Data

These artifacts were input to a parser, which extracts structured information, that is to be
captured for the content and interactions layer ontologies. For example, the fragment of
source code from the file forum-procs.tcl below

ad_proc -public forum::list_forums {

{-package_id:required}

} {

List all forums in a package

} {

return [db_list_of_ns_sets select_forums {}]

}

is parsed to extract the following information:

95

code:Namespace forum

code:Function list_forums

code:containsFunction forum list_forums

code:Parameter package_id

code:hasParameter list_forum package_id

code:Comment "List all forums in a package"

code:hasComment list_forums "List all forums in a package"

code:Function db_list_of_ns_sets

code:refersTo list_forums db_list_of_ns_sets

code:fileContainsDefOf forums/tcl/forums-procs.tcl

forum::list_forums

The parser is written in Perl and uses regular-expression pattern matching to iden-
tify functions, namespaces, queries, comments etc. In the example above, the keyword
ad_proc can be used to identify a function definition and other features of the syntax
used to identify the function name, function comment and so on. Of course, this process is
not entirely error-free. To do this really thoroughly, Dhruv would need to be able to under-
stand the syntax of TCL, ADP, SQL and XQL, to parse the programs. It would still not be
entirely successful, because OpenACS has defined its own object system on top of TCL.
For the time being, we therefore wrote hand-coded rules to gather the relevant information.
The parser also generates unique identifiers for each of the instances. For simplicity, the
unique identifiers are not shown in the example above. The extracted information is then
transformed to RDF using a RDF converter. The RDF converter, also in Perl, cleans the
extracted information for RDF.

3.3.2 Generating Metadata from Natural Language Text

In addition, the parser also extracts natural language text from the artifacts. This is pri-
marily the text of discussions, bug report and patch report messages, CVS commit logs
and comments in the source code. This text is processed using Minorthird Mixup rules to
extract the following:

96

• Bug report and patch report references. These were captured when they appeared as
the following

bug 23

bug #1245

bugs #1245 and #1243

http://openacs.org/bugtracker/openacs/bug?bug_number=1445

patch 342

patches 343 and #342

http://openacs.org/bugtracker/openacs/patch?patch_number=342

• Discussion thread references. These were captured when they appeared as the fol-
lowing

http://openacs.org/forums/message-view?message_id=131005

• Filenames and file paths. These were captured when they appeared as the following

forums/tcl/forum-procs.tcl

message-procs.xql

/packages/acs-mail/www/doc/openacs-mail.html

• Email addresses

• References to people in the community, such as

donb

lars

• Code-like terms. These are terms that looked similar to a label in the source code.
Examples include

ns_cache

apm_package_id_from_key

bboard

97

Such terms will, henceforth, be referred to as code terms.

• Noun Phrases. Using natural language processing mixup rules, noun phrases were
extracted. Examples include

the system

the course

acceptance tests

a number of errors

traceable

postgres

tcl support

To illustrate the generation of metadata for natural language text, consider the follow-
ing message taken from an OpenACS bug report:

The URL for a file-storage folder contains I18Nized strings and

tcl pages don’t localize them. Furthermore, some of the links

were

missing @?version_id=@contents.live_revision@. Fixed that.

The textual portion of this message would be parsed in this stage to extract the follow-
ing metadata:

• code terms:

– file-storage

– version_id

– contents.live_revision

• noun phrases:

– folder

98

– I18Nized strings

– tcl pages

– localize

3.3.3 Issues in Automatic Metadata Generation

Automatic generation of metadata, especially induced solely by the data itself is necessar-
ily shallow in its scope and prone to errors. By necessity, we are generating metadata after
much of the Web data has already been created. This leads to certain complications. For
example, we equate the identity of an object with its form. Thus, two different objects of
the name tree_id will be considered to be the same object. This is correct for the local
scope of one object, but globally there may be several objects with the same name. This is
particularly problematic for local variables.

In order to correctly identify the scope for all the software objects, we require a
parser that understands the software organization and software languages used in Ope-
nACS/dotLRN and can interpret the scope of OpenACS software objects correctly. As
discussed in Section 3.3, this involves significant work. Since the objective of Dhruv is
to simply present meaningful information rather than an accurate model of the software,
we do not distinguish between different objects and leave it to the human reading this
information to interpret it correctly.

Due to the imprecise nature of the automatic metadata generation, the resulting ex-
tracted information contains a fair amount of noise. This includes

• extraction errors: Extraction errors are primarily cases where the extraction proce-
dure identified information that does not occur in the Dhruv knowledge base and
therefore cannot be linked to it. There are two possible reasons why such errors
occur. It may be that the extraction procedure incorrectly extracts information that
cannot then be linked to the knowledge base. It is also possible that the object was
not identified and stored in the knowledge base in the first place, once again due to
the limitations of the extraction procedure, as discussed above. Finally, a not infre-

99

quent reason is that people do make mistakes in spelling an object. While humans
are relatively tolerant of such mistakes, our automated system currently cannot be
as tolerant.

• ambiguous context: When code terms or file references are given without ade-
quate explicit context, it is often difficult to determine which object is being re-
ferred to. For example, in the case of file references, there are multiple files called
index.adp. If people were to read the message where the reference to index.adp
occurs, they might be able to use information in the rest of the message to determine
which index.adp is being referred to. This is quite difficult to do automatically.
Similarly, the variable community_id occurs within the code base as

communities.community_id

non_member_classes.community_id

non_member_clubs.community_id

parent.community_id

subgroups.community_id

Determining which of these is being referred to is non-trivial. For the time being, we
assume that community_id could refer to any of these and report all the possible
instances of community_id found (see the found-as heuristic in Section 3.4.2).

• stopwords: Common words are typically ignored in the field of information retrieval
and we follow this practice. This includes the standard stopwords: articles, such as
‘the’, conjunctions such as ‘and’ and ‘therefore’ etc. Our stopword list was drawn
from several stopword lists on the Web. In addition, we included a number of stop-
words specific to our domain, such as ‘login’, ‘bug’ and ‘pst’. These were added
manually to improve the noun phrase extraction process. We were relatively conser-
vative in adding words to the stopword list to avoid losing valuable terms. Similarly,
to avoid conflating words and decreasing precision, we did not perform stemming.
The full stopword list used in included in the Appendix.

100

This noise is removed or cleaned up, as applicable, before the extracted information in
used in the next stages.

3.4 Linking Metadata

Having generated metadata for the community information space, using the procedures
described in section 3.3, we now attempt to cross-link2 the extracted metadata. A cross-
link between two objects in the community information space indicates that the objects
are semantically related. Each object forms a part of the context required to understand
the semantics and role of the other object. This is a fairly general notion and there are
obviously different kinds of cross-linkages. For example, between code terms and arti-
facts, between artifacts and the people who participated in them and so on. A cross-link
is similar to a Web link, except that Web links are between web pages and cross-links are
between community artifacts and objects.

There are essentially two kinds of metadata extracted in the previous section:

1. Terms, namely code terms or noun phrases, and

2. Artifact references, namely references to bug and patch reports, discussion threads,
files and people.

Dhruv determines cross-links between related artifacts using several heuristics, which
we discuss in detail below. These heuristics are used to construct a cross-linkages page
for each term (code term or noun phrase), which provides details of the term and its links
with other artifacts. Cross-linkages for each kind of metadata are determined differently.
In the following sections, we describe how cross-linkages are determined for noun phrases
(Section 3.4.1), for code terms (Section 3.4.2) and finally for artifact references (Section
3.4.3).

2The term ‘cross-link’ is usually used to denote a side bond that links two adjacent chains of atoms in a
complex molecule[Cro]. In this document, we use it to denote links between semantically related objects in
the complex community information space.

101

Figure 3.9: Overview of the process of determining similarity

3.4.1 Identifying Artifacts from Noun Phrases

The text-similarity heuristic compares the text of two documents and if they are similar to
a degree, it creates cross-links between them. The text of various artifacts were determined
differently and drawn from the parsing step described in Section 3.3. For bug and patch
reports, and forum discussions, the text of each artifact was taken by concatenating the text
of the messages in the discussions. For source code files, the text of the artifact was termed
to be the concatenation of comments in the files, both for functions and namespaces, as
well as inline comments. For CVS logs, the text of the artifact was termed to be the
concatenation of the text of the commit logs for the file.

A common paradigm used in information retrieval is the vector space model, which
represents documents as vectors of terms. The set of all documents under consideration,
is referred to as the corpus: C = {D1, . . . , Dn}. In a corpus that uses m terms, t1, . . . , tm,
a document is represented by a vector in an m-dimensional space as follows:

Di = (wi1, wi2, . . . , wim) (3.1)

where wij is a weight representing the importance of term tj in representing the con-
cepts of document Di.

The metadata for each OpenACS artifact is extracted as code terms and noun phrases.
The artifact is then transformed into a vector with weights for the metadata terms. There
are several ways of calculating weights for the terms of a document vector. Dhruv uses
the tf/idf method [], where the weight wij is calculated as a product of a local weight lij of
the term tj in the document Di, and the global weight gj of the term tj in the corpus. The
weight wij is then simply lij/gj .

The local weight factor lij weights terms which appear more often in a document more
highly, as they contribute more to the meaning of the document. The local weight is

102

calculated as:

lij =
1

2
+

1

2
(

tfij

mtfj

)

where tfij is the term frequency, or number of occurrences, of term tj in document Di and
mtfj is the maximum term frequency of term tj in all the documents of the corpus.

The global weight factor gj weights terms that occur only in a few documents more
highly than terms that occur frequently throughout the corpus. This is because the terms
that occur less often are more useful for discriminating documents from the rest of the
corpus. The global weight gj is calculated as:

gj = log(
|D|
dfj

)

where |D| represents the size of the corpus (number of documents) and dfj represents
the number of documents that contain the term tj .

Given the vector representation of documents, we can now determine their similar-
ity by comparing their document vectors. Dhruv uses the vector-space cosine measure
common in information retrieval:

sim(Di, Dj) =
Di � Dj

‖ Di ‖ ‖ Dj ‖

Vectors Di and Dj are document vectors derived from Equation 3.1.

This relatively straightforward model does have certain drawbacks. The primary dis-
advantage of this method is that the document vectors are closely tied to the specific terms
used in the documents. The vector space model will not find two documents to be similar,
even if they are about the same concepts, if they use different terms to refer to them. In
addition, multiple words may have the same meaning (synonymy) and a single word may
have multiple meanings (polysemy), which further reduces the accuracy of this method.
There are alternate methods, such Latent Semantic Analysis (LSA) that improve on this
model by taking into account words that tend to occur together in the corpus. However,
since our goal is primarily to explore using various kinds of paradigms in service of the

103

Semantic Web, in this proof-of-concept work, we use the standard model rather than any
particular extension of it.

When searching for artifacts related to a term, we treat the term as a very small docu-
ment and search for related artifacts by relevance based on their degree of similarity to the
search query.

3.4.2 Identifying artifacts from code terms

Given a code term identified through information extraction, we build cross-linkages in
two ways:

1. by identifying the type of software object it refers to and

2. by treating it as a noun phrase and using the procedure discussed above in Section
3.4.1.

Different kinds of cross-linkages are created for depending on the type of software
object in question. Table 3.1 gives an overview of Dhruv’s usage of various heuristics
to determine cross-linkages for different types of software objects. The rows represent
the heuristics and the columns represent various types of software objects. For reasons of
space, the code: prefix has been omitted from the software object classes. In addition, the
software object code:OACSPackage has been abbreviated to OACS Pkg in the table.
Similarly, code:OraclePackage has been abbreviated to OPkg.

In the following, we go through each heuristic and explain it in detail:

Found in

The found-in heuristic realizes the intuitive reasoning that the file a software object has
been found in is an important part of the context for that software object. This kind of lo-
cation heuristic is fairly general and can be applied to most software objects. It is not used
for terms of the classes code:OACSPackage and code:Function. For OpenACS

104

H
eu

ri
st

ic
O

A
C

S
Pk

g
Fi

le
V

ar
ia

bl
e

Fu
nc

tio
n

O
Pk

g
Ta

bl
e

N
am

es
pa

ce
Q

ue
ry

Fo
un

d
in

?
?

?
?

?
?

Fo
un

d
as

?
?

?
?

?

C
on

ta
in

s
fu

nc
tio

ns
?

?

C
on

ta
in

s
va

ri
ab

le
s

?

C
on

ta
in

s
na

m
es

pa
ce

s
?

R
ef

er
s

to
?

?

H
as

au
th

or
?

?

D
efi

ne
d

in
fil

e
?

D
efi

ne
d

in
pa

ck
ag

e
?

Fu
nc

tio
ns

in
sa

m
e

fil
e

?

H
as

bu
gs

an
d

pa
tc

he
s

?

R
ec

en
tc

om
m

itt
er

s
?

R
eq

ui
re

s
pa

ck
ag

es
?

R
eq

ui
re

d
by

pa
ck

ag
es

?

Pa
ck

ag
e

m
ai

nt
ai

ne
rs

?

Pa
ck

ag
e

de
sc

ri
pt

io
n

?

Ta
bl

e
3.

1:
C

ro
ss

-l
in

ka
ge

he
ur

is
tic

s
fo

re
ac

h
ty

pe
of

so
ft

w
ar

e
ob

je
ct

105

packages, location is not a meaningful characteristic. The only container object above
packages is the OpenACS system itself. For code:Function, the found-in cross-links
are realized through more specific heuristics, defined-in-file and refers-to, which will be
discussed presently.

For code terms that occur fairly frequently across the code base, this heuristic yields a
huge list of files. It can therefore be less helpful in these cases.

Found as

As discussed in Section 3.3.3, there may be several terms with the same name and extracted
code terms may have ambiguous context. For this reason, it is useful to cross-link a term
with other terms of the same name. The found-as heuristic does precisely this.

In addition, software objects that are semantically related are often given similar names.
The found-as heuristic harnesses this to identify similarly-named software objects through-
out the code-base. For example, the variable tree_id is found-as the following software
objects:

get_mapped_subtree_id

old_tree_id

subtree_id

target_tree_id

tree_id

All of these refer to identifiers of a tree in the software code. Such information can be
useful when trying to understand the ways in which the variable is used or to find related
variables.

Contains Functions

An OpenACS namespace of type code:Namespace is a container for numerous func-
tions of type code:Function. Knowing which functions are contained in the names-

106

pace help in understanding the scope of the namespace. The contains-functions heuristic
connects namespaces to the functions they contain.

Contains Variables

The contains-variables heuristic links a function to the variables it contains. Variables
provide more insight into what a function does short of actually reading the definition of
the function. For example, a function with variables

community_id

probably provides functionality that varies depending on the community sin question.

Contains Namespaces

An OpenACS package may contain several namespaces that implement the functional-
ity of the package. Knowledge of these namespaces aids understanding of the package
and allows people to go from the package level to focus on individual namespaces. The
cross-linkages page for namespaces includes a list of the functions they expose using the
contains-function heuristic. Together with the contains-namespaces, this allows a person
to drill down from packages to individual functions that implement the functionality of the
package.

Refers to

In OpenACS, code:Files and code:Functions are both types of code blocks and
contain code with control flow. The refers-to heuristic attempts to capture the control flow
of these code blocks by linking a function or file with the code block it calls. This allows
objects linked by control flow to also be cross-linked in Dhruv. Thus, information about
which objects may be affected by changes to a particular object are also captured in the
cross-links.

107

Defined in file

Knowing the file and the package a function is defined in is a key part of understanding the
definition and use of the function. The defined-in-file and the defined-in-package heuristics
create cross-links, connecting functions to the files and packages that contain their defini-
tion. Since Dhruv maintains all files with package name, the defined-in-package heuristic
is superfluous if the cross-links from the defined-in-file heuristic is also used.

Functions in same file

To illustrate the usefulness of this cross-link heuristic, let us consider the function
forum::message::close in the file messages-procs.tcl in the forums pack-
age. In addition to this function, the file contains the following functions:

forum::message::new

forum::message::open

forum::message::edit

forum::message::delete

forum::message::get

forum::message::set_format

forum::message::set_state

forum::message::reject

forum::message::approve

forum::message::get_attachments

forum::message::do_notifications

forum::message::subject_sort_filter

forum::message::initial_message

Knowing that these other functions exist provides better context to interpret the func-
tionality of forum::message::close. For example, we now know that this function
does not delete a message, since there exists a specific forum::message::delete,
which presumably implements that functionality. Thus, the list of functions in the same

108

file provides a comprehensive overview of the kinds of actions that are possible on a
message and what portion of those actions is implemented by the function in question,
forum::message::close. It also gives an indication of how the forum message
functionality is organized in files, because other functions in the same forum::message
namespace may be stored in a different file. The individual functions are likely to be se-
mantically related to each other since they perform related, but complementary actions.

Has bugs and patches

The has-bugs-and-patches heuristic identifies the bug reports and patch reports associated
with the file. Such information can provide a history of the previous problems with the
code and consequent changes made to the file. This provides some background as to why
the code in the file is implemented as it as and what kinds of problems can arise as a result
of bugs in the code of the file. Similar information is explicitly given by people when they
refer to bug and patch reports in the commit comments of a file. This heuristic uses such
information in the CVS commit logs, but, in addition, attempts to divine such information
automatically from patch and bug reports and references in the files themselves.

Has author

The has-author heuristic creates a cross-link between a file and its authors. A person is
deemed to have authored a file, if his or her name appears in the file comment, as in the
following fragment:

@author Ben Adida <ben@openforce.biz>

Knowing the author of a file and their expertise can be very useful to understand the
nature and quality of the code in the file. It also allows people to know whom to contact
in case of question about the code.

