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Abstract

Neuroimage registration has been a crucial area of research in medical image analysis for many
years. Aligning brain images of different subjects in such a way that same anatomical structures
correspond spatially is required in many different applications, including neuroimage classification,
computer aided diagnosis, statistical quantification of human brains and neuroimage segmentation.
We combine statistical learning, computer vision and medical image analysis to propose a
multiresolution framework for learning-based neuroimage registration. Our approach has four
distinct characteristics not present in other registration methods. First, instead of subjectively
choosing which features to use for registration, we employ feature selection at different image scales
to learn an appropriate subset of features for registering a specific pair of neuroimages. Second, we
use interesting-voxel selection to identify image voxels that have the most distinct image feature
vectors. These voxels are then used to estimate the deformation field for registration. Third,
we iteratively improve our choice of features and interesting voxels during registration process.
Fourth, we create and take advantage of a statistical model containing information on image
feature distributions in each anatomical location.
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1 Introduction

Neuroimage registration is an essential problem in medical image analysis. Transforming neuroim-
ages so that their corresponding anatomical structures become aligned is essential for statistical
quantification of human brain, computer aided diagnosis, neuroimage segmentation and study of
normal aging.
Neuroimage registration, particularly cross-subject registration, presents a number of challenges.

1. Corresponding anatomical brain structures of different subjects may differ in shape and topol-
ogy. While some structures have relatively simple form that does not change much from
subject to subject, others, like sulci, have a complex shape that varies significantly between
people. These variations generally increase with aging, and can be further intensified by the
presence of neurological disorders.

2. In the cases where registration involves neuroimages of pathological brains, some lesions, like
tumors, can be present in one brain but not in the other. In such cases the problem of aligning
corresponding anatomical structures becomes ill-posed since not every structure in one brain
has a corresponding one in the other brain.

In this work we propose a new learning-based method for neuroimage registration. Our method
addresses the challenges by learning which features to use for each pair of images and which voxels
of the images to use in order to drive the registration process.
This paper is organized as follows. In section 2, we outline strength and weaknesses of the existing
methods for neuroimage registration. Then we present our approach in section 3. Experimental
results follow in section 4; section 5 contains a brief discussion of the future work, and we conclude
the paper in section 6.

2 Existing Approaches

Existing methods for neuroimage registration can be divided into three groups:

1. Deformation model driven registration [18, 20, 14]. Methods in this group maximize some
similarity metric between two images as a function of transformation parameters. Most
popular similarity metrics are mean sum of squared differences (MSSD) between the reference
and registered input image and mutual information (MI). Advantages of these methods are
that

(a) they are fully automatic;

(b) they do not require computation of features.

However, these methods also have a number of disadvantages:

(a) they are susceptible to converging to suboptimal solutions because currently used similar-
ity measures, like MI and MSSD are not convex functions of transformation parameters
[20, 21];

(b) they require a parametrized deformation model to be chosen beforehand;
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(c) their performance depends on the number of parameters in a deformation model [14].
The fewer parameters the deformation model has, the easier it is for a method to find
a near optimal solution in the space of transformations defined by the model. However,
spaces induced by deformation models with few parameters are often not rich enough to
contain an adequate transformation for cross-subject registration. On the other hand,
more descriptive deformation models with many degrees of freedom are computationally
expensive and make it harder to escape local extrema because of the need to estimate a
large number of parameters. [21, 20];

(d) their performance depends on the initial orientation of the images [20].

2. Landmark-based registration. Methods in this group compute registering transformation
based on the user-specified correspondences between certain voxels(landmarks) in the refer-
ence image and the input image. Advantages of the methods in this group are that

(a) deformation does not have to be parametrized in advance. The registering transforma-
tion is computed based on the given correspondences;

(b) user-specified correspondences are accurate.

Shortcomings of these methods include human intervention and time-consuming landmark
specification.

3. Feature-vector based registration methods [27] . Methods in this group compute a feature
vector for each voxel. Correspondences between voxels in the reference image and voxels in
the input image are estimated based on the similarity of their feature vectors. Attractive
characteristics of such methods are that

(a) they are automatic;

(b) they are less prone to converging to suboptimal transformations;

(c) they do not require parametrized deformation model, but estimate the registering trans-
formation based on the computed correspondences.

However, such methods

(a) use pre-selected set of features;

(b) involve many hand-tuned parameters.

