Static Extraction and Conformance Analysis of
Hierarchical Runtime Architectural Structure

Marwan Abi-Antoun

CMU-ISR-10-114
May 14, 2010

Institute for Software Research
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Jonathan Aldrich (Chair)
Brad A. Myers
William Scherlis
Nenad Medvidovic, U.S.C.

Submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2010 Marwan Abi-Antoun

This work was supported in part by NSF CAREER award CCF-0586BARPA contract HR00110710019, Army
Research Office grant number DAAD19-02-1-0389 entitledrpPruially Available and Secure Information Sys-
tems,” the U.S. Department of Defense, and the SoftwarestngdCenter at Carnegie Mellon University and its
sponsors, especially the Alfred P. Sloan Foundation.

The views and conclusions contained in this document areetlod the author and should not be interpreted as
representing the official policies, either expressed olliedpof any of the sponsors.

Keywords: object diagram, object graph, runtime structure, runtinrehitecture,
component-and-connector (C&C) view, execution architegtarchitectural extraction, confor-
mance analysis, conformance measurement, ownership, yywasrship domains, static analy-
sis, points-to analysis, communication integrity, reeezagineering

To the Alchemists of the World!

There was a language in the world that everyone understoodnguizge the boy
had used throughout the time that he was trying to improvegthat the shop. It was
the language of enthusiasm, of things accomplished withdadepurpose, and as
part of a search for something believed in and desired.

The Alchemist—Paul Coelho (p. 64), translated by Alan R. @lark

Abstract

A high-level architectural diagram of a system’s organa@atan be useful dur-
ing software evolution. Such a diagram is often missing andtrbe extracted from
the code. Alternatively, an existing diagram may be incstesit with the code, and
must be analyzed for conformance with the implementatiome {portant notion
of conformance, theommunication integrityrinciple, stipulates that each compo-
nent in the implementation may only communicate directlihwihe components to
which it is connected in the architecture.

This dissertation proposes a novel approacciHSUAH, to extract a hierarchical
runtime architecture from an existing object-orientedeys and analyze communi-
cation integrity with a target architecture, entirely stally and using typecheckable
ownership annotations.

Previous approaches to enforcing communication intedndye significant
drawbacks: they either require radical language extesdioat incorporate archi-
tectural constructs at the expense of severe implementatistrictions, mandate
specialized architectural middleware, or use dynamicyaealthat cannot check all
possible executions.

The key contribution is a static points-to analysis to estireom an annotated
program, a global object graph that provides architectaipatraction by ownership
hierarchy and by types, where architecturally significdnects appear near the top
of the hierarchy and data structures are further down. M@®e@n extracted object
graph is sound in two respects. First, each runtime objectkactly one represen-
tative in the object graph. Second, the object graph hassdtigé correspond to all
possible runtime points-to relations between those object

Another analysis abstracts an object graph into a builtimentarchitecture.
Then, a third analysis compares structurally the builtiéeckure to a target, and an-
alyzes communication integrity in the target architectwighout propagating low-
level implementation objects into the target architectuka evaluation on several
real object-oriented systems showed that, in practiceici 1A can be applied to an
existing system while changing only annotations in the ¢cade that 8HOLIA can
identify interesting structural differences between arstexg implementation and
its target architecture.

*ScHOLIA stands for satic cmnformance cbacking of dject-based structuraiews of achitecture.Scholiaare
annotations which are inserted on the margin of an ancientusaipt.

Acknowledgments

No man can reveal to you nothing but that which already lies-haléep in the
dawning of your knowledge — Khalil Gibran

First and foremost, | want to thank my advisor, Professoatltan Aldrich, for being a great
mentortormentor and role model. Jonathan was equally good at giving bigipcidvice on ca-
reer plans, revealing deep technical insights, or nitpigkletails of inference rules and proofs. |
could never thank him enough for the countless hours spesgiimge advising, emailing, review-
ing various paper drafts, critiquing presentations, ambfreading a voluminous dissertation.

| want to especially thank Professor Medvidovic (Neno) faakening in me the interest in
software architecture while at USC. Several years lateroNerm my parents were one of the
few who supported my desire to go back to graduate schoolt dasy work colleagues at the
time thought | was crazy to leave a perfectly good job and &g paycut to go lead the spartan
life of a graduate student for several years. Neno, thankaysw for forgiving me that | went to
CMU instead of USC. Believe me, there were several dreary waddgs in Pittsburgh when |
longed for sunny southern California. But the draw of the fsgmias still worth it.

Professor Myers was a great source of advice on issuesdétaseftware engineering tools,
usability and usefulness, and a great sounding board. $d@f&cherlis gave me excellent advice
on how to position the approach and conduct a field study wihsoftware and developers.

I would like to thank Nagi Nahas. The project on which we dotleated during my first
year at CMU gave me the confidence of “beginner’s luck” and dngebeing reused throughout
this dissertation. | also want to thank my long-term officémBEhomas for being such a helpful,
pleasant person and putting up with me on those days afteivineg conference paper rejections.

I would like to thank all of my supporters, my detractors, nupgorters turned detractors,
my detractors turned supporters, as well as those who wenpletely indifferent. You all know
who you are. | would like to thank my family, for always letjimne know in which of the above
columns you were, and for always being there for me. My DadMuown, my brother, my sisters
and my most adorable nephews helped me retain my sanity andltrmuch happiness.

Finally, | thank the Computer Science Department for turmnygfinal week at CMU working
on my thesis into a veritable obstacle course: from moviegffice phone line without warning,
and in the middle of an important conversation with the amlyiat the end of which, each one
assumed the other had hung up; leaving no printer in Dohestyell as keeping a single working
elevator in Wean, a building with hundreds of occupants.tkgdinalize my dissertation and get
a cardiovascular workout at the same time, running from théldor of Doherty to the 8th floor
of Wean, then downstairs to the 5th floor, which still had afen! As the late Professor Randy
Pausch put it best in his Final Lecture (which | had the peyd of attending in person), brick
walls are there for a reason—they let us prove how badly we thamgs. | did it!

Vii

Contents

[1__Introduction| 1
[L.1 Introductioh 2
[1.2 Object-Oriented DIia@rams o v v v v oo 2

[1.2.3.1 _ Static vs. dynamic object diagrams 4
[1.2.32 Globalobjectdiagrans 6

.3 Software Architecture 6
[L3.1 CodeArchitectdre 6

L@mﬁﬁéﬁw&mﬂer 6

i i = 4

[1.3.3 Benefits of Architectdre 8
l1L.3.3.1 Systemunderstanding 8

[1.3.3.2 Qualitative architectural evaluation 8
[1.3.3.3 _Quantitative architectural analysis. 8

11.3.3.4 Avoiding architectural drift and erosion 9

[1.4 Architectural ADSraction 9
[1.5 Obiect Graph Extraction 12
[1.5.1 Key Idea: Hierarchical Object Graphs 12
[1.5.1.1 _Annotations to convey architectural intent 12

[1.5.1.2 _ Static analysis to achieve soundness 13

[1.5.2.5__ Abstraction by hierardhy 17
i ' ion .17

54 Summaly 18
[L.6 Architectural Conformanke e 19
11.6.1 _Key Property: Communication Integrity 19
[1.6.2 Establishing traceability 19

11.6.3 _Previous work in architectural conformance 20
|17 The Scholia aooroach 20

1.10.3 HoothesiS' Soundness e 27

%@n 27
1.10.5 Hypothesis: Comparison e 28

25.1.2 uniqueobjects 65

2513 lentobjecth 66
2.6 DISCUSSIAN . . . o v o o e e 66

2.6.1 ASSUMDHOMS . . . o o oo o 66
2.6.2 _Alternate Annotatiohs 66

6.3 IMpPrecision 69
2.6.3.1 _Field assignmentin superclass 69
2.6.3.2 Imprecision with containérs 72

2.7 Summaly 73
| — . ™ -
3.1 _Annotations (Featherweight DomainJava)cco. 75

B SYNAX . . o o e e e, 75

.12 TypingRUIBS . . . o o oo 77
3.1.3 _Ownership domain sounddess 83

iect Graph@Graph) o o 84

3.2.1 DataTvpés 84
3.2.2__Constraint-Based Specification 85
3.3 Object Graph SoUNANESS o o v v 88
13.3.1 _Instrumented SemMantics vt 88
3.3.2 _Approximationrelation 91

333 Lemmas. oo 91

13.3.4 Preservation oo oo 6 9

B.3.7 Limitations a1
3.4 _Display Graph®Graph) v v v vt 114
Limi idg . 114
13.4.2 Abstraction by TYPESo 115
13.4.2.1 _Abstraction by trivialtypes 115
13.4.2.2 Abstraction by design intenttypes 116
[3.4.2.3 Abstraction by types and soundhess 116
3.5 Implementation e 116
B.51 Traceabiliy 17
3.5.2_Differences between the formal and the concretermgste. 117
B6 Discussidn 117
[3.6.1 Our Previous Formalizations 117
B.6.1.1 Pseudo-cdde 117
[3.6.1.2 Term-rewriting systém 811
3.6.2 Precisidno 118
3.6.3 POINtSto ANAIYSIS ot e 118
B _Summaly 119

4.1 Introductio

4 /
/l [
4 /

athering available documentation. 125
ypechecking the annotations 125
Prioritizing the annotation warnings 125

4.4.2 | Refining the Object Graph 261
4,421 Overall stratefy

Y e 126

: Refining the ownership annotations 126
4.2 odechanges 127
14.4.2.4 ing abstraction by types 271
4.4 ontrolling the level ofdetail 127

| 4.10.1 Research Questions (Revisited) 175
[4.10.2 Evaluation Critiglie o oo 175
4103 Soundndss 176
4104 Performante 717
4105 Scalabilily 77
411 Summaly 717
I5__Architectural Synchronization| 179
B Introductioh 179
5.2 Architectural View Differencidgo i 180
-to- DN . . e e 184

Mgwgmis 186
5.3.3 Runtime and Memory Complexity 871
5.4 Architectural View Synchronizatibn

5.4.1 General Approach

........................ 187

6.6.1 Falsepositives 162

6.6.2 _Why an architecture description language? 217
[6.6.3 _Why structural compansan?« .o 217
6.6.4 Relation to Reflexion Models 182

Xiii

7.6.5 Analyzin € 452

6.6 immary of Findings 482
xtended Example: HillClimber 248
Modeling the Target Architectuire 248
Adding Annotations 482
xtracting Obje aphs e 249

4 __Abstracting into Built Architectdre 249
7.7.5 Analyzing Conformance 492

0 nforcing Code-Level Constraints 266

3 Analyzing Conformance 642
3.9 nforcing Architectural Constraints 267

IMQW&Mﬁon X €

8.3 _Ownership type svstehs 279
}M%SS&! 79 2
8.3.2 Relatedtypesystems 8l 2
8.3.3 Case studies for ownershiptypes 281
[8.3.4 Ownership infere ke 282

Static analysis of the runtime structure 283

M%MM&%S 283
8.4.1.1 Annotation-free analy$es 832

852 Dvnamlc ownershm analv €S . . e 288

MIMMQS : . w290

8.5.4 Summary of previous dynamic anaIVS|s of the runUmarhhré 290
I8.6 Architectural eXtraction vt 291

WML@ ----------- 300

8.9.2 Conformance analysis of the runtime architecture 301
M IS 301
8.9.2.2 Static analvskis 301

9.3 Usefulness and Usability o oo 311
931 Usefulnesso 311
932 Usabilithy 312

0.4 FutureWork 133

h. 133
9.4 Architectural Extraction e 314
[0.4.4 Architectural Comparisbn 315
9.4.5 Architectural Conformarce 315

XVii

List of Figures

0 _Listeners: using theWNER keyword. 42

2.25_Listeners: distinguishing oblects based on domalamateris ---------- 59

[2.26 Listeners: object graph distingu 9 ot pasedomain parameters. . . . 59

[2.32_Listeners: abstraction by trivial tyges. oiwweoe 63
[2.33 Listeners: inheritance hierar¢hy. 64
[2.34 Listeners: abstraction by design intenttypes. 64
.35 Listeners: alternate annotatibns. 67
2.36_Listeners: object graph based on the alternate aiprsat 67
2.37 Listeners: using publicdomains. 68
.38 Listeners: object graph based on using public domains. 68
2.39 Field assignmentin SUPErclass.o 70
12.40 Imprecision with field as&gghmgm_ln_sup_em]ass. R 4
2.41 Field assignmentin SUPErCIass. i 71
|2._42_Eix'mg imprecision with field assignment in superclass 71

3.1 Featherweight Domain Java abstract syntax (FDJ). 77

13.2__FDJ auxiliary definition's. 78
13.3__FDJ auxiliary definitions (continueld)., 79
3.4 _FDJ dynamic SemMantics.o oo e e e, 79
B.5_FEDJcongruenceruls. 80
3.6 _FDJ subtvgl:iinrlﬁuj_ds. 80
3.7 FDJ typin e, 81
13.8 _FDJ class, method and store tyging. v v v e e e 82

jons for tl¥Graph) L 85

13.10_Constraint-based specification of the object araptamim_a.n_a.bﬁlls. 87
13.11 Instrumented runtime semantics (corerdles). v w 89
3.12 Instrumented runtime semantics (congLu_e_ns_e_dules) 90

Reflexive e) | eati ion. 113

13.14 Data type declaratlons for tBGraphl 115
13.15 _Rules for abstraction by tyges. 116
13.16_Abstraction by trivial typeES. oo e e 116
[3.17_Abstraction by designintenttyges.o 116
M1 ArchRecdtodl. 231

4.2 JHotDrawclassdiagram. 129
Hﬁ_lﬂmmm_d_eﬁnmg the three top-level domains on thé¢ a:tmsd 130
4.4 JHotDraw Com0051teF1gum_a.D_n_Q_taJ_L0_DJS 131
4.5 JHotDraw: adding annotationsligawing) 133

XX

5.11 Aphyds: informal designed architectiire. 194

I5.12 AphydsAJ: designed architecture representedin Acme. 195
15.13 AphydsAJ: matching types between Acme (left) and pavhldright). 196
I5.14 AphydsAJ: comparison of Acme and ArchJava C&C views. 197
I5.15 AphydsAJ: built architecture with Acme stylesand pe. 198
5.16 Duke's Bank: informal designed architecture.199
5.17 Duke's Bank: documented architecture in Aéme.200
5.18 Duke’s Bank: recovered architecture in Adme.200
I5.19 Duke’s Bank: comparison of the documented and recomlrmte_clmels ... 201

B.ZD_HHIQleb_eL:_B_a.s_e_d_ngn_tQmIsoace framework. application. 202
i i AT i Gl

6.1 Examplesofiffededges 206

16.2__Aphyds: mismatch between the object graph and the targeitecture. 207
6.3 Example of summary edge. 208
6.4 _Mapping an OOG to a C&C view inthe Acme ADL. 209
6.5 Edgelifingina C&Cview. 209
6.6 Displaying aconvergence and adivergencel L. 212
6.7 Displaying alivergence as asummary connector. 213
IZ.1__Tools to support thec{oLia approach. 225

74 ArchConftool. 29
[Z.5__ArchConftool (continued).o 230
7.6 ArchConf tooI (contlnuedi) 231

....................... 233
2.8 Aphyds: initial annotations durlng_l_te_l;a_u_o_[h 1 . 234
[7.9 _Aphyds: 00G using private domains and many peer objects. 235
[7.10 Aphyds: conformance view during Iteration 2.236
[7.11 Aphyds: refined annotations during lteration 2.237
[7.12_Aphyds: refined OOG after defining public domains. 238
[7.13 Aphyds: conformance view during lteratioh 2. . w0 239

[7.14 Aphyds: results u&ng_th_e_R_eﬂ_em_n_M_o_d_e_lthool Ceo 243
E.luﬂmutmu_d.&s@nad_amme&tu&dmmgme_dm_&me 245

[7.20 HillClimber: built architecture in Acme. oo o 249
[7.21 HillClimber: conformance vieWw. 250
[7.22 CryptoDB: documented Level-1 DFD. v v oo e 252
[7.23 CryptoDB: documented Level-2 DED. vi i 253

7.31 CryptoDB: annotation excerpts. i .

XXxiii

.32 CryptoDB: annotation géggggié(aaaflaﬂled) 2L o 1 §
[7.33 CryptoDBlLocalKeyStore OOGL v v i i i i 261
7.34 CryptoDB: Level-1 00G withottring objectd. 262
yptoDB: | evel-2 OOG, after binding top-level domaiosString to shared) 263

6 yptoDB: built architecture in Acnpe. e e 264
yptoDB: target architecture in Acme.o ew . 265

[7.38 CryptoDB: conformance viewin ACme. v vuu.. 265
[2.39 CryptoDB: injected architectural violatibn. 267
A A hip domain annotations 323
(A Adding annotationsto genericcade.o ceiee oL 325
A Declaring and binding method domain parameters. . 325
IA.4 _Re-writing a new expression using a local variable. 326
(A Re-writing a cast expression using a local variable. 327

List of Tables

/ aluation based on the Cognitive Framework for Design.

4 Performance me ements of the architectural eidinact. 177

(7.4 _CryptoDB: mapping between archltectural components add elements.

ELB&Mmmm&asummﬂs.oﬂhe&mﬂmamadalysus 272

XXV

Chapter 1

Introduction

“An object-oriented program’s runtime structure often bears little resemdxéato its code
structure. The code structure is frozen at compile-time; it consists oedds fixed inheri-
tance relationships. A program’s runtime structure consists of rapidinging networks of
communicating objects. In fact, the two structures are largely independigiihg to under-
stand one from the other is like trying to understand the dynamism of livingstenss from
the static taxonomy of plants and animals, and vice versm , p- 22)

This dissertation proposes a novel approaathSJAE, to extract statically a hierarchical
runtime architecture from a program in a widely used obg®nted Iangua& using anno-
tations. If a target runtime architecture existGH®LIA can also analyze, at compile time,
communication integrity between the code and the intendehitacture. At its core, SHOLIA
relies on a novel static analysis to extract a hierarchibga graph from an arbitrary object-
oriented implementation. The extracted object graph ples/architectural abstraction by own-
ership hierarchy and by types. Moreover, the object graglousdin two respects. First, each
runtime object has exactly one representative in the olgjeqih. Second, the object graph has
edges that correspond to all possible runtime points-atiogls between those objects. The ex-
traction analysis assumes that typecheckable ownershipaions provide minimally invasive
hints about the architecture, instead of requiring dewal®po use a specialized framework or
a new programming language. To analyze conformanceid&IA compares the built and the
designed architecture using a structural comparison &yahthical architectural views that does
not assume that view elements have unique identifiers. liziistHOLIA’s conformance analysis
allows the designed architecture to be more abstract, asaliats for additional communication
in the implementation without propagating low-level oligeinito the designed architecture.

1ScHoLIA stands for gatic conformance clcking of dject-based structuraiews of achitecture. According
to Wikipedia, scholiaare annotations which are inserted on the margin of an aneianuscript. The metaphor
is that this approach supports existing legacy, i.e., ac@bject-oriented systems and uses annotations that othe
development tools can ignore.

2This dissertation mainly considers Java-like staticafiyed general purpose object-oriented languages such as
Java and C#, where each object is a Plain Old Java Object (P®H® work does not specifically address dynam-
ically typed languages, or Java programs that use aspiectt@d programming (AspectJ), component frameworks
such as Enterprise Java Beans (EJB), etc.

1.1 Introduction

During software evolution, the most reliable and accuratcdption of a software system is its
source code. However, high-level architectural diagrafrth@® system’s organization are also
very important. For instance, a diagram can help locate dhgponents that must be modified,
or estimate the magnitude of the impact of a change baseceateftrendencies among entities.

Often, such a diagram is missing, hence the neexti@actone from the code. Alternatively,
a diagram may exist but may be inconsistent with the code. Aesalt, taking an important
decision on how to evolve a system based on an incorrecttectimal diagram may lead to
problems during the implementation of the changes, or tiemented system may not exhibit
the desired architectural qualities. Hence, there is amitapt need to analyze tloenformance
of a target architecture with an implementation.

This chapter is organized as follows. Secfiod 1.2 discusbgst-oriented design diagrams.
SectionL.B discusses architectural views. Secfioh 1eusgées the notion of architectural ab-
straction. Section 115 discusses architectural extnacti®ectiol 1.6 discusses analyzing ar-
chitectural conformance. Sectibnl.7 discusses the peapagproach, SHOLIA. Sectior 1.B
summarizes the requirements of a solution. Se€fidn 1$thstcontributions of this dissertation.
Sectior 1.0 concludes with a thesis statement and an eddlirthe rest of this document.

1.2 Object-Oriented Diagrams

Reverse engineering or architectural extraction can extr@®ous complementary high-level
views of a system. A view can focus on the static code stractor on the runtime structure.
Most previous reverse engineering research focuses omtieestructure, while this dissertation
improves on the state-of-the-art for extracting and anatyzhe runtime structure of object-
oriented systems.

1.2.1 Example

| illustrate by example the key differences between the cbdecture and the runtime structure
using Aphyds, a system of 8,000 source lines of Java codeuoiting the libraries used), first
discussed b)J (Aldrich et &l. 20£12a). Aphyds is a pedagogicalit layout application that an
electrical engineering professor wrote for one of his @ass$Students in the class are given the
program with several key algorithms omitted, and are askezbtle the algorithms as assign-
ments.

The design of Aphyds follows a two-tiered Document-Viewtatecture. The designed ar-
chitecture (Fig[C1]1) shows tiers, components, and intieras between components. In this
diagram, an edge represents a points-to relation. Usefaneecomponents such aswerUl are
in the upper half of the diagram. &rcuit and computational components, suchpasitioner,
are the lower half.

2 Chapter 1. Introduction

user interface

__ ———*(channelRouteUl

C T~

floorplanul

placeRouteUl

circuit database computationaj/code

circuit

partitioner f \

channelRouter
node <«— net

/ globalRouter
floorplanner .

Figure 1.1: Aphyds: designed architecture, redrawn from the original develbg=gram reproduced in
(Aldrich et al.l;O_Oja), included here with some adaptations. | renamed somgonents, reversed the
direction of some arrowis_(AILiLigh_eﬂé.L_ZDj)Za, p. 192) and excludadfttav edges since@&HoLIA does
not currently show the latter.

- circuit

Circuit
T

/F
|
|
|

«i ‘stantlate» - circuit

Node
«instantiate» - tnode /L - circuit
‘ Terminal
e)

- tnet

Class

Figure 1.2: Aphyds: partial class diagram focusing on the classcuit and related classes.

1.2.2 Class Diagrams

A class diagrams an important and widely used description of an objeatrigd system that
shows the static code structure, in terms of classes andifikeditance relationships.
Many tools automatically generate class diagrams of the strdicture from program source
12002). | used the Eclipse UML tommpﬂ) extract a class diagram
from the Aphyds code. For example, a class diagram would sh@Vector class, andiode
andNet classes that have a module dependencyeartor (Fig.[1.2).

1.2. Object-Oriented Diagrams 3

1.2.3 Object Diagrams

Another important view is awobject diagramor object graph where nodes represent objects,
i.e., instances of the classes in a class diagram, and wtiges eorrespond to relations between
objects. An object diagram makes explicit the structurdefdbjects instantiated by the program
and their relations, facts that are only implicit in a clasgdam. While in the class diagram a sin-
gle node represents a class and summarizes the propemriésfafs instances, an object diagram
represents different instances as distinct nodes, witin tven propertiesL(IQn_eIJa_a.nd_P_o_tﬂch
). For example, (Gamma etlal. 1994) used a class diagrdmreobject diagram to explain
several of the standard design patterns. Recent empiricirese confirms the importance of
“how objects connect to each other at runtime when | want ttetstand code that is unknown:

an object diagram is more interesting than a class diagramegpresses more how [the system]
functions” E@S).

1.2.3.1 Static vs. dynamic object diagrams

Following (Tonella and Potrich 2004), | distinguish betweastatic object diagramanddynamic
object diagrams A static object diagranrepresents all objects and inter-object relationships

possibly created in a program, and is recovered Byatic analysisover the code. Alynamic
object diagramshows the objects and the relations that are created dun@giomore specific
system executions, and is recovered usigg@amic analysis

Static and dynamic object diagrams provide complementafigrmation. A static object
diagram lacks precision on the actual multiplicity of thgemlts that the program may cre-
ate, or the actual relations between objects. In contrastyreamic object diagram, e.g.,
(Flanagan and Freund 2006), can show the exact number ahitest and the actual relations
in a given program run. But a dynamic object diagram may no¢cefmportant objects or re-
lations that show up only in other executions. For exampégia design diagram, a security
review could enumerate all possible communication betwaested and untrusted parts of a
systerﬁ. But if the diagram does not show all communication presethéimplementation,
because additional communication pathways arise duringr @xecutions, the analysis may be
incorrect.

In general, there are several problems with dynamic arslysist, a dynamic analysis may
not include important objects or relations that show up anlpther executions. Second, a
dynamic analysis may not be repeatable, i.e., changingthés or executing different use cases
might produce different results. Third, runtime heap iniation does not convey design intent.
Fourth, a dynamic analysis cannot be used on an incompletggm still under development or
to analyze a framework separately from a specific instaotiatinally, some dynamic analyses
carry a significant runtime overhead—axtB0x slowdown in one cas und
2 (E), which must be incurred each time the analysis is run.

4 Chapter 1. Introduction

[Soeon]

=

AN
SR

M\y// sl
7/ \/ b h
=l o

/&‘fﬁf /

i
Yl
PR
b R C

BN

A $NodeListeng]

— |

// y

/
O g =

ol
5/%’1
e
Pl

CifcuitDisplayersNetListener

Joclopeanm] |
12 s
3 is?

== -

N
‘

I 7
/" [t

botgly
Pldcd

i
e

FrsiChid

o =
A

N =
v
\“-'
= e

PlacementGraphDialog,{

P
[y J

TR [rrentfe]
S\ N
(o]

[Fprmsvendign

W =

e
Placem#hiCrapfinfalog Channel
bodean(lll PlacementGraphbialog

java.uti.coR&REREMRSic AtomicLong PlacementGraphDialog
boolean((] PlaceRouteDialog

PlaceRouteDilog
e

Figure 1.3: Aphyds: flat object graph, extracted statically byowsLE (Jackson and Waingold 2001).

To read the labels, zoom in by 200%

1.2. Object-Oriented Diagrams

1.2.3.2 Global object diagrams

Extracting a global object diagram that shows the entirdiegon structure increases the dia-
gram’s complexity significantly. A flat object graph for artiem system often has a profusion of
objects that makes it difficult to obtain a high-level pietueven for a relatively small program.
For Aphyds, a flat object graph mixes low-level objects sig$ilacingTree that are data struc-
tures, with architecturally-relevant objects sucléasbalRouter from the application domain,
and a developer has no obvious way to distinguish between (Riy.[1.3).

1.3 Software Architecture

In addition to object-oriented design diagrams, one cdnahbut the software architecture of
a system. A software architecture is a high-level desaoniptif a software system that is a con-
ceptual tool for documenting, reasoning about and comnatinig the structure of the system
to developers or to other stakeholders. Different complearg architectural views describe a
system from different perspectives (Soni €t al. 1995; Kreis 995). In particular, there are two
important architectural views, ttemde architectur@and theruntime architectureéhat we discuss
next. These views are the analogues of class diagrams aect dijgrams, respectively.

1.3.1 Code Architecture

A code architectureor module viewshows code entities in terms of classes, fixed inheritance
relationships, packages, layers and modules (Clements26G8). A code architecture impacts
quality attributes like maintainability, and has matureltsupport. For object-oriented code, a
module view is often a class diagram or a package view. Anaytadany tools can extract such

module views from code (Kollman et/)02).

1.3.1.1 Package (layer) vs. runtime tier

A code architecture often organizes classes accordingeio packages. However, an applica-
tion’s code package structure is often orthogonal to itdimum structure. For example, all the
classes in Aphyds are in the same package. While this viojgtted programming practice, it

highlights the difference between a code-lgvatkageor layer and a runtimeierd.

A class diagram (Fid._112) shows the clasS&scuit, Node, Net andTerminal all at the
same level. Of course, a class diagram can have hierarchibg packages. But a pack-
age is just a namespace. Indeed, a developer often cardisgigns the package structure to
indicate her architectural intent. For instance, she magethe clasSircuitViewer in the
aphyds.ui package and the claBsrtitioner in theaphyds.model package, to indicate that
CircuitViewer andPartitioner belong to differentayersin the code architecture.

3Several companies have established a process for suclitpeeviews, threat modelinglHoward and Lipner
2003 Tor{ 20085, Howard and Lipner 2006). Secfion 7.8.1 éBFgl) discusses threat modeling further.

“We adopt the terminology df (Clements el al. 2003ayeer denotes a cluster or a partition iwade architecture
or amodule viewA tier denotes a cluster or a partition imantime architecturer aruntime view

6 Chapter 1. Introduction

A runtime architecture often groups conceptually relatestances into conceptual runtime
partitions ottiers. For instance, the Aphyds developer’s diagram distingeggiresentation com-
ponents such agewerUl in the Ul tier, from computational components suchpastitioner in
the MODEL tier.

In particular, the package which contains a class does nitate to which architectural
tiers the instances of that class belong. In the above chseglasse€ircuitViewer and
Partitioner from the packagesphyds.ui andaphyds.model, have their instancesgiewerUl
andpartitioner, fit nicely within theUI andMODEL tiers, respectively. But, in general, one cannot
represent the dynamic structure of an application usingtéigc source code organization, be-
cause different instantiations of a class often have aistionceptual purposes and correspond
to different elements in the design. For example, the codddtill have a singl&ector class
in a java.util package. But at runtime, théewerUl component in tha&Jl tier may have an
instance ofVector, one that is different from #ector instance that is in use by tipartitioner
component in théMODEL tier.

1.3.2 Runtime Architecture

Another architectural view, theintime architectureor runtime view models a software system

as an organization of runtime entities, interactions betwide entities, and constraints on how
the entities interact. A runtime architecture is importdécause it impacts quality attributes
such as security, performance, and reliability.

Architecture description language (ADL). A runtime architecture can be an informal boxes-
and-lines diagram, or a formal specification in an architectdescription language (ADL)
Medvidovic and Tayl |‘_20_¢0). While many ADLs have been psgzh a common weakness
of many ADLs is the lack of enforcement with an implementatio

ScHOLIA uses the Acme general purpose ADL (Garlan et al. 2000) tordentithe built
and the designed architecture. Acme represents a hiecafgnaph with types and attributes on
nodes and edges. The main reason we chose Acme is that itdimgoelevironment, AcmeS-
tudio (Schmerl and Garlan 2004; AcmeStiidio 2009), is a plinyithe Eclipse tool integration
platform, as are many of the other tools that we develope&dsroLIA.

Most ADLs support the core elements of Acme thatH®LIA uses : (a) components; (b)
connectors; (c) tiers or groups; and (d) hierarchical dgmusiion to refine a component into a
nested sub-architecturle (Medvidovic and Taylor 2000).

UML. Runtime architectures have traditionally been of greaterast to academics than to
practitioners. The de facto standard for documenting aesitML, added direct support for
documenting runtime architectures only recently, with thdL 2.0 standard. With UML 2.0,

more UML tools support the manual editing of a runtime aeattitre. However, existing tools
do not yet support extracting a runtime architecture fromiegcanor do they support analyzing
the conformance of an implementation to a target runtiméigcture. Overall, the tools for
the runtime architecture are still immature compared tottloés available for the code archi-
tecture. In particular, analyzing conformance betweenndime architecture and an arbitrary

1.3. Software Architecture 7

implementation remains an important but unsolved problghaw and Clements 2006).

1.3.3 Benefits of Architecture

All systems have an architecture, whether it is explicithcdmented or not. There are several
recognized benefits to documenting the architecture oft@isysas | discuss below.

1.3.3.1 System understanding

In object-oriented systems, the dominant pattern-bassdjmlanethodologies encourage the
composition of systems from cooperating objects. So, exgysiwho want to evolve such an
existing system must understand these runtime interactidm many cases, the architectural
documentation may be missing or out of date. When the onlgbilgisource of information is
the source code, architects and developers often face tfdepn of extracting the architecture
of the system for the purpose of understanding it.

1.3.3.2 Qualitative architectural evaluation

An architect can document the architecture and use it tatgtiatly evaluate risks, tradeoffs and
requirements] (Dobrica and Niemel 2{)02) survey severdltaatural tradeoff analysis methods.
Moreover, sufficient evidence exists about the value ofitgcture reviews to improve the qual-
ity of a system under development (Maranzano &t al. [2005xs&methods assume that the
architecture is known. However, when the architecture ssing or potentially out of date, there
must be a way to extract the built architecture from an engssiystem.

1.3.3.3 Quantitative architectural analysis

Quantltatlve architectural- IeveI analyses can analymzlﬁp quallty attrlbutes such as secu-

rlty : Ren and Taylor
LZD_O_‘}’b) performanMMznagﬂlﬁmLaitl&QdAMﬂlams_and_Snjlth
) or re|lab|||ty (Roshandel etlal. 2007; Immonen and NiE2008).

These approaches assume that architects have an accutatesrarchitecture of the system
under study. But in reality, developers often document aesy'starchitecture by hand, and may
forget to include all communication that exists in the inmpéntation. Thus, it would be useful
to have a principled approach that can extract from an imeigation an up-to-date runtime
architecture that matches the model required by an arcbreddevel analysis.

Many architectural analyses rely on assigning architetpnoperties to the various compo-
nent and connector instances. For example, an architéttued security analysis assigns to
each component &ustLevel property, which can be eithéiullTrust, Partial Trust or NoTrust
(Abi-Antoun et al.| 2006, 2007b). Then, the analysis can kHec an information disclosure
vulnerability, where an attacker steals data while in titamsat rest. For example, this could
happen if thetcrustLevel of the source of a data flow is higher than that of its destmati

Finally, unless the implementation faithfully realizeg ttarefully designed architecture, the
built system may not exhibit the qualities that were catgftiiought out. Indeed, the lack of

8 Chapter 1. Introduction

enforced or checked conformance with the actual implenientaemains the Achilles heel of

an architecture-based approalgh (Jackson and Rinard 2000).

1.3.3.4 Avoiding architectural drift and erosion

Missing or un-enforced architectural information is a kagtbr which contributes to architec-
tural problems, e.g.LLlakLman_eilaL_]JQQQ). These inchrdkitectural drift i.e., “a lack of
coherence and clarity of form which may lead to architedtui@ation and increased inadapt-
ability of the architecture” (Perry and Wolf 1992) aacthitectural erosioni.e., “violations in
the architecture that lead to increased system problemsgtieness” [(BemLandMH_QbZ)
(Hochstein and Lindvall 2005) survey various techniquestombating architectural degenera-

tion, and include, among others, the ability to analyze confince.

1.4 Architectural Abstraction

The runtime structure of an object-oriented program canelpeesented as Buntime Object
Graph (ROG) where nodes correspond to runtime objects, and edgessporneé to relations
between objects such as points-to field reference relatlbissalso possible to show other edges
on the object graph, for example, ones that show field ace@sseaethod invocations.

To date, object diagrams were mostly used to show the irtterscbetween a small set of
core objects. Because of the immaturity of the tool supparekiracting object diagrams from
code, many developers have learned to live without thenepbmerhaps at the design stage.

In this dissertation, | argue that object diagrams, oncg #re hierarchical, scale mean-
ingfully to an entire system, and thus, can also be usefuhttertstand the global application
structure of a system. Moreover, such a global object dragian map fairly intuitively to a run-
time architecture of an object-oriented system, whichvadloeusing much of the existing work
in architecture-based approaches.

An object diagram and a runtime architecture are relatedhéred not be identical. An object
diagram and a runtime architecture can differ in the folloywvays.

* Anarchitecture is global: a runtime architecture global, and shows the object structures
for the entire application. On the other hand, an objectrdiags often local, and shows
the interactions between a few selected objects;

* An architecture is abstract: a runtime architecture is potentially maabstractthan an
object diagram. For example, a node in an object diagrantaylgicorresponds to one
object or all instances of a given type. But a runtime architecabstracts one or more
objects into conceptuabmponentsand represents how those components interamas
nectors(Clements et al. 2003).

= Object abstraction: a box in an architectural diagram does not necessarily corre
spond to one object. It could represent multiple instanééseosame type, or even
different, but related types;

= Object clustering: furthermore, there could be coarser groupings of objedts in
groups or clusters;

1.4. Architectural Abstraction 9

Object /
relation /
Object

(a) Runtime object graph.

___Group/Tier

| relation

: Object

1
1
1
1
1
1
1
1
1
h
e |

relation

Object

(c) Hierarchical decomposition.

Figure 1.4: Architectural abstraction.

* Edge abstraction: an edge in an architectural diagram may correspond to a rela-
tion between objects in the implementation. In additionedge may correspond to
objects in the implementation.

* An architecture is hierarchical: a runtime architecture is oftemierarchical and can
optionally decompose a component into a nested sub-actinié
Similarly to previous work that defined requirements on aechural description languages

10 Chapter 1. Introduction

(Luckham and Vera 1995; Shaw and Gatlan 1996; Shaw let al)) 1@@5define architectural ab-

straction as follows (Fid. 1.4):

Component abstraction. A runtime architecture showsomponentshat correspond to
runtime entities. For an object-oriented system, a component septe an object or a
group of objects. A group of objects must be a meaningfulrabgbn, for example, from
the application domain.
Connector abstraction. An architecture hasonnectorghat correspond to relations be-
tween runtime entities. For an object-oriented system,rmector represents a runtime
interaction between some object in one component and sojeet@banother component.
Tier or group abstraction. An architecture often groups conceptually related compo-
nent instances into runtinteers, where dier is a conceptual partitioning of functionality;
sometimes, it identifies functionality that may be allodatea separate physical machine,
e.g., aDATA tier (Bass et al. 2003). Many architecture description laggs (ADLs) have
the notion of a tier ogroup (Dashofy et all. 2001).
Hierarchical decomposition. A component can have a nested sub-architecture consisting
of lower-level components and connectors. Hierarchy atewiges abstraction since it
enables both high-level understanding and detail.
Scalability. Large systems would benefit the most from having meaninghdumented
architectures. An architecture scales if the size of teptidiagram remains mostly con-
stant as the size of the program increases arbitrarily.
SoundnessArchitectural soundness consistsagimponent soundnessonnector sound-
ness andtier soundness
= Component soundnessAn architecture is sound if for every Runtime Object Graph
(ROG), there exists a mapping from each runtime ohjgotexactly one component
C'in the architecture. In particular, an architecture dogshow one runtime entity
as two components. Otherwise, an architectural-levelyaisamay assign these two
components different values for a key architectural priyp&rhich could invalidate
the results of the analysis.
= Connector soundnessif there is a runtime relation between objeg¢tand objecb,
in the ROG, then the architecture must have a connector kbeta@mponent§’; and
(5 corresponding to the communication betwee@ando,.
= Tier soundness: If an objecto is in a runtime domain/ in the Runtime Object
Graph (ROG), then the architecture must show compo@etdrresponding t@ in
the representativ® of d.
Precision. An architecture is precise if it shows two runtime entitieattrepresent differ-
ent conceptual design elements as two different archi@lcéntities. An architecture is
imprecise if its elements are too coarse grained and lumgtheg runtime elements that
serve different conceptual purposes in the design. Foamest an architecture that repre-
sents the entire system as one component is sound, but afecarossly imprecise. We
define precision as:
= Component precision: The architecture shows two runtime entities that represent
two different conceptual design elements as two differemponents.
= Connector precision: The architecture shows two runtime relations that repitesen
two different conceptual interactions as two differentmectors.

1.4. Architectural Abstraction 11

1.5 Object Graph Extraction

Unfortunately, extracting the runtime architecture of ais&#ng object-oriented system is diffi-
cult. In particular, because a system may create many staeaintime, object diagrams quickly
increase in size, even for small systems.

1.5.1 Key Idea: Hierarchical Object Graphs

Hierarchy is often used to mitigate the complexity of a laggaph. Hierarchy collapses many
nodes into one, and is a classic approach to shrink a largd gkierarchy also allows collaps-
ing or expanding selected elements (Storey et al.|2001)lldw &oth high-level and detailed
understanding.

Hierarchy was effective in dynamic object diagrams, ehglU_ELa.LJ lZQ_QjZ). Because archi-
tectural hierarchy is not readily observable in arbitrapge in a general purpose programming
language, imposing hierarchy on a static object diagrarand.i Some language-based solutions,
e.g., ArchJava (Aldrich et &l. 2002a), extend the languagmecify architectural hierarchy and
instances directly within the code. But approaches like Aasta restrict how a program can
use objects. As a result, they require re-engineering astiegiJava system to follow the more

restrictive rules|(Aldrich et al. 2002a; Abi-Antoun and Ctue2005] Abi-Antoun et al. 2007a),

a process which is often non-trivial.

1.5.1.1 Annotations to convey architectural intent

To achieve hierarchy in a static object diagraraH®LIA combines annotations and static analy-
sis. In SSHOLIA, a developer picks a top-level object as a starting poiet tises local, modular,
ownership annotations in the code to impose a conceptuadrbley on runtime objects. Hier-
archy provides architectural abstraction, whereby agchitrally significant objects appear near
the top of the hierarchy and data structures are further down

Definition 1 (Abstraction by Ownership Hierarchy and by Type&)hierarchical object graph

provides abstraction by ownership hierarchy when it showsigcturally significant objects

near the top of the hierarchy and data structures further dotioreover, the object graph can
provide abstraction by types by collapsing objects furierording to their declared types.

Just as there are multiple architectural views of a systhergetis no single right way to an-
notate a program. Good annotations minimize the number jettbat the top level by pushing
low-level objects that are data structures, underneatr,othore architecturally significant ob-
jects from the application domain. For example, in Aphyls,dannotations make objects of type
Node or Net part of the higher-levetircuit object (Fig[1b).

In a hierarchical object graph, an object can contain othgrats. As a result, many nodes
representing lower-level objects can be collapsed undénmreenode representing a higher-level
object. This is a classic approach to shrink a graph. How&a#oLIA collapses object nodes
based on containment, ownership and type structures, notding to where objects are syntac-
tically declared in the program, a naming convention or @lyicdustering algorithm.

12 Chapter 1. Introduction

swskbemn @ Main
= MCODEL
£ Channel
CircuitGlobalRouting @ GlobalRouter
fp i Floorplanner
newiCircuik ¢ Circuik
-|-DB
= cell : Mode
= owned
Cukpuks ¢ Veckor <Terminal =
|- ik & Mek
= owined
Destinations : Yector <Terminal=
£ 1 Terminal
=1 owned
fanlter ; EnumerateFanout
Mets ; Hashtable=String, Met =
Modes : Hashtable <String, Mode =
=|- part : Partitioner
=1 owned
rekEnurn @ Enumerakelets
nekSkatus ¢ int[1[]
nodelter : EnumerateModes
nodeLock : boolean(]
niodePartition : ink[]
- PTDE
= gainarrayl : Bucket
= ownied
deleteTags | Object[]
=|- transcripk ¢ PartitionTranscript
—I- owned
transcript ; Veckor <PTnode =
= placement: : Placer
=1 owned
Cachedsemiperimeter : ink[]
22 1 EnumerateModes
internal ; Yeckor <Mode =
netlter : EnumerateMets
modePlacement @ Point[]
PlacementRegion ; Mode[][]

T

T

channelroutedialogl ; ChannelRoukel
circuitviewer @ Yiewer

floordialagl ¢ Floorplanidl

partdialogl © PartitionU]

B E-E

Figure 1.5: Aphyds: partial hierarchy of objects.

1.5.1.2 Static analysis to achieve soundness

A static analysis then extracts from the annotated progrglolal hierarchical object graph that
conveys architectural abstraction by ownership hieraesity/by types. Moreover, the extracted
object graph is botbbject souncandedge sound

Definition 2 (Object soundness)An object graph is object sound if each runtime object has
exactly one unique representative in the object graph.

1.5. Object Graph Extraction 13

o u B w N -

©Domains ({"DB"})

class Circuit {
©Domain("DB") Node node;
©@Domain ("DB") Net net;

Figure 1.6: Aphyds:Node andNet objects argoart of aCircuit object.

Definition 3 (Edge soundnessAn object graph is edge sound if it has edges that correspmnd t
all possible runtime points-to relations between the repngstives of the runtime objects.

1.5.2 Example

Instead of placing objects directly inside other objectsHSLIA uses an extra level of hierarchy
and groups related objects insidd@main A domain is similar to an architectural runtirtier,
which is aconceptual partitioning of functionalit{Clements et al. 2003).

This dissertation uses a visualization based on box nestimgdicate the containment of
objects inside domains, and that of domains inside objeEts. example, the domaibB is
inside the objectirc (Fig.[1.8). Dashed-border white-filled boxes representalom Solid-
filled boxes represent objects. Solid edges represent Bétdences. An object labeletj: T
indicates an object referene®j of type T, which we then refer to either as “objesthj” or as
“T object”, meaning for brevity, “an instance of tielass”.

ScHoLIA can describe two kinds of hierarchical information, logjimantainment and strict
encapsulation, which | discuss next.

1.5.2.1 Logical containment

The class diagram (Fif.1.2) sholisde, Net andTerminal classes that are all at the same level
asCircuit. From the class diagram, it is unclear whether instancéis@ andNet share one
Vector object.

An architecture often uses hierarchical decompositiorefme a component into a nested
sub-architecture (Medvidovic and Taylor 2000). For examtile Aphyds architecture (FIg.1.1)
showsnode andnet insidecirc’s substructure.

To define a conceptual group of lower-level objects than gecblocontains, we use@ublic
domain For instance, a public domabB inside objectcirc contains objechet. This makes
net part of circ. Part of means conceptual or logical containment, which we indibgta thin
border. Namely, nested objects may still be accessiblegmtiiside. For instance, any object
that can referenceirc can also reference the child objeatgie andnet inside theDB domain.

A developer indicates this logical containment using aatons (Fig[1.6). The key idea is
to declare a public domaibB, insideCircuit and place th@ode andNet objects inside®B.

Logical containment can convey arbitrary architecturam. For instance, the architect
could have made et object conceptually part of thertitioner object, instead of making it part
of acirc object (Fig[1.1). Indeed, the arbitrary nature of architesd intent leaves little hope
that a fully automated static analysis could infer meanihgtiblic domains.

14 Chapter 1. Introduction

o B w N -

©Domains ({"OWNED"})
class Net {
private ©@Domain("OWNED") Vector terms;

Figure 1.7: Aphyds:terms object isowned byaNet object.

1.5.2.2 Strict encapsulation

The class diagram (Fig.1.2) suggests thibae object and alet object might share the same
Vector object. But at runtime, different instances Wéctor are often part of conceptually
different components. For instanceNede object has &ector object ofTerminal objects.
Another distinctVector object, also offerminal objects, is part of diet object (Fig[1.8(1)).

Unlike the class diagram which shows owector class (Fig[1R), the runtime structure
can distinguish between different instanceyeftor. Moreover, in this case, we may want to
indicate that thesgector objects arestrictly encapsulatedr ownedby other objects. When an
object is owned, it is part of another object’s private stateepresentationand no aliases to the
owned object can leak to the outside.

A developer indicates that an object is encapsulated byngatin a private domain For
examplenet has a private domaibWNED and objectterms inside OWNED (Fig.[1.7). Our visu-
alization shows a private domain with a thick dashed bor#eg. [L.8(b)). In particular, strict
encapsulation guarantees that there can be no incominmgmets into aerms object encapsu-
lated inside aet object.

Although Net and Node objects have their respective distintictor objects, those two
Vectors may refer in turn to the sanTerminal objects that are also DB.

A strictly encapsulated field cannot be assigned to by a pubdidifier method, or returned
from a public accessor method. So there are existing statityses that can identify strictly
encapsulated objects.

1.5.2.3 Sound approximation

An OOG is an approximation of the actual objects and relati@me that is conservative and
may include more objects and relations than those that wiilladly be there, by virtue of using
a sound static analysis. An OOG, like any static object @iagrcan be imprecise in several
ways (Fig[1.8(h)). First, it makes no guarantees about thigipticities of objects at runtime.
For example, a given program run of Aphyds may not instamtiasingleNode or Net object.
Second, although the diagram shows an edge ftems to term, a given program run may not
actually have such an edge. For instancetyens Vector may remain empty during one entire
program execution.

1.5.2.4 Aliasing

Aliased object must be represented by the same runtime aoenpan the architecture. If an
architecture deceptively showed two components for ongmenentity, one could assign these

1.5. Object Graph Extraction 15

Kf——> net: node:
B, Net Node

circ:
Circuit

LEGEND

r===n
! puplic 1
! Group :

object:
Type

LEGEND

circ:
Circuit

terms:
Vector<Terminal>

1

1

1

1

1

1

1

1

1

1

= it
- A= 2V —a))
1

1

~ 1

1

1

1

1

|

terms:

==
*|

1
1
1
1
1
1
1
1
1
1
Private I 1
1
1
1
1
1
1
1
1
1
1

Groupl
—-—
P=———

| = ===

I Public 1
: Group :

term:

object:

Type b8

[

net (+): node (+):
Net Node

LEGEND

1

1

1

1

1

1

1

: circ:

-— - 1 Circuit
Private 1 1
Group !
-1 |
r=——— 1
I public 1 :

1

, Group . 1
1
1
1
1

]

term:
Terminal

object:
Type

(c) Collapsing the sub-structuresmdt andnode.
Figure 1.8: Aphyds: representinQircuit’s runtime sub-structure.

two components different values for a key architecturapprty such asrustLevel, which could
lead an analysis at the architectural level to produce @ results.

In a program, several object references may alias, i.eer tefthe same object at runtime.
Therefore, an alias analysis is needed to identify possildsing. In £HOLIA, we rely instead

16 Chapter 1. Introduction

on the precision about aliasing that ownership domaing.offie particular, the type system
guarantees that two objects in different domains can ndias. 8ut two objects of compatible
types, in the same domain, may alias. The analysis usesntioisriation to ensure that the
diagram reflects possible aliasing. For instance, consideld temps of type Stack that is in
the same domaidwNED asVector insideNet. SinceStack is a subtype ofector, the object
diagram would displayemps andterms as a single object.

1.5.2.5 Abstraction by hierarchy

SCHOLIA represents a hierarchical object graph as a nested graphdaihains and objects
inside those domains. Like other such representationsariaigy allows information at any level
to be displayed or elided to show overviews of the system atddsired level of abstraction
(Storey et all. 1999).

For instance, Fid. 1.8(c) collapses the substructungdt andNet object. A (+) symbol
indicates that an object has a collapsed sub-structure. r&swdt, a low-level object such as
Vector no longer appears at the same leveNage or Net objects. Moreover, collapsing the
substructure oflode andNet still represents their relation erminal. As an aside, note how
Fig.[1.8(c) is comparable to the substructureiefuit in the target architecture (Fig.1.1).

We can use the same nested box visualization to represemntire Aphyds object tree
(Fig.[1.B). Collapsing the sub-structure of most objectsipoes an object graph that is much
more manageable than a flat one. The hierarchical grapnIBphas all the objects that are in
the flat graph (Figllﬁ) However, the hierarchical graph collapses into one noderakobjects
that are in the flat graph, based on the ownership and thealogomtainment information of
those objects, and optionally, based on their declaredstype

In summary, an object-oriented program’s runtime striectoften bears little resemblance
to its code structure. One code element can appear as rawdtgrnents in a runtime structure.
In addition, due to possible aliasing, multiple code eletm@an also correspond to the same
element in the runtime structure.

1.5.3 Previous work on architectural extraction

We discuss most of the previous work on architectural etitraén Sectiorf 8.6 (Pade 2P1). In
summary, previous work in architectural extraction usedagyic analysis, static analysis or a
mix of the two. A dynamic analysis takes a snapshot of the faapntime, and reveals the
structure at that instant in great detail (Flanagan andrff€006). Still, it is possible to obtain a
high-level picture from the profusion of objects, througk tise of extensive graph summariza-
tion and manipulation (Mitchell 2006; Mitchell et| O%lowever, such a snapshot shows
one or more executions, meaning it may not reflect importajgats or relations that show up
only in other executions.

On the other hand, a sound static analysis can extract antappph that captures all exe-
cutions. All previous static analyses produce non-hidriaed object graphs that explain runtime

SNote, the hierarchical graph shows all the objects that thgram may produce exceptring objects, which
| purposely excluded. For consistency, | also manuallyeelgtring objects from the flat graph.

1.5. Object Graph Extraction 17

>
L Partitioner(+) _|

T b
Placer(+
> ()

|
|
>
r— — . — — — __lrl Floorplanner(+)

+fF

> FloorplanUlI(+)
b2 Channel(+)

|
Viewer(+) 4~ . ¥
Y

By Y . .
o ChannelRouteUI(+)

Hashtable<String,Net>

Circuit

|
|
GlobalRouter(+) I —
- | EnumerateFanout(+)
|
|
|

a
PlaceRouteUl(+)

R
| PartUI(+) —

Figure 1.9: Aphyds: hierarchical object graph.

interactions in detail (Jackson and Wain@old 2001; O’'CalfeP001} Lam and Rinard 2d03), but

convey little architectural abstraction, as can be seenaphyds flat object graph (Fig.1.3).

1.5.4 Summary

ScHoLIA fulfills a previously unexplored space, that of hierarchstatic object diagrams. Hi-

erarchy makes an object diagram scale to show the objedctwtes of an entire application,
instead of just the interactions between a small set of tdjdeurthermore, a hierarchical ob-
ject graph can provide architectural abstraction and cagmintaitively onto a standard runtime
architecture.

In Chaptef B, we discuss more precisely how to abstract arctopjaph into a Component-
and-Connector (C&C) view, which is a standard representatianrantime architecture. In-
tuitively, a canonical object in an OOG maps to a componemd, @ domain maps to a tier.
Moreover, the abstraction step is largely automated. Bveungh a developer can control the ab-
straction, we will almost always use the default options metracting an OOG and abstracting
it into a C&C view, as our evaluation in Chapfér 7 will show.

As aresult, we will often use the terms “hierarchical obgreiph” and “runtime architecture”
interchangeably. Similarly, we will use the terms “compuori@and “tier” interchangeably with
“object” and “domain”, respectively.

18 Chapter 1. Introduction

_lentMain_MainMODELPartitioner
_lentMain_MainMODELCircuit
_lentMain_MainMODELPlacer
_lentMain_MainUIPlaceRouteUI
_lentMain_MainMODELFloorplanner
_lentMain_MainMODELChannel
_lentMain_MainMODELGlobalRouter
_lentMain_MainMODELCircuit_CircuitDBNet
_lentMain_MainMODELCircuit_CircuitDBTerminal
_lentMain_MainMODELCircuit_CircuitDBNode
_lentMain_MainMODELCircuit_CircuitownedEnumerateFanout
_lentMain_MainMODELCircuit_CircuitownedHashtable_String_Node_
_lentMain_MainMODELCircuit_CircuitownedHashtable_String_Net_
_lentMain_MainUIViewer
_lentMain_MainUIChannelRouteUI
_lentMain_MainUIPartUI
_lentMain_MainUIFloorplanUI

1.6 Architectural Conformance

In some domains, it is possible to generate the initial codi fan architecture. But developers
can still modify the implementation directly and poteritiatause it to diverge from the archi-
tecture. If the architecture and implementation are inist@st, the properties that an architect
carefully designed into the architecture may not hold inithyglementation. Thus, there is value
in determining if the implementation conforms to the aretitire. Similarly, architects who
want to keep their systems evolvable, or maintain variomsime invariants, must ensure that
the runtime structure of the built system conforms to théigect’s intended architecture. Sev-
eral researchers have reported that informal architdatiimgrams that architects have of their
systems, while mostly accurate, often omit important comication that exists in the imple-

mentation|(Murphy et al. 2001; Aldrich et/al. 2002a).

1.6.1 Key Property: Communication Integrity

A system conforms to its architecture if the architectura orrect abstraction of the runtime
behavior of the system. Thmmmunication integrityproperty defines one notion of structural
conformance, namely how architectural structure comsdraintime communication in the im-
plementation| (Moriconi et &l. 1995; Luckham and Viera 1 99Btrih et al. 2002a), as follows:
Definition 4 (Communication integrity) Each component in the implementation may only com-
municate directly with the components to which it is connertede architecture.

Of course, communication integrity is not the only notiorrohformance that may need to be
enforced. For exampldiLugkhamgndAHQL&i995) identifielitedal criteria for conformance:
Definition 5 (Decomposition) For each component in the architecture, there should be eeor
sponding component in the implementation.

Definition 6 (Interface ConformanceEach component in the implementation must conform to
its architectural interface.

In this dissertation, we focus on communication integsince it is a fundamental confor-
mance propert relatln architecture to implementatigoruwhich several other conformance
properties rer 3). Because communicationgritg mandates which components
communicate, it prowdes the foundation for other architesd properties that depend on how
these components communicate.

Indeed, many other conformance analyses could be define&xBmple, one analysis may
enforce a minimum or a maximum in a pool of replicated comptseHowever, there are limits
to what can be checked statically because a static objegtatralacks precision on the actual
multiplicity of the objects that the program may create, mtlte actual relations between objects.

1.6.2 Establishing traceability

When the architecture and the code evolve independenttedhality between the designed ar-
chitecture and the code is often lost. Once traceabilityss, Ithe development team slowly

gives up on having a documented architecture (Jackson amadR2000). Having traceability

between the code and a designed runtime architecture hag potential benefits, including

1.6. Architectural Conformance 19

clearer documentation, more focused development, inedesysstem understanding, and a more

precise impact analysis of the proposed chaEges (LindwelSandahl 1996). However, estab-
lishing traceability after the fact is still difficul kis and Zisman 2005). The proposed

conformance analysis establishes traceability as a siefibe

1.6.3 Previous work in architectural conformance

We discuss most of the previous work on architectural canéorce in Chaptér 8.9 (Page 299). In
summary, enforcing communication integrity in arbitrabjext-oriented implementation code is
challenging due to programming language mechanisms tisguod communication pathways,
such as references and objects, so previous systems haeeseramlis compromises.

To side-step the problem of architectural conformance,esapproaches radically change
the programming language to incorporate architecturakiroots at the expense of severe
implementation restrictions, e.gl, (Aldrich et al. 2008gafer et al. 2008). Others require
that developers implement their applications on spe@&dliarchitectural middleware or frame-
works (Medvidovic et al. 1996; Malek etlal. 2005), or requireimplementation to follow strict

style guidelines that prohibit sharing mutable data betwe@mponentsL(Lugkham_andMera
). Still other approaches require developers to alvg@yerate parts of the implementa-
tion from an architectural model (Shaw etlal. 1995; Milledaiukerjl [2003). Finally, to ana-
lyze conformance after the fact, previous approaches usandig analyses (Sefika et al. 1996b;
'Schmerl et dl. 2006), which, by definition, cannot check aigible system executions.

1.7 The Scholia approach

A general approach to verify the runtime structure mustaetta structure that captures all po-
tential executions of a program, then abstract that stradtio a high-level representation that
is suitable for comparison with the intended architecture.

SCHOLIA enables a developer to extract the built runtime architectilhen use the archi-
tecture for documentation, communication, qualitativeleation or quantitative analysis. For
the architectural extraction, CHOLIA adopts theextract-abstract-presergtrategy

). And for the conformance anaIyS|$|83L|A follows the extract-abstract- checmodel
dEeJJs_el_aJLlQQi_MuLph;LQLH.L_Zd JThe steps are as follows (Fig.1110):
. Add annotations to the code and type-check them;

2. Extract a soundobject graph that conveys architectural abstraction byahthy and by

types;

3. Abstractan extracted object graph into a built runtime architecture

4. Presentthe built runtime architecture in an architecture desmiptanguage (ADL) or an

architectural modeling environment.

In addition, if the developer can separately document tisgesy's target architecture, he can
analyze the conformance of the built architecture to thgetalas follows:

1. Document the designed runtime architecture;

6Reflexion Models (RM)|(Murphy et &l. 2001) inspirediSoLIA heavily, even though RM works only on the
code architecture. We compare and contrast the two appeeacimore detail in Sectidn 6.6.4 (P4gel218).

20 Chapter 1. Introduction

Typecheck
Annotate M Investigate
= and refine

Annotations

Refine Extract

Hierarchical
Object Graph

Designed
Architecture

Trace to
Code

Abstract Compare

Built
Architecture

Conformance
View

Figure 1.10: Overview of the 8HOLIA approach.

2. Structurallycomparethe built and the designed hierarchical runtime architestu
3. Checktheir conformance and enfor@®mmunication integrityn the designed runtime
architecture; and
4. Compute a measure of their structural conformance.
Based on the findings, a developer can perform any of the foipw
(a) Ilteratively refine the annotations based on visualizingextracted object graph, before ab-
stracting it;
(b) Fine-tune the abstraction of an object graph into anitecture;
(c) Manually guide the comparison of the built and the desibarchitecture, if the structural
comparison fails to perform the proper match;
(d) Correct the code if she decides that the designed artlnigers correct, but that the imple-
mentation violates the architecture; or
(e) Update the designed architecture if she considerstiatdnformance analysis highlights
an error or omission in the architecture.

Variations. There are several variations on ther®LIA approach.
* Visualize the ownership annotations:A developer may be interested in adding owner-

ship annotations to detect and prevent aliasing bugs thdttterepresentation exposﬁlre
In that case, EHOLIA can visualize the ownership structure of an applicationrdento
help a developer fine-tune the annotations. Indeed, one @asewably use an OOG to
judge the quality of the annotations in a program, whethey tire added manually or us-
ing an inference tool (A. Milanova, personal communicat®@@08). Such a judgement is
necessarily subjective. A more objective criterion is tmmpare an OOG to a benchmark,
which could be, for example, a target architecture.

"The code quality tool FindBug& {ndbugs . sourceforge.net) uses a shallow, unsound static analysis to
warn about possible representation exposure. It is pigdisese mistakes that ownership types can prevent.

1.7. The Scholia approach 21

findbugs.sourceforge.net

* Understand the application’s object structures: Today, a developer can use a number of
existing tools to extract a class diagram from the codeivelgteasily, to help her under-
stand the static code structure of a system. She may wantrtplement her understanding
of the system by studying its runtime structure. So she magiteeested in visualizing an
object graph and tracing from objects and edges in the ogjaph to the code.

1.8 SCHOLIA 's Requirements

From the above discussion, | list the requirements of a gegasolution. These requirements are
mainly based on generally accepted good practices, smoirigs of previous approaches, and
the needs for industrial adoptability. In Sectlon]9.1 (F2@B), | return to these requirements
and systematically evaluate howwSoLIA meets each one.

Because SHOLIA follows the extract-abstract-check strategy, | orgartigerequirements as
being on the overall approach (Section 1.8.1), the anmotsi{Section 1.8]2), the architectural
extraction (Section_1.8.3), the architectural compari€®ection[1.84), and the architectural
conformance analysis (Section 118.5).

1.8.1 Overall Approach

| identify the following requirements on the overall appcba

RQ O1 - Hierarchical architectural models: Modeling a software architecture as a hierarchy
of component instances is a generally accepted notion, ary mxisting ADLs model
architecture in this way (Medvidovic and Taylor 2000). Saamodel enables a developer
to understand the relations between components at a high teen drill down and study
each component recursively.

RQ O2 - Static analysis: Static analysis can extract sound information which carsidll
possible executions. In contrast, dynamic analysis censidnly a few program runs
(Sefika et al. 1996b; Schmerl et al. 2006).

RQ O3 — Arbitrary implementation code: To be adoptable, the approach must handle exist-
ing object-oriented languages, design idioms and patt@imsapproach must also support
existing frameworks and libraries, and must not requireexiic implementation frame-
work. A developer should not have to re-engineer a systemyose its architecture using
an extended language (Aldrich etlal. 2002b; &ehet all 2008), or to implement the sys-
tem on a specialized framework or middleware (Medvidovial21996/ Malek et al. 2005;
Bruneton et al. 2006). As (Di Nitto and Rosenblum 1999) poirate a middleware often
inducesan architectural style on an application that uses it.

RQ O4 — After the fact analysis: This dissertation focuses on extracting the architectame,
analyzing the conformance of an existing system after tbe fa contrast, model-driven
approaches assume that developers always update an exafaitenodel, then generate the
code from the architecture to ensure conformance, e.g i€t et all 1995; Shaw et al.

LZD_d3) Despite the recent trend iwdél-Driven Architecture

([MﬂJgLand_Mukeuj[ZD_QB) code generation is applicabldyan certain domains, as it is

often too restrictive, and does not handle legacy code. Wisertevelopers can directly

22 Chapter 1. Introduction

modify the implementation, as is often the case, they cagnpiailly introduce architectural
violations.
RQ O5 — Automation: The different steps of the approach must be semi- or fullgmated.

1.8.2 Annotations

| identify the following requirements for the annotations:

RQ ANNL1 — Language support for annotations: The annotations must not extend the lan-
guage. Instead, they must be structured comments or udaldedanguage support for
annotatior In addition, the annotations must not affect the prograomisime semantics.

RQ ANNZ2 — Real object-oriented code: The annotations must support existing object-oriented
code that uses aliasing, recursion, inheritance, innesel etc.

RQ ANN3 — Expressiveness:The annotations must be expressive and allow annotating-a pr
gram without having to refactor it to express its architegtiHaving to refactor existing
code to annotate it increases the cost of adopting the agiproa

RQ ANN4 — Automation: A tool must check that the annotations are consistent with ether
and with the code. Ideally, a tool also helps with adding thiecgations to a program. At
least, the annotations should be amenable to automatedmnct=

1.8.3 Architectural Extraction

The goal of the extraction is to extract an object graph tbahdly approximates all possible
Runtime Object Graph (ROG)s. | identify the following reganrents for the object graph ex-
traction:

RQ EXT1 — Summarization: Different program runs generate a different number of dbjec
Furthermore, the number of objects in the Runtime Object B(&DG) is unbounded.
An object graph must be a finite representation of all Runtirbg@ Graphs (ROGS).

RQ EXT2 — Hierarchy: An object graph must provide architectural abstraction tgyanchy
and support both high-level understanding and detail. Ktrsbhow architecturally signifi-
cant objects near the top of the hierarchy and data striscturther down.

RQ EXT3 — Object soundness: The object graph must show exactly one unique represeatativ
for each runtime object.

RQ EXT4 — Edge soundness:The object graph must show edges that correspond to allpessi
runtime points-to relations between the representatif/gseauntime objects.

RQ EXT5 — Traceability: Each node or edge in an object graph should be traceable tm& se
nodes from the program’s abstract syntax tree, and to therlymayg lines of code.

RQ EXT6 — Precision: Ideally, the object graph should have no more edges thandsess
requires. However, there may be false positives that arealideasible paths. This is an
inherent problem in any static object diagram.

RQ EXT7 — Scalability: The static analysis to extract an object graph must scale.

RQ EXT8 — Automation: Tool support must be available to extract an object grap fam
annotated program. Furthermore, the extraction tool max imteractive performance.

8The C# language supports custom attributes, and Java]p5r$s||annotati0n04).

1.8. SCHOLIA’S Requirements 23

1.8.4 Architectural Comparison

| identify the following requirements for the architectlsginchronization:

RQ COMP1 — No unique identifiers: The comparison should not assume that the architectural
view elements have unique or persistent identifiers.

RQ COMP2 — No ordering: The comparison should not assume that an architecturalhasw
an inherent ordering among its elements.

RQ COMP3 - Insertions, deletions, and renamesThe comparison must handle elements
that are inserted, deleted and renamed across two arcindabeciews.

RQ COMP4 — Hierarchical moves: The comparison must detect elements that are moved up
or down a number of levels in the hierarchy.

RQ COMP5 — Manual overrides: The user must be able to force or prevent matches between
selected view elements. The comparison should then take ttienstraints into account to
improve the overall match.

RQ COMP6 — Type information optional: The comparison should not assume that the view
elements have type information that matches exactly. lukshbe able to recover a cor-
rect mapping from structure alone if necessary, or fromcttine and type information if
type information is available. It should, however, take attage of any available type
information, and avoid matching elements that have incditlegatypes.

RQ COMP7 — Disconnected and stateless operationfhe comparison should work after the
fact, in a disconnected and stateless mode. In other wadrelgamparison should not rely
on the ability to monitor, intercept, or record the struatuwwhanges to an architecture as
they occur.

RQ COMPS8 — Automation: The comparison must be semi- or fully automated.

1.8.5 Architectural Conformance

| identify the following requirements for the architectucanformance analysis:

RQ CHK1 — Communication integrity: The conformance analysis must enfoocoenmunica-
tion integrity, and must not have false negatives about possible compoommunication.

RQ CHK2 — Few false positives: Any sound static analysis is bound to generate false pesitiv
However, the rate of false positives must be low. Otherwdseelopers will waste most of
their time wading through spurious warnings.

RQ CHK3 — Traceability: The conformance analysis should establish traceabilitydxen the
target architecture and the underlying source files. A dageal should be able to trace
from each conformance finding to the pertinent lines of cadgout having to potentially
review the entire code base to investigate a suspectedextthial violation.

RQ CHK4 — Automation: The conformance analysis must be fully or semi-automated.

1.9 Contributions

This dissertation contributescBOLIA, the first approach to statically extract a hierarchicat run
time architecture from existing object-oriented code uragg only annotations. &HOLIA is

24 Chapter 1. Introduction

also the first approach to analyze at compile time communicantegrity between code in a
widely-used object-oriented language and a rich, hiereathlescription of the architect’s in-
tended runtime architecture. | break up the overall coutitin into the following contributions:

Static analysis to extract a hierarchical object graph froma program with ownership
annotations. | designed a novel static analysis to extract a hierarchbigjgct graph, which
provides architectural abstraction by ownership hienaad by types (Chaptét 2). The
annotations implement the ownership domain type systemirigkl and Chambets 2004),
and can be checked for consistency with each other and vatbdtie using a tool.

Formal validation of soundness. To validate the object graph extraction algorithm, |
represent the core of the algorithm into a formal systemripm@ting the key constructs
of a Java-like language and prove soundness properties €€ p

Evaluation of the annotations and the object graph static anlysis. | improved the
tool support for the ownership domain type system, then tisetbols to add annotations
to real object-oriented code. To my knowledge, these areesainthe largest and most
substantial case studies in evaluating ownership typesddition, | implemented the static
analysis to extract object graphs, and extracted mearihgfarchical object graphs from
several representative systems that | annotated man@iibptet®).

Novel comparison of hierarchical architectural views.l developed a novel approach for
structurally comparing two hierarchical architecturaws (Chaptel]5). Using structural
information enables detecting elements that are insaittddted, renamed, or moved up or
down in a hierarchy. In contrast, previous approaches teréificing architectural views
assume that view elements have unique node identifiershvihaften not the case. Other
approaches detect only insertions and deletions, and asu#, riose the properties of
architectural elements, upon which several architeclexal analyses rely.

Novel techniques to abstract an object graph into a built runtime architecture, then
analyze conformance between a built and a target architecte. An extracted object
graph may not be isomorphic to the architect’s intendeditacture, making further ab-
straction necessary. | specialized the view synchrommadpproach, which makes two
views identical, to analyze conformance. The conformanwdyais allows a designed
architecture to be more abstract than a built architect&®tdl, SCHOLIA soundly sum-
marizes in the designed architecture any additional conicatian that is present in the
implementation, without propagating low-level implenegign objects into the designed
architecture. For example,CBOLIA can represent some objects in the built architecture
as part of a connector in the designed architecture (Chidpter 6

Evaluation of the end-to-end conformance analysis approachUsing case studies, |
demonstrate that, in practicec80LIA can be applied to existing systems while changing
only annotations in the code, thatSoLIA can find interesting architectural violations,
that these violations can be traced to code, and tbatd®1A computes sensible confor-
mance metrics (Chapter 7).

1.10 Thesis Statement and Outline

The thesis of this dissertation is:

1.10.

Thesis Statement and Outline 25

SCHOLIA can extract a sound, hierarchical, runtime architecturenfr an existing
object-oriented system and analyze communication irttegith a target architec-

ture, entirely statically and using typecheckable owngrsimnotations.

| created several corresponding hypotheses, subordindle tmain thesis. Since each hy-
pothesis is smaller than the main thesis, each can be giegtborted by evidence. Taken to-
gether, these hypotheses solve the problem of architéetxtraction and conformance analysis,
for an important class of object-oriented systems.

1.10.1 Hypothesis: Annotations

H-1: Lightweight typecheckable ownership annotations catip, within the code,
local hints about object encapsulation, logical contaimtn@nd architectural tiers.

Success criteria. The success criteria to objectively measure or falsify ltlgjgothesis include:

Ownership domain annotations are a natural expressiorcbitectural intent in practice,
i.e., they capture software engineering intuition;

It is possible to annotate existing object-oriented cod tises the Java standard library
or other third-party libraries;

It is possible to use existing language support for anraatisoftware development tools
and integrated development environments, without reggiilanguage extensions;

An annotated program has few remaining annotation warnings

Successfully annotating an existing program requires riewaichanges to the code;

By adding annotations, a developer can detect code-levitvaos of the architectural
intent.

Evidence. We support this hypothesis with the following evidence:

1.

2.

| evaluate the annotations on several representativen@sd examples of medium-sized
Java programs, developed by others, using the successacaib®ve (Chaptér 4).

The evaluation shows that, in practice, a developer catugaas program annotations
some of his architectural intent. Some of that intent mayuyeently captured as informal
comments in the code or informal architectural diagrams.

. We present concrete examples of how, in practice, thetatiowns can effectively help a

programmer identify design problems such as tightly cadigiede and suggest ways to
refactor the code, e.g., by programming to an interface igus mediator.

1.10.2 Hypothesis: Extraction

H-2: In practice, a static analysis can extract from an aratetl program a global,
hierarchical object graph that provides architectural afation by ownership hier-
archy and by types.

26

Chapter 1. Introduction

Success criteria. The success criteria to objectively measure or falsify tigigothesis include:

* An extracted object graph has fewer objects at the top lewhpared to a flat object
graph, due to the effective abstraction of objects by ownprisierarchy and by types;

* An extracted object graph does not show low-level objects @ine data structures at the
top level,

* An extracted object graph rarely suffers from too much orliile abstraction that lead
to a useless representation. E.g., rarely does an extrabjedt graph appear as a fully
connected graph, or show one box for the entire system;

* The hierarchy in an extracted object graph correspondset@ystem decomposition in
architectural diagrams;

* An extracted object graph can help a developer improve thétgwf the annotations by
encouraging her to push more objects underneath othertsigerzduce clutter at the top

level;

* An extracted object graph provides overviews of a systearsgime structure at various
levels of abstraction;

* An extracted object graph can give insights into the sysgemmtime structure by iden-
tifying undocumented information, contradicting docurt@ehinformation or highlighting
interesting structural information.

Evidence. We support this hypothesis with the following evidence:
1. A definition of a static analysis to extract a global obgretph from a program with own-
ership domain annotations (Chagtér 2);
2. An evaluation of the static analysis on several real dleented systems (Chapter 4),
using the success criteria above,;
3. Adetailed description of the different choices a deveta@an make to extract a meaningful

object graph from an annotated program.

1.10.3 Hypothesis: Soundness

H-3: Each extracted object graph is sound, i.e., it maps gacitime object to ex-
actly one node in the object graph, and represents all edgegden runtime objects,
in any program run.

Evidence. We support this hypothesis with the following evidence:
1. A formal definition of the core of the analysis using abstmterpretation (Chaptét 3);
2. A formal proof ofobject soundnesandedge soundneg€haptef B).

1.10.4 Hypothesis: Abstraction

H-4: An analysis can abstract an object graph into a compadad-connector
runtime architecture in a standard architecture descoptianguage.

1.10. Thesis Statement and Outline 27

Success criteria. The success criteria to objectively measure or falsify tigigothesis include:
* A developer can apply the abstraction techniques, withaving to manually select and
elide individual objects or domains.

Evidence. We support this hypothesis with the following evidence:
1. A definition of a mapping between a hierarchical objecpgrand a standard architecture
description language (Chapfér 6);
2. An evaluation of the approach on several real objectateik systems (Chapter 7).

1.10.5 Hypothesis: Comparison

H-5: An analysis can structurally compare the built arcloiigre to a documented
target runtime architecture.

Success criteria. The success criteria to objectively measure or falsify tigigothesis include:
* A developer can use the comparison, without having to manfate or prevent matches
between the majority of individual objects or domains.

Evidence. We support this hypothesis with the following evidence:
1. A definition of an approach for differencing and mergingrhrchical architectural views
based on structural information (Chagtér 5);
2. An evaluation of the approach on several real runtimeiciures for object-oriented
systems (Chaptét 5).

1.10.6 Hypothesis: Conformance

H-6: An analysis can analyze communication integrity agaitarget architecture,
establish traceability between the target architecture dmel code, and compute
structural conformance metrics in practice.

Success criteria. The success criteria to objectively measure or falsify lilgjgothesis include:
* The approach can show the absence or presence of a relatomaonunication between
two components, one that was previously unknown, and pgssiign of bad coupling;

* The approach can provide positive assurance that the codernts to an intended archi-
tecture;

* The approach can help a developer find and reconcile inilegedifferences between an
implementation and a target architecture. A finding is eséng if it identifies undocu-
mented information, contradicts available documentatworhighlights a potential design
or implementation defect.

* A developer can investigate a suspected code-level wolaif the conformance policy
by tracing from the extracted architecture to the relevenats| of code without having to
potentially review the entire code base, thus making theningractionable;

28 Chapter 1. Introduction

* A tool can enforce structural constraints on the extractetigecture using architectural
constraints, types and styles. A subject system couldviadionearly follow some of these
constraints. Of course, the structural constraint muse lsame rationale, e.g., to satisfy
quality attributes such as security or performance. Fomgte, if the architecture dictates
a pipeline according to the Pipe-and-Filter style, whemagonents are connected in se-
guence, the tool raises a warning if the built architectim@as connections that bypass
elements of the sequence or form a cycle.

Evidence. We support this hypothesis with the following evidence:
1. An end-to-end approach for enforcing communicationgnitg in a target architecture
(Chaptef®);
2. An evaluation of the approach on several real objecttei® systems (Chapter 7), using
the success criteria above.

1.11 Summary

The quote at the beginning of the chapter from the landmasiddePatterns book emphasizes
the need for understanding a system’s runtime architectagether with its code architecture
dG_amma_el_dL_lQ_M). This dissertation proposes &LIA, a principled approach to extract the
runtime architecture of an arbitrary system written in aggahpurpose programming language,
using annotations. Moreover, if a target architecturetexiSCHOLIA can analyze its confor-
mance with the implementation, and enforce communicatitegrity in the target architecture.

Such an approach can increase the effectiveness of regsantinitecturally about existing
systems, because it ensures that the architecture is tufagpresentation of the code, which is
ultimately the most reliable and accurate description eftitilt system.

1.11. Summary 29

Chapter 2
Object Graph Extraction L

In this chapter, | describe informally howc80LIA uses annotations and a static analysis to
extract a hierarchical object graph that provides architatabstraction by ownership hierarchy
and by types.

2.1 Introduction

A Runtime Object Graph (ROG¢presents the runtime structure of an object-orientegrpro.
Nodes correspond to runtime objects. Edges correspondatiores between objects such as
points-to field reference relations. The goal of the objeaph extraction static analysis is to
construct a hierarchical object graph that soundly appnates any ROG that any program run
may generate.

The rest of this chapter is organized as follows. In Secti@n [dllustrate the differences be-
tween the code and the runtime structure using Listenersstara smaller than Aphyds (Chap-
ter[1.2.1, PagEl2). Section R.3 presents the annotatiohspkaify architectural intent in the
code. Sectioh 214 presents a static analysis that extractsject graph by abstract interpretation
over the annotated program. | discuss various advancedrésain Sectiofl 2|5 and conclude
with a discussion in Sectidn 2.6.

2.2 Code vs. Runtime Structure

In this chapter, | use as a running example the Listeneremsyst small Document-View ar-
chitecture. In ListenerarChart andPieChart objects render 8odel object. All classes
implement aListener interface. | chose this example because empirical datastiat listen-
ers are often hard to understand in object-oriented &MS, Table ﬁ)

For presentation purposes, | simplified the Listeners elarftbe code is in Fig. 211). In
particular, theListener interface does not havenatify () method, that all the classes imple-

1portions of this chapter appearedl|in (Abi-Antoun and Al2007bl 20084, 2009a).

28) report the following quote from a particip@a an exploratory user study: “If you have [many]
system listeners, where people register methods or classaback [. . . an] interesting visualization would be.|. .
to explore the actual instances of classes at run-time;uldvoe better than the list of listeners”.

31

interface Listener {

}

class BaseChart implements Listener {
private List<Listener> listeners = new List<Listener>();

}

class BarChart extends BaseChart {

}

class PieChart extends BaseChart {

}

class Model implements Listener {
private List<Listener> listeners = new List<Listener>();

}

class Main {
Model model = new Model();
BarChart barChart = new BarChart();
PieChart pieChart = new PieChart();
}

Figure 2.1: Listeners: code without annotations.

menting the interface have to implement. Moreover, | tigat: as a class, although in the Java
Standard library.ist is an interface that is implemented by concrete classesasiirayList.
Also, in the following discussion, when | refer to BarChart object”, | mean “an instance of
theBarChart class”.

2.2.1 Code Structure

A developer evolving an object-oriented system needs tenstand the type structure of the

program, which is typically represented as a class diagiaday, many tools can extract such

class diagrams from code. For example, | used Eclipseumyﬂﬁb and Agile@bJ
) to extract class diagrams from the Listeners progam(P.2).

Fig.[2.2 shows classes, inheritance and associationaesatior instance, classksrChart
andPieChart extend fromBaseChart. BaseChart andModel implement aListener inter-
face. The diagram also shows associations o1 andBaseChart toList. A class diagram
explains the type structure of an application but sheds liiht on its runtime structure. From
the class diagram, it is unclear whether instancés e€hart andBarChart, which inherit from
BaseChart, share on&istener object.

In a class diagram, it is also common to see several claspesd®n a single container class
such ag.ist orVector. However, different instantiations of such a class oftereldistinct con-
ceptual purposes and correspond to different elementgidabkign. Based on the class diagram,
it is unclear if instances dfieChart andBarChart share oné.ist object. For instance, a ref-
erence of typé.istener inside an object of typeist<Listener> can correspond to multiple

32 Chapter 2. Object Graph Extraction

r— T 1
¥ BaseChart | __ «nstantates | {3 Model
|
|

ginstantiate» ‘ | «instantiate s

|

G rechan | |
@ PieChart

.| @ BarChart :

T [|

|

[BMain |- e

(b) Code architecture extracted by AgileJ.

Figure 2.2: Listeners: class diagrams.

design elements, based on the context. Insideéltldel class, a list element of tydeistener
refers to an object of typBaseChart or one of its subclasses. But inside BeseChart class,
a list element of typ&istener refers to an object of typ#odel.

2.2.2 Runtime Structure

A developer also needs to understand the runtime strucfua@ application, which is often
represented as an object diagram. Unfortunately, the toadgtract meaningful object graphs
from arbitrary object-oriented code are less mature thandbls that extract class diagrams.
Fig.[2.3(a) shows the runtime structure of the applicatéord uses the following graphical
conventions. Box nesting indicates hierarchical contammBashed white-filled boxes repre-
sent conceptual groups of objects or tiers. A solid bordey-gitled rectangle with a bold label

2.2. Code vs. Runtime Structure 33

1

1 listeners: 1

barChart: 4w List<Listener> 1
1

1

BarChart 1
Vad I / OWNED

1

H pieChart: L listeners: 1
! PieChart List<Listener> 1
1

1

1

1 listeners: I
List<Listener> 1
1

1

e 2 e |

— — = = =

I
Il barChart(+): ||
[BarChart |
| — | 1y (Listener) |
Ik |

! model(+): 4|
! Model - -l ; !
| _ 11" pieChart(+): |
| (=02, "|I' " PieChart |
| | (Listener) |
L DOCUMENT | |
I VIEW |

(b) Overview architecture.

Figure 2.3: Listeners: hierarchical object graphs.

represents an object. A solid edge represents a field reerdeetween two objects. An ob-
ject labeled “obj : T” indicates an object of tygéas in UML object diagrams. For example,
barChart:BarChart indicates aarChart reference that is of typBarChart.

Conceptually, each view has a separateteners collection object, and th@isteners
object of apieChart is distinct from that of @arChart (Fig.[2.3(a)). In a runtime view, we
model these lists agart of a barChart or model. At runtime,BarChart andModel objects
each contain &ist of Listener objects.

An analysis for object-oriented code must handle inhecgann this casePieChart and
BarChart extend a super clasBaseChart, and it isBaseChart that declare th@isteners
field. In addition, there is possible aliasing. If thésteners field of BarChart andModel
referred to the same object at runtime, the architectureign[E£3(a) would be deceptive; a
correct architecture must show them as one object.

In many object-oriented design patterns, much of the fonelity is determined by what in-

34 Chapter 2. Object Graph Extraction

_lentMain_MainDOCUMENTModel_ModelPRIVATEArrayList_Listener_
_lentMain_MainVIEWBarChart
_lentMain_MainVIEWPieChart
_lentMain_MainDOCUMENTModel
_lentMain_MainVIEWBarChart_BarChartPRIVATEArrayList_Listener_
_lentMain_MainVIEWPieChart_PieChartPRIVATEArrayList_Listener_
_lentMain_MainDOCUMENTModel
_lentMain_MainVIEWBarChart
_lentMain_MainVIEWPieChart

stances point to what other instances. For instance, in ltise®er design pattermt al.
1994, p. 293), understanding “what” gets notified during angfe notification is crucial for un-
derstanding the functioning of the system, but “what” doet usually mean a class, “what”
means a particular instance.

For instance, Fid. 2.3(a) highlights thahadel object is potentially registered as a listener
for a barChart object, but apieChart object and @arChart object are not registered as
listeners to each other.

Ideally, an architecture “can be read in 30 seconds, in 3 tegjuand in 30 minutes”
(Koning et al/ 2002). In Fig- Z:3(b), we elided the sub-stbes ofbarChart, pieChart and
model, and no longer show the variolsst objects (the (+) symbols on the object labels remind
us of the elided substructures). In addition, the dottegedgmmarize any solid edges by lifting
them from elided objects to visible ones.

2.3 Annotations

ScHoLIA’s principled architectural extraction combines type aations and a static analysis. A
developer guides the architectural abstraction by addingi@tions to the source code to clarify
the architectural intent. Because architectural hieraishyot readily observable in arbitrary
code, the annotations specify, within the code, object gadation, logical containment and
architectural tiers, which are not explicit constructs @amgral purpose programming languages.

2.3.1 Object and Domain Annotations

The SHOLIA annotations implement the ownership domain type systentrighl and Chambers
@D, which | review while explaining the annotations taateveloper might add to the imple-
mentation of the Listeners system (Hig.]2.4).

Definitions. An ownership domainis a conceptual group of objects with an explicit
name and explicit policies that govern how it can referentgeas in other domains
(Aldrich and Chambelis 2004). The annotations assign eaeltitoja single ownership domain
that does not change at runtime. A developer indicates whatath each object is part of by
annotating each reference to that object in the programpAdiyecker validates the annotations
and identifies where the annotations are inconsistent \aith ether or with the code.

The annotations also describe policies, calfienain links that govern object references
between ownership domains (we explain domain links andeypaenples in Sectidn 2.3.2).

Graphically, our visualization uses a white-filled rectiengith a dashed border to represent
an ownership domain. We also label each rectangle with theadoname.

Annotation syntax. This dissertation often uses a simplified annotation sythak extends
the language (Fid. 2.5). The syntax is similar to the one Wsethe formal system (Fig. 3.1,
Pagé 717) with one difference. The annotation syntax empaagie semantic difference between
the owner domain of an object and its domain parameters,ealsdhe formal system treats the
first domain parameter of a class as its owning domain.

2.3. Annotations 35

interface Listener {
}
class BaseChart<M> // Declare domain parameter M
implements Listener {
domain OWNED; // Declare protected domain OWNED
// Outer OWNED annotation is for the list object
// List has domain parameter ELTS for its elements
// Nested inner M annotation is bound to List’s ELTS for the list elements
OWNED List<M Listener> listeners = new List<M Listener>();

// A public method CANNOT return a reference to an object in a private domain
// So the following lines of code are commented out on purpose
// public OWNED List<Listener> getListeners() {
// return listeners;
//}
}

class BarChart<M> extends BaseChart<M> {
¥
class PieChart<M> extends BaseChart<M> {
}
class Model<V> implements Listener {
domain OWNED;
// Inner annotation V is for the list elements
OWNED List<V Listener> listeners = new List<V Listener>();

}
class Main {
domain DOCUMENT, VIEW; // Top-level domatins
// Bind domatin parameter V to actual domain VIEW
DOCUMENT Model<VIEW> model = new Model<VIEW>();
VIEW BarChart<DOCUMENT> barChart = new BarChart<DOCUMENT>() ;
VIEW PieChart<DOCUMENT> pieChart = new PieChart<DOCUMENT>() ;

Figure 2.4: Listeners: code with annotations.

Concrete annotation language. The concrete annotation system and tools use existing lan-
guage support for annotations, which tends to be verbose [PE8). AppendixX’A has more
details on the concrete annotation language as well as égammghat language.

Code examples. In addition, we simplified the code snippets included in tusument to show
only class and field declarations with their annotationsl, ignore Java language features such
as methods, generic types, and casts.

Domain names. A developer typically chooses domain names that convey soofgtectural
intent, such aBOCUMENT or VIEW. In this document, | often show domain names in capitaligtte
to distinguish them from other program identifiers, sincestamding conventions discourage
the use of all capital letters for non-constants.

36 Chapter 2. Object Graph Extraction

10

11

12

13

14

15

16

17

18

19

20

P € Program == (L,Ce)

L € ClassDecl ::= class C<a> [extends ('<(3>]
{D; F; M}
D € DomDecl := |public|domain d;
F € FieldDecl == T f;
M € MethDecl o
n = d|wv
p = « | n.d | shared
T € Type = Powner C<DPparams>
a, B € DomParam C,C" € ClassName

Figure 2.5: Simplified annotation syntax. Adapted from the formal system (Eid. 3.1, Pdye We
excluded domain links for simplicity.

@Domains ({"OWNED"})
@DomainParams ({"M"})
abstract class BaseChart implements Listener {
ODomain ("OWNED<M>") List<Listener> listeners = new List<Listener>();
+
©@Domains ({"OWNED"})
@DomainParams ({"M"})
@DomainInherits({"BaseChart<M>"})
class BarChart extends BaseChart {

}

@Domains ({"DOCUMENT", "VIEW"})
class Main {
©Domain ("DOCUMENT<VIEW>") Model model = new Model();
©Domain ("VIEW<DOCUMENT>") BarChart barChart = new BarChart();

public static void main(@Domain("lent[shared]")Stringl[] args) {
@Domain("lent") Main system = new Main();
}

}
Figure 2.6: Listeners: code with the concrete annotations.

Declaring adomain. Each class can declare one or more domains to hold the othetteake
its parts, thus supporting hierarchy. A domain carphgate or public to distinguish between
private or externally-visible state.

Private domains. A private domain, such a8WwNED (line [§ in Fig.[Z.4), providestrict en-
capsulation For instance, aublic method cannot return an alias to an object inside a private
domain, even though the Java type system allows returniadjasito a field marked ggrivate.
Thus, instance encapsulation is stronger than making alfesjd-ivate to restrict its module
visibility. For example, th@isteners collection object insid®arChart is encapsulated. The

2.3. Annotations 37

typechecker will produce a warning if | were to define a pubfiethod inside clasBarChart
that returns an alias tbisteners. A correct implementation of such a method, however, could
return a shallow copy of theist object, to avoid the representation exposure.

Public domains. A public domain provide$ogical encapsulationHaving access to an object
gives the ability to access all the objects inside its putibenains. For example, instead of
encapsulating theisteners object by placing it inside the private domawNED, | could define
aLISTENERS public domain and placeisteners insideLISTENERS. Then, any object that has
access to darChart object gets the ability to access thésteners instance. | present these
alternate annotations in Section]2.6.

Distinguishing between private and public domains. Graphically, our visualization distin-
guishes between private and public domains, by showingvaterdomain with a thick dashed
border, and a public domain with a thin dashed border.

Top-level domains. SCHOLIA assumes that the program operates by creating a main object.
refer to the domains declared by the class of the root obgetttetop-level domains

Domain parameters. Domain parameters allow objects to share state and worklaw$ An
objectX can access objects in a doma&irof objectY by declaring a formatlomain parameter
on the class oK andbindingthat formal domain parameter to domd@ras long aslomain link
permissions allowX to acces® (we discuss domain links further in Section 213.2). Wherever
the program instantiates a class that declares domain p&genthe domain parameters must be
bound to other domains that are in scope. Note, the claseabtht object declares no domain
parameters. Graphically, our visualization representsadl domain parameter with a white-
filled rectangle with a dotted border.

For example, clasgarChart needs to access objects in TEEUMENT domain that is declared
in clasMain. SoBarChart declares a domain paramelgtine[3). When clasHain declares an
object of typeBarChart, it bindsBarChart’s domain parameterto its locally declared domain,
DOCUMENT (line[30), so that 8arChart instance can refer to other objects insid€UMENT such
asmodel.

Domain parameters must also be bound to account for inhedteFor exampléaseChart
takes a domain parametéerSo each subclass BéseChart, such aBarChart andPieChart,
binds its domain paramet#rto BaseChart’s M domain parameter (lin€s17,]19).

Why domain parameters? | glossed over whpaseChart, BarChart, PieChart andModel
required domain parameters (Fig.12.4). They do, becaugeatheseList which is part of the
Java standard library (Fig._2.7). Recall, here wellisg as if it were a a concrete class such as
ArrayList.

Library code is often parametric with respect to applicattomponents. For example, the
List class is parametric in two ways. Firstst is parametric in the type of the element stored

38 Chapter 2. Object Graph Extraction

© 00 N o 0 B~ W N P

P
[E.S)

// T is generic type parameter
// ELTS <s a domain parameter for the list elements
class List<ELTS T> {
private domain OWNED; // Private domain
// Place the list’s representation in a private domain
OWNED Object[] rep;

// A list has virtual references to the elements it holds.
// A virtual field declaration can stimulate that.
ELTS T obj;

Figure 2.7: ClassList is parametric in the ownership domain of its elements.

in the list, hence th& type parameterList also takes a formal domain parame&xTs (line
[3), that specifies the domain of the elements stored in thie lis
Back in the Listeners example (Fig. 2.4), the o&ED annotation, inside cla&rChart,
is for theList instance itself (lin€l9). The innérannotation binds the formal domain parameter
ELTS to BarChart’s domain parametef (line[d), to allow thel.ist to access objects insidie

Why ownership domains? ScHOLIA adopts ownership domains because of the expressive-
ness of the type system, and its suitability for represgrdirchitectural intent in code. In prin-
ciple, SCHOLIA could use an ownership type system that assumes a singtextper object
(Clarke et all 1998). However, having multiple domains pgectis often useful for modeling
architectural runtime tiers.

In addition, ownership domains have a crucial expresss®aevantage that can reduce the
number of objects in the top-level domains in an extractelitgcture. In an owner-as-dominator
type system, any access to a child object must go throughviténg object (Clarke et al. 1998).

In contrast, the ownership domain type system supportsirpgxsﬂdmoﬂ any object under-

neath any other object in the ownership hierarchy. A chilgecbomay or may not be encap-

sulated by its parent object: a child object can still be nezfeed from outside its owner if it

is part of a public domain of its parent, or if a domain paranét linked to a private domain
' s 2004).

If making an object owned by another object restricts actmet®e owned object, then adding
annotations to existing code, after the fact, would forceemdjects to be peers, and thus lead to
more cluttered object graphs. On the other hand, usigigal containmenwith public domains
is more flexible than thetrict encapsulatiomf private domains, and can also reduce the number
of objects in the top-level domains.

Owner-as-dominator. Still, ownership domains can also enforce the strict ovasedominator
discipline found in other ownership type systems. To fultg@psulate an object, a developer can
declare an object reference in a domain that satisfies th@violg conditions: (a) the domain

3Typically, we annotate theist class to take a single domain parameter to store the listiments, which
means that all the objects referenced hyiat object are in the same domain.
4A well-formed ownership relation cannot have cycles.