109

Recent committers

The recent-committers heuristic is similar in its aim to the has-author heuristic, but fo-
cusses instead on the last five people to commit to the file. This can often be more useful
than the has-author heuristic, particularly if the file is relatively old and many people have
modified it since its creation. The recent-committers heuristic is implemented by examin-
ing the CVS commit logs.

Package maintainers

The package-maintainers heuristic is similar to the previous two heuristics, but works on
the more general level of an OpenACS package. A package maintainer is responsible for
receiving bug reports for the package and is, in general, responsible for the package. Often
people who have authored the majority of the files in a package take the responsibility of
package maintainer (also known as the package owner). Not all packages have a main-
tainer. Information about package maintainers is usually available publicly. In the case of
the OpenACS community, the package maintainer information is taken from the list on

http://openacs.org/projects/openacs/packages/

Requires and required by packages

The two heuristics requires-packages and required-by-packages both attempt to capture
the cross-links that arise from package dependencies. The use of this heuristic is similar
to the refers-to heuristic, in that changes to one package may affect that packages it is
required by. Conversely, a given package may be affected by changes in packages it re-
quires. Package dependency information is determined from the package-name.info
files in each package’s directory.

110

Package description

The package-description heuristic is not really a heuristic in the sense of the other ones
presented. It associates a short description of the package functionality and intent with a
package. When presenting information about a package, this package description, gath-
ered automatically from package source code files, can be very useful to place the other
information in context.

3.4.3 Identifying artifacts from artifact references

Inter-artifact links

During the course of normal activities and interactions within the community, commu-
nity members tend to refer to other artifacts that explain a point or provide background
information for it. Inter-artifact linkage takes many forms:

• CVS commit logs refer to the bug reports that the commit fixes. They also often
refer to a patch report whose patch is being committed. Less often, they may refer
to forums discussions that contain the discussion that prompted the commit.

• Bug reports in the OpenACS Bugtracker have a slot for the patch reports that address
the corresponding bugs. In addition, bug reports may refer to other bug reports that
are either duplicates or report similar problems. Bug reports also refer to forum
discussions, for example, when the bug was discussed on the forums prior to filing
an official bug report. Similarly, bug reports also refer to code files, for example,
when describing the problem experienced and the suspected offending files.

• Similarly, forum discussions may refer to files, bug and patch reports, other forum
discussions and CVS commit logs, as the need arises.

• Patch reports and files have significantly less inter-artifact linkage, but they may also
link to files, bug and patch reports, forum discussions and CVS commit logs.

111

The artifact references are primarily of the form given in Section 3.3.2 and the proce-
dure given there is primarily used to identify them. The only additional case is for the links
between patch reports and files. The files modified in a patch are often not visible in the
patch report itself. However, each patch report usually has an associated patch fragment,
which consists of the files modified and the changes made. To identify the files referred to
by the patch report, the corresponding patch fragment was separately parsed.

Co-authorship

In order to identify people with related expertise, we examine their co-authorship of arti-
facts. If people tend to participate in the same bug bug reports and discussions and modify
the same code files, albeit across different periods of time, then it is quite likely that they
will have similar expertise. Thus co-authorship of artifacts has implicit in it shared exper-
tise.

If we consider every two people who co-author an artifact to have interacted, then
the co-authorship heuristic essentially determines the professional ‘social networks’ of the
community.

People with similar co-authorship of documents and artifacts are identified using co-
sine similarity as described for determining text similarity in Section 3.4.1. The only dif-
ference is that instead of comparing document vectors with m terms, here we use people
vectors with m artifacts.

Pi = (wi1, wi2, . . . , wim) (3.2)

where wij ∈ {0, 1} and wij represents whether person Pi authored artifact aj .

3.5 Generating Recommendations

Dhruv utilizes the cross-links determined in Section 3.4 to generate recommendations for
each message in a bug report. The recommendations for each message are generated on the

112

Artifact Authorship

Bug report Open Report
Edit Report
Comment on Report
Resolve Report
Close Report

Patch report Open Report
Edit Report
Comment on Report
Accept Patch
Reject Patch
Close Report

Discussion thread Open Thread
Comment on Thread

Source code file Author File
Modify File

CVS log comment Modify and commit File

Table 3.2: Nature of authorship on artifacts

113

basis of the content of the message, i.e. its extracted metadata, namely code terms, noun
phrases and artifact references. The artifacts referred to by the artifact references and by
cross-links from the extracted metadata are accumulated and then pruned to generate the
recommendations. Each type of cross-link is given a recommendation weight to reflect its
importance in determining the recommendations. Artifacts are weighted according to the
cross-link that picked them. Two different cross-links may suggest the same artifact. In
this case, the artifact weights are summed up to give a new recommendation weight to the
artifact.

In addition to the cross-links determined in Section 3.4, Dhruv uses a couple of heuris-
tics specifically for generating bug report message recommendations. These are discussed
individually in the next section. Finally, the recommendations are ranked according to
descending weight and the top n recommendations are finally presented to the user.

3.5.1 Heuristics for generating recommendations

Bug Report Summary

The bug report summary is usually the most informative text in the entire bug report. In
the OpenACS Bugtracker, bug reports are summarized by various bug attributes and the
bug summary. The summary may determine who and how many people view the bug
report and consequently how soon it gets fixed. A bug report with an ambiguous summary
is less likely to elicit a response from the community than a well-written, focussed bug
report. It is therefore in the interest of the person submitting the bug report to make the
bug report summary as informative and topical as possible. The bug report summary is
also relatively concise, at most a sentence clause, so each word within the summary is all
the more informative. There are times when the bug report summary falls short of being
clear and informative, but it is still the most reliable information available to an automated
process.

Therefore, artifacts that are cross-linked to by metadata captured from the bug report
summary are given a higher recommendation weight.

114

Within-Message Artifact References

Bug report messages sometimes contain artifact references to other bug reports, files or
discussion threads. In such cases, the person posting the message has already determined a
related artifact. Personally endorsed artifacts are likely to be more reliable than the artifact
references generated by Dhruv. Therefore, such within-message artifact references are
given a high recommendation weight.

Cumulative Recommendations

Each bug report message adds a certain modicum of information to the bug report. The
semantics of the bug report can only be determined by examining the entire bug report.
Thus, in order to give recommendations for the most recent bug report message, Dhruv
utilizes the metadata of all previous messages in the bug report.

3.6 User Interaction with Dhruv

In this section, we describe how the various information sources and heuristics are com-
bined in Dhruv to present an enhanced bug report interface for the community. In par-
ticular, we discuss the requirements for the enhanced bug report interface and how it
determines the Dhruv interface in Section 3.6.1. A tour of the various kinds of HTML
pages provided by Dhruv are also presented in the section. We finally present briefly the
procedure for generating the interface in Section 3.6.2.

3.6.1 How to use Dhruv?

In this section, we explore the use of the Semantic Web in the context of OSS bug resolu-
tion. In particular, we are interested in how OpenACS community members can make use
of the cross-links developed by Dhruv for bug resolution. We therefore attempt to integrate
Dhruv with the existing OpenACS Bugtracker (Figure 3.10) as smoothly as possible.

115

Figure 3.10: Bug report #1606 in the OpenACS Bugtracker

116

If Dhruv is to fit into the normal process of community bug resolution, then it should
support answering the kinds of questions that normally arise in in the minds of developers
in the midst of bug resolution. Two kinds of questions that often arise when developers
attempt to understand a program are ‘what’ and ‘why’ questions [Let86]. The ‘what’
question represents questions of the form ‘What is this software object’ or ‘What does
this software object do?’. The ‘why’ question represents questions about the purpose and
rationale for sections of source code, such as ‘Why is this fragment of code implemented
in this particular way?’. Dhruv can support both these kinds of questions in the context of
bug report comments. The former by presenting the definition of the object and its cross-
links. The latter by providing cross-links to the discussions about the software object.

Both ‘what’ and ‘why’ questions are posed as soon as the unfamiliar software object is
encountered [Let86]. The unfamiliar software objects in a bug report message are captured
as code terms, as described in Chapter 3. To support the immediate answering of ‘what’
and ‘why’ questions, we turn the extracted code terms and noun phrases themselves into
HTML links in Dhruv that developers can click on, as shown in Figure 3.11.

The links highlighted gray-blue in Figure 3.11 lead to more information on the high-
lighted text, namely the information in the cross-links page for the selected term. The
lightly colored links lets people be aware that this term is a special kind of link, so that
they can delve further if they wish to. However, the color is muted, so that people reading
the bug report may ignore them and are not distracted by the links.

The basic concept of the interface is similar to that used in the KIM front-end [KPO+03].
KIM is a semantic annotation platform, that automatically annotates pages with respect to
a given knowledge base and allows people to browse the pages. Annotated text is trans-
formed into a hyper link which leads to a information page about the text. The information
on the page is gathered from the knowledge base. The difference between Dhruv and KIM
is essentially in the kinds of links highlighted and the kind of information presented.

KIM focusses on annotating domain-independent semi-structured text, such as people,
places, dates etc. In Dhruv, the focus is on annotating domain-specific structured code
terms and noun phrases. The process of clicking on links to understand more about a bug
report is also more in keeping with a focused OSS community and its specific community

117

Figure 3.11: Dhruv’s version of OpenACS Bug #1606

118

processes.

Figure 3.12: Cross-links page for a code term

The cross-links page, as shown in Figure 3.12, lists various kinds of information about
the code term, both the semantic in the knowledge base and the cross-links of the term
in the community semantic web. Since there are two kinds of terms: code terms and
noun phrases, we have two separate kinds of pages for each. Figure 3.12 displays the
cross- links page for a code term, where Figure 3.13 shows the cross-links page for a noun
phrase. Other kinds of extracted metadata, such as file names, which have corresponding
semantic information in the knowledge base, are treated in the same way as code terms.

Structured metadata drawn from the knowledge base is displayed in the left column,

119

Figure 3.13: Cross-links for a noun phrase

120

while the right column displays related artifacts of various kinds. The related artifacts are
categorized into different kinds of artifacts, such as code files and bug reports, because
different artifacts carry different kinds of information about a given code term that a bug
fixer might need.

Together, the highlighted links and cross-links pages comprise an enhanced interface
to Dhruv’s semantic data for individual terms. In addition, Dhruv also presents artifact
recommendations for each message. When a community member comments on a bug
report, Dhruv produces recommendations of related artifacts for the comment and appends
them to the message, as depicted by Figure 3.14. Message recommendations represent
key artifacts for the message as a whole, based on the cross-links of individual terms.
They can represent a best guess for new developers, who are unsure where to start with
the bug report. If a artifact is clearly related to the entire message, then the message
recommendations ought to capture it and present a short-cut for developers looking at the
bug report.

Figure 3.14 shows the message recommendations given by Dhruv. These recommen-
dations are classified into several categories, just like the related artifacts for a term. The
rationale is the same: to let people easily get to the different kinds of information repre-
sented by different artifacts.

3.6.2 Generating the Interface

The interface presented was generated by creating cross-links pages for terms and modi-
fying bug report pages, as follows:

1. Construct the Dhruv semantic knowledge base

2. Process bug report messages to extract terms. Create a modified bug report page,
where the extracted terms are transformed into links to cross-links pages for the
term.

3. If there is no existing cross-links page, create a cross-links page for the term

121

Figure 3.14: Message Recommendations

122

4. Based on the cross-links for each extracted term in a message, generate message
recommendations and incorporate them into the modified bug report.

123

124

Chapter 4

What is the potential impact of the
Semantic Web?

In this chapter, we present the evaluation of the Dhruv prototype, whose creation was pre-
sented in Chapter 3 and whose use was presented in Chapter 3.6. We first discuss how the
potential impact of the Semantic Web can be measured in Section 4.1. We use two dif-
ferent ways to evaluate Dhruv: a comparison of Dhruv’s recommendations with historical
data and a qualitative user study to evaluate Dhruv’s information interface. We discuss the
advantages and limitations of these evaluation methods in Section 4.2. In Section 4.3, we
present the comparison of Dhruv’s recommendations with historical data. In particular, we
explore the effect of various cross-links heuristics on Dhruv’s recommendations in Sec-
tion 4.3.3, the effect of learning links on Dhruv’s recommendations in Section 4.3.4, the
contribution of the text similarity heuristic in Section 4.3.5 and finally Dhruv’s recommen-
dations for explicitly related bug reports in Section 4.3.6. We then move on to the users’
assessment of Dhruv’s information interface in Section 4.4. In particular, we describe how
the study was conducted in Sections 4.4.1–4.4.2. In Section 4.4.3, we present the user
feedback for individual components of Dhruv.

125

4.1 How is the potential impact of the Semantic Web mea-
sured?

Having constructed a prototype Semantic Web for open source software communities in
the form of Dhruv, we can now determine the potential impact of the Semantic Web on
online communities and interactions. The impact of the Semantic Web is measured by
evaluating the extent of support Dhruv can provide in resolving an individual bug. In
keeping with the exploratory nature of this research, we follow a multi-pronged approach
to evaluating the potential impact of Dhruv. In constructing Dhruv, we have focused on
two aspects of the Semantic Web, providing an enriched interface and providing recom-
mendations for each bug report message. We evaluate each of these in turn:

1. Dhruv’s recommendations are evaluated qualitatively for a sample of bug reports
and their usefulness assessed.

2. Using the historical logs of past instances of bug resolution in the OpenACS com-
munity, i.e. the past bug reports, as a guide, we determine whether Dhruv can rec-
ommend some of the artifacts that were actually referred to in the bug report. His-
torical data is the best source of information about bug resolution processes within
the community.

In particular, we examine how individual heuristics and data sources affect the qual-
ity of Dhruv’s recommendations. We use ‘localized probes’ to examine Dhruv’s
suggestions.

3. An important component of the evaluation is to have OpenACS community mem-
bers’ assessment of Dhruv and the enriched information interface it presents on the
OpenACS community. This is done via a qualitative study, involving a think-aloud
where community members examine an actual OpenACS bug report using Dhruv
and answer questions in a structured interview.

A qualitative study with a think-aloud component allows us to capture a wide range
of feedback, opinions and experiences of OpenACS community members using

126

Dhruv. This is important to evaluate all aspects of Dhruv and identify the major
directions for future work. A think-aloud test involves having the study partici-
pant use the system while ‘continuously thinking out loud’ [Lew82]. The constant
verbalization of the participant’s thoughts allows the researchers to get a direct un-
derstanding of how the participant views the system, what parts of the interaction
are problematic and the major confusions of the participants [Nie93]. This is partic-
ularly important given that we wish to evaluate the information interface and infor-
mation flow presented by Dhruv rather than more concrete user interface aspects of
the system.

We are also constrained by time and the availability of people. OpenACS being
an online community, its members are dispersed globally, just like most other OSS
communities. Thus, a face-to-face study can only involve a small number of Ope-
nACS community members. Furthermore, bug resolution is an involving and time-
consuming activity. It cannot therefore be conducted in a set amount of time. The
think-aloud study allows us to gather a lot of qualitative data from a small number
of users in a relatively short session.

4.2 Discussion of the measures

We do not have any gold standard for evaluating Dhruv’s recommendations besides the
historical data of the OpenACS project. Some of the resources involved in the resolution
of the bug are linked in the bug report. These include other bug reports (especially dupli-
cate bug reports about the same bug), relevant discussions, files and the people involved
in the resolution of the bug. Unfortunately, the historical data available is an incomplete
representation of the entire resolution of the bug. The most completely recorded resources
are people. Besides people, the historical data for bug reports is meager. Only about a
third (1/3) of the bug reports have links to any artifacts. Among these, the best represented
artifacts are source code files. Bug report messages tend to mention filenames when re-
porting technical information on bugs. In addition, patch reports contain information about
which file was modified and thus was relevant to the patch report. Thus, if a bug report is

127

associated with a patch report, then we can associate files with the bug report. The least
number of artifact links are to discussions. To compensate for the scarcity of available his-
torical information, we will use modified measures to evaluate Dhruv’s recommendations,
as discussed in the next section.

We can be sure that the artifacts linked to in the bug report are somehow involved in the
resolution of the bug report. However, some of the artifacts links may be incidental and the
artifacts themselves only tenuously relevant to the bug report. For instance, a bug report
may link to another bug report, which is not directly related, but ought to be resolved at
the same time. However, manual examination of the corpus reveals that such cases are
relatively rare.

Even if the historical data were richer in its artifact links, even then comparing Dhruv’s
recommendations to the links in bug reports would only present part of Dhruv’s useful-
ness in the bug resolution process. This is because bug reports do not capture the entire
bug resolution process as it occurs. Rather what they capture can be better described as
intermittent snapshots of the process. Sometimes, intermediate steps in the process are
not represented in the bug report at all. For example, a bug report comment may describe
the bug in high-level and ambiguous terms. A developer might then analyse the bug, track
down the problem, devise a solution and submit a patch, while only commenting in the bug
report that the bug has been fixed. If these were two consecutive bug report messages, it
would be infeasible for Dhruv to give any relevant recommendations. In comparison, chat
logs better capture the bug resolution activity as it occurs. Developers conduct detailed
discussions of bugs and code implementation in the chat rooms. Unfortunately, these dis-
cussions can be unfocussed, so analysing the support Dhruv can provide to bug resolution
interactions in the chat rooms is non-trivial. Dhruv would need to know when to start sug-
gesting artifacts and when to keep silent. It would require, for example, a separate analysis
and segmentation of chat room logs into bug resolution sessions.