Our approach builds on feature-based registration methods. As does the method presented in [23],
we utilize various features to construct an attribute vector describing a voxel in a neuroimage. Also,
as in [27], we use gaussians to model distribution of features belonging to a given voxel. However,
our method has a number of distinguishing traits:

1. We estimate parameters of gaussians based on affinely transformed copies of the reference
image.

2. We utilize decision theoretic framework to find interesting voxels in the reference image.
These interesting voxels are far from other voxels in the features space, i.e. they are different
from the others. The same framework is then used to find matches for the interesting voxels
among the voxels in the input image.
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Table 1: Existing approaches
Deformation model driven Landmark based Feature-vector based

Require human intervention no yes no
Increasing degrees of free-
dom of the deformation model
makes the method more prone
to converge to local extrema

yes no no

Depend on the initial orienta-
tion of the reference and input
images.

yes no no

Select driving voxels no yes yes
Learn features no no no

3. We do not select features manually in advance but learn which feature subset to use for every
pair of neuroimages automatically. This gives our method the power to adapt to particularities
of the specific pair of neuroimages.

3 The algorithm

3.1 Introduction

In this section we describe our algorithm for neuroimage registration. Characteristics of our algo-
rithm are:

1. automatic;

2. multiscale;

3. adaptive: for every pair of images the algorithm learns which features and which voxels to
use for registration.

4. independent of the initial orientation of the images;

As a preprocessing step for our algorithm we must estimate a statistical model that describes how
feature vectors for every anatomical location are distributed. The model is estimated based on a
reference image. The model does not have to be reestimated every time the algorithm is run as
long as the registration is done to the image of the same subject. Since we can register any two
images to each other by registering each of them to the third image, in most cases we can avoid
relearning the model.
The algorithm contains the following major components (Figure 3):

1. Feature selection: this mechanism selects a subset of features to use for registration. It uses
a feature pool - set of all features available to the algorithm.

2. Correspondence matching: this mechanism uses the model to find correspondences between
a voxel in the reference image and a voxel in the input image.
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Figure 1: Block diagram of the proposed algorithm. Inputs to the algorithm are statistical model
computed based on the reference image and an input image to be registered to the reference image.
The algorithm starts by choosing a feature subset at random. Then we find interesting voxels of
the reference image, i.e. voxels that can be matched correctly and with high confidence in this
feature subspace to the corresponding voxels of the model. Under the same feature space we find
corresponding voxels in the input image. Transformation between input and reference images is
computed based on these correspondences and registration error is calculated. Then a new feature
is added to the feature subset and the registration is repeated until the addition of any feature
does not reduce registration error. Once the best feature subset is determined, we use it to find a
potentially different set of interesting voxels, and repeat the above procedure again. The algorithm
terminates if registration error is not decreasing any longer.
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Table 2: Affine transformation parameters. A transformation is formed by composing rotation,
skewing and scaling in the direction of X-axis. 18 × 11 × 9 = 1782 affine transformation are
constructed and applied to the reference image

Minimum Maximum Step
Angle, 0 0 340 20

Skew 0 0.5 0.05
Scale 0.8 1.2 0.05

3. Interesting voxel selection : it determines which voxels in the reference image are used as
landmarks.

4. Deformation field estimation: this component fits a thin plate spline (TPS) transform [3] to
the set of candidate correspondences.

5. Registration evaluation: this component computes the similarity measure between the refer-
ence image and the registered input image. We used mutual information and mean sum of
square intensity differences as similarity measures.

3.2 Statistical model for image features

The statistical model for image features consists of two components. First component is a reference
image, which prescribes what image coordinates each anatomical location should have in the regis-
tered image. The second component is a set of image features distributions. It contains information
about how feature vectors are distributed for voxels in the reference image.
For a reference image we simply need to select an MR neuroimage of a healthy individual. Then
image coordinates of, say, left tip of the corpus callosum in the input image after the registration
should be the same as those of left tip of the corpus callosum in the reference image.
As for the second component, we have to estimate probability density function f(X|vi) which tells
us the likelihood of observing feature vector X at the voxel at anatomical location vi. Under
the assumption that the components xj of the feature vector X are independent we can factorize
f(X|vi):

f(X|vi) =
m∏

j=1

f(xj |vi), (1)