2.3. Annotations 39

class Sequence<ELTS> assumes OWNER -> ELTS {
domain OWNED; // Priwvate domain
public domain ITERS;
link OWNED -> ELTS;
link ITERS -> ELTS, ITERS -> OWNED;

private OWNED Cons<ELTS> head;

public void add(ELTS Object o) {
head = new Cons<ELTS>(o,head);
}

public ITERS Iterator<ELTS> getIter() {
return new Sequencelterator<ELTS, OWNED>(head) ;
}
}

class Cons<ELTS> assumes OWNER -> ELTS {
ELTS Object obj;
OWNER Cons<ELTS> next;

Cons (ELTS Object obj, OWNER Cons<ELTS> next) {
this.obj=obj; this.next=next;
}
}
Figure 2.8: Sequence abstract data type with ownership domains.

is private; and (b) there is no domain link from any of the formal domaamgmeters of the

declaring class to therivate domain (Aldrich and Chambers 2004). Placing an objeénside

such a domain fully encapsulates

2.3.2 Permission Annotations

Objects within a single ownership domain can refer to oneterpbut references can only cross
domains if the programmer specifiesddamain linkbetween the two domains when they are
created|(Aldrich and Chambers 2004). A domain link is a pali@t an object can declare to
describe the permitted aliasing among objects in its iatedomains, and between its internal
domains and external domains. Ownership domains suppotkitvds of policy specifications:

* A domain link from one domain to another, denoted with a ddsdreow in the diagram,

allows objects in the first domain to access objects in therskdomain;

* A domain can be declared public. Permission to access atajomatically implies

permission to access its public domains.

For exampleSequence uses a linked list as its internal representation. So itgdabose
Cons objects in the privat@WNED domain (Fig[Z.B).Sequence also defines a public domain,
ITERS, to holds the iterator objects. A domain link from th@ERS domain to theOWNED do-
main allows those iterator objects to access the list'sasgmtation in th@wNED domain. Both
domainsITERS andOWNED can access the domain paramelierS. The ITERS domain is public,

40 Chapter 2. Object Graph Extraction

,/ seq: Sequence ~ T 71T T > ‘:

client ! ta '

objects ! UIER LR | | "
Lyl/ E - = !

B S Y s =

Ll L1 I ;

[| [1

bl 1 1" '

i |!lterator | 1 I '

1 : : I :

—— = 1 . » " :

| NRTES :Cons || ! '

I X0 1 '

.-l"'r‘. 1 [— II————} 1

- : I\ - -UI— e - 7I:' T-:— -»> :

\ S - — e - — J 1 1

\s ,‘ 3 !

N A e e e, e ———————————

Figure 2.9: A conceptual view of th&equence abstract data type. Dashed edges represent link permis-
sions between domains.

allowing clients to access the iterators. But thED domain is private, so outside objects can-
not directly access théons objects. Instead, the clients must access the elementsegfui@nce
object through its iterator interface rather than traveyghe linked list directly. A graphical
representation of the domains and the domain links is in[ERy. Graphically, our visualization
represents a domain link between two ownership domainsanithshed edge.

In addition to the explicit policy specifications mentioreabve, the following policy speci-
fications are implicit:

1. An object has permission to access other objects in the samain;

2. An object has permission to access objects in all of theagizsrthat it declares.

The first rule allows the differertfons objects in the linked list to access each other, while the
second rule allows the sequence to access its iteratorged list. Any reference not explicitly
permitted by one of these rules is prohibited, accordinghéoprinciple of least privilege. It is
crucial that there is no transitive access rule. For exajmlen though clients can refer to
iterators and iterators can refer to the linked list, clkecannot access the linked list directly
because the sequence has not given them permission to délce@®ED domain. Thus, the
policy specifications allow developers to specify that savbgects are an internal part of an
abstract data type’s representation, and the typecheckerces the policy, ensuring that this
representation is not exposed.

2.3.3 Special Annotations

Several special annotations add expressiveness to theygfam, and can be considered as spe-
cial domains that need not be explicitly declared (Aldrichlel2002¢; Aldrich and Chambers
2004). These special annotations can be also bound to fatombin parameters. In Sec-
tion[2.5.1, we discuss how the object graph handles thesgespeanotations.

2.3. Annotations 41

© 00 N o U B~ W N P

I S N e T T i <
S © ®»® N o u ~A W N B O

// Implicit OWNER parameter
class Model<V> implements Listener {

3

class Main {
domain DOCUMENT, VIEW;
// Model: :OWNER is bound to Main::DOCUMENT
DOCUMENT Model<VIEW> model;

}
// vs. explicit OWNER parameter
class Model<OWNER, V> implements Listener {

}

class Main {
domain DOCUMENT, VIEW;
// Model::0WNER is bound to Main::DOCUMENT
Model<DOCUMENT, VIEW> model;

Figure 2.10: Listeners: using thewNER keyword.

2.3.3.1 OWNER

Each class has an implicit domain parameter that need naedardd and is nameWNER. The
OWNER implicit parameter always occurs as the first element inigt@f domain parameters of a
class. Fig[2.70 shows equivalent annotations that makienblécit OWNER parameter explicit.

2.3.3.2 shared

Objects can be marked with tBaared annotation to indicate that they may be aliased globally.
But shared references may not alias nehared references. Typicallyshared references are
needed for static fields, all of which may refer to aliasesan@not related to any object instance.
In most cases, the use of static fields is discouraged. Inrgkiiee use okhared is under the
control of the developer, and she could avoid usingred altogether, sincehared is mainly
designed to inter-operate with legacy code or third-paklisaties. We often use thehared
annotation for immutable objects lilgxring objects.

Neverthelessshared introduces a gap in reasoning about communication intedtiis not
the only one, however. For instance, calls to native metlaoesanother. As a result, external
coding guidelines may be needed to discourage the libeeabiiheshared annotation.

2.3.3.3 unique

The annotatiomnique indicates an object to which there is only one referencd) asa newly
created object. An object markedique can be passed linearly from one domain to another.

42 Chapter 2. Object Graph Extraction

2.3.3.4 lent

One ownership domain can temporarily lend an object to amalbmain and ensure that the
second domain does not create a persistent reference tbjtt,ce.g., by storing it in a field.
Such an object has the annotatiomt.

2.4 Static Analysis

A static analysis extracts from an annotated progragtobal object graph that uses object hier-
archy to convey architectural abstraction. | explain tléictinalysis by discussing the following
representations of an object-oriented program:
* The Type Graph off Graph (Sectiof2.411) represents the type structure, and isairnal
a class diagram, enhanced with information about the ovaiedomain annotations;
* The Object Graph 0®Graph (Sectiof 2.4.R) represents the object structure and idagimi
to an object diagram;
* The Display Graph obGraph (Sectior 2.4.13) is the object graph with which the developer
interacts, to control the abstraction by ownership hignar@and by types, as well as the
level of visual detalil.

2.4.1 Type Graph

The Type Graph of Graph represents the type structure of the objects that the codgmates.
A type graph can be considered a kind of UML class diagramalsatshows ownership domain
annotations, including formal domain parameters. One cald b Type Graph using an im-
plementation of the Visitor design pattetn (Gamma &t al4190 331), to traverse the Abstract
Syntax Tree (AST) of an annotated program (Fig. 2.11(a)).

In the type graph, a type declared in the program has domaiiaréd in it. Each local or
formal domain declaration has field declarations. In turiield declaration has a declared type.
But because these types are shared, the type graph is namnchieal.

Fig. (212 shows the type graph for the Listeners system. Aenfilied solid-border box
represents a type. A white-filled dotted-border box repressa formal domain parameter, e.g.,
M, declared inside a type. A white-filled dashed-border bgtasents an actual domain, e.g.,
DOCUMENT. A grey-filled box represents a field declaration inside a d@iomA thick dotted edge
represents a type relationship. A solid edge representkladierence.

A type graph is inadequate as a runtime architecture foratlhasing reasons.

Atype graph does not show a hierarchy of objects and domains. In a type graph, a field dec-
laration does not have children objects. Rather, a field d&titda has a type, a type has domains,
and a domain has other field declarations. For example, tldedigelaratiorbarChart has type
BarChart, and the typeBarChart has the formal domain parametemand the actual domain
OWNED. In turn, the domain declarati@WNED contains the field declaratidristeners. Thus, in

a type graph, one cannot view the children of an object witlgoing through its declared type.

2.4. Static Analysis 43

(@) Type GraphTGraph). (b) Object Graph@Graph).

(c) Display GraphDGraph).

Figure 2.11: Relation between Type Graph, Object Graph and Display Graph.

44 Chapter 2. Object Graph Extraction

A type graph does not reflect possible aliasing. The ownership domain type system guaran-
tees that two objects in different domains can never aliastvBuobjects of compatible types, in
the same domain, may alias. E.g.D@CUMENT has a field declaratiobstnr of typeListener,

it may refer to the same object as the field declaratiodel of typeModel, becauselodel is a
subtype ofListener.

If two objects may alias, an object graph conservativelywshthem as one. In general,
merging objects based on only the aliasing precision peavidy the ownership domain type
system could yield imprecise results. For example, onedcosé an intra-domain alias analysis
to better approximate the set of objects that may alias ainnen But experience in applying
the analysis on real object-oriented code confirms that tim®tations give more than enough
precision about aliasing, as long as most object referemmedeclared—or instantiated—with
precise types, instead gfva.lang.0bject (Section2.4.312 (Pagels9) discusses the difference
between using declarations and object allocations). Iy imenost object graphs, one may need
to further abstract objects in a domain, based on their detkypes (Section 2.4.3.2, Pdge 59).

In practice, to avoid merging all objects in a domain thatehavaw type such aslstﬁ, we
suggest but do not require refactoring the code to use aigaype, sayList<String>.

In a type graph, a domain declaration does not directly show kthe objects that are in a
given domain. The type graph contains field declarations only for the lgadé¢clared fields.
For instance, the typkist<Listener> declares itobj:Listener field in theELTS domain
parameter onist. Such fields do not appear where the actual domain is decldtte, in the
type graph, the formal domain parametensideBarChart is empty, even though it is bound to
theELTS onList (Fig.[2.12).

A type graph shows formal domain parameters, which do not exst at runtime. Parametric
library code often creates interesting architecturati@tahips in application objects, when these
parameters are bound to the specific domains on specifictslyezated by the application at
runtime. So, a static analysis must resolve these parasneteansure that the relevant object
relations appear at the level of the global application cig&uctures.

2.4.2 Object Graph

The analysis computes an Object Grapl®D&iraph, which soundly approximates any true Run-
time Object Graph (ROG) (Fi§. 2.11{b)). AdGraph is a graph with two types of nodeS0b-
jects andODomains. Edges betwee@Objects correspond to field reference points-to relations.
The root of the graph is a top-lev@Domain. For now, assume that the nodes form a hierﬁchy
where eaclOObject node has a unique pare@Domain, and eachODomain node a unique
parentOObject (Fig.[2.13). We will refine later th®Domain andOObject data types.

SGeneric types were introduced to Java as of version 1.5. Ra@stare still part of Java, mostly for backwards
compatibility with earlier code bases. We believe that noddér Java code is being migrated to use generic types.
Indeed, refactoring to generics has mature tool supportlipg (Fuhrer et al. 2005). So the overall trend is for
more precise declared types in Java code.

8n fact, a graph oDDomains andOObjects can have cycles, as we discuss in Se¢fion 214.2.3.

2.4. Static Analysis 45

Main S
I~ DOCUMENT :.'
: model: be .“f‘
1 Model : List<Listener>
I N AR
Lo=zzzzzzz=z=2 ! OWNED H
: VIEW ! BarChart I :
1 1 e m————————— : head 1
: barChart: | | L M | OWNED 1 1 :
1 BarChart AL D > ; isteners: NP tmmmmmmmmm e -
: : : List<Listener> 'i' ELTS
| | pieChat: : S —— ' s
: PieChart ':'.' Liste]r'1er
1 ‘,..
LTS
Figure 2.12: Listeners:type graph
G € OGraph = (Objects= {O...}, Domains= {D ...}, Edges={FE...})
= (PtO, PtD, PtE)
D € ODomain .= (1d = Dy, Parent = 0,4, Domain = d)
= (Dzda Ozd7 d)
O € 00bject = (Id = Oy, Parent= D,,, Type = C")
= (id>y Dzd7 C)
E € OEdge := (From = O, Field = f, To = Oy)
= (Osr(‘a f Odst)

Figure 2.13: Initial data type declarations for tt{@Graph. The formal to actual bindings are not shown.

2.4.2.1 Overview

At a high level, the analysis distinguishes between objectifferent domains, and abstracts
objects to pairs of domains and types. The analysis adopt$ottowing approach to possi-
ble aliasing: in a given domain, two field declarations witmpatible types are merged. The
analysis also substitutes actual domains to formal domaiarpeters. To do so, the analysis
maintains a set of formal to actual bindings (not shown in [EZi@3). Finally, the analysis adds
edges between objects.

Object merging. Different executions may generate a different number oéctisjat runtime,
for instance oBarChart objects. But the static object graph must represent all plesekecu-
tions. To address this, the object graph abstracts muttipittme objects with a canonical object.
Further, exactly one canonical object in the object graphesents each object in a ROG.

46 Chapter 2. Object Graph Extraction

class Main {
domain DOCUMENT, VIEW;

DOCUMENT Model<VIEW> modell = new Model<VIEW>();
DOCUMENT Model<VIEW> model2 = new Model<VIEW>();

VIEW Model<DOCUMENT> model3 = new Model<DOCUMENT>();
model3 = modell; // Illegal assignment

DOCUMENT Model<DOCUMENT> model4 = new Model<DOCUMENT>() ;
model4 = modell; // Illegal assignment

Figure 2.14: Listeners: possible aliasing.

Object aliasing. The object graph maintains an aliasing invariant, i.e., ne@ ntime object

appears as two different canonical objects in the graph.nforee this invariant, the analysis
relies on the ownership domain annotations that give soraeigion about aliasing, without
requiring an alias analysis. The type system guarante¢s$wibaobjects in different domains
cannot alias. But two objects in the same domain may aliasth®analysis merges two field
declarationsn the same domajnf their types are related by inheritance.

For example, consider the following variation on the Ligtenexample (Fid.2.14). The
OGraph represents the two object allocationgle1 1 andmodel?2 in the same domaibDOCUMENT
into oneOObject. On the other hand, the analysis creates a sep@@bgect for model3 since
it is in the different domaivIEW.

Althoughmodel4 is also of typeModel and is in theDOCUMENT domain, it takes different
domain parameters thatvdell or model2. Indeed, the type system prevents the assignment
of model4 to modell, and vice versa, i.e., these two may not alias. So, the asalysates a
separat®Object for mode14 and does not reuse the one f@dell or model2.

Domain parameters. Formal domain parameters do not exist at runtime. As a rethét
OGraph does not have formal domain parameters. InsteadDtheph shows arOObject that

the program declares in a formal domain in the corresponaatgalODomain that the formal
domain parameter is bound to, starting from the root objé&tis is important for soundness,
because each runtime object that is actually in a domaimétmae must appear in that domain in
the object graph. Itis as if the analygislls objects declared inside a formal domain parameter
into each actual domain that is bound to the formal domaiarpatd].

2.4.2.2 Abstract interpretation

The static analysis abstractly interprets the program ¢alyce theOObjects, ODomains, and
OEdges in theOGraph (Fig.[2.13). The analysis distinguishes between diffemestances of the
same class that are in different domains. In addition, treyais maintains a mapping from
formal domain parameters to the representatives iOtheph. For reasons we discuss later, the

"Previous formalizations of the object graph extractiotistanalysis accounted for formal domain parameters

using an explicit pulling (Abi-Antoun and Aldridh 2007b, @98).

2.4. Static Analysis 47

analysis generates @&0bject in the OGraph when it encounters an object allocation expression,
i.e.,new expression, rather than a variable or field declaration.

Notation. In the following discussion, we use the following notatiom fully qualify objects
and domains:

* 0obj.DOM refers to either a public or a private domalhOM inside objectobj, e.g.,
main.DOCUMENT. It effectively treats a domain as a field of an object;

* 0bj1.DOM.obj2 refers to the objectobj2 inside the domain DOM, e.g.,
main.DOCUMENT .model,;

* fobj....DOM refersto a public domain. The ownership domain type systewspath-
dependent annotations that are of the fetsy1.obj2. . .DOM, whereobj1, obj2, ..., are
chains of final fields or variables, amdM is a public domain declared on the type of the
last object in the path;

* (::d refers to a domaid qualified by the clas€’ that declares it.

Example. On the Listeners example, the analysis works as follows. {EItB). First, the user
selects a root type, in this case, the cldssn. The analysis creates &0Object (OO0) for the root
object allocation. Then, it analyzes the cléssn in the context of th€ OObject) (O0).

In doing so, the analysis creates tW@®omains for the two domain®0CUMENT and VIEW
thatMain declares, D1 and D2, respectively. For the object allonatinsideMain, the analysis
creates twdObjects barChart (O1) andpieChart (O2) insideVIEW, and anOObject model
insideDOCUMENT (O3). Because of the field references, the analysis alsces@B&tiges from
the current objeatiain to the newly created objects, E1, E2, and E3.

The analysis then interprets the allocation &aaChart object, by binding the formal do-
main parameteBarChart::M to D1.

In Fig.[2.16, the analysis analyzes the cl&@asChart and its superclasBaseChart in
the context of theOObject barChart and the bindings of formal to actual domains, e.g.,
that the formal domain paramet#ris bound to theODomain main.DOCUMENT. While an-
alyzing BaseChart, the analysis creates @Domain for OWNED (D3), and anOObject for
List<Listener> (O4).

ClassBaseChart declares alisteners field in domainOWNED. So the analysis adds an
OEdge (E4) from barChart to listeners inside itSOWNED domain. Note for example that
analysis does not add an edge froarChart to listeners insidepieChart.

Next, the analysis analyzes the cldssst<Listener> in the context of theOObject
listeners and the bindings in scope. When interpreting the virtual fagdlaration inside
List, the analysis looks up all th@Objects in the domaimain.DOCUMENT the types of which
are subtypes ofistener. For instance, the analysis fin@©bject model. So, it creates an
OEdge from the OObject corresponding to the curreObject listeners to that OObject
(E5). Note that the analysis does not add an edge frar@hart’s listeners t0o pieChart in
VIEW, even thougtPieChart also implements theistener interface. As a result, the edges in
an OOG are more precise than super-imposing associatmmsaiclass diagram.

The analysis oPieChart, its superclasBaseChart, andList is similar to that oBarChart
andBaseChart, and is not shown.

48 Chapter 2. Object Graph Extraction

In Fig.[2.17, the analysis processes the cls#el in the context of theDObject model.
The analysis creates &Domain for OWNED (D4), anOObject for List<Listener> (O5), and
an OEdge (E6), then analyzes the object allocationlakteners. The analysis then processes
the clasd.ist in the context of thé&Object main.DOCUMENT .model .OWNED. listeners. The
analysis looks up an@Object of typeListener in the domaimain.VIEW, and finds two such
OObjects. So it adds a®WEdge from the OObject listeners to barChart (E7), and another
from listeners to pieChart (ES8).

The final object graph for listeners is in Fig. 2.18. The robject of an OOG is often an
instance of a class that declares the top-level domaindarabjects inside them. For readability,
we sometimes elide the root domain and the root object fro@@G and consider the domains
inside the root type as the top-level domains (Eig.2.19).

2.4. Static Analysis 49

main: 1 1
Main : :
(00) (E1) , I

1 1

1 barChart: |

—»BarChart |

(E3) (01) i
re—-————————————=—=— == |
1 I 1
1] 1
1 I 1
I :l pieChart: I
: |: PieChart :
I'| model i) I
| Iy |
1| Model h !
| (O3 1 |
1 I 1

DOCUMENT (D1) VIEW (D2)

10

11

12

13

14

15

16

17

18

19

20
21

’OObject(main, NULL, Main)‘

Main main = new Main();

’ analyze(main, [1) ‘

class Main {
domain DOCUMENT, VIEW;

| ODomain (DOCUMENT, main) | (D1)

| ODomain (VIEW, main) | (D2)

| OObject (main. VIEW.barChart, main.VIEW, BarChart) | (01)

’OEdge(main, main.VIEW.barChart) ‘ (E1D)

VIEW BarChart<DOCUMENT> barChart = new BarChart<DOCUMENT>() ;
analyze(barChart, [BarChart::M + main.DOCUMENT, BarChart::OWNER — main.VIEW])

OObject(main.VIEW.pieChart, main.VIEW, PieChart) | (02)

’OEdge(main, main.VIEW.pieChart) | (E2)

VIEW PieChart<DOCUMENT> pieChart = new PieChart<DOCUMENT>() ;
’analyze(pieChart, [PieChart::M + main.DOCUMENT, PieChart::OWNER + main.VIEW])
| OObject (main.DOCUMENT .model, main.DOCUMENT, Model) | (03)

’OEdge(main, main.DOCUMENT.model) | (E3)

DOCUMENT Model<VIEW> model = new Model<VIEW>();

’analyze(model, [Model::V + main.VIEW, Model::OWNER ~ main.DOCUMENT])

Figure 2.15: Abstractly interpreting the program, starting with the root chesin.

50 Chapter 2. Object Graph Extraction

_________________ ~
—mmmmmm— g |

I listeners: 1!

(E4) || List<Listener> : :

barChart;—+% (04 il

BarChart 1!

I_ LOWNED (03)_ /|

r |
1 I 1
| I 1
1 I 1
I :l pieChart: I
: I: PieChart :
: model: :: (E5) :
1 Model ‘\\\\\\\\\\ 1 i
1 I 1
e DQCUMENT _ _ S\ Ve]

[this — main.VIEW.barChart |
’ [BarChart::M + main.DOCUMENT, BarChart::OWNER + main.VIEW]
class BarChart<M> extends BaseChart<M> {
’analyze(barChart, [BaseChart::M + main.DOCUMENT, BaseChart::OWNER ~ main.VIEW])
}
[this ~ main.VIEW.barChart |
’ [BaseChart::M +— main.DOCUMENT, BaseChart::0WNER +— main.VIEW]

class BaseChart<M> implements Listener {
domain OWNED;

’ ODomain (OWNED, main.VIEW.barChart) | (D3)
’ OObject (main.VIEW.barChart.OWNED.listeners, main.VIEW.barChart.OWNED, List<Listener>) | (04)

| OEdge(main.VIEW.barChart, main.VIEW.barChart.OWNED.listeners) | (E4)
OWNED List<M Listener> listeners = new List<M Listener>();
’ analyze(main.VIEW.barChart.OWNED.listeners, ‘

’ [List::ELTS + main.DOCUMENT, List::OWNER ~— main.VIEW.barChart.DWNED])‘

}
[this ~— main.VIEW.barChart.OWNED.listeners |

’ [List::ELTS ~ main.DOCUMENT, List::OWNER + main.VIEW.barChart.OWNED] ‘

class List<ELTS T> {
’OObject(main.DDCUMENT.model, main.DOCUMENT, Model) € lookup(main.DOCUMENT, Listener)

’OEdge(main.VIEw.barChart.OWNED.listeners, main.DOCUMENT .model) ‘ (E5)

ELTS T obj;
}

Figure 2.16: Abstractly interpreting the program (continue8}rChart, BaseChart andList.

2.4. Static Analysis 51

18

19

20

21
22

main:
Main

listeners:
> List<Listener>

I
| 1
I I listeners: I) i
: 1| List<Listener> ,qu> g_e(éhharti
| (EG/: \ 4 (05) k i * o
. I
Il model: ~ M,
|| Model ~4__ OWNED(D4) !}
I ppe——
I DOCUMENT h VIEW

’this — main.DOCUMENT.model
’ [Model::V + main.VIEW, Model::OWNER — main.DOCUMENT]

class Model<V> implements Listener {
domain OWNED;

’ ODomain (OWNED, main.DOCUMENT.model) | (D4)

’ OObject (main.DOCUMENT .model.OWNED.listeners, main.DOCUMENT.model.OWNED, List<Listener>) | (05)
’ OEdge (main.DOCUMENT .model, main.DOCUMENT.model.OWNED.listeners) ‘ (E6)

OWNED List<V Listener> listeners = new List<V Listener>();

’ analyze(main.DOCUMENT .model.OWNED.listeners, ‘

’ [List::ELTS +~ main.VIEW, List::OWNER ~ main.DOCUMENT.model.OWNED])‘

}
[this + main.DOCUMENT.model.OWNED.listeners |

’ [List::ELTS +— main.VIEW, List::0WNER — main.DOCUMENT.model.QWNED] ‘

class List<ELTS T> {
’OObject(main.VIEW.barChart, main.VIEW, BarChart) € lookup(main.VIEW, Listener)‘

’OEdge(main.DOCUMENT.model.OWNED.listeners, main.VIEw.barChart)‘ (E7)

OObject(main.VIEW.pieChart, main.VIEW, PieChart) € lookup(main.VIEW, Listener) ‘

OEdge(main.DOCUMENT.model.OWNED.listeners, main.VIEw.pieChart)‘ (E8)

ELTS T obj;
}

Figure 2.17: Abstractly interpreting the program (continuetiydel andList.

52 Chapter 2. Object Graph Extraction

1 listeners:
barChart;:— ¥ List<Listener>

_’BarChart :
%4 L / OWNED

listeners:
List<Listener>

, List<Listener> PieChart

|
. . | 1] . .
listeners: ™ pieChart:
|
1
|

1
1
1
1
1
1
1
1
-1

Figure 2.18: Listeners: full object graph, including the root object.

listeners:
barChart:— ¥ List<Listener>

BarChart :
// L / OWNED _ _ !
1

listeners:
List<Listener>

PieChart

> List<Listener>

1
i : 1|V pieChart:
listeners: ™ p

1

1

1

A femmme= !

Figure 2.19: Listeners: object graph without the root object and edges from the roo

2.4. Static Analysis

53

class Main {

domain OWNED;

QuadTree<OWNED> aQT = new QuadTree<OWNED>();
}
class QuadTree<M> {

domain OWNED;

QuadTree<M> nwQT = new QuadTree<M>();

}
Figure 2.20: QuadTree with annotations.

2.4.2.3 Recursion

The analysis must handle recursive types which can leadG@maph to grow arbitrarily deep.
For example, consider a clasadTree, which declares fields of typguadTree in its OWNED
domain (Fig[2.200). On thguadTree example, the abstract interpretation discussed abovedwoul
not terminate (Fid._2.21), as it would keep generating 0&bjects andODomains.

Recursive types. To get a finiteOGraph and ensure the analysis terminates, the analysis could
stop expanding a®@Graph after a certain depth. However, merely truncating the isoarmay
fail to reveal relations when child objects point to extérobjects, and the child objects are
beyond the visible depth. Instead, the analysis createsla ocyanOGraph when it reaches a
similar context. There are two possible choices (Eig.12.22)

The first choice is tainify objects For instance, Fig. 2.22(b) shows the resul@@raph for
theQuadTree example. InsidawQT, theOWNED domain refers back to the sameQT OObject.

The second choice is tmify domainsFor instance, Fig. 2.22(c) shows the result@@raph
for the same example. TIWNED domain insideawQT is the same as the one insiagT.

We discuss each choice in turn, and why we chose to unify dunmaithe end.

Unifying objects. Any sound solution to the problem must attempt to alwaystereajects
until it detects that it is creating a similar object to onergated before. In that case, the analysis
just uses the existing similar object. One can imagine pleltnotions of similarity; it can be
any equivalence relation, as long as the number of dissimiigects is finite. For example, one
could adopt the following similarity relation between twojectsA and B if:

1. AandB are of the same type, including actual domain parameters;

2. A and B came from the same source domadi(mot ODomain D — two objects in different

d’'s may end up, after formal to actual substitution, in the sdm)y

3. A andB are below a depth threshold and

4. A andB are transitively inside the same object that is at deptlstiolel /.

The third condition ensures that the analysis does not unifyobjects if one of them is
above the threshold, and the fourth condition ensures tigaamalysis does not add accidental
lifted edges by crossing graph boundaries.

When the analysis does not create an object because it issimatill recursively calls the
analysis functiondnalyze) on the existing object, because the newly created objedt damve

54 Chapter 2. Object Graph Extraction

Main main = new Main();

OObject(main, null, Main) ‘

analyze(main, [])‘

this — main‘
class Main {
domain OWNED;

’ODomain(main.OWNED, main) ‘

] OObject (main.OWNED.aQT, main.OWNED, QuadTree) \
QuadTree<OWNED> aQT = new QuadTree<OWNED>();

| OEdge(main, main.OWNED.aQT) |
’analyze(main.DWNED.aQT, [QuadTree::M — main.DWNED])‘

}
] this ~ main.OWNED.aQT \

’[QuadTree:M — main.OWNED]‘

class QuadTree<M> {
domain OWNED;

| ODomain (main.OWNED.aQT.OWNED, main.OWNED.aQT) |
’OCNﬂedeain.UWNED.aQT.OWNED.anT, main.OWNED.aQT.OWNED, QuadTree)‘
’OEdge(main.OWNED.aQT, main.OWNED.aQT.OWNED.anT)‘

QuadTree<M> nwQT = new QuadTree<M>();
’analyze(main.OWNED.aQT.OWNED.nWQT, [QuadTree::M +— main.OWNED])‘

}
[this — main.OWNED.aQT.OWNED.nwQT]
’[QuadTree:M > main.OWNED]‘

class QuadTree<M> {
domain OWNED;

’()Donuﬁn(main.UWNED.aQT.OWNED.nWQT.UWNED, main.DWNED.aQT.OWNED.anT)‘

’OCHﬂaj(main.DWNED.aQT.DWNED.anT.OWNED.anT, main.OWNED.aQT.OWNED.nwQT.OWNED, QuadTree)

‘OEdge(main.OWNED.aQT.OWNED.nWQ, main.OWNED.aQT.OWNED.nwQT.OWNED.nwQT) ‘
QuadTree<M> nwQT = new QuadTree<M>();
’analyze(main.OWNED.aQT.DWNED.anT.OWNED.anT, [QuadTree::M +—> main.OWNED])‘

}

Figure 2.21: QuadTree abstract interpretation without cycle detection.

different domain parameters compared to the previous @oe$ie recursive call could produce
new edges, even ones that show up above the threshold.

However, unifying objects is problematic. To identify slamiobjects, it is necessary to de-
tect they have the same owniiomain. If an ODomain has a unique ownin@Object, this
becomes circular. Moreover, in order to add edges, we lookijgcts in a given domain by their

2.4. Static Analysis 55

’,.‘-—-'P QuadTree [& -~._. - ISA

(’ .
Is-A - o
R ~,
s N
; .
\-

! owned

I
! Has-A e i
\ 1
1 ;

- 'l‘

‘4 _nwQuadTree _seQuadTree '

(a) QuadTree type graph

main
r—=—=—==- _| main
I OWNED I i
- . - .
—l I OWNED I
aQT - . - o
T 'y
' LI | LB]
| OWNED I

I Domain I Obiject

| I —

(b) Unifying objects. (c) Unifying domains.

Figure 2.22: Handling the recursion iQuadTree.
type. Since recognizing domains is important, we adopteddtution of unifying domains.

Unifying domains. Instead, unifying domains is less problematic, becausesitmpler to rec-
ognize when tw@Domains have the same underlying domain declaration

The analysis creates a cycle in t@&raph when the sam@®Domain appears as the child of

56 Chapter 2. Object Graph Extraction

D € ODomain == (ld = Dy, Domain= C::d)
= (Djg, C::d)

Figure 2.23: Revised data type declaration ©Domain. OObject andOEdge are unchanged.

two OObjects. This justifies ar©ODomain not having a unique ownin®Object, and revising
accordingly the data type declaration for @Domain (Fig.[2.23). We now qualify a domaiih
by the class” that declares it, for exampl®ain::DOCUMENT. With the revised data structures,
the abstract interpretation QfiadTree example now terminates (Fig._2]24).

2.4.2.4 Domain parameters

Recall, the analysis distinguishes between different ntsia of the same class that are in differ-
ent domains. We now increase the precision of the analysdiglistinguish between instances of
the same class in the same domain, that have different ato@din parameters.

Consider a variation on the Listeners example (Eig.]2.25)eltonsider that theist class
takes a domain parameter for its owning domaitNER, and another for the list elemeng,TS,
thenList has typeList<OWNER, ELTS T>. We want the analysis to distinguish between two
List object allocations with different actual domains passefbirDWNER or ELTS (Fig.[2.26).

In Chaptei B, we extend the current data type declaratiogs[ZE23), and additionally include,
in anOObject, the actual domain parametdbps rather than just the owning domain

2.4.3 Display Graph

We often do not display a@Graph directly but instead unfold it as@isplay Graph or DGraph
(Fig.[2.11(c)). TheDGraph is the object graph that the tool displays to a developer,veittd
which the developer interacts.

2.4.3.1 Depth limiting

An OGraph can have cycles. SoGraph displays arOGraph by unfolding it to a user-specified
depth (Fig[2.2l7). Increasing the unfolding depth displayse objects. Decreasing the depth
collapses the substructure of objects that are alreadagtesgp.

In addition, aDGraph addslifted edg%o account for any edges in tl@Graph below the
unfolding depth, using their nearest visible ancestorabjabove the unfolding depth. Lifting
edges is a well-known technique when visualizing hieraahiepresentations (Fahmy and Holt

).

For instance, for thQuadTree example, our visualization shows ofeadTree object within

another, down to a finite depth (See Kig. 2.28).

8Definition of edge lifting: If nodex has an edge to nodg andz is a descendant d?X andy is a descendant
of PY, then we lift the edgéz, y) to (PX, PY) only if PX andPY are distinct nodes anBlX is not a descendant
or ancestor ofPY'.

2.4. Static Analysis 57

Main main = new Main();
| OObject (main, null, Main) |

’anulyze(main, [])‘

]this — main‘
class Main {
domain OWNED;

| ODomain (main.OWNED, Main::OWNED) |
’OCHﬂai(main.DWNED.aQT, main.OWNED, QuadTree)‘
QuadTree<OWNED> aQT = new QuadTree<OWNED>();
] OEdge (main, main.OWNED.aQT) \
’analyze(main.OWNED.aQT, [QuadTree::M MainxOWNED])‘
}
|this ~— main.OWNED.aQT |
| [QuadTree:M + Main::OWNED] |

class QuadTree<M> {
domain OWNED;

| ODomain (main.OWNED.aQT.OWNED, QuadTree: :OWNED) |
’OCHﬂaI(main.DWNED.aQT.OWNED.nWQT, main.OWNED.aQT.OWNED, QuadTree)
QuadTree<M> nwQT = new QuadTree<M>();

OEdge(main.OWNED.aQT, main.OWNED.aQT.DWNED.anT)‘
analyze(main.OWNED.aQT, [QuadTree:M +— QuadTree:OWNED])‘

}
this — main.OWNED.aQT.OWNED.nwQT \

[QuadTree:M — QuadTreexDWNED]‘

class QuadTree<M> {
domain OWNED;

’()Domam(main.UWNED.aQT.OWNED, QuadTree::0WNED)
] OObject (main.OWNED.aQT.OWNED.nwQT, <main.OWNED.aQT.OWNED, QuadTree) \
QuadTree<M> nwQT = new QuadTree<M>();
| OEdge (main.OWNED. aQT.OWNED.nwQ, main.OWNED.aQT.OWNED.nwQT) |
| analyze (nain.OWNED.aQT, [QuadTree:M — QuadTree::OWNED]) |
}

Figure 2.24: Revised example with recursive types.

In aDGraph that visualizes a@Graph, there are two ways to reduce the level of detail. One is
to restrict the unfolding depth, and another is to expandbapse the substructures of selected
elements.

Edge lifting due to limited unfolding depth. The limited unfolding depth results in the cre-
ation of lifted edges. In our implementation, the user iatévely controls the unfolding depth.

58 Chapter 2. Object Graph Extraction

class Main {
domain OWNED, DOCUMENT, VIEW;

listViews = new List<Main::0WNED, Main::VIEW Listener>();

listModels = new List<Main::0WNED, Main::DOCUMENT Listener>();
}

Figure 2.25: Listeners: distinguishing objects based on domain parameters.

I I

|| barChart: |

| BarChart |

---------- Fees |
11 I

listViews: Jqul pieChart: I
ArrayList<Listener> 1 PieChart |

I

I

listModels: I —____~
ArrayList<Listener> 1 !
~ |
TA model: |
owned I 1| Model |
---------- C J | l
| DOCUMENT |

- - - - - =

Figure 2.26: Listeners: object graph distinguishing objects based on domain parameters

Edge lifting due to collapsing substructures. Edge lifting can also occur when the user
expands or collapses individual elements. For examplepairChart’s domain OWNED, a
listeners object refers to aodel object in domairDOCUMENT (Fig.[2.29(d)). If the user re-
duces the unfolding depth, or if she collapsasChart’s substructure, the analysis adds a lifted
edge frombarChart tomodel (Fig.[2.29(D)).

2.4.3.2 Abstraction by types

An OOG provides architectural abstraction primarily by enship hierarchy. In addition, an
OOG can abstract objects within each domain by their dettlgzes.

In many object-oriented systems, many types extend fronmommbase classes or imple-
ment common interfaces. For instance, bB#rChart andPieChart classes implement the
Listener interface to realize the Observer design pattern.

Declaration-based view. In keeping with the good practice of programming to an irzeef
instead of an implementation, many field declarations cbiakte interface types. Consider the
following variation on the Listeners system, which alsoldexs a fieldLstnr of typeListener

(Fig.[2.30).

2.4. Static Analysis 59

_lentMain___MainDOCUMENTModel_Main__DOCUMENT__Main__VIEW_
_lentMain___MainVIEWBarChart_Main__DOCUMENT__Main__VIEW_
_lentMain___MainVIEWPieChart_Main__DOCUMENT__Main__VIEW_
_lentMain___MainownedArrayList_Listener__Main__VIEW_
_lentMain___MainownedArrayList_Listener__Main__DOCUMENT_

(€)
Figure 2.27: Unfolding anOGraph.

60

Chapter 2. Object Graph Extraction

main: —H= aQT: ——— 71— nwQT : QuadTree
QuadTree 1 !

~.

listeners:
List<Listener>

List<Listener>

1
1
|
1
1
I barChart , listerers:
1
|
|
1

1

I

I

1

! I
! I
List<Listener> :'l BarChart :
! I
! I
I

I

listeners: 11| barChart (+):
1
model: ~ : 1
Model w j OWNED 1
p Tmm==m==== |1

VIEW

(b) Lifted edge between objedarChart andmodel.

Figure 2.29: Listeners: limiting the unfolding depth or hidingirChart’s substructure adds lifted edges.

The referencedarChart, pieChart andlsntr are in the sam&IEW domain. Recall that
both BarChart andPieChart extendBaseChart, andBaseChart implements the.istener
interface. As a result, the analysis merges them into the sdnject in the object graph.

Instantiation-based view. A key insight, however, is that there are no object creatiohs
interface types. So the analysis considers only objecttiore@xpressions and generates an

2.4. Static Analysis 61

class Main {
domain DOCUMENT, VIEW;

DOCUMENT Model<VIEW> model = new Model<VIEW>();
VIEW BarChart<DOCUMENT> barChart = new BarChart<DOCUMENT>() ;
VIEW PieChart<DOCUMENT> pieChart = new PieChart<DOCUMENT>() ;

VIEW Listener lstnr = null;

Figure 2.30: Listeners: illustration of interfaces causing merging.

Instantiation-Based View (IB‘E) One limitation, however, is that an IBV can be problematic
when some code is not available, because it requires kngeletliall the allocation points of
objects in the program.

Using an IBV, the type graph would not contain a field declaratistnr of typeListener.
Rather, it would have field declarations foarChart and pieChart of type BarChart and
PieChart, respectively. Then, the object graph would show distiretChart andpieChart
objects, since there is no subtyping relation between typies, BarChart and PieChart,
respectively (Figl2.31). In most cases, unless otherwpeeified, the analysis will use an
Instantiation-Based View.

Abstraction. An Instantiation-Based View (IBV) prevents the excessivegimgy of objects
in domains, but may reduce the abstraction and lead to clutténe object graph. Consider
for example the situation where there are many other sutedasfAbstractChart, such as
LineChart, ColumnChart, ScatterChart andDoughnutChart.

Trivial types. To improve abstraction and reduce clutter, an OOG can meig@®0Objects in a
givenODomain whenever they share one or more least upper bound (LUB) tyiiesresulting
object has an intersection type that includes all the lgas¢ubounds.

In Java-like languages, every class inherits frgava.lang.0bject. However, merg-
ing all the OObjects in a domain into a singl®Object of type Object would result in a
sound but uninteresting OOG. So the heuristic does not mef@jgects that have types that
share only trivial types as supertypes. Trivial types aer-gsnfigurable and typically include
java.lang.0Object, Cloneable andSerializable from the Java Standard Library. Many
marker interfaces that do not declare any methods, suBhr@®mAccess, are good candidates
to be included in the list.

Applying abstraction by trivial types on the raw Listenei®G (Fig[2.31) produces an O0OG
that is less cluttered (Fig.2.132). In particular, the OO@ moerges all the chart objects in the
VIEW domain into one object, shown as$stener:Listener.

9This is similar to how/(Bacon and Sweefiey 1996) use Rapid Aydysis (RTA) to determine a method call's
receiver during call graph construction. However, RTA aliminsufficient. (Rayside etlal. 2005) proposed a static
object graph analysis based on RTA which produced trivial-@pproximations for most programs.

OFor simplicity, | often omit the explicit object allocatisrin the sample programs included in this document.

62 Chapter 2. Object Graph Extraction

|

|

model(+): |
Model |
FAE- |
I

I doughChart(+): " .| .= . :
| DoughnutChart |+ ————s—"+ !
| B . lineChart(+); | : [
| 'S . kineChart™ -/|: I
|| colChart(+): N 2o o N N |
| ColumnChart R o |
| L Sl |
| oo pyrChart(+): pieChart(+): |
. PyramidChart . PieChart
I xyChart(+): 2 o !
I'| ScatterChart — :
I p I
| L barChart(+): |
| N 4 BarChart |
| cylChart(+): |
| CylinderChart |
| |
[VIEW :

—— - - e 4

| |
I
"l model(+): . |1 chart3D(+): |
: Model ‘|~ Chart3D '
|
I
| |
, DOCUMENT Iy VIEW

Figure 2.32: Listeners: abstraction by trivial types.

Design intent types. Abstraction by trivial types can quickly unclutter an OOQG launot very
precise. Assume that the developers distinguish betweenand three-dimensional charts in
the type hierarchy, and defineCaart2D and aChart3D interface. Classes such BineChart,
ColumnChart, ScatterChart and DoughnutChart implement aChart2D interface. Other
classes such &ylinderChart andPyramindChart implement the€hart3D interface. Finally,
some classes implement both interfaces (Eig.]2.33).

Similarly, we may want the OOG to distinguish between twad three-dimensional charts.
In particular, we may want to treat 3D charts as more arctutally significant than 2D charts.

For this purpose, the developer defines a list of design triygres, ordered from most to
least architecturally relevant. For instance, she addsntieefacesChart3D and Chart2D to
the list, in that order. When determining the object with wwhio merge theOObject for
pieChart:PieChart, the analysis finds the first type in the list of design intemies that is
a supertype ofieChart. For instance, the analysis picsart3D. So it collapses sever@Ob-
jects into aDObject of type Chart3D. Then, the analysis finds the first type in the list of design
intent types that is a supertypeRframidChart. In this case, the analysis picsart3D again.

2.4. Static Analysis 63

_lentMain_MainVIEWScatterChart
_lentMain_MainDOCUMENTModel
_lentMain_MainVIEWCylinderChart
_lentMain_MainVIEWLineChart
_lentMain_MainVIEWPieChart
_lentMain_MainVIEWDoughnutChart
_lentMain_MainVIEWPyramidChart
_lentMain_MainVIEWColumnChart
_lentMain_MainVIEWBarChart
_lentMain_MainDOCUMENTModel
_lentMain_MainVIEWChart3D

«interface»
Listener

ColumnChart

«interface»
Chart2D

X

&

~

BarChart
M
e

A

~

— \ 2
<~ - [s
\

«interface»
Chart3D

ScatterChart

PyramidChart

~

CylinderChart

Figure 2.33: Listeners: inheritance hierarchy.

|

chart3D(+): | !
Chart3ab |l — — — — — — -
. II a |
1 model(+): ||
chart2D(+): _"f'_' Model |
Chart2D | : |
: | DOCUMENT J

VIEW

Figure 2.34: Listeners: abstraction by design intent types.

When the analysis processes the field declaratiordéoghChart :DoughnutChart, it picks
Chart2D. So it creates 80bject of typeChart2D. Similarly, it merges ineChart:LineChart
with Chart2D. Applying abstraction by design intent types to the rawengtrs OOG (Fid. 2.31)
produces an OOG that conveys the architectural intent aihdisishing between the two kinds

of charts (Fig[2.34).

64

Chapter 2. Object Graph Extraction

simple.ColumnChart
simple.BaseChart
simple.LineChart
simple.PyramidChart
simple.CylinderChart
simple.BarChart
simple.DoughnutChart
simple.PieChart
simple.ScatterChart
simple.Listener
java.lang.Object
simple.Chart2D
simple.Chart3D
_lentMain_MainVIEWChart3D
_lentMain_MainDOCUMENTModel
_lentMain_MainVIEWChart2D

2.4.4 Summary

An OOG is a graph with two types of nodes, objects and domdihs.nodes form a hierarchy
where each object node has a unique parent domain and eacindoode has a unique parent
object. The root of the graph is a top-level global domainer€hare two edge types. Edges
between objects correspond to field references. Edges &etdamains correspond to domain
links. Compared to previous definitions of object graphs,, dRotter et all 1998), an OOG
explicitly represents clusters of objects using domairs eslges between these clusters using
domain links. In contrast to other ownership hlerarcHLeﬂ_(ilﬂ_aﬂ [ZD_QjZ,LEOIanin_eI_HL_ZQM)
in an OOG, the owner of an object is a domain instead of anathject. The ability to define
multiple domains per object is useful for modeling multipkehitectural tiers in an application.
In addition, an OOG supports two forms of hierarchy: strieta@psulation and logical contain-
ment. Previous ownership systems which had multiple cosfgsr object, e.g. iﬁ{ 01)
support only strict encapsulation, which cannot expressynodject-oriented design idioms. In
contrast, the expressiveness of logical containment midlesssier to both add annotations to
existing code as well as control the architectural abstacdh an object graph.

2.5 Advanced Features

We now discuss several additional features.

2.5.1 Displaying objects with special annotations

Objects that have one of the special annotatians que, lent, or shared) require special
handling.

2.5.1.1 shared objects

The object graph analysis assumes that all objects markenaagd are in one domain. As a
result, due to merging objects for soundness, the analysysaxcessively merge objects that are
in the shared domain. Unless the user requests otherwise, we often pelgpde not display
theshared domain in an OOG. Displaying th&hared domain would be trivial, but would add
many uninteresting edges to the OOG. Strictly speakingudkty theshared domain makes
the resulting OOG unsound, but we believe it to be an acckptaimpromise.

2.5.1.2 unique objects

An OOG may not reflect an object markedique until it is assigned to a specific domain.
When an object is created, it imique. An inter-procedural flow analysis is needed to track
each object from its creation until its assignment to a $wedomain. Since the current tool
does not implement such a flow analysis, a developer must atlgrannotate ainique object
returned from a factory method with the domain in which itgdoe displayed.

2.5. Advanced Features 65

2.5.1.3 1lent objects

Objects annotated withent are currently missing from the OOG. To display them in the QOG
a flow analysis is needed to determine the domain thana object is really in. Currently, the
workaround is s to manually resolve thent annotation, and to use the more precise annotation.

2.6 Discussion

2.6.1 Assumptions

The STHOLIA extraction static analysis makes the following assumpgtion

* Sources available: The program’s whole source code and portions of externedriies
that are in use have annotations that typedEEck

* Single entry point: The program operates by creating a main object.

* Summarized external entities:Reflection, dynamic code loading or native calls may in-
troduce unknown objects and edges into the system. Theatorosystem can summarize
these external entities using “virtual” or “ghost” (Flamaget al| 2002) field annotations.
The latter are also useful when the sources are unavailable.

2.6.2 Alternate Annotations

There are multiple ways to annotate a program. [Fig.]2.35 sleowalternate set of annotations
for the Listeners system and the resulting OOG (Eig.12.36)hése annotations, theésteners
collection object are no longer in private domains. Thiswall a client program to modify the
listeners collection objects directly, which the client could not dthiese objects were strictly
encapsulated in private domains.

These annotations make thesteners list objects appear in the top-level domains and
illustrate the potential loss of precision due to mergingeots within a domain by their de-
clared types and their domain parameters (in this case oifmaith parameters f@arChart and
PieChart are bound to the same domain). For instanceltleners of pieChart and those
of barChart are merged in theIEW domain (Fig[2.36). However, this object graph is still more
precise than a class diagram, which also abstracts objgdigb, becauséwvo objects that are
in two different domains can never be aliasdebr instance, the analysis can still distinguish
between th@ isteners of model from those ofpieChart andbarChart.

Moreover, a developer can prevent unwanted merging by mgaimvo objects that should
never get merged in separate domains. For instance, eveteNedoper does not wish to use
strict encapsulation, she can define public domains, aruk fleelisteners objects in public
domains (See Fi@. 2.B7). The resulting object graph is inERS.

The main difference between the OOG in Hig. 2.38 and the offégini2.3(a) is that, in the
former, LISTENERS domains appear with a thin dashed border, whed®agD appears with a

HOur static analysis is similar to an Andersen-style potatstatic analysi94). An object-sensitive
analysis, e.g., (Milanova etlal. 2005), would have this séiméation, because it requires knowledge of all the
allocation points of objects in the program.

66 Chapter 2. Object Graph Extraction

© 00 N o 0 B~ W N

PR e
N P O

13

interface Listener {

}

class BaseChart<M> implements Listener {

OWNER List<M Listener> listeners;

}

class BarChart<M> extends BaseChart<M> {

}

class PieChart<M> extends BaseChart<M> {

}

class Model<V> implements Listener {
OWNER List<V Listener> listeners;

}

class Main {

domain DOCUMENT, VIEW;

DOCUMENT Model<VIEW> model;

VIEW BarChart<DOCUMENT> barChart;
VIEW PieChart<DOCUMENT> pieChart;

}

Figure 2.35: Listeners: alternate annotations.

! |
|
| barChart: '
BarChart '
______________ P '
|
| .] . |
'l model: listeners: 1L pieChart: listeners:
' Model List<Listener> ;I PieChart List<Listener> :
|
| |
|

Figure 2.36: Listeners: object graph based on the alternate annotations.

thick dashed border. Recall that a thick dashed border itelibat these instances are owned or
strictly encapsulated by their outer objects. And a thirdeoindicates logical containment. In
particular, when using logical containment, a developeradefine a public method that returns
an alias to a field in a public domain.

For arbitrary object-oriented implementation code, itdsier to use logical containment with
public domains, rather than the strict encapsulation efpeidomains—and both can reduce the
number of objects in the top-level domains.

2.6. Discussion 67

_lentMain_MainDOCUMENTModel
_lentMain_MainDOCUMENTList_Listener_
_lentMain_MainVIEWBarChart
_lentMain_MainVIEWPieChart
_lentMain_MainVIEWList_Listener_

© 00 N o g~ W N P

P e e O <
© ® N o b~ W N B O

20

interface Listener {

}

class BaseChart<M> implements Listener {
public domain LISTENERS; // Public domain
LISTENERS List<M Listener> listeners;

// A public method can return a reference to an object in a public domain
public LISTENERS List<M Listener> getListeners() {

return listeners;
}
}
class BarChart<M> extends BaseChart<M> {
}
class PieChart<M> extends BaseChart<M> {
¥
class Model<V> implements Listener {
public domain LISTENERS; // Public domain
LISTENERS List<V Listener> listeners;
}

class Main {
domain DOCUMENT, VIEW;
DOCUMENT Model<VIEW> model;
VIEW BarChart<DOCUMENT> barChart;
VIEW PieChart<DOCUMENT> pieChart;
}

Figure 2.37: Listeners: using public domains.

S

' |
| listeners: |
pieChart: —+# ArrayList<Listener> |
PieChart | !
Pl | / LISTENERS !
e —"" /I(
| ________
M T _- - = = = 7= T §
| ! 1! ' _ I
	listeners: 1] barChart: L listeners:	
	ArrayList<Listener> ! ! BarChart	ArrayList<Listener>
	model: —E ! L I	
Model LISTENERS L	_ LISTENERS	
. \ _____	N	
! DOCUMENT 11 VIEW

Figure 2.38: Listeners: object graph based on using public domains.

68 Chapter 2. Object Graph Extraction

_lentMain_MainDOCUMENTModel_ModelLISTENERSArrayList_Listener_
_lentMain_MainVIEWPieChart
_lentMain_MainVIEWBarChart
_lentMain_MainDOCUMENTModel
_lentMain_MainVIEWPieChart_PieChartLISTENERSArrayList_Listener_
_lentMain_MainVIEWBarChart_BarChartLISTENERSArrayList_Listener_

2.6.3 Imprecision

The OOG extraction relies on the type system’s guaranteewizeobjects in different domains
cannot be assigned to each other, and thus can never aliasw®uwaibjects in the same do-
main may alias. In the absence of more information aboutilplessliasing, the analysis can be
imprecise in several cases that we discusdAext

2.6.3.1 Field assignment in superclass

Consider the code in Fig._Z2.39 and the corresponding OOG iiZE4§. The OOG is imprecise
because it shows an edge freno y, and an edge from to z.

In SCHOLIA, a developer can place objects that should not get mergeitfenetht domains.
Of course, this assumes that the developer is aware of tHgs&'s bias. For instance, in
the above example, the developer adding the annotationdefare two domains)wNED1 and
OWNED2, and placé andc in OWNED1 andOWNED2, respectively (Fig.2.41). Then, the OOG will
not show imprecise edges betweeandy, orb andz (Fig.[2.42).

20ur static analysis is similar to an Andersen-style poiotanalysis (Andersén :§94), which has known sources
of imprecision, thabobject-sensitivevariants address_(Milanova et al. 2005). | took these codeneles from
(Milanova et all 2005) and annotated them.

2.6. Discussion 69

1 class X { 28 class C<P> extends A<P> {

2 void n() { 29 C(P X xc) {

3 } 30 super (xc) ;

4 3} 31 }

5 class Y extends X { 32 void m() {

6 void n() { 33 lent X xc = this.f;

7 T 34 xc.n();

s } 35 }

9 class Z extends X { 36}

10 void n() { 37

u ¥ 38 public class Main {

12} 39 domain OWNED;

13 class A<P> { 40 OWNED Y y = new YQO);

14 P X £; 4 OWNED Z z = new Z();

15 AP X xa) { 42 OWNED B<OWNED> b = new B(y);
16 this.f = xa; 43 OWNED C<OWNED> c = new C(z);
17 } 44

18} 45 public void init() {

19 class B<P> extends A<P> { 46 b.m(Q);

20 B(P X xb) { 47 c.m();

21 super (xb) ; 48 T

22 T 49 public static void main(lent String[shared] args) {
23 void m() { 50 lent Main system = new Main();
24 lent X xb = this.f; 51 system.init();

25 xb.n(); 52 }

26 } 53}

21}

Figure 2.39: Field assignment in superclass, adapted fiom (Milanova et all 2005).

Figure 2.40: Imprecision with field assignment in superclass.

70 Chapter 2. Object Graph Extraction

_lentMain_MainownedY
_lentMain_MainownedB
_lentMain_MainownedZ
_lentMain_MainownedC
_lentMain

1 class X { 28 class C<P> extends A<P> {

2 void n() { 29 C(P X xc) {

s} 30 super (xc) ;

4} a }

5 class Y extends X { 32 void m() {

6 void n() { 33 lent X xc = this.f;

7 } 34 xc.n();

8 X 35 }

9 class Z extends X { 36 F

10 void n() A{ s7

11 } 38 public class Main {

12 } 39 domain OWNED1, OWNED2;

13 class A<P> { 40 OWNED1 Y y = new Y();

14 PXf; 4 OWNED2 Z z = new Z();

15 AP X xa) { 42 OWNED1 B<OWNED1> b = new B(y);
16 this.f = xa; 43 OWNED2 C<QOWNED2> ¢ = new C(z);
17 } 24

18} 45 public void init() {

19 class B<P> extends A<P> { 46 b.m(Q);

20 B(P X xb) { 47 c.m();

21 super (xb) ; T

22 } 49 public static void main(lent String[shared] args) {
23 void m() { 50 lent Main system = new Main();
24 lent X xb = this.f; 51 system.init();

25 xb.nQ); 52 }

26 } 53 }

Figure 2.41: Field assignment in superclass, adapted fiom (Milanova ket all 2005).

| |
[system: |
I Main I
" _ _ _ _ 7 | _ |
! I _ |
| c: i b: |
| c | B /!
1! | |
1! P! L
1IN AL
o z: N y: al
T L A
1! P! Ll
I|' owned2 | ! ownedl | |I
=== i
' lent :
_ e e e e e e e = = = = J

Figure 2.42: Fixing imprecision with field assignment in superclass.

2.6. Discussion 71

_lentMain_Mainowned2C
_lentMain_Mainowned2Z
_lentMain_Mainowned1B
_lentMain_Mainowned1Y
_lentMain

© 00 N o 0 A~ W N

10

class X {
}

class Y {
}

class Container<P> {
P Object f£;

void put(P Object xa) {
this.f = xa;

}
}

2.6.3.2

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

public class Main {
domain OWNED;
OWNED Y y = new Y();

OWNED X x

new XQ);

OWNED Container<OWNED> c1 = new Container();

OWNED Container<OWNED> c2

new Container();

public void init() {
cl.put(x);
c2.put(y);

}

public static void main(lent String[shared] args) {

}

}

lent Main system = new Main();
system.init();

Figure 2.43: Simple code with container, adapted fram (Milanova ét al. 2005).

Main

c2:

\

Container

J

N

Figure 2.44: Imprecision with container.

Imprecision with containers

The use of containers can also cause a precision loss. Cotisédeode in Fig. 2.43. The corre-
sponding OOG is in Fig. Z.44, and suffers from an imprecisibmerging the twdContainer
objects. The developer can also prevent this merging byngad andc2 in separate domains.

72

Chapter 2. Object Graph Extraction

_lentMain_MainownedX
_lentMain_MainownedY
_lentMain_MainownedContainer
_lentMain

2.7 Summary

To provide architectural abstraction, an object graph rdigtinguish between objects that are
architecturally relevant from those that are not. An OOGvmles architectural abstraction pri-
marily by ownership hierarchy, by pushing low-level obgahderneath more architectural ob-
jects. Thus, only architecturally relevant objects appedne top-level domains. In turn, each
one of those objects has nested domains and objects thasegpiits substructure, and so on,
until low-level, less architecturally relevant objectse aeached.

In addition, an OOG can provide abstraction by types, by mgrgbjects in each domain
based on their declared types in the program, the notion latlyping, and optional developer
input to specify the architecturally relevant types.

Indeed, collapsing many nodes into one is a classic apprtmashrink a graph, and has
previously been used in extracting views of the code archite ‘M;Ill_er_a.nd_lﬁlashinsﬁkl%&

&). However, an OOG is unique in collapsing objetasically, based
on their ownership and type structures, and not accordindnere they are syntactically declared
in the program, some naming convention or a graph clustedopgyithm.

Our empirical evaluation in Chapter 4 will confirm that abstian by ownership hierarchy
and by types can reduce the number of objects at the top Igvah lorder of magnitude, com-
pared to a flat object graph. Before we evaluate the analygigaictice on real object-oriented
code, we describe it formally and prove key soundness theoiie Chaptel]3.

2.7. Summary 73

Chapter 3

Formalization of the Object Graph
Extraction@

In this chapter, | formally describe the static analysid @HOLIA uses to extract a hierarchi-
cal object graph from a program with ownership domain artiwts, and prove key soundness
theorems.

The formalization of the static analysis assumes a Jaegplikgram with ownership domain
annotations. Sectidn 3.1 reviews the formalization of awhip domains using Featherweight
Domain Java (FDJ). Sectign 8.2 formalizes the Object Grér{ph). Sectior 3.B discusses
soundness. Sectidn 8.4 discusses the Display Griaghaph) that a developer sees, includ-
ing applying the optional abstraction by types. | then disca few implementation details in
Sectior 3.6, and conclude with a discussion in Se¢tidn 3.6.

3.1 Annotations (Featherweight Domain Java)

The SCHOLIA annotations implement the ownership domains type systemor dem-
pleteness, we reproduce here parts of the FeatherweightaiDodava (FDJ) type system

(Aldrich and Chambels 2004), with some correctibaisd additional changes we discuss later.

3.1.1 Syntax

Fig.[3.1 shows the syntax of Featherweight Domain Java (FDJ)
* C'ranges over class names;
* T ranges over types;
* franges over fields;
* v ranges over values;
* eranges over expressions;

Portions of this chapter appeared|in (Abi-Antoun and Akii2009b).

2Errata available ahttp: //www.cs.cmu.edu/~aldrich/papers/ownership-domains-errata.html

75

http://www.cs.cmu.edu/~aldrich/papers/ownership-domains-errata.html

* x ranges over variable names;
d over domain names;
* n ranges over values and variable names;
* S ranges over stores;
* ¢ andv range over locations in the store;
* «, # andy range over formal domain parameters;
* m ranges over method names. As a shorthand, an overbar isausgatésent a sequence.

* A store S maps locationg to their contents: the class of the object, the actual oviers
domain parameters, and the values stored in its fields.

* S[¢] denotes the store entry fér

* S[¢,] to denote the value in thih field of S[/].

* Adding an entry for locatior to the store is abbreviate{¢ — C'</>(¢")].

* /> e represents a method bodyexecuting with a receivet.

* The result of computation is a locatidnwhich is sometimes referred to as a value

* The set of variables includes the distinguished variables used to refer to the receiver
of a method.

* The fixed class tablé’T’ maps classes to their definitions.
* A program, then, is a tuple”'T’, S, e) of a class table, a store, and an expression.
We simplify the formal system slightly by treating the firsgindain parameter of a class as

its owning domain. We use a slightly different syntax in tmagtical system to emphasize the
semantic difference between the owner domain of an objetitalomain parameters.

Assumptions. The formal model makes the following simplifying assumpso
* Nolent orunique annotations: (Aldrich et al. ZQQZC) showed how to integtiagen with
an ownership type system. We also discussed how the statigsssimight handle these
special annotations (Sectibn 213.3, Page 41);
* No cast or the resultingrror expressions to handle failed casts: those are part of FDJ,
but are not crucial to this discussion.

Auxiliary judgements. The semantics use many auxiliary judgements (Eid.[3.2, 3 Bgse
definitions are straightforward and in many cases are didirectly from rules in Featherweight
Java. The Aux-Public rule checks whether a domain is pulilice next few rules define the
domains, links, assumptions, and fields functions by looking up the declarations in the class
and adding them to the declarations in superclasses. [iTld€ecls function just returns the
union of thelinks andassumptions in a class, while thewner function just returns the first
domain parameter (which represents the owning domain ifERkformal system).

Themtype function looks up the type of a method in the class; if the roétis not present,
it looks in the superclass instead. Tihéody function looks up the body of a method in a similar

76 Chapter 3. Formalization of the Object Graph Extraction

CT == cdef
cdef = class C<a, /3> extends C'<a>
assumes ¥ — 0 { dom Ink fd md }
dom := [public|domain d;
Ink == linkd — d';
fd == T f;
md = Trm(T T) Tinis { return ep; }
= x
| new C'<p>(e)
| e
| e.m(e)
| 7
| I>e

n= oz |w
2= « | n.d | shared

C<p>

~ N = 3
[l

€ locations

<

= L C<p>(7)
=T
= (=T

M = U
|

Figure 3.1: Featherweight Domain Java abstract syntax. Source: (Aldrich anehi®irs 2004).

way. Finally, theoverride function verifies that if a superclass defines methqdt has the same
type as the definition of: in a subclass.

In the dynamic semantics (Fig._8.4), when a method expnessiduces to a value, thHe-
Contextrule propagates the value outside of its method contextrandhe surrounding method
expression. As this rule shows, expressions of the férne do not affect program execution,
and are used only for reasoning about invariants that aressacy for link soundness.

Congruence rules allow reduction to proceed within an exgowasn the order of evaluation
defined by Java (Fig.3.5). For example, the read rule stadéésh expression f reduces te’. f
whenever reduces te’'.

Finally, we did not include some FDJ rules, e.g., link pesis rules, which can be found
elsewhere (Aldrich and Chambers 2004).

3.1.2 Typing Rules
The FDJ subtyping rules are in FIg. B.6. The FDJ static seicsate in Fig[3J]7 and in Fig._3.8.

3.1. Annotations (Featherweight Domain Java) 77

(public domain d) € dom
public(d)

Aux-Public

g1288 C<a>_ Aux-Params
params(C) =@

Ink =Tinkd, — d, links(C'<d>) = d, — d, _
: — ————=————_—— Aux-Links
links(C<d,d'>) = ([d/a,d'/p] (d. — d.)), ds — d.,

assumptions(C'<d>) = dy — d.,
: —— - ————— Aux-Assume
assumptions(C<d,d'>) = (|[d/a,d /5] (7 — 9)),ds — d.

Aux-LinkDecls

linkdecls(C<p>) = links(C<p>) U assumptions(C'<p>)

Aux-Owner

owner(C<p>) = d;

(Tr m(T T) { returne; }) € md
mtype(m, C<p>) = [d/a] T — Tr

Aux-MTypel

m is not de fined in md
mtype(m, C<d,d'>) = mtype(m, C'<d>)

Aux-MType2

(Trm(T) { return ¢; 1) Elnd Aux-MBodyl
mbody(m,C<p>) = [d/a] (T: T, e)

m is not de fined in md

— —— Aux-MBody?2
mbody(m, C'<d,d'>) = mbody(m,C'<d>)

(mtype(m,C<p>) =T —=T)= T =T'NT =T")

: —— Aux-Override
override(m,C<p>,T — T)

Figure 3.2: FDJ auxiliary definitions. Adapted from (Aldrich and Chambers iZOMaody now exposes

the types of a method’s parameters.

78 Chapter 3. Formalization of the Object Graph Extraction

(public,, domain d) € dom domains(C'<d>) = d'
domains(C'<d,d'>) = this.d, d’

Aux-Domains

Aux-Domains-Obj
domains(Object<a,>) =) :

fields(C'<d>) =T f’ _
Fields(C<d, @>) = ({@/a, &/ T), T 7/ Fees

fields(Object<a,>) = () Aux-Fields-Obj

CT(Object) = class Object<a,> { }

Figure 3.3: FDJ auxiliary definitions. Adapted from (Aldrich and Chambers 2004reAux-Domains
andAux-Fieldsdo not have base cases fitrject (Aux-Domains-ObandAux-Fields-Obj.

S[] = C<p>(w) fields(C<p>)=T f

[R-Readl
Ufi; S~v; S
(¢ dom(S) S = S[l— C<p>(T)] R-New
new C<p>(v); S~ (; S
S[l] = C<p>@®) mbody(m,C<p>) = (T, e) R-InvR
0.m(v); S~ (> [0/T,0/this]ey; S
[R-Context
(v, S~wv; S

Figure 3.4: FDJ dynamic semantics. Source: (Aldrich and Chambers 2004).

3.1. Annotations (Featherweight Domain Java) 79

Ste e, S

RC-New
S new C<p>(v1.i-1, €, €iy1.n) > new C<p>(vy1.i-1, €}, €iy1.n), S’

Ske—é, 5

Skefi—e. f;, S RC-Read

Ske—é, 8 RC-Recvinvk

Stem(e)— eme),S ecvinv

e el S

Srearmab RC-Arglnvk

/ !
S 'U-m(vl..ifla €, €i+1..n) — U'm(vl..ifly € €i+1..n>7

Ske—é, 5
Sktlve—{l>e, S

Figure 3.5: FDJ congruence rules. Source: (Aldrich and Chambers 2004).

RC-Context

CT(C) = class C<a, B> extends C'<a>

— — — Subtype-Class
C<d,d> <: C'<d>

T Subtype-Reflex

T <:T T <:T"
T <:T"

Subtype-Trans

Figure 3.6: FDJ subtyping rules. Source: (Aldrich and Chamlbers 2004).

80

Chapter 3. Formalization of the Object Graph Extraction

I'(z) = C<p>
I3 ngs B C<p>

T-Var

X)) = C<p>
[3 npis H 0 C<p>

T-Loc

[, Y, nynis = assumptions(C'<p>) 0,5, ngpis FE: T
fields(C’<1_9>) = T f ? < T F, E, Nihis [Nihis - ,—Tthis
owner(C<p>) € (domains(Tins) U owner(Tips))

['; X5 nypis F new C<p>(€) : C<p>

T-New

T3S nunis €0 : Ty fields(Ty)[eo/this] =T f
L'y 335 nypis Feo-fi 2 15

T-Read

055 ngnis Eeo s Ty TS5 munes e T,
mtype(m, Ty) =T —Tr T =T[e/T,eo/this] T, <: T’
[35 ngpis E eo.m(€) : Trle/T, eq/this]

[mypis Fe: T
X ongpis Eloe: T

T-Context

Figure 3.7: FDJ typing rules. Source. (Aldrich and Chambers 2004).

3.1. Annotations (Featherweight Domain Java) 81

md OK in C fields(C'<a>)=T'g Ink OK in C<a, B>
{this : C<@, B>}; 0; this |= this — owner(T)

K =C<a,B>(T"g, T f) { super(q); this.f = f; }
. ClsOK

class C'<a, f> extends C'<a> assumes 7 — 6 { T f; K dom; Ink; md;} OK

CT(C) = class C<a, 3> extends C'<a>
override(m, C'<a>,T — Tg)
{z:T; this : C<a, B>}; 0; thiske: T Tr<:T
T; this : C<a, B>}; 0; this |= this — owner(T)
MethOK

Trm(T 7) { returne; } OK in C

{dy,dy} Ndomains(C<a>) # ()
(this : C<a>;0;this = d; — owner(C<a>))

dy & domains(C'<a>) is ;0
dy & domains(C'<a>) (this: C<a>;(;this |= this — ds) _
link d; — dy OK in C<a> LinkOK

Ve € domain(X) 0; 2; ¢ = assumptions(X[(]) _
T-Assumptions

Y OK
domain(S) = domain S[l) = C<l.o>() <= S| = C<l x>
Y OK

(%)
fields(X[0)) =T f = (S[t,i] = ") A (S[0"] < T7)
(S[¢,i] =0") = (0,5, ¢ = £ — owner(X[("]))

S

Figure 3.8: FDJ class, method and store typing. Source: (Aldrich and Ch .2004

T-Store

Chapter 3. Formalization of the Object Graph Extraction

82

3.1.3 Ownership domain soundness

We restate some key results from the soundness of ownershipids (Aldrich and Chambers
2004).
Lemma 1(Lemma) If mtype(m, D) =T — Tr thenmtype(m,C) =T — Tgforall C <: D.

Proof. By induction on the derivation af' <: D andmtype(m, D). O

Lemma 2 (Substitution Lemma)Ilf I,z : 7 - ¢ : T andl - 2/ : 7/ where7’ <: 7, then

I'F [2//Z]e : T' for somel” <: T.

Proof. By induction on the typing rules.]
Lemma 3 (Weakening Lemma)lf ' Fe: C,thenl’,z: D e: C.

Proof. By induction on the typing rules. Il

Lemma 4 (Store Lemma) If fields(C<d>) = T f and S[{] = C'<d>(e) ande : T" then
T <:T.

Proof. Based on the rule&-NewandR-New O

Lemma 5 (Method Lemma)

If mtype(m,C<d,d>)=T — Ty
andmbody(m,C<d,d'>) = (T, eg)

then for someD<d> with C<d, d'> <: D<d>

there existd}, <: T such that : T, this : D<d> F ep : T}

Proof. By induction onmtype.

]

Theorem 1(FDJ Type Preservation, a.k.a. Subject Reductitfrf), X, nyis e : T, X+ S, and
Skers e S, then there exists’ O ¥ andT” <: T such that), ¥/, ngs F €' : T andX + 5.

Proof. By induction over the derivation of - e — ¢’, S, with a case analysis on the outermost
reduction rule used. O

Theorem 2 (FDJ Progress)If (), X, nyis F e : T andX = S—i.e., e is closed and well-typed,
then eithere is a value or els& F e — ¢/, S'.

Proof. By induction over the derivation df, 3, n,;s e : T O
FDJ has additional properties, such as Link Soundness,hwénie discussed elsewhere

(Aldrich and Chambelis 2004).

3.1. Annotations (Featherweight Domain Java) 83

3.2 Object Graph (OGraph)

An OGraph is a graph with two types of node®0bjects andODomains. An OGraph also has
edges,OEdges, betweerDObjects, that correspond to field points-to relations. We referrto a
OObject, ODomain, andOEdge by the meta-variable®, D and F, respectively.

3.2.1 Data Types

The data type declarations for tigGraph are in Fig.[3.0. AnOGraph G is the tripletG =
(PtO, PtD, PtE). PtO is a set ofOObjects. PtD maps a pair consisting of @Object O and
a local domain or a domain parametein the abstract syntax, i.e((, d), to anODomain D.
Effectively, Pt D maintains a mapping from formal domain parameters to acains.PtE
is a set 0fOEdges.

The analysis distinguishes between different instancégesfame class that are in different
domains, even if created at the same@ expression. In addition, the analysis treats an instance of
classC with actual parametesdifferently from another instance that has actual pararagte
Hence, the datatype of &Object usesC'< D> instead of just a type and an owni@@omain.
Fig.[3.9 reflects this change, compared to the earlier dat dgclarations (Fig. 2.23). As in
FDJ, anOObject’s owning ODomain is the first elemenD; of D. For the rootOObject of an
OGraph, the owningODomain is D,...q, and the root type cannot have domain parameters.
Thus, eaclOObject O represents all object allocations of typein an ODomain D;, that have
domain parameterB, . .. D,,, which represent some runtime domains.

A domaind is declared at the level of a claS§sn a program, but each instance of clasgets
its own runtime domairi.d. Whenever the analysis distinguishes two runtime objéetsd ',
it also distinguishes the domains that these objects goitdurn, such ag.d and/’.d. Because
an ODomain represents a runtime domaind;, a domain declaratiod in the code can create
multiple ODomains D;.

To deal with recursive types, as we discussed in SeCiiof.2.4Pagé& 54), a®Domain can
have multiple paren®Objects, and not a single one, so &omain does not have an owning
OObject in its representation.

EachOEdge F is a directed edge from a sour€@Object to a targetOObject, and indi-
cates the field reference Note that defining a®Edge from a sourcg Domain, T'ype) pair
to a target(Domain, Type) would be less precise because that would not take into atcoun
the domain parameters associated withC#dbject (the previous system adopted this defini-

tion dAbi-Antoun and Aldrich 2009a)). Effectively, we dediranOEdge in terms of a source
(OwningDomain, T'ype, Other DomainParams) triplet to a destination one.

In addition to the FDJ stor&, we maintain the mapd and K (the instrumented operational
semantics require those, as we discuss below). Thehagaps each object locatighin the
store to a uniqu®Object O. The mapK maps each runtime domain represented.ésn the
store to a uniqu®Domain D.

84 Chapter 3. Formalization of the Object Graph Extraction

G € OGraph := (Objects = PtO, Domains= PtD, Edges= PtE)
— (PtO, PtD, PtE)
D € ODomain :=(ld = D;y,Domain = C::d)
i=(Dja,C::d)
O € OObject = (Id = Oy, Type = C<D>)
= (0;q,C<D>)
E € OEdge := (From = O, Field = f, To = Oy)
= (Ogsre, f, Oust)
PtD =0 1| PtDU{(0,d)— D} Points-to Domain
PtO =0 | PtOU{O} Points-to Object
PtE =0 | PtEU{E} Points-to Edge
T =0 | TUu{C<D>} Visited objects
H :®|HU{€+—>O} Object map
K =0 | Ku{fld~— D} Domain map

Figure 3.9: Data type declarations for tf@Graph.

3.2.2 Constraint-Based Specification

The analysis abstractly interprets the program, and mapsrete domain and field declarations
in the program to abstract values in@Graph, namelyOObjects, ODomains, andOEdges.

Aliasing and subtyping. The analysis conservatively assumes that two objects o$dihee
type in the same domain may alias. The rules use ownershigidosubtyping (Rulé&Subtype-
Classin Fig.[3.6), which follows standard nominal subtyping, andaddition, checks that all
domain parameters are invariant with subtyping.

Judgement form. We use a constraint-based specification (Fig.]3.10) ingieardnsfer func-
tions. This formalizes the static analysis as a set of imfegegules, and makes it easier to prove
soundness. The constraint system is solved by addDigjects, ODomains andOEdges, as re-
quired, but unifyingDDomains using a heuristic, for termination. The analysis of a paogP

is the least solutiot’ = (PtO, PtD, PtE) of the following constraint system:

0,0, PtO, PtD, PtE + P = (CT, €,o0t)
The judgement form for expressions is as follows:
IY, PtO,PtD,PtE o g €

The O subscript on the turnstile captures the context-sensiti¥d is part of the instrumentation
that maps locations t@Objects (Sectiorl 3.311). We omi/ for most of the rules that do not

3.2. Object Graph@Graph) 85

need it. The context is the FDJ typing context. The contékttracks the list of the previously
analyzed cases starting from the root expression, to avandt@rmination in the presence of
recursive typesY records all the combinations of class and domain paramitatrshe analysis
encounters in a call stack, starting from the root expresdimte thatl is not the same aBtO
becaus&’tO is global, wherea¥ is specific to a call stack.

Rules. The interpretation starts with a prografhconsisting of a class tabléT" and a root
expressiong,...;. We require arOObject, O,,,-14, Which has a singl®Domain, D,peq, COI-
responding to the global domaimared. For clarity, we qualify a domaid by the class that
declares it, ag'::d. Since theshared domain is global, we qualify it asshared. The OOb-
ject Oy0riq does not correspond to an actual runtime object, but the/sisalequires a dummy
receiver for top-level code.

Dgharea = { Dy, ::shared)
me'ld = < me«ld, ObjeCt<Dsh¢zred> >

The analysis starts out with the root expressigy; with anO,,,.;,4 context.
0,0, PtO, PtD, PtE t-0,. . €root

In PT-NEW, the analysis interpretsmew object allocation in the context of tH@Object O,
which represents the receiver, as follows. FirgtNEEw checks tha’tO has arOObject O for
the newly allocated object. Siné& D maintains the binding from each formal domain parameter
to some otheODomain, PT-NEW ensures that the representatives of the actual paranjeters
passed to the clags are inPtD.

Then, A-NEWw uses the auxiliary judgementrfbowm to ensure thaf’t D has anODomain
corresponding to each domain that the clastcally declares. ®DoM also processes the
superclass, in order to include inherited dontains

PT-NEW then relies on the auxiliary judgementdFIELDS to ensure thaPt F has arOEdge
from O¢ to each object in the target domain that is type compatibth thie target type, using
PT-LookuP. PT-FIELDS also processes the superclass, in order to include intidigtels.

PT-OBJ1 and A-0OBJ2 are the base cases for-Bom and Pr-FIELDS, respectively, dealing
with the root classpbject, and do not consult the superclass, to ensure that the tenva
finite. Recall, in FDJ, the clag® ject has no fields, domains, or methods.

PT-NEW then obtains each expressiehin each methodn in C, and processes in the
context of theOObject O-. Before P-NEw checks these expressions recursively, it adds the
current combination of a type and actual domain parametefs. tIf PT-NEw discovers by
looking atY that it previously analyzed the same combination, it dogéserurse into the same
OObject, thus avoiding infinite recursion. Finally,TAINEw calls the judgement recursively on
the arguments to the constructor of class.

PT-LookupP implements a similar subtyping relationship as Swbtype-Classule in FDJ
(Fig.[3.8). It compares both classes and that the a®id@imains are equal, by mapping the
domainsp; into D; using the current contexd.

3In FDJ, private domains are misnamed, and really hayaatectedsemantics (SeAux-Domainsn Fig.[3.3).

86 Chapter 3. Formalization of the Object Graph Extraction

Vi € 1..|p| D; = PtD[(O,p;)] params(C) =@
Oc = (Oyq, C<D>) {O¢} C PtO {(O¢, ;) — D;} C PtD
PtO, PtD, PtE ¢ ptdomains(C, O¢)
PtO, PtD, PtE o ptfields(C,O¢)
Vm. mbody(m,C<p>) = (T : T, eR)
C<D>¢7Y = {z:T, this: C<p>},YU{C<D>}, PtO, PtD, PtE o eg
.Y, PtO, PtD, PtE o @

I, T, PtO, PtD, PtE ¢ new C<p>(€)

[PT-NEW]

CT(C) = class O<a, > extends C'<a> ... {T f; dom; ...; md; }

V(domain d]) € dom Dj = <Didj7 dj > {(Oc, d]) = D]} C PtD
PtO, PtD, PtE +¢ ptdomains(C’,O¢)
PtO, PtD, PtE ¢ ptdomains(C, O¢)

[PT-DOM]

, [PT-OBJ1]
PtO, PtD, PtE ¢ ptdomains(Object, O¢)

CT(Object) = class Object<a,> { } [PT-OBJ2]

PtO, PtD, PtE ¢ ptfields(Object, O¢)

V(T fr) €T f owner(Ty) =pj, Dy = PtD[(Oc,p})]
Vk PtO, PtD, PtE o, ptlookup(Ty) = Ox {(Oc, fk, Or)} C PtE
PtO, PtD, PtE t¢ ptfields(C’, O¢)

: [PT-FIELDS]
PtO, PtD, PtE o ptfields(C,O¢)
Or = (044,C<D>) € PtO T =C'<p'> C<:C
Viel.|p D! = PtD[(O, p. D! =D,
i€ L Di=PDlO.p) D! PrLookur
PtO, PtD, PtE ¢ ptlookup(T") = Oy,
[PT-VAR] [PT-LOC]
T, Y, PtO, PtD, PtE Fo « T, Y, PtO, PtD, PtE Fo ¢
T, T, PtO, PtD, PtE Fo e
[PT-READ]
T, Y, PtO, PtD, PtE Fo eg. fi
.Y, PtO, PtD,PtEvo ey T,Y,PtO, PtD, PtE o E[PT]
T, Y, PtO, PtD, PtE Fo eg.m(e)
Oc = H[f| T,Y,PtO,PtD, PtE
< 4 9 © [Pr-ConTEXT]
T,Y,PtO,PtD,PtE oy (e

Ve € dom(S),X[¢] = C<p> H[{) =0 = (044,C<D>) € PtO
Vm. mbody(m,C<p>) = (7 : T, eR) {Z:T, this : C<p>},0, PtO, PtD, PtE ¢ er
PtO, PtD, PtE Fory S

Figure 3.10: Constraint-based specification of the object graph extraction analysis.

3.2. Object Graph@Graph) 87

[PT-SIGMA|

To make the induction go through, even though the pointsiadyais only looks at the new
expression, the analysis requires rules for all the exfmes$gpes. The rule RNEw is the most
interesting, and is the only one that modifiesF .

The rules R-VAR and Pr-Loc for variables and locations, respectively, are unint@rgstn
the case of P-Loc, the store constraint™SIGMA enforces any necessary conditions on each
location/.

The field access and method invocation rules are more ititegesPT-READ analyzes the
receiver of the field access. Similarly7NVvK analyzes the receiver and the actual arguments
for the method invocation.

There are two other interesting rulesT-EONTEXT analyzes method calls in progress
e, where/ is the receiver, by moving into the context of the receivgecbO.. Finally, the
induction requires an augmented store typing rule;SFGMA, to ensure that method bodies
have been analyzed for all objects in the store.

Recursion. The analysis must handle recursive types, which can leddGaph to grow ar-
bitrarily deep. To get a finit®©Graph and ensure that the analysis terminates, the analysis could
stop expanding the object structure at a certain depth. Menvmerely truncating the recursion
may lead to unsoundness, if it fails to reveal relations wdtelul objects point to external objects,
and the child objects are beyond the truncated depth.

Instead, the analysis creates a cycle in@&aph when it reaches a similar context. The
cycle creation happens when the sa@@omain appears as the child of twoObjects. This
justifies anODomain not having an ownin@Object.

In Sectior 3.4, we discuss howDasplayGraph displays a potentially cycli©Graph.

3.3 Object Graph Soundness

We demonstrate the object and edge soundness of an extodigest graph using a proof. The
proof relies on an instrumentation of the FDJ dynamic serosrdn approximation relation, and
standard Progress and Preservation theorems.

3.3.1 Instrumented Semantics

To prove the soundness of the analysis, we take the FDJ apebhsemantics (Fig._3.4), and
we instrument them (Fig._3.1L1). This instrumentation i safice discarding it produces exactly
the previous semantics (F[g. B.4). For instance, compaNeR-to IR-NEw (the common parts
of the rules are highlighted in Fig._3]11). Also note thatyolR-NEW requires an interesting
instrumentation. The rules IRHAD, IR-INVK and IR-GONTEXT, again, are needed for the
induction to go through, but do not impact the instrumentati

The instrumented evaluation judgement form is as follows:

e;S;H; K ~¢ge; S H; K'

whereGG = (PtO, PtD, PtE) is the statically computed object graph.

88 Chapter 3. Formalization of the Object Graph Extraction

(ddom(S) S =S|t C<p>(0)]
— (PtO, PiD, P{E)
7d D, = K[(.d]
Oc = (0;q,C<D>) O¢ € PtO H' = H[l+— O¢]
V(domain d;) € domains(C<p>) D; = PtD[(Oc¢,d;)] K' = K[l.d; — Dj]
V(Ty fr) € fields(C<p>) Oy = H]vy]
Ey = (Oc, fr,Or) E, € PtE IR-NEW]

new C<p>(v); S|, H; K ~¢q |(;S"|; H; K'

5[=C<p>(v) fields(C<p>) =T [

IR-READ
ST HK [S K
S[t] = C<p>(w) mbody(m,C<p>) = (T,er)
[IR-INVK]
(m(v); S| H; K ~¢ > [0/T,0/this]er; S|, H; K
[IR-CONTEXT]

(S I K oo ST K

Figure 3.11: Instrumented runtime semantics (core rules).

In IR-NEw (Fig.[3.11), the actual domains passed to the class being allocated are
runtime domains, whicli' maps to stati©Domains in PtD. We useH to lookup theOObject
O, for each valuey;, passed to initialize thé'" field of the object being allocated, and ensure
that theOEdge is in PtE.

The instrumented evaluation relation also includes coenyra rules, similar to those in FDJ
(Fig.[3.8), and which leave the instrumentation as is (Eif2B8

3.3. Object Graph Soundness 89

;S Hy K~ e; Sy H'; K

IRC-NEW
new C<p>(v1.i—1, €, €it1.0n); S; H; K ~»g new C<p>(vy i1, 62, €itl.n); S H'; K/[]

GO;S; H,K ~a 66’5”7]_]/)[(/
eo-fis S H; K~ €. fi; Sy H's K

[IRC-READ]

eo; S H K ~¢g 66;5”;[{’;}(’

IRC-RECVINVK
eo-m(€); S; H; K ~¢ e'O.m(E);S’;H’;K/[]

ei; S;H; K ~gel; S H K

[IRC-ARGINVK]
v.m(V1 -1, €5, €i41.0); Ss Hy K ~>g v.om(vy i1, €}y €i01.0); S H K

;8 H; K wg e S HL K
(oe;S;H K ~gl>e S H K’

[IRC-CONTEXT]

Figure 3.12: Instrumented runtime semantics (congruence rules).

90 Chapter 3. Formalization of the Object Graph Extraction

3.3.2 Approximation relation

We define an approximation relation between a statéS, H, K) and an analysis result
(PtO, PtD, PtE) as follows:
Definition 7 (Approximation relation (P-APPROX).

VXS, (S H K)~ (PtO,PtD, PtE)
iff
Ve € dom(S), S]] = C<l.d>
implies
H[(] = O¢ = (Oy4,C<D>) € PtO
andv(i.d; € ('.d K[l;.dj] = D; = (Djq,.d;) € rng(PtD)
andVd; € domains(C<l'.d>) K[(.d]] = D; = (D4, d;) {(O¢,d;) — D;} € PtD
and fields(X[¢)) = T f andVk,V¢' S, k]| =0 = E;, = (H[{], fx, H[(']) € PtE

3.3.3 Lemmas

The Progress and Preservation theorems require the folipl@mmas.
Lemma 6 (Points-to Substitution Lemma)

If

'N'z:7ke: T

I,7:7, 7T, PtO, PtD, PtE Fo e
['+7v: 7" wherer’ <: [v/z]7

then

I+ [v/z]e : T' for somel” <: [v/z|T
T, T, PtO, PtD, PtE to [v/7)e

Proof. By induction on thd", T, PtO, PtD, PtE o relation. O

3.3. Object Graph Soundness 91

Lemma 7 (Points-to Weakening Lemma)
If I,Y, PtO, PtD, PtE ¢ ¢
then T',Y U{C<D>}, PtO,PtD, PtE F¢o e

Proof. By induction on thd”, T, PtO, PtD, PtE t relation.]
Lemma 8 (Points-to Strengthening Lemma)

If T,0,PtO,PtD, PtE o newC<p>(v)
Viel.[p| D;= PtD[(O,p;)]
[, YU {C<D>}, PtO, PtD, PtE o ¢
thenl’, T, PtO, PtD, PtE o €

Proof. By induction on thd", T, PtO, PtD, PtE o relation. We cover one interesting case.
Case Pr-NEw: Thene’ = new C'<p/>(e). There are several sub-cases to consider.
Vi e l1.|p/| D; = PtD[(O', p;)] params(C') =@
O¢cr = < Oz’d7 O/<ﬁ> > {Ocl} C PtO {(Oc/, Oéi) — D;} C PtD
PtO, PtD, PtE tFo ptdomains(C',Ocr)
PtO, PtD, PtE l_O’ ptfields(C’, OC/)
Vm. mbody(m,C'<p/>) = (: T, eg)
C'<D'>¢gYU{C<D>} =
{z:T, this:C'<p'>}, T U{C<D>} U{C'<D'>}, PtO, PtD, PtE t-o,, eg
I, Y U{C<D>}, PtO, PtD, PtE o/ €
[, YU {C<D>}, PtO, PtD, PtE - new C'<p'>(e)
SubcaseC’'<D’> # C<D> andC'<D'> ¢ TU {C<D>}

{z:T, this:C<p>},TU{C<D>}U{C'<D'>}, PtO, PtD, PtE o, ex By sub-derivation

{z:T, this:C<p>},TU{C'<D'>}, PtO, PtD,PtE t-o_, e By i.h.
[, YU{C<D>}, PtO,PtD, PtE \-o/ € By sub-derivation
I, PtO, PtD, PtE For € By i.h.
I,Y,PtO,PtD, PtE For € By PT-NEwW

SubcaseC’'<D’> # C<D> andC'<D'> € TU {C<D>}

I, YU {C<D>},PtO,PtD,PtE o € By sub-derivation
.Y, PtO, PtD, PtE b & By i.h.
.Y, PtO, PtD, PtE bor ¢ By PT-NEW

SubcaseC’<D'> = C<D>,i.e.C'<D'> € TU{C<D>}

{z:T, this:C<p>},0, PtO, PtD, PtE o, eg By inversion
{z:T, this:C<p>},TU{C<D>}, PtO,PtD,PtE o , er By Points-to Weakening Lemma
[l

92 Chapter 3. Formalization of the Object Graph Extraction

Lemma 9 (Pt-Domains Lemma)

f 0,3 npsbe: T

then

Y S

PtO, PtD, PLE oy S

PtO, PtD, PtE Fo new C<p>(7)

(S, H, K) ~ (PtO, PtD, PtE)

PtO, PtD, PtE t¢ ptdomains(C, O¢)
Viel.p| D;= PtD[(O,p;)]

Oc = {04, C<D>) {Oc} C PtO

Vd; € domains(C<p>) D; = PtD[(O¢,d;)]

Proof. By induction on thePtO, PtD, PtE ¢ ptdomains(C, O¢) relation.

Case Pr-Dowm:.

PtO, PtD,
Vi e 1..|p|

PtE Fo new C<p>(7)

By assumption

D; = PtD[(O, p;)] By sub-derivation of P-NEw

params(C) =@

Oc = (O, C<D>)

{O¢} C PtO

{(O¢, ;) — D;} C PtD

PtO, PtD, PtE ¢ ptdomains(C,O¢)
V(domain d;) € dom D; = (D, d;)
{(O¢,d;) — D;} C PtD

dom € domains(C<p>)

PtO, PtD, PtE ¢ ptdomains(C', O¢)

Subcase’’ # Object

Subcase’’ = Object

ptdomains(C’,O¢) =)

By sub-derivation of P-NEwW
By sub-derivation of P-NEW
By sub-derivation of P-NEwW
By sub-derivation of P-NEwW
By sub-derivation of P-NEwW
By sub-derivation of P-Dom
By sub-derivation of P-Dom

By definition of domains
By sub-derivation of P-Dom

By i.h.

By definition of Aux-Domains-Obj

Case Pr-OBJ1: Is immediate.

3.3. Object Graph Soundness

93

Lemma 10(Pt-Fields Lemma)

If 0,32, mpisEe: T

YES

PtO, PtD, PtE Fory ©

PtO, PtD, PtE o new C<p>(7)
(S,H,K) ~ (PtO, PtD, PtE)

PtO, PtD, PtE ¢ ptfields(C, Oc¢)

Viel.[p| D;= PtD[(O,p)]

Oc = (0, C<D>) {O¢} C PtO
then

(1) O = H[Uk]

(2) V(T fx) € fields(C<p>)

Ey, = (Oc, fi, O) E, € PtE

Proof. By induction on thePtO, PtD, PtE t¢ ptfields(C, O¢) relation.

Case Pr-FIELDS:.

PtO, PtD, PtE ¢ new C'<p>(7)
PtO, PtD, PtE o ptfields(C,O¢)
V(Ty fi) €T f
owner(Ty) = p),
Dy, = PtD[(Oc, p,)]
Vk PtO, PtD, PtE Fo, ptlookup(T}) = Ok
{{Oc, fr, Ox)} C PtE
Oy = { Oiq, Cr<Dy>) € PtO
T, =C,<p'> C, < C,
Vie L7l Dy = PD|(Oc,)
PtO, PtD, PtE to ptfields(C', O¢)

Dy,

Subcase”’ # Object

Subcase’’ = Object

ptfields(C',Oc) =0

By assumption

By sub-derivation of P-NEW

By sub-derivation of P-FIELDS

By sub-derivation of P-FIELDS

By sub-derivation of P-FIELDS

By sub-derivation of P-FIELDS

By sub-derivation of P-FIELDS

By inversion of A-LOOKUP

By inversion of A-LooKUP
= Dy, By inversion of A-LoOKuUP
By sub-derivation of P-FIELDS

By i.h.

By definition of Aux-Fields-Obj

Case Pr-OBJ2:. Is immediate.
This shows (2).

94 Chapter 3. Formalization of the Object Graph Extraction

To show (1), we use the approximation relationr RKPPROX

T, fo €T f By sub-derivation of P-FIELDS

(S,H,K) ~ (PtO, PtD, PtE) By assumption
Vo € dom(S), B[vy] = Tp<v}.d> By PT-APPROX
implies

Hvy) = Oy = (044, Th<D>) € PtO
andvuy.d; € vj.d
Klvy.d;] = D; = (Dig,, dj) € rng(PtD)
andvd; € domains(Tj,<v}.d>)
Klvg.d;) = D; = (Dya,, d;) {(Ok,d;) = D;} € PtD
andfields(S[v]) =T f
andvk, Vv, Slu, k] = v, = Ex = (H[vi], fr, H[v}]) € PtE

3.3. Object Graph Soundness 95

3.3.4 Preservation

Theorem 3(Points-to Preservation (Subject Reduction))

If

0,3, nupis F e T‘

PtO, PtD, PtE borpy &

PtO, PtD, PtE o e

(S,H,K) ~ (PtO, PtD, PLE)
;H;KWG ;S [H: K'
then

there exist&’ D ¥ andT” <: T such that), ¥/, nis F €' : T" andX' = 5’
(S H',K") ~ (PtO, PtD, PLE),
PtO, PtD, PtE o €,

and PtO, PtD, PtE Forp X

The Points-to Subject Reduction theorem extends the FDE&uURpduction (the common
parts are highlighted). Those parts are proved by inductan the derivation of the FDJ evalu-
ation relatiore; S ~ ¢; S’ (Fig.[3.4).