In comparing Dhruv’s recommendations to historical data, we try to analyse the cor-

rectness of Dhruv’s recommendations. However, the community semantic web envisioned
in Chapter 2 focusses on providing meaningful information. Correct information will be
meaningful to the community resolving the bug report, but not all meaningful information

128

may be correct. In the sense that it would be directly used in the resolution of the bug.
Thus, a direct comparison of Dhruv’s recommendations to the historical data would un-
derestimate the number of meaningful or useful recommendations. In addition, there is a
danger that people (the gold standard) might not use the optimal artifacts for the resolution
of bug. Thus, the links they use may not be ‘correct’. This would reflect poorly on Dhruv’s
performance, since Dhruv tries to find the best artifact from its point of view. To minimize
this danger, we ask people to rate the quality of Dhruv’s recommendations.

To evaluate the usefulness of Dhruv’s recommendations, we present them to members
of the OpenACS community and ask them to judge the value of the recommendations.
This is done during the qualitative study of OpenACS community members using Dhruv.
The qualitative study of OpenACS community members is appropriate for several reasons.
First, Dhruv is a proof-of-concept prototype rather than a full implementation. Thus, since
Dhruv as a concept is still developing, a formative evaluation is more appropriate than
a summative one. Thus, instead of measuring the performance of people using Dhruv,
the qualitative study will allow us to focus on evaluating the information flow of Dhruv’s
interface rather the detailed usability of the interface as a whole. It will bring Dhruv’s ease
of use and the difficulties and confusing aspects of its information flow to the fore.

4.3 Evaluating Dhruv’s recommendations

Using the historical data logs as a guide, we examine whether Dhruv can recommend some
of the artifacts that were actually referred to (and therefore required) within a bug report.
Essentially, we would like to know whether Dhruv can find the same kinds of things that
human processing by the community would reveal later on. In the following, we examine
the effects of various artifact cross-links heuristics and recommendation heuristics. Of
course, this is a large space. We present localized probes to a way to examine the influence
of certain heuristics on the behavior of Dhruv on historical information.

We validate Dhruv recommendations by evaluating whether the recommended re-
sources for a bug report were actually required later on in fixing the bug. For bug reports

129

with links to resources (namely discussions, people, bug reports, patch reports, code files),
we:

1. determine recommendations for each message,

2. identify resources actually mentioned by people in the bug report, and

3. for each resource found, determine if it is contained in the recommendations of
earlier messages.

4. Determine the precision/recall of the recommendations.

We did not take the bug report links to patch reports into account. In a random sample
of 2/3 of such links, the patch reports linked to were the patch reports that actually fixed
the bug report.

4.3.1 Corpus

We drew our evaluation corpus from the existing set of OpenACS bug reports. We picked
five OpenACS packages with the most resolved bug reports, namely the following pack-
ages: acs-lang, acs-subsite, acs-tcl, acs-templating, dotlrn and fs.
For each package, we constructed a training set and a test set from the bug reports for the
package. Bug reports were randomly assigned to one of the sets, such that 70% of the bug
reports were used in the training set and 30% in the test set. The training and test sets for
each package were then accumulated into one training set and one test set respectively.
Altogether, there were 235 bug reports in the training set and 100 bug reports in the test
set.

Of the 100 bug reports in the test set, there were 276 references to people. In other
words, there were on average about three different people participating in the bug reports
of the test set. Similarly, there were 113 source code file references, 4 references to other
bug reports and 1 reference to a discussion. The references to source code files include
files identified through patch reports associated with the bug report.

130

In the full set of OpenACS bug reports that we drew from, the total number of bug
reports were 2370, with 824 links to files, 85 links to bug reports, 158 links to discussion
threads.

4.3.2 Statistics measured

We evaluate the quality of Dhruv’s suggestions using precision and recall statistics for
each of the three categories: files, bug reports and discussions. Precision measures the
proportion of good recommendations to all recommendations, whereas recall measures the
proportion of all recommendations that were good. We will give more precise definitions
to this intuitive interpretation below.

Our set of known relevant items is minuscule compared to the number of recommen-
dations. Every message has at most one or two relevant items of each category, but it
gets at least ten recommendations in each category. Thus, measuring precision as a ra-
tio of relevant items to items recommended will not be an appropriate measure. It would
grossly underestimate the quality of results in terms of bringing up something relevant.
Instead, we measure precision in terms of whether every set of recommendations contains
the relevant items. Thus, the precision P is calculated as

P =
nc

nr

if nc represents the number of times that Dhruv gave a correct recommendation and nr

represents the number of times that bug messages had known relevant items that could be
recommended. if Br is the set of known relevant items for a bug report message and dr is
a recommendation from Dhruv, then

nc =
m∑

i=0

pi

where

pi =

1 if dr ∈ Br,

0 otherwise.

131

In addition, most people will scan the results and further process and filter them. The
precision statistic above measures in how many of the cases where some artifact could be
recommended, is the artifact actually recommended. If the set of recommendations is very
large with respect to the known relevant items, then this number will approach the recall
measure. It does not measure how much of the recommendations are useful results. That
will be assessed by potential users of the system during the qualitative study.

Recall is computed in the standard way for each category of artifacts. Recall measures
the proportion of artifact links actually recommended by Dhruv to the artifact links it could
have recommended. So, if ni represents the number of artifact links correctly identified by
Dhruv and nm represents the number of artifacts that the system missed, then the recall R

is computed as

R =
ni

ni + nm

As mentioned previously, the test set has relatively few links to bug reports and dis-
cussion threads. Due to this, the values for precision and recall tend to fluctuate in the
experiments below. Even for file recommendations, the files actually used during a bug
resolution may be affected by information not contained in the bug report itself. Thus, it
is difficult for any tool to completely predict the files that will be used in the resolution of
a bug report. the values below are closer to the lower bounds for the precision and recall
of such a tool. Since the mapping of a term to a file is also not always clear, the values for
these measures are always on the lower side.

4.3.3 Comparing Cross-links Heuristics

The recommendations given by Dhruv depend significantly on the weights assigned to
different components of Dhruv. These components essentially are the various heuristics
for creating cross-links. The effect of varying weights for the different components ranks

132

some heuristics higher than others, which in turn affects the quality of Dhruv’s recommen-
dations.

Here, we measure the precision/recall of Dhruv’s recommendations using various heuris-
tics. In each case, only the cross-link type being tested has non-zero weights; weights for
the other types of cross-links are set to zero. For each cross-link heuristic, we generate
10 and 40 recommendations and measure the quality of the full set of recommendations.
The sets of 10 and 40 recommendations represent small and medium sets of recommen-
dations. By evaluating two sets of recommendations for each type of heuristic, we can
see how the heuristic ranks the good recommendations. Ideally, a good heuristic or good
combination of heuristics would give high precision/recall scores for the small set of rec-
ommendations and the increase in precision/recall from 10 to 40 recommendations would
be relatively low. This would indicate that the good recommendations are contained in the
top 10 recommendations.

The precision and recall of Dhruv’s recommendations using various single heuristics
is shown in Table 4.1. We compare Dhruvs recommendations for five heuristics: text
similarity (see Section 3.4.1), index links, inter-artifact links (see Section 3.4.3), learnt
links and found-in links (see Section 3.4.2). The learnt links are essentially inter-artifact
links isolated within the training set of bug reports. Inter-artifact links are created through
the ongoing interactions of the community. Thus, new inter-artifact links are constantly
being created. Although inter-artifact links are gathered over the entire history of the
project, the learnt links allow us to examine the effect of a small number of additional
inter-artifact links on Dhruv.

Clearly, using no weights, i.e. not ranking the results at all, does not produce very good
recommendations. The 10 and 40 recommendations are an arbitrary subset of cross-linked
artifacts, resulting in low precision and recall.

Among the heuristics, the inter-artifact links and found-in links are best in identifying
relevant artifacts, especially for a small set of recommendations. It is somewhat surprising
that inter-artifact links perform so well, since they essentially enhance existing recom-
mendations. After getting a first set of related files from other cross-links heuristics, the
inter-artifact links build on these recommendations to find other files referred to by the

133

10 40

No weights 0.09/0.04 0.09/0.04
Learnt links 0.15/0.07 0.22/0.12
Text Similarity 0.15/0.07 0.39/0.19
Index links 0.20/0.10 0.57/0.28
Inter-artifact links 0.33/0.16 0.57/0.43
Found In links 0.39/0.19 0.50/0.24

Table 4.1: Precision and Recall for Code Files Using Various Heuristics

recommendations. The inter-artifact heuristic uses only one hop of related files, but this
one hop significantly improves results.

Although found-in links heuristic leads to the best recommendations for the small set of
recommendations, it performs noticeably less well for the large set of recommendations.
This is probably because the found-in links heuristic relies solely on code terms being
present in the message. If there are some code terms in the message, then the heuristic
is able to give highly accurate recommendations. Without any code terms, though, this
heuristic is useless and therefore, cannot perform well on its own. The entire limited set
of its contributions is anyway concentrated in the top 10 recommendations, yielding high
precision. Thus, additional recommendations do not yield significantly better results.

Another interesting result shown in the table above is that text similarity on its own
is relatively poor at eliciting good recommendations from Dhruv. This suggests that for
some reason, the textual content of an artifact does not reflect the semantic content of the
artifact. It may be that there are too many documents using similar words, but referring
to different conceptual ideas. Or that the semantics inherent in the semi-structured nature
of the artifacts, such as CVS commit logs and bug reports are not captured within the text
of the artifact. Thus, other sources of information, such as those captured by Dhruv are
required.

Cross-links created by text similarity and by learning from previous bug reports do
result in good recommendations, at least in isolation. Index links give somewhat better

134

information, but not as much as inter-artifact links. This may be because there is insuf-
ficient code term information in the bug reports. Given that inter-artifact links give good
information, learnt links may not add much because they are not comprehensive. They
only cover the bug reports in the training set.

We next examine the influence of combinations of these heuristics on Dhruv’s rec-
ommendations. In each case, all heuristics in a combination are weighted equally. The
results are shown in Table 4.2. To understand which links are more informative, found-in
or inter-artifact links, we examine them in various combinations (lines (a)–(e)).

Text Similarity Found In Learnt Index Inter-artifact 10 40

(a) ? ? 0.37/0.19 0.52/0.27
(b) ? ? 0.44/0.21 0.59/0.37
(c) ? ? 0.43/0.20 0.67/0.32
(d) ? ? 0.48/0.23 0.52/0.27
(e) ? ? ? 0.48/0.23 0.63/0.41

(f) ? ? 0.35/0.17 0.67/0.32
(g) ? ? 0.31/0.15 0.65/0.33

(h) ? ? ? 0.44/0.21 0.74/0.35
(i) ? ? ? ? 0.56/0.27 0.76/0.38
(j) ? ? ? ? 0.54/0.27 0.78/0.44
(k) ? ? ? ? ? 0.67/0.32 0.80/0.40

Table 4.2: Precision and Recall for Bugs, Discussions and Code Files Using Various Links

Comparing combinations (a) and (b) with the results of inter-artifact links alone in
Table 4.1, we see that both found-in and learnt links improve on the recommendations
generated by inter-artifact links, found-in more than learnt links. On the other hand, com-
paring combinations (b) and (c) with the results of using the found-in heuristic alone (Table
4.1), we see that both inter-artifact links and index links improve on the recommendations
generated by the found-in heuristic, the inter-artifact links more than the index links. This
is unsurprising, since the found-in and inter-artifact heuristics both seem to be individually

135

informative. The above observations indicate that the two heuristics carry different kinds
of information.

Learnt links improve on the recommendations generated by the combination of found-
in and inter-artifact links (line (b)). However, adding the inter-artifact heuristic does not
improve the recommendations generated by the found-in and learnt links heuristics to-
gether (lines (d) and (e)). This is fairly surprising, since it suggests that found-in links and
learnt links provide complementary information. Furthermore, the recommendations gen-
erated by them together contains the relevant recommendations generated by inter-artifact
links.

Adding recommendations by text similarity links reduces the quality of recommen-
dations generated by either the found-in heuristic or the inter-artifact links heuristic, as
indicated by lines (f) and (g). However, this effect primarily occurs for the smaller set of
recommendations, indicating that text similarity does not affect the actual recommenda-
tions as much as it changes their relevance ranking inappropriately. This may be because
similarity of their texts does not determine the relevance of artifacts for fixing bug reports.
The text similarity heuristic may also perform less well because we have used only the
textual comments and in-file documentation as a basis for judging similarity for source
code files. Once again, combining text similarity with the found-in heuristic does better
than combining text similarity with the inter-artifact links heuristic.

The last four combinations (lines (h)–(k)) examine the effect of adding text similarity
or inter-artifact links to the heuristics trio of found-in, index links and learnt links. The
three heuristics together perform as well as the combination of found-in and inter-artifact
heuristics (lines (h) and (b)). Adding both text similarity and inter-artifacts heuristics
improve the recommendations generated by the three heuristics (lines (h), (i) and (j)).
The text similarity heuristic provides more complementary information and therefore, in-
creases the precision/recall of Dhruv’s recommendations more. However, the effect of the
text similarity heuristic is less for larger sets of recommendations, again suggesting that
text similarity primarily influences the ranking of the top recommendations.

Finally, using all five heuristics produces significantly better recommendations than
any subsets of the heuristics (line (k)). This indicates that each heuristic provides slightly

136

different information and need to all be considered together to provide the best recommen-
dations. Determining the actual heuristic weights that result in the best recommendations
is left for future work.

The most striking result is that none of the cross-link heuristics are able to predict the
discussions that bug report messages refer to in the top 10 recommendations. Given that
there is only one reference to a discussion thread in the test set, this might a case where
the test set is not able to give us fine-grained information about the quality of recommen-
dations. With 40 recommendations, Dhruv is able to predict the discussion In contrast, for
bug reports, Dhruv less consistently identifies the correct bug report. thread every time.

4.3.4 Adding learning or evolution of semantic web

The OpenACS community’s usage of Dhruv can implicitly provide Dhruv with new con-
nections between artifacts. As people interact and use Dhruv, they provide Dhruv with
training data to learn new cross-links from. Dhruv can track people’s usage by logging
clicks or by gathering explicit links from bug reports to other artifacts. These ‘learnt links’
are essentially the same kind of data gathered by inter-artifact links for bug reports. Here,
we are interested in examining how such additional links affect Dhruv’s recommendations.
This allows us to investigate how the Semantic Web might change and respond as a result
of learning from people’s activities and usage of the Semantic Web.

The effect of increasing the weight of the learnt links heuristic when generating rec-
ommendations on the precision and recall of the recommendations is shown in Table 4.3.
Learnt links are essentially links in the messages of the bugs reports in the training set that
are used when generating recommendations for bug reports in the test set. In addition, the
links between bug reports and files gathered via the patch reports are also included in the
learnt links.

Keeping the weights of other heuristics constant1, one would expect that increasing the
weights for learnt links would improve the precision and recall of the recommendations.
Learnt links help identify which links are stronger or better, because they have already

1at 5 for the text similarity and inter-artifact heuristics and at 1 for the found-in and index links heuristics.

137

appeared in the training set of previous bug report resolution instances. This is borne out
by Table 4.3.

#recommendations 10 40

0 0.44/0.21 0.72/0.43
5 0.48/0.25 0.76/0.38
7 0.48/0.25 0.74/0.37

10 0.52/0.27 0.69/0.35
15 0.56/0.28 0.67/0.34

Table 4.3: Precision and Recall of File Recommendations For Various Weights of Learnt
links

The small set of recommendations steadily improves in quality as the learnt links
heuristic is weighted higher. However, the larger set of recommendations decreases in
quality as the recommendations supported by the learnt links are ranked higher at the ex-
pense of more relevant recommendations. This indicates that the learnt links heuristic can
be potentially useful for improving precision of recommendations. It is therefore more
useful for fewer recommendations than for a larger set of recommendations. The rela-
tively small jump in the quality of recommendations from the small to the large set for
higher weightage of learning links indicates that learning links tend to pull more relevant
links higher up.

As discussed previously, learnt links contribute less to predicting bug reports and dis-
cussion threads. Within 10 recommendations, learnt links is unable to predict any bug
reports. For a larger set of 40 recommendations, the learnt links heuristic is able to iden-
tify the discussion thread and one of the four bug reports. Since there are relatively few
references to bug reports and discussion threads, it is not surprisingly that relatively little
is learnt to improve their recommendations.

138

4.3.5 Text Similarity

In this section, we examine the effect of increasing the weight of the text similarity heuris-
tic on the quality of Dhruv’s recommendations. We previously examined how the text
similarity heuristic performed as a singleton and in combination with other heuristics,
where it seemed to provide novel information not provided by the other heuristics. Does
increasing the weight of the text similarity heuristic in combination with other heuristics
improve the recommendations? The results are presented in Table 4.4.

Text Similarity weights File precision/recall

5 0.48/0.23
10 0.31/0.15
15 0.31/0.15
20 0.28/0.13
25 0.14/0.07

Table 4.4: Precision and Recall Vary with No. of Recommendations for Code Files Using
Text Similarity

Increasing the weight of the text similarity heuristic does not improve Dhruv’s recom-
mendations for files. On its own, there seems to be a limit to the usefulness of text simi-
larity. This suggests that the other cross-links heuristics capture information and semantic
connections that are not reflected in the text of the documents. This may be because we
treat the text of a source code file to be the concatenation of its comments. Some files may
have inadequate comments and thus are not well suited for the text similarity heuristic.

For source code files, we therefore need the extra semantic connections captured by
the metadata and additional cross-links. The other cross-links, in particular inter-artifact
links, represent semantic connections made explicitly by people and therefore much more
reliable. Surprisingly enough, there seem to be enough of these links to be exploited
successfully and improve Dhruv’s recommendations.