where m is the dimensionality of X. Now we face an easier task of estimating f(xj |vi) for every
individual component of X. An ideal training set for this task would be a set of neuroimages of
different subjects, where we know voxel by voxel correspondences between our selected reference
image and every neuroimage in the set. However, such correspondences are sometimes semantically
ambiguous [25] and are time consuming to produce by hand. Instead, we create our training set
by applying 1782 different affine transformations to our reference image (see Table 2). We have an
advantage of knowing exact voxel to voxel correspondences between the reference image and each
of the transformed images. After we calculate feature vectors for every voxel in every image, we
obtain a sample of 1782 feature vectors for each anatomical location vi (see Figure 2).

These samples enable us to perform estimation of the distribution f(xj |vi) of feature vector
components xj at each anatomical location vi. In our experiments we chose to use parametric
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Figure 2: For each combination of angle θ, scaling S and skewing K shown in the Table 2 we
compute an affine transform and apply it to the reference image. Features are computed for every
transformed copy at three image scales. Values of intensity 2 mean (top) and gabor 0 3 (bottom)
features for a particular voxel are shown
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Figure 3: For every voxel, feature and scale we fit a Gaussian to the values obtained from affinely
transformed copies of the reference image (see Figure 2). Gaussians of intensity 2 mean (top) and
gabor 0 3 (bottom) features for a particular voxel are shown
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estimation with gaussian family of distributions [27]. Non-parametric density estimation is another
alternative, but it is more expensive computationally. As Figure 4 illustrates, Gaussian family is a
reasonable parametric model to use for estimating feature distributions at specific image voxels. By
using formula (1) we find distribution f(X|vi) of feature vectors X for every anatomical location
vi in the reference image (see Figure 3).

3.3 Feature selection

In our approach we extract a feature vector for each voxel. To a voxel in an image we can apply
a number of neighborhood operators, such as Gabor filters, Laplacian operators, Harris detector,
etc [9, 4, 10]. Each such operator corresponds to a dimension in a feature space, and the responses
of these operators define the coordinates of the voxel in that feature space. To make our features
rotationally invariant we apply neighborhood operators at several orientation and select maximum
of the responses for each operator.
Feature pool contains features available to the algorithm. Only subset of these features is auto-
matically selected and used for the actual registration. The feature pool used in our experiments
is summarized in the Table 3. Note that our feature pool included only generic commonly used
features. The distinct property of our learning based system is that the feature pool can contain
any classical or novel features deemed appropriate by a researcher.

We utilize wrapper approach [12] to feature selection and sequential feature selection strategy
[19, 16, 15]. At each step of the sequential feature selection we perform registration using currently
selected feature subsets (one to select interesting voxels, the other one - to estimate correspon-
dences). We evaluate quality of registration using sum of squared differences between reference
image and registered input image. If quality of the registration improves compared to the previous
step of the sequential selection, we record current subsets and continue the feature selection process.
Otherwise we go back to the subsets selected during previous step and try to add (remove) different
feature. If the addition(removal) of the remaining features does not improve registration, we stop
the iteration.

3.4 Correspondence matching

Suppose we know which feature subspace is a good one to use for the registration of MR neuroim-
ages. Then for each voxel Wk in the input image we can compute a feature vector Xk. We need to
estimate a probability mass function m(vi|Xk) which returns a probability that feature vector Xk

belongs to a voxel vi in the reference image.
Using Bayes rule we can write m(vi|Xk) as

m(vi|Xk) =
f(Xk|vi)p(vi)∑n

j=1 f(Xk|vj)p(vj)
, (2)

where f(Xk|vi) is the probability density function (see equation 1) which tells us the likelihood of
observing feature vector Xk at the voxel at the anatomical location vi; p(vi) is prior distribution
for voxels in the reference image; n is number of voxels in the reference image.
Prior p(vi) lets us incorporate prior knowledge into the distribution estimation. In the multiscale
registration, for example, if we have estimated correspondences on a coarser scale, then a priori on
a finer scale we would like to decrease probabilities of correspondences that are inconsistent with
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Figure 4: Histograms of values of the INTENSITY 8 MEAN feature for the same voxel at 3
different scales indicate Gaussian-like distributions
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Table 3: Image Feature Pool
Feature Description
First derivative
(D1)