Proof. We prove Points-To Preservation by induction on the insémited evaluation relation
e;S;H; K ~¢ ¢€; 58", H'; K’ with a case analysis on the outermost reduction rule used.

96 Chapter 3. Formalization of the Object Graph Extraction

Case IR-NEw: Thene = new C<{'.d>(v). And e’ = /.

To show:

(1) (S',H',K") ~ (PtO, PtD, PtE)
(2) PtO, PtD, PtE t-¢ ¢

(3) PtO, PtD, PtE Fop g X

PtO,PtD,PtE+Fpoe and (S, H,K)~ (PtO,PtD, PtE) By assumption
Ve € dom(S),X[)] = C<d/.d> Sincex - S
- By PT-APPROX
H[i] = O, = (04, C<D>) € PtO By PT-APPROX
andv.d; € /.d K[.d;] = D,; = (Dia,,d;) € rng(PtD) By PT-APPROX
andvd; € domains(C<p>) By PT-APPROX
Klidj]) = D;j = (Dyq;, dj) {(O.,d;) — D} € PtD By PT-APPROX
and fields(X[)) =T f By PT-APPROX
andvk, V. S, k] = = (H[], fr, H[/]) € PtE By PT-APPROX
We also have:
Oc¢ = (0;4,C<D>) € PtO By sub-derivation of IR-Mw
S’ = Sl C<l.d>(v)] By sub-derivation of IR-Nw
H' = H[l — O¢] By sub-derivation of IR-N¥w
Vie |l'dl D;=K|[l.d] By sub-derivation of IR-Mw
Vd; € domains(C<('.d>) By sub-derivation of IR-Nw
D; = PtD[(Oc¢,d;)] By sub-derivation of IR-Nw
K' = K[l.d; — Dj] By sub-derivation of IR-MEw
I D Ust Y[=C<l.d>
VT fx € fields(X'[(]) s.t. S[¢, k] = vy, By sub-derivation of IR-Nw
Oy = Hv] By sub-derivation of IR-Mw
Er = (Oc¢, fr,Ok) € PtE By sub-derivation of IR-MwW
(S',H',K') ~ (PtO, PtD, PtE) By PT-APPROX

This proves (1)

PtO, PtD, PtE o € By PT-Loc sincee’ = /¢
This proves (2)

3.3. Object Graph Soundness 97

PtO, PtD, PtE Fopy ¥
Vi € dom(S), 2] = C,<p>
H[] = O, = (O, C,<D>) € PtO
Vm. mbody(m, C,<p>) = (7 : T, eg)
{z: T, this : C<p>},0, PtO, PtD, PtE o, er
Oc¢ = (04, C<D>) € PtO
S = S[t s C<l.d>(D)]
H' = H[l — Oc]
PtO, PtD, PtE Fo e
e = new C</('.d>(7)
Vm. mbody(m,C<p>) = (T :T, eg) C<D>¢Y =
{z: T, this : C<p>},YU{C<D>}, PtO, PtD, PtE ¢ €r
{7z : T, this : C<p>},0, PtO, PtD, PtE o, eg
Vi € dom(S"),¥'[i] = C<p>
H'[)] = O, = (04, C,<D>) € PtO
Vm. mbody(m, C,<p>) = (7 : T, eg)
{7z :T, this : C,<p>},0, PtO, PtD, PtE o, er
PtO, PLD, PLE Foppp S
This proves (3)

By assumption
By sub-derivation of P-SIGMA

By sub-derivation of IR-NMw
By sub-derivation of IR-NMw
By sub-derivation of IR-NMw

By assumption witke below

By sub-derivation of P-NEwW
SinceY = ()

By Points-to Strengthening Lemma
By above

By PT-SIGMA with aboveH’ andy

98 Chapter 3. Formalization of the Object Graph Extraction

Case IR-ReEAD: Thene = /. f;. And e’ = v;. To show:

(1) (S",H',K") ~ (PtO, PtD, PtE)
(2) PtO, PtD, PtE t-¢ €
(3) PtO, PtD, PtE For g X

(S, H, K) ~ (PtO, PtD, PtE)

S'=S H =H K =K
This proves (1)

PtO, PtD, PtE o €
This proves (2)

PtO, PtD, PtE Fepp X
S'=S H =H K =K
This proves (3)

By assumption
By sub-derivation of IR-RAD

By PT-Loc sincee’ = vy,

By PT-SIGMA
By sub-derivation of IR-RAD
TakeY =X

Case IR-CONTEXT: Thene = /> v. Ande’ = v. To show:

(1) (S',H',K") ~ (PtO, PtD, PtFE)
(2) PtO, PtD, PtE t-¢ ¢
(3) PtO, PtD, PtE For g X

(S,H,K) ~ (PtO, PtD, PtE)
S"=S H =H K =K
This proves (1)

PtO, PtD, PtE o €
This proves (2)

PtO, PtD, PtE Forp %
S'=S H =HK =K
This proves (3)

By assumption
By sub-derivation of IR-ONTEXT

By PT-Loc sincee’ = v

By PT-SIGMA
By sub-derivation of IR-©ONTEXT
TakeY =X

3.3. Object Graph Soundness

99

Case IR-INVK: Thene = £.m(v). Ande’ = (> [0/T, ¢ /this]eg.

To show:

(1) (S',H',K') ~ (PtO, PtD, PtE)
(2) PtO, PtD, PtE o €

(3) PtO, PtD, PtE Fop g X

(S,H,K) ~ (PtO, PtD, PtE) By assumption
S'=S H=HK =K By sub-derivation of IR-NVK
This proves (1)

From Pr-INvK:

.Y, PtO, PiD, PLE o ¢y T, Y, PtO, PtD, PtE Fo &
[T, PtO, PtD, PtE ¢ eg.m(€)

FromMethOK:

mtype(m,Ty) =T —Tr {Z:T, this: C<a, >}, 0, thiskegr:Tr Tr<:T

100 Chapter 3. Formalization of the Object Graph Extraction

S[¢] = C<d,d'>(v)
mbody(m,C<d,d>) = (T, er)
eg =1

Y] = C<d,d> =T,

eo: OC<d,d>
mtype(m,C<d,d>) =T — Tg
U Ta

T, <: [v/7,0/this| T

There are som®<d> andT} sS.t.

Ty, <: Tr andC<d,d'> <: D<d>

st.{Z:T,this: D<d>}Fer: Tg

{7 :T, this : C<d,d'>},0, PtO, PtD, PtE o eg

Oc = H[f]

Since term substitution preserves typing, there existeestyn
Ts <: C<d,d’> such tha{v/z, {/this]er : T

Ts <: Ty andTy <: Tg
Ts <:Tg

TakeT =T =Ty
PtO, PtD, PtE o (

I',0, PtO, PtD, PtE to, [0/T,(/this]eg
I',0, PtO, PtD, PtE o €> [v/T, £ /this]eg

This proves (2)

PtO, PtD, PtE Forp ¥
=S H =HK =K

This proves (3)

By sub-derivation of IR-NVK
By sub-derivation of IR-NVK

T-Store

By inversion
for someT, andT
By Method Lemma (padgei83)

By PT-SIGmMA
By PT-SIGMA

By above

By transitivity of <:
Preservation

By PT-LOC

By Points-to Substitution Lemma

By PT-CONTEXT

By PT-SIGMA

By sub-derivation of IR-©ONTEXT

TakeY =%

3.3. Object Graph Soundness

101

Case IRC-READ: Thene = eq. f;.. And e’ = ¢j. fi.. To show:

(1) (S",H',K") ~ (PtO, PtD, PtE)
(2) PtO, PtD, PtE t-o ¢
(3) PtO, PtD, PtE Fop g X

eo; S; H; K ~q ey; S H'; K By sub-derivation of IRC-RAD
(S",H',K'") ~ (PtO, PtD, PtF) By induction hypothesis
This proves (1)

eo; S; H; K~ ey; S H'; K By sub-derivation of IRC-RAD
PtO, PtD, PtE \-¢ ¢ By induction hypothesis
PtO, PtD, PtE ¢ €. fx By PT-READ

This proves (2)

eo; S; H; K ~q ey; S H'; K By sub-derivation of IRC-RAD
PtO, PtD, PtE For g X By induction hypothesis
This proves (3) TakeY' =%

102 Chapter 3. Formalization of the Object Graph Extraction

Case IRC-RECVINVK: Thene = e;.m(€). And e’ = e.m(€). To show:

(1) (S',H',K") ~ (PtO, PtD, PtE)
(2) PtO, PtD, PtE b €
(3) PtO, PtD, PtE For g X

€0y i Hy K ~g e S H' K
(S",H',K') ~ (PtO, PtD, PtE)
This proves (1)

eo; S; H; K~ ey; S, H'; K
PtO, PtD, PtE ¢ e

PtO, PtD, PiE o €

PtO, PtD, PtE ¢ ey.m(e)
This proves (2)

€0} S5 H; K~ e S H K
PtO, PtD, PtE Forp Y
This proves (3)

By sub-derivation of IRC-RCVINVK
By induction hypothesis

By sub-derivation of IRC-RCVINVK
By induction hypothesis

By PT-INVK

By PT-INVK

By sub-derivation of IRC-RCVINVK
By induction hypothesis
TakeY' = X%

3.3. Object Graph Soundness

103

Case IRC-ARGINVK: Thene = v.m(vy. i1, €, €i01.n). ANd e = v.m(vy -1, €}, €i01.0)-
To show:

(1) (S, H',K') ~ (PtO, PtD, PtE)

(2) PtO, PtD, PtE t-o €
(3) PtO, PtD, PtE For g X

ei; S;H; K ~~g el S's H K By sub-derivation of IRC-RGINVK
(S",H',K') ~ (PtO, PtD, PtE) By induction hypothesis
This proves (1)

e;; S; Hy K ~~¢ el S's H' K By sub-derivation of IRC-RGINVK
PtO, PtD, PtE ¢ €. By induction hypothesis
PtO, PtD, PtE o v.m(vi_i1,€,, €ir1.n) By PT-INVK

This proves (2)

ei; S; H; K ~~¢ el S H K By sub-derivation of IRC-RGINVK
PtO, PtD, PtE For g X By induction hypothesis
This proves (3) TakeY =X

104 Chapter 3. Formalization of the Object Graph Extraction

Case IRC-New: Then e¢ = new C<p>(vi 1,6 €is1.n)- And ¢ =
new C'<p>(vy_;_1,€}, €i41.,). TO Show:

(1) (S",H',K") ~ (PtO, PtD, PtE)
(2) PtO, PtD, PtE t-¢ ¢
(3) PtO, PtD, PtE Fop g X

ei; S;H; K ~~¢g e S H'; K By sub-derivation of IRC-Ew
(S",H',K") ~ (PtO, PtD, PtF) By induction hypothesis
This proves (1)

ei; S H K ~ge; S’ H K By sub-derivation of IRC-Ew
PtO, PtD, PtE ¢ e By induction hypothesis
PtO, PtD, PtE l_O new C<]_9> (Ul..i—la 6;, €i+1..n) By PT'NEW

This proves (2)

ei; Sy H; K~ e S H' K By sub-derivation of IRC-Ew
PtO, PtD, PtE bor g X By induction hypothesis
This proves (3) TakeY' = %

3.3. Object Graph Soundness 105

Case IRC-CONTEXT: Thene = (> ey. Ande’ = (> ¢f. To show:

(1) (S',H',K") ~ (PtO, PtD, PtE)
(2) PtO, PtD, PtE b €
(3) PtO, PtD, PtE For g X

eo; S; H; K ~>¢g ey; S H'; K'

By sub-derivation of IRC-ONTEXT

(S"H',K') ~ (PtO, PtD, PtF) By induction hypothesis

This proves (1)

eo; S; H; K~ ey; S H'; K
PtO, PtD, PtE ¢ e

PtO, PtD, PtE o (1> ¢
This proves (2)

eo; S; H; K~ ef; S H' K
PtO, PtD, PtE tFop o Y
This proves (3)

By sub-derivation of IRC-ONTEXT
By induction hypothesis
By PT-CONTEXT

By sub-derivation of IRC-ONTEXT
By induction hypothesis
TakeY =X

106

Chapter 3. Formalization of the Object Graph Extraction

Because we added instrumentation to the runtime semanecalse need to prove progress,
i.e., the instrumentation will not cause the program to getksduring evaluation.

3.3.5 Progress

Theorem 4 (Points-to Progress)

If

0,3, nupis Fe: T
PtO, PtD,PtE Fep g X
PtO,PtD,PtE o e
(S,H,K) ~ (PtO, PtD, PtE)
then

either| e is a value

or else; H;K ~qle;S"[|H: K'

Proof. We prove Points-to Progress by induction over the derivatioPtO, PtD, PtE t¢ e,
with a case analysis on the last typing rule used.

3.3. Object Graph Soundness 107

Case Pr-NEw: Then there are two sub-cases to consider, depending oneviaette values.
Subcases = new C<p>(vy i1, €;, €41.n)- Then IRC-New can apply.
IRC-NEW

e;; S, H; K ~¢ e S's H K

From — — 7 T 177, 1
new C<p>(v1.i-1, €, €it1.0); S; Hy K ~»g new C<p>(vy_i_1,€;,€41.0); 5 H K

PtO, PtD, PtE o e; By sub-derivation of P-NEwW
ei; S;H; K ~~¢g e S's H; K By induction hypothesis
new C'<p>(v1.i-1, €, €it1.n); S; H; K ~¢

new C<p>(vi ;i 1,€:€i11.0); 58 Hy K By IRC-NEwW

Takee' = new C<ﬁ> (Ulnifl, 6;-, ei+1..n>

Subcase: = new C'<('.d>(v). Takee’ = £. Then IR-New can apply.
IR-NEW

¢ & dom(S) S = S|t — C<p>(v)]
— (PtO, PtD, PtE)
7d D= K[l.d)
Oc = (044,C<D>) Oc € PtO H' = H[{ — Oc¢]
V(domain d;) € domains(C'<p>) D; = PtD[(Oc¢,d;)] K' = K[l.d; — Dj]
V(T fx) € fields(C<p>) O = H]v]
E, = <Oc, fk, Ok> E, € PtE

From —
new O<p>(v); S; H; K ~¢ (;S"; H; K’
To show:
(O)Vie|d D;=KI[l.d]
(2)O¢ = (O44,C<D>) O¢ € PtO
(3) Vd; € domains(C<l'.d>) D; = PtD[(O¢,d;)]
(4) Oy = Hlvy]
(B)Vk € fields(C<l'.d>) Ep = (O¢, fr,Or) Ey € PtE
(S,H,K) ~ (PtO, PtD, PtE) By assumption
Vi € dom(S), X[l = C,</.d> SinceX - S
H[i] = O, = (04, C,<D>) € PtO By PT-APPROX
andv.;.d; € /.d K[.d;] = D,j = (Djq,,d;) € rng(PtD) By PT-APPROX
andvd,; € domains(C,<!.d>) By PT-APPROX
Kludj] = D;j = (Dia,;, dj) {(O,,dy) — D} € PtD By PT-APPROX
and fields(X[)) =T f By PT-APPROX
andvk, V. S[, k] =/ = Ey = (H[, fx, H]']) € PtE By PT-APPROX

This proves (1)

108 Chapter 3. Formalization of the Object Graph Extraction

PtO,PtD,PtE o e By assumption

Viel.[0.d D;= PtD[(O,p;)] By sub-derivation of P-NEw
params(C) =@ By sub-derivation of P-NEW
Oc = (Oy, C<D>) By sub-derivation of P-NEwW
{O¢} C PtO By sub-derivation of P-NEw
This proves (2)

CT(C) = class C<a, 3> extends C'<a> ... {
T f; dom; ...; md; }

{(O¢,a;) = D;} C PtD By sub-derivation of P-NEw
PtO, PtD, PtE t-o ptdomains(C, O¢) By sub-derivation of P-NEW
This proves (3) By Pt-Domains Lemma
PtO,PtD, PtE Forpg © By assumption
Vi € dom(9), X[= C,<p> By sub-derivation of P-SIGMA
H[)] = O, = (04, C,<D>) € PtO By sub-derivation of P-SIGMA

This proves (4)

PtO, PtD, PtE ¢ ptfields(C,O¢) By sub-derivation of P-NEwW
This proves (5) By Pt-Fields Lemma

3.3. Object Graph Soundness 109

Case Pr-VAR: Thene = z.

Not applicable since variable is not a closed term.

Case Pr-Loc: Thene = /.

e is value.

Case Pr-READ: Thene = ¢y. f;. There are two sub-cases to consider, depending on whether

the receiveg, is a value.
Subcasez; = /. Thene = /. f;.

IR-READ

S| = C<p>(v

Erom 4] p>(v)

fields(C<p>) =T f

Cfiy SsHy K ~g v Sy H K

Takee' = v;
Then IR-READ can apply.
Subcasery = €. f;.
IRC-READ
co; S; Hy K g eq; S H' K
€o-fis S H; K g €. S’ H K

From

ep; Sy H; K~ eg; Sy H' K
eg.fi;S; H; K ~~¢g eg.fi;S”;H";K”
Takee' = ep. f;

By ordinary FDJ progress.

By induction hypothesis
By IRC-READ

110 Chapter 3. Formalization of the Object Graph Extraction

Case Pr-INVK: Thene = ¢g.m(€). There are three sub-cases to consider, depending on
whether the receiver, or the method arguments are values.
Subcasery = ¢, ande = 7, that is,e = £.m(7).
IR-INVK
S[{] = C<p>(w) mbody(m,C<p>) = (T, er)

From
(m(0); S; Hy K ~g (> [0/T,0/this]er; S; H; K

Then IR-INVK can apply. By ordinary FDJ progress.
Takee' = (> [v/T,(/this]er
Subcase, = ¢, that ise = ej.m(e).
IRC-RECVINVK
eo; S5 H; K~ ey; Sy H' K
eo-m(€); S; H; K ~¢ eg.m(e); S"s H'; K’

From

ep; S; Hy K ~g ey, S H; K By induction hypothesis
eo-m(€); S; Hy K ~¢ eg.m(e); S"; H"; K" By IRC-RECVINVK
Takee' = ej.m(e)

SchaSGBO =y, thatis,e = v.m(vl_i_l, €, ei—f—l..n)-

IRC-ARGINVK
ei; S;H; K ~gel; S H' K

. . . / . /. /. /
U-m(vl..i—h@i,@iﬂ..n),S, H; K ~¢ U-m(vl..iflaeiaewrl..n)aS;HvK

From

PtO, PtD, PtE o e; By sub-derivation of P-INVK
ei; S;H; K ~~¢g e S"s H; K By induction hypothesis
V(U1 €, €ig1n); S5 H K o~ v.m(vr i, €, eip1n); S HY K" By IRC-ARGINVK

/ /
Takee' = v.m (v i-1,€;, €i11.m)

3.3. Object Graph Soundness 111

Case Pr-CoONTEXT: Thene = (> eq. There are two sub-cases to consider, depending on
whethere, is a value.

Subcase is avalue, i.e.¢ = (> 0.
IR-CONTEXT

From

(ov; S H K ~g v, S, H K

Then IR-GONTEXT can apply
Takee' = v

Subcasez is not a value.
IRC-CONTEXT

co; i Hi K ~g e S H K
(>eg; S;Hy K ~g e S’ H K

From

e0; S; H; K ~¢q ey; S's H; K' By induction hypothesis
(>ep; SiH K ~g ey S H K By IRC-CONTEXT
Takee' = (> ¢

112 Chapter 3. Formalization of the Object Graph Extraction

3.3.6 Object Graph Soundness

An OGraph is asoundapproximation of a Runtime Object Graph (ROG) represented \wgll-
typed storeS, for any program run, when tHeGraph relates to the ROG informally, as follows:
* Object soundness:Each object in the ROG has exactly one representatd@bject in
the OGraph. Similarly, each domain in the ROG has exactly one represgatODomain
in the OGraph. Furthermore, this mapping is consistent with respect eoaWwnership
relation. If object/ is in the domair?’.d in the ROG, then the representative/a$ in the
representative of .d in the OGraph. Similarly, if £ has a domair in the ROG, then the
representative fof has a representati@omain for d in the OGraph.
* Edge soundnessif there is a field reference from objeé€t to object/, in a ROG, then
the OGraph has anOEdge between th®©Objects O, andO, that are the representatives of
(1 and/,, respectively.
The following Object Graph Soundness theorem restates foorally the above informal
definitions, and combinasbject soundnesandedge soundness

Theorem: Object Graph Soundness.

VG = (PtO, PtD, PtE) - P = (CT,e) CT,e well-typed
Ve; 0;0;0 ~¢ ey S; Hy K

VX ES

PtO, PtD, PtE For gy S

(S, H,K) ~ (PtO, PtD, PtE)

where thew~, relation (Fig[3.1B) is the reflexive and transitive closoféhe ~~ relation.

By inversion of A-APPROX the theorem states that given a well-typed st®ranOGraph
produced from the same progra there exists a mafl that maps each locatiaghin the store
to a uniqueOObject, and a mapK that maps each runtime domain in the store to a unique
ODomain, and this mapping is consistent with respect to the ownenrghation. In addition, the
OEdges in anOGraph soundly abstract all field points-to relations between amydbjects in an
ROG.

To prove the Object Graph Soundness theorem, we need to show:

(1) PtO, PtD, PtE Fory S
(2) (S, H, K) ~ (PtO, PtD, PtE)

[PT-REFLEX]
e;S; Hy K ~(e; S, H; K

G,S, H,K “’“)*G GII;S//;H”;K// 6//;‘51//;}[//;1(// "’“)G CI;S/;H/;K,
e; Sy H; K ~¢ €S H K

[PT-TRANS]

Figure 3.13: Reflexive, transitive closure of the instrumented evaluation relation.

3.3. Object Graph Soundness 113

Proof. By induction on thew¢, relation. There are two cases to consider:
Case Pr-REFLEX:

(S;H;K) ~G Immediate, becausg = ()
PtO,PtD, PtE Forg ¥ Immediate, from P-SIGMA store constraint
Case Pr-TRANS:

e:0:0:0 ~5 e: S H: K By assumption
0,0,0) ~G Becauses =)
e:0:0;0 ~% € S H K By inversion
(S"’H; K') ~ G By induction hypothesis
¢S H K ~qge S:H: K By inversion
(S;H;K)~G By Preservation
e:0:0:0 ~% e: S H: K By assumption
0,0,0) ~G BecauseS = ()
e:0:0;0 ~% € S H K’ By inversion
PtO, PtD, PtE tFor o Y By induction hypothesis
¢S H: K e S:H K By inversion
PtO, PtD, PtE Forp X By Preservation

3.3.7 Limitations

The proof assumes that objects are created only in locatiated domains or domain param-
eters. Also, it does not reflect the existence of the anmutalient or unique (Section 2511,
Pagd 6b).

3.4 Display Graph (DGraph)

The static analysis extracts a hierarchical object grapé,Qwnership Object Graph (O0G),
from a program with ownership domain annotations. The OO&tWa parts:
* OGraph: this is graph that can have cycles in the presence of reeungpes;
* DGraph: this is a depth-limited unfolding of th@Graph with lifted edgego account for
information below the cutoff depth.

3.4.1 Depth-Limited Unfolding

We do not formalize the generation ofZxGraph from an OGraph. An ODomain, OObject
or OEdge in an OGraph creates a correspondii@Domain, DObject or DEdge in the DGraph
(Fig.[3.14). Furthermore, @Object can merge one or mof@Objects.

114 Chapter 3. Formalization of the Object Graph Extraction

DG € DGraph Objects = DOS, Domains= DDS, Edges= DES)
DOS,DDS, DES)
DD € DDomain ::=(Ild = DD,;,Domain=d)

DD id) >
Id = DOy, Types= {C<D>...})

=

=

(

(

(

(DOy, {C<D>...})
(From = DO, Field = f, To = DOy)
(

{DO

{DD

{DE

DO € DObject

DFE € DEdge =

= (DOsye, f, DOyt)
DOS = .} Set of DObjects
DDS =) Set ofDDomains
DES = } Set of DEdges

Figure 3.14: Data type declarations for tHgGraph.

3.4.2 Abstraction by Types

In addition to providing abstraction by ownership hiergtzcan OOG can provide abstraction
by types, as we discussed informally in Secfion 2.4.3.2€P&). We formalize abstraction by
types as a post-pass on thé&raph (Fig.[3.1%). Abstraction by types relies on a heuristic dase
on a more flexible notion of type compatibility (Rule RuA-CoMPAT), instead of the strict FDJ
subtyping rules used in tH@Graph. With the heuristic turned on,[@Object can merg&Objects
that are in the same ownir@Domain (Rule R-MERGE-OBJECTS.

When accounting for inheritance, domain parameters must thieefollowing condition:

C' <: CandC’'<D'> <: C<D> impliesD’ = D, D"

We formalize below the two heuristics, abstraction by &fitypes and abstraction by design
intent types.

3.4.2.1 Abstraction by trivial types

Abstraction by trivial types merges objects whenever thgies share one or more non-trivial
least upper bound (LUB) type$he heuristic does not merge objects that share toivigl types
as supertypes. Theetof trivial types,T'T, is user-configurable, and typically includ@sject,
Cloneable andSerializable from the Java Standard Library. Many marker interfacesdbat
not declare any methods, suchrasidomAccess, are also in the list.

Abstraction by trivial types corresponds to the disjuadstsNonTrivialLUB (Fig.[3.16) in
R-Aux-CoMPAT and can be turned-off by setting the flagr T to false (Fig.[3.15).

SCHOLIA assumes that the program’s whole source code, includirgredtlibraries that are
in use, are available. Thus, the class tableincludes entries for all of those types.

3We formalize abstraction by types in tiGraph in order to simplify the formalization of th®Graph. We
conjecture but do not prove, however, that soundness stdshwhen using abstraction by types.

3.4. Display GraphiGraph) 115

byTT,byDIT,TT, DIT \- compat(C, C') (Dy = Dj)

DOS,DObject{ DO,y,{C<D> ...}), DObject{ DOy, {C'<D'>...}) =
DOS, DObject({ DOr, {C<D> ...} U{C'<D'>...})

[R-MERGE-OBJECTY

Ci<:Cy or (Oy<:(Cf
or(byTT and 77T F existsNonTrivialLUB(Cy, Cy))
or(byDIT and DIT + mapToSameDIT(Cy, Cy))

[R-Aux-COMPAT|
byTT,byDIT, TT, DIT + compat(Cy, Cs)

Figure 3.15: Rules for abstraction by types.

ICeCT.(Chr <: C Cy<:C C¢TT)

- — [R-ABSTRACTBY-TT]
TT F existsNonTrivialLUB(Cy, C2)

Figure 3.16: Abstraction by trivial types.

ECGDIT.(Ch<: C Cy <ZC)
DIT t mapToSameDIT(Cy, C5)

[R-ABSTRACTBY-DIT]

Figure 3.17: Abstraction by design intent types.

3.4.2.2 Abstraction by design intent types

Abstraction by design intent types corresponds to the wisjohapToSameDIT (Fig. [3.17) in
R-Aux-CoMPAT and can be turned-off by setting the flagDIT to false (Fig.[3.15).

In this heuristic, the developer defines an ordered list sfgieintent types0/7’). To decide
whether to merge two objects of typg andCs, the analysis finds the first type in thel 7', C,
such that”; <: C andC, <: C. If DIT does not include such a type, then this heuristic does

not apply.

3.4.2.3 Abstraction by types and soundness

Abstraction by types leads only to additional merging ofechs in a domain, so it does not
compromise soundness. Thus, we need not prove soundnésDgitaph.

3.5 Implementation

This section discusses some implementation details.

116 Chapter 3. Formalization of the Object Graph Extraction

3.5.1 Traceability

In our implementation of th®Graph, anODomain knows about the underlying domain declara-
tion in the code, and similarly, a@Object knows about the underlying field declarations in the
code. In addition, the implementation sets the tracegbilformation in theDGraph based on
the information in thédGraph. This allows a developer using the tools to trace fromRi&aph

to the corresponding lines of code. For example, a develogeitrace from @&O0bject to the
corresponding new expressions in the code, and similadyy fa DEdge to the corresponding
field declaration.

3.5.2 Differences between the formal and the concrete systems

There are several differences between the formal systenthancbncrete implementation. The
formal system lacks the following language features:

* Generic types—they are implicitly supported, rather thaplieitly formalized as in

Generic Universe Types (Dietl et/al. 2007);

* Method domain parameters;

* Arrays;

* Interfaces;

¢ Domain paths;

* Inner classes;

* lent andunique annotations.

The concrete system handles all of the above language ésatur

3.6 Discussion

3.6.1 Our Previous Formalizations

To my knowledge, this is the first time that a whole-programlgsis is formalized using a
constraint-based specification, with Featherweight Jdgaally, constraint-based specifications
are inter- or intra-procedural, and deal with three-adsloesle representations.

I now discuss the differences between the formalizatiomefstatic analysis in this chapter

and our previous ones (Abi-Antoun and Aldrich 2007b, 24)09a)

3.6.1.1 Pseudo-code

(Abi-Antoun and Aldrich 2007b) presented an early versibthe object graph extraction analy-

sis using pseudo-code, which made proving soundness uniclgaldition, in that version of the
algorithm, multiple interface inheritance could poteltyi&rigger unsoundness. To address this
unsoundness, the later version added the Rule BRM=EXISTING to merge objects after the
fact (Abi-Antoun and Aldrich 2009a). Furthermore, whenlimg objects from formal domain
parameters to actual domains, the earlier algorithm add®eé edges than soundness required
and was thus less precise.

3.6. Discussion 117

3.6.1.2 Term-rewriting system

(Abi-Antoun and Aldrich ZQQQa) formalized an earlier extian static analysis using rewriting

rules. The earlier formalization provethique object and domain representativ@san inter-
mediate cyclic representation, which is then projected agraph that is displayed. However,
it was unclear that the unfolding step preserved the sowssdingariants. Moreover, the earlier
formalization lacked a proof ;fdge soundness

The rewriting rules created a singMstractDomain for each domain declaratiahin the ab-
stract syntax. In this formalization, tli&Graph can already distinguish between t@®omains
that have the same underlying domdim the abstract syntax.

In the present formalization, the analysis still unfoldsyalic OGraph to a certain thresh-
old. The developer sees tlEGraph above the threshold, and tlGraph below the threshold
is still cyclic. This side-steps the issue of determiningeptth at which to cutoff the recur-
sion and the potential unsoundness of selecting an indategth in the earlier representation.

I- ' |_20_0_9a) only conjectured and did pobve the existence of such a
depth.

Also, (Abi-Antoun and AldricH 2009a) conjectured edge siness. Using the constraint-
based specification in this chapter, we proved lodifect soundnesandedge soundnegSec-
tion[3.3.6), which subsume thenigue object and domain representativwxl edge soundness

defined inl(Abi-Antoun and Aldrich 2009a).

Finally, using abstract interpretation makes the analys@e comparable to previous
Andersen-style points-to analyses (Pichardie 2008).

3.6.2 Precision

For simplicity, the formal system does not model field upgatedeed, initializing a field has the
same challenges as assignment in our system, and the reles different. Still, modeling field
updates andull could increase the precision. For instance, if a field never assigned to and
remains null in any program run, the analysis may not creaidge. In the current model, if a
classC declares a field of type T, then the constructor must initialize the field, and the wsial
conservatively assumes that an objeof type C' has a points-to edge to an objedf typeT'.

3.6.3 Points-to Analysis

The object graph extraction analysis is a kind of a pointastalysis — a fundamental static

analysis to determine the set of objects whose addressebemstpred in variables or fields of

objects. A common idea in points-to analysis is to mergehaldbjects that are created at the
same allocation site into an equivalence class. A basidptinanalysis attaches an allocation
labelh € H at each instructionew C'(), as in:

new" C()

The static object name is then definedlas H dBigha.r_le_ZD_dS). In contrast, our analysis dis-
tinguishes between allocations in different domains aad llave different domain parameters,

118 Chapter 3. Formalization of the Object Graph Extraction

and must analyze expressions of the kind:
new C<P0wner7 Pparams-ﬂ>()

where P, is the owning domain, an®,,,.,s are optional additional domain parameters.
Each of theP, could be a formal domain parameter. At runtime, each domanarpeter is
bound to some actual domain, so the static analysis mugtttnadindings of formal parameters
to actual domains.

Our static analysis is similar to a flow-insensitive Anderstyle points-to analysis
(Andersen 1994), but adapted to object-oriented code fidila et all 2005). The state-of-the-
art is object-sensitivanalysis |(Milanova et al. ZQbS), particularly when compgta complete
points-to solution for all the variables in a program. In tast, a refinement-based approach,
which performs points-to analysis on demand (Sridharah @085; Sridharan and Biki2006;
Xu and Rountev 2008), may achieve higher precision, but magcale when computing solu-
tions for a large number of variables. Thus, a refinemengthasalysis does not seem suitable
for SCHOLIA which computes points-to information for an entire program

Our analysis is object-insensitive but can considel@thain-sensitivesince it distinguishes
between objects in different domains. Since domains aneseograined than objects, we believe
our analysis is more scalable than an object-sensitive blogvever, our analysis suffers from
some of the imprecisions that object-sensitivity addresseeh as field assignment through a

superclass (Milanova et lal. 2005) (see examples of impeecis Sectiod 2.613, Pagel69).

3.7 Summary

In this chapter, | formalized a static analysis to extraatrfra program with ownership domain
annotations, @lobal hierarchical object graph. The object graph conveys achital abstrac-
tion by ownership hierarchy and by types. Moreover, | protret the extracted object graph

is both object soundand edge sound These properties are crucial to ensure that an extracted
object graph shows all runtime objects and relations, iriotol use it to analyze communication
integrity.

Credits

Lecture notes by David Pichardie on the soundness of an Aadestyle points-to analysis
(Pichardie 2008) inspired our style of proving soundnesshd?die, however, used an object-
orientedV hileo language with three-address code, rather than Feathdrindziga.

3.7. Summary 119

Chapter 4

Evaluation of the Object Graph
Extraction@

In this chapter, | evaluate the annotations and the staditysis by extracting hierarchical object
graphs from several real representative object-orientséss that | annotated manually.

4.1 Introduction

This chapter focuses on extracting hierarchical objegblisaand does not represent the out-
put as a standard runtime architecture. As | mentioned in €©hdp however, abstracting an
object graph into a C&C view is largely automatic. So we wileuke terms “runtime archi-
tecture”, “component” and “tier”, interchangeably withbject graph”, “object” and “domain”,
respectively.

This chapter is organized as follows. In Secfion 4.2, | hstitesearch questions that this eval-
uation aims to answer. In Section#.3, | discuss the toolsupr the annotations and the object
graph extraction. In Sectidn 4.4, | discuss the extractiethmdology. In Sectioh 4.5, | discuss
the evaluation methodology. Sectibnl4.6 discusses a cadg gsing the JHotDraw system.
Section 4.V discusses a case study using the HillClimbeesysSection 418 discusses a field
study using the LbGrid system. Section]4.9 has an evaludised on a cognitive dimensions
framework. | conclude this chapter with a discussion in Be¢t.10.

4.2 Research Questions

Our evaluation aims to answer the following hypothesest{@ed. 10, Page 25):

H-1: Lightweight typecheckable ownership annotations caciy within the code,
local hints about object encapsulation, logical contaimin@nd architectural tiers.

H-2: In practice, a static analysis can extract from an aratetl program a global,
hierarchical object graph that provides architectural atastion by ownership hier-
archy and by types.

Portions of this chapter appeared|in (Abi-Antoun and Akdi26075, 2008h, 2009a).

121

We refine the hypotheses into the following research questio

RQ1 — Precision: In practice, does the static analysis, by abstracting tbjcdomains and
types, produce object graphs that have sufficient pre@si@r does it produce object
graphs that suffer from being over-conservative approtiona that are fully connected
graphs, or collapse all the objects in a domain to a singleabhbin the absence of aliasing
information more precise than what ownership annotatioasgige?

RQ2 — Abstraction by ownership: In practice, can a hierarchical object graph show architec-
turally relevant objects from the application domain intiye-level domains, and low-level
objects that are data structures underneath architelgtarghificant objects?

RQ3 — Abstraction by types: In practice, can abstraction by types achieve additiorcditec-
tural abstraction in an object graph?

RQ4 — Iteration: In practice, can one effectively iterate the process of igldne ownership
annotations and setting the optional input to the statityaig e.g., to control abstraction
by types, to extract an object graph with the desired arcthital abstraction?

RQ5 — Annotations: Do the annotations describe local, modular informatiorardmg object
encapsulation, logical containment and architectured %€r does a developer adding the
annotations need some high-level global information?

RQ6 — Value: In practice, does an OOG highlight potentially useful imi@ation about the sys-
tem’s runtime structure?

4.3 Tool Support

The tool support for extracting object graphs consists af phugins in the Eclipse open source
development environment, which has become popular witsaresers and practitione@oth
2005; Murphy et diloﬂm). The first tool manages and typdchthee annotations and the other
one extracts and displays an object graph from an annotabggdgm.

4.3.1 Annotation Tool

| designed a set of Java 1.5 annotations that implement thersivip domain type system using
existing language support for annotations. | also re-immgleted a typechecker for the annota-
tions, ArchCheckJ, which stands for Artdctural annotation Cheek for Java. ArchCheckd is
a plugin to the Eclipse Java Development perspective (J&1J,displays annotation warnings
in the Eclipse problem window. A developer can double-cboka warning in the problem win-
dow to go the line of code with the missing or inconsistentaation. Additional details on the
annotation language and the design of ArchCheckJ are in Ajppiéh

4.3.2 Object Graph Extraction Tool

| implemented the static analysis to extract an object gteiich we discussed in Chaptét$ P, 3)
as another Eclipse plugin, ArchRecJ, which stands for i#ectural Reovery for &ava. The
object graph extraction works in the presence of annotatemmings, but warns that the extracted
object graph may not soundly reflect all objects and relation

122 Chapter 4. Evaluation of the Object Graph Extraction

¥
|

JjelI058IEpIog _

_ m:._m_u_azem__ 7 Buimelgplepues

nbi4ioiel008(

i
v

lapjoHxa]
LEELIVLITES

Buimerq
LERLATEIES

[>
5 FETETS Y
Jauss)

Jaug

Jaus:

JauaysE

JauaysUaL

Aauagst

JEER T

Jauss)

JBUEISITE

Jausgsnen

JauasIaan

¥

4t
a

Jauags

JauayspU

2|gE.
JaUaisabURYJEly
Aausgsi|oo] !
JauEisnuoiDE|acaInb

isadAy [BIALL

rsabueyD anoA Aldde 03 30 3D

agge U Apeade ale Wb sy u pad ul eadde U7 saddy ay) sadAy e o 3s) 8y o) 3 ppe oy welBeip ssep auy u{ae paqun o ssep) adag e uospip-aqnog

-ydean yralqo diyssaump ayy w Apsadoad uonoesqe adAy ayy jonuo)

T

di] molny
:di] mourypue

o

107220738540
;1ojea0Ty

A

N

ainBi4 .
:(+)=inBy
-

lojewiuy |
:JoJeLu Uy}

sjpueH
‘8|puey

Iy pued=3

Y5l UD 8Unaagiyy mumhmcmw_ﬂ_

sadh] Juaqu] ubisag 25 D

sadh] el asn -

uniE sy add]

y3dag uogaaloig
CHON-TNS]
4 100 @

uopydo Jnose

1noAeT ydeds

safip3 [euoaaag-1g -
Jalqo [9aa7-do) _H_
SUEWOQ S3hlid [4]
SalEN S|geLRA (4]
U] Wewog _H_
:suoido Agjdsig

sadA] palgo -

aunbigaur ; eunbidauy

aunbijabewr | aunbi4ateuwn F
2unbigdnods § dnoad [+
2anbigaunAiog : qquagy F
2anbiguobid : uobdody F
JnjeandaqUOnELILY ¢ aunbly F

aunfiigasdy3 : aunbigasdya &
UORI8ULOIMATS | UoRRsULaOMage
2unBlJpuowel] ¢ anBIJpuowelp
BuitedBuRunog | BuimesaBuounog (¥

A0JR400304PI0G | J0JRIDIASPA0Y [
spalqo pabiay =
SUIEIO &
aunbilg : aunf
JOTRWIUY § 0yRILY |
diprouly ; dizrmodigpus

JOTEUICT | I0j3SUU0D (¥

spelqo =
[BpoLd =
gjoauo B

|

[yde.s jensyy [ydes ypensqy | ydess dejdsiq

*gzensia 0 138(go ey Ja9jes

*(000) yde.n 32alqo diyssaumg auy mais g daig

300) HdBig (38l disie

Figure 4.1: ArchRecJ tool: the left pane shows the ownership tree and the rightgbemes the depth-

limited unfolding. The tool shows the field declarations that an object in the @p&sents. The tool
also helps a developer select the trivial types and the design intent typibe fabstraction by types.

123

4.3. Tool Support

The ArchRecJ tool offers the following features (Fig.4.1):

* Select top-level objectithe user can interactively select an object as the root oftieh
to view its substructure;

* Settrivial types: a developer can specify an optional list of trivial types $e the abstrac-
tion by types feature;

* Set design intent types:a developer can specify an optional list of design intenésyfo
use the abstraction by types feature;

* Display inheritance hierarchy: the tool can display the inheritance hierarchy of the types
of the field declarations that a display object merges, tp ted developer fine-tune the
list of trivial types or design intent types for the abstractby types;

* Collapse or expand selected itema developer can collapse or expand the sub-structure
of a selected object or domain;

* Control unfolding depth: a developer can control the visible depth of the ownerslei, tr
using the slider control in Fi§. 4.1;

* Set object labels:Each object in an extracted object graph represents atdaadield or
variable declaration in the program. An object might havétiple types, and the analysis
picks one of those types as the label. ArchRecJ can labeltshjath an optional field
name or variable name and an optional type name. The typemudieel label consists of a
least-upper-bound type or a design intent type or a lab&yipg (discussed below);

* Set additional labeling types:the object graph extraction non-deterministically select
label for a given object based on the name or the type of one of the references in the
program that points te. A developer can specify an optional list of labeling types f
labelling objects. For example, in F[g. 2.3(b), the tool sitlte decoratiorfListener) to
an object’s label, if it merges at least one object of thaeygs is the case f@ieChart,
barChart andmodel. We implemented this feature in response to the develofesi-
back during the field study, because he informed us thatdadne very important in a
diagram;

* Trace to code:the tool can show the list of field declarations and their /et a given
display object merges. In addition, the developer can thawa the field declarations to
the right lines of code. This feature is useful to guide theettgoer to the field declarations
in the program that require different annotations.

* Navigate: the tool supports zooming in and out, panning, scrolling atieer standard
operations;

* Search: the tool supports searching for an object in the ownersleip by type or field
name;

* Persist extracted OOG:the tool can persist an extracted OOG into an XML file. This
file can then be viewed using a standalone viewer. When usengi#wer, the developer
cannot control the abstraction by types, but can still edparcollapse selected elements.

Thus far, our research has focused on the underlying staéitysis rather than on novel
techniques for visualizing object graphs. For instance, wsualization uses the simple but
effective GraphViz tool (Gansner and North 2000) which sarppclustered graphs, but does not
support visual features such as cross-hatching fill pagtéfature work may consider using more
specialized visualization frameworks such asfSMP Views (Storey et al. 1998).

124 Chapter 4. Evaluation of the Object Graph Extraction

4.4 Extraction Methodology

In this section, | discuss thecsloLIA methodology to extract object graphs. Following the gen-
eral SSHOLIA approach (Sectidn 1.7, Pdge 20), this involves adding aeckahg the annotations
(Sectiorf4.411), then running the static analysis (Se&idi®).

The study’s experimenter (hereafter “I’) developed thel&heckJ and ArchRecJ tools, but
none of the subject systems. | mostly learned the archit@cstructure of the subject systems
from iteratively annotating the code, examining the exedd®OGs and relating the OOGs to
class diagrams drawn by others, or to other available dontatien.

4.4.1 Adding and Checking the Annotations

In this section, | discuss the process of adding the anwoigstiypechecking them, and address-
ing the annotation warnings.

4.4.1.1 Gathering available documentation.

Before adding annotations and extracting object graphs, aften useful to have an informal
diagram of the target architecture, to help guide the aniootprocess. Indeed, most architec-
tural extraction case studies start by gathering availdbteimentation (Tzerpos and Holt 1996).
When available, the documentation can help identify the diosria the system, the types that are
most architecturally relevant and the hierarchical sysdecomposition, i.e., how to decompose
some of the objects into nested sub-structures.

For example, for the JHotDraw system, | had access to a alitnyiJHotDraw’s original de-
signers|(Beck and Gamma 1997; Garma 1998), but for a slightér @ersion than the version
of JHotDraw | annotated. One of the tutorials discusses #s&gyd patterns that JHotDraw im-
plements, using a code architecture, but does not desdfi®daw’s runtime structure. | also
found several class diagrams drawn by others who studietDib\o, e.g.,O).

4.4.1.2 Typechecking the annotations

A developer adding the annotations often follows an iteeafirocess. After each round of an-
notations, he runs the typechecker, examines the warrangsaddresses them from the most to
the least important ones.

The annotations are modular and can be checked one clagsat &fowever, some amount
of iteration is involved. For instance, if the developer de§ a domain parameter on a class, she
has to find all the locations in the code that use that clagsbard that domain parameter to
some other domain in scope. So this may require a continutustate-check cycle.

4.4.1.3 Prioritizing the annotation warnings

It is often helpful to fix the annotation warnings in a specdrder. | illustrate these using the
Listeners example (Fig.2.4). From most to least importegt a

4.4. Extraction Methodology 125

1. Undeclared domains or domain parameters. For instameeldamainOWNED must be de-
clared (line[b in Fig[2]4) before theisteners field declaration can be annotated with
OWNED (line[d). Similarly, the domain parametetqline [21) andv (line [3) must be de-
clared.

2. Unbound domain parameters at field and variable dedasatiFor instance, since class
Model takes a domain parameteythe field declaratiomodel of type Model must bind
the domain parameter to another domain in scope, €LY (line[29). This also includes
binding the domain parameters on containers sudkasor andList (lines[9[24). Recall
thatList takes arELTS formal domain parameter for the list elements.

3. Domain parameter inheritance. For instance, the domaianpete™ on PieChart is
bound to the domain parameter BieChart’s superclassBaseChart (line[19).

4. Assignment rule. For instance, a reference annotatddD@@UMENT cannot be assigned

to another one annotated withEW. Similarly, alent variable, which denotes a temporary

alias, cannot be stored in a field.

Array parameters. Domain annotations for the array eisnmaust be also provided.

External annotation files. The ArchCheckJ tool allows aetiger to partially annotate the

parts of the Java standard library or other third-partyaliles that are in use (Section Al4.1,

Pagd 324). The external files for the Java Standard Libramyofen be reused across

different systems.

7. Domain links. Finally, a developer can set domain linkd Bmk assumptions to enforce
access permissions between domains.

2

4.4.2 Refining the Object Graph

In this section, | discuss the process of refining the exd¢hobject graph using annotations.

4.4.2.1 Overall strategy

Just as there are multiple architectural views of a systleanetis no single right way to annotate
a program. And different annotations can produce diffeobptct graphs (Refer to discussion in
Sectiorf 2.6.2, Padge b6). However, a type system ensurethéhabnotations are consistent with
each other and with the code.

Good annotations minimize the number of objects in the emglldomains by pushing more
objects underneath other objects. In particular, the go@ remove from the top-level domains
low-level objects that are data structures, such as instaotvector andList. Ideally, the
top-level domains show only objects that are architediralevant and correspond to entities
from the application domain.

4.4.2.2 Refining the ownership annotations

A developer controls the architectural extraction pro@sfollows. First, she chooses the top-
level domains. Then, she achieves the desired number ottelbje each top-level domain,
primarily throughabstraction by ownership hierarchy

126 Chapter 4. Evaluation of the Object Graph Extraction

A developer-specified annotation can push an object undtrré.e., into a private or a pub-
lic domain declared inside—a more architecturally-refév@bject. The parent object becomes
primary, and the child object becomegcondary As a result, only primary objects appear in
the top-level domains. Each of those objects has more d@naaid objects, until low-level ob-
jects are reached. In addition, the developer must minithigegemaining annotation warnings,
especially any high-priority ones.

To summarize, a developer can do any of the following: (ahRusecondary object under-
neath a primary object using the strict encapsulation ofapei domains; (b) Push a secondary
object underneath a primary object using the logical cont@nt of public domains; or (c) Pass
a low-level object linearly using thenique annotation.

4.4.2.3 Code changes

In some cases, adding annotations that specify strict sntatppn and avoid the representation
exposure may require a change to the code, e.g., to retumpyaot@n internal list instead of an
alias (Aldrich et all 2002¢; Aldrich and Chamb 004). Galhe using logical containment
does not require any code changes. In most cases, definitig dolmains required changing
the annotations only locally and incrementally.

4.4.2.4 Using abstraction by types

To reduce clutter further, the developer can enattistraction by typeswhich merges more
objects in a given domain, based on the architectural retevaf their declared types. The
object graph extraction tool provides some support to helgvaloper select the types to be used
for abstraction by types.

4.4.2.5 Controlling the level of detall

Finally, she achieves an appropriate level of visual détaiexpanding or collapsing the sub-
structure of selected objects, or changing the unfoldingrdeniformly across the graph. The
analysis adds any lifted edges to account for the elidedsudigres.

4.5 Evaluation Methodology

The evaluation methodology follows closel\cSoLIA’s extraction methodology above (Sec-
tion[4.4), and involves the following steps:

1. Add annotations to the code and typecheck them;

2. Extract an object graph that conveys architectural abstm by ownership hierarchy. Op-

tionally, specify types to control abstraction by types;

3. Iterate the annotations, and the abstraction by types.

In addition, in preparation for the evaluation, | perforntled following tasks, which may not
be always required.

4.5. Evaluation Methodology 127

Making minor code changes to use annotations. In most cases, we did not change the code
as we were adding the annotations. However, we made some cade changes as required by
the annotation syst@nFor instance, one change may involve extracting a locablr from a
new expression, in order to add an annotation on the localhiar Another change is to convert
an anonymous class to a nested class, in order to declarerdparameters on the class.

Refactoring to generics. Two subject systems, JHotDraw (Section 4.6) and HillClim{Ssrc-
tion[4.7), were developed prior to Java 1.5 and did not usemgetypes. | refactored them to
use generics, mostly automatically using Eclipse’s toplsut tEuhr_er_el_éL_ZQbS). The LbGrid
subject system in the field study (Section/4.8) was alreathgukava 1.5 and generic types and
did not require such a refactoring.

Re-engineering system during annotation process.| had previously studied the HillClimber

subject system when | re-engineered it to ArchJava (Abie@ntetal.| 2007a). The re-

engineering study also produced a version that cleanedaiprijinal code, for instance by

making most class fields be private. For this case studyrtest&rom the refactored Java version
and added ownership domain annotations to it.

4.6 Extended Example: JHotDraw

JHotDraw MG) is open source, rich with design pastenses composition and inheri-
tance heavily and has evolved through several versionghisocase study, we used version 5.3,
which has around 200 classes and 15,000 lines of Java.

Design documentation for JHotDraw is available, e.bu_Mﬂ&QBLRJﬂhjé_Zijdl;_Kaiier
M). A manually drawn class diagram (Fig.l14.2) shows sointieeocore types. An often-cited
article @‘1) discusses that JHotDraw follows tloglsl-View-Controller design pattern.
However, the JHotDraw package structure does not reveiafabs since all the core types are
in oneframework package.

4.6.1 Annotation Process

In this section, | discuss the process of adding annotatiorBHotDraw to explain what the

annotations look like and the information that they deserim particular, a developer focuses
mainly on the structure of the system, rather than its bemaWwloreover, when adding the

annotations, the developer describes only local, modafarmation, and does not require direct
knowledge of the global system structure.

20ne proposal, JSR 308 (Ernst and Coward 2006), permits aiions to appear in more places, such as on
generic type arguments. Some of the code changes we madeothayger be necessary once JSR 308 is adopted
into the Java language, and supported by existing developemgironments such as Eclipse.

128 Chapter 4. Evaluation of the Object Graph Extraction

VIEW
<7 DrawingEditor CONTRO LLER

Painter }—{ DrawingView . Tool

| |

CreationTool ‘ ‘ HandleTracker ‘ ‘ SelectionTool ‘
\ ——

MODEL | — —

Y

0.*
‘ Connector 'T,‘ Figure } Handle M Locator)
f A AN
2

ConnectionFigure ‘

>

CompositeFigure ‘ ‘DecoratorFigure ‘ ‘ NullHandle ‘ ‘ TrackHandle

D

Figure 4.2: JHotDraw class diagram showing how we annotated instances of the delgms. Source:
dééﬁ@ Eiiﬁb).

4.6.1.1 Annotation Overview

For JHotDraw, | defined the following three top-level donsaand organized instances of the
core types as follows:

* MODEL: has instances dfrawing, Figure, Handle, etc. ADrawing iS composed of
Figures that know their containin@rawing. A Figure object hasHandles for user
interactions. Th®rawing interface also extendsigureChangeListener (not shown in
Fig.[4.2) to listen to changes to s gures.

* VIEW: has instances dfrawingEditor, DrawingView, etc. TheDrawingView class ex-
tendsDrawingChangeListener (not shown) to listen to changesipawing objects;

* CONTROLLER: has instances dfool, Command andUndoable. A DrawingView USeS a
Tool to manipulate ®rawing. A Command encapsulates an action to be executed, i.e.,
implements the Command design pattern without undo.

Once | defined the three top-level ownership domaioesEL, VIEW andCONTROLLER, | pa-
rameterized most of the JHotDraw types with the correspapdomain parameterd, Vv andc,
respectively. Some of these types required only one or twg Bfandc. | could have further
reduced these parameters by using the implicit owner dopaiameter, accessible using the
OWNER annotatiof.

4.6.1.2 Annotation Examples and Observations

In the following discussion, | illustrate the annotatior@ess using actual examples and code
snippets from JHotDraw. | slightly edited the code for préagon by removing the trivial

3We did not use thewNER annotation initially (Section 2.3.3, Palgd 41), becausédbis did not fully support it
at the time. In future work, we will update the annotated sabgystems to use tl&NER annotation more heavily.

4.6. Extended Example: JHotDraw 129

class DrawApplication<M,V,C> ... implements DrawingEditor<M,V,C> ... {

}

class MDI_DrawApplication<M,V,C> extends DrawApplication<M,V,C> ... {
}

class JavaDrawApp<M,V,C> extends MDI_DrawApplication<M,V,C> {
}

class Main {
domain MODEL, VIEW, CONTROLLER;

VIEW JavaDrawApp<MODEL,VIEW,CONTROLLER> app = new JavaDrawApp(Q);

public void run() {
app.open();
}

public static void main(lent String argsl[shared]) {
lent Main system = new Main();
system.run();
}
}
Figure 4.3: JHotDraw: defining the three top-level domains on the root class.

visibility modifiers such agrivate or publicE. | make several observations based on studying
the annotations.

Observation: Ownership domains specify architectural rurtime tiers. A tiered architecture

is often used to organize an application into a User Intertger, a Business Logic tier, and a
Data tier. Ownership domains express a tiered runtime taatiire by representing a tier as an
ownership domain_(Aldrich and Chambers 2004), and a peramigsétween tiers as a domain
link to allow objects in the User Interface tier to refer tgeatis in the Business Logic tier but
not vice versa. Such an architectural structure and conttreannot be expressed in plain Java
code. For example, | organized the JHotDraw runtime strechagcording to the Model-View-
Controller design pattern (Fig_4.3).

Observation: Ownership domains enforce instance encapsation. All ownership type sys-
tems can express and enforce instance encapsulation wshstonger than the module visibility
mechanism of making a fielprivate. In ownership domains, placing a field in the private
OWNED domain means that the object can be reached only by goingghiits owner. As a result,
no aliases to that object can leak to the outside.

ConsiderCompositeFigure in JHotDraw (Fig[4.%). Placing the list of compositegures,
represented by the fieltFigures, in the OWNED private domain encapsulatéBigures to pre-
vent objects that only have access to the composite obgutritodifying the list directly. If a de-
veloper tries to subvert the language visibility mechasi@yreturning a reference tpaivate

4(Abi-Antoun and Aldrich 2007a) shows mostly the same examut in the concrete annotation language.

130 Chapter 4. Evaluation of the Object Graph Extraction

© 00 N o U b~ W N

NNNNN B R R R R R R R
& W N P O © ® N O 0 A~ W N B O

25

/kk

The interface of a graphical figure. A figure knows its display boz
and can draw itself. A figure can be composed of several figures.

A figure has a set of handles to manipulate its shape or attributes.
A figure has one or more connectors that define

how to locate a connection point.

* %X X x %

*/

interface Figure<M> extends Storable <M> {

b
/kk
* A Figure that is composed of several figures.
*/
abstract class CompositeFigure<M> extends AbstractFigure<M>
implements FigureChangeListener<M> {

domain OWNED;

VAL
* The figures that this figure is composed of
*/

OWNED Vector<M Figure<M> > fFigures;

VL]
* Adds a vector of figures.
*/

void addA11(M Vector<M Figure<M>> newFigures) {
// Cannot assign object M Vector newFigures to owned Vector fFigures
// this. fFigures = newFigures;
fFigures.addAll (newFigures) ;

}

X
Figure 4.4: JHotDraw:CompositeFigure annotations.

orprotected field using gpublic accessor method, the typechecker prohibjsta i c method
from taking anOWNED parameter or returning @&wNED object.

For example, during software evolution, a novice devela@er use Eclipse to generate a
setter for thefFigures field. Eclipse produces the following code, without annotzs:

void setFFigures(Vector<Figure> figs) {
this.fFigures = figs;
}

As the developer is adding the annotations todbeFFigures () method, the typechecker
can warn him that the parametgirgs of a non-private method cannot be marke@w@s$eD. And
any other annotation would fail the assignment check whemvaniting thefFigures field.

To avoid the warning, the developer can rewrite geeFFigures() method to no longer
overwrite the existing field, and instead, call dieear () andal1A11 () methods.

void setFFigures(Vector<Figure> figs) {

// Use the following, instead of overwriting the field
this.fFigures.clear();

4.6. Extended Example: JHotDraw 131

this.fFigures.addAll(figs);
}

When manually adding annotations, it is possible to miss nogportunities for strictly en-
capsulating objects. Indeed, I initially annotaté#d gures with the domain parameterinstead
of the OWNED domain. In many cases, objects should be encapsulateditbtheaepresentation
exposure, but are not. Making these objects encapsulatgdeqaire a code change, e.g., by
returning a shallow copy of an object such dsiat, instead of an alias.

Extracting the object graph helped visualize the annatatand encouraged the use of strict
encapsulation sinceWwNED objects no longer clutter the top-level domains. Futurekwoay
include developing a tool to prompt a developer when a fielddtbe encapsulated. For example,
a lightweight compile time ownership inference algoritreny., (Liu and Milanova 2007), could

suggest possible Eclipse “quickfixes” to strictly encapgibbjects.

Observation: Ownership domains expose implicit communicgon. Design patterns such as
ObserverL(Q_ama_eﬂél._lé%, p. 293) can decouple objeatted code, but tend to make the
communication between objects implicit. Adding ownerdiigonain annotations can help make
that communication more explicit.

We initially wanted to parameteriZeawing (Fig.[4.3) with only the1 domain parameter, but
DrawingChangeListener iS implemented bPrawingView. So theDrawingChangeListener
reference had to be in théIEWw domain, which in turn required th& domain parameter.
By making implicit communication explicit, the annotatioesem to prematurely constrain
DrawingChangeListener objects to be in th& IEWw domain. Sincé®rawing was a core inter-
face referenced by other interfaces in the ctxemework package, this led to passing all three
domain parameters to many additional interfaces and ddakaeimplement those interfaces.

If Drawing did not have to be parameterized by domain paramgtemight not have dis-
covered the implicit communication in the observer by addire annotations. Thus, ownership
domain annotations can help make implicit communicatigplieX, when a reference requires
permission to access a new part of the program for the firgt tim

Observation: Ownership domains expose tight coupling. Let us temporarily ignore the ear-
lier limitation with adding annotations to the listenersl@ssume thdirawing could be param-
eterized by only th&l domain parameter. Let us now consider whether it would bsiplasto
parameterize interfad&andle (Fig.[4.6) with domain paramet#randC. A Handle would be in
theC domain parameter and access objects in that domain paraaneten thel domain param-
eter, i.e., it should not access objects in thdomain parameter. Note that even if the explicit
paramete€ was not provided, that domain would still be accessiblgataile using the implicit
OWNER annotation.

A comment in the code indicated that Version 4.1 deprecdtedtiginalinvokeStart ()
method which took @rawing object as one of its parameters, in favor ofiavokeStart ()
method that takes instead a method parameter offtypeingView, which is parameterized by
M, V. andc. This required passing ttendle the additional domain parametérSinceHandle is
a core interface referenced by other interfaces in the toseework package, this also led to
passing all three domain parameters to many additionaktype

132 Chapter 4. Evaluation of the Object Graph Extraction

© 0 N o g b~ W N

NN N B R R R R R R s R
N P O © ©® N ®© 0 ~A W N kB O

© 0 N O g b~ W N

P <
w N = O

14

VLS

* Drawing s a container for figures. Drawing sends out DrawingChanged
* events to DrawingChangelisteners whenever a part of its area was

* invalidated. The Observer pattern is used to decouple the Drawing

* from t1ts views and to enable multiple views.

*/

interface Drawing<M,V> ...{

VALY
* Adds a listener for this drawing.
* DrawingView implements DrawingChangeListener,
* so the objects are in ’V domain parameter
*/

void addDrawingChangeListener(V DrawingChangelistener<M,V> listener);

VL]
* Adds a figure and sets its container to refer to this drawing.
* @param figure to be added to the drawing

* Q@return the figure that was inserted (might be different from the figure spectified).

*/
M Figure<M> add(M Figure<M> figure)
}
Figure 4.5: JHotDraw: adding annotations barawing.
VET:

* Handles are used to change a figure by direct manipulation.

* Handles know their owning figure and they provide methods to locate

* the handle on the figure and to track changes.

* Handles adapt the operations to manipulate a figure to a common interface.
*/

interface Handle<M,V,C> {

J**
* @deprecated As of wversion 4.1, use invokeStart(z, y, drawingView)
*/

void invokeStart(int x, int y, lent Drawing<M> drawing);

VELS
* Tracks the start of the interaction.
* Oparam x the x= position where the interaction started
* Oparam y the y position where the interaction started
* Oparam view the handles container
*/

void invokeStart(int x, int y, V DrawingView<M,V,C> view);

M Undoable<M,V,C> getUndoActivity();
}
Figure 4.6: JHotDraw:Hand1e with M, V andC domain parameters.

4.6. Extended Example: JHotDraw

133

interface Undoable<M,V,C> {

V DrawingView<M,V,C> getDrawingView() ;
}
Figure 4.7: JHotDraw:Undoable with M, V andC domain parameters.

interface Handle<M,C> {
void invokeStart<V> (int x, int y, V DrawingView<M,V,C> view);

M Undoable<M> getUndoActivity() ;

Figure 4.8: JHotDraw:Hand1e with only M andC domain parameters.

Observation: Ownership domains expose and enforce objectdorowing. Let us assume
that the above refactoring after JHotDraw Version 4.1 whithoduced the tighter coupling
was never performed, i.edandle still needed @rawing instead of aDbrawingView. Undo
support was added to JHotDraw for the first time in Version 318 particular,Handle now
had a reference tdndoable —which in turn required domain parametéty andC because
Undoable’s getDrawingView () method returned BrawingView (Fig.[4.7).

Now, let us see if it would be possible to annot@ieloable and Handle with only
the domain parametens and C (Fig.[4.8). The domain paramet&rcan then be added to
invokeStart () as a method domain parameter.

Using a method domain parameter to annotate the formal gdeaniew could enforce the
constraint that a developer should not store in a fieldt®ringView object that is passed as
an argument tanvokeStart () (Fig.[4.9). Of course, a developer could storelthewingView
object in a field of typé@bject, but that field would have to be cast t®sawingView in order
to be useful.

Instead of using a method domain parameter to enforce obgemdwing, one could use the
lent annotation to allow a temporary alias to an object within dhoeé boundary. We found a
few such examples in JHotDraw. For instance, the methadffectedFigures () (Fig.[4.10)
makes a copy of theent argument because it cannot hold on to it.

In fact, thelent annotation can be formally modeled as a method domain paeanikhe
type system prohibits a method from returningemt value, although it allows a method to
return an object in a method domain parameter. In the cagea@fingView, lent cannot
be used because implementationdwfokeStart () constructindoable objects that maintain
aliases to th@rawingView. As a resultHandle requires the/ domain parameter.

For that same reason, thiadoable interface requires th& domain parameter because
Undoable stores theDrawingView in which the activity to be undone was performed, in or-
der to undo the changes to that view only. This may slightbjate the Model-View-Controller
design, where model objects should not hold on to view objdmcause there might be mul-
tiple views that need to be updated in response to changée imbdel. At the same time, it
would be counter-intuitive for a user to undo a change in ce@ and observe changes in some

134 Chapter 4. Evaluation of the Object Graph Extraction

© 00 N o U B~ W N

VLS

* AbstractHandle provides default implementation for Handle interface.
*/
abstract class AbstractHandle<M,C> implements Handle<M,C> {

// The following would not typecheck since V not bound
V DrawingView<M,V,C> view;

%k
* Oparam ¢ the x= position where the interaction started
* @param y the y position where the interaction started
* Oparam view the handles container
*/
void invokeStart<V>(int x, int y, V DrawingView<M,V,C> view) {
// Cannot store argument view in field this.view

Figure 4.9: JHotDraw: using method domain parameters to enforce object borrowing.

other view. Thus, ownership domain annotations exposadh&et coupling that the Undo fea-
ture introduced. Fidg.4.10 shows in more detail the intéoadbetweeriandle, Undoable and
DrawingView.

An earlier empirical study of JHotDraw mentioned that “a eoam architectural mistake
[...] was to provideFigures with a reference to therawing or theDrawingView. FigureS
do not by default have any access to either lhewing or the DrawingView in which they
are contained. This prevents them from accessing infoomatich as the size of tlerawing.
However, it is possible to overcome this problem by pasdegview into the constructor of a
figure, which can then store and access this as requi|r_e_dL$_i&I|.|LO_Qb). Due to the stronger
coupling in Version 5.3, one could now get to tRegure’s Handles through itshandles ()
method then get BrawingView through aandle’s UndoActivity objects.

Observation: Ownership domains can help identify singletas. While adding ownership
domain annotations, we discovered a curious instance ditiggeton design pattericonKit’s
constructor was not private, although it had a statietance () method. Indeed, there is a
unique instance obrawingEditor (the application itself) and anique IconKit (Fig.[4.11)
at runtime.

4.6.1.3 Expressiveness Challenges

Like any type system, the ownership domain type system hag sxpressiveness challenges,
that make it rule out presumably valid programs. In thisisect discuss some expressiveness
challenges | encountered while adding the annotations.eSwrthese challenges had been pre-
viously mentioned in the ownership types literature, ffer and Poetzsch-H r 2007).

4.6. Extended Example: JHotDraw 135

class ResizeHandle<M,V,C> extends LocatorHandle<M,V,C> {
@0verride
void invokeStart(int x, int y, V DrawingView<M,V,C> view) {
setUndoActivity(createUndoActivity(view));

}
VLS
* Factory method for undo activity. To be overriden by subclasses.
*/
M Undoable<M,V,C> createUndoActivity(V DrawingView<M,V,C> view) {

unique ResizeHandle.UndoActivity<M,V,C> undoActivity = new ResizeHandle.UndoActivity(view);

return undoActivity;
}
static class UndoActivity<M,V,C> extends UndoableAdapter<M,V,C> {
UndoActivity(V DrawingView<M,V,C> newView) {
super (newView) ;
.
}
}

class UndoableAdapter<M,V,C> implements Undoable<M,V,C> {
OWNED Vector<M Figure> myAffectedFigures;
V DrawingView<M,V,C> myDrawingView;

UndoableAdapter (V DrawingView<M,V,C> newDrawingView) {
myDrawingView = newDrawingView;
}
void setAffectedFigures(lent FigureEnumeration<M> newAffectedFigures) {
// the enumeration is not reusable therefore a copy is made
// to be able to undo-redo the command several time
rememberFigures (newAffectedFigures) ;
}
void rememberFigures(lent FigureEnumeration<M> toBeRemembered) {
myAffectedFigures = new Vector<Figure>();
myAffectedFiguresCount = O;
while (toBeRemembered.hasMoreElements()) {
myAffectedFigures.addElement (toBeRemembered.nextElement ()) ;
myAffectedFiguresCount++;
}
}
}
Figure 4.10: JHotDraw: concrete implementation classiehdle.

Observation: One object cannot be in more than one ownershiglomain. Ownership
domains, as most other ownership type systems, supportsimijy)e ownershipi.e., an ob-
ject cannot be part of more than one ownership hierarchypdals formultiple ownership
anm.emnﬂ.éLZDb?) lift this restriction in other type syss. Ownership domains do not sup-
portownership transfe(Miiller and Rudich 2007) either, i.e., an object’s owner do¢shange
—only unique objects can flow between any two domains.

As a result, one cannot define many fine-grained ownershipaganto represent multiple

136 Chapter 4. Evaluation of the Object Graph Extraction

© 00 N o g b~ W N

10
11
12
13
14
15
16
17

19
20

class Iconkit {
static unique Iconkit fglconkit = null;

VAL
* Constructs an Iconkit that uses the given editor
* to resolve image path names.
*/

unique

public Iconkit(unique Component component) {

fglconkit = this;
b

VAL
* Gets the single instance
*/

public unique static Iconkit instance() {
return fglconkit;

}

}
Figure 4.11: JHotDraw: annotating a singleton usiagique.

Mediator

Controller

Figure 4.12: JHotDraw: alternative top-level domains. Source: (Christensen 2004)

4.6. Extended Example: JHotDraw 137

I 1 Client
notify ! i 1
Tool | ToolListener
| _ LISTENERS

Subject Observer

Figure 4.13: Using public domains to group objects.

roles in design patterns. For instance, (Christensen 2@@#3iiggested an alternative structuring
of the JHotDraw types, into a Model-View-Controller-MediaAdapter architecture (Fig.4.112).
However, it would have been more challenging to create ¢optownership domains to corre-
spond to such a decomposition, compared to the three tep-dewnains foMODEL, VIEW and
CONTROLLER we adopted. Due to the single ownership model, placibga&ingEditor object

in aMEDIATOR domain would have prohibited it from also being in theEw domain.

Observation: An object cannot place itself in a domain it detares. An object cannot place
itself in an ownership domain that it declares. This is peatrtic for the root application object,
I.e., theJavaDrawApp instance {avaDrawApp extendDrawApplication wWhich in turn extends
DrawingEditor). To solve this problem, we created a fake top-level clasis: to declare the
MODEL, VIEW and CONTROLLER top-level ownership domains, then declared fla@aDrawApp
object in thevIEW domain (Fig[4.B).

Observation: Public domains can be hard to use. Public domains make the ownership do-
main type system more flexible than awner-as-dominatotype system, e.g.@é al.

). Also, public domains are ideal for visualizationdogse placing an object inside a public
domain of another object relates these objects withoutszing the top-level domains. However,
public domains are typically hard to use without refactgrine code. We started using them in
a few cases but quickly abandoned those attempts.

Since the Observer design pattern tends to make commuoridagitween objects implicit,
we attempted to represent listeners more explicitly usmwgesship domain annotations. For
instance, it might make sense to place thetener objects that abserver will notify in a
public domainLISTENERS on theObserver. This is because Bistener often needs special
access to thebserver, but usually does not need special access t&tibgect (Fig.[4.13).

JHotDraw uses a delegation-based event model. For instaiteawingView calls the
methodfigureSelectionChanged to notify aFigureSelectionListener observer of any
selection changes. So it might make sense to declaf&EENERS public domain orCommand
to hold theFigureSelectionListener objects (Figl4.14). But the base implementation class,
AbstractCommand, implements th&igureSelectionListener interface, SO &ommand is-a
FigureSelectionListener. Thus aCommand object cannot split a part of itself and place it in
the public domairLISTENERS that it declares.

Observation: Adding annotations to listener objects can behallenging. There were addi-
tional complications when trying to highlight the event syftem in JHotDraw using ownership

138 Chapter 4. Evaluation of the Object Graph Extraction

abstract class AbstractCommand<M,V,C> implements Command<M,V,C>,
FigureSelectionListener<M,V,C> ... {

public domain LISTENERS;

Figure 4.14: JHotDraw: attempting to define a public domain.

domain annotations. For examp@mmand, which is in theCONTROLLER domain, implements
FigureSelectionListener, and so doeBrawingEditor, which is in theVIEW domain.

Consider the methodddFigureSelectionListener() (Fig. [4.15%). How would one
annotate the formal parametésl of type FigureSelectionListener? The parame-
ter should support both annotatiortsM,Vv,C> and V<M,V,C>. Indeed, the code calls
addFigureSelectionListener(), once with aCommand object, and another time with a
DrawingEditor object. Currently, using either annotation for the€l parameter generates an
annotation warning, because one or the other method ineocabuld not typecheck.

Indeed, [(Schfer and Poetzsch-Heffter 2007) previously identified thcdlity of adding
ownership domain annotations to programs involving listesbjects and proposed a solution
using a variant of the ownership domain type system. Silyjlaxistential ownershid_(Q—Iarke

006)admcrease the expressiveness in
this case. For example, (Lu and Potter 2006) would anngtétiefs1 parameter with dny”, to
typecheck both calls taddFigureSelectionListener (). Future work may include address-
ing some of these expressiveness limitations in the typesys

Observation: Adding annotations to static code can be chathging. Even a well-designed
program as JHotDraw had static code, which is challengingrfany ownership type systems.
In particular, the statiiashtable cannot have th#, v, andC domain parameters because the
domain parameters declared on the clagslDrawingView are not in scope for static members
(Fig.[4.16). Static members can only be annotated wiihired or unique, and these values
cannot flow to theMx, Vx or Cx method domain parameters. Currently, this code cannot be
successfully annotated using ownership domains, and geekecker produces a warning.

Annotating the generiiashtable also requires nested parametefisshtable has three
domain parameters for its keys, values and entries. BoithingView andDrawingEditor take
M, V, andC as parameters. Although the number of annotations seerassxe and maybe argues
in favor of generic ownershiMBo.ta.nin_eﬂaL_ZbOG), the awhip domains for thélashtable
key, value and entries need not correspond tdfiveandC ownership domains.

One solution that is not type-safe would be to storeithghtable as0Object, then cast
down to aHashtable upon use. This would be the equivalent of raw types, but withe-
implementing them in the ownership domain type system. Aeogolution would be to refactor
the program to eliminate this static field since it gives abjeot access to all therawingView
andDrawingEditor objects. Since eliminating the static field would requirégaiicant refac-
toring, perhaps another solution would be to support pashexgl, static ownership domains,
similar to confined types (Bokowski and Vitek 1999), or to cametboth confinement and own-

4.6. Extended Example: JHotDraw 139

© 00 N o 0 A~ W N

T <
o b W N B O

29
30
31
32

Jk*

* DrawingView renders a Drawing and listens to its changes.
* It recetves user input and delegates it to the current Tool.

*/

interface DrawingView<M,V,C> extends DrawingChangeListener<M,V>... {
// Add a listener for selection changes
void addFigureSelectionListener(? FigureSelectionListener<M,V,C> fsl);

}

class StandardDrawingView implements DrawingView<M,V,C>, ... {

/R

* The registered list of listeners for selection changes

*/

OWNED Vector<? FigureSelectionListener<M,V,C>> fSelectionListeners;

StandardDrawingView(V DrawingEditor<M,V,C> editor, ...) {

// DrawingEditor timplements FigureSelectionListener
// editor is in ’V’ domatin parameter, not ’C’!
addFigureSelectionListener (editor);

}

Jk*

* Add a listener for selection changes. AbstractCommand implements
* FigureSelectionlListener. Command is in the ’C’ domain parameter!

*/

void addFigureSelectionListener(? FigureSelectionListener<M,V,C> fsl) {
fSelectionListeners.add(fsl);

}
}

Figure 4.15: JHotDraw: annotatingddFigureSelectionListener.

ership in one type syste@moon.

Observation: Annotations may be unnecessarily verbose.Ownership domain annotations
tend to be verbose: e.g., formal method parameters needftdlyp@nnotated even if they are
not used in the method body or used in a restricted way. Thidymes particularly unwieldy
annotations for containers of generic types.

In Fig.[4.1T, the methodlearStackVerbose () indicates the current level of annotations
needed. It should be possible to leave out domain parametes they are not really needed.
This may involve using implicit existential ownership tyes in the methodlearStackAny ().
The question mark annotation could mean that there existe stomain parametedd, d2, d3,
d4, such that the formal method paramegecould be annotated withent<d1<d2,d3,d4>>.
Using appropriate defaults, the annotations could prgbbblreduced to the level needed to
annotate a raw type, as shown in the methbehrStack ().

140

Chapter 4. Evaluation of the Object Graph Extraction

class NullDrawingView<M,V,C> ... implements DrawingView<M,V,C> {

static unique Hashtable< 7?7 DrawingEditor<?,7?,7>,
? DrawingView<?,7,7>,
?> dvMgr = new ...

public synchronized static
Vx DrawingView<Mx,Vx,Cx>
getManagedDrawingView<Mx,Vx,Cx> (V1 DrawingEditor<Mx,Vx,Cx> editor) {
if (dvMgr.containsKey(editor)) {
Vx DrawingView<Mx,Vx,Cx> drawingView = dvMgr.get(editor);
return drawingView;

b

else {
Vx DrawingView<Mx,Vx,Cx>newDrawingView = new NullDrawingView(editor);
dvMgr.put (editor, newDrawingView) ;
return newDrawingView;

3

Figure 4.16: JHotDraw: annotating static fields.

class UndoManager<M,V,C> {
Jk*
* Collection of undo activities
*/
OWNED Vector<M Undoable<M,V,C>> undoStack;

void clearStackVerbose(lent Vector<M Undoable<M,V,C>> s) {
s.removeAllElements () ;

}

void clearStackAny(lent Vector<? Undoable<?,7,7>> s) {
s.removeAllElements();

}

void clearStack(lent Vector<Undoable> s) {
s.removeAllElements();

}
}

Figure 4.17: JHotDraw: reducing annotations that are not needed.

Observation: Manifest ownership can reduce the annotation brden. The current default-
ing tool annotateString objects withshared. However, during the annotation process, we
found ourselves adding thsared annotation to many other types suctFasat, FontMetrics,
andColor. For examplemanifest ownershim), i.e., the ability to specify a global
per-type default, rather than an annotation for every mstaf a type, could reduce the annota-

4.6. Extended Example: JHotDraw 141

tion burden in those cases, and may be worth exploring indutwrk.

Observation: Reflective code cannot be annotated.JHotDraw uses reflective code to se-
rialize and deserialize its state and such code cannot betated using ownership domains

(Aldrich et all 2002c).

Observation: Annotate exceptions agdent. We were not particularly interested in reasoning
about exceptions, so we annotated exceptions themlwith. However, richer annotations are
possible, as illustrated by (Werner andili¢r|2004).

4.6.1.4 Annotation Summary

The annotations are checked by a type system in a modulaofasine class at a time. The
annotation examples illustrate how a developer adding tim®tations mostly provides local
hints. In particular, rarely does the developer requiresmg global information. Of course,
some of the harder annotations require computing some abditiy which is perhaps best left
for a tool.

4.6.2 Object Graph Extraction

While adding the annotations, | ran the static analysis toaekian object graph based on the
annotations, and used the extracted object graphs to suhé annotations and refine them ac-
cordingly. Of course, as long as there are annotation wgshihe object graph may be unsound,
but it may still be useful.

During the case study, | made several observations, odtimeold below. The requirements
for a runtime architecture (Sectidn 1.8, Page 22) dictatedesof the questions that the obser-
vations answer. A taxonomy for software exploration togisStorey, Miller et al. MI.
), but applied to runtime structures instead of codesires, inspired the others.

Observation: Flat object graphs do not scale. For comparison, | extracted object graphs for
JHotDraw using several existing static analyses that halbéqby-available tools. For instance,
Fig.[4.18 shows the output of ®#BLE (Jackson and Waingdld 2001) on JHotDrawOWBLE
produces a complex, flat object graph where low-level objeathDimension andRectangle
appear at the same level as the root application objeetDrawApp. The ANGAEA output for
JHotDraw is even more complex (Fig. 4.19).

Observation: Some object graphs do not correctly reflect alising. There are other seri-
ous problems with \BMBLE’s output. By design, \BMBLE does not handle aliasing soundly.
For instance, VMBLE can shows multiple nodes in the object graph for the samenmment
object. In Fig[4.1IB, there are multiplavaDrawApp nodes, highlighted in black. Similarly,
Fig.[4.18 confusingly shows a separ@imwingEditor instance, when it is the same object as
the JavaDrawApp instance at runtimeJavaDrawApp extendDrawingEditor).

142 Chapter 4. Evaluation of the Object Graph Extraction

Figure 4.18: JHotDraw: thumbnail of the object graph obtained at compile time bgMALE
(Jackson and Waingold 2001). The embedded image becomes readabiafning in by 800%.

Observation: An OOG effectively abstracts objects by owneship hierarchy and by types
compared to a non-hierarchical object graph. After adding the annotations, | extracted the
OO0G in Fig[4.2D. The hierarchical object graph has many felgcts in the top-level domains
compared to the flat object graph, because it collapses {@wer objects underneath other ob-
jects.

Collapsing many nodes into one is a classic approach to sargreph. However, the OOG
statically collapses nodes based on the ownership andtiym#iges, and not according to where
objects were declared in the program. Moreover, it is pbssdrecover the substructure uni-
formly across all objects by increasing the visible deptthefownership tree.

In principle, one could manually elide objects inOMBLE’s output (Fig[4.1B) to obtain a

4.6. Extended Example: JHotDraw 143

Figure 4.19: JHotDraw: flat object graph for JHotDraw obtained usingiBAEA d@@zy The
edges correspond to object references. The image is embeddediptstsobtain a readable diagram,
view this document electronically and zoom in by at least 2400%

more abstracted diagram. Indeed, in many architecturaheidn approaches, the developer
filters elements that satisfy certain query criteria to pie more abstracted views, e.g., by
collapsing all the nodes labeled with a common prefix acogrdd some naming convention
into a single subsystem (Storey etlal. 1999). However, i lbases, the result would still be
a non-hierarchical view. Moreover, selecting and elidirg many objects at the same level
involves more trial and error. It is also unclear how a depetocan decide which objects to
elide, and if doing so maintains soundness, i.e., the dmagtdl shows all objects and relations
between them.

Observation: Abstraction by trivial types can unclutter a diagram. However, the default
trivial types often leads to imprecision. By default, abstraction by trivial types is turned on.
The default list of trivial types includes types suchGadgect, Cloneable andSerializable
from the Java Standard Library. The extracted OOG (Eig)42itnprecise since | am unable to
recognize in it many instances of the core types in the clasgam (Fig[4.R). Later on, we will
refine the list of trivial types to obtain an OOG that conveyw@wof our architectural intent.

144 Chapter 4. Evaluation of the Object Graph Extraction

fAnimator:

' [
' [
I
| Animator :
' [
' [
I handle: |
| ” Handle < |
I storable(+): |
| Storable |
|| undoManager(+): |
| UndoManager
W I
' [
L ____ BhAnin /7200 I R
N :
| component(+): painter: |
| Component Painter |
<4
SN |
\ |
constrainer: |
| GridConstrainer |
| |
LA\ |- Vew |
__________ -
'\ 1¥] |
! toolListener(+): undoable(+): |
'l ToolListener Undoable |
|
I |
|

Controller

Figure 4.20: JHotDraw: OOG with abstraction by trivial types (the default list).

Observation: Without abstraction by types, an OOG can be vey cluttered if there are
many related subtypes. Turning off abstraction by types produces an OOG that labksrac-
tion (Fig.[4.21). It shows objects f®edoCommand andNewViewCommand, as well as objects
for ConnectionTool andCreationTool, among others. What we really wanted is to merge all
Command instances together and albol instances together, but not merggl and Command
instances together.

For example, in JHotDrawommandMenu declares &ector<Command>. Vector’s ELTS
formal domain is transitively bound t€ONTROLLER. Recall thatCommand is an interface. For
soundness, the analysis creates an edge frorddifieandMenu object inSideVIEW to any sub-
type of Command inside CONTROLLER, such aRedoCommand andNewViewCommand. Moreover,
aCommand contains another nest€@dmmand. So this results in an almost fully connected graph.
Because of the large number of top-level objects, this OOGevirerarchical, is hardly an im-
provement over a flat object graph such as the or@8LE obtains from a bytecode program,
without relying on annotations (Fig._4]18). Thus, abstoacby ownership hierarchy is insuf-
ficient, and additional abstraction is needed to reduce tineber of objects compared to a flat
object graph.

4.6. Extended Example: JHotDraw 145

_lentMain_MainModelStorable
_lentMain_MainViewComponent
_lentMain_MainModelHandle
_lentMain_MainControllerUndoable
_lentMain_MainModelAnimator
_lentMain_MainModelUndoManager
_lentMain_MainControllerToolListener
_lentMain_MainViewGridConstrainer
_lentMain_MainViewPainter

LineConnecton

tleCommand(+):
WindowTikeCommand ope = el = i)

groupCommand(+): (+)
v e S

Figure 4.21: JHotDraw: thumbnail of the OOG based on an instantiation-based view|thatuabstrac-
tion by types. The embedded image becomes readable after zooming in by 800%

Observation: With carefully chosen trivial types, an OOG efectively abstracts related
instances. | turned on abstraction by trivial types, initially usingetldefault list of trivial
types, which produced an OOG where each display object meéogemany field declarations
(Fig.[4.20).

ArchRecJ assists a developer in selecting non-defaulatriypes as follows. First, the de-
veloper graphically selects an object which appears to enexg many objects. The tool then
displays an inheritance hierarchy of the types of the fielclatations that the selected object
merges. The general principle is that the developer mustsaltype that would cut the path
from an interesting leaf type in the inheritance hierarchyaian uninteresting common ancestor
(Fig.[4.22).

| followed the above process to select the trivial types fdotDraw. JHotDraw has its
own list of interfaces that many classes implement sucttasable andAnimatable, which
| proceeded to add to the list of trivial types. | also addeeessd constant interfaces such as
SwingConstantsfl.

In addition, many types in JHotDraw extend or implementhstr interfaces to realize the
Observer design pattern. For instance, both interfae@sand andTool are inCONTROLLER and
both extend the interfacéiewChangeListener. | also added many of the listener interfaces as

SInheriting from a constant interface is a bad coding pragtine Constant Interfacmtipattern,
Item #17), and Java 1.5 suppoststic importsto avoid it. This is one more reason to avoid that practice.

146 Chapter 4. Evaluation of the Object Graph Extraction

_lentMain_MainControllerUndoableCommand
_lentMain_MainControllerSelectAreaTracker
_lentMain_MainControllerUndoActivity
_lentMain_MainViewJavaDrawApp
_lentMain_MainControllerWindowTileCommand
_lentMain_MainControllerSelectionTool
_lentMain_MainControllerUndoableTool
_lentMain_MainControllerURLTool
_lentMain_MainControllerBorderTool
_lentMain_MainControllerDragTracker
_lentMain_MainControllerScribbleTool
_lentMain_MainControllerNullTool
_lentMain_MainControllerDragNDropTool
_lentMain_MainControllerFollowURLTool
_lentMain_MainControllerConnectionTool
_lentMain_MainControllerPolygonTool
_lentMain_MainControllerTextTool
_lentMain_MainControllerHandleTracker
_lentMain_MainControllerDeleteCommand
_lentMain_MainControllerGroupCommand
_lentMain_MainControllerRedoCommand
_lentMain_MainModelRectangleFigure
_lentMain_MainModelGroupFigure
_lentMain_MainModelRoundRectangleFigure
_lentMain_MainModelAnimationDecorator
_lentMain_MainModelImageFigure
_lentMain_MainModelTextFigure
_lentMain_MainModelPolygonFigure
_lentMain_MainModelLineConnection
_lentMain_MainModelEllipseFigure
_lentMain_MainModelBorderDecorator
_lentMain_MainModelBouncingDrawing
_lentMain_MainControllerUngroupCommand
_lentMain_MainControllerNewCommand
_lentMain_MainControllerChangeAttributeCommand
_lentMain_MainControllerDuplicateCommand
_lentMain_MainControllerBringToFrontCommand
_lentMain_MainControllerBufferedUpdateCommand
_lentMain_MainControllerStartAnimationCommand
_lentMain_MainControllerCutCommand
_lentMain_MainControllerCopyCommand
_lentMain_MainControllerPasteCommand
_lentMain_MainModelPolyLineConnector
_lentMain_MainModelShortestDistanceConnector
_lentMain_MainViewJPanel
_lentMain_MainControllerAlignCommand
_lentMain_MainControllerNewViewCommand
_lentMain_MainControllerSendToBackCommand
_lentMain_MainControllerExitCommand
_lentMain_MainControllerNewWindowCommand
_lentMain_MainControllerStopAnimationCommand
_lentMain_MainControllerToggleGridCommand
_lentMain_MainControllerPrintCommand
_lentMain_MainViewCommandChoice
_lentMain_MainViewWindowMenu
_lentMain_MainViewCommandButton
_lentMain_MainControllerSelectAllCommand
_lentMain_MainControllerUndoCommand
_lentMain_MainControllerWindowCascadeCommand
_lentMain_MainControllerSaveAsCommand
_lentMain_MainControllerDebugCommand
_lentMain_MainControllerInsertImageCommand
_lentMain_MainControllerLookAndFeelCommand
_lentMain_MainModelPolygonHandle
_lentMain_MainModelUndoableHandle
_lentMain_MainModelNullHandle
_lentMain_MainModelElbowHandle
_lentMain_MainModelTriangleRotationHandle
_lentMain_MainModelPolyLineHandle
_lentMain_MainModelRadiusHandle
_lentMain_MainModelFontSizeHandle
_lentMain_MainModelPolygonScaleHandle
_lentMain_MainModelChangeConnectionEndHandle
_lentMain_MainModelChangeConnectionStartHandle
_lentMain_MainControllerOpenCommand
_lentMain_MainModelOffsetLocator
_lentMain_MainModelArrowTip
_lentMain_MainModelAnimator
_lentMain_MainModelUndoManager
_lentMain_MainViewBufferedUpdateStrategy
_lentMain_MainViewGridConstrainer
_lentMain_MainViewSimpleUpdateStrategy

«interface»
EventListener
«interface» «interface»
Command Tool

A Y
ll - \\ -‘/

AbstractCommand AbstractTool

= /= 1\

| RedoCommand | | NewViewCommand | | ConnectionTool || CreationTooI|

Figure 4.22: JHotDraw: making/iewChangeListener a trivial type.

trivial types.

With the refined list, the analysis mergesdoCommand and NewViewCommand, because
Command is their non-trivial LUB. Similarly, it merge€onnectionTool andCreationTool.
But the analysis does not mer@ennectionTool and RedoCommand because their LUB,
ViewChangeListener, is a trivial type (Fig[4.22). Thus, using the non-defauikial types
provides a more meaningful OOG (Fig._4.23). In that OOG, weogeize separat&ool
and Command Objects iNCONTROLLER. Similarly, MODEL shows distinctFigure, Handle and
Connector objects, all architecturally significant.

Because of JHotDraw's complex inheritance hierarchy, | loafinee-tune the list of trivial
types to achieve the desired level of abstraction—more ap tor the other subject systems.
For example, another subject systems | analyzed, Aphydsi¢8€7.5), did not require using
abstraction by types.

Riehle previously studied JHotDraw and produced manuallgde @rchitecture (Fig.4.2).
Riehle posited that the original JHotDraw designers useddl@wing techniques to present
the JHotDraw design in their tutorials: (ajerge interface and abstract implementation class
because such a code factoring, although important for ceglser is often unimportant from a
design standpoint; and (Bubsume a set of similar classes under a smaller set of reptasve
classesbecause showing many similar subclasses that vary onlyrinrmaspects often leads to
needless cIutteOO, pp. 139-140).

The OOG achieves results similar to the above heuristicsinstance, all runtiméandle
objects referenced in the program by thendle interface, its abstract implementation class
AbstractHandle, and any of its concrete subclasses sucltla®wHandle or NullHandle,
appear as onbBandle display object in thelODEL tier. An OOG can sometimes suffer from a
precision loss: not alfiandle classes have a field reference tbazator as Fig[4.R indicates.
Only NullHandle and its subclasses do. But since they were all mergedimtale, the OOG
shows an edge fromandle to Locator in Fig.[4.25.

4.6. Extended Example: JHotDraw 147

Handle Connector

| |
tool(+): undoableAdapter(+): command(+): |
I Tool UndoableAdapter Command |
| 4 |
L _ _ _ ComwoleN 77 _ _ _
NN |
| jComboBox(+): constrainer: |
| JComboBox L GridConstrainer |
\I\‘ I
(NN B |
| Menu(+): painter: |
| JMenu , Painter |
j N \ !
autoscroll(+): versionRequester(+): jButton(+): |
Autoscroll VersionRequester JButton |
» v 5. 4 |
|
[— N\ — — — "~/ N\ N -~ "1 -—— - - - = |
| |
| undoManager(+): endArrowTip:
UndoManager ArmowTip '
| | o |
R\ // |
I T fAnimator: figure(+): fLocator: [
Animator L, Figure \ OffsetLocator |
P D £
|
| I
handle: _| connector: |
|
|

Figure 4.23: JHotDraw: OOG with abstraction by trivial types (the fine-tuned list).

Observation: Abstraction by types can help identify unexpeted subtyping relationships
in the program, some of which could point to design problems. With abstraction by trivial
types turned on, | was surprised that the OOG did not show rstances of th€igure type,
presumably one of the core types in the class diagram. | usedRecJ to obtain the field
declarations that a display object merges (See[Fig. 4.1uaed that information to determine
that one objecttextFigurel:Drawing, merged objects of typBigure andDrawing in the
MODEL domain.

| traced these field declarations to the code, and discovgredde inspection that indeed, the
base class implementing theawing interface StandardDrawing, extend€ompositeFigure.
Thus, aDrawing is-aFigure, to enable nestingrawing inside anothebrawing. Even though

148 Chapter 4. Evaluation of the Object Graph Extraction

_lentMain_MainViewJButton
_lentMain_MainControllerCommand
_lentMain_MainViewJComboBox
_lentMain_MainViewGridConstrainer
_lentMain_MainViewAutoscroll
_lentMain_MainViewPainter
_lentMain_MainViewVersionRequester
_lentMain_MainModelHandle
_lentMain_MainViewJMenu
_lentMain_MainModelUndoManager
_lentMain_MainModelAnimator
_lentMain_MainControllerUndoableAdapter
_lentMain_MainModelFigure
_lentMain_MainModelConnector
_lentMain_MainControllerTool
_lentMain_MainModelOffsetLocator
_lentMain_MainModelArrowTip

the Release Notes for JHotDraw Version 5.1 mentioned this itasas still unexpected. In the
framework package, interfacBrawing does not extendligure. In their tutorial, the JHotDraw
designers explicitly asked developers to “not commit todbepositeFigure implementation,
since some applications need a more complicated repréiseritg¢Ga 2 1998, Slide #16).
I was slightly surprised when | inadvertently added integfiandle as a trivial type. This
resulted in an OOG with one object finl1Handle (which directly implement$landle) and
another object for all instances of the concrete subclabs¢smplementiandle by extending
AbstractHandle. While this result seemed counter-intuitive, that OOG wabkssiund: there
is no runtime object that can have both typed 1Handle and AbstractHandle, SO NO one

runtime object appears as two display objects in the OOG.