139

4.3.6 Explicitly related bug reports

Bug reports that are explicitly marked as being related by OpenACS community members
provide another dimension to explore Dhruv’s operation. The primary kind of explicitly
related bug reports are bugs marked as duplicate bugs. Dhruv ought to suggest each bug
report as a related artifact for the other. In addition, Dhruv should suggest related artifacts
for the two bug reports.

We selected all the bug reports closed as being duplicates. From these, we created a
mapping between bug reports and their duplicates. Duplicate bug reports that did not refer
to the ‘original’ bug report were discarded. Using this mapping, a training and test set
were created. The duplicate bug reports were assigned to the test set and the ‘original’
bug reports to the training set. We then used the links in the training set to generate
recommendations for the bug reports in the test set and measured the precision/recall of
the recommendations. We further examined how closely related the recommendations for
the first message of each pair of the related bug reports are.

Normal test and training set Exchanged test and training set

Learnt Text Similarity & Learnt Learnt Text Similarity & Learnt

Bugs precision/recall 0.6/0.6 0.7/0.7 1/0.8 1/0.8
Disc. precision/recall 1/0.5 1/0.5 0.33/0.25 0.33/0.25
File precision/recall 1/1 1/1 0.86/0.75 0.71/0.62

Table 4.5: Precision and Recall For Explicitly Related Bug Reports

The precision and recall for related bug reports is shown in Figure 4.5. The first two
columns display the results of using the links in the training set to generate recommen-
dations for the test set. The last two columns display the results of performing the same
experiments, but with exchanged test and training set. The rationale for this is that usually
the bugs marked as duplicate are substantially less rich in message content than their ‘orig-
inal’ bugs. Thus, duplicate bug reports may be submitted after the original bug report or
they may provide less information about the bug than the so-called ‘original’ bug report.

140

Given related bug reports, Dhruv is able to use the learnt links heuristic to predict
which files and discussions will be required in the duplicate bug report. Given the asym-
metry in the richness of the ‘original’ and duplicate bug reports, Dhruv is able to use the
learnt links heuristic to identify relevant files. It performs less well with discussions, but
surprisingly well with bug reports.

The text similarity heuristic decreases both precision and recall of Dhruvs recommen-
dations. This may seem somewhat surprising given that in Section 4.3.3, the text similarity
heuristic improved the performance of Dhruv in combination with other heuristics. How-
ever, in that section, we examined the effects of combinations of heuristics for a random
set of bug reports. Here, we consider a non-randomly sampled set of bug reports, bug
reports that explicitly related. It is not surprising then that the learnt links heuristic per-
forms particularly well for these bug reports. The text similarity heuristic reduces Dhruvs
precision/recall probably because of the asymmetry in the content of a pair of related bug
reports. In addition, duplicate bug reports filed for the same bug often use different lan-
guage to describe the bug, making it difficult for the text similarity heuristic to perform
well.

Qualitative examination of the recommendations for related bug reports also reveals
that the asymmetry in duplicate bug reports can be of several kinds. One bug report may
discuss the bug and its solution, whereas the other duplicate bug report may present the
steps required to cause the bug to manifest itself and the expected and actual behavior of
the system (OpenACS bug reports #1465 and #1449, and bug reports #1450 and #1485).
The only commonality is that they both refer to a function that does not exist in the code
base (weblogger_channels__name(integer)). Dhruv’s recommendations are
based on message content and therefore, unsurprisingly, examination of Dhruv’s recom-
mendations for the two bug reports reveals them to be considerably different.

On the other hand, when messages are very similar, Dhruv’s recommendations can also
be very similar (e.g. OpenACS bug reports #902 and #903). Two bug reports were filed
by mistake and both have the same message. In this case, Dhruv suggested six common
bug reports and nine common discussion threads.

Similar messages do not always get similar recommendations. For example, OpenACS

141

bug reports #1591 and #1512 are about the same bug and are filed by the same person. In
each case, Dhruv identifies the other bug report as relevant, but suggests no other common
artifacts.

As the related bug reports accrue more messages, Dhruv’s recommendations for the
two bug reports can become more similar. The first messages of OpenACS bug reports
#1474 and #1378 are considerably different, in that the former has a lengthy explanation
of the bug, whereas the second contains a one-line description of the bug. Dhruv thus
recommends only one common bug report and no common discussions or files. However,
if Dhruv’s recommendations for the last message of the two bug reports are compared, 5
of the 10 files recommended are common and 2 of the 10 discussions.

In summary, Dhruv is able to recommend artifacts and resources for bug report mes-
sages with varying degrees of precision and recall. The inter-artifact links are the most
useful heuristic in isolation. However, the heuristic on its own does not give as good rec-
ommendations as the combination with other heuristics, namely text similarity, found-in
links, index links and learnt links. The inter-artifact links heuristic is a meta-heuristic in
the sense that it is applied on a base set of recommendations already gathered as a result of
applying other heuristics. Since inter-artifact links capture human links between artifacts,
they are able to improve the precision of the base set of recommendations. Given that
inter-artifact links represent links between resources just like web links represent links
between web pages, it is likely that using web algorithms for mining link structures on
the Web will also yield good rankings for self-contained domains where the links are to
artifact references.

Although inter-artifact links were most useful for Dhruv in recommending files, text
similarity performed better for recommending bug reports and discussion threads than for
files. This is probably because they contain less structured terms for the other heuristics
to hook on to. Interestingly, using only text similarity in combination with learnt links
reduces the power of Dhruvs recommendations for explicitly related bug reports. This is
probably due to the unique textual characteristics of explicitly related bug reports, namely
asymmetry in richness of content and differences in the words used to describe the bug.

142

Text similarity is likely to perform better for normal bug reports. Although the text
similarity heuristic is useful in combination with other heuristics, Weighting it too highly
reduces the quality of Dhruvs recommendations. This suggests that the words used in
the text of artifacts is not rich enough to capture the full range of information contained in
community artifacts. This is most obviously true for software code, but also holds for other
artifacts with semi-structured data, such as bug reports. Ultimately, it is the combination
of all the heuristics together that allows Dhruv to make the best recommendations.

The relations described in Section 3.4.2 contribute to the cross-links pages created by
Dhruv and thus indirectly the message recommendations. For future work, it would be
useful to try to understand which of those relations contribute most to Dhruvs recommen-
dations.

4.4 Evaluating the Dhruv information interface

In order to evaluate the potential of the Semantic Web from the perspective of the Ope-
nACS/dotLRN community, we performed a qualitative study with a number of experi-
enced OpenACS/dotLRN developers. There were two components to the study: a think-
aloud where the participants were asked to examine and walk-through a bug report with
and without Dhruv, and a structured interview where the participants were asked to assess
the current state and future potential of Dhruv. The objective of the study was to probe
the community’s current usage of the OpenACS Bugtracker and explore the community’s
potential usage and assessment of Dhruv.

4.4.1 Study Participants

The target population for the study were OpenACS/dotLRN community members in and
around Boston, who had participated substantially in the community. Since OSS commu-
nity members can be located all over the globe, we chose Boston in order to maximize
the number of OpenACS developers who could participate in the study in a face-to-face
setting. Based on their publicly available community interactions, six potential study par-

143

ticipants were identified. These participants included a variety of people, ranging from
bug reporters and people who primarily fixed bugs to people who were heavily invested in
OpenACS/dotLRN and had more of a monitoring/guiding role in the community. Of the
five people contacted, we had four respondents and three people who actually participated
in the study.

All three study participants were substantially involved in the community. One of the
participants uses the software for his professional as well as leisure activities. He is a vet-
eran of code development and bug resolution in the community, having used the software
significantly for around six years. He is also on the dotLRN Technical Advisory Commit-
tee. Another participant had been a peripheral member of the OpenACS community for
a long time, before getting more substantially involved in the community recently. Both
these participants have commit privileges to the OpenACS code. The third participant is
on the Board of Directors of the dotLRN Consortium and therefore a primary stakeholder
in the community.

4.4.2 Study Tasks

During the study, the subjects were asked to answer questions about a publicly reported
bug in the OpenACS/dotLRN project. In order to answer the questions, they needed to
use Dhruv’s version of the bug report. The subjects were asked to think-aloud as they
used Dhruv and their behavior was observed. The observations were also recorded via a
screen-recording software and an audio-recording software.

The format of the qualitative study was as follows. The participants were first given
a general introduction to the study. The motivation of the study and its objectives were
explained to the participants. They were also given a broad overview of Dhruv’s op-
eration. A structured interview was then conducted, where the participants were asked
several questions to guage their experience with the OpenACS bug resolution process and
to determine the kinds of facilities they make use of, such as search or the OpenACS API
documentation. They were therefore asked about the extent of their involvement with the
Openacs/dotLRN community, how often they tend to work on bugs and how typically go

144

about the bug fixing process.

Then the participants were asked to do a think-aloud as they examined a bug report
assigned to them. The bug report was one that they had fixed previously or related to one
that they were involved in. They were asked to read through the bug and do a walk-through
of the bug report, explaining what the bug is about and how they would approach the bug
were they fixing it. In addition, they were asked about how they used other resources,
how they interpreted the messages of other community members, which fragments of the
message were most informative and how they figured out the location and cause of the
bug. The focus was on trying to understand how they currently fix bugs.

The participants were then shown the same bug report on Dhruv and each of the fea-
tures of Dhruv were explained as they were encountered. The participants were asked to
comment on whether the information presented would have been useful to them during the
bug resolution process. They were asked to focus on the nature of information and which
information presented was particularly useful. They were also asked to comment on the
usefulness and correctness of Dhruv’s recommendations for the bug report.

The final stage of the study was a structured interview. The participants were asked
to comment on Dhruv’s function: the choice of highlighted terms, the cross-links pages
for these terms and Dhruv’s recommendations. They were then asked to for their opinions
about the usefulness of Dhruv: are any things specifically liked/disliked or which changes
would make Dhruv particularly useful. Finally, they were asked if a system like Dhruv
would be useful to have when fixing bugs and whether it fit into their way of working, into
OpenACS/dotLRN and in OSS communities in general.

For each of the study participants, an actual bug report in the OpenACS community
was chosen. The criteria for assigning bug reports to study participants were manifold.
First, the participant had to be substantially involved in the resolution of the chosen bug
report. This criterion was chosen so that we could be certain that the participant has some
expertise in the area of the bug report. Second, the bug report must have been resolved at
least several months before the study. This is to ensure that the participants actually need
to use the Web and Dhruv to examine and talk about the chosen bug report. By choosing
bug reports resolved several months before the study, it was relatively unlikely that the

145

participant would remember anything but very high-level information about the bug report.
The final criterion for assigning a bug report to a study participant was that Dhruv should
perform on average on the bug report. When this was not possible for a single participant,
we tried to choose bug reports for multiple participants, such that Dhruv performed on
average over the multiple bug reports.

Overall, we tried to reach a balance, such that bug reports were neither too difficult for
them, for instance because the participants knew nothing about the area of the bug, nor
too easy for them, because the bug is so fresh in their minds that they do not need to use
Dhruv to talk about the bug report.

4.4.3 Study Results

The comments from study participants are mainly on Dhruv, but they include some com-
ments on the Semantic Web. All the participants were professionals and were interested
in Dhruv and the notion of a community semantic web from a technical point of view.
Two of the participants already knew about the Semantic Web and therefore commented
on Dhruv based on their knowledge of the Semantic Web.

In the following, we have included some of the comments of the participants verbatim.
Within the comments, the author’s explanations are delimited by { and }.

Highlighted terms

The first component of Dhruv that the participants encountered were the terms that are
highlighted and turned into links. The participants were asked to comment on whether
they thought the terms Dhruv highlighted were informative and whether they were likely
to click on them. Their responses indicate that they generally felt that the highlighted
terms were useful.

Upon first encountering the highlighted links, Developer A asked:

Can you automate this? Is it so that it would be automated and it would go

146

through and search ...

Upon being told that the links were automatically generated:

{clicking on the ’limited access’ link} This is cool. Limited access. That’s

neat, because it’s a very specific word, because that’s something I would ac-

tually [click] ... Because when I see ’system’ {another highlighted word}, I

see something so general, that it might not pertain to this bug. But ’limited ac-

cess’, in this case, is a useful semantic addition, because it’s likely that you’ll

directly find code where [’limited access’] would be in. Pertinent code.

However, there are only a small portion of specific terms to more general terms. Developer
A noted:

So, this ‘non-guest users’. This would be something that would be useful,

because it is so specific and would likely come with actual results in the code.

These {along with ‘limited access’} are two specific things. Otherwise, I don’t

really see specific things that are.

All of the participants tried to click on highlighted code terms, indicating that these are
naturally informative terms. In the case of Developer A, Dhruv missed highlighting some
of the potential code terms and a filename. Developer A pointed them out:

[if code were linked to the code base] that would be nice. That would be

very nice. In the same sense that this [pointing to the file name]. I should

think that would be low-hanging fruit. You know, if this shows up at all [in

the message], then it would be nice if it showed up there [in the recs]. That

should be possible.

In the bug report examined by Developer A, he pointed out that Dhruv highlighted
terms correctly in one message, but not in the other. This was seen as undesirable.

147

Developer C also immediately zeroed in on code terms and started talking about what
he expected the terms would link to. However, there were also more generic terms that
caught his attention. One of the ‘irrelevant’ terms highlighted in the bug report for Devel-
oper C was ‘strange behavior’, which intrigued him:

’Strange behavior’. That’s interesting. That ’strange behavior’ is linked.

{clicks on the link} I wonder if these all have the word ’strange behavior’.

{verifying that it is so} That’s fun. I like that. I think that’s great. I like this a

lot.

Upon reflection, the study participants felt that the terms highlighted were generally
useful. As Developer B expressed:

Actually, I would say that in terms of what it’s highlighting, the unstructured

text that you’re pulling out of the comments, it did a really good job of high-

lighting stuff that might be relevant.

Developer C concurred and pointed out that terms that were irrelevant could always be
filtered out by the person reading the bug report:

I didn’t see any examples of things it didn’t pick up that were important. I

certainly saw examples of things that probably weren’t important. Based on

what I’ve seen, it didn’t pick up totally irrelevant stuff, like the word ‘the’.

Most of the stuff it picked up was at least unique in some way. Of course, I can

still filter it. Like ’strange behavior’, I might look at because it’s a curiosity,

but I don’t think that would really be relevant ... I didn’t see anything that was

really plain and mundane, which would have been the worst case.

Developers A and B also felt that they would not click on links that looked uninformative.

The word [’system’] is so general. I wouldn’t even look at it. I could make

that decision just by looking. On the other hand, just by looking at ’limited

access’, I know it’s specific enough.

148

Developer B pointed out that although he would click on code terms, they might only
appear after the bug has been fixed

I would probably go for ... I would probably click on something that was

directly related to the bug title and probably would just ignore something [ob-

viously unrelated]. .. I would click on the code terms, but the problem is that

we have a lot more information now because [a bug report participant] has

actually fixed the bug.

Developer A was cautious about the value of the highlighted links.

The ones that are specific enough {like ’limited access’} are [informative].

... It would be better if it was more specific.

During the study, the participant had clicked on a non-distinctive word ‘system’ and
then was surprised to see very specific references to ‘system’. When asked whether the
specific references shown for terms that were general was a useful thing:

Yeah, that’s good, that things were more specific than expected, when clicked

on really general terms.

Did the participants think the links were distracting in any way?

It’s certainly unobtrusive. Need to decide what is good enough to link.

said Developer C.

In summary, most of the time, Dhruv picked up the structured terms, such as file names
and code terms, that people thought were relevant. When Dhruv did not pick up on some
of the structured terms, people missed being able to click on them. They felt that Dhruv

149

should have been able to get them. This indicates that the terms in the structured text are
markers for people too. The terms possess high semantic meaning.

For noun phrases, people felt that highlighted terms that were general, such as ‘com-
munity’ and ‘system’ were obviously less informative than more specific terms, such as
‘course admin’. They were more likely to click on the latter as the more specific links are
more likely to lead to useful information. The terms that sounded general, when clicked
on, led to a cross-links page with many specific instances in Dhruv. However, despite this,
people said they simply wouldn’t make use of these terms. This indicates that there is
potential for Dhruv to learn from the links that people click. There is also much scope for
improving Dhruv’s selection of terms to highlight in this area.

A closely related problem is that of managing expectations. Although every participant
recognized the possibility of filtering the links, some of the participants were nonchalant
about filtering links, while one participant was less satisfied.

None of the participants thought the presentation of the highlighted links was distract-
ing or obtrusive.

Learning links

The participants were told that Dhruv could potentially learn automatically from links used
by people. Developer A noted that users could also be asked directly about whether a link
is useful:

It would be cool, you know, you were talking about how do we get info back

from the users? As people use this. Looking at link paths and stuff might be a

little more difficult than adding just, when you go here {clicks on a link} is it

useful or not? In that way, you can start weighting things.

Developer C, on the other hand, felt that it would be better for Dhruv to learn on its
own. Or at least give people a choice about whether they wanted to teach Dhruv.

I don’t really like to have to explicitly teach computer programs things, be-

cause in my experience, it’s just a waste of time. Like spam filters, it never

150

learns. ... I’m like, the computer is the tool, not me. ... I’d rather have the

links tracked and that adjusts the weights rather than me explicitly having to

say. It would be taking up space in my busy screen and my busy life. Maybe

it’s a preference. The user enables it: I want to be explicit or have it just be

implicit in what I click.

Cross-links Pages

Following a highlighted term led the participants to the cross-links page for that term. As
the participants explored the cross-links pages, they were asked to comment on how useful
they found the information on those pages.

After reaching the cross-links page for ‘limited access’, Developer A remarked:

And then the bug reports that’s neat, because you’ll be able to check if there’s

another bug there that’s related. How did you do this search? ... It would be

cool if we had something like [Dhruv].