Maximum absolute value of the response of the first derivative operator applied
at 8 equally spaced orientations from -900 to 900

Second deriva-
tive (D2)

Maximum absolute value of the response of the second derivative operator applied
at 12 equally spaced orientations from -900 to 900

Third derivative
(D3)

Maximum absolute value of the response of the third derivative operator applied
at 16 equally spaced orientations from -900 to 900

Fourth deriva-
tive (D4)

Maximum absolute value of the response of the fourth derivative operator applied
at 20 equally spaced orientations from -900 to 900

Fifth derivative
(D5)

Maximum absolute value of the response of the fifth derivative operator applied
at 24 equally spaced orientations from -900 to 900

Gabor 0 3 (G1) Maximum absolute value of the response of the Gabor filter with scale 0 and
spatial frequency 3 applied at 8 equally spaced orientations from -900 to 900

Gabor 0 5 (G2) Maximum absolute value of the response of the Gabor filter with scale 0 and
spatial frequency 5 applied at 12 equally spaced orientations from -900 to 900

Gabor 2 7 (G3) Maximum absolute value of the response of the Gabor filter with scale 2 and
spatial frequency 7 applied at 16 equally spaced orientations from -900 to 900

Gabor 3 7 (G4) Maximum absolute value of the response of the Gabor filter with scale 3 and
spatial frequency 7 applied at 12 equally spaced orientations from -900 to 900

Gabor 4 9 (G5) Maximum absolute value of the response of the Gabor filter with scale 4 and
spatial frequency 9 applied at 16 equally spaced orientations from -900 to 900

Laplacian (L) Response of the Laplacian operator
Harris Detector
(H)

Response of the Harris detector

Intensity 1 mean
(M1)

Mean of the voxel intensities inside a ring with inner radius 0 and outer radius 1

Intensity 1 std
(S1)

Standard deviation of the voxel intensities inside a ring with inner radius 0 and
outer radius 1

Intensity 2 mean
(M2)

Mean of the voxel intensities inside a ring with inner radius 1 and outer radius 2

Intensity 2 std
(S2)

Standard deviation of the voxel intensities inside a ring with inner radius 1 and
outer radius 2

Intensity 4 mean
(M3)

Mean of the voxel intensities inside a ring with inner radius 2 and outer radius 4

Intensity 4 std
(S3)

Standard deviation of the voxel intensities inside a ring with inner radius 2 and
outer radius 4

Intensity 8 mean
(M4)

Mean of the voxel intensities inside a ring with inner radius 4 and outer radius 8

Intensity 8 std
(S4)

Standard deviation of the voxel intensities inside a ring with inner radius 4 and
outer radius 8

Intensity 16 mean
(M5)

Mean of the voxel intensities inside a ring with inner radius 8 and outer radius
16

Intensity 16 std
(S5)

Standard deviation of the voxel intensities inside a ring with inner radius 8 and
outer radius 16
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the coarser level. If only one scale is used, or when we work at the coarsest scale in a multiscale
pyramid, we use uninformative uniform distribution as our prior. In this case, equation (2) becomes

m(vi|Xk) =
f(Xk|vi)∑n

j=1 f(Xk|vj)
(3)

3.5 Interesting voxel selection

Selecting interesting voxels in the model improves both the performance of the algorithm and
accuracy of the proposed correspondences. Suppose that a voxel in the reference image is similar
to many other voxels in the reference image. Then its corresponding voxel in the input image must
be similar to many other voxels in the input image. Therefore, our soft matching process will find
that the model voxel under consideration corresponds, with high probability, to many voxels in the
input image. As a consequence, even if we pick the correspondence with highest probability, there
is a larger chance for a mistake.
In order to quantitatively evaluate the quality of an estimated correspondence, we define a risk
measure as follows