Observation: Abstraction by design intent types can achies higher precision than abstrac-
tion by trivial types. Abstraction by trivial types can quickly unclutter an OOGit Iss not
very precise. For instance, the JHotDraw OOG based on lttiyies does not show distinct
Drawing andFigure objects (Fig[4.25). Presumably, both interfaces are tctrally rel-
evant. This is because the base class that implenbanising, StandardDrawing, extends
CompositeFigure, which in turn implement§igure. ButDrawing does not exten@igure
and is not a trivial type. Merging objects based on nondtiviUBs, coupled with merging
objects after the fact for soundness, causes field dedasatf typeDrawing andFigure to
get merged irMODEL. An object may have multiple types, but some types may be raame-
tecturally relevant than others. In this exam@eandardDrawing extendCompositeFigure
to enable nesting Brawing inside anotheDrawing. In this case, we would like to view a
StandardDrawing object as @rawing object, instead of &igure object.

JHotDraw'sframework package includes abstract classes and interfaces thag dedicore
framework. | added to the list of design intent types all §yet in thef ramework package and
ordered them from most to least architecturally relevagt, Brawing appears beforBigure.

When deciding whether to merge two field declaratioBsandardDrawing and
CompositeFigure, the analysis finds the design intent typeawing in the list, since
StandardDrawing iS a subtype ofbrawing. Similarly, it finds the typeFigure, since
CompositeFigure iS a subtype offigure. BecauseDrawing is not a subtype ofigure,
the analysis does not merge objeBtsandardDrawing and CompositeFigure. But it does
merge StandardDrawing and BouncingDrawing. Similarly, it mergesEllipseFigure,
RectangleFigure, etc. But it keeps objects of ty@rawing andFigure distinct in MODEL
(Fig.[4.23), just as we desired.

Observation: An OOG provides architectural abstraction by showing architecturally sig-
nificant objects near the top of the hierarchy and data structires further down. A key
issue in architectural extraction is distinguishing betwebjects that are architecturally relevant
and those that are not. The OOG provides architecturaladisin by pushing lower-level ob-
jects underneath higher-level objects. As a result, the @0O€s not show non-architecturally
relevant objects in the top-level domains.

An OOG shows objects inside domains, and provides an instgranularity larger than an
object. For instance, theONTROLLER tier includesCommand andTool instances, rather than a

4.6. Extended Example: JHotDraw 149

|| drawingChoice(+): constrainer:

40> 4 4

\

\

JComboBox L GridConstrainer |

\

windowMenu(+): painter: !

- WindowMenu L Painter |
! A |
| | drawingView(+): drawingEditor(+): tooButon(+): ||
| DrawingView DrawingEditor ToolButton |
‘ \

undoManager(+): - flLocator:
UndoManager OffsetLocator
v
N _
| fAnimator: < Y endArrowTip:
(TENSY drawing(+): figure(+): -

Drawing Figure

\
|
\
|
\
| —» AmowTip |
|
\
|
\

| L P 4 ~a4
handle: /- __ 4 connector:
‘ y Handle Connector
<
~~_ [_ _ _/ _~~— _Model /o _-— -~
\ 114 NN
|| command(+): undoActivity(+): —
| Command UndoActivity
\
\ - 2
\
\

Controller ‘

Figure 4.24: JHotDraw: OOG with abstraction by design intent types.

Controller component. In contrast, ti@EW domain also has BrawingView object.

There are three top-level domaingoDEL, VIEW and CONTROLLER. The OOG in Fig[4.25
seems to have the right level of abstraction since we rezegniit most of the core types from
the class diagram (Fig.4.2).

A rule of thumb in architectural documentation is to have 57t@omponents per tier
(Koning et al. 2002). Thus, the number of objects in each donsasimilar to the number of
components in tiers found in typical architectural diagsaMODEL has 14 objectsVIEW has 6
objects, an€ONTROLLER has 3 objects.

One could split the10ODEL domain into one domain faapplication modebbjects, such as
instances ofindoManager and StorageFormatManager, and one fordomain modebbjects,
with Figure, Handle and related objects, as in the ModeI-Model-View-Contquetter.

The OOG (Fig[4.25) has only 23 objects in the top-level dommailn contrast, existing

Chttp://c2.com/cgi/wiki?ModelModelViewController

150 Chapter 4. Evaluation of the Object Graph Extraction

_lentMain_MainViewToolButton
_lentMain_MainControllerTool
_lentMain_MainControllerCommand
_lentMain_MainViewDrawingEditor
_lentMain_MainModelUndoManager
_lentMain_MainModelAnimator
_lentMain_MainViewPainter
_lentMain_MainViewJComboBox
_lentMain_MainViewWindowMenu
_lentMain_MainViewGridConstrainer
_lentMain_MainViewDrawingView
_lentMain_MainModelDrawing
_lentMain_MainModelFigure
_lentMain_MainModelHandle
_lentMain_MainControllerUndoActivity
_lentMain_MainModelConnector
_lentMain_MainModelOffsetLocator
_lentMain_MainModelArrowTip
http://c2.com/cgi/wiki?ModelModelViewController

compile time object graph analyses that do not rely on atioosproduce flat object graphs that
show all objects at the same level, e.g.,heension andJavaDrawApp objects in Fig[4.18.

In JHotDraw,Point objects are immutable, so we annotated them wsitigue to pass them
linearly, as discussed in Sectiion 414.2. Hence, they dopyar in the OOG.

Observation: Hierarchy allows showing both the high-levelstructure of the object graph
and the low-level details at various levels of abstraction. Ideally, an architectural diagram
“can be read in 30 seconds, in 3 minutes, and in 30 minutestiifitpet al! 2002). For example,
Fig.[4.2% can be considered a 30-minute OOG.

There are two ways to control the level of detail. One is totadrthe unfolding depth of
the DisplayGraph, which affects the depth of the object substructures umifpifor all objects
starting from the root object. Because one object’s subsireianay be more interesting than
that of some other object, ArchRecJ allows the developer ltapse the internals of a selected
object; in that case, the tool appends the symbol to that object’s label. In Fig._4125, we
manually elided the substructure of all the objects in tlpelével domains except f@rawing,
to highlight the Composite pattern. Insideawing, the OWNED domain shows several objects.
We recognize &ector<Figure>, fFigures, that maintain the list of sub-figures, and a lifted
edge fromfFigures to figure:Figure in MODEL. We chose to shoWuadTree’s substructure,
but elidedFigureAttributes’s substructure.

A 30-second OOG shows the three top-level ownership domai0BEL, VIEW and
CONTROLLER (Fig.[4.26). In addition, dotted edges summarize the fidieremce edges between
objects inside those domains. This high-level overviewnshioow objects iMODEL refer to ob-
jects inVIEW to send them change notificationslEW objects have referencesNODEL objects
to display them. SimilarlyyIEW objects have references @ONTROLLER objects. CONTROLLER
has references M0DEL andVIEW, butMODEL has no references @NTROLLER.

Observation: The OOG is extracted quickly and iteratively refined. Examining the ex-
tracted OOGs helped us refine the annotations. For instaedajtially placeddiandle instances
in the CONTROLLER domain, but later moved them to tMBDEL domain, sincélandle is related
toFigure.

Assuming ownership annotations are already present, AichBamn extract an object graph
with minimal end-user interaction. The user can optionabgtract the object graph by control-
ling the abstraction by types.

ArchCheckJ and ArchRecJ are sufficiently fast to allow a dgpaido iteratively refine the
extracted object graph. Computing the OOG in Eig. 4.25 tad®sthan 20 seconds on a modest
Intel Pentium 4 (3 GHz) with 2 GB of memory.

Observation: An OOG shows potentially useful information aout the system’s runtime
structure. One could point to several useful pieces of information edrlotDraw OOG.
¢ System decompositionDecomposition information is often useful to have. In the@O
each gray box corresponds to a canonical object that regieesgany instances at run-
time, and has instance substructure. This correspondslglmsthe system decomposition
typically seen in an architectural diagram.

4.6. Extended Example: JHotDraw 151

I
. connector(+):
Connector

» flLocator(+):

/; OffsetLocator

|
‘ theQuadTree: nwQuadTree(+): theHashtable:

~ QuadTree ¥~ QuadTree | | Hashtable<Figure,Rectangle2D> ‘
‘ —
|
|

v

fPaints:
» Vector<Point>

figure:

Figue % Vector<Fig

‘ ~
fAttributes(+):
‘ FigureAttributes

|
\
\

‘ > fDisplayBox:
‘ Rectangle

Sa
‘ | fListeners:
Vector<DrawingChangeListener>

‘ fAnimator:

¥ Animator

\
\
\
\
\
——r Figurgs: ‘
\
\
\
\
\
\

undoManager(+):
UndoManager

< —

— AV}

standardDrawingView(+): ——— javaDrawApp(+): ——# duplicateButton(+):

StandardDrawingView 4" JavaDrawApp ¥ CommandButton ‘
.
N \/

™ menu(+): constrainer:
‘ CommandMenu GridConstrainer

\
simpleUpdateStrategy:
SimpleUpdateStrategy

| ™ drawingChoice(+):
JComboBox

view <~

Figure 4.25: JHotDraw: top-level OOG. The objects in the top-level domains are coliaeseept for
the object labeledigure:Figure.

For exampleDrawing is aCompositeFigure. Following the Composite pattern, it main-
tains a list of its sub-figures. Indeed, viewing the decortmwsof textFigurel reveals,
among others, an obje¢Figures of type Vector<Figure>, inside itSOWNED domain.
When performing system decomposition, the inside of a compbis related to its out-
side. Indeed, there is a lifted edge fr@figures to textFigurel in the MODEL — since
textFigurel merges botl¥igure andDrawing.

152 Chapter 4. Evaluation of the Object Graph Extraction

_lentMain_MainModelOffsetLocator
_lentMain_MainModelGroupHandle
_lentMain_MainModelPolyLineConnector
_lentMain_MainModelTriangleFigure
_lentMain_MainControllerUndoActivity
_lentMain_MainViewStandardDrawingView
_lentMain_MainModelTriangleFigure_StorableownedFigureAttributes
_lentMain_MainModelTriangleFigure_StorableownedRectangle
_lentMain_MainModelTriangleFigure_StorableownedQuadTree_QuadTreeownedHashtable_Figure_Rectangle2D_
_lentMain_MainModelTriangleFigure_StorableownedQuadTree_QuadTreeownedQuadTree
_lentMain_MainModelTriangleFigure_StorableownedQuadTree
_lentMain_MainModelTriangleFigure_StorableownedVector_DrawingChangeListener_
_lentMain_MainModelTriangleFigure_StorableownedVector_Point_
_lentMain_MainModelTriangleFigure_StorableownedVector_Figure_
_lentMain_MainModelArrowTip
_lentMain_MainModelAnimator
_lentMain_MainModelUndoManager
_lentMain_MainControllerSaveAsCommand
_lentMain_MainViewJavaDrawApp
_lentMain_MainControllerCreationTool
_lentMain_MainViewCommandButton
_lentMain_MainViewCommandMenu
_lentMain_MainViewJComboBox
_lentMain_MainViewSimpleUpdateStrategy
_lentMain_MainViewGridConstrainer

o,

i — o, R
.

—_—

Figure 4.26: JHotDraw: Model-View-Controller summary. The dotted edges summarizerééddence
edges between objects in the top-level domains.

TheDrawingView interface extends therawingChangeListener interface. Hence, the
OOG shows an edge from objefitisteners inside objecFigure to theDrawingView
object. Inside objedigure, objectfFigures contains the compositeigure objects.

* Object encapsulation: To highlight the cases of strict encapsulation, the OOG uses
a thick dashed border for a private domain that is not linke tparameter. For in-
stance, in Fig[_4.25, th#ap object is encapsulated inside tR@NED domain of the
FigureAttributes object.

* Object references: The OOG indicates the presence or absence of field referémces
tween objects. The OOG highlights for instance how, in theQ/}attern, a view redraws
itself when the model notifies it of state changes. The cordahabjectDrawing, main-
tainsfListeners, a list of DrawingChangeListener objects, that are notified whenever
theDrawing changes. InterfacerawingView extendDrawingChangelListener, hence
the edge fronfListeners to myDrawingView. A Tool Object merges instances of type
Tool andUndoableTool. An UndoableTool iS a wrapper object aroundTaol object.
This explains the self-edge anol in Fig.[4.25.

We were surprised by the lack of field references fromMbEL to the CONTROLLER in
Fig.[4.26. In the base MVC pattern, a controller registesslitwith the model to receive
notifications. Our explanation is that JHotDraw follows & C pattern, but slightly
modified in two ways. First, the Command Processor patterndtBuann et al 6,
p. 277) is used to address the “close coupling of views antraiters to a model” in the
base MVC patterri (Buschmann etlal. 1996, p. 142). Secobth@ingView acts as both

a view and a controller. This is a common optimization in thé@/pattern since the view
and the controller are tightly coupled. Indeed, in the JHatD“CRC Cards View”, the
designers mention th@trawingView “handles input events’m%, Slide #10),
which is a typical controller responsibility.

* Object soundnesswhile demonstrating soundness requires a formal proo¥jseally in-
spected the OOGs to test the implementation of the ArchRetJRor example, the OOG
shows only one canonical object to represent the applicatiject,app: DrawingEditor
(Fig.[4.25), unlike WbMmBLE's output (Fig.[4.IB), which shows tw@avaDrawApp and
DrawingEditor distinct objects.

Observation: A tool can enforce structural constraints on he OOG. We think the OOG,
together with effective change management, can help pravenitectural drift or erosion during
software evolution, more effectively than the programjwvat without annotations. In the unan-

4.6. Extended Example: JHotDraw 153

_system__system_system
_system__system_system

notated program, changing the runtime structure is as siagppassing a reference to an object.
The ownership annotations help somewhat. But a developestdtbadd communication paths
by adding domain links, declaring additional domain parterseand passing additional domain
arguments at object allocation sites. Code reviews could auch changes.

If the OOG reflects such architecture-modifying changes QDG makes it easier to trigger
an architecture review. A visual inspection of the OOG cdaluk for suspected architectural
violations. Or once the OOG is converted to a C&C view in an Aie, ADL can enforce global
constraints on the runtime structure (Secfion 7.8.9).

Using ownership domain annotations to enforce constramatg require code changes. For
instance, using a method domain parameter instead of add&sain parameter can prevent a
Handle from holding on to @rawingView object that is passed to it (Section 416.1). The OOG
can enforce such a constraint without requiring changieg@timotations or the code. In addition,
domain links treat all communication equally, forcing deyers to add domain links. But a
policy can allow only “weak” references betweBODEL andVIEW to ensure that the “change
[%%agation is the only link between the model and the vierwbtmntrollers”[(ﬁu_ssh_mmeﬂal.

, p. 127).

4.6.3 JHotDraw Summary

JHotDraw has a complex inheritance hierarchy and implesnerany design patterns. How-
ever, | was able to add annotations to it, and extract hiereatobject graphs that convey more
architectural abstraction than any of the previous flatailgeaphs.

4.7 Extended Example: HillClimber

By many accounts, JHotDraw is the brainchild of object-agdranalysis and design (OOAD)
experts. In the next case study, | evaluated using the atmmadaand the static analysis on a
subject system that OOAD novices designed.

4.7.1 About HillClimber

The second subject system, HillClimber, is a 15,000 line Zgo@ication that was developed
by undergraduates at the University of British Columbia (UBCJIGimber is part of a col-
lection of Java applications to graphically demonstratiical intelligence algorithms, built on
the CIspace framework (Poole and Macwolth 2001). In particular, Hill@ber, demonstrates
stochastic local search algorithms for constraint satigfa problems. HillClimber is also inter-
esting because it uses a framework and its architectutadtate had degraded over the years.

In HillClimber, the applicatiorwindowuses acanvasto displaynodesandedgesof agraph
to demonstrate algorithms for constraint satisfactiorbf@mms provided by thengine

| extracted a UML class diagram from the HillClimber implertegion using Eclipse UML

6) (Fid_4.27).

154 Chapter 4. Evaluation of the Object Graph Extraction

| 9 graphFramework::Edge m 9 graphFramework::Node || 9 graphFramework::Graph

3 graphFramework::GraphCanvas I

3 HilGraph
—S) hiIICanvas\! M HillCanvas I
— 0.1
= . Ul

| ® HilEdge ﬂ | @ HillNode

DATA

& Search

0.. - hillwindow

3 HillEngine 3 Hilwindow

engine

| (@ GreRRSearch Il (® RandSearch II @ SimpleSearch " @ SimAnnealSearch ﬂ' (® SimRanSearch k

| ® GreedySearch H

l 3 MCHSearch I | ® RdWkSearch I

LOGIC

Figure 4.27: HillClimber: partial UML class diagram obtained from the original implementatiangus
Eclipse UML m&&@. This diagram does not reflect some typeslunted during refactoring,
such adGraph, IHi11Graph andICanvasMediator.

4.7.2 Annotation Process

In this section, | briefly discuss the annotation processft€limber.

4.7.2.1 Annotation Overview

| organized the HillClimber objects into the following domai
* DATA: stores the graph objects, namely instanceSrabph, Node, etc., and those of their
subclassesjillGraph, HillNode, €etc.;
* UI: holds user interface objects;
* LOGIC: holds instances dfillEngine, Search and subclasses thereof, and associated
objects.
While adding annotations to HillClimber, | refactored the edd reduce the coupling be-
tween some of the objects thi@ andDATA domains, as | discuss below.

4.7.2.2 Annotation Examples

Observation: Ownership domains expose implicit communicgon. In HillClimber, adding
ownership domain annotations exposed covert object conuation through base classes from
two parallel inheritance hierarchies. During an earlyat®em, we parameterized the base class
GraphCanvas by theUI andDATA domain parameters. We then realized tteiph, the base
class forHil1Graph, required theyI domain parameter (Fig._4.28). Cla&saph needed th&1
domain parameter only to properly annotateraphCanvas field reference, which we did not
expect. In turn, this revealed thAi 11Graph andHillCanvas were communicating through

4.7. Extended Example: HillClimber 155

© 00 N o U B~ W N

N
A w N B O

15
16

/**¥x4%x% Before programming to interface *kkxkxkix*x/

class HillNode<UI,LOGIC,DATA> extends Node<DATA> {
DATA HillGraph<UI,LOGIC,DATA> hillGraph;

}

/rF*xskxk After programming to tnterface ¥ xkkxkkxk/

class HillGraph<UI,LOGIC,DATA> extends Graph<DATA>
implements IHillGraph<DATA> {

}

interface IHillGraph<DATA> extends IGraph<DATA> {
X

class HillNode<DATA> extends Node<DATA> {
DATA THillGraph<DATA> hillGraph;
}
Figure 4.28: HillClimber: refactoringiillGraph to program to an interface.

their base classégaph andGraphCanvas. In the end, | moved the referencedpaphCanvas
from Graph to HillGraph and generalized it as arfHillCanvas reference by extracting an
interfaceIHillGraph from HillGraph. As a result, the clas&raph no longer needed thel
domain parameter.

Observation: Ownership domain annotations highlight tight coupling and promote decou-
pling code. Ownership domain annotations programming practices teabuple code, such
as programming to an interface, or using the mediator patéerwe discuss below.

Programming to an Interface. It is recommended to “refer to objects by their interfaces”
, ltem #34) since interfaces can reduce couplatgden classes by splitting intent
from implementation. When adding annotations to an interfagjuires fewer domain parame-
ters than annotating the corresponding class, the anosatan enforce this idiom. In particular,
an implementation class can require a private ownershipadoto be passed as an actual value
for one its parameters. Since a private ownership domainatdse named by an outside client,
the client is then forced to use the interface which doesempiire these parameters.

For HillClimber, we used the technique of hiding the extra evehip domain parameter
behind an interface, to force a client to access an objegtthnbugh the interface—the client
may not even cast the interface reference to an implementefass.

The original implementation for clasii1l1Node had a field reference of typéi11Graph.
However,HillGraph took the three domain parametérs, LOGIC andDATA, which required
passing all those parametersital 1Node (Fig.[4.28).

This demonstrates that encountering an unexpected domampeter while adding the anno-
tations often indicates unnecessary coupling. For instanby shouldiil1lNode require theul
domain parameter? Thus a lengthy domain parameter listean lobjective measure of a code
smell (Abi-Antoun et al. 2007a). Furthermore, ownershimdi annotations can help a devel-
oper lower the coupling by suggesting which specific typdatations need to be generalized to
shorten the list of domain parameters on the enclosing type.

156 Chapter 4. Evaluation of the Object Graph Extraction

© 00 N o U B~ W N P

10
11

abstract class Entity<DATA> {
DATA Graph<DATA> graph; // parent graph

}
class Node<DATA> extends Entity<DATA> {

int getHeight () {
return graph.getCanvas().getFontMetrics()...;
}
}
Figure 4.29: HillClimber: before using a mediator.

In HillClimber, one solution was to extract afiillGraph interface from clasfillGraph
that requires only thédATA domain parameter and makeHallNode object reference the
HillGraph object through th&Hil1Graph interface. We decided against carrying this refactor-
ing further and eliminating theI andLOGIC domain parameters afillGraph itself.

SinceHillGraph, HillNode, etc., form a parallel inheritance hierarchyGtteph, Node, etc.,
respectively, a similar refactoring was performedGafaph by extracting alGraph interface—
althoughGraph andIGraph both take the domain paramet&TA (Fig.[4.28), so programming
to an interface would not hide any domain parameter.

We observed tightly coupled code throughout HillClimbemiarly, we were surprised that
a dialog clas$ontDialog required theDATA domain parameter. It turned out ti®&intDialog
had a field reference declared with its most specific typgphCanvas. In some cases, it is
possible to generalize the type of the reference, e.g.jase. awt . Frame to eliminate the need
for the domain parameter. Howev@gntDialog needed access to some of theaxphCanvas
functionality, so this required a different solution, ndynesing a mediator, as | discuss below.

Mediator Pattern. Defining an interface is sometimes insufficient to decoupleecsince
referring to an object through its interface still requieesess to the domain the objectis in. One
solution is to use the Mediator design pattétn_(g_amma]b&ﬁléi,lp. 273), as shown here.

In the original HillClimber implementation (Fi 9), vde obtained a reference to a
GraphCanvas, and this violates the Law of DemetE%M@) which states
that objects should talk only to their immediate neighbors.

Extracting an IGraphCanvas interface from GraphCanvas would not work, as the
IGraphCanvas reference would still need to be annotated with which is not in scope or a
domain parameter. Moreover, the implementatiogeafFontMetrics () could not be moved to
Graph as it required access to objects in tiiedomain (Fig[4.30).

Instead, | defined a mediator (Fig. 4. 3&}aphCanvas initializes the mediator, anEhtity
andNode can then use the mediator (Fig.4.32).

4.7.3 Object Graph Extraction

| used the extracted object graph to fine-tune the ownersimpath annotations in the program
and reduce the number of objects in the top-level domairg [€EB3), using the strategies dis-
cussed in Sectidn 4.4.2. Using HillClimber, we reconfirmechynaf the previous observations.

4.7. Extended Example: HillClimber 157

© 00 N o 0 B~ W N

N L
N o o A W N B O

© 00 N o g~ W N P

I e N N < e
B O © ® N o O A W N B O

interface IGraphCanvas {

}

// Hide domain parameter UI behind interface

class GraphCanvas<UI,DATA> implements IGraphCanvas {
}

abstract class Entity<DATA> {
UI IGraphCanvas canvas; // UI unbound

X
class Node<DATA> extends Entity<DATA> {

int getHeight() {
return canvas.getFontMetrics()...;

}
}
Figure 4.30: HillClimber: extracting an interface (bad attempt).
J*x*
* Mediator interface
*/

interface ICanvasMediator {
shared FontMetrics getFontMetrics();
}

VLS

* Mediator tmplementation class

*/
class CanvasMediatorImpl<UI,DATA> implements ICanvasMediator {

UI GraphCanvas<UI,DATA> canvas = null;

CanvasMediatorImpl (Ul GraphCanvas<UI,DATA> canvas) {
this.canvas = canvas;

}

shared FontMetrics getFontMetrics() {
return this.canvas.getFontMetrics();
}
}
Figure 4.31: HillClimber: defining a mediator.

Observation: In practice, there are several opportunitiesto use strict encapsulation to re-
duce the clutter. We reduced the clutter in th@ATA domain by pushing more objects into
private domains of other objects. For instance, we plaeegh: Hil1lHeap inside a private do-
main of graph:HillGraph. We also pushed sever&éctors into private domains and ensured
that the other references to them wetd que (they were actually passed linearly between ob-
jects). In a few cases, we changed the code to prevent repaéise exposure by returning a
copy of an internal list instead of an alias.

158 Chapter 4. Evaluation of the Object Graph Extraction

© 00 N o 0~ W N

11
12
13
14
15
16
17
18
19
20
21
22
23

class GraphCanvas<UI,DATA> extends ... {
DATA CanvasMediatorImpl<UI,DATA> mediator;

DATA ICanvasMediator getMediator() {
return mediator;

}
}

abstract class Entity<DATA> {
DATA ICanvasMediator mediator;

b
class Node<DATA> extends Entity<DATA> {

VL]
* Gets the height of this node.
*

*/
protected int getHeight() {
return mediator.getFontMetrics().getHeight() + ...;
}
}
Figure 4.32: HillClimber: using a mediator.

Observation: In practice, there are several opportunitiesto use logical containment to re-
duce the clutter. We defined public domains to reduce the number of top-levidotd A
public domain can group related objects, by pushing theatoed objects down the ownership
tree and removing them from the top-level domains, whilgok>hose inner objects accessible
to objects that can access the outer objects. For exampéstebarch has aHEURISTICS pub-

lic domain with two array objects inside it; its peer objaeuiristics insideLOGIC accesses
those array objects direatly

As an aside, | could have used a static analysis to infer thier®NED andunique anno-

tations, e.g.,(Liu and Milanovia 2007; Ma and Faster 2007)t tBday’s annotation inference
algorithms cannot infer meaningful domain parameters btipdomains|(Aldrich et al. 2002c).

Observation: An OOG can provide meaningful architectural abstraction. The Hill-
Climber OOG (Fig[4.33) shows clearly the core top-level ofgewindow, canvas, engine
andgraph. Similarly, theSearch object in theLOGIC domain merges many instances of several
sub-classes of the claSsarch such a®iCHSearch, RandSearch, etc.

| had introducedCanvasMediator during a refactoring to decouple the code. THeadow
object merges several user interface objects such as djalad illustrates abstraction by types.

’Such an object relation would be prohibited by an ownerasidator type system, e.g998).
This is one case which illustrates the need for the additierpressiveness of logical containment using public
domains in the ownership domain type system.

4.7. Extended Example: HillClimber 159

autoSolve:
" AutoSolve

searchAlgs:
Search(]

batchSteps:
Vector<BatchStep>

batchStep(+):
BatchStep

‘ varHeurs:

int]

varHeursProb:
| float]
<
randSearch: \
[4 | | ¥ RdWkSearch 7heiristi£s -
engine(+): 4 |
HillEngine (7
A heuristics:
Heuristics

A
* /\ »

\ B graph(+): mediator: Variable
v HillGraph ‘\‘ CanvasMediatorimpl v
‘V\L | Y

i~ node(+): |
\ p HilNode -
choice: +— A 4 ® constraint:
\ NodeVal Constraint
‘ 4
_ lataTier” 4
T N :
| . . | canvas(+):
SHEE;TAS)' —+— window(+): [SolveCanvas
| OptionsDialog
‘ -

userTier]

Figure 4.33: HillClimber: top-level OOG.

4.7.4 HillClimber Summary

The HillClimber system is not as well-designed as JHotDravil, Bvas able to add annotations,
run the static analysis, and extract OOGs that provide meéuiarchitectural abstraction and
have sufficient precision.

160 Chapter 4. Evaluation of the Object Graph Extraction

_systemHill__systemHill_systemHill_dataTier_graphHillGraph_graphHillGraph
_systemHill__systemHill_systemHill_dataTier_nodeHillNode_nodeHillNode
_systemHill__systemHill_systemHill_userTier_canvasSolveCanvas_canvasSolveCanvas
_systemHill__systemHill_systemHill_dataTier_mediatorCanvasMediatorImpl_mediatorCanvasMediatorImpl
_systemHill__systemHill_systemHill_dataTier_var1Variable_var1Variable
_systemHill__systemHill_systemHill_dataTier_constraintConstraint_constraintConstraint
_systemHill__systemHill_systemHill_dataTier_choiceNodeVal_choiceNodeVal
_systemHill__systemHill_systemHill_userTier_windowOptionsDialog_windowOptionsDialog
_systemHill__systemHill_systemHill_logicTier_engineHillEngine_engineHillEngine
_systemHill__systemHill_systemHill_logicTier_batchStepsVector_BatchStep__batchStepsVector_BatchStep_
_systemHill__systemHill_systemHill_logicTier_searchAlgsSearchArray_searchAlgsSearchArray
_systemHill__systemHill_systemHill_userTier_simPanelFullPanel_simPanelFullPanel
_systemHill__systemHill_systemHill_logicTier_randSearchRdWkSearch_randSearchRdWkSearch
_systemHill__systemHill_systemHill_logicTier_autoSolveAutoSolve_autoSolveAutoSolve
_systemHill__systemHill_systemHill_logicTier_batchStepBatchStep_batchStepBatchStep
_systemHill__systemHill_systemHill_logicTier_heuristicsHeuristics_heuristicsHeuristics
_systemHill__systemHill_systemHill_logicTier_randSearchRdWkSearch_randSearchRdWkSearch_heuristics_varHeursintArray_varHeursintArray
_systemHill__systemHill_systemHill_logicTier_randSearchRdWkSearch_randSearchRdWkSearch_heuristics_varHeursProbfloatArray_varHeursProbfloatArray

4.8 Field Study: LbGridE

As a research method, a field study can evaluate how well waa@fttool or method works with
real code and users (Kitchenham et al. 1995).

4.8.1 Overview

The case studies | conducted on the previously describetBbiiented systems assessed both
the usability of the technique and the engineering tradeibfat it entails, and led to a more
comprehensive week-long on-site field study with an indaispartner. During the field study,
we extracted the object graph of a 30-KLOC portion of a larg@-BLOC Java system.

At a high-level, the field study involved selecting a targattipn of the system, communicat-
ing with the original developers of the code to understamd tthesign intent, adding annotations
to the code, typechecking the annotations, running the staalysis to extract an object graph,
showing snapshots to the developers, and incorporatingfdezlback, by refining the annota-
tions and the extracted object graphs.

4.8.2 Research Questions

| refer to the person who conducted the field study, i.e., thyae theexperimenterThedevel-
operis the person who was familiar with the code being analyzed.

In addition to the earlier questions (Section/ 4.2, Rageé, M4 wanted the field study to help

answer the following research questions:

* Will an outside developer understand abstraction by ovimgtserarchy and by types?

* How mucheffort will it take? How longbefore one can obtain initial architectural dia-
grams?

* Canone add annotations for the top-level object graph, tkieme those annotations down
to the rest of the system?

* Can we meaningfully analyze only a part of a system?

* Can we evaluate qualitatively the precision of the analygiBdving a developer visually
examine the output OOG? For instance, does the OOG omit tshijeat the developer
expected to see? Or does the developer not recognize soime abjects that show up in
an O0G?

* How can we improve the usability of the tools?

4.8.3 Setup and Methodology

Pilot constraints. The SCHOLIA tools are plugins in the Eclipse Java development environ-
ment. So, in terms of selecting the subject system, we reduwrmodule that is Java-based.
Since we were adding the annotations manually, we requiraddule under 50 KLOC in size.

In some of the earlier evaluations, e.g., HillClimber (Safd.7), we refactored the subject sys-
tem while adding the annotations. During the field study, vemted to extract thas-isobject

8Portions of this section appeared|in (Abi-Antoun and Aldi2008b)

4.8. Field Study: LbGrid 161

graph. We also did not want to explain the annotations or tidwcsanalysis to the developers,
nor did we expect to involve them with the tools. The devetspeould be free to refactor based
on any insights they gained from the extracted architecture

The plan. Architectural extraction typically starts by gatheringeticiting documentation from
developers who are familiar with the code. Ideally, a degwetovould document the designed
or target runtime architecture, but realistically, we kriat we may have to settle for a class
diagram.

Data collection. The experimenter measured the effort by keeping track ofiifferent activ-
ities in a time log, and measured the end-to-end time, mintgsruptions. He also kept a log
of annotation cases that revealed facts about the code suapgesentation exposure or tight
coupling.

The experimenter kept track of the iterations, and what laamgéd between iterations, such
as changing the settings or inputs to the tools. He saverhiettiate snapshots of the extracted
object graph. He also wrote detailed notes to simulate timkaloud protocol (he could not
actually speak as he was sitting with others in an open-flpaca). After the study, we used the
Eclipse history data for each file to analyze how the anranatevolved.

Subject selection. The experimenter ran the jMetra (hyperCision|Inc. 2008) ecodasurement
tool on the Java code base, and identified a module of arold@G, excluding unit test code,
which we refer to as LbGrid. LbGrid is a multi-dimensionadfiere-rich grid control that consists
of around 300 classes (jMetra includes only static innessga in the class count, and LbGrid
uses non-static inner classes extensively).

In previous evaluations, we used code bases developedpidarva 1.5 and refactored them
to use generics to improve the precision of the analysis.hik ¢ase, the code already used
generic types. As a bonus, a developer who was familiar \wehrnodule would be available.

Static analysis. At no time during the field study did the experimenter run thstam. That
would have required setting up a complex client-serveresgstand training on how to use the
system to get good coverage. So using static analysis $ieaplhe setup considerably.

Plan vs. actual. The study did not go exactly as planned. The developer familith LbGrid
was not available on the first and the last days of the studyef@dly, the experimenter had
limited access to the developer. We estimate the develggert @round 4 hours, including the
initial meeting, designing and discussing the code archite, answering occasional questions,
examining snapshots and responding to our emails.

Target architecture. The experimenter met with the developer for two hours, ane gan an

overview of the architectural views we were extracting. Tegeloper said he used and liked
tools that extracted class diagrams from code. The expatenasked the developer to draw
the designed runtime architecture for LbGrid. The expenit@ewanted to use the designed

162 Chapter 4. Evaluation of the Object Graph Extraction

|—] cam.blox, Lable

Ibtahble

=/

| TSNS

[=] wiews
renderer |"*—I-| * |

Figure 4.34: LbGrid: high-level module view, obtained using Lattix LD089\ box
represents a Java package.

architecture as a guide while adding the annotations, bywolg the same top-level architectural
tiers and the same architectural decomposition. Unsumgiis the developer drew an abstracted
class diagram showing the core types in LbGrid (Fig.}4.35).

4.8.4 Annotation and Extraction Process

We now discuss the process the experimenter followed totatenbbGrid and extract an object
graph.

Isolating the module. The experimenter configured several stop-analysis fileawe the tools
analyze only the compilation units from a list of selectedkames and exclude others.

Annotation and extraction methodology. The experimenter used a tool to generate initial
default ownership domain annotations for the selected fllegaSee Appendik A.414). He then
completed the annotations mostly manually, as we discuginext section. At times, he used
a utility to globally find and replace annotations acrosssa\files. He then used mainly the
two tools, ArchCheckJ (Sectidn 4.8.1) and ArchRecJ (Seétidi® He used ArchCheckJ to
validate the annotations and ArchRecJ to extract OOGs.

Deciding on the annotations. The best annotations produce a view comparable to what an
architect might draw for an architecture. Ideally, an aestti familiar with the system would
propose the runtime tiers for the system. In this case, imeeldhat having the developer provide

a target runtime architecture would be difficult, since hewdan abstracted code architecture. So,
instead, the experimenter studied the developer’s diagrathsuggested organizing the objects
according to the following top-level domaingI, MODEL, LOGIC andDATA (boxes with dashed
borders in FigC4.36). The developer confirmed that the pegarchitectural tiers seemed
reasonable. Another senior developer who was familiar etitler parts of the system also agreed
with the high-level organization the experimenter propo®e the LbGrid architecture.

4.8. Field Study: LbGrid 163

.Emcu_mimﬁmfamhm_r_u_,_an}aﬁm.ac_u_n
pue ‘Buneoy-ssl) SB S255E12 SW0S MaIp Jado@isp sl

“MOYS JoU RIP 34 JEY} S9SSE[RgNS "LIgIBEIR SIUE LO MOUS J0U
aloll fuelw sleuBissp o) [oguwds pip 3y jey) ssssepgns sdinL

1 py 9

—

L)

P - “Wlew uciysanb e maip By os 'siyy
! nage ainsun sem jado@asp ayl

SUMEDIOSSE SE2|2 SW0S U0 sanHdinw
suyaads pajeMpul ssdojasap 9yl
-~

‘sabenoed eaer o) puodsauon AyBno eyl ainpelyae
apoo ayj w (s1ade|) saul| pagop melp Jadoj@nap ay)

\}f ayl|-Ajioijdgin B pesn sado|aaap ey jusssudss 0} SSE[D SIY} jO SLEY

B} Ul 0y pasn Jadoanap syl

‘pebuoeg Aayy Jen
1o 1afE] yoiym o Aiseds jou pip pue Guneoy
-83)] 5B S355E[D al0s Mmaup Jadojansp aul

T e b

‘sUmERY uonisedwon pue uoneiaubibe se em
2B 'BUMN BB SjUBLUB|dWl puE Spusixe Gurjby by

'S80BLIB|U| PUE 5955810 pEMOYS Jadojerap ayy)
S 1

Figure 4.35: LbGrid: developer’s diagram, which | annotated manually.

Chapter 4. Evaluation of the Object Graph Extraction

164

Figure 4.36: LbGrid: top-level domains which | suggested, shown with a dashed borde

165

4.8. Field Study: LbGrid

Then, the experimenter started mapping objects to domahssa first approximation, he
mapped types to domains. Of course, not all the instancestyffeg such asist, always
appear in the same domain. Also, LbGrid has several clabs¢ste instantiated only once,
e.g.,Workspace. In many cases, he used the package declaration as a guidmstamce, the
experimenter often annotated an instance of a class dddlatbe data package to be in the
DATA domain, or the correspondirigdomain parameter. The trickier cases were instances of
classes from nondescript utility packages that gave naatidin about which runtime tier they
belonged to. The experimenter organized the core typedliaw o

* UI: instances ofbTable, etc.;

* MODEL: instances of.bTableModel, etc.;

* LOGIC: has instances dfivotManager, etc.;

* DATA: has instances &forkspace, Predicate, etc.

Once the experimenter figured out the top-level domains,rbpggated them as domain
parameters, as needed, using the mnemonic domain parametes:U for UI, M for MODEL, L
for LOGIC, andD for DATA.

Prioritizing the annotation warnings. The experimenter was not planning on adding domain
links to LbGrid, so he turned off the corresponding checkstfe duration of the field study. Oth-
erwise, except for the implicit defaults or those added lgyahnotation defaulting tool, every
reference type must be annotated. Enabling all the annateliecks at once would generate tens
of thousands of warnings in the Eclipse problem window, amagbEclipse to a standstill (the
experimenter was running the tools on a modest Intel PerdigthnGHz) with 1.5 GB of mem-
ory). Moreover, one missing or incorrect annotation in théeccould potentially produce several
warnings. So the experimenter gradually enabled varionstation checks, and addressed an-
notation warnings from the most to the least important oassye discussed in Sectibn 4]4.1

(Pagd 125)

Refining the annotations. In the early iterations, we placed most objects in one of tiraain
parametersy, M, L or D. Since each domain parameter was transitively bound to detab
domain, e.g.U to UI, M to MODEL, these early snapshots showed many objects in the top-level
domains. But these early diagrams helped the experimeritee the annotations and move a
few objects between the top-level domains. In later iteretj he defined several private and
public domains, and moved secondary several objects fromp-éetel domain to a private or
public domain of a primary object, or passed objects lingéol reduce the number of top-level
objects, as we discussed in Secfion 4.4.2 (Pagk 126).

Strict encapsulation. The experimenter identified any encapsulated objects aoe@lthem in
private domains. As a first approximation, he recognizedesofithese objects if the containing
class used them only inside its private representationgahaot have any accessors that returned
them.

Logical containment. The developer’s feedback helped the experimenter defirgaqwublic
domains with architecturally meaningful objects. Usingit@l containment often involved only

166 Chapter 4. Evaluation of the Object Graph Extraction

localized changes to the annotations. For instance, thikcpldimainRENDERERS on LbTable
holds objects of typ@extCellRenderer and ColorCellRenderer. The EDITORS domain
holds objects of typ&extCellEditor andColorCellEditor. In contrast, the module view
shows all these types in omenderer package (Fid._4.34).
The experimenter defined other architecturally signifigartlic domains, such as:
* LbTableModel has aHEADERS domain to holdieaderGridPath andHeaderGroup 0b-
jects, among others;
* TableActionManager has anACTIONS public domain for LockCellsAction and
FillCellAction Objects, etc.

Linear objects. He used theinique annotation where applicable. For example, LbGrid uses
the following recurring pattern: a method performs a quaticates a container to store the
query result objects, then another object iterates theagwart elements then discards the con-
tainer without storing a reference to it.

Questions to the developer. The experimenter had limited interaction with the devetoe-
casionally, he asked the developer the following questidhg first question helped the experi-
menter identify objects that appear in the wrong concepieialThe second question guided the
abstraction of the object graph by ownership hierarchy.

* Does this instance of typebelong to domaim?

* Within this domair, is this objeck conceptually part of this other objegtso | can push

X undery?

The experimenter also asked the developer to identify thealass from which to derive the

object graph. The developer pointed him to a unit test class.

4.8.5 Results

In this section, | discuss the field study results, in termghefquantitative data we measured
(Sectio 4.8.511), and the qualitative data we gathereithglour interaction with the developer
(Sectior 4.8.5]2).

4.8.5.1 Quantitative Data

Of the time spent on-site, the experimenter spent about 86shadding the annotations, type-
checking them, and examining snapshots of the extractetopjaphs. After the experimenter
returned from the field trip, the developer emailed him som@ments regarding one of the
extracted object graphs. The experimenter spent anotheus ladjusting the annotations to
incorporate the developer’s suggestions and addressphighty annotation warnings. At that
point, the top-level object graph still did not fit on one éetsize readable page, such as the de-
veloper’s code architecture (FIg.4137). There were stillad 4,000 annotation warnings, most
of them minor.

4.8. Field Study: LbGrid 167

the!
TileVariable

predAgginfo(+).
PredicaleAgginio

. ‘
hierarchy<GridEnumType>
Hierarchy<GridEnumType>

4

iMeasureManager(+):
GridVleasureManager

‘ AggSpreacinio

gridAXis(+): ‘
GridAxis

precNamePredAgginio: ‘
‘ PredNamePredAggirio

|
. |
‘ IEnumType(+):
IEnumType ‘
‘ theGridTypeMap(+):
GridTypeMap<GridEnumType>

‘ theTie: ‘
Tie R
S el
theDialog(+): ColorPanel
TypeFiterDiakog CRES
‘ %’ LbTable ‘\ \JENDERERS |
theEvent:
LoTableCH _gidPanelPrintManager:
GridPanelPrintManager
‘ controller(+):
(Controler -y /7
nieEdtoPanel(+): _gidPanelLayouManager(+):
‘ RuleEditorPanel ‘GridPanell ayoutManager
instance(+). measureMetaDataListener(+):

MuliAggGridRoot ‘ MeastreMetaDatal istener
owned —
abstactLbPriniManager: @ i ‘
‘ AbstacbPrinManager
| ourea |
‘ _statusManager(+): ‘
GrdStatusManager ‘)

screns| \
_gidPreferences: =
GrdPreferences n
0] [
| theGBParams(x) | ou |

GridBindingPararms.

listModel(+):
ListModel

IStyeManager(+
elStyeManager i
Celarea
defaulTableEorHander:
DefauitTableErorHander ‘

MODEL

Figure 4.37: LbGrid: extracted object graph.

168 Chapter 4. Evaluation of the Object Graph Extraction

_lentMain_MainownedMultiAggGridRoot
_lentMain_MainUIRuleEditorPanel
_lentMain_MainUIPivotHandler
_lentMain_MainUITile
_lentMain_MainUIGridPanelLayoutManager
_lentMain_MainUIGridPanelPrintManager
_lentMain_MainUILbTable
_lentMain_MainLOGICPivotManager
_lentMain_MainLOGICGridPath
_lentMain_MainLOGICGridAxis
_lentMain_MainMODELMeasureMetaDataListener
_lentMain_MainMODELCellArea
_lentMain_MainMODELListModel
_lentMain_MainMODELGridStatusManager
_lentMain_MainMODELGridPreferences
_lentMain_MainMODELBloxTableCacheMonitor
_lentMain_MainMODELGridBindingParams
_lentMain_MainDATAPredicateName
_lentMain_MainUILbTableChangedEvent
_lentMain_MainUITypeFilterDialog
_lentMain_MainLOGICHierData
_lentMain_MainLOGICHierarchy_GridEnumType_
_lentMain_MainUIMeasureGroupPanelController
_lentMain_MainUILbTable_LbTableEDITORSLbTableCellEditor
_lentMain_MainUILbTable_LbTableRENDERERSColorPanel
_lentMain_MainMODELAbstractLbPrintManager
_lentMain_MainMODELDefaultTableErrorHandler
_lentMain_MainDATARangeCriteria
_lentMain_MainLOGICTileVariable
_lentMain_MainLOGICPredicateAggInfo
_lentMain_MainDATATypeRole
_lentMain_MainLOGICMultiAggInfo
_lentMain_MainLOGICTypeRoleAggInfo
_lentMain_MainLOGICGridMeasureManager
_lentMain_MainLOGICTileVariableManager
_lentMain_MainLOGICTypeAggInfo
_lentMain_MainLOGICAggSpreadInfo
_lentMain_MainLOGICPredNamePredAggInfo
_lentMain_MainMODELBloxTableActionManager
_lentMain_MainDATAIEnumType
_lentMain_MainMODELCellStyleManager
_lentMain_MainDATAArrayKey
_lentMain_MainDATARole
_lentMain_MainDATAGridTypeMap_GridEnumType_
_lentMain_MainDATAPredicateInstance
_lentMain_MainDATACommittable
_lentMain_MainDATAPredicateInfo

- - /1

-~ —ajLOGIC G

l.__—_l

| DATA 47770 T 7 ar = i
- T T T, IMODELI > Ul

Figure 4.38: LbGrid: a 30-second high-level runtime view. The dotted edges summatezetier refer-
ences.

4.8.5.2 Qualitative Data

The field study allowed us to make the following qualitativeservations.

Observation: The developer understood assigning objects tmntime tiers. The developer
seemed comfortable thinking with a granularity coarsen thia object or a class. He drew lay-
ers in his diagram that roughly correspond to packages)asiynio a high-level module view
(Fig.[4.33). He understood mapping objects to domains, &ed suggested moving some ob-
jects from one domain to another.

“The following components should move to different conéa81AxisLayoutInfo
[from MODEL] to LOGIC.”

Observation: The developer understood abstraction by owneship hierarchy. In particu-
lar, the goal is to show only architecturally significantextis in the top-level domains. The
developer understood abstraction by ownership hierancamely, pushing secondary objects
underneath primary objects, as evidenced by his statement:

“The following are too low-level to be at the outermost ti€el1Position, ...

For example, he recommended objects of typBableHeaderGroup and
TableHeaderGridPath be pushed underneath thHebTableModel object in the MODEL
tier. When provided with a printout of an extracted objectpirahe expressed interest in
viewing an object’s sub-structure. At the time of the studgy did not have a standalone
viewer. Since then, we implemented an interactive viewat #llows drilling into an object’s
substructure, zooming, scrolling and panning.

The developer also noticed when a top-level domain showedemy objects:

“All components iNDATA are also too low-level to be at the outermost tier, but | can’t
think of a larger component that you can expand to get to thot. sure how to
represent this.”

To address the developer’s last comment aboubAna tier, it is possible to elide a domain’s
structure, as in Fig. 4.838. The tool currently shows sumnedges between collapsed domains.
In future work, we will implement a feature to show edges fastw an object and a collapsed
domain.

4.8. Field Study: LbGrid 169

Observation: The developer understood object merging. By design, a S8HOLIA object
graph conservatively merges into one object all the objsittsn a domain that may alias, based
on their type information. For instanceBarChart object in theVIEw domain merges the ob-
jects referenced through the stener interface, the base clagdstractChart or its concrete
subclas®arChart, because they may alias (Fig. 2.3(a)).

The ownership domain type system guarantees that two shjedifferent domains can
never alias, however, so the analysis keeps those objestpagate.

Riehle posited that designers often use the following tegres to abstract their code archi-
tectures. They merge interface and abstract implementatass—although important for code
reuse, such a code factoring is often unimportant from agdestandpoint. They also subsume
similar classes under representative classes, to avoidukter of showing many similar sub-
classes that vary in minor aspeOOO, pp. 139-140¢ed, the developer seems to
have used the above techniques in his own class diagram.x&orpde, he used “xxx” in the
name of a few classes to represent multiple elided subdas$e also used a multiplicity-like
symbol to designate many more subclasses that he did not@htwe diagram.

So it is unsurprising that these heuristics seemed alsdivaun a runtime view. However,
ScHOLIA achieves similar results to those heuristics by mergingaibjin a domain based on
their type, to soundly handle possible aliasing.

Observation: The extracted object graph shed some light intalark corners of the system.
Upon examining an extracted object graph, the developettiited several classes that were
candidates for deletion.

“... FormulaEditor (will be deleted shortly).”

Observation: The developer seemed unsure about certain oljecommunication. A de-
veloper often has a conceptual model of their architectusieis mostly accurate, but may be a
simplification of reality(Murphy et al. 2001; Aldrich et/@002a). Indeed, the LbGrid developer
drew some connections with question marks. An extractegloblgjaph might help him confirm
the presence or absence of communication.

Observation: A runtime view may help with certain coding tasks, but not with others. The
developer was skeptical of the value of the extracted olgyegth (we recorded his opinion below
before we gave him a standalone interactive viewer):

“To step back a little and look at the diagram itself, so faraih’'t see the value of a
runtime view. | suspect that this will make more sense if |evir be able to drill
down into the components. Or do you think that | should be &bkee something
in the outermost tier itself?”

We emphasized to the developer that the intent of a runtiree v to complement, not
replace, a class diagram. Since he mentioned sequencamisgwe explained to him that a
sequence diagram is a kind of runtime view that shows metheacations for a specific use
case, but it is not a complete runtime architecture. A mooseadl related diagram would be
an object diagram which shows object instances exclusiwgtich (Gamma et al. 1994) use to

170 Chapter 4. Evaluation of the Object Graph Extraction

explain the standard design patterns. We suggested to We¢éoder that he could think of an
extracted object graph as a global object diagram, for th@endystem, and one where each box
is an aggregate of objects.

To address the developer’s comment, we showed him how bigranables obtaining a high-
level object graph (Fid._4.838), which makes explicit sel/glabal structural constraints that are
implicit in the code, e.g., that objects in thaTA domain do not reference objects in t@DEL
domain.

When reasoning about modifiability, a code architecture neambre helpful than a runtime
architecture. The developer may have been focused on sské b@cause he drew a detailed
class diagram mostly from memory, and referred to Eclipsg @ccasionally to verify the name
of a type. He seemed apologetic about the current designdpavany subclasses and a parallel
inheritance hierarchy. In the current designidTable extendsBloxTable extends.bTable.

A parallel inheritance hierarchy exists betwe®ri dTableManager, BloxTableManager and
LbDefaultTableManager.

He mentioned that one could refactor away some of thoseadas®sl move their functionality
into their super-classes (the rationale for the currernbfawy is that super-classes are oblivious
to accessing data from a workspace). He even asked the exgueer if he could think of a
design that did not require proliferating sub-classes.

Since he was very familiar with the LbGrid code, he did not iediately see the value of a
runtime architecture. We posit that because the runtimatacture abstracts away the factoring
into interfaces, base classes and subclasses, it maylgdiaaimpler to explain to a developer
who is completely unfamiliar with the code, such as a new. hire

Observation: A runtime architecture can help explain listeners. A runtime architecture can
help answer questions that a developer might have aboutfamiliar code base, such as: What
instances point to what other instances? Thus, an objegahgliagram can help explain what ob-
jects get notified during a change notification. In many cad&f_ class diagrams or call graphs
do not help answer such questions, because they do not sktamaes. For example, using the
Listeners system (Chapter 2), an object diagram (ffigs. R[2(&(b)) highlights the reference
structure betweepieChart, barChart andmodel better than a class diagram (Fig.12.2).

LbGrid uses listeners heavily. Several classes have lidtsteners and implement various
listener interfaces. Neither the developer’s diagram moa@tomatically generated class dia-
gram, explain how the listeners work in LbGrid. We posit ttlas aspect of the architecture
would be particularly challenging for a new hire. In futurenk, it may be useful to identify
bug reports or enhancement requests that require undeirggathe listeners in LbGrid, and for
which the extracted runtime architecture would be helpful.

Observation: Picking the right labels for architectural elements is crucial. Without care-
ful labeling, developers may not recognize the models thavarse engineering tool extracts
(Murphy et a“;O_dl). Indeed, during the field study, the ttgwer insisted on specific labels for
the various tiers, e.g., uS@MODEL instead oMODEL (we still useMODEL here for consistency with
prior documentation). In particular, with every OOG withialinhe was provided, he seemed to
always visually scan the OOG, looking for instances of the ¢gpes from his class diagram:

4.8. Field Study: LbGrid 171

“Where isGridPanel? | don't see it here.”

Observation: The developer expected to see multiplicitiesrothe object graph. Indeed, the
developer’s diagram has specific multiplicities on sevasabciations. Many reverse engineering
tools show multiplicities on class diagram. The developggested that showing this informa-
tion on the object graph would be helpful, so this is a featweth considering in future work.
Of course, there are limits to the information that can beaexéd statically from the code. In
particular, a static object diagram is never going to showipiicities that are as accurate as the
ones in a dynamic object diagram, but the latter reflect gpécsic program runs.

Observation: The developer expected the tools to render a jugement on the recovered
architecture. Many architectural extraction case studies evaluate tladitguof a recovered
architecture by computing some metrics, e.g., on dynamiplaeg (Arisholm et al. 2004). An-
other avenue would be to check and measure the structurf@rotemce of the built architecture
against a designed one, but this requires establishingtfettruntime architecture. This is the
approach that SHoLIA adopts, as described in the following chapters.

Observation: The developer seemed to favor an unsound abstréed task-specific view over

a sound runtime architecture. A tool that extracts a class diagram automatically wouldssho
at least 300 classes for LbGrid, organized by packages. Hawthe developer’s manual dia-
gram had many fewer types. So the question is whether a rargnchitecture should soundly
reflect all objects and relations that exist at runtime, dy ¢imose that are of current interest to
the developer. In a principled approach liker®LIA, the main abstraction technique is through
the use of ownership hierarchy. A developer changes thetatms to push secondary objects
under primary objects, and sometimes changes the code pogrict encapsulation. On the
other hand, an unprincipled approach would allow a develtpelide any object or domain in
the extracted architecture. In future work, we will considays to make a runtime architecture
reflect more directly the types that are of interest to a agea|, while maintaining soundness.

4.8.6 Validity
We identify the following confounding factors with the fiedtlidy.

Experimenter bias. The experimenter understood ownership domain annotatmasde-
signed several of the tools that he used himself during theedteady. Moreover, he had access to
the code for the tools and customized them to the task to nEeidata entry by loading settings
from a file. However, a typechecker kept him honest, i.e.,dudccnot just insert any annotation
or manipulate the extracted object graphs. In a few ins&gritbe experimenter backtracked on
certain annotations he had just inserted.

Code unfamiliarity. The experimenter was completely unfamiliar with the codelefeloper
who is familiar with the code could perhaps add better artiwota faster.

172 Chapter 4. Evaluation of the Object Graph Extraction

Developer motivation. The field study occurred in a workweek during which the depets
were busy meeting a product ship deadline. As a result, threxg \'ess motivated to help the
experimenter. Moreover, the developer seemed skepticaitdlve method and the tool.

Domain familiarity. LbGrid was somewhat similar to the JHotDraw subject systemekperi-
menter studied previously, in that they are both GUI-baggdieations that used the Java Swing
and AWT libraries. The experimenter also had some experiwittethe application domain,
having previously developed a reusable grid control.

4.8.7 LbGrid Summary

The field study helped us confirm the following. First, we conéd that an outside developer
understood abstraction by ownership hierarchy and by typesond, using only static analysis
was compelling during architectural extraction, even withconsidering issues of soundness
and the need to reflect all possible program runs. For a yaoieteasons, it would have been
difficult to setup and run the LbGrid system in order to use @higectural extraction method
based on dynamic analysis. In addition, using a dynamicyaisalvould have required the ex-
perimenter to learn how to use the LbGrid system in order taggod coverage. This would
have been difficult because it would have required popgatimlatabase with appropriate test
data, and learning how to navigate a fairly complex userfate with many user-selectable op-
tions. Finally, based on my own previous experience withh8ava [(Abi-Antoun and Coelho
2005; Abi-Antoun et al. 2007a), | could not have re-engieddrbGrid to ArchJava in the same
few days that it took me to add the annotations, even afteyuating for possible tool and lan-
guage familiarity. Thus, adding annotations to an existipggiem seems more lightweight than
re-engineering the system to use an extended languageridkeldva.

The goal of the field study was to better understand the psanfesdding the annotations. In
addition, it would have been nice to demonstrate the valdleeoéxtracted architecture by show-
ing how it can help identify undocumented information or ttadict documented information,
or help a developer in a typical code modification task. Dughéotime constraints on the field
study, we never got to concretely demonstrating the valukeoéxtracted architecture.

4.9 Evaluation based on Cognitive Framework for Design

4.9. Evaluation based on Cognitive Framework for Design 173

IZA"

uonoe.x3 ydeis 109alqo ay Jo uonenjens ‘ Jaideyd

Table 4.1: Evaluation of the ArchRecJ tool based on the Cognitive Framework fsigbé_S_IQLe;Le_t_éL_l&bg).

Cognitive Design Element

Corresponding feature in the tool

Enhance bottom-up comprehension
E1l: Indicate syntactic and semantic relationships

Indicate logical containment or strict encapsulation;
view field declarations that@Object merges

E2: Reduce effects of delocalized plans

Handle inherited fields and domains;
Show objects in actual domains bound to formal domain parameters

E3: Provide abstraction mechanism

Developer-specified annotations organize objects into groups (with mgrgin
Hide all the private domains or the internals of a selected object

Enhance top-down comprehension
E4: Support hypothesis driven comprehension

Start at selected root object and drill down; optionally visualize formals

E5: Provide overviews at various levels of abstract

ohimit depth of ownership tree and elide the “internals” of a sele@€xbject

Integrate bottom-up and top-down approaches
E6: Provide views of multiple mental models

Show an approximation of the runtime structure at compile time

E7: Cross-reference multiple mental models

Label aDObject with a list of types; optionally show variable names

Facilitate navigation
E8: Provide directional navigation

Navigate up and down ownership tree

E9: Provide arbitrary navigation

Search for a type, domain or field by name

Provide orientation cues
E10: Indicate the current focus

E11: Display path that led to current focus

Show a nested graph starting from the root object

E12: Indicate options for further exploration

Reduce disorientation effects
E13: Reduce effort for user-interface adjustment

Main window shows the unfolding of tHeGraph

E14: Provide effective presentation styles

The DGraph is laid out automatically; the tool supports filtering options

Show currently selected element in ownership tree to the left of the visuatizatio

Show all domains, objects in domain; clicking on object selects it in ownerstgp tr

Table[4.1 presents an evaluation of the tool against a sdtwiaualization taxonomy used
for software exploration tools, the Cognitive FrameworkBDasign (Storey et al. 1999), with the
usual disclaimers against self-evaluation.

Future work includes conducting additional evaluationgl®n and Mack 1994) in areas
where visualizing the runtime architecture is crucial foogram understanding, such as when

tuning performance (Walker etlal. 1998), or distributingepplication 2).

4.10 Discussion

We now discussion our evaluation of the annotations andt#tie ainalysis.

4.10.1 Research Questions (Revisited)

In this section, | discuss how well the evaluation answehned¢search questions (Section 4.2).

RQ1 — Precision: In practice, the static analysis does produce object grdqattdrave sufficient
precision. The combination of precise generic types andagdio@nnotations seems ade-
quate in most cases.

RQ2 — Abstraction by ownership: In practice, a hierarchical object graph provides architec
tural abstraction by showing an order of magnitude feweedsjin the top-level domains,
compared to a flat object graph.

RQ3 — Abstraction by types: In practice, abstraction by types achieve additional &echural
abstraction in an object graph, even in the presence of anidritance hierarchy, such as
the one in JHotDraw.

RQ4 — Iteration: In practice, | was able to iterate effectively the procesadifing the owner-
ship annotations and extracting object graphs that havedbeed architectural abstrac-
tion.

RQ5 — Annotations: In practice, | was able to add annotations that describd,loeadular in-
formation. The process is iterative and self-correctingiever encountered a situation
where | was unsure of the annotation to add, needed the iatiah to add the annota-
tions, but the visualization itself needed the annotatibosuld always add an annotation
that typechecked, then go back and refine it as needed.

Moreover, the annotations that | added, eMgDEL, VIEW, CONTROLLER, were mostly nat-

ural and consistent with engineering intuition. In paréeul did not define fake domains
such a®10DEL1 andMODEL2 to compensate for the absence of an alias analysis or for the
other sources of imprecision in the analysis (Sediion RFa8e 69).

RQ6 — Value: In practice, | indicated several instances of how an ex@ch€@OG highlights
potentially useful information about a system’s runtinmeisture.

4.10.2 Evaluation Critique

Our evaluation of the object graph extraction suffers frofevaweaknesses.

4.10. Discussion 175

Subject system selection. One criticism is that we initially evaluated the approachimmsame
subject systems we used to develop the approach. For iestdre JHotDraw and the Hill-
Climber case studies were formative. However, the LbGrid/Apitlyds case studies were more
summative.

Lack of comparison. Since there is other prior work in architectural recovergpaparative
validation would be useful. Ideally, one should apply salarchitectural recovery approaches
to the same subject system (say, JHotDraw) and compare whéers less onerous, more direct,
and qualitatively evaluate the output of the various todtkwever, the only tool that claims
to extract runtime architecture statically, XaR (Mendonca and Kramer 2001), supports only
procedural code.

Missing target architecture. None of the subject systems we annotated came with an authori
tative target architecture to guide the annotation prodesieed, defining a reference or a target
architecture is a research topic in its own right. In the cd4dGrid, | had access only to a rough
guide based on a code architecture, so | was effectivelyidgfthe target runtime architecture
during the process of adding the annotations.

Missing generic types. The code bases for JHotDraw and HillClimber did not already us
generic types. In some cases, refactoring to generics warn@l, and uncovered some poten-
tial defects, e.g., when the samector object was used to store objects of different types, such
asString andInteger objects.

Missing effort data. | conducted the formative JHotDraw and HillClimber case &sith dif-
ferent phases. In particular, | stopped the case studié®iadrly stages to fix several important
bugs in the tool chain. So, | do not have accurate measurée dite spent adding annotations
to those systems. However, during the field study, we didfallyaneasure the time needed to
apply the approach, as we discussed above.

4.10.3 Soundness

All the subject systems we annotated still have several atioa warnings, which weakens
the claims that the extracted object graphs are sound. Aslitige these remaining annotation
warnings could involve one of the following:

* Increase type system expressivenesBhere are several known expressiveness challenges
in the underlying type system. So one way to address thosangaris to extend the type
system (See Section 9.2.2, Pagel308);

* Refactor the code. In some cases, refactoring the code could allow for it to b@oan
tated successfully, using the current type system. Of eguings is not an ideal solution.
However, some of the code that cannot be annotated is aldolifmting recommended
practices of object-oriented design and programming. Qaes®f warnings is due to the
use of static fields, which are typically challenging for th@snership type systems.

176 Chapter 4. Evaluation of the Object Graph Extraction

Table 4.2: Performance measurements of the architectural extradt{@@G.shows the lines of cod®©0G
measures the extraction time in minutes and seconds on an Intel Pentium 4)@i@HzGB of memaory.
WARN is the remaining annotation warningsBST indicates which abstraction by types was used.

System LOC | OOG ABST WARN
JHotDraw | 15,000| 2:18 | Trivial types / Design intent types 60
HillClimber | 15,000 0:26 Trivial types 42

* Inspect the code and suppress innocuous warninghn annotation warning contributes
to unsoundness in an extracted object graph only if elirmgahe warning would result in
new objects or edges in the object graph. One could manumsipeict the problematic lines
of code, and manually suppress the annotation if one camndiete that such a warning
does not make the object graph unsound. Still, one advaofafhe approach in that case
is that the developer does not have to inspect the entire lzaske

4.10.4 Performance

Tablel4.2 measures the execution time of the static analpsisveral subject systems. The O0G
time includes parsing the program’s abstract syntax treettieve the annotations and extracting
the object graph. Overall, the OOG tool is sufficiently iatgive to allow iteration.

4.10.5 Scalability

Since the biggest system we analyzed was only 30 KLOC (LHGwe cannot claim that we
demonstrated &HOLIA’s scalability. However, when compared to many publishethigéectural
extraction case studies, even 30-KLOC does not fare todypoor

4.11 Summary

| evaluated the object graph extraction analysis usingraéweal medium-sized programs that |
annotated manually. From an annotated program, | showed ¢aa use a tool to extract stati-

cally a hierarchical object graph that conveys meaningfstractions. Indeed, these hierarchical
object graphs seem to scale much more effectively than thiesymonding flat object graphs that
previous static analyses extract. In addition, an extchotgect graph can give various insights
by identifying undocumented information or contradictingnual documentation.

There are two questions, however, that the evaluation ptedén this chapter does not an-
swer. The first question is whether an extracted object gcaptesponds truly to a standard
runtime architecture. In Chapter 6, | discuss a separatgsindhat raises the level of abstrac-
tion of an object graph, and abstracts it into a C&C view.

The second, perhaps more important question is when totst@ping the process of refining
the annotations and extracting OOGs. One strategy is tddimethe annotations in the code and
the abstraction by types to make an extracted object grapihasito a posited architecture, to
enable analyzing the conformance of the implementatiordtsagned architecture. In Chagtér 6,

4.11. Summary 177

I make this evaluation criterion more precise by abstrgctim extracted object graph into a built
architecture, then analyzing the conformance of a buihigecture to a designed one.

Analyzing conformance requires identifying and reconglithe key differences between
the built and the target architectures, so the next chafteagftef’b) addresses the problem of
synchronizing between two architectural views.

Credits

Wesley Coelho helped me re-engineer the HillClimber appboatto ArchJava

(Abi-Antoun and Coelho 2005; Abi-Antoun etlal. 2007a).

Acknowledgements

The author thanks Alan Mackworth for granting us permisgmstudy the HillClimber code
base and publish details of the case study. The author aséghiviolham Aref and the devel-
opers from LogicBlox Inc. for hosting the weeklong on-sitedri field study and granting us
permission to publish details of the field study. My thesimadgttee offered especially timely
and useful advice on how to conduct a field study. In addit\ary Shaw, Thomas LaToza and
Christopher Scaffidi gave us helpful comments on how to ptdabkerfield study results.

178 Chapter 4. Evaluation of the Object Graph Extraction

Chapter 5

Architectural Synchronization@

5.1 Introduction

Software architects often face the problem of reconcilifffigignt versions of architectural mod-
els including differencing and sometimes merging archited views—i.e., using the difference
information from two versions to produce a new version thatudes changes from both ear-
lier versions. For instance, during analysis, a softwachitgct may want to reconcile two
Component-and-Connector (C&C) views representing two variard product line architecture
th_en_el_dlLZD_d3). A runtime analysis could use the diffezanéormation to perform archi-
tectural repair (Dashofy et al. 2002). During evolutiore tlifference information between two
versions can help focus regression testing efbeLS_LMmﬁtlaﬂ[ZD_QB).

Once the system is implemented, an architect may want to ammpdesigned C&C view
against a C&C view retrieved from the implementation usingotss architectural extraction
techniques. This is the approach that-®LIA takes to analyze communication integrity in the
target architecture, following thextract-abstract-checktrategy.

Several techniques have been proposed for differencingreanding architectural or design
views. Most, however, do not detect differences based ostsiral information. Many assume
that elements have unique identifiers (Alanen and Forre§;208st et all 2003; Mehra et/al.
M). Others match two elements if both their labels annl thees matchL(thn_elﬁL_Zd%),
which is often infeasible when dealing with views at diffieréevels of abstraction. Many tech-
niques detect only a small number of differences. For itcgaArchDiff only detects insertions
and deletionsl (van der Westhuizen and van der Hoek| 2002; Gl#n2003), possibly leading
to the loss of information when elements are renamed or mausass the hierarchy. Tracking
changes, using element-level versioning, helps inferteghl operations, such as merges, splits
or clones, in addition to the low-level operations, suchresits and deletemglﬂoo&
Roshandel et al. 2004). But such an approach requires buitdingtools or changing existing
tools to monitor the edits, and cannot handle legacy arciuital models.

We propose an approach that overcomes some of these longaby differencing and merg-
ing architectural views based on structural informatiamour approach, we leverage the hier-
archy in the architectural views, and use a tree-to-tregection algorithm to identify matches,

Portions of this chapter appeared|in (Abi-Antoun et al. 2008-Antoun et all 2008)

179

and classify the changes between the two views. The algoutes the optional type informa-
tion, whenever available, to avoid matching view elemelms are incompatible, thus speeding
execution and improving the match quality.

At the core of the approach is a polynomial-time tree-te-twerrection algorithm, MDIR,

9) that extends another optimal tree-to-treeection algorithm for unordered la-
beled trees that detects renames, inserts and de el(0@), and generalizes it to
additionally detect restricted moves. The algorithm algup®rts forcmg and preventing matches
between elements in the views under comparison.

| developed a set of tools for the semi-automated synchatiniz of C&C views that uses
the MDIR algorithm. The first tool, ArchJ2Acme, can syncheena designed C&C view with
a built C&C view retrieved from an ArchJava implementatiomaogher tool, ArchSynchro, can
more generally synchronize two C&C views in Acme, regardiddsow they were obtained. |
evaluated the tools to find and reconcile interesting diffiees in real architectural views.

The chapter is organized as follows. Secfion 5.2 descrimeshallenges in differencing and
merging architectural views, the underlying assumpti@mg the limitations of our approach.
Sectior 5.8 summarizes our novel tree-to-tree correctigorithm (Abi-Antoun et al. 2008). In
Sectior 5.4, we use the algorithm to synchronize architet@&C views. Sectiof 515 illustrates
the approach using extended examples on real architegiaves.

5.2 Architectural View Differencing

A software architecture can generally be described as dgsaplifferencing and merging archi-
tectural views is a problem in graph matching. Graph matshieasures the similarity between
two graphs using the notion of graph edit distance, i.e.xadpces a set of edit operations that
model inconsistencies by transforming one graph into adqiBonte et &l. 2004). Typical graph
edit operations include the deletion, insertion and stigin of nodes and edges. Each edit
operation is assigned a cost. The costs are applicatioendiemt, and model the likelihood of
the corresponding inconsistencies. Typically, the mdeyia certain inconsistency is, the lower
is its cost. Then the edit distance of two graghs&ndg, is found by searching for the sequence
of edit operations with the minimum cost that transfayminto g». A similar problem formula-
tion can be used for trees. However, tree edit distancerdiffem graph edit distance, in that
operations are carried out only on nodes and never direntgdges.

Graph matching is NP-complete in the general chs_e_(Q_iné[ED_aﬂ) Unique node la-
bels enable processing graphs efficiently (Dickinson &2@04), which explains why many ap-

?roaches make this assumption, e.g., (Alanen and Porred 20kt et all 2003; Mehra et al.

). Optimal graph matching algorithms, i.e., those taat find a global minimum of the
matching cost if it exists, can handle at most a few dozen sightessmer 1996; Conte et al.

). Non-optimal heuristic-based algorithms are moedafidte, but often make restrictive
assumptions. For instance, the Similarity Flooding Algori (SFA) “works for directed la-
beled graphs only. It degrades when labeling is uniform alineeted, or when nodes are less
distinguishable. [It] does not perform well [...] on undited graphs having no edge labels”

(Melnik et al 2002).

Several efficient algorithms have been proposed for tresscahierarchical structure, so our

180 Chapter 5. Architectural Synchronization

approach focuses on hierarchical architectural views. &\fiok all architectural views are hierar-
chical, many use hierarchy to attain both high-level unideding and detail. In a C&C view, the
tree-like hierarchy corresponds to the system decompaosibut cross-links between the system

elements form a general graph. Many approaches are hiaralr¢Apiwattanapong et al. 2004;
Bﬂgh&&nﬁﬁdbmmgﬁnﬂﬁl&ﬁ%%). So our choibaridly new. However, we relax

the constraints of existing approaches as follows:

No unique identifiers. Most techniques do not detect differences based on staldtdfiorma-
tion. Many assume that elements have unique identifiersn@sl@nd Porres 2003; Ohst et al.
2003; Mehra et inOJJS). Others match two elements if bagir tabels and their types match
(Chen et alll 2003), which is often infeasible when dealindiwiews at different levels of ab-
straction. Making the assumption of having unique idemtsfenables the use of exact and scal-
able algorithms that can handle thousands of nades (Digkiesal! 2004).

Unfortunately, architectural view elements often do notehanique identifiers. This is par-
ticularly the case for a built architecture extracted fromimplementation using a tool. For
maximum generality, SHOLIA does not require elements to have unique identifiers.

No ordering. In the general case, an architectural view has no inherelariog between its
elements. This suggests that an unordered tree-to-treection algorithm might perform better
than one for ordered trees. Many efficient algorithms ardahle for ordered labeled trees, e.g.,
(Shasha and Zhang 1997). In comparison, tree-to-treeatimmefor unordered trees is MAX
SNP-hard|(zhang and Jiang 1994). Some algorithms for uneddeees achieve polynomial-
time complexity, either through heuristic methods, e.@hdwathe and Garcia-Molina 1997;
Mﬁ%g_emuoﬁ:{;ﬂaghmnﬁmjboq, or under additiorsainagtions, e.g.| (Torsello etlal.
).

Insertions and deletions only. Many architectural comparison techniques detect only dlsma
number of differences. For instance, ArchDiff (van der \Weien and van der Hoek 2002;
Chen et a|||_20_®3) detects only insertions and deletions,iggdsesing information when ele-
ments are renamed or moved across the hierarchy.

Name differences between two C&C views can arise for a vadgétgasons. For instance,
the architect may update a name in one view, and forget totep@ther view. Names are
often modified during software development and maintenaAceame may turn out to be in-
appropriate or misleading due to either careless initialag or name conflicts from separately
developed modules (Ammann and Cameron 1994). Furthermevelapers tend to avoid using
names that may be in use by an implementation framework @ariiba minor detail for the ar-
chitect. Finally, architectural view elements may not hpeesistent names or their names may
be generated automatically by tools.

This suggests that an algorithm should be able to match retiaements. Identifying an
element as being deleted then inserted when, in fact, it @@sned, would result in losing prop-
erty information about the element, even if this producescstirally equivalent views. These
architectural properties, such as throughput, latency, &te crucial for many architectural anal-

yses, e.g.] (Spitznagel and Garlan 1[998).

5.2. Architectural View Differencing 181

In the following discussion, enatchednode is a node with either axactly matchindabel
or arenamedabel.

Hierarchical moves. Architects often use hierarchy to manage complexity. Inegai two
architects may differ in their use of hierarchy: a compormmpiressed at the top level in one view
could be nested within another component in some other vidig suggests that an algorithm
should detect sequences ioternal node deletiongn the middle of the tree, which result in
nodes moving up a number of levels in the hierarchy. An algorishould also detect sequences
of internal node insertiongn the middle of the tree, which result in nodes moving dowa th
hierarchy, by becoming children of the inserted nodes [Ef).

Manual overrides. Structural similarities may lead a fully automated aldamitto incorrectly
match top-level elements between two trees and produce @sahle output. Because of the
dependencies in the mapping, one cannot easily adjustreatonatches after the fact. Instead,
we added a feature not typically found in tree-to-tree atio@ algorithms. The feature allows
the user to force or prevent matches between selected veameelks. The algorithm then takes
these constraints into account to improve the overall mafdhe user can specify any set of
constraints, as long as they preserve the ancestry relagioveen the forcibly matched nodes.
In particular, ifa is an ancestor of, a is forcibly matched ta:, andb is forcibly matched tal,
thenc must be an ancestor df

Optional type information. Architectural views may be untyped or have different or meo
patible type systems. This is often the case when comparavgs\at different levels of abstrac-
tion, such as a designed conceptual-level view with a bujiementation-level view. Therefore,
an algorithm should not rely on matching type informatiamd ahould be able to recover a cor-
rect mapping from structure alone if necessary, or fromctting and type information if type
information is available. An algorithm could however taklvantage of type information, when
available, to prune the search space by not attempting tcmedéments of incompatible types.
If the view elements are represented as typed nodes, at thdeast, an algorithm should
not match nodes of incompatible types, e.g., it should ndtima connector. to a componeny.
If architectural style information is available, additadrarchitectural types may be available and
could be used for similar purposes. For instance, an algorgan avoid matching a component
of typeFilter, from a Pipe-and-Filter architectural style, to a compaméilypeRepository,

from a Shared-Data architectural style (Shaw and Garlaf)199

No monitoring changes. Tracking changes, using element-level versioning, heifes ihigh-
level operations, such as merges, splits or clones, iniaddib the low-level operations, such
as inserts and delet rEeZMD_&LO_Shaﬂd_éILe_La] 2804)such an approach requires
building new tools or changing existing tools to monitor #dits, and cannot handle legacy
architectural models. For maximum generalitg HOLIA assumes a disconnected and stateless
operation.

182 Chapter 5. Architectural Synchronization

Tl T2

rename(a-->a’)

5@

delete(a)

insert(a)

Figure 5.1: Tree edit operations.

5.2. Architectural View Differencing 183

Comparable views. The two views under comparison have to be somewhat struigtsan-
ilar. When comparing two completely different views, an aitjon could trivially delete all
elements of one view, and then insert them in the other viemaddition, the two views must
be of the same viewtype, and must be comparable without aw wansformation. Checking
the consistency of different but related views, such as a Ulldiss diagram and a UML se-
guence diagram, is a problemview integrationdMB), and is outside the scope of this
dissertation.

No merging/splitting. Our approach does not currently detect the merging or isgjittf view
elements. Merging and splitting are common practice, beid#ficult to formalize, since they
affect connections in a context-dependent MLdQﬂLDQS)lSWe leave merges and splits to
future work.

5.3 Tree-to-Tree Correction

M% developed an algorithm for the comparison ofdered labeled trees, MDIR
(Moves-Deletes-Inserts-Renames), which generalizes enraaptimal tree-to-tree correction
algorithm kIQLs_elID_el_élL_ZQJbS), which we will refer to as PHHere, we give an overview
of the MDIR algorithm and leave the details, including itepdo-code definition, elsewhere

(Abi-Antoun et all 2008; Nahas 2{109).

5.3.1 Overview of Algorithm

We illustrate the MDIR algorithm on a small example of comipatwo trees/; and7;. MDIR
exhaustively computes from bottom to top the cost of mappimch node ¥} to every other
node inT;. The computed costs are stored in a cost matrix. Followiaglyfmamic programming
paradigm, MDIR uses the comparison on the high depth nodesnpare the low depth nodes.
The example also illustrates the usefulness ofstiecessor setpproach, since bipartite match-
ing cannot match subtree nodes, because of the need toyaéisehierarchical constraints.

MDIR starts by computing the cost of matchifgto d (Fig.[5.2). Similarly, MDIR computes
the costs of matchingD, e), (D, f), (D, g), ..., (E,d), (E.e), (E,g). Next, MDIR computes
the cost of matching3 to d (Fig.[5.3). Then, MDIR computes the cost of matchiBgo b
(Fig.[5.4). This requires knowing the cost of the optirmatcessor set mappirigr B andb. At
this point, MDIR has computed the costs of matching evergeledent ofB to any node in the
second tree, because of the post-ordering of the trees.

The optimal successor set mapping corresponding to the patn is computed as follows
(Fig.[5.8). First, take all the node pairs, where the firshite a descendent @, and the second
item is a descendent éf i.e., the se{ (D, d), (D, e), (F,d), (E,e)}. The optimal mapping will
clearly be a subset of this set. To obtain that optimal mappive examine all mappings—
except the ones that have been pruned because the boundsrarogt showed they could not
be optimal. The other constraint is: (if, y) is a pair in a mapping, neithet, nory, nor any of
their ascendents or descendents, can appear in any othen pla@ same mapping. Thus, the

184 Chapter 5. Architectural Synchronization

PO PN

(0, d)=0[(D, e) = 1| (D, H) = 2[(D, g) =3|(D, b) =..|(D, &) =...
(., d)=1|E e =0[E H=1|E g =2|E b)=.]E a=..

Figure 5.2: CosT(D,d) = cost of editing label oD to d, i.e., the measure of similarity between the labels,
in this case).

\
r"‘

(D, d)=0|(D,e)=0[(D, H=2[D, g)=3|(D, b) =..|[D, a) =...
(. d)=1|E e)=0|(E n=1|E g)=2|E b)=.|E a)=...

B,d)=19B.e)=../B.)=...[B.g)=..{B. b)=..|(B, a) =...

Figure 5.3: Cos1(B,d) = CosT(deletingB’s children) + GsT(editing B’s label). Assuming the cost of
a deletion is 5 times a unit cost,d8T(B, d) = CosT(deletingD) + CosT(deletingFE) + CosT(editing

B'slabel) =5+5 + 2.
o Ol
"9 @ @ 2
© (& & W © O -

(0, dy=0|(D, &)= 1| (D,) = 2| (D,) =3|D. b) =..|D, @) =...
(. d)=1|E e =0|(E H=1|E g)=2|E b)=..|E a) =...

5.9 -12B.0)= |B.0- (8.0~ [BID)Z0E.2) -

Figure 5.4: CosT(B,b) = CosT(successor set mapping 0B, b)) + CosT(editing the label ofB to b).
CosT(D,d) and GST(F,e) have been previously computed, thus€(B, b) = CosT(D,d) + COST(Ee)
+0.

optimal successor set mapping a8, b) is {(D, d), (E,e)}. Finally, MDIR computes the cost
of matchingB to a (Fig.[5.8).

At the end of this phase, MDIR has determined the “best” ssgmeset mapping, and stored
it for the next phase, when MDIR will retrieve the best match&IDIR could avoid keeping
the optimal successor set mapping for each node pair in thepivase, to reduce the space

5.3. Tree-to-Tree Correction 185

Figure 5.5: Computing the cost of matching to b requires thesuccessor set mappimg the pair(B, b).
Thesuccessor set mappimg (B, b) is the sef{ (D, d), (E,e)}.

(A) (a)
® (& ¢ @§ é fiif:ﬁif 0

(D, d)=0|(D, &)= 1| (D, H = 2| (D, g) =3|(D, b) =..|D, &) =...
(E,d)=1|(E,)= 0| (E,) =1]|(E, g) = 2|(E, b) =...|[E, a) =...

T

B,d)=14(B,e)=..|(B, f)=..|B, g) =B, b)=0|B,a) =2

Figure 5.6: CosT(B,a) = CosT(successor set mapping d8(a)) + CosT(editing the label ofB to a) +
CosT(deletingb, f andg).

complexity toO(N?). But it is simpler conceptually to store this informationgdahis is how we
currently implemented MDIR.

In the second phase, MDIR uses a recursive procedure to dentipel match list, i.e., to
determine what node corresponds to what other node. MDIR tirgefollowing recursive for-
mulation. The list of matches for subtree pair rootettat/) consists of z,), in addition to the
list of matches of each pair in the successor set mappiiig, of .

MDIR starts with (A,a) (Fig. [5.7). The successor set mapping ofi,a) is
{(B,b),(F, f),(G,g)}. So, MDIR first addg A, a) to the match list, and then adds the pairs
(B,b), (F, f), and(G, g) to the work list. Then, MDIR popé&B, b) from the work list, adds it to
the match list, and adds to the work list the successdiset), namely,(D, d) and(E, e). Next,
MDIR pops(F, f) from the work list, adds it to the match list, and proceeds|anty.

5.3.2 Forcing and Preventing Matches

Manual overrides are not a standard operation in most tré¢eé correction algorithms. MDIR
has the ability to force and prevent matches between a notleafd; and another node in tree
TQ.

Preventing a match between two nodendj can be done by assigning a very large cost
to the corresponding entry in the cost maifi%|[j]. But forcing a match between two nodes is
more difficult, due to the necessity of avoiding the deletibthe forcibly matched nodes and at
the same time allowing the deletion of some of their ancest®n explanation of the solution is

in (Abi-Antoun et al 8: Nahas 2d09).

186 Chapter 5. Architectural Synchronization

Step Work List Match List

1 (A8)

2 (B.b)(F.)(G.9) (A,a)

3 (F.H(G.9)(D.d)E.e) (Aa)B.b)

4 (G,0)(D,d)(E.e) (A,a)(B,b)(F.f)

5 (D,d)(E.e) (A,a)(B,b)(F.f)(G,9)

Figure 5.7: Computing the match list.

5.3.3 Runtime and Memory Complexity

In practic@, the observed runtime for MDIR i©(K N?), whereK is a large constant. In com-
parison, THP has a worst case running timegfl* N?), whered is the maximum degree of a
tree andl << N (Torsello et al. 2005). Regarding memory requirements, btR and MDIR
could be implemented i@(N?) space, at the expense of additional complexity. Our cufireift
implementation require®(dN?) space, and MDIR requireS(bN?) space, wheré is a large
constant factor.

5.4 Architectural View Synchronization

In this section, we discuss how we use a tree-to-tree casreatgorithm to synchronize hierar-
chical graphs corresponding to C&C runtime architectures.

5.4.1 General Approach

We represent the structural information in a C&C view as as#ivked tree structure that mir-
rors the hierarchical decomposition of a system. The tree ialcludes some redundant infor-
mation to improve the accuracy of the structural comparisan instance, the subtree of a node
corresponding to a port includes additional nodes for alltbrt’s involvements, i.e., all the com-
ponents and their ports reachable from that port. Each reodiedorated with properties, such as
type information. The type information, if provided, poptds a matrix of incompatible nodes
that may not be matched. That matrix also includes optiosef-apecified constraints to force
or prevent matches.

A graph representing a C&C view can generally have cycles. ilRépresenting an archi-
tectural graph as a tree causes each shared node in the grappear in several subtrees. We
consider one of these nodes tikefining occurrenceand add across-linkfrom each repeated
node back to its defining occurrence. These redundant nadhde, they significantly increase

2A more formal analysis of the algorithm’s complexity is inifiBAntoun et all 2008; Nahas 2009).

5.4. Architectural View Synchronization 187

W ¥ H
(a) (b) (c) (d)

Figure 5.8: Graphical overlays to indicate differences: Ifig. 58(a) indicatesth Fig.[5.8(b) indicates
arename Fig.[5.8(c) indicates amsertion and Fig[5.8(d) indicatesdeletion

the tree sizes, greatly improve the tree-to-tree corre@axuracy. However, they may be incon-
sistently matched with respect to their defining occurrenegher in what they refer to, or in the
associated edit operations.

We work around these inconsistent matches using two pad3esng the first pass, we
synchronize the strictly hierarchical information copesding to the system decomposition,
i.e., components, ports and representations. During ttenggpass, we synchronize the edges in
the architectural graph. The post-processing step is siatgghat point, since it has the mapping
between the nodes in the two graphs.

Synchronization is a five-step process: (1) setup the spnctation; (2) optionally view and
match types; (3) view and match instances; (4) optionakywand modify the edit script; (5)
confirm and optionally apply the edit script. The final steppgsional because the architect may
decline the edit operations for various reasons, or may tegested only in a change impact
analysis[(l&ﬂkhaa.l’_el_ﬂl._l&b%. Because Steps 1 and 5 arghdtaward, we will only discuss
Steps 2-4.

In Step 2, manually matching the type structures betweetnbe/iews produces semantic
information that speeds up the comparison. This optioriatination can also reduce the amount
of data entry for assigning types to the elements that thesedpt will create.

In Step 3, matching instances proceeds as follows: (a) ekl structured data from the
two C&C views to be compared; (b) use tree-to-tree correc¢tiodentify matches and structural
differences; and (c) obtain an edit script to merge the tveavsi

The tool shows the structural differences by overlayinghgcon the affected elements in
each tree (Fig.[518). If an element is renamed, the tool aaticaily selects and highlights
the matching element in the other tree. For inserted or eglelements, the tool automatically
selects the insertion point, by navigating up the tree unmlaches a matched ancestor. The tool
shows in bold a node if it detects differences in its subtfd®e tool shows in italics ports that
are inherited from the component type.

Various features can restrict the size of the trees and lkélpce the comparison time:

* Start at Component: the user can select any component to be the tree root, anddacer

the tree sizes by selecting subtrees;

* Restrict Tree Depth: the user can exclude from comparison any nodes beyond ancerta

tree depth;

* Elide Elements: the user can exclude selected nodes and their entire ssilitose com-

parison. Elision is temporary and does not generate anyetiins.

The tool gives the user manual control using the followirajtiees:

* Forced matches:the user can manually force a match between two elementsithahot

match structurally;

* Manual overrides: the user can override any edit action suggested by the gtalictom-

188 Chapter 5. Architectural Synchronization

parison.

Step 4 produces from the edit script a common supertree ptieatews the merged view
after the edit actions are applied. In this step, the useasaign types to elements to be created,
change the types of existing elements, or override typdsabee automatically inferred based
on the type matching in Step 2. The tool also checks the edtdor errors, such as illegal
element names. The user can also rename any architectena¢rd that the edit script will
create. Finally, the user can cancel any unwanted editresctio

5.4.2 Specialized Tools

This approach supports building tools for differencing ametging architectural views in a wide
range of architecture description languages (ADLs). H@weto evaluate our approach, we
represent the C&C views in the Acme general purpose AD_L_(LEaiiaa.ﬂJ_ZD_le:_AQnﬂb_ZDjm).
We developed a tool to extract a built C&C architecture fromAanhJava implementa-
tion ¢Aldﬂ£h_el_a.l|.|_ZD_Qja). Similarly, one could extractilbwiews from an implementation-
constraining ADL with code generation capabilities, or amplementation-independent ADL

with an implementation framework, such as C2 (Medvidovic agor|2000).

We intended our synchronization tools to be lightweight wggio that they can

fit into a single dialog in an integrated development enviment, such as Eclipse
thzjes:lle&hmklg;dnLemaﬂQnaL_ﬂdﬂ)%), rather thequire a specialized environment for
architectural extraction (Telea et al. 2002). Both AcmeRtud domain-neutral architecture
modeling environment for Acme (Schmerl and Gaflan 2004; A8mdio 2009), and ArchJava’s
development environment, are Eclipse plugins, which redube tool integration effort.

We developed one tool, ArchJ2Acme, to make a designed aothre expressed in Acme,
incrementally consistent with a built architecture extiealdrom an ArchJava implementation. In
future work, the ArchJava infrastructure must change tgettpmnaking incremental changes to
an existing ArchJava implementation based on changes tetsigned architecture.

We developed another tool, ArchSynchro, based on the sapreagh, to more generally
synchronize any two C&C views represented in Acme. One viemidcoorrespond to a doc-
umented architecture. The second view could correspondd&@ view recovered using any
architectural extraction technique, e.du_(S_thﬂr_LHZQDﬂS). Alternatively, the second view
could be another C&C view retrieved from a configuration mamagnt system, or one that
corresponds to a variant in a product line.

Synchronizing a designed C&C view with a built C&C view mustenfiaddress expressive-
ness gaps between architectural information at differardl$ of abstraction. Although we use
Acme and ArchJava to illustrate some of these differencaisrttust be bridged, synchronizing
any pair of designed and built C&C views may encounter sinaitailenges.

Structural Differences. There will always be name differences of the same strucini@ma-
tion between Acme and ArchJava. For instance, an ArchJatac@o be namedn, a reserved
keyword in Acme. Even if code generation automatically piceEs a skeleton implementation
from the architectural model, connector names and role sareslost, since ArchJava does not
even name those elements. Finally, in Acme, port names digatfor typechecking. But in

5.4. Architectural View Synchronization 189

ArchJava, port names are unimportant and obey the standagdaonming language notions of
binding and scope.

Hierarchy. Acme treats hierarchy as design-time composition, wheogrgonent at one level
in the hierarchy is just a transparent view of a more detalledomposition specified by the
representation of that component. Multiple representatior a given component or connector
could correspond to alternative ways of decomposing anexién©On the other hand, ArchJava
views hierarchy in terms of integration of existing compatse along with glue code, into a
higher-level component. Due to the glue, a higher-levelponent is semantically more than the
sum of its parts. These differing views of hierarchy crealéittonal challenges for architectural
synchronization. For example, if multiple representatiane present at the design level, there
must be a way to specify which of these representations waalgcimplemented.

Matching Instances. Obtaining the tree-structured data from Acme simply coisvtre Acme
architectural graph into the cross-linked tree structusewssed earlier. Acme does not have
first-class constructs for required and provided methoaskeeping with Acme’s model for
extensible properties, the tool adds properties on a paefcesent its provided and required
methods, as well as other salient properties, e.g., théspastbility.

To obtain the tree-structured data from an ArchJava impheatien, the ArchJ2Acme tool
traverses the compilation units, ignores classes that@reamponent types, and fields that are
not of component type. Different modeling choices are gadeshn this case. First, ArchJava
does not name connectors or connector roles. The ArchJ2Aaohgenerates synthetic names
from the components and ports that a connector connectseéconf, the ArchJava top-level
component can have ports, whereas the top-level componektme, i.e., the Acme system,
cannot. One option is to create a top-level component in Atomeorrespond to ArchJava’s
top-level component. Another is to create a synthetic carapbto hold these ports. Third,
ArchJava ports can be private, whereas all Acme ports arbcpuDne option is to represent
ArchJava private ports as Acme ports on an internal comganstance; another is to simply
ignore private ports.

Matching Types. Assigning architectural styles and types to an Acme vievorees the ar-
chitectural intent using constrainm 001). Faetance, a constraint on a component
type may specify that all instances of that type must havetixawvo ports. Similarly, setting
architectural styles on the overall system—and on eactsgatem representation if applicable,
enforces any constraints associated with the style. In A¢h@ePipe-and-Filter style prohibits
cycles, a constraint that a general purpose implementktigpuage, such as ArchJava, does not
directly enforce.

In many design languages, types are arbitrary logical peg¢els. An element is an instance
of any type whose properties and rules it satisfies. And ope ity a subtype of another, if the
predicate of the first type implies the predicate of the sddgpe. Such a type system is highly
desirable at design time, because it allows designers tdic@nype specifications in flexible
ways. Acme embodies this approach, but is hardly uniquejn&tance, PVSM&I.

) takes a similar approach. As an example of using agatdbased type system, consider

190 Chapter 5. Architectural Synchronization

an architecture that is a hybrid of the Pipe-and-Filter amak&d-Data architectural styles. In this
example, &ilter component type has at least airgut and oneoutput port, while aClient
component in the Shared-Data style has at least one portmionaoicate with the repository.
A component in this architecture might inherit both the ter and theClient specifications,
yielding a component that has at least three ports—two fomoonicating with other filters and
one for communicating with thRepository.

However, implementation-level type systems, such as thes grovided by C2SADL
(Medvidovic et all 1996) or ArchJava, cannot express thengka above. A specification that a
component has a port implies a requirement that the envieahmvill match that port up with
some other component. Therefore, conventional type systequire a component type to list all
of the ports it might possibly have—or at least all those ptivat are expected to be connected at
runtime. There is no way to express thatida ter component has “at least two ports"—instead,
one must say that theilter has “at most” or “exactly” two ports. Therefore, in the imple
mentation, one cannot combine thelter type with aRepository component type—which
defines a third port that is prohibited by the filter specifmat

So a design-level predicate-based type system is fundafhemtcompatible with a type
system for a programming language. As a result, the mataigagithm may not rely on exactly
matching typing information as in UMLDiff_(XLng_and_Sir_Qd). In our approach, the user
specifies arbitrary matches between the type hierarcloes A&cme and ArchJava, flattened and
shown side-by-side.