The next time, Developer A explored some of the other recommended links:

So, now going to ’limited access’. I probably get the same results as be-

fore, right? {Yes. Clicks on ’limited access’ in second message}. Actu-

ally that would be interesting to see. {clicks on recommended code file and

scrolls through file.} This has a little bit to do with that. We added that

read_private_p {code object added by the developer}. So, that’s use-

ful just to be able to see that. And the logs {clicks on the recommended log

file}. Cool. That’s neat.

Later on, Developer A summarized:

{clicking on limited access} So, [the code files] that’s useful. The different

types of discussions, so that’s useful as well. Because you want to see what

151

people have said in the past when you’re looking at the bug. And then you can

understand the problem, so that’s very useful. But it’s only useful in the cases

where .. that’s why I picked this limited access, because it’s very specific.

So, if I go here to ’community’ [clicks on community link], I know that it’s not

going to be ...it’s going to be all over the place. So, in that case, it’s not useful.

The more specific [the term] is, the more useful it is, assuming that [Dhruv]

follows the same pattern in other reports.

Developer B used Dhruv to verify a hypothesis about a software procedure:

{Looking at util_unlist } I’ve never used this procedure before. Looks

like it might be in {clicks on util_unlist link}, yeah, that’s what I was

thinking ... [acs-tcl] utilities-procs.tcl because that’s where

this kind of stuff gets dumped. That’s kind of cool. That it. It’s certainly

interesting, looking back at a resolved bug how this thing can be helpful as it

pulls different pieces of information together.

Developer B later summarized that:

I would say that I think it is useful. I’m trying to separate out a potential user

interface, once you work on the usability stuff, I think it would be useful. ... I

would also tend to click on the more directly related terms. And anything is

going to be included, picked up by the system based on those terms will have

a much higher probability of being useful.

Within the cross-links pages, the links to CVS logs were thought by many of the partici-
pants to be useful. As Developer B explains:

For me, a lot of times, when fixing a bug, it would be great if I could get

from the bug report a list of the recent CVS logs because then you can see

what’s happened and you do have that. That would be probably one of the

more important [things].

152

Developer C felt that the links to files that where code terms were defined were also par-
ticularly useful:

The defined in file is very useful. I think this is great so far. If all you did was

develop the model and guide the spider to get everything, it’s pretty impres-

sive.

On seeing that some of the lengthy lists presented by Dhruv on the cross-links pages, in
particular using the found-as and found-in heuristics, Developer B said:

I’m not sure I think the [large found-in list] is too useful. It might be nice to

see different occurrences, but where do you draw the line? [large list] Like

this is obviously not too useful. ... I probably wouldn’t use too much of this

stuff. {clicking on subtree_id and pointing to the short found-in list} See

here, this is useful. I noticed that before that when there’s a few instances

here, yeah, being able to click on a variable name and get real quickly the

names, the substring of a name and get to that particular file [is useful].

For the artifacts identified by term-similarity, responses were mixed. Developer C stated
for the related artifacts for a noun phrase:

{pointing to the recommended code files} Yes the file does exactly, because

this is one of the places that defines the relationship {denoted by the noun

phrase} in the data model.

{pointing to the recommended CVS logs} CVS logs not relevant.

{pointing to the recommended discussions} [The first discussion in the list is]

definitely related to the bug, but maybe not to the term [’course admin’]. The

next hmm. It’s kind of a U-shape. {referring to the relevance ranking of the

list} Very relevant, not relevant, very relevant again.

{pointing to the recommended bug reports} The bug report links do look rel-

evant.

I think it’s great. Do productivity metrics.

153

As Developer B noted:

Again it has a lot to do with accuracy. Certainly if the data that was being

pulled in was accurate ... I do feel that accurate information, that would be

pretty useful. I don’t think it would hurt.

As Developer B noted:

This is the kind of thing that I felt would be helpful. Having direct links [from

the messages] to the potential offending files and some type of a [CVS log]

history. But he’s kind of put this in.

Developer C later mentioned a caveat to judging the relevance of a link from its title:

And [Dhruv] may actually do a better job than is evident to me, because

someone picked a bad title and your algorithms figure out that maybe it is

relevant, but the way the person titled it, it didn’t say so.

To summarize, the cross-links pages were generally found to be quite useful. In par-
ticular, the links to files and CVS logs were appreciated. Regarding the various kinds
of cross-links heuristics used, the participants particularly mentioned the found-in and
defined-in heuristics as being useful. A detailed exploration of the value and use of indi-
vidual heuristics would be useful in identifying the information content of the cross-links
pages.

The found-in heuristic sometimes produced lengthy lists of related items for some
terms. While the information it listed was correct, the shorter lists were better appreciated.
This is because they were thought to be more informative. This suggests that the amount of
information available for a term might be an indicator of how informative the term is. This
can then be taken into account when deciding whether the term ought to be highlighted.

The related artifacts produced by term similarity produced mixed responses. Most of
the artifacts were thought be relevant. Where the relevance was not clear, a participant

154

pointed out, it could be due to the uninformative titles of bug reports and threads. For
source code files where the relevance was unclear, one participant spent several minutes
searching for the term in the text of the suggested documents. When he couldn’t find the
term, he remained mystified as to why the document was suggested. This suggests that
recommended documents, that don’t contain the term, be ranked lower than ones that do
contain the term. Or alternatively, there be an explanation for why a given document was
recommended.

Message Recommendations

Each bug report message has a number of recommendations for the following types of
resources: people, source code files, bug reports and discussion threads. The participants
were asked to comment on the message recommendations. Their responses indicate that
the message recommendations were not as useful as the cross-links pages. As Developer
C explained:

The nice thing about links at top were that they didn’t really disrupt my flow.

These [message recommendations] disrupt my flow. Probably before really

digging into those, I’d go into a code buffer and kind of like fool around,

’cause like now I’m not getting content about the bugs. Like here {pointing to

message text and the highlighted terms} I’m getting content of the bugs and

these are just nice little embedded helpers. Here {pointing to message recom-

mendations} I’ve got to actually figure out the structure of what’s going on.

You know, read each item and decide if I want to go after it. I probably want

to read through all the comments. It’s almost the second round of considering

the bug where I guess I would go into stuff like that. I don’t feel super-strongly

about it. I’d like it to be off by default.

Developer A added that the recommendations were also only really useful at the be-
ginning of the bug resolution:

If you’re at the anterior posts, these aren’t relevant anymore. There’s a point

155

where, at the beginning when you’re actually searching for things ... to resolve

[the bug] ... it’s useful.

Given that message recommendations for the last messages of the bug report change
less than those for the early messages, this suggests that perhaps recommending artifacts
for each bug message is not as useful as recommending artifacts for the whole bug report.

The display of the message recommendations was also distracting. As Developer B
explained:

... this is a very terse presentation and it just adding more text that’s not di-

rectly related to the bug comment or post just complicates what you’re looking

for.

However, the possibility of dynamically showing and hiding recommendations was
appreciated:

The recommendations are very intrusive. You don’t want that all the time,

probably. ... I like the fact that [the recommendations toggle] makes it easy to

hide or show.

So, how useful and relevant were the recommendations themselves? Developer B
commented on the people recommendations:

That is definitely a useful piece of information. ... Like if you know what

package the problem is in .. Oftentimes, the bug can be in a service-level

package. With the forums and irc being as critical for development, if you

know a person is a primary resource, if you know their name, a lot of times,

you can search for that person’s forum history and go through his commits or

go online and ask him directly.

However, the people recommended were not as useful specifically for the bug itself.
Developer B explained further:

156

Sure, how much work has [the recommended person] done? I’m sure ...

he’s touched every piece of the toolkit. He’s one of those guys, one of those

incredibly productive guys, who sits down and fix four-five bugs in a couple of

hours and you see all these commit messages ... who looks through all these

random packages. Looks through here, finds a typo.

There is some evidence that the links for each term and links for each message might
be confusing for people, at least at first. People look at the cross-links page expecting
message-specific recommendations and are then confused by the split between the cross-
links pages and the message recommendations.

As Developer C noted:

For example, I would have gone to forum-security-procs . If I click

on forums::new_questions_allow , what I’m going to be looking

for is this {points to the defined-in list} or let’s do a little test. Looks for

forum-security-procs.tcl in cvs logs for forum::new_questions_allow

and doesn’t find it. If you could see the same [metadata] view for a file, that’d

be something.

Figuring out why sometimes I have a little block on the page and sometimes

it expands to its own page. It would be useful to know.

Overall, there were mixed responses to Dhruv’s recommendations. The majority of
the participants felt that the recommendations did not fit in with their method of fixing
bugs. In contrast with the highlights links to cross-links pages, which were thought to be
useful. The only type of recommendation appreciated by one of the participants was the
suggestions for related people.

The majority of the participants were also skeptical of the recommendations given
by Dhruv. For example, the people recommendations were thought to be accurate, but
not useful. Since Dhruv rates productive people more highly, it suggests people who are

157

prolific coders, but not necessarily related specifically to the bug report at hand. This is one
area where the classification of people into various roles and types could be used fruitfully.

Most of the participants also felt that the recommendations should be shown more un-
obtrusively, if at all. The ‘Show/Hide recs’ toggling of the recommendations was therefore
appreciated.

How to improve Dhruv?

The participants freely gave numerous suggestions for improving Dhruv, ranging from
minor user interface issues to more fundamental suggestions about the function of Dhruv.
The suggestions are presented in detail below:

1. Make machine-generated aspect salient: To someone unfamiliar with Dhruv, it
may not be clear that the highlighting and cross-linking process, as well as the rec-
ommendations are machine-generated. Developer A felt that the user should be
made aware of this from the start:

Well, I think this is definitely neat. It would need to be clear .. it would

be quite clear to someone who uses the system, but that this is machine-

generated, so people are not like what’s this?. That you have some kind

of indication that it’s possibly related like ’Possibly Related’. So, when I

look at all these [recommendations], these pretty much aren’t related.

Just making sure that it’s clear that it’s machine generated. You probably

just have to modify this text, that little blurb there. And when you mouse

over these links, you might just want to have some pop-up there that says

linked by these recommendations, cause what the heck are these links?

Why are these links showing up? So being able to see why the links are

showing up. Possibly related links or some way of indicating .. You could

probably do that with CSS or something.

2. Improve cross-links display: There were specific suggestions on how the cross-
links displayed could be improved. For example, the found-in heuristic, which links

158

to files a software object is found in, could inform users of exactly where in the often
lengthy file the software object can be found. Developer B:

You could include a line number in your grep that would give a person

an idea of where in the file you would find [the function/variable].

There are several kinds of information views of a file that can be useful to develop-
ers: the actual source code of the file, the CVS change logs for the file and cross-links
for the file. Developer C explains that Dhruv should incorporate links to all of these:

It would be really useful if I could see the source code of the file and

the CVS logs for the file. There are three places a file link could go to:

CVS logs, source code and one to kind of metadata, where you have the

neighborhood. Potentially any of those could be useful, so I’d like to be

able to get to any of that.

3. Improve modeling and cross-links for people: Different institutions using Ope-
nACS contribute code implementing different functionality. They also tend to fo-
cus on fixing bugs in the code they contributed. Therefore, Developer A suggested
modeling institutions in addition to people. People within institutions are in some
responsible all responsible for the code contributed by the institution and thus ‘sub-
stitutable’:

Now, you’re doing people, it might be interesting if you added institu-

tions, because a lot of time code that’s added has the copyright of the

institutions, so that’s how you could tell. And then associating people

with institutions, that might be something too.

Regarding the cross-links pages, Developer C suggested that having a separate type
of page with cross-links for people would be useful:

One thing that occasionally is useful that is not here, is that whenever

a person comes up, provide a way to get to other stuff that person has

159

created. Like in the forums package, there’s a view of all the forum mes-

sages from the user and that should be unified. Like there should only

be page with everything the user did and the [OpenACS] software is not

quite there yet. But at least, we’ve got the forums page.

4. Direct Interaction with Dhruv: There is currently no way to interact directly with
Dhruv and its knowledge base, to query it directly or to tell it that something is
relevant. Developer A wanted that possibility:

I’ve always wanted to be able to say, you know, add something to the

knowledge base, right? So, it would be neat if I don’t understand some-

thing to mark it as a key term. Like what the heck is ’limited access’ user?

What does that mean? What does ’guest user’ mean? And just to be able

to mark those terms as something that need to be described. And that’s

why it’s useful with that forum posting that crops up. That’s very useful

and I would immediately, if this functionality was there, and I could say

’yes’ that’s related or ’no’ that’s not related, I would immediately click

that. You have the related pages, but it’s not put to use. And that would

be a place where you can map those relations.

Explicit user interaction would allow Dhruv to learn from users. If a users, in the
natural process of analysing a bug report, mark the terms they don’t understand,
Dhruv can take that as a signal to create cross-links pages for them. Thus, through
this dialogue, Dhruv can create cross-links pages for a more parsimonious and rele-
vant set of terms.

5. Elicit more information from users: If Dhruv could elicit more information from
users, then it could present contextually appropriate information and give better rec-
ommendations. Developer B pointed out that if the OpenACS Bugtracker were to be
extended slightly, developers could note the exact web page of the OpenACS user
interface where they were experiencing problems within the bug report itself. This
would allow Dhruv to use that user input to give tailored recommendations:

160

I think if you could tie in somehow we could pick a page and ... I would

probably navigate to the page, where the bug was, the offending [page]

and then examine the code on that page. So, somehow, showing the exact

page, you could pull up a list of tcl procs using namespace and stuff,

what the various other packages and stuff are that the page is calling.

If you could show that, that would be something. Maybe, if you pick a

particular package, if it’s a UI bug, you could show a list of pages it

might have occurred on, in a drop-down list, and then you could go out

using the cvs browser to kind of grep the procedures that are called. And

if you could see that in the bug list, that would be pretty helpful.

[Otherwise] What I would have to do is install the [package where the

problem is located] and follow these steps [to reproduce the bug]. But if

it was listed, the page where the problem was occurring, I may be able to

go right there. And what might be involved in this is an hour’s work just

to set this up, or fifteen-twenty minutes just to figure out what page it is.

6. Downplay underlying semantic machinery: Although Dhruv uses semantic in-
formation in the background to produce the cross-links and recommendations, the
ontologies are not visible to users. The only place where the underlying ontologies
are hinted at is in the top-left corner of the cross-links page. This information was
seen as extraneous and therefore potentially confusing. Developer C:

One of the first things I noticed on the cross-linkages page, which I think

was useful, was the semantic model, even though it powers everything

and makes it go, for someone who hasn’t spent time thinking about it, it

just takes up space. It has deep meaning in terms of how it allowed you

to create these views but for me it sort of was just confusing. And maybe

if I got really adept to the point where I understood your model, then it’d

be useful, I’d at least initially.

7. Improve presentation of recommendations: Finally, many of the participants felt
that presentation of the recommendations needed improvement. The difference be-

161

tween the message recommendations and related artifacts on the cross-links pages
was not always clear to the participants. As Developer C expressed:

I guess an interesting question is what really is the difference between

this block and when you click on this, you see all these related artifacts.

What the difference between here and the next page, it’s not really clear.

The extra information displayed for the message recommendations was also dis-
tracting for the participants from the primary task of fixing the bug. As Developer B
noted:

Well, from a UI perspective, just from a very simple, there’s just a lot

of information. Maybe [the recommendations] can be presented or de-

scribed in a way that’s a little more ... cause this is a very terse presen-

tation and it just adding more text that’s not directly related to the bug

comment or post just complicates what you’re looking for. But if there

was an offset, like you have in diff and when it was shown, it was in a

different color and offset.

The ‘Show/Hide recs’ toggle link could be useful in letting people know that they
can access Dhruv’s recommendations any time they wish to do so. Developer C
recommends:

.. Have the hide recs, have that [link] closed, but expandable.

Does Dhruv fit into the OSS bug resolution process?

The participants felt that Dhruv would fit naturally into their bug resolution process.
Specifically, as Developer B comments:

I would say that it fits into that natural way of trying to grab at things out-

wards from a few little kernels trying to take this one and where can I go with

this particular piece of code or this comment. It would jive with my kind of

approach. I can’t speak for others. In terms of developers, there’s a wide

162

range. For developers who know all, this would be kind of superfluous. And

some of those developers who are not exactly systems experts may benefit from

something like this and it might be really good for the community cause this

might bring people in and growing their knowledge.

Developer C added:

The cross-linkages are really useful, the CVS logs, the bug reports that are

related, all of that made perfect sense.

However, Dhruv may be less helpful to people who are already understand the source code
of the community thoroughly and are well aware of the interactions in the community, as
Developer B notes.

Potential and Scope

All participants saw good potential in a community semantic web, as embodied by Dhruv.
They particularly liked how the semantic web could be built from the ’outside’ as it were.
Developer C explains:

This is great. It is about very smart cross-linkage. Taking the data and making

it viewing it a different way. Site-wide search and knowledge management type

systems, which took less informed approach to this. All that deeply built into

the guts of the code. You’ve come from the outside and built this model and

constructed the linkages in a totally unobtrusive way and not requiring deep

internal support for these linkages.

So, this is definitely an advantage. You don’t have to install much software,

don’t require much extra code. ... It might make a difference. A lot of it is just

knowing where to go. Some people don’t even know about cvs logs, so they

don’t even know that they can view the code for any given set of apis on the

web, without having to dig into the file first.