R(Xk) =
N∑

i=1

m(vi|Xk)D(vi, vk), (4)

where D(vi, vk) is the geometric distance between voxel vk corresponding to the feature vector Xk,
and voxel vi. The value of R(Xk) is high if there are many voxels that correspond to Xk with high
probability, and these voxels are far away from each other. R(Xk) has small values when there
are few voxels that correspond to feature vector Xk with high probability, and these voxels are
clustered in the neighborhood of vk.
For each voxel vi in the reference image we form a feature vector Xi = x̄i1, x̄i2, ..., x̄im, where
x̄ij = mean(f(xj |vi)). Then we match Xi to the voxels in the reference image. interesting voxels
are those that can be matched correctly and with low risk.
We match interesting voxels with the voxels in the input image using similar process. Now feature
vectors Xi are computed for voxels in the input image and matched to the interesting voxels in the
reference image. However, in this case, we cannot compute the true risk because we do not know
the correct correspondence. Therefore we use the correspondence that has highest probability
as an estimate of the correct correspondence. Because of that, low risk now only assures that
correspondences with high probabilities are clustered together, but it does not guarantee that the
cluster is in the correct place anymore. Correspondences with low risk are selected as candidate
correspondences based on which we compute the deformation field.

3.6 Deformation field estimation

Since we are estimating the deformation field based on the correspondences between voxels in two
images, we have to deal with the problem of incorrect matches. We use a randomized algorithm,
RANSAC [8], to fit an affine transform to a set of candidate correspondences. Candidate corre-
spondences that are inconsistent with the estimated affine transform are removed as outliers. The
inliers, or driving correspondences, are used to estimate a thin plate spline transform which regis-
ters input image to the reference image.
Work of the algorithm is illustrated in the Figure 5. Figure 3.7 demonstrates improvement of reg-
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istration results as feature selection process progresses.

3.7 Registration evaluation

We use two different ways to evaluate the quality of a registration:

1. mean sum of square differences between intensities of the reference image and registered input
image;

2. mutual information between intensities of the reference image and registered input image.

4 Experiments

4.1 Feature selection strategy

The goal of this experiment is to compare different feature subset selection strategies and to deter-
mine how feature selection affects the quality of registration.
We design the following strategies (see Table 4):

1. Select a random set of interesting voxels among the voxels that lie on the edges of the reference
image; select a random subset of features to find voxel correspondences.

2. Select a random set of interesting voxels among the voxels that lie on the edges of the reference
image; use forward feature selection to find a subset of features to be used for estimating voxel
correspondences.

3. Select a random subset of features to find interesting voxels among the voxels that lie on the
edges of the reference image; select a random subset of features to find voxel correspondences.

4. Select a random subset of features to find interesting voxels among the voxels that lie on
the edges of the reference image; use forward selection to choose subset of features used for
determining voxel correspondences.

5. Select a random subset of features to find interesting voxels among the voxels that lie on
the edges of the reference image; use forward selection to choose subset of features used for
determining voxel correspondences. This time start from the subset used to find interesting
voxels without one feature.

6. Select a random subset of features to find interesting voxels among the voxels that lie on the
edges of the reference image. Then employ forward selection for choosing a subset of features
to be used for determining voxel correspondences. Find a new set of interesting voxels using
this subset of features and iterate.

7. Select a random subset of features to find interesting voxels among the voxels that lie on the
edges of the reference image. Then employ forward selection for choosing a subset of features
to be used for determining voxel correspondences. This time start from the subset used to
find interesting voxels without one feature. Find a new set of interesting voxels using this
selected subset of features and iterate.
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Figure 5: Illustration of the work of the algorithm. Top row: reference image (left) with interesting
voxels marked; input image (right) with voxels that match interesting voxels of the reference image.
Second row: the same with incorrect correspondences removed automatically. Third row: registra-
tion results. Reference image is on the left; registered input image is on the right. Yellow number
is registration error measured as mean sum of square differences of intensities between reference
and registered input images. Fourth row: reference image (left); difference image(right)
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Figure 6: Feature selection at work. Top row: reference and input images. Second and third
row: results of the registration as feature selection progresses. Currently selected feature subset is
shown below each image (see Table 3 for feature codes). Numbers in yellow show registration error,
measures as mean sum of square differences between reference and registered input image. The
plot on the bottom illustrates that error reduction rate flattens as the number of selected features
increases 14



Table 4: Feature selection strategies. A is a subset of features selected for correspondence estima-
tions; B is a subset of features used for interesting voxel selection.