Consider synchronizing the Acme model of a simple systenovielig the Pipe-and-Filter
style with its ArchJava implementation. In Fig. 5.9, therusatches the types as follows. The
user selects theapitalize, CharBuffer, Lower, Merge, Split, Upper component types in
ArchJava and matches them withlter Acme type. All the component instances of these
ArchJava types will be assigned thelter Acme type during synchronization. Using a limited
form of wildcards, the user assigns the Acme tpee to the ArchJava connector typdY. So
any Acme connector created for an implicit ArchJava corordostance will have that type.

Since ArchJava ports are not typed, the user can indivig@asisign to an ArchJava port a
set of Acme port types. To reduce the manual work, the user aisether form of wildcards.
He can assign an Acme type, e.gutputT, to any ArchJava port that only provides methods.
Similarly, he can assign themputT Acme type to any ArchJava port that only requires methods.
In addition, AcmeStudio defines connection patterns fortrahitectural styles. Based on these
patterns, ArchJ2Acme can infer the Acme role types, oncasbeassigns types to components,
ports and connectors. For instance, the tool infers thetyple sourceT, based on the source
component typ&ilter, source port typenputT, and connector typRipe.

In this case, the synchronization produces the edit seriptg.[5.10. Since the user mapped
the types, the edit script elements already have types. ft@aehelement that already has a
type is displayed using the same type- and style- dependsmlization that it would have in
AcmeStudio. If the user does not specify architectural $ygad styles, the elements that the edit
script will create will be untyped. Of course, the user caintlse types on the newly inserted
view elements at a later point in AcmeStudio. Although asisig types during synchronization
seems to duplicate functionality, it may affect the ediigcand the view merging as explained
below.

For instance, when a component instance is assignedlititer component type, it inherits

5.4. Architectural View Synchronization 191

are Synchronize Acme and ArchJava

Step 2 of 5: (Optional) Match Acme and Archlava Types
Optionally view and match Acme bypes and &rchlava types
Acme Types: +‘_1|§'F Archlava Types:
+7
= ELE PipesandFiltersFam Match = €Q= archlava
3. (23 Component Types e =73 Component Types
. [#- (@ BinaryFiler R @ ANY
. (3 DataSink (5 Capitalize
. [#-(3 DataSource RL?_ - [#-(CcharBuffer
; ; eset X
. [#- (& Filter L (5 Lower
—| (23 Connector Types - - (@ Main
B Pipe Shg G Merge
=7 Pork Types = C @Gy Spit
@ inputT Crder - [# (5 StreamSink
© e oubputT & ¢ #-(StreamSource
+-[21 Raole Types Check ¥ G5 Upper
=13 Connectar Types
CoE 4 ANy
[={73 Port Types
o AN
i@ PROVIDE_AND_REQUIRE
" PROVIDE_OMLY
: " REQUIRE_OMLY
#-(3) Role Types
& <] Messages]
Acre Properties; Archlava Propetties:
Marne | Walug Narne Walue
AcmeFamilyType PipesandFiltersFam, autputT
< Back I Mexk = I Einish | Cancel J

Figure 5.9: Matching types between the designed Acme model of a simple system followirRjibe
and-Filter style with its built ArchJava implementation.

any ports declared on that type, e.g., padgut andoutput, of typesinputT andoutputT. SO
ArchJ2Acme need not create additional ports of these typgab@component instance. Based
on the user’s selection in Fig. 5.9, the tool matches the #ae¢h portportOut—since it only
provides methods, with the Acme typetputT. The tool suggests renaming the ppstt0Out

of typeoutputT, to match theoutput port on theFilter type.

The user can accept the corrective actions suggested yahesing the Auto-Correct button
in Fig.[5.10. In that case, the tool automatically renapws0ut port tooutput, and updates
all the cross-references in the edit script. The user canchlange the assigned or inferred types
before pushing the changes to the Acme model.

5.5 Evaluation

In this section, we evaluate the tools for C&C view synchratian in several extended exam-
ples on real architectural views. Our evaluation aims tav@nghe following hypothesis from

192 Chapter 5. Architectural Synchronization

we Synchronize Acme and Archlava |Z'@

Step 4 of 5: (Optional) ¥iew and Modify the Edit Script
@ Plzase check the Messages kab: 0 error(s), 30 warningis) Found.

Acme Instances: E' ¥ Shaw Preview
= [#] £3 Components A Select Al
i : capitalize (_'-Q
(3 Ports Check
=" . portin 2
> partout Auto-Correct
[repcapitlize
=[] 3 Components -
i Show
Order
- [+ 3 Parts
=ML s
- E-R 3 Parts
[* Hi", portIn e
(™, portoutt capitalize
- i F®, portoutz Representation - repcapitalize
: EELu ¢
S ! &
E Properties 8 Messages]
| Elernent Type | Elernent Mame | Description ~
wi Part porkout Rename port ‘portCut’ of type 'oukputT’ to 'oukput’ bo match port in component type ‘Filker',
uy Part partIn Rename port ‘portIn’ of type inpukT’ ko 'input’ ko match port in component type 'Filksr', =
ab Part partIn Rename port ‘portIn’ of type inpukT' ko 'input’ ko match port in component type 'Filker',
uy Part porkCutl Rename port ‘portOukl’ of type ‘outpukT' ko ‘oukput’ ko match port in component type Filker',
Wb Part partIn Rename part ‘portIn’ of type inpukT’ to ‘input’ ko match port in component type 'Datagink, o

< Back I Mexk =] Einish | Cancel J

Figure 5.10: Validating the edit script can involve renaming some ports to match the namesedeicia
the Acme type.

Sectior 1.ID.

H-5: An analysis can structurally compare the built arcloiigre to a documented
target runtime architecture.

We refine the hypothesis into the following research quastio

RQ2 — Comparison: Can the structural comparison meaningfully compare a buitha
tecture extracted from the implementation to a designetligcture? The measurable criteria
here are to minimize the occurrences where a developer narstaily force or prevent matches
between the view elements.

We now present three extended examples: AphydsAJ (Sdciiofi) 5Duke’s Bank (Sec-
tion[5.5.2) and HillClimberAJ (Sectidn 5.5.3).

5.5. Evaluation 193

I 1
e e (Aser L, "’7%-"(;

=

e 5 R

Figure 5.11: Aphyds: informal designed architecture drawn by the original developSource:

(Aldrich et all2002a).

5.5.1 Extended Example: AphydsAJ

In this example, we synchronize a designed C&C view with & IGi8IC view retrieved from an
implementation. This example mainly highlights the apibf the underlying MDIR algorithm
to detect inserts, deletes and renames.

In ChapteflL, | introduced the Aphyds systefn. (Aldrich et ap%) re-engineered the orig-
inal Aphyds Java implementation into an ArchJava implemgor to evaluate ArchJava’s ex-
pressiveness to specify the architecture in code. In thepten, we refer to that version as
AphydsAJ. We use AphydsAJ since it has a documented desmycbdecture, and we can use
the ArchJ2Acme tool to extract a built C&C view from the Arctidamplementation.

In the following discussion, | refer to the person who cortdddhe evaluation, i.e., myself,
as theexperimenter The developeris the person who developed the code being analyzed. The
experimenter has no prior experience with the original Jaregram, or with the process of
re-engineering the Java program into the ArchJava impléatien.

Designed Architecture. The developer of the original Java program informally dree te-
signed architecture (Fig. 5111). The experimenter createficme model based on the informal
architecture (Fid. 5.12(a)). He representeddiecuitModel as a single component, and added

194 Chapter 5. Architectural Synchronization

channelRouteViewer
» placeRouteViewer
floorPlanViewer

&
circuitModel

(a) Top-level Acme model.

Cll'cult
floorPlanner place

(b) Acme representation of the rcuitModel component.

Figure 5.12: AphydsAJ: designed architecture represented in Acme.

all the computational components to a representationiotuitModel (Fig.[5.12(D)). In the
original diagram (Figi_5.11), the thin arrows representta@rilow, and the thick arrows repre-
sent data flow, but the experimenter did not make that distindn Fig.[5.12 and showed all
communication as Acme connectors.

Matching Types. The experimenter chose an Acme Model-View-Controller StMi&CFam.
Since he was interested in the control flow, he assignegitheideT Acme port type defined
in MVCFam to any ArchJava port that only provides methods. Similanky,assigned theseT
Acme port type to any ArchJava port that only requires methadd therovreqT Acme port
type to any ArchJava port that both provides and requirebodst He also assigned the generic
TierNodeT Acme type to all components and thellReturnT Acme type to all the implicit
ArchJava connectors (See Hig. 5.13).

Matching Instances. The experimenter used the ArchJ2Acme tool to compare thevigsves.
As he was the least sure about how he representeclittnitModel component in Acme, he
decided to focus on that component first.

The ArchJ2Acme tool detected a few renames, e.g., ArchJaeansodel instead of
circuitModel, and inside that representation, ArchJava gde®alRouter instead ofroute

5.5. Evaluation 195

acme Types: ..c.é.‘- archlava Types:
+T

—-4l8 ArchlavaFam Match a8 Archlava
= [£3 Component Types e = (23 Component Types
=-(® ArchlavaComponent |nmatch +- (3 ANY
3 Parts +-(& aphyds
+- 3 Connectar Types Rle_;at +-(& AphydsModel
= [C3 Port Types +-(& ChannelDisplayer
@ fArchlavaPortT - +-(& ChannelFouteDialog
= [£3 Raole Tvpes Show +- (& ChannelRouter
E ArchlavaRoleT . +-(3 ChannelFouteYiewer
- &8 MVCFam Order (& Circuit
—1-[23 Component Types +-(& CircuitDialog
=-{& ControllerModeT +- (& CircuitDisplayer
23 Parts +- (& CircuitViewer
=-{& ModelModeT + (& FloorplanDialog
3 Ports +-(& Floorplanner
=3 TierModeT +- (& GlobalRouter
23 Parts +- (& NetDialog
-3 YiewNodeT + (& ModeDialag
23 Parts +-(& PartDialog
=& WindowModeT +- (& Partitioner
3 Ports +-(& PartTransViewerDialog
= [C3 Connector Types +(& PlacementaraphDialog
-4 CallReturnConnT + (& Placer
7 Roles +- (& PlaceRouteDialog
= + EventBusT +-(& PlaceRouteDisplayer
3 Raoles + (& PlaceRouteviswer
=123 Porkt Types +- (27 Connector Types
o commandT = (23 Port Tyvpes
o modelT o AMY
o provideT @ PROVIDE_OMLY
o pubsubT o REQUIRE_OMLY
o useT +- (27 Role Types
—1-[27 Raole Types
E providerT
E userT

Figure 5.13: AphydsAJ: matching types between Acme (left) and ArchJava (right).

(Fig. [5.14). The experimenter was particularly intriguéattthe Acme representation for
circuitModel had more connectors than the ArchJava implementation. dn[%l4, the
tool only matched thetarConnector which connects componentdrcuit, partitioner,
floorPlanner, place, route andchannel (Fig.[5.12). The experimenter investigated this fur-
ther and confirmed that the Acme connectors corresponditigetthick data flow arrows in the
informal diagram (Fig_5.11) are not in the implementati®mnce Aphyds was written for aca-
demic study and not for industrial application, it is migssome of the data flows that would be
present in a real application, i.e., the data flow is simdlagégher than real. So the experimenter
accepted the edit actions to delete these extra conneobonglie Acme model.

Merging Instances. The experimenter next turned his attention to the additimpeevel com-
ponent, shown asrivateAphyds (Fig.[5.14). Based on the synchronization options he salecte
he determined that the tool createcli vateAphyds to represent a privateindow port in Arch-

196 Chapter 5. Architectural Synchronization

«e Synchronize Acme and Archlava

Step 3 of 5: Match Acme and Archlava Instances
@ Please check the Messages tab: 0 errors), 29 warning(s) found,
Acme Inskances: E;’VP archlava Instances:
= @ Aphyds_Step3a ~ Compare |= & Aphyds
=23 Components 3 i =13 Components
. [#-(& channelRouteYiswer Clear ¢ #- (@ channelRouteviewer
. = G} circuitModel . - () floorplanDialog
CH |’:| Ports o = G} model
i # 6y channel o B3 Ports
[#- 0, circuit A - 273 repmodel
+ 6y floorPlanner Order i g (=123 Components
+ oy partitioner LS P & channelRouter
+- 0, place | Scral £ = . #-(circuitData
+ 6y route i 2 - [# G floorplanner
P repmadel Report £ 3 #-(globalRouter
=23 Components — # 2 - [# (& partitioner
4+ (&4 channel Ma?ch P &G placer
+ (5} circuit e £ g =123 Conneckors
+ (v} floorPlanner i L * conn__circuitData_main__partitioner _cin
+- (& partitioner FiEsct - (& placeRauteviewer
+ (=) place iR privateAphyds
[+ (5 route -G viewer
=-{73 Connectors =3 Connectors
+ conn_floorPlanner_place [+ -¢5- conn__channelRouteviewer_channel_model_chanr
+ conn_partitioner_foorPlanner [+ '¢5- conn__floorplanCialog_floorplan__model_Floorplan
+ conn_place_route [#] '¢§- conn__placeRoute¥iewer_place__ viewer_pl
+ conn_route_channel [+ '¢5- conn__placeRoute¥iewer_router__ viewer_r
P = starConnector & '¢§- conn__viewer_circuit __placeRoute¥Yiewer_c
[t G} circuitYiewer [+ '¢5- conn__viewer_command__placeRouteYiews:
CE G} floorPlanYiewer [+ '¢5- conn__wiewer_partition__model_partition
(2 placeRouteviewer i+ -¢;;- conn__viewer_window _ floorplanDialog_wir
=177 Connectors
= '¢,9 conn circuitModel channelRoute¥Yiewer B <_ | 4
5 Properties lb Messages | 4 Search
< Back, | Mext = J Einish | Cancel I

Figure 5.14: AphydsAJ: comparison of Acme C&C view (left) and ArchJava C&C view (tfjghrhe
connectostarConnector matches a connector in ArchJava with an automatically generated name (high-
lighted nodes). The componemtivateAphyds exists in ArchJava but not in Acme.

Java and the corresponding glue. After looking at the coficw, the experimenter assigned that
subsystem the Publish-Subscribe Acme style. He also reshaoraponenprivateAphyds to
window, renamed the added connectomtmdowBus, and assignedindowBus the EventBusT
connector type from the style. The experimenter also dedideise the same component names
as the ArchJava implementation to avoid future confusiofnesaccepted the renames in the edit
script.

Discussion. The experimenter manually laid out the resulting C&C view ionfeStudio

(Fig.[5.15). Unlike the original architect’s view, Fig. B $hows bi-directional communication
taking place between componemsaceRouteViewer andmodel. The experimenter investi-
gated that unexpected communication, and traced it to bazdl Aphyds is a multi-threaded

5.5. Evaluation 197

window

’

\ windowBus \

channelRouteViewer

use

] provreq
| provide
Roles
—> provider
—& both
— user
B

Figure 5.15: AphydsAJ: built architecture with Acme styles and types.

application with long running operations moved onto workeeads. So the experimenter noted
that developers should not carelessly add callbacks fromarkexrthread onto the user interface
thread.

Performance Evaluation. On an Intel Pentium 4 CPU 3GHz with 1.5GB of RAM, comparing
an Acme tree of around 650 nodes with an ArchJava tree of drbirb0 nodes (Fig. 5.14) with
MDIR took under 2 minutes. In comparison, THP took around &sds, but produced less
accurate results. In particular, THP did not treat compbpeiwvateAphyds as an insertion, and
mismatched all the top-level components. For AphydsAJetiiescript consisted of over 300
renames, over 600 inserts and over 100 deletes.

5.5.2 Extended Example: Duke’s Bank

In this example, we synchronize two C&C views, where the buétv is recovered by instru-
menting the running system. This example mainly highlighésability of the underlying MDIR
algorithm to detect moves in addition to renames.

The subject system is Duke’s Bank, a simple Enterprise JavaB@alB) banking applica-
tion. The experimenter wanted to compare the documentdat@cture with the built architec-
ture, recovered using an architectural extraction tecklemther than ArchJava. Duke’s Bank is
also representative of industrial code that uses middievaard furthermore, has a documented
designed architecture.

198 Chapter 5. Architectural Synchronization

EJB Container.

Session i Database
Beans Tables

ControllerEJB AccountEJB

ControllerEJB CustomerEJB E

Web
Client

q

Application ‘
p?!Ilent |

Tx-
' ControllerEJB

Figure 5.16: Duke’s Bank: informal designed architecture (Sun Migrgsyé{ems 2006)

Designed Architecture. The experimenter converted an informal diagram (Eig.]5id) an
Acme model (Figl.5.17).

Built Architecture. The built architecture was recovered by a dynamic architecéxtrac-
tion tool, DISCOTECT (Schmerl et al. 2006). BCOTECT currently generates one component
instance for each session and entity bean instance creataatiane. So the experimenter post-
processed the dynamically recovered architecture, arfeedrsuch multiple instances into one
instance. The goal was to make the recovered C&C view in[Ekf Bomparable to a typical
C&C view, where each component instance represents any mwhhetime components.

Matching Types. In this case, the built view and the designed views use the saohitectural
style and types, so the experimenter skipped the optioepldtmatching types.

Matching Instances. The ArchSynchro tool correctly detected the moves corneding

to replacing thecontainer component in one view with its representation in the other
view (Fig. [5.19). Because a tool generated the names in thevessd view, e.g.,
AccountBean e55d75, there was a large number of renames in this case. The Arch8yn
tool matched all the elements between the two views, degptiarge number of renames.

Discussion. ArchSynchro also identified oAccount Controller Bean a port that was
attached to abbWriter connector. Fig[5.17 does not show a connection between the
Account _Controller Bean and theDB components. In fact, the EJB specification recommends
that all database access goes through entity beans. Inathes the tool found an architectural
violation in Sun’s own example!

Performance Evaluation. On an Intel Pentium 4 CPU 3GHz with 1.5GB of RAM, MDIR
took around 30 seconds to compare the two Acme trees, oneavatind 330 nodes, and one

5.5. Evaluation 199

Account_Controller_Bea
Customer_Bean
Customer_Cantroller_Bean =

Tx_Contraller_Bean

Tx_Bean

Session Beans Entity Beans

rLeqgend:
Comnonents Connectors Ports Roles
EntitvBeanT :. BeanChannel B ResponsePortT ResponseRaleT
Dhtrite B RequestPortT DbRequestRaleT

B DbPartT RequestRaleT

‘ DbRead DhRespondRoleT

SessionBeanT

Figure 5.17: Duke’s Bank: documented architecture in Acme. The components were atkide the
Acme representation of an EJB container (shown as a thick bordegjoSesid Entity Beans are grouped.

Ut

u
EccountContmllerBeanj?f1192 D depauilERE CEEAE

[
EustomerControllerEleanjfeeBBS D CustomerBean 13a5041 @
L L3 [}
_—F/
[TxContmllerBean_&eBﬂf}
D TxBean_433461

Figure 5.18: Duke’s Bank: recovered architecture in Acme.

with around 390 nodes. In this case, the edit script corbist@ver 250 renames and over 50
inserts. As expected in this case, THP did not correctlytiiethe moved view elements.

200 Chapter 5. Architectural Synchronization

«¢ Synchronize two Acme models

Step 3 of 5: Match instances
@ Please check the Messages tab: 0 error(s), 17 warning(s) found,

|Please check the Messages tab: 0error(s), 17 warning(s) found, |

Instances: 'Eéfﬁ Instances:
= ®3§ DukesBankapp_Documented | Compare i = ®,]5 DukesBankapp A
=}-(23 Components i =1+ 23 Components i
. = (@ container Clear . = AccountBean_e55d75
- [3 Ports . ¢ =3 Parts —
= %a rep Show it + By DbClientReadPort
=3 Components P +- 0y DbClientWritePort
LB @ v i + Oy response
. ! B-f£3 Ports Order = (& AccountControllerBean_17f1f92
: +- Oy p] S . =3 Ports
¥ oy p0 Scrall ho F- 0 p
: [+ oy pl = : +- 3 requesk
. [(&) Account_Controller_Bean Report . (& CustomerBean_13a5041
 [# (% Customer_Bean — .o =3 Parts
[+ (-'-} Customer_Controller_Bean Ma?ch +- 8y DbClientReadPort
-+ (% DB . o +- 9 DbClientWritePort
Lo () T#_Bean Br i +- Oy response
L (&) Tx_Controller_Bean || Reset P (& CustomerControllerBean_1festias
=3 Connectors iR 3 Ports
[+ -¢{§ BeanChannelD i + By request
[#] '%- BeanChannell = @- DataSource_0 e
iy et bhonncl v ¢ | >
[Properties U3 Messages] %’ Sedrch
Properties: Properties:
Narne | value | Marne | value
AcrneFamily Type ejbFam.EntityBeanT AcrneFamily Type ejbFarn.EntityBeanT

< Back | Mexk = J Finish | Cancel ‘

Figure 5.19: Duke’s Bank: comparison of the documented and recovered archéesctur

5.5.3 Extended Example: HillClimberAJ

In this example, we evaluate the ArchJ2Acme tool again, ligtttme, we use the feature of
allowing the user to force matches. All the examples aboweadly use the feature to prevent
matches, to avoid matching elements of incompatible types.

In previous work, |(Abi-Antoun et al. 2007a) re-engineeree original 15,000-line Java im-
plementation into an ArchJava implementation, HillClindsér For this evaluation, we chose
HillClimberAJ because it uses a framewo@space. Indeed, it is common for a product line
architecture to use a framework as its platform, and onenafeds to compare variants in a
product linel(Chen et &l. 2003). The implementation techmglérchJava, also made it possible
to use a tool to statically extract the built C&C view from thalElimberAJ code.

5.5. Evaluation 201

@
canvas w‘ graph

engine

Legend:

Components | Connectors Ports
(3 use
s <> CalReturnConn .
p Provide

Figure 5.20: HillClimber: Base design for @Ispace framework application.

Designed Architecture. The applications that use tl&Espace framework follow a simple
high-level design. An applicationindow uses acanvas to displaynodes andedges (not
shown) of agraph in order to demonstrate the algorithms provided byshgine (Fig.[5.20).

Built Architecture. We first ran the ArchJ2Acme tool, giving it the designed C&Cwie
(Fig.[5.20), and a C&C view retrieved from the HillClimberAJcohdava implementation. In
this case, the top-level structure of the designed view wasuificiently detailed, i.e., the vari-
ous nodes have roughly the same number of ports. In such sasesural comparison alone can
produce inaccurate results. In this case, ArchJ2Acme tiactly matched the top-level element
graph in one view towindow in the other view.

So the user manually forced the matches between the topredes in the two views, and
re-ran the comparison. This time, ArchJ2Acme took into aotthese manual overrides when
matching the instances. Having correctly matched thegaptlelements, the comparison high-
lighted additional differences between the two views. Rstance, Fid. 5.21 shows several miss-
ing sub-architectures. But the user decided to merge onlgtthages for the top-level elements
and obtained the built architecture in Hig. 5.22.

Discussion. In a product line architecture, each instantiation of a #auork often introduces
additional runtime dependencies. Indeed, HillClimberAdeatiseveral connections to the doc-
umented architecture, and these connections seem mastiljgd. For instance, the connection
betweenengine andcanvas is needed since one of the sub-componentsngfine required
access to functionality from theanvas.

202 Chapter 5. Architectural Synchronization

we Synchronize Acme and Archlava

Step 3 of 5: Match Acme and ArchJava Instances

(1) Please check the Messages tab: 0 error(s), 21 warningis) found,

Acme Instances: 'E.-:'E" &rchlava Instances:
= -£83 Hillclimber Compare. [=625 Hill W
[=~[C3 Components g =~ (3 Components
(& canvas Clear H(® canvas
. (& engine . [=-(& engine
- (& gr.aph St + -3 Parts)
(& window . [repengine
—-[77 Connectors - % (=[] Components
[connl Order P LM greedySearch
[+-=¢p conn2 [B P . ®-{g greRRSearch
&3] '¢; connd Scroll [+ mchSearch
[+ '¢; conn’ E [+ privateengine
[+ conng Report [+ randSearch
-— [# rdWkSearch
Ma?ch [+ simAnnealSearch
i [+ simpleSearch
Ce 53 [simRanSearch
Reset i [traceDialog
& [#-[27 Connectors
. #-(2 araph
=@ window
[+ Ports

= repwindow
[=[£37 Components
[batchDialog
[optionsDialog
Lo privatewindow
LM problembialog
[+ Connectors I

43 Messages “;;;' Search

< Back I Mext = ‘ Einish | Cancel J

Figure 5.21: HillClimberAJ: manual overrides improve matching the instances. The ussrd@ match
between theengine nodes in the two trees by selecting them both and clicking on the ‘Match’ button
before running the differencing algorithm.

5.6 Conclusion

In this chapter, we presented an approach for differencimyraerging hierarchical architec-
tural C&C views. We showed how our relaxed assumptions matate rolosely the problem
domain of differencing and merging architectural viewsathe fact. Finally, we illustrated the
tools in extended examples and showed how the approach cant@mesting differences in real
architectural views.

In this chapter, we used two ArchJava re-implementationth@fAphyds and HillClimber
systems, which we referred to as AphydsAJ and HillClimberadpectively. Indeed, a tool can
statically extract from ArchJava code a built hierarchicaltime architecture relatively easily,
because ArchJava specifies directly in code, architedhigehrchy and instances.

5.6. Conclusion 203

‘ graph

Legend:

Components | Connectors Ports
Oy use
R <> CallReturnConn .
B Provide

Figure 5.22: HillClimberAJ: built architecture.

In the rest of this dissertation, we revert to the originalaJanplementations for Aphyds
and HillClimber and use &H0OLIA to extract the built architectures from the annotated Java
code, and analyze the conformance of the Java implememtadither than ArchJava, to a target
architecture. In the next chapter (Chapter 6), | incorpattagearchitectural comparison into an
end-to-end approach to analyze communication integrtjowing the extract-abstract-check
strategy.

Credits

Nagi Nahas developed and implemented the tree-to-treeeataon algorithm for his M.S.
thesis [((Nahas 2009), and co-authored the papers on whiclh miuthis chapter is based
(Abi-Antoun et al! 2006; Abi-Antoun et &l. 2008).

Acknowledgements

The author would like to thank Bradley Schmerl for his helphwdicme and AcmeStudio, for
running DScoTECT and generating the C&C views for the Duke’s Bank case study.

204 Chapter 5. Architectural Synchronization

Chapter 6

Conformance Analysi@

In this chapter, | demonstrate thatiSoLIA extracts hierarchical object graphs that provide suf-
ficient architectural abstraction to enable conformanadyais. To my knowledge, GHOLIA
is the first static analysis the output of which is readily\atible into a standard hierarchical
runtime architecture represented as Component-and-Camn{€&C) view.

| first discuss an analysis to abstract an extracted objeqthgrand represent it as a stan-
dard runtime architecture. | then discuss an analysis wtnchpares the built architecture to a
target architecture, analyzes communication integritth target architecture, measures their
structural conformance, and establishes traceabilityéen the target architecture and the code.

6.1 Introduction

A designedintended conceptual plannedor target architecture is what an architect posits as
an abstraction of a system. Even when mostly accurate, suenchitecture often omits im-
portant communication compared to thalt or actualarchitecture that an implemented system
exhibité. The differences could be omissions in the design or impieat®n defects. Finding
these differences, i.e., analyzing conformance, is anitapbproblem during software evolution
(Murphy et all 200]l._Aldﬂgh_el_eHL_ZD_QlZa) In this dissetat we deal mostly with architectural
structure rather than behavior, so we are concerned withtifdieng structural differences be-
tween a built and an intended architecture.

A designed architecture is often more abstract than the architecture, but it must still
conform to the implementation. CBOLIA’s conformance analysis focuses on communication
integrity (Sectiori 16, Page119), i.e., each componentarirtiplementation may only commu-
nicate directly with the components to which it is connedtethe archltectur{m&
1995; Luckham and Veta 1995).

An extracted object graph, however, may not be isomorphileg@rchitect’s intended archi-

1Portlon:s of this chapter appeared [n_(Abi-Antoun and Aldri2009b). Preliminary results appeared in
¢, 2008a).

2Throughout this dissertation, we ubailt anddesignednstead ofas-built and as-designedor brevity. The
literature refers to these two architectures using mangratames, e.ggoncrete implementedr physicalfor the
built architecture; andonceptualidealizedor logical for the designedarchitecturel (Ducasse and Pollet 2009).

205

[
[
| [[
|| outer: inner: Hy L other ! I | I
|| Outer (| nner [T T Other ' [|l |
| | [X [|| outer(+): T other |
I | OWNED ' |!| DOM2 : || Outer : || Other |
- - - = = I===-=- [[
| |
. DOM1) | _DOML | DOM2
(a) Edge source showing. (b) Edge source lifted.
=== ===
|I——— - = Hr—==== |
| iy i
|| other ' (L inner ! :
(| other T, T Inner | I
[[
| O 5 1
| DomMiI 'li cBS || | ! |
————— H=—===-= | |
[: | : |
| outer || other: | outer(+):
| Outer : || Other | Outer '
| |
| ' ! ! [
' DOM2 | | _DOM1 | DOM2 |
(c) Edge target showing. (d) Edge target lifted.

Figure 6.1: Examples ofifted edges

tecture, making it necessary to abstract it further intoilt acchitecture suitable for comparison
with the architect’s intended architecture. TheH®LIA structurally compares the built and
the target architectures and identifies the key differenassg the view synchronization we
discussed in Chaptkl 5. Unlike view synchronization whiclkesawo views identical, the con-
formance analysis allows a built architecture to contamlevel objects, and does not propagate
them directly into the designed architecture. To preseoumdgness, however, the analysis still
accounts for communication that is not in the designed #chire but occurs in the implemen-
tation via these objects.

Finally, SCHOLIA computes conformance metrics to help managers track ectinial con-
formance over time, and derives traceability informatibattallows an architect to effectively
trace architectural violations to the appropriate code.

This chapter weaves the object graph extraction (Chapten@)aschitectural comparison
(Chaptetb) into the integratedc80LIA conformance analysis, and is organized as follows. In
Section[6.R, | discuss howcCHiOLIA abstracts an object graph. In Section] 6.3, | discuss how
SCHOLIA maps a hierarchical object graph to a standard C&C view. Iti@&€6.4, | discuss the
conformance analysis, conformance metrics and tracgabilpport. In Sectioh 615, | discuss
some of the constraints that could be enforced on the egttanthitecture. Finally, | conclude
with a discussion in Sectidn 6.6, where in particular, | canepSCHOLIA to other approaches
that relate source-level and high-level models.

206 Chapter 6. Conformance Analysis

_lentRootType_RootTypeDOM2Other
_lentRootType_RootTypeDOM1Outer_OuterOWNEDInner
_lentRootType_RootTypeDOM1Outer
_lentRootType_RootTypeDOM2Other
_lentRootType_RootTypeDOM1Outer

Nets:
Hashtable<String,Net>_|_;
~

faniter(+):
— EnumerateFanout -

AN

Nodes: Y\ circ:

Hashtable<String,Node> Circuit

circuit database
owhed ——
\ ,,, circuit

L v ¥ NV
i| fanout{#): |- - t: nt(+):
Node ¥ Terminal % ‘|~ Net

(a) Object graph. (b) Target architecture.

Figure 6.2: Aphyds: mismatch between the object graph and the target architecture.

6.2 Abstracting the Object Graph

An extracted object graph provides architectural abstadby ownership hierarchy and by
types. But an object graph may not be isomorphic to an ardlsitedended architecture, so
it may require further abstraction. The steps in the ansalg® as follows:

1. Elide and summarize private domains;

2. Skip single domains;

3. Skip objects beyond a certain depth.

We discuss each step in turn, using examples.

Elide and summarize private domains. Object graphs tend to expose the implementation of
data structure:is_(ﬁLQalLa_th_ZLbOL p. 252¢HBLIA can avoid this problem, when internal state
is placed in private domains. In that case, the OOG abstrastep can leverage the semantic
distinction between private and public domains, and eliteape domains.

For example, in Aphyds, the private doma@iiED on Circuit StoresHashtables Of Node
andNet objects (Fig[6.2(&)), and these objects are not archibfwsignificant (Fig[6.2(B)).
So the analysis, based on user input, can elide private denaaid the objects they contain. To
preserve soundness, however, the analysis adasnary edget account for communication
through the elided objects. For example, if there is an edwge bbjects: to b and also fronmb
to ¢, eliding objecth produces aummary edgérom a to ¢ (Fig.[6.3).

Skip objects beyond a certain depth. The analysis converts an OOG object hierarchy up to a
user-selected depth, typically the depth of the hierastidecomposition in the designed view.

6.2. Abstracting the Object Graph 207

| | | |

| | | a: C |

a b: c | | A e |

(I ° ° i A r

| | | |

Lo bomMi __ _ _ _ _ | L bomMi _ _ _ _ _ |
(a) Showing objects,b,c. (b) Eliding objecth.

Figure 6.3: Example of asummary edge

Reducing the size of the built architecture in this manneedpeip the comparison, but does not
affect conformance, because lifted edges account for ttledesubstructures.

6.3 Describing the Architecture

SCHOLIA can represent the information that it reverse-engineers fthe code using differ-
ent graphical (or non graphical) notationsCHOLIA uses an architecture description language
(ADL) (Medvidovic and Tayldr 2000) to represent the builthitecture as a standard C&C view
(Clements et al. 2003).

There are several benefits to documenting an architectae ADL. For example, an ADL
can enable various architectural-level analyses. In mxhdibne could define architectural types,
properties and constraints on the architecture to spewfyitectural mtentm 001).

For the conformance analysiszSoLIA assumes that the designed architecture is represented
as a C&C view, instead of an informal diagramct8LIA then compares the built architecture
with the intended one.

6.3.1 Architecture description language (ADL)

SCHOLIA uses the following data types from the Acme general purpcﬁsle@_a_tlan_el_a]LZD_dO
MM) (Section 1.3.2, Pdge 7).

A Component is a unit of computation and state. Port is a point of interaction on &om-
ponent. A Connector represents an interaction betwelsrts on Components. A System is a
configuration ofComponents andConnectors. A Component can optionally be decomposed into
a nested sub-architecture. Pxoperty is a name and value pair associated with an element. A
Group is a named set dfomponents or Connectors, such as a tier.

As we discussed in Section b.4 (Pag€ 5.4), the structurapadson uses type information,
when available, to improve the match precision. So duringpiray, the analysis assigns to the
generated C&C elements various types and properties.

For instance, &ort that provides services has typeovideT, and aPort that uses services
has typeUseT. The structural comparison uses the type information, whenlable, to avoid
matching &ProvideT Port to aUseT Port, for example.

208 Chapter 6. Conformance Analysis

_lentRootType_RootTypeDOM1A
_lentRootType_RootTypeDOM1B
_lentRootType_RootTypeDOM1C
_lentRootType_RootTypeDOM1A
_lentRootType_RootTypeDOM1C
_lentRootType_RootTypeDOM1B

Aphyds .
= ————— I 0O0G <> C&C view
| Jl 1|+ Rootobject <> System | :
: viewerUl : + Object <> Component S
===~ "|+ Domain <> Group ; :
S ! \
: 'MODEL:' Interface <> Port (ProvideT) E . %E:mi
: _circuit_ _ | 1| *© Field reference <> Port (UseT) i e i
1|y DB : : + Object relation <> Connector — MODEL ..t
: : : : « Substructure <> Representation <
I e
. : -]

other %}—‘ +—

DOM!1

Figure 6.5: A C&C view lifts an edge from componethner to componenbuter.

6.3.2 Mapping an OOG to a C&C view

Mapping an OOG to a C&C view works as follows.

Components and Sub-Components. SCHOLIA assumes that an OOG has a single root. So
the root object maps to%ystem. The top-level domains declared by the class of the rootobbje
map to the top-level tiers in thgystem. Each object in the OOG maps tcCamponent. The
OOG hierarchy creates architectural decomposition. |If &Gobject declares domains and
descendent objects, the correspondiogponent has a sub-architecture.

Ports. References between objects creBeets as follows (Fig[6J4). If objeck has a field
reference of typd to objectB, the correspondingomponent A has aPort of type UseT and
nameB. The Component corresponding t® has aPort of type ProvideT and nameT. And a
Connector connectsA to B. By default, the analysis does not represent the self-edges©O0G
as connectors in the C&C view, since they are architectunai@resting.

Connection Lifting. The representation of an OOG as a C&C view also lifts edges. i@ens
an OOG with an edge fromther to inner inside outer’s public domainCBs (Fig.[6.1(c)).

6.3. Describing the Architecture 209

A C&C view lifts that edge to componeptter, shows a connector fromther to outer, and a
connection frormouter to inner (Fig.[6.5).

Domains and Tiers. An ownership domaiml in the OOG maps to &roup g. If an objecto

in a domaind, the correspondinGomponent is in Group g. To be structurally comparable, both
the built and the designed architectures follow similarotogical constraints. For instance, in
Acme, aComponent can be included in more than oGeoup. But in ownership domains, each
object is in exactly one domain and that domain never charea predicate in Acme enforces
that aComponent or Connector is in exactly oneGroup. Moreover, ifConnector ¢ connects two
Components that are in the sanferoup g, ¢ must be also iny.

Skip single domains. In an OOG, each object is in a domain, so a systematic coveo$ian
OO0G into a C&C view would create eaflomponent in aGroup. Architects typically define tiers
only at the top level, and those map to the top-level domainsexample, requiring an Aphyds
designed architecture to have a sinQR tier insidecircuit would be counterintuitive. Unless the
developer requests otherwise, the conversion does ndeaesingle tier inside &omponent.
Unlike eliding private domains, skipping single domain#l steates the substructure for those
unmapped domains. For example, after eliding the privatealloOWNED insideCircuit, the
conversion skips the single public domdiB and createsode andnet and the connections
between them, directly insidércuit (Fig.[Z.13).

Note that although domains play a central role in the aniuotat they often disappear after
they serve their purpose, which is to distinguish betwe&rmal and public stde Recall how
in ownership domains, the owner of an object is a domain &usté another object, unlike other
ownership type systems (Clarke ellal. 1998). Indeed, botligpabd private domains produce
hierarchy in an object graph. But the conformance analys&cmoLIA often results in eliding
private domains, ending up with a single public domain invegiobject, then not representing
that domain as a group in the extracted architecture.

6.4 Analyzing Conformance

SCHOLIA can extract the up-to-date built runtime architecture ftbencode and document it an
in ADL. In some cases, a target architecture may be documgbte may be inconsistent with
the code. In that caseC8IOLIA can analyze communication integrity in the target archuitec

6.4.1 Conformance Findings

In the terminology of|(Murphy et al. 2001), the conformanceilgsis identifies the following
differences between the built and the designed architestur
* Convergence:a node or an edge thetin boththe built and the designed architectures;

3Some type systems embody this idea, and hard-code in eashaidy one private and one pubboundary

domain (Schfer and Poetzsch-Heffter 2007).

210 Chapter 6. Conformance Analysis

* Divergence: a node or an edge that is in the built architecture, rmittin the designed
architecture;

* Absence:a node or an edge that is in the designed architectureydiun the builtarchi-
tecture.

6.4.2 Displaying Conformance

The analysis produces@nformance vievas a copy of the designed architecture. The con-
formance view shows convergences and absences graph@atlyrepresents divergences by
showing additional connectors that are present in the imefgation but are missing from the
designed architecture. The analysis also sets variousgrep on the conformance view ele-
ments. Some of these properties decorate the graphicaseamation of an element. For in-
stance, all elements havdiading property, set t@onvergent (shown asf), divergent (shown as

+) or absent (shown a).

6.4.3 Traceability

As a positive side effect of the conformance analys@;SLIA also establishes traceability be-
tween an intended architecture and the underlying soue= fipr the benefit of other code qual-
ity tools. The various steps thread through the tracegbiifiormation as follows. Abstracting
an OOG into a C&C view copies the traceability of each OOG elgnmeo the corresponding
C&C element’straceability property, as a set of flename and line number pairs. Simjldre
conformance view derives its traceability informationrfréhe built C&C view. A tool can use
this information in the conformance view to trace to theiperit lines of code. Thanks to this, a
developer need not potentially review the entire code mswéstigate a suspected architectural
violation. Of course, onlgonvergent or divergent elements will have their traceability set.

6.4.4 Analyzing Conformance

The components an architect includes in the designed viewbeaamore relevant than those
she omits. And she often chooses names to convey her atchékeintent. So, when analyzing
conformance, SHOLIA considers the designed view to be more authoritative theubiit one.
The steps in the analysis are as follows:

1. Match components, but use the names from the designed view

2. Highlight differing connections;

3. Summarize divergent components;

4. Check matching substructures recursively.

We discuss each step in turn, using examples.

Match components, but use the names from the designed viewElements in the designed
and the built views may not have exactly matching names. frhetsral comparison, however,
can detect renames. Unlike view synchronization, the comiace analysis does not propagate
the built names to the designed view, or vice versa.

6.4. Analyzing Conformance 211

viewerll . rf\ﬁewerlll f'F-__-____ jviewerl.ll
J_.-"'"H ;{.a : s

& ,.-"F F P At
- ittt g ; e
' d floorPlanUi i
floorPlanUl FloorPlanUl z
(a) As-designed view. (b) As-built view. (c) Conformance view.

Figure 6.6: Displaying aconvergence and adivergence.

For Aphyds, the analysis correctly matches built comp@ierdwerUI andFloorPlanUI to
designed componeniewerUl andfloorplanUl, respectively, but does not rename them (Eig. 6.6).

Highlight differing connections. The analysis shows differing connections as divergences
or absences. For instance, only the built view has a connéettweenFloorPlanUI and
ViewerUI, and the latter match the designed compongéodgplanUl andviewerUl. So the analy-
sis shows divergent connector fronfloorplanUI to viewerUl (Fig.[6.6). This requires the follow-
ing stylized use of ports, which may also make ports easienterstand (Aldrich et &l. 2002a).
An Acme Port has no built-in directionality. We use thi®rt’s type to specify whether it
provides servicerovideT) or uses servicedeeT). In some cases, the designed view may have
a connector between two components, but the connectior inuiit view may be in the reverse
direction. The conformance analysis could make Ghenector bi-directional, by assigning to
the connection’s endpoints both tReovide T andUseT types. But this does not fit with showing
divergences and absences. Instead, we adopt unidirelgbiorig, i.e., the type can berovideT
or UseT, and never both. So the analysis showBvargent connector, as well aBrovideT and
UseT Ports, for the communication in the opposite direction.

Summarize divergent components. If there are components in the built architecture that
are not in the designed architecture, the analysis worlterdiitly from view synchronization.
Adding these components directly to the designed architeatould clutter it with implemen-
tation details. Instead, the analysis accounts for comaation in the built architecture that
is not in the designed architecture, and addsiamary connectaio abstract these divergent
components and enforce communication integrity.

Consider this other example from Aphyds (Hig.]16.7). In thdtbiéw, Node connects to
Terminal andTerminal to Net (Fig.[6.7(D)). The designed view hasde andnet, but has no
component that match@erminal (Fig.[6.7(a)). The analysis matchesde to Node, andnet
to Net, respectively. It then showsdivergent connector frormode to net, since the designed
view does not already have one (Hig. 6./ (c)). If the desigried does have such a connector,
the analysis marks it asonvergent. Since a summary connector can be eithieergent or
convergent, the analysis sets a propeit$ummary on a connector separately from fisding. A
decorator overlays th# symbol on a connector wheésbummary is set totrue.

Viewed differently, the analysis represents using a summ@nnector any objects in the built

212 Chapter 6. Conformance Analysis

Node#— —
e T /
node net s
g Terminal

(a) As-designed view. (b) As-built view.

node o net
7“'.’»&;"7 7

(c) Conformance view.

Figure 6.7: Displaying adivergence as asummary connector

view that do not have counterparts in the designed view. @hisvs a designed view to have
a coarser granularity of components, and abstract muitipéeacting objects with a connector.
Indeed, the JavaDoc for Aphyds states as an informal commeimé¢ code thatTerminal is a
connectiorbetween &lode and alet”.

To help a developer update an incomplete designed aralniggthe analysis can optionally
show in the conformance view thivergent components, but without showing any connections
to these components. A developer can add selected comgdoeht designed view and re-run
the conformance analysis.

Check matching substructures recursively. Designed architectures are often hierarchical, but
do not typically have deep hierarchies. An OOG provides itgctural abstraction primarily
through ownership hierarchy. When an OOG is abstracted i@&@ view—whether restricting
the depth of the hierarchy or not, more components in thé G&C view will have substructures
than their designed counterparts. To avoid generating rfeds® positives, the analysis ignores
the substructures that are in the built view but not in thegiesl one. Skipping unmatched
substructures does not compromise soundness, becausnt@®G (Figs. 6.1(b), 6.1(d)) and a
built C&C view (Fig.[6.5) lift edges to represent any commuticn through their substructures.

For instanceyiewerUl in the designed view does not define a substructure. So thgsena
ignores any substructure in the matchingwerUT in the built view. On the other handircuit
in the designed view has a substructure includiagde andnet, and matches theéircuit object
in the built view. In the built viewCircuit’s substructure includes the domaid®and OWNED
and the objects inside them. In that case, the analysissigely examines the substructures of
circuit andCircuit.

As an aside, had we included private domains when abstgattnAphyds OOG into a C&C
view (as well as generatedGoup for the singleDB domain inside€ircuit), the analysis would
have processed the private domaifNED and generated several undesired divergences. This
is because both domai&/NED andDB are peers irCircuit’s substructure (Fid._6.2), so the
analysis cannot ignore tf®/NED domain and its contents, but proc@®ss contents.

6.4. Analyzing Conformance 213

6.4.5 Measuring Conformance

SCHOLIA counts convergent edgesSH), divergent edgedE), absent edge#\E), and summary
edges $E). In addition, HOLIA counts convergent node€N), divergent nodesON), and
absent nodesA(N). In ScHoLIA, a highAN or DN often indicate that the designed view is
missing components compared to the built view, or uses ardiit system decomposition.

ScHoOLIA combines edge divergences and edge absences into one nthmk@ore Confor-
mance Metric (CCM). The Core Conformance Metric (CCM) counts dieet edgesfE) and
absent edgesA€) that would make the designed architecture account foramfimunication in
the implementation. To get a percentage, we divide by tred tatmber of edges and subtract
from 100%. Of course, fewer absences and divergences de¢ Aptl mean the system is closer
to the target architecture. So, a higher CCM value indicateghehstructural conformance.

AE + DE
CE + AE + DE

In terms of face validity, this metric is similar togaaph edit distancewhich models incon-
sistencies by transforming one graph into another (ContE 80a4). Typical edit operations
include the deletion, insertion and relabeling of nodesedgks. Each edit operation is assigned
an application-dependent costCISOLIA assigns renames a zero cost and counts insertions (di-
vergences) and deletions (absences).

Furthermore, 8HoOLIA qualifies the conformance metrics by measuring the pergeraé
the program that lacks annotations. For simplicitgH®LIA uses a derived measur/ARN,
namely the number of annotation warnings that the annatégjgechecker generates. Except for
some defaults, every field, variable declaration, or metletwain, that is a reference to an object
and has a missing or incorrect annotation, generates amggfwe mostly avoid multiple warn-
ings due to one missing annotation). To get a percentageétréc WARN% normalizeSVARN
by the number of declared object references in the programs,WWARN% is an indicator of
how many annotations are missing to make an OOG soundlysepiréhe built architecture. A
lower WARNY% is better. For a program without annotatioM#ARN% will be high. As valid
annotations are added, or warnings are addre¥%&88N% decreases.

CCM =1

6.5 Enforcing Architectural Structure

Having analyzed conformance and established traceab#ityween the target architecture and
the code, we now turn to identifying additional implemeiutatlevel violations of the architec-
tural intent. At the code level, we use annotations to emfdocal, modular constraints. In
addition, we define predicates in the target architectuenforce global constraints on the run-
time architecture.

6.5.1 Code-level constraints

General constraints. In a Java program without ownership domain annotations)gihg the
runtime architecture is as simple as storing or passing exraete to an object. Adding the

214 Chapter 6. Conformance Analysis

ownership annotations can help enforce some design imsyifor instance, regarding object
borrowing, etc. (See observations in Secfion 4.6.1, Pagg 12

Domain links. In addition, it is possible to define various policies in tbenfi of domain links
(Sectior 2.3, Page }10).

Limitations. By their nature, domain link annotations are modular, so teynot express
global constraints. In addition, a developer can still adchmunication pathways by declaring
additional domain links or domain parameters and passidgiadal domain arguments at object
allocation sites. Admittedly, code inspections could naosely audit any revision that modifies
the domain link annotations. However, since the annotateforce only modular constraints,
it is still necessary to check that code modifications do detesely impact the intended global
architectural structure.

6.5.2 Architectural constraints

Relating the target architecture and the code, together effiittive change management, can
help detect unwanted architectural violations more effelst than inspecting the program, with
or without annotations.

Having an extracted up-to-date built architecture makessier to trigger an architectural
review. In particular, various constraints can be definadlt@enforced on the architecture. In-
deed, empirical evidence suggests that such policies egedntly needed during software evo-
lution. For instance, a study using a well-designed framk\@HotDraw) showed that students
subverted the framework’s design by passing to and stodddianal objects in the constructors
of classes that implemented the core framework interfaciek ét all[2006).

In Acme, one can set architectural types, properties andti@nts to specify architectural
intent Ml). By doing so, we may uncover impleméonalevel violations of archi-
tectural types and constraints. In contrast to the modaotate-level constraints, constraints at
the architectural level can enforce global constraintshersipplication structure.

Horizontal conformance. Using predicates to enforce constraints at the architackevel is
not novel 1). Indeed, many approaches can chactkn architecture obeys a given
architectural style, which is similar to verifyinigorizontal conformancdDu_Qais_e_a.nd_P_oJ]et
@Sb) between two views at the same level of abstractiobHd® A makes it possible to ex-
tract the built runtime architecture, and thus leveragselepabilities. Moreover, since8o-
LIA establishes traceability between the architecture anddde, setting the architectural-level
constraints can be used to enforce global constraints capiblecation structure, within the code.

Architectural types. A built architecture does not usually have rich architeaitiypes. In
principle, a developer could enrich the built architectuaestracted from an object graph, with
architectural types. A developer could assign the typeviddally to the components and con-
nectors in the built view. Or the developer can map implel@m types to architectural types,
and the tool could automatically assign architectural $yjpeall the components that correspond

6.5. Enforcing Architectural Structure 215

to instances of that implementation type. This is only a fgbroximation, because different
instances of the same implementation type suchaaaMap, could correspond to architectural
components of different types. In that case, a developesithmanually fine-tune the automat-
ically assigned types.

One benefit of relating the built and the designed architestiand enriching the designed ar-
chitecture with architectural types, is that it can uncaadulitional violations of the architectural
intent in the code.

Analysis-specific properties. It is also possible to define analysis-specific propertiesaaid
those to an architecture. For instance, (Abi-Antoun mezd)) defined element-level proper-
ties, such asrustLevel, to support an architectural-level analysis to identifgaiing or tamper-

ing.

Structural constraints. First-order logic predicates in Acme can enforce variouscstiral
constraintsmml), such as:
¢ Component instance:; never directly connects tGomponent instancer;:
forall cl : Component in self.COMPONENTS |
forall c2 : Component in self.COMPONENTS |
connected(cl,c2) -> !(cl==x AND c2==y);
* A Component of typet; never directly connects to@mponent of typets:
forall cl : Component in self.COMPONENTS |
forall c2 : Component in self.COMPONENTS |
connected(cl,c2) -> !(declaresType(cl, T1) AND
declaresType(c2, T2))
* No component irGroup g; communicates directly with any componeniGroup g¢-:
forall gl in self.GROUPS |
forall g2 in self.GROUPS |
forall ml in gi.MEMBERS |
forall m2 in g2.MEMBERS |
ml = m2 -> gl = g2;

6.6 Discussion

6.6.1 False positives

A designed architecture is often more abstract than the &ghitecture, but it must still rep-
resent all communication that could exist in the implemiota The SHOLIA conformance
analysis enforces communication integrity and ensurdghbalesigned architecture is a conser-
vative abstraction of all the objects in the implementedesysand the relations between those
objects at runtime. In SHOLIA, the goal is to have no false negatives in the designed acchit
ture, and show the worst case of possible communicationdsstwbjects at runtime.

Of course, 8HOLIA, like any other sound static analysis, can generate falsiiyes, and
indicate objects or relations that can never exist at rustidue to infeasible program paths.
However, our empirical evaluation in the next chapter withw that HOLIA does not generate

216 Chapter 6. Conformance Analysis

many false positives in practice. MoreoveGrBOLIA allows a developer to intervene at different
steps in the process, to refine the annotations, control bfextograph extraction, tweak the
abstraction of the object graph into a C&C view, force or preveatches during the structural
comparison, and select various options when analyzingocorance.

6.6.2 Why an architecture description language?

SCHOLIA uses an architecture description language (ADL) to repietbe abstracted object
graph and the designed architecture, bat8LIA is not tied to any specific notation. For ex-
ample, £HOLIA could use UML object diagrams, but UML tools do not suppoeraichical
object diagrams since they are not part of the UML standalterdAatively, HOLIA could use a
UML 2.0 component diagram to describe a runtime archit m). Future work may
consider representingCslOLIA’S output using UML 2.0. Also, there are many other notations
that SCHOLIA could potentially use, such as GXL (Holt etlal. 2b06), anrichenge language for
many reverse engineering tools.

The main benefit of using an ADL like Acme forc8oLIA is the ability to declaratively
define element types and define properties on those types. Wrharnchitectural instance is
assigned that type, it automatically inherits those priger For example, the conformance
analysis sets various properties on the elements. In tbasetproperties control the display
of the elements. Achieving the same effect in many toolsireguchanging the meta-model
used by the tool or using the tool's API to imperatively mgdifie model. In addition, since
AcmeStudio is an Eclipse perspective, all the other toas 8tHOLIA uses are fully integrated
around Eclipse. For instance, the CodeTraceJ tool can traoe dn architectural element in
AcmeStudio to the underlying Java source lines of code, bickig from the AcmeStudio to
the Java perspective in Eclipse. Thus, using one of the &tlgse-based UML tools would not
offer additional features.

6.6.3 Why structural comparison?

ScHOLIA compares the designed and the built architectures usingietstal comparison that
works with hierarchical views, does not assume unique ifiers, detects renames and allows
forcing or preventing matches between selected view elesn&hese assumptions closely match
the problem of analyzing conformance after the factH8LIA does not assume that the archi-
tectural components have unique identifiers, which wourttghsify the graph comparison consid-
erably kg_omw_éll._ZQM). The main benefit of using struttmaparison enablesc$OLIA to
detect renames between the built and the designed arcigsctvhich can partly occur because
of the way we extract an OOG.

The OOG extraction nondeterministically selects a labelafgiven object based on the
name or the type of one of the references in the program thatspm o. Thus, detecting re-
names ensures a developer can still rename fields or locables or types in the program
without impacting conformance. Avoiding the rename probéntirely would require additional
annotations to specify in code the preferred labels. But veéepito keep the design of the an-
notations minimal, and focused on just specifying objeciag@sulation and logical containment
properties.

6.6. Discussion 217

6.6.4 Relation to Reflexion Models

| modeled $HoLIA closely after Reflexion Models (Murphy et al. 2001), a staddzearer in
analyzing the conformance of the code architecture, whigdr to as RM. To be clear, RM
cannot handle the runtime architecture. However, drawirggsimilarities between RM and
ScHoLIA more explicitly is informative, because both approachesdyae conformance using
the extract-abstract-check strategy. Also, to my knowdedgher static conformance checking
techniques of the code architecture have comparable estpeasss to RM.

RM works as follows. In RM, a third-party tool extractsaurce modefrom the source code.
The RM user posits a designédyh-level modeand amapbetween the source and high-level
models. RM pushes each interaction described in the sourdelntorough the map to infer
edges between high-level model entities. RM then compaeemtarred edges with the edges
stated in the high-level model and shows the differencesevldper can iteratively: (a) modify
the high-level model; (b) modify the source model; (c) mgdife map; (d) trace a conformance
finding to code; and (e) optionally, change the code to conforthe architecture.

In SCHOLIA, the source modeis the source code with the ownership domain annotations.
The target architecture is thegh-level model And the structural comparison, together with
optional manual input to force or prevent matches, prodtivemapping Similarly to RM, a
SCHOLIA user can iteratively modify the designed architecture atm@otations in the program,
the structural comparison or the mapping, and trace froncdinéormance view to the code.

RM does not extract a complete abstraction to avoid obtaiaingodel that developers do
not recognize. In SHOLIA, the OOG represents a complete model, but developer-sgkcifi
annotations help obtain meaningful abstractions. ¢rSLIA, an extracted OOG is incomplete
only if the program is not completely annotated, there ameaigaing annotation warnings, or the
virtual field annotations do not soundly summarize all thiemal entities.

In RM, if the mapping generates a node that is not the desigred RM automatically
adds it to the designed view, i.e., RM has no divergent or dbsmites. As a result, RM need
not summarize entities that are present in an implementatith an edge in the high-level
model. RM also assumes that node names have exactly matafiingpation (names and token
types) and uses a graph connection model without ports oesnowWhen RM compares the
inferred edges with the edges stated in the high-level matdpioduces simple metrics based
on the number of divergences, convergences and absences.e@biras unmapped entries of
the source model, which gives an indication of the inconguiess of the mapping, which is
somewhat similar to our WARN metric.

In the base RM technique, the end-user manually generatesahe Building a map from
scratch is a laborious process. For example, for an 1-MLOsTesy, the map had over 1,000
entries|(Murphy et al. 2001). To alleviate the burden of piidg a map manually, (Christl etlal.
) proposed semi-automated clustering algorithms taimla mapping. Their evaluation on
various code architectures determined that the enginegrspend significant effort deriving a
good partial mapping, including fine-tuning the clusterahgorithm’s parameters.

Producing the RM mapping file appears more straightforwaad #dding ownership anno-
tations, but it is not amenable to type inference. Furtheemsince RM is used for the module
view, the mapping need not take into account inheritanceossiple aliasing in object-oriented
code. These are non-issues in a module view, but of courseeay important in a runtime view

218 Chapter 6. Conformance Analysis

(Sectiori 6.6 5, below).

In the base RM technique, both the high-level model and the amapnon-hierarchical.
(Koschke and Simoh 2003) proposed hierarchical extengtatsaccount for substructure by
lifting edges. $HOLIA considers both the designed and the built architecturesearbhical.

6.6.5 Mapping Code to High-Level Models

I will now explain how SHOLIA generalizes previous techniques for extracting an aligirac
of the runtime structure of source entities, and wigHSLIA’S more sophisticated source ab-
straction technique is needed to analyze conformance aotititene architecture.

Let us hypothetically attempt to apply RM to a runtime ardttiiee to better understand
why an approach that works on the code architecture canmolidnéhe runtime architecture. In
particular, let us map source entities to a hierarchicaimmmstructure.

Let us assume that RM supports tiers and qualify a componeitd bgr using the: symbol.
The Java RM tool, JRI\/@ 3), can map classcuit to acircuit high-level element, as
follows:

class Circuit to MODEL::circuit.

A class is a code entity, not a runtime entity. The above magy @ould indicate that it is
mapping all the instances of tkercuit class to aircuit elementin a code architecture. But
in an object-oriented system, there is usually more thanmstance of many classes, and each
instance can map to a different component in a runtime arctoite.

When working with a runtime architecture, the source modedtmeflect theuntime struc-
ture of the system and represent an object graph. Instead of mgpilass or all of its instances,
we need to map runtime objects. A static analysis knows dmtyigfield or variable declarations
in the program, which denote references to runtime objéa#s.useMain.circuit to denote
a circuit field declared in clas®ain, which points to an instance of tiErcuit class at
runtime. Assume we extend JRM and map:

object Main.circuit to MODEL:circuit. // circuit has type Circuit

In object-oriented code, multiple code elements couldespond to the same object at run-
time. An architecture would be deceptive if it showed ondirne entity as two components. For
instance, an architectural security analysis could assignruntime entity two different values
for a keytrustLevel property. So, all the references that may alias, i.e., tefdre same object at
runtime must map to the same component in the architectunreexample, a reference of type
Circuit and another of typ@Circuit, an interface thatircuit implements, may alias, so we
somehow also have to map both to the same runtime component.

object Main.iCircuit to MODEL::.circuit. // iCircuit has type ICircuit

In addition, one code entity can map to multiple componemta funtime architecture. A
code architecture such as a class diagram would showeteor class andNode andNet
classeghat have a module dependencywttor. In a runtime architecture, different instances
of Vector are often part of conceptually different components. Fastance, alode object

6.6. Discussion 219

has avector object of Terminal objects. Another distincfector object, also offerminal
objects, is part of &iet object. To support this feature, a previous system (LR) defneontext
parameter using an annotation in the code, and binds thameder to different actual contexts
using additional annotations (Lam and Rinard 2003). But in LIRha context parameters bind
transitively to a top-level context such B80DEL. As a result, LR extracts a non-hierarchical
model.

Most ADLs support the hierarchical decomposition of a congu into a nested sub-
architecture | (Medvidovic and Taylor 2000). For examples fiphyds designed architecture
showsnode andnet insidecircuit’s sub-structure (Fid. 1l1). So first, we define a sub-strectu
i.e., a nested context or ti&B, insidecircuit, which we refer to as if it were a field, as dir-
cuit.DB. We then model objects such asde andnet as beingpart of a circuit object, by
mapping them to components insid8. For example, we map a fiettbde to anode component
in circuit’s DB:
object Circuit.node to MODEL::circuit.DB::node.

SCHOLIA is more expressive than LR, since it can bind a context paenteta nested
context such as arcuit.DB, thus achieving hierarchy. Also,C8OLIA is more expressive than
RM. By binding different domain parameters to the same actodains, the analysis can map
multiple code elements to the same architectural comporgntilarly, by binding one domain
parameter to different actual domains, the analysis canralgp one code element to multiple
architectural components.

In summary, theimplicit map generated by CHOLIA generalizes previous maps
(Murphy et al! 2001; Lam and Rinard 2003), accounts for ithede and aliasing, and relates
a rich, hierarchical description of an architect’s intethdentime architecture to a hierarchical
representation of the runtime structure of source codéesti

6.7 Summary

This chapter weaves the architectural extraction (Chap@n@ architectural comparison (Chap-
ter[) into the £HOLIA end-to-end architectural conformance approach.

| discussed an analysis that takes a hierarchical objephgextracted statically, abstracts it
into a built runtime architecture represented as a C&C viewnake it comparable to a target
architecture. | also discussed how the conformance asay$orces communication integrity in
the designed architecture, while allowing a built arctiilee to contain low-level objects, without
propagating them directly into the designed architecture.

To my knowledge, S8HOLIA is the first approach to extract statically a runtime arciites
from a program in a widely used object-oriented languagegusnnotations. If an intended ar-
chitecture exists, SHOLIA can analyze, also at compile time, communication intedpétwveen
the code and the target architecture. FinallgH®LIA can establish traceability between an
implementation and an intended runtime architecture.

In the next chapter (ChaptEl 7), | evaluateH®LIA on several real representative object-
oriented systems, and show that, in practicesiSLIA can find interesting structural differences
between an existing system and its target runtime architect he evaluation will confirm what

220 Chapter 6. Conformance Analysis

others have reported (Murphy ef al. 2001; Aldrich et al. 2)02hat informal diagrams often

omit important communication. Thus, analyzing confornmeatter the fact can be very useful
during software evolution to ensure that architects bas# tmportant decisions on accurate
architectures.

Acknowledgements

The author would like to thank Bradley Schmerl for his helphwdicme and AcmeStudio. In
addition to the thesis committee, David Garlan, Mary Shaw barry Maccherone gave us
helpful comments on the approach.

6.7. Summary 221

Chapter 7

Evaluation of the Conformance Analysi@

To demonstrate thatc$ioLiA works in practice, | evaluate the end-to-end approach oerakv
real representative object-oriented systems. In thistendmglemonstrate that, in practicesi$o-
LIA can be applied to existing systems while adding or refinirlg annotations in the code, that
ScHOLIA can find interesting architectural violations, that theiséations can be traced to code,
and that 8HoLIA computes sensible metrics.

7.1 Introduction

Before | discuss the individual case studies, | discuss theareh questions | wanted the eval-
uation to answer (Sectidn T.2), the tool support that | koilevaluate 8HOLIA (Section 7.B)
and the evaluation methodology (Sectionl 7.4). | then prtefeem extended examples: Aphyds
(Sectior_Z.b), JHotDraw (Sectign ¥.6), HillClimber (Sentit.7), and CryptoDB (Sectidn 7.8).
I conclude this chapter with a discussion (Secfion 7.9).

7.2 Research Questions

Our evaluation aims to answer the following hypothesest{@&d.10, Page 25):

H-4: An analysis can abstract an object graph into a built gmment-and-connector
runtime architecture represented in a standard architextlescription language.

H-6: An analysis can check communication integrity with ay&rarchitecture, es-
tablish traceability between the target architecture anel tihde, and compute struc-
tural conformance metrics in practice.

We refine the hypotheses into the following research questio

RQ3 — Conformance: Can the conformance analysis display a meaningful confooman
view, enable tracing a finding to the code, and compute sknsinformance metricsThe
measurable criteria are: few false positives, a readabiieoomance view that does not have so
many divergences that it is almost a fully connected grapt,the ability to trace to the right

Portions of this chapter appearedl|in (Abi-Antoun and Akii2009b).

223

code locations. Ideally, the goal is to minimize the numidetigergences and absences that the
tool reports, or to ensure that they correspond to casesevtherimplementation violates the
architectural intent.

RQ4 — Value: Can ScHoLIA identify interesting structural differences between baitd
designed architectures in real systems?

The conformance analysis requires the architectural etitra(Chaptef2) and the architec-
tural synchronization (Chapter 5). We also reuse two of thgesti systems from Chaptel 4,
JHotDraw (Sectiof 7]16) and HillClimber (Sectibnl7.7), on erhive previously evaluated the
annotations and the object graph extraction (See Se¢tiéigd.Z). This chapter also presents an
end-to-end evaluation on two new subject systems, Aphydsti@[7.5) and CryptoDB (Sec-
tion[7.8). So we revisit the corresponding hypotheses asehreh questions below:

H-1: Lightweight typecheckable ownership annotations catip, within the code,
local hints about object encapsulation, logical contaimtn@nd architectural tiers.

H-2: In practice, a static analysis can extract from an aratetl program a global,
hierarchical object graph that provides architectural afaction by ownership hier-
archy and by types.

H-5: An analysis can structurally compare the built arcloiigre to a documented
target runtime architecture.

We refine the above hypotheses into the following researebktmns:

RQ1 - Extraction: Can ScCHOLIA extract statically a meaningful, hierarchical,
Component-and-Connector (C&C) runtime architecturéPhe measurable criteria here are
to abstract away low-level objects that are implementadietails.

RQ2 — Comparison: Can the structural comparison meaningfully compare a buitha
tecture extracted from the implementation to a designetligacture? The measurable criteria
here are to minimize the occurrences where a developer narsiaily force or prevent matches
between the view elements.

7.3 Tool Support

| developed several tools and integrated them with existiogs (Fig.[7.1), in order to support
the SCHOLIA approach (Sectidn 1.7, Pdgé 20):

« AcmeStudio (Schmerl and Garlan 2004; AcmeStudio 2009) is a modelingr@mment
for Acme. In SHOLIA, a developer uses AcmeStudio to document the designed archi
tecture, display the extracted built architecture, angldisthe conformance view. | used
AcmeStudio to generate all of the C&C views in this document.

* ArchCheckJ: ArchCheckJ (stands for Ardiectural annotation Cheek for Java) type-
checks the annotations added to the code and is discussedtior$4.3.1l (Page 1P22);

* ArchRecJ: ArchRecJ (stands for Ardiectural Reovery for Java) extracts an OOG from
annotated code and is discussed in Se¢fionl4.3.2 (Page 122);

* ArchCog: ArchCog (stands for Ardtectural @mponent @ject Gaph) abstracts an OOG
into a C&C view, using the techniques | discussed in Se¢tidr(Bagé 207). A developer

224 Chapter 7. Evaluation of the Conformance Analysis

Typecheck
[ArchCheckJ]

M Investigate

and refine

Annotate

Annotations

Extract
[ArchRec]]

Document
[AcmeStudio]

Refine

Hierarchical

Object Graph Designed Trace o
Architecture Code
Abstract
[ArchCog] Compare [CodeTraceJ

Conformance

Check View
[ArchConf]

Built Runtime
Architecture

Figure 7.1: Tools to support the &HOLIA approach.

can also soundly elide private domains. Finally, a devel@a@ restrict the unfolding
depth at which to represent the C&C view;

* ArchConf: ArchConf (stands for Ardttectural Conbrmance analyzer) analyzes the con-
formance between two C&C views, generateoaformance viewand computes the met-
rics, as discussed in Sectionl6.4 (Page 210). ArchConf aldodeveloper to confirm the
results of the structural comparison, or to manually foncprevent matches and rerun the
comparison;

* CodeTraceJ: CodeTraceJ loads the traceability of an element in the cordoce view,
opens the corresponding source files and highlights theopppte lines. Because AcmeS-
tudio is implemented as an Eclipse perspective, CodeTrdlmmisaa developer to trace
seamlessly from a conformance view in AcmeStudio to the dada in the Eclipse JDT.

* ArchMod: ArchMod (stands for Arcitectural Modfication wizard) modifies the origi-
nal designed architecture, by takingliaergent element from the conformance view and
adding it to the designed view, or deleting #isent element from the designed view.

7.3.1 ArchCog

The details of abstracting an object graph into a C&C view wdiseussed previously (Sec-
tion[6.2, Pagé 207). The object graph abstraction tool, @og)j offers the following features
(Figs.[Z.2[7.B):
* Control the unfolding depth: the developer can control the depth of the OOG from which
to generate the C&C view;
* Elide private domains: the developer can make the tool soundly summarize private do
mains (this is the default);
* Skip singleton domains:a developer can make the tool not generate an AGrep for

7.3. Tool Support 225

sueWogqnd” spAydy

50

— |BauET ._ _ -~ Al T adf) osany | oMy A

Jeyndwia) dpy

FUANa0] Ay

depysag woaoL B

@ s sphyde £5
Py peocupaydy B

auaepayoduT paydy

HizTele}} _.._n_m:w Jalqo n_ﬁi_._.so ue podwy 'z

~ sulewoggng spaydy _

1salyTaeaa adiy ay) bupedsul pue apod of Buoel o4 Aua papaau s 51) *Jreload eaer ay) JaEs T
{abeped yneyep) BT @

...l!i..cll‘c.i:.i:::r.u.
ZEISATT AN [T
[eowey [[wwen | pens @ ZAOEISURA LEARCUDAY AN FL-
MEJQIOHE [T

AegquiiH 71
(BN i o s B
sunjag sASN0D T4 [T
AaqyysASanoDT g [T
JBumc 2auanbas gng m
SIEUAST=0uaNbasTa0a [
=i 2ouanbas20d 71

[Twdg] _) _Ex.u_ww auwey a4 w asuantagssenererT20d [T
i MEY S25IN0T 000 m
ai0ag sasn0Ta0q FEL-
JayyysasanosT ang 0

&. Jebae | ggoydiiD ...}
St eAe[sely3003dAD [T
£sUaggnd sa5n0d 7]
sUPWOggnd sasnod 1
sayauaE”sasnod [T
ZIRISAIDTONIAHOM A [T
ANgsURLOgIgndspAydy T

SJUBLINI0]
Waday Ay q @

mﬂ sapwey 17 @

| | syrioan B2 m

= E Juxsege £ @

S = i) 2 _..5 s) 7 i yaa saleIqr peausiEey VE-

[m2u] Adeaqr] wegsAs Jur Pl #
3op-pusbiapis fif ;

us BT

*2AMYIRYILIIE SLIGUNA (2D) J0338UU00-puB-Juauodwnd piepuEys B 03U {B00) Ydeas palqo dysieumg pegoedyxe Alsnosadd B peasqy “=pAydy] uc_mEOm_u__n_:n_Hm_u>r_n_q W.w
‘paezim ayy dmyas i1 daysg B exed SEAUY I
- NESE
3= paBZLy UoRIRNSqY (eInaa)y Iy Sooyaly —
m.,m.m _.W_ u:n_mn_ﬁ m = .%v @ o A@ Amm Mm..q = J... - o = @ CoOEdYMY DIPEUDUMY C DUUDUASUDY polWUM [3RJ1Sp0D JUodldly BODUMY © A_E
diakl MOpUs, URY SUEdiogeAsg Sipigespr UOsaq Apued Jielodd yoiess elefliEn| JODEEY @nog waEly 3p3

Mas esdfa] - eaer —

select the project and the OOG.

ArchCog tool. Step 1:

Figure 7.2

Chapter 7. Evaluation of the Conformance Analysis

226

[iwesdepd] [y pueds3 |
) e .

=la| H{YBIH < w07) pdag uonaalolg

Jdod-asn 2jbuis Q s304-250 m_n_uﬁz@
Buiseqeuy ! O_UOZ rsundo uoelsusb Jog
“A+vu30r_w.h elgqo jpaat-do| 4oy Juauodwod ejeauag _H_
v 4 1sU0[do uoReEuEE JuauodineD
3 3 IT suiewop uojabus dys H
E i L suieop a3eaud apRjur [
E ynaD - [eujuLia] tsuodo uoesaush uEung
_ 1 2412 3 sadil 1alqo[A] sauwen ajqeuel [A]
_ur__uh . 4 b k +suoiydo Buyage| Jusuodwos

5 \ : N - d__. jr N0 aLE@® ‘uopdg Jnode]

J4auoljied 432e|d BN 4= 100 n0A=T ydes
(+)ped (+)4@08|1dUN241D +)3u ssunida Aejdsig
» < A X . |

, S~ i

Jauuejdiool4 1IN0y [eqo|D Jauueyd

X 5 t [i Ii) =
(+)dy {(+)423n045 (+)jpuueys I ma_m_oa”w_w.n._.,,n HERIBLIE

_ _I ’ > 100jEpEd &
Fi LY

/ N LY 1EC[EIpIC0Y
|

-

-

i

& af
-

|
4 |)
how 4

N

e ASraBIAINIAD [F
/ r\ N - - \ TBOjRIpEIN0EUUELD [+
. . ‘ \ sp38lq0 =
Inuejdicold najynoyade|d INajnoyjauueLd INHed Ted.m
:(+)LBojeipiooy ((+)Boleigueeld ((+)1Bolelpajnodjauueyd {(+)1LBoeipyed J8anois [
A . v dj =
Sl i A20R4IN0AT [+
—¥ - ‘ - 240+
JaMBIA [BUUELD 3 :
(+)damaipNnoID mum_“_m&u,_ 5

SUBWOQ

YU -
sabp3-#

A A Aol ez

*2INJIN4IS-0NS 53 [0.4U00 40 3 apija 03 3343 3143 Ul UIEWOP 10 Jaalqo pajaaEs & uo yai-1ubiy

"UOIIBJISOE [BAN1233LYI4E AY) [opuo] (7 dais

PUBZLf} UORILIISAY BINIBI Iy BOJyduy —

227

control the abstraction options.

ArchCog tool. Step 2

Figure 7.3

7.3. Tool Support

a singleton domain (this is the default);

* Set component labeling:the developer can choose various labeling options for iladpel
the C&C view elements.

* Persist abstracted OOG:ArchCog persists an abstracted OOG into an Acme file.

7.3.2 ArchConf

The details of analyzing conformance were discussed pusljidSectiori 64, Pade 210). The
conformance analysis tool, ArchConf, offers the followiegfures (Fig$. 714, 1.5, 7.6):

 Step 1: select the built and the target architecturesThe developer selects the built and
the target C&C views (Fid._7.4);

* Step 2: compare the built and the target architectures. The developer compares the
built and the target C&C views (Fif._7.5). Typically, the deger simply confirms the
comparison results;

* Step 3: compute the conformance view.The tool generates the conformance view in
Acme (Fig[7.6).

7.3.3 CodeTracel

The CodeTraceJ tool does not currently have a user interfaée functionality is invoked

through a menu item that is added to Eclipse. First, CodeJrhmzls the traceability of an
element from the conformance view, where it is stored in progs in the Acme model. Then,
it asks Eclipse to load the corresponding Java source filgsallf; CodeTraceJ uses built-in
Eclipse functionality to highlight the appropriate lines.

7.3.4 ArchMod

The ArchMod tool does not currently have a user interface flinctionality is invoked through
menu items that is added to Eclipse. Because the conformagees/a copy of the target archi-
tecture, ArchMod modifies the designed architecture diretn future work, we will enhance
the user interface for ArchMod, to enable a developer toipvethe changes before they are
applied to the designed architecture.

7.4 Evaluation Methodology

During the evaluation, the experimenter follows closely 8tHoLIA methodology, and uses the
tools in Section 7]3 as follows.

In Eclipse, the experimenter uses the AcmeStudio persgeictidocument the designed ar-
chitecture in the Acme architecture description langu&gd.in Eclipse, he switches to the Java
development perspective, loads the implementation pragelds ownership domain annotations
to the code as Java 1.5 annotations, and invokes the ArchChgmchecker. He double-clicks
on a warning in the Eclipse problem window to go to the offegdine of code, and attempts to
address the relevant annotation warnings.

228 Chapter 7. Evaluation of the Conformance Analysis

(ERIE) _ﬁ sy _ﬁ < Jxap

= e spiydy | sunos auoy | malklean 73 [=
) T e MEITIOHE [T

Jaquy d

Ul sASINOTT 2] B

aunjag sAcanoT i ...}

Aanyy sAcanODT g [T

JABUMOT=IUaNb25Te0a [T

Jlausssuanbas e0d Il

aouanbacong M-

JanbacTsseoEARC Q0O m i

MEY S25AN0TT 200 m-

_ adogegsesinoT E0g o B

Ja3yysasanoTTa0g m

Jebue | ggoydaiiD m

BABCSEIETA0090AID [T

SUIRWOAIANS $35naD [T

sUlPWOgagnd”sasnod [T

SOLISLEGT S25IN00) m i

[BISAIDTSNIAUOM A [T

FsUEWOQqnd”spAydy 7]

wrogoL B

JurspAyde 57

U paodT ALy

28 pagndul pALd

837

(S58UPUNDS J0J PAPEEL] UOREXILMILWGD SAISUR DUIRMOLS SADJ8UL0D AJSUIWINS MOUS [A] sayuiey 59 g

syrioaa B2

Juxseqe 57 @

BlRIgN paiuaEgEY TR M

= Adeagn weishs Jur V-
J0p pusbaIs m@

iRASI TR JINg-s UL 45 mm_ :

A 2wepayodui”piydy Wl DD paUbIsaC-sy sd'aus @

|SMBIA TR0 JINY-SE 843 pUE paUBISap-5e a4 BUWIEIL0D SWaSAs SWIY B4 198[35 ' fud-ais &

Jpd s mmH :

4l
il

e ©0 i58A0U 139990 0 SOWN(JO Jagquind 18]35

AT T ©Ho01 15[|E AAISND2) JO Jaquing 103)35
sadA) 2jgyedwoiu uo paseq sayajew ucm>9n_-
sfi|}8s paoleape UOSUECWIOD [2IMargs

|

S =t {5U0NAEUL0T JN0LIM) sapou JuaBiaap sals _H_

#4814 SIUBULIOJU0D B Ul SJNSE S3UBULI0YU0D ARjdsi] (5)

L, paUB|sap-se Bl 03 SABUR SEw ()

sBupas paoueape BUMISUD SIUBLLICUOD

rsunido Burdals sauenUn und snopes AJnads CAeuondo smals ZigD Jing-se Suy pue paufisap-se Al 0] SWajsAs AWy Bl 108ja5 J6° 245 m1
dmas it Jo 1 dais 0p 235)
dewns
PARZLAA m_.._v_uw_._u SIUBLLLIOIUOTY | BINI2R I 20y JUOY Iy = Jeq s
alIe* s]
_DCO_H_tmﬁ— 1eqsd-2us E
T Y anEnty _m..lu_ *
nlEnageqag] -
feoed ynejap) B @
us BT
| suEoQIgnd” spAydy Wﬁ..m_
aseg spAldy m--

alne payodu” pAydy suRwogaygnd T spAgdy

e | aueaus i) :) e |

Pt O R
- BRE: -0 - AIETIB wambe TBHBREE | BT S50 R
m.,m.m qW_ u:n_mn_,aw AE C3Edyy Cfeeyoyy OIPUASIY PO [IRI]SP0D JUDDUDY BOOULy

229

select the built and the target architectures.

ArchConf tool. Step 1

Figure 7.4
7.4. Evaluation Methodology

= = = q:
— =R _ _ ysiuig _ “ < ap ﬂ YoEg = @ PRI
Hy | 20unos auiy 73 i
_ s MEITIOHE _nﬂ__ 4
|~ SQUDIH T
(TR e o
240439 sASANOTT £ m i
Aayy sAcanoTT g T
JaumoTaaUenbacTana 7
JuauanaduanbagTe0d Il
aouanbagTong o B8
ane, auery anjeq Em sanbagssepeAR; 000 [
1saiiedolg 1saladosg #ey 595005780 T
o o e e y s
= — — 202 gogdAs
[[& wsed A e 0IeLagoAD [
~ 1 | = BASTSEIYA00IdAD [T
= i n ﬁ_w eequnIn Red af.ﬂ H SURLIOANGNS $35n00 7L
u_:u_,uu_slu__u ArCIDS9Ed m+ gl £ [Ty l=TH] uumcu_zumu tauonn.ed mf m" SURWOQIGNS 58503 [T
ATDYOAT AN BUORRY - B A erequnoap RInod|eqelb L. @ R — H
4338|d43IR|d 430R]44IN0UIEQOD B erequnptauueidiooy B @ erehi 2 0
WA YA EGED £ m_ tmm& SIRQUID IPINOHIFULRYD & M wmuc_mhowﬂwﬂmmuw;“”.m M
ia1n si03280000] - si0380007))= : L :
T b ...
“_. a2 om0 Sarrre— e) = ool B
suonnied &) m 1285 sauonnsed &) Juspayde
nnded &)@ B nnsed &) & 3w paodu pAgdy
= 4anoyeqo £ 4anoyeqold &) = A A
L 1suuejdiooly) = AP 1auuediooy {5 = i =l
———— FL] G] - NI G i) - m.. P
jpuneys €y @ nogpuuey &) 5 p __W;_M @ w
sjusuodwol) = . MaUs spusuodwol)= _Ewmm,_.m buu_u
: : o]
._wn__u”_L Ba _u_uo”_._ e - Bleaq] peuaizyEy VR
sdnos £3-8 B3 sdno.s £ _m_ = Adedgn wensAc WL VE
SI01BUL0T) - S40j32UU07))) ‘oppustaps [-
= i sauaduel - swBuaduoD B3 -, s (]
m v suewogMqndspAydy {3 = 2Rdu) iy egdaig~spAydy {3 = ! -
| 1SEIUESUT i 1533UEI5UT
]
]
i In
| *punoy (SIEUILIEM 57 ‘(S)0U48 0 1021 sabessaly syl yasu aseald (D)
]
1 S2IUBISUI YIJER f Jo £ dais
]
r:.f PAEZLi BUB{Iay) aIuewojueT) RINITEYINY JUodyIny —
-,
S P —
“
S i
~. ‘ad-
~ uonjiped ; essos B
.-...rf... o _D-_w__sw_\’ _D u.t m J<y anEnty _m..M_ i
Nea O i niaEnoyEge]
~
S ! Beaed Jnegep) BT @
~
.......J 1 us BT
- | suiewocangspAydy B =
e v ssedspaydy L
B |t ek e,
[aune payodwipAydyisuewoggnd spAgdel | - _AMV_ =l
i ; - : e
il | aune EME o .Nw Jojdx3 sbeoed L]

Ci=s S R R, S
-OBP: V-0 SCETF wo¥oe (Mt b hwEEs X

m.,mﬁ wA__W_ Bngaa €% F C28dlpiy CaynyaIy OAUACYMY POLYIY [S0RJIBP0D JuUoDydly Boouig B L

Chapter 7. Evaluation of the Conformance Analysis

compare the built and the target architecturesxamdgie the results

ArchConf tool. Step 2

of the structural comparison.

Figure 7.5
230

[ERT=R

19
121N
In
R
Sin

[l w.m.n>_.> _Emu_mEuquc>m.mEum..u.c_\ﬁm._mNmEum.m_n_.m..mquu._.Jum_ Hm:._.m> Ayiadoug q_mn>_._x__EMu_mEuq_ = awep Auadolg <- _umc_ =juawa(3 Jogauny Ajsedoly u__uu
iradA LAILE 4T ILAG 'EIIIR JUAS [RZAII0E 808" 53' MU0 NRE, Hm:_u> Apadoig fadA L Apuedawny, = awep Apadoig <- a0, =juawa)3 ¢ Jodandy Apadoig 3p3

£, =anjej, Aldadolg {sNje1ciuds, = awepy Ajedoug < - Jeu, =juswag | Jogaudy Ajsedoig p3

HanedSom-IWIUNE 'S OIPRISaIg Y | HSE iEARl N, Im:_m.> _\ﬁhmn_n:n_ Apgeanes, = awep Ajadold <- Spou, =juawa)3 | juauodwodawy Ajedold Jp3
BT IUAS SIS JUAS [EZAI08 9|08 50 NI NP, =an|e), Aliedod | adA] AlWedauoy, = awen) 41adodd <- Spou, =jusiua)l | jusuodwoDawly Apedold 1p3
JE R IUAS BW0R JUAS [E7AW0E Q8 5D MWD NP, Hmj_m> Ayiadoud | adA] Apwedauwoy, = awepy Ajedold <- apou, =juswal3 | jueuodwodewy Ajedold Ip3
, =aN[Ey ..an_En_ (ENjEcIUAs, = awep Ajadold <- Spou, =juawa(] @ jusuodwodawy Aadold Jp3
£ EDIPrSEWY) DT THEARD NS/ |£2BART u:ocm.u_BEmE:cm___ =anjen, Aladoid {AN0eaIe, = Swey Aladoid <- Spou, =Usis|3 | Jodauy Ajedold 1p3
104 | AlILIE J3WDYIUAS BWIE JUAS [BZIIE 3qe" 52 MWD NPa, =anjey, Ajladoig {adA L Apuedawny, = awep Ayadoid < - apou, =juaws|3 | Jodaundy Auadoid 3p3
104 [AILIE 40T ILAS AR IUAS [BZaIIIE |qe* 51' NUD Ipa, =an|ey, Apadolg fadi L Anedauny, = awey Apadod <- apou, =juaa)3 ¢ Jodandy Apadoig 3p3
* £, =anjep, Aliadolg | snjesauds, = awepy Ajedold <- apou, =juawa|3 ; Jiogeundy Ajsedoid 3p3

Al gopnisawag o]+ 1T eARl InouD) |2 iearl noue Jagesawnug), =anies Aladodd | Ajpqeanely, = awep Ajledosd <- 32N, =juaws)3 | Jodauay Ayadodd Jp3

180 LAY IAS BIIE JLAS [EZ31IR 208" 52 NI NP, =aNj2j, A3ad0id | a0k LALEJa00Y. = BWEl Aad0id < - 181, =JUSWST | 10dauny A1:adoid 1p3

=

JadA | AJWE JaUDpIUAS BILDE JUAS [EZALIIE B|08 S NUIX Npa, =anjes Apadoid | adA | Ajweganog, = awep Ajledoid <- 32N, =juswa3 ; Jodaunay Auadosd 3p3
*E =2NEh B_mnoi {5NIEISIUAs, = awen Ajledold <- 3ap, =juawa)3 | Jodanay Auadoid Jp3

T fanEdsns-SUUN S EOIPMISAYYY D BT LEARC NS, =anje,, Auadoid {ANIgeade., = awen Ajadold <- J8U, =Juais(3 | usuoduodauy A3adoud 1p3
B 42D IUAS BUIDE JUAS [EZaUI0E 3|q8 52 MWD NP, =an|es Ajdadoug fadA] Alwe4auy, = awey Apadoid <- Jau, =juswe|3 : juauaduosawly Ayadoid Jp3
B2l LA AUIDE JUAS [BZAI0E 208 S3° MUY NP3, =an|eg, Ajadolg fadi L Awegsuny, = awep Apadoig <- Jau, =juaia)3 @ juauodunsandy Apadoig 1p3
£, =an|ey, Ajiadoud {snjeqsiuds, = awep) Apadolg <- 18U, =juaws|3 ; Juauodwodewoy Agedoig 3p3

|aeieasl nouegaiesawnuaf| 15z eARl Inaf| 0giesel lpuia |, =anjes Ajsedoag {Aqnqeaney, = awepy Apadodd <- UIew, =Juswapg | Jogawoy Ajedold Jp3
3d4 | AWEJaUIGIUAS SUDE JUAS [EZWIE 8)q8 $2° MWD NP, =anjes Aladold [adA | AIledany, = awep Aladold <- U, =Juaus|d | Jodawdy Apedoid 1p3
3dA | AJLUEJBUIDGIUAS BUDE JUAS [EZALIIE B|qE 52 MWD NPa, Im:_m> Agdadoig | mn_.».—}_ WEJSiny, = Swep Aadold <- Uew, =jusws|3 ; Jodawny Ajiedold Ip3
£, =224 Ajadold | sneqciuds, = awepy Ajadold <- c_uE |, =Ju=wa3 ¢ Jogawoy Ayadoid Jp3

[Zi Al w2 T RAR IBUONIIEA] | THiBARL [BUILIE L], Im:_m._; iados | ANEE0R, = SUWEN Alad0ld <- N2, uEmEm_u 1 jusladWODEDY Alsedold Ip3
243LGIUAS BUIE JUAS [EZBWIE 8|0 52 I Npa, =an(es Ajadoid fadd | Ajuegauny, = awep Aadold <- JIN0UD, =jusiwe|3 § juauoduosenly Auadodd Jp3
24algIUAS AUIE IUAS [BZAWIIE 8|0 53 MW NpE, =an(e, Ajladolg fadi | Ajuegainy, = awepy Apadolg <- N0, =juaia)3 @ juauodunsanly Apadoig 13
£, =anjej, Aliadolg | sNjejsiuds, = awep Ajedoug <- Jnaa, =juawa|3 ; Juauodwodeawoy Agedoig Jp3

' 1, =anes Apadoug ! snieicouds, = awep Ajadoid <- N0, =juswapg | Jogawoy Ajedoad Jp3

w0 2ieael aARdsIgEaUUE YD) |22 eART TRIN0YEUURY D), =anjeh Aladoud [ANGeaIe.], = awen Ajadold <- SEUUBYD, =Juaua|d | Jodaway Apedoid 1p3
WE 4B IUAS BLIE JUAS [EZaW0E B)ge S N Npa, =anes, Ajadoud | adA] Apwegaunog, = awepy Ajedolg <- spuuBy =juswa)g ; Jogawoy Ajedosd Jp3
WE SR IUAS SR JUAS [BZaW08 5|08 53 W2 NpS, Ho:_u_; Ayiadoug fadA) Apuedaung, = awep Apedold <- SRUUBYD, =juswag ¢ Jodawoy Ajadold Jp3
£, =aNEi Ajadold [SMIEISIUAS, = allep Ajadold <- SEUUELD, =JUSWET | J0daldy Ajedold 1p3
2[*sededsigauuey D) |2 ieael INegnoYEULRY DS, =anER E;mnn:n {AQpqeaneay, = awen Ajedoid <- Janoypuueyd, =juawa(l | jusuodwodawny Ajedold Jp3
LIAG BB JUAS [EZalI0E 808 S1° MW NPa, =an|e Apadolg | mn_..ﬁ._.» WEJaly, = awep Ajiedold <- Jajnoyaunel, =juama)3 | juauodunsauty Ajadolg Jp3
UAS GWIE" JUAS [EZaW0R B|ge 2 NI Npa, =anje; Ajadoig | adA | Apwegauny, = awepy Apadolg <- JaqnoyRuueyd, =juswa)3 | Juauodwodauly Ajsedoig 3p3
£, =2N2f, AJ42d04g {SNIEISIUAS, = awep) Ajad0ug < - JeqnoyEuueyl, =juawa)g ¢ jusuodwodawdy Ajiadodd 1p3 |

™

1SUIDY JIP3 SUg

3813 SIURULIOUOD SU3 JO SJNSE4 S A|dde puE uluos

s)NsaJ sisAleue wayuod i Jo + days

paEzL BUBjIaYT) a3UeUOjI0) |BINIEIYIIY JUo)yIIY —

Inuoniyed

aue pagiodui| nfuq.ﬂz.mEoD

=Ll ¥ E

T -0 - Pl [A et

8HY QUEUEE

eaer | brgea gk A ofuc_.,mcui

POl

by | 524005 SU0Y | MalAIBAD |

_n__d mt.»r..u«..f |

~ MEIQIOHE [T

Jaqu __||_
Ul sASINOTT 2] __H_
auojag sAcanoT g [T

Ay sASNoT T [T

daumcTeouanDEsTana 7]

JUaUESsousnbas e0d T

aouanbacong ..}
JanbacTsseoeARC 000 [T
mey sasnoTTang

a40yag s85N07 200 ...
sy sasanoT T e0q 71
Jebue | ggoydaiiD m
EARCSEIGT 20010440 [T
SUPWOdgNd” sa54n00 FTL
SUIRLOI NG~ S854n0D j
SIUALSG S25IN0D) m
[B3SAIDTSNIAUOM v [T
FSUELOQ NG spAYdy T
wrogoL B
JuurspAyde

JWpayoduTpAYdy B
28 peodl paydy]
L]

synzan B2

Juxseye 7

aliRIq] padUasa)E TE
AJRIQ)] WEOSAS FU0 R
J0p- pusbaE)s
s L

sd s

Bud-s

Jpd s F nul
[RTITE¥E

Q65 [

J0p s ﬂ@
dewns |

e s m.,

alIe* s .

32 sd-1s ﬁ.l
IRy EnENG

n{* IaynoyEgo)s

Beped yneyep) B m

us B

| sueLIoQgndspAydy BT
v asegspAydy [IL

1ew.

compute the conformance vi

ArchConf tool. Step 3

Figure 7.6

231

7.4. Evaluation Methodology

After the developer annotates most of the program and elitegnmost of the serious warn-
ings, he uses the ArchRecJ tool to extract an object grapha eeaningful comparison, the
extracted object graph (which will be abstracted into thié& Buchitecture), and the target archi-
tecture must have similar tiers, similar hierarchical deposition, and similar components and
tiers at each hierarchy level. Typically, the experimesfends some time refining the annota-
tions and visualizing object graphs, until the extracteggatgraph is roughly comparable to the
designed architecture.

He then invokes the ArchCog tool to abstract the extractedoblgraph into a built archi-
tecture represented as a C&C view in AcmeStudio. He then o ArchConf tool to the
extracted built architecture and to the designed archite@nd examines the results of the struc-
tural comparison. ArchConf displays the two views side-fdgsn a tree-form and shows the
mapping by overlaying icons on the affected elements in ¢éaeh(Fig[7.5). If an element is
matched or renamed, the tool automatically selects andigiigk the matching element in the
other tree; for inserted or deleted elements, the tool aaticailly navigates up the tree until it
reaches a matched ancestor.

In ArchConf, the developer typically accepts the comparissults. But if the comparison
mismatches some elements, he can manually force or prevanhes between those elements,
and rerun the comparison. Once the developer accepts thgacmon results, ArchConf then
creates a conformance view of the designed architectudediaplays the conformance metrics
in an output window.

Back in the AcmeStudio perspective, the developer examimesonformance view, and
investigates unexpected divergences. He uses CodeTracedfiom a convergence or trace
a divergence to the code. If the divergence is critical, hg madify the implementation to
eliminate the architectural violation. Alternatively, heay update the designed architecture if
he considers that the conformance analysis highlights imm er omission in the architecture.
He can update the design architecture either manually, araheuse ArchMod to propagate
components or connectors from the conformance view badiettarget architecture.

7.5 Extended Example: Aphyds

We now describe analyzing the conformance of the Aphydesysising the SHOLIA method-
ology and tools. The experimenter (hereafter “I”) devetbpeveral of the tools, but none of the
subject systems.