163

Dhruv has potential to help newcomers to the community understand the software and
the interactions between different components of the system. Developer B explains:

I think you sort of accomplished your goal by providing so many pathways

to different information. ... I mean, if someone is curious and trying to learn

a little bit more about a particular bug, you’ve provided many different path-

ways to code that’s related so you’ve learned a little bit about different related

procedures just by clicking around on those links. ... It might make it easier

for people who don’t have experience with the toolkit to get involved and learn

some of the dependencies. Look at and get a sense of, what particular bug in-

teracts or might interact with what part of the system. It would could expose

some of the complexities that remain hidden behind the curtain.

Beyond the process of bug resolution, a community semantic web like Dhruv may
have potential to support discussions in professional community forums. As Developer A
explains:

[Dhruv could perhaps be used for discussions] That’s what I’m thinking as

you’re talking about it. There’s .. I have a lot of fodder in [a medical] com-

munity with hundreds, if not thousands of users and hundreds and thousands,

if not billions of messages, where there’s content and there’s images that are

related to the text content. And people related to the specific areas within that

group.

That’s one of my research interests in implementing something similar based

on a existing ontology, where you can build up a KB with individuals within

the community contributing back. Like photo.net. You have something similar

to that, where you have individuals, intermediates showing the beginners and

filtering stupid questions out from the experts. Cause you want to be able to

support a large group of individuals. It’s the same thing in this community.

You know, you won’t want [the most productive developer] getting all the re-

quests. If there’s something simple, you want to send it to newer people that

just jumped on ... that are trying to build their respect within the community.

164

And take advantage of that and at the same time, not taxing the experts that

are actually the draw for new people. Yeah, totally cool.

All the participants felt that the OpenACS community would welcome a system like
Dhruv and be eager to try to deploy it in the community and observe its actual impact. As
Developer C expressed:

I think there would be a lot of enthusiasm from the community to say that [the

researcher] came up with some enhancements and it requires almost no code

and we want to deploy it and see if you like it. Think about it.

I like the fact that you didn’t have to come and ask us to write a bunch of

code, right? This is a gift basically and none of us had to do any work. Now

we would have to do work to deploy it. But now that we can see some value,

maybe it’s worth it. I’d like for us to give it a spin and see what the impact is.

Does it help people? Is it confusing?

Developer C assessed the potential for deploying a system like Dhruv for OSS com-
munities and explained what is involved. In the following, he refers to Dhruv’s knowledge
base as the ‘model’ and the ‘engine’ is Dhruv’s procedure for generating cross-links.

To the extent that you want to donate what you’ve got to people, if you show

them how easy it is to incorporate, make sure it’s general, figure out (I can

help you with this) an approach. This system requires a certain amount of

human time to develop the model and that’s non-negligible. Once you’ve got

the model and the engine, you can make that available and teach people the

techniques or volunteer your time if you’re willing. So, you get the model

and the self-contained engine that can potentially run anywhere. and then

developing a set of processes for [deploying it] into live sites. Now, so the

processes for incorporating it in terms of human time which is probably the

most expensive resource, developing the model is probably the hardest part.

The second part is kind of the training on how to incorporate the output. And

the last part is just giving somebody a kind of box that just runs this and does

165

the calculations once a night. ’Cause it could potentially run on somebody’s

desktop machine at home and then nightly copies up to the server. So that’s

cheap. So, the thing that the OSS communities will be most challenged on

is they’ll probably be able to find some resources to run this stuff. There are

probably motivated coders in every community that once they see the potential

they’ll say wow we could put that into our system, let’s do it. And then the

hardest part is scaling up the whole adoption of the expertise of constructing

the models and deciding how to handle that. That’s going to be the biggest

problem with adoption is developing the right model for each community. If

you were to take some system that’s widely deployed already. So, take one of

those systems, develop a standard model and then any of the communities that

run on that could potentially ... But the modeling is the hardest part to scale

up. We’re definitely happy to help you figure out the process of the middle part

of that all, which is the how do we incorporate the results into an actual site

in as low impact a way as possible. Very cool!

The participants recognized the value of the Dhruv as a vehicle for demonstrating the
value of a community semantic web. Developer C explained:

The thing I like most about this is honestly almost more of an intellectual

thing, or an aesthetic thing. The notion that you’re able to construct all this.

Maybe this is what ... I have trouble with the term Semantic Web because

it means a lot of things to a lot of people. but I understand something very

clearly about what you did now that you’ve shown it to me. Which is that

you’ve developed a model of the community, processes and so forth and you’ve

applied some of the standard tools to that model and you’ve come up with

something that’s useful. or at least looks like it could be useful. Maybe you

applied semantic ideas to content that happened to be on the Web ... I don’t

know if that makes it the semantic web .. but in any case, it’s really useful, or

at least it has the potential to be, it looks like it could be. I’d like to find out if

it’d be.

166

To summarize, the OpenACS community found the enhanced semantic interface pre-
sented by Dhruv to be very useful. They did find the highlighting of potential meaningful
terms to be too low in precision, such that too many generic terms were highlighted. How-
ever, they did mention that these terms could easily be filtered out by a human. In addition,
the cross-links pages present useful information, especially when the cross-links are small
in number. As cross-links pages link to more artifacts, their usefulness declines sharply.

The message recommendations would found to be less directly useful for bug resolu-
tion. One participant suggested the recommendations would only be useful in the second
or third pass of analysing the bug report, because it did not add directly to the information
in the bug report itself. Others felt the message recommendations were generally a good
idea, but it was not clear whether the recommended artifacts were relevant. This was partly
due to the often misleading titles of bug reports and discussion threads. The community
members did feel that this component would need improvement in order to be usable by
the community.

The community also offered numerous suggestions for improvement of the Dhruv sys-
tem and were generally very positive about its potential use within OpenACS and in OSS
communities in general.

167

168

Chapter 5

Discussion and Future Work

In this chapter, we discuss the results of the evaluation presented in the previous chapter
and interpret its implications. We first discuss the Dhruv system itself in section 5.1. Next,
we focus on the various aspects of the Semantic Web as they were used in Dhruv in section
5.1.1. The potential of Dhruv to support OSS communities is discussed in section 5.1.2.
Finally, we list the contributions of this work in section 5.3.

5.1 Dhruv

In Chapters 3 and 3.6, we presented a prototype of a community semantic web, Dhruv, for
the OpenACS OSS community. Dhruv exploits an explicit representation of the semantic
connections between community artifacts to present semantically relevant information to
bug resolution participants. The evaluation in Chapter 4 revealed that Dhruv is often able
to mimic part of the human processing of information and suggest artifacts earlier which
would have been been used in the resolution of the bug ultimately. The similarity of
recommendations for explicitly related bug reports indicates that Dhruv processing does
reveal the same kinds of things as human processing. In addition, Dhruv can learn from
previous links made explicitly by users to provide better recommendations, as shown in
Section 4.3.4.

169

Inter-artifact links provide surprisingly useful information to Dhruv. Inter-artifact links
are formed when the community explicitly links various artifacts together during the natu-
ral course of their interactions. These semantic cross-links are also rich enough to be useful
in predicting the artifacts that are likely to be useful for a bug report. Inter-artifact links
can be easily captured and represented by the Semantic Web beyond OSS communities,
such as in discussion-oriented online communities.

Another point emphasized by the evaluation is that Dhruv can only attempt to find
meaning in what already exists in a message. If the messages are poor in content and
meaningful terms, the recommendations of Dhruv are also poor. Thus, when evaluating
the recommendations for explicitly related bug reports, using the bug reports with richer
text gives better recommendations than using terse bug reports.

The analysis of the recommendations indicates whether Dhruv can identify correct arti-
facts for a bug report. However, it does not inform us about whether the recommendations
of Dhruv are meaningful. Since the objective of a system like Dhruv is to trigger the right
thoughts among people resolving a bug report, it is important to evaluate the usefulness of
the information presented by Dhruv separately. For this, we turned to the user study.

The user study reveals that people did find the information presented by Dhruv mean-
ingful. Dhruv presented cross-links for code terms and noun phrases that were generally
thought to be informative by OSS community members. Dhruv did tend to be relatively
liberal in its selection of terms to expand on. These were however not considered to be
distracting, as OSS community members could easily scan the message and focus only on
useful highlighted terms, filtering the other less useful terms out.

An unexpected outcome of the user study was that community members felt they were
unlikely to use the recommendations regardless of the quality of the recommendations.
Instead they found Dhruv’s enhanced semantic interface to the bug report messages to be
far more valuable. As one of the participants commented, the enhanced message interface
helped them better interpret the terms in the bug report message. In contrast, the message
recommendations primarily provided secondary-level information of related artifacts for
the entire bug report and were unlikely to help directly with fixing the bug itself. Thus,
the enhanced message interface supports existing activities of people around the bug re-

170

port, whereas the recommendations provide potentially useful information, but outside the
context of current activities of people.

Quality may also have been a problem with the message recommendations. Several
participants mentioned that they did not find the message recommendations too relevant.
There are several possible explanations for this. One possibility is that the precision and
recall achieved by the system is not adequate for the people examining the bug report. The
recommendations need to be directly relevant to the bug report in order to be useful. Tan-
gentially relevant recommendations are not good enough. However, the tangentially rele-
vant recommendations may themselves be very useful for a newcomer to the community,
as noted by a user study participant. Additionally, as one of the participants mentioned,
the titles of the artifacts, especially in the case of bug reports and discussion threads, may
not be representative of the content of those artifacts. People may therefore not be able
to judge the relevance of a bug report from its title. More investigation is required to
understand why people did not find the message recommendations to be relevant.

The fact that the OpenACS community members found the enhanced information in-
terface more valuable than the message recommendations has wider implications for the
Semantic Web vision within online community contexts. It suggests that exposing seman-
tic information to people such that they can browse the semantic links between artifacts
is likely to be meaningful to people, rather than merely using the semantic information to
compute related artifacts. The strength of the Semantic Web is its power to provide expla-
nations for why certain artifacts are related or recommended. Within collaborative work
contexts, such explanations can be as useful as the final answer.

A key feature of the Dhruv community semantic web prototype is that it is built from
the ’outside’. In other words, it represents a way to take an existing online OSS community
and transform it into a semantic community. This contributes to the ease of deployment
for the Semantic Web and reduces the adoption barrier for online communities.

The ontologies in Dhruv are fairly general and domain-independent. They can be used
for a community semantic web by any OSS community built around an OpenACS website.
Modeling other OSS communities will require some modification of Dhruv, primarily in
the processes used to gather semantic metadata in OpenACS.

171

Various components of Dhruv, such as the metadata extraction and the heuristics for
determining cross-links are independent modules that can be extended depending on needs.
The recommendations of Dhruv can potentially be improved by plugging in state-of-the-
art tools and techniques for these modules.

One possible extension of the cross-links heuristics is to exploit the sub class hierarchy
of code concepts and to tie it more closely with the presented metadata. interesting thing to
let each level of subclass provide its own incremental nested information in the cross-link
heuristics; exploit subclass hierarchy and tie it more closely with presented information
and cross-links

The current version of Dhruv represents a initial step in the realization of a compre-
hensive community semantic web. By modeling individual communities and community
processes more closely and by developing more specific ontologies, we can improve on
the current version to provide much more comprehensive and tailored support to online
professional communities.

5.1.1 Use of the Semantic Web in Dhruv

Dhruv is an initial prototype of a community semantic web for OSS communities. The
creation of Dhruv relied on light-weight processes that parsed existing web content and
transformed it into semantic web content without interfering with the natural activities of
the community. Making the transition from the Web to the Semantic Web as seamless as
possible is an important requirement for Semantic Web applications.

There are several issues that the Semantic Web community needs to address before
the Semantic Web can be widely used. To begin with, the community requires clearer
modeling guidelines for ontology creation. For people who are not knowledge engineers,
formal modeling is a difficult activity. It is not clear how to make modeling decisions,
such as defining something as an individual or a class, or how finely to describe classes
and what the effect of the description is on the reasoning performance.

A major obstacle in the creation of Dhruv is the large amount of data that is generated
by the OSS community. The reasoners we tried to use within this work, namely Racer

172

and Pellet, were unable to reason efficiently for large data. If the metadata input to the
reasoners is inconsistent, then identifying which statement in the hundreds of statements
caused an error to be flagged is itself an non-trivial task. This points to a huge gap for
the Semantic Web. Reasoning about information on the Web necessarily brings with it the
specter of huge data. Due to this, Dhruv can not take advantage of the full expressivity of
description logics provided by OWL DL. Dhruv relied on cached information to generate
its pages.

There is one system that does address the problem of efficient reasoning for large num-
bers of individuals: instance Store (iS) [HLTB04]. The iS system stores assertions about
individuals and their types in a database, reducing reasoning over individuals to termino-
logical reasoning. However, the current version of iS is limited to role-free reasoning of
individuals, i.e. the ABox may have no axioms asserting role relationships between indi-
viduals. During the creation of Dhruv, this was deemed to be a major limitation. However,
ultimately the primary use of ontologies in Dhruv is for the description, annotation and re-
trieval of large numbers of individuals. In hindsight, iS was probably the most appropriate
system to use in Dhruv.

Dhruv does not make use of the open world assumption nor does it make use of ontolo-
gies distributed over multiple sites. As a small, self-contained community semantic web,
Dhruv does not require them. It is simpler to implement Dhruv as a closed world with sta-
ble ontologies for individual communities. This also simplifies the ontology descriptions
and reasoning. An ontology language like OWL then becomes primarily useful in linking
up the ontologies of individual communities and enabling interoperation among them.

Within the current implementation of Dhruv, the inferencing and classification capabil-
ities of the Semantic Web are underutilised. This is purely because current reasoners do not
scale well to the numbers of objects dealt with by Dhruv. There are several possible uses
for classification within Dhruv. A prime example is using inference to classify people into
roles, such as bug fixer or core developer. The people recommendations can then use this
role information to suggest appropriate people. For example, inactive members or people
who have never participated in a bug resolution are unhelpful people recommendations for
a bug report.

173

An interesting aspect of a community Semantic Web that was explored in the evalu-
ation was its potential to change as a result of people using it. The Semantic Web can
learn from how people use it. Frequently used links can be strengthened and infrequently
used links de-emphasized. In the evaluation, we explored the effect of learnt links on
the recommendations given by Dhruv. We found that learnt links increased the precision
of Dhruv’s recommendations. Thus Dhruv could use previously used links to give more
relevant recommendations.

5.1.2 Supporting Open Source Software Communities

A community semantic web has the potential to provide enhanced support for activities in
open source software communities and online professional communities, more generally.

In the case of Dhruv, we found different audiences within the community have different
ways of using system. For example, some features of the system are relevant to newcomers
to the community, such as the message recommendations for people, while other features,
such as the highlighted terms with cross-links pages, are more useful to experts in the
community.

Some of the participants in the user study noted the value of Dhruv for someone perus-
ing bug reports after they have been fixed. By letting people find related artifacts for terms
in a bug report, Dhruv places the bug report in the context of other artifacts in OpenACS.
This can potentially help community members go back to major bugs and identify major
trends or problem areas in the software source code.

Newcomers to the community can also benefit from seeing related artifacts and under-
standing how the bug report was affected by other artifacts and changes it effected in the
software. The differences in the needs of newcomers and experts suggests that personal-
izing Dhruv for specific roles and tasks would make it more useful for the roles and tasks
it serves. Thus, a Dhruv tailored for newcomers might emphasize the people recommen-
dations and show message recommendations. The experts version of Dhruv might eschew
the message recommendations altogether, focusing purely on the enhanced message inter-
face.

174

The extent to which the community itself can take charge of the ontologies supporting
their community will be a key determinant of the long-term use of a community seman-
tic web. In order to suit their specific context and their changing needs, the community
needs to be able to modify Dhruv and extend it incrementally. In particular, the ontologies
are often thought to be difficult to modify for people who are not trained in knowledge
representation. However, an OSS community may not need complex and comprehensive
ontologies to benefit from semantic modeling of the community. In Dhruv, the ontologies
used are relatively simple and yet useful. Thus, extending the ontology may be of com-
parable difficulty to extending a database schema. In addition, in Dhruv, the ontological
concepts and the processing of messages are closely tied together. Thus, it is difficult
to add additional concepts without also adding additional processing capabilities, such
as parsing and identifying cross-links, for Dhruv. It is also possible that the community
will evolve a special role for the maintenance of the ontology and the related processing
capabilities.

Generalizing Dhruv to other OSS communities and online professional communities
requires understanding what the semantics of the content is and how it is manifested in
community interactions. For other OSS communities, the semantics of the content is
likely to be same as in OpenACS, namely references to code objects, bug reports etc.
as well as community jargon. The only difference may lie in the programming languages
used, which would affect the information extraction rules in the metadata-extraction com-
ponent of Dhruv. The next step is to develop appropriate ontologies that can be used to
give machine-comprehensible semantics to the terms used in interactions. For OSS com-
munities, Dhruv already provides a set of ontologies that are fairly general. Across OSS
communities, Dhruv should be fairly simple to generalize. Dhruv is independent of the
programming language and programming domain used. It is only the source code archi-
tecture that differs across communities and that may require some modifications of Dhruvs
code ontology. However, Dhruvs code ontology itself is primarily an upper ontology for
software code. The only OpenACS-specific component of the ontologies are a small num-
ber of concepts and relations (less than ten) in the code ontology. Another OSS commu-
nity wanting to use Dhruv will need to remove these concepts and relations and possibly
add their own community-specific concepts. The other ontologies in Dhruv are domain-

175

independent. The heuristics for identifying cross-links are based primarily on the ontolo-
gies, so modifications to the heuristics depend on the extent of modification of Dhruv
ontologies. The recommendation procedures used by Dhruv are domain-independent for
OSS communities.

During the course of this work, several requirements of the automatic processing of
OSS content were identified:

• Always acknowledge the person making a contribution, in particular patches to the
source code.