Interesting voxel selection Feature selection for correspondence estimation
random
inter-
esting
vox-
els

using
random
feature
subset

using random
feature subset
followed, then
using A

using
random
set

forward
selection

forward selection
starting from B
without one feature

Strategy 1 X X
Strategy 2 X X
Strategy 3 X X
Strategy 4 X X
Strategy 5 X X
Strategy 6 X X
Strategy 7 X X

Since voxels that lie on the edges are generally more distinct, in all the strategies above we select
interesting voxels only from the edge voxels in order to speed the algorithm up. For each feature
selection strategy we run the registration algorithm eight times, each time restarting at a different
random point. Each run continues for 20 iterations. Results of the experiments are summarized in
Figures 7, 8, 9, 10, 11, 12. The results show that feature selection reduces the registration error in
half. We also see that interesting voxel selection increases the number of driving correspondences.
Since in this set of experiments we always selected 100 interesting voxels, this means that the number
of incorrectly estimated correspondences decreases because of the interesting voxel selection.

4.2 Effect of the number of interesting voxels on the registration quality

The goal of these experiments is to determine the minimal number of interesting voxels used with
little sacrifice to the registration quality.
The following feature selection strategies were used:

1. Select a random set of interesting voxels among the voxels that lie on the edges; use forward
feature selection to find a subset of features to be used for estimating correspondences.

2. Select a random subset of features to find interesting voxels among the voxels that lie on
the edges. Starting from this subset without a feature, employ forward selection for choosing
subset of features to be used for determining the correspondences. Find a new set of interesting
voxels using this selected subset of features and iterate.

Since voxels that lie on the edges are generally more distinct, in the strategies above we select
interesting voxels only from the edge voxels in order to speed the algorithm up.

The numbers of interesting voxels and numbers of the top correspondences for each feature
selection strategy we have tried are shown in the Table 5.

Top correspondences are the matches with the lowest risk. We have ran the registration algo-
rithm eight times for each feature selection strategy and every pair of interesting points and top
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Figure 7: Bar and box plots of the registration error for different feature selection strategies.
Strategies 1 and 3, where we randomly select feature subset used for finding correspondences, are
significantly worse than the strategies where sequential feature selection is employed. For example,
the t-test that mean errors of strategy 1 and 3 are the same as the mean error of strategy 7 yields
p-values of 0.00031 and 0.00059 respectively.
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Figure 8: Bar and box plots of the number of selected features for each feature selection strategy.
”+” sign indicates outliers
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Figure 9: Bar and box plots of the number of driving voxels for each feature selection strategy.
First two feature selection strategies, where no interesting voxel selection is performed have fewer
driving voxels than the last four. So does feature selection strategy number 3, where feature subset
to select interesting voxels and feature subset to find correspondences are chosen at random. ”+”
sign indicates outliers

Table 5: Number of interesting voxels and top correspondences used in the experiments
Number of IP 80 60 40 20 10 5
Number of Top 60 40 30 15 7 4

correspondences shown in the Table 5, each time restarting at a different random point. Each run
continued for 10 iterations. The results are in Figures 13, 14, 15, 16.

For the two feature selection strategies mentioned above, registration error increases as number
of interesting voxels decreases. There is an abrupt deterioration of registration quality when the
number of interesting voxels drops from 40 to 20 (see Figure 13).
The registration quality does not seem to significantly differ between the two strategies, as shown
in Figures 13 and 15. This can be explained by the following factors:

1. Even though we do not select interesting voxels for the second strategy, we still rank corre-
spondences that we estimate according to their risk. We select only the top correspondences
and pass them to RANSAC. Therefore, even if there are more incorrect matches for the case
with no interesting voxel selection, many of these mistakes are filtered out during the selection
of top correspondences.

2. When we choose interesting voxels at random, we still select only voxels that lie on edges.
Edge voxels are generally more distinct.