The process was iterative as a whole, and involved both maer@ micro-iterations. A
macro-iteration consists of documenting the designeditexthre, adding the annotations, ex-
tracting an OOG, abstracting it into a built C&C view, and gmalg its conformance. A micro-
iteration can consist of the process of iterating the artimots.and extracting OOGs before con-
verting an OOG into a C&C view. One exits a micro-iteration wiam OOG has a reasonable
abstraction level, and no longer shows low-level objecthsasVectors in the top-level do-
mains. Retrospectively, we present the Aphyds evaluatidwasnacro-iterations and show the
evolution of the conformance metrics across the two maemions (Table 7]1).

232 Chapter 7. Evaluation of the Conformance Analysis

{ | partitionUl
roorpIanUI placeRouteUl channelRouteUl
N i ; : \

44— circuit [Ef :

i partitioner J\ ochannelRouter
& =T '/

' floorplanner o placer —¢ globalRouter

1 Model

I ﬂ

Figure 7.7: Aphyds: designed architecture in Acme.

7.5.1 Modeling the Target Architecture

| documented the Aphyds designed architecture in the Acme Bd3ed on an informal diagram
by the original Aphyds Java developer (Fig.]1.1, Page 3)jtbrated the process a few times.
When connecting two components in a group, | initially for¢gmtput the connector into that
grou@, which resulted in badly matched connectors.

In an early iteration, | set the analysis to add dhergent components to the conformance
view, and noticed aartitionUl divergent component. For consistency, sinfieorPlanUl and
placeRouteUl interact withfloorplanner and placeRouter, respectively, | added to the designed
architecture aartitionUl that interacts wittpartitioner, even though the informal drawing omit-
tedpartitionUl. The resulting designed architecture is in [Figl 7.7.

7.5.2 lteration 1
7.5.2.1 Adding Annotations

I initially organized the Aphyds objects into two top-lewkimains.UI holds aviewerUI object
and several subsidiary user interface objeBGREL holds aCircuit object and computational
objects that act on it, such 8%oorplanner.

| also defined several private domains to hold objects entaiesl by their parent, such as
Map objects inside &ircuit object (Fig[7.8). These annotations produce a hierarcBi€xs,
as the (+) sign indicates (Fig. 7.9), but one that still hasyr@bjects in the top-level domains.

2A predicate in Acme can enforce this rule, and generate aimgwhen this happens.

7.5. Extended Example: Aphyds 233

© [e<] ~ o o B w N -

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

class Circuit<OWNER> { // Implicit parameter
/I MODEL Circuit ¢c;— OWNER = MODEL
domain OWNED; // Private domain
OWNER Node node; // Make peer to self
/I Declare reference to Map object in OWNED
/I Inner OWNER annotation is for map elements
I/ String objects have manifest ownership
OWNED Map<String,OWNER Node> nodes;
}
class Circuit {
public domain DB; // Public domain
domain OWNED; // Private domain
DB Node node;
OWNED Map<String,DB Node> nodes;
}
class Node<OWNER> {// Implicit parameter
domain OWNED; // Private domain
OWNED Vector<OWNER Terminal> terms;
}
class Net<OWNER> {// Implicit parameter
domain OWNED; // Private domain
OWNED Vector<OWNER Terminal> terms;
}
class ViewerUI<M> { // Domain parameter
M Circuit circuit;
}
class Main { // Root class
domain MODEL, UI; // Top—level domains
MODEL Circuit circuit;
UI ViewerUI<MODEL> viewerUI;
}

Figure 7.8: Aphyds: initial annotations during Iteration 1.

7.5.2.2 Extracting Object Graphs

The extracted object graph for Aphyds is in Hig.]7.9. Aphyisrbt require using abstraction
by types due to its fairly simple inheritance hierarchy.

7.5.2.3 Abstracting into Built Architecture
| used the default options for abstracting an OOG into th& RdC view.

7.5.2.4 Comparing the Built and Designed Architectures

| used the default options for comparing the built and thegihesl architectures.

234 Chapter 7. Evaluation of the Conformance Analysis

77777777 s 1 .-
[K B S Node(+) Circuit(+)
N - VY

' N P
Partitioner(+)
4

NetGlobalRouting(+) _|

e Channel(+)

=
_ - —
L+ Displayer(+) 4 \ PartitionTranscript(+) | || \ S

—

FloorplanUl(+) 4

B GlobalRouter(+) |

\
\
\
4
\ ‘
\ ‘ | Patui)
‘ s J—
\
\

L SlicingTree ——# vector<Floorplan>

. —
\ Floorplanner

L (v

'S Floorplan

Net(+) |
L <4

Figure 7.9: Aphyds: OOG using private domains and many peer objects.

7.5.2.5 Analyzing Conformance

The conformance analysis produces neither a readablerooafge view (Figl_7.10) nor good
conformance metrics (Table 7.1). For examplede andNet are peers ofircuit instead of
being in its substructure (Fig._T.8). So the analysis maskésnt thenode andnet components
insidecircuit, hence the 2 node absences.

The built view has many more components in the top-leved tiean the designed view, which
explains the high node divergence (DN is 11). Moreover, thhe&@mance analysis generates
many summary connectors (SE is 97) to account for possiaiesitive communication, which
leads to a high number of edge divergences (DE is 89).

For exampleDisplayer communicates witlTerminal, and Terminal with Placer. In
reality, Terminal is part ofCircuit, andCircuit already communicates wittLacer. Ideally,
the analysis should just mark as convergences the conndstaveerisplayer andCircuit,
and the one betwealircuit andPlacer. Since the analysis lacks information about logical
containment, it shows instead a divergent summary conné&cim Displayer to Placer, and
many others. This turns the conformance view into an unigdadally-connected graph. The
low CCM and the 97 summary edges (SE) may not necessarily maamhth designed view
is only 21% accurate, but that the built architecture is reitrpeaningfully comparable to the

7.5. Extended Example: Aphyds 235

_lentMain_MainUIFloorplanUI
_lentMain_MainUIDisplayer
_lentMain_MainMODELFloorplan
_lentMain_MainMODELFloorplanner
_lentMain_MainUIChannelRouteUI
_lentMain_MainUIPlaceRouteUI
_lentMain_MainUIPartUI
_lentMain_MainUIViewer
_lentMain_MainMODELCircuit
_lentMain_MainMODELNode
_lentMain_MainMODELPartitioner
_lentMain_MainMODELPlacer
_lentMain_MainMODELNet
_lentMain_MainMODELChannel
_lentMain_MainMODELGlobalRouter
_lentMain_MainMODELPartitionTranscript
_lentMain_MainMODELPTnode
_lentMain_MainMODELBucket
_lentMain_MainMODELTerminal
_lentMain_MainMODELNetGlobalRouting
_lentMain_MainMODELSlicingTree
_lentMain_MainMODELVector_Floorplan_

—Legend:
Components

JICompT

g Representation

Connectors

ConnT
Ports
& UseT

» ProvideT
Groups

floorplanner comp
7

Figure 7.10: Aphyds: conformance view during Iteration 2.
designed one.

7.5.3 lteration 2

In SCHOLIA, a developer controls the architectural abstraction uaimgptations. So during
Iteration 2, | refined the annotations to get a better matthout changing the code.

7.5.3.1 Adding Annotations

Using the designed architecture as a guide (Eid. 1.1), | éefseveral public domains. Some
public domains contain objects that should not be in thelégpt tiers. For examplejiewer
has aDISPLAY public domain to hold &isplayer object.Displayer is not in the developer’s
diagram (Fig[L1.1), but is not encapsulated eitegsplayer is only logically contained inside
ViewerUI, as many otheUI objects, such aBloorPlanUI, reference it directly.

Other public domains abstract low-level objects into maoahigecturally relevant ones. For
exampleCircuit holds objects such a®de andNet inside itsDB public domain, to reflect the
designed architecture (Fig.7.7).

| also created public domains (not shown) as follows:

* CircuitViewer.DISPLAY: a public domain orCircuitViewer to hold aDisplayer

object that all the other objects in tié domain had references to;

* Partitioner.DATABASE: a public domain on Partitioner to hold

PartitionTranscript andPTnode objects;
* Floorplanner .DATABASE: a public domain onFloorplanner for objects such as
SlicingTree,

236 Chapter 7. Evaluation of the Conformance Analysis

class Circuit {
public domain DB; // Public domain
domain OWNED; // Private domain
DB Node node;
OWNED Map<String,DB Node> nodes;
}
class Node<OWNER> {// Implicit parameter
domain OWNED; // Private domain
OWNED Vector<OWNER Terminal> terms;
}
class Net<OWNER> {// Implicit parameter
domain OWNED; // Private domain
OWNED Vector<OWNER Terminal> terms;
}
class ViewerUI<M> { // Domain parameter
M Circuit circuit;
}
class Main { // Root class
domain MODEL, UI; // Top—level domains
MODEL Circuit circuit;
UI ViewerUI<MODEL> viewerUI;
}

Figure 7.11: Aphyds: refined annotations during Iteration 2.

* GlobalRouter .DATABASE: a public domain on GlobalRouter to hold
NetGlobalRouting oObjects.

| also reduced the clutter by pushing low-level objects saskiector<Floorplan> into
private domains or by passing them linearly between ohjects

In most cases, defining a public domain required mostly lacal incremental changes to
the annotations. With the refined annotations, many objbetswere in thel0DEL top-level
domain, such afiode, Net and Terminal, moved into public domains of other objects, such
asCircuit (Fig.[Z12). As a result, both the extracted OOG and the attstl built view now
have a system decomposition that is closer to the desirditecture (FiglZJ]7). The reader can
visually compare the annotations | used in Iteration 1 (Zi8) to those | adopted in Iteration 2
(Fig.[Z11) and confirm that the changes are fairly local.

Expressiveness challenges.For Aphyds WARN% is 5%. The remaining annotation warnings
are due to expressiveness challenges in the ownership ddypmes system, similar to those |

discussed in Sectidn 4.6.1..3 (Pagel135). We believe thesenga do not contribute to missed
architectural violations. A warning potentially corresigs to a missed architectural violation, if
fixing the warning could produce an additional edge in theaetéd object graph, or an additional
divergence in the conformance view.

7.5. Extended Example: Aphyds 237

>
L Partitioner(+) _|

T b
Placer(+
> ()

|
|
>
r— — . — — — __lrl Floorplanner(+)

+fF

> FloorplanUlI(+)
b2 Channel(+)

|
Viewer(+) 4~ . ¥
Y

By Y . .
o ChannelRouteUI(+)

Hashtable<String,Net>

Circuit

T NN

N NN .
> Net(+) Terminal

|
|
GlobalRouter(+) I —
- | EnumerateFanout(+)
|
|
|

a
PlaceRouteUl(+)

R
| PartUI(+) —

Figure 7.12: Aphyds: refined OOG after defining public domains.

7.5.3.2 Extracting Object Graphs
The extracted object graph, based on the refined annotaisang=ig.[7.12.

7.5.3.3 Abstracting into Built Architecture

| used the default options for abstracting an OOG into th& B#C view.

7.5.3.4 Comparing the Built and Designed Architectures

| used the default options for comparing the built and theges! architectures. However, the
structural comparison did not correctly matadde andNet in the built view, tonode andnet in
the designed view (Fig. 6.7, Palge 213). Indeed, this is awhsee the graph structure not rich
enough to give a good structural match. This was fixed by mbnioacing Node to matchnode,
andNet to matchnet, respectively.

7.5.3.5 Analyzing Conformance

In Iteration 2, the conformance analysis matched the coepsrbetter, with 0 node absences
and 1 node divergence, which correspondbettminal. The analysis now marks asnvergent,

both node and net insidecircuit, as well as the connectors between them (Eig.]7.13). In the
built system,node andnet do not communicate directly, but do so throutgrminal. So the

two convergent connectors insideircuit have the summary decoratixn As an aside, the edges

238 Chapter 7. Evaluation of the Conformance Analysis

_lentMain_MainMODELPartitioner
_lentMain_MainMODELCircuit
_lentMain_MainMODELPlacer
_lentMain_MainUIPlaceRouteUI
_lentMain_MainMODELFloorplanner
_lentMain_MainMODELChannel
_lentMain_MainMODELGlobalRouter
_lentMain_MainMODELCircuit_CircuitDBNet
_lentMain_MainMODELCircuit_CircuitDBTerminal
_lentMain_MainMODELCircuit_CircuitDBNode
_lentMain_MainMODELCircuit_CircuitownedEnumerateFanout
_lentMain_MainMODELCircuit_CircuitownedHashtable_String_Node_
_lentMain_MainMODELCircuit_CircuitownedHashtable_String_Net_
_lentMain_MainUIViewer
_lentMain_MainUIChannelRouteUI
_lentMain_MainUIPartUI
_lentMain_MainUIFloorplanUI

partitonUl ¥+ viewerUl s
: e, ~
: ‘ .. il . ¥ S "\.‘
ot N T N
\ g 4| = \ i
' ‘ " - “.‘“ —o— ' | Legend:
‘ oorplant® || | placeRouteUl hannelRouteUl| | Components
" 7 f ; , I i
el L L T N T A
‘ / S i y f \ =® Representation
‘ o kK My 7 S
" gt TN [i I Connectors
/T keireuit : al | Ports
i / B T -ELA A
= / il | _|channelRouter UseT
partitioner | |/ | rede . [X © e
“ .. 7 "I * ProvideT
\/] e . Groups
y N n -
» T lobalRouter
floorplanner ¢ ~&—0 7 comp
J s
Model

Figure 7.13: Aphyds: conformance view during lteration 2.

fromNode to Terminal and fromNet to Terminal are in fact lifted edges. This example justifies
the different kinds of edge summarization: lifting an edgeamn OOG and in a C&C view, then
adding summary connectors in the C&C view. In fact, we adaftedearlier explanation of
summary connectors (Fig. 6.7, Pagel213) from this part ofydiph

7.5.4 Summary of Findings

As one would expect from an informal diagram, the designetiitacture (Fig[Z17) is only
about 60% accurate, based on the CCM metric. Indeed0&I1A identified a divergent compo-
nentpartitionUl, several divergences betweéewerUl and othetJl components, betwedn and
MODEL components, and betwe®hODEL components. Many connections which the devel-
oper thought to be uni-directional were bi-directionaleality. A developer could use ArchMod
to add the divergent connectors to the designed architctur

One divergence that crosses tiers, frphacer in MODEL to placeRouteUl in UI, was a red
flag and a potential concurrency bug (this is the connectoarually set to be darker in shade
in Fig.[Z.13). As a multi-threaded application, Aphyds nmesipect certain framework-specific
conventions to call back from a worker thread executing gdamning operation into the user
interface thread. | used CodeTraceJ to trace this divergera®l aceRouteUI field inside class
Placer, and manually inspected that the code handled the calllac&atly.

Tool performance. The tools are sufficiently interactive to allow iteration. n@n In-
tel ® Core™ 2 Quad Processor (2.4 GHz) with 4GB of RAM running fféws XP, the OOG
extraction takes around 10 seconds, and the structural axgop takes between 57 seconds

7.5. Extended Example: Aphyds 239

Table 7.1: Aphyds conformance metrics. We count convergent nodes (CNergint nodes (DN), absent
nodes (AN), convergent edges (CE), divergent edges (DEgrdledges (AE) and summary edges (SE).
CCM is the core conformance metric.

Iteration | CN | DN | AN | CE | DE | AE | SE | CCM
1 1111} 2 | 23|89 | 0 | 97| 21%
2 13| 1 O (16|11 1 | 2 | 5%

(Iteration 1) and 33 seconds (Iteration 2).

7.5.5 Aphyds Discussion

Threats to experimental validity are classifiedrasrnal, whether the results were determined by
the technique or by some other factorexternal to what extent the results can be generalized.
In this section, | mainly discuss internal validity, and elethe discussion of external validity
until after | present the other evaluations (Section 7.9.1)

To what extent are the results of this case study due to our kneledge of the Aphyds code,
and to what extent are they due to using 8HoLIA ? Although I did not author the Aphyds
system, | previously read about re-engineering Aphyds haaval(Aldrich et al. 2002a) and
studied its ArchJava versio|n_(Abj;An1Qun_ei 08). Buelidve the results of this case study
are due to using &HoLIA and not to any previous knowledge of the code. The 8,000¢elue
base is too non-trivial for anyone to hold in his head at omdereover, when | studied Aphyds
previously, | represented the desired architecture difftdy (Abi-Antoun et all 2008, Fig. 19).

| did not express tiers, had om@del component withplanner, partitioner and others as sub-
components, and did not represeintuit’s substructur

Although the experimenter also designed several of the tadlypechecker kept him honest.
He could not insert an arbitrary annotation without get@ngarning, or otherwise manipulate
the extracted architectures.

Another threat is that an electrical engineering professather than a professional
architect—drew the Aphyds intended architecture. Howewer mined the diagram only for
which objects are architecturally significant, the topeletters it shows, and the hierarchical
system decomposition it uses féircuit’s substructure, all general concepts in modeling ar-
chitectures (Clements etlal. 2003).

Another confound is whether the built and the designed techires represent the same in-
formation. For instance, when we redrew the original dgyets diagram (Fid._111), we reversed
the direction of some arrows (Aldrich et/al. 2002a, p. 192) excluded data flow edges. For a
meaningful conformance analysis, the designed and thedrghitectures must have the same
kind of connectors, here, points-to relations.

3] did not previously haverode and net inside circuit due to ArchJava’s following limitation: in the Arch-
Java code, different components share instancegtfandNode. Thus, neithemet nor Node is an ArchJava
component class. As a result, the tool that extracts a C&C view from ArchJavdecdoes not showet or node
sub-components insidgrcuit because the tool shows only the instances of Archdamgonent classes.

240 Chapter 7. Evaluation of the Conformance Analysis

Can ScHoLIA identify at least as many violations as the state-of-the-arin the
static enforcement of runtime architectures? The state-of-the-art would be library-based
(Medvidovic et all 1996) or language-based (Aldrich et 802b; Schfer et al. 2008) solutions.
For instance, the C2 ADL mandates a specific architectunaldveork (Medvidovic et d|49:96),
but requires developers to follow strict guidelines to avinitroducing architectural violations.
There are no tools to check that an implementation obey®thdss (N. Medvidovic, personal
communication, 2008). Language-based solutions, firsnpkéed by ArchJava, radically ex-
tend the language to incorporate architectural compometports, and enforce communication
integrity using a type system (Aldrich et/ al. 2002b; Sfeh et all 2008).

Using ScHOLIA, we found all the violations that (Aldrich etlal. 2002a) doawsly found for
the same system. However, (Aldrich ellal. 2002a) found thbitctural violations in Aphyds,
only after they re-engineered the implementation to ArchJa

Many factors make re-engineering a typical Java implentemato ArchJava hard
(Aldrich et al. |2002a; Abi-Antoun and Coelho 2005; Abi-Antoet al. | 200 Z|a). In Arch-
Java, a developer makes an object architecturally signifitg making its declared type
a component class. But ArchJava prohibits taking a reference to any instancea of
component class as an argument, or returning a reference to one. Also, thela@r may
define additional ArchJaveomponent classes, just to capture the intended system decompo-
sition. In a C&C view extracted from ArchJav@pmponent a appears insid€omponent b if
a instantiate$ as one of its fields. As a result, one may define additienaponent classes
just to capture the intended system decomposition. Finaityarchitecture extracted from an
ArchJava implementation shows only instances of compoclasses and the architectural sys-
tem decomposition they prescribe. A developer cannotdlivn into each component until she
reaches leaf objects that are typically data structures.

Deciding ahead of time which objects are architectural camepts and which objects are
data structures and should be left as regular #aw&ses, achieving the desired decomposi-
tion, and respecting ArchJava'’s restrictions make reraw®ging to ArchJava harder than simply
converting each Jaudlass into an ArchJavaomponent class.

Indeed, Aldrich identified as an area of future work for theava project, the need to
address “the dichotomy between the component world anddjeetovorld—two different kinds
of entities with different rules’mmS). In Archva, classes that have many instances that
are shared or passed between different instances are tiest dinary Java classes, because
ArchJava’scomponent classesS may be too restrictive in those cases.

SCHOLIA does not have instances efmponent classes that are distinguished from in-
stances of regular Java asses. As a result, SHOLIA does not have the dichotomy that exists
in ArchJava, since 8HOLIA achieves hierarchy using annotations and without additidasses.

In SCHOLIA, all objects are instances of regular Java classes, aneldhefewer restrictions on
passing object references. IITSOLIA, an object becomes secondary to another object by being
inside one of the domains of that object. The more architattibjects are higher in the owner-
ship hierarchy. In particular, logical containment can as@ an arbitrary hierarchy on an object
graph, and allows &HOLIA to support arbitrary object-oriented code better.

To apply SHOLIA to Aphyds, we only added annotations to the code. In contfast
Aphyds, Aldrich et al. specified within the code over 20 A@yelcomponent classes and
over 80ports, re-engineered the program to obey the type system’sctests, and inadver-

7.5. Extended Example: Aphyds 241

tently injected defects.

Could any other static conformance analysis approach find the violations that S8HOLIA
found? It is a genuine threat to validity to compare a designed noatarchitecture to a built
code architecture, or vice versa. All previos&tic conformance approaches deal with the
code archltecturedﬁe_ljs_e_t_all_QQSl_aw_e_t_al 1 1998; Murphy et al. 2001; Sangal €t al. 2005;
[Ejszhbﬂg_el_dILZD_(bS) The closest testatically extractedruntime architecturefor an object-
oriented system would be an object graph extracted by & staéilysis, whether it uses annota-
tions (Lam and Rinard 20b3) or not (Jackson and WaidbmugmallahaH 20dl). Most flat
object graphs would not convey sufficient architecturakr@otion to be used for conformance
analysis. Of course, we could compareH®LIA’s results to those obtained bydgnamicanal-
ysis _S_e_tLKa_el_éLIQ_QBb,_S_thﬁtLelLaL_ZOOG) But a dynanatyais cannot claim to represent
all possible executions.

Could a static conformance approach for thecode architecture detect all the violations in a
runtl me architecture? For examplecould Reflexion Models (RM)_(MJ.JLph;Lej al. 2001; JRM
) find all the violations thaBcHoLIA found? In fact, we modeled SHOLIA closely after
RM, a standard in analyzing the conformance of code architest In RM, a third-party tool
extracts aource moddrom the implementation. A developer posits a desigmgt-level model
and amapbetween the source and high-level models. RM pushes eachdtite described in
the source model through the map to infer edges betweenlévghmodel entities. RM then
compares the inferred edges with the edges stated in theldughmodel. There are many
similarities between SHoLIA and RM. For exampleYVARN is similar to RM’s tracking of
unmapped entries in the source model. The major differesitteat RM is designed for the code
architecture. There are also several minor differences.ekample, RM has no divergent or
absent nodes. In RM, if the map generates a node that is no¢siggneéd view, RM automatically
adds that node to the designed view. In other words, RM haswvaeoggint or absent nodes, nor
does it compute summary edges.

In Aphyds, many important classes are instantiated oncé)esobject graph is somewhat
similar to a class diagram with associations. Of courseetlaee still non-trivial differences
related to the different instantiations of the various eamdr classes such dector. Out of
curiosity, we ran JR3) on Aphyds. JRM supports netibes nor hierarchical target
architectures, so we used a simplified high-level model dictnot include tiers and ignored
Circuit’s substructure. In some cases, JRM’s finding was consistémtwaat SCHoLIA found.
For example, RM found the divergence frqacer to placeRouteUl, because it corresponds to a
direct field reference declared in cla¥sacer.

However, JRM produced many divergences and absences, andweaa false positives
and false negatives, because it does not show an edge betm@éigh-level elements if they
communicate through a chain of objects. For exampléjererUI object does not directly
point to aFloorPlanUI object. Instead, @iewerUI points to aDisplayer, andDisplayer
references &loorPlanUI. Moreover,Displayer is in a public domain ofiiewerUI. When
ViewerUI's substructure is elided, the OQ(#s that relation toviewerUI, and shows dfted
edgefrom ViewerUI to FloorPlanUI, shown as a dotted edge in the OOG (Figs] [7.9,17.12).

242 Chapter 7. Evaluation of the Conformance Analysis

globalRouter
0
o rouvas
y
|

R
st
\ 4
/54

Figure 7.14: Aphyds: results using the Reflexion Models tm003).

However, RM showe@bsencebetweenviewerUl andfloorPlanUl (See Fig['7.14)—instead of
the correct divergences and convergences.

Similarly, RM would not correctly handlerrcuit’s substructure. Unlike RM, &HOLIA dis-
tinguishes thevector of Terminals insideNet, from the one insid&lode, and uses object
pulling, object merging, edge lifting, and edge summaitrato check the communication be-
tweennode andnet. In general, a tool for the code architecture cannot harttderaintime
architecture.

Does £HOLIA generate many false positives? False positives are possible in general, as with
any sound static analysis, butSoLIA attempts to reduce them. For example, the edges in an
OOG are more precise than super-imposing associationsdrolass diagram. Also,GHOLIA
checks only matching substructures, and not the entiretlierarchy. There are several sources
of false positives in SHOLIA. The OOG extraction uses a whole-program and not a readiabil
analysis that excludes infeasible paths. Also, the cordore analysis may add summary edges
that are false positives, as in Iteration 1 which had 97 suryradges. But if the built and
the designed architectures have a similar hierarchicabrdposition and a similar number of
components at each hierarchy level, the analysis adds fawemary edges. Indeed, Iteration 2
had only 2 summary edges, and neither one was a false pogditieair Aphyds evaluation, we
used CodeTraceJ to trace each finding to the code, and confthraed does not correspond

7.5. Extended Example: Aphyds 243

to an obvious false positive. Aphyds was written by a praje$sr one of his classes. So this
may explain the absence of infeasible paths. In additiomyAp has no interesting inheritance
hierarchy. As a result, the imprecision due a field assigntheough a superclass (Sectlon 216.3)
and the lack of object-sensitivity in the OOG extraction @b show up in this case study.

Furthermore, to account for false positives, techniques sis Reflexion Models typically
support manual inpumga pp. 84-88). When studjfregconformance findings, a
developer can manually override any finding and specify aaedor the override. For each
manual override, a tool can store in the designed architetie original finding, the overridden
finding, and the reason for the override, together with aspeated traceability information.
When re-running the analysis, if a computed edge has a maneaide associated with it, the
analysis can compare the traceability of the computed exitpetpreviously saved one, and raise
a warning if it detects a discrepancy. Similarly, our toadsild support such features to annotate
or override a conformance finding (Abi-Antoun eflal. 2006).

7.6 Extended Example: JHotDraw

We now analyze the conformance of the JHotDraw subject syste previously discussed in

(Sectior4.b, Pade 1P8).

7.6.1 Modeling the Target Architecture

As is the case for many legacy systems, we were unable to fioduntented runtime architec-
ture for JHotDraw. We did find however a documented abstdactele architecture (Fig._4.2).
Of course, the runtime architecture may be significantlied#int from the code architecture. We
used the code architecture as an estimate to be refined bgrnfamance analysis step.

For each class in the code architecture, we created a compmstance. Then, for each
association in the class diagram, we created a connectiarebrn the corresponding components
(Fig.[7.15).

JHotDraw’s architecture posed another challenge. Fronewiqus study, we knew that a
Drawing was actually implemented aFagure, contrary to the designed code architecture. So
the OOG, and thus by transformation, the built view, repnesegbotiDrawing andFigure with
one runtime component. Had we modelledwing andFigure as separate in the designed view,
the structural comparison would not have detected thetigglior merging (Chaptéd 5). This led
us to merg®rawing andFigure into oneDrawingFigure component in the designed view.

7.6.2 Adding Annotations
We discussed the JHotDraw annotation process in Sdctiofirddi 128).

7.6.3 Extracting Object Graphs

| discussed various JHotDraw object graphs in Sedtioh 4a§dPL2B). For the conformance
analysis, | chose an object graph with abstraction by designt types (Fig._4.24).

244 Chapter 7. Evaluation of the Conformance Analysis

) S ——

Locator DrawingFigure i Connector_

~A

. Controller

DrawingEditor

o
8

£
5
@

=
@

S

B e Bt

: “. |PointConstrainer Painter #
'v\‘ *. I,

~ View_

Figure 7.15: JHotDraw: designed architecture documented in Acme.

7.6.4 Abstracting into Built Architecture
| used the default settings. The result is in Fig.7.16.

7.6.5 Analyzing Conformance

ArchConf detected many renames and a few missing compon&nth, as arindoable in
CONTROLLER and aryndoManager in MODEL. Many connections, we thought to be unidirectional,
such as between componebtawingView andDrawingEditor, turned out to be bi-directional
(Fig.[Z1T).

When the built and the designed architectures do not havehlptite same number of top-
level components and architectural decomposition, thensany connectors can make the graph
unreadable. For this reason, ArchConf provides the optidaraing off the generation of sum-
mary connectors. Of course, in that case, the conformareve Wd longer guarantees commu-
nication integrity. Turning off summary connector mightl¢ie useful as an intermediate step,
if a developer cares only about the core objects in the dedigrchitecture (Fidg._7.18), or while
she is refining the target architecture.

There was however one big surprise: there were no callbacksMODEL into CONTROLLER!

In the base MVC pattern, a controller registers itself wite tmnodel and receives notifications.

7.6. Extended Example: JHotDraw 245

x OffsetLocator

~, A

~ ArrowTip

Figure 7.16: JHotDraw: built architecture in Acme.

Since there is no controller component, we suspected tleavidw acts also as controller, a
common implementation optimization. Indeed, in the JHatlDYCRC Cards View”, the design-
ers mention thabrawingView “handles input events’m%, Slide #10), a controlle
responsibility.

We looked more closely at the built C&C view and noticed a catioe betweerandle in
Model andUndoable in Controller. But sinceUndoable did not connect td@ool, the con-
formance analysis did not add a summary connector betWaeiile andTool. This example
justifies the need for richer conformance metrics that retlee entire built view and not just
divergences.

In fact, the designed architecture focused ondbmain modeand ignored thepplication
mode] which include$indoManager andUndoable. These components are a later addition, part
of a somewhat independent subsystem to implement undo, exationed in the documentation.

246 Chapter 7. Evaluation of the Conformance Analysis

View_

3

i

{

i

Locat |
ecator Connector_ !

= 1

e |- «— J“; o i
= y N— - .
e P FAL Y o M, JNF Lo 4 i

o & 7 Pl = ‘, 1 -

7 . - T
/ 7l > e

i
'
:
'
:
:
:
:
:
'
:
!
'
:
'
:
:
:
:

I 1
: i
: i
I i
| !
| '
| 7 :
I 1
: i
I i
\‘\ | ””

N . ¥

% #_ PointConstraine Painter r
\\\ - 7 7 ,/,
View_ e

Figure 7.18: JHotDraw: conformance view without summary edges.

7.6. Extended Example: JHotDraw

247

Table 7.2: JHotDraw conformance metrics.

System CN |DN | AN | CE | DE | AE | SE | CCM
JHotDraw 9 8 0 | 23|49 0 | 72| 32%
JHotDraw (no summaries) 9 8 16 | 7 0| 0| 70%

o

/ N
B ;
\ b i
N |
| = |
canvas | window |
= ‘ =
& / |

user

/
‘ /

/

engine

logic

Figure 7.19: HillClimber: designed architecture.

7.6.6 Summary of Findings

Metrics. The low CCM indicates a large proportion of divergences anérd®s (Table712).
This was expected because of how we obtained the designedMi@reover, the designed view
is missing several top-level components, in each of the.tier

7.7 Extended Example: HillClimber

We now analyze the conformance of the HillClimber subjectesyswe previously discussed in

(Sectior{ 4.7, Pade 1b4).

7.7.1 Modeling the Target Architecture

| based the designed HillClimber architecture on availableudhentation (Fid.7.19).

In HillClimber, the applicatiorwindowuses a&anvado displaynodesandedgesf agraphto
show the output of a computatiorethgine Based on a hint from one of the original framework
developers, we posited in the target architecture thaétlgéne component need not connect to
window Or canvas.

7.7.2 Adding Annotations
| previously discussed the HillClimber annotation procesSectiori 4.7 (Pade 154).

248 Chapter 7. Evaluation of the Conformance Analysis

.

——
——

~)

x-c‘--—-.---_-_-__.lr'‘______—\
N\ s

i

R

i
-

Figure 7.20: HillClimber: built architecture in Acme.

7.7.3 Extracting Object Graphs
| discussed extracting object graphs from HillClimber int8ed4.7 (Page 134).

7.7.4 Abstracting into Built Architecture
| used the default settings. The result is in [Fig. ¥.20.

7.7.5 Analyzing Conformance

The conformance analysis confirms teagine connects to bothindow andcanvas, contrary
to the designed architecture (Fig._74.21).

7.7.6 Summary of Findings

Metrics. The CCM is high since very few edges were affected (Table 7.3)e Aigh node
divergence is due to a designed view that has fewer elemethts top-level than the built view.

7.7. Extended Example: HillClimber 249

- » / | \
* . %
4 -~ 3 x*, 1
N ?*S/ . *‘QJ |
i | N
\ | "
. ——\‘# |
\ window
canvas N Ny
e |
b 8 \ user
=g ‘
% T %

b 4 e
engine
J

logic

Figure 7.21: HillClimber: conformance view.

Table 7.3: HillClimber conformance metrics.

System CN | DN | AN | CE | DE | AE | SE | CCM
HillClimber | 4 | 14| O | 10| 2 0 | 12| 83%

The developer must either enrich the designed view by reptegy additional components in the
LOGIC tier, or refine the annotations to push more components iLAREC tier into engine’s
substructure.

7.8 Extended Example: CryptoD@

This case study is an application o€ESoLIA to analyze conformance between a Java imple-
mentation and a security runtime architecture, entiredjictlly and using annotations. We also
illustrate enforcing constraints both at the code level aruthitecturally. The subject system is
CryptoDB, a secure database system designed by a securitst). CryptoDB
follows a database architecture that provides cryptogcgmiotections against unauthorized ac-
cess, and includes a 3,000-line sample implementationvia. J&he presence of both a Java
implementation and an informal architectural descriptitake CryptoDB an appropriate choice
to demonstrate usingCHOLIA to analyze conformance and enforce structural constraints

Why this case study? CryptoDB has compelling architectural documentation, atatget ar-
chitecture designed by a security eerﬂthe target architecture also has richer types, properties
and constraints than the previous architectures that yyaedlusing 8HoLIA, which increases
the external validity of the result. Unlike the previouseatudies, | conducted the summative
CryptoDB case study to evaluatecSoLIA after | finished developing the approach. In addi-
tion, this case study illustrates the unique strength@fi&LIA, the ability to analyze statically

“Preliminary results of the CryptoDB case study appearedli-Antoun and Barnels 2009a).

250 Chapter 7. Evaluation of the Conformance Analysis

communication integrity, for all possible program runsjethis crucial for the security domain.

Evaluation methodology. During the evaluation, a colleague played the role of thaitect,
while | played the role of the developer. The architect colied the target architecture, and the
developer controlled the annotations and the code. Inquéati, the developer was not allowed to
change the target architecture directly. Instead, he hednaince the architect that the proposed
change was justified architecturally, rather than a wonkadoto apply $HOLIA. Also, we
forbade ourselves from making changes to the source codepeto annotate it.

7.8.1 Threat Modeling

For many years, companles such as Boeing and Microsoft hasme b&ngthreat modeling

r 2003; Totr 2005; Howard and Lipher 2006)pdightweight approach to
reason about security, to capture and reuse security esgertd to find security design flaws
during development. During threat modeling, developmestrts construct security architectures
that are later reviewed by security experts.

Although threat modeling often finds security design flawsuyifers from the two problems
of architectural extraction and conformance analysis. Wehsecurity expert asks a developer to
build a security architecture for a system under study, éveldper typically produces a diagram
mostly from his recollection of how the system works, witildi tool support to extract such an
architecture from the code. Then, during the security mvike experts study the architecture,
assign to the components different architectural propeguch asrustLevel (Abi-Antoun et al.

) oprivacyLevel, and enumerate all possible communication between the immted and
the less trusted components of the system. But if the ar¢hiedoes not show all the communi-
cation that is present in the system, the results of an acthital-level analysis may be incorrect.
While any architecture-based approach suffers from thes@lgms, security architectures pose
special challenges.

A security architecture is an example of a runtime architect Moreover, an analysis at
the level of a security architecture must consider the wamst not the typical case of possible
component communication. Indeed, the analysis resultgadictonly if the architecture reveals
all objects and relations that may exist at runtime, in arggpam run. This requires a static
analysis which can capture all possible executions.

Moreover, $HOLIA’s focus on the communication integrity notion of conforroans also
crucial for an architectural-level security analysis. ibglly, a security review enumerates all of
the possible information flows between trusted and untdys#ets of the system. However, if the
analyzed architecture does not satisfy communicatiogiitye the architecture may not show all
information flows that are present in the implementatiowl, smthe architectural analysis cannot
be trusted to be correct. Without enforced communicatitegirty in the target architecture, the
source code of the entire system must be painstakingly aed)yand the architecture provides
little benefit for reasoning about the implementati @, p. 3).

5In contrast, an electrical engineering professor desiginedphyds target architectute (Aldrich etlal. 2002a).

7.8. Extended Example: CryptoDB 251

Feedback

Write

Protected
Data

Read

Unencrypted
Encrypted Data Azren); n
Data /

Lookup Admin
A Task Tasks
i Feedback

Key Manifest p——

* Key ID A} Manifest
Tasks
Task

Encryption Feedback
Request

Crypto
Provider

Encryption
Response

Key store

ey Tasks

Request~g, |

Key Vault Task

Key Feedback
Data

Figure 7.22: CryptoDB: documented Level-1 DF@@OG, Fig. 9.1).

7.8.2 Available Documentation

Architectural reasoning about security is best accometishith a runtime architecture, not a
code architecture. A security architectire an example of a runtime architecture which shows
runtime components and connectors, uses hierarchicahgeasition, and partitions a system
into tiers.

7.8.2.1 Documented Architectures

We studied the architectural documentation available fop@DB, which consisted of var-
ious Data Flow Diagrams (DFDs) along with accompanying,laxgtory text MG).
A DFD is a runtime architecture that can be represented as gpQuent-and-Connector view
(Clements et al. 2003, pp. 364-365). Hig.7.22 is a Level-1 DF.[7.23 is a Level-2 DFD
which refines in place some of the components from the Le\zD.

We mined the diagrams for the architecturally significaat@nts, the top-level tiers, and the
hierarchical system decomposition. During the course ®ftiidy, it also became apparent that
the documentation and the code used slightly differentitestogy. For example, the textbook
and DFDs referred to a “key manager”, but the code hisely@ool. In the rest of this discussion,

6Threat modeling typically uses a Data Flow Diagram (DFD)wsiécurity-specific annotations to describe how
data enters, leaves and traverses the system by showingalates and destinations, the processes that data goes
through and the trust boundaries in the sysZOOéDeH/ve use a slightly different architectural style of a
security architecture, one which shows points-to (not flat&) connectors, has no explicit data stores or external
interactors, and uses more general boundaries that iedidé&trent runtime tiers.

252 Chapter 7. Evaluation of the Conformance Analysis

Business
Logic

Storage

Data
Result

Write Write » protected

- Data
Read

Receipts
™

Read C rypto

Consumer

/ Data

Result

Receipt

Manager ——» Key Manifest

Looku
Request ke

Key ID
Result Crypto

Provider

Request Request

Result Result
Request
Result /

Figure 7.23: CryptoDB: documented Level-2 DFI@!OG, Fig. 6.1).

we will often use the names from the implementation. SirtyiJavhen we chose the names of the
components in the target architecture, we knew that theymoagnatch exactly the names of the
code elements, and that8oLIA’s structural comparison can detect renames. Table 7.4sshow
a mapping between the components in the target architesaréhe corresponding Java classes.
Of course, this mapping is only a first approximation, beeamse type in the class diagram
can map to multiple instances in the architecture; and pilaltypes in the class diagram can be
represented by the same canonical component in the runtochaecture.

7.8.2.2 Code Architecture

| used the Eclipse UML tool@@%) to extract from thgp@oDB implementation
various views of the code architecture. For instance, Bhows the CryptoDB package
structure. Fig[_7.25 shows a class diagram with a few selemee types from CryptoDB. A
quick glance shows that these module views are not very cahlgato the security architecture
drawn by the system’s designer.

7.8. Extended Example: CryptoDB 253

Architectural Component Java Class Note

CustomerManager cryptodb.test.CustomerManager AKA “orgphsumer”

CustomerManager.Receipts cryptodb.CryptoReceipt Receipte tonsumer
holds onto

Customerinfo cryptodb.test.Customerinfo AKA “protectediada

CryptoProvider cryptodb.core.Provider

CryptoProvider.ReceiptManager cryptodb.CompoundCryptoRecé&Jsed by the provider to
produce receipts

CryptoProvider.Encoder cryptodb.Utils

EngineWrapper cryptodb.core.EngineWrapper

EngineWrapper.Engine javax.crypto.Cipher

KeyManifest cryptodb.KeyAlias The key manifest contains
key aliases

KeyVault cryptodb.core.LocalKeyStore The key vault comdkeys
(LocalKeys)

KeyManager cryptodb.KeyTool

Table 7.4: CryptoDB: mapping between architectural components and code elements.

{2 cryptodb
St RN
e ———— _| |
/[\ | /M\ «impdrt» | «send»
R SN s
[l «ACCESSH 2 cryptodb.test
| | |«import
| | | «instantiate|
| | |«import» |_ -
| | | «instantiate» :
«send | ! \,l, «instgntiate» J| «import»
3 cryptodb.core | |

Figure 7.24: CryptoDB: layer diagram.

7.8.2.3 Flat Object Graphs

We also used available tools to extract CryptoDB object gsaphs mentioned earlier, non-
hierarchical object graphs mix low-level objects suctiashMap with architecturally relevant
objects such aGryptoReceipt, and a developer has no easy way to distinguish them. These fla
object graph are unreadable, even for a small 3,000-lingram, and do not convey sufficient
architectural abstraction to enable analyzing conforraahobtained Fi 6 USINARGAEA

(Spiegel 2002), and Fig—7R7 usingdMBLE (Jackson and Waingd 01).

254 Chapter 7. Evaluation of the Conformance Analysis

D KeyAlias
® CryptoReceipt Ié ______ |

- receipts |

cinterlace»

© EncryptjonRequest

cryptoColumn I 1\

® CompoundCryptoReceipt « |

|
ke
ke

4« - [
. | (e
- T | [

«instanfiales antiaten

{3 LocalKeyStore

«instal\liate» |

| |

| | |
: @ CreditCardinfp |
|

| I
|| |

| «instantiate»

L
L
I
I
L

«instantiate»

[
l l . «iLJtanti o l - I
LY S R

| «instantiate»

l_ «instantiate»
—— = — — —1 @ CustomerManager

Figure 7.25: CryptoDB: class diagram, extracted using Eclipse UMZOOS).

Customerinfo ‘ *CreditCardInfo*
DecryptionResults
Corapmass = Croymas—=Cnesany) -
P r
CustomerManag

CompoundCryptoReceipt— *CryptoReceipt*
e ————
*CompoundCryptoReceipt? *CryptoReceipt*
U
\

eyt) Cnesiane)
lvParameterSpec
EngineWrapper

\ *SecretKeySpec*

LocaIKeyStor *SecretKeySp

7 G

@J *SimpleDateFormat*

Figure 7.26: CryptoDB: flat object graph extracted usingNGAEA (@2).

Gt >—+(tan)

7.8. Extended Example: CryptoDB 255

keye

obl Requests-ots

sctusiangate
K
renmep
exerey
aisg
[—
actvatonDs java.sql. Timeste
mon we
peNDING
Keyias
TERMINATED
Jasi Keyeamy
eopiods eyToo]
e i keyld
\ exe oare
[N
1\ e
euaizs
aiasia
TERMNATED
eycany able
copod st Customeranaghe
18
=
copod Keyhia
reTRED
saus
covicer
eystore aiasia
aias enge
e
[—— oy
o - e PENDING
— receips:pai
allReceipts: ¥ pEr
[— wovier s ovasang s
—— | - p— e
T corenes
receips
coypiod CompoundCrypoRece]
atasa N
specer
e
4
v as
sun security il e
datng e
o
ALRS preri Lower
engne
oumEngees
\scacystings e
[
sonvons agorm
.
Se
[
enrySet hexDigits. m
° provider previouskey || java securiy ProvidersServicek
ALAS PREFIX
mechanim
] Gassname
v crpioCiher
haskeyAubute Javaang Bl e
oo supportedClasses] enarySet
va securtyProvidrssenvd so [—
agortm
anibus —_—
e d java.uti. LinkedHashMapSEnty
classRef heyid peader
cipher m keySel
o java.utl HashMapSKeySef Java. il LnkedHash values
o o jova g Obi
[—
errent .
i java lang ref WeakReferench Tyt
. caxcopto Conersy] e ceya
vt
ek
keyoaa
v
localkey 2
‘cryptodb. core.Localke Javax cypio SunJCE }
eysiore Tegacyiap
i = kekSpec vey
reystore
cypost.core Engierappgy .
[—
-
™ o
NOUEUED
ock [jasang et moforenceuevestol
avaang et Retererceues aigrtm
vaues
EMAIL_ADDR. ciphertext
v spes SecatkeySpls iy
e
ey
pamex

Figure 7.27: CryptoDB: flat object gr

256

byt

aph extracted usingoMBLE

Id 2001).

Chapter 7. Evaluation of the Con

formance Analysis

© [e<] ~ o o B w N -

11

12

13

14

15

16

17

18

19

class LocalKeyStore<KEYID> {
private domain OWNED, KEYDATA;
public domain KEYS;
link KEYS -> KEYID, KEYS -> KEYDATA, OWNED -> KEYS;
assume OWNER -> KEYID;
private OWNED List<KEYS LocalKey<KEYID,KEYDATA>> keys;

public unique List<KEYS LocalKey<...>> getKeys() {
unique List<KEYS LocalKey<...>> copy = copy(keys);
return copy;
}
}
class LocalKey<KEYID,KEYDATA> {
assume OWNER -> KEYID, OWNER -> KEYDATA;
private KEYDATA String keyData; // encrypted key
private KEYID String keyId; // encrypted key id

private OWNER SecretKeySpec key; // Make peer to self
}

Figure 7.28: CryptoDB:LocalKeyStore andLocalKey annotations.

7.8.3 Adding Annotations

| added ownership domain annotations to CryptoDB to spewiithin the code, object encap-
sulation, logical containment and architectural tiergjiasussed earlier. The annotations define
two kinds of object hierarchy, logical containment andcstencapsulation.

Logical containment. As an example of logical containment in CryptoDycalKeyStore
declares a public domaiKEYS, to holdLocalKey objects (lind B in Fig_7.28).

Strict encapsulation. As an example ostrict encapsulationn CryptoDB, LocalKeyStore
stores the list of.ocalKey objects, keys, in a private domaidiyNED (line[6). As a result, the
accessogetKeys must return a shallow copy of the list, and cannot return @as4dline[8 in
Fig.[7.28).

Domain parameters. | defined on the cladsocalKey theKEYID andKEYDATA domain param-
eters (lind_IB). In turnl.ocalKeyStore takes &EYID domain parameter (lifg 1). For example,
LocalKeyStore binds its local domaiHEYDATA to LocalKey’'s KEYDATA parameter (lingl6).

Top-level domains. | organized instances of the core CryptoDB types into fourlemel do-
mains, as follows (Fig. 7.3L, 7.82):
* CONSUMERS: hasCustomerManager, andEncryptionRequests, such aSustomerInfo
andCreditCardInfo;

7.8. Extended Example: CryptoDB 257

_________ | *) 1! KEvD
| Y
.-¥__KEYSTORAGE i'AI- -
T T T T I
I______‘ TR » (+) |
S |
!) b ' | AuAsD |
| | Ll (+) | ——‘——J
|_PROVIDERS | ' ' :
A ! crypTO !
et R
|
L™ Lo » o
! |
| consumers | ! pLam

Figure 7.29: CryptoDB: Level-0 OOG witlstring objects.

* PROVIDERS: hasProvider,EngineWrapper;
* KEYSTORAGE: hasKeyAliases andlocalKeyStore;
* KEYMANAGEMENT: has aKeyTool object.

Nested domains. For several class&s,;, | also defined one or more nested domdihswhich
| refer to using the”;:: D, notation:

* CustomerManager::RECEIPTS hasCryptoReceipts;

* LocalKeyStore::KEYS has instances dfocalKey, SecretKeySpec, etc. (Fig[Z.3B). In
contrast, the privatBWwNED domain contains &ist of LocalKeys .

* Provider::RCPTMGR hasCompoundCryptoReceipt oObjects;

Refining the annotations. | iterated the process of adding the annotations a few tinhes.
one such refinement, | wanted to reason alauting objects. In the previous case studies,
String objects were uninteresting, and annotated withred. However, when reasoning about
security,String objects become interesting. Indeed, in CryptoDB, much conication takes
place througl$trings. To better understand this communication, we declaréerdiit domains
for plain-text PLAIN), encrypted¢RYPTO), alias identifier {LTASID), and key identifier{EYID)
Strings. In particular, the annotation typechecker checks tlese$trings are not assigned to
each other, a perfectly valid operation in Java.

For example, Fid. 7.29 shows only the top-level domains anthsarizes the field references
between objects in those domains using dotted edges. Howelren analyzing conformance
later, we simplified the OOG by binding all the additional graeters folPLAIN, CRYPTO, etc.,
to theshared domain. This required changing only the binding of these aiorparameters in
the top-level class, and changing a few lines of annotaiiotise top-level class.

An object graph showing explicit top-level domains for thifedent kinds ofStrings is in
Fig.[7.30.

258 Chapter 7. Evaluation of the Conformance Analysis

> keyid
¥ String ‘
V]
@ |
—1
keyData:
p String ‘
| |
‘ rawaey:
yte[l
‘ keyStore: ” ‘
;FLocslyKeyogore \)/ KeYDATA
L I T
‘ keys: localKey: kekSpec:
I ArrayList<LocalKey> I ‘ LocalKey SecretKeySpec
. v
| K /l() “——Owﬁd—J \\%— s
eyTool(+):

‘ KeyTool

_KEYMANA MEN'[J | ~now: |
N I Timestamp

‘ - owned I
= — —

alias: ___1
KeyAlias
4

l_owned
‘ engine:
EngineWrapper

| ——-4

manifests:
I Vector<KeyAlias>

receipts: Tt
HashMap<String,CryptoReceipt> I
-

cciReceipts:
CompoundCryptoReceipt +\9wnaL_\ l
provider: /L

ly — — —

Prov;iier —— RCPTM% I A
‘ PROVIDERS
‘ —_
*) .
I I ‘ receipt: plaintexts: I
‘ |_owned » CryptoReceipt ‘ I HashMap<String,String> 1 ‘ [NV |
I | i~k
I o RECEIPTS _ oomea V) I suing |l
CustomerManager ~ ~ - - - A Y= . —_ — - =
- - - > o cci:
CreditCardinfo LAN |
e = =
I plaintexts:

I HashMap<String,String> |

owned 7/'
cust:
Customerinfo

CONSUMERS

‘ ciphertext:
String ‘

iv:
‘ r byte[]

L cRYPTO__

Figure 7.30: CryptoDB: OOG withString objects.

7.8. Extended Example: CryptoDB

259

_lentMain_MainKEYMANAGEMENTKeyTool
_lentMain_MainKEYIDString
_lentMain_MainALIASIDString
_lentMain_MainKEYSTORAGEKeyAlias
_lentMain_MainKEYSTORAGELocalKeyStore
_lentMain_MainPROVIDERSEngineWrapper
_lentMain_MainPROVIDERSProvider_ProviderownedVector_KeyAlias_
_lentMain_MainPROVIDERSProvider_ProviderRCPTMGRCompoundCryptoReceipt_CompoundCryptoReceiptownedHashMap_String_CryptoReceipt_
_lentMain_MainPLAINString
_lentMain_MainCONSUMERSCustomerManager_CustomerManagerRECEIPTSCryptoReceipt
_lentMain_MainPROVIDERSProvider_ProviderRCPTMGRCompoundCryptoReceipt
_lentMain_MainPROVIDERSProvider
_lentMain_MainCRYPTObyte__
_lentMain_MainCONSUMERSCustomerInfo
_lentMain_MainCONSUMERSCreditCardInfo
_lentMain_MainCRYPTOString
_lentMain_MainKEYSTORAGEKeyAlias_KeyAliasownedTimestamp
_lentMain_MainKEYSTORAGELocalKeyStore_LocalKeyStoreKEYSLocalKey
_lentMain_MainKEYSTORAGELocalKeyStore_LocalKeyStoreKEYSSecretKeySpec
_lentMain_MainKEYSTORAGELocalKeyStore_LocalKeyStoreKEYDATAString
_lentMain_MainKEYSTORAGELocalKeyStore_LocalKeyStoreKEYDATAbyte__
_lentMain_MainKEYSTORAGELocalKeyStore_LocalKeyStoreownedArrayList_LocalKey_
_lentMain_MainCONSUMERSCustomerInfo_CustomerInfoownedHashMap_String_String_
_lentMain_MainCONSUMERSCreditCardInfo_CreditCardInfoownedHashMap_String_String_
_lentMain_MainCONSUMERSCustomerManager

interface EncryptionRequest<PLAIN> {
unique Map<PLAIN String, PLAIN String> getPlaintexts();
b
class DecryptionResults<PLAIN> implements EncryptionRequest<PLAIN> {
private domain OWNED;
OWNED Map<PLAIN String, PLAIN String> plaintexts = new ...;
unique Map<...> getPlaintexts() {
return copy(plaintexts); // Return copy of field
3
b
class CompoundCryptoReceipt<RECEIPTS,PLAIN,CRYPTO,ALIASID> {
private domain OWNED;
OWNED Map<PLAIN String,RECEIPTS CryptoReceipt> receipts = new ...;
b
class CryptoReceipt<CRYPTO,ALTASID> {
CRYPTO String ciphertext;
CRYPTO String iv;
ALTASID String aliasId;
}

Figure 7.31: CryptoDB: annotation excerpts.

7.8.4 Extracting Object Graphs

| then used ArchRecJ to extract an OOG from the annotated tmde (Fig[7.3b). For
example, inside thérovider’s RCPTMGR domain, aCompoundCryptoReceipt encapsulates a
HashMap that mapsString to CryptoReceipt objects. Separately, ea€hcryptionRequest
inside theCONSUMERS domain has &lashMap that mapsStrings toStrings.

Abstraction by types. An object graph without abstraction by types shows separate
CustomerInfo andCreditCardInfo objects (FigL 7.35). Because the target architecture has
one such component, | used abstraction by types to make theradlrfg OOG merge objects of
type CustomerInfo, andCreditCardInfo in the CONSUMERS domain, because their classes
implement theEncryptionRequest interface (Fig[.7.31). To do so, | added the interface
EncryptionRequest to the list of design intent types.

Hierarchy. Fig.[7Z.34 shows the top-level domains and the objects djr@wside them, with
their substructure collapsed, after binding all the don@anameters containingtrings to
shared. In Fig.[Z.3%, we manually expanded the substructuregof provider, engine, etc.
Here, we collapsed the substructuréxefStore (Wwhich appears in Fi. 7.83). We also manually
collapsed the private domalWNED insidekeyStore, which now appears asNED (+).

260 Chapter 7. Evaluation of the Conformance Analysis

class CreditCardInfo<PLAIN> implements EncryptionRequest<PLAIN> {
public unique Map<...> getPlaintexts() {
unique Map<PLAIN String, PLAIN String> map = new ...;
map.put (CustomerManager.CREDIT_CARD, creditCard) ;

return map;
}

}
class CustomerManager<CONSUMERS,PROVIDERS,PLAIN,CRYPTO,ALIASID...> {

public domain RECEIPTS;
PROVIDERS Provider<CONSUMERS,PLAIN,CRYPTO,ALTIASID,RECEIPTS...> prov;
void testEncrypt() {

CONSUMERS CreditCardInfo<PLAIN> cci = new CreditCardInfo();

prov.RCPTMGR CompoundCryptoReceipt<...> cciRcpts = prov.encrypt(cci, "cci");
b
void testDecrypt() {

prov.RCPTMGR CompoundCryptoReceipt<...> pii = new ...;

RECEIPTS CryptoReceipt<CRYPTO,ALIASID> rl = new ...;

pii.addReceipt (FIRST_NAME, rl);

CONSUMERS DecryptionResults<PLAIN> piiPlaintexts = prov.decrypt(pii);
b

}

class System {
domain CONSUMERS,PROVIDERS,KEYMANAGEMENT,KEYSTORAGE. . .;
KEYSTORAGE LocalKeyStore<...> store = new LocalKeyStore();
KEYMANAGEMENT KeyTool<KEYSTORAGE...> tool = new KeyTool(store);
CONSUMERS CustomerManager<...> mgr = new CustomerManager (store) ;

}

Figure 7.32: CryptoDB: annotation excerpts (continued).

1

! keys(+):
1| ArrayList<LocalKey>
I ~
1

1
owned ;y/// p!
e e a—a—a—a— = =" | localKey: kekSpec(+):

keyStore: — 7 LocalKey SecretKeySpec
LocalKeyStore — | ——

Figure 7.33: CryptoDB:LocalKeyStore OOG.

7.8. Extended Example: CryptoDB 261

mgr(+):

! |
! |
! CustomerManager I
| - \\'&\
! . T - - =-—-—---
| v | | A |
|| encryptionRequest(+): I | provider(+): '
| EncryptionRequest : | Provider :
I I -
| _ _CONSUMERS _ _ | .
———————— — .
I hy v :
[tool(+): |1 engine(+): :
[KeyTooI '] EngineWrapper | :
I I ;
|-
| KEYMANAG ViENT |,/ROVIDER8 N
I_ —L—— I
a4 4
' keyStore(+) tmp(+): |
'l LocalkeyStore KeyAlias ||
|
|
! KEYSTORAGE I

Figure 7.34: CryptoDB: Level-1 OOG withoustring objects.

7.8.5 Abstracting into Built Architecture

| iterated the process of adding the annotations and ektgg®OGs until the OOG had roughly
similar tiers, a similar hierarchical decomposition, arglrailar number of components in each
tier, when visually compared to the target architecturehentused ArchCog to abstract an
extracted object graph into a C&C architecture represemtéaime (Fig[7.3b).

7.8.6 Modeling the Target Architecture

We designed a target architecture using Acme, basing ielkargn the available DFDs (Sec-
tion[7.8.2.1). We represented the DFD processes and daés sising components. We used the
Acme representation feature to include subarchitectuneesponding to second-level DFDs.
We used Acme groups, depicted with dashed lines, to partitie architecture into broad areas
of responsibility.

We added directional connectors based on the informatidineibook by@G). In
many cases, the points-to connectors were the reverse datadlow connectors in the DFDs.

We went through a process of iteration to get the architeatight. This was due in large
measure to the ways in which the implementation departed the architecture. The imple-
mentation, in our case, was a demonstrative implementédiomd in a security book, not a fully
faithful implementation of the design. In particular, tmeplementation was simplified in many
respects. For instance, Kenan identifies in principle a rarmbsubcomponents of the crypto-

raphic provider: an initializer, an encoder, a receipt aggamn, an engine interface, and others

i@h , 86.1). In the implementation, the provider waarly monolithic; few of these

262 Chapter 7. Evaluation of the Conformance Analysis

_lentMain_MainKEYMANAGEMENTKeyTool
_lentMain_MainKEYSTORAGEKeyAlias
_lentMain_MainKEYSTORAGELocalKeyStore
_lentMain_MainPROVIDERSEngineWrapper
_lentMain_MainPROVIDERSProvider
_lentMain_MainCONSUMERSEncryptionRequest
_lentMain_MainCONSUMERSCustomerManager

alias(+):
KeyAlias

\ \
\ \
| P— |
- . | keyData: ‘ |
| m———————— ' v \ _ String ‘ |
| keyTool(+): ‘ ‘ |) |
KeyTool : ‘
‘ ‘ s ‘ | rawKey: ‘
. owned byte[] \
|_KEYMANAGEMENT T | == < ‘
| % KEYDATA | |
‘\ | \
keyStore: L = kekSpec: |
|| LocalKeyStore LocalKey SecretKeySpec |
_w
e \ \
LfffiEYifffg‘
KEYSTORAGE N
\ \
engine(+):
‘ EngineWrapper ‘
| = |
‘ ________ - ‘ ‘
| ' |
| receipts: I ‘
| HashMap<String,CryptoReceipt> | ‘ \
-
‘ receipts: ‘
CompoundCryptoReceipt L owned | |
|| provider: /r" ‘ ‘
‘ Provider RCPTMGR ‘
R = = — = — =N = = = = = = = = —
‘ PROVIDERS |
I o | I u |
I I : | \t Rv iptd: || \
. cryptoReceipt4: R
owned , /, CryptoReceipt - ‘
~ mgr: * v ‘ 3
‘ CustomerManager / RECEIPTS | . \
. 5 \
cust: card: ‘
P Customerinfo CreditCardInfo
v |
. CONSUMERS]

Figure 7.35: CryptoDB: Level-2 OOG, after binding top-level domains farring to shared.

distinct responsibilities were actually allocated to sapaobjects. We had to modify our target
architecture to accommodate the casual way in which theesmehtation realized the described
architecture. Had we not done so, we would have had to delaklese discrepancies later while
analyzing conformance. In a system in which the implemeorianore faithfully realized the
design, less iteration would be necessary.

This iteration was partly due to the mismatch between canedpnd implementation-level
architectures. In Acme, a component is just a transparemnt ®f a more detailed decomposition
specified by the representation of that component (Sectid@ 5Pagé 189). In both the OOG
and the abstracted built architecture, a component ca@$apse or more objects that constitute

7.8. Extended Example: CryptoDB 263

_lentMain_MainKEYMANAGEMENTKeyTool
_lentMain_MainKEYSTORAGELocalKeyStore
_lentMain_MainKEYSTORAGEKeyAlias
_lentMain_MainCONSUMERSCreditCardInfo
_lentMain_MainCONSUMERSCustomerInfo
_lentMain_MainCONSUMERSCustomerManager_CustomerManagerRECEIPTSCryptoReceipt
_lentMain_MainCONSUMERSCustomerManager
_lentMain_MainPROVIDERSProvider
_lentMain_MainPROVIDERSProvider_ProviderRCPTMGRCompoundCryptoReceipt_CompoundCryptoReceiptownedHashMap_String_CryptoReceipt_
_lentMain_MainPROVIDERSProvider_ProviderRCPTMGRCompoundCryptoReceipt
_lentMain_MainPROVIDERSEngineWrapper
_lentMain_MainKEYSTORAGELocalKeyStore_LocalKeyStoreKEYSSecretKeySpec
_lentMain_MainKEYSTORAGELocalKeyStore_LocalKeyStoreKEYSLocalKey
_lentMain_MainKEYSTORAGELocalKeyStore_LocalKeyStoreKEYDATAbyte__
_lentMain_MainKEYSTORAGELocalKeyStore_LocalKeyStoreKEYDATAString

alias

A

1]

-

- ~encryptionReques

keyStore '.|
-’/ 1.‘ 4

KEYSTORAGE | | ! j R |
‘ \ i \ I‘.. \\\\ ,'j ,“
: N \
[| . ! [R \
| | N \‘ NN \
‘ N \ R | \ ‘
| / ; Ny \ AN
‘l N 5 L 5 i i ,‘-!
! @ ! I
keyTool ! engine i |
i | CONSUMERS
KEYMANAGEMENT . PROVIDERS |

Figure 7.36: CryptoDB: built architecture in Acme.

its parts, according to their ownership and type structures

In general, developers do not use hierarchical decompasitgorously in DFDs. But in
SCHOLIA, logical containment can push almost any object undernaaghother object in the
ownership hierarchy. This allows a developer to use aniooigto control the system decompo-
sition in the OOG.

Another change we made in the process of iteration was taéadhe external interactors
from the target architecture. Although useful for showing ¢ndpoints of a system during threat
modeling, they did not correspond to any code elementse shey were external to the system.
We could leave the external interactors in the target archite, but they would always show up
as absences in the conformance view, thus increasing tke leviel.

While iterating the process of adding the annotations ancetihg OOGs, we determined
the similarity between the OOG and the target architectyrédual inspection. The CryptoDB
target architecture we converged on is in Eig. 17.37.

7.8.7 Analyzing Conformance

| then analyzed the communication integrity of the Crypto@Ryjet architecture, and established
the traceability between the target architecture and tde.clbused ArchConf to createcanfor-
mance viewof the target architecture (Fig._7138), which shows conerogs, divergences, and
absences, and has traceability to the code.

Renames. Because S8HOLIA uses a structural comparison algorithm to compare the duilt
designed architectures, it was able to handle the namimgegiancies between the target archi-
tecture and the implementation, e XeyManager versuseyTool.

264 Chapter 7. Evaluation of the Conformance Analysis

CustomerManager

P ————

/
J
.'i (
_J -
[\
CryptoProvider L]
PES b
EngmeWrapper

Crypto Provision

I

1]
]
i

! — —

1
\
]
1
|
i
i
1
1
|
1
L
—
T
i
1
]
i
e

Bl T—
|

et | [SR e —

Crypta Consumption

Customerinfo

—_—
|

KeyVault | |

KeyManager

Key Management

Key Storage

Figure 7.37: CryptoDB: target architecture in Acme.

Crypto Consumption

r 5
i !
| !
H CryptoConsumer !
1 Customerinfo !
1
! Recemts o i
H]
!
N e e G
D s U
Ty
-

g \ | i
s A
i b o ‘I i KeyManager !
CryptoProwder o/t | g i
_.-'““'k__ 1 1
Recethanager ' “, \'““--\,__L_ Key Managsment :
1 e \ -
\
1
1
Encoder H
1
— 1
pe D b
L
1
|
Engine\WWrapper i
i |
! |
Engine ~
g x
4
L Crypto Provision 1 Key Storage
Legend:
Components | Connectors| Ports Groups
1CompT ConnT & UseT
g Representation * ProvideT comp

Figure 7.38: CryptoDB: conformance view in Acme. The representation of some comp®iteinlined.

7.8. Extended Example: CryptoDB

265

Conformance findings. Overall, as the large number of convergences indicatespfievel
components in the target architecture (based on a Levelfd) BRd the implementation were
mostly consistent (Fid. 7.88).

Drilling down into the representations of the some of theleyel components revealed more
interesting differences. For example, the Level-2 DFD (ig@3) shows afincoder component
inside theProvider component. However, the implementation representEtizeder’s func-
tionality using a helper clagsils, which is never instantiated. Hence, the conformance view
shows an absence. One way to resolve this absence is to miwelfpde to instantiate a singleton
Utils object, which would not affect the system’s behavior. Altgively, we could use a “vir-
tual field” annotation that indicates an object allocatimforce the OOG to show an instance of
theEncoder class.

In the process of modeling the target architecture, we ooéd a number of architecture—
implementation discrepancies of this nature. We ultinyatiglalt with them, in most cases, by
modifying the target architecture to match the implemeoat This was necessary because of
the departures that the CryptoDB implementation made fraratbhitecture. Had we not rec-
onciled the differences in the target architecture, we @alve had more noise to sort through
while analyzing conformance. Naturally, distinguishirgween deliberate departures from the
architecture and genuine architecture violations reguwegeful judgment. However, we view it
as a strength of &HoLIA that architects have the opportunity to exercise their poelgt in this
way to forestall uninteresting violation reports from tbelt

In other cases, we refined the annotations. For instance, adeirhitially modeled all
instances ofCryptoReceipt and CompoundCryptoReceipt in a RECEIPTS domain inside
the CustomerManager. As a result, the analysis flagged theceiptManager inside the
CryptoProvider as an absence. Then we looked more carefully at howrteider and
the CustomerManager exchanged these objects. This led us to defiR€RTMGR domain in-
sideprovider for CompoundCryptoReceipts, and left theCryptoReceipts in theRECEIPTS
domain insidengr (Fig.[7.31).

7.8.8 Enforcing Code-Level Constraints

We then added to CryptoDB domain links to specify expliciigek that govern how a domain
can reference objects in other domains (Sedfion2.3.2,@ge

For example, in CryptoDB, BocalKey assumethat its owning domain can access KB ID
andKEYDATA domain parameters. In turn, whem.@alKeyStore instantiates &ocalKey, and
bindsKEYID andKEYDATA to KEYID andKEYS, respectivelyLocalKeyStore must satisfy those
permissions. For the first one, it declaredamnain linkfrom KEYS to KEYID (line[d). For the
second one, it liNk¥EYS to KEYDATA.

We defined domain links and assumptions and typechecked thearesulting domain link
declarations in the top-level class were largely expecfedcan be seen in Fig._7.29, there are
bidirectional links betwee®ROVIDERS and CONSUMERS. But the links are unidirectional from
PROVIDERS andKEYMANAGEMENT to KEYSTORAGE. Of course, there are no links frob@NSUMERS
to KEYSTORAGE. Note that domain link permissions are not transitive.

266 Chapter 7. Evaluation of the Conformance Analysis

class Provider<REQUESTS,KEYSTORAGE...> {
assume OWNER->KEYSTORAGE;
KEYSTORAGE LocalKeyStore<KEYID> keyStore; // (1)
OWNER EngineWrapper<KEYSTORAGE...> engine;

Provider (KEYSTORAGE LocalKeyStore<KEYID> store) {
/I Inject architectural violation
this.keyStore = store; //(2)
this.engine = new EngineWrapper (store);

}

}
Figure 7.39: CryptoDB: injected architectural violation.

7.8.9 Enforcing Architectural Constraints

We also wrote architectural constraints to express résing on the communication allowed
in the CryptoDB architecture. Then, we formalized these traimgs and added them to the
CryptoDB target architecture. Some of the constraints ohelu

1. KeyManager should not connect tBngineWrapper;

2. KeyVault should not point tkeyManifest;

3. OnlyKeyManager andEngineWrapper should have access keyVault.

All these constraints reflect our understanding of the sgcregquirements of the target ar-
chitecture, and indeed they are all roughly derived from m@mtary in Kenan’s bool@an
M). For example, constraidt 3 is an adaptation of thevioilg remark: “Access to the key
vault [...] should be granted to only security officers argl¢hyptographic engine” (p. 71). The
key manager is the architectural agent that security offiuse, hence we arrive at constraint 3.

We formalized the above constraints using the Acme preglieaiguage (Monroe 2001), as
follows:

1. forall ¢ : Component in KeyManagement.MEMBERS |

connected(c, EngineWrapper)
2. 'pointsTo(KeyVault, KeyManifest)
3. forall c : Component in self.COMPONENTS |
pointsTo(c, KeyVault) -> c.label=="KeyManager"
or c.label=="EngineWrapper"

The full Acme specification of the CryptoDB target architeefuncluding the architectural

style and the definition of theointsTo predicate above, is in AppendiX B.

Constraint violations. Once we added the constraints to the target architectureseg the

AcmeStudio tool to verify them. Due to the traceabilitgfLIA established between the archi-

tecture and the code, we can have confidence that the implatisenmeets these constraints.
To further validate our approach, we modified the CryptoDBe;adjecting a manufactured

architecture violation to confirm that our constraints vebcétch it. Specifically, we coupled the

Provider and theL.ocalKeyStore (Fig.[7.39). According to constraint 3 above, thevider

is not allowed to point to théocalKeyStore in this way. In the architecture, access to the

7.8. Extended Example: CryptoDB 267

KeyVault is highly restricted due to the sensitivity of the contents.

When we modified the code in this way and ran our analysis, thibomance view showed
an additional divergence between provider and keyVauld, thie predicate raised a warning
about the architectural violation in the conformance viéwaddition, the domain link checks
alone would not have caught this violation. Befligine andprovider are peers in the same
PROVIDERS domain (Fig[7.34). So, there must already be a domain lioknfPROVIDERS to
KEYSTORAGE for engine to access the key vault. But we still do not wambvider to access
the key vault.

7.8.10 CryptoDB Discussion

The CryptoDB case study demonstrates thaHSLIA can relate, entirely statically, a security
runtime architecture to a program written in a widely usepbaboriented language, using an-
notations. Such an approach can increase the effectiveheszsoning architecturally about the
security of existing systems, because it ensures that thgtecture is a faithful representation
of the code, which is ultimately the most reliable and acimudescription of the built system.
Of course, many approaches identify security vulneradslitlirectly at the code level, without
requiring ownership annotations, or following the®LIA approach. However, architectural
analysis matches the way experts reason about securitivacpbetter than a purely code-based
strategy, as indicated by the well-established threat tmaglprocess.

Architectural security analysis. Various architectural-level security analyses have been p
posed [(Moriconi et al. 1997; Deng et al. 2003). For exampMLEec |L—0_Q|4) extends
UML with secrecy, integrity and authenticity, to allow ayzaihg security weaknesses at the
design level. However, UMLsec achieves conformance betwhee architecture and the imple-
mentation using code generation, code analysis, anddgsiesce generation. Code generation,
while potentially guaranteeing the correct refinement o&arhitecture into an implementation,
is often too restrictive to be fully adopted on a large scalé @annot account for legacy code.
One could use SHOLIA to analyze an existing system, after the fact, by adding t@tioos to
the code.

Similarly, SecureUML |(Lodderstedt etlal. 2002) recommeadsiodel-driven approach in
which security constraints are imposed on a model thatés Eaborated into code. Of course,
like all model-driven approaches, SecureUML is useful dohyconstruction of new systems, not
for analysis of existing implementationsCSOLIA is appropriate for use on existing code, re-
quiring only annotations. Another difference is that SetiML is based on a code architecture,
leaving other views for future work.

Code-level analyses. Many code-level analyses can identify security vulneradd by static
analysis directly over the codec8oLIA complements, and does not supplant these code-level
analyses. Moreover, the traceability between a securiyit@cture and the code thatSoLIA
derives can benefit other static analyses. Until now, dubddack of traceability, much of the
security design intent generated during threat modelirgrita been accessible to other code
quality tools. For instance, a static analysis checkingbigifer overruns, e.g. al.

268 Chapter 7. Evaluation of the Conformance Analysis

M), can use this traceability to assign to its warningsenappropriate priorities based on a
more holistic view of the system.

Security testing. Analysis offers substantial benefits beyond those of tgsdlone. Perhaps
most significantly, since &HOLIA is based on static analysis, it can reveal information abbut
possible runs of a program, while testing is limited to a $mamber of runs. This difference
is particularly important in the security domain. Similar testing is dynamic conformance

analysis, which instruments and monitors a system (Sefilsh|4996b; Schmerl et al. 2006).
We discuss checking conformance using dynamic analydisduin Section 8.9.211 (Page 301)

Design enforcement. Many approaches can enforce local, modular, code-leve$tcaints,
e.g., JavaCop_(Andreae et al. 2006), SCL (Hoover and|Houl 2086)i0LIA is complemen-
tary and can enforce structural constraints on the glob#lme architectural structure. As we
discussed in Sectiohs 6[5, 7]8.9, documenting an extractditecture in an ADL enables first-
order logic predicates to enforce global constraints oratbbitectureMl).

Conformance to a style. Many approaches can analyze the conformance of an architect
to an architectural style, but assume that the architecsuggtracted somehow. Thus, such ap-
roaches can be seen as addressing the problé&wrizbntal conformancéDucasse and Pollet

), rather thamertical conformanceFor instance| (Medvidovic and Jakobac 2006) check the
conformance of an implementation with respect to an arctutal style, but manually relate the
designed and the built architecture€H®LIA is an integrated approach to analyze both vertical
and horizontal conformance.

7.9 Discussion

In this section, | discuss thecBlOLIA evaluation. | first discuss thexternal validity to what
extent the results can be generalized, then revisit tharesguestions.

7.9.1 External Validity

Can ScHolLlA find architectural violations in other systems? To date, | have evaluated
the end-to-end SHoOLIA approach on four systems, Aphyds, JHotDraw, HillClimber &ngp-
toDB. | did not obtain a designed runtime architecture for kidGso | could not analyze its
conformance. For most systems, the challenge is to find grkesgiruntime architecture that is
documented, or to have access to a developer’s architeottenat.

In all the architectures we analyzedci$oLIA found omitted components, connectors or
entire sub-architectures. For example, the JHotDraw desig@rchitecture omitted several com-
ponents that were a later addition to support undoing condsé®ectio 716).

Can ScHoOLIA analyze architectures that specify fine-grained object stictures or multi-
plicities? An OOG and its abstracted C&C view provide architectural r@asion by merging

7.9. Discussion 269

equivalent instances in a domain or tier. So, there will lzgdims that show very fine-grained
object structures, for whichcS1oLIA’s abstraction would be too coarse. Similarly to most static
object diagrams, SHoLIA does not provide any precision regarding multiplicities.

Would an outside developer understand the SHOLIA technique? Until there are better
tools for adding annotationsCHOLIA does not have the characteristic of Reflexion Models that
third-party users can run on large bodies of code (Murphy. @_i). As a result, a study with
an outside developer would be difficult given the nature efapproach.

We did, however, conduct a field study, and confirmed that a@siceiprofessional program-
mer understood abstraction by ownership hierarchy andmstySection 418).

Itis true that iteratively improving the annotations anefinning the abstraction and follow-
ing analysis steps in the tool chain may be a challenge. Heryévs situation is not unique to
ScHOLIA. For example, previous work on code architectures using-aatomated clustering
algorithms, required engineers to spend significant effoe-tuning the clustering parameters
to derive a good match (Christl et/ al. 2005). Int®LIA, a developer does not rely on a tool's
hard-coded heuristics but controls the architecturalrab8bn using annotations. As the eval-
uation showed, | was able to refine the annotations to gettarbeatch, without changing the
code.

Is ScHOLIA more lightweight than other static conformance approaches? For example,
is adding ownership annotations to an existing system lesssive than re-engineering it to
ArchJava to expose its architecture®ur preliminary evidence showed that to be the case
(Abi-Antoun et all 2007a). The annotations, unlike Arctalalo not change the system’s runtime
semantics, and support common object-oriented idiomd) as@gassing references to objects.
For example, an ArchJawsmponent class cannot haveublic fields. When using owner-
ship annotations, such legal Java fields can be placed ificpdrnains. [(Aldrich et &l. 2002c)
added ownership types to the model part of Aphyds (3.5 KLO@)hiours, a quarter of the time
they spent re-engineering that same part to ArchJava.

To more reliably estimate the annotation effort, | condd@eveek-long on-site field study.
| spent 35 hours adding annotations and extracting OOGs then30-KLOC LbGrid module
(WARN is still high). Based on our previous experience with Arcla@bi-Antoun and Coelho
2005; Abi-Antoun et al. 2007a), | could not have re-engieddrbGrid to ArchJava in the same
few days that it took me to add the annotations, even afteouating for possible tool and
language familiarity. Thus, adding annotations to an axgssystem seems more lightweight
than re-engineering the system to use an extended langkagerthJava.

Would ScHoLiAa work with an ownership type system other than ownership domas? In
rinciple, SSHOLIA could use a type system that assumes a sowiéexiper object@l.
). There is, however, a crucial expressiveness adyaitsownership domains that can re-
duce the number of objects in the top-level domains. lowner-as-dominatotype system, any
access to a child object must go through its owning objectrk@lat al! 1998). As a result, this
forces more objects to be peers. When annotating arbitrgegbriented code after the fact, it

270 Chapter 7. Evaluation of the Conformance Analysis

is easier to uséogical containmentvith public domains, rather than the stremcapsulatiorof
private domains, and both can reduce the number of objeth® itop-level domains.

Can ScHOLIA scale to big systems? Architectural extraction is most useful for large systems.
In general, the tools for analyzing the runtime architexziane not as mature as the tools for the
code architecture. For comparison, the closest prior waak ised annotations to extract object
models that provide architectural intent was evaluatedhenig700-line system (Lam and Rinard

). In contrastl_(Mu_rpQLeLlél._ZdM) evaluated Reflexiad®Ms on million-line systems.

As a type-based technique that requires developers tofg@echitectural intent using an-
notations, $HOLIA is currently prohibitively costly for systems with milligrof lines of code.
Scaling SHOLIA to large systems requires better tools for inferring theotations. Alterna-
tively, developers can be required to add and update theamms during development.

7.9.2 Research Questions (Revisited)

In this section, | discuss how well the evaluation answehedésearch questions (Section 7.2).

RQ1 - Extraction: In practice, | was able to extract an object graph that egearchitec-
tural intent and conveys architectural abstraction by aglmp hierarchy and by types. Indeed,
| was able to reduce the number of top-level objects comptredflat object graph, and not
display low-level objects. In addition, | was able to aclkei@similar hierarchical decomposition
and a similar number of objects and domains at each hierdesiey, when visually compared
to a target architecture. However, there still a few anmmtatvarnings, so the extracted object
graph is not guaranteed to be sound.

RQ2 — Abstraction: In practice, | was able to use ArchCog to abstract a hieraatbigject
graph into a sensible runtime architecture representedG&Cview in AcmeStudio. In most
cases, | used the default options for abstracting an objaphg

RQ3 — Comparison: In practice, the structural comparison was able to meauitygfom-
pare the built architecture extracted from the impleméortab a designed architecture. In only
a few cases, | had to manually force or prevent matches battheeview elements.

RQ4 — Checking: In practice, the conformance analysis was able to matchutitteaimd the
designed architectures, display a readable conformapee @nhable tracing a finding to the code,
and compute sensible conformance metrics. The conformaeaehighlighted communication
that is present in the implementation but not in the desigetiitecture, and vice versa. In
practice, the conformance analysis did not generate toy fiadse positives. And | was able to
trace from the conformance view to the right code locatidmparticular, with good annotations,
the conformance analysis did not generate a conformanaewiéch consisted of an unreadable
fully connected graph, which had much noise that | had to waadrigh.

7.9.3 Performance

Table[7.5 shows a performance summary.

7.9. Discussion 271

Table 7.5: Performance measurements of the conformance analySidl. is the core conformance met-
rics. LOC measures the lines of cod@OG andSYNC are the OOG extraction and structural comparison
times, respectively, measured in minutes and seconds on an Intel Pen8udi&) with 2 GB of memory.
WARN measures the remaining warnings.

System |CCM | LOC |OOG [SYNC|WARN
JHotDraw | 54 % | 15,000 1:22 | 1:44 | 60
HillClimber | 83 % | 15,000 1.08 | 0:54 | 42
Aphyds | 29% | 8,000 0:37 | 2:05 | 72

7.9.4 Evaluation Critique

Our evaluation of the conformance analysis shares sewenightions with our evaluation of the
object graph extraction, discussed in Section 4]10.2 (B&8% and suffers from the following
additional limitations.

Target architecture. The process of deriving a reference or target architectigeresearch
topic in its own right. There are potentially several isswéh the target architectures we used
in the evaluation of the conformance analysis.

* Aphyds (SectionZ.b): the original Java developer designed thgetarchitecture. The
edges mixed control flow and data flow information. The diagred some system de-
composition information;

* JHotDraw (Sectior 7Z.b): we had access to an abstracted class dialguadid not have a
target runtime architecture designed by one of the origleaklopers.

* HillClimber (Sectior_Z.J7): one of the original developers designedgetauntime archi-
tecture that showed only the top-level components and thblexarchical decomposition;

* CryptoDB (Sectiorf 7.B): the original Java developer documenteaduarbata Flow Dia-
grams that showed data flow edges, and used system decaompogirmally.

Communication integrity. The remaining annotation warnings in the subject systenakeare
the claims that the extracted object graphs are sound. Asuli,rhe analyzed target architectures
of those systems may still not satisfy the communicatioegnty principle.

7.10 Summary

In this chapter, | evaluatedcHOLIA on several real object-oriented systems. The evaluation
showed that BHOLIA can be applied to an existing system while changing only &tioms in

the code. In all the architectures we analyzedHS8LIA found interesting architectural struc-
tural differences between the implementation and the tanghitecture. In addition, §HOLIA
established traceability, after the fact, between thestaagchitecture and the code.

272 Chapter 7. Evaluation of the Conformance Analysis

Credits

Jeffrey Barnes read carefully Kenan's boMOOG)aﬁw the process of designing
the CryptoDB target architecture, defined the structurakttamts, and tracked down several

AcmeStudio bugs. He also contributed to the writing of thpera/Abi-Antoun and Barnes
) and online appendlx (Abi-Antoun and Balnes 2009b).

Acknowledgements

The author would like to thank Bradley Schmerl for his helphwdicme and AcmeStudio. In
addition to the thesis committee, David Garlan and Mary Shave us very useful feedback.

7.10. Summary 273

Chapter 8
Related Work

SCHOLIA builds on a rich body of research in the area of object-oe@rdesign diagrams
(Sectior[8.11), software architecture (Secfion 8.2), osigrtype systems (Sectién B.3), static
analysis of the runtime structure (Sectlon] 8.4), dynamayasis of the runtime structure (Sec-
tion[8.3), architectural extraction (Section]8.6), aretitiral comparison (Secti¢n 8.7), built-in
conformance (Sectidn 8.8), after-the-fact conformanedyais of architectures (SectibnB.9) and
traceability analysis (Sectidn 8]10).

8.1 Object-Oriented Design Diagrams

The structure of an object-oriented system is commonlyrdest using an object-oriented mod-
eling notation, such as the standard Unified Modeling Laggy&/ML) (Rumbaugh et al. 1998).

Class diagrams vs. object diagrams. Most object modeling notations support both class di-
agrams which show the type structure of the system, and tothiggrams which represent its
runtime structure.

Static object diagrams vs. dynamic object diagrams. In Chaptef]l, | adopted the terminol-
ogy of (Tonella and Potridh 2004) and distinguished betvetatic object diagramanddynamic
object diagramsThis distinction is also helpful to organize previous wahkd relate SHOLIA
to that work.

A static object diagranshows all possible objects and relations between thosetsbpeross
all program runs, and is extracted by static analysis owerctdde. Adynamic object diagram
which is recovered using a dynamic analysis, shows the tshgea the relations that are created

during a specific system execution (Tonella and Patrich 2004

UML. Paradoxically, the UML specification (version 1.3) seemdlp#o blame for the lack
of attention paid to object diagrams, and relegating themplag a smaller role in UML (the
emphasis is mine): “An object diagram is a graph of instajioetuding objects and data values.
A static object diagram is an instance of a class diagranhatvs a snapshot of the detailed
state of a system at a point in timélhe use of object diagrams is fairly limited, mainly to

275

show examples of data structurd®ols need not support a separate format for object diaggram
Class diagrams can contain objects, so a class diagram wéhtsland no classes is an ‘object
diagram’” m).

UML and ownership. ScHOLIA is not the first approach to represent ownership information
in an object-oriented design diagram. For instarlce, (LiliMilanoval 2007) augment a UML
class diagram with ownership information. However, thesuase an ownership model that does
not have ownership parameters, which is less flexible thartyihe system SHOLIA uses. In
addition, displaying object-level ownership on a clasgdia is problematic. Typically, a class
diagram shows only one box for a cldssst. It is unclear how such an approach can display
different instances of Bist object that are owned or strictly encapsulated by differestances

of some other class.

Program understanding. Many researchers have long recognized the importance arund
standing the runtime structure of a system. For examblerk(dﬁial. 200}5) state that object-
oriented frameworks pose particular program understgnchiallenges, and emphasize that “un-
derstanding the dynamic behavior of a framework is morelehging, particularly given the
separation of the static and dynamic perspectives in thectloyiented paradigm”l)_/ZSg_hul—Leﬂal.
) concur that both “the static and dynamic structurestrine understood and then adapted

to the specific requirements of the application [...] For eettgper unfamiliar with the system
to obtain this understanding is a non-trivial task. Littlerkwhas been done on minimizing this
learning curve”.

We believe that S8HOLIA, which can help a developer extract from an implementation a
runtime view for system understanding purposes, is a stepeinight direction.

Empirical evaluation of design diagrams. Several researchers have evaluated empirically
the usefulness of various object-oriented design diagreers., lﬂ:lﬁ.da.r_and_lzlazﬂdn_Zd)M;
Dzidek et all 2008; Bennett et MOS). Unfortunately, ¢hegaluations focus mostly on class
diagrams, or partial runtime views such as sequence diagnaantly because runtime architec-
tures have been difficult to obtain using previous technplog

More recent empirical evidence is paying greater atteritdhe importance of understanding
the runtime structure of an applicatiorﬁg:eiooa))reon an empirical study where a
participant expressed the need to understand “how objentsect to each other at runtime when
| want to understand code that is unknown: an object diageamdre interesting than a class
diagram, as it expresses more how [the system] functions”.

Other opinions. Many experienced designers have recognized the importdpag/ing closer
attention to the runtime structure of object-oriented mapions. Trygve Reenskaug, the creator
of the Model-View-Controller design patteﬂn_(Be_ensﬂihug_bm one of the earlier object-
oriented methods (Reenskaug 1996), has been advocatingpesaab that makes explicit the
following facts about code (Reenskﬂug 2008):

* What is the network of communicating objects?

* How are the objects interlinked?

276 Chapter 8. Related Work

* How do the objects interact?

Reenskaug advocates however a fundamentally differendigama On the other hand,
ScHOLIA can help a developer gain a better understanding of the ah@ations, but for exist-
ing Java code bases and development methodologies, regjaitly annotations.

8.1.1 Summary of previous work on design diagrams

Previous work recognized the importance of object diagravhgch show the runtime structure
of a system, in addition to the value of class diagrams. UWafately, the previous tool support
to extract meaningful object diagrams is still immature paned to the tools available for class
diagrams.

ScHoLIA fills a previously neglected space, that of hierarchicdistdbject diagrams. Hier-
archy makes an object diagram scale effectively to show bifecostructures of an entire appli-
cation, instead of just the interactions between a smatifsabjects. Moreover, we showed how
a hierarchical object diagram can map intuitively onto andéad runtime architecture. Thus,
SCHOLIA bridges even more closely object diagrams and descriptbnsntime architectural
structure.

8.2 Architectural Description

Architectural description evolved independently fromeatjoriented design diagrams. Indeed,
bridging and reconciling these two descriptions has beenstibject of debate and research

(Garlan et al. 2002b; Khammaci et al. 2005).

Code architecture vs. runtime architecture. There are many analogues between object-
oriented design diagrams and architectural descriptiBosinstance, the architectural analogue
to a class diagram is a code architecture or module view. |&ily)ithe analogue of an object
diagram is theuntime architecture

Runtime architecture. Software architecture research recognized early on thatrponent
in the runtime architecture of an object-oriented systerald/consist of objects and communi-
cation between them, such as procedure calls (Garlan avd888; Shaw and Garlan 1996).
In particular, such an architecture would not show inhag&relationships. (Garlan and Shaw
) state that “while inheritance is an important orgeagprinciple for defining the types of

objects in a system, it does not have a direct architecturaition. In particular, in our view,
an inheritance relationship is not a connector, since isdu# define the interaction between
components in a system”.

In SCHOLIA, a runtime architecture shows only objects, domains aradioels between ob-
jects, and does not show inheritance relations. In contsashe object models, e.g., those by

(O’Callahafi 2001), inspired from the Alloy object modelingtation (Jacksoh 2002), show ob-
jects, types as well as inheritance relations.

8.2. Architectural Description 277

Relating runtime architecture to code. Unfortunately, several software architecture ref-
erences are often imprecise when they relate a runtimetectinie to object-oriented code
(Garlan et all. 2002a). For instance, one of the standardsboolsoftware architecture, “Views
and Beyond” byl(Clements et él._2¢03), suggests using a clagsadn to represent a runtime
architecture, then argues that “representing componstangoes as classes doesn’'t work when a
component appears multiple times in a system” (Clements [208B, p. 161).

Indeed, several approaches relate object-oriented nmgdabtations to architectural de-
scriptions by mapping an architectural “component” to omenwre classesor packages
(Khammaci et al. 2005, Fig. 4) (Chardigny etlal. 2008). WH®LIA, an object graph contains
only runtime entities, i.e., objects and domains. And whealyzing conformance, GHOLIA
relates runtime component instances to runtime objectshadchild objects, rather than static
classes or packages.

Representation of runtime architecture. We designed SHOLIA to work with a standard

representation of a runtime architecture as a ComponenEandector view (Shaw and Garlan
11996] Clements et al. 2003). There are alternate methodsdfdeling architectures, e.g., Funda-
mental Modeling Concepts (FMC), and their corresponding nmaggpbetween object-oriented
code and architectural models (Tabeling and&t 2003).

8.2.1 Visualization of Software Architecture

Software visualization presents information in a way tla#es into account the cognitive limi-
tations of humans. Several software visualization teascpddress the issues of diagram size
or complexity. For instance, a hierarchical representadiod the associated ability to expand or
collapse elements has been shown to be effective for safterahitecturel (Storey etlal. 1999;
Malton and Holt 2005). The R visualization system (Miler and Klashinsky 1988) and its
follow-up SHRIMP ViEwS (Storey et al. 1998) produce hierarchical views of the cagaia
tecture. Similarly, RLo (Sinha et all 2006) shows hierarchical class diagrams. HncRthe
developer manually adds the classes of interest to eachadiagnd the tool lays them out. In
other words, there is no automated static analysis behedghr interface.

ScHoLIA leverages the power of hierarchy, and represents a hiecatabject graph as a
nested graph with domains (tiers) and objects (componéargg)e those domains. This allows
expanding and collapsing objects or domains to achievereéifit levels of abstraction. In addi-
tion, in a C&C architecture, the architect can view the amgttitre at the top level, as well as
drill into each component’s sub-architecture.

One could argue that previous attempts to apply these aothitl visualization techniques
to the runtime structure of object-oriented systems hawn bbacking mainly in terms of the
underlying program analyses they used previously, raktar shortcomings of their visualization
techniques.

8.2.2 Summary of previous architectural description

The rich body of work on architectural description has loagagnized the importance of doc-
umenting and reasoning about the runtime architecture gsge$. SHOLIA ascribes to the

278 Chapter 8. Related Work

same goals, and focuses on the runtime structure of objetted systems. As suchc8oLIA
benefits greatly from the large body of work on architectdescription.

When reasoning about the runtime architecture of an objeetied system at compile-time,
the ideas and techniques of ownership types seem fundamEeir, ownership types provide
a coarse structure of an application with a granularitydaithan an object or a class, which
previous approaches recognized as impor@]ﬁl Second, ownership organizes
a flat object graph into an ownership tree, and hierarchyigesvabstraction and scalability by
enabling both high-level understanding and detail. Thaifferent places in the hierarchy can
distinguish between different instantiations of the satasscthat have distinct conceptual pur-
poses and correspond to different elements in the desigichvpinevious approaches identified
as crucial to obtain meaningful object models (Lam and Riga6B). Fourth, the types can con-
servatively describe all possible aliasing that could falleee at runtime, and information about
aliasing is crucial for architectural analyses. Finallgnership types can convey architectural
intent, more so than a static analysis that computes afjasformation automatically without
relying on annotations, as the negative result by (Raysidé €005) demonstrates. So in the
next section, we discuss ownership types whiciiSLIA leverages.

8.3 Ownership type systems

The SCHOLIA annotations implement the ownership domain type systenrigi and Chambers
and the extensions from linear type systems in itasdhva predecessm al.

@l) There are many ownership type systems (Clarke 198I8: Noble et al. 1998:
Clarké [2001:| Boyapati et Al 20034;_Aldrich and Chambers 12004l Bnd Millet [2005:
Potanin et dl. 2006; Lu and Potter 2006; i and Poetzsch-Heffter 2007; Dietl etlal. 2007;
Miiller and Rudich 2007), and new ones appear regularly.

We first discuss various expressiveness features in an shipdype system (Sectig¢n 8.8.1),
related type systems (Sectibn 8]3.2), previous case stadi@uating ownership types (Sec-
tion[8.3.3), and their inference (Section 813.4).

8.3.1 Expressiveness

Ownership type systems can be broadly characterizedwaser-as-dominatoor owner-as-
modifier.