• Maintain unique identities of people. When community members keep different
identities, it becomes more difficult to track the activities of each member. This
reduces the accuracy of people recommendations.

• Keep canonical form of files in patch diffs. The patch diffs contain the file names
and paths of files that are modified by the patch. If the developer creating the patch
does not use canonical file paths, the paths recorded in the patch diffs will not be
correct. Dhruv would then need additional processing to identify the most probable
file being referred to.

• Maintain unique identities of software objects. Refer to software objects, partic-
ularly those in namespaces consistently and with full namespaces. This reduced
processing burden on Dhruv to attempt to identify the right software objects.

Dhruv currently does not allow community members to explicitly search for cross-
links for a given term. Some of the participants mentioned this as a worthwhile addition
to Dhruv. Landsdale [Lan88] showed that every attempt to retrieve information in per-
sonal information management is based on two different psychological processes: recall-
directed search followed by recognition-based scanning. Currently, Dhruv relies on a bug
report message to serve as the input for the recall-directed search. However, it is relatively
simple for Dhruv to support searching for cross-links for terms people already know are
relevant.

176

In contrast to other groupware systems, such as the Coordinator and Answer Gar-
den, Dhruv follows a non-interventionist approach, working in the background as far as
possible without interrupting the existing workflow. Dhruv observes the ongoing human
activities and tries to intelligently interpret the communication exchange and provide its
own input in the process. Dhruv does not suffer from some of the problems of previous
CSCW systems, because OSS communities are naturally more reliant on online, electronic
communication.

An additional feature of Dhruv is that it can be constructed more or less automati-
cally from the community space, capturing the core semantics of community interactions,
without requiring the community members to change their way of working. In the future,
Dhruv can be generalized to support the interactions in any online professional community.

5.2 Lessons Learnt

The most important lesson learnt as a result of this work is that the Semantic Web needs
ways to handle large amounts of data. The Semantic Web reasoning infrastructure will
need to deal with significant amounts of data on the Web and current reasoners for OWL
are easily overwhelmed with data. For this reason, we were not able to make full use of
the semantic inferencing possibilities offered by the Semantic Web. Instead, we opted for
a simpler, less expressive set of ontologies for modeling the OpenACS community. The
fact that this simpler modeling also proved to be so valuable to the OpenACS community
attests to the value of semantics and the lack thereof in current systems.

The Semantic Web also needs more domain-specific ontologies. Although there has
been an effort to develop upper ontologies for several domains, these need to be linked to
more specific ontologies or categories that are used within actual work domains. Thus, for
Dhruv, we could not make use of any existing ontology. Instead, we needed to construct
specialized ontologies for use in the context of the community work artifacts.

The user study indicated that OpenACS community members were keen on being in-
volved in the improvement and extension of Dhruv. The community is technically sophis-

177

ticated enough to understand how Dhruv works and to handle and maintain the explicit
semantics used within Dhruv. This is an audience unlike that of typical ontology-based
systems, where there is a sharp distinction between the users of the system and the knowl-
edge engineers who design the system. Furthermore, systems that do not require develop-
ers to change their system or ways of working are well-regarded. The community appreci-
ated the lightweight and non-intrusive nature of Dhruv in comparison to other knowledge
management systems, citing it as a major factor in their enthusiasm for Dhruv.

5.3 Contributions

The primary contribution of this research work has been to demonstrate that capturing the
semantics of a comprehensive set of artifacts can support bug resolution in OSS commu-
nities. In particular, we developed:

1. A model and knowledge base for the OpenACS community, their software content
and interactions. The model can be generalized to any OSS community and to other
online professional communities.

2. Tools and techniques to automatically extract and annotate Web information with
respect to the ontologies mentioned above. In addition, we developed rules and
heuristics to generate cross-links between OSS artifacts.

3. A framework for the use of the Semantic Web in the context of OSS development
and more generally, for collaboration in web communities as well as in software
development. We demonstrated the potential of a community Semantic Web for
OSS communities.

With respect to research in the Semantic Web community, our work is the first to focus
on supporting problem-solving in Web communities. Given that thriving Web commu-
nities have been integral to the success of the Web, it is imperative that the evolution
of Semantic Web communities from Web communities be explored. However, this area

178

of research has remain essentially unexplored until now. In this work, we demonstrated
the transition of the content of an existing Web community, OpenACS, to Semantic Web
content. In addition, we explored how the Semantic Web can support problem-solving in-
teractions within Web communities by providing supporting information from the existing
archive of the community.

Another contribution of this research in the Semantic Web area is to develop several
domain-specific ontologies to model OSS communities. The ontologies describe vari-
ous interaction artifacts of OSS development, such as bug reports, discussion threads and
commit log information, and associated web community processes. The code ontology
describes OpenACS code and can be used with slight modifications for other OSS com-
munity websites.

With respect to OSS communities, we have demonstrated that a hybrid approach com-
bining information from various community artifacts and combining various kinds of tech-
niques and heuristics can support bug resolution. We identified how the semantics inherent
in community interactions can be semi-automatically processed and used to support the
community. We found that individual information sources and individual techniques did
not provide as useful information as their combination did. Through the prototype Dhruv,
we demonstrated the potential use of the Semantic Web in OSS communities.

5.4 Future Work

There are several possible future directions for this work. The most promising direction of
future work is actual deployment of Dhruv in the OpenACS community. The user study
revealed that the community is highly enthusiastic about Dhruv and ready to help to bring
about the eventual use of Dhruv in the community. Deploying Dhruv in the OpenACS
community will allow the community to get involved in the use, maintenance and future
evolution of Dhruv.

Real-world deployment will also give us the opportunity to improve individual compo-
nents of Dhruv. In this work, we focused on simple techniques to demonstrate a proof-of-

179

concept. To take the prototype and transform it into a working system, we need to use
more sophisticated state-of-the-art techniques for various components of Dhruv, such as
metadata extraction and the generation of cross-links.

The user study revealed that the message recommendations provided by Dhruv were
not directly useful to the bug resolution task. The feedback from the study participants
suggested that the message recommendations were not the right kind of support for bug
resolution, at least in the first pass through the bug report. This is an interesting finding,
since recommendation systems are a successful genre of systems in their own right. Per-
haps there are some subtleties in the task of bug resolution that make recommendations
unsuitable support during bug resolution. It may be that the recommendation systems pro-
vide information that is more peripheral than central to the task of bug resolution. Future
work should identify how Dhruv recommendations can be made more useful to the Ope-
nACS community, either by improving the recommendations themselves or by identifying
alternate forms of recommendation support that are useful for work contexts.

It has also been suggested by the study participants that Dhruv is likely to be par-
ticularly useful for novice developers, who wish to participate more substantially in the
community. By making it easier for newcomers to understand the context of a bug re-
port and to explore the source code related to the bug report, Dhruv helps newcomers to
participate in bug resolution more effectively and perhaps even develop fixes for the bug.
This is likely to help attract new developers to the community and help compensate for
the typical lack of documentation in OSS communities that turns away novice developers
from a community and a code base. Future work to extend Dhruv to support newcomers
more thoroughly and explicitly can have significant effect on OSS communities.

The concept underlying Dhruv is fairly simple and general: identify a structured por-
tion of the semantics of interactions and attempt to support interactions by making the
semantics explicit. There is huge scope for applying this concept to other contexts beyond
bug resolution in OSS communities. The enhanced semantic interface provided by Dhruv
is likely to be directly useful in the task of code comprehension, which is a pre-requisite
for bug resolution. The task of trying to understand the code is less tightly focused than
bug resolution and involves a high degree of exploration of the links between software

180

objects. Dhruvs enhanced semantic interface supports precisely this type of exploration
and is therefore likely to be useful for code comprehension too.

Beyond OSS communities, there are other online professional communities that have
a core of relatively structured content which is high in semantics. Obvious examples are
educational communities and communities conducting scientific research. Both types of
communities are likely to benefit from a system that supports current interactions in the
community by making the interaction history of the community more transparent. By
extending Dhruv to support both these types of communities, we can demonstrate the
generality of the concept underlying Dhruv as well as make Dhruv itself more domain-
independent.

181

182

Bibliography

[AB02] U. Asklund and L. Bendix. A study of configuration management in open
source software projects. IEEE Proceedings on Software, 149(1):40–46,
February 2002. 2.1.2, 2.1.4, 1, 2.1.5

[Apa] Apache software foundation. http://www.apache.org/. 2.1

[BCM+03] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and
Peter Patel-Schneider, editors. The Description Logic Handbook: Theory,
Implementation and Applications. Cambridge University Press, 2003. 2.3.2,
2.3.2, 2.3.2

[BDH+05] Victoria Bellotti, Nicolas Ducheneaut, Mark Howard, Ian Smith, and Re-
becca E. Grinter. Quality versus quantity: E-mail-centric task management
and its relation with overload. Human-Computer Interaction, 20:89–138,
2005. 2.1.5

[BDS+90] Ronald J. Brachman, Premkumar Devanbu, Peter G. Selfridge, David Be-
langer, and Yun Chen. Toward a software information system. AT&T Tech-
nical Journal, 69(2):22–41, 1990. 2.2.2

[Bec04] Dave Beckett. Turtle–terse rdf triple language.
http://www.ilrt.bris.ac.uk/discovery/2004/01/turtle/, January 2004. 4

[Ber93] Lucy M. Berlin. Beyond program understanding: A look at programming ex-
pertise in industry. In Jean C. Scholtz Curtis R. Cook and James C. Spohrer,
editors, Proceedings of the Fifth Workshop on Empirical Studies of Program-
mers, pages 6–25, Palo Alto, CA, USA, December 1993. Ablex Publishing
Corporation. 2.1.3

[BHS02] Bettina Berendt, Andreas Hotho, and Gerd Stumme. Towards semantic web
mining. In Ian Horrocks and James Hendler, editors, Proceedings of the

183

First International Semantic Web Conference (ISWC), volume 2342 of Lec-
ture Notes for Computer Science, pages 264–278, Sardinia, Italy, June 2002.
Springer Verlag. 2.3.1

[BHS05] Franz Baader, Ian Horrocks, and Ulrike Sattler. Description logics as ontol-
ogy languages for the semantic web. In Dieter Hutter and Werner Stephan,
editors, Mechanizing Mathematical Reasoning: Essays in Honor of Jörg H.
Siekmann on the Occasion of His 60th Birthday, volume 2605 of Lecture
Notes in Computer Science, pages 228–248. Springer Verlag, January 2005.
2.3.2

[BJ04] Glenda Browne and Jonathan Jermey. Website Indexing: enhancing access
to information within websites. Auslib Press, 2nd edition, 2004. 2.3.2

[BL98] Tim Berners-Lee. What the semantic web can represent, September 1998.
2.3

[BL02] Tim Berners-Lee. Relational databases and the semantic web.
http://www.w3.org/DesignIssues/RDB-RDF.html, March 2002. 2.3.2

[BLCS99] Tim Berners-Lee, Dan Connolly, and Ralph R. Swick. Web architecture: De-
scribing and exchanging data. http://www.w3.org/1999/04/WebData, June
1999. 2.3

[BLHL01] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web. Sci-
entific American, May 2001. 1, 2.3, 2.3.2

[Bloa] http://www.blogger.com. 2.3.1

[Blob] http://www.blosxom.com. 2.3.1

[BM04] Dan Brickley and Libby Miller. FOAF vocabulary specification.
http://xmlns.com/foaf/0.1/, May 2004. 2.3.1, 3.2.4

[BPS94] Alexander Borgida and Peter F. Patel-Schneider. A semantics and complete
algorithm for subsumption in the CLASSIC description logic. Journal of
Artificial Intelligence Research, 1:277–308, 1994. 2.3.2

[Bro83] R. Brooks. Toward a theory of the comprehension of computer programs.
International Journal of Man-Machine Studies, 18:543–554, 1983. 2.2.2

[Buga] OpenACS Bug Tracker. http://openacs.org/bugtracker/openacs/. 2.1.4

184

[Bugb] The bugzilla bug tracking system. http://bugzilla.mozilla.org/. 2.1.3

[Cas] Frederico Casalegno. Living memory - the role of memory in the communi-
ties. http://www.memoire-vivante.org/. 2.3.3

[Cas00] Frederico Casalegno. Living memory: une approche écologique de la
mémoire en réseau. Sociétés: Revue des sciences humaines et sociales, No.
68, February 2000. 2.3.3

[CDF+00] M. Craven, D. DiPasquo, Dayne Freitag, Andrew McCallum, Tom Mitchell,
Kamal Nigam, and Sean Slattery. Learning to construct knowledge bases
from the world wide web. Artificial Intelligence, 118(1-2):69–113, 2000.
2.3.1

[CM03] Davor Cubranic and Gail C. Murphy. Hipikat: Recommending pertinent
software development artifacts. In Proceedings, International Conference
on Software Engineering, pages 408–418, Portland, OR, May 2003. 2.3.3

[Cro] Cross-link. http://en.wikipedia.org/wiki/Cross-link. 2

[CSS] Cascading style sheets. http://www.w3.org/Style/CSS/. 2.3.1

[Cvs] Concurrent Versions System (CVS). http://www.cvshome.org/. 2.1.3, 2.1.4

[DB92] Paul Dourish and Victoria Bellotti. Awareness and coordination in shared
workspaces. In Proceedings of the ACM Conference on Computer-Supported
Cooperative Work (CSCW), pages 107–114. ACM Press, 1992. 2.1.3

[DB03] Nicolas Ducheneaut and Victoria Bellotti. Ceci n’est pas un objet? talking
about objects in e-mail. Human-Computer Interaction, 18:85–110, 2003.
2.1.4

[DB04] W3C Recommendation Dave Beckett, Editor. Rdf/xml syntax specification
(revised). http://www.w3.org/TR/rdf-syntax-grammar/, February 2004. 4

[dBLPF05] Jos de Bruijn, Rubén Lara, Axel Polleres, and Dieter Fensel. OWL DL vs.
OWL flight: conceptual modeling and reasoning for the semantic web. In
WWW ’05: Proceedings of the 14th international conference on World Wide
Web, pages 623–632, New York, NY, USA, 2005. ACM Press. 2.3.2

185

[DCvH+02] Mike Dean, Dan Connolly, Frank van Harmelen, James Hendler, Ian Hor-
rocks, Deborah L. McGuinness, Peter F. Patel-Schneider, and Lynn Andrea
Stein. Web Ontology Language (OWL) Reference Version 1.0. OWL Spec-
ification, November 2002. 2.3.2

[DDM03] Martin Dzbor, John Domingue, and Enrico Motta. Magpie – Towards a
semantic web browser. In Katia Sycara Dieter Fensel and John Mylopoulos,
editors, Proceedings of the Second International Semantic Web Conference
(ISWC), volume 2870 of Lecture Notes in Computer Science, pages 738–753,
Sanibel Island, FL, USA, October 2003. Springer Verlag. 2.3.3

[DGMN02] Jamie Dinkelacker, Pankaj K. Garg, Rob Miller, and Dean Nelson. Pro-
gressive open source. In Proceedings of the International Conference on
Software Engineering (ICSE), pages 177–184, Orlando, Florida, USA, May
2002. ACM Press. 2.1.2

[Dot] dotLRN. http://openacs.org/projects/dotlrn/. 2.4

[Dub04] Dublin core metadata element set, version 1.1: Reference description.
http://dublincore.org/documents/dces/, December 2004. 2.3.1

[DW05] Nicolas Ducheneaut and Leon A. Watts. In search of coherence: a review of
e-mail research. Human-Computer Interaction, 20:11–48, 2005. 2.1.5

[Ecl] Eclipse.org. http://www.eclipse.org. 2.3.3

[Fir] The firefox web browser. http://firefox.mozilla.org/. 2.1

[Flo] http://flora.sourceforge.net/. 2.3.2

[FOAa] http://www.ldodds.com/foaf/foaf-o-matic.html. 2.3.1

[FOAb] http://www.formsplayer.com/demo/foaf/foaf-creator.html. 2.3.1

[FOAc] FOAFnaut. http://www.foafnaut.org/. 2.3.1

[FvHH+01] Dieter Fensel, Frank van Harmelen, Ian Horrocks, Deborah McGuinness,
and Peter F. Patel-Schneider. OIL: An ontology infrastructure for the seman-
tic web. IEEE Intelligent Systems, 16(2):38–45, 2001. 2.3.2

186

[GC91] Edward M. Gellenbeck and Curtis R. Cook. An investigation of procedure
and variable names as beacons during program comprehension. In Thomas
G. Moher Jürgen Koenemann-Belliveau and Scott P. Robertson, editors, Pro-
ceedings of the Fourth Workshop on Empirical Studies of Programmers,
pages 65–79, New Brunswick, NJ, USA, December 1991. Ablex Publish-
ing Corporation. 2.2.2

[GDB04] J. Grant and W3C Recommendation D. Beckett, Editors. N-triples section in
rdf test cases. http://www.w3.org/TR/rdf-testcases/, February 2004. 4

[GG02] Carl Gutwin and Saul Greenberg. A descriptive framework of workspace
awareness for real-time groupware. Journal of Computer-Supported Coop-
erative Work (JCSCW), 3-4:411–446, 2002. 2.1.3

[Gho03] Rishab A. Ghosh. Understanding free software developers: Findings from
the FLOSS study. Working paper, MERIT/Institute of Infonomics, Univer-
sity of Maastricht, June 2003. 2.1.2, 4

[GHVD03] Benjamin N. Grosof, Ian Horrocks, Raphael Volz, and Stefan Decker. De-
scription logic programs: combining logic programs with description logic.
In WWW ’03: Proceedings of the 12th international conference on World
Wide Web, pages 48–57, New York, NY, USA, 2003. ACM Press. 2.3.2