However, we can see that for the same number of interesting points, the number of driving voxels
is higher for the strategy with interesting voxel selection (see Figures 14 and 16). This means that
interesting voxel selection allows us to find correspondences more accurately.
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Figure 10: Normalized histograms of the features selected for choosing interesting voxels. Strate-
gies 1 and 2 select interesting voxels at random. Most frequently selected features: strategy
3 - gabor 3 7; strategy 4 - intensity 8 mean; strategy 5 - third derivative, intensity 2 std,
intensity 4mean; strategy 6 - intensity 16 mean; strategy 7 - intensity 8 std. Least frequently
selected features: strategy 3 - first and fifth derivatives, gabor 0 5, intensity 2 std; strategy
4 - gabor 3 7; strategy 5 - gabor 0 3, gabor 2 7, intensity 4 mean; strategy 6 - first derivative,
gabor 3 7, intensity 4 std; strategy 7 - second derivative, laplacian (see Table 3 for feature codes)
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Figure 11: Histograms of the features selected for finding correspondences interesting voxels. Most
frequently selected features: strategy 1 - intensity 16 mean; strategy 2 - fourth derivative; strat-
egy 3 - intensity 8 mean; strategy 4 - intensity 2 mean; strategy 5 - first derivative; strategy
6 - third derivative; strategy 7 - intenity 1 mean. Least frequently selected features: strat-
egy 1 - second and third derivatives, laplacian, Harrisdetector, intensity 2 std; strategy 2 -
gabor 2 7, laplacian, intensity 1 mean, intensity 2 std; strategy 3 - intensity 1 std; strategy 4 -
third derivative; strategy 5 - laplacian, intensity 4 mean; strategy 6 - first derivative, gabor 4 9;
strategy 7 - second derivative, laplacian. (see Table 3 for feature codes)
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Figure 12: Histograms of the driving voxels. Top row, from left to right: strategy 1, strategy 2;
second row, from left to right: strategy 3, strategy 4; third row, from left to right: strategy 5,
strategy 6; last row: strategy 7. Blue means the voxel is rarely selected, red means that the voxel is
selected often. For each feature selection strategy the algorithm was run 8 times each time starting
from a different random point. 100 interesting voxels were selected during each run.
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Figure 13: Interesting voxel selection. Bar and box plots of the registration error for each pair of
the number of interesting voxels and the number of the top correspondences. ”+” sign indicates
outliers
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Figure 14: Interesting voxel selection. Number of driving voxels for each pair of the number of
interesting voxels and the number of the top correspondences. ”+” sign indicates outliers
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Figure 15: Random interesting voxels. Bar and box plots of the registration error for each pair of
the number of interesting voxels and the number of the top correspondences. ”+” sign indicates
outliers
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Figure 16: Random interesting voxels. Number of driving voxels for each pair of the number of
interesting voxels and the number of the top correspondences
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4.3 Using previously learnt interesting voxels and feature subsets

The goal of this experiment is to determine whether we can successfully use interesting voxels and
feature subsets learnt during registration of one pair of neuroimages for registration of a different
pair of neuroimages.
The following settings were used:

1. Use previously learnt interesting voxels and feature subsets directly.

2. Take previously learnt feature subset for finding correspondences. Use it to select interesting
voxels. Perform registration using these interesting voxels and previously learnt subset for
finding correspondences.

3. Take previously learnt feature subset for finding correspondences. Use it to select interesting
voxels. Perform forward feature selection to learn new subset for finding correspondences.

Each of the three strategies was applied to 40 different neuroimages. Each neuroimage was affinely
transformed 10 times by a random affine transformation. 50 interesting voxels were used.

Error plots are presented in the Figures 17, 18, 19.
As the experiments indicate, directly using previously learnt interesting voxels or feature subsets

for future registrations gives poor results, as shown in Figures 17 and 18. If we use previously learnt
interesting voxels but learn a feature subset for determining correspondences online, the results
improve but are still not very good (see Figure 19). These experiments suggest that the key to our
algorithm’s good performance (see Tables 13 and 20) is the online selection of features and iterative
improvement of the set of interesting voxels and the feature subsets.

4.4 Testing registration on 40 slices from different subjects

The goal of this experiment is to test how well our algorithm performs when online feature subset
selection is used. The following feature selection strategy was used: select a random subset of
features to find interesting voxels among the voxels that lie on the edges; starting from the subset
used to find interesting voxels without one feature, employ forward selection for choosing subset of
features to be used for determining the correspondences; find a new set of interesting voxels using
this selected subset of features and iterate.

Our method was applied to 40 different neuroimages. Each neuroimage was affinely transformed
10 times by a random affine transformation. 50 interesting voxels were used. The algorithm was
running for 10 iterations. The results are shown in the Figures 20, 21. The algorithm performs
competitively well (compare with Figures 13 and 7 ), except in one case, where input image is
significantly brighter than reference image. This happens because we estimate feature distributions
for each voxel based only on the reference image, and most of the features in the feature pool are
intensity based. Therefore, the algorithm was not able to find correspondences for most of the
interesting voxels.