Owner-as-dominator. In an owner-as-dominatotype system, any access to a child object
must go through its owning object (Clarke et al. 1998; Noblel€1998). Such type systems are
acknowledged to be too restrictive. As a result, they wowtleasily support annotating code
after the fact. Also, because making an object owned by anatbject restricts access to the
owned object, this forces more objects to be peers, and leadstter at the top level in the
object graph. In addition, the ownership domain type systapports both this notion of strict
encapsulation, as well as logical containment, which cakenaa object only conceptually part
of another, without restricting access to the containedaibj

8.3. Ownership type systems 279

Owner-as-modifier. An owner-as-modifier type system, e.d., ii\ér and Poetzsch-Heffter
11999 Dietl and Millef[2005] Miller and Rudich 2007), supports strictly encapsulatedadje

peer obJec& and arbitraryreadonly references, as long as only the owner can modify the ob-
ject. Such atype system is fairly flexible. However usingsaienotations for architectural views
is problematic because a separate analysis would havedlvedbereadonly annotations in
order to represent those objects in the object graph.

Other disciplines. There are other ownership disciplines. For instance,

E er 2007) enforcesbaundary-as-dominatoiproperty, and has
the notion of a “loose domain”, which is a form of an existahtiomain. Again, a separate
analysis must resolve these domain annotations in orderuiaddy represent the corresponding
objects in the extracted object graph.

Domain parameters. Some ownership type systems support ownership param&etsth-
ers do not, e.g.L(Di_elLa.nd_Mlej[ZM). In object-oriented programming, it is typit@aproduce
classes that are reused in different contexts. In particrdasable or library code is often para-
metric with respect to the object ownership structure. Retance, &ist object does not own
its elements. Otherwise, those elements would not be abtess the outside. As a result, the
List class typically takes an ownership domain parameter fal@sents. And every instance
of that class must bind all the domain parameters on the tdasther domains that are in scope.
The object graph extraction then resolves these paramateainsures that the relevant object
relationships appear in the global application architectu

Domain parameters add to the annotation burden. Howevérvas adding annotations to
the subject systems (Chapiér 4), | noted how adding theseatioms can help identify tight
coupling through unexpected domain parameters.

Generics. Existing ownership systems differ in their treatment ofg@rs. Generic Ownership
(Potanin et al. 2006) encodes generics in a strict owneieasinator model. Generic Universes
(Dietl et al.l2007) encodes generics into an owner-as-nevdifpe system. We currently follow
SafeJavammmx and treat generics and ownershmpids as orthogonal, perhaps at
the cost of more verbose annotations. Adding existentialados may help make our annotations
less verbose. For example, if an existential domain carespand to a “raw type” in generics,
then the annotation can be omitted in some cases.

Single vs. multiple contexts per object. Most ownership type systems support assume a single
contextper object[(&llatke_el_HL_mbS). As a result, the owner of aeailp another object.
Instead of having objects directly inside other objectsneship domains use an extra level of
hierarchy and group related objects insid#goaain

Simple Loose Ownership Domains (SLOD) (&fér and Poetzsch-Heffter 2007) hard-code

the equivalent of one private and one publicljoundary domain per object.

Therep annotation is equivalent to using a private domain, @NED.
2Thepeer annotation is equivalent to 00WNER annotation.

280 Chapter 8. Related Work

8.3.2 Related type systems

Related to ownership types arenfined typeandregion types

Confined types. Confined types enforce package-level confinement (Bokowskiitek
1 Grothoff et al. 2001). They track that instances obashre used within a given package.

A packagan confined types is roughly a package-level static ownprdbimain, and thus fairly
coarse. As a result, confined types do not seem capable afragam instance-based runtime
architecture. In particular, using confined types, one oadistinguish between two instances of
the same class that are used by different classes, withisaiine package. In addition, confined
types do not have confined type parameters since all the geslae globally accessible. As a
result, they ave a lower annotation overhead than ownetgpgs.

Static class fields, which are really global variables, &adlenging for most ownership type
systems. However, confined type systems can deal readhycade that uses static variables. In
addition, the low annotation overhead makes using confiyyeelstattractive, at least for highly
unstructured code. In future work, it might be useful to fege confined type annotations to
extract an architectural view of a system.

Region types. Also related are region type systerns (Boyapati et al. 2003blike a domain,
which can represent any group of objects, a region represegtoup of objects that are deal-

located together. Region types do not protect access to jeetsltin a region; any object that
can name a region can access the objects inside it. On thehathd, region types allow split-
ting an object across multiple regions. From an archite¢standpoint, it may be beneficial to
have that expressiveness. But it is also intuitive to treahdéime object as an indivisible unit of
computation and state.

Effects systems. Some effects systems, e.g., (Greenhouse and Boyland 198pjement

ownership-like systems that do not strongly encapsulat¢hesy may be somewhat similar to
ownership domains. But effects systems require descrilmngewhat precisely the reading and
writing of mutable state by a method. In contrast, ownersloimain annotations require speci-
fying only the domains of a method’s formal parameters, th@ain of a method’s return value,
and optionally the domain of a method’s receiver. In mangsarmal method parameters are
annotated with a fairly imprecise annotation such ast to indicate temporary aliasing within
the method'’s body.

8.3.3 Case studies for ownership types

Researchers of ownership types have not reported signifiegp¢rience with most own-
ership type systems on real code. Many systems are paperdasigns er
| Sclfer and Poetzsch-Heffter 2007). Only a few systems, rwt@kﬂnershlp Domalns
dAldﬂgh_eLaIJ [2002c; Aldrich and Chambkrs 2004), Univer¢pietl and Millef [2005) and
Generic Ownership_(Potanin et al. 2006), have been impledefArchJava 2003; Universes
2007;/0Gl 2005), and even fewer systems have been evalmasetbstantial case studies on

8.3. Ownership type systems 281

real object -oriented code (Aldrich et/al. 2002cadtler 2005; Abi-Antoun et al. 2007a;akeli

) Many systems have been evaluated only to check ifdheyexpress the canonical iter-
ator example. Others have applied ownership types to tinelatd design patterns in isolation.
However, many expressiveness challenges arise in reatatnjented code, and when the same
objects are involved in several design patterns at oncedditian, there are multiple ways to
implement a standard design pattern.

mS) documented a case study in applying the Umigetype system
Mmmmmﬂ&ﬂd&mmmm) on an industrial software applica-
tion and refactoring the code in the process. Although tligesti system in the case study was
relative large (around 55,000 lines of code@dHler annotated only a portion of the system, and
did not report the exact number of annotated lines of codehtér also manually generated vi-
sualizations of the ownership structure. In contrast,rdumy case studies, | used object graphs
to visualize the ownership structure, and adjusted thetatioos accordingly.

i) evaluated how the Universes and ownership dotypé systems express the
standard object-oriented design pattekns_(s_ammd[el_ad)lwwever, in real world complex
object-oriented code, design patterns rarely occur iratewoi MO). My case studies
indicated that it is often these subtle interactions, coabiwith the single ownership constraint
of the type system, that can make adding the annotationsudifin some cases.

In the process of evaluatingc8oLIA, | conducted and reported on some of the largest case
studies to date in applying ownership types to real objeietted code.

8.3.4 Ownership inference

Ownership inference is a separate problem and an activeaamragoing research. Ownership

mference algorithms use static analysis (Aldrich rwal ller 2004; Cooper
5 dynamic analysis (Werner andiNér [2007), or a mix of statlc and dynamic analysis

). A compile time inference, e.q., (Aldrich et #02¢), is preferable to a dynamic
analysis, since the annotations have to soundly desctipesdible ownership structures at run-
time. However, many static analyses are unscalable, asgiecisely large systems that require
annotation inference.

To my knowledge, no previous fully automated inference allgm can create multiple do-
mains in one object and meaningful domain parameterschc&iA, these are critical for repre-
senting the architectural intent, such as the sepaieaadMODEL tiers in Aphyds (Chaptér2.2,
Pagd3L).

Some ownership inference techniques adopt a restrictitiernof ownershlpm
@) infer only strictly encapsulated objects and usaliaobjects, do not map their results
back to a type system, do not infer domain parameters (Ma asti-2007:; Liu and Milanova
@), or infer imprecise long lists of domain parametensliigh et al. 2002c).

| am optimistic that active research in this area, el.g., @Nblva 2008; Liu and Smith 2008),

will significantly reduce the cost of adding the annotatijcarsd thus, potentially benefitcsio-
LIA’s adoption.

282 Chapter 8. Related Work

8.3.5 Summary of previous work on ownership type systems

SCHOLIA builds on much research in ownership type systems, and umgesfdhe state-of-the-
art ownership type systems. Most of the research in ownetgpes has focused on specifying
and enforcing invariants in the code. To our knowledgeHSLIA is the first approach that uses
a static analysis to leverage the ownership type annotatia program, in order to reason about
higher-level architectural representations of the code.

8.4 Static analysis of the runtime structure

SCHOLIA uses program analysis to leverage the ownership type arorsan the program. In
this section, | discuss previous static analyses thatebdtatic object diagrams or object graphs.
We first discuss object graph analyses (Se¢tion18.4.1)tptiranalyses (Sectign 8.4.2) and then
shape analyses (Section 814.3).

8.4.1 Object graph analyses

We distinguish static analyses that do not require anmotstirom those that do.

8.4.1.1 Annotation-free analyses

Several static analyses produce object graphs withouiriregannotations, and produce non-
hierarchical object graphs.

WowmsLE (Jackson and Waingold 2001) starts with a class diagram sesl heuristics for
container classes and multiplicities to refine the objecti@ho The follow-on tool, SPER-
WOMBLE dlALa_'LngQLdiLZQ_Qll), uses additional heuristics for mergingetybut does not attempt to
be sound. The unsoundness is an engineering tradeoff tblatinsed to produce correct object
models in practice, by masking problems due to other wealasesf the analysis (namely, that
it is flow-insensitive). PERNVOMBLE also uses built-in and user-defined abstraction rules for
containers that coalesce a chain of edges in the object rimde single edge (Waingold 2001).
SUPERWOMBLE also analyzes all classes that are transitively referefttedugh constructor
calls, field references, etc.) from the root set of classesavbid analyzing a large number of
classes, most of which would not affect the outpust@p-analysis configuration fileontrols
what classes or packages the tool analyzes (Waingol :

Asnxi(oCallahar 1) uses a sound alias analysis to build a cefibgect model as a
conservative static approximation of the heap graph rédelfeom a given set of root objects.
However, AlaAx does not use ownership and produces flat object grapirsx felies heavily on
post-processing raw object graphs, such as by elidinguatfis” with more than seven incoming
edges or eliding all subclasses of a given type, émputStream (p. 248). Moreover, the object
models that AAX generates tend to expose internal implementation de@i852). HOLIA
does not suffer from this problem since the annotationajlyi store an object’s internal im-
plementation details in private domains. On the other h&wdX is able to detect fields that
are actually unused. In addition JAx can automatically and soundly split classes in the object
model, i.e., determine that an object is indeed of typ@d not of typez—even ifZ is a subclass

8.4. Static analysis of the runtime structure 283

of Y, and without any information other than the code. FinallyaR's heavyweight but precise
alias analysis does not scale to large programs.

PANGAEA MZ) produces a flat object graph without an aliayais and is un-
sound. The ERNGAEA output for JHotDraw (Figl_4.19) is even more complex thart tifa
WowmBLE (Fig.[4.18). However, having the ability to display flat atijgraphs for programs
that lack annotations can still be useful. Indeed, | portexildpen source ARGAEAN tool to
Eclipse, to display the object structure of an unannotagstem, and perhaps assist a developer
in the process of annotating an unfamiliar system—thougit afiject graph is often unreadable.

(Rayside et al. 2005) proposed a static object graph andigsisd on Rapid Type Analysis
(RTA) (Bacon and Sweeney 1996), which produced unacceptaileapproximations for most

non-trivial programs. In SHOLIA, the ownership annotations prevent the static extractat a
ysis from merging objects too much or too little.

8.4.1.2 Annotation-based analyses

Lam and Rinard.(Lam and Rinard 2003) proposed a type system atadi@analysis (which |
refer to here as LR) whereby developer-specified annotagaite the static abstraction of an
object model by merging objects basedtokens LR supports a fixed set of statically declared
global tokens, and their analysis shows a graph indicatimgobjects appear in which tokens.
Using token parameters, the same code element can be mappdtetent design elements
depending on context. Token parameters are similar to @higgparameters, which predated
them by several years (Clarke etlal. 1998), though the Lam amar&paper does not explicitly
relate the two.

Unlike ownership domains, there is a statically fixed nunmdfeiokens, all of which are at
the top level, so LR cannot show hierarchy such assteners object nested within 8odel
object (Fig[2.3(a)). In contrast, the ownership domairteiwian object define a sub-architecture
of contained objects, and in the case of recursive typegjdh®in structure is hierarchical and
unbounded in depth.

The LR paper does not mention inheritance, and the LR fornystesn omits it
inard 2003, Fig. 10). LR has no proof of soundneserewith or without inher-
itance. LR’s only case study was an order of magnitude smédker one of my larger case
studies, e.g., JHotDraw (15 KLOC vs. 1.7KLOC). If | were to BplpR to JHotDraw anyway,
ignoring inheritance, LR would show at least 200 objectshim top-level tokens. In contrast,
ScHOLIA applies abstraction by ownership hierarchy and by typesidavsan order of magni-
tude fewer objects in the top-level domains.

SAJAX ml) is not publicly available. O’Callahansddnd enough to send me the sources for the
tool. But | was unable to run fx successfully, even on trivial examples because it reqairgsecific, obsolete
environment, and has various undocumented dependentiissexplains why the flat object graphs that | show for
comparison with 8HOLIA are the output of WWMBLE (Jackson and Waingold 2001) oaGAEA (Spiegél 2002),
which | was able to obtain and run.

4PANGAEA is publicly available athttp://page.mi.fu-berlin.de/spiegel/pangaea/

284 Chapter 8. Related Work

http://page.mi.fu-berlin.de/spiegel/pangaea/

8.4.2 Points-to analysis

Points-to analysis is a fundamental static analysis taote the set of objects whose addresses
may be stored in variables or fields of objects (Andersen)l 94 research literature on points-
to analysis goes back several decades, and | do not clainmtmatize it here. | discuss briefly
several points-to analyses for Java. They can broadly argamlong the following dimensions:

* Context- sensitive vs. insensitian analysis is context-insensitive if it analyzes a method
m only once, combining all the calling states@fj,.m(z7) andobj,.m(z3). A context-
sensitive version will distinguish between these two callss As a result, a context-
sensitive analysis can be less scalable than a contexisitise one. 8HOLIA’'s analysis
does not distinguish between calling contexts, but disiisttges objects based on their
domains. So, one can consider domains as a form of contegitisay.

* Flow- sensitive vs. insensitivan analysis is flow-sensitive if the order of the statements
in a program affects the result of the analysisH®LIA’s analysis is flow-insensitive and
does not consider the program’s control flow.

* Object- sensitive vs. insensitiven an object-insensitive analysis, a fiefddeclared in
a classC has a class-level scop€'(f). This allows a points-to analysis to distinguish
between fields that belong to two different classes, €g.f vs. D::f. However, an
object-insensitive analysis cannot distinguish betweeldgithat are declared in a given
class, but belong to different instances of that class, ehgl.f vs. obj2.f, whereobj1
andob;2 are field declarations of typ€. In some cases, the ability to distinguish between
locations that belong to different objects improves suligdlly the precision of analysis
(Milanova et aNMS) On the downside, object-sensiytimiakes an analysis unscalable.

All previous points-to analyses produce non-hierarchigaphs|(Tonella and Potr ich 2004;
Milanova et al |_20_d5) The &oLIA static analysis can be considered flow-insensitive and
object-insensitive but domain-sensitive (Refer to disiussn Section 3.6J3, Pade 118), and
produces hierarchical object graphs.

An Object Flow Graph (OFG) (Tonella and Potfich 2004) is &mto an object-sensitive
points-to graph. It tracks the lifetime of objects from thaieation point to their assignment to
program variables.

Object Process Graphs (Eisenbarth et al. 12002) use paoirgadlysis to statically recover
all possible execution traces for a given object. One apftio of these graphs is protocol
validation.

Soundness. Not all points-to analysis have soundness proofs. Someeoh thre written as
pseudo-code, instead of transfer functions, which makdsgfitult to compare between these
different analyses.

Analysis results. Although points-to analysis results are often used for d@npptimization,
the value of points-to analysis for program understandiag previously identifiecimbl
11997 Tonella and Potrich 2004). However, the result of thaysis is typically used only intra-
procedurally, since a points-to graph for an entire systemlgvprobably be unreadable.

In the same vein asc@&HoLiA, (Milanova et all 2002) uses the results of a points-to aisly
to construct an Object Relation Diagram, which is a classrdiagvhere the type of the pointed-

8.4. Static analysis of the runtime structure 285

to object is potentially more precise than the declared.type our knowledge, SHOLIA is
the first approach to abstract the output of a static pomemglysis into a hierarchical runtime
architecture represented as a C&C view, which is then usedatyze conformance to a target
runtime architecture.

Points-to summary. Most points-to analyses also abstract all the objects thatidbe created
at one allocation site into one node in the points-to grapd.aAesult, most points-to analyses
achieve a granularity that is no coarser than an object ot af s&jects. In £HOLIA, a nhode

in a hierarchical object graph includes all the objects aalwcation site within a domaﬁn
together with all the objects collapsed underneath thagatppased on the ownership domain
parameters, as well as the type structures, when usingaabstr by types. In addition, a domain
is a conceptual groups of objects, and provides a granplemirser than that of an individual
object with its collapsed substructure.

8.4.3 Shape analysis

Our analysis creates a graph that summarizes possiblerships among objects at runtime.
Shape analysis, e.gL_LSagdetLaL_]l999), is related, Wigrslion several counts. First, shape
analyses have not been demonstrated to scale to programsnere than a few thousands of
lines of code. Second, shape analysis represents objattrébeing used by the program using
unique materialized objects, while it summarizes objelatt &ire not in use. In contrast, our
analysis, once it merges two objects in a domain, never aggsthem. So, shape analysis could
produce more precise results for small non-hierarchicaplgs. But our analysis can separate
two objects that are in distinct domains, because the widgrtype system guarantees they can
never alias. Finally, shape analysis produces very pretiape graphs consisting of nodes to
represent a set of objects, and edges to represent poirgations. However, a shape graph is
non-hierarchical in the sense that all the nodes in a graplatathe same level, and objects are
not collapsed underneath other objects.

dC_a.Is;agnD_el_éLZng) proposed a shape analysis that canfen@agiven method, the input
and the output shape graph. This analysis works ortbg-procedurally, which keeps the shape
graphs manageable. However, if one were to apply the asagsihe whole programmter-
procedurally, it is likely to produce very large graphs thatuld not convey any meaningful
architectural abstraction.

Finally, a heavyweight shape analysis may achieve moragiwachan £HOLIA in many
cases. Although &HoLIA sacrifices some precision to gain scalability of the anajysconveys
architectural abstraction primarily through hierarchy.

8.4.4 Summary of previous static analysis of the runtime structure

While these approaches produce diagrams that are very udedyl typically extract design
diagrams rather than architectural diagrams, in the sdredettiey convey little architectural

SDisclaimer: the object graph may not refleeti que objects which may be returned by a factory method. As
discussed earlier, this requires a flow analysis to resblertique annotations.

286 Chapter 8. Related Work

abstraction (Sectidn 1.4, Padge 9). In particular, all presistatic object graph analyses, points-
to analyses, and shape analyses, including some that ustations, extract non-hierarchical
object graphs. Flat objects graphs do not scale, becauseithber of top-level objects in the
object graph increases with the program size. More imptiytaa flat object graph often does
not provide sufficient architectural abstraction to enalalyzing conformance.

8.5 Dynamic analysis of the runtime structure

When dealing with runtime structure, many have intuitivelgfprred dynamic analysis. In this
section, | discuss previous dynamic analyses that exwwactdvel diagrams. | first discuss gen-
eral visualization-oriented approaches (Sedtion B.5h&)) approaches that make use of owner-
ship (Sectiol 8.5]2), then approaches that mix both dynamcstatic analysis (Sectibn 85.3).

8.5.1 Visualization of object structures

Many dynamic analyses focus on visualizing the object fires of a runnin % Sys-

tem (De Pauw et él 1993, |_994 ura_|1995; Safita
K k|m| n |_9_9_t3 3 9|7, Walker etmm&h_ner_ammé

; Argiu | Mancoridis 1208ouder et al.| 2001;
Bmummmddtzoﬂi@ﬂhsjmms;ﬂ nitt 2 d@z_ae_aauwleﬂa& [Salah and Mancoridis
2004 Pacione et al. 2004; Reiss and Renieris 2005).

These dynamic analyses handle programs for which source isodot available, do not
require source code annotations, and allow more fine-gitaiser interaction in producing a
visualization. These task-focused views explain detaitteractions, help developers under-
stand a program, or find low-level defects, such as memoks|é@e Pauw and Sevitsky 1999;
RRayside and Mendel 2007). The extracted views have the gratyubf individual objects and

classes.
Many of these a proaches extract one oOr more coIIaboratlona
(] [i§94

(Gschwind and Oberleitrie

lRJ_thﬂLand_D_uga.sﬂse_lQQQ.M[alkeLdLaL_i998) rather thanbagbbject diagram for the entire
system. A collaboration diagram that contains all objents @l invocations between them may
be unusable, for anything but the smallest of systems. Magstoaches allow the developer
using the tool to focus the interaction diagram to includéy @pecific method invocations,

issued from a starting method of interest.

An alternative solution is to analyze an incomplete systbynjncluding only classes of
interest. $HOLIA supports analyzing a portion of a system, and allows the @iseirtual
fields” to soundly summarize the un-annotated portions.

In some cases, the recovered views highlight design pattéramer and Prechelt 1996;
'Schauer and Keller 1998), but often, they are not architalthecause they are neither abstract
nor global.

8.5. Dynamic analysis of the runtime structure 287

8.5.2 Dynamic ownership analyses

More closely related to &oLIA are dynamic analyses that infer the ownership struc-

ture of a running program based on its heap structure (Halle2002; Rayside et al. 2006;
Flanagan and Freu 06; Mitchell 2b06).

In general, dynamic analyses have the advantages of being snalable and more precise
than their static counterparts. In addition, dynamic owhgranalyses do not require a program-
mer to annotate her code with ownership type annotationsveder, previous such analyses
assume a strict owner-as-dominator model which cannogsept many design idioms. In such
a model, a higher-level object cannot collapse underne¢aibt many low-level objects, so they
end up cluttering the top-level diagram.

Table[8.1 has a comparison of dynamic ownership analysestatid object graph analyses,
some of which require neither annotations nor the source ¢thety operate on the bytecode
version of the program).

288 Chapter 8. Related Work

21NJoNJIS awinunJ ay Jo sisAjeue Jlweuiq ‘g8

68¢

Table 8.1: Comparison of dynamic ownership analyses and static object graph esalys

Ownership Scalable Design| Sound | Comments
Analysis/Viz. (Kind) | Intent | Analysis

Dynamic ownership analyses
Rayside et al. (Rayside et al. 2006) Inferred Yes/Yes (Matrix) No Yes
Mitchell (Mitchell 2006) Inferred Yes/No (Flat) No Yes
AARDVARK (Flanagan and Freund 2006) Inferred No/No (Flat) No Yes
Dino (Hill et al. 2002; Noble 2002) Inferred Yes/Yes (Both) No Yes
Potanin et al. (Potanin et al. 2004) Inferred Yes/Yes (Both) No Yes
PTIDEJ (Guéheneuc 2004) None No/No (Flat) Some No
Static object graph analyses
AJax (O’Callahan 2001) None No/No (Flat) No Yes Bytecode
WowmBLE (Jackson and Waingold 2001) None No/No (Flat) Some No Bytecode
PANGAEA (Spiegel 2002) None Yes/No (Flat) No No Source
Lam and Rinard_ (Lam and Rinard 2003) Tokens Yes/No (Flat) Yes Partial Source
SCHOLIA Annotated| Yes/Yes (Hierarchy)| Yes Yes Source

Hill, Noble and Potter|(Hill et &l._2002) and_(Potanin et/ab0@) used dynamic analyses

and showed both matrix and graph views of ownership strastand demonstrated that own-
ership is effective at organizing runtime objects. Sevethérs followed swtm-6
Rayside et al. 2006; Flanagan and Freund 2006).

(lRa)LSIde_el_dIL_ZQﬁ)G) characterize sharing and ownershigpeodlice a matrix display of
the ownership structure. They later used the results ofiiedysis to investigate memory leaks
m@@_&m@é_don

Similarly, (Mitchel) uses lightweight ownership @éménce to examine a single heap
shapshot rather the entlre program execution, and scaegtroach to large programs through
extensive graph transformation and summarization.

(Flanagan and Freund 2006) propose a dynamic analysis Widk-&0x overhead to recon-
struct each intermediate heap from a log of object allocatend field writes. Then, they apply
a sequence of abstraction-based operations to each hehpowbine the results into a single
object model that conservatively approximates all the oleseheaps. Their tool, ARDVARK,
has the notion of ownership and containment and uses sineplastics to choose the most ap-
propriate generalization. In addition MRDVARK’s dynamic object diagrams have multiplicities,
which SCHOLIA's static object diagrams do not have.

This body of work showed that ownership does provide abtracand is effective at orga-
nizing large object graphs. CHOLIA uses the same key insight but in a static analysis which
must address several additional challenges. A static sisdiyr object-oriented programs must
also deal with issues of aliasing, recursion, inheritasoandness, precision and scalability.

Dynamic ownership analyses are descriptive and show themlip structure in a single run
of a program. In contrast, the Ownership Object Graph tltat@ 1A obtains at compile time
is prescriptive and shows ownership relations that willlvariant over all program runs. Thus,
this dissertation proposes a new class of object graphssthatv, important, and valuable.

8.5.3 Mix of static and dynamic analysis

PTIDEJ (Guéhéneud 2004) uses a dynamic analysis to refine a class diadr@imed using a
static analysis, but with manual input. For example,0&Jwas evaluated on JHotDraw, and the

UML class diagram it produced did not fit on one page.
' h.ZQbZ) combine static and dynamic amalp extract object diagrams

from a C++ library, as well as interaction diagrams (Tonetlel Rotrich 2003).

8.5.4 Summary of previous dynamic analysis of the runtime structure

The analyses we discussed in this section obtain usefulldegl diagrams, that have the granu-
larity of individual objects or classes. Some dynamic objkagrams also used hierarchy effec-
tively. However, by definition, a dynamic object diagram manshow all possible objects and
relations.

SCHOLIA is the first approach that uses ownership types to add higraocastatic object
diagram. In £HOLIA, a hierarchical object graph conveys architectural abttma, as we dis-
cussed in Section 1.4 (Palge 9), and can be abstracted iraodastl runtime architecture. The
next section focuses on previous work that extracts arctoital diagrams.

290 Chapter 8. Related Work

8.6 Architectural extraction

There is much previous work in the area of architecturalaetion, which reverse-engineers
high-level architectural views of a system. Architectueiraction is also known aschitectural
recovery architectural reconstructiojreverse architectin@r architectural discover

2008 Ducasse and Pollet 2009).

Many of the previous techniques deal only with the code &&chire, rather than the runtime
architecture, which is the subject of this dissertationfddmnately, many papers confound the
runtime and the code architectures. They either do not@iplclassify an architectural view
they extract as either a code or a runtime architecture, erthes term “component” to really
mean a “package”, “module” or a collection of classes (Tdtl.| 2002). This observation
is corroborated b)l (Ducasse and Pdllet 2009) in their extersurvey of previous architecture
extraction techniques: “Because it is complex to extradbiggctural components from source
code, those are often simply mapped to packages or files. iEthés practice is understandable,
we think it limits and overloads the term component” (p. 587)

In the following discussion, | restate some of the contidmg of previous work using a
terminology that is consistent with the rest of this docutpnand clarify whether the end result
is a code architecture or a runtime architecture.

Most architectural extraction follows thextract-abstract-preserdtrategy mn.
It first extractssome information from the code, tiseurce modelabstractsthat source model
into a high-level modelthen presentsit, either visually, or using an architectural description
language.

8.6.1 Extracting a source model

An architectural extractor can use static analysis, dynamalysis, or a mix of the two to extract
a source model.

8.6.1.1 Static extractors

Many static extractors extract information such as paclsaigesture, class structure, dependen-
cies such as inheritance and method calls (Murphy and NG8@5). Some of that information,
such as a directory or package structure, is naturally tuki@al. Other approaches require the
hierarchical containment information as a separate inpot.instance, the Software Bookshelf
(Finnigan et all. 1997), of whicOO) is an instantiatiwas the notions of:

* hasParts/isPartOf, e.g., aSystem might have constituerubSystems as parts;

* contains/isContainedIn.

In PBS, a human specifies the containment information segaifabm the facts that a tool
extracts from the source code. For example, PBS uses two gesition files which represent
decomposition information for a software system. The fgsin “established decomposition”
that a human supplies or verifies, and the second is an “adldgieomposition” that the toolkit
guesses.

(Mendonca and Kramer 2001) developed an approach and,adRhy , to extract the run-

time architecture using only static analysis, but from pahal C code. X-Ry combines com-

8.6. Architectural extraction 291

ponent module classification, syntactic pattern matchang, structural reachability analysis. It
is unclear that the approach can handle object-orientee.cod

8.6.1.2 Dynamic extractors

A dynamic extractor monitors a system’s execution, obtairegpshots of the runtime heaps, and

analyzes the snapshots either online or offline (Walker.&t998).

8.6.1.3 Mixed extractors

Some extractors combine both static and dynamic analysihiiei and Ducasse 1999).

8.6.1.4 Summary of previous work in extracting source modsl

With the exception of object graph analysis, points-to gsialand shape analysis, which | dis-
cussed in Section 8.4 (Palge 283), most static extractor®tiwatk objects precisely. Instead,
they represent their structural information with respediles, dlrectorle@ packages or classes,
rather than objects. For example, they express that a dgssti of some package, or a package
is nested inside some other package.

In SCHOLIA, ownership type annotations provide the containment métion. Moreover,
SCHOLIA uses object-level, i.e., an object is “part of” another objd his enables SHOLIA to
distinguish between different instances of the same clessare in different domains, as well
as between instances of the same class in the same domainthudifierent actual domain
parameters.

8.6.2 Abstracting a source model into a high-level model

Abstraction techniguesabstract a source model into a high-level architectural view.

(Hochstein and Lindvall | 2005) survey various of these apghes. Following
(Sartipi and Kontogiannis 2004) and others, we broadly mimg abstraction techniques

into clusteringandpattern matchingnethods.

8.6.2.1 Clustering

Clustering identifies higher-level architectural entitsyggradually grouping lower-level entities.
Many architectural extraction approaches use clustenngetompose a system into a collec-
tion of hierarchical subsystems, allowing nodes to be pska or expande L(Izetpp_s_andJ40It
11996). For example, R (Milller et al.| 1993), and several of the following tools such as
DALI (Kazman and Caréirel 1999), which was superseded byMIN (Kazman et dl. 2002), and
SHIMBA (Sysf et all 2000), use this technique. Some tools, eRMA, have a scripting inter-
face so a developer can write scripts to aggregate infoomaind produce higher-level views.

8In Java, the package and the directory structures mustmaiach other. Languages such as C++ and C# allow
the package and the directory structures to be different.

292 Chapter 8. Related Work

Clustering approaches rely on naming conventidms_(Kazmﬂrﬁam@r_éLlE)_Qb), directory
structures (Richner and Ducasse 1999), or graph clusteigngitams (Sartipi and Kontogianhis
20034/ Magbool and Baliri 2007).

Several tools simply apply the same notions of clusterimgpi@cedural code to object-
oriented systems. E.g.,UBICH ([Manmﬂdis_el_dlLlQ%) organizes Java functions into ntexju
by clustering entities in a module dependency graph.

Clustering techniques are attractive because they oftefupsoacceptable results, are scal-
able and can be mostly automated. However, clustering igaés rarely recover a meaningful
decomposition because they do not go beyond the structeigianships explicitly declared
in the code. For example, architectural extraction stutles used graph clustering algo-
rithms reported that software developers often used tnidlearor with the clustering parameters
(Kazman and Carérel 1999; Christl et al. 2005). As a result, clustering apgitea are increas-
ingly incorporating user input at the detriment of theirauation.

Clustering methods can be complementary GHSLIA and may help with annotating an
unfamiliar system. For instance, two strongly connectegteks may suggest creating two top-
level domains corresponding to the two clusters. A smabteluthat interacts with almost all
others may indicatehared objects.

8.6.2.2 Pattern matching

Broadly speaking, pattern matching techniques map low-eenents to higher-level elements
by searching for patterns. (Ducasse and Pollet 2009) pecaigood overview of previous ap-
proaches that extract architecture based on pattern mgtcBkamples include extracting com-
ponents according to queries over a relational databasainorg the codém 02),
identifying architectural actions via event sequencesuimtime execution that match a state
machine [(Schmerl et al. 2d06) or using a user-provided roaelate source code entities to
architectural components, as in Reflexion Modéls_(,MiJmh;tJ&(mi)

One of the pattern-matching approachess@TECT dS_thﬂtLeI_dlLZD_CbG) deserves ad-
ditional discussion because it instruments a running systed extracts a built C&C runtime
architecture that is rich with architectural styles andetypin place of annotations,|®COTECT
requires mapping events from a runtime trace to architattounterparts, e.g., a method invo-
cation leads to the creation of a port. In addition, it may bsgible to reuse a mapping across
several similar systems, which is not the case with ownpitsipie annotations. Becausedao-
TECTIs a dynamic analysis, the results reflect only the partidalauts and exercised use cases.
Also, DiscoTECT generates non-hierarchical C&C views that show one compdoereach
instance created at runtime. Another analysis must pastegs DSCOTECT's output to consol-
idate similar component instances. FinallySDOTECT only extracts the built architecture of a
system and does not analyze its conformance to a targetesthe.

At the lowest level, some approaches try to detect the stdraisign patternal
) Many design patterns are more micro-architectlowatlevel and local than the global ar-
chitectural structure thatc30OLIA can extract or analyze. InNCHIOLIA, the annotations typically
encode the decomposition of a system into high-level padtesuch as Model-View-Controller.

Pattern matching techniques tend to recover a handful o$tdredard design patterns, and
suffer from a large number of false positives.

8.6. Architectural extraction 293

Pattern-matching techniques tend to be less scalable thsieieng-based methods. But no
pattern-matching approach can guarantee that every clas® isystem will be assigned to a
subsystem.

None of them has the desired precision. The resulting deositigns are either not mean-
ingful to a software engineer, or they cover only pieces efittnole system.

8.6.2.3 Summary of previous work in abstracting source mods

Most approaches mostly automate extracting a source muatalequire the developer to guide
the abstraction step. CHIOLIA is unusual in that developer-specified annotations alsdegui
the extraction. The annotations help the analysis thatetdrthe source model to distinguish
between objects that are in different domains. This helpgege additional precision and bring
the source model closer to an architect’'s mental model oftthg@me architecture.

In ScHoLIA, an OOG groups objects based on the architectural intentiepby the an-
notations, and on the object ownership and type structnsgsaccording to where objects were
declared in the program or some naming convention. Theat&in by types during the OOG
extraction involves additional manual input, and requaeteveloper to specify trivial types or
design intent types.

In SCHOLIA, once the annotations are added to the program to captuaedigectural intent,
they can evolve with the program.

8.6.3 Case studies in architectural extraction

There are several published case studies in architectxtracéon.

8.6.3.1 Non-object-oriented systems

Most published architectural extraction case studiesiatiubig legacy systems written in pro-
cedural languages, rather than object-oriented code,hwikithe subject of this dissertation.
However, the processes these case studies followed aesigtituctive and we followed similar
ones during our own case studies.

For example, a successful case study extracted the codeeatale of a 30-KLOC C system
(Harris et all 1995) and a multi-MLOC C system (Linux) (Bowneiral 1990).

To determine the architectural structure of a legacy sy,sﬂﬂ'@_rp_o_s_and_Hdhﬁ%) used
a “hybrid” process that combines facts extracted from théecand information derived from
interviewing developers. These steps include: collectivagk of the envelope” designs from
project personnel; extracting raw facts from the sourcescamllecting naming conventions
for files; clustering code artifacts based on naming conwasf creating tentative structural
diagrams, and collecting the reactions of the developetisese tentative diagrams; and so on,
until they converged to a code architecture. They conclutiat there is a reasonably well-
defined sequence of steps to go through to extract a coddaentthie. Indeed, the steps we
undertook while evaluating@&HoLIA during the field study were somewhat similar, although we
dealt with the runtime architecture, and did not use clusger

294 Chapter 8. Related Work

The Apache modeling projedl_(_@ne_eLa]l_ZD_dS) used FMC and manually extracted the ar-
chitecture of Apache, written in C. The architectural exitacseems to have involved ad-hoc
manual techniques and many people—many students enrolkedlass. The only tool used for
the analysis of the source code transformed the C sourceictmla set of syntax highlighted
and hyperlinked HTML files/(Gine et all 2002). The authors justify not using more advanced
tools by saying that “an important amount of information ae for the conceptual architecture
is not existent in the code and therefore cannot be extrdstactool” (Gione et almZ).

8.6.3.2 Object-oriented systems

There a few published case studies in the architecturaaetidn of object-oriented systems.

Several case studies have studied the Jigsaw system, wasc300 classes (Chardigny et al.
2008} Medvidovic and Jak QHM%) to evaluate their techiral extraction techniques. How-
ever, they focused on the code architecture.

06) point out that availables@wk often unable to discover a
relationship that is implemented indirectly, e.g., by gsimstances of container classes, such as
Vector, Map, List, to store objects of some other application class. Thisrihién complicated
by introducing user-defined container classesHSLIA can readily address those cases. For
example, in the Listeners system (Chapler 2), the ¢lags1 does not directly declare a field
reference of typearChart. Rather, the clasHodel declares d.ist of Listener objects
(Fig.[2.4, Pagk_36). After edge liftingCBIOLIA can show a points-to relation betweeMaiel
object and ®@arChart object (Fig[2.3(1)).

Many architectural extraction studies use various sowtedgormation extrinsic to the code,
with no clear exit criteria. It is also fairly common for déffent people to extract very different
architectures.

In SCHOLIA, the annotations are not completely arbitrary, and havgpdedheck. During
the LbGrid field study (Section 4.8, Page 161), we only addewtations, typechecked them,
and occasionally discussed a snapshot with a developerm&asurable success criteria are to
minimize the number of objects in the top-level domains, adlice the number of remaining
annotation warnings.

8.6.3.3 Evaluating an extracted architecture

Evaluating the quality of a extracted architecture is stiii@ debate, with no generally accepted
evaluation criteria. More generally, this appears to berarnon issue in the empirical evalua-
tion of reverse engineering tools. (Tonella et al. 200 7estiaat “the same piece of information
recovered from the code may be immensely useful or complateisable depending on the end
user who is performing the current software engineering &l depending on the amount of
knowledge the user already has about the system”. Indeisdy#s one of the challenges that
this dissertation work faced.

One approach to measure the “goodness” of an extractedextthie is to compute various
structural metrics. Indeed, clustering methods often hiseatpproach to evaluate the quality of
the result. For example, a clustering is ood” if the clustare reasonably sized and exhibit
low coupling and high coheao@ﬂ

8.6. Architectural extraction 295

Another common way to evaluate an extracted architectu@ ¢gempare it against a target
or reference architecture. This is the approach takendwycgia and many others.

8.6.3.4 Summary of previous case studies in architecturaké&action

The scale of the systems we analyzed usiogSLIA may pale in comparison to previous case
studies that analyzed the code architecture of large sgstddowever, SHOLIA is a type-
based technique that requires developers to specify aothral intent using annotations. This
makes using SHOLIA to analyze a system with millions of lines of code (MLOC) piutively
costly, without annotation inference. Despite this litida, SCHOLIA is the first entirely static
approach that can extract a runtime architecture. For cdsgma the closest prior work that
used annotations to extract object modbls_(,Lam_and_BinaLd)Zﬂﬁs evaluated on one 1700-
line system.

8.6.4 Summary of previous work in architectural extraction

Previous architectural extraction focused predominaatiythe code architecture. The previ-
ous work that addressed the runtime architecture intiytipeeferred using dynamic analyses.
(Schmerl et al. 2006) state that “determining the actualimmarchitectural configuration of a
system using static analysis is, in general, undecidaff@licasse and Pollet 2009) affirm that
“static information is often insufficient for [software ditecture reconstruction] since it only
provides a limited insight into the runtime nature of thelgpad software; to understand behav-
ioral system properties, dynamic information is more ratd¥ (p. 580).

To my knowledge, no previous approach extracts staticallyrdime architecture for an
object-oriented system. The closest to that would be themenstructure extracted by a static
analysis, which | discussed in Section]8.4 above. Most flgablgraphs are too low-level to
be considered architectural viewsCISOLIA is the first approach to demonstrate that the static
extraction of runtime architectures from object-orientede is indeed feasible.

8.7 Architectural synchronization

SCHOLIA requires the ability to compare the built and the designetitacture. Several tech-
niques and tools have been proposed for differencing andingearchitectural or design views.

Landmark-based algorithms. We group several algorithms that have been proposed for dif-
ferencing hierarchical information under the category lahtimark- based algorithms”: they
have been proposed in the context of program differencirgy, 8Diff
) Dex |((Raghavan etlal. 2004), and design differencing, MLDiIff (Xing and St Qullb
) These algorithms are based on the assumption thexttities they are trying to match are
uniquely named and many nodes match exactly. This enaldes tit recognize the unchanged
nodes first and use them as “landmarks” to efficiently idgntié other changes. However, these
algorithms are unable to match nodes based on structure afdmased on structure and highly
non-unigue semantic information, such as entity types.isiance, a heuristic solution with a

296 Chapter 8. Related Work

worst-case)(N?) supporting arbitrary move, copy and glue operations wasedesn instances
where more than 80% of the nodes matched exactl hawat th-Molina 1997). As a
result, these algorithms are less suitable for compariolgitectural views, as they will perform
poorly when all the nodes are renamed, or when most of themedaodes are concentrated in
one area of the tree such as when entire subtrees are renamednay be atypical when com-
paring two versions of a given program or a design model at@ngevel of abstraction. In our
architectural views, most names are transient or autoaitigenerated. Both THP and MDIR
would still work even in the total absence of semantic infation, i.e., using tree structure only.
For instance, in the Aphyds and Duke’s Bank examples, ourtsnipad more than half of their
nodes renamed. Finally, none of these algorithms offer ltiiéyato manually force or prevent
matches. It may be possible to easily add the ability to prer@atches to some of them (e.qg.,
JDiff), but adding the ability to force matches could be sabsally more complicated.

Tree alignment vs. tree edit. Tree differences can be represented using tree alignmetetid

of tree edit distance. Each alignment of trees actuallyesponds to a restricted tree edit in
which all the insertions precede all the deletions. Aldgoms based on tree alignment can detect
unbounded deletes and can generalize to more than two se®gthing not easily done with
tree edit distance algorithms (Jiang et al. 1994). But the amgmequirements of tree alignment
algorithms, for the tree sizes and branching factors tleatyguical of our inputs, would be several
orders of magnitude higher than those of MDIR¥22? N?), whered is the maximum degree of
the tree.

Graph matching approaches. Exhaustive graph matching algorithms, based on variaritseof
A* algorithm dﬁé&gﬁ@&, do not scale beyond a few dozetes|(Hlaoui and Wang 2002).
In the context of architectural views, Sartipi proposed ppraach for architectural extraction
using a variant of the A* graph matching algorithm, but with@ptimization that may cause it
to miss the optimal solution in some cases (Sartipi and Kgiatmis 2003b).

More scalable, heuristic-based approaches, such as ap®etthods, perform poorly when
the graphs are not nearly isomorphic. Furthermore, thegmitims occasionally miss the op-
timal solution 1. 2004). Others, such as the Siityil&looding Algorithm (SFA),
have an accuracy of around 50%_(M_elnik_dﬂ_aL_2002). The aoyuof MDIR is above 90%
on a roughly similar range of graph sizes. Furthermore, SHi&g heavily on labels, which
are different when the graphs originate from different dm®saeven if they express the same
relationships: “while matching of an XML schema againsttaeo XML schema delivers usable
results, matching of a relational schema against an XMLmsehfails” (Melnik et al! 2002).

(Mandelin et al. 2006) proposed probabilistic matchingeiasn label, region, type or posi-
tion information, but the approach requires trainingeéhielencersMandelin et al. also mention
that a simple greedy search algorithm does not work in masga

Model transformation. Graph transformation approaches, surveyed by Mens and vam G

(Mens and Van Gorp 2005), tackle the same problem, but uséeaetit set of assumptions.

First, in many graph grammars, productions do not deletécesrand edges, which effectively

8.7. Architectural synchronization 297

prohibits insertions and deletions, one of our requirese®econd, graph transformation ap-
proaches do not attempt to find the optimal transformati@t would preserve properties of
view elements. Finally, most graph transformation appneaao not yet offer the same level of
automation as the tools illustrated in Secfiod 5.5 (Pagé.192

Consistency management. There is significant work in the area of viewpoints, view niegg
and inconsistency management, e.g., (Easterbrook andietis#995! Egyed 2006). A view-
point captures data from disparate sources into indepe¢hdémterrelated units. In view merg-
ing, there is also a notion of knowledge order or degree, a.enatch can be disputed. When
synchronizing between a built and a designed architectume may want to model incomplete-
ness and inconsistency as a first class notion. In our apprege model both views using the
same viewtype, arbitrarily bridging the inevitable expgiieeness gaps in the process. We also
assume that one of the two views is authoritative. Implicitthen the user decides to commit
some edit actions but not others, they are allowing somepsaicke differences to remain. In
future work, it may be interesting to model this more prdgisesing ideas from inconsistency
management.

Much of the work in view consistency analyzes the consistendifferent but related views,
typically at the same level of abstraction, such as a UMLscliiagram and a UML sequence
diagram. This is a problem inorizontal conformancéDucasse and Pollet 2009). On the other
hand, this dissertation is about analyzing consistencydxmt views at different levels of ab-
straction, namely an implementation and a target architectwhich is a problem iwertical

conformanceﬂDucagse and Pollat 2dO9).

8.8 Built-in conformance

Analyzing conformance, after the fact, between an arcthuteand an implementation is a fun-
damentally difficult problem. So several approaches atteéonavoid the problem by using code
generation, style-guidelines, library-based solutiams language-based solutions.

8.8.1 Code generation

Because of the difficulty of maintaining and extracting higel models of a system, some
approaches make the high-level model the primary asset@meéva conformance by generat-
ing an implementation from an architecture (Shaw &t al. 1883iconi et al| 1995). However,
code generation guarantees only initial conformance. Tiataia conformance, developers must
refrain from changing the code directly. Instead, they nallstlys change the models then re-
generate the implementation from the updated models. Suepproach may work in certain
domains, but is often not adoptable for general purposdcgtigns, because a developer is no
longer free to edit the code directly. This restricts amtis and developers from working at
the appropriate level of abstraction. More importantlglsan approach does not handle legacy
code. SHOLIA can analyze the conformance of a system after the fact, éaneljacy sys-
tems, and requires mostly adding annotations, withouhgereering the system to a different
language.

298 Chapter 8. Related Work

8.8.2 Style guidelines

In order to maintain conformance, some approaches reqguimmplementation to follow strict
style guidelines that prohibit sharing mutable data betweemponents| (Luckham and Vera
). The problem with style guidelines is that there arellg no tools to check them.

8.8.3 Library-based solutions

Library-based solutions achieve conformance by requidiedglopers to implement theiwr sys-
tem on designated architectural frameworks or middlewd&@. instance, adopters of the C2
ADL can use a specific framework to implement their designdieovic et al. 1996). Simi-
larly, FRACTAL (Bruneton et al. 2006) defines multiple levels of conformarazel supporting
higher levels requires implementing additional interface

In addition to forcing developers to use specific framewpskeh approaches often require
developers to follow strict guidelines to avoid introdugiarchitectural violations. There are no
tools to check that an implementation obeys those rules (@dvidlovic, personal communica-
tion, 2008).

8.8.4 Language-based solutions

ArchJava [(Aldrich et al. 2002b) was the first language-bassdtion that could guarantee, at
compile time, communication integrity between objeceated code and the intended run-
time structure. ArchJava, however, expresses archiedtuough Java language extensions,
and requires re-engineering a system to respect ArchJgymessystem| (Aldrich et al. 2002a;

i- 0.2005; Abi-Antoun et/al. 2007a). We dised in detail the relation be-
tween SHOLIA and ArchJava in Sectidn 7.5.5 (P&gel240)

8.8.5 Summary of previous work in built-in conformance

Previous approaches to enforce built-in conformance heweral drawbacks. They require de-
velopers to use code generation, mandate specializedesrtthial middleware or frameworks, or
impose strict style guidelines without providing tools td@ce those guidelines. Others require
radical language changes that incorporate architectarstoucts at the expense of severe imple-
mentation restrictions. While these approaches may be allepin certain restricted domains,
they often do not address existing systems. In contrasticgIA supports analyzing the con-
formance, after-the fact, of a system written in a generab@se, widely-used object-oriented
language (Java), and that uses available frameworks anadiéb.

8.9 Architectural conformance

Others have recognized the drawbacks of enforcing buitteinformance, and worked on ap-
proaches to analyze conformance between an implemengataan architectural view after the

8.9. Architectural conformance 299

fact. In fact, many architectural extraction approachesdasigned with the goal of analyz-
ing conformance (Ducasse and Pollet 2&090. this section, we focus only on approaches that
analyze horizontal conformance between the implememtatial the architecture.

We classify the previous work in terms of approaches thatesdcthe code architecture (Sec-
tion[8.9.1), and others that address the runtime archite¢8ectior 8.9]2).

8.9.1 Conformance analysis of the code architecture

One of the earliest and most influential techniques for amadyconformance to a code architec-
ture is Reflexion Models (RMl (Murphy et éL_ZdOl). Although RMnk® on the code architec-
ture only, | modeled SHOLIA closely after RM and discussed their differences and siiéar
in detail in Sectio 6.614 (Page 218).

(Knodel and PnggHu 2007) performed a comparative analf&sflexion Models and two
other conformance analyses techniques for the code artiiiéeand indicated they have similar
expressiveness.

Many approaches use variations on Reflexion Models. Forrineté(Eiulem_and_AnIQniol
) check if a system’s code architecture representedlassdiagram conforms to a design
specified in the OMT modeling language, a precursor to UMLo@\ translates both the C++
source code and the target architecture into an intermeadiptesentation, compares the two, and
identifies added or removed classes, attributes, opesatmsociation and inheritance relations.
The comparison uses a maximum match algorithm that complieebest mapping between
source code classes and entities of the class design bastdngnedit distance. Because the
entities in the two representations are at the same levélstfaction, there is no need to map one
representation to the other, as in Reflexion Models. Theieexpents on several C++ systems
ranging 5K to 50K confirm that assuming exactly matching naifoe classes gave poor results
of design-code traceability. That work, among others,ifjest SCHOLIA’s use of a structural
comparison that can detect renames, to compare the buithartdrget architectures.

Similarly, the approach by (Guo etlal. 1999) works with objedented code such as C++.
But the end result shows C++ files as the leaf nodes, and sunesdhie conformance between
call relations and variable access relations.

3) describes a method for verifying a modulatacthre using relational parti-
tion algebra (RPA), which targets high-level architectutaés only. Then they check the con-
formance of an extracted view against a target view.

dEj_th_em_el_dlLZD_CbS) use annotations to define “ensemlblpackages, classes, etc. These
ensembles define a module view that is orthogonal to the dogigtwre. In principle, an ensem-
ble could consist of fields, though the approach does noteaddhe issue of possible aliasing.
In addition, the annotations describe in the code the disirecture of the system, and check it
continuously as part of the build process.

They have the notion of “part of” at the level of files, claseepackages, but not at the level
of objects. Unlike $HOLIA, their annotations are not typecheckable. Finally, tioai&LiA
annotations do not describe the desired structure of therayis the code.

(Ducasse and Pollet 2009) list 34 approaches to extracitectire, and indicate that 12 of them are used to
analyze conformance (Table 1, p. 576). Of these, 9 dealweittical conformancéTable 5, p. 584).

300 Chapter 8. Related Work

dKQDIQgLa.nnjs_el_dLl&@S) check structural compliancegishe notion of concept-to-code
mapping. In this approach, a concept language models abgtraperties of a desired code
fragment. The pattern matching process is based on the Mankalel, and a similarity mea-
sure between an abstract pattern and a piece of code is défitexins of the probability that
the abstract pattern can generate that piece of code. Toeadta complexity of the required
computations, they use dynamic programming.

8.9.2 Conformance analysis of the runtime architecture

Previous work in analyzing conformance to a runtime archite use either dynamic analysis
(Sectior8.9.2]1) or static analysis (Secfion 8.9.2.2).

8.9.2.1 Dynamic analysis

Intuitively, many have preferred using dynamic analysiarialyze conformance to a runtime ar-

chitecture, by monitoring a few program runs of the systegfika et all 1996b; Madhav 1996).

In contrast, $HOLIA uses only static analyses, and thus, can make claims abqdsszible
executions.

6) instruments an Ada program to produce evéntsiame that are tested for
conformance against a reference architecture documemted RaPIDE ADL.

PATTERNLINT (Sefika et al. 1996b) combines static and dynamic visuaizatnd analyzes
conformance by displaying various complementary viewaaga “data sharing graph”, and
inter-class call relations. The rules are converted todeyol

(Turner et all 2003) extend UML object diagrams into Visuah&teaint Diagrams and check
at runtime that a UML object diagram satisfies constraintsesSt constraint are over instances
of classes and express conditions that should not occue ibitfect-oriented program is correct,
e.g., that a linked list must not contain a cycle. (Crane ami&ll 2008) do something similar,
but require developers to use the Alloy object modeling tiarta

(Shomrat and Yehudai 2002) showed that using AspectJ (Kiszd all 1997) to enforce ar-
chitectural restrictions is not an ideal choice. Althougsidn problems are cross-cutting, they
often concern static events or structural properties taahot be captured by existing pointcut
languages. Static analysis, which we use in our approaemsbetter suited to ensure structural
properties.

8.9.2.2 Static analysis

Some approaches use static analysis and purport to haredlertime architecture of object-
oriented systems. However, (van Dijk et al. 2005aBPace and Campo 2005; Blech et al.
) map acomponent instance a runtime architecture to elassin object-oriented code.
Such a mapping is more suitable for t@de architecturelmplicitly, they make the assumption
that there is a single instance of each class in the system.

In SCHOLIA, runtime component instances are not classes. Rather, cemisacorrespond to
objects, i.e., instances of classes. For example, a framkewtben instantiated, may contribute
one or more component instances to an architecture. Thifigeshe use obbject diagrams

8.9. Architectural conformance 301

instead of class diagrams as the closer analogy for a rumimétectureL(Q_lﬂm_enIs_eﬂhL_ZﬁbO&
p. 103).
Bauhaus|(Raza et/al. 2006) is a static analysis toolkit thgiatma points-to analysis, etc.
Bauhaus lets a user specify the high-level module view (orpothesis thereof) and map the
concrete modules onto the architecture. Then Bauhaus cespanigh-level module view to
the concrete modules and their dependencies using a sitadhnique to Reflexion Models.
Presumably, Bauhaus can handle Java code. However, the blishad case studies used two
large-scale and complex applications, namely, the C ca@ngidcc and the GNU C compiler gcc,

with 100 and 500 KLOC, respectively (Koschke and Simon 2003).

8.9.3 Case studies in architectural conformance

Several case studies evaluated the conformance analysisaase studies. When dealing with
the code architecture, the source model can be obtaindgtvedfeeasily. This allows a technique
such as Reflexion Models (RM) to scale to large code bases. §anice, (Murphy and Notkin
) analyzed a 1.2-MLOC system written in C.

' I_ZD_dS) conducted anvivo study using a variant of Reflexion Models.

8.9.4 Conformance measurement

There are several possible measures of architecturatiaiongin source code.

(Sarkar et dl. 2006) measure how many back-calls or up-eallsnplementation violates
with respect to the layers in a target code architecture.

(lLagLé_el_aI.LIQ_%) compute metrics that compare the layers inigrdsband a built code
architecture.

ScHOLIA is complementary, focuses on the runtime architecturerelates a designed and
a built runtime architecture.

8.9.5 Summary of previous work in architectural conformance

There is much previous work in analyzing conformance to secathitecture. However, an
approach designed for the code architecture would not wotke runtime architecture. This is
because one code entity can map to multiple components imtian@iarchitecture, and similarly,
multiple code elements could correspond to the same olijeghame.

To our knowledge, no previous work can analyze the confoomar a runtime architecture,
and statically relate the runtime component instances amgget architecture to runtime objects.
Still, SCHOLIA is similar in spirit to previous work such as Reflexion Modetsl anany similar
variants. However, SHoLIA differs from that work on two counts. First,CBOLIA uses a
more sophisticated source abstraction method and ex@acther source model that reflects
the application’s hierarchical runtime structure, ingteéits code structure. SecondgcSOLIA
relates the source model to a high-level model using a monesigol structural comparison.
The structural comparison does not rely on unique idergifiand compares two hierarchical
architectural views after the fact. Finallyc8oLIA deals with hierarchical source models, high-
level models, and maps.

302 Chapter 8. Related Work

8.10 Traceability
Traceability has long been recognized as important (Litiéwal Sandahl | 1996;
'Spanoudakis and Zisn

05), and is strongly related téoooance. Similarly tohor-

izontal andvertical conformance(Lindvall and Sandahl 1996; Spanoudakis and Zisman|2005)

discusshorizontalandvertical traceability Despite the plethora of approaches to achieve trace-
ability, effective tool support remains a challenge (Spatakis and Zisman 2005; Oliveto et al.
), and is of limited use in industrial settings.

General purposes approaches use various informatioevattiechniques to recover trace-
ability links between use cases, between design diagrachsate classes, or between test cases
and code classes (Giulio et al. 2000; Antoniol et al. 2002t Deia et all 2007). A tool based on
such a technique produces measures of similarity (De Lugit2008).

ARCHEVOL (lNiler_el_a.ILZD_dS) maintains traceability links betweesode architecture and
the implementation, once a human provides the tool with @mimapping between the archi-
tecture and the implementation.

Previous tools that do establish traceability to the codtlenodo so with respect to a code
architecture, i.e., they relate some artifact in a higlelewodel to aclassor a packagein the
code structure, rather than to objects in the applicatiumisime structure. In contrastC8OLIA
can establish traceability between the built runtime $tmecand an intended runtime architec-
ture. To our knowledge, &HOLIA is the first approach that allows a developer to trace from
a component, a connector or a port in runtime architectus&gimed entirely statically, to the
corresponding object references in a general purposetatjented language like Java. This
facility was previously available only when tracing from WMlass diagrams to Java code.

8.11 Summary of related work

ScHoLIA fills an important gap in extracting statically a hierarehicuntime architecture from
a general purpose object-oriented language like Java, mimticeng communication integrity
against a target architecture.

8.10. Traceability 303

Chapter 9

Discussion and Conclusion

In this chapter, | revisit the requirements on a proposedtieol and discuss how well&Ho-
LIA meets them (Sectidn 9.1). | then discuss someafi@.IA’s limitations (Sectio 9]2), its
usefulness and usability (Sectionl9.3), possible futurek®ectiorf 9.4), and finally conclude.

9.1 Satisfaction of the £HOLIA requirements

ScHoLIA meets many of the requirements from Secfion 1.8 (Page 22).

9.1.1 Overall Approach

RQ O1 — Hierarchical architectural models: In SCHOLIA, both the designed and the built ar-
chitectures are hierarchical,

RQ O2 — Static analysis: The SCHOLIA object graph extraction uses a static analysis. The
analyses that abstract an object graph and analyze comationiintegrity are also static;

RQ O3 — Arbitrary implementation code: | evaluated $HOLIA successfully on existing
object-oriented code that used available libraries;

RQ O4 — After the fact analysis: | evaluated $HOLIA on existing code that others had devel-
oped. In many cases, the systems had no documented arngietect

RQ O5 — Automation: | automated many parts ofcsOLIA, as | discuss below. The part of
ScHoLIA that would benefit from significantly more automation is thegess of adding
the annotations to a program.

9.1.2 Annotations

RQ ANNL1 — Language support for annotations: | designed $HOLIA'S annotations to use
existing language support for annotations for most of treesa There are a few cases
that the existing annotation stand004) cannotllea So, we currently use
brittle block comments for those. However, upcoming versiof Java are likely to adopt

the JSR 308 proposal (Ernst and Coward 2006), which allowstatians in more places
such as on generic type arguments;

305

RQ ANNZ2 — Real object-oriented code:l was able to add annotations to several real object-
oriented systems, which used inheritance, recursion, etc.

RQ ANNS3 — Expressiveness:The annotations that | added to existing object-orientetkcm-
plement the ownership domain type system and typecheckdanbst part. In the process
of adding annotations, | identified expressiveness chgdleiin the type system that must
be addressed in future work;

RQ ANN4 — Automation: | implemented a tool to insert default annotations (Sedfioh4,
Pagd 326), and another tool to typecheck the annotations.

9.1.3 Architectural Extraction

RQ EXT1 — Summarization:

RQ EXT2 — Hierarchy: The ArchRecJ tool extracts hierarchical object graphs.

RQ EXT3 — Object soundness:We proved formally that an extracted object graph has exactl
a unique representative for each runtime object (SeCi@nPagé 88).

RQ EXT4 — Edge soundnessWe proved formally that an extracted object graph has edges
that correspond to all possible runtime points-to relatibetween the representatives of
the runtime objects (Sectidn 8.3, Pagée 88).

RQ EXT5 — Traceability: The ArchRecJ tool allows tracing from each node or edge in an ex
tracted object graph, including from a lifted edge, to thdenying lines of code.

RQ EXT6 — Precision:

RQ EXT7 — Scalability: The object graph extraction static analysis, even thoughatwhole
program analysis, does seem to scale. In particular, idauaiown scalability bottlenecks
such as object-sensitivity.

RQ EXT8 — Automation: | developed a tool, ArchRecJ, to extract an object graph from a
annotated program, with a good response time. The tooltassteveloper with selecting
the input to the abstraction by types, and refining the olgeggbh interactively.

9.1.4 Architectural Comparison

RQ COMP1 — No unique identifiers: The structural comparison does not assume that the ar-
chitectural view elements have unique or persistent iflergi

RQ COMP2 — No ordering: The structural comparison does not assume that an archaéct
view has an inherent ordering among its elements.

RQ COMP3 - Insertions, deletions, and renamesThe structural comparison does detect el-
ements that are inserted, deleted and renamed across twizetaral views.

RQ COMP4 — Hierarchical moves: The structural comparison does detect elements moved up
or down a number of levels in the hierarchy.

RQ COMP5 — Manual overrides: The structural comparison allows a user to force or prevent
matches between selected view elements. The compariseriltaetake these constraints
into account to improve the overall match.

RQ COMP6 — Type information optional: The structural comparison does not assume that
the view elements have type information that matches exacthe empirical evalua-
tion showed that the comparison can recover a correct mgdpam structure alone if

306 Chapter 9. Discussion and Conclusion

necessary, or from structure and type information if tyderimation is available. The
comparison also takes advantage of any available typennafbon, and avoids matching
elements that have incompatible types.

RQ COMP7 — Disconnected and stateless operationThe structural comparison works after
the fact, in a disconnected and stateless mode. It doeslgainré¢he ability to monitor or
record any structural changes to an architecture.

RQ COMPS8 — Automation: The ArchSynchro tool (Sectidn 5.4.2, Page|189) can synd®on
two architectural C&C views.

9.1.5 Architectural Conformance

RQ CHK1 — Communication integrity: Extracting a sound object graph is a prerequisite for
enforcing communication integrity. Indeed, the extraabpkct graph implied by the own-
ership annotations must show all objects and all possibhenzanication between those
objects. The object graph abstraction and conformancesiagreserve soundness since
they may only add but not subtract edges, e.g., in the fornftetiledges in the built C&C
view or summary edges in the conformance view. However, waodpresent a soundness
proof that relates a Runtime Object Graph (ROG) to a confoomarew.

RQ CHK2 — Few false positives: The evaluation showed that if the built and the designed ar-
chitectures have a similar hierarchical decompositionaasithilar number of components
at each hierarchy level, the conformance analysis doesrndupe too many false posi-
tives. Moreover, a developer can intervene at several stejpe approach to reduce the
number of false positives, by fine-tuning the annotationstmlling the abstraction step,
guiding the structural comparison, etc.

RQ CHK3 — Traceability: | developed a tool, CodeTraceJ, to allow the developer te tiraen
each convergent or divergent component or connector in @eoance view, including a
summary connector, to the underlying lines of code;

RQ CHK4 — Automation: | developed a tool, ArchCog, to abstract an object graph iroila
runtime architecture. | also developed a tool, ArchConf,dmpare the built architecture
to a target architecture, analyze communication integnitjhe target architecture, and
display a conformance view.

9.2 Limitations

ScHOLIA suffers from several limitations.

9.2.1 Overall Approach

Semi-automation. SCHOLIA is not a push-button approach. Architects and developeestoa

provide many of the abstractions and manually interpretéisalts. This is both a strength and
a weakness. It is a strength because it enabtasogIA to obtain meaningful abstractions, in
contrast to a fully automated approach which is more likelinter a high-level model that may

not match the architect’s mental model (Wong et al. 1995;p¥uret all 2001).

9.2. Limitations 307

One benefit of extracting an architecture based on annogaisothat the abstraction is not
hard-coded in the tool. Indeed, “many tools only supporinghg a previously abstracted view
[...] Maintainers might understand the software bettenulgh abstractions they created them-
selves, rather than through the prefabricated abstractivet many tools provide. Facilities
should be available to allow the maintainer to create them abstractions and label and docu-
ment them to reflect their meaninél(_SlQLe;LdLaL_iQ%).

On the other hand, the degree of manual input in applying thiec&IA may not be worth
the effort for systems that are not business-critical, amay preclude its immediate practical
adoption. Currently, most of the effort required to useH®LIA is in manually adding the
annotations to a program.

Based on our field study resultsgSoLIA currently requires roughly a person-week of effort
for a 30-KLOC system. For many systems, this cost is high,candid be s a significant barrier
to industrial adoption, and thus to practitioners achig\thre approach’s benefits.

Batch-oriented interaction. In SCHOLIA, a developer iterates the process of adding anno-
tations which control the abstraction by ownership hidrgr¢hen the object graph extraction
which controls the abstraction by types. She then absttlaetsbject graph by selecting various
options, and structurally compares the abstracted objapihgo a target architecture. Based on
the comparison results, she refines the annotations uatéxtracted object graph has a similar
hierarchical decomposition and shows a similar number ofmnents as the designed architec-
ture. Finally, she must investigate whether the reportedrgences or absences are true archi-
tectural violations or could be addressed by refining theotations, and iterating the process
one more time.

Overall, the process of refining the extracted architecteems somewhat awkward. The
architect must notice and analyze architectural anomalsssime some of them are due to an in-
correct ownership relationship in the source code, chamgewnership annotations consistently
to reflect the corrected ownership relationship, and thgerrerate the architecture. Having to
run a sequence of analyses and tools may make usirgpSA tedious and time-consuming.

9.2.2 Annotations

The annotations suffer from the following limitations.

Expressiveness challenges.Like any type system, the ownership domain type system has
some expressiveness challenges. During our evaluatioena@untered several expressiveness
challenges (Sectidn 4.6.1.3, Page]135). In fact, most ohaonotated programs still have an-
notation warnings remaining in them. One way to addressthasnings would be to refactor
the code. But having to refactor existing code to annotatédsao the adoption cost of the
approach. Ideally, we should extend the type system. WeJmBome of these expressiveness
issues may be resolved in the type system by incorporatiregvanfell-understood constructs
that others have added to other ownership type systems,asuekistential ownershu@ke

2001 ; Krishnaswami and Aldrich 2005; Lu and Potter 2006)heDexpressiveness limitations,

such as dealing with static fields, may be harder to overcasimggan ownership type system.

308 Chapter 9. Discussion and Conclusion

One potentially promising approach would be to use a typtesysvhich combines ownership
types and confined types, such @{2007)

Single ownership. The ownership domain type system used lpHSLIA supports only single
ownership, i.e., an object cannot be part of more than oneeship hierarchy. For instance, if
an object is both a mediator in the Mediator pattern and a wethie Model-View-Controller
pattern, it cannot be in twdEDIATOR and VIEW ownership domains at once. Proposals for

multiple ownershigift this restriction in other type systerﬂs_(_C_am_eLQn_éLa.D_bO

Lack of ownership transfer. The ownership domain type system does not suppartership
transfereither, i.e., an object’s owner does not change —anlyque objects can flow between
any two domains. Some recent type systems lift this regtnand support ownership transfer

(Miller and Rudich 2007).

Annotation inference. The main drawback of SHOLIA seems to be the abundance of owner-
ship annotations that are needed. The manual annotation isfa potential obstacle for practi-
cal adoption, but ownership annotations are amenable treted ownership inference, which
could alleviate this problem, at least partially. With psecand scalable ownership inference,
SCHOLIA can scale to large systems. Ownership inference is a segaxailem and an active
area of ongoing research.

Previous ownership inference techniques can infer entatpsuobjects in private domains
and unaliased objects (Liu and Milantva 2007; Ma and Fo167 2Milanova 2008). But they
do not infer public domains, do not infer domain parameteis 4nd Milanova 2007) or infer

too many domain parameteks (Aldrich ellal. 2§b02c).

9.2.3 Architectural Extraction

SCHOLIA's architectural extraction suffers from the following ltations.

Abstraction by types. The ownership annotations, which control the abstractioovinership
hierarchy, are the main input to extract object graphs. Tjeab graph static analysis also takes
optional input to further merge objects based on their dedléypes. This additional input may
be needed to reduce the number of objects at a given levekdiidrarchy, and obtain a built
architecture that is comparable to the designed one. Bukeuthle ownership annotations which
can be mechanically typechecked for consistency with ettedr @and with the code, there is no
way to automatically validate the types that a developexcsglfor the abstraction by types. As
a result, selecting the trivial types or the design intepe/may require some trial and error.
However, that optional input cannot make an extracted olggaph unsound.

Potential unsoundness. For soundness, an OOG requires a complete set of annotations
particular, an OOG may be missing objects or edges if thermaitdibraries used by the pro-
gram create architecturally important objects or edgessaf®incompletely annotated, or if the
manually-specified virtual field annotations that sumneatiose libraries are unsound.

9.2. Limitations 309

Handling dynamic reconfiguration. ScHOLIA does not currently capture dynamic architec-
tural reconfiguratior] (Magee and Kramer 1996); it shows dindyfootprint of any such recon-
figuration in the object graph. MoreovercB8oLIA currently uses an ADL that describes the
static architecture of a system but one that offers no faslior specifying runtime architectural
changes!| (Oreizy et al. 1998). Enriching the extraction yamiglto describe possible dynamic
configuration will also require using an ADL that can représ®me architectural dynamism.

Handling distributed systems. SCHOLIA currently applies to applications that run in a single
virtual machine, so it handles neither heterogeneous stildited systems (Magee etlal. 1995;

Mendonca and Kramer 2dOl).

Precision. ScCHOLIA currently relies only on the aliasing precision that the@ations pro-
vides. Namely, that two objects in different domains carenalias. But two objects of compat-
ible types, in the same domain, may alias. In the absence & precise aliasing information,
this can lead to a precision loss in some cases. To compdos#tes limitation, a developer can
specify more fine-grained domains, but, of course, this <lse annotation burden. Ideally, a
domain-aware alias analysis might be able to achieve theobésth worlds: take into account
developer-specified annotations, achieve better precesid remain scalable.

Plain Old Java Objects (POJOs). | designed SHOLIA for systems where each object is a
Plain Old Java Object (POJO)c80oLIA does not have any special handling for the parts of a
system that use a component framework such as EnterpriaeB#ans (EJB), aspect-oriented
programming |(Kiczales et dl. 1997), etc. Whilet$oLIA is a general purpose solution, it is
possible that a domain-specific approach could achieverbetsults, or require less effort for
certain classes of systems.

9.2.4 Architectural Comparison

Scalability. ScHOLIA uses structural comparison to compare the designed anditharshi-
tectures. If the views are very different, an automatecdttiral comparison may fail to match the
built and the designed views. In that case, the comparistmati produce useful results since
all components will be absences (the comparison will delétine elements from one view and
add them to the other). The algorithm does allow the develtpemanually match some view
elements, but at the cost of additional effort. Finally, éihgorithm is quadratic in the view sizes.
So, while the algorithm scales to up to a few thousand nodeagi€li%), the comparison of very
large architectures may be intractable.

9.2.5 Architectural Conformance

Architectural abstraction. Currently, in SHOLIA, abstracting an object graph into a built
runtime architecture requires interaction through a usteriace, for example to soundly sum-
marize private domains. Future work may specify abstractites that a tool can apply automat-
ically to abstract an object graph into a C&C view. In additiarerging objects only based on

310 Chapter 9. Discussion and Conclusion

their ownership or type structures, while sufficient mosthaf time, is not fully general. Future

work may define more general abstraction rules. For instamogle can map an entire domain
to a component, or merge objects based on a predicate tleatitath account the names or the
types of those objects.

Architectural behavior. SCHOLIA currently supports analyzing the conformance of architec-
tural structure and not of architectural behavior (All rl 4).

Object multiplicities. Currently, the object graphs extracted bgH®LIA lack information
about multiplicities.

9.3 Usefulness and Usability

In this section, we discusscHOLIA’s usefulness and usability.

9.3.1 Usefulness

(Dugass_e_a.nd_lioﬂéLZQO% classify the output of softwathitacture extraction as one of the
following:
* Architectural visualization: i.e., a high-level view of the system organization;
* Architectural description: i.e., a description in an architectural description larggua
(ADL);
* Conformance analysis:i.e., an extracted architecture enables analyzing coranoes
* Architectural analysis: i.e., an extracted architecture enables a quantitativeialitgtive
architectural-level analysis.
Throughout this dissertation, | concretely demonstrated 8cHOLIA provides value in each
of the above areas.

Architectural visualization. In Chaptef#, | indicated several instances of how an exiacte
object graph highlights facts about the global programcstime that may not be obvious from
looking at the code.

Our evaluation doesot claim to demonstrate that a visualization based on hiei@atbbject
graphs can provide actual assistance to a third-party oleeein completing a code modification
task. Admittedly, properly evaluating such a claim regsiigeuser study. In such a study, one
could provide some developers with a class diagram, othinstiae code, with or without the
ownership annotations, and the rest with an OOG. Then, oukl ecoeasure if the developers
who have access to the OOG can complete some code modifitatksfaster or better than the
ones who have access only to a class diagram or to the codb.atady, however, is outside
the scope of this dissertation.

9.3. Usefulness and Usability 311

Architectural description. In Chapterd6[17, | discussed and evaluated ha@m@.IA can
represent an extracted architecture as a C&C view in an ADliglwdllows reusing much of the
existing research in architectural modeling and analysis.

Conformance analysis. In Chapter§ld,17, | concretely demonstrated that an extractdtec-
ture enables analyzing communication integrity in a tasgehitecture.

A user study is not the only way of demonstrating value. Fetance, using the CryptoDB
case study in Sectidn 7.8, (Pdge 250), | demonstrated lmmoSIA can potentially be useful
for threat modeling, by ensuring that the security architecused in a security review shows all
possible entry points and communication in the implemesat

Architectural analysis. | concretely demonstrated how one can enforce various ptara
straints on the architectural structural using the CryptaaBe study.

Future work. SCHOLIA’s evaluation to date does not quantify the benefits of thecamh

in terms of finding errors or improving the ability to add newné€tionality to existing code.
This leaves open several questions that future work mightotranswer, such as: can an ex-
tracted OOG provide assistance to a developer performingda modification task? Can an
extracted OOG be useful to an architecture review board (ARIBd an architectural review

(Maranzano et al. 2005)?

9.3.2 Usability

We briefly discuss thesability or ease of learning and applying therSoLIA approach. While
we leave to future work a more formal usability evaluationdoyside developers, we offer the
following, more qualitative data.

Effort to apply. One measure of usability is the effort needed to apply thecgmh, and in
particular, the annotation effort. Based on the 35 hours twtate a 30-KLOC system, an
experienced developer should budget about 1 hour per 1i068 6f code when adding the
annotations manually.

Effort to learn. Another measure of usability is that we were able to teaclpipeoach during
a half-day tutorial at the SEI SATURN professional event. &@hehitects, researchers and ex-
perienced developers in attendance learned the approdalsad the various tools in less than
three hours. We provided the tutorial participants with giglly annotated CryptoDB system,
and they were able to successfully run the tools on that sysiée reader can refer to the tuto-
rial handout|(Abi-Antoun and Aldrich 2009c) for more infoation about the tutorial’s contents
and hands-on exercises.

When trying to teach the approach in an academic setting, eywe noticed that novice
Java developers seemed to have difficulty grasping the amomotsemantics and syntax.

312 Chapter 9. Discussion and Conclusion

9.4 Future Work

There are several avenues of future work that could be wagloeng.

9.4.1 Overall Approach

Demonstrate scalability. | evaluated the end-to-endc80LIA approach on several extended
examples totaling around 40 KLOC. | also conducted a single $ieidy on a 30-KLOC system
to evaluate the object graph extraction. While these sizgssaam small, the static analysis
of the runtime architecture is not yet mature compared tattedysis of the code architecture.
For instance, the most relevant previous work was evaluated single 1,700-LOC system
(Lam and Rinard 2003). Still, | would like to applyc8ioLIA to larger systems. For instance,
extracting the architecture of Eclipse, which is curregr a million lines of code, would be
a stretch goal. A more intermediate goal is to scale the agbrto handle systems an order of
magnitude larger than the ones we have used so far.

Quantify the benefits of runtime architectures. The relation between runtime architectures
and design and coding tasks remains poorly understood. &wgirical studies that looked at
various design diagrams focused on partial runtime views) &s sequence diagrams. It would
be interesting to investigate the use of runtime architestéor various code modification tasks,
to demonstrate concretely and quantitatively their bemefit

Relate runtime and code architectures. During my field study, | observed that experienced
developers often structure their code architecture chyeftor instance, they place classes that
serve different conceptual purposes into different paekamodules, or layers. They also define
marker interfaces that do not define any methods, to indsaitee design intent. But due to
its static nature, a code architecture cannot represerlyti@mic architecture of a system. My
analysis is also influenced by many of these code attribatey as marker interfaces. | would
like to leverage how a code architecture is structured tplaysa runtime architecture, e.g., by
overlaying layers in a code architecture and tiers in a noatarchitecture. | would also like
to use the extracted architecture to identify potentiahctdring opportunities. For example,
excessive merging in an extracted object graph may be dug/peatructure that includes many
classes which inherit from a constant interface, a praaticieh is considered an anti-pattern

(Bloch[2001, Item #17).

Explore a more incremental, interactive approach. SCHOLIA currently does not provide
instant gratification. In particular, a developer adding #nnotations may need some of the
knowledge provided by the extracted object graph, whichewdke process highly iterative. So
there is ample room to makec8OLIA more interactive. For instance, better tools could help
with refining the annotations based on visualizing the exé& object graph, or support more
flexible ways to abstract an object graph into a componedteamnector architecture.

9.4. Future Work 313

Evaluate usefulness and usability. In future work, it may be informative to have outside de-
velopers use the tools to independently evaluate theiulrsefs and usability.

9.4.2 Annotations

It may be helpful to improve the annotations and the tool suffor adding them.

More flexible type system. One important area of future work on the annotations woultbbe
extend the type system, to eliminate the remaining anmotatarnings.

Non-ownership annotations. Ownership types have been around for over a decade
dQLatke_el_a]L19_98). However, they have yet to be adopted omda scale, perhaps due to
the overhead of adding them to existing code bases. Perimaples non-ownership annotations
might make an annotation-based approach more adoptabl@abijtioners.

Automation. Automating the process of adding the annotations can greelp the adoptabil-
ity of SCHOLIA by practitioners.

9.4.3 Architectural Extraction

Notational issues. SCHOLIA requires learning new techniques and displays the objeqthgr
in a notation that is different from widely adopted notas@uch as the Unified Modeling Lan-
guage (UML). As a result, developers may not be interesta@a/gsting time to learn it. Grundy
and Hosking mentioned that most dynamic visualizationg title or no relation to static
architecture visualization (design) notations, makingnthharder to understand and interpret

(Grundy and HgskidbLO_bS).

Layout issues. In architectural diagrams, color, size and width often e@yspecific meanings.
Similarly, the location in a hierarchy is important, e.ghether some object is above or below
another|(Koning et al. 2002). It is common to show an “EventBosinector as wider or thinner
than other components in the diagram. In some architecétylgs, location matters. In the C2
architectural style, each component has a single top pdraaingle bottom port, notifications
flow down, and requests flow ub_(Ia;LIQLeﬂaL_ﬂg%). Withoudiidnal annotations, an OOG
will use the same size, color for all objects. For instanceQ®G will display anEventBus
component with the same size aSairse component, which may not be as informative. To
partially alleviate the problem, one could define additlaraotations to encode visualization

attributes directly in code, as in the UML Graph approactir{&lis|2003] Fowler 2004).

Add more precision. The focus of this research to date has been on soundness. &< a n
step, it may be useful to achieve better precision, e.g.hbwsg cardinality on object relations.
One idea would be to use a heavyweight shape analysis on detoagain additional precision
when displaying the object structures within a domain, [sp déveraging the annotations that
are already in place.

314 Chapter 9. Discussion and Conclusion

Support distributed architectures. ScHOLIA currently only works for applications that run
on a single virtual machine. With the increasing populaatyarchitectural patterns such as
service-oriented architectures, software systems areasmgly distributed. | plan to extend
ScHoLIA to handle the runtime architecture of distributed systems.

Support multiple views. | want to explore how to produce multiple but consistent \@eat

a runtime architecture of the same software system, e.g.fmshow data flow and another to
show control flow. $HOLIA supports analyzing modules of an entire system. Howeveg on
you extract multiple runtime architectures for differenanles of a system, it is unclear how to
tie them together into an overall architecture.

Support architectural dynamism. The static analysis | developed is flow-insensitive and
context-sensitive, which enables it to be scalable. As altrethe extracted architecture cap-
tures only the footprint of any dynamic architectural refgguration. With systems becoming
increasingly dynamic, it may be useful to provide more @ed¢nformation about possible ar-
chitectural reconfiguration.

So far, | have mostly used entirely static analyses. Sonmeneidns may require combining
static and dynamic analysis, to achieve additional precjgrack the dynamic loading of code as
used by many modern plugin architectures, or account fousleeof reflection or calls to native
code.

9.4.4 Architectural Comparison

Splitting/Merging. In future work, it may be useful to enhance the structural ganson to
detect the splitting or merging of components across twovie

9.4.5 Architectural Conformance

Continuous checking. It may be useful to make the conformance analysis more aouitis,
similar to continuous unit testinb_(_Saﬂ_a.nd_E}hsl_ZOOS)jsT\May, a developer can realize that
she is violating the target architecture as soon she makedeaahange with undesired architec-
tural ramifications.

9.5 Conclusion and Broader Impact

As early as 1968, Dijkstra pointed out the importance ofipaning and structuring a system
carefully, in addition to programming it correctly. Dijkatput forth the notion of a layered struc-
ture, where one layer could only communicate with adjoidaygrs. The costs of adopting this
organization for conceptual integrity would be offset bg tains in development and mainte-
nance eas 68). Since then, there has been nu&imformalizing the notion of
software architecture. One promise was that specifyindtevace architecture in an architecture
description language would enable various architecterad} analyses for performance, security
and reliability.

9.5. Conclusion and Broader Impact 315

Much of that promise has gone unfulfilled until now, partly favo reasons. First, all sys-
tems have an architecture, but very often, it is not expfidbcumented. Second, the relationship
between a designed architecture and the actual systemnmaptation, including the built archi-
tecture, is unclear. The effectiveness of architecturalysmes to improve software dependability
in practice requires an implementation to correctly resiize carefully thought-out architecture.

Current object-oriented systems are slowly becoming thackegystems of the future. Most
software developed today must be compatible with or usecleggstems, which often do not
have documented architectures. We have a serious probigenagannot determine the architec-
ture of these systems for software evolution.

Previous attempts to relate the architecture to the impiatien required developing pro-
grams on specific implementation frameworks, or specifyhmggarchitecture directly in code.
Such proposals imposed strict implementation restristion non-backward-compatible lan-
guage extensions. Indeed, re-engineering existing Japkeimentations to a research language
that specifies the architecture within the code would beiprtively expensive for the millions
of lines of existing code that power our information age.

Today, practicing software engineers still face big chmgies in understanding the global
structure of a software system well enough to effectivebheit, integrate it with other systems,
or analyze the impact of a change. As qualities such as peafaoce, reliability and security
become more critical, it is increasingly important for evegrs to understand not just the code
structure, but also the run-time structure of a system. éSinany software systems exceed a
million lines of code in size, architects must rely on arebitiral documentation to achieve this
understanding—yet this documentation is often missingubiobdate, and must extracted from
code.

Statically extracting runtime architectures from code hadn an open problem. However,
reasoning accurately about qualities like reliability assturity cannot consider only the typ-
ical case, and requires understanding all possible conuation between components, which
suggests that soundapproach based on static program analysis is ideal. Moreoveday’s
object-oriented systems, the runtime structure showingotdand their relations is often quite
different from the decomposition of the static code strreinto source files, classes and pack-
ages.

This dissertation addresses the problem for existing tloeented languages and existing
designs, requiring only annotations, using theH®LIA approach. SHOLIA is the first en-
tirely static approach that guarantees, at compile timeyrnsanication integrity between code
in a widely used object-oriented language and a rich, robreal description of an architect’s
intended runtime architecture.

ScHoLIA models runtime architectures as a hierarchy of objects) anthitecturally sig-
nificant objects near the top of the hierarchy and data strestdemoted further down. Be-
cause architectural hierarchy is not readily observabgepnogram written in a general purpose
programming language,CHOLIA uses ownership annotations in the program to impose local
information about object encapsulation and logical caomteant.

This dissertation demonstrated the feasibility of soundtics extraction and conformance
analysis of the runtime architecture of object-orientesteans. An evaluation on several real
systems showed thatc8oLIA can establish traceability between an implementation and a
intended runtime architecture, and identify interestitrgctural differences. Admittedly, the

316 Chapter 9. Discussion and Conclusion

approach is costly—requiring roughly a person-week ofrefiar a 30 KLOC system, because
the approach relies on manually adding type-like annatatibiquitously throughout the source
code to specify architectural intent that is missing in aggehpurpose programming language.
This cost is a significant barrier to widespread industrilion.

However, even with its current cost, the cost-benefit OHSLIA may still be favorable, for
many business-critical systems. Furthermore, as the fietty flemonstrated, it is both valuable
and possible to add the annotations, extract object grapth&malyze conformance of only a
core sub-system of a larger system.

Until now, developers evolving an object-oriented systead ko contend with high-level
views of the code architecture or partial views of the ruetemchitecture obtained using dynamic
analysis. 8HOLIA now completes the picture.

Enabling the extraction of sound runtime architecturesxtake a major impact on the ability
of engineers to understand and effectively evolve compbixvare systems. Practitioners can
now trace between the architecture and the code. They camsdsthe traceability information
to determine what part of a system to change, or where peaimcenor security problems are
likely to arise. Easy access to trustworthy architectuiadcams thus could eventually facilitate
significant increases in industry-wide productivity.

9.5. Conclusion and Broader Impact 317

Appendix A

Annotation Language and ArchCheckJ
Typechecke@

This appendix describes the concrete annotation langudgeh uses existing language support
for annotations, that | designed, and the typecheckingttaill implemented to typecheck the
annotations.

A.1 Introduction

The previous implementation of ownership domains_(Alddckd Chambers 2004) used non-
backwards compatible extensions of Java (ArchJaval2008)a fesult, none of the rich tool
support for Java programs was available to programs witreositip domain annotatidfs

In a previous case study (Abi-Antoun et al. 2007a), we dieoed that adding ownership
domain annotations to existing code often highlights refacg opportunities. For instance, a
lengthy domain parameter list is often an indication of tiigltoupled code that could benefit
from refactoring—such as extracting an interface and @nogning to that interface. It is unreal-
istic to assume that it is possible to refactor all such co@e o annotating it. In our experience,
having access to refactoring tool support during the aniootgrocess was invaluable. Using
language extensions also makes it harder to partially acrénmentally annotate existing code
and thus conduct case studies on interesting systemslyi-ih&l previous tool used a modified
research infrastructuré_(,B_QkQM&KLand_SQ'LHgii998) thabisonger actively maintained and
does not support Java generics as of this writing.

To address these adoptability challenges, we re-implesdehe ownership domain type sys-
tem using the annotation facility in Java 004)thm Java programs with ownership
annotations remain legal Java 1.5 programs. We also impidehe tool as a plugin to the
Eclipse open source development environment that has Bepopular with researchers and

practitioners|(Goth 2005; Murphy et/al. 2006).
Portions of this chapter appearedlin (Abi-Antoun and Akii200745).

2The Universes tools built on the Java Modeling Language (dhfrastructure support both language extensions

and stylized comments (Universes 2007).

Annotation Language and ArchCheckJ Typechecker 319

We believe this improved tool support promotes the adolityaloif the ownership domain
technique by Java developers as follows. First, all thepSeltool support such as syntax high-
lighting, refactoring, etc., remains available to anredgprograms. Second, using annotations
makes it easier to support in a non-breaking way additiomabtations such as external unique-
ness |(Clarke and Wrigstad 2003) psadonly (Dietl and Millef [2005). Third, using annota-
tions provides the ability to incrementally and partialpesify annotations on large code bases.
Fourth, using annotations will make it possible to studyain@ution of programs with ownership
annotations, an area that has not received much attentioice-4so one will maintain a program
with limited tool support. Finally, annotating existingdmis difficult and time-consuming and
tools are being developed to add annotations semi-autoafigiti{Aldrich et al.l 2002c; Cooper

). One of the benefits of using annotations over langeagmsions is that an inference
algorithm cannot break an existing program by insertingptlly incorrect annotations.

We made the following design choices for the annotationesystFirst, we worked within
the limits of Java 1.5 annotati004), even thougtotations may be more verbose
than an elegantly designed language. Moreover, Java 1diatimms impose several restrictions,
e.g., no annotations on generic type arguments. Otherrcdga have tried to eliminate some of
these restrictions by proposing revisions of the Iangllﬁgﬁ and Coward 20b6), but until such
proposals are officially adopted, their prototype impletagans are not Eclipse compatible, an
important factor for adoptability. Second, to work arouhd tJlava 1.5 limitation of allowing
annotations only on declarations, we consistently deeddiional temporary variables and add
annotations to them. This has worked well for new expressioast expressions (both implicit
and explicit) and arguments for method and constructorsrdTbhecking ownership domain
annotations generates only informational messages,nioeerrors or warnings, and does not
stop a developer from running the program. Fourth, we hadte@ minimal number of implicit
defaults and provide a separate tool to supply explicitorakle defaults to reduce the annotation
burden. In the future, this tool can be replaced with a smartaotation inference tool. Finally,
the annotations are non-executable and do not impact tlyegmis behavi(ﬁ‘, unlike the earlier
implementation, the current system does not include runthecks. As a result, the annotation-
based system is unsound at casts, but could be made soumgdhysatode rewriting to add
necessary dynamic checks.

This appendix is organized as follows: we describe the aioot language in Sectidn A.2,
the tool design in Sectidn A.3 and other relevant featurdésefool in Section AJ4. We conclude
with a discussion of the tool’s limitations and some futu@kvSectior A.b).

A.2 Annotation Design

In this section, we describe the concrete annotation synkEot maximum flexibility and to
work around some of the limitations of Java 1.5 annotatiatisannotation values are strings.
Annotations that are plural take values that are arraysiogst

We illustrate the annotations using snippets from a cambBiquence abstract data type,
a common benchmark for ownership type systems. Withirsthgence, theiters ownership

3Annotations may increase the memory footprint and slow dolass loading as a result, but no empirical data
has been reported to date.

320 Appendix A

domain is used to holdterator objects that clients use to traverse ®wjuence, and the
defaultprivate owned ownership domain is used to hold thens cells in the linked list that is
used to represent tfiequence. The full example is in Fid_Al1l.

@Domains: declare public or private domains on a type.
* Format: identi fier
* Applies to: type (class or interface).
* Examples the following declares a privatesned domain pwned is private by naming
convention), and a public domairters to store thelterator objects of theSequence.

@Domain¢{"owned","iters"})
classSequenceT> {

@DomainParams: declare ordered domain parameters on a type or method d@a@meters
on a method.
* Format: identi fier
* Applies to: type or method.
* Examples Sequence declares a domain parameteiuner to hold its elements.

@DomainParan({"Towner"})
classSequenceT> {

@Domaininherits: pass parameters to superclass or implemented interfaces.
* Format: typename < parameter, ... >
* Applies to: type (class or interface).
* Examples theIterator interface is also parameterized by themer domain parameter.
ClassSeqIterator inherits domain paramet@swner from interfacelterator, and adds
thelist parameter to access thens cells.

@DomainParan({"list", "Towner"})
@Domaininherit¢{"Iterator <Towner>"})
classSeqlteratox. T> implementslterator<T> {

@DomainLinks: declare domain links.
* Format: fromDomainld ->toDomainld
* Applies to: type (class or interface).
* Examples the Sequence gives Iterator objects in theiters domain permission to
access objects in themned domain, including th€ons cells.

@DomainLinkg{...,"iters -> owned",..})
classSequenceT> {

@DomainAssumes:declare domain link assumptions.
* Format: fromDomainld ->toDomainlds
* Applies to: type (class or interface).
* Examples the Sequence assumes that thewner of the Sequence has access to the
Towner domain containing the sequence elements.

A.2. Annotation Design 321

@DomainAssumg®owner -> Towner") /+ defaultx/
classSequenceT> {

@Domain: declare the domain, actual parameters and actual arrasnptees.
* Format: annotation<domParams, . ..>[arrayParanms, .. .]

= annotation: indicate a domain name (e.@wned), one of the special alias types
(e.g.,unique), or a public domain of an object using a field access syntax,(e
seq.iters);

* <domParams, ...>. specify actual domain parameters by order of formal domain
parameters, at object creation and access sites;

* [arrayParams, ...]: in ownership domains, arrays have two ownership modifiers,
one for the array object itself and one for the objects storélde array. For variables
of array type, this argument specifies the actual array petens by order of array
dimension (for multi-dimensional arrays).

= Applies to: local variable declaration, field declaration, methodhfal parameter
and method return value.

= Examples the following declares anique Iterator object and binds theist
domain parameter ddeqIlterator to owned domain orSequence, and theTowner
domain parameter ®eqlterator to the parameter by the same nameeguence.

@Domair("unique<owned, Towner>")
Seqlteratox T> it = new Seqlteratox T>(head);

* Examples alent array ofshared Strings:

@Domair("lent [shared] ")String args[];

@DomainReceiver: declare the domain of the receiver of a constructor or a naetho
* Format: identi fier
* Applies to: constructor or method.
¢ Examples

@DomainReceivgI'state")
void run(){ ... }

A.3 Tool Design and Implementation

Two visitors on the Eclipse Abstract Syntax Tree (AST) typeek the ownership domain anno-
tations.

First pass. A first-pass visitor performs the following:
* ldentify problematic expressions: a developer will need to replace each one with an
equivalenﬂt construct, e.g., by declaring a local variablg @dding the appropriate annota-
tions to it

4Such an operation requires little effort when using thef&airefactoring (“Extract Local Variable”).