[GO] Gene ontology. http://nciterms.nci.nih.gov/NCIBrowser/Connect.do?dictionary=GO.
2.3.2

[GPS04] Carl Gutwin, Reagan Penner, and Kevin Schneider. Group awareness in dis-
tributed software development. In Proceedings of the Computer Supported
Cooperative Work (CSCW), Chicago, Illinois, USA, November 2004. 2.1.3,
2.1.3, 2.1.3, 5, 2.1.5

[gre] http://www.greenpeace.org/international/footer/software-copyright. 2.4

[Gru93] T. R. Gruber. Toward principles for the design of ontologies used for knowl-
edge sharing. Technical report, KSL, 1993. 2.3.2

[HH97] B. Heckel and B. Hamann. A visual e-mail analysis tool. In Proceedings of
the NPIV 97 Workshop on New Paradigms in Information Visualization and
Manipulation, New York, USA, 1997. ACM Press. 2.1.5

187

[HLTB04] Ian Horrocks, Lei Li, Daniele Turi, and Sean Bechhofer. The instance store:
DL reasoning with large numbers of individuals. In Proceedings of the 2004
Description Logic Workshop (DL 2004), pages 31–40, 2004. 5.1.1

[HM00] James Hendler and Deborah L. McGuinness. The DARPA agent markup
language. IEEE Intelligent Systems, 15(6):67–73, November 2000. 2.3.2

[HM01] Volker Haarslev and Ralf Möller. Racer system description. In International
Joint Conference on Automated Reasoning (IJCAR), Siena, Italy, June 18-23
2001. 2.3.2

[Hor98] Ian Horrocks. Using an expressive description logic: FaCT or fiction? In
Proceedings of KR 1998, 1998. 2.3.2

[HP02] Stefan Haustein and Jörg Pleumann. Is participation in the semantic web
too difficult? In Ian Horrocks and James Hendler, editors, Proceedings of
the First International Semantic Web Conference (ISWC), volume 2342 of
Lecture Notes for Computer Science, pages 448–453, Sardinia, Italy, June
2002. Springer Verlag. 2.3.1

[HPS03] Ian Horrocks and Peter F. Patel-Schneider. Reducing OWL entailment to
description logic satisfiability. In Katia Sycara Dieter Fensel and John My-
lopoulos, editors, Proceedings of the Second International Semantic Web
Conference (ISWC), volume 2870 of Lecture Notes in Computer Science,
pages 17–29, Sanibel Island, FL, USA, October 2003. Springer Verlag. 2.3.2,
2.3.2

[HPS04] Ian Horrocks and Peter F. Patel-Schneider. A proposal for an OWL rules
language. In WWW ’04: Proceedings of the 13th international conference
on World Wide Web, pages 723–731, New York, NY, USA, 2004. ACM Press.
2.3.2

[HPSB+03] Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Benjamin
Grosof, and Mike Dean. SWRL: A semantic web rule language combining
OWL and RuleML. http://www.daml.org/2003/11/swrl/, 2003. 2.3.2

[HS02] Timothy J. Halloran and William L. Scherlis. High quality and open source
software practices. In Meeting Challenges and Surviving Success: 2nd Work-
shop on Open Source Software Engineering, International Conference on
Software Engineering, Orlando, FL, May 2002. 1, 2.1.2, 2.1.3, 2.1.3, 2.1.3,
2.1.4

188

[HvHPS01] Ian Horrocks, Frank van Harmelen, and Peter Patel-Schneider. The
DAML+OIL Web Ontology Language. DAML Specification, March 2001.
2.3.2

[IBM] Ibm-apache. http://www.technewsworld.com/story/35527.html. 2.1.2

[Jen] The Jena semantic web framework. http://jena.sourceforge.net/. 2.3.2, 2.3.2

[KA86] Claudius M. Kessler and John R. Anderson. A model of novice debugging
in LISP. In Elliot Soloway and Sitharama Iyengar, editors, Proceedings of
the First Workshop on Empirical Studies of Programmers, pages 198–212,
Washington, DC, USA, June 1986. Ablex Publishing Corporation. 2.2.2

[KLW95] Michael Kifer, Georg Lausen, and James Wu. Logical foundations of object-
oriented and frame-based languages. Journal of the ACM, May 1995. 2.3.2

[KPH05] Aditya Kalyanpur, Bijan Parsia, and James Hendler. A tool for working with
web ontologies. International Journal on Semantic Web and Information
Systems, 1(1):36–49, January-March 2005. 2.3.2

[KPO+03] Atanas Kiryakov, Borislav Popov, Damyan Ognyanoff, Dimitar Manov, An-
gel Kirilov, and Miroslav Goranov. Semantic annotation, indexing and re-
trieval. In Katia Sycara Dieter Fensel and John Mylopoulos, editors, Pro-
ceedings of the Second International Semantic Web Conference (ISWC), vol-
ume 2870 of Lecture Notes in Computer Science, pages 484–499, Sanibel
Island, FL, USA, October 2003. Springer Verlag. 2.3.1, 3.6.1

[KR03] Joseph B. Kopena and William C. Regli. DAMLJessKB: A tool for reasoning
with the semantic web. In Proceedings of the Second International Semantic
Web Conference (ISWC), Sanibel Island, FL, October 2003. 2.3.2

[KS95] Robert Kraut and L. Streeter. Coordination in software development. Com-
munications of the ACM, pages 69–81, 1995. 2.1

[Lan88] M. Landsdale. The psychology of personal information management. Ap-
plied Ergonomics, 19:55–66, 1988. 1, 2.1.5, 5.1.2

[Let86] Stanley Letovsky. Cognitive processes in program comprehension. In Elliot
Soloway and Sitharama Iyengar, editors, Proceedings of the First Workshop
on Empirical Studies of Programmers, pages 58–79, Washington, DC, USA,
June 1986. Ablex Publishing Corporation. 2.2.2, 3.6.1

189

[Lew82] C. Lewis. Using the ‘thinking-aloud’ method in cognitive interface design.
Technical Report Research Report RC9265, IBM T. J. Watson Research Cen-
ter, Yorktown Heights, NY, USA, 1982. 3

[Lin] The linux operating system. http://linux.org/. 2.1, 2.1.1

[LS99] Ora Lassila and Ralph R. Swick. Resource Description Framework (RDF)
Model and Syntax Specification. RDF Specification, Feb 1999. 2.3.1

[LTT+03] Yang Li, Simon Thompson, Zhu Tan, Nick Giles, and Hamid Gharib. Be-
yond ontology construction: Ontology services as online knowledge sharing
communities. In Katia Sycara Dieter Fensel and John Mylopoulos, editors,
Proceedings of the Second International Semantic Web Conference (ISWC),
volume 2870 of Lecture Notes in Computer Science, pages 469–483, Sanibel
Island, FL, USA, October 2003. Springer Verlag. 2.3.3

[LUM+02] Gangmin Li, Victoria Uren, Enrico Motta, Simon Buckingham Shum, and
John Domingue. Claimaker: Weaving a semantic web of research papers.
In Ian Horrocks and James Hendler, editors, Proceedings of the First Inter-
national Semantic Web Conference (ISWC), volume 2342 of Lecture Notes
for Computer Science, pages 436–441, Sardinia, Italy, June 2002. Springer
Verlag. 2.3.3

[McB02] Brian McBride. Four steps towards the widespread adoption of the seman-
tic web. In Ian Horrocks and James Hendler, editors, Proceedings of the
First International Semantic Web Conference (ISWC), volume 2342 of Lec-
ture Notes for Computer Science, pages 419–422, Sardinia, Italy, June 2002.
Springer Verlag. 2.3.3

[MEG+03] Luke McDowell, Oren Etzioni, Steven Gribble, Alon Halevy, Henry Levy,
William Pentney, Deepak Verma, and Stani Vlasseva. Mangrove: Entic-
ing ordinary people onto the semantic web via instant gratification. In Ka-
tia Sycara Dieter Fensel and John Mylopoulos, editors, Proceedings of the
Second International Semantic Web Conference (ISWC), volume 2870 of
Lecture Notes in Computer Science, pages 754–770, Sanibel Island, FL,
USA, October 2003. Springer Verlag. 2.3.3

[MFH00] Audris Mockus, Roy T. Fielding, and James Herbsleb. A case study of open
source software development: the apache server. In ICSE ’00: Proceedings
of the 22nd international conference on Software engineering, pages 263–
272, New York, NY, USA, 2000. ACM Press. 1

190

[MFH02] Audris Mockus, Roy T. Fielding, and James D. Herbsleb. Two case studies of
open source software development: Apache and mozilla. ACM Transactions
on Software Engineering and Methodology, 11(3), July 2002. 2.1.3, 2.1.3

[Mil00] David R. Millen. Community portals and collective goods: Conversa-
tion archives as an information resource. In Proceedings of the 33rd An-
nual Hawaii International Conference on Systems Sciences (HICSS), Maui,
Hawaii, USA, January 4-7 2000. 2.1, 2.1.5

[Mov] http://www.movabletype.org. 2.3.1

[Moz] The mozilla software. http://mozilla.org/. 2.1, 2.1.1

[MS86] F. Warren McFarlan and Donna B. Stoddard. Otisline. Harvard Business
School Case, June 1986. 2.3.3

[MvH04] Deborah L. McGuinness and Frank van Harmelen. OWL web ontology lan-
guage overview. http://www.w3.org/TR/owl-features/, February 2004. 2.3.2

[MYR03] Saikat Mukherjee, Guizhen Yang, and I. V. Ramakrishnan. Automatic anno-
tation of content-rich HTML documents. In Katia Sycara Dieter Fensel and
John Mylopoulos, editors, Proceedings of the First International Semantic
Web Conference (ISWC), volume 2870 of Lecture Notes in Computer Sci-
ence, pages 533–549, Sanibel Island, FL, USA, October 2003. Springer Ver-
lag. 2.3.1

[NCI] NCI thesaurus. http://nciterms.nci.nih.gov/NCIBrowser/. 2.3.2

[Nie93] Jakob Nielsen. Usability Engineering. Morgan Kaufmann, 1993. 3

[NSC+01] N. F. Noy, M. Sintek, M. Crubezy, R. W. Fergerson, and M. A. Musen. Cre-
ating semantic web contents with protege-2000. IEEE Intelligent Systems,
16(2):60–71, 2001. 2.3.2

[Ope] OpenACS: Open architecture community system. http://openacs.org/. 2.1.1,
2.1.2, 2.1.3, 2.2.1, 2.4

[OTH+04] Ikki Ohmukai, Hideaki Takeda, Masahiro Hamasaki, Kosuke Numa, and
Shin Adachi. Metadata-driven personal knowledge publishing. In Sheila
McIlraith, Dimitris Plexousakis, and Frank van Harmelen, editors, Proceed-
ings of the Third International Semantic Web Conference (ISWC), volume
3298 of Lecture Notes in Computer Science, pages 591–604, Hiroshima,
Japan, November 2004. Springer Verlag. 2.3.1

191

[OWL] OWL API. http://sourceforge.net/projects/owlapi. 2.3.2

[Pho] Photo.net. http://www.photo.net/. 1

[Pil02] Mark Pilgrim. What is RSS? http://www.xml.com/pub/a/2002/12/18/dive-
into-xml.html, December 2002. 5

[Pla] PlanetPDF. Planetpdf. http://www.planetpdf.com/. 2.1

[QHK03] Dennis Quan, David Huynh, and David R. Karger. Haystack: A platform for
authoring end user semantic web applications. In Katia Sycara Dieter Fensel
and John Mylopoulos, editors, Proceedings of the Second International Se-
mantic Web Conference (ISWC), volume 2870 of Lecture Notes in Computer
Science, pages 738–753, Sanibel Island, FL, USA, October 2003. Springer
Verlag. 2.3.3

[R] The R statistical software. http://www.r-project.org/. 2.1.1

[RSS] RDF site summary (RSS) 1.0. http://web.resource.org/rss/1.0/. 2.3.1

[Sel90] P. Selfridge. Integrating code knowledge with a software information sys-
tem. In Proceedings of Fifth Conference on Knowledge-based Software As-
sistance, pages 183–195. IEEE Press, September 1990. 1

[Sem] W3C semantic web activity. http://www.w3.org/2001/sw/. 2.3

[SL86] Elliot Soloway and Stan Letovsky. Delocalized plans and program compre-
hension. IEEE Software, 3(3), 1986. 2.2.2

[SLPL86] Elliot Soloway, Stan Letovsky, Juan Pinto, and Diane Littman. Mental mod-
els and software maintainence. In Proceedings of the Conference on Empir-
ical Studies of Programmers, pages 80–98. Ablex Publishers, 1986. 2.2.2

[Smi02] Marc Smith. Tools for navigating large social cyberspaces. Communications
of the ACM, 45(4):51–55, 2002. 2.1.3, 2.1.5

[SSO87] Elliot Soloway, S. Sheppard, and Gary Olson, editors. Proceedings of the
Second Workshop on Empirical Studies of Programmers. Ablex Publishers,
December 1987. 2.2.2

[SSS91] Manfred Schmidt-Schauß and Gert Smolka. Attributive concept descriptions
with complements. Artificial Intelligence, 48(1):1–26, 1991. 2.3.2

192

[SWM04] Michael K. Smith, Chris Welty, and Deborah L. McGuinness. OWL web
ontology language guide. http://www.w3.org/TR/owl-guide/, February 2004.
2.3.2

[TSL93] L. Terveen, P. Selfridge, and M. Long. From folklore to living design mem-
ory. In Proceedings of INTERCHI’93, pages 15–22, 1993. 2.1.3

[Ubu] Ubuntu. http://www.ubuntulinux.org/. 2.1

[URI] Uniform resource identifier (uri) activity statement.
http://www.w3.org/Addressing/Activity. 2.3.1

[Val] OWL validator. http://owl.bbn.com/validator/. 2.3.2

[vKSL03] Georg von Krogh, Sebastian Spaeth, and Karim Lakhani. Community, join-
ing and specialisation in open source software innovation: A case study.
Working paper, MIT Sloan School of Management, June 2003. 2.1.2

[w3c] World wide web consortium. http://www.w3.org/. 2.3

[Web] http://en.wikipedia.org/wiki/Weblog. 6

[Wel95] Christopher A. Welty. An Integrated Representation for Software Develop-
ment and Discovery. PhD thesis, Rensselaer Polytechnic Institute, 1995. 1,
4, 2.1.5, 2.2.2

[Wel97] Christopher Welty. Augmenting abstract syntax trees for program under-
standing. In Proceedings of the 1997 Automated Software Engineering Con-
ference. IEEE Computer Society Press, 1997. 2.2.2

[Wie86] S. Wiedenbeck. Beacons in computer program comprehension. International
Journal of Man-Machine Studies, 25:697–709, 1986. 2.2.2

[Wik] Wikipedia. http://wikipedia.org. 1, 2.1

[XEm] The xemacs editor. http://xemacs.org/. 2.1.1

[XFr] Xfree86. http://www.xfree86.org/. 2.1.1

[Zub88] Shoshana Zuboff. In the Age of the Smart Machine: The Future of Work and
Power. Basic Books Inc., 1988. 2.2.1

193

	1 Introduction
	1.1 Organization

	2 The Semantic Web for OSS Communities
	2.1 Online Professional Communities
	2.1.1 Open Source Software Communities
	2.1.2 The Community
	2.1.3 The Interactions
	2.1.4 The Content
	2.1.5 Challenges

	2.2 Semantic Web for Community, Content and Interactions
	2.2.1 Scenario
	2.2.2 Bug Resolution as a Domain for the Semantic Web

	2.3 Components of a Semantic Web or What Needs to be Created?
	2.3.1 Metadata
	2.3.2 Ontologies and Reasoning
	2.3.3 Related Work

	2.4 Exploration Context: The OpenACS/dotLRN Community
	2.4.1 Community
	2.4.2 Activity
	2.4.3 Community Artifacts

	3 Dhruv
	3.1 Dhruv: A Prototype Semantic Web to Support OSS Bug Resolution
	3.2 The OpenACS Community Ontology
	3.2.1 The Code Ontology
	3.2.2 The Bug Ontology
	3.2.3 The Interactions Ontology
	3.2.4 The Community Ontology

	3.3 Generating Metadata
	3.3.1 Generating Metadata from Structured Data
	3.3.2 Generating Metadata from Natural Language Text
	3.3.3 Issues in Automatic Metadata Generation

	3.4 Linking Metadata
	3.4.1 Identifying Artifacts from Noun Phrases
	3.4.2 Identifying artifacts from code terms
	3.4.3 Identifying artifacts from artifact references

	3.5 Generating Recommendations
	3.5.1 Heuristics for generating recommendations

	3.6 User Interaction with Dhruv
	3.6.1 How to use Dhruv?
	3.6.2 Generating the Interface

	4 Evaluating the Potential Impact of Dhruv
	4.1 How is the potential impact of the Semantic Web measured?
	4.2 Discussion of the measures
	4.3 Evaluating Dhruv's recommendations
	4.3.1 Corpus
	4.3.2 Statistics measured
	4.3.3 Comparing Cross-links Heuristics
	4.3.4 Adding learning or evolution of semantic web
	4.3.5 Text Similarity
	4.3.6 Explicitly related bug reports

	4.4 Evaluating the Dhruv information interface
	4.4.1 Study Participants
	4.4.2 Study Tasks
	4.4.3 Study Results

	5 Discussion
	5.1 Dhruv
	5.1.1 Use of the Semantic Web in Dhruv
	5.1.2 Supporting Open Source Software Communities

	5.2 Lessons Learnt
	5.3 Contributions
	5.4 Future Work