5 Future Work

5.1 Selecting different subspaces of features for each voxel

Selecting single subset of features for all voxels, while relatively straightforward, has a serious lim-
itation. It does not recognize that voxels in a neuroimage can be unique each in its own way. To
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Figure 17: Registration errors when previously learnt interesting voxels and feature subsets are
used directly. ”+” sign indicates outliers
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Figure 18: Registration errors when previously learnt feature subsets are used directly. ”+” sign
indicates outliers
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Figure 19: Registration errors when previously learnt feature subset for estimating correspondences
is used to find interesting voxels. Forward selection is then used to find new feature subset for
correspondences. ”+” sign indicates outliers
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Figure 20: Bar and box plots of the registration errors for the algorithm with online learning.
The smallest error corresponds to the registering transformed reference image to itself. ”+” sign
indicates outliers
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Figure 21: Bar and box plots of the number of driving voxels for each input image. We can see
direct relationship between number of driving voxels and quality of the registration. The largest
number of driving voxels corresponds to the case where reference image is registered to transformed
copies of self. Smallest number of driving voxels corresponds to the case with the largest registration
error. 28



give a simplistic example, suppose that we have an image that contains a circle and a small square.
Assume that we have two features available: one that responds strongly to corners, the other one
- to the center of a circle. In the subspace induced by corner-detecting feature, only corners of
the square would be selected as interesting voxels. In the subspace induced by center-of-a-circle
detecting feature only the center of the circle will be selected as an interesting voxel. Which voxels
are selected as interesting when we use subspace consisting of these two features depends on how
corner-detecting feature responds to non-corners and center-of-a-circle-detecting feature responds
to non-centers. However, if we select subspace consisting of just the first feature for corners of the
rectangle, and subset consisting of just the second feature for center of a circle, then both center
of the circle and the corners will be selected as interesting.
To overcome these limitations we select different subsets of features for every voxel. In order to
accomplish this, we need to propose a measure different from registration quality as the criteria for
feature selection. The reason for this is that we cannot evaluate registration quality until we have
chosen feature subsets for all the voxels. Therefore, a step of sequential feature selection would
consist of adding/removing a feature to/from subsets associated with every voxel. Consequently,
increase or decrease in registration quality at any given step of sequential selection cannot be at-
tributed to any specific feature of a specific voxel, but rather to the group of features added/removed
in the previous step. On the other hand, risk associated with finding correspondence for a given
voxel is computed independently from the risk of the other voxels. Risk is a measure of quality of a
given match and thus an indirect measure of registration quality. Hence, we use sequential feature
selection to find a feature subset which minimizes risk associated with finding a match for a given
voxel. The algorithm now has the following steps:

1. for every voxel in the neighborhood of a voxel vi in the reference image find its feature subspace
in which vi can be matched to itself with least risk.

2. select voxels with risk smaller than a threshold as interesting voxels.

3. use the same subset of features as in step 1 to find correspondences for each interesting voxel
and perform rough registration based on these correspondences. Note that for each voxel
these subsets are different.

4. for each interesting voxel use sequential selection to find a subset of features using which we
can match this interesting voxel and a voxel in the input image so that registration quality
improves. Note that since the input image is already coarsely aligned with the reference
image, improvement in the registration quality that we obtain by moving one voxel at a time
is meaningful.

5.2 ”Likelihood of the registration” as a similarity measure

Lets define likelihood of a correspondence to be the likelihood that feature vector of a voxel in the
input image matches to some corresponding voxel in the model. This likelihood, F (X|vi), under the
assumption of the independence of the feature vector components can be factorized according to
the formula (1). The likelihood of the registration is the product of likelihoods of correspondences
for all voxels in the input image. In practice, for numerical reasons, we can replace likelihood of
a correspondence by a loglikelihood of a correspondence. In a very degenerate form, when feature
subsets for all the voxels consist only of intensity value, and all Gaussians in the model have the
same variance, loglikelihood of registration amounts to sum of square differences of intensities.
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6 Conclusions

We have presented a novel learning-based method for deformable image registration. Our approach
has 3 distinguishing characteristics:

1. It employs feature selection to automatically choose features that are best for registering a
given pair of images.

2. It uses risk associated with finding correspondence for a given voxel as a way to automatically
select landmarks to be used during registration.

3. It estimates a model of how features are distributed at each anatomical location and uses this
model to find correspondences between voxels.
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