322 Appendix A

@Domain¢{"owned","iters"})

@DomainParan({"Towner"})

@DomainAssumg®owner -> Towner")
@DomainLink¢{"owned->Towner", "iters->Towner", "iters->owned"})
classSequenceT> {

@Domair("owned<Towner>") Cons<T> head;

void add(@Domair("Towner") T 0) {

@Domair("owned<Towner>")
Cons<T> cons =new Cons<T>(0,head);
head = cons;

}

@Domair("iters<Towner>") lterato<T> getlter(){
@Domair("iters<owned, Towner>") SeglteratorT> it = new Seqlteratox T >(head);
return it;

}

}

@DomainParan({"Towner"})
@DomainAssumg®owner -> Towner")
classCons<T> {
@Domair("Towner") T obj;
@Domair("owner<Towner>") Cons<T> next;

Cons(@Domair("Towner") T obj, @Domair("owner<Towner>") Cons<T> next) {
this.obj = obj;
this.next = next;
}
}

@DomainParan({"Towner"})

interface Iterator<T> {
@Domair("Towner") T next();
booleanhasNext();

}

@DomainParan({"list", "Towner"})
@DomainAssume{"1list -> Towner"})
@Domaininherit¢{"Iterator <Towner>"})
classSeqlteratox. T> implementslterator<T> {
@Domair("list<Towner>") Cons<T> current;

Seqlterator@ Domair("list<Towner>") Cons<T> head){
current = head;

public @Domair("Towner") T next(){
@Domair("Towner") T obj2 = current.obj;
current = current.next;
return obj2;
}
}

@Domain¢{"owned","state"})
classSequenceClient
final @Domair("owned<state>") SequenceInteger> seq =new Sequence Integer>();

void run() {
@Domalr("state") Integer int5 =new Integer(5);
seq.add(int5);
@Domair("seq.iters<state>")lteratorInteger> it = this.seq.getlter();
while (it.hasNext(){
@Domair("state")Integer cur = it.next();

Figure A.1: A Sequence abstract data type with ownership domain annotations.

A.3. Tool Design and Implementation 323

* Read annotations from the AST:the Java 1.5 annotations added to a program are part
of the AST. The visitor locates the annotations nodes in t68& And parses their contents
using a JavaCd__(;Lb@OG) parser. The visitor also locatesiapaock comments on
method invocation expressions as described later. Iniaddithe visitor infers default
annotations for some AST nodes that cannot be annotatedjtergplicitly defaults the
NullLiteral AST node tounique. The visitor maps each AST node to an annotation
structure in preparation for the second pass visitor whiithtypecheck the annotations;

* Propagate local annotationsthe visitor propagates the explicit annotations from th&@ AS
nodes (for types, variables, and methods) to all the exjpres®des in the AST, including
translating formals to actuals.

Second pass. A second-pass visitor checks the annotations on each expnelsased on the
static semantics of ownership domains. Checking the asgghnule requires a value flow
analysis. A Live Variables Analysis (LVA) from a lightweigklata flow analysis framework
(Aldrich and Dickey 2006) that also uses the Eclipse ASThweked intra-procedurally at each
method boundary using a separate visitor. The LVA analysigigs that ainique pointer only
has one norlent read.

A.4 Additional Features

The tool offers the following additional features.

A.4.1 External Libraries

There are two approaches to support adding annotationg tetdindard Java libraries and other
third-party libraries, one that involves annotating thedry and pointing the tool to the annotated
library and one that involves placing the annotations ireexl files. The earlier tool used the
former approacH_(ALQhJ_dM%) but we adopted the Igtigmoach this time since it does not
require changing library or third-party code—which may hetavailable and when it is, tends
to evolve separately. Other annotation-based systemdeatitipe same strateg_OG)
The tool supports associating ownership domain annotatn any Java bytecode:1ass file
using an external XML file, following the same annotation stoucts described in Sectibn A.2.

A.4.2 Generics

Our annotation system currently treats generic types asgohal to ownership domain param-
eters, so generic type parameters and arguments are aquadtey from ownership domain
annotations—except that nested actual domains may needpmbided where applicable. Pro-
ponents of Generic Ownershib_(BQLaMéLaLiOOG) arguettie leads to awkward syntax,
which may be true. However, in our case studies annotatingl&y000-line Java programs in-
cluding using generic types, we did not observe this to beialseproblem. Fig_ AR illustrates
the interaction between generics and ownership domaine.STident class is parameterized

324 Appendix A

@DomainParan({"state"})
classStudent{

@DomainParan({"state"})

classData ...{
final @Domair("state<state<state>>")
Sequence Student- vStudent;

@Domair("state<state>")Student
getStudentRecord)Domair("shared")String sSIDY{
@Domair("vStudent . iters<state<state>>")
Iterator< Student> i = vStudent.getlter();

while (i.hasNext(){
@Domair("state<state>")
Student objStudent = i.next();

Figure A.2: Adding annotations to generic code.

classSequenceT> {

@DomainParan(#TTowner") /+ Method domain parameter

@Domair("shared") /* Domain for return value/

static <TT> String
toString(@Domair("lent<TTowner>")Sequence TT> seq){

}

void dump(){
@Domair("owned<shared>")
Sequence String> seq = ...;

@Domair("shared")
/* Provide <actuals..> using block comment
String str = Sequence.toStrikg state>+/(seq);

Figure A.3: Declaring and binding method domain parameters.

by thestate domain parameter. TiBata class maintains 8equence of Student objects and
is also parameterized ytate.

A.4.3 Method Domain Parameters

Java 1.5 annotations cannot be added at method invocatmwasstons. So we used block com-
ments to specify the actual domains for a parameterizedadd®ee Fig_A.B for an example).

Unfortunately, proposals to improve the Java 1.5 annatdaailities, e.g.,[(EmsLa.ndL_owérd

), do not yet address adding annotations to such expness

A.4. Additional Features 325

while (objCourseFile.ready())
this.vCourse.add(ew Course(courseFile.readLine()));

/* ABOVE MUST BE REWRITTEN AS+/..

while (objCourseFile.ready())
@Domair("shared")String line = courseFile.readLine();
@Domair("state<state>")Course crs new Course(line);
this.vCourse.add(crs);

}

Figure A.4: Re-writing a new expression using a local variable.

A.4.4 Defaulting Tool

To reduce the annotation burden, we implemented a sepamitéot add default annotations
such as marking private fields asned, method parameters asnt, andStrings asshared.
However, an annotation added by the defaulting tool (exgned) may need to be modified
manually to supply actual domains for domain parametegs, @mned<owned>).

A.4.5 Special Annotations

Annotation ‘owner’. We also added the speciatmer annotation, similar tgpeer in Uni-
verses|(Dietl and Niller 200$). Usingowner can often eliminate a domain parameter: e.g., in

Fig.[Ad], Cons’s owner iS Sequence’s owned, SeqIlterator’s owner iS Sequence’s iter.

A.5 Tool Limitations and Future Work

Java 1.5 annotations suffer from the following limitatio%) A declaration cannot have multi-
ple annotations of the same annotation type; (2) Annotd{ipas cannot have members of the
their own type; (3) It is only legal to use single-member aations for annotation types with
multiple members, as long as one member is nana@de, and all other members have default
values. Otherwise, the more verbose syntax is required @agne (first = "Joe", last =
"Hacker"); (4) Annotation types cannot extend any entity (classriate or annotation); and
(5) Annotations are allowed on type, field, variable and roéttieclarations and not allowed on
type parameters or method invocations.

The first restriction prevented us from using ®@omain annotation to specify both the
annotation on the receiver and on the return type of a methidte second restriction pre-
vented us from having shorthand constant annotations éosplecial alias types, e.@owned
instead ofeéDomain("owned"): such constants cannot be used inside other annotatioms as i
@Domain(annotation = Qowned, parameters = {@owned}).

To avoid having multiple ways of indicating the same meaning use strings for all the
annotations and require annotations of the f@main ("owned<owned>"). Although devel-
opers may be more likely to introduce spelling mistakes iimgtannotations, the typechecker
will catch these problems early enough. The third restigti.e., the lack of positional argu-
ments, required the use of the verbose sym@@mains (publicDomains = {"d1", "d2"},
privateDomains = {"pda", "pdb"}).

326 Appendix A

List vCourse = student.getRegisteredCoursés()(int i=0; i<vCourse.size(); i++]
if (((Course) vCourse.get(i)).conflicts(coursg))

} I+ ABOVE MUST BE REWRITTEN ASt/.@Domair("lent<state>") List vCourse = student.getRegisteredCoursés()(int i=0;
i<vCourse.size(); i++]

@Domair("lent<state>")

Course crs = (Course) vCourse.get(i);

if (crs.conflicts(course))

}
}

Figure A.5: Re-writing a cast expression using a local variable.

The final restriction and the current lack of annotation liefeee require converting some
expressions to more verbose constructs by declaring l@a#&bles and annotating them. The
most common such expressions were new expression$ (Flgarddast expressions (Fig. A.5).

We plan to address some of the following limitations:

* Infer method domain parameters: just as actual type arguments do not have to be passed
to a generic method in Java, it may be possible to infer, introases, the actuals for
method domain parameters based on the types of the actuahangs;

* Allow suppressing warnings:reflective code cannot be annotated successfully using own-
ership domaing (Aldrich et &l. 2Qd2c). Because such codeaihys generate warnings,
annotations to suppress spurious warnings can help redaceitmber of persistent anno-
tation warnings through which a developer has to wade.

* Display annotations more concisely:an Eclipse pIug-inL(EJSﬁnbﬂ;g_and_KiQZsHLes_iOOD
can display verbose annotations using a simpler syntaxnteractive editing while the
analysis uses the same Java AST. We could use a similar apypmdisplay the ownership
domain Java 1.5 annotations using a simpler syntax sinoldhé¢ one we used in this
document.

A.6 Summary

We believe that re-implementing the ownership domain tyystesn as backward-compatible
Java 1.5 annotations, using the Eclipse infrastructugmifstantly improved the tool support,
and enabled us to conduct some of the largest case studiatetmapplying ownership types to
real object-oriented code.

For example, during our case studies, we often invoked thpdeaefactoring tools to extract
interfaces and infer generic types while adding the ownprdbmain annotations. This would
not have been possible with the previous tool support.

The HillClimber subject system was annotated once using ulang extensions
(Abi-Antoun et al| 200 ja), and once using the annotatisetdasystem. Comparing the num-
ber of hours across the two case studies would not be meahsigte the first case study added
ownership annotations to the ArchJava version of HillClimiélIClimberAJ, rather than the
base Java version. Such a comparison also would not acomutitef learning effect of anno-
tating roughly the same program twice. Still, anecdotallg,believe we were more productive

A.6. Summary 327

with the annotation-based system than with the earliertt@dlused language extensions.

328 Appendix A

Appendix B
CryptoDB Architecture

Here, we reproduce the entire architectural model, in Adﬁmlan_el_dlLZD_CbO), for the Cryp-
toDB case study. We provide both the family file, SyncFaradme (SectidnBl1), which defines
the architectural family that support€8oLIA, and the target architecture itself, CryptoDBTar-
get.acme (SectionB.2).

B.1 Architectural Style in Acme

This file defines the architectural family SyncFamily. Theperties defined here are used by
ScHoLIA for conformance analysis.

import AS_GLOBAL_PATH/families/TieredFam.acme;
Family SyncFamily extends TieredFam with {

analysis isSrcComponent(dl : SyncCompT, conn : SyncConnT) : boolean =
connected(conn, d1) and
exists src : SyncUserT in conn.ROLES | exists put : SyncUseT in d1.PORTS |
declaresType(src, SyncUserT) and declaresType(put, SyncUseT)
and attached(src, put);

analysis isDstComponent(d2 : SyncCompT, conn : SyncConnT) : boolean =
connected(conn, d2) and
exists dst : SyncProviderT in conn.ROLES | exists get : SyncProvideT in d2.PORTS |
declaresType(dst, SyncProviderT) and declaresType(get, SyncProvideT)
and attached(dst, get);

analysis pointsTo(dl : SyncCompT, d2 : SyncCompT) : boolean =
exists conn : SyncConnT in self.CONNECTORS |
isSrcComponent(dl, conn) and isDstComponent(d2, conn);

Role Type SyncUserT extends userT with {
Property syncStatus : int;

Iy

Component Type SyncCompT extends TierNodeT with {
Property syncStatus : int;

CryptoDB Architecture 329

Property label : string;
Property hasDetail : boolean;
Property detailStatus : int;
Property traceability : string;
by
Connector Type SyncConnT extends CallReturnConnT with {
Property syncStatus : int;
Property label : string;
Property traceability : string;
Property summary : int;
¥
Port Type SyncUseT extends useT with {
Property syncStatus : int;
I
Port Type SyncProvideT extends provideT with {
Property syncStatus : int;
}
Role Type SyncProviderT extends providerT with {
Property syncStatus : int;
by

B.2 CryptoDB Target Architecture in Acme

This file defines the CryptoDB target architecture, includihg constraints we discussed in

Sectior 7.819 (Pade 267).

import families/SyncFamily.acme;
System CryptoDBTarget : SyncFamily = new SyncFamily extended with {

Component KeyVault : SyncCompT = new SyncCompT extended with {
Port KeyVault : SyncProvideT = new SyncProvideT;
Port KeyManager : SyncUseT = new SyncUseT;
Port EngineWrapper : SyncUseT = new SyncUseT;

Property label = ‘‘KeyVault";
I
Component CryptoProvider : SyncCompT = new SyncCompT extended with {
Port KeyManifest : SyncUseT = new SyncUseT;
Port CryptoProvider : SyncProvideT = new SyncProvideT;
Port CustomerManager : SyncUseT = new SyncUseT;
Port EngineWrapper : SyncUseT = new SyncUseT;

Property label = ‘‘CryptoProvider";

Representation CryptoProvider_Rep = {
System CryptoProvider_Rep : SyncFamily = new SyncFamily extended with {
Component ReceiptManager : SyncCompT = new SyncCompT extended with {
Port ReceiptManager : SyncProvideT = new SyncProvideT;
Port CryptoProvider : SyncUseT = new SyncUseT;

330 Appendix B

Property label = ‘ReceiptManager";

b

Component Encoder : SyncCompT = new SyncCompT extended with {
Port CryptoProvider : SyncUseT = new SyncUseT;
Port Encoder : SyncProvideT = new SyncProvideT;

Property label = ‘‘Encoder";
X
}
Bindings {
CustomerManager to ReceiptManager.CryptoProvider;
EngineWrapper to Encoder.CryptoProvider;
}

by

Component KeyManager : SyncCompT = new SyncCompT extended with {
Port KeyManifest : SyncUseT = new SyncUseT;
Port KeyVault : SyncUseT = new SyncUseT;
Port KeyManager : SyncProvideT = new SyncProvideT;

Property label = ‘‘KeyManager";
X
Component KeyManifest : SyncCompT = new SyncCompT extended with {
Port KeyManifest : SyncProvideT = new SyncProvideT;
Port KeyManager : SyncUseT = new SyncUseT;
Port CryptoProvider : SyncUseT = new SyncUseT;

Property label = ¢‘KeyManifest";
X
Component EngineWrapper : SyncCompT = new SyncCompT extended with {
Port EngineWrapper : SyncProvideT = new SyncProvideT;
Port CryptoProvider : SyncUseT = new SyncUseT;
Port KeyVault : SyncUseT = new SyncUseT;

Property label = ‘‘EngineWrapper";

Representation EngineWrapper_Rep = {
System EngineWrapper_Rep : SyncFamily = new SyncFamily extended with {
Component Engine : SyncCompT = new SyncCompT extended with {
Port Engine : SyncProvideT = new SyncProvideT;
Port EngineWrapper : SyncUseT = new SyncUseT;

Property label = ¢‘Engine";
b
b
Bindings {
EngineWrapper to Engine.Engine;
CryptoProvider to Engine.EngineWrapper;
}

B.2. CryptoDB Target Architecture in Acme 331

Component CustomerManager : SyncCompT = new SyncCompT extended with {
Port CustomerManager : SyncProvideT = new SyncProvideT;
Port CryptoProvider : SyncUseT = new SyncUseT;
Port CustomerInfo : SyncUseT = new SyncUseT;

Property label = ‘‘CustomerManager";

Representation CustomerManager_Rep = {
System CustomerManager_Rep : SyncFamily = new SyncFamily extended with {
Component Receipts : SyncCompT = new SyncCompT extended with {
Port Receipts : SyncProvideT = new SyncProvideT;
Port CustomerManager : SyncUseT = new SyncUseT;

Property label = ‘‘Receipts";
X
}
Bindings {
CustomerManager to Receipts.Receipts;
CryptoProvider to Receipts.CustomerManager;
}

3

Component CustomerInfo : SyncCompT = new SyncCompT extended with {
Port CustomerManager : SyncUseT = new SyncUseT;
Port CustomerInfo : SyncProvideT = new SyncProvideT;

Property label = ‘‘CustomerInfo";

X

Connector CustomerInfo_CustomerManager : SyncConnT = new SyncConnT extended with {
Role provider : SyncProviderT = new SyncProviderT;
Role user : SyncUserT = new SyncUserT;

by

Connector CustomerManager_CustomerInfo : SyncConnT = new SyncConnT extended with {
Role provider : SyncProviderT = new SyncProviderT;
Role user : SyncUserT = new SyncUserT;

by

Connector CustomerManager_CryptoProvider : SyncConnT = new SyncConnT extended with {
Role provider : SyncProviderT = new SyncProviderT;
Role user : SyncUserT = new SyncUserT;

X

Connector CryptoProvider_CustomerManager : SyncConnT = new SyncConnT extended with {
Role provider : SyncProviderT = new SyncProviderT;
Role user : SyncUserT = new SyncUserT;

3

Connector EngineWrapper_CryptoProvider : SyncConnT = new SyncConnT extended with {
Role user : SyncUserT = new SyncUserT;
Role provider : SyncProviderT = new SyncProviderT;

by

Connector CryptoProvider_EngineWrapper : SyncConnT = new SyncConnT extended with {
Role provider : SyncProviderT = new SyncProviderT;
Role user : SyncUserT = new SyncUserT;

332 Appendix B

Connector KeyVault_KeyManager :
Role provider :
Role user

3

Connector KeyManager_KeyVault
Role provider :
Role user :

}

Connector KeyManifest_KeyManager :
Role provider :
Role user :

}

Connector KeyManager_KeyManifest
Role provider :
Role user :

3

Connector KeyManifest_CryptoProvider :
Role provider :
Role user :

3

Connector CryptoProvider_KeyManifest
Role provider :
Role user :

3

Connector KeyVault_EngineWrapper :
Role provider :
Role user :

}

Connector EngineWrapper_KeyVault
Role provider :
Role user :

}

Attachment
Attachment
Attachment
Attachment
Attachment
Attachment
Attachment
Attachment
Attachment
Attachment
Attachment
Attachment
Attachment
Attachment
Attachment
Attachment
Attachment
Attachment
Attachment
Attachment

SyncConnT = new SyncConnT extended with {
SyncProviderT = new SyncProviderT;
: SyncUserT = new SyncUserT;

: SyncConnT = new SyncConnT extended with {
SyncProviderT = new SyncProviderT;
SyncUserT = new SyncUserT;

SyncConnT = new SyncConnT extended with {
SyncProviderT = new SyncProviderT;
SyncUserT = new SyncUserT;

: SyncConnT = new SyncConnT extended with {
SyncProviderT = new SyncProviderT;
SyncUserT = new SyncUserT;

SyncConnT = new SyncConnT extended with {
SyncProviderT = new SyncProviderT;
SyncUserT = new SyncUserT;

: SyncConnT = new SyncConnT extended with {
SyncProviderT = new SyncProviderT;
SyncUserT = new SyncUserT;

SyncConnT = new SyncConnT extended with {
SyncProviderT = new SyncProviderT;
SyncUserT = new SyncUserT;

: SyncConnT = new SyncConnT extended with {
SyncProviderT = new SyncProviderT;
SyncUserT = new SyncUserT;

CryptoProvider.CustomerManager to CryptoProvider_CustomerManager.user;
CustomerManager.CustomerManager to CryptoProvider_CustomerManager.provider;
CustomerManager.CustomerManager to CustomerInfo_CustomerManager.provider;
CustomerInfo.CustomerInfo to CustomerManager_CustomerInfo.provider;
CustomerInfo.CustomerManager to CustomerInfo_CustomerManager.user;
KeyManifest.CryptoProvider to KeyManifest_CryptoProvider.user;
KeyVault.EngineWrapper to KeyVault_EngineWrapper.user;
EngineWrapper.EngineWrapper to CryptoProvider_EngineWrapper.provider;
EngineWrapper.CryptoProvider to EngineWrapper_CryptoProvider.user;
EngineWrapper.EngineWrapper to KeyVault_EngineWrapper.provider;
EngineWrapper.KeyVault to EngineWrapper_KeyVault.user;
CryptoProvider.EngineWrapper to CryptoProvider_EngineWrapper.user;
CryptoProvider.KeyManifest to CryptoProvider_KeyManifest.user;
KeyVault.KeyManager to KeyVault_KeyManager.user;

KeyManager.KeyVault to KeyManager_KeyVault.user;

KeyManifest.KeyManager to KeyManifest_KeyManager.user;
KeyManager.KeyManifest to KeyManager_KeyManifest.user;
CryptoProvider.CryptoProvider to CustomerManager_CryptoProvider.provider;
CryptoProvider.CryptoProvider to KeyManifest_CryptoProvider.provider;
CryptoProvider.CryptoProvider to EngineWrapper_CryptoProvider.provider;

B.2. CryptoDB Target Architecture in Acme

333

Attachment KeyManifest.KeyManifest to CryptoProvider_KeyManifest.provider;
Attachment KeyManifest.KeyManifest to KeyManager_KeyManifest.provider;
Attachment KeyManager.KeyManager to KeyManifest_KeyManager.provider;
Attachment KeyManager.KeyManager to KeyVault_KeyManager.provider;
Attachment KeyVault.KeyVault to EngineWrapper_KeyVault.provider;
Attachment CustomerManager.CryptoProvider to CustomerManager_CryptoProvider.user;
Attachment CustomerManager.CustomerInfo to CustomerManager_CustomerInfo.user;
Attachment KeyVault.KeyVault to KeyManager_KeyVault.provider;
Group KeyManagement = {

Members {KeyManager}
¥
Group CryptoConsumption = {

Members {CustomerManager, CustomerInfo,

CustomerManager_CustomerInfo, CustomerInfo_CustomerManager}

¥
Group CryptoProvision = {

Members {CryptoProvider, EngineWrapper,

CryptoProvider_EngineWrapper, EngineWrapper_CryptoProvider}

X
Group KeyStorage = {

Members {KeyManifest, KeyVault}
3
rule noVaultToManifest = invariant !pointsTo(KeyVault, KeyManifest);
rule keyManagementAndEngineDisconnected = invariant

forall ¢ : Component in KeyManagement.MEMBERS | !connected(c, EngineWrapper);
rule limitedVaultAccess = invariant forall c¢ : SyncCompT in self.COMPONENTS |

pointsTo(c, KeyVault) -> c.label == ‘‘KeyManager" OR c.label == ‘‘EngineWrapper";

334 Appendix B

Bibliography

JHotDraw.www . jhotdraw.org, 1996. Version 5.3.
JRM Tool.http://jrmtool.sourceforge.net, 2003.

Annotation File Utilitieshttp://pag.csail.mit.edu/jsr308/annotation-file-utilities/,
2006. Last accessed: Saturday, January 31, 2009.

JavaCChttps://javacc.dev. java.net/, 2006.

Marwan Abi-Antoun and Jonathan Aldrich. Ownership Domainsthe Real World. In
Intl. Workshop on Aliasing, Confinement and Ownership in Qbprtented Programming
(IWACO) pages 93-104, 2007a.

Marwan Abi-Antoun and Jonathan Aldrich. Compile-Time Viesf€Execution Structure Based
on Ownership. Inntl. Workshop on Aliasing, Confinement and Ownership in Qlpreented
Programming (IWACQ)pages 81-92, 2007b.

Marwan Abi-Antoun and Jonathan Aldrich. Checking and Meiasuthe Architectural Struc-
tural Conformance of Object-Oriented Systems. TechnicaloRe@MU-ISRI-07-119R,
Carnegie Mellon University, 2007c.

Marwan Abi-Antoun and Jonathan Aldrich. Static Conforma@becking of Runtime Architec-
tural Structure. Technical Report CMU-ISR-08-132, CarnegiddvidJniversity, 2008a.

Marwan Abi-Antoun and Jonathan Aldrich. A Field Study int&t&xtraction of Runtime Ar-
chitectures. InWorkshop on Program Analysis for Software Tools and Engingg¢PASTE)
pages 22-28, 2008b.

Marwan Abi-Antoun and Jonathan Aldrich. Static ExtractmnSound Hierarchical Runtime
Object Graphs. IWorkshop on Types in Language Design and ImplementatioDIl{T pages
51-64, 2009a.

Marwan Abi-Antoun and Jonathan Aldrich. Static Extracteord Conformance Analysis of Hi-
erarchical Runtime Architectural Structure using Annatasi. InObject-Oriented Program-
ming, Systems, Languages, and Applications (OOPS1080b. To appear.

Marwan Abi-Antoun and Jonathan Aldrich. Practical Statigtr&ction and Confor-
mance Checking of the Runtime Architecture of Object-Oriént®ystems. Half-
day tutorial at the SEI Architecture Technology User NetwdSATURN). Available:
www.cs.cmu.edu/"mabianto/talks/09-SATURN_handout.pdf, May 2009c.

Marwan Abi-Antoun and Jeffrey M. Barnes. Enforcing Conformaibetween Security Archi-
tecture and Implementation. Technical Report CMU-ISR-09; CE3negie Mellon University,

335

www.jhotdraw.org
http://jrmtool.sourceforge.net
http://pag.csail.mit.edu/jsr308/annotation-file-utilities/
https://javacc.dev.java.net/
www.cs.cmu.edu/~mabianto/talks/09-SATURN_handout.pdf

2009a.

Marwan Abi-Antoun and Jeffrey M. Barnes. Online addenduntp:Hevww.cs.cmu.edu/ mabi-
anto/cryptodb/, 2009b.

Marwan Abi-Antoun and Wesley Coelho. A Case Study in IncrealeAtchitecture-Based
Re-engineering of a Legacy Application. Working IEEE/IFIP Conference on Software Ar-
chitecture (WICSA)ages 159-168, 2005.

Marwan Abi-Antoun, Jonathan Aldrich, Nagi Nahas, Bradlep@erl, and David Garlan. Dif-
ferencing and Merging of Architectural Views. Kutomated Software Engineeringages
47-58, 2006.

Marwan Abi-Antoun, Daniel Wang, and Peter Torr. CheckingeBtiModeling Data Flow Dia-
grams for Implementation Conformance and Security. Teehiteport CMU-ISRI-06-124,
Carnegie Mellon University, September 2006.

Marwan Abi-Antoun, Jonathan Aldrich, and Welsey Coelho. A€Cagidy in Re-engineering to
Enforce Architectural Control Flow and Data SharidgSystems & Softwar80(2):240-264,
2007a.

Marwan Abi-Antoun, Daniel Wang, and Peter Torr. CheckingeBtiModeling Data Flow Di-
agrams for Implementation Conformance and Security (ShapéeB. InAutomated Software
Engineering pages 393-396, 2007b.

Marwan Abi-Antoun, Jonathan Aldrich, Nagi Nahas, Bradley@erl, and David Garlan. Dif-
ferencing and Merging of Architectural View&utomated Software Engineerints(8):35—
74, 2008.

Acme. Acme architectural description languagew . cs . cmu. edu/~acme, 2009.
AcmeStudio. AcmeStudiowww . cs. cmu. edu/~acme/AcmeStudio/index.html, 2009.

Rahul Agarwal and Scott D. Stoller. Type Inference for Patanmed Race-Free Java. limter-
national Conference on Verification, Model Checking, and raostinterpretation (VMCAI)
pages 149-160, 2004.

Agiled. StructureViewswww.agilej.com, 2008.

Marcus Alanen and Ivan Porres. Difference and Union of Med#l International Conference
on the Unified Modeling Language, Modeling Languages andiégions, pages 2—17, 2003.

Jonathan Aldrich.Using Types to Enforce Architectural Structur®hD thesis, University of
Washington, August 2003.

Jonathan Aldrich and Craig Chambers. Ownership Domains: r&epa Aliasing Policy from
Mechanism. IrEuropean Conference on Object-Oriented Programming (ECO@&)es 1—
25, 2004.

Jonathan Aldrich and David Dickey. The Crystal Data Flow Asa& Framework 2.0.
www.cs.cmu.edu/ aldrich/courses/654-sp06/, 2006.

Jonathan Aldrich, Craig Chambers, and David Notkin. ArchJ&emnecting Software Architec-
ture to Implementation. linternational Conference on Software Engineering (IC§apes
187-197, 2002a.

336 Bibliography

www.cs.cmu.edu/~acme
www.cs.cmu.edu/~acme/AcmeStudio/index.html
www.agilej.com
www.cs.cmu.edu/~aldrich/courses/654-sp06/

Jonathan Aldrich, Craig Chambers, and David Notkin. Architesd Reasoning with ArchJava.
In European Conference on Object-Oriented Programming (ECQ@69)2b.

Jonathan Aldrich, Valentin Kostadinov, and Craig ChambelisasAnnotations for Program Un-
derstanding. IObject-Oriented Programming, Systems, Languages, antcagipns (OOP-
SLA) pages 311-330, 2002c.

Robert Allen and David Garlan. Formalizing Architectural @ention. InIinternational Con-
ference on Software Engineering (ICSEages 71-80, 1994.

Manuel M. Ammann and Robert D. Cameron. Inter-Module RenammidgReorganizing: Exam-
ples of Program Manipulation-in-the-Large. Iternational Conference on Software Mainte-
nance (ICSM)pages 354-361, 1994.

Lars Ole Andersen.Program Analysis and Specialization for the C Programmirgduage
PhD thesis, DIKU, University of Copenhagen, 1994.

Chris Andreae, James Noble, Shane Markstrum, and Todd &illstA Framework for Imple-
menting Pluggable Type Systems. @bject-Oriented Programming, Systems, Languages,
and Applications (OOPSLApages 5774, 2006.

Giuliano Antoniol, Gerardo Canfora, Gerardo Casazza, AnBeshucia, and Ettore Merlo. Re-
covering Traceability Links between Code and Documentati&tE Transactions on Soft-
ware Engineering28(10):970-983, 2002.

Taweesup Apiwattanapong, Alessandro Orso, and Mary JeanldHaA Differencing Algorithm
for Object-Oriented Programs. lutomated Software Engineeringages 2—13, 2004.

ArchJava. ArchJavehttp://www.archjava.org/, 2003.

Erik Arisholm, Lionel C. Briand, and Audun Foyen. Dynamic Caogl Measurement for
Object-Oriented SoftwaréEEE Transactions on Software Engineeri3§(8):491-506, 2004.

David F. Bacon and Peter F. Sweeney. Fast Static Analysis of \Grtwal Function Calls.
In Object-Oriented Programming, Systems, Languages, anticagipns (OOPSLA)pages
324-341, 1996.

Len Bass, Paul Clements, and Rick Kazm@aftware Architecture in Practicdddison-Wesley,
2nd edition, 2003.

Kent Beck and Erich Gamma. JHotDraw — Patterns Applied (Tafjor In Object-Oriented
Programming, Systems, Languages, and Applications (OBR3R97.

Colin J Bennett, Del Myers, Margaret-Anne Storey, Daniel Mrr@an, David Ouellet, Martin
Salois, and Philippe Charland. A survey and evaluation of fieatures for understanding
reverse-engineered sequence diagramSoftw. Maint. Evo].20(4):291-315, 2008.

Christophe Bidan and \atie Issarny. Security Benefits from Software Architectuhe.Intl.
Conf. on Coordination Languages and Modgdages 64-80, 1997.

Martin Blech, Juan P. Carlino, J. Arels Oaz-Pace, and Alvaro Soria. Keeping Design Doc-
umentation Updated through Synchronization of Use-CaspsMéth Implementation. In
Argentine Symposium on Software Engineera6.

Josh Bloch Effective JavaAddison-Wesley, 2001.

Bibliography 337

http://www.archjava.org/

Joshua Bloch. JSR 175: a Metadata Facility for the Java Prognag Language.
http://jcp.org/en/jsr/detail?id=175, 2004.

Boris Bokowski and Ande Spiegel. Barat — a Front-End for Java. Technical Report BR8-0
Freie Universiat Berlin, 1998.

Boris Bokowski and Jan Vitek. Confined Types. @bject-Oriented Programming, Systems,
Languages, and Applications (OOPSI_A999.

Ivan T. Bowman, Richard C. Holt, and Neil V. Brewster. Linux as ae€C&tudy: its Extracted
Software Architecture. Ihnternational Conference on Software Engineering (IC§iges
555-563, 1999.

Chandrasekhar BoyapatsafeJava: a Unified Type System for Safe Programnfid thesis,
Massachusetts Institute of Technology, February 2004.

Chandrasekhar Boyapati, Barbara Liskov, and Liuba Shrira.edstip Types for Object Encap-
sulation. INPOPL, pages 213-223, 2003a.

Chandrasekhar Boyapati, Alexandru Salcianu, Jr. William Beebnd Martin Rinard. Owner-
ship Types for Safe Region-Based Memory Mangement in Real-Jawa. InProgramming
Language Design and Implementation (PL3PO3b.

Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Viviendna, and Jean-Bernard Stefani.
The FRACTAL Component Model and its Support in Java: Experignagéh Auto-adaptive
and Reconfigurable SystentSoftw. Pract. Exper36(11-12):1257-1284, 2006.

Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sontunanid Michael StalPattern-
Oriented Software Architecture: a System of Pattedwhn Wiley, 1996.

Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn, andddenk Yang. Compositional
shape analysis by means of bi-abductionP@PL, pages 289-300, 2009.

Nicholas Cameron, Sophia Drossopoulou, James Noble, anthéhaSmith. Multiple Owner-
ship. InObject-Oriented Programming, Systems, Languages, andicdgpns (OOPSLA)
2007.

Sylvain Chardigny, Abdelhak Seriai, Mourad Oussalah, antildDdamzalit. Extraction of
Component-Based Architecture from Object-Oriented SystdmgVorking IEEE/IFIP Con-
ference on Software Architecture (WICSpages 285288, 2008.

Sudarshan S. Chawathe and Hector Garcia-Molina. Meani@jfahge Detection in Structured
Data. InACM SIGMOD International Conference on Management of Datges 26-37,
1997.

Ping H. Chen, Matt Critchlow, Akash Garg, Chris van der Wes#miiand Ande van der Hoek.
Differencing and Merging within an Evolving Product Line chitecture. Inintl. Workshop
on Software Product-Family Engineeringages 269-281, 2003.

Henrik Baerbak Christensen. Frameworks: Putting Design PRatteto Perspective. 1Annual
SIGCSE Conference on Innovation and Technology in Computen&cEducation (ITICSE)
2004.

Andreas Christl, Rainer Koschke, and Margaret-Anne Storeyifgping the Reflexion Method

338 Bibliography

http://jcp.org/en/jsr/detail?id=175

with Automated Clustering. INVorking Conference on Reverse Engineering (WCRB&jes
89-98, 2005.

Dave Clarke and Tobias Wrigstad. External Uniqueness is @nipough. InEuropean Con-
ference on Object-Oriented Programming (ECOQBgges 176—200, 2003.

David Clarke.Object Ownership & ContainmenPhD thesis, University of New South Wales,
July 2001.

David G. Clarke, John M. Potter, and James Noble. Ownershpgedyor Flexible Alias Pro-
tection. InObject-Oriented Programming, Systems, Languages, antic&tipns (OOPSLA)
pages 4864, 1998.

P. Clements, F. Bachman, L. Bass, D. Garlan, J. Ivers, R. Littldldrd, and J. StaffordDocu-
menting Software Architecture: View and BeyoAdldison-Wesley, 2003.

Donatello Conte, Pasquale Foggia, Carlo Sansone, and Mant.VeThirty Years of Graph
Matching in Pattern Recognitiomnt. J. Pattern Recognit. Artif. Inte]l18(3):265-298, 2004.

Will Cooper. Interactive Ownership Type Inference. Senibedis, Carnegie Mellon University,
2005.

Michelle L. Crane andilrgen Dingel. Runtime Conformance Checking of Objects usihgyAl
Electronic Notes in Theoretical Computer Scier@@(2):2—21, 2003.

Eric M. Dashofy, Ande van der Hoek, and Richard N. Taylor. A Highly-Extensible, XM
Based Architecture Description Language. WWorking IEEE/IFIP Conference on Software
Architecture (WICSA)2001.

Eric M. Dashofy, Ande van der Hoek, and Richard N. Taylor. An Infrastructure f& Rapid
Development of XML-Based Architecture Description Langesg InInternational Confer-
ence on Software Engineering (ICSBages 266276, 2002.

Andrea De Lucia, Rocco Oliveto, and Genoveffa Tortora. Adaesrace: traceability link
recovery via latent semantic indexing. limernational Conference on Software Engineering
(ICSE) pages 839-842, 2008.

Andrea De De Lucia, Fausto Fasano, Rocco Oliveto, and Gefaoleftora. Recovering trace-
ability links in software artifact management systems gisiformation retrieval methods.
ACM Trans. Softw. Eng. Methodl.6(4):13, 2007.

Wim De Pauw and Gary Sevitsky. Visualizing Reference PattBynSolving Memory Leaks in
Java. InEuropean Conference on Object-Oriented Programming (ECOP&jes 116-134,
1999.

Wim De Pauw, Richard Helm, Doug Kimelman, and John Vlissidgsualizing the Behav-
ior of Object-Oriented Systems. [Dbject-Oriented Programming, Systems, Languages, and
Applications (OOPSLA)pages 326—-337, 1993.

Wim De Pauw, Doug Kimelman, and John M. Vlissides. Modelingeot-Oriented Program
Execution. InEuropean Conference on Object-Oriented Programming (ECOQd&)es 163—
182, 1994.

Wim De Pauw, Erik Jensen, Nick Mitchell, Gary Sevitsky, JolhnVlissides, and Jeaha Yang.

Bibliography 339

Visualizing the Execution of Java Programs. Revised Lectures on Software Visualization,
International Seminarpages 151-162, 2002.

Yi Deng, Jiacun Wang, Jeffrey J. P. Tsai, and Konstantin Beavnio An Approach for Mod-
eling and Analysis of Security System ArchitecturéBEE Trans. on Knowledge and Data
Engineering 15(5):1099-1119, 2003.

Elisabetta Di Nitto and David Rosenblum. Exploiting ADLs feesify architectural styles in-
duced by middleware infrastructures. Iimternational Conference on Software Engineering
(ICSE) pages 13-22, 1999.

J. Andés Daz-Pace and Marcelo R. Campo. ArchMatE: from architectuyéés to object-
oriented models through exploratory tool supportOlnject-Oriented Programming, Systems,
Languages, and Applications (OOPSI_pages 117-132, 2005.

Peter J. Dickinson, Horst Bunke, Arek Dadej, and Miro Kraekatching Graphs with Unique
Node LabelsPattern Analysis and Applicationg(3):243-254, December 2004.

Werner Dietl and Peter Mler. Universes: Lightweight Ownership for JIMUournal of Object
Technology4(8):5-32, 2005.

Werner Dietl, Sophia Drossopoulou, and Petdillet. Generic Universe Types. EBuropean
Conference on Object-Oriented Programming (ECOQfapges 28-53, 2007.

Edsger W. Dijkstra. The Structure of the THE-MultiprogramgSystem.Communications of
the ACM 11(5):341-346, 1968.

Liliana Dobrica and Eila Niemel. A Survey on Software Areuture Analysis MethoddEEE
Transactions on Software Engineerjitg(7):638-653, 2002.

Stephane Ducasse and Damien Pollet. Software Architectur@riR@action: A Process-
Oriented TaxonomylEEE Transactions on Software Engineerid§(4):573-591, 2009.

W.J. Dzidek, E. Arisholm, and L.C. Briand. A Realistic Empiti€valuation of the Costs and
Benefits of UML in Software MaintenancéEEE Transactions on Software Engineer,it3g
(3):407-432, May-June 2008.

S. Easterbrook and B. Nuseibeh. Using ViewPoints for Ingiescy ManagementSoftware
Engineering Journall1(1):31-43, 1996.

Alexander Egyed. Instant Consistency Checking for the UMLInternational Conference on
Software Engineering (ICSEpages 381-390, 2006.

Michael Eichberg, Sven Kloppenburg, Karl Klose, and Mirazime Defining and Continu-
ous Checking of Structural Program Dependenciedntiernational Conference on Software
Engineering (ICSE)2008.

T. Eisenbarth, R. Koschke, and G. Vogel. Static Trace Extractin Working Conference on
Reverse Engineering (WCRpages 128-137, 2002.

Andrew D. Eisenberg and Gregor Kiczales. Expressive Progrhirough Presentation Exten-
sion. InAspect-Oriented Software Development (AQSR2apes 73-84, 2007.

Hakan Erdogmus. Representing Architectural Evolution Comference of the Centre for Ad-
vanced Studies on Collaborative Reseapdges 159-177, 1998.

340 Bibliography

Michael D. Ernst and Danny Coward. JSR 308: Annotations ona Jaypes.
http://pag.csail.mit.edu/jsr308/, 2006.

Hoda Fahmy and Richard C. Holt. Software Architecture Trams&tions. Ininternational
Conference on Software Maintenance (ICSpége 88, 2000.

Loe Feijs, Reg L. Krikhaar, and Rob van Ommering. A Relational Approach tpfeut Soft-
ware Architecture AnalysisSoftware Pract. Experienc@8(4), 1998.

Patrick Finnigan, Richard C. Holt, Ivan Kallas, Scott Kerr, ska@s Kontogiannis, Hausi A.
Muller, John Mylopoulos, Stephen G. Perelgut, Martin Stgrdad Kerny Wong. The Soft-
ware BookshelfIBM Systems JournaB6(4):564-593, 1997.

Roberto Fiutem and Giuliano Antoniol. Identifying Designdeolnconsistencies in Object-
Oriented Software: a Case Study. limernational Conference on Software Maintenance
(ICSM), pages 94-102, 1998.

Cormac Flanagan and Stephen N. Freund. Dynamic Archite&xaraction. InWorkshop on
Formal Approaches to Testing and Runtime Verificatiduagust 2006.

Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Gregl$¢®, James B. Saxe, and
Raymie Stata. Extended Static Checking for JavaProgramming Language Design and
Implementation (PLDl)pages 234-245, 2002.

Martin Fowler. UML Sketching Toolshttp: //martinfowler.com/bliki/UmlSketchingTools.html)
2004.

Robert Fuhrer, Frank Tip, Adam Kzen, Julian Dolby, and Markus Keller. Efficiently Refactor-
ing Java Applications to Use Generic Libraries.Baropean Conference on Object-Oriented
Programming (ECOOR)pages 71-96, 2005.

Erich Gamma. Advanced Design with Patterns and Java (Blitoth European Conference on
Java and Object Orientation (JAO()998. JHotDraw v. 5.1.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissidlesign Patterns: Elements of
Reusable Object-Oriented Softwarkeddison-Wesley, 1994.

Emden R. Gansner and Stephen C. North. An Open Graph Visualizaystem and its Ap-
plications to Software EngineeringSoftware: Practice & Experien¢e80(11):1203-1233,
2000.

Juan Gargiulo and Spiros Mancoridis. Gadget: a Tool for&exing the Dynamic Structure of
Java Programs. I18oftware Engineering and Knowledge Engineeri2@01.

David Garlan and Mary Shaw. An Introduction to Software Aretture. In V. Ambriola and
G. Tortora, editorsAdvances in Software Engineering and Knowledge Engineerii§93.

David Garlan, Robert T. Monroe, and David Wile. Acme: Arcbiteal Description of
Component-Based Systems. In Gary Leavens and Murali Sitaraethtors,Foundations
of Component-Based Systempages 47—-68. Cambridge University Press, 2000.

David Garlan, Shang-Wen Cheng, and Andrew J. Kompanek. Reiogritie needs of architec-
tural description with object-modeling notatior&ci. Comput. Program44(1):23-49, 2002a.

David Garlan, Andrew Kompanek, and Shang-Wen Cheng. Reaogtile Needs of Architec-

Bibliography 341

http://pag.csail.mit.edu/jsr308/
http://martinfowler.com/bliki/UmlSketchingTools.html

tural Description with Object-Modeling NotationsScience of Computer Programmingy:
23-49, 2002b.

Antoniol Giulio, Bruno Caprile, Alessandra Potrich, and abbnella. Design-code Traceabil-
ity for Object-Oriented System#&nnals of Software Engineering(1-4):35-58, 2000.

Greg Goth. Beware the march of this IDE: Eclipse is overshaapwather tool techniquesEEE
Software 22(4), 2005.

Aaron Greenhouse and John Boyland. An Object-Oriented Bffegstem. Irecoop 1999.

Bernhard Gone, Andreas Kapfel, and Rudolf Kugel. Architecture Recovery of Apache 1.3 —
a Case Study. linternational Conference on Software Engineering ReseanchRractice
2002.

Bernhard Gone, Andreas Koapfel, Rudolf Kugel, and Oliver Schmidt. The Apache Modeling
Project.http://www.fmc-modeling.org/projects/apache, 2008.

Christian Grothoff, Jens Palsberg, and Jan Vitek. Encafisgl®bjects with Confined Types.
In Object-Oriented Programming, Systems, Languages, anticagipns (OOPSLA)2001.

John C. Grundy and John G. Hosking. Softarch: Tool Suppotttegrated Software Architec-
ture Development]. Softw. Eng. Kindg. Engl3(2), 2003.

Thomas Gschwind and Johann Oberleitner. Improving Dynddaita Analysis with Aspect-
Oriented Programming. lBuropean Conference on Software Maintenance and Reengigeeri
(CSMR) pages 259-268, 2003.

Yann-G&l| Gleheneuc. A Reverse Engineering Tool for Precise Class Diagram@onference
of the Centre for Advanced Studies on Collaborative resegqabes 28-41, 2004.

George Yanbing Guo, Joanne M. Atlee, and Rick Kazman. A Soé&wachitecture Reconstruc-
tion Method. InWorking IEEE/IFIP Conference on Software Architecture (WIL$Ages
15-34, 1999.

Thomas Hachler. Applying the Universe Type System to an Industrigpkcation: Case Study.
Master’s thesis, Department of Computer Science, Fedeséitute of Technology Zurich,
2005.

Brian Hackett, Manuvir Das, Daniel Wang, and Zhe Yang. Mod@laecking for Buffer Over-
flows in the Large. Irintl. Conf. on Software Engineeringages 232—-241, 2006.

Irit Hadar and Orit Hazzan. On the Contribution of UML Diagmto Software System Com-
prehensionJournal of Object Technolog(1):143-156, 2004.

David R. Harris, Howard B. Reubenstein, and Alexander S. Yeh.e®evEngineering to the
Architectural Level. Innternational Conference on Software Engineering (IC®&apes 186—
195, 1995.

Trent Hill, James Noble, and John Potter. Scalable Visattins of Object-Oriented Systems
with Ownership TreesJournal of Visual Languages and Computid®(3):319-339, 2002.

Adel Hlaoui and Shengrui Wang. A New Algorithm for Graph Matgy with Application to
Content-Based Image Retrieval. Jaint IAPR International Workshop on Structural, Syntac-
tic, and Statistical Pattern Recognitippages 291-300, 2002.

342 Bibliography

http://www.fmc-modeling.org/projects/apache

Lorin Hochstein and Mikael Lindvall. Combating archite@ltegeneration: a surveiynforma-
tion & Software Technology7(10):643—-656, 2005.

Richard C. Holt, Andy Sciwrr, Susan Elliott Sim, and Andreas Winter. GXL: A graphdxhs
standard exchange format for reengineeriSgience of Computer Programmir@f(2):149—
170, 2006 www . gupro.de/GXL/\

H. James Hoover and Daqing Hou. Using SCL to Specify and Cheslkgbéntent in Source
Code.lEEE Transactions on Software Engineer;ii32(6):404—423, 2006.

M. Howard and S. LipnerfThe Security Development LifecycMicrosoft Press, 2006.

Michael Howard and Steve Lipner. Inside the Windows SegwPiish. IEEE Security and
Privacy, 1(1):57-61, 2003.

hyperCision Inc. jMetrawww.hypercision. com, 2008.

Anne Immonen and Eila Niemil Survey of reliability and availability prediction metefrom
the viewpoint of software architectur8oftware and Systems Modelingl1):49-65, 2008.

Daniel Jackson. Alloy: a lightweight object modelling ntiwa. ACM Transactions on Software
Engineering and Methodolog$1(2):256-290, 2002.

Daniel Jackson and Martin Rinard. Software Analysis: a RogdrmeConference on the Future
of Software Engineerin@000.

Daniel Jackson and Allison Waingold. Lightweight Extractof Object Models from Bytecode.
IEEE Transactions on Software Engineeri2g(2):156-169, 2001.

Catherine Blake Jaktman, John Leaney, and Ming Liu. Strucfmalysis of the Software
Architecture — a Maintenance Assessment Case Studwohking IEEE/IFIP Conference on
Software Architecture (WICSA)ages 455-470, 1999.

Dean F. Jerding, John T. Stasko, and Thomas Ball. Visualizitegactions in Program Execu-
tions. Ininternational Conference on Software Engineering (IG$RApes 360-370, 1997.

Tao Jiang, Lusheng Wang, and Kaizhong Zhang. Alignment e€3+ An Alternative to Tree
Edit. In Annual Symposium on Combinatorial Pattern Matchipgges 75-86, 1994.

A. M. Jimenez. Change Propagation in the MDA: a Model Mergimgpach. Master’s thesis,
University of Queesland, 2005.

J. Jirjens. Secure Systems Development with UNBbringer-Verlag, 2004.
Wolfram Kaiser. Become a programming Picasso with JHotDdavaWorld, February 2001.

Rick Kazman and S. Jeromy Caré. Playing Detective: Reconstructing Software Architext
from Available EvidenceAutomated Software Engineerirg(2):107-138, 1999.

Rick Kazman, Liam O’Brien, and Chris Verhoef. Architecture Restouction Guidelines, Third
Edition. Technical Report CMU/SEI-2002-TR-034, Software iBegring Institute, 2002.

Rudolf K. Keller, Reinhard Schauer,éBastien Robitaille, and Patrick Fag Pattern-based
reverse-engineering of design components.Inbernational Conference on Software Engi-
neering (ICSE)pages 226-235, 1999.

Kevin Kenan. Cryptography in the DatabaseAddison-Wesley, 2006. Accompanying code at

Bibliography 343

www.gupro.de/GXL/
www.hypercision.com

http://kevinkenan.blogs.com/downloads/cryptodb_code.zip.

Tahar Khammaci, Adel Smeda, and Mourad Oussatédndbook of Software Engineering and
Knowledge Engineeringvolume Vol 3: Recent Advances, chapter Coexistence of Object
Oriented Modeling and Architectural Description, page8-4151. World Scientific Publish-
ing, 2005.

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Ma€distina Videira Lopes, Jean-
Marc Loingtier, and John Irwin. Aspect-oriented programgai In European Conference on
Object-Oriented Programming (ECOOR)ages 220-242, 1997.

D. Kirk, M. Roper, and M. Wood. Identifying and Addressing Blems in Object-Oriented
Framework ReuseEmpirical Software Engineerind 2(3):243-274, 2006.

Barbara Kitchenham, Lesley Pickard, and Shari Lawrencegdte€ase studies for method and
tool evaluation|IEEE Software12(4):52—-62, 1995.

Jens Knodel and Daniel Popescu. A Comparison of Static Axctute Compliance Checking
Approaches. IWorking IEEE/IFIP Conference on Software Architecture (WIE2807.

R. Kollman, P. Selonen, E. Stroulia, T. S§sand A. Zundorf. A Study on the Current State of
the Art in Tool-Supported UML-Based Static Reverse Engimgeriln Working Conference
on Reverse Engineering (WCRIgages 22-32, 2002.

Henk Koning, Claire Dormann, and Hans van Vliet. Practicaid8lines for the Readability of
IT-Architecture Diagrams. Irinternational Conference on Computer Documentation (SIG-
DOC), pages 90-99, 2002.

K. Kontogiannis, R. DeMori, M. Bernstein, M. Galler, and E. MerPattern matching for design
concept localization. IlWorking Conference on Reverse Engineering (WCR&jes 96—103,
1995.

Rainer Koschke. Architecture Reconstruction: Tutorial ondRe® Engineering to the Architec-
tural Level. In Andrea De Lucia and Filomena Ferrucci, editimternational Summer School
on Software Engineeringages 140-173, 2008.

Rainer Koschke and Daniel Simon. Hierarchical Reflexion Medét Working Conference on
Reverse Engineering (WCRpage 36, 2003.

Kai Koskimies and Hanspeterdgdsenbck. Scene: Using Scenario Diagrams and Active Text for
lllustrating Object-Oriented Programs. limernational Conference on Software Engineering
(ICSE) pages 366—375, 1996.

Christian Kramer and Lutz Prechelt. Design Recovery by Autech&earch for Structural
Design Patterns in Object-Oriented Softwak/orking Conference on Reverse Engineering
(WCRE) page 208, 1996.

Rere L. Krikhaar. Reverse Architecting Approach for Complex 8gst. Ininternational Con-
ference on Software Maintenance (ICSlges 4-11, 1997.

Rere L. Krikhaar, A. Postma, A. Sellink, M. Stroucken, and C. \@@h A Two-Phase Process
for Software Architecture Improvement. International Conference on Software Mainte-
nance (ICSM)pages 371-380, 1999.

344 Bibliography

http://kevinkenan.blogs.com/downloads/cryptodb_code.zip

Neel Krishnaswami and Jonathan Aldrich. Permission-Basededship: Encapsulating State
in Higher-Order Typed Languages. Rrogramming Language Design and Implementation
(PLDI), pages 96-106, 2005.

Philippe Kruchten. The 4+1 View Model of ArchitectunreEE Software12(6):42-50, 1995.

Bruno Lagw, Charles Leduc, AnérLe Bon, Ettore Merlo, and Michel Dagenais. An Analysis
Framework for Understanding Layered Software Architezdudnternational Workshop on
Program Comprehension (IWPC)998.

Patrick Lam and Martin Rinard. A Type System and Analysis lfier Automatic Extraction and
Enforcement of Design Information. EBuropean Conference on Object-Oriented Program-
ming (ECOOP)pages 275-302, 2003.

Danny B. Lange and Yuichi Nakamura. Interactive Visualmatof Design Patterns Can Help
in Framework Understanding. 1@bject-Oriented Programming, Systems, Languages, and
Applications (OOPSLA)ages 342-357, 1995.

Lattix Inc. LDM tool. http://www.lattix.com/, 2008.

Seonah Lee, Gail C. Murphy, Thomas Fritz, and Meghan Allenw idan Diagramming Tools
Help Support Programming Activities? WL/HCC, pages 246—249, 2008.

Karl J. Lieberherr and lan M. Holland. Assuring Good Style @bject-Oriented Programs.
IEEE Software6(5), 1989.

Mikael Lindvall and Kristian Sandahl. Practical Implicatis of Traceability. Softw. Pract.
Exper, 26(10):1161-1180, 1996.

Yin Liu and Ana Milanova. Ownership and Immutability Infewae for UML-based Object Ac-
cess Control. Irnternational Conference on Software Engineering (IG§apges 323-332,
2007.

Yu Liu and Scott Smith. Pedigree Types. liml. Workshop on Aliasing, Confinement and
Ownership in Object-Oriented Programming (IWACQ)08.

Torsten Lodderstedt, David A. Basin, arisfgen Doser. SecureUML: a UML-Based Modeling
Language for Model-Driven Security. Intl. Conference on the Unified Modeling Language
pages 426441, 2002.

Yi Lu and John Potter. Protecting Representation with Effeatapsulation. IiPOPL, pages
359-371, 2006.

David C. Luckham and James Vera. An Event-Based Architectefeniion LanguagelEEE
Transactions on Software Engineerjitf(9):717-734, 1995.

Kin-Keung Ma and Jeffrey S. Foster. Inferring Aliasing anacBpsulation Properties for Java.
In Object-Oriented Programming, Systems, Languages, antdcagpns (OOPSLA)2007.

Neel Madhav. Testing Ada 95 Programs for Conformance to RafidRitectures. InAda-
Europe International Conference on Reliable Software Teldyies pages 123-134, 1996.

Jeff Magee and Jeff Kramer. Dynamic Structure in Softwarehectures. IrFoundations of
Software Engineering (FSE)ages 3-14, 1996.

Jeff Magee, Naranker Dulay, Susan Eisenbach, and Jeff Kr&pecifying Distributed Software

Bibliography 345

http://www.lattix.com/

Architectures. IrEuropean Software Engineering Conferenuages 137-153, 1995.

Sam Malek, Marija Mikic-Rakic, and Nenad Medvidovic. A StAevare Architectural Middle-
ware for Resource-Constrained, Distributed SystetB&EE Transactions on Software Engi-
neering 31(3):256-272, 2005.

Andrew J. Malton and Richard C. Holt. Boxology of NBA and TA: a isa®r understanding
software architecture. IWorking Conference on Reverse Engineering (WCR&)es 187—
195, 2005.

S. Mancoridis, B.S. Mitchell, Y. Chen, and E.R. Gansner. Bunatlustering tool for the recov-
ery and maintenance of software system structuregntérnational Conference on Software
Maintenance (ICSM)pages 50-59, 1999.

David Mandelin, Doug Kimelman, and Daniel Yellin. A Bayesiapproach to Diagram Match-
ing with Application to Architectural Models. Imternational Conference on Software Engi-
neering (ICSE)2006.

Onaiza Maqgbool and Haroon Babri. Hierarchical Clusteringioitware Architecture Recovery.
IEEE Transactions on Software Engineeri8®(11):759-780, 2007.

Joseph F. Maranzano, Sandra A. Rozsypal, Gus H. ZimmermanWsVarnken, Patricia E.
Wirth, and David M. Weiss. Architecture Reviews: Practicd &xperiencelEEE Softw, 22
(2):34-43, 2005.

Nenad Medvidovic and Vladimir Jakobac. Using Software Htioh to Focus Architectural
Recovery.Automated Software Engineerint3(2):225-256, 2006.

Nenad Medvidovic and Richard N. Taylor. A Classification and @anson Framework for
Software Architecture Description LanguagéSEE Transactions on Software Engineering
26(1), 2000.

Nenad Medvidovic, Peyman Oreizy, Jason E. Robbins, and Ridkafaylor. Using Object-
Oriented Typing to Support Architectural Design in the C2I&tyn Foundations of Software
Engineering (FSE)1996.

Akhil Mehra, John Grundy, and John Hosking. A Generic Apploto Supporting Diagram
Differencing and Merging for Collaborative Design. Automated Software Engineering
2005.

Sergey Melnik, Hector Garcia-Molina, and Erhard Rahm. S&inty Flooding: a Versatile Graph
Matching Algorithm and Its Application to Schema Matchimglnternational Conference on
Data Engineeringpages 117-128, 2002.

Nabor C. Mendonc¢a and Jeff Kramer. An Approach for Recovediggributed System Archi-
tectures Automated Software Engineerir§(3-4):311-354, 2001.

Tom Mens and Pieter Van Gorp. A Taxonomy of Model Transforomatin Proc. Int’l Workshop
on Graph and Model TransformatipR005.

B.T. Messmer. Efficient Graph Matching Algorithms for Preprocessed Mo@eaphs PhD
thesis, University of Bern, 1996.

Ana Milanova. Static Inference of Universe Types.Iitl. Workshop on Aliasing, Confinement

346 Bibliography

and Ownership in Object-Oriented Programming (IWACZ0)08.

Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Constgi€necise Object Relation
Diagrams. Ininternational Conference on Software Maintenance (ICSb&ges 586-595,
2002.

Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Pararmetefbject Sensitivity for
Points-To Analysis for JavaACM Transactions on Software Engineering and Methodqglogy
14(1):1-41, 2005.

Joaquin Miller and Jishnu Mukerji. MDA Guide Version 1.0.Technical report, Object Man-
agement Group (OMG), 2003.

Nick Mitchell. The Runtime Structure of Object OwnershipHuaropean Conference on Object-
Oriented Programming (ECOOPpages 57—64, 2006.

Nick Mitchell, Edith Schonberg, and Gary Sevitsky. MakingnSe of Large Heaps. European
Conference on Object-Oriented Programming (ECOC#0)09.

Robert Monroe. Capturing Software Architecture Design Experwith Armani. Technical
Report CMU-CS-98-163R, Carnegie Mellon University, Januaryl200

Mark Moriconi, Xiaolei Qian, and R. A. Riemenschneider. Cotrr&chitecture Refinement.
IEEE Transactions on Software Engineer,i2d.(4):356-372, 1995.

Mark Moriconi, Xiaolei Qian, R. A. Riemenschneider, and Li Gorsecure Software Architec-
tures. INIEEE Symposium on Security and Privapgge 84, 1997.

Henry Muccini, Marcio S. Dias, and Debra J. Richardson. Tdw&oftware Architecture-Based
Regression Testing. M/orkshop on Architecting Dependable Systgmages 1-7, 2005.

Hausi Miller and Karl Klashinsky. Rigi —a System for Programmingfime-Large. Innterna-
tional Conference on Software Engineering (IC3igges 80-86, 1988.

Hausi A. Muller, Mehmet A. Orgun, Scott R. Tilley, and James S. Uhl. A RegeEngineering
Approach to Subsystem Structure Identificatidournal of Software Maintenance: Research
and Practice 5(4):181-204, 1993.

Peter Miller and Arnd Poetzsch-Heffter. Universes: a Type SystanCobntrolling Represen-
tation Exposure. In A. Poetzsch-Heffter and J. Meyer, egifdrogramming Languages and
Fundamentals of Programmin999.

Peter Miller and Arsenii Rudich. Ownership Transfer in Universe &yp InObject-Oriented
Programming, Systems, Languages, and Applications (O@R2007.

Gail C. Murphy. Lightweight Structural Summarization as an Aid to Softwarel&won. PhD
thesis, University of Washington, 1996.

Gail C. Murphy and David Notkin. Lightweight Source Model Eadtion. InFoundations of
Software Engineering (FSE)ages 116-127, 1995.

Gail C. Murphy and David Notkin. Reengineering with reflexioondrls: a case studyCom-
puter, 30(8):29-36, 1997.

Gail C. Murphy, David Notkin, and Kevin J. Sullivan. SoftwdReflexion Models: Bridging the
Gap between Design and ImplementatidBEE Transactions on Software Engineerir&y

Bibliography 347

(4):364-380, 2001.
Gail C. Murphy, Mik Kersten, and Leah Findlater. How are Jawévare Developers Using the
Eclipse IDE?IEEE Software23(4), 2006.

Stefan Nageli. Ownership in Design Patterns. Master’s thesis, Reyant of Computer Science,
Federal Institute of Technology Zurich, 2006.

Nagi H. Nahas. Algorithms for the Comparison of Unordereddled Trees. Master’s thesis,
American University of Beirut, Beirut, Lebanon, May 2009.

J. Nielsen and R.L. Mack, editortlsability Inspection Methodslohn Wiley & Sons, 1994.

Eugen C. Nistor, Justin R. Erenkrantz, Scott A. Hendricksam] And€ van der Hoek.
ArchEvol: Versioning Architectural-Implementation Retatships. Ininternational Work-
shop on Software Configuration Managemeéages 99-111, 2005.

James Noble. Visualising Objects: Abstraction, EncapguiaAliasing, and Ownership. In
Revised Lectures on Software Visualization, Internati@eahinay pages 58-72, 2002.

James Noble, Jan Vitek, and John Potter. Flexible Aliaseetimn. InEuropean Conference on
Object-Oriented Programming (ECOOM)998.

Object Technology International, Inc. Eclipse Platform cHieical Overview.
http://www.eclipse.org/whitepapers/eclipse-overview.pdf, 2003.

Robert W. O’CallahanGeneralized Aliasing as a Basis for Program Analysis ToBlsD thesis,
Carnegie Mellon University, 2001.

Rainer Oechsle and Thomas Schmitt. JAVAVIS: Automatic PaogWVisualization with Object
and Sequence Diagrams using the Java Debug Interface (dRévised Lectures on Software
Visualization, International Semingpages 176-190, 2002.

OGJ. Ownership Generic Java (OCwWyw .mcs . vuw. ac.nz/"alex/ogj/, 2005.

Dirk Ohst, Michael Welle, and Udo Kelter. Differences betne/ersions of UML Diagrams.
In European Software Engineering Conference (ESEC)/Foundatib8oftware Engineering
(FSE) pages 227-236, 2003.

Rocco Oliveto, Giuliano Antoniol, Andrian Marcus, and Janayklks. Software artefact trace-
ability: the never-ending challenge. International Conference on Software Maintenance
(ICSM), pages 485-488, 2007.

OMG. Unified Modeling Language (UML), 2008.
Omondo. EclipseUMLhttp://www.omondo.com/, 2006.

Peyman Oreizy, Nenad Medvidovic, and Richard N. Taylor. Aexgture-Based Runtime Soft-
ware Evolution. Innternational Conference on Software Engineering (IGSEPS8.

Michael J. Pacione, Marc Roper, and Murray Wood. A Novel Safewisualisation Model to
Support Software Comprehension. Working Conference on Reverse Engineering (WCRE)
pages 70-79, 2004.

PBS. PBS: The Portable Bookshetifttp: //www. swag.uwaterloo.ca/pbs/, 2000.
Dewayne E. Perry and Alexander L. Wolf. Foundations for thed$ of Software Architecture.

348 Bibliography

http://www.eclipse.org/whitepapers/eclipse-overview.pdf
www.mcs.vuw.ac.nz/~alex/ogj/
http://www.omondo.com/
http://www.swag.uwaterloo.ca/pbs/

SIGSOFT Softw. Eng. Notek/(4):40-52, 1992.

David Pichardie. Constraint based analysis for Java.
www.irisa.fr/lande/teaching/PAS/pointsto.pdf, 2008.

David Poole and Alan Macworth. CISpace: Tools for learning @otational Intelligence.
http://www.cs.ubc.ca/labs/1ci/Clspace/, 2001.

Andre Postma. A Method for Module Architecture Verificatiand its Application on a Large
Component-Based Systetmformation and Software Technolggdb(4):171-194, 2003.

Alex Potanin. Generic Ownership: A Practical Approach to Ownership and Camnfiant in
Object-Oriented Programming Language$hD thesis, Victoria University of Wellington,
2007.

Alex Potanin, James Noble, and Robert Biddle. Checking Owigeesid ConfinementCon-
currency and Computation: Practice and Experient@(7):671-687, April 2004.

Alex Potanin, James Noble, Dave Clarke, and Robert Biddle. @e@svnership for Generic
Java. InObject-Oriented Programming, Systems, Languages, anticdgpns (OOPSLA)
pages 397-412, 2006.

John Potter, James Noble, and David Clarke. The Ins and OQtsjetts. InAustralian Software
Engineering Conferen¢@ages 80—-89, 1998.

Shruti Raghavan, Rosanne Rohana, David Leon, Andy PodgurskiyVimay Augustine. Dex:
a Semantic-Graph Differencing Tool for Studying Changesarge Code Bases. Interna-
tional Conference on Software Maintenance (ICSp)ges 188-197, 2004.

Derek Rayside and Lucy Mendel. Object Ownership Profiling:eahhique for Finding and
Fixing Memory Leaks. IrAutomated Software Engineeririg007.

Derek Rayside, Lucy Mendel, Robert Seater, and Daniel JacksoAnalysis and Visualization
for Revealing Object Sharing. Eclipse Technology eXchange (ETEages 11-15, 2005.

Derek Rayside, Lucy Mendel, and Daniel Jackson. A Dynamiclysigfor Revealing Object
Ownership and Sharing. MWorkshop on Dynamic Analysis (WODAgages 57-64, 2006.

Aoun Raza, Gunther Vogel, and Erharé@é&reder. Bauhaus — a Tool Suite for Program Analysis
and Reverse Engineering. International Conference on Reliable Software Technologies
(Ada-Europe) pages 71-82, 2006.

Trygve Reenskaug. Thing-Model-View-Editor — an Examplerfr@ planning system. Technical
note, Xerox PARC. Available atittp://heim.ifi.uio.no/ trygver/mvc/index.html,
1979.

Trygve ReenskaugWorking with objects: the OOram Software Engineering Methdhn-
ning/Prentice Hall, 1996.

Trygve Reenskaug. The Common Sense of Object Orientated dpnogng.
http://heim.ifi.uio.no/ " trygver/2008/commonsense.pdf, 2008.

Steven P. Reiss and Manos Renieris. Jove: Java as it HappeRSMiSymposium on Software
Visualization pages 115-124, 2005.

Jie Ren and Richard Taylor. A Secure Software Architecture@son Language. IWorkshop

Bibliography 349

www.irisa.fr/lande/teaching/PAS/pointsto.pdf
http://www.cs.ubc.ca/labs/lci/CIspace/
http://heim.ifi.uio.no/~trygver/mvc/index.html
http://heim.ifi.uio.no/~trygver/2008/commonsense.pdf

on Softw. Security Assurance Tools, Techniques, and Me2005.

Tamar Richner and Stephane Ducasse. Recovering High-Lesels\of Object-Oriented Ap-
plications from Static and Dynamic Information. International Conference on Software
Maintenance (ICSM)pages 13-22, 1999.

Dirk Riehle. Framework Design: a Role Modeling ApproacRhD thesis, Federal Institute of
Technology Zurich, 2000.

Roshanak Roshandel, Aradvan der Hoek, Marija Mikic-Rakic, and Nenad Medvidovic. Mae
a System Model and Environment for Managing Architecturadlition. ACM Transactions
on Software Engineering and Methodolpd$3(2):240-276, 2004.

Roshanak Roshandel, Nenad Medvidovic, and Leana GolubcHday&sian Model for Predict-
ing Reliability of Software Systems at the Architectural ekuvn International Conference on
Quality of Software Architecture2007.

Jacek Rosik, Andrew Le Gear, Jim Buckley, and Muhammad Ali Baldar Industrial Case
Study of Architecture Conformance. WCM-IEEE International Symposium on Empirical
Software Engineering and Measuremerages 80—89, 2008.

James Rumbaugh, Ivar Jacobson, and Grady Bobiel.Unified Modeling Language Reference
Manual Addison-Wesley, 1998.

John Rushby, Sam Owre, and Natarajan Shankar. SubtypesédoifiSations: Predicate Sub-
typing in PVS.IEEE Transactions on Software Engineerji24(9), 1998.

David Saff and Michael D. Ernst. Continuous Testing in Edip$n International Conference
on Software Engineering (ICSH)ages 668—669, 2005.

Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametrap&nalysis via 3-Valued
Logic. InPOPL, pages 105-118, 1999.

Maher Salah and Spiros Mancoridis. A Hierarchy of Dynamit#are Views: From Object-
Interactions to Feature-Interactions. Ilternational Conference on Software Maintenance
(ICSM), 2004.

Neeraj Sangal, Ev Jordan, Vineet Sinha, and Daniel Jackiging Dependency Models to Man-
age Complex Software Architecture. @bject-Oriented Programming, Systems, Languages,
and Applications (OOPSLA2005.

Santonu Sarkar, Girish Maskeri Rama, and Shubha R. A Methobdtecting and Measur-
ing Architectural Layering Violations in Source Code. Asia Pacific Software Engineering
Conferencepages 165-172, 2006.

Kamran Sartipi and Kostas Kontogiannis. A User-Assiste@rdpch to Component Clustering.
Journal of Software Maintenanc&5(4):265-295, 2003a.

Kamran Sartipi and Kostas Kontogiannis. On Modeling SofevArchitecture Recovery as
Graph Matching. Idnternational Conference on Software Maintenance (ICSMypes 224—
234, 2003b.

Kamran Sartipi and Kostas Kontogianniglanaging Corporate Information Systems Evolution
and Maintenancechapter Software Architecture Analysis and Reconstractilmea Group

350 Bibliography

Publishing, 2004.

Jan Schfer and Arnd Poetzsch-Heffter. A Parameterized Type 8y$te Simple Loose Own-
ership DomainsJournal of Object Technolog¥(5):71-100, 2007.

Jan Schfer, Markus Reitz, Jean-Marie Gaillourdet, and Arnd Pai#deffter. Linking Pro-
grams to Architectures: An Object-Oriented Hierarchicaft®are Model based on Boxes.
In The Common Component Modeling Example: Comparing Software CanpModels
LNCS, pages 238-266. Springer, 2008.

Reinhard Schauer and Rudolf K. Keller. Pattern VisualizatarSoftware Comprehension. In
International Workshop on Program Comprehension (IWR@pe 4, 1998.

Bradley Schmerl and David Garlan. AcmeStudio: SupportindeSTCentered Architecture De-
velopment. Ininternational Conference on Software Engineering (ICSt&ges 704705,
2004.

Bradley Schmerl, Jonathan Aldrich, David Garlan, Rick Kazpsand Hong Yan. Discovering
Architectures from Running System3$EEE Transactions on Software Engineerir82(7):
454-466, 2006.

Mohlalefi Sefika, Aamod Sane, and Roy H. Campbell. Architee@riented Visualization.
In Object-Oriented Programming, Systems, Languages, anticagipns (OOPSLA)pages
389-405, 1996a.

Mohlalefi Sefika, Aamod Sane, and Roy H. Campbell. Monitoring @ltance of a Software
System with its High-Level Design Models. International Conference on Software Engi-
neering (ICSE)pages 387-396, 1996b.

D. Shasha and K Zhang. Approximate Tree Pattern Matchind\. kypostolico and Eds Galil,
Z., editors,Pattern Matching AlgorithmsOxford University Press, 1997.

Mary Shaw and Paul Clements. The Golden Age of Software Aechite.IEEE Softw. 23(2):
31-39, 2006.

Mary Shaw and David Garlarsoftware Architectures: Perspectives on an Emerging Diisap
Prentice Hall, 1996.

Mary Shaw, Robert DeLine, Daniel V. Klein, Theodore L. RossyiDaM. Young, and Gregory
Zelesnik. Abstractions for Software Architecture and Baol Support ThemlEEE Transac-
tions on Software Engineering1(4):314-335, 1995.

Mati Shomrat and Amiram Yehudai. Obvious or not? Regulatinghfectural Decisions using
Aspect-Oriented Programming. Aspect-Oriented Software Development (AQ$R2pes 3—
9, 2002.

Forrest Shull, Filippo Lanubile, and Victor R. Basili. Inviggtting Reading Techniques for
Object-Oriented Framework LearningEEE Transactions on Software Engineerira$(11):
1101-1118, 2000.

Vineet Sinha, David R. Karger, and Rob Miller. Relo: Helping kd$sklanage Context during
Interactive Exploratory Visualization of Large Codebadas/L/HCC, pages 187-194, 2006.

Michael P. Smith and Malcolm Munro. Runtime VisualisationQifject Oriented Software. In

Bibliography 351

VISSOFT2002.

Dilip Soni, Robert L. Nord, and Christine Hofmeister. Softe&rchitecture in Industrial Appli-
cations. Ininternational Conference on Software Engineering (IC®Epes 196-207, 1995.

Tim Souder, Spiros Mancoridis, and Maher Salah. Form: a Eveork for Creating Views of
Program Executions. Imternational Conference on Software Maintenance (ICS2D1.

George Spanoudakis and Andrea Zisméatandbook of Software Engineering and Knowledge
Engineering volume Vol 3: Recent Advances, chapter Software Tracégbih Roadmap,
pages 395-428. World Scientific Publishing, 2005.

André Spiegel. Automatic Distribution of Object-Oriented Program®&hD thesis, FU Berlin,
2002.

Diomidis Spinellis. On the Declarative Specification of Mdtsl IEEE Software 20(2):94-96,
March/April 2003.

Bridget Spitznagel and David Garlan. Architecture-BaseddP@ance Analysis. lIi€onference
on Software Engineering and Knowledge Engineerir§p8.

Manu Sridharan and Rastislav B&d Refinement-based context-sensitive points-to analgsis
Java. InProgramming Language Design and Implementation (PlL.pdges 387—-400, 2006.

Manu Sridharan, Denis Gopan, Lexin Shan, and RastislaikBo®emand-driven points-to
analysis for Java. I®©bject-Oriented Programming, Systems, Languages, antic&gpns
(OOPSLA) pages 59-76, 2005.

Margaret-Anne Storey, Casey Best, and Jeff Michaud. SHriM#v§i An Interactive Environ-
ment for Exploring Java Programs. Imternational Workshop on Program Comprehension
(IWPC), pages 111-112, 2001.

Margaret-Anne D. Storey, Hausi A. iller, and Kenny Wong. Manipulating and Documenting
Software Structures. In P. Eades and K. Zhang, edi@o#ware Visualizationl998.

Margaret-Anne D. Storey, Frank D. Fracchia, and Hausi Ailldt. Cognitive Design Elements
to Support the Construction of a Mental Model During Softwasploration. J. Systems &
Software 44(3), 1999.

Sun Microsystems. J2EE Tutorials. Dukes Battiktp: //java.sun.com/j2ee/tutorial/1_3-fcs/doc/Eba
2006.

Tarja Sysh, Ping Yu, and Hausi Mler. Analyzing Java software by combining metrics and
program visualization. liEuropean Conference on Software Maintenance and Reengigeeri
(CSMR) pages 199-208, 2000.

Peter Tabeling and Bernhard @we. Mappings between Object-Oriented Technology and
Architecture-Based Models. Boftware Engineering Research and Practigages 568-574,
2003.

Richard N. Taylor, Nenad Medvidovic, Kenneth M. AndersonJ&mnes Jr. Whitehead, Jason E.
Robbins, Kari A. Nies, Peyman Oreizy, and Deborah L. Dubroofmponent- and Message-
Based Architectural Style for GUI SoftwarlEEEE Transactions on Software Engineeri2@
(6):390-406, 1996.

352 Bibliography

http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/Ebank2.html

Alexandru Telea, Alessandro Maccari, and Claudio Riva. AnrOyisualization Toolkit for
Reverse Architecting. Iimternational Workshop on Program Comprehension (IWR@pes
3-10, 2002.

Paolo Tonella and Alessandra Potrich. Static and Dynamic Cade Analysis for the Recovery
of the Object Diagram. Iinternational Conference on Software Maintenance (IC3Myes
54-63, 2002.

Paolo Tonella and Alessandra Potrich. Reverse Engineefitfgednteraction Diagrams from
C++ Code. InInternational Conference on Software Maintenance (ICSdApes 159-168,
2003.

Paolo Tonella and Alessandra PotricReverse Engineering of Object Oriented Code (Mono-
graphs in Computer Sciencelpringer-Verlag New York, Inc., Secaucus, NJ, USA, 2004.

Paolo Tonella, Giuliano Antoniol, Roberto Fiutem, and Edtdierlo. Flow insensitive C++
pointers and polymorphism analysis and its applicatioti¢ong. In International Conference
on Software Engineering (ICSK)ages 433443, 1997.

Paolo Tonella, Marco Torchiano, Bart Du Bois, and Tarja &y&mpirical Studies in Reverse
Engineering: State of the Art and Future Trendsmpirical Software Engineerindl2(5):
551-571, 2007.

Peter Torr. Demystifying the Threat-Modeling Procd&EE Security and Privagyd(5):66—70,
2005.

Andrea Torsello, Dzena Hidovic-Rowe, and Marcello Pelilmlynomial-Time Metrics for At-
tributed TreesIEEE Transactions on Pattern Analysis and Machine Intelige 27(7):1087—
1099, 2005.

Christopher J. Turner, T.C. Nicholas Graham, Christopher &ydtlian Ball, David Holman,
Hugh D. Stewart, and Arthur G. Ryman. Visual Constraint DiaggaRuntime Conformance
Checking of UML Object Models versus ImplementationsAlitomated Software Engineer-
ing, pages 271-276, 2003.

Roseanne Tesoriero Tvedt, Patricia Costa, and Mikael Lihddes the Code Match the De-
sign? A Process for Architecture Evaluation.liternational Conference on Software Main-
tenance (ICSM)pages 393-401, 2002.

Vassilios Tzerpos and Richard C. Holt. A Hybrid Process for Redag Software Architec-
ture. InConference of the Centre for Advanced Studies on Collaboregsearch (CASCON)
page 38, 1996.

Universes. Universes Toolsww.sct.ethz.ch/research/universes/tools/, 2007.

Christopher van der Westhuizen and Aadan der Hoek. Understanding and Propagating Ar-
chitectural Changes. IWorking IEEE/IFIP Conference on Software Architecture (WILSA
pages 95-109, 2002.

Hylke W. van Dijk, Bas Graaf, and Rob Boerman. On the Systematidfd@@mance Check of
Software Artefacts. Ifturopean Workshop on Software Architecture (EWHaAQes 204-221,
2005.

Allison Waingold. Automatic Extraction of Abstract Objddbdels. Master’s thesis, Department

Bibliography 353

www.sct.ethz.ch/research/universes/tools/

of Electrical Engineering and Computer Science, MIT, 2001.

Allison Waingold and Robert Lee. SuperWomble Manual.
http://sdg.lcs.mit.edu/womble/, 2002.

Robert J. Walker, Gail C. Murphy, Bjorn Freeman-Benson, DaringifriDarin Swanson, and
Jeremy Isaak. Visualizing Dynamic Software System Infdromathrough High-Level Mod-
els. InObject-Oriented Programming, Systems, Languages, andicappns (OOPSLA)
pages 271-283, 1998.

Yuan Wang, David J. DeWitt, and Jin-Yi Cai. X-Diff: An Effegg Change Detection Algorithm
for XML Documents.International Conference on Data Engineerjqmages 519-530, 2003.

Dietl Werner and Peter Mler. Exceptions in Ownership Type SystemsWhorkshop on Formal
Techniques for Java-like Programs (FTfJRPO4.

Dietl Werner and Peter Mler. Runtime Universe Type Inference. Ihtl. Workshop on Aliasing,
Confinement and Ownership in Object-Oriented ProgrammingA@\@), 2007.

David S. Wile. Revealing Component Properties through Aechiitral Styles.J. Systems &
Software 65(3), 2003.

Lloyd G. Williams and Connie U. Smith. Performance evaluatid software architectures. In
International Workshop on Software and Performance (WOS&9)es 164—177, 1998.

Kenny Wong, Scott R. Tilley, Hausi A. Mler, and Margaret-Anne D. Storey. Structural Redoc-
umentation: a Case StudifEEE Software12(1):46-54, 1995.

Alisdair Wren. Ownership Type Inference. Master’s thesisp&tment of Computing, Imperial
College, 2003.

Zhenchang Xing and Eleni Stroulia. UMLDIff: an Algorithmrf@bject-Oriented Design Dif-
ferencing. InAutomated Software Engineerinuages 54—-65, 2005.

Guoging Xu and Atanas Rountev. Merging equivalent contextsd¢alable heap-cloning-based
context-sensitive points-to analysis. limternational Symposium on Software Testing and
Analysis (ISSTApages 225-236, 2008.

Kaizhong Zhang and Tao Jiang. Some MAX SNP-Hard Results CoimgeUnordered Labeled
Trees.Information Processing Letterd9(5):249-254, 1994.

354 Bibliography

http://sdg.lcs.mit.edu/womble/

	1 Introduction
	1.1 Introduction
	1.2 Object-Oriented Diagrams
	1.2.1 Example
	1.2.2 Class Diagrams
	1.2.3 Object Diagrams
	1.2.3.1 Static vs. dynamic object diagrams
	1.2.3.2 Global object diagrams

	1.3 Software Architecture
	1.3.1 Code Architecture
	1.3.1.1 Package (layer) vs. runtime tier

	1.3.2 Runtime Architecture
	1.3.3 Benefits of Architecture
	1.3.3.1 System understanding
	1.3.3.2 Qualitative architectural evaluation
	1.3.3.3 Quantitative architectural analysis
	1.3.3.4 Avoiding architectural drift and erosion

	1.4 Architectural Abstraction
	1.5 Object Graph Extraction
	1.5.1 Key Idea: Hierarchical Object Graphs
	1.5.1.1 Annotations to convey architectural intent
	1.5.1.2 Static analysis to achieve soundness

	1.5.2 Example
	1.5.2.1 Logical containment
	1.5.2.2 Strict encapsulation
	1.5.2.3 Sound approximation
	1.5.2.4 Aliasing
	1.5.2.5 Abstraction by hierarchy

	1.5.3 Previous work on architectural extraction
	1.5.4 Summary

	1.6 Architectural Conformance
	1.6.1 Key Property: Communication Integrity
	1.6.2 Establishing traceability
	1.6.3 Previous work in architectural conformance

	1.7 The Scholia approach
	1.8 Scholia's Requirements
	1.8.1 Overall Approach
	1.8.2 Annotations
	1.8.3 Architectural Extraction
	1.8.4 Architectural Comparison
	1.8.5 Architectural Conformance

	1.9 Contributions
	1.10 Thesis Statement and Outline
	1.10.1 Hypothesis: Annotations
	1.10.2 Hypothesis: Extraction
	1.10.3 Hypothesis: Soundness
	1.10.4 Hypothesis: Abstraction
	1.10.5 Hypothesis: Comparison
	1.10.6 Hypothesis: Conformance

	1.11 Summary

	2 Object Graph Extraction
	2.1 Introduction
	2.2 Code vs. Runtime Structure
	2.2.1 Code Structure
	2.2.2 Runtime Structure

	2.3 Annotations
	2.3.1 Object and Domain Annotations
	2.3.2 Permission Annotations
	2.3.3 Special Annotations
	2.3.3.1 OWNER
	2.3.3.2 shared
	2.3.3.3 unique
	2.3.3.4 lent

	2.4 Static Analysis
	2.4.1 Type Graph
	2.4.2 Object Graph
	2.4.2.1 Overview
	2.4.2.2 Abstract interpretation
	2.4.2.3 Recursion
	2.4.2.4 Domain parameters

	2.4.3 Display Graph
	2.4.3.1 Depth limiting
	2.4.3.2 Abstraction by types

	2.4.4 Summary

	2.5 Advanced Features
	2.5.1 Displaying objects with special annotations
	2.5.1.1 shared objects
	2.5.1.2 unique objects
	2.5.1.3 lent objects

	2.6 Discussion
	2.6.1 Assumptions
	2.6.2 Alternate Annotations
	2.6.3 Imprecision
	2.6.3.1 Field assignment in superclass
	2.6.3.2 Imprecision with containers

	2.7 Summary

	3 Formalization of the Object Graph Extraction
	3.1 Annotations (Featherweight Domain Java)
	3.1.1 Syntax
	3.1.2 Typing Rules
	3.1.3 Ownership domain soundness

	3.2 Object Graph (OGraph)
	3.2.1 Data Types
	3.2.2 Constraint-Based Specification

	3.3 Object Graph Soundness
	3.3.1 Instrumented Semantics
	3.3.2 Approximation relation
	3.3.3 Lemmas
	3.3.4 Preservation
	3.3.5 Progress
	3.3.6 Object Graph Soundness
	3.3.7 Limitations

	3.4 Display Graph (DGraph)
	3.4.1 Depth-Limited Unfolding
	3.4.2 Abstraction by Types
	3.4.2.1 Abstraction by trivial types
	3.4.2.2 Abstraction by design intent types
	3.4.2.3 Abstraction by types and soundness

	3.5 Implementation
	3.5.1 Traceability
	3.5.2 Differences between the formal and the concrete systems

	3.6 Discussion
	3.6.1 Our Previous Formalizations
	3.6.1.1 Pseudo-code
	3.6.1.2 Term-rewriting system

	3.6.2 Precision
	3.6.3 Points-to Analysis

	3.7 Summary

	4 Evaluation of the Object Graph Extraction
	4.1 Introduction
	4.2 Research Questions
	4.3 Tool Support
	4.3.1 Annotation Tool
	4.3.2 Object Graph Extraction Tool

	4.4 Extraction Methodology
	4.4.1 Adding and Checking the Annotations
	4.4.1.1 Gathering available documentation.
	4.4.1.2 Typechecking the annotations
	4.4.1.3 Prioritizing the annotation warnings

	4.4.2 Refining the Object Graph
	4.4.2.1 Overall strategy
	4.4.2.2 Refining the ownership annotations
	4.4.2.3 Code changes
	4.4.2.4 Using abstraction by types
	4.4.2.5 Controlling the level of detail

	4.5 Evaluation Methodology
	4.6 Extended Example: JHotDraw
	4.6.1 Annotation Process
	4.6.1.1 Annotation Overview
	4.6.1.2 Annotation Examples and Observations
	4.6.1.3 Expressiveness Challenges
	4.6.1.4 Annotation Summary

	4.6.2 Object Graph Extraction
	4.6.3 JHotDraw Summary

	4.7 Extended Example: HillClimber
	4.7.1 About HillClimber
	4.7.2 Annotation Process
	4.7.2.1 Annotation Overview
	4.7.2.2 Annotation Examples

	4.7.3 Object Graph Extraction
	4.7.4 HillClimber Summary

	4.8 Field Study: LbGrid
	4.8.1 Overview
	4.8.2 Research Questions
	4.8.3 Setup and Methodology
	4.8.4 Annotation and Extraction Process
	4.8.5 Results
	4.8.5.1 Quantitative Data
	4.8.5.2 Qualitative Data

	4.8.6 Validity
	4.8.7 LbGrid Summary

	4.9 Evaluation based on Cognitive Framework for Design
	4.10 Discussion
	4.10.1 Research Questions (Revisited)
	4.10.2 Evaluation Critique
	4.10.3 Soundness
	4.10.4 Performance
	4.10.5 Scalability

	4.11 Summary

	5 Architectural Synchronization
	5.1 Introduction
	5.2 Architectural View Differencing
	5.3 Tree-to-Tree Correction
	5.3.1 Overview of Algorithm
	5.3.2 Forcing and Preventing Matches
	5.3.3 Runtime and Memory Complexity

	5.4 Architectural View Synchronization
	5.4.1 General Approach
	5.4.2 Specialized Tools

	5.5 Evaluation
	5.5.1 Extended Example: AphydsAJ
	5.5.2 Extended Example: Duke's Bank
	5.5.3 Extended Example: HillClimberAJ

	5.6 Conclusion

	6 Conformance Analysis
	6.1 Introduction
	6.2 Abstracting the Object Graph
	6.3 Describing the Architecture
	6.3.1 Architecture description language (ADL)
	6.3.2 Mapping an OOG to a C&C view

	6.4 Analyzing Conformance
	6.4.1 Conformance Findings
	6.4.2 Displaying Conformance
	6.4.3 Traceability
	6.4.4 Analyzing Conformance
	6.4.5 Measuring Conformance

	6.5 Enforcing Architectural Structure
	6.5.1 Code-level constraints
	6.5.2 Architectural constraints

	6.6 Discussion
	6.6.1 False positives
	6.6.2 Why an architecture description language?
	6.6.3 Why structural comparison?
	6.6.4 Relation to Reflexion Models
	6.6.5 Mapping Code to High-Level Models

	6.7 Summary

	7 Evaluation of the Conformance Analysis
	7.1 Introduction
	7.2 Research Questions
	7.3 Tool Support
	7.3.1 ArchCog
	7.3.2 ArchConf
	7.3.3 CodeTraceJ
	7.3.4 ArchMod

	7.4 Evaluation Methodology
	7.5 Extended Example: Aphyds
	7.5.1 Modeling the Target Architecture
	7.5.2 Iteration 1
	7.5.2.1 Adding Annotations
	7.5.2.2 Extracting Object Graphs
	7.5.2.3 Abstracting into Built Architecture
	7.5.2.4 Comparing the Built and Designed Architectures
	7.5.2.5 Analyzing Conformance

	7.5.3 Iteration 2
	7.5.3.1 Adding Annotations
	7.5.3.2 Extracting Object Graphs
	7.5.3.3 Abstracting into Built Architecture
	7.5.3.4 Comparing the Built and Designed Architectures
	7.5.3.5 Analyzing Conformance

	7.5.4 Summary of Findings
	7.5.5 Aphyds Discussion

	7.6 Extended Example: JHotDraw
	7.6.1 Modeling the Target Architecture
	7.6.2 Adding Annotations
	7.6.3 Extracting Object Graphs
	7.6.4 Abstracting into Built Architecture
	7.6.5 Analyzing Conformance
	7.6.6 Summary of Findings

	7.7 Extended Example: HillClimber
	7.7.1 Modeling the Target Architecture
	7.7.2 Adding Annotations
	7.7.3 Extracting Object Graphs
	7.7.4 Abstracting into Built Architecture
	7.7.5 Analyzing Conformance
	7.7.6 Summary of Findings

	7.8 Extended Example: CryptoDB
	7.8.1 Threat Modeling
	7.8.2 Available Documentation
	7.8.2.1 Documented Architectures
	7.8.2.2 Code Architecture
	7.8.2.3 Flat Object Graphs

	7.8.3 Adding Annotations
	7.8.4 Extracting Object Graphs
	7.8.5 Abstracting into Built Architecture
	7.8.6 Modeling the Target Architecture
	7.8.7 Analyzing Conformance
	7.8.8 Enforcing Code-Level Constraints
	7.8.9 Enforcing Architectural Constraints
	7.8.10 CryptoDB Discussion

	7.9 Discussion
	7.9.1 External Validity
	7.9.2 Research Questions (Revisited)
	7.9.3 Performance
	7.9.4 Evaluation Critique

	7.10 Summary

	8 Related Work
	8.1 Object-Oriented Design Diagrams
	8.1.1 Summary of previous work on design diagrams

	8.2 Architectural Description
	8.2.1 Visualization of Software Architecture
	8.2.2 Summary of previous architectural description

	8.3 Ownership type systems
	8.3.1 Expressiveness
	8.3.2 Related type systems
	8.3.3 Case studies for ownership types
	8.3.4 Ownership inference
	8.3.5 Summary of previous work on ownership type systems

	8.4 Static analysis of the runtime structure
	8.4.1 Object graph analyses
	8.4.1.1 Annotation-free analyses
	8.4.1.2 Annotation-based analyses

	8.4.2 Points-to analysis
	8.4.3 Shape analysis
	8.4.4 Summary of previous static analysis of the runtime structure

	8.5 Dynamic analysis of the runtime structure
	8.5.1 Visualization of object structures
	8.5.2 Dynamic ownership analyses
	8.5.3 Mix of static and dynamic analysis
	8.5.4 Summary of previous dynamic analysis of the runtime structure

	8.6 Architectural extraction
	8.6.1 Extracting a source model
	8.6.1.1 Static extractors
	8.6.1.2 Dynamic extractors
	8.6.1.3 Mixed extractors
	8.6.1.4 Summary of previous work in extracting source models

	8.6.2 Abstracting a source model into a high-level model
	8.6.2.1 Clustering
	8.6.2.2 Pattern matching
	8.6.2.3 Summary of previous work in abstracting source models

	8.6.3 Case studies in architectural extraction
	8.6.3.1 Non-object-oriented systems
	8.6.3.2 Object-oriented systems
	8.6.3.3 Evaluating an extracted architecture
	8.6.3.4 Summary of previous case studies in architectural extraction

	8.6.4 Summary of previous work in architectural extraction

	8.7 Architectural synchronization
	8.8 Built-in conformance
	8.8.1 Code generation
	8.8.2 Style guidelines
	8.8.3 Library-based solutions
	8.8.4 Language-based solutions
	8.8.5 Summary of previous work in built-in conformance

	8.9 Architectural conformance
	8.9.1 Conformance analysis of the code architecture
	8.9.2 Conformance analysis of the runtime architecture
	8.9.2.1 Dynamic analysis
	8.9.2.2 Static analysis

	8.9.3 Case studies in architectural conformance
	8.9.4 Conformance measurement
	8.9.5 Summary of previous work in architectural conformance

	8.10 Traceability
	8.11 Summary of related work

	9 Discussion and Conclusion
	9.1 Satisfaction of the Scholia requirements
	9.1.1 Overall Approach
	9.1.2 Annotations
	9.1.3 Architectural Extraction
	9.1.4 Architectural Comparison
	9.1.5 Architectural Conformance

	9.2 Limitations
	9.2.1 Overall Approach
	9.2.2 Annotations
	9.2.3 Architectural Extraction
	9.2.4 Architectural Comparison
	9.2.5 Architectural Conformance

	9.3 Usefulness and Usability
	9.3.1 Usefulness
	9.3.2 Usability

	9.4 Future Work
	9.4.1 Overall Approach
	9.4.2 Annotations
	9.4.3 Architectural Extraction
	9.4.4 Architectural Comparison
	9.4.5 Architectural Conformance

	9.5 Conclusion and Broader Impact

	A Annotation Language and ArchCheckJ Typechecker
	A.1 Introduction
	A.2 Annotation Design
	A.3 Tool Design and Implementation
	A.4 Additional Features
	A.4.1 External Libraries
	A.4.2 Generics
	A.4.3 Method Domain Parameters
	A.4.4 Defaulting Tool
	A.4.5 Special Annotations

	A.5 Tool Limitations and Future Work
	A.6 Summary

	B CryptoDB Architecture
	B.1 Architectural Style in Acme
	B.2 CryptoDB Target Architecture in Acme

	Bibliography

